* dwarf2read.c (init_cutu_and_read_dies_no_follow): Fix comments.
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include <string.h>
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "ax-gdb.h"
70 #include "dummy-frame.h"
71
72 #include "format.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83
84 /* Enums for exception-handling support. */
85 enum exception_event_kind
86 {
87 EX_EVENT_THROW,
88 EX_EVENT_RETHROW,
89 EX_EVENT_CATCH
90 };
91
92 /* Prototypes for local functions. */
93
94 static void enable_delete_command (char *, int);
95
96 static void enable_once_command (char *, int);
97
98 static void enable_count_command (char *, int);
99
100 static void disable_command (char *, int);
101
102 static void enable_command (char *, int);
103
104 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
105 void *),
106 void *);
107
108 static void ignore_command (char *, int);
109
110 static int breakpoint_re_set_one (void *);
111
112 static void breakpoint_re_set_default (struct breakpoint *);
113
114 static void create_sals_from_address_default (char **,
115 struct linespec_result *,
116 enum bptype, char *,
117 char **);
118
119 static void create_breakpoints_sal_default (struct gdbarch *,
120 struct linespec_result *,
121 char *, char *, enum bptype,
122 enum bpdisp, int, int,
123 int,
124 const struct breakpoint_ops *,
125 int, int, int, unsigned);
126
127 static void decode_linespec_default (struct breakpoint *, char **,
128 struct symtabs_and_lines *);
129
130 static void clear_command (char *, int);
131
132 static void catch_command (char *, int);
133
134 static int can_use_hardware_watchpoint (struct value *);
135
136 static void break_command_1 (char *, int, int);
137
138 static void mention (struct breakpoint *);
139
140 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
141 enum bptype,
142 const struct breakpoint_ops *);
143 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
144 const struct symtab_and_line *);
145
146 /* This function is used in gdbtk sources and thus can not be made
147 static. */
148 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
149 struct symtab_and_line,
150 enum bptype,
151 const struct breakpoint_ops *);
152
153 static struct breakpoint *
154 momentary_breakpoint_from_master (struct breakpoint *orig,
155 enum bptype type,
156 const struct breakpoint_ops *ops);
157
158 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
159
160 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
161 CORE_ADDR bpaddr,
162 enum bptype bptype);
163
164 static void describe_other_breakpoints (struct gdbarch *,
165 struct program_space *, CORE_ADDR,
166 struct obj_section *, int);
167
168 static int watchpoint_locations_match (struct bp_location *loc1,
169 struct bp_location *loc2);
170
171 static int breakpoint_location_address_match (struct bp_location *bl,
172 struct address_space *aspace,
173 CORE_ADDR addr);
174
175 static void breakpoints_info (char *, int);
176
177 static void watchpoints_info (char *, int);
178
179 static int breakpoint_1 (char *, int,
180 int (*) (const struct breakpoint *));
181
182 static int breakpoint_cond_eval (void *);
183
184 static void cleanup_executing_breakpoints (void *);
185
186 static void commands_command (char *, int);
187
188 static void condition_command (char *, int);
189
190 typedef enum
191 {
192 mark_inserted,
193 mark_uninserted
194 }
195 insertion_state_t;
196
197 static int remove_breakpoint (struct bp_location *, insertion_state_t);
198 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
199
200 static enum print_stop_action print_bp_stop_message (bpstat bs);
201
202 static int watchpoint_check (void *);
203
204 static void maintenance_info_breakpoints (char *, int);
205
206 static int hw_breakpoint_used_count (void);
207
208 static int hw_watchpoint_use_count (struct breakpoint *);
209
210 static int hw_watchpoint_used_count_others (struct breakpoint *except,
211 enum bptype type,
212 int *other_type_used);
213
214 static void hbreak_command (char *, int);
215
216 static void thbreak_command (char *, int);
217
218 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
219 int count);
220
221 static void stop_command (char *arg, int from_tty);
222
223 static void stopin_command (char *arg, int from_tty);
224
225 static void stopat_command (char *arg, int from_tty);
226
227 static void tcatch_command (char *arg, int from_tty);
228
229 static void detach_single_step_breakpoints (void);
230
231 static void free_bp_location (struct bp_location *loc);
232 static void incref_bp_location (struct bp_location *loc);
233 static void decref_bp_location (struct bp_location **loc);
234
235 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
236
237 static void update_global_location_list (int);
238
239 static void update_global_location_list_nothrow (int);
240
241 static int is_hardware_watchpoint (const struct breakpoint *bpt);
242
243 static void insert_breakpoint_locations (void);
244
245 static int syscall_catchpoint_p (struct breakpoint *b);
246
247 static void tracepoints_info (char *, int);
248
249 static void delete_trace_command (char *, int);
250
251 static void enable_trace_command (char *, int);
252
253 static void disable_trace_command (char *, int);
254
255 static void trace_pass_command (char *, int);
256
257 static void set_tracepoint_count (int num);
258
259 static int is_masked_watchpoint (const struct breakpoint *b);
260
261 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
262
263 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
264 otherwise. */
265
266 static int strace_marker_p (struct breakpoint *b);
267
268 /* The abstract base class all breakpoint_ops structures inherit
269 from. */
270 struct breakpoint_ops base_breakpoint_ops;
271
272 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
273 that are implemented on top of software or hardware breakpoints
274 (user breakpoints, internal and momentary breakpoints, etc.). */
275 static struct breakpoint_ops bkpt_base_breakpoint_ops;
276
277 /* Internal breakpoints class type. */
278 static struct breakpoint_ops internal_breakpoint_ops;
279
280 /* Momentary breakpoints class type. */
281 static struct breakpoint_ops momentary_breakpoint_ops;
282
283 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
284 static struct breakpoint_ops longjmp_breakpoint_ops;
285
286 /* The breakpoint_ops structure to be used in regular user created
287 breakpoints. */
288 struct breakpoint_ops bkpt_breakpoint_ops;
289
290 /* Breakpoints set on probes. */
291 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
292
293 /* Dynamic printf class type. */
294 struct breakpoint_ops dprintf_breakpoint_ops;
295
296 /* The style in which to perform a dynamic printf. This is a user
297 option because different output options have different tradeoffs;
298 if GDB does the printing, there is better error handling if there
299 is a problem with any of the arguments, but using an inferior
300 function lets you have special-purpose printers and sending of
301 output to the same place as compiled-in print functions. */
302
303 static const char dprintf_style_gdb[] = "gdb";
304 static const char dprintf_style_call[] = "call";
305 static const char dprintf_style_agent[] = "agent";
306 static const char *const dprintf_style_enums[] = {
307 dprintf_style_gdb,
308 dprintf_style_call,
309 dprintf_style_agent,
310 NULL
311 };
312 static const char *dprintf_style = dprintf_style_gdb;
313
314 /* The function to use for dynamic printf if the preferred style is to
315 call into the inferior. The value is simply a string that is
316 copied into the command, so it can be anything that GDB can
317 evaluate to a callable address, not necessarily a function name. */
318
319 static char *dprintf_function = "";
320
321 /* The channel to use for dynamic printf if the preferred style is to
322 call into the inferior; if a nonempty string, it will be passed to
323 the call as the first argument, with the format string as the
324 second. As with the dprintf function, this can be anything that
325 GDB knows how to evaluate, so in addition to common choices like
326 "stderr", this could be an app-specific expression like
327 "mystreams[curlogger]". */
328
329 static char *dprintf_channel = "";
330
331 /* True if dprintf commands should continue to operate even if GDB
332 has disconnected. */
333 static int disconnected_dprintf = 1;
334
335 /* A reference-counted struct command_line. This lets multiple
336 breakpoints share a single command list. */
337 struct counted_command_line
338 {
339 /* The reference count. */
340 int refc;
341
342 /* The command list. */
343 struct command_line *commands;
344 };
345
346 struct command_line *
347 breakpoint_commands (struct breakpoint *b)
348 {
349 return b->commands ? b->commands->commands : NULL;
350 }
351
352 /* Flag indicating that a command has proceeded the inferior past the
353 current breakpoint. */
354
355 static int breakpoint_proceeded;
356
357 const char *
358 bpdisp_text (enum bpdisp disp)
359 {
360 /* NOTE: the following values are a part of MI protocol and
361 represent values of 'disp' field returned when inferior stops at
362 a breakpoint. */
363 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
364
365 return bpdisps[(int) disp];
366 }
367
368 /* Prototypes for exported functions. */
369 /* If FALSE, gdb will not use hardware support for watchpoints, even
370 if such is available. */
371 static int can_use_hw_watchpoints;
372
373 static void
374 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
375 struct cmd_list_element *c,
376 const char *value)
377 {
378 fprintf_filtered (file,
379 _("Debugger's willingness to use "
380 "watchpoint hardware is %s.\n"),
381 value);
382 }
383
384 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
385 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
386 for unrecognized breakpoint locations.
387 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
388 static enum auto_boolean pending_break_support;
389 static void
390 show_pending_break_support (struct ui_file *file, int from_tty,
391 struct cmd_list_element *c,
392 const char *value)
393 {
394 fprintf_filtered (file,
395 _("Debugger's behavior regarding "
396 "pending breakpoints is %s.\n"),
397 value);
398 }
399
400 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
401 set with "break" but falling in read-only memory.
402 If 0, gdb will warn about such breakpoints, but won't automatically
403 use hardware breakpoints. */
404 static int automatic_hardware_breakpoints;
405 static void
406 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
407 struct cmd_list_element *c,
408 const char *value)
409 {
410 fprintf_filtered (file,
411 _("Automatic usage of hardware breakpoints is %s.\n"),
412 value);
413 }
414
415 /* If on, gdb will keep breakpoints inserted even as inferior is
416 stopped, and immediately insert any new breakpoints. If off, gdb
417 will insert breakpoints into inferior only when resuming it, and
418 will remove breakpoints upon stop. If auto, GDB will behave as ON
419 if in non-stop mode, and as OFF if all-stop mode.*/
420
421 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
422
423 static void
424 show_always_inserted_mode (struct ui_file *file, int from_tty,
425 struct cmd_list_element *c, const char *value)
426 {
427 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
428 fprintf_filtered (file,
429 _("Always inserted breakpoint "
430 "mode is %s (currently %s).\n"),
431 value,
432 breakpoints_always_inserted_mode () ? "on" : "off");
433 else
434 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
435 value);
436 }
437
438 int
439 breakpoints_always_inserted_mode (void)
440 {
441 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
442 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
443 }
444
445 static const char condition_evaluation_both[] = "host or target";
446
447 /* Modes for breakpoint condition evaluation. */
448 static const char condition_evaluation_auto[] = "auto";
449 static const char condition_evaluation_host[] = "host";
450 static const char condition_evaluation_target[] = "target";
451 static const char *const condition_evaluation_enums[] = {
452 condition_evaluation_auto,
453 condition_evaluation_host,
454 condition_evaluation_target,
455 NULL
456 };
457
458 /* Global that holds the current mode for breakpoint condition evaluation. */
459 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
460
461 /* Global that we use to display information to the user (gets its value from
462 condition_evaluation_mode_1. */
463 static const char *condition_evaluation_mode = condition_evaluation_auto;
464
465 /* Translate a condition evaluation mode MODE into either "host"
466 or "target". This is used mostly to translate from "auto" to the
467 real setting that is being used. It returns the translated
468 evaluation mode. */
469
470 static const char *
471 translate_condition_evaluation_mode (const char *mode)
472 {
473 if (mode == condition_evaluation_auto)
474 {
475 if (target_supports_evaluation_of_breakpoint_conditions ())
476 return condition_evaluation_target;
477 else
478 return condition_evaluation_host;
479 }
480 else
481 return mode;
482 }
483
484 /* Discovers what condition_evaluation_auto translates to. */
485
486 static const char *
487 breakpoint_condition_evaluation_mode (void)
488 {
489 return translate_condition_evaluation_mode (condition_evaluation_mode);
490 }
491
492 /* Return true if GDB should evaluate breakpoint conditions or false
493 otherwise. */
494
495 static int
496 gdb_evaluates_breakpoint_condition_p (void)
497 {
498 const char *mode = breakpoint_condition_evaluation_mode ();
499
500 return (mode == condition_evaluation_host);
501 }
502
503 void _initialize_breakpoint (void);
504
505 /* Are we executing breakpoint commands? */
506 static int executing_breakpoint_commands;
507
508 /* Are overlay event breakpoints enabled? */
509 static int overlay_events_enabled;
510
511 /* See description in breakpoint.h. */
512 int target_exact_watchpoints = 0;
513
514 /* Walk the following statement or block through all breakpoints.
515 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
516 current breakpoint. */
517
518 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
519
520 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
521 for (B = breakpoint_chain; \
522 B ? (TMP=B->next, 1): 0; \
523 B = TMP)
524
525 /* Similar iterator for the low-level breakpoints. SAFE variant is
526 not provided so update_global_location_list must not be called
527 while executing the block of ALL_BP_LOCATIONS. */
528
529 #define ALL_BP_LOCATIONS(B,BP_TMP) \
530 for (BP_TMP = bp_location; \
531 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
532 BP_TMP++)
533
534 /* Iterates through locations with address ADDRESS for the currently selected
535 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
536 to where the loop should start from.
537 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
538 appropriate location to start with. */
539
540 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
541 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
542 BP_LOCP_TMP = BP_LOCP_START; \
543 BP_LOCP_START \
544 && (BP_LOCP_TMP < bp_location + bp_location_count \
545 && (*BP_LOCP_TMP)->address == ADDRESS); \
546 BP_LOCP_TMP++)
547
548 /* Iterator for tracepoints only. */
549
550 #define ALL_TRACEPOINTS(B) \
551 for (B = breakpoint_chain; B; B = B->next) \
552 if (is_tracepoint (B))
553
554 /* Chains of all breakpoints defined. */
555
556 struct breakpoint *breakpoint_chain;
557
558 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
559
560 static struct bp_location **bp_location;
561
562 /* Number of elements of BP_LOCATION. */
563
564 static unsigned bp_location_count;
565
566 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
567 ADDRESS for the current elements of BP_LOCATION which get a valid
568 result from bp_location_has_shadow. You can use it for roughly
569 limiting the subrange of BP_LOCATION to scan for shadow bytes for
570 an address you need to read. */
571
572 static CORE_ADDR bp_location_placed_address_before_address_max;
573
574 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
575 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
576 BP_LOCATION which get a valid result from bp_location_has_shadow.
577 You can use it for roughly limiting the subrange of BP_LOCATION to
578 scan for shadow bytes for an address you need to read. */
579
580 static CORE_ADDR bp_location_shadow_len_after_address_max;
581
582 /* The locations that no longer correspond to any breakpoint, unlinked
583 from bp_location array, but for which a hit may still be reported
584 by a target. */
585 VEC(bp_location_p) *moribund_locations = NULL;
586
587 /* Number of last breakpoint made. */
588
589 static int breakpoint_count;
590
591 /* The value of `breakpoint_count' before the last command that
592 created breakpoints. If the last (break-like) command created more
593 than one breakpoint, then the difference between BREAKPOINT_COUNT
594 and PREV_BREAKPOINT_COUNT is more than one. */
595 static int prev_breakpoint_count;
596
597 /* Number of last tracepoint made. */
598
599 static int tracepoint_count;
600
601 static struct cmd_list_element *breakpoint_set_cmdlist;
602 static struct cmd_list_element *breakpoint_show_cmdlist;
603 struct cmd_list_element *save_cmdlist;
604
605 /* Return whether a breakpoint is an active enabled breakpoint. */
606 static int
607 breakpoint_enabled (struct breakpoint *b)
608 {
609 return (b->enable_state == bp_enabled);
610 }
611
612 /* Set breakpoint count to NUM. */
613
614 static void
615 set_breakpoint_count (int num)
616 {
617 prev_breakpoint_count = breakpoint_count;
618 breakpoint_count = num;
619 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
620 }
621
622 /* Used by `start_rbreak_breakpoints' below, to record the current
623 breakpoint count before "rbreak" creates any breakpoint. */
624 static int rbreak_start_breakpoint_count;
625
626 /* Called at the start an "rbreak" command to record the first
627 breakpoint made. */
628
629 void
630 start_rbreak_breakpoints (void)
631 {
632 rbreak_start_breakpoint_count = breakpoint_count;
633 }
634
635 /* Called at the end of an "rbreak" command to record the last
636 breakpoint made. */
637
638 void
639 end_rbreak_breakpoints (void)
640 {
641 prev_breakpoint_count = rbreak_start_breakpoint_count;
642 }
643
644 /* Used in run_command to zero the hit count when a new run starts. */
645
646 void
647 clear_breakpoint_hit_counts (void)
648 {
649 struct breakpoint *b;
650
651 ALL_BREAKPOINTS (b)
652 b->hit_count = 0;
653 }
654
655 /* Allocate a new counted_command_line with reference count of 1.
656 The new structure owns COMMANDS. */
657
658 static struct counted_command_line *
659 alloc_counted_command_line (struct command_line *commands)
660 {
661 struct counted_command_line *result
662 = xmalloc (sizeof (struct counted_command_line));
663
664 result->refc = 1;
665 result->commands = commands;
666 return result;
667 }
668
669 /* Increment reference count. This does nothing if CMD is NULL. */
670
671 static void
672 incref_counted_command_line (struct counted_command_line *cmd)
673 {
674 if (cmd)
675 ++cmd->refc;
676 }
677
678 /* Decrement reference count. If the reference count reaches 0,
679 destroy the counted_command_line. Sets *CMDP to NULL. This does
680 nothing if *CMDP is NULL. */
681
682 static void
683 decref_counted_command_line (struct counted_command_line **cmdp)
684 {
685 if (*cmdp)
686 {
687 if (--(*cmdp)->refc == 0)
688 {
689 free_command_lines (&(*cmdp)->commands);
690 xfree (*cmdp);
691 }
692 *cmdp = NULL;
693 }
694 }
695
696 /* A cleanup function that calls decref_counted_command_line. */
697
698 static void
699 do_cleanup_counted_command_line (void *arg)
700 {
701 decref_counted_command_line (arg);
702 }
703
704 /* Create a cleanup that calls decref_counted_command_line on the
705 argument. */
706
707 static struct cleanup *
708 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
709 {
710 return make_cleanup (do_cleanup_counted_command_line, cmdp);
711 }
712
713 \f
714 /* Return the breakpoint with the specified number, or NULL
715 if the number does not refer to an existing breakpoint. */
716
717 struct breakpoint *
718 get_breakpoint (int num)
719 {
720 struct breakpoint *b;
721
722 ALL_BREAKPOINTS (b)
723 if (b->number == num)
724 return b;
725
726 return NULL;
727 }
728
729 \f
730
731 /* Mark locations as "conditions have changed" in case the target supports
732 evaluating conditions on its side. */
733
734 static void
735 mark_breakpoint_modified (struct breakpoint *b)
736 {
737 struct bp_location *loc;
738
739 /* This is only meaningful if the target is
740 evaluating conditions and if the user has
741 opted for condition evaluation on the target's
742 side. */
743 if (gdb_evaluates_breakpoint_condition_p ()
744 || !target_supports_evaluation_of_breakpoint_conditions ())
745 return;
746
747 if (!is_breakpoint (b))
748 return;
749
750 for (loc = b->loc; loc; loc = loc->next)
751 loc->condition_changed = condition_modified;
752 }
753
754 /* Mark location as "conditions have changed" in case the target supports
755 evaluating conditions on its side. */
756
757 static void
758 mark_breakpoint_location_modified (struct bp_location *loc)
759 {
760 /* This is only meaningful if the target is
761 evaluating conditions and if the user has
762 opted for condition evaluation on the target's
763 side. */
764 if (gdb_evaluates_breakpoint_condition_p ()
765 || !target_supports_evaluation_of_breakpoint_conditions ())
766
767 return;
768
769 if (!is_breakpoint (loc->owner))
770 return;
771
772 loc->condition_changed = condition_modified;
773 }
774
775 /* Sets the condition-evaluation mode using the static global
776 condition_evaluation_mode. */
777
778 static void
779 set_condition_evaluation_mode (char *args, int from_tty,
780 struct cmd_list_element *c)
781 {
782 const char *old_mode, *new_mode;
783
784 if ((condition_evaluation_mode_1 == condition_evaluation_target)
785 && !target_supports_evaluation_of_breakpoint_conditions ())
786 {
787 condition_evaluation_mode_1 = condition_evaluation_mode;
788 warning (_("Target does not support breakpoint condition evaluation.\n"
789 "Using host evaluation mode instead."));
790 return;
791 }
792
793 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
794 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
795
796 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
797 settings was "auto". */
798 condition_evaluation_mode = condition_evaluation_mode_1;
799
800 /* Only update the mode if the user picked a different one. */
801 if (new_mode != old_mode)
802 {
803 struct bp_location *loc, **loc_tmp;
804 /* If the user switched to a different evaluation mode, we
805 need to synch the changes with the target as follows:
806
807 "host" -> "target": Send all (valid) conditions to the target.
808 "target" -> "host": Remove all the conditions from the target.
809 */
810
811 if (new_mode == condition_evaluation_target)
812 {
813 /* Mark everything modified and synch conditions with the
814 target. */
815 ALL_BP_LOCATIONS (loc, loc_tmp)
816 mark_breakpoint_location_modified (loc);
817 }
818 else
819 {
820 /* Manually mark non-duplicate locations to synch conditions
821 with the target. We do this to remove all the conditions the
822 target knows about. */
823 ALL_BP_LOCATIONS (loc, loc_tmp)
824 if (is_breakpoint (loc->owner) && loc->inserted)
825 loc->needs_update = 1;
826 }
827
828 /* Do the update. */
829 update_global_location_list (1);
830 }
831
832 return;
833 }
834
835 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
836 what "auto" is translating to. */
837
838 static void
839 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
840 struct cmd_list_element *c, const char *value)
841 {
842 if (condition_evaluation_mode == condition_evaluation_auto)
843 fprintf_filtered (file,
844 _("Breakpoint condition evaluation "
845 "mode is %s (currently %s).\n"),
846 value,
847 breakpoint_condition_evaluation_mode ());
848 else
849 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
850 value);
851 }
852
853 /* A comparison function for bp_location AP and BP that is used by
854 bsearch. This comparison function only cares about addresses, unlike
855 the more general bp_location_compare function. */
856
857 static int
858 bp_location_compare_addrs (const void *ap, const void *bp)
859 {
860 struct bp_location *a = *(void **) ap;
861 struct bp_location *b = *(void **) bp;
862
863 if (a->address == b->address)
864 return 0;
865 else
866 return ((a->address > b->address) - (a->address < b->address));
867 }
868
869 /* Helper function to skip all bp_locations with addresses
870 less than ADDRESS. It returns the first bp_location that
871 is greater than or equal to ADDRESS. If none is found, just
872 return NULL. */
873
874 static struct bp_location **
875 get_first_locp_gte_addr (CORE_ADDR address)
876 {
877 struct bp_location dummy_loc;
878 struct bp_location *dummy_locp = &dummy_loc;
879 struct bp_location **locp_found = NULL;
880
881 /* Initialize the dummy location's address field. */
882 memset (&dummy_loc, 0, sizeof (struct bp_location));
883 dummy_loc.address = address;
884
885 /* Find a close match to the first location at ADDRESS. */
886 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
887 sizeof (struct bp_location **),
888 bp_location_compare_addrs);
889
890 /* Nothing was found, nothing left to do. */
891 if (locp_found == NULL)
892 return NULL;
893
894 /* We may have found a location that is at ADDRESS but is not the first in the
895 location's list. Go backwards (if possible) and locate the first one. */
896 while ((locp_found - 1) >= bp_location
897 && (*(locp_found - 1))->address == address)
898 locp_found--;
899
900 return locp_found;
901 }
902
903 void
904 set_breakpoint_condition (struct breakpoint *b, char *exp,
905 int from_tty)
906 {
907 xfree (b->cond_string);
908 b->cond_string = NULL;
909
910 if (is_watchpoint (b))
911 {
912 struct watchpoint *w = (struct watchpoint *) b;
913
914 xfree (w->cond_exp);
915 w->cond_exp = NULL;
916 }
917 else
918 {
919 struct bp_location *loc;
920
921 for (loc = b->loc; loc; loc = loc->next)
922 {
923 xfree (loc->cond);
924 loc->cond = NULL;
925
926 /* No need to free the condition agent expression
927 bytecode (if we have one). We will handle this
928 when we go through update_global_location_list. */
929 }
930 }
931
932 if (*exp == 0)
933 {
934 if (from_tty)
935 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
936 }
937 else
938 {
939 const char *arg = exp;
940
941 /* I don't know if it matters whether this is the string the user
942 typed in or the decompiled expression. */
943 b->cond_string = xstrdup (arg);
944 b->condition_not_parsed = 0;
945
946 if (is_watchpoint (b))
947 {
948 struct watchpoint *w = (struct watchpoint *) b;
949
950 innermost_block = NULL;
951 arg = exp;
952 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
953 if (*arg)
954 error (_("Junk at end of expression"));
955 w->cond_exp_valid_block = innermost_block;
956 }
957 else
958 {
959 struct bp_location *loc;
960
961 for (loc = b->loc; loc; loc = loc->next)
962 {
963 arg = exp;
964 loc->cond =
965 parse_exp_1 (&arg, loc->address,
966 block_for_pc (loc->address), 0);
967 if (*arg)
968 error (_("Junk at end of expression"));
969 }
970 }
971 }
972 mark_breakpoint_modified (b);
973
974 observer_notify_breakpoint_modified (b);
975 }
976
977 /* Completion for the "condition" command. */
978
979 static VEC (char_ptr) *
980 condition_completer (struct cmd_list_element *cmd,
981 const char *text, const char *word)
982 {
983 const char *space;
984
985 text = skip_spaces_const (text);
986 space = skip_to_space_const (text);
987 if (*space == '\0')
988 {
989 int len;
990 struct breakpoint *b;
991 VEC (char_ptr) *result = NULL;
992
993 if (text[0] == '$')
994 {
995 /* We don't support completion of history indices. */
996 if (isdigit (text[1]))
997 return NULL;
998 return complete_internalvar (&text[1]);
999 }
1000
1001 /* We're completing the breakpoint number. */
1002 len = strlen (text);
1003
1004 ALL_BREAKPOINTS (b)
1005 {
1006 char number[50];
1007
1008 xsnprintf (number, sizeof (number), "%d", b->number);
1009
1010 if (strncmp (number, text, len) == 0)
1011 VEC_safe_push (char_ptr, result, xstrdup (number));
1012 }
1013
1014 return result;
1015 }
1016
1017 /* We're completing the expression part. */
1018 text = skip_spaces_const (space);
1019 return expression_completer (cmd, text, word);
1020 }
1021
1022 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1023
1024 static void
1025 condition_command (char *arg, int from_tty)
1026 {
1027 struct breakpoint *b;
1028 char *p;
1029 int bnum;
1030
1031 if (arg == 0)
1032 error_no_arg (_("breakpoint number"));
1033
1034 p = arg;
1035 bnum = get_number (&p);
1036 if (bnum == 0)
1037 error (_("Bad breakpoint argument: '%s'"), arg);
1038
1039 ALL_BREAKPOINTS (b)
1040 if (b->number == bnum)
1041 {
1042 /* Check if this breakpoint has a "stop" method implemented in an
1043 extension language. This method and conditions entered into GDB
1044 from the CLI are mutually exclusive. */
1045 const struct extension_language_defn *extlang
1046 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1047
1048 if (extlang != NULL)
1049 {
1050 error (_("Only one stop condition allowed. There is currently"
1051 " a %s stop condition defined for this breakpoint."),
1052 ext_lang_capitalized_name (extlang));
1053 }
1054 set_breakpoint_condition (b, p, from_tty);
1055
1056 if (is_breakpoint (b))
1057 update_global_location_list (1);
1058
1059 return;
1060 }
1061
1062 error (_("No breakpoint number %d."), bnum);
1063 }
1064
1065 /* Check that COMMAND do not contain commands that are suitable
1066 only for tracepoints and not suitable for ordinary breakpoints.
1067 Throw if any such commands is found. */
1068
1069 static void
1070 check_no_tracepoint_commands (struct command_line *commands)
1071 {
1072 struct command_line *c;
1073
1074 for (c = commands; c; c = c->next)
1075 {
1076 int i;
1077
1078 if (c->control_type == while_stepping_control)
1079 error (_("The 'while-stepping' command can "
1080 "only be used for tracepoints"));
1081
1082 for (i = 0; i < c->body_count; ++i)
1083 check_no_tracepoint_commands ((c->body_list)[i]);
1084
1085 /* Not that command parsing removes leading whitespace and comment
1086 lines and also empty lines. So, we only need to check for
1087 command directly. */
1088 if (strstr (c->line, "collect ") == c->line)
1089 error (_("The 'collect' command can only be used for tracepoints"));
1090
1091 if (strstr (c->line, "teval ") == c->line)
1092 error (_("The 'teval' command can only be used for tracepoints"));
1093 }
1094 }
1095
1096 /* Encapsulate tests for different types of tracepoints. */
1097
1098 static int
1099 is_tracepoint_type (enum bptype type)
1100 {
1101 return (type == bp_tracepoint
1102 || type == bp_fast_tracepoint
1103 || type == bp_static_tracepoint);
1104 }
1105
1106 int
1107 is_tracepoint (const struct breakpoint *b)
1108 {
1109 return is_tracepoint_type (b->type);
1110 }
1111
1112 /* A helper function that validates that COMMANDS are valid for a
1113 breakpoint. This function will throw an exception if a problem is
1114 found. */
1115
1116 static void
1117 validate_commands_for_breakpoint (struct breakpoint *b,
1118 struct command_line *commands)
1119 {
1120 if (is_tracepoint (b))
1121 {
1122 struct tracepoint *t = (struct tracepoint *) b;
1123 struct command_line *c;
1124 struct command_line *while_stepping = 0;
1125
1126 /* Reset the while-stepping step count. The previous commands
1127 might have included a while-stepping action, while the new
1128 ones might not. */
1129 t->step_count = 0;
1130
1131 /* We need to verify that each top-level element of commands is
1132 valid for tracepoints, that there's at most one
1133 while-stepping element, and that the while-stepping's body
1134 has valid tracing commands excluding nested while-stepping.
1135 We also need to validate the tracepoint action line in the
1136 context of the tracepoint --- validate_actionline actually
1137 has side effects, like setting the tracepoint's
1138 while-stepping STEP_COUNT, in addition to checking if the
1139 collect/teval actions parse and make sense in the
1140 tracepoint's context. */
1141 for (c = commands; c; c = c->next)
1142 {
1143 if (c->control_type == while_stepping_control)
1144 {
1145 if (b->type == bp_fast_tracepoint)
1146 error (_("The 'while-stepping' command "
1147 "cannot be used for fast tracepoint"));
1148 else if (b->type == bp_static_tracepoint)
1149 error (_("The 'while-stepping' command "
1150 "cannot be used for static tracepoint"));
1151
1152 if (while_stepping)
1153 error (_("The 'while-stepping' command "
1154 "can be used only once"));
1155 else
1156 while_stepping = c;
1157 }
1158
1159 validate_actionline (c->line, b);
1160 }
1161 if (while_stepping)
1162 {
1163 struct command_line *c2;
1164
1165 gdb_assert (while_stepping->body_count == 1);
1166 c2 = while_stepping->body_list[0];
1167 for (; c2; c2 = c2->next)
1168 {
1169 if (c2->control_type == while_stepping_control)
1170 error (_("The 'while-stepping' command cannot be nested"));
1171 }
1172 }
1173 }
1174 else
1175 {
1176 check_no_tracepoint_commands (commands);
1177 }
1178 }
1179
1180 /* Return a vector of all the static tracepoints set at ADDR. The
1181 caller is responsible for releasing the vector. */
1182
1183 VEC(breakpoint_p) *
1184 static_tracepoints_here (CORE_ADDR addr)
1185 {
1186 struct breakpoint *b;
1187 VEC(breakpoint_p) *found = 0;
1188 struct bp_location *loc;
1189
1190 ALL_BREAKPOINTS (b)
1191 if (b->type == bp_static_tracepoint)
1192 {
1193 for (loc = b->loc; loc; loc = loc->next)
1194 if (loc->address == addr)
1195 VEC_safe_push(breakpoint_p, found, b);
1196 }
1197
1198 return found;
1199 }
1200
1201 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1202 validate that only allowed commands are included. */
1203
1204 void
1205 breakpoint_set_commands (struct breakpoint *b,
1206 struct command_line *commands)
1207 {
1208 validate_commands_for_breakpoint (b, commands);
1209
1210 decref_counted_command_line (&b->commands);
1211 b->commands = alloc_counted_command_line (commands);
1212 observer_notify_breakpoint_modified (b);
1213 }
1214
1215 /* Set the internal `silent' flag on the breakpoint. Note that this
1216 is not the same as the "silent" that may appear in the breakpoint's
1217 commands. */
1218
1219 void
1220 breakpoint_set_silent (struct breakpoint *b, int silent)
1221 {
1222 int old_silent = b->silent;
1223
1224 b->silent = silent;
1225 if (old_silent != silent)
1226 observer_notify_breakpoint_modified (b);
1227 }
1228
1229 /* Set the thread for this breakpoint. If THREAD is -1, make the
1230 breakpoint work for any thread. */
1231
1232 void
1233 breakpoint_set_thread (struct breakpoint *b, int thread)
1234 {
1235 int old_thread = b->thread;
1236
1237 b->thread = thread;
1238 if (old_thread != thread)
1239 observer_notify_breakpoint_modified (b);
1240 }
1241
1242 /* Set the task for this breakpoint. If TASK is 0, make the
1243 breakpoint work for any task. */
1244
1245 void
1246 breakpoint_set_task (struct breakpoint *b, int task)
1247 {
1248 int old_task = b->task;
1249
1250 b->task = task;
1251 if (old_task != task)
1252 observer_notify_breakpoint_modified (b);
1253 }
1254
1255 void
1256 check_tracepoint_command (char *line, void *closure)
1257 {
1258 struct breakpoint *b = closure;
1259
1260 validate_actionline (line, b);
1261 }
1262
1263 /* A structure used to pass information through
1264 map_breakpoint_numbers. */
1265
1266 struct commands_info
1267 {
1268 /* True if the command was typed at a tty. */
1269 int from_tty;
1270
1271 /* The breakpoint range spec. */
1272 char *arg;
1273
1274 /* Non-NULL if the body of the commands are being read from this
1275 already-parsed command. */
1276 struct command_line *control;
1277
1278 /* The command lines read from the user, or NULL if they have not
1279 yet been read. */
1280 struct counted_command_line *cmd;
1281 };
1282
1283 /* A callback for map_breakpoint_numbers that sets the commands for
1284 commands_command. */
1285
1286 static void
1287 do_map_commands_command (struct breakpoint *b, void *data)
1288 {
1289 struct commands_info *info = data;
1290
1291 if (info->cmd == NULL)
1292 {
1293 struct command_line *l;
1294
1295 if (info->control != NULL)
1296 l = copy_command_lines (info->control->body_list[0]);
1297 else
1298 {
1299 struct cleanup *old_chain;
1300 char *str;
1301
1302 str = xstrprintf (_("Type commands for breakpoint(s) "
1303 "%s, one per line."),
1304 info->arg);
1305
1306 old_chain = make_cleanup (xfree, str);
1307
1308 l = read_command_lines (str,
1309 info->from_tty, 1,
1310 (is_tracepoint (b)
1311 ? check_tracepoint_command : 0),
1312 b);
1313
1314 do_cleanups (old_chain);
1315 }
1316
1317 info->cmd = alloc_counted_command_line (l);
1318 }
1319
1320 /* If a breakpoint was on the list more than once, we don't need to
1321 do anything. */
1322 if (b->commands != info->cmd)
1323 {
1324 validate_commands_for_breakpoint (b, info->cmd->commands);
1325 incref_counted_command_line (info->cmd);
1326 decref_counted_command_line (&b->commands);
1327 b->commands = info->cmd;
1328 observer_notify_breakpoint_modified (b);
1329 }
1330 }
1331
1332 static void
1333 commands_command_1 (char *arg, int from_tty,
1334 struct command_line *control)
1335 {
1336 struct cleanup *cleanups;
1337 struct commands_info info;
1338
1339 info.from_tty = from_tty;
1340 info.control = control;
1341 info.cmd = NULL;
1342 /* If we read command lines from the user, then `info' will hold an
1343 extra reference to the commands that we must clean up. */
1344 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1345
1346 if (arg == NULL || !*arg)
1347 {
1348 if (breakpoint_count - prev_breakpoint_count > 1)
1349 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1350 breakpoint_count);
1351 else if (breakpoint_count > 0)
1352 arg = xstrprintf ("%d", breakpoint_count);
1353 else
1354 {
1355 /* So that we don't try to free the incoming non-NULL
1356 argument in the cleanup below. Mapping breakpoint
1357 numbers will fail in this case. */
1358 arg = NULL;
1359 }
1360 }
1361 else
1362 /* The command loop has some static state, so we need to preserve
1363 our argument. */
1364 arg = xstrdup (arg);
1365
1366 if (arg != NULL)
1367 make_cleanup (xfree, arg);
1368
1369 info.arg = arg;
1370
1371 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1372
1373 if (info.cmd == NULL)
1374 error (_("No breakpoints specified."));
1375
1376 do_cleanups (cleanups);
1377 }
1378
1379 static void
1380 commands_command (char *arg, int from_tty)
1381 {
1382 commands_command_1 (arg, from_tty, NULL);
1383 }
1384
1385 /* Like commands_command, but instead of reading the commands from
1386 input stream, takes them from an already parsed command structure.
1387
1388 This is used by cli-script.c to DTRT with breakpoint commands
1389 that are part of if and while bodies. */
1390 enum command_control_type
1391 commands_from_control_command (char *arg, struct command_line *cmd)
1392 {
1393 commands_command_1 (arg, 0, cmd);
1394 return simple_control;
1395 }
1396
1397 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1398
1399 static int
1400 bp_location_has_shadow (struct bp_location *bl)
1401 {
1402 if (bl->loc_type != bp_loc_software_breakpoint)
1403 return 0;
1404 if (!bl->inserted)
1405 return 0;
1406 if (bl->target_info.shadow_len == 0)
1407 /* BL isn't valid, or doesn't shadow memory. */
1408 return 0;
1409 return 1;
1410 }
1411
1412 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1413 by replacing any memory breakpoints with their shadowed contents.
1414
1415 If READBUF is not NULL, this buffer must not overlap with any of
1416 the breakpoint location's shadow_contents buffers. Otherwise,
1417 a failed assertion internal error will be raised.
1418
1419 The range of shadowed area by each bp_location is:
1420 bl->address - bp_location_placed_address_before_address_max
1421 up to bl->address + bp_location_shadow_len_after_address_max
1422 The range we were requested to resolve shadows for is:
1423 memaddr ... memaddr + len
1424 Thus the safe cutoff boundaries for performance optimization are
1425 memaddr + len <= (bl->address
1426 - bp_location_placed_address_before_address_max)
1427 and:
1428 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1429
1430 void
1431 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1432 const gdb_byte *writebuf_org,
1433 ULONGEST memaddr, LONGEST len)
1434 {
1435 /* Left boundary, right boundary and median element of our binary
1436 search. */
1437 unsigned bc_l, bc_r, bc;
1438
1439 /* Find BC_L which is a leftmost element which may affect BUF
1440 content. It is safe to report lower value but a failure to
1441 report higher one. */
1442
1443 bc_l = 0;
1444 bc_r = bp_location_count;
1445 while (bc_l + 1 < bc_r)
1446 {
1447 struct bp_location *bl;
1448
1449 bc = (bc_l + bc_r) / 2;
1450 bl = bp_location[bc];
1451
1452 /* Check first BL->ADDRESS will not overflow due to the added
1453 constant. Then advance the left boundary only if we are sure
1454 the BC element can in no way affect the BUF content (MEMADDR
1455 to MEMADDR + LEN range).
1456
1457 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1458 offset so that we cannot miss a breakpoint with its shadow
1459 range tail still reaching MEMADDR. */
1460
1461 if ((bl->address + bp_location_shadow_len_after_address_max
1462 >= bl->address)
1463 && (bl->address + bp_location_shadow_len_after_address_max
1464 <= memaddr))
1465 bc_l = bc;
1466 else
1467 bc_r = bc;
1468 }
1469
1470 /* Due to the binary search above, we need to make sure we pick the
1471 first location that's at BC_L's address. E.g., if there are
1472 multiple locations at the same address, BC_L may end up pointing
1473 at a duplicate location, and miss the "master"/"inserted"
1474 location. Say, given locations L1, L2 and L3 at addresses A and
1475 B:
1476
1477 L1@A, L2@A, L3@B, ...
1478
1479 BC_L could end up pointing at location L2, while the "master"
1480 location could be L1. Since the `loc->inserted' flag is only set
1481 on "master" locations, we'd forget to restore the shadow of L1
1482 and L2. */
1483 while (bc_l > 0
1484 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1485 bc_l--;
1486
1487 /* Now do full processing of the found relevant range of elements. */
1488
1489 for (bc = bc_l; bc < bp_location_count; bc++)
1490 {
1491 struct bp_location *bl = bp_location[bc];
1492 CORE_ADDR bp_addr = 0;
1493 int bp_size = 0;
1494 int bptoffset = 0;
1495
1496 /* bp_location array has BL->OWNER always non-NULL. */
1497 if (bl->owner->type == bp_none)
1498 warning (_("reading through apparently deleted breakpoint #%d?"),
1499 bl->owner->number);
1500
1501 /* Performance optimization: any further element can no longer affect BUF
1502 content. */
1503
1504 if (bl->address >= bp_location_placed_address_before_address_max
1505 && memaddr + len <= (bl->address
1506 - bp_location_placed_address_before_address_max))
1507 break;
1508
1509 if (!bp_location_has_shadow (bl))
1510 continue;
1511 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1512 current_program_space->aspace, 0))
1513 continue;
1514
1515 /* Addresses and length of the part of the breakpoint that
1516 we need to copy. */
1517 bp_addr = bl->target_info.placed_address;
1518 bp_size = bl->target_info.shadow_len;
1519
1520 if (bp_addr + bp_size <= memaddr)
1521 /* The breakpoint is entirely before the chunk of memory we
1522 are reading. */
1523 continue;
1524
1525 if (bp_addr >= memaddr + len)
1526 /* The breakpoint is entirely after the chunk of memory we are
1527 reading. */
1528 continue;
1529
1530 /* Offset within shadow_contents. */
1531 if (bp_addr < memaddr)
1532 {
1533 /* Only copy the second part of the breakpoint. */
1534 bp_size -= memaddr - bp_addr;
1535 bptoffset = memaddr - bp_addr;
1536 bp_addr = memaddr;
1537 }
1538
1539 if (bp_addr + bp_size > memaddr + len)
1540 {
1541 /* Only copy the first part of the breakpoint. */
1542 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1543 }
1544
1545 if (readbuf != NULL)
1546 {
1547 /* Verify that the readbuf buffer does not overlap with
1548 the shadow_contents buffer. */
1549 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1550 || readbuf >= (bl->target_info.shadow_contents
1551 + bl->target_info.shadow_len));
1552
1553 /* Update the read buffer with this inserted breakpoint's
1554 shadow. */
1555 memcpy (readbuf + bp_addr - memaddr,
1556 bl->target_info.shadow_contents + bptoffset, bp_size);
1557 }
1558 else
1559 {
1560 struct gdbarch *gdbarch = bl->gdbarch;
1561 const unsigned char *bp;
1562 CORE_ADDR placed_address = bl->target_info.placed_address;
1563 int placed_size = bl->target_info.placed_size;
1564
1565 /* Update the shadow with what we want to write to memory. */
1566 memcpy (bl->target_info.shadow_contents + bptoffset,
1567 writebuf_org + bp_addr - memaddr, bp_size);
1568
1569 /* Determine appropriate breakpoint contents and size for this
1570 address. */
1571 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1572
1573 /* Update the final write buffer with this inserted
1574 breakpoint's INSN. */
1575 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1576 }
1577 }
1578 }
1579 \f
1580
1581 /* Return true if BPT is either a software breakpoint or a hardware
1582 breakpoint. */
1583
1584 int
1585 is_breakpoint (const struct breakpoint *bpt)
1586 {
1587 return (bpt->type == bp_breakpoint
1588 || bpt->type == bp_hardware_breakpoint
1589 || bpt->type == bp_dprintf);
1590 }
1591
1592 /* Return true if BPT is of any hardware watchpoint kind. */
1593
1594 static int
1595 is_hardware_watchpoint (const struct breakpoint *bpt)
1596 {
1597 return (bpt->type == bp_hardware_watchpoint
1598 || bpt->type == bp_read_watchpoint
1599 || bpt->type == bp_access_watchpoint);
1600 }
1601
1602 /* Return true if BPT is of any watchpoint kind, hardware or
1603 software. */
1604
1605 int
1606 is_watchpoint (const struct breakpoint *bpt)
1607 {
1608 return (is_hardware_watchpoint (bpt)
1609 || bpt->type == bp_watchpoint);
1610 }
1611
1612 /* Returns true if the current thread and its running state are safe
1613 to evaluate or update watchpoint B. Watchpoints on local
1614 expressions need to be evaluated in the context of the thread that
1615 was current when the watchpoint was created, and, that thread needs
1616 to be stopped to be able to select the correct frame context.
1617 Watchpoints on global expressions can be evaluated on any thread,
1618 and in any state. It is presently left to the target allowing
1619 memory accesses when threads are running. */
1620
1621 static int
1622 watchpoint_in_thread_scope (struct watchpoint *b)
1623 {
1624 return (b->base.pspace == current_program_space
1625 && (ptid_equal (b->watchpoint_thread, null_ptid)
1626 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1627 && !is_executing (inferior_ptid))));
1628 }
1629
1630 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1631 associated bp_watchpoint_scope breakpoint. */
1632
1633 static void
1634 watchpoint_del_at_next_stop (struct watchpoint *w)
1635 {
1636 struct breakpoint *b = &w->base;
1637
1638 if (b->related_breakpoint != b)
1639 {
1640 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1641 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1642 b->related_breakpoint->disposition = disp_del_at_next_stop;
1643 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1644 b->related_breakpoint = b;
1645 }
1646 b->disposition = disp_del_at_next_stop;
1647 }
1648
1649 /* Assuming that B is a watchpoint:
1650 - Reparse watchpoint expression, if REPARSE is non-zero
1651 - Evaluate expression and store the result in B->val
1652 - Evaluate the condition if there is one, and store the result
1653 in b->loc->cond.
1654 - Update the list of values that must be watched in B->loc.
1655
1656 If the watchpoint disposition is disp_del_at_next_stop, then do
1657 nothing. If this is local watchpoint that is out of scope, delete
1658 it.
1659
1660 Even with `set breakpoint always-inserted on' the watchpoints are
1661 removed + inserted on each stop here. Normal breakpoints must
1662 never be removed because they might be missed by a running thread
1663 when debugging in non-stop mode. On the other hand, hardware
1664 watchpoints (is_hardware_watchpoint; processed here) are specific
1665 to each LWP since they are stored in each LWP's hardware debug
1666 registers. Therefore, such LWP must be stopped first in order to
1667 be able to modify its hardware watchpoints.
1668
1669 Hardware watchpoints must be reset exactly once after being
1670 presented to the user. It cannot be done sooner, because it would
1671 reset the data used to present the watchpoint hit to the user. And
1672 it must not be done later because it could display the same single
1673 watchpoint hit during multiple GDB stops. Note that the latter is
1674 relevant only to the hardware watchpoint types bp_read_watchpoint
1675 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1676 not user-visible - its hit is suppressed if the memory content has
1677 not changed.
1678
1679 The following constraints influence the location where we can reset
1680 hardware watchpoints:
1681
1682 * target_stopped_by_watchpoint and target_stopped_data_address are
1683 called several times when GDB stops.
1684
1685 [linux]
1686 * Multiple hardware watchpoints can be hit at the same time,
1687 causing GDB to stop. GDB only presents one hardware watchpoint
1688 hit at a time as the reason for stopping, and all the other hits
1689 are presented later, one after the other, each time the user
1690 requests the execution to be resumed. Execution is not resumed
1691 for the threads still having pending hit event stored in
1692 LWP_INFO->STATUS. While the watchpoint is already removed from
1693 the inferior on the first stop the thread hit event is kept being
1694 reported from its cached value by linux_nat_stopped_data_address
1695 until the real thread resume happens after the watchpoint gets
1696 presented and thus its LWP_INFO->STATUS gets reset.
1697
1698 Therefore the hardware watchpoint hit can get safely reset on the
1699 watchpoint removal from inferior. */
1700
1701 static void
1702 update_watchpoint (struct watchpoint *b, int reparse)
1703 {
1704 int within_current_scope;
1705 struct frame_id saved_frame_id;
1706 int frame_saved;
1707
1708 /* If this is a local watchpoint, we only want to check if the
1709 watchpoint frame is in scope if the current thread is the thread
1710 that was used to create the watchpoint. */
1711 if (!watchpoint_in_thread_scope (b))
1712 return;
1713
1714 if (b->base.disposition == disp_del_at_next_stop)
1715 return;
1716
1717 frame_saved = 0;
1718
1719 /* Determine if the watchpoint is within scope. */
1720 if (b->exp_valid_block == NULL)
1721 within_current_scope = 1;
1722 else
1723 {
1724 struct frame_info *fi = get_current_frame ();
1725 struct gdbarch *frame_arch = get_frame_arch (fi);
1726 CORE_ADDR frame_pc = get_frame_pc (fi);
1727
1728 /* If we're in a function epilogue, unwinding may not work
1729 properly, so do not attempt to recreate locations at this
1730 point. See similar comments in watchpoint_check. */
1731 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1732 return;
1733
1734 /* Save the current frame's ID so we can restore it after
1735 evaluating the watchpoint expression on its own frame. */
1736 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1737 took a frame parameter, so that we didn't have to change the
1738 selected frame. */
1739 frame_saved = 1;
1740 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1741
1742 fi = frame_find_by_id (b->watchpoint_frame);
1743 within_current_scope = (fi != NULL);
1744 if (within_current_scope)
1745 select_frame (fi);
1746 }
1747
1748 /* We don't free locations. They are stored in the bp_location array
1749 and update_global_location_list will eventually delete them and
1750 remove breakpoints if needed. */
1751 b->base.loc = NULL;
1752
1753 if (within_current_scope && reparse)
1754 {
1755 const char *s;
1756
1757 if (b->exp)
1758 {
1759 xfree (b->exp);
1760 b->exp = NULL;
1761 }
1762 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1763 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1764 /* If the meaning of expression itself changed, the old value is
1765 no longer relevant. We don't want to report a watchpoint hit
1766 to the user when the old value and the new value may actually
1767 be completely different objects. */
1768 value_free (b->val);
1769 b->val = NULL;
1770 b->val_valid = 0;
1771
1772 /* Note that unlike with breakpoints, the watchpoint's condition
1773 expression is stored in the breakpoint object, not in the
1774 locations (re)created below. */
1775 if (b->base.cond_string != NULL)
1776 {
1777 if (b->cond_exp != NULL)
1778 {
1779 xfree (b->cond_exp);
1780 b->cond_exp = NULL;
1781 }
1782
1783 s = b->base.cond_string;
1784 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1785 }
1786 }
1787
1788 /* If we failed to parse the expression, for example because
1789 it refers to a global variable in a not-yet-loaded shared library,
1790 don't try to insert watchpoint. We don't automatically delete
1791 such watchpoint, though, since failure to parse expression
1792 is different from out-of-scope watchpoint. */
1793 if (!target_has_execution)
1794 {
1795 /* Without execution, memory can't change. No use to try and
1796 set watchpoint locations. The watchpoint will be reset when
1797 the target gains execution, through breakpoint_re_set. */
1798 if (!can_use_hw_watchpoints)
1799 {
1800 if (b->base.ops->works_in_software_mode (&b->base))
1801 b->base.type = bp_watchpoint;
1802 else
1803 error (_("Can't set read/access watchpoint when "
1804 "hardware watchpoints are disabled."));
1805 }
1806 }
1807 else if (within_current_scope && b->exp)
1808 {
1809 int pc = 0;
1810 struct value *val_chain, *v, *result, *next;
1811 struct program_space *frame_pspace;
1812
1813 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1814
1815 /* Avoid setting b->val if it's already set. The meaning of
1816 b->val is 'the last value' user saw, and we should update
1817 it only if we reported that last value to user. As it
1818 happens, the code that reports it updates b->val directly.
1819 We don't keep track of the memory value for masked
1820 watchpoints. */
1821 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1822 {
1823 b->val = v;
1824 b->val_valid = 1;
1825 }
1826
1827 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1828
1829 /* Look at each value on the value chain. */
1830 for (v = val_chain; v; v = value_next (v))
1831 {
1832 /* If it's a memory location, and GDB actually needed
1833 its contents to evaluate the expression, then we
1834 must watch it. If the first value returned is
1835 still lazy, that means an error occurred reading it;
1836 watch it anyway in case it becomes readable. */
1837 if (VALUE_LVAL (v) == lval_memory
1838 && (v == val_chain || ! value_lazy (v)))
1839 {
1840 struct type *vtype = check_typedef (value_type (v));
1841
1842 /* We only watch structs and arrays if user asked
1843 for it explicitly, never if they just happen to
1844 appear in the middle of some value chain. */
1845 if (v == result
1846 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1847 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1848 {
1849 CORE_ADDR addr;
1850 int type;
1851 struct bp_location *loc, **tmp;
1852
1853 addr = value_address (v);
1854 type = hw_write;
1855 if (b->base.type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->base.type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (&b->base);
1861 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = addr;
1868 loc->length = TYPE_LENGTH (value_type (v));
1869 loc->watchpoint_type = type;
1870 }
1871 }
1872 }
1873
1874 /* Change the type of breakpoint between hardware assisted or
1875 an ordinary watchpoint depending on the hardware support
1876 and free hardware slots. REPARSE is set when the inferior
1877 is started. */
1878 if (reparse)
1879 {
1880 int reg_cnt;
1881 enum bp_loc_type loc_type;
1882 struct bp_location *bl;
1883
1884 reg_cnt = can_use_hardware_watchpoint (val_chain);
1885
1886 if (reg_cnt)
1887 {
1888 int i, target_resources_ok, other_type_used;
1889 enum bptype type;
1890
1891 /* Use an exact watchpoint when there's only one memory region to be
1892 watched, and only one debug register is needed to watch it. */
1893 b->exact = target_exact_watchpoints && reg_cnt == 1;
1894
1895 /* We need to determine how many resources are already
1896 used for all other hardware watchpoints plus this one
1897 to see if we still have enough resources to also fit
1898 this watchpoint in as well. */
1899
1900 /* If this is a software watchpoint, we try to turn it
1901 to a hardware one -- count resources as if B was of
1902 hardware watchpoint type. */
1903 type = b->base.type;
1904 if (type == bp_watchpoint)
1905 type = bp_hardware_watchpoint;
1906
1907 /* This watchpoint may or may not have been placed on
1908 the list yet at this point (it won't be in the list
1909 if we're trying to create it for the first time,
1910 through watch_command), so always account for it
1911 manually. */
1912
1913 /* Count resources used by all watchpoints except B. */
1914 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1915
1916 /* Add in the resources needed for B. */
1917 i += hw_watchpoint_use_count (&b->base);
1918
1919 target_resources_ok
1920 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1921 if (target_resources_ok <= 0)
1922 {
1923 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1924
1925 if (target_resources_ok == 0 && !sw_mode)
1926 error (_("Target does not support this type of "
1927 "hardware watchpoint."));
1928 else if (target_resources_ok < 0 && !sw_mode)
1929 error (_("There are not enough available hardware "
1930 "resources for this watchpoint."));
1931
1932 /* Downgrade to software watchpoint. */
1933 b->base.type = bp_watchpoint;
1934 }
1935 else
1936 {
1937 /* If this was a software watchpoint, we've just
1938 found we have enough resources to turn it to a
1939 hardware watchpoint. Otherwise, this is a
1940 nop. */
1941 b->base.type = type;
1942 }
1943 }
1944 else if (!b->base.ops->works_in_software_mode (&b->base))
1945 {
1946 if (!can_use_hw_watchpoints)
1947 error (_("Can't set read/access watchpoint when "
1948 "hardware watchpoints are disabled."));
1949 else
1950 error (_("Expression cannot be implemented with "
1951 "read/access watchpoint."));
1952 }
1953 else
1954 b->base.type = bp_watchpoint;
1955
1956 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1957 : bp_loc_hardware_watchpoint);
1958 for (bl = b->base.loc; bl; bl = bl->next)
1959 bl->loc_type = loc_type;
1960 }
1961
1962 for (v = val_chain; v; v = next)
1963 {
1964 next = value_next (v);
1965 if (v != b->val)
1966 value_free (v);
1967 }
1968
1969 /* If a software watchpoint is not watching any memory, then the
1970 above left it without any location set up. But,
1971 bpstat_stop_status requires a location to be able to report
1972 stops, so make sure there's at least a dummy one. */
1973 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1974 {
1975 struct breakpoint *base = &b->base;
1976 base->loc = allocate_bp_location (base);
1977 base->loc->pspace = frame_pspace;
1978 base->loc->address = -1;
1979 base->loc->length = -1;
1980 base->loc->watchpoint_type = -1;
1981 }
1982 }
1983 else if (!within_current_scope)
1984 {
1985 printf_filtered (_("\
1986 Watchpoint %d deleted because the program has left the block\n\
1987 in which its expression is valid.\n"),
1988 b->base.number);
1989 watchpoint_del_at_next_stop (b);
1990 }
1991
1992 /* Restore the selected frame. */
1993 if (frame_saved)
1994 select_frame (frame_find_by_id (saved_frame_id));
1995 }
1996
1997
1998 /* Returns 1 iff breakpoint location should be
1999 inserted in the inferior. We don't differentiate the type of BL's owner
2000 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2001 breakpoint_ops is not defined, because in insert_bp_location,
2002 tracepoint's insert_location will not be called. */
2003 static int
2004 should_be_inserted (struct bp_location *bl)
2005 {
2006 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2007 return 0;
2008
2009 if (bl->owner->disposition == disp_del_at_next_stop)
2010 return 0;
2011
2012 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2013 return 0;
2014
2015 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2016 return 0;
2017
2018 /* This is set for example, when we're attached to the parent of a
2019 vfork, and have detached from the child. The child is running
2020 free, and we expect it to do an exec or exit, at which point the
2021 OS makes the parent schedulable again (and the target reports
2022 that the vfork is done). Until the child is done with the shared
2023 memory region, do not insert breakpoints in the parent, otherwise
2024 the child could still trip on the parent's breakpoints. Since
2025 the parent is blocked anyway, it won't miss any breakpoint. */
2026 if (bl->pspace->breakpoints_not_allowed)
2027 return 0;
2028
2029 /* Don't insert a breakpoint if we're trying to step past its
2030 location. */
2031 if ((bl->loc_type == bp_loc_software_breakpoint
2032 || bl->loc_type == bp_loc_hardware_breakpoint)
2033 && stepping_past_instruction_at (bl->pspace->aspace,
2034 bl->address))
2035 return 0;
2036
2037 return 1;
2038 }
2039
2040 /* Same as should_be_inserted but does the check assuming
2041 that the location is not duplicated. */
2042
2043 static int
2044 unduplicated_should_be_inserted (struct bp_location *bl)
2045 {
2046 int result;
2047 const int save_duplicate = bl->duplicate;
2048
2049 bl->duplicate = 0;
2050 result = should_be_inserted (bl);
2051 bl->duplicate = save_duplicate;
2052 return result;
2053 }
2054
2055 /* Parses a conditional described by an expression COND into an
2056 agent expression bytecode suitable for evaluation
2057 by the bytecode interpreter. Return NULL if there was
2058 any error during parsing. */
2059
2060 static struct agent_expr *
2061 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2062 {
2063 struct agent_expr *aexpr = NULL;
2064 volatile struct gdb_exception ex;
2065
2066 if (!cond)
2067 return NULL;
2068
2069 /* We don't want to stop processing, so catch any errors
2070 that may show up. */
2071 TRY_CATCH (ex, RETURN_MASK_ERROR)
2072 {
2073 aexpr = gen_eval_for_expr (scope, cond);
2074 }
2075
2076 if (ex.reason < 0)
2077 {
2078 /* If we got here, it means the condition could not be parsed to a valid
2079 bytecode expression and thus can't be evaluated on the target's side.
2080 It's no use iterating through the conditions. */
2081 return NULL;
2082 }
2083
2084 /* We have a valid agent expression. */
2085 return aexpr;
2086 }
2087
2088 /* Based on location BL, create a list of breakpoint conditions to be
2089 passed on to the target. If we have duplicated locations with different
2090 conditions, we will add such conditions to the list. The idea is that the
2091 target will evaluate the list of conditions and will only notify GDB when
2092 one of them is true. */
2093
2094 static void
2095 build_target_condition_list (struct bp_location *bl)
2096 {
2097 struct bp_location **locp = NULL, **loc2p;
2098 int null_condition_or_parse_error = 0;
2099 int modified = bl->needs_update;
2100 struct bp_location *loc;
2101
2102 /* Release conditions left over from a previous insert. */
2103 VEC_free (agent_expr_p, bl->target_info.conditions);
2104
2105 /* This is only meaningful if the target is
2106 evaluating conditions and if the user has
2107 opted for condition evaluation on the target's
2108 side. */
2109 if (gdb_evaluates_breakpoint_condition_p ()
2110 || !target_supports_evaluation_of_breakpoint_conditions ())
2111 return;
2112
2113 /* Do a first pass to check for locations with no assigned
2114 conditions or conditions that fail to parse to a valid agent expression
2115 bytecode. If any of these happen, then it's no use to send conditions
2116 to the target since this location will always trigger and generate a
2117 response back to GDB. */
2118 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2119 {
2120 loc = (*loc2p);
2121 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2122 {
2123 if (modified)
2124 {
2125 struct agent_expr *aexpr;
2126
2127 /* Re-parse the conditions since something changed. In that
2128 case we already freed the condition bytecodes (see
2129 force_breakpoint_reinsertion). We just
2130 need to parse the condition to bytecodes again. */
2131 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2132 loc->cond_bytecode = aexpr;
2133
2134 /* Check if we managed to parse the conditional expression
2135 correctly. If not, we will not send this condition
2136 to the target. */
2137 if (aexpr)
2138 continue;
2139 }
2140
2141 /* If we have a NULL bytecode expression, it means something
2142 went wrong or we have a null condition expression. */
2143 if (!loc->cond_bytecode)
2144 {
2145 null_condition_or_parse_error = 1;
2146 break;
2147 }
2148 }
2149 }
2150
2151 /* If any of these happened, it means we will have to evaluate the conditions
2152 for the location's address on gdb's side. It is no use keeping bytecodes
2153 for all the other duplicate locations, thus we free all of them here.
2154
2155 This is so we have a finer control over which locations' conditions are
2156 being evaluated by GDB or the remote stub. */
2157 if (null_condition_or_parse_error)
2158 {
2159 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2160 {
2161 loc = (*loc2p);
2162 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2163 {
2164 /* Only go as far as the first NULL bytecode is
2165 located. */
2166 if (!loc->cond_bytecode)
2167 return;
2168
2169 free_agent_expr (loc->cond_bytecode);
2170 loc->cond_bytecode = NULL;
2171 }
2172 }
2173 }
2174
2175 /* No NULL conditions or failed bytecode generation. Build a condition list
2176 for this location's address. */
2177 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2178 {
2179 loc = (*loc2p);
2180 if (loc->cond
2181 && is_breakpoint (loc->owner)
2182 && loc->pspace->num == bl->pspace->num
2183 && loc->owner->enable_state == bp_enabled
2184 && loc->enabled)
2185 /* Add the condition to the vector. This will be used later to send the
2186 conditions to the target. */
2187 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2188 loc->cond_bytecode);
2189 }
2190
2191 return;
2192 }
2193
2194 /* Parses a command described by string CMD into an agent expression
2195 bytecode suitable for evaluation by the bytecode interpreter.
2196 Return NULL if there was any error during parsing. */
2197
2198 static struct agent_expr *
2199 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2200 {
2201 struct cleanup *old_cleanups = 0;
2202 struct expression *expr, **argvec;
2203 struct agent_expr *aexpr = NULL;
2204 volatile struct gdb_exception ex;
2205 const char *cmdrest;
2206 const char *format_start, *format_end;
2207 struct format_piece *fpieces;
2208 int nargs;
2209 struct gdbarch *gdbarch = get_current_arch ();
2210
2211 if (!cmd)
2212 return NULL;
2213
2214 cmdrest = cmd;
2215
2216 if (*cmdrest == ',')
2217 ++cmdrest;
2218 cmdrest = skip_spaces_const (cmdrest);
2219
2220 if (*cmdrest++ != '"')
2221 error (_("No format string following the location"));
2222
2223 format_start = cmdrest;
2224
2225 fpieces = parse_format_string (&cmdrest);
2226
2227 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2228
2229 format_end = cmdrest;
2230
2231 if (*cmdrest++ != '"')
2232 error (_("Bad format string, non-terminated '\"'."));
2233
2234 cmdrest = skip_spaces_const (cmdrest);
2235
2236 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2237 error (_("Invalid argument syntax"));
2238
2239 if (*cmdrest == ',')
2240 cmdrest++;
2241 cmdrest = skip_spaces_const (cmdrest);
2242
2243 /* For each argument, make an expression. */
2244
2245 argvec = (struct expression **) alloca (strlen (cmd)
2246 * sizeof (struct expression *));
2247
2248 nargs = 0;
2249 while (*cmdrest != '\0')
2250 {
2251 const char *cmd1;
2252
2253 cmd1 = cmdrest;
2254 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2255 argvec[nargs++] = expr;
2256 cmdrest = cmd1;
2257 if (*cmdrest == ',')
2258 ++cmdrest;
2259 }
2260
2261 /* We don't want to stop processing, so catch any errors
2262 that may show up. */
2263 TRY_CATCH (ex, RETURN_MASK_ERROR)
2264 {
2265 aexpr = gen_printf (scope, gdbarch, 0, 0,
2266 format_start, format_end - format_start,
2267 fpieces, nargs, argvec);
2268 }
2269
2270 do_cleanups (old_cleanups);
2271
2272 if (ex.reason < 0)
2273 {
2274 /* If we got here, it means the command could not be parsed to a valid
2275 bytecode expression and thus can't be evaluated on the target's side.
2276 It's no use iterating through the other commands. */
2277 return NULL;
2278 }
2279
2280 /* We have a valid agent expression, return it. */
2281 return aexpr;
2282 }
2283
2284 /* Based on location BL, create a list of breakpoint commands to be
2285 passed on to the target. If we have duplicated locations with
2286 different commands, we will add any such to the list. */
2287
2288 static void
2289 build_target_command_list (struct bp_location *bl)
2290 {
2291 struct bp_location **locp = NULL, **loc2p;
2292 int null_command_or_parse_error = 0;
2293 int modified = bl->needs_update;
2294 struct bp_location *loc;
2295
2296 /* Release commands left over from a previous insert. */
2297 VEC_free (agent_expr_p, bl->target_info.tcommands);
2298
2299 /* For now, limit to agent-style dprintf breakpoints. */
2300 if (bl->owner->type != bp_dprintf
2301 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2302 return;
2303
2304 if (!target_can_run_breakpoint_commands ())
2305 return;
2306
2307 /* Do a first pass to check for locations with no assigned
2308 conditions or conditions that fail to parse to a valid agent expression
2309 bytecode. If any of these happen, then it's no use to send conditions
2310 to the target since this location will always trigger and generate a
2311 response back to GDB. */
2312 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2313 {
2314 loc = (*loc2p);
2315 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2316 {
2317 if (modified)
2318 {
2319 struct agent_expr *aexpr;
2320
2321 /* Re-parse the commands since something changed. In that
2322 case we already freed the command bytecodes (see
2323 force_breakpoint_reinsertion). We just
2324 need to parse the command to bytecodes again. */
2325 aexpr = parse_cmd_to_aexpr (bl->address,
2326 loc->owner->extra_string);
2327 loc->cmd_bytecode = aexpr;
2328
2329 if (!aexpr)
2330 continue;
2331 }
2332
2333 /* If we have a NULL bytecode expression, it means something
2334 went wrong or we have a null command expression. */
2335 if (!loc->cmd_bytecode)
2336 {
2337 null_command_or_parse_error = 1;
2338 break;
2339 }
2340 }
2341 }
2342
2343 /* If anything failed, then we're not doing target-side commands,
2344 and so clean up. */
2345 if (null_command_or_parse_error)
2346 {
2347 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2348 {
2349 loc = (*loc2p);
2350 if (is_breakpoint (loc->owner)
2351 && loc->pspace->num == bl->pspace->num)
2352 {
2353 /* Only go as far as the first NULL bytecode is
2354 located. */
2355 if (loc->cmd_bytecode == NULL)
2356 return;
2357
2358 free_agent_expr (loc->cmd_bytecode);
2359 loc->cmd_bytecode = NULL;
2360 }
2361 }
2362 }
2363
2364 /* No NULL commands or failed bytecode generation. Build a command list
2365 for this location's address. */
2366 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2367 {
2368 loc = (*loc2p);
2369 if (loc->owner->extra_string
2370 && is_breakpoint (loc->owner)
2371 && loc->pspace->num == bl->pspace->num
2372 && loc->owner->enable_state == bp_enabled
2373 && loc->enabled)
2374 /* Add the command to the vector. This will be used later
2375 to send the commands to the target. */
2376 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2377 loc->cmd_bytecode);
2378 }
2379
2380 bl->target_info.persist = 0;
2381 /* Maybe flag this location as persistent. */
2382 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2383 bl->target_info.persist = 1;
2384 }
2385
2386 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2387 location. Any error messages are printed to TMP_ERROR_STREAM; and
2388 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2389 Returns 0 for success, 1 if the bp_location type is not supported or
2390 -1 for failure.
2391
2392 NOTE drow/2003-09-09: This routine could be broken down to an
2393 object-style method for each breakpoint or catchpoint type. */
2394 static int
2395 insert_bp_location (struct bp_location *bl,
2396 struct ui_file *tmp_error_stream,
2397 int *disabled_breaks,
2398 int *hw_breakpoint_error,
2399 int *hw_bp_error_explained_already)
2400 {
2401 enum errors bp_err = GDB_NO_ERROR;
2402 const char *bp_err_message = NULL;
2403 volatile struct gdb_exception e;
2404
2405 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2406 return 0;
2407
2408 /* Note we don't initialize bl->target_info, as that wipes out
2409 the breakpoint location's shadow_contents if the breakpoint
2410 is still inserted at that location. This in turn breaks
2411 target_read_memory which depends on these buffers when
2412 a memory read is requested at the breakpoint location:
2413 Once the target_info has been wiped, we fail to see that
2414 we have a breakpoint inserted at that address and thus
2415 read the breakpoint instead of returning the data saved in
2416 the breakpoint location's shadow contents. */
2417 bl->target_info.placed_address = bl->address;
2418 bl->target_info.placed_address_space = bl->pspace->aspace;
2419 bl->target_info.length = bl->length;
2420
2421 /* When working with target-side conditions, we must pass all the conditions
2422 for the same breakpoint address down to the target since GDB will not
2423 insert those locations. With a list of breakpoint conditions, the target
2424 can decide when to stop and notify GDB. */
2425
2426 if (is_breakpoint (bl->owner))
2427 {
2428 build_target_condition_list (bl);
2429 build_target_command_list (bl);
2430 /* Reset the modification marker. */
2431 bl->needs_update = 0;
2432 }
2433
2434 if (bl->loc_type == bp_loc_software_breakpoint
2435 || bl->loc_type == bp_loc_hardware_breakpoint)
2436 {
2437 if (bl->owner->type != bp_hardware_breakpoint)
2438 {
2439 /* If the explicitly specified breakpoint type
2440 is not hardware breakpoint, check the memory map to see
2441 if the breakpoint address is in read only memory or not.
2442
2443 Two important cases are:
2444 - location type is not hardware breakpoint, memory
2445 is readonly. We change the type of the location to
2446 hardware breakpoint.
2447 - location type is hardware breakpoint, memory is
2448 read-write. This means we've previously made the
2449 location hardware one, but then the memory map changed,
2450 so we undo.
2451
2452 When breakpoints are removed, remove_breakpoints will use
2453 location types we've just set here, the only possible
2454 problem is that memory map has changed during running
2455 program, but it's not going to work anyway with current
2456 gdb. */
2457 struct mem_region *mr
2458 = lookup_mem_region (bl->target_info.placed_address);
2459
2460 if (mr)
2461 {
2462 if (automatic_hardware_breakpoints)
2463 {
2464 enum bp_loc_type new_type;
2465
2466 if (mr->attrib.mode != MEM_RW)
2467 new_type = bp_loc_hardware_breakpoint;
2468 else
2469 new_type = bp_loc_software_breakpoint;
2470
2471 if (new_type != bl->loc_type)
2472 {
2473 static int said = 0;
2474
2475 bl->loc_type = new_type;
2476 if (!said)
2477 {
2478 fprintf_filtered (gdb_stdout,
2479 _("Note: automatically using "
2480 "hardware breakpoints for "
2481 "read-only addresses.\n"));
2482 said = 1;
2483 }
2484 }
2485 }
2486 else if (bl->loc_type == bp_loc_software_breakpoint
2487 && mr->attrib.mode != MEM_RW)
2488 warning (_("cannot set software breakpoint "
2489 "at readonly address %s"),
2490 paddress (bl->gdbarch, bl->address));
2491 }
2492 }
2493
2494 /* First check to see if we have to handle an overlay. */
2495 if (overlay_debugging == ovly_off
2496 || bl->section == NULL
2497 || !(section_is_overlay (bl->section)))
2498 {
2499 /* No overlay handling: just set the breakpoint. */
2500 TRY_CATCH (e, RETURN_MASK_ALL)
2501 {
2502 int val;
2503
2504 val = bl->owner->ops->insert_location (bl);
2505 if (val)
2506 bp_err = GENERIC_ERROR;
2507 }
2508 if (e.reason < 0)
2509 {
2510 bp_err = e.error;
2511 bp_err_message = e.message;
2512 }
2513 }
2514 else
2515 {
2516 /* This breakpoint is in an overlay section.
2517 Shall we set a breakpoint at the LMA? */
2518 if (!overlay_events_enabled)
2519 {
2520 /* Yes -- overlay event support is not active,
2521 so we must try to set a breakpoint at the LMA.
2522 This will not work for a hardware breakpoint. */
2523 if (bl->loc_type == bp_loc_hardware_breakpoint)
2524 warning (_("hardware breakpoint %d not supported in overlay!"),
2525 bl->owner->number);
2526 else
2527 {
2528 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2529 bl->section);
2530 /* Set a software (trap) breakpoint at the LMA. */
2531 bl->overlay_target_info = bl->target_info;
2532 bl->overlay_target_info.placed_address = addr;
2533
2534 /* No overlay handling: just set the breakpoint. */
2535 TRY_CATCH (e, RETURN_MASK_ALL)
2536 {
2537 int val;
2538
2539 val = target_insert_breakpoint (bl->gdbarch,
2540 &bl->overlay_target_info);
2541 if (val)
2542 bp_err = GENERIC_ERROR;
2543 }
2544 if (e.reason < 0)
2545 {
2546 bp_err = e.error;
2547 bp_err_message = e.message;
2548 }
2549
2550 if (bp_err != GDB_NO_ERROR)
2551 fprintf_unfiltered (tmp_error_stream,
2552 "Overlay breakpoint %d "
2553 "failed: in ROM?\n",
2554 bl->owner->number);
2555 }
2556 }
2557 /* Shall we set a breakpoint at the VMA? */
2558 if (section_is_mapped (bl->section))
2559 {
2560 /* Yes. This overlay section is mapped into memory. */
2561 TRY_CATCH (e, RETURN_MASK_ALL)
2562 {
2563 int val;
2564
2565 val = bl->owner->ops->insert_location (bl);
2566 if (val)
2567 bp_err = GENERIC_ERROR;
2568 }
2569 if (e.reason < 0)
2570 {
2571 bp_err = e.error;
2572 bp_err_message = e.message;
2573 }
2574 }
2575 else
2576 {
2577 /* No. This breakpoint will not be inserted.
2578 No error, but do not mark the bp as 'inserted'. */
2579 return 0;
2580 }
2581 }
2582
2583 if (bp_err != GDB_NO_ERROR)
2584 {
2585 /* Can't set the breakpoint. */
2586
2587 /* In some cases, we might not be able to insert a
2588 breakpoint in a shared library that has already been
2589 removed, but we have not yet processed the shlib unload
2590 event. Unfortunately, some targets that implement
2591 breakpoint insertion themselves (necessary if this is a
2592 HW breakpoint, but SW breakpoints likewise) can't tell
2593 why the breakpoint insertion failed (e.g., the remote
2594 target doesn't define error codes), so we must treat
2595 generic errors as memory errors. */
2596 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2597 && solib_name_from_address (bl->pspace, bl->address))
2598 {
2599 /* See also: disable_breakpoints_in_shlibs. */
2600 bl->shlib_disabled = 1;
2601 observer_notify_breakpoint_modified (bl->owner);
2602 if (!*disabled_breaks)
2603 {
2604 fprintf_unfiltered (tmp_error_stream,
2605 "Cannot insert breakpoint %d.\n",
2606 bl->owner->number);
2607 fprintf_unfiltered (tmp_error_stream,
2608 "Temporarily disabling shared "
2609 "library breakpoints:\n");
2610 }
2611 *disabled_breaks = 1;
2612 fprintf_unfiltered (tmp_error_stream,
2613 "breakpoint #%d\n", bl->owner->number);
2614 return 0;
2615 }
2616 else
2617 {
2618 if (bl->loc_type == bp_loc_hardware_breakpoint)
2619 {
2620 *hw_breakpoint_error = 1;
2621 *hw_bp_error_explained_already = bp_err_message != NULL;
2622 fprintf_unfiltered (tmp_error_stream,
2623 "Cannot insert hardware breakpoint %d%s",
2624 bl->owner->number, bp_err_message ? ":" : ".\n");
2625 if (bp_err_message != NULL)
2626 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2627 }
2628 else
2629 {
2630 if (bp_err_message == NULL)
2631 {
2632 char *message
2633 = memory_error_message (TARGET_XFER_E_IO,
2634 bl->gdbarch, bl->address);
2635 struct cleanup *old_chain = make_cleanup (xfree, message);
2636
2637 fprintf_unfiltered (tmp_error_stream,
2638 "Cannot insert breakpoint %d.\n"
2639 "%s\n",
2640 bl->owner->number, message);
2641 do_cleanups (old_chain);
2642 }
2643 else
2644 {
2645 fprintf_unfiltered (tmp_error_stream,
2646 "Cannot insert breakpoint %d: %s\n",
2647 bl->owner->number,
2648 bp_err_message);
2649 }
2650 }
2651 return 1;
2652
2653 }
2654 }
2655 else
2656 bl->inserted = 1;
2657
2658 return 0;
2659 }
2660
2661 else if (bl->loc_type == bp_loc_hardware_watchpoint
2662 /* NOTE drow/2003-09-08: This state only exists for removing
2663 watchpoints. It's not clear that it's necessary... */
2664 && bl->owner->disposition != disp_del_at_next_stop)
2665 {
2666 int val;
2667
2668 gdb_assert (bl->owner->ops != NULL
2669 && bl->owner->ops->insert_location != NULL);
2670
2671 val = bl->owner->ops->insert_location (bl);
2672
2673 /* If trying to set a read-watchpoint, and it turns out it's not
2674 supported, try emulating one with an access watchpoint. */
2675 if (val == 1 && bl->watchpoint_type == hw_read)
2676 {
2677 struct bp_location *loc, **loc_temp;
2678
2679 /* But don't try to insert it, if there's already another
2680 hw_access location that would be considered a duplicate
2681 of this one. */
2682 ALL_BP_LOCATIONS (loc, loc_temp)
2683 if (loc != bl
2684 && loc->watchpoint_type == hw_access
2685 && watchpoint_locations_match (bl, loc))
2686 {
2687 bl->duplicate = 1;
2688 bl->inserted = 1;
2689 bl->target_info = loc->target_info;
2690 bl->watchpoint_type = hw_access;
2691 val = 0;
2692 break;
2693 }
2694
2695 if (val == 1)
2696 {
2697 bl->watchpoint_type = hw_access;
2698 val = bl->owner->ops->insert_location (bl);
2699
2700 if (val)
2701 /* Back to the original value. */
2702 bl->watchpoint_type = hw_read;
2703 }
2704 }
2705
2706 bl->inserted = (val == 0);
2707 }
2708
2709 else if (bl->owner->type == bp_catchpoint)
2710 {
2711 int val;
2712
2713 gdb_assert (bl->owner->ops != NULL
2714 && bl->owner->ops->insert_location != NULL);
2715
2716 val = bl->owner->ops->insert_location (bl);
2717 if (val)
2718 {
2719 bl->owner->enable_state = bp_disabled;
2720
2721 if (val == 1)
2722 warning (_("\
2723 Error inserting catchpoint %d: Your system does not support this type\n\
2724 of catchpoint."), bl->owner->number);
2725 else
2726 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2727 }
2728
2729 bl->inserted = (val == 0);
2730
2731 /* We've already printed an error message if there was a problem
2732 inserting this catchpoint, and we've disabled the catchpoint,
2733 so just return success. */
2734 return 0;
2735 }
2736
2737 return 0;
2738 }
2739
2740 /* This function is called when program space PSPACE is about to be
2741 deleted. It takes care of updating breakpoints to not reference
2742 PSPACE anymore. */
2743
2744 void
2745 breakpoint_program_space_exit (struct program_space *pspace)
2746 {
2747 struct breakpoint *b, *b_temp;
2748 struct bp_location *loc, **loc_temp;
2749
2750 /* Remove any breakpoint that was set through this program space. */
2751 ALL_BREAKPOINTS_SAFE (b, b_temp)
2752 {
2753 if (b->pspace == pspace)
2754 delete_breakpoint (b);
2755 }
2756
2757 /* Breakpoints set through other program spaces could have locations
2758 bound to PSPACE as well. Remove those. */
2759 ALL_BP_LOCATIONS (loc, loc_temp)
2760 {
2761 struct bp_location *tmp;
2762
2763 if (loc->pspace == pspace)
2764 {
2765 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2766 if (loc->owner->loc == loc)
2767 loc->owner->loc = loc->next;
2768 else
2769 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2770 if (tmp->next == loc)
2771 {
2772 tmp->next = loc->next;
2773 break;
2774 }
2775 }
2776 }
2777
2778 /* Now update the global location list to permanently delete the
2779 removed locations above. */
2780 update_global_location_list (0);
2781 }
2782
2783 /* Make sure all breakpoints are inserted in inferior.
2784 Throws exception on any error.
2785 A breakpoint that is already inserted won't be inserted
2786 again, so calling this function twice is safe. */
2787 void
2788 insert_breakpoints (void)
2789 {
2790 struct breakpoint *bpt;
2791
2792 ALL_BREAKPOINTS (bpt)
2793 if (is_hardware_watchpoint (bpt))
2794 {
2795 struct watchpoint *w = (struct watchpoint *) bpt;
2796
2797 update_watchpoint (w, 0 /* don't reparse. */);
2798 }
2799
2800 update_global_location_list (1);
2801
2802 /* update_global_location_list does not insert breakpoints when
2803 always_inserted_mode is not enabled. Explicitly insert them
2804 now. */
2805 if (!breakpoints_always_inserted_mode ())
2806 insert_breakpoint_locations ();
2807 }
2808
2809 /* Invoke CALLBACK for each of bp_location. */
2810
2811 void
2812 iterate_over_bp_locations (walk_bp_location_callback callback)
2813 {
2814 struct bp_location *loc, **loc_tmp;
2815
2816 ALL_BP_LOCATIONS (loc, loc_tmp)
2817 {
2818 callback (loc, NULL);
2819 }
2820 }
2821
2822 /* This is used when we need to synch breakpoint conditions between GDB and the
2823 target. It is the case with deleting and disabling of breakpoints when using
2824 always-inserted mode. */
2825
2826 static void
2827 update_inserted_breakpoint_locations (void)
2828 {
2829 struct bp_location *bl, **blp_tmp;
2830 int error_flag = 0;
2831 int val = 0;
2832 int disabled_breaks = 0;
2833 int hw_breakpoint_error = 0;
2834 int hw_bp_details_reported = 0;
2835
2836 struct ui_file *tmp_error_stream = mem_fileopen ();
2837 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2838
2839 /* Explicitly mark the warning -- this will only be printed if
2840 there was an error. */
2841 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2842
2843 save_current_space_and_thread ();
2844
2845 ALL_BP_LOCATIONS (bl, blp_tmp)
2846 {
2847 /* We only want to update software breakpoints and hardware
2848 breakpoints. */
2849 if (!is_breakpoint (bl->owner))
2850 continue;
2851
2852 /* We only want to update locations that are already inserted
2853 and need updating. This is to avoid unwanted insertion during
2854 deletion of breakpoints. */
2855 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2856 continue;
2857
2858 switch_to_program_space_and_thread (bl->pspace);
2859
2860 /* For targets that support global breakpoints, there's no need
2861 to select an inferior to insert breakpoint to. In fact, even
2862 if we aren't attached to any process yet, we should still
2863 insert breakpoints. */
2864 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2865 && ptid_equal (inferior_ptid, null_ptid))
2866 continue;
2867
2868 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2869 &hw_breakpoint_error, &hw_bp_details_reported);
2870 if (val)
2871 error_flag = val;
2872 }
2873
2874 if (error_flag)
2875 {
2876 target_terminal_ours_for_output ();
2877 error_stream (tmp_error_stream);
2878 }
2879
2880 do_cleanups (cleanups);
2881 }
2882
2883 /* Used when starting or continuing the program. */
2884
2885 static void
2886 insert_breakpoint_locations (void)
2887 {
2888 struct breakpoint *bpt;
2889 struct bp_location *bl, **blp_tmp;
2890 int error_flag = 0;
2891 int val = 0;
2892 int disabled_breaks = 0;
2893 int hw_breakpoint_error = 0;
2894 int hw_bp_error_explained_already = 0;
2895
2896 struct ui_file *tmp_error_stream = mem_fileopen ();
2897 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2898
2899 /* Explicitly mark the warning -- this will only be printed if
2900 there was an error. */
2901 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2902
2903 save_current_space_and_thread ();
2904
2905 ALL_BP_LOCATIONS (bl, blp_tmp)
2906 {
2907 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2908 continue;
2909
2910 /* There is no point inserting thread-specific breakpoints if
2911 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2912 has BL->OWNER always non-NULL. */
2913 if (bl->owner->thread != -1
2914 && !valid_thread_id (bl->owner->thread))
2915 continue;
2916
2917 switch_to_program_space_and_thread (bl->pspace);
2918
2919 /* For targets that support global breakpoints, there's no need
2920 to select an inferior to insert breakpoint to. In fact, even
2921 if we aren't attached to any process yet, we should still
2922 insert breakpoints. */
2923 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2924 && ptid_equal (inferior_ptid, null_ptid))
2925 continue;
2926
2927 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2928 &hw_breakpoint_error, &hw_bp_error_explained_already);
2929 if (val)
2930 error_flag = val;
2931 }
2932
2933 /* If we failed to insert all locations of a watchpoint, remove
2934 them, as half-inserted watchpoint is of limited use. */
2935 ALL_BREAKPOINTS (bpt)
2936 {
2937 int some_failed = 0;
2938 struct bp_location *loc;
2939
2940 if (!is_hardware_watchpoint (bpt))
2941 continue;
2942
2943 if (!breakpoint_enabled (bpt))
2944 continue;
2945
2946 if (bpt->disposition == disp_del_at_next_stop)
2947 continue;
2948
2949 for (loc = bpt->loc; loc; loc = loc->next)
2950 if (!loc->inserted && should_be_inserted (loc))
2951 {
2952 some_failed = 1;
2953 break;
2954 }
2955 if (some_failed)
2956 {
2957 for (loc = bpt->loc; loc; loc = loc->next)
2958 if (loc->inserted)
2959 remove_breakpoint (loc, mark_uninserted);
2960
2961 hw_breakpoint_error = 1;
2962 fprintf_unfiltered (tmp_error_stream,
2963 "Could not insert hardware watchpoint %d.\n",
2964 bpt->number);
2965 error_flag = -1;
2966 }
2967 }
2968
2969 if (error_flag)
2970 {
2971 /* If a hardware breakpoint or watchpoint was inserted, add a
2972 message about possibly exhausted resources. */
2973 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2974 {
2975 fprintf_unfiltered (tmp_error_stream,
2976 "Could not insert hardware breakpoints:\n\
2977 You may have requested too many hardware breakpoints/watchpoints.\n");
2978 }
2979 target_terminal_ours_for_output ();
2980 error_stream (tmp_error_stream);
2981 }
2982
2983 do_cleanups (cleanups);
2984 }
2985
2986 /* Used when the program stops.
2987 Returns zero if successful, or non-zero if there was a problem
2988 removing a breakpoint location. */
2989
2990 int
2991 remove_breakpoints (void)
2992 {
2993 struct bp_location *bl, **blp_tmp;
2994 int val = 0;
2995
2996 ALL_BP_LOCATIONS (bl, blp_tmp)
2997 {
2998 if (bl->inserted && !is_tracepoint (bl->owner))
2999 val |= remove_breakpoint (bl, mark_uninserted);
3000 }
3001 return val;
3002 }
3003
3004 /* When a thread exits, remove breakpoints that are related to
3005 that thread. */
3006
3007 static void
3008 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3009 {
3010 struct breakpoint *b, *b_tmp;
3011
3012 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3013 {
3014 if (b->thread == tp->num && user_breakpoint_p (b))
3015 {
3016 b->disposition = disp_del_at_next_stop;
3017
3018 printf_filtered (_("\
3019 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3020 b->number, tp->num);
3021
3022 /* Hide it from the user. */
3023 b->number = 0;
3024 }
3025 }
3026 }
3027
3028 /* Remove breakpoints of process PID. */
3029
3030 int
3031 remove_breakpoints_pid (int pid)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val;
3035 struct inferior *inf = find_inferior_pid (pid);
3036
3037 ALL_BP_LOCATIONS (bl, blp_tmp)
3038 {
3039 if (bl->pspace != inf->pspace)
3040 continue;
3041
3042 if (bl->owner->type == bp_dprintf)
3043 continue;
3044
3045 if (bl->inserted)
3046 {
3047 val = remove_breakpoint (bl, mark_uninserted);
3048 if (val != 0)
3049 return val;
3050 }
3051 }
3052 return 0;
3053 }
3054
3055 int
3056 reattach_breakpoints (int pid)
3057 {
3058 struct cleanup *old_chain;
3059 struct bp_location *bl, **blp_tmp;
3060 int val;
3061 struct ui_file *tmp_error_stream;
3062 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3063 struct inferior *inf;
3064 struct thread_info *tp;
3065
3066 tp = any_live_thread_of_process (pid);
3067 if (tp == NULL)
3068 return 1;
3069
3070 inf = find_inferior_pid (pid);
3071 old_chain = save_inferior_ptid ();
3072
3073 inferior_ptid = tp->ptid;
3074
3075 tmp_error_stream = mem_fileopen ();
3076 make_cleanup_ui_file_delete (tmp_error_stream);
3077
3078 ALL_BP_LOCATIONS (bl, blp_tmp)
3079 {
3080 if (bl->pspace != inf->pspace)
3081 continue;
3082
3083 if (bl->inserted)
3084 {
3085 bl->inserted = 0;
3086 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3087 if (val != 0)
3088 {
3089 do_cleanups (old_chain);
3090 return val;
3091 }
3092 }
3093 }
3094 do_cleanups (old_chain);
3095 return 0;
3096 }
3097
3098 static int internal_breakpoint_number = -1;
3099
3100 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3101 If INTERNAL is non-zero, the breakpoint number will be populated
3102 from internal_breakpoint_number and that variable decremented.
3103 Otherwise the breakpoint number will be populated from
3104 breakpoint_count and that value incremented. Internal breakpoints
3105 do not set the internal var bpnum. */
3106 static void
3107 set_breakpoint_number (int internal, struct breakpoint *b)
3108 {
3109 if (internal)
3110 b->number = internal_breakpoint_number--;
3111 else
3112 {
3113 set_breakpoint_count (breakpoint_count + 1);
3114 b->number = breakpoint_count;
3115 }
3116 }
3117
3118 static struct breakpoint *
3119 create_internal_breakpoint (struct gdbarch *gdbarch,
3120 CORE_ADDR address, enum bptype type,
3121 const struct breakpoint_ops *ops)
3122 {
3123 struct symtab_and_line sal;
3124 struct breakpoint *b;
3125
3126 init_sal (&sal); /* Initialize to zeroes. */
3127
3128 sal.pc = address;
3129 sal.section = find_pc_overlay (sal.pc);
3130 sal.pspace = current_program_space;
3131
3132 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3133 b->number = internal_breakpoint_number--;
3134 b->disposition = disp_donttouch;
3135
3136 return b;
3137 }
3138
3139 static const char *const longjmp_names[] =
3140 {
3141 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3142 };
3143 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3144
3145 /* Per-objfile data private to breakpoint.c. */
3146 struct breakpoint_objfile_data
3147 {
3148 /* Minimal symbol for "_ovly_debug_event" (if any). */
3149 struct bound_minimal_symbol overlay_msym;
3150
3151 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3152 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3153
3154 /* True if we have looked for longjmp probes. */
3155 int longjmp_searched;
3156
3157 /* SystemTap probe points for longjmp (if any). */
3158 VEC (probe_p) *longjmp_probes;
3159
3160 /* Minimal symbol for "std::terminate()" (if any). */
3161 struct bound_minimal_symbol terminate_msym;
3162
3163 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3164 struct bound_minimal_symbol exception_msym;
3165
3166 /* True if we have looked for exception probes. */
3167 int exception_searched;
3168
3169 /* SystemTap probe points for unwinding (if any). */
3170 VEC (probe_p) *exception_probes;
3171 };
3172
3173 static const struct objfile_data *breakpoint_objfile_key;
3174
3175 /* Minimal symbol not found sentinel. */
3176 static struct minimal_symbol msym_not_found;
3177
3178 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3179
3180 static int
3181 msym_not_found_p (const struct minimal_symbol *msym)
3182 {
3183 return msym == &msym_not_found;
3184 }
3185
3186 /* Return per-objfile data needed by breakpoint.c.
3187 Allocate the data if necessary. */
3188
3189 static struct breakpoint_objfile_data *
3190 get_breakpoint_objfile_data (struct objfile *objfile)
3191 {
3192 struct breakpoint_objfile_data *bp_objfile_data;
3193
3194 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3195 if (bp_objfile_data == NULL)
3196 {
3197 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3198 sizeof (*bp_objfile_data));
3199
3200 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3201 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3202 }
3203 return bp_objfile_data;
3204 }
3205
3206 static void
3207 free_breakpoint_probes (struct objfile *obj, void *data)
3208 {
3209 struct breakpoint_objfile_data *bp_objfile_data = data;
3210
3211 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3212 VEC_free (probe_p, bp_objfile_data->exception_probes);
3213 }
3214
3215 static void
3216 create_overlay_event_breakpoint (void)
3217 {
3218 struct objfile *objfile;
3219 const char *const func_name = "_ovly_debug_event";
3220
3221 ALL_OBJFILES (objfile)
3222 {
3223 struct breakpoint *b;
3224 struct breakpoint_objfile_data *bp_objfile_data;
3225 CORE_ADDR addr;
3226
3227 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3228
3229 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3230 continue;
3231
3232 if (bp_objfile_data->overlay_msym.minsym == NULL)
3233 {
3234 struct bound_minimal_symbol m;
3235
3236 m = lookup_minimal_symbol_text (func_name, objfile);
3237 if (m.minsym == NULL)
3238 {
3239 /* Avoid future lookups in this objfile. */
3240 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3241 continue;
3242 }
3243 bp_objfile_data->overlay_msym = m;
3244 }
3245
3246 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3247 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3248 bp_overlay_event,
3249 &internal_breakpoint_ops);
3250 b->addr_string = xstrdup (func_name);
3251
3252 if (overlay_debugging == ovly_auto)
3253 {
3254 b->enable_state = bp_enabled;
3255 overlay_events_enabled = 1;
3256 }
3257 else
3258 {
3259 b->enable_state = bp_disabled;
3260 overlay_events_enabled = 0;
3261 }
3262 }
3263 update_global_location_list (1);
3264 }
3265
3266 static void
3267 create_longjmp_master_breakpoint (void)
3268 {
3269 struct program_space *pspace;
3270 struct cleanup *old_chain;
3271
3272 old_chain = save_current_program_space ();
3273
3274 ALL_PSPACES (pspace)
3275 {
3276 struct objfile *objfile;
3277
3278 set_current_program_space (pspace);
3279
3280 ALL_OBJFILES (objfile)
3281 {
3282 int i;
3283 struct gdbarch *gdbarch;
3284 struct breakpoint_objfile_data *bp_objfile_data;
3285
3286 gdbarch = get_objfile_arch (objfile);
3287
3288 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3289
3290 if (!bp_objfile_data->longjmp_searched)
3291 {
3292 VEC (probe_p) *ret;
3293
3294 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3295 if (ret != NULL)
3296 {
3297 /* We are only interested in checking one element. */
3298 struct probe *p = VEC_index (probe_p, ret, 0);
3299
3300 if (!can_evaluate_probe_arguments (p))
3301 {
3302 /* We cannot use the probe interface here, because it does
3303 not know how to evaluate arguments. */
3304 VEC_free (probe_p, ret);
3305 ret = NULL;
3306 }
3307 }
3308 bp_objfile_data->longjmp_probes = ret;
3309 bp_objfile_data->longjmp_searched = 1;
3310 }
3311
3312 if (bp_objfile_data->longjmp_probes != NULL)
3313 {
3314 int i;
3315 struct probe *probe;
3316 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3317
3318 for (i = 0;
3319 VEC_iterate (probe_p,
3320 bp_objfile_data->longjmp_probes,
3321 i, probe);
3322 ++i)
3323 {
3324 struct breakpoint *b;
3325
3326 b = create_internal_breakpoint (gdbarch,
3327 get_probe_address (probe,
3328 objfile),
3329 bp_longjmp_master,
3330 &internal_breakpoint_ops);
3331 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3332 b->enable_state = bp_disabled;
3333 }
3334
3335 continue;
3336 }
3337
3338 if (!gdbarch_get_longjmp_target_p (gdbarch))
3339 continue;
3340
3341 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3342 {
3343 struct breakpoint *b;
3344 const char *func_name;
3345 CORE_ADDR addr;
3346
3347 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3348 continue;
3349
3350 func_name = longjmp_names[i];
3351 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3352 {
3353 struct bound_minimal_symbol m;
3354
3355 m = lookup_minimal_symbol_text (func_name, objfile);
3356 if (m.minsym == NULL)
3357 {
3358 /* Prevent future lookups in this objfile. */
3359 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3360 continue;
3361 }
3362 bp_objfile_data->longjmp_msym[i] = m;
3363 }
3364
3365 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3366 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3367 &internal_breakpoint_ops);
3368 b->addr_string = xstrdup (func_name);
3369 b->enable_state = bp_disabled;
3370 }
3371 }
3372 }
3373 update_global_location_list (1);
3374
3375 do_cleanups (old_chain);
3376 }
3377
3378 /* Create a master std::terminate breakpoint. */
3379 static void
3380 create_std_terminate_master_breakpoint (void)
3381 {
3382 struct program_space *pspace;
3383 struct cleanup *old_chain;
3384 const char *const func_name = "std::terminate()";
3385
3386 old_chain = save_current_program_space ();
3387
3388 ALL_PSPACES (pspace)
3389 {
3390 struct objfile *objfile;
3391 CORE_ADDR addr;
3392
3393 set_current_program_space (pspace);
3394
3395 ALL_OBJFILES (objfile)
3396 {
3397 struct breakpoint *b;
3398 struct breakpoint_objfile_data *bp_objfile_data;
3399
3400 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3401
3402 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3403 continue;
3404
3405 if (bp_objfile_data->terminate_msym.minsym == NULL)
3406 {
3407 struct bound_minimal_symbol m;
3408
3409 m = lookup_minimal_symbol (func_name, NULL, objfile);
3410 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3411 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3412 {
3413 /* Prevent future lookups in this objfile. */
3414 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3415 continue;
3416 }
3417 bp_objfile_data->terminate_msym = m;
3418 }
3419
3420 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3421 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3422 bp_std_terminate_master,
3423 &internal_breakpoint_ops);
3424 b->addr_string = xstrdup (func_name);
3425 b->enable_state = bp_disabled;
3426 }
3427 }
3428
3429 update_global_location_list (1);
3430
3431 do_cleanups (old_chain);
3432 }
3433
3434 /* Install a master breakpoint on the unwinder's debug hook. */
3435
3436 static void
3437 create_exception_master_breakpoint (void)
3438 {
3439 struct objfile *objfile;
3440 const char *const func_name = "_Unwind_DebugHook";
3441
3442 ALL_OBJFILES (objfile)
3443 {
3444 struct breakpoint *b;
3445 struct gdbarch *gdbarch;
3446 struct breakpoint_objfile_data *bp_objfile_data;
3447 CORE_ADDR addr;
3448
3449 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3450
3451 /* We prefer the SystemTap probe point if it exists. */
3452 if (!bp_objfile_data->exception_searched)
3453 {
3454 VEC (probe_p) *ret;
3455
3456 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3457
3458 if (ret != NULL)
3459 {
3460 /* We are only interested in checking one element. */
3461 struct probe *p = VEC_index (probe_p, ret, 0);
3462
3463 if (!can_evaluate_probe_arguments (p))
3464 {
3465 /* We cannot use the probe interface here, because it does
3466 not know how to evaluate arguments. */
3467 VEC_free (probe_p, ret);
3468 ret = NULL;
3469 }
3470 }
3471 bp_objfile_data->exception_probes = ret;
3472 bp_objfile_data->exception_searched = 1;
3473 }
3474
3475 if (bp_objfile_data->exception_probes != NULL)
3476 {
3477 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3478 int i;
3479 struct probe *probe;
3480
3481 for (i = 0;
3482 VEC_iterate (probe_p,
3483 bp_objfile_data->exception_probes,
3484 i, probe);
3485 ++i)
3486 {
3487 struct breakpoint *b;
3488
3489 b = create_internal_breakpoint (gdbarch,
3490 get_probe_address (probe,
3491 objfile),
3492 bp_exception_master,
3493 &internal_breakpoint_ops);
3494 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3495 b->enable_state = bp_disabled;
3496 }
3497
3498 continue;
3499 }
3500
3501 /* Otherwise, try the hook function. */
3502
3503 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3504 continue;
3505
3506 gdbarch = get_objfile_arch (objfile);
3507
3508 if (bp_objfile_data->exception_msym.minsym == NULL)
3509 {
3510 struct bound_minimal_symbol debug_hook;
3511
3512 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3513 if (debug_hook.minsym == NULL)
3514 {
3515 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3516 continue;
3517 }
3518
3519 bp_objfile_data->exception_msym = debug_hook;
3520 }
3521
3522 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3523 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3524 &current_target);
3525 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3526 &internal_breakpoint_ops);
3527 b->addr_string = xstrdup (func_name);
3528 b->enable_state = bp_disabled;
3529 }
3530
3531 update_global_location_list (1);
3532 }
3533
3534 void
3535 update_breakpoints_after_exec (void)
3536 {
3537 struct breakpoint *b, *b_tmp;
3538 struct bp_location *bploc, **bplocp_tmp;
3539
3540 /* We're about to delete breakpoints from GDB's lists. If the
3541 INSERTED flag is true, GDB will try to lift the breakpoints by
3542 writing the breakpoints' "shadow contents" back into memory. The
3543 "shadow contents" are NOT valid after an exec, so GDB should not
3544 do that. Instead, the target is responsible from marking
3545 breakpoints out as soon as it detects an exec. We don't do that
3546 here instead, because there may be other attempts to delete
3547 breakpoints after detecting an exec and before reaching here. */
3548 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3549 if (bploc->pspace == current_program_space)
3550 gdb_assert (!bploc->inserted);
3551
3552 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3553 {
3554 if (b->pspace != current_program_space)
3555 continue;
3556
3557 /* Solib breakpoints must be explicitly reset after an exec(). */
3558 if (b->type == bp_shlib_event)
3559 {
3560 delete_breakpoint (b);
3561 continue;
3562 }
3563
3564 /* JIT breakpoints must be explicitly reset after an exec(). */
3565 if (b->type == bp_jit_event)
3566 {
3567 delete_breakpoint (b);
3568 continue;
3569 }
3570
3571 /* Thread event breakpoints must be set anew after an exec(),
3572 as must overlay event and longjmp master breakpoints. */
3573 if (b->type == bp_thread_event || b->type == bp_overlay_event
3574 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3575 || b->type == bp_exception_master)
3576 {
3577 delete_breakpoint (b);
3578 continue;
3579 }
3580
3581 /* Step-resume breakpoints are meaningless after an exec(). */
3582 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3583 {
3584 delete_breakpoint (b);
3585 continue;
3586 }
3587
3588 /* Longjmp and longjmp-resume breakpoints are also meaningless
3589 after an exec. */
3590 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3591 || b->type == bp_longjmp_call_dummy
3592 || b->type == bp_exception || b->type == bp_exception_resume)
3593 {
3594 delete_breakpoint (b);
3595 continue;
3596 }
3597
3598 if (b->type == bp_catchpoint)
3599 {
3600 /* For now, none of the bp_catchpoint breakpoints need to
3601 do anything at this point. In the future, if some of
3602 the catchpoints need to something, we will need to add
3603 a new method, and call this method from here. */
3604 continue;
3605 }
3606
3607 /* bp_finish is a special case. The only way we ought to be able
3608 to see one of these when an exec() has happened, is if the user
3609 caught a vfork, and then said "finish". Ordinarily a finish just
3610 carries them to the call-site of the current callee, by setting
3611 a temporary bp there and resuming. But in this case, the finish
3612 will carry them entirely through the vfork & exec.
3613
3614 We don't want to allow a bp_finish to remain inserted now. But
3615 we can't safely delete it, 'cause finish_command has a handle to
3616 the bp on a bpstat, and will later want to delete it. There's a
3617 chance (and I've seen it happen) that if we delete the bp_finish
3618 here, that its storage will get reused by the time finish_command
3619 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3620 We really must allow finish_command to delete a bp_finish.
3621
3622 In the absence of a general solution for the "how do we know
3623 it's safe to delete something others may have handles to?"
3624 problem, what we'll do here is just uninsert the bp_finish, and
3625 let finish_command delete it.
3626
3627 (We know the bp_finish is "doomed" in the sense that it's
3628 momentary, and will be deleted as soon as finish_command sees
3629 the inferior stopped. So it doesn't matter that the bp's
3630 address is probably bogus in the new a.out, unlike e.g., the
3631 solib breakpoints.) */
3632
3633 if (b->type == bp_finish)
3634 {
3635 continue;
3636 }
3637
3638 /* Without a symbolic address, we have little hope of the
3639 pre-exec() address meaning the same thing in the post-exec()
3640 a.out. */
3641 if (b->addr_string == NULL)
3642 {
3643 delete_breakpoint (b);
3644 continue;
3645 }
3646 }
3647 /* FIXME what about longjmp breakpoints? Re-create them here? */
3648 create_overlay_event_breakpoint ();
3649 create_longjmp_master_breakpoint ();
3650 create_std_terminate_master_breakpoint ();
3651 create_exception_master_breakpoint ();
3652 }
3653
3654 int
3655 detach_breakpoints (ptid_t ptid)
3656 {
3657 struct bp_location *bl, **blp_tmp;
3658 int val = 0;
3659 struct cleanup *old_chain = save_inferior_ptid ();
3660 struct inferior *inf = current_inferior ();
3661
3662 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3663 error (_("Cannot detach breakpoints of inferior_ptid"));
3664
3665 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3666 inferior_ptid = ptid;
3667 ALL_BP_LOCATIONS (bl, blp_tmp)
3668 {
3669 if (bl->pspace != inf->pspace)
3670 continue;
3671
3672 /* This function must physically remove breakpoints locations
3673 from the specified ptid, without modifying the breakpoint
3674 package's state. Locations of type bp_loc_other are only
3675 maintained at GDB side. So, there is no need to remove
3676 these bp_loc_other locations. Moreover, removing these
3677 would modify the breakpoint package's state. */
3678 if (bl->loc_type == bp_loc_other)
3679 continue;
3680
3681 if (bl->inserted)
3682 val |= remove_breakpoint_1 (bl, mark_inserted);
3683 }
3684
3685 /* Detach single-step breakpoints as well. */
3686 detach_single_step_breakpoints ();
3687
3688 do_cleanups (old_chain);
3689 return val;
3690 }
3691
3692 /* Remove the breakpoint location BL from the current address space.
3693 Note that this is used to detach breakpoints from a child fork.
3694 When we get here, the child isn't in the inferior list, and neither
3695 do we have objects to represent its address space --- we should
3696 *not* look at bl->pspace->aspace here. */
3697
3698 static int
3699 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3700 {
3701 int val;
3702
3703 /* BL is never in moribund_locations by our callers. */
3704 gdb_assert (bl->owner != NULL);
3705
3706 if (bl->owner->enable_state == bp_permanent)
3707 /* Permanent breakpoints cannot be inserted or removed. */
3708 return 0;
3709
3710 /* The type of none suggests that owner is actually deleted.
3711 This should not ever happen. */
3712 gdb_assert (bl->owner->type != bp_none);
3713
3714 if (bl->loc_type == bp_loc_software_breakpoint
3715 || bl->loc_type == bp_loc_hardware_breakpoint)
3716 {
3717 /* "Normal" instruction breakpoint: either the standard
3718 trap-instruction bp (bp_breakpoint), or a
3719 bp_hardware_breakpoint. */
3720
3721 /* First check to see if we have to handle an overlay. */
3722 if (overlay_debugging == ovly_off
3723 || bl->section == NULL
3724 || !(section_is_overlay (bl->section)))
3725 {
3726 /* No overlay handling: just remove the breakpoint. */
3727 val = bl->owner->ops->remove_location (bl);
3728 }
3729 else
3730 {
3731 /* This breakpoint is in an overlay section.
3732 Did we set a breakpoint at the LMA? */
3733 if (!overlay_events_enabled)
3734 {
3735 /* Yes -- overlay event support is not active, so we
3736 should have set a breakpoint at the LMA. Remove it.
3737 */
3738 /* Ignore any failures: if the LMA is in ROM, we will
3739 have already warned when we failed to insert it. */
3740 if (bl->loc_type == bp_loc_hardware_breakpoint)
3741 target_remove_hw_breakpoint (bl->gdbarch,
3742 &bl->overlay_target_info);
3743 else
3744 target_remove_breakpoint (bl->gdbarch,
3745 &bl->overlay_target_info);
3746 }
3747 /* Did we set a breakpoint at the VMA?
3748 If so, we will have marked the breakpoint 'inserted'. */
3749 if (bl->inserted)
3750 {
3751 /* Yes -- remove it. Previously we did not bother to
3752 remove the breakpoint if the section had been
3753 unmapped, but let's not rely on that being safe. We
3754 don't know what the overlay manager might do. */
3755
3756 /* However, we should remove *software* breakpoints only
3757 if the section is still mapped, or else we overwrite
3758 wrong code with the saved shadow contents. */
3759 if (bl->loc_type == bp_loc_hardware_breakpoint
3760 || section_is_mapped (bl->section))
3761 val = bl->owner->ops->remove_location (bl);
3762 else
3763 val = 0;
3764 }
3765 else
3766 {
3767 /* No -- not inserted, so no need to remove. No error. */
3768 val = 0;
3769 }
3770 }
3771
3772 /* In some cases, we might not be able to remove a breakpoint
3773 in a shared library that has already been removed, but we
3774 have not yet processed the shlib unload event. */
3775 if (val && solib_name_from_address (bl->pspace, bl->address))
3776 val = 0;
3777
3778 if (val)
3779 return val;
3780 bl->inserted = (is == mark_inserted);
3781 }
3782 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3783 {
3784 gdb_assert (bl->owner->ops != NULL
3785 && bl->owner->ops->remove_location != NULL);
3786
3787 bl->inserted = (is == mark_inserted);
3788 bl->owner->ops->remove_location (bl);
3789
3790 /* Failure to remove any of the hardware watchpoints comes here. */
3791 if ((is == mark_uninserted) && (bl->inserted))
3792 warning (_("Could not remove hardware watchpoint %d."),
3793 bl->owner->number);
3794 }
3795 else if (bl->owner->type == bp_catchpoint
3796 && breakpoint_enabled (bl->owner)
3797 && !bl->duplicate)
3798 {
3799 gdb_assert (bl->owner->ops != NULL
3800 && bl->owner->ops->remove_location != NULL);
3801
3802 val = bl->owner->ops->remove_location (bl);
3803 if (val)
3804 return val;
3805
3806 bl->inserted = (is == mark_inserted);
3807 }
3808
3809 return 0;
3810 }
3811
3812 static int
3813 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3814 {
3815 int ret;
3816 struct cleanup *old_chain;
3817
3818 /* BL is never in moribund_locations by our callers. */
3819 gdb_assert (bl->owner != NULL);
3820
3821 if (bl->owner->enable_state == bp_permanent)
3822 /* Permanent breakpoints cannot be inserted or removed. */
3823 return 0;
3824
3825 /* The type of none suggests that owner is actually deleted.
3826 This should not ever happen. */
3827 gdb_assert (bl->owner->type != bp_none);
3828
3829 old_chain = save_current_space_and_thread ();
3830
3831 switch_to_program_space_and_thread (bl->pspace);
3832
3833 ret = remove_breakpoint_1 (bl, is);
3834
3835 do_cleanups (old_chain);
3836 return ret;
3837 }
3838
3839 /* Clear the "inserted" flag in all breakpoints. */
3840
3841 void
3842 mark_breakpoints_out (void)
3843 {
3844 struct bp_location *bl, **blp_tmp;
3845
3846 ALL_BP_LOCATIONS (bl, blp_tmp)
3847 if (bl->pspace == current_program_space)
3848 bl->inserted = 0;
3849 }
3850
3851 /* Clear the "inserted" flag in all breakpoints and delete any
3852 breakpoints which should go away between runs of the program.
3853
3854 Plus other such housekeeping that has to be done for breakpoints
3855 between runs.
3856
3857 Note: this function gets called at the end of a run (by
3858 generic_mourn_inferior) and when a run begins (by
3859 init_wait_for_inferior). */
3860
3861
3862
3863 void
3864 breakpoint_init_inferior (enum inf_context context)
3865 {
3866 struct breakpoint *b, *b_tmp;
3867 struct bp_location *bl, **blp_tmp;
3868 int ix;
3869 struct program_space *pspace = current_program_space;
3870
3871 /* If breakpoint locations are shared across processes, then there's
3872 nothing to do. */
3873 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3874 return;
3875
3876 ALL_BP_LOCATIONS (bl, blp_tmp)
3877 {
3878 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3879 if (bl->pspace == pspace
3880 && bl->owner->enable_state != bp_permanent)
3881 bl->inserted = 0;
3882 }
3883
3884 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3885 {
3886 if (b->loc && b->loc->pspace != pspace)
3887 continue;
3888
3889 switch (b->type)
3890 {
3891 case bp_call_dummy:
3892 case bp_longjmp_call_dummy:
3893
3894 /* If the call dummy breakpoint is at the entry point it will
3895 cause problems when the inferior is rerun, so we better get
3896 rid of it. */
3897
3898 case bp_watchpoint_scope:
3899
3900 /* Also get rid of scope breakpoints. */
3901
3902 case bp_shlib_event:
3903
3904 /* Also remove solib event breakpoints. Their addresses may
3905 have changed since the last time we ran the program.
3906 Actually we may now be debugging against different target;
3907 and so the solib backend that installed this breakpoint may
3908 not be used in by the target. E.g.,
3909
3910 (gdb) file prog-linux
3911 (gdb) run # native linux target
3912 ...
3913 (gdb) kill
3914 (gdb) file prog-win.exe
3915 (gdb) tar rem :9999 # remote Windows gdbserver.
3916 */
3917
3918 case bp_step_resume:
3919
3920 /* Also remove step-resume breakpoints. */
3921
3922 delete_breakpoint (b);
3923 break;
3924
3925 case bp_watchpoint:
3926 case bp_hardware_watchpoint:
3927 case bp_read_watchpoint:
3928 case bp_access_watchpoint:
3929 {
3930 struct watchpoint *w = (struct watchpoint *) b;
3931
3932 /* Likewise for watchpoints on local expressions. */
3933 if (w->exp_valid_block != NULL)
3934 delete_breakpoint (b);
3935 else if (context == inf_starting)
3936 {
3937 /* Reset val field to force reread of starting value in
3938 insert_breakpoints. */
3939 if (w->val)
3940 value_free (w->val);
3941 w->val = NULL;
3942 w->val_valid = 0;
3943 }
3944 }
3945 break;
3946 default:
3947 break;
3948 }
3949 }
3950
3951 /* Get rid of the moribund locations. */
3952 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3953 decref_bp_location (&bl);
3954 VEC_free (bp_location_p, moribund_locations);
3955 }
3956
3957 /* These functions concern about actual breakpoints inserted in the
3958 target --- to e.g. check if we need to do decr_pc adjustment or if
3959 we need to hop over the bkpt --- so we check for address space
3960 match, not program space. */
3961
3962 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3963 exists at PC. It returns ordinary_breakpoint_here if it's an
3964 ordinary breakpoint, or permanent_breakpoint_here if it's a
3965 permanent breakpoint.
3966 - When continuing from a location with an ordinary breakpoint, we
3967 actually single step once before calling insert_breakpoints.
3968 - When continuing from a location with a permanent breakpoint, we
3969 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3970 the target, to advance the PC past the breakpoint. */
3971
3972 enum breakpoint_here
3973 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3974 {
3975 struct bp_location *bl, **blp_tmp;
3976 int any_breakpoint_here = 0;
3977
3978 ALL_BP_LOCATIONS (bl, blp_tmp)
3979 {
3980 if (bl->loc_type != bp_loc_software_breakpoint
3981 && bl->loc_type != bp_loc_hardware_breakpoint)
3982 continue;
3983
3984 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3985 if ((breakpoint_enabled (bl->owner)
3986 || bl->owner->enable_state == bp_permanent)
3987 && breakpoint_location_address_match (bl, aspace, pc))
3988 {
3989 if (overlay_debugging
3990 && section_is_overlay (bl->section)
3991 && !section_is_mapped (bl->section))
3992 continue; /* unmapped overlay -- can't be a match */
3993 else if (bl->owner->enable_state == bp_permanent)
3994 return permanent_breakpoint_here;
3995 else
3996 any_breakpoint_here = 1;
3997 }
3998 }
3999
4000 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4001 }
4002
4003 /* Return true if there's a moribund breakpoint at PC. */
4004
4005 int
4006 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4007 {
4008 struct bp_location *loc;
4009 int ix;
4010
4011 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4012 if (breakpoint_location_address_match (loc, aspace, pc))
4013 return 1;
4014
4015 return 0;
4016 }
4017
4018 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4019 inserted using regular breakpoint_chain / bp_location array
4020 mechanism. This does not check for single-step breakpoints, which
4021 are inserted and removed using direct target manipulation. */
4022
4023 int
4024 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4025 CORE_ADDR pc)
4026 {
4027 struct bp_location *bl, **blp_tmp;
4028
4029 ALL_BP_LOCATIONS (bl, blp_tmp)
4030 {
4031 if (bl->loc_type != bp_loc_software_breakpoint
4032 && bl->loc_type != bp_loc_hardware_breakpoint)
4033 continue;
4034
4035 if (bl->inserted
4036 && breakpoint_location_address_match (bl, aspace, pc))
4037 {
4038 if (overlay_debugging
4039 && section_is_overlay (bl->section)
4040 && !section_is_mapped (bl->section))
4041 continue; /* unmapped overlay -- can't be a match */
4042 else
4043 return 1;
4044 }
4045 }
4046 return 0;
4047 }
4048
4049 /* Returns non-zero iff there's either regular breakpoint
4050 or a single step breakpoint inserted at PC. */
4051
4052 int
4053 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4054 {
4055 if (regular_breakpoint_inserted_here_p (aspace, pc))
4056 return 1;
4057
4058 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4059 return 1;
4060
4061 return 0;
4062 }
4063
4064 /* This function returns non-zero iff there is a software breakpoint
4065 inserted at PC. */
4066
4067 int
4068 software_breakpoint_inserted_here_p (struct address_space *aspace,
4069 CORE_ADDR pc)
4070 {
4071 struct bp_location *bl, **blp_tmp;
4072
4073 ALL_BP_LOCATIONS (bl, blp_tmp)
4074 {
4075 if (bl->loc_type != bp_loc_software_breakpoint)
4076 continue;
4077
4078 if (bl->inserted
4079 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4080 aspace, pc))
4081 {
4082 if (overlay_debugging
4083 && section_is_overlay (bl->section)
4084 && !section_is_mapped (bl->section))
4085 continue; /* unmapped overlay -- can't be a match */
4086 else
4087 return 1;
4088 }
4089 }
4090
4091 /* Also check for software single-step breakpoints. */
4092 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4093 return 1;
4094
4095 return 0;
4096 }
4097
4098 int
4099 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4100 CORE_ADDR addr, ULONGEST len)
4101 {
4102 struct breakpoint *bpt;
4103
4104 ALL_BREAKPOINTS (bpt)
4105 {
4106 struct bp_location *loc;
4107
4108 if (bpt->type != bp_hardware_watchpoint
4109 && bpt->type != bp_access_watchpoint)
4110 continue;
4111
4112 if (!breakpoint_enabled (bpt))
4113 continue;
4114
4115 for (loc = bpt->loc; loc; loc = loc->next)
4116 if (loc->pspace->aspace == aspace && loc->inserted)
4117 {
4118 CORE_ADDR l, h;
4119
4120 /* Check for intersection. */
4121 l = max (loc->address, addr);
4122 h = min (loc->address + loc->length, addr + len);
4123 if (l < h)
4124 return 1;
4125 }
4126 }
4127 return 0;
4128 }
4129
4130 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4131 PC is valid for process/thread PTID. */
4132
4133 int
4134 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4135 ptid_t ptid)
4136 {
4137 struct bp_location *bl, **blp_tmp;
4138 /* The thread and task IDs associated to PTID, computed lazily. */
4139 int thread = -1;
4140 int task = 0;
4141
4142 ALL_BP_LOCATIONS (bl, blp_tmp)
4143 {
4144 if (bl->loc_type != bp_loc_software_breakpoint
4145 && bl->loc_type != bp_loc_hardware_breakpoint)
4146 continue;
4147
4148 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4149 if (!breakpoint_enabled (bl->owner)
4150 && bl->owner->enable_state != bp_permanent)
4151 continue;
4152
4153 if (!breakpoint_location_address_match (bl, aspace, pc))
4154 continue;
4155
4156 if (bl->owner->thread != -1)
4157 {
4158 /* This is a thread-specific breakpoint. Check that ptid
4159 matches that thread. If thread hasn't been computed yet,
4160 it is now time to do so. */
4161 if (thread == -1)
4162 thread = pid_to_thread_id (ptid);
4163 if (bl->owner->thread != thread)
4164 continue;
4165 }
4166
4167 if (bl->owner->task != 0)
4168 {
4169 /* This is a task-specific breakpoint. Check that ptid
4170 matches that task. If task hasn't been computed yet,
4171 it is now time to do so. */
4172 if (task == 0)
4173 task = ada_get_task_number (ptid);
4174 if (bl->owner->task != task)
4175 continue;
4176 }
4177
4178 if (overlay_debugging
4179 && section_is_overlay (bl->section)
4180 && !section_is_mapped (bl->section))
4181 continue; /* unmapped overlay -- can't be a match */
4182
4183 return 1;
4184 }
4185
4186 return 0;
4187 }
4188 \f
4189
4190 /* bpstat stuff. External routines' interfaces are documented
4191 in breakpoint.h. */
4192
4193 int
4194 is_catchpoint (struct breakpoint *ep)
4195 {
4196 return (ep->type == bp_catchpoint);
4197 }
4198
4199 /* Frees any storage that is part of a bpstat. Does not walk the
4200 'next' chain. */
4201
4202 static void
4203 bpstat_free (bpstat bs)
4204 {
4205 if (bs->old_val != NULL)
4206 value_free (bs->old_val);
4207 decref_counted_command_line (&bs->commands);
4208 decref_bp_location (&bs->bp_location_at);
4209 xfree (bs);
4210 }
4211
4212 /* Clear a bpstat so that it says we are not at any breakpoint.
4213 Also free any storage that is part of a bpstat. */
4214
4215 void
4216 bpstat_clear (bpstat *bsp)
4217 {
4218 bpstat p;
4219 bpstat q;
4220
4221 if (bsp == 0)
4222 return;
4223 p = *bsp;
4224 while (p != NULL)
4225 {
4226 q = p->next;
4227 bpstat_free (p);
4228 p = q;
4229 }
4230 *bsp = NULL;
4231 }
4232
4233 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4234 is part of the bpstat is copied as well. */
4235
4236 bpstat
4237 bpstat_copy (bpstat bs)
4238 {
4239 bpstat p = NULL;
4240 bpstat tmp;
4241 bpstat retval = NULL;
4242
4243 if (bs == NULL)
4244 return bs;
4245
4246 for (; bs != NULL; bs = bs->next)
4247 {
4248 tmp = (bpstat) xmalloc (sizeof (*tmp));
4249 memcpy (tmp, bs, sizeof (*tmp));
4250 incref_counted_command_line (tmp->commands);
4251 incref_bp_location (tmp->bp_location_at);
4252 if (bs->old_val != NULL)
4253 {
4254 tmp->old_val = value_copy (bs->old_val);
4255 release_value (tmp->old_val);
4256 }
4257
4258 if (p == NULL)
4259 /* This is the first thing in the chain. */
4260 retval = tmp;
4261 else
4262 p->next = tmp;
4263 p = tmp;
4264 }
4265 p->next = NULL;
4266 return retval;
4267 }
4268
4269 /* Find the bpstat associated with this breakpoint. */
4270
4271 bpstat
4272 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4273 {
4274 if (bsp == NULL)
4275 return NULL;
4276
4277 for (; bsp != NULL; bsp = bsp->next)
4278 {
4279 if (bsp->breakpoint_at == breakpoint)
4280 return bsp;
4281 }
4282 return NULL;
4283 }
4284
4285 /* See breakpoint.h. */
4286
4287 int
4288 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4289 {
4290 for (; bsp != NULL; bsp = bsp->next)
4291 {
4292 if (bsp->breakpoint_at == NULL)
4293 {
4294 /* A moribund location can never explain a signal other than
4295 GDB_SIGNAL_TRAP. */
4296 if (sig == GDB_SIGNAL_TRAP)
4297 return 1;
4298 }
4299 else
4300 {
4301 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4302 sig))
4303 return 1;
4304 }
4305 }
4306
4307 return 0;
4308 }
4309
4310 /* Put in *NUM the breakpoint number of the first breakpoint we are
4311 stopped at. *BSP upon return is a bpstat which points to the
4312 remaining breakpoints stopped at (but which is not guaranteed to be
4313 good for anything but further calls to bpstat_num).
4314
4315 Return 0 if passed a bpstat which does not indicate any breakpoints.
4316 Return -1 if stopped at a breakpoint that has been deleted since
4317 we set it.
4318 Return 1 otherwise. */
4319
4320 int
4321 bpstat_num (bpstat *bsp, int *num)
4322 {
4323 struct breakpoint *b;
4324
4325 if ((*bsp) == NULL)
4326 return 0; /* No more breakpoint values */
4327
4328 /* We assume we'll never have several bpstats that correspond to a
4329 single breakpoint -- otherwise, this function might return the
4330 same number more than once and this will look ugly. */
4331 b = (*bsp)->breakpoint_at;
4332 *bsp = (*bsp)->next;
4333 if (b == NULL)
4334 return -1; /* breakpoint that's been deleted since */
4335
4336 *num = b->number; /* We have its number */
4337 return 1;
4338 }
4339
4340 /* See breakpoint.h. */
4341
4342 void
4343 bpstat_clear_actions (void)
4344 {
4345 struct thread_info *tp;
4346 bpstat bs;
4347
4348 if (ptid_equal (inferior_ptid, null_ptid))
4349 return;
4350
4351 tp = find_thread_ptid (inferior_ptid);
4352 if (tp == NULL)
4353 return;
4354
4355 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4356 {
4357 decref_counted_command_line (&bs->commands);
4358
4359 if (bs->old_val != NULL)
4360 {
4361 value_free (bs->old_val);
4362 bs->old_val = NULL;
4363 }
4364 }
4365 }
4366
4367 /* Called when a command is about to proceed the inferior. */
4368
4369 static void
4370 breakpoint_about_to_proceed (void)
4371 {
4372 if (!ptid_equal (inferior_ptid, null_ptid))
4373 {
4374 struct thread_info *tp = inferior_thread ();
4375
4376 /* Allow inferior function calls in breakpoint commands to not
4377 interrupt the command list. When the call finishes
4378 successfully, the inferior will be standing at the same
4379 breakpoint as if nothing happened. */
4380 if (tp->control.in_infcall)
4381 return;
4382 }
4383
4384 breakpoint_proceeded = 1;
4385 }
4386
4387 /* Stub for cleaning up our state if we error-out of a breakpoint
4388 command. */
4389 static void
4390 cleanup_executing_breakpoints (void *ignore)
4391 {
4392 executing_breakpoint_commands = 0;
4393 }
4394
4395 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4396 or its equivalent. */
4397
4398 static int
4399 command_line_is_silent (struct command_line *cmd)
4400 {
4401 return cmd && (strcmp ("silent", cmd->line) == 0
4402 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4403 }
4404
4405 /* Execute all the commands associated with all the breakpoints at
4406 this location. Any of these commands could cause the process to
4407 proceed beyond this point, etc. We look out for such changes by
4408 checking the global "breakpoint_proceeded" after each command.
4409
4410 Returns true if a breakpoint command resumed the inferior. In that
4411 case, it is the caller's responsibility to recall it again with the
4412 bpstat of the current thread. */
4413
4414 static int
4415 bpstat_do_actions_1 (bpstat *bsp)
4416 {
4417 bpstat bs;
4418 struct cleanup *old_chain;
4419 int again = 0;
4420
4421 /* Avoid endless recursion if a `source' command is contained
4422 in bs->commands. */
4423 if (executing_breakpoint_commands)
4424 return 0;
4425
4426 executing_breakpoint_commands = 1;
4427 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4428
4429 prevent_dont_repeat ();
4430
4431 /* This pointer will iterate over the list of bpstat's. */
4432 bs = *bsp;
4433
4434 breakpoint_proceeded = 0;
4435 for (; bs != NULL; bs = bs->next)
4436 {
4437 struct counted_command_line *ccmd;
4438 struct command_line *cmd;
4439 struct cleanup *this_cmd_tree_chain;
4440
4441 /* Take ownership of the BSP's command tree, if it has one.
4442
4443 The command tree could legitimately contain commands like
4444 'step' and 'next', which call clear_proceed_status, which
4445 frees stop_bpstat's command tree. To make sure this doesn't
4446 free the tree we're executing out from under us, we need to
4447 take ownership of the tree ourselves. Since a given bpstat's
4448 commands are only executed once, we don't need to copy it; we
4449 can clear the pointer in the bpstat, and make sure we free
4450 the tree when we're done. */
4451 ccmd = bs->commands;
4452 bs->commands = NULL;
4453 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4454 cmd = ccmd ? ccmd->commands : NULL;
4455 if (command_line_is_silent (cmd))
4456 {
4457 /* The action has been already done by bpstat_stop_status. */
4458 cmd = cmd->next;
4459 }
4460
4461 while (cmd != NULL)
4462 {
4463 execute_control_command (cmd);
4464
4465 if (breakpoint_proceeded)
4466 break;
4467 else
4468 cmd = cmd->next;
4469 }
4470
4471 /* We can free this command tree now. */
4472 do_cleanups (this_cmd_tree_chain);
4473
4474 if (breakpoint_proceeded)
4475 {
4476 if (target_can_async_p ())
4477 /* If we are in async mode, then the target might be still
4478 running, not stopped at any breakpoint, so nothing for
4479 us to do here -- just return to the event loop. */
4480 ;
4481 else
4482 /* In sync mode, when execute_control_command returns
4483 we're already standing on the next breakpoint.
4484 Breakpoint commands for that stop were not run, since
4485 execute_command does not run breakpoint commands --
4486 only command_line_handler does, but that one is not
4487 involved in execution of breakpoint commands. So, we
4488 can now execute breakpoint commands. It should be
4489 noted that making execute_command do bpstat actions is
4490 not an option -- in this case we'll have recursive
4491 invocation of bpstat for each breakpoint with a
4492 command, and can easily blow up GDB stack. Instead, we
4493 return true, which will trigger the caller to recall us
4494 with the new stop_bpstat. */
4495 again = 1;
4496 break;
4497 }
4498 }
4499 do_cleanups (old_chain);
4500 return again;
4501 }
4502
4503 void
4504 bpstat_do_actions (void)
4505 {
4506 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4507
4508 /* Do any commands attached to breakpoint we are stopped at. */
4509 while (!ptid_equal (inferior_ptid, null_ptid)
4510 && target_has_execution
4511 && !is_exited (inferior_ptid)
4512 && !is_executing (inferior_ptid))
4513 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4514 and only return when it is stopped at the next breakpoint, we
4515 keep doing breakpoint actions until it returns false to
4516 indicate the inferior was not resumed. */
4517 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4518 break;
4519
4520 discard_cleanups (cleanup_if_error);
4521 }
4522
4523 /* Print out the (old or new) value associated with a watchpoint. */
4524
4525 static void
4526 watchpoint_value_print (struct value *val, struct ui_file *stream)
4527 {
4528 if (val == NULL)
4529 fprintf_unfiltered (stream, _("<unreadable>"));
4530 else
4531 {
4532 struct value_print_options opts;
4533 get_user_print_options (&opts);
4534 value_print (val, stream, &opts);
4535 }
4536 }
4537
4538 /* Generic routine for printing messages indicating why we
4539 stopped. The behavior of this function depends on the value
4540 'print_it' in the bpstat structure. Under some circumstances we
4541 may decide not to print anything here and delegate the task to
4542 normal_stop(). */
4543
4544 static enum print_stop_action
4545 print_bp_stop_message (bpstat bs)
4546 {
4547 switch (bs->print_it)
4548 {
4549 case print_it_noop:
4550 /* Nothing should be printed for this bpstat entry. */
4551 return PRINT_UNKNOWN;
4552 break;
4553
4554 case print_it_done:
4555 /* We still want to print the frame, but we already printed the
4556 relevant messages. */
4557 return PRINT_SRC_AND_LOC;
4558 break;
4559
4560 case print_it_normal:
4561 {
4562 struct breakpoint *b = bs->breakpoint_at;
4563
4564 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4565 which has since been deleted. */
4566 if (b == NULL)
4567 return PRINT_UNKNOWN;
4568
4569 /* Normal case. Call the breakpoint's print_it method. */
4570 return b->ops->print_it (bs);
4571 }
4572 break;
4573
4574 default:
4575 internal_error (__FILE__, __LINE__,
4576 _("print_bp_stop_message: unrecognized enum value"));
4577 break;
4578 }
4579 }
4580
4581 /* A helper function that prints a shared library stopped event. */
4582
4583 static void
4584 print_solib_event (int is_catchpoint)
4585 {
4586 int any_deleted
4587 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4588 int any_added
4589 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4590
4591 if (!is_catchpoint)
4592 {
4593 if (any_added || any_deleted)
4594 ui_out_text (current_uiout,
4595 _("Stopped due to shared library event:\n"));
4596 else
4597 ui_out_text (current_uiout,
4598 _("Stopped due to shared library event (no "
4599 "libraries added or removed)\n"));
4600 }
4601
4602 if (ui_out_is_mi_like_p (current_uiout))
4603 ui_out_field_string (current_uiout, "reason",
4604 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4605
4606 if (any_deleted)
4607 {
4608 struct cleanup *cleanup;
4609 char *name;
4610 int ix;
4611
4612 ui_out_text (current_uiout, _(" Inferior unloaded "));
4613 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4614 "removed");
4615 for (ix = 0;
4616 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4617 ix, name);
4618 ++ix)
4619 {
4620 if (ix > 0)
4621 ui_out_text (current_uiout, " ");
4622 ui_out_field_string (current_uiout, "library", name);
4623 ui_out_text (current_uiout, "\n");
4624 }
4625
4626 do_cleanups (cleanup);
4627 }
4628
4629 if (any_added)
4630 {
4631 struct so_list *iter;
4632 int ix;
4633 struct cleanup *cleanup;
4634
4635 ui_out_text (current_uiout, _(" Inferior loaded "));
4636 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4637 "added");
4638 for (ix = 0;
4639 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4640 ix, iter);
4641 ++ix)
4642 {
4643 if (ix > 0)
4644 ui_out_text (current_uiout, " ");
4645 ui_out_field_string (current_uiout, "library", iter->so_name);
4646 ui_out_text (current_uiout, "\n");
4647 }
4648
4649 do_cleanups (cleanup);
4650 }
4651 }
4652
4653 /* Print a message indicating what happened. This is called from
4654 normal_stop(). The input to this routine is the head of the bpstat
4655 list - a list of the eventpoints that caused this stop. KIND is
4656 the target_waitkind for the stopping event. This
4657 routine calls the generic print routine for printing a message
4658 about reasons for stopping. This will print (for example) the
4659 "Breakpoint n," part of the output. The return value of this
4660 routine is one of:
4661
4662 PRINT_UNKNOWN: Means we printed nothing.
4663 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4664 code to print the location. An example is
4665 "Breakpoint 1, " which should be followed by
4666 the location.
4667 PRINT_SRC_ONLY: Means we printed something, but there is no need
4668 to also print the location part of the message.
4669 An example is the catch/throw messages, which
4670 don't require a location appended to the end.
4671 PRINT_NOTHING: We have done some printing and we don't need any
4672 further info to be printed. */
4673
4674 enum print_stop_action
4675 bpstat_print (bpstat bs, int kind)
4676 {
4677 int val;
4678
4679 /* Maybe another breakpoint in the chain caused us to stop.
4680 (Currently all watchpoints go on the bpstat whether hit or not.
4681 That probably could (should) be changed, provided care is taken
4682 with respect to bpstat_explains_signal). */
4683 for (; bs; bs = bs->next)
4684 {
4685 val = print_bp_stop_message (bs);
4686 if (val == PRINT_SRC_ONLY
4687 || val == PRINT_SRC_AND_LOC
4688 || val == PRINT_NOTHING)
4689 return val;
4690 }
4691
4692 /* If we had hit a shared library event breakpoint,
4693 print_bp_stop_message would print out this message. If we hit an
4694 OS-level shared library event, do the same thing. */
4695 if (kind == TARGET_WAITKIND_LOADED)
4696 {
4697 print_solib_event (0);
4698 return PRINT_NOTHING;
4699 }
4700
4701 /* We reached the end of the chain, or we got a null BS to start
4702 with and nothing was printed. */
4703 return PRINT_UNKNOWN;
4704 }
4705
4706 /* Evaluate the expression EXP and return 1 if value is zero.
4707 This returns the inverse of the condition because it is called
4708 from catch_errors which returns 0 if an exception happened, and if an
4709 exception happens we want execution to stop.
4710 The argument is a "struct expression *" that has been cast to a
4711 "void *" to make it pass through catch_errors. */
4712
4713 static int
4714 breakpoint_cond_eval (void *exp)
4715 {
4716 struct value *mark = value_mark ();
4717 int i = !value_true (evaluate_expression ((struct expression *) exp));
4718
4719 value_free_to_mark (mark);
4720 return i;
4721 }
4722
4723 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4724
4725 static bpstat
4726 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4727 {
4728 bpstat bs;
4729
4730 bs = (bpstat) xmalloc (sizeof (*bs));
4731 bs->next = NULL;
4732 **bs_link_pointer = bs;
4733 *bs_link_pointer = &bs->next;
4734 bs->breakpoint_at = bl->owner;
4735 bs->bp_location_at = bl;
4736 incref_bp_location (bl);
4737 /* If the condition is false, etc., don't do the commands. */
4738 bs->commands = NULL;
4739 bs->old_val = NULL;
4740 bs->print_it = print_it_normal;
4741 return bs;
4742 }
4743 \f
4744 /* The target has stopped with waitstatus WS. Check if any hardware
4745 watchpoints have triggered, according to the target. */
4746
4747 int
4748 watchpoints_triggered (struct target_waitstatus *ws)
4749 {
4750 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4751 CORE_ADDR addr;
4752 struct breakpoint *b;
4753
4754 if (!stopped_by_watchpoint)
4755 {
4756 /* We were not stopped by a watchpoint. Mark all watchpoints
4757 as not triggered. */
4758 ALL_BREAKPOINTS (b)
4759 if (is_hardware_watchpoint (b))
4760 {
4761 struct watchpoint *w = (struct watchpoint *) b;
4762
4763 w->watchpoint_triggered = watch_triggered_no;
4764 }
4765
4766 return 0;
4767 }
4768
4769 if (!target_stopped_data_address (&current_target, &addr))
4770 {
4771 /* We were stopped by a watchpoint, but we don't know where.
4772 Mark all watchpoints as unknown. */
4773 ALL_BREAKPOINTS (b)
4774 if (is_hardware_watchpoint (b))
4775 {
4776 struct watchpoint *w = (struct watchpoint *) b;
4777
4778 w->watchpoint_triggered = watch_triggered_unknown;
4779 }
4780
4781 return 1;
4782 }
4783
4784 /* The target could report the data address. Mark watchpoints
4785 affected by this data address as triggered, and all others as not
4786 triggered. */
4787
4788 ALL_BREAKPOINTS (b)
4789 if (is_hardware_watchpoint (b))
4790 {
4791 struct watchpoint *w = (struct watchpoint *) b;
4792 struct bp_location *loc;
4793
4794 w->watchpoint_triggered = watch_triggered_no;
4795 for (loc = b->loc; loc; loc = loc->next)
4796 {
4797 if (is_masked_watchpoint (b))
4798 {
4799 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4800 CORE_ADDR start = loc->address & w->hw_wp_mask;
4801
4802 if (newaddr == start)
4803 {
4804 w->watchpoint_triggered = watch_triggered_yes;
4805 break;
4806 }
4807 }
4808 /* Exact match not required. Within range is sufficient. */
4809 else if (target_watchpoint_addr_within_range (&current_target,
4810 addr, loc->address,
4811 loc->length))
4812 {
4813 w->watchpoint_triggered = watch_triggered_yes;
4814 break;
4815 }
4816 }
4817 }
4818
4819 return 1;
4820 }
4821
4822 /* Possible return values for watchpoint_check (this can't be an enum
4823 because of check_errors). */
4824 /* The watchpoint has been deleted. */
4825 #define WP_DELETED 1
4826 /* The value has changed. */
4827 #define WP_VALUE_CHANGED 2
4828 /* The value has not changed. */
4829 #define WP_VALUE_NOT_CHANGED 3
4830 /* Ignore this watchpoint, no matter if the value changed or not. */
4831 #define WP_IGNORE 4
4832
4833 #define BP_TEMPFLAG 1
4834 #define BP_HARDWAREFLAG 2
4835
4836 /* Evaluate watchpoint condition expression and check if its value
4837 changed.
4838
4839 P should be a pointer to struct bpstat, but is defined as a void *
4840 in order for this function to be usable with catch_errors. */
4841
4842 static int
4843 watchpoint_check (void *p)
4844 {
4845 bpstat bs = (bpstat) p;
4846 struct watchpoint *b;
4847 struct frame_info *fr;
4848 int within_current_scope;
4849
4850 /* BS is built from an existing struct breakpoint. */
4851 gdb_assert (bs->breakpoint_at != NULL);
4852 b = (struct watchpoint *) bs->breakpoint_at;
4853
4854 /* If this is a local watchpoint, we only want to check if the
4855 watchpoint frame is in scope if the current thread is the thread
4856 that was used to create the watchpoint. */
4857 if (!watchpoint_in_thread_scope (b))
4858 return WP_IGNORE;
4859
4860 if (b->exp_valid_block == NULL)
4861 within_current_scope = 1;
4862 else
4863 {
4864 struct frame_info *frame = get_current_frame ();
4865 struct gdbarch *frame_arch = get_frame_arch (frame);
4866 CORE_ADDR frame_pc = get_frame_pc (frame);
4867
4868 /* in_function_epilogue_p() returns a non-zero value if we're
4869 still in the function but the stack frame has already been
4870 invalidated. Since we can't rely on the values of local
4871 variables after the stack has been destroyed, we are treating
4872 the watchpoint in that state as `not changed' without further
4873 checking. Don't mark watchpoints as changed if the current
4874 frame is in an epilogue - even if they are in some other
4875 frame, our view of the stack is likely to be wrong and
4876 frame_find_by_id could error out. */
4877 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4878 return WP_IGNORE;
4879
4880 fr = frame_find_by_id (b->watchpoint_frame);
4881 within_current_scope = (fr != NULL);
4882
4883 /* If we've gotten confused in the unwinder, we might have
4884 returned a frame that can't describe this variable. */
4885 if (within_current_scope)
4886 {
4887 struct symbol *function;
4888
4889 function = get_frame_function (fr);
4890 if (function == NULL
4891 || !contained_in (b->exp_valid_block,
4892 SYMBOL_BLOCK_VALUE (function)))
4893 within_current_scope = 0;
4894 }
4895
4896 if (within_current_scope)
4897 /* If we end up stopping, the current frame will get selected
4898 in normal_stop. So this call to select_frame won't affect
4899 the user. */
4900 select_frame (fr);
4901 }
4902
4903 if (within_current_scope)
4904 {
4905 /* We use value_{,free_to_}mark because it could be a *long*
4906 time before we return to the command level and call
4907 free_all_values. We can't call free_all_values because we
4908 might be in the middle of evaluating a function call. */
4909
4910 int pc = 0;
4911 struct value *mark;
4912 struct value *new_val;
4913
4914 if (is_masked_watchpoint (&b->base))
4915 /* Since we don't know the exact trigger address (from
4916 stopped_data_address), just tell the user we've triggered
4917 a mask watchpoint. */
4918 return WP_VALUE_CHANGED;
4919
4920 mark = value_mark ();
4921 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4922
4923 /* We use value_equal_contents instead of value_equal because
4924 the latter coerces an array to a pointer, thus comparing just
4925 the address of the array instead of its contents. This is
4926 not what we want. */
4927 if ((b->val != NULL) != (new_val != NULL)
4928 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4929 {
4930 if (new_val != NULL)
4931 {
4932 release_value (new_val);
4933 value_free_to_mark (mark);
4934 }
4935 bs->old_val = b->val;
4936 b->val = new_val;
4937 b->val_valid = 1;
4938 return WP_VALUE_CHANGED;
4939 }
4940 else
4941 {
4942 /* Nothing changed. */
4943 value_free_to_mark (mark);
4944 return WP_VALUE_NOT_CHANGED;
4945 }
4946 }
4947 else
4948 {
4949 struct ui_out *uiout = current_uiout;
4950
4951 /* This seems like the only logical thing to do because
4952 if we temporarily ignored the watchpoint, then when
4953 we reenter the block in which it is valid it contains
4954 garbage (in the case of a function, it may have two
4955 garbage values, one before and one after the prologue).
4956 So we can't even detect the first assignment to it and
4957 watch after that (since the garbage may or may not equal
4958 the first value assigned). */
4959 /* We print all the stop information in
4960 breakpoint_ops->print_it, but in this case, by the time we
4961 call breakpoint_ops->print_it this bp will be deleted
4962 already. So we have no choice but print the information
4963 here. */
4964 if (ui_out_is_mi_like_p (uiout))
4965 ui_out_field_string
4966 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4967 ui_out_text (uiout, "\nWatchpoint ");
4968 ui_out_field_int (uiout, "wpnum", b->base.number);
4969 ui_out_text (uiout,
4970 " deleted because the program has left the block in\n\
4971 which its expression is valid.\n");
4972
4973 /* Make sure the watchpoint's commands aren't executed. */
4974 decref_counted_command_line (&b->base.commands);
4975 watchpoint_del_at_next_stop (b);
4976
4977 return WP_DELETED;
4978 }
4979 }
4980
4981 /* Return true if it looks like target has stopped due to hitting
4982 breakpoint location BL. This function does not check if we should
4983 stop, only if BL explains the stop. */
4984
4985 static int
4986 bpstat_check_location (const struct bp_location *bl,
4987 struct address_space *aspace, CORE_ADDR bp_addr,
4988 const struct target_waitstatus *ws)
4989 {
4990 struct breakpoint *b = bl->owner;
4991
4992 /* BL is from an existing breakpoint. */
4993 gdb_assert (b != NULL);
4994
4995 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4996 }
4997
4998 /* Determine if the watched values have actually changed, and we
4999 should stop. If not, set BS->stop to 0. */
5000
5001 static void
5002 bpstat_check_watchpoint (bpstat bs)
5003 {
5004 const struct bp_location *bl;
5005 struct watchpoint *b;
5006
5007 /* BS is built for existing struct breakpoint. */
5008 bl = bs->bp_location_at;
5009 gdb_assert (bl != NULL);
5010 b = (struct watchpoint *) bs->breakpoint_at;
5011 gdb_assert (b != NULL);
5012
5013 {
5014 int must_check_value = 0;
5015
5016 if (b->base.type == bp_watchpoint)
5017 /* For a software watchpoint, we must always check the
5018 watched value. */
5019 must_check_value = 1;
5020 else if (b->watchpoint_triggered == watch_triggered_yes)
5021 /* We have a hardware watchpoint (read, write, or access)
5022 and the target earlier reported an address watched by
5023 this watchpoint. */
5024 must_check_value = 1;
5025 else if (b->watchpoint_triggered == watch_triggered_unknown
5026 && b->base.type == bp_hardware_watchpoint)
5027 /* We were stopped by a hardware watchpoint, but the target could
5028 not report the data address. We must check the watchpoint's
5029 value. Access and read watchpoints are out of luck; without
5030 a data address, we can't figure it out. */
5031 must_check_value = 1;
5032
5033 if (must_check_value)
5034 {
5035 char *message
5036 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5037 b->base.number);
5038 struct cleanup *cleanups = make_cleanup (xfree, message);
5039 int e = catch_errors (watchpoint_check, bs, message,
5040 RETURN_MASK_ALL);
5041 do_cleanups (cleanups);
5042 switch (e)
5043 {
5044 case WP_DELETED:
5045 /* We've already printed what needs to be printed. */
5046 bs->print_it = print_it_done;
5047 /* Stop. */
5048 break;
5049 case WP_IGNORE:
5050 bs->print_it = print_it_noop;
5051 bs->stop = 0;
5052 break;
5053 case WP_VALUE_CHANGED:
5054 if (b->base.type == bp_read_watchpoint)
5055 {
5056 /* There are two cases to consider here:
5057
5058 1. We're watching the triggered memory for reads.
5059 In that case, trust the target, and always report
5060 the watchpoint hit to the user. Even though
5061 reads don't cause value changes, the value may
5062 have changed since the last time it was read, and
5063 since we're not trapping writes, we will not see
5064 those, and as such we should ignore our notion of
5065 old value.
5066
5067 2. We're watching the triggered memory for both
5068 reads and writes. There are two ways this may
5069 happen:
5070
5071 2.1. This is a target that can't break on data
5072 reads only, but can break on accesses (reads or
5073 writes), such as e.g., x86. We detect this case
5074 at the time we try to insert read watchpoints.
5075
5076 2.2. Otherwise, the target supports read
5077 watchpoints, but, the user set an access or write
5078 watchpoint watching the same memory as this read
5079 watchpoint.
5080
5081 If we're watching memory writes as well as reads,
5082 ignore watchpoint hits when we find that the
5083 value hasn't changed, as reads don't cause
5084 changes. This still gives false positives when
5085 the program writes the same value to memory as
5086 what there was already in memory (we will confuse
5087 it for a read), but it's much better than
5088 nothing. */
5089
5090 int other_write_watchpoint = 0;
5091
5092 if (bl->watchpoint_type == hw_read)
5093 {
5094 struct breakpoint *other_b;
5095
5096 ALL_BREAKPOINTS (other_b)
5097 if (other_b->type == bp_hardware_watchpoint
5098 || other_b->type == bp_access_watchpoint)
5099 {
5100 struct watchpoint *other_w =
5101 (struct watchpoint *) other_b;
5102
5103 if (other_w->watchpoint_triggered
5104 == watch_triggered_yes)
5105 {
5106 other_write_watchpoint = 1;
5107 break;
5108 }
5109 }
5110 }
5111
5112 if (other_write_watchpoint
5113 || bl->watchpoint_type == hw_access)
5114 {
5115 /* We're watching the same memory for writes,
5116 and the value changed since the last time we
5117 updated it, so this trap must be for a write.
5118 Ignore it. */
5119 bs->print_it = print_it_noop;
5120 bs->stop = 0;
5121 }
5122 }
5123 break;
5124 case WP_VALUE_NOT_CHANGED:
5125 if (b->base.type == bp_hardware_watchpoint
5126 || b->base.type == bp_watchpoint)
5127 {
5128 /* Don't stop: write watchpoints shouldn't fire if
5129 the value hasn't changed. */
5130 bs->print_it = print_it_noop;
5131 bs->stop = 0;
5132 }
5133 /* Stop. */
5134 break;
5135 default:
5136 /* Can't happen. */
5137 case 0:
5138 /* Error from catch_errors. */
5139 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5140 watchpoint_del_at_next_stop (b);
5141 /* We've already printed what needs to be printed. */
5142 bs->print_it = print_it_done;
5143 break;
5144 }
5145 }
5146 else /* must_check_value == 0 */
5147 {
5148 /* This is a case where some watchpoint(s) triggered, but
5149 not at the address of this watchpoint, or else no
5150 watchpoint triggered after all. So don't print
5151 anything for this watchpoint. */
5152 bs->print_it = print_it_noop;
5153 bs->stop = 0;
5154 }
5155 }
5156 }
5157
5158 /* For breakpoints that are currently marked as telling gdb to stop,
5159 check conditions (condition proper, frame, thread and ignore count)
5160 of breakpoint referred to by BS. If we should not stop for this
5161 breakpoint, set BS->stop to 0. */
5162
5163 static void
5164 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5165 {
5166 const struct bp_location *bl;
5167 struct breakpoint *b;
5168 int value_is_zero = 0;
5169 struct expression *cond;
5170
5171 gdb_assert (bs->stop);
5172
5173 /* BS is built for existing struct breakpoint. */
5174 bl = bs->bp_location_at;
5175 gdb_assert (bl != NULL);
5176 b = bs->breakpoint_at;
5177 gdb_assert (b != NULL);
5178
5179 /* Even if the target evaluated the condition on its end and notified GDB, we
5180 need to do so again since GDB does not know if we stopped due to a
5181 breakpoint or a single step breakpoint. */
5182
5183 if (frame_id_p (b->frame_id)
5184 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5185 {
5186 bs->stop = 0;
5187 return;
5188 }
5189
5190 /* If this is a thread/task-specific breakpoint, don't waste cpu
5191 evaluating the condition if this isn't the specified
5192 thread/task. */
5193 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5194 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5195
5196 {
5197 bs->stop = 0;
5198 return;
5199 }
5200
5201 /* Evaluate extension language breakpoints that have a "stop" method
5202 implemented. */
5203 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5204
5205 if (is_watchpoint (b))
5206 {
5207 struct watchpoint *w = (struct watchpoint *) b;
5208
5209 cond = w->cond_exp;
5210 }
5211 else
5212 cond = bl->cond;
5213
5214 if (cond && b->disposition != disp_del_at_next_stop)
5215 {
5216 int within_current_scope = 1;
5217 struct watchpoint * w;
5218
5219 /* We use value_mark and value_free_to_mark because it could
5220 be a long time before we return to the command level and
5221 call free_all_values. We can't call free_all_values
5222 because we might be in the middle of evaluating a
5223 function call. */
5224 struct value *mark = value_mark ();
5225
5226 if (is_watchpoint (b))
5227 w = (struct watchpoint *) b;
5228 else
5229 w = NULL;
5230
5231 /* Need to select the frame, with all that implies so that
5232 the conditions will have the right context. Because we
5233 use the frame, we will not see an inlined function's
5234 variables when we arrive at a breakpoint at the start
5235 of the inlined function; the current frame will be the
5236 call site. */
5237 if (w == NULL || w->cond_exp_valid_block == NULL)
5238 select_frame (get_current_frame ());
5239 else
5240 {
5241 struct frame_info *frame;
5242
5243 /* For local watchpoint expressions, which particular
5244 instance of a local is being watched matters, so we
5245 keep track of the frame to evaluate the expression
5246 in. To evaluate the condition however, it doesn't
5247 really matter which instantiation of the function
5248 where the condition makes sense triggers the
5249 watchpoint. This allows an expression like "watch
5250 global if q > 10" set in `func', catch writes to
5251 global on all threads that call `func', or catch
5252 writes on all recursive calls of `func' by a single
5253 thread. We simply always evaluate the condition in
5254 the innermost frame that's executing where it makes
5255 sense to evaluate the condition. It seems
5256 intuitive. */
5257 frame = block_innermost_frame (w->cond_exp_valid_block);
5258 if (frame != NULL)
5259 select_frame (frame);
5260 else
5261 within_current_scope = 0;
5262 }
5263 if (within_current_scope)
5264 value_is_zero
5265 = catch_errors (breakpoint_cond_eval, cond,
5266 "Error in testing breakpoint condition:\n",
5267 RETURN_MASK_ALL);
5268 else
5269 {
5270 warning (_("Watchpoint condition cannot be tested "
5271 "in the current scope"));
5272 /* If we failed to set the right context for this
5273 watchpoint, unconditionally report it. */
5274 value_is_zero = 0;
5275 }
5276 /* FIXME-someday, should give breakpoint #. */
5277 value_free_to_mark (mark);
5278 }
5279
5280 if (cond && value_is_zero)
5281 {
5282 bs->stop = 0;
5283 }
5284 else if (b->ignore_count > 0)
5285 {
5286 b->ignore_count--;
5287 bs->stop = 0;
5288 /* Increase the hit count even though we don't stop. */
5289 ++(b->hit_count);
5290 observer_notify_breakpoint_modified (b);
5291 }
5292 }
5293
5294
5295 /* Get a bpstat associated with having just stopped at address
5296 BP_ADDR in thread PTID.
5297
5298 Determine whether we stopped at a breakpoint, etc, or whether we
5299 don't understand this stop. Result is a chain of bpstat's such
5300 that:
5301
5302 if we don't understand the stop, the result is a null pointer.
5303
5304 if we understand why we stopped, the result is not null.
5305
5306 Each element of the chain refers to a particular breakpoint or
5307 watchpoint at which we have stopped. (We may have stopped for
5308 several reasons concurrently.)
5309
5310 Each element of the chain has valid next, breakpoint_at,
5311 commands, FIXME??? fields. */
5312
5313 bpstat
5314 bpstat_stop_status (struct address_space *aspace,
5315 CORE_ADDR bp_addr, ptid_t ptid,
5316 const struct target_waitstatus *ws)
5317 {
5318 struct breakpoint *b = NULL;
5319 struct bp_location *bl;
5320 struct bp_location *loc;
5321 /* First item of allocated bpstat's. */
5322 bpstat bs_head = NULL, *bs_link = &bs_head;
5323 /* Pointer to the last thing in the chain currently. */
5324 bpstat bs;
5325 int ix;
5326 int need_remove_insert;
5327 int removed_any;
5328
5329 /* First, build the bpstat chain with locations that explain a
5330 target stop, while being careful to not set the target running,
5331 as that may invalidate locations (in particular watchpoint
5332 locations are recreated). Resuming will happen here with
5333 breakpoint conditions or watchpoint expressions that include
5334 inferior function calls. */
5335
5336 ALL_BREAKPOINTS (b)
5337 {
5338 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5339 continue;
5340
5341 for (bl = b->loc; bl != NULL; bl = bl->next)
5342 {
5343 /* For hardware watchpoints, we look only at the first
5344 location. The watchpoint_check function will work on the
5345 entire expression, not the individual locations. For
5346 read watchpoints, the watchpoints_triggered function has
5347 checked all locations already. */
5348 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5349 break;
5350
5351 if (!bl->enabled || bl->shlib_disabled)
5352 continue;
5353
5354 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5355 continue;
5356
5357 /* Come here if it's a watchpoint, or if the break address
5358 matches. */
5359
5360 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5361 explain stop. */
5362
5363 /* Assume we stop. Should we find a watchpoint that is not
5364 actually triggered, or if the condition of the breakpoint
5365 evaluates as false, we'll reset 'stop' to 0. */
5366 bs->stop = 1;
5367 bs->print = 1;
5368
5369 /* If this is a scope breakpoint, mark the associated
5370 watchpoint as triggered so that we will handle the
5371 out-of-scope event. We'll get to the watchpoint next
5372 iteration. */
5373 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5374 {
5375 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5376
5377 w->watchpoint_triggered = watch_triggered_yes;
5378 }
5379 }
5380 }
5381
5382 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5383 {
5384 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5385 {
5386 bs = bpstat_alloc (loc, &bs_link);
5387 /* For hits of moribund locations, we should just proceed. */
5388 bs->stop = 0;
5389 bs->print = 0;
5390 bs->print_it = print_it_noop;
5391 }
5392 }
5393
5394 /* A bit of special processing for shlib breakpoints. We need to
5395 process solib loading here, so that the lists of loaded and
5396 unloaded libraries are correct before we handle "catch load" and
5397 "catch unload". */
5398 for (bs = bs_head; bs != NULL; bs = bs->next)
5399 {
5400 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5401 {
5402 handle_solib_event ();
5403 break;
5404 }
5405 }
5406
5407 /* Now go through the locations that caused the target to stop, and
5408 check whether we're interested in reporting this stop to higher
5409 layers, or whether we should resume the target transparently. */
5410
5411 removed_any = 0;
5412
5413 for (bs = bs_head; bs != NULL; bs = bs->next)
5414 {
5415 if (!bs->stop)
5416 continue;
5417
5418 b = bs->breakpoint_at;
5419 b->ops->check_status (bs);
5420 if (bs->stop)
5421 {
5422 bpstat_check_breakpoint_conditions (bs, ptid);
5423
5424 if (bs->stop)
5425 {
5426 ++(b->hit_count);
5427 observer_notify_breakpoint_modified (b);
5428
5429 /* We will stop here. */
5430 if (b->disposition == disp_disable)
5431 {
5432 --(b->enable_count);
5433 if (b->enable_count <= 0
5434 && b->enable_state != bp_permanent)
5435 b->enable_state = bp_disabled;
5436 removed_any = 1;
5437 }
5438 if (b->silent)
5439 bs->print = 0;
5440 bs->commands = b->commands;
5441 incref_counted_command_line (bs->commands);
5442 if (command_line_is_silent (bs->commands
5443 ? bs->commands->commands : NULL))
5444 bs->print = 0;
5445
5446 b->ops->after_condition_true (bs);
5447 }
5448
5449 }
5450
5451 /* Print nothing for this entry if we don't stop or don't
5452 print. */
5453 if (!bs->stop || !bs->print)
5454 bs->print_it = print_it_noop;
5455 }
5456
5457 /* If we aren't stopping, the value of some hardware watchpoint may
5458 not have changed, but the intermediate memory locations we are
5459 watching may have. Don't bother if we're stopping; this will get
5460 done later. */
5461 need_remove_insert = 0;
5462 if (! bpstat_causes_stop (bs_head))
5463 for (bs = bs_head; bs != NULL; bs = bs->next)
5464 if (!bs->stop
5465 && bs->breakpoint_at
5466 && is_hardware_watchpoint (bs->breakpoint_at))
5467 {
5468 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5469
5470 update_watchpoint (w, 0 /* don't reparse. */);
5471 need_remove_insert = 1;
5472 }
5473
5474 if (need_remove_insert)
5475 update_global_location_list (1);
5476 else if (removed_any)
5477 update_global_location_list (0);
5478
5479 return bs_head;
5480 }
5481
5482 static void
5483 handle_jit_event (void)
5484 {
5485 struct frame_info *frame;
5486 struct gdbarch *gdbarch;
5487
5488 /* Switch terminal for any messages produced by
5489 breakpoint_re_set. */
5490 target_terminal_ours_for_output ();
5491
5492 frame = get_current_frame ();
5493 gdbarch = get_frame_arch (frame);
5494
5495 jit_event_handler (gdbarch);
5496
5497 target_terminal_inferior ();
5498 }
5499
5500 /* Prepare WHAT final decision for infrun. */
5501
5502 /* Decide what infrun needs to do with this bpstat. */
5503
5504 struct bpstat_what
5505 bpstat_what (bpstat bs_head)
5506 {
5507 struct bpstat_what retval;
5508 int jit_event = 0;
5509 bpstat bs;
5510
5511 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5512 retval.call_dummy = STOP_NONE;
5513 retval.is_longjmp = 0;
5514
5515 for (bs = bs_head; bs != NULL; bs = bs->next)
5516 {
5517 /* Extract this BS's action. After processing each BS, we check
5518 if its action overrides all we've seem so far. */
5519 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5520 enum bptype bptype;
5521
5522 if (bs->breakpoint_at == NULL)
5523 {
5524 /* I suspect this can happen if it was a momentary
5525 breakpoint which has since been deleted. */
5526 bptype = bp_none;
5527 }
5528 else
5529 bptype = bs->breakpoint_at->type;
5530
5531 switch (bptype)
5532 {
5533 case bp_none:
5534 break;
5535 case bp_breakpoint:
5536 case bp_hardware_breakpoint:
5537 case bp_until:
5538 case bp_finish:
5539 case bp_shlib_event:
5540 if (bs->stop)
5541 {
5542 if (bs->print)
5543 this_action = BPSTAT_WHAT_STOP_NOISY;
5544 else
5545 this_action = BPSTAT_WHAT_STOP_SILENT;
5546 }
5547 else
5548 this_action = BPSTAT_WHAT_SINGLE;
5549 break;
5550 case bp_watchpoint:
5551 case bp_hardware_watchpoint:
5552 case bp_read_watchpoint:
5553 case bp_access_watchpoint:
5554 if (bs->stop)
5555 {
5556 if (bs->print)
5557 this_action = BPSTAT_WHAT_STOP_NOISY;
5558 else
5559 this_action = BPSTAT_WHAT_STOP_SILENT;
5560 }
5561 else
5562 {
5563 /* There was a watchpoint, but we're not stopping.
5564 This requires no further action. */
5565 }
5566 break;
5567 case bp_longjmp:
5568 case bp_longjmp_call_dummy:
5569 case bp_exception:
5570 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5571 retval.is_longjmp = bptype != bp_exception;
5572 break;
5573 case bp_longjmp_resume:
5574 case bp_exception_resume:
5575 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5576 retval.is_longjmp = bptype == bp_longjmp_resume;
5577 break;
5578 case bp_step_resume:
5579 if (bs->stop)
5580 this_action = BPSTAT_WHAT_STEP_RESUME;
5581 else
5582 {
5583 /* It is for the wrong frame. */
5584 this_action = BPSTAT_WHAT_SINGLE;
5585 }
5586 break;
5587 case bp_hp_step_resume:
5588 if (bs->stop)
5589 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5590 else
5591 {
5592 /* It is for the wrong frame. */
5593 this_action = BPSTAT_WHAT_SINGLE;
5594 }
5595 break;
5596 case bp_watchpoint_scope:
5597 case bp_thread_event:
5598 case bp_overlay_event:
5599 case bp_longjmp_master:
5600 case bp_std_terminate_master:
5601 case bp_exception_master:
5602 this_action = BPSTAT_WHAT_SINGLE;
5603 break;
5604 case bp_catchpoint:
5605 if (bs->stop)
5606 {
5607 if (bs->print)
5608 this_action = BPSTAT_WHAT_STOP_NOISY;
5609 else
5610 this_action = BPSTAT_WHAT_STOP_SILENT;
5611 }
5612 else
5613 {
5614 /* There was a catchpoint, but we're not stopping.
5615 This requires no further action. */
5616 }
5617 break;
5618 case bp_jit_event:
5619 jit_event = 1;
5620 this_action = BPSTAT_WHAT_SINGLE;
5621 break;
5622 case bp_call_dummy:
5623 /* Make sure the action is stop (silent or noisy),
5624 so infrun.c pops the dummy frame. */
5625 retval.call_dummy = STOP_STACK_DUMMY;
5626 this_action = BPSTAT_WHAT_STOP_SILENT;
5627 break;
5628 case bp_std_terminate:
5629 /* Make sure the action is stop (silent or noisy),
5630 so infrun.c pops the dummy frame. */
5631 retval.call_dummy = STOP_STD_TERMINATE;
5632 this_action = BPSTAT_WHAT_STOP_SILENT;
5633 break;
5634 case bp_tracepoint:
5635 case bp_fast_tracepoint:
5636 case bp_static_tracepoint:
5637 /* Tracepoint hits should not be reported back to GDB, and
5638 if one got through somehow, it should have been filtered
5639 out already. */
5640 internal_error (__FILE__, __LINE__,
5641 _("bpstat_what: tracepoint encountered"));
5642 break;
5643 case bp_gnu_ifunc_resolver:
5644 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5645 this_action = BPSTAT_WHAT_SINGLE;
5646 break;
5647 case bp_gnu_ifunc_resolver_return:
5648 /* The breakpoint will be removed, execution will restart from the
5649 PC of the former breakpoint. */
5650 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5651 break;
5652
5653 case bp_dprintf:
5654 if (bs->stop)
5655 this_action = BPSTAT_WHAT_STOP_SILENT;
5656 else
5657 this_action = BPSTAT_WHAT_SINGLE;
5658 break;
5659
5660 default:
5661 internal_error (__FILE__, __LINE__,
5662 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5663 }
5664
5665 retval.main_action = max (retval.main_action, this_action);
5666 }
5667
5668 /* These operations may affect the bs->breakpoint_at state so they are
5669 delayed after MAIN_ACTION is decided above. */
5670
5671 if (jit_event)
5672 {
5673 if (debug_infrun)
5674 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5675
5676 handle_jit_event ();
5677 }
5678
5679 for (bs = bs_head; bs != NULL; bs = bs->next)
5680 {
5681 struct breakpoint *b = bs->breakpoint_at;
5682
5683 if (b == NULL)
5684 continue;
5685 switch (b->type)
5686 {
5687 case bp_gnu_ifunc_resolver:
5688 gnu_ifunc_resolver_stop (b);
5689 break;
5690 case bp_gnu_ifunc_resolver_return:
5691 gnu_ifunc_resolver_return_stop (b);
5692 break;
5693 }
5694 }
5695
5696 return retval;
5697 }
5698
5699 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5700 without hardware support). This isn't related to a specific bpstat,
5701 just to things like whether watchpoints are set. */
5702
5703 int
5704 bpstat_should_step (void)
5705 {
5706 struct breakpoint *b;
5707
5708 ALL_BREAKPOINTS (b)
5709 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5710 return 1;
5711 return 0;
5712 }
5713
5714 int
5715 bpstat_causes_stop (bpstat bs)
5716 {
5717 for (; bs != NULL; bs = bs->next)
5718 if (bs->stop)
5719 return 1;
5720
5721 return 0;
5722 }
5723
5724 \f
5725
5726 /* Compute a string of spaces suitable to indent the next line
5727 so it starts at the position corresponding to the table column
5728 named COL_NAME in the currently active table of UIOUT. */
5729
5730 static char *
5731 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5732 {
5733 static char wrap_indent[80];
5734 int i, total_width, width, align;
5735 char *text;
5736
5737 total_width = 0;
5738 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5739 {
5740 if (strcmp (text, col_name) == 0)
5741 {
5742 gdb_assert (total_width < sizeof wrap_indent);
5743 memset (wrap_indent, ' ', total_width);
5744 wrap_indent[total_width] = 0;
5745
5746 return wrap_indent;
5747 }
5748
5749 total_width += width + 1;
5750 }
5751
5752 return NULL;
5753 }
5754
5755 /* Determine if the locations of this breakpoint will have their conditions
5756 evaluated by the target, host or a mix of both. Returns the following:
5757
5758 "host": Host evals condition.
5759 "host or target": Host or Target evals condition.
5760 "target": Target evals condition.
5761 */
5762
5763 static const char *
5764 bp_condition_evaluator (struct breakpoint *b)
5765 {
5766 struct bp_location *bl;
5767 char host_evals = 0;
5768 char target_evals = 0;
5769
5770 if (!b)
5771 return NULL;
5772
5773 if (!is_breakpoint (b))
5774 return NULL;
5775
5776 if (gdb_evaluates_breakpoint_condition_p ()
5777 || !target_supports_evaluation_of_breakpoint_conditions ())
5778 return condition_evaluation_host;
5779
5780 for (bl = b->loc; bl; bl = bl->next)
5781 {
5782 if (bl->cond_bytecode)
5783 target_evals++;
5784 else
5785 host_evals++;
5786 }
5787
5788 if (host_evals && target_evals)
5789 return condition_evaluation_both;
5790 else if (target_evals)
5791 return condition_evaluation_target;
5792 else
5793 return condition_evaluation_host;
5794 }
5795
5796 /* Determine the breakpoint location's condition evaluator. This is
5797 similar to bp_condition_evaluator, but for locations. */
5798
5799 static const char *
5800 bp_location_condition_evaluator (struct bp_location *bl)
5801 {
5802 if (bl && !is_breakpoint (bl->owner))
5803 return NULL;
5804
5805 if (gdb_evaluates_breakpoint_condition_p ()
5806 || !target_supports_evaluation_of_breakpoint_conditions ())
5807 return condition_evaluation_host;
5808
5809 if (bl && bl->cond_bytecode)
5810 return condition_evaluation_target;
5811 else
5812 return condition_evaluation_host;
5813 }
5814
5815 /* Print the LOC location out of the list of B->LOC locations. */
5816
5817 static void
5818 print_breakpoint_location (struct breakpoint *b,
5819 struct bp_location *loc)
5820 {
5821 struct ui_out *uiout = current_uiout;
5822 struct cleanup *old_chain = save_current_program_space ();
5823
5824 if (loc != NULL && loc->shlib_disabled)
5825 loc = NULL;
5826
5827 if (loc != NULL)
5828 set_current_program_space (loc->pspace);
5829
5830 if (b->display_canonical)
5831 ui_out_field_string (uiout, "what", b->addr_string);
5832 else if (loc && loc->symtab)
5833 {
5834 struct symbol *sym
5835 = find_pc_sect_function (loc->address, loc->section);
5836 if (sym)
5837 {
5838 ui_out_text (uiout, "in ");
5839 ui_out_field_string (uiout, "func",
5840 SYMBOL_PRINT_NAME (sym));
5841 ui_out_text (uiout, " ");
5842 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5843 ui_out_text (uiout, "at ");
5844 }
5845 ui_out_field_string (uiout, "file",
5846 symtab_to_filename_for_display (loc->symtab));
5847 ui_out_text (uiout, ":");
5848
5849 if (ui_out_is_mi_like_p (uiout))
5850 ui_out_field_string (uiout, "fullname",
5851 symtab_to_fullname (loc->symtab));
5852
5853 ui_out_field_int (uiout, "line", loc->line_number);
5854 }
5855 else if (loc)
5856 {
5857 struct ui_file *stb = mem_fileopen ();
5858 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5859
5860 print_address_symbolic (loc->gdbarch, loc->address, stb,
5861 demangle, "");
5862 ui_out_field_stream (uiout, "at", stb);
5863
5864 do_cleanups (stb_chain);
5865 }
5866 else
5867 ui_out_field_string (uiout, "pending", b->addr_string);
5868
5869 if (loc && is_breakpoint (b)
5870 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5871 && bp_condition_evaluator (b) == condition_evaluation_both)
5872 {
5873 ui_out_text (uiout, " (");
5874 ui_out_field_string (uiout, "evaluated-by",
5875 bp_location_condition_evaluator (loc));
5876 ui_out_text (uiout, ")");
5877 }
5878
5879 do_cleanups (old_chain);
5880 }
5881
5882 static const char *
5883 bptype_string (enum bptype type)
5884 {
5885 struct ep_type_description
5886 {
5887 enum bptype type;
5888 char *description;
5889 };
5890 static struct ep_type_description bptypes[] =
5891 {
5892 {bp_none, "?deleted?"},
5893 {bp_breakpoint, "breakpoint"},
5894 {bp_hardware_breakpoint, "hw breakpoint"},
5895 {bp_until, "until"},
5896 {bp_finish, "finish"},
5897 {bp_watchpoint, "watchpoint"},
5898 {bp_hardware_watchpoint, "hw watchpoint"},
5899 {bp_read_watchpoint, "read watchpoint"},
5900 {bp_access_watchpoint, "acc watchpoint"},
5901 {bp_longjmp, "longjmp"},
5902 {bp_longjmp_resume, "longjmp resume"},
5903 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5904 {bp_exception, "exception"},
5905 {bp_exception_resume, "exception resume"},
5906 {bp_step_resume, "step resume"},
5907 {bp_hp_step_resume, "high-priority step resume"},
5908 {bp_watchpoint_scope, "watchpoint scope"},
5909 {bp_call_dummy, "call dummy"},
5910 {bp_std_terminate, "std::terminate"},
5911 {bp_shlib_event, "shlib events"},
5912 {bp_thread_event, "thread events"},
5913 {bp_overlay_event, "overlay events"},
5914 {bp_longjmp_master, "longjmp master"},
5915 {bp_std_terminate_master, "std::terminate master"},
5916 {bp_exception_master, "exception master"},
5917 {bp_catchpoint, "catchpoint"},
5918 {bp_tracepoint, "tracepoint"},
5919 {bp_fast_tracepoint, "fast tracepoint"},
5920 {bp_static_tracepoint, "static tracepoint"},
5921 {bp_dprintf, "dprintf"},
5922 {bp_jit_event, "jit events"},
5923 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5924 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5925 };
5926
5927 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5928 || ((int) type != bptypes[(int) type].type))
5929 internal_error (__FILE__, __LINE__,
5930 _("bptypes table does not describe type #%d."),
5931 (int) type);
5932
5933 return bptypes[(int) type].description;
5934 }
5935
5936 /* For MI, output a field named 'thread-groups' with a list as the value.
5937 For CLI, prefix the list with the string 'inf'. */
5938
5939 static void
5940 output_thread_groups (struct ui_out *uiout,
5941 const char *field_name,
5942 VEC(int) *inf_num,
5943 int mi_only)
5944 {
5945 struct cleanup *back_to;
5946 int is_mi = ui_out_is_mi_like_p (uiout);
5947 int inf;
5948 int i;
5949
5950 /* For backward compatibility, don't display inferiors in CLI unless
5951 there are several. Always display them for MI. */
5952 if (!is_mi && mi_only)
5953 return;
5954
5955 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5956
5957 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5958 {
5959 if (is_mi)
5960 {
5961 char mi_group[10];
5962
5963 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5964 ui_out_field_string (uiout, NULL, mi_group);
5965 }
5966 else
5967 {
5968 if (i == 0)
5969 ui_out_text (uiout, " inf ");
5970 else
5971 ui_out_text (uiout, ", ");
5972
5973 ui_out_text (uiout, plongest (inf));
5974 }
5975 }
5976
5977 do_cleanups (back_to);
5978 }
5979
5980 /* Print B to gdb_stdout. */
5981
5982 static void
5983 print_one_breakpoint_location (struct breakpoint *b,
5984 struct bp_location *loc,
5985 int loc_number,
5986 struct bp_location **last_loc,
5987 int allflag)
5988 {
5989 struct command_line *l;
5990 static char bpenables[] = "nynny";
5991
5992 struct ui_out *uiout = current_uiout;
5993 int header_of_multiple = 0;
5994 int part_of_multiple = (loc != NULL);
5995 struct value_print_options opts;
5996
5997 get_user_print_options (&opts);
5998
5999 gdb_assert (!loc || loc_number != 0);
6000 /* See comment in print_one_breakpoint concerning treatment of
6001 breakpoints with single disabled location. */
6002 if (loc == NULL
6003 && (b->loc != NULL
6004 && (b->loc->next != NULL || !b->loc->enabled)))
6005 header_of_multiple = 1;
6006 if (loc == NULL)
6007 loc = b->loc;
6008
6009 annotate_record ();
6010
6011 /* 1 */
6012 annotate_field (0);
6013 if (part_of_multiple)
6014 {
6015 char *formatted;
6016 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6017 ui_out_field_string (uiout, "number", formatted);
6018 xfree (formatted);
6019 }
6020 else
6021 {
6022 ui_out_field_int (uiout, "number", b->number);
6023 }
6024
6025 /* 2 */
6026 annotate_field (1);
6027 if (part_of_multiple)
6028 ui_out_field_skip (uiout, "type");
6029 else
6030 ui_out_field_string (uiout, "type", bptype_string (b->type));
6031
6032 /* 3 */
6033 annotate_field (2);
6034 if (part_of_multiple)
6035 ui_out_field_skip (uiout, "disp");
6036 else
6037 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6038
6039
6040 /* 4 */
6041 annotate_field (3);
6042 if (part_of_multiple)
6043 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6044 else
6045 ui_out_field_fmt (uiout, "enabled", "%c",
6046 bpenables[(int) b->enable_state]);
6047 ui_out_spaces (uiout, 2);
6048
6049
6050 /* 5 and 6 */
6051 if (b->ops != NULL && b->ops->print_one != NULL)
6052 {
6053 /* Although the print_one can possibly print all locations,
6054 calling it here is not likely to get any nice result. So,
6055 make sure there's just one location. */
6056 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6057 b->ops->print_one (b, last_loc);
6058 }
6059 else
6060 switch (b->type)
6061 {
6062 case bp_none:
6063 internal_error (__FILE__, __LINE__,
6064 _("print_one_breakpoint: bp_none encountered\n"));
6065 break;
6066
6067 case bp_watchpoint:
6068 case bp_hardware_watchpoint:
6069 case bp_read_watchpoint:
6070 case bp_access_watchpoint:
6071 {
6072 struct watchpoint *w = (struct watchpoint *) b;
6073
6074 /* Field 4, the address, is omitted (which makes the columns
6075 not line up too nicely with the headers, but the effect
6076 is relatively readable). */
6077 if (opts.addressprint)
6078 ui_out_field_skip (uiout, "addr");
6079 annotate_field (5);
6080 ui_out_field_string (uiout, "what", w->exp_string);
6081 }
6082 break;
6083
6084 case bp_breakpoint:
6085 case bp_hardware_breakpoint:
6086 case bp_until:
6087 case bp_finish:
6088 case bp_longjmp:
6089 case bp_longjmp_resume:
6090 case bp_longjmp_call_dummy:
6091 case bp_exception:
6092 case bp_exception_resume:
6093 case bp_step_resume:
6094 case bp_hp_step_resume:
6095 case bp_watchpoint_scope:
6096 case bp_call_dummy:
6097 case bp_std_terminate:
6098 case bp_shlib_event:
6099 case bp_thread_event:
6100 case bp_overlay_event:
6101 case bp_longjmp_master:
6102 case bp_std_terminate_master:
6103 case bp_exception_master:
6104 case bp_tracepoint:
6105 case bp_fast_tracepoint:
6106 case bp_static_tracepoint:
6107 case bp_dprintf:
6108 case bp_jit_event:
6109 case bp_gnu_ifunc_resolver:
6110 case bp_gnu_ifunc_resolver_return:
6111 if (opts.addressprint)
6112 {
6113 annotate_field (4);
6114 if (header_of_multiple)
6115 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6116 else if (b->loc == NULL || loc->shlib_disabled)
6117 ui_out_field_string (uiout, "addr", "<PENDING>");
6118 else
6119 ui_out_field_core_addr (uiout, "addr",
6120 loc->gdbarch, loc->address);
6121 }
6122 annotate_field (5);
6123 if (!header_of_multiple)
6124 print_breakpoint_location (b, loc);
6125 if (b->loc)
6126 *last_loc = b->loc;
6127 break;
6128 }
6129
6130
6131 if (loc != NULL && !header_of_multiple)
6132 {
6133 struct inferior *inf;
6134 VEC(int) *inf_num = NULL;
6135 int mi_only = 1;
6136
6137 ALL_INFERIORS (inf)
6138 {
6139 if (inf->pspace == loc->pspace)
6140 VEC_safe_push (int, inf_num, inf->num);
6141 }
6142
6143 /* For backward compatibility, don't display inferiors in CLI unless
6144 there are several. Always display for MI. */
6145 if (allflag
6146 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6147 && (number_of_program_spaces () > 1
6148 || number_of_inferiors () > 1)
6149 /* LOC is for existing B, it cannot be in
6150 moribund_locations and thus having NULL OWNER. */
6151 && loc->owner->type != bp_catchpoint))
6152 mi_only = 0;
6153 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6154 VEC_free (int, inf_num);
6155 }
6156
6157 if (!part_of_multiple)
6158 {
6159 if (b->thread != -1)
6160 {
6161 /* FIXME: This seems to be redundant and lost here; see the
6162 "stop only in" line a little further down. */
6163 ui_out_text (uiout, " thread ");
6164 ui_out_field_int (uiout, "thread", b->thread);
6165 }
6166 else if (b->task != 0)
6167 {
6168 ui_out_text (uiout, " task ");
6169 ui_out_field_int (uiout, "task", b->task);
6170 }
6171 }
6172
6173 ui_out_text (uiout, "\n");
6174
6175 if (!part_of_multiple)
6176 b->ops->print_one_detail (b, uiout);
6177
6178 if (part_of_multiple && frame_id_p (b->frame_id))
6179 {
6180 annotate_field (6);
6181 ui_out_text (uiout, "\tstop only in stack frame at ");
6182 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6183 the frame ID. */
6184 ui_out_field_core_addr (uiout, "frame",
6185 b->gdbarch, b->frame_id.stack_addr);
6186 ui_out_text (uiout, "\n");
6187 }
6188
6189 if (!part_of_multiple && b->cond_string)
6190 {
6191 annotate_field (7);
6192 if (is_tracepoint (b))
6193 ui_out_text (uiout, "\ttrace only if ");
6194 else
6195 ui_out_text (uiout, "\tstop only if ");
6196 ui_out_field_string (uiout, "cond", b->cond_string);
6197
6198 /* Print whether the target is doing the breakpoint's condition
6199 evaluation. If GDB is doing the evaluation, don't print anything. */
6200 if (is_breakpoint (b)
6201 && breakpoint_condition_evaluation_mode ()
6202 == condition_evaluation_target)
6203 {
6204 ui_out_text (uiout, " (");
6205 ui_out_field_string (uiout, "evaluated-by",
6206 bp_condition_evaluator (b));
6207 ui_out_text (uiout, " evals)");
6208 }
6209 ui_out_text (uiout, "\n");
6210 }
6211
6212 if (!part_of_multiple && b->thread != -1)
6213 {
6214 /* FIXME should make an annotation for this. */
6215 ui_out_text (uiout, "\tstop only in thread ");
6216 ui_out_field_int (uiout, "thread", b->thread);
6217 ui_out_text (uiout, "\n");
6218 }
6219
6220 if (!part_of_multiple)
6221 {
6222 if (b->hit_count)
6223 {
6224 /* FIXME should make an annotation for this. */
6225 if (is_catchpoint (b))
6226 ui_out_text (uiout, "\tcatchpoint");
6227 else if (is_tracepoint (b))
6228 ui_out_text (uiout, "\ttracepoint");
6229 else
6230 ui_out_text (uiout, "\tbreakpoint");
6231 ui_out_text (uiout, " already hit ");
6232 ui_out_field_int (uiout, "times", b->hit_count);
6233 if (b->hit_count == 1)
6234 ui_out_text (uiout, " time\n");
6235 else
6236 ui_out_text (uiout, " times\n");
6237 }
6238 else
6239 {
6240 /* Output the count also if it is zero, but only if this is mi. */
6241 if (ui_out_is_mi_like_p (uiout))
6242 ui_out_field_int (uiout, "times", b->hit_count);
6243 }
6244 }
6245
6246 if (!part_of_multiple && b->ignore_count)
6247 {
6248 annotate_field (8);
6249 ui_out_text (uiout, "\tignore next ");
6250 ui_out_field_int (uiout, "ignore", b->ignore_count);
6251 ui_out_text (uiout, " hits\n");
6252 }
6253
6254 /* Note that an enable count of 1 corresponds to "enable once"
6255 behavior, which is reported by the combination of enablement and
6256 disposition, so we don't need to mention it here. */
6257 if (!part_of_multiple && b->enable_count > 1)
6258 {
6259 annotate_field (8);
6260 ui_out_text (uiout, "\tdisable after ");
6261 /* Tweak the wording to clarify that ignore and enable counts
6262 are distinct, and have additive effect. */
6263 if (b->ignore_count)
6264 ui_out_text (uiout, "additional ");
6265 else
6266 ui_out_text (uiout, "next ");
6267 ui_out_field_int (uiout, "enable", b->enable_count);
6268 ui_out_text (uiout, " hits\n");
6269 }
6270
6271 if (!part_of_multiple && is_tracepoint (b))
6272 {
6273 struct tracepoint *tp = (struct tracepoint *) b;
6274
6275 if (tp->traceframe_usage)
6276 {
6277 ui_out_text (uiout, "\ttrace buffer usage ");
6278 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6279 ui_out_text (uiout, " bytes\n");
6280 }
6281 }
6282
6283 l = b->commands ? b->commands->commands : NULL;
6284 if (!part_of_multiple && l)
6285 {
6286 struct cleanup *script_chain;
6287
6288 annotate_field (9);
6289 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6290 print_command_lines (uiout, l, 4);
6291 do_cleanups (script_chain);
6292 }
6293
6294 if (is_tracepoint (b))
6295 {
6296 struct tracepoint *t = (struct tracepoint *) b;
6297
6298 if (!part_of_multiple && t->pass_count)
6299 {
6300 annotate_field (10);
6301 ui_out_text (uiout, "\tpass count ");
6302 ui_out_field_int (uiout, "pass", t->pass_count);
6303 ui_out_text (uiout, " \n");
6304 }
6305
6306 /* Don't display it when tracepoint or tracepoint location is
6307 pending. */
6308 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6309 {
6310 annotate_field (11);
6311
6312 if (ui_out_is_mi_like_p (uiout))
6313 ui_out_field_string (uiout, "installed",
6314 loc->inserted ? "y" : "n");
6315 else
6316 {
6317 if (loc->inserted)
6318 ui_out_text (uiout, "\t");
6319 else
6320 ui_out_text (uiout, "\tnot ");
6321 ui_out_text (uiout, "installed on target\n");
6322 }
6323 }
6324 }
6325
6326 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6327 {
6328 if (is_watchpoint (b))
6329 {
6330 struct watchpoint *w = (struct watchpoint *) b;
6331
6332 ui_out_field_string (uiout, "original-location", w->exp_string);
6333 }
6334 else if (b->addr_string)
6335 ui_out_field_string (uiout, "original-location", b->addr_string);
6336 }
6337 }
6338
6339 static void
6340 print_one_breakpoint (struct breakpoint *b,
6341 struct bp_location **last_loc,
6342 int allflag)
6343 {
6344 struct cleanup *bkpt_chain;
6345 struct ui_out *uiout = current_uiout;
6346
6347 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6348
6349 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6350 do_cleanups (bkpt_chain);
6351
6352 /* If this breakpoint has custom print function,
6353 it's already printed. Otherwise, print individual
6354 locations, if any. */
6355 if (b->ops == NULL || b->ops->print_one == NULL)
6356 {
6357 /* If breakpoint has a single location that is disabled, we
6358 print it as if it had several locations, since otherwise it's
6359 hard to represent "breakpoint enabled, location disabled"
6360 situation.
6361
6362 Note that while hardware watchpoints have several locations
6363 internally, that's not a property exposed to user. */
6364 if (b->loc
6365 && !is_hardware_watchpoint (b)
6366 && (b->loc->next || !b->loc->enabled))
6367 {
6368 struct bp_location *loc;
6369 int n = 1;
6370
6371 for (loc = b->loc; loc; loc = loc->next, ++n)
6372 {
6373 struct cleanup *inner2 =
6374 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6375 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6376 do_cleanups (inner2);
6377 }
6378 }
6379 }
6380 }
6381
6382 static int
6383 breakpoint_address_bits (struct breakpoint *b)
6384 {
6385 int print_address_bits = 0;
6386 struct bp_location *loc;
6387
6388 for (loc = b->loc; loc; loc = loc->next)
6389 {
6390 int addr_bit;
6391
6392 /* Software watchpoints that aren't watching memory don't have
6393 an address to print. */
6394 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6395 continue;
6396
6397 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6398 if (addr_bit > print_address_bits)
6399 print_address_bits = addr_bit;
6400 }
6401
6402 return print_address_bits;
6403 }
6404
6405 struct captured_breakpoint_query_args
6406 {
6407 int bnum;
6408 };
6409
6410 static int
6411 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6412 {
6413 struct captured_breakpoint_query_args *args = data;
6414 struct breakpoint *b;
6415 struct bp_location *dummy_loc = NULL;
6416
6417 ALL_BREAKPOINTS (b)
6418 {
6419 if (args->bnum == b->number)
6420 {
6421 print_one_breakpoint (b, &dummy_loc, 0);
6422 return GDB_RC_OK;
6423 }
6424 }
6425 return GDB_RC_NONE;
6426 }
6427
6428 enum gdb_rc
6429 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6430 char **error_message)
6431 {
6432 struct captured_breakpoint_query_args args;
6433
6434 args.bnum = bnum;
6435 /* For the moment we don't trust print_one_breakpoint() to not throw
6436 an error. */
6437 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6438 error_message, RETURN_MASK_ALL) < 0)
6439 return GDB_RC_FAIL;
6440 else
6441 return GDB_RC_OK;
6442 }
6443
6444 /* Return true if this breakpoint was set by the user, false if it is
6445 internal or momentary. */
6446
6447 int
6448 user_breakpoint_p (struct breakpoint *b)
6449 {
6450 return b->number > 0;
6451 }
6452
6453 /* Print information on user settable breakpoint (watchpoint, etc)
6454 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6455 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6456 FILTER is non-NULL, call it on each breakpoint and only include the
6457 ones for which it returns non-zero. Return the total number of
6458 breakpoints listed. */
6459
6460 static int
6461 breakpoint_1 (char *args, int allflag,
6462 int (*filter) (const struct breakpoint *))
6463 {
6464 struct breakpoint *b;
6465 struct bp_location *last_loc = NULL;
6466 int nr_printable_breakpoints;
6467 struct cleanup *bkpttbl_chain;
6468 struct value_print_options opts;
6469 int print_address_bits = 0;
6470 int print_type_col_width = 14;
6471 struct ui_out *uiout = current_uiout;
6472
6473 get_user_print_options (&opts);
6474
6475 /* Compute the number of rows in the table, as well as the size
6476 required for address fields. */
6477 nr_printable_breakpoints = 0;
6478 ALL_BREAKPOINTS (b)
6479 {
6480 /* If we have a filter, only list the breakpoints it accepts. */
6481 if (filter && !filter (b))
6482 continue;
6483
6484 /* If we have an "args" string, it is a list of breakpoints to
6485 accept. Skip the others. */
6486 if (args != NULL && *args != '\0')
6487 {
6488 if (allflag && parse_and_eval_long (args) != b->number)
6489 continue;
6490 if (!allflag && !number_is_in_list (args, b->number))
6491 continue;
6492 }
6493
6494 if (allflag || user_breakpoint_p (b))
6495 {
6496 int addr_bit, type_len;
6497
6498 addr_bit = breakpoint_address_bits (b);
6499 if (addr_bit > print_address_bits)
6500 print_address_bits = addr_bit;
6501
6502 type_len = strlen (bptype_string (b->type));
6503 if (type_len > print_type_col_width)
6504 print_type_col_width = type_len;
6505
6506 nr_printable_breakpoints++;
6507 }
6508 }
6509
6510 if (opts.addressprint)
6511 bkpttbl_chain
6512 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6513 nr_printable_breakpoints,
6514 "BreakpointTable");
6515 else
6516 bkpttbl_chain
6517 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6518 nr_printable_breakpoints,
6519 "BreakpointTable");
6520
6521 if (nr_printable_breakpoints > 0)
6522 annotate_breakpoints_headers ();
6523 if (nr_printable_breakpoints > 0)
6524 annotate_field (0);
6525 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6526 if (nr_printable_breakpoints > 0)
6527 annotate_field (1);
6528 ui_out_table_header (uiout, print_type_col_width, ui_left,
6529 "type", "Type"); /* 2 */
6530 if (nr_printable_breakpoints > 0)
6531 annotate_field (2);
6532 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6533 if (nr_printable_breakpoints > 0)
6534 annotate_field (3);
6535 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6536 if (opts.addressprint)
6537 {
6538 if (nr_printable_breakpoints > 0)
6539 annotate_field (4);
6540 if (print_address_bits <= 32)
6541 ui_out_table_header (uiout, 10, ui_left,
6542 "addr", "Address"); /* 5 */
6543 else
6544 ui_out_table_header (uiout, 18, ui_left,
6545 "addr", "Address"); /* 5 */
6546 }
6547 if (nr_printable_breakpoints > 0)
6548 annotate_field (5);
6549 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6550 ui_out_table_body (uiout);
6551 if (nr_printable_breakpoints > 0)
6552 annotate_breakpoints_table ();
6553
6554 ALL_BREAKPOINTS (b)
6555 {
6556 QUIT;
6557 /* If we have a filter, only list the breakpoints it accepts. */
6558 if (filter && !filter (b))
6559 continue;
6560
6561 /* If we have an "args" string, it is a list of breakpoints to
6562 accept. Skip the others. */
6563
6564 if (args != NULL && *args != '\0')
6565 {
6566 if (allflag) /* maintenance info breakpoint */
6567 {
6568 if (parse_and_eval_long (args) != b->number)
6569 continue;
6570 }
6571 else /* all others */
6572 {
6573 if (!number_is_in_list (args, b->number))
6574 continue;
6575 }
6576 }
6577 /* We only print out user settable breakpoints unless the
6578 allflag is set. */
6579 if (allflag || user_breakpoint_p (b))
6580 print_one_breakpoint (b, &last_loc, allflag);
6581 }
6582
6583 do_cleanups (bkpttbl_chain);
6584
6585 if (nr_printable_breakpoints == 0)
6586 {
6587 /* If there's a filter, let the caller decide how to report
6588 empty list. */
6589 if (!filter)
6590 {
6591 if (args == NULL || *args == '\0')
6592 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6593 else
6594 ui_out_message (uiout, 0,
6595 "No breakpoint or watchpoint matching '%s'.\n",
6596 args);
6597 }
6598 }
6599 else
6600 {
6601 if (last_loc && !server_command)
6602 set_next_address (last_loc->gdbarch, last_loc->address);
6603 }
6604
6605 /* FIXME? Should this be moved up so that it is only called when
6606 there have been breakpoints? */
6607 annotate_breakpoints_table_end ();
6608
6609 return nr_printable_breakpoints;
6610 }
6611
6612 /* Display the value of default-collect in a way that is generally
6613 compatible with the breakpoint list. */
6614
6615 static void
6616 default_collect_info (void)
6617 {
6618 struct ui_out *uiout = current_uiout;
6619
6620 /* If it has no value (which is frequently the case), say nothing; a
6621 message like "No default-collect." gets in user's face when it's
6622 not wanted. */
6623 if (!*default_collect)
6624 return;
6625
6626 /* The following phrase lines up nicely with per-tracepoint collect
6627 actions. */
6628 ui_out_text (uiout, "default collect ");
6629 ui_out_field_string (uiout, "default-collect", default_collect);
6630 ui_out_text (uiout, " \n");
6631 }
6632
6633 static void
6634 breakpoints_info (char *args, int from_tty)
6635 {
6636 breakpoint_1 (args, 0, NULL);
6637
6638 default_collect_info ();
6639 }
6640
6641 static void
6642 watchpoints_info (char *args, int from_tty)
6643 {
6644 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6645 struct ui_out *uiout = current_uiout;
6646
6647 if (num_printed == 0)
6648 {
6649 if (args == NULL || *args == '\0')
6650 ui_out_message (uiout, 0, "No watchpoints.\n");
6651 else
6652 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6653 }
6654 }
6655
6656 static void
6657 maintenance_info_breakpoints (char *args, int from_tty)
6658 {
6659 breakpoint_1 (args, 1, NULL);
6660
6661 default_collect_info ();
6662 }
6663
6664 static int
6665 breakpoint_has_pc (struct breakpoint *b,
6666 struct program_space *pspace,
6667 CORE_ADDR pc, struct obj_section *section)
6668 {
6669 struct bp_location *bl = b->loc;
6670
6671 for (; bl; bl = bl->next)
6672 {
6673 if (bl->pspace == pspace
6674 && bl->address == pc
6675 && (!overlay_debugging || bl->section == section))
6676 return 1;
6677 }
6678 return 0;
6679 }
6680
6681 /* Print a message describing any user-breakpoints set at PC. This
6682 concerns with logical breakpoints, so we match program spaces, not
6683 address spaces. */
6684
6685 static void
6686 describe_other_breakpoints (struct gdbarch *gdbarch,
6687 struct program_space *pspace, CORE_ADDR pc,
6688 struct obj_section *section, int thread)
6689 {
6690 int others = 0;
6691 struct breakpoint *b;
6692
6693 ALL_BREAKPOINTS (b)
6694 others += (user_breakpoint_p (b)
6695 && breakpoint_has_pc (b, pspace, pc, section));
6696 if (others > 0)
6697 {
6698 if (others == 1)
6699 printf_filtered (_("Note: breakpoint "));
6700 else /* if (others == ???) */
6701 printf_filtered (_("Note: breakpoints "));
6702 ALL_BREAKPOINTS (b)
6703 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6704 {
6705 others--;
6706 printf_filtered ("%d", b->number);
6707 if (b->thread == -1 && thread != -1)
6708 printf_filtered (" (all threads)");
6709 else if (b->thread != -1)
6710 printf_filtered (" (thread %d)", b->thread);
6711 printf_filtered ("%s%s ",
6712 ((b->enable_state == bp_disabled
6713 || b->enable_state == bp_call_disabled)
6714 ? " (disabled)"
6715 : b->enable_state == bp_permanent
6716 ? " (permanent)"
6717 : ""),
6718 (others > 1) ? ","
6719 : ((others == 1) ? " and" : ""));
6720 }
6721 printf_filtered (_("also set at pc "));
6722 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6723 printf_filtered (".\n");
6724 }
6725 }
6726 \f
6727
6728 /* Return true iff it is meaningful to use the address member of
6729 BPT. For some breakpoint types, the address member is irrelevant
6730 and it makes no sense to attempt to compare it to other addresses
6731 (or use it for any other purpose either).
6732
6733 More specifically, each of the following breakpoint types will
6734 always have a zero valued address and we don't want to mark
6735 breakpoints of any of these types to be a duplicate of an actual
6736 breakpoint at address zero:
6737
6738 bp_watchpoint
6739 bp_catchpoint
6740
6741 */
6742
6743 static int
6744 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6745 {
6746 enum bptype type = bpt->type;
6747
6748 return (type != bp_watchpoint && type != bp_catchpoint);
6749 }
6750
6751 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6752 true if LOC1 and LOC2 represent the same watchpoint location. */
6753
6754 static int
6755 watchpoint_locations_match (struct bp_location *loc1,
6756 struct bp_location *loc2)
6757 {
6758 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6759 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6760
6761 /* Both of them must exist. */
6762 gdb_assert (w1 != NULL);
6763 gdb_assert (w2 != NULL);
6764
6765 /* If the target can evaluate the condition expression in hardware,
6766 then we we need to insert both watchpoints even if they are at
6767 the same place. Otherwise the watchpoint will only trigger when
6768 the condition of whichever watchpoint was inserted evaluates to
6769 true, not giving a chance for GDB to check the condition of the
6770 other watchpoint. */
6771 if ((w1->cond_exp
6772 && target_can_accel_watchpoint_condition (loc1->address,
6773 loc1->length,
6774 loc1->watchpoint_type,
6775 w1->cond_exp))
6776 || (w2->cond_exp
6777 && target_can_accel_watchpoint_condition (loc2->address,
6778 loc2->length,
6779 loc2->watchpoint_type,
6780 w2->cond_exp)))
6781 return 0;
6782
6783 /* Note that this checks the owner's type, not the location's. In
6784 case the target does not support read watchpoints, but does
6785 support access watchpoints, we'll have bp_read_watchpoint
6786 watchpoints with hw_access locations. Those should be considered
6787 duplicates of hw_read locations. The hw_read locations will
6788 become hw_access locations later. */
6789 return (loc1->owner->type == loc2->owner->type
6790 && loc1->pspace->aspace == loc2->pspace->aspace
6791 && loc1->address == loc2->address
6792 && loc1->length == loc2->length);
6793 }
6794
6795 /* See breakpoint.h. */
6796
6797 int
6798 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6799 struct address_space *aspace2, CORE_ADDR addr2)
6800 {
6801 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6802 || aspace1 == aspace2)
6803 && addr1 == addr2);
6804 }
6805
6806 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6807 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6808 matches ASPACE2. On targets that have global breakpoints, the address
6809 space doesn't really matter. */
6810
6811 static int
6812 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6813 int len1, struct address_space *aspace2,
6814 CORE_ADDR addr2)
6815 {
6816 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6817 || aspace1 == aspace2)
6818 && addr2 >= addr1 && addr2 < addr1 + len1);
6819 }
6820
6821 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6822 a ranged breakpoint. In most targets, a match happens only if ASPACE
6823 matches the breakpoint's address space. On targets that have global
6824 breakpoints, the address space doesn't really matter. */
6825
6826 static int
6827 breakpoint_location_address_match (struct bp_location *bl,
6828 struct address_space *aspace,
6829 CORE_ADDR addr)
6830 {
6831 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6832 aspace, addr)
6833 || (bl->length
6834 && breakpoint_address_match_range (bl->pspace->aspace,
6835 bl->address, bl->length,
6836 aspace, addr)));
6837 }
6838
6839 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6840 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6841 true, otherwise returns false. */
6842
6843 static int
6844 tracepoint_locations_match (struct bp_location *loc1,
6845 struct bp_location *loc2)
6846 {
6847 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6848 /* Since tracepoint locations are never duplicated with others', tracepoint
6849 locations at the same address of different tracepoints are regarded as
6850 different locations. */
6851 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6852 else
6853 return 0;
6854 }
6855
6856 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6857 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6858 represent the same location. */
6859
6860 static int
6861 breakpoint_locations_match (struct bp_location *loc1,
6862 struct bp_location *loc2)
6863 {
6864 int hw_point1, hw_point2;
6865
6866 /* Both of them must not be in moribund_locations. */
6867 gdb_assert (loc1->owner != NULL);
6868 gdb_assert (loc2->owner != NULL);
6869
6870 hw_point1 = is_hardware_watchpoint (loc1->owner);
6871 hw_point2 = is_hardware_watchpoint (loc2->owner);
6872
6873 if (hw_point1 != hw_point2)
6874 return 0;
6875 else if (hw_point1)
6876 return watchpoint_locations_match (loc1, loc2);
6877 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6878 return tracepoint_locations_match (loc1, loc2);
6879 else
6880 /* We compare bp_location.length in order to cover ranged breakpoints. */
6881 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6882 loc2->pspace->aspace, loc2->address)
6883 && loc1->length == loc2->length);
6884 }
6885
6886 static void
6887 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6888 int bnum, int have_bnum)
6889 {
6890 /* The longest string possibly returned by hex_string_custom
6891 is 50 chars. These must be at least that big for safety. */
6892 char astr1[64];
6893 char astr2[64];
6894
6895 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6896 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6897 if (have_bnum)
6898 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6899 bnum, astr1, astr2);
6900 else
6901 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6902 }
6903
6904 /* Adjust a breakpoint's address to account for architectural
6905 constraints on breakpoint placement. Return the adjusted address.
6906 Note: Very few targets require this kind of adjustment. For most
6907 targets, this function is simply the identity function. */
6908
6909 static CORE_ADDR
6910 adjust_breakpoint_address (struct gdbarch *gdbarch,
6911 CORE_ADDR bpaddr, enum bptype bptype)
6912 {
6913 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6914 {
6915 /* Very few targets need any kind of breakpoint adjustment. */
6916 return bpaddr;
6917 }
6918 else if (bptype == bp_watchpoint
6919 || bptype == bp_hardware_watchpoint
6920 || bptype == bp_read_watchpoint
6921 || bptype == bp_access_watchpoint
6922 || bptype == bp_catchpoint)
6923 {
6924 /* Watchpoints and the various bp_catch_* eventpoints should not
6925 have their addresses modified. */
6926 return bpaddr;
6927 }
6928 else
6929 {
6930 CORE_ADDR adjusted_bpaddr;
6931
6932 /* Some targets have architectural constraints on the placement
6933 of breakpoint instructions. Obtain the adjusted address. */
6934 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6935
6936 /* An adjusted breakpoint address can significantly alter
6937 a user's expectations. Print a warning if an adjustment
6938 is required. */
6939 if (adjusted_bpaddr != bpaddr)
6940 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6941
6942 return adjusted_bpaddr;
6943 }
6944 }
6945
6946 void
6947 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6948 struct breakpoint *owner)
6949 {
6950 memset (loc, 0, sizeof (*loc));
6951
6952 gdb_assert (ops != NULL);
6953
6954 loc->ops = ops;
6955 loc->owner = owner;
6956 loc->cond = NULL;
6957 loc->cond_bytecode = NULL;
6958 loc->shlib_disabled = 0;
6959 loc->enabled = 1;
6960
6961 switch (owner->type)
6962 {
6963 case bp_breakpoint:
6964 case bp_until:
6965 case bp_finish:
6966 case bp_longjmp:
6967 case bp_longjmp_resume:
6968 case bp_longjmp_call_dummy:
6969 case bp_exception:
6970 case bp_exception_resume:
6971 case bp_step_resume:
6972 case bp_hp_step_resume:
6973 case bp_watchpoint_scope:
6974 case bp_call_dummy:
6975 case bp_std_terminate:
6976 case bp_shlib_event:
6977 case bp_thread_event:
6978 case bp_overlay_event:
6979 case bp_jit_event:
6980 case bp_longjmp_master:
6981 case bp_std_terminate_master:
6982 case bp_exception_master:
6983 case bp_gnu_ifunc_resolver:
6984 case bp_gnu_ifunc_resolver_return:
6985 case bp_dprintf:
6986 loc->loc_type = bp_loc_software_breakpoint;
6987 mark_breakpoint_location_modified (loc);
6988 break;
6989 case bp_hardware_breakpoint:
6990 loc->loc_type = bp_loc_hardware_breakpoint;
6991 mark_breakpoint_location_modified (loc);
6992 break;
6993 case bp_hardware_watchpoint:
6994 case bp_read_watchpoint:
6995 case bp_access_watchpoint:
6996 loc->loc_type = bp_loc_hardware_watchpoint;
6997 break;
6998 case bp_watchpoint:
6999 case bp_catchpoint:
7000 case bp_tracepoint:
7001 case bp_fast_tracepoint:
7002 case bp_static_tracepoint:
7003 loc->loc_type = bp_loc_other;
7004 break;
7005 default:
7006 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7007 }
7008
7009 loc->refc = 1;
7010 }
7011
7012 /* Allocate a struct bp_location. */
7013
7014 static struct bp_location *
7015 allocate_bp_location (struct breakpoint *bpt)
7016 {
7017 return bpt->ops->allocate_location (bpt);
7018 }
7019
7020 static void
7021 free_bp_location (struct bp_location *loc)
7022 {
7023 loc->ops->dtor (loc);
7024 xfree (loc);
7025 }
7026
7027 /* Increment reference count. */
7028
7029 static void
7030 incref_bp_location (struct bp_location *bl)
7031 {
7032 ++bl->refc;
7033 }
7034
7035 /* Decrement reference count. If the reference count reaches 0,
7036 destroy the bp_location. Sets *BLP to NULL. */
7037
7038 static void
7039 decref_bp_location (struct bp_location **blp)
7040 {
7041 gdb_assert ((*blp)->refc > 0);
7042
7043 if (--(*blp)->refc == 0)
7044 free_bp_location (*blp);
7045 *blp = NULL;
7046 }
7047
7048 /* Add breakpoint B at the end of the global breakpoint chain. */
7049
7050 static void
7051 add_to_breakpoint_chain (struct breakpoint *b)
7052 {
7053 struct breakpoint *b1;
7054
7055 /* Add this breakpoint to the end of the chain so that a list of
7056 breakpoints will come out in order of increasing numbers. */
7057
7058 b1 = breakpoint_chain;
7059 if (b1 == 0)
7060 breakpoint_chain = b;
7061 else
7062 {
7063 while (b1->next)
7064 b1 = b1->next;
7065 b1->next = b;
7066 }
7067 }
7068
7069 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7070
7071 static void
7072 init_raw_breakpoint_without_location (struct breakpoint *b,
7073 struct gdbarch *gdbarch,
7074 enum bptype bptype,
7075 const struct breakpoint_ops *ops)
7076 {
7077 memset (b, 0, sizeof (*b));
7078
7079 gdb_assert (ops != NULL);
7080
7081 b->ops = ops;
7082 b->type = bptype;
7083 b->gdbarch = gdbarch;
7084 b->language = current_language->la_language;
7085 b->input_radix = input_radix;
7086 b->thread = -1;
7087 b->enable_state = bp_enabled;
7088 b->next = 0;
7089 b->silent = 0;
7090 b->ignore_count = 0;
7091 b->commands = NULL;
7092 b->frame_id = null_frame_id;
7093 b->condition_not_parsed = 0;
7094 b->py_bp_object = NULL;
7095 b->related_breakpoint = b;
7096 }
7097
7098 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7099 that has type BPTYPE and has no locations as yet. */
7100
7101 static struct breakpoint *
7102 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7103 enum bptype bptype,
7104 const struct breakpoint_ops *ops)
7105 {
7106 struct breakpoint *b = XNEW (struct breakpoint);
7107
7108 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7109 add_to_breakpoint_chain (b);
7110 return b;
7111 }
7112
7113 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7114 resolutions should be made as the user specified the location explicitly
7115 enough. */
7116
7117 static void
7118 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7119 {
7120 gdb_assert (loc->owner != NULL);
7121
7122 if (loc->owner->type == bp_breakpoint
7123 || loc->owner->type == bp_hardware_breakpoint
7124 || is_tracepoint (loc->owner))
7125 {
7126 int is_gnu_ifunc;
7127 const char *function_name;
7128 CORE_ADDR func_addr;
7129
7130 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7131 &func_addr, NULL, &is_gnu_ifunc);
7132
7133 if (is_gnu_ifunc && !explicit_loc)
7134 {
7135 struct breakpoint *b = loc->owner;
7136
7137 gdb_assert (loc->pspace == current_program_space);
7138 if (gnu_ifunc_resolve_name (function_name,
7139 &loc->requested_address))
7140 {
7141 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7142 loc->address = adjust_breakpoint_address (loc->gdbarch,
7143 loc->requested_address,
7144 b->type);
7145 }
7146 else if (b->type == bp_breakpoint && b->loc == loc
7147 && loc->next == NULL && b->related_breakpoint == b)
7148 {
7149 /* Create only the whole new breakpoint of this type but do not
7150 mess more complicated breakpoints with multiple locations. */
7151 b->type = bp_gnu_ifunc_resolver;
7152 /* Remember the resolver's address for use by the return
7153 breakpoint. */
7154 loc->related_address = func_addr;
7155 }
7156 }
7157
7158 if (function_name)
7159 loc->function_name = xstrdup (function_name);
7160 }
7161 }
7162
7163 /* Attempt to determine architecture of location identified by SAL. */
7164 struct gdbarch *
7165 get_sal_arch (struct symtab_and_line sal)
7166 {
7167 if (sal.section)
7168 return get_objfile_arch (sal.section->objfile);
7169 if (sal.symtab)
7170 return get_objfile_arch (sal.symtab->objfile);
7171
7172 return NULL;
7173 }
7174
7175 /* Low level routine for partially initializing a breakpoint of type
7176 BPTYPE. The newly created breakpoint's address, section, source
7177 file name, and line number are provided by SAL.
7178
7179 It is expected that the caller will complete the initialization of
7180 the newly created breakpoint struct as well as output any status
7181 information regarding the creation of a new breakpoint. */
7182
7183 static void
7184 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7185 struct symtab_and_line sal, enum bptype bptype,
7186 const struct breakpoint_ops *ops)
7187 {
7188 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7189
7190 add_location_to_breakpoint (b, &sal);
7191
7192 if (bptype != bp_catchpoint)
7193 gdb_assert (sal.pspace != NULL);
7194
7195 /* Store the program space that was used to set the breakpoint,
7196 except for ordinary breakpoints, which are independent of the
7197 program space. */
7198 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7199 b->pspace = sal.pspace;
7200 }
7201
7202 /* set_raw_breakpoint is a low level routine for allocating and
7203 partially initializing a breakpoint of type BPTYPE. The newly
7204 created breakpoint's address, section, source file name, and line
7205 number are provided by SAL. The newly created and partially
7206 initialized breakpoint is added to the breakpoint chain and
7207 is also returned as the value of this function.
7208
7209 It is expected that the caller will complete the initialization of
7210 the newly created breakpoint struct as well as output any status
7211 information regarding the creation of a new breakpoint. In
7212 particular, set_raw_breakpoint does NOT set the breakpoint
7213 number! Care should be taken to not allow an error to occur
7214 prior to completing the initialization of the breakpoint. If this
7215 should happen, a bogus breakpoint will be left on the chain. */
7216
7217 struct breakpoint *
7218 set_raw_breakpoint (struct gdbarch *gdbarch,
7219 struct symtab_and_line sal, enum bptype bptype,
7220 const struct breakpoint_ops *ops)
7221 {
7222 struct breakpoint *b = XNEW (struct breakpoint);
7223
7224 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7225 add_to_breakpoint_chain (b);
7226 return b;
7227 }
7228
7229
7230 /* Note that the breakpoint object B describes a permanent breakpoint
7231 instruction, hard-wired into the inferior's code. */
7232 void
7233 make_breakpoint_permanent (struct breakpoint *b)
7234 {
7235 struct bp_location *bl;
7236
7237 b->enable_state = bp_permanent;
7238
7239 /* By definition, permanent breakpoints are already present in the
7240 code. Mark all locations as inserted. For now,
7241 make_breakpoint_permanent is called in just one place, so it's
7242 hard to say if it's reasonable to have permanent breakpoint with
7243 multiple locations or not, but it's easy to implement. */
7244 for (bl = b->loc; bl; bl = bl->next)
7245 bl->inserted = 1;
7246 }
7247
7248 /* Call this routine when stepping and nexting to enable a breakpoint
7249 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7250 initiated the operation. */
7251
7252 void
7253 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7254 {
7255 struct breakpoint *b, *b_tmp;
7256 int thread = tp->num;
7257
7258 /* To avoid having to rescan all objfile symbols at every step,
7259 we maintain a list of continually-inserted but always disabled
7260 longjmp "master" breakpoints. Here, we simply create momentary
7261 clones of those and enable them for the requested thread. */
7262 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7263 if (b->pspace == current_program_space
7264 && (b->type == bp_longjmp_master
7265 || b->type == bp_exception_master))
7266 {
7267 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7268 struct breakpoint *clone;
7269
7270 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7271 after their removal. */
7272 clone = momentary_breakpoint_from_master (b, type,
7273 &longjmp_breakpoint_ops);
7274 clone->thread = thread;
7275 }
7276
7277 tp->initiating_frame = frame;
7278 }
7279
7280 /* Delete all longjmp breakpoints from THREAD. */
7281 void
7282 delete_longjmp_breakpoint (int thread)
7283 {
7284 struct breakpoint *b, *b_tmp;
7285
7286 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7287 if (b->type == bp_longjmp || b->type == bp_exception)
7288 {
7289 if (b->thread == thread)
7290 delete_breakpoint (b);
7291 }
7292 }
7293
7294 void
7295 delete_longjmp_breakpoint_at_next_stop (int thread)
7296 {
7297 struct breakpoint *b, *b_tmp;
7298
7299 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7300 if (b->type == bp_longjmp || b->type == bp_exception)
7301 {
7302 if (b->thread == thread)
7303 b->disposition = disp_del_at_next_stop;
7304 }
7305 }
7306
7307 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7308 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7309 pointer to any of them. Return NULL if this system cannot place longjmp
7310 breakpoints. */
7311
7312 struct breakpoint *
7313 set_longjmp_breakpoint_for_call_dummy (void)
7314 {
7315 struct breakpoint *b, *retval = NULL;
7316
7317 ALL_BREAKPOINTS (b)
7318 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7319 {
7320 struct breakpoint *new_b;
7321
7322 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7323 &momentary_breakpoint_ops);
7324 new_b->thread = pid_to_thread_id (inferior_ptid);
7325
7326 /* Link NEW_B into the chain of RETVAL breakpoints. */
7327
7328 gdb_assert (new_b->related_breakpoint == new_b);
7329 if (retval == NULL)
7330 retval = new_b;
7331 new_b->related_breakpoint = retval;
7332 while (retval->related_breakpoint != new_b->related_breakpoint)
7333 retval = retval->related_breakpoint;
7334 retval->related_breakpoint = new_b;
7335 }
7336
7337 return retval;
7338 }
7339
7340 /* Verify all existing dummy frames and their associated breakpoints for
7341 THREAD. Remove those which can no longer be found in the current frame
7342 stack.
7343
7344 You should call this function only at places where it is safe to currently
7345 unwind the whole stack. Failed stack unwind would discard live dummy
7346 frames. */
7347
7348 void
7349 check_longjmp_breakpoint_for_call_dummy (int thread)
7350 {
7351 struct breakpoint *b, *b_tmp;
7352
7353 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7354 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7355 {
7356 struct breakpoint *dummy_b = b->related_breakpoint;
7357
7358 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7359 dummy_b = dummy_b->related_breakpoint;
7360 if (dummy_b->type != bp_call_dummy
7361 || frame_find_by_id (dummy_b->frame_id) != NULL)
7362 continue;
7363
7364 dummy_frame_discard (dummy_b->frame_id);
7365
7366 while (b->related_breakpoint != b)
7367 {
7368 if (b_tmp == b->related_breakpoint)
7369 b_tmp = b->related_breakpoint->next;
7370 delete_breakpoint (b->related_breakpoint);
7371 }
7372 delete_breakpoint (b);
7373 }
7374 }
7375
7376 void
7377 enable_overlay_breakpoints (void)
7378 {
7379 struct breakpoint *b;
7380
7381 ALL_BREAKPOINTS (b)
7382 if (b->type == bp_overlay_event)
7383 {
7384 b->enable_state = bp_enabled;
7385 update_global_location_list (1);
7386 overlay_events_enabled = 1;
7387 }
7388 }
7389
7390 void
7391 disable_overlay_breakpoints (void)
7392 {
7393 struct breakpoint *b;
7394
7395 ALL_BREAKPOINTS (b)
7396 if (b->type == bp_overlay_event)
7397 {
7398 b->enable_state = bp_disabled;
7399 update_global_location_list (0);
7400 overlay_events_enabled = 0;
7401 }
7402 }
7403
7404 /* Set an active std::terminate breakpoint for each std::terminate
7405 master breakpoint. */
7406 void
7407 set_std_terminate_breakpoint (void)
7408 {
7409 struct breakpoint *b, *b_tmp;
7410
7411 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7412 if (b->pspace == current_program_space
7413 && b->type == bp_std_terminate_master)
7414 {
7415 momentary_breakpoint_from_master (b, bp_std_terminate,
7416 &momentary_breakpoint_ops);
7417 }
7418 }
7419
7420 /* Delete all the std::terminate breakpoints. */
7421 void
7422 delete_std_terminate_breakpoint (void)
7423 {
7424 struct breakpoint *b, *b_tmp;
7425
7426 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7427 if (b->type == bp_std_terminate)
7428 delete_breakpoint (b);
7429 }
7430
7431 struct breakpoint *
7432 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7433 {
7434 struct breakpoint *b;
7435
7436 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7437 &internal_breakpoint_ops);
7438
7439 b->enable_state = bp_enabled;
7440 /* addr_string has to be used or breakpoint_re_set will delete me. */
7441 b->addr_string
7442 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7443
7444 update_global_location_list_nothrow (1);
7445
7446 return b;
7447 }
7448
7449 void
7450 remove_thread_event_breakpoints (void)
7451 {
7452 struct breakpoint *b, *b_tmp;
7453
7454 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7455 if (b->type == bp_thread_event
7456 && b->loc->pspace == current_program_space)
7457 delete_breakpoint (b);
7458 }
7459
7460 struct lang_and_radix
7461 {
7462 enum language lang;
7463 int radix;
7464 };
7465
7466 /* Create a breakpoint for JIT code registration and unregistration. */
7467
7468 struct breakpoint *
7469 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7470 {
7471 struct breakpoint *b;
7472
7473 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7474 &internal_breakpoint_ops);
7475 update_global_location_list_nothrow (1);
7476 return b;
7477 }
7478
7479 /* Remove JIT code registration and unregistration breakpoint(s). */
7480
7481 void
7482 remove_jit_event_breakpoints (void)
7483 {
7484 struct breakpoint *b, *b_tmp;
7485
7486 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7487 if (b->type == bp_jit_event
7488 && b->loc->pspace == current_program_space)
7489 delete_breakpoint (b);
7490 }
7491
7492 void
7493 remove_solib_event_breakpoints (void)
7494 {
7495 struct breakpoint *b, *b_tmp;
7496
7497 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7498 if (b->type == bp_shlib_event
7499 && b->loc->pspace == current_program_space)
7500 delete_breakpoint (b);
7501 }
7502
7503 struct breakpoint *
7504 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7505 {
7506 struct breakpoint *b;
7507
7508 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7509 &internal_breakpoint_ops);
7510 update_global_location_list_nothrow (1);
7511 return b;
7512 }
7513
7514 /* Disable any breakpoints that are on code in shared libraries. Only
7515 apply to enabled breakpoints, disabled ones can just stay disabled. */
7516
7517 void
7518 disable_breakpoints_in_shlibs (void)
7519 {
7520 struct bp_location *loc, **locp_tmp;
7521
7522 ALL_BP_LOCATIONS (loc, locp_tmp)
7523 {
7524 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7525 struct breakpoint *b = loc->owner;
7526
7527 /* We apply the check to all breakpoints, including disabled for
7528 those with loc->duplicate set. This is so that when breakpoint
7529 becomes enabled, or the duplicate is removed, gdb will try to
7530 insert all breakpoints. If we don't set shlib_disabled here,
7531 we'll try to insert those breakpoints and fail. */
7532 if (((b->type == bp_breakpoint)
7533 || (b->type == bp_jit_event)
7534 || (b->type == bp_hardware_breakpoint)
7535 || (is_tracepoint (b)))
7536 && loc->pspace == current_program_space
7537 && !loc->shlib_disabled
7538 && solib_name_from_address (loc->pspace, loc->address)
7539 )
7540 {
7541 loc->shlib_disabled = 1;
7542 }
7543 }
7544 }
7545
7546 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7547 notification of unloaded_shlib. Only apply to enabled breakpoints,
7548 disabled ones can just stay disabled. */
7549
7550 static void
7551 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7552 {
7553 struct bp_location *loc, **locp_tmp;
7554 int disabled_shlib_breaks = 0;
7555
7556 /* SunOS a.out shared libraries are always mapped, so do not
7557 disable breakpoints; they will only be reported as unloaded
7558 through clear_solib when GDB discards its shared library
7559 list. See clear_solib for more information. */
7560 if (exec_bfd != NULL
7561 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7562 return;
7563
7564 ALL_BP_LOCATIONS (loc, locp_tmp)
7565 {
7566 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7567 struct breakpoint *b = loc->owner;
7568
7569 if (solib->pspace == loc->pspace
7570 && !loc->shlib_disabled
7571 && (((b->type == bp_breakpoint
7572 || b->type == bp_jit_event
7573 || b->type == bp_hardware_breakpoint)
7574 && (loc->loc_type == bp_loc_hardware_breakpoint
7575 || loc->loc_type == bp_loc_software_breakpoint))
7576 || is_tracepoint (b))
7577 && solib_contains_address_p (solib, loc->address))
7578 {
7579 loc->shlib_disabled = 1;
7580 /* At this point, we cannot rely on remove_breakpoint
7581 succeeding so we must mark the breakpoint as not inserted
7582 to prevent future errors occurring in remove_breakpoints. */
7583 loc->inserted = 0;
7584
7585 /* This may cause duplicate notifications for the same breakpoint. */
7586 observer_notify_breakpoint_modified (b);
7587
7588 if (!disabled_shlib_breaks)
7589 {
7590 target_terminal_ours_for_output ();
7591 warning (_("Temporarily disabling breakpoints "
7592 "for unloaded shared library \"%s\""),
7593 solib->so_name);
7594 }
7595 disabled_shlib_breaks = 1;
7596 }
7597 }
7598 }
7599
7600 /* Disable any breakpoints and tracepoints in OBJFILE upon
7601 notification of free_objfile. Only apply to enabled breakpoints,
7602 disabled ones can just stay disabled. */
7603
7604 static void
7605 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7606 {
7607 struct breakpoint *b;
7608
7609 if (objfile == NULL)
7610 return;
7611
7612 /* If the file is a shared library not loaded by the user then
7613 solib_unloaded was notified and disable_breakpoints_in_unloaded_shlib
7614 was called. In that case there is no need to take action again. */
7615 if ((objfile->flags & OBJF_SHARED) && !(objfile->flags & OBJF_USERLOADED))
7616 return;
7617
7618 ALL_BREAKPOINTS (b)
7619 {
7620 struct bp_location *loc;
7621 int bp_modified = 0;
7622
7623 if (!is_breakpoint (b) && !is_tracepoint (b))
7624 continue;
7625
7626 for (loc = b->loc; loc != NULL; loc = loc->next)
7627 {
7628 CORE_ADDR loc_addr = loc->address;
7629
7630 if (loc->loc_type != bp_loc_hardware_breakpoint
7631 && loc->loc_type != bp_loc_software_breakpoint)
7632 continue;
7633
7634 if (loc->shlib_disabled != 0)
7635 continue;
7636
7637 if (objfile->pspace != loc->pspace)
7638 continue;
7639
7640 if (loc->loc_type != bp_loc_hardware_breakpoint
7641 && loc->loc_type != bp_loc_software_breakpoint)
7642 continue;
7643
7644 if (is_addr_in_objfile (loc_addr, objfile))
7645 {
7646 loc->shlib_disabled = 1;
7647 loc->inserted = 0;
7648
7649 mark_breakpoint_location_modified (loc);
7650
7651 bp_modified = 1;
7652 }
7653 }
7654
7655 if (bp_modified)
7656 observer_notify_breakpoint_modified (b);
7657 }
7658 }
7659
7660 /* FORK & VFORK catchpoints. */
7661
7662 /* An instance of this type is used to represent a fork or vfork
7663 catchpoint. It includes a "struct breakpoint" as a kind of base
7664 class; users downcast to "struct breakpoint *" when needed. A
7665 breakpoint is really of this type iff its ops pointer points to
7666 CATCH_FORK_BREAKPOINT_OPS. */
7667
7668 struct fork_catchpoint
7669 {
7670 /* The base class. */
7671 struct breakpoint base;
7672
7673 /* Process id of a child process whose forking triggered this
7674 catchpoint. This field is only valid immediately after this
7675 catchpoint has triggered. */
7676 ptid_t forked_inferior_pid;
7677 };
7678
7679 /* Implement the "insert" breakpoint_ops method for fork
7680 catchpoints. */
7681
7682 static int
7683 insert_catch_fork (struct bp_location *bl)
7684 {
7685 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7686 }
7687
7688 /* Implement the "remove" breakpoint_ops method for fork
7689 catchpoints. */
7690
7691 static int
7692 remove_catch_fork (struct bp_location *bl)
7693 {
7694 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7695 }
7696
7697 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7698 catchpoints. */
7699
7700 static int
7701 breakpoint_hit_catch_fork (const struct bp_location *bl,
7702 struct address_space *aspace, CORE_ADDR bp_addr,
7703 const struct target_waitstatus *ws)
7704 {
7705 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7706
7707 if (ws->kind != TARGET_WAITKIND_FORKED)
7708 return 0;
7709
7710 c->forked_inferior_pid = ws->value.related_pid;
7711 return 1;
7712 }
7713
7714 /* Implement the "print_it" breakpoint_ops method for fork
7715 catchpoints. */
7716
7717 static enum print_stop_action
7718 print_it_catch_fork (bpstat bs)
7719 {
7720 struct ui_out *uiout = current_uiout;
7721 struct breakpoint *b = bs->breakpoint_at;
7722 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7723
7724 annotate_catchpoint (b->number);
7725 if (b->disposition == disp_del)
7726 ui_out_text (uiout, "\nTemporary catchpoint ");
7727 else
7728 ui_out_text (uiout, "\nCatchpoint ");
7729 if (ui_out_is_mi_like_p (uiout))
7730 {
7731 ui_out_field_string (uiout, "reason",
7732 async_reason_lookup (EXEC_ASYNC_FORK));
7733 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7734 }
7735 ui_out_field_int (uiout, "bkptno", b->number);
7736 ui_out_text (uiout, " (forked process ");
7737 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7738 ui_out_text (uiout, "), ");
7739 return PRINT_SRC_AND_LOC;
7740 }
7741
7742 /* Implement the "print_one" breakpoint_ops method for fork
7743 catchpoints. */
7744
7745 static void
7746 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7747 {
7748 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7749 struct value_print_options opts;
7750 struct ui_out *uiout = current_uiout;
7751
7752 get_user_print_options (&opts);
7753
7754 /* Field 4, the address, is omitted (which makes the columns not
7755 line up too nicely with the headers, but the effect is relatively
7756 readable). */
7757 if (opts.addressprint)
7758 ui_out_field_skip (uiout, "addr");
7759 annotate_field (5);
7760 ui_out_text (uiout, "fork");
7761 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7762 {
7763 ui_out_text (uiout, ", process ");
7764 ui_out_field_int (uiout, "what",
7765 ptid_get_pid (c->forked_inferior_pid));
7766 ui_out_spaces (uiout, 1);
7767 }
7768
7769 if (ui_out_is_mi_like_p (uiout))
7770 ui_out_field_string (uiout, "catch-type", "fork");
7771 }
7772
7773 /* Implement the "print_mention" breakpoint_ops method for fork
7774 catchpoints. */
7775
7776 static void
7777 print_mention_catch_fork (struct breakpoint *b)
7778 {
7779 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7780 }
7781
7782 /* Implement the "print_recreate" breakpoint_ops method for fork
7783 catchpoints. */
7784
7785 static void
7786 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7787 {
7788 fprintf_unfiltered (fp, "catch fork");
7789 print_recreate_thread (b, fp);
7790 }
7791
7792 /* The breakpoint_ops structure to be used in fork catchpoints. */
7793
7794 static struct breakpoint_ops catch_fork_breakpoint_ops;
7795
7796 /* Implement the "insert" breakpoint_ops method for vfork
7797 catchpoints. */
7798
7799 static int
7800 insert_catch_vfork (struct bp_location *bl)
7801 {
7802 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7803 }
7804
7805 /* Implement the "remove" breakpoint_ops method for vfork
7806 catchpoints. */
7807
7808 static int
7809 remove_catch_vfork (struct bp_location *bl)
7810 {
7811 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7812 }
7813
7814 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7815 catchpoints. */
7816
7817 static int
7818 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7819 struct address_space *aspace, CORE_ADDR bp_addr,
7820 const struct target_waitstatus *ws)
7821 {
7822 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7823
7824 if (ws->kind != TARGET_WAITKIND_VFORKED)
7825 return 0;
7826
7827 c->forked_inferior_pid = ws->value.related_pid;
7828 return 1;
7829 }
7830
7831 /* Implement the "print_it" breakpoint_ops method for vfork
7832 catchpoints. */
7833
7834 static enum print_stop_action
7835 print_it_catch_vfork (bpstat bs)
7836 {
7837 struct ui_out *uiout = current_uiout;
7838 struct breakpoint *b = bs->breakpoint_at;
7839 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7840
7841 annotate_catchpoint (b->number);
7842 if (b->disposition == disp_del)
7843 ui_out_text (uiout, "\nTemporary catchpoint ");
7844 else
7845 ui_out_text (uiout, "\nCatchpoint ");
7846 if (ui_out_is_mi_like_p (uiout))
7847 {
7848 ui_out_field_string (uiout, "reason",
7849 async_reason_lookup (EXEC_ASYNC_VFORK));
7850 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7851 }
7852 ui_out_field_int (uiout, "bkptno", b->number);
7853 ui_out_text (uiout, " (vforked process ");
7854 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7855 ui_out_text (uiout, "), ");
7856 return PRINT_SRC_AND_LOC;
7857 }
7858
7859 /* Implement the "print_one" breakpoint_ops method for vfork
7860 catchpoints. */
7861
7862 static void
7863 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7864 {
7865 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7866 struct value_print_options opts;
7867 struct ui_out *uiout = current_uiout;
7868
7869 get_user_print_options (&opts);
7870 /* Field 4, the address, is omitted (which makes the columns not
7871 line up too nicely with the headers, but the effect is relatively
7872 readable). */
7873 if (opts.addressprint)
7874 ui_out_field_skip (uiout, "addr");
7875 annotate_field (5);
7876 ui_out_text (uiout, "vfork");
7877 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7878 {
7879 ui_out_text (uiout, ", process ");
7880 ui_out_field_int (uiout, "what",
7881 ptid_get_pid (c->forked_inferior_pid));
7882 ui_out_spaces (uiout, 1);
7883 }
7884
7885 if (ui_out_is_mi_like_p (uiout))
7886 ui_out_field_string (uiout, "catch-type", "vfork");
7887 }
7888
7889 /* Implement the "print_mention" breakpoint_ops method for vfork
7890 catchpoints. */
7891
7892 static void
7893 print_mention_catch_vfork (struct breakpoint *b)
7894 {
7895 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7896 }
7897
7898 /* Implement the "print_recreate" breakpoint_ops method for vfork
7899 catchpoints. */
7900
7901 static void
7902 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7903 {
7904 fprintf_unfiltered (fp, "catch vfork");
7905 print_recreate_thread (b, fp);
7906 }
7907
7908 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7909
7910 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7911
7912 /* An instance of this type is used to represent an solib catchpoint.
7913 It includes a "struct breakpoint" as a kind of base class; users
7914 downcast to "struct breakpoint *" when needed. A breakpoint is
7915 really of this type iff its ops pointer points to
7916 CATCH_SOLIB_BREAKPOINT_OPS. */
7917
7918 struct solib_catchpoint
7919 {
7920 /* The base class. */
7921 struct breakpoint base;
7922
7923 /* True for "catch load", false for "catch unload". */
7924 unsigned char is_load;
7925
7926 /* Regular expression to match, if any. COMPILED is only valid when
7927 REGEX is non-NULL. */
7928 char *regex;
7929 regex_t compiled;
7930 };
7931
7932 static void
7933 dtor_catch_solib (struct breakpoint *b)
7934 {
7935 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7936
7937 if (self->regex)
7938 regfree (&self->compiled);
7939 xfree (self->regex);
7940
7941 base_breakpoint_ops.dtor (b);
7942 }
7943
7944 static int
7945 insert_catch_solib (struct bp_location *ignore)
7946 {
7947 return 0;
7948 }
7949
7950 static int
7951 remove_catch_solib (struct bp_location *ignore)
7952 {
7953 return 0;
7954 }
7955
7956 static int
7957 breakpoint_hit_catch_solib (const struct bp_location *bl,
7958 struct address_space *aspace,
7959 CORE_ADDR bp_addr,
7960 const struct target_waitstatus *ws)
7961 {
7962 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7963 struct breakpoint *other;
7964
7965 if (ws->kind == TARGET_WAITKIND_LOADED)
7966 return 1;
7967
7968 ALL_BREAKPOINTS (other)
7969 {
7970 struct bp_location *other_bl;
7971
7972 if (other == bl->owner)
7973 continue;
7974
7975 if (other->type != bp_shlib_event)
7976 continue;
7977
7978 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7979 continue;
7980
7981 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7982 {
7983 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7984 return 1;
7985 }
7986 }
7987
7988 return 0;
7989 }
7990
7991 static void
7992 check_status_catch_solib (struct bpstats *bs)
7993 {
7994 struct solib_catchpoint *self
7995 = (struct solib_catchpoint *) bs->breakpoint_at;
7996 int ix;
7997
7998 if (self->is_load)
7999 {
8000 struct so_list *iter;
8001
8002 for (ix = 0;
8003 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8004 ix, iter);
8005 ++ix)
8006 {
8007 if (!self->regex
8008 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8009 return;
8010 }
8011 }
8012 else
8013 {
8014 char *iter;
8015
8016 for (ix = 0;
8017 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8018 ix, iter);
8019 ++ix)
8020 {
8021 if (!self->regex
8022 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8023 return;
8024 }
8025 }
8026
8027 bs->stop = 0;
8028 bs->print_it = print_it_noop;
8029 }
8030
8031 static enum print_stop_action
8032 print_it_catch_solib (bpstat bs)
8033 {
8034 struct breakpoint *b = bs->breakpoint_at;
8035 struct ui_out *uiout = current_uiout;
8036
8037 annotate_catchpoint (b->number);
8038 if (b->disposition == disp_del)
8039 ui_out_text (uiout, "\nTemporary catchpoint ");
8040 else
8041 ui_out_text (uiout, "\nCatchpoint ");
8042 ui_out_field_int (uiout, "bkptno", b->number);
8043 ui_out_text (uiout, "\n");
8044 if (ui_out_is_mi_like_p (uiout))
8045 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8046 print_solib_event (1);
8047 return PRINT_SRC_AND_LOC;
8048 }
8049
8050 static void
8051 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8052 {
8053 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8054 struct value_print_options opts;
8055 struct ui_out *uiout = current_uiout;
8056 char *msg;
8057
8058 get_user_print_options (&opts);
8059 /* Field 4, the address, is omitted (which makes the columns not
8060 line up too nicely with the headers, but the effect is relatively
8061 readable). */
8062 if (opts.addressprint)
8063 {
8064 annotate_field (4);
8065 ui_out_field_skip (uiout, "addr");
8066 }
8067
8068 annotate_field (5);
8069 if (self->is_load)
8070 {
8071 if (self->regex)
8072 msg = xstrprintf (_("load of library matching %s"), self->regex);
8073 else
8074 msg = xstrdup (_("load of library"));
8075 }
8076 else
8077 {
8078 if (self->regex)
8079 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8080 else
8081 msg = xstrdup (_("unload of library"));
8082 }
8083 ui_out_field_string (uiout, "what", msg);
8084 xfree (msg);
8085
8086 if (ui_out_is_mi_like_p (uiout))
8087 ui_out_field_string (uiout, "catch-type",
8088 self->is_load ? "load" : "unload");
8089 }
8090
8091 static void
8092 print_mention_catch_solib (struct breakpoint *b)
8093 {
8094 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8095
8096 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8097 self->is_load ? "load" : "unload");
8098 }
8099
8100 static void
8101 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8102 {
8103 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8104
8105 fprintf_unfiltered (fp, "%s %s",
8106 b->disposition == disp_del ? "tcatch" : "catch",
8107 self->is_load ? "load" : "unload");
8108 if (self->regex)
8109 fprintf_unfiltered (fp, " %s", self->regex);
8110 fprintf_unfiltered (fp, "\n");
8111 }
8112
8113 static struct breakpoint_ops catch_solib_breakpoint_ops;
8114
8115 /* Shared helper function (MI and CLI) for creating and installing
8116 a shared object event catchpoint. If IS_LOAD is non-zero then
8117 the events to be caught are load events, otherwise they are
8118 unload events. If IS_TEMP is non-zero the catchpoint is a
8119 temporary one. If ENABLED is non-zero the catchpoint is
8120 created in an enabled state. */
8121
8122 void
8123 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8124 {
8125 struct solib_catchpoint *c;
8126 struct gdbarch *gdbarch = get_current_arch ();
8127 struct cleanup *cleanup;
8128
8129 if (!arg)
8130 arg = "";
8131 arg = skip_spaces (arg);
8132
8133 c = XCNEW (struct solib_catchpoint);
8134 cleanup = make_cleanup (xfree, c);
8135
8136 if (*arg != '\0')
8137 {
8138 int errcode;
8139
8140 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8141 if (errcode != 0)
8142 {
8143 char *err = get_regcomp_error (errcode, &c->compiled);
8144
8145 make_cleanup (xfree, err);
8146 error (_("Invalid regexp (%s): %s"), err, arg);
8147 }
8148 c->regex = xstrdup (arg);
8149 }
8150
8151 c->is_load = is_load;
8152 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8153 &catch_solib_breakpoint_ops);
8154
8155 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8156
8157 discard_cleanups (cleanup);
8158 install_breakpoint (0, &c->base, 1);
8159 }
8160
8161 /* A helper function that does all the work for "catch load" and
8162 "catch unload". */
8163
8164 static void
8165 catch_load_or_unload (char *arg, int from_tty, int is_load,
8166 struct cmd_list_element *command)
8167 {
8168 int tempflag;
8169 const int enabled = 1;
8170
8171 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8172
8173 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8174 }
8175
8176 static void
8177 catch_load_command_1 (char *arg, int from_tty,
8178 struct cmd_list_element *command)
8179 {
8180 catch_load_or_unload (arg, from_tty, 1, command);
8181 }
8182
8183 static void
8184 catch_unload_command_1 (char *arg, int from_tty,
8185 struct cmd_list_element *command)
8186 {
8187 catch_load_or_unload (arg, from_tty, 0, command);
8188 }
8189
8190 /* An instance of this type is used to represent a syscall catchpoint.
8191 It includes a "struct breakpoint" as a kind of base class; users
8192 downcast to "struct breakpoint *" when needed. A breakpoint is
8193 really of this type iff its ops pointer points to
8194 CATCH_SYSCALL_BREAKPOINT_OPS. */
8195
8196 struct syscall_catchpoint
8197 {
8198 /* The base class. */
8199 struct breakpoint base;
8200
8201 /* Syscall numbers used for the 'catch syscall' feature. If no
8202 syscall has been specified for filtering, its value is NULL.
8203 Otherwise, it holds a list of all syscalls to be caught. The
8204 list elements are allocated with xmalloc. */
8205 VEC(int) *syscalls_to_be_caught;
8206 };
8207
8208 /* Implement the "dtor" breakpoint_ops method for syscall
8209 catchpoints. */
8210
8211 static void
8212 dtor_catch_syscall (struct breakpoint *b)
8213 {
8214 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8215
8216 VEC_free (int, c->syscalls_to_be_caught);
8217
8218 base_breakpoint_ops.dtor (b);
8219 }
8220
8221 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8222
8223 struct catch_syscall_inferior_data
8224 {
8225 /* We keep a count of the number of times the user has requested a
8226 particular syscall to be tracked, and pass this information to the
8227 target. This lets capable targets implement filtering directly. */
8228
8229 /* Number of times that "any" syscall is requested. */
8230 int any_syscall_count;
8231
8232 /* Count of each system call. */
8233 VEC(int) *syscalls_counts;
8234
8235 /* This counts all syscall catch requests, so we can readily determine
8236 if any catching is necessary. */
8237 int total_syscalls_count;
8238 };
8239
8240 static struct catch_syscall_inferior_data*
8241 get_catch_syscall_inferior_data (struct inferior *inf)
8242 {
8243 struct catch_syscall_inferior_data *inf_data;
8244
8245 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8246 if (inf_data == NULL)
8247 {
8248 inf_data = XCNEW (struct catch_syscall_inferior_data);
8249 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8250 }
8251
8252 return inf_data;
8253 }
8254
8255 static void
8256 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8257 {
8258 xfree (arg);
8259 }
8260
8261
8262 /* Implement the "insert" breakpoint_ops method for syscall
8263 catchpoints. */
8264
8265 static int
8266 insert_catch_syscall (struct bp_location *bl)
8267 {
8268 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8269 struct inferior *inf = current_inferior ();
8270 struct catch_syscall_inferior_data *inf_data
8271 = get_catch_syscall_inferior_data (inf);
8272
8273 ++inf_data->total_syscalls_count;
8274 if (!c->syscalls_to_be_caught)
8275 ++inf_data->any_syscall_count;
8276 else
8277 {
8278 int i, iter;
8279
8280 for (i = 0;
8281 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8282 i++)
8283 {
8284 int elem;
8285
8286 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8287 {
8288 int old_size = VEC_length (int, inf_data->syscalls_counts);
8289 uintptr_t vec_addr_offset
8290 = old_size * ((uintptr_t) sizeof (int));
8291 uintptr_t vec_addr;
8292 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8293 vec_addr = ((uintptr_t) VEC_address (int,
8294 inf_data->syscalls_counts)
8295 + vec_addr_offset);
8296 memset ((void *) vec_addr, 0,
8297 (iter + 1 - old_size) * sizeof (int));
8298 }
8299 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8300 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8301 }
8302 }
8303
8304 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8305 inf_data->total_syscalls_count != 0,
8306 inf_data->any_syscall_count,
8307 VEC_length (int,
8308 inf_data->syscalls_counts),
8309 VEC_address (int,
8310 inf_data->syscalls_counts));
8311 }
8312
8313 /* Implement the "remove" breakpoint_ops method for syscall
8314 catchpoints. */
8315
8316 static int
8317 remove_catch_syscall (struct bp_location *bl)
8318 {
8319 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8320 struct inferior *inf = current_inferior ();
8321 struct catch_syscall_inferior_data *inf_data
8322 = get_catch_syscall_inferior_data (inf);
8323
8324 --inf_data->total_syscalls_count;
8325 if (!c->syscalls_to_be_caught)
8326 --inf_data->any_syscall_count;
8327 else
8328 {
8329 int i, iter;
8330
8331 for (i = 0;
8332 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8333 i++)
8334 {
8335 int elem;
8336 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8337 /* Shouldn't happen. */
8338 continue;
8339 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8340 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8341 }
8342 }
8343
8344 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8345 inf_data->total_syscalls_count != 0,
8346 inf_data->any_syscall_count,
8347 VEC_length (int,
8348 inf_data->syscalls_counts),
8349 VEC_address (int,
8350 inf_data->syscalls_counts));
8351 }
8352
8353 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8354 catchpoints. */
8355
8356 static int
8357 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8358 struct address_space *aspace, CORE_ADDR bp_addr,
8359 const struct target_waitstatus *ws)
8360 {
8361 /* We must check if we are catching specific syscalls in this
8362 breakpoint. If we are, then we must guarantee that the called
8363 syscall is the same syscall we are catching. */
8364 int syscall_number = 0;
8365 const struct syscall_catchpoint *c
8366 = (const struct syscall_catchpoint *) bl->owner;
8367
8368 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8369 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8370 return 0;
8371
8372 syscall_number = ws->value.syscall_number;
8373
8374 /* Now, checking if the syscall is the same. */
8375 if (c->syscalls_to_be_caught)
8376 {
8377 int i, iter;
8378
8379 for (i = 0;
8380 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8381 i++)
8382 if (syscall_number == iter)
8383 return 1;
8384
8385 return 0;
8386 }
8387
8388 return 1;
8389 }
8390
8391 /* Implement the "print_it" breakpoint_ops method for syscall
8392 catchpoints. */
8393
8394 static enum print_stop_action
8395 print_it_catch_syscall (bpstat bs)
8396 {
8397 struct ui_out *uiout = current_uiout;
8398 struct breakpoint *b = bs->breakpoint_at;
8399 /* These are needed because we want to know in which state a
8400 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8401 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8402 must print "called syscall" or "returned from syscall". */
8403 ptid_t ptid;
8404 struct target_waitstatus last;
8405 struct syscall s;
8406
8407 get_last_target_status (&ptid, &last);
8408
8409 get_syscall_by_number (last.value.syscall_number, &s);
8410
8411 annotate_catchpoint (b->number);
8412
8413 if (b->disposition == disp_del)
8414 ui_out_text (uiout, "\nTemporary catchpoint ");
8415 else
8416 ui_out_text (uiout, "\nCatchpoint ");
8417 if (ui_out_is_mi_like_p (uiout))
8418 {
8419 ui_out_field_string (uiout, "reason",
8420 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8421 ? EXEC_ASYNC_SYSCALL_ENTRY
8422 : EXEC_ASYNC_SYSCALL_RETURN));
8423 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8424 }
8425 ui_out_field_int (uiout, "bkptno", b->number);
8426
8427 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8428 ui_out_text (uiout, " (call to syscall ");
8429 else
8430 ui_out_text (uiout, " (returned from syscall ");
8431
8432 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8433 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8434 if (s.name != NULL)
8435 ui_out_field_string (uiout, "syscall-name", s.name);
8436
8437 ui_out_text (uiout, "), ");
8438
8439 return PRINT_SRC_AND_LOC;
8440 }
8441
8442 /* Implement the "print_one" breakpoint_ops method for syscall
8443 catchpoints. */
8444
8445 static void
8446 print_one_catch_syscall (struct breakpoint *b,
8447 struct bp_location **last_loc)
8448 {
8449 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8450 struct value_print_options opts;
8451 struct ui_out *uiout = current_uiout;
8452
8453 get_user_print_options (&opts);
8454 /* Field 4, the address, is omitted (which makes the columns not
8455 line up too nicely with the headers, but the effect is relatively
8456 readable). */
8457 if (opts.addressprint)
8458 ui_out_field_skip (uiout, "addr");
8459 annotate_field (5);
8460
8461 if (c->syscalls_to_be_caught
8462 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8463 ui_out_text (uiout, "syscalls \"");
8464 else
8465 ui_out_text (uiout, "syscall \"");
8466
8467 if (c->syscalls_to_be_caught)
8468 {
8469 int i, iter;
8470 char *text = xstrprintf ("%s", "");
8471
8472 for (i = 0;
8473 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8474 i++)
8475 {
8476 char *x = text;
8477 struct syscall s;
8478 get_syscall_by_number (iter, &s);
8479
8480 if (s.name != NULL)
8481 text = xstrprintf ("%s%s, ", text, s.name);
8482 else
8483 text = xstrprintf ("%s%d, ", text, iter);
8484
8485 /* We have to xfree the last 'text' (now stored at 'x')
8486 because xstrprintf dynamically allocates new space for it
8487 on every call. */
8488 xfree (x);
8489 }
8490 /* Remove the last comma. */
8491 text[strlen (text) - 2] = '\0';
8492 ui_out_field_string (uiout, "what", text);
8493 }
8494 else
8495 ui_out_field_string (uiout, "what", "<any syscall>");
8496 ui_out_text (uiout, "\" ");
8497
8498 if (ui_out_is_mi_like_p (uiout))
8499 ui_out_field_string (uiout, "catch-type", "syscall");
8500 }
8501
8502 /* Implement the "print_mention" breakpoint_ops method for syscall
8503 catchpoints. */
8504
8505 static void
8506 print_mention_catch_syscall (struct breakpoint *b)
8507 {
8508 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8509
8510 if (c->syscalls_to_be_caught)
8511 {
8512 int i, iter;
8513
8514 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8515 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8516 else
8517 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8518
8519 for (i = 0;
8520 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8521 i++)
8522 {
8523 struct syscall s;
8524 get_syscall_by_number (iter, &s);
8525
8526 if (s.name)
8527 printf_filtered (" '%s' [%d]", s.name, s.number);
8528 else
8529 printf_filtered (" %d", s.number);
8530 }
8531 printf_filtered (")");
8532 }
8533 else
8534 printf_filtered (_("Catchpoint %d (any syscall)"),
8535 b->number);
8536 }
8537
8538 /* Implement the "print_recreate" breakpoint_ops method for syscall
8539 catchpoints. */
8540
8541 static void
8542 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8543 {
8544 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8545
8546 fprintf_unfiltered (fp, "catch syscall");
8547
8548 if (c->syscalls_to_be_caught)
8549 {
8550 int i, iter;
8551
8552 for (i = 0;
8553 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8554 i++)
8555 {
8556 struct syscall s;
8557
8558 get_syscall_by_number (iter, &s);
8559 if (s.name)
8560 fprintf_unfiltered (fp, " %s", s.name);
8561 else
8562 fprintf_unfiltered (fp, " %d", s.number);
8563 }
8564 }
8565 print_recreate_thread (b, fp);
8566 }
8567
8568 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8569
8570 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8571
8572 /* Returns non-zero if 'b' is a syscall catchpoint. */
8573
8574 static int
8575 syscall_catchpoint_p (struct breakpoint *b)
8576 {
8577 return (b->ops == &catch_syscall_breakpoint_ops);
8578 }
8579
8580 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8581 is non-zero, then make the breakpoint temporary. If COND_STRING is
8582 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8583 the breakpoint_ops structure associated to the catchpoint. */
8584
8585 void
8586 init_catchpoint (struct breakpoint *b,
8587 struct gdbarch *gdbarch, int tempflag,
8588 char *cond_string,
8589 const struct breakpoint_ops *ops)
8590 {
8591 struct symtab_and_line sal;
8592
8593 init_sal (&sal);
8594 sal.pspace = current_program_space;
8595
8596 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8597
8598 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8599 b->disposition = tempflag ? disp_del : disp_donttouch;
8600 }
8601
8602 void
8603 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8604 {
8605 add_to_breakpoint_chain (b);
8606 set_breakpoint_number (internal, b);
8607 if (is_tracepoint (b))
8608 set_tracepoint_count (breakpoint_count);
8609 if (!internal)
8610 mention (b);
8611 observer_notify_breakpoint_created (b);
8612
8613 if (update_gll)
8614 update_global_location_list (1);
8615 }
8616
8617 static void
8618 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8619 int tempflag, char *cond_string,
8620 const struct breakpoint_ops *ops)
8621 {
8622 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8623
8624 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8625
8626 c->forked_inferior_pid = null_ptid;
8627
8628 install_breakpoint (0, &c->base, 1);
8629 }
8630
8631 /* Exec catchpoints. */
8632
8633 /* An instance of this type is used to represent an exec catchpoint.
8634 It includes a "struct breakpoint" as a kind of base class; users
8635 downcast to "struct breakpoint *" when needed. A breakpoint is
8636 really of this type iff its ops pointer points to
8637 CATCH_EXEC_BREAKPOINT_OPS. */
8638
8639 struct exec_catchpoint
8640 {
8641 /* The base class. */
8642 struct breakpoint base;
8643
8644 /* Filename of a program whose exec triggered this catchpoint.
8645 This field is only valid immediately after this catchpoint has
8646 triggered. */
8647 char *exec_pathname;
8648 };
8649
8650 /* Implement the "dtor" breakpoint_ops method for exec
8651 catchpoints. */
8652
8653 static void
8654 dtor_catch_exec (struct breakpoint *b)
8655 {
8656 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8657
8658 xfree (c->exec_pathname);
8659
8660 base_breakpoint_ops.dtor (b);
8661 }
8662
8663 static int
8664 insert_catch_exec (struct bp_location *bl)
8665 {
8666 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8667 }
8668
8669 static int
8670 remove_catch_exec (struct bp_location *bl)
8671 {
8672 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8673 }
8674
8675 static int
8676 breakpoint_hit_catch_exec (const struct bp_location *bl,
8677 struct address_space *aspace, CORE_ADDR bp_addr,
8678 const struct target_waitstatus *ws)
8679 {
8680 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8681
8682 if (ws->kind != TARGET_WAITKIND_EXECD)
8683 return 0;
8684
8685 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8686 return 1;
8687 }
8688
8689 static enum print_stop_action
8690 print_it_catch_exec (bpstat bs)
8691 {
8692 struct ui_out *uiout = current_uiout;
8693 struct breakpoint *b = bs->breakpoint_at;
8694 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8695
8696 annotate_catchpoint (b->number);
8697 if (b->disposition == disp_del)
8698 ui_out_text (uiout, "\nTemporary catchpoint ");
8699 else
8700 ui_out_text (uiout, "\nCatchpoint ");
8701 if (ui_out_is_mi_like_p (uiout))
8702 {
8703 ui_out_field_string (uiout, "reason",
8704 async_reason_lookup (EXEC_ASYNC_EXEC));
8705 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8706 }
8707 ui_out_field_int (uiout, "bkptno", b->number);
8708 ui_out_text (uiout, " (exec'd ");
8709 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8710 ui_out_text (uiout, "), ");
8711
8712 return PRINT_SRC_AND_LOC;
8713 }
8714
8715 static void
8716 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8717 {
8718 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8719 struct value_print_options opts;
8720 struct ui_out *uiout = current_uiout;
8721
8722 get_user_print_options (&opts);
8723
8724 /* Field 4, the address, is omitted (which makes the columns
8725 not line up too nicely with the headers, but the effect
8726 is relatively readable). */
8727 if (opts.addressprint)
8728 ui_out_field_skip (uiout, "addr");
8729 annotate_field (5);
8730 ui_out_text (uiout, "exec");
8731 if (c->exec_pathname != NULL)
8732 {
8733 ui_out_text (uiout, ", program \"");
8734 ui_out_field_string (uiout, "what", c->exec_pathname);
8735 ui_out_text (uiout, "\" ");
8736 }
8737
8738 if (ui_out_is_mi_like_p (uiout))
8739 ui_out_field_string (uiout, "catch-type", "exec");
8740 }
8741
8742 static void
8743 print_mention_catch_exec (struct breakpoint *b)
8744 {
8745 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8746 }
8747
8748 /* Implement the "print_recreate" breakpoint_ops method for exec
8749 catchpoints. */
8750
8751 static void
8752 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8753 {
8754 fprintf_unfiltered (fp, "catch exec");
8755 print_recreate_thread (b, fp);
8756 }
8757
8758 static struct breakpoint_ops catch_exec_breakpoint_ops;
8759
8760 static void
8761 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8762 const struct breakpoint_ops *ops)
8763 {
8764 struct syscall_catchpoint *c;
8765 struct gdbarch *gdbarch = get_current_arch ();
8766
8767 c = XNEW (struct syscall_catchpoint);
8768 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8769 c->syscalls_to_be_caught = filter;
8770
8771 install_breakpoint (0, &c->base, 1);
8772 }
8773
8774 static int
8775 hw_breakpoint_used_count (void)
8776 {
8777 int i = 0;
8778 struct breakpoint *b;
8779 struct bp_location *bl;
8780
8781 ALL_BREAKPOINTS (b)
8782 {
8783 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8784 for (bl = b->loc; bl; bl = bl->next)
8785 {
8786 /* Special types of hardware breakpoints may use more than
8787 one register. */
8788 i += b->ops->resources_needed (bl);
8789 }
8790 }
8791
8792 return i;
8793 }
8794
8795 /* Returns the resources B would use if it were a hardware
8796 watchpoint. */
8797
8798 static int
8799 hw_watchpoint_use_count (struct breakpoint *b)
8800 {
8801 int i = 0;
8802 struct bp_location *bl;
8803
8804 if (!breakpoint_enabled (b))
8805 return 0;
8806
8807 for (bl = b->loc; bl; bl = bl->next)
8808 {
8809 /* Special types of hardware watchpoints may use more than
8810 one register. */
8811 i += b->ops->resources_needed (bl);
8812 }
8813
8814 return i;
8815 }
8816
8817 /* Returns the sum the used resources of all hardware watchpoints of
8818 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8819 the sum of the used resources of all hardware watchpoints of other
8820 types _not_ TYPE. */
8821
8822 static int
8823 hw_watchpoint_used_count_others (struct breakpoint *except,
8824 enum bptype type, int *other_type_used)
8825 {
8826 int i = 0;
8827 struct breakpoint *b;
8828
8829 *other_type_used = 0;
8830 ALL_BREAKPOINTS (b)
8831 {
8832 if (b == except)
8833 continue;
8834 if (!breakpoint_enabled (b))
8835 continue;
8836
8837 if (b->type == type)
8838 i += hw_watchpoint_use_count (b);
8839 else if (is_hardware_watchpoint (b))
8840 *other_type_used = 1;
8841 }
8842
8843 return i;
8844 }
8845
8846 void
8847 disable_watchpoints_before_interactive_call_start (void)
8848 {
8849 struct breakpoint *b;
8850
8851 ALL_BREAKPOINTS (b)
8852 {
8853 if (is_watchpoint (b) && breakpoint_enabled (b))
8854 {
8855 b->enable_state = bp_call_disabled;
8856 update_global_location_list (0);
8857 }
8858 }
8859 }
8860
8861 void
8862 enable_watchpoints_after_interactive_call_stop (void)
8863 {
8864 struct breakpoint *b;
8865
8866 ALL_BREAKPOINTS (b)
8867 {
8868 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8869 {
8870 b->enable_state = bp_enabled;
8871 update_global_location_list (1);
8872 }
8873 }
8874 }
8875
8876 void
8877 disable_breakpoints_before_startup (void)
8878 {
8879 current_program_space->executing_startup = 1;
8880 update_global_location_list (0);
8881 }
8882
8883 void
8884 enable_breakpoints_after_startup (void)
8885 {
8886 current_program_space->executing_startup = 0;
8887 breakpoint_re_set ();
8888 }
8889
8890
8891 /* Set a breakpoint that will evaporate an end of command
8892 at address specified by SAL.
8893 Restrict it to frame FRAME if FRAME is nonzero. */
8894
8895 struct breakpoint *
8896 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8897 struct frame_id frame_id, enum bptype type)
8898 {
8899 struct breakpoint *b;
8900
8901 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8902 tail-called one. */
8903 gdb_assert (!frame_id_artificial_p (frame_id));
8904
8905 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8906 b->enable_state = bp_enabled;
8907 b->disposition = disp_donttouch;
8908 b->frame_id = frame_id;
8909
8910 /* If we're debugging a multi-threaded program, then we want
8911 momentary breakpoints to be active in only a single thread of
8912 control. */
8913 if (in_thread_list (inferior_ptid))
8914 b->thread = pid_to_thread_id (inferior_ptid);
8915
8916 update_global_location_list_nothrow (1);
8917
8918 return b;
8919 }
8920
8921 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8922 The new breakpoint will have type TYPE, and use OPS as it
8923 breakpoint_ops. */
8924
8925 static struct breakpoint *
8926 momentary_breakpoint_from_master (struct breakpoint *orig,
8927 enum bptype type,
8928 const struct breakpoint_ops *ops)
8929 {
8930 struct breakpoint *copy;
8931
8932 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8933 copy->loc = allocate_bp_location (copy);
8934 set_breakpoint_location_function (copy->loc, 1);
8935
8936 copy->loc->gdbarch = orig->loc->gdbarch;
8937 copy->loc->requested_address = orig->loc->requested_address;
8938 copy->loc->address = orig->loc->address;
8939 copy->loc->section = orig->loc->section;
8940 copy->loc->pspace = orig->loc->pspace;
8941 copy->loc->probe = orig->loc->probe;
8942 copy->loc->line_number = orig->loc->line_number;
8943 copy->loc->symtab = orig->loc->symtab;
8944 copy->frame_id = orig->frame_id;
8945 copy->thread = orig->thread;
8946 copy->pspace = orig->pspace;
8947
8948 copy->enable_state = bp_enabled;
8949 copy->disposition = disp_donttouch;
8950 copy->number = internal_breakpoint_number--;
8951
8952 update_global_location_list_nothrow (0);
8953 return copy;
8954 }
8955
8956 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8957 ORIG is NULL. */
8958
8959 struct breakpoint *
8960 clone_momentary_breakpoint (struct breakpoint *orig)
8961 {
8962 /* If there's nothing to clone, then return nothing. */
8963 if (orig == NULL)
8964 return NULL;
8965
8966 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8967 }
8968
8969 struct breakpoint *
8970 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8971 enum bptype type)
8972 {
8973 struct symtab_and_line sal;
8974
8975 sal = find_pc_line (pc, 0);
8976 sal.pc = pc;
8977 sal.section = find_pc_overlay (pc);
8978 sal.explicit_pc = 1;
8979
8980 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8981 }
8982 \f
8983
8984 /* Tell the user we have just set a breakpoint B. */
8985
8986 static void
8987 mention (struct breakpoint *b)
8988 {
8989 b->ops->print_mention (b);
8990 if (ui_out_is_mi_like_p (current_uiout))
8991 return;
8992 printf_filtered ("\n");
8993 }
8994 \f
8995
8996 static struct bp_location *
8997 add_location_to_breakpoint (struct breakpoint *b,
8998 const struct symtab_and_line *sal)
8999 {
9000 struct bp_location *loc, **tmp;
9001 CORE_ADDR adjusted_address;
9002 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9003
9004 if (loc_gdbarch == NULL)
9005 loc_gdbarch = b->gdbarch;
9006
9007 /* Adjust the breakpoint's address prior to allocating a location.
9008 Once we call allocate_bp_location(), that mostly uninitialized
9009 location will be placed on the location chain. Adjustment of the
9010 breakpoint may cause target_read_memory() to be called and we do
9011 not want its scan of the location chain to find a breakpoint and
9012 location that's only been partially initialized. */
9013 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9014 sal->pc, b->type);
9015
9016 /* Sort the locations by their ADDRESS. */
9017 loc = allocate_bp_location (b);
9018 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9019 tmp = &((*tmp)->next))
9020 ;
9021 loc->next = *tmp;
9022 *tmp = loc;
9023
9024 loc->requested_address = sal->pc;
9025 loc->address = adjusted_address;
9026 loc->pspace = sal->pspace;
9027 loc->probe.probe = sal->probe;
9028 loc->probe.objfile = sal->objfile;
9029 gdb_assert (loc->pspace != NULL);
9030 loc->section = sal->section;
9031 loc->gdbarch = loc_gdbarch;
9032 loc->line_number = sal->line;
9033 loc->symtab = sal->symtab;
9034
9035 set_breakpoint_location_function (loc,
9036 sal->explicit_pc || sal->explicit_line);
9037 return loc;
9038 }
9039 \f
9040
9041 /* Return 1 if LOC is pointing to a permanent breakpoint,
9042 return 0 otherwise. */
9043
9044 static int
9045 bp_loc_is_permanent (struct bp_location *loc)
9046 {
9047 int len;
9048 CORE_ADDR addr;
9049 const gdb_byte *bpoint;
9050 gdb_byte *target_mem;
9051 struct cleanup *cleanup;
9052 int retval = 0;
9053
9054 gdb_assert (loc != NULL);
9055
9056 addr = loc->address;
9057 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9058
9059 /* Software breakpoints unsupported? */
9060 if (bpoint == NULL)
9061 return 0;
9062
9063 target_mem = alloca (len);
9064
9065 /* Enable the automatic memory restoration from breakpoints while
9066 we read the memory. Otherwise we could say about our temporary
9067 breakpoints they are permanent. */
9068 cleanup = save_current_space_and_thread ();
9069
9070 switch_to_program_space_and_thread (loc->pspace);
9071 make_show_memory_breakpoints_cleanup (0);
9072
9073 if (target_read_memory (loc->address, target_mem, len) == 0
9074 && memcmp (target_mem, bpoint, len) == 0)
9075 retval = 1;
9076
9077 do_cleanups (cleanup);
9078
9079 return retval;
9080 }
9081
9082 /* Build a command list for the dprintf corresponding to the current
9083 settings of the dprintf style options. */
9084
9085 static void
9086 update_dprintf_command_list (struct breakpoint *b)
9087 {
9088 char *dprintf_args = b->extra_string;
9089 char *printf_line = NULL;
9090
9091 if (!dprintf_args)
9092 return;
9093
9094 dprintf_args = skip_spaces (dprintf_args);
9095
9096 /* Allow a comma, as it may have terminated a location, but don't
9097 insist on it. */
9098 if (*dprintf_args == ',')
9099 ++dprintf_args;
9100 dprintf_args = skip_spaces (dprintf_args);
9101
9102 if (*dprintf_args != '"')
9103 error (_("Bad format string, missing '\"'."));
9104
9105 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9106 printf_line = xstrprintf ("printf %s", dprintf_args);
9107 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9108 {
9109 if (!dprintf_function)
9110 error (_("No function supplied for dprintf call"));
9111
9112 if (dprintf_channel && strlen (dprintf_channel) > 0)
9113 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9114 dprintf_function,
9115 dprintf_channel,
9116 dprintf_args);
9117 else
9118 printf_line = xstrprintf ("call (void) %s (%s)",
9119 dprintf_function,
9120 dprintf_args);
9121 }
9122 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9123 {
9124 if (target_can_run_breakpoint_commands ())
9125 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9126 else
9127 {
9128 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9129 printf_line = xstrprintf ("printf %s", dprintf_args);
9130 }
9131 }
9132 else
9133 internal_error (__FILE__, __LINE__,
9134 _("Invalid dprintf style."));
9135
9136 gdb_assert (printf_line != NULL);
9137 /* Manufacture a printf sequence. */
9138 {
9139 struct command_line *printf_cmd_line
9140 = xmalloc (sizeof (struct command_line));
9141
9142 printf_cmd_line = xmalloc (sizeof (struct command_line));
9143 printf_cmd_line->control_type = simple_control;
9144 printf_cmd_line->body_count = 0;
9145 printf_cmd_line->body_list = NULL;
9146 printf_cmd_line->next = NULL;
9147 printf_cmd_line->line = printf_line;
9148
9149 breakpoint_set_commands (b, printf_cmd_line);
9150 }
9151 }
9152
9153 /* Update all dprintf commands, making their command lists reflect
9154 current style settings. */
9155
9156 static void
9157 update_dprintf_commands (char *args, int from_tty,
9158 struct cmd_list_element *c)
9159 {
9160 struct breakpoint *b;
9161
9162 ALL_BREAKPOINTS (b)
9163 {
9164 if (b->type == bp_dprintf)
9165 update_dprintf_command_list (b);
9166 }
9167 }
9168
9169 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9170 as textual description of the location, and COND_STRING
9171 as condition expression. */
9172
9173 static void
9174 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9175 struct symtabs_and_lines sals, char *addr_string,
9176 char *filter, char *cond_string,
9177 char *extra_string,
9178 enum bptype type, enum bpdisp disposition,
9179 int thread, int task, int ignore_count,
9180 const struct breakpoint_ops *ops, int from_tty,
9181 int enabled, int internal, unsigned flags,
9182 int display_canonical)
9183 {
9184 int i;
9185
9186 if (type == bp_hardware_breakpoint)
9187 {
9188 int target_resources_ok;
9189
9190 i = hw_breakpoint_used_count ();
9191 target_resources_ok =
9192 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9193 i + 1, 0);
9194 if (target_resources_ok == 0)
9195 error (_("No hardware breakpoint support in the target."));
9196 else if (target_resources_ok < 0)
9197 error (_("Hardware breakpoints used exceeds limit."));
9198 }
9199
9200 gdb_assert (sals.nelts > 0);
9201
9202 for (i = 0; i < sals.nelts; ++i)
9203 {
9204 struct symtab_and_line sal = sals.sals[i];
9205 struct bp_location *loc;
9206
9207 if (from_tty)
9208 {
9209 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9210 if (!loc_gdbarch)
9211 loc_gdbarch = gdbarch;
9212
9213 describe_other_breakpoints (loc_gdbarch,
9214 sal.pspace, sal.pc, sal.section, thread);
9215 }
9216
9217 if (i == 0)
9218 {
9219 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9220 b->thread = thread;
9221 b->task = task;
9222
9223 b->cond_string = cond_string;
9224 b->extra_string = extra_string;
9225 b->ignore_count = ignore_count;
9226 b->enable_state = enabled ? bp_enabled : bp_disabled;
9227 b->disposition = disposition;
9228
9229 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9230 b->loc->inserted = 1;
9231
9232 if (type == bp_static_tracepoint)
9233 {
9234 struct tracepoint *t = (struct tracepoint *) b;
9235 struct static_tracepoint_marker marker;
9236
9237 if (strace_marker_p (b))
9238 {
9239 /* We already know the marker exists, otherwise, we
9240 wouldn't see a sal for it. */
9241 char *p = &addr_string[3];
9242 char *endp;
9243 char *marker_str;
9244
9245 p = skip_spaces (p);
9246
9247 endp = skip_to_space (p);
9248
9249 marker_str = savestring (p, endp - p);
9250 t->static_trace_marker_id = marker_str;
9251
9252 printf_filtered (_("Probed static tracepoint "
9253 "marker \"%s\"\n"),
9254 t->static_trace_marker_id);
9255 }
9256 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9257 {
9258 t->static_trace_marker_id = xstrdup (marker.str_id);
9259 release_static_tracepoint_marker (&marker);
9260
9261 printf_filtered (_("Probed static tracepoint "
9262 "marker \"%s\"\n"),
9263 t->static_trace_marker_id);
9264 }
9265 else
9266 warning (_("Couldn't determine the static "
9267 "tracepoint marker to probe"));
9268 }
9269
9270 loc = b->loc;
9271 }
9272 else
9273 {
9274 loc = add_location_to_breakpoint (b, &sal);
9275 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9276 loc->inserted = 1;
9277 }
9278
9279 if (bp_loc_is_permanent (loc))
9280 make_breakpoint_permanent (b);
9281
9282 if (b->cond_string)
9283 {
9284 const char *arg = b->cond_string;
9285
9286 loc->cond = parse_exp_1 (&arg, loc->address,
9287 block_for_pc (loc->address), 0);
9288 if (*arg)
9289 error (_("Garbage '%s' follows condition"), arg);
9290 }
9291
9292 /* Dynamic printf requires and uses additional arguments on the
9293 command line, otherwise it's an error. */
9294 if (type == bp_dprintf)
9295 {
9296 if (b->extra_string)
9297 update_dprintf_command_list (b);
9298 else
9299 error (_("Format string required"));
9300 }
9301 else if (b->extra_string)
9302 error (_("Garbage '%s' at end of command"), b->extra_string);
9303 }
9304
9305 b->display_canonical = display_canonical;
9306 if (addr_string)
9307 b->addr_string = addr_string;
9308 else
9309 /* addr_string has to be used or breakpoint_re_set will delete
9310 me. */
9311 b->addr_string
9312 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9313 b->filter = filter;
9314 }
9315
9316 static void
9317 create_breakpoint_sal (struct gdbarch *gdbarch,
9318 struct symtabs_and_lines sals, char *addr_string,
9319 char *filter, char *cond_string,
9320 char *extra_string,
9321 enum bptype type, enum bpdisp disposition,
9322 int thread, int task, int ignore_count,
9323 const struct breakpoint_ops *ops, int from_tty,
9324 int enabled, int internal, unsigned flags,
9325 int display_canonical)
9326 {
9327 struct breakpoint *b;
9328 struct cleanup *old_chain;
9329
9330 if (is_tracepoint_type (type))
9331 {
9332 struct tracepoint *t;
9333
9334 t = XCNEW (struct tracepoint);
9335 b = &t->base;
9336 }
9337 else
9338 b = XNEW (struct breakpoint);
9339
9340 old_chain = make_cleanup (xfree, b);
9341
9342 init_breakpoint_sal (b, gdbarch,
9343 sals, addr_string,
9344 filter, cond_string, extra_string,
9345 type, disposition,
9346 thread, task, ignore_count,
9347 ops, from_tty,
9348 enabled, internal, flags,
9349 display_canonical);
9350 discard_cleanups (old_chain);
9351
9352 install_breakpoint (internal, b, 0);
9353 }
9354
9355 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9356 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9357 value. COND_STRING, if not NULL, specified the condition to be
9358 used for all breakpoints. Essentially the only case where
9359 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9360 function. In that case, it's still not possible to specify
9361 separate conditions for different overloaded functions, so
9362 we take just a single condition string.
9363
9364 NOTE: If the function succeeds, the caller is expected to cleanup
9365 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9366 array contents). If the function fails (error() is called), the
9367 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9368 COND and SALS arrays and each of those arrays contents. */
9369
9370 static void
9371 create_breakpoints_sal (struct gdbarch *gdbarch,
9372 struct linespec_result *canonical,
9373 char *cond_string, char *extra_string,
9374 enum bptype type, enum bpdisp disposition,
9375 int thread, int task, int ignore_count,
9376 const struct breakpoint_ops *ops, int from_tty,
9377 int enabled, int internal, unsigned flags)
9378 {
9379 int i;
9380 struct linespec_sals *lsal;
9381
9382 if (canonical->pre_expanded)
9383 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9384
9385 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9386 {
9387 /* Note that 'addr_string' can be NULL in the case of a plain
9388 'break', without arguments. */
9389 char *addr_string = (canonical->addr_string
9390 ? xstrdup (canonical->addr_string)
9391 : NULL);
9392 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9393 struct cleanup *inner = make_cleanup (xfree, addr_string);
9394
9395 make_cleanup (xfree, filter_string);
9396 create_breakpoint_sal (gdbarch, lsal->sals,
9397 addr_string,
9398 filter_string,
9399 cond_string, extra_string,
9400 type, disposition,
9401 thread, task, ignore_count, ops,
9402 from_tty, enabled, internal, flags,
9403 canonical->special_display);
9404 discard_cleanups (inner);
9405 }
9406 }
9407
9408 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9409 followed by conditionals. On return, SALS contains an array of SAL
9410 addresses found. ADDR_STRING contains a vector of (canonical)
9411 address strings. ADDRESS points to the end of the SAL.
9412
9413 The array and the line spec strings are allocated on the heap, it is
9414 the caller's responsibility to free them. */
9415
9416 static void
9417 parse_breakpoint_sals (char **address,
9418 struct linespec_result *canonical)
9419 {
9420 /* If no arg given, or if first arg is 'if ', use the default
9421 breakpoint. */
9422 if ((*address) == NULL
9423 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9424 {
9425 /* The last displayed codepoint, if it's valid, is our default breakpoint
9426 address. */
9427 if (last_displayed_sal_is_valid ())
9428 {
9429 struct linespec_sals lsal;
9430 struct symtab_and_line sal;
9431 CORE_ADDR pc;
9432
9433 init_sal (&sal); /* Initialize to zeroes. */
9434 lsal.sals.sals = (struct symtab_and_line *)
9435 xmalloc (sizeof (struct symtab_and_line));
9436
9437 /* Set sal's pspace, pc, symtab, and line to the values
9438 corresponding to the last call to print_frame_info.
9439 Be sure to reinitialize LINE with NOTCURRENT == 0
9440 as the breakpoint line number is inappropriate otherwise.
9441 find_pc_line would adjust PC, re-set it back. */
9442 get_last_displayed_sal (&sal);
9443 pc = sal.pc;
9444 sal = find_pc_line (pc, 0);
9445
9446 /* "break" without arguments is equivalent to "break *PC"
9447 where PC is the last displayed codepoint's address. So
9448 make sure to set sal.explicit_pc to prevent GDB from
9449 trying to expand the list of sals to include all other
9450 instances with the same symtab and line. */
9451 sal.pc = pc;
9452 sal.explicit_pc = 1;
9453
9454 lsal.sals.sals[0] = sal;
9455 lsal.sals.nelts = 1;
9456 lsal.canonical = NULL;
9457
9458 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9459 }
9460 else
9461 error (_("No default breakpoint address now."));
9462 }
9463 else
9464 {
9465 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9466
9467 /* Force almost all breakpoints to be in terms of the
9468 current_source_symtab (which is decode_line_1's default).
9469 This should produce the results we want almost all of the
9470 time while leaving default_breakpoint_* alone.
9471
9472 ObjC: However, don't match an Objective-C method name which
9473 may have a '+' or '-' succeeded by a '['. */
9474 if (last_displayed_sal_is_valid ()
9475 && (!cursal.symtab
9476 || ((strchr ("+-", (*address)[0]) != NULL)
9477 && ((*address)[1] != '['))))
9478 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9479 get_last_displayed_symtab (),
9480 get_last_displayed_line (),
9481 canonical, NULL, NULL);
9482 else
9483 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9484 cursal.symtab, cursal.line, canonical, NULL, NULL);
9485 }
9486 }
9487
9488
9489 /* Convert each SAL into a real PC. Verify that the PC can be
9490 inserted as a breakpoint. If it can't throw an error. */
9491
9492 static void
9493 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9494 {
9495 int i;
9496
9497 for (i = 0; i < sals->nelts; i++)
9498 resolve_sal_pc (&sals->sals[i]);
9499 }
9500
9501 /* Fast tracepoints may have restrictions on valid locations. For
9502 instance, a fast tracepoint using a jump instead of a trap will
9503 likely have to overwrite more bytes than a trap would, and so can
9504 only be placed where the instruction is longer than the jump, or a
9505 multi-instruction sequence does not have a jump into the middle of
9506 it, etc. */
9507
9508 static void
9509 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9510 struct symtabs_and_lines *sals)
9511 {
9512 int i, rslt;
9513 struct symtab_and_line *sal;
9514 char *msg;
9515 struct cleanup *old_chain;
9516
9517 for (i = 0; i < sals->nelts; i++)
9518 {
9519 struct gdbarch *sarch;
9520
9521 sal = &sals->sals[i];
9522
9523 sarch = get_sal_arch (*sal);
9524 /* We fall back to GDBARCH if there is no architecture
9525 associated with SAL. */
9526 if (sarch == NULL)
9527 sarch = gdbarch;
9528 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9529 NULL, &msg);
9530 old_chain = make_cleanup (xfree, msg);
9531
9532 if (!rslt)
9533 error (_("May not have a fast tracepoint at 0x%s%s"),
9534 paddress (sarch, sal->pc), (msg ? msg : ""));
9535
9536 do_cleanups (old_chain);
9537 }
9538 }
9539
9540 /* Issue an invalid thread ID error. */
9541
9542 static void ATTRIBUTE_NORETURN
9543 invalid_thread_id_error (int id)
9544 {
9545 error (_("Unknown thread %d."), id);
9546 }
9547
9548 /* Given TOK, a string specification of condition and thread, as
9549 accepted by the 'break' command, extract the condition
9550 string and thread number and set *COND_STRING and *THREAD.
9551 PC identifies the context at which the condition should be parsed.
9552 If no condition is found, *COND_STRING is set to NULL.
9553 If no thread is found, *THREAD is set to -1. */
9554
9555 static void
9556 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9557 char **cond_string, int *thread, int *task,
9558 char **rest)
9559 {
9560 *cond_string = NULL;
9561 *thread = -1;
9562 *task = 0;
9563 *rest = NULL;
9564
9565 while (tok && *tok)
9566 {
9567 const char *end_tok;
9568 int toklen;
9569 const char *cond_start = NULL;
9570 const char *cond_end = NULL;
9571
9572 tok = skip_spaces_const (tok);
9573
9574 if ((*tok == '"' || *tok == ',') && rest)
9575 {
9576 *rest = savestring (tok, strlen (tok));
9577 return;
9578 }
9579
9580 end_tok = skip_to_space_const (tok);
9581
9582 toklen = end_tok - tok;
9583
9584 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9585 {
9586 struct expression *expr;
9587
9588 tok = cond_start = end_tok + 1;
9589 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9590 xfree (expr);
9591 cond_end = tok;
9592 *cond_string = savestring (cond_start, cond_end - cond_start);
9593 }
9594 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9595 {
9596 char *tmptok;
9597
9598 tok = end_tok + 1;
9599 *thread = strtol (tok, &tmptok, 0);
9600 if (tok == tmptok)
9601 error (_("Junk after thread keyword."));
9602 if (!valid_thread_id (*thread))
9603 invalid_thread_id_error (*thread);
9604 tok = tmptok;
9605 }
9606 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9607 {
9608 char *tmptok;
9609
9610 tok = end_tok + 1;
9611 *task = strtol (tok, &tmptok, 0);
9612 if (tok == tmptok)
9613 error (_("Junk after task keyword."));
9614 if (!valid_task_id (*task))
9615 error (_("Unknown task %d."), *task);
9616 tok = tmptok;
9617 }
9618 else if (rest)
9619 {
9620 *rest = savestring (tok, strlen (tok));
9621 return;
9622 }
9623 else
9624 error (_("Junk at end of arguments."));
9625 }
9626 }
9627
9628 /* Decode a static tracepoint marker spec. */
9629
9630 static struct symtabs_and_lines
9631 decode_static_tracepoint_spec (char **arg_p)
9632 {
9633 VEC(static_tracepoint_marker_p) *markers = NULL;
9634 struct symtabs_and_lines sals;
9635 struct cleanup *old_chain;
9636 char *p = &(*arg_p)[3];
9637 char *endp;
9638 char *marker_str;
9639 int i;
9640
9641 p = skip_spaces (p);
9642
9643 endp = skip_to_space (p);
9644
9645 marker_str = savestring (p, endp - p);
9646 old_chain = make_cleanup (xfree, marker_str);
9647
9648 markers = target_static_tracepoint_markers_by_strid (marker_str);
9649 if (VEC_empty(static_tracepoint_marker_p, markers))
9650 error (_("No known static tracepoint marker named %s"), marker_str);
9651
9652 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9653 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9654
9655 for (i = 0; i < sals.nelts; i++)
9656 {
9657 struct static_tracepoint_marker *marker;
9658
9659 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9660
9661 init_sal (&sals.sals[i]);
9662
9663 sals.sals[i] = find_pc_line (marker->address, 0);
9664 sals.sals[i].pc = marker->address;
9665
9666 release_static_tracepoint_marker (marker);
9667 }
9668
9669 do_cleanups (old_chain);
9670
9671 *arg_p = endp;
9672 return sals;
9673 }
9674
9675 /* Set a breakpoint. This function is shared between CLI and MI
9676 functions for setting a breakpoint. This function has two major
9677 modes of operations, selected by the PARSE_ARG parameter. If
9678 non-zero, the function will parse ARG, extracting location,
9679 condition, thread and extra string. Otherwise, ARG is just the
9680 breakpoint's location, with condition, thread, and extra string
9681 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9682 If INTERNAL is non-zero, the breakpoint number will be allocated
9683 from the internal breakpoint count. Returns true if any breakpoint
9684 was created; false otherwise. */
9685
9686 int
9687 create_breakpoint (struct gdbarch *gdbarch,
9688 char *arg, char *cond_string,
9689 int thread, char *extra_string,
9690 int parse_arg,
9691 int tempflag, enum bptype type_wanted,
9692 int ignore_count,
9693 enum auto_boolean pending_break_support,
9694 const struct breakpoint_ops *ops,
9695 int from_tty, int enabled, int internal,
9696 unsigned flags)
9697 {
9698 volatile struct gdb_exception e;
9699 char *copy_arg = NULL;
9700 char *addr_start = arg;
9701 struct linespec_result canonical;
9702 struct cleanup *old_chain;
9703 struct cleanup *bkpt_chain = NULL;
9704 int pending = 0;
9705 int task = 0;
9706 int prev_bkpt_count = breakpoint_count;
9707
9708 gdb_assert (ops != NULL);
9709
9710 init_linespec_result (&canonical);
9711
9712 TRY_CATCH (e, RETURN_MASK_ALL)
9713 {
9714 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9715 addr_start, &copy_arg);
9716 }
9717
9718 /* If caller is interested in rc value from parse, set value. */
9719 switch (e.reason)
9720 {
9721 case GDB_NO_ERROR:
9722 if (VEC_empty (linespec_sals, canonical.sals))
9723 return 0;
9724 break;
9725 case RETURN_ERROR:
9726 switch (e.error)
9727 {
9728 case NOT_FOUND_ERROR:
9729
9730 /* If pending breakpoint support is turned off, throw
9731 error. */
9732
9733 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9734 throw_exception (e);
9735
9736 exception_print (gdb_stderr, e);
9737
9738 /* If pending breakpoint support is auto query and the user
9739 selects no, then simply return the error code. */
9740 if (pending_break_support == AUTO_BOOLEAN_AUTO
9741 && !nquery (_("Make %s pending on future shared library load? "),
9742 bptype_string (type_wanted)))
9743 return 0;
9744
9745 /* At this point, either the user was queried about setting
9746 a pending breakpoint and selected yes, or pending
9747 breakpoint behavior is on and thus a pending breakpoint
9748 is defaulted on behalf of the user. */
9749 {
9750 struct linespec_sals lsal;
9751
9752 copy_arg = xstrdup (addr_start);
9753 lsal.canonical = xstrdup (copy_arg);
9754 lsal.sals.nelts = 1;
9755 lsal.sals.sals = XNEW (struct symtab_and_line);
9756 init_sal (&lsal.sals.sals[0]);
9757 pending = 1;
9758 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9759 }
9760 break;
9761 default:
9762 throw_exception (e);
9763 }
9764 break;
9765 default:
9766 throw_exception (e);
9767 }
9768
9769 /* Create a chain of things that always need to be cleaned up. */
9770 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9771
9772 /* ----------------------------- SNIP -----------------------------
9773 Anything added to the cleanup chain beyond this point is assumed
9774 to be part of a breakpoint. If the breakpoint create succeeds
9775 then the memory is not reclaimed. */
9776 bkpt_chain = make_cleanup (null_cleanup, 0);
9777
9778 /* Resolve all line numbers to PC's and verify that the addresses
9779 are ok for the target. */
9780 if (!pending)
9781 {
9782 int ix;
9783 struct linespec_sals *iter;
9784
9785 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9786 breakpoint_sals_to_pc (&iter->sals);
9787 }
9788
9789 /* Fast tracepoints may have additional restrictions on location. */
9790 if (!pending && type_wanted == bp_fast_tracepoint)
9791 {
9792 int ix;
9793 struct linespec_sals *iter;
9794
9795 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9796 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9797 }
9798
9799 /* Verify that condition can be parsed, before setting any
9800 breakpoints. Allocate a separate condition expression for each
9801 breakpoint. */
9802 if (!pending)
9803 {
9804 if (parse_arg)
9805 {
9806 char *rest;
9807 struct linespec_sals *lsal;
9808
9809 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9810
9811 /* Here we only parse 'arg' to separate condition
9812 from thread number, so parsing in context of first
9813 sal is OK. When setting the breakpoint we'll
9814 re-parse it in context of each sal. */
9815
9816 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9817 &thread, &task, &rest);
9818 if (cond_string)
9819 make_cleanup (xfree, cond_string);
9820 if (rest)
9821 make_cleanup (xfree, rest);
9822 if (rest)
9823 extra_string = rest;
9824 }
9825 else
9826 {
9827 if (*arg != '\0')
9828 error (_("Garbage '%s' at end of location"), arg);
9829
9830 /* Create a private copy of condition string. */
9831 if (cond_string)
9832 {
9833 cond_string = xstrdup (cond_string);
9834 make_cleanup (xfree, cond_string);
9835 }
9836 /* Create a private copy of any extra string. */
9837 if (extra_string)
9838 {
9839 extra_string = xstrdup (extra_string);
9840 make_cleanup (xfree, extra_string);
9841 }
9842 }
9843
9844 ops->create_breakpoints_sal (gdbarch, &canonical,
9845 cond_string, extra_string, type_wanted,
9846 tempflag ? disp_del : disp_donttouch,
9847 thread, task, ignore_count, ops,
9848 from_tty, enabled, internal, flags);
9849 }
9850 else
9851 {
9852 struct breakpoint *b;
9853
9854 make_cleanup (xfree, copy_arg);
9855
9856 if (is_tracepoint_type (type_wanted))
9857 {
9858 struct tracepoint *t;
9859
9860 t = XCNEW (struct tracepoint);
9861 b = &t->base;
9862 }
9863 else
9864 b = XNEW (struct breakpoint);
9865
9866 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9867
9868 b->addr_string = copy_arg;
9869 if (parse_arg)
9870 b->cond_string = NULL;
9871 else
9872 {
9873 /* Create a private copy of condition string. */
9874 if (cond_string)
9875 {
9876 cond_string = xstrdup (cond_string);
9877 make_cleanup (xfree, cond_string);
9878 }
9879 b->cond_string = cond_string;
9880 }
9881 b->extra_string = NULL;
9882 b->ignore_count = ignore_count;
9883 b->disposition = tempflag ? disp_del : disp_donttouch;
9884 b->condition_not_parsed = 1;
9885 b->enable_state = enabled ? bp_enabled : bp_disabled;
9886 if ((type_wanted != bp_breakpoint
9887 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9888 b->pspace = current_program_space;
9889
9890 install_breakpoint (internal, b, 0);
9891 }
9892
9893 if (VEC_length (linespec_sals, canonical.sals) > 1)
9894 {
9895 warning (_("Multiple breakpoints were set.\nUse the "
9896 "\"delete\" command to delete unwanted breakpoints."));
9897 prev_breakpoint_count = prev_bkpt_count;
9898 }
9899
9900 /* That's it. Discard the cleanups for data inserted into the
9901 breakpoint. */
9902 discard_cleanups (bkpt_chain);
9903 /* But cleanup everything else. */
9904 do_cleanups (old_chain);
9905
9906 /* error call may happen here - have BKPT_CHAIN already discarded. */
9907 update_global_location_list (1);
9908
9909 return 1;
9910 }
9911
9912 /* Set a breakpoint.
9913 ARG is a string describing breakpoint address,
9914 condition, and thread.
9915 FLAG specifies if a breakpoint is hardware on,
9916 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9917 and BP_TEMPFLAG. */
9918
9919 static void
9920 break_command_1 (char *arg, int flag, int from_tty)
9921 {
9922 int tempflag = flag & BP_TEMPFLAG;
9923 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9924 ? bp_hardware_breakpoint
9925 : bp_breakpoint);
9926 struct breakpoint_ops *ops;
9927 const char *arg_cp = arg;
9928
9929 /* Matching breakpoints on probes. */
9930 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9931 ops = &bkpt_probe_breakpoint_ops;
9932 else
9933 ops = &bkpt_breakpoint_ops;
9934
9935 create_breakpoint (get_current_arch (),
9936 arg,
9937 NULL, 0, NULL, 1 /* parse arg */,
9938 tempflag, type_wanted,
9939 0 /* Ignore count */,
9940 pending_break_support,
9941 ops,
9942 from_tty,
9943 1 /* enabled */,
9944 0 /* internal */,
9945 0);
9946 }
9947
9948 /* Helper function for break_command_1 and disassemble_command. */
9949
9950 void
9951 resolve_sal_pc (struct symtab_and_line *sal)
9952 {
9953 CORE_ADDR pc;
9954
9955 if (sal->pc == 0 && sal->symtab != NULL)
9956 {
9957 if (!find_line_pc (sal->symtab, sal->line, &pc))
9958 error (_("No line %d in file \"%s\"."),
9959 sal->line, symtab_to_filename_for_display (sal->symtab));
9960 sal->pc = pc;
9961
9962 /* If this SAL corresponds to a breakpoint inserted using a line
9963 number, then skip the function prologue if necessary. */
9964 if (sal->explicit_line)
9965 skip_prologue_sal (sal);
9966 }
9967
9968 if (sal->section == 0 && sal->symtab != NULL)
9969 {
9970 struct blockvector *bv;
9971 struct block *b;
9972 struct symbol *sym;
9973
9974 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9975 if (bv != NULL)
9976 {
9977 sym = block_linkage_function (b);
9978 if (sym != NULL)
9979 {
9980 fixup_symbol_section (sym, sal->symtab->objfile);
9981 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9982 }
9983 else
9984 {
9985 /* It really is worthwhile to have the section, so we'll
9986 just have to look harder. This case can be executed
9987 if we have line numbers but no functions (as can
9988 happen in assembly source). */
9989
9990 struct bound_minimal_symbol msym;
9991 struct cleanup *old_chain = save_current_space_and_thread ();
9992
9993 switch_to_program_space_and_thread (sal->pspace);
9994
9995 msym = lookup_minimal_symbol_by_pc (sal->pc);
9996 if (msym.minsym)
9997 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9998
9999 do_cleanups (old_chain);
10000 }
10001 }
10002 }
10003 }
10004
10005 void
10006 break_command (char *arg, int from_tty)
10007 {
10008 break_command_1 (arg, 0, from_tty);
10009 }
10010
10011 void
10012 tbreak_command (char *arg, int from_tty)
10013 {
10014 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10015 }
10016
10017 static void
10018 hbreak_command (char *arg, int from_tty)
10019 {
10020 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10021 }
10022
10023 static void
10024 thbreak_command (char *arg, int from_tty)
10025 {
10026 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10027 }
10028
10029 static void
10030 stop_command (char *arg, int from_tty)
10031 {
10032 printf_filtered (_("Specify the type of breakpoint to set.\n\
10033 Usage: stop in <function | address>\n\
10034 stop at <line>\n"));
10035 }
10036
10037 static void
10038 stopin_command (char *arg, int from_tty)
10039 {
10040 int badInput = 0;
10041
10042 if (arg == (char *) NULL)
10043 badInput = 1;
10044 else if (*arg != '*')
10045 {
10046 char *argptr = arg;
10047 int hasColon = 0;
10048
10049 /* Look for a ':'. If this is a line number specification, then
10050 say it is bad, otherwise, it should be an address or
10051 function/method name. */
10052 while (*argptr && !hasColon)
10053 {
10054 hasColon = (*argptr == ':');
10055 argptr++;
10056 }
10057
10058 if (hasColon)
10059 badInput = (*argptr != ':'); /* Not a class::method */
10060 else
10061 badInput = isdigit (*arg); /* a simple line number */
10062 }
10063
10064 if (badInput)
10065 printf_filtered (_("Usage: stop in <function | address>\n"));
10066 else
10067 break_command_1 (arg, 0, from_tty);
10068 }
10069
10070 static void
10071 stopat_command (char *arg, int from_tty)
10072 {
10073 int badInput = 0;
10074
10075 if (arg == (char *) NULL || *arg == '*') /* no line number */
10076 badInput = 1;
10077 else
10078 {
10079 char *argptr = arg;
10080 int hasColon = 0;
10081
10082 /* Look for a ':'. If there is a '::' then get out, otherwise
10083 it is probably a line number. */
10084 while (*argptr && !hasColon)
10085 {
10086 hasColon = (*argptr == ':');
10087 argptr++;
10088 }
10089
10090 if (hasColon)
10091 badInput = (*argptr == ':'); /* we have class::method */
10092 else
10093 badInput = !isdigit (*arg); /* not a line number */
10094 }
10095
10096 if (badInput)
10097 printf_filtered (_("Usage: stop at <line>\n"));
10098 else
10099 break_command_1 (arg, 0, from_tty);
10100 }
10101
10102 /* The dynamic printf command is mostly like a regular breakpoint, but
10103 with a prewired command list consisting of a single output command,
10104 built from extra arguments supplied on the dprintf command
10105 line. */
10106
10107 static void
10108 dprintf_command (char *arg, int from_tty)
10109 {
10110 create_breakpoint (get_current_arch (),
10111 arg,
10112 NULL, 0, NULL, 1 /* parse arg */,
10113 0, bp_dprintf,
10114 0 /* Ignore count */,
10115 pending_break_support,
10116 &dprintf_breakpoint_ops,
10117 from_tty,
10118 1 /* enabled */,
10119 0 /* internal */,
10120 0);
10121 }
10122
10123 static void
10124 agent_printf_command (char *arg, int from_tty)
10125 {
10126 error (_("May only run agent-printf on the target"));
10127 }
10128
10129 /* Implement the "breakpoint_hit" breakpoint_ops method for
10130 ranged breakpoints. */
10131
10132 static int
10133 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10134 struct address_space *aspace,
10135 CORE_ADDR bp_addr,
10136 const struct target_waitstatus *ws)
10137 {
10138 if (ws->kind != TARGET_WAITKIND_STOPPED
10139 || ws->value.sig != GDB_SIGNAL_TRAP)
10140 return 0;
10141
10142 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10143 bl->length, aspace, bp_addr);
10144 }
10145
10146 /* Implement the "resources_needed" breakpoint_ops method for
10147 ranged breakpoints. */
10148
10149 static int
10150 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10151 {
10152 return target_ranged_break_num_registers ();
10153 }
10154
10155 /* Implement the "print_it" breakpoint_ops method for
10156 ranged breakpoints. */
10157
10158 static enum print_stop_action
10159 print_it_ranged_breakpoint (bpstat bs)
10160 {
10161 struct breakpoint *b = bs->breakpoint_at;
10162 struct bp_location *bl = b->loc;
10163 struct ui_out *uiout = current_uiout;
10164
10165 gdb_assert (b->type == bp_hardware_breakpoint);
10166
10167 /* Ranged breakpoints have only one location. */
10168 gdb_assert (bl && bl->next == NULL);
10169
10170 annotate_breakpoint (b->number);
10171 if (b->disposition == disp_del)
10172 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10173 else
10174 ui_out_text (uiout, "\nRanged breakpoint ");
10175 if (ui_out_is_mi_like_p (uiout))
10176 {
10177 ui_out_field_string (uiout, "reason",
10178 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10179 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10180 }
10181 ui_out_field_int (uiout, "bkptno", b->number);
10182 ui_out_text (uiout, ", ");
10183
10184 return PRINT_SRC_AND_LOC;
10185 }
10186
10187 /* Implement the "print_one" breakpoint_ops method for
10188 ranged breakpoints. */
10189
10190 static void
10191 print_one_ranged_breakpoint (struct breakpoint *b,
10192 struct bp_location **last_loc)
10193 {
10194 struct bp_location *bl = b->loc;
10195 struct value_print_options opts;
10196 struct ui_out *uiout = current_uiout;
10197
10198 /* Ranged breakpoints have only one location. */
10199 gdb_assert (bl && bl->next == NULL);
10200
10201 get_user_print_options (&opts);
10202
10203 if (opts.addressprint)
10204 /* We don't print the address range here, it will be printed later
10205 by print_one_detail_ranged_breakpoint. */
10206 ui_out_field_skip (uiout, "addr");
10207 annotate_field (5);
10208 print_breakpoint_location (b, bl);
10209 *last_loc = bl;
10210 }
10211
10212 /* Implement the "print_one_detail" breakpoint_ops method for
10213 ranged breakpoints. */
10214
10215 static void
10216 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10217 struct ui_out *uiout)
10218 {
10219 CORE_ADDR address_start, address_end;
10220 struct bp_location *bl = b->loc;
10221 struct ui_file *stb = mem_fileopen ();
10222 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10223
10224 gdb_assert (bl);
10225
10226 address_start = bl->address;
10227 address_end = address_start + bl->length - 1;
10228
10229 ui_out_text (uiout, "\taddress range: ");
10230 fprintf_unfiltered (stb, "[%s, %s]",
10231 print_core_address (bl->gdbarch, address_start),
10232 print_core_address (bl->gdbarch, address_end));
10233 ui_out_field_stream (uiout, "addr", stb);
10234 ui_out_text (uiout, "\n");
10235
10236 do_cleanups (cleanup);
10237 }
10238
10239 /* Implement the "print_mention" breakpoint_ops method for
10240 ranged breakpoints. */
10241
10242 static void
10243 print_mention_ranged_breakpoint (struct breakpoint *b)
10244 {
10245 struct bp_location *bl = b->loc;
10246 struct ui_out *uiout = current_uiout;
10247
10248 gdb_assert (bl);
10249 gdb_assert (b->type == bp_hardware_breakpoint);
10250
10251 if (ui_out_is_mi_like_p (uiout))
10252 return;
10253
10254 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10255 b->number, paddress (bl->gdbarch, bl->address),
10256 paddress (bl->gdbarch, bl->address + bl->length - 1));
10257 }
10258
10259 /* Implement the "print_recreate" breakpoint_ops method for
10260 ranged breakpoints. */
10261
10262 static void
10263 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10264 {
10265 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10266 b->addr_string_range_end);
10267 print_recreate_thread (b, fp);
10268 }
10269
10270 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10271
10272 static struct breakpoint_ops ranged_breakpoint_ops;
10273
10274 /* Find the address where the end of the breakpoint range should be
10275 placed, given the SAL of the end of the range. This is so that if
10276 the user provides a line number, the end of the range is set to the
10277 last instruction of the given line. */
10278
10279 static CORE_ADDR
10280 find_breakpoint_range_end (struct symtab_and_line sal)
10281 {
10282 CORE_ADDR end;
10283
10284 /* If the user provided a PC value, use it. Otherwise,
10285 find the address of the end of the given location. */
10286 if (sal.explicit_pc)
10287 end = sal.pc;
10288 else
10289 {
10290 int ret;
10291 CORE_ADDR start;
10292
10293 ret = find_line_pc_range (sal, &start, &end);
10294 if (!ret)
10295 error (_("Could not find location of the end of the range."));
10296
10297 /* find_line_pc_range returns the start of the next line. */
10298 end--;
10299 }
10300
10301 return end;
10302 }
10303
10304 /* Implement the "break-range" CLI command. */
10305
10306 static void
10307 break_range_command (char *arg, int from_tty)
10308 {
10309 char *arg_start, *addr_string_start, *addr_string_end;
10310 struct linespec_result canonical_start, canonical_end;
10311 int bp_count, can_use_bp, length;
10312 CORE_ADDR end;
10313 struct breakpoint *b;
10314 struct symtab_and_line sal_start, sal_end;
10315 struct cleanup *cleanup_bkpt;
10316 struct linespec_sals *lsal_start, *lsal_end;
10317
10318 /* We don't support software ranged breakpoints. */
10319 if (target_ranged_break_num_registers () < 0)
10320 error (_("This target does not support hardware ranged breakpoints."));
10321
10322 bp_count = hw_breakpoint_used_count ();
10323 bp_count += target_ranged_break_num_registers ();
10324 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10325 bp_count, 0);
10326 if (can_use_bp < 0)
10327 error (_("Hardware breakpoints used exceeds limit."));
10328
10329 arg = skip_spaces (arg);
10330 if (arg == NULL || arg[0] == '\0')
10331 error(_("No address range specified."));
10332
10333 init_linespec_result (&canonical_start);
10334
10335 arg_start = arg;
10336 parse_breakpoint_sals (&arg, &canonical_start);
10337
10338 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10339
10340 if (arg[0] != ',')
10341 error (_("Too few arguments."));
10342 else if (VEC_empty (linespec_sals, canonical_start.sals))
10343 error (_("Could not find location of the beginning of the range."));
10344
10345 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10346
10347 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10348 || lsal_start->sals.nelts != 1)
10349 error (_("Cannot create a ranged breakpoint with multiple locations."));
10350
10351 sal_start = lsal_start->sals.sals[0];
10352 addr_string_start = savestring (arg_start, arg - arg_start);
10353 make_cleanup (xfree, addr_string_start);
10354
10355 arg++; /* Skip the comma. */
10356 arg = skip_spaces (arg);
10357
10358 /* Parse the end location. */
10359
10360 init_linespec_result (&canonical_end);
10361 arg_start = arg;
10362
10363 /* We call decode_line_full directly here instead of using
10364 parse_breakpoint_sals because we need to specify the start location's
10365 symtab and line as the default symtab and line for the end of the
10366 range. This makes it possible to have ranges like "foo.c:27, +14",
10367 where +14 means 14 lines from the start location. */
10368 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10369 sal_start.symtab, sal_start.line,
10370 &canonical_end, NULL, NULL);
10371
10372 make_cleanup_destroy_linespec_result (&canonical_end);
10373
10374 if (VEC_empty (linespec_sals, canonical_end.sals))
10375 error (_("Could not find location of the end of the range."));
10376
10377 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10378 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10379 || lsal_end->sals.nelts != 1)
10380 error (_("Cannot create a ranged breakpoint with multiple locations."));
10381
10382 sal_end = lsal_end->sals.sals[0];
10383 addr_string_end = savestring (arg_start, arg - arg_start);
10384 make_cleanup (xfree, addr_string_end);
10385
10386 end = find_breakpoint_range_end (sal_end);
10387 if (sal_start.pc > end)
10388 error (_("Invalid address range, end precedes start."));
10389
10390 length = end - sal_start.pc + 1;
10391 if (length < 0)
10392 /* Length overflowed. */
10393 error (_("Address range too large."));
10394 else if (length == 1)
10395 {
10396 /* This range is simple enough to be handled by
10397 the `hbreak' command. */
10398 hbreak_command (addr_string_start, 1);
10399
10400 do_cleanups (cleanup_bkpt);
10401
10402 return;
10403 }
10404
10405 /* Now set up the breakpoint. */
10406 b = set_raw_breakpoint (get_current_arch (), sal_start,
10407 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10408 set_breakpoint_count (breakpoint_count + 1);
10409 b->number = breakpoint_count;
10410 b->disposition = disp_donttouch;
10411 b->addr_string = xstrdup (addr_string_start);
10412 b->addr_string_range_end = xstrdup (addr_string_end);
10413 b->loc->length = length;
10414
10415 do_cleanups (cleanup_bkpt);
10416
10417 mention (b);
10418 observer_notify_breakpoint_created (b);
10419 update_global_location_list (1);
10420 }
10421
10422 /* Return non-zero if EXP is verified as constant. Returned zero
10423 means EXP is variable. Also the constant detection may fail for
10424 some constant expressions and in such case still falsely return
10425 zero. */
10426
10427 static int
10428 watchpoint_exp_is_const (const struct expression *exp)
10429 {
10430 int i = exp->nelts;
10431
10432 while (i > 0)
10433 {
10434 int oplenp, argsp;
10435
10436 /* We are only interested in the descriptor of each element. */
10437 operator_length (exp, i, &oplenp, &argsp);
10438 i -= oplenp;
10439
10440 switch (exp->elts[i].opcode)
10441 {
10442 case BINOP_ADD:
10443 case BINOP_SUB:
10444 case BINOP_MUL:
10445 case BINOP_DIV:
10446 case BINOP_REM:
10447 case BINOP_MOD:
10448 case BINOP_LSH:
10449 case BINOP_RSH:
10450 case BINOP_LOGICAL_AND:
10451 case BINOP_LOGICAL_OR:
10452 case BINOP_BITWISE_AND:
10453 case BINOP_BITWISE_IOR:
10454 case BINOP_BITWISE_XOR:
10455 case BINOP_EQUAL:
10456 case BINOP_NOTEQUAL:
10457 case BINOP_LESS:
10458 case BINOP_GTR:
10459 case BINOP_LEQ:
10460 case BINOP_GEQ:
10461 case BINOP_REPEAT:
10462 case BINOP_COMMA:
10463 case BINOP_EXP:
10464 case BINOP_MIN:
10465 case BINOP_MAX:
10466 case BINOP_INTDIV:
10467 case BINOP_CONCAT:
10468 case BINOP_IN:
10469 case BINOP_RANGE:
10470 case TERNOP_COND:
10471 case TERNOP_SLICE:
10472
10473 case OP_LONG:
10474 case OP_DOUBLE:
10475 case OP_DECFLOAT:
10476 case OP_LAST:
10477 case OP_COMPLEX:
10478 case OP_STRING:
10479 case OP_ARRAY:
10480 case OP_TYPE:
10481 case OP_TYPEOF:
10482 case OP_DECLTYPE:
10483 case OP_TYPEID:
10484 case OP_NAME:
10485 case OP_OBJC_NSSTRING:
10486
10487 case UNOP_NEG:
10488 case UNOP_LOGICAL_NOT:
10489 case UNOP_COMPLEMENT:
10490 case UNOP_ADDR:
10491 case UNOP_HIGH:
10492 case UNOP_CAST:
10493
10494 case UNOP_CAST_TYPE:
10495 case UNOP_REINTERPRET_CAST:
10496 case UNOP_DYNAMIC_CAST:
10497 /* Unary, binary and ternary operators: We have to check
10498 their operands. If they are constant, then so is the
10499 result of that operation. For instance, if A and B are
10500 determined to be constants, then so is "A + B".
10501
10502 UNOP_IND is one exception to the rule above, because the
10503 value of *ADDR is not necessarily a constant, even when
10504 ADDR is. */
10505 break;
10506
10507 case OP_VAR_VALUE:
10508 /* Check whether the associated symbol is a constant.
10509
10510 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10511 possible that a buggy compiler could mark a variable as
10512 constant even when it is not, and TYPE_CONST would return
10513 true in this case, while SYMBOL_CLASS wouldn't.
10514
10515 We also have to check for function symbols because they
10516 are always constant. */
10517 {
10518 struct symbol *s = exp->elts[i + 2].symbol;
10519
10520 if (SYMBOL_CLASS (s) != LOC_BLOCK
10521 && SYMBOL_CLASS (s) != LOC_CONST
10522 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10523 return 0;
10524 break;
10525 }
10526
10527 /* The default action is to return 0 because we are using
10528 the optimistic approach here: If we don't know something,
10529 then it is not a constant. */
10530 default:
10531 return 0;
10532 }
10533 }
10534
10535 return 1;
10536 }
10537
10538 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10539
10540 static void
10541 dtor_watchpoint (struct breakpoint *self)
10542 {
10543 struct watchpoint *w = (struct watchpoint *) self;
10544
10545 xfree (w->cond_exp);
10546 xfree (w->exp);
10547 xfree (w->exp_string);
10548 xfree (w->exp_string_reparse);
10549 value_free (w->val);
10550
10551 base_breakpoint_ops.dtor (self);
10552 }
10553
10554 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10555
10556 static void
10557 re_set_watchpoint (struct breakpoint *b)
10558 {
10559 struct watchpoint *w = (struct watchpoint *) b;
10560
10561 /* Watchpoint can be either on expression using entirely global
10562 variables, or it can be on local variables.
10563
10564 Watchpoints of the first kind are never auto-deleted, and even
10565 persist across program restarts. Since they can use variables
10566 from shared libraries, we need to reparse expression as libraries
10567 are loaded and unloaded.
10568
10569 Watchpoints on local variables can also change meaning as result
10570 of solib event. For example, if a watchpoint uses both a local
10571 and a global variables in expression, it's a local watchpoint,
10572 but unloading of a shared library will make the expression
10573 invalid. This is not a very common use case, but we still
10574 re-evaluate expression, to avoid surprises to the user.
10575
10576 Note that for local watchpoints, we re-evaluate it only if
10577 watchpoints frame id is still valid. If it's not, it means the
10578 watchpoint is out of scope and will be deleted soon. In fact,
10579 I'm not sure we'll ever be called in this case.
10580
10581 If a local watchpoint's frame id is still valid, then
10582 w->exp_valid_block is likewise valid, and we can safely use it.
10583
10584 Don't do anything about disabled watchpoints, since they will be
10585 reevaluated again when enabled. */
10586 update_watchpoint (w, 1 /* reparse */);
10587 }
10588
10589 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10590
10591 static int
10592 insert_watchpoint (struct bp_location *bl)
10593 {
10594 struct watchpoint *w = (struct watchpoint *) bl->owner;
10595 int length = w->exact ? 1 : bl->length;
10596
10597 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10598 w->cond_exp);
10599 }
10600
10601 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10602
10603 static int
10604 remove_watchpoint (struct bp_location *bl)
10605 {
10606 struct watchpoint *w = (struct watchpoint *) bl->owner;
10607 int length = w->exact ? 1 : bl->length;
10608
10609 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10610 w->cond_exp);
10611 }
10612
10613 static int
10614 breakpoint_hit_watchpoint (const struct bp_location *bl,
10615 struct address_space *aspace, CORE_ADDR bp_addr,
10616 const struct target_waitstatus *ws)
10617 {
10618 struct breakpoint *b = bl->owner;
10619 struct watchpoint *w = (struct watchpoint *) b;
10620
10621 /* Continuable hardware watchpoints are treated as non-existent if the
10622 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10623 some data address). Otherwise gdb won't stop on a break instruction
10624 in the code (not from a breakpoint) when a hardware watchpoint has
10625 been defined. Also skip watchpoints which we know did not trigger
10626 (did not match the data address). */
10627 if (is_hardware_watchpoint (b)
10628 && w->watchpoint_triggered == watch_triggered_no)
10629 return 0;
10630
10631 return 1;
10632 }
10633
10634 static void
10635 check_status_watchpoint (bpstat bs)
10636 {
10637 gdb_assert (is_watchpoint (bs->breakpoint_at));
10638
10639 bpstat_check_watchpoint (bs);
10640 }
10641
10642 /* Implement the "resources_needed" breakpoint_ops method for
10643 hardware watchpoints. */
10644
10645 static int
10646 resources_needed_watchpoint (const struct bp_location *bl)
10647 {
10648 struct watchpoint *w = (struct watchpoint *) bl->owner;
10649 int length = w->exact? 1 : bl->length;
10650
10651 return target_region_ok_for_hw_watchpoint (bl->address, length);
10652 }
10653
10654 /* Implement the "works_in_software_mode" breakpoint_ops method for
10655 hardware watchpoints. */
10656
10657 static int
10658 works_in_software_mode_watchpoint (const struct breakpoint *b)
10659 {
10660 /* Read and access watchpoints only work with hardware support. */
10661 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10662 }
10663
10664 static enum print_stop_action
10665 print_it_watchpoint (bpstat bs)
10666 {
10667 struct cleanup *old_chain;
10668 struct breakpoint *b;
10669 struct ui_file *stb;
10670 enum print_stop_action result;
10671 struct watchpoint *w;
10672 struct ui_out *uiout = current_uiout;
10673
10674 gdb_assert (bs->bp_location_at != NULL);
10675
10676 b = bs->breakpoint_at;
10677 w = (struct watchpoint *) b;
10678
10679 stb = mem_fileopen ();
10680 old_chain = make_cleanup_ui_file_delete (stb);
10681
10682 switch (b->type)
10683 {
10684 case bp_watchpoint:
10685 case bp_hardware_watchpoint:
10686 annotate_watchpoint (b->number);
10687 if (ui_out_is_mi_like_p (uiout))
10688 ui_out_field_string
10689 (uiout, "reason",
10690 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10691 mention (b);
10692 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10693 ui_out_text (uiout, "\nOld value = ");
10694 watchpoint_value_print (bs->old_val, stb);
10695 ui_out_field_stream (uiout, "old", stb);
10696 ui_out_text (uiout, "\nNew value = ");
10697 watchpoint_value_print (w->val, stb);
10698 ui_out_field_stream (uiout, "new", stb);
10699 ui_out_text (uiout, "\n");
10700 /* More than one watchpoint may have been triggered. */
10701 result = PRINT_UNKNOWN;
10702 break;
10703
10704 case bp_read_watchpoint:
10705 if (ui_out_is_mi_like_p (uiout))
10706 ui_out_field_string
10707 (uiout, "reason",
10708 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10709 mention (b);
10710 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10711 ui_out_text (uiout, "\nValue = ");
10712 watchpoint_value_print (w->val, stb);
10713 ui_out_field_stream (uiout, "value", stb);
10714 ui_out_text (uiout, "\n");
10715 result = PRINT_UNKNOWN;
10716 break;
10717
10718 case bp_access_watchpoint:
10719 if (bs->old_val != NULL)
10720 {
10721 annotate_watchpoint (b->number);
10722 if (ui_out_is_mi_like_p (uiout))
10723 ui_out_field_string
10724 (uiout, "reason",
10725 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10726 mention (b);
10727 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10728 ui_out_text (uiout, "\nOld value = ");
10729 watchpoint_value_print (bs->old_val, stb);
10730 ui_out_field_stream (uiout, "old", stb);
10731 ui_out_text (uiout, "\nNew value = ");
10732 }
10733 else
10734 {
10735 mention (b);
10736 if (ui_out_is_mi_like_p (uiout))
10737 ui_out_field_string
10738 (uiout, "reason",
10739 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10740 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10741 ui_out_text (uiout, "\nValue = ");
10742 }
10743 watchpoint_value_print (w->val, stb);
10744 ui_out_field_stream (uiout, "new", stb);
10745 ui_out_text (uiout, "\n");
10746 result = PRINT_UNKNOWN;
10747 break;
10748 default:
10749 result = PRINT_UNKNOWN;
10750 }
10751
10752 do_cleanups (old_chain);
10753 return result;
10754 }
10755
10756 /* Implement the "print_mention" breakpoint_ops method for hardware
10757 watchpoints. */
10758
10759 static void
10760 print_mention_watchpoint (struct breakpoint *b)
10761 {
10762 struct cleanup *ui_out_chain;
10763 struct watchpoint *w = (struct watchpoint *) b;
10764 struct ui_out *uiout = current_uiout;
10765
10766 switch (b->type)
10767 {
10768 case bp_watchpoint:
10769 ui_out_text (uiout, "Watchpoint ");
10770 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10771 break;
10772 case bp_hardware_watchpoint:
10773 ui_out_text (uiout, "Hardware watchpoint ");
10774 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10775 break;
10776 case bp_read_watchpoint:
10777 ui_out_text (uiout, "Hardware read watchpoint ");
10778 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10779 break;
10780 case bp_access_watchpoint:
10781 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10782 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10783 break;
10784 default:
10785 internal_error (__FILE__, __LINE__,
10786 _("Invalid hardware watchpoint type."));
10787 }
10788
10789 ui_out_field_int (uiout, "number", b->number);
10790 ui_out_text (uiout, ": ");
10791 ui_out_field_string (uiout, "exp", w->exp_string);
10792 do_cleanups (ui_out_chain);
10793 }
10794
10795 /* Implement the "print_recreate" breakpoint_ops method for
10796 watchpoints. */
10797
10798 static void
10799 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10800 {
10801 struct watchpoint *w = (struct watchpoint *) b;
10802
10803 switch (b->type)
10804 {
10805 case bp_watchpoint:
10806 case bp_hardware_watchpoint:
10807 fprintf_unfiltered (fp, "watch");
10808 break;
10809 case bp_read_watchpoint:
10810 fprintf_unfiltered (fp, "rwatch");
10811 break;
10812 case bp_access_watchpoint:
10813 fprintf_unfiltered (fp, "awatch");
10814 break;
10815 default:
10816 internal_error (__FILE__, __LINE__,
10817 _("Invalid watchpoint type."));
10818 }
10819
10820 fprintf_unfiltered (fp, " %s", w->exp_string);
10821 print_recreate_thread (b, fp);
10822 }
10823
10824 /* Implement the "explains_signal" breakpoint_ops method for
10825 watchpoints. */
10826
10827 static int
10828 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10829 {
10830 /* A software watchpoint cannot cause a signal other than
10831 GDB_SIGNAL_TRAP. */
10832 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10833 return 0;
10834
10835 return 1;
10836 }
10837
10838 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10839
10840 static struct breakpoint_ops watchpoint_breakpoint_ops;
10841
10842 /* Implement the "insert" breakpoint_ops method for
10843 masked hardware watchpoints. */
10844
10845 static int
10846 insert_masked_watchpoint (struct bp_location *bl)
10847 {
10848 struct watchpoint *w = (struct watchpoint *) bl->owner;
10849
10850 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10851 bl->watchpoint_type);
10852 }
10853
10854 /* Implement the "remove" breakpoint_ops method for
10855 masked hardware watchpoints. */
10856
10857 static int
10858 remove_masked_watchpoint (struct bp_location *bl)
10859 {
10860 struct watchpoint *w = (struct watchpoint *) bl->owner;
10861
10862 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10863 bl->watchpoint_type);
10864 }
10865
10866 /* Implement the "resources_needed" breakpoint_ops method for
10867 masked hardware watchpoints. */
10868
10869 static int
10870 resources_needed_masked_watchpoint (const struct bp_location *bl)
10871 {
10872 struct watchpoint *w = (struct watchpoint *) bl->owner;
10873
10874 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10875 }
10876
10877 /* Implement the "works_in_software_mode" breakpoint_ops method for
10878 masked hardware watchpoints. */
10879
10880 static int
10881 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10882 {
10883 return 0;
10884 }
10885
10886 /* Implement the "print_it" breakpoint_ops method for
10887 masked hardware watchpoints. */
10888
10889 static enum print_stop_action
10890 print_it_masked_watchpoint (bpstat bs)
10891 {
10892 struct breakpoint *b = bs->breakpoint_at;
10893 struct ui_out *uiout = current_uiout;
10894
10895 /* Masked watchpoints have only one location. */
10896 gdb_assert (b->loc && b->loc->next == NULL);
10897
10898 switch (b->type)
10899 {
10900 case bp_hardware_watchpoint:
10901 annotate_watchpoint (b->number);
10902 if (ui_out_is_mi_like_p (uiout))
10903 ui_out_field_string
10904 (uiout, "reason",
10905 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10906 break;
10907
10908 case bp_read_watchpoint:
10909 if (ui_out_is_mi_like_p (uiout))
10910 ui_out_field_string
10911 (uiout, "reason",
10912 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10913 break;
10914
10915 case bp_access_watchpoint:
10916 if (ui_out_is_mi_like_p (uiout))
10917 ui_out_field_string
10918 (uiout, "reason",
10919 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10920 break;
10921 default:
10922 internal_error (__FILE__, __LINE__,
10923 _("Invalid hardware watchpoint type."));
10924 }
10925
10926 mention (b);
10927 ui_out_text (uiout, _("\n\
10928 Check the underlying instruction at PC for the memory\n\
10929 address and value which triggered this watchpoint.\n"));
10930 ui_out_text (uiout, "\n");
10931
10932 /* More than one watchpoint may have been triggered. */
10933 return PRINT_UNKNOWN;
10934 }
10935
10936 /* Implement the "print_one_detail" breakpoint_ops method for
10937 masked hardware watchpoints. */
10938
10939 static void
10940 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10941 struct ui_out *uiout)
10942 {
10943 struct watchpoint *w = (struct watchpoint *) b;
10944
10945 /* Masked watchpoints have only one location. */
10946 gdb_assert (b->loc && b->loc->next == NULL);
10947
10948 ui_out_text (uiout, "\tmask ");
10949 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10950 ui_out_text (uiout, "\n");
10951 }
10952
10953 /* Implement the "print_mention" breakpoint_ops method for
10954 masked hardware watchpoints. */
10955
10956 static void
10957 print_mention_masked_watchpoint (struct breakpoint *b)
10958 {
10959 struct watchpoint *w = (struct watchpoint *) b;
10960 struct ui_out *uiout = current_uiout;
10961 struct cleanup *ui_out_chain;
10962
10963 switch (b->type)
10964 {
10965 case bp_hardware_watchpoint:
10966 ui_out_text (uiout, "Masked hardware watchpoint ");
10967 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10968 break;
10969 case bp_read_watchpoint:
10970 ui_out_text (uiout, "Masked hardware read watchpoint ");
10971 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10972 break;
10973 case bp_access_watchpoint:
10974 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10975 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10976 break;
10977 default:
10978 internal_error (__FILE__, __LINE__,
10979 _("Invalid hardware watchpoint type."));
10980 }
10981
10982 ui_out_field_int (uiout, "number", b->number);
10983 ui_out_text (uiout, ": ");
10984 ui_out_field_string (uiout, "exp", w->exp_string);
10985 do_cleanups (ui_out_chain);
10986 }
10987
10988 /* Implement the "print_recreate" breakpoint_ops method for
10989 masked hardware watchpoints. */
10990
10991 static void
10992 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10993 {
10994 struct watchpoint *w = (struct watchpoint *) b;
10995 char tmp[40];
10996
10997 switch (b->type)
10998 {
10999 case bp_hardware_watchpoint:
11000 fprintf_unfiltered (fp, "watch");
11001 break;
11002 case bp_read_watchpoint:
11003 fprintf_unfiltered (fp, "rwatch");
11004 break;
11005 case bp_access_watchpoint:
11006 fprintf_unfiltered (fp, "awatch");
11007 break;
11008 default:
11009 internal_error (__FILE__, __LINE__,
11010 _("Invalid hardware watchpoint type."));
11011 }
11012
11013 sprintf_vma (tmp, w->hw_wp_mask);
11014 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11015 print_recreate_thread (b, fp);
11016 }
11017
11018 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11019
11020 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11021
11022 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11023
11024 static int
11025 is_masked_watchpoint (const struct breakpoint *b)
11026 {
11027 return b->ops == &masked_watchpoint_breakpoint_ops;
11028 }
11029
11030 /* accessflag: hw_write: watch write,
11031 hw_read: watch read,
11032 hw_access: watch access (read or write) */
11033 static void
11034 watch_command_1 (const char *arg, int accessflag, int from_tty,
11035 int just_location, int internal)
11036 {
11037 volatile struct gdb_exception e;
11038 struct breakpoint *b, *scope_breakpoint = NULL;
11039 struct expression *exp;
11040 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11041 struct value *val, *mark, *result;
11042 struct frame_info *frame;
11043 const char *exp_start = NULL;
11044 const char *exp_end = NULL;
11045 const char *tok, *end_tok;
11046 int toklen = -1;
11047 const char *cond_start = NULL;
11048 const char *cond_end = NULL;
11049 enum bptype bp_type;
11050 int thread = -1;
11051 int pc = 0;
11052 /* Flag to indicate whether we are going to use masks for
11053 the hardware watchpoint. */
11054 int use_mask = 0;
11055 CORE_ADDR mask = 0;
11056 struct watchpoint *w;
11057 char *expression;
11058 struct cleanup *back_to;
11059
11060 /* Make sure that we actually have parameters to parse. */
11061 if (arg != NULL && arg[0] != '\0')
11062 {
11063 const char *value_start;
11064
11065 exp_end = arg + strlen (arg);
11066
11067 /* Look for "parameter value" pairs at the end
11068 of the arguments string. */
11069 for (tok = exp_end - 1; tok > arg; tok--)
11070 {
11071 /* Skip whitespace at the end of the argument list. */
11072 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11073 tok--;
11074
11075 /* Find the beginning of the last token.
11076 This is the value of the parameter. */
11077 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11078 tok--;
11079 value_start = tok + 1;
11080
11081 /* Skip whitespace. */
11082 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11083 tok--;
11084
11085 end_tok = tok;
11086
11087 /* Find the beginning of the second to last token.
11088 This is the parameter itself. */
11089 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11090 tok--;
11091 tok++;
11092 toklen = end_tok - tok + 1;
11093
11094 if (toklen == 6 && !strncmp (tok, "thread", 6))
11095 {
11096 /* At this point we've found a "thread" token, which means
11097 the user is trying to set a watchpoint that triggers
11098 only in a specific thread. */
11099 char *endp;
11100
11101 if (thread != -1)
11102 error(_("You can specify only one thread."));
11103
11104 /* Extract the thread ID from the next token. */
11105 thread = strtol (value_start, &endp, 0);
11106
11107 /* Check if the user provided a valid numeric value for the
11108 thread ID. */
11109 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11110 error (_("Invalid thread ID specification %s."), value_start);
11111
11112 /* Check if the thread actually exists. */
11113 if (!valid_thread_id (thread))
11114 invalid_thread_id_error (thread);
11115 }
11116 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11117 {
11118 /* We've found a "mask" token, which means the user wants to
11119 create a hardware watchpoint that is going to have the mask
11120 facility. */
11121 struct value *mask_value, *mark;
11122
11123 if (use_mask)
11124 error(_("You can specify only one mask."));
11125
11126 use_mask = just_location = 1;
11127
11128 mark = value_mark ();
11129 mask_value = parse_to_comma_and_eval (&value_start);
11130 mask = value_as_address (mask_value);
11131 value_free_to_mark (mark);
11132 }
11133 else
11134 /* We didn't recognize what we found. We should stop here. */
11135 break;
11136
11137 /* Truncate the string and get rid of the "parameter value" pair before
11138 the arguments string is parsed by the parse_exp_1 function. */
11139 exp_end = tok;
11140 }
11141 }
11142 else
11143 exp_end = arg;
11144
11145 /* Parse the rest of the arguments. From here on out, everything
11146 is in terms of a newly allocated string instead of the original
11147 ARG. */
11148 innermost_block = NULL;
11149 expression = savestring (arg, exp_end - arg);
11150 back_to = make_cleanup (xfree, expression);
11151 exp_start = arg = expression;
11152 exp = parse_exp_1 (&arg, 0, 0, 0);
11153 exp_end = arg;
11154 /* Remove trailing whitespace from the expression before saving it.
11155 This makes the eventual display of the expression string a bit
11156 prettier. */
11157 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11158 --exp_end;
11159
11160 /* Checking if the expression is not constant. */
11161 if (watchpoint_exp_is_const (exp))
11162 {
11163 int len;
11164
11165 len = exp_end - exp_start;
11166 while (len > 0 && isspace (exp_start[len - 1]))
11167 len--;
11168 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11169 }
11170
11171 exp_valid_block = innermost_block;
11172 mark = value_mark ();
11173 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11174
11175 if (just_location)
11176 {
11177 int ret;
11178
11179 exp_valid_block = NULL;
11180 val = value_addr (result);
11181 release_value (val);
11182 value_free_to_mark (mark);
11183
11184 if (use_mask)
11185 {
11186 ret = target_masked_watch_num_registers (value_as_address (val),
11187 mask);
11188 if (ret == -1)
11189 error (_("This target does not support masked watchpoints."));
11190 else if (ret == -2)
11191 error (_("Invalid mask or memory region."));
11192 }
11193 }
11194 else if (val != NULL)
11195 release_value (val);
11196
11197 tok = skip_spaces_const (arg);
11198 end_tok = skip_to_space_const (tok);
11199
11200 toklen = end_tok - tok;
11201 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11202 {
11203 struct expression *cond;
11204
11205 innermost_block = NULL;
11206 tok = cond_start = end_tok + 1;
11207 cond = parse_exp_1 (&tok, 0, 0, 0);
11208
11209 /* The watchpoint expression may not be local, but the condition
11210 may still be. E.g.: `watch global if local > 0'. */
11211 cond_exp_valid_block = innermost_block;
11212
11213 xfree (cond);
11214 cond_end = tok;
11215 }
11216 if (*tok)
11217 error (_("Junk at end of command."));
11218
11219 frame = block_innermost_frame (exp_valid_block);
11220
11221 /* If the expression is "local", then set up a "watchpoint scope"
11222 breakpoint at the point where we've left the scope of the watchpoint
11223 expression. Create the scope breakpoint before the watchpoint, so
11224 that we will encounter it first in bpstat_stop_status. */
11225 if (exp_valid_block && frame)
11226 {
11227 if (frame_id_p (frame_unwind_caller_id (frame)))
11228 {
11229 scope_breakpoint
11230 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11231 frame_unwind_caller_pc (frame),
11232 bp_watchpoint_scope,
11233 &momentary_breakpoint_ops);
11234
11235 scope_breakpoint->enable_state = bp_enabled;
11236
11237 /* Automatically delete the breakpoint when it hits. */
11238 scope_breakpoint->disposition = disp_del;
11239
11240 /* Only break in the proper frame (help with recursion). */
11241 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11242
11243 /* Set the address at which we will stop. */
11244 scope_breakpoint->loc->gdbarch
11245 = frame_unwind_caller_arch (frame);
11246 scope_breakpoint->loc->requested_address
11247 = frame_unwind_caller_pc (frame);
11248 scope_breakpoint->loc->address
11249 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11250 scope_breakpoint->loc->requested_address,
11251 scope_breakpoint->type);
11252 }
11253 }
11254
11255 /* Now set up the breakpoint. We create all watchpoints as hardware
11256 watchpoints here even if hardware watchpoints are turned off, a call
11257 to update_watchpoint later in this function will cause the type to
11258 drop back to bp_watchpoint (software watchpoint) if required. */
11259
11260 if (accessflag == hw_read)
11261 bp_type = bp_read_watchpoint;
11262 else if (accessflag == hw_access)
11263 bp_type = bp_access_watchpoint;
11264 else
11265 bp_type = bp_hardware_watchpoint;
11266
11267 w = XCNEW (struct watchpoint);
11268 b = &w->base;
11269 if (use_mask)
11270 init_raw_breakpoint_without_location (b, NULL, bp_type,
11271 &masked_watchpoint_breakpoint_ops);
11272 else
11273 init_raw_breakpoint_without_location (b, NULL, bp_type,
11274 &watchpoint_breakpoint_ops);
11275 b->thread = thread;
11276 b->disposition = disp_donttouch;
11277 b->pspace = current_program_space;
11278 w->exp = exp;
11279 w->exp_valid_block = exp_valid_block;
11280 w->cond_exp_valid_block = cond_exp_valid_block;
11281 if (just_location)
11282 {
11283 struct type *t = value_type (val);
11284 CORE_ADDR addr = value_as_address (val);
11285 char *name;
11286
11287 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11288 name = type_to_string (t);
11289
11290 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11291 core_addr_to_string (addr));
11292 xfree (name);
11293
11294 w->exp_string = xstrprintf ("-location %.*s",
11295 (int) (exp_end - exp_start), exp_start);
11296
11297 /* The above expression is in C. */
11298 b->language = language_c;
11299 }
11300 else
11301 w->exp_string = savestring (exp_start, exp_end - exp_start);
11302
11303 if (use_mask)
11304 {
11305 w->hw_wp_mask = mask;
11306 }
11307 else
11308 {
11309 w->val = val;
11310 w->val_valid = 1;
11311 }
11312
11313 if (cond_start)
11314 b->cond_string = savestring (cond_start, cond_end - cond_start);
11315 else
11316 b->cond_string = 0;
11317
11318 if (frame)
11319 {
11320 w->watchpoint_frame = get_frame_id (frame);
11321 w->watchpoint_thread = inferior_ptid;
11322 }
11323 else
11324 {
11325 w->watchpoint_frame = null_frame_id;
11326 w->watchpoint_thread = null_ptid;
11327 }
11328
11329 if (scope_breakpoint != NULL)
11330 {
11331 /* The scope breakpoint is related to the watchpoint. We will
11332 need to act on them together. */
11333 b->related_breakpoint = scope_breakpoint;
11334 scope_breakpoint->related_breakpoint = b;
11335 }
11336
11337 if (!just_location)
11338 value_free_to_mark (mark);
11339
11340 TRY_CATCH (e, RETURN_MASK_ALL)
11341 {
11342 /* Finally update the new watchpoint. This creates the locations
11343 that should be inserted. */
11344 update_watchpoint (w, 1);
11345 }
11346 if (e.reason < 0)
11347 {
11348 delete_breakpoint (b);
11349 throw_exception (e);
11350 }
11351
11352 install_breakpoint (internal, b, 1);
11353 do_cleanups (back_to);
11354 }
11355
11356 /* Return count of debug registers needed to watch the given expression.
11357 If the watchpoint cannot be handled in hardware return zero. */
11358
11359 static int
11360 can_use_hardware_watchpoint (struct value *v)
11361 {
11362 int found_memory_cnt = 0;
11363 struct value *head = v;
11364
11365 /* Did the user specifically forbid us to use hardware watchpoints? */
11366 if (!can_use_hw_watchpoints)
11367 return 0;
11368
11369 /* Make sure that the value of the expression depends only upon
11370 memory contents, and values computed from them within GDB. If we
11371 find any register references or function calls, we can't use a
11372 hardware watchpoint.
11373
11374 The idea here is that evaluating an expression generates a series
11375 of values, one holding the value of every subexpression. (The
11376 expression a*b+c has five subexpressions: a, b, a*b, c, and
11377 a*b+c.) GDB's values hold almost enough information to establish
11378 the criteria given above --- they identify memory lvalues,
11379 register lvalues, computed values, etcetera. So we can evaluate
11380 the expression, and then scan the chain of values that leaves
11381 behind to decide whether we can detect any possible change to the
11382 expression's final value using only hardware watchpoints.
11383
11384 However, I don't think that the values returned by inferior
11385 function calls are special in any way. So this function may not
11386 notice that an expression involving an inferior function call
11387 can't be watched with hardware watchpoints. FIXME. */
11388 for (; v; v = value_next (v))
11389 {
11390 if (VALUE_LVAL (v) == lval_memory)
11391 {
11392 if (v != head && value_lazy (v))
11393 /* A lazy memory lvalue in the chain is one that GDB never
11394 needed to fetch; we either just used its address (e.g.,
11395 `a' in `a.b') or we never needed it at all (e.g., `a'
11396 in `a,b'). This doesn't apply to HEAD; if that is
11397 lazy then it was not readable, but watch it anyway. */
11398 ;
11399 else
11400 {
11401 /* Ahh, memory we actually used! Check if we can cover
11402 it with hardware watchpoints. */
11403 struct type *vtype = check_typedef (value_type (v));
11404
11405 /* We only watch structs and arrays if user asked for it
11406 explicitly, never if they just happen to appear in a
11407 middle of some value chain. */
11408 if (v == head
11409 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11410 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11411 {
11412 CORE_ADDR vaddr = value_address (v);
11413 int len;
11414 int num_regs;
11415
11416 len = (target_exact_watchpoints
11417 && is_scalar_type_recursive (vtype))?
11418 1 : TYPE_LENGTH (value_type (v));
11419
11420 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11421 if (!num_regs)
11422 return 0;
11423 else
11424 found_memory_cnt += num_regs;
11425 }
11426 }
11427 }
11428 else if (VALUE_LVAL (v) != not_lval
11429 && deprecated_value_modifiable (v) == 0)
11430 return 0; /* These are values from the history (e.g., $1). */
11431 else if (VALUE_LVAL (v) == lval_register)
11432 return 0; /* Cannot watch a register with a HW watchpoint. */
11433 }
11434
11435 /* The expression itself looks suitable for using a hardware
11436 watchpoint, but give the target machine a chance to reject it. */
11437 return found_memory_cnt;
11438 }
11439
11440 void
11441 watch_command_wrapper (char *arg, int from_tty, int internal)
11442 {
11443 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11444 }
11445
11446 /* A helper function that looks for the "-location" argument and then
11447 calls watch_command_1. */
11448
11449 static void
11450 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11451 {
11452 int just_location = 0;
11453
11454 if (arg
11455 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11456 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11457 {
11458 arg = skip_spaces (arg);
11459 just_location = 1;
11460 }
11461
11462 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11463 }
11464
11465 static void
11466 watch_command (char *arg, int from_tty)
11467 {
11468 watch_maybe_just_location (arg, hw_write, from_tty);
11469 }
11470
11471 void
11472 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11473 {
11474 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11475 }
11476
11477 static void
11478 rwatch_command (char *arg, int from_tty)
11479 {
11480 watch_maybe_just_location (arg, hw_read, from_tty);
11481 }
11482
11483 void
11484 awatch_command_wrapper (char *arg, int from_tty, int internal)
11485 {
11486 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11487 }
11488
11489 static void
11490 awatch_command (char *arg, int from_tty)
11491 {
11492 watch_maybe_just_location (arg, hw_access, from_tty);
11493 }
11494 \f
11495
11496 /* Helper routines for the until_command routine in infcmd.c. Here
11497 because it uses the mechanisms of breakpoints. */
11498
11499 struct until_break_command_continuation_args
11500 {
11501 struct breakpoint *breakpoint;
11502 struct breakpoint *breakpoint2;
11503 int thread_num;
11504 };
11505
11506 /* This function is called by fetch_inferior_event via the
11507 cmd_continuation pointer, to complete the until command. It takes
11508 care of cleaning up the temporary breakpoints set up by the until
11509 command. */
11510 static void
11511 until_break_command_continuation (void *arg, int err)
11512 {
11513 struct until_break_command_continuation_args *a = arg;
11514
11515 delete_breakpoint (a->breakpoint);
11516 if (a->breakpoint2)
11517 delete_breakpoint (a->breakpoint2);
11518 delete_longjmp_breakpoint (a->thread_num);
11519 }
11520
11521 void
11522 until_break_command (char *arg, int from_tty, int anywhere)
11523 {
11524 struct symtabs_and_lines sals;
11525 struct symtab_and_line sal;
11526 struct frame_info *frame;
11527 struct gdbarch *frame_gdbarch;
11528 struct frame_id stack_frame_id;
11529 struct frame_id caller_frame_id;
11530 struct breakpoint *breakpoint;
11531 struct breakpoint *breakpoint2 = NULL;
11532 struct cleanup *old_chain;
11533 int thread;
11534 struct thread_info *tp;
11535
11536 clear_proceed_status ();
11537
11538 /* Set a breakpoint where the user wants it and at return from
11539 this function. */
11540
11541 if (last_displayed_sal_is_valid ())
11542 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11543 get_last_displayed_symtab (),
11544 get_last_displayed_line ());
11545 else
11546 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11547 (struct symtab *) NULL, 0);
11548
11549 if (sals.nelts != 1)
11550 error (_("Couldn't get information on specified line."));
11551
11552 sal = sals.sals[0];
11553 xfree (sals.sals); /* malloc'd, so freed. */
11554
11555 if (*arg)
11556 error (_("Junk at end of arguments."));
11557
11558 resolve_sal_pc (&sal);
11559
11560 tp = inferior_thread ();
11561 thread = tp->num;
11562
11563 old_chain = make_cleanup (null_cleanup, NULL);
11564
11565 /* Note linespec handling above invalidates the frame chain.
11566 Installing a breakpoint also invalidates the frame chain (as it
11567 may need to switch threads), so do any frame handling before
11568 that. */
11569
11570 frame = get_selected_frame (NULL);
11571 frame_gdbarch = get_frame_arch (frame);
11572 stack_frame_id = get_stack_frame_id (frame);
11573 caller_frame_id = frame_unwind_caller_id (frame);
11574
11575 /* Keep within the current frame, or in frames called by the current
11576 one. */
11577
11578 if (frame_id_p (caller_frame_id))
11579 {
11580 struct symtab_and_line sal2;
11581
11582 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11583 sal2.pc = frame_unwind_caller_pc (frame);
11584 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11585 sal2,
11586 caller_frame_id,
11587 bp_until);
11588 make_cleanup_delete_breakpoint (breakpoint2);
11589
11590 set_longjmp_breakpoint (tp, caller_frame_id);
11591 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11592 }
11593
11594 /* set_momentary_breakpoint could invalidate FRAME. */
11595 frame = NULL;
11596
11597 if (anywhere)
11598 /* If the user told us to continue until a specified location,
11599 we don't specify a frame at which we need to stop. */
11600 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11601 null_frame_id, bp_until);
11602 else
11603 /* Otherwise, specify the selected frame, because we want to stop
11604 only at the very same frame. */
11605 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11606 stack_frame_id, bp_until);
11607 make_cleanup_delete_breakpoint (breakpoint);
11608
11609 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11610
11611 /* If we are running asynchronously, and proceed call above has
11612 actually managed to start the target, arrange for breakpoints to
11613 be deleted when the target stops. Otherwise, we're already
11614 stopped and delete breakpoints via cleanup chain. */
11615
11616 if (target_can_async_p () && is_running (inferior_ptid))
11617 {
11618 struct until_break_command_continuation_args *args;
11619 args = xmalloc (sizeof (*args));
11620
11621 args->breakpoint = breakpoint;
11622 args->breakpoint2 = breakpoint2;
11623 args->thread_num = thread;
11624
11625 discard_cleanups (old_chain);
11626 add_continuation (inferior_thread (),
11627 until_break_command_continuation, args,
11628 xfree);
11629 }
11630 else
11631 do_cleanups (old_chain);
11632 }
11633
11634 /* This function attempts to parse an optional "if <cond>" clause
11635 from the arg string. If one is not found, it returns NULL.
11636
11637 Else, it returns a pointer to the condition string. (It does not
11638 attempt to evaluate the string against a particular block.) And,
11639 it updates arg to point to the first character following the parsed
11640 if clause in the arg string. */
11641
11642 char *
11643 ep_parse_optional_if_clause (char **arg)
11644 {
11645 char *cond_string;
11646
11647 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11648 return NULL;
11649
11650 /* Skip the "if" keyword. */
11651 (*arg) += 2;
11652
11653 /* Skip any extra leading whitespace, and record the start of the
11654 condition string. */
11655 *arg = skip_spaces (*arg);
11656 cond_string = *arg;
11657
11658 /* Assume that the condition occupies the remainder of the arg
11659 string. */
11660 (*arg) += strlen (cond_string);
11661
11662 return cond_string;
11663 }
11664
11665 /* Commands to deal with catching events, such as signals, exceptions,
11666 process start/exit, etc. */
11667
11668 typedef enum
11669 {
11670 catch_fork_temporary, catch_vfork_temporary,
11671 catch_fork_permanent, catch_vfork_permanent
11672 }
11673 catch_fork_kind;
11674
11675 static void
11676 catch_fork_command_1 (char *arg, int from_tty,
11677 struct cmd_list_element *command)
11678 {
11679 struct gdbarch *gdbarch = get_current_arch ();
11680 char *cond_string = NULL;
11681 catch_fork_kind fork_kind;
11682 int tempflag;
11683
11684 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11685 tempflag = (fork_kind == catch_fork_temporary
11686 || fork_kind == catch_vfork_temporary);
11687
11688 if (!arg)
11689 arg = "";
11690 arg = skip_spaces (arg);
11691
11692 /* The allowed syntax is:
11693 catch [v]fork
11694 catch [v]fork if <cond>
11695
11696 First, check if there's an if clause. */
11697 cond_string = ep_parse_optional_if_clause (&arg);
11698
11699 if ((*arg != '\0') && !isspace (*arg))
11700 error (_("Junk at end of arguments."));
11701
11702 /* If this target supports it, create a fork or vfork catchpoint
11703 and enable reporting of such events. */
11704 switch (fork_kind)
11705 {
11706 case catch_fork_temporary:
11707 case catch_fork_permanent:
11708 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11709 &catch_fork_breakpoint_ops);
11710 break;
11711 case catch_vfork_temporary:
11712 case catch_vfork_permanent:
11713 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11714 &catch_vfork_breakpoint_ops);
11715 break;
11716 default:
11717 error (_("unsupported or unknown fork kind; cannot catch it"));
11718 break;
11719 }
11720 }
11721
11722 static void
11723 catch_exec_command_1 (char *arg, int from_tty,
11724 struct cmd_list_element *command)
11725 {
11726 struct exec_catchpoint *c;
11727 struct gdbarch *gdbarch = get_current_arch ();
11728 int tempflag;
11729 char *cond_string = NULL;
11730
11731 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11732
11733 if (!arg)
11734 arg = "";
11735 arg = skip_spaces (arg);
11736
11737 /* The allowed syntax is:
11738 catch exec
11739 catch exec if <cond>
11740
11741 First, check if there's an if clause. */
11742 cond_string = ep_parse_optional_if_clause (&arg);
11743
11744 if ((*arg != '\0') && !isspace (*arg))
11745 error (_("Junk at end of arguments."));
11746
11747 c = XNEW (struct exec_catchpoint);
11748 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11749 &catch_exec_breakpoint_ops);
11750 c->exec_pathname = NULL;
11751
11752 install_breakpoint (0, &c->base, 1);
11753 }
11754
11755 void
11756 init_ada_exception_breakpoint (struct breakpoint *b,
11757 struct gdbarch *gdbarch,
11758 struct symtab_and_line sal,
11759 char *addr_string,
11760 const struct breakpoint_ops *ops,
11761 int tempflag,
11762 int enabled,
11763 int from_tty)
11764 {
11765 if (from_tty)
11766 {
11767 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11768 if (!loc_gdbarch)
11769 loc_gdbarch = gdbarch;
11770
11771 describe_other_breakpoints (loc_gdbarch,
11772 sal.pspace, sal.pc, sal.section, -1);
11773 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11774 version for exception catchpoints, because two catchpoints
11775 used for different exception names will use the same address.
11776 In this case, a "breakpoint ... also set at..." warning is
11777 unproductive. Besides, the warning phrasing is also a bit
11778 inappropriate, we should use the word catchpoint, and tell
11779 the user what type of catchpoint it is. The above is good
11780 enough for now, though. */
11781 }
11782
11783 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11784
11785 b->enable_state = enabled ? bp_enabled : bp_disabled;
11786 b->disposition = tempflag ? disp_del : disp_donttouch;
11787 b->addr_string = addr_string;
11788 b->language = language_ada;
11789 }
11790
11791 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11792 filter list, or NULL if no filtering is required. */
11793 static VEC(int) *
11794 catch_syscall_split_args (char *arg)
11795 {
11796 VEC(int) *result = NULL;
11797 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11798
11799 while (*arg != '\0')
11800 {
11801 int i, syscall_number;
11802 char *endptr;
11803 char cur_name[128];
11804 struct syscall s;
11805
11806 /* Skip whitespace. */
11807 arg = skip_spaces (arg);
11808
11809 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11810 cur_name[i] = arg[i];
11811 cur_name[i] = '\0';
11812 arg += i;
11813
11814 /* Check if the user provided a syscall name or a number. */
11815 syscall_number = (int) strtol (cur_name, &endptr, 0);
11816 if (*endptr == '\0')
11817 get_syscall_by_number (syscall_number, &s);
11818 else
11819 {
11820 /* We have a name. Let's check if it's valid and convert it
11821 to a number. */
11822 get_syscall_by_name (cur_name, &s);
11823
11824 if (s.number == UNKNOWN_SYSCALL)
11825 /* Here we have to issue an error instead of a warning,
11826 because GDB cannot do anything useful if there's no
11827 syscall number to be caught. */
11828 error (_("Unknown syscall name '%s'."), cur_name);
11829 }
11830
11831 /* Ok, it's valid. */
11832 VEC_safe_push (int, result, s.number);
11833 }
11834
11835 discard_cleanups (cleanup);
11836 return result;
11837 }
11838
11839 /* Implement the "catch syscall" command. */
11840
11841 static void
11842 catch_syscall_command_1 (char *arg, int from_tty,
11843 struct cmd_list_element *command)
11844 {
11845 int tempflag;
11846 VEC(int) *filter;
11847 struct syscall s;
11848 struct gdbarch *gdbarch = get_current_arch ();
11849
11850 /* Checking if the feature if supported. */
11851 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11852 error (_("The feature 'catch syscall' is not supported on \
11853 this architecture yet."));
11854
11855 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11856
11857 arg = skip_spaces (arg);
11858
11859 /* We need to do this first "dummy" translation in order
11860 to get the syscall XML file loaded or, most important,
11861 to display a warning to the user if there's no XML file
11862 for his/her architecture. */
11863 get_syscall_by_number (0, &s);
11864
11865 /* The allowed syntax is:
11866 catch syscall
11867 catch syscall <name | number> [<name | number> ... <name | number>]
11868
11869 Let's check if there's a syscall name. */
11870
11871 if (arg != NULL)
11872 filter = catch_syscall_split_args (arg);
11873 else
11874 filter = NULL;
11875
11876 create_syscall_event_catchpoint (tempflag, filter,
11877 &catch_syscall_breakpoint_ops);
11878 }
11879
11880 static void
11881 catch_command (char *arg, int from_tty)
11882 {
11883 error (_("Catch requires an event name."));
11884 }
11885 \f
11886
11887 static void
11888 tcatch_command (char *arg, int from_tty)
11889 {
11890 error (_("Catch requires an event name."));
11891 }
11892
11893 /* A qsort comparison function that sorts breakpoints in order. */
11894
11895 static int
11896 compare_breakpoints (const void *a, const void *b)
11897 {
11898 const breakpoint_p *ba = a;
11899 uintptr_t ua = (uintptr_t) *ba;
11900 const breakpoint_p *bb = b;
11901 uintptr_t ub = (uintptr_t) *bb;
11902
11903 if ((*ba)->number < (*bb)->number)
11904 return -1;
11905 else if ((*ba)->number > (*bb)->number)
11906 return 1;
11907
11908 /* Now sort by address, in case we see, e..g, two breakpoints with
11909 the number 0. */
11910 if (ua < ub)
11911 return -1;
11912 return ua > ub ? 1 : 0;
11913 }
11914
11915 /* Delete breakpoints by address or line. */
11916
11917 static void
11918 clear_command (char *arg, int from_tty)
11919 {
11920 struct breakpoint *b, *prev;
11921 VEC(breakpoint_p) *found = 0;
11922 int ix;
11923 int default_match;
11924 struct symtabs_and_lines sals;
11925 struct symtab_and_line sal;
11926 int i;
11927 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11928
11929 if (arg)
11930 {
11931 sals = decode_line_with_current_source (arg,
11932 (DECODE_LINE_FUNFIRSTLINE
11933 | DECODE_LINE_LIST_MODE));
11934 make_cleanup (xfree, sals.sals);
11935 default_match = 0;
11936 }
11937 else
11938 {
11939 sals.sals = (struct symtab_and_line *)
11940 xmalloc (sizeof (struct symtab_and_line));
11941 make_cleanup (xfree, sals.sals);
11942 init_sal (&sal); /* Initialize to zeroes. */
11943
11944 /* Set sal's line, symtab, pc, and pspace to the values
11945 corresponding to the last call to print_frame_info. If the
11946 codepoint is not valid, this will set all the fields to 0. */
11947 get_last_displayed_sal (&sal);
11948 if (sal.symtab == 0)
11949 error (_("No source file specified."));
11950
11951 sals.sals[0] = sal;
11952 sals.nelts = 1;
11953
11954 default_match = 1;
11955 }
11956
11957 /* We don't call resolve_sal_pc here. That's not as bad as it
11958 seems, because all existing breakpoints typically have both
11959 file/line and pc set. So, if clear is given file/line, we can
11960 match this to existing breakpoint without obtaining pc at all.
11961
11962 We only support clearing given the address explicitly
11963 present in breakpoint table. Say, we've set breakpoint
11964 at file:line. There were several PC values for that file:line,
11965 due to optimization, all in one block.
11966
11967 We've picked one PC value. If "clear" is issued with another
11968 PC corresponding to the same file:line, the breakpoint won't
11969 be cleared. We probably can still clear the breakpoint, but
11970 since the other PC value is never presented to user, user
11971 can only find it by guessing, and it does not seem important
11972 to support that. */
11973
11974 /* For each line spec given, delete bps which correspond to it. Do
11975 it in two passes, solely to preserve the current behavior that
11976 from_tty is forced true if we delete more than one
11977 breakpoint. */
11978
11979 found = NULL;
11980 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11981 for (i = 0; i < sals.nelts; i++)
11982 {
11983 const char *sal_fullname;
11984
11985 /* If exact pc given, clear bpts at that pc.
11986 If line given (pc == 0), clear all bpts on specified line.
11987 If defaulting, clear all bpts on default line
11988 or at default pc.
11989
11990 defaulting sal.pc != 0 tests to do
11991
11992 0 1 pc
11993 1 1 pc _and_ line
11994 0 0 line
11995 1 0 <can't happen> */
11996
11997 sal = sals.sals[i];
11998 sal_fullname = (sal.symtab == NULL
11999 ? NULL : symtab_to_fullname (sal.symtab));
12000
12001 /* Find all matching breakpoints and add them to 'found'. */
12002 ALL_BREAKPOINTS (b)
12003 {
12004 int match = 0;
12005 /* Are we going to delete b? */
12006 if (b->type != bp_none && !is_watchpoint (b))
12007 {
12008 struct bp_location *loc = b->loc;
12009 for (; loc; loc = loc->next)
12010 {
12011 /* If the user specified file:line, don't allow a PC
12012 match. This matches historical gdb behavior. */
12013 int pc_match = (!sal.explicit_line
12014 && sal.pc
12015 && (loc->pspace == sal.pspace)
12016 && (loc->address == sal.pc)
12017 && (!section_is_overlay (loc->section)
12018 || loc->section == sal.section));
12019 int line_match = 0;
12020
12021 if ((default_match || sal.explicit_line)
12022 && loc->symtab != NULL
12023 && sal_fullname != NULL
12024 && sal.pspace == loc->pspace
12025 && loc->line_number == sal.line
12026 && filename_cmp (symtab_to_fullname (loc->symtab),
12027 sal_fullname) == 0)
12028 line_match = 1;
12029
12030 if (pc_match || line_match)
12031 {
12032 match = 1;
12033 break;
12034 }
12035 }
12036 }
12037
12038 if (match)
12039 VEC_safe_push(breakpoint_p, found, b);
12040 }
12041 }
12042
12043 /* Now go thru the 'found' chain and delete them. */
12044 if (VEC_empty(breakpoint_p, found))
12045 {
12046 if (arg)
12047 error (_("No breakpoint at %s."), arg);
12048 else
12049 error (_("No breakpoint at this line."));
12050 }
12051
12052 /* Remove duplicates from the vec. */
12053 qsort (VEC_address (breakpoint_p, found),
12054 VEC_length (breakpoint_p, found),
12055 sizeof (breakpoint_p),
12056 compare_breakpoints);
12057 prev = VEC_index (breakpoint_p, found, 0);
12058 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12059 {
12060 if (b == prev)
12061 {
12062 VEC_ordered_remove (breakpoint_p, found, ix);
12063 --ix;
12064 }
12065 }
12066
12067 if (VEC_length(breakpoint_p, found) > 1)
12068 from_tty = 1; /* Always report if deleted more than one. */
12069 if (from_tty)
12070 {
12071 if (VEC_length(breakpoint_p, found) == 1)
12072 printf_unfiltered (_("Deleted breakpoint "));
12073 else
12074 printf_unfiltered (_("Deleted breakpoints "));
12075 }
12076
12077 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12078 {
12079 if (from_tty)
12080 printf_unfiltered ("%d ", b->number);
12081 delete_breakpoint (b);
12082 }
12083 if (from_tty)
12084 putchar_unfiltered ('\n');
12085
12086 do_cleanups (cleanups);
12087 }
12088 \f
12089 /* Delete breakpoint in BS if they are `delete' breakpoints and
12090 all breakpoints that are marked for deletion, whether hit or not.
12091 This is called after any breakpoint is hit, or after errors. */
12092
12093 void
12094 breakpoint_auto_delete (bpstat bs)
12095 {
12096 struct breakpoint *b, *b_tmp;
12097
12098 for (; bs; bs = bs->next)
12099 if (bs->breakpoint_at
12100 && bs->breakpoint_at->disposition == disp_del
12101 && bs->stop)
12102 delete_breakpoint (bs->breakpoint_at);
12103
12104 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12105 {
12106 if (b->disposition == disp_del_at_next_stop)
12107 delete_breakpoint (b);
12108 }
12109 }
12110
12111 /* A comparison function for bp_location AP and BP being interfaced to
12112 qsort. Sort elements primarily by their ADDRESS (no matter what
12113 does breakpoint_address_is_meaningful say for its OWNER),
12114 secondarily by ordering first bp_permanent OWNERed elements and
12115 terciarily just ensuring the array is sorted stable way despite
12116 qsort being an unstable algorithm. */
12117
12118 static int
12119 bp_location_compare (const void *ap, const void *bp)
12120 {
12121 struct bp_location *a = *(void **) ap;
12122 struct bp_location *b = *(void **) bp;
12123 /* A and B come from existing breakpoints having non-NULL OWNER. */
12124 int a_perm = a->owner->enable_state == bp_permanent;
12125 int b_perm = b->owner->enable_state == bp_permanent;
12126
12127 if (a->address != b->address)
12128 return (a->address > b->address) - (a->address < b->address);
12129
12130 /* Sort locations at the same address by their pspace number, keeping
12131 locations of the same inferior (in a multi-inferior environment)
12132 grouped. */
12133
12134 if (a->pspace->num != b->pspace->num)
12135 return ((a->pspace->num > b->pspace->num)
12136 - (a->pspace->num < b->pspace->num));
12137
12138 /* Sort permanent breakpoints first. */
12139 if (a_perm != b_perm)
12140 return (a_perm < b_perm) - (a_perm > b_perm);
12141
12142 /* Make the internal GDB representation stable across GDB runs
12143 where A and B memory inside GDB can differ. Breakpoint locations of
12144 the same type at the same address can be sorted in arbitrary order. */
12145
12146 if (a->owner->number != b->owner->number)
12147 return ((a->owner->number > b->owner->number)
12148 - (a->owner->number < b->owner->number));
12149
12150 return (a > b) - (a < b);
12151 }
12152
12153 /* Set bp_location_placed_address_before_address_max and
12154 bp_location_shadow_len_after_address_max according to the current
12155 content of the bp_location array. */
12156
12157 static void
12158 bp_location_target_extensions_update (void)
12159 {
12160 struct bp_location *bl, **blp_tmp;
12161
12162 bp_location_placed_address_before_address_max = 0;
12163 bp_location_shadow_len_after_address_max = 0;
12164
12165 ALL_BP_LOCATIONS (bl, blp_tmp)
12166 {
12167 CORE_ADDR start, end, addr;
12168
12169 if (!bp_location_has_shadow (bl))
12170 continue;
12171
12172 start = bl->target_info.placed_address;
12173 end = start + bl->target_info.shadow_len;
12174
12175 gdb_assert (bl->address >= start);
12176 addr = bl->address - start;
12177 if (addr > bp_location_placed_address_before_address_max)
12178 bp_location_placed_address_before_address_max = addr;
12179
12180 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12181
12182 gdb_assert (bl->address < end);
12183 addr = end - bl->address;
12184 if (addr > bp_location_shadow_len_after_address_max)
12185 bp_location_shadow_len_after_address_max = addr;
12186 }
12187 }
12188
12189 /* Download tracepoint locations if they haven't been. */
12190
12191 static void
12192 download_tracepoint_locations (void)
12193 {
12194 struct breakpoint *b;
12195 struct cleanup *old_chain;
12196
12197 if (!target_can_download_tracepoint ())
12198 return;
12199
12200 old_chain = save_current_space_and_thread ();
12201
12202 ALL_TRACEPOINTS (b)
12203 {
12204 struct bp_location *bl;
12205 struct tracepoint *t;
12206 int bp_location_downloaded = 0;
12207
12208 if ((b->type == bp_fast_tracepoint
12209 ? !may_insert_fast_tracepoints
12210 : !may_insert_tracepoints))
12211 continue;
12212
12213 for (bl = b->loc; bl; bl = bl->next)
12214 {
12215 /* In tracepoint, locations are _never_ duplicated, so
12216 should_be_inserted is equivalent to
12217 unduplicated_should_be_inserted. */
12218 if (!should_be_inserted (bl) || bl->inserted)
12219 continue;
12220
12221 switch_to_program_space_and_thread (bl->pspace);
12222
12223 target_download_tracepoint (bl);
12224
12225 bl->inserted = 1;
12226 bp_location_downloaded = 1;
12227 }
12228 t = (struct tracepoint *) b;
12229 t->number_on_target = b->number;
12230 if (bp_location_downloaded)
12231 observer_notify_breakpoint_modified (b);
12232 }
12233
12234 do_cleanups (old_chain);
12235 }
12236
12237 /* Swap the insertion/duplication state between two locations. */
12238
12239 static void
12240 swap_insertion (struct bp_location *left, struct bp_location *right)
12241 {
12242 const int left_inserted = left->inserted;
12243 const int left_duplicate = left->duplicate;
12244 const int left_needs_update = left->needs_update;
12245 const struct bp_target_info left_target_info = left->target_info;
12246
12247 /* Locations of tracepoints can never be duplicated. */
12248 if (is_tracepoint (left->owner))
12249 gdb_assert (!left->duplicate);
12250 if (is_tracepoint (right->owner))
12251 gdb_assert (!right->duplicate);
12252
12253 left->inserted = right->inserted;
12254 left->duplicate = right->duplicate;
12255 left->needs_update = right->needs_update;
12256 left->target_info = right->target_info;
12257 right->inserted = left_inserted;
12258 right->duplicate = left_duplicate;
12259 right->needs_update = left_needs_update;
12260 right->target_info = left_target_info;
12261 }
12262
12263 /* Force the re-insertion of the locations at ADDRESS. This is called
12264 once a new/deleted/modified duplicate location is found and we are evaluating
12265 conditions on the target's side. Such conditions need to be updated on
12266 the target. */
12267
12268 static void
12269 force_breakpoint_reinsertion (struct bp_location *bl)
12270 {
12271 struct bp_location **locp = NULL, **loc2p;
12272 struct bp_location *loc;
12273 CORE_ADDR address = 0;
12274 int pspace_num;
12275
12276 address = bl->address;
12277 pspace_num = bl->pspace->num;
12278
12279 /* This is only meaningful if the target is
12280 evaluating conditions and if the user has
12281 opted for condition evaluation on the target's
12282 side. */
12283 if (gdb_evaluates_breakpoint_condition_p ()
12284 || !target_supports_evaluation_of_breakpoint_conditions ())
12285 return;
12286
12287 /* Flag all breakpoint locations with this address and
12288 the same program space as the location
12289 as "its condition has changed". We need to
12290 update the conditions on the target's side. */
12291 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12292 {
12293 loc = *loc2p;
12294
12295 if (!is_breakpoint (loc->owner)
12296 || pspace_num != loc->pspace->num)
12297 continue;
12298
12299 /* Flag the location appropriately. We use a different state to
12300 let everyone know that we already updated the set of locations
12301 with addr bl->address and program space bl->pspace. This is so
12302 we don't have to keep calling these functions just to mark locations
12303 that have already been marked. */
12304 loc->condition_changed = condition_updated;
12305
12306 /* Free the agent expression bytecode as well. We will compute
12307 it later on. */
12308 if (loc->cond_bytecode)
12309 {
12310 free_agent_expr (loc->cond_bytecode);
12311 loc->cond_bytecode = NULL;
12312 }
12313 }
12314 }
12315
12316 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12317 into the inferior, only remove already-inserted locations that no
12318 longer should be inserted. Functions that delete a breakpoint or
12319 breakpoints should pass false, so that deleting a breakpoint
12320 doesn't have the side effect of inserting the locations of other
12321 breakpoints that are marked not-inserted, but should_be_inserted
12322 returns true on them.
12323
12324 This behaviour is useful is situations close to tear-down -- e.g.,
12325 after an exec, while the target still has execution, but breakpoint
12326 shadows of the previous executable image should *NOT* be restored
12327 to the new image; or before detaching, where the target still has
12328 execution and wants to delete breakpoints from GDB's lists, and all
12329 breakpoints had already been removed from the inferior. */
12330
12331 static void
12332 update_global_location_list (int should_insert)
12333 {
12334 struct breakpoint *b;
12335 struct bp_location **locp, *loc;
12336 struct cleanup *cleanups;
12337 /* Last breakpoint location address that was marked for update. */
12338 CORE_ADDR last_addr = 0;
12339 /* Last breakpoint location program space that was marked for update. */
12340 int last_pspace_num = -1;
12341
12342 /* Used in the duplicates detection below. When iterating over all
12343 bp_locations, points to the first bp_location of a given address.
12344 Breakpoints and watchpoints of different types are never
12345 duplicates of each other. Keep one pointer for each type of
12346 breakpoint/watchpoint, so we only need to loop over all locations
12347 once. */
12348 struct bp_location *bp_loc_first; /* breakpoint */
12349 struct bp_location *wp_loc_first; /* hardware watchpoint */
12350 struct bp_location *awp_loc_first; /* access watchpoint */
12351 struct bp_location *rwp_loc_first; /* read watchpoint */
12352
12353 /* Saved former bp_location array which we compare against the newly
12354 built bp_location from the current state of ALL_BREAKPOINTS. */
12355 struct bp_location **old_location, **old_locp;
12356 unsigned old_location_count;
12357
12358 old_location = bp_location;
12359 old_location_count = bp_location_count;
12360 bp_location = NULL;
12361 bp_location_count = 0;
12362 cleanups = make_cleanup (xfree, old_location);
12363
12364 ALL_BREAKPOINTS (b)
12365 for (loc = b->loc; loc; loc = loc->next)
12366 bp_location_count++;
12367
12368 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12369 locp = bp_location;
12370 ALL_BREAKPOINTS (b)
12371 for (loc = b->loc; loc; loc = loc->next)
12372 *locp++ = loc;
12373 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12374 bp_location_compare);
12375
12376 bp_location_target_extensions_update ();
12377
12378 /* Identify bp_location instances that are no longer present in the
12379 new list, and therefore should be freed. Note that it's not
12380 necessary that those locations should be removed from inferior --
12381 if there's another location at the same address (previously
12382 marked as duplicate), we don't need to remove/insert the
12383 location.
12384
12385 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12386 and former bp_location array state respectively. */
12387
12388 locp = bp_location;
12389 for (old_locp = old_location; old_locp < old_location + old_location_count;
12390 old_locp++)
12391 {
12392 struct bp_location *old_loc = *old_locp;
12393 struct bp_location **loc2p;
12394
12395 /* Tells if 'old_loc' is found among the new locations. If
12396 not, we have to free it. */
12397 int found_object = 0;
12398 /* Tells if the location should remain inserted in the target. */
12399 int keep_in_target = 0;
12400 int removed = 0;
12401
12402 /* Skip LOCP entries which will definitely never be needed.
12403 Stop either at or being the one matching OLD_LOC. */
12404 while (locp < bp_location + bp_location_count
12405 && (*locp)->address < old_loc->address)
12406 locp++;
12407
12408 for (loc2p = locp;
12409 (loc2p < bp_location + bp_location_count
12410 && (*loc2p)->address == old_loc->address);
12411 loc2p++)
12412 {
12413 /* Check if this is a new/duplicated location or a duplicated
12414 location that had its condition modified. If so, we want to send
12415 its condition to the target if evaluation of conditions is taking
12416 place there. */
12417 if ((*loc2p)->condition_changed == condition_modified
12418 && (last_addr != old_loc->address
12419 || last_pspace_num != old_loc->pspace->num))
12420 {
12421 force_breakpoint_reinsertion (*loc2p);
12422 last_pspace_num = old_loc->pspace->num;
12423 }
12424
12425 if (*loc2p == old_loc)
12426 found_object = 1;
12427 }
12428
12429 /* We have already handled this address, update it so that we don't
12430 have to go through updates again. */
12431 last_addr = old_loc->address;
12432
12433 /* Target-side condition evaluation: Handle deleted locations. */
12434 if (!found_object)
12435 force_breakpoint_reinsertion (old_loc);
12436
12437 /* If this location is no longer present, and inserted, look if
12438 there's maybe a new location at the same address. If so,
12439 mark that one inserted, and don't remove this one. This is
12440 needed so that we don't have a time window where a breakpoint
12441 at certain location is not inserted. */
12442
12443 if (old_loc->inserted)
12444 {
12445 /* If the location is inserted now, we might have to remove
12446 it. */
12447
12448 if (found_object && should_be_inserted (old_loc))
12449 {
12450 /* The location is still present in the location list,
12451 and still should be inserted. Don't do anything. */
12452 keep_in_target = 1;
12453 }
12454 else
12455 {
12456 /* This location still exists, but it won't be kept in the
12457 target since it may have been disabled. We proceed to
12458 remove its target-side condition. */
12459
12460 /* The location is either no longer present, or got
12461 disabled. See if there's another location at the
12462 same address, in which case we don't need to remove
12463 this one from the target. */
12464
12465 /* OLD_LOC comes from existing struct breakpoint. */
12466 if (breakpoint_address_is_meaningful (old_loc->owner))
12467 {
12468 for (loc2p = locp;
12469 (loc2p < bp_location + bp_location_count
12470 && (*loc2p)->address == old_loc->address);
12471 loc2p++)
12472 {
12473 struct bp_location *loc2 = *loc2p;
12474
12475 if (breakpoint_locations_match (loc2, old_loc))
12476 {
12477 /* Read watchpoint locations are switched to
12478 access watchpoints, if the former are not
12479 supported, but the latter are. */
12480 if (is_hardware_watchpoint (old_loc->owner))
12481 {
12482 gdb_assert (is_hardware_watchpoint (loc2->owner));
12483 loc2->watchpoint_type = old_loc->watchpoint_type;
12484 }
12485
12486 /* loc2 is a duplicated location. We need to check
12487 if it should be inserted in case it will be
12488 unduplicated. */
12489 if (loc2 != old_loc
12490 && unduplicated_should_be_inserted (loc2))
12491 {
12492 swap_insertion (old_loc, loc2);
12493 keep_in_target = 1;
12494 break;
12495 }
12496 }
12497 }
12498 }
12499 }
12500
12501 if (!keep_in_target)
12502 {
12503 if (remove_breakpoint (old_loc, mark_uninserted))
12504 {
12505 /* This is just about all we can do. We could keep
12506 this location on the global list, and try to
12507 remove it next time, but there's no particular
12508 reason why we will succeed next time.
12509
12510 Note that at this point, old_loc->owner is still
12511 valid, as delete_breakpoint frees the breakpoint
12512 only after calling us. */
12513 printf_filtered (_("warning: Error removing "
12514 "breakpoint %d\n"),
12515 old_loc->owner->number);
12516 }
12517 removed = 1;
12518 }
12519 }
12520
12521 if (!found_object)
12522 {
12523 if (removed && non_stop
12524 && breakpoint_address_is_meaningful (old_loc->owner)
12525 && !is_hardware_watchpoint (old_loc->owner))
12526 {
12527 /* This location was removed from the target. In
12528 non-stop mode, a race condition is possible where
12529 we've removed a breakpoint, but stop events for that
12530 breakpoint are already queued and will arrive later.
12531 We apply an heuristic to be able to distinguish such
12532 SIGTRAPs from other random SIGTRAPs: we keep this
12533 breakpoint location for a bit, and will retire it
12534 after we see some number of events. The theory here
12535 is that reporting of events should, "on the average",
12536 be fair, so after a while we'll see events from all
12537 threads that have anything of interest, and no longer
12538 need to keep this breakpoint location around. We
12539 don't hold locations forever so to reduce chances of
12540 mistaking a non-breakpoint SIGTRAP for a breakpoint
12541 SIGTRAP.
12542
12543 The heuristic failing can be disastrous on
12544 decr_pc_after_break targets.
12545
12546 On decr_pc_after_break targets, like e.g., x86-linux,
12547 if we fail to recognize a late breakpoint SIGTRAP,
12548 because events_till_retirement has reached 0 too
12549 soon, we'll fail to do the PC adjustment, and report
12550 a random SIGTRAP to the user. When the user resumes
12551 the inferior, it will most likely immediately crash
12552 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12553 corrupted, because of being resumed e.g., in the
12554 middle of a multi-byte instruction, or skipped a
12555 one-byte instruction. This was actually seen happen
12556 on native x86-linux, and should be less rare on
12557 targets that do not support new thread events, like
12558 remote, due to the heuristic depending on
12559 thread_count.
12560
12561 Mistaking a random SIGTRAP for a breakpoint trap
12562 causes similar symptoms (PC adjustment applied when
12563 it shouldn't), but then again, playing with SIGTRAPs
12564 behind the debugger's back is asking for trouble.
12565
12566 Since hardware watchpoint traps are always
12567 distinguishable from other traps, so we don't need to
12568 apply keep hardware watchpoint moribund locations
12569 around. We simply always ignore hardware watchpoint
12570 traps we can no longer explain. */
12571
12572 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12573 old_loc->owner = NULL;
12574
12575 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12576 }
12577 else
12578 {
12579 old_loc->owner = NULL;
12580 decref_bp_location (&old_loc);
12581 }
12582 }
12583 }
12584
12585 /* Rescan breakpoints at the same address and section, marking the
12586 first one as "first" and any others as "duplicates". This is so
12587 that the bpt instruction is only inserted once. If we have a
12588 permanent breakpoint at the same place as BPT, make that one the
12589 official one, and the rest as duplicates. Permanent breakpoints
12590 are sorted first for the same address.
12591
12592 Do the same for hardware watchpoints, but also considering the
12593 watchpoint's type (regular/access/read) and length. */
12594
12595 bp_loc_first = NULL;
12596 wp_loc_first = NULL;
12597 awp_loc_first = NULL;
12598 rwp_loc_first = NULL;
12599 ALL_BP_LOCATIONS (loc, locp)
12600 {
12601 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12602 non-NULL. */
12603 struct bp_location **loc_first_p;
12604 b = loc->owner;
12605
12606 if (!unduplicated_should_be_inserted (loc)
12607 || !breakpoint_address_is_meaningful (b)
12608 /* Don't detect duplicate for tracepoint locations because they are
12609 never duplicated. See the comments in field `duplicate' of
12610 `struct bp_location'. */
12611 || is_tracepoint (b))
12612 {
12613 /* Clear the condition modification flag. */
12614 loc->condition_changed = condition_unchanged;
12615 continue;
12616 }
12617
12618 /* Permanent breakpoint should always be inserted. */
12619 if (b->enable_state == bp_permanent && ! loc->inserted)
12620 internal_error (__FILE__, __LINE__,
12621 _("allegedly permanent breakpoint is not "
12622 "actually inserted"));
12623
12624 if (b->type == bp_hardware_watchpoint)
12625 loc_first_p = &wp_loc_first;
12626 else if (b->type == bp_read_watchpoint)
12627 loc_first_p = &rwp_loc_first;
12628 else if (b->type == bp_access_watchpoint)
12629 loc_first_p = &awp_loc_first;
12630 else
12631 loc_first_p = &bp_loc_first;
12632
12633 if (*loc_first_p == NULL
12634 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12635 || !breakpoint_locations_match (loc, *loc_first_p))
12636 {
12637 *loc_first_p = loc;
12638 loc->duplicate = 0;
12639
12640 if (is_breakpoint (loc->owner) && loc->condition_changed)
12641 {
12642 loc->needs_update = 1;
12643 /* Clear the condition modification flag. */
12644 loc->condition_changed = condition_unchanged;
12645 }
12646 continue;
12647 }
12648
12649
12650 /* This and the above ensure the invariant that the first location
12651 is not duplicated, and is the inserted one.
12652 All following are marked as duplicated, and are not inserted. */
12653 if (loc->inserted)
12654 swap_insertion (loc, *loc_first_p);
12655 loc->duplicate = 1;
12656
12657 /* Clear the condition modification flag. */
12658 loc->condition_changed = condition_unchanged;
12659
12660 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12661 && b->enable_state != bp_permanent)
12662 internal_error (__FILE__, __LINE__,
12663 _("another breakpoint was inserted on top of "
12664 "a permanent breakpoint"));
12665 }
12666
12667 if (breakpoints_always_inserted_mode ()
12668 && (have_live_inferiors ()
12669 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12670 {
12671 if (should_insert)
12672 insert_breakpoint_locations ();
12673 else
12674 {
12675 /* Though should_insert is false, we may need to update conditions
12676 on the target's side if it is evaluating such conditions. We
12677 only update conditions for locations that are marked
12678 "needs_update". */
12679 update_inserted_breakpoint_locations ();
12680 }
12681 }
12682
12683 if (should_insert)
12684 download_tracepoint_locations ();
12685
12686 do_cleanups (cleanups);
12687 }
12688
12689 void
12690 breakpoint_retire_moribund (void)
12691 {
12692 struct bp_location *loc;
12693 int ix;
12694
12695 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12696 if (--(loc->events_till_retirement) == 0)
12697 {
12698 decref_bp_location (&loc);
12699 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12700 --ix;
12701 }
12702 }
12703
12704 static void
12705 update_global_location_list_nothrow (int inserting)
12706 {
12707 volatile struct gdb_exception e;
12708
12709 TRY_CATCH (e, RETURN_MASK_ERROR)
12710 update_global_location_list (inserting);
12711 }
12712
12713 /* Clear BKP from a BPS. */
12714
12715 static void
12716 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12717 {
12718 bpstat bs;
12719
12720 for (bs = bps; bs; bs = bs->next)
12721 if (bs->breakpoint_at == bpt)
12722 {
12723 bs->breakpoint_at = NULL;
12724 bs->old_val = NULL;
12725 /* bs->commands will be freed later. */
12726 }
12727 }
12728
12729 /* Callback for iterate_over_threads. */
12730 static int
12731 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12732 {
12733 struct breakpoint *bpt = data;
12734
12735 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12736 return 0;
12737 }
12738
12739 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12740 callbacks. */
12741
12742 static void
12743 say_where (struct breakpoint *b)
12744 {
12745 struct value_print_options opts;
12746
12747 get_user_print_options (&opts);
12748
12749 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12750 single string. */
12751 if (b->loc == NULL)
12752 {
12753 printf_filtered (_(" (%s) pending."), b->addr_string);
12754 }
12755 else
12756 {
12757 if (opts.addressprint || b->loc->symtab == NULL)
12758 {
12759 printf_filtered (" at ");
12760 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12761 gdb_stdout);
12762 }
12763 if (b->loc->symtab != NULL)
12764 {
12765 /* If there is a single location, we can print the location
12766 more nicely. */
12767 if (b->loc->next == NULL)
12768 printf_filtered (": file %s, line %d.",
12769 symtab_to_filename_for_display (b->loc->symtab),
12770 b->loc->line_number);
12771 else
12772 /* This is not ideal, but each location may have a
12773 different file name, and this at least reflects the
12774 real situation somewhat. */
12775 printf_filtered (": %s.", b->addr_string);
12776 }
12777
12778 if (b->loc->next)
12779 {
12780 struct bp_location *loc = b->loc;
12781 int n = 0;
12782 for (; loc; loc = loc->next)
12783 ++n;
12784 printf_filtered (" (%d locations)", n);
12785 }
12786 }
12787 }
12788
12789 /* Default bp_location_ops methods. */
12790
12791 static void
12792 bp_location_dtor (struct bp_location *self)
12793 {
12794 xfree (self->cond);
12795 if (self->cond_bytecode)
12796 free_agent_expr (self->cond_bytecode);
12797 xfree (self->function_name);
12798
12799 VEC_free (agent_expr_p, self->target_info.conditions);
12800 VEC_free (agent_expr_p, self->target_info.tcommands);
12801 }
12802
12803 static const struct bp_location_ops bp_location_ops =
12804 {
12805 bp_location_dtor
12806 };
12807
12808 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12809 inherit from. */
12810
12811 static void
12812 base_breakpoint_dtor (struct breakpoint *self)
12813 {
12814 decref_counted_command_line (&self->commands);
12815 xfree (self->cond_string);
12816 xfree (self->extra_string);
12817 xfree (self->addr_string);
12818 xfree (self->filter);
12819 xfree (self->addr_string_range_end);
12820 }
12821
12822 static struct bp_location *
12823 base_breakpoint_allocate_location (struct breakpoint *self)
12824 {
12825 struct bp_location *loc;
12826
12827 loc = XNEW (struct bp_location);
12828 init_bp_location (loc, &bp_location_ops, self);
12829 return loc;
12830 }
12831
12832 static void
12833 base_breakpoint_re_set (struct breakpoint *b)
12834 {
12835 /* Nothing to re-set. */
12836 }
12837
12838 #define internal_error_pure_virtual_called() \
12839 gdb_assert_not_reached ("pure virtual function called")
12840
12841 static int
12842 base_breakpoint_insert_location (struct bp_location *bl)
12843 {
12844 internal_error_pure_virtual_called ();
12845 }
12846
12847 static int
12848 base_breakpoint_remove_location (struct bp_location *bl)
12849 {
12850 internal_error_pure_virtual_called ();
12851 }
12852
12853 static int
12854 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12855 struct address_space *aspace,
12856 CORE_ADDR bp_addr,
12857 const struct target_waitstatus *ws)
12858 {
12859 internal_error_pure_virtual_called ();
12860 }
12861
12862 static void
12863 base_breakpoint_check_status (bpstat bs)
12864 {
12865 /* Always stop. */
12866 }
12867
12868 /* A "works_in_software_mode" breakpoint_ops method that just internal
12869 errors. */
12870
12871 static int
12872 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12873 {
12874 internal_error_pure_virtual_called ();
12875 }
12876
12877 /* A "resources_needed" breakpoint_ops method that just internal
12878 errors. */
12879
12880 static int
12881 base_breakpoint_resources_needed (const struct bp_location *bl)
12882 {
12883 internal_error_pure_virtual_called ();
12884 }
12885
12886 static enum print_stop_action
12887 base_breakpoint_print_it (bpstat bs)
12888 {
12889 internal_error_pure_virtual_called ();
12890 }
12891
12892 static void
12893 base_breakpoint_print_one_detail (const struct breakpoint *self,
12894 struct ui_out *uiout)
12895 {
12896 /* nothing */
12897 }
12898
12899 static void
12900 base_breakpoint_print_mention (struct breakpoint *b)
12901 {
12902 internal_error_pure_virtual_called ();
12903 }
12904
12905 static void
12906 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12907 {
12908 internal_error_pure_virtual_called ();
12909 }
12910
12911 static void
12912 base_breakpoint_create_sals_from_address (char **arg,
12913 struct linespec_result *canonical,
12914 enum bptype type_wanted,
12915 char *addr_start,
12916 char **copy_arg)
12917 {
12918 internal_error_pure_virtual_called ();
12919 }
12920
12921 static void
12922 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12923 struct linespec_result *c,
12924 char *cond_string,
12925 char *extra_string,
12926 enum bptype type_wanted,
12927 enum bpdisp disposition,
12928 int thread,
12929 int task, int ignore_count,
12930 const struct breakpoint_ops *o,
12931 int from_tty, int enabled,
12932 int internal, unsigned flags)
12933 {
12934 internal_error_pure_virtual_called ();
12935 }
12936
12937 static void
12938 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12939 struct symtabs_and_lines *sals)
12940 {
12941 internal_error_pure_virtual_called ();
12942 }
12943
12944 /* The default 'explains_signal' method. */
12945
12946 static int
12947 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12948 {
12949 return 1;
12950 }
12951
12952 /* The default "after_condition_true" method. */
12953
12954 static void
12955 base_breakpoint_after_condition_true (struct bpstats *bs)
12956 {
12957 /* Nothing to do. */
12958 }
12959
12960 struct breakpoint_ops base_breakpoint_ops =
12961 {
12962 base_breakpoint_dtor,
12963 base_breakpoint_allocate_location,
12964 base_breakpoint_re_set,
12965 base_breakpoint_insert_location,
12966 base_breakpoint_remove_location,
12967 base_breakpoint_breakpoint_hit,
12968 base_breakpoint_check_status,
12969 base_breakpoint_resources_needed,
12970 base_breakpoint_works_in_software_mode,
12971 base_breakpoint_print_it,
12972 NULL,
12973 base_breakpoint_print_one_detail,
12974 base_breakpoint_print_mention,
12975 base_breakpoint_print_recreate,
12976 base_breakpoint_create_sals_from_address,
12977 base_breakpoint_create_breakpoints_sal,
12978 base_breakpoint_decode_linespec,
12979 base_breakpoint_explains_signal,
12980 base_breakpoint_after_condition_true,
12981 };
12982
12983 /* Default breakpoint_ops methods. */
12984
12985 static void
12986 bkpt_re_set (struct breakpoint *b)
12987 {
12988 /* FIXME: is this still reachable? */
12989 if (b->addr_string == NULL)
12990 {
12991 /* Anything without a string can't be re-set. */
12992 delete_breakpoint (b);
12993 return;
12994 }
12995
12996 breakpoint_re_set_default (b);
12997 }
12998
12999 static int
13000 bkpt_insert_location (struct bp_location *bl)
13001 {
13002 if (bl->loc_type == bp_loc_hardware_breakpoint)
13003 return target_insert_hw_breakpoint (bl->gdbarch,
13004 &bl->target_info);
13005 else
13006 return target_insert_breakpoint (bl->gdbarch,
13007 &bl->target_info);
13008 }
13009
13010 static int
13011 bkpt_remove_location (struct bp_location *bl)
13012 {
13013 if (bl->loc_type == bp_loc_hardware_breakpoint)
13014 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13015 else
13016 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13017 }
13018
13019 static int
13020 bkpt_breakpoint_hit (const struct bp_location *bl,
13021 struct address_space *aspace, CORE_ADDR bp_addr,
13022 const struct target_waitstatus *ws)
13023 {
13024 if (ws->kind != TARGET_WAITKIND_STOPPED
13025 || ws->value.sig != GDB_SIGNAL_TRAP)
13026 return 0;
13027
13028 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13029 aspace, bp_addr))
13030 return 0;
13031
13032 if (overlay_debugging /* unmapped overlay section */
13033 && section_is_overlay (bl->section)
13034 && !section_is_mapped (bl->section))
13035 return 0;
13036
13037 return 1;
13038 }
13039
13040 static int
13041 bkpt_resources_needed (const struct bp_location *bl)
13042 {
13043 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13044
13045 return 1;
13046 }
13047
13048 static enum print_stop_action
13049 bkpt_print_it (bpstat bs)
13050 {
13051 struct breakpoint *b;
13052 const struct bp_location *bl;
13053 int bp_temp;
13054 struct ui_out *uiout = current_uiout;
13055
13056 gdb_assert (bs->bp_location_at != NULL);
13057
13058 bl = bs->bp_location_at;
13059 b = bs->breakpoint_at;
13060
13061 bp_temp = b->disposition == disp_del;
13062 if (bl->address != bl->requested_address)
13063 breakpoint_adjustment_warning (bl->requested_address,
13064 bl->address,
13065 b->number, 1);
13066 annotate_breakpoint (b->number);
13067 if (bp_temp)
13068 ui_out_text (uiout, "\nTemporary breakpoint ");
13069 else
13070 ui_out_text (uiout, "\nBreakpoint ");
13071 if (ui_out_is_mi_like_p (uiout))
13072 {
13073 ui_out_field_string (uiout, "reason",
13074 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13075 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13076 }
13077 ui_out_field_int (uiout, "bkptno", b->number);
13078 ui_out_text (uiout, ", ");
13079
13080 return PRINT_SRC_AND_LOC;
13081 }
13082
13083 static void
13084 bkpt_print_mention (struct breakpoint *b)
13085 {
13086 if (ui_out_is_mi_like_p (current_uiout))
13087 return;
13088
13089 switch (b->type)
13090 {
13091 case bp_breakpoint:
13092 case bp_gnu_ifunc_resolver:
13093 if (b->disposition == disp_del)
13094 printf_filtered (_("Temporary breakpoint"));
13095 else
13096 printf_filtered (_("Breakpoint"));
13097 printf_filtered (_(" %d"), b->number);
13098 if (b->type == bp_gnu_ifunc_resolver)
13099 printf_filtered (_(" at gnu-indirect-function resolver"));
13100 break;
13101 case bp_hardware_breakpoint:
13102 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13103 break;
13104 case bp_dprintf:
13105 printf_filtered (_("Dprintf %d"), b->number);
13106 break;
13107 }
13108
13109 say_where (b);
13110 }
13111
13112 static void
13113 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13114 {
13115 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13116 fprintf_unfiltered (fp, "tbreak");
13117 else if (tp->type == bp_breakpoint)
13118 fprintf_unfiltered (fp, "break");
13119 else if (tp->type == bp_hardware_breakpoint
13120 && tp->disposition == disp_del)
13121 fprintf_unfiltered (fp, "thbreak");
13122 else if (tp->type == bp_hardware_breakpoint)
13123 fprintf_unfiltered (fp, "hbreak");
13124 else
13125 internal_error (__FILE__, __LINE__,
13126 _("unhandled breakpoint type %d"), (int) tp->type);
13127
13128 fprintf_unfiltered (fp, " %s", tp->addr_string);
13129 print_recreate_thread (tp, fp);
13130 }
13131
13132 static void
13133 bkpt_create_sals_from_address (char **arg,
13134 struct linespec_result *canonical,
13135 enum bptype type_wanted,
13136 char *addr_start, char **copy_arg)
13137 {
13138 create_sals_from_address_default (arg, canonical, type_wanted,
13139 addr_start, copy_arg);
13140 }
13141
13142 static void
13143 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13144 struct linespec_result *canonical,
13145 char *cond_string,
13146 char *extra_string,
13147 enum bptype type_wanted,
13148 enum bpdisp disposition,
13149 int thread,
13150 int task, int ignore_count,
13151 const struct breakpoint_ops *ops,
13152 int from_tty, int enabled,
13153 int internal, unsigned flags)
13154 {
13155 create_breakpoints_sal_default (gdbarch, canonical,
13156 cond_string, extra_string,
13157 type_wanted,
13158 disposition, thread, task,
13159 ignore_count, ops, from_tty,
13160 enabled, internal, flags);
13161 }
13162
13163 static void
13164 bkpt_decode_linespec (struct breakpoint *b, char **s,
13165 struct symtabs_and_lines *sals)
13166 {
13167 decode_linespec_default (b, s, sals);
13168 }
13169
13170 /* Virtual table for internal breakpoints. */
13171
13172 static void
13173 internal_bkpt_re_set (struct breakpoint *b)
13174 {
13175 switch (b->type)
13176 {
13177 /* Delete overlay event and longjmp master breakpoints; they
13178 will be reset later by breakpoint_re_set. */
13179 case bp_overlay_event:
13180 case bp_longjmp_master:
13181 case bp_std_terminate_master:
13182 case bp_exception_master:
13183 delete_breakpoint (b);
13184 break;
13185
13186 /* This breakpoint is special, it's set up when the inferior
13187 starts and we really don't want to touch it. */
13188 case bp_shlib_event:
13189
13190 /* Like bp_shlib_event, this breakpoint type is special. Once
13191 it is set up, we do not want to touch it. */
13192 case bp_thread_event:
13193 break;
13194 }
13195 }
13196
13197 static void
13198 internal_bkpt_check_status (bpstat bs)
13199 {
13200 if (bs->breakpoint_at->type == bp_shlib_event)
13201 {
13202 /* If requested, stop when the dynamic linker notifies GDB of
13203 events. This allows the user to get control and place
13204 breakpoints in initializer routines for dynamically loaded
13205 objects (among other things). */
13206 bs->stop = stop_on_solib_events;
13207 bs->print = stop_on_solib_events;
13208 }
13209 else
13210 bs->stop = 0;
13211 }
13212
13213 static enum print_stop_action
13214 internal_bkpt_print_it (bpstat bs)
13215 {
13216 struct breakpoint *b;
13217
13218 b = bs->breakpoint_at;
13219
13220 switch (b->type)
13221 {
13222 case bp_shlib_event:
13223 /* Did we stop because the user set the stop_on_solib_events
13224 variable? (If so, we report this as a generic, "Stopped due
13225 to shlib event" message.) */
13226 print_solib_event (0);
13227 break;
13228
13229 case bp_thread_event:
13230 /* Not sure how we will get here.
13231 GDB should not stop for these breakpoints. */
13232 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13233 break;
13234
13235 case bp_overlay_event:
13236 /* By analogy with the thread event, GDB should not stop for these. */
13237 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13238 break;
13239
13240 case bp_longjmp_master:
13241 /* These should never be enabled. */
13242 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13243 break;
13244
13245 case bp_std_terminate_master:
13246 /* These should never be enabled. */
13247 printf_filtered (_("std::terminate Master Breakpoint: "
13248 "gdb should not stop!\n"));
13249 break;
13250
13251 case bp_exception_master:
13252 /* These should never be enabled. */
13253 printf_filtered (_("Exception Master Breakpoint: "
13254 "gdb should not stop!\n"));
13255 break;
13256 }
13257
13258 return PRINT_NOTHING;
13259 }
13260
13261 static void
13262 internal_bkpt_print_mention (struct breakpoint *b)
13263 {
13264 /* Nothing to mention. These breakpoints are internal. */
13265 }
13266
13267 /* Virtual table for momentary breakpoints */
13268
13269 static void
13270 momentary_bkpt_re_set (struct breakpoint *b)
13271 {
13272 /* Keep temporary breakpoints, which can be encountered when we step
13273 over a dlopen call and solib_add is resetting the breakpoints.
13274 Otherwise these should have been blown away via the cleanup chain
13275 or by breakpoint_init_inferior when we rerun the executable. */
13276 }
13277
13278 static void
13279 momentary_bkpt_check_status (bpstat bs)
13280 {
13281 /* Nothing. The point of these breakpoints is causing a stop. */
13282 }
13283
13284 static enum print_stop_action
13285 momentary_bkpt_print_it (bpstat bs)
13286 {
13287 struct ui_out *uiout = current_uiout;
13288
13289 if (ui_out_is_mi_like_p (uiout))
13290 {
13291 struct breakpoint *b = bs->breakpoint_at;
13292
13293 switch (b->type)
13294 {
13295 case bp_finish:
13296 ui_out_field_string
13297 (uiout, "reason",
13298 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13299 break;
13300
13301 case bp_until:
13302 ui_out_field_string
13303 (uiout, "reason",
13304 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13305 break;
13306 }
13307 }
13308
13309 return PRINT_UNKNOWN;
13310 }
13311
13312 static void
13313 momentary_bkpt_print_mention (struct breakpoint *b)
13314 {
13315 /* Nothing to mention. These breakpoints are internal. */
13316 }
13317
13318 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13319
13320 It gets cleared already on the removal of the first one of such placed
13321 breakpoints. This is OK as they get all removed altogether. */
13322
13323 static void
13324 longjmp_bkpt_dtor (struct breakpoint *self)
13325 {
13326 struct thread_info *tp = find_thread_id (self->thread);
13327
13328 if (tp)
13329 tp->initiating_frame = null_frame_id;
13330
13331 momentary_breakpoint_ops.dtor (self);
13332 }
13333
13334 /* Specific methods for probe breakpoints. */
13335
13336 static int
13337 bkpt_probe_insert_location (struct bp_location *bl)
13338 {
13339 int v = bkpt_insert_location (bl);
13340
13341 if (v == 0)
13342 {
13343 /* The insertion was successful, now let's set the probe's semaphore
13344 if needed. */
13345 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13346 bl->probe.objfile,
13347 bl->gdbarch);
13348 }
13349
13350 return v;
13351 }
13352
13353 static int
13354 bkpt_probe_remove_location (struct bp_location *bl)
13355 {
13356 /* Let's clear the semaphore before removing the location. */
13357 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13358 bl->probe.objfile,
13359 bl->gdbarch);
13360
13361 return bkpt_remove_location (bl);
13362 }
13363
13364 static void
13365 bkpt_probe_create_sals_from_address (char **arg,
13366 struct linespec_result *canonical,
13367 enum bptype type_wanted,
13368 char *addr_start, char **copy_arg)
13369 {
13370 struct linespec_sals lsal;
13371
13372 lsal.sals = parse_probes (arg, canonical);
13373
13374 *copy_arg = xstrdup (canonical->addr_string);
13375 lsal.canonical = xstrdup (*copy_arg);
13376
13377 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13378 }
13379
13380 static void
13381 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13382 struct symtabs_and_lines *sals)
13383 {
13384 *sals = parse_probes (s, NULL);
13385 if (!sals->sals)
13386 error (_("probe not found"));
13387 }
13388
13389 /* The breakpoint_ops structure to be used in tracepoints. */
13390
13391 static void
13392 tracepoint_re_set (struct breakpoint *b)
13393 {
13394 breakpoint_re_set_default (b);
13395 }
13396
13397 static int
13398 tracepoint_breakpoint_hit (const struct bp_location *bl,
13399 struct address_space *aspace, CORE_ADDR bp_addr,
13400 const struct target_waitstatus *ws)
13401 {
13402 /* By definition, the inferior does not report stops at
13403 tracepoints. */
13404 return 0;
13405 }
13406
13407 static void
13408 tracepoint_print_one_detail (const struct breakpoint *self,
13409 struct ui_out *uiout)
13410 {
13411 struct tracepoint *tp = (struct tracepoint *) self;
13412 if (tp->static_trace_marker_id)
13413 {
13414 gdb_assert (self->type == bp_static_tracepoint);
13415
13416 ui_out_text (uiout, "\tmarker id is ");
13417 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13418 tp->static_trace_marker_id);
13419 ui_out_text (uiout, "\n");
13420 }
13421 }
13422
13423 static void
13424 tracepoint_print_mention (struct breakpoint *b)
13425 {
13426 if (ui_out_is_mi_like_p (current_uiout))
13427 return;
13428
13429 switch (b->type)
13430 {
13431 case bp_tracepoint:
13432 printf_filtered (_("Tracepoint"));
13433 printf_filtered (_(" %d"), b->number);
13434 break;
13435 case bp_fast_tracepoint:
13436 printf_filtered (_("Fast tracepoint"));
13437 printf_filtered (_(" %d"), b->number);
13438 break;
13439 case bp_static_tracepoint:
13440 printf_filtered (_("Static tracepoint"));
13441 printf_filtered (_(" %d"), b->number);
13442 break;
13443 default:
13444 internal_error (__FILE__, __LINE__,
13445 _("unhandled tracepoint type %d"), (int) b->type);
13446 }
13447
13448 say_where (b);
13449 }
13450
13451 static void
13452 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13453 {
13454 struct tracepoint *tp = (struct tracepoint *) self;
13455
13456 if (self->type == bp_fast_tracepoint)
13457 fprintf_unfiltered (fp, "ftrace");
13458 if (self->type == bp_static_tracepoint)
13459 fprintf_unfiltered (fp, "strace");
13460 else if (self->type == bp_tracepoint)
13461 fprintf_unfiltered (fp, "trace");
13462 else
13463 internal_error (__FILE__, __LINE__,
13464 _("unhandled tracepoint type %d"), (int) self->type);
13465
13466 fprintf_unfiltered (fp, " %s", self->addr_string);
13467 print_recreate_thread (self, fp);
13468
13469 if (tp->pass_count)
13470 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13471 }
13472
13473 static void
13474 tracepoint_create_sals_from_address (char **arg,
13475 struct linespec_result *canonical,
13476 enum bptype type_wanted,
13477 char *addr_start, char **copy_arg)
13478 {
13479 create_sals_from_address_default (arg, canonical, type_wanted,
13480 addr_start, copy_arg);
13481 }
13482
13483 static void
13484 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13485 struct linespec_result *canonical,
13486 char *cond_string,
13487 char *extra_string,
13488 enum bptype type_wanted,
13489 enum bpdisp disposition,
13490 int thread,
13491 int task, int ignore_count,
13492 const struct breakpoint_ops *ops,
13493 int from_tty, int enabled,
13494 int internal, unsigned flags)
13495 {
13496 create_breakpoints_sal_default (gdbarch, canonical,
13497 cond_string, extra_string,
13498 type_wanted,
13499 disposition, thread, task,
13500 ignore_count, ops, from_tty,
13501 enabled, internal, flags);
13502 }
13503
13504 static void
13505 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13506 struct symtabs_and_lines *sals)
13507 {
13508 decode_linespec_default (b, s, sals);
13509 }
13510
13511 struct breakpoint_ops tracepoint_breakpoint_ops;
13512
13513 /* The breakpoint_ops structure to be use on tracepoints placed in a
13514 static probe. */
13515
13516 static void
13517 tracepoint_probe_create_sals_from_address (char **arg,
13518 struct linespec_result *canonical,
13519 enum bptype type_wanted,
13520 char *addr_start, char **copy_arg)
13521 {
13522 /* We use the same method for breakpoint on probes. */
13523 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13524 addr_start, copy_arg);
13525 }
13526
13527 static void
13528 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13529 struct symtabs_and_lines *sals)
13530 {
13531 /* We use the same method for breakpoint on probes. */
13532 bkpt_probe_decode_linespec (b, s, sals);
13533 }
13534
13535 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13536
13537 /* Dprintf breakpoint_ops methods. */
13538
13539 static void
13540 dprintf_re_set (struct breakpoint *b)
13541 {
13542 breakpoint_re_set_default (b);
13543
13544 /* This breakpoint could have been pending, and be resolved now, and
13545 if so, we should now have the extra string. If we don't, the
13546 dprintf was malformed when created, but we couldn't tell because
13547 we can't extract the extra string until the location is
13548 resolved. */
13549 if (b->loc != NULL && b->extra_string == NULL)
13550 error (_("Format string required"));
13551
13552 /* 1 - connect to target 1, that can run breakpoint commands.
13553 2 - create a dprintf, which resolves fine.
13554 3 - disconnect from target 1
13555 4 - connect to target 2, that can NOT run breakpoint commands.
13556
13557 After steps #3/#4, you'll want the dprintf command list to
13558 be updated, because target 1 and 2 may well return different
13559 answers for target_can_run_breakpoint_commands().
13560 Given absence of finer grained resetting, we get to do
13561 it all the time. */
13562 if (b->extra_string != NULL)
13563 update_dprintf_command_list (b);
13564 }
13565
13566 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13567
13568 static void
13569 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13570 {
13571 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13572 tp->extra_string);
13573 print_recreate_thread (tp, fp);
13574 }
13575
13576 /* Implement the "after_condition_true" breakpoint_ops method for
13577 dprintf.
13578
13579 dprintf's are implemented with regular commands in their command
13580 list, but we run the commands here instead of before presenting the
13581 stop to the user, as dprintf's don't actually cause a stop. This
13582 also makes it so that the commands of multiple dprintfs at the same
13583 address are all handled. */
13584
13585 static void
13586 dprintf_after_condition_true (struct bpstats *bs)
13587 {
13588 struct cleanup *old_chain;
13589 struct bpstats tmp_bs = { NULL };
13590 struct bpstats *tmp_bs_p = &tmp_bs;
13591
13592 /* dprintf's never cause a stop. This wasn't set in the
13593 check_status hook instead because that would make the dprintf's
13594 condition not be evaluated. */
13595 bs->stop = 0;
13596
13597 /* Run the command list here. Take ownership of it instead of
13598 copying. We never want these commands to run later in
13599 bpstat_do_actions, if a breakpoint that causes a stop happens to
13600 be set at same address as this dprintf, or even if running the
13601 commands here throws. */
13602 tmp_bs.commands = bs->commands;
13603 bs->commands = NULL;
13604 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13605
13606 bpstat_do_actions_1 (&tmp_bs_p);
13607
13608 /* 'tmp_bs.commands' will usually be NULL by now, but
13609 bpstat_do_actions_1 may return early without processing the whole
13610 list. */
13611 do_cleanups (old_chain);
13612 }
13613
13614 /* The breakpoint_ops structure to be used on static tracepoints with
13615 markers (`-m'). */
13616
13617 static void
13618 strace_marker_create_sals_from_address (char **arg,
13619 struct linespec_result *canonical,
13620 enum bptype type_wanted,
13621 char *addr_start, char **copy_arg)
13622 {
13623 struct linespec_sals lsal;
13624
13625 lsal.sals = decode_static_tracepoint_spec (arg);
13626
13627 *copy_arg = savestring (addr_start, *arg - addr_start);
13628
13629 canonical->addr_string = xstrdup (*copy_arg);
13630 lsal.canonical = xstrdup (*copy_arg);
13631 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13632 }
13633
13634 static void
13635 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13636 struct linespec_result *canonical,
13637 char *cond_string,
13638 char *extra_string,
13639 enum bptype type_wanted,
13640 enum bpdisp disposition,
13641 int thread,
13642 int task, int ignore_count,
13643 const struct breakpoint_ops *ops,
13644 int from_tty, int enabled,
13645 int internal, unsigned flags)
13646 {
13647 int i;
13648 struct linespec_sals *lsal = VEC_index (linespec_sals,
13649 canonical->sals, 0);
13650
13651 /* If the user is creating a static tracepoint by marker id
13652 (strace -m MARKER_ID), then store the sals index, so that
13653 breakpoint_re_set can try to match up which of the newly
13654 found markers corresponds to this one, and, don't try to
13655 expand multiple locations for each sal, given than SALS
13656 already should contain all sals for MARKER_ID. */
13657
13658 for (i = 0; i < lsal->sals.nelts; ++i)
13659 {
13660 struct symtabs_and_lines expanded;
13661 struct tracepoint *tp;
13662 struct cleanup *old_chain;
13663 char *addr_string;
13664
13665 expanded.nelts = 1;
13666 expanded.sals = &lsal->sals.sals[i];
13667
13668 addr_string = xstrdup (canonical->addr_string);
13669 old_chain = make_cleanup (xfree, addr_string);
13670
13671 tp = XCNEW (struct tracepoint);
13672 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13673 addr_string, NULL,
13674 cond_string, extra_string,
13675 type_wanted, disposition,
13676 thread, task, ignore_count, ops,
13677 from_tty, enabled, internal, flags,
13678 canonical->special_display);
13679 /* Given that its possible to have multiple markers with
13680 the same string id, if the user is creating a static
13681 tracepoint by marker id ("strace -m MARKER_ID"), then
13682 store the sals index, so that breakpoint_re_set can
13683 try to match up which of the newly found markers
13684 corresponds to this one */
13685 tp->static_trace_marker_id_idx = i;
13686
13687 install_breakpoint (internal, &tp->base, 0);
13688
13689 discard_cleanups (old_chain);
13690 }
13691 }
13692
13693 static void
13694 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13695 struct symtabs_and_lines *sals)
13696 {
13697 struct tracepoint *tp = (struct tracepoint *) b;
13698
13699 *sals = decode_static_tracepoint_spec (s);
13700 if (sals->nelts > tp->static_trace_marker_id_idx)
13701 {
13702 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13703 sals->nelts = 1;
13704 }
13705 else
13706 error (_("marker %s not found"), tp->static_trace_marker_id);
13707 }
13708
13709 static struct breakpoint_ops strace_marker_breakpoint_ops;
13710
13711 static int
13712 strace_marker_p (struct breakpoint *b)
13713 {
13714 return b->ops == &strace_marker_breakpoint_ops;
13715 }
13716
13717 /* Delete a breakpoint and clean up all traces of it in the data
13718 structures. */
13719
13720 void
13721 delete_breakpoint (struct breakpoint *bpt)
13722 {
13723 struct breakpoint *b;
13724
13725 gdb_assert (bpt != NULL);
13726
13727 /* Has this bp already been deleted? This can happen because
13728 multiple lists can hold pointers to bp's. bpstat lists are
13729 especial culprits.
13730
13731 One example of this happening is a watchpoint's scope bp. When
13732 the scope bp triggers, we notice that the watchpoint is out of
13733 scope, and delete it. We also delete its scope bp. But the
13734 scope bp is marked "auto-deleting", and is already on a bpstat.
13735 That bpstat is then checked for auto-deleting bp's, which are
13736 deleted.
13737
13738 A real solution to this problem might involve reference counts in
13739 bp's, and/or giving them pointers back to their referencing
13740 bpstat's, and teaching delete_breakpoint to only free a bp's
13741 storage when no more references were extent. A cheaper bandaid
13742 was chosen. */
13743 if (bpt->type == bp_none)
13744 return;
13745
13746 /* At least avoid this stale reference until the reference counting
13747 of breakpoints gets resolved. */
13748 if (bpt->related_breakpoint != bpt)
13749 {
13750 struct breakpoint *related;
13751 struct watchpoint *w;
13752
13753 if (bpt->type == bp_watchpoint_scope)
13754 w = (struct watchpoint *) bpt->related_breakpoint;
13755 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13756 w = (struct watchpoint *) bpt;
13757 else
13758 w = NULL;
13759 if (w != NULL)
13760 watchpoint_del_at_next_stop (w);
13761
13762 /* Unlink bpt from the bpt->related_breakpoint ring. */
13763 for (related = bpt; related->related_breakpoint != bpt;
13764 related = related->related_breakpoint);
13765 related->related_breakpoint = bpt->related_breakpoint;
13766 bpt->related_breakpoint = bpt;
13767 }
13768
13769 /* watch_command_1 creates a watchpoint but only sets its number if
13770 update_watchpoint succeeds in creating its bp_locations. If there's
13771 a problem in that process, we'll be asked to delete the half-created
13772 watchpoint. In that case, don't announce the deletion. */
13773 if (bpt->number)
13774 observer_notify_breakpoint_deleted (bpt);
13775
13776 if (breakpoint_chain == bpt)
13777 breakpoint_chain = bpt->next;
13778
13779 ALL_BREAKPOINTS (b)
13780 if (b->next == bpt)
13781 {
13782 b->next = bpt->next;
13783 break;
13784 }
13785
13786 /* Be sure no bpstat's are pointing at the breakpoint after it's
13787 been freed. */
13788 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13789 in all threads for now. Note that we cannot just remove bpstats
13790 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13791 commands are associated with the bpstat; if we remove it here,
13792 then the later call to bpstat_do_actions (&stop_bpstat); in
13793 event-top.c won't do anything, and temporary breakpoints with
13794 commands won't work. */
13795
13796 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13797
13798 /* Now that breakpoint is removed from breakpoint list, update the
13799 global location list. This will remove locations that used to
13800 belong to this breakpoint. Do this before freeing the breakpoint
13801 itself, since remove_breakpoint looks at location's owner. It
13802 might be better design to have location completely
13803 self-contained, but it's not the case now. */
13804 update_global_location_list (0);
13805
13806 bpt->ops->dtor (bpt);
13807 /* On the chance that someone will soon try again to delete this
13808 same bp, we mark it as deleted before freeing its storage. */
13809 bpt->type = bp_none;
13810 xfree (bpt);
13811 }
13812
13813 static void
13814 do_delete_breakpoint_cleanup (void *b)
13815 {
13816 delete_breakpoint (b);
13817 }
13818
13819 struct cleanup *
13820 make_cleanup_delete_breakpoint (struct breakpoint *b)
13821 {
13822 return make_cleanup (do_delete_breakpoint_cleanup, b);
13823 }
13824
13825 /* Iterator function to call a user-provided callback function once
13826 for each of B and its related breakpoints. */
13827
13828 static void
13829 iterate_over_related_breakpoints (struct breakpoint *b,
13830 void (*function) (struct breakpoint *,
13831 void *),
13832 void *data)
13833 {
13834 struct breakpoint *related;
13835
13836 related = b;
13837 do
13838 {
13839 struct breakpoint *next;
13840
13841 /* FUNCTION may delete RELATED. */
13842 next = related->related_breakpoint;
13843
13844 if (next == related)
13845 {
13846 /* RELATED is the last ring entry. */
13847 function (related, data);
13848
13849 /* FUNCTION may have deleted it, so we'd never reach back to
13850 B. There's nothing left to do anyway, so just break
13851 out. */
13852 break;
13853 }
13854 else
13855 function (related, data);
13856
13857 related = next;
13858 }
13859 while (related != b);
13860 }
13861
13862 static void
13863 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13864 {
13865 delete_breakpoint (b);
13866 }
13867
13868 /* A callback for map_breakpoint_numbers that calls
13869 delete_breakpoint. */
13870
13871 static void
13872 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13873 {
13874 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13875 }
13876
13877 void
13878 delete_command (char *arg, int from_tty)
13879 {
13880 struct breakpoint *b, *b_tmp;
13881
13882 dont_repeat ();
13883
13884 if (arg == 0)
13885 {
13886 int breaks_to_delete = 0;
13887
13888 /* Delete all breakpoints if no argument. Do not delete
13889 internal breakpoints, these have to be deleted with an
13890 explicit breakpoint number argument. */
13891 ALL_BREAKPOINTS (b)
13892 if (user_breakpoint_p (b))
13893 {
13894 breaks_to_delete = 1;
13895 break;
13896 }
13897
13898 /* Ask user only if there are some breakpoints to delete. */
13899 if (!from_tty
13900 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13901 {
13902 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13903 if (user_breakpoint_p (b))
13904 delete_breakpoint (b);
13905 }
13906 }
13907 else
13908 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13909 }
13910
13911 static int
13912 all_locations_are_pending (struct bp_location *loc)
13913 {
13914 for (; loc; loc = loc->next)
13915 if (!loc->shlib_disabled
13916 && !loc->pspace->executing_startup)
13917 return 0;
13918 return 1;
13919 }
13920
13921 /* Subroutine of update_breakpoint_locations to simplify it.
13922 Return non-zero if multiple fns in list LOC have the same name.
13923 Null names are ignored. */
13924
13925 static int
13926 ambiguous_names_p (struct bp_location *loc)
13927 {
13928 struct bp_location *l;
13929 htab_t htab = htab_create_alloc (13, htab_hash_string,
13930 (int (*) (const void *,
13931 const void *)) streq,
13932 NULL, xcalloc, xfree);
13933
13934 for (l = loc; l != NULL; l = l->next)
13935 {
13936 const char **slot;
13937 const char *name = l->function_name;
13938
13939 /* Allow for some names to be NULL, ignore them. */
13940 if (name == NULL)
13941 continue;
13942
13943 slot = (const char **) htab_find_slot (htab, (const void *) name,
13944 INSERT);
13945 /* NOTE: We can assume slot != NULL here because xcalloc never
13946 returns NULL. */
13947 if (*slot != NULL)
13948 {
13949 htab_delete (htab);
13950 return 1;
13951 }
13952 *slot = name;
13953 }
13954
13955 htab_delete (htab);
13956 return 0;
13957 }
13958
13959 /* When symbols change, it probably means the sources changed as well,
13960 and it might mean the static tracepoint markers are no longer at
13961 the same address or line numbers they used to be at last we
13962 checked. Losing your static tracepoints whenever you rebuild is
13963 undesirable. This function tries to resync/rematch gdb static
13964 tracepoints with the markers on the target, for static tracepoints
13965 that have not been set by marker id. Static tracepoint that have
13966 been set by marker id are reset by marker id in breakpoint_re_set.
13967 The heuristic is:
13968
13969 1) For a tracepoint set at a specific address, look for a marker at
13970 the old PC. If one is found there, assume to be the same marker.
13971 If the name / string id of the marker found is different from the
13972 previous known name, assume that means the user renamed the marker
13973 in the sources, and output a warning.
13974
13975 2) For a tracepoint set at a given line number, look for a marker
13976 at the new address of the old line number. If one is found there,
13977 assume to be the same marker. If the name / string id of the
13978 marker found is different from the previous known name, assume that
13979 means the user renamed the marker in the sources, and output a
13980 warning.
13981
13982 3) If a marker is no longer found at the same address or line, it
13983 may mean the marker no longer exists. But it may also just mean
13984 the code changed a bit. Maybe the user added a few lines of code
13985 that made the marker move up or down (in line number terms). Ask
13986 the target for info about the marker with the string id as we knew
13987 it. If found, update line number and address in the matching
13988 static tracepoint. This will get confused if there's more than one
13989 marker with the same ID (possible in UST, although unadvised
13990 precisely because it confuses tools). */
13991
13992 static struct symtab_and_line
13993 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13994 {
13995 struct tracepoint *tp = (struct tracepoint *) b;
13996 struct static_tracepoint_marker marker;
13997 CORE_ADDR pc;
13998
13999 pc = sal.pc;
14000 if (sal.line)
14001 find_line_pc (sal.symtab, sal.line, &pc);
14002
14003 if (target_static_tracepoint_marker_at (pc, &marker))
14004 {
14005 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14006 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14007 b->number,
14008 tp->static_trace_marker_id, marker.str_id);
14009
14010 xfree (tp->static_trace_marker_id);
14011 tp->static_trace_marker_id = xstrdup (marker.str_id);
14012 release_static_tracepoint_marker (&marker);
14013
14014 return sal;
14015 }
14016
14017 /* Old marker wasn't found on target at lineno. Try looking it up
14018 by string ID. */
14019 if (!sal.explicit_pc
14020 && sal.line != 0
14021 && sal.symtab != NULL
14022 && tp->static_trace_marker_id != NULL)
14023 {
14024 VEC(static_tracepoint_marker_p) *markers;
14025
14026 markers
14027 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14028
14029 if (!VEC_empty(static_tracepoint_marker_p, markers))
14030 {
14031 struct symtab_and_line sal2;
14032 struct symbol *sym;
14033 struct static_tracepoint_marker *tpmarker;
14034 struct ui_out *uiout = current_uiout;
14035
14036 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14037
14038 xfree (tp->static_trace_marker_id);
14039 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14040
14041 warning (_("marker for static tracepoint %d (%s) not "
14042 "found at previous line number"),
14043 b->number, tp->static_trace_marker_id);
14044
14045 init_sal (&sal2);
14046
14047 sal2.pc = tpmarker->address;
14048
14049 sal2 = find_pc_line (tpmarker->address, 0);
14050 sym = find_pc_sect_function (tpmarker->address, NULL);
14051 ui_out_text (uiout, "Now in ");
14052 if (sym)
14053 {
14054 ui_out_field_string (uiout, "func",
14055 SYMBOL_PRINT_NAME (sym));
14056 ui_out_text (uiout, " at ");
14057 }
14058 ui_out_field_string (uiout, "file",
14059 symtab_to_filename_for_display (sal2.symtab));
14060 ui_out_text (uiout, ":");
14061
14062 if (ui_out_is_mi_like_p (uiout))
14063 {
14064 const char *fullname = symtab_to_fullname (sal2.symtab);
14065
14066 ui_out_field_string (uiout, "fullname", fullname);
14067 }
14068
14069 ui_out_field_int (uiout, "line", sal2.line);
14070 ui_out_text (uiout, "\n");
14071
14072 b->loc->line_number = sal2.line;
14073 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14074
14075 xfree (b->addr_string);
14076 b->addr_string = xstrprintf ("%s:%d",
14077 symtab_to_filename_for_display (sal2.symtab),
14078 b->loc->line_number);
14079
14080 /* Might be nice to check if function changed, and warn if
14081 so. */
14082
14083 release_static_tracepoint_marker (tpmarker);
14084 }
14085 }
14086 return sal;
14087 }
14088
14089 /* Returns 1 iff locations A and B are sufficiently same that
14090 we don't need to report breakpoint as changed. */
14091
14092 static int
14093 locations_are_equal (struct bp_location *a, struct bp_location *b)
14094 {
14095 while (a && b)
14096 {
14097 if (a->address != b->address)
14098 return 0;
14099
14100 if (a->shlib_disabled != b->shlib_disabled)
14101 return 0;
14102
14103 if (a->enabled != b->enabled)
14104 return 0;
14105
14106 a = a->next;
14107 b = b->next;
14108 }
14109
14110 if ((a == NULL) != (b == NULL))
14111 return 0;
14112
14113 return 1;
14114 }
14115
14116 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14117 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14118 a ranged breakpoint. */
14119
14120 void
14121 update_breakpoint_locations (struct breakpoint *b,
14122 struct symtabs_and_lines sals,
14123 struct symtabs_and_lines sals_end)
14124 {
14125 int i;
14126 struct bp_location *existing_locations = b->loc;
14127
14128 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14129 {
14130 /* Ranged breakpoints have only one start location and one end
14131 location. */
14132 b->enable_state = bp_disabled;
14133 update_global_location_list (1);
14134 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14135 "multiple locations found\n"),
14136 b->number);
14137 return;
14138 }
14139
14140 /* If there's no new locations, and all existing locations are
14141 pending, don't do anything. This optimizes the common case where
14142 all locations are in the same shared library, that was unloaded.
14143 We'd like to retain the location, so that when the library is
14144 loaded again, we don't loose the enabled/disabled status of the
14145 individual locations. */
14146 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14147 return;
14148
14149 b->loc = NULL;
14150
14151 for (i = 0; i < sals.nelts; ++i)
14152 {
14153 struct bp_location *new_loc;
14154
14155 switch_to_program_space_and_thread (sals.sals[i].pspace);
14156
14157 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14158
14159 /* Reparse conditions, they might contain references to the
14160 old symtab. */
14161 if (b->cond_string != NULL)
14162 {
14163 const char *s;
14164 volatile struct gdb_exception e;
14165
14166 s = b->cond_string;
14167 TRY_CATCH (e, RETURN_MASK_ERROR)
14168 {
14169 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14170 block_for_pc (sals.sals[i].pc),
14171 0);
14172 }
14173 if (e.reason < 0)
14174 {
14175 warning (_("failed to reevaluate condition "
14176 "for breakpoint %d: %s"),
14177 b->number, e.message);
14178 new_loc->enabled = 0;
14179 }
14180 }
14181
14182 if (sals_end.nelts)
14183 {
14184 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14185
14186 new_loc->length = end - sals.sals[0].pc + 1;
14187 }
14188 }
14189
14190 /* Update locations of permanent breakpoints. */
14191 if (b->enable_state == bp_permanent)
14192 make_breakpoint_permanent (b);
14193
14194 /* If possible, carry over 'disable' status from existing
14195 breakpoints. */
14196 {
14197 struct bp_location *e = existing_locations;
14198 /* If there are multiple breakpoints with the same function name,
14199 e.g. for inline functions, comparing function names won't work.
14200 Instead compare pc addresses; this is just a heuristic as things
14201 may have moved, but in practice it gives the correct answer
14202 often enough until a better solution is found. */
14203 int have_ambiguous_names = ambiguous_names_p (b->loc);
14204
14205 for (; e; e = e->next)
14206 {
14207 if (!e->enabled && e->function_name)
14208 {
14209 struct bp_location *l = b->loc;
14210 if (have_ambiguous_names)
14211 {
14212 for (; l; l = l->next)
14213 if (breakpoint_locations_match (e, l))
14214 {
14215 l->enabled = 0;
14216 break;
14217 }
14218 }
14219 else
14220 {
14221 for (; l; l = l->next)
14222 if (l->function_name
14223 && strcmp (e->function_name, l->function_name) == 0)
14224 {
14225 l->enabled = 0;
14226 break;
14227 }
14228 }
14229 }
14230 }
14231 }
14232
14233 if (!locations_are_equal (existing_locations, b->loc))
14234 observer_notify_breakpoint_modified (b);
14235
14236 update_global_location_list (1);
14237 }
14238
14239 /* Find the SaL locations corresponding to the given ADDR_STRING.
14240 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14241
14242 static struct symtabs_and_lines
14243 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14244 {
14245 char *s;
14246 struct symtabs_and_lines sals = {0};
14247 volatile struct gdb_exception e;
14248
14249 gdb_assert (b->ops != NULL);
14250 s = addr_string;
14251
14252 TRY_CATCH (e, RETURN_MASK_ERROR)
14253 {
14254 b->ops->decode_linespec (b, &s, &sals);
14255 }
14256 if (e.reason < 0)
14257 {
14258 int not_found_and_ok = 0;
14259 /* For pending breakpoints, it's expected that parsing will
14260 fail until the right shared library is loaded. User has
14261 already told to create pending breakpoints and don't need
14262 extra messages. If breakpoint is in bp_shlib_disabled
14263 state, then user already saw the message about that
14264 breakpoint being disabled, and don't want to see more
14265 errors. */
14266 if (e.error == NOT_FOUND_ERROR
14267 && (b->condition_not_parsed
14268 || (b->loc && b->loc->shlib_disabled)
14269 || (b->loc && b->loc->pspace->executing_startup)
14270 || b->enable_state == bp_disabled))
14271 not_found_and_ok = 1;
14272
14273 if (!not_found_and_ok)
14274 {
14275 /* We surely don't want to warn about the same breakpoint
14276 10 times. One solution, implemented here, is disable
14277 the breakpoint on error. Another solution would be to
14278 have separate 'warning emitted' flag. Since this
14279 happens only when a binary has changed, I don't know
14280 which approach is better. */
14281 b->enable_state = bp_disabled;
14282 throw_exception (e);
14283 }
14284 }
14285
14286 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14287 {
14288 int i;
14289
14290 for (i = 0; i < sals.nelts; ++i)
14291 resolve_sal_pc (&sals.sals[i]);
14292 if (b->condition_not_parsed && s && s[0])
14293 {
14294 char *cond_string, *extra_string;
14295 int thread, task;
14296
14297 find_condition_and_thread (s, sals.sals[0].pc,
14298 &cond_string, &thread, &task,
14299 &extra_string);
14300 if (cond_string)
14301 b->cond_string = cond_string;
14302 b->thread = thread;
14303 b->task = task;
14304 if (extra_string)
14305 b->extra_string = extra_string;
14306 b->condition_not_parsed = 0;
14307 }
14308
14309 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14310 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14311
14312 *found = 1;
14313 }
14314 else
14315 *found = 0;
14316
14317 return sals;
14318 }
14319
14320 /* The default re_set method, for typical hardware or software
14321 breakpoints. Reevaluate the breakpoint and recreate its
14322 locations. */
14323
14324 static void
14325 breakpoint_re_set_default (struct breakpoint *b)
14326 {
14327 int found;
14328 struct symtabs_and_lines sals, sals_end;
14329 struct symtabs_and_lines expanded = {0};
14330 struct symtabs_and_lines expanded_end = {0};
14331
14332 sals = addr_string_to_sals (b, b->addr_string, &found);
14333 if (found)
14334 {
14335 make_cleanup (xfree, sals.sals);
14336 expanded = sals;
14337 }
14338
14339 if (b->addr_string_range_end)
14340 {
14341 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14342 if (found)
14343 {
14344 make_cleanup (xfree, sals_end.sals);
14345 expanded_end = sals_end;
14346 }
14347 }
14348
14349 update_breakpoint_locations (b, expanded, expanded_end);
14350 }
14351
14352 /* Default method for creating SALs from an address string. It basically
14353 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14354
14355 static void
14356 create_sals_from_address_default (char **arg,
14357 struct linespec_result *canonical,
14358 enum bptype type_wanted,
14359 char *addr_start, char **copy_arg)
14360 {
14361 parse_breakpoint_sals (arg, canonical);
14362 }
14363
14364 /* Call create_breakpoints_sal for the given arguments. This is the default
14365 function for the `create_breakpoints_sal' method of
14366 breakpoint_ops. */
14367
14368 static void
14369 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14370 struct linespec_result *canonical,
14371 char *cond_string,
14372 char *extra_string,
14373 enum bptype type_wanted,
14374 enum bpdisp disposition,
14375 int thread,
14376 int task, int ignore_count,
14377 const struct breakpoint_ops *ops,
14378 int from_tty, int enabled,
14379 int internal, unsigned flags)
14380 {
14381 create_breakpoints_sal (gdbarch, canonical, cond_string,
14382 extra_string,
14383 type_wanted, disposition,
14384 thread, task, ignore_count, ops, from_tty,
14385 enabled, internal, flags);
14386 }
14387
14388 /* Decode the line represented by S by calling decode_line_full. This is the
14389 default function for the `decode_linespec' method of breakpoint_ops. */
14390
14391 static void
14392 decode_linespec_default (struct breakpoint *b, char **s,
14393 struct symtabs_and_lines *sals)
14394 {
14395 struct linespec_result canonical;
14396
14397 init_linespec_result (&canonical);
14398 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14399 (struct symtab *) NULL, 0,
14400 &canonical, multiple_symbols_all,
14401 b->filter);
14402
14403 /* We should get 0 or 1 resulting SALs. */
14404 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14405
14406 if (VEC_length (linespec_sals, canonical.sals) > 0)
14407 {
14408 struct linespec_sals *lsal;
14409
14410 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14411 *sals = lsal->sals;
14412 /* Arrange it so the destructor does not free the
14413 contents. */
14414 lsal->sals.sals = NULL;
14415 }
14416
14417 destroy_linespec_result (&canonical);
14418 }
14419
14420 /* Prepare the global context for a re-set of breakpoint B. */
14421
14422 static struct cleanup *
14423 prepare_re_set_context (struct breakpoint *b)
14424 {
14425 struct cleanup *cleanups;
14426
14427 input_radix = b->input_radix;
14428 cleanups = save_current_space_and_thread ();
14429 if (b->pspace != NULL)
14430 switch_to_program_space_and_thread (b->pspace);
14431 set_language (b->language);
14432
14433 return cleanups;
14434 }
14435
14436 /* Reset a breakpoint given it's struct breakpoint * BINT.
14437 The value we return ends up being the return value from catch_errors.
14438 Unused in this case. */
14439
14440 static int
14441 breakpoint_re_set_one (void *bint)
14442 {
14443 /* Get past catch_errs. */
14444 struct breakpoint *b = (struct breakpoint *) bint;
14445 struct cleanup *cleanups;
14446
14447 cleanups = prepare_re_set_context (b);
14448 b->ops->re_set (b);
14449 do_cleanups (cleanups);
14450 return 0;
14451 }
14452
14453 /* Re-set all breakpoints after symbols have been re-loaded. */
14454 void
14455 breakpoint_re_set (void)
14456 {
14457 struct breakpoint *b, *b_tmp;
14458 enum language save_language;
14459 int save_input_radix;
14460 struct cleanup *old_chain;
14461
14462 save_language = current_language->la_language;
14463 save_input_radix = input_radix;
14464 old_chain = save_current_program_space ();
14465
14466 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14467 {
14468 /* Format possible error msg. */
14469 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14470 b->number);
14471 struct cleanup *cleanups = make_cleanup (xfree, message);
14472 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14473 do_cleanups (cleanups);
14474 }
14475 set_language (save_language);
14476 input_radix = save_input_radix;
14477
14478 jit_breakpoint_re_set ();
14479
14480 do_cleanups (old_chain);
14481
14482 create_overlay_event_breakpoint ();
14483 create_longjmp_master_breakpoint ();
14484 create_std_terminate_master_breakpoint ();
14485 create_exception_master_breakpoint ();
14486 }
14487 \f
14488 /* Reset the thread number of this breakpoint:
14489
14490 - If the breakpoint is for all threads, leave it as-is.
14491 - Else, reset it to the current thread for inferior_ptid. */
14492 void
14493 breakpoint_re_set_thread (struct breakpoint *b)
14494 {
14495 if (b->thread != -1)
14496 {
14497 if (in_thread_list (inferior_ptid))
14498 b->thread = pid_to_thread_id (inferior_ptid);
14499
14500 /* We're being called after following a fork. The new fork is
14501 selected as current, and unless this was a vfork will have a
14502 different program space from the original thread. Reset that
14503 as well. */
14504 b->loc->pspace = current_program_space;
14505 }
14506 }
14507
14508 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14509 If from_tty is nonzero, it prints a message to that effect,
14510 which ends with a period (no newline). */
14511
14512 void
14513 set_ignore_count (int bptnum, int count, int from_tty)
14514 {
14515 struct breakpoint *b;
14516
14517 if (count < 0)
14518 count = 0;
14519
14520 ALL_BREAKPOINTS (b)
14521 if (b->number == bptnum)
14522 {
14523 if (is_tracepoint (b))
14524 {
14525 if (from_tty && count != 0)
14526 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14527 bptnum);
14528 return;
14529 }
14530
14531 b->ignore_count = count;
14532 if (from_tty)
14533 {
14534 if (count == 0)
14535 printf_filtered (_("Will stop next time "
14536 "breakpoint %d is reached."),
14537 bptnum);
14538 else if (count == 1)
14539 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14540 bptnum);
14541 else
14542 printf_filtered (_("Will ignore next %d "
14543 "crossings of breakpoint %d."),
14544 count, bptnum);
14545 }
14546 observer_notify_breakpoint_modified (b);
14547 return;
14548 }
14549
14550 error (_("No breakpoint number %d."), bptnum);
14551 }
14552
14553 /* Command to set ignore-count of breakpoint N to COUNT. */
14554
14555 static void
14556 ignore_command (char *args, int from_tty)
14557 {
14558 char *p = args;
14559 int num;
14560
14561 if (p == 0)
14562 error_no_arg (_("a breakpoint number"));
14563
14564 num = get_number (&p);
14565 if (num == 0)
14566 error (_("bad breakpoint number: '%s'"), args);
14567 if (*p == 0)
14568 error (_("Second argument (specified ignore-count) is missing."));
14569
14570 set_ignore_count (num,
14571 longest_to_int (value_as_long (parse_and_eval (p))),
14572 from_tty);
14573 if (from_tty)
14574 printf_filtered ("\n");
14575 }
14576 \f
14577 /* Call FUNCTION on each of the breakpoints
14578 whose numbers are given in ARGS. */
14579
14580 static void
14581 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14582 void *),
14583 void *data)
14584 {
14585 int num;
14586 struct breakpoint *b, *tmp;
14587 int match;
14588 struct get_number_or_range_state state;
14589
14590 if (args == 0)
14591 error_no_arg (_("one or more breakpoint numbers"));
14592
14593 init_number_or_range (&state, args);
14594
14595 while (!state.finished)
14596 {
14597 char *p = state.string;
14598
14599 match = 0;
14600
14601 num = get_number_or_range (&state);
14602 if (num == 0)
14603 {
14604 warning (_("bad breakpoint number at or near '%s'"), p);
14605 }
14606 else
14607 {
14608 ALL_BREAKPOINTS_SAFE (b, tmp)
14609 if (b->number == num)
14610 {
14611 match = 1;
14612 function (b, data);
14613 break;
14614 }
14615 if (match == 0)
14616 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14617 }
14618 }
14619 }
14620
14621 static struct bp_location *
14622 find_location_by_number (char *number)
14623 {
14624 char *dot = strchr (number, '.');
14625 char *p1;
14626 int bp_num;
14627 int loc_num;
14628 struct breakpoint *b;
14629 struct bp_location *loc;
14630
14631 *dot = '\0';
14632
14633 p1 = number;
14634 bp_num = get_number (&p1);
14635 if (bp_num == 0)
14636 error (_("Bad breakpoint number '%s'"), number);
14637
14638 ALL_BREAKPOINTS (b)
14639 if (b->number == bp_num)
14640 {
14641 break;
14642 }
14643
14644 if (!b || b->number != bp_num)
14645 error (_("Bad breakpoint number '%s'"), number);
14646
14647 p1 = dot+1;
14648 loc_num = get_number (&p1);
14649 if (loc_num == 0)
14650 error (_("Bad breakpoint location number '%s'"), number);
14651
14652 --loc_num;
14653 loc = b->loc;
14654 for (;loc_num && loc; --loc_num, loc = loc->next)
14655 ;
14656 if (!loc)
14657 error (_("Bad breakpoint location number '%s'"), dot+1);
14658
14659 return loc;
14660 }
14661
14662
14663 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14664 If from_tty is nonzero, it prints a message to that effect,
14665 which ends with a period (no newline). */
14666
14667 void
14668 disable_breakpoint (struct breakpoint *bpt)
14669 {
14670 /* Never disable a watchpoint scope breakpoint; we want to
14671 hit them when we leave scope so we can delete both the
14672 watchpoint and its scope breakpoint at that time. */
14673 if (bpt->type == bp_watchpoint_scope)
14674 return;
14675
14676 /* You can't disable permanent breakpoints. */
14677 if (bpt->enable_state == bp_permanent)
14678 return;
14679
14680 bpt->enable_state = bp_disabled;
14681
14682 /* Mark breakpoint locations modified. */
14683 mark_breakpoint_modified (bpt);
14684
14685 if (target_supports_enable_disable_tracepoint ()
14686 && current_trace_status ()->running && is_tracepoint (bpt))
14687 {
14688 struct bp_location *location;
14689
14690 for (location = bpt->loc; location; location = location->next)
14691 target_disable_tracepoint (location);
14692 }
14693
14694 update_global_location_list (0);
14695
14696 observer_notify_breakpoint_modified (bpt);
14697 }
14698
14699 /* A callback for iterate_over_related_breakpoints. */
14700
14701 static void
14702 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14703 {
14704 disable_breakpoint (b);
14705 }
14706
14707 /* A callback for map_breakpoint_numbers that calls
14708 disable_breakpoint. */
14709
14710 static void
14711 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14712 {
14713 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14714 }
14715
14716 static void
14717 disable_command (char *args, int from_tty)
14718 {
14719 if (args == 0)
14720 {
14721 struct breakpoint *bpt;
14722
14723 ALL_BREAKPOINTS (bpt)
14724 if (user_breakpoint_p (bpt))
14725 disable_breakpoint (bpt);
14726 }
14727 else
14728 {
14729 char *num = extract_arg (&args);
14730
14731 while (num)
14732 {
14733 if (strchr (num, '.'))
14734 {
14735 struct bp_location *loc = find_location_by_number (num);
14736
14737 if (loc)
14738 {
14739 if (loc->enabled)
14740 {
14741 loc->enabled = 0;
14742 mark_breakpoint_location_modified (loc);
14743 }
14744 if (target_supports_enable_disable_tracepoint ()
14745 && current_trace_status ()->running && loc->owner
14746 && is_tracepoint (loc->owner))
14747 target_disable_tracepoint (loc);
14748 }
14749 update_global_location_list (0);
14750 }
14751 else
14752 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14753 num = extract_arg (&args);
14754 }
14755 }
14756 }
14757
14758 static void
14759 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14760 int count)
14761 {
14762 int target_resources_ok;
14763
14764 if (bpt->type == bp_hardware_breakpoint)
14765 {
14766 int i;
14767 i = hw_breakpoint_used_count ();
14768 target_resources_ok =
14769 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14770 i + 1, 0);
14771 if (target_resources_ok == 0)
14772 error (_("No hardware breakpoint support in the target."));
14773 else if (target_resources_ok < 0)
14774 error (_("Hardware breakpoints used exceeds limit."));
14775 }
14776
14777 if (is_watchpoint (bpt))
14778 {
14779 /* Initialize it just to avoid a GCC false warning. */
14780 enum enable_state orig_enable_state = 0;
14781 volatile struct gdb_exception e;
14782
14783 TRY_CATCH (e, RETURN_MASK_ALL)
14784 {
14785 struct watchpoint *w = (struct watchpoint *) bpt;
14786
14787 orig_enable_state = bpt->enable_state;
14788 bpt->enable_state = bp_enabled;
14789 update_watchpoint (w, 1 /* reparse */);
14790 }
14791 if (e.reason < 0)
14792 {
14793 bpt->enable_state = orig_enable_state;
14794 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14795 bpt->number);
14796 return;
14797 }
14798 }
14799
14800 if (bpt->enable_state != bp_permanent)
14801 bpt->enable_state = bp_enabled;
14802
14803 bpt->enable_state = bp_enabled;
14804
14805 /* Mark breakpoint locations modified. */
14806 mark_breakpoint_modified (bpt);
14807
14808 if (target_supports_enable_disable_tracepoint ()
14809 && current_trace_status ()->running && is_tracepoint (bpt))
14810 {
14811 struct bp_location *location;
14812
14813 for (location = bpt->loc; location; location = location->next)
14814 target_enable_tracepoint (location);
14815 }
14816
14817 bpt->disposition = disposition;
14818 bpt->enable_count = count;
14819 update_global_location_list (1);
14820
14821 observer_notify_breakpoint_modified (bpt);
14822 }
14823
14824
14825 void
14826 enable_breakpoint (struct breakpoint *bpt)
14827 {
14828 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14829 }
14830
14831 static void
14832 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14833 {
14834 enable_breakpoint (bpt);
14835 }
14836
14837 /* A callback for map_breakpoint_numbers that calls
14838 enable_breakpoint. */
14839
14840 static void
14841 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14842 {
14843 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14844 }
14845
14846 /* The enable command enables the specified breakpoints (or all defined
14847 breakpoints) so they once again become (or continue to be) effective
14848 in stopping the inferior. */
14849
14850 static void
14851 enable_command (char *args, int from_tty)
14852 {
14853 if (args == 0)
14854 {
14855 struct breakpoint *bpt;
14856
14857 ALL_BREAKPOINTS (bpt)
14858 if (user_breakpoint_p (bpt))
14859 enable_breakpoint (bpt);
14860 }
14861 else
14862 {
14863 char *num = extract_arg (&args);
14864
14865 while (num)
14866 {
14867 if (strchr (num, '.'))
14868 {
14869 struct bp_location *loc = find_location_by_number (num);
14870
14871 if (loc)
14872 {
14873 if (!loc->enabled)
14874 {
14875 loc->enabled = 1;
14876 mark_breakpoint_location_modified (loc);
14877 }
14878 if (target_supports_enable_disable_tracepoint ()
14879 && current_trace_status ()->running && loc->owner
14880 && is_tracepoint (loc->owner))
14881 target_enable_tracepoint (loc);
14882 }
14883 update_global_location_list (1);
14884 }
14885 else
14886 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14887 num = extract_arg (&args);
14888 }
14889 }
14890 }
14891
14892 /* This struct packages up disposition data for application to multiple
14893 breakpoints. */
14894
14895 struct disp_data
14896 {
14897 enum bpdisp disp;
14898 int count;
14899 };
14900
14901 static void
14902 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14903 {
14904 struct disp_data disp_data = *(struct disp_data *) arg;
14905
14906 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14907 }
14908
14909 static void
14910 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14911 {
14912 struct disp_data disp = { disp_disable, 1 };
14913
14914 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14915 }
14916
14917 static void
14918 enable_once_command (char *args, int from_tty)
14919 {
14920 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14921 }
14922
14923 static void
14924 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14925 {
14926 struct disp_data disp = { disp_disable, *(int *) countptr };
14927
14928 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14929 }
14930
14931 static void
14932 enable_count_command (char *args, int from_tty)
14933 {
14934 int count = get_number (&args);
14935
14936 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14937 }
14938
14939 static void
14940 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14941 {
14942 struct disp_data disp = { disp_del, 1 };
14943
14944 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14945 }
14946
14947 static void
14948 enable_delete_command (char *args, int from_tty)
14949 {
14950 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14951 }
14952 \f
14953 static void
14954 set_breakpoint_cmd (char *args, int from_tty)
14955 {
14956 }
14957
14958 static void
14959 show_breakpoint_cmd (char *args, int from_tty)
14960 {
14961 }
14962
14963 /* Invalidate last known value of any hardware watchpoint if
14964 the memory which that value represents has been written to by
14965 GDB itself. */
14966
14967 static void
14968 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14969 CORE_ADDR addr, ssize_t len,
14970 const bfd_byte *data)
14971 {
14972 struct breakpoint *bp;
14973
14974 ALL_BREAKPOINTS (bp)
14975 if (bp->enable_state == bp_enabled
14976 && bp->type == bp_hardware_watchpoint)
14977 {
14978 struct watchpoint *wp = (struct watchpoint *) bp;
14979
14980 if (wp->val_valid && wp->val)
14981 {
14982 struct bp_location *loc;
14983
14984 for (loc = bp->loc; loc != NULL; loc = loc->next)
14985 if (loc->loc_type == bp_loc_hardware_watchpoint
14986 && loc->address + loc->length > addr
14987 && addr + len > loc->address)
14988 {
14989 value_free (wp->val);
14990 wp->val = NULL;
14991 wp->val_valid = 0;
14992 }
14993 }
14994 }
14995 }
14996
14997 /* Create and insert a raw software breakpoint at PC. Return an
14998 identifier, which should be used to remove the breakpoint later.
14999 In general, places which call this should be using something on the
15000 breakpoint chain instead; this function should be eliminated
15001 someday. */
15002
15003 void *
15004 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
15005 struct address_space *aspace, CORE_ADDR pc)
15006 {
15007 struct bp_target_info *bp_tgt;
15008
15009 bp_tgt = XCNEW (struct bp_target_info);
15010
15011 bp_tgt->placed_address_space = aspace;
15012 bp_tgt->placed_address = pc;
15013
15014 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15015 {
15016 /* Could not insert the breakpoint. */
15017 xfree (bp_tgt);
15018 return NULL;
15019 }
15020
15021 return bp_tgt;
15022 }
15023
15024 /* Remove a breakpoint BP inserted by
15025 deprecated_insert_raw_breakpoint. */
15026
15027 int
15028 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15029 {
15030 struct bp_target_info *bp_tgt = bp;
15031 int ret;
15032
15033 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15034 xfree (bp_tgt);
15035
15036 return ret;
15037 }
15038
15039 /* One (or perhaps two) breakpoints used for software single
15040 stepping. */
15041
15042 static void *single_step_breakpoints[2];
15043 static struct gdbarch *single_step_gdbarch[2];
15044
15045 /* Create and insert a breakpoint for software single step. */
15046
15047 void
15048 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15049 struct address_space *aspace,
15050 CORE_ADDR next_pc)
15051 {
15052 void **bpt_p;
15053
15054 if (single_step_breakpoints[0] == NULL)
15055 {
15056 bpt_p = &single_step_breakpoints[0];
15057 single_step_gdbarch[0] = gdbarch;
15058 }
15059 else
15060 {
15061 gdb_assert (single_step_breakpoints[1] == NULL);
15062 bpt_p = &single_step_breakpoints[1];
15063 single_step_gdbarch[1] = gdbarch;
15064 }
15065
15066 /* NOTE drow/2006-04-11: A future improvement to this function would
15067 be to only create the breakpoints once, and actually put them on
15068 the breakpoint chain. That would let us use set_raw_breakpoint.
15069 We could adjust the addresses each time they were needed. Doing
15070 this requires corresponding changes elsewhere where single step
15071 breakpoints are handled, however. So, for now, we use this. */
15072
15073 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15074 if (*bpt_p == NULL)
15075 error (_("Could not insert single-step breakpoint at %s"),
15076 paddress (gdbarch, next_pc));
15077 }
15078
15079 /* Check if the breakpoints used for software single stepping
15080 were inserted or not. */
15081
15082 int
15083 single_step_breakpoints_inserted (void)
15084 {
15085 return (single_step_breakpoints[0] != NULL
15086 || single_step_breakpoints[1] != NULL);
15087 }
15088
15089 /* Remove and delete any breakpoints used for software single step. */
15090
15091 void
15092 remove_single_step_breakpoints (void)
15093 {
15094 gdb_assert (single_step_breakpoints[0] != NULL);
15095
15096 /* See insert_single_step_breakpoint for more about this deprecated
15097 call. */
15098 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15099 single_step_breakpoints[0]);
15100 single_step_gdbarch[0] = NULL;
15101 single_step_breakpoints[0] = NULL;
15102
15103 if (single_step_breakpoints[1] != NULL)
15104 {
15105 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15106 single_step_breakpoints[1]);
15107 single_step_gdbarch[1] = NULL;
15108 single_step_breakpoints[1] = NULL;
15109 }
15110 }
15111
15112 /* Delete software single step breakpoints without removing them from
15113 the inferior. This is intended to be used if the inferior's address
15114 space where they were inserted is already gone, e.g. after exit or
15115 exec. */
15116
15117 void
15118 cancel_single_step_breakpoints (void)
15119 {
15120 int i;
15121
15122 for (i = 0; i < 2; i++)
15123 if (single_step_breakpoints[i])
15124 {
15125 xfree (single_step_breakpoints[i]);
15126 single_step_breakpoints[i] = NULL;
15127 single_step_gdbarch[i] = NULL;
15128 }
15129 }
15130
15131 /* Detach software single-step breakpoints from INFERIOR_PTID without
15132 removing them. */
15133
15134 static void
15135 detach_single_step_breakpoints (void)
15136 {
15137 int i;
15138
15139 for (i = 0; i < 2; i++)
15140 if (single_step_breakpoints[i])
15141 target_remove_breakpoint (single_step_gdbarch[i],
15142 single_step_breakpoints[i]);
15143 }
15144
15145 /* Check whether a software single-step breakpoint is inserted at
15146 PC. */
15147
15148 int
15149 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15150 CORE_ADDR pc)
15151 {
15152 int i;
15153
15154 for (i = 0; i < 2; i++)
15155 {
15156 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15157 if (bp_tgt
15158 && breakpoint_address_match (bp_tgt->placed_address_space,
15159 bp_tgt->placed_address,
15160 aspace, pc))
15161 return 1;
15162 }
15163
15164 return 0;
15165 }
15166
15167 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15168 non-zero otherwise. */
15169 static int
15170 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15171 {
15172 if (syscall_catchpoint_p (bp)
15173 && bp->enable_state != bp_disabled
15174 && bp->enable_state != bp_call_disabled)
15175 return 1;
15176 else
15177 return 0;
15178 }
15179
15180 int
15181 catch_syscall_enabled (void)
15182 {
15183 struct catch_syscall_inferior_data *inf_data
15184 = get_catch_syscall_inferior_data (current_inferior ());
15185
15186 return inf_data->total_syscalls_count != 0;
15187 }
15188
15189 int
15190 catching_syscall_number (int syscall_number)
15191 {
15192 struct breakpoint *bp;
15193
15194 ALL_BREAKPOINTS (bp)
15195 if (is_syscall_catchpoint_enabled (bp))
15196 {
15197 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15198
15199 if (c->syscalls_to_be_caught)
15200 {
15201 int i, iter;
15202 for (i = 0;
15203 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15204 i++)
15205 if (syscall_number == iter)
15206 return 1;
15207 }
15208 else
15209 return 1;
15210 }
15211
15212 return 0;
15213 }
15214
15215 /* Complete syscall names. Used by "catch syscall". */
15216 static VEC (char_ptr) *
15217 catch_syscall_completer (struct cmd_list_element *cmd,
15218 const char *text, const char *word)
15219 {
15220 const char **list = get_syscall_names ();
15221 VEC (char_ptr) *retlist
15222 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15223
15224 xfree (list);
15225 return retlist;
15226 }
15227
15228 /* Tracepoint-specific operations. */
15229
15230 /* Set tracepoint count to NUM. */
15231 static void
15232 set_tracepoint_count (int num)
15233 {
15234 tracepoint_count = num;
15235 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15236 }
15237
15238 static void
15239 trace_command (char *arg, int from_tty)
15240 {
15241 struct breakpoint_ops *ops;
15242 const char *arg_cp = arg;
15243
15244 if (arg && probe_linespec_to_ops (&arg_cp))
15245 ops = &tracepoint_probe_breakpoint_ops;
15246 else
15247 ops = &tracepoint_breakpoint_ops;
15248
15249 create_breakpoint (get_current_arch (),
15250 arg,
15251 NULL, 0, NULL, 1 /* parse arg */,
15252 0 /* tempflag */,
15253 bp_tracepoint /* type_wanted */,
15254 0 /* Ignore count */,
15255 pending_break_support,
15256 ops,
15257 from_tty,
15258 1 /* enabled */,
15259 0 /* internal */, 0);
15260 }
15261
15262 static void
15263 ftrace_command (char *arg, int from_tty)
15264 {
15265 create_breakpoint (get_current_arch (),
15266 arg,
15267 NULL, 0, NULL, 1 /* parse arg */,
15268 0 /* tempflag */,
15269 bp_fast_tracepoint /* type_wanted */,
15270 0 /* Ignore count */,
15271 pending_break_support,
15272 &tracepoint_breakpoint_ops,
15273 from_tty,
15274 1 /* enabled */,
15275 0 /* internal */, 0);
15276 }
15277
15278 /* strace command implementation. Creates a static tracepoint. */
15279
15280 static void
15281 strace_command (char *arg, int from_tty)
15282 {
15283 struct breakpoint_ops *ops;
15284
15285 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15286 or with a normal static tracepoint. */
15287 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15288 ops = &strace_marker_breakpoint_ops;
15289 else
15290 ops = &tracepoint_breakpoint_ops;
15291
15292 create_breakpoint (get_current_arch (),
15293 arg,
15294 NULL, 0, NULL, 1 /* parse arg */,
15295 0 /* tempflag */,
15296 bp_static_tracepoint /* type_wanted */,
15297 0 /* Ignore count */,
15298 pending_break_support,
15299 ops,
15300 from_tty,
15301 1 /* enabled */,
15302 0 /* internal */, 0);
15303 }
15304
15305 /* Set up a fake reader function that gets command lines from a linked
15306 list that was acquired during tracepoint uploading. */
15307
15308 static struct uploaded_tp *this_utp;
15309 static int next_cmd;
15310
15311 static char *
15312 read_uploaded_action (void)
15313 {
15314 char *rslt;
15315
15316 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15317
15318 next_cmd++;
15319
15320 return rslt;
15321 }
15322
15323 /* Given information about a tracepoint as recorded on a target (which
15324 can be either a live system or a trace file), attempt to create an
15325 equivalent GDB tracepoint. This is not a reliable process, since
15326 the target does not necessarily have all the information used when
15327 the tracepoint was originally defined. */
15328
15329 struct tracepoint *
15330 create_tracepoint_from_upload (struct uploaded_tp *utp)
15331 {
15332 char *addr_str, small_buf[100];
15333 struct tracepoint *tp;
15334
15335 if (utp->at_string)
15336 addr_str = utp->at_string;
15337 else
15338 {
15339 /* In the absence of a source location, fall back to raw
15340 address. Since there is no way to confirm that the address
15341 means the same thing as when the trace was started, warn the
15342 user. */
15343 warning (_("Uploaded tracepoint %d has no "
15344 "source location, using raw address"),
15345 utp->number);
15346 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15347 addr_str = small_buf;
15348 }
15349
15350 /* There's not much we can do with a sequence of bytecodes. */
15351 if (utp->cond && !utp->cond_string)
15352 warning (_("Uploaded tracepoint %d condition "
15353 "has no source form, ignoring it"),
15354 utp->number);
15355
15356 if (!create_breakpoint (get_current_arch (),
15357 addr_str,
15358 utp->cond_string, -1, NULL,
15359 0 /* parse cond/thread */,
15360 0 /* tempflag */,
15361 utp->type /* type_wanted */,
15362 0 /* Ignore count */,
15363 pending_break_support,
15364 &tracepoint_breakpoint_ops,
15365 0 /* from_tty */,
15366 utp->enabled /* enabled */,
15367 0 /* internal */,
15368 CREATE_BREAKPOINT_FLAGS_INSERTED))
15369 return NULL;
15370
15371 /* Get the tracepoint we just created. */
15372 tp = get_tracepoint (tracepoint_count);
15373 gdb_assert (tp != NULL);
15374
15375 if (utp->pass > 0)
15376 {
15377 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15378 tp->base.number);
15379
15380 trace_pass_command (small_buf, 0);
15381 }
15382
15383 /* If we have uploaded versions of the original commands, set up a
15384 special-purpose "reader" function and call the usual command line
15385 reader, then pass the result to the breakpoint command-setting
15386 function. */
15387 if (!VEC_empty (char_ptr, utp->cmd_strings))
15388 {
15389 struct command_line *cmd_list;
15390
15391 this_utp = utp;
15392 next_cmd = 0;
15393
15394 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15395
15396 breakpoint_set_commands (&tp->base, cmd_list);
15397 }
15398 else if (!VEC_empty (char_ptr, utp->actions)
15399 || !VEC_empty (char_ptr, utp->step_actions))
15400 warning (_("Uploaded tracepoint %d actions "
15401 "have no source form, ignoring them"),
15402 utp->number);
15403
15404 /* Copy any status information that might be available. */
15405 tp->base.hit_count = utp->hit_count;
15406 tp->traceframe_usage = utp->traceframe_usage;
15407
15408 return tp;
15409 }
15410
15411 /* Print information on tracepoint number TPNUM_EXP, or all if
15412 omitted. */
15413
15414 static void
15415 tracepoints_info (char *args, int from_tty)
15416 {
15417 struct ui_out *uiout = current_uiout;
15418 int num_printed;
15419
15420 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15421
15422 if (num_printed == 0)
15423 {
15424 if (args == NULL || *args == '\0')
15425 ui_out_message (uiout, 0, "No tracepoints.\n");
15426 else
15427 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15428 }
15429
15430 default_collect_info ();
15431 }
15432
15433 /* The 'enable trace' command enables tracepoints.
15434 Not supported by all targets. */
15435 static void
15436 enable_trace_command (char *args, int from_tty)
15437 {
15438 enable_command (args, from_tty);
15439 }
15440
15441 /* The 'disable trace' command disables tracepoints.
15442 Not supported by all targets. */
15443 static void
15444 disable_trace_command (char *args, int from_tty)
15445 {
15446 disable_command (args, from_tty);
15447 }
15448
15449 /* Remove a tracepoint (or all if no argument). */
15450 static void
15451 delete_trace_command (char *arg, int from_tty)
15452 {
15453 struct breakpoint *b, *b_tmp;
15454
15455 dont_repeat ();
15456
15457 if (arg == 0)
15458 {
15459 int breaks_to_delete = 0;
15460
15461 /* Delete all breakpoints if no argument.
15462 Do not delete internal or call-dummy breakpoints, these
15463 have to be deleted with an explicit breakpoint number
15464 argument. */
15465 ALL_TRACEPOINTS (b)
15466 if (is_tracepoint (b) && user_breakpoint_p (b))
15467 {
15468 breaks_to_delete = 1;
15469 break;
15470 }
15471
15472 /* Ask user only if there are some breakpoints to delete. */
15473 if (!from_tty
15474 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15475 {
15476 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15477 if (is_tracepoint (b) && user_breakpoint_p (b))
15478 delete_breakpoint (b);
15479 }
15480 }
15481 else
15482 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15483 }
15484
15485 /* Helper function for trace_pass_command. */
15486
15487 static void
15488 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15489 {
15490 tp->pass_count = count;
15491 observer_notify_breakpoint_modified (&tp->base);
15492 if (from_tty)
15493 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15494 tp->base.number, count);
15495 }
15496
15497 /* Set passcount for tracepoint.
15498
15499 First command argument is passcount, second is tracepoint number.
15500 If tracepoint number omitted, apply to most recently defined.
15501 Also accepts special argument "all". */
15502
15503 static void
15504 trace_pass_command (char *args, int from_tty)
15505 {
15506 struct tracepoint *t1;
15507 unsigned int count;
15508
15509 if (args == 0 || *args == 0)
15510 error (_("passcount command requires an "
15511 "argument (count + optional TP num)"));
15512
15513 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15514
15515 args = skip_spaces (args);
15516 if (*args && strncasecmp (args, "all", 3) == 0)
15517 {
15518 struct breakpoint *b;
15519
15520 args += 3; /* Skip special argument "all". */
15521 if (*args)
15522 error (_("Junk at end of arguments."));
15523
15524 ALL_TRACEPOINTS (b)
15525 {
15526 t1 = (struct tracepoint *) b;
15527 trace_pass_set_count (t1, count, from_tty);
15528 }
15529 }
15530 else if (*args == '\0')
15531 {
15532 t1 = get_tracepoint_by_number (&args, NULL);
15533 if (t1)
15534 trace_pass_set_count (t1, count, from_tty);
15535 }
15536 else
15537 {
15538 struct get_number_or_range_state state;
15539
15540 init_number_or_range (&state, args);
15541 while (!state.finished)
15542 {
15543 t1 = get_tracepoint_by_number (&args, &state);
15544 if (t1)
15545 trace_pass_set_count (t1, count, from_tty);
15546 }
15547 }
15548 }
15549
15550 struct tracepoint *
15551 get_tracepoint (int num)
15552 {
15553 struct breakpoint *t;
15554
15555 ALL_TRACEPOINTS (t)
15556 if (t->number == num)
15557 return (struct tracepoint *) t;
15558
15559 return NULL;
15560 }
15561
15562 /* Find the tracepoint with the given target-side number (which may be
15563 different from the tracepoint number after disconnecting and
15564 reconnecting). */
15565
15566 struct tracepoint *
15567 get_tracepoint_by_number_on_target (int num)
15568 {
15569 struct breakpoint *b;
15570
15571 ALL_TRACEPOINTS (b)
15572 {
15573 struct tracepoint *t = (struct tracepoint *) b;
15574
15575 if (t->number_on_target == num)
15576 return t;
15577 }
15578
15579 return NULL;
15580 }
15581
15582 /* Utility: parse a tracepoint number and look it up in the list.
15583 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15584 If the argument is missing, the most recent tracepoint
15585 (tracepoint_count) is returned. */
15586
15587 struct tracepoint *
15588 get_tracepoint_by_number (char **arg,
15589 struct get_number_or_range_state *state)
15590 {
15591 struct breakpoint *t;
15592 int tpnum;
15593 char *instring = arg == NULL ? NULL : *arg;
15594
15595 if (state)
15596 {
15597 gdb_assert (!state->finished);
15598 tpnum = get_number_or_range (state);
15599 }
15600 else if (arg == NULL || *arg == NULL || ! **arg)
15601 tpnum = tracepoint_count;
15602 else
15603 tpnum = get_number (arg);
15604
15605 if (tpnum <= 0)
15606 {
15607 if (instring && *instring)
15608 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15609 instring);
15610 else
15611 printf_filtered (_("No previous tracepoint\n"));
15612 return NULL;
15613 }
15614
15615 ALL_TRACEPOINTS (t)
15616 if (t->number == tpnum)
15617 {
15618 return (struct tracepoint *) t;
15619 }
15620
15621 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15622 return NULL;
15623 }
15624
15625 void
15626 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15627 {
15628 if (b->thread != -1)
15629 fprintf_unfiltered (fp, " thread %d", b->thread);
15630
15631 if (b->task != 0)
15632 fprintf_unfiltered (fp, " task %d", b->task);
15633
15634 fprintf_unfiltered (fp, "\n");
15635 }
15636
15637 /* Save information on user settable breakpoints (watchpoints, etc) to
15638 a new script file named FILENAME. If FILTER is non-NULL, call it
15639 on each breakpoint and only include the ones for which it returns
15640 non-zero. */
15641
15642 static void
15643 save_breakpoints (char *filename, int from_tty,
15644 int (*filter) (const struct breakpoint *))
15645 {
15646 struct breakpoint *tp;
15647 int any = 0;
15648 struct cleanup *cleanup;
15649 struct ui_file *fp;
15650 int extra_trace_bits = 0;
15651
15652 if (filename == 0 || *filename == 0)
15653 error (_("Argument required (file name in which to save)"));
15654
15655 /* See if we have anything to save. */
15656 ALL_BREAKPOINTS (tp)
15657 {
15658 /* Skip internal and momentary breakpoints. */
15659 if (!user_breakpoint_p (tp))
15660 continue;
15661
15662 /* If we have a filter, only save the breakpoints it accepts. */
15663 if (filter && !filter (tp))
15664 continue;
15665
15666 any = 1;
15667
15668 if (is_tracepoint (tp))
15669 {
15670 extra_trace_bits = 1;
15671
15672 /* We can stop searching. */
15673 break;
15674 }
15675 }
15676
15677 if (!any)
15678 {
15679 warning (_("Nothing to save."));
15680 return;
15681 }
15682
15683 filename = tilde_expand (filename);
15684 cleanup = make_cleanup (xfree, filename);
15685 fp = gdb_fopen (filename, "w");
15686 if (!fp)
15687 error (_("Unable to open file '%s' for saving (%s)"),
15688 filename, safe_strerror (errno));
15689 make_cleanup_ui_file_delete (fp);
15690
15691 if (extra_trace_bits)
15692 save_trace_state_variables (fp);
15693
15694 ALL_BREAKPOINTS (tp)
15695 {
15696 /* Skip internal and momentary breakpoints. */
15697 if (!user_breakpoint_p (tp))
15698 continue;
15699
15700 /* If we have a filter, only save the breakpoints it accepts. */
15701 if (filter && !filter (tp))
15702 continue;
15703
15704 tp->ops->print_recreate (tp, fp);
15705
15706 /* Note, we can't rely on tp->number for anything, as we can't
15707 assume the recreated breakpoint numbers will match. Use $bpnum
15708 instead. */
15709
15710 if (tp->cond_string)
15711 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15712
15713 if (tp->ignore_count)
15714 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15715
15716 if (tp->type != bp_dprintf && tp->commands)
15717 {
15718 volatile struct gdb_exception ex;
15719
15720 fprintf_unfiltered (fp, " commands\n");
15721
15722 ui_out_redirect (current_uiout, fp);
15723 TRY_CATCH (ex, RETURN_MASK_ALL)
15724 {
15725 print_command_lines (current_uiout, tp->commands->commands, 2);
15726 }
15727 ui_out_redirect (current_uiout, NULL);
15728
15729 if (ex.reason < 0)
15730 throw_exception (ex);
15731
15732 fprintf_unfiltered (fp, " end\n");
15733 }
15734
15735 if (tp->enable_state == bp_disabled)
15736 fprintf_unfiltered (fp, "disable\n");
15737
15738 /* If this is a multi-location breakpoint, check if the locations
15739 should be individually disabled. Watchpoint locations are
15740 special, and not user visible. */
15741 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15742 {
15743 struct bp_location *loc;
15744 int n = 1;
15745
15746 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15747 if (!loc->enabled)
15748 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15749 }
15750 }
15751
15752 if (extra_trace_bits && *default_collect)
15753 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15754
15755 if (from_tty)
15756 printf_filtered (_("Saved to file '%s'.\n"), filename);
15757 do_cleanups (cleanup);
15758 }
15759
15760 /* The `save breakpoints' command. */
15761
15762 static void
15763 save_breakpoints_command (char *args, int from_tty)
15764 {
15765 save_breakpoints (args, from_tty, NULL);
15766 }
15767
15768 /* The `save tracepoints' command. */
15769
15770 static void
15771 save_tracepoints_command (char *args, int from_tty)
15772 {
15773 save_breakpoints (args, from_tty, is_tracepoint);
15774 }
15775
15776 /* Create a vector of all tracepoints. */
15777
15778 VEC(breakpoint_p) *
15779 all_tracepoints (void)
15780 {
15781 VEC(breakpoint_p) *tp_vec = 0;
15782 struct breakpoint *tp;
15783
15784 ALL_TRACEPOINTS (tp)
15785 {
15786 VEC_safe_push (breakpoint_p, tp_vec, tp);
15787 }
15788
15789 return tp_vec;
15790 }
15791
15792 \f
15793 /* This help string is used for the break, hbreak, tbreak and thbreak
15794 commands. It is defined as a macro to prevent duplication.
15795 COMMAND should be a string constant containing the name of the
15796 command. */
15797 #define BREAK_ARGS_HELP(command) \
15798 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15799 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15800 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15801 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15802 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15803 If a line number is specified, break at start of code for that line.\n\
15804 If a function is specified, break at start of code for that function.\n\
15805 If an address is specified, break at that exact address.\n\
15806 With no LOCATION, uses current execution address of the selected\n\
15807 stack frame. This is useful for breaking on return to a stack frame.\n\
15808 \n\
15809 THREADNUM is the number from \"info threads\".\n\
15810 CONDITION is a boolean expression.\n\
15811 \n\
15812 Multiple breakpoints at one place are permitted, and useful if their\n\
15813 conditions are different.\n\
15814 \n\
15815 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15816
15817 /* List of subcommands for "catch". */
15818 static struct cmd_list_element *catch_cmdlist;
15819
15820 /* List of subcommands for "tcatch". */
15821 static struct cmd_list_element *tcatch_cmdlist;
15822
15823 void
15824 add_catch_command (char *name, char *docstring,
15825 void (*sfunc) (char *args, int from_tty,
15826 struct cmd_list_element *command),
15827 completer_ftype *completer,
15828 void *user_data_catch,
15829 void *user_data_tcatch)
15830 {
15831 struct cmd_list_element *command;
15832
15833 command = add_cmd (name, class_breakpoint, NULL, docstring,
15834 &catch_cmdlist);
15835 set_cmd_sfunc (command, sfunc);
15836 set_cmd_context (command, user_data_catch);
15837 set_cmd_completer (command, completer);
15838
15839 command = add_cmd (name, class_breakpoint, NULL, docstring,
15840 &tcatch_cmdlist);
15841 set_cmd_sfunc (command, sfunc);
15842 set_cmd_context (command, user_data_tcatch);
15843 set_cmd_completer (command, completer);
15844 }
15845
15846 static void
15847 clear_syscall_counts (struct inferior *inf)
15848 {
15849 struct catch_syscall_inferior_data *inf_data
15850 = get_catch_syscall_inferior_data (inf);
15851
15852 inf_data->total_syscalls_count = 0;
15853 inf_data->any_syscall_count = 0;
15854 VEC_free (int, inf_data->syscalls_counts);
15855 }
15856
15857 static void
15858 save_command (char *arg, int from_tty)
15859 {
15860 printf_unfiltered (_("\"save\" must be followed by "
15861 "the name of a save subcommand.\n"));
15862 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15863 }
15864
15865 struct breakpoint *
15866 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15867 void *data)
15868 {
15869 struct breakpoint *b, *b_tmp;
15870
15871 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15872 {
15873 if ((*callback) (b, data))
15874 return b;
15875 }
15876
15877 return NULL;
15878 }
15879
15880 /* Zero if any of the breakpoint's locations could be a location where
15881 functions have been inlined, nonzero otherwise. */
15882
15883 static int
15884 is_non_inline_function (struct breakpoint *b)
15885 {
15886 /* The shared library event breakpoint is set on the address of a
15887 non-inline function. */
15888 if (b->type == bp_shlib_event)
15889 return 1;
15890
15891 return 0;
15892 }
15893
15894 /* Nonzero if the specified PC cannot be a location where functions
15895 have been inlined. */
15896
15897 int
15898 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15899 const struct target_waitstatus *ws)
15900 {
15901 struct breakpoint *b;
15902 struct bp_location *bl;
15903
15904 ALL_BREAKPOINTS (b)
15905 {
15906 if (!is_non_inline_function (b))
15907 continue;
15908
15909 for (bl = b->loc; bl != NULL; bl = bl->next)
15910 {
15911 if (!bl->shlib_disabled
15912 && bpstat_check_location (bl, aspace, pc, ws))
15913 return 1;
15914 }
15915 }
15916
15917 return 0;
15918 }
15919
15920 /* Remove any references to OBJFILE which is going to be freed. */
15921
15922 void
15923 breakpoint_free_objfile (struct objfile *objfile)
15924 {
15925 struct bp_location **locp, *loc;
15926
15927 ALL_BP_LOCATIONS (loc, locp)
15928 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15929 loc->symtab = NULL;
15930 }
15931
15932 void
15933 initialize_breakpoint_ops (void)
15934 {
15935 static int initialized = 0;
15936
15937 struct breakpoint_ops *ops;
15938
15939 if (initialized)
15940 return;
15941 initialized = 1;
15942
15943 /* The breakpoint_ops structure to be inherit by all kinds of
15944 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15945 internal and momentary breakpoints, etc.). */
15946 ops = &bkpt_base_breakpoint_ops;
15947 *ops = base_breakpoint_ops;
15948 ops->re_set = bkpt_re_set;
15949 ops->insert_location = bkpt_insert_location;
15950 ops->remove_location = bkpt_remove_location;
15951 ops->breakpoint_hit = bkpt_breakpoint_hit;
15952 ops->create_sals_from_address = bkpt_create_sals_from_address;
15953 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15954 ops->decode_linespec = bkpt_decode_linespec;
15955
15956 /* The breakpoint_ops structure to be used in regular breakpoints. */
15957 ops = &bkpt_breakpoint_ops;
15958 *ops = bkpt_base_breakpoint_ops;
15959 ops->re_set = bkpt_re_set;
15960 ops->resources_needed = bkpt_resources_needed;
15961 ops->print_it = bkpt_print_it;
15962 ops->print_mention = bkpt_print_mention;
15963 ops->print_recreate = bkpt_print_recreate;
15964
15965 /* Ranged breakpoints. */
15966 ops = &ranged_breakpoint_ops;
15967 *ops = bkpt_breakpoint_ops;
15968 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15969 ops->resources_needed = resources_needed_ranged_breakpoint;
15970 ops->print_it = print_it_ranged_breakpoint;
15971 ops->print_one = print_one_ranged_breakpoint;
15972 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15973 ops->print_mention = print_mention_ranged_breakpoint;
15974 ops->print_recreate = print_recreate_ranged_breakpoint;
15975
15976 /* Internal breakpoints. */
15977 ops = &internal_breakpoint_ops;
15978 *ops = bkpt_base_breakpoint_ops;
15979 ops->re_set = internal_bkpt_re_set;
15980 ops->check_status = internal_bkpt_check_status;
15981 ops->print_it = internal_bkpt_print_it;
15982 ops->print_mention = internal_bkpt_print_mention;
15983
15984 /* Momentary breakpoints. */
15985 ops = &momentary_breakpoint_ops;
15986 *ops = bkpt_base_breakpoint_ops;
15987 ops->re_set = momentary_bkpt_re_set;
15988 ops->check_status = momentary_bkpt_check_status;
15989 ops->print_it = momentary_bkpt_print_it;
15990 ops->print_mention = momentary_bkpt_print_mention;
15991
15992 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15993 ops = &longjmp_breakpoint_ops;
15994 *ops = momentary_breakpoint_ops;
15995 ops->dtor = longjmp_bkpt_dtor;
15996
15997 /* Probe breakpoints. */
15998 ops = &bkpt_probe_breakpoint_ops;
15999 *ops = bkpt_breakpoint_ops;
16000 ops->insert_location = bkpt_probe_insert_location;
16001 ops->remove_location = bkpt_probe_remove_location;
16002 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16003 ops->decode_linespec = bkpt_probe_decode_linespec;
16004
16005 /* Watchpoints. */
16006 ops = &watchpoint_breakpoint_ops;
16007 *ops = base_breakpoint_ops;
16008 ops->dtor = dtor_watchpoint;
16009 ops->re_set = re_set_watchpoint;
16010 ops->insert_location = insert_watchpoint;
16011 ops->remove_location = remove_watchpoint;
16012 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16013 ops->check_status = check_status_watchpoint;
16014 ops->resources_needed = resources_needed_watchpoint;
16015 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16016 ops->print_it = print_it_watchpoint;
16017 ops->print_mention = print_mention_watchpoint;
16018 ops->print_recreate = print_recreate_watchpoint;
16019 ops->explains_signal = explains_signal_watchpoint;
16020
16021 /* Masked watchpoints. */
16022 ops = &masked_watchpoint_breakpoint_ops;
16023 *ops = watchpoint_breakpoint_ops;
16024 ops->insert_location = insert_masked_watchpoint;
16025 ops->remove_location = remove_masked_watchpoint;
16026 ops->resources_needed = resources_needed_masked_watchpoint;
16027 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16028 ops->print_it = print_it_masked_watchpoint;
16029 ops->print_one_detail = print_one_detail_masked_watchpoint;
16030 ops->print_mention = print_mention_masked_watchpoint;
16031 ops->print_recreate = print_recreate_masked_watchpoint;
16032
16033 /* Tracepoints. */
16034 ops = &tracepoint_breakpoint_ops;
16035 *ops = base_breakpoint_ops;
16036 ops->re_set = tracepoint_re_set;
16037 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16038 ops->print_one_detail = tracepoint_print_one_detail;
16039 ops->print_mention = tracepoint_print_mention;
16040 ops->print_recreate = tracepoint_print_recreate;
16041 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16042 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16043 ops->decode_linespec = tracepoint_decode_linespec;
16044
16045 /* Probe tracepoints. */
16046 ops = &tracepoint_probe_breakpoint_ops;
16047 *ops = tracepoint_breakpoint_ops;
16048 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16049 ops->decode_linespec = tracepoint_probe_decode_linespec;
16050
16051 /* Static tracepoints with marker (`-m'). */
16052 ops = &strace_marker_breakpoint_ops;
16053 *ops = tracepoint_breakpoint_ops;
16054 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16055 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16056 ops->decode_linespec = strace_marker_decode_linespec;
16057
16058 /* Fork catchpoints. */
16059 ops = &catch_fork_breakpoint_ops;
16060 *ops = base_breakpoint_ops;
16061 ops->insert_location = insert_catch_fork;
16062 ops->remove_location = remove_catch_fork;
16063 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16064 ops->print_it = print_it_catch_fork;
16065 ops->print_one = print_one_catch_fork;
16066 ops->print_mention = print_mention_catch_fork;
16067 ops->print_recreate = print_recreate_catch_fork;
16068
16069 /* Vfork catchpoints. */
16070 ops = &catch_vfork_breakpoint_ops;
16071 *ops = base_breakpoint_ops;
16072 ops->insert_location = insert_catch_vfork;
16073 ops->remove_location = remove_catch_vfork;
16074 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16075 ops->print_it = print_it_catch_vfork;
16076 ops->print_one = print_one_catch_vfork;
16077 ops->print_mention = print_mention_catch_vfork;
16078 ops->print_recreate = print_recreate_catch_vfork;
16079
16080 /* Exec catchpoints. */
16081 ops = &catch_exec_breakpoint_ops;
16082 *ops = base_breakpoint_ops;
16083 ops->dtor = dtor_catch_exec;
16084 ops->insert_location = insert_catch_exec;
16085 ops->remove_location = remove_catch_exec;
16086 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16087 ops->print_it = print_it_catch_exec;
16088 ops->print_one = print_one_catch_exec;
16089 ops->print_mention = print_mention_catch_exec;
16090 ops->print_recreate = print_recreate_catch_exec;
16091
16092 /* Syscall catchpoints. */
16093 ops = &catch_syscall_breakpoint_ops;
16094 *ops = base_breakpoint_ops;
16095 ops->dtor = dtor_catch_syscall;
16096 ops->insert_location = insert_catch_syscall;
16097 ops->remove_location = remove_catch_syscall;
16098 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16099 ops->print_it = print_it_catch_syscall;
16100 ops->print_one = print_one_catch_syscall;
16101 ops->print_mention = print_mention_catch_syscall;
16102 ops->print_recreate = print_recreate_catch_syscall;
16103
16104 /* Solib-related catchpoints. */
16105 ops = &catch_solib_breakpoint_ops;
16106 *ops = base_breakpoint_ops;
16107 ops->dtor = dtor_catch_solib;
16108 ops->insert_location = insert_catch_solib;
16109 ops->remove_location = remove_catch_solib;
16110 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16111 ops->check_status = check_status_catch_solib;
16112 ops->print_it = print_it_catch_solib;
16113 ops->print_one = print_one_catch_solib;
16114 ops->print_mention = print_mention_catch_solib;
16115 ops->print_recreate = print_recreate_catch_solib;
16116
16117 ops = &dprintf_breakpoint_ops;
16118 *ops = bkpt_base_breakpoint_ops;
16119 ops->re_set = dprintf_re_set;
16120 ops->resources_needed = bkpt_resources_needed;
16121 ops->print_it = bkpt_print_it;
16122 ops->print_mention = bkpt_print_mention;
16123 ops->print_recreate = dprintf_print_recreate;
16124 ops->after_condition_true = dprintf_after_condition_true;
16125 }
16126
16127 /* Chain containing all defined "enable breakpoint" subcommands. */
16128
16129 static struct cmd_list_element *enablebreaklist = NULL;
16130
16131 void
16132 _initialize_breakpoint (void)
16133 {
16134 struct cmd_list_element *c;
16135
16136 initialize_breakpoint_ops ();
16137
16138 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16139 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16140 observer_attach_inferior_exit (clear_syscall_counts);
16141 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16142
16143 breakpoint_objfile_key
16144 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16145
16146 catch_syscall_inferior_data
16147 = register_inferior_data_with_cleanup (NULL,
16148 catch_syscall_inferior_data_cleanup);
16149
16150 breakpoint_chain = 0;
16151 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16152 before a breakpoint is set. */
16153 breakpoint_count = 0;
16154
16155 tracepoint_count = 0;
16156
16157 add_com ("ignore", class_breakpoint, ignore_command, _("\
16158 Set ignore-count of breakpoint number N to COUNT.\n\
16159 Usage is `ignore N COUNT'."));
16160 if (xdb_commands)
16161 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16162
16163 add_com ("commands", class_breakpoint, commands_command, _("\
16164 Set commands to be executed when a breakpoint is hit.\n\
16165 Give breakpoint number as argument after \"commands\".\n\
16166 With no argument, the targeted breakpoint is the last one set.\n\
16167 The commands themselves follow starting on the next line.\n\
16168 Type a line containing \"end\" to indicate the end of them.\n\
16169 Give \"silent\" as the first line to make the breakpoint silent;\n\
16170 then no output is printed when it is hit, except what the commands print."));
16171
16172 c = add_com ("condition", class_breakpoint, condition_command, _("\
16173 Specify breakpoint number N to break only if COND is true.\n\
16174 Usage is `condition N COND', where N is an integer and COND is an\n\
16175 expression to be evaluated whenever breakpoint N is reached."));
16176 set_cmd_completer (c, condition_completer);
16177
16178 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16179 Set a temporary breakpoint.\n\
16180 Like \"break\" except the breakpoint is only temporary,\n\
16181 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16182 by using \"enable delete\" on the breakpoint number.\n\
16183 \n"
16184 BREAK_ARGS_HELP ("tbreak")));
16185 set_cmd_completer (c, location_completer);
16186
16187 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16188 Set a hardware assisted breakpoint.\n\
16189 Like \"break\" except the breakpoint requires hardware support,\n\
16190 some target hardware may not have this support.\n\
16191 \n"
16192 BREAK_ARGS_HELP ("hbreak")));
16193 set_cmd_completer (c, location_completer);
16194
16195 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16196 Set a temporary hardware assisted breakpoint.\n\
16197 Like \"hbreak\" except the breakpoint is only temporary,\n\
16198 so it will be deleted when hit.\n\
16199 \n"
16200 BREAK_ARGS_HELP ("thbreak")));
16201 set_cmd_completer (c, location_completer);
16202
16203 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16204 Enable some breakpoints.\n\
16205 Give breakpoint numbers (separated by spaces) as arguments.\n\
16206 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16207 This is used to cancel the effect of the \"disable\" command.\n\
16208 With a subcommand you can enable temporarily."),
16209 &enablelist, "enable ", 1, &cmdlist);
16210 if (xdb_commands)
16211 add_com ("ab", class_breakpoint, enable_command, _("\
16212 Enable some breakpoints.\n\
16213 Give breakpoint numbers (separated by spaces) as arguments.\n\
16214 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16215 This is used to cancel the effect of the \"disable\" command.\n\
16216 With a subcommand you can enable temporarily."));
16217
16218 add_com_alias ("en", "enable", class_breakpoint, 1);
16219
16220 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16221 Enable some breakpoints.\n\
16222 Give breakpoint numbers (separated by spaces) as arguments.\n\
16223 This is used to cancel the effect of the \"disable\" command.\n\
16224 May be abbreviated to simply \"enable\".\n"),
16225 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16226
16227 add_cmd ("once", no_class, enable_once_command, _("\
16228 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16229 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16230 &enablebreaklist);
16231
16232 add_cmd ("delete", no_class, enable_delete_command, _("\
16233 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16234 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16235 &enablebreaklist);
16236
16237 add_cmd ("count", no_class, enable_count_command, _("\
16238 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16239 If a breakpoint is hit while enabled in this fashion,\n\
16240 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16241 &enablebreaklist);
16242
16243 add_cmd ("delete", no_class, enable_delete_command, _("\
16244 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16245 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16246 &enablelist);
16247
16248 add_cmd ("once", no_class, enable_once_command, _("\
16249 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16250 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16251 &enablelist);
16252
16253 add_cmd ("count", no_class, enable_count_command, _("\
16254 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16255 If a breakpoint is hit while enabled in this fashion,\n\
16256 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16257 &enablelist);
16258
16259 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16260 Disable some breakpoints.\n\
16261 Arguments are breakpoint numbers with spaces in between.\n\
16262 To disable all breakpoints, give no argument.\n\
16263 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16264 &disablelist, "disable ", 1, &cmdlist);
16265 add_com_alias ("dis", "disable", class_breakpoint, 1);
16266 add_com_alias ("disa", "disable", class_breakpoint, 1);
16267 if (xdb_commands)
16268 add_com ("sb", class_breakpoint, disable_command, _("\
16269 Disable some breakpoints.\n\
16270 Arguments are breakpoint numbers with spaces in between.\n\
16271 To disable all breakpoints, give no argument.\n\
16272 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16273
16274 add_cmd ("breakpoints", class_alias, disable_command, _("\
16275 Disable some breakpoints.\n\
16276 Arguments are breakpoint numbers with spaces in between.\n\
16277 To disable all breakpoints, give no argument.\n\
16278 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16279 This command may be abbreviated \"disable\"."),
16280 &disablelist);
16281
16282 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16283 Delete some breakpoints or auto-display expressions.\n\
16284 Arguments are breakpoint numbers with spaces in between.\n\
16285 To delete all breakpoints, give no argument.\n\
16286 \n\
16287 Also a prefix command for deletion of other GDB objects.\n\
16288 The \"unset\" command is also an alias for \"delete\"."),
16289 &deletelist, "delete ", 1, &cmdlist);
16290 add_com_alias ("d", "delete", class_breakpoint, 1);
16291 add_com_alias ("del", "delete", class_breakpoint, 1);
16292 if (xdb_commands)
16293 add_com ("db", class_breakpoint, delete_command, _("\
16294 Delete some breakpoints.\n\
16295 Arguments are breakpoint numbers with spaces in between.\n\
16296 To delete all breakpoints, give no argument.\n"));
16297
16298 add_cmd ("breakpoints", class_alias, delete_command, _("\
16299 Delete some breakpoints or auto-display expressions.\n\
16300 Arguments are breakpoint numbers with spaces in between.\n\
16301 To delete all breakpoints, give no argument.\n\
16302 This command may be abbreviated \"delete\"."),
16303 &deletelist);
16304
16305 add_com ("clear", class_breakpoint, clear_command, _("\
16306 Clear breakpoint at specified line or function.\n\
16307 Argument may be line number, function name, or \"*\" and an address.\n\
16308 If line number is specified, all breakpoints in that line are cleared.\n\
16309 If function is specified, breakpoints at beginning of function are cleared.\n\
16310 If an address is specified, breakpoints at that address are cleared.\n\
16311 \n\
16312 With no argument, clears all breakpoints in the line that the selected frame\n\
16313 is executing in.\n\
16314 \n\
16315 See also the \"delete\" command which clears breakpoints by number."));
16316 add_com_alias ("cl", "clear", class_breakpoint, 1);
16317
16318 c = add_com ("break", class_breakpoint, break_command, _("\
16319 Set breakpoint at specified line or function.\n"
16320 BREAK_ARGS_HELP ("break")));
16321 set_cmd_completer (c, location_completer);
16322
16323 add_com_alias ("b", "break", class_run, 1);
16324 add_com_alias ("br", "break", class_run, 1);
16325 add_com_alias ("bre", "break", class_run, 1);
16326 add_com_alias ("brea", "break", class_run, 1);
16327
16328 if (xdb_commands)
16329 add_com_alias ("ba", "break", class_breakpoint, 1);
16330
16331 if (dbx_commands)
16332 {
16333 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16334 Break in function/address or break at a line in the current file."),
16335 &stoplist, "stop ", 1, &cmdlist);
16336 add_cmd ("in", class_breakpoint, stopin_command,
16337 _("Break in function or address."), &stoplist);
16338 add_cmd ("at", class_breakpoint, stopat_command,
16339 _("Break at a line in the current file."), &stoplist);
16340 add_com ("status", class_info, breakpoints_info, _("\
16341 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16342 The \"Type\" column indicates one of:\n\
16343 \tbreakpoint - normal breakpoint\n\
16344 \twatchpoint - watchpoint\n\
16345 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16346 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16347 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16348 address and file/line number respectively.\n\
16349 \n\
16350 Convenience variable \"$_\" and default examine address for \"x\"\n\
16351 are set to the address of the last breakpoint listed unless the command\n\
16352 is prefixed with \"server \".\n\n\
16353 Convenience variable \"$bpnum\" contains the number of the last\n\
16354 breakpoint set."));
16355 }
16356
16357 add_info ("breakpoints", breakpoints_info, _("\
16358 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16359 The \"Type\" column indicates one of:\n\
16360 \tbreakpoint - normal breakpoint\n\
16361 \twatchpoint - watchpoint\n\
16362 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16363 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16364 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16365 address and file/line number respectively.\n\
16366 \n\
16367 Convenience variable \"$_\" and default examine address for \"x\"\n\
16368 are set to the address of the last breakpoint listed unless the command\n\
16369 is prefixed with \"server \".\n\n\
16370 Convenience variable \"$bpnum\" contains the number of the last\n\
16371 breakpoint set."));
16372
16373 add_info_alias ("b", "breakpoints", 1);
16374
16375 if (xdb_commands)
16376 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16377 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16378 The \"Type\" column indicates one of:\n\
16379 \tbreakpoint - normal breakpoint\n\
16380 \twatchpoint - watchpoint\n\
16381 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16382 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16383 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16384 address and file/line number respectively.\n\
16385 \n\
16386 Convenience variable \"$_\" and default examine address for \"x\"\n\
16387 are set to the address of the last breakpoint listed unless the command\n\
16388 is prefixed with \"server \".\n\n\
16389 Convenience variable \"$bpnum\" contains the number of the last\n\
16390 breakpoint set."));
16391
16392 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16393 Status of all breakpoints, or breakpoint number NUMBER.\n\
16394 The \"Type\" column indicates one of:\n\
16395 \tbreakpoint - normal breakpoint\n\
16396 \twatchpoint - watchpoint\n\
16397 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16398 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16399 \tuntil - internal breakpoint used by the \"until\" command\n\
16400 \tfinish - internal breakpoint used by the \"finish\" command\n\
16401 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16402 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16403 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16404 address and file/line number respectively.\n\
16405 \n\
16406 Convenience variable \"$_\" and default examine address for \"x\"\n\
16407 are set to the address of the last breakpoint listed unless the command\n\
16408 is prefixed with \"server \".\n\n\
16409 Convenience variable \"$bpnum\" contains the number of the last\n\
16410 breakpoint set."),
16411 &maintenanceinfolist);
16412
16413 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16414 Set catchpoints to catch events."),
16415 &catch_cmdlist, "catch ",
16416 0/*allow-unknown*/, &cmdlist);
16417
16418 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16419 Set temporary catchpoints to catch events."),
16420 &tcatch_cmdlist, "tcatch ",
16421 0/*allow-unknown*/, &cmdlist);
16422
16423 add_catch_command ("fork", _("Catch calls to fork."),
16424 catch_fork_command_1,
16425 NULL,
16426 (void *) (uintptr_t) catch_fork_permanent,
16427 (void *) (uintptr_t) catch_fork_temporary);
16428 add_catch_command ("vfork", _("Catch calls to vfork."),
16429 catch_fork_command_1,
16430 NULL,
16431 (void *) (uintptr_t) catch_vfork_permanent,
16432 (void *) (uintptr_t) catch_vfork_temporary);
16433 add_catch_command ("exec", _("Catch calls to exec."),
16434 catch_exec_command_1,
16435 NULL,
16436 CATCH_PERMANENT,
16437 CATCH_TEMPORARY);
16438 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16439 Usage: catch load [REGEX]\n\
16440 If REGEX is given, only stop for libraries matching the regular expression."),
16441 catch_load_command_1,
16442 NULL,
16443 CATCH_PERMANENT,
16444 CATCH_TEMPORARY);
16445 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16446 Usage: catch unload [REGEX]\n\
16447 If REGEX is given, only stop for libraries matching the regular expression."),
16448 catch_unload_command_1,
16449 NULL,
16450 CATCH_PERMANENT,
16451 CATCH_TEMPORARY);
16452 add_catch_command ("syscall", _("\
16453 Catch system calls by their names and/or numbers.\n\
16454 Arguments say which system calls to catch. If no arguments\n\
16455 are given, every system call will be caught.\n\
16456 Arguments, if given, should be one or more system call names\n\
16457 (if your system supports that), or system call numbers."),
16458 catch_syscall_command_1,
16459 catch_syscall_completer,
16460 CATCH_PERMANENT,
16461 CATCH_TEMPORARY);
16462
16463 c = add_com ("watch", class_breakpoint, watch_command, _("\
16464 Set a watchpoint for an expression.\n\
16465 Usage: watch [-l|-location] EXPRESSION\n\
16466 A watchpoint stops execution of your program whenever the value of\n\
16467 an expression changes.\n\
16468 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16469 the memory to which it refers."));
16470 set_cmd_completer (c, expression_completer);
16471
16472 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16473 Set a read watchpoint for an expression.\n\
16474 Usage: rwatch [-l|-location] EXPRESSION\n\
16475 A watchpoint stops execution of your program whenever the value of\n\
16476 an expression is read.\n\
16477 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16478 the memory to which it refers."));
16479 set_cmd_completer (c, expression_completer);
16480
16481 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16482 Set a watchpoint for an expression.\n\
16483 Usage: awatch [-l|-location] EXPRESSION\n\
16484 A watchpoint stops execution of your program whenever the value of\n\
16485 an expression is either read or written.\n\
16486 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16487 the memory to which it refers."));
16488 set_cmd_completer (c, expression_completer);
16489
16490 add_info ("watchpoints", watchpoints_info, _("\
16491 Status of specified watchpoints (all watchpoints if no argument)."));
16492
16493 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16494 respond to changes - contrary to the description. */
16495 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16496 &can_use_hw_watchpoints, _("\
16497 Set debugger's willingness to use watchpoint hardware."), _("\
16498 Show debugger's willingness to use watchpoint hardware."), _("\
16499 If zero, gdb will not use hardware for new watchpoints, even if\n\
16500 such is available. (However, any hardware watchpoints that were\n\
16501 created before setting this to nonzero, will continue to use watchpoint\n\
16502 hardware.)"),
16503 NULL,
16504 show_can_use_hw_watchpoints,
16505 &setlist, &showlist);
16506
16507 can_use_hw_watchpoints = 1;
16508
16509 /* Tracepoint manipulation commands. */
16510
16511 c = add_com ("trace", class_breakpoint, trace_command, _("\
16512 Set a tracepoint at specified line or function.\n\
16513 \n"
16514 BREAK_ARGS_HELP ("trace") "\n\
16515 Do \"help tracepoints\" for info on other tracepoint commands."));
16516 set_cmd_completer (c, location_completer);
16517
16518 add_com_alias ("tp", "trace", class_alias, 0);
16519 add_com_alias ("tr", "trace", class_alias, 1);
16520 add_com_alias ("tra", "trace", class_alias, 1);
16521 add_com_alias ("trac", "trace", class_alias, 1);
16522
16523 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16524 Set a fast tracepoint at specified line or function.\n\
16525 \n"
16526 BREAK_ARGS_HELP ("ftrace") "\n\
16527 Do \"help tracepoints\" for info on other tracepoint commands."));
16528 set_cmd_completer (c, location_completer);
16529
16530 c = add_com ("strace", class_breakpoint, strace_command, _("\
16531 Set a static tracepoint at specified line, function or marker.\n\
16532 \n\
16533 strace [LOCATION] [if CONDITION]\n\
16534 LOCATION may be a line number, function name, \"*\" and an address,\n\
16535 or -m MARKER_ID.\n\
16536 If a line number is specified, probe the marker at start of code\n\
16537 for that line. If a function is specified, probe the marker at start\n\
16538 of code for that function. If an address is specified, probe the marker\n\
16539 at that exact address. If a marker id is specified, probe the marker\n\
16540 with that name. With no LOCATION, uses current execution address of\n\
16541 the selected stack frame.\n\
16542 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16543 This collects arbitrary user data passed in the probe point call to the\n\
16544 tracing library. You can inspect it when analyzing the trace buffer,\n\
16545 by printing the $_sdata variable like any other convenience variable.\n\
16546 \n\
16547 CONDITION is a boolean expression.\n\
16548 \n\
16549 Multiple tracepoints at one place are permitted, and useful if their\n\
16550 conditions are different.\n\
16551 \n\
16552 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16553 Do \"help tracepoints\" for info on other tracepoint commands."));
16554 set_cmd_completer (c, location_completer);
16555
16556 add_info ("tracepoints", tracepoints_info, _("\
16557 Status of specified tracepoints (all tracepoints if no argument).\n\
16558 Convenience variable \"$tpnum\" contains the number of the\n\
16559 last tracepoint set."));
16560
16561 add_info_alias ("tp", "tracepoints", 1);
16562
16563 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16564 Delete specified tracepoints.\n\
16565 Arguments are tracepoint numbers, separated by spaces.\n\
16566 No argument means delete all tracepoints."),
16567 &deletelist);
16568 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16569
16570 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16571 Disable specified tracepoints.\n\
16572 Arguments are tracepoint numbers, separated by spaces.\n\
16573 No argument means disable all tracepoints."),
16574 &disablelist);
16575 deprecate_cmd (c, "disable");
16576
16577 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16578 Enable specified tracepoints.\n\
16579 Arguments are tracepoint numbers, separated by spaces.\n\
16580 No argument means enable all tracepoints."),
16581 &enablelist);
16582 deprecate_cmd (c, "enable");
16583
16584 add_com ("passcount", class_trace, trace_pass_command, _("\
16585 Set the passcount for a tracepoint.\n\
16586 The trace will end when the tracepoint has been passed 'count' times.\n\
16587 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16588 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16589
16590 add_prefix_cmd ("save", class_breakpoint, save_command,
16591 _("Save breakpoint definitions as a script."),
16592 &save_cmdlist, "save ",
16593 0/*allow-unknown*/, &cmdlist);
16594
16595 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16596 Save current breakpoint definitions as a script.\n\
16597 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16598 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16599 session to restore them."),
16600 &save_cmdlist);
16601 set_cmd_completer (c, filename_completer);
16602
16603 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16604 Save current tracepoint definitions as a script.\n\
16605 Use the 'source' command in another debug session to restore them."),
16606 &save_cmdlist);
16607 set_cmd_completer (c, filename_completer);
16608
16609 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16610 deprecate_cmd (c, "save tracepoints");
16611
16612 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16613 Breakpoint specific settings\n\
16614 Configure various breakpoint-specific variables such as\n\
16615 pending breakpoint behavior"),
16616 &breakpoint_set_cmdlist, "set breakpoint ",
16617 0/*allow-unknown*/, &setlist);
16618 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16619 Breakpoint specific settings\n\
16620 Configure various breakpoint-specific variables such as\n\
16621 pending breakpoint behavior"),
16622 &breakpoint_show_cmdlist, "show breakpoint ",
16623 0/*allow-unknown*/, &showlist);
16624
16625 add_setshow_auto_boolean_cmd ("pending", no_class,
16626 &pending_break_support, _("\
16627 Set debugger's behavior regarding pending breakpoints."), _("\
16628 Show debugger's behavior regarding pending breakpoints."), _("\
16629 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16630 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16631 an error. If auto, an unrecognized breakpoint location results in a\n\
16632 user-query to see if a pending breakpoint should be created."),
16633 NULL,
16634 show_pending_break_support,
16635 &breakpoint_set_cmdlist,
16636 &breakpoint_show_cmdlist);
16637
16638 pending_break_support = AUTO_BOOLEAN_AUTO;
16639
16640 add_setshow_boolean_cmd ("auto-hw", no_class,
16641 &automatic_hardware_breakpoints, _("\
16642 Set automatic usage of hardware breakpoints."), _("\
16643 Show automatic usage of hardware breakpoints."), _("\
16644 If set, the debugger will automatically use hardware breakpoints for\n\
16645 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16646 a warning will be emitted for such breakpoints."),
16647 NULL,
16648 show_automatic_hardware_breakpoints,
16649 &breakpoint_set_cmdlist,
16650 &breakpoint_show_cmdlist);
16651
16652 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16653 &always_inserted_mode, _("\
16654 Set mode for inserting breakpoints."), _("\
16655 Show mode for inserting breakpoints."), _("\
16656 When this mode is off, breakpoints are inserted in inferior when it is\n\
16657 resumed, and removed when execution stops. When this mode is on,\n\
16658 breakpoints are inserted immediately and removed only when the user\n\
16659 deletes the breakpoint. When this mode is auto (which is the default),\n\
16660 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16661 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16662 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16663 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16664 NULL,
16665 &show_always_inserted_mode,
16666 &breakpoint_set_cmdlist,
16667 &breakpoint_show_cmdlist);
16668
16669 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16670 condition_evaluation_enums,
16671 &condition_evaluation_mode_1, _("\
16672 Set mode of breakpoint condition evaluation."), _("\
16673 Show mode of breakpoint condition evaluation."), _("\
16674 When this is set to \"host\", breakpoint conditions will be\n\
16675 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16676 breakpoint conditions will be downloaded to the target (if the target\n\
16677 supports such feature) and conditions will be evaluated on the target's side.\n\
16678 If this is set to \"auto\" (default), this will be automatically set to\n\
16679 \"target\" if it supports condition evaluation, otherwise it will\n\
16680 be set to \"gdb\""),
16681 &set_condition_evaluation_mode,
16682 &show_condition_evaluation_mode,
16683 &breakpoint_set_cmdlist,
16684 &breakpoint_show_cmdlist);
16685
16686 add_com ("break-range", class_breakpoint, break_range_command, _("\
16687 Set a breakpoint for an address range.\n\
16688 break-range START-LOCATION, END-LOCATION\n\
16689 where START-LOCATION and END-LOCATION can be one of the following:\n\
16690 LINENUM, for that line in the current file,\n\
16691 FILE:LINENUM, for that line in that file,\n\
16692 +OFFSET, for that number of lines after the current line\n\
16693 or the start of the range\n\
16694 FUNCTION, for the first line in that function,\n\
16695 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16696 *ADDRESS, for the instruction at that address.\n\
16697 \n\
16698 The breakpoint will stop execution of the inferior whenever it executes\n\
16699 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16700 range (including START-LOCATION and END-LOCATION)."));
16701
16702 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16703 Set a dynamic printf at specified line or function.\n\
16704 dprintf location,format string,arg1,arg2,...\n\
16705 location may be a line number, function name, or \"*\" and an address.\n\
16706 If a line number is specified, break at start of code for that line.\n\
16707 If a function is specified, break at start of code for that function."));
16708 set_cmd_completer (c, location_completer);
16709
16710 add_setshow_enum_cmd ("dprintf-style", class_support,
16711 dprintf_style_enums, &dprintf_style, _("\
16712 Set the style of usage for dynamic printf."), _("\
16713 Show the style of usage for dynamic printf."), _("\
16714 This setting chooses how GDB will do a dynamic printf.\n\
16715 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16716 console, as with the \"printf\" command.\n\
16717 If the value is \"call\", the print is done by calling a function in your\n\
16718 program; by default printf(), but you can choose a different function or\n\
16719 output stream by setting dprintf-function and dprintf-channel."),
16720 update_dprintf_commands, NULL,
16721 &setlist, &showlist);
16722
16723 dprintf_function = xstrdup ("printf");
16724 add_setshow_string_cmd ("dprintf-function", class_support,
16725 &dprintf_function, _("\
16726 Set the function to use for dynamic printf"), _("\
16727 Show the function to use for dynamic printf"), NULL,
16728 update_dprintf_commands, NULL,
16729 &setlist, &showlist);
16730
16731 dprintf_channel = xstrdup ("");
16732 add_setshow_string_cmd ("dprintf-channel", class_support,
16733 &dprintf_channel, _("\
16734 Set the channel to use for dynamic printf"), _("\
16735 Show the channel to use for dynamic printf"), NULL,
16736 update_dprintf_commands, NULL,
16737 &setlist, &showlist);
16738
16739 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16740 &disconnected_dprintf, _("\
16741 Set whether dprintf continues after GDB disconnects."), _("\
16742 Show whether dprintf continues after GDB disconnects."), _("\
16743 Use this to let dprintf commands continue to hit and produce output\n\
16744 even if GDB disconnects or detaches from the target."),
16745 NULL,
16746 NULL,
16747 &setlist, &showlist);
16748
16749 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16750 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16751 (target agent only) This is useful for formatted output in user-defined commands."));
16752
16753 automatic_hardware_breakpoints = 1;
16754
16755 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16756 observer_attach_thread_exit (remove_threaded_breakpoints);
16757 }