2004-02-14 Andrew Cagney <cagney@redhat.com>
[binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
4 Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24
25 #include "arch-utils.h"
26 #include "buildsym.h"
27 #include "gdbcmd.h"
28 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
29 #include "gdb_string.h"
30 #include "regcache.h"
31 #include "gdb_assert.h"
32 #include "sim-regno.h"
33
34 #include "osabi.h"
35
36 #include "version.h"
37
38 #include "floatformat.h"
39
40 /* Implementation of extract return value that grubs around in the
41 register cache. */
42 void
43 legacy_extract_return_value (struct type *type, struct regcache *regcache,
44 void *valbuf)
45 {
46 char *registers = deprecated_grub_regcache_for_registers (regcache);
47 bfd_byte *buf = valbuf;
48 DEPRECATED_EXTRACT_RETURN_VALUE (type, registers, buf); /* OK */
49 }
50
51 /* Implementation of store return value that grubs the register cache.
52 Takes a local copy of the buffer to avoid const problems. */
53 void
54 legacy_store_return_value (struct type *type, struct regcache *regcache,
55 const void *buf)
56 {
57 bfd_byte *b = alloca (TYPE_LENGTH (type));
58 gdb_assert (regcache == current_regcache);
59 memcpy (b, buf, TYPE_LENGTH (type));
60 DEPRECATED_STORE_RETURN_VALUE (type, b);
61 }
62
63
64 int
65 always_use_struct_convention (int gcc_p, struct type *value_type)
66 {
67 return 1;
68 }
69
70
71 int
72 legacy_register_sim_regno (int regnum)
73 {
74 /* Only makes sense to supply raw registers. */
75 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
76 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
77 suspected that some GDB/SIM combinations may rely on this
78 behavour. The default should be one2one_register_sim_regno
79 (below). */
80 if (REGISTER_NAME (regnum) != NULL
81 && REGISTER_NAME (regnum)[0] != '\0')
82 return regnum;
83 else
84 return LEGACY_SIM_REGNO_IGNORE;
85 }
86
87 int
88 generic_frameless_function_invocation_not (struct frame_info *fi)
89 {
90 return 0;
91 }
92
93 int
94 generic_return_value_on_stack_not (struct type *type)
95 {
96 return 0;
97 }
98
99 CORE_ADDR
100 generic_skip_trampoline_code (CORE_ADDR pc)
101 {
102 return 0;
103 }
104
105 CORE_ADDR
106 generic_skip_solib_resolver (struct gdbarch *gdbarch, CORE_ADDR pc)
107 {
108 return 0;
109 }
110
111 int
112 generic_in_solib_call_trampoline (CORE_ADDR pc, char *name)
113 {
114 return 0;
115 }
116
117 int
118 generic_in_solib_return_trampoline (CORE_ADDR pc, char *name)
119 {
120 return 0;
121 }
122
123 int
124 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
125 {
126 return 0;
127 }
128
129 #if defined (CALL_DUMMY)
130 LONGEST legacy_call_dummy_words[] = CALL_DUMMY;
131 #else
132 LONGEST legacy_call_dummy_words[1];
133 #endif
134 int legacy_sizeof_call_dummy_words = sizeof (legacy_call_dummy_words);
135
136 void
137 generic_remote_translate_xfer_address (struct gdbarch *gdbarch,
138 struct regcache *regcache,
139 CORE_ADDR gdb_addr, int gdb_len,
140 CORE_ADDR * rem_addr, int *rem_len)
141 {
142 *rem_addr = gdb_addr;
143 *rem_len = gdb_len;
144 }
145
146 /* Helper functions for INNER_THAN */
147
148 int
149 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
150 {
151 return (lhs < rhs);
152 }
153
154 int
155 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
156 {
157 return (lhs > rhs);
158 }
159
160
161 /* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */
162
163 const struct floatformat *
164 default_float_format (struct gdbarch *gdbarch)
165 {
166 int byte_order = gdbarch_byte_order (gdbarch);
167 switch (byte_order)
168 {
169 case BFD_ENDIAN_BIG:
170 return &floatformat_ieee_single_big;
171 case BFD_ENDIAN_LITTLE:
172 return &floatformat_ieee_single_little;
173 default:
174 internal_error (__FILE__, __LINE__,
175 "default_float_format: bad byte order");
176 }
177 }
178
179
180 const struct floatformat *
181 default_double_format (struct gdbarch *gdbarch)
182 {
183 int byte_order = gdbarch_byte_order (gdbarch);
184 switch (byte_order)
185 {
186 case BFD_ENDIAN_BIG:
187 return &floatformat_ieee_double_big;
188 case BFD_ENDIAN_LITTLE:
189 return &floatformat_ieee_double_little;
190 default:
191 internal_error (__FILE__, __LINE__,
192 "default_double_format: bad byte order");
193 }
194 }
195
196 /* Misc helper functions for targets. */
197
198 CORE_ADDR
199 core_addr_identity (CORE_ADDR addr)
200 {
201 return addr;
202 }
203
204 CORE_ADDR
205 convert_from_func_ptr_addr_identity (struct gdbarch *gdbarch, CORE_ADDR addr,
206 struct target_ops *targ)
207 {
208 return addr;
209 }
210
211 int
212 no_op_reg_to_regnum (int reg)
213 {
214 return reg;
215 }
216
217 CORE_ADDR
218 deprecated_init_frame_pc_default (int fromleaf, struct frame_info *prev)
219 {
220 if (fromleaf && DEPRECATED_SAVED_PC_AFTER_CALL_P ())
221 return DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev));
222 else if (get_next_frame (prev) != NULL)
223 return DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev));
224 else
225 return read_pc ();
226 }
227
228 void
229 default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
230 {
231 return;
232 }
233
234 void
235 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
236 {
237 return;
238 }
239
240 int
241 cannot_register_not (int regnum)
242 {
243 return 0;
244 }
245
246 /* Legacy version of target_virtual_frame_pointer(). Assumes that
247 there is an DEPRECATED_FP_REGNUM and that it is the same, cooked or
248 raw. */
249
250 void
251 legacy_virtual_frame_pointer (CORE_ADDR pc,
252 int *frame_regnum,
253 LONGEST *frame_offset)
254 {
255 /* FIXME: cagney/2002-09-13: This code is used when identifying the
256 frame pointer of the current PC. It is assuming that a single
257 register and an offset can determine this. I think it should
258 instead generate a byte code expression as that would work better
259 with things like Dwarf2's CFI. */
260 if (DEPRECATED_FP_REGNUM >= 0 && DEPRECATED_FP_REGNUM < NUM_REGS)
261 *frame_regnum = DEPRECATED_FP_REGNUM;
262 else if (SP_REGNUM >= 0 && SP_REGNUM < NUM_REGS)
263 *frame_regnum = SP_REGNUM;
264 else
265 /* Should this be an internal error? I guess so, it is reflecting
266 an architectural limitation in the current design. */
267 internal_error (__FILE__, __LINE__, "No virtual frame pointer available");
268 *frame_offset = 0;
269 }
270
271 /* Assume the world is sane, every register's virtual and real size
272 is identical. */
273
274 int
275 generic_register_size (int regnum)
276 {
277 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
278 if (gdbarch_register_type_p (current_gdbarch))
279 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, regnum));
280 else
281 /* FIXME: cagney/2003-03-01: Once all architectures implement
282 gdbarch_register_type(), this entire function can go away. It
283 is made obsolete by register_size(). */
284 return TYPE_LENGTH (DEPRECATED_REGISTER_VIRTUAL_TYPE (regnum)); /* OK */
285 }
286
287 /* Assume all registers are adjacent. */
288
289 int
290 generic_register_byte (int regnum)
291 {
292 int byte;
293 int i;
294 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
295 byte = 0;
296 for (i = 0; i < regnum; i++)
297 {
298 byte += generic_register_size (i);
299 }
300 return byte;
301 }
302
303 \f
304 int
305 legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
306 {
307 #if !defined (IN_SIGTRAMP)
308 if (SIGTRAMP_START_P ())
309 return (pc) >= SIGTRAMP_START (pc) && (pc) < SIGTRAMP_END (pc);
310 else
311 return name && strcmp ("_sigtramp", name) == 0;
312 #else
313 return IN_SIGTRAMP (pc, name);
314 #endif
315 }
316
317 int
318 legacy_convert_register_p (int regnum, struct type *type)
319 {
320 return (DEPRECATED_REGISTER_CONVERTIBLE_P ()
321 && DEPRECATED_REGISTER_CONVERTIBLE (regnum));
322 }
323
324 void
325 legacy_register_to_value (struct frame_info *frame, int regnum,
326 struct type *type, void *to)
327 {
328 char from[MAX_REGISTER_SIZE];
329 get_frame_register (frame, regnum, from);
330 DEPRECATED_REGISTER_CONVERT_TO_VIRTUAL (regnum, type, from, to);
331 }
332
333 void
334 legacy_value_to_register (struct frame_info *frame, int regnum,
335 struct type *type, const void *tmp)
336 {
337 char to[MAX_REGISTER_SIZE];
338 char *from = alloca (TYPE_LENGTH (type));
339 memcpy (from, from, TYPE_LENGTH (type));
340 DEPRECATED_REGISTER_CONVERT_TO_RAW (type, regnum, from, to);
341 put_frame_register (frame, regnum, to);
342 }
343
344 int
345 default_stabs_argument_has_addr (struct gdbarch *gdbarch, struct type *type)
346 {
347 if (DEPRECATED_REG_STRUCT_HAS_ADDR_P ()
348 && DEPRECATED_REG_STRUCT_HAS_ADDR (processing_gcc_compilation, type))
349 {
350 CHECK_TYPEDEF (type);
351
352 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
353 || TYPE_CODE (type) == TYPE_CODE_UNION
354 || TYPE_CODE (type) == TYPE_CODE_SET
355 || TYPE_CODE (type) == TYPE_CODE_BITSTRING);
356 }
357
358 return 0;
359 }
360
361 \f
362 /* Functions to manipulate the endianness of the target. */
363
364 /* ``target_byte_order'' is only used when non- multi-arch.
365 Multi-arch targets obtain the current byte order using the
366 TARGET_BYTE_ORDER gdbarch method.
367
368 The choice of initial value is entirely arbitrary. During startup,
369 the function initialize_current_architecture() updates this value
370 based on default byte-order information extracted from BFD. */
371 static int target_byte_order = BFD_ENDIAN_BIG;
372 static int target_byte_order_auto = 1;
373
374 enum bfd_endian
375 selected_byte_order (void)
376 {
377 if (target_byte_order_auto)
378 return BFD_ENDIAN_UNKNOWN;
379 else
380 return target_byte_order;
381 }
382
383 static const char endian_big[] = "big";
384 static const char endian_little[] = "little";
385 static const char endian_auto[] = "auto";
386 static const char *endian_enum[] =
387 {
388 endian_big,
389 endian_little,
390 endian_auto,
391 NULL,
392 };
393 static const char *set_endian_string;
394
395 /* Called by ``show endian''. */
396
397 static void
398 show_endian (char *args, int from_tty)
399 {
400 if (target_byte_order_auto)
401 printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n",
402 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
403 else
404 printf_unfiltered ("The target is assumed to be %s endian\n",
405 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
406 }
407
408 static void
409 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
410 {
411 if (set_endian_string == endian_auto)
412 {
413 target_byte_order_auto = 1;
414 }
415 else if (set_endian_string == endian_little)
416 {
417 struct gdbarch_info info;
418 target_byte_order_auto = 0;
419 gdbarch_info_init (&info);
420 info.byte_order = BFD_ENDIAN_LITTLE;
421 if (! gdbarch_update_p (info))
422 printf_unfiltered ("Little endian target not supported by GDB\n");
423 }
424 else if (set_endian_string == endian_big)
425 {
426 struct gdbarch_info info;
427 target_byte_order_auto = 0;
428 gdbarch_info_init (&info);
429 info.byte_order = BFD_ENDIAN_BIG;
430 if (! gdbarch_update_p (info))
431 printf_unfiltered ("Big endian target not supported by GDB\n");
432 }
433 else
434 internal_error (__FILE__, __LINE__,
435 "set_endian: bad value");
436 show_endian (NULL, from_tty);
437 }
438
439 /* Functions to manipulate the architecture of the target */
440
441 enum set_arch { set_arch_auto, set_arch_manual };
442
443 static int target_architecture_auto = 1;
444
445 static const char *set_architecture_string;
446
447 const char *
448 selected_architecture_name (void)
449 {
450 if (target_architecture_auto)
451 return NULL;
452 else
453 return set_architecture_string;
454 }
455
456 /* Called if the user enters ``show architecture'' without an
457 argument. */
458
459 static void
460 show_architecture (char *args, int from_tty)
461 {
462 const char *arch;
463 arch = TARGET_ARCHITECTURE->printable_name;
464 if (target_architecture_auto)
465 printf_filtered ("The target architecture is set automatically (currently %s)\n", arch);
466 else
467 printf_filtered ("The target architecture is assumed to be %s\n", arch);
468 }
469
470
471 /* Called if the user enters ``set architecture'' with or without an
472 argument. */
473
474 static void
475 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
476 {
477 if (strcmp (set_architecture_string, "auto") == 0)
478 {
479 target_architecture_auto = 1;
480 }
481 else
482 {
483 struct gdbarch_info info;
484 gdbarch_info_init (&info);
485 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
486 if (info.bfd_arch_info == NULL)
487 internal_error (__FILE__, __LINE__,
488 "set_architecture: bfd_scan_arch failed");
489 if (gdbarch_update_p (info))
490 target_architecture_auto = 0;
491 else
492 printf_unfiltered ("Architecture `%s' not recognized.\n",
493 set_architecture_string);
494 }
495 show_architecture (NULL, from_tty);
496 }
497
498 /* Try to select a global architecture that matches "info". Return
499 non-zero if the attempt succeds. */
500 int
501 gdbarch_update_p (struct gdbarch_info info)
502 {
503 struct gdbarch *new_gdbarch = gdbarch_find_by_info (info);
504
505 /* If there no architecture by that name, reject the request. */
506 if (new_gdbarch == NULL)
507 {
508 if (gdbarch_debug)
509 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
510 "Architecture not found\n");
511 return 0;
512 }
513
514 /* If it is the same old architecture, accept the request (but don't
515 swap anything). */
516 if (new_gdbarch == current_gdbarch)
517 {
518 if (gdbarch_debug)
519 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
520 "Architecture 0x%08lx (%s) unchanged\n",
521 (long) new_gdbarch,
522 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
523 return 1;
524 }
525
526 /* It's a new architecture, swap it in. */
527 if (gdbarch_debug)
528 fprintf_unfiltered (gdb_stdlog, "gdbarch_update_p: "
529 "New architecture 0x%08lx (%s) selected\n",
530 (long) new_gdbarch,
531 gdbarch_bfd_arch_info (new_gdbarch)->printable_name);
532 deprecated_current_gdbarch_select_hack (new_gdbarch);
533
534 return 1;
535 }
536
537 /* Return the architecture for ABFD. If no suitable architecture
538 could be find, return NULL. */
539
540 struct gdbarch *
541 gdbarch_from_bfd (bfd *abfd)
542 {
543 struct gdbarch *old_gdbarch = current_gdbarch;
544 struct gdbarch *new_gdbarch;
545 struct gdbarch_info info;
546
547 gdbarch_info_init (&info);
548 info.abfd = abfd;
549 return gdbarch_find_by_info (info);
550 }
551
552 /* Set the dynamic target-system-dependent parameters (architecture,
553 byte-order) using information found in the BFD */
554
555 void
556 set_gdbarch_from_file (bfd *abfd)
557 {
558 struct gdbarch *gdbarch;
559
560 gdbarch = gdbarch_from_bfd (abfd);
561 if (gdbarch == NULL)
562 error ("Architecture of file not recognized.\n");
563 deprecated_current_gdbarch_select_hack (gdbarch);
564 }
565
566 /* Initialize the current architecture. Update the ``set
567 architecture'' command so that it specifies a list of valid
568 architectures. */
569
570 #ifdef DEFAULT_BFD_ARCH
571 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
572 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
573 #else
574 static const bfd_arch_info_type *default_bfd_arch;
575 #endif
576
577 #ifdef DEFAULT_BFD_VEC
578 extern const bfd_target DEFAULT_BFD_VEC;
579 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
580 #else
581 static const bfd_target *default_bfd_vec;
582 #endif
583
584 void
585 initialize_current_architecture (void)
586 {
587 const char **arches = gdbarch_printable_names ();
588
589 /* determine a default architecture and byte order. */
590 struct gdbarch_info info;
591 gdbarch_info_init (&info);
592
593 /* Find a default architecture. */
594 if (info.bfd_arch_info == NULL
595 && default_bfd_arch != NULL)
596 info.bfd_arch_info = default_bfd_arch;
597 if (info.bfd_arch_info == NULL)
598 {
599 /* Choose the architecture by taking the first one
600 alphabetically. */
601 const char *chosen = arches[0];
602 const char **arch;
603 for (arch = arches; *arch != NULL; arch++)
604 {
605 if (strcmp (*arch, chosen) < 0)
606 chosen = *arch;
607 }
608 if (chosen == NULL)
609 internal_error (__FILE__, __LINE__,
610 "initialize_current_architecture: No arch");
611 info.bfd_arch_info = bfd_scan_arch (chosen);
612 if (info.bfd_arch_info == NULL)
613 internal_error (__FILE__, __LINE__,
614 "initialize_current_architecture: Arch not found");
615 }
616
617 /* Take several guesses at a byte order. */
618 if (info.byte_order == BFD_ENDIAN_UNKNOWN
619 && default_bfd_vec != NULL)
620 {
621 /* Extract BFD's default vector's byte order. */
622 switch (default_bfd_vec->byteorder)
623 {
624 case BFD_ENDIAN_BIG:
625 info.byte_order = BFD_ENDIAN_BIG;
626 break;
627 case BFD_ENDIAN_LITTLE:
628 info.byte_order = BFD_ENDIAN_LITTLE;
629 break;
630 default:
631 break;
632 }
633 }
634 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
635 {
636 /* look for ``*el-*'' in the target name. */
637 const char *chp;
638 chp = strchr (target_name, '-');
639 if (chp != NULL
640 && chp - 2 >= target_name
641 && strncmp (chp - 2, "el", 2) == 0)
642 info.byte_order = BFD_ENDIAN_LITTLE;
643 }
644 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
645 {
646 /* Wire it to big-endian!!! */
647 info.byte_order = BFD_ENDIAN_BIG;
648 }
649
650 if (! gdbarch_update_p (info))
651 internal_error (__FILE__, __LINE__,
652 "initialize_current_architecture: Selection of initial architecture failed");
653
654 /* Create the ``set architecture'' command appending ``auto'' to the
655 list of architectures. */
656 {
657 struct cmd_list_element *c;
658 /* Append ``auto''. */
659 int nr;
660 for (nr = 0; arches[nr] != NULL; nr++);
661 arches = xrealloc (arches, sizeof (char*) * (nr + 2));
662 arches[nr + 0] = "auto";
663 arches[nr + 1] = NULL;
664 /* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead
665 of ``const char *''. We just happen to know that the casts are
666 safe. */
667 c = add_set_enum_cmd ("architecture", class_support,
668 arches, &set_architecture_string,
669 "Set architecture of target.",
670 &setlist);
671 set_cmd_sfunc (c, set_architecture);
672 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
673 /* Don't use set_from_show - need to print both auto/manual and
674 current setting. */
675 add_cmd ("architecture", class_support, show_architecture,
676 "Show the current target architecture", &showlist);
677 }
678 }
679
680
681 /* Initialize a gdbarch info to values that will be automatically
682 overridden. Note: Originally, this ``struct info'' was initialized
683 using memset(0). Unfortunately, that ran into problems, namely
684 BFD_ENDIAN_BIG is zero. An explicit initialization function that
685 can explicitly set each field to a well defined value is used. */
686
687 void
688 gdbarch_info_init (struct gdbarch_info *info)
689 {
690 memset (info, 0, sizeof (struct gdbarch_info));
691 info->byte_order = BFD_ENDIAN_UNKNOWN;
692 info->osabi = GDB_OSABI_UNINITIALIZED;
693 }
694
695 /* Similar to init, but this time fill in the blanks. Information is
696 obtained from the specified architecture, global "set ..." options,
697 and explicitly initialized INFO fields. */
698
699 void
700 gdbarch_info_fill (struct gdbarch *gdbarch, struct gdbarch_info *info)
701 {
702 /* "(gdb) set architecture ...". */
703 if (info->bfd_arch_info == NULL
704 && !target_architecture_auto
705 && gdbarch != NULL)
706 info->bfd_arch_info = gdbarch_bfd_arch_info (gdbarch);
707 if (info->bfd_arch_info == NULL
708 && info->abfd != NULL
709 && bfd_get_arch (info->abfd) != bfd_arch_unknown
710 && bfd_get_arch (info->abfd) != bfd_arch_obscure)
711 info->bfd_arch_info = bfd_get_arch_info (info->abfd);
712 if (info->bfd_arch_info == NULL
713 && gdbarch != NULL)
714 info->bfd_arch_info = gdbarch_bfd_arch_info (gdbarch);
715
716 /* "(gdb) set byte-order ...". */
717 if (info->byte_order == BFD_ENDIAN_UNKNOWN
718 && !target_byte_order_auto
719 && gdbarch != NULL)
720 info->byte_order = gdbarch_byte_order (gdbarch);
721 /* From the INFO struct. */
722 if (info->byte_order == BFD_ENDIAN_UNKNOWN
723 && info->abfd != NULL)
724 info->byte_order = (bfd_big_endian (info->abfd) ? BFD_ENDIAN_BIG
725 : bfd_little_endian (info->abfd) ? BFD_ENDIAN_LITTLE
726 : BFD_ENDIAN_UNKNOWN);
727 /* From the current target. */
728 if (info->byte_order == BFD_ENDIAN_UNKNOWN
729 && gdbarch != NULL)
730 info->byte_order = gdbarch_byte_order (gdbarch);
731
732 /* "(gdb) set osabi ...". Handled by gdbarch_lookup_osabi. */
733 if (info->osabi == GDB_OSABI_UNINITIALIZED)
734 info->osabi = gdbarch_lookup_osabi (info->abfd);
735 if (info->osabi == GDB_OSABI_UNINITIALIZED
736 && gdbarch != NULL)
737 info->osabi = gdbarch_osabi (gdbarch);
738
739 /* Must have at least filled in the architecture. */
740 gdb_assert (info->bfd_arch_info != NULL);
741 }
742
743 /* */
744
745 extern initialize_file_ftype _initialize_gdbarch_utils; /* -Wmissing-prototypes */
746
747 void
748 _initialize_gdbarch_utils (void)
749 {
750 struct cmd_list_element *c;
751 c = add_set_enum_cmd ("endian", class_support,
752 endian_enum, &set_endian_string,
753 "Set endianness of target.",
754 &setlist);
755 set_cmd_sfunc (c, set_endian);
756 /* Don't use set_from_show - need to print both auto/manual and
757 current setting. */
758 add_cmd ("endian", class_support, show_endian,
759 "Show the current byte-order", &showlist);
760 }