* breakpoint.h (enum bptype): Add bp_hardware_watchpoint and
[binutils-gdb.git] / gdb / blockframe.c
1 /* Get info from stack frames;
2 convert between frames, blocks, functions and pc values.
3 Copyright 1986, 1987, 1988, 1989, 1991 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "bfd.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "frame.h"
27 #include "gdbcore.h"
28 #include "value.h" /* for read_register */
29 #include "target.h" /* for target_has_stack */
30 #include "inferior.h" /* for read_pc */
31
32 /* Is ADDR inside the startup file? Note that if your machine
33 has a way to detect the bottom of the stack, there is no need
34 to call this function from FRAME_CHAIN_VALID; the reason for
35 doing so is that some machines have no way of detecting bottom
36 of stack.
37
38 A PC of zero is always considered to be the bottom of the stack. */
39
40 int
41 inside_entry_file (addr)
42 CORE_ADDR addr;
43 {
44 if (addr == 0)
45 return 1;
46 if (symfile_objfile == 0)
47 return 0;
48 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
49 /* Do not stop backtracing if the pc is in the call dummy
50 at the entry point. */
51 if (PC_IN_CALL_DUMMY (addr, 0, 0))
52 return 0;
53 #endif
54 return (addr >= symfile_objfile -> ei.entry_file_lowpc &&
55 addr < symfile_objfile -> ei.entry_file_highpc);
56 }
57
58 /* Test a specified PC value to see if it is in the range of addresses
59 that correspond to the main() function. See comments above for why
60 we might want to do this.
61
62 Typically called from FRAME_CHAIN_VALID.
63
64 A PC of zero is always considered to be the bottom of the stack. */
65
66 int
67 inside_main_func (pc)
68 CORE_ADDR pc;
69 {
70 if (pc == 0)
71 return 1;
72 if (symfile_objfile == 0)
73 return 0;
74 return (symfile_objfile -> ei.main_func_lowpc <= pc &&
75 symfile_objfile -> ei.main_func_highpc > pc);
76 }
77
78 /* Test a specified PC value to see if it is in the range of addresses
79 that correspond to the process entry point function. See comments
80 in objfiles.h for why we might want to do this.
81
82 Typically called from FRAME_CHAIN_VALID.
83
84 A PC of zero is always considered to be the bottom of the stack. */
85
86 int
87 inside_entry_func (pc)
88 CORE_ADDR pc;
89 {
90 if (pc == 0)
91 return 1;
92 if (symfile_objfile == 0)
93 return 0;
94 #if CALL_DUMMY_LOCATION == AT_ENTRY_POINT
95 /* Do not stop backtracing if the pc is in the call dummy
96 at the entry point. */
97 if (PC_IN_CALL_DUMMY (pc, 0, 0))
98 return 0;
99 #endif
100 return (symfile_objfile -> ei.entry_func_lowpc <= pc &&
101 symfile_objfile -> ei.entry_func_highpc > pc);
102 }
103
104 /* Address of innermost stack frame (contents of FP register) */
105
106 static FRAME current_frame;
107
108 /*
109 * Cache for frame addresses already read by gdb. Valid only while
110 * inferior is stopped. Control variables for the frame cache should
111 * be local to this module.
112 */
113 struct obstack frame_cache_obstack;
114
115 /* Return the innermost (currently executing) stack frame. */
116
117 FRAME
118 get_current_frame ()
119 {
120 /* We assume its address is kept in a general register;
121 param.h says which register. */
122
123 return current_frame;
124 }
125
126 void
127 set_current_frame (frame)
128 FRAME frame;
129 {
130 current_frame = frame;
131 }
132
133 FRAME
134 create_new_frame (addr, pc)
135 FRAME_ADDR addr;
136 CORE_ADDR pc;
137 {
138 struct frame_info *fci; /* Same type as FRAME */
139 char *name;
140
141 fci = (struct frame_info *)
142 obstack_alloc (&frame_cache_obstack,
143 sizeof (struct frame_info));
144
145 /* Arbitrary frame */
146 fci->next = (struct frame_info *) 0;
147 fci->prev = (struct frame_info *) 0;
148 fci->frame = addr;
149 fci->pc = pc;
150 find_pc_partial_function (pc, &name, (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
151 fci->signal_handler_caller = IN_SIGTRAMP (fci->pc, name);
152
153 #ifdef INIT_EXTRA_FRAME_INFO
154 INIT_EXTRA_FRAME_INFO (0, fci);
155 #endif
156
157 return fci;
158 }
159
160 /* Return the frame that called FRAME.
161 If FRAME is the original frame (it has no caller), return 0. */
162
163 FRAME
164 get_prev_frame (frame)
165 FRAME frame;
166 {
167 /* We're allowed to know that FRAME and "struct frame_info *" are
168 the same */
169 return get_prev_frame_info (frame);
170 }
171
172 /* Return the frame that FRAME calls (0 if FRAME is the innermost
173 frame). */
174
175 FRAME
176 get_next_frame (frame)
177 FRAME frame;
178 {
179 /* We're allowed to know that FRAME and "struct frame_info *" are
180 the same */
181 return frame->next;
182 }
183
184 /*
185 * Flush the entire frame cache.
186 */
187 void
188 flush_cached_frames ()
189 {
190 /* Since we can't really be sure what the first object allocated was */
191 obstack_free (&frame_cache_obstack, 0);
192 obstack_init (&frame_cache_obstack);
193
194 current_frame = (struct frame_info *) 0; /* Invalidate cache */
195 }
196
197 /* Flush the frame cache, and start a new one if necessary. */
198 void
199 reinit_frame_cache ()
200 {
201 flush_cached_frames ();
202 if (target_has_stack)
203 {
204 set_current_frame (create_new_frame (read_fp (), read_pc ()));
205 select_frame (get_current_frame (), 0);
206 }
207 else
208 {
209 set_current_frame (0);
210 select_frame ((FRAME) 0, -1);
211 }
212 }
213
214 /* Return a structure containing various interesting information
215 about a specified stack frame. */
216 /* How do I justify including this function? Well, the FRAME
217 identifier format has gone through several changes recently, and
218 it's not completely inconceivable that it could happen again. If
219 it does, have this routine around will help */
220
221 struct frame_info *
222 get_frame_info (frame)
223 FRAME frame;
224 {
225 return frame;
226 }
227
228 /* If a machine allows frameless functions, it should define a macro
229 FRAMELESS_FUNCTION_INVOCATION(FI, FRAMELESS) in param.h. FI is the struct
230 frame_info for the frame, and FRAMELESS should be set to nonzero
231 if it represents a frameless function invocation. */
232
233 /* Return nonzero if the function for this frame lacks a prologue. Many
234 machines can define FRAMELESS_FUNCTION_INVOCATION to just call this
235 function. */
236
237 int
238 frameless_look_for_prologue (frame)
239 FRAME frame;
240 {
241 CORE_ADDR func_start, after_prologue;
242 func_start = (get_pc_function_start (frame->pc) +
243 FUNCTION_START_OFFSET);
244 if (func_start)
245 {
246 after_prologue = func_start;
247 #ifdef SKIP_PROLOGUE_FRAMELESS_P
248 /* This is faster, since only care whether there *is* a prologue,
249 not how long it is. */
250 SKIP_PROLOGUE_FRAMELESS_P (after_prologue);
251 #else
252 SKIP_PROLOGUE (after_prologue);
253 #endif
254 return after_prologue == func_start;
255 }
256 else
257 /* If we can't find the start of the function, we don't really
258 know whether the function is frameless, but we should be able
259 to get a reasonable (i.e. best we can do under the
260 circumstances) backtrace by saying that it isn't. */
261 return 0;
262 }
263
264 /* Default a few macros that people seldom redefine. */
265
266 #if !defined (INIT_FRAME_PC)
267 #define INIT_FRAME_PC(fromleaf, prev) \
268 prev->pc = (fromleaf ? SAVED_PC_AFTER_CALL (prev->next) : \
269 prev->next ? FRAME_SAVED_PC (prev->next) : read_pc ());
270 #endif
271
272 #ifndef FRAME_CHAIN_COMBINE
273 #define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
274 #endif
275
276 /* Return a structure containing various interesting information
277 about the frame that called NEXT_FRAME. Returns NULL
278 if there is no such frame. */
279
280 struct frame_info *
281 get_prev_frame_info (next_frame)
282 FRAME next_frame;
283 {
284 FRAME_ADDR address = 0;
285 struct frame_info *prev;
286 int fromleaf = 0;
287 char *name;
288
289 /* If the requested entry is in the cache, return it.
290 Otherwise, figure out what the address should be for the entry
291 we're about to add to the cache. */
292
293 if (!next_frame)
294 {
295 #if 0
296 /* This screws value_of_variable, which just wants a nice clean
297 NULL return from block_innermost_frame if there are no frames.
298 I don't think I've ever seen this message happen otherwise.
299 And returning NULL here is a perfectly legitimate thing to do. */
300 if (!current_frame)
301 {
302 error ("You haven't set up a process's stack to examine.");
303 }
304 #endif
305
306 return current_frame;
307 }
308
309 /* If we have the prev one, return it */
310 if (next_frame->prev)
311 return next_frame->prev;
312
313 /* On some machines it is possible to call a function without
314 setting up a stack frame for it. On these machines, we
315 define this macro to take two args; a frameinfo pointer
316 identifying a frame and a variable to set or clear if it is
317 or isn't leafless. */
318 #ifdef FRAMELESS_FUNCTION_INVOCATION
319 /* Still don't want to worry about this except on the innermost
320 frame. This macro will set FROMLEAF if NEXT_FRAME is a
321 frameless function invocation. */
322 if (!(next_frame->next))
323 {
324 FRAMELESS_FUNCTION_INVOCATION (next_frame, fromleaf);
325 if (fromleaf)
326 address = next_frame->frame;
327 }
328 #endif
329
330 if (!fromleaf)
331 {
332 /* Two macros defined in tm.h specify the machine-dependent
333 actions to be performed here.
334 First, get the frame's chain-pointer.
335 If that is zero, the frame is the outermost frame or a leaf
336 called by the outermost frame. This means that if start
337 calls main without a frame, we'll return 0 (which is fine
338 anyway).
339
340 Nope; there's a problem. This also returns when the current
341 routine is a leaf of main. This is unacceptable. We move
342 this to after the ffi test; I'd rather have backtraces from
343 start go curfluy than have an abort called from main not show
344 main. */
345 address = FRAME_CHAIN (next_frame);
346 if (!FRAME_CHAIN_VALID (address, next_frame))
347 return 0;
348 address = FRAME_CHAIN_COMBINE (address, next_frame);
349 }
350 if (address == 0)
351 return 0;
352
353 prev = (struct frame_info *)
354 obstack_alloc (&frame_cache_obstack,
355 sizeof (struct frame_info));
356
357 if (next_frame)
358 next_frame->prev = prev;
359 prev->next = next_frame;
360 prev->prev = (struct frame_info *) 0;
361 prev->frame = address;
362 prev->signal_handler_caller = 0;
363
364 /* This change should not be needed, FIXME! We should
365 determine whether any targets *need* INIT_FRAME_PC to happen
366 after INIT_EXTRA_FRAME_INFO and come up with a simple way to
367 express what goes on here.
368
369 INIT_EXTRA_FRAME_INFO is called from two places: create_new_frame
370 (where the PC is already set up) and here (where it isn't).
371 INIT_FRAME_PC is only called from here, always after
372 INIT_EXTRA_FRAME_INFO.
373
374 The catch is the MIPS, where INIT_EXTRA_FRAME_INFO requires the PC
375 value (which hasn't been set yet). Some other machines appear to
376 require INIT_EXTRA_FRAME_INFO before they can do INIT_FRAME_PC. Phoo.
377
378 We shouldn't need INIT_FRAME_PC_FIRST to add more complication to
379 an already overcomplicated part of GDB. gnu@cygnus.com, 15Sep92.
380
381 To answer the question, yes the sparc needs INIT_FRAME_PC after
382 INIT_EXTRA_FRAME_INFO. Suggested scheme:
383
384 SETUP_INNERMOST_FRAME()
385 Default version is just create_new_frame (read_fp ()),
386 read_pc ()). Machines with extra frame info would do that (or the
387 local equivalent) and then set the extra fields.
388 SETUP_ARBITRARY_FRAME(argc, argv)
389 Only change here is that create_new_frame would no longer init extra
390 frame info; SETUP_ARBITRARY_FRAME would have to do that.
391 INIT_PREV_FRAME(fromleaf, prev)
392 Replace INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC. This should
393 also return a flag saying whether to keep the new frame, or
394 whether to discard it, because on some machines (e.g. mips) it
395 is really awkward to have FRAME_CHAIN_VALID called *before*
396 INIT_EXTRA_FRAME_INFO (there is no good way to get information
397 deduced in FRAME_CHAIN_VALID into the extra fields of the new frame).
398 std_frame_pc(fromleaf, prev)
399 This is the default setting for INIT_PREV_FRAME. It just does what
400 the default INIT_FRAME_PC does. Some machines will call it from
401 INIT_PREV_FRAME (either at the beginning, the end, or in the middle).
402 Some machines won't use it.
403 kingdon@cygnus.com, 13Apr93, 31Jan94. */
404
405 #ifdef INIT_FRAME_PC_FIRST
406 INIT_FRAME_PC_FIRST (fromleaf, prev);
407 #endif
408
409 #ifdef INIT_EXTRA_FRAME_INFO
410 INIT_EXTRA_FRAME_INFO(fromleaf, prev);
411 #endif
412
413 /* This entry is in the frame queue now, which is good since
414 FRAME_SAVED_PC may use that queue to figure out its value
415 (see tm-sparc.h). We want the pc saved in the inferior frame. */
416 INIT_FRAME_PC(fromleaf, prev);
417
418 /* If ->frame and ->pc are unchanged, we are in the process of getting
419 ourselves into an infinite backtrace. Some architectures check this
420 in FRAME_CHAIN or thereabouts, but it seems like there is no reason
421 this can't be an architecture-independent check. */
422 if (next_frame != NULL)
423 {
424 if (prev->frame == next_frame->frame
425 && prev->pc == next_frame->pc)
426 {
427 next_frame->prev = NULL;
428 obstack_free (&frame_cache_obstack, prev);
429 return NULL;
430 }
431 }
432
433 find_pc_partial_function (prev->pc, &name,
434 (CORE_ADDR *)NULL,(CORE_ADDR *)NULL);
435 if (IN_SIGTRAMP (prev->pc, name))
436 prev->signal_handler_caller = 1;
437
438 return prev;
439 }
440
441 CORE_ADDR
442 get_frame_pc (frame)
443 FRAME frame;
444 {
445 struct frame_info *fi;
446 fi = get_frame_info (frame);
447 return fi->pc;
448 }
449
450 #if defined (FRAME_FIND_SAVED_REGS)
451 /* Find the addresses in which registers are saved in FRAME. */
452
453 void
454 get_frame_saved_regs (frame_info_addr, saved_regs_addr)
455 struct frame_info *frame_info_addr;
456 struct frame_saved_regs *saved_regs_addr;
457 {
458 FRAME_FIND_SAVED_REGS (frame_info_addr, *saved_regs_addr);
459 }
460 #endif
461
462 /* Return the innermost lexical block in execution
463 in a specified stack frame. The frame address is assumed valid. */
464
465 struct block *
466 get_frame_block (frame)
467 FRAME frame;
468 {
469 struct frame_info *fi;
470 CORE_ADDR pc;
471
472 fi = get_frame_info (frame);
473
474 pc = fi->pc;
475 if (fi->next != 0 && fi->next->signal_handler_caller == 0)
476 /* We are not in the innermost frame and we were not interrupted
477 by a signal. We need to subtract one to get the correct block,
478 in case the call instruction was the last instruction of the block.
479 If there are any machines on which the saved pc does not point to
480 after the call insn, we probably want to make fi->pc point after
481 the call insn anyway. */
482 --pc;
483 return block_for_pc (pc);
484 }
485
486 struct block *
487 get_current_block ()
488 {
489 return block_for_pc (read_pc ());
490 }
491
492 CORE_ADDR
493 get_pc_function_start (pc)
494 CORE_ADDR pc;
495 {
496 register struct block *bl;
497 register struct symbol *symbol;
498 register struct minimal_symbol *msymbol;
499 CORE_ADDR fstart;
500
501 if ((bl = block_for_pc (pc)) != NULL &&
502 (symbol = block_function (bl)) != NULL)
503 {
504 bl = SYMBOL_BLOCK_VALUE (symbol);
505 fstart = BLOCK_START (bl);
506 }
507 else if ((msymbol = lookup_minimal_symbol_by_pc (pc)) != NULL)
508 {
509 fstart = SYMBOL_VALUE_ADDRESS (msymbol);
510 }
511 else
512 {
513 fstart = 0;
514 }
515 return (fstart);
516 }
517
518 /* Return the symbol for the function executing in frame FRAME. */
519
520 struct symbol *
521 get_frame_function (frame)
522 FRAME frame;
523 {
524 register struct block *bl = get_frame_block (frame);
525 if (bl == 0)
526 return 0;
527 return block_function (bl);
528 }
529 \f
530 /* Return the blockvector immediately containing the innermost lexical block
531 containing the specified pc value, or 0 if there is none.
532 PINDEX is a pointer to the index value of the block. If PINDEX
533 is NULL, we don't pass this information back to the caller. */
534
535 struct blockvector *
536 blockvector_for_pc (pc, pindex)
537 register CORE_ADDR pc;
538 int *pindex;
539 {
540 register struct block *b;
541 register int bot, top, half;
542 register struct symtab *s;
543 struct blockvector *bl;
544
545 /* First search all symtabs for one whose file contains our pc */
546 s = find_pc_symtab (pc);
547 if (s == 0)
548 return 0;
549
550 bl = BLOCKVECTOR (s);
551 b = BLOCKVECTOR_BLOCK (bl, 0);
552
553 /* Then search that symtab for the smallest block that wins. */
554 /* Use binary search to find the last block that starts before PC. */
555
556 bot = 0;
557 top = BLOCKVECTOR_NBLOCKS (bl);
558
559 while (top - bot > 1)
560 {
561 half = (top - bot + 1) >> 1;
562 b = BLOCKVECTOR_BLOCK (bl, bot + half);
563 if (BLOCK_START (b) <= pc)
564 bot += half;
565 else
566 top = bot + half;
567 }
568
569 /* Now search backward for a block that ends after PC. */
570
571 while (bot >= 0)
572 {
573 b = BLOCKVECTOR_BLOCK (bl, bot);
574 if (BLOCK_END (b) > pc)
575 {
576 if (pindex)
577 *pindex = bot;
578 return bl;
579 }
580 bot--;
581 }
582
583 return 0;
584 }
585
586 /* Return the innermost lexical block containing the specified pc value,
587 or 0 if there is none. */
588
589 struct block *
590 block_for_pc (pc)
591 register CORE_ADDR pc;
592 {
593 register struct blockvector *bl;
594 int index;
595
596 bl = blockvector_for_pc (pc, &index);
597 if (bl)
598 return BLOCKVECTOR_BLOCK (bl, index);
599 return 0;
600 }
601
602 /* Return the function containing pc value PC.
603 Returns 0 if function is not known. */
604
605 struct symbol *
606 find_pc_function (pc)
607 CORE_ADDR pc;
608 {
609 register struct block *b = block_for_pc (pc);
610 if (b == 0)
611 return 0;
612 return block_function (b);
613 }
614
615 /* These variables are used to cache the most recent result
616 * of find_pc_partial_function. */
617
618 static CORE_ADDR cache_pc_function_low = 0;
619 static CORE_ADDR cache_pc_function_high = 0;
620 static char *cache_pc_function_name = 0;
621
622 /* Clear cache, e.g. when symbol table is discarded. */
623
624 void
625 clear_pc_function_cache()
626 {
627 cache_pc_function_low = 0;
628 cache_pc_function_high = 0;
629 cache_pc_function_name = (char *)0;
630 }
631
632 /* Finds the "function" (text symbol) that is smaller than PC but
633 greatest of all of the potential text symbols. Sets *NAME and/or
634 *ADDRESS conditionally if that pointer is non-null. If ENDADDR is
635 non-null, then set *ENDADDR to be the end of the function
636 (exclusive), but passing ENDADDR as non-null means that the
637 function might cause symbols to be read. This function either
638 succeeds or fails (not halfway succeeds). If it succeeds, it sets
639 *NAME, *ADDRESS, and *ENDADDR to real information and returns 1.
640 If it fails, it sets *NAME, *ADDRESS, and *ENDADDR to zero
641 and returns 0. */
642
643 int
644 find_pc_partial_function (pc, name, address, endaddr)
645 CORE_ADDR pc;
646 char **name;
647 CORE_ADDR *address;
648 CORE_ADDR *endaddr;
649 {
650 struct partial_symtab *pst;
651 struct symbol *f;
652 struct minimal_symbol *msymbol;
653 struct partial_symbol *psb;
654 struct obj_section *sec;
655
656 if (pc >= cache_pc_function_low && pc < cache_pc_function_high)
657 goto return_cached_value;
658
659 /* If sigtramp is in the u area, it counts as a function (especially
660 important for step_1). */
661 #if defined SIGTRAMP_START
662 if (IN_SIGTRAMP (pc, (char *)NULL))
663 {
664 cache_pc_function_low = SIGTRAMP_START;
665 cache_pc_function_high = SIGTRAMP_END;
666 cache_pc_function_name = "<sigtramp>";
667
668 goto return_cached_value;
669 }
670 #endif
671
672 msymbol = lookup_minimal_symbol_by_pc (pc);
673 pst = find_pc_psymtab (pc);
674 if (pst)
675 {
676 /* Need to read the symbols to get a good value for the end address. */
677 if (endaddr != NULL && !pst->readin)
678 {
679 /* Need to get the terminal in case symbol-reading produces
680 output. */
681 target_terminal_ours_for_output ();
682 PSYMTAB_TO_SYMTAB (pst);
683 }
684
685 if (pst->readin)
686 {
687 /* Checking whether the msymbol has a larger value is for the
688 "pathological" case mentioned in print_frame_info. */
689 f = find_pc_function (pc);
690 if (f != NULL
691 && (msymbol == NULL
692 || (BLOCK_START (SYMBOL_BLOCK_VALUE (f))
693 >= SYMBOL_VALUE_ADDRESS (msymbol))))
694 {
695 cache_pc_function_low = BLOCK_START (SYMBOL_BLOCK_VALUE (f));
696 cache_pc_function_high = BLOCK_END (SYMBOL_BLOCK_VALUE (f));
697 cache_pc_function_name = SYMBOL_NAME (f);
698 goto return_cached_value;
699 }
700 }
701 else
702 {
703 /* Now that static symbols go in the minimal symbol table, perhaps
704 we could just ignore the partial symbols. But at least for now
705 we use the partial or minimal symbol, whichever is larger. */
706 psb = find_pc_psymbol (pst, pc);
707
708 if (psb
709 && (msymbol == NULL ||
710 (SYMBOL_VALUE_ADDRESS (psb)
711 >= SYMBOL_VALUE_ADDRESS (msymbol))))
712 {
713 /* This case isn't being cached currently. */
714 if (address)
715 *address = SYMBOL_VALUE_ADDRESS (psb);
716 if (name)
717 *name = SYMBOL_NAME (psb);
718 /* endaddr non-NULL can't happen here. */
719 return 1;
720 }
721 }
722 }
723
724 /* Not in the normal symbol tables, see if the pc is in a known section.
725 If it's not, then give up. This ensures that anything beyond the end
726 of the text seg doesn't appear to be part of the last function in the
727 text segment. */
728
729 sec = find_pc_section (pc);
730
731 if (!sec)
732 msymbol = NULL;
733
734 /* Must be in the minimal symbol table. */
735 if (msymbol == NULL)
736 {
737 /* No available symbol. */
738 if (name != NULL)
739 *name = 0;
740 if (address != NULL)
741 *address = 0;
742 if (endaddr != NULL)
743 *endaddr = 0;
744 return 0;
745 }
746
747 /* See if we're in a transfer table for Sun shared libs. */
748
749 if (msymbol -> type == mst_text || msymbol -> type == mst_file_text)
750 cache_pc_function_low = SYMBOL_VALUE_ADDRESS (msymbol);
751 else
752 /* It is a transfer table for Sun shared libraries. */
753 cache_pc_function_low = pc - FUNCTION_START_OFFSET;
754
755 cache_pc_function_name = SYMBOL_NAME (msymbol);
756
757 /* Use the lesser of the next minimal symbol, or the end of the section, as
758 the end of the function. */
759
760 if (SYMBOL_NAME (msymbol + 1) != NULL
761 && SYMBOL_VALUE_ADDRESS (msymbol + 1) < sec->endaddr)
762 cache_pc_function_high = SYMBOL_VALUE_ADDRESS (msymbol + 1);
763 else
764 /* We got the start address from the last msymbol in the objfile.
765 So the end address is the end of the section. */
766 cache_pc_function_high = sec->endaddr;
767
768 return_cached_value:
769 if (address)
770 *address = cache_pc_function_low;
771 if (name)
772 *name = cache_pc_function_name;
773 if (endaddr)
774 *endaddr = cache_pc_function_high;
775 return 1;
776 }
777
778 /* Return the innermost stack frame executing inside of BLOCK,
779 or NULL if there is no such frame. If BLOCK is NULL, just return NULL. */
780
781 FRAME
782 block_innermost_frame (block)
783 struct block *block;
784 {
785 struct frame_info *fi;
786 register FRAME frame;
787 register CORE_ADDR start;
788 register CORE_ADDR end;
789
790 if (block == NULL)
791 return NULL;
792
793 start = BLOCK_START (block);
794 end = BLOCK_END (block);
795
796 frame = 0;
797 while (1)
798 {
799 frame = get_prev_frame (frame);
800 if (frame == 0)
801 return 0;
802 fi = get_frame_info (frame);
803 if (fi->pc >= start && fi->pc < end)
804 return frame;
805 }
806 }
807
808 /* Return the full FRAME which corresponds to the given FRAME_ADDR
809 or NULL if no FRAME on the chain corresponds to FRAME_ADDR. */
810
811 FRAME
812 find_frame_addr_in_frame_chain (frame_addr)
813 FRAME_ADDR frame_addr;
814 {
815 FRAME frame = NULL;
816
817 if (frame_addr == NULL)
818 return NULL;
819
820 while (1)
821 {
822 frame = get_prev_frame (frame);
823 if (frame == NULL)
824 return NULL;
825
826 if (FRAME_FP (frame) == frame_addr)
827 return frame;
828 }
829 }
830
831 #ifdef SIGCONTEXT_PC_OFFSET
832 /* Get saved user PC for sigtramp from sigcontext for BSD style sigtramp. */
833
834 CORE_ADDR
835 sigtramp_saved_pc (frame)
836 FRAME frame;
837 {
838 CORE_ADDR sigcontext_addr;
839 char buf[TARGET_PTR_BIT / TARGET_CHAR_BIT];
840 int ptrbytes = TARGET_PTR_BIT / TARGET_CHAR_BIT;
841 int sigcontext_offs = (2 * TARGET_INT_BIT) / TARGET_CHAR_BIT;
842
843 /* Get sigcontext address, it is the third parameter on the stack. */
844 if (frame->next)
845 sigcontext_addr = read_memory_integer (FRAME_ARGS_ADDRESS (frame->next)
846 + FRAME_ARGS_SKIP + sigcontext_offs,
847 ptrbytes);
848 else
849 sigcontext_addr = read_memory_integer (read_register (SP_REGNUM)
850 + sigcontext_offs,
851 ptrbytes);
852
853 /* Don't cause a memory_error when accessing sigcontext in case the stack
854 layout has changed or the stack is corrupt. */
855 target_read_memory (sigcontext_addr + SIGCONTEXT_PC_OFFSET, buf, ptrbytes);
856 return extract_unsigned_integer (buf, ptrbytes);
857 }
858 #endif /* SIGCONTEXT_PC_OFFSET */
859
860 void
861 _initialize_blockframe ()
862 {
863 obstack_init (&frame_cache_obstack);
864 }