* alpha-tdep.c (alpha_register_convert_to_virtual): Tidy use of
[binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "doublest.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "inferior.h"
28 #include "symtab.h"
29 #include "value.h"
30 #include "gdbcmd.h"
31 #include "gdbcore.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "gdb_string.h"
36 #include "linespec.h"
37 #include "regcache.h"
38 #include "reggroups.h"
39 #include "arch-utils.h"
40 #include "osabi.h"
41 #include "block.h"
42
43 #include "elf-bfd.h"
44
45 #include "alpha-tdep.h"
46
47 \f
48 static const char *
49 alpha_register_name (int regno)
50 {
51 static const char * const register_names[] =
52 {
53 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
54 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
55 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
56 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
57 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
58 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
59 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
60 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
61 "pc", "", "unique"
62 };
63
64 if (regno < 0)
65 return NULL;
66 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
67 return NULL;
68 return register_names[regno];
69 }
70
71 static int
72 alpha_cannot_fetch_register (int regno)
73 {
74 return regno == ALPHA_ZERO_REGNUM;
75 }
76
77 static int
78 alpha_cannot_store_register (int regno)
79 {
80 return regno == ALPHA_ZERO_REGNUM;
81 }
82
83 static int
84 alpha_register_convertible (int regno)
85 {
86 return (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31);
87 }
88
89 static struct type *
90 alpha_register_virtual_type (int regno)
91 {
92 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
93 return builtin_type_void_data_ptr;
94 if (regno == ALPHA_PC_REGNUM)
95 return builtin_type_void_func_ptr;
96
97 /* Don't need to worry about little vs big endian until
98 some jerk tries to port to alpha-unicosmk. */
99 if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 31)
100 return builtin_type_ieee_double_little;
101
102 return builtin_type_int64;
103 }
104
105 /* Is REGNUM a member of REGGROUP? */
106
107 static int
108 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
109 struct reggroup *group)
110 {
111 /* Filter out any registers eliminated, but whose regnum is
112 reserved for backward compatibility, e.g. the vfp. */
113 if (REGISTER_NAME (regnum) == NULL || *REGISTER_NAME (regnum) == '\0')
114 return 0;
115
116 /* Since we implement no pseudo registers, save/restore is equal to all. */
117 if (group == all_reggroup
118 || group == save_reggroup
119 || group == restore_reggroup)
120 return 1;
121
122 /* All other groups are non-overlapping. */
123
124 /* Since this is really a PALcode memory slot... */
125 if (regnum == ALPHA_UNIQUE_REGNUM)
126 return group == system_reggroup;
127
128 /* Force the FPCR to be considered part of the floating point state. */
129 if (regnum == ALPHA_FPCR_REGNUM)
130 return group == float_reggroup;
131
132 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
133 return group == float_reggroup;
134 else
135 return group == general_reggroup;
136 }
137
138 static int
139 alpha_register_byte (int regno)
140 {
141 return (regno * 8);
142 }
143
144 static int
145 alpha_register_raw_size (int regno)
146 {
147 return 8;
148 }
149
150 static int
151 alpha_register_virtual_size (int regno)
152 {
153 return 8;
154 }
155
156 /* The alpha needs a conversion between register and memory format if the
157 register is a floating point register and memory format is float, as the
158 register format must be double or memory format is an integer with 4
159 bytes or less, as the representation of integers in floating point
160 registers is different. */
161
162 static void
163 alpha_convert_flt_dbl (void *out, const void *in)
164 {
165 DOUBLEST d = extract_typed_floating (in, builtin_type_ieee_single_little);
166 store_typed_floating (out, builtin_type_ieee_double_little, d);
167 }
168
169 static void
170 alpha_convert_dbl_flt (void *out, const void *in)
171 {
172 DOUBLEST d = extract_typed_floating (in, builtin_type_ieee_double_little);
173 store_typed_floating (out, builtin_type_ieee_single_little, d);
174 }
175
176 static void
177 alpha_register_convert_to_virtual (int regnum, struct type *valtype,
178 char *raw_buffer, char *virtual_buffer)
179 {
180 if (TYPE_LENGTH (valtype) >= ALPHA_REGISTER_SIZE)
181 {
182 memcpy (virtual_buffer, raw_buffer, ALPHA_REGISTER_SIZE);
183 return;
184 }
185
186 /* Note that everything below is less than 8 bytes long. */
187
188 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
189 alpha_convert_dbl_flt (virtual_buffer, raw_buffer);
190 else if (TYPE_CODE (valtype) == TYPE_CODE_INT)
191 {
192 ULONGEST l;
193 l = extract_unsigned_integer (raw_buffer, ALPHA_REGISTER_SIZE);
194 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
195 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
196 }
197 else
198 error ("Cannot retrieve value from floating point register");
199 }
200
201 static void
202 alpha_register_convert_to_raw (struct type *valtype, int regnum,
203 char *virtual_buffer, char *raw_buffer)
204 {
205 if (TYPE_LENGTH (valtype) >= ALPHA_REGISTER_SIZE)
206 {
207 memcpy (raw_buffer, virtual_buffer, ALPHA_REGISTER_SIZE);
208 return;
209 }
210
211 /* Note that everything below is less than 8 bytes long. */
212
213 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
214 alpha_convert_flt_dbl (raw_buffer, virtual_buffer);
215 else if (TYPE_CODE (valtype) == TYPE_CODE_INT)
216 {
217 ULONGEST l = unpack_long (valtype, virtual_buffer);
218 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
219 store_unsigned_integer (raw_buffer, ALPHA_REGISTER_SIZE, l);
220 }
221 else
222 error ("Cannot store value in floating point register");
223 }
224
225 \f
226 /* The alpha passes the first six arguments in the registers, the rest on
227 the stack. The register arguments are stored in ARG_REG_BUFFER, and
228 then moved into the register file; this simplifies the passing of a
229 large struct which extends from the registers to the stack, plus avoids
230 three ptrace invocations per word.
231
232 We don't bother tracking which register values should go in integer
233 regs or fp regs; we load the same values into both.
234
235 If the called function is returning a structure, the address of the
236 structure to be returned is passed as a hidden first argument. */
237
238 static CORE_ADDR
239 alpha_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
240 struct regcache *regcache, CORE_ADDR bp_addr,
241 int nargs, struct value **args, CORE_ADDR sp,
242 int struct_return, CORE_ADDR struct_addr)
243 {
244 int i;
245 int accumulate_size = struct_return ? 8 : 0;
246 struct alpha_arg
247 {
248 char *contents;
249 int len;
250 int offset;
251 };
252 struct alpha_arg *alpha_args
253 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
254 register struct alpha_arg *m_arg;
255 char arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
256 int required_arg_regs;
257
258 /* The ABI places the address of the called function in T12. */
259 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
260
261 /* Set the return address register to point to the entry point
262 of the program, where a breakpoint lies in wait. */
263 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
264
265 /* Lay out the arguments in memory. */
266 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
267 {
268 struct value *arg = args[i];
269 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
270
271 /* Cast argument to long if necessary as the compiler does it too. */
272 switch (TYPE_CODE (arg_type))
273 {
274 case TYPE_CODE_INT:
275 case TYPE_CODE_BOOL:
276 case TYPE_CODE_CHAR:
277 case TYPE_CODE_RANGE:
278 case TYPE_CODE_ENUM:
279 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
280 {
281 arg_type = builtin_type_long;
282 arg = value_cast (arg_type, arg);
283 }
284 break;
285 case TYPE_CODE_FLT:
286 /* "float" arguments loaded in registers must be passed in
287 register format, aka "double". */
288 if (accumulate_size < sizeof (arg_reg_buffer)
289 && TYPE_LENGTH (arg_type) == 4)
290 {
291 arg_type = builtin_type_double;
292 arg = value_cast (arg_type, arg);
293 }
294 /* Tru64 5.1 has a 128-bit long double, and passes this by
295 invisible reference. No one else uses this data type. */
296 else if (TYPE_LENGTH (arg_type) == 16)
297 {
298 /* Allocate aligned storage. */
299 sp = (sp & -16) - 16;
300
301 /* Write the real data into the stack. */
302 write_memory (sp, VALUE_CONTENTS (arg), 16);
303
304 /* Construct the indirection. */
305 arg_type = lookup_pointer_type (arg_type);
306 arg = value_from_pointer (arg_type, sp);
307 }
308 break;
309 default:
310 break;
311 }
312 m_arg->len = TYPE_LENGTH (arg_type);
313 m_arg->offset = accumulate_size;
314 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
315 m_arg->contents = VALUE_CONTENTS (arg);
316 }
317
318 /* Determine required argument register loads, loading an argument register
319 is expensive as it uses three ptrace calls. */
320 required_arg_regs = accumulate_size / 8;
321 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
322 required_arg_regs = ALPHA_NUM_ARG_REGS;
323
324 /* Make room for the arguments on the stack. */
325 if (accumulate_size < sizeof(arg_reg_buffer))
326 accumulate_size = 0;
327 else
328 accumulate_size -= sizeof(arg_reg_buffer);
329 sp -= accumulate_size;
330
331 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
332 sp &= ~15;
333
334 /* `Push' arguments on the stack. */
335 for (i = nargs; m_arg--, --i >= 0;)
336 {
337 char *contents = m_arg->contents;
338 int offset = m_arg->offset;
339 int len = m_arg->len;
340
341 /* Copy the bytes destined for registers into arg_reg_buffer. */
342 if (offset < sizeof(arg_reg_buffer))
343 {
344 if (offset + len <= sizeof(arg_reg_buffer))
345 {
346 memcpy (arg_reg_buffer + offset, contents, len);
347 continue;
348 }
349 else
350 {
351 int tlen = sizeof(arg_reg_buffer) - offset;
352 memcpy (arg_reg_buffer + offset, contents, tlen);
353 offset += tlen;
354 contents += tlen;
355 len -= tlen;
356 }
357 }
358
359 /* Everything else goes to the stack. */
360 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
361 }
362 if (struct_return)
363 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
364
365 /* Load the argument registers. */
366 for (i = 0; i < required_arg_regs; i++)
367 {
368 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
369 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
370 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
371 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
372 }
373
374 /* Finally, update the stack pointer. */
375 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
376
377 return sp;
378 }
379
380 /* Given a return value in `regbuf' with a type `valtype',
381 extract and copy its value into `valbuf'. */
382
383 static void
384 alpha_extract_return_value (struct type *valtype,
385 char regbuf[ALPHA_REGISTER_BYTES], char *valbuf)
386 {
387 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
388 alpha_register_convert_to_virtual (FP0_REGNUM, valtype,
389 regbuf + REGISTER_BYTE (FP0_REGNUM),
390 valbuf);
391 else
392 memcpy (valbuf, regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
393 TYPE_LENGTH (valtype));
394 }
395
396 /* Given a return value in `regbuf' with a type `valtype',
397 write its value into the appropriate register. */
398
399 static void
400 alpha_store_return_value (struct type *valtype, char *valbuf)
401 {
402 char raw_buffer[ALPHA_REGISTER_SIZE];
403 int regnum = ALPHA_V0_REGNUM;
404 int length = TYPE_LENGTH (valtype);
405
406 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
407 {
408 regnum = FP0_REGNUM;
409 length = ALPHA_REGISTER_SIZE;
410 alpha_register_convert_to_raw (valtype, regnum, valbuf, raw_buffer);
411 }
412 else
413 memcpy (raw_buffer, valbuf, length);
414
415 deprecated_write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, length);
416 }
417
418 static int
419 alpha_use_struct_convention (int gcc_p, struct type *type)
420 {
421 /* Structures are returned by ref in extra arg0. */
422 return 1;
423 }
424
425 static void
426 alpha_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
427 {
428 /* Store the address of the place in which to copy the structure the
429 subroutine will return. Handled by alpha_push_arguments. */
430 }
431
432 static CORE_ADDR
433 alpha_extract_struct_value_address (char *regbuf)
434 {
435 return (extract_unsigned_integer (regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
436 REGISTER_RAW_SIZE (ALPHA_V0_REGNUM)));
437 }
438
439 \f
440 static const unsigned char *
441 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
442 {
443 static const unsigned char alpha_breakpoint[] =
444 { 0x80, 0, 0, 0 }; /* call_pal bpt */
445
446 *lenptr = sizeof(alpha_breakpoint);
447 return (alpha_breakpoint);
448 }
449
450 \f
451 /* This returns the PC of the first insn after the prologue.
452 If we can't find the prologue, then return 0. */
453
454 CORE_ADDR
455 alpha_after_prologue (CORE_ADDR pc)
456 {
457 struct symtab_and_line sal;
458 CORE_ADDR func_addr, func_end;
459
460 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
461 return 0;
462
463 sal = find_pc_line (func_addr, 0);
464 if (sal.end < func_end)
465 return sal.end;
466
467 /* The line after the prologue is after the end of the function. In this
468 case, tell the caller to find the prologue the hard way. */
469 return 0;
470 }
471
472 /* Read an instruction from memory at PC, looking through breakpoints. */
473
474 unsigned int
475 alpha_read_insn (CORE_ADDR pc)
476 {
477 char buf[4];
478 int status;
479
480 status = read_memory_nobpt (pc, buf, 4);
481 if (status)
482 memory_error (status, pc);
483 return extract_unsigned_integer (buf, 4);
484 }
485
486 /* To skip prologues, I use this predicate. Returns either PC itself
487 if the code at PC does not look like a function prologue; otherwise
488 returns an address that (if we're lucky) follows the prologue. If
489 LENIENT, then we must skip everything which is involved in setting
490 up the frame (it's OK to skip more, just so long as we don't skip
491 anything which might clobber the registers which are being saved. */
492
493 static CORE_ADDR
494 alpha_skip_prologue (CORE_ADDR pc)
495 {
496 unsigned long inst;
497 int offset;
498 CORE_ADDR post_prologue_pc;
499 char buf[4];
500
501 /* Silently return the unaltered pc upon memory errors.
502 This could happen on OSF/1 if decode_line_1 tries to skip the
503 prologue for quickstarted shared library functions when the
504 shared library is not yet mapped in.
505 Reading target memory is slow over serial lines, so we perform
506 this check only if the target has shared libraries (which all
507 Alpha targets do). */
508 if (target_read_memory (pc, buf, 4))
509 return pc;
510
511 /* See if we can determine the end of the prologue via the symbol table.
512 If so, then return either PC, or the PC after the prologue, whichever
513 is greater. */
514
515 post_prologue_pc = alpha_after_prologue (pc);
516 if (post_prologue_pc != 0)
517 return max (pc, post_prologue_pc);
518
519 /* Can't determine prologue from the symbol table, need to examine
520 instructions. */
521
522 /* Skip the typical prologue instructions. These are the stack adjustment
523 instruction and the instructions that save registers on the stack
524 or in the gcc frame. */
525 for (offset = 0; offset < 100; offset += 4)
526 {
527 inst = alpha_read_insn (pc + offset);
528
529 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
530 continue;
531 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
532 continue;
533 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
534 continue;
535 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
536 continue;
537
538 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
539 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
540 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
541 continue;
542
543 if (inst == 0x47de040f) /* bis sp,sp,fp */
544 continue;
545 if (inst == 0x47fe040f) /* bis zero,sp,fp */
546 continue;
547
548 break;
549 }
550 return pc + offset;
551 }
552
553 \f
554 /* Figure out where the longjmp will land.
555 We expect the first arg to be a pointer to the jmp_buf structure from
556 which we extract the PC (JB_PC) that we will land at. The PC is copied
557 into the "pc". This routine returns true on success. */
558
559 static int
560 alpha_get_longjmp_target (CORE_ADDR *pc)
561 {
562 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
563 CORE_ADDR jb_addr;
564 char raw_buffer[ALPHA_REGISTER_SIZE];
565
566 jb_addr = read_register (ALPHA_A0_REGNUM);
567
568 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
569 raw_buffer, tdep->jb_elt_size))
570 return 0;
571
572 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
573 return 1;
574 }
575
576 \f
577 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
578 describe the location and shape of the sigcontext structure. After
579 that, all registers are in memory, so it's easy. */
580 /* ??? Shouldn't we be able to do this generically, rather than with
581 OSABI data specific to Alpha? */
582
583 struct alpha_sigtramp_unwind_cache
584 {
585 CORE_ADDR sigcontext_addr;
586 };
587
588 static struct alpha_sigtramp_unwind_cache *
589 alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
590 void **this_prologue_cache)
591 {
592 struct alpha_sigtramp_unwind_cache *info;
593 struct gdbarch_tdep *tdep;
594
595 if (*this_prologue_cache)
596 return *this_prologue_cache;
597
598 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
599 *this_prologue_cache = info;
600
601 tdep = gdbarch_tdep (current_gdbarch);
602 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
603
604 return info;
605 }
606
607 /* Return the address of REGNO in a sigtramp frame. Since this is all
608 arithmetic, it doesn't seem worthwhile to cache it. */
609
610 #ifndef SIGFRAME_PC_OFF
611 #define SIGFRAME_PC_OFF (2 * 8)
612 #define SIGFRAME_REGSAVE_OFF (4 * 8)
613 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
614 #endif
615
616 static CORE_ADDR
617 alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, unsigned int regno)
618 {
619 if (regno < 32)
620 return sigcontext_addr + SIGFRAME_REGSAVE_OFF + regno * 8;
621 if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32)
622 return sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + regno * 8;
623 if (regno == PC_REGNUM)
624 return sigcontext_addr + SIGFRAME_PC_OFF;
625
626 return 0;
627 }
628
629 /* Given a GDB frame, determine the address of the calling function's
630 frame. This will be used to create a new GDB frame struct. */
631
632 static void
633 alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
634 void **this_prologue_cache,
635 struct frame_id *this_id)
636 {
637 struct alpha_sigtramp_unwind_cache *info
638 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
639 struct gdbarch_tdep *tdep;
640 CORE_ADDR stack_addr, code_addr;
641
642 /* If the OSABI couldn't locate the sigcontext, give up. */
643 if (info->sigcontext_addr == 0)
644 return;
645
646 /* If we have dynamic signal trampolines, find their start.
647 If we do not, then we must assume there is a symbol record
648 that can provide the start address. */
649 tdep = gdbarch_tdep (current_gdbarch);
650 if (tdep->dynamic_sigtramp_offset)
651 {
652 int offset;
653 code_addr = frame_pc_unwind (next_frame);
654 offset = tdep->dynamic_sigtramp_offset (code_addr);
655 if (offset >= 0)
656 code_addr -= offset;
657 else
658 code_addr = 0;
659 }
660 else
661 code_addr = frame_func_unwind (next_frame);
662
663 /* The stack address is trivially read from the sigcontext. */
664 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
665 ALPHA_SP_REGNUM);
666 stack_addr = read_memory_unsigned_integer (stack_addr, ALPHA_REGISTER_SIZE);
667
668 *this_id = frame_id_build (stack_addr, code_addr);
669 }
670
671 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
672
673 static void
674 alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
675 void **this_prologue_cache,
676 int regnum, int *optimizedp,
677 enum lval_type *lvalp, CORE_ADDR *addrp,
678 int *realnump, void *bufferp)
679 {
680 struct alpha_sigtramp_unwind_cache *info
681 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
682 CORE_ADDR addr;
683
684 if (info->sigcontext_addr != 0)
685 {
686 /* All integer and fp registers are stored in memory. */
687 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
688 if (addr != 0)
689 {
690 *optimizedp = 0;
691 *lvalp = lval_memory;
692 *addrp = addr;
693 *realnump = -1;
694 if (bufferp != NULL)
695 read_memory (addr, bufferp, ALPHA_REGISTER_SIZE);
696 return;
697 }
698 }
699
700 /* This extra register may actually be in the sigcontext, but our
701 current description of it in alpha_sigtramp_frame_unwind_cache
702 doesn't include it. Too bad. Fall back on whatever's in the
703 outer frame. */
704 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
705 realnump, bufferp);
706 }
707
708 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
709 SIGTRAMP_FRAME,
710 alpha_sigtramp_frame_this_id,
711 alpha_sigtramp_frame_prev_register
712 };
713
714 static const struct frame_unwind *
715 alpha_sigtramp_frame_p (CORE_ADDR pc)
716 {
717 char *name;
718
719 /* We shouldn't even bother to try if the OSABI didn't register
720 a sigcontext_addr handler. */
721 if (!gdbarch_tdep (current_gdbarch)->sigcontext_addr)
722 return NULL;
723
724 /* Otherwise we should be in a signal frame. */
725 find_pc_partial_function (pc, &name, NULL, NULL);
726 if (PC_IN_SIGTRAMP (pc, name))
727 return &alpha_sigtramp_frame_unwind;
728
729 return NULL;
730 }
731 \f
732 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
733 something about the traditional layout of alpha stack frames. */
734
735 struct alpha_heuristic_unwind_cache
736 {
737 CORE_ADDR *saved_regs;
738 CORE_ADDR vfp;
739 CORE_ADDR start_pc;
740 int return_reg;
741 };
742
743 /* Heuristic_proc_start may hunt through the text section for a long
744 time across a 2400 baud serial line. Allows the user to limit this
745 search. */
746 static unsigned int heuristic_fence_post = 0;
747
748 /* Attempt to locate the start of the function containing PC. We assume that
749 the previous function ends with an about_to_return insn. Not foolproof by
750 any means, since gcc is happy to put the epilogue in the middle of a
751 function. But we're guessing anyway... */
752
753 static CORE_ADDR
754 alpha_heuristic_proc_start (CORE_ADDR pc)
755 {
756 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
757 CORE_ADDR last_non_nop = pc;
758 CORE_ADDR fence = pc - heuristic_fence_post;
759 CORE_ADDR orig_pc = pc;
760 CORE_ADDR func;
761
762 if (pc == 0)
763 return 0;
764
765 /* First see if we can find the start of the function from minimal
766 symbol information. This can succeed with a binary that doesn't
767 have debug info, but hasn't been stripped. */
768 func = get_pc_function_start (pc);
769 if (func)
770 return func;
771
772 if (heuristic_fence_post == UINT_MAX
773 || fence < tdep->vm_min_address)
774 fence = tdep->vm_min_address;
775
776 /* Search back for previous return; also stop at a 0, which might be
777 seen for instance before the start of a code section. Don't include
778 nops, since this usually indicates padding between functions. */
779 for (pc -= 4; pc >= fence; pc -= 4)
780 {
781 unsigned int insn = alpha_read_insn (pc);
782 switch (insn)
783 {
784 case 0: /* invalid insn */
785 case 0x6bfa8001: /* ret $31,($26),1 */
786 return last_non_nop;
787
788 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
789 case 0x47ff041f: /* nop: bis $31,$31,$31 */
790 break;
791
792 default:
793 last_non_nop = pc;
794 break;
795 }
796 }
797
798 /* It's not clear to me why we reach this point when stopping quietly,
799 but with this test, at least we don't print out warnings for every
800 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
801 if (stop_soon == NO_STOP_QUIETLY)
802 {
803 static int blurb_printed = 0;
804
805 if (fence == tdep->vm_min_address)
806 warning ("Hit beginning of text section without finding");
807 else
808 warning ("Hit heuristic-fence-post without finding");
809 warning ("enclosing function for address 0x%s", paddr_nz (orig_pc));
810
811 if (!blurb_printed)
812 {
813 printf_filtered ("\
814 This warning occurs if you are debugging a function without any symbols\n\
815 (for example, in a stripped executable). In that case, you may wish to\n\
816 increase the size of the search with the `set heuristic-fence-post' command.\n\
817 \n\
818 Otherwise, you told GDB there was a function where there isn't one, or\n\
819 (more likely) you have encountered a bug in GDB.\n");
820 blurb_printed = 1;
821 }
822 }
823
824 return 0;
825 }
826
827 static struct alpha_heuristic_unwind_cache *
828 alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
829 void **this_prologue_cache,
830 CORE_ADDR start_pc)
831 {
832 struct alpha_heuristic_unwind_cache *info;
833 ULONGEST val;
834 CORE_ADDR limit_pc, cur_pc;
835 int frame_reg, frame_size, return_reg, reg;
836
837 if (*this_prologue_cache)
838 return *this_prologue_cache;
839
840 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
841 *this_prologue_cache = info;
842 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
843
844 limit_pc = frame_pc_unwind (next_frame);
845 if (start_pc == 0)
846 start_pc = alpha_heuristic_proc_start (limit_pc);
847 info->start_pc = start_pc;
848
849 frame_reg = ALPHA_SP_REGNUM;
850 frame_size = 0;
851 return_reg = -1;
852
853 /* If we've identified a likely place to start, do code scanning. */
854 if (start_pc != 0)
855 {
856 /* Limit the forward search to 50 instructions. */
857 if (start_pc + 200 < limit_pc)
858 limit_pc = start_pc + 200;
859
860 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
861 {
862 unsigned int word = alpha_read_insn (cur_pc);
863
864 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
865 {
866 if (word & 0x8000)
867 {
868 /* Consider only the first stack allocation instruction
869 to contain the static size of the frame. */
870 if (frame_size == 0)
871 frame_size = (-word) & 0xffff;
872 }
873 else
874 {
875 /* Exit loop if a positive stack adjustment is found, which
876 usually means that the stack cleanup code in the function
877 epilogue is reached. */
878 break;
879 }
880 }
881 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
882 {
883 reg = (word & 0x03e00000) >> 21;
884
885 if (reg == 31)
886 continue;
887
888 /* Do not compute the address where the register was saved yet,
889 because we don't know yet if the offset will need to be
890 relative to $sp or $fp (we can not compute the address
891 relative to $sp if $sp is updated during the execution of
892 the current subroutine, for instance when doing some alloca).
893 So just store the offset for the moment, and compute the
894 address later when we know whether this frame has a frame
895 pointer or not. */
896 /* Hack: temporarily add one, so that the offset is non-zero
897 and we can tell which registers have save offsets below. */
898 info->saved_regs[reg] = (word & 0xffff) + 1;
899
900 /* Starting with OSF/1-3.2C, the system libraries are shipped
901 without local symbols, but they still contain procedure
902 descriptors without a symbol reference. GDB is currently
903 unable to find these procedure descriptors and uses
904 heuristic_proc_desc instead.
905 As some low level compiler support routines (__div*, __add*)
906 use a non-standard return address register, we have to
907 add some heuristics to determine the return address register,
908 or stepping over these routines will fail.
909 Usually the return address register is the first register
910 saved on the stack, but assembler optimization might
911 rearrange the register saves.
912 So we recognize only a few registers (t7, t9, ra) within
913 the procedure prologue as valid return address registers.
914 If we encounter a return instruction, we extract the
915 the return address register from it.
916
917 FIXME: Rewriting GDB to access the procedure descriptors,
918 e.g. via the minimal symbol table, might obviate this hack. */
919 if (return_reg == -1
920 && cur_pc < (start_pc + 80)
921 && (reg == ALPHA_T7_REGNUM
922 || reg == ALPHA_T9_REGNUM
923 || reg == ALPHA_RA_REGNUM))
924 return_reg = reg;
925 }
926 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
927 return_reg = (word >> 16) & 0x1f;
928 else if (word == 0x47de040f) /* bis sp,sp,fp */
929 frame_reg = ALPHA_GCC_FP_REGNUM;
930 else if (word == 0x47fe040f) /* bis zero,sp,fp */
931 frame_reg = ALPHA_GCC_FP_REGNUM;
932 }
933
934 /* If we haven't found a valid return address register yet, keep
935 searching in the procedure prologue. */
936 if (return_reg == -1)
937 {
938 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
939 {
940 unsigned int word = alpha_read_insn (cur_pc);
941
942 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
943 {
944 reg = (word & 0x03e00000) >> 21;
945 if (reg == ALPHA_T7_REGNUM
946 || reg == ALPHA_T9_REGNUM
947 || reg == ALPHA_RA_REGNUM)
948 {
949 return_reg = reg;
950 break;
951 }
952 }
953 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
954 {
955 return_reg = (word >> 16) & 0x1f;
956 break;
957 }
958
959 cur_pc += 4;
960 }
961 }
962 }
963
964 /* Failing that, do default to the customary RA. */
965 if (return_reg == -1)
966 return_reg = ALPHA_RA_REGNUM;
967 info->return_reg = return_reg;
968
969 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
970 info->vfp = val + frame_size;
971
972 /* Convert offsets to absolute addresses. See above about adding
973 one to the offsets to make all detected offsets non-zero. */
974 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
975 if (info->saved_regs[reg])
976 info->saved_regs[reg] += val - 1;
977
978 return info;
979 }
980
981 /* Given a GDB frame, determine the address of the calling function's
982 frame. This will be used to create a new GDB frame struct. */
983
984 static void
985 alpha_heuristic_frame_this_id (struct frame_info *next_frame,
986 void **this_prologue_cache,
987 struct frame_id *this_id)
988 {
989 struct alpha_heuristic_unwind_cache *info
990 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
991
992 /* This is meant to halt the backtrace at "_start". Make sure we
993 don't halt it at a generic dummy frame. */
994 if (inside_entry_file (info->start_pc))
995 return;
996
997 *this_id = frame_id_build (info->vfp, info->start_pc);
998 }
999
1000 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1001
1002 static void
1003 alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1004 void **this_prologue_cache,
1005 int regnum, int *optimizedp,
1006 enum lval_type *lvalp, CORE_ADDR *addrp,
1007 int *realnump, void *bufferp)
1008 {
1009 struct alpha_heuristic_unwind_cache *info
1010 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1011
1012 /* The PC of the previous frame is stored in the link register of
1013 the current frame. Frob regnum so that we pull the value from
1014 the correct place. */
1015 if (regnum == ALPHA_PC_REGNUM)
1016 regnum = info->return_reg;
1017
1018 /* For all registers known to be saved in the current frame,
1019 do the obvious and pull the value out. */
1020 if (info->saved_regs[regnum])
1021 {
1022 *optimizedp = 0;
1023 *lvalp = lval_memory;
1024 *addrp = info->saved_regs[regnum];
1025 *realnump = -1;
1026 if (bufferp != NULL)
1027 read_memory (*addrp, bufferp, ALPHA_REGISTER_SIZE);
1028 return;
1029 }
1030
1031 /* The stack pointer of the previous frame is computed by popping
1032 the current stack frame. */
1033 if (regnum == ALPHA_SP_REGNUM)
1034 {
1035 *optimizedp = 0;
1036 *lvalp = not_lval;
1037 *addrp = 0;
1038 *realnump = -1;
1039 if (bufferp != NULL)
1040 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1041 return;
1042 }
1043
1044 /* Otherwise assume the next frame has the same register value. */
1045 frame_register (next_frame, regnum, optimizedp, lvalp, addrp,
1046 realnump, bufferp);
1047 }
1048
1049 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1050 NORMAL_FRAME,
1051 alpha_heuristic_frame_this_id,
1052 alpha_heuristic_frame_prev_register
1053 };
1054
1055 static const struct frame_unwind *
1056 alpha_heuristic_frame_p (CORE_ADDR pc)
1057 {
1058 return &alpha_heuristic_frame_unwind;
1059 }
1060
1061 static CORE_ADDR
1062 alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1063 void **this_prologue_cache)
1064 {
1065 struct alpha_heuristic_unwind_cache *info
1066 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1067
1068 return info->vfp;
1069 }
1070
1071 static const struct frame_base alpha_heuristic_frame_base = {
1072 &alpha_heuristic_frame_unwind,
1073 alpha_heuristic_frame_base_address,
1074 alpha_heuristic_frame_base_address,
1075 alpha_heuristic_frame_base_address
1076 };
1077
1078 /* Just like reinit_frame_cache, but with the right arguments to be
1079 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1080
1081 static void
1082 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1083 {
1084 reinit_frame_cache ();
1085 }
1086
1087 \f
1088 /* ALPHA stack frames are almost impenetrable. When execution stops,
1089 we basically have to look at symbol information for the function
1090 that we stopped in, which tells us *which* register (if any) is
1091 the base of the frame pointer, and what offset from that register
1092 the frame itself is at.
1093
1094 This presents a problem when trying to examine a stack in memory
1095 (that isn't executing at the moment), using the "frame" command. We
1096 don't have a PC, nor do we have any registers except SP.
1097
1098 This routine takes two arguments, SP and PC, and tries to make the
1099 cached frames look as if these two arguments defined a frame on the
1100 cache. This allows the rest of info frame to extract the important
1101 arguments without difficulty. */
1102
1103 struct frame_info *
1104 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1105 {
1106 if (argc != 2)
1107 error ("ALPHA frame specifications require two arguments: sp and pc");
1108
1109 return create_new_frame (argv[0], argv[1]);
1110 }
1111
1112 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1113 dummy frame. The frame ID's base needs to match the TOS value
1114 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1115 breakpoint. */
1116
1117 static struct frame_id
1118 alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1119 {
1120 ULONGEST base;
1121 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1122 return frame_id_build (base, frame_pc_unwind (next_frame));
1123 }
1124
1125 static CORE_ADDR
1126 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1127 {
1128 ULONGEST pc;
1129 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1130 return pc;
1131 }
1132
1133 \f
1134 /* alpha_software_single_step() is called just before we want to resume
1135 the inferior, if we want to single-step it but there is no hardware
1136 or kernel single-step support (NetBSD on Alpha, for example). We find
1137 the target of the coming instruction and breakpoint it.
1138
1139 single_step is also called just after the inferior stops. If we had
1140 set up a simulated single-step, we undo our damage. */
1141
1142 static CORE_ADDR
1143 alpha_next_pc (CORE_ADDR pc)
1144 {
1145 unsigned int insn;
1146 unsigned int op;
1147 int offset;
1148 LONGEST rav;
1149
1150 insn = read_memory_unsigned_integer (pc, sizeof (insn));
1151
1152 /* Opcode is top 6 bits. */
1153 op = (insn >> 26) & 0x3f;
1154
1155 if (op == 0x1a)
1156 {
1157 /* Jump format: target PC is:
1158 RB & ~3 */
1159 return (read_register ((insn >> 16) & 0x1f) & ~3);
1160 }
1161
1162 if ((op & 0x30) == 0x30)
1163 {
1164 /* Branch format: target PC is:
1165 (new PC) + (4 * sext(displacement)) */
1166 if (op == 0x30 || /* BR */
1167 op == 0x34) /* BSR */
1168 {
1169 branch_taken:
1170 offset = (insn & 0x001fffff);
1171 if (offset & 0x00100000)
1172 offset |= 0xffe00000;
1173 offset *= 4;
1174 return (pc + 4 + offset);
1175 }
1176
1177 /* Need to determine if branch is taken; read RA. */
1178 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1179 switch (op)
1180 {
1181 case 0x38: /* BLBC */
1182 if ((rav & 1) == 0)
1183 goto branch_taken;
1184 break;
1185 case 0x3c: /* BLBS */
1186 if (rav & 1)
1187 goto branch_taken;
1188 break;
1189 case 0x39: /* BEQ */
1190 if (rav == 0)
1191 goto branch_taken;
1192 break;
1193 case 0x3d: /* BNE */
1194 if (rav != 0)
1195 goto branch_taken;
1196 break;
1197 case 0x3a: /* BLT */
1198 if (rav < 0)
1199 goto branch_taken;
1200 break;
1201 case 0x3b: /* BLE */
1202 if (rav <= 0)
1203 goto branch_taken;
1204 break;
1205 case 0x3f: /* BGT */
1206 if (rav > 0)
1207 goto branch_taken;
1208 break;
1209 case 0x3e: /* BGE */
1210 if (rav >= 0)
1211 goto branch_taken;
1212 break;
1213
1214 /* ??? Missing floating-point branches. */
1215 }
1216 }
1217
1218 /* Not a branch or branch not taken; target PC is:
1219 pc + 4 */
1220 return (pc + 4);
1221 }
1222
1223 void
1224 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1225 {
1226 static CORE_ADDR next_pc;
1227 typedef char binsn_quantum[BREAKPOINT_MAX];
1228 static binsn_quantum break_mem;
1229 CORE_ADDR pc;
1230
1231 if (insert_breakpoints_p)
1232 {
1233 pc = read_pc ();
1234 next_pc = alpha_next_pc (pc);
1235
1236 target_insert_breakpoint (next_pc, break_mem);
1237 }
1238 else
1239 {
1240 target_remove_breakpoint (next_pc, break_mem);
1241 write_pc (next_pc);
1242 }
1243 }
1244
1245 \f
1246 /* Initialize the current architecture based on INFO. If possible, re-use an
1247 architecture from ARCHES, which is a list of architectures already created
1248 during this debugging session.
1249
1250 Called e.g. at program startup, when reading a core file, and when reading
1251 a binary file. */
1252
1253 static struct gdbarch *
1254 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1255 {
1256 struct gdbarch_tdep *tdep;
1257 struct gdbarch *gdbarch;
1258
1259 /* Try to determine the ABI of the object we are loading. */
1260 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1261 {
1262 /* If it's an ECOFF file, assume it's OSF/1. */
1263 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1264 info.osabi = GDB_OSABI_OSF1;
1265 }
1266
1267 /* Find a candidate among extant architectures. */
1268 arches = gdbarch_list_lookup_by_info (arches, &info);
1269 if (arches != NULL)
1270 return arches->gdbarch;
1271
1272 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1273 gdbarch = gdbarch_alloc (&info, tdep);
1274
1275 /* Lowest text address. This is used by heuristic_proc_start()
1276 to decide when to stop looking. */
1277 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1278
1279 tdep->dynamic_sigtramp_offset = NULL;
1280 tdep->sigcontext_addr = NULL;
1281
1282 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1283
1284 /* Type sizes */
1285 set_gdbarch_short_bit (gdbarch, 16);
1286 set_gdbarch_int_bit (gdbarch, 32);
1287 set_gdbarch_long_bit (gdbarch, 64);
1288 set_gdbarch_long_long_bit (gdbarch, 64);
1289 set_gdbarch_float_bit (gdbarch, 32);
1290 set_gdbarch_double_bit (gdbarch, 64);
1291 set_gdbarch_long_double_bit (gdbarch, 64);
1292 set_gdbarch_ptr_bit (gdbarch, 64);
1293
1294 /* Register info */
1295 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1296 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1297 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1298 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1299
1300 set_gdbarch_register_name (gdbarch, alpha_register_name);
1301 set_gdbarch_register_byte (gdbarch, alpha_register_byte);
1302 set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
1303 set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
1304 set_gdbarch_register_virtual_type (gdbarch, alpha_register_virtual_type);
1305
1306 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1307 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1308
1309 set_gdbarch_register_convertible (gdbarch, alpha_register_convertible);
1310 set_gdbarch_register_convert_to_virtual (gdbarch,
1311 alpha_register_convert_to_virtual);
1312 set_gdbarch_register_convert_to_raw (gdbarch, alpha_register_convert_to_raw);
1313
1314 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1315
1316 /* Prologue heuristics. */
1317 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1318
1319 /* Disassembler. */
1320 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1321
1322 /* Call info. */
1323 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1324 set_gdbarch_frameless_function_invocation (gdbarch,
1325 generic_frameless_function_invocation_not);
1326
1327 set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
1328 set_gdbarch_deprecated_extract_return_value (gdbarch, alpha_extract_return_value);
1329 set_gdbarch_deprecated_store_struct_return (gdbarch, alpha_store_struct_return);
1330 set_gdbarch_deprecated_store_return_value (gdbarch, alpha_store_return_value);
1331 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
1332 alpha_extract_struct_value_address);
1333
1334 /* Settings for calling functions in the inferior. */
1335 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1336
1337 /* Methods for saving / extracting a dummy frame's ID. */
1338 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
1339 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
1340
1341 /* Return the unwound PC value. */
1342 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1343
1344 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1345 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1346
1347 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1348 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1349
1350 set_gdbarch_function_start_offset (gdbarch, 0);
1351 set_gdbarch_frame_args_skip (gdbarch, 0);
1352
1353 /* Hook in ABI-specific overrides, if they have been registered. */
1354 gdbarch_init_osabi (info, gdbarch);
1355
1356 /* Now that we have tuned the configuration, set a few final things
1357 based on what the OS ABI has told us. */
1358
1359 if (tdep->jb_pc >= 0)
1360 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1361
1362 frame_unwind_append_predicate (gdbarch, alpha_sigtramp_frame_p);
1363 frame_unwind_append_predicate (gdbarch, alpha_heuristic_frame_p);
1364
1365 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1366
1367 return gdbarch;
1368 }
1369
1370 void
1371 _initialize_alpha_tdep (void)
1372 {
1373 struct cmd_list_element *c;
1374
1375 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1376
1377 /* Let the user set the fence post for heuristic_proc_start. */
1378
1379 /* We really would like to have both "0" and "unlimited" work, but
1380 command.c doesn't deal with that. So make it a var_zinteger
1381 because the user can always use "999999" or some such for unlimited. */
1382 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1383 (char *) &heuristic_fence_post,
1384 "\
1385 Set the distance searched for the start of a function.\n\
1386 If you are debugging a stripped executable, GDB needs to search through the\n\
1387 program for the start of a function. This command sets the distance of the\n\
1388 search. The only need to set it is when debugging a stripped executable.",
1389 &setlist);
1390 /* We need to throw away the frame cache when we set this, since it
1391 might change our ability to get backtraces. */
1392 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
1393 add_show_from_set (c, &showlist);
1394 }