4b1740aab1ab996e64f29f4b715701cdd2348f9c
[binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2 Copyright 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
3 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "symfile.h"
30 #include "gdb_string.h"
31 #include "dis-asm.h" /* For register flavors. */
32 #include "regcache.h"
33 #include "doublest.h"
34 #include "value.h"
35 #include "arch-utils.h"
36 #include "solib-svr4.h"
37
38 #include "arm-tdep.h"
39 #include "gdb/sim-arm.h"
40
41 #include "elf-bfd.h"
42 #include "coff/internal.h"
43 #include "elf/arm.h"
44
45 #include "gdb_assert.h"
46
47 static int arm_debug;
48
49 /* Each OS has a different mechanism for accessing the various
50 registers stored in the sigcontext structure.
51
52 SIGCONTEXT_REGISTER_ADDRESS should be defined to the name (or
53 function pointer) which may be used to determine the addresses
54 of the various saved registers in the sigcontext structure.
55
56 For the ARM target, there are three parameters to this function.
57 The first is the pc value of the frame under consideration, the
58 second the stack pointer of this frame, and the last is the
59 register number to fetch.
60
61 If the tm.h file does not define this macro, then it's assumed that
62 no mechanism is needed and we define SIGCONTEXT_REGISTER_ADDRESS to
63 be 0.
64
65 When it comes time to multi-arching this code, see the identically
66 named machinery in ia64-tdep.c for an example of how it could be
67 done. It should not be necessary to modify the code below where
68 this macro is used. */
69
70 #ifdef SIGCONTEXT_REGISTER_ADDRESS
71 #ifndef SIGCONTEXT_REGISTER_ADDRESS_P
72 #define SIGCONTEXT_REGISTER_ADDRESS_P() 1
73 #endif
74 #else
75 #define SIGCONTEXT_REGISTER_ADDRESS(SP,PC,REG) 0
76 #define SIGCONTEXT_REGISTER_ADDRESS_P() 0
77 #endif
78
79 /* Macros for setting and testing a bit in a minimal symbol that marks
80 it as Thumb function. The MSB of the minimal symbol's "info" field
81 is used for this purpose. This field is already being used to store
82 the symbol size, so the assumption is that the symbol size cannot
83 exceed 2^31.
84
85 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
86 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol.
87 MSYMBOL_SIZE Returns the size of the minimal symbol,
88 i.e. the "info" field with the "special" bit
89 masked out. */
90
91 #define MSYMBOL_SET_SPECIAL(msym) \
92 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
93 | 0x80000000)
94
95 #define MSYMBOL_IS_SPECIAL(msym) \
96 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
97
98 #define MSYMBOL_SIZE(msym) \
99 ((long) MSYMBOL_INFO (msym) & 0x7fffffff)
100
101 /* Number of different reg name sets (options). */
102 static int num_flavor_options;
103
104 /* We have more registers than the disassembler as gdb can print the value
105 of special registers as well.
106 The general register names are overwritten by whatever is being used by
107 the disassembler at the moment. We also adjust the case of cpsr and fps. */
108
109 /* Initial value: Register names used in ARM's ISA documentation. */
110 static char * arm_register_name_strings[] =
111 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
112 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
113 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
114 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
115 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
116 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
117 "fps", "cpsr" }; /* 24 25 */
118 static char **arm_register_names = arm_register_name_strings;
119
120 /* Valid register name flavors. */
121 static const char **valid_flavors;
122
123 /* Disassembly flavor to use. Default to "std" register names. */
124 static const char *disassembly_flavor;
125 /* Index to that option in the opcodes table. */
126 static int current_option;
127
128 /* This is used to keep the bfd arch_info in sync with the disassembly
129 flavor. */
130 static void set_disassembly_flavor_sfunc(char *, int,
131 struct cmd_list_element *);
132 static void set_disassembly_flavor (void);
133
134 static void convert_from_extended (void *ptr, void *dbl);
135
136 /* Define other aspects of the stack frame. We keep the offsets of
137 all saved registers, 'cause we need 'em a lot! We also keep the
138 current size of the stack frame, and the offset of the frame
139 pointer from the stack pointer (for frameless functions, and when
140 we're still in the prologue of a function with a frame). */
141
142 struct frame_extra_info
143 {
144 int framesize;
145 int frameoffset;
146 int framereg;
147 };
148
149 /* Addresses for calling Thumb functions have the bit 0 set.
150 Here are some macros to test, set, or clear bit 0 of addresses. */
151 #define IS_THUMB_ADDR(addr) ((addr) & 1)
152 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
153 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
154
155 static int
156 arm_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
157 {
158 return (chain != 0 && (FRAME_SAVED_PC (thisframe) >= LOWEST_PC));
159 }
160
161 /* Set to true if the 32-bit mode is in use. */
162
163 int arm_apcs_32 = 1;
164
165 /* Flag set by arm_fix_call_dummy that tells whether the target
166 function is a Thumb function. This flag is checked by
167 arm_push_arguments. FIXME: Change the PUSH_ARGUMENTS macro (and
168 its use in valops.c) to pass the function address as an additional
169 parameter. */
170
171 static int target_is_thumb;
172
173 /* Flag set by arm_fix_call_dummy that tells whether the calling
174 function is a Thumb function. This flag is checked by
175 arm_pc_is_thumb and arm_call_dummy_breakpoint_offset. */
176
177 static int caller_is_thumb;
178
179 /* Determine if the program counter specified in MEMADDR is in a Thumb
180 function. */
181
182 int
183 arm_pc_is_thumb (CORE_ADDR memaddr)
184 {
185 struct minimal_symbol *sym;
186
187 /* If bit 0 of the address is set, assume this is a Thumb address. */
188 if (IS_THUMB_ADDR (memaddr))
189 return 1;
190
191 /* Thumb functions have a "special" bit set in minimal symbols. */
192 sym = lookup_minimal_symbol_by_pc (memaddr);
193 if (sym)
194 {
195 return (MSYMBOL_IS_SPECIAL (sym));
196 }
197 else
198 {
199 return 0;
200 }
201 }
202
203 /* Determine if the program counter specified in MEMADDR is in a call
204 dummy being called from a Thumb function. */
205
206 int
207 arm_pc_is_thumb_dummy (CORE_ADDR memaddr)
208 {
209 CORE_ADDR sp = read_sp ();
210
211 /* FIXME: Until we switch for the new call dummy macros, this heuristic
212 is the best we can do. We are trying to determine if the pc is on
213 the stack, which (hopefully) will only happen in a call dummy.
214 We hope the current stack pointer is not so far alway from the dummy
215 frame location (true if we have not pushed large data structures or
216 gone too many levels deep) and that our 1024 is not enough to consider
217 code regions as part of the stack (true for most practical purposes). */
218 if (DEPRECATED_PC_IN_CALL_DUMMY (memaddr, sp, sp + 1024))
219 return caller_is_thumb;
220 else
221 return 0;
222 }
223
224 /* Remove useless bits from addresses in a running program. */
225 static CORE_ADDR
226 arm_addr_bits_remove (CORE_ADDR val)
227 {
228 if (arm_apcs_32)
229 return (val & (arm_pc_is_thumb (val) ? 0xfffffffe : 0xfffffffc));
230 else
231 return (val & 0x03fffffc);
232 }
233
234 /* When reading symbols, we need to zap the low bit of the address,
235 which may be set to 1 for Thumb functions. */
236 static CORE_ADDR
237 arm_smash_text_address (CORE_ADDR val)
238 {
239 return val & ~1;
240 }
241
242 /* Immediately after a function call, return the saved pc. Can't
243 always go through the frames for this because on some machines the
244 new frame is not set up until the new function executes some
245 instructions. */
246
247 static CORE_ADDR
248 arm_saved_pc_after_call (struct frame_info *frame)
249 {
250 return ADDR_BITS_REMOVE (read_register (ARM_LR_REGNUM));
251 }
252
253 /* Determine whether the function invocation represented by FI has a
254 frame on the stack associated with it. If it does return zero,
255 otherwise return 1. */
256
257 static int
258 arm_frameless_function_invocation (struct frame_info *fi)
259 {
260 CORE_ADDR func_start, after_prologue;
261 int frameless;
262
263 /* Sometimes we have functions that do a little setup (like saving the
264 vN registers with the stmdb instruction, but DO NOT set up a frame.
265 The symbol table will report this as a prologue. However, it is
266 important not to try to parse these partial frames as frames, or we
267 will get really confused.
268
269 So I will demand 3 instructions between the start & end of the
270 prologue before I call it a real prologue, i.e. at least
271 mov ip, sp,
272 stmdb sp!, {}
273 sub sp, ip, #4. */
274
275 func_start = (get_pc_function_start ((fi)->pc) + FUNCTION_START_OFFSET);
276 after_prologue = SKIP_PROLOGUE (func_start);
277
278 /* There are some frameless functions whose first two instructions
279 follow the standard APCS form, in which case after_prologue will
280 be func_start + 8. */
281
282 frameless = (after_prologue < func_start + 12);
283 return frameless;
284 }
285
286 /* The address of the arguments in the frame. */
287 static CORE_ADDR
288 arm_frame_args_address (struct frame_info *fi)
289 {
290 return fi->frame;
291 }
292
293 /* The address of the local variables in the frame. */
294 static CORE_ADDR
295 arm_frame_locals_address (struct frame_info *fi)
296 {
297 return fi->frame;
298 }
299
300 /* The number of arguments being passed in the frame. */
301 static int
302 arm_frame_num_args (struct frame_info *fi)
303 {
304 /* We have no way of knowing. */
305 return -1;
306 }
307
308 /* A typical Thumb prologue looks like this:
309 push {r7, lr}
310 add sp, sp, #-28
311 add r7, sp, #12
312 Sometimes the latter instruction may be replaced by:
313 mov r7, sp
314
315 or like this:
316 push {r7, lr}
317 mov r7, sp
318 sub sp, #12
319
320 or, on tpcs, like this:
321 sub sp,#16
322 push {r7, lr}
323 (many instructions)
324 mov r7, sp
325 sub sp, #12
326
327 There is always one instruction of three classes:
328 1 - push
329 2 - setting of r7
330 3 - adjusting of sp
331
332 When we have found at least one of each class we are done with the prolog.
333 Note that the "sub sp, #NN" before the push does not count.
334 */
335
336 static CORE_ADDR
337 thumb_skip_prologue (CORE_ADDR pc, CORE_ADDR func_end)
338 {
339 CORE_ADDR current_pc;
340 /* findmask:
341 bit 0 - push { rlist }
342 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
343 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
344 */
345 int findmask = 0;
346
347 for (current_pc = pc;
348 current_pc + 2 < func_end && current_pc < pc + 40;
349 current_pc += 2)
350 {
351 unsigned short insn = read_memory_unsigned_integer (current_pc, 2);
352
353 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
354 {
355 findmask |= 1; /* push found */
356 }
357 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
358 sub sp, #simm */
359 {
360 if ((findmask & 1) == 0) /* before push ? */
361 continue;
362 else
363 findmask |= 4; /* add/sub sp found */
364 }
365 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
366 {
367 findmask |= 2; /* setting of r7 found */
368 }
369 else if (insn == 0x466f) /* mov r7, sp */
370 {
371 findmask |= 2; /* setting of r7 found */
372 }
373 else if (findmask == (4+2+1))
374 {
375 /* We have found one of each type of prologue instruction */
376 break;
377 }
378 else
379 /* Something in the prolog that we don't care about or some
380 instruction from outside the prolog scheduled here for
381 optimization. */
382 continue;
383 }
384
385 return current_pc;
386 }
387
388 /* Advance the PC across any function entry prologue instructions to
389 reach some "real" code.
390
391 The APCS (ARM Procedure Call Standard) defines the following
392 prologue:
393
394 mov ip, sp
395 [stmfd sp!, {a1,a2,a3,a4}]
396 stmfd sp!, {...,fp,ip,lr,pc}
397 [stfe f7, [sp, #-12]!]
398 [stfe f6, [sp, #-12]!]
399 [stfe f5, [sp, #-12]!]
400 [stfe f4, [sp, #-12]!]
401 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
402
403 static CORE_ADDR
404 arm_skip_prologue (CORE_ADDR pc)
405 {
406 unsigned long inst;
407 CORE_ADDR skip_pc;
408 CORE_ADDR func_addr, func_end = 0;
409 char *func_name;
410 struct symtab_and_line sal;
411
412 /* If we're in a dummy frame, don't even try to skip the prologue. */
413 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
414 return pc;
415
416 /* See what the symbol table says. */
417
418 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
419 {
420 struct symbol *sym;
421
422 /* Found a function. */
423 sym = lookup_symbol (func_name, NULL, VAR_NAMESPACE, NULL, NULL);
424 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
425 {
426 /* Don't use this trick for assembly source files. */
427 sal = find_pc_line (func_addr, 0);
428 if ((sal.line != 0) && (sal.end < func_end))
429 return sal.end;
430 }
431 }
432
433 /* Check if this is Thumb code. */
434 if (arm_pc_is_thumb (pc))
435 return thumb_skip_prologue (pc, func_end);
436
437 /* Can't find the prologue end in the symbol table, try it the hard way
438 by disassembling the instructions. */
439
440 /* Like arm_scan_prologue, stop no later than pc + 64. */
441 if (func_end == 0 || func_end > pc + 64)
442 func_end = pc + 64;
443
444 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
445 {
446 inst = read_memory_integer (skip_pc, 4);
447
448 /* "mov ip, sp" is no longer a required part of the prologue. */
449 if (inst == 0xe1a0c00d) /* mov ip, sp */
450 continue;
451
452 /* Some prologues begin with "str lr, [sp, #-4]!". */
453 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
454 continue;
455
456 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
457 continue;
458
459 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
460 continue;
461
462 /* Any insns after this point may float into the code, if it makes
463 for better instruction scheduling, so we skip them only if we
464 find them, but still consider the function to be frame-ful. */
465
466 /* We may have either one sfmfd instruction here, or several stfe
467 insns, depending on the version of floating point code we
468 support. */
469 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
470 continue;
471
472 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
473 continue;
474
475 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
476 continue;
477
478 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
479 continue;
480
481 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
482 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
483 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
484 continue;
485
486 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
487 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
488 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
489 continue;
490
491 /* Un-recognized instruction; stop scanning. */
492 break;
493 }
494
495 return skip_pc; /* End of prologue */
496 }
497
498 /* *INDENT-OFF* */
499 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
500 This function decodes a Thumb function prologue to determine:
501 1) the size of the stack frame
502 2) which registers are saved on it
503 3) the offsets of saved regs
504 4) the offset from the stack pointer to the frame pointer
505 This information is stored in the "extra" fields of the frame_info.
506
507 A typical Thumb function prologue would create this stack frame
508 (offsets relative to FP)
509 old SP -> 24 stack parameters
510 20 LR
511 16 R7
512 R7 -> 0 local variables (16 bytes)
513 SP -> -12 additional stack space (12 bytes)
514 The frame size would thus be 36 bytes, and the frame offset would be
515 12 bytes. The frame register is R7.
516
517 The comments for thumb_skip_prolog() describe the algorithm we use
518 to detect the end of the prolog. */
519 /* *INDENT-ON* */
520
521 static void
522 thumb_scan_prologue (struct frame_info *fi)
523 {
524 CORE_ADDR prologue_start;
525 CORE_ADDR prologue_end;
526 CORE_ADDR current_pc;
527 /* Which register has been copied to register n? */
528 int saved_reg[16];
529 /* findmask:
530 bit 0 - push { rlist }
531 bit 1 - mov r7, sp OR add r7, sp, #imm (setting of r7)
532 bit 2 - sub sp, #simm OR add sp, #simm (adjusting of sp)
533 */
534 int findmask = 0;
535 int i;
536
537 /* Don't try to scan dummy frames. */
538 if (fi != NULL
539 && DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, 0, 0))
540 return;
541
542 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
543 {
544 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
545
546 if (sal.line == 0) /* no line info, use current PC */
547 prologue_end = fi->pc;
548 else if (sal.end < prologue_end) /* next line begins after fn end */
549 prologue_end = sal.end; /* (probably means no prologue) */
550 }
551 else
552 /* We're in the boondocks: allow for
553 16 pushes, an add, and "mv fp,sp". */
554 prologue_end = prologue_start + 40;
555
556 prologue_end = min (prologue_end, fi->pc);
557
558 /* Initialize the saved register map. When register H is copied to
559 register L, we will put H in saved_reg[L]. */
560 for (i = 0; i < 16; i++)
561 saved_reg[i] = i;
562
563 /* Search the prologue looking for instructions that set up the
564 frame pointer, adjust the stack pointer, and save registers.
565 Do this until all basic prolog instructions are found. */
566
567 fi->extra_info->framesize = 0;
568 for (current_pc = prologue_start;
569 (current_pc < prologue_end) && ((findmask & 7) != 7);
570 current_pc += 2)
571 {
572 unsigned short insn;
573 int regno;
574 int offset;
575
576 insn = read_memory_unsigned_integer (current_pc, 2);
577
578 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
579 {
580 int mask;
581 findmask |= 1; /* push found */
582 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
583 whether to save LR (R14). */
584 mask = (insn & 0xff) | ((insn & 0x100) << 6);
585
586 /* Calculate offsets of saved R0-R7 and LR. */
587 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
588 if (mask & (1 << regno))
589 {
590 fi->extra_info->framesize += 4;
591 fi->saved_regs[saved_reg[regno]] =
592 -(fi->extra_info->framesize);
593 /* Reset saved register map. */
594 saved_reg[regno] = regno;
595 }
596 }
597 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
598 sub sp, #simm */
599 {
600 if ((findmask & 1) == 0) /* before push? */
601 continue;
602 else
603 findmask |= 4; /* add/sub sp found */
604
605 offset = (insn & 0x7f) << 2; /* get scaled offset */
606 if (insn & 0x80) /* is it signed? (==subtracting) */
607 {
608 fi->extra_info->frameoffset += offset;
609 offset = -offset;
610 }
611 fi->extra_info->framesize -= offset;
612 }
613 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
614 {
615 findmask |= 2; /* setting of r7 found */
616 fi->extra_info->framereg = THUMB_FP_REGNUM;
617 /* get scaled offset */
618 fi->extra_info->frameoffset = (insn & 0xff) << 2;
619 }
620 else if (insn == 0x466f) /* mov r7, sp */
621 {
622 findmask |= 2; /* setting of r7 found */
623 fi->extra_info->framereg = THUMB_FP_REGNUM;
624 fi->extra_info->frameoffset = 0;
625 saved_reg[THUMB_FP_REGNUM] = ARM_SP_REGNUM;
626 }
627 else if ((insn & 0xffc0) == 0x4640) /* mov r0-r7, r8-r15 */
628 {
629 int lo_reg = insn & 7; /* dest. register (r0-r7) */
630 int hi_reg = ((insn >> 3) & 7) + 8; /* source register (r8-15) */
631 saved_reg[lo_reg] = hi_reg; /* remember hi reg was saved */
632 }
633 else
634 /* Something in the prolog that we don't care about or some
635 instruction from outside the prolog scheduled here for
636 optimization. */
637 continue;
638 }
639 }
640
641 /* Check if prologue for this frame's PC has already been scanned. If
642 it has, copy the relevant information about that prologue and
643 return non-zero. Otherwise do not copy anything and return zero.
644
645 The information saved in the cache includes:
646 * the frame register number;
647 * the size of the stack frame;
648 * the offsets of saved regs (relative to the old SP); and
649 * the offset from the stack pointer to the frame pointer
650
651 The cache contains only one entry, since this is adequate for the
652 typical sequence of prologue scan requests we get. When performing
653 a backtrace, GDB will usually ask to scan the same function twice
654 in a row (once to get the frame chain, and once to fill in the
655 extra frame information). */
656
657 static struct frame_info prologue_cache;
658
659 static int
660 check_prologue_cache (struct frame_info *fi)
661 {
662 int i;
663
664 if (fi->pc == prologue_cache.pc)
665 {
666 fi->extra_info->framereg = prologue_cache.extra_info->framereg;
667 fi->extra_info->framesize = prologue_cache.extra_info->framesize;
668 fi->extra_info->frameoffset = prologue_cache.extra_info->frameoffset;
669 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
670 fi->saved_regs[i] = prologue_cache.saved_regs[i];
671 return 1;
672 }
673 else
674 return 0;
675 }
676
677
678 /* Copy the prologue information from fi to the prologue cache. */
679
680 static void
681 save_prologue_cache (struct frame_info *fi)
682 {
683 int i;
684
685 prologue_cache.pc = fi->pc;
686 prologue_cache.extra_info->framereg = fi->extra_info->framereg;
687 prologue_cache.extra_info->framesize = fi->extra_info->framesize;
688 prologue_cache.extra_info->frameoffset = fi->extra_info->frameoffset;
689
690 for (i = 0; i < NUM_REGS + NUM_PSEUDO_REGS; i++)
691 prologue_cache.saved_regs[i] = fi->saved_regs[i];
692 }
693
694
695 /* This function decodes an ARM function prologue to determine:
696 1) the size of the stack frame
697 2) which registers are saved on it
698 3) the offsets of saved regs
699 4) the offset from the stack pointer to the frame pointer
700 This information is stored in the "extra" fields of the frame_info.
701
702 There are two basic forms for the ARM prologue. The fixed argument
703 function call will look like:
704
705 mov ip, sp
706 stmfd sp!, {fp, ip, lr, pc}
707 sub fp, ip, #4
708 [sub sp, sp, #4]
709
710 Which would create this stack frame (offsets relative to FP):
711 IP -> 4 (caller's stack)
712 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
713 -4 LR (return address in caller)
714 -8 IP (copy of caller's SP)
715 -12 FP (caller's FP)
716 SP -> -28 Local variables
717
718 The frame size would thus be 32 bytes, and the frame offset would be
719 28 bytes. The stmfd call can also save any of the vN registers it
720 plans to use, which increases the frame size accordingly.
721
722 Note: The stored PC is 8 off of the STMFD instruction that stored it
723 because the ARM Store instructions always store PC + 8 when you read
724 the PC register.
725
726 A variable argument function call will look like:
727
728 mov ip, sp
729 stmfd sp!, {a1, a2, a3, a4}
730 stmfd sp!, {fp, ip, lr, pc}
731 sub fp, ip, #20
732
733 Which would create this stack frame (offsets relative to FP):
734 IP -> 20 (caller's stack)
735 16 A4
736 12 A3
737 8 A2
738 4 A1
739 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
740 -4 LR (return address in caller)
741 -8 IP (copy of caller's SP)
742 -12 FP (caller's FP)
743 SP -> -28 Local variables
744
745 The frame size would thus be 48 bytes, and the frame offset would be
746 28 bytes.
747
748 There is another potential complication, which is that the optimizer
749 will try to separate the store of fp in the "stmfd" instruction from
750 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
751 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
752
753 Also, note, the original version of the ARM toolchain claimed that there
754 should be an
755
756 instruction at the end of the prologue. I have never seen GCC produce
757 this, and the ARM docs don't mention it. We still test for it below in
758 case it happens...
759
760 */
761
762 static void
763 arm_scan_prologue (struct frame_info *fi)
764 {
765 int regno, sp_offset, fp_offset;
766 LONGEST return_value;
767 CORE_ADDR prologue_start, prologue_end, current_pc;
768
769 /* Check if this function is already in the cache of frame information. */
770 if (check_prologue_cache (fi))
771 return;
772
773 /* Assume there is no frame until proven otherwise. */
774 fi->extra_info->framereg = ARM_SP_REGNUM;
775 fi->extra_info->framesize = 0;
776 fi->extra_info->frameoffset = 0;
777
778 /* Check for Thumb prologue. */
779 if (arm_pc_is_thumb (fi->pc))
780 {
781 thumb_scan_prologue (fi);
782 save_prologue_cache (fi);
783 return;
784 }
785
786 /* Find the function prologue. If we can't find the function in
787 the symbol table, peek in the stack frame to find the PC. */
788 if (find_pc_partial_function (fi->pc, NULL, &prologue_start, &prologue_end))
789 {
790 /* One way to find the end of the prologue (which works well
791 for unoptimized code) is to do the following:
792
793 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
794
795 if (sal.line == 0)
796 prologue_end = fi->pc;
797 else if (sal.end < prologue_end)
798 prologue_end = sal.end;
799
800 This mechanism is very accurate so long as the optimizer
801 doesn't move any instructions from the function body into the
802 prologue. If this happens, sal.end will be the last
803 instruction in the first hunk of prologue code just before
804 the first instruction that the scheduler has moved from
805 the body to the prologue.
806
807 In order to make sure that we scan all of the prologue
808 instructions, we use a slightly less accurate mechanism which
809 may scan more than necessary. To help compensate for this
810 lack of accuracy, the prologue scanning loop below contains
811 several clauses which'll cause the loop to terminate early if
812 an implausible prologue instruction is encountered.
813
814 The expression
815
816 prologue_start + 64
817
818 is a suitable endpoint since it accounts for the largest
819 possible prologue plus up to five instructions inserted by
820 the scheduler. */
821
822 if (prologue_end > prologue_start + 64)
823 {
824 prologue_end = prologue_start + 64; /* See above. */
825 }
826 }
827 else
828 {
829 /* Get address of the stmfd in the prologue of the callee;
830 the saved PC is the address of the stmfd + 8. */
831 if (!safe_read_memory_integer (fi->frame, 4, &return_value))
832 return;
833 else
834 {
835 prologue_start = ADDR_BITS_REMOVE (return_value) - 8;
836 prologue_end = prologue_start + 64; /* See above. */
837 }
838 }
839
840 /* Now search the prologue looking for instructions that set up the
841 frame pointer, adjust the stack pointer, and save registers.
842
843 Be careful, however, and if it doesn't look like a prologue,
844 don't try to scan it. If, for instance, a frameless function
845 begins with stmfd sp!, then we will tell ourselves there is
846 a frame, which will confuse stack traceback, as well as "finish"
847 and other operations that rely on a knowledge of the stack
848 traceback.
849
850 In the APCS, the prologue should start with "mov ip, sp" so
851 if we don't see this as the first insn, we will stop.
852
853 [Note: This doesn't seem to be true any longer, so it's now an
854 optional part of the prologue. - Kevin Buettner, 2001-11-20]
855
856 [Note further: The "mov ip,sp" only seems to be missing in
857 frameless functions at optimization level "-O2" or above,
858 in which case it is often (but not always) replaced by
859 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
860
861 sp_offset = fp_offset = 0;
862
863 for (current_pc = prologue_start;
864 current_pc < prologue_end;
865 current_pc += 4)
866 {
867 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
868
869 if (insn == 0xe1a0c00d) /* mov ip, sp */
870 {
871 continue;
872 }
873 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
874 {
875 /* Function is frameless: extra_info defaults OK? */
876 continue;
877 }
878 else if ((insn & 0xffff0000) == 0xe92d0000)
879 /* stmfd sp!, {..., fp, ip, lr, pc}
880 or
881 stmfd sp!, {a1, a2, a3, a4} */
882 {
883 int mask = insn & 0xffff;
884
885 /* Calculate offsets of saved registers. */
886 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
887 if (mask & (1 << regno))
888 {
889 sp_offset -= 4;
890 fi->saved_regs[regno] = sp_offset;
891 }
892 }
893 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
894 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
895 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
896 {
897 /* No need to add this to saved_regs -- it's just an arg reg. */
898 continue;
899 }
900 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
901 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
902 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
903 {
904 /* No need to add this to saved_regs -- it's just an arg reg. */
905 continue;
906 }
907 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
908 {
909 unsigned imm = insn & 0xff; /* immediate value */
910 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
911 imm = (imm >> rot) | (imm << (32 - rot));
912 fp_offset = -imm;
913 fi->extra_info->framereg = ARM_FP_REGNUM;
914 }
915 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
916 {
917 unsigned imm = insn & 0xff; /* immediate value */
918 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
919 imm = (imm >> rot) | (imm << (32 - rot));
920 sp_offset -= imm;
921 }
922 else if ((insn & 0xffff7fff) == 0xed6d0103) /* stfe f?, [sp, -#c]! */
923 {
924 sp_offset -= 12;
925 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
926 fi->saved_regs[regno] = sp_offset;
927 }
928 else if ((insn & 0xffbf0fff) == 0xec2d0200) /* sfmfd f0, 4, [sp!] */
929 {
930 int n_saved_fp_regs;
931 unsigned int fp_start_reg, fp_bound_reg;
932
933 if ((insn & 0x800) == 0x800) /* N0 is set */
934 {
935 if ((insn & 0x40000) == 0x40000) /* N1 is set */
936 n_saved_fp_regs = 3;
937 else
938 n_saved_fp_regs = 1;
939 }
940 else
941 {
942 if ((insn & 0x40000) == 0x40000) /* N1 is set */
943 n_saved_fp_regs = 2;
944 else
945 n_saved_fp_regs = 4;
946 }
947
948 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
949 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
950 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
951 {
952 sp_offset -= 12;
953 fi->saved_regs[fp_start_reg++] = sp_offset;
954 }
955 }
956 else if ((insn & 0xf0000000) != 0xe0000000)
957 break; /* Condition not true, exit early */
958 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
959 break; /* Don't scan past a block load */
960 else
961 /* The optimizer might shove anything into the prologue,
962 so we just skip what we don't recognize. */
963 continue;
964 }
965
966 /* The frame size is just the negative of the offset (from the
967 original SP) of the last thing thing we pushed on the stack.
968 The frame offset is [new FP] - [new SP]. */
969 fi->extra_info->framesize = -sp_offset;
970 if (fi->extra_info->framereg == ARM_FP_REGNUM)
971 fi->extra_info->frameoffset = fp_offset - sp_offset;
972 else
973 fi->extra_info->frameoffset = 0;
974
975 save_prologue_cache (fi);
976 }
977
978 /* Find REGNUM on the stack. Otherwise, it's in an active register.
979 One thing we might want to do here is to check REGNUM against the
980 clobber mask, and somehow flag it as invalid if it isn't saved on
981 the stack somewhere. This would provide a graceful failure mode
982 when trying to get the value of caller-saves registers for an inner
983 frame. */
984
985 static CORE_ADDR
986 arm_find_callers_reg (struct frame_info *fi, int regnum)
987 {
988 /* NOTE: cagney/2002-05-03: This function really shouldn't be
989 needed. Instead the (still being written) register unwind
990 function could be called directly. */
991 for (; fi; fi = fi->next)
992 {
993 if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, 0, 0))
994 {
995 return deprecated_read_register_dummy (fi->pc, fi->frame, regnum);
996 }
997 else if (fi->saved_regs[regnum] != 0)
998 {
999 /* NOTE: cagney/2002-05-03: This would normally need to
1000 handle ARM_SP_REGNUM as a special case as, according to
1001 the frame.h comments, saved_regs[SP_REGNUM] contains the
1002 SP value not its address. It appears that the ARM isn't
1003 doing this though. */
1004 return read_memory_integer (fi->saved_regs[regnum],
1005 REGISTER_RAW_SIZE (regnum));
1006 }
1007 }
1008 return read_register (regnum);
1009 }
1010 /* Function: frame_chain Given a GDB frame, determine the address of
1011 the calling function's frame. This will be used to create a new
1012 GDB frame struct, and then INIT_EXTRA_FRAME_INFO and
1013 DEPRECATED_INIT_FRAME_PC will be called for the new frame. For
1014 ARM, we save the frame size when we initialize the frame_info. */
1015
1016 static CORE_ADDR
1017 arm_frame_chain (struct frame_info *fi)
1018 {
1019 CORE_ADDR caller_pc;
1020 int framereg = fi->extra_info->framereg;
1021
1022 if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, 0, 0))
1023 /* A generic call dummy's frame is the same as caller's. */
1024 return fi->frame;
1025
1026 if (fi->pc < LOWEST_PC)
1027 return 0;
1028
1029 /* If the caller is the startup code, we're at the end of the chain. */
1030 caller_pc = FRAME_SAVED_PC (fi);
1031
1032 /* If the caller is Thumb and the caller is ARM, or vice versa,
1033 the frame register of the caller is different from ours.
1034 So we must scan the prologue of the caller to determine its
1035 frame register number. */
1036 /* XXX Fixme, we should try to do this without creating a temporary
1037 caller_fi. */
1038 if (arm_pc_is_thumb (caller_pc) != arm_pc_is_thumb (fi->pc))
1039 {
1040 struct frame_info caller_fi;
1041 struct cleanup *old_chain;
1042
1043 /* Create a temporary frame suitable for scanning the caller's
1044 prologue. (Ugh.) */
1045 memset (&caller_fi, 0, sizeof (caller_fi));
1046 caller_fi.extra_info = (struct frame_extra_info *)
1047 xcalloc (1, sizeof (struct frame_extra_info));
1048 old_chain = make_cleanup (xfree, caller_fi.extra_info);
1049 caller_fi.saved_regs = (CORE_ADDR *)
1050 xcalloc (1, SIZEOF_FRAME_SAVED_REGS);
1051 make_cleanup (xfree, caller_fi.saved_regs);
1052
1053 /* Now, scan the prologue and obtain the frame register. */
1054 caller_fi.pc = caller_pc;
1055 arm_scan_prologue (&caller_fi);
1056 framereg = caller_fi.extra_info->framereg;
1057
1058 /* Deallocate the storage associated with the temporary frame
1059 created above. */
1060 do_cleanups (old_chain);
1061 }
1062
1063 /* If the caller used a frame register, return its value.
1064 Otherwise, return the caller's stack pointer. */
1065 if (framereg == ARM_FP_REGNUM || framereg == THUMB_FP_REGNUM)
1066 return arm_find_callers_reg (fi, framereg);
1067 else
1068 return fi->frame + fi->extra_info->framesize;
1069 }
1070
1071 /* This function actually figures out the frame address for a given pc
1072 and sp. This is tricky because we sometimes don't use an explicit
1073 frame pointer, and the previous stack pointer isn't necessarily
1074 recorded on the stack. The only reliable way to get this info is
1075 to examine the prologue. FROMLEAF is a little confusing, it means
1076 this is the next frame up the chain AFTER a frameless function. If
1077 this is true, then the frame value for this frame is still in the
1078 fp register. */
1079
1080 static void
1081 arm_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1082 {
1083 int reg;
1084 CORE_ADDR sp;
1085
1086 if (fi->saved_regs == NULL)
1087 frame_saved_regs_zalloc (fi);
1088
1089 fi->extra_info = (struct frame_extra_info *)
1090 frame_obstack_alloc (sizeof (struct frame_extra_info));
1091
1092 fi->extra_info->framesize = 0;
1093 fi->extra_info->frameoffset = 0;
1094 fi->extra_info->framereg = 0;
1095
1096 if (fi->next)
1097 fi->pc = FRAME_SAVED_PC (fi->next);
1098
1099 memset (fi->saved_regs, '\000', sizeof fi->saved_regs);
1100
1101 /* Compute stack pointer for this frame. We use this value for both
1102 the sigtramp and call dummy cases. */
1103 if (!fi->next)
1104 sp = read_sp();
1105 else if (DEPRECATED_PC_IN_CALL_DUMMY (fi->next->pc, 0, 0))
1106 /* For generic dummy frames, pull the value direct from the frame.
1107 Having an unwind function to do this would be nice. */
1108 sp = deprecated_read_register_dummy (fi->next->pc, fi->next->frame,
1109 ARM_SP_REGNUM);
1110 else
1111 sp = (fi->next->frame - fi->next->extra_info->frameoffset
1112 + fi->next->extra_info->framesize);
1113
1114 /* Determine whether or not we're in a sigtramp frame.
1115 Unfortunately, it isn't sufficient to test (get_frame_type (fi)
1116 == SIGTRAMP_FRAME) because this value is sometimes set after
1117 invoking INIT_EXTRA_FRAME_INFO. So we test *both*
1118 (get_frame_type (fi) == SIGTRAMP_FRAME) and PC_IN_SIGTRAMP to
1119 determine if we need to use the sigcontext addresses for the
1120 saved registers.
1121
1122 Note: If an ARM PC_IN_SIGTRAMP method ever needs to compare
1123 against the name of the function, the code below will have to be
1124 changed to first fetch the name of the function and then pass
1125 this name to PC_IN_SIGTRAMP. */
1126
1127 /* FIXME: cagney/2002-11-18: This problem will go away once
1128 frame.c:get_prev_frame() is modified to set the frame's type
1129 before calling functions like this. */
1130
1131 if (SIGCONTEXT_REGISTER_ADDRESS_P ()
1132 && ((get_frame_type (fi) == SIGTRAMP_FRAME) || PC_IN_SIGTRAMP (fi->pc, (char *)0)))
1133 {
1134 for (reg = 0; reg < NUM_REGS; reg++)
1135 fi->saved_regs[reg] = SIGCONTEXT_REGISTER_ADDRESS (sp, fi->pc, reg);
1136
1137 /* FIXME: What about thumb mode? */
1138 fi->extra_info->framereg = ARM_SP_REGNUM;
1139 fi->frame =
1140 read_memory_integer (fi->saved_regs[fi->extra_info->framereg],
1141 REGISTER_RAW_SIZE (fi->extra_info->framereg));
1142 fi->extra_info->framesize = 0;
1143 fi->extra_info->frameoffset = 0;
1144
1145 }
1146 else
1147 {
1148 arm_scan_prologue (fi);
1149
1150 if (!fi->next)
1151 /* This is the innermost frame? */
1152 fi->frame = read_register (fi->extra_info->framereg);
1153 else if (DEPRECATED_PC_IN_CALL_DUMMY (fi->next->pc, 0, 0))
1154 /* Next inner most frame is a dummy, just grab its frame.
1155 Dummy frames always have the same FP as their caller. */
1156 fi->frame = fi->next->frame;
1157 else if (fi->extra_info->framereg == ARM_FP_REGNUM
1158 || fi->extra_info->framereg == THUMB_FP_REGNUM)
1159 {
1160 /* not the innermost frame */
1161 /* If we have an FP, the callee saved it. */
1162 if (fi->next->saved_regs[fi->extra_info->framereg] != 0)
1163 fi->frame =
1164 read_memory_integer (fi->next
1165 ->saved_regs[fi->extra_info->framereg], 4);
1166 else if (fromleaf)
1167 /* If we were called by a frameless fn. then our frame is
1168 still in the frame pointer register on the board... */
1169 fi->frame = read_fp ();
1170 }
1171
1172 /* Calculate actual addresses of saved registers using offsets
1173 determined by arm_scan_prologue. */
1174 for (reg = 0; reg < NUM_REGS; reg++)
1175 if (fi->saved_regs[reg] != 0)
1176 fi->saved_regs[reg] += (fi->frame + fi->extra_info->framesize
1177 - fi->extra_info->frameoffset);
1178 }
1179 }
1180
1181
1182 /* Find the caller of this frame. We do this by seeing if ARM_LR_REGNUM
1183 is saved in the stack anywhere, otherwise we get it from the
1184 registers.
1185
1186 The old definition of this function was a macro:
1187 #define FRAME_SAVED_PC(FRAME) \
1188 ADDR_BITS_REMOVE (read_memory_integer ((FRAME)->frame - 4, 4)) */
1189
1190 static CORE_ADDR
1191 arm_frame_saved_pc (struct frame_info *fi)
1192 {
1193 /* If a dummy frame, pull the PC out of the frame's register buffer. */
1194 if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, 0, 0))
1195 return deprecated_read_register_dummy (fi->pc, fi->frame, ARM_PC_REGNUM);
1196
1197 if (DEPRECATED_PC_IN_CALL_DUMMY (fi->pc, fi->frame - fi->extra_info->frameoffset,
1198 fi->frame))
1199 {
1200 return read_memory_integer (fi->saved_regs[ARM_PC_REGNUM],
1201 REGISTER_RAW_SIZE (ARM_PC_REGNUM));
1202 }
1203 else
1204 {
1205 CORE_ADDR pc = arm_find_callers_reg (fi, ARM_LR_REGNUM);
1206 return IS_THUMB_ADDR (pc) ? UNMAKE_THUMB_ADDR (pc) : pc;
1207 }
1208 }
1209
1210 /* Return the frame address. On ARM, it is R11; on Thumb it is R7.
1211 Examine the Program Status Register to decide which state we're in. */
1212
1213 static CORE_ADDR
1214 arm_read_fp (void)
1215 {
1216 if (read_register (ARM_PS_REGNUM) & 0x20) /* Bit 5 is Thumb state bit */
1217 return read_register (THUMB_FP_REGNUM); /* R7 if Thumb */
1218 else
1219 return read_register (ARM_FP_REGNUM); /* R11 if ARM */
1220 }
1221
1222 /* Store into a struct frame_saved_regs the addresses of the saved
1223 registers of frame described by FRAME_INFO. This includes special
1224 registers such as PC and FP saved in special ways in the stack
1225 frame. SP is even more special: the address we return for it IS
1226 the sp for the next frame. */
1227
1228 static void
1229 arm_frame_init_saved_regs (struct frame_info *fip)
1230 {
1231
1232 if (fip->saved_regs)
1233 return;
1234
1235 arm_init_extra_frame_info (0, fip);
1236 }
1237
1238 /* Set the return address for a generic dummy frame. ARM uses the
1239 entry point. */
1240
1241 static CORE_ADDR
1242 arm_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1243 {
1244 write_register (ARM_LR_REGNUM, CALL_DUMMY_ADDRESS ());
1245 return sp;
1246 }
1247
1248 /* Push an empty stack frame, to record the current PC, etc. */
1249
1250 static void
1251 arm_push_dummy_frame (void)
1252 {
1253 CORE_ADDR old_sp = read_register (ARM_SP_REGNUM);
1254 CORE_ADDR sp = old_sp;
1255 CORE_ADDR fp, prologue_start;
1256 int regnum;
1257
1258 /* Push the two dummy prologue instructions in reverse order,
1259 so that they'll be in the correct low-to-high order in memory. */
1260 /* sub fp, ip, #4 */
1261 sp = push_word (sp, 0xe24cb004);
1262 /* stmdb sp!, {r0-r10, fp, ip, lr, pc} */
1263 prologue_start = sp = push_word (sp, 0xe92ddfff);
1264
1265 /* Push a pointer to the dummy prologue + 12, because when stm
1266 instruction stores the PC, it stores the address of the stm
1267 instruction itself plus 12. */
1268 fp = sp = push_word (sp, prologue_start + 12);
1269
1270 /* Push the processor status. */
1271 sp = push_word (sp, read_register (ARM_PS_REGNUM));
1272
1273 /* Push all 16 registers starting with r15. */
1274 for (regnum = ARM_PC_REGNUM; regnum >= 0; regnum--)
1275 sp = push_word (sp, read_register (regnum));
1276
1277 /* Update fp (for both Thumb and ARM) and sp. */
1278 write_register (ARM_FP_REGNUM, fp);
1279 write_register (THUMB_FP_REGNUM, fp);
1280 write_register (ARM_SP_REGNUM, sp);
1281 }
1282
1283 /* CALL_DUMMY_WORDS:
1284 This sequence of words is the instructions
1285
1286 mov lr,pc
1287 mov pc,r4
1288 illegal
1289
1290 Note this is 12 bytes. */
1291
1292 static LONGEST arm_call_dummy_words[] =
1293 {
1294 0xe1a0e00f, 0xe1a0f004, 0xe7ffdefe
1295 };
1296
1297 /* Adjust the call_dummy_breakpoint_offset for the bp_call_dummy
1298 breakpoint to the proper address in the call dummy, so that
1299 `finish' after a stop in a call dummy works.
1300
1301 FIXME rearnsha 2002-02018: Tweeking current_gdbarch is not an
1302 optimal solution, but the call to arm_fix_call_dummy is immediately
1303 followed by a call to run_stack_dummy, which is the only function
1304 where call_dummy_breakpoint_offset is actually used. */
1305
1306
1307 static void
1308 arm_set_call_dummy_breakpoint_offset (void)
1309 {
1310 if (caller_is_thumb)
1311 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 4);
1312 else
1313 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 8);
1314 }
1315
1316 /* Fix up the call dummy, based on whether the processor is currently
1317 in Thumb or ARM mode, and whether the target function is Thumb or
1318 ARM. There are three different situations requiring three
1319 different dummies:
1320
1321 * ARM calling ARM: uses the call dummy in tm-arm.h, which has already
1322 been copied into the dummy parameter to this function.
1323 * ARM calling Thumb: uses the call dummy in tm-arm.h, but with the
1324 "mov pc,r4" instruction patched to be a "bx r4" instead.
1325 * Thumb calling anything: uses the Thumb dummy defined below, which
1326 works for calling both ARM and Thumb functions.
1327
1328 All three call dummies expect to receive the target function
1329 address in R4, with the low bit set if it's a Thumb function. */
1330
1331 static void
1332 arm_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
1333 struct value **args, struct type *type, int gcc_p)
1334 {
1335 static short thumb_dummy[4] =
1336 {
1337 0xf000, 0xf801, /* bl label */
1338 0xdf18, /* swi 24 */
1339 0x4720, /* label: bx r4 */
1340 };
1341 static unsigned long arm_bx_r4 = 0xe12fff14; /* bx r4 instruction */
1342
1343 /* Set flag indicating whether the current PC is in a Thumb function. */
1344 caller_is_thumb = arm_pc_is_thumb (read_pc ());
1345 arm_set_call_dummy_breakpoint_offset ();
1346
1347 /* If the target function is Thumb, set the low bit of the function
1348 address. And if the CPU is currently in ARM mode, patch the
1349 second instruction of call dummy to use a BX instruction to
1350 switch to Thumb mode. */
1351 target_is_thumb = arm_pc_is_thumb (fun);
1352 if (target_is_thumb)
1353 {
1354 fun |= 1;
1355 if (!caller_is_thumb)
1356 store_unsigned_integer (dummy + 4, sizeof (arm_bx_r4), arm_bx_r4);
1357 }
1358
1359 /* If the CPU is currently in Thumb mode, use the Thumb call dummy
1360 instead of the ARM one that's already been copied. This will
1361 work for both Thumb and ARM target functions. */
1362 if (caller_is_thumb)
1363 {
1364 int i;
1365 char *p = dummy;
1366 int len = sizeof (thumb_dummy) / sizeof (thumb_dummy[0]);
1367
1368 for (i = 0; i < len; i++)
1369 {
1370 store_unsigned_integer (p, sizeof (thumb_dummy[0]), thumb_dummy[i]);
1371 p += sizeof (thumb_dummy[0]);
1372 }
1373 }
1374
1375 /* Put the target address in r4; the call dummy will copy this to
1376 the PC. */
1377 write_register (4, fun);
1378 }
1379
1380 /* Note: ScottB
1381
1382 This function does not support passing parameters using the FPA
1383 variant of the APCS. It passes any floating point arguments in the
1384 general registers and/or on the stack. */
1385
1386 static CORE_ADDR
1387 arm_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1388 int struct_return, CORE_ADDR struct_addr)
1389 {
1390 CORE_ADDR fp;
1391 int argnum;
1392 int argreg;
1393 int nstack;
1394 int simd_argreg;
1395 int second_pass;
1396 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1397
1398 /* Walk through the list of args and determine how large a temporary
1399 stack is required. Need to take care here as structs may be
1400 passed on the stack, and we have to to push them. On the second
1401 pass, do the store. */
1402 nstack = 0;
1403 fp = sp;
1404 for (second_pass = 0; second_pass < 2; second_pass++)
1405 {
1406 /* Compute the FP using the information computed during the
1407 first pass. */
1408 if (second_pass)
1409 fp = sp - nstack;
1410
1411 simd_argreg = 0;
1412 argreg = ARM_A1_REGNUM;
1413 nstack = 0;
1414
1415 /* The struct_return pointer occupies the first parameter
1416 passing register. */
1417 if (struct_return)
1418 {
1419 if (second_pass)
1420 {
1421 if (arm_debug)
1422 fprintf_unfiltered (gdb_stdlog,
1423 "struct return in %s = 0x%s\n",
1424 REGISTER_NAME (argreg),
1425 paddr (struct_addr));
1426 write_register (argreg, struct_addr);
1427 }
1428 argreg++;
1429 }
1430
1431 for (argnum = 0; argnum < nargs; argnum++)
1432 {
1433 int len;
1434 struct type *arg_type;
1435 struct type *target_type;
1436 enum type_code typecode;
1437 char *val;
1438
1439 arg_type = check_typedef (VALUE_TYPE (args[argnum]));
1440 len = TYPE_LENGTH (arg_type);
1441 target_type = TYPE_TARGET_TYPE (arg_type);
1442 typecode = TYPE_CODE (arg_type);
1443 val = VALUE_CONTENTS (args[argnum]);
1444
1445 /* If the argument is a pointer to a function, and it is a
1446 Thumb function, create a LOCAL copy of the value and set
1447 the THUMB bit in it. */
1448 if (second_pass
1449 && TYPE_CODE_PTR == typecode
1450 && target_type != NULL
1451 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1452 {
1453 CORE_ADDR regval = extract_address (val, len);
1454 if (arm_pc_is_thumb (regval))
1455 {
1456 val = alloca (len);
1457 store_address (val, len, MAKE_THUMB_ADDR (regval));
1458 }
1459 }
1460
1461 /* Copy the argument to general registers or the stack in
1462 register-sized pieces. Large arguments are split between
1463 registers and stack. */
1464 while (len > 0)
1465 {
1466 int partial_len = len < REGISTER_SIZE ? len : REGISTER_SIZE;
1467
1468 if (argreg <= ARM_LAST_ARG_REGNUM)
1469 {
1470 /* The argument is being passed in a general purpose
1471 register. */
1472 if (second_pass)
1473 {
1474 CORE_ADDR regval = extract_address (val,
1475 partial_len);
1476 if (arm_debug)
1477 fprintf_unfiltered (gdb_stdlog,
1478 "arg %d in %s = 0x%s\n",
1479 argnum,
1480 REGISTER_NAME (argreg),
1481 phex (regval, REGISTER_SIZE));
1482 write_register (argreg, regval);
1483 }
1484 argreg++;
1485 }
1486 else
1487 {
1488 if (second_pass)
1489 {
1490 /* Push the arguments onto the stack. */
1491 if (arm_debug)
1492 fprintf_unfiltered (gdb_stdlog,
1493 "arg %d @ 0x%s + %d\n",
1494 argnum, paddr (fp), nstack);
1495 write_memory (fp + nstack, val, REGISTER_SIZE);
1496 }
1497 nstack += REGISTER_SIZE;
1498 }
1499
1500 len -= partial_len;
1501 val += partial_len;
1502 }
1503
1504 }
1505 }
1506
1507 /* Return the botom of the argument list (pointed to by fp). */
1508 return fp;
1509 }
1510
1511 /* Pop the current frame. So long as the frame info has been
1512 initialized properly (see arm_init_extra_frame_info), this code
1513 works for dummy frames as well as regular frames. I.e, there's no
1514 need to have a special case for dummy frames. */
1515 static void
1516 arm_pop_frame (void)
1517 {
1518 int regnum;
1519 struct frame_info *frame = get_current_frame ();
1520 CORE_ADDR old_SP = (frame->frame - frame->extra_info->frameoffset
1521 + frame->extra_info->framesize);
1522
1523 if (DEPRECATED_PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
1524 {
1525 generic_pop_dummy_frame ();
1526 flush_cached_frames ();
1527 return;
1528 }
1529
1530 for (regnum = 0; regnum < NUM_REGS; regnum++)
1531 if (frame->saved_regs[regnum] != 0)
1532 write_register (regnum,
1533 read_memory_integer (frame->saved_regs[regnum],
1534 REGISTER_RAW_SIZE (regnum)));
1535
1536 write_register (ARM_PC_REGNUM, FRAME_SAVED_PC (frame));
1537 write_register (ARM_SP_REGNUM, old_SP);
1538
1539 flush_cached_frames ();
1540 }
1541
1542 static void
1543 print_fpu_flags (int flags)
1544 {
1545 if (flags & (1 << 0))
1546 fputs ("IVO ", stdout);
1547 if (flags & (1 << 1))
1548 fputs ("DVZ ", stdout);
1549 if (flags & (1 << 2))
1550 fputs ("OFL ", stdout);
1551 if (flags & (1 << 3))
1552 fputs ("UFL ", stdout);
1553 if (flags & (1 << 4))
1554 fputs ("INX ", stdout);
1555 putchar ('\n');
1556 }
1557
1558 /* Print interesting information about the floating point processor
1559 (if present) or emulator. */
1560 static void
1561 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1562 struct frame_info *frame, const char *args)
1563 {
1564 register unsigned long status = read_register (ARM_FPS_REGNUM);
1565 int type;
1566
1567 type = (status >> 24) & 127;
1568 printf ("%s FPU type %d\n",
1569 (status & (1 << 31)) ? "Hardware" : "Software",
1570 type);
1571 fputs ("mask: ", stdout);
1572 print_fpu_flags (status >> 16);
1573 fputs ("flags: ", stdout);
1574 print_fpu_flags (status);
1575 }
1576
1577 /* Return the GDB type object for the "standard" data type of data in
1578 register N. */
1579
1580 static struct type *
1581 arm_register_type (int regnum)
1582 {
1583 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1584 {
1585 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1586 return builtin_type_arm_ext_big;
1587 else
1588 return builtin_type_arm_ext_littlebyte_bigword;
1589 }
1590 else
1591 return builtin_type_int32;
1592 }
1593
1594 /* Index within `registers' of the first byte of the space for
1595 register N. */
1596
1597 static int
1598 arm_register_byte (int regnum)
1599 {
1600 if (regnum < ARM_F0_REGNUM)
1601 return regnum * INT_REGISTER_RAW_SIZE;
1602 else if (regnum < ARM_PS_REGNUM)
1603 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1604 + (regnum - ARM_F0_REGNUM) * FP_REGISTER_RAW_SIZE);
1605 else
1606 return (NUM_GREGS * INT_REGISTER_RAW_SIZE
1607 + NUM_FREGS * FP_REGISTER_RAW_SIZE
1608 + (regnum - ARM_FPS_REGNUM) * STATUS_REGISTER_SIZE);
1609 }
1610
1611 /* Number of bytes of storage in the actual machine representation for
1612 register N. All registers are 4 bytes, except fp0 - fp7, which are
1613 12 bytes in length. */
1614
1615 static int
1616 arm_register_raw_size (int regnum)
1617 {
1618 if (regnum < ARM_F0_REGNUM)
1619 return INT_REGISTER_RAW_SIZE;
1620 else if (regnum < ARM_FPS_REGNUM)
1621 return FP_REGISTER_RAW_SIZE;
1622 else
1623 return STATUS_REGISTER_SIZE;
1624 }
1625
1626 /* Number of bytes of storage in a program's representation
1627 for register N. */
1628 static int
1629 arm_register_virtual_size (int regnum)
1630 {
1631 if (regnum < ARM_F0_REGNUM)
1632 return INT_REGISTER_VIRTUAL_SIZE;
1633 else if (regnum < ARM_FPS_REGNUM)
1634 return FP_REGISTER_VIRTUAL_SIZE;
1635 else
1636 return STATUS_REGISTER_SIZE;
1637 }
1638
1639 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1640 static int
1641 arm_register_sim_regno (int regnum)
1642 {
1643 int reg = regnum;
1644 gdb_assert (reg >= 0 && reg < NUM_REGS);
1645
1646 if (reg < NUM_GREGS)
1647 return SIM_ARM_R0_REGNUM + reg;
1648 reg -= NUM_GREGS;
1649
1650 if (reg < NUM_FREGS)
1651 return SIM_ARM_FP0_REGNUM + reg;
1652 reg -= NUM_FREGS;
1653
1654 if (reg < NUM_SREGS)
1655 return SIM_ARM_FPS_REGNUM + reg;
1656 reg -= NUM_SREGS;
1657
1658 internal_error (__FILE__, __LINE__, "Bad REGNUM %d", regnum);
1659 }
1660
1661 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1662 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1663 It is thought that this is is the floating-point register format on
1664 little-endian systems. */
1665
1666 static void
1667 convert_from_extended (void *ptr, void *dbl)
1668 {
1669 DOUBLEST d;
1670 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1671 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1672 else
1673 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1674 ptr, &d);
1675 floatformat_from_doublest (TARGET_DOUBLE_FORMAT, &d, dbl);
1676 }
1677
1678 static void
1679 convert_to_extended (void *dbl, void *ptr)
1680 {
1681 DOUBLEST d;
1682 floatformat_to_doublest (TARGET_DOUBLE_FORMAT, ptr, &d);
1683 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1684 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1685 else
1686 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1687 &d, dbl);
1688 }
1689
1690 static int
1691 condition_true (unsigned long cond, unsigned long status_reg)
1692 {
1693 if (cond == INST_AL || cond == INST_NV)
1694 return 1;
1695
1696 switch (cond)
1697 {
1698 case INST_EQ:
1699 return ((status_reg & FLAG_Z) != 0);
1700 case INST_NE:
1701 return ((status_reg & FLAG_Z) == 0);
1702 case INST_CS:
1703 return ((status_reg & FLAG_C) != 0);
1704 case INST_CC:
1705 return ((status_reg & FLAG_C) == 0);
1706 case INST_MI:
1707 return ((status_reg & FLAG_N) != 0);
1708 case INST_PL:
1709 return ((status_reg & FLAG_N) == 0);
1710 case INST_VS:
1711 return ((status_reg & FLAG_V) != 0);
1712 case INST_VC:
1713 return ((status_reg & FLAG_V) == 0);
1714 case INST_HI:
1715 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1716 case INST_LS:
1717 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1718 case INST_GE:
1719 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1720 case INST_LT:
1721 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1722 case INST_GT:
1723 return (((status_reg & FLAG_Z) == 0) &&
1724 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1725 case INST_LE:
1726 return (((status_reg & FLAG_Z) != 0) ||
1727 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1728 }
1729 return 1;
1730 }
1731
1732 /* Support routines for single stepping. Calculate the next PC value. */
1733 #define submask(x) ((1L << ((x) + 1)) - 1)
1734 #define bit(obj,st) (((obj) >> (st)) & 1)
1735 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1736 #define sbits(obj,st,fn) \
1737 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1738 #define BranchDest(addr,instr) \
1739 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1740 #define ARM_PC_32 1
1741
1742 static unsigned long
1743 shifted_reg_val (unsigned long inst, int carry, unsigned long pc_val,
1744 unsigned long status_reg)
1745 {
1746 unsigned long res, shift;
1747 int rm = bits (inst, 0, 3);
1748 unsigned long shifttype = bits (inst, 5, 6);
1749
1750 if (bit (inst, 4))
1751 {
1752 int rs = bits (inst, 8, 11);
1753 shift = (rs == 15 ? pc_val + 8 : read_register (rs)) & 0xFF;
1754 }
1755 else
1756 shift = bits (inst, 7, 11);
1757
1758 res = (rm == 15
1759 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1760 + (bit (inst, 4) ? 12 : 8))
1761 : read_register (rm));
1762
1763 switch (shifttype)
1764 {
1765 case 0: /* LSL */
1766 res = shift >= 32 ? 0 : res << shift;
1767 break;
1768
1769 case 1: /* LSR */
1770 res = shift >= 32 ? 0 : res >> shift;
1771 break;
1772
1773 case 2: /* ASR */
1774 if (shift >= 32)
1775 shift = 31;
1776 res = ((res & 0x80000000L)
1777 ? ~((~res) >> shift) : res >> shift);
1778 break;
1779
1780 case 3: /* ROR/RRX */
1781 shift &= 31;
1782 if (shift == 0)
1783 res = (res >> 1) | (carry ? 0x80000000L : 0);
1784 else
1785 res = (res >> shift) | (res << (32 - shift));
1786 break;
1787 }
1788
1789 return res & 0xffffffff;
1790 }
1791
1792 /* Return number of 1-bits in VAL. */
1793
1794 static int
1795 bitcount (unsigned long val)
1796 {
1797 int nbits;
1798 for (nbits = 0; val != 0; nbits++)
1799 val &= val - 1; /* delete rightmost 1-bit in val */
1800 return nbits;
1801 }
1802
1803 CORE_ADDR
1804 thumb_get_next_pc (CORE_ADDR pc)
1805 {
1806 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1807 unsigned short inst1 = read_memory_integer (pc, 2);
1808 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1809 unsigned long offset;
1810
1811 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1812 {
1813 CORE_ADDR sp;
1814
1815 /* Fetch the saved PC from the stack. It's stored above
1816 all of the other registers. */
1817 offset = bitcount (bits (inst1, 0, 7)) * REGISTER_SIZE;
1818 sp = read_register (ARM_SP_REGNUM);
1819 nextpc = (CORE_ADDR) read_memory_integer (sp + offset, 4);
1820 nextpc = ADDR_BITS_REMOVE (nextpc);
1821 if (nextpc == pc)
1822 error ("Infinite loop detected");
1823 }
1824 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1825 {
1826 unsigned long status = read_register (ARM_PS_REGNUM);
1827 unsigned long cond = bits (inst1, 8, 11);
1828 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1829 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1830 }
1831 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1832 {
1833 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1834 }
1835 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link */
1836 {
1837 unsigned short inst2 = read_memory_integer (pc + 2, 2);
1838 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1839 nextpc = pc_val + offset;
1840 }
1841
1842 return nextpc;
1843 }
1844
1845 CORE_ADDR
1846 arm_get_next_pc (CORE_ADDR pc)
1847 {
1848 unsigned long pc_val;
1849 unsigned long this_instr;
1850 unsigned long status;
1851 CORE_ADDR nextpc;
1852
1853 if (arm_pc_is_thumb (pc))
1854 return thumb_get_next_pc (pc);
1855
1856 pc_val = (unsigned long) pc;
1857 this_instr = read_memory_integer (pc, 4);
1858 status = read_register (ARM_PS_REGNUM);
1859 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1860
1861 if (condition_true (bits (this_instr, 28, 31), status))
1862 {
1863 switch (bits (this_instr, 24, 27))
1864 {
1865 case 0x0:
1866 case 0x1: /* data processing */
1867 case 0x2:
1868 case 0x3:
1869 {
1870 unsigned long operand1, operand2, result = 0;
1871 unsigned long rn;
1872 int c;
1873
1874 if (bits (this_instr, 12, 15) != 15)
1875 break;
1876
1877 if (bits (this_instr, 22, 25) == 0
1878 && bits (this_instr, 4, 7) == 9) /* multiply */
1879 error ("Illegal update to pc in instruction");
1880
1881 /* Multiply into PC */
1882 c = (status & FLAG_C) ? 1 : 0;
1883 rn = bits (this_instr, 16, 19);
1884 operand1 = (rn == 15) ? pc_val + 8 : read_register (rn);
1885
1886 if (bit (this_instr, 25))
1887 {
1888 unsigned long immval = bits (this_instr, 0, 7);
1889 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1890 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1891 & 0xffffffff;
1892 }
1893 else /* operand 2 is a shifted register */
1894 operand2 = shifted_reg_val (this_instr, c, pc_val, status);
1895
1896 switch (bits (this_instr, 21, 24))
1897 {
1898 case 0x0: /*and */
1899 result = operand1 & operand2;
1900 break;
1901
1902 case 0x1: /*eor */
1903 result = operand1 ^ operand2;
1904 break;
1905
1906 case 0x2: /*sub */
1907 result = operand1 - operand2;
1908 break;
1909
1910 case 0x3: /*rsb */
1911 result = operand2 - operand1;
1912 break;
1913
1914 case 0x4: /*add */
1915 result = operand1 + operand2;
1916 break;
1917
1918 case 0x5: /*adc */
1919 result = operand1 + operand2 + c;
1920 break;
1921
1922 case 0x6: /*sbc */
1923 result = operand1 - operand2 + c;
1924 break;
1925
1926 case 0x7: /*rsc */
1927 result = operand2 - operand1 + c;
1928 break;
1929
1930 case 0x8:
1931 case 0x9:
1932 case 0xa:
1933 case 0xb: /* tst, teq, cmp, cmn */
1934 result = (unsigned long) nextpc;
1935 break;
1936
1937 case 0xc: /*orr */
1938 result = operand1 | operand2;
1939 break;
1940
1941 case 0xd: /*mov */
1942 /* Always step into a function. */
1943 result = operand2;
1944 break;
1945
1946 case 0xe: /*bic */
1947 result = operand1 & ~operand2;
1948 break;
1949
1950 case 0xf: /*mvn */
1951 result = ~operand2;
1952 break;
1953 }
1954 nextpc = (CORE_ADDR) ADDR_BITS_REMOVE (result);
1955
1956 if (nextpc == pc)
1957 error ("Infinite loop detected");
1958 break;
1959 }
1960
1961 case 0x4:
1962 case 0x5: /* data transfer */
1963 case 0x6:
1964 case 0x7:
1965 if (bit (this_instr, 20))
1966 {
1967 /* load */
1968 if (bits (this_instr, 12, 15) == 15)
1969 {
1970 /* rd == pc */
1971 unsigned long rn;
1972 unsigned long base;
1973
1974 if (bit (this_instr, 22))
1975 error ("Illegal update to pc in instruction");
1976
1977 /* byte write to PC */
1978 rn = bits (this_instr, 16, 19);
1979 base = (rn == 15) ? pc_val + 8 : read_register (rn);
1980 if (bit (this_instr, 24))
1981 {
1982 /* pre-indexed */
1983 int c = (status & FLAG_C) ? 1 : 0;
1984 unsigned long offset =
1985 (bit (this_instr, 25)
1986 ? shifted_reg_val (this_instr, c, pc_val, status)
1987 : bits (this_instr, 0, 11));
1988
1989 if (bit (this_instr, 23))
1990 base += offset;
1991 else
1992 base -= offset;
1993 }
1994 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
1995 4);
1996
1997 nextpc = ADDR_BITS_REMOVE (nextpc);
1998
1999 if (nextpc == pc)
2000 error ("Infinite loop detected");
2001 }
2002 }
2003 break;
2004
2005 case 0x8:
2006 case 0x9: /* block transfer */
2007 if (bit (this_instr, 20))
2008 {
2009 /* LDM */
2010 if (bit (this_instr, 15))
2011 {
2012 /* loading pc */
2013 int offset = 0;
2014
2015 if (bit (this_instr, 23))
2016 {
2017 /* up */
2018 unsigned long reglist = bits (this_instr, 0, 14);
2019 offset = bitcount (reglist) * 4;
2020 if (bit (this_instr, 24)) /* pre */
2021 offset += 4;
2022 }
2023 else if (bit (this_instr, 24))
2024 offset = -4;
2025
2026 {
2027 unsigned long rn_val =
2028 read_register (bits (this_instr, 16, 19));
2029 nextpc =
2030 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
2031 + offset),
2032 4);
2033 }
2034 nextpc = ADDR_BITS_REMOVE (nextpc);
2035 if (nextpc == pc)
2036 error ("Infinite loop detected");
2037 }
2038 }
2039 break;
2040
2041 case 0xb: /* branch & link */
2042 case 0xa: /* branch */
2043 {
2044 nextpc = BranchDest (pc, this_instr);
2045
2046 nextpc = ADDR_BITS_REMOVE (nextpc);
2047 if (nextpc == pc)
2048 error ("Infinite loop detected");
2049 break;
2050 }
2051
2052 case 0xc:
2053 case 0xd:
2054 case 0xe: /* coproc ops */
2055 case 0xf: /* SWI */
2056 break;
2057
2058 default:
2059 fprintf_filtered (gdb_stderr, "Bad bit-field extraction\n");
2060 return (pc);
2061 }
2062 }
2063
2064 return nextpc;
2065 }
2066
2067 /* single_step() is called just before we want to resume the inferior,
2068 if we want to single-step it but there is no hardware or kernel
2069 single-step support. We find the target of the coming instruction
2070 and breakpoint it.
2071
2072 single_step() is also called just after the inferior stops. If we
2073 had set up a simulated single-step, we undo our damage. */
2074
2075 static void
2076 arm_software_single_step (enum target_signal sig, int insert_bpt)
2077 {
2078 static int next_pc; /* State between setting and unsetting. */
2079 static char break_mem[BREAKPOINT_MAX]; /* Temporary storage for mem@bpt */
2080
2081 if (insert_bpt)
2082 {
2083 next_pc = arm_get_next_pc (read_register (ARM_PC_REGNUM));
2084 target_insert_breakpoint (next_pc, break_mem);
2085 }
2086 else
2087 target_remove_breakpoint (next_pc, break_mem);
2088 }
2089
2090 #include "bfd-in2.h"
2091 #include "libcoff.h"
2092
2093 static int
2094 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
2095 {
2096 if (arm_pc_is_thumb (memaddr))
2097 {
2098 static asymbol *asym;
2099 static combined_entry_type ce;
2100 static struct coff_symbol_struct csym;
2101 static struct _bfd fake_bfd;
2102 static bfd_target fake_target;
2103
2104 if (csym.native == NULL)
2105 {
2106 /* Create a fake symbol vector containing a Thumb symbol.
2107 This is solely so that the code in print_insn_little_arm()
2108 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2109 the presence of a Thumb symbol and switch to decoding
2110 Thumb instructions. */
2111
2112 fake_target.flavour = bfd_target_coff_flavour;
2113 fake_bfd.xvec = &fake_target;
2114 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
2115 csym.native = &ce;
2116 csym.symbol.the_bfd = &fake_bfd;
2117 csym.symbol.name = "fake";
2118 asym = (asymbol *) & csym;
2119 }
2120
2121 memaddr = UNMAKE_THUMB_ADDR (memaddr);
2122 info->symbols = &asym;
2123 }
2124 else
2125 info->symbols = NULL;
2126
2127 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2128 return print_insn_big_arm (memaddr, info);
2129 else
2130 return print_insn_little_arm (memaddr, info);
2131 }
2132
2133 /* The following define instruction sequences that will cause ARM
2134 cpu's to take an undefined instruction trap. These are used to
2135 signal a breakpoint to GDB.
2136
2137 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2138 modes. A different instruction is required for each mode. The ARM
2139 cpu's can also be big or little endian. Thus four different
2140 instructions are needed to support all cases.
2141
2142 Note: ARMv4 defines several new instructions that will take the
2143 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2144 not in fact add the new instructions. The new undefined
2145 instructions in ARMv4 are all instructions that had no defined
2146 behaviour in earlier chips. There is no guarantee that they will
2147 raise an exception, but may be treated as NOP's. In practice, it
2148 may only safe to rely on instructions matching:
2149
2150 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2151 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2152 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2153
2154 Even this may only true if the condition predicate is true. The
2155 following use a condition predicate of ALWAYS so it is always TRUE.
2156
2157 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2158 and NetBSD all use a software interrupt rather than an undefined
2159 instruction to force a trap. This can be handled by by the
2160 abi-specific code during establishment of the gdbarch vector. */
2161
2162
2163 /* NOTE rearnsha 2002-02-18: for now we allow a non-multi-arch gdb to
2164 override these definitions. */
2165 #ifndef ARM_LE_BREAKPOINT
2166 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2167 #endif
2168 #ifndef ARM_BE_BREAKPOINT
2169 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2170 #endif
2171 #ifndef THUMB_LE_BREAKPOINT
2172 #define THUMB_LE_BREAKPOINT {0xfe,0xdf}
2173 #endif
2174 #ifndef THUMB_BE_BREAKPOINT
2175 #define THUMB_BE_BREAKPOINT {0xdf,0xfe}
2176 #endif
2177
2178 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2179 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2180 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2181 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2182
2183 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2184 the program counter value to determine whether a 16-bit or 32-bit
2185 breakpoint should be used. It returns a pointer to a string of
2186 bytes that encode a breakpoint instruction, stores the length of
2187 the string to *lenptr, and adjusts the program counter (if
2188 necessary) to point to the actual memory location where the
2189 breakpoint should be inserted. */
2190
2191 /* XXX ??? from old tm-arm.h: if we're using RDP, then we're inserting
2192 breakpoints and storing their handles instread of what was in
2193 memory. It is nice that this is the same size as a handle -
2194 otherwise remote-rdp will have to change. */
2195
2196 static const unsigned char *
2197 arm_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2198 {
2199 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2200
2201 if (arm_pc_is_thumb (*pcptr) || arm_pc_is_thumb_dummy (*pcptr))
2202 {
2203 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2204 *lenptr = tdep->thumb_breakpoint_size;
2205 return tdep->thumb_breakpoint;
2206 }
2207 else
2208 {
2209 *lenptr = tdep->arm_breakpoint_size;
2210 return tdep->arm_breakpoint;
2211 }
2212 }
2213
2214 /* Extract from an array REGBUF containing the (raw) register state a
2215 function return value of type TYPE, and copy that, in virtual
2216 format, into VALBUF. */
2217
2218 static void
2219 arm_extract_return_value (struct type *type,
2220 char regbuf[REGISTER_BYTES],
2221 char *valbuf)
2222 {
2223 if (TYPE_CODE_FLT == TYPE_CODE (type))
2224 {
2225 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2226
2227 switch (tdep->fp_model)
2228 {
2229 case ARM_FLOAT_FPA:
2230 convert_from_extended (&regbuf[REGISTER_BYTE (ARM_F0_REGNUM)],
2231 valbuf);
2232 break;
2233
2234 case ARM_FLOAT_SOFT:
2235 case ARM_FLOAT_SOFT_VFP:
2236 memcpy (valbuf, &regbuf[REGISTER_BYTE (ARM_A1_REGNUM)],
2237 TYPE_LENGTH (type));
2238 break;
2239
2240 default:
2241 internal_error
2242 (__FILE__, __LINE__,
2243 "arm_extract_return_value: Floating point model not supported");
2244 break;
2245 }
2246 }
2247 else
2248 memcpy (valbuf, &regbuf[REGISTER_BYTE (ARM_A1_REGNUM)],
2249 TYPE_LENGTH (type));
2250 }
2251
2252 /* Extract from an array REGBUF containing the (raw) register state
2253 the address in which a function should return its structure value. */
2254
2255 static CORE_ADDR
2256 arm_extract_struct_value_address (struct regcache *regcache)
2257 {
2258 ULONGEST ret;
2259
2260 regcache_cooked_read_unsigned (regcache, ARM_A1_REGNUM, &ret);
2261 return ret;
2262 }
2263
2264 /* Will a function return an aggregate type in memory or in a
2265 register? Return 0 if an aggregate type can be returned in a
2266 register, 1 if it must be returned in memory. */
2267
2268 static int
2269 arm_use_struct_convention (int gcc_p, struct type *type)
2270 {
2271 int nRc;
2272 register enum type_code code;
2273
2274 /* In the ARM ABI, "integer" like aggregate types are returned in
2275 registers. For an aggregate type to be integer like, its size
2276 must be less than or equal to REGISTER_SIZE and the offset of
2277 each addressable subfield must be zero. Note that bit fields are
2278 not addressable, and all addressable subfields of unions always
2279 start at offset zero.
2280
2281 This function is based on the behaviour of GCC 2.95.1.
2282 See: gcc/arm.c: arm_return_in_memory() for details.
2283
2284 Note: All versions of GCC before GCC 2.95.2 do not set up the
2285 parameters correctly for a function returning the following
2286 structure: struct { float f;}; This should be returned in memory,
2287 not a register. Richard Earnshaw sent me a patch, but I do not
2288 know of any way to detect if a function like the above has been
2289 compiled with the correct calling convention. */
2290
2291 /* All aggregate types that won't fit in a register must be returned
2292 in memory. */
2293 if (TYPE_LENGTH (type) > REGISTER_SIZE)
2294 {
2295 return 1;
2296 }
2297
2298 /* The only aggregate types that can be returned in a register are
2299 structs and unions. Arrays must be returned in memory. */
2300 code = TYPE_CODE (type);
2301 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2302 {
2303 return 1;
2304 }
2305
2306 /* Assume all other aggregate types can be returned in a register.
2307 Run a check for structures, unions and arrays. */
2308 nRc = 0;
2309
2310 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2311 {
2312 int i;
2313 /* Need to check if this struct/union is "integer" like. For
2314 this to be true, its size must be less than or equal to
2315 REGISTER_SIZE and the offset of each addressable subfield
2316 must be zero. Note that bit fields are not addressable, and
2317 unions always start at offset zero. If any of the subfields
2318 is a floating point type, the struct/union cannot be an
2319 integer type. */
2320
2321 /* For each field in the object, check:
2322 1) Is it FP? --> yes, nRc = 1;
2323 2) Is it addressable (bitpos != 0) and
2324 not packed (bitsize == 0)?
2325 --> yes, nRc = 1
2326 */
2327
2328 for (i = 0; i < TYPE_NFIELDS (type); i++)
2329 {
2330 enum type_code field_type_code;
2331 field_type_code = TYPE_CODE (TYPE_FIELD_TYPE (type, i));
2332
2333 /* Is it a floating point type field? */
2334 if (field_type_code == TYPE_CODE_FLT)
2335 {
2336 nRc = 1;
2337 break;
2338 }
2339
2340 /* If bitpos != 0, then we have to care about it. */
2341 if (TYPE_FIELD_BITPOS (type, i) != 0)
2342 {
2343 /* Bitfields are not addressable. If the field bitsize is
2344 zero, then the field is not packed. Hence it cannot be
2345 a bitfield or any other packed type. */
2346 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2347 {
2348 nRc = 1;
2349 break;
2350 }
2351 }
2352 }
2353 }
2354
2355 return nRc;
2356 }
2357
2358 /* Write into appropriate registers a function return value of type
2359 TYPE, given in virtual format. */
2360
2361 static void
2362 arm_store_return_value (struct type *type, char *valbuf)
2363 {
2364 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2365 {
2366 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2367 char buf[ARM_MAX_REGISTER_RAW_SIZE];
2368
2369 switch (tdep->fp_model)
2370 {
2371 case ARM_FLOAT_FPA:
2372
2373 convert_to_extended (valbuf, buf);
2374 deprecated_write_register_bytes (REGISTER_BYTE (ARM_F0_REGNUM), buf,
2375 FP_REGISTER_RAW_SIZE);
2376 break;
2377
2378 case ARM_FLOAT_SOFT:
2379 case ARM_FLOAT_SOFT_VFP:
2380 deprecated_write_register_bytes (ARM_A1_REGNUM, valbuf,
2381 TYPE_LENGTH (type));
2382 break;
2383
2384 default:
2385 internal_error
2386 (__FILE__, __LINE__,
2387 "arm_store_return_value: Floating point model not supported");
2388 break;
2389 }
2390 }
2391 else
2392 deprecated_write_register_bytes (ARM_A1_REGNUM, valbuf,
2393 TYPE_LENGTH (type));
2394 }
2395
2396 /* Store the address of the place in which to copy the structure the
2397 subroutine will return. This is called from call_function. */
2398
2399 static void
2400 arm_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2401 {
2402 write_register (ARM_A1_REGNUM, addr);
2403 }
2404
2405 static int
2406 arm_get_longjmp_target (CORE_ADDR *pc)
2407 {
2408 CORE_ADDR jb_addr;
2409 char buf[INT_REGISTER_RAW_SIZE];
2410 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2411
2412 jb_addr = read_register (ARM_A1_REGNUM);
2413
2414 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2415 INT_REGISTER_RAW_SIZE))
2416 return 0;
2417
2418 *pc = extract_address (buf, INT_REGISTER_RAW_SIZE);
2419 return 1;
2420 }
2421
2422 /* Return non-zero if the PC is inside a thumb call thunk. */
2423
2424 int
2425 arm_in_call_stub (CORE_ADDR pc, char *name)
2426 {
2427 CORE_ADDR start_addr;
2428
2429 /* Find the starting address of the function containing the PC. If
2430 the caller didn't give us a name, look it up at the same time. */
2431 if (0 == find_pc_partial_function (pc, name ? NULL : &name,
2432 &start_addr, NULL))
2433 return 0;
2434
2435 return strncmp (name, "_call_via_r", 11) == 0;
2436 }
2437
2438 /* If PC is in a Thumb call or return stub, return the address of the
2439 target PC, which is in a register. The thunk functions are called
2440 _called_via_xx, where x is the register name. The possible names
2441 are r0-r9, sl, fp, ip, sp, and lr. */
2442
2443 CORE_ADDR
2444 arm_skip_stub (CORE_ADDR pc)
2445 {
2446 char *name;
2447 CORE_ADDR start_addr;
2448
2449 /* Find the starting address and name of the function containing the PC. */
2450 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2451 return 0;
2452
2453 /* Call thunks always start with "_call_via_". */
2454 if (strncmp (name, "_call_via_", 10) == 0)
2455 {
2456 /* Use the name suffix to determine which register contains the
2457 target PC. */
2458 static char *table[15] =
2459 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2460 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2461 };
2462 int regno;
2463
2464 for (regno = 0; regno <= 14; regno++)
2465 if (strcmp (&name[10], table[regno]) == 0)
2466 return read_register (regno);
2467 }
2468
2469 return 0; /* not a stub */
2470 }
2471
2472 /* If the user changes the register disassembly flavor used for info
2473 register and other commands, we have to also switch the flavor used
2474 in opcodes for disassembly output. This function is run in the set
2475 disassembly_flavor command, and does that. */
2476
2477 static void
2478 set_disassembly_flavor_sfunc (char *args, int from_tty,
2479 struct cmd_list_element *c)
2480 {
2481 set_disassembly_flavor ();
2482 }
2483 \f
2484 /* Return the ARM register name corresponding to register I. */
2485 static const char *
2486 arm_register_name (int i)
2487 {
2488 return arm_register_names[i];
2489 }
2490
2491 static void
2492 set_disassembly_flavor (void)
2493 {
2494 const char *setname, *setdesc, **regnames;
2495 int numregs, j;
2496
2497 /* Find the flavor that the user wants in the opcodes table. */
2498 int current = 0;
2499 numregs = get_arm_regnames (current, &setname, &setdesc, &regnames);
2500 while ((disassembly_flavor != setname)
2501 && (current < num_flavor_options))
2502 get_arm_regnames (++current, &setname, &setdesc, &regnames);
2503 current_option = current;
2504
2505 /* Fill our copy. */
2506 for (j = 0; j < numregs; j++)
2507 arm_register_names[j] = (char *) regnames[j];
2508
2509 /* Adjust case. */
2510 if (isupper (*regnames[ARM_PC_REGNUM]))
2511 {
2512 arm_register_names[ARM_FPS_REGNUM] = "FPS";
2513 arm_register_names[ARM_PS_REGNUM] = "CPSR";
2514 }
2515 else
2516 {
2517 arm_register_names[ARM_FPS_REGNUM] = "fps";
2518 arm_register_names[ARM_PS_REGNUM] = "cpsr";
2519 }
2520
2521 /* Synchronize the disassembler. */
2522 set_arm_regname_option (current);
2523 }
2524
2525 /* arm_othernames implements the "othernames" command. This is kind
2526 of hacky, and I prefer the set-show disassembly-flavor which is
2527 also used for the x86 gdb. I will keep this around, however, in
2528 case anyone is actually using it. */
2529
2530 static void
2531 arm_othernames (char *names, int n)
2532 {
2533 /* Circle through the various flavors. */
2534 current_option = (current_option + 1) % num_flavor_options;
2535
2536 disassembly_flavor = valid_flavors[current_option];
2537 set_disassembly_flavor ();
2538 }
2539
2540 /* Fetch, and possibly build, an appropriate link_map_offsets structure
2541 for ARM linux targets using the struct offsets defined in <link.h>.
2542 Note, however, that link.h is not actually referred to in this file.
2543 Instead, the relevant structs offsets were obtained from examining
2544 link.h. (We can't refer to link.h from this file because the host
2545 system won't necessarily have it, or if it does, the structs which
2546 it defines will refer to the host system, not the target). */
2547
2548 struct link_map_offsets *
2549 arm_linux_svr4_fetch_link_map_offsets (void)
2550 {
2551 static struct link_map_offsets lmo;
2552 static struct link_map_offsets *lmp = 0;
2553
2554 if (lmp == 0)
2555 {
2556 lmp = &lmo;
2557
2558 lmo.r_debug_size = 8; /* Actual size is 20, but this is all we
2559 need. */
2560
2561 lmo.r_map_offset = 4;
2562 lmo.r_map_size = 4;
2563
2564 lmo.link_map_size = 20; /* Actual size is 552, but this is all we
2565 need. */
2566
2567 lmo.l_addr_offset = 0;
2568 lmo.l_addr_size = 4;
2569
2570 lmo.l_name_offset = 4;
2571 lmo.l_name_size = 4;
2572
2573 lmo.l_next_offset = 12;
2574 lmo.l_next_size = 4;
2575
2576 lmo.l_prev_offset = 16;
2577 lmo.l_prev_size = 4;
2578 }
2579
2580 return lmp;
2581 }
2582
2583 /* Test whether the coff symbol specific value corresponds to a Thumb
2584 function. */
2585
2586 static int
2587 coff_sym_is_thumb (int val)
2588 {
2589 return (val == C_THUMBEXT ||
2590 val == C_THUMBSTAT ||
2591 val == C_THUMBEXTFUNC ||
2592 val == C_THUMBSTATFUNC ||
2593 val == C_THUMBLABEL);
2594 }
2595
2596 /* arm_coff_make_msymbol_special()
2597 arm_elf_make_msymbol_special()
2598
2599 These functions test whether the COFF or ELF symbol corresponds to
2600 an address in thumb code, and set a "special" bit in a minimal
2601 symbol to indicate that it does. */
2602
2603 static void
2604 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2605 {
2606 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2607 STT_ARM_TFUNC). */
2608 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2609 == STT_LOPROC)
2610 MSYMBOL_SET_SPECIAL (msym);
2611 }
2612
2613 static void
2614 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2615 {
2616 if (coff_sym_is_thumb (val))
2617 MSYMBOL_SET_SPECIAL (msym);
2618 }
2619
2620 \f
2621 static enum gdb_osabi
2622 arm_elf_osabi_sniffer (bfd *abfd)
2623 {
2624 unsigned int elfosabi, eflags;
2625 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2626
2627 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2628
2629 switch (elfosabi)
2630 {
2631 case ELFOSABI_NONE:
2632 /* When elfosabi is ELFOSABI_NONE (0), then the ELF structures in the
2633 file are conforming to the base specification for that machine
2634 (there are no OS-specific extensions). In order to determine the
2635 real OS in use we must look for OS notes that have been added. */
2636 bfd_map_over_sections (abfd,
2637 generic_elf_osabi_sniff_abi_tag_sections,
2638 &osabi);
2639 if (osabi == GDB_OSABI_UNKNOWN)
2640 {
2641 /* Existing ARM tools don't set this field, so look at the EI_FLAGS
2642 field for more information. */
2643 eflags = EF_ARM_EABI_VERSION(elf_elfheader(abfd)->e_flags);
2644 switch (eflags)
2645 {
2646 case EF_ARM_EABI_VER1:
2647 osabi = GDB_OSABI_ARM_EABI_V1;
2648 break;
2649
2650 case EF_ARM_EABI_VER2:
2651 osabi = GDB_OSABI_ARM_EABI_V2;
2652 break;
2653
2654 case EF_ARM_EABI_UNKNOWN:
2655 /* Assume GNU tools. */
2656 osabi = GDB_OSABI_ARM_APCS;
2657 break;
2658
2659 default:
2660 internal_error (__FILE__, __LINE__,
2661 "arm_elf_osabi_sniffer: Unknown ARM EABI "
2662 "version 0x%x", eflags);
2663 }
2664 }
2665 break;
2666
2667 case ELFOSABI_ARM:
2668 /* GNU tools use this value. Check note sections in this case,
2669 as well. */
2670 bfd_map_over_sections (abfd,
2671 generic_elf_osabi_sniff_abi_tag_sections,
2672 &osabi);
2673 if (osabi == GDB_OSABI_UNKNOWN)
2674 {
2675 /* Assume APCS ABI. */
2676 osabi = GDB_OSABI_ARM_APCS;
2677 }
2678 break;
2679
2680 case ELFOSABI_FREEBSD:
2681 osabi = GDB_OSABI_FREEBSD_ELF;
2682 break;
2683
2684 case ELFOSABI_NETBSD:
2685 osabi = GDB_OSABI_NETBSD_ELF;
2686 break;
2687
2688 case ELFOSABI_LINUX:
2689 osabi = GDB_OSABI_LINUX;
2690 break;
2691 }
2692
2693 return osabi;
2694 }
2695
2696 \f
2697 /* Initialize the current architecture based on INFO. If possible,
2698 re-use an architecture from ARCHES, which is a list of
2699 architectures already created during this debugging session.
2700
2701 Called e.g. at program startup, when reading a core file, and when
2702 reading a binary file. */
2703
2704 static struct gdbarch *
2705 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2706 {
2707 struct gdbarch_tdep *tdep;
2708 struct gdbarch *gdbarch;
2709 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2710
2711 /* Try to deterimine the ABI of the object we are loading. */
2712
2713 if (info.abfd != NULL)
2714 {
2715 osabi = gdbarch_lookup_osabi (info.abfd);
2716 if (osabi == GDB_OSABI_UNKNOWN)
2717 {
2718 switch (bfd_get_flavour (info.abfd))
2719 {
2720 case bfd_target_aout_flavour:
2721 /* Assume it's an old APCS-style ABI. */
2722 osabi = GDB_OSABI_ARM_APCS;
2723 break;
2724
2725 case bfd_target_coff_flavour:
2726 /* Assume it's an old APCS-style ABI. */
2727 /* XXX WinCE? */
2728 osabi = GDB_OSABI_ARM_APCS;
2729 break;
2730
2731 default:
2732 /* Leave it as "unknown". */
2733 }
2734 }
2735 }
2736
2737 /* Find a candidate among extant architectures. */
2738 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2739 arches != NULL;
2740 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2741 {
2742 /* Make sure the ABI selection matches. */
2743 tdep = gdbarch_tdep (arches->gdbarch);
2744 if (tdep && tdep->osabi == osabi)
2745 return arches->gdbarch;
2746 }
2747
2748 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2749 gdbarch = gdbarch_alloc (&info, tdep);
2750
2751 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
2752 ready to unwind the PC first (see frame.c:get_prev_frame()). */
2753 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
2754
2755 tdep->osabi = osabi;
2756
2757 /* This is the way it has always defaulted. */
2758 tdep->fp_model = ARM_FLOAT_FPA;
2759
2760 /* Breakpoints. */
2761 switch (info.byte_order)
2762 {
2763 case BFD_ENDIAN_BIG:
2764 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
2765 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
2766 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
2767 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
2768
2769 break;
2770
2771 case BFD_ENDIAN_LITTLE:
2772 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
2773 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
2774 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
2775 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
2776
2777 break;
2778
2779 default:
2780 internal_error (__FILE__, __LINE__,
2781 "arm_gdbarch_init: bad byte order for float format");
2782 }
2783
2784 /* On ARM targets char defaults to unsigned. */
2785 set_gdbarch_char_signed (gdbarch, 0);
2786
2787 /* This should be low enough for everything. */
2788 tdep->lowest_pc = 0x20;
2789 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
2790
2791 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2792 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2793
2794 set_gdbarch_call_dummy_p (gdbarch, 1);
2795 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2796
2797 set_gdbarch_call_dummy_words (gdbarch, arm_call_dummy_words);
2798 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
2799 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
2800 set_gdbarch_call_dummy_length (gdbarch, 0);
2801
2802 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
2803
2804 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2805 set_gdbarch_push_return_address (gdbarch, arm_push_return_address);
2806
2807 set_gdbarch_push_arguments (gdbarch, arm_push_arguments);
2808 set_gdbarch_coerce_float_to_double (gdbarch,
2809 standard_coerce_float_to_double);
2810
2811 /* Frame handling. */
2812 set_gdbarch_frame_chain_valid (gdbarch, arm_frame_chain_valid);
2813 set_gdbarch_init_extra_frame_info (gdbarch, arm_init_extra_frame_info);
2814 set_gdbarch_read_fp (gdbarch, arm_read_fp);
2815 set_gdbarch_frame_chain (gdbarch, arm_frame_chain);
2816 set_gdbarch_frameless_function_invocation
2817 (gdbarch, arm_frameless_function_invocation);
2818 set_gdbarch_frame_saved_pc (gdbarch, arm_frame_saved_pc);
2819 set_gdbarch_frame_args_address (gdbarch, arm_frame_args_address);
2820 set_gdbarch_frame_locals_address (gdbarch, arm_frame_locals_address);
2821 set_gdbarch_frame_num_args (gdbarch, arm_frame_num_args);
2822 set_gdbarch_frame_args_skip (gdbarch, 0);
2823 set_gdbarch_frame_init_saved_regs (gdbarch, arm_frame_init_saved_regs);
2824 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
2825 set_gdbarch_pop_frame (gdbarch, arm_pop_frame);
2826
2827 /* Address manipulation. */
2828 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
2829 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
2830
2831 /* Offset from address of function to start of its code. */
2832 set_gdbarch_function_start_offset (gdbarch, 0);
2833
2834 /* Advance PC across function entry code. */
2835 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
2836
2837 /* Get the PC when a frame might not be available. */
2838 set_gdbarch_saved_pc_after_call (gdbarch, arm_saved_pc_after_call);
2839
2840 /* The stack grows downward. */
2841 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2842
2843 /* Breakpoint manipulation. */
2844 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
2845 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2846
2847 /* Information about registers, etc. */
2848 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
2849 set_gdbarch_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
2850 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
2851 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
2852 set_gdbarch_register_byte (gdbarch, arm_register_byte);
2853 set_gdbarch_register_bytes (gdbarch,
2854 (NUM_GREGS * INT_REGISTER_RAW_SIZE
2855 + NUM_FREGS * FP_REGISTER_RAW_SIZE
2856 + NUM_SREGS * STATUS_REGISTER_SIZE));
2857 set_gdbarch_num_regs (gdbarch, NUM_GREGS + NUM_FREGS + NUM_SREGS);
2858 set_gdbarch_register_raw_size (gdbarch, arm_register_raw_size);
2859 set_gdbarch_register_virtual_size (gdbarch, arm_register_virtual_size);
2860 set_gdbarch_max_register_raw_size (gdbarch, FP_REGISTER_RAW_SIZE);
2861 set_gdbarch_max_register_virtual_size (gdbarch, FP_REGISTER_VIRTUAL_SIZE);
2862 set_gdbarch_register_virtual_type (gdbarch, arm_register_type);
2863
2864 /* Internal <-> external register number maps. */
2865 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
2866
2867 /* Integer registers are 4 bytes. */
2868 set_gdbarch_register_size (gdbarch, 4);
2869 set_gdbarch_register_name (gdbarch, arm_register_name);
2870
2871 /* Returning results. */
2872 set_gdbarch_deprecated_extract_return_value (gdbarch, arm_extract_return_value);
2873 set_gdbarch_deprecated_store_return_value (gdbarch, arm_store_return_value);
2874 set_gdbarch_store_struct_return (gdbarch, arm_store_struct_return);
2875 set_gdbarch_use_struct_convention (gdbarch, arm_use_struct_convention);
2876 set_gdbarch_extract_struct_value_address (gdbarch,
2877 arm_extract_struct_value_address);
2878
2879 /* Single stepping. */
2880 /* XXX For an RDI target we should ask the target if it can single-step. */
2881 set_gdbarch_software_single_step (gdbarch, arm_software_single_step);
2882
2883 /* Minsymbol frobbing. */
2884 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
2885 set_gdbarch_coff_make_msymbol_special (gdbarch,
2886 arm_coff_make_msymbol_special);
2887
2888 /* Hook in the ABI-specific overrides, if they have been registered. */
2889 gdbarch_init_osabi (info, gdbarch, osabi);
2890
2891 /* Now we have tuned the configuration, set a few final things,
2892 based on what the OS ABI has told us. */
2893
2894 if (tdep->jb_pc >= 0)
2895 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
2896
2897 /* Floating point sizes and format. */
2898 switch (info.byte_order)
2899 {
2900 case BFD_ENDIAN_BIG:
2901 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_big);
2902 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_big);
2903 set_gdbarch_long_double_format (gdbarch, &floatformat_ieee_double_big);
2904
2905 break;
2906
2907 case BFD_ENDIAN_LITTLE:
2908 set_gdbarch_float_format (gdbarch, &floatformat_ieee_single_little);
2909 if (tdep->fp_model == ARM_FLOAT_VFP
2910 || tdep->fp_model == ARM_FLOAT_SOFT_VFP)
2911 {
2912 set_gdbarch_double_format (gdbarch, &floatformat_ieee_double_little);
2913 set_gdbarch_long_double_format (gdbarch,
2914 &floatformat_ieee_double_little);
2915 }
2916 else
2917 {
2918 set_gdbarch_double_format
2919 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2920 set_gdbarch_long_double_format
2921 (gdbarch, &floatformat_ieee_double_littlebyte_bigword);
2922 }
2923 break;
2924
2925 default:
2926 internal_error (__FILE__, __LINE__,
2927 "arm_gdbarch_init: bad byte order for float format");
2928 }
2929
2930 /* We can't use SIZEOF_FRAME_SAVED_REGS here, since that still
2931 references the old architecture vector, not the one we are
2932 building here. */
2933 if (prologue_cache.saved_regs != NULL)
2934 xfree (prologue_cache.saved_regs);
2935
2936 /* We can't use NUM_REGS nor NUM_PSEUDO_REGS here, since that still
2937 references the old architecture vector, not the one we are
2938 building here. */
2939 prologue_cache.saved_regs = (CORE_ADDR *)
2940 xcalloc (1, (sizeof (CORE_ADDR)
2941 * (gdbarch_num_regs (gdbarch)
2942 + gdbarch_num_pseudo_regs (gdbarch))));
2943
2944 return gdbarch;
2945 }
2946
2947 static void
2948 arm_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2949 {
2950 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2951
2952 if (tdep == NULL)
2953 return;
2954
2955 fprintf_unfiltered (file, "arm_dump_tdep: OS ABI = %s\n",
2956 gdbarch_osabi_name (tdep->osabi));
2957
2958 fprintf_unfiltered (file, "arm_dump_tdep: Lowest pc = 0x%lx",
2959 (unsigned long) tdep->lowest_pc);
2960 }
2961
2962 static void
2963 arm_init_abi_eabi_v1 (struct gdbarch_info info,
2964 struct gdbarch *gdbarch)
2965 {
2966 /* Place-holder. */
2967 }
2968
2969 static void
2970 arm_init_abi_eabi_v2 (struct gdbarch_info info,
2971 struct gdbarch *gdbarch)
2972 {
2973 /* Place-holder. */
2974 }
2975
2976 static void
2977 arm_init_abi_apcs (struct gdbarch_info info,
2978 struct gdbarch *gdbarch)
2979 {
2980 /* Place-holder. */
2981 }
2982
2983 void
2984 _initialize_arm_tdep (void)
2985 {
2986 struct ui_file *stb;
2987 long length;
2988 struct cmd_list_element *new_cmd;
2989 const char *setname;
2990 const char *setdesc;
2991 const char **regnames;
2992 int numregs, i, j;
2993 static char *helptext;
2994
2995 if (GDB_MULTI_ARCH)
2996 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
2997
2998 /* Register an ELF OS ABI sniffer for ARM binaries. */
2999 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3000 bfd_target_elf_flavour,
3001 arm_elf_osabi_sniffer);
3002
3003 /* Register some ABI variants for embedded systems. */
3004 gdbarch_register_osabi (bfd_arch_arm, GDB_OSABI_ARM_EABI_V1,
3005 arm_init_abi_eabi_v1);
3006 gdbarch_register_osabi (bfd_arch_arm, GDB_OSABI_ARM_EABI_V2,
3007 arm_init_abi_eabi_v2);
3008 gdbarch_register_osabi (bfd_arch_arm, GDB_OSABI_ARM_APCS,
3009 arm_init_abi_apcs);
3010
3011 tm_print_insn = gdb_print_insn_arm;
3012
3013 /* Get the number of possible sets of register names defined in opcodes. */
3014 num_flavor_options = get_arm_regname_num_options ();
3015
3016 /* Sync the opcode insn printer with our register viewer. */
3017 parse_arm_disassembler_option ("reg-names-std");
3018
3019 /* Begin creating the help text. */
3020 stb = mem_fileopen ();
3021 fprintf_unfiltered (stb, "Set the disassembly flavor.\n\
3022 The valid values are:\n");
3023
3024 /* Initialize the array that will be passed to add_set_enum_cmd(). */
3025 valid_flavors = xmalloc ((num_flavor_options + 1) * sizeof (char *));
3026 for (i = 0; i < num_flavor_options; i++)
3027 {
3028 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3029 valid_flavors[i] = setname;
3030 fprintf_unfiltered (stb, "%s - %s\n", setname,
3031 setdesc);
3032 /* Copy the default names (if found) and synchronize disassembler. */
3033 if (!strcmp (setname, "std"))
3034 {
3035 disassembly_flavor = setname;
3036 current_option = i;
3037 for (j = 0; j < numregs; j++)
3038 arm_register_names[j] = (char *) regnames[j];
3039 set_arm_regname_option (i);
3040 }
3041 }
3042 /* Mark the end of valid options. */
3043 valid_flavors[num_flavor_options] = NULL;
3044
3045 /* Finish the creation of the help text. */
3046 fprintf_unfiltered (stb, "The default is \"std\".");
3047 helptext = ui_file_xstrdup (stb, &length);
3048 ui_file_delete (stb);
3049
3050 /* Add the disassembly-flavor command. */
3051 new_cmd = add_set_enum_cmd ("disassembly-flavor", no_class,
3052 valid_flavors,
3053 &disassembly_flavor,
3054 helptext,
3055 &setlist);
3056 set_cmd_sfunc (new_cmd, set_disassembly_flavor_sfunc);
3057 add_show_from_set (new_cmd, &showlist);
3058
3059 /* ??? Maybe this should be a boolean. */
3060 add_show_from_set (add_set_cmd ("apcs32", no_class,
3061 var_zinteger, (char *) &arm_apcs_32,
3062 "Set usage of ARM 32-bit mode.\n", &setlist),
3063 &showlist);
3064
3065 /* Add the deprecated "othernames" command. */
3066
3067 add_com ("othernames", class_obscure, arm_othernames,
3068 "Switch to the next set of register names.");
3069
3070 /* Fill in the prologue_cache fields. */
3071 prologue_cache.saved_regs = NULL;
3072 prologue_cache.extra_info = (struct frame_extra_info *)
3073 xcalloc (1, sizeof (struct frame_extra_info));
3074
3075 /* Debugging flag. */
3076 add_show_from_set (add_set_cmd ("arm", class_maintenance, var_zinteger,
3077 &arm_debug, "Set arm debugging.\n\
3078 When non-zero, arm specific debugging is enabled.", &setdebuglist),
3079 &showdebuglist);
3080 }