Index: gdb/ChangeLog
[binutils-gdb.git] / gdb / arch-utils.c
1 /* Dynamic architecture support for GDB, the GNU debugger.
2
3 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
4 Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24
25 #if GDB_MULTI_ARCH
26 #include "arch-utils.h"
27 #include "gdbcmd.h"
28 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
29 #else
30 /* Just include everything in sight so that the every old definition
31 of macro is visible. */
32 #include "symtab.h"
33 #include "frame.h"
34 #include "inferior.h"
35 #include "breakpoint.h"
36 #include "gdb_wait.h"
37 #include "gdbcore.h"
38 #include "gdbcmd.h"
39 #include "target.h"
40 #include "annotate.h"
41 #endif
42 #include "gdb_string.h"
43 #include "regcache.h"
44 #include "gdb_assert.h"
45 #include "sim-regno.h"
46
47 #include "version.h"
48
49 #include "floatformat.h"
50
51 /* Use the program counter to determine the contents and size
52 of a breakpoint instruction. If no target-dependent macro
53 BREAKPOINT_FROM_PC has been defined to implement this function,
54 assume that the breakpoint doesn't depend on the PC, and
55 use the values of the BIG_BREAKPOINT and LITTLE_BREAKPOINT macros.
56 Return a pointer to a string of bytes that encode a breakpoint
57 instruction, stores the length of the string to *lenptr,
58 and optionally adjust the pc to point to the correct memory location
59 for inserting the breakpoint. */
60
61 const unsigned char *
62 legacy_breakpoint_from_pc (CORE_ADDR * pcptr, int *lenptr)
63 {
64 /* {BIG_,LITTLE_}BREAKPOINT is the sequence of bytes we insert for a
65 breakpoint. On some machines, breakpoints are handled by the
66 target environment and we don't have to worry about them here. */
67 #ifdef BIG_BREAKPOINT
68 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
69 {
70 static unsigned char big_break_insn[] = BIG_BREAKPOINT;
71 *lenptr = sizeof (big_break_insn);
72 return big_break_insn;
73 }
74 #endif
75 #ifdef LITTLE_BREAKPOINT
76 if (TARGET_BYTE_ORDER != BFD_ENDIAN_BIG)
77 {
78 static unsigned char little_break_insn[] = LITTLE_BREAKPOINT;
79 *lenptr = sizeof (little_break_insn);
80 return little_break_insn;
81 }
82 #endif
83 #ifdef BREAKPOINT
84 {
85 static unsigned char break_insn[] = BREAKPOINT;
86 *lenptr = sizeof (break_insn);
87 return break_insn;
88 }
89 #endif
90 *lenptr = 0;
91 return NULL;
92 }
93
94 /* Implementation of extract return value that grubs around in the
95 register cache. */
96 void
97 legacy_extract_return_value (struct type *type, struct regcache *regcache,
98 void *valbuf)
99 {
100 char *registers = deprecated_grub_regcache_for_registers (regcache);
101 bfd_byte *buf = valbuf;
102 DEPRECATED_EXTRACT_RETURN_VALUE (type, registers, buf); /* OK */
103 }
104
105 /* Implementation of store return value that grubs the register cache.
106 Takes a local copy of the buffer to avoid const problems. */
107 void
108 legacy_store_return_value (struct type *type, struct regcache *regcache,
109 const void *buf)
110 {
111 bfd_byte *b = alloca (TYPE_LENGTH (type));
112 gdb_assert (regcache == current_regcache);
113 memcpy (b, buf, TYPE_LENGTH (type));
114 DEPRECATED_STORE_RETURN_VALUE (type, b);
115 }
116
117
118 int
119 legacy_register_sim_regno (int regnum)
120 {
121 /* Only makes sense to supply raw registers. */
122 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
123 /* NOTE: cagney/2002-05-13: The old code did it this way and it is
124 suspected that some GDB/SIM combinations may rely on this
125 behavour. The default should be one2one_register_sim_regno
126 (below). */
127 if (REGISTER_NAME (regnum) != NULL
128 && REGISTER_NAME (regnum)[0] != '\0')
129 return regnum;
130 else
131 return LEGACY_SIM_REGNO_IGNORE;
132 }
133
134 int
135 generic_frameless_function_invocation_not (struct frame_info *fi)
136 {
137 return 0;
138 }
139
140 int
141 generic_return_value_on_stack_not (struct type *type)
142 {
143 return 0;
144 }
145
146 CORE_ADDR
147 generic_skip_trampoline_code (CORE_ADDR pc)
148 {
149 return 0;
150 }
151
152 int
153 generic_in_solib_call_trampoline (CORE_ADDR pc, char *name)
154 {
155 return 0;
156 }
157
158 int
159 generic_in_solib_return_trampoline (CORE_ADDR pc, char *name)
160 {
161 return 0;
162 }
163
164 int
165 generic_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
166 {
167 return 0;
168 }
169
170 const char *
171 legacy_register_name (int i)
172 {
173 #ifdef REGISTER_NAMES
174 static char *names[] = REGISTER_NAMES;
175 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
176 return NULL;
177 else
178 return names[i];
179 #else
180 internal_error (__FILE__, __LINE__,
181 "legacy_register_name: called.");
182 return NULL;
183 #endif
184 }
185
186 #if defined (CALL_DUMMY)
187 LONGEST legacy_call_dummy_words[] = CALL_DUMMY;
188 #else
189 LONGEST legacy_call_dummy_words[1];
190 #endif
191 int legacy_sizeof_call_dummy_words = sizeof (legacy_call_dummy_words);
192
193 void
194 generic_remote_translate_xfer_address (struct gdbarch *gdbarch,
195 struct regcache *regcache,
196 CORE_ADDR gdb_addr, int gdb_len,
197 CORE_ADDR * rem_addr, int *rem_len)
198 {
199 *rem_addr = gdb_addr;
200 *rem_len = gdb_len;
201 }
202
203 int
204 generic_prologue_frameless_p (CORE_ADDR ip)
205 {
206 return ip == SKIP_PROLOGUE (ip);
207 }
208
209 /* New/multi-arched targets should use the correct gdbarch field
210 instead of using this global pointer. */
211 int
212 legacy_print_insn (bfd_vma vma, disassemble_info *info)
213 {
214 return (*deprecated_tm_print_insn) (vma, info);
215 }
216
217 /* Helper functions for INNER_THAN */
218
219 int
220 core_addr_lessthan (CORE_ADDR lhs, CORE_ADDR rhs)
221 {
222 return (lhs < rhs);
223 }
224
225 int
226 core_addr_greaterthan (CORE_ADDR lhs, CORE_ADDR rhs)
227 {
228 return (lhs > rhs);
229 }
230
231
232 /* Helper functions for TARGET_{FLOAT,DOUBLE}_FORMAT */
233
234 const struct floatformat *
235 default_float_format (struct gdbarch *gdbarch)
236 {
237 #if GDB_MULTI_ARCH
238 int byte_order = gdbarch_byte_order (gdbarch);
239 #else
240 int byte_order = TARGET_BYTE_ORDER;
241 #endif
242 switch (byte_order)
243 {
244 case BFD_ENDIAN_BIG:
245 return &floatformat_ieee_single_big;
246 case BFD_ENDIAN_LITTLE:
247 return &floatformat_ieee_single_little;
248 default:
249 internal_error (__FILE__, __LINE__,
250 "default_float_format: bad byte order");
251 }
252 }
253
254
255 const struct floatformat *
256 default_double_format (struct gdbarch *gdbarch)
257 {
258 #if GDB_MULTI_ARCH
259 int byte_order = gdbarch_byte_order (gdbarch);
260 #else
261 int byte_order = TARGET_BYTE_ORDER;
262 #endif
263 switch (byte_order)
264 {
265 case BFD_ENDIAN_BIG:
266 return &floatformat_ieee_double_big;
267 case BFD_ENDIAN_LITTLE:
268 return &floatformat_ieee_double_little;
269 default:
270 internal_error (__FILE__, __LINE__,
271 "default_double_format: bad byte order");
272 }
273 }
274
275 /* Misc helper functions for targets. */
276
277 int
278 frame_num_args_unknown (struct frame_info *fi)
279 {
280 return -1;
281 }
282
283
284 int
285 generic_register_convertible_not (int num)
286 {
287 return 0;
288 }
289
290
291 /* Under some ABI's that specify the `struct convention' for returning
292 structures by value, by the time we've returned from the function,
293 the return value is sitting there in the caller's buffer, but GDB
294 has no way to find the address of that buffer.
295
296 On such architectures, use this function as your
297 extract_struct_value_address method. When asked to a struct
298 returned by value in this fashion, GDB will print a nice error
299 message, instead of garbage. */
300 CORE_ADDR
301 generic_cannot_extract_struct_value_address (char *dummy)
302 {
303 return 0;
304 }
305
306 CORE_ADDR
307 core_addr_identity (CORE_ADDR addr)
308 {
309 return addr;
310 }
311
312 int
313 no_op_reg_to_regnum (int reg)
314 {
315 return reg;
316 }
317
318 /* Default prepare_to_procced(). */
319 int
320 default_prepare_to_proceed (int select_it)
321 {
322 return 0;
323 }
324
325 /* Generic prepare_to_proceed(). This one should be suitable for most
326 targets that support threads. */
327 int
328 generic_prepare_to_proceed (int select_it)
329 {
330 ptid_t wait_ptid;
331 struct target_waitstatus wait_status;
332
333 /* Get the last target status returned by target_wait(). */
334 get_last_target_status (&wait_ptid, &wait_status);
335
336 /* Make sure we were stopped either at a breakpoint, or because
337 of a Ctrl-C. */
338 if (wait_status.kind != TARGET_WAITKIND_STOPPED
339 || (wait_status.value.sig != TARGET_SIGNAL_TRAP &&
340 wait_status.value.sig != TARGET_SIGNAL_INT))
341 {
342 return 0;
343 }
344
345 if (!ptid_equal (wait_ptid, minus_one_ptid)
346 && !ptid_equal (inferior_ptid, wait_ptid))
347 {
348 /* Switched over from WAIT_PID. */
349 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
350
351 if (wait_pc != read_pc ())
352 {
353 if (select_it)
354 {
355 /* Switch back to WAIT_PID thread. */
356 inferior_ptid = wait_ptid;
357
358 /* FIXME: This stuff came from switch_to_thread() in
359 thread.c (which should probably be a public function). */
360 flush_cached_frames ();
361 registers_changed ();
362 stop_pc = wait_pc;
363 select_frame (get_current_frame ());
364 }
365 /* We return 1 to indicate that there is a breakpoint here,
366 so we need to step over it before continuing to avoid
367 hitting it straight away. */
368 if (breakpoint_here_p (wait_pc))
369 {
370 return 1;
371 }
372 }
373 }
374 return 0;
375
376 }
377
378 CORE_ADDR
379 init_frame_pc_noop (int fromleaf, struct frame_info *prev)
380 {
381 /* Do nothing, implies return the same PC value. */
382 return get_frame_pc (prev);
383 }
384
385 CORE_ADDR
386 init_frame_pc_default (int fromleaf, struct frame_info *prev)
387 {
388 if (fromleaf && DEPRECATED_SAVED_PC_AFTER_CALL_P ())
389 return DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev));
390 else if (get_next_frame (prev) != NULL)
391 return DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev));
392 else
393 return read_pc ();
394 }
395
396 void
397 default_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
398 {
399 return;
400 }
401
402 void
403 default_coff_make_msymbol_special (int val, struct minimal_symbol *msym)
404 {
405 return;
406 }
407
408 int
409 cannot_register_not (int regnum)
410 {
411 return 0;
412 }
413
414 /* Legacy version of target_virtual_frame_pointer(). Assumes that
415 there is an DEPRECATED_FP_REGNUM and that it is the same, cooked or
416 raw. */
417
418 void
419 legacy_virtual_frame_pointer (CORE_ADDR pc,
420 int *frame_regnum,
421 LONGEST *frame_offset)
422 {
423 /* FIXME: cagney/2002-09-13: This code is used when identifying the
424 frame pointer of the current PC. It is assuming that a single
425 register and an offset can determine this. I think it should
426 instead generate a byte code expression as that would work better
427 with things like Dwarf2's CFI. */
428 if (DEPRECATED_FP_REGNUM >= 0 && DEPRECATED_FP_REGNUM < NUM_REGS)
429 *frame_regnum = DEPRECATED_FP_REGNUM;
430 else if (SP_REGNUM >= 0 && SP_REGNUM < NUM_REGS)
431 *frame_regnum = SP_REGNUM;
432 else
433 /* Should this be an internal error? I guess so, it is reflecting
434 an architectural limitation in the current design. */
435 internal_error (__FILE__, __LINE__, "No virtual frame pointer available");
436 *frame_offset = 0;
437 }
438
439 /* Assume the world is sane, every register's virtual and real size
440 is identical. */
441
442 int
443 generic_register_size (int regnum)
444 {
445 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
446 if (gdbarch_register_type_p (current_gdbarch))
447 return TYPE_LENGTH (gdbarch_register_type (current_gdbarch, regnum));
448 else
449 /* FIXME: cagney/2003-03-01: Once all architectures implement
450 gdbarch_register_type(), this entire function can go away. It
451 is made obsolete by register_size(). */
452 return TYPE_LENGTH (REGISTER_VIRTUAL_TYPE (regnum)); /* OK */
453 }
454
455 /* Assume all registers are adjacent. */
456
457 int
458 generic_register_byte (int regnum)
459 {
460 int byte;
461 int i;
462 gdb_assert (regnum >= 0 && regnum < NUM_REGS + NUM_PSEUDO_REGS);
463 byte = 0;
464 for (i = 0; i < regnum; i++)
465 {
466 byte += generic_register_size (i);
467 }
468 return byte;
469 }
470
471 \f
472 int
473 legacy_pc_in_sigtramp (CORE_ADDR pc, char *name)
474 {
475 #if !defined (IN_SIGTRAMP)
476 if (SIGTRAMP_START_P ())
477 return (pc) >= SIGTRAMP_START (pc) && (pc) < SIGTRAMP_END (pc);
478 else
479 return name && strcmp ("_sigtramp", name) == 0;
480 #else
481 return IN_SIGTRAMP (pc, name);
482 #endif
483 }
484
485 int
486 legacy_convert_register_p (int regnum)
487 {
488 return REGISTER_CONVERTIBLE (regnum);
489 }
490
491 void
492 legacy_register_to_value (int regnum, struct type *type,
493 char *from, char *to)
494 {
495 REGISTER_CONVERT_TO_VIRTUAL (regnum, type, from, to);
496 }
497
498 void
499 legacy_value_to_register (struct type *type, int regnum,
500 char *from, char *to)
501 {
502 REGISTER_CONVERT_TO_RAW (type, regnum, from, to);
503 }
504
505 \f
506 /* Functions to manipulate the endianness of the target. */
507
508 /* ``target_byte_order'' is only used when non- multi-arch.
509 Multi-arch targets obtain the current byte order using the
510 TARGET_BYTE_ORDER gdbarch method.
511
512 The choice of initial value is entirely arbitrary. During startup,
513 the function initialize_current_architecture() updates this value
514 based on default byte-order information extracted from BFD. */
515 int target_byte_order = BFD_ENDIAN_BIG;
516 int target_byte_order_auto = 1;
517
518 static const char endian_big[] = "big";
519 static const char endian_little[] = "little";
520 static const char endian_auto[] = "auto";
521 static const char *endian_enum[] =
522 {
523 endian_big,
524 endian_little,
525 endian_auto,
526 NULL,
527 };
528 static const char *set_endian_string;
529
530 /* Called by ``show endian''. */
531
532 static void
533 show_endian (char *args, int from_tty)
534 {
535 if (TARGET_BYTE_ORDER_AUTO)
536 printf_unfiltered ("The target endianness is set automatically (currently %s endian)\n",
537 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
538 else
539 printf_unfiltered ("The target is assumed to be %s endian\n",
540 (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little"));
541 }
542
543 static void
544 set_endian (char *ignore_args, int from_tty, struct cmd_list_element *c)
545 {
546 if (set_endian_string == endian_auto)
547 {
548 target_byte_order_auto = 1;
549 }
550 else if (set_endian_string == endian_little)
551 {
552 target_byte_order_auto = 0;
553 if (GDB_MULTI_ARCH)
554 {
555 struct gdbarch_info info;
556 gdbarch_info_init (&info);
557 info.byte_order = BFD_ENDIAN_LITTLE;
558 if (! gdbarch_update_p (info))
559 {
560 printf_unfiltered ("Little endian target not supported by GDB\n");
561 }
562 }
563 else
564 {
565 target_byte_order = BFD_ENDIAN_LITTLE;
566 }
567 }
568 else if (set_endian_string == endian_big)
569 {
570 target_byte_order_auto = 0;
571 if (GDB_MULTI_ARCH)
572 {
573 struct gdbarch_info info;
574 gdbarch_info_init (&info);
575 info.byte_order = BFD_ENDIAN_BIG;
576 if (! gdbarch_update_p (info))
577 {
578 printf_unfiltered ("Big endian target not supported by GDB\n");
579 }
580 }
581 else
582 {
583 target_byte_order = BFD_ENDIAN_BIG;
584 }
585 }
586 else
587 internal_error (__FILE__, __LINE__,
588 "set_endian: bad value");
589 show_endian (NULL, from_tty);
590 }
591
592 /* Set the endianness from a BFD. */
593
594 static void
595 set_endian_from_file (bfd *abfd)
596 {
597 int want;
598 if (GDB_MULTI_ARCH)
599 internal_error (__FILE__, __LINE__,
600 "set_endian_from_file: not for multi-arch");
601 if (bfd_big_endian (abfd))
602 want = BFD_ENDIAN_BIG;
603 else
604 want = BFD_ENDIAN_LITTLE;
605 if (TARGET_BYTE_ORDER_AUTO)
606 target_byte_order = want;
607 else if (TARGET_BYTE_ORDER != want)
608 warning ("%s endian file does not match %s endian target.",
609 want == BFD_ENDIAN_BIG ? "big" : "little",
610 TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? "big" : "little");
611 }
612
613
614 /* Functions to manipulate the architecture of the target */
615
616 enum set_arch { set_arch_auto, set_arch_manual };
617
618 int target_architecture_auto = 1;
619
620 const char *set_architecture_string;
621
622 /* Old way of changing the current architecture. */
623
624 extern const struct bfd_arch_info bfd_default_arch_struct;
625 const struct bfd_arch_info *target_architecture = &bfd_default_arch_struct;
626 int (*target_architecture_hook) (const struct bfd_arch_info *ap);
627
628 static int
629 arch_ok (const struct bfd_arch_info *arch)
630 {
631 if (GDB_MULTI_ARCH)
632 internal_error (__FILE__, __LINE__,
633 "arch_ok: not multi-arched");
634 /* Should be performing the more basic check that the binary is
635 compatible with GDB. */
636 /* Check with the target that the architecture is valid. */
637 return (target_architecture_hook == NULL
638 || target_architecture_hook (arch));
639 }
640
641 static void
642 set_arch (const struct bfd_arch_info *arch,
643 enum set_arch type)
644 {
645 if (GDB_MULTI_ARCH)
646 internal_error (__FILE__, __LINE__,
647 "set_arch: not multi-arched");
648 switch (type)
649 {
650 case set_arch_auto:
651 if (!arch_ok (arch))
652 warning ("Target may not support %s architecture",
653 arch->printable_name);
654 target_architecture = arch;
655 break;
656 case set_arch_manual:
657 if (!arch_ok (arch))
658 {
659 printf_unfiltered ("Target does not support `%s' architecture.\n",
660 arch->printable_name);
661 }
662 else
663 {
664 target_architecture_auto = 0;
665 target_architecture = arch;
666 }
667 break;
668 }
669 if (gdbarch_debug)
670 gdbarch_dump (current_gdbarch, gdb_stdlog);
671 }
672
673 /* Set the architecture from arch/machine (deprecated) */
674
675 void
676 set_architecture_from_arch_mach (enum bfd_architecture arch,
677 unsigned long mach)
678 {
679 const struct bfd_arch_info *wanted = bfd_lookup_arch (arch, mach);
680 if (GDB_MULTI_ARCH)
681 internal_error (__FILE__, __LINE__,
682 "set_architecture_from_arch_mach: not multi-arched");
683 if (wanted != NULL)
684 set_arch (wanted, set_arch_manual);
685 else
686 internal_error (__FILE__, __LINE__,
687 "gdbarch: hardwired architecture/machine not recognized");
688 }
689
690 /* Set the architecture from a BFD (deprecated) */
691
692 static void
693 set_architecture_from_file (bfd *abfd)
694 {
695 const struct bfd_arch_info *wanted = bfd_get_arch_info (abfd);
696 if (GDB_MULTI_ARCH)
697 internal_error (__FILE__, __LINE__,
698 "set_architecture_from_file: not multi-arched");
699 if (target_architecture_auto)
700 {
701 set_arch (wanted, set_arch_auto);
702 }
703 else if (wanted != target_architecture)
704 {
705 warning ("%s architecture file may be incompatible with %s target.",
706 wanted->printable_name,
707 target_architecture->printable_name);
708 }
709 }
710
711
712 /* Called if the user enters ``show architecture'' without an
713 argument. */
714
715 static void
716 show_architecture (char *args, int from_tty)
717 {
718 const char *arch;
719 arch = TARGET_ARCHITECTURE->printable_name;
720 if (target_architecture_auto)
721 printf_filtered ("The target architecture is set automatically (currently %s)\n", arch);
722 else
723 printf_filtered ("The target architecture is assumed to be %s\n", arch);
724 }
725
726
727 /* Called if the user enters ``set architecture'' with or without an
728 argument. */
729
730 static void
731 set_architecture (char *ignore_args, int from_tty, struct cmd_list_element *c)
732 {
733 if (strcmp (set_architecture_string, "auto") == 0)
734 {
735 target_architecture_auto = 1;
736 }
737 else if (GDB_MULTI_ARCH)
738 {
739 struct gdbarch_info info;
740 gdbarch_info_init (&info);
741 info.bfd_arch_info = bfd_scan_arch (set_architecture_string);
742 if (info.bfd_arch_info == NULL)
743 internal_error (__FILE__, __LINE__,
744 "set_architecture: bfd_scan_arch failed");
745 if (gdbarch_update_p (info))
746 target_architecture_auto = 0;
747 else
748 printf_unfiltered ("Architecture `%s' not recognized.\n",
749 set_architecture_string);
750 }
751 else
752 {
753 const struct bfd_arch_info *arch
754 = bfd_scan_arch (set_architecture_string);
755 if (arch == NULL)
756 internal_error (__FILE__, __LINE__,
757 "set_architecture: bfd_scan_arch failed");
758 set_arch (arch, set_arch_manual);
759 }
760 show_architecture (NULL, from_tty);
761 }
762
763 /* Set the dynamic target-system-dependent parameters (architecture,
764 byte-order) using information found in the BFD */
765
766 void
767 set_gdbarch_from_file (bfd *abfd)
768 {
769 if (GDB_MULTI_ARCH)
770 {
771 struct gdbarch_info info;
772 gdbarch_info_init (&info);
773 info.abfd = abfd;
774 if (! gdbarch_update_p (info))
775 error ("Architecture of file not recognized.\n");
776 }
777 else
778 {
779 set_architecture_from_file (abfd);
780 set_endian_from_file (abfd);
781 }
782 }
783
784 /* Initialize the current architecture. Update the ``set
785 architecture'' command so that it specifies a list of valid
786 architectures. */
787
788 #ifdef DEFAULT_BFD_ARCH
789 extern const bfd_arch_info_type DEFAULT_BFD_ARCH;
790 static const bfd_arch_info_type *default_bfd_arch = &DEFAULT_BFD_ARCH;
791 #else
792 static const bfd_arch_info_type *default_bfd_arch;
793 #endif
794
795 #ifdef DEFAULT_BFD_VEC
796 extern const bfd_target DEFAULT_BFD_VEC;
797 static const bfd_target *default_bfd_vec = &DEFAULT_BFD_VEC;
798 #else
799 static const bfd_target *default_bfd_vec;
800 #endif
801
802 void
803 initialize_current_architecture (void)
804 {
805 const char **arches = gdbarch_printable_names ();
806
807 /* determine a default architecture and byte order. */
808 struct gdbarch_info info;
809 gdbarch_info_init (&info);
810
811 /* Find a default architecture. */
812 if (info.bfd_arch_info == NULL
813 && default_bfd_arch != NULL)
814 info.bfd_arch_info = default_bfd_arch;
815 if (info.bfd_arch_info == NULL)
816 {
817 /* Choose the architecture by taking the first one
818 alphabetically. */
819 const char *chosen = arches[0];
820 const char **arch;
821 for (arch = arches; *arch != NULL; arch++)
822 {
823 if (strcmp (*arch, chosen) < 0)
824 chosen = *arch;
825 }
826 if (chosen == NULL)
827 internal_error (__FILE__, __LINE__,
828 "initialize_current_architecture: No arch");
829 info.bfd_arch_info = bfd_scan_arch (chosen);
830 if (info.bfd_arch_info == NULL)
831 internal_error (__FILE__, __LINE__,
832 "initialize_current_architecture: Arch not found");
833 }
834
835 /* Take several guesses at a byte order. */
836 if (info.byte_order == BFD_ENDIAN_UNKNOWN
837 && default_bfd_vec != NULL)
838 {
839 /* Extract BFD's default vector's byte order. */
840 switch (default_bfd_vec->byteorder)
841 {
842 case BFD_ENDIAN_BIG:
843 info.byte_order = BFD_ENDIAN_BIG;
844 break;
845 case BFD_ENDIAN_LITTLE:
846 info.byte_order = BFD_ENDIAN_LITTLE;
847 break;
848 default:
849 break;
850 }
851 }
852 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
853 {
854 /* look for ``*el-*'' in the target name. */
855 const char *chp;
856 chp = strchr (target_name, '-');
857 if (chp != NULL
858 && chp - 2 >= target_name
859 && strncmp (chp - 2, "el", 2) == 0)
860 info.byte_order = BFD_ENDIAN_LITTLE;
861 }
862 if (info.byte_order == BFD_ENDIAN_UNKNOWN)
863 {
864 /* Wire it to big-endian!!! */
865 info.byte_order = BFD_ENDIAN_BIG;
866 }
867
868 if (GDB_MULTI_ARCH)
869 {
870 if (! gdbarch_update_p (info))
871 {
872 internal_error (__FILE__, __LINE__,
873 "initialize_current_architecture: Selection of initial architecture failed");
874 }
875 }
876 else
877 {
878 /* If the multi-arch logic comes up with a byte-order (from BFD)
879 use it for the non-multi-arch case. */
880 if (info.byte_order != BFD_ENDIAN_UNKNOWN)
881 target_byte_order = info.byte_order;
882 initialize_non_multiarch ();
883 }
884
885 /* Create the ``set architecture'' command appending ``auto'' to the
886 list of architectures. */
887 {
888 struct cmd_list_element *c;
889 /* Append ``auto''. */
890 int nr;
891 for (nr = 0; arches[nr] != NULL; nr++);
892 arches = xrealloc (arches, sizeof (char*) * (nr + 2));
893 arches[nr + 0] = "auto";
894 arches[nr + 1] = NULL;
895 /* FIXME: add_set_enum_cmd() uses an array of ``char *'' instead
896 of ``const char *''. We just happen to know that the casts are
897 safe. */
898 c = add_set_enum_cmd ("architecture", class_support,
899 arches, &set_architecture_string,
900 "Set architecture of target.",
901 &setlist);
902 set_cmd_sfunc (c, set_architecture);
903 add_alias_cmd ("processor", "architecture", class_support, 1, &setlist);
904 /* Don't use set_from_show - need to print both auto/manual and
905 current setting. */
906 add_cmd ("architecture", class_support, show_architecture,
907 "Show the current target architecture", &showlist);
908 }
909 }
910
911
912 /* Initialize a gdbarch info to values that will be automatically
913 overridden. Note: Originally, this ``struct info'' was initialized
914 using memset(0). Unfortunatly, that ran into problems, namely
915 BFD_ENDIAN_BIG is zero. An explicit initialization function that
916 can explicitly set each field to a well defined value is used. */
917
918 void
919 gdbarch_info_init (struct gdbarch_info *info)
920 {
921 memset (info, 0, sizeof (struct gdbarch_info));
922 info->byte_order = BFD_ENDIAN_UNKNOWN;
923 info->osabi = GDB_OSABI_UNINITIALIZED;
924 }
925
926 /* */
927
928 extern initialize_file_ftype _initialize_gdbarch_utils;
929
930 void
931 _initialize_gdbarch_utils (void)
932 {
933 struct cmd_list_element *c;
934 c = add_set_enum_cmd ("endian", class_support,
935 endian_enum, &set_endian_string,
936 "Set endianness of target.",
937 &setlist);
938 set_cmd_sfunc (c, set_endian);
939 /* Don't use set_from_show - need to print both auto/manual and
940 current setting. */
941 add_cmd ("endian", class_support, show_endian,
942 "Show the current byte-order", &showlist);
943 }