[Ada] Fix comment in ada-lang.c:ada_is_ignored_field
[binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-1994, 1997-2000, 2003-2005, 2007-2012 Free
4 Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21
22 #include "defs.h"
23 #include <stdio.h>
24 #include "gdb_string.h"
25 #include <ctype.h>
26 #include <stdarg.h>
27 #include "demangle.h"
28 #include "gdb_regex.h"
29 #include "frame.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "gdbcmd.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35 #include "language.h"
36 #include "c-lang.h"
37 #include "inferior.h"
38 #include "symfile.h"
39 #include "objfiles.h"
40 #include "breakpoint.h"
41 #include "gdbcore.h"
42 #include "hashtab.h"
43 #include "gdb_obstack.h"
44 #include "ada-lang.h"
45 #include "completer.h"
46 #include "gdb_stat.h"
47 #ifdef UI_OUT
48 #include "ui-out.h"
49 #endif
50 #include "block.h"
51 #include "infcall.h"
52 #include "dictionary.h"
53 #include "exceptions.h"
54 #include "annotate.h"
55 #include "valprint.h"
56 #include "source.h"
57 #include "observer.h"
58 #include "vec.h"
59 #include "stack.h"
60 #include "gdb_vecs.h"
61
62 #include "psymtab.h"
63 #include "value.h"
64 #include "mi/mi-common.h"
65 #include "arch-utils.h"
66 #include "exceptions.h"
67 #include "cli/cli-utils.h"
68
69 /* Define whether or not the C operator '/' truncates towards zero for
70 differently signed operands (truncation direction is undefined in C).
71 Copied from valarith.c. */
72
73 #ifndef TRUNCATION_TOWARDS_ZERO
74 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
75 #endif
76
77 static struct type *desc_base_type (struct type *);
78
79 static struct type *desc_bounds_type (struct type *);
80
81 static struct value *desc_bounds (struct value *);
82
83 static int fat_pntr_bounds_bitpos (struct type *);
84
85 static int fat_pntr_bounds_bitsize (struct type *);
86
87 static struct type *desc_data_target_type (struct type *);
88
89 static struct value *desc_data (struct value *);
90
91 static int fat_pntr_data_bitpos (struct type *);
92
93 static int fat_pntr_data_bitsize (struct type *);
94
95 static struct value *desc_one_bound (struct value *, int, int);
96
97 static int desc_bound_bitpos (struct type *, int, int);
98
99 static int desc_bound_bitsize (struct type *, int, int);
100
101 static struct type *desc_index_type (struct type *, int);
102
103 static int desc_arity (struct type *);
104
105 static int ada_type_match (struct type *, struct type *, int);
106
107 static int ada_args_match (struct symbol *, struct value **, int);
108
109 static int full_match (const char *, const char *);
110
111 static struct value *make_array_descriptor (struct type *, struct value *);
112
113 static void ada_add_block_symbols (struct obstack *,
114 struct block *, const char *,
115 domain_enum, struct objfile *, int);
116
117 static int is_nonfunction (struct ada_symbol_info *, int);
118
119 static void add_defn_to_vec (struct obstack *, struct symbol *,
120 struct block *);
121
122 static int num_defns_collected (struct obstack *);
123
124 static struct ada_symbol_info *defns_collected (struct obstack *, int);
125
126 static struct value *resolve_subexp (struct expression **, int *, int,
127 struct type *);
128
129 static void replace_operator_with_call (struct expression **, int, int, int,
130 struct symbol *, struct block *);
131
132 static int possible_user_operator_p (enum exp_opcode, struct value **);
133
134 static char *ada_op_name (enum exp_opcode);
135
136 static const char *ada_decoded_op_name (enum exp_opcode);
137
138 static int numeric_type_p (struct type *);
139
140 static int integer_type_p (struct type *);
141
142 static int scalar_type_p (struct type *);
143
144 static int discrete_type_p (struct type *);
145
146 static enum ada_renaming_category parse_old_style_renaming (struct type *,
147 const char **,
148 int *,
149 const char **);
150
151 static struct symbol *find_old_style_renaming_symbol (const char *,
152 struct block *);
153
154 static struct type *ada_lookup_struct_elt_type (struct type *, char *,
155 int, int, int *);
156
157 static struct value *evaluate_subexp_type (struct expression *, int *);
158
159 static struct type *ada_find_parallel_type_with_name (struct type *,
160 const char *);
161
162 static int is_dynamic_field (struct type *, int);
163
164 static struct type *to_fixed_variant_branch_type (struct type *,
165 const gdb_byte *,
166 CORE_ADDR, struct value *);
167
168 static struct type *to_fixed_array_type (struct type *, struct value *, int);
169
170 static struct type *to_fixed_range_type (struct type *, struct value *);
171
172 static struct type *to_static_fixed_type (struct type *);
173 static struct type *static_unwrap_type (struct type *type);
174
175 static struct value *unwrap_value (struct value *);
176
177 static struct type *constrained_packed_array_type (struct type *, long *);
178
179 static struct type *decode_constrained_packed_array_type (struct type *);
180
181 static long decode_packed_array_bitsize (struct type *);
182
183 static struct value *decode_constrained_packed_array (struct value *);
184
185 static int ada_is_packed_array_type (struct type *);
186
187 static int ada_is_unconstrained_packed_array_type (struct type *);
188
189 static struct value *value_subscript_packed (struct value *, int,
190 struct value **);
191
192 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
193
194 static struct value *coerce_unspec_val_to_type (struct value *,
195 struct type *);
196
197 static struct value *get_var_value (char *, char *);
198
199 static int lesseq_defined_than (struct symbol *, struct symbol *);
200
201 static int equiv_types (struct type *, struct type *);
202
203 static int is_name_suffix (const char *);
204
205 static int advance_wild_match (const char **, const char *, int);
206
207 static int wild_match (const char *, const char *);
208
209 static struct value *ada_coerce_ref (struct value *);
210
211 static LONGEST pos_atr (struct value *);
212
213 static struct value *value_pos_atr (struct type *, struct value *);
214
215 static struct value *value_val_atr (struct type *, struct value *);
216
217 static struct symbol *standard_lookup (const char *, const struct block *,
218 domain_enum);
219
220 static struct value *ada_search_struct_field (char *, struct value *, int,
221 struct type *);
222
223 static struct value *ada_value_primitive_field (struct value *, int, int,
224 struct type *);
225
226 static int find_struct_field (const char *, struct type *, int,
227 struct type **, int *, int *, int *, int *);
228
229 static struct value *ada_to_fixed_value_create (struct type *, CORE_ADDR,
230 struct value *);
231
232 static int ada_resolve_function (struct ada_symbol_info *, int,
233 struct value **, int, const char *,
234 struct type *);
235
236 static int ada_is_direct_array_type (struct type *);
237
238 static void ada_language_arch_info (struct gdbarch *,
239 struct language_arch_info *);
240
241 static void check_size (const struct type *);
242
243 static struct value *ada_index_struct_field (int, struct value *, int,
244 struct type *);
245
246 static struct value *assign_aggregate (struct value *, struct value *,
247 struct expression *,
248 int *, enum noside);
249
250 static void aggregate_assign_from_choices (struct value *, struct value *,
251 struct expression *,
252 int *, LONGEST *, int *,
253 int, LONGEST, LONGEST);
254
255 static void aggregate_assign_positional (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int *, int,
258 LONGEST, LONGEST);
259
260
261 static void aggregate_assign_others (struct value *, struct value *,
262 struct expression *,
263 int *, LONGEST *, int, LONGEST, LONGEST);
264
265
266 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
267
268
269 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
270 int *, enum noside);
271
272 static void ada_forward_operator_length (struct expression *, int, int *,
273 int *);
274 \f
275
276
277 /* Maximum-sized dynamic type. */
278 static unsigned int varsize_limit;
279
280 /* FIXME: brobecker/2003-09-17: No longer a const because it is
281 returned by a function that does not return a const char *. */
282 static char *ada_completer_word_break_characters =
283 #ifdef VMS
284 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
285 #else
286 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
287 #endif
288
289 /* The name of the symbol to use to get the name of the main subprogram. */
290 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
291 = "__gnat_ada_main_program_name";
292
293 /* Limit on the number of warnings to raise per expression evaluation. */
294 static int warning_limit = 2;
295
296 /* Number of warning messages issued; reset to 0 by cleanups after
297 expression evaluation. */
298 static int warnings_issued = 0;
299
300 static const char *known_runtime_file_name_patterns[] = {
301 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
302 };
303
304 static const char *known_auxiliary_function_name_patterns[] = {
305 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
306 };
307
308 /* Space for allocating results of ada_lookup_symbol_list. */
309 static struct obstack symbol_list_obstack;
310
311 /* Inferior-specific data. */
312
313 /* Per-inferior data for this module. */
314
315 struct ada_inferior_data
316 {
317 /* The ada__tags__type_specific_data type, which is used when decoding
318 tagged types. With older versions of GNAT, this type was directly
319 accessible through a component ("tsd") in the object tag. But this
320 is no longer the case, so we cache it for each inferior. */
321 struct type *tsd_type;
322
323 /* The exception_support_info data. This data is used to determine
324 how to implement support for Ada exception catchpoints in a given
325 inferior. */
326 const struct exception_support_info *exception_info;
327 };
328
329 /* Our key to this module's inferior data. */
330 static const struct inferior_data *ada_inferior_data;
331
332 /* A cleanup routine for our inferior data. */
333 static void
334 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
335 {
336 struct ada_inferior_data *data;
337
338 data = inferior_data (inf, ada_inferior_data);
339 if (data != NULL)
340 xfree (data);
341 }
342
343 /* Return our inferior data for the given inferior (INF).
344
345 This function always returns a valid pointer to an allocated
346 ada_inferior_data structure. If INF's inferior data has not
347 been previously set, this functions creates a new one with all
348 fields set to zero, sets INF's inferior to it, and then returns
349 a pointer to that newly allocated ada_inferior_data. */
350
351 static struct ada_inferior_data *
352 get_ada_inferior_data (struct inferior *inf)
353 {
354 struct ada_inferior_data *data;
355
356 data = inferior_data (inf, ada_inferior_data);
357 if (data == NULL)
358 {
359 data = XZALLOC (struct ada_inferior_data);
360 set_inferior_data (inf, ada_inferior_data, data);
361 }
362
363 return data;
364 }
365
366 /* Perform all necessary cleanups regarding our module's inferior data
367 that is required after the inferior INF just exited. */
368
369 static void
370 ada_inferior_exit (struct inferior *inf)
371 {
372 ada_inferior_data_cleanup (inf, NULL);
373 set_inferior_data (inf, ada_inferior_data, NULL);
374 }
375
376 /* Utilities */
377
378 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
379 all typedef layers have been peeled. Otherwise, return TYPE.
380
381 Normally, we really expect a typedef type to only have 1 typedef layer.
382 In other words, we really expect the target type of a typedef type to be
383 a non-typedef type. This is particularly true for Ada units, because
384 the language does not have a typedef vs not-typedef distinction.
385 In that respect, the Ada compiler has been trying to eliminate as many
386 typedef definitions in the debugging information, since they generally
387 do not bring any extra information (we still use typedef under certain
388 circumstances related mostly to the GNAT encoding).
389
390 Unfortunately, we have seen situations where the debugging information
391 generated by the compiler leads to such multiple typedef layers. For
392 instance, consider the following example with stabs:
393
394 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
395 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
396
397 This is an error in the debugging information which causes type
398 pck__float_array___XUP to be defined twice, and the second time,
399 it is defined as a typedef of a typedef.
400
401 This is on the fringe of legality as far as debugging information is
402 concerned, and certainly unexpected. But it is easy to handle these
403 situations correctly, so we can afford to be lenient in this case. */
404
405 static struct type *
406 ada_typedef_target_type (struct type *type)
407 {
408 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
409 type = TYPE_TARGET_TYPE (type);
410 return type;
411 }
412
413 /* Given DECODED_NAME a string holding a symbol name in its
414 decoded form (ie using the Ada dotted notation), returns
415 its unqualified name. */
416
417 static const char *
418 ada_unqualified_name (const char *decoded_name)
419 {
420 const char *result = strrchr (decoded_name, '.');
421
422 if (result != NULL)
423 result++; /* Skip the dot... */
424 else
425 result = decoded_name;
426
427 return result;
428 }
429
430 /* Return a string starting with '<', followed by STR, and '>'.
431 The result is good until the next call. */
432
433 static char *
434 add_angle_brackets (const char *str)
435 {
436 static char *result = NULL;
437
438 xfree (result);
439 result = xstrprintf ("<%s>", str);
440 return result;
441 }
442
443 static char *
444 ada_get_gdb_completer_word_break_characters (void)
445 {
446 return ada_completer_word_break_characters;
447 }
448
449 /* Print an array element index using the Ada syntax. */
450
451 static void
452 ada_print_array_index (struct value *index_value, struct ui_file *stream,
453 const struct value_print_options *options)
454 {
455 LA_VALUE_PRINT (index_value, stream, options);
456 fprintf_filtered (stream, " => ");
457 }
458
459 /* Assuming VECT points to an array of *SIZE objects of size
460 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
461 updating *SIZE as necessary and returning the (new) array. */
462
463 void *
464 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
465 {
466 if (*size < min_size)
467 {
468 *size *= 2;
469 if (*size < min_size)
470 *size = min_size;
471 vect = xrealloc (vect, *size * element_size);
472 }
473 return vect;
474 }
475
476 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
477 suffix of FIELD_NAME beginning "___". */
478
479 static int
480 field_name_match (const char *field_name, const char *target)
481 {
482 int len = strlen (target);
483
484 return
485 (strncmp (field_name, target, len) == 0
486 && (field_name[len] == '\0'
487 || (strncmp (field_name + len, "___", 3) == 0
488 && strcmp (field_name + strlen (field_name) - 6,
489 "___XVN") != 0)));
490 }
491
492
493 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
494 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
495 and return its index. This function also handles fields whose name
496 have ___ suffixes because the compiler sometimes alters their name
497 by adding such a suffix to represent fields with certain constraints.
498 If the field could not be found, return a negative number if
499 MAYBE_MISSING is set. Otherwise raise an error. */
500
501 int
502 ada_get_field_index (const struct type *type, const char *field_name,
503 int maybe_missing)
504 {
505 int fieldno;
506 struct type *struct_type = check_typedef ((struct type *) type);
507
508 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
509 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
510 return fieldno;
511
512 if (!maybe_missing)
513 error (_("Unable to find field %s in struct %s. Aborting"),
514 field_name, TYPE_NAME (struct_type));
515
516 return -1;
517 }
518
519 /* The length of the prefix of NAME prior to any "___" suffix. */
520
521 int
522 ada_name_prefix_len (const char *name)
523 {
524 if (name == NULL)
525 return 0;
526 else
527 {
528 const char *p = strstr (name, "___");
529
530 if (p == NULL)
531 return strlen (name);
532 else
533 return p - name;
534 }
535 }
536
537 /* Return non-zero if SUFFIX is a suffix of STR.
538 Return zero if STR is null. */
539
540 static int
541 is_suffix (const char *str, const char *suffix)
542 {
543 int len1, len2;
544
545 if (str == NULL)
546 return 0;
547 len1 = strlen (str);
548 len2 = strlen (suffix);
549 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
550 }
551
552 /* The contents of value VAL, treated as a value of type TYPE. The
553 result is an lval in memory if VAL is. */
554
555 static struct value *
556 coerce_unspec_val_to_type (struct value *val, struct type *type)
557 {
558 type = ada_check_typedef (type);
559 if (value_type (val) == type)
560 return val;
561 else
562 {
563 struct value *result;
564
565 /* Make sure that the object size is not unreasonable before
566 trying to allocate some memory for it. */
567 check_size (type);
568
569 if (value_lazy (val)
570 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
571 result = allocate_value_lazy (type);
572 else
573 {
574 result = allocate_value (type);
575 memcpy (value_contents_raw (result), value_contents (val),
576 TYPE_LENGTH (type));
577 }
578 set_value_component_location (result, val);
579 set_value_bitsize (result, value_bitsize (val));
580 set_value_bitpos (result, value_bitpos (val));
581 set_value_address (result, value_address (val));
582 return result;
583 }
584 }
585
586 static const gdb_byte *
587 cond_offset_host (const gdb_byte *valaddr, long offset)
588 {
589 if (valaddr == NULL)
590 return NULL;
591 else
592 return valaddr + offset;
593 }
594
595 static CORE_ADDR
596 cond_offset_target (CORE_ADDR address, long offset)
597 {
598 if (address == 0)
599 return 0;
600 else
601 return address + offset;
602 }
603
604 /* Issue a warning (as for the definition of warning in utils.c, but
605 with exactly one argument rather than ...), unless the limit on the
606 number of warnings has passed during the evaluation of the current
607 expression. */
608
609 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
610 provided by "complaint". */
611 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
612
613 static void
614 lim_warning (const char *format, ...)
615 {
616 va_list args;
617
618 va_start (args, format);
619 warnings_issued += 1;
620 if (warnings_issued <= warning_limit)
621 vwarning (format, args);
622
623 va_end (args);
624 }
625
626 /* Issue an error if the size of an object of type T is unreasonable,
627 i.e. if it would be a bad idea to allocate a value of this type in
628 GDB. */
629
630 static void
631 check_size (const struct type *type)
632 {
633 if (TYPE_LENGTH (type) > varsize_limit)
634 error (_("object size is larger than varsize-limit"));
635 }
636
637 /* Maximum value of a SIZE-byte signed integer type. */
638 static LONGEST
639 max_of_size (int size)
640 {
641 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
642
643 return top_bit | (top_bit - 1);
644 }
645
646 /* Minimum value of a SIZE-byte signed integer type. */
647 static LONGEST
648 min_of_size (int size)
649 {
650 return -max_of_size (size) - 1;
651 }
652
653 /* Maximum value of a SIZE-byte unsigned integer type. */
654 static ULONGEST
655 umax_of_size (int size)
656 {
657 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
658
659 return top_bit | (top_bit - 1);
660 }
661
662 /* Maximum value of integral type T, as a signed quantity. */
663 static LONGEST
664 max_of_type (struct type *t)
665 {
666 if (TYPE_UNSIGNED (t))
667 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
668 else
669 return max_of_size (TYPE_LENGTH (t));
670 }
671
672 /* Minimum value of integral type T, as a signed quantity. */
673 static LONGEST
674 min_of_type (struct type *t)
675 {
676 if (TYPE_UNSIGNED (t))
677 return 0;
678 else
679 return min_of_size (TYPE_LENGTH (t));
680 }
681
682 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
683 LONGEST
684 ada_discrete_type_high_bound (struct type *type)
685 {
686 switch (TYPE_CODE (type))
687 {
688 case TYPE_CODE_RANGE:
689 return TYPE_HIGH_BOUND (type);
690 case TYPE_CODE_ENUM:
691 return TYPE_FIELD_BITPOS (type, TYPE_NFIELDS (type) - 1);
692 case TYPE_CODE_BOOL:
693 return 1;
694 case TYPE_CODE_CHAR:
695 case TYPE_CODE_INT:
696 return max_of_type (type);
697 default:
698 error (_("Unexpected type in ada_discrete_type_high_bound."));
699 }
700 }
701
702 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
703 LONGEST
704 ada_discrete_type_low_bound (struct type *type)
705 {
706 switch (TYPE_CODE (type))
707 {
708 case TYPE_CODE_RANGE:
709 return TYPE_LOW_BOUND (type);
710 case TYPE_CODE_ENUM:
711 return TYPE_FIELD_BITPOS (type, 0);
712 case TYPE_CODE_BOOL:
713 return 0;
714 case TYPE_CODE_CHAR:
715 case TYPE_CODE_INT:
716 return min_of_type (type);
717 default:
718 error (_("Unexpected type in ada_discrete_type_low_bound."));
719 }
720 }
721
722 /* The identity on non-range types. For range types, the underlying
723 non-range scalar type. */
724
725 static struct type *
726 get_base_type (struct type *type)
727 {
728 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
729 {
730 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
731 return type;
732 type = TYPE_TARGET_TYPE (type);
733 }
734 return type;
735 }
736 \f
737
738 /* Language Selection */
739
740 /* If the main program is in Ada, return language_ada, otherwise return LANG
741 (the main program is in Ada iif the adainit symbol is found). */
742
743 enum language
744 ada_update_initial_language (enum language lang)
745 {
746 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
747 (struct objfile *) NULL) != NULL)
748 return language_ada;
749
750 return lang;
751 }
752
753 /* If the main procedure is written in Ada, then return its name.
754 The result is good until the next call. Return NULL if the main
755 procedure doesn't appear to be in Ada. */
756
757 char *
758 ada_main_name (void)
759 {
760 struct minimal_symbol *msym;
761 static char *main_program_name = NULL;
762
763 /* For Ada, the name of the main procedure is stored in a specific
764 string constant, generated by the binder. Look for that symbol,
765 extract its address, and then read that string. If we didn't find
766 that string, then most probably the main procedure is not written
767 in Ada. */
768 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
769
770 if (msym != NULL)
771 {
772 CORE_ADDR main_program_name_addr;
773 int err_code;
774
775 main_program_name_addr = SYMBOL_VALUE_ADDRESS (msym);
776 if (main_program_name_addr == 0)
777 error (_("Invalid address for Ada main program name."));
778
779 xfree (main_program_name);
780 target_read_string (main_program_name_addr, &main_program_name,
781 1024, &err_code);
782
783 if (err_code != 0)
784 return NULL;
785 return main_program_name;
786 }
787
788 /* The main procedure doesn't seem to be in Ada. */
789 return NULL;
790 }
791 \f
792 /* Symbols */
793
794 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
795 of NULLs. */
796
797 const struct ada_opname_map ada_opname_table[] = {
798 {"Oadd", "\"+\"", BINOP_ADD},
799 {"Osubtract", "\"-\"", BINOP_SUB},
800 {"Omultiply", "\"*\"", BINOP_MUL},
801 {"Odivide", "\"/\"", BINOP_DIV},
802 {"Omod", "\"mod\"", BINOP_MOD},
803 {"Orem", "\"rem\"", BINOP_REM},
804 {"Oexpon", "\"**\"", BINOP_EXP},
805 {"Olt", "\"<\"", BINOP_LESS},
806 {"Ole", "\"<=\"", BINOP_LEQ},
807 {"Ogt", "\">\"", BINOP_GTR},
808 {"Oge", "\">=\"", BINOP_GEQ},
809 {"Oeq", "\"=\"", BINOP_EQUAL},
810 {"One", "\"/=\"", BINOP_NOTEQUAL},
811 {"Oand", "\"and\"", BINOP_BITWISE_AND},
812 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
813 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
814 {"Oconcat", "\"&\"", BINOP_CONCAT},
815 {"Oabs", "\"abs\"", UNOP_ABS},
816 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
817 {"Oadd", "\"+\"", UNOP_PLUS},
818 {"Osubtract", "\"-\"", UNOP_NEG},
819 {NULL, NULL}
820 };
821
822 /* The "encoded" form of DECODED, according to GNAT conventions.
823 The result is valid until the next call to ada_encode. */
824
825 char *
826 ada_encode (const char *decoded)
827 {
828 static char *encoding_buffer = NULL;
829 static size_t encoding_buffer_size = 0;
830 const char *p;
831 int k;
832
833 if (decoded == NULL)
834 return NULL;
835
836 GROW_VECT (encoding_buffer, encoding_buffer_size,
837 2 * strlen (decoded) + 10);
838
839 k = 0;
840 for (p = decoded; *p != '\0'; p += 1)
841 {
842 if (*p == '.')
843 {
844 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
845 k += 2;
846 }
847 else if (*p == '"')
848 {
849 const struct ada_opname_map *mapping;
850
851 for (mapping = ada_opname_table;
852 mapping->encoded != NULL
853 && strncmp (mapping->decoded, p,
854 strlen (mapping->decoded)) != 0; mapping += 1)
855 ;
856 if (mapping->encoded == NULL)
857 error (_("invalid Ada operator name: %s"), p);
858 strcpy (encoding_buffer + k, mapping->encoded);
859 k += strlen (mapping->encoded);
860 break;
861 }
862 else
863 {
864 encoding_buffer[k] = *p;
865 k += 1;
866 }
867 }
868
869 encoding_buffer[k] = '\0';
870 return encoding_buffer;
871 }
872
873 /* Return NAME folded to lower case, or, if surrounded by single
874 quotes, unfolded, but with the quotes stripped away. Result good
875 to next call. */
876
877 char *
878 ada_fold_name (const char *name)
879 {
880 static char *fold_buffer = NULL;
881 static size_t fold_buffer_size = 0;
882
883 int len = strlen (name);
884 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
885
886 if (name[0] == '\'')
887 {
888 strncpy (fold_buffer, name + 1, len - 2);
889 fold_buffer[len - 2] = '\000';
890 }
891 else
892 {
893 int i;
894
895 for (i = 0; i <= len; i += 1)
896 fold_buffer[i] = tolower (name[i]);
897 }
898
899 return fold_buffer;
900 }
901
902 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
903
904 static int
905 is_lower_alphanum (const char c)
906 {
907 return (isdigit (c) || (isalpha (c) && islower (c)));
908 }
909
910 /* ENCODED is the linkage name of a symbol and LEN contains its length.
911 This function saves in LEN the length of that same symbol name but
912 without either of these suffixes:
913 . .{DIGIT}+
914 . ${DIGIT}+
915 . ___{DIGIT}+
916 . __{DIGIT}+.
917
918 These are suffixes introduced by the compiler for entities such as
919 nested subprogram for instance, in order to avoid name clashes.
920 They do not serve any purpose for the debugger. */
921
922 static void
923 ada_remove_trailing_digits (const char *encoded, int *len)
924 {
925 if (*len > 1 && isdigit (encoded[*len - 1]))
926 {
927 int i = *len - 2;
928
929 while (i > 0 && isdigit (encoded[i]))
930 i--;
931 if (i >= 0 && encoded[i] == '.')
932 *len = i;
933 else if (i >= 0 && encoded[i] == '$')
934 *len = i;
935 else if (i >= 2 && strncmp (encoded + i - 2, "___", 3) == 0)
936 *len = i - 2;
937 else if (i >= 1 && strncmp (encoded + i - 1, "__", 2) == 0)
938 *len = i - 1;
939 }
940 }
941
942 /* Remove the suffix introduced by the compiler for protected object
943 subprograms. */
944
945 static void
946 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
947 {
948 /* Remove trailing N. */
949
950 /* Protected entry subprograms are broken into two
951 separate subprograms: The first one is unprotected, and has
952 a 'N' suffix; the second is the protected version, and has
953 the 'P' suffix. The second calls the first one after handling
954 the protection. Since the P subprograms are internally generated,
955 we leave these names undecoded, giving the user a clue that this
956 entity is internal. */
957
958 if (*len > 1
959 && encoded[*len - 1] == 'N'
960 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
961 *len = *len - 1;
962 }
963
964 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
965
966 static void
967 ada_remove_Xbn_suffix (const char *encoded, int *len)
968 {
969 int i = *len - 1;
970
971 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
972 i--;
973
974 if (encoded[i] != 'X')
975 return;
976
977 if (i == 0)
978 return;
979
980 if (isalnum (encoded[i-1]))
981 *len = i;
982 }
983
984 /* If ENCODED follows the GNAT entity encoding conventions, then return
985 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
986 replaced by ENCODED.
987
988 The resulting string is valid until the next call of ada_decode.
989 If the string is unchanged by decoding, the original string pointer
990 is returned. */
991
992 const char *
993 ada_decode (const char *encoded)
994 {
995 int i, j;
996 int len0;
997 const char *p;
998 char *decoded;
999 int at_start_name;
1000 static char *decoding_buffer = NULL;
1001 static size_t decoding_buffer_size = 0;
1002
1003 /* The name of the Ada main procedure starts with "_ada_".
1004 This prefix is not part of the decoded name, so skip this part
1005 if we see this prefix. */
1006 if (strncmp (encoded, "_ada_", 5) == 0)
1007 encoded += 5;
1008
1009 /* If the name starts with '_', then it is not a properly encoded
1010 name, so do not attempt to decode it. Similarly, if the name
1011 starts with '<', the name should not be decoded. */
1012 if (encoded[0] == '_' || encoded[0] == '<')
1013 goto Suppress;
1014
1015 len0 = strlen (encoded);
1016
1017 ada_remove_trailing_digits (encoded, &len0);
1018 ada_remove_po_subprogram_suffix (encoded, &len0);
1019
1020 /* Remove the ___X.* suffix if present. Do not forget to verify that
1021 the suffix is located before the current "end" of ENCODED. We want
1022 to avoid re-matching parts of ENCODED that have previously been
1023 marked as discarded (by decrementing LEN0). */
1024 p = strstr (encoded, "___");
1025 if (p != NULL && p - encoded < len0 - 3)
1026 {
1027 if (p[3] == 'X')
1028 len0 = p - encoded;
1029 else
1030 goto Suppress;
1031 }
1032
1033 /* Remove any trailing TKB suffix. It tells us that this symbol
1034 is for the body of a task, but that information does not actually
1035 appear in the decoded name. */
1036
1037 if (len0 > 3 && strncmp (encoded + len0 - 3, "TKB", 3) == 0)
1038 len0 -= 3;
1039
1040 /* Remove any trailing TB suffix. The TB suffix is slightly different
1041 from the TKB suffix because it is used for non-anonymous task
1042 bodies. */
1043
1044 if (len0 > 2 && strncmp (encoded + len0 - 2, "TB", 2) == 0)
1045 len0 -= 2;
1046
1047 /* Remove trailing "B" suffixes. */
1048 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1049
1050 if (len0 > 1 && strncmp (encoded + len0 - 1, "B", 1) == 0)
1051 len0 -= 1;
1052
1053 /* Make decoded big enough for possible expansion by operator name. */
1054
1055 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1056 decoded = decoding_buffer;
1057
1058 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1059
1060 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1061 {
1062 i = len0 - 2;
1063 while ((i >= 0 && isdigit (encoded[i]))
1064 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1065 i -= 1;
1066 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1067 len0 = i - 1;
1068 else if (encoded[i] == '$')
1069 len0 = i;
1070 }
1071
1072 /* The first few characters that are not alphabetic are not part
1073 of any encoding we use, so we can copy them over verbatim. */
1074
1075 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1076 decoded[j] = encoded[i];
1077
1078 at_start_name = 1;
1079 while (i < len0)
1080 {
1081 /* Is this a symbol function? */
1082 if (at_start_name && encoded[i] == 'O')
1083 {
1084 int k;
1085
1086 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1087 {
1088 int op_len = strlen (ada_opname_table[k].encoded);
1089 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1090 op_len - 1) == 0)
1091 && !isalnum (encoded[i + op_len]))
1092 {
1093 strcpy (decoded + j, ada_opname_table[k].decoded);
1094 at_start_name = 0;
1095 i += op_len;
1096 j += strlen (ada_opname_table[k].decoded);
1097 break;
1098 }
1099 }
1100 if (ada_opname_table[k].encoded != NULL)
1101 continue;
1102 }
1103 at_start_name = 0;
1104
1105 /* Replace "TK__" with "__", which will eventually be translated
1106 into "." (just below). */
1107
1108 if (i < len0 - 4 && strncmp (encoded + i, "TK__", 4) == 0)
1109 i += 2;
1110
1111 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1112 be translated into "." (just below). These are internal names
1113 generated for anonymous blocks inside which our symbol is nested. */
1114
1115 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1116 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1117 && isdigit (encoded [i+4]))
1118 {
1119 int k = i + 5;
1120
1121 while (k < len0 && isdigit (encoded[k]))
1122 k++; /* Skip any extra digit. */
1123
1124 /* Double-check that the "__B_{DIGITS}+" sequence we found
1125 is indeed followed by "__". */
1126 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1127 i = k;
1128 }
1129
1130 /* Remove _E{DIGITS}+[sb] */
1131
1132 /* Just as for protected object subprograms, there are 2 categories
1133 of subprograms created by the compiler for each entry. The first
1134 one implements the actual entry code, and has a suffix following
1135 the convention above; the second one implements the barrier and
1136 uses the same convention as above, except that the 'E' is replaced
1137 by a 'B'.
1138
1139 Just as above, we do not decode the name of barrier functions
1140 to give the user a clue that the code he is debugging has been
1141 internally generated. */
1142
1143 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1144 && isdigit (encoded[i+2]))
1145 {
1146 int k = i + 3;
1147
1148 while (k < len0 && isdigit (encoded[k]))
1149 k++;
1150
1151 if (k < len0
1152 && (encoded[k] == 'b' || encoded[k] == 's'))
1153 {
1154 k++;
1155 /* Just as an extra precaution, make sure that if this
1156 suffix is followed by anything else, it is a '_'.
1157 Otherwise, we matched this sequence by accident. */
1158 if (k == len0
1159 || (k < len0 && encoded[k] == '_'))
1160 i = k;
1161 }
1162 }
1163
1164 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1165 the GNAT front-end in protected object subprograms. */
1166
1167 if (i < len0 + 3
1168 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1169 {
1170 /* Backtrack a bit up until we reach either the begining of
1171 the encoded name, or "__". Make sure that we only find
1172 digits or lowercase characters. */
1173 const char *ptr = encoded + i - 1;
1174
1175 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1176 ptr--;
1177 if (ptr < encoded
1178 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1179 i++;
1180 }
1181
1182 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1183 {
1184 /* This is a X[bn]* sequence not separated from the previous
1185 part of the name with a non-alpha-numeric character (in other
1186 words, immediately following an alpha-numeric character), then
1187 verify that it is placed at the end of the encoded name. If
1188 not, then the encoding is not valid and we should abort the
1189 decoding. Otherwise, just skip it, it is used in body-nested
1190 package names. */
1191 do
1192 i += 1;
1193 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1194 if (i < len0)
1195 goto Suppress;
1196 }
1197 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1198 {
1199 /* Replace '__' by '.'. */
1200 decoded[j] = '.';
1201 at_start_name = 1;
1202 i += 2;
1203 j += 1;
1204 }
1205 else
1206 {
1207 /* It's a character part of the decoded name, so just copy it
1208 over. */
1209 decoded[j] = encoded[i];
1210 i += 1;
1211 j += 1;
1212 }
1213 }
1214 decoded[j] = '\000';
1215
1216 /* Decoded names should never contain any uppercase character.
1217 Double-check this, and abort the decoding if we find one. */
1218
1219 for (i = 0; decoded[i] != '\0'; i += 1)
1220 if (isupper (decoded[i]) || decoded[i] == ' ')
1221 goto Suppress;
1222
1223 if (strcmp (decoded, encoded) == 0)
1224 return encoded;
1225 else
1226 return decoded;
1227
1228 Suppress:
1229 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1230 decoded = decoding_buffer;
1231 if (encoded[0] == '<')
1232 strcpy (decoded, encoded);
1233 else
1234 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1235 return decoded;
1236
1237 }
1238
1239 /* Table for keeping permanent unique copies of decoded names. Once
1240 allocated, names in this table are never released. While this is a
1241 storage leak, it should not be significant unless there are massive
1242 changes in the set of decoded names in successive versions of a
1243 symbol table loaded during a single session. */
1244 static struct htab *decoded_names_store;
1245
1246 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1247 in the language-specific part of GSYMBOL, if it has not been
1248 previously computed. Tries to save the decoded name in the same
1249 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1250 in any case, the decoded symbol has a lifetime at least that of
1251 GSYMBOL).
1252 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1253 const, but nevertheless modified to a semantically equivalent form
1254 when a decoded name is cached in it. */
1255
1256 char *
1257 ada_decode_symbol (const struct general_symbol_info *gsymbol)
1258 {
1259 char **resultp =
1260 (char **) &gsymbol->language_specific.mangled_lang.demangled_name;
1261
1262 if (*resultp == NULL)
1263 {
1264 const char *decoded = ada_decode (gsymbol->name);
1265
1266 if (gsymbol->obj_section != NULL)
1267 {
1268 struct objfile *objf = gsymbol->obj_section->objfile;
1269
1270 *resultp = obsavestring (decoded, strlen (decoded),
1271 &objf->objfile_obstack);
1272 }
1273 /* Sometimes, we can't find a corresponding objfile, in which
1274 case, we put the result on the heap. Since we only decode
1275 when needed, we hope this usually does not cause a
1276 significant memory leak (FIXME). */
1277 if (*resultp == NULL)
1278 {
1279 char **slot = (char **) htab_find_slot (decoded_names_store,
1280 decoded, INSERT);
1281
1282 if (*slot == NULL)
1283 *slot = xstrdup (decoded);
1284 *resultp = *slot;
1285 }
1286 }
1287
1288 return *resultp;
1289 }
1290
1291 static char *
1292 ada_la_decode (const char *encoded, int options)
1293 {
1294 return xstrdup (ada_decode (encoded));
1295 }
1296
1297 /* Returns non-zero iff SYM_NAME matches NAME, ignoring any trailing
1298 suffixes that encode debugging information or leading _ada_ on
1299 SYM_NAME (see is_name_suffix commentary for the debugging
1300 information that is ignored). If WILD, then NAME need only match a
1301 suffix of SYM_NAME minus the same suffixes. Also returns 0 if
1302 either argument is NULL. */
1303
1304 static int
1305 match_name (const char *sym_name, const char *name, int wild)
1306 {
1307 if (sym_name == NULL || name == NULL)
1308 return 0;
1309 else if (wild)
1310 return wild_match (sym_name, name) == 0;
1311 else
1312 {
1313 int len_name = strlen (name);
1314
1315 return (strncmp (sym_name, name, len_name) == 0
1316 && is_name_suffix (sym_name + len_name))
1317 || (strncmp (sym_name, "_ada_", 5) == 0
1318 && strncmp (sym_name + 5, name, len_name) == 0
1319 && is_name_suffix (sym_name + len_name + 5));
1320 }
1321 }
1322 \f
1323
1324 /* Arrays */
1325
1326 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1327 generated by the GNAT compiler to describe the index type used
1328 for each dimension of an array, check whether it follows the latest
1329 known encoding. If not, fix it up to conform to the latest encoding.
1330 Otherwise, do nothing. This function also does nothing if
1331 INDEX_DESC_TYPE is NULL.
1332
1333 The GNAT encoding used to describle the array index type evolved a bit.
1334 Initially, the information would be provided through the name of each
1335 field of the structure type only, while the type of these fields was
1336 described as unspecified and irrelevant. The debugger was then expected
1337 to perform a global type lookup using the name of that field in order
1338 to get access to the full index type description. Because these global
1339 lookups can be very expensive, the encoding was later enhanced to make
1340 the global lookup unnecessary by defining the field type as being
1341 the full index type description.
1342
1343 The purpose of this routine is to allow us to support older versions
1344 of the compiler by detecting the use of the older encoding, and by
1345 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1346 we essentially replace each field's meaningless type by the associated
1347 index subtype). */
1348
1349 void
1350 ada_fixup_array_indexes_type (struct type *index_desc_type)
1351 {
1352 int i;
1353
1354 if (index_desc_type == NULL)
1355 return;
1356 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1357
1358 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1359 to check one field only, no need to check them all). If not, return
1360 now.
1361
1362 If our INDEX_DESC_TYPE was generated using the older encoding,
1363 the field type should be a meaningless integer type whose name
1364 is not equal to the field name. */
1365 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1366 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1367 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1368 return;
1369
1370 /* Fixup each field of INDEX_DESC_TYPE. */
1371 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1372 {
1373 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1374 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1375
1376 if (raw_type)
1377 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1378 }
1379 }
1380
1381 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1382
1383 static char *bound_name[] = {
1384 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1385 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1386 };
1387
1388 /* Maximum number of array dimensions we are prepared to handle. */
1389
1390 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1391
1392
1393 /* The desc_* routines return primitive portions of array descriptors
1394 (fat pointers). */
1395
1396 /* The descriptor or array type, if any, indicated by TYPE; removes
1397 level of indirection, if needed. */
1398
1399 static struct type *
1400 desc_base_type (struct type *type)
1401 {
1402 if (type == NULL)
1403 return NULL;
1404 type = ada_check_typedef (type);
1405 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1406 type = ada_typedef_target_type (type);
1407
1408 if (type != NULL
1409 && (TYPE_CODE (type) == TYPE_CODE_PTR
1410 || TYPE_CODE (type) == TYPE_CODE_REF))
1411 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1412 else
1413 return type;
1414 }
1415
1416 /* True iff TYPE indicates a "thin" array pointer type. */
1417
1418 static int
1419 is_thin_pntr (struct type *type)
1420 {
1421 return
1422 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1423 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1424 }
1425
1426 /* The descriptor type for thin pointer type TYPE. */
1427
1428 static struct type *
1429 thin_descriptor_type (struct type *type)
1430 {
1431 struct type *base_type = desc_base_type (type);
1432
1433 if (base_type == NULL)
1434 return NULL;
1435 if (is_suffix (ada_type_name (base_type), "___XVE"))
1436 return base_type;
1437 else
1438 {
1439 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1440
1441 if (alt_type == NULL)
1442 return base_type;
1443 else
1444 return alt_type;
1445 }
1446 }
1447
1448 /* A pointer to the array data for thin-pointer value VAL. */
1449
1450 static struct value *
1451 thin_data_pntr (struct value *val)
1452 {
1453 struct type *type = ada_check_typedef (value_type (val));
1454 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1455
1456 data_type = lookup_pointer_type (data_type);
1457
1458 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1459 return value_cast (data_type, value_copy (val));
1460 else
1461 return value_from_longest (data_type, value_address (val));
1462 }
1463
1464 /* True iff TYPE indicates a "thick" array pointer type. */
1465
1466 static int
1467 is_thick_pntr (struct type *type)
1468 {
1469 type = desc_base_type (type);
1470 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1471 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1472 }
1473
1474 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1475 pointer to one, the type of its bounds data; otherwise, NULL. */
1476
1477 static struct type *
1478 desc_bounds_type (struct type *type)
1479 {
1480 struct type *r;
1481
1482 type = desc_base_type (type);
1483
1484 if (type == NULL)
1485 return NULL;
1486 else if (is_thin_pntr (type))
1487 {
1488 type = thin_descriptor_type (type);
1489 if (type == NULL)
1490 return NULL;
1491 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1492 if (r != NULL)
1493 return ada_check_typedef (r);
1494 }
1495 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1496 {
1497 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1498 if (r != NULL)
1499 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1500 }
1501 return NULL;
1502 }
1503
1504 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1505 one, a pointer to its bounds data. Otherwise NULL. */
1506
1507 static struct value *
1508 desc_bounds (struct value *arr)
1509 {
1510 struct type *type = ada_check_typedef (value_type (arr));
1511
1512 if (is_thin_pntr (type))
1513 {
1514 struct type *bounds_type =
1515 desc_bounds_type (thin_descriptor_type (type));
1516 LONGEST addr;
1517
1518 if (bounds_type == NULL)
1519 error (_("Bad GNAT array descriptor"));
1520
1521 /* NOTE: The following calculation is not really kosher, but
1522 since desc_type is an XVE-encoded type (and shouldn't be),
1523 the correct calculation is a real pain. FIXME (and fix GCC). */
1524 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1525 addr = value_as_long (arr);
1526 else
1527 addr = value_address (arr);
1528
1529 return
1530 value_from_longest (lookup_pointer_type (bounds_type),
1531 addr - TYPE_LENGTH (bounds_type));
1532 }
1533
1534 else if (is_thick_pntr (type))
1535 {
1536 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1537 _("Bad GNAT array descriptor"));
1538 struct type *p_bounds_type = value_type (p_bounds);
1539
1540 if (p_bounds_type
1541 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1542 {
1543 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1544
1545 if (TYPE_STUB (target_type))
1546 p_bounds = value_cast (lookup_pointer_type
1547 (ada_check_typedef (target_type)),
1548 p_bounds);
1549 }
1550 else
1551 error (_("Bad GNAT array descriptor"));
1552
1553 return p_bounds;
1554 }
1555 else
1556 return NULL;
1557 }
1558
1559 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1560 position of the field containing the address of the bounds data. */
1561
1562 static int
1563 fat_pntr_bounds_bitpos (struct type *type)
1564 {
1565 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1566 }
1567
1568 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1569 size of the field containing the address of the bounds data. */
1570
1571 static int
1572 fat_pntr_bounds_bitsize (struct type *type)
1573 {
1574 type = desc_base_type (type);
1575
1576 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1577 return TYPE_FIELD_BITSIZE (type, 1);
1578 else
1579 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1580 }
1581
1582 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1583 pointer to one, the type of its array data (a array-with-no-bounds type);
1584 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1585 data. */
1586
1587 static struct type *
1588 desc_data_target_type (struct type *type)
1589 {
1590 type = desc_base_type (type);
1591
1592 /* NOTE: The following is bogus; see comment in desc_bounds. */
1593 if (is_thin_pntr (type))
1594 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1595 else if (is_thick_pntr (type))
1596 {
1597 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1598
1599 if (data_type
1600 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1601 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1602 }
1603
1604 return NULL;
1605 }
1606
1607 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1608 its array data. */
1609
1610 static struct value *
1611 desc_data (struct value *arr)
1612 {
1613 struct type *type = value_type (arr);
1614
1615 if (is_thin_pntr (type))
1616 return thin_data_pntr (arr);
1617 else if (is_thick_pntr (type))
1618 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1619 _("Bad GNAT array descriptor"));
1620 else
1621 return NULL;
1622 }
1623
1624
1625 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1626 position of the field containing the address of the data. */
1627
1628 static int
1629 fat_pntr_data_bitpos (struct type *type)
1630 {
1631 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1632 }
1633
1634 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1635 size of the field containing the address of the data. */
1636
1637 static int
1638 fat_pntr_data_bitsize (struct type *type)
1639 {
1640 type = desc_base_type (type);
1641
1642 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1643 return TYPE_FIELD_BITSIZE (type, 0);
1644 else
1645 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1646 }
1647
1648 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1649 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1650 bound, if WHICH is 1. The first bound is I=1. */
1651
1652 static struct value *
1653 desc_one_bound (struct value *bounds, int i, int which)
1654 {
1655 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1656 _("Bad GNAT array descriptor bounds"));
1657 }
1658
1659 /* If BOUNDS is an array-bounds structure type, return the bit position
1660 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1661 bound, if WHICH is 1. The first bound is I=1. */
1662
1663 static int
1664 desc_bound_bitpos (struct type *type, int i, int which)
1665 {
1666 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1667 }
1668
1669 /* If BOUNDS is an array-bounds structure type, return the bit field size
1670 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1671 bound, if WHICH is 1. The first bound is I=1. */
1672
1673 static int
1674 desc_bound_bitsize (struct type *type, int i, int which)
1675 {
1676 type = desc_base_type (type);
1677
1678 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1679 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1680 else
1681 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1682 }
1683
1684 /* If TYPE is the type of an array-bounds structure, the type of its
1685 Ith bound (numbering from 1). Otherwise, NULL. */
1686
1687 static struct type *
1688 desc_index_type (struct type *type, int i)
1689 {
1690 type = desc_base_type (type);
1691
1692 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1693 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1694 else
1695 return NULL;
1696 }
1697
1698 /* The number of index positions in the array-bounds type TYPE.
1699 Return 0 if TYPE is NULL. */
1700
1701 static int
1702 desc_arity (struct type *type)
1703 {
1704 type = desc_base_type (type);
1705
1706 if (type != NULL)
1707 return TYPE_NFIELDS (type) / 2;
1708 return 0;
1709 }
1710
1711 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1712 an array descriptor type (representing an unconstrained array
1713 type). */
1714
1715 static int
1716 ada_is_direct_array_type (struct type *type)
1717 {
1718 if (type == NULL)
1719 return 0;
1720 type = ada_check_typedef (type);
1721 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1722 || ada_is_array_descriptor_type (type));
1723 }
1724
1725 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1726 * to one. */
1727
1728 static int
1729 ada_is_array_type (struct type *type)
1730 {
1731 while (type != NULL
1732 && (TYPE_CODE (type) == TYPE_CODE_PTR
1733 || TYPE_CODE (type) == TYPE_CODE_REF))
1734 type = TYPE_TARGET_TYPE (type);
1735 return ada_is_direct_array_type (type);
1736 }
1737
1738 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1739
1740 int
1741 ada_is_simple_array_type (struct type *type)
1742 {
1743 if (type == NULL)
1744 return 0;
1745 type = ada_check_typedef (type);
1746 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1747 || (TYPE_CODE (type) == TYPE_CODE_PTR
1748 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1749 == TYPE_CODE_ARRAY));
1750 }
1751
1752 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1753
1754 int
1755 ada_is_array_descriptor_type (struct type *type)
1756 {
1757 struct type *data_type = desc_data_target_type (type);
1758
1759 if (type == NULL)
1760 return 0;
1761 type = ada_check_typedef (type);
1762 return (data_type != NULL
1763 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1764 && desc_arity (desc_bounds_type (type)) > 0);
1765 }
1766
1767 /* Non-zero iff type is a partially mal-formed GNAT array
1768 descriptor. FIXME: This is to compensate for some problems with
1769 debugging output from GNAT. Re-examine periodically to see if it
1770 is still needed. */
1771
1772 int
1773 ada_is_bogus_array_descriptor (struct type *type)
1774 {
1775 return
1776 type != NULL
1777 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1778 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1779 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1780 && !ada_is_array_descriptor_type (type);
1781 }
1782
1783
1784 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1785 (fat pointer) returns the type of the array data described---specifically,
1786 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1787 in from the descriptor; otherwise, they are left unspecified. If
1788 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1789 returns NULL. The result is simply the type of ARR if ARR is not
1790 a descriptor. */
1791 struct type *
1792 ada_type_of_array (struct value *arr, int bounds)
1793 {
1794 if (ada_is_constrained_packed_array_type (value_type (arr)))
1795 return decode_constrained_packed_array_type (value_type (arr));
1796
1797 if (!ada_is_array_descriptor_type (value_type (arr)))
1798 return value_type (arr);
1799
1800 if (!bounds)
1801 {
1802 struct type *array_type =
1803 ada_check_typedef (desc_data_target_type (value_type (arr)));
1804
1805 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1806 TYPE_FIELD_BITSIZE (array_type, 0) =
1807 decode_packed_array_bitsize (value_type (arr));
1808
1809 return array_type;
1810 }
1811 else
1812 {
1813 struct type *elt_type;
1814 int arity;
1815 struct value *descriptor;
1816
1817 elt_type = ada_array_element_type (value_type (arr), -1);
1818 arity = ada_array_arity (value_type (arr));
1819
1820 if (elt_type == NULL || arity == 0)
1821 return ada_check_typedef (value_type (arr));
1822
1823 descriptor = desc_bounds (arr);
1824 if (value_as_long (descriptor) == 0)
1825 return NULL;
1826 while (arity > 0)
1827 {
1828 struct type *range_type = alloc_type_copy (value_type (arr));
1829 struct type *array_type = alloc_type_copy (value_type (arr));
1830 struct value *low = desc_one_bound (descriptor, arity, 0);
1831 struct value *high = desc_one_bound (descriptor, arity, 1);
1832
1833 arity -= 1;
1834 create_range_type (range_type, value_type (low),
1835 longest_to_int (value_as_long (low)),
1836 longest_to_int (value_as_long (high)));
1837 elt_type = create_array_type (array_type, elt_type, range_type);
1838
1839 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1840 {
1841 /* We need to store the element packed bitsize, as well as
1842 recompute the array size, because it was previously
1843 computed based on the unpacked element size. */
1844 LONGEST lo = value_as_long (low);
1845 LONGEST hi = value_as_long (high);
1846
1847 TYPE_FIELD_BITSIZE (elt_type, 0) =
1848 decode_packed_array_bitsize (value_type (arr));
1849 /* If the array has no element, then the size is already
1850 zero, and does not need to be recomputed. */
1851 if (lo < hi)
1852 {
1853 int array_bitsize =
1854 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
1855
1856 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
1857 }
1858 }
1859 }
1860
1861 return lookup_pointer_type (elt_type);
1862 }
1863 }
1864
1865 /* If ARR does not represent an array, returns ARR unchanged.
1866 Otherwise, returns either a standard GDB array with bounds set
1867 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
1868 GDB array. Returns NULL if ARR is a null fat pointer. */
1869
1870 struct value *
1871 ada_coerce_to_simple_array_ptr (struct value *arr)
1872 {
1873 if (ada_is_array_descriptor_type (value_type (arr)))
1874 {
1875 struct type *arrType = ada_type_of_array (arr, 1);
1876
1877 if (arrType == NULL)
1878 return NULL;
1879 return value_cast (arrType, value_copy (desc_data (arr)));
1880 }
1881 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1882 return decode_constrained_packed_array (arr);
1883 else
1884 return arr;
1885 }
1886
1887 /* If ARR does not represent an array, returns ARR unchanged.
1888 Otherwise, returns a standard GDB array describing ARR (which may
1889 be ARR itself if it already is in the proper form). */
1890
1891 struct value *
1892 ada_coerce_to_simple_array (struct value *arr)
1893 {
1894 if (ada_is_array_descriptor_type (value_type (arr)))
1895 {
1896 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
1897
1898 if (arrVal == NULL)
1899 error (_("Bounds unavailable for null array pointer."));
1900 check_size (TYPE_TARGET_TYPE (value_type (arrVal)));
1901 return value_ind (arrVal);
1902 }
1903 else if (ada_is_constrained_packed_array_type (value_type (arr)))
1904 return decode_constrained_packed_array (arr);
1905 else
1906 return arr;
1907 }
1908
1909 /* If TYPE represents a GNAT array type, return it translated to an
1910 ordinary GDB array type (possibly with BITSIZE fields indicating
1911 packing). For other types, is the identity. */
1912
1913 struct type *
1914 ada_coerce_to_simple_array_type (struct type *type)
1915 {
1916 if (ada_is_constrained_packed_array_type (type))
1917 return decode_constrained_packed_array_type (type);
1918
1919 if (ada_is_array_descriptor_type (type))
1920 return ada_check_typedef (desc_data_target_type (type));
1921
1922 return type;
1923 }
1924
1925 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
1926
1927 static int
1928 ada_is_packed_array_type (struct type *type)
1929 {
1930 if (type == NULL)
1931 return 0;
1932 type = desc_base_type (type);
1933 type = ada_check_typedef (type);
1934 return
1935 ada_type_name (type) != NULL
1936 && strstr (ada_type_name (type), "___XP") != NULL;
1937 }
1938
1939 /* Non-zero iff TYPE represents a standard GNAT constrained
1940 packed-array type. */
1941
1942 int
1943 ada_is_constrained_packed_array_type (struct type *type)
1944 {
1945 return ada_is_packed_array_type (type)
1946 && !ada_is_array_descriptor_type (type);
1947 }
1948
1949 /* Non-zero iff TYPE represents an array descriptor for a
1950 unconstrained packed-array type. */
1951
1952 static int
1953 ada_is_unconstrained_packed_array_type (struct type *type)
1954 {
1955 return ada_is_packed_array_type (type)
1956 && ada_is_array_descriptor_type (type);
1957 }
1958
1959 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
1960 return the size of its elements in bits. */
1961
1962 static long
1963 decode_packed_array_bitsize (struct type *type)
1964 {
1965 const char *raw_name;
1966 const char *tail;
1967 long bits;
1968
1969 /* Access to arrays implemented as fat pointers are encoded as a typedef
1970 of the fat pointer type. We need the name of the fat pointer type
1971 to do the decoding, so strip the typedef layer. */
1972 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1973 type = ada_typedef_target_type (type);
1974
1975 raw_name = ada_type_name (ada_check_typedef (type));
1976 if (!raw_name)
1977 raw_name = ada_type_name (desc_base_type (type));
1978
1979 if (!raw_name)
1980 return 0;
1981
1982 tail = strstr (raw_name, "___XP");
1983 gdb_assert (tail != NULL);
1984
1985 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
1986 {
1987 lim_warning
1988 (_("could not understand bit size information on packed array"));
1989 return 0;
1990 }
1991
1992 return bits;
1993 }
1994
1995 /* Given that TYPE is a standard GDB array type with all bounds filled
1996 in, and that the element size of its ultimate scalar constituents
1997 (that is, either its elements, or, if it is an array of arrays, its
1998 elements' elements, etc.) is *ELT_BITS, return an identical type,
1999 but with the bit sizes of its elements (and those of any
2000 constituent arrays) recorded in the BITSIZE components of its
2001 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2002 in bits. */
2003
2004 static struct type *
2005 constrained_packed_array_type (struct type *type, long *elt_bits)
2006 {
2007 struct type *new_elt_type;
2008 struct type *new_type;
2009 struct type *index_type_desc;
2010 struct type *index_type;
2011 LONGEST low_bound, high_bound;
2012
2013 type = ada_check_typedef (type);
2014 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2015 return type;
2016
2017 index_type_desc = ada_find_parallel_type (type, "___XA");
2018 if (index_type_desc)
2019 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2020 NULL);
2021 else
2022 index_type = TYPE_INDEX_TYPE (type);
2023
2024 new_type = alloc_type_copy (type);
2025 new_elt_type =
2026 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2027 elt_bits);
2028 create_array_type (new_type, new_elt_type, index_type);
2029 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2030 TYPE_NAME (new_type) = ada_type_name (type);
2031
2032 if (get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2033 low_bound = high_bound = 0;
2034 if (high_bound < low_bound)
2035 *elt_bits = TYPE_LENGTH (new_type) = 0;
2036 else
2037 {
2038 *elt_bits *= (high_bound - low_bound + 1);
2039 TYPE_LENGTH (new_type) =
2040 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2041 }
2042
2043 TYPE_FIXED_INSTANCE (new_type) = 1;
2044 return new_type;
2045 }
2046
2047 /* The array type encoded by TYPE, where
2048 ada_is_constrained_packed_array_type (TYPE). */
2049
2050 static struct type *
2051 decode_constrained_packed_array_type (struct type *type)
2052 {
2053 const char *raw_name = ada_type_name (ada_check_typedef (type));
2054 char *name;
2055 const char *tail;
2056 struct type *shadow_type;
2057 long bits;
2058
2059 if (!raw_name)
2060 raw_name = ada_type_name (desc_base_type (type));
2061
2062 if (!raw_name)
2063 return NULL;
2064
2065 name = (char *) alloca (strlen (raw_name) + 1);
2066 tail = strstr (raw_name, "___XP");
2067 type = desc_base_type (type);
2068
2069 memcpy (name, raw_name, tail - raw_name);
2070 name[tail - raw_name] = '\000';
2071
2072 shadow_type = ada_find_parallel_type_with_name (type, name);
2073
2074 if (shadow_type == NULL)
2075 {
2076 lim_warning (_("could not find bounds information on packed array"));
2077 return NULL;
2078 }
2079 CHECK_TYPEDEF (shadow_type);
2080
2081 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2082 {
2083 lim_warning (_("could not understand bounds "
2084 "information on packed array"));
2085 return NULL;
2086 }
2087
2088 bits = decode_packed_array_bitsize (type);
2089 return constrained_packed_array_type (shadow_type, &bits);
2090 }
2091
2092 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2093 array, returns a simple array that denotes that array. Its type is a
2094 standard GDB array type except that the BITSIZEs of the array
2095 target types are set to the number of bits in each element, and the
2096 type length is set appropriately. */
2097
2098 static struct value *
2099 decode_constrained_packed_array (struct value *arr)
2100 {
2101 struct type *type;
2102
2103 arr = ada_coerce_ref (arr);
2104
2105 /* If our value is a pointer, then dererence it. Make sure that
2106 this operation does not cause the target type to be fixed, as
2107 this would indirectly cause this array to be decoded. The rest
2108 of the routine assumes that the array hasn't been decoded yet,
2109 so we use the basic "value_ind" routine to perform the dereferencing,
2110 as opposed to using "ada_value_ind". */
2111 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2112 arr = value_ind (arr);
2113
2114 type = decode_constrained_packed_array_type (value_type (arr));
2115 if (type == NULL)
2116 {
2117 error (_("can't unpack array"));
2118 return NULL;
2119 }
2120
2121 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2122 && ada_is_modular_type (value_type (arr)))
2123 {
2124 /* This is a (right-justified) modular type representing a packed
2125 array with no wrapper. In order to interpret the value through
2126 the (left-justified) packed array type we just built, we must
2127 first left-justify it. */
2128 int bit_size, bit_pos;
2129 ULONGEST mod;
2130
2131 mod = ada_modulus (value_type (arr)) - 1;
2132 bit_size = 0;
2133 while (mod > 0)
2134 {
2135 bit_size += 1;
2136 mod >>= 1;
2137 }
2138 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2139 arr = ada_value_primitive_packed_val (arr, NULL,
2140 bit_pos / HOST_CHAR_BIT,
2141 bit_pos % HOST_CHAR_BIT,
2142 bit_size,
2143 type);
2144 }
2145
2146 return coerce_unspec_val_to_type (arr, type);
2147 }
2148
2149
2150 /* The value of the element of packed array ARR at the ARITY indices
2151 given in IND. ARR must be a simple array. */
2152
2153 static struct value *
2154 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2155 {
2156 int i;
2157 int bits, elt_off, bit_off;
2158 long elt_total_bit_offset;
2159 struct type *elt_type;
2160 struct value *v;
2161
2162 bits = 0;
2163 elt_total_bit_offset = 0;
2164 elt_type = ada_check_typedef (value_type (arr));
2165 for (i = 0; i < arity; i += 1)
2166 {
2167 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2168 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2169 error
2170 (_("attempt to do packed indexing of "
2171 "something other than a packed array"));
2172 else
2173 {
2174 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2175 LONGEST lowerbound, upperbound;
2176 LONGEST idx;
2177
2178 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2179 {
2180 lim_warning (_("don't know bounds of array"));
2181 lowerbound = upperbound = 0;
2182 }
2183
2184 idx = pos_atr (ind[i]);
2185 if (idx < lowerbound || idx > upperbound)
2186 lim_warning (_("packed array index %ld out of bounds"),
2187 (long) idx);
2188 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2189 elt_total_bit_offset += (idx - lowerbound) * bits;
2190 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2191 }
2192 }
2193 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2194 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2195
2196 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2197 bits, elt_type);
2198 return v;
2199 }
2200
2201 /* Non-zero iff TYPE includes negative integer values. */
2202
2203 static int
2204 has_negatives (struct type *type)
2205 {
2206 switch (TYPE_CODE (type))
2207 {
2208 default:
2209 return 0;
2210 case TYPE_CODE_INT:
2211 return !TYPE_UNSIGNED (type);
2212 case TYPE_CODE_RANGE:
2213 return TYPE_LOW_BOUND (type) < 0;
2214 }
2215 }
2216
2217
2218 /* Create a new value of type TYPE from the contents of OBJ starting
2219 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2220 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2221 assigning through the result will set the field fetched from.
2222 VALADDR is ignored unless OBJ is NULL, in which case,
2223 VALADDR+OFFSET must address the start of storage containing the
2224 packed value. The value returned in this case is never an lval.
2225 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2226
2227 struct value *
2228 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2229 long offset, int bit_offset, int bit_size,
2230 struct type *type)
2231 {
2232 struct value *v;
2233 int src, /* Index into the source area */
2234 targ, /* Index into the target area */
2235 srcBitsLeft, /* Number of source bits left to move */
2236 nsrc, ntarg, /* Number of source and target bytes */
2237 unusedLS, /* Number of bits in next significant
2238 byte of source that are unused */
2239 accumSize; /* Number of meaningful bits in accum */
2240 unsigned char *bytes; /* First byte containing data to unpack */
2241 unsigned char *unpacked;
2242 unsigned long accum; /* Staging area for bits being transferred */
2243 unsigned char sign;
2244 int len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2245 /* Transmit bytes from least to most significant; delta is the direction
2246 the indices move. */
2247 int delta = gdbarch_bits_big_endian (get_type_arch (type)) ? -1 : 1;
2248
2249 type = ada_check_typedef (type);
2250
2251 if (obj == NULL)
2252 {
2253 v = allocate_value (type);
2254 bytes = (unsigned char *) (valaddr + offset);
2255 }
2256 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2257 {
2258 v = value_at (type,
2259 value_address (obj) + offset);
2260 bytes = (unsigned char *) alloca (len);
2261 read_memory (value_address (v), bytes, len);
2262 }
2263 else
2264 {
2265 v = allocate_value (type);
2266 bytes = (unsigned char *) value_contents (obj) + offset;
2267 }
2268
2269 if (obj != NULL)
2270 {
2271 CORE_ADDR new_addr;
2272
2273 set_value_component_location (v, obj);
2274 new_addr = value_address (obj) + offset;
2275 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2276 set_value_bitsize (v, bit_size);
2277 if (value_bitpos (v) >= HOST_CHAR_BIT)
2278 {
2279 ++new_addr;
2280 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2281 }
2282 set_value_address (v, new_addr);
2283 }
2284 else
2285 set_value_bitsize (v, bit_size);
2286 unpacked = (unsigned char *) value_contents (v);
2287
2288 srcBitsLeft = bit_size;
2289 nsrc = len;
2290 ntarg = TYPE_LENGTH (type);
2291 sign = 0;
2292 if (bit_size == 0)
2293 {
2294 memset (unpacked, 0, TYPE_LENGTH (type));
2295 return v;
2296 }
2297 else if (gdbarch_bits_big_endian (get_type_arch (type)))
2298 {
2299 src = len - 1;
2300 if (has_negatives (type)
2301 && ((bytes[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2302 sign = ~0;
2303
2304 unusedLS =
2305 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2306 % HOST_CHAR_BIT;
2307
2308 switch (TYPE_CODE (type))
2309 {
2310 case TYPE_CODE_ARRAY:
2311 case TYPE_CODE_UNION:
2312 case TYPE_CODE_STRUCT:
2313 /* Non-scalar values must be aligned at a byte boundary... */
2314 accumSize =
2315 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2316 /* ... And are placed at the beginning (most-significant) bytes
2317 of the target. */
2318 targ = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2319 ntarg = targ + 1;
2320 break;
2321 default:
2322 accumSize = 0;
2323 targ = TYPE_LENGTH (type) - 1;
2324 break;
2325 }
2326 }
2327 else
2328 {
2329 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2330
2331 src = targ = 0;
2332 unusedLS = bit_offset;
2333 accumSize = 0;
2334
2335 if (has_negatives (type) && (bytes[len - 1] & (1 << sign_bit_offset)))
2336 sign = ~0;
2337 }
2338
2339 accum = 0;
2340 while (nsrc > 0)
2341 {
2342 /* Mask for removing bits of the next source byte that are not
2343 part of the value. */
2344 unsigned int unusedMSMask =
2345 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2346 1;
2347 /* Sign-extend bits for this byte. */
2348 unsigned int signMask = sign & ~unusedMSMask;
2349
2350 accum |=
2351 (((bytes[src] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2352 accumSize += HOST_CHAR_BIT - unusedLS;
2353 if (accumSize >= HOST_CHAR_BIT)
2354 {
2355 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2356 accumSize -= HOST_CHAR_BIT;
2357 accum >>= HOST_CHAR_BIT;
2358 ntarg -= 1;
2359 targ += delta;
2360 }
2361 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2362 unusedLS = 0;
2363 nsrc -= 1;
2364 src += delta;
2365 }
2366 while (ntarg > 0)
2367 {
2368 accum |= sign << accumSize;
2369 unpacked[targ] = accum & ~(~0L << HOST_CHAR_BIT);
2370 accumSize -= HOST_CHAR_BIT;
2371 accum >>= HOST_CHAR_BIT;
2372 ntarg -= 1;
2373 targ += delta;
2374 }
2375
2376 return v;
2377 }
2378
2379 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2380 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2381 not overlap. */
2382 static void
2383 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2384 int src_offset, int n, int bits_big_endian_p)
2385 {
2386 unsigned int accum, mask;
2387 int accum_bits, chunk_size;
2388
2389 target += targ_offset / HOST_CHAR_BIT;
2390 targ_offset %= HOST_CHAR_BIT;
2391 source += src_offset / HOST_CHAR_BIT;
2392 src_offset %= HOST_CHAR_BIT;
2393 if (bits_big_endian_p)
2394 {
2395 accum = (unsigned char) *source;
2396 source += 1;
2397 accum_bits = HOST_CHAR_BIT - src_offset;
2398
2399 while (n > 0)
2400 {
2401 int unused_right;
2402
2403 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2404 accum_bits += HOST_CHAR_BIT;
2405 source += 1;
2406 chunk_size = HOST_CHAR_BIT - targ_offset;
2407 if (chunk_size > n)
2408 chunk_size = n;
2409 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2410 mask = ((1 << chunk_size) - 1) << unused_right;
2411 *target =
2412 (*target & ~mask)
2413 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2414 n -= chunk_size;
2415 accum_bits -= chunk_size;
2416 target += 1;
2417 targ_offset = 0;
2418 }
2419 }
2420 else
2421 {
2422 accum = (unsigned char) *source >> src_offset;
2423 source += 1;
2424 accum_bits = HOST_CHAR_BIT - src_offset;
2425
2426 while (n > 0)
2427 {
2428 accum = accum + ((unsigned char) *source << accum_bits);
2429 accum_bits += HOST_CHAR_BIT;
2430 source += 1;
2431 chunk_size = HOST_CHAR_BIT - targ_offset;
2432 if (chunk_size > n)
2433 chunk_size = n;
2434 mask = ((1 << chunk_size) - 1) << targ_offset;
2435 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2436 n -= chunk_size;
2437 accum_bits -= chunk_size;
2438 accum >>= chunk_size;
2439 target += 1;
2440 targ_offset = 0;
2441 }
2442 }
2443 }
2444
2445 /* Store the contents of FROMVAL into the location of TOVAL.
2446 Return a new value with the location of TOVAL and contents of
2447 FROMVAL. Handles assignment into packed fields that have
2448 floating-point or non-scalar types. */
2449
2450 static struct value *
2451 ada_value_assign (struct value *toval, struct value *fromval)
2452 {
2453 struct type *type = value_type (toval);
2454 int bits = value_bitsize (toval);
2455
2456 toval = ada_coerce_ref (toval);
2457 fromval = ada_coerce_ref (fromval);
2458
2459 if (ada_is_direct_array_type (value_type (toval)))
2460 toval = ada_coerce_to_simple_array (toval);
2461 if (ada_is_direct_array_type (value_type (fromval)))
2462 fromval = ada_coerce_to_simple_array (fromval);
2463
2464 if (!deprecated_value_modifiable (toval))
2465 error (_("Left operand of assignment is not a modifiable lvalue."));
2466
2467 if (VALUE_LVAL (toval) == lval_memory
2468 && bits > 0
2469 && (TYPE_CODE (type) == TYPE_CODE_FLT
2470 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2471 {
2472 int len = (value_bitpos (toval)
2473 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2474 int from_size;
2475 char *buffer = (char *) alloca (len);
2476 struct value *val;
2477 CORE_ADDR to_addr = value_address (toval);
2478
2479 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2480 fromval = value_cast (type, fromval);
2481
2482 read_memory (to_addr, buffer, len);
2483 from_size = value_bitsize (fromval);
2484 if (from_size == 0)
2485 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2486 if (gdbarch_bits_big_endian (get_type_arch (type)))
2487 move_bits (buffer, value_bitpos (toval),
2488 value_contents (fromval), from_size - bits, bits, 1);
2489 else
2490 move_bits (buffer, value_bitpos (toval),
2491 value_contents (fromval), 0, bits, 0);
2492 write_memory (to_addr, buffer, len);
2493 observer_notify_memory_changed (to_addr, len, buffer);
2494
2495 val = value_copy (toval);
2496 memcpy (value_contents_raw (val), value_contents (fromval),
2497 TYPE_LENGTH (type));
2498 deprecated_set_value_type (val, type);
2499
2500 return val;
2501 }
2502
2503 return value_assign (toval, fromval);
2504 }
2505
2506
2507 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2508 * CONTAINER, assign the contents of VAL to COMPONENTS's place in
2509 * CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2510 * COMPONENT, and not the inferior's memory. The current contents
2511 * of COMPONENT are ignored. */
2512 static void
2513 value_assign_to_component (struct value *container, struct value *component,
2514 struct value *val)
2515 {
2516 LONGEST offset_in_container =
2517 (LONGEST) (value_address (component) - value_address (container));
2518 int bit_offset_in_container =
2519 value_bitpos (component) - value_bitpos (container);
2520 int bits;
2521
2522 val = value_cast (value_type (component), val);
2523
2524 if (value_bitsize (component) == 0)
2525 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2526 else
2527 bits = value_bitsize (component);
2528
2529 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2530 move_bits (value_contents_writeable (container) + offset_in_container,
2531 value_bitpos (container) + bit_offset_in_container,
2532 value_contents (val),
2533 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2534 bits, 1);
2535 else
2536 move_bits (value_contents_writeable (container) + offset_in_container,
2537 value_bitpos (container) + bit_offset_in_container,
2538 value_contents (val), 0, bits, 0);
2539 }
2540
2541 /* The value of the element of array ARR at the ARITY indices given in IND.
2542 ARR may be either a simple array, GNAT array descriptor, or pointer
2543 thereto. */
2544
2545 struct value *
2546 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2547 {
2548 int k;
2549 struct value *elt;
2550 struct type *elt_type;
2551
2552 elt = ada_coerce_to_simple_array (arr);
2553
2554 elt_type = ada_check_typedef (value_type (elt));
2555 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2556 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2557 return value_subscript_packed (elt, arity, ind);
2558
2559 for (k = 0; k < arity; k += 1)
2560 {
2561 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2562 error (_("too many subscripts (%d expected)"), k);
2563 elt = value_subscript (elt, pos_atr (ind[k]));
2564 }
2565 return elt;
2566 }
2567
2568 /* Assuming ARR is a pointer to a standard GDB array of type TYPE, the
2569 value of the element of *ARR at the ARITY indices given in
2570 IND. Does not read the entire array into memory. */
2571
2572 static struct value *
2573 ada_value_ptr_subscript (struct value *arr, struct type *type, int arity,
2574 struct value **ind)
2575 {
2576 int k;
2577
2578 for (k = 0; k < arity; k += 1)
2579 {
2580 LONGEST lwb, upb;
2581
2582 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2583 error (_("too many subscripts (%d expected)"), k);
2584 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2585 value_copy (arr));
2586 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2587 arr = value_ptradd (arr, pos_atr (ind[k]) - lwb);
2588 type = TYPE_TARGET_TYPE (type);
2589 }
2590
2591 return value_ind (arr);
2592 }
2593
2594 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2595 actual type of ARRAY_PTR is ignored), returns the Ada slice of HIGH-LOW+1
2596 elements starting at index LOW. The lower bound of this array is LOW, as
2597 per Ada rules. */
2598 static struct value *
2599 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2600 int low, int high)
2601 {
2602 struct type *type0 = ada_check_typedef (type);
2603 CORE_ADDR base = value_as_address (array_ptr)
2604 + ((low - ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0)))
2605 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2606 struct type *index_type =
2607 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0)),
2608 low, high);
2609 struct type *slice_type =
2610 create_array_type (NULL, TYPE_TARGET_TYPE (type0), index_type);
2611
2612 return value_at_lazy (slice_type, base);
2613 }
2614
2615
2616 static struct value *
2617 ada_value_slice (struct value *array, int low, int high)
2618 {
2619 struct type *type = ada_check_typedef (value_type (array));
2620 struct type *index_type =
2621 create_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2622 struct type *slice_type =
2623 create_array_type (NULL, TYPE_TARGET_TYPE (type), index_type);
2624
2625 return value_cast (slice_type, value_slice (array, low, high - low + 1));
2626 }
2627
2628 /* If type is a record type in the form of a standard GNAT array
2629 descriptor, returns the number of dimensions for type. If arr is a
2630 simple array, returns the number of "array of"s that prefix its
2631 type designation. Otherwise, returns 0. */
2632
2633 int
2634 ada_array_arity (struct type *type)
2635 {
2636 int arity;
2637
2638 if (type == NULL)
2639 return 0;
2640
2641 type = desc_base_type (type);
2642
2643 arity = 0;
2644 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2645 return desc_arity (desc_bounds_type (type));
2646 else
2647 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2648 {
2649 arity += 1;
2650 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2651 }
2652
2653 return arity;
2654 }
2655
2656 /* If TYPE is a record type in the form of a standard GNAT array
2657 descriptor or a simple array type, returns the element type for
2658 TYPE after indexing by NINDICES indices, or by all indices if
2659 NINDICES is -1. Otherwise, returns NULL. */
2660
2661 struct type *
2662 ada_array_element_type (struct type *type, int nindices)
2663 {
2664 type = desc_base_type (type);
2665
2666 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2667 {
2668 int k;
2669 struct type *p_array_type;
2670
2671 p_array_type = desc_data_target_type (type);
2672
2673 k = ada_array_arity (type);
2674 if (k == 0)
2675 return NULL;
2676
2677 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
2678 if (nindices >= 0 && k > nindices)
2679 k = nindices;
2680 while (k > 0 && p_array_type != NULL)
2681 {
2682 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
2683 k -= 1;
2684 }
2685 return p_array_type;
2686 }
2687 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2688 {
2689 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
2690 {
2691 type = TYPE_TARGET_TYPE (type);
2692 nindices -= 1;
2693 }
2694 return type;
2695 }
2696
2697 return NULL;
2698 }
2699
2700 /* The type of nth index in arrays of given type (n numbering from 1).
2701 Does not examine memory. Throws an error if N is invalid or TYPE
2702 is not an array type. NAME is the name of the Ada attribute being
2703 evaluated ('range, 'first, 'last, or 'length); it is used in building
2704 the error message. */
2705
2706 static struct type *
2707 ada_index_type (struct type *type, int n, const char *name)
2708 {
2709 struct type *result_type;
2710
2711 type = desc_base_type (type);
2712
2713 if (n < 0 || n > ada_array_arity (type))
2714 error (_("invalid dimension number to '%s"), name);
2715
2716 if (ada_is_simple_array_type (type))
2717 {
2718 int i;
2719
2720 for (i = 1; i < n; i += 1)
2721 type = TYPE_TARGET_TYPE (type);
2722 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2723 /* FIXME: The stabs type r(0,0);bound;bound in an array type
2724 has a target type of TYPE_CODE_UNDEF. We compensate here, but
2725 perhaps stabsread.c would make more sense. */
2726 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
2727 result_type = NULL;
2728 }
2729 else
2730 {
2731 result_type = desc_index_type (desc_bounds_type (type), n);
2732 if (result_type == NULL)
2733 error (_("attempt to take bound of something that is not an array"));
2734 }
2735
2736 return result_type;
2737 }
2738
2739 /* Given that arr is an array type, returns the lower bound of the
2740 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
2741 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
2742 array-descriptor type. It works for other arrays with bounds supplied
2743 by run-time quantities other than discriminants. */
2744
2745 static LONGEST
2746 ada_array_bound_from_type (struct type * arr_type, int n, int which)
2747 {
2748 struct type *type, *elt_type, *index_type_desc, *index_type;
2749 int i;
2750
2751 gdb_assert (which == 0 || which == 1);
2752
2753 if (ada_is_constrained_packed_array_type (arr_type))
2754 arr_type = decode_constrained_packed_array_type (arr_type);
2755
2756 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
2757 return (LONGEST) - which;
2758
2759 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
2760 type = TYPE_TARGET_TYPE (arr_type);
2761 else
2762 type = arr_type;
2763
2764 elt_type = type;
2765 for (i = n; i > 1; i--)
2766 elt_type = TYPE_TARGET_TYPE (type);
2767
2768 index_type_desc = ada_find_parallel_type (type, "___XA");
2769 ada_fixup_array_indexes_type (index_type_desc);
2770 if (index_type_desc != NULL)
2771 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
2772 NULL);
2773 else
2774 index_type = TYPE_INDEX_TYPE (elt_type);
2775
2776 return
2777 (LONGEST) (which == 0
2778 ? ada_discrete_type_low_bound (index_type)
2779 : ada_discrete_type_high_bound (index_type));
2780 }
2781
2782 /* Given that arr is an array value, returns the lower bound of the
2783 nth index (numbering from 1) if WHICH is 0, and the upper bound if
2784 WHICH is 1. This routine will also work for arrays with bounds
2785 supplied by run-time quantities other than discriminants. */
2786
2787 static LONGEST
2788 ada_array_bound (struct value *arr, int n, int which)
2789 {
2790 struct type *arr_type = value_type (arr);
2791
2792 if (ada_is_constrained_packed_array_type (arr_type))
2793 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
2794 else if (ada_is_simple_array_type (arr_type))
2795 return ada_array_bound_from_type (arr_type, n, which);
2796 else
2797 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
2798 }
2799
2800 /* Given that arr is an array value, returns the length of the
2801 nth index. This routine will also work for arrays with bounds
2802 supplied by run-time quantities other than discriminants.
2803 Does not work for arrays indexed by enumeration types with representation
2804 clauses at the moment. */
2805
2806 static LONGEST
2807 ada_array_length (struct value *arr, int n)
2808 {
2809 struct type *arr_type = ada_check_typedef (value_type (arr));
2810
2811 if (ada_is_constrained_packed_array_type (arr_type))
2812 return ada_array_length (decode_constrained_packed_array (arr), n);
2813
2814 if (ada_is_simple_array_type (arr_type))
2815 return (ada_array_bound_from_type (arr_type, n, 1)
2816 - ada_array_bound_from_type (arr_type, n, 0) + 1);
2817 else
2818 return (value_as_long (desc_one_bound (desc_bounds (arr), n, 1))
2819 - value_as_long (desc_one_bound (desc_bounds (arr), n, 0)) + 1);
2820 }
2821
2822 /* An empty array whose type is that of ARR_TYPE (an array type),
2823 with bounds LOW to LOW-1. */
2824
2825 static struct value *
2826 empty_array (struct type *arr_type, int low)
2827 {
2828 struct type *arr_type0 = ada_check_typedef (arr_type);
2829 struct type *index_type =
2830 create_range_type (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)),
2831 low, low - 1);
2832 struct type *elt_type = ada_array_element_type (arr_type0, 1);
2833
2834 return allocate_value (create_array_type (NULL, elt_type, index_type));
2835 }
2836 \f
2837
2838 /* Name resolution */
2839
2840 /* The "decoded" name for the user-definable Ada operator corresponding
2841 to OP. */
2842
2843 static const char *
2844 ada_decoded_op_name (enum exp_opcode op)
2845 {
2846 int i;
2847
2848 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
2849 {
2850 if (ada_opname_table[i].op == op)
2851 return ada_opname_table[i].decoded;
2852 }
2853 error (_("Could not find operator name for opcode"));
2854 }
2855
2856
2857 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
2858 references (marked by OP_VAR_VALUE nodes in which the symbol has an
2859 undefined namespace) and converts operators that are
2860 user-defined into appropriate function calls. If CONTEXT_TYPE is
2861 non-null, it provides a preferred result type [at the moment, only
2862 type void has any effect---causing procedures to be preferred over
2863 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
2864 return type is preferred. May change (expand) *EXP. */
2865
2866 static void
2867 resolve (struct expression **expp, int void_context_p)
2868 {
2869 struct type *context_type = NULL;
2870 int pc = 0;
2871
2872 if (void_context_p)
2873 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
2874
2875 resolve_subexp (expp, &pc, 1, context_type);
2876 }
2877
2878 /* Resolve the operator of the subexpression beginning at
2879 position *POS of *EXPP. "Resolving" consists of replacing
2880 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
2881 with their resolutions, replacing built-in operators with
2882 function calls to user-defined operators, where appropriate, and,
2883 when DEPROCEDURE_P is non-zero, converting function-valued variables
2884 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
2885 are as in ada_resolve, above. */
2886
2887 static struct value *
2888 resolve_subexp (struct expression **expp, int *pos, int deprocedure_p,
2889 struct type *context_type)
2890 {
2891 int pc = *pos;
2892 int i;
2893 struct expression *exp; /* Convenience: == *expp. */
2894 enum exp_opcode op = (*expp)->elts[pc].opcode;
2895 struct value **argvec; /* Vector of operand types (alloca'ed). */
2896 int nargs; /* Number of operands. */
2897 int oplen;
2898
2899 argvec = NULL;
2900 nargs = 0;
2901 exp = *expp;
2902
2903 /* Pass one: resolve operands, saving their types and updating *pos,
2904 if needed. */
2905 switch (op)
2906 {
2907 case OP_FUNCALL:
2908 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
2909 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
2910 *pos += 7;
2911 else
2912 {
2913 *pos += 3;
2914 resolve_subexp (expp, pos, 0, NULL);
2915 }
2916 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2917 break;
2918
2919 case UNOP_ADDR:
2920 *pos += 1;
2921 resolve_subexp (expp, pos, 0, NULL);
2922 break;
2923
2924 case UNOP_QUAL:
2925 *pos += 3;
2926 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
2927 break;
2928
2929 case OP_ATR_MODULUS:
2930 case OP_ATR_SIZE:
2931 case OP_ATR_TAG:
2932 case OP_ATR_FIRST:
2933 case OP_ATR_LAST:
2934 case OP_ATR_LENGTH:
2935 case OP_ATR_POS:
2936 case OP_ATR_VAL:
2937 case OP_ATR_MIN:
2938 case OP_ATR_MAX:
2939 case TERNOP_IN_RANGE:
2940 case BINOP_IN_BOUNDS:
2941 case UNOP_IN_RANGE:
2942 case OP_AGGREGATE:
2943 case OP_OTHERS:
2944 case OP_CHOICES:
2945 case OP_POSITIONAL:
2946 case OP_DISCRETE_RANGE:
2947 case OP_NAME:
2948 ada_forward_operator_length (exp, pc, &oplen, &nargs);
2949 *pos += oplen;
2950 break;
2951
2952 case BINOP_ASSIGN:
2953 {
2954 struct value *arg1;
2955
2956 *pos += 1;
2957 arg1 = resolve_subexp (expp, pos, 0, NULL);
2958 if (arg1 == NULL)
2959 resolve_subexp (expp, pos, 1, NULL);
2960 else
2961 resolve_subexp (expp, pos, 1, value_type (arg1));
2962 break;
2963 }
2964
2965 case UNOP_CAST:
2966 *pos += 3;
2967 nargs = 1;
2968 break;
2969
2970 case BINOP_ADD:
2971 case BINOP_SUB:
2972 case BINOP_MUL:
2973 case BINOP_DIV:
2974 case BINOP_REM:
2975 case BINOP_MOD:
2976 case BINOP_EXP:
2977 case BINOP_CONCAT:
2978 case BINOP_LOGICAL_AND:
2979 case BINOP_LOGICAL_OR:
2980 case BINOP_BITWISE_AND:
2981 case BINOP_BITWISE_IOR:
2982 case BINOP_BITWISE_XOR:
2983
2984 case BINOP_EQUAL:
2985 case BINOP_NOTEQUAL:
2986 case BINOP_LESS:
2987 case BINOP_GTR:
2988 case BINOP_LEQ:
2989 case BINOP_GEQ:
2990
2991 case BINOP_REPEAT:
2992 case BINOP_SUBSCRIPT:
2993 case BINOP_COMMA:
2994 *pos += 1;
2995 nargs = 2;
2996 break;
2997
2998 case UNOP_NEG:
2999 case UNOP_PLUS:
3000 case UNOP_LOGICAL_NOT:
3001 case UNOP_ABS:
3002 case UNOP_IND:
3003 *pos += 1;
3004 nargs = 1;
3005 break;
3006
3007 case OP_LONG:
3008 case OP_DOUBLE:
3009 case OP_VAR_VALUE:
3010 *pos += 4;
3011 break;
3012
3013 case OP_TYPE:
3014 case OP_BOOL:
3015 case OP_LAST:
3016 case OP_INTERNALVAR:
3017 *pos += 3;
3018 break;
3019
3020 case UNOP_MEMVAL:
3021 *pos += 3;
3022 nargs = 1;
3023 break;
3024
3025 case OP_REGISTER:
3026 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3027 break;
3028
3029 case STRUCTOP_STRUCT:
3030 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3031 nargs = 1;
3032 break;
3033
3034 case TERNOP_SLICE:
3035 *pos += 1;
3036 nargs = 3;
3037 break;
3038
3039 case OP_STRING:
3040 break;
3041
3042 default:
3043 error (_("Unexpected operator during name resolution"));
3044 }
3045
3046 argvec = (struct value * *) alloca (sizeof (struct value *) * (nargs + 1));
3047 for (i = 0; i < nargs; i += 1)
3048 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3049 argvec[i] = NULL;
3050 exp = *expp;
3051
3052 /* Pass two: perform any resolution on principal operator. */
3053 switch (op)
3054 {
3055 default:
3056 break;
3057
3058 case OP_VAR_VALUE:
3059 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3060 {
3061 struct ada_symbol_info *candidates;
3062 int n_candidates;
3063
3064 n_candidates =
3065 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3066 (exp->elts[pc + 2].symbol),
3067 exp->elts[pc + 1].block, VAR_DOMAIN,
3068 &candidates, 1);
3069
3070 if (n_candidates > 1)
3071 {
3072 /* Types tend to get re-introduced locally, so if there
3073 are any local symbols that are not types, first filter
3074 out all types. */
3075 int j;
3076 for (j = 0; j < n_candidates; j += 1)
3077 switch (SYMBOL_CLASS (candidates[j].sym))
3078 {
3079 case LOC_REGISTER:
3080 case LOC_ARG:
3081 case LOC_REF_ARG:
3082 case LOC_REGPARM_ADDR:
3083 case LOC_LOCAL:
3084 case LOC_COMPUTED:
3085 goto FoundNonType;
3086 default:
3087 break;
3088 }
3089 FoundNonType:
3090 if (j < n_candidates)
3091 {
3092 j = 0;
3093 while (j < n_candidates)
3094 {
3095 if (SYMBOL_CLASS (candidates[j].sym) == LOC_TYPEDEF)
3096 {
3097 candidates[j] = candidates[n_candidates - 1];
3098 n_candidates -= 1;
3099 }
3100 else
3101 j += 1;
3102 }
3103 }
3104 }
3105
3106 if (n_candidates == 0)
3107 error (_("No definition found for %s"),
3108 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3109 else if (n_candidates == 1)
3110 i = 0;
3111 else if (deprocedure_p
3112 && !is_nonfunction (candidates, n_candidates))
3113 {
3114 i = ada_resolve_function
3115 (candidates, n_candidates, NULL, 0,
3116 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3117 context_type);
3118 if (i < 0)
3119 error (_("Could not find a match for %s"),
3120 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3121 }
3122 else
3123 {
3124 printf_filtered (_("Multiple matches for %s\n"),
3125 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3126 user_select_syms (candidates, n_candidates, 1);
3127 i = 0;
3128 }
3129
3130 exp->elts[pc + 1].block = candidates[i].block;
3131 exp->elts[pc + 2].symbol = candidates[i].sym;
3132 if (innermost_block == NULL
3133 || contained_in (candidates[i].block, innermost_block))
3134 innermost_block = candidates[i].block;
3135 }
3136
3137 if (deprocedure_p
3138 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3139 == TYPE_CODE_FUNC))
3140 {
3141 replace_operator_with_call (expp, pc, 0, 0,
3142 exp->elts[pc + 2].symbol,
3143 exp->elts[pc + 1].block);
3144 exp = *expp;
3145 }
3146 break;
3147
3148 case OP_FUNCALL:
3149 {
3150 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3151 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3152 {
3153 struct ada_symbol_info *candidates;
3154 int n_candidates;
3155
3156 n_candidates =
3157 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3158 (exp->elts[pc + 5].symbol),
3159 exp->elts[pc + 4].block, VAR_DOMAIN,
3160 &candidates, 1);
3161 if (n_candidates == 1)
3162 i = 0;
3163 else
3164 {
3165 i = ada_resolve_function
3166 (candidates, n_candidates,
3167 argvec, nargs,
3168 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3169 context_type);
3170 if (i < 0)
3171 error (_("Could not find a match for %s"),
3172 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3173 }
3174
3175 exp->elts[pc + 4].block = candidates[i].block;
3176 exp->elts[pc + 5].symbol = candidates[i].sym;
3177 if (innermost_block == NULL
3178 || contained_in (candidates[i].block, innermost_block))
3179 innermost_block = candidates[i].block;
3180 }
3181 }
3182 break;
3183 case BINOP_ADD:
3184 case BINOP_SUB:
3185 case BINOP_MUL:
3186 case BINOP_DIV:
3187 case BINOP_REM:
3188 case BINOP_MOD:
3189 case BINOP_CONCAT:
3190 case BINOP_BITWISE_AND:
3191 case BINOP_BITWISE_IOR:
3192 case BINOP_BITWISE_XOR:
3193 case BINOP_EQUAL:
3194 case BINOP_NOTEQUAL:
3195 case BINOP_LESS:
3196 case BINOP_GTR:
3197 case BINOP_LEQ:
3198 case BINOP_GEQ:
3199 case BINOP_EXP:
3200 case UNOP_NEG:
3201 case UNOP_PLUS:
3202 case UNOP_LOGICAL_NOT:
3203 case UNOP_ABS:
3204 if (possible_user_operator_p (op, argvec))
3205 {
3206 struct ada_symbol_info *candidates;
3207 int n_candidates;
3208
3209 n_candidates =
3210 ada_lookup_symbol_list (ada_encode (ada_decoded_op_name (op)),
3211 (struct block *) NULL, VAR_DOMAIN,
3212 &candidates, 1);
3213 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3214 ada_decoded_op_name (op), NULL);
3215 if (i < 0)
3216 break;
3217
3218 replace_operator_with_call (expp, pc, nargs, 1,
3219 candidates[i].sym, candidates[i].block);
3220 exp = *expp;
3221 }
3222 break;
3223
3224 case OP_TYPE:
3225 case OP_REGISTER:
3226 return NULL;
3227 }
3228
3229 *pos = pc;
3230 return evaluate_subexp_type (exp, pos);
3231 }
3232
3233 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3234 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3235 a non-pointer. */
3236 /* The term "match" here is rather loose. The match is heuristic and
3237 liberal. */
3238
3239 static int
3240 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3241 {
3242 ftype = ada_check_typedef (ftype);
3243 atype = ada_check_typedef (atype);
3244
3245 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3246 ftype = TYPE_TARGET_TYPE (ftype);
3247 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3248 atype = TYPE_TARGET_TYPE (atype);
3249
3250 switch (TYPE_CODE (ftype))
3251 {
3252 default:
3253 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3254 case TYPE_CODE_PTR:
3255 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3256 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3257 TYPE_TARGET_TYPE (atype), 0);
3258 else
3259 return (may_deref
3260 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3261 case TYPE_CODE_INT:
3262 case TYPE_CODE_ENUM:
3263 case TYPE_CODE_RANGE:
3264 switch (TYPE_CODE (atype))
3265 {
3266 case TYPE_CODE_INT:
3267 case TYPE_CODE_ENUM:
3268 case TYPE_CODE_RANGE:
3269 return 1;
3270 default:
3271 return 0;
3272 }
3273
3274 case TYPE_CODE_ARRAY:
3275 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3276 || ada_is_array_descriptor_type (atype));
3277
3278 case TYPE_CODE_STRUCT:
3279 if (ada_is_array_descriptor_type (ftype))
3280 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3281 || ada_is_array_descriptor_type (atype));
3282 else
3283 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3284 && !ada_is_array_descriptor_type (atype));
3285
3286 case TYPE_CODE_UNION:
3287 case TYPE_CODE_FLT:
3288 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3289 }
3290 }
3291
3292 /* Return non-zero if the formals of FUNC "sufficiently match" the
3293 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3294 may also be an enumeral, in which case it is treated as a 0-
3295 argument function. */
3296
3297 static int
3298 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3299 {
3300 int i;
3301 struct type *func_type = SYMBOL_TYPE (func);
3302
3303 if (SYMBOL_CLASS (func) == LOC_CONST
3304 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3305 return (n_actuals == 0);
3306 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3307 return 0;
3308
3309 if (TYPE_NFIELDS (func_type) != n_actuals)
3310 return 0;
3311
3312 for (i = 0; i < n_actuals; i += 1)
3313 {
3314 if (actuals[i] == NULL)
3315 return 0;
3316 else
3317 {
3318 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3319 i));
3320 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3321
3322 if (!ada_type_match (ftype, atype, 1))
3323 return 0;
3324 }
3325 }
3326 return 1;
3327 }
3328
3329 /* False iff function type FUNC_TYPE definitely does not produce a value
3330 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3331 FUNC_TYPE is not a valid function type with a non-null return type
3332 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3333
3334 static int
3335 return_match (struct type *func_type, struct type *context_type)
3336 {
3337 struct type *return_type;
3338
3339 if (func_type == NULL)
3340 return 1;
3341
3342 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3343 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3344 else
3345 return_type = get_base_type (func_type);
3346 if (return_type == NULL)
3347 return 1;
3348
3349 context_type = get_base_type (context_type);
3350
3351 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3352 return context_type == NULL || return_type == context_type;
3353 else if (context_type == NULL)
3354 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3355 else
3356 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3357 }
3358
3359
3360 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3361 function (if any) that matches the types of the NARGS arguments in
3362 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3363 that returns that type, then eliminate matches that don't. If
3364 CONTEXT_TYPE is void and there is at least one match that does not
3365 return void, eliminate all matches that do.
3366
3367 Asks the user if there is more than one match remaining. Returns -1
3368 if there is no such symbol or none is selected. NAME is used
3369 solely for messages. May re-arrange and modify SYMS in
3370 the process; the index returned is for the modified vector. */
3371
3372 static int
3373 ada_resolve_function (struct ada_symbol_info syms[],
3374 int nsyms, struct value **args, int nargs,
3375 const char *name, struct type *context_type)
3376 {
3377 int fallback;
3378 int k;
3379 int m; /* Number of hits */
3380
3381 m = 0;
3382 /* In the first pass of the loop, we only accept functions matching
3383 context_type. If none are found, we add a second pass of the loop
3384 where every function is accepted. */
3385 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3386 {
3387 for (k = 0; k < nsyms; k += 1)
3388 {
3389 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].sym));
3390
3391 if (ada_args_match (syms[k].sym, args, nargs)
3392 && (fallback || return_match (type, context_type)))
3393 {
3394 syms[m] = syms[k];
3395 m += 1;
3396 }
3397 }
3398 }
3399
3400 if (m == 0)
3401 return -1;
3402 else if (m > 1)
3403 {
3404 printf_filtered (_("Multiple matches for %s\n"), name);
3405 user_select_syms (syms, m, 1);
3406 return 0;
3407 }
3408 return 0;
3409 }
3410
3411 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3412 in a listing of choices during disambiguation (see sort_choices, below).
3413 The idea is that overloadings of a subprogram name from the
3414 same package should sort in their source order. We settle for ordering
3415 such symbols by their trailing number (__N or $N). */
3416
3417 static int
3418 encoded_ordered_before (const char *N0, const char *N1)
3419 {
3420 if (N1 == NULL)
3421 return 0;
3422 else if (N0 == NULL)
3423 return 1;
3424 else
3425 {
3426 int k0, k1;
3427
3428 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3429 ;
3430 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3431 ;
3432 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3433 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3434 {
3435 int n0, n1;
3436
3437 n0 = k0;
3438 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3439 n0 -= 1;
3440 n1 = k1;
3441 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3442 n1 -= 1;
3443 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3444 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3445 }
3446 return (strcmp (N0, N1) < 0);
3447 }
3448 }
3449
3450 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3451 encoded names. */
3452
3453 static void
3454 sort_choices (struct ada_symbol_info syms[], int nsyms)
3455 {
3456 int i;
3457
3458 for (i = 1; i < nsyms; i += 1)
3459 {
3460 struct ada_symbol_info sym = syms[i];
3461 int j;
3462
3463 for (j = i - 1; j >= 0; j -= 1)
3464 {
3465 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].sym),
3466 SYMBOL_LINKAGE_NAME (sym.sym)))
3467 break;
3468 syms[j + 1] = syms[j];
3469 }
3470 syms[j + 1] = sym;
3471 }
3472 }
3473
3474 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3475 by asking the user (if necessary), returning the number selected,
3476 and setting the first elements of SYMS items. Error if no symbols
3477 selected. */
3478
3479 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3480 to be re-integrated one of these days. */
3481
3482 int
3483 user_select_syms (struct ada_symbol_info *syms, int nsyms, int max_results)
3484 {
3485 int i;
3486 int *chosen = (int *) alloca (sizeof (int) * nsyms);
3487 int n_chosen;
3488 int first_choice = (max_results == 1) ? 1 : 2;
3489 const char *select_mode = multiple_symbols_select_mode ();
3490
3491 if (max_results < 1)
3492 error (_("Request to select 0 symbols!"));
3493 if (nsyms <= 1)
3494 return nsyms;
3495
3496 if (select_mode == multiple_symbols_cancel)
3497 error (_("\
3498 canceled because the command is ambiguous\n\
3499 See set/show multiple-symbol."));
3500
3501 /* If select_mode is "all", then return all possible symbols.
3502 Only do that if more than one symbol can be selected, of course.
3503 Otherwise, display the menu as usual. */
3504 if (select_mode == multiple_symbols_all && max_results > 1)
3505 return nsyms;
3506
3507 printf_unfiltered (_("[0] cancel\n"));
3508 if (max_results > 1)
3509 printf_unfiltered (_("[1] all\n"));
3510
3511 sort_choices (syms, nsyms);
3512
3513 for (i = 0; i < nsyms; i += 1)
3514 {
3515 if (syms[i].sym == NULL)
3516 continue;
3517
3518 if (SYMBOL_CLASS (syms[i].sym) == LOC_BLOCK)
3519 {
3520 struct symtab_and_line sal =
3521 find_function_start_sal (syms[i].sym, 1);
3522
3523 if (sal.symtab == NULL)
3524 printf_unfiltered (_("[%d] %s at <no source file available>:%d\n"),
3525 i + first_choice,
3526 SYMBOL_PRINT_NAME (syms[i].sym),
3527 sal.line);
3528 else
3529 printf_unfiltered (_("[%d] %s at %s:%d\n"), i + first_choice,
3530 SYMBOL_PRINT_NAME (syms[i].sym),
3531 sal.symtab->filename, sal.line);
3532 continue;
3533 }
3534 else
3535 {
3536 int is_enumeral =
3537 (SYMBOL_CLASS (syms[i].sym) == LOC_CONST
3538 && SYMBOL_TYPE (syms[i].sym) != NULL
3539 && TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) == TYPE_CODE_ENUM);
3540 struct symtab *symtab = syms[i].sym->symtab;
3541
3542 if (SYMBOL_LINE (syms[i].sym) != 0 && symtab != NULL)
3543 printf_unfiltered (_("[%d] %s at %s:%d\n"),
3544 i + first_choice,
3545 SYMBOL_PRINT_NAME (syms[i].sym),
3546 symtab->filename, SYMBOL_LINE (syms[i].sym));
3547 else if (is_enumeral
3548 && TYPE_NAME (SYMBOL_TYPE (syms[i].sym)) != NULL)
3549 {
3550 printf_unfiltered (("[%d] "), i + first_choice);
3551 ada_print_type (SYMBOL_TYPE (syms[i].sym), NULL,
3552 gdb_stdout, -1, 0);
3553 printf_unfiltered (_("'(%s) (enumeral)\n"),
3554 SYMBOL_PRINT_NAME (syms[i].sym));
3555 }
3556 else if (symtab != NULL)
3557 printf_unfiltered (is_enumeral
3558 ? _("[%d] %s in %s (enumeral)\n")
3559 : _("[%d] %s at %s:?\n"),
3560 i + first_choice,
3561 SYMBOL_PRINT_NAME (syms[i].sym),
3562 symtab->filename);
3563 else
3564 printf_unfiltered (is_enumeral
3565 ? _("[%d] %s (enumeral)\n")
3566 : _("[%d] %s at ?\n"),
3567 i + first_choice,
3568 SYMBOL_PRINT_NAME (syms[i].sym));
3569 }
3570 }
3571
3572 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
3573 "overload-choice");
3574
3575 for (i = 0; i < n_chosen; i += 1)
3576 syms[i] = syms[chosen[i]];
3577
3578 return n_chosen;
3579 }
3580
3581 /* Read and validate a set of numeric choices from the user in the
3582 range 0 .. N_CHOICES-1. Place the results in increasing
3583 order in CHOICES[0 .. N-1], and return N.
3584
3585 The user types choices as a sequence of numbers on one line
3586 separated by blanks, encoding them as follows:
3587
3588 + A choice of 0 means to cancel the selection, throwing an error.
3589 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
3590 + The user chooses k by typing k+IS_ALL_CHOICE+1.
3591
3592 The user is not allowed to choose more than MAX_RESULTS values.
3593
3594 ANNOTATION_SUFFIX, if present, is used to annotate the input
3595 prompts (for use with the -f switch). */
3596
3597 int
3598 get_selections (int *choices, int n_choices, int max_results,
3599 int is_all_choice, char *annotation_suffix)
3600 {
3601 char *args;
3602 char *prompt;
3603 int n_chosen;
3604 int first_choice = is_all_choice ? 2 : 1;
3605
3606 prompt = getenv ("PS2");
3607 if (prompt == NULL)
3608 prompt = "> ";
3609
3610 args = command_line_input (prompt, 0, annotation_suffix);
3611
3612 if (args == NULL)
3613 error_no_arg (_("one or more choice numbers"));
3614
3615 n_chosen = 0;
3616
3617 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
3618 order, as given in args. Choices are validated. */
3619 while (1)
3620 {
3621 char *args2;
3622 int choice, j;
3623
3624 args = skip_spaces (args);
3625 if (*args == '\0' && n_chosen == 0)
3626 error_no_arg (_("one or more choice numbers"));
3627 else if (*args == '\0')
3628 break;
3629
3630 choice = strtol (args, &args2, 10);
3631 if (args == args2 || choice < 0
3632 || choice > n_choices + first_choice - 1)
3633 error (_("Argument must be choice number"));
3634 args = args2;
3635
3636 if (choice == 0)
3637 error (_("cancelled"));
3638
3639 if (choice < first_choice)
3640 {
3641 n_chosen = n_choices;
3642 for (j = 0; j < n_choices; j += 1)
3643 choices[j] = j;
3644 break;
3645 }
3646 choice -= first_choice;
3647
3648 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
3649 {
3650 }
3651
3652 if (j < 0 || choice != choices[j])
3653 {
3654 int k;
3655
3656 for (k = n_chosen - 1; k > j; k -= 1)
3657 choices[k + 1] = choices[k];
3658 choices[j + 1] = choice;
3659 n_chosen += 1;
3660 }
3661 }
3662
3663 if (n_chosen > max_results)
3664 error (_("Select no more than %d of the above"), max_results);
3665
3666 return n_chosen;
3667 }
3668
3669 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
3670 on the function identified by SYM and BLOCK, and taking NARGS
3671 arguments. Update *EXPP as needed to hold more space. */
3672
3673 static void
3674 replace_operator_with_call (struct expression **expp, int pc, int nargs,
3675 int oplen, struct symbol *sym,
3676 struct block *block)
3677 {
3678 /* A new expression, with 6 more elements (3 for funcall, 4 for function
3679 symbol, -oplen for operator being replaced). */
3680 struct expression *newexp = (struct expression *)
3681 xzalloc (sizeof (struct expression)
3682 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
3683 struct expression *exp = *expp;
3684
3685 newexp->nelts = exp->nelts + 7 - oplen;
3686 newexp->language_defn = exp->language_defn;
3687 newexp->gdbarch = exp->gdbarch;
3688 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
3689 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
3690 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
3691
3692 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
3693 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
3694
3695 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
3696 newexp->elts[pc + 4].block = block;
3697 newexp->elts[pc + 5].symbol = sym;
3698
3699 *expp = newexp;
3700 xfree (exp);
3701 }
3702
3703 /* Type-class predicates */
3704
3705 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
3706 or FLOAT). */
3707
3708 static int
3709 numeric_type_p (struct type *type)
3710 {
3711 if (type == NULL)
3712 return 0;
3713 else
3714 {
3715 switch (TYPE_CODE (type))
3716 {
3717 case TYPE_CODE_INT:
3718 case TYPE_CODE_FLT:
3719 return 1;
3720 case TYPE_CODE_RANGE:
3721 return (type == TYPE_TARGET_TYPE (type)
3722 || numeric_type_p (TYPE_TARGET_TYPE (type)));
3723 default:
3724 return 0;
3725 }
3726 }
3727 }
3728
3729 /* True iff TYPE is integral (an INT or RANGE of INTs). */
3730
3731 static int
3732 integer_type_p (struct type *type)
3733 {
3734 if (type == NULL)
3735 return 0;
3736 else
3737 {
3738 switch (TYPE_CODE (type))
3739 {
3740 case TYPE_CODE_INT:
3741 return 1;
3742 case TYPE_CODE_RANGE:
3743 return (type == TYPE_TARGET_TYPE (type)
3744 || integer_type_p (TYPE_TARGET_TYPE (type)));
3745 default:
3746 return 0;
3747 }
3748 }
3749 }
3750
3751 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
3752
3753 static int
3754 scalar_type_p (struct type *type)
3755 {
3756 if (type == NULL)
3757 return 0;
3758 else
3759 {
3760 switch (TYPE_CODE (type))
3761 {
3762 case TYPE_CODE_INT:
3763 case TYPE_CODE_RANGE:
3764 case TYPE_CODE_ENUM:
3765 case TYPE_CODE_FLT:
3766 return 1;
3767 default:
3768 return 0;
3769 }
3770 }
3771 }
3772
3773 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
3774
3775 static int
3776 discrete_type_p (struct type *type)
3777 {
3778 if (type == NULL)
3779 return 0;
3780 else
3781 {
3782 switch (TYPE_CODE (type))
3783 {
3784 case TYPE_CODE_INT:
3785 case TYPE_CODE_RANGE:
3786 case TYPE_CODE_ENUM:
3787 case TYPE_CODE_BOOL:
3788 return 1;
3789 default:
3790 return 0;
3791 }
3792 }
3793 }
3794
3795 /* Returns non-zero if OP with operands in the vector ARGS could be
3796 a user-defined function. Errs on the side of pre-defined operators
3797 (i.e., result 0). */
3798
3799 static int
3800 possible_user_operator_p (enum exp_opcode op, struct value *args[])
3801 {
3802 struct type *type0 =
3803 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
3804 struct type *type1 =
3805 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
3806
3807 if (type0 == NULL)
3808 return 0;
3809
3810 switch (op)
3811 {
3812 default:
3813 return 0;
3814
3815 case BINOP_ADD:
3816 case BINOP_SUB:
3817 case BINOP_MUL:
3818 case BINOP_DIV:
3819 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
3820
3821 case BINOP_REM:
3822 case BINOP_MOD:
3823 case BINOP_BITWISE_AND:
3824 case BINOP_BITWISE_IOR:
3825 case BINOP_BITWISE_XOR:
3826 return (!(integer_type_p (type0) && integer_type_p (type1)));
3827
3828 case BINOP_EQUAL:
3829 case BINOP_NOTEQUAL:
3830 case BINOP_LESS:
3831 case BINOP_GTR:
3832 case BINOP_LEQ:
3833 case BINOP_GEQ:
3834 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
3835
3836 case BINOP_CONCAT:
3837 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
3838
3839 case BINOP_EXP:
3840 return (!(numeric_type_p (type0) && integer_type_p (type1)));
3841
3842 case UNOP_NEG:
3843 case UNOP_PLUS:
3844 case UNOP_LOGICAL_NOT:
3845 case UNOP_ABS:
3846 return (!numeric_type_p (type0));
3847
3848 }
3849 }
3850 \f
3851 /* Renaming */
3852
3853 /* NOTES:
3854
3855 1. In the following, we assume that a renaming type's name may
3856 have an ___XD suffix. It would be nice if this went away at some
3857 point.
3858 2. We handle both the (old) purely type-based representation of
3859 renamings and the (new) variable-based encoding. At some point,
3860 it is devoutly to be hoped that the former goes away
3861 (FIXME: hilfinger-2007-07-09).
3862 3. Subprogram renamings are not implemented, although the XRS
3863 suffix is recognized (FIXME: hilfinger-2007-07-09). */
3864
3865 /* If SYM encodes a renaming,
3866
3867 <renaming> renames <renamed entity>,
3868
3869 sets *LEN to the length of the renamed entity's name,
3870 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
3871 the string describing the subcomponent selected from the renamed
3872 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
3873 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
3874 are undefined). Otherwise, returns a value indicating the category
3875 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
3876 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
3877 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
3878 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
3879 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
3880 may be NULL, in which case they are not assigned.
3881
3882 [Currently, however, GCC does not generate subprogram renamings.] */
3883
3884 enum ada_renaming_category
3885 ada_parse_renaming (struct symbol *sym,
3886 const char **renamed_entity, int *len,
3887 const char **renaming_expr)
3888 {
3889 enum ada_renaming_category kind;
3890 const char *info;
3891 const char *suffix;
3892
3893 if (sym == NULL)
3894 return ADA_NOT_RENAMING;
3895 switch (SYMBOL_CLASS (sym))
3896 {
3897 default:
3898 return ADA_NOT_RENAMING;
3899 case LOC_TYPEDEF:
3900 return parse_old_style_renaming (SYMBOL_TYPE (sym),
3901 renamed_entity, len, renaming_expr);
3902 case LOC_LOCAL:
3903 case LOC_STATIC:
3904 case LOC_COMPUTED:
3905 case LOC_OPTIMIZED_OUT:
3906 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
3907 if (info == NULL)
3908 return ADA_NOT_RENAMING;
3909 switch (info[5])
3910 {
3911 case '_':
3912 kind = ADA_OBJECT_RENAMING;
3913 info += 6;
3914 break;
3915 case 'E':
3916 kind = ADA_EXCEPTION_RENAMING;
3917 info += 7;
3918 break;
3919 case 'P':
3920 kind = ADA_PACKAGE_RENAMING;
3921 info += 7;
3922 break;
3923 case 'S':
3924 kind = ADA_SUBPROGRAM_RENAMING;
3925 info += 7;
3926 break;
3927 default:
3928 return ADA_NOT_RENAMING;
3929 }
3930 }
3931
3932 if (renamed_entity != NULL)
3933 *renamed_entity = info;
3934 suffix = strstr (info, "___XE");
3935 if (suffix == NULL || suffix == info)
3936 return ADA_NOT_RENAMING;
3937 if (len != NULL)
3938 *len = strlen (info) - strlen (suffix);
3939 suffix += 5;
3940 if (renaming_expr != NULL)
3941 *renaming_expr = suffix;
3942 return kind;
3943 }
3944
3945 /* Assuming TYPE encodes a renaming according to the old encoding in
3946 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
3947 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
3948 ADA_NOT_RENAMING otherwise. */
3949 static enum ada_renaming_category
3950 parse_old_style_renaming (struct type *type,
3951 const char **renamed_entity, int *len,
3952 const char **renaming_expr)
3953 {
3954 enum ada_renaming_category kind;
3955 const char *name;
3956 const char *info;
3957 const char *suffix;
3958
3959 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
3960 || TYPE_NFIELDS (type) != 1)
3961 return ADA_NOT_RENAMING;
3962
3963 name = type_name_no_tag (type);
3964 if (name == NULL)
3965 return ADA_NOT_RENAMING;
3966
3967 name = strstr (name, "___XR");
3968 if (name == NULL)
3969 return ADA_NOT_RENAMING;
3970 switch (name[5])
3971 {
3972 case '\0':
3973 case '_':
3974 kind = ADA_OBJECT_RENAMING;
3975 break;
3976 case 'E':
3977 kind = ADA_EXCEPTION_RENAMING;
3978 break;
3979 case 'P':
3980 kind = ADA_PACKAGE_RENAMING;
3981 break;
3982 case 'S':
3983 kind = ADA_SUBPROGRAM_RENAMING;
3984 break;
3985 default:
3986 return ADA_NOT_RENAMING;
3987 }
3988
3989 info = TYPE_FIELD_NAME (type, 0);
3990 if (info == NULL)
3991 return ADA_NOT_RENAMING;
3992 if (renamed_entity != NULL)
3993 *renamed_entity = info;
3994 suffix = strstr (info, "___XE");
3995 if (renaming_expr != NULL)
3996 *renaming_expr = suffix + 5;
3997 if (suffix == NULL || suffix == info)
3998 return ADA_NOT_RENAMING;
3999 if (len != NULL)
4000 *len = suffix - info;
4001 return kind;
4002 }
4003
4004 \f
4005
4006 /* Evaluation: Function Calls */
4007
4008 /* Return an lvalue containing the value VAL. This is the identity on
4009 lvalues, and otherwise has the side-effect of allocating memory
4010 in the inferior where a copy of the value contents is copied. */
4011
4012 static struct value *
4013 ensure_lval (struct value *val)
4014 {
4015 if (VALUE_LVAL (val) == not_lval
4016 || VALUE_LVAL (val) == lval_internalvar)
4017 {
4018 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4019 const CORE_ADDR addr =
4020 value_as_long (value_allocate_space_in_inferior (len));
4021
4022 set_value_address (val, addr);
4023 VALUE_LVAL (val) = lval_memory;
4024 write_memory (addr, value_contents (val), len);
4025 }
4026
4027 return val;
4028 }
4029
4030 /* Return the value ACTUAL, converted to be an appropriate value for a
4031 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4032 allocating any necessary descriptors (fat pointers), or copies of
4033 values not residing in memory, updating it as needed. */
4034
4035 struct value *
4036 ada_convert_actual (struct value *actual, struct type *formal_type0)
4037 {
4038 struct type *actual_type = ada_check_typedef (value_type (actual));
4039 struct type *formal_type = ada_check_typedef (formal_type0);
4040 struct type *formal_target =
4041 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4042 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4043 struct type *actual_target =
4044 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4045 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4046
4047 if (ada_is_array_descriptor_type (formal_target)
4048 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4049 return make_array_descriptor (formal_type, actual);
4050 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4051 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4052 {
4053 struct value *result;
4054
4055 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4056 && ada_is_array_descriptor_type (actual_target))
4057 result = desc_data (actual);
4058 else if (TYPE_CODE (actual_type) != TYPE_CODE_PTR)
4059 {
4060 if (VALUE_LVAL (actual) != lval_memory)
4061 {
4062 struct value *val;
4063
4064 actual_type = ada_check_typedef (value_type (actual));
4065 val = allocate_value (actual_type);
4066 memcpy ((char *) value_contents_raw (val),
4067 (char *) value_contents (actual),
4068 TYPE_LENGTH (actual_type));
4069 actual = ensure_lval (val);
4070 }
4071 result = value_addr (actual);
4072 }
4073 else
4074 return actual;
4075 return value_cast_pointers (formal_type, result);
4076 }
4077 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4078 return ada_value_ind (actual);
4079
4080 return actual;
4081 }
4082
4083 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4084 type TYPE. This is usually an inefficient no-op except on some targets
4085 (such as AVR) where the representation of a pointer and an address
4086 differs. */
4087
4088 static CORE_ADDR
4089 value_pointer (struct value *value, struct type *type)
4090 {
4091 struct gdbarch *gdbarch = get_type_arch (type);
4092 unsigned len = TYPE_LENGTH (type);
4093 gdb_byte *buf = alloca (len);
4094 CORE_ADDR addr;
4095
4096 addr = value_address (value);
4097 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4098 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4099 return addr;
4100 }
4101
4102
4103 /* Push a descriptor of type TYPE for array value ARR on the stack at
4104 *SP, updating *SP to reflect the new descriptor. Return either
4105 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4106 to-descriptor type rather than a descriptor type), a struct value *
4107 representing a pointer to this descriptor. */
4108
4109 static struct value *
4110 make_array_descriptor (struct type *type, struct value *arr)
4111 {
4112 struct type *bounds_type = desc_bounds_type (type);
4113 struct type *desc_type = desc_base_type (type);
4114 struct value *descriptor = allocate_value (desc_type);
4115 struct value *bounds = allocate_value (bounds_type);
4116 int i;
4117
4118 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4119 i > 0; i -= 1)
4120 {
4121 modify_field (value_type (bounds), value_contents_writeable (bounds),
4122 ada_array_bound (arr, i, 0),
4123 desc_bound_bitpos (bounds_type, i, 0),
4124 desc_bound_bitsize (bounds_type, i, 0));
4125 modify_field (value_type (bounds), value_contents_writeable (bounds),
4126 ada_array_bound (arr, i, 1),
4127 desc_bound_bitpos (bounds_type, i, 1),
4128 desc_bound_bitsize (bounds_type, i, 1));
4129 }
4130
4131 bounds = ensure_lval (bounds);
4132
4133 modify_field (value_type (descriptor),
4134 value_contents_writeable (descriptor),
4135 value_pointer (ensure_lval (arr),
4136 TYPE_FIELD_TYPE (desc_type, 0)),
4137 fat_pntr_data_bitpos (desc_type),
4138 fat_pntr_data_bitsize (desc_type));
4139
4140 modify_field (value_type (descriptor),
4141 value_contents_writeable (descriptor),
4142 value_pointer (bounds,
4143 TYPE_FIELD_TYPE (desc_type, 1)),
4144 fat_pntr_bounds_bitpos (desc_type),
4145 fat_pntr_bounds_bitsize (desc_type));
4146
4147 descriptor = ensure_lval (descriptor);
4148
4149 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4150 return value_addr (descriptor);
4151 else
4152 return descriptor;
4153 }
4154 \f
4155 /* Dummy definitions for an experimental caching module that is not
4156 * used in the public sources. */
4157
4158 static int
4159 lookup_cached_symbol (const char *name, domain_enum namespace,
4160 struct symbol **sym, struct block **block)
4161 {
4162 return 0;
4163 }
4164
4165 static void
4166 cache_symbol (const char *name, domain_enum namespace, struct symbol *sym,
4167 struct block *block)
4168 {
4169 }
4170 \f
4171 /* Symbol Lookup */
4172
4173 /* Return nonzero if wild matching should be used when searching for
4174 all symbols matching LOOKUP_NAME.
4175
4176 LOOKUP_NAME is expected to be a symbol name after transformation
4177 for Ada lookups (see ada_name_for_lookup). */
4178
4179 static int
4180 should_use_wild_match (const char *lookup_name)
4181 {
4182 return (strstr (lookup_name, "__") == NULL);
4183 }
4184
4185 /* Return the result of a standard (literal, C-like) lookup of NAME in
4186 given DOMAIN, visible from lexical block BLOCK. */
4187
4188 static struct symbol *
4189 standard_lookup (const char *name, const struct block *block,
4190 domain_enum domain)
4191 {
4192 struct symbol *sym;
4193
4194 if (lookup_cached_symbol (name, domain, &sym, NULL))
4195 return sym;
4196 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4197 cache_symbol (name, domain, sym, block_found);
4198 return sym;
4199 }
4200
4201
4202 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4203 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4204 since they contend in overloading in the same way. */
4205 static int
4206 is_nonfunction (struct ada_symbol_info syms[], int n)
4207 {
4208 int i;
4209
4210 for (i = 0; i < n; i += 1)
4211 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_FUNC
4212 && (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM
4213 || SYMBOL_CLASS (syms[i].sym) != LOC_CONST))
4214 return 1;
4215
4216 return 0;
4217 }
4218
4219 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4220 struct types. Otherwise, they may not. */
4221
4222 static int
4223 equiv_types (struct type *type0, struct type *type1)
4224 {
4225 if (type0 == type1)
4226 return 1;
4227 if (type0 == NULL || type1 == NULL
4228 || TYPE_CODE (type0) != TYPE_CODE (type1))
4229 return 0;
4230 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4231 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4232 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4233 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4234 return 1;
4235
4236 return 0;
4237 }
4238
4239 /* True iff SYM0 represents the same entity as SYM1, or one that is
4240 no more defined than that of SYM1. */
4241
4242 static int
4243 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4244 {
4245 if (sym0 == sym1)
4246 return 1;
4247 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4248 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4249 return 0;
4250
4251 switch (SYMBOL_CLASS (sym0))
4252 {
4253 case LOC_UNDEF:
4254 return 1;
4255 case LOC_TYPEDEF:
4256 {
4257 struct type *type0 = SYMBOL_TYPE (sym0);
4258 struct type *type1 = SYMBOL_TYPE (sym1);
4259 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4260 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4261 int len0 = strlen (name0);
4262
4263 return
4264 TYPE_CODE (type0) == TYPE_CODE (type1)
4265 && (equiv_types (type0, type1)
4266 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4267 && strncmp (name1 + len0, "___XV", 5) == 0));
4268 }
4269 case LOC_CONST:
4270 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4271 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4272 default:
4273 return 0;
4274 }
4275 }
4276
4277 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct ada_symbol_info
4278 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4279
4280 static void
4281 add_defn_to_vec (struct obstack *obstackp,
4282 struct symbol *sym,
4283 struct block *block)
4284 {
4285 int i;
4286 struct ada_symbol_info *prevDefns = defns_collected (obstackp, 0);
4287
4288 /* Do not try to complete stub types, as the debugger is probably
4289 already scanning all symbols matching a certain name at the
4290 time when this function is called. Trying to replace the stub
4291 type by its associated full type will cause us to restart a scan
4292 which may lead to an infinite recursion. Instead, the client
4293 collecting the matching symbols will end up collecting several
4294 matches, with at least one of them complete. It can then filter
4295 out the stub ones if needed. */
4296
4297 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4298 {
4299 if (lesseq_defined_than (sym, prevDefns[i].sym))
4300 return;
4301 else if (lesseq_defined_than (prevDefns[i].sym, sym))
4302 {
4303 prevDefns[i].sym = sym;
4304 prevDefns[i].block = block;
4305 return;
4306 }
4307 }
4308
4309 {
4310 struct ada_symbol_info info;
4311
4312 info.sym = sym;
4313 info.block = block;
4314 obstack_grow (obstackp, &info, sizeof (struct ada_symbol_info));
4315 }
4316 }
4317
4318 /* Number of ada_symbol_info structures currently collected in
4319 current vector in *OBSTACKP. */
4320
4321 static int
4322 num_defns_collected (struct obstack *obstackp)
4323 {
4324 return obstack_object_size (obstackp) / sizeof (struct ada_symbol_info);
4325 }
4326
4327 /* Vector of ada_symbol_info structures currently collected in current
4328 vector in *OBSTACKP. If FINISH, close off the vector and return
4329 its final address. */
4330
4331 static struct ada_symbol_info *
4332 defns_collected (struct obstack *obstackp, int finish)
4333 {
4334 if (finish)
4335 return obstack_finish (obstackp);
4336 else
4337 return (struct ada_symbol_info *) obstack_base (obstackp);
4338 }
4339
4340 /* Return a minimal symbol matching NAME according to Ada decoding
4341 rules. Returns NULL if there is no such minimal symbol. Names
4342 prefixed with "standard__" are handled specially: "standard__" is
4343 first stripped off, and only static and global symbols are searched. */
4344
4345 struct minimal_symbol *
4346 ada_lookup_simple_minsym (const char *name)
4347 {
4348 struct objfile *objfile;
4349 struct minimal_symbol *msymbol;
4350 const int wild_match = should_use_wild_match (name);
4351
4352 /* Special case: If the user specifies a symbol name inside package
4353 Standard, do a non-wild matching of the symbol name without
4354 the "standard__" prefix. This was primarily introduced in order
4355 to allow the user to specifically access the standard exceptions
4356 using, for instance, Standard.Constraint_Error when Constraint_Error
4357 is ambiguous (due to the user defining its own Constraint_Error
4358 entity inside its program). */
4359 if (strncmp (name, "standard__", sizeof ("standard__") - 1) == 0)
4360 name += sizeof ("standard__") - 1;
4361
4362 ALL_MSYMBOLS (objfile, msymbol)
4363 {
4364 if (match_name (SYMBOL_LINKAGE_NAME (msymbol), name, wild_match)
4365 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4366 return msymbol;
4367 }
4368
4369 return NULL;
4370 }
4371
4372 /* For all subprograms that statically enclose the subprogram of the
4373 selected frame, add symbols matching identifier NAME in DOMAIN
4374 and their blocks to the list of data in OBSTACKP, as for
4375 ada_add_block_symbols (q.v.). If WILD, treat as NAME with a
4376 wildcard prefix. */
4377
4378 static void
4379 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4380 const char *name, domain_enum namespace,
4381 int wild_match)
4382 {
4383 }
4384
4385 /* True if TYPE is definitely an artificial type supplied to a symbol
4386 for which no debugging information was given in the symbol file. */
4387
4388 static int
4389 is_nondebugging_type (struct type *type)
4390 {
4391 const char *name = ada_type_name (type);
4392
4393 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4394 }
4395
4396 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4397 that are deemed "identical" for practical purposes.
4398
4399 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4400 types and that their number of enumerals is identical (in other
4401 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4402
4403 static int
4404 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4405 {
4406 int i;
4407
4408 /* The heuristic we use here is fairly conservative. We consider
4409 that 2 enumerate types are identical if they have the same
4410 number of enumerals and that all enumerals have the same
4411 underlying value and name. */
4412
4413 /* All enums in the type should have an identical underlying value. */
4414 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4415 if (TYPE_FIELD_BITPOS (type1, i) != TYPE_FIELD_BITPOS (type2, i))
4416 return 0;
4417
4418 /* All enumerals should also have the same name (modulo any numerical
4419 suffix). */
4420 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4421 {
4422 const char *name_1 = TYPE_FIELD_NAME (type1, i);
4423 const char *name_2 = TYPE_FIELD_NAME (type2, i);
4424 int len_1 = strlen (name_1);
4425 int len_2 = strlen (name_2);
4426
4427 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
4428 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
4429 if (len_1 != len_2
4430 || strncmp (TYPE_FIELD_NAME (type1, i),
4431 TYPE_FIELD_NAME (type2, i),
4432 len_1) != 0)
4433 return 0;
4434 }
4435
4436 return 1;
4437 }
4438
4439 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
4440 that are deemed "identical" for practical purposes. Sometimes,
4441 enumerals are not strictly identical, but their types are so similar
4442 that they can be considered identical.
4443
4444 For instance, consider the following code:
4445
4446 type Color is (Black, Red, Green, Blue, White);
4447 type RGB_Color is new Color range Red .. Blue;
4448
4449 Type RGB_Color is a subrange of an implicit type which is a copy
4450 of type Color. If we call that implicit type RGB_ColorB ("B" is
4451 for "Base Type"), then type RGB_ColorB is a copy of type Color.
4452 As a result, when an expression references any of the enumeral
4453 by name (Eg. "print green"), the expression is technically
4454 ambiguous and the user should be asked to disambiguate. But
4455 doing so would only hinder the user, since it wouldn't matter
4456 what choice he makes, the outcome would always be the same.
4457 So, for practical purposes, we consider them as the same. */
4458
4459 static int
4460 symbols_are_identical_enums (struct ada_symbol_info *syms, int nsyms)
4461 {
4462 int i;
4463
4464 /* Before performing a thorough comparison check of each type,
4465 we perform a series of inexpensive checks. We expect that these
4466 checks will quickly fail in the vast majority of cases, and thus
4467 help prevent the unnecessary use of a more expensive comparison.
4468 Said comparison also expects us to make some of these checks
4469 (see ada_identical_enum_types_p). */
4470
4471 /* Quick check: All symbols should have an enum type. */
4472 for (i = 0; i < nsyms; i++)
4473 if (TYPE_CODE (SYMBOL_TYPE (syms[i].sym)) != TYPE_CODE_ENUM)
4474 return 0;
4475
4476 /* Quick check: They should all have the same value. */
4477 for (i = 1; i < nsyms; i++)
4478 if (SYMBOL_VALUE (syms[i].sym) != SYMBOL_VALUE (syms[0].sym))
4479 return 0;
4480
4481 /* Quick check: They should all have the same number of enumerals. */
4482 for (i = 1; i < nsyms; i++)
4483 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].sym))
4484 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].sym)))
4485 return 0;
4486
4487 /* All the sanity checks passed, so we might have a set of
4488 identical enumeration types. Perform a more complete
4489 comparison of the type of each symbol. */
4490 for (i = 1; i < nsyms; i++)
4491 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].sym),
4492 SYMBOL_TYPE (syms[0].sym)))
4493 return 0;
4494
4495 return 1;
4496 }
4497
4498 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
4499 duplicate other symbols in the list (The only case I know of where
4500 this happens is when object files containing stabs-in-ecoff are
4501 linked with files containing ordinary ecoff debugging symbols (or no
4502 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
4503 Returns the number of items in the modified list. */
4504
4505 static int
4506 remove_extra_symbols (struct ada_symbol_info *syms, int nsyms)
4507 {
4508 int i, j;
4509
4510 /* We should never be called with less than 2 symbols, as there
4511 cannot be any extra symbol in that case. But it's easy to
4512 handle, since we have nothing to do in that case. */
4513 if (nsyms < 2)
4514 return nsyms;
4515
4516 i = 0;
4517 while (i < nsyms)
4518 {
4519 int remove_p = 0;
4520
4521 /* If two symbols have the same name and one of them is a stub type,
4522 the get rid of the stub. */
4523
4524 if (TYPE_STUB (SYMBOL_TYPE (syms[i].sym))
4525 && SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL)
4526 {
4527 for (j = 0; j < nsyms; j++)
4528 {
4529 if (j != i
4530 && !TYPE_STUB (SYMBOL_TYPE (syms[j].sym))
4531 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4532 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4533 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0)
4534 remove_p = 1;
4535 }
4536 }
4537
4538 /* Two symbols with the same name, same class and same address
4539 should be identical. */
4540
4541 else if (SYMBOL_LINKAGE_NAME (syms[i].sym) != NULL
4542 && SYMBOL_CLASS (syms[i].sym) == LOC_STATIC
4543 && is_nondebugging_type (SYMBOL_TYPE (syms[i].sym)))
4544 {
4545 for (j = 0; j < nsyms; j += 1)
4546 {
4547 if (i != j
4548 && SYMBOL_LINKAGE_NAME (syms[j].sym) != NULL
4549 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].sym),
4550 SYMBOL_LINKAGE_NAME (syms[j].sym)) == 0
4551 && SYMBOL_CLASS (syms[i].sym) == SYMBOL_CLASS (syms[j].sym)
4552 && SYMBOL_VALUE_ADDRESS (syms[i].sym)
4553 == SYMBOL_VALUE_ADDRESS (syms[j].sym))
4554 remove_p = 1;
4555 }
4556 }
4557
4558 if (remove_p)
4559 {
4560 for (j = i + 1; j < nsyms; j += 1)
4561 syms[j - 1] = syms[j];
4562 nsyms -= 1;
4563 }
4564
4565 i += 1;
4566 }
4567
4568 /* If all the remaining symbols are identical enumerals, then
4569 just keep the first one and discard the rest.
4570
4571 Unlike what we did previously, we do not discard any entry
4572 unless they are ALL identical. This is because the symbol
4573 comparison is not a strict comparison, but rather a practical
4574 comparison. If all symbols are considered identical, then
4575 we can just go ahead and use the first one and discard the rest.
4576 But if we cannot reduce the list to a single element, we have
4577 to ask the user to disambiguate anyways. And if we have to
4578 present a multiple-choice menu, it's less confusing if the list
4579 isn't missing some choices that were identical and yet distinct. */
4580 if (symbols_are_identical_enums (syms, nsyms))
4581 nsyms = 1;
4582
4583 return nsyms;
4584 }
4585
4586 /* Given a type that corresponds to a renaming entity, use the type name
4587 to extract the scope (package name or function name, fully qualified,
4588 and following the GNAT encoding convention) where this renaming has been
4589 defined. The string returned needs to be deallocated after use. */
4590
4591 static char *
4592 xget_renaming_scope (struct type *renaming_type)
4593 {
4594 /* The renaming types adhere to the following convention:
4595 <scope>__<rename>___<XR extension>.
4596 So, to extract the scope, we search for the "___XR" extension,
4597 and then backtrack until we find the first "__". */
4598
4599 const char *name = type_name_no_tag (renaming_type);
4600 char *suffix = strstr (name, "___XR");
4601 char *last;
4602 int scope_len;
4603 char *scope;
4604
4605 /* Now, backtrack a bit until we find the first "__". Start looking
4606 at suffix - 3, as the <rename> part is at least one character long. */
4607
4608 for (last = suffix - 3; last > name; last--)
4609 if (last[0] == '_' && last[1] == '_')
4610 break;
4611
4612 /* Make a copy of scope and return it. */
4613
4614 scope_len = last - name;
4615 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
4616
4617 strncpy (scope, name, scope_len);
4618 scope[scope_len] = '\0';
4619
4620 return scope;
4621 }
4622
4623 /* Return nonzero if NAME corresponds to a package name. */
4624
4625 static int
4626 is_package_name (const char *name)
4627 {
4628 /* Here, We take advantage of the fact that no symbols are generated
4629 for packages, while symbols are generated for each function.
4630 So the condition for NAME represent a package becomes equivalent
4631 to NAME not existing in our list of symbols. There is only one
4632 small complication with library-level functions (see below). */
4633
4634 char *fun_name;
4635
4636 /* If it is a function that has not been defined at library level,
4637 then we should be able to look it up in the symbols. */
4638 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
4639 return 0;
4640
4641 /* Library-level function names start with "_ada_". See if function
4642 "_ada_" followed by NAME can be found. */
4643
4644 /* Do a quick check that NAME does not contain "__", since library-level
4645 functions names cannot contain "__" in them. */
4646 if (strstr (name, "__") != NULL)
4647 return 0;
4648
4649 fun_name = xstrprintf ("_ada_%s", name);
4650
4651 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
4652 }
4653
4654 /* Return nonzero if SYM corresponds to a renaming entity that is
4655 not visible from FUNCTION_NAME. */
4656
4657 static int
4658 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
4659 {
4660 char *scope;
4661
4662 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
4663 return 0;
4664
4665 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
4666
4667 make_cleanup (xfree, scope);
4668
4669 /* If the rename has been defined in a package, then it is visible. */
4670 if (is_package_name (scope))
4671 return 0;
4672
4673 /* Check that the rename is in the current function scope by checking
4674 that its name starts with SCOPE. */
4675
4676 /* If the function name starts with "_ada_", it means that it is
4677 a library-level function. Strip this prefix before doing the
4678 comparison, as the encoding for the renaming does not contain
4679 this prefix. */
4680 if (strncmp (function_name, "_ada_", 5) == 0)
4681 function_name += 5;
4682
4683 return (strncmp (function_name, scope, strlen (scope)) != 0);
4684 }
4685
4686 /* Remove entries from SYMS that corresponds to a renaming entity that
4687 is not visible from the function associated with CURRENT_BLOCK or
4688 that is superfluous due to the presence of more specific renaming
4689 information. Places surviving symbols in the initial entries of
4690 SYMS and returns the number of surviving symbols.
4691
4692 Rationale:
4693 First, in cases where an object renaming is implemented as a
4694 reference variable, GNAT may produce both the actual reference
4695 variable and the renaming encoding. In this case, we discard the
4696 latter.
4697
4698 Second, GNAT emits a type following a specified encoding for each renaming
4699 entity. Unfortunately, STABS currently does not support the definition
4700 of types that are local to a given lexical block, so all renamings types
4701 are emitted at library level. As a consequence, if an application
4702 contains two renaming entities using the same name, and a user tries to
4703 print the value of one of these entities, the result of the ada symbol
4704 lookup will also contain the wrong renaming type.
4705
4706 This function partially covers for this limitation by attempting to
4707 remove from the SYMS list renaming symbols that should be visible
4708 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
4709 method with the current information available. The implementation
4710 below has a couple of limitations (FIXME: brobecker-2003-05-12):
4711
4712 - When the user tries to print a rename in a function while there
4713 is another rename entity defined in a package: Normally, the
4714 rename in the function has precedence over the rename in the
4715 package, so the latter should be removed from the list. This is
4716 currently not the case.
4717
4718 - This function will incorrectly remove valid renames if
4719 the CURRENT_BLOCK corresponds to a function which symbol name
4720 has been changed by an "Export" pragma. As a consequence,
4721 the user will be unable to print such rename entities. */
4722
4723 static int
4724 remove_irrelevant_renamings (struct ada_symbol_info *syms,
4725 int nsyms, const struct block *current_block)
4726 {
4727 struct symbol *current_function;
4728 const char *current_function_name;
4729 int i;
4730 int is_new_style_renaming;
4731
4732 /* If there is both a renaming foo___XR... encoded as a variable and
4733 a simple variable foo in the same block, discard the latter.
4734 First, zero out such symbols, then compress. */
4735 is_new_style_renaming = 0;
4736 for (i = 0; i < nsyms; i += 1)
4737 {
4738 struct symbol *sym = syms[i].sym;
4739 struct block *block = syms[i].block;
4740 const char *name;
4741 const char *suffix;
4742
4743 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4744 continue;
4745 name = SYMBOL_LINKAGE_NAME (sym);
4746 suffix = strstr (name, "___XR");
4747
4748 if (suffix != NULL)
4749 {
4750 int name_len = suffix - name;
4751 int j;
4752
4753 is_new_style_renaming = 1;
4754 for (j = 0; j < nsyms; j += 1)
4755 if (i != j && syms[j].sym != NULL
4756 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].sym),
4757 name_len) == 0
4758 && block == syms[j].block)
4759 syms[j].sym = NULL;
4760 }
4761 }
4762 if (is_new_style_renaming)
4763 {
4764 int j, k;
4765
4766 for (j = k = 0; j < nsyms; j += 1)
4767 if (syms[j].sym != NULL)
4768 {
4769 syms[k] = syms[j];
4770 k += 1;
4771 }
4772 return k;
4773 }
4774
4775 /* Extract the function name associated to CURRENT_BLOCK.
4776 Abort if unable to do so. */
4777
4778 if (current_block == NULL)
4779 return nsyms;
4780
4781 current_function = block_linkage_function (current_block);
4782 if (current_function == NULL)
4783 return nsyms;
4784
4785 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
4786 if (current_function_name == NULL)
4787 return nsyms;
4788
4789 /* Check each of the symbols, and remove it from the list if it is
4790 a type corresponding to a renaming that is out of the scope of
4791 the current block. */
4792
4793 i = 0;
4794 while (i < nsyms)
4795 {
4796 if (ada_parse_renaming (syms[i].sym, NULL, NULL, NULL)
4797 == ADA_OBJECT_RENAMING
4798 && old_renaming_is_invisible (syms[i].sym, current_function_name))
4799 {
4800 int j;
4801
4802 for (j = i + 1; j < nsyms; j += 1)
4803 syms[j - 1] = syms[j];
4804 nsyms -= 1;
4805 }
4806 else
4807 i += 1;
4808 }
4809
4810 return nsyms;
4811 }
4812
4813 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
4814 whose name and domain match NAME and DOMAIN respectively.
4815 If no match was found, then extend the search to "enclosing"
4816 routines (in other words, if we're inside a nested function,
4817 search the symbols defined inside the enclosing functions).
4818
4819 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
4820
4821 static void
4822 ada_add_local_symbols (struct obstack *obstackp, const char *name,
4823 struct block *block, domain_enum domain,
4824 int wild_match)
4825 {
4826 int block_depth = 0;
4827
4828 while (block != NULL)
4829 {
4830 block_depth += 1;
4831 ada_add_block_symbols (obstackp, block, name, domain, NULL, wild_match);
4832
4833 /* If we found a non-function match, assume that's the one. */
4834 if (is_nonfunction (defns_collected (obstackp, 0),
4835 num_defns_collected (obstackp)))
4836 return;
4837
4838 block = BLOCK_SUPERBLOCK (block);
4839 }
4840
4841 /* If no luck so far, try to find NAME as a local symbol in some lexically
4842 enclosing subprogram. */
4843 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
4844 add_symbols_from_enclosing_procs (obstackp, name, domain, wild_match);
4845 }
4846
4847 /* An object of this type is used as the user_data argument when
4848 calling the map_matching_symbols method. */
4849
4850 struct match_data
4851 {
4852 struct objfile *objfile;
4853 struct obstack *obstackp;
4854 struct symbol *arg_sym;
4855 int found_sym;
4856 };
4857
4858 /* A callback for add_matching_symbols that adds SYM, found in BLOCK,
4859 to a list of symbols. DATA0 is a pointer to a struct match_data *
4860 containing the obstack that collects the symbol list, the file that SYM
4861 must come from, a flag indicating whether a non-argument symbol has
4862 been found in the current block, and the last argument symbol
4863 passed in SYM within the current block (if any). When SYM is null,
4864 marking the end of a block, the argument symbol is added if no
4865 other has been found. */
4866
4867 static int
4868 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
4869 {
4870 struct match_data *data = (struct match_data *) data0;
4871
4872 if (sym == NULL)
4873 {
4874 if (!data->found_sym && data->arg_sym != NULL)
4875 add_defn_to_vec (data->obstackp,
4876 fixup_symbol_section (data->arg_sym, data->objfile),
4877 block);
4878 data->found_sym = 0;
4879 data->arg_sym = NULL;
4880 }
4881 else
4882 {
4883 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
4884 return 0;
4885 else if (SYMBOL_IS_ARGUMENT (sym))
4886 data->arg_sym = sym;
4887 else
4888 {
4889 data->found_sym = 1;
4890 add_defn_to_vec (data->obstackp,
4891 fixup_symbol_section (sym, data->objfile),
4892 block);
4893 }
4894 }
4895 return 0;
4896 }
4897
4898 /* Compare STRING1 to STRING2, with results as for strcmp.
4899 Compatible with strcmp_iw in that strcmp_iw (STRING1, STRING2) <= 0
4900 implies compare_names (STRING1, STRING2) (they may differ as to
4901 what symbols compare equal). */
4902
4903 static int
4904 compare_names (const char *string1, const char *string2)
4905 {
4906 while (*string1 != '\0' && *string2 != '\0')
4907 {
4908 if (isspace (*string1) || isspace (*string2))
4909 return strcmp_iw_ordered (string1, string2);
4910 if (*string1 != *string2)
4911 break;
4912 string1 += 1;
4913 string2 += 1;
4914 }
4915 switch (*string1)
4916 {
4917 case '(':
4918 return strcmp_iw_ordered (string1, string2);
4919 case '_':
4920 if (*string2 == '\0')
4921 {
4922 if (is_name_suffix (string1))
4923 return 0;
4924 else
4925 return 1;
4926 }
4927 /* FALLTHROUGH */
4928 default:
4929 if (*string2 == '(')
4930 return strcmp_iw_ordered (string1, string2);
4931 else
4932 return *string1 - *string2;
4933 }
4934 }
4935
4936 /* Add to OBSTACKP all non-local symbols whose name and domain match
4937 NAME and DOMAIN respectively. The search is performed on GLOBAL_BLOCK
4938 symbols if GLOBAL is non-zero, or on STATIC_BLOCK symbols otherwise. */
4939
4940 static void
4941 add_nonlocal_symbols (struct obstack *obstackp, const char *name,
4942 domain_enum domain, int global,
4943 int is_wild_match)
4944 {
4945 struct objfile *objfile;
4946 struct match_data data;
4947
4948 memset (&data, 0, sizeof data);
4949 data.obstackp = obstackp;
4950
4951 ALL_OBJFILES (objfile)
4952 {
4953 data.objfile = objfile;
4954
4955 if (is_wild_match)
4956 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4957 aux_add_nonlocal_symbols, &data,
4958 wild_match, NULL);
4959 else
4960 objfile->sf->qf->map_matching_symbols (name, domain, objfile, global,
4961 aux_add_nonlocal_symbols, &data,
4962 full_match, compare_names);
4963 }
4964
4965 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
4966 {
4967 ALL_OBJFILES (objfile)
4968 {
4969 char *name1 = alloca (strlen (name) + sizeof ("_ada_"));
4970 strcpy (name1, "_ada_");
4971 strcpy (name1 + sizeof ("_ada_") - 1, name);
4972 data.objfile = objfile;
4973 objfile->sf->qf->map_matching_symbols (name1, domain,
4974 objfile, global,
4975 aux_add_nonlocal_symbols,
4976 &data,
4977 full_match, compare_names);
4978 }
4979 }
4980 }
4981
4982 /* Find symbols in DOMAIN matching NAME0, in BLOCK0 and enclosing
4983 scope and in global scopes, returning the number of matches. Sets
4984 *RESULTS to point to a vector of (SYM,BLOCK) tuples,
4985 indicating the symbols found and the blocks and symbol tables (if
4986 any) in which they were found. This vector are transient---good only to
4987 the next call of ada_lookup_symbol_list. Any non-function/non-enumeral
4988 symbol match within the nest of blocks whose innermost member is BLOCK0,
4989 is the one match returned (no other matches in that or
4990 enclosing blocks is returned). If there are any matches in or
4991 surrounding BLOCK0, then these alone are returned. Otherwise, if
4992 FULL_SEARCH is non-zero, then the search extends to global and
4993 file-scope (static) symbol tables.
4994 Names prefixed with "standard__" are handled specially: "standard__"
4995 is first stripped off, and only static and global symbols are searched. */
4996
4997 int
4998 ada_lookup_symbol_list (const char *name0, const struct block *block0,
4999 domain_enum namespace,
5000 struct ada_symbol_info **results,
5001 int full_search)
5002 {
5003 struct symbol *sym;
5004 struct block *block;
5005 const char *name;
5006 const int wild_match = should_use_wild_match (name0);
5007 int cacheIfUnique;
5008 int ndefns;
5009
5010 obstack_free (&symbol_list_obstack, NULL);
5011 obstack_init (&symbol_list_obstack);
5012
5013 cacheIfUnique = 0;
5014
5015 /* Search specified block and its superiors. */
5016
5017 name = name0;
5018 block = (struct block *) block0; /* FIXME: No cast ought to be
5019 needed, but adding const will
5020 have a cascade effect. */
5021
5022 /* Special case: If the user specifies a symbol name inside package
5023 Standard, do a non-wild matching of the symbol name without
5024 the "standard__" prefix. This was primarily introduced in order
5025 to allow the user to specifically access the standard exceptions
5026 using, for instance, Standard.Constraint_Error when Constraint_Error
5027 is ambiguous (due to the user defining its own Constraint_Error
5028 entity inside its program). */
5029 if (strncmp (name0, "standard__", sizeof ("standard__") - 1) == 0)
5030 {
5031 block = NULL;
5032 name = name0 + sizeof ("standard__") - 1;
5033 }
5034
5035 /* Check the non-global symbols. If we have ANY match, then we're done. */
5036
5037 ada_add_local_symbols (&symbol_list_obstack, name, block, namespace,
5038 wild_match);
5039 if (num_defns_collected (&symbol_list_obstack) > 0 || !full_search)
5040 goto done;
5041
5042 /* No non-global symbols found. Check our cache to see if we have
5043 already performed this search before. If we have, then return
5044 the same result. */
5045
5046 cacheIfUnique = 1;
5047 if (lookup_cached_symbol (name0, namespace, &sym, &block))
5048 {
5049 if (sym != NULL)
5050 add_defn_to_vec (&symbol_list_obstack, sym, block);
5051 goto done;
5052 }
5053
5054 /* Search symbols from all global blocks. */
5055
5056 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 1,
5057 wild_match);
5058
5059 /* Now add symbols from all per-file blocks if we've gotten no hits
5060 (not strictly correct, but perhaps better than an error). */
5061
5062 if (num_defns_collected (&symbol_list_obstack) == 0)
5063 add_nonlocal_symbols (&symbol_list_obstack, name, namespace, 0,
5064 wild_match);
5065
5066 done:
5067 ndefns = num_defns_collected (&symbol_list_obstack);
5068 *results = defns_collected (&symbol_list_obstack, 1);
5069
5070 ndefns = remove_extra_symbols (*results, ndefns);
5071
5072 if (ndefns == 0 && full_search)
5073 cache_symbol (name0, namespace, NULL, NULL);
5074
5075 if (ndefns == 1 && full_search && cacheIfUnique)
5076 cache_symbol (name0, namespace, (*results)[0].sym, (*results)[0].block);
5077
5078 ndefns = remove_irrelevant_renamings (*results, ndefns, block0);
5079
5080 return ndefns;
5081 }
5082
5083 /* If NAME is the name of an entity, return a string that should
5084 be used to look that entity up in Ada units. This string should
5085 be deallocated after use using xfree.
5086
5087 NAME can have any form that the "break" or "print" commands might
5088 recognize. In other words, it does not have to be the "natural"
5089 name, or the "encoded" name. */
5090
5091 char *
5092 ada_name_for_lookup (const char *name)
5093 {
5094 char *canon;
5095 int nlen = strlen (name);
5096
5097 if (name[0] == '<' && name[nlen - 1] == '>')
5098 {
5099 canon = xmalloc (nlen - 1);
5100 memcpy (canon, name + 1, nlen - 2);
5101 canon[nlen - 2] = '\0';
5102 }
5103 else
5104 canon = xstrdup (ada_encode (ada_fold_name (name)));
5105 return canon;
5106 }
5107
5108 /* Implementation of the la_iterate_over_symbols method. */
5109
5110 static void
5111 ada_iterate_over_symbols (const struct block *block,
5112 const char *name, domain_enum domain,
5113 symbol_found_callback_ftype *callback,
5114 void *data)
5115 {
5116 int ndefs, i;
5117 struct ada_symbol_info *results;
5118
5119 ndefs = ada_lookup_symbol_list (name, block, domain, &results, 0);
5120 for (i = 0; i < ndefs; ++i)
5121 {
5122 if (! (*callback) (results[i].sym, data))
5123 break;
5124 }
5125 }
5126
5127 struct symbol *
5128 ada_lookup_encoded_symbol (const char *name, const struct block *block0,
5129 domain_enum namespace, struct block **block_found)
5130 {
5131 struct ada_symbol_info *candidates;
5132 int n_candidates;
5133
5134 n_candidates = ada_lookup_symbol_list (name, block0, namespace, &candidates,
5135 1);
5136
5137 if (n_candidates == 0)
5138 return NULL;
5139
5140 if (block_found != NULL)
5141 *block_found = candidates[0].block;
5142
5143 return fixup_symbol_section (candidates[0].sym, NULL);
5144 }
5145
5146 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5147 scope and in global scopes, or NULL if none. NAME is folded and
5148 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5149 choosing the first symbol if there are multiple choices.
5150 *IS_A_FIELD_OF_THIS is set to 0 and *SYMTAB is set to the symbol
5151 table in which the symbol was found (in both cases, these
5152 assignments occur only if the pointers are non-null). */
5153 struct symbol *
5154 ada_lookup_symbol (const char *name, const struct block *block0,
5155 domain_enum namespace, int *is_a_field_of_this)
5156 {
5157 if (is_a_field_of_this != NULL)
5158 *is_a_field_of_this = 0;
5159
5160 return
5161 ada_lookup_encoded_symbol (ada_encode (ada_fold_name (name)),
5162 block0, namespace, NULL);
5163 }
5164
5165 static struct symbol *
5166 ada_lookup_symbol_nonlocal (const char *name,
5167 const struct block *block,
5168 const domain_enum domain)
5169 {
5170 return ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5171 }
5172
5173
5174 /* True iff STR is a possible encoded suffix of a normal Ada name
5175 that is to be ignored for matching purposes. Suffixes of parallel
5176 names (e.g., XVE) are not included here. Currently, the possible suffixes
5177 are given by any of the regular expressions:
5178
5179 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5180 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5181 TKB [subprogram suffix for task bodies]
5182 _E[0-9]+[bs]$ [protected object entry suffixes]
5183 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5184
5185 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5186 match is performed. This sequence is used to differentiate homonyms,
5187 is an optional part of a valid name suffix. */
5188
5189 static int
5190 is_name_suffix (const char *str)
5191 {
5192 int k;
5193 const char *matching;
5194 const int len = strlen (str);
5195
5196 /* Skip optional leading __[0-9]+. */
5197
5198 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5199 {
5200 str += 3;
5201 while (isdigit (str[0]))
5202 str += 1;
5203 }
5204
5205 /* [.$][0-9]+ */
5206
5207 if (str[0] == '.' || str[0] == '$')
5208 {
5209 matching = str + 1;
5210 while (isdigit (matching[0]))
5211 matching += 1;
5212 if (matching[0] == '\0')
5213 return 1;
5214 }
5215
5216 /* ___[0-9]+ */
5217
5218 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5219 {
5220 matching = str + 3;
5221 while (isdigit (matching[0]))
5222 matching += 1;
5223 if (matching[0] == '\0')
5224 return 1;
5225 }
5226
5227 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5228
5229 if (strcmp (str, "TKB") == 0)
5230 return 1;
5231
5232 #if 0
5233 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5234 with a N at the end. Unfortunately, the compiler uses the same
5235 convention for other internal types it creates. So treating
5236 all entity names that end with an "N" as a name suffix causes
5237 some regressions. For instance, consider the case of an enumerated
5238 type. To support the 'Image attribute, it creates an array whose
5239 name ends with N.
5240 Having a single character like this as a suffix carrying some
5241 information is a bit risky. Perhaps we should change the encoding
5242 to be something like "_N" instead. In the meantime, do not do
5243 the following check. */
5244 /* Protected Object Subprograms */
5245 if (len == 1 && str [0] == 'N')
5246 return 1;
5247 #endif
5248
5249 /* _E[0-9]+[bs]$ */
5250 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
5251 {
5252 matching = str + 3;
5253 while (isdigit (matching[0]))
5254 matching += 1;
5255 if ((matching[0] == 'b' || matching[0] == 's')
5256 && matching [1] == '\0')
5257 return 1;
5258 }
5259
5260 /* ??? We should not modify STR directly, as we are doing below. This
5261 is fine in this case, but may become problematic later if we find
5262 that this alternative did not work, and want to try matching
5263 another one from the begining of STR. Since we modified it, we
5264 won't be able to find the begining of the string anymore! */
5265 if (str[0] == 'X')
5266 {
5267 str += 1;
5268 while (str[0] != '_' && str[0] != '\0')
5269 {
5270 if (str[0] != 'n' && str[0] != 'b')
5271 return 0;
5272 str += 1;
5273 }
5274 }
5275
5276 if (str[0] == '\000')
5277 return 1;
5278
5279 if (str[0] == '_')
5280 {
5281 if (str[1] != '_' || str[2] == '\000')
5282 return 0;
5283 if (str[2] == '_')
5284 {
5285 if (strcmp (str + 3, "JM") == 0)
5286 return 1;
5287 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
5288 the LJM suffix in favor of the JM one. But we will
5289 still accept LJM as a valid suffix for a reasonable
5290 amount of time, just to allow ourselves to debug programs
5291 compiled using an older version of GNAT. */
5292 if (strcmp (str + 3, "LJM") == 0)
5293 return 1;
5294 if (str[3] != 'X')
5295 return 0;
5296 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
5297 || str[4] == 'U' || str[4] == 'P')
5298 return 1;
5299 if (str[4] == 'R' && str[5] != 'T')
5300 return 1;
5301 return 0;
5302 }
5303 if (!isdigit (str[2]))
5304 return 0;
5305 for (k = 3; str[k] != '\0'; k += 1)
5306 if (!isdigit (str[k]) && str[k] != '_')
5307 return 0;
5308 return 1;
5309 }
5310 if (str[0] == '$' && isdigit (str[1]))
5311 {
5312 for (k = 2; str[k] != '\0'; k += 1)
5313 if (!isdigit (str[k]) && str[k] != '_')
5314 return 0;
5315 return 1;
5316 }
5317 return 0;
5318 }
5319
5320 /* Return non-zero if the string starting at NAME and ending before
5321 NAME_END contains no capital letters. */
5322
5323 static int
5324 is_valid_name_for_wild_match (const char *name0)
5325 {
5326 const char *decoded_name = ada_decode (name0);
5327 int i;
5328
5329 /* If the decoded name starts with an angle bracket, it means that
5330 NAME0 does not follow the GNAT encoding format. It should then
5331 not be allowed as a possible wild match. */
5332 if (decoded_name[0] == '<')
5333 return 0;
5334
5335 for (i=0; decoded_name[i] != '\0'; i++)
5336 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
5337 return 0;
5338
5339 return 1;
5340 }
5341
5342 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
5343 that could start a simple name. Assumes that *NAMEP points into
5344 the string beginning at NAME0. */
5345
5346 static int
5347 advance_wild_match (const char **namep, const char *name0, int target0)
5348 {
5349 const char *name = *namep;
5350
5351 while (1)
5352 {
5353 int t0, t1;
5354
5355 t0 = *name;
5356 if (t0 == '_')
5357 {
5358 t1 = name[1];
5359 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
5360 {
5361 name += 1;
5362 if (name == name0 + 5 && strncmp (name0, "_ada", 4) == 0)
5363 break;
5364 else
5365 name += 1;
5366 }
5367 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
5368 || name[2] == target0))
5369 {
5370 name += 2;
5371 break;
5372 }
5373 else
5374 return 0;
5375 }
5376 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
5377 name += 1;
5378 else
5379 return 0;
5380 }
5381
5382 *namep = name;
5383 return 1;
5384 }
5385
5386 /* Return 0 iff NAME encodes a name of the form prefix.PATN. Ignores any
5387 informational suffixes of NAME (i.e., for which is_name_suffix is
5388 true). Assumes that PATN is a lower-cased Ada simple name. */
5389
5390 static int
5391 wild_match (const char *name, const char *patn)
5392 {
5393 const char *p, *n;
5394 const char *name0 = name;
5395
5396 while (1)
5397 {
5398 const char *match = name;
5399
5400 if (*name == *patn)
5401 {
5402 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
5403 if (*p != *name)
5404 break;
5405 if (*p == '\0' && is_name_suffix (name))
5406 return match != name0 && !is_valid_name_for_wild_match (name0);
5407
5408 if (name[-1] == '_')
5409 name -= 1;
5410 }
5411 if (!advance_wild_match (&name, name0, *patn))
5412 return 1;
5413 }
5414 }
5415
5416 /* Returns 0 iff symbol name SYM_NAME matches SEARCH_NAME, apart from
5417 informational suffix. */
5418
5419 static int
5420 full_match (const char *sym_name, const char *search_name)
5421 {
5422 return !match_name (sym_name, search_name, 0);
5423 }
5424
5425
5426 /* Add symbols from BLOCK matching identifier NAME in DOMAIN to
5427 vector *defn_symbols, updating the list of symbols in OBSTACKP
5428 (if necessary). If WILD, treat as NAME with a wildcard prefix.
5429 OBJFILE is the section containing BLOCK.
5430 SYMTAB is recorded with each symbol added. */
5431
5432 static void
5433 ada_add_block_symbols (struct obstack *obstackp,
5434 struct block *block, const char *name,
5435 domain_enum domain, struct objfile *objfile,
5436 int wild)
5437 {
5438 struct dict_iterator iter;
5439 int name_len = strlen (name);
5440 /* A matching argument symbol, if any. */
5441 struct symbol *arg_sym;
5442 /* Set true when we find a matching non-argument symbol. */
5443 int found_sym;
5444 struct symbol *sym;
5445
5446 arg_sym = NULL;
5447 found_sym = 0;
5448 if (wild)
5449 {
5450 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5451 wild_match, &iter);
5452 sym != NULL; sym = dict_iter_match_next (name, wild_match, &iter))
5453 {
5454 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5455 SYMBOL_DOMAIN (sym), domain)
5456 && wild_match (SYMBOL_LINKAGE_NAME (sym), name) == 0)
5457 {
5458 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5459 continue;
5460 else if (SYMBOL_IS_ARGUMENT (sym))
5461 arg_sym = sym;
5462 else
5463 {
5464 found_sym = 1;
5465 add_defn_to_vec (obstackp,
5466 fixup_symbol_section (sym, objfile),
5467 block);
5468 }
5469 }
5470 }
5471 }
5472 else
5473 {
5474 for (sym = dict_iter_match_first (BLOCK_DICT (block), name,
5475 full_match, &iter);
5476 sym != NULL; sym = dict_iter_match_next (name, full_match, &iter))
5477 {
5478 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5479 SYMBOL_DOMAIN (sym), domain))
5480 {
5481 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5482 {
5483 if (SYMBOL_IS_ARGUMENT (sym))
5484 arg_sym = sym;
5485 else
5486 {
5487 found_sym = 1;
5488 add_defn_to_vec (obstackp,
5489 fixup_symbol_section (sym, objfile),
5490 block);
5491 }
5492 }
5493 }
5494 }
5495 }
5496
5497 if (!found_sym && arg_sym != NULL)
5498 {
5499 add_defn_to_vec (obstackp,
5500 fixup_symbol_section (arg_sym, objfile),
5501 block);
5502 }
5503
5504 if (!wild)
5505 {
5506 arg_sym = NULL;
5507 found_sym = 0;
5508
5509 ALL_BLOCK_SYMBOLS (block, iter, sym)
5510 {
5511 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
5512 SYMBOL_DOMAIN (sym), domain))
5513 {
5514 int cmp;
5515
5516 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
5517 if (cmp == 0)
5518 {
5519 cmp = strncmp ("_ada_", SYMBOL_LINKAGE_NAME (sym), 5);
5520 if (cmp == 0)
5521 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
5522 name_len);
5523 }
5524
5525 if (cmp == 0
5526 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
5527 {
5528 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
5529 {
5530 if (SYMBOL_IS_ARGUMENT (sym))
5531 arg_sym = sym;
5532 else
5533 {
5534 found_sym = 1;
5535 add_defn_to_vec (obstackp,
5536 fixup_symbol_section (sym, objfile),
5537 block);
5538 }
5539 }
5540 }
5541 }
5542 }
5543
5544 /* NOTE: This really shouldn't be needed for _ada_ symbols.
5545 They aren't parameters, right? */
5546 if (!found_sym && arg_sym != NULL)
5547 {
5548 add_defn_to_vec (obstackp,
5549 fixup_symbol_section (arg_sym, objfile),
5550 block);
5551 }
5552 }
5553 }
5554 \f
5555
5556 /* Symbol Completion */
5557
5558 /* If SYM_NAME is a completion candidate for TEXT, return this symbol
5559 name in a form that's appropriate for the completion. The result
5560 does not need to be deallocated, but is only good until the next call.
5561
5562 TEXT_LEN is equal to the length of TEXT.
5563 Perform a wild match if WILD_MATCH is set.
5564 ENCODED should be set if TEXT represents the start of a symbol name
5565 in its encoded form. */
5566
5567 static const char *
5568 symbol_completion_match (const char *sym_name,
5569 const char *text, int text_len,
5570 int wild_match, int encoded)
5571 {
5572 const int verbatim_match = (text[0] == '<');
5573 int match = 0;
5574
5575 if (verbatim_match)
5576 {
5577 /* Strip the leading angle bracket. */
5578 text = text + 1;
5579 text_len--;
5580 }
5581
5582 /* First, test against the fully qualified name of the symbol. */
5583
5584 if (strncmp (sym_name, text, text_len) == 0)
5585 match = 1;
5586
5587 if (match && !encoded)
5588 {
5589 /* One needed check before declaring a positive match is to verify
5590 that iff we are doing a verbatim match, the decoded version
5591 of the symbol name starts with '<'. Otherwise, this symbol name
5592 is not a suitable completion. */
5593 const char *sym_name_copy = sym_name;
5594 int has_angle_bracket;
5595
5596 sym_name = ada_decode (sym_name);
5597 has_angle_bracket = (sym_name[0] == '<');
5598 match = (has_angle_bracket == verbatim_match);
5599 sym_name = sym_name_copy;
5600 }
5601
5602 if (match && !verbatim_match)
5603 {
5604 /* When doing non-verbatim match, another check that needs to
5605 be done is to verify that the potentially matching symbol name
5606 does not include capital letters, because the ada-mode would
5607 not be able to understand these symbol names without the
5608 angle bracket notation. */
5609 const char *tmp;
5610
5611 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
5612 if (*tmp != '\0')
5613 match = 0;
5614 }
5615
5616 /* Second: Try wild matching... */
5617
5618 if (!match && wild_match)
5619 {
5620 /* Since we are doing wild matching, this means that TEXT
5621 may represent an unqualified symbol name. We therefore must
5622 also compare TEXT against the unqualified name of the symbol. */
5623 sym_name = ada_unqualified_name (ada_decode (sym_name));
5624
5625 if (strncmp (sym_name, text, text_len) == 0)
5626 match = 1;
5627 }
5628
5629 /* Finally: If we found a mach, prepare the result to return. */
5630
5631 if (!match)
5632 return NULL;
5633
5634 if (verbatim_match)
5635 sym_name = add_angle_brackets (sym_name);
5636
5637 if (!encoded)
5638 sym_name = ada_decode (sym_name);
5639
5640 return sym_name;
5641 }
5642
5643 /* A companion function to ada_make_symbol_completion_list().
5644 Check if SYM_NAME represents a symbol which name would be suitable
5645 to complete TEXT (TEXT_LEN is the length of TEXT), in which case
5646 it is appended at the end of the given string vector SV.
5647
5648 ORIG_TEXT is the string original string from the user command
5649 that needs to be completed. WORD is the entire command on which
5650 completion should be performed. These two parameters are used to
5651 determine which part of the symbol name should be added to the
5652 completion vector.
5653 if WILD_MATCH is set, then wild matching is performed.
5654 ENCODED should be set if TEXT represents a symbol name in its
5655 encoded formed (in which case the completion should also be
5656 encoded). */
5657
5658 static void
5659 symbol_completion_add (VEC(char_ptr) **sv,
5660 const char *sym_name,
5661 const char *text, int text_len,
5662 const char *orig_text, const char *word,
5663 int wild_match, int encoded)
5664 {
5665 const char *match = symbol_completion_match (sym_name, text, text_len,
5666 wild_match, encoded);
5667 char *completion;
5668
5669 if (match == NULL)
5670 return;
5671
5672 /* We found a match, so add the appropriate completion to the given
5673 string vector. */
5674
5675 if (word == orig_text)
5676 {
5677 completion = xmalloc (strlen (match) + 5);
5678 strcpy (completion, match);
5679 }
5680 else if (word > orig_text)
5681 {
5682 /* Return some portion of sym_name. */
5683 completion = xmalloc (strlen (match) + 5);
5684 strcpy (completion, match + (word - orig_text));
5685 }
5686 else
5687 {
5688 /* Return some of ORIG_TEXT plus sym_name. */
5689 completion = xmalloc (strlen (match) + (orig_text - word) + 5);
5690 strncpy (completion, word, orig_text - word);
5691 completion[orig_text - word] = '\0';
5692 strcat (completion, match);
5693 }
5694
5695 VEC_safe_push (char_ptr, *sv, completion);
5696 }
5697
5698 /* An object of this type is passed as the user_data argument to the
5699 expand_partial_symbol_names method. */
5700 struct add_partial_datum
5701 {
5702 VEC(char_ptr) **completions;
5703 char *text;
5704 int text_len;
5705 char *text0;
5706 char *word;
5707 int wild_match;
5708 int encoded;
5709 };
5710
5711 /* A callback for expand_partial_symbol_names. */
5712 static int
5713 ada_expand_partial_symbol_name (const char *name, void *user_data)
5714 {
5715 struct add_partial_datum *data = user_data;
5716
5717 return symbol_completion_match (name, data->text, data->text_len,
5718 data->wild_match, data->encoded) != NULL;
5719 }
5720
5721 /* Return a list of possible symbol names completing TEXT0. The list
5722 is NULL terminated. WORD is the entire command on which completion
5723 is made. */
5724
5725 static char **
5726 ada_make_symbol_completion_list (char *text0, char *word)
5727 {
5728 char *text;
5729 int text_len;
5730 int wild_match;
5731 int encoded;
5732 VEC(char_ptr) *completions = VEC_alloc (char_ptr, 128);
5733 struct symbol *sym;
5734 struct symtab *s;
5735 struct minimal_symbol *msymbol;
5736 struct objfile *objfile;
5737 struct block *b, *surrounding_static_block = 0;
5738 int i;
5739 struct dict_iterator iter;
5740
5741 if (text0[0] == '<')
5742 {
5743 text = xstrdup (text0);
5744 make_cleanup (xfree, text);
5745 text_len = strlen (text);
5746 wild_match = 0;
5747 encoded = 1;
5748 }
5749 else
5750 {
5751 text = xstrdup (ada_encode (text0));
5752 make_cleanup (xfree, text);
5753 text_len = strlen (text);
5754 for (i = 0; i < text_len; i++)
5755 text[i] = tolower (text[i]);
5756
5757 encoded = (strstr (text0, "__") != NULL);
5758 /* If the name contains a ".", then the user is entering a fully
5759 qualified entity name, and the match must not be done in wild
5760 mode. Similarly, if the user wants to complete what looks like
5761 an encoded name, the match must not be done in wild mode. */
5762 wild_match = (strchr (text0, '.') == NULL && !encoded);
5763 }
5764
5765 /* First, look at the partial symtab symbols. */
5766 {
5767 struct add_partial_datum data;
5768
5769 data.completions = &completions;
5770 data.text = text;
5771 data.text_len = text_len;
5772 data.text0 = text0;
5773 data.word = word;
5774 data.wild_match = wild_match;
5775 data.encoded = encoded;
5776 expand_partial_symbol_names (ada_expand_partial_symbol_name, &data);
5777 }
5778
5779 /* At this point scan through the misc symbol vectors and add each
5780 symbol you find to the list. Eventually we want to ignore
5781 anything that isn't a text symbol (everything else will be
5782 handled by the psymtab code above). */
5783
5784 ALL_MSYMBOLS (objfile, msymbol)
5785 {
5786 QUIT;
5787 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (msymbol),
5788 text, text_len, text0, word, wild_match, encoded);
5789 }
5790
5791 /* Search upwards from currently selected frame (so that we can
5792 complete on local vars. */
5793
5794 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
5795 {
5796 if (!BLOCK_SUPERBLOCK (b))
5797 surrounding_static_block = b; /* For elmin of dups */
5798
5799 ALL_BLOCK_SYMBOLS (b, iter, sym)
5800 {
5801 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5802 text, text_len, text0, word,
5803 wild_match, encoded);
5804 }
5805 }
5806
5807 /* Go through the symtabs and check the externs and statics for
5808 symbols which match. */
5809
5810 ALL_SYMTABS (objfile, s)
5811 {
5812 QUIT;
5813 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
5814 ALL_BLOCK_SYMBOLS (b, iter, sym)
5815 {
5816 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5817 text, text_len, text0, word,
5818 wild_match, encoded);
5819 }
5820 }
5821
5822 ALL_SYMTABS (objfile, s)
5823 {
5824 QUIT;
5825 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
5826 /* Don't do this block twice. */
5827 if (b == surrounding_static_block)
5828 continue;
5829 ALL_BLOCK_SYMBOLS (b, iter, sym)
5830 {
5831 symbol_completion_add (&completions, SYMBOL_LINKAGE_NAME (sym),
5832 text, text_len, text0, word,
5833 wild_match, encoded);
5834 }
5835 }
5836
5837 /* Append the closing NULL entry. */
5838 VEC_safe_push (char_ptr, completions, NULL);
5839
5840 /* Make a copy of the COMPLETIONS VEC before we free it, and then
5841 return the copy. It's unfortunate that we have to make a copy
5842 of an array that we're about to destroy, but there is nothing much
5843 we can do about it. Fortunately, it's typically not a very large
5844 array. */
5845 {
5846 const size_t completions_size =
5847 VEC_length (char_ptr, completions) * sizeof (char *);
5848 char **result = xmalloc (completions_size);
5849
5850 memcpy (result, VEC_address (char_ptr, completions), completions_size);
5851
5852 VEC_free (char_ptr, completions);
5853 return result;
5854 }
5855 }
5856
5857 /* Field Access */
5858
5859 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
5860 for tagged types. */
5861
5862 static int
5863 ada_is_dispatch_table_ptr_type (struct type *type)
5864 {
5865 const char *name;
5866
5867 if (TYPE_CODE (type) != TYPE_CODE_PTR)
5868 return 0;
5869
5870 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
5871 if (name == NULL)
5872 return 0;
5873
5874 return (strcmp (name, "ada__tags__dispatch_table") == 0);
5875 }
5876
5877 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
5878 to be invisible to users. */
5879
5880 int
5881 ada_is_ignored_field (struct type *type, int field_num)
5882 {
5883 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
5884 return 1;
5885
5886 /* Check the name of that field. */
5887 {
5888 const char *name = TYPE_FIELD_NAME (type, field_num);
5889
5890 /* Anonymous field names should not be printed.
5891 brobecker/2007-02-20: I don't think this can actually happen
5892 but we don't want to print the value of annonymous fields anyway. */
5893 if (name == NULL)
5894 return 1;
5895
5896 /* Normally, fields whose name start with an underscore ("_")
5897 are fields that have been internally generated by the compiler,
5898 and thus should not be printed. The "_parent" field is special,
5899 however: This is a field internally generated by the compiler
5900 for tagged types, and it contains the components inherited from
5901 the parent type. This field should not be printed as is, but
5902 should not be ignored either. */
5903 if (name[0] == '_' && strncmp (name, "_parent", 7) != 0)
5904 return 1;
5905 }
5906
5907 /* If this is the dispatch table of a tagged type, then ignore. */
5908 if (ada_is_tagged_type (type, 1)
5909 && ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num)))
5910 return 1;
5911
5912 /* Not a special field, so it should not be ignored. */
5913 return 0;
5914 }
5915
5916 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
5917 pointer or reference type whose ultimate target has a tag field. */
5918
5919 int
5920 ada_is_tagged_type (struct type *type, int refok)
5921 {
5922 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1, NULL) != NULL);
5923 }
5924
5925 /* True iff TYPE represents the type of X'Tag */
5926
5927 int
5928 ada_is_tag_type (struct type *type)
5929 {
5930 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
5931 return 0;
5932 else
5933 {
5934 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
5935
5936 return (name != NULL
5937 && strcmp (name, "ada__tags__dispatch_table") == 0);
5938 }
5939 }
5940
5941 /* The type of the tag on VAL. */
5942
5943 struct type *
5944 ada_tag_type (struct value *val)
5945 {
5946 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0, NULL);
5947 }
5948
5949 /* The value of the tag on VAL. */
5950
5951 struct value *
5952 ada_value_tag (struct value *val)
5953 {
5954 return ada_value_struct_elt (val, "_tag", 0);
5955 }
5956
5957 /* The value of the tag on the object of type TYPE whose contents are
5958 saved at VALADDR, if it is non-null, or is at memory address
5959 ADDRESS. */
5960
5961 static struct value *
5962 value_tag_from_contents_and_address (struct type *type,
5963 const gdb_byte *valaddr,
5964 CORE_ADDR address)
5965 {
5966 int tag_byte_offset;
5967 struct type *tag_type;
5968
5969 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
5970 NULL, NULL, NULL))
5971 {
5972 const gdb_byte *valaddr1 = ((valaddr == NULL)
5973 ? NULL
5974 : valaddr + tag_byte_offset);
5975 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
5976
5977 return value_from_contents_and_address (tag_type, valaddr1, address1);
5978 }
5979 return NULL;
5980 }
5981
5982 static struct type *
5983 type_from_tag (struct value *tag)
5984 {
5985 const char *type_name = ada_tag_name (tag);
5986
5987 if (type_name != NULL)
5988 return ada_find_any_type (ada_encode (type_name));
5989 return NULL;
5990 }
5991
5992 struct tag_args
5993 {
5994 struct value *tag;
5995 char *name;
5996 };
5997
5998
5999 static int ada_tag_name_1 (void *);
6000 static int ada_tag_name_2 (struct tag_args *);
6001
6002 /* Wrapper function used by ada_tag_name. Given a struct tag_args*
6003 value ARGS, sets ARGS->name to the tag name of ARGS->tag.
6004 The value stored in ARGS->name is valid until the next call to
6005 ada_tag_name_1. */
6006
6007 static int
6008 ada_tag_name_1 (void *args0)
6009 {
6010 struct tag_args *args = (struct tag_args *) args0;
6011 static char name[1024];
6012 char *p;
6013 struct value *val;
6014
6015 args->name = NULL;
6016 val = ada_value_struct_elt (args->tag, "tsd", 1);
6017 if (val == NULL)
6018 return ada_tag_name_2 (args);
6019 val = ada_value_struct_elt (val, "expanded_name", 1);
6020 if (val == NULL)
6021 return 0;
6022 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6023 for (p = name; *p != '\0'; p += 1)
6024 if (isalpha (*p))
6025 *p = tolower (*p);
6026 args->name = name;
6027 return 0;
6028 }
6029
6030 /* Return the "ada__tags__type_specific_data" type. */
6031
6032 static struct type *
6033 ada_get_tsd_type (struct inferior *inf)
6034 {
6035 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6036
6037 if (data->tsd_type == 0)
6038 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6039 return data->tsd_type;
6040 }
6041
6042 /* Utility function for ada_tag_name_1 that tries the second
6043 representation for the dispatch table (in which there is no
6044 explicit 'tsd' field in the referent of the tag pointer, and instead
6045 the tsd pointer is stored just before the dispatch table. */
6046
6047 static int
6048 ada_tag_name_2 (struct tag_args *args)
6049 {
6050 struct type *info_type;
6051 static char name[1024];
6052 char *p;
6053 struct value *val, *valp;
6054
6055 args->name = NULL;
6056 info_type = ada_get_tsd_type (current_inferior());
6057 if (info_type == NULL)
6058 return 0;
6059 info_type = lookup_pointer_type (lookup_pointer_type (info_type));
6060 valp = value_cast (info_type, args->tag);
6061 if (valp == NULL)
6062 return 0;
6063 val = value_ind (value_ptradd (valp, -1));
6064 if (val == NULL)
6065 return 0;
6066 val = ada_value_struct_elt (val, "expanded_name", 1);
6067 if (val == NULL)
6068 return 0;
6069 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6070 for (p = name; *p != '\0'; p += 1)
6071 if (isalpha (*p))
6072 *p = tolower (*p);
6073 args->name = name;
6074 return 0;
6075 }
6076
6077 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6078 a C string. */
6079
6080 const char *
6081 ada_tag_name (struct value *tag)
6082 {
6083 struct tag_args args;
6084
6085 if (!ada_is_tag_type (value_type (tag)))
6086 return NULL;
6087 args.tag = tag;
6088 args.name = NULL;
6089 catch_errors (ada_tag_name_1, &args, NULL, RETURN_MASK_ALL);
6090 return args.name;
6091 }
6092
6093 /* The parent type of TYPE, or NULL if none. */
6094
6095 struct type *
6096 ada_parent_type (struct type *type)
6097 {
6098 int i;
6099
6100 type = ada_check_typedef (type);
6101
6102 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6103 return NULL;
6104
6105 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6106 if (ada_is_parent_field (type, i))
6107 {
6108 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6109
6110 /* If the _parent field is a pointer, then dereference it. */
6111 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6112 parent_type = TYPE_TARGET_TYPE (parent_type);
6113 /* If there is a parallel XVS type, get the actual base type. */
6114 parent_type = ada_get_base_type (parent_type);
6115
6116 return ada_check_typedef (parent_type);
6117 }
6118
6119 return NULL;
6120 }
6121
6122 /* True iff field number FIELD_NUM of structure type TYPE contains the
6123 parent-type (inherited) fields of a derived type. Assumes TYPE is
6124 a structure type with at least FIELD_NUM+1 fields. */
6125
6126 int
6127 ada_is_parent_field (struct type *type, int field_num)
6128 {
6129 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6130
6131 return (name != NULL
6132 && (strncmp (name, "PARENT", 6) == 0
6133 || strncmp (name, "_parent", 7) == 0));
6134 }
6135
6136 /* True iff field number FIELD_NUM of structure type TYPE is a
6137 transparent wrapper field (which should be silently traversed when doing
6138 field selection and flattened when printing). Assumes TYPE is a
6139 structure type with at least FIELD_NUM+1 fields. Such fields are always
6140 structures. */
6141
6142 int
6143 ada_is_wrapper_field (struct type *type, int field_num)
6144 {
6145 const char *name = TYPE_FIELD_NAME (type, field_num);
6146
6147 return (name != NULL
6148 && (strncmp (name, "PARENT", 6) == 0
6149 || strcmp (name, "REP") == 0
6150 || strncmp (name, "_parent", 7) == 0
6151 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6152 }
6153
6154 /* True iff field number FIELD_NUM of structure or union type TYPE
6155 is a variant wrapper. Assumes TYPE is a structure type with at least
6156 FIELD_NUM+1 fields. */
6157
6158 int
6159 ada_is_variant_part (struct type *type, int field_num)
6160 {
6161 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6162
6163 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6164 || (is_dynamic_field (type, field_num)
6165 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6166 == TYPE_CODE_UNION)));
6167 }
6168
6169 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6170 whose discriminants are contained in the record type OUTER_TYPE,
6171 returns the type of the controlling discriminant for the variant.
6172 May return NULL if the type could not be found. */
6173
6174 struct type *
6175 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6176 {
6177 char *name = ada_variant_discrim_name (var_type);
6178
6179 return ada_lookup_struct_elt_type (outer_type, name, 1, 1, NULL);
6180 }
6181
6182 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6183 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6184 represents a 'when others' clause; otherwise 0. */
6185
6186 int
6187 ada_is_others_clause (struct type *type, int field_num)
6188 {
6189 const char *name = TYPE_FIELD_NAME (type, field_num);
6190
6191 return (name != NULL && name[0] == 'O');
6192 }
6193
6194 /* Assuming that TYPE0 is the type of the variant part of a record,
6195 returns the name of the discriminant controlling the variant.
6196 The value is valid until the next call to ada_variant_discrim_name. */
6197
6198 char *
6199 ada_variant_discrim_name (struct type *type0)
6200 {
6201 static char *result = NULL;
6202 static size_t result_len = 0;
6203 struct type *type;
6204 const char *name;
6205 const char *discrim_end;
6206 const char *discrim_start;
6207
6208 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
6209 type = TYPE_TARGET_TYPE (type0);
6210 else
6211 type = type0;
6212
6213 name = ada_type_name (type);
6214
6215 if (name == NULL || name[0] == '\000')
6216 return "";
6217
6218 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
6219 discrim_end -= 1)
6220 {
6221 if (strncmp (discrim_end, "___XVN", 6) == 0)
6222 break;
6223 }
6224 if (discrim_end == name)
6225 return "";
6226
6227 for (discrim_start = discrim_end; discrim_start != name + 3;
6228 discrim_start -= 1)
6229 {
6230 if (discrim_start == name + 1)
6231 return "";
6232 if ((discrim_start > name + 3
6233 && strncmp (discrim_start - 3, "___", 3) == 0)
6234 || discrim_start[-1] == '.')
6235 break;
6236 }
6237
6238 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
6239 strncpy (result, discrim_start, discrim_end - discrim_start);
6240 result[discrim_end - discrim_start] = '\0';
6241 return result;
6242 }
6243
6244 /* Scan STR for a subtype-encoded number, beginning at position K.
6245 Put the position of the character just past the number scanned in
6246 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
6247 Return 1 if there was a valid number at the given position, and 0
6248 otherwise. A "subtype-encoded" number consists of the absolute value
6249 in decimal, followed by the letter 'm' to indicate a negative number.
6250 Assumes 0m does not occur. */
6251
6252 int
6253 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
6254 {
6255 ULONGEST RU;
6256
6257 if (!isdigit (str[k]))
6258 return 0;
6259
6260 /* Do it the hard way so as not to make any assumption about
6261 the relationship of unsigned long (%lu scan format code) and
6262 LONGEST. */
6263 RU = 0;
6264 while (isdigit (str[k]))
6265 {
6266 RU = RU * 10 + (str[k] - '0');
6267 k += 1;
6268 }
6269
6270 if (str[k] == 'm')
6271 {
6272 if (R != NULL)
6273 *R = (-(LONGEST) (RU - 1)) - 1;
6274 k += 1;
6275 }
6276 else if (R != NULL)
6277 *R = (LONGEST) RU;
6278
6279 /* NOTE on the above: Technically, C does not say what the results of
6280 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
6281 number representable as a LONGEST (although either would probably work
6282 in most implementations). When RU>0, the locution in the then branch
6283 above is always equivalent to the negative of RU. */
6284
6285 if (new_k != NULL)
6286 *new_k = k;
6287 return 1;
6288 }
6289
6290 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
6291 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
6292 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
6293
6294 int
6295 ada_in_variant (LONGEST val, struct type *type, int field_num)
6296 {
6297 const char *name = TYPE_FIELD_NAME (type, field_num);
6298 int p;
6299
6300 p = 0;
6301 while (1)
6302 {
6303 switch (name[p])
6304 {
6305 case '\0':
6306 return 0;
6307 case 'S':
6308 {
6309 LONGEST W;
6310
6311 if (!ada_scan_number (name, p + 1, &W, &p))
6312 return 0;
6313 if (val == W)
6314 return 1;
6315 break;
6316 }
6317 case 'R':
6318 {
6319 LONGEST L, U;
6320
6321 if (!ada_scan_number (name, p + 1, &L, &p)
6322 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
6323 return 0;
6324 if (val >= L && val <= U)
6325 return 1;
6326 break;
6327 }
6328 case 'O':
6329 return 1;
6330 default:
6331 return 0;
6332 }
6333 }
6334 }
6335
6336 /* FIXME: Lots of redundancy below. Try to consolidate. */
6337
6338 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
6339 ARG_TYPE, extract and return the value of one of its (non-static)
6340 fields. FIELDNO says which field. Differs from value_primitive_field
6341 only in that it can handle packed values of arbitrary type. */
6342
6343 static struct value *
6344 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
6345 struct type *arg_type)
6346 {
6347 struct type *type;
6348
6349 arg_type = ada_check_typedef (arg_type);
6350 type = TYPE_FIELD_TYPE (arg_type, fieldno);
6351
6352 /* Handle packed fields. */
6353
6354 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
6355 {
6356 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
6357 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
6358
6359 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
6360 offset + bit_pos / 8,
6361 bit_pos % 8, bit_size, type);
6362 }
6363 else
6364 return value_primitive_field (arg1, offset, fieldno, arg_type);
6365 }
6366
6367 /* Find field with name NAME in object of type TYPE. If found,
6368 set the following for each argument that is non-null:
6369 - *FIELD_TYPE_P to the field's type;
6370 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
6371 an object of that type;
6372 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
6373 - *BIT_SIZE_P to its size in bits if the field is packed, and
6374 0 otherwise;
6375 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
6376 fields up to but not including the desired field, or by the total
6377 number of fields if not found. A NULL value of NAME never
6378 matches; the function just counts visible fields in this case.
6379
6380 Returns 1 if found, 0 otherwise. */
6381
6382 static int
6383 find_struct_field (const char *name, struct type *type, int offset,
6384 struct type **field_type_p,
6385 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
6386 int *index_p)
6387 {
6388 int i;
6389
6390 type = ada_check_typedef (type);
6391
6392 if (field_type_p != NULL)
6393 *field_type_p = NULL;
6394 if (byte_offset_p != NULL)
6395 *byte_offset_p = 0;
6396 if (bit_offset_p != NULL)
6397 *bit_offset_p = 0;
6398 if (bit_size_p != NULL)
6399 *bit_size_p = 0;
6400
6401 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6402 {
6403 int bit_pos = TYPE_FIELD_BITPOS (type, i);
6404 int fld_offset = offset + bit_pos / 8;
6405 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6406
6407 if (t_field_name == NULL)
6408 continue;
6409
6410 else if (name != NULL && field_name_match (t_field_name, name))
6411 {
6412 int bit_size = TYPE_FIELD_BITSIZE (type, i);
6413
6414 if (field_type_p != NULL)
6415 *field_type_p = TYPE_FIELD_TYPE (type, i);
6416 if (byte_offset_p != NULL)
6417 *byte_offset_p = fld_offset;
6418 if (bit_offset_p != NULL)
6419 *bit_offset_p = bit_pos % 8;
6420 if (bit_size_p != NULL)
6421 *bit_size_p = bit_size;
6422 return 1;
6423 }
6424 else if (ada_is_wrapper_field (type, i))
6425 {
6426 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
6427 field_type_p, byte_offset_p, bit_offset_p,
6428 bit_size_p, index_p))
6429 return 1;
6430 }
6431 else if (ada_is_variant_part (type, i))
6432 {
6433 /* PNH: Wait. Do we ever execute this section, or is ARG always of
6434 fixed type?? */
6435 int j;
6436 struct type *field_type
6437 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6438
6439 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6440 {
6441 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
6442 fld_offset
6443 + TYPE_FIELD_BITPOS (field_type, j) / 8,
6444 field_type_p, byte_offset_p,
6445 bit_offset_p, bit_size_p, index_p))
6446 return 1;
6447 }
6448 }
6449 else if (index_p != NULL)
6450 *index_p += 1;
6451 }
6452 return 0;
6453 }
6454
6455 /* Number of user-visible fields in record type TYPE. */
6456
6457 static int
6458 num_visible_fields (struct type *type)
6459 {
6460 int n;
6461
6462 n = 0;
6463 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
6464 return n;
6465 }
6466
6467 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
6468 and search in it assuming it has (class) type TYPE.
6469 If found, return value, else return NULL.
6470
6471 Searches recursively through wrapper fields (e.g., '_parent'). */
6472
6473 static struct value *
6474 ada_search_struct_field (char *name, struct value *arg, int offset,
6475 struct type *type)
6476 {
6477 int i;
6478
6479 type = ada_check_typedef (type);
6480 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6481 {
6482 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6483
6484 if (t_field_name == NULL)
6485 continue;
6486
6487 else if (field_name_match (t_field_name, name))
6488 return ada_value_primitive_field (arg, offset, i, type);
6489
6490 else if (ada_is_wrapper_field (type, i))
6491 {
6492 struct value *v = /* Do not let indent join lines here. */
6493 ada_search_struct_field (name, arg,
6494 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6495 TYPE_FIELD_TYPE (type, i));
6496
6497 if (v != NULL)
6498 return v;
6499 }
6500
6501 else if (ada_is_variant_part (type, i))
6502 {
6503 /* PNH: Do we ever get here? See find_struct_field. */
6504 int j;
6505 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6506 i));
6507 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
6508
6509 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
6510 {
6511 struct value *v = ada_search_struct_field /* Force line
6512 break. */
6513 (name, arg,
6514 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
6515 TYPE_FIELD_TYPE (field_type, j));
6516
6517 if (v != NULL)
6518 return v;
6519 }
6520 }
6521 }
6522 return NULL;
6523 }
6524
6525 static struct value *ada_index_struct_field_1 (int *, struct value *,
6526 int, struct type *);
6527
6528
6529 /* Return field #INDEX in ARG, where the index is that returned by
6530 * find_struct_field through its INDEX_P argument. Adjust the address
6531 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
6532 * If found, return value, else return NULL. */
6533
6534 static struct value *
6535 ada_index_struct_field (int index, struct value *arg, int offset,
6536 struct type *type)
6537 {
6538 return ada_index_struct_field_1 (&index, arg, offset, type);
6539 }
6540
6541
6542 /* Auxiliary function for ada_index_struct_field. Like
6543 * ada_index_struct_field, but takes index from *INDEX_P and modifies
6544 * *INDEX_P. */
6545
6546 static struct value *
6547 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
6548 struct type *type)
6549 {
6550 int i;
6551 type = ada_check_typedef (type);
6552
6553 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6554 {
6555 if (TYPE_FIELD_NAME (type, i) == NULL)
6556 continue;
6557 else if (ada_is_wrapper_field (type, i))
6558 {
6559 struct value *v = /* Do not let indent join lines here. */
6560 ada_index_struct_field_1 (index_p, arg,
6561 offset + TYPE_FIELD_BITPOS (type, i) / 8,
6562 TYPE_FIELD_TYPE (type, i));
6563
6564 if (v != NULL)
6565 return v;
6566 }
6567
6568 else if (ada_is_variant_part (type, i))
6569 {
6570 /* PNH: Do we ever get here? See ada_search_struct_field,
6571 find_struct_field. */
6572 error (_("Cannot assign this kind of variant record"));
6573 }
6574 else if (*index_p == 0)
6575 return ada_value_primitive_field (arg, offset, i, type);
6576 else
6577 *index_p -= 1;
6578 }
6579 return NULL;
6580 }
6581
6582 /* Given ARG, a value of type (pointer or reference to a)*
6583 structure/union, extract the component named NAME from the ultimate
6584 target structure/union and return it as a value with its
6585 appropriate type.
6586
6587 The routine searches for NAME among all members of the structure itself
6588 and (recursively) among all members of any wrapper members
6589 (e.g., '_parent').
6590
6591 If NO_ERR, then simply return NULL in case of error, rather than
6592 calling error. */
6593
6594 struct value *
6595 ada_value_struct_elt (struct value *arg, char *name, int no_err)
6596 {
6597 struct type *t, *t1;
6598 struct value *v;
6599
6600 v = NULL;
6601 t1 = t = ada_check_typedef (value_type (arg));
6602 if (TYPE_CODE (t) == TYPE_CODE_REF)
6603 {
6604 t1 = TYPE_TARGET_TYPE (t);
6605 if (t1 == NULL)
6606 goto BadValue;
6607 t1 = ada_check_typedef (t1);
6608 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6609 {
6610 arg = coerce_ref (arg);
6611 t = t1;
6612 }
6613 }
6614
6615 while (TYPE_CODE (t) == TYPE_CODE_PTR)
6616 {
6617 t1 = TYPE_TARGET_TYPE (t);
6618 if (t1 == NULL)
6619 goto BadValue;
6620 t1 = ada_check_typedef (t1);
6621 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
6622 {
6623 arg = value_ind (arg);
6624 t = t1;
6625 }
6626 else
6627 break;
6628 }
6629
6630 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
6631 goto BadValue;
6632
6633 if (t1 == t)
6634 v = ada_search_struct_field (name, arg, 0, t);
6635 else
6636 {
6637 int bit_offset, bit_size, byte_offset;
6638 struct type *field_type;
6639 CORE_ADDR address;
6640
6641 if (TYPE_CODE (t) == TYPE_CODE_PTR)
6642 address = value_as_address (arg);
6643 else
6644 address = unpack_pointer (t, value_contents (arg));
6645
6646 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL, address, NULL, 1);
6647 if (find_struct_field (name, t1, 0,
6648 &field_type, &byte_offset, &bit_offset,
6649 &bit_size, NULL))
6650 {
6651 if (bit_size != 0)
6652 {
6653 if (TYPE_CODE (t) == TYPE_CODE_REF)
6654 arg = ada_coerce_ref (arg);
6655 else
6656 arg = ada_value_ind (arg);
6657 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
6658 bit_offset, bit_size,
6659 field_type);
6660 }
6661 else
6662 v = value_at_lazy (field_type, address + byte_offset);
6663 }
6664 }
6665
6666 if (v != NULL || no_err)
6667 return v;
6668 else
6669 error (_("There is no member named %s."), name);
6670
6671 BadValue:
6672 if (no_err)
6673 return NULL;
6674 else
6675 error (_("Attempt to extract a component of "
6676 "a value that is not a record."));
6677 }
6678
6679 /* Given a type TYPE, look up the type of the component of type named NAME.
6680 If DISPP is non-null, add its byte displacement from the beginning of a
6681 structure (pointed to by a value) of type TYPE to *DISPP (does not
6682 work for packed fields).
6683
6684 Matches any field whose name has NAME as a prefix, possibly
6685 followed by "___".
6686
6687 TYPE can be either a struct or union. If REFOK, TYPE may also
6688 be a (pointer or reference)+ to a struct or union, and the
6689 ultimate target type will be searched.
6690
6691 Looks recursively into variant clauses and parent types.
6692
6693 If NOERR is nonzero, return NULL if NAME is not suitably defined or
6694 TYPE is not a type of the right kind. */
6695
6696 static struct type *
6697 ada_lookup_struct_elt_type (struct type *type, char *name, int refok,
6698 int noerr, int *dispp)
6699 {
6700 int i;
6701
6702 if (name == NULL)
6703 goto BadName;
6704
6705 if (refok && type != NULL)
6706 while (1)
6707 {
6708 type = ada_check_typedef (type);
6709 if (TYPE_CODE (type) != TYPE_CODE_PTR
6710 && TYPE_CODE (type) != TYPE_CODE_REF)
6711 break;
6712 type = TYPE_TARGET_TYPE (type);
6713 }
6714
6715 if (type == NULL
6716 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
6717 && TYPE_CODE (type) != TYPE_CODE_UNION))
6718 {
6719 if (noerr)
6720 return NULL;
6721 else
6722 {
6723 target_terminal_ours ();
6724 gdb_flush (gdb_stdout);
6725 if (type == NULL)
6726 error (_("Type (null) is not a structure or union type"));
6727 else
6728 {
6729 /* XXX: type_sprint */
6730 fprintf_unfiltered (gdb_stderr, _("Type "));
6731 type_print (type, "", gdb_stderr, -1);
6732 error (_(" is not a structure or union type"));
6733 }
6734 }
6735 }
6736
6737 type = to_static_fixed_type (type);
6738
6739 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6740 {
6741 const char *t_field_name = TYPE_FIELD_NAME (type, i);
6742 struct type *t;
6743 int disp;
6744
6745 if (t_field_name == NULL)
6746 continue;
6747
6748 else if (field_name_match (t_field_name, name))
6749 {
6750 if (dispp != NULL)
6751 *dispp += TYPE_FIELD_BITPOS (type, i) / 8;
6752 return ada_check_typedef (TYPE_FIELD_TYPE (type, i));
6753 }
6754
6755 else if (ada_is_wrapper_field (type, i))
6756 {
6757 disp = 0;
6758 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
6759 0, 1, &disp);
6760 if (t != NULL)
6761 {
6762 if (dispp != NULL)
6763 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6764 return t;
6765 }
6766 }
6767
6768 else if (ada_is_variant_part (type, i))
6769 {
6770 int j;
6771 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
6772 i));
6773
6774 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
6775 {
6776 /* FIXME pnh 2008/01/26: We check for a field that is
6777 NOT wrapped in a struct, since the compiler sometimes
6778 generates these for unchecked variant types. Revisit
6779 if the compiler changes this practice. */
6780 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
6781 disp = 0;
6782 if (v_field_name != NULL
6783 && field_name_match (v_field_name, name))
6784 t = ada_check_typedef (TYPE_FIELD_TYPE (field_type, j));
6785 else
6786 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
6787 j),
6788 name, 0, 1, &disp);
6789
6790 if (t != NULL)
6791 {
6792 if (dispp != NULL)
6793 *dispp += disp + TYPE_FIELD_BITPOS (type, i) / 8;
6794 return t;
6795 }
6796 }
6797 }
6798
6799 }
6800
6801 BadName:
6802 if (!noerr)
6803 {
6804 target_terminal_ours ();
6805 gdb_flush (gdb_stdout);
6806 if (name == NULL)
6807 {
6808 /* XXX: type_sprint */
6809 fprintf_unfiltered (gdb_stderr, _("Type "));
6810 type_print (type, "", gdb_stderr, -1);
6811 error (_(" has no component named <null>"));
6812 }
6813 else
6814 {
6815 /* XXX: type_sprint */
6816 fprintf_unfiltered (gdb_stderr, _("Type "));
6817 type_print (type, "", gdb_stderr, -1);
6818 error (_(" has no component named %s"), name);
6819 }
6820 }
6821
6822 return NULL;
6823 }
6824
6825 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6826 within a value of type OUTER_TYPE, return true iff VAR_TYPE
6827 represents an unchecked union (that is, the variant part of a
6828 record that is named in an Unchecked_Union pragma). */
6829
6830 static int
6831 is_unchecked_variant (struct type *var_type, struct type *outer_type)
6832 {
6833 char *discrim_name = ada_variant_discrim_name (var_type);
6834
6835 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1, NULL)
6836 == NULL);
6837 }
6838
6839
6840 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
6841 within a value of type OUTER_TYPE that is stored in GDB at
6842 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
6843 numbering from 0) is applicable. Returns -1 if none are. */
6844
6845 int
6846 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
6847 const gdb_byte *outer_valaddr)
6848 {
6849 int others_clause;
6850 int i;
6851 char *discrim_name = ada_variant_discrim_name (var_type);
6852 struct value *outer;
6853 struct value *discrim;
6854 LONGEST discrim_val;
6855
6856 outer = value_from_contents_and_address (outer_type, outer_valaddr, 0);
6857 discrim = ada_value_struct_elt (outer, discrim_name, 1);
6858 if (discrim == NULL)
6859 return -1;
6860 discrim_val = value_as_long (discrim);
6861
6862 others_clause = -1;
6863 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
6864 {
6865 if (ada_is_others_clause (var_type, i))
6866 others_clause = i;
6867 else if (ada_in_variant (discrim_val, var_type, i))
6868 return i;
6869 }
6870
6871 return others_clause;
6872 }
6873 \f
6874
6875
6876 /* Dynamic-Sized Records */
6877
6878 /* Strategy: The type ostensibly attached to a value with dynamic size
6879 (i.e., a size that is not statically recorded in the debugging
6880 data) does not accurately reflect the size or layout of the value.
6881 Our strategy is to convert these values to values with accurate,
6882 conventional types that are constructed on the fly. */
6883
6884 /* There is a subtle and tricky problem here. In general, we cannot
6885 determine the size of dynamic records without its data. However,
6886 the 'struct value' data structure, which GDB uses to represent
6887 quantities in the inferior process (the target), requires the size
6888 of the type at the time of its allocation in order to reserve space
6889 for GDB's internal copy of the data. That's why the
6890 'to_fixed_xxx_type' routines take (target) addresses as parameters,
6891 rather than struct value*s.
6892
6893 However, GDB's internal history variables ($1, $2, etc.) are
6894 struct value*s containing internal copies of the data that are not, in
6895 general, the same as the data at their corresponding addresses in
6896 the target. Fortunately, the types we give to these values are all
6897 conventional, fixed-size types (as per the strategy described
6898 above), so that we don't usually have to perform the
6899 'to_fixed_xxx_type' conversions to look at their values.
6900 Unfortunately, there is one exception: if one of the internal
6901 history variables is an array whose elements are unconstrained
6902 records, then we will need to create distinct fixed types for each
6903 element selected. */
6904
6905 /* The upshot of all of this is that many routines take a (type, host
6906 address, target address) triple as arguments to represent a value.
6907 The host address, if non-null, is supposed to contain an internal
6908 copy of the relevant data; otherwise, the program is to consult the
6909 target at the target address. */
6910
6911 /* Assuming that VAL0 represents a pointer value, the result of
6912 dereferencing it. Differs from value_ind in its treatment of
6913 dynamic-sized types. */
6914
6915 struct value *
6916 ada_value_ind (struct value *val0)
6917 {
6918 struct value *val = value_ind (val0);
6919
6920 return ada_to_fixed_value (val);
6921 }
6922
6923 /* The value resulting from dereferencing any "reference to"
6924 qualifiers on VAL0. */
6925
6926 static struct value *
6927 ada_coerce_ref (struct value *val0)
6928 {
6929 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
6930 {
6931 struct value *val = val0;
6932
6933 val = coerce_ref (val);
6934 return ada_to_fixed_value (val);
6935 }
6936 else
6937 return val0;
6938 }
6939
6940 /* Return OFF rounded upward if necessary to a multiple of
6941 ALIGNMENT (a power of 2). */
6942
6943 static unsigned int
6944 align_value (unsigned int off, unsigned int alignment)
6945 {
6946 return (off + alignment - 1) & ~(alignment - 1);
6947 }
6948
6949 /* Return the bit alignment required for field #F of template type TYPE. */
6950
6951 static unsigned int
6952 field_alignment (struct type *type, int f)
6953 {
6954 const char *name = TYPE_FIELD_NAME (type, f);
6955 int len;
6956 int align_offset;
6957
6958 /* The field name should never be null, unless the debugging information
6959 is somehow malformed. In this case, we assume the field does not
6960 require any alignment. */
6961 if (name == NULL)
6962 return 1;
6963
6964 len = strlen (name);
6965
6966 if (!isdigit (name[len - 1]))
6967 return 1;
6968
6969 if (isdigit (name[len - 2]))
6970 align_offset = len - 2;
6971 else
6972 align_offset = len - 1;
6973
6974 if (align_offset < 7 || strncmp ("___XV", name + align_offset - 6, 5) != 0)
6975 return TARGET_CHAR_BIT;
6976
6977 return atoi (name + align_offset) * TARGET_CHAR_BIT;
6978 }
6979
6980 /* Find a symbol named NAME. Ignores ambiguity. */
6981
6982 struct symbol *
6983 ada_find_any_symbol (const char *name)
6984 {
6985 struct symbol *sym;
6986
6987 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
6988 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
6989 return sym;
6990
6991 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
6992 return sym;
6993 }
6994
6995 /* Find a type named NAME. Ignores ambiguity. This routine will look
6996 solely for types defined by debug info, it will not search the GDB
6997 primitive types. */
6998
6999 struct type *
7000 ada_find_any_type (const char *name)
7001 {
7002 struct symbol *sym = ada_find_any_symbol (name);
7003
7004 if (sym != NULL)
7005 return SYMBOL_TYPE (sym);
7006
7007 return NULL;
7008 }
7009
7010 /* Given NAME and an associated BLOCK, search all symbols for
7011 NAME suffixed with "___XR", which is the ``renaming'' symbol
7012 associated to NAME. Return this symbol if found, return
7013 NULL otherwise. */
7014
7015 struct symbol *
7016 ada_find_renaming_symbol (const char *name, struct block *block)
7017 {
7018 struct symbol *sym;
7019
7020 sym = find_old_style_renaming_symbol (name, block);
7021
7022 if (sym != NULL)
7023 return sym;
7024
7025 /* Not right yet. FIXME pnh 7/20/2007. */
7026 sym = ada_find_any_symbol (name);
7027 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7028 return sym;
7029 else
7030 return NULL;
7031 }
7032
7033 static struct symbol *
7034 find_old_style_renaming_symbol (const char *name, struct block *block)
7035 {
7036 const struct symbol *function_sym = block_linkage_function (block);
7037 char *rename;
7038
7039 if (function_sym != NULL)
7040 {
7041 /* If the symbol is defined inside a function, NAME is not fully
7042 qualified. This means we need to prepend the function name
7043 as well as adding the ``___XR'' suffix to build the name of
7044 the associated renaming symbol. */
7045 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
7046 /* Function names sometimes contain suffixes used
7047 for instance to qualify nested subprograms. When building
7048 the XR type name, we need to make sure that this suffix is
7049 not included. So do not include any suffix in the function
7050 name length below. */
7051 int function_name_len = ada_name_prefix_len (function_name);
7052 const int rename_len = function_name_len + 2 /* "__" */
7053 + strlen (name) + 6 /* "___XR\0" */ ;
7054
7055 /* Strip the suffix if necessary. */
7056 ada_remove_trailing_digits (function_name, &function_name_len);
7057 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
7058 ada_remove_Xbn_suffix (function_name, &function_name_len);
7059
7060 /* Library-level functions are a special case, as GNAT adds
7061 a ``_ada_'' prefix to the function name to avoid namespace
7062 pollution. However, the renaming symbols themselves do not
7063 have this prefix, so we need to skip this prefix if present. */
7064 if (function_name_len > 5 /* "_ada_" */
7065 && strstr (function_name, "_ada_") == function_name)
7066 {
7067 function_name += 5;
7068 function_name_len -= 5;
7069 }
7070
7071 rename = (char *) alloca (rename_len * sizeof (char));
7072 strncpy (rename, function_name, function_name_len);
7073 xsnprintf (rename + function_name_len, rename_len - function_name_len,
7074 "__%s___XR", name);
7075 }
7076 else
7077 {
7078 const int rename_len = strlen (name) + 6;
7079
7080 rename = (char *) alloca (rename_len * sizeof (char));
7081 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
7082 }
7083
7084 return ada_find_any_symbol (rename);
7085 }
7086
7087 /* Because of GNAT encoding conventions, several GDB symbols may match a
7088 given type name. If the type denoted by TYPE0 is to be preferred to
7089 that of TYPE1 for purposes of type printing, return non-zero;
7090 otherwise return 0. */
7091
7092 int
7093 ada_prefer_type (struct type *type0, struct type *type1)
7094 {
7095 if (type1 == NULL)
7096 return 1;
7097 else if (type0 == NULL)
7098 return 0;
7099 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
7100 return 1;
7101 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
7102 return 0;
7103 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
7104 return 1;
7105 else if (ada_is_constrained_packed_array_type (type0))
7106 return 1;
7107 else if (ada_is_array_descriptor_type (type0)
7108 && !ada_is_array_descriptor_type (type1))
7109 return 1;
7110 else
7111 {
7112 const char *type0_name = type_name_no_tag (type0);
7113 const char *type1_name = type_name_no_tag (type1);
7114
7115 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
7116 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
7117 return 1;
7118 }
7119 return 0;
7120 }
7121
7122 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
7123 null, its TYPE_TAG_NAME. Null if TYPE is null. */
7124
7125 const char *
7126 ada_type_name (struct type *type)
7127 {
7128 if (type == NULL)
7129 return NULL;
7130 else if (TYPE_NAME (type) != NULL)
7131 return TYPE_NAME (type);
7132 else
7133 return TYPE_TAG_NAME (type);
7134 }
7135
7136 /* Search the list of "descriptive" types associated to TYPE for a type
7137 whose name is NAME. */
7138
7139 static struct type *
7140 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
7141 {
7142 struct type *result;
7143
7144 /* If there no descriptive-type info, then there is no parallel type
7145 to be found. */
7146 if (!HAVE_GNAT_AUX_INFO (type))
7147 return NULL;
7148
7149 result = TYPE_DESCRIPTIVE_TYPE (type);
7150 while (result != NULL)
7151 {
7152 const char *result_name = ada_type_name (result);
7153
7154 if (result_name == NULL)
7155 {
7156 warning (_("unexpected null name on descriptive type"));
7157 return NULL;
7158 }
7159
7160 /* If the names match, stop. */
7161 if (strcmp (result_name, name) == 0)
7162 break;
7163
7164 /* Otherwise, look at the next item on the list, if any. */
7165 if (HAVE_GNAT_AUX_INFO (result))
7166 result = TYPE_DESCRIPTIVE_TYPE (result);
7167 else
7168 result = NULL;
7169 }
7170
7171 /* If we didn't find a match, see whether this is a packed array. With
7172 older compilers, the descriptive type information is either absent or
7173 irrelevant when it comes to packed arrays so the above lookup fails.
7174 Fall back to using a parallel lookup by name in this case. */
7175 if (result == NULL && ada_is_constrained_packed_array_type (type))
7176 return ada_find_any_type (name);
7177
7178 return result;
7179 }
7180
7181 /* Find a parallel type to TYPE with the specified NAME, using the
7182 descriptive type taken from the debugging information, if available,
7183 and otherwise using the (slower) name-based method. */
7184
7185 static struct type *
7186 ada_find_parallel_type_with_name (struct type *type, const char *name)
7187 {
7188 struct type *result = NULL;
7189
7190 if (HAVE_GNAT_AUX_INFO (type))
7191 result = find_parallel_type_by_descriptive_type (type, name);
7192 else
7193 result = ada_find_any_type (name);
7194
7195 return result;
7196 }
7197
7198 /* Same as above, but specify the name of the parallel type by appending
7199 SUFFIX to the name of TYPE. */
7200
7201 struct type *
7202 ada_find_parallel_type (struct type *type, const char *suffix)
7203 {
7204 char *name;
7205 const char *typename = ada_type_name (type);
7206 int len;
7207
7208 if (typename == NULL)
7209 return NULL;
7210
7211 len = strlen (typename);
7212
7213 name = (char *) alloca (len + strlen (suffix) + 1);
7214
7215 strcpy (name, typename);
7216 strcpy (name + len, suffix);
7217
7218 return ada_find_parallel_type_with_name (type, name);
7219 }
7220
7221 /* If TYPE is a variable-size record type, return the corresponding template
7222 type describing its fields. Otherwise, return NULL. */
7223
7224 static struct type *
7225 dynamic_template_type (struct type *type)
7226 {
7227 type = ada_check_typedef (type);
7228
7229 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
7230 || ada_type_name (type) == NULL)
7231 return NULL;
7232 else
7233 {
7234 int len = strlen (ada_type_name (type));
7235
7236 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
7237 return type;
7238 else
7239 return ada_find_parallel_type (type, "___XVE");
7240 }
7241 }
7242
7243 /* Assuming that TEMPL_TYPE is a union or struct type, returns
7244 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
7245
7246 static int
7247 is_dynamic_field (struct type *templ_type, int field_num)
7248 {
7249 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
7250
7251 return name != NULL
7252 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
7253 && strstr (name, "___XVL") != NULL;
7254 }
7255
7256 /* The index of the variant field of TYPE, or -1 if TYPE does not
7257 represent a variant record type. */
7258
7259 static int
7260 variant_field_index (struct type *type)
7261 {
7262 int f;
7263
7264 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
7265 return -1;
7266
7267 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
7268 {
7269 if (ada_is_variant_part (type, f))
7270 return f;
7271 }
7272 return -1;
7273 }
7274
7275 /* A record type with no fields. */
7276
7277 static struct type *
7278 empty_record (struct type *template)
7279 {
7280 struct type *type = alloc_type_copy (template);
7281
7282 TYPE_CODE (type) = TYPE_CODE_STRUCT;
7283 TYPE_NFIELDS (type) = 0;
7284 TYPE_FIELDS (type) = NULL;
7285 INIT_CPLUS_SPECIFIC (type);
7286 TYPE_NAME (type) = "<empty>";
7287 TYPE_TAG_NAME (type) = NULL;
7288 TYPE_LENGTH (type) = 0;
7289 return type;
7290 }
7291
7292 /* An ordinary record type (with fixed-length fields) that describes
7293 the value of type TYPE at VALADDR or ADDRESS (see comments at
7294 the beginning of this section) VAL according to GNAT conventions.
7295 DVAL0 should describe the (portion of a) record that contains any
7296 necessary discriminants. It should be NULL if value_type (VAL) is
7297 an outer-level type (i.e., as opposed to a branch of a variant.) A
7298 variant field (unless unchecked) is replaced by a particular branch
7299 of the variant.
7300
7301 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
7302 length are not statically known are discarded. As a consequence,
7303 VALADDR, ADDRESS and DVAL0 are ignored.
7304
7305 NOTE: Limitations: For now, we assume that dynamic fields and
7306 variants occupy whole numbers of bytes. However, they need not be
7307 byte-aligned. */
7308
7309 struct type *
7310 ada_template_to_fixed_record_type_1 (struct type *type,
7311 const gdb_byte *valaddr,
7312 CORE_ADDR address, struct value *dval0,
7313 int keep_dynamic_fields)
7314 {
7315 struct value *mark = value_mark ();
7316 struct value *dval;
7317 struct type *rtype;
7318 int nfields, bit_len;
7319 int variant_field;
7320 long off;
7321 int fld_bit_len;
7322 int f;
7323
7324 /* Compute the number of fields in this record type that are going
7325 to be processed: unless keep_dynamic_fields, this includes only
7326 fields whose position and length are static will be processed. */
7327 if (keep_dynamic_fields)
7328 nfields = TYPE_NFIELDS (type);
7329 else
7330 {
7331 nfields = 0;
7332 while (nfields < TYPE_NFIELDS (type)
7333 && !ada_is_variant_part (type, nfields)
7334 && !is_dynamic_field (type, nfields))
7335 nfields++;
7336 }
7337
7338 rtype = alloc_type_copy (type);
7339 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7340 INIT_CPLUS_SPECIFIC (rtype);
7341 TYPE_NFIELDS (rtype) = nfields;
7342 TYPE_FIELDS (rtype) = (struct field *)
7343 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7344 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
7345 TYPE_NAME (rtype) = ada_type_name (type);
7346 TYPE_TAG_NAME (rtype) = NULL;
7347 TYPE_FIXED_INSTANCE (rtype) = 1;
7348
7349 off = 0;
7350 bit_len = 0;
7351 variant_field = -1;
7352
7353 for (f = 0; f < nfields; f += 1)
7354 {
7355 off = align_value (off, field_alignment (type, f))
7356 + TYPE_FIELD_BITPOS (type, f);
7357 TYPE_FIELD_BITPOS (rtype, f) = off;
7358 TYPE_FIELD_BITSIZE (rtype, f) = 0;
7359
7360 if (ada_is_variant_part (type, f))
7361 {
7362 variant_field = f;
7363 fld_bit_len = 0;
7364 }
7365 else if (is_dynamic_field (type, f))
7366 {
7367 const gdb_byte *field_valaddr = valaddr;
7368 CORE_ADDR field_address = address;
7369 struct type *field_type =
7370 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
7371
7372 if (dval0 == NULL)
7373 {
7374 /* rtype's length is computed based on the run-time
7375 value of discriminants. If the discriminants are not
7376 initialized, the type size may be completely bogus and
7377 GDB may fail to allocate a value for it. So check the
7378 size first before creating the value. */
7379 check_size (rtype);
7380 dval = value_from_contents_and_address (rtype, valaddr, address);
7381 }
7382 else
7383 dval = dval0;
7384
7385 /* If the type referenced by this field is an aligner type, we need
7386 to unwrap that aligner type, because its size might not be set.
7387 Keeping the aligner type would cause us to compute the wrong
7388 size for this field, impacting the offset of the all the fields
7389 that follow this one. */
7390 if (ada_is_aligner_type (field_type))
7391 {
7392 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
7393
7394 field_valaddr = cond_offset_host (field_valaddr, field_offset);
7395 field_address = cond_offset_target (field_address, field_offset);
7396 field_type = ada_aligned_type (field_type);
7397 }
7398
7399 field_valaddr = cond_offset_host (field_valaddr,
7400 off / TARGET_CHAR_BIT);
7401 field_address = cond_offset_target (field_address,
7402 off / TARGET_CHAR_BIT);
7403
7404 /* Get the fixed type of the field. Note that, in this case,
7405 we do not want to get the real type out of the tag: if
7406 the current field is the parent part of a tagged record,
7407 we will get the tag of the object. Clearly wrong: the real
7408 type of the parent is not the real type of the child. We
7409 would end up in an infinite loop. */
7410 field_type = ada_get_base_type (field_type);
7411 field_type = ada_to_fixed_type (field_type, field_valaddr,
7412 field_address, dval, 0);
7413 /* If the field size is already larger than the maximum
7414 object size, then the record itself will necessarily
7415 be larger than the maximum object size. We need to make
7416 this check now, because the size might be so ridiculously
7417 large (due to an uninitialized variable in the inferior)
7418 that it would cause an overflow when adding it to the
7419 record size. */
7420 check_size (field_type);
7421
7422 TYPE_FIELD_TYPE (rtype, f) = field_type;
7423 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7424 /* The multiplication can potentially overflow. But because
7425 the field length has been size-checked just above, and
7426 assuming that the maximum size is a reasonable value,
7427 an overflow should not happen in practice. So rather than
7428 adding overflow recovery code to this already complex code,
7429 we just assume that it's not going to happen. */
7430 fld_bit_len =
7431 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
7432 }
7433 else
7434 {
7435 struct type *field_type = TYPE_FIELD_TYPE (type, f);
7436
7437 /* If our field is a typedef type (most likely a typedef of
7438 a fat pointer, encoding an array access), then we need to
7439 look at its target type to determine its characteristics.
7440 In particular, we would miscompute the field size if we took
7441 the size of the typedef (zero), instead of the size of
7442 the target type. */
7443 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
7444 field_type = ada_typedef_target_type (field_type);
7445
7446 TYPE_FIELD_TYPE (rtype, f) = field_type;
7447 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
7448 if (TYPE_FIELD_BITSIZE (type, f) > 0)
7449 fld_bit_len =
7450 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
7451 else
7452 fld_bit_len =
7453 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
7454 }
7455 if (off + fld_bit_len > bit_len)
7456 bit_len = off + fld_bit_len;
7457 off += fld_bit_len;
7458 TYPE_LENGTH (rtype) =
7459 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7460 }
7461
7462 /* We handle the variant part, if any, at the end because of certain
7463 odd cases in which it is re-ordered so as NOT to be the last field of
7464 the record. This can happen in the presence of representation
7465 clauses. */
7466 if (variant_field >= 0)
7467 {
7468 struct type *branch_type;
7469
7470 off = TYPE_FIELD_BITPOS (rtype, variant_field);
7471
7472 if (dval0 == NULL)
7473 dval = value_from_contents_and_address (rtype, valaddr, address);
7474 else
7475 dval = dval0;
7476
7477 branch_type =
7478 to_fixed_variant_branch_type
7479 (TYPE_FIELD_TYPE (type, variant_field),
7480 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
7481 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
7482 if (branch_type == NULL)
7483 {
7484 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
7485 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7486 TYPE_NFIELDS (rtype) -= 1;
7487 }
7488 else
7489 {
7490 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7491 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7492 fld_bit_len =
7493 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
7494 TARGET_CHAR_BIT;
7495 if (off + fld_bit_len > bit_len)
7496 bit_len = off + fld_bit_len;
7497 TYPE_LENGTH (rtype) =
7498 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
7499 }
7500 }
7501
7502 /* According to exp_dbug.ads, the size of TYPE for variable-size records
7503 should contain the alignment of that record, which should be a strictly
7504 positive value. If null or negative, then something is wrong, most
7505 probably in the debug info. In that case, we don't round up the size
7506 of the resulting type. If this record is not part of another structure,
7507 the current RTYPE length might be good enough for our purposes. */
7508 if (TYPE_LENGTH (type) <= 0)
7509 {
7510 if (TYPE_NAME (rtype))
7511 warning (_("Invalid type size for `%s' detected: %d."),
7512 TYPE_NAME (rtype), TYPE_LENGTH (type));
7513 else
7514 warning (_("Invalid type size for <unnamed> detected: %d."),
7515 TYPE_LENGTH (type));
7516 }
7517 else
7518 {
7519 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
7520 TYPE_LENGTH (type));
7521 }
7522
7523 value_free_to_mark (mark);
7524 if (TYPE_LENGTH (rtype) > varsize_limit)
7525 error (_("record type with dynamic size is larger than varsize-limit"));
7526 return rtype;
7527 }
7528
7529 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
7530 of 1. */
7531
7532 static struct type *
7533 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
7534 CORE_ADDR address, struct value *dval0)
7535 {
7536 return ada_template_to_fixed_record_type_1 (type, valaddr,
7537 address, dval0, 1);
7538 }
7539
7540 /* An ordinary record type in which ___XVL-convention fields and
7541 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
7542 static approximations, containing all possible fields. Uses
7543 no runtime values. Useless for use in values, but that's OK,
7544 since the results are used only for type determinations. Works on both
7545 structs and unions. Representation note: to save space, we memorize
7546 the result of this function in the TYPE_TARGET_TYPE of the
7547 template type. */
7548
7549 static struct type *
7550 template_to_static_fixed_type (struct type *type0)
7551 {
7552 struct type *type;
7553 int nfields;
7554 int f;
7555
7556 if (TYPE_TARGET_TYPE (type0) != NULL)
7557 return TYPE_TARGET_TYPE (type0);
7558
7559 nfields = TYPE_NFIELDS (type0);
7560 type = type0;
7561
7562 for (f = 0; f < nfields; f += 1)
7563 {
7564 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type0, f));
7565 struct type *new_type;
7566
7567 if (is_dynamic_field (type0, f))
7568 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
7569 else
7570 new_type = static_unwrap_type (field_type);
7571 if (type == type0 && new_type != field_type)
7572 {
7573 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
7574 TYPE_CODE (type) = TYPE_CODE (type0);
7575 INIT_CPLUS_SPECIFIC (type);
7576 TYPE_NFIELDS (type) = nfields;
7577 TYPE_FIELDS (type) = (struct field *)
7578 TYPE_ALLOC (type, nfields * sizeof (struct field));
7579 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
7580 sizeof (struct field) * nfields);
7581 TYPE_NAME (type) = ada_type_name (type0);
7582 TYPE_TAG_NAME (type) = NULL;
7583 TYPE_FIXED_INSTANCE (type) = 1;
7584 TYPE_LENGTH (type) = 0;
7585 }
7586 TYPE_FIELD_TYPE (type, f) = new_type;
7587 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
7588 }
7589 return type;
7590 }
7591
7592 /* Given an object of type TYPE whose contents are at VALADDR and
7593 whose address in memory is ADDRESS, returns a revision of TYPE,
7594 which should be a non-dynamic-sized record, in which the variant
7595 part, if any, is replaced with the appropriate branch. Looks
7596 for discriminant values in DVAL0, which can be NULL if the record
7597 contains the necessary discriminant values. */
7598
7599 static struct type *
7600 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
7601 CORE_ADDR address, struct value *dval0)
7602 {
7603 struct value *mark = value_mark ();
7604 struct value *dval;
7605 struct type *rtype;
7606 struct type *branch_type;
7607 int nfields = TYPE_NFIELDS (type);
7608 int variant_field = variant_field_index (type);
7609
7610 if (variant_field == -1)
7611 return type;
7612
7613 if (dval0 == NULL)
7614 dval = value_from_contents_and_address (type, valaddr, address);
7615 else
7616 dval = dval0;
7617
7618 rtype = alloc_type_copy (type);
7619 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
7620 INIT_CPLUS_SPECIFIC (rtype);
7621 TYPE_NFIELDS (rtype) = nfields;
7622 TYPE_FIELDS (rtype) =
7623 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
7624 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
7625 sizeof (struct field) * nfields);
7626 TYPE_NAME (rtype) = ada_type_name (type);
7627 TYPE_TAG_NAME (rtype) = NULL;
7628 TYPE_FIXED_INSTANCE (rtype) = 1;
7629 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
7630
7631 branch_type = to_fixed_variant_branch_type
7632 (TYPE_FIELD_TYPE (type, variant_field),
7633 cond_offset_host (valaddr,
7634 TYPE_FIELD_BITPOS (type, variant_field)
7635 / TARGET_CHAR_BIT),
7636 cond_offset_target (address,
7637 TYPE_FIELD_BITPOS (type, variant_field)
7638 / TARGET_CHAR_BIT), dval);
7639 if (branch_type == NULL)
7640 {
7641 int f;
7642
7643 for (f = variant_field + 1; f < nfields; f += 1)
7644 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
7645 TYPE_NFIELDS (rtype) -= 1;
7646 }
7647 else
7648 {
7649 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
7650 TYPE_FIELD_NAME (rtype, variant_field) = "S";
7651 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
7652 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
7653 }
7654 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
7655
7656 value_free_to_mark (mark);
7657 return rtype;
7658 }
7659
7660 /* An ordinary record type (with fixed-length fields) that describes
7661 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
7662 beginning of this section]. Any necessary discriminants' values
7663 should be in DVAL, a record value; it may be NULL if the object
7664 at ADDR itself contains any necessary discriminant values.
7665 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
7666 values from the record are needed. Except in the case that DVAL,
7667 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
7668 unchecked) is replaced by a particular branch of the variant.
7669
7670 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
7671 is questionable and may be removed. It can arise during the
7672 processing of an unconstrained-array-of-record type where all the
7673 variant branches have exactly the same size. This is because in
7674 such cases, the compiler does not bother to use the XVS convention
7675 when encoding the record. I am currently dubious of this
7676 shortcut and suspect the compiler should be altered. FIXME. */
7677
7678 static struct type *
7679 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
7680 CORE_ADDR address, struct value *dval)
7681 {
7682 struct type *templ_type;
7683
7684 if (TYPE_FIXED_INSTANCE (type0))
7685 return type0;
7686
7687 templ_type = dynamic_template_type (type0);
7688
7689 if (templ_type != NULL)
7690 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
7691 else if (variant_field_index (type0) >= 0)
7692 {
7693 if (dval == NULL && valaddr == NULL && address == 0)
7694 return type0;
7695 return to_record_with_fixed_variant_part (type0, valaddr, address,
7696 dval);
7697 }
7698 else
7699 {
7700 TYPE_FIXED_INSTANCE (type0) = 1;
7701 return type0;
7702 }
7703
7704 }
7705
7706 /* An ordinary record type (with fixed-length fields) that describes
7707 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
7708 union type. Any necessary discriminants' values should be in DVAL,
7709 a record value. That is, this routine selects the appropriate
7710 branch of the union at ADDR according to the discriminant value
7711 indicated in the union's type name. Returns VAR_TYPE0 itself if
7712 it represents a variant subject to a pragma Unchecked_Union. */
7713
7714 static struct type *
7715 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
7716 CORE_ADDR address, struct value *dval)
7717 {
7718 int which;
7719 struct type *templ_type;
7720 struct type *var_type;
7721
7722 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
7723 var_type = TYPE_TARGET_TYPE (var_type0);
7724 else
7725 var_type = var_type0;
7726
7727 templ_type = ada_find_parallel_type (var_type, "___XVU");
7728
7729 if (templ_type != NULL)
7730 var_type = templ_type;
7731
7732 if (is_unchecked_variant (var_type, value_type (dval)))
7733 return var_type0;
7734 which =
7735 ada_which_variant_applies (var_type,
7736 value_type (dval), value_contents (dval));
7737
7738 if (which < 0)
7739 return empty_record (var_type);
7740 else if (is_dynamic_field (var_type, which))
7741 return to_fixed_record_type
7742 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
7743 valaddr, address, dval);
7744 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
7745 return
7746 to_fixed_record_type
7747 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
7748 else
7749 return TYPE_FIELD_TYPE (var_type, which);
7750 }
7751
7752 /* Assuming that TYPE0 is an array type describing the type of a value
7753 at ADDR, and that DVAL describes a record containing any
7754 discriminants used in TYPE0, returns a type for the value that
7755 contains no dynamic components (that is, no components whose sizes
7756 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
7757 true, gives an error message if the resulting type's size is over
7758 varsize_limit. */
7759
7760 static struct type *
7761 to_fixed_array_type (struct type *type0, struct value *dval,
7762 int ignore_too_big)
7763 {
7764 struct type *index_type_desc;
7765 struct type *result;
7766 int constrained_packed_array_p;
7767
7768 type0 = ada_check_typedef (type0);
7769 if (TYPE_FIXED_INSTANCE (type0))
7770 return type0;
7771
7772 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
7773 if (constrained_packed_array_p)
7774 type0 = decode_constrained_packed_array_type (type0);
7775
7776 index_type_desc = ada_find_parallel_type (type0, "___XA");
7777 ada_fixup_array_indexes_type (index_type_desc);
7778 if (index_type_desc == NULL)
7779 {
7780 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
7781
7782 /* NOTE: elt_type---the fixed version of elt_type0---should never
7783 depend on the contents of the array in properly constructed
7784 debugging data. */
7785 /* Create a fixed version of the array element type.
7786 We're not providing the address of an element here,
7787 and thus the actual object value cannot be inspected to do
7788 the conversion. This should not be a problem, since arrays of
7789 unconstrained objects are not allowed. In particular, all
7790 the elements of an array of a tagged type should all be of
7791 the same type specified in the debugging info. No need to
7792 consult the object tag. */
7793 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
7794
7795 /* Make sure we always create a new array type when dealing with
7796 packed array types, since we're going to fix-up the array
7797 type length and element bitsize a little further down. */
7798 if (elt_type0 == elt_type && !constrained_packed_array_p)
7799 result = type0;
7800 else
7801 result = create_array_type (alloc_type_copy (type0),
7802 elt_type, TYPE_INDEX_TYPE (type0));
7803 }
7804 else
7805 {
7806 int i;
7807 struct type *elt_type0;
7808
7809 elt_type0 = type0;
7810 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
7811 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7812
7813 /* NOTE: result---the fixed version of elt_type0---should never
7814 depend on the contents of the array in properly constructed
7815 debugging data. */
7816 /* Create a fixed version of the array element type.
7817 We're not providing the address of an element here,
7818 and thus the actual object value cannot be inspected to do
7819 the conversion. This should not be a problem, since arrays of
7820 unconstrained objects are not allowed. In particular, all
7821 the elements of an array of a tagged type should all be of
7822 the same type specified in the debugging info. No need to
7823 consult the object tag. */
7824 result =
7825 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
7826
7827 elt_type0 = type0;
7828 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
7829 {
7830 struct type *range_type =
7831 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
7832
7833 result = create_array_type (alloc_type_copy (elt_type0),
7834 result, range_type);
7835 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
7836 }
7837 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
7838 error (_("array type with dynamic size is larger than varsize-limit"));
7839 }
7840
7841 /* We want to preserve the type name. This can be useful when
7842 trying to get the type name of a value that has already been
7843 printed (for instance, if the user did "print VAR; whatis $". */
7844 TYPE_NAME (result) = TYPE_NAME (type0);
7845
7846 if (constrained_packed_array_p)
7847 {
7848 /* So far, the resulting type has been created as if the original
7849 type was a regular (non-packed) array type. As a result, the
7850 bitsize of the array elements needs to be set again, and the array
7851 length needs to be recomputed based on that bitsize. */
7852 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
7853 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
7854
7855 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
7856 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
7857 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
7858 TYPE_LENGTH (result)++;
7859 }
7860
7861 TYPE_FIXED_INSTANCE (result) = 1;
7862 return result;
7863 }
7864
7865
7866 /* A standard type (containing no dynamically sized components)
7867 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
7868 DVAL describes a record containing any discriminants used in TYPE0,
7869 and may be NULL if there are none, or if the object of type TYPE at
7870 ADDRESS or in VALADDR contains these discriminants.
7871
7872 If CHECK_TAG is not null, in the case of tagged types, this function
7873 attempts to locate the object's tag and use it to compute the actual
7874 type. However, when ADDRESS is null, we cannot use it to determine the
7875 location of the tag, and therefore compute the tagged type's actual type.
7876 So we return the tagged type without consulting the tag. */
7877
7878 static struct type *
7879 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
7880 CORE_ADDR address, struct value *dval, int check_tag)
7881 {
7882 type = ada_check_typedef (type);
7883 switch (TYPE_CODE (type))
7884 {
7885 default:
7886 return type;
7887 case TYPE_CODE_STRUCT:
7888 {
7889 struct type *static_type = to_static_fixed_type (type);
7890 struct type *fixed_record_type =
7891 to_fixed_record_type (type, valaddr, address, NULL);
7892
7893 /* If STATIC_TYPE is a tagged type and we know the object's address,
7894 then we can determine its tag, and compute the object's actual
7895 type from there. Note that we have to use the fixed record
7896 type (the parent part of the record may have dynamic fields
7897 and the way the location of _tag is expressed may depend on
7898 them). */
7899
7900 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
7901 {
7902 struct type *real_type =
7903 type_from_tag (value_tag_from_contents_and_address
7904 (fixed_record_type,
7905 valaddr,
7906 address));
7907
7908 if (real_type != NULL)
7909 return to_fixed_record_type (real_type, valaddr, address, NULL);
7910 }
7911
7912 /* Check to see if there is a parallel ___XVZ variable.
7913 If there is, then it provides the actual size of our type. */
7914 else if (ada_type_name (fixed_record_type) != NULL)
7915 {
7916 const char *name = ada_type_name (fixed_record_type);
7917 char *xvz_name = alloca (strlen (name) + 7 /* "___XVZ\0" */);
7918 int xvz_found = 0;
7919 LONGEST size;
7920
7921 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
7922 size = get_int_var_value (xvz_name, &xvz_found);
7923 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
7924 {
7925 fixed_record_type = copy_type (fixed_record_type);
7926 TYPE_LENGTH (fixed_record_type) = size;
7927
7928 /* The FIXED_RECORD_TYPE may have be a stub. We have
7929 observed this when the debugging info is STABS, and
7930 apparently it is something that is hard to fix.
7931
7932 In practice, we don't need the actual type definition
7933 at all, because the presence of the XVZ variable allows us
7934 to assume that there must be a XVS type as well, which we
7935 should be able to use later, when we need the actual type
7936 definition.
7937
7938 In the meantime, pretend that the "fixed" type we are
7939 returning is NOT a stub, because this can cause trouble
7940 when using this type to create new types targeting it.
7941 Indeed, the associated creation routines often check
7942 whether the target type is a stub and will try to replace
7943 it, thus using a type with the wrong size. This, in turn,
7944 might cause the new type to have the wrong size too.
7945 Consider the case of an array, for instance, where the size
7946 of the array is computed from the number of elements in
7947 our array multiplied by the size of its element. */
7948 TYPE_STUB (fixed_record_type) = 0;
7949 }
7950 }
7951 return fixed_record_type;
7952 }
7953 case TYPE_CODE_ARRAY:
7954 return to_fixed_array_type (type, dval, 1);
7955 case TYPE_CODE_UNION:
7956 if (dval == NULL)
7957 return type;
7958 else
7959 return to_fixed_variant_branch_type (type, valaddr, address, dval);
7960 }
7961 }
7962
7963 /* The same as ada_to_fixed_type_1, except that it preserves the type
7964 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
7965
7966 The typedef layer needs be preserved in order to differentiate between
7967 arrays and array pointers when both types are implemented using the same
7968 fat pointer. In the array pointer case, the pointer is encoded as
7969 a typedef of the pointer type. For instance, considering:
7970
7971 type String_Access is access String;
7972 S1 : String_Access := null;
7973
7974 To the debugger, S1 is defined as a typedef of type String. But
7975 to the user, it is a pointer. So if the user tries to print S1,
7976 we should not dereference the array, but print the array address
7977 instead.
7978
7979 If we didn't preserve the typedef layer, we would lose the fact that
7980 the type is to be presented as a pointer (needs de-reference before
7981 being printed). And we would also use the source-level type name. */
7982
7983 struct type *
7984 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
7985 CORE_ADDR address, struct value *dval, int check_tag)
7986
7987 {
7988 struct type *fixed_type =
7989 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
7990
7991 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
7992 then preserve the typedef layer.
7993
7994 Implementation note: We can only check the main-type portion of
7995 the TYPE and FIXED_TYPE, because eliminating the typedef layer
7996 from TYPE now returns a type that has the same instance flags
7997 as TYPE. For instance, if TYPE is a "typedef const", and its
7998 target type is a "struct", then the typedef elimination will return
7999 a "const" version of the target type. See check_typedef for more
8000 details about how the typedef layer elimination is done.
8001
8002 brobecker/2010-11-19: It seems to me that the only case where it is
8003 useful to preserve the typedef layer is when dealing with fat pointers.
8004 Perhaps, we could add a check for that and preserve the typedef layer
8005 only in that situation. But this seems unecessary so far, probably
8006 because we call check_typedef/ada_check_typedef pretty much everywhere.
8007 */
8008 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8009 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
8010 == TYPE_MAIN_TYPE (fixed_type)))
8011 return type;
8012
8013 return fixed_type;
8014 }
8015
8016 /* A standard (static-sized) type corresponding as well as possible to
8017 TYPE0, but based on no runtime data. */
8018
8019 static struct type *
8020 to_static_fixed_type (struct type *type0)
8021 {
8022 struct type *type;
8023
8024 if (type0 == NULL)
8025 return NULL;
8026
8027 if (TYPE_FIXED_INSTANCE (type0))
8028 return type0;
8029
8030 type0 = ada_check_typedef (type0);
8031
8032 switch (TYPE_CODE (type0))
8033 {
8034 default:
8035 return type0;
8036 case TYPE_CODE_STRUCT:
8037 type = dynamic_template_type (type0);
8038 if (type != NULL)
8039 return template_to_static_fixed_type (type);
8040 else
8041 return template_to_static_fixed_type (type0);
8042 case TYPE_CODE_UNION:
8043 type = ada_find_parallel_type (type0, "___XVU");
8044 if (type != NULL)
8045 return template_to_static_fixed_type (type);
8046 else
8047 return template_to_static_fixed_type (type0);
8048 }
8049 }
8050
8051 /* A static approximation of TYPE with all type wrappers removed. */
8052
8053 static struct type *
8054 static_unwrap_type (struct type *type)
8055 {
8056 if (ada_is_aligner_type (type))
8057 {
8058 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
8059 if (ada_type_name (type1) == NULL)
8060 TYPE_NAME (type1) = ada_type_name (type);
8061
8062 return static_unwrap_type (type1);
8063 }
8064 else
8065 {
8066 struct type *raw_real_type = ada_get_base_type (type);
8067
8068 if (raw_real_type == type)
8069 return type;
8070 else
8071 return to_static_fixed_type (raw_real_type);
8072 }
8073 }
8074
8075 /* In some cases, incomplete and private types require
8076 cross-references that are not resolved as records (for example,
8077 type Foo;
8078 type FooP is access Foo;
8079 V: FooP;
8080 type Foo is array ...;
8081 ). In these cases, since there is no mechanism for producing
8082 cross-references to such types, we instead substitute for FooP a
8083 stub enumeration type that is nowhere resolved, and whose tag is
8084 the name of the actual type. Call these types "non-record stubs". */
8085
8086 /* A type equivalent to TYPE that is not a non-record stub, if one
8087 exists, otherwise TYPE. */
8088
8089 struct type *
8090 ada_check_typedef (struct type *type)
8091 {
8092 if (type == NULL)
8093 return NULL;
8094
8095 /* If our type is a typedef type of a fat pointer, then we're done.
8096 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
8097 what allows us to distinguish between fat pointers that represent
8098 array types, and fat pointers that represent array access types
8099 (in both cases, the compiler implements them as fat pointers). */
8100 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
8101 && is_thick_pntr (ada_typedef_target_type (type)))
8102 return type;
8103
8104 CHECK_TYPEDEF (type);
8105 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
8106 || !TYPE_STUB (type)
8107 || TYPE_TAG_NAME (type) == NULL)
8108 return type;
8109 else
8110 {
8111 const char *name = TYPE_TAG_NAME (type);
8112 struct type *type1 = ada_find_any_type (name);
8113
8114 if (type1 == NULL)
8115 return type;
8116
8117 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
8118 stubs pointing to arrays, as we don't create symbols for array
8119 types, only for the typedef-to-array types). If that's the case,
8120 strip the typedef layer. */
8121 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
8122 type1 = ada_check_typedef (type1);
8123
8124 return type1;
8125 }
8126 }
8127
8128 /* A value representing the data at VALADDR/ADDRESS as described by
8129 type TYPE0, but with a standard (static-sized) type that correctly
8130 describes it. If VAL0 is not NULL and TYPE0 already is a standard
8131 type, then return VAL0 [this feature is simply to avoid redundant
8132 creation of struct values]. */
8133
8134 static struct value *
8135 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
8136 struct value *val0)
8137 {
8138 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
8139
8140 if (type == type0 && val0 != NULL)
8141 return val0;
8142 else
8143 return value_from_contents_and_address (type, 0, address);
8144 }
8145
8146 /* A value representing VAL, but with a standard (static-sized) type
8147 that correctly describes it. Does not necessarily create a new
8148 value. */
8149
8150 struct value *
8151 ada_to_fixed_value (struct value *val)
8152 {
8153 val = unwrap_value (val);
8154 val = ada_to_fixed_value_create (value_type (val),
8155 value_address (val),
8156 val);
8157 return val;
8158 }
8159 \f
8160
8161 /* Attributes */
8162
8163 /* Table mapping attribute numbers to names.
8164 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
8165
8166 static const char *attribute_names[] = {
8167 "<?>",
8168
8169 "first",
8170 "last",
8171 "length",
8172 "image",
8173 "max",
8174 "min",
8175 "modulus",
8176 "pos",
8177 "size",
8178 "tag",
8179 "val",
8180 0
8181 };
8182
8183 const char *
8184 ada_attribute_name (enum exp_opcode n)
8185 {
8186 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
8187 return attribute_names[n - OP_ATR_FIRST + 1];
8188 else
8189 return attribute_names[0];
8190 }
8191
8192 /* Evaluate the 'POS attribute applied to ARG. */
8193
8194 static LONGEST
8195 pos_atr (struct value *arg)
8196 {
8197 struct value *val = coerce_ref (arg);
8198 struct type *type = value_type (val);
8199
8200 if (!discrete_type_p (type))
8201 error (_("'POS only defined on discrete types"));
8202
8203 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8204 {
8205 int i;
8206 LONGEST v = value_as_long (val);
8207
8208 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
8209 {
8210 if (v == TYPE_FIELD_BITPOS (type, i))
8211 return i;
8212 }
8213 error (_("enumeration value is invalid: can't find 'POS"));
8214 }
8215 else
8216 return value_as_long (val);
8217 }
8218
8219 static struct value *
8220 value_pos_atr (struct type *type, struct value *arg)
8221 {
8222 return value_from_longest (type, pos_atr (arg));
8223 }
8224
8225 /* Evaluate the TYPE'VAL attribute applied to ARG. */
8226
8227 static struct value *
8228 value_val_atr (struct type *type, struct value *arg)
8229 {
8230 if (!discrete_type_p (type))
8231 error (_("'VAL only defined on discrete types"));
8232 if (!integer_type_p (value_type (arg)))
8233 error (_("'VAL requires integral argument"));
8234
8235 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
8236 {
8237 long pos = value_as_long (arg);
8238
8239 if (pos < 0 || pos >= TYPE_NFIELDS (type))
8240 error (_("argument to 'VAL out of range"));
8241 return value_from_longest (type, TYPE_FIELD_BITPOS (type, pos));
8242 }
8243 else
8244 return value_from_longest (type, value_as_long (arg));
8245 }
8246 \f
8247
8248 /* Evaluation */
8249
8250 /* True if TYPE appears to be an Ada character type.
8251 [At the moment, this is true only for Character and Wide_Character;
8252 It is a heuristic test that could stand improvement]. */
8253
8254 int
8255 ada_is_character_type (struct type *type)
8256 {
8257 const char *name;
8258
8259 /* If the type code says it's a character, then assume it really is,
8260 and don't check any further. */
8261 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
8262 return 1;
8263
8264 /* Otherwise, assume it's a character type iff it is a discrete type
8265 with a known character type name. */
8266 name = ada_type_name (type);
8267 return (name != NULL
8268 && (TYPE_CODE (type) == TYPE_CODE_INT
8269 || TYPE_CODE (type) == TYPE_CODE_RANGE)
8270 && (strcmp (name, "character") == 0
8271 || strcmp (name, "wide_character") == 0
8272 || strcmp (name, "wide_wide_character") == 0
8273 || strcmp (name, "unsigned char") == 0));
8274 }
8275
8276 /* True if TYPE appears to be an Ada string type. */
8277
8278 int
8279 ada_is_string_type (struct type *type)
8280 {
8281 type = ada_check_typedef (type);
8282 if (type != NULL
8283 && TYPE_CODE (type) != TYPE_CODE_PTR
8284 && (ada_is_simple_array_type (type)
8285 || ada_is_array_descriptor_type (type))
8286 && ada_array_arity (type) == 1)
8287 {
8288 struct type *elttype = ada_array_element_type (type, 1);
8289
8290 return ada_is_character_type (elttype);
8291 }
8292 else
8293 return 0;
8294 }
8295
8296 /* The compiler sometimes provides a parallel XVS type for a given
8297 PAD type. Normally, it is safe to follow the PAD type directly,
8298 but older versions of the compiler have a bug that causes the offset
8299 of its "F" field to be wrong. Following that field in that case
8300 would lead to incorrect results, but this can be worked around
8301 by ignoring the PAD type and using the associated XVS type instead.
8302
8303 Set to True if the debugger should trust the contents of PAD types.
8304 Otherwise, ignore the PAD type if there is a parallel XVS type. */
8305 static int trust_pad_over_xvs = 1;
8306
8307 /* True if TYPE is a struct type introduced by the compiler to force the
8308 alignment of a value. Such types have a single field with a
8309 distinctive name. */
8310
8311 int
8312 ada_is_aligner_type (struct type *type)
8313 {
8314 type = ada_check_typedef (type);
8315
8316 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
8317 return 0;
8318
8319 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
8320 && TYPE_NFIELDS (type) == 1
8321 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
8322 }
8323
8324 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
8325 the parallel type. */
8326
8327 struct type *
8328 ada_get_base_type (struct type *raw_type)
8329 {
8330 struct type *real_type_namer;
8331 struct type *raw_real_type;
8332
8333 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
8334 return raw_type;
8335
8336 if (ada_is_aligner_type (raw_type))
8337 /* The encoding specifies that we should always use the aligner type.
8338 So, even if this aligner type has an associated XVS type, we should
8339 simply ignore it.
8340
8341 According to the compiler gurus, an XVS type parallel to an aligner
8342 type may exist because of a stabs limitation. In stabs, aligner
8343 types are empty because the field has a variable-sized type, and
8344 thus cannot actually be used as an aligner type. As a result,
8345 we need the associated parallel XVS type to decode the type.
8346 Since the policy in the compiler is to not change the internal
8347 representation based on the debugging info format, we sometimes
8348 end up having a redundant XVS type parallel to the aligner type. */
8349 return raw_type;
8350
8351 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
8352 if (real_type_namer == NULL
8353 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
8354 || TYPE_NFIELDS (real_type_namer) != 1)
8355 return raw_type;
8356
8357 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
8358 {
8359 /* This is an older encoding form where the base type needs to be
8360 looked up by name. We prefer the newer enconding because it is
8361 more efficient. */
8362 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
8363 if (raw_real_type == NULL)
8364 return raw_type;
8365 else
8366 return raw_real_type;
8367 }
8368
8369 /* The field in our XVS type is a reference to the base type. */
8370 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
8371 }
8372
8373 /* The type of value designated by TYPE, with all aligners removed. */
8374
8375 struct type *
8376 ada_aligned_type (struct type *type)
8377 {
8378 if (ada_is_aligner_type (type))
8379 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
8380 else
8381 return ada_get_base_type (type);
8382 }
8383
8384
8385 /* The address of the aligned value in an object at address VALADDR
8386 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
8387
8388 const gdb_byte *
8389 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
8390 {
8391 if (ada_is_aligner_type (type))
8392 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
8393 valaddr +
8394 TYPE_FIELD_BITPOS (type,
8395 0) / TARGET_CHAR_BIT);
8396 else
8397 return valaddr;
8398 }
8399
8400
8401
8402 /* The printed representation of an enumeration literal with encoded
8403 name NAME. The value is good to the next call of ada_enum_name. */
8404 const char *
8405 ada_enum_name (const char *name)
8406 {
8407 static char *result;
8408 static size_t result_len = 0;
8409 char *tmp;
8410
8411 /* First, unqualify the enumeration name:
8412 1. Search for the last '.' character. If we find one, then skip
8413 all the preceding characters, the unqualified name starts
8414 right after that dot.
8415 2. Otherwise, we may be debugging on a target where the compiler
8416 translates dots into "__". Search forward for double underscores,
8417 but stop searching when we hit an overloading suffix, which is
8418 of the form "__" followed by digits. */
8419
8420 tmp = strrchr (name, '.');
8421 if (tmp != NULL)
8422 name = tmp + 1;
8423 else
8424 {
8425 while ((tmp = strstr (name, "__")) != NULL)
8426 {
8427 if (isdigit (tmp[2]))
8428 break;
8429 else
8430 name = tmp + 2;
8431 }
8432 }
8433
8434 if (name[0] == 'Q')
8435 {
8436 int v;
8437
8438 if (name[1] == 'U' || name[1] == 'W')
8439 {
8440 if (sscanf (name + 2, "%x", &v) != 1)
8441 return name;
8442 }
8443 else
8444 return name;
8445
8446 GROW_VECT (result, result_len, 16);
8447 if (isascii (v) && isprint (v))
8448 xsnprintf (result, result_len, "'%c'", v);
8449 else if (name[1] == 'U')
8450 xsnprintf (result, result_len, "[\"%02x\"]", v);
8451 else
8452 xsnprintf (result, result_len, "[\"%04x\"]", v);
8453
8454 return result;
8455 }
8456 else
8457 {
8458 tmp = strstr (name, "__");
8459 if (tmp == NULL)
8460 tmp = strstr (name, "$");
8461 if (tmp != NULL)
8462 {
8463 GROW_VECT (result, result_len, tmp - name + 1);
8464 strncpy (result, name, tmp - name);
8465 result[tmp - name] = '\0';
8466 return result;
8467 }
8468
8469 return name;
8470 }
8471 }
8472
8473 /* Evaluate the subexpression of EXP starting at *POS as for
8474 evaluate_type, updating *POS to point just past the evaluated
8475 expression. */
8476
8477 static struct value *
8478 evaluate_subexp_type (struct expression *exp, int *pos)
8479 {
8480 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
8481 }
8482
8483 /* If VAL is wrapped in an aligner or subtype wrapper, return the
8484 value it wraps. */
8485
8486 static struct value *
8487 unwrap_value (struct value *val)
8488 {
8489 struct type *type = ada_check_typedef (value_type (val));
8490
8491 if (ada_is_aligner_type (type))
8492 {
8493 struct value *v = ada_value_struct_elt (val, "F", 0);
8494 struct type *val_type = ada_check_typedef (value_type (v));
8495
8496 if (ada_type_name (val_type) == NULL)
8497 TYPE_NAME (val_type) = ada_type_name (type);
8498
8499 return unwrap_value (v);
8500 }
8501 else
8502 {
8503 struct type *raw_real_type =
8504 ada_check_typedef (ada_get_base_type (type));
8505
8506 /* If there is no parallel XVS or XVE type, then the value is
8507 already unwrapped. Return it without further modification. */
8508 if ((type == raw_real_type)
8509 && ada_find_parallel_type (type, "___XVE") == NULL)
8510 return val;
8511
8512 return
8513 coerce_unspec_val_to_type
8514 (val, ada_to_fixed_type (raw_real_type, 0,
8515 value_address (val),
8516 NULL, 1));
8517 }
8518 }
8519
8520 static struct value *
8521 cast_to_fixed (struct type *type, struct value *arg)
8522 {
8523 LONGEST val;
8524
8525 if (type == value_type (arg))
8526 return arg;
8527 else if (ada_is_fixed_point_type (value_type (arg)))
8528 val = ada_float_to_fixed (type,
8529 ada_fixed_to_float (value_type (arg),
8530 value_as_long (arg)));
8531 else
8532 {
8533 DOUBLEST argd = value_as_double (arg);
8534
8535 val = ada_float_to_fixed (type, argd);
8536 }
8537
8538 return value_from_longest (type, val);
8539 }
8540
8541 static struct value *
8542 cast_from_fixed (struct type *type, struct value *arg)
8543 {
8544 DOUBLEST val = ada_fixed_to_float (value_type (arg),
8545 value_as_long (arg));
8546
8547 return value_from_double (type, val);
8548 }
8549
8550 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
8551 return the converted value. */
8552
8553 static struct value *
8554 coerce_for_assign (struct type *type, struct value *val)
8555 {
8556 struct type *type2 = value_type (val);
8557
8558 if (type == type2)
8559 return val;
8560
8561 type2 = ada_check_typedef (type2);
8562 type = ada_check_typedef (type);
8563
8564 if (TYPE_CODE (type2) == TYPE_CODE_PTR
8565 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8566 {
8567 val = ada_value_ind (val);
8568 type2 = value_type (val);
8569 }
8570
8571 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
8572 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
8573 {
8574 if (TYPE_LENGTH (type2) != TYPE_LENGTH (type)
8575 || TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
8576 != TYPE_LENGTH (TYPE_TARGET_TYPE (type2)))
8577 error (_("Incompatible types in assignment"));
8578 deprecated_set_value_type (val, type);
8579 }
8580 return val;
8581 }
8582
8583 static struct value *
8584 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
8585 {
8586 struct value *val;
8587 struct type *type1, *type2;
8588 LONGEST v, v1, v2;
8589
8590 arg1 = coerce_ref (arg1);
8591 arg2 = coerce_ref (arg2);
8592 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
8593 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
8594
8595 if (TYPE_CODE (type1) != TYPE_CODE_INT
8596 || TYPE_CODE (type2) != TYPE_CODE_INT)
8597 return value_binop (arg1, arg2, op);
8598
8599 switch (op)
8600 {
8601 case BINOP_MOD:
8602 case BINOP_DIV:
8603 case BINOP_REM:
8604 break;
8605 default:
8606 return value_binop (arg1, arg2, op);
8607 }
8608
8609 v2 = value_as_long (arg2);
8610 if (v2 == 0)
8611 error (_("second operand of %s must not be zero."), op_string (op));
8612
8613 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
8614 return value_binop (arg1, arg2, op);
8615
8616 v1 = value_as_long (arg1);
8617 switch (op)
8618 {
8619 case BINOP_DIV:
8620 v = v1 / v2;
8621 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
8622 v += v > 0 ? -1 : 1;
8623 break;
8624 case BINOP_REM:
8625 v = v1 % v2;
8626 if (v * v1 < 0)
8627 v -= v2;
8628 break;
8629 default:
8630 /* Should not reach this point. */
8631 v = 0;
8632 }
8633
8634 val = allocate_value (type1);
8635 store_unsigned_integer (value_contents_raw (val),
8636 TYPE_LENGTH (value_type (val)),
8637 gdbarch_byte_order (get_type_arch (type1)), v);
8638 return val;
8639 }
8640
8641 static int
8642 ada_value_equal (struct value *arg1, struct value *arg2)
8643 {
8644 if (ada_is_direct_array_type (value_type (arg1))
8645 || ada_is_direct_array_type (value_type (arg2)))
8646 {
8647 /* Automatically dereference any array reference before
8648 we attempt to perform the comparison. */
8649 arg1 = ada_coerce_ref (arg1);
8650 arg2 = ada_coerce_ref (arg2);
8651
8652 arg1 = ada_coerce_to_simple_array (arg1);
8653 arg2 = ada_coerce_to_simple_array (arg2);
8654 if (TYPE_CODE (value_type (arg1)) != TYPE_CODE_ARRAY
8655 || TYPE_CODE (value_type (arg2)) != TYPE_CODE_ARRAY)
8656 error (_("Attempt to compare array with non-array"));
8657 /* FIXME: The following works only for types whose
8658 representations use all bits (no padding or undefined bits)
8659 and do not have user-defined equality. */
8660 return
8661 TYPE_LENGTH (value_type (arg1)) == TYPE_LENGTH (value_type (arg2))
8662 && memcmp (value_contents (arg1), value_contents (arg2),
8663 TYPE_LENGTH (value_type (arg1))) == 0;
8664 }
8665 return value_equal (arg1, arg2);
8666 }
8667
8668 /* Total number of component associations in the aggregate starting at
8669 index PC in EXP. Assumes that index PC is the start of an
8670 OP_AGGREGATE. */
8671
8672 static int
8673 num_component_specs (struct expression *exp, int pc)
8674 {
8675 int n, m, i;
8676
8677 m = exp->elts[pc + 1].longconst;
8678 pc += 3;
8679 n = 0;
8680 for (i = 0; i < m; i += 1)
8681 {
8682 switch (exp->elts[pc].opcode)
8683 {
8684 default:
8685 n += 1;
8686 break;
8687 case OP_CHOICES:
8688 n += exp->elts[pc + 1].longconst;
8689 break;
8690 }
8691 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
8692 }
8693 return n;
8694 }
8695
8696 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
8697 component of LHS (a simple array or a record), updating *POS past
8698 the expression, assuming that LHS is contained in CONTAINER. Does
8699 not modify the inferior's memory, nor does it modify LHS (unless
8700 LHS == CONTAINER). */
8701
8702 static void
8703 assign_component (struct value *container, struct value *lhs, LONGEST index,
8704 struct expression *exp, int *pos)
8705 {
8706 struct value *mark = value_mark ();
8707 struct value *elt;
8708
8709 if (TYPE_CODE (value_type (lhs)) == TYPE_CODE_ARRAY)
8710 {
8711 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
8712 struct value *index_val = value_from_longest (index_type, index);
8713
8714 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
8715 }
8716 else
8717 {
8718 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
8719 elt = ada_to_fixed_value (elt);
8720 }
8721
8722 if (exp->elts[*pos].opcode == OP_AGGREGATE)
8723 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
8724 else
8725 value_assign_to_component (container, elt,
8726 ada_evaluate_subexp (NULL, exp, pos,
8727 EVAL_NORMAL));
8728
8729 value_free_to_mark (mark);
8730 }
8731
8732 /* Assuming that LHS represents an lvalue having a record or array
8733 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
8734 of that aggregate's value to LHS, advancing *POS past the
8735 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
8736 lvalue containing LHS (possibly LHS itself). Does not modify
8737 the inferior's memory, nor does it modify the contents of
8738 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
8739
8740 static struct value *
8741 assign_aggregate (struct value *container,
8742 struct value *lhs, struct expression *exp,
8743 int *pos, enum noside noside)
8744 {
8745 struct type *lhs_type;
8746 int n = exp->elts[*pos+1].longconst;
8747 LONGEST low_index, high_index;
8748 int num_specs;
8749 LONGEST *indices;
8750 int max_indices, num_indices;
8751 int is_array_aggregate;
8752 int i;
8753
8754 *pos += 3;
8755 if (noside != EVAL_NORMAL)
8756 {
8757 for (i = 0; i < n; i += 1)
8758 ada_evaluate_subexp (NULL, exp, pos, noside);
8759 return container;
8760 }
8761
8762 container = ada_coerce_ref (container);
8763 if (ada_is_direct_array_type (value_type (container)))
8764 container = ada_coerce_to_simple_array (container);
8765 lhs = ada_coerce_ref (lhs);
8766 if (!deprecated_value_modifiable (lhs))
8767 error (_("Left operand of assignment is not a modifiable lvalue."));
8768
8769 lhs_type = value_type (lhs);
8770 if (ada_is_direct_array_type (lhs_type))
8771 {
8772 lhs = ada_coerce_to_simple_array (lhs);
8773 lhs_type = value_type (lhs);
8774 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
8775 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
8776 is_array_aggregate = 1;
8777 }
8778 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
8779 {
8780 low_index = 0;
8781 high_index = num_visible_fields (lhs_type) - 1;
8782 is_array_aggregate = 0;
8783 }
8784 else
8785 error (_("Left-hand side must be array or record."));
8786
8787 num_specs = num_component_specs (exp, *pos - 3);
8788 max_indices = 4 * num_specs + 4;
8789 indices = alloca (max_indices * sizeof (indices[0]));
8790 indices[0] = indices[1] = low_index - 1;
8791 indices[2] = indices[3] = high_index + 1;
8792 num_indices = 4;
8793
8794 for (i = 0; i < n; i += 1)
8795 {
8796 switch (exp->elts[*pos].opcode)
8797 {
8798 case OP_CHOICES:
8799 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
8800 &num_indices, max_indices,
8801 low_index, high_index);
8802 break;
8803 case OP_POSITIONAL:
8804 aggregate_assign_positional (container, lhs, exp, pos, indices,
8805 &num_indices, max_indices,
8806 low_index, high_index);
8807 break;
8808 case OP_OTHERS:
8809 if (i != n-1)
8810 error (_("Misplaced 'others' clause"));
8811 aggregate_assign_others (container, lhs, exp, pos, indices,
8812 num_indices, low_index, high_index);
8813 break;
8814 default:
8815 error (_("Internal error: bad aggregate clause"));
8816 }
8817 }
8818
8819 return container;
8820 }
8821
8822 /* Assign into the component of LHS indexed by the OP_POSITIONAL
8823 construct at *POS, updating *POS past the construct, given that
8824 the positions are relative to lower bound LOW, where HIGH is the
8825 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
8826 updating *NUM_INDICES as needed. CONTAINER is as for
8827 assign_aggregate. */
8828 static void
8829 aggregate_assign_positional (struct value *container,
8830 struct value *lhs, struct expression *exp,
8831 int *pos, LONGEST *indices, int *num_indices,
8832 int max_indices, LONGEST low, LONGEST high)
8833 {
8834 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
8835
8836 if (ind - 1 == high)
8837 warning (_("Extra components in aggregate ignored."));
8838 if (ind <= high)
8839 {
8840 add_component_interval (ind, ind, indices, num_indices, max_indices);
8841 *pos += 3;
8842 assign_component (container, lhs, ind, exp, pos);
8843 }
8844 else
8845 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8846 }
8847
8848 /* Assign into the components of LHS indexed by the OP_CHOICES
8849 construct at *POS, updating *POS past the construct, given that
8850 the allowable indices are LOW..HIGH. Record the indices assigned
8851 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
8852 needed. CONTAINER is as for assign_aggregate. */
8853 static void
8854 aggregate_assign_from_choices (struct value *container,
8855 struct value *lhs, struct expression *exp,
8856 int *pos, LONGEST *indices, int *num_indices,
8857 int max_indices, LONGEST low, LONGEST high)
8858 {
8859 int j;
8860 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
8861 int choice_pos, expr_pc;
8862 int is_array = ada_is_direct_array_type (value_type (lhs));
8863
8864 choice_pos = *pos += 3;
8865
8866 for (j = 0; j < n_choices; j += 1)
8867 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8868 expr_pc = *pos;
8869 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8870
8871 for (j = 0; j < n_choices; j += 1)
8872 {
8873 LONGEST lower, upper;
8874 enum exp_opcode op = exp->elts[choice_pos].opcode;
8875
8876 if (op == OP_DISCRETE_RANGE)
8877 {
8878 choice_pos += 1;
8879 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8880 EVAL_NORMAL));
8881 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
8882 EVAL_NORMAL));
8883 }
8884 else if (is_array)
8885 {
8886 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
8887 EVAL_NORMAL));
8888 upper = lower;
8889 }
8890 else
8891 {
8892 int ind;
8893 const char *name;
8894
8895 switch (op)
8896 {
8897 case OP_NAME:
8898 name = &exp->elts[choice_pos + 2].string;
8899 break;
8900 case OP_VAR_VALUE:
8901 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
8902 break;
8903 default:
8904 error (_("Invalid record component association."));
8905 }
8906 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
8907 ind = 0;
8908 if (! find_struct_field (name, value_type (lhs), 0,
8909 NULL, NULL, NULL, NULL, &ind))
8910 error (_("Unknown component name: %s."), name);
8911 lower = upper = ind;
8912 }
8913
8914 if (lower <= upper && (lower < low || upper > high))
8915 error (_("Index in component association out of bounds."));
8916
8917 add_component_interval (lower, upper, indices, num_indices,
8918 max_indices);
8919 while (lower <= upper)
8920 {
8921 int pos1;
8922
8923 pos1 = expr_pc;
8924 assign_component (container, lhs, lower, exp, &pos1);
8925 lower += 1;
8926 }
8927 }
8928 }
8929
8930 /* Assign the value of the expression in the OP_OTHERS construct in
8931 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
8932 have not been previously assigned. The index intervals already assigned
8933 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
8934 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
8935 static void
8936 aggregate_assign_others (struct value *container,
8937 struct value *lhs, struct expression *exp,
8938 int *pos, LONGEST *indices, int num_indices,
8939 LONGEST low, LONGEST high)
8940 {
8941 int i;
8942 int expr_pc = *pos + 1;
8943
8944 for (i = 0; i < num_indices - 2; i += 2)
8945 {
8946 LONGEST ind;
8947
8948 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
8949 {
8950 int localpos;
8951
8952 localpos = expr_pc;
8953 assign_component (container, lhs, ind, exp, &localpos);
8954 }
8955 }
8956 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
8957 }
8958
8959 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
8960 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
8961 modifying *SIZE as needed. It is an error if *SIZE exceeds
8962 MAX_SIZE. The resulting intervals do not overlap. */
8963 static void
8964 add_component_interval (LONGEST low, LONGEST high,
8965 LONGEST* indices, int *size, int max_size)
8966 {
8967 int i, j;
8968
8969 for (i = 0; i < *size; i += 2) {
8970 if (high >= indices[i] && low <= indices[i + 1])
8971 {
8972 int kh;
8973
8974 for (kh = i + 2; kh < *size; kh += 2)
8975 if (high < indices[kh])
8976 break;
8977 if (low < indices[i])
8978 indices[i] = low;
8979 indices[i + 1] = indices[kh - 1];
8980 if (high > indices[i + 1])
8981 indices[i + 1] = high;
8982 memcpy (indices + i + 2, indices + kh, *size - kh);
8983 *size -= kh - i - 2;
8984 return;
8985 }
8986 else if (high < indices[i])
8987 break;
8988 }
8989
8990 if (*size == max_size)
8991 error (_("Internal error: miscounted aggregate components."));
8992 *size += 2;
8993 for (j = *size-1; j >= i+2; j -= 1)
8994 indices[j] = indices[j - 2];
8995 indices[i] = low;
8996 indices[i + 1] = high;
8997 }
8998
8999 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
9000 is different. */
9001
9002 static struct value *
9003 ada_value_cast (struct type *type, struct value *arg2, enum noside noside)
9004 {
9005 if (type == ada_check_typedef (value_type (arg2)))
9006 return arg2;
9007
9008 if (ada_is_fixed_point_type (type))
9009 return (cast_to_fixed (type, arg2));
9010
9011 if (ada_is_fixed_point_type (value_type (arg2)))
9012 return cast_from_fixed (type, arg2);
9013
9014 return value_cast (type, arg2);
9015 }
9016
9017 /* Evaluating Ada expressions, and printing their result.
9018 ------------------------------------------------------
9019
9020 1. Introduction:
9021 ----------------
9022
9023 We usually evaluate an Ada expression in order to print its value.
9024 We also evaluate an expression in order to print its type, which
9025 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
9026 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
9027 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
9028 the evaluation compared to the EVAL_NORMAL, but is otherwise very
9029 similar.
9030
9031 Evaluating expressions is a little more complicated for Ada entities
9032 than it is for entities in languages such as C. The main reason for
9033 this is that Ada provides types whose definition might be dynamic.
9034 One example of such types is variant records. Or another example
9035 would be an array whose bounds can only be known at run time.
9036
9037 The following description is a general guide as to what should be
9038 done (and what should NOT be done) in order to evaluate an expression
9039 involving such types, and when. This does not cover how the semantic
9040 information is encoded by GNAT as this is covered separatly. For the
9041 document used as the reference for the GNAT encoding, see exp_dbug.ads
9042 in the GNAT sources.
9043
9044 Ideally, we should embed each part of this description next to its
9045 associated code. Unfortunately, the amount of code is so vast right
9046 now that it's hard to see whether the code handling a particular
9047 situation might be duplicated or not. One day, when the code is
9048 cleaned up, this guide might become redundant with the comments
9049 inserted in the code, and we might want to remove it.
9050
9051 2. ``Fixing'' an Entity, the Simple Case:
9052 -----------------------------------------
9053
9054 When evaluating Ada expressions, the tricky issue is that they may
9055 reference entities whose type contents and size are not statically
9056 known. Consider for instance a variant record:
9057
9058 type Rec (Empty : Boolean := True) is record
9059 case Empty is
9060 when True => null;
9061 when False => Value : Integer;
9062 end case;
9063 end record;
9064 Yes : Rec := (Empty => False, Value => 1);
9065 No : Rec := (empty => True);
9066
9067 The size and contents of that record depends on the value of the
9068 descriminant (Rec.Empty). At this point, neither the debugging
9069 information nor the associated type structure in GDB are able to
9070 express such dynamic types. So what the debugger does is to create
9071 "fixed" versions of the type that applies to the specific object.
9072 We also informally refer to this opperation as "fixing" an object,
9073 which means creating its associated fixed type.
9074
9075 Example: when printing the value of variable "Yes" above, its fixed
9076 type would look like this:
9077
9078 type Rec is record
9079 Empty : Boolean;
9080 Value : Integer;
9081 end record;
9082
9083 On the other hand, if we printed the value of "No", its fixed type
9084 would become:
9085
9086 type Rec is record
9087 Empty : Boolean;
9088 end record;
9089
9090 Things become a little more complicated when trying to fix an entity
9091 with a dynamic type that directly contains another dynamic type,
9092 such as an array of variant records, for instance. There are
9093 two possible cases: Arrays, and records.
9094
9095 3. ``Fixing'' Arrays:
9096 ---------------------
9097
9098 The type structure in GDB describes an array in terms of its bounds,
9099 and the type of its elements. By design, all elements in the array
9100 have the same type and we cannot represent an array of variant elements
9101 using the current type structure in GDB. When fixing an array,
9102 we cannot fix the array element, as we would potentially need one
9103 fixed type per element of the array. As a result, the best we can do
9104 when fixing an array is to produce an array whose bounds and size
9105 are correct (allowing us to read it from memory), but without having
9106 touched its element type. Fixing each element will be done later,
9107 when (if) necessary.
9108
9109 Arrays are a little simpler to handle than records, because the same
9110 amount of memory is allocated for each element of the array, even if
9111 the amount of space actually used by each element differs from element
9112 to element. Consider for instance the following array of type Rec:
9113
9114 type Rec_Array is array (1 .. 2) of Rec;
9115
9116 The actual amount of memory occupied by each element might be different
9117 from element to element, depending on the value of their discriminant.
9118 But the amount of space reserved for each element in the array remains
9119 fixed regardless. So we simply need to compute that size using
9120 the debugging information available, from which we can then determine
9121 the array size (we multiply the number of elements of the array by
9122 the size of each element).
9123
9124 The simplest case is when we have an array of a constrained element
9125 type. For instance, consider the following type declarations:
9126
9127 type Bounded_String (Max_Size : Integer) is
9128 Length : Integer;
9129 Buffer : String (1 .. Max_Size);
9130 end record;
9131 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
9132
9133 In this case, the compiler describes the array as an array of
9134 variable-size elements (identified by its XVS suffix) for which
9135 the size can be read in the parallel XVZ variable.
9136
9137 In the case of an array of an unconstrained element type, the compiler
9138 wraps the array element inside a private PAD type. This type should not
9139 be shown to the user, and must be "unwrap"'ed before printing. Note
9140 that we also use the adjective "aligner" in our code to designate
9141 these wrapper types.
9142
9143 In some cases, the size allocated for each element is statically
9144 known. In that case, the PAD type already has the correct size,
9145 and the array element should remain unfixed.
9146
9147 But there are cases when this size is not statically known.
9148 For instance, assuming that "Five" is an integer variable:
9149
9150 type Dynamic is array (1 .. Five) of Integer;
9151 type Wrapper (Has_Length : Boolean := False) is record
9152 Data : Dynamic;
9153 case Has_Length is
9154 when True => Length : Integer;
9155 when False => null;
9156 end case;
9157 end record;
9158 type Wrapper_Array is array (1 .. 2) of Wrapper;
9159
9160 Hello : Wrapper_Array := (others => (Has_Length => True,
9161 Data => (others => 17),
9162 Length => 1));
9163
9164
9165 The debugging info would describe variable Hello as being an
9166 array of a PAD type. The size of that PAD type is not statically
9167 known, but can be determined using a parallel XVZ variable.
9168 In that case, a copy of the PAD type with the correct size should
9169 be used for the fixed array.
9170
9171 3. ``Fixing'' record type objects:
9172 ----------------------------------
9173
9174 Things are slightly different from arrays in the case of dynamic
9175 record types. In this case, in order to compute the associated
9176 fixed type, we need to determine the size and offset of each of
9177 its components. This, in turn, requires us to compute the fixed
9178 type of each of these components.
9179
9180 Consider for instance the example:
9181
9182 type Bounded_String (Max_Size : Natural) is record
9183 Str : String (1 .. Max_Size);
9184 Length : Natural;
9185 end record;
9186 My_String : Bounded_String (Max_Size => 10);
9187
9188 In that case, the position of field "Length" depends on the size
9189 of field Str, which itself depends on the value of the Max_Size
9190 discriminant. In order to fix the type of variable My_String,
9191 we need to fix the type of field Str. Therefore, fixing a variant
9192 record requires us to fix each of its components.
9193
9194 However, if a component does not have a dynamic size, the component
9195 should not be fixed. In particular, fields that use a PAD type
9196 should not fixed. Here is an example where this might happen
9197 (assuming type Rec above):
9198
9199 type Container (Big : Boolean) is record
9200 First : Rec;
9201 After : Integer;
9202 case Big is
9203 when True => Another : Integer;
9204 when False => null;
9205 end case;
9206 end record;
9207 My_Container : Container := (Big => False,
9208 First => (Empty => True),
9209 After => 42);
9210
9211 In that example, the compiler creates a PAD type for component First,
9212 whose size is constant, and then positions the component After just
9213 right after it. The offset of component After is therefore constant
9214 in this case.
9215
9216 The debugger computes the position of each field based on an algorithm
9217 that uses, among other things, the actual position and size of the field
9218 preceding it. Let's now imagine that the user is trying to print
9219 the value of My_Container. If the type fixing was recursive, we would
9220 end up computing the offset of field After based on the size of the
9221 fixed version of field First. And since in our example First has
9222 only one actual field, the size of the fixed type is actually smaller
9223 than the amount of space allocated to that field, and thus we would
9224 compute the wrong offset of field After.
9225
9226 To make things more complicated, we need to watch out for dynamic
9227 components of variant records (identified by the ___XVL suffix in
9228 the component name). Even if the target type is a PAD type, the size
9229 of that type might not be statically known. So the PAD type needs
9230 to be unwrapped and the resulting type needs to be fixed. Otherwise,
9231 we might end up with the wrong size for our component. This can be
9232 observed with the following type declarations:
9233
9234 type Octal is new Integer range 0 .. 7;
9235 type Octal_Array is array (Positive range <>) of Octal;
9236 pragma Pack (Octal_Array);
9237
9238 type Octal_Buffer (Size : Positive) is record
9239 Buffer : Octal_Array (1 .. Size);
9240 Length : Integer;
9241 end record;
9242
9243 In that case, Buffer is a PAD type whose size is unset and needs
9244 to be computed by fixing the unwrapped type.
9245
9246 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
9247 ----------------------------------------------------------
9248
9249 Lastly, when should the sub-elements of an entity that remained unfixed
9250 thus far, be actually fixed?
9251
9252 The answer is: Only when referencing that element. For instance
9253 when selecting one component of a record, this specific component
9254 should be fixed at that point in time. Or when printing the value
9255 of a record, each component should be fixed before its value gets
9256 printed. Similarly for arrays, the element of the array should be
9257 fixed when printing each element of the array, or when extracting
9258 one element out of that array. On the other hand, fixing should
9259 not be performed on the elements when taking a slice of an array!
9260
9261 Note that one of the side-effects of miscomputing the offset and
9262 size of each field is that we end up also miscomputing the size
9263 of the containing type. This can have adverse results when computing
9264 the value of an entity. GDB fetches the value of an entity based
9265 on the size of its type, and thus a wrong size causes GDB to fetch
9266 the wrong amount of memory. In the case where the computed size is
9267 too small, GDB fetches too little data to print the value of our
9268 entiry. Results in this case as unpredicatble, as we usually read
9269 past the buffer containing the data =:-o. */
9270
9271 /* Implement the evaluate_exp routine in the exp_descriptor structure
9272 for the Ada language. */
9273
9274 static struct value *
9275 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
9276 int *pos, enum noside noside)
9277 {
9278 enum exp_opcode op;
9279 int tem;
9280 int pc;
9281 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
9282 struct type *type;
9283 int nargs, oplen;
9284 struct value **argvec;
9285
9286 pc = *pos;
9287 *pos += 1;
9288 op = exp->elts[pc].opcode;
9289
9290 switch (op)
9291 {
9292 default:
9293 *pos -= 1;
9294 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9295 arg1 = unwrap_value (arg1);
9296
9297 /* If evaluating an OP_DOUBLE and an EXPECT_TYPE was provided,
9298 then we need to perform the conversion manually, because
9299 evaluate_subexp_standard doesn't do it. This conversion is
9300 necessary in Ada because the different kinds of float/fixed
9301 types in Ada have different representations.
9302
9303 Similarly, we need to perform the conversion from OP_LONG
9304 ourselves. */
9305 if ((op == OP_DOUBLE || op == OP_LONG) && expect_type != NULL)
9306 arg1 = ada_value_cast (expect_type, arg1, noside);
9307
9308 return arg1;
9309
9310 case OP_STRING:
9311 {
9312 struct value *result;
9313
9314 *pos -= 1;
9315 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
9316 /* The result type will have code OP_STRING, bashed there from
9317 OP_ARRAY. Bash it back. */
9318 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
9319 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
9320 return result;
9321 }
9322
9323 case UNOP_CAST:
9324 (*pos) += 2;
9325 type = exp->elts[pc + 1].type;
9326 arg1 = evaluate_subexp (type, exp, pos, noside);
9327 if (noside == EVAL_SKIP)
9328 goto nosideret;
9329 arg1 = ada_value_cast (type, arg1, noside);
9330 return arg1;
9331
9332 case UNOP_QUAL:
9333 (*pos) += 2;
9334 type = exp->elts[pc + 1].type;
9335 return ada_evaluate_subexp (type, exp, pos, noside);
9336
9337 case BINOP_ASSIGN:
9338 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9339 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9340 {
9341 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
9342 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9343 return arg1;
9344 return ada_value_assign (arg1, arg1);
9345 }
9346 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
9347 except if the lhs of our assignment is a convenience variable.
9348 In the case of assigning to a convenience variable, the lhs
9349 should be exactly the result of the evaluation of the rhs. */
9350 type = value_type (arg1);
9351 if (VALUE_LVAL (arg1) == lval_internalvar)
9352 type = NULL;
9353 arg2 = evaluate_subexp (type, exp, pos, noside);
9354 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
9355 return arg1;
9356 if (ada_is_fixed_point_type (value_type (arg1)))
9357 arg2 = cast_to_fixed (value_type (arg1), arg2);
9358 else if (ada_is_fixed_point_type (value_type (arg2)))
9359 error
9360 (_("Fixed-point values must be assigned to fixed-point variables"));
9361 else
9362 arg2 = coerce_for_assign (value_type (arg1), arg2);
9363 return ada_value_assign (arg1, arg2);
9364
9365 case BINOP_ADD:
9366 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9367 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9368 if (noside == EVAL_SKIP)
9369 goto nosideret;
9370 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9371 return (value_from_longest
9372 (value_type (arg1),
9373 value_as_long (arg1) + value_as_long (arg2)));
9374 if ((ada_is_fixed_point_type (value_type (arg1))
9375 || ada_is_fixed_point_type (value_type (arg2)))
9376 && value_type (arg1) != value_type (arg2))
9377 error (_("Operands of fixed-point addition must have the same type"));
9378 /* Do the addition, and cast the result to the type of the first
9379 argument. We cannot cast the result to a reference type, so if
9380 ARG1 is a reference type, find its underlying type. */
9381 type = value_type (arg1);
9382 while (TYPE_CODE (type) == TYPE_CODE_REF)
9383 type = TYPE_TARGET_TYPE (type);
9384 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9385 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
9386
9387 case BINOP_SUB:
9388 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
9389 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
9390 if (noside == EVAL_SKIP)
9391 goto nosideret;
9392 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
9393 return (value_from_longest
9394 (value_type (arg1),
9395 value_as_long (arg1) - value_as_long (arg2)));
9396 if ((ada_is_fixed_point_type (value_type (arg1))
9397 || ada_is_fixed_point_type (value_type (arg2)))
9398 && value_type (arg1) != value_type (arg2))
9399 error (_("Operands of fixed-point subtraction "
9400 "must have the same type"));
9401 /* Do the substraction, and cast the result to the type of the first
9402 argument. We cannot cast the result to a reference type, so if
9403 ARG1 is a reference type, find its underlying type. */
9404 type = value_type (arg1);
9405 while (TYPE_CODE (type) == TYPE_CODE_REF)
9406 type = TYPE_TARGET_TYPE (type);
9407 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9408 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
9409
9410 case BINOP_MUL:
9411 case BINOP_DIV:
9412 case BINOP_REM:
9413 case BINOP_MOD:
9414 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9415 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9416 if (noside == EVAL_SKIP)
9417 goto nosideret;
9418 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9419 {
9420 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9421 return value_zero (value_type (arg1), not_lval);
9422 }
9423 else
9424 {
9425 type = builtin_type (exp->gdbarch)->builtin_double;
9426 if (ada_is_fixed_point_type (value_type (arg1)))
9427 arg1 = cast_from_fixed (type, arg1);
9428 if (ada_is_fixed_point_type (value_type (arg2)))
9429 arg2 = cast_from_fixed (type, arg2);
9430 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9431 return ada_value_binop (arg1, arg2, op);
9432 }
9433
9434 case BINOP_EQUAL:
9435 case BINOP_NOTEQUAL:
9436 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9437 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
9438 if (noside == EVAL_SKIP)
9439 goto nosideret;
9440 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9441 tem = 0;
9442 else
9443 {
9444 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9445 tem = ada_value_equal (arg1, arg2);
9446 }
9447 if (op == BINOP_NOTEQUAL)
9448 tem = !tem;
9449 type = language_bool_type (exp->language_defn, exp->gdbarch);
9450 return value_from_longest (type, (LONGEST) tem);
9451
9452 case UNOP_NEG:
9453 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9454 if (noside == EVAL_SKIP)
9455 goto nosideret;
9456 else if (ada_is_fixed_point_type (value_type (arg1)))
9457 return value_cast (value_type (arg1), value_neg (arg1));
9458 else
9459 {
9460 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
9461 return value_neg (arg1);
9462 }
9463
9464 case BINOP_LOGICAL_AND:
9465 case BINOP_LOGICAL_OR:
9466 case UNOP_LOGICAL_NOT:
9467 {
9468 struct value *val;
9469
9470 *pos -= 1;
9471 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9472 type = language_bool_type (exp->language_defn, exp->gdbarch);
9473 return value_cast (type, val);
9474 }
9475
9476 case BINOP_BITWISE_AND:
9477 case BINOP_BITWISE_IOR:
9478 case BINOP_BITWISE_XOR:
9479 {
9480 struct value *val;
9481
9482 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9483 *pos = pc;
9484 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
9485
9486 return value_cast (value_type (arg1), val);
9487 }
9488
9489 case OP_VAR_VALUE:
9490 *pos -= 1;
9491
9492 if (noside == EVAL_SKIP)
9493 {
9494 *pos += 4;
9495 goto nosideret;
9496 }
9497 else if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
9498 /* Only encountered when an unresolved symbol occurs in a
9499 context other than a function call, in which case, it is
9500 invalid. */
9501 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9502 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
9503 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9504 {
9505 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
9506 /* Check to see if this is a tagged type. We also need to handle
9507 the case where the type is a reference to a tagged type, but
9508 we have to be careful to exclude pointers to tagged types.
9509 The latter should be shown as usual (as a pointer), whereas
9510 a reference should mostly be transparent to the user. */
9511 if (ada_is_tagged_type (type, 0)
9512 || (TYPE_CODE(type) == TYPE_CODE_REF
9513 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
9514 {
9515 /* Tagged types are a little special in the fact that the real
9516 type is dynamic and can only be determined by inspecting the
9517 object's tag. This means that we need to get the object's
9518 value first (EVAL_NORMAL) and then extract the actual object
9519 type from its tag.
9520
9521 Note that we cannot skip the final step where we extract
9522 the object type from its tag, because the EVAL_NORMAL phase
9523 results in dynamic components being resolved into fixed ones.
9524 This can cause problems when trying to print the type
9525 description of tagged types whose parent has a dynamic size:
9526 We use the type name of the "_parent" component in order
9527 to print the name of the ancestor type in the type description.
9528 If that component had a dynamic size, the resolution into
9529 a fixed type would result in the loss of that type name,
9530 thus preventing us from printing the name of the ancestor
9531 type in the type description. */
9532 struct type *actual_type;
9533
9534 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
9535 actual_type = type_from_tag (ada_value_tag (arg1));
9536 if (actual_type == NULL)
9537 /* If, for some reason, we were unable to determine
9538 the actual type from the tag, then use the static
9539 approximation that we just computed as a fallback.
9540 This can happen if the debugging information is
9541 incomplete, for instance. */
9542 actual_type = type;
9543
9544 return value_zero (actual_type, not_lval);
9545 }
9546
9547 *pos += 4;
9548 return value_zero
9549 (to_static_fixed_type
9550 (static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol))),
9551 not_lval);
9552 }
9553 else
9554 {
9555 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
9556 return ada_to_fixed_value (arg1);
9557 }
9558
9559 case OP_FUNCALL:
9560 (*pos) += 2;
9561
9562 /* Allocate arg vector, including space for the function to be
9563 called in argvec[0] and a terminating NULL. */
9564 nargs = longest_to_int (exp->elts[pc + 1].longconst);
9565 argvec =
9566 (struct value **) alloca (sizeof (struct value *) * (nargs + 2));
9567
9568 if (exp->elts[*pos].opcode == OP_VAR_VALUE
9569 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
9570 error (_("Unexpected unresolved symbol, %s, during evaluation"),
9571 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
9572 else
9573 {
9574 for (tem = 0; tem <= nargs; tem += 1)
9575 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9576 argvec[tem] = 0;
9577
9578 if (noside == EVAL_SKIP)
9579 goto nosideret;
9580 }
9581
9582 if (ada_is_constrained_packed_array_type
9583 (desc_base_type (value_type (argvec[0]))))
9584 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
9585 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9586 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
9587 /* This is a packed array that has already been fixed, and
9588 therefore already coerced to a simple array. Nothing further
9589 to do. */
9590 ;
9591 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF
9592 || (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
9593 && VALUE_LVAL (argvec[0]) == lval_memory))
9594 argvec[0] = value_addr (argvec[0]);
9595
9596 type = ada_check_typedef (value_type (argvec[0]));
9597
9598 /* Ada allows us to implicitly dereference arrays when subscripting
9599 them. So, if this is an array typedef (encoding use for array
9600 access types encoded as fat pointers), strip it now. */
9601 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
9602 type = ada_typedef_target_type (type);
9603
9604 if (TYPE_CODE (type) == TYPE_CODE_PTR)
9605 {
9606 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
9607 {
9608 case TYPE_CODE_FUNC:
9609 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9610 break;
9611 case TYPE_CODE_ARRAY:
9612 break;
9613 case TYPE_CODE_STRUCT:
9614 if (noside != EVAL_AVOID_SIDE_EFFECTS)
9615 argvec[0] = ada_value_ind (argvec[0]);
9616 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
9617 break;
9618 default:
9619 error (_("cannot subscript or call something of type `%s'"),
9620 ada_type_name (value_type (argvec[0])));
9621 break;
9622 }
9623 }
9624
9625 switch (TYPE_CODE (type))
9626 {
9627 case TYPE_CODE_FUNC:
9628 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9629 return allocate_value (TYPE_TARGET_TYPE (type));
9630 return call_function_by_hand (argvec[0], nargs, argvec + 1);
9631 case TYPE_CODE_STRUCT:
9632 {
9633 int arity;
9634
9635 arity = ada_array_arity (type);
9636 type = ada_array_element_type (type, nargs);
9637 if (type == NULL)
9638 error (_("cannot subscript or call a record"));
9639 if (arity != nargs)
9640 error (_("wrong number of subscripts; expecting %d"), arity);
9641 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9642 return value_zero (ada_aligned_type (type), lval_memory);
9643 return
9644 unwrap_value (ada_value_subscript
9645 (argvec[0], nargs, argvec + 1));
9646 }
9647 case TYPE_CODE_ARRAY:
9648 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9649 {
9650 type = ada_array_element_type (type, nargs);
9651 if (type == NULL)
9652 error (_("element type of array unknown"));
9653 else
9654 return value_zero (ada_aligned_type (type), lval_memory);
9655 }
9656 return
9657 unwrap_value (ada_value_subscript
9658 (ada_coerce_to_simple_array (argvec[0]),
9659 nargs, argvec + 1));
9660 case TYPE_CODE_PTR: /* Pointer to array */
9661 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
9662 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9663 {
9664 type = ada_array_element_type (type, nargs);
9665 if (type == NULL)
9666 error (_("element type of array unknown"));
9667 else
9668 return value_zero (ada_aligned_type (type), lval_memory);
9669 }
9670 return
9671 unwrap_value (ada_value_ptr_subscript (argvec[0], type,
9672 nargs, argvec + 1));
9673
9674 default:
9675 error (_("Attempt to index or call something other than an "
9676 "array or function"));
9677 }
9678
9679 case TERNOP_SLICE:
9680 {
9681 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9682 struct value *low_bound_val =
9683 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9684 struct value *high_bound_val =
9685 evaluate_subexp (NULL_TYPE, exp, pos, noside);
9686 LONGEST low_bound;
9687 LONGEST high_bound;
9688
9689 low_bound_val = coerce_ref (low_bound_val);
9690 high_bound_val = coerce_ref (high_bound_val);
9691 low_bound = pos_atr (low_bound_val);
9692 high_bound = pos_atr (high_bound_val);
9693
9694 if (noside == EVAL_SKIP)
9695 goto nosideret;
9696
9697 /* If this is a reference to an aligner type, then remove all
9698 the aligners. */
9699 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9700 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
9701 TYPE_TARGET_TYPE (value_type (array)) =
9702 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
9703
9704 if (ada_is_constrained_packed_array_type (value_type (array)))
9705 error (_("cannot slice a packed array"));
9706
9707 /* If this is a reference to an array or an array lvalue,
9708 convert to a pointer. */
9709 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
9710 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
9711 && VALUE_LVAL (array) == lval_memory))
9712 array = value_addr (array);
9713
9714 if (noside == EVAL_AVOID_SIDE_EFFECTS
9715 && ada_is_array_descriptor_type (ada_check_typedef
9716 (value_type (array))))
9717 return empty_array (ada_type_of_array (array, 0), low_bound);
9718
9719 array = ada_coerce_to_simple_array_ptr (array);
9720
9721 /* If we have more than one level of pointer indirection,
9722 dereference the value until we get only one level. */
9723 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
9724 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
9725 == TYPE_CODE_PTR))
9726 array = value_ind (array);
9727
9728 /* Make sure we really do have an array type before going further,
9729 to avoid a SEGV when trying to get the index type or the target
9730 type later down the road if the debug info generated by
9731 the compiler is incorrect or incomplete. */
9732 if (!ada_is_simple_array_type (value_type (array)))
9733 error (_("cannot take slice of non-array"));
9734
9735 if (TYPE_CODE (ada_check_typedef (value_type (array)))
9736 == TYPE_CODE_PTR)
9737 {
9738 struct type *type0 = ada_check_typedef (value_type (array));
9739
9740 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
9741 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
9742 else
9743 {
9744 struct type *arr_type0 =
9745 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
9746
9747 return ada_value_slice_from_ptr (array, arr_type0,
9748 longest_to_int (low_bound),
9749 longest_to_int (high_bound));
9750 }
9751 }
9752 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9753 return array;
9754 else if (high_bound < low_bound)
9755 return empty_array (value_type (array), low_bound);
9756 else
9757 return ada_value_slice (array, longest_to_int (low_bound),
9758 longest_to_int (high_bound));
9759 }
9760
9761 case UNOP_IN_RANGE:
9762 (*pos) += 2;
9763 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9764 type = check_typedef (exp->elts[pc + 1].type);
9765
9766 if (noside == EVAL_SKIP)
9767 goto nosideret;
9768
9769 switch (TYPE_CODE (type))
9770 {
9771 default:
9772 lim_warning (_("Membership test incompletely implemented; "
9773 "always returns true"));
9774 type = language_bool_type (exp->language_defn, exp->gdbarch);
9775 return value_from_longest (type, (LONGEST) 1);
9776
9777 case TYPE_CODE_RANGE:
9778 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
9779 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
9780 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9781 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9782 type = language_bool_type (exp->language_defn, exp->gdbarch);
9783 return
9784 value_from_longest (type,
9785 (value_less (arg1, arg3)
9786 || value_equal (arg1, arg3))
9787 && (value_less (arg2, arg1)
9788 || value_equal (arg2, arg1)));
9789 }
9790
9791 case BINOP_IN_BOUNDS:
9792 (*pos) += 2;
9793 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9794 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9795
9796 if (noside == EVAL_SKIP)
9797 goto nosideret;
9798
9799 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9800 {
9801 type = language_bool_type (exp->language_defn, exp->gdbarch);
9802 return value_zero (type, not_lval);
9803 }
9804
9805 tem = longest_to_int (exp->elts[pc + 1].longconst);
9806
9807 type = ada_index_type (value_type (arg2), tem, "range");
9808 if (!type)
9809 type = value_type (arg1);
9810
9811 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
9812 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
9813
9814 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9815 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9816 type = language_bool_type (exp->language_defn, exp->gdbarch);
9817 return
9818 value_from_longest (type,
9819 (value_less (arg1, arg3)
9820 || value_equal (arg1, arg3))
9821 && (value_less (arg2, arg1)
9822 || value_equal (arg2, arg1)));
9823
9824 case TERNOP_IN_RANGE:
9825 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9826 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9827 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9828
9829 if (noside == EVAL_SKIP)
9830 goto nosideret;
9831
9832 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9833 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
9834 type = language_bool_type (exp->language_defn, exp->gdbarch);
9835 return
9836 value_from_longest (type,
9837 (value_less (arg1, arg3)
9838 || value_equal (arg1, arg3))
9839 && (value_less (arg2, arg1)
9840 || value_equal (arg2, arg1)));
9841
9842 case OP_ATR_FIRST:
9843 case OP_ATR_LAST:
9844 case OP_ATR_LENGTH:
9845 {
9846 struct type *type_arg;
9847
9848 if (exp->elts[*pos].opcode == OP_TYPE)
9849 {
9850 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9851 arg1 = NULL;
9852 type_arg = check_typedef (exp->elts[pc + 2].type);
9853 }
9854 else
9855 {
9856 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9857 type_arg = NULL;
9858 }
9859
9860 if (exp->elts[*pos].opcode != OP_LONG)
9861 error (_("Invalid operand to '%s"), ada_attribute_name (op));
9862 tem = longest_to_int (exp->elts[*pos + 2].longconst);
9863 *pos += 4;
9864
9865 if (noside == EVAL_SKIP)
9866 goto nosideret;
9867
9868 if (type_arg == NULL)
9869 {
9870 arg1 = ada_coerce_ref (arg1);
9871
9872 if (ada_is_constrained_packed_array_type (value_type (arg1)))
9873 arg1 = ada_coerce_to_simple_array (arg1);
9874
9875 type = ada_index_type (value_type (arg1), tem,
9876 ada_attribute_name (op));
9877 if (type == NULL)
9878 type = builtin_type (exp->gdbarch)->builtin_int;
9879
9880 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9881 return allocate_value (type);
9882
9883 switch (op)
9884 {
9885 default: /* Should never happen. */
9886 error (_("unexpected attribute encountered"));
9887 case OP_ATR_FIRST:
9888 return value_from_longest
9889 (type, ada_array_bound (arg1, tem, 0));
9890 case OP_ATR_LAST:
9891 return value_from_longest
9892 (type, ada_array_bound (arg1, tem, 1));
9893 case OP_ATR_LENGTH:
9894 return value_from_longest
9895 (type, ada_array_length (arg1, tem));
9896 }
9897 }
9898 else if (discrete_type_p (type_arg))
9899 {
9900 struct type *range_type;
9901 const char *name = ada_type_name (type_arg);
9902
9903 range_type = NULL;
9904 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
9905 range_type = to_fixed_range_type (type_arg, NULL);
9906 if (range_type == NULL)
9907 range_type = type_arg;
9908 switch (op)
9909 {
9910 default:
9911 error (_("unexpected attribute encountered"));
9912 case OP_ATR_FIRST:
9913 return value_from_longest
9914 (range_type, ada_discrete_type_low_bound (range_type));
9915 case OP_ATR_LAST:
9916 return value_from_longest
9917 (range_type, ada_discrete_type_high_bound (range_type));
9918 case OP_ATR_LENGTH:
9919 error (_("the 'length attribute applies only to array types"));
9920 }
9921 }
9922 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
9923 error (_("unimplemented type attribute"));
9924 else
9925 {
9926 LONGEST low, high;
9927
9928 if (ada_is_constrained_packed_array_type (type_arg))
9929 type_arg = decode_constrained_packed_array_type (type_arg);
9930
9931 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
9932 if (type == NULL)
9933 type = builtin_type (exp->gdbarch)->builtin_int;
9934
9935 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9936 return allocate_value (type);
9937
9938 switch (op)
9939 {
9940 default:
9941 error (_("unexpected attribute encountered"));
9942 case OP_ATR_FIRST:
9943 low = ada_array_bound_from_type (type_arg, tem, 0);
9944 return value_from_longest (type, low);
9945 case OP_ATR_LAST:
9946 high = ada_array_bound_from_type (type_arg, tem, 1);
9947 return value_from_longest (type, high);
9948 case OP_ATR_LENGTH:
9949 low = ada_array_bound_from_type (type_arg, tem, 0);
9950 high = ada_array_bound_from_type (type_arg, tem, 1);
9951 return value_from_longest (type, high - low + 1);
9952 }
9953 }
9954 }
9955
9956 case OP_ATR_TAG:
9957 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9958 if (noside == EVAL_SKIP)
9959 goto nosideret;
9960
9961 if (noside == EVAL_AVOID_SIDE_EFFECTS)
9962 return value_zero (ada_tag_type (arg1), not_lval);
9963
9964 return ada_value_tag (arg1);
9965
9966 case OP_ATR_MIN:
9967 case OP_ATR_MAX:
9968 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9969 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9970 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
9971 if (noside == EVAL_SKIP)
9972 goto nosideret;
9973 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
9974 return value_zero (value_type (arg1), not_lval);
9975 else
9976 {
9977 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
9978 return value_binop (arg1, arg2,
9979 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
9980 }
9981
9982 case OP_ATR_MODULUS:
9983 {
9984 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
9985
9986 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
9987 if (noside == EVAL_SKIP)
9988 goto nosideret;
9989
9990 if (!ada_is_modular_type (type_arg))
9991 error (_("'modulus must be applied to modular type"));
9992
9993 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
9994 ada_modulus (type_arg));
9995 }
9996
9997
9998 case OP_ATR_POS:
9999 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10000 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10001 if (noside == EVAL_SKIP)
10002 goto nosideret;
10003 type = builtin_type (exp->gdbarch)->builtin_int;
10004 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10005 return value_zero (type, not_lval);
10006 else
10007 return value_pos_atr (type, arg1);
10008
10009 case OP_ATR_SIZE:
10010 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10011 type = value_type (arg1);
10012
10013 /* If the argument is a reference, then dereference its type, since
10014 the user is really asking for the size of the actual object,
10015 not the size of the pointer. */
10016 if (TYPE_CODE (type) == TYPE_CODE_REF)
10017 type = TYPE_TARGET_TYPE (type);
10018
10019 if (noside == EVAL_SKIP)
10020 goto nosideret;
10021 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10022 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
10023 else
10024 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
10025 TARGET_CHAR_BIT * TYPE_LENGTH (type));
10026
10027 case OP_ATR_VAL:
10028 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
10029 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10030 type = exp->elts[pc + 2].type;
10031 if (noside == EVAL_SKIP)
10032 goto nosideret;
10033 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10034 return value_zero (type, not_lval);
10035 else
10036 return value_val_atr (type, arg1);
10037
10038 case BINOP_EXP:
10039 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10040 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10041 if (noside == EVAL_SKIP)
10042 goto nosideret;
10043 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10044 return value_zero (value_type (arg1), not_lval);
10045 else
10046 {
10047 /* For integer exponentiation operations,
10048 only promote the first argument. */
10049 if (is_integral_type (value_type (arg2)))
10050 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10051 else
10052 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10053
10054 return value_binop (arg1, arg2, op);
10055 }
10056
10057 case UNOP_PLUS:
10058 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10059 if (noside == EVAL_SKIP)
10060 goto nosideret;
10061 else
10062 return arg1;
10063
10064 case UNOP_ABS:
10065 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10066 if (noside == EVAL_SKIP)
10067 goto nosideret;
10068 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10069 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
10070 return value_neg (arg1);
10071 else
10072 return arg1;
10073
10074 case UNOP_IND:
10075 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10076 if (noside == EVAL_SKIP)
10077 goto nosideret;
10078 type = ada_check_typedef (value_type (arg1));
10079 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10080 {
10081 if (ada_is_array_descriptor_type (type))
10082 /* GDB allows dereferencing GNAT array descriptors. */
10083 {
10084 struct type *arrType = ada_type_of_array (arg1, 0);
10085
10086 if (arrType == NULL)
10087 error (_("Attempt to dereference null array pointer."));
10088 return value_at_lazy (arrType, 0);
10089 }
10090 else if (TYPE_CODE (type) == TYPE_CODE_PTR
10091 || TYPE_CODE (type) == TYPE_CODE_REF
10092 /* In C you can dereference an array to get the 1st elt. */
10093 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
10094 {
10095 type = to_static_fixed_type
10096 (ada_aligned_type
10097 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
10098 check_size (type);
10099 return value_zero (type, lval_memory);
10100 }
10101 else if (TYPE_CODE (type) == TYPE_CODE_INT)
10102 {
10103 /* GDB allows dereferencing an int. */
10104 if (expect_type == NULL)
10105 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10106 lval_memory);
10107 else
10108 {
10109 expect_type =
10110 to_static_fixed_type (ada_aligned_type (expect_type));
10111 return value_zero (expect_type, lval_memory);
10112 }
10113 }
10114 else
10115 error (_("Attempt to take contents of a non-pointer value."));
10116 }
10117 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
10118 type = ada_check_typedef (value_type (arg1));
10119
10120 if (TYPE_CODE (type) == TYPE_CODE_INT)
10121 /* GDB allows dereferencing an int. If we were given
10122 the expect_type, then use that as the target type.
10123 Otherwise, assume that the target type is an int. */
10124 {
10125 if (expect_type != NULL)
10126 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
10127 arg1));
10128 else
10129 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
10130 (CORE_ADDR) value_as_address (arg1));
10131 }
10132
10133 if (ada_is_array_descriptor_type (type))
10134 /* GDB allows dereferencing GNAT array descriptors. */
10135 return ada_coerce_to_simple_array (arg1);
10136 else
10137 return ada_value_ind (arg1);
10138
10139 case STRUCTOP_STRUCT:
10140 tem = longest_to_int (exp->elts[pc + 1].longconst);
10141 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
10142 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10143 if (noside == EVAL_SKIP)
10144 goto nosideret;
10145 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10146 {
10147 struct type *type1 = value_type (arg1);
10148
10149 if (ada_is_tagged_type (type1, 1))
10150 {
10151 type = ada_lookup_struct_elt_type (type1,
10152 &exp->elts[pc + 2].string,
10153 1, 1, NULL);
10154 if (type == NULL)
10155 /* In this case, we assume that the field COULD exist
10156 in some extension of the type. Return an object of
10157 "type" void, which will match any formal
10158 (see ada_type_match). */
10159 return value_zero (builtin_type (exp->gdbarch)->builtin_void,
10160 lval_memory);
10161 }
10162 else
10163 type =
10164 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
10165 0, NULL);
10166
10167 return value_zero (ada_aligned_type (type), lval_memory);
10168 }
10169 else
10170 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
10171 arg1 = unwrap_value (arg1);
10172 return ada_to_fixed_value (arg1);
10173
10174 case OP_TYPE:
10175 /* The value is not supposed to be used. This is here to make it
10176 easier to accommodate expressions that contain types. */
10177 (*pos) += 2;
10178 if (noside == EVAL_SKIP)
10179 goto nosideret;
10180 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10181 return allocate_value (exp->elts[pc + 1].type);
10182 else
10183 error (_("Attempt to use a type name as an expression"));
10184
10185 case OP_AGGREGATE:
10186 case OP_CHOICES:
10187 case OP_OTHERS:
10188 case OP_DISCRETE_RANGE:
10189 case OP_POSITIONAL:
10190 case OP_NAME:
10191 if (noside == EVAL_NORMAL)
10192 switch (op)
10193 {
10194 case OP_NAME:
10195 error (_("Undefined name, ambiguous name, or renaming used in "
10196 "component association: %s."), &exp->elts[pc+2].string);
10197 case OP_AGGREGATE:
10198 error (_("Aggregates only allowed on the right of an assignment"));
10199 default:
10200 internal_error (__FILE__, __LINE__,
10201 _("aggregate apparently mangled"));
10202 }
10203
10204 ada_forward_operator_length (exp, pc, &oplen, &nargs);
10205 *pos += oplen - 1;
10206 for (tem = 0; tem < nargs; tem += 1)
10207 ada_evaluate_subexp (NULL, exp, pos, noside);
10208 goto nosideret;
10209 }
10210
10211 nosideret:
10212 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
10213 }
10214 \f
10215
10216 /* Fixed point */
10217
10218 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
10219 type name that encodes the 'small and 'delta information.
10220 Otherwise, return NULL. */
10221
10222 static const char *
10223 fixed_type_info (struct type *type)
10224 {
10225 const char *name = ada_type_name (type);
10226 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
10227
10228 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
10229 {
10230 const char *tail = strstr (name, "___XF_");
10231
10232 if (tail == NULL)
10233 return NULL;
10234 else
10235 return tail + 5;
10236 }
10237 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
10238 return fixed_type_info (TYPE_TARGET_TYPE (type));
10239 else
10240 return NULL;
10241 }
10242
10243 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
10244
10245 int
10246 ada_is_fixed_point_type (struct type *type)
10247 {
10248 return fixed_type_info (type) != NULL;
10249 }
10250
10251 /* Return non-zero iff TYPE represents a System.Address type. */
10252
10253 int
10254 ada_is_system_address_type (struct type *type)
10255 {
10256 return (TYPE_NAME (type)
10257 && strcmp (TYPE_NAME (type), "system__address") == 0);
10258 }
10259
10260 /* Assuming that TYPE is the representation of an Ada fixed-point
10261 type, return its delta, or -1 if the type is malformed and the
10262 delta cannot be determined. */
10263
10264 DOUBLEST
10265 ada_delta (struct type *type)
10266 {
10267 const char *encoding = fixed_type_info (type);
10268 DOUBLEST num, den;
10269
10270 /* Strictly speaking, num and den are encoded as integer. However,
10271 they may not fit into a long, and they will have to be converted
10272 to DOUBLEST anyway. So scan them as DOUBLEST. */
10273 if (sscanf (encoding, "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10274 &num, &den) < 2)
10275 return -1.0;
10276 else
10277 return num / den;
10278 }
10279
10280 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
10281 factor ('SMALL value) associated with the type. */
10282
10283 static DOUBLEST
10284 scaling_factor (struct type *type)
10285 {
10286 const char *encoding = fixed_type_info (type);
10287 DOUBLEST num0, den0, num1, den1;
10288 int n;
10289
10290 /* Strictly speaking, num's and den's are encoded as integer. However,
10291 they may not fit into a long, and they will have to be converted
10292 to DOUBLEST anyway. So scan them as DOUBLEST. */
10293 n = sscanf (encoding,
10294 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT
10295 "_%" DOUBLEST_SCAN_FORMAT "_%" DOUBLEST_SCAN_FORMAT,
10296 &num0, &den0, &num1, &den1);
10297
10298 if (n < 2)
10299 return 1.0;
10300 else if (n == 4)
10301 return num1 / den1;
10302 else
10303 return num0 / den0;
10304 }
10305
10306
10307 /* Assuming that X is the representation of a value of fixed-point
10308 type TYPE, return its floating-point equivalent. */
10309
10310 DOUBLEST
10311 ada_fixed_to_float (struct type *type, LONGEST x)
10312 {
10313 return (DOUBLEST) x *scaling_factor (type);
10314 }
10315
10316 /* The representation of a fixed-point value of type TYPE
10317 corresponding to the value X. */
10318
10319 LONGEST
10320 ada_float_to_fixed (struct type *type, DOUBLEST x)
10321 {
10322 return (LONGEST) (x / scaling_factor (type) + 0.5);
10323 }
10324
10325 \f
10326
10327 /* Range types */
10328
10329 /* Scan STR beginning at position K for a discriminant name, and
10330 return the value of that discriminant field of DVAL in *PX. If
10331 PNEW_K is not null, put the position of the character beyond the
10332 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
10333 not alter *PX and *PNEW_K if unsuccessful. */
10334
10335 static int
10336 scan_discrim_bound (char *str, int k, struct value *dval, LONGEST * px,
10337 int *pnew_k)
10338 {
10339 static char *bound_buffer = NULL;
10340 static size_t bound_buffer_len = 0;
10341 char *bound;
10342 char *pend;
10343 struct value *bound_val;
10344
10345 if (dval == NULL || str == NULL || str[k] == '\0')
10346 return 0;
10347
10348 pend = strstr (str + k, "__");
10349 if (pend == NULL)
10350 {
10351 bound = str + k;
10352 k += strlen (bound);
10353 }
10354 else
10355 {
10356 GROW_VECT (bound_buffer, bound_buffer_len, pend - (str + k) + 1);
10357 bound = bound_buffer;
10358 strncpy (bound_buffer, str + k, pend - (str + k));
10359 bound[pend - (str + k)] = '\0';
10360 k = pend - str;
10361 }
10362
10363 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
10364 if (bound_val == NULL)
10365 return 0;
10366
10367 *px = value_as_long (bound_val);
10368 if (pnew_k != NULL)
10369 *pnew_k = k;
10370 return 1;
10371 }
10372
10373 /* Value of variable named NAME in the current environment. If
10374 no such variable found, then if ERR_MSG is null, returns 0, and
10375 otherwise causes an error with message ERR_MSG. */
10376
10377 static struct value *
10378 get_var_value (char *name, char *err_msg)
10379 {
10380 struct ada_symbol_info *syms;
10381 int nsyms;
10382
10383 nsyms = ada_lookup_symbol_list (name, get_selected_block (0), VAR_DOMAIN,
10384 &syms, 1);
10385
10386 if (nsyms != 1)
10387 {
10388 if (err_msg == NULL)
10389 return 0;
10390 else
10391 error (("%s"), err_msg);
10392 }
10393
10394 return value_of_variable (syms[0].sym, syms[0].block);
10395 }
10396
10397 /* Value of integer variable named NAME in the current environment. If
10398 no such variable found, returns 0, and sets *FLAG to 0. If
10399 successful, sets *FLAG to 1. */
10400
10401 LONGEST
10402 get_int_var_value (char *name, int *flag)
10403 {
10404 struct value *var_val = get_var_value (name, 0);
10405
10406 if (var_val == 0)
10407 {
10408 if (flag != NULL)
10409 *flag = 0;
10410 return 0;
10411 }
10412 else
10413 {
10414 if (flag != NULL)
10415 *flag = 1;
10416 return value_as_long (var_val);
10417 }
10418 }
10419
10420
10421 /* Return a range type whose base type is that of the range type named
10422 NAME in the current environment, and whose bounds are calculated
10423 from NAME according to the GNAT range encoding conventions.
10424 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
10425 corresponding range type from debug information; fall back to using it
10426 if symbol lookup fails. If a new type must be created, allocate it
10427 like ORIG_TYPE was. The bounds information, in general, is encoded
10428 in NAME, the base type given in the named range type. */
10429
10430 static struct type *
10431 to_fixed_range_type (struct type *raw_type, struct value *dval)
10432 {
10433 const char *name;
10434 struct type *base_type;
10435 char *subtype_info;
10436
10437 gdb_assert (raw_type != NULL);
10438 gdb_assert (TYPE_NAME (raw_type) != NULL);
10439
10440 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
10441 base_type = TYPE_TARGET_TYPE (raw_type);
10442 else
10443 base_type = raw_type;
10444
10445 name = TYPE_NAME (raw_type);
10446 subtype_info = strstr (name, "___XD");
10447 if (subtype_info == NULL)
10448 {
10449 LONGEST L = ada_discrete_type_low_bound (raw_type);
10450 LONGEST U = ada_discrete_type_high_bound (raw_type);
10451
10452 if (L < INT_MIN || U > INT_MAX)
10453 return raw_type;
10454 else
10455 return create_range_type (alloc_type_copy (raw_type), raw_type,
10456 ada_discrete_type_low_bound (raw_type),
10457 ada_discrete_type_high_bound (raw_type));
10458 }
10459 else
10460 {
10461 static char *name_buf = NULL;
10462 static size_t name_len = 0;
10463 int prefix_len = subtype_info - name;
10464 LONGEST L, U;
10465 struct type *type;
10466 char *bounds_str;
10467 int n;
10468
10469 GROW_VECT (name_buf, name_len, prefix_len + 5);
10470 strncpy (name_buf, name, prefix_len);
10471 name_buf[prefix_len] = '\0';
10472
10473 subtype_info += 5;
10474 bounds_str = strchr (subtype_info, '_');
10475 n = 1;
10476
10477 if (*subtype_info == 'L')
10478 {
10479 if (!ada_scan_number (bounds_str, n, &L, &n)
10480 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
10481 return raw_type;
10482 if (bounds_str[n] == '_')
10483 n += 2;
10484 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
10485 n += 1;
10486 subtype_info += 1;
10487 }
10488 else
10489 {
10490 int ok;
10491
10492 strcpy (name_buf + prefix_len, "___L");
10493 L = get_int_var_value (name_buf, &ok);
10494 if (!ok)
10495 {
10496 lim_warning (_("Unknown lower bound, using 1."));
10497 L = 1;
10498 }
10499 }
10500
10501 if (*subtype_info == 'U')
10502 {
10503 if (!ada_scan_number (bounds_str, n, &U, &n)
10504 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
10505 return raw_type;
10506 }
10507 else
10508 {
10509 int ok;
10510
10511 strcpy (name_buf + prefix_len, "___U");
10512 U = get_int_var_value (name_buf, &ok);
10513 if (!ok)
10514 {
10515 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
10516 U = L;
10517 }
10518 }
10519
10520 type = create_range_type (alloc_type_copy (raw_type), base_type, L, U);
10521 TYPE_NAME (type) = name;
10522 return type;
10523 }
10524 }
10525
10526 /* True iff NAME is the name of a range type. */
10527
10528 int
10529 ada_is_range_type_name (const char *name)
10530 {
10531 return (name != NULL && strstr (name, "___XD"));
10532 }
10533 \f
10534
10535 /* Modular types */
10536
10537 /* True iff TYPE is an Ada modular type. */
10538
10539 int
10540 ada_is_modular_type (struct type *type)
10541 {
10542 struct type *subranged_type = get_base_type (type);
10543
10544 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
10545 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
10546 && TYPE_UNSIGNED (subranged_type));
10547 }
10548
10549 /* Try to determine the lower and upper bounds of the given modular type
10550 using the type name only. Return non-zero and set L and U as the lower
10551 and upper bounds (respectively) if successful. */
10552
10553 int
10554 ada_modulus_from_name (struct type *type, ULONGEST *modulus)
10555 {
10556 const char *name = ada_type_name (type);
10557 const char *suffix;
10558 int k;
10559 LONGEST U;
10560
10561 if (name == NULL)
10562 return 0;
10563
10564 /* Discrete type bounds are encoded using an __XD suffix. In our case,
10565 we are looking for static bounds, which means an __XDLU suffix.
10566 Moreover, we know that the lower bound of modular types is always
10567 zero, so the actual suffix should start with "__XDLU_0__", and
10568 then be followed by the upper bound value. */
10569 suffix = strstr (name, "__XDLU_0__");
10570 if (suffix == NULL)
10571 return 0;
10572 k = 10;
10573 if (!ada_scan_number (suffix, k, &U, NULL))
10574 return 0;
10575
10576 *modulus = (ULONGEST) U + 1;
10577 return 1;
10578 }
10579
10580 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
10581
10582 ULONGEST
10583 ada_modulus (struct type *type)
10584 {
10585 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
10586 }
10587 \f
10588
10589 /* Ada exception catchpoint support:
10590 ---------------------------------
10591
10592 We support 3 kinds of exception catchpoints:
10593 . catchpoints on Ada exceptions
10594 . catchpoints on unhandled Ada exceptions
10595 . catchpoints on failed assertions
10596
10597 Exceptions raised during failed assertions, or unhandled exceptions
10598 could perfectly be caught with the general catchpoint on Ada exceptions.
10599 However, we can easily differentiate these two special cases, and having
10600 the option to distinguish these two cases from the rest can be useful
10601 to zero-in on certain situations.
10602
10603 Exception catchpoints are a specialized form of breakpoint,
10604 since they rely on inserting breakpoints inside known routines
10605 of the GNAT runtime. The implementation therefore uses a standard
10606 breakpoint structure of the BP_BREAKPOINT type, but with its own set
10607 of breakpoint_ops.
10608
10609 Support in the runtime for exception catchpoints have been changed
10610 a few times already, and these changes affect the implementation
10611 of these catchpoints. In order to be able to support several
10612 variants of the runtime, we use a sniffer that will determine
10613 the runtime variant used by the program being debugged. */
10614
10615 /* The different types of catchpoints that we introduced for catching
10616 Ada exceptions. */
10617
10618 enum exception_catchpoint_kind
10619 {
10620 ex_catch_exception,
10621 ex_catch_exception_unhandled,
10622 ex_catch_assert
10623 };
10624
10625 /* Ada's standard exceptions. */
10626
10627 static char *standard_exc[] = {
10628 "constraint_error",
10629 "program_error",
10630 "storage_error",
10631 "tasking_error"
10632 };
10633
10634 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
10635
10636 /* A structure that describes how to support exception catchpoints
10637 for a given executable. */
10638
10639 struct exception_support_info
10640 {
10641 /* The name of the symbol to break on in order to insert
10642 a catchpoint on exceptions. */
10643 const char *catch_exception_sym;
10644
10645 /* The name of the symbol to break on in order to insert
10646 a catchpoint on unhandled exceptions. */
10647 const char *catch_exception_unhandled_sym;
10648
10649 /* The name of the symbol to break on in order to insert
10650 a catchpoint on failed assertions. */
10651 const char *catch_assert_sym;
10652
10653 /* Assuming that the inferior just triggered an unhandled exception
10654 catchpoint, this function is responsible for returning the address
10655 in inferior memory where the name of that exception is stored.
10656 Return zero if the address could not be computed. */
10657 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
10658 };
10659
10660 static CORE_ADDR ada_unhandled_exception_name_addr (void);
10661 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
10662
10663 /* The following exception support info structure describes how to
10664 implement exception catchpoints with the latest version of the
10665 Ada runtime (as of 2007-03-06). */
10666
10667 static const struct exception_support_info default_exception_support_info =
10668 {
10669 "__gnat_debug_raise_exception", /* catch_exception_sym */
10670 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10671 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
10672 ada_unhandled_exception_name_addr
10673 };
10674
10675 /* The following exception support info structure describes how to
10676 implement exception catchpoints with a slightly older version
10677 of the Ada runtime. */
10678
10679 static const struct exception_support_info exception_support_info_fallback =
10680 {
10681 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
10682 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
10683 "system__assertions__raise_assert_failure", /* catch_assert_sym */
10684 ada_unhandled_exception_name_addr_from_raise
10685 };
10686
10687 /* Return nonzero if we can detect the exception support routines
10688 described in EINFO.
10689
10690 This function errors out if an abnormal situation is detected
10691 (for instance, if we find the exception support routines, but
10692 that support is found to be incomplete). */
10693
10694 static int
10695 ada_has_this_exception_support (const struct exception_support_info *einfo)
10696 {
10697 struct symbol *sym;
10698
10699 /* The symbol we're looking up is provided by a unit in the GNAT runtime
10700 that should be compiled with debugging information. As a result, we
10701 expect to find that symbol in the symtabs. */
10702
10703 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
10704 if (sym == NULL)
10705 {
10706 /* Perhaps we did not find our symbol because the Ada runtime was
10707 compiled without debugging info, or simply stripped of it.
10708 It happens on some GNU/Linux distributions for instance, where
10709 users have to install a separate debug package in order to get
10710 the runtime's debugging info. In that situation, let the user
10711 know why we cannot insert an Ada exception catchpoint.
10712
10713 Note: Just for the purpose of inserting our Ada exception
10714 catchpoint, we could rely purely on the associated minimal symbol.
10715 But we would be operating in degraded mode anyway, since we are
10716 still lacking the debugging info needed later on to extract
10717 the name of the exception being raised (this name is printed in
10718 the catchpoint message, and is also used when trying to catch
10719 a specific exception). We do not handle this case for now. */
10720 if (lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL))
10721 error (_("Your Ada runtime appears to be missing some debugging "
10722 "information.\nCannot insert Ada exception catchpoint "
10723 "in this configuration."));
10724
10725 return 0;
10726 }
10727
10728 /* Make sure that the symbol we found corresponds to a function. */
10729
10730 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
10731 error (_("Symbol \"%s\" is not a function (class = %d)"),
10732 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
10733
10734 return 1;
10735 }
10736
10737 /* Inspect the Ada runtime and determine which exception info structure
10738 should be used to provide support for exception catchpoints.
10739
10740 This function will always set the per-inferior exception_info,
10741 or raise an error. */
10742
10743 static void
10744 ada_exception_support_info_sniffer (void)
10745 {
10746 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10747 struct symbol *sym;
10748
10749 /* If the exception info is already known, then no need to recompute it. */
10750 if (data->exception_info != NULL)
10751 return;
10752
10753 /* Check the latest (default) exception support info. */
10754 if (ada_has_this_exception_support (&default_exception_support_info))
10755 {
10756 data->exception_info = &default_exception_support_info;
10757 return;
10758 }
10759
10760 /* Try our fallback exception suport info. */
10761 if (ada_has_this_exception_support (&exception_support_info_fallback))
10762 {
10763 data->exception_info = &exception_support_info_fallback;
10764 return;
10765 }
10766
10767 /* Sometimes, it is normal for us to not be able to find the routine
10768 we are looking for. This happens when the program is linked with
10769 the shared version of the GNAT runtime, and the program has not been
10770 started yet. Inform the user of these two possible causes if
10771 applicable. */
10772
10773 if (ada_update_initial_language (language_unknown) != language_ada)
10774 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
10775
10776 /* If the symbol does not exist, then check that the program is
10777 already started, to make sure that shared libraries have been
10778 loaded. If it is not started, this may mean that the symbol is
10779 in a shared library. */
10780
10781 if (ptid_get_pid (inferior_ptid) == 0)
10782 error (_("Unable to insert catchpoint. Try to start the program first."));
10783
10784 /* At this point, we know that we are debugging an Ada program and
10785 that the inferior has been started, but we still are not able to
10786 find the run-time symbols. That can mean that we are in
10787 configurable run time mode, or that a-except as been optimized
10788 out by the linker... In any case, at this point it is not worth
10789 supporting this feature. */
10790
10791 error (_("Cannot insert Ada exception catchpoints in this configuration."));
10792 }
10793
10794 /* True iff FRAME is very likely to be that of a function that is
10795 part of the runtime system. This is all very heuristic, but is
10796 intended to be used as advice as to what frames are uninteresting
10797 to most users. */
10798
10799 static int
10800 is_known_support_routine (struct frame_info *frame)
10801 {
10802 struct symtab_and_line sal;
10803 const char *func_name;
10804 enum language func_lang;
10805 int i;
10806
10807 /* If this code does not have any debugging information (no symtab),
10808 This cannot be any user code. */
10809
10810 find_frame_sal (frame, &sal);
10811 if (sal.symtab == NULL)
10812 return 1;
10813
10814 /* If there is a symtab, but the associated source file cannot be
10815 located, then assume this is not user code: Selecting a frame
10816 for which we cannot display the code would not be very helpful
10817 for the user. This should also take care of case such as VxWorks
10818 where the kernel has some debugging info provided for a few units. */
10819
10820 if (symtab_to_fullname (sal.symtab) == NULL)
10821 return 1;
10822
10823 /* Check the unit filename againt the Ada runtime file naming.
10824 We also check the name of the objfile against the name of some
10825 known system libraries that sometimes come with debugging info
10826 too. */
10827
10828 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
10829 {
10830 re_comp (known_runtime_file_name_patterns[i]);
10831 if (re_exec (sal.symtab->filename))
10832 return 1;
10833 if (sal.symtab->objfile != NULL
10834 && re_exec (sal.symtab->objfile->name))
10835 return 1;
10836 }
10837
10838 /* Check whether the function is a GNAT-generated entity. */
10839
10840 find_frame_funname (frame, &func_name, &func_lang, NULL);
10841 if (func_name == NULL)
10842 return 1;
10843
10844 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
10845 {
10846 re_comp (known_auxiliary_function_name_patterns[i]);
10847 if (re_exec (func_name))
10848 return 1;
10849 }
10850
10851 return 0;
10852 }
10853
10854 /* Find the first frame that contains debugging information and that is not
10855 part of the Ada run-time, starting from FI and moving upward. */
10856
10857 void
10858 ada_find_printable_frame (struct frame_info *fi)
10859 {
10860 for (; fi != NULL; fi = get_prev_frame (fi))
10861 {
10862 if (!is_known_support_routine (fi))
10863 {
10864 select_frame (fi);
10865 break;
10866 }
10867 }
10868
10869 }
10870
10871 /* Assuming that the inferior just triggered an unhandled exception
10872 catchpoint, return the address in inferior memory where the name
10873 of the exception is stored.
10874
10875 Return zero if the address could not be computed. */
10876
10877 static CORE_ADDR
10878 ada_unhandled_exception_name_addr (void)
10879 {
10880 return parse_and_eval_address ("e.full_name");
10881 }
10882
10883 /* Same as ada_unhandled_exception_name_addr, except that this function
10884 should be used when the inferior uses an older version of the runtime,
10885 where the exception name needs to be extracted from a specific frame
10886 several frames up in the callstack. */
10887
10888 static CORE_ADDR
10889 ada_unhandled_exception_name_addr_from_raise (void)
10890 {
10891 int frame_level;
10892 struct frame_info *fi;
10893 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10894
10895 /* To determine the name of this exception, we need to select
10896 the frame corresponding to RAISE_SYM_NAME. This frame is
10897 at least 3 levels up, so we simply skip the first 3 frames
10898 without checking the name of their associated function. */
10899 fi = get_current_frame ();
10900 for (frame_level = 0; frame_level < 3; frame_level += 1)
10901 if (fi != NULL)
10902 fi = get_prev_frame (fi);
10903
10904 while (fi != NULL)
10905 {
10906 const char *func_name;
10907 enum language func_lang;
10908
10909 find_frame_funname (fi, &func_name, &func_lang, NULL);
10910 if (func_name != NULL
10911 && strcmp (func_name, data->exception_info->catch_exception_sym) == 0)
10912 break; /* We found the frame we were looking for... */
10913 fi = get_prev_frame (fi);
10914 }
10915
10916 if (fi == NULL)
10917 return 0;
10918
10919 select_frame (fi);
10920 return parse_and_eval_address ("id.full_name");
10921 }
10922
10923 /* Assuming the inferior just triggered an Ada exception catchpoint
10924 (of any type), return the address in inferior memory where the name
10925 of the exception is stored, if applicable.
10926
10927 Return zero if the address could not be computed, or if not relevant. */
10928
10929 static CORE_ADDR
10930 ada_exception_name_addr_1 (enum exception_catchpoint_kind ex,
10931 struct breakpoint *b)
10932 {
10933 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
10934
10935 switch (ex)
10936 {
10937 case ex_catch_exception:
10938 return (parse_and_eval_address ("e.full_name"));
10939 break;
10940
10941 case ex_catch_exception_unhandled:
10942 return data->exception_info->unhandled_exception_name_addr ();
10943 break;
10944
10945 case ex_catch_assert:
10946 return 0; /* Exception name is not relevant in this case. */
10947 break;
10948
10949 default:
10950 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
10951 break;
10952 }
10953
10954 return 0; /* Should never be reached. */
10955 }
10956
10957 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
10958 any error that ada_exception_name_addr_1 might cause to be thrown.
10959 When an error is intercepted, a warning with the error message is printed,
10960 and zero is returned. */
10961
10962 static CORE_ADDR
10963 ada_exception_name_addr (enum exception_catchpoint_kind ex,
10964 struct breakpoint *b)
10965 {
10966 volatile struct gdb_exception e;
10967 CORE_ADDR result = 0;
10968
10969 TRY_CATCH (e, RETURN_MASK_ERROR)
10970 {
10971 result = ada_exception_name_addr_1 (ex, b);
10972 }
10973
10974 if (e.reason < 0)
10975 {
10976 warning (_("failed to get exception name: %s"), e.message);
10977 return 0;
10978 }
10979
10980 return result;
10981 }
10982
10983 static struct symtab_and_line ada_exception_sal (enum exception_catchpoint_kind,
10984 char *, char **,
10985 const struct breakpoint_ops **);
10986 static char *ada_exception_catchpoint_cond_string (const char *excep_string);
10987
10988 /* Ada catchpoints.
10989
10990 In the case of catchpoints on Ada exceptions, the catchpoint will
10991 stop the target on every exception the program throws. When a user
10992 specifies the name of a specific exception, we translate this
10993 request into a condition expression (in text form), and then parse
10994 it into an expression stored in each of the catchpoint's locations.
10995 We then use this condition to check whether the exception that was
10996 raised is the one the user is interested in. If not, then the
10997 target is resumed again. We store the name of the requested
10998 exception, in order to be able to re-set the condition expression
10999 when symbols change. */
11000
11001 /* An instance of this type is used to represent an Ada catchpoint
11002 breakpoint location. It includes a "struct bp_location" as a kind
11003 of base class; users downcast to "struct bp_location *" when
11004 needed. */
11005
11006 struct ada_catchpoint_location
11007 {
11008 /* The base class. */
11009 struct bp_location base;
11010
11011 /* The condition that checks whether the exception that was raised
11012 is the specific exception the user specified on catchpoint
11013 creation. */
11014 struct expression *excep_cond_expr;
11015 };
11016
11017 /* Implement the DTOR method in the bp_location_ops structure for all
11018 Ada exception catchpoint kinds. */
11019
11020 static void
11021 ada_catchpoint_location_dtor (struct bp_location *bl)
11022 {
11023 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
11024
11025 xfree (al->excep_cond_expr);
11026 }
11027
11028 /* The vtable to be used in Ada catchpoint locations. */
11029
11030 static const struct bp_location_ops ada_catchpoint_location_ops =
11031 {
11032 ada_catchpoint_location_dtor
11033 };
11034
11035 /* An instance of this type is used to represent an Ada catchpoint.
11036 It includes a "struct breakpoint" as a kind of base class; users
11037 downcast to "struct breakpoint *" when needed. */
11038
11039 struct ada_catchpoint
11040 {
11041 /* The base class. */
11042 struct breakpoint base;
11043
11044 /* The name of the specific exception the user specified. */
11045 char *excep_string;
11046 };
11047
11048 /* Parse the exception condition string in the context of each of the
11049 catchpoint's locations, and store them for later evaluation. */
11050
11051 static void
11052 create_excep_cond_exprs (struct ada_catchpoint *c)
11053 {
11054 struct cleanup *old_chain;
11055 struct bp_location *bl;
11056 char *cond_string;
11057
11058 /* Nothing to do if there's no specific exception to catch. */
11059 if (c->excep_string == NULL)
11060 return;
11061
11062 /* Same if there are no locations... */
11063 if (c->base.loc == NULL)
11064 return;
11065
11066 /* Compute the condition expression in text form, from the specific
11067 expection we want to catch. */
11068 cond_string = ada_exception_catchpoint_cond_string (c->excep_string);
11069 old_chain = make_cleanup (xfree, cond_string);
11070
11071 /* Iterate over all the catchpoint's locations, and parse an
11072 expression for each. */
11073 for (bl = c->base.loc; bl != NULL; bl = bl->next)
11074 {
11075 struct ada_catchpoint_location *ada_loc
11076 = (struct ada_catchpoint_location *) bl;
11077 struct expression *exp = NULL;
11078
11079 if (!bl->shlib_disabled)
11080 {
11081 volatile struct gdb_exception e;
11082 char *s;
11083
11084 s = cond_string;
11085 TRY_CATCH (e, RETURN_MASK_ERROR)
11086 {
11087 exp = parse_exp_1 (&s, block_for_pc (bl->address), 0);
11088 }
11089 if (e.reason < 0)
11090 warning (_("failed to reevaluate internal exception condition "
11091 "for catchpoint %d: %s"),
11092 c->base.number, e.message);
11093 }
11094
11095 ada_loc->excep_cond_expr = exp;
11096 }
11097
11098 do_cleanups (old_chain);
11099 }
11100
11101 /* Implement the DTOR method in the breakpoint_ops structure for all
11102 exception catchpoint kinds. */
11103
11104 static void
11105 dtor_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11106 {
11107 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11108
11109 xfree (c->excep_string);
11110
11111 bkpt_breakpoint_ops.dtor (b);
11112 }
11113
11114 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
11115 structure for all exception catchpoint kinds. */
11116
11117 static struct bp_location *
11118 allocate_location_exception (enum exception_catchpoint_kind ex,
11119 struct breakpoint *self)
11120 {
11121 struct ada_catchpoint_location *loc;
11122
11123 loc = XNEW (struct ada_catchpoint_location);
11124 init_bp_location (&loc->base, &ada_catchpoint_location_ops, self);
11125 loc->excep_cond_expr = NULL;
11126 return &loc->base;
11127 }
11128
11129 /* Implement the RE_SET method in the breakpoint_ops structure for all
11130 exception catchpoint kinds. */
11131
11132 static void
11133 re_set_exception (enum exception_catchpoint_kind ex, struct breakpoint *b)
11134 {
11135 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11136
11137 /* Call the base class's method. This updates the catchpoint's
11138 locations. */
11139 bkpt_breakpoint_ops.re_set (b);
11140
11141 /* Reparse the exception conditional expressions. One for each
11142 location. */
11143 create_excep_cond_exprs (c);
11144 }
11145
11146 /* Returns true if we should stop for this breakpoint hit. If the
11147 user specified a specific exception, we only want to cause a stop
11148 if the program thrown that exception. */
11149
11150 static int
11151 should_stop_exception (const struct bp_location *bl)
11152 {
11153 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
11154 const struct ada_catchpoint_location *ada_loc
11155 = (const struct ada_catchpoint_location *) bl;
11156 volatile struct gdb_exception ex;
11157 int stop;
11158
11159 /* With no specific exception, should always stop. */
11160 if (c->excep_string == NULL)
11161 return 1;
11162
11163 if (ada_loc->excep_cond_expr == NULL)
11164 {
11165 /* We will have a NULL expression if back when we were creating
11166 the expressions, this location's had failed to parse. */
11167 return 1;
11168 }
11169
11170 stop = 1;
11171 TRY_CATCH (ex, RETURN_MASK_ALL)
11172 {
11173 struct value *mark;
11174
11175 mark = value_mark ();
11176 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr));
11177 value_free_to_mark (mark);
11178 }
11179 if (ex.reason < 0)
11180 exception_fprintf (gdb_stderr, ex,
11181 _("Error in testing exception condition:\n"));
11182 return stop;
11183 }
11184
11185 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
11186 for all exception catchpoint kinds. */
11187
11188 static void
11189 check_status_exception (enum exception_catchpoint_kind ex, bpstat bs)
11190 {
11191 bs->stop = should_stop_exception (bs->bp_location_at);
11192 }
11193
11194 /* Implement the PRINT_IT method in the breakpoint_ops structure
11195 for all exception catchpoint kinds. */
11196
11197 static enum print_stop_action
11198 print_it_exception (enum exception_catchpoint_kind ex, bpstat bs)
11199 {
11200 struct ui_out *uiout = current_uiout;
11201 struct breakpoint *b = bs->breakpoint_at;
11202
11203 annotate_catchpoint (b->number);
11204
11205 if (ui_out_is_mi_like_p (uiout))
11206 {
11207 ui_out_field_string (uiout, "reason",
11208 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11209 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
11210 }
11211
11212 ui_out_text (uiout,
11213 b->disposition == disp_del ? "\nTemporary catchpoint "
11214 : "\nCatchpoint ");
11215 ui_out_field_int (uiout, "bkptno", b->number);
11216 ui_out_text (uiout, ", ");
11217
11218 switch (ex)
11219 {
11220 case ex_catch_exception:
11221 case ex_catch_exception_unhandled:
11222 {
11223 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
11224 char exception_name[256];
11225
11226 if (addr != 0)
11227 {
11228 read_memory (addr, exception_name, sizeof (exception_name) - 1);
11229 exception_name [sizeof (exception_name) - 1] = '\0';
11230 }
11231 else
11232 {
11233 /* For some reason, we were unable to read the exception
11234 name. This could happen if the Runtime was compiled
11235 without debugging info, for instance. In that case,
11236 just replace the exception name by the generic string
11237 "exception" - it will read as "an exception" in the
11238 notification we are about to print. */
11239 memcpy (exception_name, "exception", sizeof ("exception"));
11240 }
11241 /* In the case of unhandled exception breakpoints, we print
11242 the exception name as "unhandled EXCEPTION_NAME", to make
11243 it clearer to the user which kind of catchpoint just got
11244 hit. We used ui_out_text to make sure that this extra
11245 info does not pollute the exception name in the MI case. */
11246 if (ex == ex_catch_exception_unhandled)
11247 ui_out_text (uiout, "unhandled ");
11248 ui_out_field_string (uiout, "exception-name", exception_name);
11249 }
11250 break;
11251 case ex_catch_assert:
11252 /* In this case, the name of the exception is not really
11253 important. Just print "failed assertion" to make it clearer
11254 that his program just hit an assertion-failure catchpoint.
11255 We used ui_out_text because this info does not belong in
11256 the MI output. */
11257 ui_out_text (uiout, "failed assertion");
11258 break;
11259 }
11260 ui_out_text (uiout, " at ");
11261 ada_find_printable_frame (get_current_frame ());
11262
11263 return PRINT_SRC_AND_LOC;
11264 }
11265
11266 /* Implement the PRINT_ONE method in the breakpoint_ops structure
11267 for all exception catchpoint kinds. */
11268
11269 static void
11270 print_one_exception (enum exception_catchpoint_kind ex,
11271 struct breakpoint *b, struct bp_location **last_loc)
11272 {
11273 struct ui_out *uiout = current_uiout;
11274 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11275 struct value_print_options opts;
11276
11277 get_user_print_options (&opts);
11278 if (opts.addressprint)
11279 {
11280 annotate_field (4);
11281 ui_out_field_core_addr (uiout, "addr", b->loc->gdbarch, b->loc->address);
11282 }
11283
11284 annotate_field (5);
11285 *last_loc = b->loc;
11286 switch (ex)
11287 {
11288 case ex_catch_exception:
11289 if (c->excep_string != NULL)
11290 {
11291 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11292
11293 ui_out_field_string (uiout, "what", msg);
11294 xfree (msg);
11295 }
11296 else
11297 ui_out_field_string (uiout, "what", "all Ada exceptions");
11298
11299 break;
11300
11301 case ex_catch_exception_unhandled:
11302 ui_out_field_string (uiout, "what", "unhandled Ada exceptions");
11303 break;
11304
11305 case ex_catch_assert:
11306 ui_out_field_string (uiout, "what", "failed Ada assertions");
11307 break;
11308
11309 default:
11310 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11311 break;
11312 }
11313 }
11314
11315 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
11316 for all exception catchpoint kinds. */
11317
11318 static void
11319 print_mention_exception (enum exception_catchpoint_kind ex,
11320 struct breakpoint *b)
11321 {
11322 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11323 struct ui_out *uiout = current_uiout;
11324
11325 ui_out_text (uiout, b->disposition == disp_del ? _("Temporary catchpoint ")
11326 : _("Catchpoint "));
11327 ui_out_field_int (uiout, "bkptno", b->number);
11328 ui_out_text (uiout, ": ");
11329
11330 switch (ex)
11331 {
11332 case ex_catch_exception:
11333 if (c->excep_string != NULL)
11334 {
11335 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
11336 struct cleanup *old_chain = make_cleanup (xfree, info);
11337
11338 ui_out_text (uiout, info);
11339 do_cleanups (old_chain);
11340 }
11341 else
11342 ui_out_text (uiout, _("all Ada exceptions"));
11343 break;
11344
11345 case ex_catch_exception_unhandled:
11346 ui_out_text (uiout, _("unhandled Ada exceptions"));
11347 break;
11348
11349 case ex_catch_assert:
11350 ui_out_text (uiout, _("failed Ada assertions"));
11351 break;
11352
11353 default:
11354 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11355 break;
11356 }
11357 }
11358
11359 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
11360 for all exception catchpoint kinds. */
11361
11362 static void
11363 print_recreate_exception (enum exception_catchpoint_kind ex,
11364 struct breakpoint *b, struct ui_file *fp)
11365 {
11366 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
11367
11368 switch (ex)
11369 {
11370 case ex_catch_exception:
11371 fprintf_filtered (fp, "catch exception");
11372 if (c->excep_string != NULL)
11373 fprintf_filtered (fp, " %s", c->excep_string);
11374 break;
11375
11376 case ex_catch_exception_unhandled:
11377 fprintf_filtered (fp, "catch exception unhandled");
11378 break;
11379
11380 case ex_catch_assert:
11381 fprintf_filtered (fp, "catch assert");
11382 break;
11383
11384 default:
11385 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
11386 }
11387 print_recreate_thread (b, fp);
11388 }
11389
11390 /* Virtual table for "catch exception" breakpoints. */
11391
11392 static void
11393 dtor_catch_exception (struct breakpoint *b)
11394 {
11395 dtor_exception (ex_catch_exception, b);
11396 }
11397
11398 static struct bp_location *
11399 allocate_location_catch_exception (struct breakpoint *self)
11400 {
11401 return allocate_location_exception (ex_catch_exception, self);
11402 }
11403
11404 static void
11405 re_set_catch_exception (struct breakpoint *b)
11406 {
11407 re_set_exception (ex_catch_exception, b);
11408 }
11409
11410 static void
11411 check_status_catch_exception (bpstat bs)
11412 {
11413 check_status_exception (ex_catch_exception, bs);
11414 }
11415
11416 static enum print_stop_action
11417 print_it_catch_exception (bpstat bs)
11418 {
11419 return print_it_exception (ex_catch_exception, bs);
11420 }
11421
11422 static void
11423 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
11424 {
11425 print_one_exception (ex_catch_exception, b, last_loc);
11426 }
11427
11428 static void
11429 print_mention_catch_exception (struct breakpoint *b)
11430 {
11431 print_mention_exception (ex_catch_exception, b);
11432 }
11433
11434 static void
11435 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
11436 {
11437 print_recreate_exception (ex_catch_exception, b, fp);
11438 }
11439
11440 static struct breakpoint_ops catch_exception_breakpoint_ops;
11441
11442 /* Virtual table for "catch exception unhandled" breakpoints. */
11443
11444 static void
11445 dtor_catch_exception_unhandled (struct breakpoint *b)
11446 {
11447 dtor_exception (ex_catch_exception_unhandled, b);
11448 }
11449
11450 static struct bp_location *
11451 allocate_location_catch_exception_unhandled (struct breakpoint *self)
11452 {
11453 return allocate_location_exception (ex_catch_exception_unhandled, self);
11454 }
11455
11456 static void
11457 re_set_catch_exception_unhandled (struct breakpoint *b)
11458 {
11459 re_set_exception (ex_catch_exception_unhandled, b);
11460 }
11461
11462 static void
11463 check_status_catch_exception_unhandled (bpstat bs)
11464 {
11465 check_status_exception (ex_catch_exception_unhandled, bs);
11466 }
11467
11468 static enum print_stop_action
11469 print_it_catch_exception_unhandled (bpstat bs)
11470 {
11471 return print_it_exception (ex_catch_exception_unhandled, bs);
11472 }
11473
11474 static void
11475 print_one_catch_exception_unhandled (struct breakpoint *b,
11476 struct bp_location **last_loc)
11477 {
11478 print_one_exception (ex_catch_exception_unhandled, b, last_loc);
11479 }
11480
11481 static void
11482 print_mention_catch_exception_unhandled (struct breakpoint *b)
11483 {
11484 print_mention_exception (ex_catch_exception_unhandled, b);
11485 }
11486
11487 static void
11488 print_recreate_catch_exception_unhandled (struct breakpoint *b,
11489 struct ui_file *fp)
11490 {
11491 print_recreate_exception (ex_catch_exception_unhandled, b, fp);
11492 }
11493
11494 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
11495
11496 /* Virtual table for "catch assert" breakpoints. */
11497
11498 static void
11499 dtor_catch_assert (struct breakpoint *b)
11500 {
11501 dtor_exception (ex_catch_assert, b);
11502 }
11503
11504 static struct bp_location *
11505 allocate_location_catch_assert (struct breakpoint *self)
11506 {
11507 return allocate_location_exception (ex_catch_assert, self);
11508 }
11509
11510 static void
11511 re_set_catch_assert (struct breakpoint *b)
11512 {
11513 return re_set_exception (ex_catch_assert, b);
11514 }
11515
11516 static void
11517 check_status_catch_assert (bpstat bs)
11518 {
11519 check_status_exception (ex_catch_assert, bs);
11520 }
11521
11522 static enum print_stop_action
11523 print_it_catch_assert (bpstat bs)
11524 {
11525 return print_it_exception (ex_catch_assert, bs);
11526 }
11527
11528 static void
11529 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
11530 {
11531 print_one_exception (ex_catch_assert, b, last_loc);
11532 }
11533
11534 static void
11535 print_mention_catch_assert (struct breakpoint *b)
11536 {
11537 print_mention_exception (ex_catch_assert, b);
11538 }
11539
11540 static void
11541 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
11542 {
11543 print_recreate_exception (ex_catch_assert, b, fp);
11544 }
11545
11546 static struct breakpoint_ops catch_assert_breakpoint_ops;
11547
11548 /* Return a newly allocated copy of the first space-separated token
11549 in ARGSP, and then adjust ARGSP to point immediately after that
11550 token.
11551
11552 Return NULL if ARGPS does not contain any more tokens. */
11553
11554 static char *
11555 ada_get_next_arg (char **argsp)
11556 {
11557 char *args = *argsp;
11558 char *end;
11559 char *result;
11560
11561 args = skip_spaces (args);
11562 if (args[0] == '\0')
11563 return NULL; /* No more arguments. */
11564
11565 /* Find the end of the current argument. */
11566
11567 end = skip_to_space (args);
11568
11569 /* Adjust ARGSP to point to the start of the next argument. */
11570
11571 *argsp = end;
11572
11573 /* Make a copy of the current argument and return it. */
11574
11575 result = xmalloc (end - args + 1);
11576 strncpy (result, args, end - args);
11577 result[end - args] = '\0';
11578
11579 return result;
11580 }
11581
11582 /* Split the arguments specified in a "catch exception" command.
11583 Set EX to the appropriate catchpoint type.
11584 Set EXCEP_STRING to the name of the specific exception if
11585 specified by the user.
11586 If a condition is found at the end of the arguments, the condition
11587 expression is stored in COND_STRING (memory must be deallocated
11588 after use). Otherwise COND_STRING is set to NULL. */
11589
11590 static void
11591 catch_ada_exception_command_split (char *args,
11592 enum exception_catchpoint_kind *ex,
11593 char **excep_string,
11594 char **cond_string)
11595 {
11596 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
11597 char *exception_name;
11598 char *cond = NULL;
11599
11600 exception_name = ada_get_next_arg (&args);
11601 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
11602 {
11603 /* This is not an exception name; this is the start of a condition
11604 expression for a catchpoint on all exceptions. So, "un-get"
11605 this token, and set exception_name to NULL. */
11606 xfree (exception_name);
11607 exception_name = NULL;
11608 args -= 2;
11609 }
11610 make_cleanup (xfree, exception_name);
11611
11612 /* Check to see if we have a condition. */
11613
11614 args = skip_spaces (args);
11615 if (strncmp (args, "if", 2) == 0
11616 && (isspace (args[2]) || args[2] == '\0'))
11617 {
11618 args += 2;
11619 args = skip_spaces (args);
11620
11621 if (args[0] == '\0')
11622 error (_("Condition missing after `if' keyword"));
11623 cond = xstrdup (args);
11624 make_cleanup (xfree, cond);
11625
11626 args += strlen (args);
11627 }
11628
11629 /* Check that we do not have any more arguments. Anything else
11630 is unexpected. */
11631
11632 if (args[0] != '\0')
11633 error (_("Junk at end of expression"));
11634
11635 discard_cleanups (old_chain);
11636
11637 if (exception_name == NULL)
11638 {
11639 /* Catch all exceptions. */
11640 *ex = ex_catch_exception;
11641 *excep_string = NULL;
11642 }
11643 else if (strcmp (exception_name, "unhandled") == 0)
11644 {
11645 /* Catch unhandled exceptions. */
11646 *ex = ex_catch_exception_unhandled;
11647 *excep_string = NULL;
11648 }
11649 else
11650 {
11651 /* Catch a specific exception. */
11652 *ex = ex_catch_exception;
11653 *excep_string = exception_name;
11654 }
11655 *cond_string = cond;
11656 }
11657
11658 /* Return the name of the symbol on which we should break in order to
11659 implement a catchpoint of the EX kind. */
11660
11661 static const char *
11662 ada_exception_sym_name (enum exception_catchpoint_kind ex)
11663 {
11664 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
11665
11666 gdb_assert (data->exception_info != NULL);
11667
11668 switch (ex)
11669 {
11670 case ex_catch_exception:
11671 return (data->exception_info->catch_exception_sym);
11672 break;
11673 case ex_catch_exception_unhandled:
11674 return (data->exception_info->catch_exception_unhandled_sym);
11675 break;
11676 case ex_catch_assert:
11677 return (data->exception_info->catch_assert_sym);
11678 break;
11679 default:
11680 internal_error (__FILE__, __LINE__,
11681 _("unexpected catchpoint kind (%d)"), ex);
11682 }
11683 }
11684
11685 /* Return the breakpoint ops "virtual table" used for catchpoints
11686 of the EX kind. */
11687
11688 static const struct breakpoint_ops *
11689 ada_exception_breakpoint_ops (enum exception_catchpoint_kind ex)
11690 {
11691 switch (ex)
11692 {
11693 case ex_catch_exception:
11694 return (&catch_exception_breakpoint_ops);
11695 break;
11696 case ex_catch_exception_unhandled:
11697 return (&catch_exception_unhandled_breakpoint_ops);
11698 break;
11699 case ex_catch_assert:
11700 return (&catch_assert_breakpoint_ops);
11701 break;
11702 default:
11703 internal_error (__FILE__, __LINE__,
11704 _("unexpected catchpoint kind (%d)"), ex);
11705 }
11706 }
11707
11708 /* Return the condition that will be used to match the current exception
11709 being raised with the exception that the user wants to catch. This
11710 assumes that this condition is used when the inferior just triggered
11711 an exception catchpoint.
11712
11713 The string returned is a newly allocated string that needs to be
11714 deallocated later. */
11715
11716 static char *
11717 ada_exception_catchpoint_cond_string (const char *excep_string)
11718 {
11719 int i;
11720
11721 /* The standard exceptions are a special case. They are defined in
11722 runtime units that have been compiled without debugging info; if
11723 EXCEP_STRING is the not-fully-qualified name of a standard
11724 exception (e.g. "constraint_error") then, during the evaluation
11725 of the condition expression, the symbol lookup on this name would
11726 *not* return this standard exception. The catchpoint condition
11727 may then be set only on user-defined exceptions which have the
11728 same not-fully-qualified name (e.g. my_package.constraint_error).
11729
11730 To avoid this unexcepted behavior, these standard exceptions are
11731 systematically prefixed by "standard". This means that "catch
11732 exception constraint_error" is rewritten into "catch exception
11733 standard.constraint_error".
11734
11735 If an exception named contraint_error is defined in another package of
11736 the inferior program, then the only way to specify this exception as a
11737 breakpoint condition is to use its fully-qualified named:
11738 e.g. my_package.constraint_error. */
11739
11740 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
11741 {
11742 if (strcmp (standard_exc [i], excep_string) == 0)
11743 {
11744 return xstrprintf ("long_integer (e) = long_integer (&standard.%s)",
11745 excep_string);
11746 }
11747 }
11748 return xstrprintf ("long_integer (e) = long_integer (&%s)", excep_string);
11749 }
11750
11751 /* Return the symtab_and_line that should be used to insert an exception
11752 catchpoint of the TYPE kind.
11753
11754 EXCEP_STRING should contain the name of a specific exception that
11755 the catchpoint should catch, or NULL otherwise.
11756
11757 ADDR_STRING returns the name of the function where the real
11758 breakpoint that implements the catchpoints is set, depending on the
11759 type of catchpoint we need to create. */
11760
11761 static struct symtab_and_line
11762 ada_exception_sal (enum exception_catchpoint_kind ex, char *excep_string,
11763 char **addr_string, const struct breakpoint_ops **ops)
11764 {
11765 const char *sym_name;
11766 struct symbol *sym;
11767
11768 /* First, find out which exception support info to use. */
11769 ada_exception_support_info_sniffer ();
11770
11771 /* Then lookup the function on which we will break in order to catch
11772 the Ada exceptions requested by the user. */
11773 sym_name = ada_exception_sym_name (ex);
11774 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
11775
11776 /* We can assume that SYM is not NULL at this stage. If the symbol
11777 did not exist, ada_exception_support_info_sniffer would have
11778 raised an exception.
11779
11780 Also, ada_exception_support_info_sniffer should have already
11781 verified that SYM is a function symbol. */
11782 gdb_assert (sym != NULL);
11783 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
11784
11785 /* Set ADDR_STRING. */
11786 *addr_string = xstrdup (sym_name);
11787
11788 /* Set OPS. */
11789 *ops = ada_exception_breakpoint_ops (ex);
11790
11791 return find_function_start_sal (sym, 1);
11792 }
11793
11794 /* Parse the arguments (ARGS) of the "catch exception" command.
11795
11796 If the user asked the catchpoint to catch only a specific
11797 exception, then save the exception name in ADDR_STRING.
11798
11799 If the user provided a condition, then set COND_STRING to
11800 that condition expression (the memory must be deallocated
11801 after use). Otherwise, set COND_STRING to NULL.
11802
11803 See ada_exception_sal for a description of all the remaining
11804 function arguments of this function. */
11805
11806 static struct symtab_and_line
11807 ada_decode_exception_location (char *args, char **addr_string,
11808 char **excep_string,
11809 char **cond_string,
11810 const struct breakpoint_ops **ops)
11811 {
11812 enum exception_catchpoint_kind ex;
11813
11814 catch_ada_exception_command_split (args, &ex, excep_string, cond_string);
11815 return ada_exception_sal (ex, *excep_string, addr_string, ops);
11816 }
11817
11818 /* Create an Ada exception catchpoint. */
11819
11820 static void
11821 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
11822 struct symtab_and_line sal,
11823 char *addr_string,
11824 char *excep_string,
11825 char *cond_string,
11826 const struct breakpoint_ops *ops,
11827 int tempflag,
11828 int from_tty)
11829 {
11830 struct ada_catchpoint *c;
11831
11832 c = XNEW (struct ada_catchpoint);
11833 init_ada_exception_breakpoint (&c->base, gdbarch, sal, addr_string,
11834 ops, tempflag, from_tty);
11835 c->excep_string = excep_string;
11836 create_excep_cond_exprs (c);
11837 if (cond_string != NULL)
11838 set_breakpoint_condition (&c->base, cond_string, from_tty);
11839 install_breakpoint (0, &c->base, 1);
11840 }
11841
11842 /* Implement the "catch exception" command. */
11843
11844 static void
11845 catch_ada_exception_command (char *arg, int from_tty,
11846 struct cmd_list_element *command)
11847 {
11848 struct gdbarch *gdbarch = get_current_arch ();
11849 int tempflag;
11850 struct symtab_and_line sal;
11851 char *addr_string = NULL;
11852 char *excep_string = NULL;
11853 char *cond_string = NULL;
11854 const struct breakpoint_ops *ops = NULL;
11855
11856 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11857
11858 if (!arg)
11859 arg = "";
11860 sal = ada_decode_exception_location (arg, &addr_string, &excep_string,
11861 &cond_string, &ops);
11862 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11863 excep_string, cond_string, ops,
11864 tempflag, from_tty);
11865 }
11866
11867 /* Assuming that ARGS contains the arguments of a "catch assert"
11868 command, parse those arguments and return a symtab_and_line object
11869 for a failed assertion catchpoint.
11870
11871 Set ADDR_STRING to the name of the function where the real
11872 breakpoint that implements the catchpoint is set.
11873
11874 If ARGS contains a condition, set COND_STRING to that condition
11875 (the memory needs to be deallocated after use). Otherwise, set
11876 COND_STRING to NULL. */
11877
11878 static struct symtab_and_line
11879 ada_decode_assert_location (char *args, char **addr_string,
11880 char **cond_string,
11881 const struct breakpoint_ops **ops)
11882 {
11883 args = skip_spaces (args);
11884
11885 /* Check whether a condition was provided. */
11886 if (strncmp (args, "if", 2) == 0
11887 && (isspace (args[2]) || args[2] == '\0'))
11888 {
11889 args += 2;
11890 args = skip_spaces (args);
11891 if (args[0] == '\0')
11892 error (_("condition missing after `if' keyword"));
11893 *cond_string = xstrdup (args);
11894 }
11895
11896 /* Otherwise, there should be no other argument at the end of
11897 the command. */
11898 else if (args[0] != '\0')
11899 error (_("Junk at end of arguments."));
11900
11901 return ada_exception_sal (ex_catch_assert, NULL, addr_string, ops);
11902 }
11903
11904 /* Implement the "catch assert" command. */
11905
11906 static void
11907 catch_assert_command (char *arg, int from_tty,
11908 struct cmd_list_element *command)
11909 {
11910 struct gdbarch *gdbarch = get_current_arch ();
11911 int tempflag;
11912 struct symtab_and_line sal;
11913 char *addr_string = NULL;
11914 char *cond_string = NULL;
11915 const struct breakpoint_ops *ops = NULL;
11916
11917 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11918
11919 if (!arg)
11920 arg = "";
11921 sal = ada_decode_assert_location (arg, &addr_string, &cond_string, &ops);
11922 create_ada_exception_catchpoint (gdbarch, sal, addr_string,
11923 NULL, cond_string, ops, tempflag,
11924 from_tty);
11925 }
11926 /* Operators */
11927 /* Information about operators given special treatment in functions
11928 below. */
11929 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
11930
11931 #define ADA_OPERATORS \
11932 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
11933 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
11934 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
11935 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
11936 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
11937 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
11938 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
11939 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
11940 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
11941 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
11942 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
11943 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
11944 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
11945 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
11946 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
11947 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
11948 OP_DEFN (OP_OTHERS, 1, 1, 0) \
11949 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
11950 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
11951
11952 static void
11953 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
11954 int *argsp)
11955 {
11956 switch (exp->elts[pc - 1].opcode)
11957 {
11958 default:
11959 operator_length_standard (exp, pc, oplenp, argsp);
11960 break;
11961
11962 #define OP_DEFN(op, len, args, binop) \
11963 case op: *oplenp = len; *argsp = args; break;
11964 ADA_OPERATORS;
11965 #undef OP_DEFN
11966
11967 case OP_AGGREGATE:
11968 *oplenp = 3;
11969 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
11970 break;
11971
11972 case OP_CHOICES:
11973 *oplenp = 3;
11974 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
11975 break;
11976 }
11977 }
11978
11979 /* Implementation of the exp_descriptor method operator_check. */
11980
11981 static int
11982 ada_operator_check (struct expression *exp, int pos,
11983 int (*objfile_func) (struct objfile *objfile, void *data),
11984 void *data)
11985 {
11986 const union exp_element *const elts = exp->elts;
11987 struct type *type = NULL;
11988
11989 switch (elts[pos].opcode)
11990 {
11991 case UNOP_IN_RANGE:
11992 case UNOP_QUAL:
11993 type = elts[pos + 1].type;
11994 break;
11995
11996 default:
11997 return operator_check_standard (exp, pos, objfile_func, data);
11998 }
11999
12000 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
12001
12002 if (type && TYPE_OBJFILE (type)
12003 && (*objfile_func) (TYPE_OBJFILE (type), data))
12004 return 1;
12005
12006 return 0;
12007 }
12008
12009 static char *
12010 ada_op_name (enum exp_opcode opcode)
12011 {
12012 switch (opcode)
12013 {
12014 default:
12015 return op_name_standard (opcode);
12016
12017 #define OP_DEFN(op, len, args, binop) case op: return #op;
12018 ADA_OPERATORS;
12019 #undef OP_DEFN
12020
12021 case OP_AGGREGATE:
12022 return "OP_AGGREGATE";
12023 case OP_CHOICES:
12024 return "OP_CHOICES";
12025 case OP_NAME:
12026 return "OP_NAME";
12027 }
12028 }
12029
12030 /* As for operator_length, but assumes PC is pointing at the first
12031 element of the operator, and gives meaningful results only for the
12032 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
12033
12034 static void
12035 ada_forward_operator_length (struct expression *exp, int pc,
12036 int *oplenp, int *argsp)
12037 {
12038 switch (exp->elts[pc].opcode)
12039 {
12040 default:
12041 *oplenp = *argsp = 0;
12042 break;
12043
12044 #define OP_DEFN(op, len, args, binop) \
12045 case op: *oplenp = len; *argsp = args; break;
12046 ADA_OPERATORS;
12047 #undef OP_DEFN
12048
12049 case OP_AGGREGATE:
12050 *oplenp = 3;
12051 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
12052 break;
12053
12054 case OP_CHOICES:
12055 *oplenp = 3;
12056 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
12057 break;
12058
12059 case OP_STRING:
12060 case OP_NAME:
12061 {
12062 int len = longest_to_int (exp->elts[pc + 1].longconst);
12063
12064 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
12065 *argsp = 0;
12066 break;
12067 }
12068 }
12069 }
12070
12071 static int
12072 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
12073 {
12074 enum exp_opcode op = exp->elts[elt].opcode;
12075 int oplen, nargs;
12076 int pc = elt;
12077 int i;
12078
12079 ada_forward_operator_length (exp, elt, &oplen, &nargs);
12080
12081 switch (op)
12082 {
12083 /* Ada attributes ('Foo). */
12084 case OP_ATR_FIRST:
12085 case OP_ATR_LAST:
12086 case OP_ATR_LENGTH:
12087 case OP_ATR_IMAGE:
12088 case OP_ATR_MAX:
12089 case OP_ATR_MIN:
12090 case OP_ATR_MODULUS:
12091 case OP_ATR_POS:
12092 case OP_ATR_SIZE:
12093 case OP_ATR_TAG:
12094 case OP_ATR_VAL:
12095 break;
12096
12097 case UNOP_IN_RANGE:
12098 case UNOP_QUAL:
12099 /* XXX: gdb_sprint_host_address, type_sprint */
12100 fprintf_filtered (stream, _("Type @"));
12101 gdb_print_host_address (exp->elts[pc + 1].type, stream);
12102 fprintf_filtered (stream, " (");
12103 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
12104 fprintf_filtered (stream, ")");
12105 break;
12106 case BINOP_IN_BOUNDS:
12107 fprintf_filtered (stream, " (%d)",
12108 longest_to_int (exp->elts[pc + 2].longconst));
12109 break;
12110 case TERNOP_IN_RANGE:
12111 break;
12112
12113 case OP_AGGREGATE:
12114 case OP_OTHERS:
12115 case OP_DISCRETE_RANGE:
12116 case OP_POSITIONAL:
12117 case OP_CHOICES:
12118 break;
12119
12120 case OP_NAME:
12121 case OP_STRING:
12122 {
12123 char *name = &exp->elts[elt + 2].string;
12124 int len = longest_to_int (exp->elts[elt + 1].longconst);
12125
12126 fprintf_filtered (stream, "Text: `%.*s'", len, name);
12127 break;
12128 }
12129
12130 default:
12131 return dump_subexp_body_standard (exp, stream, elt);
12132 }
12133
12134 elt += oplen;
12135 for (i = 0; i < nargs; i += 1)
12136 elt = dump_subexp (exp, stream, elt);
12137
12138 return elt;
12139 }
12140
12141 /* The Ada extension of print_subexp (q.v.). */
12142
12143 static void
12144 ada_print_subexp (struct expression *exp, int *pos,
12145 struct ui_file *stream, enum precedence prec)
12146 {
12147 int oplen, nargs, i;
12148 int pc = *pos;
12149 enum exp_opcode op = exp->elts[pc].opcode;
12150
12151 ada_forward_operator_length (exp, pc, &oplen, &nargs);
12152
12153 *pos += oplen;
12154 switch (op)
12155 {
12156 default:
12157 *pos -= oplen;
12158 print_subexp_standard (exp, pos, stream, prec);
12159 return;
12160
12161 case OP_VAR_VALUE:
12162 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
12163 return;
12164
12165 case BINOP_IN_BOUNDS:
12166 /* XXX: sprint_subexp */
12167 print_subexp (exp, pos, stream, PREC_SUFFIX);
12168 fputs_filtered (" in ", stream);
12169 print_subexp (exp, pos, stream, PREC_SUFFIX);
12170 fputs_filtered ("'range", stream);
12171 if (exp->elts[pc + 1].longconst > 1)
12172 fprintf_filtered (stream, "(%ld)",
12173 (long) exp->elts[pc + 1].longconst);
12174 return;
12175
12176 case TERNOP_IN_RANGE:
12177 if (prec >= PREC_EQUAL)
12178 fputs_filtered ("(", stream);
12179 /* XXX: sprint_subexp */
12180 print_subexp (exp, pos, stream, PREC_SUFFIX);
12181 fputs_filtered (" in ", stream);
12182 print_subexp (exp, pos, stream, PREC_EQUAL);
12183 fputs_filtered (" .. ", stream);
12184 print_subexp (exp, pos, stream, PREC_EQUAL);
12185 if (prec >= PREC_EQUAL)
12186 fputs_filtered (")", stream);
12187 return;
12188
12189 case OP_ATR_FIRST:
12190 case OP_ATR_LAST:
12191 case OP_ATR_LENGTH:
12192 case OP_ATR_IMAGE:
12193 case OP_ATR_MAX:
12194 case OP_ATR_MIN:
12195 case OP_ATR_MODULUS:
12196 case OP_ATR_POS:
12197 case OP_ATR_SIZE:
12198 case OP_ATR_TAG:
12199 case OP_ATR_VAL:
12200 if (exp->elts[*pos].opcode == OP_TYPE)
12201 {
12202 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
12203 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0);
12204 *pos += 3;
12205 }
12206 else
12207 print_subexp (exp, pos, stream, PREC_SUFFIX);
12208 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
12209 if (nargs > 1)
12210 {
12211 int tem;
12212
12213 for (tem = 1; tem < nargs; tem += 1)
12214 {
12215 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
12216 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
12217 }
12218 fputs_filtered (")", stream);
12219 }
12220 return;
12221
12222 case UNOP_QUAL:
12223 type_print (exp->elts[pc + 1].type, "", stream, 0);
12224 fputs_filtered ("'(", stream);
12225 print_subexp (exp, pos, stream, PREC_PREFIX);
12226 fputs_filtered (")", stream);
12227 return;
12228
12229 case UNOP_IN_RANGE:
12230 /* XXX: sprint_subexp */
12231 print_subexp (exp, pos, stream, PREC_SUFFIX);
12232 fputs_filtered (" in ", stream);
12233 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0);
12234 return;
12235
12236 case OP_DISCRETE_RANGE:
12237 print_subexp (exp, pos, stream, PREC_SUFFIX);
12238 fputs_filtered ("..", stream);
12239 print_subexp (exp, pos, stream, PREC_SUFFIX);
12240 return;
12241
12242 case OP_OTHERS:
12243 fputs_filtered ("others => ", stream);
12244 print_subexp (exp, pos, stream, PREC_SUFFIX);
12245 return;
12246
12247 case OP_CHOICES:
12248 for (i = 0; i < nargs-1; i += 1)
12249 {
12250 if (i > 0)
12251 fputs_filtered ("|", stream);
12252 print_subexp (exp, pos, stream, PREC_SUFFIX);
12253 }
12254 fputs_filtered (" => ", stream);
12255 print_subexp (exp, pos, stream, PREC_SUFFIX);
12256 return;
12257
12258 case OP_POSITIONAL:
12259 print_subexp (exp, pos, stream, PREC_SUFFIX);
12260 return;
12261
12262 case OP_AGGREGATE:
12263 fputs_filtered ("(", stream);
12264 for (i = 0; i < nargs; i += 1)
12265 {
12266 if (i > 0)
12267 fputs_filtered (", ", stream);
12268 print_subexp (exp, pos, stream, PREC_SUFFIX);
12269 }
12270 fputs_filtered (")", stream);
12271 return;
12272 }
12273 }
12274
12275 /* Table mapping opcodes into strings for printing operators
12276 and precedences of the operators. */
12277
12278 static const struct op_print ada_op_print_tab[] = {
12279 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
12280 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
12281 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
12282 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
12283 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
12284 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
12285 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
12286 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
12287 {"<=", BINOP_LEQ, PREC_ORDER, 0},
12288 {">=", BINOP_GEQ, PREC_ORDER, 0},
12289 {">", BINOP_GTR, PREC_ORDER, 0},
12290 {"<", BINOP_LESS, PREC_ORDER, 0},
12291 {">>", BINOP_RSH, PREC_SHIFT, 0},
12292 {"<<", BINOP_LSH, PREC_SHIFT, 0},
12293 {"+", BINOP_ADD, PREC_ADD, 0},
12294 {"-", BINOP_SUB, PREC_ADD, 0},
12295 {"&", BINOP_CONCAT, PREC_ADD, 0},
12296 {"*", BINOP_MUL, PREC_MUL, 0},
12297 {"/", BINOP_DIV, PREC_MUL, 0},
12298 {"rem", BINOP_REM, PREC_MUL, 0},
12299 {"mod", BINOP_MOD, PREC_MUL, 0},
12300 {"**", BINOP_EXP, PREC_REPEAT, 0},
12301 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
12302 {"-", UNOP_NEG, PREC_PREFIX, 0},
12303 {"+", UNOP_PLUS, PREC_PREFIX, 0},
12304 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
12305 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
12306 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
12307 {".all", UNOP_IND, PREC_SUFFIX, 1},
12308 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
12309 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
12310 {NULL, 0, 0, 0}
12311 };
12312 \f
12313 enum ada_primitive_types {
12314 ada_primitive_type_int,
12315 ada_primitive_type_long,
12316 ada_primitive_type_short,
12317 ada_primitive_type_char,
12318 ada_primitive_type_float,
12319 ada_primitive_type_double,
12320 ada_primitive_type_void,
12321 ada_primitive_type_long_long,
12322 ada_primitive_type_long_double,
12323 ada_primitive_type_natural,
12324 ada_primitive_type_positive,
12325 ada_primitive_type_system_address,
12326 nr_ada_primitive_types
12327 };
12328
12329 static void
12330 ada_language_arch_info (struct gdbarch *gdbarch,
12331 struct language_arch_info *lai)
12332 {
12333 const struct builtin_type *builtin = builtin_type (gdbarch);
12334
12335 lai->primitive_type_vector
12336 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
12337 struct type *);
12338
12339 lai->primitive_type_vector [ada_primitive_type_int]
12340 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12341 0, "integer");
12342 lai->primitive_type_vector [ada_primitive_type_long]
12343 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
12344 0, "long_integer");
12345 lai->primitive_type_vector [ada_primitive_type_short]
12346 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
12347 0, "short_integer");
12348 lai->string_char_type
12349 = lai->primitive_type_vector [ada_primitive_type_char]
12350 = arch_integer_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
12351 lai->primitive_type_vector [ada_primitive_type_float]
12352 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
12353 "float", NULL);
12354 lai->primitive_type_vector [ada_primitive_type_double]
12355 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12356 "long_float", NULL);
12357 lai->primitive_type_vector [ada_primitive_type_long_long]
12358 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
12359 0, "long_long_integer");
12360 lai->primitive_type_vector [ada_primitive_type_long_double]
12361 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
12362 "long_long_float", NULL);
12363 lai->primitive_type_vector [ada_primitive_type_natural]
12364 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12365 0, "natural");
12366 lai->primitive_type_vector [ada_primitive_type_positive]
12367 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
12368 0, "positive");
12369 lai->primitive_type_vector [ada_primitive_type_void]
12370 = builtin->builtin_void;
12371
12372 lai->primitive_type_vector [ada_primitive_type_system_address]
12373 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, 1, "void"));
12374 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
12375 = "system__address";
12376
12377 lai->bool_type_symbol = NULL;
12378 lai->bool_type_default = builtin->builtin_bool;
12379 }
12380 \f
12381 /* Language vector */
12382
12383 /* Not really used, but needed in the ada_language_defn. */
12384
12385 static void
12386 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
12387 {
12388 ada_emit_char (c, type, stream, quoter, 1);
12389 }
12390
12391 static int
12392 parse (void)
12393 {
12394 warnings_issued = 0;
12395 return ada_parse ();
12396 }
12397
12398 static const struct exp_descriptor ada_exp_descriptor = {
12399 ada_print_subexp,
12400 ada_operator_length,
12401 ada_operator_check,
12402 ada_op_name,
12403 ada_dump_subexp_body,
12404 ada_evaluate_subexp
12405 };
12406
12407 /* Implement the "la_get_symbol_name_cmp" language_defn method
12408 for Ada. */
12409
12410 static symbol_name_cmp_ftype
12411 ada_get_symbol_name_cmp (const char *lookup_name)
12412 {
12413 if (should_use_wild_match (lookup_name))
12414 return wild_match;
12415 else
12416 return compare_names;
12417 }
12418
12419 const struct language_defn ada_language_defn = {
12420 "ada", /* Language name */
12421 language_ada,
12422 range_check_off,
12423 type_check_off,
12424 case_sensitive_on, /* Yes, Ada is case-insensitive, but
12425 that's not quite what this means. */
12426 array_row_major,
12427 macro_expansion_no,
12428 &ada_exp_descriptor,
12429 parse,
12430 ada_error,
12431 resolve,
12432 ada_printchar, /* Print a character constant */
12433 ada_printstr, /* Function to print string constant */
12434 emit_char, /* Function to print single char (not used) */
12435 ada_print_type, /* Print a type using appropriate syntax */
12436 ada_print_typedef, /* Print a typedef using appropriate syntax */
12437 ada_val_print, /* Print a value using appropriate syntax */
12438 ada_value_print, /* Print a top-level value */
12439 NULL, /* Language specific skip_trampoline */
12440 NULL, /* name_of_this */
12441 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
12442 basic_lookup_transparent_type, /* lookup_transparent_type */
12443 ada_la_decode, /* Language specific symbol demangler */
12444 NULL, /* Language specific
12445 class_name_from_physname */
12446 ada_op_print_tab, /* expression operators for printing */
12447 0, /* c-style arrays */
12448 1, /* String lower bound */
12449 ada_get_gdb_completer_word_break_characters,
12450 ada_make_symbol_completion_list,
12451 ada_language_arch_info,
12452 ada_print_array_index,
12453 default_pass_by_reference,
12454 c_get_string,
12455 ada_get_symbol_name_cmp, /* la_get_symbol_name_cmp */
12456 ada_iterate_over_symbols,
12457 LANG_MAGIC
12458 };
12459
12460 /* Provide a prototype to silence -Wmissing-prototypes. */
12461 extern initialize_file_ftype _initialize_ada_language;
12462
12463 /* Command-list for the "set/show ada" prefix command. */
12464 static struct cmd_list_element *set_ada_list;
12465 static struct cmd_list_element *show_ada_list;
12466
12467 /* Implement the "set ada" prefix command. */
12468
12469 static void
12470 set_ada_command (char *arg, int from_tty)
12471 {
12472 printf_unfiltered (_(\
12473 "\"set ada\" must be followed by the name of a setting.\n"));
12474 help_list (set_ada_list, "set ada ", -1, gdb_stdout);
12475 }
12476
12477 /* Implement the "show ada" prefix command. */
12478
12479 static void
12480 show_ada_command (char *args, int from_tty)
12481 {
12482 cmd_show_list (show_ada_list, from_tty, "");
12483 }
12484
12485 static void
12486 initialize_ada_catchpoint_ops (void)
12487 {
12488 struct breakpoint_ops *ops;
12489
12490 initialize_breakpoint_ops ();
12491
12492 ops = &catch_exception_breakpoint_ops;
12493 *ops = bkpt_breakpoint_ops;
12494 ops->dtor = dtor_catch_exception;
12495 ops->allocate_location = allocate_location_catch_exception;
12496 ops->re_set = re_set_catch_exception;
12497 ops->check_status = check_status_catch_exception;
12498 ops->print_it = print_it_catch_exception;
12499 ops->print_one = print_one_catch_exception;
12500 ops->print_mention = print_mention_catch_exception;
12501 ops->print_recreate = print_recreate_catch_exception;
12502
12503 ops = &catch_exception_unhandled_breakpoint_ops;
12504 *ops = bkpt_breakpoint_ops;
12505 ops->dtor = dtor_catch_exception_unhandled;
12506 ops->allocate_location = allocate_location_catch_exception_unhandled;
12507 ops->re_set = re_set_catch_exception_unhandled;
12508 ops->check_status = check_status_catch_exception_unhandled;
12509 ops->print_it = print_it_catch_exception_unhandled;
12510 ops->print_one = print_one_catch_exception_unhandled;
12511 ops->print_mention = print_mention_catch_exception_unhandled;
12512 ops->print_recreate = print_recreate_catch_exception_unhandled;
12513
12514 ops = &catch_assert_breakpoint_ops;
12515 *ops = bkpt_breakpoint_ops;
12516 ops->dtor = dtor_catch_assert;
12517 ops->allocate_location = allocate_location_catch_assert;
12518 ops->re_set = re_set_catch_assert;
12519 ops->check_status = check_status_catch_assert;
12520 ops->print_it = print_it_catch_assert;
12521 ops->print_one = print_one_catch_assert;
12522 ops->print_mention = print_mention_catch_assert;
12523 ops->print_recreate = print_recreate_catch_assert;
12524 }
12525
12526 void
12527 _initialize_ada_language (void)
12528 {
12529 add_language (&ada_language_defn);
12530
12531 initialize_ada_catchpoint_ops ();
12532
12533 add_prefix_cmd ("ada", no_class, set_ada_command,
12534 _("Prefix command for changing Ada-specfic settings"),
12535 &set_ada_list, "set ada ", 0, &setlist);
12536
12537 add_prefix_cmd ("ada", no_class, show_ada_command,
12538 _("Generic command for showing Ada-specific settings."),
12539 &show_ada_list, "show ada ", 0, &showlist);
12540
12541 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
12542 &trust_pad_over_xvs, _("\
12543 Enable or disable an optimization trusting PAD types over XVS types"), _("\
12544 Show whether an optimization trusting PAD types over XVS types is activated"),
12545 _("\
12546 This is related to the encoding used by the GNAT compiler. The debugger\n\
12547 should normally trust the contents of PAD types, but certain older versions\n\
12548 of GNAT have a bug that sometimes causes the information in the PAD type\n\
12549 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
12550 work around this bug. It is always safe to turn this option \"off\", but\n\
12551 this incurs a slight performance penalty, so it is recommended to NOT change\n\
12552 this option to \"off\" unless necessary."),
12553 NULL, NULL, &set_ada_list, &show_ada_list);
12554
12555 add_catch_command ("exception", _("\
12556 Catch Ada exceptions, when raised.\n\
12557 With an argument, catch only exceptions with the given name."),
12558 catch_ada_exception_command,
12559 NULL,
12560 CATCH_PERMANENT,
12561 CATCH_TEMPORARY);
12562 add_catch_command ("assert", _("\
12563 Catch failed Ada assertions, when raised.\n\
12564 With an argument, catch only exceptions with the given name."),
12565 catch_assert_command,
12566 NULL,
12567 CATCH_PERMANENT,
12568 CATCH_TEMPORARY);
12569
12570 varsize_limit = 65536;
12571
12572 obstack_init (&symbol_list_obstack);
12573
12574 decoded_names_store = htab_create_alloc
12575 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
12576 NULL, xcalloc, xfree);
12577
12578 /* Setup per-inferior data. */
12579 observer_attach_inferior_exit (ada_inferior_exit);
12580 ada_inferior_data
12581 = register_inferior_data_with_cleanup (ada_inferior_data_cleanup);
12582 }