gdb/
[binutils-gdb.git] / gdb / arm-linux-tdep.c
1 /* GNU/Linux on ARM target support.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "target.h"
23 #include "value.h"
24 #include "gdbtypes.h"
25 #include "floatformat.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "regcache.h"
29 #include "doublest.h"
30 #include "solib-svr4.h"
31 #include "osabi.h"
32 #include "regset.h"
33 #include "trad-frame.h"
34 #include "tramp-frame.h"
35 #include "breakpoint.h"
36
37 #include "arm-tdep.h"
38 #include "arm-linux-tdep.h"
39 #include "linux-tdep.h"
40 #include "glibc-tdep.h"
41 #include "arch-utils.h"
42 #include "inferior.h"
43 #include "gdbthread.h"
44 #include "symfile.h"
45
46 #include "gdb_string.h"
47
48 extern int arm_apcs_32;
49
50 /* Under ARM GNU/Linux the traditional way of performing a breakpoint
51 is to execute a particular software interrupt, rather than use a
52 particular undefined instruction to provoke a trap. Upon exection
53 of the software interrupt the kernel stops the inferior with a
54 SIGTRAP, and wakes the debugger. */
55
56 static const char arm_linux_arm_le_breakpoint[] = { 0x01, 0x00, 0x9f, 0xef };
57
58 static const char arm_linux_arm_be_breakpoint[] = { 0xef, 0x9f, 0x00, 0x01 };
59
60 /* However, the EABI syscall interface (new in Nov. 2005) does not look at
61 the operand of the swi if old-ABI compatibility is disabled. Therefore,
62 use an undefined instruction instead. This is supported as of kernel
63 version 2.5.70 (May 2003), so should be a safe assumption for EABI
64 binaries. */
65
66 static const char eabi_linux_arm_le_breakpoint[] = { 0xf0, 0x01, 0xf0, 0xe7 };
67
68 static const char eabi_linux_arm_be_breakpoint[] = { 0xe7, 0xf0, 0x01, 0xf0 };
69
70 /* All the kernels which support Thumb support using a specific undefined
71 instruction for the Thumb breakpoint. */
72
73 static const char arm_linux_thumb_be_breakpoint[] = {0xde, 0x01};
74
75 static const char arm_linux_thumb_le_breakpoint[] = {0x01, 0xde};
76
77 /* Description of the longjmp buffer. */
78 #define ARM_LINUX_JB_ELEMENT_SIZE INT_REGISTER_SIZE
79 #define ARM_LINUX_JB_PC 21
80
81 /*
82 Dynamic Linking on ARM GNU/Linux
83 --------------------------------
84
85 Note: PLT = procedure linkage table
86 GOT = global offset table
87
88 As much as possible, ELF dynamic linking defers the resolution of
89 jump/call addresses until the last minute. The technique used is
90 inspired by the i386 ELF design, and is based on the following
91 constraints.
92
93 1) The calling technique should not force a change in the assembly
94 code produced for apps; it MAY cause changes in the way assembly
95 code is produced for position independent code (i.e. shared
96 libraries).
97
98 2) The technique must be such that all executable areas must not be
99 modified; and any modified areas must not be executed.
100
101 To do this, there are three steps involved in a typical jump:
102
103 1) in the code
104 2) through the PLT
105 3) using a pointer from the GOT
106
107 When the executable or library is first loaded, each GOT entry is
108 initialized to point to the code which implements dynamic name
109 resolution and code finding. This is normally a function in the
110 program interpreter (on ARM GNU/Linux this is usually
111 ld-linux.so.2, but it does not have to be). On the first
112 invocation, the function is located and the GOT entry is replaced
113 with the real function address. Subsequent calls go through steps
114 1, 2 and 3 and end up calling the real code.
115
116 1) In the code:
117
118 b function_call
119 bl function_call
120
121 This is typical ARM code using the 26 bit relative branch or branch
122 and link instructions. The target of the instruction
123 (function_call is usually the address of the function to be called.
124 In position independent code, the target of the instruction is
125 actually an entry in the PLT when calling functions in a shared
126 library. Note that this call is identical to a normal function
127 call, only the target differs.
128
129 2) In the PLT:
130
131 The PLT is a synthetic area, created by the linker. It exists in
132 both executables and libraries. It is an array of stubs, one per
133 imported function call. It looks like this:
134
135 PLT[0]:
136 str lr, [sp, #-4]! @push the return address (lr)
137 ldr lr, [pc, #16] @load from 6 words ahead
138 add lr, pc, lr @form an address for GOT[0]
139 ldr pc, [lr, #8]! @jump to the contents of that addr
140
141 The return address (lr) is pushed on the stack and used for
142 calculations. The load on the second line loads the lr with
143 &GOT[3] - . - 20. The addition on the third leaves:
144
145 lr = (&GOT[3] - . - 20) + (. + 8)
146 lr = (&GOT[3] - 12)
147 lr = &GOT[0]
148
149 On the fourth line, the pc and lr are both updated, so that:
150
151 pc = GOT[2]
152 lr = &GOT[0] + 8
153 = &GOT[2]
154
155 NOTE: PLT[0] borrows an offset .word from PLT[1]. This is a little
156 "tight", but allows us to keep all the PLT entries the same size.
157
158 PLT[n+1]:
159 ldr ip, [pc, #4] @load offset from gotoff
160 add ip, pc, ip @add the offset to the pc
161 ldr pc, [ip] @jump to that address
162 gotoff: .word GOT[n+3] - .
163
164 The load on the first line, gets an offset from the fourth word of
165 the PLT entry. The add on the second line makes ip = &GOT[n+3],
166 which contains either a pointer to PLT[0] (the fixup trampoline) or
167 a pointer to the actual code.
168
169 3) In the GOT:
170
171 The GOT contains helper pointers for both code (PLT) fixups and
172 data fixups. The first 3 entries of the GOT are special. The next
173 M entries (where M is the number of entries in the PLT) belong to
174 the PLT fixups. The next D (all remaining) entries belong to
175 various data fixups. The actual size of the GOT is 3 + M + D.
176
177 The GOT is also a synthetic area, created by the linker. It exists
178 in both executables and libraries. When the GOT is first
179 initialized , all the GOT entries relating to PLT fixups are
180 pointing to code back at PLT[0].
181
182 The special entries in the GOT are:
183
184 GOT[0] = linked list pointer used by the dynamic loader
185 GOT[1] = pointer to the reloc table for this module
186 GOT[2] = pointer to the fixup/resolver code
187
188 The first invocation of function call comes through and uses the
189 fixup/resolver code. On the entry to the fixup/resolver code:
190
191 ip = &GOT[n+3]
192 lr = &GOT[2]
193 stack[0] = return address (lr) of the function call
194 [r0, r1, r2, r3] are still the arguments to the function call
195
196 This is enough information for the fixup/resolver code to work
197 with. Before the fixup/resolver code returns, it actually calls
198 the requested function and repairs &GOT[n+3]. */
199
200 /* The constants below were determined by examining the following files
201 in the linux kernel sources:
202
203 arch/arm/kernel/signal.c
204 - see SWI_SYS_SIGRETURN and SWI_SYS_RT_SIGRETURN
205 include/asm-arm/unistd.h
206 - see __NR_sigreturn, __NR_rt_sigreturn, and __NR_SYSCALL_BASE */
207
208 #define ARM_LINUX_SIGRETURN_INSTR 0xef900077
209 #define ARM_LINUX_RT_SIGRETURN_INSTR 0xef9000ad
210
211 /* For ARM EABI, the syscall number is not in the SWI instruction
212 (instead it is loaded into r7). We recognize the pattern that
213 glibc uses... alternatively, we could arrange to do this by
214 function name, but they are not always exported. */
215 #define ARM_SET_R7_SIGRETURN 0xe3a07077
216 #define ARM_SET_R7_RT_SIGRETURN 0xe3a070ad
217 #define ARM_EABI_SYSCALL 0xef000000
218
219 /* OABI syscall restart trampoline, used for EABI executables too
220 whenever OABI support has been enabled in the kernel. */
221 #define ARM_OABI_SYSCALL_RESTART_SYSCALL 0xef900000
222 #define ARM_LDR_PC_SP_12 0xe49df00c
223
224 static void
225 arm_linux_sigtramp_cache (struct frame_info *this_frame,
226 struct trad_frame_cache *this_cache,
227 CORE_ADDR func, int regs_offset)
228 {
229 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
230 CORE_ADDR base = sp + regs_offset;
231 int i;
232
233 for (i = 0; i < 16; i++)
234 trad_frame_set_reg_addr (this_cache, i, base + i * 4);
235
236 trad_frame_set_reg_addr (this_cache, ARM_PS_REGNUM, base + 16 * 4);
237
238 /* The VFP or iWMMXt registers may be saved on the stack, but there's
239 no reliable way to restore them (yet). */
240
241 /* Save a frame ID. */
242 trad_frame_set_id (this_cache, frame_id_build (sp, func));
243 }
244
245 /* There are a couple of different possible stack layouts that
246 we need to support.
247
248 Before version 2.6.18, the kernel used completely independent
249 layouts for non-RT and RT signals. For non-RT signals the stack
250 began directly with a struct sigcontext. For RT signals the stack
251 began with two redundant pointers (to the siginfo and ucontext),
252 and then the siginfo and ucontext.
253
254 As of version 2.6.18, the non-RT signal frame layout starts with
255 a ucontext and the RT signal frame starts with a siginfo and then
256 a ucontext. Also, the ucontext now has a designated save area
257 for coprocessor registers.
258
259 For RT signals, it's easy to tell the difference: we look for
260 pinfo, the pointer to the siginfo. If it has the expected
261 value, we have an old layout. If it doesn't, we have the new
262 layout.
263
264 For non-RT signals, it's a bit harder. We need something in one
265 layout or the other with a recognizable offset and value. We can't
266 use the return trampoline, because ARM usually uses SA_RESTORER,
267 in which case the stack return trampoline is not filled in.
268 We can't use the saved stack pointer, because sigaltstack might
269 be in use. So for now we guess the new layout... */
270
271 /* There are three words (trap_no, error_code, oldmask) in
272 struct sigcontext before r0. */
273 #define ARM_SIGCONTEXT_R0 0xc
274
275 /* There are five words (uc_flags, uc_link, and three for uc_stack)
276 in the ucontext_t before the sigcontext. */
277 #define ARM_UCONTEXT_SIGCONTEXT 0x14
278
279 /* There are three elements in an rt_sigframe before the ucontext:
280 pinfo, puc, and info. The first two are pointers and the third
281 is a struct siginfo, with size 128 bytes. We could follow puc
282 to the ucontext, but it's simpler to skip the whole thing. */
283 #define ARM_OLD_RT_SIGFRAME_SIGINFO 0x8
284 #define ARM_OLD_RT_SIGFRAME_UCONTEXT 0x88
285
286 #define ARM_NEW_RT_SIGFRAME_UCONTEXT 0x80
287
288 #define ARM_NEW_SIGFRAME_MAGIC 0x5ac3c35a
289
290 static void
291 arm_linux_sigreturn_init (const struct tramp_frame *self,
292 struct frame_info *this_frame,
293 struct trad_frame_cache *this_cache,
294 CORE_ADDR func)
295 {
296 struct gdbarch *gdbarch = get_frame_arch (this_frame);
297 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
298 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
299 ULONGEST uc_flags = read_memory_unsigned_integer (sp, 4, byte_order);
300
301 if (uc_flags == ARM_NEW_SIGFRAME_MAGIC)
302 arm_linux_sigtramp_cache (this_frame, this_cache, func,
303 ARM_UCONTEXT_SIGCONTEXT
304 + ARM_SIGCONTEXT_R0);
305 else
306 arm_linux_sigtramp_cache (this_frame, this_cache, func,
307 ARM_SIGCONTEXT_R0);
308 }
309
310 static void
311 arm_linux_rt_sigreturn_init (const struct tramp_frame *self,
312 struct frame_info *this_frame,
313 struct trad_frame_cache *this_cache,
314 CORE_ADDR func)
315 {
316 struct gdbarch *gdbarch = get_frame_arch (this_frame);
317 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
318 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
319 ULONGEST pinfo = read_memory_unsigned_integer (sp, 4, byte_order);
320
321 if (pinfo == sp + ARM_OLD_RT_SIGFRAME_SIGINFO)
322 arm_linux_sigtramp_cache (this_frame, this_cache, func,
323 ARM_OLD_RT_SIGFRAME_UCONTEXT
324 + ARM_UCONTEXT_SIGCONTEXT
325 + ARM_SIGCONTEXT_R0);
326 else
327 arm_linux_sigtramp_cache (this_frame, this_cache, func,
328 ARM_NEW_RT_SIGFRAME_UCONTEXT
329 + ARM_UCONTEXT_SIGCONTEXT
330 + ARM_SIGCONTEXT_R0);
331 }
332
333 static void
334 arm_linux_restart_syscall_init (const struct tramp_frame *self,
335 struct frame_info *this_frame,
336 struct trad_frame_cache *this_cache,
337 CORE_ADDR func)
338 {
339 CORE_ADDR sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
340
341 trad_frame_set_reg_addr (this_cache, ARM_PC_REGNUM, sp);
342 trad_frame_set_reg_value (this_cache, ARM_SP_REGNUM, sp + 12);
343
344 /* Save a frame ID. */
345 trad_frame_set_id (this_cache, frame_id_build (sp, func));
346 }
347
348 static struct tramp_frame arm_linux_sigreturn_tramp_frame = {
349 SIGTRAMP_FRAME,
350 4,
351 {
352 { ARM_LINUX_SIGRETURN_INSTR, -1 },
353 { TRAMP_SENTINEL_INSN }
354 },
355 arm_linux_sigreturn_init
356 };
357
358 static struct tramp_frame arm_linux_rt_sigreturn_tramp_frame = {
359 SIGTRAMP_FRAME,
360 4,
361 {
362 { ARM_LINUX_RT_SIGRETURN_INSTR, -1 },
363 { TRAMP_SENTINEL_INSN }
364 },
365 arm_linux_rt_sigreturn_init
366 };
367
368 static struct tramp_frame arm_eabi_linux_sigreturn_tramp_frame = {
369 SIGTRAMP_FRAME,
370 4,
371 {
372 { ARM_SET_R7_SIGRETURN, -1 },
373 { ARM_EABI_SYSCALL, -1 },
374 { TRAMP_SENTINEL_INSN }
375 },
376 arm_linux_sigreturn_init
377 };
378
379 static struct tramp_frame arm_eabi_linux_rt_sigreturn_tramp_frame = {
380 SIGTRAMP_FRAME,
381 4,
382 {
383 { ARM_SET_R7_RT_SIGRETURN, -1 },
384 { ARM_EABI_SYSCALL, -1 },
385 { TRAMP_SENTINEL_INSN }
386 },
387 arm_linux_rt_sigreturn_init
388 };
389
390 static struct tramp_frame arm_linux_restart_syscall_tramp_frame = {
391 NORMAL_FRAME,
392 4,
393 {
394 { ARM_OABI_SYSCALL_RESTART_SYSCALL, -1 },
395 { ARM_LDR_PC_SP_12, -1 },
396 { TRAMP_SENTINEL_INSN }
397 },
398 arm_linux_restart_syscall_init
399 };
400
401 /* Core file and register set support. */
402
403 #define ARM_LINUX_SIZEOF_GREGSET (18 * INT_REGISTER_SIZE)
404
405 void
406 arm_linux_supply_gregset (const struct regset *regset,
407 struct regcache *regcache,
408 int regnum, const void *gregs_buf, size_t len)
409 {
410 struct gdbarch *gdbarch = get_regcache_arch (regcache);
411 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
412 const gdb_byte *gregs = gregs_buf;
413 int regno;
414 CORE_ADDR reg_pc;
415 gdb_byte pc_buf[INT_REGISTER_SIZE];
416
417 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
418 if (regnum == -1 || regnum == regno)
419 regcache_raw_supply (regcache, regno,
420 gregs + INT_REGISTER_SIZE * regno);
421
422 if (regnum == ARM_PS_REGNUM || regnum == -1)
423 {
424 if (arm_apcs_32)
425 regcache_raw_supply (regcache, ARM_PS_REGNUM,
426 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
427 else
428 regcache_raw_supply (regcache, ARM_PS_REGNUM,
429 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
430 }
431
432 if (regnum == ARM_PC_REGNUM || regnum == -1)
433 {
434 reg_pc = extract_unsigned_integer (gregs
435 + INT_REGISTER_SIZE * ARM_PC_REGNUM,
436 INT_REGISTER_SIZE, byte_order);
437 reg_pc = gdbarch_addr_bits_remove (gdbarch, reg_pc);
438 store_unsigned_integer (pc_buf, INT_REGISTER_SIZE, byte_order, reg_pc);
439 regcache_raw_supply (regcache, ARM_PC_REGNUM, pc_buf);
440 }
441 }
442
443 void
444 arm_linux_collect_gregset (const struct regset *regset,
445 const struct regcache *regcache,
446 int regnum, void *gregs_buf, size_t len)
447 {
448 gdb_byte *gregs = gregs_buf;
449 int regno;
450
451 for (regno = ARM_A1_REGNUM; regno < ARM_PC_REGNUM; regno++)
452 if (regnum == -1 || regnum == regno)
453 regcache_raw_collect (regcache, regno,
454 gregs + INT_REGISTER_SIZE * regno);
455
456 if (regnum == ARM_PS_REGNUM || regnum == -1)
457 {
458 if (arm_apcs_32)
459 regcache_raw_collect (regcache, ARM_PS_REGNUM,
460 gregs + INT_REGISTER_SIZE * ARM_CPSR_GREGNUM);
461 else
462 regcache_raw_collect (regcache, ARM_PS_REGNUM,
463 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
464 }
465
466 if (regnum == ARM_PC_REGNUM || regnum == -1)
467 regcache_raw_collect (regcache, ARM_PC_REGNUM,
468 gregs + INT_REGISTER_SIZE * ARM_PC_REGNUM);
469 }
470
471 /* Support for register format used by the NWFPE FPA emulator. */
472
473 #define typeNone 0x00
474 #define typeSingle 0x01
475 #define typeDouble 0x02
476 #define typeExtended 0x03
477
478 void
479 supply_nwfpe_register (struct regcache *regcache, int regno,
480 const gdb_byte *regs)
481 {
482 const gdb_byte *reg_data;
483 gdb_byte reg_tag;
484 gdb_byte buf[FP_REGISTER_SIZE];
485
486 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
487 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
488 memset (buf, 0, FP_REGISTER_SIZE);
489
490 switch (reg_tag)
491 {
492 case typeSingle:
493 memcpy (buf, reg_data, 4);
494 break;
495 case typeDouble:
496 memcpy (buf, reg_data + 4, 4);
497 memcpy (buf + 4, reg_data, 4);
498 break;
499 case typeExtended:
500 /* We want sign and exponent, then least significant bits,
501 then most significant. NWFPE does sign, most, least. */
502 memcpy (buf, reg_data, 4);
503 memcpy (buf + 4, reg_data + 8, 4);
504 memcpy (buf + 8, reg_data + 4, 4);
505 break;
506 default:
507 break;
508 }
509
510 regcache_raw_supply (regcache, regno, buf);
511 }
512
513 void
514 collect_nwfpe_register (const struct regcache *regcache, int regno,
515 gdb_byte *regs)
516 {
517 gdb_byte *reg_data;
518 gdb_byte reg_tag;
519 gdb_byte buf[FP_REGISTER_SIZE];
520
521 regcache_raw_collect (regcache, regno, buf);
522
523 /* NOTE drow/2006-06-07: This code uses the tag already in the
524 register buffer. I've preserved that when moving the code
525 from the native file to the target file. But this doesn't
526 always make sense. */
527
528 reg_data = regs + (regno - ARM_F0_REGNUM) * FP_REGISTER_SIZE;
529 reg_tag = regs[(regno - ARM_F0_REGNUM) + NWFPE_TAGS_OFFSET];
530
531 switch (reg_tag)
532 {
533 case typeSingle:
534 memcpy (reg_data, buf, 4);
535 break;
536 case typeDouble:
537 memcpy (reg_data, buf + 4, 4);
538 memcpy (reg_data + 4, buf, 4);
539 break;
540 case typeExtended:
541 memcpy (reg_data, buf, 4);
542 memcpy (reg_data + 4, buf + 8, 4);
543 memcpy (reg_data + 8, buf + 4, 4);
544 break;
545 default:
546 break;
547 }
548 }
549
550 void
551 arm_linux_supply_nwfpe (const struct regset *regset,
552 struct regcache *regcache,
553 int regnum, const void *regs_buf, size_t len)
554 {
555 const gdb_byte *regs = regs_buf;
556 int regno;
557
558 if (regnum == ARM_FPS_REGNUM || regnum == -1)
559 regcache_raw_supply (regcache, ARM_FPS_REGNUM,
560 regs + NWFPE_FPSR_OFFSET);
561
562 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
563 if (regnum == -1 || regnum == regno)
564 supply_nwfpe_register (regcache, regno, regs);
565 }
566
567 void
568 arm_linux_collect_nwfpe (const struct regset *regset,
569 const struct regcache *regcache,
570 int regnum, void *regs_buf, size_t len)
571 {
572 gdb_byte *regs = regs_buf;
573 int regno;
574
575 for (regno = ARM_F0_REGNUM; regno <= ARM_F7_REGNUM; regno++)
576 if (regnum == -1 || regnum == regno)
577 collect_nwfpe_register (regcache, regno, regs);
578
579 if (regnum == ARM_FPS_REGNUM || regnum == -1)
580 regcache_raw_collect (regcache, ARM_FPS_REGNUM,
581 regs + INT_REGISTER_SIZE * ARM_FPS_REGNUM);
582 }
583
584 /* Return the appropriate register set for the core section identified
585 by SECT_NAME and SECT_SIZE. */
586
587 static const struct regset *
588 arm_linux_regset_from_core_section (struct gdbarch *gdbarch,
589 const char *sect_name, size_t sect_size)
590 {
591 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
592
593 if (strcmp (sect_name, ".reg") == 0
594 && sect_size == ARM_LINUX_SIZEOF_GREGSET)
595 {
596 if (tdep->gregset == NULL)
597 tdep->gregset = regset_alloc (gdbarch, arm_linux_supply_gregset,
598 arm_linux_collect_gregset);
599 return tdep->gregset;
600 }
601
602 if (strcmp (sect_name, ".reg2") == 0
603 && sect_size == ARM_LINUX_SIZEOF_NWFPE)
604 {
605 if (tdep->fpregset == NULL)
606 tdep->fpregset = regset_alloc (gdbarch, arm_linux_supply_nwfpe,
607 arm_linux_collect_nwfpe);
608 return tdep->fpregset;
609 }
610
611 return NULL;
612 }
613
614 /* Insert a single step breakpoint at the next executed instruction. */
615
616 static int
617 arm_linux_software_single_step (struct frame_info *frame)
618 {
619 struct gdbarch *gdbarch = get_frame_arch (frame);
620 struct address_space *aspace = get_frame_address_space (frame);
621 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
622
623 /* The Linux kernel offers some user-mode helpers in a high page. We can
624 not read this page (as of 2.6.23), and even if we could then we couldn't
625 set breakpoints in it, and even if we could then the atomic operations
626 would fail when interrupted. They are all called as functions and return
627 to the address in LR, so step to there instead. */
628 if (next_pc > 0xffff0000)
629 next_pc = get_frame_register_unsigned (frame, ARM_LR_REGNUM);
630
631 insert_single_step_breakpoint (gdbarch, aspace, next_pc);
632
633 return 1;
634 }
635
636 /* Support for displaced stepping of Linux SVC instructions. */
637
638 static void
639 arm_linux_cleanup_svc (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
640 struct regcache *regs,
641 struct displaced_step_closure *dsc)
642 {
643 CORE_ADDR from = dsc->insn_addr;
644 ULONGEST apparent_pc;
645 int within_scratch;
646
647 regcache_cooked_read_unsigned (regs, ARM_PC_REGNUM, &apparent_pc);
648
649 within_scratch = (apparent_pc >= dsc->scratch_base
650 && apparent_pc < (dsc->scratch_base
651 + DISPLACED_MODIFIED_INSNS * 4 + 4));
652
653 if (debug_displaced)
654 {
655 fprintf_unfiltered (gdb_stdlog, "displaced: PC is apparently %.8lx after "
656 "SVC step ", (unsigned long) apparent_pc);
657 if (within_scratch)
658 fprintf_unfiltered (gdb_stdlog, "(within scratch space)\n");
659 else
660 fprintf_unfiltered (gdb_stdlog, "(outside scratch space)\n");
661 }
662
663 if (within_scratch)
664 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, from + 4, BRANCH_WRITE_PC);
665 }
666
667 static int
668 arm_linux_copy_svc (struct gdbarch *gdbarch, uint32_t insn, CORE_ADDR to,
669 struct regcache *regs, struct displaced_step_closure *dsc)
670 {
671 CORE_ADDR from = dsc->insn_addr;
672 struct frame_info *frame;
673 unsigned int svc_number = displaced_read_reg (regs, from, 7);
674
675 if (debug_displaced)
676 fprintf_unfiltered (gdb_stdlog, "displaced: copying Linux svc insn %.8lx\n",
677 (unsigned long) insn);
678
679 frame = get_current_frame ();
680
681 /* Is this a sigreturn or rt_sigreturn syscall? Note: these are only useful
682 for EABI. */
683 if (svc_number == 119 || svc_number == 173)
684 {
685 if (get_frame_type (frame) == SIGTRAMP_FRAME)
686 {
687 CORE_ADDR return_to;
688 struct symtab_and_line sal;
689
690 if (debug_displaced)
691 fprintf_unfiltered (gdb_stdlog, "displaced: found "
692 "sigreturn/rt_sigreturn SVC call. PC in frame = %lx\n",
693 (unsigned long) get_frame_pc (frame));
694
695 return_to = frame_unwind_caller_pc (frame);
696 if (debug_displaced)
697 fprintf_unfiltered (gdb_stdlog, "displaced: unwind pc = %lx. "
698 "Setting momentary breakpoint.\n", (unsigned long) return_to);
699
700 gdb_assert (inferior_thread ()->step_resume_breakpoint == NULL);
701
702 sal = find_pc_line (return_to, 0);
703 sal.pc = return_to;
704 sal.section = find_pc_overlay (return_to);
705 sal.explicit_pc = 1;
706
707 frame = get_prev_frame (frame);
708
709 if (frame)
710 {
711 inferior_thread ()->step_resume_breakpoint
712 = set_momentary_breakpoint (gdbarch, sal, get_frame_id (frame),
713 bp_step_resume);
714
715 /* We need to make sure we actually insert the momentary
716 breakpoint set above. */
717 insert_breakpoints ();
718 }
719 else if (debug_displaced)
720 fprintf_unfiltered (gdb_stderr, "displaced: couldn't find previous "
721 "frame to set momentary breakpoint for "
722 "sigreturn/rt_sigreturn\n");
723 }
724 else if (debug_displaced)
725 fprintf_unfiltered (gdb_stdlog, "displaced: sigreturn/rt_sigreturn "
726 "SVC call not in signal trampoline frame\n");
727 }
728
729 /* Preparation: If we detect sigreturn, set momentary breakpoint at resume
730 location, else nothing.
731 Insn: unmodified svc.
732 Cleanup: if pc lands in scratch space, pc <- insn_addr + 4
733 else leave pc alone. */
734
735 dsc->modinsn[0] = insn;
736
737 dsc->cleanup = &arm_linux_cleanup_svc;
738 /* Pretend we wrote to the PC, so cleanup doesn't set PC to the next
739 instruction. */
740 dsc->wrote_to_pc = 1;
741
742 return 0;
743 }
744
745
746 /* The following two functions implement single-stepping over calls to Linux
747 kernel helper routines, which perform e.g. atomic operations on architecture
748 variants which don't support them natively.
749
750 When this function is called, the PC will be pointing at the kernel helper
751 (at an address inaccessible to GDB), and r14 will point to the return
752 address. Displaced stepping always executes code in the copy area:
753 so, make the copy-area instruction branch back to the kernel helper (the
754 "from" address), and make r14 point to the breakpoint in the copy area. In
755 that way, we regain control once the kernel helper returns, and can clean
756 up appropriately (as if we had just returned from the kernel helper as it
757 would have been called from the non-displaced location). */
758
759 static void
760 cleanup_kernel_helper_return (struct gdbarch *gdbarch ATTRIBUTE_UNUSED,
761 struct regcache *regs,
762 struct displaced_step_closure *dsc)
763 {
764 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, dsc->tmp[0], CANNOT_WRITE_PC);
765 displaced_write_reg (regs, dsc, ARM_PC_REGNUM, dsc->tmp[0], BRANCH_WRITE_PC);
766 }
767
768 static void
769 arm_catch_kernel_helper_return (struct gdbarch *gdbarch, CORE_ADDR from,
770 CORE_ADDR to, struct regcache *regs,
771 struct displaced_step_closure *dsc)
772 {
773 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
774
775 dsc->numinsns = 1;
776 dsc->insn_addr = from;
777 dsc->cleanup = &cleanup_kernel_helper_return;
778 /* Say we wrote to the PC, else cleanup will set PC to the next
779 instruction in the helper, which isn't helpful. */
780 dsc->wrote_to_pc = 1;
781
782 /* Preparation: tmp[0] <- r14
783 r14 <- <scratch space>+4
784 *(<scratch space>+8) <- from
785 Insn: ldr pc, [r14, #4]
786 Cleanup: r14 <- tmp[0], pc <- tmp[0]. */
787
788 dsc->tmp[0] = displaced_read_reg (regs, from, ARM_LR_REGNUM);
789 displaced_write_reg (regs, dsc, ARM_LR_REGNUM, (ULONGEST) to + 4,
790 CANNOT_WRITE_PC);
791 write_memory_unsigned_integer (to + 8, 4, byte_order, from);
792
793 dsc->modinsn[0] = 0xe59ef004; /* ldr pc, [lr, #4]. */
794 }
795
796 /* Linux-specific displaced step instruction copying function. Detects when
797 the program has stepped into a Linux kernel helper routine (which must be
798 handled as a special case), falling back to arm_displaced_step_copy_insn()
799 if it hasn't. */
800
801 static struct displaced_step_closure *
802 arm_linux_displaced_step_copy_insn (struct gdbarch *gdbarch,
803 CORE_ADDR from, CORE_ADDR to,
804 struct regcache *regs)
805 {
806 struct displaced_step_closure *dsc
807 = xmalloc (sizeof (struct displaced_step_closure));
808
809 /* Detect when we enter an (inaccessible by GDB) Linux kernel helper, and
810 stop at the return location. */
811 if (from > 0xffff0000)
812 {
813 if (debug_displaced)
814 fprintf_unfiltered (gdb_stdlog, "displaced: detected kernel helper "
815 "at %.8lx\n", (unsigned long) from);
816
817 arm_catch_kernel_helper_return (gdbarch, from, to, regs, dsc);
818 }
819 else
820 {
821 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
822 uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order);
823
824 if (debug_displaced)
825 fprintf_unfiltered (gdb_stdlog, "displaced: stepping insn %.8lx "
826 "at %.8lx\n", (unsigned long) insn,
827 (unsigned long) from);
828
829 /* Override the default handling of SVC instructions. */
830 dsc->u.svc.copy_svc_os = arm_linux_copy_svc;
831
832 arm_process_displaced_insn (gdbarch, insn, from, to, regs, dsc);
833 }
834
835 arm_displaced_init_closure (gdbarch, from, to, dsc);
836
837 return dsc;
838 }
839
840 static void
841 arm_linux_init_abi (struct gdbarch_info info,
842 struct gdbarch *gdbarch)
843 {
844 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
845
846 tdep->lowest_pc = 0x8000;
847 if (info.byte_order == BFD_ENDIAN_BIG)
848 {
849 if (tdep->arm_abi == ARM_ABI_AAPCS)
850 tdep->arm_breakpoint = eabi_linux_arm_be_breakpoint;
851 else
852 tdep->arm_breakpoint = arm_linux_arm_be_breakpoint;
853 tdep->thumb_breakpoint = arm_linux_thumb_be_breakpoint;
854 }
855 else
856 {
857 if (tdep->arm_abi == ARM_ABI_AAPCS)
858 tdep->arm_breakpoint = eabi_linux_arm_le_breakpoint;
859 else
860 tdep->arm_breakpoint = arm_linux_arm_le_breakpoint;
861 tdep->thumb_breakpoint = arm_linux_thumb_le_breakpoint;
862 }
863 tdep->arm_breakpoint_size = sizeof (arm_linux_arm_le_breakpoint);
864 tdep->thumb_breakpoint_size = sizeof (arm_linux_thumb_le_breakpoint);
865
866 if (tdep->fp_model == ARM_FLOAT_AUTO)
867 tdep->fp_model = ARM_FLOAT_FPA;
868
869 tdep->jb_pc = ARM_LINUX_JB_PC;
870 tdep->jb_elt_size = ARM_LINUX_JB_ELEMENT_SIZE;
871
872 set_solib_svr4_fetch_link_map_offsets
873 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
874
875 /* Single stepping. */
876 set_gdbarch_software_single_step (gdbarch, arm_linux_software_single_step);
877
878 /* Shared library handling. */
879 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
880 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
881
882 /* Enable TLS support. */
883 set_gdbarch_fetch_tls_load_module_address (gdbarch,
884 svr4_fetch_objfile_link_map);
885
886 tramp_frame_prepend_unwinder (gdbarch,
887 &arm_linux_sigreturn_tramp_frame);
888 tramp_frame_prepend_unwinder (gdbarch,
889 &arm_linux_rt_sigreturn_tramp_frame);
890 tramp_frame_prepend_unwinder (gdbarch,
891 &arm_eabi_linux_sigreturn_tramp_frame);
892 tramp_frame_prepend_unwinder (gdbarch,
893 &arm_eabi_linux_rt_sigreturn_tramp_frame);
894 tramp_frame_prepend_unwinder (gdbarch,
895 &arm_linux_restart_syscall_tramp_frame);
896
897 /* Core file support. */
898 set_gdbarch_regset_from_core_section (gdbarch,
899 arm_linux_regset_from_core_section);
900
901 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
902
903 /* Displaced stepping. */
904 set_gdbarch_displaced_step_copy_insn (gdbarch,
905 arm_linux_displaced_step_copy_insn);
906 set_gdbarch_displaced_step_fixup (gdbarch, arm_displaced_step_fixup);
907 set_gdbarch_displaced_step_free_closure (gdbarch,
908 simple_displaced_step_free_closure);
909 set_gdbarch_displaced_step_location (gdbarch, displaced_step_at_entry_point);
910 }
911
912 /* Provide a prototype to silence -Wmissing-prototypes. */
913 extern initialize_file_ftype _initialize_arm_linux_tdep;
914
915 void
916 _initialize_arm_linux_tdep (void)
917 {
918 gdbarch_register_osabi (bfd_arch_arm, 0, GDB_OSABI_LINUX,
919 arm_linux_init_abi);
920 }