2007-06-09 Markus Deuling <deuling@de.ibm.com>
[binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24 #include "doublest.h"
25 #include "frame.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "dwarf2-frame.h"
29 #include "inferior.h"
30 #include "symtab.h"
31 #include "value.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "dis-asm.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "gdb_string.h"
38 #include "linespec.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41 #include "arch-utils.h"
42 #include "osabi.h"
43 #include "block.h"
44 #include "infcall.h"
45
46 #include "elf-bfd.h"
47
48 #include "alpha-tdep.h"
49
50 \f
51 /* Return the name of the REGNO register.
52
53 An empty name corresponds to a register number that used to
54 be used for a virtual register. That virtual register has
55 been removed, but the index is still reserved to maintain
56 compatibility with existing remote alpha targets. */
57
58 static const char *
59 alpha_register_name (int regno)
60 {
61 static const char * const register_names[] =
62 {
63 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
64 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
65 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
66 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
67 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
68 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
69 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
70 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
71 "pc", "", "unique"
72 };
73
74 if (regno < 0)
75 return NULL;
76 if (regno >= ARRAY_SIZE(register_names))
77 return NULL;
78 return register_names[regno];
79 }
80
81 static int
82 alpha_cannot_fetch_register (int regno)
83 {
84 return (regno == ALPHA_ZERO_REGNUM
85 || strlen (alpha_register_name (regno)) == 0);
86 }
87
88 static int
89 alpha_cannot_store_register (int regno)
90 {
91 return (regno == ALPHA_ZERO_REGNUM
92 || strlen (alpha_register_name (regno)) == 0);
93 }
94
95 static struct type *
96 alpha_register_type (struct gdbarch *gdbarch, int regno)
97 {
98 if (regno == ALPHA_SP_REGNUM || regno == ALPHA_GP_REGNUM)
99 return builtin_type_void_data_ptr;
100 if (regno == ALPHA_PC_REGNUM)
101 return builtin_type_void_func_ptr;
102
103 /* Don't need to worry about little vs big endian until
104 some jerk tries to port to alpha-unicosmk. */
105 if (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31)
106 return builtin_type_ieee_double;
107
108 return builtin_type_int64;
109 }
110
111 /* Is REGNUM a member of REGGROUP? */
112
113 static int
114 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
115 struct reggroup *group)
116 {
117 /* Filter out any registers eliminated, but whose regnum is
118 reserved for backward compatibility, e.g. the vfp. */
119 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
120 || *gdbarch_register_name (current_gdbarch, regnum) == '\0')
121 return 0;
122
123 if (group == all_reggroup)
124 return 1;
125
126 /* Zero should not be saved or restored. Technically it is a general
127 register (just as $f31 would be a float if we represented it), but
128 there's no point displaying it during "info regs", so leave it out
129 of all groups except for "all". */
130 if (regnum == ALPHA_ZERO_REGNUM)
131 return 0;
132
133 /* All other registers are saved and restored. */
134 if (group == save_reggroup || group == restore_reggroup)
135 return 1;
136
137 /* All other groups are non-overlapping. */
138
139 /* Since this is really a PALcode memory slot... */
140 if (regnum == ALPHA_UNIQUE_REGNUM)
141 return group == system_reggroup;
142
143 /* Force the FPCR to be considered part of the floating point state. */
144 if (regnum == ALPHA_FPCR_REGNUM)
145 return group == float_reggroup;
146
147 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
148 return group == float_reggroup;
149 else
150 return group == general_reggroup;
151 }
152
153 /* The following represents exactly the conversion performed by
154 the LDS instruction. This applies to both single-precision
155 floating point and 32-bit integers. */
156
157 static void
158 alpha_lds (void *out, const void *in)
159 {
160 ULONGEST mem = extract_unsigned_integer (in, 4);
161 ULONGEST frac = (mem >> 0) & 0x7fffff;
162 ULONGEST sign = (mem >> 31) & 1;
163 ULONGEST exp_msb = (mem >> 30) & 1;
164 ULONGEST exp_low = (mem >> 23) & 0x7f;
165 ULONGEST exp, reg;
166
167 exp = (exp_msb << 10) | exp_low;
168 if (exp_msb)
169 {
170 if (exp_low == 0x7f)
171 exp = 0x7ff;
172 }
173 else
174 {
175 if (exp_low != 0x00)
176 exp |= 0x380;
177 }
178
179 reg = (sign << 63) | (exp << 52) | (frac << 29);
180 store_unsigned_integer (out, 8, reg);
181 }
182
183 /* Similarly, this represents exactly the conversion performed by
184 the STS instruction. */
185
186 static void
187 alpha_sts (void *out, const void *in)
188 {
189 ULONGEST reg, mem;
190
191 reg = extract_unsigned_integer (in, 8);
192 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
193 store_unsigned_integer (out, 4, mem);
194 }
195
196 /* The alpha needs a conversion between register and memory format if the
197 register is a floating point register and memory format is float, as the
198 register format must be double or memory format is an integer with 4
199 bytes or less, as the representation of integers in floating point
200 registers is different. */
201
202 static int
203 alpha_convert_register_p (int regno, struct type *type)
204 {
205 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31);
206 }
207
208 static void
209 alpha_register_to_value (struct frame_info *frame, int regnum,
210 struct type *valtype, gdb_byte *out)
211 {
212 gdb_byte in[MAX_REGISTER_SIZE];
213
214 frame_register_read (frame, regnum, in);
215 switch (TYPE_LENGTH (valtype))
216 {
217 case 4:
218 alpha_sts (out, in);
219 break;
220 case 8:
221 memcpy (out, in, 8);
222 break;
223 default:
224 error (_("Cannot retrieve value from floating point register"));
225 }
226 }
227
228 static void
229 alpha_value_to_register (struct frame_info *frame, int regnum,
230 struct type *valtype, const gdb_byte *in)
231 {
232 gdb_byte out[MAX_REGISTER_SIZE];
233
234 switch (TYPE_LENGTH (valtype))
235 {
236 case 4:
237 alpha_lds (out, in);
238 break;
239 case 8:
240 memcpy (out, in, 8);
241 break;
242 default:
243 error (_("Cannot store value in floating point register"));
244 }
245 put_frame_register (frame, regnum, out);
246 }
247
248 \f
249 /* The alpha passes the first six arguments in the registers, the rest on
250 the stack. The register arguments are stored in ARG_REG_BUFFER, and
251 then moved into the register file; this simplifies the passing of a
252 large struct which extends from the registers to the stack, plus avoids
253 three ptrace invocations per word.
254
255 We don't bother tracking which register values should go in integer
256 regs or fp regs; we load the same values into both.
257
258 If the called function is returning a structure, the address of the
259 structure to be returned is passed as a hidden first argument. */
260
261 static CORE_ADDR
262 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
263 struct regcache *regcache, CORE_ADDR bp_addr,
264 int nargs, struct value **args, CORE_ADDR sp,
265 int struct_return, CORE_ADDR struct_addr)
266 {
267 int i;
268 int accumulate_size = struct_return ? 8 : 0;
269 struct alpha_arg
270 {
271 gdb_byte *contents;
272 int len;
273 int offset;
274 };
275 struct alpha_arg *alpha_args
276 = (struct alpha_arg *) alloca (nargs * sizeof (struct alpha_arg));
277 struct alpha_arg *m_arg;
278 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
279 int required_arg_regs;
280 CORE_ADDR func_addr = find_function_addr (function, NULL);
281
282 /* The ABI places the address of the called function in T12. */
283 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
284
285 /* Set the return address register to point to the entry point
286 of the program, where a breakpoint lies in wait. */
287 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
288
289 /* Lay out the arguments in memory. */
290 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
291 {
292 struct value *arg = args[i];
293 struct type *arg_type = check_typedef (value_type (arg));
294
295 /* Cast argument to long if necessary as the compiler does it too. */
296 switch (TYPE_CODE (arg_type))
297 {
298 case TYPE_CODE_INT:
299 case TYPE_CODE_BOOL:
300 case TYPE_CODE_CHAR:
301 case TYPE_CODE_RANGE:
302 case TYPE_CODE_ENUM:
303 if (TYPE_LENGTH (arg_type) == 4)
304 {
305 /* 32-bit values must be sign-extended to 64 bits
306 even if the base data type is unsigned. */
307 arg_type = builtin_type_int32;
308 arg = value_cast (arg_type, arg);
309 }
310 if (TYPE_LENGTH (arg_type) < ALPHA_REGISTER_SIZE)
311 {
312 arg_type = builtin_type_int64;
313 arg = value_cast (arg_type, arg);
314 }
315 break;
316
317 case TYPE_CODE_FLT:
318 /* "float" arguments loaded in registers must be passed in
319 register format, aka "double". */
320 if (accumulate_size < sizeof (arg_reg_buffer)
321 && TYPE_LENGTH (arg_type) == 4)
322 {
323 arg_type = builtin_type_ieee_double;
324 arg = value_cast (arg_type, arg);
325 }
326 /* Tru64 5.1 has a 128-bit long double, and passes this by
327 invisible reference. No one else uses this data type. */
328 else if (TYPE_LENGTH (arg_type) == 16)
329 {
330 /* Allocate aligned storage. */
331 sp = (sp & -16) - 16;
332
333 /* Write the real data into the stack. */
334 write_memory (sp, value_contents (arg), 16);
335
336 /* Construct the indirection. */
337 arg_type = lookup_pointer_type (arg_type);
338 arg = value_from_pointer (arg_type, sp);
339 }
340 break;
341
342 case TYPE_CODE_COMPLEX:
343 /* ??? The ABI says that complex values are passed as two
344 separate scalar values. This distinction only matters
345 for complex float. However, GCC does not implement this. */
346
347 /* Tru64 5.1 has a 128-bit long double, and passes this by
348 invisible reference. */
349 if (TYPE_LENGTH (arg_type) == 32)
350 {
351 /* Allocate aligned storage. */
352 sp = (sp & -16) - 16;
353
354 /* Write the real data into the stack. */
355 write_memory (sp, value_contents (arg), 32);
356
357 /* Construct the indirection. */
358 arg_type = lookup_pointer_type (arg_type);
359 arg = value_from_pointer (arg_type, sp);
360 }
361 break;
362
363 default:
364 break;
365 }
366 m_arg->len = TYPE_LENGTH (arg_type);
367 m_arg->offset = accumulate_size;
368 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
369 m_arg->contents = value_contents_writeable (arg);
370 }
371
372 /* Determine required argument register loads, loading an argument register
373 is expensive as it uses three ptrace calls. */
374 required_arg_regs = accumulate_size / 8;
375 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
376 required_arg_regs = ALPHA_NUM_ARG_REGS;
377
378 /* Make room for the arguments on the stack. */
379 if (accumulate_size < sizeof(arg_reg_buffer))
380 accumulate_size = 0;
381 else
382 accumulate_size -= sizeof(arg_reg_buffer);
383 sp -= accumulate_size;
384
385 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
386 sp &= ~15;
387
388 /* `Push' arguments on the stack. */
389 for (i = nargs; m_arg--, --i >= 0;)
390 {
391 gdb_byte *contents = m_arg->contents;
392 int offset = m_arg->offset;
393 int len = m_arg->len;
394
395 /* Copy the bytes destined for registers into arg_reg_buffer. */
396 if (offset < sizeof(arg_reg_buffer))
397 {
398 if (offset + len <= sizeof(arg_reg_buffer))
399 {
400 memcpy (arg_reg_buffer + offset, contents, len);
401 continue;
402 }
403 else
404 {
405 int tlen = sizeof(arg_reg_buffer) - offset;
406 memcpy (arg_reg_buffer + offset, contents, tlen);
407 offset += tlen;
408 contents += tlen;
409 len -= tlen;
410 }
411 }
412
413 /* Everything else goes to the stack. */
414 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
415 }
416 if (struct_return)
417 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE, struct_addr);
418
419 /* Load the argument registers. */
420 for (i = 0; i < required_arg_regs; i++)
421 {
422 regcache_cooked_write (regcache, ALPHA_A0_REGNUM + i,
423 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
424 regcache_cooked_write (regcache, ALPHA_FPA0_REGNUM + i,
425 arg_reg_buffer + i*ALPHA_REGISTER_SIZE);
426 }
427
428 /* Finally, update the stack pointer. */
429 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
430
431 return sp;
432 }
433
434 /* Extract from REGCACHE the value about to be returned from a function
435 and copy it into VALBUF. */
436
437 static void
438 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
439 gdb_byte *valbuf)
440 {
441 int length = TYPE_LENGTH (valtype);
442 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
443 ULONGEST l;
444
445 switch (TYPE_CODE (valtype))
446 {
447 case TYPE_CODE_FLT:
448 switch (length)
449 {
450 case 4:
451 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, raw_buffer);
452 alpha_sts (valbuf, raw_buffer);
453 break;
454
455 case 8:
456 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
457 break;
458
459 case 16:
460 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
461 read_memory (l, valbuf, 16);
462 break;
463
464 default:
465 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
466 }
467 break;
468
469 case TYPE_CODE_COMPLEX:
470 switch (length)
471 {
472 case 8:
473 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
474 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
475 break;
476
477 case 16:
478 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM, valbuf);
479 regcache_cooked_read (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
480 break;
481
482 case 32:
483 regcache_cooked_read_signed (regcache, ALPHA_V0_REGNUM, &l);
484 read_memory (l, valbuf, 32);
485 break;
486
487 default:
488 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
489 }
490 break;
491
492 default:
493 /* Assume everything else degenerates to an integer. */
494 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
495 store_unsigned_integer (valbuf, length, l);
496 break;
497 }
498 }
499
500 /* Insert the given value into REGCACHE as if it was being
501 returned by a function. */
502
503 static void
504 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
505 const gdb_byte *valbuf)
506 {
507 int length = TYPE_LENGTH (valtype);
508 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
509 ULONGEST l;
510
511 switch (TYPE_CODE (valtype))
512 {
513 case TYPE_CODE_FLT:
514 switch (length)
515 {
516 case 4:
517 alpha_lds (raw_buffer, valbuf);
518 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, raw_buffer);
519 break;
520
521 case 8:
522 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
523 break;
524
525 case 16:
526 /* FIXME: 128-bit long doubles are returned like structures:
527 by writing into indirect storage provided by the caller
528 as the first argument. */
529 error (_("Cannot set a 128-bit long double return value."));
530
531 default:
532 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
533 }
534 break;
535
536 case TYPE_CODE_COMPLEX:
537 switch (length)
538 {
539 case 8:
540 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
541 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
542 break;
543
544 case 16:
545 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM, valbuf);
546 regcache_cooked_write (regcache, ALPHA_FP0_REGNUM + 1, valbuf + 8);
547 break;
548
549 case 32:
550 /* FIXME: 128-bit long doubles are returned like structures:
551 by writing into indirect storage provided by the caller
552 as the first argument. */
553 error (_("Cannot set a 128-bit long double return value."));
554
555 default:
556 internal_error (__FILE__, __LINE__, _("unknown floating point width"));
557 }
558 break;
559
560 default:
561 /* Assume everything else degenerates to an integer. */
562 /* 32-bit values must be sign-extended to 64 bits
563 even if the base data type is unsigned. */
564 if (length == 4)
565 valtype = builtin_type_int32;
566 l = unpack_long (valtype, valbuf);
567 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
568 break;
569 }
570 }
571
572 static enum return_value_convention
573 alpha_return_value (struct gdbarch *gdbarch, struct type *type,
574 struct regcache *regcache, gdb_byte *readbuf,
575 const gdb_byte *writebuf)
576 {
577 enum type_code code = TYPE_CODE (type);
578
579 if ((code == TYPE_CODE_STRUCT
580 || code == TYPE_CODE_UNION
581 || code == TYPE_CODE_ARRAY)
582 && gdbarch_tdep (gdbarch)->return_in_memory (type))
583 {
584 if (readbuf)
585 {
586 ULONGEST addr;
587 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
588 read_memory (addr, readbuf, TYPE_LENGTH (type));
589 }
590
591 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
592 }
593
594 if (readbuf)
595 alpha_extract_return_value (type, regcache, readbuf);
596 if (writebuf)
597 alpha_store_return_value (type, regcache, writebuf);
598
599 return RETURN_VALUE_REGISTER_CONVENTION;
600 }
601
602 static int
603 alpha_return_in_memory_always (struct type *type)
604 {
605 return 1;
606 }
607 \f
608 static const gdb_byte *
609 alpha_breakpoint_from_pc (CORE_ADDR *pc, int *len)
610 {
611 static const gdb_byte break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
612
613 *len = sizeof(break_insn);
614 return break_insn;
615 }
616
617 \f
618 /* This returns the PC of the first insn after the prologue.
619 If we can't find the prologue, then return 0. */
620
621 CORE_ADDR
622 alpha_after_prologue (CORE_ADDR pc)
623 {
624 struct symtab_and_line sal;
625 CORE_ADDR func_addr, func_end;
626
627 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
628 return 0;
629
630 sal = find_pc_line (func_addr, 0);
631 if (sal.end < func_end)
632 return sal.end;
633
634 /* The line after the prologue is after the end of the function. In this
635 case, tell the caller to find the prologue the hard way. */
636 return 0;
637 }
638
639 /* Read an instruction from memory at PC, looking through breakpoints. */
640
641 unsigned int
642 alpha_read_insn (CORE_ADDR pc)
643 {
644 gdb_byte buf[ALPHA_INSN_SIZE];
645 int status;
646
647 status = read_memory_nobpt (pc, buf, sizeof (buf));
648 if (status)
649 memory_error (status, pc);
650 return extract_unsigned_integer (buf, sizeof (buf));
651 }
652
653 /* To skip prologues, I use this predicate. Returns either PC itself
654 if the code at PC does not look like a function prologue; otherwise
655 returns an address that (if we're lucky) follows the prologue. If
656 LENIENT, then we must skip everything which is involved in setting
657 up the frame (it's OK to skip more, just so long as we don't skip
658 anything which might clobber the registers which are being saved. */
659
660 static CORE_ADDR
661 alpha_skip_prologue (CORE_ADDR pc)
662 {
663 unsigned long inst;
664 int offset;
665 CORE_ADDR post_prologue_pc;
666 gdb_byte buf[ALPHA_INSN_SIZE];
667
668 /* Silently return the unaltered pc upon memory errors.
669 This could happen on OSF/1 if decode_line_1 tries to skip the
670 prologue for quickstarted shared library functions when the
671 shared library is not yet mapped in.
672 Reading target memory is slow over serial lines, so we perform
673 this check only if the target has shared libraries (which all
674 Alpha targets do). */
675 if (target_read_memory (pc, buf, sizeof (buf)))
676 return pc;
677
678 /* See if we can determine the end of the prologue via the symbol table.
679 If so, then return either PC, or the PC after the prologue, whichever
680 is greater. */
681
682 post_prologue_pc = alpha_after_prologue (pc);
683 if (post_prologue_pc != 0)
684 return max (pc, post_prologue_pc);
685
686 /* Can't determine prologue from the symbol table, need to examine
687 instructions. */
688
689 /* Skip the typical prologue instructions. These are the stack adjustment
690 instruction and the instructions that save registers on the stack
691 or in the gcc frame. */
692 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
693 {
694 inst = alpha_read_insn (pc + offset);
695
696 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
697 continue;
698 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
699 continue;
700 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
701 continue;
702 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
703 continue;
704
705 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
706 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
707 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
708 continue;
709
710 if (inst == 0x47de040f) /* bis sp,sp,fp */
711 continue;
712 if (inst == 0x47fe040f) /* bis zero,sp,fp */
713 continue;
714
715 break;
716 }
717 return pc + offset;
718 }
719
720 \f
721 /* Figure out where the longjmp will land.
722 We expect the first arg to be a pointer to the jmp_buf structure from
723 which we extract the PC (JB_PC) that we will land at. The PC is copied
724 into the "pc". This routine returns true on success. */
725
726 static int
727 alpha_get_longjmp_target (CORE_ADDR *pc)
728 {
729 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
730 CORE_ADDR jb_addr;
731 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
732
733 jb_addr = read_register (ALPHA_A0_REGNUM);
734
735 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
736 raw_buffer, tdep->jb_elt_size))
737 return 0;
738
739 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size);
740 return 1;
741 }
742
743 \f
744 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
745 describe the location and shape of the sigcontext structure. After
746 that, all registers are in memory, so it's easy. */
747 /* ??? Shouldn't we be able to do this generically, rather than with
748 OSABI data specific to Alpha? */
749
750 struct alpha_sigtramp_unwind_cache
751 {
752 CORE_ADDR sigcontext_addr;
753 };
754
755 static struct alpha_sigtramp_unwind_cache *
756 alpha_sigtramp_frame_unwind_cache (struct frame_info *next_frame,
757 void **this_prologue_cache)
758 {
759 struct alpha_sigtramp_unwind_cache *info;
760 struct gdbarch_tdep *tdep;
761
762 if (*this_prologue_cache)
763 return *this_prologue_cache;
764
765 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
766 *this_prologue_cache = info;
767
768 tdep = gdbarch_tdep (current_gdbarch);
769 info->sigcontext_addr = tdep->sigcontext_addr (next_frame);
770
771 return info;
772 }
773
774 /* Return the address of REGNUM in a sigtramp frame. Since this is
775 all arithmetic, it doesn't seem worthwhile to cache it. */
776
777 static CORE_ADDR
778 alpha_sigtramp_register_address (CORE_ADDR sigcontext_addr, int regnum)
779 {
780 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
781
782 if (regnum >= 0 && regnum < 32)
783 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
784 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
785 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
786 else if (regnum == ALPHA_PC_REGNUM)
787 return sigcontext_addr + tdep->sc_pc_offset;
788
789 return 0;
790 }
791
792 /* Given a GDB frame, determine the address of the calling function's
793 frame. This will be used to create a new GDB frame struct. */
794
795 static void
796 alpha_sigtramp_frame_this_id (struct frame_info *next_frame,
797 void **this_prologue_cache,
798 struct frame_id *this_id)
799 {
800 struct alpha_sigtramp_unwind_cache *info
801 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
802 struct gdbarch_tdep *tdep;
803 CORE_ADDR stack_addr, code_addr;
804
805 /* If the OSABI couldn't locate the sigcontext, give up. */
806 if (info->sigcontext_addr == 0)
807 return;
808
809 /* If we have dynamic signal trampolines, find their start.
810 If we do not, then we must assume there is a symbol record
811 that can provide the start address. */
812 tdep = gdbarch_tdep (current_gdbarch);
813 if (tdep->dynamic_sigtramp_offset)
814 {
815 int offset;
816 code_addr = frame_pc_unwind (next_frame);
817 offset = tdep->dynamic_sigtramp_offset (code_addr);
818 if (offset >= 0)
819 code_addr -= offset;
820 else
821 code_addr = 0;
822 }
823 else
824 code_addr = frame_func_unwind (next_frame, SIGTRAMP_FRAME);
825
826 /* The stack address is trivially read from the sigcontext. */
827 stack_addr = alpha_sigtramp_register_address (info->sigcontext_addr,
828 ALPHA_SP_REGNUM);
829 stack_addr = get_frame_memory_unsigned (next_frame, stack_addr,
830 ALPHA_REGISTER_SIZE);
831
832 *this_id = frame_id_build (stack_addr, code_addr);
833 }
834
835 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
836
837 static void
838 alpha_sigtramp_frame_prev_register (struct frame_info *next_frame,
839 void **this_prologue_cache,
840 int regnum, int *optimizedp,
841 enum lval_type *lvalp, CORE_ADDR *addrp,
842 int *realnump, gdb_byte *bufferp)
843 {
844 struct alpha_sigtramp_unwind_cache *info
845 = alpha_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache);
846 CORE_ADDR addr;
847
848 if (info->sigcontext_addr != 0)
849 {
850 /* All integer and fp registers are stored in memory. */
851 addr = alpha_sigtramp_register_address (info->sigcontext_addr, regnum);
852 if (addr != 0)
853 {
854 *optimizedp = 0;
855 *lvalp = lval_memory;
856 *addrp = addr;
857 *realnump = -1;
858 if (bufferp != NULL)
859 get_frame_memory (next_frame, addr, bufferp, ALPHA_REGISTER_SIZE);
860 return;
861 }
862 }
863
864 /* This extra register may actually be in the sigcontext, but our
865 current description of it in alpha_sigtramp_frame_unwind_cache
866 doesn't include it. Too bad. Fall back on whatever's in the
867 outer frame. */
868 *optimizedp = 0;
869 *lvalp = lval_register;
870 *addrp = 0;
871 *realnump = regnum;
872 if (bufferp)
873 frame_unwind_register (next_frame, *realnump, bufferp);
874 }
875
876 static const struct frame_unwind alpha_sigtramp_frame_unwind = {
877 SIGTRAMP_FRAME,
878 alpha_sigtramp_frame_this_id,
879 alpha_sigtramp_frame_prev_register
880 };
881
882 static const struct frame_unwind *
883 alpha_sigtramp_frame_sniffer (struct frame_info *next_frame)
884 {
885 CORE_ADDR pc = frame_pc_unwind (next_frame);
886 char *name;
887
888 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
889 look at tramp-frame.h and other simplier per-architecture
890 sigtramp unwinders. */
891
892 /* We shouldn't even bother to try if the OSABI didn't register a
893 sigcontext_addr handler or pc_in_sigtramp hander. */
894 if (gdbarch_tdep (current_gdbarch)->sigcontext_addr == NULL)
895 return NULL;
896 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp == NULL)
897 return NULL;
898
899 /* Otherwise we should be in a signal frame. */
900 find_pc_partial_function (pc, &name, NULL, NULL);
901 if (gdbarch_tdep (current_gdbarch)->pc_in_sigtramp (pc, name))
902 return &alpha_sigtramp_frame_unwind;
903
904 return NULL;
905 }
906 \f
907 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
908 something about the traditional layout of alpha stack frames. */
909
910 struct alpha_heuristic_unwind_cache
911 {
912 CORE_ADDR *saved_regs;
913 CORE_ADDR vfp;
914 CORE_ADDR start_pc;
915 int return_reg;
916 };
917
918 /* Heuristic_proc_start may hunt through the text section for a long
919 time across a 2400 baud serial line. Allows the user to limit this
920 search. */
921 static unsigned int heuristic_fence_post = 0;
922
923 /* Attempt to locate the start of the function containing PC. We assume that
924 the previous function ends with an about_to_return insn. Not foolproof by
925 any means, since gcc is happy to put the epilogue in the middle of a
926 function. But we're guessing anyway... */
927
928 static CORE_ADDR
929 alpha_heuristic_proc_start (CORE_ADDR pc)
930 {
931 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
932 CORE_ADDR last_non_nop = pc;
933 CORE_ADDR fence = pc - heuristic_fence_post;
934 CORE_ADDR orig_pc = pc;
935 CORE_ADDR func;
936
937 if (pc == 0)
938 return 0;
939
940 /* First see if we can find the start of the function from minimal
941 symbol information. This can succeed with a binary that doesn't
942 have debug info, but hasn't been stripped. */
943 func = get_pc_function_start (pc);
944 if (func)
945 return func;
946
947 if (heuristic_fence_post == UINT_MAX
948 || fence < tdep->vm_min_address)
949 fence = tdep->vm_min_address;
950
951 /* Search back for previous return; also stop at a 0, which might be
952 seen for instance before the start of a code section. Don't include
953 nops, since this usually indicates padding between functions. */
954 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
955 {
956 unsigned int insn = alpha_read_insn (pc);
957 switch (insn)
958 {
959 case 0: /* invalid insn */
960 case 0x6bfa8001: /* ret $31,($26),1 */
961 return last_non_nop;
962
963 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
964 case 0x47ff041f: /* nop: bis $31,$31,$31 */
965 break;
966
967 default:
968 last_non_nop = pc;
969 break;
970 }
971 }
972
973 /* It's not clear to me why we reach this point when stopping quietly,
974 but with this test, at least we don't print out warnings for every
975 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
976 if (stop_soon == NO_STOP_QUIETLY)
977 {
978 static int blurb_printed = 0;
979
980 if (fence == tdep->vm_min_address)
981 warning (_("Hit beginning of text section without finding \
982 enclosing function for address 0x%s"), paddr_nz (orig_pc));
983 else
984 warning (_("Hit heuristic-fence-post without finding \
985 enclosing function for address 0x%s"), paddr_nz (orig_pc));
986
987 if (!blurb_printed)
988 {
989 printf_filtered (_("\
990 This warning occurs if you are debugging a function without any symbols\n\
991 (for example, in a stripped executable). In that case, you may wish to\n\
992 increase the size of the search with the `set heuristic-fence-post' command.\n\
993 \n\
994 Otherwise, you told GDB there was a function where there isn't one, or\n\
995 (more likely) you have encountered a bug in GDB.\n"));
996 blurb_printed = 1;
997 }
998 }
999
1000 return 0;
1001 }
1002
1003 static struct alpha_heuristic_unwind_cache *
1004 alpha_heuristic_frame_unwind_cache (struct frame_info *next_frame,
1005 void **this_prologue_cache,
1006 CORE_ADDR start_pc)
1007 {
1008 struct alpha_heuristic_unwind_cache *info;
1009 ULONGEST val;
1010 CORE_ADDR limit_pc, cur_pc;
1011 int frame_reg, frame_size, return_reg, reg;
1012
1013 if (*this_prologue_cache)
1014 return *this_prologue_cache;
1015
1016 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1017 *this_prologue_cache = info;
1018 info->saved_regs = frame_obstack_zalloc (SIZEOF_FRAME_SAVED_REGS);
1019
1020 limit_pc = frame_pc_unwind (next_frame);
1021 if (start_pc == 0)
1022 start_pc = alpha_heuristic_proc_start (limit_pc);
1023 info->start_pc = start_pc;
1024
1025 frame_reg = ALPHA_SP_REGNUM;
1026 frame_size = 0;
1027 return_reg = -1;
1028
1029 /* If we've identified a likely place to start, do code scanning. */
1030 if (start_pc != 0)
1031 {
1032 /* Limit the forward search to 50 instructions. */
1033 if (start_pc + 200 < limit_pc)
1034 limit_pc = start_pc + 200;
1035
1036 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1037 {
1038 unsigned int word = alpha_read_insn (cur_pc);
1039
1040 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1041 {
1042 if (word & 0x8000)
1043 {
1044 /* Consider only the first stack allocation instruction
1045 to contain the static size of the frame. */
1046 if (frame_size == 0)
1047 frame_size = (-word) & 0xffff;
1048 }
1049 else
1050 {
1051 /* Exit loop if a positive stack adjustment is found, which
1052 usually means that the stack cleanup code in the function
1053 epilogue is reached. */
1054 break;
1055 }
1056 }
1057 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1058 {
1059 reg = (word & 0x03e00000) >> 21;
1060
1061 /* Ignore this instruction if we have already encountered
1062 an instruction saving the same register earlier in the
1063 function code. The current instruction does not tell
1064 us where the original value upon function entry is saved.
1065 All it says is that the function we are scanning reused
1066 that register for some computation of its own, and is now
1067 saving its result. */
1068 if (info->saved_regs[reg])
1069 continue;
1070
1071 if (reg == 31)
1072 continue;
1073
1074 /* Do not compute the address where the register was saved yet,
1075 because we don't know yet if the offset will need to be
1076 relative to $sp or $fp (we can not compute the address
1077 relative to $sp if $sp is updated during the execution of
1078 the current subroutine, for instance when doing some alloca).
1079 So just store the offset for the moment, and compute the
1080 address later when we know whether this frame has a frame
1081 pointer or not. */
1082 /* Hack: temporarily add one, so that the offset is non-zero
1083 and we can tell which registers have save offsets below. */
1084 info->saved_regs[reg] = (word & 0xffff) + 1;
1085
1086 /* Starting with OSF/1-3.2C, the system libraries are shipped
1087 without local symbols, but they still contain procedure
1088 descriptors without a symbol reference. GDB is currently
1089 unable to find these procedure descriptors and uses
1090 heuristic_proc_desc instead.
1091 As some low level compiler support routines (__div*, __add*)
1092 use a non-standard return address register, we have to
1093 add some heuristics to determine the return address register,
1094 or stepping over these routines will fail.
1095 Usually the return address register is the first register
1096 saved on the stack, but assembler optimization might
1097 rearrange the register saves.
1098 So we recognize only a few registers (t7, t9, ra) within
1099 the procedure prologue as valid return address registers.
1100 If we encounter a return instruction, we extract the
1101 the return address register from it.
1102
1103 FIXME: Rewriting GDB to access the procedure descriptors,
1104 e.g. via the minimal symbol table, might obviate this hack. */
1105 if (return_reg == -1
1106 && cur_pc < (start_pc + 80)
1107 && (reg == ALPHA_T7_REGNUM
1108 || reg == ALPHA_T9_REGNUM
1109 || reg == ALPHA_RA_REGNUM))
1110 return_reg = reg;
1111 }
1112 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1113 return_reg = (word >> 16) & 0x1f;
1114 else if (word == 0x47de040f) /* bis sp,sp,fp */
1115 frame_reg = ALPHA_GCC_FP_REGNUM;
1116 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1117 frame_reg = ALPHA_GCC_FP_REGNUM;
1118 }
1119
1120 /* If we haven't found a valid return address register yet, keep
1121 searching in the procedure prologue. */
1122 if (return_reg == -1)
1123 {
1124 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1125 {
1126 unsigned int word = alpha_read_insn (cur_pc);
1127
1128 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1129 {
1130 reg = (word & 0x03e00000) >> 21;
1131 if (reg == ALPHA_T7_REGNUM
1132 || reg == ALPHA_T9_REGNUM
1133 || reg == ALPHA_RA_REGNUM)
1134 {
1135 return_reg = reg;
1136 break;
1137 }
1138 }
1139 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1140 {
1141 return_reg = (word >> 16) & 0x1f;
1142 break;
1143 }
1144
1145 cur_pc += ALPHA_INSN_SIZE;
1146 }
1147 }
1148 }
1149
1150 /* Failing that, do default to the customary RA. */
1151 if (return_reg == -1)
1152 return_reg = ALPHA_RA_REGNUM;
1153 info->return_reg = return_reg;
1154
1155 frame_unwind_unsigned_register (next_frame, frame_reg, &val);
1156 info->vfp = val + frame_size;
1157
1158 /* Convert offsets to absolute addresses. See above about adding
1159 one to the offsets to make all detected offsets non-zero. */
1160 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1161 if (info->saved_regs[reg])
1162 info->saved_regs[reg] += val - 1;
1163
1164 return info;
1165 }
1166
1167 /* Given a GDB frame, determine the address of the calling function's
1168 frame. This will be used to create a new GDB frame struct. */
1169
1170 static void
1171 alpha_heuristic_frame_this_id (struct frame_info *next_frame,
1172 void **this_prologue_cache,
1173 struct frame_id *this_id)
1174 {
1175 struct alpha_heuristic_unwind_cache *info
1176 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1177
1178 *this_id = frame_id_build (info->vfp, info->start_pc);
1179 }
1180
1181 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1182
1183 static void
1184 alpha_heuristic_frame_prev_register (struct frame_info *next_frame,
1185 void **this_prologue_cache,
1186 int regnum, int *optimizedp,
1187 enum lval_type *lvalp, CORE_ADDR *addrp,
1188 int *realnump, gdb_byte *bufferp)
1189 {
1190 struct alpha_heuristic_unwind_cache *info
1191 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1192
1193 /* The PC of the previous frame is stored in the link register of
1194 the current frame. Frob regnum so that we pull the value from
1195 the correct place. */
1196 if (regnum == ALPHA_PC_REGNUM)
1197 regnum = info->return_reg;
1198
1199 /* For all registers known to be saved in the current frame,
1200 do the obvious and pull the value out. */
1201 if (info->saved_regs[regnum])
1202 {
1203 *optimizedp = 0;
1204 *lvalp = lval_memory;
1205 *addrp = info->saved_regs[regnum];
1206 *realnump = -1;
1207 if (bufferp != NULL)
1208 get_frame_memory (next_frame, *addrp, bufferp, ALPHA_REGISTER_SIZE);
1209 return;
1210 }
1211
1212 /* The stack pointer of the previous frame is computed by popping
1213 the current stack frame. */
1214 if (regnum == ALPHA_SP_REGNUM)
1215 {
1216 *optimizedp = 0;
1217 *lvalp = not_lval;
1218 *addrp = 0;
1219 *realnump = -1;
1220 if (bufferp != NULL)
1221 store_unsigned_integer (bufferp, ALPHA_REGISTER_SIZE, info->vfp);
1222 return;
1223 }
1224
1225 /* Otherwise assume the next frame has the same register value. */
1226 *optimizedp = 0;
1227 *lvalp = lval_register;
1228 *addrp = 0;
1229 *realnump = regnum;
1230 if (bufferp)
1231 frame_unwind_register (next_frame, *realnump, bufferp);
1232 }
1233
1234 static const struct frame_unwind alpha_heuristic_frame_unwind = {
1235 NORMAL_FRAME,
1236 alpha_heuristic_frame_this_id,
1237 alpha_heuristic_frame_prev_register
1238 };
1239
1240 static const struct frame_unwind *
1241 alpha_heuristic_frame_sniffer (struct frame_info *next_frame)
1242 {
1243 return &alpha_heuristic_frame_unwind;
1244 }
1245
1246 static CORE_ADDR
1247 alpha_heuristic_frame_base_address (struct frame_info *next_frame,
1248 void **this_prologue_cache)
1249 {
1250 struct alpha_heuristic_unwind_cache *info
1251 = alpha_heuristic_frame_unwind_cache (next_frame, this_prologue_cache, 0);
1252
1253 return info->vfp;
1254 }
1255
1256 static const struct frame_base alpha_heuristic_frame_base = {
1257 &alpha_heuristic_frame_unwind,
1258 alpha_heuristic_frame_base_address,
1259 alpha_heuristic_frame_base_address,
1260 alpha_heuristic_frame_base_address
1261 };
1262
1263 /* Just like reinit_frame_cache, but with the right arguments to be
1264 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1265
1266 static void
1267 reinit_frame_cache_sfunc (char *args, int from_tty, struct cmd_list_element *c)
1268 {
1269 reinit_frame_cache ();
1270 }
1271
1272 \f
1273 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
1274 dummy frame. The frame ID's base needs to match the TOS value
1275 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
1276 breakpoint. */
1277
1278 static struct frame_id
1279 alpha_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1280 {
1281 ULONGEST base;
1282 frame_unwind_unsigned_register (next_frame, ALPHA_SP_REGNUM, &base);
1283 return frame_id_build (base, frame_pc_unwind (next_frame));
1284 }
1285
1286 static CORE_ADDR
1287 alpha_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1288 {
1289 ULONGEST pc;
1290 frame_unwind_unsigned_register (next_frame, ALPHA_PC_REGNUM, &pc);
1291 return pc;
1292 }
1293
1294 \f
1295 /* Helper routines for alpha*-nat.c files to move register sets to and
1296 from core files. The UNIQUE pointer is allowed to be NULL, as most
1297 targets don't supply this value in their core files. */
1298
1299 void
1300 alpha_supply_int_regs (struct regcache *regcache, int regno,
1301 const void *r0_r30, const void *pc, const void *unique)
1302 {
1303 const gdb_byte *regs = r0_r30;
1304 int i;
1305
1306 for (i = 0; i < 31; ++i)
1307 if (regno == i || regno == -1)
1308 regcache_raw_supply (regcache, i, regs + i * 8);
1309
1310 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1311 regcache_raw_supply (regcache, ALPHA_ZERO_REGNUM, NULL);
1312
1313 if (regno == ALPHA_PC_REGNUM || regno == -1)
1314 regcache_raw_supply (regcache, ALPHA_PC_REGNUM, pc);
1315
1316 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1317 regcache_raw_supply (regcache, ALPHA_UNIQUE_REGNUM, unique);
1318 }
1319
1320 void
1321 alpha_fill_int_regs (const struct regcache *regcache,
1322 int regno, void *r0_r30, void *pc, void *unique)
1323 {
1324 gdb_byte *regs = r0_r30;
1325 int i;
1326
1327 for (i = 0; i < 31; ++i)
1328 if (regno == i || regno == -1)
1329 regcache_raw_collect (regcache, i, regs + i * 8);
1330
1331 if (regno == ALPHA_PC_REGNUM || regno == -1)
1332 regcache_raw_collect (regcache, ALPHA_PC_REGNUM, pc);
1333
1334 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1335 regcache_raw_collect (regcache, ALPHA_UNIQUE_REGNUM, unique);
1336 }
1337
1338 void
1339 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1340 const void *f0_f30, const void *fpcr)
1341 {
1342 const gdb_byte *regs = f0_f30;
1343 int i;
1344
1345 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1346 if (regno == i || regno == -1)
1347 regcache_raw_supply (regcache, i,
1348 regs + (i - ALPHA_FP0_REGNUM) * 8);
1349
1350 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1351 regcache_raw_supply (regcache, ALPHA_FPCR_REGNUM, fpcr);
1352 }
1353
1354 void
1355 alpha_fill_fp_regs (const struct regcache *regcache,
1356 int regno, void *f0_f30, void *fpcr)
1357 {
1358 gdb_byte *regs = f0_f30;
1359 int i;
1360
1361 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1362 if (regno == i || regno == -1)
1363 regcache_raw_collect (regcache, i,
1364 regs + (i - ALPHA_FP0_REGNUM) * 8);
1365
1366 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1367 regcache_raw_collect (regcache, ALPHA_FPCR_REGNUM, fpcr);
1368 }
1369
1370 \f
1371
1372 /* Return nonzero if the G_floating register value in REG is equal to
1373 zero for FP control instructions. */
1374
1375 static int
1376 fp_register_zero_p (LONGEST reg)
1377 {
1378 /* Check that all bits except the sign bit are zero. */
1379 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1380
1381 return ((reg & zero_mask) == 0);
1382 }
1383
1384 /* Return the value of the sign bit for the G_floating register
1385 value held in REG. */
1386
1387 static int
1388 fp_register_sign_bit (LONGEST reg)
1389 {
1390 const LONGEST sign_mask = (LONGEST) 1 << 63;
1391
1392 return ((reg & sign_mask) != 0);
1393 }
1394
1395 /* alpha_software_single_step() is called just before we want to resume
1396 the inferior, if we want to single-step it but there is no hardware
1397 or kernel single-step support (NetBSD on Alpha, for example). We find
1398 the target of the coming instruction and breakpoint it. */
1399
1400 static CORE_ADDR
1401 alpha_next_pc (CORE_ADDR pc)
1402 {
1403 unsigned int insn;
1404 unsigned int op;
1405 int regno;
1406 int offset;
1407 LONGEST rav;
1408 gdb_byte reg[ALPHA_REGISTER_SIZE];
1409
1410 insn = alpha_read_insn (pc);
1411
1412 /* Opcode is top 6 bits. */
1413 op = (insn >> 26) & 0x3f;
1414
1415 if (op == 0x1a)
1416 {
1417 /* Jump format: target PC is:
1418 RB & ~3 */
1419 return (read_register ((insn >> 16) & 0x1f) & ~3);
1420 }
1421
1422 if ((op & 0x30) == 0x30)
1423 {
1424 /* Branch format: target PC is:
1425 (new PC) + (4 * sext(displacement)) */
1426 if (op == 0x30 || /* BR */
1427 op == 0x34) /* BSR */
1428 {
1429 branch_taken:
1430 offset = (insn & 0x001fffff);
1431 if (offset & 0x00100000)
1432 offset |= 0xffe00000;
1433 offset *= ALPHA_INSN_SIZE;
1434 return (pc + ALPHA_INSN_SIZE + offset);
1435 }
1436
1437 /* Need to determine if branch is taken; read RA. */
1438 regno = (insn >> 21) & 0x1f;
1439 switch (op)
1440 {
1441 case 0x31: /* FBEQ */
1442 case 0x36: /* FBGE */
1443 case 0x37: /* FBGT */
1444 case 0x33: /* FBLE */
1445 case 0x32: /* FBLT */
1446 case 0x35: /* FBNE */
1447 regno += FP0_REGNUM;
1448 }
1449
1450 regcache_cooked_read (current_regcache, regno, reg);
1451 rav = extract_signed_integer (reg, ALPHA_REGISTER_SIZE);
1452
1453 switch (op)
1454 {
1455 case 0x38: /* BLBC */
1456 if ((rav & 1) == 0)
1457 goto branch_taken;
1458 break;
1459 case 0x3c: /* BLBS */
1460 if (rav & 1)
1461 goto branch_taken;
1462 break;
1463 case 0x39: /* BEQ */
1464 if (rav == 0)
1465 goto branch_taken;
1466 break;
1467 case 0x3d: /* BNE */
1468 if (rav != 0)
1469 goto branch_taken;
1470 break;
1471 case 0x3a: /* BLT */
1472 if (rav < 0)
1473 goto branch_taken;
1474 break;
1475 case 0x3b: /* BLE */
1476 if (rav <= 0)
1477 goto branch_taken;
1478 break;
1479 case 0x3f: /* BGT */
1480 if (rav > 0)
1481 goto branch_taken;
1482 break;
1483 case 0x3e: /* BGE */
1484 if (rav >= 0)
1485 goto branch_taken;
1486 break;
1487
1488 /* Floating point branches. */
1489
1490 case 0x31: /* FBEQ */
1491 if (fp_register_zero_p (rav))
1492 goto branch_taken;
1493 break;
1494 case 0x36: /* FBGE */
1495 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1496 goto branch_taken;
1497 break;
1498 case 0x37: /* FBGT */
1499 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1500 goto branch_taken;
1501 break;
1502 case 0x33: /* FBLE */
1503 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1504 goto branch_taken;
1505 break;
1506 case 0x32: /* FBLT */
1507 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1508 goto branch_taken;
1509 break;
1510 case 0x35: /* FBNE */
1511 if (! fp_register_zero_p (rav))
1512 goto branch_taken;
1513 break;
1514 }
1515 }
1516
1517 /* Not a branch or branch not taken; target PC is:
1518 pc + 4 */
1519 return (pc + ALPHA_INSN_SIZE);
1520 }
1521
1522 int
1523 alpha_software_single_step (struct regcache *regcache)
1524 {
1525 CORE_ADDR pc, next_pc;
1526
1527 pc = read_pc ();
1528 next_pc = alpha_next_pc (pc);
1529
1530 insert_single_step_breakpoint (next_pc);
1531 return 1;
1532 }
1533
1534 \f
1535 /* Initialize the current architecture based on INFO. If possible, re-use an
1536 architecture from ARCHES, which is a list of architectures already created
1537 during this debugging session.
1538
1539 Called e.g. at program startup, when reading a core file, and when reading
1540 a binary file. */
1541
1542 static struct gdbarch *
1543 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1544 {
1545 struct gdbarch_tdep *tdep;
1546 struct gdbarch *gdbarch;
1547
1548 /* Try to determine the ABI of the object we are loading. */
1549 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
1550 {
1551 /* If it's an ECOFF file, assume it's OSF/1. */
1552 if (bfd_get_flavour (info.abfd) == bfd_target_ecoff_flavour)
1553 info.osabi = GDB_OSABI_OSF1;
1554 }
1555
1556 /* Find a candidate among extant architectures. */
1557 arches = gdbarch_list_lookup_by_info (arches, &info);
1558 if (arches != NULL)
1559 return arches->gdbarch;
1560
1561 tdep = xmalloc (sizeof (struct gdbarch_tdep));
1562 gdbarch = gdbarch_alloc (&info, tdep);
1563
1564 /* Lowest text address. This is used by heuristic_proc_start()
1565 to decide when to stop looking. */
1566 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1567
1568 tdep->dynamic_sigtramp_offset = NULL;
1569 tdep->sigcontext_addr = NULL;
1570 tdep->sc_pc_offset = 2 * 8;
1571 tdep->sc_regs_offset = 4 * 8;
1572 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1573
1574 tdep->jb_pc = -1; /* longjmp support not enabled by default */
1575
1576 tdep->return_in_memory = alpha_return_in_memory_always;
1577
1578 /* Type sizes */
1579 set_gdbarch_short_bit (gdbarch, 16);
1580 set_gdbarch_int_bit (gdbarch, 32);
1581 set_gdbarch_long_bit (gdbarch, 64);
1582 set_gdbarch_long_long_bit (gdbarch, 64);
1583 set_gdbarch_float_bit (gdbarch, 32);
1584 set_gdbarch_double_bit (gdbarch, 64);
1585 set_gdbarch_long_double_bit (gdbarch, 64);
1586 set_gdbarch_ptr_bit (gdbarch, 64);
1587
1588 /* Register info */
1589 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1590 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1591 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1592 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1593
1594 set_gdbarch_register_name (gdbarch, alpha_register_name);
1595 set_gdbarch_register_type (gdbarch, alpha_register_type);
1596
1597 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1598 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1599
1600 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1601 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1602 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1603
1604 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1605
1606 /* Prologue heuristics. */
1607 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1608
1609 /* Disassembler. */
1610 set_gdbarch_print_insn (gdbarch, print_insn_alpha);
1611
1612 /* Call info. */
1613
1614 set_gdbarch_return_value (gdbarch, alpha_return_value);
1615
1616 /* Settings for calling functions in the inferior. */
1617 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1618
1619 /* Methods for saving / extracting a dummy frame's ID. */
1620 set_gdbarch_unwind_dummy_id (gdbarch, alpha_unwind_dummy_id);
1621
1622 /* Return the unwound PC value. */
1623 set_gdbarch_unwind_pc (gdbarch, alpha_unwind_pc);
1624
1625 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1626 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1627
1628 set_gdbarch_breakpoint_from_pc (gdbarch, alpha_breakpoint_from_pc);
1629 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1630 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1631
1632 /* Hook in ABI-specific overrides, if they have been registered. */
1633 gdbarch_init_osabi (info, gdbarch);
1634
1635 /* Now that we have tuned the configuration, set a few final things
1636 based on what the OS ABI has told us. */
1637
1638 if (tdep->jb_pc >= 0)
1639 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1640
1641 frame_unwind_append_sniffer (gdbarch, alpha_sigtramp_frame_sniffer);
1642 frame_unwind_append_sniffer (gdbarch, alpha_heuristic_frame_sniffer);
1643
1644 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1645
1646 return gdbarch;
1647 }
1648
1649 void
1650 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1651 {
1652 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
1653 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1654 }
1655
1656 extern initialize_file_ftype _initialize_alpha_tdep; /* -Wmissing-prototypes */
1657
1658 void
1659 _initialize_alpha_tdep (void)
1660 {
1661 struct cmd_list_element *c;
1662
1663 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1664
1665 /* Let the user set the fence post for heuristic_proc_start. */
1666
1667 /* We really would like to have both "0" and "unlimited" work, but
1668 command.c doesn't deal with that. So make it a var_zinteger
1669 because the user can always use "999999" or some such for unlimited. */
1670 /* We need to throw away the frame cache when we set this, since it
1671 might change our ability to get backtraces. */
1672 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1673 &heuristic_fence_post, _("\
1674 Set the distance searched for the start of a function."), _("\
1675 Show the distance searched for the start of a function."), _("\
1676 If you are debugging a stripped executable, GDB needs to search through the\n\
1677 program for the start of a function. This command sets the distance of the\n\
1678 search. The only need to set it is when debugging a stripped executable."),
1679 reinit_frame_cache_sfunc,
1680 NULL, /* FIXME: i18n: The distance searched for the start of a function is \"%d\". */
1681 &setlist, &showlist);
1682 }