arc: Align internal regnums with architectural regnums
[binutils-gdb.git] / gdb / arc-tdep.c
1 /* Target dependent code for ARC arhitecture, for GDB.
2
3 Copyright 2005-2017 Free Software Foundation, Inc.
4 Contributed by Synopsys Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 /* GDB header files. */
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "disasm.h"
25 #include "dwarf2-frame.h"
26 #include "frame-base.h"
27 #include "frame-unwind.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "objfiles.h"
31 #include "trad-frame.h"
32
33 /* ARC header files. */
34 #include "opcode/arc.h"
35 #include "arc-tdep.h"
36
37 /* Standard headers. */
38 #include <algorithm>
39
40 /* Default target descriptions. */
41 #include "features/arc-v2.c"
42 #include "features/arc-arcompact.c"
43
44 /* The frame unwind cache for the ARC. Current structure is a stub, because
45 it should be filled in during the prologue analysis. */
46
47 struct arc_frame_cache
48 {
49 /* The stack pointer at the time this frame was created; i.e. the caller's
50 stack pointer when this function was called. It is used to identify this
51 frame. */
52 CORE_ADDR prev_sp;
53
54 /* Store addresses for registers saved in prologue. */
55 struct trad_frame_saved_reg *saved_regs;
56 };
57
58 /* Global debug flag. */
59
60 int arc_debug;
61
62 /* XML target description features. */
63
64 static const char core_v2_feature_name[] = "org.gnu.gdb.arc.core.v2";
65 static const char
66 core_reduced_v2_feature_name[] = "org.gnu.gdb.arc.core-reduced.v2";
67 static const char
68 core_arcompact_feature_name[] = "org.gnu.gdb.arc.core.arcompact";
69 static const char aux_minimal_feature_name[] = "org.gnu.gdb.arc.aux-minimal";
70
71 /* XML target description known registers. */
72
73 static const char *const core_v2_register_names[] = {
74 "r0", "r1", "r2", "r3",
75 "r4", "r5", "r6", "r7",
76 "r8", "r9", "r10", "r11",
77 "r12", "r13", "r14", "r15",
78 "r16", "r17", "r18", "r19",
79 "r20", "r21", "r22", "r23",
80 "r24", "r25", "gp", "fp",
81 "sp", "ilink", "r30", "blink",
82 "r32", "r33", "r34", "r35",
83 "r36", "r37", "r38", "r39",
84 "r40", "r41", "r42", "r43",
85 "r44", "r45", "r46", "r47",
86 "r48", "r49", "r50", "r51",
87 "r52", "r53", "r54", "r55",
88 "r56", "r57", "accl", "acch",
89 "lp_count", "reserved", "limm", "pcl",
90 };
91
92 static const char *const aux_minimal_register_names[] = {
93 "pc", "status32",
94 };
95
96 static const char *const core_arcompact_register_names[] = {
97 "r0", "r1", "r2", "r3",
98 "r4", "r5", "r6", "r7",
99 "r8", "r9", "r10", "r11",
100 "r12", "r13", "r14", "r15",
101 "r16", "r17", "r18", "r19",
102 "r20", "r21", "r22", "r23",
103 "r24", "r25", "gp", "fp",
104 "sp", "ilink1", "ilink2", "blink",
105 "r32", "r33", "r34", "r35",
106 "r36", "r37", "r38", "r39",
107 "r40", "r41", "r42", "r43",
108 "r44", "r45", "r46", "r47",
109 "r48", "r49", "r50", "r51",
110 "r52", "r53", "r54", "r55",
111 "r56", "r57", "r58", "r59",
112 "lp_count", "reserved", "limm", "pcl",
113 };
114
115 /* Implement the "write_pc" gdbarch method.
116
117 In ARC PC register is a normal register so in most cases setting PC value
118 is a straightforward process: debugger just writes PC value. However it
119 gets trickier in case when current instruction is an instruction in delay
120 slot. In this case CPU will execute instruction at current PC value, then
121 will set PC to the current value of BTA register; also current instruction
122 cannot be branch/jump and some of the other instruction types. Thus if
123 debugger would try to just change PC value in this case, this instruction
124 will get executed, but then core will "jump" to the original branch target.
125
126 Whether current instruction is a delay-slot instruction or not is indicated
127 by DE bit in STATUS32 register indicates if current instruction is a delay
128 slot instruction. This bit is writable by debug host, which allows debug
129 host to prevent core from jumping after the delay slot instruction. It
130 also works in another direction: setting this bit will make core to treat
131 any current instructions as a delay slot instruction and to set PC to the
132 current value of BTA register.
133
134 To workaround issues with changing PC register while in delay slot
135 instruction, debugger should check for the STATUS32.DE bit and reset it if
136 it is set. No other change is required in this function. Most common
137 case, where this function might be required is calling inferior functions
138 from debugger. Generic GDB logic handles this pretty well: current values
139 of registers are stored, value of PC is changed (that is the job of this
140 function), and after inferior function is executed, GDB restores all
141 registers, include BTA and STATUS32, which also means that core is returned
142 to its original state of being halted on delay slot instructions.
143
144 This method is useless for ARC 600, because it doesn't have externally
145 exposed BTA register. In the case of ARC 600 it is impossible to restore
146 core to its state in all occasions thus core should never be halted (from
147 the perspective of debugger host) in the delay slot. */
148
149 static void
150 arc_write_pc (struct regcache *regcache, CORE_ADDR new_pc)
151 {
152 struct gdbarch *gdbarch = get_regcache_arch (regcache);
153
154 if (arc_debug)
155 debug_printf ("arc: Writing PC, new value=%s\n",
156 paddress (gdbarch, new_pc));
157
158 regcache_cooked_write_unsigned (regcache, gdbarch_pc_regnum (gdbarch),
159 new_pc);
160
161 ULONGEST status32;
162 regcache_cooked_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
163 &status32);
164
165 /* Mask for DE bit is 0x40. */
166 if (status32 & 0x40)
167 {
168 if (arc_debug)
169 {
170 debug_printf ("arc: Changing PC while in delay slot. Will "
171 "reset STATUS32.DE bit to zero. Value of STATUS32 "
172 "register is 0x%s\n",
173 phex (status32, ARC_REGISTER_SIZE));
174 }
175
176 /* Reset bit and write to the cache. */
177 status32 &= ~0x40;
178 regcache_cooked_write_unsigned (regcache, gdbarch_ps_regnum (gdbarch),
179 status32);
180 }
181 }
182
183 /* Implement the "virtual_frame_pointer" gdbarch method.
184
185 According to ABI the FP (r27) is used to point to the middle of the current
186 stack frame, just below the saved FP and before local variables, register
187 spill area and outgoing args. However for optimization levels above O2 and
188 in any case in leaf functions, the frame pointer is usually not set at all.
189 The exception being when handling nested functions.
190
191 We use this function to return a "virtual" frame pointer, marking the start
192 of the current stack frame as a register-offset pair. If the FP is not
193 being used, then it should return SP, with an offset of the frame size.
194
195 The current implementation doesn't actually know the frame size, nor
196 whether the FP is actually being used, so for now we just return SP and an
197 offset of zero. This is no worse than other architectures, but is needed
198 to avoid assertion failures.
199
200 TODO: Can we determine the frame size to get a correct offset?
201
202 PC is a program counter where we need the virtual FP. REG_PTR is the base
203 register used for the virtual FP. OFFSET_PTR is the offset used for the
204 virtual FP. */
205
206 static void
207 arc_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
208 int *reg_ptr, LONGEST *offset_ptr)
209 {
210 *reg_ptr = gdbarch_sp_regnum (gdbarch);
211 *offset_ptr = 0;
212 }
213
214 /* Implement the "dummy_id" gdbarch method.
215
216 Tear down a dummy frame created by arc_push_dummy_call (). This data has
217 to be constructed manually from the data in our hand. The stack pointer
218 and program counter can be obtained from the frame info. */
219
220 static struct frame_id
221 arc_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
222 {
223 return frame_id_build (get_frame_sp (this_frame),
224 get_frame_pc (this_frame));
225 }
226
227 /* Implement the "push_dummy_call" gdbarch method.
228
229 Stack Frame Layout
230
231 This shows the layout of the stack frame for the general case of a
232 function call; a given function might not have a variable number of
233 arguments or local variables, or might not save any registers, so it would
234 not have the corresponding frame areas. Additionally, a leaf function
235 (i.e. one which calls no other functions) does not need to save the
236 contents of the BLINK register (which holds its return address), and a
237 function might not have a frame pointer.
238
239 The stack grows downward, so SP points below FP in memory; SP always
240 points to the last used word on the stack, not the first one.
241
242 | | |
243 | arg word N | | caller's
244 | : | | frame
245 | arg word 10 | |
246 | arg word 9 | |
247 old SP ---> +-----------------------+ --+
248 | | |
249 | callee-saved | |
250 | registers | |
251 | including fp, blink | |
252 | | | callee's
253 new FP ---> +-----------------------+ | frame
254 | | |
255 | local | |
256 | variables | |
257 | | |
258 | register | |
259 | spill area | |
260 | | |
261 | outgoing args | |
262 | | |
263 new SP ---> +-----------------------+ --+
264 | |
265 | unused |
266 | |
267 |
268 |
269 V
270 downwards
271
272 The list of arguments to be passed to a function is considered to be a
273 sequence of _N_ words (as though all the parameters were stored in order in
274 memory with each parameter occupying an integral number of words). Words
275 1..8 are passed in registers 0..7; if the function has more than 8 words of
276 arguments then words 9..@em N are passed on the stack in the caller's frame.
277
278 If the function has a variable number of arguments, e.g. it has a form such
279 as `function (p1, p2, ...);' and _P_ words are required to hold the values
280 of the named parameters (which are passed in registers 0..@em P -1), then
281 the remaining 8 - _P_ words passed in registers _P_..7 are spilled into the
282 top of the frame so that the anonymous parameter words occupy a continuous
283 region.
284
285 Any arguments are already in target byte order. We just need to store
286 them!
287
288 BP_ADDR is the return address where breakpoint must be placed. NARGS is
289 the number of arguments to the function. ARGS is the arguments values (in
290 target byte order). SP is the Current value of SP register. STRUCT_RETURN
291 is TRUE if structures are returned by the function. STRUCT_ADDR is the
292 hidden address for returning a struct. Returns SP of a new frame. */
293
294 static CORE_ADDR
295 arc_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
296 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
297 struct value **args, CORE_ADDR sp, int struct_return,
298 CORE_ADDR struct_addr)
299 {
300 if (arc_debug)
301 debug_printf ("arc: push_dummy_call (nargs = %d)\n", nargs);
302
303 int arg_reg = ARC_FIRST_ARG_REGNUM;
304
305 /* Push the return address. */
306 regcache_cooked_write_unsigned (regcache, ARC_BLINK_REGNUM, bp_addr);
307
308 /* Are we returning a value using a structure return instead of a normal
309 value return? If so, struct_addr is the address of the reserved space for
310 the return structure to be written on the stack, and that address is
311 passed to that function as a hidden first argument. */
312 if (struct_return)
313 {
314 /* Pass the return address in the first argument register. */
315 regcache_cooked_write_unsigned (regcache, arg_reg, struct_addr);
316
317 if (arc_debug)
318 debug_printf ("arc: struct return address %s passed in R%d",
319 print_core_address (gdbarch, struct_addr), arg_reg);
320
321 arg_reg++;
322 }
323
324 if (nargs > 0)
325 {
326 unsigned int total_space = 0;
327
328 /* How much space do the arguments occupy in total? Must round each
329 argument's size up to an integral number of words. */
330 for (int i = 0; i < nargs; i++)
331 {
332 unsigned int len = TYPE_LENGTH (value_type (args[i]));
333 unsigned int space = align_up (len, 4);
334
335 total_space += space;
336
337 if (arc_debug)
338 debug_printf ("arc: arg %d: %u bytes -> %u\n", i, len, space);
339 }
340
341 /* Allocate a buffer to hold a memory image of the arguments. */
342 gdb_byte *memory_image = XCNEWVEC (gdb_byte, total_space);
343
344 /* Now copy all of the arguments into the buffer, correctly aligned. */
345 gdb_byte *data = memory_image;
346 for (int i = 0; i < nargs; i++)
347 {
348 unsigned int len = TYPE_LENGTH (value_type (args[i]));
349 unsigned int space = align_up (len, 4);
350
351 memcpy (data, value_contents (args[i]), (size_t) len);
352 if (arc_debug)
353 debug_printf ("arc: copying arg %d, val 0x%08x, len %d to mem\n",
354 i, *((int *) value_contents (args[i])), len);
355
356 data += space;
357 }
358
359 /* Now load as much as possible of the memory image into registers. */
360 data = memory_image;
361 while (arg_reg <= ARC_LAST_ARG_REGNUM)
362 {
363 if (arc_debug)
364 debug_printf ("arc: passing 0x%02x%02x%02x%02x in register R%d\n",
365 data[0], data[1], data[2], data[3], arg_reg);
366
367 /* Note we don't use write_unsigned here, since that would convert
368 the byte order, but we are already in the correct byte order. */
369 regcache_cooked_write (regcache, arg_reg, data);
370
371 data += ARC_REGISTER_SIZE;
372 total_space -= ARC_REGISTER_SIZE;
373
374 /* All the data is now in registers. */
375 if (total_space == 0)
376 break;
377
378 arg_reg++;
379 }
380
381 /* If there is any data left, push it onto the stack (in a single write
382 operation). */
383 if (total_space > 0)
384 {
385 if (arc_debug)
386 debug_printf ("arc: passing %d bytes on stack\n", total_space);
387
388 sp -= total_space;
389 write_memory (sp, data, (int) total_space);
390 }
391
392 xfree (memory_image);
393 }
394
395 /* Finally, update the SP register. */
396 regcache_cooked_write_unsigned (regcache, gdbarch_sp_regnum (gdbarch), sp);
397
398 return sp;
399 }
400
401 /* Implement the "push_dummy_code" gdbarch method.
402
403 We don't actually push any code. We just identify where a breakpoint can
404 be inserted to which we are can return and the resume address where we
405 should be called.
406
407 ARC does not necessarily have an executable stack, so we can't put the
408 return breakpoint there. Instead we put it at the entry point of the
409 function. This means the SP is unchanged.
410
411 SP is a current stack pointer FUNADDR is an address of the function to be
412 called. ARGS is arguments to pass. NARGS is a number of args to pass.
413 VALUE_TYPE is a type of value returned. REAL_PC is a resume address when
414 the function is called. BP_ADDR is an address where breakpoint should be
415 set. Returns the updated stack pointer. */
416
417 static CORE_ADDR
418 arc_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
419 struct value **args, int nargs, struct type *value_type,
420 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
421 struct regcache *regcache)
422 {
423 *real_pc = funaddr;
424 *bp_addr = entry_point_address ();
425 return sp;
426 }
427
428 /* Implement the "cannot_fetch_register" gdbarch method. */
429
430 static int
431 arc_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
432 {
433 /* Assume that register is readable if it is unknown. LIMM and RESERVED are
434 not real registers, but specific register numbers. They are available as
435 regnums to align architectural register numbers with GDB internal regnums,
436 but they shouldn't appear in target descriptions generated by
437 GDB-servers. */
438 switch (regnum)
439 {
440 case ARC_RESERVED_REGNUM:
441 case ARC_LIMM_REGNUM:
442 return true;
443 default:
444 return false;
445 }
446 }
447
448 /* Implement the "cannot_store_register" gdbarch method. */
449
450 static int
451 arc_cannot_store_register (struct gdbarch *gdbarch, int regnum)
452 {
453 /* Assume that register is writable if it is unknown. See comment in
454 arc_cannot_fetch_register about LIMM and RESERVED. */
455 switch (regnum)
456 {
457 case ARC_RESERVED_REGNUM:
458 case ARC_LIMM_REGNUM:
459 case ARC_PCL_REGNUM:
460 return true;
461 default:
462 return false;
463 }
464 }
465
466 /* Get the return value of a function from the registers/memory used to
467 return it, according to the convention used by the ABI - 4-bytes values are
468 in the R0, while 8-byte values are in the R0-R1.
469
470 TODO: This implementation ignores the case of "complex double", where
471 according to ABI, value is returned in the R0-R3 registers.
472
473 TYPE is a returned value's type. VALBUF is a buffer for the returned
474 value. */
475
476 static void
477 arc_extract_return_value (struct gdbarch *gdbarch, struct type *type,
478 struct regcache *regcache, gdb_byte *valbuf)
479 {
480 unsigned int len = TYPE_LENGTH (type);
481
482 if (arc_debug)
483 debug_printf ("arc: extract_return_value\n");
484
485 if (len <= ARC_REGISTER_SIZE)
486 {
487 ULONGEST val;
488
489 /* Get the return value from one register. */
490 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &val);
491 store_unsigned_integer (valbuf, (int) len,
492 gdbarch_byte_order (gdbarch), val);
493
494 if (arc_debug)
495 debug_printf ("arc: returning 0x%s\n", phex (val, ARC_REGISTER_SIZE));
496 }
497 else if (len <= ARC_REGISTER_SIZE * 2)
498 {
499 ULONGEST low, high;
500
501 /* Get the return value from two registers. */
502 regcache_cooked_read_unsigned (regcache, ARC_R0_REGNUM, &low);
503 regcache_cooked_read_unsigned (regcache, ARC_R1_REGNUM, &high);
504
505 store_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
506 gdbarch_byte_order (gdbarch), low);
507 store_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
508 (int) len - ARC_REGISTER_SIZE,
509 gdbarch_byte_order (gdbarch), high);
510
511 if (arc_debug)
512 debug_printf ("arc: returning 0x%s%s\n",
513 phex (high, ARC_REGISTER_SIZE),
514 phex (low, ARC_REGISTER_SIZE));
515 }
516 else
517 error (_("arc: extract_return_value: type length %u too large"), len);
518 }
519
520
521 /* Store the return value of a function into the registers/memory used to
522 return it, according to the convention used by the ABI.
523
524 TODO: This implementation ignores the case of "complex double", where
525 according to ABI, value is returned in the R0-R3 registers.
526
527 TYPE is a returned value's type. VALBUF is a buffer with the value to
528 return. */
529
530 static void
531 arc_store_return_value (struct gdbarch *gdbarch, struct type *type,
532 struct regcache *regcache, const gdb_byte *valbuf)
533 {
534 unsigned int len = TYPE_LENGTH (type);
535
536 if (arc_debug)
537 debug_printf ("arc: store_return_value\n");
538
539 if (len <= ARC_REGISTER_SIZE)
540 {
541 ULONGEST val;
542
543 /* Put the return value into one register. */
544 val = extract_unsigned_integer (valbuf, (int) len,
545 gdbarch_byte_order (gdbarch));
546 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, val);
547
548 if (arc_debug)
549 debug_printf ("arc: storing 0x%s\n", phex (val, ARC_REGISTER_SIZE));
550 }
551 else if (len <= ARC_REGISTER_SIZE * 2)
552 {
553 ULONGEST low, high;
554
555 /* Put the return value into two registers. */
556 low = extract_unsigned_integer (valbuf, ARC_REGISTER_SIZE,
557 gdbarch_byte_order (gdbarch));
558 high = extract_unsigned_integer (valbuf + ARC_REGISTER_SIZE,
559 (int) len - ARC_REGISTER_SIZE,
560 gdbarch_byte_order (gdbarch));
561
562 regcache_cooked_write_unsigned (regcache, ARC_R0_REGNUM, low);
563 regcache_cooked_write_unsigned (regcache, ARC_R1_REGNUM, high);
564
565 if (arc_debug)
566 debug_printf ("arc: storing 0x%s%s\n",
567 phex (high, ARC_REGISTER_SIZE),
568 phex (low, ARC_REGISTER_SIZE));
569 }
570 else
571 error (_("arc_store_return_value: type length too large."));
572 }
573
574 /* Implement the "get_longjmp_target" gdbarch method. */
575
576 static int
577 arc_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
578 {
579 if (arc_debug)
580 debug_printf ("arc: get_longjmp_target\n");
581
582 struct gdbarch *gdbarch = get_frame_arch (frame);
583 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
584 int pc_offset = tdep->jb_pc * ARC_REGISTER_SIZE;
585 gdb_byte buf[ARC_REGISTER_SIZE];
586 CORE_ADDR jb_addr = get_frame_register_unsigned (frame, ARC_FIRST_ARG_REGNUM);
587
588 if (target_read_memory (jb_addr + pc_offset, buf, ARC_REGISTER_SIZE))
589 return 0; /* Failed to read from memory. */
590
591 *pc = extract_unsigned_integer (buf, ARC_REGISTER_SIZE,
592 gdbarch_byte_order (gdbarch));
593 return 1;
594 }
595
596 /* Implement the "return_value" gdbarch method. */
597
598 static enum return_value_convention
599 arc_return_value (struct gdbarch *gdbarch, struct value *function,
600 struct type *valtype, struct regcache *regcache,
601 gdb_byte *readbuf, const gdb_byte *writebuf)
602 {
603 /* If the return type is a struct, or a union, or would occupy more than two
604 registers, the ABI uses the "struct return convention": the calling
605 function passes a hidden first parameter to the callee (in R0). That
606 parameter is the address at which the value being returned should be
607 stored. Otherwise, the result is returned in registers. */
608 int is_struct_return = (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
609 || TYPE_CODE (valtype) == TYPE_CODE_UNION
610 || TYPE_LENGTH (valtype) > 2 * ARC_REGISTER_SIZE);
611
612 if (arc_debug)
613 debug_printf ("arc: return_value (readbuf = %s, writebuf = %s)\n",
614 host_address_to_string (readbuf),
615 host_address_to_string (writebuf));
616
617 if (writebuf != NULL)
618 {
619 /* Case 1. GDB should not ask us to set a struct return value: it
620 should know the struct return location and write the value there
621 itself. */
622 gdb_assert (!is_struct_return);
623 arc_store_return_value (gdbarch, valtype, regcache, writebuf);
624 }
625 else if (readbuf != NULL)
626 {
627 /* Case 2. GDB should not ask us to get a struct return value: it
628 should know the struct return location and read the value from there
629 itself. */
630 gdb_assert (!is_struct_return);
631 arc_extract_return_value (gdbarch, valtype, regcache, readbuf);
632 }
633
634 return (is_struct_return
635 ? RETURN_VALUE_STRUCT_CONVENTION
636 : RETURN_VALUE_REGISTER_CONVENTION);
637 }
638
639 /* Return the base address of the frame. For ARC, the base address is the
640 frame pointer. */
641
642 static CORE_ADDR
643 arc_frame_base_address (struct frame_info *this_frame, void **prologue_cache)
644 {
645 return (CORE_ADDR) get_frame_register_unsigned (this_frame, ARC_FP_REGNUM);
646 }
647
648 /* Implement the "skip_prologue" gdbarch method.
649
650 Skip the prologue for the function at PC. This is done by checking from
651 the line information read from the DWARF, if possible; otherwise, we scan
652 the function prologue to find its end. */
653
654 static CORE_ADDR
655 arc_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
656 {
657 if (arc_debug)
658 debug_printf ("arc: skip_prologue\n");
659
660 CORE_ADDR func_addr;
661 const char *func_name;
662
663 /* See what the symbol table says. */
664 if (find_pc_partial_function (pc, &func_name, &func_addr, NULL))
665 {
666 /* Found a function. */
667 CORE_ADDR postprologue_pc
668 = skip_prologue_using_sal (gdbarch, func_addr);
669
670 if (postprologue_pc != 0)
671 return std::max (pc, postprologue_pc);
672 }
673
674 /* No prologue info in symbol table, have to analyze prologue. */
675
676 /* Find an upper limit on the function prologue using the debug
677 information. If the debug information could not be used to provide that
678 bound, then pass 0 and arc_scan_prologue will estimate value itself. */
679 CORE_ADDR limit_pc = skip_prologue_using_sal (gdbarch, pc);
680 /* We don't have a proper analyze_prologue function yet, but its result
681 should be returned here. Currently GDB will just stop at the first
682 instruction of function if debug information doesn't have prologue info;
683 and if there is a debug info about prologue - this code path will not be
684 taken at all. */
685 return (limit_pc == 0 ? pc : limit_pc);
686 }
687
688 /* Implement the "print_insn" gdbarch method.
689
690 arc_get_disassembler () may return different functions depending on bfd
691 type, so it is not possible to pass print_insn directly to
692 set_gdbarch_print_insn (). Instead this wrapper function is used. It also
693 may be used by other functions to get disassemble_info for address. It is
694 important to note, that those print_insn from opcodes always print
695 instruction to the stream specified in the INFO. If this is not desired,
696 then either `print_insn` function in INFO should be set to some function
697 that will not print, or `stream` should be different from standard
698 gdb_stdlog. */
699
700 static int
701 arc_delayed_print_insn (bfd_vma addr, struct disassemble_info *info)
702 {
703 int (*print_insn) (bfd_vma, struct disassemble_info *);
704 /* exec_bfd may be null, if GDB is run without a target BFD file. Opcodes
705 will handle NULL value gracefully. */
706 print_insn = arc_get_disassembler (exec_bfd);
707 gdb_assert (print_insn != NULL);
708 return print_insn (addr, info);
709 }
710
711 /* Baremetal breakpoint instructions.
712
713 ARC supports both big- and little-endian. However, instructions for
714 little-endian processors are encoded in the middle-endian: half-words are
715 in big-endian, while bytes inside the half-words are in little-endian; data
716 is represented in the "normal" little-endian. Big-endian processors treat
717 data and code identically.
718
719 Assuming the number 0x01020304, it will be presented this way:
720
721 Address : N N+1 N+2 N+3
722 little-endian : 0x04 0x03 0x02 0x01
723 big-endian : 0x01 0x02 0x03 0x04
724 ARC middle-endian : 0x02 0x01 0x04 0x03
725 */
726
727 static const gdb_byte arc_brk_s_be[] = { 0x7f, 0xff };
728 static const gdb_byte arc_brk_s_le[] = { 0xff, 0x7f };
729 static const gdb_byte arc_brk_be[] = { 0x25, 0x6f, 0x00, 0x3f };
730 static const gdb_byte arc_brk_le[] = { 0x6f, 0x25, 0x3f, 0x00 };
731
732 /* For ARC ELF, breakpoint uses the 16-bit BRK_S instruction, which is 0x7fff
733 (little endian) or 0xff7f (big endian). We used to insert BRK_S even
734 instead of 32-bit instructions, which works mostly ok, unless breakpoint is
735 inserted into delay slot instruction. In this case if branch is taken
736 BLINK value will be set to address of instruction after delay slot, however
737 if we replaced 32-bit instruction in delay slot with 16-bit long BRK_S,
738 then BLINK value will have an invalid value - it will point to the address
739 after the BRK_S (which was there at the moment of branch execution) while
740 it should point to the address after the 32-bit long instruction. To avoid
741 such issues this function disassembles instruction at target location and
742 evaluates it value.
743
744 ARC 600 supports only 16-bit BRK_S.
745
746 NB: Baremetal GDB uses BRK[_S], while user-space GDB uses TRAP_S. BRK[_S]
747 is much better because it doesn't commit unlike TRAP_S, so it can be set in
748 delay slots; however it cannot be used in user-mode, hence usage of TRAP_S
749 in GDB for user-space. */
750
751 /* Implement the "breakpoint_kind_from_pc" gdbarch method. */
752
753 static int
754 arc_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
755 {
756 size_t length_with_limm = gdb_insn_length (gdbarch, *pcptr);
757
758 /* Replace 16-bit instruction with BRK_S, replace 32-bit instructions with
759 BRK. LIMM is part of instruction length, so it can be either 4 or 8
760 bytes for 32-bit instructions. */
761 if ((length_with_limm == 4 || length_with_limm == 8)
762 && !arc_mach_is_arc600 (gdbarch))
763 return sizeof (arc_brk_le);
764 else
765 return sizeof (arc_brk_s_le);
766 }
767
768 /* Implement the "sw_breakpoint_from_kind" gdbarch method. */
769
770 static const gdb_byte *
771 arc_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
772 {
773 *size = kind;
774
775 if (kind == sizeof (arc_brk_le))
776 {
777 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
778 ? arc_brk_be
779 : arc_brk_le);
780 }
781 else
782 {
783 return ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
784 ? arc_brk_s_be
785 : arc_brk_s_le);
786 }
787 }
788
789 /* Implement the "unwind_pc" gdbarch method. */
790
791 static CORE_ADDR
792 arc_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
793 {
794 int pc_regnum = gdbarch_pc_regnum (gdbarch);
795 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, pc_regnum);
796
797 if (arc_debug)
798 debug_printf ("arc: unwind PC: %s\n", paddress (gdbarch, pc));
799
800 return pc;
801 }
802
803 /* Implement the "unwind_sp" gdbarch method. */
804
805 static CORE_ADDR
806 arc_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
807 {
808 int sp_regnum = gdbarch_sp_regnum (gdbarch);
809 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, sp_regnum);
810
811 if (arc_debug)
812 debug_printf ("arc: unwind SP: %s\n", paddress (gdbarch, sp));
813
814 return sp;
815 }
816
817 /* Implement the "frame_align" gdbarch method. */
818
819 static CORE_ADDR
820 arc_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
821 {
822 return align_down (sp, 4);
823 }
824
825 /* Frame unwinder for normal frames. */
826
827 static struct arc_frame_cache *
828 arc_make_frame_cache (struct frame_info *this_frame)
829 {
830 if (arc_debug)
831 debug_printf ("arc: frame_cache\n");
832
833 struct gdbarch *gdbarch = get_frame_arch (this_frame);
834
835 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
836 CORE_ADDR prev_pc = get_frame_pc (this_frame);
837
838 CORE_ADDR entrypoint, prologue_end;
839 if (find_pc_partial_function (block_addr, NULL, &entrypoint, &prologue_end))
840 {
841 struct symtab_and_line sal = find_pc_line (entrypoint, 0);
842 if (sal.line == 0)
843 /* No line info so use current PC. */
844 prologue_end = prev_pc;
845 else if (sal.end < prologue_end)
846 /* The next line begins after the function end. */
847 prologue_end = sal.end;
848
849 prologue_end = std::min (prologue_end, prev_pc);
850 }
851 else
852 {
853 entrypoint = get_frame_register_unsigned (this_frame,
854 gdbarch_pc_regnum (gdbarch));
855 prologue_end = 0;
856 }
857
858 /* Allocate new frame cache instance and space for saved register info.
859 * FRAME_OBSTACK_ZALLOC will initialize fields to zeroes. */
860 struct arc_frame_cache *cache
861 = FRAME_OBSTACK_ZALLOC (struct arc_frame_cache);
862 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
863
864 /* Should call analyze_prologue here, when it will be implemented. */
865
866 return cache;
867 }
868
869 /* Implement the "this_id" frame_unwind method. */
870
871 static void
872 arc_frame_this_id (struct frame_info *this_frame, void **this_cache,
873 struct frame_id *this_id)
874 {
875 if (arc_debug)
876 debug_printf ("arc: frame_this_id\n");
877
878 struct gdbarch *gdbarch = get_frame_arch (this_frame);
879
880 if (*this_cache == NULL)
881 *this_cache = arc_make_frame_cache (this_frame);
882 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
883
884 CORE_ADDR stack_addr = cache->prev_sp;
885
886 /* There are 4 possible situation which decide how frame_id->code_addr is
887 evaluated:
888
889 1) Function is compiled with option -g. Then frame_id will be created
890 in dwarf_* function and not in this function. NB: even if target
891 binary is compiled with -g, some std functions like __start and _init
892 are not, so they still will follow one of the following choices.
893
894 2) Function is compiled without -g and binary hasn't been stripped in
895 any way. In this case GDB still has enough information to evaluate
896 frame code_addr properly. This case is covered by call to
897 get_frame_func ().
898
899 3) Binary has been striped with option -g (strip debug symbols). In
900 this case there is still enough symbols for get_frame_func () to work
901 properly, so this case is also covered by it.
902
903 4) Binary has been striped with option -s (strip all symbols). In this
904 case GDB cannot get function start address properly, so we return current
905 PC value instead.
906 */
907 CORE_ADDR code_addr = get_frame_func (this_frame);
908 if (code_addr == 0)
909 code_addr = get_frame_register_unsigned (this_frame,
910 gdbarch_pc_regnum (gdbarch));
911
912 *this_id = frame_id_build (stack_addr, code_addr);
913 }
914
915 /* Implement the "prev_register" frame_unwind method. */
916
917 static struct value *
918 arc_frame_prev_register (struct frame_info *this_frame,
919 void **this_cache, int regnum)
920 {
921 if (*this_cache == NULL)
922 *this_cache = arc_make_frame_cache (this_frame);
923 struct arc_frame_cache *cache = (struct arc_frame_cache *) (*this_cache);
924
925 struct gdbarch *gdbarch = get_frame_arch (this_frame);
926
927 /* If we are asked to unwind the PC, then we need to return BLINK instead:
928 the saved value of PC points into this frame's function's prologue, not
929 the next frame's function's resume location. */
930 if (regnum == gdbarch_pc_regnum (gdbarch))
931 regnum = ARC_BLINK_REGNUM;
932
933 /* SP is a special case - we should return prev_sp, because
934 trad_frame_get_prev_register will return _current_ SP value.
935 Alternatively we could have stored cache->prev_sp in the cache->saved
936 regs, but here we follow the lead of AArch64, ARM and Xtensa and will
937 leave that logic in this function, instead of prologue analyzers. That I
938 think is a bit more clear as `saved_regs` should contain saved regs, not
939 computable.
940
941 Because value has been computed, "got_constant" should be used, so that
942 returned value will be a "not_lval" - immutable. */
943
944 if (regnum == gdbarch_sp_regnum (gdbarch))
945 return frame_unwind_got_constant (this_frame, regnum, cache->prev_sp);
946
947 return trad_frame_get_prev_register (this_frame, cache->saved_regs, regnum);
948 }
949
950 /* Implement the "init_reg" dwarf2_frame method. */
951
952 static void
953 arc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
954 struct dwarf2_frame_state_reg *reg,
955 struct frame_info *info)
956 {
957 if (regnum == gdbarch_pc_regnum (gdbarch))
958 /* The return address column. */
959 reg->how = DWARF2_FRAME_REG_RA;
960 else if (regnum == gdbarch_sp_regnum (gdbarch))
961 /* The call frame address. */
962 reg->how = DWARF2_FRAME_REG_CFA;
963 }
964
965 /* Structure defining the ARC ordinary frame unwind functions. Since we are
966 the fallback unwinder, we use the default frame sniffer, which always
967 accepts the frame. */
968
969 static const struct frame_unwind arc_frame_unwind = {
970 NORMAL_FRAME,
971 default_frame_unwind_stop_reason,
972 arc_frame_this_id,
973 arc_frame_prev_register,
974 NULL,
975 default_frame_sniffer,
976 NULL,
977 NULL
978 };
979
980
981 static const struct frame_base arc_normal_base = {
982 &arc_frame_unwind,
983 arc_frame_base_address,
984 arc_frame_base_address,
985 arc_frame_base_address
986 };
987
988 /* Initialize target description for the ARC.
989
990 Returns TRUE if input tdesc was valid and in this case it will assign TDESC
991 and TDESC_DATA output parameters. */
992
993 static int
994 arc_tdesc_init (struct gdbarch_info info, const struct target_desc **tdesc,
995 struct tdesc_arch_data **tdesc_data)
996 {
997 if (arc_debug)
998 debug_printf ("arc: Target description initialization.\n");
999
1000 const struct target_desc *tdesc_loc = info.target_desc;
1001
1002 /* Depending on whether this is ARCompact or ARCv2 we will assign
1003 different default registers sets (which will differ in exactly two core
1004 registers). GDB will also refuse to accept register feature from invalid
1005 ISA - v2 features can be used only with v2 ARChitecture. We read
1006 bfd_arch_info, which looks like to be a safe bet here, as it looks like it
1007 is always initialized even when we don't pass any elf file to GDB at all
1008 (it uses default arch in this case). Also GDB will call this function
1009 multiple times, and if XML target description file contains architecture
1010 specifications, then GDB will set this architecture to info.bfd_arch_info,
1011 overriding value from ELF file if they are different. That means that,
1012 where matters, this value is always our best guess on what CPU we are
1013 debugging. It has been noted that architecture specified in tdesc file
1014 has higher precedence over ELF and even "set architecture" - that is,
1015 using "set architecture" command will have no effect when tdesc has "arch"
1016 tag. */
1017 /* Cannot use arc_mach_is_arcv2 (), because gdbarch is not created yet. */
1018 const int is_arcv2 = (info.bfd_arch_info->mach == bfd_mach_arc_arcv2);
1019 int is_reduced_rf;
1020 const char *const *core_regs;
1021 const char *core_feature_name;
1022
1023 /* If target doesn't provide a description - use default one. */
1024 if (!tdesc_has_registers (tdesc_loc))
1025 {
1026 if (is_arcv2)
1027 {
1028 tdesc_loc = tdesc_arc_v2;
1029 if (arc_debug)
1030 debug_printf ("arc: Using default register set for ARC v2.\n");
1031 }
1032 else
1033 {
1034 tdesc_loc = tdesc_arc_arcompact;
1035 if (arc_debug)
1036 debug_printf ("arc: Using default register set for ARCompact.\n");
1037 }
1038 }
1039 else
1040 {
1041 if (arc_debug)
1042 debug_printf ("arc: Using provided register set.\n");
1043 }
1044 gdb_assert (tdesc_loc != NULL);
1045
1046 /* Now we can search for base registers. Core registers can be either full
1047 or reduced. Summary:
1048
1049 - core.v2 + aux-minimal
1050 - core-reduced.v2 + aux-minimal
1051 - core.arcompact + aux-minimal
1052
1053 NB: It is entirely feasible to have ARCompact with reduced core regs, but
1054 we ignore that because GCC doesn't support that and at the same time
1055 ARCompact is considered obsolete, so there is not much reason to support
1056 that. */
1057 const struct tdesc_feature *feature
1058 = tdesc_find_feature (tdesc_loc, core_v2_feature_name);
1059 if (feature != NULL)
1060 {
1061 /* Confirm that register and architecture match, to prevent accidents in
1062 some situations. This code will trigger an error if:
1063
1064 1. XML tdesc doesn't specify arch explicitly, registers are for arch
1065 X, but ELF specifies arch Y.
1066
1067 2. XML tdesc specifies arch X, but contains registers for arch Y.
1068
1069 It will not protect from case where XML or ELF specify arch X,
1070 registers are for the same arch X, but the real target is arch Y. To
1071 detect this case we need to check IDENTITY register. */
1072 if (!is_arcv2)
1073 {
1074 arc_print (_("Error: ARC v2 target description supplied for "
1075 "non-ARCv2 target.\n"));
1076 return FALSE;
1077 }
1078
1079 is_reduced_rf = FALSE;
1080 core_feature_name = core_v2_feature_name;
1081 core_regs = core_v2_register_names;
1082 }
1083 else
1084 {
1085 feature = tdesc_find_feature (tdesc_loc, core_reduced_v2_feature_name);
1086 if (feature != NULL)
1087 {
1088 if (!is_arcv2)
1089 {
1090 arc_print (_("Error: ARC v2 target description supplied for "
1091 "non-ARCv2 target.\n"));
1092 return FALSE;
1093 }
1094
1095 is_reduced_rf = TRUE;
1096 core_feature_name = core_reduced_v2_feature_name;
1097 core_regs = core_v2_register_names;
1098 }
1099 else
1100 {
1101 feature = tdesc_find_feature (tdesc_loc,
1102 core_arcompact_feature_name);
1103 if (feature != NULL)
1104 {
1105 if (is_arcv2)
1106 {
1107 arc_print (_("Error: ARCompact target description supplied "
1108 "for non-ARCompact target.\n"));
1109 return FALSE;
1110 }
1111
1112 is_reduced_rf = FALSE;
1113 core_feature_name = core_arcompact_feature_name;
1114 core_regs = core_arcompact_register_names;
1115 }
1116 else
1117 {
1118 arc_print (_("Error: Couldn't find core register feature in "
1119 "supplied target description."));
1120 return FALSE;
1121 }
1122 }
1123 }
1124
1125 struct tdesc_arch_data *tdesc_data_loc = tdesc_data_alloc ();
1126
1127 gdb_assert (feature != NULL);
1128 int valid_p = 1;
1129
1130 for (int i = 0; i <= ARC_LAST_CORE_REGNUM; i++)
1131 {
1132 /* If rf16, then skip extra registers. */
1133 if (is_reduced_rf && ((i >= ARC_R4_REGNUM && i <= ARC_R9_REGNUM)
1134 || (i >= ARC_R16_REGNUM && i <= ARC_R25_REGNUM)))
1135 continue;
1136
1137 valid_p = tdesc_numbered_register (feature, tdesc_data_loc, i,
1138 core_regs[i]);
1139
1140 /* - Ignore errors in extension registers - they are optional.
1141 - Ignore missing ILINK because it doesn't make sense for Linux.
1142 - Ignore missing ILINK2 when architecture is ARCompact, because it
1143 doesn't make sense for Linux targets.
1144
1145 In theory those optional registers should be in separate features, but
1146 that would create numerous but tiny features, which looks like an
1147 overengineering of a rather simple task. */
1148 if (!valid_p && (i <= ARC_SP_REGNUM || i == ARC_BLINK_REGNUM
1149 || i == ARC_LP_COUNT_REGNUM || i == ARC_PCL_REGNUM
1150 || (i == ARC_R30_REGNUM && is_arcv2)))
1151 {
1152 arc_print (_("Error: Cannot find required register `%s' in "
1153 "feature `%s'.\n"), core_regs[i], core_feature_name);
1154 tdesc_data_cleanup (tdesc_data_loc);
1155 return FALSE;
1156 }
1157 }
1158
1159 /* Mandatory AUX registeres are intentionally few and are common between
1160 ARCompact and ARC v2, so same code can be used for both. */
1161 feature = tdesc_find_feature (tdesc_loc, aux_minimal_feature_name);
1162 if (feature == NULL)
1163 {
1164 arc_print (_("Error: Cannot find required feature `%s' in supplied "
1165 "target description.\n"), aux_minimal_feature_name);
1166 tdesc_data_cleanup (tdesc_data_loc);
1167 return FALSE;
1168 }
1169
1170 for (int i = ARC_FIRST_AUX_REGNUM; i <= ARC_LAST_AUX_REGNUM; i++)
1171 {
1172 const char *name = aux_minimal_register_names[i - ARC_FIRST_AUX_REGNUM];
1173 valid_p = tdesc_numbered_register (feature, tdesc_data_loc, i, name);
1174 if (!valid_p)
1175 {
1176 arc_print (_("Error: Cannot find required register `%s' "
1177 "in feature `%s'.\n"),
1178 name, tdesc_feature_name (feature));
1179 tdesc_data_cleanup (tdesc_data_loc);
1180 return FALSE;
1181 }
1182 }
1183
1184 *tdesc = tdesc_loc;
1185 *tdesc_data = tdesc_data_loc;
1186
1187 return TRUE;
1188 }
1189
1190 /* Implement the "init" gdbarch method. */
1191
1192 static struct gdbarch *
1193 arc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1194 {
1195 const struct target_desc *tdesc;
1196 struct tdesc_arch_data *tdesc_data;
1197
1198 if (arc_debug)
1199 debug_printf ("arc: Architecture initialization.\n");
1200
1201 if (!arc_tdesc_init (info, &tdesc, &tdesc_data))
1202 return NULL;
1203
1204 /* Allocate the ARC-private target-dependent information structure, and the
1205 GDB target-independent information structure. */
1206 struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep);
1207 tdep->jb_pc = -1; /* No longjmp support by default. */
1208 struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);
1209
1210 /* Data types. */
1211 set_gdbarch_short_bit (gdbarch, 16);
1212 set_gdbarch_int_bit (gdbarch, 32);
1213 set_gdbarch_long_bit (gdbarch, 32);
1214 set_gdbarch_long_long_bit (gdbarch, 64);
1215 set_gdbarch_long_long_align_bit (gdbarch, 32);
1216 set_gdbarch_float_bit (gdbarch, 32);
1217 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1218 set_gdbarch_double_bit (gdbarch, 64);
1219 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1220 set_gdbarch_ptr_bit (gdbarch, 32);
1221 set_gdbarch_addr_bit (gdbarch, 32);
1222 set_gdbarch_char_signed (gdbarch, 0);
1223
1224 set_gdbarch_write_pc (gdbarch, arc_write_pc);
1225
1226 set_gdbarch_virtual_frame_pointer (gdbarch, arc_virtual_frame_pointer);
1227
1228 /* tdesc_use_registers expects gdbarch_num_regs to return number of registers
1229 parsed by gdbarch_init, and then it will add all of the remaining
1230 registers and will increase number of registers. */
1231 set_gdbarch_num_regs (gdbarch, ARC_LAST_REGNUM + 1);
1232 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1233 set_gdbarch_sp_regnum (gdbarch, ARC_SP_REGNUM);
1234 set_gdbarch_pc_regnum (gdbarch, ARC_PC_REGNUM);
1235 set_gdbarch_ps_regnum (gdbarch, ARC_STATUS32_REGNUM);
1236 set_gdbarch_fp0_regnum (gdbarch, -1); /* No FPU registers. */
1237
1238 set_gdbarch_dummy_id (gdbarch, arc_dummy_id);
1239 set_gdbarch_push_dummy_call (gdbarch, arc_push_dummy_call);
1240 set_gdbarch_push_dummy_code (gdbarch, arc_push_dummy_code);
1241
1242 set_gdbarch_cannot_fetch_register (gdbarch, arc_cannot_fetch_register);
1243 set_gdbarch_cannot_store_register (gdbarch, arc_cannot_store_register);
1244
1245 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1246
1247 set_gdbarch_return_value (gdbarch, arc_return_value);
1248
1249 set_gdbarch_skip_prologue (gdbarch, arc_skip_prologue);
1250 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1251
1252 set_gdbarch_breakpoint_kind_from_pc (gdbarch, arc_breakpoint_kind_from_pc);
1253 set_gdbarch_sw_breakpoint_from_kind (gdbarch, arc_sw_breakpoint_from_kind);
1254
1255 /* On ARC 600 BRK_S instruction advances PC, unlike other ARC cores. */
1256 if (!arc_mach_is_arc600 (gdbarch))
1257 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1258 else
1259 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1260
1261 set_gdbarch_unwind_pc (gdbarch, arc_unwind_pc);
1262 set_gdbarch_unwind_sp (gdbarch, arc_unwind_sp);
1263
1264 set_gdbarch_frame_align (gdbarch, arc_frame_align);
1265
1266 set_gdbarch_print_insn (gdbarch, arc_delayed_print_insn);
1267
1268 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1269
1270 /* "nonsteppable" watchpoint means that watchpoint triggers before
1271 instruction is committed, therefore it is required to remove watchpoint
1272 to step though instruction that triggers it. ARC watchpoints trigger
1273 only after instruction is committed, thus there is no need to remove
1274 them. In fact on ARC watchpoint for memory writes may trigger with more
1275 significant delay, like one or two instructions, depending on type of
1276 memory where write is performed (CCM or external) and next instruction
1277 after the memory write. */
1278 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 0);
1279
1280 /* This doesn't include possible long-immediate value. */
1281 set_gdbarch_max_insn_length (gdbarch, 4);
1282
1283 /* Frame unwinders and sniffers. */
1284 dwarf2_frame_set_init_reg (gdbarch, arc_dwarf2_frame_init_reg);
1285 dwarf2_append_unwinders (gdbarch);
1286 frame_unwind_append_unwinder (gdbarch, &arc_frame_unwind);
1287 frame_base_set_default (gdbarch, &arc_normal_base);
1288
1289 /* Setup stuff specific to a particular environment (baremetal or Linux).
1290 It can override functions set earlier. */
1291 gdbarch_init_osabi (info, gdbarch);
1292
1293 if (tdep->jb_pc >= 0)
1294 set_gdbarch_get_longjmp_target (gdbarch, arc_get_longjmp_target);
1295
1296 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1297
1298 return gdbarch;
1299 }
1300
1301 /* Implement the "dump_tdep" gdbarch method. */
1302
1303 static void
1304 arc_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
1305 {
1306 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1307
1308 fprintf_unfiltered (file, "arc_dump_tdep: jb_pc = %i\n", tdep->jb_pc);
1309 }
1310
1311 /* Suppress warning from -Wmissing-prototypes. */
1312 extern initialize_file_ftype _initialize_arc_tdep;
1313
1314 void
1315 _initialize_arc_tdep (void)
1316 {
1317 gdbarch_register (bfd_arch_arc, arc_gdbarch_init, arc_dump_tdep);
1318
1319 initialize_tdesc_arc_v2 ();
1320 initialize_tdesc_arc_arcompact ();
1321
1322 /* Register ARC-specific commands with gdb. */
1323
1324 /* Debug internals for ARC GDB. */
1325 add_setshow_zinteger_cmd ("arc", class_maintenance,
1326 &arc_debug,
1327 _("Set ARC specific debugging."),
1328 _("Show ARC specific debugging."),
1329 _("Non-zero enables ARC specific debugging."),
1330 NULL, NULL, &setdebuglist, &showdebuglist);
1331 }