2000-05-26 Michael Snyder <msnyder@seadog.cygnus.com>
[binutils-gdb.git] / gdb / alpha-nat.c
1 /* Low level Alpha interface, for GDB when running native.
2 Copyright 1993, 1995, 1996, 1998 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "inferior.h"
23 #include "gdbcore.h"
24 #include "target.h"
25 #include <sys/ptrace.h>
26 #ifdef __linux__
27 #include <asm/reg.h>
28 #include <alpha/ptrace.h>
29 #else
30 #include <machine/reg.h>
31 #endif
32 #include <sys/user.h>
33
34 /* Prototypes for local functions. */
35
36 static void fetch_osf_core_registers PARAMS ((char *,
37 unsigned, int, CORE_ADDR));
38 static void fetch_elf_core_registers PARAMS ((char *,
39 unsigned, int, CORE_ADDR));
40
41 /* Size of elements in jmpbuf */
42
43 #define JB_ELEMENT_SIZE 8
44
45 /* The definition for JB_PC in machine/reg.h is wrong.
46 And we can't get at the correct definition in setjmp.h as it is
47 not always available (eg. if _POSIX_SOURCE is defined which is the
48 default). As the defintion is unlikely to change (see comment
49 in <setjmp.h>, define the correct value here. */
50
51 #undef JB_PC
52 #define JB_PC 2
53
54 /* Figure out where the longjmp will land.
55 We expect the first arg to be a pointer to the jmp_buf structure from which
56 we extract the pc (JB_PC) that we will land at. The pc is copied into PC.
57 This routine returns true on success. */
58
59 int
60 get_longjmp_target (pc)
61 CORE_ADDR *pc;
62 {
63 CORE_ADDR jb_addr;
64 char raw_buffer[MAX_REGISTER_RAW_SIZE];
65
66 jb_addr = read_register (A0_REGNUM);
67
68 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, raw_buffer,
69 sizeof (CORE_ADDR)))
70 return 0;
71
72 *pc = extract_address (raw_buffer, sizeof (CORE_ADDR));
73 return 1;
74 }
75
76 /* Extract the register values out of the core file and store
77 them where `read_register' will find them.
78
79 CORE_REG_SECT points to the register values themselves, read into memory.
80 CORE_REG_SIZE is the size of that area.
81 WHICH says which set of registers we are handling (0 = int, 2 = float
82 on machines where they are discontiguous).
83 REG_ADDR is the offset from u.u_ar0 to the register values relative to
84 core_reg_sect. This is used with old-fashioned core files to
85 locate the registers in a large upage-plus-stack ".reg" section.
86 Original upage address X is at location core_reg_sect+x+reg_addr.
87 */
88
89 static void
90 fetch_osf_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
91 char *core_reg_sect;
92 unsigned core_reg_size;
93 int which;
94 CORE_ADDR reg_addr;
95 {
96 register int regno;
97 register int addr;
98 int bad_reg = -1;
99
100 /* Table to map a gdb regnum to an index in the core register section.
101 The floating point register values are garbage in OSF/1.2 core files. */
102 static int core_reg_mapping[NUM_REGS] =
103 {
104 #define EFL (EF_SIZE / 8)
105 EF_V0, EF_T0, EF_T1, EF_T2, EF_T3, EF_T4, EF_T5, EF_T6,
106 EF_T7, EF_S0, EF_S1, EF_S2, EF_S3, EF_S4, EF_S5, EF_S6,
107 EF_A0, EF_A1, EF_A2, EF_A3, EF_A4, EF_A5, EF_T8, EF_T9,
108 EF_T10, EF_T11, EF_RA, EF_T12, EF_AT, EF_GP, EF_SP, -1,
109 EFL + 0, EFL + 1, EFL + 2, EFL + 3, EFL + 4, EFL + 5, EFL + 6, EFL + 7,
110 EFL + 8, EFL + 9, EFL + 10, EFL + 11, EFL + 12, EFL + 13, EFL + 14, EFL + 15,
111 EFL + 16, EFL + 17, EFL + 18, EFL + 19, EFL + 20, EFL + 21, EFL + 22, EFL + 23,
112 EFL + 24, EFL + 25, EFL + 26, EFL + 27, EFL + 28, EFL + 29, EFL + 30, EFL + 31,
113 EF_PC, -1
114 };
115 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
116 {0};
117
118 for (regno = 0; regno < NUM_REGS; regno++)
119 {
120 if (CANNOT_FETCH_REGISTER (regno))
121 {
122 supply_register (regno, zerobuf);
123 continue;
124 }
125 addr = 8 * core_reg_mapping[regno];
126 if (addr < 0 || addr >= core_reg_size)
127 {
128 if (bad_reg < 0)
129 bad_reg = regno;
130 }
131 else
132 {
133 supply_register (regno, core_reg_sect + addr);
134 }
135 }
136 if (bad_reg >= 0)
137 {
138 error ("Register %s not found in core file.", REGISTER_NAME (bad_reg));
139 }
140 }
141
142 static void
143 fetch_elf_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
144 char *core_reg_sect;
145 unsigned core_reg_size;
146 int which;
147 CORE_ADDR reg_addr;
148 {
149 if (core_reg_size < 32 * 8)
150 {
151 error ("Core file register section too small (%u bytes).", core_reg_size);
152 return;
153 }
154
155 if (which == 2)
156 {
157 /* The FPU Registers. */
158 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], core_reg_sect, 31 * 8);
159 memset (&registers[REGISTER_BYTE (FP0_REGNUM + 31)], 0, 8);
160 memset (&register_valid[FP0_REGNUM], 1, 32);
161 }
162 else
163 {
164 /* The General Registers. */
165 memcpy (&registers[REGISTER_BYTE (V0_REGNUM)], core_reg_sect, 31 * 8);
166 memcpy (&registers[REGISTER_BYTE (PC_REGNUM)], core_reg_sect + 31 * 8, 8);
167 memset (&registers[REGISTER_BYTE (ZERO_REGNUM)], 0, 8);
168 memset (&register_valid[V0_REGNUM], 1, 32);
169 register_valid[PC_REGNUM] = 1;
170 }
171 }
172
173
174 /* Map gdb internal register number to a ptrace ``address''.
175 These ``addresses'' are defined in <sys/ptrace.h> */
176
177 #define REGISTER_PTRACE_ADDR(regno) \
178 (regno < FP0_REGNUM ? GPR_BASE + (regno) \
179 : regno == PC_REGNUM ? PC \
180 : regno >= FP0_REGNUM ? FPR_BASE + ((regno) - FP0_REGNUM) \
181 : 0)
182
183 /* Return the ptrace ``address'' of register REGNO. */
184
185 CORE_ADDR
186 register_addr (regno, blockend)
187 int regno;
188 CORE_ADDR blockend;
189 {
190 return REGISTER_PTRACE_ADDR (regno);
191 }
192
193 int
194 kernel_u_size ()
195 {
196 return (sizeof (struct user));
197 }
198
199 #if defined(USE_PROC_FS) || defined(HAVE_GREGSET_T)
200 #include <sys/procfs.h>
201
202 /* Prototypes for supply_gregset etc. */
203 #include "gregset.h"
204
205 /*
206 * See the comment in m68k-tdep.c regarding the utility of these functions.
207 */
208
209 void
210 supply_gregset (gregsetp)
211 gregset_t *gregsetp;
212 {
213 register int regi;
214 register long *regp = ALPHA_REGSET_BASE (gregsetp);
215 static char zerobuf[MAX_REGISTER_RAW_SIZE] =
216 {0};
217
218 for (regi = 0; regi < 31; regi++)
219 supply_register (regi, (char *) (regp + regi));
220
221 supply_register (PC_REGNUM, (char *) (regp + 31));
222
223 /* Fill inaccessible registers with zero. */
224 supply_register (ZERO_REGNUM, zerobuf);
225 supply_register (FP_REGNUM, zerobuf);
226 }
227
228 void
229 fill_gregset (gregsetp, regno)
230 gregset_t *gregsetp;
231 int regno;
232 {
233 int regi;
234 register long *regp = ALPHA_REGSET_BASE (gregsetp);
235
236 for (regi = 0; regi < 31; regi++)
237 if ((regno == -1) || (regno == regi))
238 *(regp + regi) = *(long *) &registers[REGISTER_BYTE (regi)];
239
240 if ((regno == -1) || (regno == PC_REGNUM))
241 *(regp + 31) = *(long *) &registers[REGISTER_BYTE (PC_REGNUM)];
242 }
243
244 /*
245 * Now we do the same thing for floating-point registers.
246 * Again, see the comments in m68k-tdep.c.
247 */
248
249 void
250 supply_fpregset (fpregsetp)
251 fpregset_t *fpregsetp;
252 {
253 register int regi;
254 register long *regp = ALPHA_REGSET_BASE (fpregsetp);
255
256 for (regi = 0; regi < 32; regi++)
257 supply_register (regi + FP0_REGNUM, (char *) (regp + regi));
258 }
259
260 void
261 fill_fpregset (fpregsetp, regno)
262 fpregset_t *fpregsetp;
263 int regno;
264 {
265 int regi;
266 register long *regp = ALPHA_REGSET_BASE (fpregsetp);
267
268 for (regi = FP0_REGNUM; regi < FP0_REGNUM + 32; regi++)
269 {
270 if ((regno == -1) || (regno == regi))
271 {
272 *(regp + regi - FP0_REGNUM) =
273 *(long *) &registers[REGISTER_BYTE (regi)];
274 }
275 }
276 }
277 #endif
278 \f
279
280 /* Register that we are able to handle alpha core file formats. */
281
282 static struct core_fns alpha_osf_core_fns =
283 {
284 /* This really is bfd_target_unknown_flavour. */
285
286 bfd_target_unknown_flavour, /* core_flavour */
287 default_check_format, /* check_format */
288 default_core_sniffer, /* core_sniffer */
289 fetch_osf_core_registers, /* core_read_registers */
290 NULL /* next */
291 };
292
293 static struct core_fns alpha_elf_core_fns =
294 {
295 bfd_target_elf_flavour, /* core_flavour */
296 default_check_format, /* check_format */
297 default_core_sniffer, /* core_sniffer */
298 fetch_elf_core_registers, /* core_read_registers */
299 NULL /* next */
300 };
301
302 void
303 _initialize_core_alpha ()
304 {
305 add_core_fns (&alpha_osf_core_fns);
306 add_core_fns (&alpha_elf_core_fns);
307 }