2002-08-13 Andrew Cagney <ac131313@redhat.com>
[binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "inferior.h"
25 #include "symtab.h"
26 #include "value.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "dis-asm.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdb_string.h"
33 #include "linespec.h"
34 #include "regcache.h"
35 #include "doublest.h"
36 #include "arch-utils.h"
37
38 #include "elf-bfd.h"
39
40 #include "alpha-tdep.h"
41
42 static gdbarch_init_ftype alpha_gdbarch_init;
43
44 static gdbarch_register_name_ftype alpha_register_name;
45 static gdbarch_register_raw_size_ftype alpha_register_raw_size;
46 static gdbarch_register_virtual_size_ftype alpha_register_virtual_size;
47 static gdbarch_register_virtual_type_ftype alpha_register_virtual_type;
48 static gdbarch_register_byte_ftype alpha_register_byte;
49 static gdbarch_cannot_fetch_register_ftype alpha_cannot_fetch_register;
50 static gdbarch_cannot_store_register_ftype alpha_cannot_store_register;
51 static gdbarch_register_convertible_ftype alpha_register_convertible;
52 static gdbarch_register_convert_to_virtual_ftype
53 alpha_register_convert_to_virtual;
54 static gdbarch_register_convert_to_raw_ftype alpha_register_convert_to_raw;
55 static gdbarch_store_struct_return_ftype alpha_store_struct_return;
56 static gdbarch_deprecated_extract_return_value_ftype alpha_extract_return_value;
57 static gdbarch_store_return_value_ftype alpha_store_return_value;
58 static gdbarch_deprecated_extract_struct_value_address_ftype
59 alpha_extract_struct_value_address;
60 static gdbarch_use_struct_convention_ftype alpha_use_struct_convention;
61
62 static gdbarch_breakpoint_from_pc_ftype alpha_breakpoint_from_pc;
63
64 static gdbarch_frame_args_address_ftype alpha_frame_args_address;
65 static gdbarch_frame_locals_address_ftype alpha_frame_locals_address;
66
67 static gdbarch_skip_prologue_ftype alpha_skip_prologue;
68 static gdbarch_saved_pc_after_call_ftype alpha_saved_pc_after_call;
69 static gdbarch_frame_chain_ftype alpha_frame_chain;
70 static gdbarch_frame_saved_pc_ftype alpha_frame_saved_pc;
71 static gdbarch_frame_init_saved_regs_ftype alpha_frame_init_saved_regs;
72
73 static gdbarch_push_arguments_ftype alpha_push_arguments;
74 static gdbarch_push_dummy_frame_ftype alpha_push_dummy_frame;
75 static gdbarch_pop_frame_ftype alpha_pop_frame;
76 static gdbarch_fix_call_dummy_ftype alpha_fix_call_dummy;
77 static gdbarch_init_frame_pc_first_ftype alpha_init_frame_pc_first;
78 static gdbarch_init_extra_frame_info_ftype alpha_init_extra_frame_info;
79
80 static gdbarch_get_longjmp_target_ftype alpha_get_longjmp_target;
81
82 struct frame_extra_info
83 {
84 alpha_extra_func_info_t proc_desc;
85 int localoff;
86 int pc_reg;
87 };
88
89 /* FIXME: Some of this code should perhaps be merged with mips-tdep.c. */
90
91 /* Prototypes for local functions. */
92
93 static void alpha_find_saved_regs (struct frame_info *);
94
95 static alpha_extra_func_info_t push_sigtramp_desc (CORE_ADDR low_addr);
96
97 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
98
99 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
100
101 static alpha_extra_func_info_t heuristic_proc_desc (CORE_ADDR,
102 CORE_ADDR,
103 struct frame_info *);
104
105 static alpha_extra_func_info_t find_proc_desc (CORE_ADDR,
106 struct frame_info *);
107
108 #if 0
109 static int alpha_in_lenient_prologue (CORE_ADDR, CORE_ADDR);
110 #endif
111
112 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
113
114 static CORE_ADDR after_prologue (CORE_ADDR pc,
115 alpha_extra_func_info_t proc_desc);
116
117 static int alpha_in_prologue (CORE_ADDR pc,
118 alpha_extra_func_info_t proc_desc);
119
120 static int alpha_about_to_return (CORE_ADDR pc);
121
122 void _initialize_alpha_tdep (void);
123
124 /* Heuristic_proc_start may hunt through the text section for a long
125 time across a 2400 baud serial line. Allows the user to limit this
126 search. */
127 static unsigned int heuristic_fence_post = 0;
128 /* *INDENT-OFF* */
129 /* Layout of a stack frame on the alpha:
130
131 | |
132 pdr members: | 7th ... nth arg, |
133 | `pushed' by caller. |
134 | |
135 ----------------|-------------------------------|<-- old_sp == vfp
136 ^ ^ ^ ^ | |
137 | | | | | |
138 | |localoff | Copies of 1st .. 6th |
139 | | | | | argument if necessary. |
140 | | | v | |
141 | | | --- |-------------------------------|<-- FRAME_LOCALS_ADDRESS
142 | | | | |
143 | | | | Locals and temporaries. |
144 | | | | |
145 | | | |-------------------------------|
146 | | | | |
147 |-fregoffset | Saved float registers. |
148 | | | | F9 |
149 | | | | . |
150 | | | | . |
151 | | | | F2 |
152 | | v | |
153 | | -------|-------------------------------|
154 | | | |
155 | | | Saved registers. |
156 | | | S6 |
157 |-regoffset | . |
158 | | | . |
159 | | | S0 |
160 | | | pdr.pcreg |
161 | v | |
162 | ----------|-------------------------------|
163 | | |
164 frameoffset | Argument build area, gets |
165 | | 7th ... nth arg for any |
166 | | called procedure. |
167 v | |
168 -------------|-------------------------------|<-- sp
169 | |
170 */
171 /* *INDENT-ON* */
172
173 #define PROC_LOW_ADDR(proc) ((proc)->pdr.adr) /* least address */
174 /* These next two fields are kind of being hijacked. I wonder if
175 iline is too small for the values it needs to hold, if GDB is
176 running on a 32-bit host. */
177 #define PROC_HIGH_ADDR(proc) ((proc)->pdr.iline) /* upper address bound */
178 #define PROC_DUMMY_FRAME(proc) ((proc)->pdr.cbLineOffset) /*CALL_DUMMY frame */
179 #define PROC_FRAME_OFFSET(proc) ((proc)->pdr.frameoffset)
180 #define PROC_FRAME_REG(proc) ((proc)->pdr.framereg)
181 #define PROC_REG_MASK(proc) ((proc)->pdr.regmask)
182 #define PROC_FREG_MASK(proc) ((proc)->pdr.fregmask)
183 #define PROC_REG_OFFSET(proc) ((proc)->pdr.regoffset)
184 #define PROC_FREG_OFFSET(proc) ((proc)->pdr.fregoffset)
185 #define PROC_PC_REG(proc) ((proc)->pdr.pcreg)
186 #define PROC_LOCALOFF(proc) ((proc)->pdr.localoff)
187 #define PROC_SYMBOL(proc) (*(struct symbol**)&(proc)->pdr.isym)
188 #define _PROC_MAGIC_ 0x0F0F0F0F
189 #define PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym == _PROC_MAGIC_)
190 #define SET_PROC_DESC_IS_DUMMY(proc) ((proc)->pdr.isym = _PROC_MAGIC_)
191
192 struct linked_proc_info
193 {
194 struct alpha_extra_func_info info;
195 struct linked_proc_info *next;
196 }
197 *linked_proc_desc_table = NULL;
198 \f
199 static CORE_ADDR
200 alpha_frame_past_sigtramp_frame (struct frame_info *frame, CORE_ADDR pc)
201 {
202 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
203
204 if (tdep->skip_sigtramp_frame != NULL)
205 return (tdep->skip_sigtramp_frame (frame, pc));
206
207 return (0);
208 }
209
210 static LONGEST
211 alpha_dynamic_sigtramp_offset (CORE_ADDR pc)
212 {
213 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
214
215 /* Must be provided by OS/ABI variant code if supported. */
216 if (tdep->dynamic_sigtramp_offset != NULL)
217 return (tdep->dynamic_sigtramp_offset (pc));
218
219 return (-1);
220 }
221
222 #define ALPHA_PROC_SIGTRAMP_MAGIC 0x0e0f0f0f
223
224 /* Return TRUE if the procedure descriptor PROC is a procedure
225 descriptor that refers to a dynamically generated signal
226 trampoline routine. */
227 static int
228 alpha_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
229 {
230 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
231
232 if (tdep->dynamic_sigtramp_offset != NULL)
233 return (proc->pdr.isym == ALPHA_PROC_SIGTRAMP_MAGIC);
234
235 return (0);
236 }
237
238 static void
239 alpha_set_proc_desc_is_dyn_sigtramp (struct alpha_extra_func_info *proc)
240 {
241 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
242
243 if (tdep->dynamic_sigtramp_offset != NULL)
244 proc->pdr.isym = ALPHA_PROC_SIGTRAMP_MAGIC;
245 }
246
247 /* Dynamically create a signal-handler caller procedure descriptor for
248 the signal-handler return code starting at address LOW_ADDR. The
249 descriptor is added to the linked_proc_desc_table. */
250
251 static alpha_extra_func_info_t
252 push_sigtramp_desc (CORE_ADDR low_addr)
253 {
254 struct linked_proc_info *link;
255 alpha_extra_func_info_t proc_desc;
256
257 link = (struct linked_proc_info *)
258 xmalloc (sizeof (struct linked_proc_info));
259 link->next = linked_proc_desc_table;
260 linked_proc_desc_table = link;
261
262 proc_desc = &link->info;
263
264 proc_desc->numargs = 0;
265 PROC_LOW_ADDR (proc_desc) = low_addr;
266 PROC_HIGH_ADDR (proc_desc) = low_addr + 3 * 4;
267 PROC_DUMMY_FRAME (proc_desc) = 0;
268 PROC_FRAME_OFFSET (proc_desc) = 0x298; /* sizeof(struct sigcontext_struct) */
269 PROC_FRAME_REG (proc_desc) = SP_REGNUM;
270 PROC_REG_MASK (proc_desc) = 0xffff;
271 PROC_FREG_MASK (proc_desc) = 0xffff;
272 PROC_PC_REG (proc_desc) = 26;
273 PROC_LOCALOFF (proc_desc) = 0;
274 alpha_set_proc_desc_is_dyn_sigtramp (proc_desc);
275 return (proc_desc);
276 }
277 \f
278
279 static const char *
280 alpha_register_name (int regno)
281 {
282 static char *register_names[] =
283 {
284 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
285 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
286 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
287 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
288 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
289 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
290 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
291 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
292 "pc", "vfp",
293 };
294
295 if (regno < 0)
296 return (NULL);
297 if (regno >= (sizeof(register_names) / sizeof(*register_names)))
298 return (NULL);
299 return (register_names[regno]);
300 }
301
302 static int
303 alpha_cannot_fetch_register (int regno)
304 {
305 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
306 }
307
308 static int
309 alpha_cannot_store_register (int regno)
310 {
311 return (regno == FP_REGNUM || regno == ALPHA_ZERO_REGNUM);
312 }
313
314 static int
315 alpha_register_convertible (int regno)
316 {
317 return (regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31);
318 }
319
320 static struct type *
321 alpha_register_virtual_type (int regno)
322 {
323 return ((regno >= FP0_REGNUM && regno < (FP0_REGNUM+31))
324 ? builtin_type_double : builtin_type_long);
325 }
326
327 static int
328 alpha_register_byte (int regno)
329 {
330 return (regno * 8);
331 }
332
333 static int
334 alpha_register_raw_size (int regno)
335 {
336 return 8;
337 }
338
339 static int
340 alpha_register_virtual_size (int regno)
341 {
342 return 8;
343 }
344 \f
345
346 static CORE_ADDR
347 alpha_sigcontext_addr (struct frame_info *fi)
348 {
349 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
350
351 if (tdep->sigcontext_addr)
352 return (tdep->sigcontext_addr (fi));
353
354 return (0);
355 }
356
357 /* Guaranteed to set frame->saved_regs to some values (it never leaves it
358 NULL). */
359
360 static void
361 alpha_find_saved_regs (struct frame_info *frame)
362 {
363 int ireg;
364 CORE_ADDR reg_position;
365 unsigned long mask;
366 alpha_extra_func_info_t proc_desc;
367 int returnreg;
368
369 frame_saved_regs_zalloc (frame);
370
371 /* If it is the frame for __sigtramp, the saved registers are located
372 in a sigcontext structure somewhere on the stack. __sigtramp
373 passes a pointer to the sigcontext structure on the stack.
374 If the stack layout for __sigtramp changes, or if sigcontext offsets
375 change, we might have to update this code. */
376 #ifndef SIGFRAME_PC_OFF
377 #define SIGFRAME_PC_OFF (2 * 8)
378 #define SIGFRAME_REGSAVE_OFF (4 * 8)
379 #define SIGFRAME_FPREGSAVE_OFF (SIGFRAME_REGSAVE_OFF + 32 * 8 + 8)
380 #endif
381 if (frame->signal_handler_caller)
382 {
383 CORE_ADDR sigcontext_addr;
384
385 sigcontext_addr = alpha_sigcontext_addr (frame);
386 if (sigcontext_addr == 0)
387 {
388 /* Don't know where the sigcontext is; just bail. */
389 return;
390 }
391 for (ireg = 0; ireg < 32; ireg++)
392 {
393 reg_position = sigcontext_addr + SIGFRAME_REGSAVE_OFF + ireg * 8;
394 frame->saved_regs[ireg] = reg_position;
395 }
396 for (ireg = 0; ireg < 32; ireg++)
397 {
398 reg_position = sigcontext_addr + SIGFRAME_FPREGSAVE_OFF + ireg * 8;
399 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
400 }
401 frame->saved_regs[PC_REGNUM] = sigcontext_addr + SIGFRAME_PC_OFF;
402 return;
403 }
404
405 proc_desc = frame->extra_info->proc_desc;
406 if (proc_desc == NULL)
407 /* I'm not sure how/whether this can happen. Normally when we can't
408 find a proc_desc, we "synthesize" one using heuristic_proc_desc
409 and set the saved_regs right away. */
410 return;
411
412 /* Fill in the offsets for the registers which gen_mask says
413 were saved. */
414
415 reg_position = frame->frame + PROC_REG_OFFSET (proc_desc);
416 mask = PROC_REG_MASK (proc_desc);
417
418 returnreg = PROC_PC_REG (proc_desc);
419
420 /* Note that RA is always saved first, regardless of its actual
421 register number. */
422 if (mask & (1 << returnreg))
423 {
424 frame->saved_regs[returnreg] = reg_position;
425 reg_position += 8;
426 mask &= ~(1 << returnreg); /* Clear bit for RA so we
427 don't save again later. */
428 }
429
430 for (ireg = 0; ireg <= 31; ++ireg)
431 if (mask & (1 << ireg))
432 {
433 frame->saved_regs[ireg] = reg_position;
434 reg_position += 8;
435 }
436
437 /* Fill in the offsets for the registers which float_mask says
438 were saved. */
439
440 reg_position = frame->frame + PROC_FREG_OFFSET (proc_desc);
441 mask = PROC_FREG_MASK (proc_desc);
442
443 for (ireg = 0; ireg <= 31; ++ireg)
444 if (mask & (1 << ireg))
445 {
446 frame->saved_regs[FP0_REGNUM + ireg] = reg_position;
447 reg_position += 8;
448 }
449
450 frame->saved_regs[PC_REGNUM] = frame->saved_regs[returnreg];
451 }
452
453 static void
454 alpha_frame_init_saved_regs (struct frame_info *fi)
455 {
456 if (fi->saved_regs == NULL)
457 alpha_find_saved_regs (fi);
458 fi->saved_regs[SP_REGNUM] = fi->frame;
459 }
460
461 static void
462 alpha_init_frame_pc_first (int fromleaf, struct frame_info *prev)
463 {
464 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) :
465 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
466 }
467
468 static CORE_ADDR
469 read_next_frame_reg (struct frame_info *fi, int regno)
470 {
471 for (; fi; fi = fi->next)
472 {
473 /* We have to get the saved sp from the sigcontext
474 if it is a signal handler frame. */
475 if (regno == SP_REGNUM && !fi->signal_handler_caller)
476 return fi->frame;
477 else
478 {
479 if (fi->saved_regs == NULL)
480 alpha_find_saved_regs (fi);
481 if (fi->saved_regs[regno])
482 return read_memory_integer (fi->saved_regs[regno], 8);
483 }
484 }
485 return read_register (regno);
486 }
487
488 static CORE_ADDR
489 alpha_frame_saved_pc (struct frame_info *frame)
490 {
491 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
492 /* We have to get the saved pc from the sigcontext
493 if it is a signal handler frame. */
494 int pcreg = frame->signal_handler_caller ? PC_REGNUM
495 : frame->extra_info->pc_reg;
496
497 if (proc_desc && PROC_DESC_IS_DUMMY (proc_desc))
498 return read_memory_integer (frame->frame - 8, 8);
499
500 return read_next_frame_reg (frame, pcreg);
501 }
502
503 static CORE_ADDR
504 alpha_saved_pc_after_call (struct frame_info *frame)
505 {
506 CORE_ADDR pc = frame->pc;
507 CORE_ADDR tmp;
508 alpha_extra_func_info_t proc_desc;
509 int pcreg;
510
511 /* Skip over shared library trampoline if necessary. */
512 tmp = SKIP_TRAMPOLINE_CODE (pc);
513 if (tmp != 0)
514 pc = tmp;
515
516 proc_desc = find_proc_desc (pc, frame->next);
517 pcreg = proc_desc ? PROC_PC_REG (proc_desc) : ALPHA_RA_REGNUM;
518
519 if (frame->signal_handler_caller)
520 return alpha_frame_saved_pc (frame);
521 else
522 return read_register (pcreg);
523 }
524
525
526 static struct alpha_extra_func_info temp_proc_desc;
527 static CORE_ADDR temp_saved_regs[ALPHA_NUM_REGS];
528
529 /* Nonzero if instruction at PC is a return instruction. "ret
530 $zero,($ra),1" on alpha. */
531
532 static int
533 alpha_about_to_return (CORE_ADDR pc)
534 {
535 return read_memory_integer (pc, 4) == 0x6bfa8001;
536 }
537
538
539
540 /* This fencepost looks highly suspicious to me. Removing it also
541 seems suspicious as it could affect remote debugging across serial
542 lines. */
543
544 static CORE_ADDR
545 heuristic_proc_start (CORE_ADDR pc)
546 {
547 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
548 CORE_ADDR start_pc = pc;
549 CORE_ADDR fence = start_pc - heuristic_fence_post;
550
551 if (start_pc == 0)
552 return 0;
553
554 if (heuristic_fence_post == UINT_MAX
555 || fence < tdep->vm_min_address)
556 fence = tdep->vm_min_address;
557
558 /* search back for previous return */
559 for (start_pc -= 4;; start_pc -= 4)
560 if (start_pc < fence)
561 {
562 /* It's not clear to me why we reach this point when
563 stop_soon_quietly, but with this test, at least we
564 don't print out warnings for every child forked (eg, on
565 decstation). 22apr93 rich@cygnus.com. */
566 if (!stop_soon_quietly)
567 {
568 static int blurb_printed = 0;
569
570 if (fence == tdep->vm_min_address)
571 warning ("Hit beginning of text section without finding");
572 else
573 warning ("Hit heuristic-fence-post without finding");
574
575 warning ("enclosing function for address 0x%s", paddr_nz (pc));
576 if (!blurb_printed)
577 {
578 printf_filtered ("\
579 This warning occurs if you are debugging a function without any symbols\n\
580 (for example, in a stripped executable). In that case, you may wish to\n\
581 increase the size of the search with the `set heuristic-fence-post' command.\n\
582 \n\
583 Otherwise, you told GDB there was a function where there isn't one, or\n\
584 (more likely) you have encountered a bug in GDB.\n");
585 blurb_printed = 1;
586 }
587 }
588
589 return 0;
590 }
591 else if (alpha_about_to_return (start_pc))
592 break;
593
594 start_pc += 4; /* skip return */
595 return start_pc;
596 }
597
598 static alpha_extra_func_info_t
599 heuristic_proc_desc (CORE_ADDR start_pc, CORE_ADDR limit_pc,
600 struct frame_info *next_frame)
601 {
602 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
603 CORE_ADDR vfp = sp;
604 CORE_ADDR cur_pc;
605 int frame_size;
606 int has_frame_reg = 0;
607 unsigned long reg_mask = 0;
608 int pcreg = -1;
609 int regno;
610
611 if (start_pc == 0)
612 return NULL;
613 memset (&temp_proc_desc, '\0', sizeof (temp_proc_desc));
614 memset (&temp_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
615 PROC_LOW_ADDR (&temp_proc_desc) = start_pc;
616
617 if (start_pc + 200 < limit_pc)
618 limit_pc = start_pc + 200;
619 frame_size = 0;
620 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += 4)
621 {
622 char buf[4];
623 unsigned long word;
624 int status;
625
626 status = read_memory_nobpt (cur_pc, buf, 4);
627 if (status)
628 memory_error (status, cur_pc);
629 word = extract_unsigned_integer (buf, 4);
630
631 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
632 {
633 if (word & 0x8000)
634 {
635 /* Consider only the first stack allocation instruction
636 to contain the static size of the frame. */
637 if (frame_size == 0)
638 frame_size += (-word) & 0xffff;
639 }
640 else
641 /* Exit loop if a positive stack adjustment is found, which
642 usually means that the stack cleanup code in the function
643 epilogue is reached. */
644 break;
645 }
646 else if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
647 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
648 {
649 int reg = (word & 0x03e00000) >> 21;
650 reg_mask |= 1 << reg;
651
652 /* Do not compute the address where the register was saved yet,
653 because we don't know yet if the offset will need to be
654 relative to $sp or $fp (we can not compute the address relative
655 to $sp if $sp is updated during the execution of the current
656 subroutine, for instance when doing some alloca). So just store
657 the offset for the moment, and compute the address later
658 when we know whether this frame has a frame pointer or not.
659 */
660 temp_saved_regs[reg] = (short) word;
661
662 /* Starting with OSF/1-3.2C, the system libraries are shipped
663 without local symbols, but they still contain procedure
664 descriptors without a symbol reference. GDB is currently
665 unable to find these procedure descriptors and uses
666 heuristic_proc_desc instead.
667 As some low level compiler support routines (__div*, __add*)
668 use a non-standard return address register, we have to
669 add some heuristics to determine the return address register,
670 or stepping over these routines will fail.
671 Usually the return address register is the first register
672 saved on the stack, but assembler optimization might
673 rearrange the register saves.
674 So we recognize only a few registers (t7, t9, ra) within
675 the procedure prologue as valid return address registers.
676 If we encounter a return instruction, we extract the
677 the return address register from it.
678
679 FIXME: Rewriting GDB to access the procedure descriptors,
680 e.g. via the minimal symbol table, might obviate this hack. */
681 if (pcreg == -1
682 && cur_pc < (start_pc + 80)
683 && (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
684 || reg == ALPHA_RA_REGNUM))
685 pcreg = reg;
686 }
687 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
688 pcreg = (word >> 16) & 0x1f;
689 else if (word == 0x47de040f || word == 0x47fe040f) /* bis sp,sp fp */
690 {
691 /* ??? I am not sure what instruction is 0x47fe040f, and I
692 am suspecting that there was a typo and should have been
693 0x47fe040f. I'm keeping it in the test above until further
694 investigation */
695 has_frame_reg = 1;
696 vfp = read_next_frame_reg (next_frame, ALPHA_GCC_FP_REGNUM);
697 }
698 }
699 if (pcreg == -1)
700 {
701 /* If we haven't found a valid return address register yet,
702 keep searching in the procedure prologue. */
703 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
704 {
705 char buf[4];
706 unsigned long word;
707
708 if (read_memory_nobpt (cur_pc, buf, 4))
709 break;
710 cur_pc += 4;
711 word = extract_unsigned_integer (buf, 4);
712
713 if ((word & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
714 && (word & 0xffff0000) != 0xb7fe0000) /* reg != $zero */
715 {
716 int reg = (word & 0x03e00000) >> 21;
717 if (reg == ALPHA_T7_REGNUM || reg == ALPHA_T9_REGNUM
718 || reg == ALPHA_RA_REGNUM)
719 {
720 pcreg = reg;
721 break;
722 }
723 }
724 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
725 {
726 pcreg = (word >> 16) & 0x1f;
727 break;
728 }
729 }
730 }
731
732 if (has_frame_reg)
733 PROC_FRAME_REG (&temp_proc_desc) = ALPHA_GCC_FP_REGNUM;
734 else
735 PROC_FRAME_REG (&temp_proc_desc) = SP_REGNUM;
736
737 /* At this point, we know which of the Stack Pointer or the Frame Pointer
738 to use as the reference address to compute the saved registers address.
739 But in both cases, the processing above has set vfp to this reference
740 address, so just need to increment the offset of each saved register
741 by this address. */
742 for (regno = 0; regno < NUM_REGS; regno++)
743 {
744 if (reg_mask & 1 << regno)
745 temp_saved_regs[regno] += vfp;
746 }
747
748 PROC_FRAME_OFFSET (&temp_proc_desc) = frame_size;
749 PROC_REG_MASK (&temp_proc_desc) = reg_mask;
750 PROC_PC_REG (&temp_proc_desc) = (pcreg == -1) ? ALPHA_RA_REGNUM : pcreg;
751 PROC_LOCALOFF (&temp_proc_desc) = 0; /* XXX - bogus */
752 return &temp_proc_desc;
753 }
754
755 /* This returns the PC of the first inst after the prologue. If we can't
756 find the prologue, then return 0. */
757
758 static CORE_ADDR
759 after_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
760 {
761 struct symtab_and_line sal;
762 CORE_ADDR func_addr, func_end;
763
764 if (!proc_desc)
765 proc_desc = find_proc_desc (pc, NULL);
766
767 if (proc_desc)
768 {
769 if (alpha_proc_desc_is_dyn_sigtramp (proc_desc))
770 return PROC_LOW_ADDR (proc_desc); /* "prologue" is in kernel */
771
772 /* If function is frameless, then we need to do it the hard way. I
773 strongly suspect that frameless always means prologueless... */
774 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
775 && PROC_FRAME_OFFSET (proc_desc) == 0)
776 return 0;
777 }
778
779 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
780 return 0; /* Unknown */
781
782 sal = find_pc_line (func_addr, 0);
783
784 if (sal.end < func_end)
785 return sal.end;
786
787 /* The line after the prologue is after the end of the function. In this
788 case, tell the caller to find the prologue the hard way. */
789
790 return 0;
791 }
792
793 /* Return non-zero if we *might* be in a function prologue. Return zero if we
794 are definitively *not* in a function prologue. */
795
796 static int
797 alpha_in_prologue (CORE_ADDR pc, alpha_extra_func_info_t proc_desc)
798 {
799 CORE_ADDR after_prologue_pc;
800
801 after_prologue_pc = after_prologue (pc, proc_desc);
802
803 if (after_prologue_pc == 0
804 || pc < after_prologue_pc)
805 return 1;
806 else
807 return 0;
808 }
809
810 static alpha_extra_func_info_t
811 find_proc_desc (CORE_ADDR pc, struct frame_info *next_frame)
812 {
813 alpha_extra_func_info_t proc_desc;
814 struct block *b;
815 struct symbol *sym;
816 CORE_ADDR startaddr;
817
818 /* Try to get the proc_desc from the linked call dummy proc_descs
819 if the pc is in the call dummy.
820 This is hairy. In the case of nested dummy calls we have to find the
821 right proc_desc, but we might not yet know the frame for the dummy
822 as it will be contained in the proc_desc we are searching for.
823 So we have to find the proc_desc whose frame is closest to the current
824 stack pointer. */
825
826 if (PC_IN_CALL_DUMMY (pc, 0, 0))
827 {
828 struct linked_proc_info *link;
829 CORE_ADDR sp = read_next_frame_reg (next_frame, SP_REGNUM);
830 alpha_extra_func_info_t found_proc_desc = NULL;
831 long min_distance = LONG_MAX;
832
833 for (link = linked_proc_desc_table; link; link = link->next)
834 {
835 long distance = (CORE_ADDR) PROC_DUMMY_FRAME (&link->info) - sp;
836 if (distance > 0 && distance < min_distance)
837 {
838 min_distance = distance;
839 found_proc_desc = &link->info;
840 }
841 }
842 if (found_proc_desc != NULL)
843 return found_proc_desc;
844 }
845
846 b = block_for_pc (pc);
847
848 find_pc_partial_function (pc, NULL, &startaddr, NULL);
849 if (b == NULL)
850 sym = NULL;
851 else
852 {
853 if (startaddr > BLOCK_START (b))
854 /* This is the "pathological" case referred to in a comment in
855 print_frame_info. It might be better to move this check into
856 symbol reading. */
857 sym = NULL;
858 else
859 sym = lookup_symbol (MIPS_EFI_SYMBOL_NAME, b, LABEL_NAMESPACE,
860 0, NULL);
861 }
862
863 /* If we never found a PDR for this function in symbol reading, then
864 examine prologues to find the information. */
865 if (sym && ((mips_extra_func_info_t) SYMBOL_VALUE (sym))->pdr.framereg == -1)
866 sym = NULL;
867
868 if (sym)
869 {
870 /* IF this is the topmost frame AND
871 * (this proc does not have debugging information OR
872 * the PC is in the procedure prologue)
873 * THEN create a "heuristic" proc_desc (by analyzing
874 * the actual code) to replace the "official" proc_desc.
875 */
876 proc_desc = (alpha_extra_func_info_t) SYMBOL_VALUE (sym);
877 if (next_frame == NULL)
878 {
879 if (PROC_DESC_IS_DUMMY (proc_desc) || alpha_in_prologue (pc, proc_desc))
880 {
881 alpha_extra_func_info_t found_heuristic =
882 heuristic_proc_desc (PROC_LOW_ADDR (proc_desc),
883 pc, next_frame);
884 if (found_heuristic)
885 {
886 PROC_LOCALOFF (found_heuristic) =
887 PROC_LOCALOFF (proc_desc);
888 PROC_PC_REG (found_heuristic) = PROC_PC_REG (proc_desc);
889 proc_desc = found_heuristic;
890 }
891 }
892 }
893 }
894 else
895 {
896 long offset;
897
898 /* Is linked_proc_desc_table really necessary? It only seems to be used
899 by procedure call dummys. However, the procedures being called ought
900 to have their own proc_descs, and even if they don't,
901 heuristic_proc_desc knows how to create them! */
902
903 register struct linked_proc_info *link;
904 for (link = linked_proc_desc_table; link; link = link->next)
905 if (PROC_LOW_ADDR (&link->info) <= pc
906 && PROC_HIGH_ADDR (&link->info) > pc)
907 return &link->info;
908
909 /* If PC is inside a dynamically generated sigtramp handler,
910 create and push a procedure descriptor for that code: */
911 offset = alpha_dynamic_sigtramp_offset (pc);
912 if (offset >= 0)
913 return push_sigtramp_desc (pc - offset);
914
915 /* If heuristic_fence_post is non-zero, determine the procedure
916 start address by examining the instructions.
917 This allows us to find the start address of static functions which
918 have no symbolic information, as startaddr would have been set to
919 the preceding global function start address by the
920 find_pc_partial_function call above. */
921 if (startaddr == 0 || heuristic_fence_post != 0)
922 startaddr = heuristic_proc_start (pc);
923
924 proc_desc =
925 heuristic_proc_desc (startaddr, pc, next_frame);
926 }
927 return proc_desc;
928 }
929
930 alpha_extra_func_info_t cached_proc_desc;
931
932 static CORE_ADDR
933 alpha_frame_chain (struct frame_info *frame)
934 {
935 alpha_extra_func_info_t proc_desc;
936 CORE_ADDR saved_pc = FRAME_SAVED_PC (frame);
937
938 if (saved_pc == 0 || inside_entry_file (saved_pc))
939 return 0;
940
941 proc_desc = find_proc_desc (saved_pc, frame);
942 if (!proc_desc)
943 return 0;
944
945 cached_proc_desc = proc_desc;
946
947 /* Fetch the frame pointer for a dummy frame from the procedure
948 descriptor. */
949 if (PROC_DESC_IS_DUMMY (proc_desc))
950 return (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
951
952 /* If no frame pointer and frame size is zero, we must be at end
953 of stack (or otherwise hosed). If we don't check frame size,
954 we loop forever if we see a zero size frame. */
955 if (PROC_FRAME_REG (proc_desc) == SP_REGNUM
956 && PROC_FRAME_OFFSET (proc_desc) == 0
957 /* The previous frame from a sigtramp frame might be frameless
958 and have frame size zero. */
959 && !frame->signal_handler_caller)
960 return alpha_frame_past_sigtramp_frame (frame, saved_pc);
961 else
962 return read_next_frame_reg (frame, PROC_FRAME_REG (proc_desc))
963 + PROC_FRAME_OFFSET (proc_desc);
964 }
965
966 void
967 alpha_print_extra_frame_info (struct frame_info *fi)
968 {
969 if (fi
970 && fi->extra_info
971 && fi->extra_info->proc_desc
972 && fi->extra_info->proc_desc->pdr.framereg < NUM_REGS)
973 printf_filtered (" frame pointer is at %s+%s\n",
974 REGISTER_NAME (fi->extra_info->proc_desc->pdr.framereg),
975 paddr_d (fi->extra_info->proc_desc->pdr.frameoffset));
976 }
977
978 static void
979 alpha_init_extra_frame_info (int fromleaf, struct frame_info *frame)
980 {
981 /* Use proc_desc calculated in frame_chain */
982 alpha_extra_func_info_t proc_desc =
983 frame->next ? cached_proc_desc : find_proc_desc (frame->pc, frame->next);
984
985 frame->extra_info = (struct frame_extra_info *)
986 frame_obstack_alloc (sizeof (struct frame_extra_info));
987
988 frame->saved_regs = NULL;
989 frame->extra_info->localoff = 0;
990 frame->extra_info->pc_reg = ALPHA_RA_REGNUM;
991 frame->extra_info->proc_desc = proc_desc == &temp_proc_desc ? 0 : proc_desc;
992 if (proc_desc)
993 {
994 /* Get the locals offset and the saved pc register from the
995 procedure descriptor, they are valid even if we are in the
996 middle of the prologue. */
997 frame->extra_info->localoff = PROC_LOCALOFF (proc_desc);
998 frame->extra_info->pc_reg = PROC_PC_REG (proc_desc);
999
1000 /* Fixup frame-pointer - only needed for top frame */
1001
1002 /* Fetch the frame pointer for a dummy frame from the procedure
1003 descriptor. */
1004 if (PROC_DESC_IS_DUMMY (proc_desc))
1005 frame->frame = (CORE_ADDR) PROC_DUMMY_FRAME (proc_desc);
1006
1007 /* This may not be quite right, if proc has a real frame register.
1008 Get the value of the frame relative sp, procedure might have been
1009 interrupted by a signal at it's very start. */
1010 else if (frame->pc == PROC_LOW_ADDR (proc_desc)
1011 && !alpha_proc_desc_is_dyn_sigtramp (proc_desc))
1012 frame->frame = read_next_frame_reg (frame->next, SP_REGNUM);
1013 else
1014 frame->frame = read_next_frame_reg (frame->next, PROC_FRAME_REG (proc_desc))
1015 + PROC_FRAME_OFFSET (proc_desc);
1016
1017 if (proc_desc == &temp_proc_desc)
1018 {
1019 char *name;
1020
1021 /* Do not set the saved registers for a sigtramp frame,
1022 alpha_find_saved_registers will do that for us.
1023 We can't use frame->signal_handler_caller, it is not yet set. */
1024 find_pc_partial_function (frame->pc, &name,
1025 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
1026 if (!PC_IN_SIGTRAMP (frame->pc, name))
1027 {
1028 frame->saved_regs = (CORE_ADDR *)
1029 frame_obstack_alloc (SIZEOF_FRAME_SAVED_REGS);
1030 memcpy (frame->saved_regs, temp_saved_regs,
1031 SIZEOF_FRAME_SAVED_REGS);
1032 frame->saved_regs[PC_REGNUM]
1033 = frame->saved_regs[ALPHA_RA_REGNUM];
1034 }
1035 }
1036 }
1037 }
1038
1039 static CORE_ADDR
1040 alpha_frame_locals_address (struct frame_info *fi)
1041 {
1042 return (fi->frame - fi->extra_info->localoff);
1043 }
1044
1045 static CORE_ADDR
1046 alpha_frame_args_address (struct frame_info *fi)
1047 {
1048 return (fi->frame - (ALPHA_NUM_ARG_REGS * 8));
1049 }
1050
1051 /* ALPHA stack frames are almost impenetrable. When execution stops,
1052 we basically have to look at symbol information for the function
1053 that we stopped in, which tells us *which* register (if any) is
1054 the base of the frame pointer, and what offset from that register
1055 the frame itself is at.
1056
1057 This presents a problem when trying to examine a stack in memory
1058 (that isn't executing at the moment), using the "frame" command. We
1059 don't have a PC, nor do we have any registers except SP.
1060
1061 This routine takes two arguments, SP and PC, and tries to make the
1062 cached frames look as if these two arguments defined a frame on the
1063 cache. This allows the rest of info frame to extract the important
1064 arguments without difficulty. */
1065
1066 struct frame_info *
1067 alpha_setup_arbitrary_frame (int argc, CORE_ADDR *argv)
1068 {
1069 if (argc != 2)
1070 error ("ALPHA frame specifications require two arguments: sp and pc");
1071
1072 return create_new_frame (argv[0], argv[1]);
1073 }
1074
1075 /* The alpha passes the first six arguments in the registers, the rest on
1076 the stack. The register arguments are eventually transferred to the
1077 argument transfer area immediately below the stack by the called function
1078 anyway. So we `push' at least six arguments on the stack, `reload' the
1079 argument registers and then adjust the stack pointer to point past the
1080 sixth argument. This algorithm simplifies the passing of a large struct
1081 which extends from the registers to the stack.
1082 If the called function is returning a structure, the address of the
1083 structure to be returned is passed as a hidden first argument. */
1084
1085 static CORE_ADDR
1086 alpha_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1087 int struct_return, CORE_ADDR struct_addr)
1088 {
1089 int i;
1090 int accumulate_size = struct_return ? 8 : 0;
1091 int arg_regs_size = ALPHA_NUM_ARG_REGS * 8;
1092 struct alpha_arg
1093 {
1094 char *contents;
1095 int len;
1096 int offset;
1097 };
1098 struct alpha_arg *alpha_args =
1099 (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
1100 register struct alpha_arg *m_arg;
1101 char raw_buffer[sizeof (CORE_ADDR)];
1102 int required_arg_regs;
1103
1104 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
1105 {
1106 struct value *arg = args[i];
1107 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
1108 /* Cast argument to long if necessary as the compiler does it too. */
1109 switch (TYPE_CODE (arg_type))
1110 {
1111 case TYPE_CODE_INT:
1112 case TYPE_CODE_BOOL:
1113 case TYPE_CODE_CHAR:
1114 case TYPE_CODE_RANGE:
1115 case TYPE_CODE_ENUM:
1116 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
1117 {
1118 arg_type = builtin_type_long;
1119 arg = value_cast (arg_type, arg);
1120 }
1121 break;
1122 default:
1123 break;
1124 }
1125 m_arg->len = TYPE_LENGTH (arg_type);
1126 m_arg->offset = accumulate_size;
1127 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
1128 m_arg->contents = VALUE_CONTENTS (arg);
1129 }
1130
1131 /* Determine required argument register loads, loading an argument register
1132 is expensive as it uses three ptrace calls. */
1133 required_arg_regs = accumulate_size / 8;
1134 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
1135 required_arg_regs = ALPHA_NUM_ARG_REGS;
1136
1137 /* Make room for the arguments on the stack. */
1138 if (accumulate_size < arg_regs_size)
1139 accumulate_size = arg_regs_size;
1140 sp -= accumulate_size;
1141
1142 /* Keep sp aligned to a multiple of 16 as the compiler does it too. */
1143 sp &= ~15;
1144
1145 /* `Push' arguments on the stack. */
1146 for (i = nargs; m_arg--, --i >= 0;)
1147 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
1148 if (struct_return)
1149 {
1150 store_address (raw_buffer, sizeof (CORE_ADDR), struct_addr);
1151 write_memory (sp, raw_buffer, sizeof (CORE_ADDR));
1152 }
1153
1154 /* Load the argument registers. */
1155 for (i = 0; i < required_arg_regs; i++)
1156 {
1157 LONGEST val;
1158
1159 val = read_memory_integer (sp + i * 8, 8);
1160 write_register (ALPHA_A0_REGNUM + i, val);
1161 write_register (ALPHA_FPA0_REGNUM + i, val);
1162 }
1163
1164 return sp + arg_regs_size;
1165 }
1166
1167 static void
1168 alpha_push_dummy_frame (void)
1169 {
1170 int ireg;
1171 struct linked_proc_info *link;
1172 alpha_extra_func_info_t proc_desc;
1173 CORE_ADDR sp = read_register (SP_REGNUM);
1174 CORE_ADDR save_address;
1175 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1176 unsigned long mask;
1177
1178 link = (struct linked_proc_info *) xmalloc (sizeof (struct linked_proc_info));
1179 link->next = linked_proc_desc_table;
1180 linked_proc_desc_table = link;
1181
1182 proc_desc = &link->info;
1183
1184 /*
1185 * The registers we must save are all those not preserved across
1186 * procedure calls.
1187 * In addition, we must save the PC and RA.
1188 *
1189 * Dummy frame layout:
1190 * (high memory)
1191 * Saved PC
1192 * Saved F30
1193 * ...
1194 * Saved F0
1195 * Saved R29
1196 * ...
1197 * Saved R0
1198 * Saved R26 (RA)
1199 * Parameter build area
1200 * (low memory)
1201 */
1202
1203 /* MASK(i,j) == (1<<i) + (1<<(i+1)) + ... + (1<<j)). Assume i<=j<31. */
1204 #define MASK(i,j) ((((LONGEST)1 << ((j)+1)) - 1) ^ (((LONGEST)1 << (i)) - 1))
1205 #define GEN_REG_SAVE_MASK (MASK(0,8) | MASK(16,29))
1206 #define GEN_REG_SAVE_COUNT 24
1207 #define FLOAT_REG_SAVE_MASK (MASK(0,1) | MASK(10,30))
1208 #define FLOAT_REG_SAVE_COUNT 23
1209 /* The special register is the PC as we have no bit for it in the save masks.
1210 alpha_frame_saved_pc knows where the pc is saved in a dummy frame. */
1211 #define SPECIAL_REG_SAVE_COUNT 1
1212
1213 PROC_REG_MASK (proc_desc) = GEN_REG_SAVE_MASK;
1214 PROC_FREG_MASK (proc_desc) = FLOAT_REG_SAVE_MASK;
1215 /* PROC_REG_OFFSET is the offset from the dummy frame to the saved RA,
1216 but keep SP aligned to a multiple of 16. */
1217 PROC_REG_OFFSET (proc_desc) =
1218 -((8 * (SPECIAL_REG_SAVE_COUNT
1219 + GEN_REG_SAVE_COUNT
1220 + FLOAT_REG_SAVE_COUNT)
1221 + 15) & ~15);
1222 PROC_FREG_OFFSET (proc_desc) =
1223 PROC_REG_OFFSET (proc_desc) + 8 * GEN_REG_SAVE_COUNT;
1224
1225 /* Save general registers.
1226 The return address register is the first saved register, all other
1227 registers follow in ascending order.
1228 The PC is saved immediately below the SP. */
1229 save_address = sp + PROC_REG_OFFSET (proc_desc);
1230 store_address (raw_buffer, 8, read_register (ALPHA_RA_REGNUM));
1231 write_memory (save_address, raw_buffer, 8);
1232 save_address += 8;
1233 mask = PROC_REG_MASK (proc_desc) & 0xffffffffL;
1234 for (ireg = 0; mask; ireg++, mask >>= 1)
1235 if (mask & 1)
1236 {
1237 if (ireg == ALPHA_RA_REGNUM)
1238 continue;
1239 store_address (raw_buffer, 8, read_register (ireg));
1240 write_memory (save_address, raw_buffer, 8);
1241 save_address += 8;
1242 }
1243
1244 store_address (raw_buffer, 8, read_register (PC_REGNUM));
1245 write_memory (sp - 8, raw_buffer, 8);
1246
1247 /* Save floating point registers. */
1248 save_address = sp + PROC_FREG_OFFSET (proc_desc);
1249 mask = PROC_FREG_MASK (proc_desc) & 0xffffffffL;
1250 for (ireg = 0; mask; ireg++, mask >>= 1)
1251 if (mask & 1)
1252 {
1253 store_address (raw_buffer, 8, read_register (ireg + FP0_REGNUM));
1254 write_memory (save_address, raw_buffer, 8);
1255 save_address += 8;
1256 }
1257
1258 /* Set and save the frame address for the dummy.
1259 This is tricky. The only registers that are suitable for a frame save
1260 are those that are preserved across procedure calls (s0-s6). But if
1261 a read system call is interrupted and then a dummy call is made
1262 (see testsuite/gdb.t17/interrupt.exp) the dummy call hangs till the read
1263 is satisfied. Then it returns with the s0-s6 registers set to the values
1264 on entry to the read system call and our dummy frame pointer would be
1265 destroyed. So we save the dummy frame in the proc_desc and handle the
1266 retrieval of the frame pointer of a dummy specifically. The frame register
1267 is set to the virtual frame (pseudo) register, it's value will always
1268 be read as zero and will help us to catch any errors in the dummy frame
1269 retrieval code. */
1270 PROC_DUMMY_FRAME (proc_desc) = sp;
1271 PROC_FRAME_REG (proc_desc) = FP_REGNUM;
1272 PROC_FRAME_OFFSET (proc_desc) = 0;
1273 sp += PROC_REG_OFFSET (proc_desc);
1274 write_register (SP_REGNUM, sp);
1275
1276 PROC_LOW_ADDR (proc_desc) = CALL_DUMMY_ADDRESS ();
1277 PROC_HIGH_ADDR (proc_desc) = PROC_LOW_ADDR (proc_desc) + 4;
1278
1279 SET_PROC_DESC_IS_DUMMY (proc_desc);
1280 PROC_PC_REG (proc_desc) = ALPHA_RA_REGNUM;
1281 }
1282
1283 static void
1284 alpha_pop_frame (void)
1285 {
1286 register int regnum;
1287 struct frame_info *frame = get_current_frame ();
1288 CORE_ADDR new_sp = frame->frame;
1289
1290 alpha_extra_func_info_t proc_desc = frame->extra_info->proc_desc;
1291
1292 /* we need proc_desc to know how to restore the registers;
1293 if it is NULL, construct (a temporary) one */
1294 if (proc_desc == NULL)
1295 proc_desc = find_proc_desc (frame->pc, frame->next);
1296
1297 /* Question: should we copy this proc_desc and save it in
1298 frame->proc_desc? If we do, who will free it?
1299 For now, we don't save a copy... */
1300
1301 write_register (PC_REGNUM, FRAME_SAVED_PC (frame));
1302 if (frame->saved_regs == NULL)
1303 alpha_find_saved_regs (frame);
1304 if (proc_desc)
1305 {
1306 for (regnum = 32; --regnum >= 0;)
1307 if (PROC_REG_MASK (proc_desc) & (1 << regnum))
1308 write_register (regnum,
1309 read_memory_integer (frame->saved_regs[regnum],
1310 8));
1311 for (regnum = 32; --regnum >= 0;)
1312 if (PROC_FREG_MASK (proc_desc) & (1 << regnum))
1313 write_register (regnum + FP0_REGNUM,
1314 read_memory_integer (frame->saved_regs[regnum + FP0_REGNUM], 8));
1315 }
1316 write_register (SP_REGNUM, new_sp);
1317 flush_cached_frames ();
1318
1319 if (proc_desc && (PROC_DESC_IS_DUMMY (proc_desc)
1320 || alpha_proc_desc_is_dyn_sigtramp (proc_desc)))
1321 {
1322 struct linked_proc_info *pi_ptr, *prev_ptr;
1323
1324 for (pi_ptr = linked_proc_desc_table, prev_ptr = NULL;
1325 pi_ptr != NULL;
1326 prev_ptr = pi_ptr, pi_ptr = pi_ptr->next)
1327 {
1328 if (&pi_ptr->info == proc_desc)
1329 break;
1330 }
1331
1332 if (pi_ptr == NULL)
1333 error ("Can't locate dummy extra frame info\n");
1334
1335 if (prev_ptr != NULL)
1336 prev_ptr->next = pi_ptr->next;
1337 else
1338 linked_proc_desc_table = pi_ptr->next;
1339
1340 xfree (pi_ptr);
1341 }
1342 }
1343 \f
1344 /* To skip prologues, I use this predicate. Returns either PC itself
1345 if the code at PC does not look like a function prologue; otherwise
1346 returns an address that (if we're lucky) follows the prologue. If
1347 LENIENT, then we must skip everything which is involved in setting
1348 up the frame (it's OK to skip more, just so long as we don't skip
1349 anything which might clobber the registers which are being saved.
1350 Currently we must not skip more on the alpha, but we might need the
1351 lenient stuff some day. */
1352
1353 static CORE_ADDR
1354 alpha_skip_prologue_internal (CORE_ADDR pc, int lenient)
1355 {
1356 unsigned long inst;
1357 int offset;
1358 CORE_ADDR post_prologue_pc;
1359 char buf[4];
1360
1361 /* Silently return the unaltered pc upon memory errors.
1362 This could happen on OSF/1 if decode_line_1 tries to skip the
1363 prologue for quickstarted shared library functions when the
1364 shared library is not yet mapped in.
1365 Reading target memory is slow over serial lines, so we perform
1366 this check only if the target has shared libraries (which all
1367 Alpha targets do). */
1368 if (target_read_memory (pc, buf, 4))
1369 return pc;
1370
1371 /* See if we can determine the end of the prologue via the symbol table.
1372 If so, then return either PC, or the PC after the prologue, whichever
1373 is greater. */
1374
1375 post_prologue_pc = after_prologue (pc, NULL);
1376
1377 if (post_prologue_pc != 0)
1378 return max (pc, post_prologue_pc);
1379
1380 /* Can't determine prologue from the symbol table, need to examine
1381 instructions. */
1382
1383 /* Skip the typical prologue instructions. These are the stack adjustment
1384 instruction and the instructions that save registers on the stack
1385 or in the gcc frame. */
1386 for (offset = 0; offset < 100; offset += 4)
1387 {
1388 int status;
1389
1390 status = read_memory_nobpt (pc + offset, buf, 4);
1391 if (status)
1392 memory_error (status, pc + offset);
1393 inst = extract_unsigned_integer (buf, 4);
1394
1395 /* The alpha has no delay slots. But let's keep the lenient stuff,
1396 we might need it for something else in the future. */
1397 if (lenient && 0)
1398 continue;
1399
1400 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
1401 continue;
1402 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
1403 continue;
1404 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1405 continue;
1406 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
1407 continue;
1408
1409 if ((inst & 0xfc1f0000) == 0xb41e0000
1410 && (inst & 0xffff0000) != 0xb7fe0000)
1411 continue; /* stq reg,n($sp) */
1412 /* reg != $zero */
1413 if ((inst & 0xfc1f0000) == 0x9c1e0000
1414 && (inst & 0xffff0000) != 0x9ffe0000)
1415 continue; /* stt reg,n($sp) */
1416 /* reg != $zero */
1417 if (inst == 0x47de040f) /* bis sp,sp,fp */
1418 continue;
1419
1420 break;
1421 }
1422 return pc + offset;
1423 }
1424
1425 static CORE_ADDR
1426 alpha_skip_prologue (CORE_ADDR addr)
1427 {
1428 return (alpha_skip_prologue_internal (addr, 0));
1429 }
1430
1431 #if 0
1432 /* Is address PC in the prologue (loosely defined) for function at
1433 STARTADDR? */
1434
1435 static int
1436 alpha_in_lenient_prologue (CORE_ADDR startaddr, CORE_ADDR pc)
1437 {
1438 CORE_ADDR end_prologue = alpha_skip_prologue_internal (startaddr, 1);
1439 return pc >= startaddr && pc < end_prologue;
1440 }
1441 #endif
1442
1443 /* The alpha needs a conversion between register and memory format if
1444 the register is a floating point register and
1445 memory format is float, as the register format must be double
1446 or
1447 memory format is an integer with 4 bytes or less, as the representation
1448 of integers in floating point registers is different. */
1449 static void
1450 alpha_register_convert_to_virtual (int regnum, struct type *valtype,
1451 char *raw_buffer, char *virtual_buffer)
1452 {
1453 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1454 {
1455 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
1456 return;
1457 }
1458
1459 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1460 {
1461 double d = extract_floating (raw_buffer, REGISTER_RAW_SIZE (regnum));
1462 store_floating (virtual_buffer, TYPE_LENGTH (valtype), d);
1463 }
1464 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1465 {
1466 ULONGEST l;
1467 l = extract_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum));
1468 l = ((l >> 32) & 0xc0000000) | ((l >> 29) & 0x3fffffff);
1469 store_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype), l);
1470 }
1471 else
1472 error ("Cannot retrieve value from floating point register");
1473 }
1474
1475 static void
1476 alpha_register_convert_to_raw (struct type *valtype, int regnum,
1477 char *virtual_buffer, char *raw_buffer)
1478 {
1479 if (TYPE_LENGTH (valtype) >= REGISTER_RAW_SIZE (regnum))
1480 {
1481 memcpy (raw_buffer, virtual_buffer, REGISTER_RAW_SIZE (regnum));
1482 return;
1483 }
1484
1485 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1486 {
1487 double d = extract_floating (virtual_buffer, TYPE_LENGTH (valtype));
1488 store_floating (raw_buffer, REGISTER_RAW_SIZE (regnum), d);
1489 }
1490 else if (TYPE_CODE (valtype) == TYPE_CODE_INT && TYPE_LENGTH (valtype) <= 4)
1491 {
1492 ULONGEST l;
1493 if (TYPE_UNSIGNED (valtype))
1494 l = extract_unsigned_integer (virtual_buffer, TYPE_LENGTH (valtype));
1495 else
1496 l = extract_signed_integer (virtual_buffer, TYPE_LENGTH (valtype));
1497 l = ((l & 0xc0000000) << 32) | ((l & 0x3fffffff) << 29);
1498 store_unsigned_integer (raw_buffer, REGISTER_RAW_SIZE (regnum), l);
1499 }
1500 else
1501 error ("Cannot store value in floating point register");
1502 }
1503
1504 static const unsigned char *
1505 alpha_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1506 {
1507 static const unsigned char alpha_breakpoint[] =
1508 { 0x80, 0, 0, 0 }; /* call_pal bpt */
1509
1510 *lenptr = sizeof(alpha_breakpoint);
1511 return (alpha_breakpoint);
1512 }
1513
1514 /* Given a return value in `regbuf' with a type `valtype',
1515 extract and copy its value into `valbuf'. */
1516
1517 static void
1518 alpha_extract_return_value (struct type *valtype,
1519 char regbuf[ALPHA_REGISTER_BYTES], char *valbuf)
1520 {
1521 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1522 alpha_register_convert_to_virtual (FP0_REGNUM, valtype,
1523 regbuf + REGISTER_BYTE (FP0_REGNUM),
1524 valbuf);
1525 else
1526 memcpy (valbuf, regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1527 TYPE_LENGTH (valtype));
1528 }
1529
1530 /* Given a return value in `regbuf' with a type `valtype',
1531 write its value into the appropriate register. */
1532
1533 static void
1534 alpha_store_return_value (struct type *valtype, char *valbuf)
1535 {
1536 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1537 int regnum = ALPHA_V0_REGNUM;
1538 int length = TYPE_LENGTH (valtype);
1539
1540 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1541 {
1542 regnum = FP0_REGNUM;
1543 length = REGISTER_RAW_SIZE (regnum);
1544 alpha_register_convert_to_raw (valtype, regnum, valbuf, raw_buffer);
1545 }
1546 else
1547 memcpy (raw_buffer, valbuf, length);
1548
1549 write_register_bytes (REGISTER_BYTE (regnum), raw_buffer, length);
1550 }
1551
1552 /* Just like reinit_frame_cache, but with the right arguments to be
1553 callable as an sfunc. */
1554
1555 static void
1556 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1557 {
1558 reinit_frame_cache ();
1559 }
1560
1561 /* This is the definition of CALL_DUMMY_ADDRESS. It's a heuristic that is used
1562 to find a convenient place in the text segment to stick a breakpoint to
1563 detect the completion of a target function call (ala call_function_by_hand).
1564 */
1565
1566 CORE_ADDR
1567 alpha_call_dummy_address (void)
1568 {
1569 CORE_ADDR entry;
1570 struct minimal_symbol *sym;
1571
1572 entry = entry_point_address ();
1573
1574 if (entry != 0)
1575 return entry;
1576
1577 sym = lookup_minimal_symbol ("_Prelude", NULL, symfile_objfile);
1578
1579 if (!sym || MSYMBOL_TYPE (sym) != mst_text)
1580 return 0;
1581 else
1582 return SYMBOL_VALUE_ADDRESS (sym) + 4;
1583 }
1584
1585 static void
1586 alpha_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1587 struct value **args, struct type *type, int gcc_p)
1588 {
1589 CORE_ADDR bp_address = CALL_DUMMY_ADDRESS ();
1590
1591 if (bp_address == 0)
1592 error ("no place to put call");
1593 write_register (ALPHA_RA_REGNUM, bp_address);
1594 write_register (ALPHA_T12_REGNUM, fun);
1595 }
1596
1597 /* On the Alpha, the call dummy code is nevery copied to user space
1598 (see alpha_fix_call_dummy() above). The contents of this do not
1599 matter. */
1600 LONGEST alpha_call_dummy_words[] = { 0 };
1601
1602 static int
1603 alpha_use_struct_convention (int gcc_p, struct type *type)
1604 {
1605 /* Structures are returned by ref in extra arg0. */
1606 return 1;
1607 }
1608
1609 static void
1610 alpha_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1611 {
1612 /* Store the address of the place in which to copy the structure the
1613 subroutine will return. Handled by alpha_push_arguments. */
1614 }
1615
1616 static CORE_ADDR
1617 alpha_extract_struct_value_address (char *regbuf)
1618 {
1619 return (extract_address (regbuf + REGISTER_BYTE (ALPHA_V0_REGNUM),
1620 REGISTER_RAW_SIZE (ALPHA_V0_REGNUM)));
1621 }
1622
1623 /* Figure out where the longjmp will land.
1624 We expect the first arg to be a pointer to the jmp_buf structure from
1625 which we extract the PC (JB_PC) that we will land at. The PC is copied
1626 into the "pc". This routine returns true on success. */
1627
1628 static int
1629 alpha_get_longjmp_target (CORE_ADDR *pc)
1630 {
1631 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1632 CORE_ADDR jb_addr;
1633 char raw_buffer[ALPHA_MAX_REGISTER_RAW_SIZE];
1634
1635 jb_addr = read_register (ALPHA_A0_REGNUM);
1636
1637 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
1638 raw_buffer, tdep->jb_elt_size))
1639 return 0;
1640
1641 *pc = extract_address (raw_buffer, tdep->jb_elt_size);
1642 return 1;
1643 }
1644
1645 /* alpha_software_single_step() is called just before we want to resume
1646 the inferior, if we want to single-step it but there is no hardware
1647 or kernel single-step support (NetBSD on Alpha, for example). We find
1648 the target of the coming instruction and breakpoint it.
1649
1650 single_step is also called just after the inferior stops. If we had
1651 set up a simulated single-step, we undo our damage. */
1652
1653 static CORE_ADDR
1654 alpha_next_pc (CORE_ADDR pc)
1655 {
1656 unsigned int insn;
1657 unsigned int op;
1658 int offset;
1659 LONGEST rav;
1660
1661 insn = read_memory_unsigned_integer (pc, sizeof (insn));
1662
1663 /* Opcode is top 6 bits. */
1664 op = (insn >> 26) & 0x3f;
1665
1666 if (op == 0x1a)
1667 {
1668 /* Jump format: target PC is:
1669 RB & ~3 */
1670 return (read_register ((insn >> 16) & 0x1f) & ~3);
1671 }
1672
1673 if ((op & 0x30) == 0x30)
1674 {
1675 /* Branch format: target PC is:
1676 (new PC) + (4 * sext(displacement)) */
1677 if (op == 0x30 || /* BR */
1678 op == 0x34) /* BSR */
1679 {
1680 branch_taken:
1681 offset = (insn & 0x001fffff);
1682 if (offset & 0x00100000)
1683 offset |= 0xffe00000;
1684 offset *= 4;
1685 return (pc + 4 + offset);
1686 }
1687
1688 /* Need to determine if branch is taken; read RA. */
1689 rav = (LONGEST) read_register ((insn >> 21) & 0x1f);
1690 switch (op)
1691 {
1692 case 0x38: /* BLBC */
1693 if ((rav & 1) == 0)
1694 goto branch_taken;
1695 break;
1696 case 0x3c: /* BLBS */
1697 if (rav & 1)
1698 goto branch_taken;
1699 break;
1700 case 0x39: /* BEQ */
1701 if (rav == 0)
1702 goto branch_taken;
1703 break;
1704 case 0x3d: /* BNE */
1705 if (rav != 0)
1706 goto branch_taken;
1707 break;
1708 case 0x3a: /* BLT */
1709 if (rav < 0)
1710 goto branch_taken;
1711 break;
1712 case 0x3b: /* BLE */
1713 if (rav <= 0)
1714 goto branch_taken;
1715 break;
1716 case 0x3f: /* BGT */
1717 if (rav > 0)
1718 goto branch_taken;
1719 break;
1720 case 0x3e: /* BGE */
1721 if (rav >= 0)
1722 goto branch_taken;
1723 break;
1724 }
1725 }
1726
1727 /* Not a branch or branch not taken; target PC is:
1728 pc + 4 */
1729 return (pc + 4);
1730 }
1731
1732 void
1733 alpha_software_single_step (enum target_signal sig, int insert_breakpoints_p)
1734 {
1735 static CORE_ADDR next_pc;
1736 typedef char binsn_quantum[BREAKPOINT_MAX];
1737 static binsn_quantum break_mem;
1738 CORE_ADDR pc;
1739
1740 if (insert_breakpoints_p)
1741 {
1742 pc = read_pc ();
1743 next_pc = alpha_next_pc (pc);
1744
1745 target_insert_breakpoint (next_pc, break_mem);
1746 }
1747 else
1748 {
1749 target_remove_breakpoint (next_pc, break_mem);
1750 write_pc (next_pc);
1751 }
1752 }
1753
1754 \f
1755
1756 /* Initialize the current architecture based on INFO. If possible, re-use an
1757 architecture from ARCHES, which is a list of architectures already created
1758 during this debugging session.
1759
1760 Called e.g. at program startup, when reading a core file, and when reading
1761 a binary file. */
1762
1763 static struct gdbarch *
1764 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1765 {
1766 struct gdbarch_tdep *tdep;
1767 struct gdbarch *gdbarch;
1768 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
1769
1770 /* Try to determine the ABI of the object we are loading. */
1771
1772 if (info.abfd != NULL)
1773 {
1774 osabi = gdbarch_lookup_osabi (info.abfd);
1775 if (osabi == GDB_OSABI_UNKNOWN)
1776 {
1777 /* If it's an ECOFF file, assume it's OSF/1. */
1778 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1779 osabi = GDB_OSABI_OSF1;
1780 }
1781 }
1782
1783 /* Find a candidate among extant architectures. */
1784 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1785 arches != NULL;
1786 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1787 {
1788 /* Make sure the ABI selection matches. */
1789 tdep = gdbarch_tdep (arches->gdbarch);
1790 if (tdep && tdep->osabi == osabi)
1791 return arches->gdbarch;
1792 }
1793
1794 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1795 gdbarch = gdbarch_alloc (&info, tdep);
1796
1797 tdep->osabi = osabi;
1798
1799 /* Lowest text address. This is used by heuristic_proc_start() to
1800 decide when to stop looking. */
1801 tdep->vm_min_address = (CORE_ADDR) 0x120000000;
1802
1803 tdep->dynamic_sigtramp_offset = NULL;
1804 tdep->skip_sigtramp_frame = NULL;
1805 tdep->sigcontext_addr = NULL;
1806
1807 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1808
1809 /* Type sizes */
1810 set_gdbarch_short_bit (gdbarch, 16);
1811 set_gdbarch_int_bit (gdbarch, 32);
1812 set_gdbarch_long_bit (gdbarch, 64);
1813 set_gdbarch_long_long_bit (gdbarch, 64);
1814 set_gdbarch_float_bit (gdbarch, 32);
1815 set_gdbarch_double_bit (gdbarch, 64);
1816 set_gdbarch_long_double_bit (gdbarch, 64);
1817 set_gdbarch_ptr_bit (gdbarch, 64);
1818
1819 /* Register info */
1820 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1821 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1822 set_gdbarch_fp_regnum (gdbarch, ALPHA_FP_REGNUM);
1823 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1824 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1825
1826 set_gdbarch_register_name (gdbarch, alpha_register_name);
1827 set_gdbarch_register_size (gdbarch, ALPHA_REGISTER_SIZE);
1828 set_gdbarch_register_bytes (gdbarch, ALPHA_REGISTER_BYTES);
1829 set_gdbarch_register_byte (gdbarch, alpha_register_byte);
1830 set_gdbarch_register_raw_size (gdbarch, alpha_register_raw_size);
1831 set_gdbarch_max_register_raw_size (gdbarch, ALPHA_MAX_REGISTER_RAW_SIZE);
1832 set_gdbarch_register_virtual_size (gdbarch, alpha_register_virtual_size);
1833 set_gdbarch_max_register_virtual_size (gdbarch,
1834 ALPHA_MAX_REGISTER_VIRTUAL_SIZE);
1835 set_gdbarch_register_virtual_type (gdbarch, alpha_register_virtual_type);
1836
1837 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1838 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1839
1840 set_gdbarch_register_convertible (gdbarch, alpha_register_convertible);
1841 set_gdbarch_register_convert_to_virtual (gdbarch,
1842 alpha_register_convert_to_virtual);
1843 set_gdbarch_register_convert_to_raw (gdbarch, alpha_register_convert_to_raw);
1844
1845 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1846
1847 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1848 set_gdbarch_frameless_function_invocation (gdbarch,
1849 generic_frameless_function_invocation_not);
1850
1851 set_gdbarch_saved_pc_after_call (gdbarch, alpha_saved_pc_after_call);
1852
1853 set_gdbarch_frame_chain (gdbarch, alpha_frame_chain);
1854 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1855 set_gdbarch_frame_saved_pc (gdbarch, alpha_frame_saved_pc);
1856
1857 set_gdbarch_frame_init_saved_regs (gdbarch, alpha_frame_init_saved_regs);
1858
1859 set_gdbarch_use_struct_convention (gdbarch, alpha_use_struct_convention);
1860 set_gdbarch_deprecated_extract_return_value (gdbarch, alpha_extract_return_value);
1861
1862 set_gdbarch_store_struct_return (gdbarch, alpha_store_struct_return);
1863 set_gdbarch_store_return_value (gdbarch, alpha_store_return_value);
1864 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
1865 alpha_extract_struct_value_address);
1866
1867 /* Settings for calling functions in the inferior. */
1868 set_gdbarch_use_generic_dummy_frames (gdbarch, 0);
1869 set_gdbarch_call_dummy_length (gdbarch, 0);
1870 set_gdbarch_push_arguments (gdbarch, alpha_push_arguments);
1871 set_gdbarch_pop_frame (gdbarch, alpha_pop_frame);
1872
1873 /* On the Alpha, the call dummy code is never copied to user space,
1874 stopping the user call is achieved via a bp_call_dummy breakpoint.
1875 But we need a fake CALL_DUMMY definition to enable the proper
1876 call_function_by_hand and to avoid zero length array warnings. */
1877 set_gdbarch_call_dummy_p (gdbarch, 1);
1878 set_gdbarch_call_dummy_words (gdbarch, alpha_call_dummy_words);
1879 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
1880 set_gdbarch_frame_args_address (gdbarch, alpha_frame_args_address);
1881 set_gdbarch_frame_locals_address (gdbarch, alpha_frame_locals_address);
1882 set_gdbarch_init_extra_frame_info (gdbarch, alpha_init_extra_frame_info);
1883
1884 /* Alpha OSF/1 inhibits execution of code on the stack. But there is
1885 no need for a dummy on the Alpha. PUSH_ARGUMENTS takes care of all
1886 argument handling and bp_call_dummy takes care of stopping the dummy. */
1887 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1888 set_gdbarch_call_dummy_address (gdbarch, alpha_call_dummy_address);
1889 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1890 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1891 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1892 set_gdbarch_pc_in_call_dummy (gdbarch, pc_in_call_dummy_at_entry_point);
1893 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1894 set_gdbarch_push_dummy_frame (gdbarch, alpha_push_dummy_frame);
1895 set_gdbarch_fix_call_dummy (gdbarch, alpha_fix_call_dummy);
1896 set_gdbarch_init_frame_pc (gdbarch, init_frame_pc_noop);
1897 set_gdbarch_init_frame_pc_first (gdbarch, alpha_init_frame_pc_first);
1898
1899 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1900 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1901
1902 /* Floats are always passed as doubles. */
1903 set_gdbarch_coerce_float_to_double (gdbarch,
1904 standard_coerce_float_to_double);
1905
1906 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1907 set_gdbarch_decr_pc_after_break (gdbarch, 4);
1908
1909 set_gdbarch_function_start_offset (gdbarch, 0);
1910 set_gdbarch_frame_args_skip (gdbarch, 0);
1911
1912 /* Hook in ABI-specific overrides, if they have been registered. */
1913 gdbarch_init_osabi (info, gdbarch, osabi);
1914
1915 /* Now that we have tuned the configuration, set a few final things
1916 based on what the OS ABI has told us. */
1917
1918 if (tdep->jb_pc >= 0)
1919 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1920
1921 return gdbarch;
1922 }
1923
1924 static void
1925 alpha_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
1926 {
1927 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1928
1929 if (tdep == NULL)
1930 return;
1931
1932 fprintf_unfiltered (file, "alpha_dump_tdep: OS ABI = %s\n",
1933 gdbarch_osabi_name (tdep->osabi));
1934
1935 fprintf_unfiltered (file,
1936 "alpha_dump_tdep: vm_min_address = 0x%lx\n",
1937 (long) tdep->vm_min_address);
1938
1939 fprintf_unfiltered (file,
1940 "alpha_dump_tdep: jb_pc = %d\n",
1941 tdep->jb_pc);
1942 fprintf_unfiltered (file,
1943 "alpha_dump_tdep: jb_elt_size = %ld\n",
1944 (long) tdep->jb_elt_size);
1945 }
1946
1947 void
1948 _initialize_alpha_tdep (void)
1949 {
1950 struct cmd_list_element *c;
1951
1952 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, alpha_dump_tdep);
1953
1954 tm_print_insn = print_insn_alpha;
1955
1956 /* Let the user set the fence post for heuristic_proc_start. */
1957
1958 /* We really would like to have both "0" and "unlimited" work, but
1959 command.c doesn't deal with that. So make it a var_zinteger
1960 because the user can always use "999999" or some such for unlimited. */
1961 c = add_set_cmd ("heuristic-fence-post", class_support, var_zinteger,
1962 (char *) &heuristic_fence_post,
1963 "\
1964 Set the distance searched for the start of a function.\n\
1965 If you are debugging a stripped executable, GDB needs to search through the\n\
1966 program for the start of a function. This command sets the distance of the\n\
1967 search. The only need to set it is when debugging a stripped executable.",
1968 &setlist);
1969 /* We need to throw away the frame cache when we set this, since it
1970 might change our ability to get backtraces. */
1971 set_cmd_sfunc (c, reinit_frame_cache_sfunc);
1972 add_show_from_set (c, &showlist);
1973 }