8da05144426be34ae242b2862218eb1d649d4f0b
[binutils-gdb.git] / gdb / ax-gdb.c
1 /* GDB-specific functions for operating on agent expressions.
2
3 Copyright (C) 1998-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "symfile.h"
23 #include "gdbtypes.h"
24 #include "language.h"
25 #include "value.h"
26 #include "expression.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "ax.h"
32 #include "ax-gdb.h"
33 #include "block.h"
34 #include "regcache.h"
35 #include "user-regs.h"
36 #include "dictionary.h"
37 #include "breakpoint.h"
38 #include "tracepoint.h"
39 #include "cp-support.h"
40 #include "arch-utils.h"
41 #include "cli/cli-utils.h"
42 #include "linespec.h"
43 #include "location.h"
44 #include "objfiles.h"
45
46 #include "valprint.h"
47 #include "c-lang.h"
48
49 #include "format.h"
50
51 /* To make sense of this file, you should read doc/agentexpr.texi.
52 Then look at the types and enums in ax-gdb.h. For the code itself,
53 look at gen_expr, towards the bottom; that's the main function that
54 looks at the GDB expressions and calls everything else to generate
55 code.
56
57 I'm beginning to wonder whether it wouldn't be nicer to internally
58 generate trees, with types, and then spit out the bytecode in
59 linear form afterwards; we could generate fewer `swap', `ext', and
60 `zero_ext' bytecodes that way; it would make good constant folding
61 easier, too. But at the moment, I think we should be willing to
62 pay for the simplicity of this code with less-than-optimal bytecode
63 strings.
64
65 Remember, "GBD" stands for "Great Britain, Dammit!" So be careful. */
66 \f
67
68
69 /* Prototypes for local functions. */
70
71 /* There's a standard order to the arguments of these functions:
72 union exp_element ** --- pointer into expression
73 struct agent_expr * --- agent expression buffer to generate code into
74 struct axs_value * --- describes value left on top of stack */
75
76 static struct value *const_var_ref (struct symbol *var);
77 static struct value *const_expr (union exp_element **pc);
78 static struct value *maybe_const_expr (union exp_element **pc);
79
80 static void gen_traced_pop (struct gdbarch *, struct agent_expr *,
81 struct axs_value *);
82
83 static void gen_sign_extend (struct agent_expr *, struct type *);
84 static void gen_extend (struct agent_expr *, struct type *);
85 static void gen_fetch (struct agent_expr *, struct type *);
86 static void gen_left_shift (struct agent_expr *, int);
87
88
89 static void gen_frame_args_address (struct gdbarch *, struct agent_expr *);
90 static void gen_frame_locals_address (struct gdbarch *, struct agent_expr *);
91 static void gen_offset (struct agent_expr *ax, int offset);
92 static void gen_sym_offset (struct agent_expr *, struct symbol *);
93 static void gen_var_ref (struct gdbarch *, struct agent_expr *ax,
94 struct axs_value *value, struct symbol *var);
95
96
97 static void gen_int_literal (struct agent_expr *ax,
98 struct axs_value *value,
99 LONGEST k, struct type *type);
100
101 static void gen_usual_unary (struct agent_expr *ax, struct axs_value *value);
102 static int type_wider_than (struct type *type1, struct type *type2);
103 static struct type *max_type (struct type *type1, struct type *type2);
104 static void gen_conversion (struct agent_expr *ax,
105 struct type *from, struct type *to);
106 static int is_nontrivial_conversion (struct type *from, struct type *to);
107 static void gen_usual_arithmetic (struct agent_expr *ax,
108 struct axs_value *value1,
109 struct axs_value *value2);
110 static void gen_integral_promotions (struct agent_expr *ax,
111 struct axs_value *value);
112 static void gen_cast (struct agent_expr *ax,
113 struct axs_value *value, struct type *type);
114 static void gen_scale (struct agent_expr *ax,
115 enum agent_op op, struct type *type);
116 static void gen_ptradd (struct agent_expr *ax, struct axs_value *value,
117 struct axs_value *value1, struct axs_value *value2);
118 static void gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
119 struct axs_value *value1, struct axs_value *value2);
120 static void gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
121 struct axs_value *value1, struct axs_value *value2,
122 struct type *result_type);
123 static void gen_binop (struct agent_expr *ax,
124 struct axs_value *value,
125 struct axs_value *value1,
126 struct axs_value *value2,
127 enum agent_op op,
128 enum agent_op op_unsigned, int may_carry,
129 const char *name);
130 static void gen_logical_not (struct agent_expr *ax, struct axs_value *value,
131 struct type *result_type);
132 static void gen_complement (struct agent_expr *ax, struct axs_value *value);
133 static void gen_deref (struct axs_value *);
134 static void gen_address_of (struct axs_value *);
135 static void gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
136 struct type *type, int start, int end);
137 static void gen_primitive_field (struct agent_expr *ax,
138 struct axs_value *value,
139 int offset, int fieldno, struct type *type);
140 static int gen_struct_ref_recursive (struct agent_expr *ax,
141 struct axs_value *value,
142 const char *field, int offset,
143 struct type *type);
144 static void gen_struct_ref (struct agent_expr *ax,
145 struct axs_value *value,
146 const char *field,
147 const char *operator_name,
148 const char *operand_name);
149 static void gen_static_field (struct gdbarch *gdbarch,
150 struct agent_expr *ax, struct axs_value *value,
151 struct type *type, int fieldno);
152 static void gen_repeat (struct expression *exp, union exp_element **pc,
153 struct agent_expr *ax, struct axs_value *value);
154 static void gen_sizeof (struct expression *exp, union exp_element **pc,
155 struct agent_expr *ax, struct axs_value *value,
156 struct type *size_type);
157 static void gen_expr_binop_rest (struct expression *exp,
158 enum exp_opcode op, union exp_element **pc,
159 struct agent_expr *ax,
160 struct axs_value *value,
161 struct axs_value *value1,
162 struct axs_value *value2);
163
164 static void agent_command (char *exp, int from_tty);
165 \f
166
167 /* Detecting constant expressions. */
168
169 /* If the variable reference at *PC is a constant, return its value.
170 Otherwise, return zero.
171
172 Hey, Wally! How can a variable reference be a constant?
173
174 Well, Beav, this function really handles the OP_VAR_VALUE operator,
175 not specifically variable references. GDB uses OP_VAR_VALUE to
176 refer to any kind of symbolic reference: function names, enum
177 elements, and goto labels are all handled through the OP_VAR_VALUE
178 operator, even though they're constants. It makes sense given the
179 situation.
180
181 Gee, Wally, don'cha wonder sometimes if data representations that
182 subvert commonly accepted definitions of terms in favor of heavily
183 context-specific interpretations are really just a tool of the
184 programming hegemony to preserve their power and exclude the
185 proletariat? */
186
187 static struct value *
188 const_var_ref (struct symbol *var)
189 {
190 struct type *type = SYMBOL_TYPE (var);
191
192 switch (SYMBOL_CLASS (var))
193 {
194 case LOC_CONST:
195 return value_from_longest (type, (LONGEST) SYMBOL_VALUE (var));
196
197 case LOC_LABEL:
198 return value_from_pointer (type, (CORE_ADDR) SYMBOL_VALUE_ADDRESS (var));
199
200 default:
201 return 0;
202 }
203 }
204
205
206 /* If the expression starting at *PC has a constant value, return it.
207 Otherwise, return zero. If we return a value, then *PC will be
208 advanced to the end of it. If we return zero, *PC could be
209 anywhere. */
210 static struct value *
211 const_expr (union exp_element **pc)
212 {
213 enum exp_opcode op = (*pc)->opcode;
214 struct value *v1;
215
216 switch (op)
217 {
218 case OP_LONG:
219 {
220 struct type *type = (*pc)[1].type;
221 LONGEST k = (*pc)[2].longconst;
222
223 (*pc) += 4;
224 return value_from_longest (type, k);
225 }
226
227 case OP_VAR_VALUE:
228 {
229 struct value *v = const_var_ref ((*pc)[2].symbol);
230
231 (*pc) += 4;
232 return v;
233 }
234
235 /* We could add more operators in here. */
236
237 case UNOP_NEG:
238 (*pc)++;
239 v1 = const_expr (pc);
240 if (v1)
241 return value_neg (v1);
242 else
243 return 0;
244
245 default:
246 return 0;
247 }
248 }
249
250
251 /* Like const_expr, but guarantee also that *PC is undisturbed if the
252 expression is not constant. */
253 static struct value *
254 maybe_const_expr (union exp_element **pc)
255 {
256 union exp_element *tentative_pc = *pc;
257 struct value *v = const_expr (&tentative_pc);
258
259 /* If we got a value, then update the real PC. */
260 if (v)
261 *pc = tentative_pc;
262
263 return v;
264 }
265 \f
266
267 /* Generating bytecode from GDB expressions: general assumptions */
268
269 /* Here are a few general assumptions made throughout the code; if you
270 want to make a change that contradicts one of these, then you'd
271 better scan things pretty thoroughly.
272
273 - We assume that all values occupy one stack element. For example,
274 sometimes we'll swap to get at the left argument to a binary
275 operator. If we decide that void values should occupy no stack
276 elements, or that synthetic arrays (whose size is determined at
277 run time, created by the `@' operator) should occupy two stack
278 elements (address and length), then this will cause trouble.
279
280 - We assume the stack elements are infinitely wide, and that we
281 don't have to worry what happens if the user requests an
282 operation that is wider than the actual interpreter's stack.
283 That is, it's up to the interpreter to handle directly all the
284 integer widths the user has access to. (Woe betide the language
285 with bignums!)
286
287 - We don't support side effects. Thus, we don't have to worry about
288 GCC's generalized lvalues, function calls, etc.
289
290 - We don't support floating point. Many places where we switch on
291 some type don't bother to include cases for floating point; there
292 may be even more subtle ways this assumption exists. For
293 example, the arguments to % must be integers.
294
295 - We assume all subexpressions have a static, unchanging type. If
296 we tried to support convenience variables, this would be a
297 problem.
298
299 - All values on the stack should always be fully zero- or
300 sign-extended.
301
302 (I wasn't sure whether to choose this or its opposite --- that
303 only addresses are assumed extended --- but it turns out that
304 neither convention completely eliminates spurious extend
305 operations (if everything is always extended, then you have to
306 extend after add, because it could overflow; if nothing is
307 extended, then you end up producing extends whenever you change
308 sizes), and this is simpler.) */
309 \f
310
311 /* Scan for all static fields in the given class, including any base
312 classes, and generate tracing bytecodes for each. */
313
314 static void
315 gen_trace_static_fields (struct gdbarch *gdbarch,
316 struct agent_expr *ax,
317 struct type *type)
318 {
319 int i, nbases = TYPE_N_BASECLASSES (type);
320 struct axs_value value;
321
322 type = check_typedef (type);
323
324 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
325 {
326 if (field_is_static (&TYPE_FIELD (type, i)))
327 {
328 gen_static_field (gdbarch, ax, &value, type, i);
329 if (value.optimized_out)
330 continue;
331 switch (value.kind)
332 {
333 case axs_lvalue_memory:
334 {
335 /* Initialize the TYPE_LENGTH if it is a typedef. */
336 check_typedef (value.type);
337 ax_const_l (ax, TYPE_LENGTH (value.type));
338 ax_simple (ax, aop_trace);
339 }
340 break;
341
342 case axs_lvalue_register:
343 /* We don't actually need the register's value to be pushed,
344 just note that we need it to be collected. */
345 ax_reg_mask (ax, value.u.reg);
346
347 default:
348 break;
349 }
350 }
351 }
352
353 /* Now scan through base classes recursively. */
354 for (i = 0; i < nbases; i++)
355 {
356 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
357
358 gen_trace_static_fields (gdbarch, ax, basetype);
359 }
360 }
361
362 /* Trace the lvalue on the stack, if it needs it. In either case, pop
363 the value. Useful on the left side of a comma, and at the end of
364 an expression being used for tracing. */
365 static void
366 gen_traced_pop (struct gdbarch *gdbarch,
367 struct agent_expr *ax, struct axs_value *value)
368 {
369 int string_trace = 0;
370 if (ax->trace_string
371 && TYPE_CODE (value->type) == TYPE_CODE_PTR
372 && c_textual_element_type (check_typedef (TYPE_TARGET_TYPE (value->type)),
373 's'))
374 string_trace = 1;
375
376 if (ax->tracing)
377 switch (value->kind)
378 {
379 case axs_rvalue:
380 if (string_trace)
381 {
382 ax_const_l (ax, ax->trace_string);
383 ax_simple (ax, aop_tracenz);
384 }
385 else
386 /* We don't trace rvalues, just the lvalues necessary to
387 produce them. So just dispose of this value. */
388 ax_simple (ax, aop_pop);
389 break;
390
391 case axs_lvalue_memory:
392 {
393 /* Initialize the TYPE_LENGTH if it is a typedef. */
394 check_typedef (value->type);
395
396 if (string_trace)
397 {
398 gen_fetch (ax, value->type);
399 ax_const_l (ax, ax->trace_string);
400 ax_simple (ax, aop_tracenz);
401 }
402 else
403 {
404 /* There's no point in trying to use a trace_quick bytecode
405 here, since "trace_quick SIZE pop" is three bytes, whereas
406 "const8 SIZE trace" is also three bytes, does the same
407 thing, and the simplest code which generates that will also
408 work correctly for objects with large sizes. */
409 ax_const_l (ax, TYPE_LENGTH (value->type));
410 ax_simple (ax, aop_trace);
411 }
412 }
413 break;
414
415 case axs_lvalue_register:
416 /* We don't actually need the register's value to be on the
417 stack, and the target will get heartburn if the register is
418 larger than will fit in a stack, so just mark it for
419 collection and be done with it. */
420 ax_reg_mask (ax, value->u.reg);
421
422 /* But if the register points to a string, assume the value
423 will fit on the stack and push it anyway. */
424 if (string_trace)
425 {
426 ax_reg (ax, value->u.reg);
427 ax_const_l (ax, ax->trace_string);
428 ax_simple (ax, aop_tracenz);
429 }
430 break;
431 }
432 else
433 /* If we're not tracing, just pop the value. */
434 ax_simple (ax, aop_pop);
435
436 /* To trace C++ classes with static fields stored elsewhere. */
437 if (ax->tracing
438 && (TYPE_CODE (value->type) == TYPE_CODE_STRUCT
439 || TYPE_CODE (value->type) == TYPE_CODE_UNION))
440 gen_trace_static_fields (gdbarch, ax, value->type);
441 }
442 \f
443
444
445 /* Generating bytecode from GDB expressions: helper functions */
446
447 /* Assume that the lower bits of the top of the stack is a value of
448 type TYPE, and the upper bits are zero. Sign-extend if necessary. */
449 static void
450 gen_sign_extend (struct agent_expr *ax, struct type *type)
451 {
452 /* Do we need to sign-extend this? */
453 if (!TYPE_UNSIGNED (type))
454 ax_ext (ax, TYPE_LENGTH (type) * TARGET_CHAR_BIT);
455 }
456
457
458 /* Assume the lower bits of the top of the stack hold a value of type
459 TYPE, and the upper bits are garbage. Sign-extend or truncate as
460 needed. */
461 static void
462 gen_extend (struct agent_expr *ax, struct type *type)
463 {
464 int bits = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
465
466 /* I just had to. */
467 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, bits));
468 }
469
470
471 /* Assume that the top of the stack contains a value of type "pointer
472 to TYPE"; generate code to fetch its value. Note that TYPE is the
473 target type, not the pointer type. */
474 static void
475 gen_fetch (struct agent_expr *ax, struct type *type)
476 {
477 if (ax->tracing)
478 {
479 /* Record the area of memory we're about to fetch. */
480 ax_trace_quick (ax, TYPE_LENGTH (type));
481 }
482
483 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
484 type = TYPE_TARGET_TYPE (type);
485
486 switch (TYPE_CODE (type))
487 {
488 case TYPE_CODE_PTR:
489 case TYPE_CODE_REF:
490 case TYPE_CODE_RVALUE_REF:
491 case TYPE_CODE_ENUM:
492 case TYPE_CODE_INT:
493 case TYPE_CODE_CHAR:
494 case TYPE_CODE_BOOL:
495 /* It's a scalar value, so we know how to dereference it. How
496 many bytes long is it? */
497 switch (TYPE_LENGTH (type))
498 {
499 case 8 / TARGET_CHAR_BIT:
500 ax_simple (ax, aop_ref8);
501 break;
502 case 16 / TARGET_CHAR_BIT:
503 ax_simple (ax, aop_ref16);
504 break;
505 case 32 / TARGET_CHAR_BIT:
506 ax_simple (ax, aop_ref32);
507 break;
508 case 64 / TARGET_CHAR_BIT:
509 ax_simple (ax, aop_ref64);
510 break;
511
512 /* Either our caller shouldn't have asked us to dereference
513 that pointer (other code's fault), or we're not
514 implementing something we should be (this code's fault).
515 In any case, it's a bug the user shouldn't see. */
516 default:
517 internal_error (__FILE__, __LINE__,
518 _("gen_fetch: strange size"));
519 }
520
521 gen_sign_extend (ax, type);
522 break;
523
524 default:
525 /* Our caller requested us to dereference a pointer from an unsupported
526 type. Error out and give callers a chance to handle the failure
527 gracefully. */
528 error (_("gen_fetch: Unsupported type code `%s'."),
529 TYPE_NAME (type));
530 }
531 }
532
533
534 /* Generate code to left shift the top of the stack by DISTANCE bits, or
535 right shift it by -DISTANCE bits if DISTANCE < 0. This generates
536 unsigned (logical) right shifts. */
537 static void
538 gen_left_shift (struct agent_expr *ax, int distance)
539 {
540 if (distance > 0)
541 {
542 ax_const_l (ax, distance);
543 ax_simple (ax, aop_lsh);
544 }
545 else if (distance < 0)
546 {
547 ax_const_l (ax, -distance);
548 ax_simple (ax, aop_rsh_unsigned);
549 }
550 }
551 \f
552
553
554 /* Generating bytecode from GDB expressions: symbol references */
555
556 /* Generate code to push the base address of the argument portion of
557 the top stack frame. */
558 static void
559 gen_frame_args_address (struct gdbarch *gdbarch, struct agent_expr *ax)
560 {
561 int frame_reg;
562 LONGEST frame_offset;
563
564 gdbarch_virtual_frame_pointer (gdbarch,
565 ax->scope, &frame_reg, &frame_offset);
566 ax_reg (ax, frame_reg);
567 gen_offset (ax, frame_offset);
568 }
569
570
571 /* Generate code to push the base address of the locals portion of the
572 top stack frame. */
573 static void
574 gen_frame_locals_address (struct gdbarch *gdbarch, struct agent_expr *ax)
575 {
576 int frame_reg;
577 LONGEST frame_offset;
578
579 gdbarch_virtual_frame_pointer (gdbarch,
580 ax->scope, &frame_reg, &frame_offset);
581 ax_reg (ax, frame_reg);
582 gen_offset (ax, frame_offset);
583 }
584
585
586 /* Generate code to add OFFSET to the top of the stack. Try to
587 generate short and readable code. We use this for getting to
588 variables on the stack, and structure members. If we were
589 programming in ML, it would be clearer why these are the same
590 thing. */
591 static void
592 gen_offset (struct agent_expr *ax, int offset)
593 {
594 /* It would suffice to simply push the offset and add it, but this
595 makes it easier to read positive and negative offsets in the
596 bytecode. */
597 if (offset > 0)
598 {
599 ax_const_l (ax, offset);
600 ax_simple (ax, aop_add);
601 }
602 else if (offset < 0)
603 {
604 ax_const_l (ax, -offset);
605 ax_simple (ax, aop_sub);
606 }
607 }
608
609
610 /* In many cases, a symbol's value is the offset from some other
611 address (stack frame, base register, etc.) Generate code to add
612 VAR's value to the top of the stack. */
613 static void
614 gen_sym_offset (struct agent_expr *ax, struct symbol *var)
615 {
616 gen_offset (ax, SYMBOL_VALUE (var));
617 }
618
619
620 /* Generate code for a variable reference to AX. The variable is the
621 symbol VAR. Set VALUE to describe the result. */
622
623 static void
624 gen_var_ref (struct gdbarch *gdbarch, struct agent_expr *ax,
625 struct axs_value *value, struct symbol *var)
626 {
627 /* Dereference any typedefs. */
628 value->type = check_typedef (SYMBOL_TYPE (var));
629 value->optimized_out = 0;
630
631 if (SYMBOL_COMPUTED_OPS (var) != NULL)
632 {
633 SYMBOL_COMPUTED_OPS (var)->tracepoint_var_ref (var, gdbarch, ax, value);
634 return;
635 }
636
637 /* I'm imitating the code in read_var_value. */
638 switch (SYMBOL_CLASS (var))
639 {
640 case LOC_CONST: /* A constant, like an enum value. */
641 ax_const_l (ax, (LONGEST) SYMBOL_VALUE (var));
642 value->kind = axs_rvalue;
643 break;
644
645 case LOC_LABEL: /* A goto label, being used as a value. */
646 ax_const_l (ax, (LONGEST) SYMBOL_VALUE_ADDRESS (var));
647 value->kind = axs_rvalue;
648 break;
649
650 case LOC_CONST_BYTES:
651 internal_error (__FILE__, __LINE__,
652 _("gen_var_ref: LOC_CONST_BYTES "
653 "symbols are not supported"));
654
655 /* Variable at a fixed location in memory. Easy. */
656 case LOC_STATIC:
657 /* Push the address of the variable. */
658 ax_const_l (ax, SYMBOL_VALUE_ADDRESS (var));
659 value->kind = axs_lvalue_memory;
660 break;
661
662 case LOC_ARG: /* var lives in argument area of frame */
663 gen_frame_args_address (gdbarch, ax);
664 gen_sym_offset (ax, var);
665 value->kind = axs_lvalue_memory;
666 break;
667
668 case LOC_REF_ARG: /* As above, but the frame slot really
669 holds the address of the variable. */
670 gen_frame_args_address (gdbarch, ax);
671 gen_sym_offset (ax, var);
672 /* Don't assume any particular pointer size. */
673 gen_fetch (ax, builtin_type (gdbarch)->builtin_data_ptr);
674 value->kind = axs_lvalue_memory;
675 break;
676
677 case LOC_LOCAL: /* var lives in locals area of frame */
678 gen_frame_locals_address (gdbarch, ax);
679 gen_sym_offset (ax, var);
680 value->kind = axs_lvalue_memory;
681 break;
682
683 case LOC_TYPEDEF:
684 error (_("Cannot compute value of typedef `%s'."),
685 SYMBOL_PRINT_NAME (var));
686 break;
687
688 case LOC_BLOCK:
689 ax_const_l (ax, BLOCK_START (SYMBOL_BLOCK_VALUE (var)));
690 value->kind = axs_rvalue;
691 break;
692
693 case LOC_REGISTER:
694 /* Don't generate any code at all; in the process of treating
695 this as an lvalue or rvalue, the caller will generate the
696 right code. */
697 value->kind = axs_lvalue_register;
698 value->u.reg = SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch);
699 break;
700
701 /* A lot like LOC_REF_ARG, but the pointer lives directly in a
702 register, not on the stack. Simpler than LOC_REGISTER
703 because it's just like any other case where the thing
704 has a real address. */
705 case LOC_REGPARM_ADDR:
706 ax_reg (ax, SYMBOL_REGISTER_OPS (var)->register_number (var, gdbarch));
707 value->kind = axs_lvalue_memory;
708 break;
709
710 case LOC_UNRESOLVED:
711 {
712 struct bound_minimal_symbol msym
713 = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (var), NULL, NULL);
714
715 if (!msym.minsym)
716 error (_("Couldn't resolve symbol `%s'."), SYMBOL_PRINT_NAME (var));
717
718 /* Push the address of the variable. */
719 ax_const_l (ax, BMSYMBOL_VALUE_ADDRESS (msym));
720 value->kind = axs_lvalue_memory;
721 }
722 break;
723
724 case LOC_COMPUTED:
725 gdb_assert_not_reached (_("LOC_COMPUTED variable missing a method"));
726
727 case LOC_OPTIMIZED_OUT:
728 /* Flag this, but don't say anything; leave it up to callers to
729 warn the user. */
730 value->optimized_out = 1;
731 break;
732
733 default:
734 error (_("Cannot find value of botched symbol `%s'."),
735 SYMBOL_PRINT_NAME (var));
736 break;
737 }
738 }
739 \f
740
741
742 /* Generating bytecode from GDB expressions: literals */
743
744 static void
745 gen_int_literal (struct agent_expr *ax, struct axs_value *value, LONGEST k,
746 struct type *type)
747 {
748 ax_const_l (ax, k);
749 value->kind = axs_rvalue;
750 value->type = check_typedef (type);
751 }
752 \f
753
754
755 /* Generating bytecode from GDB expressions: unary conversions, casts */
756
757 /* Take what's on the top of the stack (as described by VALUE), and
758 try to make an rvalue out of it. Signal an error if we can't do
759 that. */
760 void
761 require_rvalue (struct agent_expr *ax, struct axs_value *value)
762 {
763 /* Only deal with scalars, structs and such may be too large
764 to fit in a stack entry. */
765 value->type = check_typedef (value->type);
766 if (TYPE_CODE (value->type) == TYPE_CODE_ARRAY
767 || TYPE_CODE (value->type) == TYPE_CODE_STRUCT
768 || TYPE_CODE (value->type) == TYPE_CODE_UNION
769 || TYPE_CODE (value->type) == TYPE_CODE_FUNC)
770 error (_("Value not scalar: cannot be an rvalue."));
771
772 switch (value->kind)
773 {
774 case axs_rvalue:
775 /* It's already an rvalue. */
776 break;
777
778 case axs_lvalue_memory:
779 /* The top of stack is the address of the object. Dereference. */
780 gen_fetch (ax, value->type);
781 break;
782
783 case axs_lvalue_register:
784 /* There's nothing on the stack, but value->u.reg is the
785 register number containing the value.
786
787 When we add floating-point support, this is going to have to
788 change. What about SPARC register pairs, for example? */
789 ax_reg (ax, value->u.reg);
790 gen_extend (ax, value->type);
791 break;
792 }
793
794 value->kind = axs_rvalue;
795 }
796
797
798 /* Assume the top of the stack is described by VALUE, and perform the
799 usual unary conversions. This is motivated by ANSI 6.2.2, but of
800 course GDB expressions are not ANSI; they're the mishmash union of
801 a bunch of languages. Rah.
802
803 NOTE! This function promises to produce an rvalue only when the
804 incoming value is of an appropriate type. In other words, the
805 consumer of the value this function produces may assume the value
806 is an rvalue only after checking its type.
807
808 The immediate issue is that if the user tries to use a structure or
809 union as an operand of, say, the `+' operator, we don't want to try
810 to convert that structure to an rvalue; require_rvalue will bomb on
811 structs and unions. Rather, we want to simply pass the struct
812 lvalue through unchanged, and let `+' raise an error. */
813
814 static void
815 gen_usual_unary (struct agent_expr *ax, struct axs_value *value)
816 {
817 /* We don't have to generate any code for the usual integral
818 conversions, since values are always represented as full-width on
819 the stack. Should we tweak the type? */
820
821 /* Some types require special handling. */
822 switch (TYPE_CODE (value->type))
823 {
824 /* Functions get converted to a pointer to the function. */
825 case TYPE_CODE_FUNC:
826 value->type = lookup_pointer_type (value->type);
827 value->kind = axs_rvalue; /* Should always be true, but just in case. */
828 break;
829
830 /* Arrays get converted to a pointer to their first element, and
831 are no longer an lvalue. */
832 case TYPE_CODE_ARRAY:
833 {
834 struct type *elements = TYPE_TARGET_TYPE (value->type);
835
836 value->type = lookup_pointer_type (elements);
837 value->kind = axs_rvalue;
838 /* We don't need to generate any code; the address of the array
839 is also the address of its first element. */
840 }
841 break;
842
843 /* Don't try to convert structures and unions to rvalues. Let the
844 consumer signal an error. */
845 case TYPE_CODE_STRUCT:
846 case TYPE_CODE_UNION:
847 return;
848 }
849
850 /* If the value is an lvalue, dereference it. */
851 require_rvalue (ax, value);
852 }
853
854
855 /* Return non-zero iff the type TYPE1 is considered "wider" than the
856 type TYPE2, according to the rules described in gen_usual_arithmetic. */
857 static int
858 type_wider_than (struct type *type1, struct type *type2)
859 {
860 return (TYPE_LENGTH (type1) > TYPE_LENGTH (type2)
861 || (TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
862 && TYPE_UNSIGNED (type1)
863 && !TYPE_UNSIGNED (type2)));
864 }
865
866
867 /* Return the "wider" of the two types TYPE1 and TYPE2. */
868 static struct type *
869 max_type (struct type *type1, struct type *type2)
870 {
871 return type_wider_than (type1, type2) ? type1 : type2;
872 }
873
874
875 /* Generate code to convert a scalar value of type FROM to type TO. */
876 static void
877 gen_conversion (struct agent_expr *ax, struct type *from, struct type *to)
878 {
879 /* Perhaps there is a more graceful way to state these rules. */
880
881 /* If we're converting to a narrower type, then we need to clear out
882 the upper bits. */
883 if (TYPE_LENGTH (to) < TYPE_LENGTH (from))
884 gen_extend (ax, to);
885
886 /* If the two values have equal width, but different signednesses,
887 then we need to extend. */
888 else if (TYPE_LENGTH (to) == TYPE_LENGTH (from))
889 {
890 if (TYPE_UNSIGNED (from) != TYPE_UNSIGNED (to))
891 gen_extend (ax, to);
892 }
893
894 /* If we're converting to a wider type, and becoming unsigned, then
895 we need to zero out any possible sign bits. */
896 else if (TYPE_LENGTH (to) > TYPE_LENGTH (from))
897 {
898 if (TYPE_UNSIGNED (to))
899 gen_extend (ax, to);
900 }
901 }
902
903
904 /* Return non-zero iff the type FROM will require any bytecodes to be
905 emitted to be converted to the type TO. */
906 static int
907 is_nontrivial_conversion (struct type *from, struct type *to)
908 {
909 agent_expr_up ax (new agent_expr (NULL, 0));
910 int nontrivial;
911
912 /* Actually generate the code, and see if anything came out. At the
913 moment, it would be trivial to replicate the code in
914 gen_conversion here, but in the future, when we're supporting
915 floating point and the like, it may not be. Doing things this
916 way allows this function to be independent of the logic in
917 gen_conversion. */
918 gen_conversion (ax.get (), from, to);
919 nontrivial = ax->len > 0;
920 return nontrivial;
921 }
922
923
924 /* Generate code to perform the "usual arithmetic conversions" (ANSI C
925 6.2.1.5) for the two operands of an arithmetic operator. This
926 effectively finds a "least upper bound" type for the two arguments,
927 and promotes each argument to that type. *VALUE1 and *VALUE2
928 describe the values as they are passed in, and as they are left. */
929 static void
930 gen_usual_arithmetic (struct agent_expr *ax, struct axs_value *value1,
931 struct axs_value *value2)
932 {
933 /* Do the usual binary conversions. */
934 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
935 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
936 {
937 /* The ANSI integral promotions seem to work this way: Order the
938 integer types by size, and then by signedness: an n-bit
939 unsigned type is considered "wider" than an n-bit signed
940 type. Promote to the "wider" of the two types, and always
941 promote at least to int. */
942 struct type *target = max_type (builtin_type (ax->gdbarch)->builtin_int,
943 max_type (value1->type, value2->type));
944
945 /* Deal with value2, on the top of the stack. */
946 gen_conversion (ax, value2->type, target);
947
948 /* Deal with value1, not on the top of the stack. Don't
949 generate the `swap' instructions if we're not actually going
950 to do anything. */
951 if (is_nontrivial_conversion (value1->type, target))
952 {
953 ax_simple (ax, aop_swap);
954 gen_conversion (ax, value1->type, target);
955 ax_simple (ax, aop_swap);
956 }
957
958 value1->type = value2->type = check_typedef (target);
959 }
960 }
961
962
963 /* Generate code to perform the integral promotions (ANSI 6.2.1.1) on
964 the value on the top of the stack, as described by VALUE. Assume
965 the value has integral type. */
966 static void
967 gen_integral_promotions (struct agent_expr *ax, struct axs_value *value)
968 {
969 const struct builtin_type *builtin = builtin_type (ax->gdbarch);
970
971 if (!type_wider_than (value->type, builtin->builtin_int))
972 {
973 gen_conversion (ax, value->type, builtin->builtin_int);
974 value->type = builtin->builtin_int;
975 }
976 else if (!type_wider_than (value->type, builtin->builtin_unsigned_int))
977 {
978 gen_conversion (ax, value->type, builtin->builtin_unsigned_int);
979 value->type = builtin->builtin_unsigned_int;
980 }
981 }
982
983
984 /* Generate code for a cast to TYPE. */
985 static void
986 gen_cast (struct agent_expr *ax, struct axs_value *value, struct type *type)
987 {
988 /* GCC does allow casts to yield lvalues, so this should be fixed
989 before merging these changes into the trunk. */
990 require_rvalue (ax, value);
991 /* Dereference typedefs. */
992 type = check_typedef (type);
993
994 switch (TYPE_CODE (type))
995 {
996 case TYPE_CODE_PTR:
997 case TYPE_CODE_REF:
998 case TYPE_CODE_RVALUE_REF:
999 /* It's implementation-defined, and I'll bet this is what GCC
1000 does. */
1001 break;
1002
1003 case TYPE_CODE_ARRAY:
1004 case TYPE_CODE_STRUCT:
1005 case TYPE_CODE_UNION:
1006 case TYPE_CODE_FUNC:
1007 error (_("Invalid type cast: intended type must be scalar."));
1008
1009 case TYPE_CODE_ENUM:
1010 case TYPE_CODE_BOOL:
1011 /* We don't have to worry about the size of the value, because
1012 all our integral values are fully sign-extended, and when
1013 casting pointers we can do anything we like. Is there any
1014 way for us to know what GCC actually does with a cast like
1015 this? */
1016 break;
1017
1018 case TYPE_CODE_INT:
1019 gen_conversion (ax, value->type, type);
1020 break;
1021
1022 case TYPE_CODE_VOID:
1023 /* We could pop the value, and rely on everyone else to check
1024 the type and notice that this value doesn't occupy a stack
1025 slot. But for now, leave the value on the stack, and
1026 preserve the "value == stack element" assumption. */
1027 break;
1028
1029 default:
1030 error (_("Casts to requested type are not yet implemented."));
1031 }
1032
1033 value->type = type;
1034 }
1035 \f
1036
1037
1038 /* Generating bytecode from GDB expressions: arithmetic */
1039
1040 /* Scale the integer on the top of the stack by the size of the target
1041 of the pointer type TYPE. */
1042 static void
1043 gen_scale (struct agent_expr *ax, enum agent_op op, struct type *type)
1044 {
1045 struct type *element = TYPE_TARGET_TYPE (type);
1046
1047 if (TYPE_LENGTH (element) != 1)
1048 {
1049 ax_const_l (ax, TYPE_LENGTH (element));
1050 ax_simple (ax, op);
1051 }
1052 }
1053
1054
1055 /* Generate code for pointer arithmetic PTR + INT. */
1056 static void
1057 gen_ptradd (struct agent_expr *ax, struct axs_value *value,
1058 struct axs_value *value1, struct axs_value *value2)
1059 {
1060 gdb_assert (pointer_type (value1->type));
1061 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1062
1063 gen_scale (ax, aop_mul, value1->type);
1064 ax_simple (ax, aop_add);
1065 gen_extend (ax, value1->type); /* Catch overflow. */
1066 value->type = value1->type;
1067 value->kind = axs_rvalue;
1068 }
1069
1070
1071 /* Generate code for pointer arithmetic PTR - INT. */
1072 static void
1073 gen_ptrsub (struct agent_expr *ax, struct axs_value *value,
1074 struct axs_value *value1, struct axs_value *value2)
1075 {
1076 gdb_assert (pointer_type (value1->type));
1077 gdb_assert (TYPE_CODE (value2->type) == TYPE_CODE_INT);
1078
1079 gen_scale (ax, aop_mul, value1->type);
1080 ax_simple (ax, aop_sub);
1081 gen_extend (ax, value1->type); /* Catch overflow. */
1082 value->type = value1->type;
1083 value->kind = axs_rvalue;
1084 }
1085
1086
1087 /* Generate code for pointer arithmetic PTR - PTR. */
1088 static void
1089 gen_ptrdiff (struct agent_expr *ax, struct axs_value *value,
1090 struct axs_value *value1, struct axs_value *value2,
1091 struct type *result_type)
1092 {
1093 gdb_assert (pointer_type (value1->type));
1094 gdb_assert (pointer_type (value2->type));
1095
1096 if (TYPE_LENGTH (TYPE_TARGET_TYPE (value1->type))
1097 != TYPE_LENGTH (TYPE_TARGET_TYPE (value2->type)))
1098 error (_("\
1099 First argument of `-' is a pointer, but second argument is neither\n\
1100 an integer nor a pointer of the same type."));
1101
1102 ax_simple (ax, aop_sub);
1103 gen_scale (ax, aop_div_unsigned, value1->type);
1104 value->type = result_type;
1105 value->kind = axs_rvalue;
1106 }
1107
1108 static void
1109 gen_equal (struct agent_expr *ax, struct axs_value *value,
1110 struct axs_value *value1, struct axs_value *value2,
1111 struct type *result_type)
1112 {
1113 if (pointer_type (value1->type) || pointer_type (value2->type))
1114 ax_simple (ax, aop_equal);
1115 else
1116 gen_binop (ax, value, value1, value2,
1117 aop_equal, aop_equal, 0, "equal");
1118 value->type = result_type;
1119 value->kind = axs_rvalue;
1120 }
1121
1122 static void
1123 gen_less (struct agent_expr *ax, struct axs_value *value,
1124 struct axs_value *value1, struct axs_value *value2,
1125 struct type *result_type)
1126 {
1127 if (pointer_type (value1->type) || pointer_type (value2->type))
1128 ax_simple (ax, aop_less_unsigned);
1129 else
1130 gen_binop (ax, value, value1, value2,
1131 aop_less_signed, aop_less_unsigned, 0, "less than");
1132 value->type = result_type;
1133 value->kind = axs_rvalue;
1134 }
1135
1136 /* Generate code for a binary operator that doesn't do pointer magic.
1137 We set VALUE to describe the result value; we assume VALUE1 and
1138 VALUE2 describe the two operands, and that they've undergone the
1139 usual binary conversions. MAY_CARRY should be non-zero iff the
1140 result needs to be extended. NAME is the English name of the
1141 operator, used in error messages */
1142 static void
1143 gen_binop (struct agent_expr *ax, struct axs_value *value,
1144 struct axs_value *value1, struct axs_value *value2,
1145 enum agent_op op, enum agent_op op_unsigned,
1146 int may_carry, const char *name)
1147 {
1148 /* We only handle INT op INT. */
1149 if ((TYPE_CODE (value1->type) != TYPE_CODE_INT)
1150 || (TYPE_CODE (value2->type) != TYPE_CODE_INT))
1151 error (_("Invalid combination of types in %s."), name);
1152
1153 ax_simple (ax,
1154 TYPE_UNSIGNED (value1->type) ? op_unsigned : op);
1155 if (may_carry)
1156 gen_extend (ax, value1->type); /* catch overflow */
1157 value->type = value1->type;
1158 value->kind = axs_rvalue;
1159 }
1160
1161
1162 static void
1163 gen_logical_not (struct agent_expr *ax, struct axs_value *value,
1164 struct type *result_type)
1165 {
1166 if (TYPE_CODE (value->type) != TYPE_CODE_INT
1167 && TYPE_CODE (value->type) != TYPE_CODE_PTR)
1168 error (_("Invalid type of operand to `!'."));
1169
1170 ax_simple (ax, aop_log_not);
1171 value->type = result_type;
1172 }
1173
1174
1175 static void
1176 gen_complement (struct agent_expr *ax, struct axs_value *value)
1177 {
1178 if (TYPE_CODE (value->type) != TYPE_CODE_INT)
1179 error (_("Invalid type of operand to `~'."));
1180
1181 ax_simple (ax, aop_bit_not);
1182 gen_extend (ax, value->type);
1183 }
1184 \f
1185
1186
1187 /* Generating bytecode from GDB expressions: * & . -> @ sizeof */
1188
1189 /* Dereference the value on the top of the stack. */
1190 static void
1191 gen_deref (struct axs_value *value)
1192 {
1193 /* The caller should check the type, because several operators use
1194 this, and we don't know what error message to generate. */
1195 if (!pointer_type (value->type))
1196 internal_error (__FILE__, __LINE__,
1197 _("gen_deref: expected a pointer"));
1198
1199 /* We've got an rvalue now, which is a pointer. We want to yield an
1200 lvalue, whose address is exactly that pointer. So we don't
1201 actually emit any code; we just change the type from "Pointer to
1202 T" to "T", and mark the value as an lvalue in memory. Leave it
1203 to the consumer to actually dereference it. */
1204 value->type = check_typedef (TYPE_TARGET_TYPE (value->type));
1205 if (TYPE_CODE (value->type) == TYPE_CODE_VOID)
1206 error (_("Attempt to dereference a generic pointer."));
1207 value->kind = ((TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1208 ? axs_rvalue : axs_lvalue_memory);
1209 }
1210
1211
1212 /* Produce the address of the lvalue on the top of the stack. */
1213 static void
1214 gen_address_of (struct axs_value *value)
1215 {
1216 /* Special case for taking the address of a function. The ANSI
1217 standard describes this as a special case, too, so this
1218 arrangement is not without motivation. */
1219 if (TYPE_CODE (value->type) == TYPE_CODE_FUNC)
1220 /* The value's already an rvalue on the stack, so we just need to
1221 change the type. */
1222 value->type = lookup_pointer_type (value->type);
1223 else
1224 switch (value->kind)
1225 {
1226 case axs_rvalue:
1227 error (_("Operand of `&' is an rvalue, which has no address."));
1228
1229 case axs_lvalue_register:
1230 error (_("Operand of `&' is in a register, and has no address."));
1231
1232 case axs_lvalue_memory:
1233 value->kind = axs_rvalue;
1234 value->type = lookup_pointer_type (value->type);
1235 break;
1236 }
1237 }
1238
1239 /* Generate code to push the value of a bitfield of a structure whose
1240 address is on the top of the stack. START and END give the
1241 starting and one-past-ending *bit* numbers of the field within the
1242 structure. */
1243 static void
1244 gen_bitfield_ref (struct agent_expr *ax, struct axs_value *value,
1245 struct type *type, int start, int end)
1246 {
1247 /* Note that ops[i] fetches 8 << i bits. */
1248 static enum agent_op ops[]
1249 = {aop_ref8, aop_ref16, aop_ref32, aop_ref64};
1250 static int num_ops = (sizeof (ops) / sizeof (ops[0]));
1251
1252 /* We don't want to touch any byte that the bitfield doesn't
1253 actually occupy; we shouldn't make any accesses we're not
1254 explicitly permitted to. We rely here on the fact that the
1255 bytecode `ref' operators work on unaligned addresses.
1256
1257 It takes some fancy footwork to get the stack to work the way
1258 we'd like. Say we're retrieving a bitfield that requires three
1259 fetches. Initially, the stack just contains the address:
1260 addr
1261 For the first fetch, we duplicate the address
1262 addr addr
1263 then add the byte offset, do the fetch, and shift and mask as
1264 needed, yielding a fragment of the value, properly aligned for
1265 the final bitwise or:
1266 addr frag1
1267 then we swap, and repeat the process:
1268 frag1 addr --- address on top
1269 frag1 addr addr --- duplicate it
1270 frag1 addr frag2 --- get second fragment
1271 frag1 frag2 addr --- swap again
1272 frag1 frag2 frag3 --- get third fragment
1273 Notice that, since the third fragment is the last one, we don't
1274 bother duplicating the address this time. Now we have all the
1275 fragments on the stack, and we can simply `or' them together,
1276 yielding the final value of the bitfield. */
1277
1278 /* The first and one-after-last bits in the field, but rounded down
1279 and up to byte boundaries. */
1280 int bound_start = (start / TARGET_CHAR_BIT) * TARGET_CHAR_BIT;
1281 int bound_end = (((end + TARGET_CHAR_BIT - 1)
1282 / TARGET_CHAR_BIT)
1283 * TARGET_CHAR_BIT);
1284
1285 /* current bit offset within the structure */
1286 int offset;
1287
1288 /* The index in ops of the opcode we're considering. */
1289 int op;
1290
1291 /* The number of fragments we generated in the process. Probably
1292 equal to the number of `one' bits in bytesize, but who cares? */
1293 int fragment_count;
1294
1295 /* Dereference any typedefs. */
1296 type = check_typedef (type);
1297
1298 /* Can we fetch the number of bits requested at all? */
1299 if ((end - start) > ((1 << num_ops) * 8))
1300 internal_error (__FILE__, __LINE__,
1301 _("gen_bitfield_ref: bitfield too wide"));
1302
1303 /* Note that we know here that we only need to try each opcode once.
1304 That may not be true on machines with weird byte sizes. */
1305 offset = bound_start;
1306 fragment_count = 0;
1307 for (op = num_ops - 1; op >= 0; op--)
1308 {
1309 /* number of bits that ops[op] would fetch */
1310 int op_size = 8 << op;
1311
1312 /* The stack at this point, from bottom to top, contains zero or
1313 more fragments, then the address. */
1314
1315 /* Does this fetch fit within the bitfield? */
1316 if (offset + op_size <= bound_end)
1317 {
1318 /* Is this the last fragment? */
1319 int last_frag = (offset + op_size == bound_end);
1320
1321 if (!last_frag)
1322 ax_simple (ax, aop_dup); /* keep a copy of the address */
1323
1324 /* Add the offset. */
1325 gen_offset (ax, offset / TARGET_CHAR_BIT);
1326
1327 if (ax->tracing)
1328 {
1329 /* Record the area of memory we're about to fetch. */
1330 ax_trace_quick (ax, op_size / TARGET_CHAR_BIT);
1331 }
1332
1333 /* Perform the fetch. */
1334 ax_simple (ax, ops[op]);
1335
1336 /* Shift the bits we have to their proper position.
1337 gen_left_shift will generate right shifts when the operand
1338 is negative.
1339
1340 A big-endian field diagram to ponder:
1341 byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7
1342 +------++------++------++------++------++------++------++------+
1343 xxxxAAAAAAAAAAAAAAAAAAAAAAAAAAAABBBBBBBBBBBBBBBBCCCCCxxxxxxxxxxx
1344 ^ ^ ^ ^
1345 bit number 16 32 48 53
1346 These are bit numbers as supplied by GDB. Note that the
1347 bit numbers run from right to left once you've fetched the
1348 value!
1349
1350 A little-endian field diagram to ponder:
1351 byte 7 byte 6 byte 5 byte 4 byte 3 byte 2 byte 1 byte 0
1352 +------++------++------++------++------++------++------++------+
1353 xxxxxxxxxxxAAAAABBBBBBBBBBBBBBBBCCCCCCCCCCCCCCCCCCCCCCCCCCCCxxxx
1354 ^ ^ ^ ^ ^
1355 bit number 48 32 16 4 0
1356
1357 In both cases, the most significant end is on the left
1358 (i.e. normal numeric writing order), which means that you
1359 don't go crazy thinking about `left' and `right' shifts.
1360
1361 We don't have to worry about masking yet:
1362 - If they contain garbage off the least significant end, then we
1363 must be looking at the low end of the field, and the right
1364 shift will wipe them out.
1365 - If they contain garbage off the most significant end, then we
1366 must be looking at the most significant end of the word, and
1367 the sign/zero extension will wipe them out.
1368 - If we're in the interior of the word, then there is no garbage
1369 on either end, because the ref operators zero-extend. */
1370 if (gdbarch_byte_order (ax->gdbarch) == BFD_ENDIAN_BIG)
1371 gen_left_shift (ax, end - (offset + op_size));
1372 else
1373 gen_left_shift (ax, offset - start);
1374
1375 if (!last_frag)
1376 /* Bring the copy of the address up to the top. */
1377 ax_simple (ax, aop_swap);
1378
1379 offset += op_size;
1380 fragment_count++;
1381 }
1382 }
1383
1384 /* Generate enough bitwise `or' operations to combine all the
1385 fragments we left on the stack. */
1386 while (fragment_count-- > 1)
1387 ax_simple (ax, aop_bit_or);
1388
1389 /* Sign- or zero-extend the value as appropriate. */
1390 ((TYPE_UNSIGNED (type) ? ax_zero_ext : ax_ext) (ax, end - start));
1391
1392 /* This is *not* an lvalue. Ugh. */
1393 value->kind = axs_rvalue;
1394 value->type = type;
1395 }
1396
1397 /* Generate bytecodes for field number FIELDNO of type TYPE. OFFSET
1398 is an accumulated offset (in bytes), will be nonzero for objects
1399 embedded in other objects, like C++ base classes. Behavior should
1400 generally follow value_primitive_field. */
1401
1402 static void
1403 gen_primitive_field (struct agent_expr *ax, struct axs_value *value,
1404 int offset, int fieldno, struct type *type)
1405 {
1406 /* Is this a bitfield? */
1407 if (TYPE_FIELD_PACKED (type, fieldno))
1408 gen_bitfield_ref (ax, value, TYPE_FIELD_TYPE (type, fieldno),
1409 (offset * TARGET_CHAR_BIT
1410 + TYPE_FIELD_BITPOS (type, fieldno)),
1411 (offset * TARGET_CHAR_BIT
1412 + TYPE_FIELD_BITPOS (type, fieldno)
1413 + TYPE_FIELD_BITSIZE (type, fieldno)));
1414 else
1415 {
1416 gen_offset (ax, offset
1417 + TYPE_FIELD_BITPOS (type, fieldno) / TARGET_CHAR_BIT);
1418 value->kind = axs_lvalue_memory;
1419 value->type = TYPE_FIELD_TYPE (type, fieldno);
1420 }
1421 }
1422
1423 /* Search for the given field in either the given type or one of its
1424 base classes. Return 1 if found, 0 if not. */
1425
1426 static int
1427 gen_struct_ref_recursive (struct agent_expr *ax, struct axs_value *value,
1428 const char *field, int offset, struct type *type)
1429 {
1430 int i, rslt;
1431 int nbases = TYPE_N_BASECLASSES (type);
1432
1433 type = check_typedef (type);
1434
1435 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
1436 {
1437 const char *this_name = TYPE_FIELD_NAME (type, i);
1438
1439 if (this_name)
1440 {
1441 if (strcmp (field, this_name) == 0)
1442 {
1443 /* Note that bytecodes for the struct's base (aka
1444 "this") will have been generated already, which will
1445 be unnecessary but not harmful if the static field is
1446 being handled as a global. */
1447 if (field_is_static (&TYPE_FIELD (type, i)))
1448 {
1449 gen_static_field (ax->gdbarch, ax, value, type, i);
1450 if (value->optimized_out)
1451 error (_("static field `%s' has been "
1452 "optimized out, cannot use"),
1453 field);
1454 return 1;
1455 }
1456
1457 gen_primitive_field (ax, value, offset, i, type);
1458 return 1;
1459 }
1460 #if 0 /* is this right? */
1461 if (this_name[0] == '\0')
1462 internal_error (__FILE__, __LINE__,
1463 _("find_field: anonymous unions not supported"));
1464 #endif
1465 }
1466 }
1467
1468 /* Now scan through base classes recursively. */
1469 for (i = 0; i < nbases; i++)
1470 {
1471 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1472
1473 rslt = gen_struct_ref_recursive (ax, value, field,
1474 offset + TYPE_BASECLASS_BITPOS (type, i)
1475 / TARGET_CHAR_BIT,
1476 basetype);
1477 if (rslt)
1478 return 1;
1479 }
1480
1481 /* Not found anywhere, flag so caller can complain. */
1482 return 0;
1483 }
1484
1485 /* Generate code to reference the member named FIELD of a structure or
1486 union. The top of the stack, as described by VALUE, should have
1487 type (pointer to a)* struct/union. OPERATOR_NAME is the name of
1488 the operator being compiled, and OPERAND_NAME is the kind of thing
1489 it operates on; we use them in error messages. */
1490 static void
1491 gen_struct_ref (struct agent_expr *ax, struct axs_value *value,
1492 const char *field, const char *operator_name,
1493 const char *operand_name)
1494 {
1495 struct type *type;
1496 int found;
1497
1498 /* Follow pointers until we reach a non-pointer. These aren't the C
1499 semantics, but they're what the normal GDB evaluator does, so we
1500 should at least be consistent. */
1501 while (pointer_type (value->type))
1502 {
1503 require_rvalue (ax, value);
1504 gen_deref (value);
1505 }
1506 type = check_typedef (value->type);
1507
1508 /* This must yield a structure or a union. */
1509 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1510 && TYPE_CODE (type) != TYPE_CODE_UNION)
1511 error (_("The left operand of `%s' is not a %s."),
1512 operator_name, operand_name);
1513
1514 /* And it must be in memory; we don't deal with structure rvalues,
1515 or structures living in registers. */
1516 if (value->kind != axs_lvalue_memory)
1517 error (_("Structure does not live in memory."));
1518
1519 /* Search through fields and base classes recursively. */
1520 found = gen_struct_ref_recursive (ax, value, field, 0, type);
1521
1522 if (!found)
1523 error (_("Couldn't find member named `%s' in struct/union/class `%s'"),
1524 field, TYPE_TAG_NAME (type));
1525 }
1526
1527 static int
1528 gen_namespace_elt (struct agent_expr *ax, struct axs_value *value,
1529 const struct type *curtype, char *name);
1530 static int
1531 gen_maybe_namespace_elt (struct agent_expr *ax, struct axs_value *value,
1532 const struct type *curtype, char *name);
1533
1534 static void
1535 gen_static_field (struct gdbarch *gdbarch,
1536 struct agent_expr *ax, struct axs_value *value,
1537 struct type *type, int fieldno)
1538 {
1539 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1540 {
1541 ax_const_l (ax, TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1542 value->kind = axs_lvalue_memory;
1543 value->type = TYPE_FIELD_TYPE (type, fieldno);
1544 value->optimized_out = 0;
1545 }
1546 else
1547 {
1548 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1549 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0).symbol;
1550
1551 if (sym)
1552 {
1553 gen_var_ref (gdbarch, ax, value, sym);
1554
1555 /* Don't error if the value was optimized out, we may be
1556 scanning all static fields and just want to pass over this
1557 and continue with the rest. */
1558 }
1559 else
1560 {
1561 /* Silently assume this was optimized out; class printing
1562 will let the user know why the data is missing. */
1563 value->optimized_out = 1;
1564 }
1565 }
1566 }
1567
1568 static int
1569 gen_struct_elt_for_reference (struct agent_expr *ax, struct axs_value *value,
1570 struct type *type, char *fieldname)
1571 {
1572 struct type *t = type;
1573 int i;
1574
1575 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1576 && TYPE_CODE (t) != TYPE_CODE_UNION)
1577 internal_error (__FILE__, __LINE__,
1578 _("non-aggregate type to gen_struct_elt_for_reference"));
1579
1580 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
1581 {
1582 const char *t_field_name = TYPE_FIELD_NAME (t, i);
1583
1584 if (t_field_name && strcmp (t_field_name, fieldname) == 0)
1585 {
1586 if (field_is_static (&TYPE_FIELD (t, i)))
1587 {
1588 gen_static_field (ax->gdbarch, ax, value, t, i);
1589 if (value->optimized_out)
1590 error (_("static field `%s' has been "
1591 "optimized out, cannot use"),
1592 fieldname);
1593 return 1;
1594 }
1595 if (TYPE_FIELD_PACKED (t, i))
1596 error (_("pointers to bitfield members not allowed"));
1597
1598 /* FIXME we need a way to do "want_address" equivalent */
1599
1600 error (_("Cannot reference non-static field \"%s\""), fieldname);
1601 }
1602 }
1603
1604 /* FIXME add other scoped-reference cases here */
1605
1606 /* Do a last-ditch lookup. */
1607 return gen_maybe_namespace_elt (ax, value, type, fieldname);
1608 }
1609
1610 /* C++: Return the member NAME of the namespace given by the type
1611 CURTYPE. */
1612
1613 static int
1614 gen_namespace_elt (struct agent_expr *ax, struct axs_value *value,
1615 const struct type *curtype, char *name)
1616 {
1617 int found = gen_maybe_namespace_elt (ax, value, curtype, name);
1618
1619 if (!found)
1620 error (_("No symbol \"%s\" in namespace \"%s\"."),
1621 name, TYPE_TAG_NAME (curtype));
1622
1623 return found;
1624 }
1625
1626 /* A helper function used by value_namespace_elt and
1627 value_struct_elt_for_reference. It looks up NAME inside the
1628 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
1629 is a class and NAME refers to a type in CURTYPE itself (as opposed
1630 to, say, some base class of CURTYPE). */
1631
1632 static int
1633 gen_maybe_namespace_elt (struct agent_expr *ax, struct axs_value *value,
1634 const struct type *curtype, char *name)
1635 {
1636 const char *namespace_name = TYPE_TAG_NAME (curtype);
1637 struct block_symbol sym;
1638
1639 sym = cp_lookup_symbol_namespace (namespace_name, name,
1640 block_for_pc (ax->scope),
1641 VAR_DOMAIN);
1642
1643 if (sym.symbol == NULL)
1644 return 0;
1645
1646 gen_var_ref (ax->gdbarch, ax, value, sym.symbol);
1647
1648 if (value->optimized_out)
1649 error (_("`%s' has been optimized out, cannot use"),
1650 SYMBOL_PRINT_NAME (sym.symbol));
1651
1652 return 1;
1653 }
1654
1655
1656 static int
1657 gen_aggregate_elt_ref (struct agent_expr *ax, struct axs_value *value,
1658 struct type *type, char *field,
1659 const char *operator_name,
1660 const char *operand_name)
1661 {
1662 switch (TYPE_CODE (type))
1663 {
1664 case TYPE_CODE_STRUCT:
1665 case TYPE_CODE_UNION:
1666 return gen_struct_elt_for_reference (ax, value, type, field);
1667 break;
1668 case TYPE_CODE_NAMESPACE:
1669 return gen_namespace_elt (ax, value, type, field);
1670 break;
1671 default:
1672 internal_error (__FILE__, __LINE__,
1673 _("non-aggregate type in gen_aggregate_elt_ref"));
1674 }
1675
1676 return 0;
1677 }
1678
1679 /* Generate code for GDB's magical `repeat' operator.
1680 LVALUE @ INT creates an array INT elements long, and whose elements
1681 have the same type as LVALUE, located in memory so that LVALUE is
1682 its first element. For example, argv[0]@argc gives you the array
1683 of command-line arguments.
1684
1685 Unfortunately, because we have to know the types before we actually
1686 have a value for the expression, we can't implement this perfectly
1687 without changing the type system, having values that occupy two
1688 stack slots, doing weird things with sizeof, etc. So we require
1689 the right operand to be a constant expression. */
1690 static void
1691 gen_repeat (struct expression *exp, union exp_element **pc,
1692 struct agent_expr *ax, struct axs_value *value)
1693 {
1694 struct axs_value value1;
1695
1696 /* We don't want to turn this into an rvalue, so no conversions
1697 here. */
1698 gen_expr (exp, pc, ax, &value1);
1699 if (value1.kind != axs_lvalue_memory)
1700 error (_("Left operand of `@' must be an object in memory."));
1701
1702 /* Evaluate the length; it had better be a constant. */
1703 {
1704 struct value *v = const_expr (pc);
1705 int length;
1706
1707 if (!v)
1708 error (_("Right operand of `@' must be a "
1709 "constant, in agent expressions."));
1710 if (TYPE_CODE (value_type (v)) != TYPE_CODE_INT)
1711 error (_("Right operand of `@' must be an integer."));
1712 length = value_as_long (v);
1713 if (length <= 0)
1714 error (_("Right operand of `@' must be positive."));
1715
1716 /* The top of the stack is already the address of the object, so
1717 all we need to do is frob the type of the lvalue. */
1718 {
1719 /* FIXME-type-allocation: need a way to free this type when we are
1720 done with it. */
1721 struct type *array
1722 = lookup_array_range_type (value1.type, 0, length - 1);
1723
1724 value->kind = axs_lvalue_memory;
1725 value->type = array;
1726 }
1727 }
1728 }
1729
1730
1731 /* Emit code for the `sizeof' operator.
1732 *PC should point at the start of the operand expression; we advance it
1733 to the first instruction after the operand. */
1734 static void
1735 gen_sizeof (struct expression *exp, union exp_element **pc,
1736 struct agent_expr *ax, struct axs_value *value,
1737 struct type *size_type)
1738 {
1739 /* We don't care about the value of the operand expression; we only
1740 care about its type. However, in the current arrangement, the
1741 only way to find an expression's type is to generate code for it.
1742 So we generate code for the operand, and then throw it away,
1743 replacing it with code that simply pushes its size. */
1744 int start = ax->len;
1745
1746 gen_expr (exp, pc, ax, value);
1747
1748 /* Throw away the code we just generated. */
1749 ax->len = start;
1750
1751 ax_const_l (ax, TYPE_LENGTH (value->type));
1752 value->kind = axs_rvalue;
1753 value->type = size_type;
1754 }
1755 \f
1756
1757 /* Generating bytecode from GDB expressions: general recursive thingy */
1758
1759 /* XXX: i18n */
1760 /* A gen_expr function written by a Gen-X'er guy.
1761 Append code for the subexpression of EXPR starting at *POS_P to AX. */
1762 void
1763 gen_expr (struct expression *exp, union exp_element **pc,
1764 struct agent_expr *ax, struct axs_value *value)
1765 {
1766 /* Used to hold the descriptions of operand expressions. */
1767 struct axs_value value1, value2, value3;
1768 enum exp_opcode op = (*pc)[0].opcode, op2;
1769 int if1, go1, if2, go2, end;
1770 struct type *int_type = builtin_type (ax->gdbarch)->builtin_int;
1771
1772 /* If we're looking at a constant expression, just push its value. */
1773 {
1774 struct value *v = maybe_const_expr (pc);
1775
1776 if (v)
1777 {
1778 ax_const_l (ax, value_as_long (v));
1779 value->kind = axs_rvalue;
1780 value->type = check_typedef (value_type (v));
1781 return;
1782 }
1783 }
1784
1785 /* Otherwise, go ahead and generate code for it. */
1786 switch (op)
1787 {
1788 /* Binary arithmetic operators. */
1789 case BINOP_ADD:
1790 case BINOP_SUB:
1791 case BINOP_MUL:
1792 case BINOP_DIV:
1793 case BINOP_REM:
1794 case BINOP_LSH:
1795 case BINOP_RSH:
1796 case BINOP_SUBSCRIPT:
1797 case BINOP_BITWISE_AND:
1798 case BINOP_BITWISE_IOR:
1799 case BINOP_BITWISE_XOR:
1800 case BINOP_EQUAL:
1801 case BINOP_NOTEQUAL:
1802 case BINOP_LESS:
1803 case BINOP_GTR:
1804 case BINOP_LEQ:
1805 case BINOP_GEQ:
1806 (*pc)++;
1807 gen_expr (exp, pc, ax, &value1);
1808 gen_usual_unary (ax, &value1);
1809 gen_expr_binop_rest (exp, op, pc, ax, value, &value1, &value2);
1810 break;
1811
1812 case BINOP_LOGICAL_AND:
1813 (*pc)++;
1814 /* Generate the obvious sequence of tests and jumps. */
1815 gen_expr (exp, pc, ax, &value1);
1816 gen_usual_unary (ax, &value1);
1817 if1 = ax_goto (ax, aop_if_goto);
1818 go1 = ax_goto (ax, aop_goto);
1819 ax_label (ax, if1, ax->len);
1820 gen_expr (exp, pc, ax, &value2);
1821 gen_usual_unary (ax, &value2);
1822 if2 = ax_goto (ax, aop_if_goto);
1823 go2 = ax_goto (ax, aop_goto);
1824 ax_label (ax, if2, ax->len);
1825 ax_const_l (ax, 1);
1826 end = ax_goto (ax, aop_goto);
1827 ax_label (ax, go1, ax->len);
1828 ax_label (ax, go2, ax->len);
1829 ax_const_l (ax, 0);
1830 ax_label (ax, end, ax->len);
1831 value->kind = axs_rvalue;
1832 value->type = int_type;
1833 break;
1834
1835 case BINOP_LOGICAL_OR:
1836 (*pc)++;
1837 /* Generate the obvious sequence of tests and jumps. */
1838 gen_expr (exp, pc, ax, &value1);
1839 gen_usual_unary (ax, &value1);
1840 if1 = ax_goto (ax, aop_if_goto);
1841 gen_expr (exp, pc, ax, &value2);
1842 gen_usual_unary (ax, &value2);
1843 if2 = ax_goto (ax, aop_if_goto);
1844 ax_const_l (ax, 0);
1845 end = ax_goto (ax, aop_goto);
1846 ax_label (ax, if1, ax->len);
1847 ax_label (ax, if2, ax->len);
1848 ax_const_l (ax, 1);
1849 ax_label (ax, end, ax->len);
1850 value->kind = axs_rvalue;
1851 value->type = int_type;
1852 break;
1853
1854 case TERNOP_COND:
1855 (*pc)++;
1856 gen_expr (exp, pc, ax, &value1);
1857 gen_usual_unary (ax, &value1);
1858 /* For (A ? B : C), it's easiest to generate subexpression
1859 bytecodes in order, but if_goto jumps on true, so we invert
1860 the sense of A. Then we can do B by dropping through, and
1861 jump to do C. */
1862 gen_logical_not (ax, &value1, int_type);
1863 if1 = ax_goto (ax, aop_if_goto);
1864 gen_expr (exp, pc, ax, &value2);
1865 gen_usual_unary (ax, &value2);
1866 end = ax_goto (ax, aop_goto);
1867 ax_label (ax, if1, ax->len);
1868 gen_expr (exp, pc, ax, &value3);
1869 gen_usual_unary (ax, &value3);
1870 ax_label (ax, end, ax->len);
1871 /* This is arbitary - what if B and C are incompatible types? */
1872 value->type = value2.type;
1873 value->kind = value2.kind;
1874 break;
1875
1876 case BINOP_ASSIGN:
1877 (*pc)++;
1878 if ((*pc)[0].opcode == OP_INTERNALVAR)
1879 {
1880 char *name = internalvar_name ((*pc)[1].internalvar);
1881 struct trace_state_variable *tsv;
1882
1883 (*pc) += 3;
1884 gen_expr (exp, pc, ax, value);
1885 tsv = find_trace_state_variable (name);
1886 if (tsv)
1887 {
1888 ax_tsv (ax, aop_setv, tsv->number);
1889 if (ax->tracing)
1890 ax_tsv (ax, aop_tracev, tsv->number);
1891 }
1892 else
1893 error (_("$%s is not a trace state variable, "
1894 "may not assign to it"), name);
1895 }
1896 else
1897 error (_("May only assign to trace state variables"));
1898 break;
1899
1900 case BINOP_ASSIGN_MODIFY:
1901 (*pc)++;
1902 op2 = (*pc)[0].opcode;
1903 (*pc)++;
1904 (*pc)++;
1905 if ((*pc)[0].opcode == OP_INTERNALVAR)
1906 {
1907 char *name = internalvar_name ((*pc)[1].internalvar);
1908 struct trace_state_variable *tsv;
1909
1910 (*pc) += 3;
1911 tsv = find_trace_state_variable (name);
1912 if (tsv)
1913 {
1914 /* The tsv will be the left half of the binary operation. */
1915 ax_tsv (ax, aop_getv, tsv->number);
1916 if (ax->tracing)
1917 ax_tsv (ax, aop_tracev, tsv->number);
1918 /* Trace state variables are always 64-bit integers. */
1919 value1.kind = axs_rvalue;
1920 value1.type = builtin_type (ax->gdbarch)->builtin_long_long;
1921 /* Now do right half of expression. */
1922 gen_expr_binop_rest (exp, op2, pc, ax, value, &value1, &value2);
1923 /* We have a result of the binary op, set the tsv. */
1924 ax_tsv (ax, aop_setv, tsv->number);
1925 if (ax->tracing)
1926 ax_tsv (ax, aop_tracev, tsv->number);
1927 }
1928 else
1929 error (_("$%s is not a trace state variable, "
1930 "may not assign to it"), name);
1931 }
1932 else
1933 error (_("May only assign to trace state variables"));
1934 break;
1935
1936 /* Note that we need to be a little subtle about generating code
1937 for comma. In C, we can do some optimizations here because
1938 we know the left operand is only being evaluated for effect.
1939 However, if the tracing kludge is in effect, then we always
1940 need to evaluate the left hand side fully, so that all the
1941 variables it mentions get traced. */
1942 case BINOP_COMMA:
1943 (*pc)++;
1944 gen_expr (exp, pc, ax, &value1);
1945 /* Don't just dispose of the left operand. We might be tracing,
1946 in which case we want to emit code to trace it if it's an
1947 lvalue. */
1948 gen_traced_pop (ax->gdbarch, ax, &value1);
1949 gen_expr (exp, pc, ax, value);
1950 /* It's the consumer's responsibility to trace the right operand. */
1951 break;
1952
1953 case OP_LONG: /* some integer constant */
1954 {
1955 struct type *type = (*pc)[1].type;
1956 LONGEST k = (*pc)[2].longconst;
1957
1958 (*pc) += 4;
1959 gen_int_literal (ax, value, k, type);
1960 }
1961 break;
1962
1963 case OP_VAR_VALUE:
1964 gen_var_ref (ax->gdbarch, ax, value, (*pc)[2].symbol);
1965
1966 if (value->optimized_out)
1967 error (_("`%s' has been optimized out, cannot use"),
1968 SYMBOL_PRINT_NAME ((*pc)[2].symbol));
1969
1970 (*pc) += 4;
1971 break;
1972
1973 case OP_REGISTER:
1974 {
1975 const char *name = &(*pc)[2].string;
1976 int reg;
1977
1978 (*pc) += 4 + BYTES_TO_EXP_ELEM ((*pc)[1].longconst + 1);
1979 reg = user_reg_map_name_to_regnum (ax->gdbarch, name, strlen (name));
1980 if (reg == -1)
1981 internal_error (__FILE__, __LINE__,
1982 _("Register $%s not available"), name);
1983 /* No support for tracing user registers yet. */
1984 if (reg >= gdbarch_num_regs (ax->gdbarch)
1985 + gdbarch_num_pseudo_regs (ax->gdbarch))
1986 error (_("'%s' is a user-register; "
1987 "GDB cannot yet trace user-register contents."),
1988 name);
1989 value->kind = axs_lvalue_register;
1990 value->u.reg = reg;
1991 value->type = register_type (ax->gdbarch, reg);
1992 }
1993 break;
1994
1995 case OP_INTERNALVAR:
1996 {
1997 struct internalvar *var = (*pc)[1].internalvar;
1998 const char *name = internalvar_name (var);
1999 struct trace_state_variable *tsv;
2000
2001 (*pc) += 3;
2002 tsv = find_trace_state_variable (name);
2003 if (tsv)
2004 {
2005 ax_tsv (ax, aop_getv, tsv->number);
2006 if (ax->tracing)
2007 ax_tsv (ax, aop_tracev, tsv->number);
2008 /* Trace state variables are always 64-bit integers. */
2009 value->kind = axs_rvalue;
2010 value->type = builtin_type (ax->gdbarch)->builtin_long_long;
2011 }
2012 else if (! compile_internalvar_to_ax (var, ax, value))
2013 error (_("$%s is not a trace state variable; GDB agent "
2014 "expressions cannot use convenience variables."), name);
2015 }
2016 break;
2017
2018 /* Weirdo operator: see comments for gen_repeat for details. */
2019 case BINOP_REPEAT:
2020 /* Note that gen_repeat handles its own argument evaluation. */
2021 (*pc)++;
2022 gen_repeat (exp, pc, ax, value);
2023 break;
2024
2025 case UNOP_CAST:
2026 {
2027 struct type *type = (*pc)[1].type;
2028
2029 (*pc) += 3;
2030 gen_expr (exp, pc, ax, value);
2031 gen_cast (ax, value, type);
2032 }
2033 break;
2034
2035 case UNOP_CAST_TYPE:
2036 {
2037 int offset;
2038 struct value *val;
2039 struct type *type;
2040
2041 ++*pc;
2042 offset = *pc - exp->elts;
2043 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2044 type = value_type (val);
2045 *pc = &exp->elts[offset];
2046
2047 gen_expr (exp, pc, ax, value);
2048 gen_cast (ax, value, type);
2049 }
2050 break;
2051
2052 case UNOP_MEMVAL:
2053 {
2054 struct type *type = check_typedef ((*pc)[1].type);
2055
2056 (*pc) += 3;
2057 gen_expr (exp, pc, ax, value);
2058
2059 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2060 already have the right value on the stack. For
2061 axs_lvalue_register, we must convert. */
2062 if (value->kind == axs_lvalue_register)
2063 require_rvalue (ax, value);
2064
2065 value->type = type;
2066 value->kind = axs_lvalue_memory;
2067 }
2068 break;
2069
2070 case UNOP_MEMVAL_TYPE:
2071 {
2072 int offset;
2073 struct value *val;
2074 struct type *type;
2075
2076 ++*pc;
2077 offset = *pc - exp->elts;
2078 val = evaluate_subexp (NULL, exp, &offset, EVAL_AVOID_SIDE_EFFECTS);
2079 type = value_type (val);
2080 *pc = &exp->elts[offset];
2081
2082 gen_expr (exp, pc, ax, value);
2083
2084 /* If we have an axs_rvalue or an axs_lvalue_memory, then we
2085 already have the right value on the stack. For
2086 axs_lvalue_register, we must convert. */
2087 if (value->kind == axs_lvalue_register)
2088 require_rvalue (ax, value);
2089
2090 value->type = type;
2091 value->kind = axs_lvalue_memory;
2092 }
2093 break;
2094
2095 case UNOP_PLUS:
2096 (*pc)++;
2097 /* + FOO is equivalent to 0 + FOO, which can be optimized. */
2098 gen_expr (exp, pc, ax, value);
2099 gen_usual_unary (ax, value);
2100 break;
2101
2102 case UNOP_NEG:
2103 (*pc)++;
2104 /* -FOO is equivalent to 0 - FOO. */
2105 gen_int_literal (ax, &value1, 0,
2106 builtin_type (ax->gdbarch)->builtin_int);
2107 gen_usual_unary (ax, &value1); /* shouldn't do much */
2108 gen_expr (exp, pc, ax, &value2);
2109 gen_usual_unary (ax, &value2);
2110 gen_usual_arithmetic (ax, &value1, &value2);
2111 gen_binop (ax, value, &value1, &value2, aop_sub, aop_sub, 1, "negation");
2112 break;
2113
2114 case UNOP_LOGICAL_NOT:
2115 (*pc)++;
2116 gen_expr (exp, pc, ax, value);
2117 gen_usual_unary (ax, value);
2118 gen_logical_not (ax, value, int_type);
2119 break;
2120
2121 case UNOP_COMPLEMENT:
2122 (*pc)++;
2123 gen_expr (exp, pc, ax, value);
2124 gen_usual_unary (ax, value);
2125 gen_integral_promotions (ax, value);
2126 gen_complement (ax, value);
2127 break;
2128
2129 case UNOP_IND:
2130 (*pc)++;
2131 gen_expr (exp, pc, ax, value);
2132 gen_usual_unary (ax, value);
2133 if (!pointer_type (value->type))
2134 error (_("Argument of unary `*' is not a pointer."));
2135 gen_deref (value);
2136 break;
2137
2138 case UNOP_ADDR:
2139 (*pc)++;
2140 gen_expr (exp, pc, ax, value);
2141 gen_address_of (value);
2142 break;
2143
2144 case UNOP_SIZEOF:
2145 (*pc)++;
2146 /* Notice that gen_sizeof handles its own operand, unlike most
2147 of the other unary operator functions. This is because we
2148 have to throw away the code we generate. */
2149 gen_sizeof (exp, pc, ax, value,
2150 builtin_type (ax->gdbarch)->builtin_int);
2151 break;
2152
2153 case STRUCTOP_STRUCT:
2154 case STRUCTOP_PTR:
2155 {
2156 int length = (*pc)[1].longconst;
2157 char *name = &(*pc)[2].string;
2158
2159 (*pc) += 4 + BYTES_TO_EXP_ELEM (length + 1);
2160 gen_expr (exp, pc, ax, value);
2161 if (op == STRUCTOP_STRUCT)
2162 gen_struct_ref (ax, value, name, ".", "structure or union");
2163 else if (op == STRUCTOP_PTR)
2164 gen_struct_ref (ax, value, name, "->",
2165 "pointer to a structure or union");
2166 else
2167 /* If this `if' chain doesn't handle it, then the case list
2168 shouldn't mention it, and we shouldn't be here. */
2169 internal_error (__FILE__, __LINE__,
2170 _("gen_expr: unhandled struct case"));
2171 }
2172 break;
2173
2174 case OP_THIS:
2175 {
2176 struct symbol *sym, *func;
2177 const struct block *b;
2178 const struct language_defn *lang;
2179
2180 b = block_for_pc (ax->scope);
2181 func = block_linkage_function (b);
2182 lang = language_def (SYMBOL_LANGUAGE (func));
2183
2184 sym = lookup_language_this (lang, b).symbol;
2185 if (!sym)
2186 error (_("no `%s' found"), lang->la_name_of_this);
2187
2188 gen_var_ref (ax->gdbarch, ax, value, sym);
2189
2190 if (value->optimized_out)
2191 error (_("`%s' has been optimized out, cannot use"),
2192 SYMBOL_PRINT_NAME (sym));
2193
2194 (*pc) += 2;
2195 }
2196 break;
2197
2198 case OP_SCOPE:
2199 {
2200 struct type *type = (*pc)[1].type;
2201 int length = longest_to_int ((*pc)[2].longconst);
2202 char *name = &(*pc)[3].string;
2203 int found;
2204
2205 found = gen_aggregate_elt_ref (ax, value, type, name, "?", "??");
2206 if (!found)
2207 error (_("There is no field named %s"), name);
2208 (*pc) += 5 + BYTES_TO_EXP_ELEM (length + 1);
2209 }
2210 break;
2211
2212 case OP_TYPE:
2213 case OP_TYPEOF:
2214 case OP_DECLTYPE:
2215 error (_("Attempt to use a type name as an expression."));
2216
2217 default:
2218 error (_("Unsupported operator %s (%d) in expression."),
2219 op_name (exp, op), op);
2220 }
2221 }
2222
2223 /* This handles the middle-to-right-side of code generation for binary
2224 expressions, which is shared between regular binary operations and
2225 assign-modify (+= and friends) expressions. */
2226
2227 static void
2228 gen_expr_binop_rest (struct expression *exp,
2229 enum exp_opcode op, union exp_element **pc,
2230 struct agent_expr *ax, struct axs_value *value,
2231 struct axs_value *value1, struct axs_value *value2)
2232 {
2233 struct type *int_type = builtin_type (ax->gdbarch)->builtin_int;
2234
2235 gen_expr (exp, pc, ax, value2);
2236 gen_usual_unary (ax, value2);
2237 gen_usual_arithmetic (ax, value1, value2);
2238 switch (op)
2239 {
2240 case BINOP_ADD:
2241 if (TYPE_CODE (value1->type) == TYPE_CODE_INT
2242 && pointer_type (value2->type))
2243 {
2244 /* Swap the values and proceed normally. */
2245 ax_simple (ax, aop_swap);
2246 gen_ptradd (ax, value, value2, value1);
2247 }
2248 else if (pointer_type (value1->type)
2249 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2250 gen_ptradd (ax, value, value1, value2);
2251 else
2252 gen_binop (ax, value, value1, value2,
2253 aop_add, aop_add, 1, "addition");
2254 break;
2255 case BINOP_SUB:
2256 if (pointer_type (value1->type)
2257 && TYPE_CODE (value2->type) == TYPE_CODE_INT)
2258 gen_ptrsub (ax,value, value1, value2);
2259 else if (pointer_type (value1->type)
2260 && pointer_type (value2->type))
2261 /* FIXME --- result type should be ptrdiff_t */
2262 gen_ptrdiff (ax, value, value1, value2,
2263 builtin_type (ax->gdbarch)->builtin_long);
2264 else
2265 gen_binop (ax, value, value1, value2,
2266 aop_sub, aop_sub, 1, "subtraction");
2267 break;
2268 case BINOP_MUL:
2269 gen_binop (ax, value, value1, value2,
2270 aop_mul, aop_mul, 1, "multiplication");
2271 break;
2272 case BINOP_DIV:
2273 gen_binop (ax, value, value1, value2,
2274 aop_div_signed, aop_div_unsigned, 1, "division");
2275 break;
2276 case BINOP_REM:
2277 gen_binop (ax, value, value1, value2,
2278 aop_rem_signed, aop_rem_unsigned, 1, "remainder");
2279 break;
2280 case BINOP_LSH:
2281 gen_binop (ax, value, value1, value2,
2282 aop_lsh, aop_lsh, 1, "left shift");
2283 break;
2284 case BINOP_RSH:
2285 gen_binop (ax, value, value1, value2,
2286 aop_rsh_signed, aop_rsh_unsigned, 1, "right shift");
2287 break;
2288 case BINOP_SUBSCRIPT:
2289 {
2290 struct type *type;
2291
2292 if (binop_types_user_defined_p (op, value1->type, value2->type))
2293 {
2294 error (_("cannot subscript requested type: "
2295 "cannot call user defined functions"));
2296 }
2297 else
2298 {
2299 /* If the user attempts to subscript something that is not
2300 an array or pointer type (like a plain int variable for
2301 example), then report this as an error. */
2302 type = check_typedef (value1->type);
2303 if (TYPE_CODE (type) != TYPE_CODE_ARRAY
2304 && TYPE_CODE (type) != TYPE_CODE_PTR)
2305 {
2306 if (TYPE_NAME (type))
2307 error (_("cannot subscript something of type `%s'"),
2308 TYPE_NAME (type));
2309 else
2310 error (_("cannot subscript requested type"));
2311 }
2312 }
2313
2314 if (!is_integral_type (value2->type))
2315 error (_("Argument to arithmetic operation "
2316 "not a number or boolean."));
2317
2318 gen_ptradd (ax, value, value1, value2);
2319 gen_deref (value);
2320 break;
2321 }
2322 case BINOP_BITWISE_AND:
2323 gen_binop (ax, value, value1, value2,
2324 aop_bit_and, aop_bit_and, 0, "bitwise and");
2325 break;
2326
2327 case BINOP_BITWISE_IOR:
2328 gen_binop (ax, value, value1, value2,
2329 aop_bit_or, aop_bit_or, 0, "bitwise or");
2330 break;
2331
2332 case BINOP_BITWISE_XOR:
2333 gen_binop (ax, value, value1, value2,
2334 aop_bit_xor, aop_bit_xor, 0, "bitwise exclusive-or");
2335 break;
2336
2337 case BINOP_EQUAL:
2338 gen_equal (ax, value, value1, value2, int_type);
2339 break;
2340
2341 case BINOP_NOTEQUAL:
2342 gen_equal (ax, value, value1, value2, int_type);
2343 gen_logical_not (ax, value, int_type);
2344 break;
2345
2346 case BINOP_LESS:
2347 gen_less (ax, value, value1, value2, int_type);
2348 break;
2349
2350 case BINOP_GTR:
2351 ax_simple (ax, aop_swap);
2352 gen_less (ax, value, value1, value2, int_type);
2353 break;
2354
2355 case BINOP_LEQ:
2356 ax_simple (ax, aop_swap);
2357 gen_less (ax, value, value1, value2, int_type);
2358 gen_logical_not (ax, value, int_type);
2359 break;
2360
2361 case BINOP_GEQ:
2362 gen_less (ax, value, value1, value2, int_type);
2363 gen_logical_not (ax, value, int_type);
2364 break;
2365
2366 default:
2367 /* We should only list operators in the outer case statement
2368 that we actually handle in the inner case statement. */
2369 internal_error (__FILE__, __LINE__,
2370 _("gen_expr: op case sets don't match"));
2371 }
2372 }
2373 \f
2374
2375 /* Given a single variable and a scope, generate bytecodes to trace
2376 its value. This is for use in situations where we have only a
2377 variable's name, and no parsed expression; for instance, when the
2378 name comes from a list of local variables of a function. */
2379
2380 agent_expr_up
2381 gen_trace_for_var (CORE_ADDR scope, struct gdbarch *gdbarch,
2382 struct symbol *var, int trace_string)
2383 {
2384 agent_expr_up ax (new agent_expr (gdbarch, scope));
2385 struct axs_value value;
2386
2387 ax->tracing = 1;
2388 ax->trace_string = trace_string;
2389 gen_var_ref (gdbarch, ax.get (), &value, var);
2390
2391 /* If there is no actual variable to trace, flag it by returning
2392 an empty agent expression. */
2393 if (value.optimized_out)
2394 return agent_expr_up ();
2395
2396 /* Make sure we record the final object, and get rid of it. */
2397 gen_traced_pop (gdbarch, ax.get (), &value);
2398
2399 /* Oh, and terminate. */
2400 ax_simple (ax.get (), aop_end);
2401
2402 return ax;
2403 }
2404
2405 /* Generating bytecode from GDB expressions: driver */
2406
2407 /* Given a GDB expression EXPR, return bytecode to trace its value.
2408 The result will use the `trace' and `trace_quick' bytecodes to
2409 record the value of all memory touched by the expression. The
2410 caller can then use the ax_reqs function to discover which
2411 registers it relies upon. */
2412
2413 agent_expr_up
2414 gen_trace_for_expr (CORE_ADDR scope, struct expression *expr,
2415 int trace_string)
2416 {
2417 agent_expr_up ax (new agent_expr (expr->gdbarch, scope));
2418 union exp_element *pc;
2419 struct axs_value value;
2420
2421 pc = expr->elts;
2422 ax->tracing = 1;
2423 ax->trace_string = trace_string;
2424 value.optimized_out = 0;
2425 gen_expr (expr, &pc, ax.get (), &value);
2426
2427 /* Make sure we record the final object, and get rid of it. */
2428 gen_traced_pop (expr->gdbarch, ax.get (), &value);
2429
2430 /* Oh, and terminate. */
2431 ax_simple (ax.get (), aop_end);
2432
2433 return ax;
2434 }
2435
2436 /* Given a GDB expression EXPR, return a bytecode sequence that will
2437 evaluate and return a result. The bytecodes will do a direct
2438 evaluation, using the current data on the target, rather than
2439 recording blocks of memory and registers for later use, as
2440 gen_trace_for_expr does. The generated bytecode sequence leaves
2441 the result of expression evaluation on the top of the stack. */
2442
2443 agent_expr_up
2444 gen_eval_for_expr (CORE_ADDR scope, struct expression *expr)
2445 {
2446 agent_expr_up ax (new agent_expr (expr->gdbarch, scope));
2447 union exp_element *pc;
2448 struct axs_value value;
2449
2450 pc = expr->elts;
2451 ax->tracing = 0;
2452 value.optimized_out = 0;
2453 gen_expr (expr, &pc, ax.get (), &value);
2454
2455 require_rvalue (ax.get (), &value);
2456
2457 /* Oh, and terminate. */
2458 ax_simple (ax.get (), aop_end);
2459
2460 return ax;
2461 }
2462
2463 agent_expr_up
2464 gen_trace_for_return_address (CORE_ADDR scope, struct gdbarch *gdbarch,
2465 int trace_string)
2466 {
2467 agent_expr_up ax (new agent_expr (gdbarch, scope));
2468 struct axs_value value;
2469
2470 ax->tracing = 1;
2471 ax->trace_string = trace_string;
2472
2473 gdbarch_gen_return_address (gdbarch, ax.get (), &value, scope);
2474
2475 /* Make sure we record the final object, and get rid of it. */
2476 gen_traced_pop (gdbarch, ax.get (), &value);
2477
2478 /* Oh, and terminate. */
2479 ax_simple (ax.get (), aop_end);
2480
2481 return ax;
2482 }
2483
2484 /* Given a collection of printf-style arguments, generate code to
2485 evaluate the arguments and pass everything to a special
2486 bytecode. */
2487
2488 agent_expr_up
2489 gen_printf (CORE_ADDR scope, struct gdbarch *gdbarch,
2490 CORE_ADDR function, LONGEST channel,
2491 const char *format, int fmtlen,
2492 struct format_piece *frags,
2493 int nargs, struct expression **exprs)
2494 {
2495 agent_expr_up ax (new agent_expr (gdbarch, scope));
2496 union exp_element *pc;
2497 struct axs_value value;
2498 int tem;
2499
2500 /* We're computing values, not doing side effects. */
2501 ax->tracing = 0;
2502
2503 /* Evaluate and push the args on the stack in reverse order,
2504 for simplicity of collecting them on the target side. */
2505 for (tem = nargs - 1; tem >= 0; --tem)
2506 {
2507 pc = exprs[tem]->elts;
2508 value.optimized_out = 0;
2509 gen_expr (exprs[tem], &pc, ax.get (), &value);
2510 require_rvalue (ax.get (), &value);
2511 }
2512
2513 /* Push function and channel. */
2514 ax_const_l (ax.get (), channel);
2515 ax_const_l (ax.get (), function);
2516
2517 /* Issue the printf bytecode proper. */
2518 ax_simple (ax.get (), aop_printf);
2519 ax_raw_byte (ax.get (), nargs);
2520 ax_string (ax.get (), format, fmtlen);
2521
2522 /* And terminate. */
2523 ax_simple (ax.get (), aop_end);
2524
2525 return ax;
2526 }
2527
2528 static void
2529 agent_eval_command_one (const char *exp, int eval, CORE_ADDR pc)
2530 {
2531 const char *arg;
2532 int trace_string = 0;
2533
2534 if (!eval)
2535 {
2536 if (*exp == '/')
2537 exp = decode_agent_options (exp, &trace_string);
2538 }
2539
2540 agent_expr_up agent;
2541
2542 arg = exp;
2543 if (!eval && strcmp (arg, "$_ret") == 0)
2544 {
2545 agent = gen_trace_for_return_address (pc, get_current_arch (),
2546 trace_string);
2547 }
2548 else
2549 {
2550 expression_up expr = parse_exp_1 (&arg, pc, block_for_pc (pc), 0);
2551
2552 if (eval)
2553 {
2554 gdb_assert (trace_string == 0);
2555 agent = gen_eval_for_expr (pc, expr.get ());
2556 }
2557 else
2558 agent = gen_trace_for_expr (pc, expr.get (), trace_string);
2559 }
2560
2561 ax_reqs (agent.get ());
2562 ax_print (gdb_stdout, agent.get ());
2563
2564 /* It would be nice to call ax_reqs here to gather some general info
2565 about the expression, and then print out the result. */
2566
2567 dont_repeat ();
2568 }
2569
2570 static void
2571 agent_command_1 (char *exp, int eval)
2572 {
2573 /* We don't deal with overlay debugging at the moment. We need to
2574 think more carefully about this. If you copy this code into
2575 another command, change the error message; the user shouldn't
2576 have to know anything about agent expressions. */
2577 if (overlay_debugging)
2578 error (_("GDB can't do agent expression translation with overlays."));
2579
2580 if (exp == 0)
2581 error_no_arg (_("expression to translate"));
2582
2583 if (check_for_argument (&exp, "-at", sizeof ("-at") - 1))
2584 {
2585 struct linespec_result canonical;
2586 int ix;
2587 struct linespec_sals *iter;
2588
2589 exp = skip_spaces (exp);
2590
2591 event_location_up location = new_linespec_location (&exp);
2592 decode_line_full (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
2593 (struct symtab *) NULL, 0, &canonical,
2594 NULL, NULL);
2595 exp = skip_spaces (exp);
2596 if (exp[0] == ',')
2597 {
2598 exp++;
2599 exp = skip_spaces (exp);
2600 }
2601 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
2602 {
2603 int i;
2604
2605 for (i = 0; i < iter->sals.nelts; i++)
2606 agent_eval_command_one (exp, eval, iter->sals.sals[i].pc);
2607 }
2608 }
2609 else
2610 agent_eval_command_one (exp, eval, get_frame_pc (get_current_frame ()));
2611
2612 dont_repeat ();
2613 }
2614
2615 static void
2616 agent_command (char *exp, int from_tty)
2617 {
2618 agent_command_1 (exp, 0);
2619 }
2620
2621 /* Parse the given expression, compile it into an agent expression
2622 that does direct evaluation, and display the resulting
2623 expression. */
2624
2625 static void
2626 agent_eval_command (char *exp, int from_tty)
2627 {
2628 agent_command_1 (exp, 1);
2629 }
2630
2631 /* Parse the given expression, compile it into an agent expression
2632 that does a printf, and display the resulting expression. */
2633
2634 static void
2635 maint_agent_printf_command (char *exp, int from_tty)
2636 {
2637 struct cleanup *old_chain = 0;
2638 struct expression *argvec[100];
2639 struct frame_info *fi = get_current_frame (); /* need current scope */
2640 const char *cmdrest;
2641 const char *format_start, *format_end;
2642 struct format_piece *fpieces;
2643 int nargs;
2644
2645 /* We don't deal with overlay debugging at the moment. We need to
2646 think more carefully about this. If you copy this code into
2647 another command, change the error message; the user shouldn't
2648 have to know anything about agent expressions. */
2649 if (overlay_debugging)
2650 error (_("GDB can't do agent expression translation with overlays."));
2651
2652 if (exp == 0)
2653 error_no_arg (_("expression to translate"));
2654
2655 cmdrest = exp;
2656
2657 cmdrest = skip_spaces_const (cmdrest);
2658
2659 if (*cmdrest++ != '"')
2660 error (_("Must start with a format string."));
2661
2662 format_start = cmdrest;
2663
2664 fpieces = parse_format_string (&cmdrest);
2665
2666 old_chain = make_cleanup (free_format_pieces_cleanup, &fpieces);
2667
2668 format_end = cmdrest;
2669
2670 if (*cmdrest++ != '"')
2671 error (_("Bad format string, non-terminated '\"'."));
2672
2673 cmdrest = skip_spaces_const (cmdrest);
2674
2675 if (*cmdrest != ',' && *cmdrest != 0)
2676 error (_("Invalid argument syntax"));
2677
2678 if (*cmdrest == ',')
2679 cmdrest++;
2680 cmdrest = skip_spaces_const (cmdrest);
2681
2682 nargs = 0;
2683 while (*cmdrest != '\0')
2684 {
2685 const char *cmd1;
2686
2687 cmd1 = cmdrest;
2688 expression_up expr = parse_exp_1 (&cmd1, 0, (struct block *) 0, 1);
2689 argvec[nargs] = expr.release ();
2690 ++nargs;
2691 cmdrest = cmd1;
2692 if (*cmdrest == ',')
2693 ++cmdrest;
2694 /* else complain? */
2695 }
2696
2697
2698 agent_expr_up agent = gen_printf (get_frame_pc (fi), get_current_arch (),
2699 0, 0,
2700 format_start, format_end - format_start,
2701 fpieces, nargs, argvec);
2702 ax_reqs (agent.get ());
2703 ax_print (gdb_stdout, agent.get ());
2704
2705 /* It would be nice to call ax_reqs here to gather some general info
2706 about the expression, and then print out the result. */
2707
2708 do_cleanups (old_chain);
2709 dont_repeat ();
2710 }
2711 \f
2712
2713 /* Initialization code. */
2714
2715 void _initialize_ax_gdb (void);
2716 void
2717 _initialize_ax_gdb (void)
2718 {
2719 add_cmd ("agent", class_maintenance, agent_command,
2720 _("\
2721 Translate an expression into remote agent bytecode for tracing.\n\
2722 Usage: maint agent [-at location,] EXPRESSION\n\
2723 If -at is given, generate remote agent bytecode for this location.\n\
2724 If not, generate remote agent bytecode for current frame pc address."),
2725 &maintenancelist);
2726
2727 add_cmd ("agent-eval", class_maintenance, agent_eval_command,
2728 _("\
2729 Translate an expression into remote agent bytecode for evaluation.\n\
2730 Usage: maint agent-eval [-at location,] EXPRESSION\n\
2731 If -at is given, generate remote agent bytecode for this location.\n\
2732 If not, generate remote agent bytecode for current frame pc address."),
2733 &maintenancelist);
2734
2735 add_cmd ("agent-printf", class_maintenance, maint_agent_printf_command,
2736 _("Translate an expression into remote "
2737 "agent bytecode for evaluation and display the bytecodes."),
2738 &maintenancelist);
2739 }