inf-ptrace: Return an IGNORE event if waitpid() fails.
[binutils-gdb.git] / gdb / auxv.c
1 /* Auxiliary vector support for GDB, the GNU debugger.
2
3 Copyright (C) 2004-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "target.h"
22 #include "gdbtypes.h"
23 #include "command.h"
24 #include "inferior.h"
25 #include "valprint.h"
26 #include "gdbcore.h"
27 #include "observable.h"
28 #include "gdbsupport/filestuff.h"
29 #include "objfiles.h"
30
31 #include "auxv.h"
32 #include "elf/common.h"
33
34 #include <unistd.h>
35 #include <fcntl.h>
36
37
38 /* Implement the to_xfer_partial target_ops method. This function
39 handles access via /proc/PID/auxv, which is a common method for
40 native targets. */
41
42 static enum target_xfer_status
43 procfs_xfer_auxv (gdb_byte *readbuf,
44 const gdb_byte *writebuf,
45 ULONGEST offset,
46 ULONGEST len,
47 ULONGEST *xfered_len)
48 {
49 ssize_t l;
50
51 std::string pathname = string_printf ("/proc/%d/auxv", inferior_ptid.pid ());
52 scoped_fd fd
53 = gdb_open_cloexec (pathname, writebuf != NULL ? O_WRONLY : O_RDONLY, 0);
54 if (fd.get () < 0)
55 return TARGET_XFER_E_IO;
56
57 if (offset != (ULONGEST) 0
58 && lseek (fd.get (), (off_t) offset, SEEK_SET) != (off_t) offset)
59 l = -1;
60 else if (readbuf != NULL)
61 l = read (fd.get (), readbuf, (size_t) len);
62 else
63 l = write (fd.get (), writebuf, (size_t) len);
64
65 if (l < 0)
66 return TARGET_XFER_E_IO;
67 else if (l == 0)
68 return TARGET_XFER_EOF;
69 else
70 {
71 *xfered_len = (ULONGEST) l;
72 return TARGET_XFER_OK;
73 }
74 }
75
76 /* This function handles access via ld.so's symbol `_dl_auxv'. */
77
78 static enum target_xfer_status
79 ld_so_xfer_auxv (gdb_byte *readbuf,
80 const gdb_byte *writebuf,
81 ULONGEST offset,
82 ULONGEST len, ULONGEST *xfered_len)
83 {
84 struct bound_minimal_symbol msym;
85 CORE_ADDR data_address, pointer_address;
86 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
87 size_t ptr_size = TYPE_LENGTH (ptr_type);
88 size_t auxv_pair_size = 2 * ptr_size;
89 gdb_byte *ptr_buf = (gdb_byte *) alloca (ptr_size);
90 LONGEST retval;
91 size_t block;
92
93 msym = lookup_minimal_symbol ("_dl_auxv", NULL, NULL);
94 if (msym.minsym == NULL)
95 return TARGET_XFER_E_IO;
96
97 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
98 return TARGET_XFER_E_IO;
99
100 /* POINTER_ADDRESS is a location where the `_dl_auxv' variable
101 resides. DATA_ADDRESS is the inferior value present in
102 `_dl_auxv', therefore the real inferior AUXV address. */
103
104 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
105
106 /* The location of the _dl_auxv symbol may no longer be correct if
107 ld.so runs at a different address than the one present in the
108 file. This is very common case - for unprelinked ld.so or with a
109 PIE executable. PIE executable forces random address even for
110 libraries already being prelinked to some address. PIE
111 executables themselves are never prelinked even on prelinked
112 systems. Prelinking of a PIE executable would block their
113 purpose of randomizing load of everything including the
114 executable.
115
116 If the memory read fails, return -1 to fallback on another
117 mechanism for retrieving the AUXV.
118
119 In most cases of a PIE running under valgrind there is no way to
120 find out the base addresses of any of ld.so, executable or AUXV
121 as everything is randomized and /proc information is not relevant
122 for the virtual executable running under valgrind. We think that
123 we might need a valgrind extension to make it work. This is PR
124 11440. */
125
126 if (target_read_memory (pointer_address, ptr_buf, ptr_size) != 0)
127 return TARGET_XFER_E_IO;
128
129 data_address = extract_typed_address (ptr_buf, ptr_type);
130
131 /* Possibly still not initialized such as during an inferior
132 startup. */
133 if (data_address == 0)
134 return TARGET_XFER_E_IO;
135
136 data_address += offset;
137
138 if (writebuf != NULL)
139 {
140 if (target_write_memory (data_address, writebuf, len) == 0)
141 {
142 *xfered_len = (ULONGEST) len;
143 return TARGET_XFER_OK;
144 }
145 else
146 return TARGET_XFER_E_IO;
147 }
148
149 /* Stop if trying to read past the existing AUXV block. The final
150 AT_NULL was already returned before. */
151
152 if (offset >= auxv_pair_size)
153 {
154 if (target_read_memory (data_address - auxv_pair_size, ptr_buf,
155 ptr_size) != 0)
156 return TARGET_XFER_E_IO;
157
158 if (extract_typed_address (ptr_buf, ptr_type) == AT_NULL)
159 return TARGET_XFER_EOF;
160 }
161
162 retval = 0;
163 block = 0x400;
164 gdb_assert (block % auxv_pair_size == 0);
165
166 while (len > 0)
167 {
168 if (block > len)
169 block = len;
170
171 /* Reading sizes smaller than AUXV_PAIR_SIZE is not supported.
172 Tails unaligned to AUXV_PAIR_SIZE will not be read during a
173 call (they should be completed during next read with
174 new/extended buffer). */
175
176 block &= -auxv_pair_size;
177 if (block == 0)
178 break;
179
180 if (target_read_memory (data_address, readbuf, block) != 0)
181 {
182 if (block <= auxv_pair_size)
183 break;
184
185 block = auxv_pair_size;
186 continue;
187 }
188
189 data_address += block;
190 len -= block;
191
192 /* Check terminal AT_NULL. This function is being called
193 indefinitely being extended its READBUF until it returns EOF
194 (0). */
195
196 while (block >= auxv_pair_size)
197 {
198 retval += auxv_pair_size;
199
200 if (extract_typed_address (readbuf, ptr_type) == AT_NULL)
201 {
202 *xfered_len = (ULONGEST) retval;
203 return TARGET_XFER_OK;
204 }
205
206 readbuf += auxv_pair_size;
207 block -= auxv_pair_size;
208 }
209 }
210
211 *xfered_len = (ULONGEST) retval;
212 return TARGET_XFER_OK;
213 }
214
215 /* Implement the to_xfer_partial target_ops method for
216 TARGET_OBJECT_AUXV. It handles access to AUXV. */
217
218 enum target_xfer_status
219 memory_xfer_auxv (struct target_ops *ops,
220 enum target_object object,
221 const char *annex,
222 gdb_byte *readbuf,
223 const gdb_byte *writebuf,
224 ULONGEST offset,
225 ULONGEST len, ULONGEST *xfered_len)
226 {
227 gdb_assert (object == TARGET_OBJECT_AUXV);
228 gdb_assert (readbuf || writebuf);
229
230 /* ld_so_xfer_auxv is the only function safe for virtual
231 executables being executed by valgrind's memcheck. Using
232 ld_so_xfer_auxv during inferior startup is problematic, because
233 ld.so symbol tables have not yet been relocated. So GDB uses
234 this function only when attaching to a process.
235 */
236
237 if (current_inferior ()->attach_flag != 0)
238 {
239 enum target_xfer_status ret;
240
241 ret = ld_so_xfer_auxv (readbuf, writebuf, offset, len, xfered_len);
242 if (ret != TARGET_XFER_E_IO)
243 return ret;
244 }
245
246 return procfs_xfer_auxv (readbuf, writebuf, offset, len, xfered_len);
247 }
248
249 /* This function compared to other auxv_parse functions: it takes the size of
250 the auxv type field as a parameter. */
251
252 static int
253 generic_auxv_parse (struct gdbarch *gdbarch, gdb_byte **readptr,
254 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp,
255 int sizeof_auxv_type)
256 {
257 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
258 const int sizeof_auxv_val = TYPE_LENGTH (ptr_type);
259 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
260 gdb_byte *ptr = *readptr;
261
262 if (endptr == ptr)
263 return 0;
264
265 if (endptr - ptr < 2 * sizeof_auxv_val)
266 return -1;
267
268 *typep = extract_unsigned_integer (ptr, sizeof_auxv_type, byte_order);
269 /* Even if the auxv type takes less space than an auxv value, there is
270 padding after the type such that the value is aligned on a multiple of
271 its size (and this is why we advance by `sizeof_auxv_val` and not
272 `sizeof_auxv_type`). */
273 ptr += sizeof_auxv_val;
274 *valp = extract_unsigned_integer (ptr, sizeof_auxv_val, byte_order);
275 ptr += sizeof_auxv_val;
276
277 *readptr = ptr;
278 return 1;
279 }
280
281 /* See auxv.h. */
282
283 int
284 default_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
285 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
286 {
287 struct gdbarch *gdbarch = target_gdbarch ();
288 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
289 const int sizeof_auxv_type = TYPE_LENGTH (ptr_type);
290
291 return generic_auxv_parse (gdbarch, readptr, endptr, typep, valp,
292 sizeof_auxv_type);
293 }
294
295 /* See auxv.h. */
296
297 int
298 svr4_auxv_parse (struct gdbarch *gdbarch, gdb_byte **readptr,
299 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
300 {
301 struct type *int_type = builtin_type (gdbarch)->builtin_int;
302 const int sizeof_auxv_type = TYPE_LENGTH (int_type);
303
304 return generic_auxv_parse (gdbarch, readptr, endptr, typep, valp,
305 sizeof_auxv_type);
306 }
307
308 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
309 Return 0 if *READPTR is already at the end of the buffer.
310 Return -1 if there is insufficient buffer for a whole entry.
311 Return 1 if an entry was read into *TYPEP and *VALP. */
312 int
313 target_auxv_parse (gdb_byte **readptr,
314 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
315 {
316 struct gdbarch *gdbarch = target_gdbarch();
317
318 if (gdbarch_auxv_parse_p (gdbarch))
319 return gdbarch_auxv_parse (gdbarch, readptr, endptr, typep, valp);
320
321 return current_inferior ()->top_target ()->auxv_parse (readptr, endptr,
322 typep, valp);
323 }
324
325
326 /* Auxiliary Vector information structure. This is used by GDB
327 for caching purposes for each inferior. This helps reduce the
328 overhead of transfering data from a remote target to the local host. */
329 struct auxv_info
330 {
331 gdb::optional<gdb::byte_vector> data;
332 };
333
334 /* Per-inferior data key for auxv. */
335 static const struct inferior_key<auxv_info> auxv_inferior_data;
336
337 /* Invalidate INF's auxv cache. */
338
339 static void
340 invalidate_auxv_cache_inf (struct inferior *inf)
341 {
342 auxv_inferior_data.clear (inf);
343 }
344
345 /* Invalidate current inferior's auxv cache. */
346
347 static void
348 invalidate_auxv_cache (void)
349 {
350 invalidate_auxv_cache_inf (current_inferior ());
351 }
352
353 /* Fetch the auxv object from inferior INF. If auxv is cached already,
354 return a pointer to the cache. If not, fetch the auxv object from the
355 target and cache it. This function always returns a valid INFO pointer. */
356
357 static struct auxv_info *
358 get_auxv_inferior_data (struct target_ops *ops)
359 {
360 struct auxv_info *info;
361 struct inferior *inf = current_inferior ();
362
363 info = auxv_inferior_data.get (inf);
364 if (info == NULL)
365 {
366 info = auxv_inferior_data.emplace (inf);
367 info->data = target_read_alloc (ops, TARGET_OBJECT_AUXV, NULL);
368 }
369
370 return info;
371 }
372
373 /* Extract the auxiliary vector entry with a_type matching MATCH.
374 Return zero if no such entry was found, or -1 if there was
375 an error getting the information. On success, return 1 after
376 storing the entry's value field in *VALP. */
377 int
378 target_auxv_search (struct target_ops *ops, CORE_ADDR match, CORE_ADDR *valp)
379 {
380 CORE_ADDR type, val;
381 auxv_info *info = get_auxv_inferior_data (ops);
382
383 if (!info->data)
384 return -1;
385
386 gdb_byte *data = info->data->data ();
387 gdb_byte *ptr = data;
388 size_t len = info->data->size ();
389
390 while (1)
391 switch (target_auxv_parse (&ptr, data + len, &type, &val))
392 {
393 case 1: /* Here's an entry, check it. */
394 if (type == match)
395 {
396 *valp = val;
397 return 1;
398 }
399 break;
400 case 0: /* End of the vector. */
401 return 0;
402 default: /* Bogosity. */
403 return -1;
404 }
405
406 /*NOTREACHED*/
407 }
408
409
410 /* Print the description of a single AUXV entry on the specified file. */
411
412 void
413 fprint_auxv_entry (struct ui_file *file, const char *name,
414 const char *description, enum auxv_format format,
415 CORE_ADDR type, CORE_ADDR val)
416 {
417 fprintf_filtered (file, ("%-4s %-20s %-30s "),
418 plongest (type), name, description);
419 switch (format)
420 {
421 case AUXV_FORMAT_DEC:
422 fprintf_filtered (file, ("%s\n"), plongest (val));
423 break;
424 case AUXV_FORMAT_HEX:
425 fprintf_filtered (file, ("%s\n"), paddress (target_gdbarch (), val));
426 break;
427 case AUXV_FORMAT_STR:
428 {
429 struct value_print_options opts;
430
431 get_user_print_options (&opts);
432 if (opts.addressprint)
433 fprintf_filtered (file, ("%s "), paddress (target_gdbarch (), val));
434 val_print_string (builtin_type (target_gdbarch ())->builtin_char,
435 NULL, val, -1, file, &opts);
436 fprintf_filtered (file, ("\n"));
437 }
438 break;
439 }
440 }
441
442 /* The default implementation of gdbarch_print_auxv_entry. */
443
444 void
445 default_print_auxv_entry (struct gdbarch *gdbarch, struct ui_file *file,
446 CORE_ADDR type, CORE_ADDR val)
447 {
448 const char *name = "???";
449 const char *description = "";
450 enum auxv_format format = AUXV_FORMAT_HEX;
451
452 switch (type)
453 {
454 #define TAG(tag, text, kind) \
455 case tag: name = #tag; description = text; format = kind; break
456 TAG (AT_NULL, _("End of vector"), AUXV_FORMAT_HEX);
457 TAG (AT_IGNORE, _("Entry should be ignored"), AUXV_FORMAT_HEX);
458 TAG (AT_EXECFD, _("File descriptor of program"), AUXV_FORMAT_DEC);
459 TAG (AT_PHDR, _("Program headers for program"), AUXV_FORMAT_HEX);
460 TAG (AT_PHENT, _("Size of program header entry"), AUXV_FORMAT_DEC);
461 TAG (AT_PHNUM, _("Number of program headers"), AUXV_FORMAT_DEC);
462 TAG (AT_PAGESZ, _("System page size"), AUXV_FORMAT_DEC);
463 TAG (AT_BASE, _("Base address of interpreter"), AUXV_FORMAT_HEX);
464 TAG (AT_FLAGS, _("Flags"), AUXV_FORMAT_HEX);
465 TAG (AT_ENTRY, _("Entry point of program"), AUXV_FORMAT_HEX);
466 TAG (AT_NOTELF, _("Program is not ELF"), AUXV_FORMAT_DEC);
467 TAG (AT_UID, _("Real user ID"), AUXV_FORMAT_DEC);
468 TAG (AT_EUID, _("Effective user ID"), AUXV_FORMAT_DEC);
469 TAG (AT_GID, _("Real group ID"), AUXV_FORMAT_DEC);
470 TAG (AT_EGID, _("Effective group ID"), AUXV_FORMAT_DEC);
471 TAG (AT_CLKTCK, _("Frequency of times()"), AUXV_FORMAT_DEC);
472 TAG (AT_PLATFORM, _("String identifying platform"), AUXV_FORMAT_STR);
473 TAG (AT_HWCAP, _("Machine-dependent CPU capability hints"),
474 AUXV_FORMAT_HEX);
475 TAG (AT_FPUCW, _("Used FPU control word"), AUXV_FORMAT_DEC);
476 TAG (AT_DCACHEBSIZE, _("Data cache block size"), AUXV_FORMAT_DEC);
477 TAG (AT_ICACHEBSIZE, _("Instruction cache block size"), AUXV_FORMAT_DEC);
478 TAG (AT_UCACHEBSIZE, _("Unified cache block size"), AUXV_FORMAT_DEC);
479 TAG (AT_IGNOREPPC, _("Entry should be ignored"), AUXV_FORMAT_DEC);
480 TAG (AT_BASE_PLATFORM, _("String identifying base platform"),
481 AUXV_FORMAT_STR);
482 TAG (AT_RANDOM, _("Address of 16 random bytes"), AUXV_FORMAT_HEX);
483 TAG (AT_HWCAP2, _("Extension of AT_HWCAP"), AUXV_FORMAT_HEX);
484 TAG (AT_EXECFN, _("File name of executable"), AUXV_FORMAT_STR);
485 TAG (AT_SECURE, _("Boolean, was exec setuid-like?"), AUXV_FORMAT_DEC);
486 TAG (AT_SYSINFO, _("Special system info/entry points"), AUXV_FORMAT_HEX);
487 TAG (AT_SYSINFO_EHDR, _("System-supplied DSO's ELF header"),
488 AUXV_FORMAT_HEX);
489 TAG (AT_L1I_CACHESHAPE, _("L1 Instruction cache information"),
490 AUXV_FORMAT_HEX);
491 TAG (AT_L1I_CACHESIZE, _("L1 Instruction cache size"), AUXV_FORMAT_HEX);
492 TAG (AT_L1I_CACHEGEOMETRY, _("L1 Instruction cache geometry"),
493 AUXV_FORMAT_HEX);
494 TAG (AT_L1D_CACHESHAPE, _("L1 Data cache information"), AUXV_FORMAT_HEX);
495 TAG (AT_L1D_CACHESIZE, _("L1 Data cache size"), AUXV_FORMAT_HEX);
496 TAG (AT_L1D_CACHEGEOMETRY, _("L1 Data cache geometry"),
497 AUXV_FORMAT_HEX);
498 TAG (AT_L2_CACHESHAPE, _("L2 cache information"), AUXV_FORMAT_HEX);
499 TAG (AT_L2_CACHESIZE, _("L2 cache size"), AUXV_FORMAT_HEX);
500 TAG (AT_L2_CACHEGEOMETRY, _("L2 cache geometry"), AUXV_FORMAT_HEX);
501 TAG (AT_L3_CACHESHAPE, _("L3 cache information"), AUXV_FORMAT_HEX);
502 TAG (AT_L3_CACHESIZE, _("L3 cache size"), AUXV_FORMAT_HEX);
503 TAG (AT_L3_CACHEGEOMETRY, _("L3 cache geometry"), AUXV_FORMAT_HEX);
504 TAG (AT_MINSIGSTKSZ, _("Minimum stack size for signal delivery"),
505 AUXV_FORMAT_HEX);
506 TAG (AT_SUN_UID, _("Effective user ID"), AUXV_FORMAT_DEC);
507 TAG (AT_SUN_RUID, _("Real user ID"), AUXV_FORMAT_DEC);
508 TAG (AT_SUN_GID, _("Effective group ID"), AUXV_FORMAT_DEC);
509 TAG (AT_SUN_RGID, _("Real group ID"), AUXV_FORMAT_DEC);
510 TAG (AT_SUN_LDELF, _("Dynamic linker's ELF header"), AUXV_FORMAT_HEX);
511 TAG (AT_SUN_LDSHDR, _("Dynamic linker's section headers"),
512 AUXV_FORMAT_HEX);
513 TAG (AT_SUN_LDNAME, _("String giving name of dynamic linker"),
514 AUXV_FORMAT_STR);
515 TAG (AT_SUN_LPAGESZ, _("Large pagesize"), AUXV_FORMAT_DEC);
516 TAG (AT_SUN_PLATFORM, _("Platform name string"), AUXV_FORMAT_STR);
517 TAG (AT_SUN_CAP_HW1, _("Machine-dependent CPU capability hints"),
518 AUXV_FORMAT_HEX);
519 TAG (AT_SUN_IFLUSH, _("Should flush icache?"), AUXV_FORMAT_DEC);
520 TAG (AT_SUN_CPU, _("CPU name string"), AUXV_FORMAT_STR);
521 TAG (AT_SUN_EMUL_ENTRY, _("COFF entry point address"), AUXV_FORMAT_HEX);
522 TAG (AT_SUN_EMUL_EXECFD, _("COFF executable file descriptor"),
523 AUXV_FORMAT_DEC);
524 TAG (AT_SUN_EXECNAME,
525 _("Canonicalized file name given to execve"), AUXV_FORMAT_STR);
526 TAG (AT_SUN_MMU, _("String for name of MMU module"), AUXV_FORMAT_STR);
527 TAG (AT_SUN_LDDATA, _("Dynamic linker's data segment address"),
528 AUXV_FORMAT_HEX);
529 TAG (AT_SUN_AUXFLAGS,
530 _("AF_SUN_ flags passed from the kernel"), AUXV_FORMAT_HEX);
531 TAG (AT_SUN_EMULATOR, _("Name of emulation binary for runtime linker"),
532 AUXV_FORMAT_STR);
533 TAG (AT_SUN_BRANDNAME, _("Name of brand library"), AUXV_FORMAT_STR);
534 TAG (AT_SUN_BRAND_AUX1, _("Aux vector for brand modules 1"),
535 AUXV_FORMAT_HEX);
536 TAG (AT_SUN_BRAND_AUX2, _("Aux vector for brand modules 2"),
537 AUXV_FORMAT_HEX);
538 TAG (AT_SUN_BRAND_AUX3, _("Aux vector for brand modules 3"),
539 AUXV_FORMAT_HEX);
540 TAG (AT_SUN_CAP_HW2, _("Machine-dependent CPU capability hints 2"),
541 AUXV_FORMAT_HEX);
542 }
543
544 fprint_auxv_entry (file, name, description, format, type, val);
545 }
546
547 /* Print the contents of the target's AUXV on the specified file. */
548
549 int
550 fprint_target_auxv (struct ui_file *file, struct target_ops *ops)
551 {
552 struct gdbarch *gdbarch = target_gdbarch ();
553 CORE_ADDR type, val;
554 int ents = 0;
555 auxv_info *info = get_auxv_inferior_data (ops);
556
557 if (!info->data)
558 return -1;
559
560 gdb_byte *data = info->data->data ();
561 gdb_byte *ptr = data;
562 size_t len = info->data->size ();
563
564 while (target_auxv_parse (&ptr, data + len, &type, &val) > 0)
565 {
566 gdbarch_print_auxv_entry (gdbarch, file, type, val);
567 ++ents;
568 if (type == AT_NULL)
569 break;
570 }
571
572 return ents;
573 }
574
575 static void
576 info_auxv_command (const char *cmd, int from_tty)
577 {
578 if (! target_has_stack ())
579 error (_("The program has no auxiliary information now."));
580 else
581 {
582 int ents = fprint_target_auxv (gdb_stdout,
583 current_inferior ()->top_target ());
584
585 if (ents < 0)
586 error (_("No auxiliary vector found, or failed reading it."));
587 else if (ents == 0)
588 error (_("Auxiliary vector is empty."));
589 }
590 }
591
592 void _initialize_auxv ();
593 void
594 _initialize_auxv ()
595 {
596 add_info ("auxv", info_auxv_command,
597 _("Display the inferior's auxiliary vector.\n\
598 This is information provided by the operating system at program startup."));
599
600 /* Observers used to invalidate the auxv cache when needed. */
601 gdb::observers::inferior_exit.attach (invalidate_auxv_cache_inf, "auxv");
602 gdb::observers::inferior_appeared.attach (invalidate_auxv_cache_inf, "auxv");
603 gdb::observers::executable_changed.attach (invalidate_auxv_cache, "auxv");
604 }