Change calculation of frame_id by amd64 epilogue unwinder
[binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2022 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "gdbsupport/x86-xstate.h"
43 #include <algorithm>
44 #include "target-descriptions.h"
45 #include "arch/amd64.h"
46 #include "producer.h"
47 #include "ax.h"
48 #include "ax-gdb.h"
49 #include "gdbsupport/byte-vector.h"
50 #include "osabi.h"
51 #include "x86-tdep.h"
52 #include "amd64-ravenscar-thread.h"
53
54 /* Note that the AMD64 architecture was previously known as x86-64.
55 The latter is (forever) engraved into the canonical system name as
56 returned by config.guess, and used as the name for the AMD64 port
57 of GNU/Linux. The BSD's have renamed their ports to amd64; they
58 don't like to shout. For GDB we prefer the amd64_-prefix over the
59 x86_64_-prefix since it's so much easier to type. */
60
61 /* Register information. */
62
63 static const char * const amd64_register_names[] =
64 {
65 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
66
67 /* %r8 is indeed register number 8. */
68 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
69 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
70
71 /* %st0 is register number 24. */
72 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
73 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
74
75 /* %xmm0 is register number 40. */
76 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
77 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
78 "mxcsr",
79 };
80
81 static const char * const amd64_ymm_names[] =
82 {
83 "ymm0", "ymm1", "ymm2", "ymm3",
84 "ymm4", "ymm5", "ymm6", "ymm7",
85 "ymm8", "ymm9", "ymm10", "ymm11",
86 "ymm12", "ymm13", "ymm14", "ymm15"
87 };
88
89 static const char * const amd64_ymm_avx512_names[] =
90 {
91 "ymm16", "ymm17", "ymm18", "ymm19",
92 "ymm20", "ymm21", "ymm22", "ymm23",
93 "ymm24", "ymm25", "ymm26", "ymm27",
94 "ymm28", "ymm29", "ymm30", "ymm31"
95 };
96
97 static const char * const amd64_ymmh_names[] =
98 {
99 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
100 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
101 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
102 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
103 };
104
105 static const char * const amd64_ymmh_avx512_names[] =
106 {
107 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
108 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
109 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
110 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
111 };
112
113 static const char * const amd64_mpx_names[] =
114 {
115 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
116 };
117
118 static const char * const amd64_k_names[] =
119 {
120 "k0", "k1", "k2", "k3",
121 "k4", "k5", "k6", "k7"
122 };
123
124 static const char * const amd64_zmmh_names[] =
125 {
126 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
127 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
128 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
129 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
130 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
131 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
132 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
133 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
134 };
135
136 static const char * const amd64_zmm_names[] =
137 {
138 "zmm0", "zmm1", "zmm2", "zmm3",
139 "zmm4", "zmm5", "zmm6", "zmm7",
140 "zmm8", "zmm9", "zmm10", "zmm11",
141 "zmm12", "zmm13", "zmm14", "zmm15",
142 "zmm16", "zmm17", "zmm18", "zmm19",
143 "zmm20", "zmm21", "zmm22", "zmm23",
144 "zmm24", "zmm25", "zmm26", "zmm27",
145 "zmm28", "zmm29", "zmm30", "zmm31"
146 };
147
148 static const char * const amd64_xmm_avx512_names[] = {
149 "xmm16", "xmm17", "xmm18", "xmm19",
150 "xmm20", "xmm21", "xmm22", "xmm23",
151 "xmm24", "xmm25", "xmm26", "xmm27",
152 "xmm28", "xmm29", "xmm30", "xmm31"
153 };
154
155 static const char * const amd64_pkeys_names[] = {
156 "pkru"
157 };
158
159 /* DWARF Register Number Mapping as defined in the System V psABI,
160 section 3.6. */
161
162 static int amd64_dwarf_regmap[] =
163 {
164 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
165 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
166 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
167 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
168
169 /* Frame Pointer Register RBP. */
170 AMD64_RBP_REGNUM,
171
172 /* Stack Pointer Register RSP. */
173 AMD64_RSP_REGNUM,
174
175 /* Extended Integer Registers 8 - 15. */
176 AMD64_R8_REGNUM, /* %r8 */
177 AMD64_R9_REGNUM, /* %r9 */
178 AMD64_R10_REGNUM, /* %r10 */
179 AMD64_R11_REGNUM, /* %r11 */
180 AMD64_R12_REGNUM, /* %r12 */
181 AMD64_R13_REGNUM, /* %r13 */
182 AMD64_R14_REGNUM, /* %r14 */
183 AMD64_R15_REGNUM, /* %r15 */
184
185 /* Return Address RA. Mapped to RIP. */
186 AMD64_RIP_REGNUM,
187
188 /* SSE Registers 0 - 7. */
189 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
190 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
191 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
192 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
193
194 /* Extended SSE Registers 8 - 15. */
195 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
196 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
197 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
198 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
199
200 /* Floating Point Registers 0-7. */
201 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
202 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
203 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
204 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
205
206 /* MMX Registers 0 - 7.
207 We have to handle those registers specifically, as their register
208 number within GDB depends on the target (or they may even not be
209 available at all). */
210 -1, -1, -1, -1, -1, -1, -1, -1,
211
212 /* Control and Status Flags Register. */
213 AMD64_EFLAGS_REGNUM,
214
215 /* Selector Registers. */
216 AMD64_ES_REGNUM,
217 AMD64_CS_REGNUM,
218 AMD64_SS_REGNUM,
219 AMD64_DS_REGNUM,
220 AMD64_FS_REGNUM,
221 AMD64_GS_REGNUM,
222 -1,
223 -1,
224
225 /* Segment Base Address Registers. */
226 -1,
227 -1,
228 -1,
229 -1,
230
231 /* Special Selector Registers. */
232 -1,
233 -1,
234
235 /* Floating Point Control Registers. */
236 AMD64_MXCSR_REGNUM,
237 AMD64_FCTRL_REGNUM,
238 AMD64_FSTAT_REGNUM
239 };
240
241 static const int amd64_dwarf_regmap_len =
242 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
243
244 /* Convert DWARF register number REG to the appropriate register
245 number used by GDB. */
246
247 static int
248 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
249 {
250 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
251 int ymm0_regnum = tdep->ymm0_regnum;
252 int regnum = -1;
253
254 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
255 regnum = amd64_dwarf_regmap[reg];
256
257 if (ymm0_regnum >= 0
258 && i386_xmm_regnum_p (gdbarch, regnum))
259 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
260
261 return regnum;
262 }
263
264 /* Map architectural register numbers to gdb register numbers. */
265
266 static const int amd64_arch_regmap[16] =
267 {
268 AMD64_RAX_REGNUM, /* %rax */
269 AMD64_RCX_REGNUM, /* %rcx */
270 AMD64_RDX_REGNUM, /* %rdx */
271 AMD64_RBX_REGNUM, /* %rbx */
272 AMD64_RSP_REGNUM, /* %rsp */
273 AMD64_RBP_REGNUM, /* %rbp */
274 AMD64_RSI_REGNUM, /* %rsi */
275 AMD64_RDI_REGNUM, /* %rdi */
276 AMD64_R8_REGNUM, /* %r8 */
277 AMD64_R9_REGNUM, /* %r9 */
278 AMD64_R10_REGNUM, /* %r10 */
279 AMD64_R11_REGNUM, /* %r11 */
280 AMD64_R12_REGNUM, /* %r12 */
281 AMD64_R13_REGNUM, /* %r13 */
282 AMD64_R14_REGNUM, /* %r14 */
283 AMD64_R15_REGNUM /* %r15 */
284 };
285
286 static const int amd64_arch_regmap_len =
287 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
288
289 /* Convert architectural register number REG to the appropriate register
290 number used by GDB. */
291
292 static int
293 amd64_arch_reg_to_regnum (int reg)
294 {
295 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
296
297 return amd64_arch_regmap[reg];
298 }
299
300 /* Register names for byte pseudo-registers. */
301
302 static const char * const amd64_byte_names[] =
303 {
304 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
305 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
306 "ah", "bh", "ch", "dh"
307 };
308
309 /* Number of lower byte registers. */
310 #define AMD64_NUM_LOWER_BYTE_REGS 16
311
312 /* Register names for word pseudo-registers. */
313
314 static const char * const amd64_word_names[] =
315 {
316 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
317 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
318 };
319
320 /* Register names for dword pseudo-registers. */
321
322 static const char * const amd64_dword_names[] =
323 {
324 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
325 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
326 "eip"
327 };
328
329 /* Return the name of register REGNUM. */
330
331 static const char *
332 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
333 {
334 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
335 if (i386_byte_regnum_p (gdbarch, regnum))
336 return amd64_byte_names[regnum - tdep->al_regnum];
337 else if (i386_zmm_regnum_p (gdbarch, regnum))
338 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
339 else if (i386_ymm_regnum_p (gdbarch, regnum))
340 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
341 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
342 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
343 else if (i386_word_regnum_p (gdbarch, regnum))
344 return amd64_word_names[regnum - tdep->ax_regnum];
345 else if (i386_dword_regnum_p (gdbarch, regnum))
346 return amd64_dword_names[regnum - tdep->eax_regnum];
347 else
348 return i386_pseudo_register_name (gdbarch, regnum);
349 }
350
351 static struct value *
352 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
353 readable_regcache *regcache,
354 int regnum)
355 {
356 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
357
358 value *result_value = allocate_value (register_type (gdbarch, regnum));
359 VALUE_LVAL (result_value) = lval_register;
360 VALUE_REGNUM (result_value) = regnum;
361 gdb_byte *buf = value_contents_raw (result_value).data ();
362
363 if (i386_byte_regnum_p (gdbarch, regnum))
364 {
365 int gpnum = regnum - tdep->al_regnum;
366
367 /* Extract (always little endian). */
368 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
369 {
370 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
371 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
372
373 /* Special handling for AH, BH, CH, DH. */
374 register_status status = regcache->raw_read (gpnum, raw_buf);
375 if (status == REG_VALID)
376 memcpy (buf, raw_buf + 1, 1);
377 else
378 mark_value_bytes_unavailable (result_value, 0,
379 value_type (result_value)->length ());
380 }
381 else
382 {
383 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
384 register_status status = regcache->raw_read (gpnum, raw_buf);
385 if (status == REG_VALID)
386 memcpy (buf, raw_buf, 1);
387 else
388 mark_value_bytes_unavailable (result_value, 0,
389 value_type (result_value)->length ());
390 }
391 }
392 else if (i386_dword_regnum_p (gdbarch, regnum))
393 {
394 int gpnum = regnum - tdep->eax_regnum;
395 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
396 /* Extract (always little endian). */
397 register_status status = regcache->raw_read (gpnum, raw_buf);
398 if (status == REG_VALID)
399 memcpy (buf, raw_buf, 4);
400 else
401 mark_value_bytes_unavailable (result_value, 0,
402 value_type (result_value)->length ());
403 }
404 else
405 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
406 result_value);
407
408 return result_value;
409 }
410
411 static void
412 amd64_pseudo_register_write (struct gdbarch *gdbarch,
413 struct regcache *regcache,
414 int regnum, const gdb_byte *buf)
415 {
416 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
417
418 if (i386_byte_regnum_p (gdbarch, regnum))
419 {
420 int gpnum = regnum - tdep->al_regnum;
421
422 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
423 {
424 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
425 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
426
427 /* Read ... AH, BH, CH, DH. */
428 regcache->raw_read (gpnum, raw_buf);
429 /* ... Modify ... (always little endian). */
430 memcpy (raw_buf + 1, buf, 1);
431 /* ... Write. */
432 regcache->raw_write (gpnum, raw_buf);
433 }
434 else
435 {
436 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
437
438 /* Read ... */
439 regcache->raw_read (gpnum, raw_buf);
440 /* ... Modify ... (always little endian). */
441 memcpy (raw_buf, buf, 1);
442 /* ... Write. */
443 regcache->raw_write (gpnum, raw_buf);
444 }
445 }
446 else if (i386_dword_regnum_p (gdbarch, regnum))
447 {
448 int gpnum = regnum - tdep->eax_regnum;
449 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
450
451 /* Read ... */
452 regcache->raw_read (gpnum, raw_buf);
453 /* ... Modify ... (always little endian). */
454 memcpy (raw_buf, buf, 4);
455 /* ... Write. */
456 regcache->raw_write (gpnum, raw_buf);
457 }
458 else
459 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
460 }
461
462 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
463
464 static int
465 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
466 struct agent_expr *ax, int regnum)
467 {
468 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
469
470 if (i386_byte_regnum_p (gdbarch, regnum))
471 {
472 int gpnum = regnum - tdep->al_regnum;
473
474 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
475 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
476 else
477 ax_reg_mask (ax, gpnum);
478 return 0;
479 }
480 else if (i386_dword_regnum_p (gdbarch, regnum))
481 {
482 int gpnum = regnum - tdep->eax_regnum;
483
484 ax_reg_mask (ax, gpnum);
485 return 0;
486 }
487 else
488 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
489 }
490
491 \f
492
493 /* Register classes as defined in the psABI. */
494
495 enum amd64_reg_class
496 {
497 AMD64_INTEGER,
498 AMD64_SSE,
499 AMD64_SSEUP,
500 AMD64_X87,
501 AMD64_X87UP,
502 AMD64_COMPLEX_X87,
503 AMD64_NO_CLASS,
504 AMD64_MEMORY
505 };
506
507 /* Return the union class of CLASS1 and CLASS2. See the psABI for
508 details. */
509
510 static enum amd64_reg_class
511 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
512 {
513 /* Rule (a): If both classes are equal, this is the resulting class. */
514 if (class1 == class2)
515 return class1;
516
517 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
518 is the other class. */
519 if (class1 == AMD64_NO_CLASS)
520 return class2;
521 if (class2 == AMD64_NO_CLASS)
522 return class1;
523
524 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
525 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
526 return AMD64_MEMORY;
527
528 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
529 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
530 return AMD64_INTEGER;
531
532 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
533 MEMORY is used as class. */
534 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
535 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
536 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
537 return AMD64_MEMORY;
538
539 /* Rule (f): Otherwise class SSE is used. */
540 return AMD64_SSE;
541 }
542
543 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
544
545 /* Return true if TYPE is a structure or union with unaligned fields. */
546
547 static bool
548 amd64_has_unaligned_fields (struct type *type)
549 {
550 if (type->code () == TYPE_CODE_STRUCT
551 || type->code () == TYPE_CODE_UNION)
552 {
553 for (int i = 0; i < type->num_fields (); i++)
554 {
555 struct type *subtype = check_typedef (type->field (i).type ());
556
557 /* Ignore static fields, empty fields (for example nested
558 empty structures), and bitfields (these are handled by
559 the caller). */
560 if (field_is_static (&type->field (i))
561 || (TYPE_FIELD_BITSIZE (type, i) == 0
562 && subtype->length () == 0)
563 || TYPE_FIELD_PACKED (type, i))
564 continue;
565
566 int bitpos = type->field (i).loc_bitpos ();
567
568 if (bitpos % 8 != 0)
569 return true;
570
571 int align = type_align (subtype);
572 if (align == 0)
573 error (_("could not determine alignment of type"));
574
575 int bytepos = bitpos / 8;
576 if (bytepos % align != 0)
577 return true;
578
579 if (amd64_has_unaligned_fields (subtype))
580 return true;
581 }
582 }
583
584 return false;
585 }
586
587 /* Classify field I of TYPE starting at BITOFFSET according to the rules for
588 structures and union types, and store the result in THECLASS. */
589
590 static void
591 amd64_classify_aggregate_field (struct type *type, int i,
592 enum amd64_reg_class theclass[2],
593 unsigned int bitoffset)
594 {
595 struct type *subtype = check_typedef (type->field (i).type ());
596 enum amd64_reg_class subclass[2];
597 int bitsize = TYPE_FIELD_BITSIZE (type, i);
598
599 if (bitsize == 0)
600 bitsize = subtype->length () * 8;
601
602 /* Ignore static fields, or empty fields, for example nested
603 empty structures.*/
604 if (field_is_static (&type->field (i)) || bitsize == 0)
605 return;
606
607 int bitpos = bitoffset + type->field (i).loc_bitpos ();
608 int pos = bitpos / 64;
609 int endpos = (bitpos + bitsize - 1) / 64;
610
611 if (subtype->code () == TYPE_CODE_STRUCT
612 || subtype->code () == TYPE_CODE_UNION)
613 {
614 /* Each field of an object is classified recursively. */
615 int j;
616 for (j = 0; j < subtype->num_fields (); j++)
617 amd64_classify_aggregate_field (subtype, j, theclass, bitpos);
618 return;
619 }
620
621 gdb_assert (pos == 0 || pos == 1);
622
623 amd64_classify (subtype, subclass);
624 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
625 if (bitsize <= 64 && pos == 0 && endpos == 1)
626 /* This is a bit of an odd case: We have a field that would
627 normally fit in one of the two eightbytes, except that
628 it is placed in a way that this field straddles them.
629 This has been seen with a structure containing an array.
630
631 The ABI is a bit unclear in this case, but we assume that
632 this field's class (stored in subclass[0]) must also be merged
633 into class[1]. In other words, our field has a piece stored
634 in the second eight-byte, and thus its class applies to
635 the second eight-byte as well.
636
637 In the case where the field length exceeds 8 bytes,
638 it should not be necessary to merge the field class
639 into class[1]. As LEN > 8, subclass[1] is necessarily
640 different from AMD64_NO_CLASS. If subclass[1] is equal
641 to subclass[0], then the normal class[1]/subclass[1]
642 merging will take care of everything. For subclass[1]
643 to be different from subclass[0], I can only see the case
644 where we have a SSE/SSEUP or X87/X87UP pair, which both
645 use up all 16 bytes of the aggregate, and are already
646 handled just fine (because each portion sits on its own
647 8-byte). */
648 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
649 if (pos == 0)
650 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
651 }
652
653 /* Classify TYPE according to the rules for aggregate (structures and
654 arrays) and union types, and store the result in CLASS. */
655
656 static void
657 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
658 {
659 /* 1. If the size of an object is larger than two times eight bytes, or
660 it is a non-trivial C++ object, or it has unaligned fields, then it
661 has class memory.
662
663 It is important that the trivially_copyable check is before the
664 unaligned fields check, as C++ classes with virtual base classes
665 will have fields (for the virtual base classes) with non-constant
666 loc_bitpos attributes, which will cause an assert to trigger within
667 the unaligned field check. As classes with virtual bases are not
668 trivially copyable, checking that first avoids this problem. */
669 if (type->length () > 16
670 || !language_pass_by_reference (type).trivially_copyable
671 || amd64_has_unaligned_fields (type))
672 {
673 theclass[0] = theclass[1] = AMD64_MEMORY;
674 return;
675 }
676
677 /* 2. Both eightbytes get initialized to class NO_CLASS. */
678 theclass[0] = theclass[1] = AMD64_NO_CLASS;
679
680 /* 3. Each field of an object is classified recursively so that
681 always two fields are considered. The resulting class is
682 calculated according to the classes of the fields in the
683 eightbyte: */
684
685 if (type->code () == TYPE_CODE_ARRAY)
686 {
687 struct type *subtype = check_typedef (type->target_type ());
688
689 /* All fields in an array have the same type. */
690 amd64_classify (subtype, theclass);
691 if (type->length () > 8 && theclass[1] == AMD64_NO_CLASS)
692 theclass[1] = theclass[0];
693 }
694 else
695 {
696 int i;
697
698 /* Structure or union. */
699 gdb_assert (type->code () == TYPE_CODE_STRUCT
700 || type->code () == TYPE_CODE_UNION);
701
702 for (i = 0; i < type->num_fields (); i++)
703 amd64_classify_aggregate_field (type, i, theclass, 0);
704 }
705
706 /* 4. Then a post merger cleanup is done: */
707
708 /* Rule (a): If one of the classes is MEMORY, the whole argument is
709 passed in memory. */
710 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
711 theclass[0] = theclass[1] = AMD64_MEMORY;
712
713 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
714 SSE. */
715 if (theclass[0] == AMD64_SSEUP)
716 theclass[0] = AMD64_SSE;
717 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
718 theclass[1] = AMD64_SSE;
719 }
720
721 /* Classify TYPE, and store the result in CLASS. */
722
723 static void
724 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
725 {
726 enum type_code code = type->code ();
727 int len = type->length ();
728
729 theclass[0] = theclass[1] = AMD64_NO_CLASS;
730
731 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
732 long, long long, and pointers are in the INTEGER class. Similarly,
733 range types, used by languages such as Ada, are also in the INTEGER
734 class. */
735 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
736 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
737 || code == TYPE_CODE_CHAR
738 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
739 && (len == 1 || len == 2 || len == 4 || len == 8))
740 theclass[0] = AMD64_INTEGER;
741
742 /* Arguments of types _Float16, float, double, _Decimal32, _Decimal64 and
743 __m64 are in class SSE. */
744 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
745 && (len == 2 || len == 4 || len == 8))
746 /* FIXME: __m64 . */
747 theclass[0] = AMD64_SSE;
748
749 /* Arguments of types __float128, _Decimal128 and __m128 are split into
750 two halves. The least significant ones belong to class SSE, the most
751 significant one to class SSEUP. */
752 else if (code == TYPE_CODE_DECFLOAT && len == 16)
753 /* FIXME: __float128, __m128. */
754 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
755
756 /* The 64-bit mantissa of arguments of type long double belongs to
757 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
758 class X87UP. */
759 else if (code == TYPE_CODE_FLT && len == 16)
760 /* Class X87 and X87UP. */
761 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
762
763 /* Arguments of complex T - where T is one of the types _Float16, float or
764 double - get treated as if they are implemented as:
765
766 struct complexT {
767 T real;
768 T imag;
769 };
770
771 */
772 else if (code == TYPE_CODE_COMPLEX && (len == 8 || len == 4))
773 theclass[0] = AMD64_SSE;
774 else if (code == TYPE_CODE_COMPLEX && len == 16)
775 theclass[0] = theclass[1] = AMD64_SSE;
776
777 /* A variable of type complex long double is classified as type
778 COMPLEX_X87. */
779 else if (code == TYPE_CODE_COMPLEX && len == 32)
780 theclass[0] = AMD64_COMPLEX_X87;
781
782 /* Aggregates. */
783 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
784 || code == TYPE_CODE_UNION)
785 amd64_classify_aggregate (type, theclass);
786 }
787
788 static enum return_value_convention
789 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
790 struct type *type, struct regcache *regcache,
791 gdb_byte *readbuf, const gdb_byte *writebuf)
792 {
793 enum amd64_reg_class theclass[2];
794 int len = type->length ();
795 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
796 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
797 int integer_reg = 0;
798 int sse_reg = 0;
799 int i;
800
801 gdb_assert (!(readbuf && writebuf));
802
803 /* 1. Classify the return type with the classification algorithm. */
804 amd64_classify (type, theclass);
805
806 /* 2. If the type has class MEMORY, then the caller provides space
807 for the return value and passes the address of this storage in
808 %rdi as if it were the first argument to the function. In effect,
809 this address becomes a hidden first argument.
810
811 On return %rax will contain the address that has been passed in
812 by the caller in %rdi. */
813 if (theclass[0] == AMD64_MEMORY)
814 {
815 /* As indicated by the comment above, the ABI guarantees that we
816 can always find the return value just after the function has
817 returned. */
818
819 if (readbuf)
820 {
821 ULONGEST addr;
822
823 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
824 read_memory (addr, readbuf, type->length ());
825 }
826
827 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
828 }
829
830 /* 8. If the class is COMPLEX_X87, the real part of the value is
831 returned in %st0 and the imaginary part in %st1. */
832 if (theclass[0] == AMD64_COMPLEX_X87)
833 {
834 if (readbuf)
835 {
836 regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
837 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
838 }
839
840 if (writebuf)
841 {
842 i387_return_value (gdbarch, regcache);
843 regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
844 regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
845
846 /* Fix up the tag word such that both %st(0) and %st(1) are
847 marked as valid. */
848 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
849 }
850
851 return RETURN_VALUE_REGISTER_CONVENTION;
852 }
853
854 gdb_assert (theclass[1] != AMD64_MEMORY);
855 gdb_assert (len <= 16);
856
857 for (i = 0; len > 0; i++, len -= 8)
858 {
859 int regnum = -1;
860 int offset = 0;
861
862 switch (theclass[i])
863 {
864 case AMD64_INTEGER:
865 /* 3. If the class is INTEGER, the next available register
866 of the sequence %rax, %rdx is used. */
867 regnum = integer_regnum[integer_reg++];
868 break;
869
870 case AMD64_SSE:
871 /* 4. If the class is SSE, the next available SSE register
872 of the sequence %xmm0, %xmm1 is used. */
873 regnum = sse_regnum[sse_reg++];
874 break;
875
876 case AMD64_SSEUP:
877 /* 5. If the class is SSEUP, the eightbyte is passed in the
878 upper half of the last used SSE register. */
879 gdb_assert (sse_reg > 0);
880 regnum = sse_regnum[sse_reg - 1];
881 offset = 8;
882 break;
883
884 case AMD64_X87:
885 /* 6. If the class is X87, the value is returned on the X87
886 stack in %st0 as 80-bit x87 number. */
887 regnum = AMD64_ST0_REGNUM;
888 if (writebuf)
889 i387_return_value (gdbarch, regcache);
890 break;
891
892 case AMD64_X87UP:
893 /* 7. If the class is X87UP, the value is returned together
894 with the previous X87 value in %st0. */
895 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
896 regnum = AMD64_ST0_REGNUM;
897 offset = 8;
898 len = 2;
899 break;
900
901 case AMD64_NO_CLASS:
902 continue;
903
904 default:
905 gdb_assert (!"Unexpected register class.");
906 }
907
908 gdb_assert (regnum != -1);
909
910 if (readbuf)
911 regcache->raw_read_part (regnum, offset, std::min (len, 8),
912 readbuf + i * 8);
913 if (writebuf)
914 regcache->raw_write_part (regnum, offset, std::min (len, 8),
915 writebuf + i * 8);
916 }
917
918 return RETURN_VALUE_REGISTER_CONVENTION;
919 }
920 \f
921
922 static CORE_ADDR
923 amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args,
924 CORE_ADDR sp, function_call_return_method return_method)
925 {
926 static int integer_regnum[] =
927 {
928 AMD64_RDI_REGNUM, /* %rdi */
929 AMD64_RSI_REGNUM, /* %rsi */
930 AMD64_RDX_REGNUM, /* %rdx */
931 AMD64_RCX_REGNUM, /* %rcx */
932 AMD64_R8_REGNUM, /* %r8 */
933 AMD64_R9_REGNUM /* %r9 */
934 };
935 static int sse_regnum[] =
936 {
937 /* %xmm0 ... %xmm7 */
938 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
939 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
940 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
941 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
942 };
943 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
944 int num_stack_args = 0;
945 int num_elements = 0;
946 int element = 0;
947 int integer_reg = 0;
948 int sse_reg = 0;
949 int i;
950
951 /* Reserve a register for the "hidden" argument. */
952 if (return_method == return_method_struct)
953 integer_reg++;
954
955 for (i = 0; i < nargs; i++)
956 {
957 struct type *type = value_type (args[i]);
958 int len = type->length ();
959 enum amd64_reg_class theclass[2];
960 int needed_integer_regs = 0;
961 int needed_sse_regs = 0;
962 int j;
963
964 /* Classify argument. */
965 amd64_classify (type, theclass);
966
967 /* Calculate the number of integer and SSE registers needed for
968 this argument. */
969 for (j = 0; j < 2; j++)
970 {
971 if (theclass[j] == AMD64_INTEGER)
972 needed_integer_regs++;
973 else if (theclass[j] == AMD64_SSE)
974 needed_sse_regs++;
975 }
976
977 /* Check whether enough registers are available, and if the
978 argument should be passed in registers at all. */
979 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
980 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
981 || (needed_integer_regs == 0 && needed_sse_regs == 0))
982 {
983 /* The argument will be passed on the stack. */
984 num_elements += ((len + 7) / 8);
985 stack_args[num_stack_args++] = args[i];
986 }
987 else
988 {
989 /* The argument will be passed in registers. */
990 const gdb_byte *valbuf = value_contents (args[i]).data ();
991 gdb_byte buf[8];
992
993 gdb_assert (len <= 16);
994
995 for (j = 0; len > 0; j++, len -= 8)
996 {
997 int regnum = -1;
998 int offset = 0;
999
1000 switch (theclass[j])
1001 {
1002 case AMD64_INTEGER:
1003 regnum = integer_regnum[integer_reg++];
1004 break;
1005
1006 case AMD64_SSE:
1007 regnum = sse_regnum[sse_reg++];
1008 break;
1009
1010 case AMD64_SSEUP:
1011 gdb_assert (sse_reg > 0);
1012 regnum = sse_regnum[sse_reg - 1];
1013 offset = 8;
1014 break;
1015
1016 case AMD64_NO_CLASS:
1017 continue;
1018
1019 default:
1020 gdb_assert (!"Unexpected register class.");
1021 }
1022
1023 gdb_assert (regnum != -1);
1024 memset (buf, 0, sizeof buf);
1025 memcpy (buf, valbuf + j * 8, std::min (len, 8));
1026 regcache->raw_write_part (regnum, offset, 8, buf);
1027 }
1028 }
1029 }
1030
1031 /* Allocate space for the arguments on the stack. */
1032 sp -= num_elements * 8;
1033
1034 /* The psABI says that "The end of the input argument area shall be
1035 aligned on a 16 byte boundary." */
1036 sp &= ~0xf;
1037
1038 /* Write out the arguments to the stack. */
1039 for (i = 0; i < num_stack_args; i++)
1040 {
1041 struct type *type = value_type (stack_args[i]);
1042 const gdb_byte *valbuf = value_contents (stack_args[i]).data ();
1043 int len = type->length ();
1044
1045 write_memory (sp + element * 8, valbuf, len);
1046 element += ((len + 7) / 8);
1047 }
1048
1049 /* The psABI says that "For calls that may call functions that use
1050 varargs or stdargs (prototype-less calls or calls to functions
1051 containing ellipsis (...) in the declaration) %al is used as
1052 hidden argument to specify the number of SSE registers used. */
1053 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
1054 return sp;
1055 }
1056
1057 static CORE_ADDR
1058 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1059 struct regcache *regcache, CORE_ADDR bp_addr,
1060 int nargs, struct value **args, CORE_ADDR sp,
1061 function_call_return_method return_method,
1062 CORE_ADDR struct_addr)
1063 {
1064 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1065 gdb_byte buf[8];
1066
1067 /* BND registers can be in arbitrary values at the moment of the
1068 inferior call. This can cause boundary violations that are not
1069 due to a real bug or even desired by the user. The best to be done
1070 is set the BND registers to allow access to the whole memory, INIT
1071 state, before pushing the inferior call. */
1072 i387_reset_bnd_regs (gdbarch, regcache);
1073
1074 /* Pass arguments. */
1075 sp = amd64_push_arguments (regcache, nargs, args, sp, return_method);
1076
1077 /* Pass "hidden" argument". */
1078 if (return_method == return_method_struct)
1079 {
1080 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1081 regcache->cooked_write (AMD64_RDI_REGNUM, buf);
1082 }
1083
1084 /* Store return address. */
1085 sp -= 8;
1086 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1087 write_memory (sp, buf, 8);
1088
1089 /* Finally, update the stack pointer... */
1090 store_unsigned_integer (buf, 8, byte_order, sp);
1091 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
1092
1093 /* ...and fake a frame pointer. */
1094 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
1095
1096 return sp + 16;
1097 }
1098 \f
1099 /* Displaced instruction handling. */
1100
1101 /* A partially decoded instruction.
1102 This contains enough details for displaced stepping purposes. */
1103
1104 struct amd64_insn
1105 {
1106 /* The number of opcode bytes. */
1107 int opcode_len;
1108 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1109 not present. */
1110 int enc_prefix_offset;
1111 /* The offset to the first opcode byte. */
1112 int opcode_offset;
1113 /* The offset to the modrm byte or -1 if not present. */
1114 int modrm_offset;
1115
1116 /* The raw instruction. */
1117 gdb_byte *raw_insn;
1118 };
1119
1120 struct amd64_displaced_step_copy_insn_closure
1121 : public displaced_step_copy_insn_closure
1122 {
1123 amd64_displaced_step_copy_insn_closure (int insn_buf_len)
1124 : insn_buf (insn_buf_len, 0)
1125 {}
1126
1127 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1128 int tmp_used = 0;
1129 int tmp_regno;
1130 ULONGEST tmp_save;
1131
1132 /* Details of the instruction. */
1133 struct amd64_insn insn_details;
1134
1135 /* The possibly modified insn. */
1136 gdb::byte_vector insn_buf;
1137 };
1138
1139 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1140 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1141 at which point delete these in favor of libopcodes' versions). */
1142
1143 static const unsigned char onebyte_has_modrm[256] = {
1144 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1145 /* ------------------------------- */
1146 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1147 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1148 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1149 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1150 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1151 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1152 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1153 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1154 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1155 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1156 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1157 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1158 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1159 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1160 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1161 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1162 /* ------------------------------- */
1163 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1164 };
1165
1166 static const unsigned char twobyte_has_modrm[256] = {
1167 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1168 /* ------------------------------- */
1169 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1170 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1171 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1172 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1173 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1174 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1175 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1176 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1177 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1178 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1179 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1180 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1181 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1182 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1183 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1184 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1185 /* ------------------------------- */
1186 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1187 };
1188
1189 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1190
1191 static int
1192 rex_prefix_p (gdb_byte pfx)
1193 {
1194 return REX_PREFIX_P (pfx);
1195 }
1196
1197 /* True if PFX is the start of the 2-byte VEX prefix. */
1198
1199 static bool
1200 vex2_prefix_p (gdb_byte pfx)
1201 {
1202 return pfx == 0xc5;
1203 }
1204
1205 /* True if PFX is the start of the 3-byte VEX prefix. */
1206
1207 static bool
1208 vex3_prefix_p (gdb_byte pfx)
1209 {
1210 return pfx == 0xc4;
1211 }
1212
1213 /* Skip the legacy instruction prefixes in INSN.
1214 We assume INSN is properly sentineled so we don't have to worry
1215 about falling off the end of the buffer. */
1216
1217 static gdb_byte *
1218 amd64_skip_prefixes (gdb_byte *insn)
1219 {
1220 while (1)
1221 {
1222 switch (*insn)
1223 {
1224 case DATA_PREFIX_OPCODE:
1225 case ADDR_PREFIX_OPCODE:
1226 case CS_PREFIX_OPCODE:
1227 case DS_PREFIX_OPCODE:
1228 case ES_PREFIX_OPCODE:
1229 case FS_PREFIX_OPCODE:
1230 case GS_PREFIX_OPCODE:
1231 case SS_PREFIX_OPCODE:
1232 case LOCK_PREFIX_OPCODE:
1233 case REPE_PREFIX_OPCODE:
1234 case REPNE_PREFIX_OPCODE:
1235 ++insn;
1236 continue;
1237 default:
1238 break;
1239 }
1240 break;
1241 }
1242
1243 return insn;
1244 }
1245
1246 /* Return an integer register (other than RSP) that is unused as an input
1247 operand in INSN.
1248 In order to not require adding a rex prefix if the insn doesn't already
1249 have one, the result is restricted to RAX ... RDI, sans RSP.
1250 The register numbering of the result follows architecture ordering,
1251 e.g. RDI = 7. */
1252
1253 static int
1254 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1255 {
1256 /* 1 bit for each reg */
1257 int used_regs_mask = 0;
1258
1259 /* There can be at most 3 int regs used as inputs in an insn, and we have
1260 7 to choose from (RAX ... RDI, sans RSP).
1261 This allows us to take a conservative approach and keep things simple.
1262 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1263 that implicitly specify RAX. */
1264
1265 /* Avoid RAX. */
1266 used_regs_mask |= 1 << EAX_REG_NUM;
1267 /* Similarily avoid RDX, implicit operand in divides. */
1268 used_regs_mask |= 1 << EDX_REG_NUM;
1269 /* Avoid RSP. */
1270 used_regs_mask |= 1 << ESP_REG_NUM;
1271
1272 /* If the opcode is one byte long and there's no ModRM byte,
1273 assume the opcode specifies a register. */
1274 if (details->opcode_len == 1 && details->modrm_offset == -1)
1275 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1276
1277 /* Mark used regs in the modrm/sib bytes. */
1278 if (details->modrm_offset != -1)
1279 {
1280 int modrm = details->raw_insn[details->modrm_offset];
1281 int mod = MODRM_MOD_FIELD (modrm);
1282 int reg = MODRM_REG_FIELD (modrm);
1283 int rm = MODRM_RM_FIELD (modrm);
1284 int have_sib = mod != 3 && rm == 4;
1285
1286 /* Assume the reg field of the modrm byte specifies a register. */
1287 used_regs_mask |= 1 << reg;
1288
1289 if (have_sib)
1290 {
1291 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1292 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1293 used_regs_mask |= 1 << base;
1294 used_regs_mask |= 1 << idx;
1295 }
1296 else
1297 {
1298 used_regs_mask |= 1 << rm;
1299 }
1300 }
1301
1302 gdb_assert (used_regs_mask < 256);
1303 gdb_assert (used_regs_mask != 255);
1304
1305 /* Finally, find a free reg. */
1306 {
1307 int i;
1308
1309 for (i = 0; i < 8; ++i)
1310 {
1311 if (! (used_regs_mask & (1 << i)))
1312 return i;
1313 }
1314
1315 /* We shouldn't get here. */
1316 internal_error (_("unable to find free reg"));
1317 }
1318 }
1319
1320 /* Extract the details of INSN that we need. */
1321
1322 static void
1323 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1324 {
1325 gdb_byte *start = insn;
1326 int need_modrm;
1327
1328 details->raw_insn = insn;
1329
1330 details->opcode_len = -1;
1331 details->enc_prefix_offset = -1;
1332 details->opcode_offset = -1;
1333 details->modrm_offset = -1;
1334
1335 /* Skip legacy instruction prefixes. */
1336 insn = amd64_skip_prefixes (insn);
1337
1338 /* Skip REX/VEX instruction encoding prefixes. */
1339 if (rex_prefix_p (*insn))
1340 {
1341 details->enc_prefix_offset = insn - start;
1342 ++insn;
1343 }
1344 else if (vex2_prefix_p (*insn))
1345 {
1346 /* Don't record the offset in this case because this prefix has
1347 no REX.B equivalent. */
1348 insn += 2;
1349 }
1350 else if (vex3_prefix_p (*insn))
1351 {
1352 details->enc_prefix_offset = insn - start;
1353 insn += 3;
1354 }
1355
1356 details->opcode_offset = insn - start;
1357
1358 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1359 {
1360 /* Two or three-byte opcode. */
1361 ++insn;
1362 need_modrm = twobyte_has_modrm[*insn];
1363
1364 /* Check for three-byte opcode. */
1365 switch (*insn)
1366 {
1367 case 0x24:
1368 case 0x25:
1369 case 0x38:
1370 case 0x3a:
1371 case 0x7a:
1372 case 0x7b:
1373 ++insn;
1374 details->opcode_len = 3;
1375 break;
1376 default:
1377 details->opcode_len = 2;
1378 break;
1379 }
1380 }
1381 else
1382 {
1383 /* One-byte opcode. */
1384 need_modrm = onebyte_has_modrm[*insn];
1385 details->opcode_len = 1;
1386 }
1387
1388 if (need_modrm)
1389 {
1390 ++insn;
1391 details->modrm_offset = insn - start;
1392 }
1393 }
1394
1395 /* Update %rip-relative addressing in INSN.
1396
1397 %rip-relative addressing only uses a 32-bit displacement.
1398 32 bits is not enough to be guaranteed to cover the distance between where
1399 the real instruction is and where its copy is.
1400 Convert the insn to use base+disp addressing.
1401 We set base = pc + insn_length so we can leave disp unchanged. */
1402
1403 static void
1404 fixup_riprel (struct gdbarch *gdbarch,
1405 amd64_displaced_step_copy_insn_closure *dsc,
1406 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1407 {
1408 const struct amd64_insn *insn_details = &dsc->insn_details;
1409 int modrm_offset = insn_details->modrm_offset;
1410 CORE_ADDR rip_base;
1411 int insn_length;
1412 int arch_tmp_regno, tmp_regno;
1413 ULONGEST orig_value;
1414
1415 /* Compute the rip-relative address. */
1416 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1417 dsc->insn_buf.size (), from);
1418 rip_base = from + insn_length;
1419
1420 /* We need a register to hold the address.
1421 Pick one not used in the insn.
1422 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1423 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1424 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1425
1426 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1427 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1428
1429 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1430 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1431 is not r8-r15. */
1432 if (insn_details->enc_prefix_offset != -1)
1433 {
1434 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1435 if (rex_prefix_p (pfx[0]))
1436 pfx[0] &= ~REX_B;
1437 else if (vex3_prefix_p (pfx[0]))
1438 pfx[1] |= VEX3_NOT_B;
1439 else
1440 gdb_assert_not_reached ("unhandled prefix");
1441 }
1442
1443 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1444 dsc->tmp_regno = tmp_regno;
1445 dsc->tmp_save = orig_value;
1446 dsc->tmp_used = 1;
1447
1448 /* Convert the ModRM field to be base+disp. */
1449 dsc->insn_buf[modrm_offset] &= ~0xc7;
1450 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1451
1452 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1453
1454 displaced_debug_printf ("%%rip-relative addressing used.");
1455 displaced_debug_printf ("using temp reg %d, old value %s, new value %s",
1456 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1457 paddress (gdbarch, rip_base));
1458 }
1459
1460 static void
1461 fixup_displaced_copy (struct gdbarch *gdbarch,
1462 amd64_displaced_step_copy_insn_closure *dsc,
1463 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1464 {
1465 const struct amd64_insn *details = &dsc->insn_details;
1466
1467 if (details->modrm_offset != -1)
1468 {
1469 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1470
1471 if ((modrm & 0xc7) == 0x05)
1472 {
1473 /* The insn uses rip-relative addressing.
1474 Deal with it. */
1475 fixup_riprel (gdbarch, dsc, from, to, regs);
1476 }
1477 }
1478 }
1479
1480 displaced_step_copy_insn_closure_up
1481 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1482 CORE_ADDR from, CORE_ADDR to,
1483 struct regcache *regs)
1484 {
1485 int len = gdbarch_max_insn_length (gdbarch);
1486 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1487 continually watch for running off the end of the buffer. */
1488 int fixup_sentinel_space = len;
1489 std::unique_ptr<amd64_displaced_step_copy_insn_closure> dsc
1490 (new amd64_displaced_step_copy_insn_closure (len + fixup_sentinel_space));
1491 gdb_byte *buf = &dsc->insn_buf[0];
1492 struct amd64_insn *details = &dsc->insn_details;
1493
1494 read_memory (from, buf, len);
1495
1496 /* Set up the sentinel space so we don't have to worry about running
1497 off the end of the buffer. An excessive number of leading prefixes
1498 could otherwise cause this. */
1499 memset (buf + len, 0, fixup_sentinel_space);
1500
1501 amd64_get_insn_details (buf, details);
1502
1503 /* GDB may get control back after the insn after the syscall.
1504 Presumably this is a kernel bug.
1505 If this is a syscall, make sure there's a nop afterwards. */
1506 {
1507 int syscall_length;
1508
1509 if (amd64_syscall_p (details, &syscall_length))
1510 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1511 }
1512
1513 /* Modify the insn to cope with the address where it will be executed from.
1514 In particular, handle any rip-relative addressing. */
1515 fixup_displaced_copy (gdbarch, dsc.get (), from, to, regs);
1516
1517 write_memory (to, buf, len);
1518
1519 displaced_debug_printf ("copy %s->%s: %s",
1520 paddress (gdbarch, from), paddress (gdbarch, to),
1521 displaced_step_dump_bytes (buf, len).c_str ());
1522
1523 /* This is a work around for a problem with g++ 4.8. */
1524 return displaced_step_copy_insn_closure_up (dsc.release ());
1525 }
1526
1527 static int
1528 amd64_absolute_jmp_p (const struct amd64_insn *details)
1529 {
1530 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1531
1532 if (insn[0] == 0xff)
1533 {
1534 /* jump near, absolute indirect (/4) */
1535 if ((insn[1] & 0x38) == 0x20)
1536 return 1;
1537
1538 /* jump far, absolute indirect (/5) */
1539 if ((insn[1] & 0x38) == 0x28)
1540 return 1;
1541 }
1542
1543 return 0;
1544 }
1545
1546 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1547
1548 static int
1549 amd64_jmp_p (const struct amd64_insn *details)
1550 {
1551 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1552
1553 /* jump short, relative. */
1554 if (insn[0] == 0xeb)
1555 return 1;
1556
1557 /* jump near, relative. */
1558 if (insn[0] == 0xe9)
1559 return 1;
1560
1561 return amd64_absolute_jmp_p (details);
1562 }
1563
1564 static int
1565 amd64_absolute_call_p (const struct amd64_insn *details)
1566 {
1567 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1568
1569 if (insn[0] == 0xff)
1570 {
1571 /* Call near, absolute indirect (/2) */
1572 if ((insn[1] & 0x38) == 0x10)
1573 return 1;
1574
1575 /* Call far, absolute indirect (/3) */
1576 if ((insn[1] & 0x38) == 0x18)
1577 return 1;
1578 }
1579
1580 return 0;
1581 }
1582
1583 static int
1584 amd64_ret_p (const struct amd64_insn *details)
1585 {
1586 /* NOTE: gcc can emit "repz ; ret". */
1587 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1588
1589 switch (insn[0])
1590 {
1591 case 0xc2: /* ret near, pop N bytes */
1592 case 0xc3: /* ret near */
1593 case 0xca: /* ret far, pop N bytes */
1594 case 0xcb: /* ret far */
1595 case 0xcf: /* iret */
1596 return 1;
1597
1598 default:
1599 return 0;
1600 }
1601 }
1602
1603 static int
1604 amd64_call_p (const struct amd64_insn *details)
1605 {
1606 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1607
1608 if (amd64_absolute_call_p (details))
1609 return 1;
1610
1611 /* call near, relative */
1612 if (insn[0] == 0xe8)
1613 return 1;
1614
1615 return 0;
1616 }
1617
1618 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1619 length in bytes. Otherwise, return zero. */
1620
1621 static int
1622 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1623 {
1624 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1625
1626 if (insn[0] == 0x0f && insn[1] == 0x05)
1627 {
1628 *lengthp = 2;
1629 return 1;
1630 }
1631
1632 return 0;
1633 }
1634
1635 /* Classify the instruction at ADDR using PRED.
1636 Throw an error if the memory can't be read. */
1637
1638 static int
1639 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1640 int (*pred) (const struct amd64_insn *))
1641 {
1642 struct amd64_insn details;
1643 gdb_byte *buf;
1644 int len, classification;
1645
1646 len = gdbarch_max_insn_length (gdbarch);
1647 buf = (gdb_byte *) alloca (len);
1648
1649 read_code (addr, buf, len);
1650 amd64_get_insn_details (buf, &details);
1651
1652 classification = pred (&details);
1653
1654 return classification;
1655 }
1656
1657 /* The gdbarch insn_is_call method. */
1658
1659 static int
1660 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1661 {
1662 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1663 }
1664
1665 /* The gdbarch insn_is_ret method. */
1666
1667 static int
1668 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1669 {
1670 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1671 }
1672
1673 /* The gdbarch insn_is_jump method. */
1674
1675 static int
1676 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1677 {
1678 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1679 }
1680
1681 /* Fix up the state of registers and memory after having single-stepped
1682 a displaced instruction. */
1683
1684 void
1685 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1686 struct displaced_step_copy_insn_closure *dsc_,
1687 CORE_ADDR from, CORE_ADDR to,
1688 struct regcache *regs)
1689 {
1690 amd64_displaced_step_copy_insn_closure *dsc
1691 = (amd64_displaced_step_copy_insn_closure *) dsc_;
1692 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1693 /* The offset we applied to the instruction's address. */
1694 ULONGEST insn_offset = to - from;
1695 gdb_byte *insn = dsc->insn_buf.data ();
1696 const struct amd64_insn *insn_details = &dsc->insn_details;
1697
1698 displaced_debug_printf ("fixup (%s, %s), insn = 0x%02x 0x%02x ...",
1699 paddress (gdbarch, from), paddress (gdbarch, to),
1700 insn[0], insn[1]);
1701
1702 /* If we used a tmp reg, restore it. */
1703
1704 if (dsc->tmp_used)
1705 {
1706 displaced_debug_printf ("restoring reg %d to %s",
1707 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1708 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1709 }
1710
1711 /* The list of issues to contend with here is taken from
1712 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1713 Yay for Free Software! */
1714
1715 /* Relocate the %rip back to the program's instruction stream,
1716 if necessary. */
1717
1718 /* Except in the case of absolute or indirect jump or call
1719 instructions, or a return instruction, the new rip is relative to
1720 the displaced instruction; make it relative to the original insn.
1721 Well, signal handler returns don't need relocation either, but we use the
1722 value of %rip to recognize those; see below. */
1723 if (! amd64_absolute_jmp_p (insn_details)
1724 && ! amd64_absolute_call_p (insn_details)
1725 && ! amd64_ret_p (insn_details))
1726 {
1727 ULONGEST orig_rip;
1728 int insn_len;
1729
1730 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1731
1732 /* A signal trampoline system call changes the %rip, resuming
1733 execution of the main program after the signal handler has
1734 returned. That makes them like 'return' instructions; we
1735 shouldn't relocate %rip.
1736
1737 But most system calls don't, and we do need to relocate %rip.
1738
1739 Our heuristic for distinguishing these cases: if stepping
1740 over the system call instruction left control directly after
1741 the instruction, the we relocate --- control almost certainly
1742 doesn't belong in the displaced copy. Otherwise, we assume
1743 the instruction has put control where it belongs, and leave
1744 it unrelocated. Goodness help us if there are PC-relative
1745 system calls. */
1746 if (amd64_syscall_p (insn_details, &insn_len)
1747 && orig_rip != to + insn_len
1748 /* GDB can get control back after the insn after the syscall.
1749 Presumably this is a kernel bug.
1750 Fixup ensures its a nop, we add one to the length for it. */
1751 && orig_rip != to + insn_len + 1)
1752 displaced_debug_printf ("syscall changed %%rip; not relocating");
1753 else
1754 {
1755 ULONGEST rip = orig_rip - insn_offset;
1756
1757 /* If we just stepped over a breakpoint insn, we don't backup
1758 the pc on purpose; this is to match behaviour without
1759 stepping. */
1760
1761 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1762
1763 displaced_debug_printf ("relocated %%rip from %s to %s",
1764 paddress (gdbarch, orig_rip),
1765 paddress (gdbarch, rip));
1766 }
1767 }
1768
1769 /* If the instruction was PUSHFL, then the TF bit will be set in the
1770 pushed value, and should be cleared. We'll leave this for later,
1771 since GDB already messes up the TF flag when stepping over a
1772 pushfl. */
1773
1774 /* If the instruction was a call, the return address now atop the
1775 stack is the address following the copied instruction. We need
1776 to make it the address following the original instruction. */
1777 if (amd64_call_p (insn_details))
1778 {
1779 ULONGEST rsp;
1780 ULONGEST retaddr;
1781 const ULONGEST retaddr_len = 8;
1782
1783 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1784 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1785 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1786 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1787
1788 displaced_debug_printf ("relocated return addr at %s to %s",
1789 paddress (gdbarch, rsp),
1790 paddress (gdbarch, retaddr));
1791 }
1792 }
1793
1794 /* If the instruction INSN uses RIP-relative addressing, return the
1795 offset into the raw INSN where the displacement to be adjusted is
1796 found. Returns 0 if the instruction doesn't use RIP-relative
1797 addressing. */
1798
1799 static int
1800 rip_relative_offset (struct amd64_insn *insn)
1801 {
1802 if (insn->modrm_offset != -1)
1803 {
1804 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1805
1806 if ((modrm & 0xc7) == 0x05)
1807 {
1808 /* The displacement is found right after the ModRM byte. */
1809 return insn->modrm_offset + 1;
1810 }
1811 }
1812
1813 return 0;
1814 }
1815
1816 static void
1817 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1818 {
1819 target_write_memory (*to, buf, len);
1820 *to += len;
1821 }
1822
1823 static void
1824 amd64_relocate_instruction (struct gdbarch *gdbarch,
1825 CORE_ADDR *to, CORE_ADDR oldloc)
1826 {
1827 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1828 int len = gdbarch_max_insn_length (gdbarch);
1829 /* Extra space for sentinels. */
1830 int fixup_sentinel_space = len;
1831 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1832 struct amd64_insn insn_details;
1833 int offset = 0;
1834 LONGEST rel32, newrel;
1835 gdb_byte *insn;
1836 int insn_length;
1837
1838 read_memory (oldloc, buf, len);
1839
1840 /* Set up the sentinel space so we don't have to worry about running
1841 off the end of the buffer. An excessive number of leading prefixes
1842 could otherwise cause this. */
1843 memset (buf + len, 0, fixup_sentinel_space);
1844
1845 insn = buf;
1846 amd64_get_insn_details (insn, &insn_details);
1847
1848 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1849
1850 /* Skip legacy instruction prefixes. */
1851 insn = amd64_skip_prefixes (insn);
1852
1853 /* Adjust calls with 32-bit relative addresses as push/jump, with
1854 the address pushed being the location where the original call in
1855 the user program would return to. */
1856 if (insn[0] == 0xe8)
1857 {
1858 gdb_byte push_buf[32];
1859 CORE_ADDR ret_addr;
1860 int i = 0;
1861
1862 /* Where "ret" in the original code will return to. */
1863 ret_addr = oldloc + insn_length;
1864
1865 /* If pushing an address higher than or equal to 0x80000000,
1866 avoid 'pushq', as that sign extends its 32-bit operand, which
1867 would be incorrect. */
1868 if (ret_addr <= 0x7fffffff)
1869 {
1870 push_buf[0] = 0x68; /* pushq $... */
1871 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1872 i = 5;
1873 }
1874 else
1875 {
1876 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1877 push_buf[i++] = 0x83;
1878 push_buf[i++] = 0xec;
1879 push_buf[i++] = 0x08;
1880
1881 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1882 push_buf[i++] = 0x04;
1883 push_buf[i++] = 0x24;
1884 store_unsigned_integer (&push_buf[i], 4, byte_order,
1885 ret_addr & 0xffffffff);
1886 i += 4;
1887
1888 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1889 push_buf[i++] = 0x44;
1890 push_buf[i++] = 0x24;
1891 push_buf[i++] = 0x04;
1892 store_unsigned_integer (&push_buf[i], 4, byte_order,
1893 ret_addr >> 32);
1894 i += 4;
1895 }
1896 gdb_assert (i <= sizeof (push_buf));
1897 /* Push the push. */
1898 append_insns (to, i, push_buf);
1899
1900 /* Convert the relative call to a relative jump. */
1901 insn[0] = 0xe9;
1902
1903 /* Adjust the destination offset. */
1904 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1905 newrel = (oldloc - *to) + rel32;
1906 store_signed_integer (insn + 1, 4, byte_order, newrel);
1907
1908 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1909 hex_string (rel32), paddress (gdbarch, oldloc),
1910 hex_string (newrel), paddress (gdbarch, *to));
1911
1912 /* Write the adjusted jump into its displaced location. */
1913 append_insns (to, 5, insn);
1914 return;
1915 }
1916
1917 offset = rip_relative_offset (&insn_details);
1918 if (!offset)
1919 {
1920 /* Adjust jumps with 32-bit relative addresses. Calls are
1921 already handled above. */
1922 if (insn[0] == 0xe9)
1923 offset = 1;
1924 /* Adjust conditional jumps. */
1925 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1926 offset = 2;
1927 }
1928
1929 if (offset)
1930 {
1931 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1932 newrel = (oldloc - *to) + rel32;
1933 store_signed_integer (insn + offset, 4, byte_order, newrel);
1934 displaced_debug_printf ("adjusted insn rel32=%s at %s to rel32=%s at %s",
1935 hex_string (rel32), paddress (gdbarch, oldloc),
1936 hex_string (newrel), paddress (gdbarch, *to));
1937 }
1938
1939 /* Write the adjusted instruction into its displaced location. */
1940 append_insns (to, insn_length, buf);
1941 }
1942
1943 \f
1944 /* The maximum number of saved registers. This should include %rip. */
1945 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1946
1947 struct amd64_frame_cache
1948 {
1949 /* Base address. */
1950 CORE_ADDR base;
1951 int base_p;
1952 CORE_ADDR sp_offset;
1953 CORE_ADDR pc;
1954
1955 /* Saved registers. */
1956 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1957 CORE_ADDR saved_sp;
1958 int saved_sp_reg;
1959
1960 /* Do we have a frame? */
1961 int frameless_p;
1962 };
1963
1964 /* Initialize a frame cache. */
1965
1966 static void
1967 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1968 {
1969 int i;
1970
1971 /* Base address. */
1972 cache->base = 0;
1973 cache->base_p = 0;
1974 cache->sp_offset = -8;
1975 cache->pc = 0;
1976
1977 /* Saved registers. We initialize these to -1 since zero is a valid
1978 offset (that's where %rbp is supposed to be stored).
1979 The values start out as being offsets, and are later converted to
1980 addresses (at which point -1 is interpreted as an address, still meaning
1981 "invalid"). */
1982 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1983 cache->saved_regs[i] = -1;
1984 cache->saved_sp = 0;
1985 cache->saved_sp_reg = -1;
1986
1987 /* Frameless until proven otherwise. */
1988 cache->frameless_p = 1;
1989 }
1990
1991 /* Allocate and initialize a frame cache. */
1992
1993 static struct amd64_frame_cache *
1994 amd64_alloc_frame_cache (void)
1995 {
1996 struct amd64_frame_cache *cache;
1997
1998 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1999 amd64_init_frame_cache (cache);
2000 return cache;
2001 }
2002
2003 /* GCC 4.4 and later, can put code in the prologue to realign the
2004 stack pointer. Check whether PC points to such code, and update
2005 CACHE accordingly. Return the first instruction after the code
2006 sequence or CURRENT_PC, whichever is smaller. If we don't
2007 recognize the code, return PC. */
2008
2009 static CORE_ADDR
2010 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2011 struct amd64_frame_cache *cache)
2012 {
2013 /* There are 2 code sequences to re-align stack before the frame
2014 gets set up:
2015
2016 1. Use a caller-saved saved register:
2017
2018 leaq 8(%rsp), %reg
2019 andq $-XXX, %rsp
2020 pushq -8(%reg)
2021
2022 2. Use a callee-saved saved register:
2023
2024 pushq %reg
2025 leaq 16(%rsp), %reg
2026 andq $-XXX, %rsp
2027 pushq -8(%reg)
2028
2029 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2030
2031 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2032 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2033 */
2034
2035 gdb_byte buf[18];
2036 int reg, r;
2037 int offset, offset_and;
2038
2039 if (target_read_code (pc, buf, sizeof buf))
2040 return pc;
2041
2042 /* Check caller-saved saved register. The first instruction has
2043 to be "leaq 8(%rsp), %reg". */
2044 if ((buf[0] & 0xfb) == 0x48
2045 && buf[1] == 0x8d
2046 && buf[3] == 0x24
2047 && buf[4] == 0x8)
2048 {
2049 /* MOD must be binary 10 and R/M must be binary 100. */
2050 if ((buf[2] & 0xc7) != 0x44)
2051 return pc;
2052
2053 /* REG has register number. */
2054 reg = (buf[2] >> 3) & 7;
2055
2056 /* Check the REX.R bit. */
2057 if (buf[0] == 0x4c)
2058 reg += 8;
2059
2060 offset = 5;
2061 }
2062 else
2063 {
2064 /* Check callee-saved saved register. The first instruction
2065 has to be "pushq %reg". */
2066 reg = 0;
2067 if ((buf[0] & 0xf8) == 0x50)
2068 offset = 0;
2069 else if ((buf[0] & 0xf6) == 0x40
2070 && (buf[1] & 0xf8) == 0x50)
2071 {
2072 /* Check the REX.B bit. */
2073 if ((buf[0] & 1) != 0)
2074 reg = 8;
2075
2076 offset = 1;
2077 }
2078 else
2079 return pc;
2080
2081 /* Get register. */
2082 reg += buf[offset] & 0x7;
2083
2084 offset++;
2085
2086 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2087 if ((buf[offset] & 0xfb) != 0x48
2088 || buf[offset + 1] != 0x8d
2089 || buf[offset + 3] != 0x24
2090 || buf[offset + 4] != 0x10)
2091 return pc;
2092
2093 /* MOD must be binary 10 and R/M must be binary 100. */
2094 if ((buf[offset + 2] & 0xc7) != 0x44)
2095 return pc;
2096
2097 /* REG has register number. */
2098 r = (buf[offset + 2] >> 3) & 7;
2099
2100 /* Check the REX.R bit. */
2101 if (buf[offset] == 0x4c)
2102 r += 8;
2103
2104 /* Registers in pushq and leaq have to be the same. */
2105 if (reg != r)
2106 return pc;
2107
2108 offset += 5;
2109 }
2110
2111 /* Rigister can't be %rsp nor %rbp. */
2112 if (reg == 4 || reg == 5)
2113 return pc;
2114
2115 /* The next instruction has to be "andq $-XXX, %rsp". */
2116 if (buf[offset] != 0x48
2117 || buf[offset + 2] != 0xe4
2118 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2119 return pc;
2120
2121 offset_and = offset;
2122 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2123
2124 /* The next instruction has to be "pushq -8(%reg)". */
2125 r = 0;
2126 if (buf[offset] == 0xff)
2127 offset++;
2128 else if ((buf[offset] & 0xf6) == 0x40
2129 && buf[offset + 1] == 0xff)
2130 {
2131 /* Check the REX.B bit. */
2132 if ((buf[offset] & 0x1) != 0)
2133 r = 8;
2134 offset += 2;
2135 }
2136 else
2137 return pc;
2138
2139 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2140 01. */
2141 if (buf[offset + 1] != 0xf8
2142 || (buf[offset] & 0xf8) != 0x70)
2143 return pc;
2144
2145 /* R/M has register. */
2146 r += buf[offset] & 7;
2147
2148 /* Registers in leaq and pushq have to be the same. */
2149 if (reg != r)
2150 return pc;
2151
2152 if (current_pc > pc + offset_and)
2153 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2154
2155 return std::min (pc + offset + 2, current_pc);
2156 }
2157
2158 /* Similar to amd64_analyze_stack_align for x32. */
2159
2160 static CORE_ADDR
2161 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2162 struct amd64_frame_cache *cache)
2163 {
2164 /* There are 2 code sequences to re-align stack before the frame
2165 gets set up:
2166
2167 1. Use a caller-saved saved register:
2168
2169 leaq 8(%rsp), %reg
2170 andq $-XXX, %rsp
2171 pushq -8(%reg)
2172
2173 or
2174
2175 [addr32] leal 8(%rsp), %reg
2176 andl $-XXX, %esp
2177 [addr32] pushq -8(%reg)
2178
2179 2. Use a callee-saved saved register:
2180
2181 pushq %reg
2182 leaq 16(%rsp), %reg
2183 andq $-XXX, %rsp
2184 pushq -8(%reg)
2185
2186 or
2187
2188 pushq %reg
2189 [addr32] leal 16(%rsp), %reg
2190 andl $-XXX, %esp
2191 [addr32] pushq -8(%reg)
2192
2193 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2194
2195 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2196 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2197
2198 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2199
2200 0x83 0xe4 0xf0 andl $-16, %esp
2201 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2202 */
2203
2204 gdb_byte buf[19];
2205 int reg, r;
2206 int offset, offset_and;
2207
2208 if (target_read_memory (pc, buf, sizeof buf))
2209 return pc;
2210
2211 /* Skip optional addr32 prefix. */
2212 offset = buf[0] == 0x67 ? 1 : 0;
2213
2214 /* Check caller-saved saved register. The first instruction has
2215 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2216 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2217 && buf[offset + 1] == 0x8d
2218 && buf[offset + 3] == 0x24
2219 && buf[offset + 4] == 0x8)
2220 {
2221 /* MOD must be binary 10 and R/M must be binary 100. */
2222 if ((buf[offset + 2] & 0xc7) != 0x44)
2223 return pc;
2224
2225 /* REG has register number. */
2226 reg = (buf[offset + 2] >> 3) & 7;
2227
2228 /* Check the REX.R bit. */
2229 if ((buf[offset] & 0x4) != 0)
2230 reg += 8;
2231
2232 offset += 5;
2233 }
2234 else
2235 {
2236 /* Check callee-saved saved register. The first instruction
2237 has to be "pushq %reg". */
2238 reg = 0;
2239 if ((buf[offset] & 0xf6) == 0x40
2240 && (buf[offset + 1] & 0xf8) == 0x50)
2241 {
2242 /* Check the REX.B bit. */
2243 if ((buf[offset] & 1) != 0)
2244 reg = 8;
2245
2246 offset += 1;
2247 }
2248 else if ((buf[offset] & 0xf8) != 0x50)
2249 return pc;
2250
2251 /* Get register. */
2252 reg += buf[offset] & 0x7;
2253
2254 offset++;
2255
2256 /* Skip optional addr32 prefix. */
2257 if (buf[offset] == 0x67)
2258 offset++;
2259
2260 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2261 "leal 16(%rsp), %reg". */
2262 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2263 || buf[offset + 1] != 0x8d
2264 || buf[offset + 3] != 0x24
2265 || buf[offset + 4] != 0x10)
2266 return pc;
2267
2268 /* MOD must be binary 10 and R/M must be binary 100. */
2269 if ((buf[offset + 2] & 0xc7) != 0x44)
2270 return pc;
2271
2272 /* REG has register number. */
2273 r = (buf[offset + 2] >> 3) & 7;
2274
2275 /* Check the REX.R bit. */
2276 if ((buf[offset] & 0x4) != 0)
2277 r += 8;
2278
2279 /* Registers in pushq and leaq have to be the same. */
2280 if (reg != r)
2281 return pc;
2282
2283 offset += 5;
2284 }
2285
2286 /* Rigister can't be %rsp nor %rbp. */
2287 if (reg == 4 || reg == 5)
2288 return pc;
2289
2290 /* The next instruction may be "andq $-XXX, %rsp" or
2291 "andl $-XXX, %esp". */
2292 if (buf[offset] != 0x48)
2293 offset--;
2294
2295 if (buf[offset + 2] != 0xe4
2296 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2297 return pc;
2298
2299 offset_and = offset;
2300 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2301
2302 /* Skip optional addr32 prefix. */
2303 if (buf[offset] == 0x67)
2304 offset++;
2305
2306 /* The next instruction has to be "pushq -8(%reg)". */
2307 r = 0;
2308 if (buf[offset] == 0xff)
2309 offset++;
2310 else if ((buf[offset] & 0xf6) == 0x40
2311 && buf[offset + 1] == 0xff)
2312 {
2313 /* Check the REX.B bit. */
2314 if ((buf[offset] & 0x1) != 0)
2315 r = 8;
2316 offset += 2;
2317 }
2318 else
2319 return pc;
2320
2321 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2322 01. */
2323 if (buf[offset + 1] != 0xf8
2324 || (buf[offset] & 0xf8) != 0x70)
2325 return pc;
2326
2327 /* R/M has register. */
2328 r += buf[offset] & 7;
2329
2330 /* Registers in leaq and pushq have to be the same. */
2331 if (reg != r)
2332 return pc;
2333
2334 if (current_pc > pc + offset_and)
2335 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2336
2337 return std::min (pc + offset + 2, current_pc);
2338 }
2339
2340 /* Do a limited analysis of the prologue at PC and update CACHE
2341 accordingly. Bail out early if CURRENT_PC is reached. Return the
2342 address where the analysis stopped.
2343
2344 We will handle only functions beginning with:
2345
2346 pushq %rbp 0x55
2347 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2348
2349 or (for the X32 ABI):
2350
2351 pushq %rbp 0x55
2352 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2353
2354 The `endbr64` instruction can be found before these sequences, and will be
2355 skipped if found.
2356
2357 Any function that doesn't start with one of these sequences will be
2358 assumed to have no prologue and thus no valid frame pointer in
2359 %rbp. */
2360
2361 static CORE_ADDR
2362 amd64_analyze_prologue (struct gdbarch *gdbarch,
2363 CORE_ADDR pc, CORE_ADDR current_pc,
2364 struct amd64_frame_cache *cache)
2365 {
2366 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2367 /* The `endbr64` instruction. */
2368 static const gdb_byte endbr64[4] = { 0xf3, 0x0f, 0x1e, 0xfa };
2369 /* There are two variations of movq %rsp, %rbp. */
2370 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2371 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2372 /* Ditto for movl %esp, %ebp. */
2373 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2374 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2375
2376 gdb_byte buf[3];
2377 gdb_byte op;
2378
2379 if (current_pc <= pc)
2380 return current_pc;
2381
2382 if (gdbarch_ptr_bit (gdbarch) == 32)
2383 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2384 else
2385 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2386
2387 op = read_code_unsigned_integer (pc, 1, byte_order);
2388
2389 /* Check for the `endbr64` instruction, skip it if found. */
2390 if (op == endbr64[0])
2391 {
2392 read_code (pc + 1, buf, 3);
2393
2394 if (memcmp (buf, &endbr64[1], 3) == 0)
2395 pc += 4;
2396
2397 op = read_code_unsigned_integer (pc, 1, byte_order);
2398 }
2399
2400 if (current_pc <= pc)
2401 return current_pc;
2402
2403 if (op == 0x55) /* pushq %rbp */
2404 {
2405 /* Take into account that we've executed the `pushq %rbp' that
2406 starts this instruction sequence. */
2407 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2408 cache->sp_offset += 8;
2409
2410 /* If that's all, return now. */
2411 if (current_pc <= pc + 1)
2412 return current_pc;
2413
2414 read_code (pc + 1, buf, 3);
2415
2416 /* Check for `movq %rsp, %rbp'. */
2417 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2418 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2419 {
2420 /* OK, we actually have a frame. */
2421 cache->frameless_p = 0;
2422 return pc + 4;
2423 }
2424
2425 /* For X32, also check for `movl %esp, %ebp'. */
2426 if (gdbarch_ptr_bit (gdbarch) == 32)
2427 {
2428 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2429 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2430 {
2431 /* OK, we actually have a frame. */
2432 cache->frameless_p = 0;
2433 return pc + 3;
2434 }
2435 }
2436
2437 return pc + 1;
2438 }
2439
2440 return pc;
2441 }
2442
2443 /* Work around false termination of prologue - GCC PR debug/48827.
2444
2445 START_PC is the first instruction of a function, PC is its minimal already
2446 determined advanced address. Function returns PC if it has nothing to do.
2447
2448 84 c0 test %al,%al
2449 74 23 je after
2450 <-- here is 0 lines advance - the false prologue end marker.
2451 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2452 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2453 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2454 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2455 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2456 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2457 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2458 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2459 after: */
2460
2461 static CORE_ADDR
2462 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2463 {
2464 struct symtab_and_line start_pc_sal, next_sal;
2465 gdb_byte buf[4 + 8 * 7];
2466 int offset, xmmreg;
2467
2468 if (pc == start_pc)
2469 return pc;
2470
2471 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2472 if (start_pc_sal.symtab == NULL
2473 || producer_is_gcc_ge_4 (start_pc_sal.symtab->compunit ()
2474 ->producer ()) < 6
2475 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2476 return pc;
2477
2478 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2479 if (next_sal.line != start_pc_sal.line)
2480 return pc;
2481
2482 /* START_PC can be from overlayed memory, ignored here. */
2483 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2484 return pc;
2485
2486 /* test %al,%al */
2487 if (buf[0] != 0x84 || buf[1] != 0xc0)
2488 return pc;
2489 /* je AFTER */
2490 if (buf[2] != 0x74)
2491 return pc;
2492
2493 offset = 4;
2494 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2495 {
2496 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2497 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2498 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2499 return pc;
2500
2501 /* 0b01?????? */
2502 if ((buf[offset + 2] & 0xc0) == 0x40)
2503 {
2504 /* 8-bit displacement. */
2505 offset += 4;
2506 }
2507 /* 0b10?????? */
2508 else if ((buf[offset + 2] & 0xc0) == 0x80)
2509 {
2510 /* 32-bit displacement. */
2511 offset += 7;
2512 }
2513 else
2514 return pc;
2515 }
2516
2517 /* je AFTER */
2518 if (offset - 4 != buf[3])
2519 return pc;
2520
2521 return next_sal.end;
2522 }
2523
2524 /* Return PC of first real instruction. */
2525
2526 static CORE_ADDR
2527 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2528 {
2529 struct amd64_frame_cache cache;
2530 CORE_ADDR pc;
2531 CORE_ADDR func_addr;
2532
2533 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2534 {
2535 CORE_ADDR post_prologue_pc
2536 = skip_prologue_using_sal (gdbarch, func_addr);
2537 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2538
2539 /* LLVM backend (Clang/Flang) always emits a line note before the
2540 prologue and another one after. We trust clang and newer Intel
2541 compilers to emit usable line notes. */
2542 if (post_prologue_pc
2543 && (cust != NULL
2544 && cust->producer () != nullptr
2545 && (producer_is_llvm (cust->producer ())
2546 || producer_is_icc_ge_19 (cust->producer ()))))
2547 return std::max (start_pc, post_prologue_pc);
2548 }
2549
2550 amd64_init_frame_cache (&cache);
2551 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2552 &cache);
2553 if (cache.frameless_p)
2554 return start_pc;
2555
2556 return amd64_skip_xmm_prologue (pc, start_pc);
2557 }
2558 \f
2559
2560 /* Normal frames. */
2561
2562 static void
2563 amd64_frame_cache_1 (frame_info_ptr this_frame,
2564 struct amd64_frame_cache *cache)
2565 {
2566 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2567 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2568 gdb_byte buf[8];
2569 int i;
2570
2571 cache->pc = get_frame_func (this_frame);
2572 if (cache->pc != 0)
2573 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2574 cache);
2575
2576 if (cache->frameless_p)
2577 {
2578 /* We didn't find a valid frame. If we're at the start of a
2579 function, or somewhere half-way its prologue, the function's
2580 frame probably hasn't been fully setup yet. Try to
2581 reconstruct the base address for the stack frame by looking
2582 at the stack pointer. For truly "frameless" functions this
2583 might work too. */
2584
2585 if (cache->saved_sp_reg != -1)
2586 {
2587 /* Stack pointer has been saved. */
2588 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2589 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2590
2591 /* We're halfway aligning the stack. */
2592 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2593 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2594
2595 /* This will be added back below. */
2596 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2597 }
2598 else
2599 {
2600 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2601 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2602 + cache->sp_offset;
2603 }
2604 }
2605 else
2606 {
2607 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2608 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2609 }
2610
2611 /* Now that we have the base address for the stack frame we can
2612 calculate the value of %rsp in the calling frame. */
2613 cache->saved_sp = cache->base + 16;
2614
2615 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2616 frame we find it at the same offset from the reconstructed base
2617 address. If we're halfway aligning the stack, %rip is handled
2618 differently (see above). */
2619 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2620 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2621
2622 /* Adjust all the saved registers such that they contain addresses
2623 instead of offsets. */
2624 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2625 if (cache->saved_regs[i] != -1)
2626 cache->saved_regs[i] += cache->base;
2627
2628 cache->base_p = 1;
2629 }
2630
2631 static struct amd64_frame_cache *
2632 amd64_frame_cache (frame_info_ptr this_frame, void **this_cache)
2633 {
2634 struct amd64_frame_cache *cache;
2635
2636 if (*this_cache)
2637 return (struct amd64_frame_cache *) *this_cache;
2638
2639 cache = amd64_alloc_frame_cache ();
2640 *this_cache = cache;
2641
2642 try
2643 {
2644 amd64_frame_cache_1 (this_frame, cache);
2645 }
2646 catch (const gdb_exception_error &ex)
2647 {
2648 if (ex.error != NOT_AVAILABLE_ERROR)
2649 throw;
2650 }
2651
2652 return cache;
2653 }
2654
2655 static enum unwind_stop_reason
2656 amd64_frame_unwind_stop_reason (frame_info_ptr this_frame,
2657 void **this_cache)
2658 {
2659 struct amd64_frame_cache *cache =
2660 amd64_frame_cache (this_frame, this_cache);
2661
2662 if (!cache->base_p)
2663 return UNWIND_UNAVAILABLE;
2664
2665 /* This marks the outermost frame. */
2666 if (cache->base == 0)
2667 return UNWIND_OUTERMOST;
2668
2669 return UNWIND_NO_REASON;
2670 }
2671
2672 static void
2673 amd64_frame_this_id (frame_info_ptr this_frame, void **this_cache,
2674 struct frame_id *this_id)
2675 {
2676 struct amd64_frame_cache *cache =
2677 amd64_frame_cache (this_frame, this_cache);
2678
2679 if (!cache->base_p)
2680 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2681 else if (cache->base == 0)
2682 {
2683 /* This marks the outermost frame. */
2684 return;
2685 }
2686 else
2687 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2688 }
2689
2690 static struct value *
2691 amd64_frame_prev_register (frame_info_ptr this_frame, void **this_cache,
2692 int regnum)
2693 {
2694 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2695 struct amd64_frame_cache *cache =
2696 amd64_frame_cache (this_frame, this_cache);
2697
2698 gdb_assert (regnum >= 0);
2699
2700 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2701 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2702
2703 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2704 return frame_unwind_got_memory (this_frame, regnum,
2705 cache->saved_regs[regnum]);
2706
2707 return frame_unwind_got_register (this_frame, regnum, regnum);
2708 }
2709
2710 static const struct frame_unwind amd64_frame_unwind =
2711 {
2712 "amd64 prologue",
2713 NORMAL_FRAME,
2714 amd64_frame_unwind_stop_reason,
2715 amd64_frame_this_id,
2716 amd64_frame_prev_register,
2717 NULL,
2718 default_frame_sniffer
2719 };
2720 \f
2721 /* Generate a bytecode expression to get the value of the saved PC. */
2722
2723 static void
2724 amd64_gen_return_address (struct gdbarch *gdbarch,
2725 struct agent_expr *ax, struct axs_value *value,
2726 CORE_ADDR scope)
2727 {
2728 /* The following sequence assumes the traditional use of the base
2729 register. */
2730 ax_reg (ax, AMD64_RBP_REGNUM);
2731 ax_const_l (ax, 8);
2732 ax_simple (ax, aop_add);
2733 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2734 value->kind = axs_lvalue_memory;
2735 }
2736 \f
2737
2738 /* Signal trampolines. */
2739
2740 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2741 64-bit variants. This would require using identical frame caches
2742 on both platforms. */
2743
2744 static struct amd64_frame_cache *
2745 amd64_sigtramp_frame_cache (frame_info_ptr this_frame, void **this_cache)
2746 {
2747 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2748 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
2749 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2750 struct amd64_frame_cache *cache;
2751 CORE_ADDR addr;
2752 gdb_byte buf[8];
2753 int i;
2754
2755 if (*this_cache)
2756 return (struct amd64_frame_cache *) *this_cache;
2757
2758 cache = amd64_alloc_frame_cache ();
2759
2760 try
2761 {
2762 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2763 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2764
2765 addr = tdep->sigcontext_addr (this_frame);
2766 gdb_assert (tdep->sc_reg_offset);
2767 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2768 for (i = 0; i < tdep->sc_num_regs; i++)
2769 if (tdep->sc_reg_offset[i] != -1)
2770 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2771
2772 cache->base_p = 1;
2773 }
2774 catch (const gdb_exception_error &ex)
2775 {
2776 if (ex.error != NOT_AVAILABLE_ERROR)
2777 throw;
2778 }
2779
2780 *this_cache = cache;
2781 return cache;
2782 }
2783
2784 static enum unwind_stop_reason
2785 amd64_sigtramp_frame_unwind_stop_reason (frame_info_ptr this_frame,
2786 void **this_cache)
2787 {
2788 struct amd64_frame_cache *cache =
2789 amd64_sigtramp_frame_cache (this_frame, this_cache);
2790
2791 if (!cache->base_p)
2792 return UNWIND_UNAVAILABLE;
2793
2794 return UNWIND_NO_REASON;
2795 }
2796
2797 static void
2798 amd64_sigtramp_frame_this_id (frame_info_ptr this_frame,
2799 void **this_cache, struct frame_id *this_id)
2800 {
2801 struct amd64_frame_cache *cache =
2802 amd64_sigtramp_frame_cache (this_frame, this_cache);
2803
2804 if (!cache->base_p)
2805 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2806 else if (cache->base == 0)
2807 {
2808 /* This marks the outermost frame. */
2809 return;
2810 }
2811 else
2812 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2813 }
2814
2815 static struct value *
2816 amd64_sigtramp_frame_prev_register (frame_info_ptr this_frame,
2817 void **this_cache, int regnum)
2818 {
2819 /* Make sure we've initialized the cache. */
2820 amd64_sigtramp_frame_cache (this_frame, this_cache);
2821
2822 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2823 }
2824
2825 static int
2826 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2827 frame_info_ptr this_frame,
2828 void **this_cache)
2829 {
2830 gdbarch *arch = get_frame_arch (this_frame);
2831 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (arch);
2832
2833 /* We shouldn't even bother if we don't have a sigcontext_addr
2834 handler. */
2835 if (tdep->sigcontext_addr == NULL)
2836 return 0;
2837
2838 if (tdep->sigtramp_p != NULL)
2839 {
2840 if (tdep->sigtramp_p (this_frame))
2841 return 1;
2842 }
2843
2844 if (tdep->sigtramp_start != 0)
2845 {
2846 CORE_ADDR pc = get_frame_pc (this_frame);
2847
2848 gdb_assert (tdep->sigtramp_end != 0);
2849 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2850 return 1;
2851 }
2852
2853 return 0;
2854 }
2855
2856 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2857 {
2858 "amd64 sigtramp",
2859 SIGTRAMP_FRAME,
2860 amd64_sigtramp_frame_unwind_stop_reason,
2861 amd64_sigtramp_frame_this_id,
2862 amd64_sigtramp_frame_prev_register,
2863 NULL,
2864 amd64_sigtramp_frame_sniffer
2865 };
2866 \f
2867
2868 static CORE_ADDR
2869 amd64_frame_base_address (frame_info_ptr this_frame, void **this_cache)
2870 {
2871 struct amd64_frame_cache *cache =
2872 amd64_frame_cache (this_frame, this_cache);
2873
2874 return cache->base;
2875 }
2876
2877 static const struct frame_base amd64_frame_base =
2878 {
2879 &amd64_frame_unwind,
2880 amd64_frame_base_address,
2881 amd64_frame_base_address,
2882 amd64_frame_base_address
2883 };
2884
2885 /* Normal frames, but in a function epilogue. */
2886
2887 /* Implement the stack_frame_destroyed_p gdbarch method.
2888
2889 The epilogue is defined here as the 'ret' instruction, which will
2890 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2891 the function's stack frame. */
2892
2893 static int
2894 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2895 {
2896 gdb_byte insn;
2897 struct compunit_symtab *cust;
2898
2899 cust = find_pc_compunit_symtab (pc);
2900 if (cust != NULL && cust->epilogue_unwind_valid ())
2901 return 0;
2902
2903 if (target_read_memory (pc, &insn, 1))
2904 return 0; /* Can't read memory at pc. */
2905
2906 if (insn != 0xc3) /* 'ret' instruction. */
2907 return 0;
2908
2909 return 1;
2910 }
2911
2912 static int
2913 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2914 frame_info_ptr this_frame,
2915 void **this_prologue_cache)
2916 {
2917 if (frame_relative_level (this_frame) == 0)
2918 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2919 get_frame_pc (this_frame));
2920 else
2921 return 0;
2922 }
2923
2924 static struct amd64_frame_cache *
2925 amd64_epilogue_frame_cache (frame_info_ptr this_frame, void **this_cache)
2926 {
2927 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2928 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2929 struct amd64_frame_cache *cache;
2930 gdb_byte buf[8];
2931
2932 if (*this_cache)
2933 return (struct amd64_frame_cache *) *this_cache;
2934
2935 cache = amd64_alloc_frame_cache ();
2936 *this_cache = cache;
2937
2938 try
2939 {
2940 /* Cache base will be %rsp plus cache->sp_offset (-8). */
2941 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2942 cache->base = extract_unsigned_integer (buf, 8,
2943 byte_order) + cache->sp_offset;
2944
2945 /* Cache pc will be the frame func. */
2946 cache->pc = get_frame_func (this_frame);
2947
2948 /* The previous value of %rsp is cache->base plus 16. */
2949 cache->saved_sp = cache->base + 16;
2950
2951 /* The saved %rip will be at cache->base plus 8. */
2952 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2953
2954 cache->base_p = 1;
2955 }
2956 catch (const gdb_exception_error &ex)
2957 {
2958 if (ex.error != NOT_AVAILABLE_ERROR)
2959 throw;
2960 }
2961
2962 return cache;
2963 }
2964
2965 static enum unwind_stop_reason
2966 amd64_epilogue_frame_unwind_stop_reason (frame_info_ptr this_frame,
2967 void **this_cache)
2968 {
2969 struct amd64_frame_cache *cache
2970 = amd64_epilogue_frame_cache (this_frame, this_cache);
2971
2972 if (!cache->base_p)
2973 return UNWIND_UNAVAILABLE;
2974
2975 return UNWIND_NO_REASON;
2976 }
2977
2978 static void
2979 amd64_epilogue_frame_this_id (frame_info_ptr this_frame,
2980 void **this_cache,
2981 struct frame_id *this_id)
2982 {
2983 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2984 this_cache);
2985
2986 if (!cache->base_p)
2987 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2988 else
2989 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2990 }
2991
2992 static const struct frame_unwind amd64_epilogue_frame_unwind =
2993 {
2994 "amd64 epilogue",
2995 NORMAL_FRAME,
2996 amd64_epilogue_frame_unwind_stop_reason,
2997 amd64_epilogue_frame_this_id,
2998 amd64_frame_prev_register,
2999 NULL,
3000 amd64_epilogue_frame_sniffer
3001 };
3002
3003 static struct frame_id
3004 amd64_dummy_id (struct gdbarch *gdbarch, frame_info_ptr this_frame)
3005 {
3006 CORE_ADDR fp;
3007
3008 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
3009
3010 return frame_id_build (fp + 16, get_frame_pc (this_frame));
3011 }
3012
3013 /* 16 byte align the SP per frame requirements. */
3014
3015 static CORE_ADDR
3016 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3017 {
3018 return sp & -(CORE_ADDR)16;
3019 }
3020 \f
3021
3022 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3023 in the floating-point register set REGSET to register cache
3024 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3025
3026 static void
3027 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3028 int regnum, const void *fpregs, size_t len)
3029 {
3030 struct gdbarch *gdbarch = regcache->arch ();
3031 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3032
3033 gdb_assert (len >= tdep->sizeof_fpregset);
3034 amd64_supply_fxsave (regcache, regnum, fpregs);
3035 }
3036
3037 /* Collect register REGNUM from the register cache REGCACHE and store
3038 it in the buffer specified by FPREGS and LEN as described by the
3039 floating-point register set REGSET. If REGNUM is -1, do this for
3040 all registers in REGSET. */
3041
3042 static void
3043 amd64_collect_fpregset (const struct regset *regset,
3044 const struct regcache *regcache,
3045 int regnum, void *fpregs, size_t len)
3046 {
3047 struct gdbarch *gdbarch = regcache->arch ();
3048 const i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3049
3050 gdb_assert (len >= tdep->sizeof_fpregset);
3051 amd64_collect_fxsave (regcache, regnum, fpregs);
3052 }
3053
3054 const struct regset amd64_fpregset =
3055 {
3056 NULL, amd64_supply_fpregset, amd64_collect_fpregset
3057 };
3058 \f
3059
3060 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
3061 %rdi. We expect its value to be a pointer to the jmp_buf structure
3062 from which we extract the address that we will land at. This
3063 address is copied into PC. This routine returns non-zero on
3064 success. */
3065
3066 static int
3067 amd64_get_longjmp_target (frame_info_ptr frame, CORE_ADDR *pc)
3068 {
3069 gdb_byte buf[8];
3070 CORE_ADDR jb_addr;
3071 struct gdbarch *gdbarch = get_frame_arch (frame);
3072 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3073 int jb_pc_offset = tdep->jb_pc_offset;
3074 int len = builtin_type (gdbarch)->builtin_func_ptr->length ();
3075
3076 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3077 longjmp will land. */
3078 if (jb_pc_offset == -1)
3079 return 0;
3080
3081 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
3082 jb_addr= extract_typed_address
3083 (buf, builtin_type (gdbarch)->builtin_data_ptr);
3084 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3085 return 0;
3086
3087 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
3088
3089 return 1;
3090 }
3091
3092 static const int amd64_record_regmap[] =
3093 {
3094 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3095 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3096 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3097 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3098 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3099 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3100 };
3101
3102 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
3103
3104 static bool
3105 amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3106 {
3107 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3108 AMD64_RAX_REGNUM,
3109 AMD64_RIP_REGNUM);
3110 }
3111
3112 void
3113 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3114 const target_desc *default_tdesc)
3115 {
3116 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3117 const struct target_desc *tdesc = info.target_desc;
3118 static const char *const stap_integer_prefixes[] = { "$", NULL };
3119 static const char *const stap_register_prefixes[] = { "%", NULL };
3120 static const char *const stap_register_indirection_prefixes[] = { "(",
3121 NULL };
3122 static const char *const stap_register_indirection_suffixes[] = { ")",
3123 NULL };
3124
3125 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3126 floating-point registers. */
3127 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3128 tdep->fpregset = &amd64_fpregset;
3129
3130 if (! tdesc_has_registers (tdesc))
3131 tdesc = default_tdesc;
3132 tdep->tdesc = tdesc;
3133
3134 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3135 tdep->register_names = amd64_register_names;
3136
3137 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3138 {
3139 tdep->zmmh_register_names = amd64_zmmh_names;
3140 tdep->k_register_names = amd64_k_names;
3141 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3142 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3143
3144 tdep->num_zmm_regs = 32;
3145 tdep->num_xmm_avx512_regs = 16;
3146 tdep->num_ymm_avx512_regs = 16;
3147
3148 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3149 tdep->k0_regnum = AMD64_K0_REGNUM;
3150 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3151 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3152 }
3153
3154 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3155 {
3156 tdep->ymmh_register_names = amd64_ymmh_names;
3157 tdep->num_ymm_regs = 16;
3158 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3159 }
3160
3161 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3162 {
3163 tdep->mpx_register_names = amd64_mpx_names;
3164 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3165 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3166 }
3167
3168 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3169 {
3170 tdep->fsbase_regnum = AMD64_FSBASE_REGNUM;
3171 }
3172
3173 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3174 {
3175 tdep->pkeys_register_names = amd64_pkeys_names;
3176 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3177 tdep->num_pkeys_regs = 1;
3178 }
3179
3180 tdep->num_byte_regs = 20;
3181 tdep->num_word_regs = 16;
3182 tdep->num_dword_regs = 16;
3183 /* Avoid wiring in the MMX registers for now. */
3184 tdep->num_mmx_regs = 0;
3185
3186 set_gdbarch_pseudo_register_read_value (gdbarch,
3187 amd64_pseudo_register_read_value);
3188 set_gdbarch_pseudo_register_write (gdbarch,
3189 amd64_pseudo_register_write);
3190 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3191 amd64_ax_pseudo_register_collect);
3192
3193 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3194
3195 /* AMD64 has an FPU and 16 SSE registers. */
3196 tdep->st0_regnum = AMD64_ST0_REGNUM;
3197 tdep->num_xmm_regs = 16;
3198
3199 /* This is what all the fuss is about. */
3200 set_gdbarch_long_bit (gdbarch, 64);
3201 set_gdbarch_long_long_bit (gdbarch, 64);
3202 set_gdbarch_ptr_bit (gdbarch, 64);
3203
3204 /* In contrast to the i386, on AMD64 a `long double' actually takes
3205 up 128 bits, even though it's still based on the i387 extended
3206 floating-point format which has only 80 significant bits. */
3207 set_gdbarch_long_double_bit (gdbarch, 128);
3208
3209 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3210
3211 /* Register numbers of various important registers. */
3212 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3213 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3214 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3215 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3216
3217 /* The "default" register numbering scheme for AMD64 is referred to
3218 as the "DWARF Register Number Mapping" in the System V psABI.
3219 The preferred debugging format for all known AMD64 targets is
3220 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3221 DWARF-1), but we provide the same mapping just in case. This
3222 mapping is also used for stabs, which GCC does support. */
3223 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3224 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3225
3226 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3227 be in use on any of the supported AMD64 targets. */
3228
3229 /* Call dummy code. */
3230 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3231 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3232 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3233
3234 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3235 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3236 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3237
3238 set_gdbarch_return_value (gdbarch, amd64_return_value);
3239
3240 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3241
3242 tdep->record_regmap = amd64_record_regmap;
3243
3244 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3245
3246 /* Hook the function epilogue frame unwinder. This unwinder is
3247 appended to the list first, so that it supercedes the other
3248 unwinders in function epilogues. */
3249 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3250
3251 /* Hook the prologue-based frame unwinders. */
3252 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3253 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3254 frame_base_set_default (gdbarch, &amd64_frame_base);
3255
3256 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3257
3258 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3259
3260 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3261
3262 /* SystemTap variables and functions. */
3263 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3264 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3265 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3266 stap_register_indirection_prefixes);
3267 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3268 stap_register_indirection_suffixes);
3269 set_gdbarch_stap_is_single_operand (gdbarch,
3270 i386_stap_is_single_operand);
3271 set_gdbarch_stap_parse_special_token (gdbarch,
3272 i386_stap_parse_special_token);
3273 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3274 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3275 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3276
3277 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3278 amd64_in_indirect_branch_thunk);
3279
3280 register_amd64_ravenscar_ops (gdbarch);
3281 }
3282
3283 /* Initialize ARCH for x86-64, no osabi. */
3284
3285 static void
3286 amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3287 {
3288 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
3289 true));
3290 }
3291
3292 static struct type *
3293 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3294 {
3295 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3296
3297 switch (regnum - tdep->eax_regnum)
3298 {
3299 case AMD64_RBP_REGNUM: /* %ebp */
3300 case AMD64_RSP_REGNUM: /* %esp */
3301 return builtin_type (gdbarch)->builtin_data_ptr;
3302 case AMD64_RIP_REGNUM: /* %eip */
3303 return builtin_type (gdbarch)->builtin_func_ptr;
3304 }
3305
3306 return i386_pseudo_register_type (gdbarch, regnum);
3307 }
3308
3309 void
3310 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3311 const target_desc *default_tdesc)
3312 {
3313 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3314
3315 amd64_init_abi (info, gdbarch, default_tdesc);
3316
3317 tdep->num_dword_regs = 17;
3318 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3319
3320 set_gdbarch_long_bit (gdbarch, 32);
3321 set_gdbarch_ptr_bit (gdbarch, 32);
3322 }
3323
3324 /* Initialize ARCH for x64-32, no osabi. */
3325
3326 static void
3327 amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3328 {
3329 amd64_x32_init_abi (info, arch,
3330 amd64_target_description (X86_XSTATE_SSE_MASK, true));
3331 }
3332
3333 /* Return the target description for a specified XSAVE feature mask. */
3334
3335 const struct target_desc *
3336 amd64_target_description (uint64_t xcr0, bool segments)
3337 {
3338 static target_desc *amd64_tdescs \
3339 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
3340 target_desc **tdesc;
3341
3342 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3343 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3344 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3345 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
3346 [segments ? 1 : 0];
3347
3348 if (*tdesc == NULL)
3349 *tdesc = amd64_create_target_description (xcr0, false, false,
3350 segments);
3351
3352 return *tdesc;
3353 }
3354
3355 void _initialize_amd64_tdep ();
3356 void
3357 _initialize_amd64_tdep ()
3358 {
3359 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
3360 amd64_none_init_abi);
3361 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
3362 amd64_x32_none_init_abi);
3363 }
3364 \f
3365
3366 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3367 sense that the instruction pointer and data pointer are simply
3368 64-bit offsets into the code segment and the data segment instead
3369 of a selector offset pair. The functions below store the upper 32
3370 bits of these pointers (instead of just the 16-bits of the segment
3371 selector). */
3372
3373 /* Fill register REGNUM in REGCACHE with the appropriate
3374 floating-point or SSE register value from *FXSAVE. If REGNUM is
3375 -1, do this for all registers. This function masks off any of the
3376 reserved bits in *FXSAVE. */
3377
3378 void
3379 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3380 const void *fxsave)
3381 {
3382 struct gdbarch *gdbarch = regcache->arch ();
3383 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3384
3385 i387_supply_fxsave (regcache, regnum, fxsave);
3386
3387 if (fxsave
3388 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3389 {
3390 const gdb_byte *regs = (const gdb_byte *) fxsave;
3391
3392 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3393 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3394 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3395 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3396 }
3397 }
3398
3399 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3400
3401 void
3402 amd64_supply_xsave (struct regcache *regcache, int regnum,
3403 const void *xsave)
3404 {
3405 struct gdbarch *gdbarch = regcache->arch ();
3406 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3407
3408 i387_supply_xsave (regcache, regnum, xsave);
3409
3410 if (xsave
3411 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3412 {
3413 const gdb_byte *regs = (const gdb_byte *) xsave;
3414 ULONGEST clear_bv;
3415
3416 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
3417
3418 /* If the FISEG and FOSEG registers have not been initialised yet
3419 (their CLEAR_BV bit is set) then their default values of zero will
3420 have already been setup by I387_SUPPLY_XSAVE. */
3421 if (!(clear_bv & X86_XSTATE_X87))
3422 {
3423 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3424 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3425 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3426 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3427 }
3428 }
3429 }
3430
3431 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3432 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3433 all registers. This function doesn't touch any of the reserved
3434 bits in *FXSAVE. */
3435
3436 void
3437 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3438 void *fxsave)
3439 {
3440 struct gdbarch *gdbarch = regcache->arch ();
3441 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3442 gdb_byte *regs = (gdb_byte *) fxsave;
3443
3444 i387_collect_fxsave (regcache, regnum, fxsave);
3445
3446 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3447 {
3448 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3449 regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
3450 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3451 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
3452 }
3453 }
3454
3455 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3456
3457 void
3458 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3459 void *xsave, int gcore)
3460 {
3461 struct gdbarch *gdbarch = regcache->arch ();
3462 i386_gdbarch_tdep *tdep = gdbarch_tdep<i386_gdbarch_tdep> (gdbarch);
3463 gdb_byte *regs = (gdb_byte *) xsave;
3464
3465 i387_collect_xsave (regcache, regnum, xsave, gcore);
3466
3467 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3468 {
3469 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3470 regcache->raw_collect (I387_FISEG_REGNUM (tdep),
3471 regs + 12);
3472 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3473 regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
3474 regs + 20);
3475 }
3476 }