* doublest.c (floatformat_from_length): Use the right element from
[binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 #include "defs.h"
24
25 #include "arch-utils.h"
26 #include "buildsym.h"
27 #include "gdbcmd.h"
28 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
29 #include "gdb_string.h"
30 #include "regcache.h"
31 #include "gdb_assert.h"
32 #include "sim-regno.h"
33 #include "gdbcore.h"
34 #include "osabi.h"
35 #include "target-descriptions.h"
36
37 #include "version.h"
38
39 #include "floatformat.h"
40
41 int
42 always_use_struct_convention (int gcc_p, struct type *value_type)
43 {
44 return 1;
45 }
46
47 enum return_value_convention
48 legacy_return_value (struct gdbarch *gdbarch, struct type *valtype,
49 struct regcache *regcache, gdb_byte *readbuf,
50 const gdb_byte *writebuf)
51 {
52 /* NOTE: cagney/2004-06-13: The gcc_p parameter to
53 USE_STRUCT_CONVENTION isn't used. */
54 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
55 || TYPE_CODE (valtype) == TYPE_CODE_UNION
56 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
57 && DEPRECATED_USE_STRUCT_CONVENTION (0, valtype));
58
59 if (writebuf != NULL)
60 {
61 gdb_assert (!struct_return);
62 /* NOTE: cagney/2004-06-13: See stack.c:return_command. Old
63 architectures don't expect STORE_RETURN_VALUE to handle small
64 structures. Should not be called with such types. */
65 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_STRUCT
66 && TYPE_CODE (valtype) != TYPE_CODE_UNION);
67 STORE_RETURN_VALUE (valtype, regcache, writebuf);
68 }
69
70 if (readbuf != NULL)
71 {
72 gdb_assert (!struct_return);
73 EXTRACT_RETURN_VALUE (valtype, regcache, readbuf);
74 }
75
76 if (struct_return)
77 return RETURN_VALUE_STRUCT_CONVENTION;
78 else
79 return RETURN_VALUE_REGISTER_CONVENTION;
80 }
81
82 int
83 legacy_register_sim_regno (int regnum)
84 {
85 /* Only makes sense to supply raw registers. */
86 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
87 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
88 suspected that some GDB/SIM combinations may rely on this
89 behavour. The default should be one2one_register_sim_regno
90 (below). */
91 if (REGISTER_NAME (regnum) != NULL
92 && REGISTER_NAME (regnum)[0] != '\0')
93 return regnum;
94 else
95 return LEGACY_SIM_REGNO_IGNORE;
96 }
97
98 CORE_ADDR
99 generic_skip_trampoline_code (CORE_ADDR pc)
100 {
101 return 0;
102 }
103
104 CORE_ADDR
105 generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
106 {
107 return 0;
108 }
109
110 int
111 generic_in_solib_return_trampoline (CORE_ADDR pc, char *name)
112 {
113 return 0;
114 }
115
116 int
117 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
118 {
119 return 0;
120 }
121
122 void
123 generic_remote_translate_xfer_address (struct gdbarch *gdbarch,
124 struct regcache *regcache,
125 CORE_ADDR gdb_addr, int gdb_len,
126 CORE_ADDR * rem_addr, int *rem_len)
127 {
128 *rem_addr = gdb_addr;
129 *rem_len = gdb_len;
130 }
131
132 /* Helper functions for INNER_THAN */
133
134 int
135 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
136 {
137 return (lhs < rhs);
138 }
139
140 int
141 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
142 {
143 return (lhs > rhs);
144 }
145
146 /* Misc helper functions for targets. */
147
148 CORE_ADDR
149 core_addr_identity (CORE_ADDR addr)
150 {
151 return addr;
152 }
153
154 CORE_ADDR
155 convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
156 struct target_ops *targ)
157 {
158 return addr;
159 }
160
161 int
162 no_op_reg_to_regnum (int reg)
163 {
164 return reg;
165 }
166
167 void
168 default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
169 {
170 return;
171 }
172
173 void
174 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
175 {
176 return;
177 }
178
179 int
180 cannot_register_not (int regnum)
181 {
182 return 0;
183 }
184
185 /* Legacy version of target_virtual_frame_pointer(). Assumes that
186 there is an DEPRECATED_FP_REGNUM and that it is the same, cooked or
187 raw. */
188
189 void
190 legacy_virtual_frame_pointer (CORE_ADDR pc,
191 int *frame_regnum,
192 LONGEST *frame_offset)
193 {
194 /* FIXME: cagney/2002-09-13: This code is used when identifying the
195 frame pointer of the current PC. It is assuming that a single
196 register and an offset can determine this. I think it should
197 instead generate a byte code expression as that would work better
198 with things like Dwarf2's CFI. */
199 if (DEPRECATED_FP_REGNUM >= 0 && DEPRECATED_FP_REGNUM < NUM_REGS)
200 *frame_regnum = DEPRECATED_FP_REGNUM;
201 else if (SP_REGNUM >= 0 && SP_REGNUM < NUM_REGS)
202 *frame_regnum = SP_REGNUM;
203 else
204 /* Should this be an internal error? I guess so, it is reflecting
205 an architectural limitation in the current design. */
206 internal_error (__FILE__, __LINE__, _("No virtual frame pointer available"));
207 *frame_offset = 0;
208 }
209
210 /* Assume the world is sane, every register's virtual and real size
211 is identical. */
212
213 int
214 generic_register_size (int regnum)
215 {
216 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
217 return TYPE_LENGTH (register_type (current_gdbarch, regnum));
218 }
219
220 /* Assume all registers are adjacent. */
221
222 int
223 generic_register_byte (int regnum)
224 {
225 int byte;
226 int i;
227 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
228 byte = 0;
229 for (i = 0; i < regnum; i++)
230 {
231 byte += generic_register_size (i);
232 }
233 return byte;
234 }
235
236 \f
237 int
238 legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
239 {
240 #if defined (DEPRECATED_IN_SIGTRAMP)
241 return DEPRECATED_IN_SIGTRAMP (pc, name);
242 #else
243 return name && strcmp ("_sigtramp", name) == 0;
244 #endif
245 }
246
247 int
248 generic_convert_register_p (int regnum, struct type *type)
249 {
250 return 0;
251 }
252
253 int
254 default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
255 {
256 return 0;
257 }
258
259 int
260 generic_instruction_nullified (struct gdbarch *gdbarch,
261 struct regcache *regcache)
262 {
263 return 0;
264 }
265
266 \f
267 /* Functions to manipulate the endianness of the target. */
268
269 static int target_byte_order_user = BFD_ENDIAN_UNKNOWN;
270
271 static const char endian_big[] = "big";
272 static const char endian_little[] = "little";
273 static const char endian_auto[] = "auto";
274 static const char *endian_enum[] =
275 {
276 endian_big,
277 endian_little,
278 endian_auto,
279 NULL,
280 };
281 static const char *set_endian_string;
282
283 /* Called by ``show endian''. */
284
285 static void
286 show_endian (struct ui_file *file, int from_tty, struct cmd_list_element *c,
287 const char *value)
288 {
289 if (target_byte_order_user == BFD_ENDIAN_UNKNOWN)
290 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
291 fprintf_unfiltered (file, _("The target endianness is set automatically "
292 "(currently big endian)\n"));
293 else
294 fprintf_unfiltered (file, _("The target endianness is set automatically "
295 "(currently little endian)\n"));
296 else
297 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
298 fprintf_unfiltered (file,
299 _("The target is assumed to be big endian\n"));
300 else
301 fprintf_unfiltered (file,
302 _("The target is assumed to be little endian\n"));
303 }
304
305 static void
306 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
307 {
308 struct gdbarch_info info;
309
310 gdbarch_info_init (&info);
311
312 if (set_endian_string == endian_auto)
313 {
314 target_byte_order_user = BFD_ENDIAN_UNKNOWN;
315 if (! gdbarch_update_p (info))
316 internal_error (__FILE__, __LINE__,
317 _("set_endian: architecture update failed"));
318 }
319 else if (set_endian_string == endian_little)
320 {
321 info.byte_order = BFD_ENDIAN_LITTLE;
322 if (! gdbarch_update_p (info))
323 printf_unfiltered (_("Little endian target not supported by GDB\n"));
324 else
325 target_byte_order_user = BFD_ENDIAN_LITTLE;
326 }
327 else if (set_endian_string == endian_big)
328 {
329 info.byte_order = BFD_ENDIAN_BIG;
330 if (! gdbarch_update_p (info))
331 printf_unfiltered (_("Big endian target not supported by GDB\n"));
332 else
333 target_byte_order_user = BFD_ENDIAN_BIG;
334 }
335 else
336 internal_error (__FILE__, __LINE__,
337 _("set_endian: bad value"));
338
339 show_endian (gdb_stdout, from_tty, NULL, NULL);
340 }
341
342 /* Given SELECTED, a currently selected BFD architecture, and
343 FROM_TARGET, a BFD architecture reported by the target description,
344 return what architecture to use. Either may be NULL; if both are
345 specified, we use the more specific. If the two are obviously
346 incompatible, warn the user. */
347
348 static const struct bfd_arch_info *
349 choose_architecture_for_target (const struct bfd_arch_info *selected,
350 const struct bfd_arch_info *from_target)
351 {
352 const struct bfd_arch_info *compat1, *compat2;
353
354 if (selected == NULL)
355 return from_target;
356
357 if (from_target == NULL)
358 return selected;
359
360 /* struct bfd_arch_info objects are singletons: that is, there's
361 supposed to be exactly one instance for a given machine. So you
362 can tell whether two are equivalent by comparing pointers. */
363 if (from_target == selected)
364 return selected;
365
366 /* BFD's 'A->compatible (A, B)' functions return zero if A and B are
367 incompatible. But if they are compatible, it returns the 'more
368 featureful' of the two arches. That is, if A can run code
369 written for B, but B can't run code written for A, then it'll
370 return A.
371
372 Some targets (e.g. MIPS as of 2006-12-04) don't fully
373 implement this, instead always returning NULL or the first
374 argument. We detect that case by checking both directions. */
375
376 compat1 = selected->compatible (selected, from_target);
377 compat2 = from_target->compatible (from_target, selected);
378
379 if (compat1 == NULL && compat2 == NULL)
380 {
381 warning (_("Selected architecture %s is not compatible "
382 "with reported target architecture %s"),
383 selected->printable_name, from_target->printable_name);
384 return selected;
385 }
386
387 if (compat1 == NULL)
388 return compat2;
389 if (compat2 == NULL)
390 return compat1;
391 if (compat1 == compat2)
392 return compat1;
393
394 /* If the two didn't match, but one of them was a default architecture,
395 assume the more specific one is correct. This handles the case
396 where an executable or target description just says "mips", but
397 the other knows which MIPS variant. */
398 if (compat1->the_default)
399 return compat2;
400 if (compat2->the_default)
401 return compat1;
402
403 /* We have no idea which one is better. This is a bug, but not
404 a critical problem; warn the user. */
405 warning (_("Selected architecture %s is ambiguous with "
406 "reported target architecture %s"),
407 selected->printable_name, from_target->printable_name);
408 return selected;
409 }
410
411 /* Functions to manipulate the architecture of the target */
412
413 enum set_arch { set_arch_auto, set_arch_manual };
414
415 static const struct bfd_arch_info *target_architecture_user;
416
417 static const char *set_architecture_string;
418
419 const char *
420 selected_architecture_name (void)
421 {
422 if (target_architecture_user == NULL)
423 return NULL;
424 else
425 return set_architecture_string;
426 }
427
428 /* Called if the user enters ``show architecture'' without an
429 argument. */
430
431 static void
432 show_architecture (struct ui_file *file, int from_tty,
433 struct cmd_list_element *c, const char *value)
434 {
435 const char *arch;
436 arch = TARGET_ARCHITECTURE->printable_name;
437 if (target_architecture_user == NULL)
438 fprintf_filtered (file, _("\
439 The target architecture is set automatically (currently %s)\n"), arch);
440 else
441 fprintf_filtered (file, _("\
442 The target architecture is assumed to be %s\n"), arch);
443 }
444
445
446 /* Called if the user enters ``set architecture'' with or without an
447 argument. */
448
449 static void
450 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
451 {
452 struct gdbarch_info info;
453
454 gdbarch_info_init (&info);
455
456 if (strcmp (set_architecture_string, "auto") == 0)
457 {
458 target_architecture_user = NULL;
459 if (!gdbarch_update_p (info))
460 internal_error (__FILE__, __LINE__,
461 _("could not select an architecture automatically"));
462 }
463 else
464 {
465 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
466 if (info.bfd_arch_info == NULL)
467 internal_error (__FILE__, __LINE__,
468 _("set_architecture: bfd_scan_arch failed"));
469 if (gdbarch_update_p (info))
470 target_architecture_user = info.bfd_arch_info;
471 else
472 printf_unfiltered (_("Architecture `%s' not recognized.\n"),
473 set_architecture_string);
474 }
475 show_architecture (gdb_stdout, from_tty, NULL, NULL);
476 }
477
478 /* Try to select a global architecture that matches "info". Return
479 non-zero if the attempt succeds. */
480 int
481 gdbarch_update_p (struct gdbarch_info info)
482 {
483 struct gdbarch *new_gdbarch = gdbarch_find_by_info (info);
484
485 /* If there no architecture by that name, reject the request. */
486 if (new_gdbarch == NULL)
487 {
488 if (gdbarch_debug)
489 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
490 "Architecture not found\n");
491 return 0;
492 }
493
494 /* If it is the same old architecture, accept the request (but don't
495 swap anything). */
496 if (new_gdbarch == current_gdbarch)
497 {
498 if (gdbarch_debug)
499 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
500 "Architecture 0x%08lx (%s) unchanged\n",
501 (long) new_gdbarch,
502 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
503 return 1;
504 }
505
506 /* It's a new architecture, swap it in. */
507 if (gdbarch_debug)
508 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
509 "New architecture 0x%08lx (%s) selected\n",
510 (long) new_gdbarch,
511 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
512 deprecated_current_gdbarch_select_hack (new_gdbarch);
513
514 return 1;
515 }
516
517 /* Return the architecture for ABFD. If no suitable architecture
518 could be find, return NULL. */
519
520 struct gdbarch *
521 gdbarch_from_bfd (bfd *abfd)
522 {
523 struct gdbarch *old_gdbarch = current_gdbarch;
524 struct gdbarch *new_gdbarch;
525 struct gdbarch_info info;
526
527 /* If we call gdbarch_find_by_info without filling in info.abfd,
528 then it will use the global exec_bfd. That's fine if we don't
529 have one of those either. And that's the only time we should
530 reach here with a NULL ABFD argument - when we are discarding
531 the executable. */
532 gdb_assert (abfd != NULL || exec_bfd == NULL);
533
534 gdbarch_info_init (&info);
535 info.abfd = abfd;
536 return gdbarch_find_by_info (info);
537 }
538
539 /* Set the dynamic target-system-dependent parameters (architecture,
540 byte-order) using information found in the BFD */
541
542 void
543 set_gdbarch_from_file (bfd *abfd)
544 {
545 struct gdbarch *gdbarch;
546
547 gdbarch = gdbarch_from_bfd (abfd);
548 if (gdbarch == NULL)
549 error (_("Architecture of file not recognized."));
550 deprecated_current_gdbarch_select_hack (gdbarch);
551 }
552
553 /* Initialize the current architecture. Update the ``set
554 architecture'' command so that it specifies a list of valid
555 architectures. */
556
557 #ifdef DEFAULT_BFD_ARCH
558 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
559 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
560 #else
561 static const bfd_arch_info_type *default_bfd_arch;
562 #endif
563
564 #ifdef DEFAULT_BFD_VEC
565 extern const bfd_target DEFAULT_BFD_VEC;
566 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
567 #else
568 static const bfd_target *default_bfd_vec;
569 #endif
570
571 static int default_byte_order = BFD_ENDIAN_UNKNOWN;
572
573 void
574 initialize_current_architecture (void)
575 {
576 const char **arches = gdbarch_printable_names ();
577
578 /* determine a default architecture and byte order. */
579 struct gdbarch_info info;
580 gdbarch_info_init (&info);
581
582 /* Find a default architecture. */
583 if (default_bfd_arch == NULL)
584 {
585 /* Choose the architecture by taking the first one
586 alphabetically. */
587 const char *chosen = arches[0];
588 const char **arch;
589 for (arch = arches; *arch != NULL; arch++)
590 {
591 if (strcmp (*arch, chosen) < 0)
592 chosen = *arch;
593 }
594 if (chosen == NULL)
595 internal_error (__FILE__, __LINE__,
596 _("initialize_current_architecture: No arch"));
597 default_bfd_arch = bfd_scan_arch (chosen);
598 if (default_bfd_arch == NULL)
599 internal_error (__FILE__, __LINE__,
600 _("initialize_current_architecture: Arch not found"));
601 }
602
603 info.bfd_arch_info = default_bfd_arch;
604
605 /* Take several guesses at a byte order. */
606 if (default_byte_order == BFD_ENDIAN_UNKNOWN
607 && default_bfd_vec != NULL)
608 {
609 /* Extract BFD's default vector's byte order. */
610 switch (default_bfd_vec->byteorder)
611 {
612 case BFD_ENDIAN_BIG:
613 default_byte_order = BFD_ENDIAN_BIG;
614 break;
615 case BFD_ENDIAN_LITTLE:
616 default_byte_order = BFD_ENDIAN_LITTLE;
617 break;
618 default:
619 break;
620 }
621 }
622 if (default_byte_order == BFD_ENDIAN_UNKNOWN)
623 {
624 /* look for ``*el-*'' in the target name. */
625 const char *chp;
626 chp = strchr (target_name, '-');
627 if (chp != NULL
628 && chp - 2 >= target_name
629 && strncmp (chp - 2, "el", 2) == 0)
630 default_byte_order = BFD_ENDIAN_LITTLE;
631 }
632 if (default_byte_order == BFD_ENDIAN_UNKNOWN)
633 {
634 /* Wire it to big-endian!!! */
635 default_byte_order = BFD_ENDIAN_BIG;
636 }
637
638 info.byte_order = default_byte_order;
639
640 if (! gdbarch_update_p (info))
641 internal_error (__FILE__, __LINE__,
642 _("initialize_current_architecture: Selection of "
643 "initial architecture failed"));
644
645 /* Create the ``set architecture'' command appending ``auto'' to the
646 list of architectures. */
647 {
648 struct cmd_list_element *c;
649 /* Append ``auto''. */
650 int nr;
651 for (nr = 0; arches[nr] != NULL; nr++);
652 arches = xrealloc (arches, sizeof (char*) * (nr + 2));
653 arches[nr + 0] = "auto";
654 arches[nr + 1] = NULL;
655 add_setshow_enum_cmd ("architecture", class_support,
656 arches, &set_architecture_string, _("\
657 Set architecture of target."), _("\
658 Show architecture of target."), NULL,
659 set_architecture, show_architecture,
660 &setlist, &showlist);
661 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
662 }
663 }
664
665
666 /* Initialize a gdbarch info to values that will be automatically
667 overridden. Note: Originally, this ``struct info'' was initialized
668 using memset(0). Unfortunately, that ran into problems, namely
669 BFD_ENDIAN_BIG is zero. An explicit initialization function that
670 can explicitly set each field to a well defined value is used. */
671
672 void
673 gdbarch_info_init (struct gdbarch_info *info)
674 {
675 memset (info, 0, sizeof (struct gdbarch_info));
676 info->byte_order = BFD_ENDIAN_UNKNOWN;
677 info->osabi = GDB_OSABI_UNINITIALIZED;
678 }
679
680 /* Similar to init, but this time fill in the blanks. Information is
681 obtained from the global "set ..." options and explicitly
682 initialized INFO fields. */
683
684 void
685 gdbarch_info_fill (struct gdbarch_info *info)
686 {
687 /* Check for the current file. */
688 if (info->abfd == NULL)
689 info->abfd = exec_bfd;
690
691 /* Check for the current target description. */
692 if (info->target_desc == NULL)
693 info->target_desc = target_current_description ();
694
695 /* "(gdb) set architecture ...". */
696 if (info->bfd_arch_info == NULL
697 && target_architecture_user)
698 info->bfd_arch_info = target_architecture_user;
699 /* From the file. */
700 if (info->bfd_arch_info == NULL
701 && info->abfd != NULL
702 && bfd_get_arch (info->abfd) != bfd_arch_unknown
703 && bfd_get_arch (info->abfd) != bfd_arch_obscure)
704 info->bfd_arch_info = bfd_get_arch_info (info->abfd);
705 /* From the target. */
706 if (info->target_desc != NULL)
707 info->bfd_arch_info = choose_architecture_for_target
708 (info->bfd_arch_info, tdesc_architecture (info->target_desc));
709 /* From the default. */
710 if (info->bfd_arch_info == NULL)
711 info->bfd_arch_info = default_bfd_arch;
712
713 /* "(gdb) set byte-order ...". */
714 if (info->byte_order == BFD_ENDIAN_UNKNOWN
715 && target_byte_order_user != BFD_ENDIAN_UNKNOWN)
716 info->byte_order = target_byte_order_user;
717 /* From the INFO struct. */
718 if (info->byte_order == BFD_ENDIAN_UNKNOWN
719 && info->abfd != NULL)
720 info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
721 : bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
722 : BFD_ENDIAN_UNKNOWN);
723 /* From the default. */
724 if (info->byte_order == BFD_ENDIAN_UNKNOWN)
725 info->byte_order = default_byte_order;
726
727 /* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */
728 if (info->osabi == GDB_OSABI_UNINITIALIZED)
729 info->osabi = gdbarch_lookup_osabi (info->abfd);
730
731 /* Must have at least filled in the architecture. */
732 gdb_assert (info->bfd_arch_info != NULL);
733 }
734
735 /* */
736
737 extern initialize_file_ftype _initialize_gdbarch_utils; /* -Wmissing-prototypes */
738
739 void
740 _initialize_gdbarch_utils (void)
741 {
742 struct cmd_list_element *c;
743 add_setshow_enum_cmd ("endian", class_support,
744 endian_enum, &set_endian_string, _("\
745 Set endianness of target."), _("\
746 Show endianness of target."), NULL,
747 set_endian, show_endian,
748 &setlist, &showlist);
749 }