gdb: generalize commit_resume, avoid commit-resuming when threads have pending statuses
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "stack.h"
63 #include "ax-gdb.h"
64 #include "dummy-frame.h"
65 #include "interps.h"
66 #include "gdbsupport/format.h"
67 #include "thread-fsm.h"
68 #include "tid-parse.h"
69 #include "cli/cli-style.h"
70
71 /* readline include files */
72 #include "readline/tilde.h"
73
74 /* readline defines this. */
75 #undef savestring
76
77 #include "mi/mi-common.h"
78 #include "extension.h"
79 #include <algorithm>
80 #include "progspace-and-thread.h"
81 #include "gdbsupport/array-view.h"
82 #include "gdbsupport/gdb_optional.h"
83
84 /* Prototypes for local functions. */
85
86 static void map_breakpoint_numbers (const char *,
87 gdb::function_view<void (breakpoint *)>);
88
89 static void breakpoint_re_set_default (struct breakpoint *);
90
91 static void
92 create_sals_from_location_default (struct event_location *location,
93 struct linespec_result *canonical,
94 enum bptype type_wanted);
95
96 static void create_breakpoints_sal_default (struct gdbarch *,
97 struct linespec_result *,
98 gdb::unique_xmalloc_ptr<char>,
99 gdb::unique_xmalloc_ptr<char>,
100 enum bptype,
101 enum bpdisp, int, int,
102 int,
103 const struct breakpoint_ops *,
104 int, int, int, unsigned);
105
106 static std::vector<symtab_and_line> decode_location_default
107 (struct breakpoint *b, struct event_location *location,
108 struct program_space *search_pspace);
109
110 static int can_use_hardware_watchpoint
111 (const std::vector<value_ref_ptr> &vals);
112
113 static void mention (struct breakpoint *);
114
115 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
116 enum bptype,
117 const struct breakpoint_ops *);
118 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
119 const struct symtab_and_line *);
120
121 /* This function is used in gdbtk sources and thus can not be made
122 static. */
123 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
124 struct symtab_and_line,
125 enum bptype,
126 const struct breakpoint_ops *);
127
128 static struct breakpoint *
129 momentary_breakpoint_from_master (struct breakpoint *orig,
130 enum bptype type,
131 const struct breakpoint_ops *ops,
132 int loc_enabled);
133
134 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
135
136 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
137 CORE_ADDR bpaddr,
138 enum bptype bptype);
139
140 static void describe_other_breakpoints (struct gdbarch *,
141 struct program_space *, CORE_ADDR,
142 struct obj_section *, int);
143
144 static int watchpoint_locations_match (struct bp_location *loc1,
145 struct bp_location *loc2);
146
147 static int breakpoint_locations_match (struct bp_location *loc1,
148 struct bp_location *loc2,
149 bool sw_hw_bps_match = false);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void decref_bp_location (struct bp_location **loc);
176
177 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
178
179 /* update_global_location_list's modes of operation wrt to whether to
180 insert locations now. */
181 enum ugll_insert_mode
182 {
183 /* Don't insert any breakpoint locations into the inferior, only
184 remove already-inserted locations that no longer should be
185 inserted. Functions that delete a breakpoint or breakpoints
186 should specify this mode, so that deleting a breakpoint doesn't
187 have the side effect of inserting the locations of other
188 breakpoints that are marked not-inserted, but should_be_inserted
189 returns true on them.
190
191 This behavior is useful is situations close to tear-down -- e.g.,
192 after an exec, while the target still has execution, but
193 breakpoint shadows of the previous executable image should *NOT*
194 be restored to the new image; or before detaching, where the
195 target still has execution and wants to delete breakpoints from
196 GDB's lists, and all breakpoints had already been removed from
197 the inferior. */
198 UGLL_DONT_INSERT,
199
200 /* May insert breakpoints iff breakpoints_should_be_inserted_now
201 claims breakpoints should be inserted now. */
202 UGLL_MAY_INSERT,
203
204 /* Insert locations now, irrespective of
205 breakpoints_should_be_inserted_now. E.g., say all threads are
206 stopped right now, and the user did "continue". We need to
207 insert breakpoints _before_ resuming the target, but
208 UGLL_MAY_INSERT wouldn't insert them, because
209 breakpoints_should_be_inserted_now returns false at that point,
210 as no thread is running yet. */
211 UGLL_INSERT
212 };
213
214 static void update_global_location_list (enum ugll_insert_mode);
215
216 static void update_global_location_list_nothrow (enum ugll_insert_mode);
217
218 static void insert_breakpoint_locations (void);
219
220 static void trace_pass_command (const char *, int);
221
222 static void set_tracepoint_count (int num);
223
224 static bool is_masked_watchpoint (const struct breakpoint *b);
225
226 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
227
228 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
229 otherwise. */
230
231 static int strace_marker_p (struct breakpoint *b);
232
233 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
234 that are implemented on top of software or hardware breakpoints
235 (user breakpoints, internal and momentary breakpoints, etc.). */
236 static struct breakpoint_ops bkpt_base_breakpoint_ops;
237
238 /* Internal breakpoints class type. */
239 static struct breakpoint_ops internal_breakpoint_ops;
240
241 /* Momentary breakpoints class type. */
242 static struct breakpoint_ops momentary_breakpoint_ops;
243
244 /* The breakpoint_ops structure to be used in regular user created
245 breakpoints. */
246 struct breakpoint_ops bkpt_breakpoint_ops;
247
248 /* Breakpoints set on probes. */
249 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
250
251 /* Tracepoints set on probes. */
252 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
253
254 /* Dynamic printf class type. */
255 struct breakpoint_ops dprintf_breakpoint_ops;
256
257 /* The style in which to perform a dynamic printf. This is a user
258 option because different output options have different tradeoffs;
259 if GDB does the printing, there is better error handling if there
260 is a problem with any of the arguments, but using an inferior
261 function lets you have special-purpose printers and sending of
262 output to the same place as compiled-in print functions. */
263
264 static const char dprintf_style_gdb[] = "gdb";
265 static const char dprintf_style_call[] = "call";
266 static const char dprintf_style_agent[] = "agent";
267 static const char *const dprintf_style_enums[] = {
268 dprintf_style_gdb,
269 dprintf_style_call,
270 dprintf_style_agent,
271 NULL
272 };
273 static const char *dprintf_style = dprintf_style_gdb;
274
275 /* The function to use for dynamic printf if the preferred style is to
276 call into the inferior. The value is simply a string that is
277 copied into the command, so it can be anything that GDB can
278 evaluate to a callable address, not necessarily a function name. */
279
280 static char *dprintf_function;
281
282 /* The channel to use for dynamic printf if the preferred style is to
283 call into the inferior; if a nonempty string, it will be passed to
284 the call as the first argument, with the format string as the
285 second. As with the dprintf function, this can be anything that
286 GDB knows how to evaluate, so in addition to common choices like
287 "stderr", this could be an app-specific expression like
288 "mystreams[curlogger]". */
289
290 static char *dprintf_channel;
291
292 /* True if dprintf commands should continue to operate even if GDB
293 has disconnected. */
294 static bool disconnected_dprintf = true;
295
296 struct command_line *
297 breakpoint_commands (struct breakpoint *b)
298 {
299 return b->commands ? b->commands.get () : NULL;
300 }
301
302 /* Flag indicating that a command has proceeded the inferior past the
303 current breakpoint. */
304
305 static bool breakpoint_proceeded;
306
307 const char *
308 bpdisp_text (enum bpdisp disp)
309 {
310 /* NOTE: the following values are a part of MI protocol and
311 represent values of 'disp' field returned when inferior stops at
312 a breakpoint. */
313 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
314
315 return bpdisps[(int) disp];
316 }
317
318 /* Prototypes for exported functions. */
319 /* If FALSE, gdb will not use hardware support for watchpoints, even
320 if such is available. */
321 static int can_use_hw_watchpoints;
322
323 static void
324 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
325 struct cmd_list_element *c,
326 const char *value)
327 {
328 fprintf_filtered (file,
329 _("Debugger's willingness to use "
330 "watchpoint hardware is %s.\n"),
331 value);
332 }
333
334 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
335 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
336 for unrecognized breakpoint locations.
337 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
338 static enum auto_boolean pending_break_support;
339 static void
340 show_pending_break_support (struct ui_file *file, int from_tty,
341 struct cmd_list_element *c,
342 const char *value)
343 {
344 fprintf_filtered (file,
345 _("Debugger's behavior regarding "
346 "pending breakpoints is %s.\n"),
347 value);
348 }
349
350 /* If true, gdb will automatically use hardware breakpoints for breakpoints
351 set with "break" but falling in read-only memory.
352 If false, gdb will warn about such breakpoints, but won't automatically
353 use hardware breakpoints. */
354 static bool automatic_hardware_breakpoints;
355 static void
356 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
357 struct cmd_list_element *c,
358 const char *value)
359 {
360 fprintf_filtered (file,
361 _("Automatic usage of hardware breakpoints is %s.\n"),
362 value);
363 }
364
365 /* If on, GDB keeps breakpoints inserted even if the inferior is
366 stopped, and immediately inserts any new breakpoints as soon as
367 they're created. If off (default), GDB keeps breakpoints off of
368 the target as long as possible. That is, it delays inserting
369 breakpoints until the next resume, and removes them again when the
370 target fully stops. This is a bit safer in case GDB crashes while
371 processing user input. */
372 static bool always_inserted_mode = false;
373
374 static void
375 show_always_inserted_mode (struct ui_file *file, int from_tty,
376 struct cmd_list_element *c, const char *value)
377 {
378 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
379 value);
380 }
381
382 /* See breakpoint.h. */
383
384 int
385 breakpoints_should_be_inserted_now (void)
386 {
387 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
388 {
389 /* If breakpoints are global, they should be inserted even if no
390 thread under gdb's control is running, or even if there are
391 no threads under GDB's control yet. */
392 return 1;
393 }
394 else
395 {
396 if (always_inserted_mode)
397 {
398 /* The user wants breakpoints inserted even if all threads
399 are stopped. */
400 return 1;
401 }
402
403 for (inferior *inf : all_inferiors ())
404 if (inf->has_execution ()
405 && threads_are_executing (inf->process_target ()))
406 return 1;
407
408 /* Don't remove breakpoints yet if, even though all threads are
409 stopped, we still have events to process. */
410 for (thread_info *tp : all_non_exited_threads ())
411 if (tp->resumed
412 && tp->suspend.waitstatus_pending_p)
413 return 1;
414 }
415 return 0;
416 }
417
418 static const char condition_evaluation_both[] = "host or target";
419
420 /* Modes for breakpoint condition evaluation. */
421 static const char condition_evaluation_auto[] = "auto";
422 static const char condition_evaluation_host[] = "host";
423 static const char condition_evaluation_target[] = "target";
424 static const char *const condition_evaluation_enums[] = {
425 condition_evaluation_auto,
426 condition_evaluation_host,
427 condition_evaluation_target,
428 NULL
429 };
430
431 /* Global that holds the current mode for breakpoint condition evaluation. */
432 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
433
434 /* Global that we use to display information to the user (gets its value from
435 condition_evaluation_mode_1. */
436 static const char *condition_evaluation_mode = condition_evaluation_auto;
437
438 /* Translate a condition evaluation mode MODE into either "host"
439 or "target". This is used mostly to translate from "auto" to the
440 real setting that is being used. It returns the translated
441 evaluation mode. */
442
443 static const char *
444 translate_condition_evaluation_mode (const char *mode)
445 {
446 if (mode == condition_evaluation_auto)
447 {
448 if (target_supports_evaluation_of_breakpoint_conditions ())
449 return condition_evaluation_target;
450 else
451 return condition_evaluation_host;
452 }
453 else
454 return mode;
455 }
456
457 /* Discovers what condition_evaluation_auto translates to. */
458
459 static const char *
460 breakpoint_condition_evaluation_mode (void)
461 {
462 return translate_condition_evaluation_mode (condition_evaluation_mode);
463 }
464
465 /* Return true if GDB should evaluate breakpoint conditions or false
466 otherwise. */
467
468 static int
469 gdb_evaluates_breakpoint_condition_p (void)
470 {
471 const char *mode = breakpoint_condition_evaluation_mode ();
472
473 return (mode == condition_evaluation_host);
474 }
475
476 /* Are we executing breakpoint commands? */
477 static int executing_breakpoint_commands;
478
479 /* Are overlay event breakpoints enabled? */
480 static int overlay_events_enabled;
481
482 /* See description in breakpoint.h. */
483 bool target_exact_watchpoints = false;
484
485 /* Walk the following statement or block through all breakpoints.
486 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
487 current breakpoint. */
488
489 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
490
491 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
492 for (B = breakpoint_chain; \
493 B ? (TMP=B->next, 1): 0; \
494 B = TMP)
495
496 /* Similar iterator for the low-level breakpoints. SAFE variant is
497 not provided so update_global_location_list must not be called
498 while executing the block of ALL_BP_LOCATIONS. */
499
500 #define ALL_BP_LOCATIONS(B,BP_TMP) \
501 for (BP_TMP = bp_locations; \
502 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
503 BP_TMP++)
504
505 /* Iterates through locations with address ADDRESS for the currently selected
506 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
507 to where the loop should start from.
508 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
509 appropriate location to start with. */
510
511 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
512 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
513 BP_LOCP_TMP = BP_LOCP_START; \
514 BP_LOCP_START \
515 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
516 && (*BP_LOCP_TMP)->address == ADDRESS); \
517 BP_LOCP_TMP++)
518
519 /* Iterator for tracepoints only. */
520
521 #define ALL_TRACEPOINTS(B) \
522 for (B = breakpoint_chain; B; B = B->next) \
523 if (is_tracepoint (B))
524
525 /* Chains of all breakpoints defined. */
526
527 static struct breakpoint *breakpoint_chain;
528
529 /* Array is sorted by bp_location_is_less_than - primarily by the ADDRESS. */
530
531 static struct bp_location **bp_locations;
532
533 /* Number of elements of BP_LOCATIONS. */
534
535 static unsigned bp_locations_count;
536
537 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
538 ADDRESS for the current elements of BP_LOCATIONS which get a valid
539 result from bp_location_has_shadow. You can use it for roughly
540 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
541 an address you need to read. */
542
543 static CORE_ADDR bp_locations_placed_address_before_address_max;
544
545 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
546 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
547 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
548 You can use it for roughly limiting the subrange of BP_LOCATIONS to
549 scan for shadow bytes for an address you need to read. */
550
551 static CORE_ADDR bp_locations_shadow_len_after_address_max;
552
553 /* The locations that no longer correspond to any breakpoint, unlinked
554 from the bp_locations array, but for which a hit may still be
555 reported by a target. */
556 static std::vector<bp_location *> moribund_locations;
557
558 /* Number of last breakpoint made. */
559
560 static int breakpoint_count;
561
562 /* The value of `breakpoint_count' before the last command that
563 created breakpoints. If the last (break-like) command created more
564 than one breakpoint, then the difference between BREAKPOINT_COUNT
565 and PREV_BREAKPOINT_COUNT is more than one. */
566 static int prev_breakpoint_count;
567
568 /* Number of last tracepoint made. */
569
570 static int tracepoint_count;
571
572 static struct cmd_list_element *breakpoint_set_cmdlist;
573 static struct cmd_list_element *breakpoint_show_cmdlist;
574 struct cmd_list_element *save_cmdlist;
575
576 /* See declaration at breakpoint.h. */
577
578 struct breakpoint *
579 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
580 void *user_data)
581 {
582 struct breakpoint *b = NULL;
583
584 ALL_BREAKPOINTS (b)
585 {
586 if (func (b, user_data) != 0)
587 break;
588 }
589
590 return b;
591 }
592
593 /* Return whether a breakpoint is an active enabled breakpoint. */
594 static int
595 breakpoint_enabled (struct breakpoint *b)
596 {
597 return (b->enable_state == bp_enabled);
598 }
599
600 /* Set breakpoint count to NUM. */
601
602 static void
603 set_breakpoint_count (int num)
604 {
605 prev_breakpoint_count = breakpoint_count;
606 breakpoint_count = num;
607 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
608 }
609
610 /* Used by `start_rbreak_breakpoints' below, to record the current
611 breakpoint count before "rbreak" creates any breakpoint. */
612 static int rbreak_start_breakpoint_count;
613
614 /* Called at the start an "rbreak" command to record the first
615 breakpoint made. */
616
617 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
618 {
619 rbreak_start_breakpoint_count = breakpoint_count;
620 }
621
622 /* Called at the end of an "rbreak" command to record the last
623 breakpoint made. */
624
625 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
626 {
627 prev_breakpoint_count = rbreak_start_breakpoint_count;
628 }
629
630 /* Used in run_command to zero the hit count when a new run starts. */
631
632 void
633 clear_breakpoint_hit_counts (void)
634 {
635 struct breakpoint *b;
636
637 ALL_BREAKPOINTS (b)
638 b->hit_count = 0;
639 }
640
641 \f
642 /* Return the breakpoint with the specified number, or NULL
643 if the number does not refer to an existing breakpoint. */
644
645 struct breakpoint *
646 get_breakpoint (int num)
647 {
648 struct breakpoint *b;
649
650 ALL_BREAKPOINTS (b)
651 if (b->number == num)
652 return b;
653
654 return NULL;
655 }
656
657 \f
658
659 /* Mark locations as "conditions have changed" in case the target supports
660 evaluating conditions on its side. */
661
662 static void
663 mark_breakpoint_modified (struct breakpoint *b)
664 {
665 struct bp_location *loc;
666
667 /* This is only meaningful if the target is
668 evaluating conditions and if the user has
669 opted for condition evaluation on the target's
670 side. */
671 if (gdb_evaluates_breakpoint_condition_p ()
672 || !target_supports_evaluation_of_breakpoint_conditions ())
673 return;
674
675 if (!is_breakpoint (b))
676 return;
677
678 for (loc = b->loc; loc; loc = loc->next)
679 loc->condition_changed = condition_modified;
680 }
681
682 /* Mark location as "conditions have changed" in case the target supports
683 evaluating conditions on its side. */
684
685 static void
686 mark_breakpoint_location_modified (struct bp_location *loc)
687 {
688 /* This is only meaningful if the target is
689 evaluating conditions and if the user has
690 opted for condition evaluation on the target's
691 side. */
692 if (gdb_evaluates_breakpoint_condition_p ()
693 || !target_supports_evaluation_of_breakpoint_conditions ())
694
695 return;
696
697 if (!is_breakpoint (loc->owner))
698 return;
699
700 loc->condition_changed = condition_modified;
701 }
702
703 /* Sets the condition-evaluation mode using the static global
704 condition_evaluation_mode. */
705
706 static void
707 set_condition_evaluation_mode (const char *args, int from_tty,
708 struct cmd_list_element *c)
709 {
710 const char *old_mode, *new_mode;
711
712 if ((condition_evaluation_mode_1 == condition_evaluation_target)
713 && !target_supports_evaluation_of_breakpoint_conditions ())
714 {
715 condition_evaluation_mode_1 = condition_evaluation_mode;
716 warning (_("Target does not support breakpoint condition evaluation.\n"
717 "Using host evaluation mode instead."));
718 return;
719 }
720
721 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
722 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
723
724 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
725 settings was "auto". */
726 condition_evaluation_mode = condition_evaluation_mode_1;
727
728 /* Only update the mode if the user picked a different one. */
729 if (new_mode != old_mode)
730 {
731 struct bp_location *loc, **loc_tmp;
732 /* If the user switched to a different evaluation mode, we
733 need to synch the changes with the target as follows:
734
735 "host" -> "target": Send all (valid) conditions to the target.
736 "target" -> "host": Remove all the conditions from the target.
737 */
738
739 if (new_mode == condition_evaluation_target)
740 {
741 /* Mark everything modified and synch conditions with the
742 target. */
743 ALL_BP_LOCATIONS (loc, loc_tmp)
744 mark_breakpoint_location_modified (loc);
745 }
746 else
747 {
748 /* Manually mark non-duplicate locations to synch conditions
749 with the target. We do this to remove all the conditions the
750 target knows about. */
751 ALL_BP_LOCATIONS (loc, loc_tmp)
752 if (is_breakpoint (loc->owner) && loc->inserted)
753 loc->needs_update = 1;
754 }
755
756 /* Do the update. */
757 update_global_location_list (UGLL_MAY_INSERT);
758 }
759
760 return;
761 }
762
763 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
764 what "auto" is translating to. */
765
766 static void
767 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
768 struct cmd_list_element *c, const char *value)
769 {
770 if (condition_evaluation_mode == condition_evaluation_auto)
771 fprintf_filtered (file,
772 _("Breakpoint condition evaluation "
773 "mode is %s (currently %s).\n"),
774 value,
775 breakpoint_condition_evaluation_mode ());
776 else
777 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
778 value);
779 }
780
781 /* A comparison function for bp_location AP and BP that is used by
782 bsearch. This comparison function only cares about addresses, unlike
783 the more general bp_location_is_less_than function. */
784
785 static int
786 bp_locations_compare_addrs (const void *ap, const void *bp)
787 {
788 const struct bp_location *a = *(const struct bp_location **) ap;
789 const struct bp_location *b = *(const struct bp_location **) bp;
790
791 if (a->address == b->address)
792 return 0;
793 else
794 return ((a->address > b->address) - (a->address < b->address));
795 }
796
797 /* Helper function to skip all bp_locations with addresses
798 less than ADDRESS. It returns the first bp_location that
799 is greater than or equal to ADDRESS. If none is found, just
800 return NULL. */
801
802 static struct bp_location **
803 get_first_locp_gte_addr (CORE_ADDR address)
804 {
805 struct bp_location dummy_loc;
806 struct bp_location *dummy_locp = &dummy_loc;
807 struct bp_location **locp_found = NULL;
808
809 /* Initialize the dummy location's address field. */
810 dummy_loc.address = address;
811
812 /* Find a close match to the first location at ADDRESS. */
813 locp_found = ((struct bp_location **)
814 bsearch (&dummy_locp, bp_locations, bp_locations_count,
815 sizeof (struct bp_location **),
816 bp_locations_compare_addrs));
817
818 /* Nothing was found, nothing left to do. */
819 if (locp_found == NULL)
820 return NULL;
821
822 /* We may have found a location that is at ADDRESS but is not the first in the
823 location's list. Go backwards (if possible) and locate the first one. */
824 while ((locp_found - 1) >= bp_locations
825 && (*(locp_found - 1))->address == address)
826 locp_found--;
827
828 return locp_found;
829 }
830
831 /* Parse COND_STRING in the context of LOC and set as the condition
832 expression of LOC. BP_NUM is the number of LOC's owner, LOC_NUM is
833 the number of LOC within its owner. In case of parsing error, mark
834 LOC as DISABLED_BY_COND. In case of success, unset DISABLED_BY_COND. */
835
836 static void
837 set_breakpoint_location_condition (const char *cond_string, bp_location *loc,
838 int bp_num, int loc_num)
839 {
840 bool has_junk = false;
841 try
842 {
843 expression_up new_exp = parse_exp_1 (&cond_string, loc->address,
844 block_for_pc (loc->address), 0);
845 if (*cond_string != 0)
846 has_junk = true;
847 else
848 {
849 loc->cond = std::move (new_exp);
850 if (loc->disabled_by_cond && loc->enabled)
851 printf_filtered (_("Breakpoint %d's condition is now valid at "
852 "location %d, enabling.\n"),
853 bp_num, loc_num);
854
855 loc->disabled_by_cond = false;
856 }
857 }
858 catch (const gdb_exception_error &e)
859 {
860 if (loc->enabled)
861 {
862 /* Warn if a user-enabled location is now becoming disabled-by-cond.
863 BP_NUM is 0 if the breakpoint is being defined for the first
864 time using the "break ... if ..." command, and non-zero if
865 already defined. */
866 if (bp_num != 0)
867 warning (_("failed to validate condition at location %d.%d, "
868 "disabling:\n %s"), bp_num, loc_num, e.what ());
869 else
870 warning (_("failed to validate condition at location %d, "
871 "disabling:\n %s"), loc_num, e.what ());
872 }
873
874 loc->disabled_by_cond = true;
875 }
876
877 if (has_junk)
878 error (_("Garbage '%s' follows condition"), cond_string);
879 }
880
881 void
882 set_breakpoint_condition (struct breakpoint *b, const char *exp,
883 int from_tty, bool force)
884 {
885 if (*exp == 0)
886 {
887 xfree (b->cond_string);
888 b->cond_string = nullptr;
889
890 if (is_watchpoint (b))
891 static_cast<watchpoint *> (b)->cond_exp.reset ();
892 else
893 {
894 int loc_num = 1;
895 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
896 {
897 loc->cond.reset ();
898 if (loc->disabled_by_cond && loc->enabled)
899 printf_filtered (_("Breakpoint %d's condition is now valid at "
900 "location %d, enabling.\n"),
901 b->number, loc_num);
902 loc->disabled_by_cond = false;
903 loc_num++;
904
905 /* No need to free the condition agent expression
906 bytecode (if we have one). We will handle this
907 when we go through update_global_location_list. */
908 }
909 }
910
911 if (from_tty)
912 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
913 }
914 else
915 {
916 if (is_watchpoint (b))
917 {
918 innermost_block_tracker tracker;
919 const char *arg = exp;
920 expression_up new_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
921 if (*arg != 0)
922 error (_("Junk at end of expression"));
923 watchpoint *w = static_cast<watchpoint *> (b);
924 w->cond_exp = std::move (new_exp);
925 w->cond_exp_valid_block = tracker.block ();
926 }
927 else
928 {
929 /* Parse and set condition expressions. We make two passes.
930 In the first, we parse the condition string to see if it
931 is valid in at least one location. If so, the condition
932 would be accepted. So we go ahead and set the locations'
933 conditions. In case no valid case is found, we throw
934 the error and the condition string will be rejected.
935 This two-pass approach is taken to avoid setting the
936 state of locations in case of a reject. */
937 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
938 {
939 try
940 {
941 const char *arg = exp;
942 parse_exp_1 (&arg, loc->address,
943 block_for_pc (loc->address), 0);
944 if (*arg != 0)
945 error (_("Junk at end of expression"));
946 break;
947 }
948 catch (const gdb_exception_error &e)
949 {
950 /* Condition string is invalid. If this happens to
951 be the last loc, abandon (if not forced) or continue
952 (if forced). */
953 if (loc->next == nullptr && !force)
954 throw;
955 }
956 }
957
958 /* If we reach here, the condition is valid at some locations. */
959 int loc_num = 1;
960 for (bp_location *loc = b->loc; loc != nullptr;
961 loc = loc->next, loc_num++)
962 set_breakpoint_location_condition (exp, loc, b->number, loc_num);
963 }
964
965 /* We know that the new condition parsed successfully. The
966 condition string of the breakpoint can be safely updated. */
967 xfree (b->cond_string);
968 b->cond_string = xstrdup (exp);
969 b->condition_not_parsed = 0;
970 }
971 mark_breakpoint_modified (b);
972
973 gdb::observers::breakpoint_modified.notify (b);
974 }
975
976 /* The options for the "condition" command. */
977
978 struct condition_command_opts
979 {
980 /* For "-force". */
981 bool force_condition = false;
982 };
983
984 static const gdb::option::option_def condition_command_option_defs[] = {
985
986 gdb::option::flag_option_def<condition_command_opts> {
987 "force",
988 [] (condition_command_opts *opts) { return &opts->force_condition; },
989 N_("Set the condition even if it is invalid for all current locations."),
990 },
991
992 };
993
994 /* Create an option_def_group for the "condition" options, with
995 CC_OPTS as context. */
996
997 static inline gdb::option::option_def_group
998 make_condition_command_options_def_group (condition_command_opts *cc_opts)
999 {
1000 return {{condition_command_option_defs}, cc_opts};
1001 }
1002
1003 /* Completion for the "condition" command. */
1004
1005 static void
1006 condition_completer (struct cmd_list_element *cmd,
1007 completion_tracker &tracker,
1008 const char *text, const char * /*word*/)
1009 {
1010 bool has_no_arguments = (*text == '\0');
1011 condition_command_opts cc_opts;
1012 const auto group = make_condition_command_options_def_group (&cc_opts);
1013 if (gdb::option::complete_options
1014 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group))
1015 return;
1016
1017 text = skip_spaces (text);
1018 const char *space = skip_to_space (text);
1019 if (*space == '\0')
1020 {
1021 int len;
1022 struct breakpoint *b;
1023
1024 if (text[0] == '$')
1025 {
1026 tracker.advance_custom_word_point_by (1);
1027 /* We don't support completion of history indices. */
1028 if (!isdigit (text[1]))
1029 complete_internalvar (tracker, &text[1]);
1030 return;
1031 }
1032
1033 /* Suggest the "-force" flag if no arguments are given. If
1034 arguments were passed, they either already include the flag,
1035 or we are beyond the point of suggesting it because it's
1036 positionally the first argument. */
1037 if (has_no_arguments)
1038 gdb::option::complete_on_all_options (tracker, group);
1039
1040 /* We're completing the breakpoint number. */
1041 len = strlen (text);
1042
1043 ALL_BREAKPOINTS (b)
1044 {
1045 char number[50];
1046
1047 xsnprintf (number, sizeof (number), "%d", b->number);
1048
1049 if (strncmp (number, text, len) == 0)
1050 tracker.add_completion (make_unique_xstrdup (number));
1051 }
1052
1053 return;
1054 }
1055
1056 /* We're completing the expression part. Skip the breakpoint num. */
1057 const char *exp_start = skip_spaces (space);
1058 tracker.advance_custom_word_point_by (exp_start - text);
1059 text = exp_start;
1060 const char *word = advance_to_expression_complete_word_point (tracker, text);
1061 expression_completer (cmd, tracker, text, word);
1062 }
1063
1064 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1065
1066 static void
1067 condition_command (const char *arg, int from_tty)
1068 {
1069 struct breakpoint *b;
1070 const char *p;
1071 int bnum;
1072
1073 if (arg == 0)
1074 error_no_arg (_("breakpoint number"));
1075
1076 p = arg;
1077
1078 /* Check if the "-force" flag was passed. */
1079 condition_command_opts cc_opts;
1080 const auto group = make_condition_command_options_def_group (&cc_opts);
1081 gdb::option::process_options
1082 (&p, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
1083
1084 bnum = get_number (&p);
1085 if (bnum == 0)
1086 error (_("Bad breakpoint argument: '%s'"), arg);
1087
1088 ALL_BREAKPOINTS (b)
1089 if (b->number == bnum)
1090 {
1091 /* Check if this breakpoint has a "stop" method implemented in an
1092 extension language. This method and conditions entered into GDB
1093 from the CLI are mutually exclusive. */
1094 const struct extension_language_defn *extlang
1095 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1096
1097 if (extlang != NULL)
1098 {
1099 error (_("Only one stop condition allowed. There is currently"
1100 " a %s stop condition defined for this breakpoint."),
1101 ext_lang_capitalized_name (extlang));
1102 }
1103 set_breakpoint_condition (b, p, from_tty, cc_opts.force_condition);
1104
1105 if (is_breakpoint (b))
1106 update_global_location_list (UGLL_MAY_INSERT);
1107
1108 return;
1109 }
1110
1111 error (_("No breakpoint number %d."), bnum);
1112 }
1113
1114 /* Check that COMMAND do not contain commands that are suitable
1115 only for tracepoints and not suitable for ordinary breakpoints.
1116 Throw if any such commands is found. */
1117
1118 static void
1119 check_no_tracepoint_commands (struct command_line *commands)
1120 {
1121 struct command_line *c;
1122
1123 for (c = commands; c; c = c->next)
1124 {
1125 if (c->control_type == while_stepping_control)
1126 error (_("The 'while-stepping' command can "
1127 "only be used for tracepoints"));
1128
1129 check_no_tracepoint_commands (c->body_list_0.get ());
1130 check_no_tracepoint_commands (c->body_list_1.get ());
1131
1132 /* Not that command parsing removes leading whitespace and comment
1133 lines and also empty lines. So, we only need to check for
1134 command directly. */
1135 if (strstr (c->line, "collect ") == c->line)
1136 error (_("The 'collect' command can only be used for tracepoints"));
1137
1138 if (strstr (c->line, "teval ") == c->line)
1139 error (_("The 'teval' command can only be used for tracepoints"));
1140 }
1141 }
1142
1143 struct longjmp_breakpoint : public breakpoint
1144 {
1145 ~longjmp_breakpoint () override;
1146 };
1147
1148 /* Encapsulate tests for different types of tracepoints. */
1149
1150 static bool
1151 is_tracepoint_type (bptype type)
1152 {
1153 return (type == bp_tracepoint
1154 || type == bp_fast_tracepoint
1155 || type == bp_static_tracepoint);
1156 }
1157
1158 static bool
1159 is_longjmp_type (bptype type)
1160 {
1161 return type == bp_longjmp || type == bp_exception;
1162 }
1163
1164 /* See breakpoint.h. */
1165
1166 bool
1167 is_tracepoint (const struct breakpoint *b)
1168 {
1169 return is_tracepoint_type (b->type);
1170 }
1171
1172 /* Factory function to create an appropriate instance of breakpoint given
1173 TYPE. */
1174
1175 static std::unique_ptr<breakpoint>
1176 new_breakpoint_from_type (bptype type)
1177 {
1178 breakpoint *b;
1179
1180 if (is_tracepoint_type (type))
1181 b = new tracepoint ();
1182 else if (is_longjmp_type (type))
1183 b = new longjmp_breakpoint ();
1184 else
1185 b = new breakpoint ();
1186
1187 return std::unique_ptr<breakpoint> (b);
1188 }
1189
1190 /* A helper function that validates that COMMANDS are valid for a
1191 breakpoint. This function will throw an exception if a problem is
1192 found. */
1193
1194 static void
1195 validate_commands_for_breakpoint (struct breakpoint *b,
1196 struct command_line *commands)
1197 {
1198 if (is_tracepoint (b))
1199 {
1200 struct tracepoint *t = (struct tracepoint *) b;
1201 struct command_line *c;
1202 struct command_line *while_stepping = 0;
1203
1204 /* Reset the while-stepping step count. The previous commands
1205 might have included a while-stepping action, while the new
1206 ones might not. */
1207 t->step_count = 0;
1208
1209 /* We need to verify that each top-level element of commands is
1210 valid for tracepoints, that there's at most one
1211 while-stepping element, and that the while-stepping's body
1212 has valid tracing commands excluding nested while-stepping.
1213 We also need to validate the tracepoint action line in the
1214 context of the tracepoint --- validate_actionline actually
1215 has side effects, like setting the tracepoint's
1216 while-stepping STEP_COUNT, in addition to checking if the
1217 collect/teval actions parse and make sense in the
1218 tracepoint's context. */
1219 for (c = commands; c; c = c->next)
1220 {
1221 if (c->control_type == while_stepping_control)
1222 {
1223 if (b->type == bp_fast_tracepoint)
1224 error (_("The 'while-stepping' command "
1225 "cannot be used for fast tracepoint"));
1226 else if (b->type == bp_static_tracepoint)
1227 error (_("The 'while-stepping' command "
1228 "cannot be used for static tracepoint"));
1229
1230 if (while_stepping)
1231 error (_("The 'while-stepping' command "
1232 "can be used only once"));
1233 else
1234 while_stepping = c;
1235 }
1236
1237 validate_actionline (c->line, b);
1238 }
1239 if (while_stepping)
1240 {
1241 struct command_line *c2;
1242
1243 gdb_assert (while_stepping->body_list_1 == nullptr);
1244 c2 = while_stepping->body_list_0.get ();
1245 for (; c2; c2 = c2->next)
1246 {
1247 if (c2->control_type == while_stepping_control)
1248 error (_("The 'while-stepping' command cannot be nested"));
1249 }
1250 }
1251 }
1252 else
1253 {
1254 check_no_tracepoint_commands (commands);
1255 }
1256 }
1257
1258 /* Return a vector of all the static tracepoints set at ADDR. The
1259 caller is responsible for releasing the vector. */
1260
1261 std::vector<breakpoint *>
1262 static_tracepoints_here (CORE_ADDR addr)
1263 {
1264 struct breakpoint *b;
1265 std::vector<breakpoint *> found;
1266 struct bp_location *loc;
1267
1268 ALL_BREAKPOINTS (b)
1269 if (b->type == bp_static_tracepoint)
1270 {
1271 for (loc = b->loc; loc; loc = loc->next)
1272 if (loc->address == addr)
1273 found.push_back (b);
1274 }
1275
1276 return found;
1277 }
1278
1279 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1280 validate that only allowed commands are included. */
1281
1282 void
1283 breakpoint_set_commands (struct breakpoint *b,
1284 counted_command_line &&commands)
1285 {
1286 validate_commands_for_breakpoint (b, commands.get ());
1287
1288 b->commands = std::move (commands);
1289 gdb::observers::breakpoint_modified.notify (b);
1290 }
1291
1292 /* Set the internal `silent' flag on the breakpoint. Note that this
1293 is not the same as the "silent" that may appear in the breakpoint's
1294 commands. */
1295
1296 void
1297 breakpoint_set_silent (struct breakpoint *b, int silent)
1298 {
1299 int old_silent = b->silent;
1300
1301 b->silent = silent;
1302 if (old_silent != silent)
1303 gdb::observers::breakpoint_modified.notify (b);
1304 }
1305
1306 /* Set the thread for this breakpoint. If THREAD is -1, make the
1307 breakpoint work for any thread. */
1308
1309 void
1310 breakpoint_set_thread (struct breakpoint *b, int thread)
1311 {
1312 int old_thread = b->thread;
1313
1314 b->thread = thread;
1315 if (old_thread != thread)
1316 gdb::observers::breakpoint_modified.notify (b);
1317 }
1318
1319 /* Set the task for this breakpoint. If TASK is 0, make the
1320 breakpoint work for any task. */
1321
1322 void
1323 breakpoint_set_task (struct breakpoint *b, int task)
1324 {
1325 int old_task = b->task;
1326
1327 b->task = task;
1328 if (old_task != task)
1329 gdb::observers::breakpoint_modified.notify (b);
1330 }
1331
1332 static void
1333 commands_command_1 (const char *arg, int from_tty,
1334 struct command_line *control)
1335 {
1336 counted_command_line cmd;
1337 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1338 NULL after the call to read_command_lines if the user provides an empty
1339 list of command by just typing "end". */
1340 bool cmd_read = false;
1341
1342 std::string new_arg;
1343
1344 if (arg == NULL || !*arg)
1345 {
1346 /* Argument not explicitly given. Synthesize it. */
1347 if (breakpoint_count - prev_breakpoint_count > 1)
1348 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1349 breakpoint_count);
1350 else if (breakpoint_count > 0)
1351 new_arg = string_printf ("%d", breakpoint_count);
1352 }
1353 else
1354 {
1355 /* Create a copy of ARG. This is needed because the "commands"
1356 command may be coming from a script. In that case, the read
1357 line buffer is going to be overwritten in the lambda of
1358 'map_breakpoint_numbers' below when reading the next line
1359 before we are are done parsing the breakpoint numbers. */
1360 new_arg = arg;
1361 }
1362 arg = new_arg.c_str ();
1363
1364 map_breakpoint_numbers
1365 (arg, [&] (breakpoint *b)
1366 {
1367 if (!cmd_read)
1368 {
1369 gdb_assert (cmd == NULL);
1370 if (control != NULL)
1371 cmd = control->body_list_0;
1372 else
1373 {
1374 std::string str
1375 = string_printf (_("Type commands for breakpoint(s) "
1376 "%s, one per line."),
1377 arg);
1378
1379 auto do_validate = [=] (const char *line)
1380 {
1381 validate_actionline (line, b);
1382 };
1383 gdb::function_view<void (const char *)> validator;
1384 if (is_tracepoint (b))
1385 validator = do_validate;
1386
1387 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1388 }
1389 cmd_read = true;
1390 }
1391
1392 /* If a breakpoint was on the list more than once, we don't need to
1393 do anything. */
1394 if (b->commands != cmd)
1395 {
1396 validate_commands_for_breakpoint (b, cmd.get ());
1397 b->commands = cmd;
1398 gdb::observers::breakpoint_modified.notify (b);
1399 }
1400 });
1401 }
1402
1403 static void
1404 commands_command (const char *arg, int from_tty)
1405 {
1406 commands_command_1 (arg, from_tty, NULL);
1407 }
1408
1409 /* Like commands_command, but instead of reading the commands from
1410 input stream, takes them from an already parsed command structure.
1411
1412 This is used by cli-script.c to DTRT with breakpoint commands
1413 that are part of if and while bodies. */
1414 enum command_control_type
1415 commands_from_control_command (const char *arg, struct command_line *cmd)
1416 {
1417 commands_command_1 (arg, 0, cmd);
1418 return simple_control;
1419 }
1420
1421 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1422
1423 static int
1424 bp_location_has_shadow (struct bp_location *bl)
1425 {
1426 if (bl->loc_type != bp_loc_software_breakpoint)
1427 return 0;
1428 if (!bl->inserted)
1429 return 0;
1430 if (bl->target_info.shadow_len == 0)
1431 /* BL isn't valid, or doesn't shadow memory. */
1432 return 0;
1433 return 1;
1434 }
1435
1436 /* Update BUF, which is LEN bytes read from the target address
1437 MEMADDR, by replacing a memory breakpoint with its shadowed
1438 contents.
1439
1440 If READBUF is not NULL, this buffer must not overlap with the of
1441 the breakpoint location's shadow_contents buffer. Otherwise, a
1442 failed assertion internal error will be raised. */
1443
1444 static void
1445 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1446 const gdb_byte *writebuf_org,
1447 ULONGEST memaddr, LONGEST len,
1448 struct bp_target_info *target_info,
1449 struct gdbarch *gdbarch)
1450 {
1451 /* Now do full processing of the found relevant range of elements. */
1452 CORE_ADDR bp_addr = 0;
1453 int bp_size = 0;
1454 int bptoffset = 0;
1455
1456 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1457 current_program_space->aspace, 0))
1458 {
1459 /* The breakpoint is inserted in a different address space. */
1460 return;
1461 }
1462
1463 /* Addresses and length of the part of the breakpoint that
1464 we need to copy. */
1465 bp_addr = target_info->placed_address;
1466 bp_size = target_info->shadow_len;
1467
1468 if (bp_addr + bp_size <= memaddr)
1469 {
1470 /* The breakpoint is entirely before the chunk of memory we are
1471 reading. */
1472 return;
1473 }
1474
1475 if (bp_addr >= memaddr + len)
1476 {
1477 /* The breakpoint is entirely after the chunk of memory we are
1478 reading. */
1479 return;
1480 }
1481
1482 /* Offset within shadow_contents. */
1483 if (bp_addr < memaddr)
1484 {
1485 /* Only copy the second part of the breakpoint. */
1486 bp_size -= memaddr - bp_addr;
1487 bptoffset = memaddr - bp_addr;
1488 bp_addr = memaddr;
1489 }
1490
1491 if (bp_addr + bp_size > memaddr + len)
1492 {
1493 /* Only copy the first part of the breakpoint. */
1494 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1495 }
1496
1497 if (readbuf != NULL)
1498 {
1499 /* Verify that the readbuf buffer does not overlap with the
1500 shadow_contents buffer. */
1501 gdb_assert (target_info->shadow_contents >= readbuf + len
1502 || readbuf >= (target_info->shadow_contents
1503 + target_info->shadow_len));
1504
1505 /* Update the read buffer with this inserted breakpoint's
1506 shadow. */
1507 memcpy (readbuf + bp_addr - memaddr,
1508 target_info->shadow_contents + bptoffset, bp_size);
1509 }
1510 else
1511 {
1512 const unsigned char *bp;
1513 CORE_ADDR addr = target_info->reqstd_address;
1514 int placed_size;
1515
1516 /* Update the shadow with what we want to write to memory. */
1517 memcpy (target_info->shadow_contents + bptoffset,
1518 writebuf_org + bp_addr - memaddr, bp_size);
1519
1520 /* Determine appropriate breakpoint contents and size for this
1521 address. */
1522 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1523
1524 /* Update the final write buffer with this inserted
1525 breakpoint's INSN. */
1526 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1527 }
1528 }
1529
1530 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1531 by replacing any memory breakpoints with their shadowed contents.
1532
1533 If READBUF is not NULL, this buffer must not overlap with any of
1534 the breakpoint location's shadow_contents buffers. Otherwise,
1535 a failed assertion internal error will be raised.
1536
1537 The range of shadowed area by each bp_location is:
1538 bl->address - bp_locations_placed_address_before_address_max
1539 up to bl->address + bp_locations_shadow_len_after_address_max
1540 The range we were requested to resolve shadows for is:
1541 memaddr ... memaddr + len
1542 Thus the safe cutoff boundaries for performance optimization are
1543 memaddr + len <= (bl->address
1544 - bp_locations_placed_address_before_address_max)
1545 and:
1546 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1547
1548 void
1549 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1550 const gdb_byte *writebuf_org,
1551 ULONGEST memaddr, LONGEST len)
1552 {
1553 /* Left boundary, right boundary and median element of our binary
1554 search. */
1555 unsigned bc_l, bc_r, bc;
1556
1557 /* Find BC_L which is a leftmost element which may affect BUF
1558 content. It is safe to report lower value but a failure to
1559 report higher one. */
1560
1561 bc_l = 0;
1562 bc_r = bp_locations_count;
1563 while (bc_l + 1 < bc_r)
1564 {
1565 struct bp_location *bl;
1566
1567 bc = (bc_l + bc_r) / 2;
1568 bl = bp_locations[bc];
1569
1570 /* Check first BL->ADDRESS will not overflow due to the added
1571 constant. Then advance the left boundary only if we are sure
1572 the BC element can in no way affect the BUF content (MEMADDR
1573 to MEMADDR + LEN range).
1574
1575 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1576 offset so that we cannot miss a breakpoint with its shadow
1577 range tail still reaching MEMADDR. */
1578
1579 if ((bl->address + bp_locations_shadow_len_after_address_max
1580 >= bl->address)
1581 && (bl->address + bp_locations_shadow_len_after_address_max
1582 <= memaddr))
1583 bc_l = bc;
1584 else
1585 bc_r = bc;
1586 }
1587
1588 /* Due to the binary search above, we need to make sure we pick the
1589 first location that's at BC_L's address. E.g., if there are
1590 multiple locations at the same address, BC_L may end up pointing
1591 at a duplicate location, and miss the "master"/"inserted"
1592 location. Say, given locations L1, L2 and L3 at addresses A and
1593 B:
1594
1595 L1@A, L2@A, L3@B, ...
1596
1597 BC_L could end up pointing at location L2, while the "master"
1598 location could be L1. Since the `loc->inserted' flag is only set
1599 on "master" locations, we'd forget to restore the shadow of L1
1600 and L2. */
1601 while (bc_l > 0
1602 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1603 bc_l--;
1604
1605 /* Now do full processing of the found relevant range of elements. */
1606
1607 for (bc = bc_l; bc < bp_locations_count; bc++)
1608 {
1609 struct bp_location *bl = bp_locations[bc];
1610
1611 /* bp_location array has BL->OWNER always non-NULL. */
1612 if (bl->owner->type == bp_none)
1613 warning (_("reading through apparently deleted breakpoint #%d?"),
1614 bl->owner->number);
1615
1616 /* Performance optimization: any further element can no longer affect BUF
1617 content. */
1618
1619 if (bl->address >= bp_locations_placed_address_before_address_max
1620 && memaddr + len <= (bl->address
1621 - bp_locations_placed_address_before_address_max))
1622 break;
1623
1624 if (!bp_location_has_shadow (bl))
1625 continue;
1626
1627 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1628 memaddr, len, &bl->target_info, bl->gdbarch);
1629 }
1630 }
1631
1632 /* See breakpoint.h. */
1633
1634 bool
1635 is_breakpoint (const struct breakpoint *bpt)
1636 {
1637 return (bpt->type == bp_breakpoint
1638 || bpt->type == bp_hardware_breakpoint
1639 || bpt->type == bp_dprintf);
1640 }
1641
1642 /* Return true if BPT is of any hardware watchpoint kind. */
1643
1644 static bool
1645 is_hardware_watchpoint (const struct breakpoint *bpt)
1646 {
1647 return (bpt->type == bp_hardware_watchpoint
1648 || bpt->type == bp_read_watchpoint
1649 || bpt->type == bp_access_watchpoint);
1650 }
1651
1652 /* See breakpoint.h. */
1653
1654 bool
1655 is_watchpoint (const struct breakpoint *bpt)
1656 {
1657 return (is_hardware_watchpoint (bpt)
1658 || bpt->type == bp_watchpoint);
1659 }
1660
1661 /* Returns true if the current thread and its running state are safe
1662 to evaluate or update watchpoint B. Watchpoints on local
1663 expressions need to be evaluated in the context of the thread that
1664 was current when the watchpoint was created, and, that thread needs
1665 to be stopped to be able to select the correct frame context.
1666 Watchpoints on global expressions can be evaluated on any thread,
1667 and in any state. It is presently left to the target allowing
1668 memory accesses when threads are running. */
1669
1670 static int
1671 watchpoint_in_thread_scope (struct watchpoint *b)
1672 {
1673 return (b->pspace == current_program_space
1674 && (b->watchpoint_thread == null_ptid
1675 || (inferior_ptid == b->watchpoint_thread
1676 && !inferior_thread ()->executing)));
1677 }
1678
1679 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1680 associated bp_watchpoint_scope breakpoint. */
1681
1682 static void
1683 watchpoint_del_at_next_stop (struct watchpoint *w)
1684 {
1685 if (w->related_breakpoint != w)
1686 {
1687 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1688 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1689 w->related_breakpoint->disposition = disp_del_at_next_stop;
1690 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1691 w->related_breakpoint = w;
1692 }
1693 w->disposition = disp_del_at_next_stop;
1694 }
1695
1696 /* Extract a bitfield value from value VAL using the bit parameters contained in
1697 watchpoint W. */
1698
1699 static struct value *
1700 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1701 {
1702 struct value *bit_val;
1703
1704 if (val == NULL)
1705 return NULL;
1706
1707 bit_val = allocate_value (value_type (val));
1708
1709 unpack_value_bitfield (bit_val,
1710 w->val_bitpos,
1711 w->val_bitsize,
1712 value_contents_for_printing (val),
1713 value_offset (val),
1714 val);
1715
1716 return bit_val;
1717 }
1718
1719 /* Allocate a dummy location and add it to B, which must be a software
1720 watchpoint. This is required because even if a software watchpoint
1721 is not watching any memory, bpstat_stop_status requires a location
1722 to be able to report stops. */
1723
1724 static void
1725 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1726 struct program_space *pspace)
1727 {
1728 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1729
1730 b->loc = allocate_bp_location (b);
1731 b->loc->pspace = pspace;
1732 b->loc->address = -1;
1733 b->loc->length = -1;
1734 }
1735
1736 /* Returns true if B is a software watchpoint that is not watching any
1737 memory (e.g., "watch $pc"). */
1738
1739 static bool
1740 is_no_memory_software_watchpoint (struct breakpoint *b)
1741 {
1742 return (b->type == bp_watchpoint
1743 && b->loc != NULL
1744 && b->loc->next == NULL
1745 && b->loc->address == -1
1746 && b->loc->length == -1);
1747 }
1748
1749 /* Assuming that B is a watchpoint:
1750 - Reparse watchpoint expression, if REPARSE is non-zero
1751 - Evaluate expression and store the result in B->val
1752 - Evaluate the condition if there is one, and store the result
1753 in b->loc->cond.
1754 - Update the list of values that must be watched in B->loc.
1755
1756 If the watchpoint disposition is disp_del_at_next_stop, then do
1757 nothing. If this is local watchpoint that is out of scope, delete
1758 it.
1759
1760 Even with `set breakpoint always-inserted on' the watchpoints are
1761 removed + inserted on each stop here. Normal breakpoints must
1762 never be removed because they might be missed by a running thread
1763 when debugging in non-stop mode. On the other hand, hardware
1764 watchpoints (is_hardware_watchpoint; processed here) are specific
1765 to each LWP since they are stored in each LWP's hardware debug
1766 registers. Therefore, such LWP must be stopped first in order to
1767 be able to modify its hardware watchpoints.
1768
1769 Hardware watchpoints must be reset exactly once after being
1770 presented to the user. It cannot be done sooner, because it would
1771 reset the data used to present the watchpoint hit to the user. And
1772 it must not be done later because it could display the same single
1773 watchpoint hit during multiple GDB stops. Note that the latter is
1774 relevant only to the hardware watchpoint types bp_read_watchpoint
1775 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1776 not user-visible - its hit is suppressed if the memory content has
1777 not changed.
1778
1779 The following constraints influence the location where we can reset
1780 hardware watchpoints:
1781
1782 * target_stopped_by_watchpoint and target_stopped_data_address are
1783 called several times when GDB stops.
1784
1785 [linux]
1786 * Multiple hardware watchpoints can be hit at the same time,
1787 causing GDB to stop. GDB only presents one hardware watchpoint
1788 hit at a time as the reason for stopping, and all the other hits
1789 are presented later, one after the other, each time the user
1790 requests the execution to be resumed. Execution is not resumed
1791 for the threads still having pending hit event stored in
1792 LWP_INFO->STATUS. While the watchpoint is already removed from
1793 the inferior on the first stop the thread hit event is kept being
1794 reported from its cached value by linux_nat_stopped_data_address
1795 until the real thread resume happens after the watchpoint gets
1796 presented and thus its LWP_INFO->STATUS gets reset.
1797
1798 Therefore the hardware watchpoint hit can get safely reset on the
1799 watchpoint removal from inferior. */
1800
1801 static void
1802 update_watchpoint (struct watchpoint *b, int reparse)
1803 {
1804 int within_current_scope;
1805 struct frame_id saved_frame_id;
1806 int frame_saved;
1807
1808 /* If this is a local watchpoint, we only want to check if the
1809 watchpoint frame is in scope if the current thread is the thread
1810 that was used to create the watchpoint. */
1811 if (!watchpoint_in_thread_scope (b))
1812 return;
1813
1814 if (b->disposition == disp_del_at_next_stop)
1815 return;
1816
1817 frame_saved = 0;
1818
1819 /* Determine if the watchpoint is within scope. */
1820 if (b->exp_valid_block == NULL)
1821 within_current_scope = 1;
1822 else
1823 {
1824 struct frame_info *fi = get_current_frame ();
1825 struct gdbarch *frame_arch = get_frame_arch (fi);
1826 CORE_ADDR frame_pc = get_frame_pc (fi);
1827
1828 /* If we're at a point where the stack has been destroyed
1829 (e.g. in a function epilogue), unwinding may not work
1830 properly. Do not attempt to recreate locations at this
1831 point. See similar comments in watchpoint_check. */
1832 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1833 return;
1834
1835 /* Save the current frame's ID so we can restore it after
1836 evaluating the watchpoint expression on its own frame. */
1837 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1838 took a frame parameter, so that we didn't have to change the
1839 selected frame. */
1840 frame_saved = 1;
1841 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1842
1843 fi = frame_find_by_id (b->watchpoint_frame);
1844 within_current_scope = (fi != NULL);
1845 if (within_current_scope)
1846 select_frame (fi);
1847 }
1848
1849 /* We don't free locations. They are stored in the bp_location array
1850 and update_global_location_list will eventually delete them and
1851 remove breakpoints if needed. */
1852 b->loc = NULL;
1853
1854 if (within_current_scope && reparse)
1855 {
1856 const char *s;
1857
1858 b->exp.reset ();
1859 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1860 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1861 /* If the meaning of expression itself changed, the old value is
1862 no longer relevant. We don't want to report a watchpoint hit
1863 to the user when the old value and the new value may actually
1864 be completely different objects. */
1865 b->val = NULL;
1866 b->val_valid = false;
1867
1868 /* Note that unlike with breakpoints, the watchpoint's condition
1869 expression is stored in the breakpoint object, not in the
1870 locations (re)created below. */
1871 if (b->cond_string != NULL)
1872 {
1873 b->cond_exp.reset ();
1874
1875 s = b->cond_string;
1876 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1877 }
1878 }
1879
1880 /* If we failed to parse the expression, for example because
1881 it refers to a global variable in a not-yet-loaded shared library,
1882 don't try to insert watchpoint. We don't automatically delete
1883 such watchpoint, though, since failure to parse expression
1884 is different from out-of-scope watchpoint. */
1885 if (!target_has_execution ())
1886 {
1887 /* Without execution, memory can't change. No use to try and
1888 set watchpoint locations. The watchpoint will be reset when
1889 the target gains execution, through breakpoint_re_set. */
1890 if (!can_use_hw_watchpoints)
1891 {
1892 if (b->ops->works_in_software_mode (b))
1893 b->type = bp_watchpoint;
1894 else
1895 error (_("Can't set read/access watchpoint when "
1896 "hardware watchpoints are disabled."));
1897 }
1898 }
1899 else if (within_current_scope && b->exp)
1900 {
1901 std::vector<value_ref_ptr> val_chain;
1902 struct value *v, *result;
1903 struct program_space *frame_pspace;
1904
1905 fetch_subexp_value (b->exp.get (), b->exp->op.get (), &v, &result,
1906 &val_chain, false);
1907
1908 /* Avoid setting b->val if it's already set. The meaning of
1909 b->val is 'the last value' user saw, and we should update
1910 it only if we reported that last value to user. As it
1911 happens, the code that reports it updates b->val directly.
1912 We don't keep track of the memory value for masked
1913 watchpoints. */
1914 if (!b->val_valid && !is_masked_watchpoint (b))
1915 {
1916 if (b->val_bitsize != 0)
1917 v = extract_bitfield_from_watchpoint_value (b, v);
1918 b->val = release_value (v);
1919 b->val_valid = true;
1920 }
1921
1922 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1923
1924 /* Look at each value on the value chain. */
1925 gdb_assert (!val_chain.empty ());
1926 for (const value_ref_ptr &iter : val_chain)
1927 {
1928 v = iter.get ();
1929
1930 /* If it's a memory location, and GDB actually needed
1931 its contents to evaluate the expression, then we
1932 must watch it. If the first value returned is
1933 still lazy, that means an error occurred reading it;
1934 watch it anyway in case it becomes readable. */
1935 if (VALUE_LVAL (v) == lval_memory
1936 && (v == val_chain[0] || ! value_lazy (v)))
1937 {
1938 struct type *vtype = check_typedef (value_type (v));
1939
1940 /* We only watch structs and arrays if user asked
1941 for it explicitly, never if they just happen to
1942 appear in the middle of some value chain. */
1943 if (v == result
1944 || (vtype->code () != TYPE_CODE_STRUCT
1945 && vtype->code () != TYPE_CODE_ARRAY))
1946 {
1947 CORE_ADDR addr;
1948 enum target_hw_bp_type type;
1949 struct bp_location *loc, **tmp;
1950 int bitpos = 0, bitsize = 0;
1951
1952 if (value_bitsize (v) != 0)
1953 {
1954 /* Extract the bit parameters out from the bitfield
1955 sub-expression. */
1956 bitpos = value_bitpos (v);
1957 bitsize = value_bitsize (v);
1958 }
1959 else if (v == result && b->val_bitsize != 0)
1960 {
1961 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1962 lvalue whose bit parameters are saved in the fields
1963 VAL_BITPOS and VAL_BITSIZE. */
1964 bitpos = b->val_bitpos;
1965 bitsize = b->val_bitsize;
1966 }
1967
1968 addr = value_address (v);
1969 if (bitsize != 0)
1970 {
1971 /* Skip the bytes that don't contain the bitfield. */
1972 addr += bitpos / 8;
1973 }
1974
1975 type = hw_write;
1976 if (b->type == bp_read_watchpoint)
1977 type = hw_read;
1978 else if (b->type == bp_access_watchpoint)
1979 type = hw_access;
1980
1981 loc = allocate_bp_location (b);
1982 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1983 ;
1984 *tmp = loc;
1985 loc->gdbarch = value_type (v)->arch ();
1986
1987 loc->pspace = frame_pspace;
1988 loc->address = address_significant (loc->gdbarch, addr);
1989
1990 if (bitsize != 0)
1991 {
1992 /* Just cover the bytes that make up the bitfield. */
1993 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1994 }
1995 else
1996 loc->length = TYPE_LENGTH (value_type (v));
1997
1998 loc->watchpoint_type = type;
1999 }
2000 }
2001 }
2002
2003 /* Change the type of breakpoint between hardware assisted or
2004 an ordinary watchpoint depending on the hardware support
2005 and free hardware slots. REPARSE is set when the inferior
2006 is started. */
2007 if (reparse)
2008 {
2009 int reg_cnt;
2010 enum bp_loc_type loc_type;
2011 struct bp_location *bl;
2012
2013 reg_cnt = can_use_hardware_watchpoint (val_chain);
2014
2015 if (reg_cnt)
2016 {
2017 int i, target_resources_ok, other_type_used;
2018 enum bptype type;
2019
2020 /* Use an exact watchpoint when there's only one memory region to be
2021 watched, and only one debug register is needed to watch it. */
2022 b->exact = target_exact_watchpoints && reg_cnt == 1;
2023
2024 /* We need to determine how many resources are already
2025 used for all other hardware watchpoints plus this one
2026 to see if we still have enough resources to also fit
2027 this watchpoint in as well. */
2028
2029 /* If this is a software watchpoint, we try to turn it
2030 to a hardware one -- count resources as if B was of
2031 hardware watchpoint type. */
2032 type = b->type;
2033 if (type == bp_watchpoint)
2034 type = bp_hardware_watchpoint;
2035
2036 /* This watchpoint may or may not have been placed on
2037 the list yet at this point (it won't be in the list
2038 if we're trying to create it for the first time,
2039 through watch_command), so always account for it
2040 manually. */
2041
2042 /* Count resources used by all watchpoints except B. */
2043 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
2044
2045 /* Add in the resources needed for B. */
2046 i += hw_watchpoint_use_count (b);
2047
2048 target_resources_ok
2049 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2050 if (target_resources_ok <= 0)
2051 {
2052 int sw_mode = b->ops->works_in_software_mode (b);
2053
2054 if (target_resources_ok == 0 && !sw_mode)
2055 error (_("Target does not support this type of "
2056 "hardware watchpoint."));
2057 else if (target_resources_ok < 0 && !sw_mode)
2058 error (_("There are not enough available hardware "
2059 "resources for this watchpoint."));
2060
2061 /* Downgrade to software watchpoint. */
2062 b->type = bp_watchpoint;
2063 }
2064 else
2065 {
2066 /* If this was a software watchpoint, we've just
2067 found we have enough resources to turn it to a
2068 hardware watchpoint. Otherwise, this is a
2069 nop. */
2070 b->type = type;
2071 }
2072 }
2073 else if (!b->ops->works_in_software_mode (b))
2074 {
2075 if (!can_use_hw_watchpoints)
2076 error (_("Can't set read/access watchpoint when "
2077 "hardware watchpoints are disabled."));
2078 else
2079 error (_("Expression cannot be implemented with "
2080 "read/access watchpoint."));
2081 }
2082 else
2083 b->type = bp_watchpoint;
2084
2085 loc_type = (b->type == bp_watchpoint? bp_loc_other
2086 : bp_loc_hardware_watchpoint);
2087 for (bl = b->loc; bl; bl = bl->next)
2088 bl->loc_type = loc_type;
2089 }
2090
2091 /* If a software watchpoint is not watching any memory, then the
2092 above left it without any location set up. But,
2093 bpstat_stop_status requires a location to be able to report
2094 stops, so make sure there's at least a dummy one. */
2095 if (b->type == bp_watchpoint && b->loc == NULL)
2096 software_watchpoint_add_no_memory_location (b, frame_pspace);
2097 }
2098 else if (!within_current_scope)
2099 {
2100 printf_filtered (_("\
2101 Watchpoint %d deleted because the program has left the block\n\
2102 in which its expression is valid.\n"),
2103 b->number);
2104 watchpoint_del_at_next_stop (b);
2105 }
2106
2107 /* Restore the selected frame. */
2108 if (frame_saved)
2109 select_frame (frame_find_by_id (saved_frame_id));
2110 }
2111
2112
2113 /* Returns 1 iff breakpoint location should be
2114 inserted in the inferior. We don't differentiate the type of BL's owner
2115 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2116 breakpoint_ops is not defined, because in insert_bp_location,
2117 tracepoint's insert_location will not be called. */
2118 static int
2119 should_be_inserted (struct bp_location *bl)
2120 {
2121 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2122 return 0;
2123
2124 if (bl->owner->disposition == disp_del_at_next_stop)
2125 return 0;
2126
2127 if (!bl->enabled || bl->disabled_by_cond
2128 || bl->shlib_disabled || bl->duplicate)
2129 return 0;
2130
2131 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2132 return 0;
2133
2134 /* This is set for example, when we're attached to the parent of a
2135 vfork, and have detached from the child. The child is running
2136 free, and we expect it to do an exec or exit, at which point the
2137 OS makes the parent schedulable again (and the target reports
2138 that the vfork is done). Until the child is done with the shared
2139 memory region, do not insert breakpoints in the parent, otherwise
2140 the child could still trip on the parent's breakpoints. Since
2141 the parent is blocked anyway, it won't miss any breakpoint. */
2142 if (bl->pspace->breakpoints_not_allowed)
2143 return 0;
2144
2145 /* Don't insert a breakpoint if we're trying to step past its
2146 location, except if the breakpoint is a single-step breakpoint,
2147 and the breakpoint's thread is the thread which is stepping past
2148 a breakpoint. */
2149 if ((bl->loc_type == bp_loc_software_breakpoint
2150 || bl->loc_type == bp_loc_hardware_breakpoint)
2151 && stepping_past_instruction_at (bl->pspace->aspace,
2152 bl->address)
2153 /* The single-step breakpoint may be inserted at the location
2154 we're trying to step if the instruction branches to itself.
2155 However, the instruction won't be executed at all and it may
2156 break the semantics of the instruction, for example, the
2157 instruction is a conditional branch or updates some flags.
2158 We can't fix it unless GDB is able to emulate the instruction
2159 or switch to displaced stepping. */
2160 && !(bl->owner->type == bp_single_step
2161 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2162 {
2163 infrun_debug_printf ("skipping breakpoint: stepping past insn at: %s",
2164 paddress (bl->gdbarch, bl->address));
2165 return 0;
2166 }
2167
2168 /* Don't insert watchpoints if we're trying to step past the
2169 instruction that triggered one. */
2170 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2171 && stepping_past_nonsteppable_watchpoint ())
2172 {
2173 infrun_debug_printf ("stepping past non-steppable watchpoint. "
2174 "skipping watchpoint at %s:%d",
2175 paddress (bl->gdbarch, bl->address), bl->length);
2176 return 0;
2177 }
2178
2179 return 1;
2180 }
2181
2182 /* Same as should_be_inserted but does the check assuming
2183 that the location is not duplicated. */
2184
2185 static int
2186 unduplicated_should_be_inserted (struct bp_location *bl)
2187 {
2188 int result;
2189 const int save_duplicate = bl->duplicate;
2190
2191 bl->duplicate = 0;
2192 result = should_be_inserted (bl);
2193 bl->duplicate = save_duplicate;
2194 return result;
2195 }
2196
2197 /* Parses a conditional described by an expression COND into an
2198 agent expression bytecode suitable for evaluation
2199 by the bytecode interpreter. Return NULL if there was
2200 any error during parsing. */
2201
2202 static agent_expr_up
2203 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2204 {
2205 if (cond == NULL)
2206 return NULL;
2207
2208 agent_expr_up aexpr;
2209
2210 /* We don't want to stop processing, so catch any errors
2211 that may show up. */
2212 try
2213 {
2214 aexpr = gen_eval_for_expr (scope, cond);
2215 }
2216
2217 catch (const gdb_exception_error &ex)
2218 {
2219 /* If we got here, it means the condition could not be parsed to a valid
2220 bytecode expression and thus can't be evaluated on the target's side.
2221 It's no use iterating through the conditions. */
2222 }
2223
2224 /* We have a valid agent expression. */
2225 return aexpr;
2226 }
2227
2228 /* Based on location BL, create a list of breakpoint conditions to be
2229 passed on to the target. If we have duplicated locations with different
2230 conditions, we will add such conditions to the list. The idea is that the
2231 target will evaluate the list of conditions and will only notify GDB when
2232 one of them is true. */
2233
2234 static void
2235 build_target_condition_list (struct bp_location *bl)
2236 {
2237 struct bp_location **locp = NULL, **loc2p;
2238 int null_condition_or_parse_error = 0;
2239 int modified = bl->needs_update;
2240 struct bp_location *loc;
2241
2242 /* Release conditions left over from a previous insert. */
2243 bl->target_info.conditions.clear ();
2244
2245 /* This is only meaningful if the target is
2246 evaluating conditions and if the user has
2247 opted for condition evaluation on the target's
2248 side. */
2249 if (gdb_evaluates_breakpoint_condition_p ()
2250 || !target_supports_evaluation_of_breakpoint_conditions ())
2251 return;
2252
2253 /* Do a first pass to check for locations with no assigned
2254 conditions or conditions that fail to parse to a valid agent
2255 expression bytecode. If any of these happen, then it's no use to
2256 send conditions to the target since this location will always
2257 trigger and generate a response back to GDB. Note we consider
2258 all locations at the same address irrespective of type, i.e.,
2259 even if the locations aren't considered duplicates (e.g.,
2260 software breakpoint and hardware breakpoint at the same
2261 address). */
2262 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2263 {
2264 loc = (*loc2p);
2265 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2266 {
2267 if (modified)
2268 {
2269 /* Re-parse the conditions since something changed. In that
2270 case we already freed the condition bytecodes (see
2271 force_breakpoint_reinsertion). We just
2272 need to parse the condition to bytecodes again. */
2273 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2274 loc->cond.get ());
2275 }
2276
2277 /* If we have a NULL bytecode expression, it means something
2278 went wrong or we have a null condition expression. */
2279 if (!loc->cond_bytecode)
2280 {
2281 null_condition_or_parse_error = 1;
2282 break;
2283 }
2284 }
2285 }
2286
2287 /* If any of these happened, it means we will have to evaluate the conditions
2288 for the location's address on gdb's side. It is no use keeping bytecodes
2289 for all the other duplicate locations, thus we free all of them here.
2290
2291 This is so we have a finer control over which locations' conditions are
2292 being evaluated by GDB or the remote stub. */
2293 if (null_condition_or_parse_error)
2294 {
2295 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2296 {
2297 loc = (*loc2p);
2298 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2299 {
2300 /* Only go as far as the first NULL bytecode is
2301 located. */
2302 if (!loc->cond_bytecode)
2303 return;
2304
2305 loc->cond_bytecode.reset ();
2306 }
2307 }
2308 }
2309
2310 /* No NULL conditions or failed bytecode generation. Build a
2311 condition list for this location's address. If we have software
2312 and hardware locations at the same address, they aren't
2313 considered duplicates, but we still marge all the conditions
2314 anyway, as it's simpler, and doesn't really make a practical
2315 difference. */
2316 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2317 {
2318 loc = (*loc2p);
2319 if (loc->cond
2320 && is_breakpoint (loc->owner)
2321 && loc->pspace->num == bl->pspace->num
2322 && loc->owner->enable_state == bp_enabled
2323 && loc->enabled
2324 && !loc->disabled_by_cond)
2325 {
2326 /* Add the condition to the vector. This will be used later
2327 to send the conditions to the target. */
2328 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2329 }
2330 }
2331
2332 return;
2333 }
2334
2335 /* Parses a command described by string CMD into an agent expression
2336 bytecode suitable for evaluation by the bytecode interpreter.
2337 Return NULL if there was any error during parsing. */
2338
2339 static agent_expr_up
2340 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2341 {
2342 const char *cmdrest;
2343 const char *format_start, *format_end;
2344 struct gdbarch *gdbarch = get_current_arch ();
2345
2346 if (cmd == NULL)
2347 return NULL;
2348
2349 cmdrest = cmd;
2350
2351 if (*cmdrest == ',')
2352 ++cmdrest;
2353 cmdrest = skip_spaces (cmdrest);
2354
2355 if (*cmdrest++ != '"')
2356 error (_("No format string following the location"));
2357
2358 format_start = cmdrest;
2359
2360 format_pieces fpieces (&cmdrest);
2361
2362 format_end = cmdrest;
2363
2364 if (*cmdrest++ != '"')
2365 error (_("Bad format string, non-terminated '\"'."));
2366
2367 cmdrest = skip_spaces (cmdrest);
2368
2369 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2370 error (_("Invalid argument syntax"));
2371
2372 if (*cmdrest == ',')
2373 cmdrest++;
2374 cmdrest = skip_spaces (cmdrest);
2375
2376 /* For each argument, make an expression. */
2377
2378 std::vector<struct expression *> argvec;
2379 while (*cmdrest != '\0')
2380 {
2381 const char *cmd1;
2382
2383 cmd1 = cmdrest;
2384 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2385 argvec.push_back (expr.release ());
2386 cmdrest = cmd1;
2387 if (*cmdrest == ',')
2388 ++cmdrest;
2389 }
2390
2391 agent_expr_up aexpr;
2392
2393 /* We don't want to stop processing, so catch any errors
2394 that may show up. */
2395 try
2396 {
2397 aexpr = gen_printf (scope, gdbarch, 0, 0,
2398 format_start, format_end - format_start,
2399 argvec.size (), argvec.data ());
2400 }
2401 catch (const gdb_exception_error &ex)
2402 {
2403 /* If we got here, it means the command could not be parsed to a valid
2404 bytecode expression and thus can't be evaluated on the target's side.
2405 It's no use iterating through the other commands. */
2406 }
2407
2408 /* We have a valid agent expression, return it. */
2409 return aexpr;
2410 }
2411
2412 /* Based on location BL, create a list of breakpoint commands to be
2413 passed on to the target. If we have duplicated locations with
2414 different commands, we will add any such to the list. */
2415
2416 static void
2417 build_target_command_list (struct bp_location *bl)
2418 {
2419 struct bp_location **locp = NULL, **loc2p;
2420 int null_command_or_parse_error = 0;
2421 int modified = bl->needs_update;
2422 struct bp_location *loc;
2423
2424 /* Clear commands left over from a previous insert. */
2425 bl->target_info.tcommands.clear ();
2426
2427 if (!target_can_run_breakpoint_commands ())
2428 return;
2429
2430 /* For now, limit to agent-style dprintf breakpoints. */
2431 if (dprintf_style != dprintf_style_agent)
2432 return;
2433
2434 /* For now, if we have any location at the same address that isn't a
2435 dprintf, don't install the target-side commands, as that would
2436 make the breakpoint not be reported to the core, and we'd lose
2437 control. */
2438 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2439 {
2440 loc = (*loc2p);
2441 if (is_breakpoint (loc->owner)
2442 && loc->pspace->num == bl->pspace->num
2443 && loc->owner->type != bp_dprintf)
2444 return;
2445 }
2446
2447 /* Do a first pass to check for locations with no assigned
2448 conditions or conditions that fail to parse to a valid agent expression
2449 bytecode. If any of these happen, then it's no use to send conditions
2450 to the target since this location will always trigger and generate a
2451 response back to GDB. */
2452 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2453 {
2454 loc = (*loc2p);
2455 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2456 {
2457 if (modified)
2458 {
2459 /* Re-parse the commands since something changed. In that
2460 case we already freed the command bytecodes (see
2461 force_breakpoint_reinsertion). We just
2462 need to parse the command to bytecodes again. */
2463 loc->cmd_bytecode
2464 = parse_cmd_to_aexpr (bl->address,
2465 loc->owner->extra_string);
2466 }
2467
2468 /* If we have a NULL bytecode expression, it means something
2469 went wrong or we have a null command expression. */
2470 if (!loc->cmd_bytecode)
2471 {
2472 null_command_or_parse_error = 1;
2473 break;
2474 }
2475 }
2476 }
2477
2478 /* If anything failed, then we're not doing target-side commands,
2479 and so clean up. */
2480 if (null_command_or_parse_error)
2481 {
2482 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2483 {
2484 loc = (*loc2p);
2485 if (is_breakpoint (loc->owner)
2486 && loc->pspace->num == bl->pspace->num)
2487 {
2488 /* Only go as far as the first NULL bytecode is
2489 located. */
2490 if (loc->cmd_bytecode == NULL)
2491 return;
2492
2493 loc->cmd_bytecode.reset ();
2494 }
2495 }
2496 }
2497
2498 /* No NULL commands or failed bytecode generation. Build a command
2499 list for all duplicate locations at this location's address.
2500 Note that here we must care for whether the breakpoint location
2501 types are considered duplicates, otherwise, say, if we have a
2502 software and hardware location at the same address, the target
2503 could end up running the commands twice. For the moment, we only
2504 support targets-side commands with dprintf, but it doesn't hurt
2505 to be pedantically correct in case that changes. */
2506 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2507 {
2508 loc = (*loc2p);
2509 if (breakpoint_locations_match (bl, loc)
2510 && loc->owner->extra_string
2511 && is_breakpoint (loc->owner)
2512 && loc->pspace->num == bl->pspace->num
2513 && loc->owner->enable_state == bp_enabled
2514 && loc->enabled
2515 && !loc->disabled_by_cond)
2516 {
2517 /* Add the command to the vector. This will be used later
2518 to send the commands to the target. */
2519 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2520 }
2521 }
2522
2523 bl->target_info.persist = 0;
2524 /* Maybe flag this location as persistent. */
2525 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2526 bl->target_info.persist = 1;
2527 }
2528
2529 /* Return the kind of breakpoint on address *ADDR. Get the kind
2530 of breakpoint according to ADDR except single-step breakpoint.
2531 Get the kind of single-step breakpoint according to the current
2532 registers state. */
2533
2534 static int
2535 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2536 {
2537 if (bl->owner->type == bp_single_step)
2538 {
2539 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2540 struct regcache *regcache;
2541
2542 regcache = get_thread_regcache (thr);
2543
2544 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2545 regcache, addr);
2546 }
2547 else
2548 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2549 }
2550
2551 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2552 location. Any error messages are printed to TMP_ERROR_STREAM; and
2553 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2554 Returns 0 for success, 1 if the bp_location type is not supported or
2555 -1 for failure.
2556
2557 NOTE drow/2003-09-09: This routine could be broken down to an
2558 object-style method for each breakpoint or catchpoint type. */
2559 static int
2560 insert_bp_location (struct bp_location *bl,
2561 struct ui_file *tmp_error_stream,
2562 int *disabled_breaks,
2563 int *hw_breakpoint_error,
2564 int *hw_bp_error_explained_already)
2565 {
2566 gdb_exception bp_excpt;
2567
2568 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2569 return 0;
2570
2571 /* Note we don't initialize bl->target_info, as that wipes out
2572 the breakpoint location's shadow_contents if the breakpoint
2573 is still inserted at that location. This in turn breaks
2574 target_read_memory which depends on these buffers when
2575 a memory read is requested at the breakpoint location:
2576 Once the target_info has been wiped, we fail to see that
2577 we have a breakpoint inserted at that address and thus
2578 read the breakpoint instead of returning the data saved in
2579 the breakpoint location's shadow contents. */
2580 bl->target_info.reqstd_address = bl->address;
2581 bl->target_info.placed_address_space = bl->pspace->aspace;
2582 bl->target_info.length = bl->length;
2583
2584 /* When working with target-side conditions, we must pass all the conditions
2585 for the same breakpoint address down to the target since GDB will not
2586 insert those locations. With a list of breakpoint conditions, the target
2587 can decide when to stop and notify GDB. */
2588
2589 if (is_breakpoint (bl->owner))
2590 {
2591 build_target_condition_list (bl);
2592 build_target_command_list (bl);
2593 /* Reset the modification marker. */
2594 bl->needs_update = 0;
2595 }
2596
2597 /* If "set breakpoint auto-hw" is "on" and a software breakpoint was
2598 set at a read-only address, then a breakpoint location will have
2599 been changed to hardware breakpoint before we get here. If it is
2600 "off" however, error out before actually trying to insert the
2601 breakpoint, with a nicer error message. */
2602 if (bl->loc_type == bp_loc_software_breakpoint
2603 && !automatic_hardware_breakpoints)
2604 {
2605 mem_region *mr = lookup_mem_region (bl->address);
2606
2607 if (mr != nullptr && mr->attrib.mode != MEM_RW)
2608 {
2609 fprintf_unfiltered (tmp_error_stream,
2610 _("Cannot insert breakpoint %d.\n"
2611 "Cannot set software breakpoint "
2612 "at read-only address %s\n"),
2613 bl->owner->number,
2614 paddress (bl->gdbarch, bl->address));
2615 return 1;
2616 }
2617 }
2618
2619 if (bl->loc_type == bp_loc_software_breakpoint
2620 || bl->loc_type == bp_loc_hardware_breakpoint)
2621 {
2622 /* First check to see if we have to handle an overlay. */
2623 if (overlay_debugging == ovly_off
2624 || bl->section == NULL
2625 || !(section_is_overlay (bl->section)))
2626 {
2627 /* No overlay handling: just set the breakpoint. */
2628 try
2629 {
2630 int val;
2631
2632 val = bl->owner->ops->insert_location (bl);
2633 if (val)
2634 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2635 }
2636 catch (gdb_exception &e)
2637 {
2638 bp_excpt = std::move (e);
2639 }
2640 }
2641 else
2642 {
2643 /* This breakpoint is in an overlay section.
2644 Shall we set a breakpoint at the LMA? */
2645 if (!overlay_events_enabled)
2646 {
2647 /* Yes -- overlay event support is not active,
2648 so we must try to set a breakpoint at the LMA.
2649 This will not work for a hardware breakpoint. */
2650 if (bl->loc_type == bp_loc_hardware_breakpoint)
2651 warning (_("hardware breakpoint %d not supported in overlay!"),
2652 bl->owner->number);
2653 else
2654 {
2655 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2656 bl->section);
2657 /* Set a software (trap) breakpoint at the LMA. */
2658 bl->overlay_target_info = bl->target_info;
2659 bl->overlay_target_info.reqstd_address = addr;
2660
2661 /* No overlay handling: just set the breakpoint. */
2662 try
2663 {
2664 int val;
2665
2666 bl->overlay_target_info.kind
2667 = breakpoint_kind (bl, &addr);
2668 bl->overlay_target_info.placed_address = addr;
2669 val = target_insert_breakpoint (bl->gdbarch,
2670 &bl->overlay_target_info);
2671 if (val)
2672 bp_excpt
2673 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2674 }
2675 catch (gdb_exception &e)
2676 {
2677 bp_excpt = std::move (e);
2678 }
2679
2680 if (bp_excpt.reason != 0)
2681 fprintf_unfiltered (tmp_error_stream,
2682 "Overlay breakpoint %d "
2683 "failed: in ROM?\n",
2684 bl->owner->number);
2685 }
2686 }
2687 /* Shall we set a breakpoint at the VMA? */
2688 if (section_is_mapped (bl->section))
2689 {
2690 /* Yes. This overlay section is mapped into memory. */
2691 try
2692 {
2693 int val;
2694
2695 val = bl->owner->ops->insert_location (bl);
2696 if (val)
2697 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2698 }
2699 catch (gdb_exception &e)
2700 {
2701 bp_excpt = std::move (e);
2702 }
2703 }
2704 else
2705 {
2706 /* No. This breakpoint will not be inserted.
2707 No error, but do not mark the bp as 'inserted'. */
2708 return 0;
2709 }
2710 }
2711
2712 if (bp_excpt.reason != 0)
2713 {
2714 /* Can't set the breakpoint. */
2715
2716 /* In some cases, we might not be able to insert a
2717 breakpoint in a shared library that has already been
2718 removed, but we have not yet processed the shlib unload
2719 event. Unfortunately, some targets that implement
2720 breakpoint insertion themselves can't tell why the
2721 breakpoint insertion failed (e.g., the remote target
2722 doesn't define error codes), so we must treat generic
2723 errors as memory errors. */
2724 if (bp_excpt.reason == RETURN_ERROR
2725 && (bp_excpt.error == GENERIC_ERROR
2726 || bp_excpt.error == MEMORY_ERROR)
2727 && bl->loc_type == bp_loc_software_breakpoint
2728 && (solib_name_from_address (bl->pspace, bl->address)
2729 || shared_objfile_contains_address_p (bl->pspace,
2730 bl->address)))
2731 {
2732 /* See also: disable_breakpoints_in_shlibs. */
2733 bl->shlib_disabled = 1;
2734 gdb::observers::breakpoint_modified.notify (bl->owner);
2735 if (!*disabled_breaks)
2736 {
2737 fprintf_unfiltered (tmp_error_stream,
2738 "Cannot insert breakpoint %d.\n",
2739 bl->owner->number);
2740 fprintf_unfiltered (tmp_error_stream,
2741 "Temporarily disabling shared "
2742 "library breakpoints:\n");
2743 }
2744 *disabled_breaks = 1;
2745 fprintf_unfiltered (tmp_error_stream,
2746 "breakpoint #%d\n", bl->owner->number);
2747 return 0;
2748 }
2749 else
2750 {
2751 if (bl->loc_type == bp_loc_hardware_breakpoint)
2752 {
2753 *hw_breakpoint_error = 1;
2754 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2755 fprintf_unfiltered (tmp_error_stream,
2756 "Cannot insert hardware breakpoint %d%s",
2757 bl->owner->number,
2758 bp_excpt.message ? ":" : ".\n");
2759 if (bp_excpt.message != NULL)
2760 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2761 bp_excpt.what ());
2762 }
2763 else
2764 {
2765 if (bp_excpt.message == NULL)
2766 {
2767 std::string message
2768 = memory_error_message (TARGET_XFER_E_IO,
2769 bl->gdbarch, bl->address);
2770
2771 fprintf_unfiltered (tmp_error_stream,
2772 "Cannot insert breakpoint %d.\n"
2773 "%s\n",
2774 bl->owner->number, message.c_str ());
2775 }
2776 else
2777 {
2778 fprintf_unfiltered (tmp_error_stream,
2779 "Cannot insert breakpoint %d: %s\n",
2780 bl->owner->number,
2781 bp_excpt.what ());
2782 }
2783 }
2784 return 1;
2785
2786 }
2787 }
2788 else
2789 bl->inserted = 1;
2790
2791 return 0;
2792 }
2793
2794 else if (bl->loc_type == bp_loc_hardware_watchpoint
2795 /* NOTE drow/2003-09-08: This state only exists for removing
2796 watchpoints. It's not clear that it's necessary... */
2797 && bl->owner->disposition != disp_del_at_next_stop)
2798 {
2799 int val;
2800
2801 gdb_assert (bl->owner->ops != NULL
2802 && bl->owner->ops->insert_location != NULL);
2803
2804 val = bl->owner->ops->insert_location (bl);
2805
2806 /* If trying to set a read-watchpoint, and it turns out it's not
2807 supported, try emulating one with an access watchpoint. */
2808 if (val == 1 && bl->watchpoint_type == hw_read)
2809 {
2810 struct bp_location *loc, **loc_temp;
2811
2812 /* But don't try to insert it, if there's already another
2813 hw_access location that would be considered a duplicate
2814 of this one. */
2815 ALL_BP_LOCATIONS (loc, loc_temp)
2816 if (loc != bl
2817 && loc->watchpoint_type == hw_access
2818 && watchpoint_locations_match (bl, loc))
2819 {
2820 bl->duplicate = 1;
2821 bl->inserted = 1;
2822 bl->target_info = loc->target_info;
2823 bl->watchpoint_type = hw_access;
2824 val = 0;
2825 break;
2826 }
2827
2828 if (val == 1)
2829 {
2830 bl->watchpoint_type = hw_access;
2831 val = bl->owner->ops->insert_location (bl);
2832
2833 if (val)
2834 /* Back to the original value. */
2835 bl->watchpoint_type = hw_read;
2836 }
2837 }
2838
2839 bl->inserted = (val == 0);
2840 }
2841
2842 else if (bl->owner->type == bp_catchpoint)
2843 {
2844 int val;
2845
2846 gdb_assert (bl->owner->ops != NULL
2847 && bl->owner->ops->insert_location != NULL);
2848
2849 val = bl->owner->ops->insert_location (bl);
2850 if (val)
2851 {
2852 bl->owner->enable_state = bp_disabled;
2853
2854 if (val == 1)
2855 warning (_("\
2856 Error inserting catchpoint %d: Your system does not support this type\n\
2857 of catchpoint."), bl->owner->number);
2858 else
2859 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2860 }
2861
2862 bl->inserted = (val == 0);
2863
2864 /* We've already printed an error message if there was a problem
2865 inserting this catchpoint, and we've disabled the catchpoint,
2866 so just return success. */
2867 return 0;
2868 }
2869
2870 return 0;
2871 }
2872
2873 /* This function is called when program space PSPACE is about to be
2874 deleted. It takes care of updating breakpoints to not reference
2875 PSPACE anymore. */
2876
2877 void
2878 breakpoint_program_space_exit (struct program_space *pspace)
2879 {
2880 struct breakpoint *b, *b_temp;
2881 struct bp_location *loc, **loc_temp;
2882
2883 /* Remove any breakpoint that was set through this program space. */
2884 ALL_BREAKPOINTS_SAFE (b, b_temp)
2885 {
2886 if (b->pspace == pspace)
2887 delete_breakpoint (b);
2888 }
2889
2890 /* Breakpoints set through other program spaces could have locations
2891 bound to PSPACE as well. Remove those. */
2892 ALL_BP_LOCATIONS (loc, loc_temp)
2893 {
2894 struct bp_location *tmp;
2895
2896 if (loc->pspace == pspace)
2897 {
2898 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2899 if (loc->owner->loc == loc)
2900 loc->owner->loc = loc->next;
2901 else
2902 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2903 if (tmp->next == loc)
2904 {
2905 tmp->next = loc->next;
2906 break;
2907 }
2908 }
2909 }
2910
2911 /* Now update the global location list to permanently delete the
2912 removed locations above. */
2913 update_global_location_list (UGLL_DONT_INSERT);
2914 }
2915
2916 /* Make sure all breakpoints are inserted in inferior.
2917 Throws exception on any error.
2918 A breakpoint that is already inserted won't be inserted
2919 again, so calling this function twice is safe. */
2920 void
2921 insert_breakpoints (void)
2922 {
2923 struct breakpoint *bpt;
2924
2925 ALL_BREAKPOINTS (bpt)
2926 if (is_hardware_watchpoint (bpt))
2927 {
2928 struct watchpoint *w = (struct watchpoint *) bpt;
2929
2930 update_watchpoint (w, 0 /* don't reparse. */);
2931 }
2932
2933 /* Updating watchpoints creates new locations, so update the global
2934 location list. Explicitly tell ugll to insert locations and
2935 ignore breakpoints_always_inserted_mode. Also,
2936 update_global_location_list tries to "upgrade" software
2937 breakpoints to hardware breakpoints to handle "set breakpoint
2938 auto-hw", so we need to call it even if we don't have new
2939 locations. */
2940 update_global_location_list (UGLL_INSERT);
2941 }
2942
2943 /* Invoke CALLBACK for each of bp_location. */
2944
2945 void
2946 iterate_over_bp_locations (walk_bp_location_callback callback)
2947 {
2948 struct bp_location *loc, **loc_tmp;
2949
2950 ALL_BP_LOCATIONS (loc, loc_tmp)
2951 {
2952 callback (loc, NULL);
2953 }
2954 }
2955
2956 /* This is used when we need to synch breakpoint conditions between GDB and the
2957 target. It is the case with deleting and disabling of breakpoints when using
2958 always-inserted mode. */
2959
2960 static void
2961 update_inserted_breakpoint_locations (void)
2962 {
2963 struct bp_location *bl, **blp_tmp;
2964 int error_flag = 0;
2965 int val = 0;
2966 int disabled_breaks = 0;
2967 int hw_breakpoint_error = 0;
2968 int hw_bp_details_reported = 0;
2969
2970 string_file tmp_error_stream;
2971
2972 /* Explicitly mark the warning -- this will only be printed if
2973 there was an error. */
2974 tmp_error_stream.puts ("Warning:\n");
2975
2976 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2977
2978 ALL_BP_LOCATIONS (bl, blp_tmp)
2979 {
2980 /* We only want to update software breakpoints and hardware
2981 breakpoints. */
2982 if (!is_breakpoint (bl->owner))
2983 continue;
2984
2985 /* We only want to update locations that are already inserted
2986 and need updating. This is to avoid unwanted insertion during
2987 deletion of breakpoints. */
2988 if (!bl->inserted || !bl->needs_update)
2989 continue;
2990
2991 switch_to_program_space_and_thread (bl->pspace);
2992
2993 /* For targets that support global breakpoints, there's no need
2994 to select an inferior to insert breakpoint to. In fact, even
2995 if we aren't attached to any process yet, we should still
2996 insert breakpoints. */
2997 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2998 && (inferior_ptid == null_ptid || !target_has_execution ()))
2999 continue;
3000
3001 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3002 &hw_breakpoint_error, &hw_bp_details_reported);
3003 if (val)
3004 error_flag = val;
3005 }
3006
3007 if (error_flag)
3008 {
3009 target_terminal::ours_for_output ();
3010 error_stream (tmp_error_stream);
3011 }
3012 }
3013
3014 /* Used when starting or continuing the program. */
3015
3016 static void
3017 insert_breakpoint_locations (void)
3018 {
3019 struct breakpoint *bpt;
3020 struct bp_location *bl, **blp_tmp;
3021 int error_flag = 0;
3022 int val = 0;
3023 int disabled_breaks = 0;
3024 int hw_breakpoint_error = 0;
3025 int hw_bp_error_explained_already = 0;
3026
3027 string_file tmp_error_stream;
3028
3029 /* Explicitly mark the warning -- this will only be printed if
3030 there was an error. */
3031 tmp_error_stream.puts ("Warning:\n");
3032
3033 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3034
3035 ALL_BP_LOCATIONS (bl, blp_tmp)
3036 {
3037 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3038 continue;
3039
3040 /* There is no point inserting thread-specific breakpoints if
3041 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3042 has BL->OWNER always non-NULL. */
3043 if (bl->owner->thread != -1
3044 && !valid_global_thread_id (bl->owner->thread))
3045 continue;
3046
3047 switch_to_program_space_and_thread (bl->pspace);
3048
3049 /* For targets that support global breakpoints, there's no need
3050 to select an inferior to insert breakpoint to. In fact, even
3051 if we aren't attached to any process yet, we should still
3052 insert breakpoints. */
3053 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3054 && (inferior_ptid == null_ptid || !target_has_execution ()))
3055 continue;
3056
3057 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3058 &hw_breakpoint_error, &hw_bp_error_explained_already);
3059 if (val)
3060 error_flag = val;
3061 }
3062
3063 /* If we failed to insert all locations of a watchpoint, remove
3064 them, as half-inserted watchpoint is of limited use. */
3065 ALL_BREAKPOINTS (bpt)
3066 {
3067 int some_failed = 0;
3068 struct bp_location *loc;
3069
3070 if (!is_hardware_watchpoint (bpt))
3071 continue;
3072
3073 if (!breakpoint_enabled (bpt))
3074 continue;
3075
3076 if (bpt->disposition == disp_del_at_next_stop)
3077 continue;
3078
3079 for (loc = bpt->loc; loc; loc = loc->next)
3080 if (!loc->inserted && should_be_inserted (loc))
3081 {
3082 some_failed = 1;
3083 break;
3084 }
3085 if (some_failed)
3086 {
3087 for (loc = bpt->loc; loc; loc = loc->next)
3088 if (loc->inserted)
3089 remove_breakpoint (loc);
3090
3091 hw_breakpoint_error = 1;
3092 tmp_error_stream.printf ("Could not insert "
3093 "hardware watchpoint %d.\n",
3094 bpt->number);
3095 error_flag = -1;
3096 }
3097 }
3098
3099 if (error_flag)
3100 {
3101 /* If a hardware breakpoint or watchpoint was inserted, add a
3102 message about possibly exhausted resources. */
3103 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3104 {
3105 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3106 You may have requested too many hardware breakpoints/watchpoints.\n");
3107 }
3108 target_terminal::ours_for_output ();
3109 error_stream (tmp_error_stream);
3110 }
3111 }
3112
3113 /* Used when the program stops.
3114 Returns zero if successful, or non-zero if there was a problem
3115 removing a breakpoint location. */
3116
3117 int
3118 remove_breakpoints (void)
3119 {
3120 struct bp_location *bl, **blp_tmp;
3121 int val = 0;
3122
3123 ALL_BP_LOCATIONS (bl, blp_tmp)
3124 {
3125 if (bl->inserted && !is_tracepoint (bl->owner))
3126 val |= remove_breakpoint (bl);
3127 }
3128 return val;
3129 }
3130
3131 /* When a thread exits, remove breakpoints that are related to
3132 that thread. */
3133
3134 static void
3135 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3136 {
3137 struct breakpoint *b, *b_tmp;
3138
3139 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3140 {
3141 if (b->thread == tp->global_num && user_breakpoint_p (b))
3142 {
3143 b->disposition = disp_del_at_next_stop;
3144
3145 printf_filtered (_("\
3146 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3147 b->number, print_thread_id (tp));
3148
3149 /* Hide it from the user. */
3150 b->number = 0;
3151 }
3152 }
3153 }
3154
3155 /* See breakpoint.h. */
3156
3157 void
3158 remove_breakpoints_inf (inferior *inf)
3159 {
3160 struct bp_location *bl, **blp_tmp;
3161 int val;
3162
3163 ALL_BP_LOCATIONS (bl, blp_tmp)
3164 {
3165 if (bl->pspace != inf->pspace)
3166 continue;
3167
3168 if (bl->inserted && !bl->target_info.persist)
3169 {
3170 val = remove_breakpoint (bl);
3171 if (val != 0)
3172 return;
3173 }
3174 }
3175 }
3176
3177 static int internal_breakpoint_number = -1;
3178
3179 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3180 If INTERNAL is non-zero, the breakpoint number will be populated
3181 from internal_breakpoint_number and that variable decremented.
3182 Otherwise the breakpoint number will be populated from
3183 breakpoint_count and that value incremented. Internal breakpoints
3184 do not set the internal var bpnum. */
3185 static void
3186 set_breakpoint_number (int internal, struct breakpoint *b)
3187 {
3188 if (internal)
3189 b->number = internal_breakpoint_number--;
3190 else
3191 {
3192 set_breakpoint_count (breakpoint_count + 1);
3193 b->number = breakpoint_count;
3194 }
3195 }
3196
3197 static struct breakpoint *
3198 create_internal_breakpoint (struct gdbarch *gdbarch,
3199 CORE_ADDR address, enum bptype type,
3200 const struct breakpoint_ops *ops)
3201 {
3202 symtab_and_line sal;
3203 sal.pc = address;
3204 sal.section = find_pc_overlay (sal.pc);
3205 sal.pspace = current_program_space;
3206
3207 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3208 b->number = internal_breakpoint_number--;
3209 b->disposition = disp_donttouch;
3210
3211 return b;
3212 }
3213
3214 static const char *const longjmp_names[] =
3215 {
3216 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3217 };
3218 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3219
3220 /* Per-objfile data private to breakpoint.c. */
3221 struct breakpoint_objfile_data
3222 {
3223 /* Minimal symbol for "_ovly_debug_event" (if any). */
3224 struct bound_minimal_symbol overlay_msym {};
3225
3226 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3227 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3228
3229 /* True if we have looked for longjmp probes. */
3230 int longjmp_searched = 0;
3231
3232 /* SystemTap probe points for longjmp (if any). These are non-owning
3233 references. */
3234 std::vector<probe *> longjmp_probes;
3235
3236 /* Minimal symbol for "std::terminate()" (if any). */
3237 struct bound_minimal_symbol terminate_msym {};
3238
3239 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3240 struct bound_minimal_symbol exception_msym {};
3241
3242 /* True if we have looked for exception probes. */
3243 int exception_searched = 0;
3244
3245 /* SystemTap probe points for unwinding (if any). These are non-owning
3246 references. */
3247 std::vector<probe *> exception_probes;
3248 };
3249
3250 static const struct objfile_key<breakpoint_objfile_data>
3251 breakpoint_objfile_key;
3252
3253 /* Minimal symbol not found sentinel. */
3254 static struct minimal_symbol msym_not_found;
3255
3256 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3257
3258 static int
3259 msym_not_found_p (const struct minimal_symbol *msym)
3260 {
3261 return msym == &msym_not_found;
3262 }
3263
3264 /* Return per-objfile data needed by breakpoint.c.
3265 Allocate the data if necessary. */
3266
3267 static struct breakpoint_objfile_data *
3268 get_breakpoint_objfile_data (struct objfile *objfile)
3269 {
3270 struct breakpoint_objfile_data *bp_objfile_data;
3271
3272 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3273 if (bp_objfile_data == NULL)
3274 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3275 return bp_objfile_data;
3276 }
3277
3278 static void
3279 create_overlay_event_breakpoint (void)
3280 {
3281 const char *const func_name = "_ovly_debug_event";
3282
3283 for (objfile *objfile : current_program_space->objfiles ())
3284 {
3285 struct breakpoint *b;
3286 struct breakpoint_objfile_data *bp_objfile_data;
3287 CORE_ADDR addr;
3288 struct explicit_location explicit_loc;
3289
3290 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3291
3292 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3293 continue;
3294
3295 if (bp_objfile_data->overlay_msym.minsym == NULL)
3296 {
3297 struct bound_minimal_symbol m;
3298
3299 m = lookup_minimal_symbol_text (func_name, objfile);
3300 if (m.minsym == NULL)
3301 {
3302 /* Avoid future lookups in this objfile. */
3303 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3304 continue;
3305 }
3306 bp_objfile_data->overlay_msym = m;
3307 }
3308
3309 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3310 b = create_internal_breakpoint (objfile->arch (), addr,
3311 bp_overlay_event,
3312 &internal_breakpoint_ops);
3313 initialize_explicit_location (&explicit_loc);
3314 explicit_loc.function_name = ASTRDUP (func_name);
3315 b->location = new_explicit_location (&explicit_loc);
3316
3317 if (overlay_debugging == ovly_auto)
3318 {
3319 b->enable_state = bp_enabled;
3320 overlay_events_enabled = 1;
3321 }
3322 else
3323 {
3324 b->enable_state = bp_disabled;
3325 overlay_events_enabled = 0;
3326 }
3327 }
3328 }
3329
3330 /* Install a master longjmp breakpoint for OBJFILE using a probe. Return
3331 true if a breakpoint was installed. */
3332
3333 static bool
3334 create_longjmp_master_breakpoint_probe (objfile *objfile)
3335 {
3336 struct gdbarch *gdbarch = objfile->arch ();
3337 struct breakpoint_objfile_data *bp_objfile_data
3338 = get_breakpoint_objfile_data (objfile);
3339
3340 if (!bp_objfile_data->longjmp_searched)
3341 {
3342 std::vector<probe *> ret
3343 = find_probes_in_objfile (objfile, "libc", "longjmp");
3344
3345 if (!ret.empty ())
3346 {
3347 /* We are only interested in checking one element. */
3348 probe *p = ret[0];
3349
3350 if (!p->can_evaluate_arguments ())
3351 {
3352 /* We cannot use the probe interface here,
3353 because it does not know how to evaluate
3354 arguments. */
3355 ret.clear ();
3356 }
3357 }
3358 bp_objfile_data->longjmp_probes = ret;
3359 bp_objfile_data->longjmp_searched = 1;
3360 }
3361
3362 if (bp_objfile_data->longjmp_probes.empty ())
3363 return false;
3364
3365 for (probe *p : bp_objfile_data->longjmp_probes)
3366 {
3367 struct breakpoint *b;
3368
3369 b = create_internal_breakpoint (gdbarch,
3370 p->get_relocated_address (objfile),
3371 bp_longjmp_master,
3372 &internal_breakpoint_ops);
3373 b->location = new_probe_location ("-probe-stap libc:longjmp");
3374 b->enable_state = bp_disabled;
3375 }
3376
3377 return true;
3378 }
3379
3380 /* Install master longjmp breakpoints for OBJFILE using longjmp_names.
3381 Return true if at least one breakpoint was installed. */
3382
3383 static bool
3384 create_longjmp_master_breakpoint_names (objfile *objfile)
3385 {
3386 struct gdbarch *gdbarch = objfile->arch ();
3387 if (!gdbarch_get_longjmp_target_p (gdbarch))
3388 return false;
3389
3390 struct breakpoint_objfile_data *bp_objfile_data
3391 = get_breakpoint_objfile_data (objfile);
3392 unsigned int installed_bp = 0;
3393
3394 for (int i = 0; i < NUM_LONGJMP_NAMES; i++)
3395 {
3396 struct breakpoint *b;
3397 const char *func_name;
3398 CORE_ADDR addr;
3399 struct explicit_location explicit_loc;
3400
3401 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3402 continue;
3403
3404 func_name = longjmp_names[i];
3405 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3406 {
3407 struct bound_minimal_symbol m;
3408
3409 m = lookup_minimal_symbol_text (func_name, objfile);
3410 if (m.minsym == NULL)
3411 {
3412 /* Prevent future lookups in this objfile. */
3413 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3414 continue;
3415 }
3416 bp_objfile_data->longjmp_msym[i] = m;
3417 }
3418
3419 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3420 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3421 &internal_breakpoint_ops);
3422 initialize_explicit_location (&explicit_loc);
3423 explicit_loc.function_name = ASTRDUP (func_name);
3424 b->location = new_explicit_location (&explicit_loc);
3425 b->enable_state = bp_disabled;
3426 installed_bp++;
3427 }
3428
3429 return installed_bp > 0;
3430 }
3431
3432 /* Create a master longjmp breakpoint. */
3433
3434 static void
3435 create_longjmp_master_breakpoint (void)
3436 {
3437 scoped_restore_current_program_space restore_pspace;
3438
3439 for (struct program_space *pspace : program_spaces)
3440 {
3441 set_current_program_space (pspace);
3442
3443 for (objfile *obj : current_program_space->objfiles ())
3444 {
3445 /* Skip separate debug object, it's handled in the loop below. */
3446 if (obj->separate_debug_objfile_backlink != nullptr)
3447 continue;
3448
3449 /* Try a probe kind breakpoint on main objfile. */
3450 if (create_longjmp_master_breakpoint_probe (obj))
3451 continue;
3452
3453 /* Try longjmp_names kind breakpoints on main and separate_debug
3454 objfiles. */
3455 for (objfile *debug_objfile : obj->separate_debug_objfiles ())
3456 if (create_longjmp_master_breakpoint_names (debug_objfile))
3457 break;
3458 }
3459 }
3460 }
3461
3462 /* Create a master std::terminate breakpoint. */
3463 static void
3464 create_std_terminate_master_breakpoint (void)
3465 {
3466 const char *const func_name = "std::terminate()";
3467
3468 scoped_restore_current_program_space restore_pspace;
3469
3470 for (struct program_space *pspace : program_spaces)
3471 {
3472 CORE_ADDR addr;
3473
3474 set_current_program_space (pspace);
3475
3476 for (objfile *objfile : current_program_space->objfiles ())
3477 {
3478 struct breakpoint *b;
3479 struct breakpoint_objfile_data *bp_objfile_data;
3480 struct explicit_location explicit_loc;
3481
3482 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3483
3484 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3485 continue;
3486
3487 if (bp_objfile_data->terminate_msym.minsym == NULL)
3488 {
3489 struct bound_minimal_symbol m;
3490
3491 m = lookup_minimal_symbol (func_name, NULL, objfile);
3492 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3493 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3494 {
3495 /* Prevent future lookups in this objfile. */
3496 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3497 continue;
3498 }
3499 bp_objfile_data->terminate_msym = m;
3500 }
3501
3502 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3503 b = create_internal_breakpoint (objfile->arch (), addr,
3504 bp_std_terminate_master,
3505 &internal_breakpoint_ops);
3506 initialize_explicit_location (&explicit_loc);
3507 explicit_loc.function_name = ASTRDUP (func_name);
3508 b->location = new_explicit_location (&explicit_loc);
3509 b->enable_state = bp_disabled;
3510 }
3511 }
3512 }
3513
3514 /* Install a master breakpoint on the unwinder's debug hook for OBJFILE using a
3515 probe. Return true if a breakpoint was installed. */
3516
3517 static bool
3518 create_exception_master_breakpoint_probe (objfile *objfile)
3519 {
3520 struct breakpoint *b;
3521 struct gdbarch *gdbarch;
3522 struct breakpoint_objfile_data *bp_objfile_data;
3523
3524 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3525
3526 /* We prefer the SystemTap probe point if it exists. */
3527 if (!bp_objfile_data->exception_searched)
3528 {
3529 std::vector<probe *> ret
3530 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3531
3532 if (!ret.empty ())
3533 {
3534 /* We are only interested in checking one element. */
3535 probe *p = ret[0];
3536
3537 if (!p->can_evaluate_arguments ())
3538 {
3539 /* We cannot use the probe interface here, because it does
3540 not know how to evaluate arguments. */
3541 ret.clear ();
3542 }
3543 }
3544 bp_objfile_data->exception_probes = ret;
3545 bp_objfile_data->exception_searched = 1;
3546 }
3547
3548 if (bp_objfile_data->exception_probes.empty ())
3549 return false;
3550
3551 gdbarch = objfile->arch ();
3552
3553 for (probe *p : bp_objfile_data->exception_probes)
3554 {
3555 b = create_internal_breakpoint (gdbarch,
3556 p->get_relocated_address (objfile),
3557 bp_exception_master,
3558 &internal_breakpoint_ops);
3559 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3560 b->enable_state = bp_disabled;
3561 }
3562
3563 return true;
3564 }
3565
3566 /* Install a master breakpoint on the unwinder's debug hook for OBJFILE using
3567 _Unwind_DebugHook. Return true if a breakpoint was installed. */
3568
3569 static bool
3570 create_exception_master_breakpoint_hook (objfile *objfile)
3571 {
3572 const char *const func_name = "_Unwind_DebugHook";
3573 struct breakpoint *b;
3574 struct gdbarch *gdbarch;
3575 struct breakpoint_objfile_data *bp_objfile_data;
3576 CORE_ADDR addr;
3577 struct explicit_location explicit_loc;
3578
3579 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3580
3581 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3582 return false;
3583
3584 gdbarch = objfile->arch ();
3585
3586 if (bp_objfile_data->exception_msym.minsym == NULL)
3587 {
3588 struct bound_minimal_symbol debug_hook;
3589
3590 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3591 if (debug_hook.minsym == NULL)
3592 {
3593 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3594 return false;
3595 }
3596
3597 bp_objfile_data->exception_msym = debug_hook;
3598 }
3599
3600 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3601 addr = gdbarch_convert_from_func_ptr_addr
3602 (gdbarch, addr, current_inferior ()->top_target ());
3603 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3604 &internal_breakpoint_ops);
3605 initialize_explicit_location (&explicit_loc);
3606 explicit_loc.function_name = ASTRDUP (func_name);
3607 b->location = new_explicit_location (&explicit_loc);
3608 b->enable_state = bp_disabled;
3609
3610 return true;
3611 }
3612
3613 /* Install a master breakpoint on the unwinder's debug hook. */
3614
3615 static void
3616 create_exception_master_breakpoint (void)
3617 {
3618 for (objfile *obj : current_program_space->objfiles ())
3619 {
3620 /* Skip separate debug object. */
3621 if (obj->separate_debug_objfile_backlink)
3622 continue;
3623
3624 /* Try a probe kind breakpoint. */
3625 if (create_exception_master_breakpoint_probe (obj))
3626 continue;
3627
3628 /* Iterate over main and separate debug objects and try an
3629 _Unwind_DebugHook kind breakpoint. */
3630 for (objfile *debug_objfile : obj->separate_debug_objfiles ())
3631 if (create_exception_master_breakpoint_hook (debug_objfile))
3632 break;
3633 }
3634 }
3635
3636 /* Does B have a location spec? */
3637
3638 static int
3639 breakpoint_event_location_empty_p (const struct breakpoint *b)
3640 {
3641 return b->location != NULL && event_location_empty_p (b->location.get ());
3642 }
3643
3644 void
3645 update_breakpoints_after_exec (void)
3646 {
3647 struct breakpoint *b, *b_tmp;
3648 struct bp_location *bploc, **bplocp_tmp;
3649
3650 /* We're about to delete breakpoints from GDB's lists. If the
3651 INSERTED flag is true, GDB will try to lift the breakpoints by
3652 writing the breakpoints' "shadow contents" back into memory. The
3653 "shadow contents" are NOT valid after an exec, so GDB should not
3654 do that. Instead, the target is responsible from marking
3655 breakpoints out as soon as it detects an exec. We don't do that
3656 here instead, because there may be other attempts to delete
3657 breakpoints after detecting an exec and before reaching here. */
3658 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3659 if (bploc->pspace == current_program_space)
3660 gdb_assert (!bploc->inserted);
3661
3662 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3663 {
3664 if (b->pspace != current_program_space)
3665 continue;
3666
3667 /* Solib breakpoints must be explicitly reset after an exec(). */
3668 if (b->type == bp_shlib_event)
3669 {
3670 delete_breakpoint (b);
3671 continue;
3672 }
3673
3674 /* JIT breakpoints must be explicitly reset after an exec(). */
3675 if (b->type == bp_jit_event)
3676 {
3677 delete_breakpoint (b);
3678 continue;
3679 }
3680
3681 /* Thread event breakpoints must be set anew after an exec(),
3682 as must overlay event and longjmp master breakpoints. */
3683 if (b->type == bp_thread_event || b->type == bp_overlay_event
3684 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3685 || b->type == bp_exception_master)
3686 {
3687 delete_breakpoint (b);
3688 continue;
3689 }
3690
3691 /* Step-resume breakpoints are meaningless after an exec(). */
3692 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3693 {
3694 delete_breakpoint (b);
3695 continue;
3696 }
3697
3698 /* Just like single-step breakpoints. */
3699 if (b->type == bp_single_step)
3700 {
3701 delete_breakpoint (b);
3702 continue;
3703 }
3704
3705 /* Longjmp and longjmp-resume breakpoints are also meaningless
3706 after an exec. */
3707 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3708 || b->type == bp_longjmp_call_dummy
3709 || b->type == bp_exception || b->type == bp_exception_resume)
3710 {
3711 delete_breakpoint (b);
3712 continue;
3713 }
3714
3715 if (b->type == bp_catchpoint)
3716 {
3717 /* For now, none of the bp_catchpoint breakpoints need to
3718 do anything at this point. In the future, if some of
3719 the catchpoints need to something, we will need to add
3720 a new method, and call this method from here. */
3721 continue;
3722 }
3723
3724 /* bp_finish is a special case. The only way we ought to be able
3725 to see one of these when an exec() has happened, is if the user
3726 caught a vfork, and then said "finish". Ordinarily a finish just
3727 carries them to the call-site of the current callee, by setting
3728 a temporary bp there and resuming. But in this case, the finish
3729 will carry them entirely through the vfork & exec.
3730
3731 We don't want to allow a bp_finish to remain inserted now. But
3732 we can't safely delete it, 'cause finish_command has a handle to
3733 the bp on a bpstat, and will later want to delete it. There's a
3734 chance (and I've seen it happen) that if we delete the bp_finish
3735 here, that its storage will get reused by the time finish_command
3736 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3737 We really must allow finish_command to delete a bp_finish.
3738
3739 In the absence of a general solution for the "how do we know
3740 it's safe to delete something others may have handles to?"
3741 problem, what we'll do here is just uninsert the bp_finish, and
3742 let finish_command delete it.
3743
3744 (We know the bp_finish is "doomed" in the sense that it's
3745 momentary, and will be deleted as soon as finish_command sees
3746 the inferior stopped. So it doesn't matter that the bp's
3747 address is probably bogus in the new a.out, unlike e.g., the
3748 solib breakpoints.) */
3749
3750 if (b->type == bp_finish)
3751 {
3752 continue;
3753 }
3754
3755 /* Without a symbolic address, we have little hope of the
3756 pre-exec() address meaning the same thing in the post-exec()
3757 a.out. */
3758 if (breakpoint_event_location_empty_p (b))
3759 {
3760 delete_breakpoint (b);
3761 continue;
3762 }
3763 }
3764 }
3765
3766 int
3767 detach_breakpoints (ptid_t ptid)
3768 {
3769 struct bp_location *bl, **blp_tmp;
3770 int val = 0;
3771 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3772 struct inferior *inf = current_inferior ();
3773
3774 if (ptid.pid () == inferior_ptid.pid ())
3775 error (_("Cannot detach breakpoints of inferior_ptid"));
3776
3777 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3778 inferior_ptid = ptid;
3779 ALL_BP_LOCATIONS (bl, blp_tmp)
3780 {
3781 if (bl->pspace != inf->pspace)
3782 continue;
3783
3784 /* This function must physically remove breakpoints locations
3785 from the specified ptid, without modifying the breakpoint
3786 package's state. Locations of type bp_loc_other are only
3787 maintained at GDB side. So, there is no need to remove
3788 these bp_loc_other locations. Moreover, removing these
3789 would modify the breakpoint package's state. */
3790 if (bl->loc_type == bp_loc_other)
3791 continue;
3792
3793 if (bl->inserted)
3794 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3795 }
3796
3797 return val;
3798 }
3799
3800 /* Remove the breakpoint location BL from the current address space.
3801 Note that this is used to detach breakpoints from a child fork.
3802 When we get here, the child isn't in the inferior list, and neither
3803 do we have objects to represent its address space --- we should
3804 *not* look at bl->pspace->aspace here. */
3805
3806 static int
3807 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3808 {
3809 int val;
3810
3811 /* BL is never in moribund_locations by our callers. */
3812 gdb_assert (bl->owner != NULL);
3813
3814 /* The type of none suggests that owner is actually deleted.
3815 This should not ever happen. */
3816 gdb_assert (bl->owner->type != bp_none);
3817
3818 if (bl->loc_type == bp_loc_software_breakpoint
3819 || bl->loc_type == bp_loc_hardware_breakpoint)
3820 {
3821 /* "Normal" instruction breakpoint: either the standard
3822 trap-instruction bp (bp_breakpoint), or a
3823 bp_hardware_breakpoint. */
3824
3825 /* First check to see if we have to handle an overlay. */
3826 if (overlay_debugging == ovly_off
3827 || bl->section == NULL
3828 || !(section_is_overlay (bl->section)))
3829 {
3830 /* No overlay handling: just remove the breakpoint. */
3831
3832 /* If we're trying to uninsert a memory breakpoint that we
3833 know is set in a dynamic object that is marked
3834 shlib_disabled, then either the dynamic object was
3835 removed with "remove-symbol-file" or with
3836 "nosharedlibrary". In the former case, we don't know
3837 whether another dynamic object might have loaded over the
3838 breakpoint's address -- the user might well let us know
3839 about it next with add-symbol-file (the whole point of
3840 add-symbol-file is letting the user manually maintain a
3841 list of dynamically loaded objects). If we have the
3842 breakpoint's shadow memory, that is, this is a software
3843 breakpoint managed by GDB, check whether the breakpoint
3844 is still inserted in memory, to avoid overwriting wrong
3845 code with stale saved shadow contents. Note that HW
3846 breakpoints don't have shadow memory, as they're
3847 implemented using a mechanism that is not dependent on
3848 being able to modify the target's memory, and as such
3849 they should always be removed. */
3850 if (bl->shlib_disabled
3851 && bl->target_info.shadow_len != 0
3852 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3853 val = 0;
3854 else
3855 val = bl->owner->ops->remove_location (bl, reason);
3856 }
3857 else
3858 {
3859 /* This breakpoint is in an overlay section.
3860 Did we set a breakpoint at the LMA? */
3861 if (!overlay_events_enabled)
3862 {
3863 /* Yes -- overlay event support is not active, so we
3864 should have set a breakpoint at the LMA. Remove it.
3865 */
3866 /* Ignore any failures: if the LMA is in ROM, we will
3867 have already warned when we failed to insert it. */
3868 if (bl->loc_type == bp_loc_hardware_breakpoint)
3869 target_remove_hw_breakpoint (bl->gdbarch,
3870 &bl->overlay_target_info);
3871 else
3872 target_remove_breakpoint (bl->gdbarch,
3873 &bl->overlay_target_info,
3874 reason);
3875 }
3876 /* Did we set a breakpoint at the VMA?
3877 If so, we will have marked the breakpoint 'inserted'. */
3878 if (bl->inserted)
3879 {
3880 /* Yes -- remove it. Previously we did not bother to
3881 remove the breakpoint if the section had been
3882 unmapped, but let's not rely on that being safe. We
3883 don't know what the overlay manager might do. */
3884
3885 /* However, we should remove *software* breakpoints only
3886 if the section is still mapped, or else we overwrite
3887 wrong code with the saved shadow contents. */
3888 if (bl->loc_type == bp_loc_hardware_breakpoint
3889 || section_is_mapped (bl->section))
3890 val = bl->owner->ops->remove_location (bl, reason);
3891 else
3892 val = 0;
3893 }
3894 else
3895 {
3896 /* No -- not inserted, so no need to remove. No error. */
3897 val = 0;
3898 }
3899 }
3900
3901 /* In some cases, we might not be able to remove a breakpoint in
3902 a shared library that has already been removed, but we have
3903 not yet processed the shlib unload event. Similarly for an
3904 unloaded add-symbol-file object - the user might not yet have
3905 had the chance to remove-symbol-file it. shlib_disabled will
3906 be set if the library/object has already been removed, but
3907 the breakpoint hasn't been uninserted yet, e.g., after
3908 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3909 always-inserted mode. */
3910 if (val
3911 && (bl->loc_type == bp_loc_software_breakpoint
3912 && (bl->shlib_disabled
3913 || solib_name_from_address (bl->pspace, bl->address)
3914 || shared_objfile_contains_address_p (bl->pspace,
3915 bl->address))))
3916 val = 0;
3917
3918 if (val)
3919 return val;
3920 bl->inserted = (reason == DETACH_BREAKPOINT);
3921 }
3922 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3923 {
3924 gdb_assert (bl->owner->ops != NULL
3925 && bl->owner->ops->remove_location != NULL);
3926
3927 bl->inserted = (reason == DETACH_BREAKPOINT);
3928 bl->owner->ops->remove_location (bl, reason);
3929
3930 /* Failure to remove any of the hardware watchpoints comes here. */
3931 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3932 warning (_("Could not remove hardware watchpoint %d."),
3933 bl->owner->number);
3934 }
3935 else if (bl->owner->type == bp_catchpoint
3936 && breakpoint_enabled (bl->owner)
3937 && !bl->duplicate)
3938 {
3939 gdb_assert (bl->owner->ops != NULL
3940 && bl->owner->ops->remove_location != NULL);
3941
3942 val = bl->owner->ops->remove_location (bl, reason);
3943 if (val)
3944 return val;
3945
3946 bl->inserted = (reason == DETACH_BREAKPOINT);
3947 }
3948
3949 return 0;
3950 }
3951
3952 static int
3953 remove_breakpoint (struct bp_location *bl)
3954 {
3955 /* BL is never in moribund_locations by our callers. */
3956 gdb_assert (bl->owner != NULL);
3957
3958 /* The type of none suggests that owner is actually deleted.
3959 This should not ever happen. */
3960 gdb_assert (bl->owner->type != bp_none);
3961
3962 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3963
3964 switch_to_program_space_and_thread (bl->pspace);
3965
3966 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3967 }
3968
3969 /* Clear the "inserted" flag in all breakpoints. */
3970
3971 void
3972 mark_breakpoints_out (void)
3973 {
3974 struct bp_location *bl, **blp_tmp;
3975
3976 ALL_BP_LOCATIONS (bl, blp_tmp)
3977 if (bl->pspace == current_program_space)
3978 bl->inserted = 0;
3979 }
3980
3981 /* Clear the "inserted" flag in all breakpoints and delete any
3982 breakpoints which should go away between runs of the program.
3983
3984 Plus other such housekeeping that has to be done for breakpoints
3985 between runs.
3986
3987 Note: this function gets called at the end of a run (by
3988 generic_mourn_inferior) and when a run begins (by
3989 init_wait_for_inferior). */
3990
3991
3992
3993 void
3994 breakpoint_init_inferior (enum inf_context context)
3995 {
3996 struct breakpoint *b, *b_tmp;
3997 struct program_space *pspace = current_program_space;
3998
3999 /* If breakpoint locations are shared across processes, then there's
4000 nothing to do. */
4001 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4002 return;
4003
4004 mark_breakpoints_out ();
4005
4006 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4007 {
4008 if (b->loc && b->loc->pspace != pspace)
4009 continue;
4010
4011 switch (b->type)
4012 {
4013 case bp_call_dummy:
4014 case bp_longjmp_call_dummy:
4015
4016 /* If the call dummy breakpoint is at the entry point it will
4017 cause problems when the inferior is rerun, so we better get
4018 rid of it. */
4019
4020 case bp_watchpoint_scope:
4021
4022 /* Also get rid of scope breakpoints. */
4023
4024 case bp_shlib_event:
4025
4026 /* Also remove solib event breakpoints. Their addresses may
4027 have changed since the last time we ran the program.
4028 Actually we may now be debugging against different target;
4029 and so the solib backend that installed this breakpoint may
4030 not be used in by the target. E.g.,
4031
4032 (gdb) file prog-linux
4033 (gdb) run # native linux target
4034 ...
4035 (gdb) kill
4036 (gdb) file prog-win.exe
4037 (gdb) tar rem :9999 # remote Windows gdbserver.
4038 */
4039
4040 case bp_step_resume:
4041
4042 /* Also remove step-resume breakpoints. */
4043
4044 case bp_single_step:
4045
4046 /* Also remove single-step breakpoints. */
4047
4048 delete_breakpoint (b);
4049 break;
4050
4051 case bp_watchpoint:
4052 case bp_hardware_watchpoint:
4053 case bp_read_watchpoint:
4054 case bp_access_watchpoint:
4055 {
4056 struct watchpoint *w = (struct watchpoint *) b;
4057
4058 /* Likewise for watchpoints on local expressions. */
4059 if (w->exp_valid_block != NULL)
4060 delete_breakpoint (b);
4061 else
4062 {
4063 /* Get rid of existing locations, which are no longer
4064 valid. New ones will be created in
4065 update_watchpoint, when the inferior is restarted.
4066 The next update_global_location_list call will
4067 garbage collect them. */
4068 b->loc = NULL;
4069
4070 if (context == inf_starting)
4071 {
4072 /* Reset val field to force reread of starting value in
4073 insert_breakpoints. */
4074 w->val.reset (nullptr);
4075 w->val_valid = false;
4076 }
4077 }
4078 }
4079 break;
4080 default:
4081 break;
4082 }
4083 }
4084
4085 /* Get rid of the moribund locations. */
4086 for (bp_location *bl : moribund_locations)
4087 decref_bp_location (&bl);
4088 moribund_locations.clear ();
4089 }
4090
4091 /* These functions concern about actual breakpoints inserted in the
4092 target --- to e.g. check if we need to do decr_pc adjustment or if
4093 we need to hop over the bkpt --- so we check for address space
4094 match, not program space. */
4095
4096 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4097 exists at PC. It returns ordinary_breakpoint_here if it's an
4098 ordinary breakpoint, or permanent_breakpoint_here if it's a
4099 permanent breakpoint.
4100 - When continuing from a location with an ordinary breakpoint, we
4101 actually single step once before calling insert_breakpoints.
4102 - When continuing from a location with a permanent breakpoint, we
4103 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4104 the target, to advance the PC past the breakpoint. */
4105
4106 enum breakpoint_here
4107 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4108 {
4109 struct bp_location *bl, **blp_tmp;
4110 int any_breakpoint_here = 0;
4111
4112 ALL_BP_LOCATIONS (bl, blp_tmp)
4113 {
4114 if (bl->loc_type != bp_loc_software_breakpoint
4115 && bl->loc_type != bp_loc_hardware_breakpoint)
4116 continue;
4117
4118 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4119 if ((breakpoint_enabled (bl->owner)
4120 || bl->permanent)
4121 && breakpoint_location_address_match (bl, aspace, pc))
4122 {
4123 if (overlay_debugging
4124 && section_is_overlay (bl->section)
4125 && !section_is_mapped (bl->section))
4126 continue; /* unmapped overlay -- can't be a match */
4127 else if (bl->permanent)
4128 return permanent_breakpoint_here;
4129 else
4130 any_breakpoint_here = 1;
4131 }
4132 }
4133
4134 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4135 }
4136
4137 /* See breakpoint.h. */
4138
4139 int
4140 breakpoint_in_range_p (const address_space *aspace,
4141 CORE_ADDR addr, ULONGEST len)
4142 {
4143 struct bp_location *bl, **blp_tmp;
4144
4145 ALL_BP_LOCATIONS (bl, blp_tmp)
4146 {
4147 if (bl->loc_type != bp_loc_software_breakpoint
4148 && bl->loc_type != bp_loc_hardware_breakpoint)
4149 continue;
4150
4151 if ((breakpoint_enabled (bl->owner)
4152 || bl->permanent)
4153 && breakpoint_location_address_range_overlap (bl, aspace,
4154 addr, len))
4155 {
4156 if (overlay_debugging
4157 && section_is_overlay (bl->section)
4158 && !section_is_mapped (bl->section))
4159 {
4160 /* Unmapped overlay -- can't be a match. */
4161 continue;
4162 }
4163
4164 return 1;
4165 }
4166 }
4167
4168 return 0;
4169 }
4170
4171 /* Return true if there's a moribund breakpoint at PC. */
4172
4173 int
4174 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4175 {
4176 for (bp_location *loc : moribund_locations)
4177 if (breakpoint_location_address_match (loc, aspace, pc))
4178 return 1;
4179
4180 return 0;
4181 }
4182
4183 /* Returns non-zero iff BL is inserted at PC, in address space
4184 ASPACE. */
4185
4186 static int
4187 bp_location_inserted_here_p (struct bp_location *bl,
4188 const address_space *aspace, CORE_ADDR pc)
4189 {
4190 if (bl->inserted
4191 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4192 aspace, pc))
4193 {
4194 if (overlay_debugging
4195 && section_is_overlay (bl->section)
4196 && !section_is_mapped (bl->section))
4197 return 0; /* unmapped overlay -- can't be a match */
4198 else
4199 return 1;
4200 }
4201 return 0;
4202 }
4203
4204 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4205
4206 int
4207 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4208 {
4209 struct bp_location **blp, **blp_tmp = NULL;
4210
4211 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4212 {
4213 struct bp_location *bl = *blp;
4214
4215 if (bl->loc_type != bp_loc_software_breakpoint
4216 && bl->loc_type != bp_loc_hardware_breakpoint)
4217 continue;
4218
4219 if (bp_location_inserted_here_p (bl, aspace, pc))
4220 return 1;
4221 }
4222 return 0;
4223 }
4224
4225 /* This function returns non-zero iff there is a software breakpoint
4226 inserted at PC. */
4227
4228 int
4229 software_breakpoint_inserted_here_p (const address_space *aspace,
4230 CORE_ADDR pc)
4231 {
4232 struct bp_location **blp, **blp_tmp = NULL;
4233
4234 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4235 {
4236 struct bp_location *bl = *blp;
4237
4238 if (bl->loc_type != bp_loc_software_breakpoint)
4239 continue;
4240
4241 if (bp_location_inserted_here_p (bl, aspace, pc))
4242 return 1;
4243 }
4244
4245 return 0;
4246 }
4247
4248 /* See breakpoint.h. */
4249
4250 int
4251 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4252 CORE_ADDR pc)
4253 {
4254 struct bp_location **blp, **blp_tmp = NULL;
4255
4256 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4257 {
4258 struct bp_location *bl = *blp;
4259
4260 if (bl->loc_type != bp_loc_hardware_breakpoint)
4261 continue;
4262
4263 if (bp_location_inserted_here_p (bl, aspace, pc))
4264 return 1;
4265 }
4266
4267 return 0;
4268 }
4269
4270 int
4271 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4272 CORE_ADDR addr, ULONGEST len)
4273 {
4274 struct breakpoint *bpt;
4275
4276 ALL_BREAKPOINTS (bpt)
4277 {
4278 struct bp_location *loc;
4279
4280 if (bpt->type != bp_hardware_watchpoint
4281 && bpt->type != bp_access_watchpoint)
4282 continue;
4283
4284 if (!breakpoint_enabled (bpt))
4285 continue;
4286
4287 for (loc = bpt->loc; loc; loc = loc->next)
4288 if (loc->pspace->aspace == aspace && loc->inserted)
4289 {
4290 CORE_ADDR l, h;
4291
4292 /* Check for intersection. */
4293 l = std::max<CORE_ADDR> (loc->address, addr);
4294 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4295 if (l < h)
4296 return 1;
4297 }
4298 }
4299 return 0;
4300 }
4301
4302 /* See breakpoint.h. */
4303
4304 bool
4305 is_catchpoint (struct breakpoint *b)
4306 {
4307 return (b->type == bp_catchpoint);
4308 }
4309
4310 /* Clear a bpstat so that it says we are not at any breakpoint.
4311 Also free any storage that is part of a bpstat. */
4312
4313 void
4314 bpstat_clear (bpstat *bsp)
4315 {
4316 bpstat p;
4317 bpstat q;
4318
4319 if (bsp == 0)
4320 return;
4321 p = *bsp;
4322 while (p != NULL)
4323 {
4324 q = p->next;
4325 delete p;
4326 p = q;
4327 }
4328 *bsp = NULL;
4329 }
4330
4331 bpstats::bpstats (const bpstats &other)
4332 : next (NULL),
4333 bp_location_at (other.bp_location_at),
4334 breakpoint_at (other.breakpoint_at),
4335 commands (other.commands),
4336 print (other.print),
4337 stop (other.stop),
4338 print_it (other.print_it)
4339 {
4340 if (other.old_val != NULL)
4341 old_val = release_value (value_copy (other.old_val.get ()));
4342 }
4343
4344 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4345 is part of the bpstat is copied as well. */
4346
4347 bpstat
4348 bpstat_copy (bpstat bs)
4349 {
4350 bpstat p = NULL;
4351 bpstat tmp;
4352 bpstat retval = NULL;
4353
4354 if (bs == NULL)
4355 return bs;
4356
4357 for (; bs != NULL; bs = bs->next)
4358 {
4359 tmp = new bpstats (*bs);
4360
4361 if (p == NULL)
4362 /* This is the first thing in the chain. */
4363 retval = tmp;
4364 else
4365 p->next = tmp;
4366 p = tmp;
4367 }
4368 p->next = NULL;
4369 return retval;
4370 }
4371
4372 /* Find the bpstat associated with this breakpoint. */
4373
4374 bpstat
4375 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4376 {
4377 if (bsp == NULL)
4378 return NULL;
4379
4380 for (; bsp != NULL; bsp = bsp->next)
4381 {
4382 if (bsp->breakpoint_at == breakpoint)
4383 return bsp;
4384 }
4385 return NULL;
4386 }
4387
4388 /* See breakpoint.h. */
4389
4390 bool
4391 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4392 {
4393 for (; bsp != NULL; bsp = bsp->next)
4394 {
4395 if (bsp->breakpoint_at == NULL)
4396 {
4397 /* A moribund location can never explain a signal other than
4398 GDB_SIGNAL_TRAP. */
4399 if (sig == GDB_SIGNAL_TRAP)
4400 return true;
4401 }
4402 else
4403 {
4404 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4405 sig))
4406 return true;
4407 }
4408 }
4409
4410 return false;
4411 }
4412
4413 /* Put in *NUM the breakpoint number of the first breakpoint we are
4414 stopped at. *BSP upon return is a bpstat which points to the
4415 remaining breakpoints stopped at (but which is not guaranteed to be
4416 good for anything but further calls to bpstat_num).
4417
4418 Return 0 if passed a bpstat which does not indicate any breakpoints.
4419 Return -1 if stopped at a breakpoint that has been deleted since
4420 we set it.
4421 Return 1 otherwise. */
4422
4423 int
4424 bpstat_num (bpstat *bsp, int *num)
4425 {
4426 struct breakpoint *b;
4427
4428 if ((*bsp) == NULL)
4429 return 0; /* No more breakpoint values */
4430
4431 /* We assume we'll never have several bpstats that correspond to a
4432 single breakpoint -- otherwise, this function might return the
4433 same number more than once and this will look ugly. */
4434 b = (*bsp)->breakpoint_at;
4435 *bsp = (*bsp)->next;
4436 if (b == NULL)
4437 return -1; /* breakpoint that's been deleted since */
4438
4439 *num = b->number; /* We have its number */
4440 return 1;
4441 }
4442
4443 /* See breakpoint.h. */
4444
4445 void
4446 bpstat_clear_actions (void)
4447 {
4448 bpstat bs;
4449
4450 if (inferior_ptid == null_ptid)
4451 return;
4452
4453 thread_info *tp = inferior_thread ();
4454 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4455 {
4456 bs->commands = NULL;
4457 bs->old_val.reset (nullptr);
4458 }
4459 }
4460
4461 /* Called when a command is about to proceed the inferior. */
4462
4463 static void
4464 breakpoint_about_to_proceed (void)
4465 {
4466 if (inferior_ptid != null_ptid)
4467 {
4468 struct thread_info *tp = inferior_thread ();
4469
4470 /* Allow inferior function calls in breakpoint commands to not
4471 interrupt the command list. When the call finishes
4472 successfully, the inferior will be standing at the same
4473 breakpoint as if nothing happened. */
4474 if (tp->control.in_infcall)
4475 return;
4476 }
4477
4478 breakpoint_proceeded = 1;
4479 }
4480
4481 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4482 or its equivalent. */
4483
4484 static int
4485 command_line_is_silent (struct command_line *cmd)
4486 {
4487 return cmd && (strcmp ("silent", cmd->line) == 0);
4488 }
4489
4490 /* Execute all the commands associated with all the breakpoints at
4491 this location. Any of these commands could cause the process to
4492 proceed beyond this point, etc. We look out for such changes by
4493 checking the global "breakpoint_proceeded" after each command.
4494
4495 Returns true if a breakpoint command resumed the inferior. In that
4496 case, it is the caller's responsibility to recall it again with the
4497 bpstat of the current thread. */
4498
4499 static int
4500 bpstat_do_actions_1 (bpstat *bsp)
4501 {
4502 bpstat bs;
4503 int again = 0;
4504
4505 /* Avoid endless recursion if a `source' command is contained
4506 in bs->commands. */
4507 if (executing_breakpoint_commands)
4508 return 0;
4509
4510 scoped_restore save_executing
4511 = make_scoped_restore (&executing_breakpoint_commands, 1);
4512
4513 scoped_restore preventer = prevent_dont_repeat ();
4514
4515 /* This pointer will iterate over the list of bpstat's. */
4516 bs = *bsp;
4517
4518 breakpoint_proceeded = 0;
4519 for (; bs != NULL; bs = bs->next)
4520 {
4521 struct command_line *cmd = NULL;
4522
4523 /* Take ownership of the BSP's command tree, if it has one.
4524
4525 The command tree could legitimately contain commands like
4526 'step' and 'next', which call clear_proceed_status, which
4527 frees stop_bpstat's command tree. To make sure this doesn't
4528 free the tree we're executing out from under us, we need to
4529 take ownership of the tree ourselves. Since a given bpstat's
4530 commands are only executed once, we don't need to copy it; we
4531 can clear the pointer in the bpstat, and make sure we free
4532 the tree when we're done. */
4533 counted_command_line ccmd = bs->commands;
4534 bs->commands = NULL;
4535 if (ccmd != NULL)
4536 cmd = ccmd.get ();
4537 if (command_line_is_silent (cmd))
4538 {
4539 /* The action has been already done by bpstat_stop_status. */
4540 cmd = cmd->next;
4541 }
4542
4543 while (cmd != NULL)
4544 {
4545 execute_control_command (cmd);
4546
4547 if (breakpoint_proceeded)
4548 break;
4549 else
4550 cmd = cmd->next;
4551 }
4552
4553 if (breakpoint_proceeded)
4554 {
4555 if (current_ui->async)
4556 /* If we are in async mode, then the target might be still
4557 running, not stopped at any breakpoint, so nothing for
4558 us to do here -- just return to the event loop. */
4559 ;
4560 else
4561 /* In sync mode, when execute_control_command returns
4562 we're already standing on the next breakpoint.
4563 Breakpoint commands for that stop were not run, since
4564 execute_command does not run breakpoint commands --
4565 only command_line_handler does, but that one is not
4566 involved in execution of breakpoint commands. So, we
4567 can now execute breakpoint commands. It should be
4568 noted that making execute_command do bpstat actions is
4569 not an option -- in this case we'll have recursive
4570 invocation of bpstat for each breakpoint with a
4571 command, and can easily blow up GDB stack. Instead, we
4572 return true, which will trigger the caller to recall us
4573 with the new stop_bpstat. */
4574 again = 1;
4575 break;
4576 }
4577 }
4578 return again;
4579 }
4580
4581 /* Helper for bpstat_do_actions. Get the current thread, if there's
4582 one, is alive and has execution. Return NULL otherwise. */
4583
4584 static thread_info *
4585 get_bpstat_thread ()
4586 {
4587 if (inferior_ptid == null_ptid || !target_has_execution ())
4588 return NULL;
4589
4590 thread_info *tp = inferior_thread ();
4591 if (tp->state == THREAD_EXITED || tp->executing)
4592 return NULL;
4593 return tp;
4594 }
4595
4596 void
4597 bpstat_do_actions (void)
4598 {
4599 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4600 thread_info *tp;
4601
4602 /* Do any commands attached to breakpoint we are stopped at. */
4603 while ((tp = get_bpstat_thread ()) != NULL)
4604 {
4605 /* Since in sync mode, bpstat_do_actions may resume the
4606 inferior, and only return when it is stopped at the next
4607 breakpoint, we keep doing breakpoint actions until it returns
4608 false to indicate the inferior was not resumed. */
4609 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4610 break;
4611 }
4612
4613 cleanup_if_error.release ();
4614 }
4615
4616 /* Print out the (old or new) value associated with a watchpoint. */
4617
4618 static void
4619 watchpoint_value_print (struct value *val, struct ui_file *stream)
4620 {
4621 if (val == NULL)
4622 fprintf_styled (stream, metadata_style.style (), _("<unreadable>"));
4623 else
4624 {
4625 struct value_print_options opts;
4626 get_user_print_options (&opts);
4627 value_print (val, stream, &opts);
4628 }
4629 }
4630
4631 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4632 debugging multiple threads. */
4633
4634 void
4635 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4636 {
4637 if (uiout->is_mi_like_p ())
4638 return;
4639
4640 uiout->text ("\n");
4641
4642 if (show_thread_that_caused_stop ())
4643 {
4644 const char *name;
4645 struct thread_info *thr = inferior_thread ();
4646
4647 uiout->text ("Thread ");
4648 uiout->field_string ("thread-id", print_thread_id (thr));
4649
4650 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4651 if (name != NULL)
4652 {
4653 uiout->text (" \"");
4654 uiout->field_string ("name", name);
4655 uiout->text ("\"");
4656 }
4657
4658 uiout->text (" hit ");
4659 }
4660 }
4661
4662 /* Generic routine for printing messages indicating why we
4663 stopped. The behavior of this function depends on the value
4664 'print_it' in the bpstat structure. Under some circumstances we
4665 may decide not to print anything here and delegate the task to
4666 normal_stop(). */
4667
4668 static enum print_stop_action
4669 print_bp_stop_message (bpstat bs)
4670 {
4671 switch (bs->print_it)
4672 {
4673 case print_it_noop:
4674 /* Nothing should be printed for this bpstat entry. */
4675 return PRINT_UNKNOWN;
4676 break;
4677
4678 case print_it_done:
4679 /* We still want to print the frame, but we already printed the
4680 relevant messages. */
4681 return PRINT_SRC_AND_LOC;
4682 break;
4683
4684 case print_it_normal:
4685 {
4686 struct breakpoint *b = bs->breakpoint_at;
4687
4688 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4689 which has since been deleted. */
4690 if (b == NULL)
4691 return PRINT_UNKNOWN;
4692
4693 /* Normal case. Call the breakpoint's print_it method. */
4694 return b->ops->print_it (bs);
4695 }
4696 break;
4697
4698 default:
4699 internal_error (__FILE__, __LINE__,
4700 _("print_bp_stop_message: unrecognized enum value"));
4701 break;
4702 }
4703 }
4704
4705 /* A helper function that prints a shared library stopped event. */
4706
4707 static void
4708 print_solib_event (int is_catchpoint)
4709 {
4710 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4711 bool any_added = !current_program_space->added_solibs.empty ();
4712
4713 if (!is_catchpoint)
4714 {
4715 if (any_added || any_deleted)
4716 current_uiout->text (_("Stopped due to shared library event:\n"));
4717 else
4718 current_uiout->text (_("Stopped due to shared library event (no "
4719 "libraries added or removed)\n"));
4720 }
4721
4722 if (current_uiout->is_mi_like_p ())
4723 current_uiout->field_string ("reason",
4724 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4725
4726 if (any_deleted)
4727 {
4728 current_uiout->text (_(" Inferior unloaded "));
4729 ui_out_emit_list list_emitter (current_uiout, "removed");
4730 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4731 {
4732 const std::string &name = current_program_space->deleted_solibs[ix];
4733
4734 if (ix > 0)
4735 current_uiout->text (" ");
4736 current_uiout->field_string ("library", name);
4737 current_uiout->text ("\n");
4738 }
4739 }
4740
4741 if (any_added)
4742 {
4743 current_uiout->text (_(" Inferior loaded "));
4744 ui_out_emit_list list_emitter (current_uiout, "added");
4745 bool first = true;
4746 for (so_list *iter : current_program_space->added_solibs)
4747 {
4748 if (!first)
4749 current_uiout->text (" ");
4750 first = false;
4751 current_uiout->field_string ("library", iter->so_name);
4752 current_uiout->text ("\n");
4753 }
4754 }
4755 }
4756
4757 /* Print a message indicating what happened. This is called from
4758 normal_stop(). The input to this routine is the head of the bpstat
4759 list - a list of the eventpoints that caused this stop. KIND is
4760 the target_waitkind for the stopping event. This
4761 routine calls the generic print routine for printing a message
4762 about reasons for stopping. This will print (for example) the
4763 "Breakpoint n," part of the output. The return value of this
4764 routine is one of:
4765
4766 PRINT_UNKNOWN: Means we printed nothing.
4767 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4768 code to print the location. An example is
4769 "Breakpoint 1, " which should be followed by
4770 the location.
4771 PRINT_SRC_ONLY: Means we printed something, but there is no need
4772 to also print the location part of the message.
4773 An example is the catch/throw messages, which
4774 don't require a location appended to the end.
4775 PRINT_NOTHING: We have done some printing and we don't need any
4776 further info to be printed. */
4777
4778 enum print_stop_action
4779 bpstat_print (bpstat bs, int kind)
4780 {
4781 enum print_stop_action val;
4782
4783 /* Maybe another breakpoint in the chain caused us to stop.
4784 (Currently all watchpoints go on the bpstat whether hit or not.
4785 That probably could (should) be changed, provided care is taken
4786 with respect to bpstat_explains_signal). */
4787 for (; bs; bs = bs->next)
4788 {
4789 val = print_bp_stop_message (bs);
4790 if (val == PRINT_SRC_ONLY
4791 || val == PRINT_SRC_AND_LOC
4792 || val == PRINT_NOTHING)
4793 return val;
4794 }
4795
4796 /* If we had hit a shared library event breakpoint,
4797 print_bp_stop_message would print out this message. If we hit an
4798 OS-level shared library event, do the same thing. */
4799 if (kind == TARGET_WAITKIND_LOADED)
4800 {
4801 print_solib_event (0);
4802 return PRINT_NOTHING;
4803 }
4804
4805 /* We reached the end of the chain, or we got a null BS to start
4806 with and nothing was printed. */
4807 return PRINT_UNKNOWN;
4808 }
4809
4810 /* Evaluate the boolean expression EXP and return the result. */
4811
4812 static bool
4813 breakpoint_cond_eval (expression *exp)
4814 {
4815 struct value *mark = value_mark ();
4816 bool res = value_true (evaluate_expression (exp));
4817
4818 value_free_to_mark (mark);
4819 return res;
4820 }
4821
4822 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4823
4824 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4825 : next (NULL),
4826 bp_location_at (bp_location_ref_ptr::new_reference (bl)),
4827 breakpoint_at (bl->owner),
4828 commands (NULL),
4829 print (0),
4830 stop (0),
4831 print_it (print_it_normal)
4832 {
4833 **bs_link_pointer = this;
4834 *bs_link_pointer = &next;
4835 }
4836
4837 bpstats::bpstats ()
4838 : next (NULL),
4839 breakpoint_at (NULL),
4840 commands (NULL),
4841 print (0),
4842 stop (0),
4843 print_it (print_it_normal)
4844 {
4845 }
4846 \f
4847 /* The target has stopped with waitstatus WS. Check if any hardware
4848 watchpoints have triggered, according to the target. */
4849
4850 int
4851 watchpoints_triggered (struct target_waitstatus *ws)
4852 {
4853 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4854 CORE_ADDR addr;
4855 struct breakpoint *b;
4856
4857 if (!stopped_by_watchpoint)
4858 {
4859 /* We were not stopped by a watchpoint. Mark all watchpoints
4860 as not triggered. */
4861 ALL_BREAKPOINTS (b)
4862 if (is_hardware_watchpoint (b))
4863 {
4864 struct watchpoint *w = (struct watchpoint *) b;
4865
4866 w->watchpoint_triggered = watch_triggered_no;
4867 }
4868
4869 return 0;
4870 }
4871
4872 if (!target_stopped_data_address (current_inferior ()->top_target (), &addr))
4873 {
4874 /* We were stopped by a watchpoint, but we don't know where.
4875 Mark all watchpoints as unknown. */
4876 ALL_BREAKPOINTS (b)
4877 if (is_hardware_watchpoint (b))
4878 {
4879 struct watchpoint *w = (struct watchpoint *) b;
4880
4881 w->watchpoint_triggered = watch_triggered_unknown;
4882 }
4883
4884 return 1;
4885 }
4886
4887 /* The target could report the data address. Mark watchpoints
4888 affected by this data address as triggered, and all others as not
4889 triggered. */
4890
4891 ALL_BREAKPOINTS (b)
4892 if (is_hardware_watchpoint (b))
4893 {
4894 struct watchpoint *w = (struct watchpoint *) b;
4895 struct bp_location *loc;
4896
4897 w->watchpoint_triggered = watch_triggered_no;
4898 for (loc = b->loc; loc; loc = loc->next)
4899 {
4900 if (is_masked_watchpoint (b))
4901 {
4902 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4903 CORE_ADDR start = loc->address & w->hw_wp_mask;
4904
4905 if (newaddr == start)
4906 {
4907 w->watchpoint_triggered = watch_triggered_yes;
4908 break;
4909 }
4910 }
4911 /* Exact match not required. Within range is sufficient. */
4912 else if (target_watchpoint_addr_within_range
4913 (current_inferior ()->top_target (), addr, loc->address,
4914 loc->length))
4915 {
4916 w->watchpoint_triggered = watch_triggered_yes;
4917 break;
4918 }
4919 }
4920 }
4921
4922 return 1;
4923 }
4924
4925 /* Possible return values for watchpoint_check. */
4926 enum wp_check_result
4927 {
4928 /* The watchpoint has been deleted. */
4929 WP_DELETED = 1,
4930
4931 /* The value has changed. */
4932 WP_VALUE_CHANGED = 2,
4933
4934 /* The value has not changed. */
4935 WP_VALUE_NOT_CHANGED = 3,
4936
4937 /* Ignore this watchpoint, no matter if the value changed or not. */
4938 WP_IGNORE = 4,
4939 };
4940
4941 #define BP_TEMPFLAG 1
4942 #define BP_HARDWAREFLAG 2
4943
4944 /* Evaluate watchpoint condition expression and check if its value
4945 changed. */
4946
4947 static wp_check_result
4948 watchpoint_check (bpstat bs)
4949 {
4950 struct watchpoint *b;
4951 struct frame_info *fr;
4952 int within_current_scope;
4953
4954 /* BS is built from an existing struct breakpoint. */
4955 gdb_assert (bs->breakpoint_at != NULL);
4956 b = (struct watchpoint *) bs->breakpoint_at;
4957
4958 /* If this is a local watchpoint, we only want to check if the
4959 watchpoint frame is in scope if the current thread is the thread
4960 that was used to create the watchpoint. */
4961 if (!watchpoint_in_thread_scope (b))
4962 return WP_IGNORE;
4963
4964 if (b->exp_valid_block == NULL)
4965 within_current_scope = 1;
4966 else
4967 {
4968 struct frame_info *frame = get_current_frame ();
4969 struct gdbarch *frame_arch = get_frame_arch (frame);
4970 CORE_ADDR frame_pc = get_frame_pc (frame);
4971
4972 /* stack_frame_destroyed_p() returns a non-zero value if we're
4973 still in the function but the stack frame has already been
4974 invalidated. Since we can't rely on the values of local
4975 variables after the stack has been destroyed, we are treating
4976 the watchpoint in that state as `not changed' without further
4977 checking. Don't mark watchpoints as changed if the current
4978 frame is in an epilogue - even if they are in some other
4979 frame, our view of the stack is likely to be wrong and
4980 frame_find_by_id could error out. */
4981 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4982 return WP_IGNORE;
4983
4984 fr = frame_find_by_id (b->watchpoint_frame);
4985 within_current_scope = (fr != NULL);
4986
4987 /* If we've gotten confused in the unwinder, we might have
4988 returned a frame that can't describe this variable. */
4989 if (within_current_scope)
4990 {
4991 struct symbol *function;
4992
4993 function = get_frame_function (fr);
4994 if (function == NULL
4995 || !contained_in (b->exp_valid_block,
4996 SYMBOL_BLOCK_VALUE (function)))
4997 within_current_scope = 0;
4998 }
4999
5000 if (within_current_scope)
5001 /* If we end up stopping, the current frame will get selected
5002 in normal_stop. So this call to select_frame won't affect
5003 the user. */
5004 select_frame (fr);
5005 }
5006
5007 if (within_current_scope)
5008 {
5009 /* We use value_{,free_to_}mark because it could be a *long*
5010 time before we return to the command level and call
5011 free_all_values. We can't call free_all_values because we
5012 might be in the middle of evaluating a function call. */
5013
5014 struct value *mark;
5015 struct value *new_val;
5016
5017 if (is_masked_watchpoint (b))
5018 /* Since we don't know the exact trigger address (from
5019 stopped_data_address), just tell the user we've triggered
5020 a mask watchpoint. */
5021 return WP_VALUE_CHANGED;
5022
5023 mark = value_mark ();
5024 fetch_subexp_value (b->exp.get (), b->exp->op.get (), &new_val,
5025 NULL, NULL, false);
5026
5027 if (b->val_bitsize != 0)
5028 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5029
5030 /* We use value_equal_contents instead of value_equal because
5031 the latter coerces an array to a pointer, thus comparing just
5032 the address of the array instead of its contents. This is
5033 not what we want. */
5034 if ((b->val != NULL) != (new_val != NULL)
5035 || (b->val != NULL && !value_equal_contents (b->val.get (),
5036 new_val)))
5037 {
5038 bs->old_val = b->val;
5039 b->val = release_value (new_val);
5040 b->val_valid = true;
5041 if (new_val != NULL)
5042 value_free_to_mark (mark);
5043 return WP_VALUE_CHANGED;
5044 }
5045 else
5046 {
5047 /* Nothing changed. */
5048 value_free_to_mark (mark);
5049 return WP_VALUE_NOT_CHANGED;
5050 }
5051 }
5052 else
5053 {
5054 /* This seems like the only logical thing to do because
5055 if we temporarily ignored the watchpoint, then when
5056 we reenter the block in which it is valid it contains
5057 garbage (in the case of a function, it may have two
5058 garbage values, one before and one after the prologue).
5059 So we can't even detect the first assignment to it and
5060 watch after that (since the garbage may or may not equal
5061 the first value assigned). */
5062 /* We print all the stop information in
5063 breakpoint_ops->print_it, but in this case, by the time we
5064 call breakpoint_ops->print_it this bp will be deleted
5065 already. So we have no choice but print the information
5066 here. */
5067
5068 SWITCH_THRU_ALL_UIS ()
5069 {
5070 struct ui_out *uiout = current_uiout;
5071
5072 if (uiout->is_mi_like_p ())
5073 uiout->field_string
5074 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5075 uiout->message ("\nWatchpoint %pF deleted because the program has "
5076 "left the block in\n"
5077 "which its expression is valid.\n",
5078 signed_field ("wpnum", b->number));
5079 }
5080
5081 /* Make sure the watchpoint's commands aren't executed. */
5082 b->commands = NULL;
5083 watchpoint_del_at_next_stop (b);
5084
5085 return WP_DELETED;
5086 }
5087 }
5088
5089 /* Return true if it looks like target has stopped due to hitting
5090 breakpoint location BL. This function does not check if we should
5091 stop, only if BL explains the stop. */
5092
5093 static int
5094 bpstat_check_location (const struct bp_location *bl,
5095 const address_space *aspace, CORE_ADDR bp_addr,
5096 const struct target_waitstatus *ws)
5097 {
5098 struct breakpoint *b = bl->owner;
5099
5100 /* BL is from an existing breakpoint. */
5101 gdb_assert (b != NULL);
5102
5103 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5104 }
5105
5106 /* Determine if the watched values have actually changed, and we
5107 should stop. If not, set BS->stop to 0. */
5108
5109 static void
5110 bpstat_check_watchpoint (bpstat bs)
5111 {
5112 const struct bp_location *bl;
5113 struct watchpoint *b;
5114
5115 /* BS is built for existing struct breakpoint. */
5116 bl = bs->bp_location_at.get ();
5117 gdb_assert (bl != NULL);
5118 b = (struct watchpoint *) bs->breakpoint_at;
5119 gdb_assert (b != NULL);
5120
5121 {
5122 int must_check_value = 0;
5123
5124 if (b->type == bp_watchpoint)
5125 /* For a software watchpoint, we must always check the
5126 watched value. */
5127 must_check_value = 1;
5128 else if (b->watchpoint_triggered == watch_triggered_yes)
5129 /* We have a hardware watchpoint (read, write, or access)
5130 and the target earlier reported an address watched by
5131 this watchpoint. */
5132 must_check_value = 1;
5133 else if (b->watchpoint_triggered == watch_triggered_unknown
5134 && b->type == bp_hardware_watchpoint)
5135 /* We were stopped by a hardware watchpoint, but the target could
5136 not report the data address. We must check the watchpoint's
5137 value. Access and read watchpoints are out of luck; without
5138 a data address, we can't figure it out. */
5139 must_check_value = 1;
5140
5141 if (must_check_value)
5142 {
5143 wp_check_result e;
5144
5145 try
5146 {
5147 e = watchpoint_check (bs);
5148 }
5149 catch (const gdb_exception &ex)
5150 {
5151 exception_fprintf (gdb_stderr, ex,
5152 "Error evaluating expression "
5153 "for watchpoint %d\n",
5154 b->number);
5155
5156 SWITCH_THRU_ALL_UIS ()
5157 {
5158 printf_filtered (_("Watchpoint %d deleted.\n"),
5159 b->number);
5160 }
5161 watchpoint_del_at_next_stop (b);
5162 e = WP_DELETED;
5163 }
5164
5165 switch (e)
5166 {
5167 case WP_DELETED:
5168 /* We've already printed what needs to be printed. */
5169 bs->print_it = print_it_done;
5170 /* Stop. */
5171 break;
5172 case WP_IGNORE:
5173 bs->print_it = print_it_noop;
5174 bs->stop = 0;
5175 break;
5176 case WP_VALUE_CHANGED:
5177 if (b->type == bp_read_watchpoint)
5178 {
5179 /* There are two cases to consider here:
5180
5181 1. We're watching the triggered memory for reads.
5182 In that case, trust the target, and always report
5183 the watchpoint hit to the user. Even though
5184 reads don't cause value changes, the value may
5185 have changed since the last time it was read, and
5186 since we're not trapping writes, we will not see
5187 those, and as such we should ignore our notion of
5188 old value.
5189
5190 2. We're watching the triggered memory for both
5191 reads and writes. There are two ways this may
5192 happen:
5193
5194 2.1. This is a target that can't break on data
5195 reads only, but can break on accesses (reads or
5196 writes), such as e.g., x86. We detect this case
5197 at the time we try to insert read watchpoints.
5198
5199 2.2. Otherwise, the target supports read
5200 watchpoints, but, the user set an access or write
5201 watchpoint watching the same memory as this read
5202 watchpoint.
5203
5204 If we're watching memory writes as well as reads,
5205 ignore watchpoint hits when we find that the
5206 value hasn't changed, as reads don't cause
5207 changes. This still gives false positives when
5208 the program writes the same value to memory as
5209 what there was already in memory (we will confuse
5210 it for a read), but it's much better than
5211 nothing. */
5212
5213 int other_write_watchpoint = 0;
5214
5215 if (bl->watchpoint_type == hw_read)
5216 {
5217 struct breakpoint *other_b;
5218
5219 ALL_BREAKPOINTS (other_b)
5220 if (other_b->type == bp_hardware_watchpoint
5221 || other_b->type == bp_access_watchpoint)
5222 {
5223 struct watchpoint *other_w =
5224 (struct watchpoint *) other_b;
5225
5226 if (other_w->watchpoint_triggered
5227 == watch_triggered_yes)
5228 {
5229 other_write_watchpoint = 1;
5230 break;
5231 }
5232 }
5233 }
5234
5235 if (other_write_watchpoint
5236 || bl->watchpoint_type == hw_access)
5237 {
5238 /* We're watching the same memory for writes,
5239 and the value changed since the last time we
5240 updated it, so this trap must be for a write.
5241 Ignore it. */
5242 bs->print_it = print_it_noop;
5243 bs->stop = 0;
5244 }
5245 }
5246 break;
5247 case WP_VALUE_NOT_CHANGED:
5248 if (b->type == bp_hardware_watchpoint
5249 || b->type == bp_watchpoint)
5250 {
5251 /* Don't stop: write watchpoints shouldn't fire if
5252 the value hasn't changed. */
5253 bs->print_it = print_it_noop;
5254 bs->stop = 0;
5255 }
5256 /* Stop. */
5257 break;
5258 default:
5259 /* Can't happen. */
5260 break;
5261 }
5262 }
5263 else /* must_check_value == 0 */
5264 {
5265 /* This is a case where some watchpoint(s) triggered, but
5266 not at the address of this watchpoint, or else no
5267 watchpoint triggered after all. So don't print
5268 anything for this watchpoint. */
5269 bs->print_it = print_it_noop;
5270 bs->stop = 0;
5271 }
5272 }
5273 }
5274
5275 /* For breakpoints that are currently marked as telling gdb to stop,
5276 check conditions (condition proper, frame, thread and ignore count)
5277 of breakpoint referred to by BS. If we should not stop for this
5278 breakpoint, set BS->stop to 0. */
5279
5280 static void
5281 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5282 {
5283 const struct bp_location *bl;
5284 struct breakpoint *b;
5285 /* Assume stop. */
5286 bool condition_result = true;
5287 struct expression *cond;
5288
5289 gdb_assert (bs->stop);
5290
5291 /* BS is built for existing struct breakpoint. */
5292 bl = bs->bp_location_at.get ();
5293 gdb_assert (bl != NULL);
5294 b = bs->breakpoint_at;
5295 gdb_assert (b != NULL);
5296
5297 /* Even if the target evaluated the condition on its end and notified GDB, we
5298 need to do so again since GDB does not know if we stopped due to a
5299 breakpoint or a single step breakpoint. */
5300
5301 if (frame_id_p (b->frame_id)
5302 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5303 {
5304 bs->stop = 0;
5305 return;
5306 }
5307
5308 /* If this is a thread/task-specific breakpoint, don't waste cpu
5309 evaluating the condition if this isn't the specified
5310 thread/task. */
5311 if ((b->thread != -1 && b->thread != thread->global_num)
5312 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5313 {
5314 bs->stop = 0;
5315 return;
5316 }
5317
5318 /* Evaluate extension language breakpoints that have a "stop" method
5319 implemented. */
5320 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5321
5322 if (is_watchpoint (b))
5323 {
5324 struct watchpoint *w = (struct watchpoint *) b;
5325
5326 cond = w->cond_exp.get ();
5327 }
5328 else
5329 cond = bl->cond.get ();
5330
5331 if (cond && b->disposition != disp_del_at_next_stop)
5332 {
5333 int within_current_scope = 1;
5334 struct watchpoint * w;
5335
5336 /* We use value_mark and value_free_to_mark because it could
5337 be a long time before we return to the command level and
5338 call free_all_values. We can't call free_all_values
5339 because we might be in the middle of evaluating a
5340 function call. */
5341 struct value *mark = value_mark ();
5342
5343 if (is_watchpoint (b))
5344 w = (struct watchpoint *) b;
5345 else
5346 w = NULL;
5347
5348 /* Need to select the frame, with all that implies so that
5349 the conditions will have the right context. Because we
5350 use the frame, we will not see an inlined function's
5351 variables when we arrive at a breakpoint at the start
5352 of the inlined function; the current frame will be the
5353 call site. */
5354 if (w == NULL || w->cond_exp_valid_block == NULL)
5355 select_frame (get_current_frame ());
5356 else
5357 {
5358 struct frame_info *frame;
5359
5360 /* For local watchpoint expressions, which particular
5361 instance of a local is being watched matters, so we
5362 keep track of the frame to evaluate the expression
5363 in. To evaluate the condition however, it doesn't
5364 really matter which instantiation of the function
5365 where the condition makes sense triggers the
5366 watchpoint. This allows an expression like "watch
5367 global if q > 10" set in `func', catch writes to
5368 global on all threads that call `func', or catch
5369 writes on all recursive calls of `func' by a single
5370 thread. We simply always evaluate the condition in
5371 the innermost frame that's executing where it makes
5372 sense to evaluate the condition. It seems
5373 intuitive. */
5374 frame = block_innermost_frame (w->cond_exp_valid_block);
5375 if (frame != NULL)
5376 select_frame (frame);
5377 else
5378 within_current_scope = 0;
5379 }
5380 if (within_current_scope)
5381 {
5382 try
5383 {
5384 condition_result = breakpoint_cond_eval (cond);
5385 }
5386 catch (const gdb_exception &ex)
5387 {
5388 exception_fprintf (gdb_stderr, ex,
5389 "Error in testing breakpoint condition:\n");
5390 }
5391 }
5392 else
5393 {
5394 warning (_("Watchpoint condition cannot be tested "
5395 "in the current scope"));
5396 /* If we failed to set the right context for this
5397 watchpoint, unconditionally report it. */
5398 }
5399 /* FIXME-someday, should give breakpoint #. */
5400 value_free_to_mark (mark);
5401 }
5402
5403 if (cond && !condition_result)
5404 {
5405 bs->stop = 0;
5406 }
5407 else if (b->ignore_count > 0)
5408 {
5409 b->ignore_count--;
5410 bs->stop = 0;
5411 /* Increase the hit count even though we don't stop. */
5412 ++(b->hit_count);
5413 gdb::observers::breakpoint_modified.notify (b);
5414 }
5415 }
5416
5417 /* Returns true if we need to track moribund locations of LOC's type
5418 on the current target. */
5419
5420 static int
5421 need_moribund_for_location_type (struct bp_location *loc)
5422 {
5423 return ((loc->loc_type == bp_loc_software_breakpoint
5424 && !target_supports_stopped_by_sw_breakpoint ())
5425 || (loc->loc_type == bp_loc_hardware_breakpoint
5426 && !target_supports_stopped_by_hw_breakpoint ()));
5427 }
5428
5429 /* See breakpoint.h. */
5430
5431 bpstat
5432 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5433 const struct target_waitstatus *ws)
5434 {
5435 struct breakpoint *b;
5436 bpstat bs_head = NULL, *bs_link = &bs_head;
5437
5438 ALL_BREAKPOINTS (b)
5439 {
5440 if (!breakpoint_enabled (b))
5441 continue;
5442
5443 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5444 {
5445 /* For hardware watchpoints, we look only at the first
5446 location. The watchpoint_check function will work on the
5447 entire expression, not the individual locations. For
5448 read watchpoints, the watchpoints_triggered function has
5449 checked all locations already. */
5450 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5451 break;
5452
5453 if (!bl->enabled || bl->disabled_by_cond || bl->shlib_disabled)
5454 continue;
5455
5456 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5457 continue;
5458
5459 /* Come here if it's a watchpoint, or if the break address
5460 matches. */
5461
5462 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5463 explain stop. */
5464
5465 /* Assume we stop. Should we find a watchpoint that is not
5466 actually triggered, or if the condition of the breakpoint
5467 evaluates as false, we'll reset 'stop' to 0. */
5468 bs->stop = 1;
5469 bs->print = 1;
5470
5471 /* If this is a scope breakpoint, mark the associated
5472 watchpoint as triggered so that we will handle the
5473 out-of-scope event. We'll get to the watchpoint next
5474 iteration. */
5475 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5476 {
5477 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5478
5479 w->watchpoint_triggered = watch_triggered_yes;
5480 }
5481 }
5482 }
5483
5484 /* Check if a moribund breakpoint explains the stop. */
5485 if (!target_supports_stopped_by_sw_breakpoint ()
5486 || !target_supports_stopped_by_hw_breakpoint ())
5487 {
5488 for (bp_location *loc : moribund_locations)
5489 {
5490 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5491 && need_moribund_for_location_type (loc))
5492 {
5493 bpstat bs = new bpstats (loc, &bs_link);
5494 /* For hits of moribund locations, we should just proceed. */
5495 bs->stop = 0;
5496 bs->print = 0;
5497 bs->print_it = print_it_noop;
5498 }
5499 }
5500 }
5501
5502 return bs_head;
5503 }
5504
5505 /* See breakpoint.h. */
5506
5507 bpstat
5508 bpstat_stop_status (const address_space *aspace,
5509 CORE_ADDR bp_addr, thread_info *thread,
5510 const struct target_waitstatus *ws,
5511 bpstat stop_chain)
5512 {
5513 struct breakpoint *b = NULL;
5514 /* First item of allocated bpstat's. */
5515 bpstat bs_head = stop_chain;
5516 bpstat bs;
5517 int need_remove_insert;
5518 int removed_any;
5519
5520 /* First, build the bpstat chain with locations that explain a
5521 target stop, while being careful to not set the target running,
5522 as that may invalidate locations (in particular watchpoint
5523 locations are recreated). Resuming will happen here with
5524 breakpoint conditions or watchpoint expressions that include
5525 inferior function calls. */
5526 if (bs_head == NULL)
5527 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5528
5529 /* A bit of special processing for shlib breakpoints. We need to
5530 process solib loading here, so that the lists of loaded and
5531 unloaded libraries are correct before we handle "catch load" and
5532 "catch unload". */
5533 for (bs = bs_head; bs != NULL; bs = bs->next)
5534 {
5535 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5536 {
5537 handle_solib_event ();
5538 break;
5539 }
5540 }
5541
5542 /* Now go through the locations that caused the target to stop, and
5543 check whether we're interested in reporting this stop to higher
5544 layers, or whether we should resume the target transparently. */
5545
5546 removed_any = 0;
5547
5548 for (bs = bs_head; bs != NULL; bs = bs->next)
5549 {
5550 if (!bs->stop)
5551 continue;
5552
5553 b = bs->breakpoint_at;
5554 b->ops->check_status (bs);
5555 if (bs->stop)
5556 {
5557 bpstat_check_breakpoint_conditions (bs, thread);
5558
5559 if (bs->stop)
5560 {
5561 ++(b->hit_count);
5562 gdb::observers::breakpoint_modified.notify (b);
5563
5564 /* We will stop here. */
5565 if (b->disposition == disp_disable)
5566 {
5567 --(b->enable_count);
5568 if (b->enable_count <= 0)
5569 b->enable_state = bp_disabled;
5570 removed_any = 1;
5571 }
5572 if (b->silent)
5573 bs->print = 0;
5574 bs->commands = b->commands;
5575 if (command_line_is_silent (bs->commands
5576 ? bs->commands.get () : NULL))
5577 bs->print = 0;
5578
5579 b->ops->after_condition_true (bs);
5580 }
5581
5582 }
5583
5584 /* Print nothing for this entry if we don't stop or don't
5585 print. */
5586 if (!bs->stop || !bs->print)
5587 bs->print_it = print_it_noop;
5588 }
5589
5590 /* If we aren't stopping, the value of some hardware watchpoint may
5591 not have changed, but the intermediate memory locations we are
5592 watching may have. Don't bother if we're stopping; this will get
5593 done later. */
5594 need_remove_insert = 0;
5595 if (! bpstat_causes_stop (bs_head))
5596 for (bs = bs_head; bs != NULL; bs = bs->next)
5597 if (!bs->stop
5598 && bs->breakpoint_at
5599 && is_hardware_watchpoint (bs->breakpoint_at))
5600 {
5601 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5602
5603 update_watchpoint (w, 0 /* don't reparse. */);
5604 need_remove_insert = 1;
5605 }
5606
5607 if (need_remove_insert)
5608 update_global_location_list (UGLL_MAY_INSERT);
5609 else if (removed_any)
5610 update_global_location_list (UGLL_DONT_INSERT);
5611
5612 return bs_head;
5613 }
5614
5615 static void
5616 handle_jit_event (CORE_ADDR address)
5617 {
5618 struct gdbarch *gdbarch;
5619
5620 infrun_debug_printf ("handling bp_jit_event");
5621
5622 /* Switch terminal for any messages produced by
5623 breakpoint_re_set. */
5624 target_terminal::ours_for_output ();
5625
5626 gdbarch = get_frame_arch (get_current_frame ());
5627 /* This event is caused by a breakpoint set in `jit_breakpoint_re_set`,
5628 thus it is expected that its objectfile can be found through
5629 minimal symbol lookup. If it doesn't work (and assert fails), it
5630 most likely means that `jit_breakpoint_re_set` was changes and this
5631 function needs to be updated too. */
5632 bound_minimal_symbol jit_bp_sym = lookup_minimal_symbol_by_pc (address);
5633 gdb_assert (jit_bp_sym.objfile != nullptr);
5634 jit_event_handler (gdbarch, jit_bp_sym.objfile);
5635
5636 target_terminal::inferior ();
5637 }
5638
5639 /* Prepare WHAT final decision for infrun. */
5640
5641 /* Decide what infrun needs to do with this bpstat. */
5642
5643 struct bpstat_what
5644 bpstat_what (bpstat bs_head)
5645 {
5646 struct bpstat_what retval;
5647 bpstat bs;
5648
5649 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5650 retval.call_dummy = STOP_NONE;
5651 retval.is_longjmp = false;
5652
5653 for (bs = bs_head; bs != NULL; bs = bs->next)
5654 {
5655 /* Extract this BS's action. After processing each BS, we check
5656 if its action overrides all we've seem so far. */
5657 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5658 enum bptype bptype;
5659
5660 if (bs->breakpoint_at == NULL)
5661 {
5662 /* I suspect this can happen if it was a momentary
5663 breakpoint which has since been deleted. */
5664 bptype = bp_none;
5665 }
5666 else
5667 bptype = bs->breakpoint_at->type;
5668
5669 switch (bptype)
5670 {
5671 case bp_none:
5672 break;
5673 case bp_breakpoint:
5674 case bp_hardware_breakpoint:
5675 case bp_single_step:
5676 case bp_until:
5677 case bp_finish:
5678 case bp_shlib_event:
5679 if (bs->stop)
5680 {
5681 if (bs->print)
5682 this_action = BPSTAT_WHAT_STOP_NOISY;
5683 else
5684 this_action = BPSTAT_WHAT_STOP_SILENT;
5685 }
5686 else
5687 this_action = BPSTAT_WHAT_SINGLE;
5688 break;
5689 case bp_watchpoint:
5690 case bp_hardware_watchpoint:
5691 case bp_read_watchpoint:
5692 case bp_access_watchpoint:
5693 if (bs->stop)
5694 {
5695 if (bs->print)
5696 this_action = BPSTAT_WHAT_STOP_NOISY;
5697 else
5698 this_action = BPSTAT_WHAT_STOP_SILENT;
5699 }
5700 else
5701 {
5702 /* There was a watchpoint, but we're not stopping.
5703 This requires no further action. */
5704 }
5705 break;
5706 case bp_longjmp:
5707 case bp_longjmp_call_dummy:
5708 case bp_exception:
5709 if (bs->stop)
5710 {
5711 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5712 retval.is_longjmp = bptype != bp_exception;
5713 }
5714 else
5715 this_action = BPSTAT_WHAT_SINGLE;
5716 break;
5717 case bp_longjmp_resume:
5718 case bp_exception_resume:
5719 if (bs->stop)
5720 {
5721 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5722 retval.is_longjmp = bptype == bp_longjmp_resume;
5723 }
5724 else
5725 this_action = BPSTAT_WHAT_SINGLE;
5726 break;
5727 case bp_step_resume:
5728 if (bs->stop)
5729 this_action = BPSTAT_WHAT_STEP_RESUME;
5730 else
5731 {
5732 /* It is for the wrong frame. */
5733 this_action = BPSTAT_WHAT_SINGLE;
5734 }
5735 break;
5736 case bp_hp_step_resume:
5737 if (bs->stop)
5738 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5739 else
5740 {
5741 /* It is for the wrong frame. */
5742 this_action = BPSTAT_WHAT_SINGLE;
5743 }
5744 break;
5745 case bp_watchpoint_scope:
5746 case bp_thread_event:
5747 case bp_overlay_event:
5748 case bp_longjmp_master:
5749 case bp_std_terminate_master:
5750 case bp_exception_master:
5751 this_action = BPSTAT_WHAT_SINGLE;
5752 break;
5753 case bp_catchpoint:
5754 if (bs->stop)
5755 {
5756 if (bs->print)
5757 this_action = BPSTAT_WHAT_STOP_NOISY;
5758 else
5759 this_action = BPSTAT_WHAT_STOP_SILENT;
5760 }
5761 else
5762 {
5763 /* Some catchpoints are implemented with breakpoints.
5764 For those, we need to step over the breakpoint. */
5765 if (bs->bp_location_at->loc_type != bp_loc_other)
5766 this_action = BPSTAT_WHAT_SINGLE;
5767 }
5768 break;
5769 case bp_jit_event:
5770 this_action = BPSTAT_WHAT_SINGLE;
5771 break;
5772 case bp_call_dummy:
5773 /* Make sure the action is stop (silent or noisy),
5774 so infrun.c pops the dummy frame. */
5775 retval.call_dummy = STOP_STACK_DUMMY;
5776 this_action = BPSTAT_WHAT_STOP_SILENT;
5777 break;
5778 case bp_std_terminate:
5779 /* Make sure the action is stop (silent or noisy),
5780 so infrun.c pops the dummy frame. */
5781 retval.call_dummy = STOP_STD_TERMINATE;
5782 this_action = BPSTAT_WHAT_STOP_SILENT;
5783 break;
5784 case bp_tracepoint:
5785 case bp_fast_tracepoint:
5786 case bp_static_tracepoint:
5787 /* Tracepoint hits should not be reported back to GDB, and
5788 if one got through somehow, it should have been filtered
5789 out already. */
5790 internal_error (__FILE__, __LINE__,
5791 _("bpstat_what: tracepoint encountered"));
5792 break;
5793 case bp_gnu_ifunc_resolver:
5794 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5795 this_action = BPSTAT_WHAT_SINGLE;
5796 break;
5797 case bp_gnu_ifunc_resolver_return:
5798 /* The breakpoint will be removed, execution will restart from the
5799 PC of the former breakpoint. */
5800 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5801 break;
5802
5803 case bp_dprintf:
5804 if (bs->stop)
5805 this_action = BPSTAT_WHAT_STOP_SILENT;
5806 else
5807 this_action = BPSTAT_WHAT_SINGLE;
5808 break;
5809
5810 default:
5811 internal_error (__FILE__, __LINE__,
5812 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5813 }
5814
5815 retval.main_action = std::max (retval.main_action, this_action);
5816 }
5817
5818 return retval;
5819 }
5820
5821 void
5822 bpstat_run_callbacks (bpstat bs_head)
5823 {
5824 bpstat bs;
5825
5826 for (bs = bs_head; bs != NULL; bs = bs->next)
5827 {
5828 struct breakpoint *b = bs->breakpoint_at;
5829
5830 if (b == NULL)
5831 continue;
5832 switch (b->type)
5833 {
5834 case bp_jit_event:
5835 handle_jit_event (bs->bp_location_at->address);
5836 break;
5837 case bp_gnu_ifunc_resolver:
5838 gnu_ifunc_resolver_stop (b);
5839 break;
5840 case bp_gnu_ifunc_resolver_return:
5841 gnu_ifunc_resolver_return_stop (b);
5842 break;
5843 }
5844 }
5845 }
5846
5847 /* See breakpoint.h. */
5848
5849 bool
5850 bpstat_should_step ()
5851 {
5852 struct breakpoint *b;
5853
5854 ALL_BREAKPOINTS (b)
5855 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5856 return true;
5857 return false;
5858 }
5859
5860 /* See breakpoint.h. */
5861
5862 bool
5863 bpstat_causes_stop (bpstat bs)
5864 {
5865 for (; bs != NULL; bs = bs->next)
5866 if (bs->stop)
5867 return true;
5868
5869 return false;
5870 }
5871
5872 \f
5873
5874 /* Compute a string of spaces suitable to indent the next line
5875 so it starts at the position corresponding to the table column
5876 named COL_NAME in the currently active table of UIOUT. */
5877
5878 static char *
5879 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5880 {
5881 static char wrap_indent[80];
5882 int i, total_width, width, align;
5883 const char *text;
5884
5885 total_width = 0;
5886 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5887 {
5888 if (strcmp (text, col_name) == 0)
5889 {
5890 gdb_assert (total_width < sizeof wrap_indent);
5891 memset (wrap_indent, ' ', total_width);
5892 wrap_indent[total_width] = 0;
5893
5894 return wrap_indent;
5895 }
5896
5897 total_width += width + 1;
5898 }
5899
5900 return NULL;
5901 }
5902
5903 /* Determine if the locations of this breakpoint will have their conditions
5904 evaluated by the target, host or a mix of both. Returns the following:
5905
5906 "host": Host evals condition.
5907 "host or target": Host or Target evals condition.
5908 "target": Target evals condition.
5909 */
5910
5911 static const char *
5912 bp_condition_evaluator (struct breakpoint *b)
5913 {
5914 struct bp_location *bl;
5915 char host_evals = 0;
5916 char target_evals = 0;
5917
5918 if (!b)
5919 return NULL;
5920
5921 if (!is_breakpoint (b))
5922 return NULL;
5923
5924 if (gdb_evaluates_breakpoint_condition_p ()
5925 || !target_supports_evaluation_of_breakpoint_conditions ())
5926 return condition_evaluation_host;
5927
5928 for (bl = b->loc; bl; bl = bl->next)
5929 {
5930 if (bl->cond_bytecode)
5931 target_evals++;
5932 else
5933 host_evals++;
5934 }
5935
5936 if (host_evals && target_evals)
5937 return condition_evaluation_both;
5938 else if (target_evals)
5939 return condition_evaluation_target;
5940 else
5941 return condition_evaluation_host;
5942 }
5943
5944 /* Determine the breakpoint location's condition evaluator. This is
5945 similar to bp_condition_evaluator, but for locations. */
5946
5947 static const char *
5948 bp_location_condition_evaluator (struct bp_location *bl)
5949 {
5950 if (bl && !is_breakpoint (bl->owner))
5951 return NULL;
5952
5953 if (gdb_evaluates_breakpoint_condition_p ()
5954 || !target_supports_evaluation_of_breakpoint_conditions ())
5955 return condition_evaluation_host;
5956
5957 if (bl && bl->cond_bytecode)
5958 return condition_evaluation_target;
5959 else
5960 return condition_evaluation_host;
5961 }
5962
5963 /* Print the LOC location out of the list of B->LOC locations. */
5964
5965 static void
5966 print_breakpoint_location (struct breakpoint *b,
5967 struct bp_location *loc)
5968 {
5969 struct ui_out *uiout = current_uiout;
5970
5971 scoped_restore_current_program_space restore_pspace;
5972
5973 if (loc != NULL && loc->shlib_disabled)
5974 loc = NULL;
5975
5976 if (loc != NULL)
5977 set_current_program_space (loc->pspace);
5978
5979 if (b->display_canonical)
5980 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5981 else if (loc && loc->symtab)
5982 {
5983 const struct symbol *sym = loc->symbol;
5984
5985 if (sym)
5986 {
5987 uiout->text ("in ");
5988 uiout->field_string ("func", sym->print_name (),
5989 function_name_style.style ());
5990 uiout->text (" ");
5991 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5992 uiout->text ("at ");
5993 }
5994 uiout->field_string ("file",
5995 symtab_to_filename_for_display (loc->symtab),
5996 file_name_style.style ());
5997 uiout->text (":");
5998
5999 if (uiout->is_mi_like_p ())
6000 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
6001
6002 uiout->field_signed ("line", loc->line_number);
6003 }
6004 else if (loc)
6005 {
6006 string_file stb;
6007
6008 print_address_symbolic (loc->gdbarch, loc->address, &stb,
6009 demangle, "");
6010 uiout->field_stream ("at", stb);
6011 }
6012 else
6013 {
6014 uiout->field_string ("pending",
6015 event_location_to_string (b->location.get ()));
6016 /* If extra_string is available, it could be holding a condition
6017 or dprintf arguments. In either case, make sure it is printed,
6018 too, but only for non-MI streams. */
6019 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
6020 {
6021 if (b->type == bp_dprintf)
6022 uiout->text (",");
6023 else
6024 uiout->text (" ");
6025 uiout->text (b->extra_string);
6026 }
6027 }
6028
6029 if (loc && is_breakpoint (b)
6030 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6031 && bp_condition_evaluator (b) == condition_evaluation_both)
6032 {
6033 uiout->text (" (");
6034 uiout->field_string ("evaluated-by",
6035 bp_location_condition_evaluator (loc));
6036 uiout->text (")");
6037 }
6038 }
6039
6040 static const char *
6041 bptype_string (enum bptype type)
6042 {
6043 struct ep_type_description
6044 {
6045 enum bptype type;
6046 const char *description;
6047 };
6048 static struct ep_type_description bptypes[] =
6049 {
6050 {bp_none, "?deleted?"},
6051 {bp_breakpoint, "breakpoint"},
6052 {bp_hardware_breakpoint, "hw breakpoint"},
6053 {bp_single_step, "sw single-step"},
6054 {bp_until, "until"},
6055 {bp_finish, "finish"},
6056 {bp_watchpoint, "watchpoint"},
6057 {bp_hardware_watchpoint, "hw watchpoint"},
6058 {bp_read_watchpoint, "read watchpoint"},
6059 {bp_access_watchpoint, "acc watchpoint"},
6060 {bp_longjmp, "longjmp"},
6061 {bp_longjmp_resume, "longjmp resume"},
6062 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6063 {bp_exception, "exception"},
6064 {bp_exception_resume, "exception resume"},
6065 {bp_step_resume, "step resume"},
6066 {bp_hp_step_resume, "high-priority step resume"},
6067 {bp_watchpoint_scope, "watchpoint scope"},
6068 {bp_call_dummy, "call dummy"},
6069 {bp_std_terminate, "std::terminate"},
6070 {bp_shlib_event, "shlib events"},
6071 {bp_thread_event, "thread events"},
6072 {bp_overlay_event, "overlay events"},
6073 {bp_longjmp_master, "longjmp master"},
6074 {bp_std_terminate_master, "std::terminate master"},
6075 {bp_exception_master, "exception master"},
6076 {bp_catchpoint, "catchpoint"},
6077 {bp_tracepoint, "tracepoint"},
6078 {bp_fast_tracepoint, "fast tracepoint"},
6079 {bp_static_tracepoint, "static tracepoint"},
6080 {bp_dprintf, "dprintf"},
6081 {bp_jit_event, "jit events"},
6082 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6083 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6084 };
6085
6086 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6087 || ((int) type != bptypes[(int) type].type))
6088 internal_error (__FILE__, __LINE__,
6089 _("bptypes table does not describe type #%d."),
6090 (int) type);
6091
6092 return bptypes[(int) type].description;
6093 }
6094
6095 /* For MI, output a field named 'thread-groups' with a list as the value.
6096 For CLI, prefix the list with the string 'inf'. */
6097
6098 static void
6099 output_thread_groups (struct ui_out *uiout,
6100 const char *field_name,
6101 const std::vector<int> &inf_nums,
6102 int mi_only)
6103 {
6104 int is_mi = uiout->is_mi_like_p ();
6105
6106 /* For backward compatibility, don't display inferiors in CLI unless
6107 there are several. Always display them for MI. */
6108 if (!is_mi && mi_only)
6109 return;
6110
6111 ui_out_emit_list list_emitter (uiout, field_name);
6112
6113 for (size_t i = 0; i < inf_nums.size (); i++)
6114 {
6115 if (is_mi)
6116 {
6117 char mi_group[10];
6118
6119 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6120 uiout->field_string (NULL, mi_group);
6121 }
6122 else
6123 {
6124 if (i == 0)
6125 uiout->text (" inf ");
6126 else
6127 uiout->text (", ");
6128
6129 uiout->text (plongest (inf_nums[i]));
6130 }
6131 }
6132 }
6133
6134 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
6135 instead of going via breakpoint_ops::print_one. This makes "maint
6136 info breakpoints" show the software breakpoint locations of
6137 catchpoints, which are considered internal implementation
6138 detail. */
6139
6140 static void
6141 print_one_breakpoint_location (struct breakpoint *b,
6142 struct bp_location *loc,
6143 int loc_number,
6144 struct bp_location **last_loc,
6145 int allflag, bool raw_loc)
6146 {
6147 struct command_line *l;
6148 static char bpenables[] = "nynny";
6149
6150 struct ui_out *uiout = current_uiout;
6151 int header_of_multiple = 0;
6152 int part_of_multiple = (loc != NULL);
6153 struct value_print_options opts;
6154
6155 get_user_print_options (&opts);
6156
6157 gdb_assert (!loc || loc_number != 0);
6158 /* See comment in print_one_breakpoint concerning treatment of
6159 breakpoints with single disabled location. */
6160 if (loc == NULL
6161 && (b->loc != NULL
6162 && (b->loc->next != NULL
6163 || !b->loc->enabled || b->loc->disabled_by_cond)))
6164 header_of_multiple = 1;
6165 if (loc == NULL)
6166 loc = b->loc;
6167
6168 annotate_record ();
6169
6170 /* 1 */
6171 annotate_field (0);
6172 if (part_of_multiple)
6173 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6174 else
6175 uiout->field_signed ("number", b->number);
6176
6177 /* 2 */
6178 annotate_field (1);
6179 if (part_of_multiple)
6180 uiout->field_skip ("type");
6181 else
6182 uiout->field_string ("type", bptype_string (b->type));
6183
6184 /* 3 */
6185 annotate_field (2);
6186 if (part_of_multiple)
6187 uiout->field_skip ("disp");
6188 else
6189 uiout->field_string ("disp", bpdisp_text (b->disposition));
6190
6191 /* 4 */
6192 annotate_field (3);
6193 if (part_of_multiple)
6194 uiout->field_string ("enabled", (loc->disabled_by_cond ? "N*"
6195 : (loc->enabled ? "y" : "n")));
6196 else
6197 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6198
6199 /* 5 and 6 */
6200 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL)
6201 b->ops->print_one (b, last_loc);
6202 else
6203 {
6204 if (is_watchpoint (b))
6205 {
6206 struct watchpoint *w = (struct watchpoint *) b;
6207
6208 /* Field 4, the address, is omitted (which makes the columns
6209 not line up too nicely with the headers, but the effect
6210 is relatively readable). */
6211 if (opts.addressprint)
6212 uiout->field_skip ("addr");
6213 annotate_field (5);
6214 uiout->field_string ("what", w->exp_string);
6215 }
6216 else if (!is_catchpoint (b) || is_exception_catchpoint (b)
6217 || is_ada_exception_catchpoint (b))
6218 {
6219 if (opts.addressprint)
6220 {
6221 annotate_field (4);
6222 if (header_of_multiple)
6223 uiout->field_string ("addr", "<MULTIPLE>",
6224 metadata_style.style ());
6225 else if (b->loc == NULL || loc->shlib_disabled)
6226 uiout->field_string ("addr", "<PENDING>",
6227 metadata_style.style ());
6228 else
6229 uiout->field_core_addr ("addr",
6230 loc->gdbarch, loc->address);
6231 }
6232 annotate_field (5);
6233 if (!header_of_multiple)
6234 print_breakpoint_location (b, loc);
6235 if (b->loc)
6236 *last_loc = b->loc;
6237 }
6238 }
6239
6240 if (loc != NULL && !header_of_multiple)
6241 {
6242 std::vector<int> inf_nums;
6243 int mi_only = 1;
6244
6245 for (inferior *inf : all_inferiors ())
6246 {
6247 if (inf->pspace == loc->pspace)
6248 inf_nums.push_back (inf->num);
6249 }
6250
6251 /* For backward compatibility, don't display inferiors in CLI unless
6252 there are several. Always display for MI. */
6253 if (allflag
6254 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6255 && (program_spaces.size () > 1
6256 || number_of_inferiors () > 1)
6257 /* LOC is for existing B, it cannot be in
6258 moribund_locations and thus having NULL OWNER. */
6259 && loc->owner->type != bp_catchpoint))
6260 mi_only = 0;
6261 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6262 }
6263
6264 if (!part_of_multiple)
6265 {
6266 if (b->thread != -1)
6267 {
6268 /* FIXME: This seems to be redundant and lost here; see the
6269 "stop only in" line a little further down. */
6270 uiout->text (" thread ");
6271 uiout->field_signed ("thread", b->thread);
6272 }
6273 else if (b->task != 0)
6274 {
6275 uiout->text (" task ");
6276 uiout->field_signed ("task", b->task);
6277 }
6278 }
6279
6280 uiout->text ("\n");
6281
6282 if (!part_of_multiple)
6283 b->ops->print_one_detail (b, uiout);
6284
6285 if (part_of_multiple && frame_id_p (b->frame_id))
6286 {
6287 annotate_field (6);
6288 uiout->text ("\tstop only in stack frame at ");
6289 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6290 the frame ID. */
6291 uiout->field_core_addr ("frame",
6292 b->gdbarch, b->frame_id.stack_addr);
6293 uiout->text ("\n");
6294 }
6295
6296 if (!part_of_multiple && b->cond_string)
6297 {
6298 annotate_field (7);
6299 if (is_tracepoint (b))
6300 uiout->text ("\ttrace only if ");
6301 else
6302 uiout->text ("\tstop only if ");
6303 uiout->field_string ("cond", b->cond_string);
6304
6305 /* Print whether the target is doing the breakpoint's condition
6306 evaluation. If GDB is doing the evaluation, don't print anything. */
6307 if (is_breakpoint (b)
6308 && breakpoint_condition_evaluation_mode ()
6309 == condition_evaluation_target)
6310 {
6311 uiout->message (" (%pF evals)",
6312 string_field ("evaluated-by",
6313 bp_condition_evaluator (b)));
6314 }
6315 uiout->text ("\n");
6316 }
6317
6318 if (!part_of_multiple && b->thread != -1)
6319 {
6320 /* FIXME should make an annotation for this. */
6321 uiout->text ("\tstop only in thread ");
6322 if (uiout->is_mi_like_p ())
6323 uiout->field_signed ("thread", b->thread);
6324 else
6325 {
6326 struct thread_info *thr = find_thread_global_id (b->thread);
6327
6328 uiout->field_string ("thread", print_thread_id (thr));
6329 }
6330 uiout->text ("\n");
6331 }
6332
6333 if (!part_of_multiple)
6334 {
6335 if (b->hit_count)
6336 {
6337 /* FIXME should make an annotation for this. */
6338 if (is_catchpoint (b))
6339 uiout->text ("\tcatchpoint");
6340 else if (is_tracepoint (b))
6341 uiout->text ("\ttracepoint");
6342 else
6343 uiout->text ("\tbreakpoint");
6344 uiout->text (" already hit ");
6345 uiout->field_signed ("times", b->hit_count);
6346 if (b->hit_count == 1)
6347 uiout->text (" time\n");
6348 else
6349 uiout->text (" times\n");
6350 }
6351 else
6352 {
6353 /* Output the count also if it is zero, but only if this is mi. */
6354 if (uiout->is_mi_like_p ())
6355 uiout->field_signed ("times", b->hit_count);
6356 }
6357 }
6358
6359 if (!part_of_multiple && b->ignore_count)
6360 {
6361 annotate_field (8);
6362 uiout->message ("\tignore next %pF hits\n",
6363 signed_field ("ignore", b->ignore_count));
6364 }
6365
6366 /* Note that an enable count of 1 corresponds to "enable once"
6367 behavior, which is reported by the combination of enablement and
6368 disposition, so we don't need to mention it here. */
6369 if (!part_of_multiple && b->enable_count > 1)
6370 {
6371 annotate_field (8);
6372 uiout->text ("\tdisable after ");
6373 /* Tweak the wording to clarify that ignore and enable counts
6374 are distinct, and have additive effect. */
6375 if (b->ignore_count)
6376 uiout->text ("additional ");
6377 else
6378 uiout->text ("next ");
6379 uiout->field_signed ("enable", b->enable_count);
6380 uiout->text (" hits\n");
6381 }
6382
6383 if (!part_of_multiple && is_tracepoint (b))
6384 {
6385 struct tracepoint *tp = (struct tracepoint *) b;
6386
6387 if (tp->traceframe_usage)
6388 {
6389 uiout->text ("\ttrace buffer usage ");
6390 uiout->field_signed ("traceframe-usage", tp->traceframe_usage);
6391 uiout->text (" bytes\n");
6392 }
6393 }
6394
6395 l = b->commands ? b->commands.get () : NULL;
6396 if (!part_of_multiple && l)
6397 {
6398 annotate_field (9);
6399 ui_out_emit_tuple tuple_emitter (uiout, "script");
6400 print_command_lines (uiout, l, 4);
6401 }
6402
6403 if (is_tracepoint (b))
6404 {
6405 struct tracepoint *t = (struct tracepoint *) b;
6406
6407 if (!part_of_multiple && t->pass_count)
6408 {
6409 annotate_field (10);
6410 uiout->text ("\tpass count ");
6411 uiout->field_signed ("pass", t->pass_count);
6412 uiout->text (" \n");
6413 }
6414
6415 /* Don't display it when tracepoint or tracepoint location is
6416 pending. */
6417 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6418 {
6419 annotate_field (11);
6420
6421 if (uiout->is_mi_like_p ())
6422 uiout->field_string ("installed",
6423 loc->inserted ? "y" : "n");
6424 else
6425 {
6426 if (loc->inserted)
6427 uiout->text ("\t");
6428 else
6429 uiout->text ("\tnot ");
6430 uiout->text ("installed on target\n");
6431 }
6432 }
6433 }
6434
6435 if (uiout->is_mi_like_p () && !part_of_multiple)
6436 {
6437 if (is_watchpoint (b))
6438 {
6439 struct watchpoint *w = (struct watchpoint *) b;
6440
6441 uiout->field_string ("original-location", w->exp_string);
6442 }
6443 else if (b->location != NULL
6444 && event_location_to_string (b->location.get ()) != NULL)
6445 uiout->field_string ("original-location",
6446 event_location_to_string (b->location.get ()));
6447 }
6448 }
6449
6450 /* See breakpoint.h. */
6451
6452 bool fix_multi_location_breakpoint_output_globally = false;
6453
6454 static void
6455 print_one_breakpoint (struct breakpoint *b,
6456 struct bp_location **last_loc,
6457 int allflag)
6458 {
6459 struct ui_out *uiout = current_uiout;
6460 bool use_fixed_output
6461 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6462 || fix_multi_location_breakpoint_output_globally);
6463
6464 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6465 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false);
6466
6467 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6468 are outside. */
6469 if (!use_fixed_output)
6470 bkpt_tuple_emitter.reset ();
6471
6472 /* If this breakpoint has custom print function,
6473 it's already printed. Otherwise, print individual
6474 locations, if any. */
6475 if (b->ops == NULL
6476 || b->ops->print_one == NULL
6477 || allflag)
6478 {
6479 /* If breakpoint has a single location that is disabled, we
6480 print it as if it had several locations, since otherwise it's
6481 hard to represent "breakpoint enabled, location disabled"
6482 situation.
6483
6484 Note that while hardware watchpoints have several locations
6485 internally, that's not a property exposed to users.
6486
6487 Likewise, while catchpoints may be implemented with
6488 breakpoints (e.g., catch throw), that's not a property
6489 exposed to users. We do however display the internal
6490 breakpoint locations with "maint info breakpoints". */
6491 if (!is_hardware_watchpoint (b)
6492 && (!is_catchpoint (b) || is_exception_catchpoint (b)
6493 || is_ada_exception_catchpoint (b))
6494 && (allflag
6495 || (b->loc && (b->loc->next
6496 || !b->loc->enabled
6497 || b->loc->disabled_by_cond))))
6498 {
6499 gdb::optional<ui_out_emit_list> locations_list;
6500
6501 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6502 MI record. For later versions, place breakpoint locations in a
6503 list. */
6504 if (uiout->is_mi_like_p () && use_fixed_output)
6505 locations_list.emplace (uiout, "locations");
6506
6507 int n = 1;
6508 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6509 {
6510 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6511 print_one_breakpoint_location (b, loc, n, last_loc,
6512 allflag, allflag);
6513 }
6514 }
6515 }
6516 }
6517
6518 static int
6519 breakpoint_address_bits (struct breakpoint *b)
6520 {
6521 int print_address_bits = 0;
6522 struct bp_location *loc;
6523
6524 /* Software watchpoints that aren't watching memory don't have an
6525 address to print. */
6526 if (is_no_memory_software_watchpoint (b))
6527 return 0;
6528
6529 for (loc = b->loc; loc; loc = loc->next)
6530 {
6531 int addr_bit;
6532
6533 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6534 if (addr_bit > print_address_bits)
6535 print_address_bits = addr_bit;
6536 }
6537
6538 return print_address_bits;
6539 }
6540
6541 /* See breakpoint.h. */
6542
6543 void
6544 print_breakpoint (breakpoint *b)
6545 {
6546 struct bp_location *dummy_loc = NULL;
6547 print_one_breakpoint (b, &dummy_loc, 0);
6548 }
6549
6550 /* Return true if this breakpoint was set by the user, false if it is
6551 internal or momentary. */
6552
6553 int
6554 user_breakpoint_p (struct breakpoint *b)
6555 {
6556 return b->number > 0;
6557 }
6558
6559 /* See breakpoint.h. */
6560
6561 int
6562 pending_breakpoint_p (struct breakpoint *b)
6563 {
6564 return b->loc == NULL;
6565 }
6566
6567 /* Print information on breakpoints (including watchpoints and tracepoints).
6568
6569 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as
6570 understood by number_or_range_parser. Only breakpoints included in this
6571 list are then printed.
6572
6573 If SHOW_INTERNAL is true, print internal breakpoints.
6574
6575 If FILTER is non-NULL, call it on each breakpoint and only include the
6576 ones for which it returns true.
6577
6578 Return the total number of breakpoints listed. */
6579
6580 static int
6581 breakpoint_1 (const char *bp_num_list, bool show_internal,
6582 bool (*filter) (const struct breakpoint *))
6583 {
6584 struct breakpoint *b;
6585 struct bp_location *last_loc = NULL;
6586 int nr_printable_breakpoints;
6587 struct value_print_options opts;
6588 int print_address_bits = 0;
6589 int print_type_col_width = 14;
6590 struct ui_out *uiout = current_uiout;
6591 bool has_disabled_by_cond_location = false;
6592
6593 get_user_print_options (&opts);
6594
6595 /* Compute the number of rows in the table, as well as the size
6596 required for address fields. */
6597 nr_printable_breakpoints = 0;
6598 ALL_BREAKPOINTS (b)
6599 {
6600 /* If we have a filter, only list the breakpoints it accepts. */
6601 if (filter && !filter (b))
6602 continue;
6603
6604 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6605 accept. Skip the others. */
6606 if (bp_num_list != NULL && *bp_num_list != '\0')
6607 {
6608 if (show_internal && parse_and_eval_long (bp_num_list) != b->number)
6609 continue;
6610 if (!show_internal && !number_is_in_list (bp_num_list, b->number))
6611 continue;
6612 }
6613
6614 if (show_internal || user_breakpoint_p (b))
6615 {
6616 int addr_bit, type_len;
6617
6618 addr_bit = breakpoint_address_bits (b);
6619 if (addr_bit > print_address_bits)
6620 print_address_bits = addr_bit;
6621
6622 type_len = strlen (bptype_string (b->type));
6623 if (type_len > print_type_col_width)
6624 print_type_col_width = type_len;
6625
6626 nr_printable_breakpoints++;
6627 }
6628 }
6629
6630 {
6631 ui_out_emit_table table_emitter (uiout,
6632 opts.addressprint ? 6 : 5,
6633 nr_printable_breakpoints,
6634 "BreakpointTable");
6635
6636 if (nr_printable_breakpoints > 0)
6637 annotate_breakpoints_headers ();
6638 if (nr_printable_breakpoints > 0)
6639 annotate_field (0);
6640 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6641 if (nr_printable_breakpoints > 0)
6642 annotate_field (1);
6643 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6644 if (nr_printable_breakpoints > 0)
6645 annotate_field (2);
6646 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6647 if (nr_printable_breakpoints > 0)
6648 annotate_field (3);
6649 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6650 if (opts.addressprint)
6651 {
6652 if (nr_printable_breakpoints > 0)
6653 annotate_field (4);
6654 if (print_address_bits <= 32)
6655 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6656 else
6657 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6658 }
6659 if (nr_printable_breakpoints > 0)
6660 annotate_field (5);
6661 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6662 uiout->table_body ();
6663 if (nr_printable_breakpoints > 0)
6664 annotate_breakpoints_table ();
6665
6666 ALL_BREAKPOINTS (b)
6667 {
6668 QUIT;
6669 /* If we have a filter, only list the breakpoints it accepts. */
6670 if (filter && !filter (b))
6671 continue;
6672
6673 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6674 accept. Skip the others. */
6675
6676 if (bp_num_list != NULL && *bp_num_list != '\0')
6677 {
6678 if (show_internal) /* maintenance info breakpoint */
6679 {
6680 if (parse_and_eval_long (bp_num_list) != b->number)
6681 continue;
6682 }
6683 else /* all others */
6684 {
6685 if (!number_is_in_list (bp_num_list, b->number))
6686 continue;
6687 }
6688 }
6689 /* We only print out user settable breakpoints unless the
6690 show_internal is set. */
6691 if (show_internal || user_breakpoint_p (b))
6692 {
6693 print_one_breakpoint (b, &last_loc, show_internal);
6694 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
6695 if (loc->disabled_by_cond)
6696 has_disabled_by_cond_location = true;
6697 }
6698 }
6699 }
6700
6701 if (nr_printable_breakpoints == 0)
6702 {
6703 /* If there's a filter, let the caller decide how to report
6704 empty list. */
6705 if (!filter)
6706 {
6707 if (bp_num_list == NULL || *bp_num_list == '\0')
6708 uiout->message ("No breakpoints or watchpoints.\n");
6709 else
6710 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6711 bp_num_list);
6712 }
6713 }
6714 else
6715 {
6716 if (last_loc && !server_command)
6717 set_next_address (last_loc->gdbarch, last_loc->address);
6718
6719 if (has_disabled_by_cond_location)
6720 uiout->message (_("(*): Breakpoint condition is invalid at this "
6721 "location.\n"));
6722 }
6723
6724 /* FIXME? Should this be moved up so that it is only called when
6725 there have been breakpoints? */
6726 annotate_breakpoints_table_end ();
6727
6728 return nr_printable_breakpoints;
6729 }
6730
6731 /* Display the value of default-collect in a way that is generally
6732 compatible with the breakpoint list. */
6733
6734 static void
6735 default_collect_info (void)
6736 {
6737 struct ui_out *uiout = current_uiout;
6738
6739 /* If it has no value (which is frequently the case), say nothing; a
6740 message like "No default-collect." gets in user's face when it's
6741 not wanted. */
6742 if (!*default_collect)
6743 return;
6744
6745 /* The following phrase lines up nicely with per-tracepoint collect
6746 actions. */
6747 uiout->text ("default collect ");
6748 uiout->field_string ("default-collect", default_collect);
6749 uiout->text (" \n");
6750 }
6751
6752 static void
6753 info_breakpoints_command (const char *args, int from_tty)
6754 {
6755 breakpoint_1 (args, false, NULL);
6756
6757 default_collect_info ();
6758 }
6759
6760 static void
6761 info_watchpoints_command (const char *args, int from_tty)
6762 {
6763 int num_printed = breakpoint_1 (args, false, is_watchpoint);
6764 struct ui_out *uiout = current_uiout;
6765
6766 if (num_printed == 0)
6767 {
6768 if (args == NULL || *args == '\0')
6769 uiout->message ("No watchpoints.\n");
6770 else
6771 uiout->message ("No watchpoint matching '%s'.\n", args);
6772 }
6773 }
6774
6775 static void
6776 maintenance_info_breakpoints (const char *args, int from_tty)
6777 {
6778 breakpoint_1 (args, true, NULL);
6779
6780 default_collect_info ();
6781 }
6782
6783 static int
6784 breakpoint_has_pc (struct breakpoint *b,
6785 struct program_space *pspace,
6786 CORE_ADDR pc, struct obj_section *section)
6787 {
6788 struct bp_location *bl = b->loc;
6789
6790 for (; bl; bl = bl->next)
6791 {
6792 if (bl->pspace == pspace
6793 && bl->address == pc
6794 && (!overlay_debugging || bl->section == section))
6795 return 1;
6796 }
6797 return 0;
6798 }
6799
6800 /* Print a message describing any user-breakpoints set at PC. This
6801 concerns with logical breakpoints, so we match program spaces, not
6802 address spaces. */
6803
6804 static void
6805 describe_other_breakpoints (struct gdbarch *gdbarch,
6806 struct program_space *pspace, CORE_ADDR pc,
6807 struct obj_section *section, int thread)
6808 {
6809 int others = 0;
6810 struct breakpoint *b;
6811
6812 ALL_BREAKPOINTS (b)
6813 others += (user_breakpoint_p (b)
6814 && breakpoint_has_pc (b, pspace, pc, section));
6815 if (others > 0)
6816 {
6817 if (others == 1)
6818 printf_filtered (_("Note: breakpoint "));
6819 else /* if (others == ???) */
6820 printf_filtered (_("Note: breakpoints "));
6821 ALL_BREAKPOINTS (b)
6822 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6823 {
6824 others--;
6825 printf_filtered ("%d", b->number);
6826 if (b->thread == -1 && thread != -1)
6827 printf_filtered (" (all threads)");
6828 else if (b->thread != -1)
6829 printf_filtered (" (thread %d)", b->thread);
6830 printf_filtered ("%s%s ",
6831 ((b->enable_state == bp_disabled
6832 || b->enable_state == bp_call_disabled)
6833 ? " (disabled)"
6834 : ""),
6835 (others > 1) ? ","
6836 : ((others == 1) ? " and" : ""));
6837 }
6838 current_uiout->message (_("also set at pc %ps.\n"),
6839 styled_string (address_style.style (),
6840 paddress (gdbarch, pc)));
6841 }
6842 }
6843 \f
6844
6845 /* Return true iff it is meaningful to use the address member of LOC.
6846 For some breakpoint types, the locations' address members are
6847 irrelevant and it makes no sense to attempt to compare them to
6848 other addresses (or use them for any other purpose either).
6849
6850 More specifically, software watchpoints and catchpoints that are
6851 not backed by breakpoints always have a zero valued location
6852 address and we don't want to mark breakpoints of any of these types
6853 to be a duplicate of an actual breakpoint location at address
6854 zero. */
6855
6856 static bool
6857 bl_address_is_meaningful (bp_location *loc)
6858 {
6859 return loc->loc_type != bp_loc_other;
6860 }
6861
6862 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6863 true if LOC1 and LOC2 represent the same watchpoint location. */
6864
6865 static int
6866 watchpoint_locations_match (struct bp_location *loc1,
6867 struct bp_location *loc2)
6868 {
6869 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6870 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6871
6872 /* Both of them must exist. */
6873 gdb_assert (w1 != NULL);
6874 gdb_assert (w2 != NULL);
6875
6876 /* If the target can evaluate the condition expression in hardware,
6877 then we we need to insert both watchpoints even if they are at
6878 the same place. Otherwise the watchpoint will only trigger when
6879 the condition of whichever watchpoint was inserted evaluates to
6880 true, not giving a chance for GDB to check the condition of the
6881 other watchpoint. */
6882 if ((w1->cond_exp
6883 && target_can_accel_watchpoint_condition (loc1->address,
6884 loc1->length,
6885 loc1->watchpoint_type,
6886 w1->cond_exp.get ()))
6887 || (w2->cond_exp
6888 && target_can_accel_watchpoint_condition (loc2->address,
6889 loc2->length,
6890 loc2->watchpoint_type,
6891 w2->cond_exp.get ())))
6892 return 0;
6893
6894 /* Note that this checks the owner's type, not the location's. In
6895 case the target does not support read watchpoints, but does
6896 support access watchpoints, we'll have bp_read_watchpoint
6897 watchpoints with hw_access locations. Those should be considered
6898 duplicates of hw_read locations. The hw_read locations will
6899 become hw_access locations later. */
6900 return (loc1->owner->type == loc2->owner->type
6901 && loc1->pspace->aspace == loc2->pspace->aspace
6902 && loc1->address == loc2->address
6903 && loc1->length == loc2->length);
6904 }
6905
6906 /* See breakpoint.h. */
6907
6908 int
6909 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6910 const address_space *aspace2, CORE_ADDR addr2)
6911 {
6912 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6913 || aspace1 == aspace2)
6914 && addr1 == addr2);
6915 }
6916
6917 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6918 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6919 matches ASPACE2. On targets that have global breakpoints, the address
6920 space doesn't really matter. */
6921
6922 static int
6923 breakpoint_address_match_range (const address_space *aspace1,
6924 CORE_ADDR addr1,
6925 int len1, const address_space *aspace2,
6926 CORE_ADDR addr2)
6927 {
6928 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6929 || aspace1 == aspace2)
6930 && addr2 >= addr1 && addr2 < addr1 + len1);
6931 }
6932
6933 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6934 a ranged breakpoint. In most targets, a match happens only if ASPACE
6935 matches the breakpoint's address space. On targets that have global
6936 breakpoints, the address space doesn't really matter. */
6937
6938 static int
6939 breakpoint_location_address_match (struct bp_location *bl,
6940 const address_space *aspace,
6941 CORE_ADDR addr)
6942 {
6943 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6944 aspace, addr)
6945 || (bl->length
6946 && breakpoint_address_match_range (bl->pspace->aspace,
6947 bl->address, bl->length,
6948 aspace, addr)));
6949 }
6950
6951 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6952 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6953 match happens only if ASPACE matches the breakpoint's address
6954 space. On targets that have global breakpoints, the address space
6955 doesn't really matter. */
6956
6957 static int
6958 breakpoint_location_address_range_overlap (struct bp_location *bl,
6959 const address_space *aspace,
6960 CORE_ADDR addr, int len)
6961 {
6962 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6963 || bl->pspace->aspace == aspace)
6964 {
6965 int bl_len = bl->length != 0 ? bl->length : 1;
6966
6967 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6968 return 1;
6969 }
6970 return 0;
6971 }
6972
6973 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6974 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6975 true, otherwise returns false. */
6976
6977 static int
6978 tracepoint_locations_match (struct bp_location *loc1,
6979 struct bp_location *loc2)
6980 {
6981 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6982 /* Since tracepoint locations are never duplicated with others', tracepoint
6983 locations at the same address of different tracepoints are regarded as
6984 different locations. */
6985 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6986 else
6987 return 0;
6988 }
6989
6990 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6991 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6992 the same location. If SW_HW_BPS_MATCH is true, then software
6993 breakpoint locations and hardware breakpoint locations match,
6994 otherwise they don't. */
6995
6996 static int
6997 breakpoint_locations_match (struct bp_location *loc1,
6998 struct bp_location *loc2,
6999 bool sw_hw_bps_match)
7000 {
7001 int hw_point1, hw_point2;
7002
7003 /* Both of them must not be in moribund_locations. */
7004 gdb_assert (loc1->owner != NULL);
7005 gdb_assert (loc2->owner != NULL);
7006
7007 hw_point1 = is_hardware_watchpoint (loc1->owner);
7008 hw_point2 = is_hardware_watchpoint (loc2->owner);
7009
7010 if (hw_point1 != hw_point2)
7011 return 0;
7012 else if (hw_point1)
7013 return watchpoint_locations_match (loc1, loc2);
7014 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7015 return tracepoint_locations_match (loc1, loc2);
7016 else
7017 /* We compare bp_location.length in order to cover ranged
7018 breakpoints. Keep this in sync with
7019 bp_location_is_less_than. */
7020 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7021 loc2->pspace->aspace, loc2->address)
7022 && (loc1->loc_type == loc2->loc_type || sw_hw_bps_match)
7023 && loc1->length == loc2->length);
7024 }
7025
7026 static void
7027 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7028 int bnum, int have_bnum)
7029 {
7030 /* The longest string possibly returned by hex_string_custom
7031 is 50 chars. These must be at least that big for safety. */
7032 char astr1[64];
7033 char astr2[64];
7034
7035 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7036 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7037 if (have_bnum)
7038 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7039 bnum, astr1, astr2);
7040 else
7041 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7042 }
7043
7044 /* Adjust a breakpoint's address to account for architectural
7045 constraints on breakpoint placement. Return the adjusted address.
7046 Note: Very few targets require this kind of adjustment. For most
7047 targets, this function is simply the identity function. */
7048
7049 static CORE_ADDR
7050 adjust_breakpoint_address (struct gdbarch *gdbarch,
7051 CORE_ADDR bpaddr, enum bptype bptype)
7052 {
7053 if (bptype == bp_watchpoint
7054 || bptype == bp_hardware_watchpoint
7055 || bptype == bp_read_watchpoint
7056 || bptype == bp_access_watchpoint
7057 || bptype == bp_catchpoint)
7058 {
7059 /* Watchpoints and the various bp_catch_* eventpoints should not
7060 have their addresses modified. */
7061 return bpaddr;
7062 }
7063 else if (bptype == bp_single_step)
7064 {
7065 /* Single-step breakpoints should not have their addresses
7066 modified. If there's any architectural constrain that
7067 applies to this address, then it should have already been
7068 taken into account when the breakpoint was created in the
7069 first place. If we didn't do this, stepping through e.g.,
7070 Thumb-2 IT blocks would break. */
7071 return bpaddr;
7072 }
7073 else
7074 {
7075 CORE_ADDR adjusted_bpaddr = bpaddr;
7076
7077 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7078 {
7079 /* Some targets have architectural constraints on the placement
7080 of breakpoint instructions. Obtain the adjusted address. */
7081 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7082 }
7083
7084 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
7085
7086 /* An adjusted breakpoint address can significantly alter
7087 a user's expectations. Print a warning if an adjustment
7088 is required. */
7089 if (adjusted_bpaddr != bpaddr)
7090 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7091
7092 return adjusted_bpaddr;
7093 }
7094 }
7095
7096 static bp_loc_type
7097 bp_location_from_bp_type (bptype type)
7098 {
7099 switch (type)
7100 {
7101 case bp_breakpoint:
7102 case bp_single_step:
7103 case bp_until:
7104 case bp_finish:
7105 case bp_longjmp:
7106 case bp_longjmp_resume:
7107 case bp_longjmp_call_dummy:
7108 case bp_exception:
7109 case bp_exception_resume:
7110 case bp_step_resume:
7111 case bp_hp_step_resume:
7112 case bp_watchpoint_scope:
7113 case bp_call_dummy:
7114 case bp_std_terminate:
7115 case bp_shlib_event:
7116 case bp_thread_event:
7117 case bp_overlay_event:
7118 case bp_jit_event:
7119 case bp_longjmp_master:
7120 case bp_std_terminate_master:
7121 case bp_exception_master:
7122 case bp_gnu_ifunc_resolver:
7123 case bp_gnu_ifunc_resolver_return:
7124 case bp_dprintf:
7125 return bp_loc_software_breakpoint;
7126 case bp_hardware_breakpoint:
7127 return bp_loc_hardware_breakpoint;
7128 case bp_hardware_watchpoint:
7129 case bp_read_watchpoint:
7130 case bp_access_watchpoint:
7131 return bp_loc_hardware_watchpoint;
7132 case bp_watchpoint:
7133 case bp_catchpoint:
7134 case bp_tracepoint:
7135 case bp_fast_tracepoint:
7136 case bp_static_tracepoint:
7137 return bp_loc_other;
7138 default:
7139 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7140 }
7141 }
7142
7143 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
7144 {
7145 this->owner = owner;
7146 this->cond_bytecode = NULL;
7147 this->shlib_disabled = 0;
7148 this->enabled = 1;
7149 this->disabled_by_cond = false;
7150
7151 this->loc_type = type;
7152
7153 if (this->loc_type == bp_loc_software_breakpoint
7154 || this->loc_type == bp_loc_hardware_breakpoint)
7155 mark_breakpoint_location_modified (this);
7156
7157 incref ();
7158 }
7159
7160 bp_location::bp_location (breakpoint *owner)
7161 : bp_location::bp_location (owner,
7162 bp_location_from_bp_type (owner->type))
7163 {
7164 }
7165
7166 /* Allocate a struct bp_location. */
7167
7168 static struct bp_location *
7169 allocate_bp_location (struct breakpoint *bpt)
7170 {
7171 return bpt->ops->allocate_location (bpt);
7172 }
7173
7174 /* Decrement reference count. If the reference count reaches 0,
7175 destroy the bp_location. Sets *BLP to NULL. */
7176
7177 static void
7178 decref_bp_location (struct bp_location **blp)
7179 {
7180 bp_location_ref_policy::decref (*blp);
7181 *blp = NULL;
7182 }
7183
7184 /* Add breakpoint B at the end of the global breakpoint chain. */
7185
7186 static breakpoint *
7187 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7188 {
7189 struct breakpoint *b1;
7190 struct breakpoint *result = b.get ();
7191
7192 /* Add this breakpoint to the end of the chain so that a list of
7193 breakpoints will come out in order of increasing numbers. */
7194
7195 b1 = breakpoint_chain;
7196 if (b1 == 0)
7197 breakpoint_chain = b.release ();
7198 else
7199 {
7200 while (b1->next)
7201 b1 = b1->next;
7202 b1->next = b.release ();
7203 }
7204
7205 return result;
7206 }
7207
7208 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7209
7210 static void
7211 init_raw_breakpoint_without_location (struct breakpoint *b,
7212 struct gdbarch *gdbarch,
7213 enum bptype bptype,
7214 const struct breakpoint_ops *ops)
7215 {
7216 gdb_assert (ops != NULL);
7217
7218 b->ops = ops;
7219 b->type = bptype;
7220 b->gdbarch = gdbarch;
7221 b->language = current_language->la_language;
7222 b->input_radix = input_radix;
7223 b->related_breakpoint = b;
7224 }
7225
7226 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7227 that has type BPTYPE and has no locations as yet. */
7228
7229 static struct breakpoint *
7230 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7231 enum bptype bptype,
7232 const struct breakpoint_ops *ops)
7233 {
7234 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7235
7236 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7237 return add_to_breakpoint_chain (std::move (b));
7238 }
7239
7240 /* Initialize loc->function_name. */
7241
7242 static void
7243 set_breakpoint_location_function (struct bp_location *loc)
7244 {
7245 gdb_assert (loc->owner != NULL);
7246
7247 if (loc->owner->type == bp_breakpoint
7248 || loc->owner->type == bp_hardware_breakpoint
7249 || is_tracepoint (loc->owner))
7250 {
7251 const char *function_name;
7252
7253 if (loc->msymbol != NULL
7254 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7255 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7256 {
7257 struct breakpoint *b = loc->owner;
7258
7259 function_name = loc->msymbol->linkage_name ();
7260
7261 if (b->type == bp_breakpoint && b->loc == loc
7262 && loc->next == NULL && b->related_breakpoint == b)
7263 {
7264 /* Create only the whole new breakpoint of this type but do not
7265 mess more complicated breakpoints with multiple locations. */
7266 b->type = bp_gnu_ifunc_resolver;
7267 /* Remember the resolver's address for use by the return
7268 breakpoint. */
7269 loc->related_address = loc->address;
7270 }
7271 }
7272 else
7273 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7274
7275 if (function_name)
7276 loc->function_name = xstrdup (function_name);
7277 }
7278 }
7279
7280 /* Attempt to determine architecture of location identified by SAL. */
7281 struct gdbarch *
7282 get_sal_arch (struct symtab_and_line sal)
7283 {
7284 if (sal.section)
7285 return sal.section->objfile->arch ();
7286 if (sal.symtab)
7287 return SYMTAB_OBJFILE (sal.symtab)->arch ();
7288
7289 return NULL;
7290 }
7291
7292 /* Low level routine for partially initializing a breakpoint of type
7293 BPTYPE. The newly created breakpoint's address, section, source
7294 file name, and line number are provided by SAL.
7295
7296 It is expected that the caller will complete the initialization of
7297 the newly created breakpoint struct as well as output any status
7298 information regarding the creation of a new breakpoint. */
7299
7300 static void
7301 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7302 struct symtab_and_line sal, enum bptype bptype,
7303 const struct breakpoint_ops *ops)
7304 {
7305 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7306
7307 add_location_to_breakpoint (b, &sal);
7308
7309 if (bptype != bp_catchpoint)
7310 gdb_assert (sal.pspace != NULL);
7311
7312 /* Store the program space that was used to set the breakpoint,
7313 except for ordinary breakpoints, which are independent of the
7314 program space. */
7315 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7316 b->pspace = sal.pspace;
7317 }
7318
7319 /* set_raw_breakpoint is a low level routine for allocating and
7320 partially initializing a breakpoint of type BPTYPE. The newly
7321 created breakpoint's address, section, source file name, and line
7322 number are provided by SAL. The newly created and partially
7323 initialized breakpoint is added to the breakpoint chain and
7324 is also returned as the value of this function.
7325
7326 It is expected that the caller will complete the initialization of
7327 the newly created breakpoint struct as well as output any status
7328 information regarding the creation of a new breakpoint. In
7329 particular, set_raw_breakpoint does NOT set the breakpoint
7330 number! Care should be taken to not allow an error to occur
7331 prior to completing the initialization of the breakpoint. If this
7332 should happen, a bogus breakpoint will be left on the chain. */
7333
7334 struct breakpoint *
7335 set_raw_breakpoint (struct gdbarch *gdbarch,
7336 struct symtab_and_line sal, enum bptype bptype,
7337 const struct breakpoint_ops *ops)
7338 {
7339 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7340
7341 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7342 return add_to_breakpoint_chain (std::move (b));
7343 }
7344
7345 /* Call this routine when stepping and nexting to enable a breakpoint
7346 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7347 initiated the operation. */
7348
7349 void
7350 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7351 {
7352 struct breakpoint *b, *b_tmp;
7353 int thread = tp->global_num;
7354
7355 /* To avoid having to rescan all objfile symbols at every step,
7356 we maintain a list of continually-inserted but always disabled
7357 longjmp "master" breakpoints. Here, we simply create momentary
7358 clones of those and enable them for the requested thread. */
7359 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7360 if (b->pspace == current_program_space
7361 && (b->type == bp_longjmp_master
7362 || b->type == bp_exception_master))
7363 {
7364 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7365 struct breakpoint *clone;
7366
7367 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7368 after their removal. */
7369 clone = momentary_breakpoint_from_master (b, type,
7370 &momentary_breakpoint_ops, 1);
7371 clone->thread = thread;
7372 }
7373
7374 tp->initiating_frame = frame;
7375 }
7376
7377 /* Delete all longjmp breakpoints from THREAD. */
7378 void
7379 delete_longjmp_breakpoint (int thread)
7380 {
7381 struct breakpoint *b, *b_tmp;
7382
7383 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7384 if (b->type == bp_longjmp || b->type == bp_exception)
7385 {
7386 if (b->thread == thread)
7387 delete_breakpoint (b);
7388 }
7389 }
7390
7391 void
7392 delete_longjmp_breakpoint_at_next_stop (int thread)
7393 {
7394 struct breakpoint *b, *b_tmp;
7395
7396 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7397 if (b->type == bp_longjmp || b->type == bp_exception)
7398 {
7399 if (b->thread == thread)
7400 b->disposition = disp_del_at_next_stop;
7401 }
7402 }
7403
7404 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7405 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7406 pointer to any of them. Return NULL if this system cannot place longjmp
7407 breakpoints. */
7408
7409 struct breakpoint *
7410 set_longjmp_breakpoint_for_call_dummy (void)
7411 {
7412 struct breakpoint *b, *retval = NULL;
7413
7414 ALL_BREAKPOINTS (b)
7415 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7416 {
7417 struct breakpoint *new_b;
7418
7419 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7420 &momentary_breakpoint_ops,
7421 1);
7422 new_b->thread = inferior_thread ()->global_num;
7423
7424 /* Link NEW_B into the chain of RETVAL breakpoints. */
7425
7426 gdb_assert (new_b->related_breakpoint == new_b);
7427 if (retval == NULL)
7428 retval = new_b;
7429 new_b->related_breakpoint = retval;
7430 while (retval->related_breakpoint != new_b->related_breakpoint)
7431 retval = retval->related_breakpoint;
7432 retval->related_breakpoint = new_b;
7433 }
7434
7435 return retval;
7436 }
7437
7438 /* Verify all existing dummy frames and their associated breakpoints for
7439 TP. Remove those which can no longer be found in the current frame
7440 stack.
7441
7442 You should call this function only at places where it is safe to currently
7443 unwind the whole stack. Failed stack unwind would discard live dummy
7444 frames. */
7445
7446 void
7447 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7448 {
7449 struct breakpoint *b, *b_tmp;
7450
7451 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7452 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7453 {
7454 struct breakpoint *dummy_b = b->related_breakpoint;
7455
7456 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7457 dummy_b = dummy_b->related_breakpoint;
7458 if (dummy_b->type != bp_call_dummy
7459 || frame_find_by_id (dummy_b->frame_id) != NULL)
7460 continue;
7461
7462 dummy_frame_discard (dummy_b->frame_id, tp);
7463
7464 while (b->related_breakpoint != b)
7465 {
7466 if (b_tmp == b->related_breakpoint)
7467 b_tmp = b->related_breakpoint->next;
7468 delete_breakpoint (b->related_breakpoint);
7469 }
7470 delete_breakpoint (b);
7471 }
7472 }
7473
7474 void
7475 enable_overlay_breakpoints (void)
7476 {
7477 struct breakpoint *b;
7478
7479 ALL_BREAKPOINTS (b)
7480 if (b->type == bp_overlay_event)
7481 {
7482 b->enable_state = bp_enabled;
7483 update_global_location_list (UGLL_MAY_INSERT);
7484 overlay_events_enabled = 1;
7485 }
7486 }
7487
7488 void
7489 disable_overlay_breakpoints (void)
7490 {
7491 struct breakpoint *b;
7492
7493 ALL_BREAKPOINTS (b)
7494 if (b->type == bp_overlay_event)
7495 {
7496 b->enable_state = bp_disabled;
7497 update_global_location_list (UGLL_DONT_INSERT);
7498 overlay_events_enabled = 0;
7499 }
7500 }
7501
7502 /* Set an active std::terminate breakpoint for each std::terminate
7503 master breakpoint. */
7504 void
7505 set_std_terminate_breakpoint (void)
7506 {
7507 struct breakpoint *b, *b_tmp;
7508
7509 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7510 if (b->pspace == current_program_space
7511 && b->type == bp_std_terminate_master)
7512 {
7513 momentary_breakpoint_from_master (b, bp_std_terminate,
7514 &momentary_breakpoint_ops, 1);
7515 }
7516 }
7517
7518 /* Delete all the std::terminate breakpoints. */
7519 void
7520 delete_std_terminate_breakpoint (void)
7521 {
7522 struct breakpoint *b, *b_tmp;
7523
7524 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7525 if (b->type == bp_std_terminate)
7526 delete_breakpoint (b);
7527 }
7528
7529 struct breakpoint *
7530 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7531 {
7532 struct breakpoint *b;
7533
7534 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7535 &internal_breakpoint_ops);
7536
7537 b->enable_state = bp_enabled;
7538 /* location has to be used or breakpoint_re_set will delete me. */
7539 b->location = new_address_location (b->loc->address, NULL, 0);
7540
7541 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7542
7543 return b;
7544 }
7545
7546 struct lang_and_radix
7547 {
7548 enum language lang;
7549 int radix;
7550 };
7551
7552 /* Create a breakpoint for JIT code registration and unregistration. */
7553
7554 struct breakpoint *
7555 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7556 {
7557 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7558 &internal_breakpoint_ops);
7559 }
7560
7561 /* Remove JIT code registration and unregistration breakpoint(s). */
7562
7563 void
7564 remove_jit_event_breakpoints (void)
7565 {
7566 struct breakpoint *b, *b_tmp;
7567
7568 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7569 if (b->type == bp_jit_event
7570 && b->loc->pspace == current_program_space)
7571 delete_breakpoint (b);
7572 }
7573
7574 void
7575 remove_solib_event_breakpoints (void)
7576 {
7577 struct breakpoint *b, *b_tmp;
7578
7579 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7580 if (b->type == bp_shlib_event
7581 && b->loc->pspace == current_program_space)
7582 delete_breakpoint (b);
7583 }
7584
7585 /* See breakpoint.h. */
7586
7587 void
7588 remove_solib_event_breakpoints_at_next_stop (void)
7589 {
7590 struct breakpoint *b, *b_tmp;
7591
7592 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7593 if (b->type == bp_shlib_event
7594 && b->loc->pspace == current_program_space)
7595 b->disposition = disp_del_at_next_stop;
7596 }
7597
7598 /* Helper for create_solib_event_breakpoint /
7599 create_and_insert_solib_event_breakpoint. Allows specifying which
7600 INSERT_MODE to pass through to update_global_location_list. */
7601
7602 static struct breakpoint *
7603 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7604 enum ugll_insert_mode insert_mode)
7605 {
7606 struct breakpoint *b;
7607
7608 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7609 &internal_breakpoint_ops);
7610 update_global_location_list_nothrow (insert_mode);
7611 return b;
7612 }
7613
7614 struct breakpoint *
7615 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7616 {
7617 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7618 }
7619
7620 /* See breakpoint.h. */
7621
7622 struct breakpoint *
7623 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7624 {
7625 struct breakpoint *b;
7626
7627 /* Explicitly tell update_global_location_list to insert
7628 locations. */
7629 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7630 if (!b->loc->inserted)
7631 {
7632 delete_breakpoint (b);
7633 return NULL;
7634 }
7635 return b;
7636 }
7637
7638 /* Disable any breakpoints that are on code in shared libraries. Only
7639 apply to enabled breakpoints, disabled ones can just stay disabled. */
7640
7641 void
7642 disable_breakpoints_in_shlibs (void)
7643 {
7644 struct bp_location *loc, **locp_tmp;
7645
7646 ALL_BP_LOCATIONS (loc, locp_tmp)
7647 {
7648 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7649 struct breakpoint *b = loc->owner;
7650
7651 /* We apply the check to all breakpoints, including disabled for
7652 those with loc->duplicate set. This is so that when breakpoint
7653 becomes enabled, or the duplicate is removed, gdb will try to
7654 insert all breakpoints. If we don't set shlib_disabled here,
7655 we'll try to insert those breakpoints and fail. */
7656 if (((b->type == bp_breakpoint)
7657 || (b->type == bp_jit_event)
7658 || (b->type == bp_hardware_breakpoint)
7659 || (is_tracepoint (b)))
7660 && loc->pspace == current_program_space
7661 && !loc->shlib_disabled
7662 && solib_name_from_address (loc->pspace, loc->address)
7663 )
7664 {
7665 loc->shlib_disabled = 1;
7666 }
7667 }
7668 }
7669
7670 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7671 notification of unloaded_shlib. Only apply to enabled breakpoints,
7672 disabled ones can just stay disabled. */
7673
7674 static void
7675 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7676 {
7677 struct bp_location *loc, **locp_tmp;
7678 int disabled_shlib_breaks = 0;
7679
7680 ALL_BP_LOCATIONS (loc, locp_tmp)
7681 {
7682 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7683 struct breakpoint *b = loc->owner;
7684
7685 if (solib->pspace == loc->pspace
7686 && !loc->shlib_disabled
7687 && (((b->type == bp_breakpoint
7688 || b->type == bp_jit_event
7689 || b->type == bp_hardware_breakpoint)
7690 && (loc->loc_type == bp_loc_hardware_breakpoint
7691 || loc->loc_type == bp_loc_software_breakpoint))
7692 || is_tracepoint (b))
7693 && solib_contains_address_p (solib, loc->address))
7694 {
7695 loc->shlib_disabled = 1;
7696 /* At this point, we cannot rely on remove_breakpoint
7697 succeeding so we must mark the breakpoint as not inserted
7698 to prevent future errors occurring in remove_breakpoints. */
7699 loc->inserted = 0;
7700
7701 /* This may cause duplicate notifications for the same breakpoint. */
7702 gdb::observers::breakpoint_modified.notify (b);
7703
7704 if (!disabled_shlib_breaks)
7705 {
7706 target_terminal::ours_for_output ();
7707 warning (_("Temporarily disabling breakpoints "
7708 "for unloaded shared library \"%s\""),
7709 solib->so_name);
7710 }
7711 disabled_shlib_breaks = 1;
7712 }
7713 }
7714 }
7715
7716 /* Disable any breakpoints and tracepoints in OBJFILE upon
7717 notification of free_objfile. Only apply to enabled breakpoints,
7718 disabled ones can just stay disabled. */
7719
7720 static void
7721 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7722 {
7723 struct breakpoint *b;
7724
7725 if (objfile == NULL)
7726 return;
7727
7728 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7729 managed by the user with add-symbol-file/remove-symbol-file.
7730 Similarly to how breakpoints in shared libraries are handled in
7731 response to "nosharedlibrary", mark breakpoints in such modules
7732 shlib_disabled so they end up uninserted on the next global
7733 location list update. Shared libraries not loaded by the user
7734 aren't handled here -- they're already handled in
7735 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7736 solib_unloaded observer. We skip objfiles that are not
7737 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7738 main objfile). */
7739 if ((objfile->flags & OBJF_SHARED) == 0
7740 || (objfile->flags & OBJF_USERLOADED) == 0)
7741 return;
7742
7743 ALL_BREAKPOINTS (b)
7744 {
7745 struct bp_location *loc;
7746 int bp_modified = 0;
7747
7748 if (!is_breakpoint (b) && !is_tracepoint (b))
7749 continue;
7750
7751 for (loc = b->loc; loc != NULL; loc = loc->next)
7752 {
7753 CORE_ADDR loc_addr = loc->address;
7754
7755 if (loc->loc_type != bp_loc_hardware_breakpoint
7756 && loc->loc_type != bp_loc_software_breakpoint)
7757 continue;
7758
7759 if (loc->shlib_disabled != 0)
7760 continue;
7761
7762 if (objfile->pspace != loc->pspace)
7763 continue;
7764
7765 if (loc->loc_type != bp_loc_hardware_breakpoint
7766 && loc->loc_type != bp_loc_software_breakpoint)
7767 continue;
7768
7769 if (is_addr_in_objfile (loc_addr, objfile))
7770 {
7771 loc->shlib_disabled = 1;
7772 /* At this point, we don't know whether the object was
7773 unmapped from the inferior or not, so leave the
7774 inserted flag alone. We'll handle failure to
7775 uninsert quietly, in case the object was indeed
7776 unmapped. */
7777
7778 mark_breakpoint_location_modified (loc);
7779
7780 bp_modified = 1;
7781 }
7782 }
7783
7784 if (bp_modified)
7785 gdb::observers::breakpoint_modified.notify (b);
7786 }
7787 }
7788
7789 /* FORK & VFORK catchpoints. */
7790
7791 /* An instance of this type is used to represent a fork or vfork
7792 catchpoint. A breakpoint is really of this type iff its ops pointer points
7793 to CATCH_FORK_BREAKPOINT_OPS. */
7794
7795 struct fork_catchpoint : public breakpoint
7796 {
7797 /* Process id of a child process whose forking triggered this
7798 catchpoint. This field is only valid immediately after this
7799 catchpoint has triggered. */
7800 ptid_t forked_inferior_pid;
7801 };
7802
7803 /* Implement the "insert" breakpoint_ops method for fork
7804 catchpoints. */
7805
7806 static int
7807 insert_catch_fork (struct bp_location *bl)
7808 {
7809 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7810 }
7811
7812 /* Implement the "remove" breakpoint_ops method for fork
7813 catchpoints. */
7814
7815 static int
7816 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7817 {
7818 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7819 }
7820
7821 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7822 catchpoints. */
7823
7824 static int
7825 breakpoint_hit_catch_fork (const struct bp_location *bl,
7826 const address_space *aspace, CORE_ADDR bp_addr,
7827 const struct target_waitstatus *ws)
7828 {
7829 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7830
7831 if (ws->kind != TARGET_WAITKIND_FORKED)
7832 return 0;
7833
7834 c->forked_inferior_pid = ws->value.related_pid;
7835 return 1;
7836 }
7837
7838 /* Implement the "print_it" breakpoint_ops method for fork
7839 catchpoints. */
7840
7841 static enum print_stop_action
7842 print_it_catch_fork (bpstat bs)
7843 {
7844 struct ui_out *uiout = current_uiout;
7845 struct breakpoint *b = bs->breakpoint_at;
7846 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7847
7848 annotate_catchpoint (b->number);
7849 maybe_print_thread_hit_breakpoint (uiout);
7850 if (b->disposition == disp_del)
7851 uiout->text ("Temporary catchpoint ");
7852 else
7853 uiout->text ("Catchpoint ");
7854 if (uiout->is_mi_like_p ())
7855 {
7856 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7857 uiout->field_string ("disp", bpdisp_text (b->disposition));
7858 }
7859 uiout->field_signed ("bkptno", b->number);
7860 uiout->text (" (forked process ");
7861 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7862 uiout->text ("), ");
7863 return PRINT_SRC_AND_LOC;
7864 }
7865
7866 /* Implement the "print_one" breakpoint_ops method for fork
7867 catchpoints. */
7868
7869 static void
7870 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7871 {
7872 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7873 struct value_print_options opts;
7874 struct ui_out *uiout = current_uiout;
7875
7876 get_user_print_options (&opts);
7877
7878 /* Field 4, the address, is omitted (which makes the columns not
7879 line up too nicely with the headers, but the effect is relatively
7880 readable). */
7881 if (opts.addressprint)
7882 uiout->field_skip ("addr");
7883 annotate_field (5);
7884 uiout->text ("fork");
7885 if (c->forked_inferior_pid != null_ptid)
7886 {
7887 uiout->text (", process ");
7888 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7889 uiout->spaces (1);
7890 }
7891
7892 if (uiout->is_mi_like_p ())
7893 uiout->field_string ("catch-type", "fork");
7894 }
7895
7896 /* Implement the "print_mention" breakpoint_ops method for fork
7897 catchpoints. */
7898
7899 static void
7900 print_mention_catch_fork (struct breakpoint *b)
7901 {
7902 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7903 }
7904
7905 /* Implement the "print_recreate" breakpoint_ops method for fork
7906 catchpoints. */
7907
7908 static void
7909 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7910 {
7911 fprintf_unfiltered (fp, "catch fork");
7912 print_recreate_thread (b, fp);
7913 }
7914
7915 /* The breakpoint_ops structure to be used in fork catchpoints. */
7916
7917 static struct breakpoint_ops catch_fork_breakpoint_ops;
7918
7919 /* Implement the "insert" breakpoint_ops method for vfork
7920 catchpoints. */
7921
7922 static int
7923 insert_catch_vfork (struct bp_location *bl)
7924 {
7925 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7926 }
7927
7928 /* Implement the "remove" breakpoint_ops method for vfork
7929 catchpoints. */
7930
7931 static int
7932 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7933 {
7934 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7935 }
7936
7937 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7938 catchpoints. */
7939
7940 static int
7941 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7942 const address_space *aspace, CORE_ADDR bp_addr,
7943 const struct target_waitstatus *ws)
7944 {
7945 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7946
7947 if (ws->kind != TARGET_WAITKIND_VFORKED)
7948 return 0;
7949
7950 c->forked_inferior_pid = ws->value.related_pid;
7951 return 1;
7952 }
7953
7954 /* Implement the "print_it" breakpoint_ops method for vfork
7955 catchpoints. */
7956
7957 static enum print_stop_action
7958 print_it_catch_vfork (bpstat bs)
7959 {
7960 struct ui_out *uiout = current_uiout;
7961 struct breakpoint *b = bs->breakpoint_at;
7962 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7963
7964 annotate_catchpoint (b->number);
7965 maybe_print_thread_hit_breakpoint (uiout);
7966 if (b->disposition == disp_del)
7967 uiout->text ("Temporary catchpoint ");
7968 else
7969 uiout->text ("Catchpoint ");
7970 if (uiout->is_mi_like_p ())
7971 {
7972 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7973 uiout->field_string ("disp", bpdisp_text (b->disposition));
7974 }
7975 uiout->field_signed ("bkptno", b->number);
7976 uiout->text (" (vforked process ");
7977 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7978 uiout->text ("), ");
7979 return PRINT_SRC_AND_LOC;
7980 }
7981
7982 /* Implement the "print_one" breakpoint_ops method for vfork
7983 catchpoints. */
7984
7985 static void
7986 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7987 {
7988 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7989 struct value_print_options opts;
7990 struct ui_out *uiout = current_uiout;
7991
7992 get_user_print_options (&opts);
7993 /* Field 4, the address, is omitted (which makes the columns not
7994 line up too nicely with the headers, but the effect is relatively
7995 readable). */
7996 if (opts.addressprint)
7997 uiout->field_skip ("addr");
7998 annotate_field (5);
7999 uiout->text ("vfork");
8000 if (c->forked_inferior_pid != null_ptid)
8001 {
8002 uiout->text (", process ");
8003 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
8004 uiout->spaces (1);
8005 }
8006
8007 if (uiout->is_mi_like_p ())
8008 uiout->field_string ("catch-type", "vfork");
8009 }
8010
8011 /* Implement the "print_mention" breakpoint_ops method for vfork
8012 catchpoints. */
8013
8014 static void
8015 print_mention_catch_vfork (struct breakpoint *b)
8016 {
8017 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8018 }
8019
8020 /* Implement the "print_recreate" breakpoint_ops method for vfork
8021 catchpoints. */
8022
8023 static void
8024 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8025 {
8026 fprintf_unfiltered (fp, "catch vfork");
8027 print_recreate_thread (b, fp);
8028 }
8029
8030 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8031
8032 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8033
8034 /* An instance of this type is used to represent an solib catchpoint.
8035 A breakpoint is really of this type iff its ops pointer points to
8036 CATCH_SOLIB_BREAKPOINT_OPS. */
8037
8038 struct solib_catchpoint : public breakpoint
8039 {
8040 ~solib_catchpoint () override;
8041
8042 /* True for "catch load", false for "catch unload". */
8043 bool is_load;
8044
8045 /* Regular expression to match, if any. COMPILED is only valid when
8046 REGEX is non-NULL. */
8047 char *regex;
8048 std::unique_ptr<compiled_regex> compiled;
8049 };
8050
8051 solib_catchpoint::~solib_catchpoint ()
8052 {
8053 xfree (this->regex);
8054 }
8055
8056 static int
8057 insert_catch_solib (struct bp_location *ignore)
8058 {
8059 return 0;
8060 }
8061
8062 static int
8063 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8064 {
8065 return 0;
8066 }
8067
8068 static int
8069 breakpoint_hit_catch_solib (const struct bp_location *bl,
8070 const address_space *aspace,
8071 CORE_ADDR bp_addr,
8072 const struct target_waitstatus *ws)
8073 {
8074 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8075 struct breakpoint *other;
8076
8077 if (ws->kind == TARGET_WAITKIND_LOADED)
8078 return 1;
8079
8080 ALL_BREAKPOINTS (other)
8081 {
8082 struct bp_location *other_bl;
8083
8084 if (other == bl->owner)
8085 continue;
8086
8087 if (other->type != bp_shlib_event)
8088 continue;
8089
8090 if (self->pspace != NULL && other->pspace != self->pspace)
8091 continue;
8092
8093 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8094 {
8095 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8096 return 1;
8097 }
8098 }
8099
8100 return 0;
8101 }
8102
8103 static void
8104 check_status_catch_solib (struct bpstats *bs)
8105 {
8106 struct solib_catchpoint *self
8107 = (struct solib_catchpoint *) bs->breakpoint_at;
8108
8109 if (self->is_load)
8110 {
8111 for (so_list *iter : current_program_space->added_solibs)
8112 {
8113 if (!self->regex
8114 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8115 return;
8116 }
8117 }
8118 else
8119 {
8120 for (const std::string &iter : current_program_space->deleted_solibs)
8121 {
8122 if (!self->regex
8123 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8124 return;
8125 }
8126 }
8127
8128 bs->stop = 0;
8129 bs->print_it = print_it_noop;
8130 }
8131
8132 static enum print_stop_action
8133 print_it_catch_solib (bpstat bs)
8134 {
8135 struct breakpoint *b = bs->breakpoint_at;
8136 struct ui_out *uiout = current_uiout;
8137
8138 annotate_catchpoint (b->number);
8139 maybe_print_thread_hit_breakpoint (uiout);
8140 if (b->disposition == disp_del)
8141 uiout->text ("Temporary catchpoint ");
8142 else
8143 uiout->text ("Catchpoint ");
8144 uiout->field_signed ("bkptno", b->number);
8145 uiout->text ("\n");
8146 if (uiout->is_mi_like_p ())
8147 uiout->field_string ("disp", bpdisp_text (b->disposition));
8148 print_solib_event (1);
8149 return PRINT_SRC_AND_LOC;
8150 }
8151
8152 static void
8153 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8154 {
8155 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8156 struct value_print_options opts;
8157 struct ui_out *uiout = current_uiout;
8158
8159 get_user_print_options (&opts);
8160 /* Field 4, the address, is omitted (which makes the columns not
8161 line up too nicely with the headers, but the effect is relatively
8162 readable). */
8163 if (opts.addressprint)
8164 {
8165 annotate_field (4);
8166 uiout->field_skip ("addr");
8167 }
8168
8169 std::string msg;
8170 annotate_field (5);
8171 if (self->is_load)
8172 {
8173 if (self->regex)
8174 msg = string_printf (_("load of library matching %s"), self->regex);
8175 else
8176 msg = _("load of library");
8177 }
8178 else
8179 {
8180 if (self->regex)
8181 msg = string_printf (_("unload of library matching %s"), self->regex);
8182 else
8183 msg = _("unload of library");
8184 }
8185 uiout->field_string ("what", msg);
8186
8187 if (uiout->is_mi_like_p ())
8188 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8189 }
8190
8191 static void
8192 print_mention_catch_solib (struct breakpoint *b)
8193 {
8194 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8195
8196 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8197 self->is_load ? "load" : "unload");
8198 }
8199
8200 static void
8201 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8202 {
8203 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8204
8205 fprintf_unfiltered (fp, "%s %s",
8206 b->disposition == disp_del ? "tcatch" : "catch",
8207 self->is_load ? "load" : "unload");
8208 if (self->regex)
8209 fprintf_unfiltered (fp, " %s", self->regex);
8210 fprintf_unfiltered (fp, "\n");
8211 }
8212
8213 static struct breakpoint_ops catch_solib_breakpoint_ops;
8214
8215 /* See breakpoint.h. */
8216
8217 void
8218 add_solib_catchpoint (const char *arg, bool is_load, bool is_temp, bool enabled)
8219 {
8220 struct gdbarch *gdbarch = get_current_arch ();
8221
8222 if (!arg)
8223 arg = "";
8224 arg = skip_spaces (arg);
8225
8226 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8227
8228 if (*arg != '\0')
8229 {
8230 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8231 _("Invalid regexp")));
8232 c->regex = xstrdup (arg);
8233 }
8234
8235 c->is_load = is_load;
8236 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8237 &catch_solib_breakpoint_ops);
8238
8239 c->enable_state = enabled ? bp_enabled : bp_disabled;
8240
8241 install_breakpoint (0, std::move (c), 1);
8242 }
8243
8244 /* A helper function that does all the work for "catch load" and
8245 "catch unload". */
8246
8247 static void
8248 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8249 struct cmd_list_element *command)
8250 {
8251 const int enabled = 1;
8252 bool temp = get_cmd_context (command) == CATCH_TEMPORARY;
8253
8254 add_solib_catchpoint (arg, is_load, temp, enabled);
8255 }
8256
8257 static void
8258 catch_load_command_1 (const char *arg, int from_tty,
8259 struct cmd_list_element *command)
8260 {
8261 catch_load_or_unload (arg, from_tty, 1, command);
8262 }
8263
8264 static void
8265 catch_unload_command_1 (const char *arg, int from_tty,
8266 struct cmd_list_element *command)
8267 {
8268 catch_load_or_unload (arg, from_tty, 0, command);
8269 }
8270
8271 /* See breakpoint.h. */
8272
8273 void
8274 init_catchpoint (struct breakpoint *b,
8275 struct gdbarch *gdbarch, bool temp,
8276 const char *cond_string,
8277 const struct breakpoint_ops *ops)
8278 {
8279 symtab_and_line sal;
8280 sal.pspace = current_program_space;
8281
8282 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8283
8284 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8285 b->disposition = temp ? disp_del : disp_donttouch;
8286 }
8287
8288 void
8289 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8290 {
8291 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8292 set_breakpoint_number (internal, b);
8293 if (is_tracepoint (b))
8294 set_tracepoint_count (breakpoint_count);
8295 if (!internal)
8296 mention (b);
8297 gdb::observers::breakpoint_created.notify (b);
8298
8299 if (update_gll)
8300 update_global_location_list (UGLL_MAY_INSERT);
8301 }
8302
8303 static void
8304 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8305 bool temp, const char *cond_string,
8306 const struct breakpoint_ops *ops)
8307 {
8308 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8309
8310 init_catchpoint (c.get (), gdbarch, temp, cond_string, ops);
8311
8312 c->forked_inferior_pid = null_ptid;
8313
8314 install_breakpoint (0, std::move (c), 1);
8315 }
8316
8317 /* Exec catchpoints. */
8318
8319 /* An instance of this type is used to represent an exec catchpoint.
8320 A breakpoint is really of this type iff its ops pointer points to
8321 CATCH_EXEC_BREAKPOINT_OPS. */
8322
8323 struct exec_catchpoint : public breakpoint
8324 {
8325 ~exec_catchpoint () override;
8326
8327 /* Filename of a program whose exec triggered this catchpoint.
8328 This field is only valid immediately after this catchpoint has
8329 triggered. */
8330 char *exec_pathname;
8331 };
8332
8333 /* Exec catchpoint destructor. */
8334
8335 exec_catchpoint::~exec_catchpoint ()
8336 {
8337 xfree (this->exec_pathname);
8338 }
8339
8340 static int
8341 insert_catch_exec (struct bp_location *bl)
8342 {
8343 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8344 }
8345
8346 static int
8347 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8348 {
8349 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8350 }
8351
8352 static int
8353 breakpoint_hit_catch_exec (const struct bp_location *bl,
8354 const address_space *aspace, CORE_ADDR bp_addr,
8355 const struct target_waitstatus *ws)
8356 {
8357 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8358
8359 if (ws->kind != TARGET_WAITKIND_EXECD)
8360 return 0;
8361
8362 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8363 return 1;
8364 }
8365
8366 static enum print_stop_action
8367 print_it_catch_exec (bpstat bs)
8368 {
8369 struct ui_out *uiout = current_uiout;
8370 struct breakpoint *b = bs->breakpoint_at;
8371 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8372
8373 annotate_catchpoint (b->number);
8374 maybe_print_thread_hit_breakpoint (uiout);
8375 if (b->disposition == disp_del)
8376 uiout->text ("Temporary catchpoint ");
8377 else
8378 uiout->text ("Catchpoint ");
8379 if (uiout->is_mi_like_p ())
8380 {
8381 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8382 uiout->field_string ("disp", bpdisp_text (b->disposition));
8383 }
8384 uiout->field_signed ("bkptno", b->number);
8385 uiout->text (" (exec'd ");
8386 uiout->field_string ("new-exec", c->exec_pathname);
8387 uiout->text ("), ");
8388
8389 return PRINT_SRC_AND_LOC;
8390 }
8391
8392 static void
8393 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8394 {
8395 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8396 struct value_print_options opts;
8397 struct ui_out *uiout = current_uiout;
8398
8399 get_user_print_options (&opts);
8400
8401 /* Field 4, the address, is omitted (which makes the columns
8402 not line up too nicely with the headers, but the effect
8403 is relatively readable). */
8404 if (opts.addressprint)
8405 uiout->field_skip ("addr");
8406 annotate_field (5);
8407 uiout->text ("exec");
8408 if (c->exec_pathname != NULL)
8409 {
8410 uiout->text (", program \"");
8411 uiout->field_string ("what", c->exec_pathname);
8412 uiout->text ("\" ");
8413 }
8414
8415 if (uiout->is_mi_like_p ())
8416 uiout->field_string ("catch-type", "exec");
8417 }
8418
8419 static void
8420 print_mention_catch_exec (struct breakpoint *b)
8421 {
8422 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8423 }
8424
8425 /* Implement the "print_recreate" breakpoint_ops method for exec
8426 catchpoints. */
8427
8428 static void
8429 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8430 {
8431 fprintf_unfiltered (fp, "catch exec");
8432 print_recreate_thread (b, fp);
8433 }
8434
8435 static struct breakpoint_ops catch_exec_breakpoint_ops;
8436
8437 static int
8438 hw_breakpoint_used_count (void)
8439 {
8440 int i = 0;
8441 struct breakpoint *b;
8442 struct bp_location *bl;
8443
8444 ALL_BREAKPOINTS (b)
8445 {
8446 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8447 for (bl = b->loc; bl; bl = bl->next)
8448 {
8449 /* Special types of hardware breakpoints may use more than
8450 one register. */
8451 i += b->ops->resources_needed (bl);
8452 }
8453 }
8454
8455 return i;
8456 }
8457
8458 /* Returns the resources B would use if it were a hardware
8459 watchpoint. */
8460
8461 static int
8462 hw_watchpoint_use_count (struct breakpoint *b)
8463 {
8464 int i = 0;
8465 struct bp_location *bl;
8466
8467 if (!breakpoint_enabled (b))
8468 return 0;
8469
8470 for (bl = b->loc; bl; bl = bl->next)
8471 {
8472 /* Special types of hardware watchpoints may use more than
8473 one register. */
8474 i += b->ops->resources_needed (bl);
8475 }
8476
8477 return i;
8478 }
8479
8480 /* Returns the sum the used resources of all hardware watchpoints of
8481 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8482 the sum of the used resources of all hardware watchpoints of other
8483 types _not_ TYPE. */
8484
8485 static int
8486 hw_watchpoint_used_count_others (struct breakpoint *except,
8487 enum bptype type, int *other_type_used)
8488 {
8489 int i = 0;
8490 struct breakpoint *b;
8491
8492 *other_type_used = 0;
8493 ALL_BREAKPOINTS (b)
8494 {
8495 if (b == except)
8496 continue;
8497 if (!breakpoint_enabled (b))
8498 continue;
8499
8500 if (b->type == type)
8501 i += hw_watchpoint_use_count (b);
8502 else if (is_hardware_watchpoint (b))
8503 *other_type_used = 1;
8504 }
8505
8506 return i;
8507 }
8508
8509 void
8510 disable_watchpoints_before_interactive_call_start (void)
8511 {
8512 struct breakpoint *b;
8513
8514 ALL_BREAKPOINTS (b)
8515 {
8516 if (is_watchpoint (b) && breakpoint_enabled (b))
8517 {
8518 b->enable_state = bp_call_disabled;
8519 update_global_location_list (UGLL_DONT_INSERT);
8520 }
8521 }
8522 }
8523
8524 void
8525 enable_watchpoints_after_interactive_call_stop (void)
8526 {
8527 struct breakpoint *b;
8528
8529 ALL_BREAKPOINTS (b)
8530 {
8531 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8532 {
8533 b->enable_state = bp_enabled;
8534 update_global_location_list (UGLL_MAY_INSERT);
8535 }
8536 }
8537 }
8538
8539 void
8540 disable_breakpoints_before_startup (void)
8541 {
8542 current_program_space->executing_startup = 1;
8543 update_global_location_list (UGLL_DONT_INSERT);
8544 }
8545
8546 void
8547 enable_breakpoints_after_startup (void)
8548 {
8549 current_program_space->executing_startup = 0;
8550 breakpoint_re_set ();
8551 }
8552
8553 /* Create a new single-step breakpoint for thread THREAD, with no
8554 locations. */
8555
8556 static struct breakpoint *
8557 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8558 {
8559 std::unique_ptr<breakpoint> b (new breakpoint ());
8560
8561 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8562 &momentary_breakpoint_ops);
8563
8564 b->disposition = disp_donttouch;
8565 b->frame_id = null_frame_id;
8566
8567 b->thread = thread;
8568 gdb_assert (b->thread != 0);
8569
8570 return add_to_breakpoint_chain (std::move (b));
8571 }
8572
8573 /* Set a momentary breakpoint of type TYPE at address specified by
8574 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8575 frame. */
8576
8577 breakpoint_up
8578 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8579 struct frame_id frame_id, enum bptype type)
8580 {
8581 struct breakpoint *b;
8582
8583 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8584 tail-called one. */
8585 gdb_assert (!frame_id_artificial_p (frame_id));
8586
8587 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8588 b->enable_state = bp_enabled;
8589 b->disposition = disp_donttouch;
8590 b->frame_id = frame_id;
8591
8592 b->thread = inferior_thread ()->global_num;
8593
8594 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8595
8596 return breakpoint_up (b);
8597 }
8598
8599 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8600 The new breakpoint will have type TYPE, use OPS as its
8601 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8602
8603 static struct breakpoint *
8604 momentary_breakpoint_from_master (struct breakpoint *orig,
8605 enum bptype type,
8606 const struct breakpoint_ops *ops,
8607 int loc_enabled)
8608 {
8609 struct breakpoint *copy;
8610
8611 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8612 copy->loc = allocate_bp_location (copy);
8613 set_breakpoint_location_function (copy->loc);
8614
8615 copy->loc->gdbarch = orig->loc->gdbarch;
8616 copy->loc->requested_address = orig->loc->requested_address;
8617 copy->loc->address = orig->loc->address;
8618 copy->loc->section = orig->loc->section;
8619 copy->loc->pspace = orig->loc->pspace;
8620 copy->loc->probe = orig->loc->probe;
8621 copy->loc->line_number = orig->loc->line_number;
8622 copy->loc->symtab = orig->loc->symtab;
8623 copy->loc->enabled = loc_enabled;
8624 copy->frame_id = orig->frame_id;
8625 copy->thread = orig->thread;
8626 copy->pspace = orig->pspace;
8627
8628 copy->enable_state = bp_enabled;
8629 copy->disposition = disp_donttouch;
8630 copy->number = internal_breakpoint_number--;
8631
8632 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8633 return copy;
8634 }
8635
8636 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8637 ORIG is NULL. */
8638
8639 struct breakpoint *
8640 clone_momentary_breakpoint (struct breakpoint *orig)
8641 {
8642 /* If there's nothing to clone, then return nothing. */
8643 if (orig == NULL)
8644 return NULL;
8645
8646 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8647 }
8648
8649 breakpoint_up
8650 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8651 enum bptype type)
8652 {
8653 struct symtab_and_line sal;
8654
8655 sal = find_pc_line (pc, 0);
8656 sal.pc = pc;
8657 sal.section = find_pc_overlay (pc);
8658 sal.explicit_pc = 1;
8659
8660 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8661 }
8662 \f
8663
8664 /* Tell the user we have just set a breakpoint B. */
8665
8666 static void
8667 mention (struct breakpoint *b)
8668 {
8669 b->ops->print_mention (b);
8670 current_uiout->text ("\n");
8671 }
8672 \f
8673
8674 static bool bp_loc_is_permanent (struct bp_location *loc);
8675
8676 /* Handle "set breakpoint auto-hw on".
8677
8678 If the explicitly specified breakpoint type is not hardware
8679 breakpoint, check the memory map to see whether the breakpoint
8680 address is in read-only memory.
8681
8682 - location type is not hardware breakpoint, memory is read-only.
8683 We change the type of the location to hardware breakpoint.
8684
8685 - location type is hardware breakpoint, memory is read-write. This
8686 means we've previously made the location hardware one, but then the
8687 memory map changed, so we undo.
8688 */
8689
8690 static void
8691 handle_automatic_hardware_breakpoints (bp_location *bl)
8692 {
8693 if (automatic_hardware_breakpoints
8694 && bl->owner->type != bp_hardware_breakpoint
8695 && (bl->loc_type == bp_loc_software_breakpoint
8696 || bl->loc_type == bp_loc_hardware_breakpoint))
8697 {
8698 /* When breakpoints are removed, remove_breakpoints will use
8699 location types we've just set here, the only possible problem
8700 is that memory map has changed during running program, but
8701 it's not going to work anyway with current gdb. */
8702 mem_region *mr = lookup_mem_region (bl->address);
8703
8704 if (mr != nullptr)
8705 {
8706 enum bp_loc_type new_type;
8707
8708 if (mr->attrib.mode != MEM_RW)
8709 new_type = bp_loc_hardware_breakpoint;
8710 else
8711 new_type = bp_loc_software_breakpoint;
8712
8713 if (new_type != bl->loc_type)
8714 {
8715 static bool said = false;
8716
8717 bl->loc_type = new_type;
8718 if (!said)
8719 {
8720 fprintf_filtered (gdb_stdout,
8721 _("Note: automatically using "
8722 "hardware breakpoints for "
8723 "read-only addresses.\n"));
8724 said = true;
8725 }
8726 }
8727 }
8728 }
8729 }
8730
8731 static struct bp_location *
8732 add_location_to_breakpoint (struct breakpoint *b,
8733 const struct symtab_and_line *sal)
8734 {
8735 struct bp_location *loc, **tmp;
8736 CORE_ADDR adjusted_address;
8737 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8738
8739 if (loc_gdbarch == NULL)
8740 loc_gdbarch = b->gdbarch;
8741
8742 /* Adjust the breakpoint's address prior to allocating a location.
8743 Once we call allocate_bp_location(), that mostly uninitialized
8744 location will be placed on the location chain. Adjustment of the
8745 breakpoint may cause target_read_memory() to be called and we do
8746 not want its scan of the location chain to find a breakpoint and
8747 location that's only been partially initialized. */
8748 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8749 sal->pc, b->type);
8750
8751 /* Sort the locations by their ADDRESS. */
8752 loc = allocate_bp_location (b);
8753 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8754 tmp = &((*tmp)->next))
8755 ;
8756 loc->next = *tmp;
8757 *tmp = loc;
8758
8759 loc->requested_address = sal->pc;
8760 loc->address = adjusted_address;
8761 loc->pspace = sal->pspace;
8762 loc->probe.prob = sal->prob;
8763 loc->probe.objfile = sal->objfile;
8764 gdb_assert (loc->pspace != NULL);
8765 loc->section = sal->section;
8766 loc->gdbarch = loc_gdbarch;
8767 loc->line_number = sal->line;
8768 loc->symtab = sal->symtab;
8769 loc->symbol = sal->symbol;
8770 loc->msymbol = sal->msymbol;
8771 loc->objfile = sal->objfile;
8772
8773 set_breakpoint_location_function (loc);
8774
8775 /* While by definition, permanent breakpoints are already present in the
8776 code, we don't mark the location as inserted. Normally one would expect
8777 that GDB could rely on that breakpoint instruction to stop the program,
8778 thus removing the need to insert its own breakpoint, except that executing
8779 the breakpoint instruction can kill the target instead of reporting a
8780 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8781 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8782 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8783 breakpoint be inserted normally results in QEMU knowing about the GDB
8784 breakpoint, and thus trap before the breakpoint instruction is executed.
8785 (If GDB later needs to continue execution past the permanent breakpoint,
8786 it manually increments the PC, thus avoiding executing the breakpoint
8787 instruction.) */
8788 if (bp_loc_is_permanent (loc))
8789 loc->permanent = 1;
8790
8791 return loc;
8792 }
8793 \f
8794
8795 /* Return true if LOC is pointing to a permanent breakpoint,
8796 return false otherwise. */
8797
8798 static bool
8799 bp_loc_is_permanent (struct bp_location *loc)
8800 {
8801 gdb_assert (loc != NULL);
8802
8803 /* If we have a non-breakpoint-backed catchpoint or a software
8804 watchpoint, just return 0. We should not attempt to read from
8805 the addresses the locations of these breakpoint types point to.
8806 gdbarch_program_breakpoint_here_p, below, will attempt to read
8807 memory. */
8808 if (!bl_address_is_meaningful (loc))
8809 return false;
8810
8811 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8812 switch_to_program_space_and_thread (loc->pspace);
8813 return gdbarch_program_breakpoint_here_p (loc->gdbarch, loc->address);
8814 }
8815
8816 /* Build a command list for the dprintf corresponding to the current
8817 settings of the dprintf style options. */
8818
8819 static void
8820 update_dprintf_command_list (struct breakpoint *b)
8821 {
8822 char *dprintf_args = b->extra_string;
8823 char *printf_line = NULL;
8824
8825 if (!dprintf_args)
8826 return;
8827
8828 dprintf_args = skip_spaces (dprintf_args);
8829
8830 /* Allow a comma, as it may have terminated a location, but don't
8831 insist on it. */
8832 if (*dprintf_args == ',')
8833 ++dprintf_args;
8834 dprintf_args = skip_spaces (dprintf_args);
8835
8836 if (*dprintf_args != '"')
8837 error (_("Bad format string, missing '\"'."));
8838
8839 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8840 printf_line = xstrprintf ("printf %s", dprintf_args);
8841 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8842 {
8843 if (!dprintf_function)
8844 error (_("No function supplied for dprintf call"));
8845
8846 if (dprintf_channel && strlen (dprintf_channel) > 0)
8847 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8848 dprintf_function,
8849 dprintf_channel,
8850 dprintf_args);
8851 else
8852 printf_line = xstrprintf ("call (void) %s (%s)",
8853 dprintf_function,
8854 dprintf_args);
8855 }
8856 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8857 {
8858 if (target_can_run_breakpoint_commands ())
8859 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8860 else
8861 {
8862 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8863 printf_line = xstrprintf ("printf %s", dprintf_args);
8864 }
8865 }
8866 else
8867 internal_error (__FILE__, __LINE__,
8868 _("Invalid dprintf style."));
8869
8870 gdb_assert (printf_line != NULL);
8871
8872 /* Manufacture a printf sequence. */
8873 struct command_line *printf_cmd_line
8874 = new struct command_line (simple_control, printf_line);
8875 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8876 command_lines_deleter ()));
8877 }
8878
8879 /* Update all dprintf commands, making their command lists reflect
8880 current style settings. */
8881
8882 static void
8883 update_dprintf_commands (const char *args, int from_tty,
8884 struct cmd_list_element *c)
8885 {
8886 struct breakpoint *b;
8887
8888 ALL_BREAKPOINTS (b)
8889 {
8890 if (b->type == bp_dprintf)
8891 update_dprintf_command_list (b);
8892 }
8893 }
8894
8895 /* Create a breakpoint with SAL as location. Use LOCATION
8896 as a description of the location, and COND_STRING
8897 as condition expression. If LOCATION is NULL then create an
8898 "address location" from the address in the SAL. */
8899
8900 static void
8901 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8902 gdb::array_view<const symtab_and_line> sals,
8903 event_location_up &&location,
8904 gdb::unique_xmalloc_ptr<char> filter,
8905 gdb::unique_xmalloc_ptr<char> cond_string,
8906 gdb::unique_xmalloc_ptr<char> extra_string,
8907 enum bptype type, enum bpdisp disposition,
8908 int thread, int task, int ignore_count,
8909 const struct breakpoint_ops *ops, int from_tty,
8910 int enabled, int internal, unsigned flags,
8911 int display_canonical)
8912 {
8913 int i;
8914
8915 if (type == bp_hardware_breakpoint)
8916 {
8917 int target_resources_ok;
8918
8919 i = hw_breakpoint_used_count ();
8920 target_resources_ok =
8921 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8922 i + 1, 0);
8923 if (target_resources_ok == 0)
8924 error (_("No hardware breakpoint support in the target."));
8925 else if (target_resources_ok < 0)
8926 error (_("Hardware breakpoints used exceeds limit."));
8927 }
8928
8929 gdb_assert (!sals.empty ());
8930
8931 for (const auto &sal : sals)
8932 {
8933 struct bp_location *loc;
8934
8935 if (from_tty)
8936 {
8937 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8938 if (!loc_gdbarch)
8939 loc_gdbarch = gdbarch;
8940
8941 describe_other_breakpoints (loc_gdbarch,
8942 sal.pspace, sal.pc, sal.section, thread);
8943 }
8944
8945 if (&sal == &sals[0])
8946 {
8947 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8948 b->thread = thread;
8949 b->task = task;
8950
8951 b->cond_string = cond_string.release ();
8952 b->extra_string = extra_string.release ();
8953 b->ignore_count = ignore_count;
8954 b->enable_state = enabled ? bp_enabled : bp_disabled;
8955 b->disposition = disposition;
8956
8957 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8958 b->loc->inserted = 1;
8959
8960 if (type == bp_static_tracepoint)
8961 {
8962 struct tracepoint *t = (struct tracepoint *) b;
8963 struct static_tracepoint_marker marker;
8964
8965 if (strace_marker_p (b))
8966 {
8967 /* We already know the marker exists, otherwise, we
8968 wouldn't see a sal for it. */
8969 const char *p
8970 = &event_location_to_string (b->location.get ())[3];
8971 const char *endp;
8972
8973 p = skip_spaces (p);
8974
8975 endp = skip_to_space (p);
8976
8977 t->static_trace_marker_id.assign (p, endp - p);
8978
8979 printf_filtered (_("Probed static tracepoint "
8980 "marker \"%s\"\n"),
8981 t->static_trace_marker_id.c_str ());
8982 }
8983 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8984 {
8985 t->static_trace_marker_id = std::move (marker.str_id);
8986
8987 printf_filtered (_("Probed static tracepoint "
8988 "marker \"%s\"\n"),
8989 t->static_trace_marker_id.c_str ());
8990 }
8991 else
8992 warning (_("Couldn't determine the static "
8993 "tracepoint marker to probe"));
8994 }
8995
8996 loc = b->loc;
8997 }
8998 else
8999 {
9000 loc = add_location_to_breakpoint (b, &sal);
9001 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9002 loc->inserted = 1;
9003 }
9004
9005 /* Do not set breakpoint locations conditions yet. As locations
9006 are inserted, they get sorted based on their addresses. Let
9007 the list stabilize to have reliable location numbers. */
9008
9009 /* Dynamic printf requires and uses additional arguments on the
9010 command line, otherwise it's an error. */
9011 if (type == bp_dprintf)
9012 {
9013 if (b->extra_string)
9014 update_dprintf_command_list (b);
9015 else
9016 error (_("Format string required"));
9017 }
9018 else if (b->extra_string)
9019 error (_("Garbage '%s' at end of command"), b->extra_string);
9020 }
9021
9022
9023 /* The order of the locations is now stable. Set the location
9024 condition using the location's number. */
9025 int loc_num = 1;
9026 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
9027 {
9028 if (b->cond_string != nullptr)
9029 set_breakpoint_location_condition (b->cond_string, loc, b->number,
9030 loc_num);
9031
9032 ++loc_num;
9033 }
9034
9035 b->display_canonical = display_canonical;
9036 if (location != NULL)
9037 b->location = std::move (location);
9038 else
9039 b->location = new_address_location (b->loc->address, NULL, 0);
9040 b->filter = std::move (filter);
9041 }
9042
9043 static void
9044 create_breakpoint_sal (struct gdbarch *gdbarch,
9045 gdb::array_view<const symtab_and_line> sals,
9046 event_location_up &&location,
9047 gdb::unique_xmalloc_ptr<char> filter,
9048 gdb::unique_xmalloc_ptr<char> cond_string,
9049 gdb::unique_xmalloc_ptr<char> extra_string,
9050 enum bptype type, enum bpdisp disposition,
9051 int thread, int task, int ignore_count,
9052 const struct breakpoint_ops *ops, int from_tty,
9053 int enabled, int internal, unsigned flags,
9054 int display_canonical)
9055 {
9056 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9057
9058 init_breakpoint_sal (b.get (), gdbarch,
9059 sals, std::move (location),
9060 std::move (filter),
9061 std::move (cond_string),
9062 std::move (extra_string),
9063 type, disposition,
9064 thread, task, ignore_count,
9065 ops, from_tty,
9066 enabled, internal, flags,
9067 display_canonical);
9068
9069 install_breakpoint (internal, std::move (b), 0);
9070 }
9071
9072 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9073 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9074 value. COND_STRING, if not NULL, specified the condition to be
9075 used for all breakpoints. Essentially the only case where
9076 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9077 function. In that case, it's still not possible to specify
9078 separate conditions for different overloaded functions, so
9079 we take just a single condition string.
9080
9081 NOTE: If the function succeeds, the caller is expected to cleanup
9082 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9083 array contents). If the function fails (error() is called), the
9084 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9085 COND and SALS arrays and each of those arrays contents. */
9086
9087 static void
9088 create_breakpoints_sal (struct gdbarch *gdbarch,
9089 struct linespec_result *canonical,
9090 gdb::unique_xmalloc_ptr<char> cond_string,
9091 gdb::unique_xmalloc_ptr<char> extra_string,
9092 enum bptype type, enum bpdisp disposition,
9093 int thread, int task, int ignore_count,
9094 const struct breakpoint_ops *ops, int from_tty,
9095 int enabled, int internal, unsigned flags)
9096 {
9097 if (canonical->pre_expanded)
9098 gdb_assert (canonical->lsals.size () == 1);
9099
9100 for (const auto &lsal : canonical->lsals)
9101 {
9102 /* Note that 'location' can be NULL in the case of a plain
9103 'break', without arguments. */
9104 event_location_up location
9105 = (canonical->location != NULL
9106 ? copy_event_location (canonical->location.get ()) : NULL);
9107 gdb::unique_xmalloc_ptr<char> filter_string
9108 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9109
9110 create_breakpoint_sal (gdbarch, lsal.sals,
9111 std::move (location),
9112 std::move (filter_string),
9113 std::move (cond_string),
9114 std::move (extra_string),
9115 type, disposition,
9116 thread, task, ignore_count, ops,
9117 from_tty, enabled, internal, flags,
9118 canonical->special_display);
9119 }
9120 }
9121
9122 /* Parse LOCATION which is assumed to be a SAL specification possibly
9123 followed by conditionals. On return, SALS contains an array of SAL
9124 addresses found. LOCATION points to the end of the SAL (for
9125 linespec locations).
9126
9127 The array and the line spec strings are allocated on the heap, it is
9128 the caller's responsibility to free them. */
9129
9130 static void
9131 parse_breakpoint_sals (struct event_location *location,
9132 struct linespec_result *canonical)
9133 {
9134 struct symtab_and_line cursal;
9135
9136 if (event_location_type (location) == LINESPEC_LOCATION)
9137 {
9138 const char *spec = get_linespec_location (location)->spec_string;
9139
9140 if (spec == NULL)
9141 {
9142 /* The last displayed codepoint, if it's valid, is our default
9143 breakpoint address. */
9144 if (last_displayed_sal_is_valid ())
9145 {
9146 /* Set sal's pspace, pc, symtab, and line to the values
9147 corresponding to the last call to print_frame_info.
9148 Be sure to reinitialize LINE with NOTCURRENT == 0
9149 as the breakpoint line number is inappropriate otherwise.
9150 find_pc_line would adjust PC, re-set it back. */
9151 symtab_and_line sal = get_last_displayed_sal ();
9152 CORE_ADDR pc = sal.pc;
9153
9154 sal = find_pc_line (pc, 0);
9155
9156 /* "break" without arguments is equivalent to "break *PC"
9157 where PC is the last displayed codepoint's address. So
9158 make sure to set sal.explicit_pc to prevent GDB from
9159 trying to expand the list of sals to include all other
9160 instances with the same symtab and line. */
9161 sal.pc = pc;
9162 sal.explicit_pc = 1;
9163
9164 struct linespec_sals lsal;
9165 lsal.sals = {sal};
9166 lsal.canonical = NULL;
9167
9168 canonical->lsals.push_back (std::move (lsal));
9169 return;
9170 }
9171 else
9172 error (_("No default breakpoint address now."));
9173 }
9174 }
9175
9176 /* Force almost all breakpoints to be in terms of the
9177 current_source_symtab (which is decode_line_1's default).
9178 This should produce the results we want almost all of the
9179 time while leaving default_breakpoint_* alone.
9180
9181 ObjC: However, don't match an Objective-C method name which
9182 may have a '+' or '-' succeeded by a '['. */
9183 cursal = get_current_source_symtab_and_line ();
9184 if (last_displayed_sal_is_valid ())
9185 {
9186 const char *spec = NULL;
9187
9188 if (event_location_type (location) == LINESPEC_LOCATION)
9189 spec = get_linespec_location (location)->spec_string;
9190
9191 if (!cursal.symtab
9192 || (spec != NULL
9193 && strchr ("+-", spec[0]) != NULL
9194 && spec[1] != '['))
9195 {
9196 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9197 get_last_displayed_symtab (),
9198 get_last_displayed_line (),
9199 canonical, NULL, NULL);
9200 return;
9201 }
9202 }
9203
9204 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9205 cursal.symtab, cursal.line, canonical, NULL, NULL);
9206 }
9207
9208
9209 /* Convert each SAL into a real PC. Verify that the PC can be
9210 inserted as a breakpoint. If it can't throw an error. */
9211
9212 static void
9213 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9214 {
9215 for (auto &sal : sals)
9216 resolve_sal_pc (&sal);
9217 }
9218
9219 /* Fast tracepoints may have restrictions on valid locations. For
9220 instance, a fast tracepoint using a jump instead of a trap will
9221 likely have to overwrite more bytes than a trap would, and so can
9222 only be placed where the instruction is longer than the jump, or a
9223 multi-instruction sequence does not have a jump into the middle of
9224 it, etc. */
9225
9226 static void
9227 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9228 gdb::array_view<const symtab_and_line> sals)
9229 {
9230 for (const auto &sal : sals)
9231 {
9232 struct gdbarch *sarch;
9233
9234 sarch = get_sal_arch (sal);
9235 /* We fall back to GDBARCH if there is no architecture
9236 associated with SAL. */
9237 if (sarch == NULL)
9238 sarch = gdbarch;
9239 std::string msg;
9240 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9241 error (_("May not have a fast tracepoint at %s%s"),
9242 paddress (sarch, sal.pc), msg.c_str ());
9243 }
9244 }
9245
9246 /* Given TOK, a string specification of condition and thread, as
9247 accepted by the 'break' command, extract the condition
9248 string and thread number and set *COND_STRING and *THREAD.
9249 PC identifies the context at which the condition should be parsed.
9250 If no condition is found, *COND_STRING is set to NULL.
9251 If no thread is found, *THREAD is set to -1. */
9252
9253 static void
9254 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9255 char **cond_string, int *thread, int *task,
9256 char **rest)
9257 {
9258 *cond_string = NULL;
9259 *thread = -1;
9260 *task = 0;
9261 *rest = NULL;
9262 bool force = false;
9263
9264 while (tok && *tok)
9265 {
9266 const char *end_tok;
9267 int toklen;
9268 const char *cond_start = NULL;
9269 const char *cond_end = NULL;
9270
9271 tok = skip_spaces (tok);
9272
9273 if ((*tok == '"' || *tok == ',') && rest)
9274 {
9275 *rest = savestring (tok, strlen (tok));
9276 return;
9277 }
9278
9279 end_tok = skip_to_space (tok);
9280
9281 toklen = end_tok - tok;
9282
9283 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9284 {
9285 tok = cond_start = end_tok + 1;
9286 try
9287 {
9288 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9289 }
9290 catch (const gdb_exception_error &)
9291 {
9292 if (!force)
9293 throw;
9294 else
9295 tok = tok + strlen (tok);
9296 }
9297 cond_end = tok;
9298 *cond_string = savestring (cond_start, cond_end - cond_start);
9299 }
9300 else if (toklen >= 1 && strncmp (tok, "-force-condition", toklen) == 0)
9301 {
9302 tok = tok + toklen;
9303 force = true;
9304 }
9305 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9306 {
9307 const char *tmptok;
9308 struct thread_info *thr;
9309
9310 tok = end_tok + 1;
9311 thr = parse_thread_id (tok, &tmptok);
9312 if (tok == tmptok)
9313 error (_("Junk after thread keyword."));
9314 *thread = thr->global_num;
9315 tok = tmptok;
9316 }
9317 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9318 {
9319 char *tmptok;
9320
9321 tok = end_tok + 1;
9322 *task = strtol (tok, &tmptok, 0);
9323 if (tok == tmptok)
9324 error (_("Junk after task keyword."));
9325 if (!valid_task_id (*task))
9326 error (_("Unknown task %d."), *task);
9327 tok = tmptok;
9328 }
9329 else if (rest)
9330 {
9331 *rest = savestring (tok, strlen (tok));
9332 return;
9333 }
9334 else
9335 error (_("Junk at end of arguments."));
9336 }
9337 }
9338
9339 /* Call 'find_condition_and_thread' for each sal in SALS until a parse
9340 succeeds. The parsed values are written to COND_STRING, THREAD,
9341 TASK, and REST. See the comment of 'find_condition_and_thread'
9342 for the description of these parameters and INPUT. */
9343
9344 static void
9345 find_condition_and_thread_for_sals (const std::vector<symtab_and_line> &sals,
9346 const char *input, char **cond_string,
9347 int *thread, int *task, char **rest)
9348 {
9349 int num_failures = 0;
9350 for (auto &sal : sals)
9351 {
9352 char *cond = nullptr;
9353 int thread_id = 0;
9354 int task_id = 0;
9355 char *remaining = nullptr;
9356
9357 /* Here we want to parse 'arg' to separate condition from thread
9358 number. But because parsing happens in a context and the
9359 contexts of sals might be different, try each until there is
9360 success. Finding one successful parse is sufficient for our
9361 goal. When setting the breakpoint we'll re-parse the
9362 condition in the context of each sal. */
9363 try
9364 {
9365 find_condition_and_thread (input, sal.pc, &cond, &thread_id,
9366 &task_id, &remaining);
9367 *cond_string = cond;
9368 *thread = thread_id;
9369 *task = task_id;
9370 *rest = remaining;
9371 break;
9372 }
9373 catch (const gdb_exception_error &e)
9374 {
9375 num_failures++;
9376 /* If no sal remains, do not continue. */
9377 if (num_failures == sals.size ())
9378 throw;
9379 }
9380 }
9381 }
9382
9383 /* Decode a static tracepoint marker spec. */
9384
9385 static std::vector<symtab_and_line>
9386 decode_static_tracepoint_spec (const char **arg_p)
9387 {
9388 const char *p = &(*arg_p)[3];
9389 const char *endp;
9390
9391 p = skip_spaces (p);
9392
9393 endp = skip_to_space (p);
9394
9395 std::string marker_str (p, endp - p);
9396
9397 std::vector<static_tracepoint_marker> markers
9398 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9399 if (markers.empty ())
9400 error (_("No known static tracepoint marker named %s"),
9401 marker_str.c_str ());
9402
9403 std::vector<symtab_and_line> sals;
9404 sals.reserve (markers.size ());
9405
9406 for (const static_tracepoint_marker &marker : markers)
9407 {
9408 symtab_and_line sal = find_pc_line (marker.address, 0);
9409 sal.pc = marker.address;
9410 sals.push_back (sal);
9411 }
9412
9413 *arg_p = endp;
9414 return sals;
9415 }
9416
9417 /* Returns the breakpoint ops appropriate for use with with LOCATION_TYPE and
9418 according to IS_TRACEPOINT. */
9419
9420 static const struct breakpoint_ops *
9421 breakpoint_ops_for_event_location_type (enum event_location_type location_type,
9422 bool is_tracepoint)
9423 {
9424 if (is_tracepoint)
9425 {
9426 if (location_type == PROBE_LOCATION)
9427 return &tracepoint_probe_breakpoint_ops;
9428 else
9429 return &tracepoint_breakpoint_ops;
9430 }
9431 else
9432 {
9433 if (location_type == PROBE_LOCATION)
9434 return &bkpt_probe_breakpoint_ops;
9435 else
9436 return &bkpt_breakpoint_ops;
9437 }
9438 }
9439
9440 /* See breakpoint.h. */
9441
9442 const struct breakpoint_ops *
9443 breakpoint_ops_for_event_location (const struct event_location *location,
9444 bool is_tracepoint)
9445 {
9446 if (location != nullptr)
9447 return breakpoint_ops_for_event_location_type
9448 (event_location_type (location), is_tracepoint);
9449 return is_tracepoint ? &tracepoint_breakpoint_ops : &bkpt_breakpoint_ops;
9450 }
9451
9452 /* See breakpoint.h. */
9453
9454 int
9455 create_breakpoint (struct gdbarch *gdbarch,
9456 struct event_location *location,
9457 const char *cond_string,
9458 int thread, const char *extra_string,
9459 int parse_extra,
9460 int tempflag, enum bptype type_wanted,
9461 int ignore_count,
9462 enum auto_boolean pending_break_support,
9463 const struct breakpoint_ops *ops,
9464 int from_tty, int enabled, int internal,
9465 unsigned flags)
9466 {
9467 struct linespec_result canonical;
9468 int pending = 0;
9469 int task = 0;
9470 int prev_bkpt_count = breakpoint_count;
9471
9472 gdb_assert (ops != NULL);
9473
9474 /* If extra_string isn't useful, set it to NULL. */
9475 if (extra_string != NULL && *extra_string == '\0')
9476 extra_string = NULL;
9477
9478 try
9479 {
9480 ops->create_sals_from_location (location, &canonical, type_wanted);
9481 }
9482 catch (const gdb_exception_error &e)
9483 {
9484 /* If caller is interested in rc value from parse, set
9485 value. */
9486 if (e.error == NOT_FOUND_ERROR)
9487 {
9488 /* If pending breakpoint support is turned off, throw
9489 error. */
9490
9491 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9492 throw;
9493
9494 exception_print (gdb_stderr, e);
9495
9496 /* If pending breakpoint support is auto query and the user
9497 selects no, then simply return the error code. */
9498 if (pending_break_support == AUTO_BOOLEAN_AUTO
9499 && !nquery (_("Make %s pending on future shared library load? "),
9500 bptype_string (type_wanted)))
9501 return 0;
9502
9503 /* At this point, either the user was queried about setting
9504 a pending breakpoint and selected yes, or pending
9505 breakpoint behavior is on and thus a pending breakpoint
9506 is defaulted on behalf of the user. */
9507 pending = 1;
9508 }
9509 else
9510 throw;
9511 }
9512
9513 if (!pending && canonical.lsals.empty ())
9514 return 0;
9515
9516 /* Resolve all line numbers to PC's and verify that the addresses
9517 are ok for the target. */
9518 if (!pending)
9519 {
9520 for (auto &lsal : canonical.lsals)
9521 breakpoint_sals_to_pc (lsal.sals);
9522 }
9523
9524 /* Fast tracepoints may have additional restrictions on location. */
9525 if (!pending && type_wanted == bp_fast_tracepoint)
9526 {
9527 for (const auto &lsal : canonical.lsals)
9528 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9529 }
9530
9531 /* Verify that condition can be parsed, before setting any
9532 breakpoints. Allocate a separate condition expression for each
9533 breakpoint. */
9534 if (!pending)
9535 {
9536 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9537 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9538
9539 if (parse_extra)
9540 {
9541 char *rest;
9542 char *cond;
9543
9544 const linespec_sals &lsal = canonical.lsals[0];
9545
9546 find_condition_and_thread_for_sals (lsal.sals, extra_string,
9547 &cond, &thread, &task, &rest);
9548 cond_string_copy.reset (cond);
9549 extra_string_copy.reset (rest);
9550 }
9551 else
9552 {
9553 if (type_wanted != bp_dprintf
9554 && extra_string != NULL && *extra_string != '\0')
9555 error (_("Garbage '%s' at end of location"), extra_string);
9556
9557 /* Create a private copy of condition string. */
9558 if (cond_string)
9559 cond_string_copy.reset (xstrdup (cond_string));
9560 /* Create a private copy of any extra string. */
9561 if (extra_string)
9562 extra_string_copy.reset (xstrdup (extra_string));
9563 }
9564
9565 ops->create_breakpoints_sal (gdbarch, &canonical,
9566 std::move (cond_string_copy),
9567 std::move (extra_string_copy),
9568 type_wanted,
9569 tempflag ? disp_del : disp_donttouch,
9570 thread, task, ignore_count, ops,
9571 from_tty, enabled, internal, flags);
9572 }
9573 else
9574 {
9575 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9576
9577 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9578 b->location = copy_event_location (location);
9579
9580 if (parse_extra)
9581 b->cond_string = NULL;
9582 else
9583 {
9584 /* Create a private copy of condition string. */
9585 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9586 b->thread = thread;
9587 }
9588
9589 /* Create a private copy of any extra string. */
9590 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9591 b->ignore_count = ignore_count;
9592 b->disposition = tempflag ? disp_del : disp_donttouch;
9593 b->condition_not_parsed = 1;
9594 b->enable_state = enabled ? bp_enabled : bp_disabled;
9595 if ((type_wanted != bp_breakpoint
9596 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9597 b->pspace = current_program_space;
9598
9599 install_breakpoint (internal, std::move (b), 0);
9600 }
9601
9602 if (canonical.lsals.size () > 1)
9603 {
9604 warning (_("Multiple breakpoints were set.\nUse the "
9605 "\"delete\" command to delete unwanted breakpoints."));
9606 prev_breakpoint_count = prev_bkpt_count;
9607 }
9608
9609 update_global_location_list (UGLL_MAY_INSERT);
9610
9611 return 1;
9612 }
9613
9614 /* Set a breakpoint.
9615 ARG is a string describing breakpoint address,
9616 condition, and thread.
9617 FLAG specifies if a breakpoint is hardware on,
9618 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9619 and BP_TEMPFLAG. */
9620
9621 static void
9622 break_command_1 (const char *arg, int flag, int from_tty)
9623 {
9624 int tempflag = flag & BP_TEMPFLAG;
9625 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9626 ? bp_hardware_breakpoint
9627 : bp_breakpoint);
9628
9629 event_location_up location = string_to_event_location (&arg, current_language);
9630 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
9631 (location.get (), false /* is_tracepoint */);
9632
9633 create_breakpoint (get_current_arch (),
9634 location.get (),
9635 NULL, 0, arg, 1 /* parse arg */,
9636 tempflag, type_wanted,
9637 0 /* Ignore count */,
9638 pending_break_support,
9639 ops,
9640 from_tty,
9641 1 /* enabled */,
9642 0 /* internal */,
9643 0);
9644 }
9645
9646 /* Helper function for break_command_1 and disassemble_command. */
9647
9648 void
9649 resolve_sal_pc (struct symtab_and_line *sal)
9650 {
9651 CORE_ADDR pc;
9652
9653 if (sal->pc == 0 && sal->symtab != NULL)
9654 {
9655 if (!find_line_pc (sal->symtab, sal->line, &pc))
9656 error (_("No line %d in file \"%s\"."),
9657 sal->line, symtab_to_filename_for_display (sal->symtab));
9658 sal->pc = pc;
9659
9660 /* If this SAL corresponds to a breakpoint inserted using a line
9661 number, then skip the function prologue if necessary. */
9662 if (sal->explicit_line)
9663 skip_prologue_sal (sal);
9664 }
9665
9666 if (sal->section == 0 && sal->symtab != NULL)
9667 {
9668 const struct blockvector *bv;
9669 const struct block *b;
9670 struct symbol *sym;
9671
9672 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9673 SYMTAB_COMPUNIT (sal->symtab));
9674 if (bv != NULL)
9675 {
9676 sym = block_linkage_function (b);
9677 if (sym != NULL)
9678 {
9679 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9680 sal->section = sym->obj_section (SYMTAB_OBJFILE (sal->symtab));
9681 }
9682 else
9683 {
9684 /* It really is worthwhile to have the section, so we'll
9685 just have to look harder. This case can be executed
9686 if we have line numbers but no functions (as can
9687 happen in assembly source). */
9688
9689 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9690 switch_to_program_space_and_thread (sal->pspace);
9691
9692 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9693 if (msym.minsym)
9694 sal->section = msym.obj_section ();
9695 }
9696 }
9697 }
9698 }
9699
9700 void
9701 break_command (const char *arg, int from_tty)
9702 {
9703 break_command_1 (arg, 0, from_tty);
9704 }
9705
9706 void
9707 tbreak_command (const char *arg, int from_tty)
9708 {
9709 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9710 }
9711
9712 static void
9713 hbreak_command (const char *arg, int from_tty)
9714 {
9715 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9716 }
9717
9718 static void
9719 thbreak_command (const char *arg, int from_tty)
9720 {
9721 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9722 }
9723
9724 static void
9725 stop_command (const char *arg, int from_tty)
9726 {
9727 printf_filtered (_("Specify the type of breakpoint to set.\n\
9728 Usage: stop in <function | address>\n\
9729 stop at <line>\n"));
9730 }
9731
9732 static void
9733 stopin_command (const char *arg, int from_tty)
9734 {
9735 int badInput = 0;
9736
9737 if (arg == NULL)
9738 badInput = 1;
9739 else if (*arg != '*')
9740 {
9741 const char *argptr = arg;
9742 int hasColon = 0;
9743
9744 /* Look for a ':'. If this is a line number specification, then
9745 say it is bad, otherwise, it should be an address or
9746 function/method name. */
9747 while (*argptr && !hasColon)
9748 {
9749 hasColon = (*argptr == ':');
9750 argptr++;
9751 }
9752
9753 if (hasColon)
9754 badInput = (*argptr != ':'); /* Not a class::method */
9755 else
9756 badInput = isdigit (*arg); /* a simple line number */
9757 }
9758
9759 if (badInput)
9760 printf_filtered (_("Usage: stop in <function | address>\n"));
9761 else
9762 break_command_1 (arg, 0, from_tty);
9763 }
9764
9765 static void
9766 stopat_command (const char *arg, int from_tty)
9767 {
9768 int badInput = 0;
9769
9770 if (arg == NULL || *arg == '*') /* no line number */
9771 badInput = 1;
9772 else
9773 {
9774 const char *argptr = arg;
9775 int hasColon = 0;
9776
9777 /* Look for a ':'. If there is a '::' then get out, otherwise
9778 it is probably a line number. */
9779 while (*argptr && !hasColon)
9780 {
9781 hasColon = (*argptr == ':');
9782 argptr++;
9783 }
9784
9785 if (hasColon)
9786 badInput = (*argptr == ':'); /* we have class::method */
9787 else
9788 badInput = !isdigit (*arg); /* not a line number */
9789 }
9790
9791 if (badInput)
9792 printf_filtered (_("Usage: stop at LINE\n"));
9793 else
9794 break_command_1 (arg, 0, from_tty);
9795 }
9796
9797 /* The dynamic printf command is mostly like a regular breakpoint, but
9798 with a prewired command list consisting of a single output command,
9799 built from extra arguments supplied on the dprintf command
9800 line. */
9801
9802 static void
9803 dprintf_command (const char *arg, int from_tty)
9804 {
9805 event_location_up location = string_to_event_location (&arg, current_language);
9806
9807 /* If non-NULL, ARG should have been advanced past the location;
9808 the next character must be ','. */
9809 if (arg != NULL)
9810 {
9811 if (arg[0] != ',' || arg[1] == '\0')
9812 error (_("Format string required"));
9813 else
9814 {
9815 /* Skip the comma. */
9816 ++arg;
9817 }
9818 }
9819
9820 create_breakpoint (get_current_arch (),
9821 location.get (),
9822 NULL, 0, arg, 1 /* parse arg */,
9823 0, bp_dprintf,
9824 0 /* Ignore count */,
9825 pending_break_support,
9826 &dprintf_breakpoint_ops,
9827 from_tty,
9828 1 /* enabled */,
9829 0 /* internal */,
9830 0);
9831 }
9832
9833 static void
9834 agent_printf_command (const char *arg, int from_tty)
9835 {
9836 error (_("May only run agent-printf on the target"));
9837 }
9838
9839 /* Implement the "breakpoint_hit" breakpoint_ops method for
9840 ranged breakpoints. */
9841
9842 static int
9843 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9844 const address_space *aspace,
9845 CORE_ADDR bp_addr,
9846 const struct target_waitstatus *ws)
9847 {
9848 if (ws->kind != TARGET_WAITKIND_STOPPED
9849 || ws->value.sig != GDB_SIGNAL_TRAP)
9850 return 0;
9851
9852 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9853 bl->length, aspace, bp_addr);
9854 }
9855
9856 /* Implement the "resources_needed" breakpoint_ops method for
9857 ranged breakpoints. */
9858
9859 static int
9860 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9861 {
9862 return target_ranged_break_num_registers ();
9863 }
9864
9865 /* Implement the "print_it" breakpoint_ops method for
9866 ranged breakpoints. */
9867
9868 static enum print_stop_action
9869 print_it_ranged_breakpoint (bpstat bs)
9870 {
9871 struct breakpoint *b = bs->breakpoint_at;
9872 struct bp_location *bl = b->loc;
9873 struct ui_out *uiout = current_uiout;
9874
9875 gdb_assert (b->type == bp_hardware_breakpoint);
9876
9877 /* Ranged breakpoints have only one location. */
9878 gdb_assert (bl && bl->next == NULL);
9879
9880 annotate_breakpoint (b->number);
9881
9882 maybe_print_thread_hit_breakpoint (uiout);
9883
9884 if (b->disposition == disp_del)
9885 uiout->text ("Temporary ranged breakpoint ");
9886 else
9887 uiout->text ("Ranged breakpoint ");
9888 if (uiout->is_mi_like_p ())
9889 {
9890 uiout->field_string ("reason",
9891 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9892 uiout->field_string ("disp", bpdisp_text (b->disposition));
9893 }
9894 uiout->field_signed ("bkptno", b->number);
9895 uiout->text (", ");
9896
9897 return PRINT_SRC_AND_LOC;
9898 }
9899
9900 /* Implement the "print_one" breakpoint_ops method for
9901 ranged breakpoints. */
9902
9903 static void
9904 print_one_ranged_breakpoint (struct breakpoint *b,
9905 struct bp_location **last_loc)
9906 {
9907 struct bp_location *bl = b->loc;
9908 struct value_print_options opts;
9909 struct ui_out *uiout = current_uiout;
9910
9911 /* Ranged breakpoints have only one location. */
9912 gdb_assert (bl && bl->next == NULL);
9913
9914 get_user_print_options (&opts);
9915
9916 if (opts.addressprint)
9917 /* We don't print the address range here, it will be printed later
9918 by print_one_detail_ranged_breakpoint. */
9919 uiout->field_skip ("addr");
9920 annotate_field (5);
9921 print_breakpoint_location (b, bl);
9922 *last_loc = bl;
9923 }
9924
9925 /* Implement the "print_one_detail" breakpoint_ops method for
9926 ranged breakpoints. */
9927
9928 static void
9929 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9930 struct ui_out *uiout)
9931 {
9932 CORE_ADDR address_start, address_end;
9933 struct bp_location *bl = b->loc;
9934 string_file stb;
9935
9936 gdb_assert (bl);
9937
9938 address_start = bl->address;
9939 address_end = address_start + bl->length - 1;
9940
9941 uiout->text ("\taddress range: ");
9942 stb.printf ("[%s, %s]",
9943 print_core_address (bl->gdbarch, address_start),
9944 print_core_address (bl->gdbarch, address_end));
9945 uiout->field_stream ("addr", stb);
9946 uiout->text ("\n");
9947 }
9948
9949 /* Implement the "print_mention" breakpoint_ops method for
9950 ranged breakpoints. */
9951
9952 static void
9953 print_mention_ranged_breakpoint (struct breakpoint *b)
9954 {
9955 struct bp_location *bl = b->loc;
9956 struct ui_out *uiout = current_uiout;
9957
9958 gdb_assert (bl);
9959 gdb_assert (b->type == bp_hardware_breakpoint);
9960
9961 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9962 b->number, paddress (bl->gdbarch, bl->address),
9963 paddress (bl->gdbarch, bl->address + bl->length - 1));
9964 }
9965
9966 /* Implement the "print_recreate" breakpoint_ops method for
9967 ranged breakpoints. */
9968
9969 static void
9970 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9971 {
9972 fprintf_unfiltered (fp, "break-range %s, %s",
9973 event_location_to_string (b->location.get ()),
9974 event_location_to_string (b->location_range_end.get ()));
9975 print_recreate_thread (b, fp);
9976 }
9977
9978 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9979
9980 static struct breakpoint_ops ranged_breakpoint_ops;
9981
9982 /* Find the address where the end of the breakpoint range should be
9983 placed, given the SAL of the end of the range. This is so that if
9984 the user provides a line number, the end of the range is set to the
9985 last instruction of the given line. */
9986
9987 static CORE_ADDR
9988 find_breakpoint_range_end (struct symtab_and_line sal)
9989 {
9990 CORE_ADDR end;
9991
9992 /* If the user provided a PC value, use it. Otherwise,
9993 find the address of the end of the given location. */
9994 if (sal.explicit_pc)
9995 end = sal.pc;
9996 else
9997 {
9998 int ret;
9999 CORE_ADDR start;
10000
10001 ret = find_line_pc_range (sal, &start, &end);
10002 if (!ret)
10003 error (_("Could not find location of the end of the range."));
10004
10005 /* find_line_pc_range returns the start of the next line. */
10006 end--;
10007 }
10008
10009 return end;
10010 }
10011
10012 /* Implement the "break-range" CLI command. */
10013
10014 static void
10015 break_range_command (const char *arg, int from_tty)
10016 {
10017 const char *arg_start;
10018 struct linespec_result canonical_start, canonical_end;
10019 int bp_count, can_use_bp, length;
10020 CORE_ADDR end;
10021 struct breakpoint *b;
10022
10023 /* We don't support software ranged breakpoints. */
10024 if (target_ranged_break_num_registers () < 0)
10025 error (_("This target does not support hardware ranged breakpoints."));
10026
10027 bp_count = hw_breakpoint_used_count ();
10028 bp_count += target_ranged_break_num_registers ();
10029 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10030 bp_count, 0);
10031 if (can_use_bp < 0)
10032 error (_("Hardware breakpoints used exceeds limit."));
10033
10034 arg = skip_spaces (arg);
10035 if (arg == NULL || arg[0] == '\0')
10036 error(_("No address range specified."));
10037
10038 arg_start = arg;
10039 event_location_up start_location = string_to_event_location (&arg,
10040 current_language);
10041 parse_breakpoint_sals (start_location.get (), &canonical_start);
10042
10043 if (arg[0] != ',')
10044 error (_("Too few arguments."));
10045 else if (canonical_start.lsals.empty ())
10046 error (_("Could not find location of the beginning of the range."));
10047
10048 const linespec_sals &lsal_start = canonical_start.lsals[0];
10049
10050 if (canonical_start.lsals.size () > 1
10051 || lsal_start.sals.size () != 1)
10052 error (_("Cannot create a ranged breakpoint with multiple locations."));
10053
10054 const symtab_and_line &sal_start = lsal_start.sals[0];
10055 std::string addr_string_start (arg_start, arg - arg_start);
10056
10057 arg++; /* Skip the comma. */
10058 arg = skip_spaces (arg);
10059
10060 /* Parse the end location. */
10061
10062 arg_start = arg;
10063
10064 /* We call decode_line_full directly here instead of using
10065 parse_breakpoint_sals because we need to specify the start location's
10066 symtab and line as the default symtab and line for the end of the
10067 range. This makes it possible to have ranges like "foo.c:27, +14",
10068 where +14 means 14 lines from the start location. */
10069 event_location_up end_location = string_to_event_location (&arg,
10070 current_language);
10071 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10072 sal_start.symtab, sal_start.line,
10073 &canonical_end, NULL, NULL);
10074
10075 if (canonical_end.lsals.empty ())
10076 error (_("Could not find location of the end of the range."));
10077
10078 const linespec_sals &lsal_end = canonical_end.lsals[0];
10079 if (canonical_end.lsals.size () > 1
10080 || lsal_end.sals.size () != 1)
10081 error (_("Cannot create a ranged breakpoint with multiple locations."));
10082
10083 const symtab_and_line &sal_end = lsal_end.sals[0];
10084
10085 end = find_breakpoint_range_end (sal_end);
10086 if (sal_start.pc > end)
10087 error (_("Invalid address range, end precedes start."));
10088
10089 length = end - sal_start.pc + 1;
10090 if (length < 0)
10091 /* Length overflowed. */
10092 error (_("Address range too large."));
10093 else if (length == 1)
10094 {
10095 /* This range is simple enough to be handled by
10096 the `hbreak' command. */
10097 hbreak_command (&addr_string_start[0], 1);
10098
10099 return;
10100 }
10101
10102 /* Now set up the breakpoint. */
10103 b = set_raw_breakpoint (get_current_arch (), sal_start,
10104 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10105 set_breakpoint_count (breakpoint_count + 1);
10106 b->number = breakpoint_count;
10107 b->disposition = disp_donttouch;
10108 b->location = std::move (start_location);
10109 b->location_range_end = std::move (end_location);
10110 b->loc->length = length;
10111
10112 mention (b);
10113 gdb::observers::breakpoint_created.notify (b);
10114 update_global_location_list (UGLL_MAY_INSERT);
10115 }
10116
10117 /* Return non-zero if EXP is verified as constant. Returned zero
10118 means EXP is variable. Also the constant detection may fail for
10119 some constant expressions and in such case still falsely return
10120 zero. */
10121
10122 static bool
10123 watchpoint_exp_is_const (const struct expression *exp)
10124 {
10125 return exp->op->constant_p ();
10126 }
10127
10128 /* Watchpoint destructor. */
10129
10130 watchpoint::~watchpoint ()
10131 {
10132 xfree (this->exp_string);
10133 xfree (this->exp_string_reparse);
10134 }
10135
10136 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10137
10138 static void
10139 re_set_watchpoint (struct breakpoint *b)
10140 {
10141 struct watchpoint *w = (struct watchpoint *) b;
10142
10143 /* Watchpoint can be either on expression using entirely global
10144 variables, or it can be on local variables.
10145
10146 Watchpoints of the first kind are never auto-deleted, and even
10147 persist across program restarts. Since they can use variables
10148 from shared libraries, we need to reparse expression as libraries
10149 are loaded and unloaded.
10150
10151 Watchpoints on local variables can also change meaning as result
10152 of solib event. For example, if a watchpoint uses both a local
10153 and a global variables in expression, it's a local watchpoint,
10154 but unloading of a shared library will make the expression
10155 invalid. This is not a very common use case, but we still
10156 re-evaluate expression, to avoid surprises to the user.
10157
10158 Note that for local watchpoints, we re-evaluate it only if
10159 watchpoints frame id is still valid. If it's not, it means the
10160 watchpoint is out of scope and will be deleted soon. In fact,
10161 I'm not sure we'll ever be called in this case.
10162
10163 If a local watchpoint's frame id is still valid, then
10164 w->exp_valid_block is likewise valid, and we can safely use it.
10165
10166 Don't do anything about disabled watchpoints, since they will be
10167 reevaluated again when enabled. */
10168 update_watchpoint (w, 1 /* reparse */);
10169 }
10170
10171 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10172
10173 static int
10174 insert_watchpoint (struct bp_location *bl)
10175 {
10176 struct watchpoint *w = (struct watchpoint *) bl->owner;
10177 int length = w->exact ? 1 : bl->length;
10178
10179 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10180 w->cond_exp.get ());
10181 }
10182
10183 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10184
10185 static int
10186 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10187 {
10188 struct watchpoint *w = (struct watchpoint *) bl->owner;
10189 int length = w->exact ? 1 : bl->length;
10190
10191 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10192 w->cond_exp.get ());
10193 }
10194
10195 static int
10196 breakpoint_hit_watchpoint (const struct bp_location *bl,
10197 const address_space *aspace, CORE_ADDR bp_addr,
10198 const struct target_waitstatus *ws)
10199 {
10200 struct breakpoint *b = bl->owner;
10201 struct watchpoint *w = (struct watchpoint *) b;
10202
10203 /* Continuable hardware watchpoints are treated as non-existent if the
10204 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10205 some data address). Otherwise gdb won't stop on a break instruction
10206 in the code (not from a breakpoint) when a hardware watchpoint has
10207 been defined. Also skip watchpoints which we know did not trigger
10208 (did not match the data address). */
10209 if (is_hardware_watchpoint (b)
10210 && w->watchpoint_triggered == watch_triggered_no)
10211 return 0;
10212
10213 return 1;
10214 }
10215
10216 static void
10217 check_status_watchpoint (bpstat bs)
10218 {
10219 gdb_assert (is_watchpoint (bs->breakpoint_at));
10220
10221 bpstat_check_watchpoint (bs);
10222 }
10223
10224 /* Implement the "resources_needed" breakpoint_ops method for
10225 hardware watchpoints. */
10226
10227 static int
10228 resources_needed_watchpoint (const struct bp_location *bl)
10229 {
10230 struct watchpoint *w = (struct watchpoint *) bl->owner;
10231 int length = w->exact? 1 : bl->length;
10232
10233 return target_region_ok_for_hw_watchpoint (bl->address, length);
10234 }
10235
10236 /* Implement the "works_in_software_mode" breakpoint_ops method for
10237 hardware watchpoints. */
10238
10239 static int
10240 works_in_software_mode_watchpoint (const struct breakpoint *b)
10241 {
10242 /* Read and access watchpoints only work with hardware support. */
10243 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10244 }
10245
10246 static enum print_stop_action
10247 print_it_watchpoint (bpstat bs)
10248 {
10249 struct breakpoint *b;
10250 enum print_stop_action result;
10251 struct watchpoint *w;
10252 struct ui_out *uiout = current_uiout;
10253
10254 gdb_assert (bs->bp_location_at != NULL);
10255
10256 b = bs->breakpoint_at;
10257 w = (struct watchpoint *) b;
10258
10259 annotate_watchpoint (b->number);
10260 maybe_print_thread_hit_breakpoint (uiout);
10261
10262 string_file stb;
10263
10264 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10265 switch (b->type)
10266 {
10267 case bp_watchpoint:
10268 case bp_hardware_watchpoint:
10269 if (uiout->is_mi_like_p ())
10270 uiout->field_string
10271 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10272 mention (b);
10273 tuple_emitter.emplace (uiout, "value");
10274 uiout->text ("\nOld value = ");
10275 watchpoint_value_print (bs->old_val.get (), &stb);
10276 uiout->field_stream ("old", stb);
10277 uiout->text ("\nNew value = ");
10278 watchpoint_value_print (w->val.get (), &stb);
10279 uiout->field_stream ("new", stb);
10280 uiout->text ("\n");
10281 /* More than one watchpoint may have been triggered. */
10282 result = PRINT_UNKNOWN;
10283 break;
10284
10285 case bp_read_watchpoint:
10286 if (uiout->is_mi_like_p ())
10287 uiout->field_string
10288 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10289 mention (b);
10290 tuple_emitter.emplace (uiout, "value");
10291 uiout->text ("\nValue = ");
10292 watchpoint_value_print (w->val.get (), &stb);
10293 uiout->field_stream ("value", stb);
10294 uiout->text ("\n");
10295 result = PRINT_UNKNOWN;
10296 break;
10297
10298 case bp_access_watchpoint:
10299 if (bs->old_val != NULL)
10300 {
10301 if (uiout->is_mi_like_p ())
10302 uiout->field_string
10303 ("reason",
10304 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10305 mention (b);
10306 tuple_emitter.emplace (uiout, "value");
10307 uiout->text ("\nOld value = ");
10308 watchpoint_value_print (bs->old_val.get (), &stb);
10309 uiout->field_stream ("old", stb);
10310 uiout->text ("\nNew value = ");
10311 }
10312 else
10313 {
10314 mention (b);
10315 if (uiout->is_mi_like_p ())
10316 uiout->field_string
10317 ("reason",
10318 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10319 tuple_emitter.emplace (uiout, "value");
10320 uiout->text ("\nValue = ");
10321 }
10322 watchpoint_value_print (w->val.get (), &stb);
10323 uiout->field_stream ("new", stb);
10324 uiout->text ("\n");
10325 result = PRINT_UNKNOWN;
10326 break;
10327 default:
10328 result = PRINT_UNKNOWN;
10329 }
10330
10331 return result;
10332 }
10333
10334 /* Implement the "print_mention" breakpoint_ops method for hardware
10335 watchpoints. */
10336
10337 static void
10338 print_mention_watchpoint (struct breakpoint *b)
10339 {
10340 struct watchpoint *w = (struct watchpoint *) b;
10341 struct ui_out *uiout = current_uiout;
10342 const char *tuple_name;
10343
10344 switch (b->type)
10345 {
10346 case bp_watchpoint:
10347 uiout->text ("Watchpoint ");
10348 tuple_name = "wpt";
10349 break;
10350 case bp_hardware_watchpoint:
10351 uiout->text ("Hardware watchpoint ");
10352 tuple_name = "wpt";
10353 break;
10354 case bp_read_watchpoint:
10355 uiout->text ("Hardware read watchpoint ");
10356 tuple_name = "hw-rwpt";
10357 break;
10358 case bp_access_watchpoint:
10359 uiout->text ("Hardware access (read/write) watchpoint ");
10360 tuple_name = "hw-awpt";
10361 break;
10362 default:
10363 internal_error (__FILE__, __LINE__,
10364 _("Invalid hardware watchpoint type."));
10365 }
10366
10367 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10368 uiout->field_signed ("number", b->number);
10369 uiout->text (": ");
10370 uiout->field_string ("exp", w->exp_string);
10371 }
10372
10373 /* Implement the "print_recreate" breakpoint_ops method for
10374 watchpoints. */
10375
10376 static void
10377 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10378 {
10379 struct watchpoint *w = (struct watchpoint *) b;
10380
10381 switch (b->type)
10382 {
10383 case bp_watchpoint:
10384 case bp_hardware_watchpoint:
10385 fprintf_unfiltered (fp, "watch");
10386 break;
10387 case bp_read_watchpoint:
10388 fprintf_unfiltered (fp, "rwatch");
10389 break;
10390 case bp_access_watchpoint:
10391 fprintf_unfiltered (fp, "awatch");
10392 break;
10393 default:
10394 internal_error (__FILE__, __LINE__,
10395 _("Invalid watchpoint type."));
10396 }
10397
10398 fprintf_unfiltered (fp, " %s", w->exp_string);
10399 print_recreate_thread (b, fp);
10400 }
10401
10402 /* Implement the "explains_signal" breakpoint_ops method for
10403 watchpoints. */
10404
10405 static int
10406 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10407 {
10408 /* A software watchpoint cannot cause a signal other than
10409 GDB_SIGNAL_TRAP. */
10410 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10411 return 0;
10412
10413 return 1;
10414 }
10415
10416 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10417
10418 static struct breakpoint_ops watchpoint_breakpoint_ops;
10419
10420 /* Implement the "insert" breakpoint_ops method for
10421 masked hardware watchpoints. */
10422
10423 static int
10424 insert_masked_watchpoint (struct bp_location *bl)
10425 {
10426 struct watchpoint *w = (struct watchpoint *) bl->owner;
10427
10428 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10429 bl->watchpoint_type);
10430 }
10431
10432 /* Implement the "remove" breakpoint_ops method for
10433 masked hardware watchpoints. */
10434
10435 static int
10436 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10437 {
10438 struct watchpoint *w = (struct watchpoint *) bl->owner;
10439
10440 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10441 bl->watchpoint_type);
10442 }
10443
10444 /* Implement the "resources_needed" breakpoint_ops method for
10445 masked hardware watchpoints. */
10446
10447 static int
10448 resources_needed_masked_watchpoint (const struct bp_location *bl)
10449 {
10450 struct watchpoint *w = (struct watchpoint *) bl->owner;
10451
10452 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10453 }
10454
10455 /* Implement the "works_in_software_mode" breakpoint_ops method for
10456 masked hardware watchpoints. */
10457
10458 static int
10459 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10460 {
10461 return 0;
10462 }
10463
10464 /* Implement the "print_it" breakpoint_ops method for
10465 masked hardware watchpoints. */
10466
10467 static enum print_stop_action
10468 print_it_masked_watchpoint (bpstat bs)
10469 {
10470 struct breakpoint *b = bs->breakpoint_at;
10471 struct ui_out *uiout = current_uiout;
10472
10473 /* Masked watchpoints have only one location. */
10474 gdb_assert (b->loc && b->loc->next == NULL);
10475
10476 annotate_watchpoint (b->number);
10477 maybe_print_thread_hit_breakpoint (uiout);
10478
10479 switch (b->type)
10480 {
10481 case bp_hardware_watchpoint:
10482 if (uiout->is_mi_like_p ())
10483 uiout->field_string
10484 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10485 break;
10486
10487 case bp_read_watchpoint:
10488 if (uiout->is_mi_like_p ())
10489 uiout->field_string
10490 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10491 break;
10492
10493 case bp_access_watchpoint:
10494 if (uiout->is_mi_like_p ())
10495 uiout->field_string
10496 ("reason",
10497 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10498 break;
10499 default:
10500 internal_error (__FILE__, __LINE__,
10501 _("Invalid hardware watchpoint type."));
10502 }
10503
10504 mention (b);
10505 uiout->text (_("\n\
10506 Check the underlying instruction at PC for the memory\n\
10507 address and value which triggered this watchpoint.\n"));
10508 uiout->text ("\n");
10509
10510 /* More than one watchpoint may have been triggered. */
10511 return PRINT_UNKNOWN;
10512 }
10513
10514 /* Implement the "print_one_detail" breakpoint_ops method for
10515 masked hardware watchpoints. */
10516
10517 static void
10518 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10519 struct ui_out *uiout)
10520 {
10521 struct watchpoint *w = (struct watchpoint *) b;
10522
10523 /* Masked watchpoints have only one location. */
10524 gdb_assert (b->loc && b->loc->next == NULL);
10525
10526 uiout->text ("\tmask ");
10527 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10528 uiout->text ("\n");
10529 }
10530
10531 /* Implement the "print_mention" breakpoint_ops method for
10532 masked hardware watchpoints. */
10533
10534 static void
10535 print_mention_masked_watchpoint (struct breakpoint *b)
10536 {
10537 struct watchpoint *w = (struct watchpoint *) b;
10538 struct ui_out *uiout = current_uiout;
10539 const char *tuple_name;
10540
10541 switch (b->type)
10542 {
10543 case bp_hardware_watchpoint:
10544 uiout->text ("Masked hardware watchpoint ");
10545 tuple_name = "wpt";
10546 break;
10547 case bp_read_watchpoint:
10548 uiout->text ("Masked hardware read watchpoint ");
10549 tuple_name = "hw-rwpt";
10550 break;
10551 case bp_access_watchpoint:
10552 uiout->text ("Masked hardware access (read/write) watchpoint ");
10553 tuple_name = "hw-awpt";
10554 break;
10555 default:
10556 internal_error (__FILE__, __LINE__,
10557 _("Invalid hardware watchpoint type."));
10558 }
10559
10560 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10561 uiout->field_signed ("number", b->number);
10562 uiout->text (": ");
10563 uiout->field_string ("exp", w->exp_string);
10564 }
10565
10566 /* Implement the "print_recreate" breakpoint_ops method for
10567 masked hardware watchpoints. */
10568
10569 static void
10570 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10571 {
10572 struct watchpoint *w = (struct watchpoint *) b;
10573
10574 switch (b->type)
10575 {
10576 case bp_hardware_watchpoint:
10577 fprintf_unfiltered (fp, "watch");
10578 break;
10579 case bp_read_watchpoint:
10580 fprintf_unfiltered (fp, "rwatch");
10581 break;
10582 case bp_access_watchpoint:
10583 fprintf_unfiltered (fp, "awatch");
10584 break;
10585 default:
10586 internal_error (__FILE__, __LINE__,
10587 _("Invalid hardware watchpoint type."));
10588 }
10589
10590 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string,
10591 phex (w->hw_wp_mask, sizeof (CORE_ADDR)));
10592 print_recreate_thread (b, fp);
10593 }
10594
10595 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10596
10597 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10598
10599 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10600
10601 static bool
10602 is_masked_watchpoint (const struct breakpoint *b)
10603 {
10604 return b->ops == &masked_watchpoint_breakpoint_ops;
10605 }
10606
10607 /* accessflag: hw_write: watch write,
10608 hw_read: watch read,
10609 hw_access: watch access (read or write) */
10610 static void
10611 watch_command_1 (const char *arg, int accessflag, int from_tty,
10612 bool just_location, bool internal)
10613 {
10614 struct breakpoint *scope_breakpoint = NULL;
10615 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10616 struct value *result;
10617 int saved_bitpos = 0, saved_bitsize = 0;
10618 const char *exp_start = NULL;
10619 const char *exp_end = NULL;
10620 const char *tok, *end_tok;
10621 int toklen = -1;
10622 const char *cond_start = NULL;
10623 const char *cond_end = NULL;
10624 enum bptype bp_type;
10625 int thread = -1;
10626 /* Flag to indicate whether we are going to use masks for
10627 the hardware watchpoint. */
10628 bool use_mask = false;
10629 CORE_ADDR mask = 0;
10630
10631 /* Make sure that we actually have parameters to parse. */
10632 if (arg != NULL && arg[0] != '\0')
10633 {
10634 const char *value_start;
10635
10636 exp_end = arg + strlen (arg);
10637
10638 /* Look for "parameter value" pairs at the end
10639 of the arguments string. */
10640 for (tok = exp_end - 1; tok > arg; tok--)
10641 {
10642 /* Skip whitespace at the end of the argument list. */
10643 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10644 tok--;
10645
10646 /* Find the beginning of the last token.
10647 This is the value of the parameter. */
10648 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10649 tok--;
10650 value_start = tok + 1;
10651
10652 /* Skip whitespace. */
10653 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10654 tok--;
10655
10656 end_tok = tok;
10657
10658 /* Find the beginning of the second to last token.
10659 This is the parameter itself. */
10660 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10661 tok--;
10662 tok++;
10663 toklen = end_tok - tok + 1;
10664
10665 if (toklen == 6 && startswith (tok, "thread"))
10666 {
10667 struct thread_info *thr;
10668 /* At this point we've found a "thread" token, which means
10669 the user is trying to set a watchpoint that triggers
10670 only in a specific thread. */
10671 const char *endp;
10672
10673 if (thread != -1)
10674 error(_("You can specify only one thread."));
10675
10676 /* Extract the thread ID from the next token. */
10677 thr = parse_thread_id (value_start, &endp);
10678
10679 /* Check if the user provided a valid thread ID. */
10680 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10681 invalid_thread_id_error (value_start);
10682
10683 thread = thr->global_num;
10684 }
10685 else if (toklen == 4 && startswith (tok, "mask"))
10686 {
10687 /* We've found a "mask" token, which means the user wants to
10688 create a hardware watchpoint that is going to have the mask
10689 facility. */
10690 struct value *mask_value, *mark;
10691
10692 if (use_mask)
10693 error(_("You can specify only one mask."));
10694
10695 use_mask = just_location = true;
10696
10697 mark = value_mark ();
10698 mask_value = parse_to_comma_and_eval (&value_start);
10699 mask = value_as_address (mask_value);
10700 value_free_to_mark (mark);
10701 }
10702 else
10703 /* We didn't recognize what we found. We should stop here. */
10704 break;
10705
10706 /* Truncate the string and get rid of the "parameter value" pair before
10707 the arguments string is parsed by the parse_exp_1 function. */
10708 exp_end = tok;
10709 }
10710 }
10711 else
10712 exp_end = arg;
10713
10714 /* Parse the rest of the arguments. From here on out, everything
10715 is in terms of a newly allocated string instead of the original
10716 ARG. */
10717 std::string expression (arg, exp_end - arg);
10718 exp_start = arg = expression.c_str ();
10719 innermost_block_tracker tracker;
10720 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10721 exp_end = arg;
10722 /* Remove trailing whitespace from the expression before saving it.
10723 This makes the eventual display of the expression string a bit
10724 prettier. */
10725 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10726 --exp_end;
10727
10728 /* Checking if the expression is not constant. */
10729 if (watchpoint_exp_is_const (exp.get ()))
10730 {
10731 int len;
10732
10733 len = exp_end - exp_start;
10734 while (len > 0 && isspace (exp_start[len - 1]))
10735 len--;
10736 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10737 }
10738
10739 exp_valid_block = tracker.block ();
10740 struct value *mark = value_mark ();
10741 struct value *val_as_value = nullptr;
10742 fetch_subexp_value (exp.get (), exp->op.get (), &val_as_value, &result, NULL,
10743 just_location);
10744
10745 if (val_as_value != NULL && just_location)
10746 {
10747 saved_bitpos = value_bitpos (val_as_value);
10748 saved_bitsize = value_bitsize (val_as_value);
10749 }
10750
10751 value_ref_ptr val;
10752 if (just_location)
10753 {
10754 int ret;
10755
10756 exp_valid_block = NULL;
10757 val = release_value (value_addr (result));
10758 value_free_to_mark (mark);
10759
10760 if (use_mask)
10761 {
10762 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10763 mask);
10764 if (ret == -1)
10765 error (_("This target does not support masked watchpoints."));
10766 else if (ret == -2)
10767 error (_("Invalid mask or memory region."));
10768 }
10769 }
10770 else if (val_as_value != NULL)
10771 val = release_value (val_as_value);
10772
10773 tok = skip_spaces (arg);
10774 end_tok = skip_to_space (tok);
10775
10776 toklen = end_tok - tok;
10777 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10778 {
10779 tok = cond_start = end_tok + 1;
10780 innermost_block_tracker if_tracker;
10781 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10782
10783 /* The watchpoint expression may not be local, but the condition
10784 may still be. E.g.: `watch global if local > 0'. */
10785 cond_exp_valid_block = if_tracker.block ();
10786
10787 cond_end = tok;
10788 }
10789 if (*tok)
10790 error (_("Junk at end of command."));
10791
10792 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10793
10794 /* Save this because create_internal_breakpoint below invalidates
10795 'wp_frame'. */
10796 frame_id watchpoint_frame = get_frame_id (wp_frame);
10797
10798 /* If the expression is "local", then set up a "watchpoint scope"
10799 breakpoint at the point where we've left the scope of the watchpoint
10800 expression. Create the scope breakpoint before the watchpoint, so
10801 that we will encounter it first in bpstat_stop_status. */
10802 if (exp_valid_block != NULL && wp_frame != NULL)
10803 {
10804 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10805
10806 if (frame_id_p (caller_frame_id))
10807 {
10808 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10809 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10810
10811 scope_breakpoint
10812 = create_internal_breakpoint (caller_arch, caller_pc,
10813 bp_watchpoint_scope,
10814 &momentary_breakpoint_ops);
10815
10816 /* create_internal_breakpoint could invalidate WP_FRAME. */
10817 wp_frame = NULL;
10818
10819 scope_breakpoint->enable_state = bp_enabled;
10820
10821 /* Automatically delete the breakpoint when it hits. */
10822 scope_breakpoint->disposition = disp_del;
10823
10824 /* Only break in the proper frame (help with recursion). */
10825 scope_breakpoint->frame_id = caller_frame_id;
10826
10827 /* Set the address at which we will stop. */
10828 scope_breakpoint->loc->gdbarch = caller_arch;
10829 scope_breakpoint->loc->requested_address = caller_pc;
10830 scope_breakpoint->loc->address
10831 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10832 scope_breakpoint->loc->requested_address,
10833 scope_breakpoint->type);
10834 }
10835 }
10836
10837 /* Now set up the breakpoint. We create all watchpoints as hardware
10838 watchpoints here even if hardware watchpoints are turned off, a call
10839 to update_watchpoint later in this function will cause the type to
10840 drop back to bp_watchpoint (software watchpoint) if required. */
10841
10842 if (accessflag == hw_read)
10843 bp_type = bp_read_watchpoint;
10844 else if (accessflag == hw_access)
10845 bp_type = bp_access_watchpoint;
10846 else
10847 bp_type = bp_hardware_watchpoint;
10848
10849 std::unique_ptr<watchpoint> w (new watchpoint ());
10850
10851 if (use_mask)
10852 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10853 &masked_watchpoint_breakpoint_ops);
10854 else
10855 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10856 &watchpoint_breakpoint_ops);
10857 w->thread = thread;
10858 w->disposition = disp_donttouch;
10859 w->pspace = current_program_space;
10860 w->exp = std::move (exp);
10861 w->exp_valid_block = exp_valid_block;
10862 w->cond_exp_valid_block = cond_exp_valid_block;
10863 if (just_location)
10864 {
10865 struct type *t = value_type (val.get ());
10866 CORE_ADDR addr = value_as_address (val.get ());
10867
10868 w->exp_string_reparse
10869 = current_language->watch_location_expression (t, addr).release ();
10870
10871 w->exp_string = xstrprintf ("-location %.*s",
10872 (int) (exp_end - exp_start), exp_start);
10873 }
10874 else
10875 w->exp_string = savestring (exp_start, exp_end - exp_start);
10876
10877 if (use_mask)
10878 {
10879 w->hw_wp_mask = mask;
10880 }
10881 else
10882 {
10883 w->val = val;
10884 w->val_bitpos = saved_bitpos;
10885 w->val_bitsize = saved_bitsize;
10886 w->val_valid = true;
10887 }
10888
10889 if (cond_start)
10890 w->cond_string = savestring (cond_start, cond_end - cond_start);
10891 else
10892 w->cond_string = 0;
10893
10894 if (frame_id_p (watchpoint_frame))
10895 {
10896 w->watchpoint_frame = watchpoint_frame;
10897 w->watchpoint_thread = inferior_ptid;
10898 }
10899 else
10900 {
10901 w->watchpoint_frame = null_frame_id;
10902 w->watchpoint_thread = null_ptid;
10903 }
10904
10905 if (scope_breakpoint != NULL)
10906 {
10907 /* The scope breakpoint is related to the watchpoint. We will
10908 need to act on them together. */
10909 w->related_breakpoint = scope_breakpoint;
10910 scope_breakpoint->related_breakpoint = w.get ();
10911 }
10912
10913 if (!just_location)
10914 value_free_to_mark (mark);
10915
10916 /* Finally update the new watchpoint. This creates the locations
10917 that should be inserted. */
10918 update_watchpoint (w.get (), 1);
10919
10920 install_breakpoint (internal, std::move (w), 1);
10921 }
10922
10923 /* Return count of debug registers needed to watch the given expression.
10924 If the watchpoint cannot be handled in hardware return zero. */
10925
10926 static int
10927 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10928 {
10929 int found_memory_cnt = 0;
10930
10931 /* Did the user specifically forbid us to use hardware watchpoints? */
10932 if (!can_use_hw_watchpoints)
10933 return 0;
10934
10935 gdb_assert (!vals.empty ());
10936 struct value *head = vals[0].get ();
10937
10938 /* Make sure that the value of the expression depends only upon
10939 memory contents, and values computed from them within GDB. If we
10940 find any register references or function calls, we can't use a
10941 hardware watchpoint.
10942
10943 The idea here is that evaluating an expression generates a series
10944 of values, one holding the value of every subexpression. (The
10945 expression a*b+c has five subexpressions: a, b, a*b, c, and
10946 a*b+c.) GDB's values hold almost enough information to establish
10947 the criteria given above --- they identify memory lvalues,
10948 register lvalues, computed values, etcetera. So we can evaluate
10949 the expression, and then scan the chain of values that leaves
10950 behind to decide whether we can detect any possible change to the
10951 expression's final value using only hardware watchpoints.
10952
10953 However, I don't think that the values returned by inferior
10954 function calls are special in any way. So this function may not
10955 notice that an expression involving an inferior function call
10956 can't be watched with hardware watchpoints. FIXME. */
10957 for (const value_ref_ptr &iter : vals)
10958 {
10959 struct value *v = iter.get ();
10960
10961 if (VALUE_LVAL (v) == lval_memory)
10962 {
10963 if (v != head && value_lazy (v))
10964 /* A lazy memory lvalue in the chain is one that GDB never
10965 needed to fetch; we either just used its address (e.g.,
10966 `a' in `a.b') or we never needed it at all (e.g., `a'
10967 in `a,b'). This doesn't apply to HEAD; if that is
10968 lazy then it was not readable, but watch it anyway. */
10969 ;
10970 else
10971 {
10972 /* Ahh, memory we actually used! Check if we can cover
10973 it with hardware watchpoints. */
10974 struct type *vtype = check_typedef (value_type (v));
10975
10976 /* We only watch structs and arrays if user asked for it
10977 explicitly, never if they just happen to appear in a
10978 middle of some value chain. */
10979 if (v == head
10980 || (vtype->code () != TYPE_CODE_STRUCT
10981 && vtype->code () != TYPE_CODE_ARRAY))
10982 {
10983 CORE_ADDR vaddr = value_address (v);
10984 int len;
10985 int num_regs;
10986
10987 len = (target_exact_watchpoints
10988 && is_scalar_type_recursive (vtype))?
10989 1 : TYPE_LENGTH (value_type (v));
10990
10991 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10992 if (!num_regs)
10993 return 0;
10994 else
10995 found_memory_cnt += num_regs;
10996 }
10997 }
10998 }
10999 else if (VALUE_LVAL (v) != not_lval
11000 && deprecated_value_modifiable (v) == 0)
11001 return 0; /* These are values from the history (e.g., $1). */
11002 else if (VALUE_LVAL (v) == lval_register)
11003 return 0; /* Cannot watch a register with a HW watchpoint. */
11004 }
11005
11006 /* The expression itself looks suitable for using a hardware
11007 watchpoint, but give the target machine a chance to reject it. */
11008 return found_memory_cnt;
11009 }
11010
11011 void
11012 watch_command_wrapper (const char *arg, int from_tty, bool internal)
11013 {
11014 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11015 }
11016
11017 /* Options for the watch, awatch, and rwatch commands. */
11018
11019 struct watch_options
11020 {
11021 /* For -location. */
11022 bool location = false;
11023 };
11024
11025 /* Definitions of options for the "watch", "awatch", and "rwatch" commands.
11026
11027 Historically GDB always accepted both '-location' and '-l' flags for
11028 these commands (both flags being synonyms). When converting to the
11029 newer option scheme only '-location' is added here. That's fine (for
11030 backward compatibility) as any non-ambiguous prefix of a flag will be
11031 accepted, so '-l', '-loc', are now all accepted.
11032
11033 What this means is that, if in the future, we add any new flag here
11034 that starts with '-l' then this will break backward compatibility, so
11035 please, don't do that! */
11036
11037 static const gdb::option::option_def watch_option_defs[] = {
11038 gdb::option::flag_option_def<watch_options> {
11039 "location",
11040 [] (watch_options *opt) { return &opt->location; },
11041 N_("\
11042 This evaluates EXPRESSION and watches the memory to which is refers.\n\
11043 -l can be used as a short form of -location."),
11044 },
11045 };
11046
11047 /* Returns the option group used by 'watch', 'awatch', and 'rwatch'
11048 commands. */
11049
11050 static gdb::option::option_def_group
11051 make_watch_options_def_group (watch_options *opts)
11052 {
11053 return {{watch_option_defs}, opts};
11054 }
11055
11056 /* A helper function that looks for the "-location" argument and then
11057 calls watch_command_1. */
11058
11059 static void
11060 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
11061 {
11062 watch_options opts;
11063 auto grp = make_watch_options_def_group (&opts);
11064 gdb::option::process_options
11065 (&arg, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
11066 if (arg != nullptr && *arg == '\0')
11067 arg = nullptr;
11068
11069 watch_command_1 (arg, accessflag, from_tty, opts.location, false);
11070 }
11071
11072 /* Command completion for 'watch', 'awatch', and 'rwatch' commands. */
11073 static void
11074 watch_command_completer (struct cmd_list_element *ignore,
11075 completion_tracker &tracker,
11076 const char *text, const char * /*word*/)
11077 {
11078 const auto group = make_watch_options_def_group (nullptr);
11079 if (gdb::option::complete_options
11080 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
11081 return;
11082
11083 const char *word = advance_to_expression_complete_word_point (tracker, text);
11084 expression_completer (ignore, tracker, text, word);
11085 }
11086
11087 static void
11088 watch_command (const char *arg, int from_tty)
11089 {
11090 watch_maybe_just_location (arg, hw_write, from_tty);
11091 }
11092
11093 void
11094 rwatch_command_wrapper (const char *arg, int from_tty, bool internal)
11095 {
11096 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11097 }
11098
11099 static void
11100 rwatch_command (const char *arg, int from_tty)
11101 {
11102 watch_maybe_just_location (arg, hw_read, from_tty);
11103 }
11104
11105 void
11106 awatch_command_wrapper (const char *arg, int from_tty, bool internal)
11107 {
11108 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11109 }
11110
11111 static void
11112 awatch_command (const char *arg, int from_tty)
11113 {
11114 watch_maybe_just_location (arg, hw_access, from_tty);
11115 }
11116 \f
11117
11118 /* Data for the FSM that manages the until(location)/advance commands
11119 in infcmd.c. Here because it uses the mechanisms of
11120 breakpoints. */
11121
11122 struct until_break_fsm : public thread_fsm
11123 {
11124 /* The thread that was current when the command was executed. */
11125 int thread;
11126
11127 /* The breakpoint set at the return address in the caller frame,
11128 plus breakpoints at all the destination locations. */
11129 std::vector<breakpoint_up> breakpoints;
11130
11131 until_break_fsm (struct interp *cmd_interp, int thread,
11132 std::vector<breakpoint_up> &&breakpoints)
11133 : thread_fsm (cmd_interp),
11134 thread (thread),
11135 breakpoints (std::move (breakpoints))
11136 {
11137 }
11138
11139 void clean_up (struct thread_info *thread) override;
11140 bool should_stop (struct thread_info *thread) override;
11141 enum async_reply_reason do_async_reply_reason () override;
11142 };
11143
11144 /* Implementation of the 'should_stop' FSM method for the
11145 until(location)/advance commands. */
11146
11147 bool
11148 until_break_fsm::should_stop (struct thread_info *tp)
11149 {
11150 for (const breakpoint_up &bp : breakpoints)
11151 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11152 bp.get ()) != NULL)
11153 {
11154 set_finished ();
11155 break;
11156 }
11157
11158 return true;
11159 }
11160
11161 /* Implementation of the 'clean_up' FSM method for the
11162 until(location)/advance commands. */
11163
11164 void
11165 until_break_fsm::clean_up (struct thread_info *)
11166 {
11167 /* Clean up our temporary breakpoints. */
11168 breakpoints.clear ();
11169 delete_longjmp_breakpoint (thread);
11170 }
11171
11172 /* Implementation of the 'async_reply_reason' FSM method for the
11173 until(location)/advance commands. */
11174
11175 enum async_reply_reason
11176 until_break_fsm::do_async_reply_reason ()
11177 {
11178 return EXEC_ASYNC_LOCATION_REACHED;
11179 }
11180
11181 void
11182 until_break_command (const char *arg, int from_tty, int anywhere)
11183 {
11184 struct frame_info *frame;
11185 struct gdbarch *frame_gdbarch;
11186 struct frame_id stack_frame_id;
11187 struct frame_id caller_frame_id;
11188 int thread;
11189 struct thread_info *tp;
11190
11191 clear_proceed_status (0);
11192
11193 /* Set a breakpoint where the user wants it and at return from
11194 this function. */
11195
11196 event_location_up location = string_to_event_location (&arg, current_language);
11197
11198 std::vector<symtab_and_line> sals
11199 = (last_displayed_sal_is_valid ()
11200 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11201 get_last_displayed_symtab (),
11202 get_last_displayed_line ())
11203 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11204 NULL, NULL, 0));
11205
11206 if (sals.empty ())
11207 error (_("Couldn't get information on specified line."));
11208
11209 if (*arg)
11210 error (_("Junk at end of arguments."));
11211
11212 tp = inferior_thread ();
11213 thread = tp->global_num;
11214
11215 /* Note linespec handling above invalidates the frame chain.
11216 Installing a breakpoint also invalidates the frame chain (as it
11217 may need to switch threads), so do any frame handling before
11218 that. */
11219
11220 frame = get_selected_frame (NULL);
11221 frame_gdbarch = get_frame_arch (frame);
11222 stack_frame_id = get_stack_frame_id (frame);
11223 caller_frame_id = frame_unwind_caller_id (frame);
11224
11225 /* Keep within the current frame, or in frames called by the current
11226 one. */
11227
11228 std::vector<breakpoint_up> breakpoints;
11229
11230 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11231
11232 if (frame_id_p (caller_frame_id))
11233 {
11234 struct symtab_and_line sal2;
11235 struct gdbarch *caller_gdbarch;
11236
11237 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11238 sal2.pc = frame_unwind_caller_pc (frame);
11239 caller_gdbarch = frame_unwind_caller_arch (frame);
11240
11241 breakpoint_up caller_breakpoint
11242 = set_momentary_breakpoint (caller_gdbarch, sal2,
11243 caller_frame_id, bp_until);
11244 breakpoints.emplace_back (std::move (caller_breakpoint));
11245
11246 set_longjmp_breakpoint (tp, caller_frame_id);
11247 lj_deleter.emplace (thread);
11248 }
11249
11250 /* set_momentary_breakpoint could invalidate FRAME. */
11251 frame = NULL;
11252
11253 /* If the user told us to continue until a specified location, we
11254 don't specify a frame at which we need to stop. Otherwise,
11255 specify the selected frame, because we want to stop only at the
11256 very same frame. */
11257 frame_id stop_frame_id = anywhere ? null_frame_id : stack_frame_id;
11258
11259 for (symtab_and_line &sal : sals)
11260 {
11261 resolve_sal_pc (&sal);
11262
11263 breakpoint_up location_breakpoint
11264 = set_momentary_breakpoint (frame_gdbarch, sal,
11265 stop_frame_id, bp_until);
11266 breakpoints.emplace_back (std::move (location_breakpoint));
11267 }
11268
11269 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11270 std::move (breakpoints));
11271
11272 if (lj_deleter)
11273 lj_deleter->release ();
11274
11275 proceed (-1, GDB_SIGNAL_DEFAULT);
11276 }
11277
11278 /* This function attempts to parse an optional "if <cond>" clause
11279 from the arg string. If one is not found, it returns NULL.
11280
11281 Else, it returns a pointer to the condition string. (It does not
11282 attempt to evaluate the string against a particular block.) And,
11283 it updates arg to point to the first character following the parsed
11284 if clause in the arg string. */
11285
11286 const char *
11287 ep_parse_optional_if_clause (const char **arg)
11288 {
11289 const char *cond_string;
11290
11291 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11292 return NULL;
11293
11294 /* Skip the "if" keyword. */
11295 (*arg) += 2;
11296
11297 /* Skip any extra leading whitespace, and record the start of the
11298 condition string. */
11299 *arg = skip_spaces (*arg);
11300 cond_string = *arg;
11301
11302 /* Assume that the condition occupies the remainder of the arg
11303 string. */
11304 (*arg) += strlen (cond_string);
11305
11306 return cond_string;
11307 }
11308
11309 /* Commands to deal with catching events, such as signals, exceptions,
11310 process start/exit, etc. */
11311
11312 typedef enum
11313 {
11314 catch_fork_temporary, catch_vfork_temporary,
11315 catch_fork_permanent, catch_vfork_permanent
11316 }
11317 catch_fork_kind;
11318
11319 static void
11320 catch_fork_command_1 (const char *arg, int from_tty,
11321 struct cmd_list_element *command)
11322 {
11323 struct gdbarch *gdbarch = get_current_arch ();
11324 const char *cond_string = NULL;
11325 catch_fork_kind fork_kind;
11326
11327 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11328 bool temp = (fork_kind == catch_fork_temporary
11329 || fork_kind == catch_vfork_temporary);
11330
11331 if (!arg)
11332 arg = "";
11333 arg = skip_spaces (arg);
11334
11335 /* The allowed syntax is:
11336 catch [v]fork
11337 catch [v]fork if <cond>
11338
11339 First, check if there's an if clause. */
11340 cond_string = ep_parse_optional_if_clause (&arg);
11341
11342 if ((*arg != '\0') && !isspace (*arg))
11343 error (_("Junk at end of arguments."));
11344
11345 /* If this target supports it, create a fork or vfork catchpoint
11346 and enable reporting of such events. */
11347 switch (fork_kind)
11348 {
11349 case catch_fork_temporary:
11350 case catch_fork_permanent:
11351 create_fork_vfork_event_catchpoint (gdbarch, temp, cond_string,
11352 &catch_fork_breakpoint_ops);
11353 break;
11354 case catch_vfork_temporary:
11355 case catch_vfork_permanent:
11356 create_fork_vfork_event_catchpoint (gdbarch, temp, cond_string,
11357 &catch_vfork_breakpoint_ops);
11358 break;
11359 default:
11360 error (_("unsupported or unknown fork kind; cannot catch it"));
11361 break;
11362 }
11363 }
11364
11365 static void
11366 catch_exec_command_1 (const char *arg, int from_tty,
11367 struct cmd_list_element *command)
11368 {
11369 struct gdbarch *gdbarch = get_current_arch ();
11370 const char *cond_string = NULL;
11371 bool temp = get_cmd_context (command) == CATCH_TEMPORARY;
11372
11373 if (!arg)
11374 arg = "";
11375 arg = skip_spaces (arg);
11376
11377 /* The allowed syntax is:
11378 catch exec
11379 catch exec if <cond>
11380
11381 First, check if there's an if clause. */
11382 cond_string = ep_parse_optional_if_clause (&arg);
11383
11384 if ((*arg != '\0') && !isspace (*arg))
11385 error (_("Junk at end of arguments."));
11386
11387 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11388 init_catchpoint (c.get (), gdbarch, temp, cond_string,
11389 &catch_exec_breakpoint_ops);
11390 c->exec_pathname = NULL;
11391
11392 install_breakpoint (0, std::move (c), 1);
11393 }
11394
11395 void
11396 init_ada_exception_breakpoint (struct breakpoint *b,
11397 struct gdbarch *gdbarch,
11398 struct symtab_and_line sal,
11399 const char *addr_string,
11400 const struct breakpoint_ops *ops,
11401 int tempflag,
11402 int enabled,
11403 int from_tty)
11404 {
11405 if (from_tty)
11406 {
11407 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11408 if (!loc_gdbarch)
11409 loc_gdbarch = gdbarch;
11410
11411 describe_other_breakpoints (loc_gdbarch,
11412 sal.pspace, sal.pc, sal.section, -1);
11413 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11414 version for exception catchpoints, because two catchpoints
11415 used for different exception names will use the same address.
11416 In this case, a "breakpoint ... also set at..." warning is
11417 unproductive. Besides, the warning phrasing is also a bit
11418 inappropriate, we should use the word catchpoint, and tell
11419 the user what type of catchpoint it is. The above is good
11420 enough for now, though. */
11421 }
11422
11423 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
11424
11425 b->enable_state = enabled ? bp_enabled : bp_disabled;
11426 b->disposition = tempflag ? disp_del : disp_donttouch;
11427 b->location = string_to_event_location (&addr_string,
11428 language_def (language_ada));
11429 b->language = language_ada;
11430 }
11431
11432 \f
11433
11434 /* Compare two breakpoints and return a strcmp-like result. */
11435
11436 static int
11437 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11438 {
11439 uintptr_t ua = (uintptr_t) a;
11440 uintptr_t ub = (uintptr_t) b;
11441
11442 if (a->number < b->number)
11443 return -1;
11444 else if (a->number > b->number)
11445 return 1;
11446
11447 /* Now sort by address, in case we see, e..g, two breakpoints with
11448 the number 0. */
11449 if (ua < ub)
11450 return -1;
11451 return ua > ub ? 1 : 0;
11452 }
11453
11454 /* Delete breakpoints by address or line. */
11455
11456 static void
11457 clear_command (const char *arg, int from_tty)
11458 {
11459 struct breakpoint *b;
11460 int default_match;
11461
11462 std::vector<symtab_and_line> decoded_sals;
11463 symtab_and_line last_sal;
11464 gdb::array_view<symtab_and_line> sals;
11465 if (arg)
11466 {
11467 decoded_sals
11468 = decode_line_with_current_source (arg,
11469 (DECODE_LINE_FUNFIRSTLINE
11470 | DECODE_LINE_LIST_MODE));
11471 default_match = 0;
11472 sals = decoded_sals;
11473 }
11474 else
11475 {
11476 /* Set sal's line, symtab, pc, and pspace to the values
11477 corresponding to the last call to print_frame_info. If the
11478 codepoint is not valid, this will set all the fields to 0. */
11479 last_sal = get_last_displayed_sal ();
11480 if (last_sal.symtab == 0)
11481 error (_("No source file specified."));
11482
11483 default_match = 1;
11484 sals = last_sal;
11485 }
11486
11487 /* We don't call resolve_sal_pc here. That's not as bad as it
11488 seems, because all existing breakpoints typically have both
11489 file/line and pc set. So, if clear is given file/line, we can
11490 match this to existing breakpoint without obtaining pc at all.
11491
11492 We only support clearing given the address explicitly
11493 present in breakpoint table. Say, we've set breakpoint
11494 at file:line. There were several PC values for that file:line,
11495 due to optimization, all in one block.
11496
11497 We've picked one PC value. If "clear" is issued with another
11498 PC corresponding to the same file:line, the breakpoint won't
11499 be cleared. We probably can still clear the breakpoint, but
11500 since the other PC value is never presented to user, user
11501 can only find it by guessing, and it does not seem important
11502 to support that. */
11503
11504 /* For each line spec given, delete bps which correspond to it. Do
11505 it in two passes, solely to preserve the current behavior that
11506 from_tty is forced true if we delete more than one
11507 breakpoint. */
11508
11509 std::vector<struct breakpoint *> found;
11510 for (const auto &sal : sals)
11511 {
11512 const char *sal_fullname;
11513
11514 /* If exact pc given, clear bpts at that pc.
11515 If line given (pc == 0), clear all bpts on specified line.
11516 If defaulting, clear all bpts on default line
11517 or at default pc.
11518
11519 defaulting sal.pc != 0 tests to do
11520
11521 0 1 pc
11522 1 1 pc _and_ line
11523 0 0 line
11524 1 0 <can't happen> */
11525
11526 sal_fullname = (sal.symtab == NULL
11527 ? NULL : symtab_to_fullname (sal.symtab));
11528
11529 /* Find all matching breakpoints and add them to 'found'. */
11530 ALL_BREAKPOINTS (b)
11531 {
11532 int match = 0;
11533 /* Are we going to delete b? */
11534 if (b->type != bp_none && !is_watchpoint (b))
11535 {
11536 struct bp_location *loc = b->loc;
11537 for (; loc; loc = loc->next)
11538 {
11539 /* If the user specified file:line, don't allow a PC
11540 match. This matches historical gdb behavior. */
11541 int pc_match = (!sal.explicit_line
11542 && sal.pc
11543 && (loc->pspace == sal.pspace)
11544 && (loc->address == sal.pc)
11545 && (!section_is_overlay (loc->section)
11546 || loc->section == sal.section));
11547 int line_match = 0;
11548
11549 if ((default_match || sal.explicit_line)
11550 && loc->symtab != NULL
11551 && sal_fullname != NULL
11552 && sal.pspace == loc->pspace
11553 && loc->line_number == sal.line
11554 && filename_cmp (symtab_to_fullname (loc->symtab),
11555 sal_fullname) == 0)
11556 line_match = 1;
11557
11558 if (pc_match || line_match)
11559 {
11560 match = 1;
11561 break;
11562 }
11563 }
11564 }
11565
11566 if (match)
11567 found.push_back (b);
11568 }
11569 }
11570
11571 /* Now go thru the 'found' chain and delete them. */
11572 if (found.empty ())
11573 {
11574 if (arg)
11575 error (_("No breakpoint at %s."), arg);
11576 else
11577 error (_("No breakpoint at this line."));
11578 }
11579
11580 /* Remove duplicates from the vec. */
11581 std::sort (found.begin (), found.end (),
11582 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11583 {
11584 return compare_breakpoints (bp_a, bp_b) < 0;
11585 });
11586 found.erase (std::unique (found.begin (), found.end (),
11587 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11588 {
11589 return compare_breakpoints (bp_a, bp_b) == 0;
11590 }),
11591 found.end ());
11592
11593 if (found.size () > 1)
11594 from_tty = 1; /* Always report if deleted more than one. */
11595 if (from_tty)
11596 {
11597 if (found.size () == 1)
11598 printf_unfiltered (_("Deleted breakpoint "));
11599 else
11600 printf_unfiltered (_("Deleted breakpoints "));
11601 }
11602
11603 for (breakpoint *iter : found)
11604 {
11605 if (from_tty)
11606 printf_unfiltered ("%d ", iter->number);
11607 delete_breakpoint (iter);
11608 }
11609 if (from_tty)
11610 putchar_unfiltered ('\n');
11611 }
11612 \f
11613 /* Delete breakpoint in BS if they are `delete' breakpoints and
11614 all breakpoints that are marked for deletion, whether hit or not.
11615 This is called after any breakpoint is hit, or after errors. */
11616
11617 void
11618 breakpoint_auto_delete (bpstat bs)
11619 {
11620 struct breakpoint *b, *b_tmp;
11621
11622 for (; bs; bs = bs->next)
11623 if (bs->breakpoint_at
11624 && bs->breakpoint_at->disposition == disp_del
11625 && bs->stop)
11626 delete_breakpoint (bs->breakpoint_at);
11627
11628 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11629 {
11630 if (b->disposition == disp_del_at_next_stop)
11631 delete_breakpoint (b);
11632 }
11633 }
11634
11635 /* A comparison function for bp_location AP and BP being interfaced to
11636 std::sort. Sort elements primarily by their ADDRESS (no matter what
11637 bl_address_is_meaningful says), secondarily by ordering first
11638 permanent elements and terciarily just ensuring the array is sorted
11639 stable way despite std::sort being an unstable algorithm. */
11640
11641 static int
11642 bp_location_is_less_than (const bp_location *a, const bp_location *b)
11643 {
11644 if (a->address != b->address)
11645 return a->address < b->address;
11646
11647 /* Sort locations at the same address by their pspace number, keeping
11648 locations of the same inferior (in a multi-inferior environment)
11649 grouped. */
11650
11651 if (a->pspace->num != b->pspace->num)
11652 return a->pspace->num < b->pspace->num;
11653
11654 /* Sort permanent breakpoints first. */
11655 if (a->permanent != b->permanent)
11656 return a->permanent > b->permanent;
11657
11658 /* Sort by type in order to make duplicate determination easier.
11659 See update_global_location_list. This is kept in sync with
11660 breakpoint_locations_match. */
11661 if (a->loc_type < b->loc_type)
11662 return true;
11663
11664 /* Likewise, for range-breakpoints, sort by length. */
11665 if (a->loc_type == bp_loc_hardware_breakpoint
11666 && b->loc_type == bp_loc_hardware_breakpoint
11667 && a->length < b->length)
11668 return true;
11669
11670 /* Make the internal GDB representation stable across GDB runs
11671 where A and B memory inside GDB can differ. Breakpoint locations of
11672 the same type at the same address can be sorted in arbitrary order. */
11673
11674 if (a->owner->number != b->owner->number)
11675 return a->owner->number < b->owner->number;
11676
11677 return a < b;
11678 }
11679
11680 /* Set bp_locations_placed_address_before_address_max and
11681 bp_locations_shadow_len_after_address_max according to the current
11682 content of the bp_locations array. */
11683
11684 static void
11685 bp_locations_target_extensions_update (void)
11686 {
11687 struct bp_location *bl, **blp_tmp;
11688
11689 bp_locations_placed_address_before_address_max = 0;
11690 bp_locations_shadow_len_after_address_max = 0;
11691
11692 ALL_BP_LOCATIONS (bl, blp_tmp)
11693 {
11694 CORE_ADDR start, end, addr;
11695
11696 if (!bp_location_has_shadow (bl))
11697 continue;
11698
11699 start = bl->target_info.placed_address;
11700 end = start + bl->target_info.shadow_len;
11701
11702 gdb_assert (bl->address >= start);
11703 addr = bl->address - start;
11704 if (addr > bp_locations_placed_address_before_address_max)
11705 bp_locations_placed_address_before_address_max = addr;
11706
11707 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11708
11709 gdb_assert (bl->address < end);
11710 addr = end - bl->address;
11711 if (addr > bp_locations_shadow_len_after_address_max)
11712 bp_locations_shadow_len_after_address_max = addr;
11713 }
11714 }
11715
11716 /* Download tracepoint locations if they haven't been. */
11717
11718 static void
11719 download_tracepoint_locations (void)
11720 {
11721 struct breakpoint *b;
11722 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11723
11724 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11725
11726 ALL_TRACEPOINTS (b)
11727 {
11728 struct bp_location *bl;
11729 struct tracepoint *t;
11730 int bp_location_downloaded = 0;
11731
11732 if ((b->type == bp_fast_tracepoint
11733 ? !may_insert_fast_tracepoints
11734 : !may_insert_tracepoints))
11735 continue;
11736
11737 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11738 {
11739 if (target_can_download_tracepoint ())
11740 can_download_tracepoint = TRIBOOL_TRUE;
11741 else
11742 can_download_tracepoint = TRIBOOL_FALSE;
11743 }
11744
11745 if (can_download_tracepoint == TRIBOOL_FALSE)
11746 break;
11747
11748 for (bl = b->loc; bl; bl = bl->next)
11749 {
11750 /* In tracepoint, locations are _never_ duplicated, so
11751 should_be_inserted is equivalent to
11752 unduplicated_should_be_inserted. */
11753 if (!should_be_inserted (bl) || bl->inserted)
11754 continue;
11755
11756 switch_to_program_space_and_thread (bl->pspace);
11757
11758 target_download_tracepoint (bl);
11759
11760 bl->inserted = 1;
11761 bp_location_downloaded = 1;
11762 }
11763 t = (struct tracepoint *) b;
11764 t->number_on_target = b->number;
11765 if (bp_location_downloaded)
11766 gdb::observers::breakpoint_modified.notify (b);
11767 }
11768 }
11769
11770 /* Swap the insertion/duplication state between two locations. */
11771
11772 static void
11773 swap_insertion (struct bp_location *left, struct bp_location *right)
11774 {
11775 const int left_inserted = left->inserted;
11776 const int left_duplicate = left->duplicate;
11777 const int left_needs_update = left->needs_update;
11778 const struct bp_target_info left_target_info = left->target_info;
11779
11780 /* Locations of tracepoints can never be duplicated. */
11781 if (is_tracepoint (left->owner))
11782 gdb_assert (!left->duplicate);
11783 if (is_tracepoint (right->owner))
11784 gdb_assert (!right->duplicate);
11785
11786 left->inserted = right->inserted;
11787 left->duplicate = right->duplicate;
11788 left->needs_update = right->needs_update;
11789 left->target_info = right->target_info;
11790 right->inserted = left_inserted;
11791 right->duplicate = left_duplicate;
11792 right->needs_update = left_needs_update;
11793 right->target_info = left_target_info;
11794 }
11795
11796 /* Force the re-insertion of the locations at ADDRESS. This is called
11797 once a new/deleted/modified duplicate location is found and we are evaluating
11798 conditions on the target's side. Such conditions need to be updated on
11799 the target. */
11800
11801 static void
11802 force_breakpoint_reinsertion (struct bp_location *bl)
11803 {
11804 struct bp_location **locp = NULL, **loc2p;
11805 struct bp_location *loc;
11806 CORE_ADDR address = 0;
11807 int pspace_num;
11808
11809 address = bl->address;
11810 pspace_num = bl->pspace->num;
11811
11812 /* This is only meaningful if the target is
11813 evaluating conditions and if the user has
11814 opted for condition evaluation on the target's
11815 side. */
11816 if (gdb_evaluates_breakpoint_condition_p ()
11817 || !target_supports_evaluation_of_breakpoint_conditions ())
11818 return;
11819
11820 /* Flag all breakpoint locations with this address and
11821 the same program space as the location
11822 as "its condition has changed". We need to
11823 update the conditions on the target's side. */
11824 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11825 {
11826 loc = *loc2p;
11827
11828 if (!is_breakpoint (loc->owner)
11829 || pspace_num != loc->pspace->num)
11830 continue;
11831
11832 /* Flag the location appropriately. We use a different state to
11833 let everyone know that we already updated the set of locations
11834 with addr bl->address and program space bl->pspace. This is so
11835 we don't have to keep calling these functions just to mark locations
11836 that have already been marked. */
11837 loc->condition_changed = condition_updated;
11838
11839 /* Free the agent expression bytecode as well. We will compute
11840 it later on. */
11841 loc->cond_bytecode.reset ();
11842 }
11843 }
11844
11845 /* Called whether new breakpoints are created, or existing breakpoints
11846 deleted, to update the global location list and recompute which
11847 locations are duplicate of which.
11848
11849 The INSERT_MODE flag determines whether locations may not, may, or
11850 shall be inserted now. See 'enum ugll_insert_mode' for more
11851 info. */
11852
11853 static void
11854 update_global_location_list (enum ugll_insert_mode insert_mode)
11855 {
11856 struct breakpoint *b;
11857 struct bp_location **locp, *loc;
11858 /* Last breakpoint location address that was marked for update. */
11859 CORE_ADDR last_addr = 0;
11860 /* Last breakpoint location program space that was marked for update. */
11861 int last_pspace_num = -1;
11862
11863 /* Used in the duplicates detection below. When iterating over all
11864 bp_locations, points to the first bp_location of a given address.
11865 Breakpoints and watchpoints of different types are never
11866 duplicates of each other. Keep one pointer for each type of
11867 breakpoint/watchpoint, so we only need to loop over all locations
11868 once. */
11869 struct bp_location *bp_loc_first; /* breakpoint */
11870 struct bp_location *wp_loc_first; /* hardware watchpoint */
11871 struct bp_location *awp_loc_first; /* access watchpoint */
11872 struct bp_location *rwp_loc_first; /* read watchpoint */
11873
11874 /* Saved former bp_locations array which we compare against the newly
11875 built bp_locations from the current state of ALL_BREAKPOINTS. */
11876 struct bp_location **old_locp;
11877 unsigned old_locations_count;
11878 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11879
11880 old_locations_count = bp_locations_count;
11881 bp_locations = NULL;
11882 bp_locations_count = 0;
11883
11884 ALL_BREAKPOINTS (b)
11885 for (loc = b->loc; loc; loc = loc->next)
11886 bp_locations_count++;
11887
11888 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11889 locp = bp_locations;
11890 ALL_BREAKPOINTS (b)
11891 for (loc = b->loc; loc; loc = loc->next)
11892 *locp++ = loc;
11893
11894 /* See if we need to "upgrade" a software breakpoint to a hardware
11895 breakpoint. Do this before deciding whether locations are
11896 duplicates. Also do this before sorting because sorting order
11897 depends on location type. */
11898 for (locp = bp_locations;
11899 locp < bp_locations + bp_locations_count;
11900 locp++)
11901 {
11902 loc = *locp;
11903 if (!loc->inserted && should_be_inserted (loc))
11904 handle_automatic_hardware_breakpoints (loc);
11905 }
11906
11907 std::sort (bp_locations, bp_locations + bp_locations_count,
11908 bp_location_is_less_than);
11909
11910 bp_locations_target_extensions_update ();
11911
11912 /* Identify bp_location instances that are no longer present in the
11913 new list, and therefore should be freed. Note that it's not
11914 necessary that those locations should be removed from inferior --
11915 if there's another location at the same address (previously
11916 marked as duplicate), we don't need to remove/insert the
11917 location.
11918
11919 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11920 and former bp_location array state respectively. */
11921
11922 locp = bp_locations;
11923 for (old_locp = old_locations.get ();
11924 old_locp < old_locations.get () + old_locations_count;
11925 old_locp++)
11926 {
11927 struct bp_location *old_loc = *old_locp;
11928 struct bp_location **loc2p;
11929
11930 /* Tells if 'old_loc' is found among the new locations. If
11931 not, we have to free it. */
11932 int found_object = 0;
11933 /* Tells if the location should remain inserted in the target. */
11934 int keep_in_target = 0;
11935 int removed = 0;
11936
11937 /* Skip LOCP entries which will definitely never be needed.
11938 Stop either at or being the one matching OLD_LOC. */
11939 while (locp < bp_locations + bp_locations_count
11940 && (*locp)->address < old_loc->address)
11941 locp++;
11942
11943 for (loc2p = locp;
11944 (loc2p < bp_locations + bp_locations_count
11945 && (*loc2p)->address == old_loc->address);
11946 loc2p++)
11947 {
11948 /* Check if this is a new/duplicated location or a duplicated
11949 location that had its condition modified. If so, we want to send
11950 its condition to the target if evaluation of conditions is taking
11951 place there. */
11952 if ((*loc2p)->condition_changed == condition_modified
11953 && (last_addr != old_loc->address
11954 || last_pspace_num != old_loc->pspace->num))
11955 {
11956 force_breakpoint_reinsertion (*loc2p);
11957 last_pspace_num = old_loc->pspace->num;
11958 }
11959
11960 if (*loc2p == old_loc)
11961 found_object = 1;
11962 }
11963
11964 /* We have already handled this address, update it so that we don't
11965 have to go through updates again. */
11966 last_addr = old_loc->address;
11967
11968 /* Target-side condition evaluation: Handle deleted locations. */
11969 if (!found_object)
11970 force_breakpoint_reinsertion (old_loc);
11971
11972 /* If this location is no longer present, and inserted, look if
11973 there's maybe a new location at the same address. If so,
11974 mark that one inserted, and don't remove this one. This is
11975 needed so that we don't have a time window where a breakpoint
11976 at certain location is not inserted. */
11977
11978 if (old_loc->inserted)
11979 {
11980 /* If the location is inserted now, we might have to remove
11981 it. */
11982
11983 if (found_object && should_be_inserted (old_loc))
11984 {
11985 /* The location is still present in the location list,
11986 and still should be inserted. Don't do anything. */
11987 keep_in_target = 1;
11988 }
11989 else
11990 {
11991 /* This location still exists, but it won't be kept in the
11992 target since it may have been disabled. We proceed to
11993 remove its target-side condition. */
11994
11995 /* The location is either no longer present, or got
11996 disabled. See if there's another location at the
11997 same address, in which case we don't need to remove
11998 this one from the target. */
11999
12000 /* OLD_LOC comes from existing struct breakpoint. */
12001 if (bl_address_is_meaningful (old_loc))
12002 {
12003 for (loc2p = locp;
12004 (loc2p < bp_locations + bp_locations_count
12005 && (*loc2p)->address == old_loc->address);
12006 loc2p++)
12007 {
12008 struct bp_location *loc2 = *loc2p;
12009
12010 if (loc2 == old_loc)
12011 continue;
12012
12013 if (breakpoint_locations_match (loc2, old_loc))
12014 {
12015 /* Read watchpoint locations are switched to
12016 access watchpoints, if the former are not
12017 supported, but the latter are. */
12018 if (is_hardware_watchpoint (old_loc->owner))
12019 {
12020 gdb_assert (is_hardware_watchpoint (loc2->owner));
12021 loc2->watchpoint_type = old_loc->watchpoint_type;
12022 }
12023
12024 /* loc2 is a duplicated location. We need to check
12025 if it should be inserted in case it will be
12026 unduplicated. */
12027 if (unduplicated_should_be_inserted (loc2))
12028 {
12029 swap_insertion (old_loc, loc2);
12030 keep_in_target = 1;
12031 break;
12032 }
12033 }
12034 }
12035 }
12036 }
12037
12038 if (!keep_in_target)
12039 {
12040 if (remove_breakpoint (old_loc))
12041 {
12042 /* This is just about all we can do. We could keep
12043 this location on the global list, and try to
12044 remove it next time, but there's no particular
12045 reason why we will succeed next time.
12046
12047 Note that at this point, old_loc->owner is still
12048 valid, as delete_breakpoint frees the breakpoint
12049 only after calling us. */
12050 printf_filtered (_("warning: Error removing "
12051 "breakpoint %d\n"),
12052 old_loc->owner->number);
12053 }
12054 removed = 1;
12055 }
12056 }
12057
12058 if (!found_object)
12059 {
12060 if (removed && target_is_non_stop_p ()
12061 && need_moribund_for_location_type (old_loc))
12062 {
12063 /* This location was removed from the target. In
12064 non-stop mode, a race condition is possible where
12065 we've removed a breakpoint, but stop events for that
12066 breakpoint are already queued and will arrive later.
12067 We apply an heuristic to be able to distinguish such
12068 SIGTRAPs from other random SIGTRAPs: we keep this
12069 breakpoint location for a bit, and will retire it
12070 after we see some number of events. The theory here
12071 is that reporting of events should, "on the average",
12072 be fair, so after a while we'll see events from all
12073 threads that have anything of interest, and no longer
12074 need to keep this breakpoint location around. We
12075 don't hold locations forever so to reduce chances of
12076 mistaking a non-breakpoint SIGTRAP for a breakpoint
12077 SIGTRAP.
12078
12079 The heuristic failing can be disastrous on
12080 decr_pc_after_break targets.
12081
12082 On decr_pc_after_break targets, like e.g., x86-linux,
12083 if we fail to recognize a late breakpoint SIGTRAP,
12084 because events_till_retirement has reached 0 too
12085 soon, we'll fail to do the PC adjustment, and report
12086 a random SIGTRAP to the user. When the user resumes
12087 the inferior, it will most likely immediately crash
12088 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12089 corrupted, because of being resumed e.g., in the
12090 middle of a multi-byte instruction, or skipped a
12091 one-byte instruction. This was actually seen happen
12092 on native x86-linux, and should be less rare on
12093 targets that do not support new thread events, like
12094 remote, due to the heuristic depending on
12095 thread_count.
12096
12097 Mistaking a random SIGTRAP for a breakpoint trap
12098 causes similar symptoms (PC adjustment applied when
12099 it shouldn't), but then again, playing with SIGTRAPs
12100 behind the debugger's back is asking for trouble.
12101
12102 Since hardware watchpoint traps are always
12103 distinguishable from other traps, so we don't need to
12104 apply keep hardware watchpoint moribund locations
12105 around. We simply always ignore hardware watchpoint
12106 traps we can no longer explain. */
12107
12108 process_stratum_target *proc_target = nullptr;
12109 for (inferior *inf : all_inferiors ())
12110 if (inf->pspace == old_loc->pspace)
12111 {
12112 proc_target = inf->process_target ();
12113 break;
12114 }
12115 if (proc_target != nullptr)
12116 old_loc->events_till_retirement
12117 = 3 * (thread_count (proc_target) + 1);
12118 else
12119 old_loc->events_till_retirement = 1;
12120 old_loc->owner = NULL;
12121
12122 moribund_locations.push_back (old_loc);
12123 }
12124 else
12125 {
12126 old_loc->owner = NULL;
12127 decref_bp_location (&old_loc);
12128 }
12129 }
12130 }
12131
12132 /* Rescan breakpoints at the same address and section, marking the
12133 first one as "first" and any others as "duplicates". This is so
12134 that the bpt instruction is only inserted once. If we have a
12135 permanent breakpoint at the same place as BPT, make that one the
12136 official one, and the rest as duplicates. Permanent breakpoints
12137 are sorted first for the same address.
12138
12139 Do the same for hardware watchpoints, but also considering the
12140 watchpoint's type (regular/access/read) and length. */
12141
12142 bp_loc_first = NULL;
12143 wp_loc_first = NULL;
12144 awp_loc_first = NULL;
12145 rwp_loc_first = NULL;
12146 ALL_BP_LOCATIONS (loc, locp)
12147 {
12148 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12149 non-NULL. */
12150 struct bp_location **loc_first_p;
12151 b = loc->owner;
12152
12153 if (!unduplicated_should_be_inserted (loc)
12154 || !bl_address_is_meaningful (loc)
12155 /* Don't detect duplicate for tracepoint locations because they are
12156 never duplicated. See the comments in field `duplicate' of
12157 `struct bp_location'. */
12158 || is_tracepoint (b))
12159 {
12160 /* Clear the condition modification flag. */
12161 loc->condition_changed = condition_unchanged;
12162 continue;
12163 }
12164
12165 if (b->type == bp_hardware_watchpoint)
12166 loc_first_p = &wp_loc_first;
12167 else if (b->type == bp_read_watchpoint)
12168 loc_first_p = &rwp_loc_first;
12169 else if (b->type == bp_access_watchpoint)
12170 loc_first_p = &awp_loc_first;
12171 else
12172 loc_first_p = &bp_loc_first;
12173
12174 if (*loc_first_p == NULL
12175 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12176 || !breakpoint_locations_match (loc, *loc_first_p))
12177 {
12178 *loc_first_p = loc;
12179 loc->duplicate = 0;
12180
12181 if (is_breakpoint (loc->owner) && loc->condition_changed)
12182 {
12183 loc->needs_update = 1;
12184 /* Clear the condition modification flag. */
12185 loc->condition_changed = condition_unchanged;
12186 }
12187 continue;
12188 }
12189
12190
12191 /* This and the above ensure the invariant that the first location
12192 is not duplicated, and is the inserted one.
12193 All following are marked as duplicated, and are not inserted. */
12194 if (loc->inserted)
12195 swap_insertion (loc, *loc_first_p);
12196 loc->duplicate = 1;
12197
12198 /* Clear the condition modification flag. */
12199 loc->condition_changed = condition_unchanged;
12200 }
12201
12202 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12203 {
12204 if (insert_mode != UGLL_DONT_INSERT)
12205 insert_breakpoint_locations ();
12206 else
12207 {
12208 /* Even though the caller told us to not insert new
12209 locations, we may still need to update conditions on the
12210 target's side of breakpoints that were already inserted
12211 if the target is evaluating breakpoint conditions. We
12212 only update conditions for locations that are marked
12213 "needs_update". */
12214 update_inserted_breakpoint_locations ();
12215 }
12216 }
12217
12218 if (insert_mode != UGLL_DONT_INSERT)
12219 download_tracepoint_locations ();
12220 }
12221
12222 void
12223 breakpoint_retire_moribund (void)
12224 {
12225 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12226 {
12227 struct bp_location *loc = moribund_locations[ix];
12228 if (--(loc->events_till_retirement) == 0)
12229 {
12230 decref_bp_location (&loc);
12231 unordered_remove (moribund_locations, ix);
12232 --ix;
12233 }
12234 }
12235 }
12236
12237 static void
12238 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12239 {
12240
12241 try
12242 {
12243 update_global_location_list (insert_mode);
12244 }
12245 catch (const gdb_exception_error &e)
12246 {
12247 }
12248 }
12249
12250 /* Clear BKP from a BPS. */
12251
12252 static void
12253 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12254 {
12255 bpstat bs;
12256
12257 for (bs = bps; bs; bs = bs->next)
12258 if (bs->breakpoint_at == bpt)
12259 {
12260 bs->breakpoint_at = NULL;
12261 bs->old_val = NULL;
12262 /* bs->commands will be freed later. */
12263 }
12264 }
12265
12266 /* Callback for iterate_over_threads. */
12267 static int
12268 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12269 {
12270 struct breakpoint *bpt = (struct breakpoint *) data;
12271
12272 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12273 return 0;
12274 }
12275
12276 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12277 callbacks. */
12278
12279 static void
12280 say_where (struct breakpoint *b)
12281 {
12282 struct value_print_options opts;
12283
12284 get_user_print_options (&opts);
12285
12286 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12287 single string. */
12288 if (b->loc == NULL)
12289 {
12290 /* For pending locations, the output differs slightly based
12291 on b->extra_string. If this is non-NULL, it contains either
12292 a condition or dprintf arguments. */
12293 if (b->extra_string == NULL)
12294 {
12295 printf_filtered (_(" (%s) pending."),
12296 event_location_to_string (b->location.get ()));
12297 }
12298 else if (b->type == bp_dprintf)
12299 {
12300 printf_filtered (_(" (%s,%s) pending."),
12301 event_location_to_string (b->location.get ()),
12302 b->extra_string);
12303 }
12304 else
12305 {
12306 printf_filtered (_(" (%s %s) pending."),
12307 event_location_to_string (b->location.get ()),
12308 b->extra_string);
12309 }
12310 }
12311 else
12312 {
12313 if (opts.addressprint || b->loc->symtab == NULL)
12314 printf_filtered (" at %ps",
12315 styled_string (address_style.style (),
12316 paddress (b->loc->gdbarch,
12317 b->loc->address)));
12318 if (b->loc->symtab != NULL)
12319 {
12320 /* If there is a single location, we can print the location
12321 more nicely. */
12322 if (b->loc->next == NULL)
12323 {
12324 const char *filename
12325 = symtab_to_filename_for_display (b->loc->symtab);
12326 printf_filtered (": file %ps, line %d.",
12327 styled_string (file_name_style.style (),
12328 filename),
12329 b->loc->line_number);
12330 }
12331 else
12332 /* This is not ideal, but each location may have a
12333 different file name, and this at least reflects the
12334 real situation somewhat. */
12335 printf_filtered (": %s.",
12336 event_location_to_string (b->location.get ()));
12337 }
12338
12339 if (b->loc->next)
12340 {
12341 struct bp_location *loc = b->loc;
12342 int n = 0;
12343 for (; loc; loc = loc->next)
12344 ++n;
12345 printf_filtered (" (%d locations)", n);
12346 }
12347 }
12348 }
12349
12350 bp_location::~bp_location ()
12351 {
12352 xfree (function_name);
12353 }
12354
12355 /* Destructor for the breakpoint base class. */
12356
12357 breakpoint::~breakpoint ()
12358 {
12359 xfree (this->cond_string);
12360 xfree (this->extra_string);
12361 }
12362
12363 static struct bp_location *
12364 base_breakpoint_allocate_location (struct breakpoint *self)
12365 {
12366 return new bp_location (self);
12367 }
12368
12369 static void
12370 base_breakpoint_re_set (struct breakpoint *b)
12371 {
12372 /* Nothing to re-set. */
12373 }
12374
12375 #define internal_error_pure_virtual_called() \
12376 gdb_assert_not_reached ("pure virtual function called")
12377
12378 static int
12379 base_breakpoint_insert_location (struct bp_location *bl)
12380 {
12381 internal_error_pure_virtual_called ();
12382 }
12383
12384 static int
12385 base_breakpoint_remove_location (struct bp_location *bl,
12386 enum remove_bp_reason reason)
12387 {
12388 internal_error_pure_virtual_called ();
12389 }
12390
12391 static int
12392 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12393 const address_space *aspace,
12394 CORE_ADDR bp_addr,
12395 const struct target_waitstatus *ws)
12396 {
12397 internal_error_pure_virtual_called ();
12398 }
12399
12400 static void
12401 base_breakpoint_check_status (bpstat bs)
12402 {
12403 /* Always stop. */
12404 }
12405
12406 /* A "works_in_software_mode" breakpoint_ops method that just internal
12407 errors. */
12408
12409 static int
12410 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12411 {
12412 internal_error_pure_virtual_called ();
12413 }
12414
12415 /* A "resources_needed" breakpoint_ops method that just internal
12416 errors. */
12417
12418 static int
12419 base_breakpoint_resources_needed (const struct bp_location *bl)
12420 {
12421 internal_error_pure_virtual_called ();
12422 }
12423
12424 static enum print_stop_action
12425 base_breakpoint_print_it (bpstat bs)
12426 {
12427 internal_error_pure_virtual_called ();
12428 }
12429
12430 static void
12431 base_breakpoint_print_one_detail (const struct breakpoint *self,
12432 struct ui_out *uiout)
12433 {
12434 /* nothing */
12435 }
12436
12437 static void
12438 base_breakpoint_print_mention (struct breakpoint *b)
12439 {
12440 internal_error_pure_virtual_called ();
12441 }
12442
12443 static void
12444 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12445 {
12446 internal_error_pure_virtual_called ();
12447 }
12448
12449 static void
12450 base_breakpoint_create_sals_from_location
12451 (struct event_location *location,
12452 struct linespec_result *canonical,
12453 enum bptype type_wanted)
12454 {
12455 internal_error_pure_virtual_called ();
12456 }
12457
12458 static void
12459 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12460 struct linespec_result *c,
12461 gdb::unique_xmalloc_ptr<char> cond_string,
12462 gdb::unique_xmalloc_ptr<char> extra_string,
12463 enum bptype type_wanted,
12464 enum bpdisp disposition,
12465 int thread,
12466 int task, int ignore_count,
12467 const struct breakpoint_ops *o,
12468 int from_tty, int enabled,
12469 int internal, unsigned flags)
12470 {
12471 internal_error_pure_virtual_called ();
12472 }
12473
12474 static std::vector<symtab_and_line>
12475 base_breakpoint_decode_location (struct breakpoint *b,
12476 struct event_location *location,
12477 struct program_space *search_pspace)
12478 {
12479 internal_error_pure_virtual_called ();
12480 }
12481
12482 /* The default 'explains_signal' method. */
12483
12484 static int
12485 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12486 {
12487 return 1;
12488 }
12489
12490 /* The default "after_condition_true" method. */
12491
12492 static void
12493 base_breakpoint_after_condition_true (struct bpstats *bs)
12494 {
12495 /* Nothing to do. */
12496 }
12497
12498 struct breakpoint_ops base_breakpoint_ops =
12499 {
12500 base_breakpoint_allocate_location,
12501 base_breakpoint_re_set,
12502 base_breakpoint_insert_location,
12503 base_breakpoint_remove_location,
12504 base_breakpoint_breakpoint_hit,
12505 base_breakpoint_check_status,
12506 base_breakpoint_resources_needed,
12507 base_breakpoint_works_in_software_mode,
12508 base_breakpoint_print_it,
12509 NULL,
12510 base_breakpoint_print_one_detail,
12511 base_breakpoint_print_mention,
12512 base_breakpoint_print_recreate,
12513 base_breakpoint_create_sals_from_location,
12514 base_breakpoint_create_breakpoints_sal,
12515 base_breakpoint_decode_location,
12516 base_breakpoint_explains_signal,
12517 base_breakpoint_after_condition_true,
12518 };
12519
12520 /* Default breakpoint_ops methods. */
12521
12522 static void
12523 bkpt_re_set (struct breakpoint *b)
12524 {
12525 /* FIXME: is this still reachable? */
12526 if (breakpoint_event_location_empty_p (b))
12527 {
12528 /* Anything without a location can't be re-set. */
12529 delete_breakpoint (b);
12530 return;
12531 }
12532
12533 breakpoint_re_set_default (b);
12534 }
12535
12536 static int
12537 bkpt_insert_location (struct bp_location *bl)
12538 {
12539 CORE_ADDR addr = bl->target_info.reqstd_address;
12540
12541 bl->target_info.kind = breakpoint_kind (bl, &addr);
12542 bl->target_info.placed_address = addr;
12543
12544 if (bl->loc_type == bp_loc_hardware_breakpoint)
12545 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12546 else
12547 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12548 }
12549
12550 static int
12551 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12552 {
12553 if (bl->loc_type == bp_loc_hardware_breakpoint)
12554 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12555 else
12556 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12557 }
12558
12559 static int
12560 bkpt_breakpoint_hit (const struct bp_location *bl,
12561 const address_space *aspace, CORE_ADDR bp_addr,
12562 const struct target_waitstatus *ws)
12563 {
12564 if (ws->kind != TARGET_WAITKIND_STOPPED
12565 || ws->value.sig != GDB_SIGNAL_TRAP)
12566 return 0;
12567
12568 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12569 aspace, bp_addr))
12570 return 0;
12571
12572 if (overlay_debugging /* unmapped overlay section */
12573 && section_is_overlay (bl->section)
12574 && !section_is_mapped (bl->section))
12575 return 0;
12576
12577 return 1;
12578 }
12579
12580 static int
12581 dprintf_breakpoint_hit (const struct bp_location *bl,
12582 const address_space *aspace, CORE_ADDR bp_addr,
12583 const struct target_waitstatus *ws)
12584 {
12585 if (dprintf_style == dprintf_style_agent
12586 && target_can_run_breakpoint_commands ())
12587 {
12588 /* An agent-style dprintf never causes a stop. If we see a trap
12589 for this address it must be for a breakpoint that happens to
12590 be set at the same address. */
12591 return 0;
12592 }
12593
12594 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12595 }
12596
12597 static int
12598 bkpt_resources_needed (const struct bp_location *bl)
12599 {
12600 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12601
12602 return 1;
12603 }
12604
12605 static enum print_stop_action
12606 bkpt_print_it (bpstat bs)
12607 {
12608 struct breakpoint *b;
12609 const struct bp_location *bl;
12610 int bp_temp;
12611 struct ui_out *uiout = current_uiout;
12612
12613 gdb_assert (bs->bp_location_at != NULL);
12614
12615 bl = bs->bp_location_at.get ();
12616 b = bs->breakpoint_at;
12617
12618 bp_temp = b->disposition == disp_del;
12619 if (bl->address != bl->requested_address)
12620 breakpoint_adjustment_warning (bl->requested_address,
12621 bl->address,
12622 b->number, 1);
12623 annotate_breakpoint (b->number);
12624 maybe_print_thread_hit_breakpoint (uiout);
12625
12626 if (uiout->is_mi_like_p ())
12627 {
12628 uiout->field_string ("reason",
12629 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12630 uiout->field_string ("disp", bpdisp_text (b->disposition));
12631 }
12632 if (bp_temp)
12633 uiout->message ("Temporary breakpoint %pF, ",
12634 signed_field ("bkptno", b->number));
12635 else
12636 uiout->message ("Breakpoint %pF, ",
12637 signed_field ("bkptno", b->number));
12638
12639 return PRINT_SRC_AND_LOC;
12640 }
12641
12642 static void
12643 bkpt_print_mention (struct breakpoint *b)
12644 {
12645 if (current_uiout->is_mi_like_p ())
12646 return;
12647
12648 switch (b->type)
12649 {
12650 case bp_breakpoint:
12651 case bp_gnu_ifunc_resolver:
12652 if (b->disposition == disp_del)
12653 printf_filtered (_("Temporary breakpoint"));
12654 else
12655 printf_filtered (_("Breakpoint"));
12656 printf_filtered (_(" %d"), b->number);
12657 if (b->type == bp_gnu_ifunc_resolver)
12658 printf_filtered (_(" at gnu-indirect-function resolver"));
12659 break;
12660 case bp_hardware_breakpoint:
12661 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12662 break;
12663 case bp_dprintf:
12664 printf_filtered (_("Dprintf %d"), b->number);
12665 break;
12666 }
12667
12668 say_where (b);
12669 }
12670
12671 static void
12672 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12673 {
12674 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12675 fprintf_unfiltered (fp, "tbreak");
12676 else if (tp->type == bp_breakpoint)
12677 fprintf_unfiltered (fp, "break");
12678 else if (tp->type == bp_hardware_breakpoint
12679 && tp->disposition == disp_del)
12680 fprintf_unfiltered (fp, "thbreak");
12681 else if (tp->type == bp_hardware_breakpoint)
12682 fprintf_unfiltered (fp, "hbreak");
12683 else
12684 internal_error (__FILE__, __LINE__,
12685 _("unhandled breakpoint type %d"), (int) tp->type);
12686
12687 fprintf_unfiltered (fp, " %s",
12688 event_location_to_string (tp->location.get ()));
12689
12690 /* Print out extra_string if this breakpoint is pending. It might
12691 contain, for example, conditions that were set by the user. */
12692 if (tp->loc == NULL && tp->extra_string != NULL)
12693 fprintf_unfiltered (fp, " %s", tp->extra_string);
12694
12695 print_recreate_thread (tp, fp);
12696 }
12697
12698 static void
12699 bkpt_create_sals_from_location (struct event_location *location,
12700 struct linespec_result *canonical,
12701 enum bptype type_wanted)
12702 {
12703 create_sals_from_location_default (location, canonical, type_wanted);
12704 }
12705
12706 static void
12707 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12708 struct linespec_result *canonical,
12709 gdb::unique_xmalloc_ptr<char> cond_string,
12710 gdb::unique_xmalloc_ptr<char> extra_string,
12711 enum bptype type_wanted,
12712 enum bpdisp disposition,
12713 int thread,
12714 int task, int ignore_count,
12715 const struct breakpoint_ops *ops,
12716 int from_tty, int enabled,
12717 int internal, unsigned flags)
12718 {
12719 create_breakpoints_sal_default (gdbarch, canonical,
12720 std::move (cond_string),
12721 std::move (extra_string),
12722 type_wanted,
12723 disposition, thread, task,
12724 ignore_count, ops, from_tty,
12725 enabled, internal, flags);
12726 }
12727
12728 static std::vector<symtab_and_line>
12729 bkpt_decode_location (struct breakpoint *b,
12730 struct event_location *location,
12731 struct program_space *search_pspace)
12732 {
12733 return decode_location_default (b, location, search_pspace);
12734 }
12735
12736 /* Virtual table for internal breakpoints. */
12737
12738 static void
12739 internal_bkpt_re_set (struct breakpoint *b)
12740 {
12741 switch (b->type)
12742 {
12743 /* Delete overlay event and longjmp master breakpoints; they
12744 will be reset later by breakpoint_re_set. */
12745 case bp_overlay_event:
12746 case bp_longjmp_master:
12747 case bp_std_terminate_master:
12748 case bp_exception_master:
12749 delete_breakpoint (b);
12750 break;
12751
12752 /* This breakpoint is special, it's set up when the inferior
12753 starts and we really don't want to touch it. */
12754 case bp_shlib_event:
12755
12756 /* Like bp_shlib_event, this breakpoint type is special. Once
12757 it is set up, we do not want to touch it. */
12758 case bp_thread_event:
12759 break;
12760 }
12761 }
12762
12763 static void
12764 internal_bkpt_check_status (bpstat bs)
12765 {
12766 if (bs->breakpoint_at->type == bp_shlib_event)
12767 {
12768 /* If requested, stop when the dynamic linker notifies GDB of
12769 events. This allows the user to get control and place
12770 breakpoints in initializer routines for dynamically loaded
12771 objects (among other things). */
12772 bs->stop = stop_on_solib_events;
12773 bs->print = stop_on_solib_events;
12774 }
12775 else
12776 bs->stop = 0;
12777 }
12778
12779 static enum print_stop_action
12780 internal_bkpt_print_it (bpstat bs)
12781 {
12782 struct breakpoint *b;
12783
12784 b = bs->breakpoint_at;
12785
12786 switch (b->type)
12787 {
12788 case bp_shlib_event:
12789 /* Did we stop because the user set the stop_on_solib_events
12790 variable? (If so, we report this as a generic, "Stopped due
12791 to shlib event" message.) */
12792 print_solib_event (0);
12793 break;
12794
12795 case bp_thread_event:
12796 /* Not sure how we will get here.
12797 GDB should not stop for these breakpoints. */
12798 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12799 break;
12800
12801 case bp_overlay_event:
12802 /* By analogy with the thread event, GDB should not stop for these. */
12803 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12804 break;
12805
12806 case bp_longjmp_master:
12807 /* These should never be enabled. */
12808 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12809 break;
12810
12811 case bp_std_terminate_master:
12812 /* These should never be enabled. */
12813 printf_filtered (_("std::terminate Master Breakpoint: "
12814 "gdb should not stop!\n"));
12815 break;
12816
12817 case bp_exception_master:
12818 /* These should never be enabled. */
12819 printf_filtered (_("Exception Master Breakpoint: "
12820 "gdb should not stop!\n"));
12821 break;
12822 }
12823
12824 return PRINT_NOTHING;
12825 }
12826
12827 static void
12828 internal_bkpt_print_mention (struct breakpoint *b)
12829 {
12830 /* Nothing to mention. These breakpoints are internal. */
12831 }
12832
12833 /* Virtual table for momentary breakpoints */
12834
12835 static void
12836 momentary_bkpt_re_set (struct breakpoint *b)
12837 {
12838 /* Keep temporary breakpoints, which can be encountered when we step
12839 over a dlopen call and solib_add is resetting the breakpoints.
12840 Otherwise these should have been blown away via the cleanup chain
12841 or by breakpoint_init_inferior when we rerun the executable. */
12842 }
12843
12844 static void
12845 momentary_bkpt_check_status (bpstat bs)
12846 {
12847 /* Nothing. The point of these breakpoints is causing a stop. */
12848 }
12849
12850 static enum print_stop_action
12851 momentary_bkpt_print_it (bpstat bs)
12852 {
12853 return PRINT_UNKNOWN;
12854 }
12855
12856 static void
12857 momentary_bkpt_print_mention (struct breakpoint *b)
12858 {
12859 /* Nothing to mention. These breakpoints are internal. */
12860 }
12861
12862 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12863
12864 It gets cleared already on the removal of the first one of such placed
12865 breakpoints. This is OK as they get all removed altogether. */
12866
12867 longjmp_breakpoint::~longjmp_breakpoint ()
12868 {
12869 thread_info *tp = find_thread_global_id (this->thread);
12870
12871 if (tp != NULL)
12872 tp->initiating_frame = null_frame_id;
12873 }
12874
12875 /* Specific methods for probe breakpoints. */
12876
12877 static int
12878 bkpt_probe_insert_location (struct bp_location *bl)
12879 {
12880 int v = bkpt_insert_location (bl);
12881
12882 if (v == 0)
12883 {
12884 /* The insertion was successful, now let's set the probe's semaphore
12885 if needed. */
12886 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12887 }
12888
12889 return v;
12890 }
12891
12892 static int
12893 bkpt_probe_remove_location (struct bp_location *bl,
12894 enum remove_bp_reason reason)
12895 {
12896 /* Let's clear the semaphore before removing the location. */
12897 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12898
12899 return bkpt_remove_location (bl, reason);
12900 }
12901
12902 static void
12903 bkpt_probe_create_sals_from_location (struct event_location *location,
12904 struct linespec_result *canonical,
12905 enum bptype type_wanted)
12906 {
12907 struct linespec_sals lsal;
12908
12909 lsal.sals = parse_probes (location, NULL, canonical);
12910 lsal.canonical
12911 = xstrdup (event_location_to_string (canonical->location.get ()));
12912 canonical->lsals.push_back (std::move (lsal));
12913 }
12914
12915 static std::vector<symtab_and_line>
12916 bkpt_probe_decode_location (struct breakpoint *b,
12917 struct event_location *location,
12918 struct program_space *search_pspace)
12919 {
12920 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12921 if (sals.empty ())
12922 error (_("probe not found"));
12923 return sals;
12924 }
12925
12926 /* The breakpoint_ops structure to be used in tracepoints. */
12927
12928 static void
12929 tracepoint_re_set (struct breakpoint *b)
12930 {
12931 breakpoint_re_set_default (b);
12932 }
12933
12934 static int
12935 tracepoint_breakpoint_hit (const struct bp_location *bl,
12936 const address_space *aspace, CORE_ADDR bp_addr,
12937 const struct target_waitstatus *ws)
12938 {
12939 /* By definition, the inferior does not report stops at
12940 tracepoints. */
12941 return 0;
12942 }
12943
12944 static void
12945 tracepoint_print_one_detail (const struct breakpoint *self,
12946 struct ui_out *uiout)
12947 {
12948 struct tracepoint *tp = (struct tracepoint *) self;
12949 if (!tp->static_trace_marker_id.empty ())
12950 {
12951 gdb_assert (self->type == bp_static_tracepoint);
12952
12953 uiout->message ("\tmarker id is %pF\n",
12954 string_field ("static-tracepoint-marker-string-id",
12955 tp->static_trace_marker_id.c_str ()));
12956 }
12957 }
12958
12959 static void
12960 tracepoint_print_mention (struct breakpoint *b)
12961 {
12962 if (current_uiout->is_mi_like_p ())
12963 return;
12964
12965 switch (b->type)
12966 {
12967 case bp_tracepoint:
12968 printf_filtered (_("Tracepoint"));
12969 printf_filtered (_(" %d"), b->number);
12970 break;
12971 case bp_fast_tracepoint:
12972 printf_filtered (_("Fast tracepoint"));
12973 printf_filtered (_(" %d"), b->number);
12974 break;
12975 case bp_static_tracepoint:
12976 printf_filtered (_("Static tracepoint"));
12977 printf_filtered (_(" %d"), b->number);
12978 break;
12979 default:
12980 internal_error (__FILE__, __LINE__,
12981 _("unhandled tracepoint type %d"), (int) b->type);
12982 }
12983
12984 say_where (b);
12985 }
12986
12987 static void
12988 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12989 {
12990 struct tracepoint *tp = (struct tracepoint *) self;
12991
12992 if (self->type == bp_fast_tracepoint)
12993 fprintf_unfiltered (fp, "ftrace");
12994 else if (self->type == bp_static_tracepoint)
12995 fprintf_unfiltered (fp, "strace");
12996 else if (self->type == bp_tracepoint)
12997 fprintf_unfiltered (fp, "trace");
12998 else
12999 internal_error (__FILE__, __LINE__,
13000 _("unhandled tracepoint type %d"), (int) self->type);
13001
13002 fprintf_unfiltered (fp, " %s",
13003 event_location_to_string (self->location.get ()));
13004 print_recreate_thread (self, fp);
13005
13006 if (tp->pass_count)
13007 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13008 }
13009
13010 static void
13011 tracepoint_create_sals_from_location (struct event_location *location,
13012 struct linespec_result *canonical,
13013 enum bptype type_wanted)
13014 {
13015 create_sals_from_location_default (location, canonical, type_wanted);
13016 }
13017
13018 static void
13019 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13020 struct linespec_result *canonical,
13021 gdb::unique_xmalloc_ptr<char> cond_string,
13022 gdb::unique_xmalloc_ptr<char> extra_string,
13023 enum bptype type_wanted,
13024 enum bpdisp disposition,
13025 int thread,
13026 int task, int ignore_count,
13027 const struct breakpoint_ops *ops,
13028 int from_tty, int enabled,
13029 int internal, unsigned flags)
13030 {
13031 create_breakpoints_sal_default (gdbarch, canonical,
13032 std::move (cond_string),
13033 std::move (extra_string),
13034 type_wanted,
13035 disposition, thread, task,
13036 ignore_count, ops, from_tty,
13037 enabled, internal, flags);
13038 }
13039
13040 static std::vector<symtab_and_line>
13041 tracepoint_decode_location (struct breakpoint *b,
13042 struct event_location *location,
13043 struct program_space *search_pspace)
13044 {
13045 return decode_location_default (b, location, search_pspace);
13046 }
13047
13048 struct breakpoint_ops tracepoint_breakpoint_ops;
13049
13050 /* Virtual table for tracepoints on static probes. */
13051
13052 static void
13053 tracepoint_probe_create_sals_from_location
13054 (struct event_location *location,
13055 struct linespec_result *canonical,
13056 enum bptype type_wanted)
13057 {
13058 /* We use the same method for breakpoint on probes. */
13059 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13060 }
13061
13062 static std::vector<symtab_and_line>
13063 tracepoint_probe_decode_location (struct breakpoint *b,
13064 struct event_location *location,
13065 struct program_space *search_pspace)
13066 {
13067 /* We use the same method for breakpoint on probes. */
13068 return bkpt_probe_decode_location (b, location, search_pspace);
13069 }
13070
13071 /* Dprintf breakpoint_ops methods. */
13072
13073 static void
13074 dprintf_re_set (struct breakpoint *b)
13075 {
13076 breakpoint_re_set_default (b);
13077
13078 /* extra_string should never be non-NULL for dprintf. */
13079 gdb_assert (b->extra_string != NULL);
13080
13081 /* 1 - connect to target 1, that can run breakpoint commands.
13082 2 - create a dprintf, which resolves fine.
13083 3 - disconnect from target 1
13084 4 - connect to target 2, that can NOT run breakpoint commands.
13085
13086 After steps #3/#4, you'll want the dprintf command list to
13087 be updated, because target 1 and 2 may well return different
13088 answers for target_can_run_breakpoint_commands().
13089 Given absence of finer grained resetting, we get to do
13090 it all the time. */
13091 if (b->extra_string != NULL)
13092 update_dprintf_command_list (b);
13093 }
13094
13095 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13096
13097 static void
13098 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13099 {
13100 fprintf_unfiltered (fp, "dprintf %s,%s",
13101 event_location_to_string (tp->location.get ()),
13102 tp->extra_string);
13103 print_recreate_thread (tp, fp);
13104 }
13105
13106 /* Implement the "after_condition_true" breakpoint_ops method for
13107 dprintf.
13108
13109 dprintf's are implemented with regular commands in their command
13110 list, but we run the commands here instead of before presenting the
13111 stop to the user, as dprintf's don't actually cause a stop. This
13112 also makes it so that the commands of multiple dprintfs at the same
13113 address are all handled. */
13114
13115 static void
13116 dprintf_after_condition_true (struct bpstats *bs)
13117 {
13118 struct bpstats tmp_bs;
13119 struct bpstats *tmp_bs_p = &tmp_bs;
13120
13121 /* dprintf's never cause a stop. This wasn't set in the
13122 check_status hook instead because that would make the dprintf's
13123 condition not be evaluated. */
13124 bs->stop = 0;
13125
13126 /* Run the command list here. Take ownership of it instead of
13127 copying. We never want these commands to run later in
13128 bpstat_do_actions, if a breakpoint that causes a stop happens to
13129 be set at same address as this dprintf, or even if running the
13130 commands here throws. */
13131 tmp_bs.commands = bs->commands;
13132 bs->commands = NULL;
13133
13134 bpstat_do_actions_1 (&tmp_bs_p);
13135
13136 /* 'tmp_bs.commands' will usually be NULL by now, but
13137 bpstat_do_actions_1 may return early without processing the whole
13138 list. */
13139 }
13140
13141 /* The breakpoint_ops structure to be used on static tracepoints with
13142 markers (`-m'). */
13143
13144 static void
13145 strace_marker_create_sals_from_location (struct event_location *location,
13146 struct linespec_result *canonical,
13147 enum bptype type_wanted)
13148 {
13149 struct linespec_sals lsal;
13150 const char *arg_start, *arg;
13151
13152 arg = arg_start = get_linespec_location (location)->spec_string;
13153 lsal.sals = decode_static_tracepoint_spec (&arg);
13154
13155 std::string str (arg_start, arg - arg_start);
13156 const char *ptr = str.c_str ();
13157 canonical->location
13158 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13159
13160 lsal.canonical
13161 = xstrdup (event_location_to_string (canonical->location.get ()));
13162 canonical->lsals.push_back (std::move (lsal));
13163 }
13164
13165 static void
13166 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13167 struct linespec_result *canonical,
13168 gdb::unique_xmalloc_ptr<char> cond_string,
13169 gdb::unique_xmalloc_ptr<char> extra_string,
13170 enum bptype type_wanted,
13171 enum bpdisp disposition,
13172 int thread,
13173 int task, int ignore_count,
13174 const struct breakpoint_ops *ops,
13175 int from_tty, int enabled,
13176 int internal, unsigned flags)
13177 {
13178 const linespec_sals &lsal = canonical->lsals[0];
13179
13180 /* If the user is creating a static tracepoint by marker id
13181 (strace -m MARKER_ID), then store the sals index, so that
13182 breakpoint_re_set can try to match up which of the newly
13183 found markers corresponds to this one, and, don't try to
13184 expand multiple locations for each sal, given than SALS
13185 already should contain all sals for MARKER_ID. */
13186
13187 for (size_t i = 0; i < lsal.sals.size (); i++)
13188 {
13189 event_location_up location
13190 = copy_event_location (canonical->location.get ());
13191
13192 std::unique_ptr<tracepoint> tp (new tracepoint ());
13193 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13194 std::move (location), NULL,
13195 std::move (cond_string),
13196 std::move (extra_string),
13197 type_wanted, disposition,
13198 thread, task, ignore_count, ops,
13199 from_tty, enabled, internal, flags,
13200 canonical->special_display);
13201 /* Given that its possible to have multiple markers with
13202 the same string id, if the user is creating a static
13203 tracepoint by marker id ("strace -m MARKER_ID"), then
13204 store the sals index, so that breakpoint_re_set can
13205 try to match up which of the newly found markers
13206 corresponds to this one */
13207 tp->static_trace_marker_id_idx = i;
13208
13209 install_breakpoint (internal, std::move (tp), 0);
13210 }
13211 }
13212
13213 static std::vector<symtab_and_line>
13214 strace_marker_decode_location (struct breakpoint *b,
13215 struct event_location *location,
13216 struct program_space *search_pspace)
13217 {
13218 struct tracepoint *tp = (struct tracepoint *) b;
13219 const char *s = get_linespec_location (location)->spec_string;
13220
13221 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13222 if (sals.size () > tp->static_trace_marker_id_idx)
13223 {
13224 sals[0] = sals[tp->static_trace_marker_id_idx];
13225 sals.resize (1);
13226 return sals;
13227 }
13228 else
13229 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13230 }
13231
13232 static struct breakpoint_ops strace_marker_breakpoint_ops;
13233
13234 static int
13235 strace_marker_p (struct breakpoint *b)
13236 {
13237 return b->ops == &strace_marker_breakpoint_ops;
13238 }
13239
13240 /* Delete a breakpoint and clean up all traces of it in the data
13241 structures. */
13242
13243 void
13244 delete_breakpoint (struct breakpoint *bpt)
13245 {
13246 struct breakpoint *b;
13247
13248 gdb_assert (bpt != NULL);
13249
13250 /* Has this bp already been deleted? This can happen because
13251 multiple lists can hold pointers to bp's. bpstat lists are
13252 especial culprits.
13253
13254 One example of this happening is a watchpoint's scope bp. When
13255 the scope bp triggers, we notice that the watchpoint is out of
13256 scope, and delete it. We also delete its scope bp. But the
13257 scope bp is marked "auto-deleting", and is already on a bpstat.
13258 That bpstat is then checked for auto-deleting bp's, which are
13259 deleted.
13260
13261 A real solution to this problem might involve reference counts in
13262 bp's, and/or giving them pointers back to their referencing
13263 bpstat's, and teaching delete_breakpoint to only free a bp's
13264 storage when no more references were extent. A cheaper bandaid
13265 was chosen. */
13266 if (bpt->type == bp_none)
13267 return;
13268
13269 /* At least avoid this stale reference until the reference counting
13270 of breakpoints gets resolved. */
13271 if (bpt->related_breakpoint != bpt)
13272 {
13273 struct breakpoint *related;
13274 struct watchpoint *w;
13275
13276 if (bpt->type == bp_watchpoint_scope)
13277 w = (struct watchpoint *) bpt->related_breakpoint;
13278 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13279 w = (struct watchpoint *) bpt;
13280 else
13281 w = NULL;
13282 if (w != NULL)
13283 watchpoint_del_at_next_stop (w);
13284
13285 /* Unlink bpt from the bpt->related_breakpoint ring. */
13286 for (related = bpt; related->related_breakpoint != bpt;
13287 related = related->related_breakpoint);
13288 related->related_breakpoint = bpt->related_breakpoint;
13289 bpt->related_breakpoint = bpt;
13290 }
13291
13292 /* watch_command_1 creates a watchpoint but only sets its number if
13293 update_watchpoint succeeds in creating its bp_locations. If there's
13294 a problem in that process, we'll be asked to delete the half-created
13295 watchpoint. In that case, don't announce the deletion. */
13296 if (bpt->number)
13297 gdb::observers::breakpoint_deleted.notify (bpt);
13298
13299 if (breakpoint_chain == bpt)
13300 breakpoint_chain = bpt->next;
13301
13302 ALL_BREAKPOINTS (b)
13303 if (b->next == bpt)
13304 {
13305 b->next = bpt->next;
13306 break;
13307 }
13308
13309 /* Be sure no bpstat's are pointing at the breakpoint after it's
13310 been freed. */
13311 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13312 in all threads for now. Note that we cannot just remove bpstats
13313 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13314 commands are associated with the bpstat; if we remove it here,
13315 then the later call to bpstat_do_actions (&stop_bpstat); in
13316 event-top.c won't do anything, and temporary breakpoints with
13317 commands won't work. */
13318
13319 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13320
13321 /* Now that breakpoint is removed from breakpoint list, update the
13322 global location list. This will remove locations that used to
13323 belong to this breakpoint. Do this before freeing the breakpoint
13324 itself, since remove_breakpoint looks at location's owner. It
13325 might be better design to have location completely
13326 self-contained, but it's not the case now. */
13327 update_global_location_list (UGLL_DONT_INSERT);
13328
13329 /* On the chance that someone will soon try again to delete this
13330 same bp, we mark it as deleted before freeing its storage. */
13331 bpt->type = bp_none;
13332 delete bpt;
13333 }
13334
13335 /* Iterator function to call a user-provided callback function once
13336 for each of B and its related breakpoints. */
13337
13338 static void
13339 iterate_over_related_breakpoints (struct breakpoint *b,
13340 gdb::function_view<void (breakpoint *)> function)
13341 {
13342 struct breakpoint *related;
13343
13344 related = b;
13345 do
13346 {
13347 struct breakpoint *next;
13348
13349 /* FUNCTION may delete RELATED. */
13350 next = related->related_breakpoint;
13351
13352 if (next == related)
13353 {
13354 /* RELATED is the last ring entry. */
13355 function (related);
13356
13357 /* FUNCTION may have deleted it, so we'd never reach back to
13358 B. There's nothing left to do anyway, so just break
13359 out. */
13360 break;
13361 }
13362 else
13363 function (related);
13364
13365 related = next;
13366 }
13367 while (related != b);
13368 }
13369
13370 static void
13371 delete_command (const char *arg, int from_tty)
13372 {
13373 struct breakpoint *b, *b_tmp;
13374
13375 dont_repeat ();
13376
13377 if (arg == 0)
13378 {
13379 int breaks_to_delete = 0;
13380
13381 /* Delete all breakpoints if no argument. Do not delete
13382 internal breakpoints, these have to be deleted with an
13383 explicit breakpoint number argument. */
13384 ALL_BREAKPOINTS (b)
13385 if (user_breakpoint_p (b))
13386 {
13387 breaks_to_delete = 1;
13388 break;
13389 }
13390
13391 /* Ask user only if there are some breakpoints to delete. */
13392 if (!from_tty
13393 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13394 {
13395 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13396 if (user_breakpoint_p (b))
13397 delete_breakpoint (b);
13398 }
13399 }
13400 else
13401 map_breakpoint_numbers
13402 (arg, [&] (breakpoint *br)
13403 {
13404 iterate_over_related_breakpoints (br, delete_breakpoint);
13405 });
13406 }
13407
13408 /* Return true if all locations of B bound to PSPACE are pending. If
13409 PSPACE is NULL, all locations of all program spaces are
13410 considered. */
13411
13412 static int
13413 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13414 {
13415 struct bp_location *loc;
13416
13417 for (loc = b->loc; loc != NULL; loc = loc->next)
13418 if ((pspace == NULL
13419 || loc->pspace == pspace)
13420 && !loc->shlib_disabled
13421 && !loc->pspace->executing_startup)
13422 return 0;
13423 return 1;
13424 }
13425
13426 /* Subroutine of update_breakpoint_locations to simplify it.
13427 Return non-zero if multiple fns in list LOC have the same name.
13428 Null names are ignored. */
13429
13430 static int
13431 ambiguous_names_p (struct bp_location *loc)
13432 {
13433 struct bp_location *l;
13434 htab_up htab (htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13435 xcalloc, xfree));
13436
13437 for (l = loc; l != NULL; l = l->next)
13438 {
13439 const char **slot;
13440 const char *name = l->function_name;
13441
13442 /* Allow for some names to be NULL, ignore them. */
13443 if (name == NULL)
13444 continue;
13445
13446 slot = (const char **) htab_find_slot (htab.get (), (const void *) name,
13447 INSERT);
13448 /* NOTE: We can assume slot != NULL here because xcalloc never
13449 returns NULL. */
13450 if (*slot != NULL)
13451 return 1;
13452 *slot = name;
13453 }
13454
13455 return 0;
13456 }
13457
13458 /* When symbols change, it probably means the sources changed as well,
13459 and it might mean the static tracepoint markers are no longer at
13460 the same address or line numbers they used to be at last we
13461 checked. Losing your static tracepoints whenever you rebuild is
13462 undesirable. This function tries to resync/rematch gdb static
13463 tracepoints with the markers on the target, for static tracepoints
13464 that have not been set by marker id. Static tracepoint that have
13465 been set by marker id are reset by marker id in breakpoint_re_set.
13466 The heuristic is:
13467
13468 1) For a tracepoint set at a specific address, look for a marker at
13469 the old PC. If one is found there, assume to be the same marker.
13470 If the name / string id of the marker found is different from the
13471 previous known name, assume that means the user renamed the marker
13472 in the sources, and output a warning.
13473
13474 2) For a tracepoint set at a given line number, look for a marker
13475 at the new address of the old line number. If one is found there,
13476 assume to be the same marker. If the name / string id of the
13477 marker found is different from the previous known name, assume that
13478 means the user renamed the marker in the sources, and output a
13479 warning.
13480
13481 3) If a marker is no longer found at the same address or line, it
13482 may mean the marker no longer exists. But it may also just mean
13483 the code changed a bit. Maybe the user added a few lines of code
13484 that made the marker move up or down (in line number terms). Ask
13485 the target for info about the marker with the string id as we knew
13486 it. If found, update line number and address in the matching
13487 static tracepoint. This will get confused if there's more than one
13488 marker with the same ID (possible in UST, although unadvised
13489 precisely because it confuses tools). */
13490
13491 static struct symtab_and_line
13492 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13493 {
13494 struct tracepoint *tp = (struct tracepoint *) b;
13495 struct static_tracepoint_marker marker;
13496 CORE_ADDR pc;
13497
13498 pc = sal.pc;
13499 if (sal.line)
13500 find_line_pc (sal.symtab, sal.line, &pc);
13501
13502 if (target_static_tracepoint_marker_at (pc, &marker))
13503 {
13504 if (tp->static_trace_marker_id != marker.str_id)
13505 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13506 b->number, tp->static_trace_marker_id.c_str (),
13507 marker.str_id.c_str ());
13508
13509 tp->static_trace_marker_id = std::move (marker.str_id);
13510
13511 return sal;
13512 }
13513
13514 /* Old marker wasn't found on target at lineno. Try looking it up
13515 by string ID. */
13516 if (!sal.explicit_pc
13517 && sal.line != 0
13518 && sal.symtab != NULL
13519 && !tp->static_trace_marker_id.empty ())
13520 {
13521 std::vector<static_tracepoint_marker> markers
13522 = target_static_tracepoint_markers_by_strid
13523 (tp->static_trace_marker_id.c_str ());
13524
13525 if (!markers.empty ())
13526 {
13527 struct symbol *sym;
13528 struct static_tracepoint_marker *tpmarker;
13529 struct ui_out *uiout = current_uiout;
13530 struct explicit_location explicit_loc;
13531
13532 tpmarker = &markers[0];
13533
13534 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13535
13536 warning (_("marker for static tracepoint %d (%s) not "
13537 "found at previous line number"),
13538 b->number, tp->static_trace_marker_id.c_str ());
13539
13540 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13541 sym = find_pc_sect_function (tpmarker->address, NULL);
13542 uiout->text ("Now in ");
13543 if (sym)
13544 {
13545 uiout->field_string ("func", sym->print_name (),
13546 function_name_style.style ());
13547 uiout->text (" at ");
13548 }
13549 uiout->field_string ("file",
13550 symtab_to_filename_for_display (sal2.symtab),
13551 file_name_style.style ());
13552 uiout->text (":");
13553
13554 if (uiout->is_mi_like_p ())
13555 {
13556 const char *fullname = symtab_to_fullname (sal2.symtab);
13557
13558 uiout->field_string ("fullname", fullname);
13559 }
13560
13561 uiout->field_signed ("line", sal2.line);
13562 uiout->text ("\n");
13563
13564 b->loc->line_number = sal2.line;
13565 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13566
13567 b->location.reset (NULL);
13568 initialize_explicit_location (&explicit_loc);
13569 explicit_loc.source_filename
13570 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13571 explicit_loc.line_offset.offset = b->loc->line_number;
13572 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13573 b->location = new_explicit_location (&explicit_loc);
13574
13575 /* Might be nice to check if function changed, and warn if
13576 so. */
13577 }
13578 }
13579 return sal;
13580 }
13581
13582 /* Returns 1 iff locations A and B are sufficiently same that
13583 we don't need to report breakpoint as changed. */
13584
13585 static int
13586 locations_are_equal (struct bp_location *a, struct bp_location *b)
13587 {
13588 while (a && b)
13589 {
13590 if (a->address != b->address)
13591 return 0;
13592
13593 if (a->shlib_disabled != b->shlib_disabled)
13594 return 0;
13595
13596 if (a->enabled != b->enabled)
13597 return 0;
13598
13599 if (a->disabled_by_cond != b->disabled_by_cond)
13600 return 0;
13601
13602 a = a->next;
13603 b = b->next;
13604 }
13605
13606 if ((a == NULL) != (b == NULL))
13607 return 0;
13608
13609 return 1;
13610 }
13611
13612 /* Split all locations of B that are bound to PSPACE out of B's
13613 location list to a separate list and return that list's head. If
13614 PSPACE is NULL, hoist out all locations of B. */
13615
13616 static struct bp_location *
13617 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13618 {
13619 struct bp_location head;
13620 struct bp_location *i = b->loc;
13621 struct bp_location **i_link = &b->loc;
13622 struct bp_location *hoisted = &head;
13623
13624 if (pspace == NULL)
13625 {
13626 i = b->loc;
13627 b->loc = NULL;
13628 return i;
13629 }
13630
13631 head.next = NULL;
13632
13633 while (i != NULL)
13634 {
13635 if (i->pspace == pspace)
13636 {
13637 *i_link = i->next;
13638 i->next = NULL;
13639 hoisted->next = i;
13640 hoisted = i;
13641 }
13642 else
13643 i_link = &i->next;
13644 i = *i_link;
13645 }
13646
13647 return head.next;
13648 }
13649
13650 /* Create new breakpoint locations for B (a hardware or software
13651 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13652 zero, then B is a ranged breakpoint. Only recreates locations for
13653 FILTER_PSPACE. Locations of other program spaces are left
13654 untouched. */
13655
13656 void
13657 update_breakpoint_locations (struct breakpoint *b,
13658 struct program_space *filter_pspace,
13659 gdb::array_view<const symtab_and_line> sals,
13660 gdb::array_view<const symtab_and_line> sals_end)
13661 {
13662 struct bp_location *existing_locations;
13663
13664 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13665 {
13666 /* Ranged breakpoints have only one start location and one end
13667 location. */
13668 b->enable_state = bp_disabled;
13669 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13670 "multiple locations found\n"),
13671 b->number);
13672 return;
13673 }
13674
13675 /* If there's no new locations, and all existing locations are
13676 pending, don't do anything. This optimizes the common case where
13677 all locations are in the same shared library, that was unloaded.
13678 We'd like to retain the location, so that when the library is
13679 loaded again, we don't loose the enabled/disabled status of the
13680 individual locations. */
13681 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13682 return;
13683
13684 existing_locations = hoist_existing_locations (b, filter_pspace);
13685
13686 for (const auto &sal : sals)
13687 {
13688 struct bp_location *new_loc;
13689
13690 switch_to_program_space_and_thread (sal.pspace);
13691
13692 new_loc = add_location_to_breakpoint (b, &sal);
13693
13694 /* Reparse conditions, they might contain references to the
13695 old symtab. */
13696 if (b->cond_string != NULL)
13697 {
13698 const char *s;
13699
13700 s = b->cond_string;
13701 try
13702 {
13703 new_loc->cond = parse_exp_1 (&s, sal.pc,
13704 block_for_pc (sal.pc),
13705 0);
13706 }
13707 catch (const gdb_exception_error &e)
13708 {
13709 new_loc->disabled_by_cond = true;
13710 }
13711 }
13712
13713 if (!sals_end.empty ())
13714 {
13715 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13716
13717 new_loc->length = end - sals[0].pc + 1;
13718 }
13719 }
13720
13721 /* If possible, carry over 'disable' status from existing
13722 breakpoints. */
13723 {
13724 struct bp_location *e = existing_locations;
13725 /* If there are multiple breakpoints with the same function name,
13726 e.g. for inline functions, comparing function names won't work.
13727 Instead compare pc addresses; this is just a heuristic as things
13728 may have moved, but in practice it gives the correct answer
13729 often enough until a better solution is found. */
13730 int have_ambiguous_names = ambiguous_names_p (b->loc);
13731
13732 for (; e; e = e->next)
13733 {
13734 if ((!e->enabled || e->disabled_by_cond) && e->function_name)
13735 {
13736 struct bp_location *l = b->loc;
13737 if (have_ambiguous_names)
13738 {
13739 for (; l; l = l->next)
13740 {
13741 /* Ignore software vs hardware location type at
13742 this point, because with "set breakpoint
13743 auto-hw", after a re-set, locations that were
13744 hardware can end up as software, or vice versa.
13745 As mentioned above, this is an heuristic and in
13746 practice should give the correct answer often
13747 enough. */
13748 if (breakpoint_locations_match (e, l, true))
13749 {
13750 l->enabled = e->enabled;
13751 l->disabled_by_cond = e->disabled_by_cond;
13752 break;
13753 }
13754 }
13755 }
13756 else
13757 {
13758 for (; l; l = l->next)
13759 if (l->function_name
13760 && strcmp (e->function_name, l->function_name) == 0)
13761 {
13762 l->enabled = e->enabled;
13763 l->disabled_by_cond = e->disabled_by_cond;
13764 break;
13765 }
13766 }
13767 }
13768 }
13769 }
13770
13771 if (!locations_are_equal (existing_locations, b->loc))
13772 gdb::observers::breakpoint_modified.notify (b);
13773 }
13774
13775 /* Find the SaL locations corresponding to the given LOCATION.
13776 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13777
13778 static std::vector<symtab_and_line>
13779 location_to_sals (struct breakpoint *b, struct event_location *location,
13780 struct program_space *search_pspace, int *found)
13781 {
13782 struct gdb_exception exception;
13783
13784 gdb_assert (b->ops != NULL);
13785
13786 std::vector<symtab_and_line> sals;
13787
13788 try
13789 {
13790 sals = b->ops->decode_location (b, location, search_pspace);
13791 }
13792 catch (gdb_exception_error &e)
13793 {
13794 int not_found_and_ok = 0;
13795
13796 /* For pending breakpoints, it's expected that parsing will
13797 fail until the right shared library is loaded. User has
13798 already told to create pending breakpoints and don't need
13799 extra messages. If breakpoint is in bp_shlib_disabled
13800 state, then user already saw the message about that
13801 breakpoint being disabled, and don't want to see more
13802 errors. */
13803 if (e.error == NOT_FOUND_ERROR
13804 && (b->condition_not_parsed
13805 || (b->loc != NULL
13806 && search_pspace != NULL
13807 && b->loc->pspace != search_pspace)
13808 || (b->loc && b->loc->shlib_disabled)
13809 || (b->loc && b->loc->pspace->executing_startup)
13810 || b->enable_state == bp_disabled))
13811 not_found_and_ok = 1;
13812
13813 if (!not_found_and_ok)
13814 {
13815 /* We surely don't want to warn about the same breakpoint
13816 10 times. One solution, implemented here, is disable
13817 the breakpoint on error. Another solution would be to
13818 have separate 'warning emitted' flag. Since this
13819 happens only when a binary has changed, I don't know
13820 which approach is better. */
13821 b->enable_state = bp_disabled;
13822 throw;
13823 }
13824
13825 exception = std::move (e);
13826 }
13827
13828 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13829 {
13830 for (auto &sal : sals)
13831 resolve_sal_pc (&sal);
13832 if (b->condition_not_parsed && b->extra_string != NULL)
13833 {
13834 char *cond_string, *extra_string;
13835 int thread, task;
13836
13837 find_condition_and_thread_for_sals (sals, b->extra_string,
13838 &cond_string, &thread,
13839 &task, &extra_string);
13840 gdb_assert (b->cond_string == NULL);
13841 if (cond_string)
13842 b->cond_string = cond_string;
13843 b->thread = thread;
13844 b->task = task;
13845 if (extra_string)
13846 {
13847 xfree (b->extra_string);
13848 b->extra_string = extra_string;
13849 }
13850 b->condition_not_parsed = 0;
13851 }
13852
13853 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13854 sals[0] = update_static_tracepoint (b, sals[0]);
13855
13856 *found = 1;
13857 }
13858 else
13859 *found = 0;
13860
13861 return sals;
13862 }
13863
13864 /* The default re_set method, for typical hardware or software
13865 breakpoints. Reevaluate the breakpoint and recreate its
13866 locations. */
13867
13868 static void
13869 breakpoint_re_set_default (struct breakpoint *b)
13870 {
13871 struct program_space *filter_pspace = current_program_space;
13872 std::vector<symtab_and_line> expanded, expanded_end;
13873
13874 int found;
13875 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13876 filter_pspace, &found);
13877 if (found)
13878 expanded = std::move (sals);
13879
13880 if (b->location_range_end != NULL)
13881 {
13882 std::vector<symtab_and_line> sals_end
13883 = location_to_sals (b, b->location_range_end.get (),
13884 filter_pspace, &found);
13885 if (found)
13886 expanded_end = std::move (sals_end);
13887 }
13888
13889 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13890 }
13891
13892 /* Default method for creating SALs from an address string. It basically
13893 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13894
13895 static void
13896 create_sals_from_location_default (struct event_location *location,
13897 struct linespec_result *canonical,
13898 enum bptype type_wanted)
13899 {
13900 parse_breakpoint_sals (location, canonical);
13901 }
13902
13903 /* Call create_breakpoints_sal for the given arguments. This is the default
13904 function for the `create_breakpoints_sal' method of
13905 breakpoint_ops. */
13906
13907 static void
13908 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13909 struct linespec_result *canonical,
13910 gdb::unique_xmalloc_ptr<char> cond_string,
13911 gdb::unique_xmalloc_ptr<char> extra_string,
13912 enum bptype type_wanted,
13913 enum bpdisp disposition,
13914 int thread,
13915 int task, int ignore_count,
13916 const struct breakpoint_ops *ops,
13917 int from_tty, int enabled,
13918 int internal, unsigned flags)
13919 {
13920 create_breakpoints_sal (gdbarch, canonical,
13921 std::move (cond_string),
13922 std::move (extra_string),
13923 type_wanted, disposition,
13924 thread, task, ignore_count, ops, from_tty,
13925 enabled, internal, flags);
13926 }
13927
13928 /* Decode the line represented by S by calling decode_line_full. This is the
13929 default function for the `decode_location' method of breakpoint_ops. */
13930
13931 static std::vector<symtab_and_line>
13932 decode_location_default (struct breakpoint *b,
13933 struct event_location *location,
13934 struct program_space *search_pspace)
13935 {
13936 struct linespec_result canonical;
13937
13938 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13939 NULL, 0, &canonical, multiple_symbols_all,
13940 b->filter.get ());
13941
13942 /* We should get 0 or 1 resulting SALs. */
13943 gdb_assert (canonical.lsals.size () < 2);
13944
13945 if (!canonical.lsals.empty ())
13946 {
13947 const linespec_sals &lsal = canonical.lsals[0];
13948 return std::move (lsal.sals);
13949 }
13950 return {};
13951 }
13952
13953 /* Reset a breakpoint. */
13954
13955 static void
13956 breakpoint_re_set_one (breakpoint *b)
13957 {
13958 input_radix = b->input_radix;
13959 set_language (b->language);
13960
13961 b->ops->re_set (b);
13962 }
13963
13964 /* Re-set breakpoint locations for the current program space.
13965 Locations bound to other program spaces are left untouched. */
13966
13967 void
13968 breakpoint_re_set (void)
13969 {
13970 struct breakpoint *b, *b_tmp;
13971
13972 {
13973 scoped_restore_current_language save_language;
13974 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13975 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13976
13977 /* breakpoint_re_set_one sets the current_language to the language
13978 of the breakpoint it is resetting (see prepare_re_set_context)
13979 before re-evaluating the breakpoint's location. This change can
13980 unfortunately get undone by accident if the language_mode is set
13981 to auto, and we either switch frames, or more likely in this context,
13982 we select the current frame.
13983
13984 We prevent this by temporarily turning the language_mode to
13985 language_mode_manual. We restore it once all breakpoints
13986 have been reset. */
13987 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13988 language_mode = language_mode_manual;
13989
13990 /* Note: we must not try to insert locations until after all
13991 breakpoints have been re-set. Otherwise, e.g., when re-setting
13992 breakpoint 1, we'd insert the locations of breakpoint 2, which
13993 hadn't been re-set yet, and thus may have stale locations. */
13994
13995 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13996 {
13997 try
13998 {
13999 breakpoint_re_set_one (b);
14000 }
14001 catch (const gdb_exception &ex)
14002 {
14003 exception_fprintf (gdb_stderr, ex,
14004 "Error in re-setting breakpoint %d: ",
14005 b->number);
14006 }
14007 }
14008
14009 jit_breakpoint_re_set ();
14010 }
14011
14012 create_overlay_event_breakpoint ();
14013 create_longjmp_master_breakpoint ();
14014 create_std_terminate_master_breakpoint ();
14015 create_exception_master_breakpoint ();
14016
14017 /* Now we can insert. */
14018 update_global_location_list (UGLL_MAY_INSERT);
14019 }
14020 \f
14021 /* Reset the thread number of this breakpoint:
14022
14023 - If the breakpoint is for all threads, leave it as-is.
14024 - Else, reset it to the current thread for inferior_ptid. */
14025 void
14026 breakpoint_re_set_thread (struct breakpoint *b)
14027 {
14028 if (b->thread != -1)
14029 {
14030 b->thread = inferior_thread ()->global_num;
14031
14032 /* We're being called after following a fork. The new fork is
14033 selected as current, and unless this was a vfork will have a
14034 different program space from the original thread. Reset that
14035 as well. */
14036 b->loc->pspace = current_program_space;
14037 }
14038 }
14039
14040 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14041 If from_tty is nonzero, it prints a message to that effect,
14042 which ends with a period (no newline). */
14043
14044 void
14045 set_ignore_count (int bptnum, int count, int from_tty)
14046 {
14047 struct breakpoint *b;
14048
14049 if (count < 0)
14050 count = 0;
14051
14052 ALL_BREAKPOINTS (b)
14053 if (b->number == bptnum)
14054 {
14055 if (is_tracepoint (b))
14056 {
14057 if (from_tty && count != 0)
14058 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14059 bptnum);
14060 return;
14061 }
14062
14063 b->ignore_count = count;
14064 if (from_tty)
14065 {
14066 if (count == 0)
14067 printf_filtered (_("Will stop next time "
14068 "breakpoint %d is reached."),
14069 bptnum);
14070 else if (count == 1)
14071 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14072 bptnum);
14073 else
14074 printf_filtered (_("Will ignore next %d "
14075 "crossings of breakpoint %d."),
14076 count, bptnum);
14077 }
14078 gdb::observers::breakpoint_modified.notify (b);
14079 return;
14080 }
14081
14082 error (_("No breakpoint number %d."), bptnum);
14083 }
14084
14085 /* Command to set ignore-count of breakpoint N to COUNT. */
14086
14087 static void
14088 ignore_command (const char *args, int from_tty)
14089 {
14090 const char *p = args;
14091 int num;
14092
14093 if (p == 0)
14094 error_no_arg (_("a breakpoint number"));
14095
14096 num = get_number (&p);
14097 if (num == 0)
14098 error (_("bad breakpoint number: '%s'"), args);
14099 if (*p == 0)
14100 error (_("Second argument (specified ignore-count) is missing."));
14101
14102 set_ignore_count (num,
14103 longest_to_int (value_as_long (parse_and_eval (p))),
14104 from_tty);
14105 if (from_tty)
14106 printf_filtered ("\n");
14107 }
14108 \f
14109
14110 /* Call FUNCTION on each of the breakpoints with numbers in the range
14111 defined by BP_NUM_RANGE (an inclusive range). */
14112
14113 static void
14114 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14115 gdb::function_view<void (breakpoint *)> function)
14116 {
14117 if (bp_num_range.first == 0)
14118 {
14119 warning (_("bad breakpoint number at or near '%d'"),
14120 bp_num_range.first);
14121 }
14122 else
14123 {
14124 struct breakpoint *b, *tmp;
14125
14126 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14127 {
14128 bool match = false;
14129
14130 ALL_BREAKPOINTS_SAFE (b, tmp)
14131 if (b->number == i)
14132 {
14133 match = true;
14134 function (b);
14135 break;
14136 }
14137 if (!match)
14138 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14139 }
14140 }
14141 }
14142
14143 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14144 ARGS. */
14145
14146 static void
14147 map_breakpoint_numbers (const char *args,
14148 gdb::function_view<void (breakpoint *)> function)
14149 {
14150 if (args == NULL || *args == '\0')
14151 error_no_arg (_("one or more breakpoint numbers"));
14152
14153 number_or_range_parser parser (args);
14154
14155 while (!parser.finished ())
14156 {
14157 int num = parser.get_number ();
14158 map_breakpoint_number_range (std::make_pair (num, num), function);
14159 }
14160 }
14161
14162 /* Return the breakpoint location structure corresponding to the
14163 BP_NUM and LOC_NUM values. */
14164
14165 static struct bp_location *
14166 find_location_by_number (int bp_num, int loc_num)
14167 {
14168 struct breakpoint *b;
14169
14170 ALL_BREAKPOINTS (b)
14171 if (b->number == bp_num)
14172 {
14173 break;
14174 }
14175
14176 if (!b || b->number != bp_num)
14177 error (_("Bad breakpoint number '%d'"), bp_num);
14178
14179 if (loc_num == 0)
14180 error (_("Bad breakpoint location number '%d'"), loc_num);
14181
14182 int n = 0;
14183 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14184 if (++n == loc_num)
14185 return loc;
14186
14187 error (_("Bad breakpoint location number '%d'"), loc_num);
14188 }
14189
14190 /* Modes of operation for extract_bp_num. */
14191 enum class extract_bp_kind
14192 {
14193 /* Extracting a breakpoint number. */
14194 bp,
14195
14196 /* Extracting a location number. */
14197 loc,
14198 };
14199
14200 /* Extract a breakpoint or location number (as determined by KIND)
14201 from the string starting at START. TRAILER is a character which
14202 can be found after the number. If you don't want a trailer, use
14203 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14204 string. This always returns a positive integer. */
14205
14206 static int
14207 extract_bp_num (extract_bp_kind kind, const char *start,
14208 int trailer, const char **end_out = NULL)
14209 {
14210 const char *end = start;
14211 int num = get_number_trailer (&end, trailer);
14212 if (num < 0)
14213 error (kind == extract_bp_kind::bp
14214 ? _("Negative breakpoint number '%.*s'")
14215 : _("Negative breakpoint location number '%.*s'"),
14216 int (end - start), start);
14217 if (num == 0)
14218 error (kind == extract_bp_kind::bp
14219 ? _("Bad breakpoint number '%.*s'")
14220 : _("Bad breakpoint location number '%.*s'"),
14221 int (end - start), start);
14222
14223 if (end_out != NULL)
14224 *end_out = end;
14225 return num;
14226 }
14227
14228 /* Extract a breakpoint or location range (as determined by KIND) in
14229 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14230 representing the (inclusive) range. The returned pair's elements
14231 are always positive integers. */
14232
14233 static std::pair<int, int>
14234 extract_bp_or_bp_range (extract_bp_kind kind,
14235 const std::string &arg,
14236 std::string::size_type arg_offset)
14237 {
14238 std::pair<int, int> range;
14239 const char *bp_loc = &arg[arg_offset];
14240 std::string::size_type dash = arg.find ('-', arg_offset);
14241 if (dash != std::string::npos)
14242 {
14243 /* bp_loc is a range (x-z). */
14244 if (arg.length () == dash + 1)
14245 error (kind == extract_bp_kind::bp
14246 ? _("Bad breakpoint number at or near: '%s'")
14247 : _("Bad breakpoint location number at or near: '%s'"),
14248 bp_loc);
14249
14250 const char *end;
14251 const char *start_first = bp_loc;
14252 const char *start_second = &arg[dash + 1];
14253 range.first = extract_bp_num (kind, start_first, '-');
14254 range.second = extract_bp_num (kind, start_second, '\0', &end);
14255
14256 if (range.first > range.second)
14257 error (kind == extract_bp_kind::bp
14258 ? _("Inverted breakpoint range at '%.*s'")
14259 : _("Inverted breakpoint location range at '%.*s'"),
14260 int (end - start_first), start_first);
14261 }
14262 else
14263 {
14264 /* bp_loc is a single value. */
14265 range.first = extract_bp_num (kind, bp_loc, '\0');
14266 range.second = range.first;
14267 }
14268 return range;
14269 }
14270
14271 /* Extract the breakpoint/location range specified by ARG. Returns
14272 the breakpoint range in BP_NUM_RANGE, and the location range in
14273 BP_LOC_RANGE.
14274
14275 ARG may be in any of the following forms:
14276
14277 x where 'x' is a breakpoint number.
14278 x-y where 'x' and 'y' specify a breakpoint numbers range.
14279 x.y where 'x' is a breakpoint number and 'y' a location number.
14280 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14281 location number range.
14282 */
14283
14284 static void
14285 extract_bp_number_and_location (const std::string &arg,
14286 std::pair<int, int> &bp_num_range,
14287 std::pair<int, int> &bp_loc_range)
14288 {
14289 std::string::size_type dot = arg.find ('.');
14290
14291 if (dot != std::string::npos)
14292 {
14293 /* Handle 'x.y' and 'x.y-z' cases. */
14294
14295 if (arg.length () == dot + 1 || dot == 0)
14296 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14297
14298 bp_num_range.first
14299 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14300 bp_num_range.second = bp_num_range.first;
14301
14302 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14303 arg, dot + 1);
14304 }
14305 else
14306 {
14307 /* Handle x and x-y cases. */
14308
14309 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14310 bp_loc_range.first = 0;
14311 bp_loc_range.second = 0;
14312 }
14313 }
14314
14315 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14316 specifies whether to enable or disable. */
14317
14318 static void
14319 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14320 {
14321 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14322 if (loc != NULL)
14323 {
14324 if (loc->disabled_by_cond && enable)
14325 error (_("Breakpoint %d's condition is invalid at location %d, "
14326 "cannot enable."), bp_num, loc_num);
14327
14328 if (loc->enabled != enable)
14329 {
14330 loc->enabled = enable;
14331 mark_breakpoint_location_modified (loc);
14332 }
14333 if (target_supports_enable_disable_tracepoint ()
14334 && current_trace_status ()->running && loc->owner
14335 && is_tracepoint (loc->owner))
14336 target_disable_tracepoint (loc);
14337 }
14338 update_global_location_list (UGLL_DONT_INSERT);
14339
14340 gdb::observers::breakpoint_modified.notify (loc->owner);
14341 }
14342
14343 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14344 number of the breakpoint, and BP_LOC_RANGE specifies the
14345 (inclusive) range of location numbers of that breakpoint to
14346 enable/disable. ENABLE specifies whether to enable or disable the
14347 location. */
14348
14349 static void
14350 enable_disable_breakpoint_location_range (int bp_num,
14351 std::pair<int, int> &bp_loc_range,
14352 bool enable)
14353 {
14354 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14355 enable_disable_bp_num_loc (bp_num, i, enable);
14356 }
14357
14358 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14359 If from_tty is nonzero, it prints a message to that effect,
14360 which ends with a period (no newline). */
14361
14362 void
14363 disable_breakpoint (struct breakpoint *bpt)
14364 {
14365 /* Never disable a watchpoint scope breakpoint; we want to
14366 hit them when we leave scope so we can delete both the
14367 watchpoint and its scope breakpoint at that time. */
14368 if (bpt->type == bp_watchpoint_scope)
14369 return;
14370
14371 bpt->enable_state = bp_disabled;
14372
14373 /* Mark breakpoint locations modified. */
14374 mark_breakpoint_modified (bpt);
14375
14376 if (target_supports_enable_disable_tracepoint ()
14377 && current_trace_status ()->running && is_tracepoint (bpt))
14378 {
14379 struct bp_location *location;
14380
14381 for (location = bpt->loc; location; location = location->next)
14382 target_disable_tracepoint (location);
14383 }
14384
14385 update_global_location_list (UGLL_DONT_INSERT);
14386
14387 gdb::observers::breakpoint_modified.notify (bpt);
14388 }
14389
14390 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14391 specified in ARGS. ARGS may be in any of the formats handled by
14392 extract_bp_number_and_location. ENABLE specifies whether to enable
14393 or disable the breakpoints/locations. */
14394
14395 static void
14396 enable_disable_command (const char *args, int from_tty, bool enable)
14397 {
14398 if (args == 0)
14399 {
14400 struct breakpoint *bpt;
14401
14402 ALL_BREAKPOINTS (bpt)
14403 if (user_breakpoint_p (bpt))
14404 {
14405 if (enable)
14406 enable_breakpoint (bpt);
14407 else
14408 disable_breakpoint (bpt);
14409 }
14410 }
14411 else
14412 {
14413 std::string num = extract_arg (&args);
14414
14415 while (!num.empty ())
14416 {
14417 std::pair<int, int> bp_num_range, bp_loc_range;
14418
14419 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14420
14421 if (bp_loc_range.first == bp_loc_range.second
14422 && bp_loc_range.first == 0)
14423 {
14424 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14425 map_breakpoint_number_range (bp_num_range,
14426 enable
14427 ? enable_breakpoint
14428 : disable_breakpoint);
14429 }
14430 else
14431 {
14432 /* Handle breakpoint ids with formats 'x.y' or
14433 'x.y-z'. */
14434 enable_disable_breakpoint_location_range
14435 (bp_num_range.first, bp_loc_range, enable);
14436 }
14437 num = extract_arg (&args);
14438 }
14439 }
14440 }
14441
14442 /* The disable command disables the specified breakpoints/locations
14443 (or all defined breakpoints) so they're no longer effective in
14444 stopping the inferior. ARGS may be in any of the forms defined in
14445 extract_bp_number_and_location. */
14446
14447 static void
14448 disable_command (const char *args, int from_tty)
14449 {
14450 enable_disable_command (args, from_tty, false);
14451 }
14452
14453 static void
14454 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14455 int count)
14456 {
14457 int target_resources_ok;
14458
14459 if (bpt->type == bp_hardware_breakpoint)
14460 {
14461 int i;
14462 i = hw_breakpoint_used_count ();
14463 target_resources_ok =
14464 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14465 i + 1, 0);
14466 if (target_resources_ok == 0)
14467 error (_("No hardware breakpoint support in the target."));
14468 else if (target_resources_ok < 0)
14469 error (_("Hardware breakpoints used exceeds limit."));
14470 }
14471
14472 if (is_watchpoint (bpt))
14473 {
14474 /* Initialize it just to avoid a GCC false warning. */
14475 enum enable_state orig_enable_state = bp_disabled;
14476
14477 try
14478 {
14479 struct watchpoint *w = (struct watchpoint *) bpt;
14480
14481 orig_enable_state = bpt->enable_state;
14482 bpt->enable_state = bp_enabled;
14483 update_watchpoint (w, 1 /* reparse */);
14484 }
14485 catch (const gdb_exception &e)
14486 {
14487 bpt->enable_state = orig_enable_state;
14488 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14489 bpt->number);
14490 return;
14491 }
14492 }
14493
14494 bpt->enable_state = bp_enabled;
14495
14496 /* Mark breakpoint locations modified. */
14497 mark_breakpoint_modified (bpt);
14498
14499 if (target_supports_enable_disable_tracepoint ()
14500 && current_trace_status ()->running && is_tracepoint (bpt))
14501 {
14502 struct bp_location *location;
14503
14504 for (location = bpt->loc; location; location = location->next)
14505 target_enable_tracepoint (location);
14506 }
14507
14508 bpt->disposition = disposition;
14509 bpt->enable_count = count;
14510 update_global_location_list (UGLL_MAY_INSERT);
14511
14512 gdb::observers::breakpoint_modified.notify (bpt);
14513 }
14514
14515
14516 void
14517 enable_breakpoint (struct breakpoint *bpt)
14518 {
14519 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14520 }
14521
14522 /* The enable command enables the specified breakpoints/locations (or
14523 all defined breakpoints) so they once again become (or continue to
14524 be) effective in stopping the inferior. ARGS may be in any of the
14525 forms defined in extract_bp_number_and_location. */
14526
14527 static void
14528 enable_command (const char *args, int from_tty)
14529 {
14530 enable_disable_command (args, from_tty, true);
14531 }
14532
14533 static void
14534 enable_once_command (const char *args, int from_tty)
14535 {
14536 map_breakpoint_numbers
14537 (args, [&] (breakpoint *b)
14538 {
14539 iterate_over_related_breakpoints
14540 (b, [&] (breakpoint *bpt)
14541 {
14542 enable_breakpoint_disp (bpt, disp_disable, 1);
14543 });
14544 });
14545 }
14546
14547 static void
14548 enable_count_command (const char *args, int from_tty)
14549 {
14550 int count;
14551
14552 if (args == NULL)
14553 error_no_arg (_("hit count"));
14554
14555 count = get_number (&args);
14556
14557 map_breakpoint_numbers
14558 (args, [&] (breakpoint *b)
14559 {
14560 iterate_over_related_breakpoints
14561 (b, [&] (breakpoint *bpt)
14562 {
14563 enable_breakpoint_disp (bpt, disp_disable, count);
14564 });
14565 });
14566 }
14567
14568 static void
14569 enable_delete_command (const char *args, int from_tty)
14570 {
14571 map_breakpoint_numbers
14572 (args, [&] (breakpoint *b)
14573 {
14574 iterate_over_related_breakpoints
14575 (b, [&] (breakpoint *bpt)
14576 {
14577 enable_breakpoint_disp (bpt, disp_del, 1);
14578 });
14579 });
14580 }
14581 \f
14582 /* Invalidate last known value of any hardware watchpoint if
14583 the memory which that value represents has been written to by
14584 GDB itself. */
14585
14586 static void
14587 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14588 CORE_ADDR addr, ssize_t len,
14589 const bfd_byte *data)
14590 {
14591 struct breakpoint *bp;
14592
14593 ALL_BREAKPOINTS (bp)
14594 if (bp->enable_state == bp_enabled
14595 && bp->type == bp_hardware_watchpoint)
14596 {
14597 struct watchpoint *wp = (struct watchpoint *) bp;
14598
14599 if (wp->val_valid && wp->val != nullptr)
14600 {
14601 struct bp_location *loc;
14602
14603 for (loc = bp->loc; loc != NULL; loc = loc->next)
14604 if (loc->loc_type == bp_loc_hardware_watchpoint
14605 && loc->address + loc->length > addr
14606 && addr + len > loc->address)
14607 {
14608 wp->val = NULL;
14609 wp->val_valid = false;
14610 }
14611 }
14612 }
14613 }
14614
14615 /* Create and insert a breakpoint for software single step. */
14616
14617 void
14618 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14619 const address_space *aspace,
14620 CORE_ADDR next_pc)
14621 {
14622 struct thread_info *tp = inferior_thread ();
14623 struct symtab_and_line sal;
14624 CORE_ADDR pc = next_pc;
14625
14626 if (tp->control.single_step_breakpoints == NULL)
14627 {
14628 tp->control.single_step_breakpoints
14629 = new_single_step_breakpoint (tp->global_num, gdbarch);
14630 }
14631
14632 sal = find_pc_line (pc, 0);
14633 sal.pc = pc;
14634 sal.section = find_pc_overlay (pc);
14635 sal.explicit_pc = 1;
14636 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14637
14638 update_global_location_list (UGLL_INSERT);
14639 }
14640
14641 /* Insert single step breakpoints according to the current state. */
14642
14643 int
14644 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14645 {
14646 struct regcache *regcache = get_current_regcache ();
14647 std::vector<CORE_ADDR> next_pcs;
14648
14649 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14650
14651 if (!next_pcs.empty ())
14652 {
14653 struct frame_info *frame = get_current_frame ();
14654 const address_space *aspace = get_frame_address_space (frame);
14655
14656 for (CORE_ADDR pc : next_pcs)
14657 insert_single_step_breakpoint (gdbarch, aspace, pc);
14658
14659 return 1;
14660 }
14661 else
14662 return 0;
14663 }
14664
14665 /* See breakpoint.h. */
14666
14667 int
14668 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14669 const address_space *aspace,
14670 CORE_ADDR pc)
14671 {
14672 struct bp_location *loc;
14673
14674 for (loc = bp->loc; loc != NULL; loc = loc->next)
14675 if (loc->inserted
14676 && breakpoint_location_address_match (loc, aspace, pc))
14677 return 1;
14678
14679 return 0;
14680 }
14681
14682 /* Check whether a software single-step breakpoint is inserted at
14683 PC. */
14684
14685 int
14686 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14687 CORE_ADDR pc)
14688 {
14689 struct breakpoint *bpt;
14690
14691 ALL_BREAKPOINTS (bpt)
14692 {
14693 if (bpt->type == bp_single_step
14694 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14695 return 1;
14696 }
14697 return 0;
14698 }
14699
14700 /* Tracepoint-specific operations. */
14701
14702 /* Set tracepoint count to NUM. */
14703 static void
14704 set_tracepoint_count (int num)
14705 {
14706 tracepoint_count = num;
14707 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14708 }
14709
14710 static void
14711 trace_command (const char *arg, int from_tty)
14712 {
14713 event_location_up location = string_to_event_location (&arg,
14714 current_language);
14715 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
14716 (location.get (), true /* is_tracepoint */);
14717
14718 create_breakpoint (get_current_arch (),
14719 location.get (),
14720 NULL, 0, arg, 1 /* parse arg */,
14721 0 /* tempflag */,
14722 bp_tracepoint /* type_wanted */,
14723 0 /* Ignore count */,
14724 pending_break_support,
14725 ops,
14726 from_tty,
14727 1 /* enabled */,
14728 0 /* internal */, 0);
14729 }
14730
14731 static void
14732 ftrace_command (const char *arg, int from_tty)
14733 {
14734 event_location_up location = string_to_event_location (&arg,
14735 current_language);
14736 create_breakpoint (get_current_arch (),
14737 location.get (),
14738 NULL, 0, arg, 1 /* parse arg */,
14739 0 /* tempflag */,
14740 bp_fast_tracepoint /* type_wanted */,
14741 0 /* Ignore count */,
14742 pending_break_support,
14743 &tracepoint_breakpoint_ops,
14744 from_tty,
14745 1 /* enabled */,
14746 0 /* internal */, 0);
14747 }
14748
14749 /* strace command implementation. Creates a static tracepoint. */
14750
14751 static void
14752 strace_command (const char *arg, int from_tty)
14753 {
14754 struct breakpoint_ops *ops;
14755 event_location_up location;
14756
14757 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14758 or with a normal static tracepoint. */
14759 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14760 {
14761 ops = &strace_marker_breakpoint_ops;
14762 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14763 }
14764 else
14765 {
14766 ops = &tracepoint_breakpoint_ops;
14767 location = string_to_event_location (&arg, current_language);
14768 }
14769
14770 create_breakpoint (get_current_arch (),
14771 location.get (),
14772 NULL, 0, arg, 1 /* parse arg */,
14773 0 /* tempflag */,
14774 bp_static_tracepoint /* type_wanted */,
14775 0 /* Ignore count */,
14776 pending_break_support,
14777 ops,
14778 from_tty,
14779 1 /* enabled */,
14780 0 /* internal */, 0);
14781 }
14782
14783 /* Set up a fake reader function that gets command lines from a linked
14784 list that was acquired during tracepoint uploading. */
14785
14786 static struct uploaded_tp *this_utp;
14787 static int next_cmd;
14788
14789 static char *
14790 read_uploaded_action (void)
14791 {
14792 char *rslt = nullptr;
14793
14794 if (next_cmd < this_utp->cmd_strings.size ())
14795 {
14796 rslt = this_utp->cmd_strings[next_cmd].get ();
14797 next_cmd++;
14798 }
14799
14800 return rslt;
14801 }
14802
14803 /* Given information about a tracepoint as recorded on a target (which
14804 can be either a live system or a trace file), attempt to create an
14805 equivalent GDB tracepoint. This is not a reliable process, since
14806 the target does not necessarily have all the information used when
14807 the tracepoint was originally defined. */
14808
14809 struct tracepoint *
14810 create_tracepoint_from_upload (struct uploaded_tp *utp)
14811 {
14812 const char *addr_str;
14813 char small_buf[100];
14814 struct tracepoint *tp;
14815
14816 if (utp->at_string)
14817 addr_str = utp->at_string.get ();
14818 else
14819 {
14820 /* In the absence of a source location, fall back to raw
14821 address. Since there is no way to confirm that the address
14822 means the same thing as when the trace was started, warn the
14823 user. */
14824 warning (_("Uploaded tracepoint %d has no "
14825 "source location, using raw address"),
14826 utp->number);
14827 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14828 addr_str = small_buf;
14829 }
14830
14831 /* There's not much we can do with a sequence of bytecodes. */
14832 if (utp->cond && !utp->cond_string)
14833 warning (_("Uploaded tracepoint %d condition "
14834 "has no source form, ignoring it"),
14835 utp->number);
14836
14837 event_location_up location = string_to_event_location (&addr_str,
14838 current_language);
14839 if (!create_breakpoint (get_current_arch (),
14840 location.get (),
14841 utp->cond_string.get (), -1, addr_str,
14842 0 /* parse cond/thread */,
14843 0 /* tempflag */,
14844 utp->type /* type_wanted */,
14845 0 /* Ignore count */,
14846 pending_break_support,
14847 &tracepoint_breakpoint_ops,
14848 0 /* from_tty */,
14849 utp->enabled /* enabled */,
14850 0 /* internal */,
14851 CREATE_BREAKPOINT_FLAGS_INSERTED))
14852 return NULL;
14853
14854 /* Get the tracepoint we just created. */
14855 tp = get_tracepoint (tracepoint_count);
14856 gdb_assert (tp != NULL);
14857
14858 if (utp->pass > 0)
14859 {
14860 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14861 tp->number);
14862
14863 trace_pass_command (small_buf, 0);
14864 }
14865
14866 /* If we have uploaded versions of the original commands, set up a
14867 special-purpose "reader" function and call the usual command line
14868 reader, then pass the result to the breakpoint command-setting
14869 function. */
14870 if (!utp->cmd_strings.empty ())
14871 {
14872 counted_command_line cmd_list;
14873
14874 this_utp = utp;
14875 next_cmd = 0;
14876
14877 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14878
14879 breakpoint_set_commands (tp, std::move (cmd_list));
14880 }
14881 else if (!utp->actions.empty ()
14882 || !utp->step_actions.empty ())
14883 warning (_("Uploaded tracepoint %d actions "
14884 "have no source form, ignoring them"),
14885 utp->number);
14886
14887 /* Copy any status information that might be available. */
14888 tp->hit_count = utp->hit_count;
14889 tp->traceframe_usage = utp->traceframe_usage;
14890
14891 return tp;
14892 }
14893
14894 /* Print information on tracepoint number TPNUM_EXP, or all if
14895 omitted. */
14896
14897 static void
14898 info_tracepoints_command (const char *args, int from_tty)
14899 {
14900 struct ui_out *uiout = current_uiout;
14901 int num_printed;
14902
14903 num_printed = breakpoint_1 (args, false, is_tracepoint);
14904
14905 if (num_printed == 0)
14906 {
14907 if (args == NULL || *args == '\0')
14908 uiout->message ("No tracepoints.\n");
14909 else
14910 uiout->message ("No tracepoint matching '%s'.\n", args);
14911 }
14912
14913 default_collect_info ();
14914 }
14915
14916 /* The 'enable trace' command enables tracepoints.
14917 Not supported by all targets. */
14918 static void
14919 enable_trace_command (const char *args, int from_tty)
14920 {
14921 enable_command (args, from_tty);
14922 }
14923
14924 /* The 'disable trace' command disables tracepoints.
14925 Not supported by all targets. */
14926 static void
14927 disable_trace_command (const char *args, int from_tty)
14928 {
14929 disable_command (args, from_tty);
14930 }
14931
14932 /* Remove a tracepoint (or all if no argument). */
14933 static void
14934 delete_trace_command (const char *arg, int from_tty)
14935 {
14936 struct breakpoint *b, *b_tmp;
14937
14938 dont_repeat ();
14939
14940 if (arg == 0)
14941 {
14942 int breaks_to_delete = 0;
14943
14944 /* Delete all breakpoints if no argument.
14945 Do not delete internal or call-dummy breakpoints, these
14946 have to be deleted with an explicit breakpoint number
14947 argument. */
14948 ALL_TRACEPOINTS (b)
14949 if (is_tracepoint (b) && user_breakpoint_p (b))
14950 {
14951 breaks_to_delete = 1;
14952 break;
14953 }
14954
14955 /* Ask user only if there are some breakpoints to delete. */
14956 if (!from_tty
14957 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14958 {
14959 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14960 if (is_tracepoint (b) && user_breakpoint_p (b))
14961 delete_breakpoint (b);
14962 }
14963 }
14964 else
14965 map_breakpoint_numbers
14966 (arg, [&] (breakpoint *br)
14967 {
14968 iterate_over_related_breakpoints (br, delete_breakpoint);
14969 });
14970 }
14971
14972 /* Helper function for trace_pass_command. */
14973
14974 static void
14975 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14976 {
14977 tp->pass_count = count;
14978 gdb::observers::breakpoint_modified.notify (tp);
14979 if (from_tty)
14980 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14981 tp->number, count);
14982 }
14983
14984 /* Set passcount for tracepoint.
14985
14986 First command argument is passcount, second is tracepoint number.
14987 If tracepoint number omitted, apply to most recently defined.
14988 Also accepts special argument "all". */
14989
14990 static void
14991 trace_pass_command (const char *args, int from_tty)
14992 {
14993 struct tracepoint *t1;
14994 ULONGEST count;
14995
14996 if (args == 0 || *args == 0)
14997 error (_("passcount command requires an "
14998 "argument (count + optional TP num)"));
14999
15000 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
15001
15002 args = skip_spaces (args);
15003 if (*args && strncasecmp (args, "all", 3) == 0)
15004 {
15005 struct breakpoint *b;
15006
15007 args += 3; /* Skip special argument "all". */
15008 if (*args)
15009 error (_("Junk at end of arguments."));
15010
15011 ALL_TRACEPOINTS (b)
15012 {
15013 t1 = (struct tracepoint *) b;
15014 trace_pass_set_count (t1, count, from_tty);
15015 }
15016 }
15017 else if (*args == '\0')
15018 {
15019 t1 = get_tracepoint_by_number (&args, NULL);
15020 if (t1)
15021 trace_pass_set_count (t1, count, from_tty);
15022 }
15023 else
15024 {
15025 number_or_range_parser parser (args);
15026 while (!parser.finished ())
15027 {
15028 t1 = get_tracepoint_by_number (&args, &parser);
15029 if (t1)
15030 trace_pass_set_count (t1, count, from_tty);
15031 }
15032 }
15033 }
15034
15035 struct tracepoint *
15036 get_tracepoint (int num)
15037 {
15038 struct breakpoint *t;
15039
15040 ALL_TRACEPOINTS (t)
15041 if (t->number == num)
15042 return (struct tracepoint *) t;
15043
15044 return NULL;
15045 }
15046
15047 /* Find the tracepoint with the given target-side number (which may be
15048 different from the tracepoint number after disconnecting and
15049 reconnecting). */
15050
15051 struct tracepoint *
15052 get_tracepoint_by_number_on_target (int num)
15053 {
15054 struct breakpoint *b;
15055
15056 ALL_TRACEPOINTS (b)
15057 {
15058 struct tracepoint *t = (struct tracepoint *) b;
15059
15060 if (t->number_on_target == num)
15061 return t;
15062 }
15063
15064 return NULL;
15065 }
15066
15067 /* Utility: parse a tracepoint number and look it up in the list.
15068 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15069 If the argument is missing, the most recent tracepoint
15070 (tracepoint_count) is returned. */
15071
15072 struct tracepoint *
15073 get_tracepoint_by_number (const char **arg,
15074 number_or_range_parser *parser)
15075 {
15076 struct breakpoint *t;
15077 int tpnum;
15078 const char *instring = arg == NULL ? NULL : *arg;
15079
15080 if (parser != NULL)
15081 {
15082 gdb_assert (!parser->finished ());
15083 tpnum = parser->get_number ();
15084 }
15085 else if (arg == NULL || *arg == NULL || ! **arg)
15086 tpnum = tracepoint_count;
15087 else
15088 tpnum = get_number (arg);
15089
15090 if (tpnum <= 0)
15091 {
15092 if (instring && *instring)
15093 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15094 instring);
15095 else
15096 printf_filtered (_("No previous tracepoint\n"));
15097 return NULL;
15098 }
15099
15100 ALL_TRACEPOINTS (t)
15101 if (t->number == tpnum)
15102 {
15103 return (struct tracepoint *) t;
15104 }
15105
15106 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15107 return NULL;
15108 }
15109
15110 void
15111 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15112 {
15113 if (b->thread != -1)
15114 fprintf_unfiltered (fp, " thread %d", b->thread);
15115
15116 if (b->task != 0)
15117 fprintf_unfiltered (fp, " task %d", b->task);
15118
15119 fprintf_unfiltered (fp, "\n");
15120 }
15121
15122 /* Save information on user settable breakpoints (watchpoints, etc) to
15123 a new script file named FILENAME. If FILTER is non-NULL, call it
15124 on each breakpoint and only include the ones for which it returns
15125 true. */
15126
15127 static void
15128 save_breakpoints (const char *filename, int from_tty,
15129 bool (*filter) (const struct breakpoint *))
15130 {
15131 struct breakpoint *tp;
15132 int any = 0;
15133 int extra_trace_bits = 0;
15134
15135 if (filename == 0 || *filename == 0)
15136 error (_("Argument required (file name in which to save)"));
15137
15138 /* See if we have anything to save. */
15139 ALL_BREAKPOINTS (tp)
15140 {
15141 /* Skip internal and momentary breakpoints. */
15142 if (!user_breakpoint_p (tp))
15143 continue;
15144
15145 /* If we have a filter, only save the breakpoints it accepts. */
15146 if (filter && !filter (tp))
15147 continue;
15148
15149 any = 1;
15150
15151 if (is_tracepoint (tp))
15152 {
15153 extra_trace_bits = 1;
15154
15155 /* We can stop searching. */
15156 break;
15157 }
15158 }
15159
15160 if (!any)
15161 {
15162 warning (_("Nothing to save."));
15163 return;
15164 }
15165
15166 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15167
15168 stdio_file fp;
15169
15170 if (!fp.open (expanded_filename.get (), "w"))
15171 error (_("Unable to open file '%s' for saving (%s)"),
15172 expanded_filename.get (), safe_strerror (errno));
15173
15174 if (extra_trace_bits)
15175 save_trace_state_variables (&fp);
15176
15177 ALL_BREAKPOINTS (tp)
15178 {
15179 /* Skip internal and momentary breakpoints. */
15180 if (!user_breakpoint_p (tp))
15181 continue;
15182
15183 /* If we have a filter, only save the breakpoints it accepts. */
15184 if (filter && !filter (tp))
15185 continue;
15186
15187 tp->ops->print_recreate (tp, &fp);
15188
15189 /* Note, we can't rely on tp->number for anything, as we can't
15190 assume the recreated breakpoint numbers will match. Use $bpnum
15191 instead. */
15192
15193 if (tp->cond_string)
15194 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15195
15196 if (tp->ignore_count)
15197 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15198
15199 if (tp->type != bp_dprintf && tp->commands)
15200 {
15201 fp.puts (" commands\n");
15202
15203 current_uiout->redirect (&fp);
15204 try
15205 {
15206 print_command_lines (current_uiout, tp->commands.get (), 2);
15207 }
15208 catch (const gdb_exception &ex)
15209 {
15210 current_uiout->redirect (NULL);
15211 throw;
15212 }
15213
15214 current_uiout->redirect (NULL);
15215 fp.puts (" end\n");
15216 }
15217
15218 if (tp->enable_state == bp_disabled)
15219 fp.puts ("disable $bpnum\n");
15220
15221 /* If this is a multi-location breakpoint, check if the locations
15222 should be individually disabled. Watchpoint locations are
15223 special, and not user visible. */
15224 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15225 {
15226 struct bp_location *loc;
15227 int n = 1;
15228
15229 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15230 if (!loc->enabled)
15231 fp.printf ("disable $bpnum.%d\n", n);
15232 }
15233 }
15234
15235 if (extra_trace_bits && *default_collect)
15236 fp.printf ("set default-collect %s\n", default_collect);
15237
15238 if (from_tty)
15239 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15240 }
15241
15242 /* The `save breakpoints' command. */
15243
15244 static void
15245 save_breakpoints_command (const char *args, int from_tty)
15246 {
15247 save_breakpoints (args, from_tty, NULL);
15248 }
15249
15250 /* The `save tracepoints' command. */
15251
15252 static void
15253 save_tracepoints_command (const char *args, int from_tty)
15254 {
15255 save_breakpoints (args, from_tty, is_tracepoint);
15256 }
15257
15258 /* Create a vector of all tracepoints. */
15259
15260 std::vector<breakpoint *>
15261 all_tracepoints (void)
15262 {
15263 std::vector<breakpoint *> tp_vec;
15264 struct breakpoint *tp;
15265
15266 ALL_TRACEPOINTS (tp)
15267 {
15268 tp_vec.push_back (tp);
15269 }
15270
15271 return tp_vec;
15272 }
15273
15274 \f
15275 /* This help string is used to consolidate all the help string for specifying
15276 locations used by several commands. */
15277
15278 #define LOCATION_HELP_STRING \
15279 "Linespecs are colon-separated lists of location parameters, such as\n\
15280 source filename, function name, label name, and line number.\n\
15281 Example: To specify the start of a label named \"the_top\" in the\n\
15282 function \"fact\" in the file \"factorial.c\", use\n\
15283 \"factorial.c:fact:the_top\".\n\
15284 \n\
15285 Address locations begin with \"*\" and specify an exact address in the\n\
15286 program. Example: To specify the fourth byte past the start function\n\
15287 \"main\", use \"*main + 4\".\n\
15288 \n\
15289 Explicit locations are similar to linespecs but use an option/argument\n\
15290 syntax to specify location parameters.\n\
15291 Example: To specify the start of the label named \"the_top\" in the\n\
15292 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15293 -function fact -label the_top\".\n\
15294 \n\
15295 By default, a specified function is matched against the program's\n\
15296 functions in all scopes. For C++, this means in all namespaces and\n\
15297 classes. For Ada, this means in all packages. E.g., in C++,\n\
15298 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15299 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15300 specified name as a complete fully-qualified name instead."
15301
15302 /* This help string is used for the break, hbreak, tbreak and thbreak
15303 commands. It is defined as a macro to prevent duplication.
15304 COMMAND should be a string constant containing the name of the
15305 command. */
15306
15307 #define BREAK_ARGS_HELP(command) \
15308 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM]\n\
15309 \t[-force-condition] [if CONDITION]\n\
15310 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15311 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15312 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15313 `-probe-dtrace' (for a DTrace probe).\n\
15314 LOCATION may be a linespec, address, or explicit location as described\n\
15315 below.\n\
15316 \n\
15317 With no LOCATION, uses current execution address of the selected\n\
15318 stack frame. This is useful for breaking on return to a stack frame.\n\
15319 \n\
15320 THREADNUM is the number from \"info threads\".\n\
15321 CONDITION is a boolean expression.\n\
15322 \n\
15323 With the \"-force-condition\" flag, the condition is defined even when\n\
15324 it is invalid for all current locations.\n\
15325 \n" LOCATION_HELP_STRING "\n\n\
15326 Multiple breakpoints at one place are permitted, and useful if their\n\
15327 conditions are different.\n\
15328 \n\
15329 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15330
15331 /* List of subcommands for "catch". */
15332 static struct cmd_list_element *catch_cmdlist;
15333
15334 /* List of subcommands for "tcatch". */
15335 static struct cmd_list_element *tcatch_cmdlist;
15336
15337 void
15338 add_catch_command (const char *name, const char *docstring,
15339 cmd_const_sfunc_ftype *sfunc,
15340 completer_ftype *completer,
15341 void *user_data_catch,
15342 void *user_data_tcatch)
15343 {
15344 struct cmd_list_element *command;
15345
15346 command = add_cmd (name, class_breakpoint, docstring,
15347 &catch_cmdlist);
15348 set_cmd_sfunc (command, sfunc);
15349 set_cmd_context (command, user_data_catch);
15350 set_cmd_completer (command, completer);
15351
15352 command = add_cmd (name, class_breakpoint, docstring,
15353 &tcatch_cmdlist);
15354 set_cmd_sfunc (command, sfunc);
15355 set_cmd_context (command, user_data_tcatch);
15356 set_cmd_completer (command, completer);
15357 }
15358
15359 struct breakpoint *
15360 iterate_over_breakpoints (gdb::function_view<bool (breakpoint *)> callback)
15361 {
15362 struct breakpoint *b, *b_tmp;
15363
15364 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15365 {
15366 if (callback (b))
15367 return b;
15368 }
15369
15370 return NULL;
15371 }
15372
15373 /* Zero if any of the breakpoint's locations could be a location where
15374 functions have been inlined, nonzero otherwise. */
15375
15376 static int
15377 is_non_inline_function (struct breakpoint *b)
15378 {
15379 /* The shared library event breakpoint is set on the address of a
15380 non-inline function. */
15381 if (b->type == bp_shlib_event)
15382 return 1;
15383
15384 return 0;
15385 }
15386
15387 /* Nonzero if the specified PC cannot be a location where functions
15388 have been inlined. */
15389
15390 int
15391 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15392 const struct target_waitstatus *ws)
15393 {
15394 struct breakpoint *b;
15395 struct bp_location *bl;
15396
15397 ALL_BREAKPOINTS (b)
15398 {
15399 if (!is_non_inline_function (b))
15400 continue;
15401
15402 for (bl = b->loc; bl != NULL; bl = bl->next)
15403 {
15404 if (!bl->shlib_disabled
15405 && bpstat_check_location (bl, aspace, pc, ws))
15406 return 1;
15407 }
15408 }
15409
15410 return 0;
15411 }
15412
15413 /* Remove any references to OBJFILE which is going to be freed. */
15414
15415 void
15416 breakpoint_free_objfile (struct objfile *objfile)
15417 {
15418 struct bp_location **locp, *loc;
15419
15420 ALL_BP_LOCATIONS (loc, locp)
15421 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15422 loc->symtab = NULL;
15423 }
15424
15425 void
15426 initialize_breakpoint_ops (void)
15427 {
15428 static int initialized = 0;
15429
15430 struct breakpoint_ops *ops;
15431
15432 if (initialized)
15433 return;
15434 initialized = 1;
15435
15436 /* The breakpoint_ops structure to be inherit by all kinds of
15437 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15438 internal and momentary breakpoints, etc.). */
15439 ops = &bkpt_base_breakpoint_ops;
15440 *ops = base_breakpoint_ops;
15441 ops->re_set = bkpt_re_set;
15442 ops->insert_location = bkpt_insert_location;
15443 ops->remove_location = bkpt_remove_location;
15444 ops->breakpoint_hit = bkpt_breakpoint_hit;
15445 ops->create_sals_from_location = bkpt_create_sals_from_location;
15446 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15447 ops->decode_location = bkpt_decode_location;
15448
15449 /* The breakpoint_ops structure to be used in regular breakpoints. */
15450 ops = &bkpt_breakpoint_ops;
15451 *ops = bkpt_base_breakpoint_ops;
15452 ops->re_set = bkpt_re_set;
15453 ops->resources_needed = bkpt_resources_needed;
15454 ops->print_it = bkpt_print_it;
15455 ops->print_mention = bkpt_print_mention;
15456 ops->print_recreate = bkpt_print_recreate;
15457
15458 /* Ranged breakpoints. */
15459 ops = &ranged_breakpoint_ops;
15460 *ops = bkpt_breakpoint_ops;
15461 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15462 ops->resources_needed = resources_needed_ranged_breakpoint;
15463 ops->print_it = print_it_ranged_breakpoint;
15464 ops->print_one = print_one_ranged_breakpoint;
15465 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15466 ops->print_mention = print_mention_ranged_breakpoint;
15467 ops->print_recreate = print_recreate_ranged_breakpoint;
15468
15469 /* Internal breakpoints. */
15470 ops = &internal_breakpoint_ops;
15471 *ops = bkpt_base_breakpoint_ops;
15472 ops->re_set = internal_bkpt_re_set;
15473 ops->check_status = internal_bkpt_check_status;
15474 ops->print_it = internal_bkpt_print_it;
15475 ops->print_mention = internal_bkpt_print_mention;
15476
15477 /* Momentary breakpoints. */
15478 ops = &momentary_breakpoint_ops;
15479 *ops = bkpt_base_breakpoint_ops;
15480 ops->re_set = momentary_bkpt_re_set;
15481 ops->check_status = momentary_bkpt_check_status;
15482 ops->print_it = momentary_bkpt_print_it;
15483 ops->print_mention = momentary_bkpt_print_mention;
15484
15485 /* Probe breakpoints. */
15486 ops = &bkpt_probe_breakpoint_ops;
15487 *ops = bkpt_breakpoint_ops;
15488 ops->insert_location = bkpt_probe_insert_location;
15489 ops->remove_location = bkpt_probe_remove_location;
15490 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15491 ops->decode_location = bkpt_probe_decode_location;
15492
15493 /* Watchpoints. */
15494 ops = &watchpoint_breakpoint_ops;
15495 *ops = base_breakpoint_ops;
15496 ops->re_set = re_set_watchpoint;
15497 ops->insert_location = insert_watchpoint;
15498 ops->remove_location = remove_watchpoint;
15499 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15500 ops->check_status = check_status_watchpoint;
15501 ops->resources_needed = resources_needed_watchpoint;
15502 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15503 ops->print_it = print_it_watchpoint;
15504 ops->print_mention = print_mention_watchpoint;
15505 ops->print_recreate = print_recreate_watchpoint;
15506 ops->explains_signal = explains_signal_watchpoint;
15507
15508 /* Masked watchpoints. */
15509 ops = &masked_watchpoint_breakpoint_ops;
15510 *ops = watchpoint_breakpoint_ops;
15511 ops->insert_location = insert_masked_watchpoint;
15512 ops->remove_location = remove_masked_watchpoint;
15513 ops->resources_needed = resources_needed_masked_watchpoint;
15514 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15515 ops->print_it = print_it_masked_watchpoint;
15516 ops->print_one_detail = print_one_detail_masked_watchpoint;
15517 ops->print_mention = print_mention_masked_watchpoint;
15518 ops->print_recreate = print_recreate_masked_watchpoint;
15519
15520 /* Tracepoints. */
15521 ops = &tracepoint_breakpoint_ops;
15522 *ops = base_breakpoint_ops;
15523 ops->re_set = tracepoint_re_set;
15524 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15525 ops->print_one_detail = tracepoint_print_one_detail;
15526 ops->print_mention = tracepoint_print_mention;
15527 ops->print_recreate = tracepoint_print_recreate;
15528 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15529 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15530 ops->decode_location = tracepoint_decode_location;
15531
15532 /* Probe tracepoints. */
15533 ops = &tracepoint_probe_breakpoint_ops;
15534 *ops = tracepoint_breakpoint_ops;
15535 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15536 ops->decode_location = tracepoint_probe_decode_location;
15537
15538 /* Static tracepoints with marker (`-m'). */
15539 ops = &strace_marker_breakpoint_ops;
15540 *ops = tracepoint_breakpoint_ops;
15541 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15542 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15543 ops->decode_location = strace_marker_decode_location;
15544
15545 /* Fork catchpoints. */
15546 ops = &catch_fork_breakpoint_ops;
15547 *ops = base_breakpoint_ops;
15548 ops->insert_location = insert_catch_fork;
15549 ops->remove_location = remove_catch_fork;
15550 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15551 ops->print_it = print_it_catch_fork;
15552 ops->print_one = print_one_catch_fork;
15553 ops->print_mention = print_mention_catch_fork;
15554 ops->print_recreate = print_recreate_catch_fork;
15555
15556 /* Vfork catchpoints. */
15557 ops = &catch_vfork_breakpoint_ops;
15558 *ops = base_breakpoint_ops;
15559 ops->insert_location = insert_catch_vfork;
15560 ops->remove_location = remove_catch_vfork;
15561 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15562 ops->print_it = print_it_catch_vfork;
15563 ops->print_one = print_one_catch_vfork;
15564 ops->print_mention = print_mention_catch_vfork;
15565 ops->print_recreate = print_recreate_catch_vfork;
15566
15567 /* Exec catchpoints. */
15568 ops = &catch_exec_breakpoint_ops;
15569 *ops = base_breakpoint_ops;
15570 ops->insert_location = insert_catch_exec;
15571 ops->remove_location = remove_catch_exec;
15572 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15573 ops->print_it = print_it_catch_exec;
15574 ops->print_one = print_one_catch_exec;
15575 ops->print_mention = print_mention_catch_exec;
15576 ops->print_recreate = print_recreate_catch_exec;
15577
15578 /* Solib-related catchpoints. */
15579 ops = &catch_solib_breakpoint_ops;
15580 *ops = base_breakpoint_ops;
15581 ops->insert_location = insert_catch_solib;
15582 ops->remove_location = remove_catch_solib;
15583 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15584 ops->check_status = check_status_catch_solib;
15585 ops->print_it = print_it_catch_solib;
15586 ops->print_one = print_one_catch_solib;
15587 ops->print_mention = print_mention_catch_solib;
15588 ops->print_recreate = print_recreate_catch_solib;
15589
15590 ops = &dprintf_breakpoint_ops;
15591 *ops = bkpt_base_breakpoint_ops;
15592 ops->re_set = dprintf_re_set;
15593 ops->resources_needed = bkpt_resources_needed;
15594 ops->print_it = bkpt_print_it;
15595 ops->print_mention = bkpt_print_mention;
15596 ops->print_recreate = dprintf_print_recreate;
15597 ops->after_condition_true = dprintf_after_condition_true;
15598 ops->breakpoint_hit = dprintf_breakpoint_hit;
15599 }
15600
15601 /* Chain containing all defined "enable breakpoint" subcommands. */
15602
15603 static struct cmd_list_element *enablebreaklist = NULL;
15604
15605 /* See breakpoint.h. */
15606
15607 cmd_list_element *commands_cmd_element = nullptr;
15608
15609 void _initialize_breakpoint ();
15610 void
15611 _initialize_breakpoint ()
15612 {
15613 struct cmd_list_element *c;
15614
15615 initialize_breakpoint_ops ();
15616
15617 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15618 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15619 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15620
15621 breakpoint_chain = 0;
15622 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15623 before a breakpoint is set. */
15624 breakpoint_count = 0;
15625
15626 tracepoint_count = 0;
15627
15628 add_com ("ignore", class_breakpoint, ignore_command, _("\
15629 Set ignore-count of breakpoint number N to COUNT.\n\
15630 Usage is `ignore N COUNT'."));
15631
15632 commands_cmd_element = add_com ("commands", class_breakpoint,
15633 commands_command, _("\
15634 Set commands to be executed when the given breakpoints are hit.\n\
15635 Give a space-separated breakpoint list as argument after \"commands\".\n\
15636 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15637 (e.g. `5-7').\n\
15638 With no argument, the targeted breakpoint is the last one set.\n\
15639 The commands themselves follow starting on the next line.\n\
15640 Type a line containing \"end\" to indicate the end of them.\n\
15641 Give \"silent\" as the first line to make the breakpoint silent;\n\
15642 then no output is printed when it is hit, except what the commands print."));
15643
15644 const auto cc_opts = make_condition_command_options_def_group (nullptr);
15645 static std::string condition_command_help
15646 = gdb::option::build_help (_("\
15647 Specify breakpoint number N to break only if COND is true.\n\
15648 Usage is `condition [OPTION] N COND', where N is an integer and COND\n\
15649 is an expression to be evaluated whenever breakpoint N is reached.\n\
15650 \n\
15651 Options:\n\
15652 %OPTIONS%"), cc_opts);
15653
15654 c = add_com ("condition", class_breakpoint, condition_command,
15655 condition_command_help.c_str ());
15656 set_cmd_completer_handle_brkchars (c, condition_completer);
15657
15658 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15659 Set a temporary breakpoint.\n\
15660 Like \"break\" except the breakpoint is only temporary,\n\
15661 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15662 by using \"enable delete\" on the breakpoint number.\n\
15663 \n"
15664 BREAK_ARGS_HELP ("tbreak")));
15665 set_cmd_completer (c, location_completer);
15666
15667 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15668 Set a hardware assisted breakpoint.\n\
15669 Like \"break\" except the breakpoint requires hardware support,\n\
15670 some target hardware may not have this support.\n\
15671 \n"
15672 BREAK_ARGS_HELP ("hbreak")));
15673 set_cmd_completer (c, location_completer);
15674
15675 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15676 Set a temporary hardware assisted breakpoint.\n\
15677 Like \"hbreak\" except the breakpoint is only temporary,\n\
15678 so it will be deleted when hit.\n\
15679 \n"
15680 BREAK_ARGS_HELP ("thbreak")));
15681 set_cmd_completer (c, location_completer);
15682
15683 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15684 Enable all or some breakpoints.\n\
15685 Usage: enable [BREAKPOINTNUM]...\n\
15686 Give breakpoint numbers (separated by spaces) as arguments.\n\
15687 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15688 This is used to cancel the effect of the \"disable\" command.\n\
15689 With a subcommand you can enable temporarily."),
15690 &enablelist, "enable ", 1, &cmdlist);
15691
15692 add_com_alias ("en", "enable", class_breakpoint, 1);
15693
15694 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15695 Enable all or some breakpoints.\n\
15696 Usage: enable breakpoints [BREAKPOINTNUM]...\n\
15697 Give breakpoint numbers (separated by spaces) as arguments.\n\
15698 This is used to cancel the effect of the \"disable\" command.\n\
15699 May be abbreviated to simply \"enable\"."),
15700 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15701
15702 add_cmd ("once", no_class, enable_once_command, _("\
15703 Enable some breakpoints for one hit.\n\
15704 Usage: enable breakpoints once BREAKPOINTNUM...\n\
15705 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15706 &enablebreaklist);
15707
15708 add_cmd ("delete", no_class, enable_delete_command, _("\
15709 Enable some breakpoints and delete when hit.\n\
15710 Usage: enable breakpoints delete BREAKPOINTNUM...\n\
15711 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15712 &enablebreaklist);
15713
15714 add_cmd ("count", no_class, enable_count_command, _("\
15715 Enable some breakpoints for COUNT hits.\n\
15716 Usage: enable breakpoints count COUNT BREAKPOINTNUM...\n\
15717 If a breakpoint is hit while enabled in this fashion,\n\
15718 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15719 &enablebreaklist);
15720
15721 add_cmd ("delete", no_class, enable_delete_command, _("\
15722 Enable some breakpoints and delete when hit.\n\
15723 Usage: enable delete BREAKPOINTNUM...\n\
15724 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15725 &enablelist);
15726
15727 add_cmd ("once", no_class, enable_once_command, _("\
15728 Enable some breakpoints for one hit.\n\
15729 Usage: enable once BREAKPOINTNUM...\n\
15730 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15731 &enablelist);
15732
15733 add_cmd ("count", no_class, enable_count_command, _("\
15734 Enable some breakpoints for COUNT hits.\n\
15735 Usage: enable count COUNT BREAKPOINTNUM...\n\
15736 If a breakpoint is hit while enabled in this fashion,\n\
15737 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15738 &enablelist);
15739
15740 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15741 Disable all or some breakpoints.\n\
15742 Usage: disable [BREAKPOINTNUM]...\n\
15743 Arguments are breakpoint numbers with spaces in between.\n\
15744 To disable all breakpoints, give no argument.\n\
15745 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15746 &disablelist, "disable ", 1, &cmdlist);
15747 add_com_alias ("dis", "disable", class_breakpoint, 1);
15748 add_com_alias ("disa", "disable", class_breakpoint, 1);
15749
15750 add_cmd ("breakpoints", class_breakpoint, disable_command, _("\
15751 Disable all or some breakpoints.\n\
15752 Usage: disable breakpoints [BREAKPOINTNUM]...\n\
15753 Arguments are breakpoint numbers with spaces in between.\n\
15754 To disable all breakpoints, give no argument.\n\
15755 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15756 This command may be abbreviated \"disable\"."),
15757 &disablelist);
15758
15759 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15760 Delete all or some breakpoints.\n\
15761 Usage: delete [BREAKPOINTNUM]...\n\
15762 Arguments are breakpoint numbers with spaces in between.\n\
15763 To delete all breakpoints, give no argument.\n\
15764 \n\
15765 Also a prefix command for deletion of other GDB objects."),
15766 &deletelist, "delete ", 1, &cmdlist);
15767 add_com_alias ("d", "delete", class_breakpoint, 1);
15768 add_com_alias ("del", "delete", class_breakpoint, 1);
15769
15770 add_cmd ("breakpoints", class_breakpoint, delete_command, _("\
15771 Delete all or some breakpoints or auto-display expressions.\n\
15772 Usage: delete breakpoints [BREAKPOINTNUM]...\n\
15773 Arguments are breakpoint numbers with spaces in between.\n\
15774 To delete all breakpoints, give no argument.\n\
15775 This command may be abbreviated \"delete\"."),
15776 &deletelist);
15777
15778 add_com ("clear", class_breakpoint, clear_command, _("\
15779 Clear breakpoint at specified location.\n\
15780 Argument may be a linespec, explicit, or address location as described below.\n\
15781 \n\
15782 With no argument, clears all breakpoints in the line that the selected frame\n\
15783 is executing in.\n"
15784 "\n" LOCATION_HELP_STRING "\n\n\
15785 See also the \"delete\" command which clears breakpoints by number."));
15786 add_com_alias ("cl", "clear", class_breakpoint, 1);
15787
15788 c = add_com ("break", class_breakpoint, break_command, _("\
15789 Set breakpoint at specified location.\n"
15790 BREAK_ARGS_HELP ("break")));
15791 set_cmd_completer (c, location_completer);
15792
15793 add_com_alias ("b", "break", class_run, 1);
15794 add_com_alias ("br", "break", class_run, 1);
15795 add_com_alias ("bre", "break", class_run, 1);
15796 add_com_alias ("brea", "break", class_run, 1);
15797
15798 if (dbx_commands)
15799 {
15800 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15801 Break in function/address or break at a line in the current file."),
15802 &stoplist, "stop ", 1, &cmdlist);
15803 add_cmd ("in", class_breakpoint, stopin_command,
15804 _("Break in function or address."), &stoplist);
15805 add_cmd ("at", class_breakpoint, stopat_command,
15806 _("Break at a line in the current file."), &stoplist);
15807 add_com ("status", class_info, info_breakpoints_command, _("\
15808 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15809 The \"Type\" column indicates one of:\n\
15810 \tbreakpoint - normal breakpoint\n\
15811 \twatchpoint - watchpoint\n\
15812 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15813 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15814 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15815 address and file/line number respectively.\n\
15816 \n\
15817 Convenience variable \"$_\" and default examine address for \"x\"\n\
15818 are set to the address of the last breakpoint listed unless the command\n\
15819 is prefixed with \"server \".\n\n\
15820 Convenience variable \"$bpnum\" contains the number of the last\n\
15821 breakpoint set."));
15822 }
15823
15824 add_info ("breakpoints", info_breakpoints_command, _("\
15825 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15826 The \"Type\" column indicates one of:\n\
15827 \tbreakpoint - normal breakpoint\n\
15828 \twatchpoint - watchpoint\n\
15829 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15830 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15831 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15832 address and file/line number respectively.\n\
15833 \n\
15834 Convenience variable \"$_\" and default examine address for \"x\"\n\
15835 are set to the address of the last breakpoint listed unless the command\n\
15836 is prefixed with \"server \".\n\n\
15837 Convenience variable \"$bpnum\" contains the number of the last\n\
15838 breakpoint set."));
15839
15840 add_info_alias ("b", "breakpoints", 1);
15841
15842 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15843 Status of all breakpoints, or breakpoint number NUMBER.\n\
15844 The \"Type\" column indicates one of:\n\
15845 \tbreakpoint - normal breakpoint\n\
15846 \twatchpoint - watchpoint\n\
15847 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15848 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15849 \tuntil - internal breakpoint used by the \"until\" command\n\
15850 \tfinish - internal breakpoint used by the \"finish\" command\n\
15851 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15852 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15853 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15854 address and file/line number respectively.\n\
15855 \n\
15856 Convenience variable \"$_\" and default examine address for \"x\"\n\
15857 are set to the address of the last breakpoint listed unless the command\n\
15858 is prefixed with \"server \".\n\n\
15859 Convenience variable \"$bpnum\" contains the number of the last\n\
15860 breakpoint set."),
15861 &maintenanceinfolist);
15862
15863 add_basic_prefix_cmd ("catch", class_breakpoint, _("\
15864 Set catchpoints to catch events."),
15865 &catch_cmdlist, "catch ",
15866 0/*allow-unknown*/, &cmdlist);
15867
15868 add_basic_prefix_cmd ("tcatch", class_breakpoint, _("\
15869 Set temporary catchpoints to catch events."),
15870 &tcatch_cmdlist, "tcatch ",
15871 0/*allow-unknown*/, &cmdlist);
15872
15873 add_catch_command ("fork", _("Catch calls to fork."),
15874 catch_fork_command_1,
15875 NULL,
15876 (void *) (uintptr_t) catch_fork_permanent,
15877 (void *) (uintptr_t) catch_fork_temporary);
15878 add_catch_command ("vfork", _("Catch calls to vfork."),
15879 catch_fork_command_1,
15880 NULL,
15881 (void *) (uintptr_t) catch_vfork_permanent,
15882 (void *) (uintptr_t) catch_vfork_temporary);
15883 add_catch_command ("exec", _("Catch calls to exec."),
15884 catch_exec_command_1,
15885 NULL,
15886 CATCH_PERMANENT,
15887 CATCH_TEMPORARY);
15888 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15889 Usage: catch load [REGEX]\n\
15890 If REGEX is given, only stop for libraries matching the regular expression."),
15891 catch_load_command_1,
15892 NULL,
15893 CATCH_PERMANENT,
15894 CATCH_TEMPORARY);
15895 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15896 Usage: catch unload [REGEX]\n\
15897 If REGEX is given, only stop for libraries matching the regular expression."),
15898 catch_unload_command_1,
15899 NULL,
15900 CATCH_PERMANENT,
15901 CATCH_TEMPORARY);
15902
15903 const auto opts = make_watch_options_def_group (nullptr);
15904
15905 static const std::string watch_help = gdb::option::build_help (_("\
15906 Set a watchpoint for EXPRESSION.\n\
15907 Usage: watch [-location] EXPRESSION\n\
15908 \n\
15909 Options:\n\
15910 %OPTIONS%\n\
15911 \n\
15912 A watchpoint stops execution of your program whenever the value of\n\
15913 an expression changes."), opts);
15914 c = add_com ("watch", class_breakpoint, watch_command,
15915 watch_help.c_str ());
15916 set_cmd_completer_handle_brkchars (c, watch_command_completer);
15917
15918 static const std::string rwatch_help = gdb::option::build_help (_("\
15919 Set a read watchpoint for EXPRESSION.\n\
15920 Usage: rwatch [-location] EXPRESSION\n\
15921 \n\
15922 Options:\n\
15923 %OPTIONS%\n\
15924 \n\
15925 A read watchpoint stops execution of your program whenever the value of\n\
15926 an expression is read."), opts);
15927 c = add_com ("rwatch", class_breakpoint, rwatch_command,
15928 rwatch_help.c_str ());
15929 set_cmd_completer_handle_brkchars (c, watch_command_completer);
15930
15931 static const std::string awatch_help = gdb::option::build_help (_("\
15932 Set an access watchpoint for EXPRESSION.\n\
15933 Usage: awatch [-location] EXPRESSION\n\
15934 \n\
15935 Options:\n\
15936 %OPTIONS%\n\
15937 \n\
15938 An access watchpoint stops execution of your program whenever the value\n\
15939 of an expression is either read or written."), opts);
15940 c = add_com ("awatch", class_breakpoint, awatch_command,
15941 awatch_help.c_str ());
15942 set_cmd_completer_handle_brkchars (c, watch_command_completer);
15943
15944 add_info ("watchpoints", info_watchpoints_command, _("\
15945 Status of specified watchpoints (all watchpoints if no argument)."));
15946
15947 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15948 respond to changes - contrary to the description. */
15949 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15950 &can_use_hw_watchpoints, _("\
15951 Set debugger's willingness to use watchpoint hardware."), _("\
15952 Show debugger's willingness to use watchpoint hardware."), _("\
15953 If zero, gdb will not use hardware for new watchpoints, even if\n\
15954 such is available. (However, any hardware watchpoints that were\n\
15955 created before setting this to nonzero, will continue to use watchpoint\n\
15956 hardware.)"),
15957 NULL,
15958 show_can_use_hw_watchpoints,
15959 &setlist, &showlist);
15960
15961 can_use_hw_watchpoints = 1;
15962
15963 /* Tracepoint manipulation commands. */
15964
15965 c = add_com ("trace", class_breakpoint, trace_command, _("\
15966 Set a tracepoint at specified location.\n\
15967 \n"
15968 BREAK_ARGS_HELP ("trace") "\n\
15969 Do \"help tracepoints\" for info on other tracepoint commands."));
15970 set_cmd_completer (c, location_completer);
15971
15972 add_com_alias ("tp", "trace", class_breakpoint, 0);
15973 add_com_alias ("tr", "trace", class_breakpoint, 1);
15974 add_com_alias ("tra", "trace", class_breakpoint, 1);
15975 add_com_alias ("trac", "trace", class_breakpoint, 1);
15976
15977 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15978 Set a fast tracepoint at specified location.\n\
15979 \n"
15980 BREAK_ARGS_HELP ("ftrace") "\n\
15981 Do \"help tracepoints\" for info on other tracepoint commands."));
15982 set_cmd_completer (c, location_completer);
15983
15984 c = add_com ("strace", class_breakpoint, strace_command, _("\
15985 Set a static tracepoint at location or marker.\n\
15986 \n\
15987 strace [LOCATION] [if CONDITION]\n\
15988 LOCATION may be a linespec, explicit, or address location (described below) \n\
15989 or -m MARKER_ID.\n\n\
15990 If a marker id is specified, probe the marker with that name. With\n\
15991 no LOCATION, uses current execution address of the selected stack frame.\n\
15992 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15993 This collects arbitrary user data passed in the probe point call to the\n\
15994 tracing library. You can inspect it when analyzing the trace buffer,\n\
15995 by printing the $_sdata variable like any other convenience variable.\n\
15996 \n\
15997 CONDITION is a boolean expression.\n\
15998 \n" LOCATION_HELP_STRING "\n\n\
15999 Multiple tracepoints at one place are permitted, and useful if their\n\
16000 conditions are different.\n\
16001 \n\
16002 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16003 Do \"help tracepoints\" for info on other tracepoint commands."));
16004 set_cmd_completer (c, location_completer);
16005
16006 add_info ("tracepoints", info_tracepoints_command, _("\
16007 Status of specified tracepoints (all tracepoints if no argument).\n\
16008 Convenience variable \"$tpnum\" contains the number of the\n\
16009 last tracepoint set."));
16010
16011 add_info_alias ("tp", "tracepoints", 1);
16012
16013 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16014 Delete specified tracepoints.\n\
16015 Arguments are tracepoint numbers, separated by spaces.\n\
16016 No argument means delete all tracepoints."),
16017 &deletelist);
16018 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16019
16020 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16021 Disable specified tracepoints.\n\
16022 Arguments are tracepoint numbers, separated by spaces.\n\
16023 No argument means disable all tracepoints."),
16024 &disablelist);
16025 deprecate_cmd (c, "disable");
16026
16027 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16028 Enable specified tracepoints.\n\
16029 Arguments are tracepoint numbers, separated by spaces.\n\
16030 No argument means enable all tracepoints."),
16031 &enablelist);
16032 deprecate_cmd (c, "enable");
16033
16034 add_com ("passcount", class_trace, trace_pass_command, _("\
16035 Set the passcount for a tracepoint.\n\
16036 The trace will end when the tracepoint has been passed 'count' times.\n\
16037 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16038 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16039
16040 add_basic_prefix_cmd ("save", class_breakpoint,
16041 _("Save breakpoint definitions as a script."),
16042 &save_cmdlist, "save ",
16043 0/*allow-unknown*/, &cmdlist);
16044
16045 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16046 Save current breakpoint definitions as a script.\n\
16047 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16048 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16049 session to restore them."),
16050 &save_cmdlist);
16051 set_cmd_completer (c, filename_completer);
16052
16053 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16054 Save current tracepoint definitions as a script.\n\
16055 Use the 'source' command in another debug session to restore them."),
16056 &save_cmdlist);
16057 set_cmd_completer (c, filename_completer);
16058
16059 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16060 deprecate_cmd (c, "save tracepoints");
16061
16062 add_basic_prefix_cmd ("breakpoint", class_maintenance, _("\
16063 Breakpoint specific settings.\n\
16064 Configure various breakpoint-specific variables such as\n\
16065 pending breakpoint behavior."),
16066 &breakpoint_set_cmdlist, "set breakpoint ",
16067 0/*allow-unknown*/, &setlist);
16068 add_show_prefix_cmd ("breakpoint", class_maintenance, _("\
16069 Breakpoint specific settings.\n\
16070 Configure various breakpoint-specific variables such as\n\
16071 pending breakpoint behavior."),
16072 &breakpoint_show_cmdlist, "show breakpoint ",
16073 0/*allow-unknown*/, &showlist);
16074
16075 add_setshow_auto_boolean_cmd ("pending", no_class,
16076 &pending_break_support, _("\
16077 Set debugger's behavior regarding pending breakpoints."), _("\
16078 Show debugger's behavior regarding pending breakpoints."), _("\
16079 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16080 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16081 an error. If auto, an unrecognized breakpoint location results in a\n\
16082 user-query to see if a pending breakpoint should be created."),
16083 NULL,
16084 show_pending_break_support,
16085 &breakpoint_set_cmdlist,
16086 &breakpoint_show_cmdlist);
16087
16088 pending_break_support = AUTO_BOOLEAN_AUTO;
16089
16090 add_setshow_boolean_cmd ("auto-hw", no_class,
16091 &automatic_hardware_breakpoints, _("\
16092 Set automatic usage of hardware breakpoints."), _("\
16093 Show automatic usage of hardware breakpoints."), _("\
16094 If set, the debugger will automatically use hardware breakpoints for\n\
16095 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16096 a warning will be emitted for such breakpoints."),
16097 NULL,
16098 show_automatic_hardware_breakpoints,
16099 &breakpoint_set_cmdlist,
16100 &breakpoint_show_cmdlist);
16101
16102 add_setshow_boolean_cmd ("always-inserted", class_support,
16103 &always_inserted_mode, _("\
16104 Set mode for inserting breakpoints."), _("\
16105 Show mode for inserting breakpoints."), _("\
16106 When this mode is on, breakpoints are inserted immediately as soon as\n\
16107 they're created, kept inserted even when execution stops, and removed\n\
16108 only when the user deletes them. When this mode is off (the default),\n\
16109 breakpoints are inserted only when execution continues, and removed\n\
16110 when execution stops."),
16111 NULL,
16112 &show_always_inserted_mode,
16113 &breakpoint_set_cmdlist,
16114 &breakpoint_show_cmdlist);
16115
16116 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16117 condition_evaluation_enums,
16118 &condition_evaluation_mode_1, _("\
16119 Set mode of breakpoint condition evaluation."), _("\
16120 Show mode of breakpoint condition evaluation."), _("\
16121 When this is set to \"host\", breakpoint conditions will be\n\
16122 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16123 breakpoint conditions will be downloaded to the target (if the target\n\
16124 supports such feature) and conditions will be evaluated on the target's side.\n\
16125 If this is set to \"auto\" (default), this will be automatically set to\n\
16126 \"target\" if it supports condition evaluation, otherwise it will\n\
16127 be set to \"host\"."),
16128 &set_condition_evaluation_mode,
16129 &show_condition_evaluation_mode,
16130 &breakpoint_set_cmdlist,
16131 &breakpoint_show_cmdlist);
16132
16133 add_com ("break-range", class_breakpoint, break_range_command, _("\
16134 Set a breakpoint for an address range.\n\
16135 break-range START-LOCATION, END-LOCATION\n\
16136 where START-LOCATION and END-LOCATION can be one of the following:\n\
16137 LINENUM, for that line in the current file,\n\
16138 FILE:LINENUM, for that line in that file,\n\
16139 +OFFSET, for that number of lines after the current line\n\
16140 or the start of the range\n\
16141 FUNCTION, for the first line in that function,\n\
16142 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16143 *ADDRESS, for the instruction at that address.\n\
16144 \n\
16145 The breakpoint will stop execution of the inferior whenever it executes\n\
16146 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16147 range (including START-LOCATION and END-LOCATION)."));
16148
16149 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16150 Set a dynamic printf at specified location.\n\
16151 dprintf location,format string,arg1,arg2,...\n\
16152 location may be a linespec, explicit, or address location.\n"
16153 "\n" LOCATION_HELP_STRING));
16154 set_cmd_completer (c, location_completer);
16155
16156 add_setshow_enum_cmd ("dprintf-style", class_support,
16157 dprintf_style_enums, &dprintf_style, _("\
16158 Set the style of usage for dynamic printf."), _("\
16159 Show the style of usage for dynamic printf."), _("\
16160 This setting chooses how GDB will do a dynamic printf.\n\
16161 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16162 console, as with the \"printf\" command.\n\
16163 If the value is \"call\", the print is done by calling a function in your\n\
16164 program; by default printf(), but you can choose a different function or\n\
16165 output stream by setting dprintf-function and dprintf-channel."),
16166 update_dprintf_commands, NULL,
16167 &setlist, &showlist);
16168
16169 dprintf_function = xstrdup ("printf");
16170 add_setshow_string_cmd ("dprintf-function", class_support,
16171 &dprintf_function, _("\
16172 Set the function to use for dynamic printf."), _("\
16173 Show the function to use for dynamic printf."), NULL,
16174 update_dprintf_commands, NULL,
16175 &setlist, &showlist);
16176
16177 dprintf_channel = xstrdup ("");
16178 add_setshow_string_cmd ("dprintf-channel", class_support,
16179 &dprintf_channel, _("\
16180 Set the channel to use for dynamic printf."), _("\
16181 Show the channel to use for dynamic printf."), NULL,
16182 update_dprintf_commands, NULL,
16183 &setlist, &showlist);
16184
16185 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16186 &disconnected_dprintf, _("\
16187 Set whether dprintf continues after GDB disconnects."), _("\
16188 Show whether dprintf continues after GDB disconnects."), _("\
16189 Use this to let dprintf commands continue to hit and produce output\n\
16190 even if GDB disconnects or detaches from the target."),
16191 NULL,
16192 NULL,
16193 &setlist, &showlist);
16194
16195 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16196 Target agent only formatted printing, like the C \"printf\" function.\n\
16197 Usage: agent-printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
16198 This supports most C printf format specifications, like %s, %d, etc.\n\
16199 This is useful for formatted output in user-defined commands."));
16200
16201 automatic_hardware_breakpoints = true;
16202
16203 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16204 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16205 }