2757c6ba359e2771bb2ff7046357568cbf7ccb5a
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 struct linespec_sals *,
123 char *, char *, enum bptype,
124 enum bpdisp, int, int,
125 int,
126 const struct breakpoint_ops *,
127 int, int, int, unsigned);
128
129 static void decode_linespec_default (struct breakpoint *, char **,
130 struct symtabs_and_lines *);
131
132 static void clear_command (char *, int);
133
134 static void catch_command (char *, int);
135
136 static int can_use_hardware_watchpoint (struct value *);
137
138 static void break_command_1 (char *, int, int);
139
140 static void mention (struct breakpoint *);
141
142 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
143 enum bptype,
144 const struct breakpoint_ops *);
145 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
146 const struct symtab_and_line *);
147
148 /* This function is used in gdbtk sources and thus can not be made
149 static. */
150 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
151 struct symtab_and_line,
152 enum bptype,
153 const struct breakpoint_ops *);
154
155 static struct breakpoint *
156 momentary_breakpoint_from_master (struct breakpoint *orig,
157 enum bptype type,
158 const struct breakpoint_ops *ops);
159
160 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
161
162 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
163 CORE_ADDR bpaddr,
164 enum bptype bptype);
165
166 static void describe_other_breakpoints (struct gdbarch *,
167 struct program_space *, CORE_ADDR,
168 struct obj_section *, int);
169
170 static int breakpoint_address_match (struct address_space *aspace1,
171 CORE_ADDR addr1,
172 struct address_space *aspace2,
173 CORE_ADDR addr2);
174
175 static int watchpoint_locations_match (struct bp_location *loc1,
176 struct bp_location *loc2);
177
178 static int breakpoint_location_address_match (struct bp_location *bl,
179 struct address_space *aspace,
180 CORE_ADDR addr);
181
182 static void breakpoints_info (char *, int);
183
184 static void watchpoints_info (char *, int);
185
186 static int breakpoint_1 (char *, int,
187 int (*) (const struct breakpoint *));
188
189 static int breakpoint_cond_eval (void *);
190
191 static void cleanup_executing_breakpoints (void *);
192
193 static void commands_command (char *, int);
194
195 static void condition_command (char *, int);
196
197 typedef enum
198 {
199 mark_inserted,
200 mark_uninserted
201 }
202 insertion_state_t;
203
204 static int remove_breakpoint (struct bp_location *, insertion_state_t);
205 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
206
207 static enum print_stop_action print_bp_stop_message (bpstat bs);
208
209 static int watchpoint_check (void *);
210
211 static void maintenance_info_breakpoints (char *, int);
212
213 static int hw_breakpoint_used_count (void);
214
215 static int hw_watchpoint_use_count (struct breakpoint *);
216
217 static int hw_watchpoint_used_count_others (struct breakpoint *except,
218 enum bptype type,
219 int *other_type_used);
220
221 static void hbreak_command (char *, int);
222
223 static void thbreak_command (char *, int);
224
225 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
226 int count);
227
228 static void stop_command (char *arg, int from_tty);
229
230 static void stopin_command (char *arg, int from_tty);
231
232 static void stopat_command (char *arg, int from_tty);
233
234 static void tcatch_command (char *arg, int from_tty);
235
236 static void detach_single_step_breakpoints (void);
237
238 static int single_step_breakpoint_inserted_here_p (struct address_space *,
239 CORE_ADDR pc);
240
241 static void free_bp_location (struct bp_location *loc);
242 static void incref_bp_location (struct bp_location *loc);
243 static void decref_bp_location (struct bp_location **loc);
244
245 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
246
247 static void update_global_location_list (int);
248
249 static void update_global_location_list_nothrow (int);
250
251 static int is_hardware_watchpoint (const struct breakpoint *bpt);
252
253 static void insert_breakpoint_locations (void);
254
255 static int syscall_catchpoint_p (struct breakpoint *b);
256
257 static void tracepoints_info (char *, int);
258
259 static void delete_trace_command (char *, int);
260
261 static void enable_trace_command (char *, int);
262
263 static void disable_trace_command (char *, int);
264
265 static void trace_pass_command (char *, int);
266
267 static void set_tracepoint_count (int num);
268
269 static int is_masked_watchpoint (const struct breakpoint *b);
270
271 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
272
273 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
274 otherwise. */
275
276 static int strace_marker_p (struct breakpoint *b);
277
278 /* The abstract base class all breakpoint_ops structures inherit
279 from. */
280 struct breakpoint_ops base_breakpoint_ops;
281
282 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
283 that are implemented on top of software or hardware breakpoints
284 (user breakpoints, internal and momentary breakpoints, etc.). */
285 static struct breakpoint_ops bkpt_base_breakpoint_ops;
286
287 /* Internal breakpoints class type. */
288 static struct breakpoint_ops internal_breakpoint_ops;
289
290 /* Momentary breakpoints class type. */
291 static struct breakpoint_ops momentary_breakpoint_ops;
292
293 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
294 static struct breakpoint_ops longjmp_breakpoint_ops;
295
296 /* The breakpoint_ops structure to be used in regular user created
297 breakpoints. */
298 struct breakpoint_ops bkpt_breakpoint_ops;
299
300 /* Breakpoints set on probes. */
301 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
302
303 /* Dynamic printf class type. */
304 static struct breakpoint_ops dprintf_breakpoint_ops;
305
306 /* The style in which to perform a dynamic printf. This is a user
307 option because different output options have different tradeoffs;
308 if GDB does the printing, there is better error handling if there
309 is a problem with any of the arguments, but using an inferior
310 function lets you have special-purpose printers and sending of
311 output to the same place as compiled-in print functions. */
312
313 static const char dprintf_style_gdb[] = "gdb";
314 static const char dprintf_style_call[] = "call";
315 static const char dprintf_style_agent[] = "agent";
316 static const char *const dprintf_style_enums[] = {
317 dprintf_style_gdb,
318 dprintf_style_call,
319 dprintf_style_agent,
320 NULL
321 };
322 static const char *dprintf_style = dprintf_style_gdb;
323
324 /* The function to use for dynamic printf if the preferred style is to
325 call into the inferior. The value is simply a string that is
326 copied into the command, so it can be anything that GDB can
327 evaluate to a callable address, not necessarily a function name. */
328
329 static char *dprintf_function = "";
330
331 /* The channel to use for dynamic printf if the preferred style is to
332 call into the inferior; if a nonempty string, it will be passed to
333 the call as the first argument, with the format string as the
334 second. As with the dprintf function, this can be anything that
335 GDB knows how to evaluate, so in addition to common choices like
336 "stderr", this could be an app-specific expression like
337 "mystreams[curlogger]". */
338
339 static char *dprintf_channel = "";
340
341 /* True if dprintf commands should continue to operate even if GDB
342 has disconnected. */
343 static int disconnected_dprintf = 1;
344
345 /* A reference-counted struct command_line. This lets multiple
346 breakpoints share a single command list. */
347 struct counted_command_line
348 {
349 /* The reference count. */
350 int refc;
351
352 /* The command list. */
353 struct command_line *commands;
354 };
355
356 struct command_line *
357 breakpoint_commands (struct breakpoint *b)
358 {
359 return b->commands ? b->commands->commands : NULL;
360 }
361
362 /* Flag indicating that a command has proceeded the inferior past the
363 current breakpoint. */
364
365 static int breakpoint_proceeded;
366
367 const char *
368 bpdisp_text (enum bpdisp disp)
369 {
370 /* NOTE: the following values are a part of MI protocol and
371 represent values of 'disp' field returned when inferior stops at
372 a breakpoint. */
373 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
374
375 return bpdisps[(int) disp];
376 }
377
378 /* Prototypes for exported functions. */
379 /* If FALSE, gdb will not use hardware support for watchpoints, even
380 if such is available. */
381 static int can_use_hw_watchpoints;
382
383 static void
384 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
385 struct cmd_list_element *c,
386 const char *value)
387 {
388 fprintf_filtered (file,
389 _("Debugger's willingness to use "
390 "watchpoint hardware is %s.\n"),
391 value);
392 }
393
394 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
395 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
396 for unrecognized breakpoint locations.
397 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
398 static enum auto_boolean pending_break_support;
399 static void
400 show_pending_break_support (struct ui_file *file, int from_tty,
401 struct cmd_list_element *c,
402 const char *value)
403 {
404 fprintf_filtered (file,
405 _("Debugger's behavior regarding "
406 "pending breakpoints is %s.\n"),
407 value);
408 }
409
410 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
411 set with "break" but falling in read-only memory.
412 If 0, gdb will warn about such breakpoints, but won't automatically
413 use hardware breakpoints. */
414 static int automatic_hardware_breakpoints;
415 static void
416 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
417 struct cmd_list_element *c,
418 const char *value)
419 {
420 fprintf_filtered (file,
421 _("Automatic usage of hardware breakpoints is %s.\n"),
422 value);
423 }
424
425 /* If on, gdb will keep breakpoints inserted even as inferior is
426 stopped, and immediately insert any new breakpoints. If off, gdb
427 will insert breakpoints into inferior only when resuming it, and
428 will remove breakpoints upon stop. If auto, GDB will behave as ON
429 if in non-stop mode, and as OFF if all-stop mode.*/
430
431 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
432
433 static void
434 show_always_inserted_mode (struct ui_file *file, int from_tty,
435 struct cmd_list_element *c, const char *value)
436 {
437 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
438 fprintf_filtered (file,
439 _("Always inserted breakpoint "
440 "mode is %s (currently %s).\n"),
441 value,
442 breakpoints_always_inserted_mode () ? "on" : "off");
443 else
444 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
445 value);
446 }
447
448 int
449 breakpoints_always_inserted_mode (void)
450 {
451 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
452 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
453 }
454
455 static const char condition_evaluation_both[] = "host or target";
456
457 /* Modes for breakpoint condition evaluation. */
458 static const char condition_evaluation_auto[] = "auto";
459 static const char condition_evaluation_host[] = "host";
460 static const char condition_evaluation_target[] = "target";
461 static const char *const condition_evaluation_enums[] = {
462 condition_evaluation_auto,
463 condition_evaluation_host,
464 condition_evaluation_target,
465 NULL
466 };
467
468 /* Global that holds the current mode for breakpoint condition evaluation. */
469 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
470
471 /* Global that we use to display information to the user (gets its value from
472 condition_evaluation_mode_1. */
473 static const char *condition_evaluation_mode = condition_evaluation_auto;
474
475 /* Translate a condition evaluation mode MODE into either "host"
476 or "target". This is used mostly to translate from "auto" to the
477 real setting that is being used. It returns the translated
478 evaluation mode. */
479
480 static const char *
481 translate_condition_evaluation_mode (const char *mode)
482 {
483 if (mode == condition_evaluation_auto)
484 {
485 if (target_supports_evaluation_of_breakpoint_conditions ())
486 return condition_evaluation_target;
487 else
488 return condition_evaluation_host;
489 }
490 else
491 return mode;
492 }
493
494 /* Discovers what condition_evaluation_auto translates to. */
495
496 static const char *
497 breakpoint_condition_evaluation_mode (void)
498 {
499 return translate_condition_evaluation_mode (condition_evaluation_mode);
500 }
501
502 /* Return true if GDB should evaluate breakpoint conditions or false
503 otherwise. */
504
505 static int
506 gdb_evaluates_breakpoint_condition_p (void)
507 {
508 const char *mode = breakpoint_condition_evaluation_mode ();
509
510 return (mode == condition_evaluation_host);
511 }
512
513 void _initialize_breakpoint (void);
514
515 /* Are we executing breakpoint commands? */
516 static int executing_breakpoint_commands;
517
518 /* Are overlay event breakpoints enabled? */
519 static int overlay_events_enabled;
520
521 /* See description in breakpoint.h. */
522 int target_exact_watchpoints = 0;
523
524 /* Walk the following statement or block through all breakpoints.
525 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
526 current breakpoint. */
527
528 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
529
530 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
531 for (B = breakpoint_chain; \
532 B ? (TMP=B->next, 1): 0; \
533 B = TMP)
534
535 /* Similar iterator for the low-level breakpoints. SAFE variant is
536 not provided so update_global_location_list must not be called
537 while executing the block of ALL_BP_LOCATIONS. */
538
539 #define ALL_BP_LOCATIONS(B,BP_TMP) \
540 for (BP_TMP = bp_location; \
541 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
542 BP_TMP++)
543
544 /* Iterates through locations with address ADDRESS for the currently selected
545 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
546 to where the loop should start from.
547 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
548 appropriate location to start with. */
549
550 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
551 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
552 BP_LOCP_TMP = BP_LOCP_START; \
553 BP_LOCP_START \
554 && (BP_LOCP_TMP < bp_location + bp_location_count \
555 && (*BP_LOCP_TMP)->address == ADDRESS); \
556 BP_LOCP_TMP++)
557
558 /* Iterator for tracepoints only. */
559
560 #define ALL_TRACEPOINTS(B) \
561 for (B = breakpoint_chain; B; B = B->next) \
562 if (is_tracepoint (B))
563
564 /* Chains of all breakpoints defined. */
565
566 struct breakpoint *breakpoint_chain;
567
568 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
569
570 static struct bp_location **bp_location;
571
572 /* Number of elements of BP_LOCATION. */
573
574 static unsigned bp_location_count;
575
576 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
577 ADDRESS for the current elements of BP_LOCATION which get a valid
578 result from bp_location_has_shadow. You can use it for roughly
579 limiting the subrange of BP_LOCATION to scan for shadow bytes for
580 an address you need to read. */
581
582 static CORE_ADDR bp_location_placed_address_before_address_max;
583
584 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
585 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
586 BP_LOCATION which get a valid result from bp_location_has_shadow.
587 You can use it for roughly limiting the subrange of BP_LOCATION to
588 scan for shadow bytes for an address you need to read. */
589
590 static CORE_ADDR bp_location_shadow_len_after_address_max;
591
592 /* The locations that no longer correspond to any breakpoint, unlinked
593 from bp_location array, but for which a hit may still be reported
594 by a target. */
595 VEC(bp_location_p) *moribund_locations = NULL;
596
597 /* Number of last breakpoint made. */
598
599 static int breakpoint_count;
600
601 /* The value of `breakpoint_count' before the last command that
602 created breakpoints. If the last (break-like) command created more
603 than one breakpoint, then the difference between BREAKPOINT_COUNT
604 and PREV_BREAKPOINT_COUNT is more than one. */
605 static int prev_breakpoint_count;
606
607 /* Number of last tracepoint made. */
608
609 static int tracepoint_count;
610
611 static struct cmd_list_element *breakpoint_set_cmdlist;
612 static struct cmd_list_element *breakpoint_show_cmdlist;
613 struct cmd_list_element *save_cmdlist;
614
615 /* Return whether a breakpoint is an active enabled breakpoint. */
616 static int
617 breakpoint_enabled (struct breakpoint *b)
618 {
619 return (b->enable_state == bp_enabled);
620 }
621
622 /* Set breakpoint count to NUM. */
623
624 static void
625 set_breakpoint_count (int num)
626 {
627 prev_breakpoint_count = breakpoint_count;
628 breakpoint_count = num;
629 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
630 }
631
632 /* Used by `start_rbreak_breakpoints' below, to record the current
633 breakpoint count before "rbreak" creates any breakpoint. */
634 static int rbreak_start_breakpoint_count;
635
636 /* Called at the start an "rbreak" command to record the first
637 breakpoint made. */
638
639 void
640 start_rbreak_breakpoints (void)
641 {
642 rbreak_start_breakpoint_count = breakpoint_count;
643 }
644
645 /* Called at the end of an "rbreak" command to record the last
646 breakpoint made. */
647
648 void
649 end_rbreak_breakpoints (void)
650 {
651 prev_breakpoint_count = rbreak_start_breakpoint_count;
652 }
653
654 /* Used in run_command to zero the hit count when a new run starts. */
655
656 void
657 clear_breakpoint_hit_counts (void)
658 {
659 struct breakpoint *b;
660
661 ALL_BREAKPOINTS (b)
662 b->hit_count = 0;
663 }
664
665 /* Allocate a new counted_command_line with reference count of 1.
666 The new structure owns COMMANDS. */
667
668 static struct counted_command_line *
669 alloc_counted_command_line (struct command_line *commands)
670 {
671 struct counted_command_line *result
672 = xmalloc (sizeof (struct counted_command_line));
673
674 result->refc = 1;
675 result->commands = commands;
676 return result;
677 }
678
679 /* Increment reference count. This does nothing if CMD is NULL. */
680
681 static void
682 incref_counted_command_line (struct counted_command_line *cmd)
683 {
684 if (cmd)
685 ++cmd->refc;
686 }
687
688 /* Decrement reference count. If the reference count reaches 0,
689 destroy the counted_command_line. Sets *CMDP to NULL. This does
690 nothing if *CMDP is NULL. */
691
692 static void
693 decref_counted_command_line (struct counted_command_line **cmdp)
694 {
695 if (*cmdp)
696 {
697 if (--(*cmdp)->refc == 0)
698 {
699 free_command_lines (&(*cmdp)->commands);
700 xfree (*cmdp);
701 }
702 *cmdp = NULL;
703 }
704 }
705
706 /* A cleanup function that calls decref_counted_command_line. */
707
708 static void
709 do_cleanup_counted_command_line (void *arg)
710 {
711 decref_counted_command_line (arg);
712 }
713
714 /* Create a cleanup that calls decref_counted_command_line on the
715 argument. */
716
717 static struct cleanup *
718 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
719 {
720 return make_cleanup (do_cleanup_counted_command_line, cmdp);
721 }
722
723 \f
724 /* Return the breakpoint with the specified number, or NULL
725 if the number does not refer to an existing breakpoint. */
726
727 struct breakpoint *
728 get_breakpoint (int num)
729 {
730 struct breakpoint *b;
731
732 ALL_BREAKPOINTS (b)
733 if (b->number == num)
734 return b;
735
736 return NULL;
737 }
738
739 \f
740
741 /* Mark locations as "conditions have changed" in case the target supports
742 evaluating conditions on its side. */
743
744 static void
745 mark_breakpoint_modified (struct breakpoint *b)
746 {
747 struct bp_location *loc;
748
749 /* This is only meaningful if the target is
750 evaluating conditions and if the user has
751 opted for condition evaluation on the target's
752 side. */
753 if (gdb_evaluates_breakpoint_condition_p ()
754 || !target_supports_evaluation_of_breakpoint_conditions ())
755 return;
756
757 if (!is_breakpoint (b))
758 return;
759
760 for (loc = b->loc; loc; loc = loc->next)
761 loc->condition_changed = condition_modified;
762 }
763
764 /* Mark location as "conditions have changed" in case the target supports
765 evaluating conditions on its side. */
766
767 static void
768 mark_breakpoint_location_modified (struct bp_location *loc)
769 {
770 /* This is only meaningful if the target is
771 evaluating conditions and if the user has
772 opted for condition evaluation on the target's
773 side. */
774 if (gdb_evaluates_breakpoint_condition_p ()
775 || !target_supports_evaluation_of_breakpoint_conditions ())
776
777 return;
778
779 if (!is_breakpoint (loc->owner))
780 return;
781
782 loc->condition_changed = condition_modified;
783 }
784
785 /* Sets the condition-evaluation mode using the static global
786 condition_evaluation_mode. */
787
788 static void
789 set_condition_evaluation_mode (char *args, int from_tty,
790 struct cmd_list_element *c)
791 {
792 const char *old_mode, *new_mode;
793
794 if ((condition_evaluation_mode_1 == condition_evaluation_target)
795 && !target_supports_evaluation_of_breakpoint_conditions ())
796 {
797 condition_evaluation_mode_1 = condition_evaluation_mode;
798 warning (_("Target does not support breakpoint condition evaluation.\n"
799 "Using host evaluation mode instead."));
800 return;
801 }
802
803 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
804 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
805
806 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
807 settings was "auto". */
808 condition_evaluation_mode = condition_evaluation_mode_1;
809
810 /* Only update the mode if the user picked a different one. */
811 if (new_mode != old_mode)
812 {
813 struct bp_location *loc, **loc_tmp;
814 /* If the user switched to a different evaluation mode, we
815 need to synch the changes with the target as follows:
816
817 "host" -> "target": Send all (valid) conditions to the target.
818 "target" -> "host": Remove all the conditions from the target.
819 */
820
821 if (new_mode == condition_evaluation_target)
822 {
823 /* Mark everything modified and synch conditions with the
824 target. */
825 ALL_BP_LOCATIONS (loc, loc_tmp)
826 mark_breakpoint_location_modified (loc);
827 }
828 else
829 {
830 /* Manually mark non-duplicate locations to synch conditions
831 with the target. We do this to remove all the conditions the
832 target knows about. */
833 ALL_BP_LOCATIONS (loc, loc_tmp)
834 if (is_breakpoint (loc->owner) && loc->inserted)
835 loc->needs_update = 1;
836 }
837
838 /* Do the update. */
839 update_global_location_list (1);
840 }
841
842 return;
843 }
844
845 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
846 what "auto" is translating to. */
847
848 static void
849 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
850 struct cmd_list_element *c, const char *value)
851 {
852 if (condition_evaluation_mode == condition_evaluation_auto)
853 fprintf_filtered (file,
854 _("Breakpoint condition evaluation "
855 "mode is %s (currently %s).\n"),
856 value,
857 breakpoint_condition_evaluation_mode ());
858 else
859 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
860 value);
861 }
862
863 /* A comparison function for bp_location AP and BP that is used by
864 bsearch. This comparison function only cares about addresses, unlike
865 the more general bp_location_compare function. */
866
867 static int
868 bp_location_compare_addrs (const void *ap, const void *bp)
869 {
870 struct bp_location *a = *(void **) ap;
871 struct bp_location *b = *(void **) bp;
872
873 if (a->address == b->address)
874 return 0;
875 else
876 return ((a->address > b->address) - (a->address < b->address));
877 }
878
879 /* Helper function to skip all bp_locations with addresses
880 less than ADDRESS. It returns the first bp_location that
881 is greater than or equal to ADDRESS. If none is found, just
882 return NULL. */
883
884 static struct bp_location **
885 get_first_locp_gte_addr (CORE_ADDR address)
886 {
887 struct bp_location dummy_loc;
888 struct bp_location *dummy_locp = &dummy_loc;
889 struct bp_location **locp_found = NULL;
890
891 /* Initialize the dummy location's address field. */
892 memset (&dummy_loc, 0, sizeof (struct bp_location));
893 dummy_loc.address = address;
894
895 /* Find a close match to the first location at ADDRESS. */
896 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
897 sizeof (struct bp_location **),
898 bp_location_compare_addrs);
899
900 /* Nothing was found, nothing left to do. */
901 if (locp_found == NULL)
902 return NULL;
903
904 /* We may have found a location that is at ADDRESS but is not the first in the
905 location's list. Go backwards (if possible) and locate the first one. */
906 while ((locp_found - 1) >= bp_location
907 && (*(locp_found - 1))->address == address)
908 locp_found--;
909
910 return locp_found;
911 }
912
913 void
914 set_breakpoint_condition (struct breakpoint *b, char *exp,
915 int from_tty)
916 {
917 xfree (b->cond_string);
918 b->cond_string = NULL;
919
920 if (is_watchpoint (b))
921 {
922 struct watchpoint *w = (struct watchpoint *) b;
923
924 xfree (w->cond_exp);
925 w->cond_exp = NULL;
926 }
927 else
928 {
929 struct bp_location *loc;
930
931 for (loc = b->loc; loc; loc = loc->next)
932 {
933 xfree (loc->cond);
934 loc->cond = NULL;
935
936 /* No need to free the condition agent expression
937 bytecode (if we have one). We will handle this
938 when we go through update_global_location_list. */
939 }
940 }
941
942 if (*exp == 0)
943 {
944 if (from_tty)
945 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
946 }
947 else
948 {
949 const char *arg = exp;
950
951 /* I don't know if it matters whether this is the string the user
952 typed in or the decompiled expression. */
953 b->cond_string = xstrdup (arg);
954 b->condition_not_parsed = 0;
955
956 if (is_watchpoint (b))
957 {
958 struct watchpoint *w = (struct watchpoint *) b;
959
960 innermost_block = NULL;
961 arg = exp;
962 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
963 if (*arg)
964 error (_("Junk at end of expression"));
965 w->cond_exp_valid_block = innermost_block;
966 }
967 else
968 {
969 struct bp_location *loc;
970
971 for (loc = b->loc; loc; loc = loc->next)
972 {
973 arg = exp;
974 loc->cond =
975 parse_exp_1 (&arg, loc->address,
976 block_for_pc (loc->address), 0);
977 if (*arg)
978 error (_("Junk at end of expression"));
979 }
980 }
981 }
982 mark_breakpoint_modified (b);
983
984 observer_notify_breakpoint_modified (b);
985 }
986
987 /* Completion for the "condition" command. */
988
989 static VEC (char_ptr) *
990 condition_completer (struct cmd_list_element *cmd,
991 const char *text, const char *word)
992 {
993 const char *space;
994
995 text = skip_spaces_const (text);
996 space = skip_to_space_const (text);
997 if (*space == '\0')
998 {
999 int len;
1000 struct breakpoint *b;
1001 VEC (char_ptr) *result = NULL;
1002
1003 if (text[0] == '$')
1004 {
1005 /* We don't support completion of history indices. */
1006 if (isdigit (text[1]))
1007 return NULL;
1008 return complete_internalvar (&text[1]);
1009 }
1010
1011 /* We're completing the breakpoint number. */
1012 len = strlen (text);
1013
1014 ALL_BREAKPOINTS (b)
1015 {
1016 int single = b->loc->next == NULL;
1017 struct bp_location *loc;
1018 int count = 1;
1019
1020 for (loc = b->loc; loc; loc = loc->next)
1021 {
1022 char location[50];
1023
1024 if (single)
1025 xsnprintf (location, sizeof (location), "%d", b->number);
1026 else
1027 xsnprintf (location, sizeof (location), "%d.%d", b->number,
1028 count);
1029
1030 if (strncmp (location, text, len) == 0)
1031 VEC_safe_push (char_ptr, result, xstrdup (location));
1032
1033 ++count;
1034 }
1035 }
1036
1037 return result;
1038 }
1039
1040 /* We're completing the expression part. */
1041 text = skip_spaces_const (space);
1042 return expression_completer (cmd, text, word);
1043 }
1044
1045 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1046
1047 static void
1048 condition_command (char *arg, int from_tty)
1049 {
1050 struct breakpoint *b;
1051 char *p;
1052 int bnum;
1053
1054 if (arg == 0)
1055 error_no_arg (_("breakpoint number"));
1056
1057 p = arg;
1058 bnum = get_number (&p);
1059 if (bnum == 0)
1060 error (_("Bad breakpoint argument: '%s'"), arg);
1061
1062 ALL_BREAKPOINTS (b)
1063 if (b->number == bnum)
1064 {
1065 /* Check if this breakpoint has a Python object assigned to
1066 it, and if it has a definition of the "stop"
1067 method. This method and conditions entered into GDB from
1068 the CLI are mutually exclusive. */
1069 if (b->py_bp_object
1070 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1071 error (_("Cannot set a condition where a Python 'stop' "
1072 "method has been defined in the breakpoint."));
1073 set_breakpoint_condition (b, p, from_tty);
1074
1075 if (is_breakpoint (b))
1076 update_global_location_list (1);
1077
1078 return;
1079 }
1080
1081 error (_("No breakpoint number %d."), bnum);
1082 }
1083
1084 /* Check that COMMAND do not contain commands that are suitable
1085 only for tracepoints and not suitable for ordinary breakpoints.
1086 Throw if any such commands is found. */
1087
1088 static void
1089 check_no_tracepoint_commands (struct command_line *commands)
1090 {
1091 struct command_line *c;
1092
1093 for (c = commands; c; c = c->next)
1094 {
1095 int i;
1096
1097 if (c->control_type == while_stepping_control)
1098 error (_("The 'while-stepping' command can "
1099 "only be used for tracepoints"));
1100
1101 for (i = 0; i < c->body_count; ++i)
1102 check_no_tracepoint_commands ((c->body_list)[i]);
1103
1104 /* Not that command parsing removes leading whitespace and comment
1105 lines and also empty lines. So, we only need to check for
1106 command directly. */
1107 if (strstr (c->line, "collect ") == c->line)
1108 error (_("The 'collect' command can only be used for tracepoints"));
1109
1110 if (strstr (c->line, "teval ") == c->line)
1111 error (_("The 'teval' command can only be used for tracepoints"));
1112 }
1113 }
1114
1115 /* Encapsulate tests for different types of tracepoints. */
1116
1117 static int
1118 is_tracepoint_type (enum bptype type)
1119 {
1120 return (type == bp_tracepoint
1121 || type == bp_fast_tracepoint
1122 || type == bp_static_tracepoint);
1123 }
1124
1125 int
1126 is_tracepoint (const struct breakpoint *b)
1127 {
1128 return is_tracepoint_type (b->type);
1129 }
1130
1131 /* A helper function that validates that COMMANDS are valid for a
1132 breakpoint. This function will throw an exception if a problem is
1133 found. */
1134
1135 static void
1136 validate_commands_for_breakpoint (struct breakpoint *b,
1137 struct command_line *commands)
1138 {
1139 if (is_tracepoint (b))
1140 {
1141 struct tracepoint *t = (struct tracepoint *) b;
1142 struct command_line *c;
1143 struct command_line *while_stepping = 0;
1144
1145 /* Reset the while-stepping step count. The previous commands
1146 might have included a while-stepping action, while the new
1147 ones might not. */
1148 t->step_count = 0;
1149
1150 /* We need to verify that each top-level element of commands is
1151 valid for tracepoints, that there's at most one
1152 while-stepping element, and that the while-stepping's body
1153 has valid tracing commands excluding nested while-stepping.
1154 We also need to validate the tracepoint action line in the
1155 context of the tracepoint --- validate_actionline actually
1156 has side effects, like setting the tracepoint's
1157 while-stepping STEP_COUNT, in addition to checking if the
1158 collect/teval actions parse and make sense in the
1159 tracepoint's context. */
1160 for (c = commands; c; c = c->next)
1161 {
1162 if (c->control_type == while_stepping_control)
1163 {
1164 if (b->type == bp_fast_tracepoint)
1165 error (_("The 'while-stepping' command "
1166 "cannot be used for fast tracepoint"));
1167 else if (b->type == bp_static_tracepoint)
1168 error (_("The 'while-stepping' command "
1169 "cannot be used for static tracepoint"));
1170
1171 if (while_stepping)
1172 error (_("The 'while-stepping' command "
1173 "can be used only once"));
1174 else
1175 while_stepping = c;
1176 }
1177
1178 validate_actionline (c->line, b);
1179 }
1180 if (while_stepping)
1181 {
1182 struct command_line *c2;
1183
1184 gdb_assert (while_stepping->body_count == 1);
1185 c2 = while_stepping->body_list[0];
1186 for (; c2; c2 = c2->next)
1187 {
1188 if (c2->control_type == while_stepping_control)
1189 error (_("The 'while-stepping' command cannot be nested"));
1190 }
1191 }
1192 }
1193 else
1194 {
1195 check_no_tracepoint_commands (commands);
1196 }
1197 }
1198
1199 /* Return a vector of all the static tracepoints set at ADDR. The
1200 caller is responsible for releasing the vector. */
1201
1202 VEC(breakpoint_p) *
1203 static_tracepoints_here (CORE_ADDR addr)
1204 {
1205 struct breakpoint *b;
1206 VEC(breakpoint_p) *found = 0;
1207 struct bp_location *loc;
1208
1209 ALL_BREAKPOINTS (b)
1210 if (b->type == bp_static_tracepoint)
1211 {
1212 for (loc = b->loc; loc; loc = loc->next)
1213 if (loc->address == addr)
1214 VEC_safe_push(breakpoint_p, found, b);
1215 }
1216
1217 return found;
1218 }
1219
1220 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1221 validate that only allowed commands are included. */
1222
1223 void
1224 breakpoint_set_commands (struct breakpoint *b,
1225 struct command_line *commands)
1226 {
1227 validate_commands_for_breakpoint (b, commands);
1228
1229 decref_counted_command_line (&b->commands);
1230 b->commands = alloc_counted_command_line (commands);
1231 observer_notify_breakpoint_modified (b);
1232 }
1233
1234 /* Set the internal `silent' flag on the breakpoint. Note that this
1235 is not the same as the "silent" that may appear in the breakpoint's
1236 commands. */
1237
1238 void
1239 breakpoint_set_silent (struct breakpoint *b, int silent)
1240 {
1241 int old_silent = b->silent;
1242
1243 b->silent = silent;
1244 if (old_silent != silent)
1245 observer_notify_breakpoint_modified (b);
1246 }
1247
1248 /* Set the thread for this breakpoint. If THREAD is -1, make the
1249 breakpoint work for any thread. */
1250
1251 void
1252 breakpoint_set_thread (struct breakpoint *b, int thread)
1253 {
1254 int old_thread = b->thread;
1255
1256 b->thread = thread;
1257 if (old_thread != thread)
1258 observer_notify_breakpoint_modified (b);
1259 }
1260
1261 /* Set the task for this breakpoint. If TASK is 0, make the
1262 breakpoint work for any task. */
1263
1264 void
1265 breakpoint_set_task (struct breakpoint *b, int task)
1266 {
1267 int old_task = b->task;
1268
1269 b->task = task;
1270 if (old_task != task)
1271 observer_notify_breakpoint_modified (b);
1272 }
1273
1274 void
1275 check_tracepoint_command (char *line, void *closure)
1276 {
1277 struct breakpoint *b = closure;
1278
1279 validate_actionline (line, b);
1280 }
1281
1282 /* A structure used to pass information through
1283 map_breakpoint_numbers. */
1284
1285 struct commands_info
1286 {
1287 /* True if the command was typed at a tty. */
1288 int from_tty;
1289
1290 /* The breakpoint range spec. */
1291 char *arg;
1292
1293 /* Non-NULL if the body of the commands are being read from this
1294 already-parsed command. */
1295 struct command_line *control;
1296
1297 /* The command lines read from the user, or NULL if they have not
1298 yet been read. */
1299 struct counted_command_line *cmd;
1300 };
1301
1302 /* A callback for map_breakpoint_numbers that sets the commands for
1303 commands_command. */
1304
1305 static void
1306 do_map_commands_command (struct breakpoint *b, void *data)
1307 {
1308 struct commands_info *info = data;
1309
1310 if (info->cmd == NULL)
1311 {
1312 struct command_line *l;
1313
1314 if (info->control != NULL)
1315 l = copy_command_lines (info->control->body_list[0]);
1316 else
1317 {
1318 struct cleanup *old_chain;
1319 char *str;
1320
1321 str = xstrprintf (_("Type commands for breakpoint(s) "
1322 "%s, one per line."),
1323 info->arg);
1324
1325 old_chain = make_cleanup (xfree, str);
1326
1327 l = read_command_lines (str,
1328 info->from_tty, 1,
1329 (is_tracepoint (b)
1330 ? check_tracepoint_command : 0),
1331 b);
1332
1333 do_cleanups (old_chain);
1334 }
1335
1336 info->cmd = alloc_counted_command_line (l);
1337 }
1338
1339 /* If a breakpoint was on the list more than once, we don't need to
1340 do anything. */
1341 if (b->commands != info->cmd)
1342 {
1343 validate_commands_for_breakpoint (b, info->cmd->commands);
1344 incref_counted_command_line (info->cmd);
1345 decref_counted_command_line (&b->commands);
1346 b->commands = info->cmd;
1347 observer_notify_breakpoint_modified (b);
1348 }
1349 }
1350
1351 static void
1352 commands_command_1 (char *arg, int from_tty,
1353 struct command_line *control)
1354 {
1355 struct cleanup *cleanups;
1356 struct commands_info info;
1357
1358 info.from_tty = from_tty;
1359 info.control = control;
1360 info.cmd = NULL;
1361 /* If we read command lines from the user, then `info' will hold an
1362 extra reference to the commands that we must clean up. */
1363 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1364
1365 if (arg == NULL || !*arg)
1366 {
1367 if (breakpoint_count - prev_breakpoint_count > 1)
1368 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1369 breakpoint_count);
1370 else if (breakpoint_count > 0)
1371 arg = xstrprintf ("%d", breakpoint_count);
1372 else
1373 {
1374 /* So that we don't try to free the incoming non-NULL
1375 argument in the cleanup below. Mapping breakpoint
1376 numbers will fail in this case. */
1377 arg = NULL;
1378 }
1379 }
1380 else
1381 /* The command loop has some static state, so we need to preserve
1382 our argument. */
1383 arg = xstrdup (arg);
1384
1385 if (arg != NULL)
1386 make_cleanup (xfree, arg);
1387
1388 info.arg = arg;
1389
1390 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1391
1392 if (info.cmd == NULL)
1393 error (_("No breakpoints specified."));
1394
1395 do_cleanups (cleanups);
1396 }
1397
1398 static void
1399 commands_command (char *arg, int from_tty)
1400 {
1401 commands_command_1 (arg, from_tty, NULL);
1402 }
1403
1404 /* Like commands_command, but instead of reading the commands from
1405 input stream, takes them from an already parsed command structure.
1406
1407 This is used by cli-script.c to DTRT with breakpoint commands
1408 that are part of if and while bodies. */
1409 enum command_control_type
1410 commands_from_control_command (char *arg, struct command_line *cmd)
1411 {
1412 commands_command_1 (arg, 0, cmd);
1413 return simple_control;
1414 }
1415
1416 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1417
1418 static int
1419 bp_location_has_shadow (struct bp_location *bl)
1420 {
1421 if (bl->loc_type != bp_loc_software_breakpoint)
1422 return 0;
1423 if (!bl->inserted)
1424 return 0;
1425 if (bl->target_info.shadow_len == 0)
1426 /* BL isn't valid, or doesn't shadow memory. */
1427 return 0;
1428 return 1;
1429 }
1430
1431 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1432 by replacing any memory breakpoints with their shadowed contents.
1433
1434 If READBUF is not NULL, this buffer must not overlap with any of
1435 the breakpoint location's shadow_contents buffers. Otherwise,
1436 a failed assertion internal error will be raised.
1437
1438 The range of shadowed area by each bp_location is:
1439 bl->address - bp_location_placed_address_before_address_max
1440 up to bl->address + bp_location_shadow_len_after_address_max
1441 The range we were requested to resolve shadows for is:
1442 memaddr ... memaddr + len
1443 Thus the safe cutoff boundaries for performance optimization are
1444 memaddr + len <= (bl->address
1445 - bp_location_placed_address_before_address_max)
1446 and:
1447 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1448
1449 void
1450 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1451 const gdb_byte *writebuf_org,
1452 ULONGEST memaddr, LONGEST len)
1453 {
1454 /* Left boundary, right boundary and median element of our binary
1455 search. */
1456 unsigned bc_l, bc_r, bc;
1457
1458 /* Find BC_L which is a leftmost element which may affect BUF
1459 content. It is safe to report lower value but a failure to
1460 report higher one. */
1461
1462 bc_l = 0;
1463 bc_r = bp_location_count;
1464 while (bc_l + 1 < bc_r)
1465 {
1466 struct bp_location *bl;
1467
1468 bc = (bc_l + bc_r) / 2;
1469 bl = bp_location[bc];
1470
1471 /* Check first BL->ADDRESS will not overflow due to the added
1472 constant. Then advance the left boundary only if we are sure
1473 the BC element can in no way affect the BUF content (MEMADDR
1474 to MEMADDR + LEN range).
1475
1476 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1477 offset so that we cannot miss a breakpoint with its shadow
1478 range tail still reaching MEMADDR. */
1479
1480 if ((bl->address + bp_location_shadow_len_after_address_max
1481 >= bl->address)
1482 && (bl->address + bp_location_shadow_len_after_address_max
1483 <= memaddr))
1484 bc_l = bc;
1485 else
1486 bc_r = bc;
1487 }
1488
1489 /* Due to the binary search above, we need to make sure we pick the
1490 first location that's at BC_L's address. E.g., if there are
1491 multiple locations at the same address, BC_L may end up pointing
1492 at a duplicate location, and miss the "master"/"inserted"
1493 location. Say, given locations L1, L2 and L3 at addresses A and
1494 B:
1495
1496 L1@A, L2@A, L3@B, ...
1497
1498 BC_L could end up pointing at location L2, while the "master"
1499 location could be L1. Since the `loc->inserted' flag is only set
1500 on "master" locations, we'd forget to restore the shadow of L1
1501 and L2. */
1502 while (bc_l > 0
1503 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1504 bc_l--;
1505
1506 /* Now do full processing of the found relevant range of elements. */
1507
1508 for (bc = bc_l; bc < bp_location_count; bc++)
1509 {
1510 struct bp_location *bl = bp_location[bc];
1511 CORE_ADDR bp_addr = 0;
1512 int bp_size = 0;
1513 int bptoffset = 0;
1514
1515 /* bp_location array has BL->OWNER always non-NULL. */
1516 if (bl->owner->type == bp_none)
1517 warning (_("reading through apparently deleted breakpoint #%d?"),
1518 bl->owner->number);
1519
1520 /* Performance optimization: any further element can no longer affect BUF
1521 content. */
1522
1523 if (bl->address >= bp_location_placed_address_before_address_max
1524 && memaddr + len <= (bl->address
1525 - bp_location_placed_address_before_address_max))
1526 break;
1527
1528 if (!bp_location_has_shadow (bl))
1529 continue;
1530 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1531 current_program_space->aspace, 0))
1532 continue;
1533
1534 /* Addresses and length of the part of the breakpoint that
1535 we need to copy. */
1536 bp_addr = bl->target_info.placed_address;
1537 bp_size = bl->target_info.shadow_len;
1538
1539 if (bp_addr + bp_size <= memaddr)
1540 /* The breakpoint is entirely before the chunk of memory we
1541 are reading. */
1542 continue;
1543
1544 if (bp_addr >= memaddr + len)
1545 /* The breakpoint is entirely after the chunk of memory we are
1546 reading. */
1547 continue;
1548
1549 /* Offset within shadow_contents. */
1550 if (bp_addr < memaddr)
1551 {
1552 /* Only copy the second part of the breakpoint. */
1553 bp_size -= memaddr - bp_addr;
1554 bptoffset = memaddr - bp_addr;
1555 bp_addr = memaddr;
1556 }
1557
1558 if (bp_addr + bp_size > memaddr + len)
1559 {
1560 /* Only copy the first part of the breakpoint. */
1561 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1562 }
1563
1564 if (readbuf != NULL)
1565 {
1566 /* Verify that the readbuf buffer does not overlap with
1567 the shadow_contents buffer. */
1568 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1569 || readbuf >= (bl->target_info.shadow_contents
1570 + bl->target_info.shadow_len));
1571
1572 /* Update the read buffer with this inserted breakpoint's
1573 shadow. */
1574 memcpy (readbuf + bp_addr - memaddr,
1575 bl->target_info.shadow_contents + bptoffset, bp_size);
1576 }
1577 else
1578 {
1579 struct gdbarch *gdbarch = bl->gdbarch;
1580 const unsigned char *bp;
1581 CORE_ADDR placed_address = bl->target_info.placed_address;
1582 int placed_size = bl->target_info.placed_size;
1583
1584 /* Update the shadow with what we want to write to memory. */
1585 memcpy (bl->target_info.shadow_contents + bptoffset,
1586 writebuf_org + bp_addr - memaddr, bp_size);
1587
1588 /* Determine appropriate breakpoint contents and size for this
1589 address. */
1590 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1591
1592 /* Update the final write buffer with this inserted
1593 breakpoint's INSN. */
1594 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1595 }
1596 }
1597 }
1598 \f
1599
1600 /* Return true if BPT is either a software breakpoint or a hardware
1601 breakpoint. */
1602
1603 int
1604 is_breakpoint (const struct breakpoint *bpt)
1605 {
1606 return (bpt->type == bp_breakpoint
1607 || bpt->type == bp_hardware_breakpoint
1608 || bpt->type == bp_dprintf);
1609 }
1610
1611 /* Return true if BPT is of any hardware watchpoint kind. */
1612
1613 static int
1614 is_hardware_watchpoint (const struct breakpoint *bpt)
1615 {
1616 return (bpt->type == bp_hardware_watchpoint
1617 || bpt->type == bp_read_watchpoint
1618 || bpt->type == bp_access_watchpoint);
1619 }
1620
1621 /* Return true if BPT is of any watchpoint kind, hardware or
1622 software. */
1623
1624 int
1625 is_watchpoint (const struct breakpoint *bpt)
1626 {
1627 return (is_hardware_watchpoint (bpt)
1628 || bpt->type == bp_watchpoint);
1629 }
1630
1631 /* Returns true if the current thread and its running state are safe
1632 to evaluate or update watchpoint B. Watchpoints on local
1633 expressions need to be evaluated in the context of the thread that
1634 was current when the watchpoint was created, and, that thread needs
1635 to be stopped to be able to select the correct frame context.
1636 Watchpoints on global expressions can be evaluated on any thread,
1637 and in any state. It is presently left to the target allowing
1638 memory accesses when threads are running. */
1639
1640 static int
1641 watchpoint_in_thread_scope (struct watchpoint *b)
1642 {
1643 return (b->base.pspace == current_program_space
1644 && (ptid_equal (b->watchpoint_thread, null_ptid)
1645 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1646 && !is_executing (inferior_ptid))));
1647 }
1648
1649 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1650 associated bp_watchpoint_scope breakpoint. */
1651
1652 static void
1653 watchpoint_del_at_next_stop (struct watchpoint *w)
1654 {
1655 struct breakpoint *b = &w->base;
1656
1657 if (b->related_breakpoint != b)
1658 {
1659 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1660 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1661 b->related_breakpoint->disposition = disp_del_at_next_stop;
1662 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1663 b->related_breakpoint = b;
1664 }
1665 b->disposition = disp_del_at_next_stop;
1666 }
1667
1668 /* Assuming that B is a watchpoint:
1669 - Reparse watchpoint expression, if REPARSE is non-zero
1670 - Evaluate expression and store the result in B->val
1671 - Evaluate the condition if there is one, and store the result
1672 in b->loc->cond.
1673 - Update the list of values that must be watched in B->loc.
1674
1675 If the watchpoint disposition is disp_del_at_next_stop, then do
1676 nothing. If this is local watchpoint that is out of scope, delete
1677 it.
1678
1679 Even with `set breakpoint always-inserted on' the watchpoints are
1680 removed + inserted on each stop here. Normal breakpoints must
1681 never be removed because they might be missed by a running thread
1682 when debugging in non-stop mode. On the other hand, hardware
1683 watchpoints (is_hardware_watchpoint; processed here) are specific
1684 to each LWP since they are stored in each LWP's hardware debug
1685 registers. Therefore, such LWP must be stopped first in order to
1686 be able to modify its hardware watchpoints.
1687
1688 Hardware watchpoints must be reset exactly once after being
1689 presented to the user. It cannot be done sooner, because it would
1690 reset the data used to present the watchpoint hit to the user. And
1691 it must not be done later because it could display the same single
1692 watchpoint hit during multiple GDB stops. Note that the latter is
1693 relevant only to the hardware watchpoint types bp_read_watchpoint
1694 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1695 not user-visible - its hit is suppressed if the memory content has
1696 not changed.
1697
1698 The following constraints influence the location where we can reset
1699 hardware watchpoints:
1700
1701 * target_stopped_by_watchpoint and target_stopped_data_address are
1702 called several times when GDB stops.
1703
1704 [linux]
1705 * Multiple hardware watchpoints can be hit at the same time,
1706 causing GDB to stop. GDB only presents one hardware watchpoint
1707 hit at a time as the reason for stopping, and all the other hits
1708 are presented later, one after the other, each time the user
1709 requests the execution to be resumed. Execution is not resumed
1710 for the threads still having pending hit event stored in
1711 LWP_INFO->STATUS. While the watchpoint is already removed from
1712 the inferior on the first stop the thread hit event is kept being
1713 reported from its cached value by linux_nat_stopped_data_address
1714 until the real thread resume happens after the watchpoint gets
1715 presented and thus its LWP_INFO->STATUS gets reset.
1716
1717 Therefore the hardware watchpoint hit can get safely reset on the
1718 watchpoint removal from inferior. */
1719
1720 static void
1721 update_watchpoint (struct watchpoint *b, int reparse)
1722 {
1723 int within_current_scope;
1724 struct frame_id saved_frame_id;
1725 int frame_saved;
1726
1727 /* If this is a local watchpoint, we only want to check if the
1728 watchpoint frame is in scope if the current thread is the thread
1729 that was used to create the watchpoint. */
1730 if (!watchpoint_in_thread_scope (b))
1731 return;
1732
1733 if (b->base.disposition == disp_del_at_next_stop)
1734 return;
1735
1736 frame_saved = 0;
1737
1738 /* Determine if the watchpoint is within scope. */
1739 if (b->exp_valid_block == NULL)
1740 within_current_scope = 1;
1741 else
1742 {
1743 struct frame_info *fi = get_current_frame ();
1744 struct gdbarch *frame_arch = get_frame_arch (fi);
1745 CORE_ADDR frame_pc = get_frame_pc (fi);
1746
1747 /* If we're in a function epilogue, unwinding may not work
1748 properly, so do not attempt to recreate locations at this
1749 point. See similar comments in watchpoint_check. */
1750 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1751 return;
1752
1753 /* Save the current frame's ID so we can restore it after
1754 evaluating the watchpoint expression on its own frame. */
1755 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1756 took a frame parameter, so that we didn't have to change the
1757 selected frame. */
1758 frame_saved = 1;
1759 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1760
1761 fi = frame_find_by_id (b->watchpoint_frame);
1762 within_current_scope = (fi != NULL);
1763 if (within_current_scope)
1764 select_frame (fi);
1765 }
1766
1767 /* We don't free locations. They are stored in the bp_location array
1768 and update_global_location_list will eventually delete them and
1769 remove breakpoints if needed. */
1770 b->base.loc = NULL;
1771
1772 if (within_current_scope && reparse)
1773 {
1774 const char *s;
1775
1776 if (b->exp)
1777 {
1778 xfree (b->exp);
1779 b->exp = NULL;
1780 }
1781 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1782 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1783 /* If the meaning of expression itself changed, the old value is
1784 no longer relevant. We don't want to report a watchpoint hit
1785 to the user when the old value and the new value may actually
1786 be completely different objects. */
1787 value_free (b->val);
1788 b->val = NULL;
1789 b->val_valid = 0;
1790
1791 /* Note that unlike with breakpoints, the watchpoint's condition
1792 expression is stored in the breakpoint object, not in the
1793 locations (re)created below. */
1794 if (b->base.cond_string != NULL)
1795 {
1796 if (b->cond_exp != NULL)
1797 {
1798 xfree (b->cond_exp);
1799 b->cond_exp = NULL;
1800 }
1801
1802 s = b->base.cond_string;
1803 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1804 }
1805 }
1806
1807 /* If we failed to parse the expression, for example because
1808 it refers to a global variable in a not-yet-loaded shared library,
1809 don't try to insert watchpoint. We don't automatically delete
1810 such watchpoint, though, since failure to parse expression
1811 is different from out-of-scope watchpoint. */
1812 if ( !target_has_execution)
1813 {
1814 /* Without execution, memory can't change. No use to try and
1815 set watchpoint locations. The watchpoint will be reset when
1816 the target gains execution, through breakpoint_re_set. */
1817 }
1818 else if (within_current_scope && b->exp)
1819 {
1820 int pc = 0;
1821 struct value *val_chain, *v, *result, *next;
1822 struct program_space *frame_pspace;
1823
1824 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain);
1825
1826 /* Avoid setting b->val if it's already set. The meaning of
1827 b->val is 'the last value' user saw, and we should update
1828 it only if we reported that last value to user. As it
1829 happens, the code that reports it updates b->val directly.
1830 We don't keep track of the memory value for masked
1831 watchpoints. */
1832 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1833 {
1834 b->val = v;
1835 b->val_valid = 1;
1836 }
1837
1838 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1839
1840 /* Look at each value on the value chain. */
1841 for (v = val_chain; v; v = value_next (v))
1842 {
1843 /* If it's a memory location, and GDB actually needed
1844 its contents to evaluate the expression, then we
1845 must watch it. If the first value returned is
1846 still lazy, that means an error occurred reading it;
1847 watch it anyway in case it becomes readable. */
1848 if (VALUE_LVAL (v) == lval_memory
1849 && (v == val_chain || ! value_lazy (v)))
1850 {
1851 struct type *vtype = check_typedef (value_type (v));
1852
1853 /* We only watch structs and arrays if user asked
1854 for it explicitly, never if they just happen to
1855 appear in the middle of some value chain. */
1856 if (v == result
1857 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1858 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1859 {
1860 CORE_ADDR addr;
1861 int type;
1862 struct bp_location *loc, **tmp;
1863
1864 addr = value_address (v);
1865 type = hw_write;
1866 if (b->base.type == bp_read_watchpoint)
1867 type = hw_read;
1868 else if (b->base.type == bp_access_watchpoint)
1869 type = hw_access;
1870
1871 loc = allocate_bp_location (&b->base);
1872 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1873 ;
1874 *tmp = loc;
1875 loc->gdbarch = get_type_arch (value_type (v));
1876
1877 loc->pspace = frame_pspace;
1878 loc->address = addr;
1879 loc->length = TYPE_LENGTH (value_type (v));
1880 loc->watchpoint_type = type;
1881 }
1882 }
1883 }
1884
1885 /* Change the type of breakpoint between hardware assisted or
1886 an ordinary watchpoint depending on the hardware support
1887 and free hardware slots. REPARSE is set when the inferior
1888 is started. */
1889 if (reparse)
1890 {
1891 int reg_cnt;
1892 enum bp_loc_type loc_type;
1893 struct bp_location *bl;
1894
1895 reg_cnt = can_use_hardware_watchpoint (val_chain);
1896
1897 if (reg_cnt)
1898 {
1899 int i, target_resources_ok, other_type_used;
1900 enum bptype type;
1901
1902 /* Use an exact watchpoint when there's only one memory region to be
1903 watched, and only one debug register is needed to watch it. */
1904 b->exact = target_exact_watchpoints && reg_cnt == 1;
1905
1906 /* We need to determine how many resources are already
1907 used for all other hardware watchpoints plus this one
1908 to see if we still have enough resources to also fit
1909 this watchpoint in as well. */
1910
1911 /* If this is a software watchpoint, we try to turn it
1912 to a hardware one -- count resources as if B was of
1913 hardware watchpoint type. */
1914 type = b->base.type;
1915 if (type == bp_watchpoint)
1916 type = bp_hardware_watchpoint;
1917
1918 /* This watchpoint may or may not have been placed on
1919 the list yet at this point (it won't be in the list
1920 if we're trying to create it for the first time,
1921 through watch_command), so always account for it
1922 manually. */
1923
1924 /* Count resources used by all watchpoints except B. */
1925 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1926
1927 /* Add in the resources needed for B. */
1928 i += hw_watchpoint_use_count (&b->base);
1929
1930 target_resources_ok
1931 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1932 if (target_resources_ok <= 0)
1933 {
1934 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1935
1936 if (target_resources_ok == 0 && !sw_mode)
1937 error (_("Target does not support this type of "
1938 "hardware watchpoint."));
1939 else if (target_resources_ok < 0 && !sw_mode)
1940 error (_("There are not enough available hardware "
1941 "resources for this watchpoint."));
1942
1943 /* Downgrade to software watchpoint. */
1944 b->base.type = bp_watchpoint;
1945 }
1946 else
1947 {
1948 /* If this was a software watchpoint, we've just
1949 found we have enough resources to turn it to a
1950 hardware watchpoint. Otherwise, this is a
1951 nop. */
1952 b->base.type = type;
1953 }
1954 }
1955 else if (!b->base.ops->works_in_software_mode (&b->base))
1956 error (_("Expression cannot be implemented with "
1957 "read/access watchpoint."));
1958 else
1959 b->base.type = bp_watchpoint;
1960
1961 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1962 : bp_loc_hardware_watchpoint);
1963 for (bl = b->base.loc; bl; bl = bl->next)
1964 bl->loc_type = loc_type;
1965 }
1966
1967 for (v = val_chain; v; v = next)
1968 {
1969 next = value_next (v);
1970 if (v != b->val)
1971 value_free (v);
1972 }
1973
1974 /* If a software watchpoint is not watching any memory, then the
1975 above left it without any location set up. But,
1976 bpstat_stop_status requires a location to be able to report
1977 stops, so make sure there's at least a dummy one. */
1978 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1979 {
1980 struct breakpoint *base = &b->base;
1981 base->loc = allocate_bp_location (base);
1982 base->loc->pspace = frame_pspace;
1983 base->loc->address = -1;
1984 base->loc->length = -1;
1985 base->loc->watchpoint_type = -1;
1986 }
1987 }
1988 else if (!within_current_scope)
1989 {
1990 printf_filtered (_("\
1991 Watchpoint %d deleted because the program has left the block\n\
1992 in which its expression is valid.\n"),
1993 b->base.number);
1994 watchpoint_del_at_next_stop (b);
1995 }
1996
1997 /* Restore the selected frame. */
1998 if (frame_saved)
1999 select_frame (frame_find_by_id (saved_frame_id));
2000 }
2001
2002
2003 /* Returns 1 iff breakpoint location should be
2004 inserted in the inferior. We don't differentiate the type of BL's owner
2005 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2006 breakpoint_ops is not defined, because in insert_bp_location,
2007 tracepoint's insert_location will not be called. */
2008 static int
2009 should_be_inserted (struct bp_location *bl)
2010 {
2011 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2012 return 0;
2013
2014 if (bl->owner->disposition == disp_del_at_next_stop)
2015 return 0;
2016
2017 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2018 return 0;
2019
2020 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2021 return 0;
2022
2023 /* This is set for example, when we're attached to the parent of a
2024 vfork, and have detached from the child. The child is running
2025 free, and we expect it to do an exec or exit, at which point the
2026 OS makes the parent schedulable again (and the target reports
2027 that the vfork is done). Until the child is done with the shared
2028 memory region, do not insert breakpoints in the parent, otherwise
2029 the child could still trip on the parent's breakpoints. Since
2030 the parent is blocked anyway, it won't miss any breakpoint. */
2031 if (bl->pspace->breakpoints_not_allowed)
2032 return 0;
2033
2034 return 1;
2035 }
2036
2037 /* Same as should_be_inserted but does the check assuming
2038 that the location is not duplicated. */
2039
2040 static int
2041 unduplicated_should_be_inserted (struct bp_location *bl)
2042 {
2043 int result;
2044 const int save_duplicate = bl->duplicate;
2045
2046 bl->duplicate = 0;
2047 result = should_be_inserted (bl);
2048 bl->duplicate = save_duplicate;
2049 return result;
2050 }
2051
2052 /* Parses a conditional described by an expression COND into an
2053 agent expression bytecode suitable for evaluation
2054 by the bytecode interpreter. Return NULL if there was
2055 any error during parsing. */
2056
2057 static struct agent_expr *
2058 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2059 {
2060 struct agent_expr *aexpr = NULL;
2061 volatile struct gdb_exception ex;
2062
2063 if (!cond)
2064 return NULL;
2065
2066 /* We don't want to stop processing, so catch any errors
2067 that may show up. */
2068 TRY_CATCH (ex, RETURN_MASK_ERROR)
2069 {
2070 aexpr = gen_eval_for_expr (scope, cond);
2071 }
2072
2073 if (ex.reason < 0)
2074 {
2075 /* If we got here, it means the condition could not be parsed to a valid
2076 bytecode expression and thus can't be evaluated on the target's side.
2077 It's no use iterating through the conditions. */
2078 return NULL;
2079 }
2080
2081 /* We have a valid agent expression. */
2082 return aexpr;
2083 }
2084
2085 /* Based on location BL, create a list of breakpoint conditions to be
2086 passed on to the target. If we have duplicated locations with different
2087 conditions, we will add such conditions to the list. The idea is that the
2088 target will evaluate the list of conditions and will only notify GDB when
2089 one of them is true. */
2090
2091 static void
2092 build_target_condition_list (struct bp_location *bl)
2093 {
2094 struct bp_location **locp = NULL, **loc2p;
2095 int null_condition_or_parse_error = 0;
2096 int modified = bl->needs_update;
2097 struct bp_location *loc;
2098
2099 /* This is only meaningful if the target is
2100 evaluating conditions and if the user has
2101 opted for condition evaluation on the target's
2102 side. */
2103 if (gdb_evaluates_breakpoint_condition_p ()
2104 || !target_supports_evaluation_of_breakpoint_conditions ())
2105 return;
2106
2107 /* Do a first pass to check for locations with no assigned
2108 conditions or conditions that fail to parse to a valid agent expression
2109 bytecode. If any of these happen, then it's no use to send conditions
2110 to the target since this location will always trigger and generate a
2111 response back to GDB. */
2112 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2113 {
2114 loc = (*loc2p);
2115 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2116 {
2117 if (modified)
2118 {
2119 struct agent_expr *aexpr;
2120
2121 /* Re-parse the conditions since something changed. In that
2122 case we already freed the condition bytecodes (see
2123 force_breakpoint_reinsertion). We just
2124 need to parse the condition to bytecodes again. */
2125 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2126 loc->cond_bytecode = aexpr;
2127
2128 /* Check if we managed to parse the conditional expression
2129 correctly. If not, we will not send this condition
2130 to the target. */
2131 if (aexpr)
2132 continue;
2133 }
2134
2135 /* If we have a NULL bytecode expression, it means something
2136 went wrong or we have a null condition expression. */
2137 if (!loc->cond_bytecode)
2138 {
2139 null_condition_or_parse_error = 1;
2140 break;
2141 }
2142 }
2143 }
2144
2145 /* If any of these happened, it means we will have to evaluate the conditions
2146 for the location's address on gdb's side. It is no use keeping bytecodes
2147 for all the other duplicate locations, thus we free all of them here.
2148
2149 This is so we have a finer control over which locations' conditions are
2150 being evaluated by GDB or the remote stub. */
2151 if (null_condition_or_parse_error)
2152 {
2153 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2154 {
2155 loc = (*loc2p);
2156 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2157 {
2158 /* Only go as far as the first NULL bytecode is
2159 located. */
2160 if (!loc->cond_bytecode)
2161 return;
2162
2163 free_agent_expr (loc->cond_bytecode);
2164 loc->cond_bytecode = NULL;
2165 }
2166 }
2167 }
2168
2169 /* No NULL conditions or failed bytecode generation. Build a condition list
2170 for this location's address. */
2171 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2172 {
2173 loc = (*loc2p);
2174 if (loc->cond
2175 && is_breakpoint (loc->owner)
2176 && loc->pspace->num == bl->pspace->num
2177 && loc->owner->enable_state == bp_enabled
2178 && loc->enabled)
2179 /* Add the condition to the vector. This will be used later to send the
2180 conditions to the target. */
2181 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2182 loc->cond_bytecode);
2183 }
2184
2185 return;
2186 }
2187
2188 /* Parses a command described by string CMD into an agent expression
2189 bytecode suitable for evaluation by the bytecode interpreter.
2190 Return NULL if there was any error during parsing. */
2191
2192 static struct agent_expr *
2193 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2194 {
2195 struct cleanup *old_cleanups = 0;
2196 struct expression *expr, **argvec;
2197 struct agent_expr *aexpr = NULL;
2198 volatile struct gdb_exception ex;
2199 const char *cmdrest;
2200 const char *format_start, *format_end;
2201 struct format_piece *fpieces;
2202 int nargs;
2203 struct gdbarch *gdbarch = get_current_arch ();
2204
2205 if (!cmd)
2206 return NULL;
2207
2208 cmdrest = cmd;
2209
2210 if (*cmdrest == ',')
2211 ++cmdrest;
2212 cmdrest = skip_spaces_const (cmdrest);
2213
2214 if (*cmdrest++ != '"')
2215 error (_("No format string following the location"));
2216
2217 format_start = cmdrest;
2218
2219 fpieces = parse_format_string (&cmdrest);
2220
2221 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2222
2223 format_end = cmdrest;
2224
2225 if (*cmdrest++ != '"')
2226 error (_("Bad format string, non-terminated '\"'."));
2227
2228 cmdrest = skip_spaces_const (cmdrest);
2229
2230 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2231 error (_("Invalid argument syntax"));
2232
2233 if (*cmdrest == ',')
2234 cmdrest++;
2235 cmdrest = skip_spaces_const (cmdrest);
2236
2237 /* For each argument, make an expression. */
2238
2239 argvec = (struct expression **) alloca (strlen (cmd)
2240 * sizeof (struct expression *));
2241
2242 nargs = 0;
2243 while (*cmdrest != '\0')
2244 {
2245 const char *cmd1;
2246
2247 cmd1 = cmdrest;
2248 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2249 argvec[nargs++] = expr;
2250 cmdrest = cmd1;
2251 if (*cmdrest == ',')
2252 ++cmdrest;
2253 }
2254
2255 /* We don't want to stop processing, so catch any errors
2256 that may show up. */
2257 TRY_CATCH (ex, RETURN_MASK_ERROR)
2258 {
2259 aexpr = gen_printf (scope, gdbarch, 0, 0,
2260 format_start, format_end - format_start,
2261 fpieces, nargs, argvec);
2262 }
2263
2264 if (ex.reason < 0)
2265 {
2266 /* If we got here, it means the command could not be parsed to a valid
2267 bytecode expression and thus can't be evaluated on the target's side.
2268 It's no use iterating through the other commands. */
2269 return NULL;
2270 }
2271
2272 do_cleanups (old_cleanups);
2273
2274 /* We have a valid agent expression, return it. */
2275 return aexpr;
2276 }
2277
2278 /* Based on location BL, create a list of breakpoint commands to be
2279 passed on to the target. If we have duplicated locations with
2280 different commands, we will add any such to the list. */
2281
2282 static void
2283 build_target_command_list (struct bp_location *bl)
2284 {
2285 struct bp_location **locp = NULL, **loc2p;
2286 int null_command_or_parse_error = 0;
2287 int modified = bl->needs_update;
2288 struct bp_location *loc;
2289
2290 /* For now, limit to agent-style dprintf breakpoints. */
2291 if (bl->owner->type != bp_dprintf
2292 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2293 return;
2294
2295 if (!target_can_run_breakpoint_commands ())
2296 return;
2297
2298 /* Do a first pass to check for locations with no assigned
2299 conditions or conditions that fail to parse to a valid agent expression
2300 bytecode. If any of these happen, then it's no use to send conditions
2301 to the target since this location will always trigger and generate a
2302 response back to GDB. */
2303 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2304 {
2305 loc = (*loc2p);
2306 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2307 {
2308 if (modified)
2309 {
2310 struct agent_expr *aexpr;
2311
2312 /* Re-parse the commands since something changed. In that
2313 case we already freed the command bytecodes (see
2314 force_breakpoint_reinsertion). We just
2315 need to parse the command to bytecodes again. */
2316 aexpr = parse_cmd_to_aexpr (bl->address,
2317 loc->owner->extra_string);
2318 loc->cmd_bytecode = aexpr;
2319
2320 if (!aexpr)
2321 continue;
2322 }
2323
2324 /* If we have a NULL bytecode expression, it means something
2325 went wrong or we have a null command expression. */
2326 if (!loc->cmd_bytecode)
2327 {
2328 null_command_or_parse_error = 1;
2329 break;
2330 }
2331 }
2332 }
2333
2334 /* If anything failed, then we're not doing target-side commands,
2335 and so clean up. */
2336 if (null_command_or_parse_error)
2337 {
2338 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2339 {
2340 loc = (*loc2p);
2341 if (is_breakpoint (loc->owner)
2342 && loc->pspace->num == bl->pspace->num)
2343 {
2344 /* Only go as far as the first NULL bytecode is
2345 located. */
2346 if (!loc->cond_bytecode)
2347 return;
2348
2349 free_agent_expr (loc->cond_bytecode);
2350 loc->cond_bytecode = NULL;
2351 }
2352 }
2353 }
2354
2355 /* No NULL commands or failed bytecode generation. Build a command list
2356 for this location's address. */
2357 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2358 {
2359 loc = (*loc2p);
2360 if (loc->owner->extra_string
2361 && is_breakpoint (loc->owner)
2362 && loc->pspace->num == bl->pspace->num
2363 && loc->owner->enable_state == bp_enabled
2364 && loc->enabled)
2365 /* Add the command to the vector. This will be used later
2366 to send the commands to the target. */
2367 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2368 loc->cmd_bytecode);
2369 }
2370
2371 bl->target_info.persist = 0;
2372 /* Maybe flag this location as persistent. */
2373 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2374 bl->target_info.persist = 1;
2375 }
2376
2377 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2378 location. Any error messages are printed to TMP_ERROR_STREAM; and
2379 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2380 Returns 0 for success, 1 if the bp_location type is not supported or
2381 -1 for failure.
2382
2383 NOTE drow/2003-09-09: This routine could be broken down to an
2384 object-style method for each breakpoint or catchpoint type. */
2385 static int
2386 insert_bp_location (struct bp_location *bl,
2387 struct ui_file *tmp_error_stream,
2388 int *disabled_breaks,
2389 int *hw_breakpoint_error,
2390 int *hw_bp_error_explained_already)
2391 {
2392 int val = 0;
2393 char *hw_bp_err_string = NULL;
2394 struct gdb_exception e;
2395
2396 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2397 return 0;
2398
2399 /* Note we don't initialize bl->target_info, as that wipes out
2400 the breakpoint location's shadow_contents if the breakpoint
2401 is still inserted at that location. This in turn breaks
2402 target_read_memory which depends on these buffers when
2403 a memory read is requested at the breakpoint location:
2404 Once the target_info has been wiped, we fail to see that
2405 we have a breakpoint inserted at that address and thus
2406 read the breakpoint instead of returning the data saved in
2407 the breakpoint location's shadow contents. */
2408 bl->target_info.placed_address = bl->address;
2409 bl->target_info.placed_address_space = bl->pspace->aspace;
2410 bl->target_info.length = bl->length;
2411
2412 /* When working with target-side conditions, we must pass all the conditions
2413 for the same breakpoint address down to the target since GDB will not
2414 insert those locations. With a list of breakpoint conditions, the target
2415 can decide when to stop and notify GDB. */
2416
2417 if (is_breakpoint (bl->owner))
2418 {
2419 build_target_condition_list (bl);
2420 build_target_command_list (bl);
2421 /* Reset the modification marker. */
2422 bl->needs_update = 0;
2423 }
2424
2425 if (bl->loc_type == bp_loc_software_breakpoint
2426 || bl->loc_type == bp_loc_hardware_breakpoint)
2427 {
2428 if (bl->owner->type != bp_hardware_breakpoint)
2429 {
2430 /* If the explicitly specified breakpoint type
2431 is not hardware breakpoint, check the memory map to see
2432 if the breakpoint address is in read only memory or not.
2433
2434 Two important cases are:
2435 - location type is not hardware breakpoint, memory
2436 is readonly. We change the type of the location to
2437 hardware breakpoint.
2438 - location type is hardware breakpoint, memory is
2439 read-write. This means we've previously made the
2440 location hardware one, but then the memory map changed,
2441 so we undo.
2442
2443 When breakpoints are removed, remove_breakpoints will use
2444 location types we've just set here, the only possible
2445 problem is that memory map has changed during running
2446 program, but it's not going to work anyway with current
2447 gdb. */
2448 struct mem_region *mr
2449 = lookup_mem_region (bl->target_info.placed_address);
2450
2451 if (mr)
2452 {
2453 if (automatic_hardware_breakpoints)
2454 {
2455 enum bp_loc_type new_type;
2456
2457 if (mr->attrib.mode != MEM_RW)
2458 new_type = bp_loc_hardware_breakpoint;
2459 else
2460 new_type = bp_loc_software_breakpoint;
2461
2462 if (new_type != bl->loc_type)
2463 {
2464 static int said = 0;
2465
2466 bl->loc_type = new_type;
2467 if (!said)
2468 {
2469 fprintf_filtered (gdb_stdout,
2470 _("Note: automatically using "
2471 "hardware breakpoints for "
2472 "read-only addresses.\n"));
2473 said = 1;
2474 }
2475 }
2476 }
2477 else if (bl->loc_type == bp_loc_software_breakpoint
2478 && mr->attrib.mode != MEM_RW)
2479 warning (_("cannot set software breakpoint "
2480 "at readonly address %s"),
2481 paddress (bl->gdbarch, bl->address));
2482 }
2483 }
2484
2485 /* First check to see if we have to handle an overlay. */
2486 if (overlay_debugging == ovly_off
2487 || bl->section == NULL
2488 || !(section_is_overlay (bl->section)))
2489 {
2490 /* No overlay handling: just set the breakpoint. */
2491 TRY_CATCH (e, RETURN_MASK_ALL)
2492 {
2493 val = bl->owner->ops->insert_location (bl);
2494 }
2495 if (e.reason < 0)
2496 {
2497 val = 1;
2498 hw_bp_err_string = (char *) e.message;
2499 }
2500 }
2501 else
2502 {
2503 /* This breakpoint is in an overlay section.
2504 Shall we set a breakpoint at the LMA? */
2505 if (!overlay_events_enabled)
2506 {
2507 /* Yes -- overlay event support is not active,
2508 so we must try to set a breakpoint at the LMA.
2509 This will not work for a hardware breakpoint. */
2510 if (bl->loc_type == bp_loc_hardware_breakpoint)
2511 warning (_("hardware breakpoint %d not supported in overlay!"),
2512 bl->owner->number);
2513 else
2514 {
2515 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2516 bl->section);
2517 /* Set a software (trap) breakpoint at the LMA. */
2518 bl->overlay_target_info = bl->target_info;
2519 bl->overlay_target_info.placed_address = addr;
2520 val = target_insert_breakpoint (bl->gdbarch,
2521 &bl->overlay_target_info);
2522 if (val != 0)
2523 fprintf_unfiltered (tmp_error_stream,
2524 "Overlay breakpoint %d "
2525 "failed: in ROM?\n",
2526 bl->owner->number);
2527 }
2528 }
2529 /* Shall we set a breakpoint at the VMA? */
2530 if (section_is_mapped (bl->section))
2531 {
2532 /* Yes. This overlay section is mapped into memory. */
2533 TRY_CATCH (e, RETURN_MASK_ALL)
2534 {
2535 val = bl->owner->ops->insert_location (bl);
2536 }
2537 if (e.reason < 0)
2538 {
2539 val = 1;
2540 hw_bp_err_string = (char *) e.message;
2541 }
2542 }
2543 else
2544 {
2545 /* No. This breakpoint will not be inserted.
2546 No error, but do not mark the bp as 'inserted'. */
2547 return 0;
2548 }
2549 }
2550
2551 if (val)
2552 {
2553 /* Can't set the breakpoint. */
2554 if (solib_name_from_address (bl->pspace, bl->address))
2555 {
2556 /* See also: disable_breakpoints_in_shlibs. */
2557 val = 0;
2558 bl->shlib_disabled = 1;
2559 observer_notify_breakpoint_modified (bl->owner);
2560 if (!*disabled_breaks)
2561 {
2562 fprintf_unfiltered (tmp_error_stream,
2563 "Cannot insert breakpoint %d.\n",
2564 bl->owner->number);
2565 fprintf_unfiltered (tmp_error_stream,
2566 "Temporarily disabling shared "
2567 "library breakpoints:\n");
2568 }
2569 *disabled_breaks = 1;
2570 fprintf_unfiltered (tmp_error_stream,
2571 "breakpoint #%d\n", bl->owner->number);
2572 }
2573 else
2574 {
2575 if (bl->loc_type == bp_loc_hardware_breakpoint)
2576 {
2577 *hw_breakpoint_error = 1;
2578 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2579 fprintf_unfiltered (tmp_error_stream,
2580 "Cannot insert hardware breakpoint %d%s",
2581 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2582 if (hw_bp_err_string)
2583 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2584 }
2585 else
2586 {
2587 fprintf_unfiltered (tmp_error_stream,
2588 "Cannot insert breakpoint %d.\n",
2589 bl->owner->number);
2590 fprintf_filtered (tmp_error_stream,
2591 "Error accessing memory address ");
2592 fputs_filtered (paddress (bl->gdbarch, bl->address),
2593 tmp_error_stream);
2594 fprintf_filtered (tmp_error_stream, ": %s.\n",
2595 safe_strerror (val));
2596 }
2597
2598 }
2599 }
2600 else
2601 bl->inserted = 1;
2602
2603 return val;
2604 }
2605
2606 else if (bl->loc_type == bp_loc_hardware_watchpoint
2607 /* NOTE drow/2003-09-08: This state only exists for removing
2608 watchpoints. It's not clear that it's necessary... */
2609 && bl->owner->disposition != disp_del_at_next_stop)
2610 {
2611 gdb_assert (bl->owner->ops != NULL
2612 && bl->owner->ops->insert_location != NULL);
2613
2614 val = bl->owner->ops->insert_location (bl);
2615
2616 /* If trying to set a read-watchpoint, and it turns out it's not
2617 supported, try emulating one with an access watchpoint. */
2618 if (val == 1 && bl->watchpoint_type == hw_read)
2619 {
2620 struct bp_location *loc, **loc_temp;
2621
2622 /* But don't try to insert it, if there's already another
2623 hw_access location that would be considered a duplicate
2624 of this one. */
2625 ALL_BP_LOCATIONS (loc, loc_temp)
2626 if (loc != bl
2627 && loc->watchpoint_type == hw_access
2628 && watchpoint_locations_match (bl, loc))
2629 {
2630 bl->duplicate = 1;
2631 bl->inserted = 1;
2632 bl->target_info = loc->target_info;
2633 bl->watchpoint_type = hw_access;
2634 val = 0;
2635 break;
2636 }
2637
2638 if (val == 1)
2639 {
2640 bl->watchpoint_type = hw_access;
2641 val = bl->owner->ops->insert_location (bl);
2642
2643 if (val)
2644 /* Back to the original value. */
2645 bl->watchpoint_type = hw_read;
2646 }
2647 }
2648
2649 bl->inserted = (val == 0);
2650 }
2651
2652 else if (bl->owner->type == bp_catchpoint)
2653 {
2654 gdb_assert (bl->owner->ops != NULL
2655 && bl->owner->ops->insert_location != NULL);
2656
2657 val = bl->owner->ops->insert_location (bl);
2658 if (val)
2659 {
2660 bl->owner->enable_state = bp_disabled;
2661
2662 if (val == 1)
2663 warning (_("\
2664 Error inserting catchpoint %d: Your system does not support this type\n\
2665 of catchpoint."), bl->owner->number);
2666 else
2667 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2668 }
2669
2670 bl->inserted = (val == 0);
2671
2672 /* We've already printed an error message if there was a problem
2673 inserting this catchpoint, and we've disabled the catchpoint,
2674 so just return success. */
2675 return 0;
2676 }
2677
2678 return 0;
2679 }
2680
2681 /* This function is called when program space PSPACE is about to be
2682 deleted. It takes care of updating breakpoints to not reference
2683 PSPACE anymore. */
2684
2685 void
2686 breakpoint_program_space_exit (struct program_space *pspace)
2687 {
2688 struct breakpoint *b, *b_temp;
2689 struct bp_location *loc, **loc_temp;
2690
2691 /* Remove any breakpoint that was set through this program space. */
2692 ALL_BREAKPOINTS_SAFE (b, b_temp)
2693 {
2694 if (b->pspace == pspace)
2695 delete_breakpoint (b);
2696 }
2697
2698 /* Breakpoints set through other program spaces could have locations
2699 bound to PSPACE as well. Remove those. */
2700 ALL_BP_LOCATIONS (loc, loc_temp)
2701 {
2702 struct bp_location *tmp;
2703
2704 if (loc->pspace == pspace)
2705 {
2706 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2707 if (loc->owner->loc == loc)
2708 loc->owner->loc = loc->next;
2709 else
2710 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2711 if (tmp->next == loc)
2712 {
2713 tmp->next = loc->next;
2714 break;
2715 }
2716 }
2717 }
2718
2719 /* Now update the global location list to permanently delete the
2720 removed locations above. */
2721 update_global_location_list (0);
2722 }
2723
2724 /* Make sure all breakpoints are inserted in inferior.
2725 Throws exception on any error.
2726 A breakpoint that is already inserted won't be inserted
2727 again, so calling this function twice is safe. */
2728 void
2729 insert_breakpoints (void)
2730 {
2731 struct breakpoint *bpt;
2732
2733 ALL_BREAKPOINTS (bpt)
2734 if (is_hardware_watchpoint (bpt))
2735 {
2736 struct watchpoint *w = (struct watchpoint *) bpt;
2737
2738 update_watchpoint (w, 0 /* don't reparse. */);
2739 }
2740
2741 update_global_location_list (1);
2742
2743 /* update_global_location_list does not insert breakpoints when
2744 always_inserted_mode is not enabled. Explicitly insert them
2745 now. */
2746 if (!breakpoints_always_inserted_mode ())
2747 insert_breakpoint_locations ();
2748 }
2749
2750 /* Invoke CALLBACK for each of bp_location. */
2751
2752 void
2753 iterate_over_bp_locations (walk_bp_location_callback callback)
2754 {
2755 struct bp_location *loc, **loc_tmp;
2756
2757 ALL_BP_LOCATIONS (loc, loc_tmp)
2758 {
2759 callback (loc, NULL);
2760 }
2761 }
2762
2763 /* This is used when we need to synch breakpoint conditions between GDB and the
2764 target. It is the case with deleting and disabling of breakpoints when using
2765 always-inserted mode. */
2766
2767 static void
2768 update_inserted_breakpoint_locations (void)
2769 {
2770 struct bp_location *bl, **blp_tmp;
2771 int error_flag = 0;
2772 int val = 0;
2773 int disabled_breaks = 0;
2774 int hw_breakpoint_error = 0;
2775 int hw_bp_details_reported = 0;
2776
2777 struct ui_file *tmp_error_stream = mem_fileopen ();
2778 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2779
2780 /* Explicitly mark the warning -- this will only be printed if
2781 there was an error. */
2782 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2783
2784 save_current_space_and_thread ();
2785
2786 ALL_BP_LOCATIONS (bl, blp_tmp)
2787 {
2788 /* We only want to update software breakpoints and hardware
2789 breakpoints. */
2790 if (!is_breakpoint (bl->owner))
2791 continue;
2792
2793 /* We only want to update locations that are already inserted
2794 and need updating. This is to avoid unwanted insertion during
2795 deletion of breakpoints. */
2796 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2797 continue;
2798
2799 switch_to_program_space_and_thread (bl->pspace);
2800
2801 /* For targets that support global breakpoints, there's no need
2802 to select an inferior to insert breakpoint to. In fact, even
2803 if we aren't attached to any process yet, we should still
2804 insert breakpoints. */
2805 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2806 && ptid_equal (inferior_ptid, null_ptid))
2807 continue;
2808
2809 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2810 &hw_breakpoint_error, &hw_bp_details_reported);
2811 if (val)
2812 error_flag = val;
2813 }
2814
2815 if (error_flag)
2816 {
2817 target_terminal_ours_for_output ();
2818 error_stream (tmp_error_stream);
2819 }
2820
2821 do_cleanups (cleanups);
2822 }
2823
2824 /* Used when starting or continuing the program. */
2825
2826 static void
2827 insert_breakpoint_locations (void)
2828 {
2829 struct breakpoint *bpt;
2830 struct bp_location *bl, **blp_tmp;
2831 int error_flag = 0;
2832 int val = 0;
2833 int disabled_breaks = 0;
2834 int hw_breakpoint_error = 0;
2835 int hw_bp_error_explained_already = 0;
2836
2837 struct ui_file *tmp_error_stream = mem_fileopen ();
2838 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2839
2840 /* Explicitly mark the warning -- this will only be printed if
2841 there was an error. */
2842 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2843
2844 save_current_space_and_thread ();
2845
2846 ALL_BP_LOCATIONS (bl, blp_tmp)
2847 {
2848 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2849 continue;
2850
2851 /* There is no point inserting thread-specific breakpoints if
2852 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2853 has BL->OWNER always non-NULL. */
2854 if (bl->owner->thread != -1
2855 && !valid_thread_id (bl->owner->thread))
2856 continue;
2857
2858 switch_to_program_space_and_thread (bl->pspace);
2859
2860 /* For targets that support global breakpoints, there's no need
2861 to select an inferior to insert breakpoint to. In fact, even
2862 if we aren't attached to any process yet, we should still
2863 insert breakpoints. */
2864 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2865 && ptid_equal (inferior_ptid, null_ptid))
2866 continue;
2867
2868 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2869 &hw_breakpoint_error, &hw_bp_error_explained_already);
2870 if (val)
2871 error_flag = val;
2872 }
2873
2874 /* If we failed to insert all locations of a watchpoint, remove
2875 them, as half-inserted watchpoint is of limited use. */
2876 ALL_BREAKPOINTS (bpt)
2877 {
2878 int some_failed = 0;
2879 struct bp_location *loc;
2880
2881 if (!is_hardware_watchpoint (bpt))
2882 continue;
2883
2884 if (!breakpoint_enabled (bpt))
2885 continue;
2886
2887 if (bpt->disposition == disp_del_at_next_stop)
2888 continue;
2889
2890 for (loc = bpt->loc; loc; loc = loc->next)
2891 if (!loc->inserted && should_be_inserted (loc))
2892 {
2893 some_failed = 1;
2894 break;
2895 }
2896 if (some_failed)
2897 {
2898 for (loc = bpt->loc; loc; loc = loc->next)
2899 if (loc->inserted)
2900 remove_breakpoint (loc, mark_uninserted);
2901
2902 hw_breakpoint_error = 1;
2903 fprintf_unfiltered (tmp_error_stream,
2904 "Could not insert hardware watchpoint %d.\n",
2905 bpt->number);
2906 error_flag = -1;
2907 }
2908 }
2909
2910 if (error_flag)
2911 {
2912 /* If a hardware breakpoint or watchpoint was inserted, add a
2913 message about possibly exhausted resources. */
2914 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2915 {
2916 fprintf_unfiltered (tmp_error_stream,
2917 "Could not insert hardware breakpoints:\n\
2918 You may have requested too many hardware breakpoints/watchpoints.\n");
2919 }
2920 target_terminal_ours_for_output ();
2921 error_stream (tmp_error_stream);
2922 }
2923
2924 do_cleanups (cleanups);
2925 }
2926
2927 /* Used when the program stops.
2928 Returns zero if successful, or non-zero if there was a problem
2929 removing a breakpoint location. */
2930
2931 int
2932 remove_breakpoints (void)
2933 {
2934 struct bp_location *bl, **blp_tmp;
2935 int val = 0;
2936
2937 ALL_BP_LOCATIONS (bl, blp_tmp)
2938 {
2939 if (bl->inserted && !is_tracepoint (bl->owner))
2940 val |= remove_breakpoint (bl, mark_uninserted);
2941 }
2942 return val;
2943 }
2944
2945 /* Remove breakpoints of process PID. */
2946
2947 int
2948 remove_breakpoints_pid (int pid)
2949 {
2950 struct bp_location *bl, **blp_tmp;
2951 int val;
2952 struct inferior *inf = find_inferior_pid (pid);
2953
2954 ALL_BP_LOCATIONS (bl, blp_tmp)
2955 {
2956 if (bl->pspace != inf->pspace)
2957 continue;
2958
2959 if (bl->owner->type == bp_dprintf)
2960 continue;
2961
2962 if (bl->inserted)
2963 {
2964 val = remove_breakpoint (bl, mark_uninserted);
2965 if (val != 0)
2966 return val;
2967 }
2968 }
2969 return 0;
2970 }
2971
2972 int
2973 reattach_breakpoints (int pid)
2974 {
2975 struct cleanup *old_chain;
2976 struct bp_location *bl, **blp_tmp;
2977 int val;
2978 struct ui_file *tmp_error_stream;
2979 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2980 struct inferior *inf;
2981 struct thread_info *tp;
2982
2983 tp = any_live_thread_of_process (pid);
2984 if (tp == NULL)
2985 return 1;
2986
2987 inf = find_inferior_pid (pid);
2988 old_chain = save_inferior_ptid ();
2989
2990 inferior_ptid = tp->ptid;
2991
2992 tmp_error_stream = mem_fileopen ();
2993 make_cleanup_ui_file_delete (tmp_error_stream);
2994
2995 ALL_BP_LOCATIONS (bl, blp_tmp)
2996 {
2997 if (bl->pspace != inf->pspace)
2998 continue;
2999
3000 if (bl->inserted)
3001 {
3002 bl->inserted = 0;
3003 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3004 if (val != 0)
3005 {
3006 do_cleanups (old_chain);
3007 return val;
3008 }
3009 }
3010 }
3011 do_cleanups (old_chain);
3012 return 0;
3013 }
3014
3015 static int internal_breakpoint_number = -1;
3016
3017 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3018 If INTERNAL is non-zero, the breakpoint number will be populated
3019 from internal_breakpoint_number and that variable decremented.
3020 Otherwise the breakpoint number will be populated from
3021 breakpoint_count and that value incremented. Internal breakpoints
3022 do not set the internal var bpnum. */
3023 static void
3024 set_breakpoint_number (int internal, struct breakpoint *b)
3025 {
3026 if (internal)
3027 b->number = internal_breakpoint_number--;
3028 else
3029 {
3030 set_breakpoint_count (breakpoint_count + 1);
3031 b->number = breakpoint_count;
3032 }
3033 }
3034
3035 static struct breakpoint *
3036 create_internal_breakpoint (struct gdbarch *gdbarch,
3037 CORE_ADDR address, enum bptype type,
3038 const struct breakpoint_ops *ops)
3039 {
3040 struct symtab_and_line sal;
3041 struct breakpoint *b;
3042
3043 init_sal (&sal); /* Initialize to zeroes. */
3044
3045 sal.pc = address;
3046 sal.section = find_pc_overlay (sal.pc);
3047 sal.pspace = current_program_space;
3048
3049 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3050 b->number = internal_breakpoint_number--;
3051 b->disposition = disp_donttouch;
3052
3053 return b;
3054 }
3055
3056 static const char *const longjmp_names[] =
3057 {
3058 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3059 };
3060 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3061
3062 /* Per-objfile data private to breakpoint.c. */
3063 struct breakpoint_objfile_data
3064 {
3065 /* Minimal symbol for "_ovly_debug_event" (if any). */
3066 struct minimal_symbol *overlay_msym;
3067
3068 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3069 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3070
3071 /* True if we have looked for longjmp probes. */
3072 int longjmp_searched;
3073
3074 /* SystemTap probe points for longjmp (if any). */
3075 VEC (probe_p) *longjmp_probes;
3076
3077 /* Minimal symbol for "std::terminate()" (if any). */
3078 struct minimal_symbol *terminate_msym;
3079
3080 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3081 struct minimal_symbol *exception_msym;
3082
3083 /* True if we have looked for exception probes. */
3084 int exception_searched;
3085
3086 /* SystemTap probe points for unwinding (if any). */
3087 VEC (probe_p) *exception_probes;
3088 };
3089
3090 static const struct objfile_data *breakpoint_objfile_key;
3091
3092 /* Minimal symbol not found sentinel. */
3093 static struct minimal_symbol msym_not_found;
3094
3095 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3096
3097 static int
3098 msym_not_found_p (const struct minimal_symbol *msym)
3099 {
3100 return msym == &msym_not_found;
3101 }
3102
3103 /* Return per-objfile data needed by breakpoint.c.
3104 Allocate the data if necessary. */
3105
3106 static struct breakpoint_objfile_data *
3107 get_breakpoint_objfile_data (struct objfile *objfile)
3108 {
3109 struct breakpoint_objfile_data *bp_objfile_data;
3110
3111 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3112 if (bp_objfile_data == NULL)
3113 {
3114 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3115 sizeof (*bp_objfile_data));
3116
3117 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3118 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3119 }
3120 return bp_objfile_data;
3121 }
3122
3123 static void
3124 free_breakpoint_probes (struct objfile *obj, void *data)
3125 {
3126 struct breakpoint_objfile_data *bp_objfile_data = data;
3127
3128 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3129 VEC_free (probe_p, bp_objfile_data->exception_probes);
3130 }
3131
3132 static void
3133 create_overlay_event_breakpoint (void)
3134 {
3135 struct objfile *objfile;
3136 const char *const func_name = "_ovly_debug_event";
3137
3138 ALL_OBJFILES (objfile)
3139 {
3140 struct breakpoint *b;
3141 struct breakpoint_objfile_data *bp_objfile_data;
3142 CORE_ADDR addr;
3143
3144 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3145
3146 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3147 continue;
3148
3149 if (bp_objfile_data->overlay_msym == NULL)
3150 {
3151 struct minimal_symbol *m;
3152
3153 m = lookup_minimal_symbol_text (func_name, objfile);
3154 if (m == NULL)
3155 {
3156 /* Avoid future lookups in this objfile. */
3157 bp_objfile_data->overlay_msym = &msym_not_found;
3158 continue;
3159 }
3160 bp_objfile_data->overlay_msym = m;
3161 }
3162
3163 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3164 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3165 bp_overlay_event,
3166 &internal_breakpoint_ops);
3167 b->addr_string = xstrdup (func_name);
3168
3169 if (overlay_debugging == ovly_auto)
3170 {
3171 b->enable_state = bp_enabled;
3172 overlay_events_enabled = 1;
3173 }
3174 else
3175 {
3176 b->enable_state = bp_disabled;
3177 overlay_events_enabled = 0;
3178 }
3179 }
3180 update_global_location_list (1);
3181 }
3182
3183 static void
3184 create_longjmp_master_breakpoint (void)
3185 {
3186 struct program_space *pspace;
3187 struct cleanup *old_chain;
3188
3189 old_chain = save_current_program_space ();
3190
3191 ALL_PSPACES (pspace)
3192 {
3193 struct objfile *objfile;
3194
3195 set_current_program_space (pspace);
3196
3197 ALL_OBJFILES (objfile)
3198 {
3199 int i;
3200 struct gdbarch *gdbarch;
3201 struct breakpoint_objfile_data *bp_objfile_data;
3202
3203 gdbarch = get_objfile_arch (objfile);
3204 if (!gdbarch_get_longjmp_target_p (gdbarch))
3205 continue;
3206
3207 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3208
3209 if (!bp_objfile_data->longjmp_searched)
3210 {
3211 bp_objfile_data->longjmp_probes
3212 = find_probes_in_objfile (objfile, "libc", "longjmp");
3213 bp_objfile_data->longjmp_searched = 1;
3214 }
3215
3216 if (bp_objfile_data->longjmp_probes != NULL)
3217 {
3218 int i;
3219 struct probe *probe;
3220 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3221
3222 for (i = 0;
3223 VEC_iterate (probe_p,
3224 bp_objfile_data->longjmp_probes,
3225 i, probe);
3226 ++i)
3227 {
3228 struct breakpoint *b;
3229
3230 b = create_internal_breakpoint (gdbarch, probe->address,
3231 bp_longjmp_master,
3232 &internal_breakpoint_ops);
3233 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3234 b->enable_state = bp_disabled;
3235 }
3236
3237 continue;
3238 }
3239
3240 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3241 {
3242 struct breakpoint *b;
3243 const char *func_name;
3244 CORE_ADDR addr;
3245
3246 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3247 continue;
3248
3249 func_name = longjmp_names[i];
3250 if (bp_objfile_data->longjmp_msym[i] == NULL)
3251 {
3252 struct minimal_symbol *m;
3253
3254 m = lookup_minimal_symbol_text (func_name, objfile);
3255 if (m == NULL)
3256 {
3257 /* Prevent future lookups in this objfile. */
3258 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3259 continue;
3260 }
3261 bp_objfile_data->longjmp_msym[i] = m;
3262 }
3263
3264 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3265 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3266 &internal_breakpoint_ops);
3267 b->addr_string = xstrdup (func_name);
3268 b->enable_state = bp_disabled;
3269 }
3270 }
3271 }
3272 update_global_location_list (1);
3273
3274 do_cleanups (old_chain);
3275 }
3276
3277 /* Create a master std::terminate breakpoint. */
3278 static void
3279 create_std_terminate_master_breakpoint (void)
3280 {
3281 struct program_space *pspace;
3282 struct cleanup *old_chain;
3283 const char *const func_name = "std::terminate()";
3284
3285 old_chain = save_current_program_space ();
3286
3287 ALL_PSPACES (pspace)
3288 {
3289 struct objfile *objfile;
3290 CORE_ADDR addr;
3291
3292 set_current_program_space (pspace);
3293
3294 ALL_OBJFILES (objfile)
3295 {
3296 struct breakpoint *b;
3297 struct breakpoint_objfile_data *bp_objfile_data;
3298
3299 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3300
3301 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3302 continue;
3303
3304 if (bp_objfile_data->terminate_msym == NULL)
3305 {
3306 struct minimal_symbol *m;
3307
3308 m = lookup_minimal_symbol (func_name, NULL, objfile);
3309 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3310 && MSYMBOL_TYPE (m) != mst_file_text))
3311 {
3312 /* Prevent future lookups in this objfile. */
3313 bp_objfile_data->terminate_msym = &msym_not_found;
3314 continue;
3315 }
3316 bp_objfile_data->terminate_msym = m;
3317 }
3318
3319 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3320 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3321 bp_std_terminate_master,
3322 &internal_breakpoint_ops);
3323 b->addr_string = xstrdup (func_name);
3324 b->enable_state = bp_disabled;
3325 }
3326 }
3327
3328 update_global_location_list (1);
3329
3330 do_cleanups (old_chain);
3331 }
3332
3333 /* Install a master breakpoint on the unwinder's debug hook. */
3334
3335 static void
3336 create_exception_master_breakpoint (void)
3337 {
3338 struct objfile *objfile;
3339 const char *const func_name = "_Unwind_DebugHook";
3340
3341 ALL_OBJFILES (objfile)
3342 {
3343 struct breakpoint *b;
3344 struct gdbarch *gdbarch;
3345 struct breakpoint_objfile_data *bp_objfile_data;
3346 CORE_ADDR addr;
3347
3348 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3349
3350 /* We prefer the SystemTap probe point if it exists. */
3351 if (!bp_objfile_data->exception_searched)
3352 {
3353 bp_objfile_data->exception_probes
3354 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3355 bp_objfile_data->exception_searched = 1;
3356 }
3357
3358 if (bp_objfile_data->exception_probes != NULL)
3359 {
3360 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3361 int i;
3362 struct probe *probe;
3363
3364 for (i = 0;
3365 VEC_iterate (probe_p,
3366 bp_objfile_data->exception_probes,
3367 i, probe);
3368 ++i)
3369 {
3370 struct breakpoint *b;
3371
3372 b = create_internal_breakpoint (gdbarch, probe->address,
3373 bp_exception_master,
3374 &internal_breakpoint_ops);
3375 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3376 b->enable_state = bp_disabled;
3377 }
3378
3379 continue;
3380 }
3381
3382 /* Otherwise, try the hook function. */
3383
3384 if (msym_not_found_p (bp_objfile_data->exception_msym))
3385 continue;
3386
3387 gdbarch = get_objfile_arch (objfile);
3388
3389 if (bp_objfile_data->exception_msym == NULL)
3390 {
3391 struct minimal_symbol *debug_hook;
3392
3393 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3394 if (debug_hook == NULL)
3395 {
3396 bp_objfile_data->exception_msym = &msym_not_found;
3397 continue;
3398 }
3399
3400 bp_objfile_data->exception_msym = debug_hook;
3401 }
3402
3403 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3404 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3405 &current_target);
3406 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3407 &internal_breakpoint_ops);
3408 b->addr_string = xstrdup (func_name);
3409 b->enable_state = bp_disabled;
3410 }
3411
3412 update_global_location_list (1);
3413 }
3414
3415 void
3416 update_breakpoints_after_exec (void)
3417 {
3418 struct breakpoint *b, *b_tmp;
3419 struct bp_location *bploc, **bplocp_tmp;
3420
3421 /* We're about to delete breakpoints from GDB's lists. If the
3422 INSERTED flag is true, GDB will try to lift the breakpoints by
3423 writing the breakpoints' "shadow contents" back into memory. The
3424 "shadow contents" are NOT valid after an exec, so GDB should not
3425 do that. Instead, the target is responsible from marking
3426 breakpoints out as soon as it detects an exec. We don't do that
3427 here instead, because there may be other attempts to delete
3428 breakpoints after detecting an exec and before reaching here. */
3429 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3430 if (bploc->pspace == current_program_space)
3431 gdb_assert (!bploc->inserted);
3432
3433 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3434 {
3435 if (b->pspace != current_program_space)
3436 continue;
3437
3438 /* Solib breakpoints must be explicitly reset after an exec(). */
3439 if (b->type == bp_shlib_event)
3440 {
3441 delete_breakpoint (b);
3442 continue;
3443 }
3444
3445 /* JIT breakpoints must be explicitly reset after an exec(). */
3446 if (b->type == bp_jit_event)
3447 {
3448 delete_breakpoint (b);
3449 continue;
3450 }
3451
3452 /* Thread event breakpoints must be set anew after an exec(),
3453 as must overlay event and longjmp master breakpoints. */
3454 if (b->type == bp_thread_event || b->type == bp_overlay_event
3455 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3456 || b->type == bp_exception_master)
3457 {
3458 delete_breakpoint (b);
3459 continue;
3460 }
3461
3462 /* Step-resume breakpoints are meaningless after an exec(). */
3463 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3464 {
3465 delete_breakpoint (b);
3466 continue;
3467 }
3468
3469 /* Longjmp and longjmp-resume breakpoints are also meaningless
3470 after an exec. */
3471 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3472 || b->type == bp_longjmp_call_dummy
3473 || b->type == bp_exception || b->type == bp_exception_resume)
3474 {
3475 delete_breakpoint (b);
3476 continue;
3477 }
3478
3479 if (b->type == bp_catchpoint)
3480 {
3481 /* For now, none of the bp_catchpoint breakpoints need to
3482 do anything at this point. In the future, if some of
3483 the catchpoints need to something, we will need to add
3484 a new method, and call this method from here. */
3485 continue;
3486 }
3487
3488 /* bp_finish is a special case. The only way we ought to be able
3489 to see one of these when an exec() has happened, is if the user
3490 caught a vfork, and then said "finish". Ordinarily a finish just
3491 carries them to the call-site of the current callee, by setting
3492 a temporary bp there and resuming. But in this case, the finish
3493 will carry them entirely through the vfork & exec.
3494
3495 We don't want to allow a bp_finish to remain inserted now. But
3496 we can't safely delete it, 'cause finish_command has a handle to
3497 the bp on a bpstat, and will later want to delete it. There's a
3498 chance (and I've seen it happen) that if we delete the bp_finish
3499 here, that its storage will get reused by the time finish_command
3500 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3501 We really must allow finish_command to delete a bp_finish.
3502
3503 In the absence of a general solution for the "how do we know
3504 it's safe to delete something others may have handles to?"
3505 problem, what we'll do here is just uninsert the bp_finish, and
3506 let finish_command delete it.
3507
3508 (We know the bp_finish is "doomed" in the sense that it's
3509 momentary, and will be deleted as soon as finish_command sees
3510 the inferior stopped. So it doesn't matter that the bp's
3511 address is probably bogus in the new a.out, unlike e.g., the
3512 solib breakpoints.) */
3513
3514 if (b->type == bp_finish)
3515 {
3516 continue;
3517 }
3518
3519 /* Without a symbolic address, we have little hope of the
3520 pre-exec() address meaning the same thing in the post-exec()
3521 a.out. */
3522 if (b->addr_string == NULL)
3523 {
3524 delete_breakpoint (b);
3525 continue;
3526 }
3527 }
3528 /* FIXME what about longjmp breakpoints? Re-create them here? */
3529 create_overlay_event_breakpoint ();
3530 create_longjmp_master_breakpoint ();
3531 create_std_terminate_master_breakpoint ();
3532 create_exception_master_breakpoint ();
3533 }
3534
3535 int
3536 detach_breakpoints (ptid_t ptid)
3537 {
3538 struct bp_location *bl, **blp_tmp;
3539 int val = 0;
3540 struct cleanup *old_chain = save_inferior_ptid ();
3541 struct inferior *inf = current_inferior ();
3542
3543 if (PIDGET (ptid) == PIDGET (inferior_ptid))
3544 error (_("Cannot detach breakpoints of inferior_ptid"));
3545
3546 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3547 inferior_ptid = ptid;
3548 ALL_BP_LOCATIONS (bl, blp_tmp)
3549 {
3550 if (bl->pspace != inf->pspace)
3551 continue;
3552
3553 if (bl->inserted)
3554 val |= remove_breakpoint_1 (bl, mark_inserted);
3555 }
3556
3557 /* Detach single-step breakpoints as well. */
3558 detach_single_step_breakpoints ();
3559
3560 do_cleanups (old_chain);
3561 return val;
3562 }
3563
3564 /* Remove the breakpoint location BL from the current address space.
3565 Note that this is used to detach breakpoints from a child fork.
3566 When we get here, the child isn't in the inferior list, and neither
3567 do we have objects to represent its address space --- we should
3568 *not* look at bl->pspace->aspace here. */
3569
3570 static int
3571 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3572 {
3573 int val;
3574
3575 /* BL is never in moribund_locations by our callers. */
3576 gdb_assert (bl->owner != NULL);
3577
3578 if (bl->owner->enable_state == bp_permanent)
3579 /* Permanent breakpoints cannot be inserted or removed. */
3580 return 0;
3581
3582 /* The type of none suggests that owner is actually deleted.
3583 This should not ever happen. */
3584 gdb_assert (bl->owner->type != bp_none);
3585
3586 if (bl->loc_type == bp_loc_software_breakpoint
3587 || bl->loc_type == bp_loc_hardware_breakpoint)
3588 {
3589 /* "Normal" instruction breakpoint: either the standard
3590 trap-instruction bp (bp_breakpoint), or a
3591 bp_hardware_breakpoint. */
3592
3593 /* First check to see if we have to handle an overlay. */
3594 if (overlay_debugging == ovly_off
3595 || bl->section == NULL
3596 || !(section_is_overlay (bl->section)))
3597 {
3598 /* No overlay handling: just remove the breakpoint. */
3599 val = bl->owner->ops->remove_location (bl);
3600 }
3601 else
3602 {
3603 /* This breakpoint is in an overlay section.
3604 Did we set a breakpoint at the LMA? */
3605 if (!overlay_events_enabled)
3606 {
3607 /* Yes -- overlay event support is not active, so we
3608 should have set a breakpoint at the LMA. Remove it.
3609 */
3610 /* Ignore any failures: if the LMA is in ROM, we will
3611 have already warned when we failed to insert it. */
3612 if (bl->loc_type == bp_loc_hardware_breakpoint)
3613 target_remove_hw_breakpoint (bl->gdbarch,
3614 &bl->overlay_target_info);
3615 else
3616 target_remove_breakpoint (bl->gdbarch,
3617 &bl->overlay_target_info);
3618 }
3619 /* Did we set a breakpoint at the VMA?
3620 If so, we will have marked the breakpoint 'inserted'. */
3621 if (bl->inserted)
3622 {
3623 /* Yes -- remove it. Previously we did not bother to
3624 remove the breakpoint if the section had been
3625 unmapped, but let's not rely on that being safe. We
3626 don't know what the overlay manager might do. */
3627
3628 /* However, we should remove *software* breakpoints only
3629 if the section is still mapped, or else we overwrite
3630 wrong code with the saved shadow contents. */
3631 if (bl->loc_type == bp_loc_hardware_breakpoint
3632 || section_is_mapped (bl->section))
3633 val = bl->owner->ops->remove_location (bl);
3634 else
3635 val = 0;
3636 }
3637 else
3638 {
3639 /* No -- not inserted, so no need to remove. No error. */
3640 val = 0;
3641 }
3642 }
3643
3644 /* In some cases, we might not be able to remove a breakpoint
3645 in a shared library that has already been removed, but we
3646 have not yet processed the shlib unload event. */
3647 if (val && solib_name_from_address (bl->pspace, bl->address))
3648 val = 0;
3649
3650 if (val)
3651 return val;
3652 bl->inserted = (is == mark_inserted);
3653 }
3654 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3655 {
3656 gdb_assert (bl->owner->ops != NULL
3657 && bl->owner->ops->remove_location != NULL);
3658
3659 bl->inserted = (is == mark_inserted);
3660 bl->owner->ops->remove_location (bl);
3661
3662 /* Failure to remove any of the hardware watchpoints comes here. */
3663 if ((is == mark_uninserted) && (bl->inserted))
3664 warning (_("Could not remove hardware watchpoint %d."),
3665 bl->owner->number);
3666 }
3667 else if (bl->owner->type == bp_catchpoint
3668 && breakpoint_enabled (bl->owner)
3669 && !bl->duplicate)
3670 {
3671 gdb_assert (bl->owner->ops != NULL
3672 && bl->owner->ops->remove_location != NULL);
3673
3674 val = bl->owner->ops->remove_location (bl);
3675 if (val)
3676 return val;
3677
3678 bl->inserted = (is == mark_inserted);
3679 }
3680
3681 return 0;
3682 }
3683
3684 static int
3685 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3686 {
3687 int ret;
3688 struct cleanup *old_chain;
3689
3690 /* BL is never in moribund_locations by our callers. */
3691 gdb_assert (bl->owner != NULL);
3692
3693 if (bl->owner->enable_state == bp_permanent)
3694 /* Permanent breakpoints cannot be inserted or removed. */
3695 return 0;
3696
3697 /* The type of none suggests that owner is actually deleted.
3698 This should not ever happen. */
3699 gdb_assert (bl->owner->type != bp_none);
3700
3701 old_chain = save_current_space_and_thread ();
3702
3703 switch_to_program_space_and_thread (bl->pspace);
3704
3705 ret = remove_breakpoint_1 (bl, is);
3706
3707 do_cleanups (old_chain);
3708 return ret;
3709 }
3710
3711 /* Clear the "inserted" flag in all breakpoints. */
3712
3713 void
3714 mark_breakpoints_out (void)
3715 {
3716 struct bp_location *bl, **blp_tmp;
3717
3718 ALL_BP_LOCATIONS (bl, blp_tmp)
3719 if (bl->pspace == current_program_space)
3720 bl->inserted = 0;
3721 }
3722
3723 /* Clear the "inserted" flag in all breakpoints and delete any
3724 breakpoints which should go away between runs of the program.
3725
3726 Plus other such housekeeping that has to be done for breakpoints
3727 between runs.
3728
3729 Note: this function gets called at the end of a run (by
3730 generic_mourn_inferior) and when a run begins (by
3731 init_wait_for_inferior). */
3732
3733
3734
3735 void
3736 breakpoint_init_inferior (enum inf_context context)
3737 {
3738 struct breakpoint *b, *b_tmp;
3739 struct bp_location *bl, **blp_tmp;
3740 int ix;
3741 struct program_space *pspace = current_program_space;
3742
3743 /* If breakpoint locations are shared across processes, then there's
3744 nothing to do. */
3745 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3746 return;
3747
3748 ALL_BP_LOCATIONS (bl, blp_tmp)
3749 {
3750 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3751 if (bl->pspace == pspace
3752 && bl->owner->enable_state != bp_permanent)
3753 bl->inserted = 0;
3754 }
3755
3756 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3757 {
3758 if (b->loc && b->loc->pspace != pspace)
3759 continue;
3760
3761 switch (b->type)
3762 {
3763 case bp_call_dummy:
3764 case bp_longjmp_call_dummy:
3765
3766 /* If the call dummy breakpoint is at the entry point it will
3767 cause problems when the inferior is rerun, so we better get
3768 rid of it. */
3769
3770 case bp_watchpoint_scope:
3771
3772 /* Also get rid of scope breakpoints. */
3773
3774 case bp_shlib_event:
3775
3776 /* Also remove solib event breakpoints. Their addresses may
3777 have changed since the last time we ran the program.
3778 Actually we may now be debugging against different target;
3779 and so the solib backend that installed this breakpoint may
3780 not be used in by the target. E.g.,
3781
3782 (gdb) file prog-linux
3783 (gdb) run # native linux target
3784 ...
3785 (gdb) kill
3786 (gdb) file prog-win.exe
3787 (gdb) tar rem :9999 # remote Windows gdbserver.
3788 */
3789
3790 case bp_step_resume:
3791
3792 /* Also remove step-resume breakpoints. */
3793
3794 delete_breakpoint (b);
3795 break;
3796
3797 case bp_watchpoint:
3798 case bp_hardware_watchpoint:
3799 case bp_read_watchpoint:
3800 case bp_access_watchpoint:
3801 {
3802 struct watchpoint *w = (struct watchpoint *) b;
3803
3804 /* Likewise for watchpoints on local expressions. */
3805 if (w->exp_valid_block != NULL)
3806 delete_breakpoint (b);
3807 else if (context == inf_starting)
3808 {
3809 /* Reset val field to force reread of starting value in
3810 insert_breakpoints. */
3811 if (w->val)
3812 value_free (w->val);
3813 w->val = NULL;
3814 w->val_valid = 0;
3815 }
3816 }
3817 break;
3818 default:
3819 break;
3820 }
3821 }
3822
3823 /* Get rid of the moribund locations. */
3824 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3825 decref_bp_location (&bl);
3826 VEC_free (bp_location_p, moribund_locations);
3827 }
3828
3829 /* These functions concern about actual breakpoints inserted in the
3830 target --- to e.g. check if we need to do decr_pc adjustment or if
3831 we need to hop over the bkpt --- so we check for address space
3832 match, not program space. */
3833
3834 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3835 exists at PC. It returns ordinary_breakpoint_here if it's an
3836 ordinary breakpoint, or permanent_breakpoint_here if it's a
3837 permanent breakpoint.
3838 - When continuing from a location with an ordinary breakpoint, we
3839 actually single step once before calling insert_breakpoints.
3840 - When continuing from a location with a permanent breakpoint, we
3841 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3842 the target, to advance the PC past the breakpoint. */
3843
3844 enum breakpoint_here
3845 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3846 {
3847 struct bp_location *bl, **blp_tmp;
3848 int any_breakpoint_here = 0;
3849
3850 ALL_BP_LOCATIONS (bl, blp_tmp)
3851 {
3852 if (bl->loc_type != bp_loc_software_breakpoint
3853 && bl->loc_type != bp_loc_hardware_breakpoint)
3854 continue;
3855
3856 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3857 if ((breakpoint_enabled (bl->owner)
3858 || bl->owner->enable_state == bp_permanent)
3859 && breakpoint_location_address_match (bl, aspace, pc))
3860 {
3861 if (overlay_debugging
3862 && section_is_overlay (bl->section)
3863 && !section_is_mapped (bl->section))
3864 continue; /* unmapped overlay -- can't be a match */
3865 else if (bl->owner->enable_state == bp_permanent)
3866 return permanent_breakpoint_here;
3867 else
3868 any_breakpoint_here = 1;
3869 }
3870 }
3871
3872 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3873 }
3874
3875 /* Return true if there's a moribund breakpoint at PC. */
3876
3877 int
3878 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3879 {
3880 struct bp_location *loc;
3881 int ix;
3882
3883 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3884 if (breakpoint_location_address_match (loc, aspace, pc))
3885 return 1;
3886
3887 return 0;
3888 }
3889
3890 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3891 inserted using regular breakpoint_chain / bp_location array
3892 mechanism. This does not check for single-step breakpoints, which
3893 are inserted and removed using direct target manipulation. */
3894
3895 int
3896 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3897 CORE_ADDR pc)
3898 {
3899 struct bp_location *bl, **blp_tmp;
3900
3901 ALL_BP_LOCATIONS (bl, blp_tmp)
3902 {
3903 if (bl->loc_type != bp_loc_software_breakpoint
3904 && bl->loc_type != bp_loc_hardware_breakpoint)
3905 continue;
3906
3907 if (bl->inserted
3908 && breakpoint_location_address_match (bl, aspace, pc))
3909 {
3910 if (overlay_debugging
3911 && section_is_overlay (bl->section)
3912 && !section_is_mapped (bl->section))
3913 continue; /* unmapped overlay -- can't be a match */
3914 else
3915 return 1;
3916 }
3917 }
3918 return 0;
3919 }
3920
3921 /* Returns non-zero iff there's either regular breakpoint
3922 or a single step breakpoint inserted at PC. */
3923
3924 int
3925 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3926 {
3927 if (regular_breakpoint_inserted_here_p (aspace, pc))
3928 return 1;
3929
3930 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3931 return 1;
3932
3933 return 0;
3934 }
3935
3936 /* This function returns non-zero iff there is a software breakpoint
3937 inserted at PC. */
3938
3939 int
3940 software_breakpoint_inserted_here_p (struct address_space *aspace,
3941 CORE_ADDR pc)
3942 {
3943 struct bp_location *bl, **blp_tmp;
3944
3945 ALL_BP_LOCATIONS (bl, blp_tmp)
3946 {
3947 if (bl->loc_type != bp_loc_software_breakpoint)
3948 continue;
3949
3950 if (bl->inserted
3951 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3952 aspace, pc))
3953 {
3954 if (overlay_debugging
3955 && section_is_overlay (bl->section)
3956 && !section_is_mapped (bl->section))
3957 continue; /* unmapped overlay -- can't be a match */
3958 else
3959 return 1;
3960 }
3961 }
3962
3963 /* Also check for software single-step breakpoints. */
3964 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3965 return 1;
3966
3967 return 0;
3968 }
3969
3970 int
3971 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
3972 CORE_ADDR addr, ULONGEST len)
3973 {
3974 struct breakpoint *bpt;
3975
3976 ALL_BREAKPOINTS (bpt)
3977 {
3978 struct bp_location *loc;
3979
3980 if (bpt->type != bp_hardware_watchpoint
3981 && bpt->type != bp_access_watchpoint)
3982 continue;
3983
3984 if (!breakpoint_enabled (bpt))
3985 continue;
3986
3987 for (loc = bpt->loc; loc; loc = loc->next)
3988 if (loc->pspace->aspace == aspace && loc->inserted)
3989 {
3990 CORE_ADDR l, h;
3991
3992 /* Check for intersection. */
3993 l = max (loc->address, addr);
3994 h = min (loc->address + loc->length, addr + len);
3995 if (l < h)
3996 return 1;
3997 }
3998 }
3999 return 0;
4000 }
4001
4002 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4003 PC is valid for process/thread PTID. */
4004
4005 int
4006 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4007 ptid_t ptid)
4008 {
4009 struct bp_location *bl, **blp_tmp;
4010 /* The thread and task IDs associated to PTID, computed lazily. */
4011 int thread = -1;
4012 int task = 0;
4013
4014 ALL_BP_LOCATIONS (bl, blp_tmp)
4015 {
4016 if (bl->loc_type != bp_loc_software_breakpoint
4017 && bl->loc_type != bp_loc_hardware_breakpoint)
4018 continue;
4019
4020 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4021 if (!breakpoint_enabled (bl->owner)
4022 && bl->owner->enable_state != bp_permanent)
4023 continue;
4024
4025 if (!breakpoint_location_address_match (bl, aspace, pc))
4026 continue;
4027
4028 if (bl->owner->thread != -1)
4029 {
4030 /* This is a thread-specific breakpoint. Check that ptid
4031 matches that thread. If thread hasn't been computed yet,
4032 it is now time to do so. */
4033 if (thread == -1)
4034 thread = pid_to_thread_id (ptid);
4035 if (bl->owner->thread != thread)
4036 continue;
4037 }
4038
4039 if (bl->owner->task != 0)
4040 {
4041 /* This is a task-specific breakpoint. Check that ptid
4042 matches that task. If task hasn't been computed yet,
4043 it is now time to do so. */
4044 if (task == 0)
4045 task = ada_get_task_number (ptid);
4046 if (bl->owner->task != task)
4047 continue;
4048 }
4049
4050 if (overlay_debugging
4051 && section_is_overlay (bl->section)
4052 && !section_is_mapped (bl->section))
4053 continue; /* unmapped overlay -- can't be a match */
4054
4055 return 1;
4056 }
4057
4058 return 0;
4059 }
4060 \f
4061
4062 /* bpstat stuff. External routines' interfaces are documented
4063 in breakpoint.h. */
4064
4065 int
4066 is_catchpoint (struct breakpoint *ep)
4067 {
4068 return (ep->type == bp_catchpoint);
4069 }
4070
4071 /* Frees any storage that is part of a bpstat. Does not walk the
4072 'next' chain. */
4073
4074 static void
4075 bpstat_free (bpstat bs)
4076 {
4077 if (bs->old_val != NULL)
4078 value_free (bs->old_val);
4079 decref_counted_command_line (&bs->commands);
4080 decref_bp_location (&bs->bp_location_at);
4081 xfree (bs);
4082 }
4083
4084 /* Clear a bpstat so that it says we are not at any breakpoint.
4085 Also free any storage that is part of a bpstat. */
4086
4087 void
4088 bpstat_clear (bpstat *bsp)
4089 {
4090 bpstat p;
4091 bpstat q;
4092
4093 if (bsp == 0)
4094 return;
4095 p = *bsp;
4096 while (p != NULL)
4097 {
4098 q = p->next;
4099 bpstat_free (p);
4100 p = q;
4101 }
4102 *bsp = NULL;
4103 }
4104
4105 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4106 is part of the bpstat is copied as well. */
4107
4108 bpstat
4109 bpstat_copy (bpstat bs)
4110 {
4111 bpstat p = NULL;
4112 bpstat tmp;
4113 bpstat retval = NULL;
4114
4115 if (bs == NULL)
4116 return bs;
4117
4118 for (; bs != NULL; bs = bs->next)
4119 {
4120 tmp = (bpstat) xmalloc (sizeof (*tmp));
4121 memcpy (tmp, bs, sizeof (*tmp));
4122 incref_counted_command_line (tmp->commands);
4123 incref_bp_location (tmp->bp_location_at);
4124 if (bs->old_val != NULL)
4125 {
4126 tmp->old_val = value_copy (bs->old_val);
4127 release_value (tmp->old_val);
4128 }
4129
4130 if (p == NULL)
4131 /* This is the first thing in the chain. */
4132 retval = tmp;
4133 else
4134 p->next = tmp;
4135 p = tmp;
4136 }
4137 p->next = NULL;
4138 return retval;
4139 }
4140
4141 /* Find the bpstat associated with this breakpoint. */
4142
4143 bpstat
4144 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4145 {
4146 if (bsp == NULL)
4147 return NULL;
4148
4149 for (; bsp != NULL; bsp = bsp->next)
4150 {
4151 if (bsp->breakpoint_at == breakpoint)
4152 return bsp;
4153 }
4154 return NULL;
4155 }
4156
4157 /* See breakpoint.h. */
4158
4159 enum bpstat_signal_value
4160 bpstat_explains_signal (bpstat bsp)
4161 {
4162 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4163
4164 for (; bsp != NULL; bsp = bsp->next)
4165 {
4166 /* Ensure that, if we ever entered this loop, then we at least
4167 return BPSTAT_SIGNAL_HIDE. */
4168 enum bpstat_signal_value newval = BPSTAT_SIGNAL_HIDE;
4169
4170 if (bsp->breakpoint_at != NULL)
4171 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at);
4172
4173 if (newval > result)
4174 result = newval;
4175 }
4176
4177 return result;
4178 }
4179
4180 /* Put in *NUM the breakpoint number of the first breakpoint we are
4181 stopped at. *BSP upon return is a bpstat which points to the
4182 remaining breakpoints stopped at (but which is not guaranteed to be
4183 good for anything but further calls to bpstat_num).
4184
4185 Return 0 if passed a bpstat which does not indicate any breakpoints.
4186 Return -1 if stopped at a breakpoint that has been deleted since
4187 we set it.
4188 Return 1 otherwise. */
4189
4190 int
4191 bpstat_num (bpstat *bsp, int *num)
4192 {
4193 struct breakpoint *b;
4194
4195 if ((*bsp) == NULL)
4196 return 0; /* No more breakpoint values */
4197
4198 /* We assume we'll never have several bpstats that correspond to a
4199 single breakpoint -- otherwise, this function might return the
4200 same number more than once and this will look ugly. */
4201 b = (*bsp)->breakpoint_at;
4202 *bsp = (*bsp)->next;
4203 if (b == NULL)
4204 return -1; /* breakpoint that's been deleted since */
4205
4206 *num = b->number; /* We have its number */
4207 return 1;
4208 }
4209
4210 /* See breakpoint.h. */
4211
4212 void
4213 bpstat_clear_actions (void)
4214 {
4215 struct thread_info *tp;
4216 bpstat bs;
4217
4218 if (ptid_equal (inferior_ptid, null_ptid))
4219 return;
4220
4221 tp = find_thread_ptid (inferior_ptid);
4222 if (tp == NULL)
4223 return;
4224
4225 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4226 {
4227 decref_counted_command_line (&bs->commands);
4228
4229 if (bs->old_val != NULL)
4230 {
4231 value_free (bs->old_val);
4232 bs->old_val = NULL;
4233 }
4234 }
4235 }
4236
4237 /* Called when a command is about to proceed the inferior. */
4238
4239 static void
4240 breakpoint_about_to_proceed (void)
4241 {
4242 if (!ptid_equal (inferior_ptid, null_ptid))
4243 {
4244 struct thread_info *tp = inferior_thread ();
4245
4246 /* Allow inferior function calls in breakpoint commands to not
4247 interrupt the command list. When the call finishes
4248 successfully, the inferior will be standing at the same
4249 breakpoint as if nothing happened. */
4250 if (tp->control.in_infcall)
4251 return;
4252 }
4253
4254 breakpoint_proceeded = 1;
4255 }
4256
4257 /* Stub for cleaning up our state if we error-out of a breakpoint
4258 command. */
4259 static void
4260 cleanup_executing_breakpoints (void *ignore)
4261 {
4262 executing_breakpoint_commands = 0;
4263 }
4264
4265 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4266 or its equivalent. */
4267
4268 static int
4269 command_line_is_silent (struct command_line *cmd)
4270 {
4271 return cmd && (strcmp ("silent", cmd->line) == 0
4272 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4273 }
4274
4275 /* Execute all the commands associated with all the breakpoints at
4276 this location. Any of these commands could cause the process to
4277 proceed beyond this point, etc. We look out for such changes by
4278 checking the global "breakpoint_proceeded" after each command.
4279
4280 Returns true if a breakpoint command resumed the inferior. In that
4281 case, it is the caller's responsibility to recall it again with the
4282 bpstat of the current thread. */
4283
4284 static int
4285 bpstat_do_actions_1 (bpstat *bsp)
4286 {
4287 bpstat bs;
4288 struct cleanup *old_chain;
4289 int again = 0;
4290
4291 /* Avoid endless recursion if a `source' command is contained
4292 in bs->commands. */
4293 if (executing_breakpoint_commands)
4294 return 0;
4295
4296 executing_breakpoint_commands = 1;
4297 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4298
4299 prevent_dont_repeat ();
4300
4301 /* This pointer will iterate over the list of bpstat's. */
4302 bs = *bsp;
4303
4304 breakpoint_proceeded = 0;
4305 for (; bs != NULL; bs = bs->next)
4306 {
4307 struct counted_command_line *ccmd;
4308 struct command_line *cmd;
4309 struct cleanup *this_cmd_tree_chain;
4310
4311 /* Take ownership of the BSP's command tree, if it has one.
4312
4313 The command tree could legitimately contain commands like
4314 'step' and 'next', which call clear_proceed_status, which
4315 frees stop_bpstat's command tree. To make sure this doesn't
4316 free the tree we're executing out from under us, we need to
4317 take ownership of the tree ourselves. Since a given bpstat's
4318 commands are only executed once, we don't need to copy it; we
4319 can clear the pointer in the bpstat, and make sure we free
4320 the tree when we're done. */
4321 ccmd = bs->commands;
4322 bs->commands = NULL;
4323 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4324 cmd = ccmd ? ccmd->commands : NULL;
4325 if (command_line_is_silent (cmd))
4326 {
4327 /* The action has been already done by bpstat_stop_status. */
4328 cmd = cmd->next;
4329 }
4330
4331 while (cmd != NULL)
4332 {
4333 execute_control_command (cmd);
4334
4335 if (breakpoint_proceeded)
4336 break;
4337 else
4338 cmd = cmd->next;
4339 }
4340
4341 /* We can free this command tree now. */
4342 do_cleanups (this_cmd_tree_chain);
4343
4344 if (breakpoint_proceeded)
4345 {
4346 if (target_can_async_p ())
4347 /* If we are in async mode, then the target might be still
4348 running, not stopped at any breakpoint, so nothing for
4349 us to do here -- just return to the event loop. */
4350 ;
4351 else
4352 /* In sync mode, when execute_control_command returns
4353 we're already standing on the next breakpoint.
4354 Breakpoint commands for that stop were not run, since
4355 execute_command does not run breakpoint commands --
4356 only command_line_handler does, but that one is not
4357 involved in execution of breakpoint commands. So, we
4358 can now execute breakpoint commands. It should be
4359 noted that making execute_command do bpstat actions is
4360 not an option -- in this case we'll have recursive
4361 invocation of bpstat for each breakpoint with a
4362 command, and can easily blow up GDB stack. Instead, we
4363 return true, which will trigger the caller to recall us
4364 with the new stop_bpstat. */
4365 again = 1;
4366 break;
4367 }
4368 }
4369 do_cleanups (old_chain);
4370 return again;
4371 }
4372
4373 void
4374 bpstat_do_actions (void)
4375 {
4376 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4377
4378 /* Do any commands attached to breakpoint we are stopped at. */
4379 while (!ptid_equal (inferior_ptid, null_ptid)
4380 && target_has_execution
4381 && !is_exited (inferior_ptid)
4382 && !is_executing (inferior_ptid))
4383 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4384 and only return when it is stopped at the next breakpoint, we
4385 keep doing breakpoint actions until it returns false to
4386 indicate the inferior was not resumed. */
4387 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4388 break;
4389
4390 discard_cleanups (cleanup_if_error);
4391 }
4392
4393 /* Print out the (old or new) value associated with a watchpoint. */
4394
4395 static void
4396 watchpoint_value_print (struct value *val, struct ui_file *stream)
4397 {
4398 if (val == NULL)
4399 fprintf_unfiltered (stream, _("<unreadable>"));
4400 else
4401 {
4402 struct value_print_options opts;
4403 get_user_print_options (&opts);
4404 value_print (val, stream, &opts);
4405 }
4406 }
4407
4408 /* Generic routine for printing messages indicating why we
4409 stopped. The behavior of this function depends on the value
4410 'print_it' in the bpstat structure. Under some circumstances we
4411 may decide not to print anything here and delegate the task to
4412 normal_stop(). */
4413
4414 static enum print_stop_action
4415 print_bp_stop_message (bpstat bs)
4416 {
4417 switch (bs->print_it)
4418 {
4419 case print_it_noop:
4420 /* Nothing should be printed for this bpstat entry. */
4421 return PRINT_UNKNOWN;
4422 break;
4423
4424 case print_it_done:
4425 /* We still want to print the frame, but we already printed the
4426 relevant messages. */
4427 return PRINT_SRC_AND_LOC;
4428 break;
4429
4430 case print_it_normal:
4431 {
4432 struct breakpoint *b = bs->breakpoint_at;
4433
4434 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4435 which has since been deleted. */
4436 if (b == NULL)
4437 return PRINT_UNKNOWN;
4438
4439 /* Normal case. Call the breakpoint's print_it method. */
4440 return b->ops->print_it (bs);
4441 }
4442 break;
4443
4444 default:
4445 internal_error (__FILE__, __LINE__,
4446 _("print_bp_stop_message: unrecognized enum value"));
4447 break;
4448 }
4449 }
4450
4451 /* A helper function that prints a shared library stopped event. */
4452
4453 static void
4454 print_solib_event (int is_catchpoint)
4455 {
4456 int any_deleted
4457 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4458 int any_added
4459 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4460
4461 if (!is_catchpoint)
4462 {
4463 if (any_added || any_deleted)
4464 ui_out_text (current_uiout,
4465 _("Stopped due to shared library event:\n"));
4466 else
4467 ui_out_text (current_uiout,
4468 _("Stopped due to shared library event (no "
4469 "libraries added or removed)\n"));
4470 }
4471
4472 if (ui_out_is_mi_like_p (current_uiout))
4473 ui_out_field_string (current_uiout, "reason",
4474 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4475
4476 if (any_deleted)
4477 {
4478 struct cleanup *cleanup;
4479 char *name;
4480 int ix;
4481
4482 ui_out_text (current_uiout, _(" Inferior unloaded "));
4483 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4484 "removed");
4485 for (ix = 0;
4486 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4487 ix, name);
4488 ++ix)
4489 {
4490 if (ix > 0)
4491 ui_out_text (current_uiout, " ");
4492 ui_out_field_string (current_uiout, "library", name);
4493 ui_out_text (current_uiout, "\n");
4494 }
4495
4496 do_cleanups (cleanup);
4497 }
4498
4499 if (any_added)
4500 {
4501 struct so_list *iter;
4502 int ix;
4503 struct cleanup *cleanup;
4504
4505 ui_out_text (current_uiout, _(" Inferior loaded "));
4506 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4507 "added");
4508 for (ix = 0;
4509 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4510 ix, iter);
4511 ++ix)
4512 {
4513 if (ix > 0)
4514 ui_out_text (current_uiout, " ");
4515 ui_out_field_string (current_uiout, "library", iter->so_name);
4516 ui_out_text (current_uiout, "\n");
4517 }
4518
4519 do_cleanups (cleanup);
4520 }
4521 }
4522
4523 /* Print a message indicating what happened. This is called from
4524 normal_stop(). The input to this routine is the head of the bpstat
4525 list - a list of the eventpoints that caused this stop. KIND is
4526 the target_waitkind for the stopping event. This
4527 routine calls the generic print routine for printing a message
4528 about reasons for stopping. This will print (for example) the
4529 "Breakpoint n," part of the output. The return value of this
4530 routine is one of:
4531
4532 PRINT_UNKNOWN: Means we printed nothing.
4533 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4534 code to print the location. An example is
4535 "Breakpoint 1, " which should be followed by
4536 the location.
4537 PRINT_SRC_ONLY: Means we printed something, but there is no need
4538 to also print the location part of the message.
4539 An example is the catch/throw messages, which
4540 don't require a location appended to the end.
4541 PRINT_NOTHING: We have done some printing and we don't need any
4542 further info to be printed. */
4543
4544 enum print_stop_action
4545 bpstat_print (bpstat bs, int kind)
4546 {
4547 int val;
4548
4549 /* Maybe another breakpoint in the chain caused us to stop.
4550 (Currently all watchpoints go on the bpstat whether hit or not.
4551 That probably could (should) be changed, provided care is taken
4552 with respect to bpstat_explains_signal). */
4553 for (; bs; bs = bs->next)
4554 {
4555 val = print_bp_stop_message (bs);
4556 if (val == PRINT_SRC_ONLY
4557 || val == PRINT_SRC_AND_LOC
4558 || val == PRINT_NOTHING)
4559 return val;
4560 }
4561
4562 /* If we had hit a shared library event breakpoint,
4563 print_bp_stop_message would print out this message. If we hit an
4564 OS-level shared library event, do the same thing. */
4565 if (kind == TARGET_WAITKIND_LOADED)
4566 {
4567 print_solib_event (0);
4568 return PRINT_NOTHING;
4569 }
4570
4571 /* We reached the end of the chain, or we got a null BS to start
4572 with and nothing was printed. */
4573 return PRINT_UNKNOWN;
4574 }
4575
4576 /* Evaluate the expression EXP and return 1 if value is zero. This is
4577 used inside a catch_errors to evaluate the breakpoint condition.
4578 The argument is a "struct expression *" that has been cast to a
4579 "char *" to make it pass through catch_errors. */
4580
4581 static int
4582 breakpoint_cond_eval (void *exp)
4583 {
4584 struct value *mark = value_mark ();
4585 int i = !value_true (evaluate_expression ((struct expression *) exp));
4586
4587 value_free_to_mark (mark);
4588 return i;
4589 }
4590
4591 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4592
4593 static bpstat
4594 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4595 {
4596 bpstat bs;
4597
4598 bs = (bpstat) xmalloc (sizeof (*bs));
4599 bs->next = NULL;
4600 **bs_link_pointer = bs;
4601 *bs_link_pointer = &bs->next;
4602 bs->breakpoint_at = bl->owner;
4603 bs->bp_location_at = bl;
4604 incref_bp_location (bl);
4605 /* If the condition is false, etc., don't do the commands. */
4606 bs->commands = NULL;
4607 bs->old_val = NULL;
4608 bs->print_it = print_it_normal;
4609 return bs;
4610 }
4611 \f
4612 /* The target has stopped with waitstatus WS. Check if any hardware
4613 watchpoints have triggered, according to the target. */
4614
4615 int
4616 watchpoints_triggered (struct target_waitstatus *ws)
4617 {
4618 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4619 CORE_ADDR addr;
4620 struct breakpoint *b;
4621
4622 if (!stopped_by_watchpoint)
4623 {
4624 /* We were not stopped by a watchpoint. Mark all watchpoints
4625 as not triggered. */
4626 ALL_BREAKPOINTS (b)
4627 if (is_hardware_watchpoint (b))
4628 {
4629 struct watchpoint *w = (struct watchpoint *) b;
4630
4631 w->watchpoint_triggered = watch_triggered_no;
4632 }
4633
4634 return 0;
4635 }
4636
4637 if (!target_stopped_data_address (&current_target, &addr))
4638 {
4639 /* We were stopped by a watchpoint, but we don't know where.
4640 Mark all watchpoints as unknown. */
4641 ALL_BREAKPOINTS (b)
4642 if (is_hardware_watchpoint (b))
4643 {
4644 struct watchpoint *w = (struct watchpoint *) b;
4645
4646 w->watchpoint_triggered = watch_triggered_unknown;
4647 }
4648
4649 return stopped_by_watchpoint;
4650 }
4651
4652 /* The target could report the data address. Mark watchpoints
4653 affected by this data address as triggered, and all others as not
4654 triggered. */
4655
4656 ALL_BREAKPOINTS (b)
4657 if (is_hardware_watchpoint (b))
4658 {
4659 struct watchpoint *w = (struct watchpoint *) b;
4660 struct bp_location *loc;
4661
4662 w->watchpoint_triggered = watch_triggered_no;
4663 for (loc = b->loc; loc; loc = loc->next)
4664 {
4665 if (is_masked_watchpoint (b))
4666 {
4667 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4668 CORE_ADDR start = loc->address & w->hw_wp_mask;
4669
4670 if (newaddr == start)
4671 {
4672 w->watchpoint_triggered = watch_triggered_yes;
4673 break;
4674 }
4675 }
4676 /* Exact match not required. Within range is sufficient. */
4677 else if (target_watchpoint_addr_within_range (&current_target,
4678 addr, loc->address,
4679 loc->length))
4680 {
4681 w->watchpoint_triggered = watch_triggered_yes;
4682 break;
4683 }
4684 }
4685 }
4686
4687 return 1;
4688 }
4689
4690 /* Possible return values for watchpoint_check (this can't be an enum
4691 because of check_errors). */
4692 /* The watchpoint has been deleted. */
4693 #define WP_DELETED 1
4694 /* The value has changed. */
4695 #define WP_VALUE_CHANGED 2
4696 /* The value has not changed. */
4697 #define WP_VALUE_NOT_CHANGED 3
4698 /* Ignore this watchpoint, no matter if the value changed or not. */
4699 #define WP_IGNORE 4
4700
4701 #define BP_TEMPFLAG 1
4702 #define BP_HARDWAREFLAG 2
4703
4704 /* Evaluate watchpoint condition expression and check if its value
4705 changed.
4706
4707 P should be a pointer to struct bpstat, but is defined as a void *
4708 in order for this function to be usable with catch_errors. */
4709
4710 static int
4711 watchpoint_check (void *p)
4712 {
4713 bpstat bs = (bpstat) p;
4714 struct watchpoint *b;
4715 struct frame_info *fr;
4716 int within_current_scope;
4717
4718 /* BS is built from an existing struct breakpoint. */
4719 gdb_assert (bs->breakpoint_at != NULL);
4720 b = (struct watchpoint *) bs->breakpoint_at;
4721
4722 /* If this is a local watchpoint, we only want to check if the
4723 watchpoint frame is in scope if the current thread is the thread
4724 that was used to create the watchpoint. */
4725 if (!watchpoint_in_thread_scope (b))
4726 return WP_IGNORE;
4727
4728 if (b->exp_valid_block == NULL)
4729 within_current_scope = 1;
4730 else
4731 {
4732 struct frame_info *frame = get_current_frame ();
4733 struct gdbarch *frame_arch = get_frame_arch (frame);
4734 CORE_ADDR frame_pc = get_frame_pc (frame);
4735
4736 /* in_function_epilogue_p() returns a non-zero value if we're
4737 still in the function but the stack frame has already been
4738 invalidated. Since we can't rely on the values of local
4739 variables after the stack has been destroyed, we are treating
4740 the watchpoint in that state as `not changed' without further
4741 checking. Don't mark watchpoints as changed if the current
4742 frame is in an epilogue - even if they are in some other
4743 frame, our view of the stack is likely to be wrong and
4744 frame_find_by_id could error out. */
4745 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4746 return WP_IGNORE;
4747
4748 fr = frame_find_by_id (b->watchpoint_frame);
4749 within_current_scope = (fr != NULL);
4750
4751 /* If we've gotten confused in the unwinder, we might have
4752 returned a frame that can't describe this variable. */
4753 if (within_current_scope)
4754 {
4755 struct symbol *function;
4756
4757 function = get_frame_function (fr);
4758 if (function == NULL
4759 || !contained_in (b->exp_valid_block,
4760 SYMBOL_BLOCK_VALUE (function)))
4761 within_current_scope = 0;
4762 }
4763
4764 if (within_current_scope)
4765 /* If we end up stopping, the current frame will get selected
4766 in normal_stop. So this call to select_frame won't affect
4767 the user. */
4768 select_frame (fr);
4769 }
4770
4771 if (within_current_scope)
4772 {
4773 /* We use value_{,free_to_}mark because it could be a *long*
4774 time before we return to the command level and call
4775 free_all_values. We can't call free_all_values because we
4776 might be in the middle of evaluating a function call. */
4777
4778 int pc = 0;
4779 struct value *mark;
4780 struct value *new_val;
4781
4782 if (is_masked_watchpoint (&b->base))
4783 /* Since we don't know the exact trigger address (from
4784 stopped_data_address), just tell the user we've triggered
4785 a mask watchpoint. */
4786 return WP_VALUE_CHANGED;
4787
4788 mark = value_mark ();
4789 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL);
4790
4791 /* We use value_equal_contents instead of value_equal because
4792 the latter coerces an array to a pointer, thus comparing just
4793 the address of the array instead of its contents. This is
4794 not what we want. */
4795 if ((b->val != NULL) != (new_val != NULL)
4796 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4797 {
4798 if (new_val != NULL)
4799 {
4800 release_value (new_val);
4801 value_free_to_mark (mark);
4802 }
4803 bs->old_val = b->val;
4804 b->val = new_val;
4805 b->val_valid = 1;
4806 return WP_VALUE_CHANGED;
4807 }
4808 else
4809 {
4810 /* Nothing changed. */
4811 value_free_to_mark (mark);
4812 return WP_VALUE_NOT_CHANGED;
4813 }
4814 }
4815 else
4816 {
4817 struct ui_out *uiout = current_uiout;
4818
4819 /* This seems like the only logical thing to do because
4820 if we temporarily ignored the watchpoint, then when
4821 we reenter the block in which it is valid it contains
4822 garbage (in the case of a function, it may have two
4823 garbage values, one before and one after the prologue).
4824 So we can't even detect the first assignment to it and
4825 watch after that (since the garbage may or may not equal
4826 the first value assigned). */
4827 /* We print all the stop information in
4828 breakpoint_ops->print_it, but in this case, by the time we
4829 call breakpoint_ops->print_it this bp will be deleted
4830 already. So we have no choice but print the information
4831 here. */
4832 if (ui_out_is_mi_like_p (uiout))
4833 ui_out_field_string
4834 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4835 ui_out_text (uiout, "\nWatchpoint ");
4836 ui_out_field_int (uiout, "wpnum", b->base.number);
4837 ui_out_text (uiout,
4838 " deleted because the program has left the block in\n\
4839 which its expression is valid.\n");
4840
4841 /* Make sure the watchpoint's commands aren't executed. */
4842 decref_counted_command_line (&b->base.commands);
4843 watchpoint_del_at_next_stop (b);
4844
4845 return WP_DELETED;
4846 }
4847 }
4848
4849 /* Return true if it looks like target has stopped due to hitting
4850 breakpoint location BL. This function does not check if we should
4851 stop, only if BL explains the stop. */
4852
4853 static int
4854 bpstat_check_location (const struct bp_location *bl,
4855 struct address_space *aspace, CORE_ADDR bp_addr,
4856 const struct target_waitstatus *ws)
4857 {
4858 struct breakpoint *b = bl->owner;
4859
4860 /* BL is from an existing breakpoint. */
4861 gdb_assert (b != NULL);
4862
4863 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4864 }
4865
4866 /* Determine if the watched values have actually changed, and we
4867 should stop. If not, set BS->stop to 0. */
4868
4869 static void
4870 bpstat_check_watchpoint (bpstat bs)
4871 {
4872 const struct bp_location *bl;
4873 struct watchpoint *b;
4874
4875 /* BS is built for existing struct breakpoint. */
4876 bl = bs->bp_location_at;
4877 gdb_assert (bl != NULL);
4878 b = (struct watchpoint *) bs->breakpoint_at;
4879 gdb_assert (b != NULL);
4880
4881 {
4882 int must_check_value = 0;
4883
4884 if (b->base.type == bp_watchpoint)
4885 /* For a software watchpoint, we must always check the
4886 watched value. */
4887 must_check_value = 1;
4888 else if (b->watchpoint_triggered == watch_triggered_yes)
4889 /* We have a hardware watchpoint (read, write, or access)
4890 and the target earlier reported an address watched by
4891 this watchpoint. */
4892 must_check_value = 1;
4893 else if (b->watchpoint_triggered == watch_triggered_unknown
4894 && b->base.type == bp_hardware_watchpoint)
4895 /* We were stopped by a hardware watchpoint, but the target could
4896 not report the data address. We must check the watchpoint's
4897 value. Access and read watchpoints are out of luck; without
4898 a data address, we can't figure it out. */
4899 must_check_value = 1;
4900
4901 if (must_check_value)
4902 {
4903 char *message
4904 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4905 b->base.number);
4906 struct cleanup *cleanups = make_cleanup (xfree, message);
4907 int e = catch_errors (watchpoint_check, bs, message,
4908 RETURN_MASK_ALL);
4909 do_cleanups (cleanups);
4910 switch (e)
4911 {
4912 case WP_DELETED:
4913 /* We've already printed what needs to be printed. */
4914 bs->print_it = print_it_done;
4915 /* Stop. */
4916 break;
4917 case WP_IGNORE:
4918 bs->print_it = print_it_noop;
4919 bs->stop = 0;
4920 break;
4921 case WP_VALUE_CHANGED:
4922 if (b->base.type == bp_read_watchpoint)
4923 {
4924 /* There are two cases to consider here:
4925
4926 1. We're watching the triggered memory for reads.
4927 In that case, trust the target, and always report
4928 the watchpoint hit to the user. Even though
4929 reads don't cause value changes, the value may
4930 have changed since the last time it was read, and
4931 since we're not trapping writes, we will not see
4932 those, and as such we should ignore our notion of
4933 old value.
4934
4935 2. We're watching the triggered memory for both
4936 reads and writes. There are two ways this may
4937 happen:
4938
4939 2.1. This is a target that can't break on data
4940 reads only, but can break on accesses (reads or
4941 writes), such as e.g., x86. We detect this case
4942 at the time we try to insert read watchpoints.
4943
4944 2.2. Otherwise, the target supports read
4945 watchpoints, but, the user set an access or write
4946 watchpoint watching the same memory as this read
4947 watchpoint.
4948
4949 If we're watching memory writes as well as reads,
4950 ignore watchpoint hits when we find that the
4951 value hasn't changed, as reads don't cause
4952 changes. This still gives false positives when
4953 the program writes the same value to memory as
4954 what there was already in memory (we will confuse
4955 it for a read), but it's much better than
4956 nothing. */
4957
4958 int other_write_watchpoint = 0;
4959
4960 if (bl->watchpoint_type == hw_read)
4961 {
4962 struct breakpoint *other_b;
4963
4964 ALL_BREAKPOINTS (other_b)
4965 if (other_b->type == bp_hardware_watchpoint
4966 || other_b->type == bp_access_watchpoint)
4967 {
4968 struct watchpoint *other_w =
4969 (struct watchpoint *) other_b;
4970
4971 if (other_w->watchpoint_triggered
4972 == watch_triggered_yes)
4973 {
4974 other_write_watchpoint = 1;
4975 break;
4976 }
4977 }
4978 }
4979
4980 if (other_write_watchpoint
4981 || bl->watchpoint_type == hw_access)
4982 {
4983 /* We're watching the same memory for writes,
4984 and the value changed since the last time we
4985 updated it, so this trap must be for a write.
4986 Ignore it. */
4987 bs->print_it = print_it_noop;
4988 bs->stop = 0;
4989 }
4990 }
4991 break;
4992 case WP_VALUE_NOT_CHANGED:
4993 if (b->base.type == bp_hardware_watchpoint
4994 || b->base.type == bp_watchpoint)
4995 {
4996 /* Don't stop: write watchpoints shouldn't fire if
4997 the value hasn't changed. */
4998 bs->print_it = print_it_noop;
4999 bs->stop = 0;
5000 }
5001 /* Stop. */
5002 break;
5003 default:
5004 /* Can't happen. */
5005 case 0:
5006 /* Error from catch_errors. */
5007 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5008 watchpoint_del_at_next_stop (b);
5009 /* We've already printed what needs to be printed. */
5010 bs->print_it = print_it_done;
5011 break;
5012 }
5013 }
5014 else /* must_check_value == 0 */
5015 {
5016 /* This is a case where some watchpoint(s) triggered, but
5017 not at the address of this watchpoint, or else no
5018 watchpoint triggered after all. So don't print
5019 anything for this watchpoint. */
5020 bs->print_it = print_it_noop;
5021 bs->stop = 0;
5022 }
5023 }
5024 }
5025
5026
5027 /* Check conditions (condition proper, frame, thread and ignore count)
5028 of breakpoint referred to by BS. If we should not stop for this
5029 breakpoint, set BS->stop to 0. */
5030
5031 static void
5032 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5033 {
5034 int thread_id = pid_to_thread_id (ptid);
5035 const struct bp_location *bl;
5036 struct breakpoint *b;
5037
5038 /* BS is built for existing struct breakpoint. */
5039 bl = bs->bp_location_at;
5040 gdb_assert (bl != NULL);
5041 b = bs->breakpoint_at;
5042 gdb_assert (b != NULL);
5043
5044 /* Even if the target evaluated the condition on its end and notified GDB, we
5045 need to do so again since GDB does not know if we stopped due to a
5046 breakpoint or a single step breakpoint. */
5047
5048 if (frame_id_p (b->frame_id)
5049 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5050 bs->stop = 0;
5051 else if (bs->stop)
5052 {
5053 int value_is_zero = 0;
5054 struct expression *cond;
5055
5056 /* Evaluate Python breakpoints that have a "stop"
5057 method implemented. */
5058 if (b->py_bp_object)
5059 bs->stop = gdbpy_should_stop (b->py_bp_object);
5060
5061 if (is_watchpoint (b))
5062 {
5063 struct watchpoint *w = (struct watchpoint *) b;
5064
5065 cond = w->cond_exp;
5066 }
5067 else
5068 cond = bl->cond;
5069
5070 if (cond && b->disposition != disp_del_at_next_stop)
5071 {
5072 int within_current_scope = 1;
5073 struct watchpoint * w;
5074
5075 /* We use value_mark and value_free_to_mark because it could
5076 be a long time before we return to the command level and
5077 call free_all_values. We can't call free_all_values
5078 because we might be in the middle of evaluating a
5079 function call. */
5080 struct value *mark = value_mark ();
5081
5082 if (is_watchpoint (b))
5083 w = (struct watchpoint *) b;
5084 else
5085 w = NULL;
5086
5087 /* Need to select the frame, with all that implies so that
5088 the conditions will have the right context. Because we
5089 use the frame, we will not see an inlined function's
5090 variables when we arrive at a breakpoint at the start
5091 of the inlined function; the current frame will be the
5092 call site. */
5093 if (w == NULL || w->cond_exp_valid_block == NULL)
5094 select_frame (get_current_frame ());
5095 else
5096 {
5097 struct frame_info *frame;
5098
5099 /* For local watchpoint expressions, which particular
5100 instance of a local is being watched matters, so we
5101 keep track of the frame to evaluate the expression
5102 in. To evaluate the condition however, it doesn't
5103 really matter which instantiation of the function
5104 where the condition makes sense triggers the
5105 watchpoint. This allows an expression like "watch
5106 global if q > 10" set in `func', catch writes to
5107 global on all threads that call `func', or catch
5108 writes on all recursive calls of `func' by a single
5109 thread. We simply always evaluate the condition in
5110 the innermost frame that's executing where it makes
5111 sense to evaluate the condition. It seems
5112 intuitive. */
5113 frame = block_innermost_frame (w->cond_exp_valid_block);
5114 if (frame != NULL)
5115 select_frame (frame);
5116 else
5117 within_current_scope = 0;
5118 }
5119 if (within_current_scope)
5120 value_is_zero
5121 = catch_errors (breakpoint_cond_eval, cond,
5122 "Error in testing breakpoint condition:\n",
5123 RETURN_MASK_ALL);
5124 else
5125 {
5126 warning (_("Watchpoint condition cannot be tested "
5127 "in the current scope"));
5128 /* If we failed to set the right context for this
5129 watchpoint, unconditionally report it. */
5130 value_is_zero = 0;
5131 }
5132 /* FIXME-someday, should give breakpoint #. */
5133 value_free_to_mark (mark);
5134 }
5135
5136 if (cond && value_is_zero)
5137 {
5138 bs->stop = 0;
5139 }
5140 else if (b->thread != -1 && b->thread != thread_id)
5141 {
5142 bs->stop = 0;
5143 }
5144 else if (b->ignore_count > 0)
5145 {
5146 b->ignore_count--;
5147 bs->stop = 0;
5148 /* Increase the hit count even though we don't stop. */
5149 ++(b->hit_count);
5150 observer_notify_breakpoint_modified (b);
5151 }
5152 }
5153 }
5154
5155
5156 /* Get a bpstat associated with having just stopped at address
5157 BP_ADDR in thread PTID.
5158
5159 Determine whether we stopped at a breakpoint, etc, or whether we
5160 don't understand this stop. Result is a chain of bpstat's such
5161 that:
5162
5163 if we don't understand the stop, the result is a null pointer.
5164
5165 if we understand why we stopped, the result is not null.
5166
5167 Each element of the chain refers to a particular breakpoint or
5168 watchpoint at which we have stopped. (We may have stopped for
5169 several reasons concurrently.)
5170
5171 Each element of the chain has valid next, breakpoint_at,
5172 commands, FIXME??? fields. */
5173
5174 bpstat
5175 bpstat_stop_status (struct address_space *aspace,
5176 CORE_ADDR bp_addr, ptid_t ptid,
5177 const struct target_waitstatus *ws)
5178 {
5179 struct breakpoint *b = NULL;
5180 struct bp_location *bl;
5181 struct bp_location *loc;
5182 /* First item of allocated bpstat's. */
5183 bpstat bs_head = NULL, *bs_link = &bs_head;
5184 /* Pointer to the last thing in the chain currently. */
5185 bpstat bs;
5186 int ix;
5187 int need_remove_insert;
5188 int removed_any;
5189
5190 /* First, build the bpstat chain with locations that explain a
5191 target stop, while being careful to not set the target running,
5192 as that may invalidate locations (in particular watchpoint
5193 locations are recreated). Resuming will happen here with
5194 breakpoint conditions or watchpoint expressions that include
5195 inferior function calls. */
5196
5197 ALL_BREAKPOINTS (b)
5198 {
5199 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5200 continue;
5201
5202 for (bl = b->loc; bl != NULL; bl = bl->next)
5203 {
5204 /* For hardware watchpoints, we look only at the first
5205 location. The watchpoint_check function will work on the
5206 entire expression, not the individual locations. For
5207 read watchpoints, the watchpoints_triggered function has
5208 checked all locations already. */
5209 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5210 break;
5211
5212 if (!bl->enabled || bl->shlib_disabled)
5213 continue;
5214
5215 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5216 continue;
5217
5218 /* Come here if it's a watchpoint, or if the break address
5219 matches. */
5220
5221 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5222 explain stop. */
5223
5224 /* Assume we stop. Should we find a watchpoint that is not
5225 actually triggered, or if the condition of the breakpoint
5226 evaluates as false, we'll reset 'stop' to 0. */
5227 bs->stop = 1;
5228 bs->print = 1;
5229
5230 /* If this is a scope breakpoint, mark the associated
5231 watchpoint as triggered so that we will handle the
5232 out-of-scope event. We'll get to the watchpoint next
5233 iteration. */
5234 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5235 {
5236 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5237
5238 w->watchpoint_triggered = watch_triggered_yes;
5239 }
5240 }
5241 }
5242
5243 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5244 {
5245 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5246 {
5247 bs = bpstat_alloc (loc, &bs_link);
5248 /* For hits of moribund locations, we should just proceed. */
5249 bs->stop = 0;
5250 bs->print = 0;
5251 bs->print_it = print_it_noop;
5252 }
5253 }
5254
5255 /* A bit of special processing for shlib breakpoints. We need to
5256 process solib loading here, so that the lists of loaded and
5257 unloaded libraries are correct before we handle "catch load" and
5258 "catch unload". */
5259 for (bs = bs_head; bs != NULL; bs = bs->next)
5260 {
5261 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5262 {
5263 handle_solib_event ();
5264 break;
5265 }
5266 }
5267
5268 /* Now go through the locations that caused the target to stop, and
5269 check whether we're interested in reporting this stop to higher
5270 layers, or whether we should resume the target transparently. */
5271
5272 removed_any = 0;
5273
5274 for (bs = bs_head; bs != NULL; bs = bs->next)
5275 {
5276 if (!bs->stop)
5277 continue;
5278
5279 b = bs->breakpoint_at;
5280 b->ops->check_status (bs);
5281 if (bs->stop)
5282 {
5283 bpstat_check_breakpoint_conditions (bs, ptid);
5284
5285 if (bs->stop)
5286 {
5287 ++(b->hit_count);
5288 observer_notify_breakpoint_modified (b);
5289
5290 /* We will stop here. */
5291 if (b->disposition == disp_disable)
5292 {
5293 --(b->enable_count);
5294 if (b->enable_count <= 0
5295 && b->enable_state != bp_permanent)
5296 b->enable_state = bp_disabled;
5297 removed_any = 1;
5298 }
5299 if (b->silent)
5300 bs->print = 0;
5301 bs->commands = b->commands;
5302 incref_counted_command_line (bs->commands);
5303 if (command_line_is_silent (bs->commands
5304 ? bs->commands->commands : NULL))
5305 bs->print = 0;
5306 }
5307
5308 }
5309
5310 /* Print nothing for this entry if we don't stop or don't
5311 print. */
5312 if (!bs->stop || !bs->print)
5313 bs->print_it = print_it_noop;
5314 }
5315
5316 /* If we aren't stopping, the value of some hardware watchpoint may
5317 not have changed, but the intermediate memory locations we are
5318 watching may have. Don't bother if we're stopping; this will get
5319 done later. */
5320 need_remove_insert = 0;
5321 if (! bpstat_causes_stop (bs_head))
5322 for (bs = bs_head; bs != NULL; bs = bs->next)
5323 if (!bs->stop
5324 && bs->breakpoint_at
5325 && is_hardware_watchpoint (bs->breakpoint_at))
5326 {
5327 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5328
5329 update_watchpoint (w, 0 /* don't reparse. */);
5330 need_remove_insert = 1;
5331 }
5332
5333 if (need_remove_insert)
5334 update_global_location_list (1);
5335 else if (removed_any)
5336 update_global_location_list (0);
5337
5338 return bs_head;
5339 }
5340
5341 static void
5342 handle_jit_event (void)
5343 {
5344 struct frame_info *frame;
5345 struct gdbarch *gdbarch;
5346
5347 /* Switch terminal for any messages produced by
5348 breakpoint_re_set. */
5349 target_terminal_ours_for_output ();
5350
5351 frame = get_current_frame ();
5352 gdbarch = get_frame_arch (frame);
5353
5354 jit_event_handler (gdbarch);
5355
5356 target_terminal_inferior ();
5357 }
5358
5359 /* Handle an solib event by calling solib_add. */
5360
5361 void
5362 handle_solib_event (void)
5363 {
5364 clear_program_space_solib_cache (current_inferior ()->pspace);
5365
5366 /* Check for any newly added shared libraries if we're supposed to
5367 be adding them automatically. Switch terminal for any messages
5368 produced by breakpoint_re_set. */
5369 target_terminal_ours_for_output ();
5370 #ifdef SOLIB_ADD
5371 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
5372 #else
5373 solib_add (NULL, 0, &current_target, auto_solib_add);
5374 #endif
5375 target_terminal_inferior ();
5376 }
5377
5378 /* Prepare WHAT final decision for infrun. */
5379
5380 /* Decide what infrun needs to do with this bpstat. */
5381
5382 struct bpstat_what
5383 bpstat_what (bpstat bs_head)
5384 {
5385 struct bpstat_what retval;
5386 int jit_event = 0;
5387 bpstat bs;
5388
5389 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5390 retval.call_dummy = STOP_NONE;
5391 retval.is_longjmp = 0;
5392
5393 for (bs = bs_head; bs != NULL; bs = bs->next)
5394 {
5395 /* Extract this BS's action. After processing each BS, we check
5396 if its action overrides all we've seem so far. */
5397 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5398 enum bptype bptype;
5399
5400 if (bs->breakpoint_at == NULL)
5401 {
5402 /* I suspect this can happen if it was a momentary
5403 breakpoint which has since been deleted. */
5404 bptype = bp_none;
5405 }
5406 else
5407 bptype = bs->breakpoint_at->type;
5408
5409 switch (bptype)
5410 {
5411 case bp_none:
5412 break;
5413 case bp_breakpoint:
5414 case bp_hardware_breakpoint:
5415 case bp_until:
5416 case bp_finish:
5417 case bp_shlib_event:
5418 if (bs->stop)
5419 {
5420 if (bs->print)
5421 this_action = BPSTAT_WHAT_STOP_NOISY;
5422 else
5423 this_action = BPSTAT_WHAT_STOP_SILENT;
5424 }
5425 else
5426 this_action = BPSTAT_WHAT_SINGLE;
5427 break;
5428 case bp_watchpoint:
5429 case bp_hardware_watchpoint:
5430 case bp_read_watchpoint:
5431 case bp_access_watchpoint:
5432 if (bs->stop)
5433 {
5434 if (bs->print)
5435 this_action = BPSTAT_WHAT_STOP_NOISY;
5436 else
5437 this_action = BPSTAT_WHAT_STOP_SILENT;
5438 }
5439 else
5440 {
5441 /* There was a watchpoint, but we're not stopping.
5442 This requires no further action. */
5443 }
5444 break;
5445 case bp_longjmp:
5446 case bp_longjmp_call_dummy:
5447 case bp_exception:
5448 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5449 retval.is_longjmp = bptype != bp_exception;
5450 break;
5451 case bp_longjmp_resume:
5452 case bp_exception_resume:
5453 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5454 retval.is_longjmp = bptype == bp_longjmp_resume;
5455 break;
5456 case bp_step_resume:
5457 if (bs->stop)
5458 this_action = BPSTAT_WHAT_STEP_RESUME;
5459 else
5460 {
5461 /* It is for the wrong frame. */
5462 this_action = BPSTAT_WHAT_SINGLE;
5463 }
5464 break;
5465 case bp_hp_step_resume:
5466 if (bs->stop)
5467 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5468 else
5469 {
5470 /* It is for the wrong frame. */
5471 this_action = BPSTAT_WHAT_SINGLE;
5472 }
5473 break;
5474 case bp_watchpoint_scope:
5475 case bp_thread_event:
5476 case bp_overlay_event:
5477 case bp_longjmp_master:
5478 case bp_std_terminate_master:
5479 case bp_exception_master:
5480 this_action = BPSTAT_WHAT_SINGLE;
5481 break;
5482 case bp_catchpoint:
5483 if (bs->stop)
5484 {
5485 if (bs->print)
5486 this_action = BPSTAT_WHAT_STOP_NOISY;
5487 else
5488 this_action = BPSTAT_WHAT_STOP_SILENT;
5489 }
5490 else
5491 {
5492 /* There was a catchpoint, but we're not stopping.
5493 This requires no further action. */
5494 }
5495 break;
5496 case bp_jit_event:
5497 jit_event = 1;
5498 this_action = BPSTAT_WHAT_SINGLE;
5499 break;
5500 case bp_call_dummy:
5501 /* Make sure the action is stop (silent or noisy),
5502 so infrun.c pops the dummy frame. */
5503 retval.call_dummy = STOP_STACK_DUMMY;
5504 this_action = BPSTAT_WHAT_STOP_SILENT;
5505 break;
5506 case bp_std_terminate:
5507 /* Make sure the action is stop (silent or noisy),
5508 so infrun.c pops the dummy frame. */
5509 retval.call_dummy = STOP_STD_TERMINATE;
5510 this_action = BPSTAT_WHAT_STOP_SILENT;
5511 break;
5512 case bp_tracepoint:
5513 case bp_fast_tracepoint:
5514 case bp_static_tracepoint:
5515 /* Tracepoint hits should not be reported back to GDB, and
5516 if one got through somehow, it should have been filtered
5517 out already. */
5518 internal_error (__FILE__, __LINE__,
5519 _("bpstat_what: tracepoint encountered"));
5520 break;
5521 case bp_gnu_ifunc_resolver:
5522 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5523 this_action = BPSTAT_WHAT_SINGLE;
5524 break;
5525 case bp_gnu_ifunc_resolver_return:
5526 /* The breakpoint will be removed, execution will restart from the
5527 PC of the former breakpoint. */
5528 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5529 break;
5530
5531 case bp_dprintf:
5532 this_action = BPSTAT_WHAT_STOP_SILENT;
5533 break;
5534
5535 default:
5536 internal_error (__FILE__, __LINE__,
5537 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5538 }
5539
5540 retval.main_action = max (retval.main_action, this_action);
5541 }
5542
5543 /* These operations may affect the bs->breakpoint_at state so they are
5544 delayed after MAIN_ACTION is decided above. */
5545
5546 if (jit_event)
5547 {
5548 if (debug_infrun)
5549 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5550
5551 handle_jit_event ();
5552 }
5553
5554 for (bs = bs_head; bs != NULL; bs = bs->next)
5555 {
5556 struct breakpoint *b = bs->breakpoint_at;
5557
5558 if (b == NULL)
5559 continue;
5560 switch (b->type)
5561 {
5562 case bp_gnu_ifunc_resolver:
5563 gnu_ifunc_resolver_stop (b);
5564 break;
5565 case bp_gnu_ifunc_resolver_return:
5566 gnu_ifunc_resolver_return_stop (b);
5567 break;
5568 }
5569 }
5570
5571 return retval;
5572 }
5573
5574 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5575 without hardware support). This isn't related to a specific bpstat,
5576 just to things like whether watchpoints are set. */
5577
5578 int
5579 bpstat_should_step (void)
5580 {
5581 struct breakpoint *b;
5582
5583 ALL_BREAKPOINTS (b)
5584 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5585 return 1;
5586 return 0;
5587 }
5588
5589 int
5590 bpstat_causes_stop (bpstat bs)
5591 {
5592 for (; bs != NULL; bs = bs->next)
5593 if (bs->stop)
5594 return 1;
5595
5596 return 0;
5597 }
5598
5599 \f
5600
5601 /* Compute a string of spaces suitable to indent the next line
5602 so it starts at the position corresponding to the table column
5603 named COL_NAME in the currently active table of UIOUT. */
5604
5605 static char *
5606 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5607 {
5608 static char wrap_indent[80];
5609 int i, total_width, width, align;
5610 char *text;
5611
5612 total_width = 0;
5613 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5614 {
5615 if (strcmp (text, col_name) == 0)
5616 {
5617 gdb_assert (total_width < sizeof wrap_indent);
5618 memset (wrap_indent, ' ', total_width);
5619 wrap_indent[total_width] = 0;
5620
5621 return wrap_indent;
5622 }
5623
5624 total_width += width + 1;
5625 }
5626
5627 return NULL;
5628 }
5629
5630 /* Determine if the locations of this breakpoint will have their conditions
5631 evaluated by the target, host or a mix of both. Returns the following:
5632
5633 "host": Host evals condition.
5634 "host or target": Host or Target evals condition.
5635 "target": Target evals condition.
5636 */
5637
5638 static const char *
5639 bp_condition_evaluator (struct breakpoint *b)
5640 {
5641 struct bp_location *bl;
5642 char host_evals = 0;
5643 char target_evals = 0;
5644
5645 if (!b)
5646 return NULL;
5647
5648 if (!is_breakpoint (b))
5649 return NULL;
5650
5651 if (gdb_evaluates_breakpoint_condition_p ()
5652 || !target_supports_evaluation_of_breakpoint_conditions ())
5653 return condition_evaluation_host;
5654
5655 for (bl = b->loc; bl; bl = bl->next)
5656 {
5657 if (bl->cond_bytecode)
5658 target_evals++;
5659 else
5660 host_evals++;
5661 }
5662
5663 if (host_evals && target_evals)
5664 return condition_evaluation_both;
5665 else if (target_evals)
5666 return condition_evaluation_target;
5667 else
5668 return condition_evaluation_host;
5669 }
5670
5671 /* Determine the breakpoint location's condition evaluator. This is
5672 similar to bp_condition_evaluator, but for locations. */
5673
5674 static const char *
5675 bp_location_condition_evaluator (struct bp_location *bl)
5676 {
5677 if (bl && !is_breakpoint (bl->owner))
5678 return NULL;
5679
5680 if (gdb_evaluates_breakpoint_condition_p ()
5681 || !target_supports_evaluation_of_breakpoint_conditions ())
5682 return condition_evaluation_host;
5683
5684 if (bl && bl->cond_bytecode)
5685 return condition_evaluation_target;
5686 else
5687 return condition_evaluation_host;
5688 }
5689
5690 /* Print the LOC location out of the list of B->LOC locations. */
5691
5692 static void
5693 print_breakpoint_location (struct breakpoint *b,
5694 struct bp_location *loc)
5695 {
5696 struct ui_out *uiout = current_uiout;
5697 struct cleanup *old_chain = save_current_program_space ();
5698
5699 if (loc != NULL && loc->shlib_disabled)
5700 loc = NULL;
5701
5702 if (loc != NULL)
5703 set_current_program_space (loc->pspace);
5704
5705 if (b->display_canonical)
5706 ui_out_field_string (uiout, "what", b->addr_string);
5707 else if (loc && loc->symtab)
5708 {
5709 struct symbol *sym
5710 = find_pc_sect_function (loc->address, loc->section);
5711 if (sym)
5712 {
5713 ui_out_text (uiout, "in ");
5714 ui_out_field_string (uiout, "func",
5715 SYMBOL_PRINT_NAME (sym));
5716 ui_out_text (uiout, " ");
5717 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5718 ui_out_text (uiout, "at ");
5719 }
5720 ui_out_field_string (uiout, "file",
5721 symtab_to_filename_for_display (loc->symtab));
5722 ui_out_text (uiout, ":");
5723
5724 if (ui_out_is_mi_like_p (uiout))
5725 ui_out_field_string (uiout, "fullname",
5726 symtab_to_fullname (loc->symtab));
5727
5728 ui_out_field_int (uiout, "line", loc->line_number);
5729 }
5730 else if (loc)
5731 {
5732 struct ui_file *stb = mem_fileopen ();
5733 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5734
5735 print_address_symbolic (loc->gdbarch, loc->address, stb,
5736 demangle, "");
5737 ui_out_field_stream (uiout, "at", stb);
5738
5739 do_cleanups (stb_chain);
5740 }
5741 else
5742 ui_out_field_string (uiout, "pending", b->addr_string);
5743
5744 if (loc && is_breakpoint (b)
5745 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5746 && bp_condition_evaluator (b) == condition_evaluation_both)
5747 {
5748 ui_out_text (uiout, " (");
5749 ui_out_field_string (uiout, "evaluated-by",
5750 bp_location_condition_evaluator (loc));
5751 ui_out_text (uiout, ")");
5752 }
5753
5754 do_cleanups (old_chain);
5755 }
5756
5757 static const char *
5758 bptype_string (enum bptype type)
5759 {
5760 struct ep_type_description
5761 {
5762 enum bptype type;
5763 char *description;
5764 };
5765 static struct ep_type_description bptypes[] =
5766 {
5767 {bp_none, "?deleted?"},
5768 {bp_breakpoint, "breakpoint"},
5769 {bp_hardware_breakpoint, "hw breakpoint"},
5770 {bp_until, "until"},
5771 {bp_finish, "finish"},
5772 {bp_watchpoint, "watchpoint"},
5773 {bp_hardware_watchpoint, "hw watchpoint"},
5774 {bp_read_watchpoint, "read watchpoint"},
5775 {bp_access_watchpoint, "acc watchpoint"},
5776 {bp_longjmp, "longjmp"},
5777 {bp_longjmp_resume, "longjmp resume"},
5778 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5779 {bp_exception, "exception"},
5780 {bp_exception_resume, "exception resume"},
5781 {bp_step_resume, "step resume"},
5782 {bp_hp_step_resume, "high-priority step resume"},
5783 {bp_watchpoint_scope, "watchpoint scope"},
5784 {bp_call_dummy, "call dummy"},
5785 {bp_std_terminate, "std::terminate"},
5786 {bp_shlib_event, "shlib events"},
5787 {bp_thread_event, "thread events"},
5788 {bp_overlay_event, "overlay events"},
5789 {bp_longjmp_master, "longjmp master"},
5790 {bp_std_terminate_master, "std::terminate master"},
5791 {bp_exception_master, "exception master"},
5792 {bp_catchpoint, "catchpoint"},
5793 {bp_tracepoint, "tracepoint"},
5794 {bp_fast_tracepoint, "fast tracepoint"},
5795 {bp_static_tracepoint, "static tracepoint"},
5796 {bp_dprintf, "dprintf"},
5797 {bp_jit_event, "jit events"},
5798 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5799 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5800 };
5801
5802 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5803 || ((int) type != bptypes[(int) type].type))
5804 internal_error (__FILE__, __LINE__,
5805 _("bptypes table does not describe type #%d."),
5806 (int) type);
5807
5808 return bptypes[(int) type].description;
5809 }
5810
5811 DEF_VEC_I(int);
5812
5813 /* For MI, output a field named 'thread-groups' with a list as the value.
5814 For CLI, prefix the list with the string 'inf'. */
5815
5816 static void
5817 output_thread_groups (struct ui_out *uiout,
5818 const char *field_name,
5819 VEC(int) *inf_num,
5820 int mi_only)
5821 {
5822 struct cleanup *back_to = make_cleanup_ui_out_list_begin_end (uiout,
5823 field_name);
5824 int is_mi = ui_out_is_mi_like_p (uiout);
5825 int inf;
5826 int i;
5827
5828 /* For backward compatibility, don't display inferiors in CLI unless
5829 there are several. Always display them for MI. */
5830 if (!is_mi && mi_only)
5831 return;
5832
5833 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5834 {
5835 if (is_mi)
5836 {
5837 char mi_group[10];
5838
5839 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5840 ui_out_field_string (uiout, NULL, mi_group);
5841 }
5842 else
5843 {
5844 if (i == 0)
5845 ui_out_text (uiout, " inf ");
5846 else
5847 ui_out_text (uiout, ", ");
5848
5849 ui_out_text (uiout, plongest (inf));
5850 }
5851 }
5852
5853 do_cleanups (back_to);
5854 }
5855
5856 /* Print B to gdb_stdout. */
5857
5858 static void
5859 print_one_breakpoint_location (struct breakpoint *b,
5860 struct bp_location *loc,
5861 int loc_number,
5862 struct bp_location **last_loc,
5863 int allflag)
5864 {
5865 struct command_line *l;
5866 static char bpenables[] = "nynny";
5867
5868 struct ui_out *uiout = current_uiout;
5869 int header_of_multiple = 0;
5870 int part_of_multiple = (loc != NULL);
5871 struct value_print_options opts;
5872
5873 get_user_print_options (&opts);
5874
5875 gdb_assert (!loc || loc_number != 0);
5876 /* See comment in print_one_breakpoint concerning treatment of
5877 breakpoints with single disabled location. */
5878 if (loc == NULL
5879 && (b->loc != NULL
5880 && (b->loc->next != NULL || !b->loc->enabled)))
5881 header_of_multiple = 1;
5882 if (loc == NULL)
5883 loc = b->loc;
5884
5885 annotate_record ();
5886
5887 /* 1 */
5888 annotate_field (0);
5889 if (part_of_multiple)
5890 {
5891 char *formatted;
5892 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5893 ui_out_field_string (uiout, "number", formatted);
5894 xfree (formatted);
5895 }
5896 else
5897 {
5898 ui_out_field_int (uiout, "number", b->number);
5899 }
5900
5901 /* 2 */
5902 annotate_field (1);
5903 if (part_of_multiple)
5904 ui_out_field_skip (uiout, "type");
5905 else
5906 ui_out_field_string (uiout, "type", bptype_string (b->type));
5907
5908 /* 3 */
5909 annotate_field (2);
5910 if (part_of_multiple)
5911 ui_out_field_skip (uiout, "disp");
5912 else
5913 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5914
5915
5916 /* 4 */
5917 annotate_field (3);
5918 if (part_of_multiple)
5919 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5920 else
5921 ui_out_field_fmt (uiout, "enabled", "%c",
5922 bpenables[(int) b->enable_state]);
5923 ui_out_spaces (uiout, 2);
5924
5925
5926 /* 5 and 6 */
5927 if (b->ops != NULL && b->ops->print_one != NULL)
5928 {
5929 /* Although the print_one can possibly print all locations,
5930 calling it here is not likely to get any nice result. So,
5931 make sure there's just one location. */
5932 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5933 b->ops->print_one (b, last_loc);
5934 }
5935 else
5936 switch (b->type)
5937 {
5938 case bp_none:
5939 internal_error (__FILE__, __LINE__,
5940 _("print_one_breakpoint: bp_none encountered\n"));
5941 break;
5942
5943 case bp_watchpoint:
5944 case bp_hardware_watchpoint:
5945 case bp_read_watchpoint:
5946 case bp_access_watchpoint:
5947 {
5948 struct watchpoint *w = (struct watchpoint *) b;
5949
5950 /* Field 4, the address, is omitted (which makes the columns
5951 not line up too nicely with the headers, but the effect
5952 is relatively readable). */
5953 if (opts.addressprint)
5954 ui_out_field_skip (uiout, "addr");
5955 annotate_field (5);
5956 ui_out_field_string (uiout, "what", w->exp_string);
5957 }
5958 break;
5959
5960 case bp_breakpoint:
5961 case bp_hardware_breakpoint:
5962 case bp_until:
5963 case bp_finish:
5964 case bp_longjmp:
5965 case bp_longjmp_resume:
5966 case bp_longjmp_call_dummy:
5967 case bp_exception:
5968 case bp_exception_resume:
5969 case bp_step_resume:
5970 case bp_hp_step_resume:
5971 case bp_watchpoint_scope:
5972 case bp_call_dummy:
5973 case bp_std_terminate:
5974 case bp_shlib_event:
5975 case bp_thread_event:
5976 case bp_overlay_event:
5977 case bp_longjmp_master:
5978 case bp_std_terminate_master:
5979 case bp_exception_master:
5980 case bp_tracepoint:
5981 case bp_fast_tracepoint:
5982 case bp_static_tracepoint:
5983 case bp_dprintf:
5984 case bp_jit_event:
5985 case bp_gnu_ifunc_resolver:
5986 case bp_gnu_ifunc_resolver_return:
5987 if (opts.addressprint)
5988 {
5989 annotate_field (4);
5990 if (header_of_multiple)
5991 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
5992 else if (b->loc == NULL || loc->shlib_disabled)
5993 ui_out_field_string (uiout, "addr", "<PENDING>");
5994 else
5995 ui_out_field_core_addr (uiout, "addr",
5996 loc->gdbarch, loc->address);
5997 }
5998 annotate_field (5);
5999 if (!header_of_multiple)
6000 print_breakpoint_location (b, loc);
6001 if (b->loc)
6002 *last_loc = b->loc;
6003 break;
6004 }
6005
6006
6007 if (loc != NULL && !header_of_multiple)
6008 {
6009 struct inferior *inf;
6010 VEC(int) *inf_num = NULL;
6011 int mi_only = 1;
6012
6013 ALL_INFERIORS (inf)
6014 {
6015 if (inf->pspace == loc->pspace)
6016 VEC_safe_push (int, inf_num, inf->num);
6017 }
6018
6019 /* For backward compatibility, don't display inferiors in CLI unless
6020 there are several. Always display for MI. */
6021 if (allflag
6022 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6023 && (number_of_program_spaces () > 1
6024 || number_of_inferiors () > 1)
6025 /* LOC is for existing B, it cannot be in
6026 moribund_locations and thus having NULL OWNER. */
6027 && loc->owner->type != bp_catchpoint))
6028 mi_only = 0;
6029 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6030 VEC_free (int, inf_num);
6031 }
6032
6033 if (!part_of_multiple)
6034 {
6035 if (b->thread != -1)
6036 {
6037 /* FIXME: This seems to be redundant and lost here; see the
6038 "stop only in" line a little further down. */
6039 ui_out_text (uiout, " thread ");
6040 ui_out_field_int (uiout, "thread", b->thread);
6041 }
6042 else if (b->task != 0)
6043 {
6044 ui_out_text (uiout, " task ");
6045 ui_out_field_int (uiout, "task", b->task);
6046 }
6047 }
6048
6049 ui_out_text (uiout, "\n");
6050
6051 if (!part_of_multiple)
6052 b->ops->print_one_detail (b, uiout);
6053
6054 if (part_of_multiple && frame_id_p (b->frame_id))
6055 {
6056 annotate_field (6);
6057 ui_out_text (uiout, "\tstop only in stack frame at ");
6058 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6059 the frame ID. */
6060 ui_out_field_core_addr (uiout, "frame",
6061 b->gdbarch, b->frame_id.stack_addr);
6062 ui_out_text (uiout, "\n");
6063 }
6064
6065 if (!part_of_multiple && b->cond_string)
6066 {
6067 annotate_field (7);
6068 if (is_tracepoint (b))
6069 ui_out_text (uiout, "\ttrace only if ");
6070 else
6071 ui_out_text (uiout, "\tstop only if ");
6072 ui_out_field_string (uiout, "cond", b->cond_string);
6073
6074 /* Print whether the target is doing the breakpoint's condition
6075 evaluation. If GDB is doing the evaluation, don't print anything. */
6076 if (is_breakpoint (b)
6077 && breakpoint_condition_evaluation_mode ()
6078 == condition_evaluation_target)
6079 {
6080 ui_out_text (uiout, " (");
6081 ui_out_field_string (uiout, "evaluated-by",
6082 bp_condition_evaluator (b));
6083 ui_out_text (uiout, " evals)");
6084 }
6085 ui_out_text (uiout, "\n");
6086 }
6087
6088 if (!part_of_multiple && b->thread != -1)
6089 {
6090 /* FIXME should make an annotation for this. */
6091 ui_out_text (uiout, "\tstop only in thread ");
6092 ui_out_field_int (uiout, "thread", b->thread);
6093 ui_out_text (uiout, "\n");
6094 }
6095
6096 if (!part_of_multiple)
6097 {
6098 if (b->hit_count)
6099 {
6100 /* FIXME should make an annotation for this. */
6101 if (is_catchpoint (b))
6102 ui_out_text (uiout, "\tcatchpoint");
6103 else if (is_tracepoint (b))
6104 ui_out_text (uiout, "\ttracepoint");
6105 else
6106 ui_out_text (uiout, "\tbreakpoint");
6107 ui_out_text (uiout, " already hit ");
6108 ui_out_field_int (uiout, "times", b->hit_count);
6109 if (b->hit_count == 1)
6110 ui_out_text (uiout, " time\n");
6111 else
6112 ui_out_text (uiout, " times\n");
6113 }
6114 else
6115 {
6116 /* Output the count also if it is zero, but only if this is mi. */
6117 if (ui_out_is_mi_like_p (uiout))
6118 ui_out_field_int (uiout, "times", b->hit_count);
6119 }
6120 }
6121
6122 if (!part_of_multiple && b->ignore_count)
6123 {
6124 annotate_field (8);
6125 ui_out_text (uiout, "\tignore next ");
6126 ui_out_field_int (uiout, "ignore", b->ignore_count);
6127 ui_out_text (uiout, " hits\n");
6128 }
6129
6130 /* Note that an enable count of 1 corresponds to "enable once"
6131 behavior, which is reported by the combination of enablement and
6132 disposition, so we don't need to mention it here. */
6133 if (!part_of_multiple && b->enable_count > 1)
6134 {
6135 annotate_field (8);
6136 ui_out_text (uiout, "\tdisable after ");
6137 /* Tweak the wording to clarify that ignore and enable counts
6138 are distinct, and have additive effect. */
6139 if (b->ignore_count)
6140 ui_out_text (uiout, "additional ");
6141 else
6142 ui_out_text (uiout, "next ");
6143 ui_out_field_int (uiout, "enable", b->enable_count);
6144 ui_out_text (uiout, " hits\n");
6145 }
6146
6147 if (!part_of_multiple && is_tracepoint (b))
6148 {
6149 struct tracepoint *tp = (struct tracepoint *) b;
6150
6151 if (tp->traceframe_usage)
6152 {
6153 ui_out_text (uiout, "\ttrace buffer usage ");
6154 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6155 ui_out_text (uiout, " bytes\n");
6156 }
6157 }
6158
6159 l = b->commands ? b->commands->commands : NULL;
6160 if (!part_of_multiple && l)
6161 {
6162 struct cleanup *script_chain;
6163
6164 annotate_field (9);
6165 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6166 print_command_lines (uiout, l, 4);
6167 do_cleanups (script_chain);
6168 }
6169
6170 if (is_tracepoint (b))
6171 {
6172 struct tracepoint *t = (struct tracepoint *) b;
6173
6174 if (!part_of_multiple && t->pass_count)
6175 {
6176 annotate_field (10);
6177 ui_out_text (uiout, "\tpass count ");
6178 ui_out_field_int (uiout, "pass", t->pass_count);
6179 ui_out_text (uiout, " \n");
6180 }
6181
6182 /* Don't display it when tracepoint or tracepoint location is
6183 pending. */
6184 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6185 {
6186 annotate_field (11);
6187
6188 if (ui_out_is_mi_like_p (uiout))
6189 ui_out_field_string (uiout, "installed",
6190 loc->inserted ? "y" : "n");
6191 else
6192 {
6193 if (loc->inserted)
6194 ui_out_text (uiout, "\t");
6195 else
6196 ui_out_text (uiout, "\tnot ");
6197 ui_out_text (uiout, "installed on target\n");
6198 }
6199 }
6200 }
6201
6202 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6203 {
6204 if (is_watchpoint (b))
6205 {
6206 struct watchpoint *w = (struct watchpoint *) b;
6207
6208 ui_out_field_string (uiout, "original-location", w->exp_string);
6209 }
6210 else if (b->addr_string)
6211 ui_out_field_string (uiout, "original-location", b->addr_string);
6212 }
6213 }
6214
6215 static void
6216 print_one_breakpoint (struct breakpoint *b,
6217 struct bp_location **last_loc,
6218 int allflag)
6219 {
6220 struct cleanup *bkpt_chain;
6221 struct ui_out *uiout = current_uiout;
6222
6223 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6224
6225 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6226 do_cleanups (bkpt_chain);
6227
6228 /* If this breakpoint has custom print function,
6229 it's already printed. Otherwise, print individual
6230 locations, if any. */
6231 if (b->ops == NULL || b->ops->print_one == NULL)
6232 {
6233 /* If breakpoint has a single location that is disabled, we
6234 print it as if it had several locations, since otherwise it's
6235 hard to represent "breakpoint enabled, location disabled"
6236 situation.
6237
6238 Note that while hardware watchpoints have several locations
6239 internally, that's not a property exposed to user. */
6240 if (b->loc
6241 && !is_hardware_watchpoint (b)
6242 && (b->loc->next || !b->loc->enabled))
6243 {
6244 struct bp_location *loc;
6245 int n = 1;
6246
6247 for (loc = b->loc; loc; loc = loc->next, ++n)
6248 {
6249 struct cleanup *inner2 =
6250 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6251 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6252 do_cleanups (inner2);
6253 }
6254 }
6255 }
6256 }
6257
6258 static int
6259 breakpoint_address_bits (struct breakpoint *b)
6260 {
6261 int print_address_bits = 0;
6262 struct bp_location *loc;
6263
6264 for (loc = b->loc; loc; loc = loc->next)
6265 {
6266 int addr_bit;
6267
6268 /* Software watchpoints that aren't watching memory don't have
6269 an address to print. */
6270 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6271 continue;
6272
6273 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6274 if (addr_bit > print_address_bits)
6275 print_address_bits = addr_bit;
6276 }
6277
6278 return print_address_bits;
6279 }
6280
6281 struct captured_breakpoint_query_args
6282 {
6283 int bnum;
6284 };
6285
6286 static int
6287 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6288 {
6289 struct captured_breakpoint_query_args *args = data;
6290 struct breakpoint *b;
6291 struct bp_location *dummy_loc = NULL;
6292
6293 ALL_BREAKPOINTS (b)
6294 {
6295 if (args->bnum == b->number)
6296 {
6297 print_one_breakpoint (b, &dummy_loc, 0);
6298 return GDB_RC_OK;
6299 }
6300 }
6301 return GDB_RC_NONE;
6302 }
6303
6304 enum gdb_rc
6305 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6306 char **error_message)
6307 {
6308 struct captured_breakpoint_query_args args;
6309
6310 args.bnum = bnum;
6311 /* For the moment we don't trust print_one_breakpoint() to not throw
6312 an error. */
6313 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6314 error_message, RETURN_MASK_ALL) < 0)
6315 return GDB_RC_FAIL;
6316 else
6317 return GDB_RC_OK;
6318 }
6319
6320 /* Return true if this breakpoint was set by the user, false if it is
6321 internal or momentary. */
6322
6323 int
6324 user_breakpoint_p (struct breakpoint *b)
6325 {
6326 return b->number > 0;
6327 }
6328
6329 /* Print information on user settable breakpoint (watchpoint, etc)
6330 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6331 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6332 FILTER is non-NULL, call it on each breakpoint and only include the
6333 ones for which it returns non-zero. Return the total number of
6334 breakpoints listed. */
6335
6336 static int
6337 breakpoint_1 (char *args, int allflag,
6338 int (*filter) (const struct breakpoint *))
6339 {
6340 struct breakpoint *b;
6341 struct bp_location *last_loc = NULL;
6342 int nr_printable_breakpoints;
6343 struct cleanup *bkpttbl_chain;
6344 struct value_print_options opts;
6345 int print_address_bits = 0;
6346 int print_type_col_width = 14;
6347 struct ui_out *uiout = current_uiout;
6348
6349 get_user_print_options (&opts);
6350
6351 /* Compute the number of rows in the table, as well as the size
6352 required for address fields. */
6353 nr_printable_breakpoints = 0;
6354 ALL_BREAKPOINTS (b)
6355 {
6356 /* If we have a filter, only list the breakpoints it accepts. */
6357 if (filter && !filter (b))
6358 continue;
6359
6360 /* If we have an "args" string, it is a list of breakpoints to
6361 accept. Skip the others. */
6362 if (args != NULL && *args != '\0')
6363 {
6364 if (allflag && parse_and_eval_long (args) != b->number)
6365 continue;
6366 if (!allflag && !number_is_in_list (args, b->number))
6367 continue;
6368 }
6369
6370 if (allflag || user_breakpoint_p (b))
6371 {
6372 int addr_bit, type_len;
6373
6374 addr_bit = breakpoint_address_bits (b);
6375 if (addr_bit > print_address_bits)
6376 print_address_bits = addr_bit;
6377
6378 type_len = strlen (bptype_string (b->type));
6379 if (type_len > print_type_col_width)
6380 print_type_col_width = type_len;
6381
6382 nr_printable_breakpoints++;
6383 }
6384 }
6385
6386 if (opts.addressprint)
6387 bkpttbl_chain
6388 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6389 nr_printable_breakpoints,
6390 "BreakpointTable");
6391 else
6392 bkpttbl_chain
6393 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6394 nr_printable_breakpoints,
6395 "BreakpointTable");
6396
6397 if (nr_printable_breakpoints > 0)
6398 annotate_breakpoints_headers ();
6399 if (nr_printable_breakpoints > 0)
6400 annotate_field (0);
6401 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6402 if (nr_printable_breakpoints > 0)
6403 annotate_field (1);
6404 ui_out_table_header (uiout, print_type_col_width, ui_left,
6405 "type", "Type"); /* 2 */
6406 if (nr_printable_breakpoints > 0)
6407 annotate_field (2);
6408 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6409 if (nr_printable_breakpoints > 0)
6410 annotate_field (3);
6411 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6412 if (opts.addressprint)
6413 {
6414 if (nr_printable_breakpoints > 0)
6415 annotate_field (4);
6416 if (print_address_bits <= 32)
6417 ui_out_table_header (uiout, 10, ui_left,
6418 "addr", "Address"); /* 5 */
6419 else
6420 ui_out_table_header (uiout, 18, ui_left,
6421 "addr", "Address"); /* 5 */
6422 }
6423 if (nr_printable_breakpoints > 0)
6424 annotate_field (5);
6425 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6426 ui_out_table_body (uiout);
6427 if (nr_printable_breakpoints > 0)
6428 annotate_breakpoints_table ();
6429
6430 ALL_BREAKPOINTS (b)
6431 {
6432 QUIT;
6433 /* If we have a filter, only list the breakpoints it accepts. */
6434 if (filter && !filter (b))
6435 continue;
6436
6437 /* If we have an "args" string, it is a list of breakpoints to
6438 accept. Skip the others. */
6439
6440 if (args != NULL && *args != '\0')
6441 {
6442 if (allflag) /* maintenance info breakpoint */
6443 {
6444 if (parse_and_eval_long (args) != b->number)
6445 continue;
6446 }
6447 else /* all others */
6448 {
6449 if (!number_is_in_list (args, b->number))
6450 continue;
6451 }
6452 }
6453 /* We only print out user settable breakpoints unless the
6454 allflag is set. */
6455 if (allflag || user_breakpoint_p (b))
6456 print_one_breakpoint (b, &last_loc, allflag);
6457 }
6458
6459 do_cleanups (bkpttbl_chain);
6460
6461 if (nr_printable_breakpoints == 0)
6462 {
6463 /* If there's a filter, let the caller decide how to report
6464 empty list. */
6465 if (!filter)
6466 {
6467 if (args == NULL || *args == '\0')
6468 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6469 else
6470 ui_out_message (uiout, 0,
6471 "No breakpoint or watchpoint matching '%s'.\n",
6472 args);
6473 }
6474 }
6475 else
6476 {
6477 if (last_loc && !server_command)
6478 set_next_address (last_loc->gdbarch, last_loc->address);
6479 }
6480
6481 /* FIXME? Should this be moved up so that it is only called when
6482 there have been breakpoints? */
6483 annotate_breakpoints_table_end ();
6484
6485 return nr_printable_breakpoints;
6486 }
6487
6488 /* Display the value of default-collect in a way that is generally
6489 compatible with the breakpoint list. */
6490
6491 static void
6492 default_collect_info (void)
6493 {
6494 struct ui_out *uiout = current_uiout;
6495
6496 /* If it has no value (which is frequently the case), say nothing; a
6497 message like "No default-collect." gets in user's face when it's
6498 not wanted. */
6499 if (!*default_collect)
6500 return;
6501
6502 /* The following phrase lines up nicely with per-tracepoint collect
6503 actions. */
6504 ui_out_text (uiout, "default collect ");
6505 ui_out_field_string (uiout, "default-collect", default_collect);
6506 ui_out_text (uiout, " \n");
6507 }
6508
6509 static void
6510 breakpoints_info (char *args, int from_tty)
6511 {
6512 breakpoint_1 (args, 0, NULL);
6513
6514 default_collect_info ();
6515 }
6516
6517 static void
6518 watchpoints_info (char *args, int from_tty)
6519 {
6520 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6521 struct ui_out *uiout = current_uiout;
6522
6523 if (num_printed == 0)
6524 {
6525 if (args == NULL || *args == '\0')
6526 ui_out_message (uiout, 0, "No watchpoints.\n");
6527 else
6528 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6529 }
6530 }
6531
6532 static void
6533 maintenance_info_breakpoints (char *args, int from_tty)
6534 {
6535 breakpoint_1 (args, 1, NULL);
6536
6537 default_collect_info ();
6538 }
6539
6540 static int
6541 breakpoint_has_pc (struct breakpoint *b,
6542 struct program_space *pspace,
6543 CORE_ADDR pc, struct obj_section *section)
6544 {
6545 struct bp_location *bl = b->loc;
6546
6547 for (; bl; bl = bl->next)
6548 {
6549 if (bl->pspace == pspace
6550 && bl->address == pc
6551 && (!overlay_debugging || bl->section == section))
6552 return 1;
6553 }
6554 return 0;
6555 }
6556
6557 /* Print a message describing any user-breakpoints set at PC. This
6558 concerns with logical breakpoints, so we match program spaces, not
6559 address spaces. */
6560
6561 static void
6562 describe_other_breakpoints (struct gdbarch *gdbarch,
6563 struct program_space *pspace, CORE_ADDR pc,
6564 struct obj_section *section, int thread)
6565 {
6566 int others = 0;
6567 struct breakpoint *b;
6568
6569 ALL_BREAKPOINTS (b)
6570 others += (user_breakpoint_p (b)
6571 && breakpoint_has_pc (b, pspace, pc, section));
6572 if (others > 0)
6573 {
6574 if (others == 1)
6575 printf_filtered (_("Note: breakpoint "));
6576 else /* if (others == ???) */
6577 printf_filtered (_("Note: breakpoints "));
6578 ALL_BREAKPOINTS (b)
6579 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6580 {
6581 others--;
6582 printf_filtered ("%d", b->number);
6583 if (b->thread == -1 && thread != -1)
6584 printf_filtered (" (all threads)");
6585 else if (b->thread != -1)
6586 printf_filtered (" (thread %d)", b->thread);
6587 printf_filtered ("%s%s ",
6588 ((b->enable_state == bp_disabled
6589 || b->enable_state == bp_call_disabled)
6590 ? " (disabled)"
6591 : b->enable_state == bp_permanent
6592 ? " (permanent)"
6593 : ""),
6594 (others > 1) ? ","
6595 : ((others == 1) ? " and" : ""));
6596 }
6597 printf_filtered (_("also set at pc "));
6598 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6599 printf_filtered (".\n");
6600 }
6601 }
6602 \f
6603
6604 /* Return true iff it is meaningful to use the address member of
6605 BPT. For some breakpoint types, the address member is irrelevant
6606 and it makes no sense to attempt to compare it to other addresses
6607 (or use it for any other purpose either).
6608
6609 More specifically, each of the following breakpoint types will
6610 always have a zero valued address and we don't want to mark
6611 breakpoints of any of these types to be a duplicate of an actual
6612 breakpoint at address zero:
6613
6614 bp_watchpoint
6615 bp_catchpoint
6616
6617 */
6618
6619 static int
6620 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6621 {
6622 enum bptype type = bpt->type;
6623
6624 return (type != bp_watchpoint && type != bp_catchpoint);
6625 }
6626
6627 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6628 true if LOC1 and LOC2 represent the same watchpoint location. */
6629
6630 static int
6631 watchpoint_locations_match (struct bp_location *loc1,
6632 struct bp_location *loc2)
6633 {
6634 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6635 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6636
6637 /* Both of them must exist. */
6638 gdb_assert (w1 != NULL);
6639 gdb_assert (w2 != NULL);
6640
6641 /* If the target can evaluate the condition expression in hardware,
6642 then we we need to insert both watchpoints even if they are at
6643 the same place. Otherwise the watchpoint will only trigger when
6644 the condition of whichever watchpoint was inserted evaluates to
6645 true, not giving a chance for GDB to check the condition of the
6646 other watchpoint. */
6647 if ((w1->cond_exp
6648 && target_can_accel_watchpoint_condition (loc1->address,
6649 loc1->length,
6650 loc1->watchpoint_type,
6651 w1->cond_exp))
6652 || (w2->cond_exp
6653 && target_can_accel_watchpoint_condition (loc2->address,
6654 loc2->length,
6655 loc2->watchpoint_type,
6656 w2->cond_exp)))
6657 return 0;
6658
6659 /* Note that this checks the owner's type, not the location's. In
6660 case the target does not support read watchpoints, but does
6661 support access watchpoints, we'll have bp_read_watchpoint
6662 watchpoints with hw_access locations. Those should be considered
6663 duplicates of hw_read locations. The hw_read locations will
6664 become hw_access locations later. */
6665 return (loc1->owner->type == loc2->owner->type
6666 && loc1->pspace->aspace == loc2->pspace->aspace
6667 && loc1->address == loc2->address
6668 && loc1->length == loc2->length);
6669 }
6670
6671 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6672 same breakpoint location. In most targets, this can only be true
6673 if ASPACE1 matches ASPACE2. On targets that have global
6674 breakpoints, the address space doesn't really matter. */
6675
6676 static int
6677 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6678 struct address_space *aspace2, CORE_ADDR addr2)
6679 {
6680 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6681 || aspace1 == aspace2)
6682 && addr1 == addr2);
6683 }
6684
6685 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6686 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6687 matches ASPACE2. On targets that have global breakpoints, the address
6688 space doesn't really matter. */
6689
6690 static int
6691 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6692 int len1, struct address_space *aspace2,
6693 CORE_ADDR addr2)
6694 {
6695 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6696 || aspace1 == aspace2)
6697 && addr2 >= addr1 && addr2 < addr1 + len1);
6698 }
6699
6700 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6701 a ranged breakpoint. In most targets, a match happens only if ASPACE
6702 matches the breakpoint's address space. On targets that have global
6703 breakpoints, the address space doesn't really matter. */
6704
6705 static int
6706 breakpoint_location_address_match (struct bp_location *bl,
6707 struct address_space *aspace,
6708 CORE_ADDR addr)
6709 {
6710 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6711 aspace, addr)
6712 || (bl->length
6713 && breakpoint_address_match_range (bl->pspace->aspace,
6714 bl->address, bl->length,
6715 aspace, addr)));
6716 }
6717
6718 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6719 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6720 true, otherwise returns false. */
6721
6722 static int
6723 tracepoint_locations_match (struct bp_location *loc1,
6724 struct bp_location *loc2)
6725 {
6726 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6727 /* Since tracepoint locations are never duplicated with others', tracepoint
6728 locations at the same address of different tracepoints are regarded as
6729 different locations. */
6730 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6731 else
6732 return 0;
6733 }
6734
6735 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6736 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6737 represent the same location. */
6738
6739 static int
6740 breakpoint_locations_match (struct bp_location *loc1,
6741 struct bp_location *loc2)
6742 {
6743 int hw_point1, hw_point2;
6744
6745 /* Both of them must not be in moribund_locations. */
6746 gdb_assert (loc1->owner != NULL);
6747 gdb_assert (loc2->owner != NULL);
6748
6749 hw_point1 = is_hardware_watchpoint (loc1->owner);
6750 hw_point2 = is_hardware_watchpoint (loc2->owner);
6751
6752 if (hw_point1 != hw_point2)
6753 return 0;
6754 else if (hw_point1)
6755 return watchpoint_locations_match (loc1, loc2);
6756 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6757 return tracepoint_locations_match (loc1, loc2);
6758 else
6759 /* We compare bp_location.length in order to cover ranged breakpoints. */
6760 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6761 loc2->pspace->aspace, loc2->address)
6762 && loc1->length == loc2->length);
6763 }
6764
6765 static void
6766 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6767 int bnum, int have_bnum)
6768 {
6769 /* The longest string possibly returned by hex_string_custom
6770 is 50 chars. These must be at least that big for safety. */
6771 char astr1[64];
6772 char astr2[64];
6773
6774 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6775 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6776 if (have_bnum)
6777 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6778 bnum, astr1, astr2);
6779 else
6780 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6781 }
6782
6783 /* Adjust a breakpoint's address to account for architectural
6784 constraints on breakpoint placement. Return the adjusted address.
6785 Note: Very few targets require this kind of adjustment. For most
6786 targets, this function is simply the identity function. */
6787
6788 static CORE_ADDR
6789 adjust_breakpoint_address (struct gdbarch *gdbarch,
6790 CORE_ADDR bpaddr, enum bptype bptype)
6791 {
6792 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6793 {
6794 /* Very few targets need any kind of breakpoint adjustment. */
6795 return bpaddr;
6796 }
6797 else if (bptype == bp_watchpoint
6798 || bptype == bp_hardware_watchpoint
6799 || bptype == bp_read_watchpoint
6800 || bptype == bp_access_watchpoint
6801 || bptype == bp_catchpoint)
6802 {
6803 /* Watchpoints and the various bp_catch_* eventpoints should not
6804 have their addresses modified. */
6805 return bpaddr;
6806 }
6807 else
6808 {
6809 CORE_ADDR adjusted_bpaddr;
6810
6811 /* Some targets have architectural constraints on the placement
6812 of breakpoint instructions. Obtain the adjusted address. */
6813 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6814
6815 /* An adjusted breakpoint address can significantly alter
6816 a user's expectations. Print a warning if an adjustment
6817 is required. */
6818 if (adjusted_bpaddr != bpaddr)
6819 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6820
6821 return adjusted_bpaddr;
6822 }
6823 }
6824
6825 void
6826 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6827 struct breakpoint *owner)
6828 {
6829 memset (loc, 0, sizeof (*loc));
6830
6831 gdb_assert (ops != NULL);
6832
6833 loc->ops = ops;
6834 loc->owner = owner;
6835 loc->cond = NULL;
6836 loc->cond_bytecode = NULL;
6837 loc->shlib_disabled = 0;
6838 loc->enabled = 1;
6839
6840 switch (owner->type)
6841 {
6842 case bp_breakpoint:
6843 case bp_until:
6844 case bp_finish:
6845 case bp_longjmp:
6846 case bp_longjmp_resume:
6847 case bp_longjmp_call_dummy:
6848 case bp_exception:
6849 case bp_exception_resume:
6850 case bp_step_resume:
6851 case bp_hp_step_resume:
6852 case bp_watchpoint_scope:
6853 case bp_call_dummy:
6854 case bp_std_terminate:
6855 case bp_shlib_event:
6856 case bp_thread_event:
6857 case bp_overlay_event:
6858 case bp_jit_event:
6859 case bp_longjmp_master:
6860 case bp_std_terminate_master:
6861 case bp_exception_master:
6862 case bp_gnu_ifunc_resolver:
6863 case bp_gnu_ifunc_resolver_return:
6864 case bp_dprintf:
6865 loc->loc_type = bp_loc_software_breakpoint;
6866 mark_breakpoint_location_modified (loc);
6867 break;
6868 case bp_hardware_breakpoint:
6869 loc->loc_type = bp_loc_hardware_breakpoint;
6870 mark_breakpoint_location_modified (loc);
6871 break;
6872 case bp_hardware_watchpoint:
6873 case bp_read_watchpoint:
6874 case bp_access_watchpoint:
6875 loc->loc_type = bp_loc_hardware_watchpoint;
6876 break;
6877 case bp_watchpoint:
6878 case bp_catchpoint:
6879 case bp_tracepoint:
6880 case bp_fast_tracepoint:
6881 case bp_static_tracepoint:
6882 loc->loc_type = bp_loc_other;
6883 break;
6884 default:
6885 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6886 }
6887
6888 loc->refc = 1;
6889 }
6890
6891 /* Allocate a struct bp_location. */
6892
6893 static struct bp_location *
6894 allocate_bp_location (struct breakpoint *bpt)
6895 {
6896 return bpt->ops->allocate_location (bpt);
6897 }
6898
6899 static void
6900 free_bp_location (struct bp_location *loc)
6901 {
6902 loc->ops->dtor (loc);
6903 xfree (loc);
6904 }
6905
6906 /* Increment reference count. */
6907
6908 static void
6909 incref_bp_location (struct bp_location *bl)
6910 {
6911 ++bl->refc;
6912 }
6913
6914 /* Decrement reference count. If the reference count reaches 0,
6915 destroy the bp_location. Sets *BLP to NULL. */
6916
6917 static void
6918 decref_bp_location (struct bp_location **blp)
6919 {
6920 gdb_assert ((*blp)->refc > 0);
6921
6922 if (--(*blp)->refc == 0)
6923 free_bp_location (*blp);
6924 *blp = NULL;
6925 }
6926
6927 /* Add breakpoint B at the end of the global breakpoint chain. */
6928
6929 static void
6930 add_to_breakpoint_chain (struct breakpoint *b)
6931 {
6932 struct breakpoint *b1;
6933
6934 /* Add this breakpoint to the end of the chain so that a list of
6935 breakpoints will come out in order of increasing numbers. */
6936
6937 b1 = breakpoint_chain;
6938 if (b1 == 0)
6939 breakpoint_chain = b;
6940 else
6941 {
6942 while (b1->next)
6943 b1 = b1->next;
6944 b1->next = b;
6945 }
6946 }
6947
6948 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6949
6950 static void
6951 init_raw_breakpoint_without_location (struct breakpoint *b,
6952 struct gdbarch *gdbarch,
6953 enum bptype bptype,
6954 const struct breakpoint_ops *ops)
6955 {
6956 memset (b, 0, sizeof (*b));
6957
6958 gdb_assert (ops != NULL);
6959
6960 b->ops = ops;
6961 b->type = bptype;
6962 b->gdbarch = gdbarch;
6963 b->language = current_language->la_language;
6964 b->input_radix = input_radix;
6965 b->thread = -1;
6966 b->enable_state = bp_enabled;
6967 b->next = 0;
6968 b->silent = 0;
6969 b->ignore_count = 0;
6970 b->commands = NULL;
6971 b->frame_id = null_frame_id;
6972 b->condition_not_parsed = 0;
6973 b->py_bp_object = NULL;
6974 b->related_breakpoint = b;
6975 }
6976
6977 /* Helper to set_raw_breakpoint below. Creates a breakpoint
6978 that has type BPTYPE and has no locations as yet. */
6979
6980 static struct breakpoint *
6981 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
6982 enum bptype bptype,
6983 const struct breakpoint_ops *ops)
6984 {
6985 struct breakpoint *b = XNEW (struct breakpoint);
6986
6987 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
6988 add_to_breakpoint_chain (b);
6989 return b;
6990 }
6991
6992 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
6993 resolutions should be made as the user specified the location explicitly
6994 enough. */
6995
6996 static void
6997 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
6998 {
6999 gdb_assert (loc->owner != NULL);
7000
7001 if (loc->owner->type == bp_breakpoint
7002 || loc->owner->type == bp_hardware_breakpoint
7003 || is_tracepoint (loc->owner))
7004 {
7005 int is_gnu_ifunc;
7006 const char *function_name;
7007 CORE_ADDR func_addr;
7008
7009 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7010 &func_addr, NULL, &is_gnu_ifunc);
7011
7012 if (is_gnu_ifunc && !explicit_loc)
7013 {
7014 struct breakpoint *b = loc->owner;
7015
7016 gdb_assert (loc->pspace == current_program_space);
7017 if (gnu_ifunc_resolve_name (function_name,
7018 &loc->requested_address))
7019 {
7020 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7021 loc->address = adjust_breakpoint_address (loc->gdbarch,
7022 loc->requested_address,
7023 b->type);
7024 }
7025 else if (b->type == bp_breakpoint && b->loc == loc
7026 && loc->next == NULL && b->related_breakpoint == b)
7027 {
7028 /* Create only the whole new breakpoint of this type but do not
7029 mess more complicated breakpoints with multiple locations. */
7030 b->type = bp_gnu_ifunc_resolver;
7031 /* Remember the resolver's address for use by the return
7032 breakpoint. */
7033 loc->related_address = func_addr;
7034 }
7035 }
7036
7037 if (function_name)
7038 loc->function_name = xstrdup (function_name);
7039 }
7040 }
7041
7042 /* Attempt to determine architecture of location identified by SAL. */
7043 struct gdbarch *
7044 get_sal_arch (struct symtab_and_line sal)
7045 {
7046 if (sal.section)
7047 return get_objfile_arch (sal.section->objfile);
7048 if (sal.symtab)
7049 return get_objfile_arch (sal.symtab->objfile);
7050
7051 return NULL;
7052 }
7053
7054 /* Low level routine for partially initializing a breakpoint of type
7055 BPTYPE. The newly created breakpoint's address, section, source
7056 file name, and line number are provided by SAL.
7057
7058 It is expected that the caller will complete the initialization of
7059 the newly created breakpoint struct as well as output any status
7060 information regarding the creation of a new breakpoint. */
7061
7062 static void
7063 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7064 struct symtab_and_line sal, enum bptype bptype,
7065 const struct breakpoint_ops *ops)
7066 {
7067 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7068
7069 add_location_to_breakpoint (b, &sal);
7070
7071 if (bptype != bp_catchpoint)
7072 gdb_assert (sal.pspace != NULL);
7073
7074 /* Store the program space that was used to set the breakpoint,
7075 except for ordinary breakpoints, which are independent of the
7076 program space. */
7077 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7078 b->pspace = sal.pspace;
7079 }
7080
7081 /* set_raw_breakpoint is a low level routine for allocating and
7082 partially initializing a breakpoint of type BPTYPE. The newly
7083 created breakpoint's address, section, source file name, and line
7084 number are provided by SAL. The newly created and partially
7085 initialized breakpoint is added to the breakpoint chain and
7086 is also returned as the value of this function.
7087
7088 It is expected that the caller will complete the initialization of
7089 the newly created breakpoint struct as well as output any status
7090 information regarding the creation of a new breakpoint. In
7091 particular, set_raw_breakpoint does NOT set the breakpoint
7092 number! Care should be taken to not allow an error to occur
7093 prior to completing the initialization of the breakpoint. If this
7094 should happen, a bogus breakpoint will be left on the chain. */
7095
7096 struct breakpoint *
7097 set_raw_breakpoint (struct gdbarch *gdbarch,
7098 struct symtab_and_line sal, enum bptype bptype,
7099 const struct breakpoint_ops *ops)
7100 {
7101 struct breakpoint *b = XNEW (struct breakpoint);
7102
7103 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7104 add_to_breakpoint_chain (b);
7105 return b;
7106 }
7107
7108
7109 /* Note that the breakpoint object B describes a permanent breakpoint
7110 instruction, hard-wired into the inferior's code. */
7111 void
7112 make_breakpoint_permanent (struct breakpoint *b)
7113 {
7114 struct bp_location *bl;
7115
7116 b->enable_state = bp_permanent;
7117
7118 /* By definition, permanent breakpoints are already present in the
7119 code. Mark all locations as inserted. For now,
7120 make_breakpoint_permanent is called in just one place, so it's
7121 hard to say if it's reasonable to have permanent breakpoint with
7122 multiple locations or not, but it's easy to implement. */
7123 for (bl = b->loc; bl; bl = bl->next)
7124 bl->inserted = 1;
7125 }
7126
7127 /* Call this routine when stepping and nexting to enable a breakpoint
7128 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7129 initiated the operation. */
7130
7131 void
7132 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7133 {
7134 struct breakpoint *b, *b_tmp;
7135 int thread = tp->num;
7136
7137 /* To avoid having to rescan all objfile symbols at every step,
7138 we maintain a list of continually-inserted but always disabled
7139 longjmp "master" breakpoints. Here, we simply create momentary
7140 clones of those and enable them for the requested thread. */
7141 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7142 if (b->pspace == current_program_space
7143 && (b->type == bp_longjmp_master
7144 || b->type == bp_exception_master))
7145 {
7146 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7147 struct breakpoint *clone;
7148
7149 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7150 after their removal. */
7151 clone = momentary_breakpoint_from_master (b, type,
7152 &longjmp_breakpoint_ops);
7153 clone->thread = thread;
7154 }
7155
7156 tp->initiating_frame = frame;
7157 }
7158
7159 /* Delete all longjmp breakpoints from THREAD. */
7160 void
7161 delete_longjmp_breakpoint (int thread)
7162 {
7163 struct breakpoint *b, *b_tmp;
7164
7165 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7166 if (b->type == bp_longjmp || b->type == bp_exception)
7167 {
7168 if (b->thread == thread)
7169 delete_breakpoint (b);
7170 }
7171 }
7172
7173 void
7174 delete_longjmp_breakpoint_at_next_stop (int thread)
7175 {
7176 struct breakpoint *b, *b_tmp;
7177
7178 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7179 if (b->type == bp_longjmp || b->type == bp_exception)
7180 {
7181 if (b->thread == thread)
7182 b->disposition = disp_del_at_next_stop;
7183 }
7184 }
7185
7186 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7187 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7188 pointer to any of them. Return NULL if this system cannot place longjmp
7189 breakpoints. */
7190
7191 struct breakpoint *
7192 set_longjmp_breakpoint_for_call_dummy (void)
7193 {
7194 struct breakpoint *b, *retval = NULL;
7195
7196 ALL_BREAKPOINTS (b)
7197 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7198 {
7199 struct breakpoint *new_b;
7200
7201 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7202 &momentary_breakpoint_ops);
7203 new_b->thread = pid_to_thread_id (inferior_ptid);
7204
7205 /* Link NEW_B into the chain of RETVAL breakpoints. */
7206
7207 gdb_assert (new_b->related_breakpoint == new_b);
7208 if (retval == NULL)
7209 retval = new_b;
7210 new_b->related_breakpoint = retval;
7211 while (retval->related_breakpoint != new_b->related_breakpoint)
7212 retval = retval->related_breakpoint;
7213 retval->related_breakpoint = new_b;
7214 }
7215
7216 return retval;
7217 }
7218
7219 /* Verify all existing dummy frames and their associated breakpoints for
7220 THREAD. Remove those which can no longer be found in the current frame
7221 stack.
7222
7223 You should call this function only at places where it is safe to currently
7224 unwind the whole stack. Failed stack unwind would discard live dummy
7225 frames. */
7226
7227 void
7228 check_longjmp_breakpoint_for_call_dummy (int thread)
7229 {
7230 struct breakpoint *b, *b_tmp;
7231
7232 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7233 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7234 {
7235 struct breakpoint *dummy_b = b->related_breakpoint;
7236
7237 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7238 dummy_b = dummy_b->related_breakpoint;
7239 if (dummy_b->type != bp_call_dummy
7240 || frame_find_by_id (dummy_b->frame_id) != NULL)
7241 continue;
7242
7243 dummy_frame_discard (dummy_b->frame_id);
7244
7245 while (b->related_breakpoint != b)
7246 {
7247 if (b_tmp == b->related_breakpoint)
7248 b_tmp = b->related_breakpoint->next;
7249 delete_breakpoint (b->related_breakpoint);
7250 }
7251 delete_breakpoint (b);
7252 }
7253 }
7254
7255 void
7256 enable_overlay_breakpoints (void)
7257 {
7258 struct breakpoint *b;
7259
7260 ALL_BREAKPOINTS (b)
7261 if (b->type == bp_overlay_event)
7262 {
7263 b->enable_state = bp_enabled;
7264 update_global_location_list (1);
7265 overlay_events_enabled = 1;
7266 }
7267 }
7268
7269 void
7270 disable_overlay_breakpoints (void)
7271 {
7272 struct breakpoint *b;
7273
7274 ALL_BREAKPOINTS (b)
7275 if (b->type == bp_overlay_event)
7276 {
7277 b->enable_state = bp_disabled;
7278 update_global_location_list (0);
7279 overlay_events_enabled = 0;
7280 }
7281 }
7282
7283 /* Set an active std::terminate breakpoint for each std::terminate
7284 master breakpoint. */
7285 void
7286 set_std_terminate_breakpoint (void)
7287 {
7288 struct breakpoint *b, *b_tmp;
7289
7290 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7291 if (b->pspace == current_program_space
7292 && b->type == bp_std_terminate_master)
7293 {
7294 momentary_breakpoint_from_master (b, bp_std_terminate,
7295 &momentary_breakpoint_ops);
7296 }
7297 }
7298
7299 /* Delete all the std::terminate breakpoints. */
7300 void
7301 delete_std_terminate_breakpoint (void)
7302 {
7303 struct breakpoint *b, *b_tmp;
7304
7305 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7306 if (b->type == bp_std_terminate)
7307 delete_breakpoint (b);
7308 }
7309
7310 struct breakpoint *
7311 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7312 {
7313 struct breakpoint *b;
7314
7315 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7316 &internal_breakpoint_ops);
7317
7318 b->enable_state = bp_enabled;
7319 /* addr_string has to be used or breakpoint_re_set will delete me. */
7320 b->addr_string
7321 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7322
7323 update_global_location_list_nothrow (1);
7324
7325 return b;
7326 }
7327
7328 void
7329 remove_thread_event_breakpoints (void)
7330 {
7331 struct breakpoint *b, *b_tmp;
7332
7333 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7334 if (b->type == bp_thread_event
7335 && b->loc->pspace == current_program_space)
7336 delete_breakpoint (b);
7337 }
7338
7339 struct lang_and_radix
7340 {
7341 enum language lang;
7342 int radix;
7343 };
7344
7345 /* Create a breakpoint for JIT code registration and unregistration. */
7346
7347 struct breakpoint *
7348 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7349 {
7350 struct breakpoint *b;
7351
7352 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7353 &internal_breakpoint_ops);
7354 update_global_location_list_nothrow (1);
7355 return b;
7356 }
7357
7358 /* Remove JIT code registration and unregistration breakpoint(s). */
7359
7360 void
7361 remove_jit_event_breakpoints (void)
7362 {
7363 struct breakpoint *b, *b_tmp;
7364
7365 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7366 if (b->type == bp_jit_event
7367 && b->loc->pspace == current_program_space)
7368 delete_breakpoint (b);
7369 }
7370
7371 void
7372 remove_solib_event_breakpoints (void)
7373 {
7374 struct breakpoint *b, *b_tmp;
7375
7376 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7377 if (b->type == bp_shlib_event
7378 && b->loc->pspace == current_program_space)
7379 delete_breakpoint (b);
7380 }
7381
7382 struct breakpoint *
7383 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7384 {
7385 struct breakpoint *b;
7386
7387 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7388 &internal_breakpoint_ops);
7389 update_global_location_list_nothrow (1);
7390 return b;
7391 }
7392
7393 /* Disable any breakpoints that are on code in shared libraries. Only
7394 apply to enabled breakpoints, disabled ones can just stay disabled. */
7395
7396 void
7397 disable_breakpoints_in_shlibs (void)
7398 {
7399 struct bp_location *loc, **locp_tmp;
7400
7401 ALL_BP_LOCATIONS (loc, locp_tmp)
7402 {
7403 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7404 struct breakpoint *b = loc->owner;
7405
7406 /* We apply the check to all breakpoints, including disabled for
7407 those with loc->duplicate set. This is so that when breakpoint
7408 becomes enabled, or the duplicate is removed, gdb will try to
7409 insert all breakpoints. If we don't set shlib_disabled here,
7410 we'll try to insert those breakpoints and fail. */
7411 if (((b->type == bp_breakpoint)
7412 || (b->type == bp_jit_event)
7413 || (b->type == bp_hardware_breakpoint)
7414 || (is_tracepoint (b)))
7415 && loc->pspace == current_program_space
7416 && !loc->shlib_disabled
7417 #ifdef PC_SOLIB
7418 && PC_SOLIB (loc->address)
7419 #else
7420 && solib_name_from_address (loc->pspace, loc->address)
7421 #endif
7422 )
7423 {
7424 loc->shlib_disabled = 1;
7425 }
7426 }
7427 }
7428
7429 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7430 library. Only apply to enabled breakpoints, disabled ones can just stay
7431 disabled. */
7432
7433 static void
7434 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7435 {
7436 struct bp_location *loc, **locp_tmp;
7437 int disabled_shlib_breaks = 0;
7438
7439 /* SunOS a.out shared libraries are always mapped, so do not
7440 disable breakpoints; they will only be reported as unloaded
7441 through clear_solib when GDB discards its shared library
7442 list. See clear_solib for more information. */
7443 if (exec_bfd != NULL
7444 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7445 return;
7446
7447 ALL_BP_LOCATIONS (loc, locp_tmp)
7448 {
7449 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7450 struct breakpoint *b = loc->owner;
7451
7452 if (solib->pspace == loc->pspace
7453 && !loc->shlib_disabled
7454 && (((b->type == bp_breakpoint
7455 || b->type == bp_jit_event
7456 || b->type == bp_hardware_breakpoint)
7457 && (loc->loc_type == bp_loc_hardware_breakpoint
7458 || loc->loc_type == bp_loc_software_breakpoint))
7459 || is_tracepoint (b))
7460 && solib_contains_address_p (solib, loc->address))
7461 {
7462 loc->shlib_disabled = 1;
7463 /* At this point, we cannot rely on remove_breakpoint
7464 succeeding so we must mark the breakpoint as not inserted
7465 to prevent future errors occurring in remove_breakpoints. */
7466 loc->inserted = 0;
7467
7468 /* This may cause duplicate notifications for the same breakpoint. */
7469 observer_notify_breakpoint_modified (b);
7470
7471 if (!disabled_shlib_breaks)
7472 {
7473 target_terminal_ours_for_output ();
7474 warning (_("Temporarily disabling breakpoints "
7475 "for unloaded shared library \"%s\""),
7476 solib->so_name);
7477 }
7478 disabled_shlib_breaks = 1;
7479 }
7480 }
7481 }
7482
7483 /* FORK & VFORK catchpoints. */
7484
7485 /* An instance of this type is used to represent a fork or vfork
7486 catchpoint. It includes a "struct breakpoint" as a kind of base
7487 class; users downcast to "struct breakpoint *" when needed. A
7488 breakpoint is really of this type iff its ops pointer points to
7489 CATCH_FORK_BREAKPOINT_OPS. */
7490
7491 struct fork_catchpoint
7492 {
7493 /* The base class. */
7494 struct breakpoint base;
7495
7496 /* Process id of a child process whose forking triggered this
7497 catchpoint. This field is only valid immediately after this
7498 catchpoint has triggered. */
7499 ptid_t forked_inferior_pid;
7500 };
7501
7502 /* Implement the "insert" breakpoint_ops method for fork
7503 catchpoints. */
7504
7505 static int
7506 insert_catch_fork (struct bp_location *bl)
7507 {
7508 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
7509 }
7510
7511 /* Implement the "remove" breakpoint_ops method for fork
7512 catchpoints. */
7513
7514 static int
7515 remove_catch_fork (struct bp_location *bl)
7516 {
7517 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
7518 }
7519
7520 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7521 catchpoints. */
7522
7523 static int
7524 breakpoint_hit_catch_fork (const struct bp_location *bl,
7525 struct address_space *aspace, CORE_ADDR bp_addr,
7526 const struct target_waitstatus *ws)
7527 {
7528 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7529
7530 if (ws->kind != TARGET_WAITKIND_FORKED)
7531 return 0;
7532
7533 c->forked_inferior_pid = ws->value.related_pid;
7534 return 1;
7535 }
7536
7537 /* Implement the "print_it" breakpoint_ops method for fork
7538 catchpoints. */
7539
7540 static enum print_stop_action
7541 print_it_catch_fork (bpstat bs)
7542 {
7543 struct ui_out *uiout = current_uiout;
7544 struct breakpoint *b = bs->breakpoint_at;
7545 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7546
7547 annotate_catchpoint (b->number);
7548 if (b->disposition == disp_del)
7549 ui_out_text (uiout, "\nTemporary catchpoint ");
7550 else
7551 ui_out_text (uiout, "\nCatchpoint ");
7552 if (ui_out_is_mi_like_p (uiout))
7553 {
7554 ui_out_field_string (uiout, "reason",
7555 async_reason_lookup (EXEC_ASYNC_FORK));
7556 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7557 }
7558 ui_out_field_int (uiout, "bkptno", b->number);
7559 ui_out_text (uiout, " (forked process ");
7560 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7561 ui_out_text (uiout, "), ");
7562 return PRINT_SRC_AND_LOC;
7563 }
7564
7565 /* Implement the "print_one" breakpoint_ops method for fork
7566 catchpoints. */
7567
7568 static void
7569 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7570 {
7571 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7572 struct value_print_options opts;
7573 struct ui_out *uiout = current_uiout;
7574
7575 get_user_print_options (&opts);
7576
7577 /* Field 4, the address, is omitted (which makes the columns not
7578 line up too nicely with the headers, but the effect is relatively
7579 readable). */
7580 if (opts.addressprint)
7581 ui_out_field_skip (uiout, "addr");
7582 annotate_field (5);
7583 ui_out_text (uiout, "fork");
7584 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7585 {
7586 ui_out_text (uiout, ", process ");
7587 ui_out_field_int (uiout, "what",
7588 ptid_get_pid (c->forked_inferior_pid));
7589 ui_out_spaces (uiout, 1);
7590 }
7591
7592 if (ui_out_is_mi_like_p (uiout))
7593 ui_out_field_string (uiout, "catch-type", "fork");
7594 }
7595
7596 /* Implement the "print_mention" breakpoint_ops method for fork
7597 catchpoints. */
7598
7599 static void
7600 print_mention_catch_fork (struct breakpoint *b)
7601 {
7602 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7603 }
7604
7605 /* Implement the "print_recreate" breakpoint_ops method for fork
7606 catchpoints. */
7607
7608 static void
7609 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7610 {
7611 fprintf_unfiltered (fp, "catch fork");
7612 print_recreate_thread (b, fp);
7613 }
7614
7615 /* The breakpoint_ops structure to be used in fork catchpoints. */
7616
7617 static struct breakpoint_ops catch_fork_breakpoint_ops;
7618
7619 /* Implement the "insert" breakpoint_ops method for vfork
7620 catchpoints. */
7621
7622 static int
7623 insert_catch_vfork (struct bp_location *bl)
7624 {
7625 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
7626 }
7627
7628 /* Implement the "remove" breakpoint_ops method for vfork
7629 catchpoints. */
7630
7631 static int
7632 remove_catch_vfork (struct bp_location *bl)
7633 {
7634 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
7635 }
7636
7637 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7638 catchpoints. */
7639
7640 static int
7641 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7642 struct address_space *aspace, CORE_ADDR bp_addr,
7643 const struct target_waitstatus *ws)
7644 {
7645 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7646
7647 if (ws->kind != TARGET_WAITKIND_VFORKED)
7648 return 0;
7649
7650 c->forked_inferior_pid = ws->value.related_pid;
7651 return 1;
7652 }
7653
7654 /* Implement the "print_it" breakpoint_ops method for vfork
7655 catchpoints. */
7656
7657 static enum print_stop_action
7658 print_it_catch_vfork (bpstat bs)
7659 {
7660 struct ui_out *uiout = current_uiout;
7661 struct breakpoint *b = bs->breakpoint_at;
7662 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7663
7664 annotate_catchpoint (b->number);
7665 if (b->disposition == disp_del)
7666 ui_out_text (uiout, "\nTemporary catchpoint ");
7667 else
7668 ui_out_text (uiout, "\nCatchpoint ");
7669 if (ui_out_is_mi_like_p (uiout))
7670 {
7671 ui_out_field_string (uiout, "reason",
7672 async_reason_lookup (EXEC_ASYNC_VFORK));
7673 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7674 }
7675 ui_out_field_int (uiout, "bkptno", b->number);
7676 ui_out_text (uiout, " (vforked process ");
7677 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7678 ui_out_text (uiout, "), ");
7679 return PRINT_SRC_AND_LOC;
7680 }
7681
7682 /* Implement the "print_one" breakpoint_ops method for vfork
7683 catchpoints. */
7684
7685 static void
7686 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7687 {
7688 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7689 struct value_print_options opts;
7690 struct ui_out *uiout = current_uiout;
7691
7692 get_user_print_options (&opts);
7693 /* Field 4, the address, is omitted (which makes the columns not
7694 line up too nicely with the headers, but the effect is relatively
7695 readable). */
7696 if (opts.addressprint)
7697 ui_out_field_skip (uiout, "addr");
7698 annotate_field (5);
7699 ui_out_text (uiout, "vfork");
7700 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7701 {
7702 ui_out_text (uiout, ", process ");
7703 ui_out_field_int (uiout, "what",
7704 ptid_get_pid (c->forked_inferior_pid));
7705 ui_out_spaces (uiout, 1);
7706 }
7707
7708 if (ui_out_is_mi_like_p (uiout))
7709 ui_out_field_string (uiout, "catch-type", "vfork");
7710 }
7711
7712 /* Implement the "print_mention" breakpoint_ops method for vfork
7713 catchpoints. */
7714
7715 static void
7716 print_mention_catch_vfork (struct breakpoint *b)
7717 {
7718 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7719 }
7720
7721 /* Implement the "print_recreate" breakpoint_ops method for vfork
7722 catchpoints. */
7723
7724 static void
7725 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7726 {
7727 fprintf_unfiltered (fp, "catch vfork");
7728 print_recreate_thread (b, fp);
7729 }
7730
7731 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7732
7733 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7734
7735 /* An instance of this type is used to represent an solib catchpoint.
7736 It includes a "struct breakpoint" as a kind of base class; users
7737 downcast to "struct breakpoint *" when needed. A breakpoint is
7738 really of this type iff its ops pointer points to
7739 CATCH_SOLIB_BREAKPOINT_OPS. */
7740
7741 struct solib_catchpoint
7742 {
7743 /* The base class. */
7744 struct breakpoint base;
7745
7746 /* True for "catch load", false for "catch unload". */
7747 unsigned char is_load;
7748
7749 /* Regular expression to match, if any. COMPILED is only valid when
7750 REGEX is non-NULL. */
7751 char *regex;
7752 regex_t compiled;
7753 };
7754
7755 static void
7756 dtor_catch_solib (struct breakpoint *b)
7757 {
7758 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7759
7760 if (self->regex)
7761 regfree (&self->compiled);
7762 xfree (self->regex);
7763
7764 base_breakpoint_ops.dtor (b);
7765 }
7766
7767 static int
7768 insert_catch_solib (struct bp_location *ignore)
7769 {
7770 return 0;
7771 }
7772
7773 static int
7774 remove_catch_solib (struct bp_location *ignore)
7775 {
7776 return 0;
7777 }
7778
7779 static int
7780 breakpoint_hit_catch_solib (const struct bp_location *bl,
7781 struct address_space *aspace,
7782 CORE_ADDR bp_addr,
7783 const struct target_waitstatus *ws)
7784 {
7785 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7786 struct breakpoint *other;
7787
7788 if (ws->kind == TARGET_WAITKIND_LOADED)
7789 return 1;
7790
7791 ALL_BREAKPOINTS (other)
7792 {
7793 struct bp_location *other_bl;
7794
7795 if (other == bl->owner)
7796 continue;
7797
7798 if (other->type != bp_shlib_event)
7799 continue;
7800
7801 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7802 continue;
7803
7804 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7805 {
7806 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7807 return 1;
7808 }
7809 }
7810
7811 return 0;
7812 }
7813
7814 static void
7815 check_status_catch_solib (struct bpstats *bs)
7816 {
7817 struct solib_catchpoint *self
7818 = (struct solib_catchpoint *) bs->breakpoint_at;
7819 int ix;
7820
7821 if (self->is_load)
7822 {
7823 struct so_list *iter;
7824
7825 for (ix = 0;
7826 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7827 ix, iter);
7828 ++ix)
7829 {
7830 if (!self->regex
7831 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7832 return;
7833 }
7834 }
7835 else
7836 {
7837 char *iter;
7838
7839 for (ix = 0;
7840 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7841 ix, iter);
7842 ++ix)
7843 {
7844 if (!self->regex
7845 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7846 return;
7847 }
7848 }
7849
7850 bs->stop = 0;
7851 bs->print_it = print_it_noop;
7852 }
7853
7854 static enum print_stop_action
7855 print_it_catch_solib (bpstat bs)
7856 {
7857 struct breakpoint *b = bs->breakpoint_at;
7858 struct ui_out *uiout = current_uiout;
7859
7860 annotate_catchpoint (b->number);
7861 if (b->disposition == disp_del)
7862 ui_out_text (uiout, "\nTemporary catchpoint ");
7863 else
7864 ui_out_text (uiout, "\nCatchpoint ");
7865 ui_out_field_int (uiout, "bkptno", b->number);
7866 ui_out_text (uiout, "\n");
7867 if (ui_out_is_mi_like_p (uiout))
7868 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7869 print_solib_event (1);
7870 return PRINT_SRC_AND_LOC;
7871 }
7872
7873 static void
7874 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7875 {
7876 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7877 struct value_print_options opts;
7878 struct ui_out *uiout = current_uiout;
7879 char *msg;
7880
7881 get_user_print_options (&opts);
7882 /* Field 4, the address, is omitted (which makes the columns not
7883 line up too nicely with the headers, but the effect is relatively
7884 readable). */
7885 if (opts.addressprint)
7886 {
7887 annotate_field (4);
7888 ui_out_field_skip (uiout, "addr");
7889 }
7890
7891 annotate_field (5);
7892 if (self->is_load)
7893 {
7894 if (self->regex)
7895 msg = xstrprintf (_("load of library matching %s"), self->regex);
7896 else
7897 msg = xstrdup (_("load of library"));
7898 }
7899 else
7900 {
7901 if (self->regex)
7902 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7903 else
7904 msg = xstrdup (_("unload of library"));
7905 }
7906 ui_out_field_string (uiout, "what", msg);
7907 xfree (msg);
7908
7909 if (ui_out_is_mi_like_p (uiout))
7910 ui_out_field_string (uiout, "catch-type",
7911 self->is_load ? "load" : "unload");
7912 }
7913
7914 static void
7915 print_mention_catch_solib (struct breakpoint *b)
7916 {
7917 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7918
7919 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7920 self->is_load ? "load" : "unload");
7921 }
7922
7923 static void
7924 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7925 {
7926 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7927
7928 fprintf_unfiltered (fp, "%s %s",
7929 b->disposition == disp_del ? "tcatch" : "catch",
7930 self->is_load ? "load" : "unload");
7931 if (self->regex)
7932 fprintf_unfiltered (fp, " %s", self->regex);
7933 fprintf_unfiltered (fp, "\n");
7934 }
7935
7936 static struct breakpoint_ops catch_solib_breakpoint_ops;
7937
7938 /* Shared helper function (MI and CLI) for creating and installing
7939 a shared object event catchpoint. If IS_LOAD is non-zero then
7940 the events to be caught are load events, otherwise they are
7941 unload events. If IS_TEMP is non-zero the catchpoint is a
7942 temporary one. If ENABLED is non-zero the catchpoint is
7943 created in an enabled state. */
7944
7945 void
7946 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7947 {
7948 struct solib_catchpoint *c;
7949 struct gdbarch *gdbarch = get_current_arch ();
7950 struct cleanup *cleanup;
7951
7952 if (!arg)
7953 arg = "";
7954 arg = skip_spaces (arg);
7955
7956 c = XCNEW (struct solib_catchpoint);
7957 cleanup = make_cleanup (xfree, c);
7958
7959 if (*arg != '\0')
7960 {
7961 int errcode;
7962
7963 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
7964 if (errcode != 0)
7965 {
7966 char *err = get_regcomp_error (errcode, &c->compiled);
7967
7968 make_cleanup (xfree, err);
7969 error (_("Invalid regexp (%s): %s"), err, arg);
7970 }
7971 c->regex = xstrdup (arg);
7972 }
7973
7974 c->is_load = is_load;
7975 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
7976 &catch_solib_breakpoint_ops);
7977
7978 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
7979
7980 discard_cleanups (cleanup);
7981 install_breakpoint (0, &c->base, 1);
7982 }
7983
7984 /* A helper function that does all the work for "catch load" and
7985 "catch unload". */
7986
7987 static void
7988 catch_load_or_unload (char *arg, int from_tty, int is_load,
7989 struct cmd_list_element *command)
7990 {
7991 int tempflag;
7992 const int enabled = 1;
7993
7994 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
7995
7996 add_solib_catchpoint (arg, is_load, tempflag, enabled);
7997 }
7998
7999 static void
8000 catch_load_command_1 (char *arg, int from_tty,
8001 struct cmd_list_element *command)
8002 {
8003 catch_load_or_unload (arg, from_tty, 1, command);
8004 }
8005
8006 static void
8007 catch_unload_command_1 (char *arg, int from_tty,
8008 struct cmd_list_element *command)
8009 {
8010 catch_load_or_unload (arg, from_tty, 0, command);
8011 }
8012
8013 /* An instance of this type is used to represent a syscall catchpoint.
8014 It includes a "struct breakpoint" as a kind of base class; users
8015 downcast to "struct breakpoint *" when needed. A breakpoint is
8016 really of this type iff its ops pointer points to
8017 CATCH_SYSCALL_BREAKPOINT_OPS. */
8018
8019 struct syscall_catchpoint
8020 {
8021 /* The base class. */
8022 struct breakpoint base;
8023
8024 /* Syscall numbers used for the 'catch syscall' feature. If no
8025 syscall has been specified for filtering, its value is NULL.
8026 Otherwise, it holds a list of all syscalls to be caught. The
8027 list elements are allocated with xmalloc. */
8028 VEC(int) *syscalls_to_be_caught;
8029 };
8030
8031 /* Implement the "dtor" breakpoint_ops method for syscall
8032 catchpoints. */
8033
8034 static void
8035 dtor_catch_syscall (struct breakpoint *b)
8036 {
8037 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8038
8039 VEC_free (int, c->syscalls_to_be_caught);
8040
8041 base_breakpoint_ops.dtor (b);
8042 }
8043
8044 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8045
8046 struct catch_syscall_inferior_data
8047 {
8048 /* We keep a count of the number of times the user has requested a
8049 particular syscall to be tracked, and pass this information to the
8050 target. This lets capable targets implement filtering directly. */
8051
8052 /* Number of times that "any" syscall is requested. */
8053 int any_syscall_count;
8054
8055 /* Count of each system call. */
8056 VEC(int) *syscalls_counts;
8057
8058 /* This counts all syscall catch requests, so we can readily determine
8059 if any catching is necessary. */
8060 int total_syscalls_count;
8061 };
8062
8063 static struct catch_syscall_inferior_data*
8064 get_catch_syscall_inferior_data (struct inferior *inf)
8065 {
8066 struct catch_syscall_inferior_data *inf_data;
8067
8068 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8069 if (inf_data == NULL)
8070 {
8071 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8072 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8073 }
8074
8075 return inf_data;
8076 }
8077
8078 static void
8079 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8080 {
8081 xfree (arg);
8082 }
8083
8084
8085 /* Implement the "insert" breakpoint_ops method for syscall
8086 catchpoints. */
8087
8088 static int
8089 insert_catch_syscall (struct bp_location *bl)
8090 {
8091 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8092 struct inferior *inf = current_inferior ();
8093 struct catch_syscall_inferior_data *inf_data
8094 = get_catch_syscall_inferior_data (inf);
8095
8096 ++inf_data->total_syscalls_count;
8097 if (!c->syscalls_to_be_caught)
8098 ++inf_data->any_syscall_count;
8099 else
8100 {
8101 int i, iter;
8102
8103 for (i = 0;
8104 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8105 i++)
8106 {
8107 int elem;
8108
8109 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8110 {
8111 int old_size = VEC_length (int, inf_data->syscalls_counts);
8112 uintptr_t vec_addr_offset
8113 = old_size * ((uintptr_t) sizeof (int));
8114 uintptr_t vec_addr;
8115 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8116 vec_addr = ((uintptr_t) VEC_address (int,
8117 inf_data->syscalls_counts)
8118 + vec_addr_offset);
8119 memset ((void *) vec_addr, 0,
8120 (iter + 1 - old_size) * sizeof (int));
8121 }
8122 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8123 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8124 }
8125 }
8126
8127 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8128 inf_data->total_syscalls_count != 0,
8129 inf_data->any_syscall_count,
8130 VEC_length (int,
8131 inf_data->syscalls_counts),
8132 VEC_address (int,
8133 inf_data->syscalls_counts));
8134 }
8135
8136 /* Implement the "remove" breakpoint_ops method for syscall
8137 catchpoints. */
8138
8139 static int
8140 remove_catch_syscall (struct bp_location *bl)
8141 {
8142 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8143 struct inferior *inf = current_inferior ();
8144 struct catch_syscall_inferior_data *inf_data
8145 = get_catch_syscall_inferior_data (inf);
8146
8147 --inf_data->total_syscalls_count;
8148 if (!c->syscalls_to_be_caught)
8149 --inf_data->any_syscall_count;
8150 else
8151 {
8152 int i, iter;
8153
8154 for (i = 0;
8155 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8156 i++)
8157 {
8158 int elem;
8159 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8160 /* Shouldn't happen. */
8161 continue;
8162 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8163 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8164 }
8165 }
8166
8167 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8168 inf_data->total_syscalls_count != 0,
8169 inf_data->any_syscall_count,
8170 VEC_length (int,
8171 inf_data->syscalls_counts),
8172 VEC_address (int,
8173 inf_data->syscalls_counts));
8174 }
8175
8176 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8177 catchpoints. */
8178
8179 static int
8180 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8181 struct address_space *aspace, CORE_ADDR bp_addr,
8182 const struct target_waitstatus *ws)
8183 {
8184 /* We must check if we are catching specific syscalls in this
8185 breakpoint. If we are, then we must guarantee that the called
8186 syscall is the same syscall we are catching. */
8187 int syscall_number = 0;
8188 const struct syscall_catchpoint *c
8189 = (const struct syscall_catchpoint *) bl->owner;
8190
8191 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8192 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8193 return 0;
8194
8195 syscall_number = ws->value.syscall_number;
8196
8197 /* Now, checking if the syscall is the same. */
8198 if (c->syscalls_to_be_caught)
8199 {
8200 int i, iter;
8201
8202 for (i = 0;
8203 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8204 i++)
8205 if (syscall_number == iter)
8206 break;
8207 /* Not the same. */
8208 if (!iter)
8209 return 0;
8210 }
8211
8212 return 1;
8213 }
8214
8215 /* Implement the "print_it" breakpoint_ops method for syscall
8216 catchpoints. */
8217
8218 static enum print_stop_action
8219 print_it_catch_syscall (bpstat bs)
8220 {
8221 struct ui_out *uiout = current_uiout;
8222 struct breakpoint *b = bs->breakpoint_at;
8223 /* These are needed because we want to know in which state a
8224 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8225 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8226 must print "called syscall" or "returned from syscall". */
8227 ptid_t ptid;
8228 struct target_waitstatus last;
8229 struct syscall s;
8230
8231 get_last_target_status (&ptid, &last);
8232
8233 get_syscall_by_number (last.value.syscall_number, &s);
8234
8235 annotate_catchpoint (b->number);
8236
8237 if (b->disposition == disp_del)
8238 ui_out_text (uiout, "\nTemporary catchpoint ");
8239 else
8240 ui_out_text (uiout, "\nCatchpoint ");
8241 if (ui_out_is_mi_like_p (uiout))
8242 {
8243 ui_out_field_string (uiout, "reason",
8244 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8245 ? EXEC_ASYNC_SYSCALL_ENTRY
8246 : EXEC_ASYNC_SYSCALL_RETURN));
8247 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8248 }
8249 ui_out_field_int (uiout, "bkptno", b->number);
8250
8251 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8252 ui_out_text (uiout, " (call to syscall ");
8253 else
8254 ui_out_text (uiout, " (returned from syscall ");
8255
8256 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8257 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8258 if (s.name != NULL)
8259 ui_out_field_string (uiout, "syscall-name", s.name);
8260
8261 ui_out_text (uiout, "), ");
8262
8263 return PRINT_SRC_AND_LOC;
8264 }
8265
8266 /* Implement the "print_one" breakpoint_ops method for syscall
8267 catchpoints. */
8268
8269 static void
8270 print_one_catch_syscall (struct breakpoint *b,
8271 struct bp_location **last_loc)
8272 {
8273 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8274 struct value_print_options opts;
8275 struct ui_out *uiout = current_uiout;
8276
8277 get_user_print_options (&opts);
8278 /* Field 4, the address, is omitted (which makes the columns not
8279 line up too nicely with the headers, but the effect is relatively
8280 readable). */
8281 if (opts.addressprint)
8282 ui_out_field_skip (uiout, "addr");
8283 annotate_field (5);
8284
8285 if (c->syscalls_to_be_caught
8286 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8287 ui_out_text (uiout, "syscalls \"");
8288 else
8289 ui_out_text (uiout, "syscall \"");
8290
8291 if (c->syscalls_to_be_caught)
8292 {
8293 int i, iter;
8294 char *text = xstrprintf ("%s", "");
8295
8296 for (i = 0;
8297 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8298 i++)
8299 {
8300 char *x = text;
8301 struct syscall s;
8302 get_syscall_by_number (iter, &s);
8303
8304 if (s.name != NULL)
8305 text = xstrprintf ("%s%s, ", text, s.name);
8306 else
8307 text = xstrprintf ("%s%d, ", text, iter);
8308
8309 /* We have to xfree the last 'text' (now stored at 'x')
8310 because xstrprintf dynamically allocates new space for it
8311 on every call. */
8312 xfree (x);
8313 }
8314 /* Remove the last comma. */
8315 text[strlen (text) - 2] = '\0';
8316 ui_out_field_string (uiout, "what", text);
8317 }
8318 else
8319 ui_out_field_string (uiout, "what", "<any syscall>");
8320 ui_out_text (uiout, "\" ");
8321
8322 if (ui_out_is_mi_like_p (uiout))
8323 ui_out_field_string (uiout, "catch-type", "syscall");
8324 }
8325
8326 /* Implement the "print_mention" breakpoint_ops method for syscall
8327 catchpoints. */
8328
8329 static void
8330 print_mention_catch_syscall (struct breakpoint *b)
8331 {
8332 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8333
8334 if (c->syscalls_to_be_caught)
8335 {
8336 int i, iter;
8337
8338 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8339 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8340 else
8341 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8342
8343 for (i = 0;
8344 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8345 i++)
8346 {
8347 struct syscall s;
8348 get_syscall_by_number (iter, &s);
8349
8350 if (s.name)
8351 printf_filtered (" '%s' [%d]", s.name, s.number);
8352 else
8353 printf_filtered (" %d", s.number);
8354 }
8355 printf_filtered (")");
8356 }
8357 else
8358 printf_filtered (_("Catchpoint %d (any syscall)"),
8359 b->number);
8360 }
8361
8362 /* Implement the "print_recreate" breakpoint_ops method for syscall
8363 catchpoints. */
8364
8365 static void
8366 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8367 {
8368 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8369
8370 fprintf_unfiltered (fp, "catch syscall");
8371
8372 if (c->syscalls_to_be_caught)
8373 {
8374 int i, iter;
8375
8376 for (i = 0;
8377 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8378 i++)
8379 {
8380 struct syscall s;
8381
8382 get_syscall_by_number (iter, &s);
8383 if (s.name)
8384 fprintf_unfiltered (fp, " %s", s.name);
8385 else
8386 fprintf_unfiltered (fp, " %d", s.number);
8387 }
8388 }
8389 print_recreate_thread (b, fp);
8390 }
8391
8392 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8393
8394 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8395
8396 /* Returns non-zero if 'b' is a syscall catchpoint. */
8397
8398 static int
8399 syscall_catchpoint_p (struct breakpoint *b)
8400 {
8401 return (b->ops == &catch_syscall_breakpoint_ops);
8402 }
8403
8404 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8405 is non-zero, then make the breakpoint temporary. If COND_STRING is
8406 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8407 the breakpoint_ops structure associated to the catchpoint. */
8408
8409 void
8410 init_catchpoint (struct breakpoint *b,
8411 struct gdbarch *gdbarch, int tempflag,
8412 char *cond_string,
8413 const struct breakpoint_ops *ops)
8414 {
8415 struct symtab_and_line sal;
8416
8417 init_sal (&sal);
8418 sal.pspace = current_program_space;
8419
8420 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8421
8422 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8423 b->disposition = tempflag ? disp_del : disp_donttouch;
8424 }
8425
8426 void
8427 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8428 {
8429 add_to_breakpoint_chain (b);
8430 set_breakpoint_number (internal, b);
8431 if (is_tracepoint (b))
8432 set_tracepoint_count (breakpoint_count);
8433 if (!internal)
8434 mention (b);
8435 observer_notify_breakpoint_created (b);
8436
8437 if (update_gll)
8438 update_global_location_list (1);
8439 }
8440
8441 static void
8442 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8443 int tempflag, char *cond_string,
8444 const struct breakpoint_ops *ops)
8445 {
8446 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8447
8448 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8449
8450 c->forked_inferior_pid = null_ptid;
8451
8452 install_breakpoint (0, &c->base, 1);
8453 }
8454
8455 /* Exec catchpoints. */
8456
8457 /* An instance of this type is used to represent an exec catchpoint.
8458 It includes a "struct breakpoint" as a kind of base class; users
8459 downcast to "struct breakpoint *" when needed. A breakpoint is
8460 really of this type iff its ops pointer points to
8461 CATCH_EXEC_BREAKPOINT_OPS. */
8462
8463 struct exec_catchpoint
8464 {
8465 /* The base class. */
8466 struct breakpoint base;
8467
8468 /* Filename of a program whose exec triggered this catchpoint.
8469 This field is only valid immediately after this catchpoint has
8470 triggered. */
8471 char *exec_pathname;
8472 };
8473
8474 /* Implement the "dtor" breakpoint_ops method for exec
8475 catchpoints. */
8476
8477 static void
8478 dtor_catch_exec (struct breakpoint *b)
8479 {
8480 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8481
8482 xfree (c->exec_pathname);
8483
8484 base_breakpoint_ops.dtor (b);
8485 }
8486
8487 static int
8488 insert_catch_exec (struct bp_location *bl)
8489 {
8490 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
8491 }
8492
8493 static int
8494 remove_catch_exec (struct bp_location *bl)
8495 {
8496 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
8497 }
8498
8499 static int
8500 breakpoint_hit_catch_exec (const struct bp_location *bl,
8501 struct address_space *aspace, CORE_ADDR bp_addr,
8502 const struct target_waitstatus *ws)
8503 {
8504 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8505
8506 if (ws->kind != TARGET_WAITKIND_EXECD)
8507 return 0;
8508
8509 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8510 return 1;
8511 }
8512
8513 static enum print_stop_action
8514 print_it_catch_exec (bpstat bs)
8515 {
8516 struct ui_out *uiout = current_uiout;
8517 struct breakpoint *b = bs->breakpoint_at;
8518 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8519
8520 annotate_catchpoint (b->number);
8521 if (b->disposition == disp_del)
8522 ui_out_text (uiout, "\nTemporary catchpoint ");
8523 else
8524 ui_out_text (uiout, "\nCatchpoint ");
8525 if (ui_out_is_mi_like_p (uiout))
8526 {
8527 ui_out_field_string (uiout, "reason",
8528 async_reason_lookup (EXEC_ASYNC_EXEC));
8529 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8530 }
8531 ui_out_field_int (uiout, "bkptno", b->number);
8532 ui_out_text (uiout, " (exec'd ");
8533 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8534 ui_out_text (uiout, "), ");
8535
8536 return PRINT_SRC_AND_LOC;
8537 }
8538
8539 static void
8540 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8541 {
8542 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8543 struct value_print_options opts;
8544 struct ui_out *uiout = current_uiout;
8545
8546 get_user_print_options (&opts);
8547
8548 /* Field 4, the address, is omitted (which makes the columns
8549 not line up too nicely with the headers, but the effect
8550 is relatively readable). */
8551 if (opts.addressprint)
8552 ui_out_field_skip (uiout, "addr");
8553 annotate_field (5);
8554 ui_out_text (uiout, "exec");
8555 if (c->exec_pathname != NULL)
8556 {
8557 ui_out_text (uiout, ", program \"");
8558 ui_out_field_string (uiout, "what", c->exec_pathname);
8559 ui_out_text (uiout, "\" ");
8560 }
8561
8562 if (ui_out_is_mi_like_p (uiout))
8563 ui_out_field_string (uiout, "catch-type", "exec");
8564 }
8565
8566 static void
8567 print_mention_catch_exec (struct breakpoint *b)
8568 {
8569 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8570 }
8571
8572 /* Implement the "print_recreate" breakpoint_ops method for exec
8573 catchpoints. */
8574
8575 static void
8576 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8577 {
8578 fprintf_unfiltered (fp, "catch exec");
8579 print_recreate_thread (b, fp);
8580 }
8581
8582 static struct breakpoint_ops catch_exec_breakpoint_ops;
8583
8584 static void
8585 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8586 const struct breakpoint_ops *ops)
8587 {
8588 struct syscall_catchpoint *c;
8589 struct gdbarch *gdbarch = get_current_arch ();
8590
8591 c = XNEW (struct syscall_catchpoint);
8592 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8593 c->syscalls_to_be_caught = filter;
8594
8595 install_breakpoint (0, &c->base, 1);
8596 }
8597
8598 static int
8599 hw_breakpoint_used_count (void)
8600 {
8601 int i = 0;
8602 struct breakpoint *b;
8603 struct bp_location *bl;
8604
8605 ALL_BREAKPOINTS (b)
8606 {
8607 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8608 for (bl = b->loc; bl; bl = bl->next)
8609 {
8610 /* Special types of hardware breakpoints may use more than
8611 one register. */
8612 i += b->ops->resources_needed (bl);
8613 }
8614 }
8615
8616 return i;
8617 }
8618
8619 /* Returns the resources B would use if it were a hardware
8620 watchpoint. */
8621
8622 static int
8623 hw_watchpoint_use_count (struct breakpoint *b)
8624 {
8625 int i = 0;
8626 struct bp_location *bl;
8627
8628 if (!breakpoint_enabled (b))
8629 return 0;
8630
8631 for (bl = b->loc; bl; bl = bl->next)
8632 {
8633 /* Special types of hardware watchpoints may use more than
8634 one register. */
8635 i += b->ops->resources_needed (bl);
8636 }
8637
8638 return i;
8639 }
8640
8641 /* Returns the sum the used resources of all hardware watchpoints of
8642 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8643 the sum of the used resources of all hardware watchpoints of other
8644 types _not_ TYPE. */
8645
8646 static int
8647 hw_watchpoint_used_count_others (struct breakpoint *except,
8648 enum bptype type, int *other_type_used)
8649 {
8650 int i = 0;
8651 struct breakpoint *b;
8652
8653 *other_type_used = 0;
8654 ALL_BREAKPOINTS (b)
8655 {
8656 if (b == except)
8657 continue;
8658 if (!breakpoint_enabled (b))
8659 continue;
8660
8661 if (b->type == type)
8662 i += hw_watchpoint_use_count (b);
8663 else if (is_hardware_watchpoint (b))
8664 *other_type_used = 1;
8665 }
8666
8667 return i;
8668 }
8669
8670 void
8671 disable_watchpoints_before_interactive_call_start (void)
8672 {
8673 struct breakpoint *b;
8674
8675 ALL_BREAKPOINTS (b)
8676 {
8677 if (is_watchpoint (b) && breakpoint_enabled (b))
8678 {
8679 b->enable_state = bp_call_disabled;
8680 update_global_location_list (0);
8681 }
8682 }
8683 }
8684
8685 void
8686 enable_watchpoints_after_interactive_call_stop (void)
8687 {
8688 struct breakpoint *b;
8689
8690 ALL_BREAKPOINTS (b)
8691 {
8692 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8693 {
8694 b->enable_state = bp_enabled;
8695 update_global_location_list (1);
8696 }
8697 }
8698 }
8699
8700 void
8701 disable_breakpoints_before_startup (void)
8702 {
8703 current_program_space->executing_startup = 1;
8704 update_global_location_list (0);
8705 }
8706
8707 void
8708 enable_breakpoints_after_startup (void)
8709 {
8710 current_program_space->executing_startup = 0;
8711 breakpoint_re_set ();
8712 }
8713
8714
8715 /* Set a breakpoint that will evaporate an end of command
8716 at address specified by SAL.
8717 Restrict it to frame FRAME if FRAME is nonzero. */
8718
8719 struct breakpoint *
8720 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8721 struct frame_id frame_id, enum bptype type)
8722 {
8723 struct breakpoint *b;
8724
8725 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8726 tail-called one. */
8727 gdb_assert (!frame_id_artificial_p (frame_id));
8728
8729 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8730 b->enable_state = bp_enabled;
8731 b->disposition = disp_donttouch;
8732 b->frame_id = frame_id;
8733
8734 /* If we're debugging a multi-threaded program, then we want
8735 momentary breakpoints to be active in only a single thread of
8736 control. */
8737 if (in_thread_list (inferior_ptid))
8738 b->thread = pid_to_thread_id (inferior_ptid);
8739
8740 update_global_location_list_nothrow (1);
8741
8742 return b;
8743 }
8744
8745 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8746 The new breakpoint will have type TYPE, and use OPS as it
8747 breakpoint_ops. */
8748
8749 static struct breakpoint *
8750 momentary_breakpoint_from_master (struct breakpoint *orig,
8751 enum bptype type,
8752 const struct breakpoint_ops *ops)
8753 {
8754 struct breakpoint *copy;
8755
8756 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8757 copy->loc = allocate_bp_location (copy);
8758 set_breakpoint_location_function (copy->loc, 1);
8759
8760 copy->loc->gdbarch = orig->loc->gdbarch;
8761 copy->loc->requested_address = orig->loc->requested_address;
8762 copy->loc->address = orig->loc->address;
8763 copy->loc->section = orig->loc->section;
8764 copy->loc->pspace = orig->loc->pspace;
8765 copy->loc->probe = orig->loc->probe;
8766 copy->loc->line_number = orig->loc->line_number;
8767 copy->loc->symtab = orig->loc->symtab;
8768 copy->frame_id = orig->frame_id;
8769 copy->thread = orig->thread;
8770 copy->pspace = orig->pspace;
8771
8772 copy->enable_state = bp_enabled;
8773 copy->disposition = disp_donttouch;
8774 copy->number = internal_breakpoint_number--;
8775
8776 update_global_location_list_nothrow (0);
8777 return copy;
8778 }
8779
8780 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8781 ORIG is NULL. */
8782
8783 struct breakpoint *
8784 clone_momentary_breakpoint (struct breakpoint *orig)
8785 {
8786 /* If there's nothing to clone, then return nothing. */
8787 if (orig == NULL)
8788 return NULL;
8789
8790 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8791 }
8792
8793 struct breakpoint *
8794 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8795 enum bptype type)
8796 {
8797 struct symtab_and_line sal;
8798
8799 sal = find_pc_line (pc, 0);
8800 sal.pc = pc;
8801 sal.section = find_pc_overlay (pc);
8802 sal.explicit_pc = 1;
8803
8804 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8805 }
8806 \f
8807
8808 /* Tell the user we have just set a breakpoint B. */
8809
8810 static void
8811 mention (struct breakpoint *b)
8812 {
8813 b->ops->print_mention (b);
8814 if (ui_out_is_mi_like_p (current_uiout))
8815 return;
8816 printf_filtered ("\n");
8817 }
8818 \f
8819
8820 static struct bp_location *
8821 add_location_to_breakpoint (struct breakpoint *b,
8822 const struct symtab_and_line *sal)
8823 {
8824 struct bp_location *loc, **tmp;
8825 CORE_ADDR adjusted_address;
8826 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8827
8828 if (loc_gdbarch == NULL)
8829 loc_gdbarch = b->gdbarch;
8830
8831 /* Adjust the breakpoint's address prior to allocating a location.
8832 Once we call allocate_bp_location(), that mostly uninitialized
8833 location will be placed on the location chain. Adjustment of the
8834 breakpoint may cause target_read_memory() to be called and we do
8835 not want its scan of the location chain to find a breakpoint and
8836 location that's only been partially initialized. */
8837 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8838 sal->pc, b->type);
8839
8840 /* Sort the locations by their ADDRESS. */
8841 loc = allocate_bp_location (b);
8842 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8843 tmp = &((*tmp)->next))
8844 ;
8845 loc->next = *tmp;
8846 *tmp = loc;
8847
8848 loc->requested_address = sal->pc;
8849 loc->address = adjusted_address;
8850 loc->pspace = sal->pspace;
8851 loc->probe = sal->probe;
8852 gdb_assert (loc->pspace != NULL);
8853 loc->section = sal->section;
8854 loc->gdbarch = loc_gdbarch;
8855 loc->line_number = sal->line;
8856 loc->symtab = sal->symtab;
8857
8858 set_breakpoint_location_function (loc,
8859 sal->explicit_pc || sal->explicit_line);
8860 return loc;
8861 }
8862 \f
8863
8864 /* Return 1 if LOC is pointing to a permanent breakpoint,
8865 return 0 otherwise. */
8866
8867 static int
8868 bp_loc_is_permanent (struct bp_location *loc)
8869 {
8870 int len;
8871 CORE_ADDR addr;
8872 const gdb_byte *bpoint;
8873 gdb_byte *target_mem;
8874 struct cleanup *cleanup;
8875 int retval = 0;
8876
8877 gdb_assert (loc != NULL);
8878
8879 addr = loc->address;
8880 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8881
8882 /* Software breakpoints unsupported? */
8883 if (bpoint == NULL)
8884 return 0;
8885
8886 target_mem = alloca (len);
8887
8888 /* Enable the automatic memory restoration from breakpoints while
8889 we read the memory. Otherwise we could say about our temporary
8890 breakpoints they are permanent. */
8891 cleanup = save_current_space_and_thread ();
8892
8893 switch_to_program_space_and_thread (loc->pspace);
8894 make_show_memory_breakpoints_cleanup (0);
8895
8896 if (target_read_memory (loc->address, target_mem, len) == 0
8897 && memcmp (target_mem, bpoint, len) == 0)
8898 retval = 1;
8899
8900 do_cleanups (cleanup);
8901
8902 return retval;
8903 }
8904
8905 /* Build a command list for the dprintf corresponding to the current
8906 settings of the dprintf style options. */
8907
8908 static void
8909 update_dprintf_command_list (struct breakpoint *b)
8910 {
8911 char *dprintf_args = b->extra_string;
8912 char *printf_line = NULL;
8913
8914 if (!dprintf_args)
8915 return;
8916
8917 dprintf_args = skip_spaces (dprintf_args);
8918
8919 /* Allow a comma, as it may have terminated a location, but don't
8920 insist on it. */
8921 if (*dprintf_args == ',')
8922 ++dprintf_args;
8923 dprintf_args = skip_spaces (dprintf_args);
8924
8925 if (*dprintf_args != '"')
8926 error (_("Bad format string, missing '\"'."));
8927
8928 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8929 printf_line = xstrprintf ("printf %s", dprintf_args);
8930 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8931 {
8932 if (!dprintf_function)
8933 error (_("No function supplied for dprintf call"));
8934
8935 if (dprintf_channel && strlen (dprintf_channel) > 0)
8936 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8937 dprintf_function,
8938 dprintf_channel,
8939 dprintf_args);
8940 else
8941 printf_line = xstrprintf ("call (void) %s (%s)",
8942 dprintf_function,
8943 dprintf_args);
8944 }
8945 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8946 {
8947 if (target_can_run_breakpoint_commands ())
8948 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8949 else
8950 {
8951 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8952 printf_line = xstrprintf ("printf %s", dprintf_args);
8953 }
8954 }
8955 else
8956 internal_error (__FILE__, __LINE__,
8957 _("Invalid dprintf style."));
8958
8959 gdb_assert (printf_line != NULL);
8960 /* Manufacture a printf/continue sequence. */
8961 {
8962 struct command_line *printf_cmd_line, *cont_cmd_line = NULL;
8963
8964 if (strcmp (dprintf_style, dprintf_style_agent) != 0)
8965 {
8966 cont_cmd_line = xmalloc (sizeof (struct command_line));
8967 cont_cmd_line->control_type = simple_control;
8968 cont_cmd_line->body_count = 0;
8969 cont_cmd_line->body_list = NULL;
8970 cont_cmd_line->next = NULL;
8971 cont_cmd_line->line = xstrdup ("continue");
8972 }
8973
8974 printf_cmd_line = xmalloc (sizeof (struct command_line));
8975 printf_cmd_line->control_type = simple_control;
8976 printf_cmd_line->body_count = 0;
8977 printf_cmd_line->body_list = NULL;
8978 printf_cmd_line->next = cont_cmd_line;
8979 printf_cmd_line->line = printf_line;
8980
8981 breakpoint_set_commands (b, printf_cmd_line);
8982 }
8983 }
8984
8985 /* Update all dprintf commands, making their command lists reflect
8986 current style settings. */
8987
8988 static void
8989 update_dprintf_commands (char *args, int from_tty,
8990 struct cmd_list_element *c)
8991 {
8992 struct breakpoint *b;
8993
8994 ALL_BREAKPOINTS (b)
8995 {
8996 if (b->type == bp_dprintf)
8997 update_dprintf_command_list (b);
8998 }
8999 }
9000
9001 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9002 as textual description of the location, and COND_STRING
9003 as condition expression. */
9004
9005 static void
9006 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9007 struct symtabs_and_lines sals, char *addr_string,
9008 char *filter, char *cond_string,
9009 char *extra_string,
9010 enum bptype type, enum bpdisp disposition,
9011 int thread, int task, int ignore_count,
9012 const struct breakpoint_ops *ops, int from_tty,
9013 int enabled, int internal, unsigned flags,
9014 int display_canonical)
9015 {
9016 int i;
9017
9018 if (type == bp_hardware_breakpoint)
9019 {
9020 int target_resources_ok;
9021
9022 i = hw_breakpoint_used_count ();
9023 target_resources_ok =
9024 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9025 i + 1, 0);
9026 if (target_resources_ok == 0)
9027 error (_("No hardware breakpoint support in the target."));
9028 else if (target_resources_ok < 0)
9029 error (_("Hardware breakpoints used exceeds limit."));
9030 }
9031
9032 gdb_assert (sals.nelts > 0);
9033
9034 for (i = 0; i < sals.nelts; ++i)
9035 {
9036 struct symtab_and_line sal = sals.sals[i];
9037 struct bp_location *loc;
9038
9039 if (from_tty)
9040 {
9041 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9042 if (!loc_gdbarch)
9043 loc_gdbarch = gdbarch;
9044
9045 describe_other_breakpoints (loc_gdbarch,
9046 sal.pspace, sal.pc, sal.section, thread);
9047 }
9048
9049 if (i == 0)
9050 {
9051 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9052 b->thread = thread;
9053 b->task = task;
9054
9055 b->cond_string = cond_string;
9056 b->extra_string = extra_string;
9057 b->ignore_count = ignore_count;
9058 b->enable_state = enabled ? bp_enabled : bp_disabled;
9059 b->disposition = disposition;
9060
9061 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9062 b->loc->inserted = 1;
9063
9064 if (type == bp_static_tracepoint)
9065 {
9066 struct tracepoint *t = (struct tracepoint *) b;
9067 struct static_tracepoint_marker marker;
9068
9069 if (strace_marker_p (b))
9070 {
9071 /* We already know the marker exists, otherwise, we
9072 wouldn't see a sal for it. */
9073 char *p = &addr_string[3];
9074 char *endp;
9075 char *marker_str;
9076
9077 p = skip_spaces (p);
9078
9079 endp = skip_to_space (p);
9080
9081 marker_str = savestring (p, endp - p);
9082 t->static_trace_marker_id = marker_str;
9083
9084 printf_filtered (_("Probed static tracepoint "
9085 "marker \"%s\"\n"),
9086 t->static_trace_marker_id);
9087 }
9088 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9089 {
9090 t->static_trace_marker_id = xstrdup (marker.str_id);
9091 release_static_tracepoint_marker (&marker);
9092
9093 printf_filtered (_("Probed static tracepoint "
9094 "marker \"%s\"\n"),
9095 t->static_trace_marker_id);
9096 }
9097 else
9098 warning (_("Couldn't determine the static "
9099 "tracepoint marker to probe"));
9100 }
9101
9102 loc = b->loc;
9103 }
9104 else
9105 {
9106 loc = add_location_to_breakpoint (b, &sal);
9107 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9108 loc->inserted = 1;
9109 }
9110
9111 if (bp_loc_is_permanent (loc))
9112 make_breakpoint_permanent (b);
9113
9114 if (b->cond_string)
9115 {
9116 const char *arg = b->cond_string;
9117
9118 loc->cond = parse_exp_1 (&arg, loc->address,
9119 block_for_pc (loc->address), 0);
9120 if (*arg)
9121 error (_("Garbage '%s' follows condition"), arg);
9122 }
9123
9124 /* Dynamic printf requires and uses additional arguments on the
9125 command line, otherwise it's an error. */
9126 if (type == bp_dprintf)
9127 {
9128 if (b->extra_string)
9129 update_dprintf_command_list (b);
9130 else
9131 error (_("Format string required"));
9132 }
9133 else if (b->extra_string)
9134 error (_("Garbage '%s' at end of command"), b->extra_string);
9135 }
9136
9137 b->display_canonical = display_canonical;
9138 if (addr_string)
9139 b->addr_string = addr_string;
9140 else
9141 /* addr_string has to be used or breakpoint_re_set will delete
9142 me. */
9143 b->addr_string
9144 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9145 b->filter = filter;
9146 }
9147
9148 static void
9149 create_breakpoint_sal (struct gdbarch *gdbarch,
9150 struct symtabs_and_lines sals, char *addr_string,
9151 char *filter, char *cond_string,
9152 char *extra_string,
9153 enum bptype type, enum bpdisp disposition,
9154 int thread, int task, int ignore_count,
9155 const struct breakpoint_ops *ops, int from_tty,
9156 int enabled, int internal, unsigned flags,
9157 int display_canonical)
9158 {
9159 struct breakpoint *b;
9160 struct cleanup *old_chain;
9161
9162 if (is_tracepoint_type (type))
9163 {
9164 struct tracepoint *t;
9165
9166 t = XCNEW (struct tracepoint);
9167 b = &t->base;
9168 }
9169 else
9170 b = XNEW (struct breakpoint);
9171
9172 old_chain = make_cleanup (xfree, b);
9173
9174 init_breakpoint_sal (b, gdbarch,
9175 sals, addr_string,
9176 filter, cond_string, extra_string,
9177 type, disposition,
9178 thread, task, ignore_count,
9179 ops, from_tty,
9180 enabled, internal, flags,
9181 display_canonical);
9182 discard_cleanups (old_chain);
9183
9184 install_breakpoint (internal, b, 0);
9185 }
9186
9187 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9188 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9189 value. COND_STRING, if not NULL, specified the condition to be
9190 used for all breakpoints. Essentially the only case where
9191 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9192 function. In that case, it's still not possible to specify
9193 separate conditions for different overloaded functions, so
9194 we take just a single condition string.
9195
9196 NOTE: If the function succeeds, the caller is expected to cleanup
9197 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9198 array contents). If the function fails (error() is called), the
9199 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9200 COND and SALS arrays and each of those arrays contents. */
9201
9202 static void
9203 create_breakpoints_sal (struct gdbarch *gdbarch,
9204 struct linespec_result *canonical,
9205 char *cond_string, char *extra_string,
9206 enum bptype type, enum bpdisp disposition,
9207 int thread, int task, int ignore_count,
9208 const struct breakpoint_ops *ops, int from_tty,
9209 int enabled, int internal, unsigned flags)
9210 {
9211 int i;
9212 struct linespec_sals *lsal;
9213
9214 if (canonical->pre_expanded)
9215 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9216
9217 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9218 {
9219 /* Note that 'addr_string' can be NULL in the case of a plain
9220 'break', without arguments. */
9221 char *addr_string = (canonical->addr_string
9222 ? xstrdup (canonical->addr_string)
9223 : NULL);
9224 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9225 struct cleanup *inner = make_cleanup (xfree, addr_string);
9226
9227 make_cleanup (xfree, filter_string);
9228 create_breakpoint_sal (gdbarch, lsal->sals,
9229 addr_string,
9230 filter_string,
9231 cond_string, extra_string,
9232 type, disposition,
9233 thread, task, ignore_count, ops,
9234 from_tty, enabled, internal, flags,
9235 canonical->special_display);
9236 discard_cleanups (inner);
9237 }
9238 }
9239
9240 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9241 followed by conditionals. On return, SALS contains an array of SAL
9242 addresses found. ADDR_STRING contains a vector of (canonical)
9243 address strings. ADDRESS points to the end of the SAL.
9244
9245 The array and the line spec strings are allocated on the heap, it is
9246 the caller's responsibility to free them. */
9247
9248 static void
9249 parse_breakpoint_sals (char **address,
9250 struct linespec_result *canonical)
9251 {
9252 /* If no arg given, or if first arg is 'if ', use the default
9253 breakpoint. */
9254 if ((*address) == NULL
9255 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9256 {
9257 /* The last displayed codepoint, if it's valid, is our default breakpoint
9258 address. */
9259 if (last_displayed_sal_is_valid ())
9260 {
9261 struct linespec_sals lsal;
9262 struct symtab_and_line sal;
9263 CORE_ADDR pc;
9264
9265 init_sal (&sal); /* Initialize to zeroes. */
9266 lsal.sals.sals = (struct symtab_and_line *)
9267 xmalloc (sizeof (struct symtab_and_line));
9268
9269 /* Set sal's pspace, pc, symtab, and line to the values
9270 corresponding to the last call to print_frame_info.
9271 Be sure to reinitialize LINE with NOTCURRENT == 0
9272 as the breakpoint line number is inappropriate otherwise.
9273 find_pc_line would adjust PC, re-set it back. */
9274 get_last_displayed_sal (&sal);
9275 pc = sal.pc;
9276 sal = find_pc_line (pc, 0);
9277
9278 /* "break" without arguments is equivalent to "break *PC"
9279 where PC is the last displayed codepoint's address. So
9280 make sure to set sal.explicit_pc to prevent GDB from
9281 trying to expand the list of sals to include all other
9282 instances with the same symtab and line. */
9283 sal.pc = pc;
9284 sal.explicit_pc = 1;
9285
9286 lsal.sals.sals[0] = sal;
9287 lsal.sals.nelts = 1;
9288 lsal.canonical = NULL;
9289
9290 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9291 }
9292 else
9293 error (_("No default breakpoint address now."));
9294 }
9295 else
9296 {
9297 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9298
9299 /* Force almost all breakpoints to be in terms of the
9300 current_source_symtab (which is decode_line_1's default).
9301 This should produce the results we want almost all of the
9302 time while leaving default_breakpoint_* alone.
9303
9304 ObjC: However, don't match an Objective-C method name which
9305 may have a '+' or '-' succeeded by a '['. */
9306 if (last_displayed_sal_is_valid ()
9307 && (!cursal.symtab
9308 || ((strchr ("+-", (*address)[0]) != NULL)
9309 && ((*address)[1] != '['))))
9310 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9311 get_last_displayed_symtab (),
9312 get_last_displayed_line (),
9313 canonical, NULL, NULL);
9314 else
9315 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9316 cursal.symtab, cursal.line, canonical, NULL, NULL);
9317 }
9318 }
9319
9320
9321 /* Convert each SAL into a real PC. Verify that the PC can be
9322 inserted as a breakpoint. If it can't throw an error. */
9323
9324 static void
9325 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9326 {
9327 int i;
9328
9329 for (i = 0; i < sals->nelts; i++)
9330 resolve_sal_pc (&sals->sals[i]);
9331 }
9332
9333 /* Fast tracepoints may have restrictions on valid locations. For
9334 instance, a fast tracepoint using a jump instead of a trap will
9335 likely have to overwrite more bytes than a trap would, and so can
9336 only be placed where the instruction is longer than the jump, or a
9337 multi-instruction sequence does not have a jump into the middle of
9338 it, etc. */
9339
9340 static void
9341 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9342 struct symtabs_and_lines *sals)
9343 {
9344 int i, rslt;
9345 struct symtab_and_line *sal;
9346 char *msg;
9347 struct cleanup *old_chain;
9348
9349 for (i = 0; i < sals->nelts; i++)
9350 {
9351 struct gdbarch *sarch;
9352
9353 sal = &sals->sals[i];
9354
9355 sarch = get_sal_arch (*sal);
9356 /* We fall back to GDBARCH if there is no architecture
9357 associated with SAL. */
9358 if (sarch == NULL)
9359 sarch = gdbarch;
9360 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9361 NULL, &msg);
9362 old_chain = make_cleanup (xfree, msg);
9363
9364 if (!rslt)
9365 error (_("May not have a fast tracepoint at 0x%s%s"),
9366 paddress (sarch, sal->pc), (msg ? msg : ""));
9367
9368 do_cleanups (old_chain);
9369 }
9370 }
9371
9372 /* Issue an invalid thread ID error. */
9373
9374 static void ATTRIBUTE_NORETURN
9375 invalid_thread_id_error (int id)
9376 {
9377 error (_("Unknown thread %d."), id);
9378 }
9379
9380 /* Given TOK, a string specification of condition and thread, as
9381 accepted by the 'break' command, extract the condition
9382 string and thread number and set *COND_STRING and *THREAD.
9383 PC identifies the context at which the condition should be parsed.
9384 If no condition is found, *COND_STRING is set to NULL.
9385 If no thread is found, *THREAD is set to -1. */
9386
9387 static void
9388 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9389 char **cond_string, int *thread, int *task,
9390 char **rest)
9391 {
9392 *cond_string = NULL;
9393 *thread = -1;
9394 *task = 0;
9395 *rest = NULL;
9396
9397 while (tok && *tok)
9398 {
9399 const char *end_tok;
9400 int toklen;
9401 const char *cond_start = NULL;
9402 const char *cond_end = NULL;
9403
9404 tok = skip_spaces_const (tok);
9405
9406 if ((*tok == '"' || *tok == ',') && rest)
9407 {
9408 *rest = savestring (tok, strlen (tok));
9409 return;
9410 }
9411
9412 end_tok = skip_to_space_const (tok);
9413
9414 toklen = end_tok - tok;
9415
9416 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9417 {
9418 struct expression *expr;
9419
9420 tok = cond_start = end_tok + 1;
9421 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9422 xfree (expr);
9423 cond_end = tok;
9424 *cond_string = savestring (cond_start, cond_end - cond_start);
9425 }
9426 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9427 {
9428 char *tmptok;
9429
9430 tok = end_tok + 1;
9431 *thread = strtol (tok, &tmptok, 0);
9432 if (tok == tmptok)
9433 error (_("Junk after thread keyword."));
9434 if (!valid_thread_id (*thread))
9435 invalid_thread_id_error (*thread);
9436 tok = tmptok;
9437 }
9438 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9439 {
9440 char *tmptok;
9441
9442 tok = end_tok + 1;
9443 *task = strtol (tok, &tmptok, 0);
9444 if (tok == tmptok)
9445 error (_("Junk after task keyword."));
9446 if (!valid_task_id (*task))
9447 error (_("Unknown task %d."), *task);
9448 tok = tmptok;
9449 }
9450 else if (rest)
9451 {
9452 *rest = savestring (tok, strlen (tok));
9453 return;
9454 }
9455 else
9456 error (_("Junk at end of arguments."));
9457 }
9458 }
9459
9460 /* Decode a static tracepoint marker spec. */
9461
9462 static struct symtabs_and_lines
9463 decode_static_tracepoint_spec (char **arg_p)
9464 {
9465 VEC(static_tracepoint_marker_p) *markers = NULL;
9466 struct symtabs_and_lines sals;
9467 struct cleanup *old_chain;
9468 char *p = &(*arg_p)[3];
9469 char *endp;
9470 char *marker_str;
9471 int i;
9472
9473 p = skip_spaces (p);
9474
9475 endp = skip_to_space (p);
9476
9477 marker_str = savestring (p, endp - p);
9478 old_chain = make_cleanup (xfree, marker_str);
9479
9480 markers = target_static_tracepoint_markers_by_strid (marker_str);
9481 if (VEC_empty(static_tracepoint_marker_p, markers))
9482 error (_("No known static tracepoint marker named %s"), marker_str);
9483
9484 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9485 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9486
9487 for (i = 0; i < sals.nelts; i++)
9488 {
9489 struct static_tracepoint_marker *marker;
9490
9491 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9492
9493 init_sal (&sals.sals[i]);
9494
9495 sals.sals[i] = find_pc_line (marker->address, 0);
9496 sals.sals[i].pc = marker->address;
9497
9498 release_static_tracepoint_marker (marker);
9499 }
9500
9501 do_cleanups (old_chain);
9502
9503 *arg_p = endp;
9504 return sals;
9505 }
9506
9507 /* Set a breakpoint. This function is shared between CLI and MI
9508 functions for setting a breakpoint. This function has two major
9509 modes of operations, selected by the PARSE_ARG parameter. If
9510 non-zero, the function will parse ARG, extracting location,
9511 condition, thread and extra string. Otherwise, ARG is just the
9512 breakpoint's location, with condition, thread, and extra string
9513 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9514 If INTERNAL is non-zero, the breakpoint number will be allocated
9515 from the internal breakpoint count. Returns true if any breakpoint
9516 was created; false otherwise. */
9517
9518 int
9519 create_breakpoint (struct gdbarch *gdbarch,
9520 char *arg, char *cond_string,
9521 int thread, char *extra_string,
9522 int parse_arg,
9523 int tempflag, enum bptype type_wanted,
9524 int ignore_count,
9525 enum auto_boolean pending_break_support,
9526 const struct breakpoint_ops *ops,
9527 int from_tty, int enabled, int internal,
9528 unsigned flags)
9529 {
9530 volatile struct gdb_exception e;
9531 char *copy_arg = NULL;
9532 char *addr_start = arg;
9533 struct linespec_result canonical;
9534 struct cleanup *old_chain;
9535 struct cleanup *bkpt_chain = NULL;
9536 int pending = 0;
9537 int task = 0;
9538 int prev_bkpt_count = breakpoint_count;
9539
9540 gdb_assert (ops != NULL);
9541
9542 init_linespec_result (&canonical);
9543
9544 TRY_CATCH (e, RETURN_MASK_ALL)
9545 {
9546 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9547 addr_start, &copy_arg);
9548 }
9549
9550 /* If caller is interested in rc value from parse, set value. */
9551 switch (e.reason)
9552 {
9553 case GDB_NO_ERROR:
9554 if (VEC_empty (linespec_sals, canonical.sals))
9555 return 0;
9556 break;
9557 case RETURN_ERROR:
9558 switch (e.error)
9559 {
9560 case NOT_FOUND_ERROR:
9561
9562 /* If pending breakpoint support is turned off, throw
9563 error. */
9564
9565 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9566 throw_exception (e);
9567
9568 exception_print (gdb_stderr, e);
9569
9570 /* If pending breakpoint support is auto query and the user
9571 selects no, then simply return the error code. */
9572 if (pending_break_support == AUTO_BOOLEAN_AUTO
9573 && !nquery (_("Make %s pending on future shared library load? "),
9574 bptype_string (type_wanted)))
9575 return 0;
9576
9577 /* At this point, either the user was queried about setting
9578 a pending breakpoint and selected yes, or pending
9579 breakpoint behavior is on and thus a pending breakpoint
9580 is defaulted on behalf of the user. */
9581 {
9582 struct linespec_sals lsal;
9583
9584 copy_arg = xstrdup (addr_start);
9585 lsal.canonical = xstrdup (copy_arg);
9586 lsal.sals.nelts = 1;
9587 lsal.sals.sals = XNEW (struct symtab_and_line);
9588 init_sal (&lsal.sals.sals[0]);
9589 pending = 1;
9590 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9591 }
9592 break;
9593 default:
9594 throw_exception (e);
9595 }
9596 break;
9597 default:
9598 throw_exception (e);
9599 }
9600
9601 /* Create a chain of things that always need to be cleaned up. */
9602 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9603
9604 /* ----------------------------- SNIP -----------------------------
9605 Anything added to the cleanup chain beyond this point is assumed
9606 to be part of a breakpoint. If the breakpoint create succeeds
9607 then the memory is not reclaimed. */
9608 bkpt_chain = make_cleanup (null_cleanup, 0);
9609
9610 /* Resolve all line numbers to PC's and verify that the addresses
9611 are ok for the target. */
9612 if (!pending)
9613 {
9614 int ix;
9615 struct linespec_sals *iter;
9616
9617 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9618 breakpoint_sals_to_pc (&iter->sals);
9619 }
9620
9621 /* Fast tracepoints may have additional restrictions on location. */
9622 if (!pending && type_wanted == bp_fast_tracepoint)
9623 {
9624 int ix;
9625 struct linespec_sals *iter;
9626
9627 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9628 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9629 }
9630
9631 /* Verify that condition can be parsed, before setting any
9632 breakpoints. Allocate a separate condition expression for each
9633 breakpoint. */
9634 if (!pending)
9635 {
9636 struct linespec_sals *lsal;
9637
9638 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9639
9640 if (parse_arg)
9641 {
9642 char *rest;
9643 /* Here we only parse 'arg' to separate condition
9644 from thread number, so parsing in context of first
9645 sal is OK. When setting the breakpoint we'll
9646 re-parse it in context of each sal. */
9647
9648 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9649 &thread, &task, &rest);
9650 if (cond_string)
9651 make_cleanup (xfree, cond_string);
9652 if (rest)
9653 make_cleanup (xfree, rest);
9654 if (rest)
9655 extra_string = rest;
9656 }
9657 else
9658 {
9659 if (*arg != '\0')
9660 error (_("Garbage '%s' at end of location"), arg);
9661
9662 /* Create a private copy of condition string. */
9663 if (cond_string)
9664 {
9665 cond_string = xstrdup (cond_string);
9666 make_cleanup (xfree, cond_string);
9667 }
9668 /* Create a private copy of any extra string. */
9669 if (extra_string)
9670 {
9671 extra_string = xstrdup (extra_string);
9672 make_cleanup (xfree, extra_string);
9673 }
9674 }
9675
9676 ops->create_breakpoints_sal (gdbarch, &canonical, lsal,
9677 cond_string, extra_string, type_wanted,
9678 tempflag ? disp_del : disp_donttouch,
9679 thread, task, ignore_count, ops,
9680 from_tty, enabled, internal, flags);
9681 }
9682 else
9683 {
9684 struct breakpoint *b;
9685
9686 make_cleanup (xfree, copy_arg);
9687
9688 if (is_tracepoint_type (type_wanted))
9689 {
9690 struct tracepoint *t;
9691
9692 t = XCNEW (struct tracepoint);
9693 b = &t->base;
9694 }
9695 else
9696 b = XNEW (struct breakpoint);
9697
9698 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9699
9700 b->addr_string = copy_arg;
9701 if (parse_arg)
9702 b->cond_string = NULL;
9703 else
9704 {
9705 /* Create a private copy of condition string. */
9706 if (cond_string)
9707 {
9708 cond_string = xstrdup (cond_string);
9709 make_cleanup (xfree, cond_string);
9710 }
9711 b->cond_string = cond_string;
9712 }
9713 b->extra_string = NULL;
9714 b->ignore_count = ignore_count;
9715 b->disposition = tempflag ? disp_del : disp_donttouch;
9716 b->condition_not_parsed = 1;
9717 b->enable_state = enabled ? bp_enabled : bp_disabled;
9718 if ((type_wanted != bp_breakpoint
9719 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9720 b->pspace = current_program_space;
9721
9722 install_breakpoint (internal, b, 0);
9723 }
9724
9725 if (VEC_length (linespec_sals, canonical.sals) > 1)
9726 {
9727 warning (_("Multiple breakpoints were set.\nUse the "
9728 "\"delete\" command to delete unwanted breakpoints."));
9729 prev_breakpoint_count = prev_bkpt_count;
9730 }
9731
9732 /* That's it. Discard the cleanups for data inserted into the
9733 breakpoint. */
9734 discard_cleanups (bkpt_chain);
9735 /* But cleanup everything else. */
9736 do_cleanups (old_chain);
9737
9738 /* error call may happen here - have BKPT_CHAIN already discarded. */
9739 update_global_location_list (1);
9740
9741 return 1;
9742 }
9743
9744 /* Set a breakpoint.
9745 ARG is a string describing breakpoint address,
9746 condition, and thread.
9747 FLAG specifies if a breakpoint is hardware on,
9748 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9749 and BP_TEMPFLAG. */
9750
9751 static void
9752 break_command_1 (char *arg, int flag, int from_tty)
9753 {
9754 int tempflag = flag & BP_TEMPFLAG;
9755 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9756 ? bp_hardware_breakpoint
9757 : bp_breakpoint);
9758 struct breakpoint_ops *ops;
9759 const char *arg_cp = arg;
9760
9761 /* Matching breakpoints on probes. */
9762 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9763 ops = &bkpt_probe_breakpoint_ops;
9764 else
9765 ops = &bkpt_breakpoint_ops;
9766
9767 create_breakpoint (get_current_arch (),
9768 arg,
9769 NULL, 0, NULL, 1 /* parse arg */,
9770 tempflag, type_wanted,
9771 0 /* Ignore count */,
9772 pending_break_support,
9773 ops,
9774 from_tty,
9775 1 /* enabled */,
9776 0 /* internal */,
9777 0);
9778 }
9779
9780 /* Helper function for break_command_1 and disassemble_command. */
9781
9782 void
9783 resolve_sal_pc (struct symtab_and_line *sal)
9784 {
9785 CORE_ADDR pc;
9786
9787 if (sal->pc == 0 && sal->symtab != NULL)
9788 {
9789 if (!find_line_pc (sal->symtab, sal->line, &pc))
9790 error (_("No line %d in file \"%s\"."),
9791 sal->line, symtab_to_filename_for_display (sal->symtab));
9792 sal->pc = pc;
9793
9794 /* If this SAL corresponds to a breakpoint inserted using a line
9795 number, then skip the function prologue if necessary. */
9796 if (sal->explicit_line)
9797 skip_prologue_sal (sal);
9798 }
9799
9800 if (sal->section == 0 && sal->symtab != NULL)
9801 {
9802 struct blockvector *bv;
9803 struct block *b;
9804 struct symbol *sym;
9805
9806 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9807 if (bv != NULL)
9808 {
9809 sym = block_linkage_function (b);
9810 if (sym != NULL)
9811 {
9812 fixup_symbol_section (sym, sal->symtab->objfile);
9813 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9814 }
9815 else
9816 {
9817 /* It really is worthwhile to have the section, so we'll
9818 just have to look harder. This case can be executed
9819 if we have line numbers but no functions (as can
9820 happen in assembly source). */
9821
9822 struct bound_minimal_symbol msym;
9823 struct cleanup *old_chain = save_current_space_and_thread ();
9824
9825 switch_to_program_space_and_thread (sal->pspace);
9826
9827 msym = lookup_minimal_symbol_by_pc (sal->pc);
9828 if (msym.minsym)
9829 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9830
9831 do_cleanups (old_chain);
9832 }
9833 }
9834 }
9835 }
9836
9837 void
9838 break_command (char *arg, int from_tty)
9839 {
9840 break_command_1 (arg, 0, from_tty);
9841 }
9842
9843 void
9844 tbreak_command (char *arg, int from_tty)
9845 {
9846 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9847 }
9848
9849 static void
9850 hbreak_command (char *arg, int from_tty)
9851 {
9852 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9853 }
9854
9855 static void
9856 thbreak_command (char *arg, int from_tty)
9857 {
9858 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9859 }
9860
9861 static void
9862 stop_command (char *arg, int from_tty)
9863 {
9864 printf_filtered (_("Specify the type of breakpoint to set.\n\
9865 Usage: stop in <function | address>\n\
9866 stop at <line>\n"));
9867 }
9868
9869 static void
9870 stopin_command (char *arg, int from_tty)
9871 {
9872 int badInput = 0;
9873
9874 if (arg == (char *) NULL)
9875 badInput = 1;
9876 else if (*arg != '*')
9877 {
9878 char *argptr = arg;
9879 int hasColon = 0;
9880
9881 /* Look for a ':'. If this is a line number specification, then
9882 say it is bad, otherwise, it should be an address or
9883 function/method name. */
9884 while (*argptr && !hasColon)
9885 {
9886 hasColon = (*argptr == ':');
9887 argptr++;
9888 }
9889
9890 if (hasColon)
9891 badInput = (*argptr != ':'); /* Not a class::method */
9892 else
9893 badInput = isdigit (*arg); /* a simple line number */
9894 }
9895
9896 if (badInput)
9897 printf_filtered (_("Usage: stop in <function | address>\n"));
9898 else
9899 break_command_1 (arg, 0, from_tty);
9900 }
9901
9902 static void
9903 stopat_command (char *arg, int from_tty)
9904 {
9905 int badInput = 0;
9906
9907 if (arg == (char *) NULL || *arg == '*') /* no line number */
9908 badInput = 1;
9909 else
9910 {
9911 char *argptr = arg;
9912 int hasColon = 0;
9913
9914 /* Look for a ':'. If there is a '::' then get out, otherwise
9915 it is probably a line number. */
9916 while (*argptr && !hasColon)
9917 {
9918 hasColon = (*argptr == ':');
9919 argptr++;
9920 }
9921
9922 if (hasColon)
9923 badInput = (*argptr == ':'); /* we have class::method */
9924 else
9925 badInput = !isdigit (*arg); /* not a line number */
9926 }
9927
9928 if (badInput)
9929 printf_filtered (_("Usage: stop at <line>\n"));
9930 else
9931 break_command_1 (arg, 0, from_tty);
9932 }
9933
9934 /* The dynamic printf command is mostly like a regular breakpoint, but
9935 with a prewired command list consisting of a single output command,
9936 built from extra arguments supplied on the dprintf command
9937 line. */
9938
9939 static void
9940 dprintf_command (char *arg, int from_tty)
9941 {
9942 create_breakpoint (get_current_arch (),
9943 arg,
9944 NULL, 0, NULL, 1 /* parse arg */,
9945 0, bp_dprintf,
9946 0 /* Ignore count */,
9947 pending_break_support,
9948 &dprintf_breakpoint_ops,
9949 from_tty,
9950 1 /* enabled */,
9951 0 /* internal */,
9952 0);
9953 }
9954
9955 static void
9956 agent_printf_command (char *arg, int from_tty)
9957 {
9958 error (_("May only run agent-printf on the target"));
9959 }
9960
9961 /* Implement the "breakpoint_hit" breakpoint_ops method for
9962 ranged breakpoints. */
9963
9964 static int
9965 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9966 struct address_space *aspace,
9967 CORE_ADDR bp_addr,
9968 const struct target_waitstatus *ws)
9969 {
9970 if (ws->kind != TARGET_WAITKIND_STOPPED
9971 || ws->value.sig != GDB_SIGNAL_TRAP)
9972 return 0;
9973
9974 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9975 bl->length, aspace, bp_addr);
9976 }
9977
9978 /* Implement the "resources_needed" breakpoint_ops method for
9979 ranged breakpoints. */
9980
9981 static int
9982 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9983 {
9984 return target_ranged_break_num_registers ();
9985 }
9986
9987 /* Implement the "print_it" breakpoint_ops method for
9988 ranged breakpoints. */
9989
9990 static enum print_stop_action
9991 print_it_ranged_breakpoint (bpstat bs)
9992 {
9993 struct breakpoint *b = bs->breakpoint_at;
9994 struct bp_location *bl = b->loc;
9995 struct ui_out *uiout = current_uiout;
9996
9997 gdb_assert (b->type == bp_hardware_breakpoint);
9998
9999 /* Ranged breakpoints have only one location. */
10000 gdb_assert (bl && bl->next == NULL);
10001
10002 annotate_breakpoint (b->number);
10003 if (b->disposition == disp_del)
10004 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10005 else
10006 ui_out_text (uiout, "\nRanged breakpoint ");
10007 if (ui_out_is_mi_like_p (uiout))
10008 {
10009 ui_out_field_string (uiout, "reason",
10010 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10011 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10012 }
10013 ui_out_field_int (uiout, "bkptno", b->number);
10014 ui_out_text (uiout, ", ");
10015
10016 return PRINT_SRC_AND_LOC;
10017 }
10018
10019 /* Implement the "print_one" breakpoint_ops method for
10020 ranged breakpoints. */
10021
10022 static void
10023 print_one_ranged_breakpoint (struct breakpoint *b,
10024 struct bp_location **last_loc)
10025 {
10026 struct bp_location *bl = b->loc;
10027 struct value_print_options opts;
10028 struct ui_out *uiout = current_uiout;
10029
10030 /* Ranged breakpoints have only one location. */
10031 gdb_assert (bl && bl->next == NULL);
10032
10033 get_user_print_options (&opts);
10034
10035 if (opts.addressprint)
10036 /* We don't print the address range here, it will be printed later
10037 by print_one_detail_ranged_breakpoint. */
10038 ui_out_field_skip (uiout, "addr");
10039 annotate_field (5);
10040 print_breakpoint_location (b, bl);
10041 *last_loc = bl;
10042 }
10043
10044 /* Implement the "print_one_detail" breakpoint_ops method for
10045 ranged breakpoints. */
10046
10047 static void
10048 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10049 struct ui_out *uiout)
10050 {
10051 CORE_ADDR address_start, address_end;
10052 struct bp_location *bl = b->loc;
10053 struct ui_file *stb = mem_fileopen ();
10054 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10055
10056 gdb_assert (bl);
10057
10058 address_start = bl->address;
10059 address_end = address_start + bl->length - 1;
10060
10061 ui_out_text (uiout, "\taddress range: ");
10062 fprintf_unfiltered (stb, "[%s, %s]",
10063 print_core_address (bl->gdbarch, address_start),
10064 print_core_address (bl->gdbarch, address_end));
10065 ui_out_field_stream (uiout, "addr", stb);
10066 ui_out_text (uiout, "\n");
10067
10068 do_cleanups (cleanup);
10069 }
10070
10071 /* Implement the "print_mention" breakpoint_ops method for
10072 ranged breakpoints. */
10073
10074 static void
10075 print_mention_ranged_breakpoint (struct breakpoint *b)
10076 {
10077 struct bp_location *bl = b->loc;
10078 struct ui_out *uiout = current_uiout;
10079
10080 gdb_assert (bl);
10081 gdb_assert (b->type == bp_hardware_breakpoint);
10082
10083 if (ui_out_is_mi_like_p (uiout))
10084 return;
10085
10086 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10087 b->number, paddress (bl->gdbarch, bl->address),
10088 paddress (bl->gdbarch, bl->address + bl->length - 1));
10089 }
10090
10091 /* Implement the "print_recreate" breakpoint_ops method for
10092 ranged breakpoints. */
10093
10094 static void
10095 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10096 {
10097 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10098 b->addr_string_range_end);
10099 print_recreate_thread (b, fp);
10100 }
10101
10102 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10103
10104 static struct breakpoint_ops ranged_breakpoint_ops;
10105
10106 /* Find the address where the end of the breakpoint range should be
10107 placed, given the SAL of the end of the range. This is so that if
10108 the user provides a line number, the end of the range is set to the
10109 last instruction of the given line. */
10110
10111 static CORE_ADDR
10112 find_breakpoint_range_end (struct symtab_and_line sal)
10113 {
10114 CORE_ADDR end;
10115
10116 /* If the user provided a PC value, use it. Otherwise,
10117 find the address of the end of the given location. */
10118 if (sal.explicit_pc)
10119 end = sal.pc;
10120 else
10121 {
10122 int ret;
10123 CORE_ADDR start;
10124
10125 ret = find_line_pc_range (sal, &start, &end);
10126 if (!ret)
10127 error (_("Could not find location of the end of the range."));
10128
10129 /* find_line_pc_range returns the start of the next line. */
10130 end--;
10131 }
10132
10133 return end;
10134 }
10135
10136 /* Implement the "break-range" CLI command. */
10137
10138 static void
10139 break_range_command (char *arg, int from_tty)
10140 {
10141 char *arg_start, *addr_string_start, *addr_string_end;
10142 struct linespec_result canonical_start, canonical_end;
10143 int bp_count, can_use_bp, length;
10144 CORE_ADDR end;
10145 struct breakpoint *b;
10146 struct symtab_and_line sal_start, sal_end;
10147 struct cleanup *cleanup_bkpt;
10148 struct linespec_sals *lsal_start, *lsal_end;
10149
10150 /* We don't support software ranged breakpoints. */
10151 if (target_ranged_break_num_registers () < 0)
10152 error (_("This target does not support hardware ranged breakpoints."));
10153
10154 bp_count = hw_breakpoint_used_count ();
10155 bp_count += target_ranged_break_num_registers ();
10156 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10157 bp_count, 0);
10158 if (can_use_bp < 0)
10159 error (_("Hardware breakpoints used exceeds limit."));
10160
10161 arg = skip_spaces (arg);
10162 if (arg == NULL || arg[0] == '\0')
10163 error(_("No address range specified."));
10164
10165 init_linespec_result (&canonical_start);
10166
10167 arg_start = arg;
10168 parse_breakpoint_sals (&arg, &canonical_start);
10169
10170 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10171
10172 if (arg[0] != ',')
10173 error (_("Too few arguments."));
10174 else if (VEC_empty (linespec_sals, canonical_start.sals))
10175 error (_("Could not find location of the beginning of the range."));
10176
10177 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10178
10179 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10180 || lsal_start->sals.nelts != 1)
10181 error (_("Cannot create a ranged breakpoint with multiple locations."));
10182
10183 sal_start = lsal_start->sals.sals[0];
10184 addr_string_start = savestring (arg_start, arg - arg_start);
10185 make_cleanup (xfree, addr_string_start);
10186
10187 arg++; /* Skip the comma. */
10188 arg = skip_spaces (arg);
10189
10190 /* Parse the end location. */
10191
10192 init_linespec_result (&canonical_end);
10193 arg_start = arg;
10194
10195 /* We call decode_line_full directly here instead of using
10196 parse_breakpoint_sals because we need to specify the start location's
10197 symtab and line as the default symtab and line for the end of the
10198 range. This makes it possible to have ranges like "foo.c:27, +14",
10199 where +14 means 14 lines from the start location. */
10200 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10201 sal_start.symtab, sal_start.line,
10202 &canonical_end, NULL, NULL);
10203
10204 make_cleanup_destroy_linespec_result (&canonical_end);
10205
10206 if (VEC_empty (linespec_sals, canonical_end.sals))
10207 error (_("Could not find location of the end of the range."));
10208
10209 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10210 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10211 || lsal_end->sals.nelts != 1)
10212 error (_("Cannot create a ranged breakpoint with multiple locations."));
10213
10214 sal_end = lsal_end->sals.sals[0];
10215 addr_string_end = savestring (arg_start, arg - arg_start);
10216 make_cleanup (xfree, addr_string_end);
10217
10218 end = find_breakpoint_range_end (sal_end);
10219 if (sal_start.pc > end)
10220 error (_("Invalid address range, end precedes start."));
10221
10222 length = end - sal_start.pc + 1;
10223 if (length < 0)
10224 /* Length overflowed. */
10225 error (_("Address range too large."));
10226 else if (length == 1)
10227 {
10228 /* This range is simple enough to be handled by
10229 the `hbreak' command. */
10230 hbreak_command (addr_string_start, 1);
10231
10232 do_cleanups (cleanup_bkpt);
10233
10234 return;
10235 }
10236
10237 /* Now set up the breakpoint. */
10238 b = set_raw_breakpoint (get_current_arch (), sal_start,
10239 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10240 set_breakpoint_count (breakpoint_count + 1);
10241 b->number = breakpoint_count;
10242 b->disposition = disp_donttouch;
10243 b->addr_string = xstrdup (addr_string_start);
10244 b->addr_string_range_end = xstrdup (addr_string_end);
10245 b->loc->length = length;
10246
10247 do_cleanups (cleanup_bkpt);
10248
10249 mention (b);
10250 observer_notify_breakpoint_created (b);
10251 update_global_location_list (1);
10252 }
10253
10254 /* Return non-zero if EXP is verified as constant. Returned zero
10255 means EXP is variable. Also the constant detection may fail for
10256 some constant expressions and in such case still falsely return
10257 zero. */
10258
10259 static int
10260 watchpoint_exp_is_const (const struct expression *exp)
10261 {
10262 int i = exp->nelts;
10263
10264 while (i > 0)
10265 {
10266 int oplenp, argsp;
10267
10268 /* We are only interested in the descriptor of each element. */
10269 operator_length (exp, i, &oplenp, &argsp);
10270 i -= oplenp;
10271
10272 switch (exp->elts[i].opcode)
10273 {
10274 case BINOP_ADD:
10275 case BINOP_SUB:
10276 case BINOP_MUL:
10277 case BINOP_DIV:
10278 case BINOP_REM:
10279 case BINOP_MOD:
10280 case BINOP_LSH:
10281 case BINOP_RSH:
10282 case BINOP_LOGICAL_AND:
10283 case BINOP_LOGICAL_OR:
10284 case BINOP_BITWISE_AND:
10285 case BINOP_BITWISE_IOR:
10286 case BINOP_BITWISE_XOR:
10287 case BINOP_EQUAL:
10288 case BINOP_NOTEQUAL:
10289 case BINOP_LESS:
10290 case BINOP_GTR:
10291 case BINOP_LEQ:
10292 case BINOP_GEQ:
10293 case BINOP_REPEAT:
10294 case BINOP_COMMA:
10295 case BINOP_EXP:
10296 case BINOP_MIN:
10297 case BINOP_MAX:
10298 case BINOP_INTDIV:
10299 case BINOP_CONCAT:
10300 case BINOP_IN:
10301 case BINOP_RANGE:
10302 case TERNOP_COND:
10303 case TERNOP_SLICE:
10304
10305 case OP_LONG:
10306 case OP_DOUBLE:
10307 case OP_DECFLOAT:
10308 case OP_LAST:
10309 case OP_COMPLEX:
10310 case OP_STRING:
10311 case OP_ARRAY:
10312 case OP_TYPE:
10313 case OP_TYPEOF:
10314 case OP_DECLTYPE:
10315 case OP_TYPEID:
10316 case OP_NAME:
10317 case OP_OBJC_NSSTRING:
10318
10319 case UNOP_NEG:
10320 case UNOP_LOGICAL_NOT:
10321 case UNOP_COMPLEMENT:
10322 case UNOP_ADDR:
10323 case UNOP_HIGH:
10324 case UNOP_CAST:
10325
10326 case UNOP_CAST_TYPE:
10327 case UNOP_REINTERPRET_CAST:
10328 case UNOP_DYNAMIC_CAST:
10329 /* Unary, binary and ternary operators: We have to check
10330 their operands. If they are constant, then so is the
10331 result of that operation. For instance, if A and B are
10332 determined to be constants, then so is "A + B".
10333
10334 UNOP_IND is one exception to the rule above, because the
10335 value of *ADDR is not necessarily a constant, even when
10336 ADDR is. */
10337 break;
10338
10339 case OP_VAR_VALUE:
10340 /* Check whether the associated symbol is a constant.
10341
10342 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10343 possible that a buggy compiler could mark a variable as
10344 constant even when it is not, and TYPE_CONST would return
10345 true in this case, while SYMBOL_CLASS wouldn't.
10346
10347 We also have to check for function symbols because they
10348 are always constant. */
10349 {
10350 struct symbol *s = exp->elts[i + 2].symbol;
10351
10352 if (SYMBOL_CLASS (s) != LOC_BLOCK
10353 && SYMBOL_CLASS (s) != LOC_CONST
10354 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10355 return 0;
10356 break;
10357 }
10358
10359 /* The default action is to return 0 because we are using
10360 the optimistic approach here: If we don't know something,
10361 then it is not a constant. */
10362 default:
10363 return 0;
10364 }
10365 }
10366
10367 return 1;
10368 }
10369
10370 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10371
10372 static void
10373 dtor_watchpoint (struct breakpoint *self)
10374 {
10375 struct watchpoint *w = (struct watchpoint *) self;
10376
10377 xfree (w->cond_exp);
10378 xfree (w->exp);
10379 xfree (w->exp_string);
10380 xfree (w->exp_string_reparse);
10381 value_free (w->val);
10382
10383 base_breakpoint_ops.dtor (self);
10384 }
10385
10386 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10387
10388 static void
10389 re_set_watchpoint (struct breakpoint *b)
10390 {
10391 struct watchpoint *w = (struct watchpoint *) b;
10392
10393 /* Watchpoint can be either on expression using entirely global
10394 variables, or it can be on local variables.
10395
10396 Watchpoints of the first kind are never auto-deleted, and even
10397 persist across program restarts. Since they can use variables
10398 from shared libraries, we need to reparse expression as libraries
10399 are loaded and unloaded.
10400
10401 Watchpoints on local variables can also change meaning as result
10402 of solib event. For example, if a watchpoint uses both a local
10403 and a global variables in expression, it's a local watchpoint,
10404 but unloading of a shared library will make the expression
10405 invalid. This is not a very common use case, but we still
10406 re-evaluate expression, to avoid surprises to the user.
10407
10408 Note that for local watchpoints, we re-evaluate it only if
10409 watchpoints frame id is still valid. If it's not, it means the
10410 watchpoint is out of scope and will be deleted soon. In fact,
10411 I'm not sure we'll ever be called in this case.
10412
10413 If a local watchpoint's frame id is still valid, then
10414 w->exp_valid_block is likewise valid, and we can safely use it.
10415
10416 Don't do anything about disabled watchpoints, since they will be
10417 reevaluated again when enabled. */
10418 update_watchpoint (w, 1 /* reparse */);
10419 }
10420
10421 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10422
10423 static int
10424 insert_watchpoint (struct bp_location *bl)
10425 {
10426 struct watchpoint *w = (struct watchpoint *) bl->owner;
10427 int length = w->exact ? 1 : bl->length;
10428
10429 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10430 w->cond_exp);
10431 }
10432
10433 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10434
10435 static int
10436 remove_watchpoint (struct bp_location *bl)
10437 {
10438 struct watchpoint *w = (struct watchpoint *) bl->owner;
10439 int length = w->exact ? 1 : bl->length;
10440
10441 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10442 w->cond_exp);
10443 }
10444
10445 static int
10446 breakpoint_hit_watchpoint (const struct bp_location *bl,
10447 struct address_space *aspace, CORE_ADDR bp_addr,
10448 const struct target_waitstatus *ws)
10449 {
10450 struct breakpoint *b = bl->owner;
10451 struct watchpoint *w = (struct watchpoint *) b;
10452
10453 /* Continuable hardware watchpoints are treated as non-existent if the
10454 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10455 some data address). Otherwise gdb won't stop on a break instruction
10456 in the code (not from a breakpoint) when a hardware watchpoint has
10457 been defined. Also skip watchpoints which we know did not trigger
10458 (did not match the data address). */
10459 if (is_hardware_watchpoint (b)
10460 && w->watchpoint_triggered == watch_triggered_no)
10461 return 0;
10462
10463 return 1;
10464 }
10465
10466 static void
10467 check_status_watchpoint (bpstat bs)
10468 {
10469 gdb_assert (is_watchpoint (bs->breakpoint_at));
10470
10471 bpstat_check_watchpoint (bs);
10472 }
10473
10474 /* Implement the "resources_needed" breakpoint_ops method for
10475 hardware watchpoints. */
10476
10477 static int
10478 resources_needed_watchpoint (const struct bp_location *bl)
10479 {
10480 struct watchpoint *w = (struct watchpoint *) bl->owner;
10481 int length = w->exact? 1 : bl->length;
10482
10483 return target_region_ok_for_hw_watchpoint (bl->address, length);
10484 }
10485
10486 /* Implement the "works_in_software_mode" breakpoint_ops method for
10487 hardware watchpoints. */
10488
10489 static int
10490 works_in_software_mode_watchpoint (const struct breakpoint *b)
10491 {
10492 /* Read and access watchpoints only work with hardware support. */
10493 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10494 }
10495
10496 static enum print_stop_action
10497 print_it_watchpoint (bpstat bs)
10498 {
10499 struct cleanup *old_chain;
10500 struct breakpoint *b;
10501 struct ui_file *stb;
10502 enum print_stop_action result;
10503 struct watchpoint *w;
10504 struct ui_out *uiout = current_uiout;
10505
10506 gdb_assert (bs->bp_location_at != NULL);
10507
10508 b = bs->breakpoint_at;
10509 w = (struct watchpoint *) b;
10510
10511 stb = mem_fileopen ();
10512 old_chain = make_cleanup_ui_file_delete (stb);
10513
10514 switch (b->type)
10515 {
10516 case bp_watchpoint:
10517 case bp_hardware_watchpoint:
10518 annotate_watchpoint (b->number);
10519 if (ui_out_is_mi_like_p (uiout))
10520 ui_out_field_string
10521 (uiout, "reason",
10522 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10523 mention (b);
10524 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10525 ui_out_text (uiout, "\nOld value = ");
10526 watchpoint_value_print (bs->old_val, stb);
10527 ui_out_field_stream (uiout, "old", stb);
10528 ui_out_text (uiout, "\nNew value = ");
10529 watchpoint_value_print (w->val, stb);
10530 ui_out_field_stream (uiout, "new", stb);
10531 ui_out_text (uiout, "\n");
10532 /* More than one watchpoint may have been triggered. */
10533 result = PRINT_UNKNOWN;
10534 break;
10535
10536 case bp_read_watchpoint:
10537 if (ui_out_is_mi_like_p (uiout))
10538 ui_out_field_string
10539 (uiout, "reason",
10540 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10541 mention (b);
10542 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10543 ui_out_text (uiout, "\nValue = ");
10544 watchpoint_value_print (w->val, stb);
10545 ui_out_field_stream (uiout, "value", stb);
10546 ui_out_text (uiout, "\n");
10547 result = PRINT_UNKNOWN;
10548 break;
10549
10550 case bp_access_watchpoint:
10551 if (bs->old_val != NULL)
10552 {
10553 annotate_watchpoint (b->number);
10554 if (ui_out_is_mi_like_p (uiout))
10555 ui_out_field_string
10556 (uiout, "reason",
10557 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10558 mention (b);
10559 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10560 ui_out_text (uiout, "\nOld value = ");
10561 watchpoint_value_print (bs->old_val, stb);
10562 ui_out_field_stream (uiout, "old", stb);
10563 ui_out_text (uiout, "\nNew value = ");
10564 }
10565 else
10566 {
10567 mention (b);
10568 if (ui_out_is_mi_like_p (uiout))
10569 ui_out_field_string
10570 (uiout, "reason",
10571 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10572 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10573 ui_out_text (uiout, "\nValue = ");
10574 }
10575 watchpoint_value_print (w->val, stb);
10576 ui_out_field_stream (uiout, "new", stb);
10577 ui_out_text (uiout, "\n");
10578 result = PRINT_UNKNOWN;
10579 break;
10580 default:
10581 result = PRINT_UNKNOWN;
10582 }
10583
10584 do_cleanups (old_chain);
10585 return result;
10586 }
10587
10588 /* Implement the "print_mention" breakpoint_ops method for hardware
10589 watchpoints. */
10590
10591 static void
10592 print_mention_watchpoint (struct breakpoint *b)
10593 {
10594 struct cleanup *ui_out_chain;
10595 struct watchpoint *w = (struct watchpoint *) b;
10596 struct ui_out *uiout = current_uiout;
10597
10598 switch (b->type)
10599 {
10600 case bp_watchpoint:
10601 ui_out_text (uiout, "Watchpoint ");
10602 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10603 break;
10604 case bp_hardware_watchpoint:
10605 ui_out_text (uiout, "Hardware watchpoint ");
10606 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10607 break;
10608 case bp_read_watchpoint:
10609 ui_out_text (uiout, "Hardware read watchpoint ");
10610 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10611 break;
10612 case bp_access_watchpoint:
10613 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10614 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10615 break;
10616 default:
10617 internal_error (__FILE__, __LINE__,
10618 _("Invalid hardware watchpoint type."));
10619 }
10620
10621 ui_out_field_int (uiout, "number", b->number);
10622 ui_out_text (uiout, ": ");
10623 ui_out_field_string (uiout, "exp", w->exp_string);
10624 do_cleanups (ui_out_chain);
10625 }
10626
10627 /* Implement the "print_recreate" breakpoint_ops method for
10628 watchpoints. */
10629
10630 static void
10631 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10632 {
10633 struct watchpoint *w = (struct watchpoint *) b;
10634
10635 switch (b->type)
10636 {
10637 case bp_watchpoint:
10638 case bp_hardware_watchpoint:
10639 fprintf_unfiltered (fp, "watch");
10640 break;
10641 case bp_read_watchpoint:
10642 fprintf_unfiltered (fp, "rwatch");
10643 break;
10644 case bp_access_watchpoint:
10645 fprintf_unfiltered (fp, "awatch");
10646 break;
10647 default:
10648 internal_error (__FILE__, __LINE__,
10649 _("Invalid watchpoint type."));
10650 }
10651
10652 fprintf_unfiltered (fp, " %s", w->exp_string);
10653 print_recreate_thread (b, fp);
10654 }
10655
10656 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10657
10658 static struct breakpoint_ops watchpoint_breakpoint_ops;
10659
10660 /* Implement the "insert" breakpoint_ops method for
10661 masked hardware watchpoints. */
10662
10663 static int
10664 insert_masked_watchpoint (struct bp_location *bl)
10665 {
10666 struct watchpoint *w = (struct watchpoint *) bl->owner;
10667
10668 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10669 bl->watchpoint_type);
10670 }
10671
10672 /* Implement the "remove" breakpoint_ops method for
10673 masked hardware watchpoints. */
10674
10675 static int
10676 remove_masked_watchpoint (struct bp_location *bl)
10677 {
10678 struct watchpoint *w = (struct watchpoint *) bl->owner;
10679
10680 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10681 bl->watchpoint_type);
10682 }
10683
10684 /* Implement the "resources_needed" breakpoint_ops method for
10685 masked hardware watchpoints. */
10686
10687 static int
10688 resources_needed_masked_watchpoint (const struct bp_location *bl)
10689 {
10690 struct watchpoint *w = (struct watchpoint *) bl->owner;
10691
10692 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10693 }
10694
10695 /* Implement the "works_in_software_mode" breakpoint_ops method for
10696 masked hardware watchpoints. */
10697
10698 static int
10699 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10700 {
10701 return 0;
10702 }
10703
10704 /* Implement the "print_it" breakpoint_ops method for
10705 masked hardware watchpoints. */
10706
10707 static enum print_stop_action
10708 print_it_masked_watchpoint (bpstat bs)
10709 {
10710 struct breakpoint *b = bs->breakpoint_at;
10711 struct ui_out *uiout = current_uiout;
10712
10713 /* Masked watchpoints have only one location. */
10714 gdb_assert (b->loc && b->loc->next == NULL);
10715
10716 switch (b->type)
10717 {
10718 case bp_hardware_watchpoint:
10719 annotate_watchpoint (b->number);
10720 if (ui_out_is_mi_like_p (uiout))
10721 ui_out_field_string
10722 (uiout, "reason",
10723 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10724 break;
10725
10726 case bp_read_watchpoint:
10727 if (ui_out_is_mi_like_p (uiout))
10728 ui_out_field_string
10729 (uiout, "reason",
10730 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10731 break;
10732
10733 case bp_access_watchpoint:
10734 if (ui_out_is_mi_like_p (uiout))
10735 ui_out_field_string
10736 (uiout, "reason",
10737 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10738 break;
10739 default:
10740 internal_error (__FILE__, __LINE__,
10741 _("Invalid hardware watchpoint type."));
10742 }
10743
10744 mention (b);
10745 ui_out_text (uiout, _("\n\
10746 Check the underlying instruction at PC for the memory\n\
10747 address and value which triggered this watchpoint.\n"));
10748 ui_out_text (uiout, "\n");
10749
10750 /* More than one watchpoint may have been triggered. */
10751 return PRINT_UNKNOWN;
10752 }
10753
10754 /* Implement the "print_one_detail" breakpoint_ops method for
10755 masked hardware watchpoints. */
10756
10757 static void
10758 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10759 struct ui_out *uiout)
10760 {
10761 struct watchpoint *w = (struct watchpoint *) b;
10762
10763 /* Masked watchpoints have only one location. */
10764 gdb_assert (b->loc && b->loc->next == NULL);
10765
10766 ui_out_text (uiout, "\tmask ");
10767 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10768 ui_out_text (uiout, "\n");
10769 }
10770
10771 /* Implement the "print_mention" breakpoint_ops method for
10772 masked hardware watchpoints. */
10773
10774 static void
10775 print_mention_masked_watchpoint (struct breakpoint *b)
10776 {
10777 struct watchpoint *w = (struct watchpoint *) b;
10778 struct ui_out *uiout = current_uiout;
10779 struct cleanup *ui_out_chain;
10780
10781 switch (b->type)
10782 {
10783 case bp_hardware_watchpoint:
10784 ui_out_text (uiout, "Masked hardware watchpoint ");
10785 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10786 break;
10787 case bp_read_watchpoint:
10788 ui_out_text (uiout, "Masked hardware read watchpoint ");
10789 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10790 break;
10791 case bp_access_watchpoint:
10792 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10793 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10794 break;
10795 default:
10796 internal_error (__FILE__, __LINE__,
10797 _("Invalid hardware watchpoint type."));
10798 }
10799
10800 ui_out_field_int (uiout, "number", b->number);
10801 ui_out_text (uiout, ": ");
10802 ui_out_field_string (uiout, "exp", w->exp_string);
10803 do_cleanups (ui_out_chain);
10804 }
10805
10806 /* Implement the "print_recreate" breakpoint_ops method for
10807 masked hardware watchpoints. */
10808
10809 static void
10810 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10811 {
10812 struct watchpoint *w = (struct watchpoint *) b;
10813 char tmp[40];
10814
10815 switch (b->type)
10816 {
10817 case bp_hardware_watchpoint:
10818 fprintf_unfiltered (fp, "watch");
10819 break;
10820 case bp_read_watchpoint:
10821 fprintf_unfiltered (fp, "rwatch");
10822 break;
10823 case bp_access_watchpoint:
10824 fprintf_unfiltered (fp, "awatch");
10825 break;
10826 default:
10827 internal_error (__FILE__, __LINE__,
10828 _("Invalid hardware watchpoint type."));
10829 }
10830
10831 sprintf_vma (tmp, w->hw_wp_mask);
10832 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10833 print_recreate_thread (b, fp);
10834 }
10835
10836 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10837
10838 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10839
10840 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10841
10842 static int
10843 is_masked_watchpoint (const struct breakpoint *b)
10844 {
10845 return b->ops == &masked_watchpoint_breakpoint_ops;
10846 }
10847
10848 /* accessflag: hw_write: watch write,
10849 hw_read: watch read,
10850 hw_access: watch access (read or write) */
10851 static void
10852 watch_command_1 (const char *arg, int accessflag, int from_tty,
10853 int just_location, int internal)
10854 {
10855 volatile struct gdb_exception e;
10856 struct breakpoint *b, *scope_breakpoint = NULL;
10857 struct expression *exp;
10858 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10859 struct value *val, *mark, *result;
10860 struct frame_info *frame;
10861 const char *exp_start = NULL;
10862 const char *exp_end = NULL;
10863 const char *tok, *end_tok;
10864 int toklen = -1;
10865 const char *cond_start = NULL;
10866 const char *cond_end = NULL;
10867 enum bptype bp_type;
10868 int thread = -1;
10869 int pc = 0;
10870 /* Flag to indicate whether we are going to use masks for
10871 the hardware watchpoint. */
10872 int use_mask = 0;
10873 CORE_ADDR mask = 0;
10874 struct watchpoint *w;
10875 char *expression;
10876 struct cleanup *back_to;
10877
10878 /* Make sure that we actually have parameters to parse. */
10879 if (arg != NULL && arg[0] != '\0')
10880 {
10881 const char *value_start;
10882
10883 exp_end = arg + strlen (arg);
10884
10885 /* Look for "parameter value" pairs at the end
10886 of the arguments string. */
10887 for (tok = exp_end - 1; tok > arg; tok--)
10888 {
10889 /* Skip whitespace at the end of the argument list. */
10890 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10891 tok--;
10892
10893 /* Find the beginning of the last token.
10894 This is the value of the parameter. */
10895 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10896 tok--;
10897 value_start = tok + 1;
10898
10899 /* Skip whitespace. */
10900 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10901 tok--;
10902
10903 end_tok = tok;
10904
10905 /* Find the beginning of the second to last token.
10906 This is the parameter itself. */
10907 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10908 tok--;
10909 tok++;
10910 toklen = end_tok - tok + 1;
10911
10912 if (toklen == 6 && !strncmp (tok, "thread", 6))
10913 {
10914 /* At this point we've found a "thread" token, which means
10915 the user is trying to set a watchpoint that triggers
10916 only in a specific thread. */
10917 char *endp;
10918
10919 if (thread != -1)
10920 error(_("You can specify only one thread."));
10921
10922 /* Extract the thread ID from the next token. */
10923 thread = strtol (value_start, &endp, 0);
10924
10925 /* Check if the user provided a valid numeric value for the
10926 thread ID. */
10927 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10928 error (_("Invalid thread ID specification %s."), value_start);
10929
10930 /* Check if the thread actually exists. */
10931 if (!valid_thread_id (thread))
10932 invalid_thread_id_error (thread);
10933 }
10934 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10935 {
10936 /* We've found a "mask" token, which means the user wants to
10937 create a hardware watchpoint that is going to have the mask
10938 facility. */
10939 struct value *mask_value, *mark;
10940
10941 if (use_mask)
10942 error(_("You can specify only one mask."));
10943
10944 use_mask = just_location = 1;
10945
10946 mark = value_mark ();
10947 mask_value = parse_to_comma_and_eval (&value_start);
10948 mask = value_as_address (mask_value);
10949 value_free_to_mark (mark);
10950 }
10951 else
10952 /* We didn't recognize what we found. We should stop here. */
10953 break;
10954
10955 /* Truncate the string and get rid of the "parameter value" pair before
10956 the arguments string is parsed by the parse_exp_1 function. */
10957 exp_end = tok;
10958 }
10959 }
10960 else
10961 exp_end = arg;
10962
10963 /* Parse the rest of the arguments. From here on out, everything
10964 is in terms of a newly allocated string instead of the original
10965 ARG. */
10966 innermost_block = NULL;
10967 expression = savestring (arg, exp_end - arg);
10968 back_to = make_cleanup (xfree, expression);
10969 exp_start = arg = expression;
10970 exp = parse_exp_1 (&arg, 0, 0, 0);
10971 exp_end = arg;
10972 /* Remove trailing whitespace from the expression before saving it.
10973 This makes the eventual display of the expression string a bit
10974 prettier. */
10975 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10976 --exp_end;
10977
10978 /* Checking if the expression is not constant. */
10979 if (watchpoint_exp_is_const (exp))
10980 {
10981 int len;
10982
10983 len = exp_end - exp_start;
10984 while (len > 0 && isspace (exp_start[len - 1]))
10985 len--;
10986 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10987 }
10988
10989 exp_valid_block = innermost_block;
10990 mark = value_mark ();
10991 fetch_subexp_value (exp, &pc, &val, &result, NULL);
10992
10993 if (just_location)
10994 {
10995 int ret;
10996
10997 exp_valid_block = NULL;
10998 val = value_addr (result);
10999 release_value (val);
11000 value_free_to_mark (mark);
11001
11002 if (use_mask)
11003 {
11004 ret = target_masked_watch_num_registers (value_as_address (val),
11005 mask);
11006 if (ret == -1)
11007 error (_("This target does not support masked watchpoints."));
11008 else if (ret == -2)
11009 error (_("Invalid mask or memory region."));
11010 }
11011 }
11012 else if (val != NULL)
11013 release_value (val);
11014
11015 tok = skip_spaces_const (arg);
11016 end_tok = skip_to_space_const (tok);
11017
11018 toklen = end_tok - tok;
11019 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11020 {
11021 struct expression *cond;
11022
11023 innermost_block = NULL;
11024 tok = cond_start = end_tok + 1;
11025 cond = parse_exp_1 (&tok, 0, 0, 0);
11026
11027 /* The watchpoint expression may not be local, but the condition
11028 may still be. E.g.: `watch global if local > 0'. */
11029 cond_exp_valid_block = innermost_block;
11030
11031 xfree (cond);
11032 cond_end = tok;
11033 }
11034 if (*tok)
11035 error (_("Junk at end of command."));
11036
11037 if (accessflag == hw_read)
11038 bp_type = bp_read_watchpoint;
11039 else if (accessflag == hw_access)
11040 bp_type = bp_access_watchpoint;
11041 else
11042 bp_type = bp_hardware_watchpoint;
11043
11044 frame = block_innermost_frame (exp_valid_block);
11045
11046 /* If the expression is "local", then set up a "watchpoint scope"
11047 breakpoint at the point where we've left the scope of the watchpoint
11048 expression. Create the scope breakpoint before the watchpoint, so
11049 that we will encounter it first in bpstat_stop_status. */
11050 if (exp_valid_block && frame)
11051 {
11052 if (frame_id_p (frame_unwind_caller_id (frame)))
11053 {
11054 scope_breakpoint
11055 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11056 frame_unwind_caller_pc (frame),
11057 bp_watchpoint_scope,
11058 &momentary_breakpoint_ops);
11059
11060 scope_breakpoint->enable_state = bp_enabled;
11061
11062 /* Automatically delete the breakpoint when it hits. */
11063 scope_breakpoint->disposition = disp_del;
11064
11065 /* Only break in the proper frame (help with recursion). */
11066 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11067
11068 /* Set the address at which we will stop. */
11069 scope_breakpoint->loc->gdbarch
11070 = frame_unwind_caller_arch (frame);
11071 scope_breakpoint->loc->requested_address
11072 = frame_unwind_caller_pc (frame);
11073 scope_breakpoint->loc->address
11074 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11075 scope_breakpoint->loc->requested_address,
11076 scope_breakpoint->type);
11077 }
11078 }
11079
11080 /* Now set up the breakpoint. */
11081
11082 w = XCNEW (struct watchpoint);
11083 b = &w->base;
11084 if (use_mask)
11085 init_raw_breakpoint_without_location (b, NULL, bp_type,
11086 &masked_watchpoint_breakpoint_ops);
11087 else
11088 init_raw_breakpoint_without_location (b, NULL, bp_type,
11089 &watchpoint_breakpoint_ops);
11090 b->thread = thread;
11091 b->disposition = disp_donttouch;
11092 b->pspace = current_program_space;
11093 w->exp = exp;
11094 w->exp_valid_block = exp_valid_block;
11095 w->cond_exp_valid_block = cond_exp_valid_block;
11096 if (just_location)
11097 {
11098 struct type *t = value_type (val);
11099 CORE_ADDR addr = value_as_address (val);
11100 char *name;
11101
11102 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11103 name = type_to_string (t);
11104
11105 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11106 core_addr_to_string (addr));
11107 xfree (name);
11108
11109 w->exp_string = xstrprintf ("-location %.*s",
11110 (int) (exp_end - exp_start), exp_start);
11111
11112 /* The above expression is in C. */
11113 b->language = language_c;
11114 }
11115 else
11116 w->exp_string = savestring (exp_start, exp_end - exp_start);
11117
11118 if (use_mask)
11119 {
11120 w->hw_wp_mask = mask;
11121 }
11122 else
11123 {
11124 w->val = val;
11125 w->val_valid = 1;
11126 }
11127
11128 if (cond_start)
11129 b->cond_string = savestring (cond_start, cond_end - cond_start);
11130 else
11131 b->cond_string = 0;
11132
11133 if (frame)
11134 {
11135 w->watchpoint_frame = get_frame_id (frame);
11136 w->watchpoint_thread = inferior_ptid;
11137 }
11138 else
11139 {
11140 w->watchpoint_frame = null_frame_id;
11141 w->watchpoint_thread = null_ptid;
11142 }
11143
11144 if (scope_breakpoint != NULL)
11145 {
11146 /* The scope breakpoint is related to the watchpoint. We will
11147 need to act on them together. */
11148 b->related_breakpoint = scope_breakpoint;
11149 scope_breakpoint->related_breakpoint = b;
11150 }
11151
11152 if (!just_location)
11153 value_free_to_mark (mark);
11154
11155 TRY_CATCH (e, RETURN_MASK_ALL)
11156 {
11157 /* Finally update the new watchpoint. This creates the locations
11158 that should be inserted. */
11159 update_watchpoint (w, 1);
11160 }
11161 if (e.reason < 0)
11162 {
11163 delete_breakpoint (b);
11164 throw_exception (e);
11165 }
11166
11167 install_breakpoint (internal, b, 1);
11168 do_cleanups (back_to);
11169 }
11170
11171 /* Return count of debug registers needed to watch the given expression.
11172 If the watchpoint cannot be handled in hardware return zero. */
11173
11174 static int
11175 can_use_hardware_watchpoint (struct value *v)
11176 {
11177 int found_memory_cnt = 0;
11178 struct value *head = v;
11179
11180 /* Did the user specifically forbid us to use hardware watchpoints? */
11181 if (!can_use_hw_watchpoints)
11182 return 0;
11183
11184 /* Make sure that the value of the expression depends only upon
11185 memory contents, and values computed from them within GDB. If we
11186 find any register references or function calls, we can't use a
11187 hardware watchpoint.
11188
11189 The idea here is that evaluating an expression generates a series
11190 of values, one holding the value of every subexpression. (The
11191 expression a*b+c has five subexpressions: a, b, a*b, c, and
11192 a*b+c.) GDB's values hold almost enough information to establish
11193 the criteria given above --- they identify memory lvalues,
11194 register lvalues, computed values, etcetera. So we can evaluate
11195 the expression, and then scan the chain of values that leaves
11196 behind to decide whether we can detect any possible change to the
11197 expression's final value using only hardware watchpoints.
11198
11199 However, I don't think that the values returned by inferior
11200 function calls are special in any way. So this function may not
11201 notice that an expression involving an inferior function call
11202 can't be watched with hardware watchpoints. FIXME. */
11203 for (; v; v = value_next (v))
11204 {
11205 if (VALUE_LVAL (v) == lval_memory)
11206 {
11207 if (v != head && value_lazy (v))
11208 /* A lazy memory lvalue in the chain is one that GDB never
11209 needed to fetch; we either just used its address (e.g.,
11210 `a' in `a.b') or we never needed it at all (e.g., `a'
11211 in `a,b'). This doesn't apply to HEAD; if that is
11212 lazy then it was not readable, but watch it anyway. */
11213 ;
11214 else
11215 {
11216 /* Ahh, memory we actually used! Check if we can cover
11217 it with hardware watchpoints. */
11218 struct type *vtype = check_typedef (value_type (v));
11219
11220 /* We only watch structs and arrays if user asked for it
11221 explicitly, never if they just happen to appear in a
11222 middle of some value chain. */
11223 if (v == head
11224 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11225 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11226 {
11227 CORE_ADDR vaddr = value_address (v);
11228 int len;
11229 int num_regs;
11230
11231 len = (target_exact_watchpoints
11232 && is_scalar_type_recursive (vtype))?
11233 1 : TYPE_LENGTH (value_type (v));
11234
11235 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11236 if (!num_regs)
11237 return 0;
11238 else
11239 found_memory_cnt += num_regs;
11240 }
11241 }
11242 }
11243 else if (VALUE_LVAL (v) != not_lval
11244 && deprecated_value_modifiable (v) == 0)
11245 return 0; /* These are values from the history (e.g., $1). */
11246 else if (VALUE_LVAL (v) == lval_register)
11247 return 0; /* Cannot watch a register with a HW watchpoint. */
11248 }
11249
11250 /* The expression itself looks suitable for using a hardware
11251 watchpoint, but give the target machine a chance to reject it. */
11252 return found_memory_cnt;
11253 }
11254
11255 void
11256 watch_command_wrapper (char *arg, int from_tty, int internal)
11257 {
11258 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11259 }
11260
11261 /* A helper function that looks for the "-location" argument and then
11262 calls watch_command_1. */
11263
11264 static void
11265 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11266 {
11267 int just_location = 0;
11268
11269 if (arg
11270 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11271 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11272 {
11273 arg = skip_spaces (arg);
11274 just_location = 1;
11275 }
11276
11277 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11278 }
11279
11280 static void
11281 watch_command (char *arg, int from_tty)
11282 {
11283 watch_maybe_just_location (arg, hw_write, from_tty);
11284 }
11285
11286 void
11287 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11288 {
11289 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11290 }
11291
11292 static void
11293 rwatch_command (char *arg, int from_tty)
11294 {
11295 watch_maybe_just_location (arg, hw_read, from_tty);
11296 }
11297
11298 void
11299 awatch_command_wrapper (char *arg, int from_tty, int internal)
11300 {
11301 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11302 }
11303
11304 static void
11305 awatch_command (char *arg, int from_tty)
11306 {
11307 watch_maybe_just_location (arg, hw_access, from_tty);
11308 }
11309 \f
11310
11311 /* Helper routines for the until_command routine in infcmd.c. Here
11312 because it uses the mechanisms of breakpoints. */
11313
11314 struct until_break_command_continuation_args
11315 {
11316 struct breakpoint *breakpoint;
11317 struct breakpoint *breakpoint2;
11318 int thread_num;
11319 };
11320
11321 /* This function is called by fetch_inferior_event via the
11322 cmd_continuation pointer, to complete the until command. It takes
11323 care of cleaning up the temporary breakpoints set up by the until
11324 command. */
11325 static void
11326 until_break_command_continuation (void *arg, int err)
11327 {
11328 struct until_break_command_continuation_args *a = arg;
11329
11330 delete_breakpoint (a->breakpoint);
11331 if (a->breakpoint2)
11332 delete_breakpoint (a->breakpoint2);
11333 delete_longjmp_breakpoint (a->thread_num);
11334 }
11335
11336 void
11337 until_break_command (char *arg, int from_tty, int anywhere)
11338 {
11339 struct symtabs_and_lines sals;
11340 struct symtab_and_line sal;
11341 struct frame_info *frame;
11342 struct gdbarch *frame_gdbarch;
11343 struct frame_id stack_frame_id;
11344 struct frame_id caller_frame_id;
11345 struct breakpoint *breakpoint;
11346 struct breakpoint *breakpoint2 = NULL;
11347 struct cleanup *old_chain;
11348 int thread;
11349 struct thread_info *tp;
11350
11351 clear_proceed_status ();
11352
11353 /* Set a breakpoint where the user wants it and at return from
11354 this function. */
11355
11356 if (last_displayed_sal_is_valid ())
11357 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11358 get_last_displayed_symtab (),
11359 get_last_displayed_line ());
11360 else
11361 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11362 (struct symtab *) NULL, 0);
11363
11364 if (sals.nelts != 1)
11365 error (_("Couldn't get information on specified line."));
11366
11367 sal = sals.sals[0];
11368 xfree (sals.sals); /* malloc'd, so freed. */
11369
11370 if (*arg)
11371 error (_("Junk at end of arguments."));
11372
11373 resolve_sal_pc (&sal);
11374
11375 tp = inferior_thread ();
11376 thread = tp->num;
11377
11378 old_chain = make_cleanup (null_cleanup, NULL);
11379
11380 /* Note linespec handling above invalidates the frame chain.
11381 Installing a breakpoint also invalidates the frame chain (as it
11382 may need to switch threads), so do any frame handling before
11383 that. */
11384
11385 frame = get_selected_frame (NULL);
11386 frame_gdbarch = get_frame_arch (frame);
11387 stack_frame_id = get_stack_frame_id (frame);
11388 caller_frame_id = frame_unwind_caller_id (frame);
11389
11390 /* Keep within the current frame, or in frames called by the current
11391 one. */
11392
11393 if (frame_id_p (caller_frame_id))
11394 {
11395 struct symtab_and_line sal2;
11396
11397 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11398 sal2.pc = frame_unwind_caller_pc (frame);
11399 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11400 sal2,
11401 caller_frame_id,
11402 bp_until);
11403 make_cleanup_delete_breakpoint (breakpoint2);
11404
11405 set_longjmp_breakpoint (tp, caller_frame_id);
11406 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11407 }
11408
11409 /* set_momentary_breakpoint could invalidate FRAME. */
11410 frame = NULL;
11411
11412 if (anywhere)
11413 /* If the user told us to continue until a specified location,
11414 we don't specify a frame at which we need to stop. */
11415 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11416 null_frame_id, bp_until);
11417 else
11418 /* Otherwise, specify the selected frame, because we want to stop
11419 only at the very same frame. */
11420 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11421 stack_frame_id, bp_until);
11422 make_cleanup_delete_breakpoint (breakpoint);
11423
11424 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11425
11426 /* If we are running asynchronously, and proceed call above has
11427 actually managed to start the target, arrange for breakpoints to
11428 be deleted when the target stops. Otherwise, we're already
11429 stopped and delete breakpoints via cleanup chain. */
11430
11431 if (target_can_async_p () && is_running (inferior_ptid))
11432 {
11433 struct until_break_command_continuation_args *args;
11434 args = xmalloc (sizeof (*args));
11435
11436 args->breakpoint = breakpoint;
11437 args->breakpoint2 = breakpoint2;
11438 args->thread_num = thread;
11439
11440 discard_cleanups (old_chain);
11441 add_continuation (inferior_thread (),
11442 until_break_command_continuation, args,
11443 xfree);
11444 }
11445 else
11446 do_cleanups (old_chain);
11447 }
11448
11449 /* This function attempts to parse an optional "if <cond>" clause
11450 from the arg string. If one is not found, it returns NULL.
11451
11452 Else, it returns a pointer to the condition string. (It does not
11453 attempt to evaluate the string against a particular block.) And,
11454 it updates arg to point to the first character following the parsed
11455 if clause in the arg string. */
11456
11457 char *
11458 ep_parse_optional_if_clause (char **arg)
11459 {
11460 char *cond_string;
11461
11462 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11463 return NULL;
11464
11465 /* Skip the "if" keyword. */
11466 (*arg) += 2;
11467
11468 /* Skip any extra leading whitespace, and record the start of the
11469 condition string. */
11470 *arg = skip_spaces (*arg);
11471 cond_string = *arg;
11472
11473 /* Assume that the condition occupies the remainder of the arg
11474 string. */
11475 (*arg) += strlen (cond_string);
11476
11477 return cond_string;
11478 }
11479
11480 /* Commands to deal with catching events, such as signals, exceptions,
11481 process start/exit, etc. */
11482
11483 typedef enum
11484 {
11485 catch_fork_temporary, catch_vfork_temporary,
11486 catch_fork_permanent, catch_vfork_permanent
11487 }
11488 catch_fork_kind;
11489
11490 static void
11491 catch_fork_command_1 (char *arg, int from_tty,
11492 struct cmd_list_element *command)
11493 {
11494 struct gdbarch *gdbarch = get_current_arch ();
11495 char *cond_string = NULL;
11496 catch_fork_kind fork_kind;
11497 int tempflag;
11498
11499 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11500 tempflag = (fork_kind == catch_fork_temporary
11501 || fork_kind == catch_vfork_temporary);
11502
11503 if (!arg)
11504 arg = "";
11505 arg = skip_spaces (arg);
11506
11507 /* The allowed syntax is:
11508 catch [v]fork
11509 catch [v]fork if <cond>
11510
11511 First, check if there's an if clause. */
11512 cond_string = ep_parse_optional_if_clause (&arg);
11513
11514 if ((*arg != '\0') && !isspace (*arg))
11515 error (_("Junk at end of arguments."));
11516
11517 /* If this target supports it, create a fork or vfork catchpoint
11518 and enable reporting of such events. */
11519 switch (fork_kind)
11520 {
11521 case catch_fork_temporary:
11522 case catch_fork_permanent:
11523 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11524 &catch_fork_breakpoint_ops);
11525 break;
11526 case catch_vfork_temporary:
11527 case catch_vfork_permanent:
11528 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11529 &catch_vfork_breakpoint_ops);
11530 break;
11531 default:
11532 error (_("unsupported or unknown fork kind; cannot catch it"));
11533 break;
11534 }
11535 }
11536
11537 static void
11538 catch_exec_command_1 (char *arg, int from_tty,
11539 struct cmd_list_element *command)
11540 {
11541 struct exec_catchpoint *c;
11542 struct gdbarch *gdbarch = get_current_arch ();
11543 int tempflag;
11544 char *cond_string = NULL;
11545
11546 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11547
11548 if (!arg)
11549 arg = "";
11550 arg = skip_spaces (arg);
11551
11552 /* The allowed syntax is:
11553 catch exec
11554 catch exec if <cond>
11555
11556 First, check if there's an if clause. */
11557 cond_string = ep_parse_optional_if_clause (&arg);
11558
11559 if ((*arg != '\0') && !isspace (*arg))
11560 error (_("Junk at end of arguments."));
11561
11562 c = XNEW (struct exec_catchpoint);
11563 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11564 &catch_exec_breakpoint_ops);
11565 c->exec_pathname = NULL;
11566
11567 install_breakpoint (0, &c->base, 1);
11568 }
11569
11570 void
11571 init_ada_exception_breakpoint (struct breakpoint *b,
11572 struct gdbarch *gdbarch,
11573 struct symtab_and_line sal,
11574 char *addr_string,
11575 const struct breakpoint_ops *ops,
11576 int tempflag,
11577 int from_tty)
11578 {
11579 if (from_tty)
11580 {
11581 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11582 if (!loc_gdbarch)
11583 loc_gdbarch = gdbarch;
11584
11585 describe_other_breakpoints (loc_gdbarch,
11586 sal.pspace, sal.pc, sal.section, -1);
11587 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11588 version for exception catchpoints, because two catchpoints
11589 used for different exception names will use the same address.
11590 In this case, a "breakpoint ... also set at..." warning is
11591 unproductive. Besides, the warning phrasing is also a bit
11592 inappropriate, we should use the word catchpoint, and tell
11593 the user what type of catchpoint it is. The above is good
11594 enough for now, though. */
11595 }
11596
11597 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11598
11599 b->enable_state = bp_enabled;
11600 b->disposition = tempflag ? disp_del : disp_donttouch;
11601 b->addr_string = addr_string;
11602 b->language = language_ada;
11603 }
11604
11605 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11606 filter list, or NULL if no filtering is required. */
11607 static VEC(int) *
11608 catch_syscall_split_args (char *arg)
11609 {
11610 VEC(int) *result = NULL;
11611 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11612
11613 while (*arg != '\0')
11614 {
11615 int i, syscall_number;
11616 char *endptr;
11617 char cur_name[128];
11618 struct syscall s;
11619
11620 /* Skip whitespace. */
11621 arg = skip_spaces (arg);
11622
11623 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11624 cur_name[i] = arg[i];
11625 cur_name[i] = '\0';
11626 arg += i;
11627
11628 /* Check if the user provided a syscall name or a number. */
11629 syscall_number = (int) strtol (cur_name, &endptr, 0);
11630 if (*endptr == '\0')
11631 get_syscall_by_number (syscall_number, &s);
11632 else
11633 {
11634 /* We have a name. Let's check if it's valid and convert it
11635 to a number. */
11636 get_syscall_by_name (cur_name, &s);
11637
11638 if (s.number == UNKNOWN_SYSCALL)
11639 /* Here we have to issue an error instead of a warning,
11640 because GDB cannot do anything useful if there's no
11641 syscall number to be caught. */
11642 error (_("Unknown syscall name '%s'."), cur_name);
11643 }
11644
11645 /* Ok, it's valid. */
11646 VEC_safe_push (int, result, s.number);
11647 }
11648
11649 discard_cleanups (cleanup);
11650 return result;
11651 }
11652
11653 /* Implement the "catch syscall" command. */
11654
11655 static void
11656 catch_syscall_command_1 (char *arg, int from_tty,
11657 struct cmd_list_element *command)
11658 {
11659 int tempflag;
11660 VEC(int) *filter;
11661 struct syscall s;
11662 struct gdbarch *gdbarch = get_current_arch ();
11663
11664 /* Checking if the feature if supported. */
11665 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11666 error (_("The feature 'catch syscall' is not supported on \
11667 this architecture yet."));
11668
11669 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11670
11671 arg = skip_spaces (arg);
11672
11673 /* We need to do this first "dummy" translation in order
11674 to get the syscall XML file loaded or, most important,
11675 to display a warning to the user if there's no XML file
11676 for his/her architecture. */
11677 get_syscall_by_number (0, &s);
11678
11679 /* The allowed syntax is:
11680 catch syscall
11681 catch syscall <name | number> [<name | number> ... <name | number>]
11682
11683 Let's check if there's a syscall name. */
11684
11685 if (arg != NULL)
11686 filter = catch_syscall_split_args (arg);
11687 else
11688 filter = NULL;
11689
11690 create_syscall_event_catchpoint (tempflag, filter,
11691 &catch_syscall_breakpoint_ops);
11692 }
11693
11694 static void
11695 catch_command (char *arg, int from_tty)
11696 {
11697 error (_("Catch requires an event name."));
11698 }
11699 \f
11700
11701 static void
11702 tcatch_command (char *arg, int from_tty)
11703 {
11704 error (_("Catch requires an event name."));
11705 }
11706
11707 /* A qsort comparison function that sorts breakpoints in order. */
11708
11709 static int
11710 compare_breakpoints (const void *a, const void *b)
11711 {
11712 const breakpoint_p *ba = a;
11713 uintptr_t ua = (uintptr_t) *ba;
11714 const breakpoint_p *bb = b;
11715 uintptr_t ub = (uintptr_t) *bb;
11716
11717 if ((*ba)->number < (*bb)->number)
11718 return -1;
11719 else if ((*ba)->number > (*bb)->number)
11720 return 1;
11721
11722 /* Now sort by address, in case we see, e..g, two breakpoints with
11723 the number 0. */
11724 if (ua < ub)
11725 return -1;
11726 return ua > ub ? 1 : 0;
11727 }
11728
11729 /* Delete breakpoints by address or line. */
11730
11731 static void
11732 clear_command (char *arg, int from_tty)
11733 {
11734 struct breakpoint *b, *prev;
11735 VEC(breakpoint_p) *found = 0;
11736 int ix;
11737 int default_match;
11738 struct symtabs_and_lines sals;
11739 struct symtab_and_line sal;
11740 int i;
11741 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11742
11743 if (arg)
11744 {
11745 sals = decode_line_with_current_source (arg,
11746 (DECODE_LINE_FUNFIRSTLINE
11747 | DECODE_LINE_LIST_MODE));
11748 make_cleanup (xfree, sals.sals);
11749 default_match = 0;
11750 }
11751 else
11752 {
11753 sals.sals = (struct symtab_and_line *)
11754 xmalloc (sizeof (struct symtab_and_line));
11755 make_cleanup (xfree, sals.sals);
11756 init_sal (&sal); /* Initialize to zeroes. */
11757
11758 /* Set sal's line, symtab, pc, and pspace to the values
11759 corresponding to the last call to print_frame_info. If the
11760 codepoint is not valid, this will set all the fields to 0. */
11761 get_last_displayed_sal (&sal);
11762 if (sal.symtab == 0)
11763 error (_("No source file specified."));
11764
11765 sals.sals[0] = sal;
11766 sals.nelts = 1;
11767
11768 default_match = 1;
11769 }
11770
11771 /* We don't call resolve_sal_pc here. That's not as bad as it
11772 seems, because all existing breakpoints typically have both
11773 file/line and pc set. So, if clear is given file/line, we can
11774 match this to existing breakpoint without obtaining pc at all.
11775
11776 We only support clearing given the address explicitly
11777 present in breakpoint table. Say, we've set breakpoint
11778 at file:line. There were several PC values for that file:line,
11779 due to optimization, all in one block.
11780
11781 We've picked one PC value. If "clear" is issued with another
11782 PC corresponding to the same file:line, the breakpoint won't
11783 be cleared. We probably can still clear the breakpoint, but
11784 since the other PC value is never presented to user, user
11785 can only find it by guessing, and it does not seem important
11786 to support that. */
11787
11788 /* For each line spec given, delete bps which correspond to it. Do
11789 it in two passes, solely to preserve the current behavior that
11790 from_tty is forced true if we delete more than one
11791 breakpoint. */
11792
11793 found = NULL;
11794 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11795 for (i = 0; i < sals.nelts; i++)
11796 {
11797 const char *sal_fullname;
11798
11799 /* If exact pc given, clear bpts at that pc.
11800 If line given (pc == 0), clear all bpts on specified line.
11801 If defaulting, clear all bpts on default line
11802 or at default pc.
11803
11804 defaulting sal.pc != 0 tests to do
11805
11806 0 1 pc
11807 1 1 pc _and_ line
11808 0 0 line
11809 1 0 <can't happen> */
11810
11811 sal = sals.sals[i];
11812 sal_fullname = (sal.symtab == NULL
11813 ? NULL : symtab_to_fullname (sal.symtab));
11814
11815 /* Find all matching breakpoints and add them to 'found'. */
11816 ALL_BREAKPOINTS (b)
11817 {
11818 int match = 0;
11819 /* Are we going to delete b? */
11820 if (b->type != bp_none && !is_watchpoint (b))
11821 {
11822 struct bp_location *loc = b->loc;
11823 for (; loc; loc = loc->next)
11824 {
11825 /* If the user specified file:line, don't allow a PC
11826 match. This matches historical gdb behavior. */
11827 int pc_match = (!sal.explicit_line
11828 && sal.pc
11829 && (loc->pspace == sal.pspace)
11830 && (loc->address == sal.pc)
11831 && (!section_is_overlay (loc->section)
11832 || loc->section == sal.section));
11833 int line_match = 0;
11834
11835 if ((default_match || sal.explicit_line)
11836 && loc->symtab != NULL
11837 && sal_fullname != NULL
11838 && sal.pspace == loc->pspace
11839 && loc->line_number == sal.line
11840 && filename_cmp (symtab_to_fullname (loc->symtab),
11841 sal_fullname) == 0)
11842 line_match = 1;
11843
11844 if (pc_match || line_match)
11845 {
11846 match = 1;
11847 break;
11848 }
11849 }
11850 }
11851
11852 if (match)
11853 VEC_safe_push(breakpoint_p, found, b);
11854 }
11855 }
11856
11857 /* Now go thru the 'found' chain and delete them. */
11858 if (VEC_empty(breakpoint_p, found))
11859 {
11860 if (arg)
11861 error (_("No breakpoint at %s."), arg);
11862 else
11863 error (_("No breakpoint at this line."));
11864 }
11865
11866 /* Remove duplicates from the vec. */
11867 qsort (VEC_address (breakpoint_p, found),
11868 VEC_length (breakpoint_p, found),
11869 sizeof (breakpoint_p),
11870 compare_breakpoints);
11871 prev = VEC_index (breakpoint_p, found, 0);
11872 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11873 {
11874 if (b == prev)
11875 {
11876 VEC_ordered_remove (breakpoint_p, found, ix);
11877 --ix;
11878 }
11879 }
11880
11881 if (VEC_length(breakpoint_p, found) > 1)
11882 from_tty = 1; /* Always report if deleted more than one. */
11883 if (from_tty)
11884 {
11885 if (VEC_length(breakpoint_p, found) == 1)
11886 printf_unfiltered (_("Deleted breakpoint "));
11887 else
11888 printf_unfiltered (_("Deleted breakpoints "));
11889 }
11890
11891 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11892 {
11893 if (from_tty)
11894 printf_unfiltered ("%d ", b->number);
11895 delete_breakpoint (b);
11896 }
11897 if (from_tty)
11898 putchar_unfiltered ('\n');
11899
11900 do_cleanups (cleanups);
11901 }
11902 \f
11903 /* Delete breakpoint in BS if they are `delete' breakpoints and
11904 all breakpoints that are marked for deletion, whether hit or not.
11905 This is called after any breakpoint is hit, or after errors. */
11906
11907 void
11908 breakpoint_auto_delete (bpstat bs)
11909 {
11910 struct breakpoint *b, *b_tmp;
11911
11912 for (; bs; bs = bs->next)
11913 if (bs->breakpoint_at
11914 && bs->breakpoint_at->disposition == disp_del
11915 && bs->stop)
11916 delete_breakpoint (bs->breakpoint_at);
11917
11918 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11919 {
11920 if (b->disposition == disp_del_at_next_stop)
11921 delete_breakpoint (b);
11922 }
11923 }
11924
11925 /* A comparison function for bp_location AP and BP being interfaced to
11926 qsort. Sort elements primarily by their ADDRESS (no matter what
11927 does breakpoint_address_is_meaningful say for its OWNER),
11928 secondarily by ordering first bp_permanent OWNERed elements and
11929 terciarily just ensuring the array is sorted stable way despite
11930 qsort being an unstable algorithm. */
11931
11932 static int
11933 bp_location_compare (const void *ap, const void *bp)
11934 {
11935 struct bp_location *a = *(void **) ap;
11936 struct bp_location *b = *(void **) bp;
11937 /* A and B come from existing breakpoints having non-NULL OWNER. */
11938 int a_perm = a->owner->enable_state == bp_permanent;
11939 int b_perm = b->owner->enable_state == bp_permanent;
11940
11941 if (a->address != b->address)
11942 return (a->address > b->address) - (a->address < b->address);
11943
11944 /* Sort locations at the same address by their pspace number, keeping
11945 locations of the same inferior (in a multi-inferior environment)
11946 grouped. */
11947
11948 if (a->pspace->num != b->pspace->num)
11949 return ((a->pspace->num > b->pspace->num)
11950 - (a->pspace->num < b->pspace->num));
11951
11952 /* Sort permanent breakpoints first. */
11953 if (a_perm != b_perm)
11954 return (a_perm < b_perm) - (a_perm > b_perm);
11955
11956 /* Make the internal GDB representation stable across GDB runs
11957 where A and B memory inside GDB can differ. Breakpoint locations of
11958 the same type at the same address can be sorted in arbitrary order. */
11959
11960 if (a->owner->number != b->owner->number)
11961 return ((a->owner->number > b->owner->number)
11962 - (a->owner->number < b->owner->number));
11963
11964 return (a > b) - (a < b);
11965 }
11966
11967 /* Set bp_location_placed_address_before_address_max and
11968 bp_location_shadow_len_after_address_max according to the current
11969 content of the bp_location array. */
11970
11971 static void
11972 bp_location_target_extensions_update (void)
11973 {
11974 struct bp_location *bl, **blp_tmp;
11975
11976 bp_location_placed_address_before_address_max = 0;
11977 bp_location_shadow_len_after_address_max = 0;
11978
11979 ALL_BP_LOCATIONS (bl, blp_tmp)
11980 {
11981 CORE_ADDR start, end, addr;
11982
11983 if (!bp_location_has_shadow (bl))
11984 continue;
11985
11986 start = bl->target_info.placed_address;
11987 end = start + bl->target_info.shadow_len;
11988
11989 gdb_assert (bl->address >= start);
11990 addr = bl->address - start;
11991 if (addr > bp_location_placed_address_before_address_max)
11992 bp_location_placed_address_before_address_max = addr;
11993
11994 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11995
11996 gdb_assert (bl->address < end);
11997 addr = end - bl->address;
11998 if (addr > bp_location_shadow_len_after_address_max)
11999 bp_location_shadow_len_after_address_max = addr;
12000 }
12001 }
12002
12003 /* Download tracepoint locations if they haven't been. */
12004
12005 static void
12006 download_tracepoint_locations (void)
12007 {
12008 struct breakpoint *b;
12009 struct cleanup *old_chain;
12010
12011 if (!target_can_download_tracepoint ())
12012 return;
12013
12014 old_chain = save_current_space_and_thread ();
12015
12016 ALL_TRACEPOINTS (b)
12017 {
12018 struct bp_location *bl;
12019 struct tracepoint *t;
12020 int bp_location_downloaded = 0;
12021
12022 if ((b->type == bp_fast_tracepoint
12023 ? !may_insert_fast_tracepoints
12024 : !may_insert_tracepoints))
12025 continue;
12026
12027 for (bl = b->loc; bl; bl = bl->next)
12028 {
12029 /* In tracepoint, locations are _never_ duplicated, so
12030 should_be_inserted is equivalent to
12031 unduplicated_should_be_inserted. */
12032 if (!should_be_inserted (bl) || bl->inserted)
12033 continue;
12034
12035 switch_to_program_space_and_thread (bl->pspace);
12036
12037 target_download_tracepoint (bl);
12038
12039 bl->inserted = 1;
12040 bp_location_downloaded = 1;
12041 }
12042 t = (struct tracepoint *) b;
12043 t->number_on_target = b->number;
12044 if (bp_location_downloaded)
12045 observer_notify_breakpoint_modified (b);
12046 }
12047
12048 do_cleanups (old_chain);
12049 }
12050
12051 /* Swap the insertion/duplication state between two locations. */
12052
12053 static void
12054 swap_insertion (struct bp_location *left, struct bp_location *right)
12055 {
12056 const int left_inserted = left->inserted;
12057 const int left_duplicate = left->duplicate;
12058 const int left_needs_update = left->needs_update;
12059 const struct bp_target_info left_target_info = left->target_info;
12060
12061 /* Locations of tracepoints can never be duplicated. */
12062 if (is_tracepoint (left->owner))
12063 gdb_assert (!left->duplicate);
12064 if (is_tracepoint (right->owner))
12065 gdb_assert (!right->duplicate);
12066
12067 left->inserted = right->inserted;
12068 left->duplicate = right->duplicate;
12069 left->needs_update = right->needs_update;
12070 left->target_info = right->target_info;
12071 right->inserted = left_inserted;
12072 right->duplicate = left_duplicate;
12073 right->needs_update = left_needs_update;
12074 right->target_info = left_target_info;
12075 }
12076
12077 /* Force the re-insertion of the locations at ADDRESS. This is called
12078 once a new/deleted/modified duplicate location is found and we are evaluating
12079 conditions on the target's side. Such conditions need to be updated on
12080 the target. */
12081
12082 static void
12083 force_breakpoint_reinsertion (struct bp_location *bl)
12084 {
12085 struct bp_location **locp = NULL, **loc2p;
12086 struct bp_location *loc;
12087 CORE_ADDR address = 0;
12088 int pspace_num;
12089
12090 address = bl->address;
12091 pspace_num = bl->pspace->num;
12092
12093 /* This is only meaningful if the target is
12094 evaluating conditions and if the user has
12095 opted for condition evaluation on the target's
12096 side. */
12097 if (gdb_evaluates_breakpoint_condition_p ()
12098 || !target_supports_evaluation_of_breakpoint_conditions ())
12099 return;
12100
12101 /* Flag all breakpoint locations with this address and
12102 the same program space as the location
12103 as "its condition has changed". We need to
12104 update the conditions on the target's side. */
12105 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12106 {
12107 loc = *loc2p;
12108
12109 if (!is_breakpoint (loc->owner)
12110 || pspace_num != loc->pspace->num)
12111 continue;
12112
12113 /* Flag the location appropriately. We use a different state to
12114 let everyone know that we already updated the set of locations
12115 with addr bl->address and program space bl->pspace. This is so
12116 we don't have to keep calling these functions just to mark locations
12117 that have already been marked. */
12118 loc->condition_changed = condition_updated;
12119
12120 /* Free the agent expression bytecode as well. We will compute
12121 it later on. */
12122 if (loc->cond_bytecode)
12123 {
12124 free_agent_expr (loc->cond_bytecode);
12125 loc->cond_bytecode = NULL;
12126 }
12127 }
12128 }
12129
12130 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12131 into the inferior, only remove already-inserted locations that no
12132 longer should be inserted. Functions that delete a breakpoint or
12133 breakpoints should pass false, so that deleting a breakpoint
12134 doesn't have the side effect of inserting the locations of other
12135 breakpoints that are marked not-inserted, but should_be_inserted
12136 returns true on them.
12137
12138 This behaviour is useful is situations close to tear-down -- e.g.,
12139 after an exec, while the target still has execution, but breakpoint
12140 shadows of the previous executable image should *NOT* be restored
12141 to the new image; or before detaching, where the target still has
12142 execution and wants to delete breakpoints from GDB's lists, and all
12143 breakpoints had already been removed from the inferior. */
12144
12145 static void
12146 update_global_location_list (int should_insert)
12147 {
12148 struct breakpoint *b;
12149 struct bp_location **locp, *loc;
12150 struct cleanup *cleanups;
12151 /* Last breakpoint location address that was marked for update. */
12152 CORE_ADDR last_addr = 0;
12153 /* Last breakpoint location program space that was marked for update. */
12154 int last_pspace_num = -1;
12155
12156 /* Used in the duplicates detection below. When iterating over all
12157 bp_locations, points to the first bp_location of a given address.
12158 Breakpoints and watchpoints of different types are never
12159 duplicates of each other. Keep one pointer for each type of
12160 breakpoint/watchpoint, so we only need to loop over all locations
12161 once. */
12162 struct bp_location *bp_loc_first; /* breakpoint */
12163 struct bp_location *wp_loc_first; /* hardware watchpoint */
12164 struct bp_location *awp_loc_first; /* access watchpoint */
12165 struct bp_location *rwp_loc_first; /* read watchpoint */
12166
12167 /* Saved former bp_location array which we compare against the newly
12168 built bp_location from the current state of ALL_BREAKPOINTS. */
12169 struct bp_location **old_location, **old_locp;
12170 unsigned old_location_count;
12171
12172 old_location = bp_location;
12173 old_location_count = bp_location_count;
12174 bp_location = NULL;
12175 bp_location_count = 0;
12176 cleanups = make_cleanup (xfree, old_location);
12177
12178 ALL_BREAKPOINTS (b)
12179 for (loc = b->loc; loc; loc = loc->next)
12180 bp_location_count++;
12181
12182 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12183 locp = bp_location;
12184 ALL_BREAKPOINTS (b)
12185 for (loc = b->loc; loc; loc = loc->next)
12186 *locp++ = loc;
12187 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12188 bp_location_compare);
12189
12190 bp_location_target_extensions_update ();
12191
12192 /* Identify bp_location instances that are no longer present in the
12193 new list, and therefore should be freed. Note that it's not
12194 necessary that those locations should be removed from inferior --
12195 if there's another location at the same address (previously
12196 marked as duplicate), we don't need to remove/insert the
12197 location.
12198
12199 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12200 and former bp_location array state respectively. */
12201
12202 locp = bp_location;
12203 for (old_locp = old_location; old_locp < old_location + old_location_count;
12204 old_locp++)
12205 {
12206 struct bp_location *old_loc = *old_locp;
12207 struct bp_location **loc2p;
12208
12209 /* Tells if 'old_loc' is found among the new locations. If
12210 not, we have to free it. */
12211 int found_object = 0;
12212 /* Tells if the location should remain inserted in the target. */
12213 int keep_in_target = 0;
12214 int removed = 0;
12215
12216 /* Skip LOCP entries which will definitely never be needed.
12217 Stop either at or being the one matching OLD_LOC. */
12218 while (locp < bp_location + bp_location_count
12219 && (*locp)->address < old_loc->address)
12220 locp++;
12221
12222 for (loc2p = locp;
12223 (loc2p < bp_location + bp_location_count
12224 && (*loc2p)->address == old_loc->address);
12225 loc2p++)
12226 {
12227 /* Check if this is a new/duplicated location or a duplicated
12228 location that had its condition modified. If so, we want to send
12229 its condition to the target if evaluation of conditions is taking
12230 place there. */
12231 if ((*loc2p)->condition_changed == condition_modified
12232 && (last_addr != old_loc->address
12233 || last_pspace_num != old_loc->pspace->num))
12234 {
12235 force_breakpoint_reinsertion (*loc2p);
12236 last_pspace_num = old_loc->pspace->num;
12237 }
12238
12239 if (*loc2p == old_loc)
12240 found_object = 1;
12241 }
12242
12243 /* We have already handled this address, update it so that we don't
12244 have to go through updates again. */
12245 last_addr = old_loc->address;
12246
12247 /* Target-side condition evaluation: Handle deleted locations. */
12248 if (!found_object)
12249 force_breakpoint_reinsertion (old_loc);
12250
12251 /* If this location is no longer present, and inserted, look if
12252 there's maybe a new location at the same address. If so,
12253 mark that one inserted, and don't remove this one. This is
12254 needed so that we don't have a time window where a breakpoint
12255 at certain location is not inserted. */
12256
12257 if (old_loc->inserted)
12258 {
12259 /* If the location is inserted now, we might have to remove
12260 it. */
12261
12262 if (found_object && should_be_inserted (old_loc))
12263 {
12264 /* The location is still present in the location list,
12265 and still should be inserted. Don't do anything. */
12266 keep_in_target = 1;
12267 }
12268 else
12269 {
12270 /* This location still exists, but it won't be kept in the
12271 target since it may have been disabled. We proceed to
12272 remove its target-side condition. */
12273
12274 /* The location is either no longer present, or got
12275 disabled. See if there's another location at the
12276 same address, in which case we don't need to remove
12277 this one from the target. */
12278
12279 /* OLD_LOC comes from existing struct breakpoint. */
12280 if (breakpoint_address_is_meaningful (old_loc->owner))
12281 {
12282 for (loc2p = locp;
12283 (loc2p < bp_location + bp_location_count
12284 && (*loc2p)->address == old_loc->address);
12285 loc2p++)
12286 {
12287 struct bp_location *loc2 = *loc2p;
12288
12289 if (breakpoint_locations_match (loc2, old_loc))
12290 {
12291 /* Read watchpoint locations are switched to
12292 access watchpoints, if the former are not
12293 supported, but the latter are. */
12294 if (is_hardware_watchpoint (old_loc->owner))
12295 {
12296 gdb_assert (is_hardware_watchpoint (loc2->owner));
12297 loc2->watchpoint_type = old_loc->watchpoint_type;
12298 }
12299
12300 /* loc2 is a duplicated location. We need to check
12301 if it should be inserted in case it will be
12302 unduplicated. */
12303 if (loc2 != old_loc
12304 && unduplicated_should_be_inserted (loc2))
12305 {
12306 swap_insertion (old_loc, loc2);
12307 keep_in_target = 1;
12308 break;
12309 }
12310 }
12311 }
12312 }
12313 }
12314
12315 if (!keep_in_target)
12316 {
12317 if (remove_breakpoint (old_loc, mark_uninserted))
12318 {
12319 /* This is just about all we can do. We could keep
12320 this location on the global list, and try to
12321 remove it next time, but there's no particular
12322 reason why we will succeed next time.
12323
12324 Note that at this point, old_loc->owner is still
12325 valid, as delete_breakpoint frees the breakpoint
12326 only after calling us. */
12327 printf_filtered (_("warning: Error removing "
12328 "breakpoint %d\n"),
12329 old_loc->owner->number);
12330 }
12331 removed = 1;
12332 }
12333 }
12334
12335 if (!found_object)
12336 {
12337 if (removed && non_stop
12338 && breakpoint_address_is_meaningful (old_loc->owner)
12339 && !is_hardware_watchpoint (old_loc->owner))
12340 {
12341 /* This location was removed from the target. In
12342 non-stop mode, a race condition is possible where
12343 we've removed a breakpoint, but stop events for that
12344 breakpoint are already queued and will arrive later.
12345 We apply an heuristic to be able to distinguish such
12346 SIGTRAPs from other random SIGTRAPs: we keep this
12347 breakpoint location for a bit, and will retire it
12348 after we see some number of events. The theory here
12349 is that reporting of events should, "on the average",
12350 be fair, so after a while we'll see events from all
12351 threads that have anything of interest, and no longer
12352 need to keep this breakpoint location around. We
12353 don't hold locations forever so to reduce chances of
12354 mistaking a non-breakpoint SIGTRAP for a breakpoint
12355 SIGTRAP.
12356
12357 The heuristic failing can be disastrous on
12358 decr_pc_after_break targets.
12359
12360 On decr_pc_after_break targets, like e.g., x86-linux,
12361 if we fail to recognize a late breakpoint SIGTRAP,
12362 because events_till_retirement has reached 0 too
12363 soon, we'll fail to do the PC adjustment, and report
12364 a random SIGTRAP to the user. When the user resumes
12365 the inferior, it will most likely immediately crash
12366 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12367 corrupted, because of being resumed e.g., in the
12368 middle of a multi-byte instruction, or skipped a
12369 one-byte instruction. This was actually seen happen
12370 on native x86-linux, and should be less rare on
12371 targets that do not support new thread events, like
12372 remote, due to the heuristic depending on
12373 thread_count.
12374
12375 Mistaking a random SIGTRAP for a breakpoint trap
12376 causes similar symptoms (PC adjustment applied when
12377 it shouldn't), but then again, playing with SIGTRAPs
12378 behind the debugger's back is asking for trouble.
12379
12380 Since hardware watchpoint traps are always
12381 distinguishable from other traps, so we don't need to
12382 apply keep hardware watchpoint moribund locations
12383 around. We simply always ignore hardware watchpoint
12384 traps we can no longer explain. */
12385
12386 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12387 old_loc->owner = NULL;
12388
12389 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12390 }
12391 else
12392 {
12393 old_loc->owner = NULL;
12394 decref_bp_location (&old_loc);
12395 }
12396 }
12397 }
12398
12399 /* Rescan breakpoints at the same address and section, marking the
12400 first one as "first" and any others as "duplicates". This is so
12401 that the bpt instruction is only inserted once. If we have a
12402 permanent breakpoint at the same place as BPT, make that one the
12403 official one, and the rest as duplicates. Permanent breakpoints
12404 are sorted first for the same address.
12405
12406 Do the same for hardware watchpoints, but also considering the
12407 watchpoint's type (regular/access/read) and length. */
12408
12409 bp_loc_first = NULL;
12410 wp_loc_first = NULL;
12411 awp_loc_first = NULL;
12412 rwp_loc_first = NULL;
12413 ALL_BP_LOCATIONS (loc, locp)
12414 {
12415 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12416 non-NULL. */
12417 struct bp_location **loc_first_p;
12418 b = loc->owner;
12419
12420 if (!unduplicated_should_be_inserted (loc)
12421 || !breakpoint_address_is_meaningful (b)
12422 /* Don't detect duplicate for tracepoint locations because they are
12423 never duplicated. See the comments in field `duplicate' of
12424 `struct bp_location'. */
12425 || is_tracepoint (b))
12426 {
12427 /* Clear the condition modification flag. */
12428 loc->condition_changed = condition_unchanged;
12429 continue;
12430 }
12431
12432 /* Permanent breakpoint should always be inserted. */
12433 if (b->enable_state == bp_permanent && ! loc->inserted)
12434 internal_error (__FILE__, __LINE__,
12435 _("allegedly permanent breakpoint is not "
12436 "actually inserted"));
12437
12438 if (b->type == bp_hardware_watchpoint)
12439 loc_first_p = &wp_loc_first;
12440 else if (b->type == bp_read_watchpoint)
12441 loc_first_p = &rwp_loc_first;
12442 else if (b->type == bp_access_watchpoint)
12443 loc_first_p = &awp_loc_first;
12444 else
12445 loc_first_p = &bp_loc_first;
12446
12447 if (*loc_first_p == NULL
12448 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12449 || !breakpoint_locations_match (loc, *loc_first_p))
12450 {
12451 *loc_first_p = loc;
12452 loc->duplicate = 0;
12453
12454 if (is_breakpoint (loc->owner) && loc->condition_changed)
12455 {
12456 loc->needs_update = 1;
12457 /* Clear the condition modification flag. */
12458 loc->condition_changed = condition_unchanged;
12459 }
12460 continue;
12461 }
12462
12463
12464 /* This and the above ensure the invariant that the first location
12465 is not duplicated, and is the inserted one.
12466 All following are marked as duplicated, and are not inserted. */
12467 if (loc->inserted)
12468 swap_insertion (loc, *loc_first_p);
12469 loc->duplicate = 1;
12470
12471 /* Clear the condition modification flag. */
12472 loc->condition_changed = condition_unchanged;
12473
12474 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12475 && b->enable_state != bp_permanent)
12476 internal_error (__FILE__, __LINE__,
12477 _("another breakpoint was inserted on top of "
12478 "a permanent breakpoint"));
12479 }
12480
12481 if (breakpoints_always_inserted_mode ()
12482 && (have_live_inferiors ()
12483 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12484 {
12485 if (should_insert)
12486 insert_breakpoint_locations ();
12487 else
12488 {
12489 /* Though should_insert is false, we may need to update conditions
12490 on the target's side if it is evaluating such conditions. We
12491 only update conditions for locations that are marked
12492 "needs_update". */
12493 update_inserted_breakpoint_locations ();
12494 }
12495 }
12496
12497 if (should_insert)
12498 download_tracepoint_locations ();
12499
12500 do_cleanups (cleanups);
12501 }
12502
12503 void
12504 breakpoint_retire_moribund (void)
12505 {
12506 struct bp_location *loc;
12507 int ix;
12508
12509 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12510 if (--(loc->events_till_retirement) == 0)
12511 {
12512 decref_bp_location (&loc);
12513 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12514 --ix;
12515 }
12516 }
12517
12518 static void
12519 update_global_location_list_nothrow (int inserting)
12520 {
12521 volatile struct gdb_exception e;
12522
12523 TRY_CATCH (e, RETURN_MASK_ERROR)
12524 update_global_location_list (inserting);
12525 }
12526
12527 /* Clear BKP from a BPS. */
12528
12529 static void
12530 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12531 {
12532 bpstat bs;
12533
12534 for (bs = bps; bs; bs = bs->next)
12535 if (bs->breakpoint_at == bpt)
12536 {
12537 bs->breakpoint_at = NULL;
12538 bs->old_val = NULL;
12539 /* bs->commands will be freed later. */
12540 }
12541 }
12542
12543 /* Callback for iterate_over_threads. */
12544 static int
12545 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12546 {
12547 struct breakpoint *bpt = data;
12548
12549 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12550 return 0;
12551 }
12552
12553 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12554 callbacks. */
12555
12556 static void
12557 say_where (struct breakpoint *b)
12558 {
12559 struct value_print_options opts;
12560
12561 get_user_print_options (&opts);
12562
12563 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12564 single string. */
12565 if (b->loc == NULL)
12566 {
12567 printf_filtered (_(" (%s) pending."), b->addr_string);
12568 }
12569 else
12570 {
12571 if (opts.addressprint || b->loc->symtab == NULL)
12572 {
12573 printf_filtered (" at ");
12574 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12575 gdb_stdout);
12576 }
12577 if (b->loc->symtab != NULL)
12578 {
12579 /* If there is a single location, we can print the location
12580 more nicely. */
12581 if (b->loc->next == NULL)
12582 printf_filtered (": file %s, line %d.",
12583 symtab_to_filename_for_display (b->loc->symtab),
12584 b->loc->line_number);
12585 else
12586 /* This is not ideal, but each location may have a
12587 different file name, and this at least reflects the
12588 real situation somewhat. */
12589 printf_filtered (": %s.", b->addr_string);
12590 }
12591
12592 if (b->loc->next)
12593 {
12594 struct bp_location *loc = b->loc;
12595 int n = 0;
12596 for (; loc; loc = loc->next)
12597 ++n;
12598 printf_filtered (" (%d locations)", n);
12599 }
12600 }
12601 }
12602
12603 /* Default bp_location_ops methods. */
12604
12605 static void
12606 bp_location_dtor (struct bp_location *self)
12607 {
12608 xfree (self->cond);
12609 if (self->cond_bytecode)
12610 free_agent_expr (self->cond_bytecode);
12611 xfree (self->function_name);
12612 }
12613
12614 static const struct bp_location_ops bp_location_ops =
12615 {
12616 bp_location_dtor
12617 };
12618
12619 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12620 inherit from. */
12621
12622 static void
12623 base_breakpoint_dtor (struct breakpoint *self)
12624 {
12625 decref_counted_command_line (&self->commands);
12626 xfree (self->cond_string);
12627 xfree (self->extra_string);
12628 xfree (self->addr_string);
12629 xfree (self->filter);
12630 xfree (self->addr_string_range_end);
12631 }
12632
12633 static struct bp_location *
12634 base_breakpoint_allocate_location (struct breakpoint *self)
12635 {
12636 struct bp_location *loc;
12637
12638 loc = XNEW (struct bp_location);
12639 init_bp_location (loc, &bp_location_ops, self);
12640 return loc;
12641 }
12642
12643 static void
12644 base_breakpoint_re_set (struct breakpoint *b)
12645 {
12646 /* Nothing to re-set. */
12647 }
12648
12649 #define internal_error_pure_virtual_called() \
12650 gdb_assert_not_reached ("pure virtual function called")
12651
12652 static int
12653 base_breakpoint_insert_location (struct bp_location *bl)
12654 {
12655 internal_error_pure_virtual_called ();
12656 }
12657
12658 static int
12659 base_breakpoint_remove_location (struct bp_location *bl)
12660 {
12661 internal_error_pure_virtual_called ();
12662 }
12663
12664 static int
12665 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12666 struct address_space *aspace,
12667 CORE_ADDR bp_addr,
12668 const struct target_waitstatus *ws)
12669 {
12670 internal_error_pure_virtual_called ();
12671 }
12672
12673 static void
12674 base_breakpoint_check_status (bpstat bs)
12675 {
12676 /* Always stop. */
12677 }
12678
12679 /* A "works_in_software_mode" breakpoint_ops method that just internal
12680 errors. */
12681
12682 static int
12683 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12684 {
12685 internal_error_pure_virtual_called ();
12686 }
12687
12688 /* A "resources_needed" breakpoint_ops method that just internal
12689 errors. */
12690
12691 static int
12692 base_breakpoint_resources_needed (const struct bp_location *bl)
12693 {
12694 internal_error_pure_virtual_called ();
12695 }
12696
12697 static enum print_stop_action
12698 base_breakpoint_print_it (bpstat bs)
12699 {
12700 internal_error_pure_virtual_called ();
12701 }
12702
12703 static void
12704 base_breakpoint_print_one_detail (const struct breakpoint *self,
12705 struct ui_out *uiout)
12706 {
12707 /* nothing */
12708 }
12709
12710 static void
12711 base_breakpoint_print_mention (struct breakpoint *b)
12712 {
12713 internal_error_pure_virtual_called ();
12714 }
12715
12716 static void
12717 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12718 {
12719 internal_error_pure_virtual_called ();
12720 }
12721
12722 static void
12723 base_breakpoint_create_sals_from_address (char **arg,
12724 struct linespec_result *canonical,
12725 enum bptype type_wanted,
12726 char *addr_start,
12727 char **copy_arg)
12728 {
12729 internal_error_pure_virtual_called ();
12730 }
12731
12732 static void
12733 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12734 struct linespec_result *c,
12735 struct linespec_sals *lsal,
12736 char *cond_string,
12737 char *extra_string,
12738 enum bptype type_wanted,
12739 enum bpdisp disposition,
12740 int thread,
12741 int task, int ignore_count,
12742 const struct breakpoint_ops *o,
12743 int from_tty, int enabled,
12744 int internal, unsigned flags)
12745 {
12746 internal_error_pure_virtual_called ();
12747 }
12748
12749 static void
12750 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12751 struct symtabs_and_lines *sals)
12752 {
12753 internal_error_pure_virtual_called ();
12754 }
12755
12756 /* The default 'explains_signal' method. */
12757
12758 static enum bpstat_signal_value
12759 base_breakpoint_explains_signal (struct breakpoint *b)
12760 {
12761 return BPSTAT_SIGNAL_HIDE;
12762 }
12763
12764 struct breakpoint_ops base_breakpoint_ops =
12765 {
12766 base_breakpoint_dtor,
12767 base_breakpoint_allocate_location,
12768 base_breakpoint_re_set,
12769 base_breakpoint_insert_location,
12770 base_breakpoint_remove_location,
12771 base_breakpoint_breakpoint_hit,
12772 base_breakpoint_check_status,
12773 base_breakpoint_resources_needed,
12774 base_breakpoint_works_in_software_mode,
12775 base_breakpoint_print_it,
12776 NULL,
12777 base_breakpoint_print_one_detail,
12778 base_breakpoint_print_mention,
12779 base_breakpoint_print_recreate,
12780 base_breakpoint_create_sals_from_address,
12781 base_breakpoint_create_breakpoints_sal,
12782 base_breakpoint_decode_linespec,
12783 base_breakpoint_explains_signal
12784 };
12785
12786 /* Default breakpoint_ops methods. */
12787
12788 static void
12789 bkpt_re_set (struct breakpoint *b)
12790 {
12791 /* FIXME: is this still reachable? */
12792 if (b->addr_string == NULL)
12793 {
12794 /* Anything without a string can't be re-set. */
12795 delete_breakpoint (b);
12796 return;
12797 }
12798
12799 breakpoint_re_set_default (b);
12800 }
12801
12802 static int
12803 bkpt_insert_location (struct bp_location *bl)
12804 {
12805 if (bl->loc_type == bp_loc_hardware_breakpoint)
12806 return target_insert_hw_breakpoint (bl->gdbarch,
12807 &bl->target_info);
12808 else
12809 return target_insert_breakpoint (bl->gdbarch,
12810 &bl->target_info);
12811 }
12812
12813 static int
12814 bkpt_remove_location (struct bp_location *bl)
12815 {
12816 if (bl->loc_type == bp_loc_hardware_breakpoint)
12817 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12818 else
12819 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12820 }
12821
12822 static int
12823 bkpt_breakpoint_hit (const struct bp_location *bl,
12824 struct address_space *aspace, CORE_ADDR bp_addr,
12825 const struct target_waitstatus *ws)
12826 {
12827 if (ws->kind != TARGET_WAITKIND_STOPPED
12828 || ws->value.sig != GDB_SIGNAL_TRAP)
12829 return 0;
12830
12831 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12832 aspace, bp_addr))
12833 return 0;
12834
12835 if (overlay_debugging /* unmapped overlay section */
12836 && section_is_overlay (bl->section)
12837 && !section_is_mapped (bl->section))
12838 return 0;
12839
12840 return 1;
12841 }
12842
12843 static int
12844 bkpt_resources_needed (const struct bp_location *bl)
12845 {
12846 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12847
12848 return 1;
12849 }
12850
12851 static enum print_stop_action
12852 bkpt_print_it (bpstat bs)
12853 {
12854 struct breakpoint *b;
12855 const struct bp_location *bl;
12856 int bp_temp;
12857 struct ui_out *uiout = current_uiout;
12858
12859 gdb_assert (bs->bp_location_at != NULL);
12860
12861 bl = bs->bp_location_at;
12862 b = bs->breakpoint_at;
12863
12864 bp_temp = b->disposition == disp_del;
12865 if (bl->address != bl->requested_address)
12866 breakpoint_adjustment_warning (bl->requested_address,
12867 bl->address,
12868 b->number, 1);
12869 annotate_breakpoint (b->number);
12870 if (bp_temp)
12871 ui_out_text (uiout, "\nTemporary breakpoint ");
12872 else
12873 ui_out_text (uiout, "\nBreakpoint ");
12874 if (ui_out_is_mi_like_p (uiout))
12875 {
12876 ui_out_field_string (uiout, "reason",
12877 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12878 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12879 }
12880 ui_out_field_int (uiout, "bkptno", b->number);
12881 ui_out_text (uiout, ", ");
12882
12883 return PRINT_SRC_AND_LOC;
12884 }
12885
12886 static void
12887 bkpt_print_mention (struct breakpoint *b)
12888 {
12889 if (ui_out_is_mi_like_p (current_uiout))
12890 return;
12891
12892 switch (b->type)
12893 {
12894 case bp_breakpoint:
12895 case bp_gnu_ifunc_resolver:
12896 if (b->disposition == disp_del)
12897 printf_filtered (_("Temporary breakpoint"));
12898 else
12899 printf_filtered (_("Breakpoint"));
12900 printf_filtered (_(" %d"), b->number);
12901 if (b->type == bp_gnu_ifunc_resolver)
12902 printf_filtered (_(" at gnu-indirect-function resolver"));
12903 break;
12904 case bp_hardware_breakpoint:
12905 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12906 break;
12907 case bp_dprintf:
12908 printf_filtered (_("Dprintf %d"), b->number);
12909 break;
12910 }
12911
12912 say_where (b);
12913 }
12914
12915 static void
12916 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12917 {
12918 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12919 fprintf_unfiltered (fp, "tbreak");
12920 else if (tp->type == bp_breakpoint)
12921 fprintf_unfiltered (fp, "break");
12922 else if (tp->type == bp_hardware_breakpoint
12923 && tp->disposition == disp_del)
12924 fprintf_unfiltered (fp, "thbreak");
12925 else if (tp->type == bp_hardware_breakpoint)
12926 fprintf_unfiltered (fp, "hbreak");
12927 else
12928 internal_error (__FILE__, __LINE__,
12929 _("unhandled breakpoint type %d"), (int) tp->type);
12930
12931 fprintf_unfiltered (fp, " %s", tp->addr_string);
12932 print_recreate_thread (tp, fp);
12933 }
12934
12935 static void
12936 bkpt_create_sals_from_address (char **arg,
12937 struct linespec_result *canonical,
12938 enum bptype type_wanted,
12939 char *addr_start, char **copy_arg)
12940 {
12941 create_sals_from_address_default (arg, canonical, type_wanted,
12942 addr_start, copy_arg);
12943 }
12944
12945 static void
12946 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12947 struct linespec_result *canonical,
12948 struct linespec_sals *lsal,
12949 char *cond_string,
12950 char *extra_string,
12951 enum bptype type_wanted,
12952 enum bpdisp disposition,
12953 int thread,
12954 int task, int ignore_count,
12955 const struct breakpoint_ops *ops,
12956 int from_tty, int enabled,
12957 int internal, unsigned flags)
12958 {
12959 create_breakpoints_sal_default (gdbarch, canonical, lsal,
12960 cond_string, extra_string,
12961 type_wanted,
12962 disposition, thread, task,
12963 ignore_count, ops, from_tty,
12964 enabled, internal, flags);
12965 }
12966
12967 static void
12968 bkpt_decode_linespec (struct breakpoint *b, char **s,
12969 struct symtabs_and_lines *sals)
12970 {
12971 decode_linespec_default (b, s, sals);
12972 }
12973
12974 /* Virtual table for internal breakpoints. */
12975
12976 static void
12977 internal_bkpt_re_set (struct breakpoint *b)
12978 {
12979 switch (b->type)
12980 {
12981 /* Delete overlay event and longjmp master breakpoints; they
12982 will be reset later by breakpoint_re_set. */
12983 case bp_overlay_event:
12984 case bp_longjmp_master:
12985 case bp_std_terminate_master:
12986 case bp_exception_master:
12987 delete_breakpoint (b);
12988 break;
12989
12990 /* This breakpoint is special, it's set up when the inferior
12991 starts and we really don't want to touch it. */
12992 case bp_shlib_event:
12993
12994 /* Like bp_shlib_event, this breakpoint type is special. Once
12995 it is set up, we do not want to touch it. */
12996 case bp_thread_event:
12997 break;
12998 }
12999 }
13000
13001 static void
13002 internal_bkpt_check_status (bpstat bs)
13003 {
13004 if (bs->breakpoint_at->type == bp_shlib_event)
13005 {
13006 /* If requested, stop when the dynamic linker notifies GDB of
13007 events. This allows the user to get control and place
13008 breakpoints in initializer routines for dynamically loaded
13009 objects (among other things). */
13010 bs->stop = stop_on_solib_events;
13011 bs->print = stop_on_solib_events;
13012 }
13013 else
13014 bs->stop = 0;
13015 }
13016
13017 static enum print_stop_action
13018 internal_bkpt_print_it (bpstat bs)
13019 {
13020 struct breakpoint *b;
13021
13022 b = bs->breakpoint_at;
13023
13024 switch (b->type)
13025 {
13026 case bp_shlib_event:
13027 /* Did we stop because the user set the stop_on_solib_events
13028 variable? (If so, we report this as a generic, "Stopped due
13029 to shlib event" message.) */
13030 print_solib_event (0);
13031 break;
13032
13033 case bp_thread_event:
13034 /* Not sure how we will get here.
13035 GDB should not stop for these breakpoints. */
13036 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13037 break;
13038
13039 case bp_overlay_event:
13040 /* By analogy with the thread event, GDB should not stop for these. */
13041 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13042 break;
13043
13044 case bp_longjmp_master:
13045 /* These should never be enabled. */
13046 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13047 break;
13048
13049 case bp_std_terminate_master:
13050 /* These should never be enabled. */
13051 printf_filtered (_("std::terminate Master Breakpoint: "
13052 "gdb should not stop!\n"));
13053 break;
13054
13055 case bp_exception_master:
13056 /* These should never be enabled. */
13057 printf_filtered (_("Exception Master Breakpoint: "
13058 "gdb should not stop!\n"));
13059 break;
13060 }
13061
13062 return PRINT_NOTHING;
13063 }
13064
13065 static void
13066 internal_bkpt_print_mention (struct breakpoint *b)
13067 {
13068 /* Nothing to mention. These breakpoints are internal. */
13069 }
13070
13071 /* Virtual table for momentary breakpoints */
13072
13073 static void
13074 momentary_bkpt_re_set (struct breakpoint *b)
13075 {
13076 /* Keep temporary breakpoints, which can be encountered when we step
13077 over a dlopen call and SOLIB_ADD is resetting the breakpoints.
13078 Otherwise these should have been blown away via the cleanup chain
13079 or by breakpoint_init_inferior when we rerun the executable. */
13080 }
13081
13082 static void
13083 momentary_bkpt_check_status (bpstat bs)
13084 {
13085 /* Nothing. The point of these breakpoints is causing a stop. */
13086 }
13087
13088 static enum print_stop_action
13089 momentary_bkpt_print_it (bpstat bs)
13090 {
13091 struct ui_out *uiout = current_uiout;
13092
13093 if (ui_out_is_mi_like_p (uiout))
13094 {
13095 struct breakpoint *b = bs->breakpoint_at;
13096
13097 switch (b->type)
13098 {
13099 case bp_finish:
13100 ui_out_field_string
13101 (uiout, "reason",
13102 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13103 break;
13104
13105 case bp_until:
13106 ui_out_field_string
13107 (uiout, "reason",
13108 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13109 break;
13110 }
13111 }
13112
13113 return PRINT_UNKNOWN;
13114 }
13115
13116 static void
13117 momentary_bkpt_print_mention (struct breakpoint *b)
13118 {
13119 /* Nothing to mention. These breakpoints are internal. */
13120 }
13121
13122 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13123
13124 It gets cleared already on the removal of the first one of such placed
13125 breakpoints. This is OK as they get all removed altogether. */
13126
13127 static void
13128 longjmp_bkpt_dtor (struct breakpoint *self)
13129 {
13130 struct thread_info *tp = find_thread_id (self->thread);
13131
13132 if (tp)
13133 tp->initiating_frame = null_frame_id;
13134
13135 momentary_breakpoint_ops.dtor (self);
13136 }
13137
13138 /* Specific methods for probe breakpoints. */
13139
13140 static int
13141 bkpt_probe_insert_location (struct bp_location *bl)
13142 {
13143 int v = bkpt_insert_location (bl);
13144
13145 if (v == 0)
13146 {
13147 /* The insertion was successful, now let's set the probe's semaphore
13148 if needed. */
13149 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13150 }
13151
13152 return v;
13153 }
13154
13155 static int
13156 bkpt_probe_remove_location (struct bp_location *bl)
13157 {
13158 /* Let's clear the semaphore before removing the location. */
13159 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13160
13161 return bkpt_remove_location (bl);
13162 }
13163
13164 static void
13165 bkpt_probe_create_sals_from_address (char **arg,
13166 struct linespec_result *canonical,
13167 enum bptype type_wanted,
13168 char *addr_start, char **copy_arg)
13169 {
13170 struct linespec_sals lsal;
13171
13172 lsal.sals = parse_probes (arg, canonical);
13173
13174 *copy_arg = xstrdup (canonical->addr_string);
13175 lsal.canonical = xstrdup (*copy_arg);
13176
13177 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13178 }
13179
13180 static void
13181 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13182 struct symtabs_and_lines *sals)
13183 {
13184 *sals = parse_probes (s, NULL);
13185 if (!sals->sals)
13186 error (_("probe not found"));
13187 }
13188
13189 /* The breakpoint_ops structure to be used in tracepoints. */
13190
13191 static void
13192 tracepoint_re_set (struct breakpoint *b)
13193 {
13194 breakpoint_re_set_default (b);
13195 }
13196
13197 static int
13198 tracepoint_breakpoint_hit (const struct bp_location *bl,
13199 struct address_space *aspace, CORE_ADDR bp_addr,
13200 const struct target_waitstatus *ws)
13201 {
13202 /* By definition, the inferior does not report stops at
13203 tracepoints. */
13204 return 0;
13205 }
13206
13207 static void
13208 tracepoint_print_one_detail (const struct breakpoint *self,
13209 struct ui_out *uiout)
13210 {
13211 struct tracepoint *tp = (struct tracepoint *) self;
13212 if (tp->static_trace_marker_id)
13213 {
13214 gdb_assert (self->type == bp_static_tracepoint);
13215
13216 ui_out_text (uiout, "\tmarker id is ");
13217 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13218 tp->static_trace_marker_id);
13219 ui_out_text (uiout, "\n");
13220 }
13221 }
13222
13223 static void
13224 tracepoint_print_mention (struct breakpoint *b)
13225 {
13226 if (ui_out_is_mi_like_p (current_uiout))
13227 return;
13228
13229 switch (b->type)
13230 {
13231 case bp_tracepoint:
13232 printf_filtered (_("Tracepoint"));
13233 printf_filtered (_(" %d"), b->number);
13234 break;
13235 case bp_fast_tracepoint:
13236 printf_filtered (_("Fast tracepoint"));
13237 printf_filtered (_(" %d"), b->number);
13238 break;
13239 case bp_static_tracepoint:
13240 printf_filtered (_("Static tracepoint"));
13241 printf_filtered (_(" %d"), b->number);
13242 break;
13243 default:
13244 internal_error (__FILE__, __LINE__,
13245 _("unhandled tracepoint type %d"), (int) b->type);
13246 }
13247
13248 say_where (b);
13249 }
13250
13251 static void
13252 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13253 {
13254 struct tracepoint *tp = (struct tracepoint *) self;
13255
13256 if (self->type == bp_fast_tracepoint)
13257 fprintf_unfiltered (fp, "ftrace");
13258 if (self->type == bp_static_tracepoint)
13259 fprintf_unfiltered (fp, "strace");
13260 else if (self->type == bp_tracepoint)
13261 fprintf_unfiltered (fp, "trace");
13262 else
13263 internal_error (__FILE__, __LINE__,
13264 _("unhandled tracepoint type %d"), (int) self->type);
13265
13266 fprintf_unfiltered (fp, " %s", self->addr_string);
13267 print_recreate_thread (self, fp);
13268
13269 if (tp->pass_count)
13270 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13271 }
13272
13273 static void
13274 tracepoint_create_sals_from_address (char **arg,
13275 struct linespec_result *canonical,
13276 enum bptype type_wanted,
13277 char *addr_start, char **copy_arg)
13278 {
13279 create_sals_from_address_default (arg, canonical, type_wanted,
13280 addr_start, copy_arg);
13281 }
13282
13283 static void
13284 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13285 struct linespec_result *canonical,
13286 struct linespec_sals *lsal,
13287 char *cond_string,
13288 char *extra_string,
13289 enum bptype type_wanted,
13290 enum bpdisp disposition,
13291 int thread,
13292 int task, int ignore_count,
13293 const struct breakpoint_ops *ops,
13294 int from_tty, int enabled,
13295 int internal, unsigned flags)
13296 {
13297 create_breakpoints_sal_default (gdbarch, canonical, lsal,
13298 cond_string, extra_string,
13299 type_wanted,
13300 disposition, thread, task,
13301 ignore_count, ops, from_tty,
13302 enabled, internal, flags);
13303 }
13304
13305 static void
13306 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13307 struct symtabs_and_lines *sals)
13308 {
13309 decode_linespec_default (b, s, sals);
13310 }
13311
13312 struct breakpoint_ops tracepoint_breakpoint_ops;
13313
13314 /* The breakpoint_ops structure to be use on tracepoints placed in a
13315 static probe. */
13316
13317 static void
13318 tracepoint_probe_create_sals_from_address (char **arg,
13319 struct linespec_result *canonical,
13320 enum bptype type_wanted,
13321 char *addr_start, char **copy_arg)
13322 {
13323 /* We use the same method for breakpoint on probes. */
13324 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13325 addr_start, copy_arg);
13326 }
13327
13328 static void
13329 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13330 struct symtabs_and_lines *sals)
13331 {
13332 /* We use the same method for breakpoint on probes. */
13333 bkpt_probe_decode_linespec (b, s, sals);
13334 }
13335
13336 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13337
13338 /* Dprintf breakpoint_ops methods. */
13339
13340 static void
13341 dprintf_re_set (struct breakpoint *b)
13342 {
13343 breakpoint_re_set_default (b);
13344
13345 /* This breakpoint could have been pending, and be resolved now, and
13346 if so, we should now have the extra string. If we don't, the
13347 dprintf was malformed when created, but we couldn't tell because
13348 we can't extract the extra string until the location is
13349 resolved. */
13350 if (b->loc != NULL && b->extra_string == NULL)
13351 error (_("Format string required"));
13352
13353 /* 1 - connect to target 1, that can run breakpoint commands.
13354 2 - create a dprintf, which resolves fine.
13355 3 - disconnect from target 1
13356 4 - connect to target 2, that can NOT run breakpoint commands.
13357
13358 After steps #3/#4, you'll want the dprintf command list to
13359 be updated, because target 1 and 2 may well return different
13360 answers for target_can_run_breakpoint_commands().
13361 Given absence of finer grained resetting, we get to do
13362 it all the time. */
13363 if (b->extra_string != NULL)
13364 update_dprintf_command_list (b);
13365 }
13366
13367 /* The breakpoint_ops structure to be used on static tracepoints with
13368 markers (`-m'). */
13369
13370 static void
13371 strace_marker_create_sals_from_address (char **arg,
13372 struct linespec_result *canonical,
13373 enum bptype type_wanted,
13374 char *addr_start, char **copy_arg)
13375 {
13376 struct linespec_sals lsal;
13377
13378 lsal.sals = decode_static_tracepoint_spec (arg);
13379
13380 *copy_arg = savestring (addr_start, *arg - addr_start);
13381
13382 canonical->addr_string = xstrdup (*copy_arg);
13383 lsal.canonical = xstrdup (*copy_arg);
13384 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13385 }
13386
13387 static void
13388 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13389 struct linespec_result *canonical,
13390 struct linespec_sals *lsal,
13391 char *cond_string,
13392 char *extra_string,
13393 enum bptype type_wanted,
13394 enum bpdisp disposition,
13395 int thread,
13396 int task, int ignore_count,
13397 const struct breakpoint_ops *ops,
13398 int from_tty, int enabled,
13399 int internal, unsigned flags)
13400 {
13401 int i;
13402
13403 /* If the user is creating a static tracepoint by marker id
13404 (strace -m MARKER_ID), then store the sals index, so that
13405 breakpoint_re_set can try to match up which of the newly
13406 found markers corresponds to this one, and, don't try to
13407 expand multiple locations for each sal, given than SALS
13408 already should contain all sals for MARKER_ID. */
13409
13410 for (i = 0; i < lsal->sals.nelts; ++i)
13411 {
13412 struct symtabs_and_lines expanded;
13413 struct tracepoint *tp;
13414 struct cleanup *old_chain;
13415 char *addr_string;
13416
13417 expanded.nelts = 1;
13418 expanded.sals = &lsal->sals.sals[i];
13419
13420 addr_string = xstrdup (canonical->addr_string);
13421 old_chain = make_cleanup (xfree, addr_string);
13422
13423 tp = XCNEW (struct tracepoint);
13424 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13425 addr_string, NULL,
13426 cond_string, extra_string,
13427 type_wanted, disposition,
13428 thread, task, ignore_count, ops,
13429 from_tty, enabled, internal, flags,
13430 canonical->special_display);
13431 /* Given that its possible to have multiple markers with
13432 the same string id, if the user is creating a static
13433 tracepoint by marker id ("strace -m MARKER_ID"), then
13434 store the sals index, so that breakpoint_re_set can
13435 try to match up which of the newly found markers
13436 corresponds to this one */
13437 tp->static_trace_marker_id_idx = i;
13438
13439 install_breakpoint (internal, &tp->base, 0);
13440
13441 discard_cleanups (old_chain);
13442 }
13443 }
13444
13445 static void
13446 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13447 struct symtabs_and_lines *sals)
13448 {
13449 struct tracepoint *tp = (struct tracepoint *) b;
13450
13451 *sals = decode_static_tracepoint_spec (s);
13452 if (sals->nelts > tp->static_trace_marker_id_idx)
13453 {
13454 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13455 sals->nelts = 1;
13456 }
13457 else
13458 error (_("marker %s not found"), tp->static_trace_marker_id);
13459 }
13460
13461 static struct breakpoint_ops strace_marker_breakpoint_ops;
13462
13463 static int
13464 strace_marker_p (struct breakpoint *b)
13465 {
13466 return b->ops == &strace_marker_breakpoint_ops;
13467 }
13468
13469 /* Delete a breakpoint and clean up all traces of it in the data
13470 structures. */
13471
13472 void
13473 delete_breakpoint (struct breakpoint *bpt)
13474 {
13475 struct breakpoint *b;
13476
13477 gdb_assert (bpt != NULL);
13478
13479 /* Has this bp already been deleted? This can happen because
13480 multiple lists can hold pointers to bp's. bpstat lists are
13481 especial culprits.
13482
13483 One example of this happening is a watchpoint's scope bp. When
13484 the scope bp triggers, we notice that the watchpoint is out of
13485 scope, and delete it. We also delete its scope bp. But the
13486 scope bp is marked "auto-deleting", and is already on a bpstat.
13487 That bpstat is then checked for auto-deleting bp's, which are
13488 deleted.
13489
13490 A real solution to this problem might involve reference counts in
13491 bp's, and/or giving them pointers back to their referencing
13492 bpstat's, and teaching delete_breakpoint to only free a bp's
13493 storage when no more references were extent. A cheaper bandaid
13494 was chosen. */
13495 if (bpt->type == bp_none)
13496 return;
13497
13498 /* At least avoid this stale reference until the reference counting
13499 of breakpoints gets resolved. */
13500 if (bpt->related_breakpoint != bpt)
13501 {
13502 struct breakpoint *related;
13503 struct watchpoint *w;
13504
13505 if (bpt->type == bp_watchpoint_scope)
13506 w = (struct watchpoint *) bpt->related_breakpoint;
13507 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13508 w = (struct watchpoint *) bpt;
13509 else
13510 w = NULL;
13511 if (w != NULL)
13512 watchpoint_del_at_next_stop (w);
13513
13514 /* Unlink bpt from the bpt->related_breakpoint ring. */
13515 for (related = bpt; related->related_breakpoint != bpt;
13516 related = related->related_breakpoint);
13517 related->related_breakpoint = bpt->related_breakpoint;
13518 bpt->related_breakpoint = bpt;
13519 }
13520
13521 /* watch_command_1 creates a watchpoint but only sets its number if
13522 update_watchpoint succeeds in creating its bp_locations. If there's
13523 a problem in that process, we'll be asked to delete the half-created
13524 watchpoint. In that case, don't announce the deletion. */
13525 if (bpt->number)
13526 observer_notify_breakpoint_deleted (bpt);
13527
13528 if (breakpoint_chain == bpt)
13529 breakpoint_chain = bpt->next;
13530
13531 ALL_BREAKPOINTS (b)
13532 if (b->next == bpt)
13533 {
13534 b->next = bpt->next;
13535 break;
13536 }
13537
13538 /* Be sure no bpstat's are pointing at the breakpoint after it's
13539 been freed. */
13540 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13541 in all threads for now. Note that we cannot just remove bpstats
13542 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13543 commands are associated with the bpstat; if we remove it here,
13544 then the later call to bpstat_do_actions (&stop_bpstat); in
13545 event-top.c won't do anything, and temporary breakpoints with
13546 commands won't work. */
13547
13548 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13549
13550 /* Now that breakpoint is removed from breakpoint list, update the
13551 global location list. This will remove locations that used to
13552 belong to this breakpoint. Do this before freeing the breakpoint
13553 itself, since remove_breakpoint looks at location's owner. It
13554 might be better design to have location completely
13555 self-contained, but it's not the case now. */
13556 update_global_location_list (0);
13557
13558 bpt->ops->dtor (bpt);
13559 /* On the chance that someone will soon try again to delete this
13560 same bp, we mark it as deleted before freeing its storage. */
13561 bpt->type = bp_none;
13562 xfree (bpt);
13563 }
13564
13565 static void
13566 do_delete_breakpoint_cleanup (void *b)
13567 {
13568 delete_breakpoint (b);
13569 }
13570
13571 struct cleanup *
13572 make_cleanup_delete_breakpoint (struct breakpoint *b)
13573 {
13574 return make_cleanup (do_delete_breakpoint_cleanup, b);
13575 }
13576
13577 /* Iterator function to call a user-provided callback function once
13578 for each of B and its related breakpoints. */
13579
13580 static void
13581 iterate_over_related_breakpoints (struct breakpoint *b,
13582 void (*function) (struct breakpoint *,
13583 void *),
13584 void *data)
13585 {
13586 struct breakpoint *related;
13587
13588 related = b;
13589 do
13590 {
13591 struct breakpoint *next;
13592
13593 /* FUNCTION may delete RELATED. */
13594 next = related->related_breakpoint;
13595
13596 if (next == related)
13597 {
13598 /* RELATED is the last ring entry. */
13599 function (related, data);
13600
13601 /* FUNCTION may have deleted it, so we'd never reach back to
13602 B. There's nothing left to do anyway, so just break
13603 out. */
13604 break;
13605 }
13606 else
13607 function (related, data);
13608
13609 related = next;
13610 }
13611 while (related != b);
13612 }
13613
13614 static void
13615 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13616 {
13617 delete_breakpoint (b);
13618 }
13619
13620 /* A callback for map_breakpoint_numbers that calls
13621 delete_breakpoint. */
13622
13623 static void
13624 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13625 {
13626 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13627 }
13628
13629 void
13630 delete_command (char *arg, int from_tty)
13631 {
13632 struct breakpoint *b, *b_tmp;
13633
13634 dont_repeat ();
13635
13636 if (arg == 0)
13637 {
13638 int breaks_to_delete = 0;
13639
13640 /* Delete all breakpoints if no argument. Do not delete
13641 internal breakpoints, these have to be deleted with an
13642 explicit breakpoint number argument. */
13643 ALL_BREAKPOINTS (b)
13644 if (user_breakpoint_p (b))
13645 {
13646 breaks_to_delete = 1;
13647 break;
13648 }
13649
13650 /* Ask user only if there are some breakpoints to delete. */
13651 if (!from_tty
13652 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13653 {
13654 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13655 if (user_breakpoint_p (b))
13656 delete_breakpoint (b);
13657 }
13658 }
13659 else
13660 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13661 }
13662
13663 static int
13664 all_locations_are_pending (struct bp_location *loc)
13665 {
13666 for (; loc; loc = loc->next)
13667 if (!loc->shlib_disabled
13668 && !loc->pspace->executing_startup)
13669 return 0;
13670 return 1;
13671 }
13672
13673 /* Subroutine of update_breakpoint_locations to simplify it.
13674 Return non-zero if multiple fns in list LOC have the same name.
13675 Null names are ignored. */
13676
13677 static int
13678 ambiguous_names_p (struct bp_location *loc)
13679 {
13680 struct bp_location *l;
13681 htab_t htab = htab_create_alloc (13, htab_hash_string,
13682 (int (*) (const void *,
13683 const void *)) streq,
13684 NULL, xcalloc, xfree);
13685
13686 for (l = loc; l != NULL; l = l->next)
13687 {
13688 const char **slot;
13689 const char *name = l->function_name;
13690
13691 /* Allow for some names to be NULL, ignore them. */
13692 if (name == NULL)
13693 continue;
13694
13695 slot = (const char **) htab_find_slot (htab, (const void *) name,
13696 INSERT);
13697 /* NOTE: We can assume slot != NULL here because xcalloc never
13698 returns NULL. */
13699 if (*slot != NULL)
13700 {
13701 htab_delete (htab);
13702 return 1;
13703 }
13704 *slot = name;
13705 }
13706
13707 htab_delete (htab);
13708 return 0;
13709 }
13710
13711 /* When symbols change, it probably means the sources changed as well,
13712 and it might mean the static tracepoint markers are no longer at
13713 the same address or line numbers they used to be at last we
13714 checked. Losing your static tracepoints whenever you rebuild is
13715 undesirable. This function tries to resync/rematch gdb static
13716 tracepoints with the markers on the target, for static tracepoints
13717 that have not been set by marker id. Static tracepoint that have
13718 been set by marker id are reset by marker id in breakpoint_re_set.
13719 The heuristic is:
13720
13721 1) For a tracepoint set at a specific address, look for a marker at
13722 the old PC. If one is found there, assume to be the same marker.
13723 If the name / string id of the marker found is different from the
13724 previous known name, assume that means the user renamed the marker
13725 in the sources, and output a warning.
13726
13727 2) For a tracepoint set at a given line number, look for a marker
13728 at the new address of the old line number. If one is found there,
13729 assume to be the same marker. If the name / string id of the
13730 marker found is different from the previous known name, assume that
13731 means the user renamed the marker in the sources, and output a
13732 warning.
13733
13734 3) If a marker is no longer found at the same address or line, it
13735 may mean the marker no longer exists. But it may also just mean
13736 the code changed a bit. Maybe the user added a few lines of code
13737 that made the marker move up or down (in line number terms). Ask
13738 the target for info about the marker with the string id as we knew
13739 it. If found, update line number and address in the matching
13740 static tracepoint. This will get confused if there's more than one
13741 marker with the same ID (possible in UST, although unadvised
13742 precisely because it confuses tools). */
13743
13744 static struct symtab_and_line
13745 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13746 {
13747 struct tracepoint *tp = (struct tracepoint *) b;
13748 struct static_tracepoint_marker marker;
13749 CORE_ADDR pc;
13750
13751 pc = sal.pc;
13752 if (sal.line)
13753 find_line_pc (sal.symtab, sal.line, &pc);
13754
13755 if (target_static_tracepoint_marker_at (pc, &marker))
13756 {
13757 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13758 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13759 b->number,
13760 tp->static_trace_marker_id, marker.str_id);
13761
13762 xfree (tp->static_trace_marker_id);
13763 tp->static_trace_marker_id = xstrdup (marker.str_id);
13764 release_static_tracepoint_marker (&marker);
13765
13766 return sal;
13767 }
13768
13769 /* Old marker wasn't found on target at lineno. Try looking it up
13770 by string ID. */
13771 if (!sal.explicit_pc
13772 && sal.line != 0
13773 && sal.symtab != NULL
13774 && tp->static_trace_marker_id != NULL)
13775 {
13776 VEC(static_tracepoint_marker_p) *markers;
13777
13778 markers
13779 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13780
13781 if (!VEC_empty(static_tracepoint_marker_p, markers))
13782 {
13783 struct symtab_and_line sal2;
13784 struct symbol *sym;
13785 struct static_tracepoint_marker *tpmarker;
13786 struct ui_out *uiout = current_uiout;
13787
13788 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13789
13790 xfree (tp->static_trace_marker_id);
13791 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13792
13793 warning (_("marker for static tracepoint %d (%s) not "
13794 "found at previous line number"),
13795 b->number, tp->static_trace_marker_id);
13796
13797 init_sal (&sal2);
13798
13799 sal2.pc = tpmarker->address;
13800
13801 sal2 = find_pc_line (tpmarker->address, 0);
13802 sym = find_pc_sect_function (tpmarker->address, NULL);
13803 ui_out_text (uiout, "Now in ");
13804 if (sym)
13805 {
13806 ui_out_field_string (uiout, "func",
13807 SYMBOL_PRINT_NAME (sym));
13808 ui_out_text (uiout, " at ");
13809 }
13810 ui_out_field_string (uiout, "file",
13811 symtab_to_filename_for_display (sal2.symtab));
13812 ui_out_text (uiout, ":");
13813
13814 if (ui_out_is_mi_like_p (uiout))
13815 {
13816 const char *fullname = symtab_to_fullname (sal2.symtab);
13817
13818 ui_out_field_string (uiout, "fullname", fullname);
13819 }
13820
13821 ui_out_field_int (uiout, "line", sal2.line);
13822 ui_out_text (uiout, "\n");
13823
13824 b->loc->line_number = sal2.line;
13825 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13826
13827 xfree (b->addr_string);
13828 b->addr_string = xstrprintf ("%s:%d",
13829 symtab_to_filename_for_display (sal2.symtab),
13830 b->loc->line_number);
13831
13832 /* Might be nice to check if function changed, and warn if
13833 so. */
13834
13835 release_static_tracepoint_marker (tpmarker);
13836 }
13837 }
13838 return sal;
13839 }
13840
13841 /* Returns 1 iff locations A and B are sufficiently same that
13842 we don't need to report breakpoint as changed. */
13843
13844 static int
13845 locations_are_equal (struct bp_location *a, struct bp_location *b)
13846 {
13847 while (a && b)
13848 {
13849 if (a->address != b->address)
13850 return 0;
13851
13852 if (a->shlib_disabled != b->shlib_disabled)
13853 return 0;
13854
13855 if (a->enabled != b->enabled)
13856 return 0;
13857
13858 a = a->next;
13859 b = b->next;
13860 }
13861
13862 if ((a == NULL) != (b == NULL))
13863 return 0;
13864
13865 return 1;
13866 }
13867
13868 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13869 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13870 a ranged breakpoint. */
13871
13872 void
13873 update_breakpoint_locations (struct breakpoint *b,
13874 struct symtabs_and_lines sals,
13875 struct symtabs_and_lines sals_end)
13876 {
13877 int i;
13878 struct bp_location *existing_locations = b->loc;
13879
13880 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13881 {
13882 /* Ranged breakpoints have only one start location and one end
13883 location. */
13884 b->enable_state = bp_disabled;
13885 update_global_location_list (1);
13886 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13887 "multiple locations found\n"),
13888 b->number);
13889 return;
13890 }
13891
13892 /* If there's no new locations, and all existing locations are
13893 pending, don't do anything. This optimizes the common case where
13894 all locations are in the same shared library, that was unloaded.
13895 We'd like to retain the location, so that when the library is
13896 loaded again, we don't loose the enabled/disabled status of the
13897 individual locations. */
13898 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13899 return;
13900
13901 b->loc = NULL;
13902
13903 for (i = 0; i < sals.nelts; ++i)
13904 {
13905 struct bp_location *new_loc;
13906
13907 switch_to_program_space_and_thread (sals.sals[i].pspace);
13908
13909 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13910
13911 /* Reparse conditions, they might contain references to the
13912 old symtab. */
13913 if (b->cond_string != NULL)
13914 {
13915 const char *s;
13916 volatile struct gdb_exception e;
13917
13918 s = b->cond_string;
13919 TRY_CATCH (e, RETURN_MASK_ERROR)
13920 {
13921 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
13922 block_for_pc (sals.sals[i].pc),
13923 0);
13924 }
13925 if (e.reason < 0)
13926 {
13927 warning (_("failed to reevaluate condition "
13928 "for breakpoint %d: %s"),
13929 b->number, e.message);
13930 new_loc->enabled = 0;
13931 }
13932 }
13933
13934 if (sals_end.nelts)
13935 {
13936 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
13937
13938 new_loc->length = end - sals.sals[0].pc + 1;
13939 }
13940 }
13941
13942 /* Update locations of permanent breakpoints. */
13943 if (b->enable_state == bp_permanent)
13944 make_breakpoint_permanent (b);
13945
13946 /* If possible, carry over 'disable' status from existing
13947 breakpoints. */
13948 {
13949 struct bp_location *e = existing_locations;
13950 /* If there are multiple breakpoints with the same function name,
13951 e.g. for inline functions, comparing function names won't work.
13952 Instead compare pc addresses; this is just a heuristic as things
13953 may have moved, but in practice it gives the correct answer
13954 often enough until a better solution is found. */
13955 int have_ambiguous_names = ambiguous_names_p (b->loc);
13956
13957 for (; e; e = e->next)
13958 {
13959 if (!e->enabled && e->function_name)
13960 {
13961 struct bp_location *l = b->loc;
13962 if (have_ambiguous_names)
13963 {
13964 for (; l; l = l->next)
13965 if (breakpoint_locations_match (e, l))
13966 {
13967 l->enabled = 0;
13968 break;
13969 }
13970 }
13971 else
13972 {
13973 for (; l; l = l->next)
13974 if (l->function_name
13975 && strcmp (e->function_name, l->function_name) == 0)
13976 {
13977 l->enabled = 0;
13978 break;
13979 }
13980 }
13981 }
13982 }
13983 }
13984
13985 if (!locations_are_equal (existing_locations, b->loc))
13986 observer_notify_breakpoint_modified (b);
13987
13988 update_global_location_list (1);
13989 }
13990
13991 /* Find the SaL locations corresponding to the given ADDR_STRING.
13992 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13993
13994 static struct symtabs_and_lines
13995 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
13996 {
13997 char *s;
13998 struct symtabs_and_lines sals = {0};
13999 volatile struct gdb_exception e;
14000
14001 gdb_assert (b->ops != NULL);
14002 s = addr_string;
14003
14004 TRY_CATCH (e, RETURN_MASK_ERROR)
14005 {
14006 b->ops->decode_linespec (b, &s, &sals);
14007 }
14008 if (e.reason < 0)
14009 {
14010 int not_found_and_ok = 0;
14011 /* For pending breakpoints, it's expected that parsing will
14012 fail until the right shared library is loaded. User has
14013 already told to create pending breakpoints and don't need
14014 extra messages. If breakpoint is in bp_shlib_disabled
14015 state, then user already saw the message about that
14016 breakpoint being disabled, and don't want to see more
14017 errors. */
14018 if (e.error == NOT_FOUND_ERROR
14019 && (b->condition_not_parsed
14020 || (b->loc && b->loc->shlib_disabled)
14021 || (b->loc && b->loc->pspace->executing_startup)
14022 || b->enable_state == bp_disabled))
14023 not_found_and_ok = 1;
14024
14025 if (!not_found_and_ok)
14026 {
14027 /* We surely don't want to warn about the same breakpoint
14028 10 times. One solution, implemented here, is disable
14029 the breakpoint on error. Another solution would be to
14030 have separate 'warning emitted' flag. Since this
14031 happens only when a binary has changed, I don't know
14032 which approach is better. */
14033 b->enable_state = bp_disabled;
14034 throw_exception (e);
14035 }
14036 }
14037
14038 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14039 {
14040 int i;
14041
14042 for (i = 0; i < sals.nelts; ++i)
14043 resolve_sal_pc (&sals.sals[i]);
14044 if (b->condition_not_parsed && s && s[0])
14045 {
14046 char *cond_string, *extra_string;
14047 int thread, task;
14048
14049 find_condition_and_thread (s, sals.sals[0].pc,
14050 &cond_string, &thread, &task,
14051 &extra_string);
14052 if (cond_string)
14053 b->cond_string = cond_string;
14054 b->thread = thread;
14055 b->task = task;
14056 if (extra_string)
14057 b->extra_string = extra_string;
14058 b->condition_not_parsed = 0;
14059 }
14060
14061 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14062 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14063
14064 *found = 1;
14065 }
14066 else
14067 *found = 0;
14068
14069 return sals;
14070 }
14071
14072 /* The default re_set method, for typical hardware or software
14073 breakpoints. Reevaluate the breakpoint and recreate its
14074 locations. */
14075
14076 static void
14077 breakpoint_re_set_default (struct breakpoint *b)
14078 {
14079 int found;
14080 struct symtabs_and_lines sals, sals_end;
14081 struct symtabs_and_lines expanded = {0};
14082 struct symtabs_and_lines expanded_end = {0};
14083
14084 sals = addr_string_to_sals (b, b->addr_string, &found);
14085 if (found)
14086 {
14087 make_cleanup (xfree, sals.sals);
14088 expanded = sals;
14089 }
14090
14091 if (b->addr_string_range_end)
14092 {
14093 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14094 if (found)
14095 {
14096 make_cleanup (xfree, sals_end.sals);
14097 expanded_end = sals_end;
14098 }
14099 }
14100
14101 update_breakpoint_locations (b, expanded, expanded_end);
14102 }
14103
14104 /* Default method for creating SALs from an address string. It basically
14105 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14106
14107 static void
14108 create_sals_from_address_default (char **arg,
14109 struct linespec_result *canonical,
14110 enum bptype type_wanted,
14111 char *addr_start, char **copy_arg)
14112 {
14113 parse_breakpoint_sals (arg, canonical);
14114 }
14115
14116 /* Call create_breakpoints_sal for the given arguments. This is the default
14117 function for the `create_breakpoints_sal' method of
14118 breakpoint_ops. */
14119
14120 static void
14121 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14122 struct linespec_result *canonical,
14123 struct linespec_sals *lsal,
14124 char *cond_string,
14125 char *extra_string,
14126 enum bptype type_wanted,
14127 enum bpdisp disposition,
14128 int thread,
14129 int task, int ignore_count,
14130 const struct breakpoint_ops *ops,
14131 int from_tty, int enabled,
14132 int internal, unsigned flags)
14133 {
14134 create_breakpoints_sal (gdbarch, canonical, cond_string,
14135 extra_string,
14136 type_wanted, disposition,
14137 thread, task, ignore_count, ops, from_tty,
14138 enabled, internal, flags);
14139 }
14140
14141 /* Decode the line represented by S by calling decode_line_full. This is the
14142 default function for the `decode_linespec' method of breakpoint_ops. */
14143
14144 static void
14145 decode_linespec_default (struct breakpoint *b, char **s,
14146 struct symtabs_and_lines *sals)
14147 {
14148 struct linespec_result canonical;
14149
14150 init_linespec_result (&canonical);
14151 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14152 (struct symtab *) NULL, 0,
14153 &canonical, multiple_symbols_all,
14154 b->filter);
14155
14156 /* We should get 0 or 1 resulting SALs. */
14157 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14158
14159 if (VEC_length (linespec_sals, canonical.sals) > 0)
14160 {
14161 struct linespec_sals *lsal;
14162
14163 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14164 *sals = lsal->sals;
14165 /* Arrange it so the destructor does not free the
14166 contents. */
14167 lsal->sals.sals = NULL;
14168 }
14169
14170 destroy_linespec_result (&canonical);
14171 }
14172
14173 /* Prepare the global context for a re-set of breakpoint B. */
14174
14175 static struct cleanup *
14176 prepare_re_set_context (struct breakpoint *b)
14177 {
14178 struct cleanup *cleanups;
14179
14180 input_radix = b->input_radix;
14181 cleanups = save_current_space_and_thread ();
14182 if (b->pspace != NULL)
14183 switch_to_program_space_and_thread (b->pspace);
14184 set_language (b->language);
14185
14186 return cleanups;
14187 }
14188
14189 /* Reset a breakpoint given it's struct breakpoint * BINT.
14190 The value we return ends up being the return value from catch_errors.
14191 Unused in this case. */
14192
14193 static int
14194 breakpoint_re_set_one (void *bint)
14195 {
14196 /* Get past catch_errs. */
14197 struct breakpoint *b = (struct breakpoint *) bint;
14198 struct cleanup *cleanups;
14199
14200 cleanups = prepare_re_set_context (b);
14201 b->ops->re_set (b);
14202 do_cleanups (cleanups);
14203 return 0;
14204 }
14205
14206 /* Re-set all breakpoints after symbols have been re-loaded. */
14207 void
14208 breakpoint_re_set (void)
14209 {
14210 struct breakpoint *b, *b_tmp;
14211 enum language save_language;
14212 int save_input_radix;
14213 struct cleanup *old_chain;
14214
14215 save_language = current_language->la_language;
14216 save_input_radix = input_radix;
14217 old_chain = save_current_program_space ();
14218
14219 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14220 {
14221 /* Format possible error msg. */
14222 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14223 b->number);
14224 struct cleanup *cleanups = make_cleanup (xfree, message);
14225 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14226 do_cleanups (cleanups);
14227 }
14228 set_language (save_language);
14229 input_radix = save_input_radix;
14230
14231 jit_breakpoint_re_set ();
14232
14233 do_cleanups (old_chain);
14234
14235 create_overlay_event_breakpoint ();
14236 create_longjmp_master_breakpoint ();
14237 create_std_terminate_master_breakpoint ();
14238 create_exception_master_breakpoint ();
14239 }
14240 \f
14241 /* Reset the thread number of this breakpoint:
14242
14243 - If the breakpoint is for all threads, leave it as-is.
14244 - Else, reset it to the current thread for inferior_ptid. */
14245 void
14246 breakpoint_re_set_thread (struct breakpoint *b)
14247 {
14248 if (b->thread != -1)
14249 {
14250 if (in_thread_list (inferior_ptid))
14251 b->thread = pid_to_thread_id (inferior_ptid);
14252
14253 /* We're being called after following a fork. The new fork is
14254 selected as current, and unless this was a vfork will have a
14255 different program space from the original thread. Reset that
14256 as well. */
14257 b->loc->pspace = current_program_space;
14258 }
14259 }
14260
14261 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14262 If from_tty is nonzero, it prints a message to that effect,
14263 which ends with a period (no newline). */
14264
14265 void
14266 set_ignore_count (int bptnum, int count, int from_tty)
14267 {
14268 struct breakpoint *b;
14269
14270 if (count < 0)
14271 count = 0;
14272
14273 ALL_BREAKPOINTS (b)
14274 if (b->number == bptnum)
14275 {
14276 if (is_tracepoint (b))
14277 {
14278 if (from_tty && count != 0)
14279 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14280 bptnum);
14281 return;
14282 }
14283
14284 b->ignore_count = count;
14285 if (from_tty)
14286 {
14287 if (count == 0)
14288 printf_filtered (_("Will stop next time "
14289 "breakpoint %d is reached."),
14290 bptnum);
14291 else if (count == 1)
14292 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14293 bptnum);
14294 else
14295 printf_filtered (_("Will ignore next %d "
14296 "crossings of breakpoint %d."),
14297 count, bptnum);
14298 }
14299 observer_notify_breakpoint_modified (b);
14300 return;
14301 }
14302
14303 error (_("No breakpoint number %d."), bptnum);
14304 }
14305
14306 /* Command to set ignore-count of breakpoint N to COUNT. */
14307
14308 static void
14309 ignore_command (char *args, int from_tty)
14310 {
14311 char *p = args;
14312 int num;
14313
14314 if (p == 0)
14315 error_no_arg (_("a breakpoint number"));
14316
14317 num = get_number (&p);
14318 if (num == 0)
14319 error (_("bad breakpoint number: '%s'"), args);
14320 if (*p == 0)
14321 error (_("Second argument (specified ignore-count) is missing."));
14322
14323 set_ignore_count (num,
14324 longest_to_int (value_as_long (parse_and_eval (p))),
14325 from_tty);
14326 if (from_tty)
14327 printf_filtered ("\n");
14328 }
14329 \f
14330 /* Call FUNCTION on each of the breakpoints
14331 whose numbers are given in ARGS. */
14332
14333 static void
14334 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14335 void *),
14336 void *data)
14337 {
14338 int num;
14339 struct breakpoint *b, *tmp;
14340 int match;
14341 struct get_number_or_range_state state;
14342
14343 if (args == 0)
14344 error_no_arg (_("one or more breakpoint numbers"));
14345
14346 init_number_or_range (&state, args);
14347
14348 while (!state.finished)
14349 {
14350 char *p = state.string;
14351
14352 match = 0;
14353
14354 num = get_number_or_range (&state);
14355 if (num == 0)
14356 {
14357 warning (_("bad breakpoint number at or near '%s'"), p);
14358 }
14359 else
14360 {
14361 ALL_BREAKPOINTS_SAFE (b, tmp)
14362 if (b->number == num)
14363 {
14364 match = 1;
14365 function (b, data);
14366 break;
14367 }
14368 if (match == 0)
14369 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14370 }
14371 }
14372 }
14373
14374 static struct bp_location *
14375 find_location_by_number (char *number)
14376 {
14377 char *dot = strchr (number, '.');
14378 char *p1;
14379 int bp_num;
14380 int loc_num;
14381 struct breakpoint *b;
14382 struct bp_location *loc;
14383
14384 *dot = '\0';
14385
14386 p1 = number;
14387 bp_num = get_number (&p1);
14388 if (bp_num == 0)
14389 error (_("Bad breakpoint number '%s'"), number);
14390
14391 ALL_BREAKPOINTS (b)
14392 if (b->number == bp_num)
14393 {
14394 break;
14395 }
14396
14397 if (!b || b->number != bp_num)
14398 error (_("Bad breakpoint number '%s'"), number);
14399
14400 p1 = dot+1;
14401 loc_num = get_number (&p1);
14402 if (loc_num == 0)
14403 error (_("Bad breakpoint location number '%s'"), number);
14404
14405 --loc_num;
14406 loc = b->loc;
14407 for (;loc_num && loc; --loc_num, loc = loc->next)
14408 ;
14409 if (!loc)
14410 error (_("Bad breakpoint location number '%s'"), dot+1);
14411
14412 return loc;
14413 }
14414
14415
14416 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14417 If from_tty is nonzero, it prints a message to that effect,
14418 which ends with a period (no newline). */
14419
14420 void
14421 disable_breakpoint (struct breakpoint *bpt)
14422 {
14423 /* Never disable a watchpoint scope breakpoint; we want to
14424 hit them when we leave scope so we can delete both the
14425 watchpoint and its scope breakpoint at that time. */
14426 if (bpt->type == bp_watchpoint_scope)
14427 return;
14428
14429 /* You can't disable permanent breakpoints. */
14430 if (bpt->enable_state == bp_permanent)
14431 return;
14432
14433 bpt->enable_state = bp_disabled;
14434
14435 /* Mark breakpoint locations modified. */
14436 mark_breakpoint_modified (bpt);
14437
14438 if (target_supports_enable_disable_tracepoint ()
14439 && current_trace_status ()->running && is_tracepoint (bpt))
14440 {
14441 struct bp_location *location;
14442
14443 for (location = bpt->loc; location; location = location->next)
14444 target_disable_tracepoint (location);
14445 }
14446
14447 update_global_location_list (0);
14448
14449 observer_notify_breakpoint_modified (bpt);
14450 }
14451
14452 /* A callback for iterate_over_related_breakpoints. */
14453
14454 static void
14455 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14456 {
14457 disable_breakpoint (b);
14458 }
14459
14460 /* A callback for map_breakpoint_numbers that calls
14461 disable_breakpoint. */
14462
14463 static void
14464 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14465 {
14466 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14467 }
14468
14469 static void
14470 disable_command (char *args, int from_tty)
14471 {
14472 if (args == 0)
14473 {
14474 struct breakpoint *bpt;
14475
14476 ALL_BREAKPOINTS (bpt)
14477 if (user_breakpoint_p (bpt))
14478 disable_breakpoint (bpt);
14479 }
14480 else if (strchr (args, '.'))
14481 {
14482 struct bp_location *loc = find_location_by_number (args);
14483 if (loc)
14484 {
14485 if (loc->enabled)
14486 {
14487 loc->enabled = 0;
14488 mark_breakpoint_location_modified (loc);
14489 }
14490 if (target_supports_enable_disable_tracepoint ()
14491 && current_trace_status ()->running && loc->owner
14492 && is_tracepoint (loc->owner))
14493 target_disable_tracepoint (loc);
14494 }
14495 update_global_location_list (0);
14496 }
14497 else
14498 map_breakpoint_numbers (args, do_map_disable_breakpoint, NULL);
14499 }
14500
14501 static void
14502 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14503 int count)
14504 {
14505 int target_resources_ok;
14506
14507 if (bpt->type == bp_hardware_breakpoint)
14508 {
14509 int i;
14510 i = hw_breakpoint_used_count ();
14511 target_resources_ok =
14512 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14513 i + 1, 0);
14514 if (target_resources_ok == 0)
14515 error (_("No hardware breakpoint support in the target."));
14516 else if (target_resources_ok < 0)
14517 error (_("Hardware breakpoints used exceeds limit."));
14518 }
14519
14520 if (is_watchpoint (bpt))
14521 {
14522 /* Initialize it just to avoid a GCC false warning. */
14523 enum enable_state orig_enable_state = 0;
14524 volatile struct gdb_exception e;
14525
14526 TRY_CATCH (e, RETURN_MASK_ALL)
14527 {
14528 struct watchpoint *w = (struct watchpoint *) bpt;
14529
14530 orig_enable_state = bpt->enable_state;
14531 bpt->enable_state = bp_enabled;
14532 update_watchpoint (w, 1 /* reparse */);
14533 }
14534 if (e.reason < 0)
14535 {
14536 bpt->enable_state = orig_enable_state;
14537 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14538 bpt->number);
14539 return;
14540 }
14541 }
14542
14543 if (bpt->enable_state != bp_permanent)
14544 bpt->enable_state = bp_enabled;
14545
14546 bpt->enable_state = bp_enabled;
14547
14548 /* Mark breakpoint locations modified. */
14549 mark_breakpoint_modified (bpt);
14550
14551 if (target_supports_enable_disable_tracepoint ()
14552 && current_trace_status ()->running && is_tracepoint (bpt))
14553 {
14554 struct bp_location *location;
14555
14556 for (location = bpt->loc; location; location = location->next)
14557 target_enable_tracepoint (location);
14558 }
14559
14560 bpt->disposition = disposition;
14561 bpt->enable_count = count;
14562 update_global_location_list (1);
14563
14564 observer_notify_breakpoint_modified (bpt);
14565 }
14566
14567
14568 void
14569 enable_breakpoint (struct breakpoint *bpt)
14570 {
14571 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14572 }
14573
14574 static void
14575 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14576 {
14577 enable_breakpoint (bpt);
14578 }
14579
14580 /* A callback for map_breakpoint_numbers that calls
14581 enable_breakpoint. */
14582
14583 static void
14584 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14585 {
14586 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14587 }
14588
14589 /* The enable command enables the specified breakpoints (or all defined
14590 breakpoints) so they once again become (or continue to be) effective
14591 in stopping the inferior. */
14592
14593 static void
14594 enable_command (char *args, int from_tty)
14595 {
14596 if (args == 0)
14597 {
14598 struct breakpoint *bpt;
14599
14600 ALL_BREAKPOINTS (bpt)
14601 if (user_breakpoint_p (bpt))
14602 enable_breakpoint (bpt);
14603 }
14604 else if (strchr (args, '.'))
14605 {
14606 struct bp_location *loc = find_location_by_number (args);
14607 if (loc)
14608 {
14609 if (!loc->enabled)
14610 {
14611 loc->enabled = 1;
14612 mark_breakpoint_location_modified (loc);
14613 }
14614 if (target_supports_enable_disable_tracepoint ()
14615 && current_trace_status ()->running && loc->owner
14616 && is_tracepoint (loc->owner))
14617 target_enable_tracepoint (loc);
14618 }
14619 update_global_location_list (1);
14620 }
14621 else
14622 map_breakpoint_numbers (args, do_map_enable_breakpoint, NULL);
14623 }
14624
14625 /* This struct packages up disposition data for application to multiple
14626 breakpoints. */
14627
14628 struct disp_data
14629 {
14630 enum bpdisp disp;
14631 int count;
14632 };
14633
14634 static void
14635 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14636 {
14637 struct disp_data disp_data = *(struct disp_data *) arg;
14638
14639 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14640 }
14641
14642 static void
14643 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14644 {
14645 struct disp_data disp = { disp_disable, 1 };
14646
14647 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14648 }
14649
14650 static void
14651 enable_once_command (char *args, int from_tty)
14652 {
14653 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14654 }
14655
14656 static void
14657 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14658 {
14659 struct disp_data disp = { disp_disable, *(int *) countptr };
14660
14661 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14662 }
14663
14664 static void
14665 enable_count_command (char *args, int from_tty)
14666 {
14667 int count = get_number (&args);
14668
14669 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14670 }
14671
14672 static void
14673 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14674 {
14675 struct disp_data disp = { disp_del, 1 };
14676
14677 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14678 }
14679
14680 static void
14681 enable_delete_command (char *args, int from_tty)
14682 {
14683 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14684 }
14685 \f
14686 static void
14687 set_breakpoint_cmd (char *args, int from_tty)
14688 {
14689 }
14690
14691 static void
14692 show_breakpoint_cmd (char *args, int from_tty)
14693 {
14694 }
14695
14696 /* Invalidate last known value of any hardware watchpoint if
14697 the memory which that value represents has been written to by
14698 GDB itself. */
14699
14700 static void
14701 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14702 CORE_ADDR addr, ssize_t len,
14703 const bfd_byte *data)
14704 {
14705 struct breakpoint *bp;
14706
14707 ALL_BREAKPOINTS (bp)
14708 if (bp->enable_state == bp_enabled
14709 && bp->type == bp_hardware_watchpoint)
14710 {
14711 struct watchpoint *wp = (struct watchpoint *) bp;
14712
14713 if (wp->val_valid && wp->val)
14714 {
14715 struct bp_location *loc;
14716
14717 for (loc = bp->loc; loc != NULL; loc = loc->next)
14718 if (loc->loc_type == bp_loc_hardware_watchpoint
14719 && loc->address + loc->length > addr
14720 && addr + len > loc->address)
14721 {
14722 value_free (wp->val);
14723 wp->val = NULL;
14724 wp->val_valid = 0;
14725 }
14726 }
14727 }
14728 }
14729
14730 /* Create and insert a raw software breakpoint at PC. Return an
14731 identifier, which should be used to remove the breakpoint later.
14732 In general, places which call this should be using something on the
14733 breakpoint chain instead; this function should be eliminated
14734 someday. */
14735
14736 void *
14737 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14738 struct address_space *aspace, CORE_ADDR pc)
14739 {
14740 struct bp_target_info *bp_tgt;
14741
14742 bp_tgt = XZALLOC (struct bp_target_info);
14743
14744 bp_tgt->placed_address_space = aspace;
14745 bp_tgt->placed_address = pc;
14746
14747 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14748 {
14749 /* Could not insert the breakpoint. */
14750 xfree (bp_tgt);
14751 return NULL;
14752 }
14753
14754 return bp_tgt;
14755 }
14756
14757 /* Remove a breakpoint BP inserted by
14758 deprecated_insert_raw_breakpoint. */
14759
14760 int
14761 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14762 {
14763 struct bp_target_info *bp_tgt = bp;
14764 int ret;
14765
14766 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14767 xfree (bp_tgt);
14768
14769 return ret;
14770 }
14771
14772 /* One (or perhaps two) breakpoints used for software single
14773 stepping. */
14774
14775 static void *single_step_breakpoints[2];
14776 static struct gdbarch *single_step_gdbarch[2];
14777
14778 /* Create and insert a breakpoint for software single step. */
14779
14780 void
14781 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14782 struct address_space *aspace,
14783 CORE_ADDR next_pc)
14784 {
14785 void **bpt_p;
14786
14787 if (single_step_breakpoints[0] == NULL)
14788 {
14789 bpt_p = &single_step_breakpoints[0];
14790 single_step_gdbarch[0] = gdbarch;
14791 }
14792 else
14793 {
14794 gdb_assert (single_step_breakpoints[1] == NULL);
14795 bpt_p = &single_step_breakpoints[1];
14796 single_step_gdbarch[1] = gdbarch;
14797 }
14798
14799 /* NOTE drow/2006-04-11: A future improvement to this function would
14800 be to only create the breakpoints once, and actually put them on
14801 the breakpoint chain. That would let us use set_raw_breakpoint.
14802 We could adjust the addresses each time they were needed. Doing
14803 this requires corresponding changes elsewhere where single step
14804 breakpoints are handled, however. So, for now, we use this. */
14805
14806 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14807 if (*bpt_p == NULL)
14808 error (_("Could not insert single-step breakpoint at %s"),
14809 paddress (gdbarch, next_pc));
14810 }
14811
14812 /* Check if the breakpoints used for software single stepping
14813 were inserted or not. */
14814
14815 int
14816 single_step_breakpoints_inserted (void)
14817 {
14818 return (single_step_breakpoints[0] != NULL
14819 || single_step_breakpoints[1] != NULL);
14820 }
14821
14822 /* Remove and delete any breakpoints used for software single step. */
14823
14824 void
14825 remove_single_step_breakpoints (void)
14826 {
14827 gdb_assert (single_step_breakpoints[0] != NULL);
14828
14829 /* See insert_single_step_breakpoint for more about this deprecated
14830 call. */
14831 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14832 single_step_breakpoints[0]);
14833 single_step_gdbarch[0] = NULL;
14834 single_step_breakpoints[0] = NULL;
14835
14836 if (single_step_breakpoints[1] != NULL)
14837 {
14838 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14839 single_step_breakpoints[1]);
14840 single_step_gdbarch[1] = NULL;
14841 single_step_breakpoints[1] = NULL;
14842 }
14843 }
14844
14845 /* Delete software single step breakpoints without removing them from
14846 the inferior. This is intended to be used if the inferior's address
14847 space where they were inserted is already gone, e.g. after exit or
14848 exec. */
14849
14850 void
14851 cancel_single_step_breakpoints (void)
14852 {
14853 int i;
14854
14855 for (i = 0; i < 2; i++)
14856 if (single_step_breakpoints[i])
14857 {
14858 xfree (single_step_breakpoints[i]);
14859 single_step_breakpoints[i] = NULL;
14860 single_step_gdbarch[i] = NULL;
14861 }
14862 }
14863
14864 /* Detach software single-step breakpoints from INFERIOR_PTID without
14865 removing them. */
14866
14867 static void
14868 detach_single_step_breakpoints (void)
14869 {
14870 int i;
14871
14872 for (i = 0; i < 2; i++)
14873 if (single_step_breakpoints[i])
14874 target_remove_breakpoint (single_step_gdbarch[i],
14875 single_step_breakpoints[i]);
14876 }
14877
14878 /* Check whether a software single-step breakpoint is inserted at
14879 PC. */
14880
14881 static int
14882 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14883 CORE_ADDR pc)
14884 {
14885 int i;
14886
14887 for (i = 0; i < 2; i++)
14888 {
14889 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
14890 if (bp_tgt
14891 && breakpoint_address_match (bp_tgt->placed_address_space,
14892 bp_tgt->placed_address,
14893 aspace, pc))
14894 return 1;
14895 }
14896
14897 return 0;
14898 }
14899
14900 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
14901 non-zero otherwise. */
14902 static int
14903 is_syscall_catchpoint_enabled (struct breakpoint *bp)
14904 {
14905 if (syscall_catchpoint_p (bp)
14906 && bp->enable_state != bp_disabled
14907 && bp->enable_state != bp_call_disabled)
14908 return 1;
14909 else
14910 return 0;
14911 }
14912
14913 int
14914 catch_syscall_enabled (void)
14915 {
14916 struct catch_syscall_inferior_data *inf_data
14917 = get_catch_syscall_inferior_data (current_inferior ());
14918
14919 return inf_data->total_syscalls_count != 0;
14920 }
14921
14922 int
14923 catching_syscall_number (int syscall_number)
14924 {
14925 struct breakpoint *bp;
14926
14927 ALL_BREAKPOINTS (bp)
14928 if (is_syscall_catchpoint_enabled (bp))
14929 {
14930 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
14931
14932 if (c->syscalls_to_be_caught)
14933 {
14934 int i, iter;
14935 for (i = 0;
14936 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
14937 i++)
14938 if (syscall_number == iter)
14939 return 1;
14940 }
14941 else
14942 return 1;
14943 }
14944
14945 return 0;
14946 }
14947
14948 /* Complete syscall names. Used by "catch syscall". */
14949 static VEC (char_ptr) *
14950 catch_syscall_completer (struct cmd_list_element *cmd,
14951 const char *text, const char *word)
14952 {
14953 const char **list = get_syscall_names ();
14954 VEC (char_ptr) *retlist
14955 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
14956
14957 xfree (list);
14958 return retlist;
14959 }
14960
14961 /* Tracepoint-specific operations. */
14962
14963 /* Set tracepoint count to NUM. */
14964 static void
14965 set_tracepoint_count (int num)
14966 {
14967 tracepoint_count = num;
14968 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14969 }
14970
14971 static void
14972 trace_command (char *arg, int from_tty)
14973 {
14974 struct breakpoint_ops *ops;
14975 const char *arg_cp = arg;
14976
14977 if (arg && probe_linespec_to_ops (&arg_cp))
14978 ops = &tracepoint_probe_breakpoint_ops;
14979 else
14980 ops = &tracepoint_breakpoint_ops;
14981
14982 create_breakpoint (get_current_arch (),
14983 arg,
14984 NULL, 0, NULL, 1 /* parse arg */,
14985 0 /* tempflag */,
14986 bp_tracepoint /* type_wanted */,
14987 0 /* Ignore count */,
14988 pending_break_support,
14989 ops,
14990 from_tty,
14991 1 /* enabled */,
14992 0 /* internal */, 0);
14993 }
14994
14995 static void
14996 ftrace_command (char *arg, int from_tty)
14997 {
14998 create_breakpoint (get_current_arch (),
14999 arg,
15000 NULL, 0, NULL, 1 /* parse arg */,
15001 0 /* tempflag */,
15002 bp_fast_tracepoint /* type_wanted */,
15003 0 /* Ignore count */,
15004 pending_break_support,
15005 &tracepoint_breakpoint_ops,
15006 from_tty,
15007 1 /* enabled */,
15008 0 /* internal */, 0);
15009 }
15010
15011 /* strace command implementation. Creates a static tracepoint. */
15012
15013 static void
15014 strace_command (char *arg, int from_tty)
15015 {
15016 struct breakpoint_ops *ops;
15017
15018 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15019 or with a normal static tracepoint. */
15020 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15021 ops = &strace_marker_breakpoint_ops;
15022 else
15023 ops = &tracepoint_breakpoint_ops;
15024
15025 create_breakpoint (get_current_arch (),
15026 arg,
15027 NULL, 0, NULL, 1 /* parse arg */,
15028 0 /* tempflag */,
15029 bp_static_tracepoint /* type_wanted */,
15030 0 /* Ignore count */,
15031 pending_break_support,
15032 ops,
15033 from_tty,
15034 1 /* enabled */,
15035 0 /* internal */, 0);
15036 }
15037
15038 /* Set up a fake reader function that gets command lines from a linked
15039 list that was acquired during tracepoint uploading. */
15040
15041 static struct uploaded_tp *this_utp;
15042 static int next_cmd;
15043
15044 static char *
15045 read_uploaded_action (void)
15046 {
15047 char *rslt;
15048
15049 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15050
15051 next_cmd++;
15052
15053 return rslt;
15054 }
15055
15056 /* Given information about a tracepoint as recorded on a target (which
15057 can be either a live system or a trace file), attempt to create an
15058 equivalent GDB tracepoint. This is not a reliable process, since
15059 the target does not necessarily have all the information used when
15060 the tracepoint was originally defined. */
15061
15062 struct tracepoint *
15063 create_tracepoint_from_upload (struct uploaded_tp *utp)
15064 {
15065 char *addr_str, small_buf[100];
15066 struct tracepoint *tp;
15067
15068 if (utp->at_string)
15069 addr_str = utp->at_string;
15070 else
15071 {
15072 /* In the absence of a source location, fall back to raw
15073 address. Since there is no way to confirm that the address
15074 means the same thing as when the trace was started, warn the
15075 user. */
15076 warning (_("Uploaded tracepoint %d has no "
15077 "source location, using raw address"),
15078 utp->number);
15079 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15080 addr_str = small_buf;
15081 }
15082
15083 /* There's not much we can do with a sequence of bytecodes. */
15084 if (utp->cond && !utp->cond_string)
15085 warning (_("Uploaded tracepoint %d condition "
15086 "has no source form, ignoring it"),
15087 utp->number);
15088
15089 if (!create_breakpoint (get_current_arch (),
15090 addr_str,
15091 utp->cond_string, -1, NULL,
15092 0 /* parse cond/thread */,
15093 0 /* tempflag */,
15094 utp->type /* type_wanted */,
15095 0 /* Ignore count */,
15096 pending_break_support,
15097 &tracepoint_breakpoint_ops,
15098 0 /* from_tty */,
15099 utp->enabled /* enabled */,
15100 0 /* internal */,
15101 CREATE_BREAKPOINT_FLAGS_INSERTED))
15102 return NULL;
15103
15104 /* Get the tracepoint we just created. */
15105 tp = get_tracepoint (tracepoint_count);
15106 gdb_assert (tp != NULL);
15107
15108 if (utp->pass > 0)
15109 {
15110 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15111 tp->base.number);
15112
15113 trace_pass_command (small_buf, 0);
15114 }
15115
15116 /* If we have uploaded versions of the original commands, set up a
15117 special-purpose "reader" function and call the usual command line
15118 reader, then pass the result to the breakpoint command-setting
15119 function. */
15120 if (!VEC_empty (char_ptr, utp->cmd_strings))
15121 {
15122 struct command_line *cmd_list;
15123
15124 this_utp = utp;
15125 next_cmd = 0;
15126
15127 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15128
15129 breakpoint_set_commands (&tp->base, cmd_list);
15130 }
15131 else if (!VEC_empty (char_ptr, utp->actions)
15132 || !VEC_empty (char_ptr, utp->step_actions))
15133 warning (_("Uploaded tracepoint %d actions "
15134 "have no source form, ignoring them"),
15135 utp->number);
15136
15137 /* Copy any status information that might be available. */
15138 tp->base.hit_count = utp->hit_count;
15139 tp->traceframe_usage = utp->traceframe_usage;
15140
15141 return tp;
15142 }
15143
15144 /* Print information on tracepoint number TPNUM_EXP, or all if
15145 omitted. */
15146
15147 static void
15148 tracepoints_info (char *args, int from_tty)
15149 {
15150 struct ui_out *uiout = current_uiout;
15151 int num_printed;
15152
15153 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15154
15155 if (num_printed == 0)
15156 {
15157 if (args == NULL || *args == '\0')
15158 ui_out_message (uiout, 0, "No tracepoints.\n");
15159 else
15160 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15161 }
15162
15163 default_collect_info ();
15164 }
15165
15166 /* The 'enable trace' command enables tracepoints.
15167 Not supported by all targets. */
15168 static void
15169 enable_trace_command (char *args, int from_tty)
15170 {
15171 enable_command (args, from_tty);
15172 }
15173
15174 /* The 'disable trace' command disables tracepoints.
15175 Not supported by all targets. */
15176 static void
15177 disable_trace_command (char *args, int from_tty)
15178 {
15179 disable_command (args, from_tty);
15180 }
15181
15182 /* Remove a tracepoint (or all if no argument). */
15183 static void
15184 delete_trace_command (char *arg, int from_tty)
15185 {
15186 struct breakpoint *b, *b_tmp;
15187
15188 dont_repeat ();
15189
15190 if (arg == 0)
15191 {
15192 int breaks_to_delete = 0;
15193
15194 /* Delete all breakpoints if no argument.
15195 Do not delete internal or call-dummy breakpoints, these
15196 have to be deleted with an explicit breakpoint number
15197 argument. */
15198 ALL_TRACEPOINTS (b)
15199 if (is_tracepoint (b) && user_breakpoint_p (b))
15200 {
15201 breaks_to_delete = 1;
15202 break;
15203 }
15204
15205 /* Ask user only if there are some breakpoints to delete. */
15206 if (!from_tty
15207 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15208 {
15209 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15210 if (is_tracepoint (b) && user_breakpoint_p (b))
15211 delete_breakpoint (b);
15212 }
15213 }
15214 else
15215 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15216 }
15217
15218 /* Helper function for trace_pass_command. */
15219
15220 static void
15221 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15222 {
15223 tp->pass_count = count;
15224 observer_notify_breakpoint_modified (&tp->base);
15225 if (from_tty)
15226 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15227 tp->base.number, count);
15228 }
15229
15230 /* Set passcount for tracepoint.
15231
15232 First command argument is passcount, second is tracepoint number.
15233 If tracepoint number omitted, apply to most recently defined.
15234 Also accepts special argument "all". */
15235
15236 static void
15237 trace_pass_command (char *args, int from_tty)
15238 {
15239 struct tracepoint *t1;
15240 unsigned int count;
15241
15242 if (args == 0 || *args == 0)
15243 error (_("passcount command requires an "
15244 "argument (count + optional TP num)"));
15245
15246 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15247
15248 args = skip_spaces (args);
15249 if (*args && strncasecmp (args, "all", 3) == 0)
15250 {
15251 struct breakpoint *b;
15252
15253 args += 3; /* Skip special argument "all". */
15254 if (*args)
15255 error (_("Junk at end of arguments."));
15256
15257 ALL_TRACEPOINTS (b)
15258 {
15259 t1 = (struct tracepoint *) b;
15260 trace_pass_set_count (t1, count, from_tty);
15261 }
15262 }
15263 else if (*args == '\0')
15264 {
15265 t1 = get_tracepoint_by_number (&args, NULL, 1);
15266 if (t1)
15267 trace_pass_set_count (t1, count, from_tty);
15268 }
15269 else
15270 {
15271 struct get_number_or_range_state state;
15272
15273 init_number_or_range (&state, args);
15274 while (!state.finished)
15275 {
15276 t1 = get_tracepoint_by_number (&args, &state, 1);
15277 if (t1)
15278 trace_pass_set_count (t1, count, from_tty);
15279 }
15280 }
15281 }
15282
15283 struct tracepoint *
15284 get_tracepoint (int num)
15285 {
15286 struct breakpoint *t;
15287
15288 ALL_TRACEPOINTS (t)
15289 if (t->number == num)
15290 return (struct tracepoint *) t;
15291
15292 return NULL;
15293 }
15294
15295 /* Find the tracepoint with the given target-side number (which may be
15296 different from the tracepoint number after disconnecting and
15297 reconnecting). */
15298
15299 struct tracepoint *
15300 get_tracepoint_by_number_on_target (int num)
15301 {
15302 struct breakpoint *b;
15303
15304 ALL_TRACEPOINTS (b)
15305 {
15306 struct tracepoint *t = (struct tracepoint *) b;
15307
15308 if (t->number_on_target == num)
15309 return t;
15310 }
15311
15312 return NULL;
15313 }
15314
15315 /* Utility: parse a tracepoint number and look it up in the list.
15316 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15317 If OPTIONAL_P is true, then if the argument is missing, the most
15318 recent tracepoint (tracepoint_count) is returned. */
15319 struct tracepoint *
15320 get_tracepoint_by_number (char **arg,
15321 struct get_number_or_range_state *state,
15322 int optional_p)
15323 {
15324 struct breakpoint *t;
15325 int tpnum;
15326 char *instring = arg == NULL ? NULL : *arg;
15327
15328 if (state)
15329 {
15330 gdb_assert (!state->finished);
15331 tpnum = get_number_or_range (state);
15332 }
15333 else if (arg == NULL || *arg == NULL || ! **arg)
15334 {
15335 if (optional_p)
15336 tpnum = tracepoint_count;
15337 else
15338 error_no_arg (_("tracepoint number"));
15339 }
15340 else
15341 tpnum = get_number (arg);
15342
15343 if (tpnum <= 0)
15344 {
15345 if (instring && *instring)
15346 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15347 instring);
15348 else
15349 printf_filtered (_("Tracepoint argument missing "
15350 "and no previous tracepoint\n"));
15351 return NULL;
15352 }
15353
15354 ALL_TRACEPOINTS (t)
15355 if (t->number == tpnum)
15356 {
15357 return (struct tracepoint *) t;
15358 }
15359
15360 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15361 return NULL;
15362 }
15363
15364 void
15365 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15366 {
15367 if (b->thread != -1)
15368 fprintf_unfiltered (fp, " thread %d", b->thread);
15369
15370 if (b->task != 0)
15371 fprintf_unfiltered (fp, " task %d", b->task);
15372
15373 fprintf_unfiltered (fp, "\n");
15374 }
15375
15376 /* Save information on user settable breakpoints (watchpoints, etc) to
15377 a new script file named FILENAME. If FILTER is non-NULL, call it
15378 on each breakpoint and only include the ones for which it returns
15379 non-zero. */
15380
15381 static void
15382 save_breakpoints (char *filename, int from_tty,
15383 int (*filter) (const struct breakpoint *))
15384 {
15385 struct breakpoint *tp;
15386 int any = 0;
15387 char *pathname;
15388 struct cleanup *cleanup;
15389 struct ui_file *fp;
15390 int extra_trace_bits = 0;
15391
15392 if (filename == 0 || *filename == 0)
15393 error (_("Argument required (file name in which to save)"));
15394
15395 /* See if we have anything to save. */
15396 ALL_BREAKPOINTS (tp)
15397 {
15398 /* Skip internal and momentary breakpoints. */
15399 if (!user_breakpoint_p (tp))
15400 continue;
15401
15402 /* If we have a filter, only save the breakpoints it accepts. */
15403 if (filter && !filter (tp))
15404 continue;
15405
15406 any = 1;
15407
15408 if (is_tracepoint (tp))
15409 {
15410 extra_trace_bits = 1;
15411
15412 /* We can stop searching. */
15413 break;
15414 }
15415 }
15416
15417 if (!any)
15418 {
15419 warning (_("Nothing to save."));
15420 return;
15421 }
15422
15423 pathname = tilde_expand (filename);
15424 cleanup = make_cleanup (xfree, pathname);
15425 fp = gdb_fopen (pathname, "w");
15426 if (!fp)
15427 error (_("Unable to open file '%s' for saving (%s)"),
15428 filename, safe_strerror (errno));
15429 make_cleanup_ui_file_delete (fp);
15430
15431 if (extra_trace_bits)
15432 save_trace_state_variables (fp);
15433
15434 ALL_BREAKPOINTS (tp)
15435 {
15436 /* Skip internal and momentary breakpoints. */
15437 if (!user_breakpoint_p (tp))
15438 continue;
15439
15440 /* If we have a filter, only save the breakpoints it accepts. */
15441 if (filter && !filter (tp))
15442 continue;
15443
15444 tp->ops->print_recreate (tp, fp);
15445
15446 /* Note, we can't rely on tp->number for anything, as we can't
15447 assume the recreated breakpoint numbers will match. Use $bpnum
15448 instead. */
15449
15450 if (tp->cond_string)
15451 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15452
15453 if (tp->ignore_count)
15454 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15455
15456 if (tp->commands)
15457 {
15458 volatile struct gdb_exception ex;
15459
15460 fprintf_unfiltered (fp, " commands\n");
15461
15462 ui_out_redirect (current_uiout, fp);
15463 TRY_CATCH (ex, RETURN_MASK_ALL)
15464 {
15465 print_command_lines (current_uiout, tp->commands->commands, 2);
15466 }
15467 ui_out_redirect (current_uiout, NULL);
15468
15469 if (ex.reason < 0)
15470 throw_exception (ex);
15471
15472 fprintf_unfiltered (fp, " end\n");
15473 }
15474
15475 if (tp->enable_state == bp_disabled)
15476 fprintf_unfiltered (fp, "disable\n");
15477
15478 /* If this is a multi-location breakpoint, check if the locations
15479 should be individually disabled. Watchpoint locations are
15480 special, and not user visible. */
15481 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15482 {
15483 struct bp_location *loc;
15484 int n = 1;
15485
15486 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15487 if (!loc->enabled)
15488 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15489 }
15490 }
15491
15492 if (extra_trace_bits && *default_collect)
15493 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15494
15495 do_cleanups (cleanup);
15496 if (from_tty)
15497 printf_filtered (_("Saved to file '%s'.\n"), filename);
15498 }
15499
15500 /* The `save breakpoints' command. */
15501
15502 static void
15503 save_breakpoints_command (char *args, int from_tty)
15504 {
15505 save_breakpoints (args, from_tty, NULL);
15506 }
15507
15508 /* The `save tracepoints' command. */
15509
15510 static void
15511 save_tracepoints_command (char *args, int from_tty)
15512 {
15513 save_breakpoints (args, from_tty, is_tracepoint);
15514 }
15515
15516 /* Create a vector of all tracepoints. */
15517
15518 VEC(breakpoint_p) *
15519 all_tracepoints (void)
15520 {
15521 VEC(breakpoint_p) *tp_vec = 0;
15522 struct breakpoint *tp;
15523
15524 ALL_TRACEPOINTS (tp)
15525 {
15526 VEC_safe_push (breakpoint_p, tp_vec, tp);
15527 }
15528
15529 return tp_vec;
15530 }
15531
15532 \f
15533 /* This help string is used for the break, hbreak, tbreak and thbreak
15534 commands. It is defined as a macro to prevent duplication.
15535 COMMAND should be a string constant containing the name of the
15536 command. */
15537 #define BREAK_ARGS_HELP(command) \
15538 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15539 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15540 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15541 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15542 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15543 If a line number is specified, break at start of code for that line.\n\
15544 If a function is specified, break at start of code for that function.\n\
15545 If an address is specified, break at that exact address.\n\
15546 With no LOCATION, uses current execution address of the selected\n\
15547 stack frame. This is useful for breaking on return to a stack frame.\n\
15548 \n\
15549 THREADNUM is the number from \"info threads\".\n\
15550 CONDITION is a boolean expression.\n\
15551 \n\
15552 Multiple breakpoints at one place are permitted, and useful if their\n\
15553 conditions are different.\n\
15554 \n\
15555 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15556
15557 /* List of subcommands for "catch". */
15558 static struct cmd_list_element *catch_cmdlist;
15559
15560 /* List of subcommands for "tcatch". */
15561 static struct cmd_list_element *tcatch_cmdlist;
15562
15563 void
15564 add_catch_command (char *name, char *docstring,
15565 void (*sfunc) (char *args, int from_tty,
15566 struct cmd_list_element *command),
15567 completer_ftype *completer,
15568 void *user_data_catch,
15569 void *user_data_tcatch)
15570 {
15571 struct cmd_list_element *command;
15572
15573 command = add_cmd (name, class_breakpoint, NULL, docstring,
15574 &catch_cmdlist);
15575 set_cmd_sfunc (command, sfunc);
15576 set_cmd_context (command, user_data_catch);
15577 set_cmd_completer (command, completer);
15578
15579 command = add_cmd (name, class_breakpoint, NULL, docstring,
15580 &tcatch_cmdlist);
15581 set_cmd_sfunc (command, sfunc);
15582 set_cmd_context (command, user_data_tcatch);
15583 set_cmd_completer (command, completer);
15584 }
15585
15586 static void
15587 clear_syscall_counts (struct inferior *inf)
15588 {
15589 struct catch_syscall_inferior_data *inf_data
15590 = get_catch_syscall_inferior_data (inf);
15591
15592 inf_data->total_syscalls_count = 0;
15593 inf_data->any_syscall_count = 0;
15594 VEC_free (int, inf_data->syscalls_counts);
15595 }
15596
15597 static void
15598 save_command (char *arg, int from_tty)
15599 {
15600 printf_unfiltered (_("\"save\" must be followed by "
15601 "the name of a save subcommand.\n"));
15602 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15603 }
15604
15605 struct breakpoint *
15606 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15607 void *data)
15608 {
15609 struct breakpoint *b, *b_tmp;
15610
15611 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15612 {
15613 if ((*callback) (b, data))
15614 return b;
15615 }
15616
15617 return NULL;
15618 }
15619
15620 /* Zero if any of the breakpoint's locations could be a location where
15621 functions have been inlined, nonzero otherwise. */
15622
15623 static int
15624 is_non_inline_function (struct breakpoint *b)
15625 {
15626 /* The shared library event breakpoint is set on the address of a
15627 non-inline function. */
15628 if (b->type == bp_shlib_event)
15629 return 1;
15630
15631 return 0;
15632 }
15633
15634 /* Nonzero if the specified PC cannot be a location where functions
15635 have been inlined. */
15636
15637 int
15638 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15639 const struct target_waitstatus *ws)
15640 {
15641 struct breakpoint *b;
15642 struct bp_location *bl;
15643
15644 ALL_BREAKPOINTS (b)
15645 {
15646 if (!is_non_inline_function (b))
15647 continue;
15648
15649 for (bl = b->loc; bl != NULL; bl = bl->next)
15650 {
15651 if (!bl->shlib_disabled
15652 && bpstat_check_location (bl, aspace, pc, ws))
15653 return 1;
15654 }
15655 }
15656
15657 return 0;
15658 }
15659
15660 /* Remove any references to OBJFILE which is going to be freed. */
15661
15662 void
15663 breakpoint_free_objfile (struct objfile *objfile)
15664 {
15665 struct bp_location **locp, *loc;
15666
15667 ALL_BP_LOCATIONS (loc, locp)
15668 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15669 loc->symtab = NULL;
15670 }
15671
15672 void
15673 initialize_breakpoint_ops (void)
15674 {
15675 static int initialized = 0;
15676
15677 struct breakpoint_ops *ops;
15678
15679 if (initialized)
15680 return;
15681 initialized = 1;
15682
15683 /* The breakpoint_ops structure to be inherit by all kinds of
15684 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15685 internal and momentary breakpoints, etc.). */
15686 ops = &bkpt_base_breakpoint_ops;
15687 *ops = base_breakpoint_ops;
15688 ops->re_set = bkpt_re_set;
15689 ops->insert_location = bkpt_insert_location;
15690 ops->remove_location = bkpt_remove_location;
15691 ops->breakpoint_hit = bkpt_breakpoint_hit;
15692 ops->create_sals_from_address = bkpt_create_sals_from_address;
15693 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15694 ops->decode_linespec = bkpt_decode_linespec;
15695
15696 /* The breakpoint_ops structure to be used in regular breakpoints. */
15697 ops = &bkpt_breakpoint_ops;
15698 *ops = bkpt_base_breakpoint_ops;
15699 ops->re_set = bkpt_re_set;
15700 ops->resources_needed = bkpt_resources_needed;
15701 ops->print_it = bkpt_print_it;
15702 ops->print_mention = bkpt_print_mention;
15703 ops->print_recreate = bkpt_print_recreate;
15704
15705 /* Ranged breakpoints. */
15706 ops = &ranged_breakpoint_ops;
15707 *ops = bkpt_breakpoint_ops;
15708 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15709 ops->resources_needed = resources_needed_ranged_breakpoint;
15710 ops->print_it = print_it_ranged_breakpoint;
15711 ops->print_one = print_one_ranged_breakpoint;
15712 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15713 ops->print_mention = print_mention_ranged_breakpoint;
15714 ops->print_recreate = print_recreate_ranged_breakpoint;
15715
15716 /* Internal breakpoints. */
15717 ops = &internal_breakpoint_ops;
15718 *ops = bkpt_base_breakpoint_ops;
15719 ops->re_set = internal_bkpt_re_set;
15720 ops->check_status = internal_bkpt_check_status;
15721 ops->print_it = internal_bkpt_print_it;
15722 ops->print_mention = internal_bkpt_print_mention;
15723
15724 /* Momentary breakpoints. */
15725 ops = &momentary_breakpoint_ops;
15726 *ops = bkpt_base_breakpoint_ops;
15727 ops->re_set = momentary_bkpt_re_set;
15728 ops->check_status = momentary_bkpt_check_status;
15729 ops->print_it = momentary_bkpt_print_it;
15730 ops->print_mention = momentary_bkpt_print_mention;
15731
15732 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15733 ops = &longjmp_breakpoint_ops;
15734 *ops = momentary_breakpoint_ops;
15735 ops->dtor = longjmp_bkpt_dtor;
15736
15737 /* Probe breakpoints. */
15738 ops = &bkpt_probe_breakpoint_ops;
15739 *ops = bkpt_breakpoint_ops;
15740 ops->insert_location = bkpt_probe_insert_location;
15741 ops->remove_location = bkpt_probe_remove_location;
15742 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15743 ops->decode_linespec = bkpt_probe_decode_linespec;
15744
15745 /* Watchpoints. */
15746 ops = &watchpoint_breakpoint_ops;
15747 *ops = base_breakpoint_ops;
15748 ops->dtor = dtor_watchpoint;
15749 ops->re_set = re_set_watchpoint;
15750 ops->insert_location = insert_watchpoint;
15751 ops->remove_location = remove_watchpoint;
15752 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15753 ops->check_status = check_status_watchpoint;
15754 ops->resources_needed = resources_needed_watchpoint;
15755 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15756 ops->print_it = print_it_watchpoint;
15757 ops->print_mention = print_mention_watchpoint;
15758 ops->print_recreate = print_recreate_watchpoint;
15759
15760 /* Masked watchpoints. */
15761 ops = &masked_watchpoint_breakpoint_ops;
15762 *ops = watchpoint_breakpoint_ops;
15763 ops->insert_location = insert_masked_watchpoint;
15764 ops->remove_location = remove_masked_watchpoint;
15765 ops->resources_needed = resources_needed_masked_watchpoint;
15766 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15767 ops->print_it = print_it_masked_watchpoint;
15768 ops->print_one_detail = print_one_detail_masked_watchpoint;
15769 ops->print_mention = print_mention_masked_watchpoint;
15770 ops->print_recreate = print_recreate_masked_watchpoint;
15771
15772 /* Tracepoints. */
15773 ops = &tracepoint_breakpoint_ops;
15774 *ops = base_breakpoint_ops;
15775 ops->re_set = tracepoint_re_set;
15776 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15777 ops->print_one_detail = tracepoint_print_one_detail;
15778 ops->print_mention = tracepoint_print_mention;
15779 ops->print_recreate = tracepoint_print_recreate;
15780 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15781 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15782 ops->decode_linespec = tracepoint_decode_linespec;
15783
15784 /* Probe tracepoints. */
15785 ops = &tracepoint_probe_breakpoint_ops;
15786 *ops = tracepoint_breakpoint_ops;
15787 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15788 ops->decode_linespec = tracepoint_probe_decode_linespec;
15789
15790 /* Static tracepoints with marker (`-m'). */
15791 ops = &strace_marker_breakpoint_ops;
15792 *ops = tracepoint_breakpoint_ops;
15793 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15794 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15795 ops->decode_linespec = strace_marker_decode_linespec;
15796
15797 /* Fork catchpoints. */
15798 ops = &catch_fork_breakpoint_ops;
15799 *ops = base_breakpoint_ops;
15800 ops->insert_location = insert_catch_fork;
15801 ops->remove_location = remove_catch_fork;
15802 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15803 ops->print_it = print_it_catch_fork;
15804 ops->print_one = print_one_catch_fork;
15805 ops->print_mention = print_mention_catch_fork;
15806 ops->print_recreate = print_recreate_catch_fork;
15807
15808 /* Vfork catchpoints. */
15809 ops = &catch_vfork_breakpoint_ops;
15810 *ops = base_breakpoint_ops;
15811 ops->insert_location = insert_catch_vfork;
15812 ops->remove_location = remove_catch_vfork;
15813 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15814 ops->print_it = print_it_catch_vfork;
15815 ops->print_one = print_one_catch_vfork;
15816 ops->print_mention = print_mention_catch_vfork;
15817 ops->print_recreate = print_recreate_catch_vfork;
15818
15819 /* Exec catchpoints. */
15820 ops = &catch_exec_breakpoint_ops;
15821 *ops = base_breakpoint_ops;
15822 ops->dtor = dtor_catch_exec;
15823 ops->insert_location = insert_catch_exec;
15824 ops->remove_location = remove_catch_exec;
15825 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15826 ops->print_it = print_it_catch_exec;
15827 ops->print_one = print_one_catch_exec;
15828 ops->print_mention = print_mention_catch_exec;
15829 ops->print_recreate = print_recreate_catch_exec;
15830
15831 /* Syscall catchpoints. */
15832 ops = &catch_syscall_breakpoint_ops;
15833 *ops = base_breakpoint_ops;
15834 ops->dtor = dtor_catch_syscall;
15835 ops->insert_location = insert_catch_syscall;
15836 ops->remove_location = remove_catch_syscall;
15837 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15838 ops->print_it = print_it_catch_syscall;
15839 ops->print_one = print_one_catch_syscall;
15840 ops->print_mention = print_mention_catch_syscall;
15841 ops->print_recreate = print_recreate_catch_syscall;
15842
15843 /* Solib-related catchpoints. */
15844 ops = &catch_solib_breakpoint_ops;
15845 *ops = base_breakpoint_ops;
15846 ops->dtor = dtor_catch_solib;
15847 ops->insert_location = insert_catch_solib;
15848 ops->remove_location = remove_catch_solib;
15849 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15850 ops->check_status = check_status_catch_solib;
15851 ops->print_it = print_it_catch_solib;
15852 ops->print_one = print_one_catch_solib;
15853 ops->print_mention = print_mention_catch_solib;
15854 ops->print_recreate = print_recreate_catch_solib;
15855
15856 ops = &dprintf_breakpoint_ops;
15857 *ops = bkpt_base_breakpoint_ops;
15858 ops->re_set = dprintf_re_set;
15859 ops->resources_needed = bkpt_resources_needed;
15860 ops->print_it = bkpt_print_it;
15861 ops->print_mention = bkpt_print_mention;
15862 ops->print_recreate = bkpt_print_recreate;
15863 }
15864
15865 /* Chain containing all defined "enable breakpoint" subcommands. */
15866
15867 static struct cmd_list_element *enablebreaklist = NULL;
15868
15869 void
15870 _initialize_breakpoint (void)
15871 {
15872 struct cmd_list_element *c;
15873
15874 initialize_breakpoint_ops ();
15875
15876 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15877 observer_attach_inferior_exit (clear_syscall_counts);
15878 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15879
15880 breakpoint_objfile_key
15881 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15882
15883 catch_syscall_inferior_data
15884 = register_inferior_data_with_cleanup (NULL,
15885 catch_syscall_inferior_data_cleanup);
15886
15887 breakpoint_chain = 0;
15888 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15889 before a breakpoint is set. */
15890 breakpoint_count = 0;
15891
15892 tracepoint_count = 0;
15893
15894 add_com ("ignore", class_breakpoint, ignore_command, _("\
15895 Set ignore-count of breakpoint number N to COUNT.\n\
15896 Usage is `ignore N COUNT'."));
15897 if (xdb_commands)
15898 add_com_alias ("bc", "ignore", class_breakpoint, 1);
15899
15900 add_com ("commands", class_breakpoint, commands_command, _("\
15901 Set commands to be executed when a breakpoint is hit.\n\
15902 Give breakpoint number as argument after \"commands\".\n\
15903 With no argument, the targeted breakpoint is the last one set.\n\
15904 The commands themselves follow starting on the next line.\n\
15905 Type a line containing \"end\" to indicate the end of them.\n\
15906 Give \"silent\" as the first line to make the breakpoint silent;\n\
15907 then no output is printed when it is hit, except what the commands print."));
15908
15909 c = add_com ("condition", class_breakpoint, condition_command, _("\
15910 Specify breakpoint number N to break only if COND is true.\n\
15911 Usage is `condition N COND', where N is an integer and COND is an\n\
15912 expression to be evaluated whenever breakpoint N is reached."));
15913 set_cmd_completer (c, condition_completer);
15914
15915 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15916 Set a temporary breakpoint.\n\
15917 Like \"break\" except the breakpoint is only temporary,\n\
15918 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15919 by using \"enable delete\" on the breakpoint number.\n\
15920 \n"
15921 BREAK_ARGS_HELP ("tbreak")));
15922 set_cmd_completer (c, location_completer);
15923
15924 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15925 Set a hardware assisted breakpoint.\n\
15926 Like \"break\" except the breakpoint requires hardware support,\n\
15927 some target hardware may not have this support.\n\
15928 \n"
15929 BREAK_ARGS_HELP ("hbreak")));
15930 set_cmd_completer (c, location_completer);
15931
15932 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15933 Set a temporary hardware assisted breakpoint.\n\
15934 Like \"hbreak\" except the breakpoint is only temporary,\n\
15935 so it will be deleted when hit.\n\
15936 \n"
15937 BREAK_ARGS_HELP ("thbreak")));
15938 set_cmd_completer (c, location_completer);
15939
15940 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15941 Enable some breakpoints.\n\
15942 Give breakpoint numbers (separated by spaces) as arguments.\n\
15943 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15944 This is used to cancel the effect of the \"disable\" command.\n\
15945 With a subcommand you can enable temporarily."),
15946 &enablelist, "enable ", 1, &cmdlist);
15947 if (xdb_commands)
15948 add_com ("ab", class_breakpoint, enable_command, _("\
15949 Enable some breakpoints.\n\
15950 Give breakpoint numbers (separated by spaces) as arguments.\n\
15951 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15952 This is used to cancel the effect of the \"disable\" command.\n\
15953 With a subcommand you can enable temporarily."));
15954
15955 add_com_alias ("en", "enable", class_breakpoint, 1);
15956
15957 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15958 Enable some breakpoints.\n\
15959 Give breakpoint numbers (separated by spaces) as arguments.\n\
15960 This is used to cancel the effect of the \"disable\" command.\n\
15961 May be abbreviated to simply \"enable\".\n"),
15962 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15963
15964 add_cmd ("once", no_class, enable_once_command, _("\
15965 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15966 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15967 &enablebreaklist);
15968
15969 add_cmd ("delete", no_class, enable_delete_command, _("\
15970 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15971 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15972 &enablebreaklist);
15973
15974 add_cmd ("count", no_class, enable_count_command, _("\
15975 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15976 If a breakpoint is hit while enabled in this fashion,\n\
15977 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15978 &enablebreaklist);
15979
15980 add_cmd ("delete", no_class, enable_delete_command, _("\
15981 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15982 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15983 &enablelist);
15984
15985 add_cmd ("once", no_class, enable_once_command, _("\
15986 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15987 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15988 &enablelist);
15989
15990 add_cmd ("count", no_class, enable_count_command, _("\
15991 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15992 If a breakpoint is hit while enabled in this fashion,\n\
15993 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15994 &enablelist);
15995
15996 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15997 Disable some breakpoints.\n\
15998 Arguments are breakpoint numbers with spaces in between.\n\
15999 To disable all breakpoints, give no argument.\n\
16000 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16001 &disablelist, "disable ", 1, &cmdlist);
16002 add_com_alias ("dis", "disable", class_breakpoint, 1);
16003 add_com_alias ("disa", "disable", class_breakpoint, 1);
16004 if (xdb_commands)
16005 add_com ("sb", class_breakpoint, disable_command, _("\
16006 Disable some breakpoints.\n\
16007 Arguments are breakpoint numbers with spaces in between.\n\
16008 To disable all breakpoints, give no argument.\n\
16009 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16010
16011 add_cmd ("breakpoints", class_alias, disable_command, _("\
16012 Disable some breakpoints.\n\
16013 Arguments are breakpoint numbers with spaces in between.\n\
16014 To disable all breakpoints, give no argument.\n\
16015 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16016 This command may be abbreviated \"disable\"."),
16017 &disablelist);
16018
16019 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16020 Delete some breakpoints or auto-display expressions.\n\
16021 Arguments are breakpoint numbers with spaces in between.\n\
16022 To delete all breakpoints, give no argument.\n\
16023 \n\
16024 Also a prefix command for deletion of other GDB objects.\n\
16025 The \"unset\" command is also an alias for \"delete\"."),
16026 &deletelist, "delete ", 1, &cmdlist);
16027 add_com_alias ("d", "delete", class_breakpoint, 1);
16028 add_com_alias ("del", "delete", class_breakpoint, 1);
16029 if (xdb_commands)
16030 add_com ("db", class_breakpoint, delete_command, _("\
16031 Delete some breakpoints.\n\
16032 Arguments are breakpoint numbers with spaces in between.\n\
16033 To delete all breakpoints, give no argument.\n"));
16034
16035 add_cmd ("breakpoints", class_alias, delete_command, _("\
16036 Delete some breakpoints or auto-display expressions.\n\
16037 Arguments are breakpoint numbers with spaces in between.\n\
16038 To delete all breakpoints, give no argument.\n\
16039 This command may be abbreviated \"delete\"."),
16040 &deletelist);
16041
16042 add_com ("clear", class_breakpoint, clear_command, _("\
16043 Clear breakpoint at specified line or function.\n\
16044 Argument may be line number, function name, or \"*\" and an address.\n\
16045 If line number is specified, all breakpoints in that line are cleared.\n\
16046 If function is specified, breakpoints at beginning of function are cleared.\n\
16047 If an address is specified, breakpoints at that address are cleared.\n\
16048 \n\
16049 With no argument, clears all breakpoints in the line that the selected frame\n\
16050 is executing in.\n\
16051 \n\
16052 See also the \"delete\" command which clears breakpoints by number."));
16053 add_com_alias ("cl", "clear", class_breakpoint, 1);
16054
16055 c = add_com ("break", class_breakpoint, break_command, _("\
16056 Set breakpoint at specified line or function.\n"
16057 BREAK_ARGS_HELP ("break")));
16058 set_cmd_completer (c, location_completer);
16059
16060 add_com_alias ("b", "break", class_run, 1);
16061 add_com_alias ("br", "break", class_run, 1);
16062 add_com_alias ("bre", "break", class_run, 1);
16063 add_com_alias ("brea", "break", class_run, 1);
16064
16065 if (xdb_commands)
16066 add_com_alias ("ba", "break", class_breakpoint, 1);
16067
16068 if (dbx_commands)
16069 {
16070 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16071 Break in function/address or break at a line in the current file."),
16072 &stoplist, "stop ", 1, &cmdlist);
16073 add_cmd ("in", class_breakpoint, stopin_command,
16074 _("Break in function or address."), &stoplist);
16075 add_cmd ("at", class_breakpoint, stopat_command,
16076 _("Break at a line in the current file."), &stoplist);
16077 add_com ("status", class_info, breakpoints_info, _("\
16078 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16079 The \"Type\" column indicates one of:\n\
16080 \tbreakpoint - normal breakpoint\n\
16081 \twatchpoint - watchpoint\n\
16082 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16083 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16084 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16085 address and file/line number respectively.\n\
16086 \n\
16087 Convenience variable \"$_\" and default examine address for \"x\"\n\
16088 are set to the address of the last breakpoint listed unless the command\n\
16089 is prefixed with \"server \".\n\n\
16090 Convenience variable \"$bpnum\" contains the number of the last\n\
16091 breakpoint set."));
16092 }
16093
16094 add_info ("breakpoints", breakpoints_info, _("\
16095 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16096 The \"Type\" column indicates one of:\n\
16097 \tbreakpoint - normal breakpoint\n\
16098 \twatchpoint - watchpoint\n\
16099 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16100 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16101 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16102 address and file/line number respectively.\n\
16103 \n\
16104 Convenience variable \"$_\" and default examine address for \"x\"\n\
16105 are set to the address of the last breakpoint listed unless the command\n\
16106 is prefixed with \"server \".\n\n\
16107 Convenience variable \"$bpnum\" contains the number of the last\n\
16108 breakpoint set."));
16109
16110 add_info_alias ("b", "breakpoints", 1);
16111
16112 if (xdb_commands)
16113 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16114 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16115 The \"Type\" column indicates one of:\n\
16116 \tbreakpoint - normal breakpoint\n\
16117 \twatchpoint - watchpoint\n\
16118 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16119 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16120 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16121 address and file/line number respectively.\n\
16122 \n\
16123 Convenience variable \"$_\" and default examine address for \"x\"\n\
16124 are set to the address of the last breakpoint listed unless the command\n\
16125 is prefixed with \"server \".\n\n\
16126 Convenience variable \"$bpnum\" contains the number of the last\n\
16127 breakpoint set."));
16128
16129 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16130 Status of all breakpoints, or breakpoint number NUMBER.\n\
16131 The \"Type\" column indicates one of:\n\
16132 \tbreakpoint - normal breakpoint\n\
16133 \twatchpoint - watchpoint\n\
16134 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16135 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16136 \tuntil - internal breakpoint used by the \"until\" command\n\
16137 \tfinish - internal breakpoint used by the \"finish\" command\n\
16138 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16139 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16140 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16141 address and file/line number respectively.\n\
16142 \n\
16143 Convenience variable \"$_\" and default examine address for \"x\"\n\
16144 are set to the address of the last breakpoint listed unless the command\n\
16145 is prefixed with \"server \".\n\n\
16146 Convenience variable \"$bpnum\" contains the number of the last\n\
16147 breakpoint set."),
16148 &maintenanceinfolist);
16149
16150 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16151 Set catchpoints to catch events."),
16152 &catch_cmdlist, "catch ",
16153 0/*allow-unknown*/, &cmdlist);
16154
16155 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16156 Set temporary catchpoints to catch events."),
16157 &tcatch_cmdlist, "tcatch ",
16158 0/*allow-unknown*/, &cmdlist);
16159
16160 add_catch_command ("fork", _("Catch calls to fork."),
16161 catch_fork_command_1,
16162 NULL,
16163 (void *) (uintptr_t) catch_fork_permanent,
16164 (void *) (uintptr_t) catch_fork_temporary);
16165 add_catch_command ("vfork", _("Catch calls to vfork."),
16166 catch_fork_command_1,
16167 NULL,
16168 (void *) (uintptr_t) catch_vfork_permanent,
16169 (void *) (uintptr_t) catch_vfork_temporary);
16170 add_catch_command ("exec", _("Catch calls to exec."),
16171 catch_exec_command_1,
16172 NULL,
16173 CATCH_PERMANENT,
16174 CATCH_TEMPORARY);
16175 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16176 Usage: catch load [REGEX]\n\
16177 If REGEX is given, only stop for libraries matching the regular expression."),
16178 catch_load_command_1,
16179 NULL,
16180 CATCH_PERMANENT,
16181 CATCH_TEMPORARY);
16182 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16183 Usage: catch unload [REGEX]\n\
16184 If REGEX is given, only stop for libraries matching the regular expression."),
16185 catch_unload_command_1,
16186 NULL,
16187 CATCH_PERMANENT,
16188 CATCH_TEMPORARY);
16189 add_catch_command ("syscall", _("\
16190 Catch system calls by their names and/or numbers.\n\
16191 Arguments say which system calls to catch. If no arguments\n\
16192 are given, every system call will be caught.\n\
16193 Arguments, if given, should be one or more system call names\n\
16194 (if your system supports that), or system call numbers."),
16195 catch_syscall_command_1,
16196 catch_syscall_completer,
16197 CATCH_PERMANENT,
16198 CATCH_TEMPORARY);
16199
16200 c = add_com ("watch", class_breakpoint, watch_command, _("\
16201 Set a watchpoint for an expression.\n\
16202 Usage: watch [-l|-location] EXPRESSION\n\
16203 A watchpoint stops execution of your program whenever the value of\n\
16204 an expression changes.\n\
16205 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16206 the memory to which it refers."));
16207 set_cmd_completer (c, expression_completer);
16208
16209 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16210 Set a read watchpoint for an expression.\n\
16211 Usage: rwatch [-l|-location] EXPRESSION\n\
16212 A watchpoint stops execution of your program whenever the value of\n\
16213 an expression is read.\n\
16214 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16215 the memory to which it refers."));
16216 set_cmd_completer (c, expression_completer);
16217
16218 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16219 Set a watchpoint for an expression.\n\
16220 Usage: awatch [-l|-location] EXPRESSION\n\
16221 A watchpoint stops execution of your program whenever the value of\n\
16222 an expression is either read or written.\n\
16223 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16224 the memory to which it refers."));
16225 set_cmd_completer (c, expression_completer);
16226
16227 add_info ("watchpoints", watchpoints_info, _("\
16228 Status of specified watchpoints (all watchpoints if no argument)."));
16229
16230 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16231 respond to changes - contrary to the description. */
16232 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16233 &can_use_hw_watchpoints, _("\
16234 Set debugger's willingness to use watchpoint hardware."), _("\
16235 Show debugger's willingness to use watchpoint hardware."), _("\
16236 If zero, gdb will not use hardware for new watchpoints, even if\n\
16237 such is available. (However, any hardware watchpoints that were\n\
16238 created before setting this to nonzero, will continue to use watchpoint\n\
16239 hardware.)"),
16240 NULL,
16241 show_can_use_hw_watchpoints,
16242 &setlist, &showlist);
16243
16244 can_use_hw_watchpoints = 1;
16245
16246 /* Tracepoint manipulation commands. */
16247
16248 c = add_com ("trace", class_breakpoint, trace_command, _("\
16249 Set a tracepoint at specified line or function.\n\
16250 \n"
16251 BREAK_ARGS_HELP ("trace") "\n\
16252 Do \"help tracepoints\" for info on other tracepoint commands."));
16253 set_cmd_completer (c, location_completer);
16254
16255 add_com_alias ("tp", "trace", class_alias, 0);
16256 add_com_alias ("tr", "trace", class_alias, 1);
16257 add_com_alias ("tra", "trace", class_alias, 1);
16258 add_com_alias ("trac", "trace", class_alias, 1);
16259
16260 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16261 Set a fast tracepoint at specified line or function.\n\
16262 \n"
16263 BREAK_ARGS_HELP ("ftrace") "\n\
16264 Do \"help tracepoints\" for info on other tracepoint commands."));
16265 set_cmd_completer (c, location_completer);
16266
16267 c = add_com ("strace", class_breakpoint, strace_command, _("\
16268 Set a static tracepoint at specified line, function or marker.\n\
16269 \n\
16270 strace [LOCATION] [if CONDITION]\n\
16271 LOCATION may be a line number, function name, \"*\" and an address,\n\
16272 or -m MARKER_ID.\n\
16273 If a line number is specified, probe the marker at start of code\n\
16274 for that line. If a function is specified, probe the marker at start\n\
16275 of code for that function. If an address is specified, probe the marker\n\
16276 at that exact address. If a marker id is specified, probe the marker\n\
16277 with that name. With no LOCATION, uses current execution address of\n\
16278 the selected stack frame.\n\
16279 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16280 This collects arbitrary user data passed in the probe point call to the\n\
16281 tracing library. You can inspect it when analyzing the trace buffer,\n\
16282 by printing the $_sdata variable like any other convenience variable.\n\
16283 \n\
16284 CONDITION is a boolean expression.\n\
16285 \n\
16286 Multiple tracepoints at one place are permitted, and useful if their\n\
16287 conditions are different.\n\
16288 \n\
16289 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16290 Do \"help tracepoints\" for info on other tracepoint commands."));
16291 set_cmd_completer (c, location_completer);
16292
16293 add_info ("tracepoints", tracepoints_info, _("\
16294 Status of specified tracepoints (all tracepoints if no argument).\n\
16295 Convenience variable \"$tpnum\" contains the number of the\n\
16296 last tracepoint set."));
16297
16298 add_info_alias ("tp", "tracepoints", 1);
16299
16300 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16301 Delete specified tracepoints.\n\
16302 Arguments are tracepoint numbers, separated by spaces.\n\
16303 No argument means delete all tracepoints."),
16304 &deletelist);
16305 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16306
16307 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16308 Disable specified tracepoints.\n\
16309 Arguments are tracepoint numbers, separated by spaces.\n\
16310 No argument means disable all tracepoints."),
16311 &disablelist);
16312 deprecate_cmd (c, "disable");
16313
16314 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16315 Enable specified tracepoints.\n\
16316 Arguments are tracepoint numbers, separated by spaces.\n\
16317 No argument means enable all tracepoints."),
16318 &enablelist);
16319 deprecate_cmd (c, "enable");
16320
16321 add_com ("passcount", class_trace, trace_pass_command, _("\
16322 Set the passcount for a tracepoint.\n\
16323 The trace will end when the tracepoint has been passed 'count' times.\n\
16324 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16325 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16326
16327 add_prefix_cmd ("save", class_breakpoint, save_command,
16328 _("Save breakpoint definitions as a script."),
16329 &save_cmdlist, "save ",
16330 0/*allow-unknown*/, &cmdlist);
16331
16332 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16333 Save current breakpoint definitions as a script.\n\
16334 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16335 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16336 session to restore them."),
16337 &save_cmdlist);
16338 set_cmd_completer (c, filename_completer);
16339
16340 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16341 Save current tracepoint definitions as a script.\n\
16342 Use the 'source' command in another debug session to restore them."),
16343 &save_cmdlist);
16344 set_cmd_completer (c, filename_completer);
16345
16346 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16347 deprecate_cmd (c, "save tracepoints");
16348
16349 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16350 Breakpoint specific settings\n\
16351 Configure various breakpoint-specific variables such as\n\
16352 pending breakpoint behavior"),
16353 &breakpoint_set_cmdlist, "set breakpoint ",
16354 0/*allow-unknown*/, &setlist);
16355 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16356 Breakpoint specific settings\n\
16357 Configure various breakpoint-specific variables such as\n\
16358 pending breakpoint behavior"),
16359 &breakpoint_show_cmdlist, "show breakpoint ",
16360 0/*allow-unknown*/, &showlist);
16361
16362 add_setshow_auto_boolean_cmd ("pending", no_class,
16363 &pending_break_support, _("\
16364 Set debugger's behavior regarding pending breakpoints."), _("\
16365 Show debugger's behavior regarding pending breakpoints."), _("\
16366 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16367 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16368 an error. If auto, an unrecognized breakpoint location results in a\n\
16369 user-query to see if a pending breakpoint should be created."),
16370 NULL,
16371 show_pending_break_support,
16372 &breakpoint_set_cmdlist,
16373 &breakpoint_show_cmdlist);
16374
16375 pending_break_support = AUTO_BOOLEAN_AUTO;
16376
16377 add_setshow_boolean_cmd ("auto-hw", no_class,
16378 &automatic_hardware_breakpoints, _("\
16379 Set automatic usage of hardware breakpoints."), _("\
16380 Show automatic usage of hardware breakpoints."), _("\
16381 If set, the debugger will automatically use hardware breakpoints for\n\
16382 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16383 a warning will be emitted for such breakpoints."),
16384 NULL,
16385 show_automatic_hardware_breakpoints,
16386 &breakpoint_set_cmdlist,
16387 &breakpoint_show_cmdlist);
16388
16389 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16390 &always_inserted_mode, _("\
16391 Set mode for inserting breakpoints."), _("\
16392 Show mode for inserting breakpoints."), _("\
16393 When this mode is off, breakpoints are inserted in inferior when it is\n\
16394 resumed, and removed when execution stops. When this mode is on,\n\
16395 breakpoints are inserted immediately and removed only when the user\n\
16396 deletes the breakpoint. When this mode is auto (which is the default),\n\
16397 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16398 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16399 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16400 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16401 NULL,
16402 &show_always_inserted_mode,
16403 &breakpoint_set_cmdlist,
16404 &breakpoint_show_cmdlist);
16405
16406 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16407 condition_evaluation_enums,
16408 &condition_evaluation_mode_1, _("\
16409 Set mode of breakpoint condition evaluation."), _("\
16410 Show mode of breakpoint condition evaluation."), _("\
16411 When this is set to \"host\", breakpoint conditions will be\n\
16412 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16413 breakpoint conditions will be downloaded to the target (if the target\n\
16414 supports such feature) and conditions will be evaluated on the target's side.\n\
16415 If this is set to \"auto\" (default), this will be automatically set to\n\
16416 \"target\" if it supports condition evaluation, otherwise it will\n\
16417 be set to \"gdb\""),
16418 &set_condition_evaluation_mode,
16419 &show_condition_evaluation_mode,
16420 &breakpoint_set_cmdlist,
16421 &breakpoint_show_cmdlist);
16422
16423 add_com ("break-range", class_breakpoint, break_range_command, _("\
16424 Set a breakpoint for an address range.\n\
16425 break-range START-LOCATION, END-LOCATION\n\
16426 where START-LOCATION and END-LOCATION can be one of the following:\n\
16427 LINENUM, for that line in the current file,\n\
16428 FILE:LINENUM, for that line in that file,\n\
16429 +OFFSET, for that number of lines after the current line\n\
16430 or the start of the range\n\
16431 FUNCTION, for the first line in that function,\n\
16432 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16433 *ADDRESS, for the instruction at that address.\n\
16434 \n\
16435 The breakpoint will stop execution of the inferior whenever it executes\n\
16436 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16437 range (including START-LOCATION and END-LOCATION)."));
16438
16439 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16440 Set a dynamic printf at specified line or function.\n\
16441 dprintf location,format string,arg1,arg2,...\n\
16442 location may be a line number, function name, or \"*\" and an address.\n\
16443 If a line number is specified, break at start of code for that line.\n\
16444 If a function is specified, break at start of code for that function.\n\
16445 "));
16446 set_cmd_completer (c, location_completer);
16447
16448 add_setshow_enum_cmd ("dprintf-style", class_support,
16449 dprintf_style_enums, &dprintf_style, _("\
16450 Set the style of usage for dynamic printf."), _("\
16451 Show the style of usage for dynamic printf."), _("\
16452 This setting chooses how GDB will do a dynamic printf.\n\
16453 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16454 console, as with the \"printf\" command.\n\
16455 If the value is \"call\", the print is done by calling a function in your\n\
16456 program; by default printf(), but you can choose a different function or\n\
16457 output stream by setting dprintf-function and dprintf-channel."),
16458 update_dprintf_commands, NULL,
16459 &setlist, &showlist);
16460
16461 dprintf_function = xstrdup ("printf");
16462 add_setshow_string_cmd ("dprintf-function", class_support,
16463 &dprintf_function, _("\
16464 Set the function to use for dynamic printf"), _("\
16465 Show the function to use for dynamic printf"), NULL,
16466 update_dprintf_commands, NULL,
16467 &setlist, &showlist);
16468
16469 dprintf_channel = xstrdup ("");
16470 add_setshow_string_cmd ("dprintf-channel", class_support,
16471 &dprintf_channel, _("\
16472 Set the channel to use for dynamic printf"), _("\
16473 Show the channel to use for dynamic printf"), NULL,
16474 update_dprintf_commands, NULL,
16475 &setlist, &showlist);
16476
16477 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16478 &disconnected_dprintf, _("\
16479 Set whether dprintf continues after GDB disconnects."), _("\
16480 Show whether dprintf continues after GDB disconnects."), _("\
16481 Use this to let dprintf commands continue to hit and produce output\n\
16482 even if GDB disconnects or detaches from the target."),
16483 NULL,
16484 NULL,
16485 &setlist, &showlist);
16486
16487 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16488 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16489 (target agent only) This is useful for formatted output in user-defined commands."));
16490
16491 automatic_hardware_breakpoints = 1;
16492
16493 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16494 }