2003-02-25 David Carlton <carlton@math.stanford.edu>
[binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames; convert between frames, blocks,
2 functions and pc values.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software
6 Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "symtab.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "frame.h"
31 #include "gdbcore.h"
32 #include "value.h" /* for read_register */
33 #include "target.h" /* for target_has_stack */
34 #include "inferior.h" /* for read_pc */
35 #include "annotate.h"
36 #include "regcache.h"
37 #include "gdb_assert.h"
38 #include "dummy-frame.h"
39 #include "command.h"
40 #include "gdbcmd.h"
41 #include "block.h"
42
43 /* Prototypes for exported functions. */
44
45 void _initialize_blockframe (void);
46
47 /* Is ADDR inside the startup file? Note that if your machine
48 has a way to detect the bottom of the stack, there is no need
49 to call this function from FRAME_CHAIN_VALID; the reason for
50 doing so is that some machines have no way of detecting bottom
51 of stack.
52
53 A PC of zero is always considered to be the bottom of the stack. */
54
55 int
56 inside_entry_file (CORE_ADDR addr)
57 {
58 if (addr == 0)
59 return 1;
60 if (symfile_objfile == 0)
61 return 0;
62 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
63 {
64 /* Do not stop backtracing if the pc is in the call dummy
65 at the entry point. */
66 /* FIXME: Won't always work with zeros for the last two arguments */
67 if (DEPRECATED_PC_IN_CALL_DUMMY (addr, 0, 0))
68 return 0;
69 }
70 return (addr >= symfile_objfile->ei.entry_file_lowpc &&
71 addr < symfile_objfile->ei.entry_file_highpc);
72 }
73
74 /* Test a specified PC value to see if it is in the range of addresses
75 that correspond to the main() function. See comments above for why
76 we might want to do this.
77
78 Typically called from FRAME_CHAIN_VALID.
79
80 A PC of zero is always considered to be the bottom of the stack. */
81
82 int
83 inside_main_func (CORE_ADDR pc)
84 {
85 if (pc == 0)
86 return 1;
87 if (symfile_objfile == 0)
88 return 0;
89
90 /* If the addr range is not set up at symbol reading time, set it up now.
91 This is for FRAME_CHAIN_VALID_ALTERNATE. I do this for coff, because
92 it is unable to set it up and symbol reading time. */
93
94 if (symfile_objfile->ei.main_func_lowpc == INVALID_ENTRY_LOWPC &&
95 symfile_objfile->ei.main_func_highpc == INVALID_ENTRY_HIGHPC)
96 {
97 struct symbol *mainsym;
98
99 mainsym = lookup_symbol (main_name (), NULL, VAR_NAMESPACE, NULL, NULL);
100 if (mainsym && SYMBOL_CLASS (mainsym) == LOC_BLOCK)
101 {
102 symfile_objfile->ei.main_func_lowpc =
103 BLOCK_START (SYMBOL_BLOCK_VALUE (mainsym));
104 symfile_objfile->ei.main_func_highpc =
105 BLOCK_END (SYMBOL_BLOCK_VALUE (mainsym));
106 }
107 }
108 return (symfile_objfile->ei.main_func_lowpc <= pc &&
109 symfile_objfile->ei.main_func_highpc > pc);
110 }
111
112 /* Test a specified PC value to see if it is in the range of addresses
113 that correspond to the process entry point function. See comments
114 in objfiles.h for why we might want to do this.
115
116 Typically called from FRAME_CHAIN_VALID.
117
118 A PC of zero is always considered to be the bottom of the stack. */
119
120 int
121 inside_entry_func (CORE_ADDR pc)
122 {
123 if (pc == 0)
124 return 1;
125 if (symfile_objfile == 0)
126 return 0;
127 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
128 {
129 /* Do not stop backtracing if the pc is in the call dummy
130 at the entry point. */
131 /* FIXME: Won't always work with zeros for the last two arguments */
132 if (DEPRECATED_PC_IN_CALL_DUMMY (pc, 0, 0))
133 return 0;
134 }
135 return (symfile_objfile->ei.entry_func_lowpc <= pc &&
136 symfile_objfile->ei.entry_func_highpc > pc);
137 }
138
139 /* Return nonzero if the function for this frame lacks a prologue. Many
140 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
141 function. */
142
143 int
144 frameless_look_for_prologue (struct frame_info *frame)
145 {
146 CORE_ADDR func_start, after_prologue;
147
148 func_start = get_pc_function_start (get_frame_pc (frame));
149 if (func_start)
150 {
151 func_start += FUNCTION_START_OFFSET;
152 /* This is faster, since only care whether there *is* a
153 prologue, not how long it is. */
154 return PROLOGUE_FRAMELESS_P (func_start);
155 }
156 else if (get_frame_pc (frame) == 0)
157 /* A frame with a zero PC is usually created by dereferencing a
158 NULL function pointer, normally causing an immediate core dump
159 of the inferior. Mark function as frameless, as the inferior
160 has no chance of setting up a stack frame. */
161 return 1;
162 else
163 /* If we can't find the start of the function, we don't really
164 know whether the function is frameless, but we should be able
165 to get a reasonable (i.e. best we can do under the
166 circumstances) backtrace by saying that it isn't. */
167 return 0;
168 }
169
170 /* return the address of the PC for the given FRAME, ie the current PC value
171 if FRAME is the innermost frame, or the address adjusted to point to the
172 call instruction if not. */
173
174 CORE_ADDR
175 frame_address_in_block (struct frame_info *frame)
176 {
177 CORE_ADDR pc = get_frame_pc (frame);
178
179 /* If we are not in the innermost frame, and we are not interrupted
180 by a signal, frame->pc points to the instruction following the
181 call. As a consequence, we need to get the address of the previous
182 instruction. Unfortunately, this is not straightforward to do, so
183 we just use the address minus one, which is a good enough
184 approximation. */
185 /* FIXME: cagney/2002-11-10: Should this instead test for
186 NORMAL_FRAME? A dummy frame (in fact all the abnormal frames)
187 save the PC value in the block. */
188 if (get_next_frame (frame) != 0
189 && get_frame_type (get_next_frame (frame)) != SIGTRAMP_FRAME)
190 --pc;
191
192 return pc;
193 }
194
195 /* Return the innermost lexical block in execution
196 in a specified stack frame. The frame address is assumed valid.
197
198 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
199 address we used to choose the block. We use this to find a source
200 line, to decide which macro definitions are in scope.
201
202 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
203 PC, and may not really be a valid PC at all. For example, in the
204 caller of a function declared to never return, the code at the
205 return address will never be reached, so the call instruction may
206 be the very last instruction in the block. So the address we use
207 to choose the block is actually one byte before the return address
208 --- hopefully pointing us at the call instruction, or its delay
209 slot instruction. */
210
211 struct block *
212 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
213 {
214 const CORE_ADDR pc = frame_address_in_block (frame);
215
216 if (addr_in_block)
217 *addr_in_block = pc;
218
219 return block_for_pc (pc);
220 }
221
222 CORE_ADDR
223 get_pc_function_start (CORE_ADDR pc)
224 {
225 register struct block *bl;
226 register struct symbol *symbol;
227 register struct minimal_symbol *msymbol;
228 CORE_ADDR fstart;
229
230 if ((bl = block_for_pc (pc)) != NULL &&
231 (symbol = block_function (bl)) != NULL)
232 {
233 bl = SYMBOL_BLOCK_VALUE (symbol);
234 fstart = BLOCK_START (bl);
235 }
236 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
237 {
238 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
239 if (!find_pc_section (fstart))
240 return 0;
241 }
242 else
243 {
244 fstart = 0;
245 }
246 return (fstart);
247 }
248
249 /* Return the symbol for the function executing in frame FRAME. */
250
251 struct symbol *
252 get_frame_function (struct frame_info *frame)
253 {
254 register struct block *bl = get_frame_block (frame, 0);
255 if (bl == 0)
256 return 0;
257 return block_function (bl);
258 }
259 \f
260
261 /* Return the function containing pc value PC in section SECTION.
262 Returns 0 if function is not known. */
263
264 struct symbol *
265 find_pc_sect_function (CORE_ADDR pc, struct sec *section)
266 {
267 register struct block *b = block_for_pc_sect (pc, section);
268 if (b == 0)
269 return 0;
270 return block_function (b);
271 }
272
273 /* Return the function containing pc value PC.
274 Returns 0 if function is not known. Backward compatibility, no section */
275
276 struct symbol *
277 find_pc_function (CORE_ADDR pc)
278 {
279 return find_pc_sect_function (pc, find_pc_mapped_section (pc));
280 }
281
282 /* These variables are used to cache the most recent result
283 * of find_pc_partial_function. */
284
285 static CORE_ADDR cache_pc_function_low = 0;
286 static CORE_ADDR cache_pc_function_high = 0;
287 static char *cache_pc_function_name = 0;
288 static struct sec *cache_pc_function_section = NULL;
289
290 /* Clear cache, e.g. when symbol table is discarded. */
291
292 void
293 clear_pc_function_cache (void)
294 {
295 cache_pc_function_low = 0;
296 cache_pc_function_high = 0;
297 cache_pc_function_name = (char *) 0;
298 cache_pc_function_section = NULL;
299 }
300
301 /* Finds the "function" (text symbol) that is smaller than PC but
302 greatest of all of the potential text symbols in SECTION. Sets
303 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
304 If ENDADDR is non-null, then set *ENDADDR to be the end of the
305 function (exclusive), but passing ENDADDR as non-null means that
306 the function might cause symbols to be read. This function either
307 succeeds or fails (not halfway succeeds). If it succeeds, it sets
308 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
309 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero and
310 returns 0. */
311
312 int
313 find_pc_sect_partial_function (CORE_ADDR pc, asection *section, char **name,
314 CORE_ADDR *address, CORE_ADDR *endaddr)
315 {
316 struct partial_symtab *pst;
317 struct symbol *f;
318 struct minimal_symbol *msymbol;
319 struct partial_symbol *psb;
320 struct obj_section *osect;
321 int i;
322 CORE_ADDR mapped_pc;
323
324 mapped_pc = overlay_mapped_address (pc, section);
325
326 if (mapped_pc >= cache_pc_function_low
327 && mapped_pc < cache_pc_function_high
328 && section == cache_pc_function_section)
329 goto return_cached_value;
330
331 /* If sigtramp is in the u area, it counts as a function (especially
332 important for step_1). */
333 if (SIGTRAMP_START_P () && PC_IN_SIGTRAMP (mapped_pc, (char *) NULL))
334 {
335 cache_pc_function_low = SIGTRAMP_START (mapped_pc);
336 cache_pc_function_high = SIGTRAMP_END (mapped_pc);
337 cache_pc_function_name = "<sigtramp>";
338 cache_pc_function_section = section;
339 goto return_cached_value;
340 }
341
342 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
343 pst = find_pc_sect_psymtab (mapped_pc, section);
344 if (pst)
345 {
346 /* Need to read the symbols to get a good value for the end address. */
347 if (endaddr != NULL && !pst->readin)
348 {
349 /* Need to get the terminal in case symbol-reading produces
350 output. */
351 target_terminal_ours_for_output ();
352 PSYMTAB_TO_SYMTAB (pst);
353 }
354
355 if (pst->readin)
356 {
357 /* Checking whether the msymbol has a larger value is for the
358 "pathological" case mentioned in print_frame_info. */
359 f = find_pc_sect_function (mapped_pc, section);
360 if (f != NULL
361 && (msymbol == NULL
362 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
363 >= SYMBOL_VALUE_ADDRESS (msymbol))))
364 {
365 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
366 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
367 cache_pc_function_name = DEPRECATED_SYMBOL_NAME (f);
368 cache_pc_function_section = section;
369 goto return_cached_value;
370 }
371 }
372 else
373 {
374 /* Now that static symbols go in the minimal symbol table, perhaps
375 we could just ignore the partial symbols. But at least for now
376 we use the partial or minimal symbol, whichever is larger. */
377 psb = find_pc_sect_psymbol (pst, mapped_pc, section);
378
379 if (psb
380 && (msymbol == NULL ||
381 (SYMBOL_VALUE_ADDRESS (psb)
382 >= SYMBOL_VALUE_ADDRESS (msymbol))))
383 {
384 /* This case isn't being cached currently. */
385 if (address)
386 *address = SYMBOL_VALUE_ADDRESS (psb);
387 if (name)
388 *name = DEPRECATED_SYMBOL_NAME (psb);
389 /* endaddr non-NULL can't happen here. */
390 return 1;
391 }
392 }
393 }
394
395 /* Not in the normal symbol tables, see if the pc is in a known section.
396 If it's not, then give up. This ensures that anything beyond the end
397 of the text seg doesn't appear to be part of the last function in the
398 text segment. */
399
400 osect = find_pc_sect_section (mapped_pc, section);
401
402 if (!osect)
403 msymbol = NULL;
404
405 /* Must be in the minimal symbol table. */
406 if (msymbol == NULL)
407 {
408 /* No available symbol. */
409 if (name != NULL)
410 *name = 0;
411 if (address != NULL)
412 *address = 0;
413 if (endaddr != NULL)
414 *endaddr = 0;
415 return 0;
416 }
417
418 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
419 cache_pc_function_name = DEPRECATED_SYMBOL_NAME (msymbol);
420 cache_pc_function_section = section;
421
422 /* Use the lesser of the next minimal symbol in the same section, or
423 the end of the section, as the end of the function. */
424
425 /* Step over other symbols at this same address, and symbols in
426 other sections, to find the next symbol in this section with
427 a different address. */
428
429 for (i = 1; DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL; i++)
430 {
431 if (SYMBOL_VALUE_ADDRESS (msymbol + i) != SYMBOL_VALUE_ADDRESS (msymbol)
432 && SYMBOL_BFD_SECTION (msymbol + i) == SYMBOL_BFD_SECTION (msymbol))
433 break;
434 }
435
436 if (DEPRECATED_SYMBOL_NAME (msymbol + i) != NULL
437 && SYMBOL_VALUE_ADDRESS (msymbol + i) < osect->endaddr)
438 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + i);
439 else
440 /* We got the start address from the last msymbol in the objfile.
441 So the end address is the end of the section. */
442 cache_pc_function_high = osect->endaddr;
443
444 return_cached_value:
445
446 if (address)
447 {
448 if (pc_in_unmapped_range (pc, section))
449 *address = overlay_unmapped_address (cache_pc_function_low, section);
450 else
451 *address = cache_pc_function_low;
452 }
453
454 if (name)
455 *name = cache_pc_function_name;
456
457 if (endaddr)
458 {
459 if (pc_in_unmapped_range (pc, section))
460 {
461 /* Because the high address is actually beyond the end of
462 the function (and therefore possibly beyond the end of
463 the overlay), we must actually convert (high - 1) and
464 then add one to that. */
465
466 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
467 section);
468 }
469 else
470 *endaddr = cache_pc_function_high;
471 }
472
473 return 1;
474 }
475
476 /* Backward compatibility, no section argument. */
477
478 int
479 find_pc_partial_function (CORE_ADDR pc, char **name, CORE_ADDR *address,
480 CORE_ADDR *endaddr)
481 {
482 asection *section;
483
484 section = find_pc_overlay (pc);
485 return find_pc_sect_partial_function (pc, section, name, address, endaddr);
486 }
487
488 /* Return the innermost stack frame executing inside of BLOCK,
489 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
490
491 struct frame_info *
492 block_innermost_frame (struct block *block)
493 {
494 struct frame_info *frame;
495 register CORE_ADDR start;
496 register CORE_ADDR end;
497 CORE_ADDR calling_pc;
498
499 if (block == NULL)
500 return NULL;
501
502 start = BLOCK_START (block);
503 end = BLOCK_END (block);
504
505 frame = NULL;
506 while (1)
507 {
508 frame = get_prev_frame (frame);
509 if (frame == NULL)
510 return NULL;
511 calling_pc = frame_address_in_block (frame);
512 if (calling_pc >= start && calling_pc < end)
513 return frame;
514 }
515 }
516
517 /* Are we in a call dummy? The code below which allows DECR_PC_AFTER_BREAK
518 below is for infrun.c, which may give the macro a pc without that
519 subtracted out. */
520
521 /* Is the PC in a call dummy? SP and FRAME_ADDRESS are the bottom and
522 top of the stack frame which we are checking, where "bottom" and
523 "top" refer to some section of memory which contains the code for
524 the call dummy. Calls to this macro assume that the contents of
525 SP_REGNUM and FP_REGNUM (or the saved values thereof), respectively,
526 are the things to pass.
527
528 This won't work on the 29k, where SP_REGNUM and FP_REGNUM don't
529 have that meaning, but the 29k doesn't use ON_STACK. This could be
530 fixed by generalizing this scheme, perhaps by passing in a frame
531 and adding a few fields, at least on machines which need them for
532 DEPRECATED_PC_IN_CALL_DUMMY.
533
534 Something simpler, like checking for the stack segment, doesn't work,
535 since various programs (threads implementations, gcc nested function
536 stubs, etc) may either allocate stack frames in another segment, or
537 allocate other kinds of code on the stack. */
538
539 int
540 deprecated_pc_in_call_dummy_on_stack (CORE_ADDR pc, CORE_ADDR sp,
541 CORE_ADDR frame_address)
542 {
543 return (INNER_THAN ((sp), (pc))
544 && (frame_address != 0)
545 && INNER_THAN ((pc), (frame_address)));
546 }
547
548 int
549 deprecated_pc_in_call_dummy_at_entry_point (CORE_ADDR pc, CORE_ADDR sp,
550 CORE_ADDR frame_address)
551 {
552 return ((pc) >= CALL_DUMMY_ADDRESS ()
553 && (pc) <= (CALL_DUMMY_ADDRESS () + DECR_PC_AFTER_BREAK));
554 }
555
556 /* Function: frame_chain_valid
557 Returns true for a user frame or a call_function_by_hand dummy frame,
558 and false for the CRT0 start-up frame. Purpose is to terminate backtrace. */
559
560 int
561 frame_chain_valid (CORE_ADDR fp, struct frame_info *fi)
562 {
563 /* Don't prune CALL_DUMMY frames. */
564 if (DEPRECATED_USE_GENERIC_DUMMY_FRAMES
565 && DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi), 0, 0))
566 return 1;
567
568 /* If the new frame pointer is zero, then it isn't valid. */
569 if (fp == 0)
570 return 0;
571
572 /* If the new frame would be inside (younger than) the previous frame,
573 then it isn't valid. */
574 if (INNER_THAN (fp, get_frame_base (fi)))
575 return 0;
576
577 /* If we're already inside the entry function for the main objfile, then it
578 isn't valid. */
579 if (inside_entry_func (get_frame_pc (fi)))
580 return 0;
581
582 /* If we're inside the entry file, it isn't valid. */
583 /* NOTE/drow 2002-12-25: should there be a way to disable this check? It
584 assumes a single small entry file, and the way some debug readers (e.g.
585 dbxread) figure out which object is the entry file is somewhat hokey. */
586 if (inside_entry_file (frame_pc_unwind (fi)))
587 return 0;
588
589 /* If the architecture has a custom FRAME_CHAIN_VALID, call it now. */
590 if (FRAME_CHAIN_VALID_P ())
591 return FRAME_CHAIN_VALID (fp, fi);
592
593 return 1;
594 }