Prevent flickering when redrawing the TUI source window
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "stack.h"
63 #include "ax-gdb.h"
64 #include "dummy-frame.h"
65 #include "interps.h"
66 #include "gdbsupport/format.h"
67 #include "thread-fsm.h"
68 #include "tid-parse.h"
69 #include "cli/cli-style.h"
70
71 /* readline include files */
72 #include "readline/tilde.h"
73
74 /* readline defines this. */
75 #undef savestring
76
77 #include "mi/mi-common.h"
78 #include "extension.h"
79 #include <algorithm>
80 #include "progspace-and-thread.h"
81 #include "gdbsupport/array-view.h"
82 #include "gdbsupport/gdb_optional.h"
83
84 /* Prototypes for local functions. */
85
86 static void map_breakpoint_numbers (const char *,
87 gdb::function_view<void (breakpoint *)>);
88
89 static void breakpoint_re_set_default (struct breakpoint *);
90
91 static void
92 create_sals_from_location_default (struct event_location *location,
93 struct linespec_result *canonical,
94 enum bptype type_wanted);
95
96 static void create_breakpoints_sal_default (struct gdbarch *,
97 struct linespec_result *,
98 gdb::unique_xmalloc_ptr<char>,
99 gdb::unique_xmalloc_ptr<char>,
100 enum bptype,
101 enum bpdisp, int, int,
102 int,
103 const struct breakpoint_ops *,
104 int, int, int, unsigned);
105
106 static std::vector<symtab_and_line> decode_location_default
107 (struct breakpoint *b, struct event_location *location,
108 struct program_space *search_pspace);
109
110 static int can_use_hardware_watchpoint
111 (const std::vector<value_ref_ptr> &vals);
112
113 static void mention (struct breakpoint *);
114
115 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
116 enum bptype,
117 const struct breakpoint_ops *);
118 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
119 const struct symtab_and_line *);
120
121 /* This function is used in gdbtk sources and thus can not be made
122 static. */
123 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
124 struct symtab_and_line,
125 enum bptype,
126 const struct breakpoint_ops *);
127
128 static struct breakpoint *
129 momentary_breakpoint_from_master (struct breakpoint *orig,
130 enum bptype type,
131 const struct breakpoint_ops *ops,
132 int loc_enabled);
133
134 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
135
136 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
137 CORE_ADDR bpaddr,
138 enum bptype bptype);
139
140 static void describe_other_breakpoints (struct gdbarch *,
141 struct program_space *, CORE_ADDR,
142 struct obj_section *, int);
143
144 static int watchpoint_locations_match (struct bp_location *loc1,
145 struct bp_location *loc2);
146
147 static int breakpoint_locations_match (struct bp_location *loc1,
148 struct bp_location *loc2,
149 bool sw_hw_bps_match = false);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void decref_bp_location (struct bp_location **loc);
176
177 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
178
179 /* update_global_location_list's modes of operation wrt to whether to
180 insert locations now. */
181 enum ugll_insert_mode
182 {
183 /* Don't insert any breakpoint locations into the inferior, only
184 remove already-inserted locations that no longer should be
185 inserted. Functions that delete a breakpoint or breakpoints
186 should specify this mode, so that deleting a breakpoint doesn't
187 have the side effect of inserting the locations of other
188 breakpoints that are marked not-inserted, but should_be_inserted
189 returns true on them.
190
191 This behavior is useful is situations close to tear-down -- e.g.,
192 after an exec, while the target still has execution, but
193 breakpoint shadows of the previous executable image should *NOT*
194 be restored to the new image; or before detaching, where the
195 target still has execution and wants to delete breakpoints from
196 GDB's lists, and all breakpoints had already been removed from
197 the inferior. */
198 UGLL_DONT_INSERT,
199
200 /* May insert breakpoints iff breakpoints_should_be_inserted_now
201 claims breakpoints should be inserted now. */
202 UGLL_MAY_INSERT,
203
204 /* Insert locations now, irrespective of
205 breakpoints_should_be_inserted_now. E.g., say all threads are
206 stopped right now, and the user did "continue". We need to
207 insert breakpoints _before_ resuming the target, but
208 UGLL_MAY_INSERT wouldn't insert them, because
209 breakpoints_should_be_inserted_now returns false at that point,
210 as no thread is running yet. */
211 UGLL_INSERT
212 };
213
214 static void update_global_location_list (enum ugll_insert_mode);
215
216 static void update_global_location_list_nothrow (enum ugll_insert_mode);
217
218 static void insert_breakpoint_locations (void);
219
220 static void trace_pass_command (const char *, int);
221
222 static void set_tracepoint_count (int num);
223
224 static bool is_masked_watchpoint (const struct breakpoint *b);
225
226 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
227
228 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
229 otherwise. */
230
231 static int strace_marker_p (struct breakpoint *b);
232
233 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
234 that are implemented on top of software or hardware breakpoints
235 (user breakpoints, internal and momentary breakpoints, etc.). */
236 static struct breakpoint_ops bkpt_base_breakpoint_ops;
237
238 /* Internal breakpoints class type. */
239 static struct breakpoint_ops internal_breakpoint_ops;
240
241 /* Momentary breakpoints class type. */
242 static struct breakpoint_ops momentary_breakpoint_ops;
243
244 /* The breakpoint_ops structure to be used in regular user created
245 breakpoints. */
246 struct breakpoint_ops bkpt_breakpoint_ops;
247
248 /* Breakpoints set on probes. */
249 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
250
251 /* Tracepoints set on probes. */
252 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
253
254 /* Dynamic printf class type. */
255 struct breakpoint_ops dprintf_breakpoint_ops;
256
257 /* The style in which to perform a dynamic printf. This is a user
258 option because different output options have different tradeoffs;
259 if GDB does the printing, there is better error handling if there
260 is a problem with any of the arguments, but using an inferior
261 function lets you have special-purpose printers and sending of
262 output to the same place as compiled-in print functions. */
263
264 static const char dprintf_style_gdb[] = "gdb";
265 static const char dprintf_style_call[] = "call";
266 static const char dprintf_style_agent[] = "agent";
267 static const char *const dprintf_style_enums[] = {
268 dprintf_style_gdb,
269 dprintf_style_call,
270 dprintf_style_agent,
271 NULL
272 };
273 static const char *dprintf_style = dprintf_style_gdb;
274
275 /* The function to use for dynamic printf if the preferred style is to
276 call into the inferior. The value is simply a string that is
277 copied into the command, so it can be anything that GDB can
278 evaluate to a callable address, not necessarily a function name. */
279
280 static char *dprintf_function;
281
282 /* The channel to use for dynamic printf if the preferred style is to
283 call into the inferior; if a nonempty string, it will be passed to
284 the call as the first argument, with the format string as the
285 second. As with the dprintf function, this can be anything that
286 GDB knows how to evaluate, so in addition to common choices like
287 "stderr", this could be an app-specific expression like
288 "mystreams[curlogger]". */
289
290 static char *dprintf_channel;
291
292 /* True if dprintf commands should continue to operate even if GDB
293 has disconnected. */
294 static bool disconnected_dprintf = true;
295
296 struct command_line *
297 breakpoint_commands (struct breakpoint *b)
298 {
299 return b->commands ? b->commands.get () : NULL;
300 }
301
302 /* Flag indicating that a command has proceeded the inferior past the
303 current breakpoint. */
304
305 static bool breakpoint_proceeded;
306
307 const char *
308 bpdisp_text (enum bpdisp disp)
309 {
310 /* NOTE: the following values are a part of MI protocol and
311 represent values of 'disp' field returned when inferior stops at
312 a breakpoint. */
313 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
314
315 return bpdisps[(int) disp];
316 }
317
318 /* Prototypes for exported functions. */
319 /* If FALSE, gdb will not use hardware support for watchpoints, even
320 if such is available. */
321 static int can_use_hw_watchpoints;
322
323 static void
324 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
325 struct cmd_list_element *c,
326 const char *value)
327 {
328 fprintf_filtered (file,
329 _("Debugger's willingness to use "
330 "watchpoint hardware is %s.\n"),
331 value);
332 }
333
334 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
335 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
336 for unrecognized breakpoint locations.
337 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
338 static enum auto_boolean pending_break_support;
339 static void
340 show_pending_break_support (struct ui_file *file, int from_tty,
341 struct cmd_list_element *c,
342 const char *value)
343 {
344 fprintf_filtered (file,
345 _("Debugger's behavior regarding "
346 "pending breakpoints is %s.\n"),
347 value);
348 }
349
350 /* If true, gdb will automatically use hardware breakpoints for breakpoints
351 set with "break" but falling in read-only memory.
352 If false, gdb will warn about such breakpoints, but won't automatically
353 use hardware breakpoints. */
354 static bool automatic_hardware_breakpoints;
355 static void
356 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
357 struct cmd_list_element *c,
358 const char *value)
359 {
360 fprintf_filtered (file,
361 _("Automatic usage of hardware breakpoints is %s.\n"),
362 value);
363 }
364
365 /* If on, GDB keeps breakpoints inserted even if the inferior is
366 stopped, and immediately inserts any new breakpoints as soon as
367 they're created. If off (default), GDB keeps breakpoints off of
368 the target as long as possible. That is, it delays inserting
369 breakpoints until the next resume, and removes them again when the
370 target fully stops. This is a bit safer in case GDB crashes while
371 processing user input. */
372 static bool always_inserted_mode = false;
373
374 static void
375 show_always_inserted_mode (struct ui_file *file, int from_tty,
376 struct cmd_list_element *c, const char *value)
377 {
378 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
379 value);
380 }
381
382 /* See breakpoint.h. */
383
384 int
385 breakpoints_should_be_inserted_now (void)
386 {
387 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
388 {
389 /* If breakpoints are global, they should be inserted even if no
390 thread under gdb's control is running, or even if there are
391 no threads under GDB's control yet. */
392 return 1;
393 }
394 else
395 {
396 if (always_inserted_mode)
397 {
398 /* The user wants breakpoints inserted even if all threads
399 are stopped. */
400 return 1;
401 }
402
403 for (inferior *inf : all_inferiors ())
404 if (inf->has_execution ()
405 && threads_are_executing (inf->process_target ()))
406 return 1;
407
408 /* Don't remove breakpoints yet if, even though all threads are
409 stopped, we still have events to process. */
410 for (thread_info *tp : all_non_exited_threads ())
411 if (tp->resumed
412 && tp->suspend.waitstatus_pending_p)
413 return 1;
414 }
415 return 0;
416 }
417
418 static const char condition_evaluation_both[] = "host or target";
419
420 /* Modes for breakpoint condition evaluation. */
421 static const char condition_evaluation_auto[] = "auto";
422 static const char condition_evaluation_host[] = "host";
423 static const char condition_evaluation_target[] = "target";
424 static const char *const condition_evaluation_enums[] = {
425 condition_evaluation_auto,
426 condition_evaluation_host,
427 condition_evaluation_target,
428 NULL
429 };
430
431 /* Global that holds the current mode for breakpoint condition evaluation. */
432 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
433
434 /* Global that we use to display information to the user (gets its value from
435 condition_evaluation_mode_1. */
436 static const char *condition_evaluation_mode = condition_evaluation_auto;
437
438 /* Translate a condition evaluation mode MODE into either "host"
439 or "target". This is used mostly to translate from "auto" to the
440 real setting that is being used. It returns the translated
441 evaluation mode. */
442
443 static const char *
444 translate_condition_evaluation_mode (const char *mode)
445 {
446 if (mode == condition_evaluation_auto)
447 {
448 if (target_supports_evaluation_of_breakpoint_conditions ())
449 return condition_evaluation_target;
450 else
451 return condition_evaluation_host;
452 }
453 else
454 return mode;
455 }
456
457 /* Discovers what condition_evaluation_auto translates to. */
458
459 static const char *
460 breakpoint_condition_evaluation_mode (void)
461 {
462 return translate_condition_evaluation_mode (condition_evaluation_mode);
463 }
464
465 /* Return true if GDB should evaluate breakpoint conditions or false
466 otherwise. */
467
468 static int
469 gdb_evaluates_breakpoint_condition_p (void)
470 {
471 const char *mode = breakpoint_condition_evaluation_mode ();
472
473 return (mode == condition_evaluation_host);
474 }
475
476 /* Are we executing breakpoint commands? */
477 static int executing_breakpoint_commands;
478
479 /* Are overlay event breakpoints enabled? */
480 static int overlay_events_enabled;
481
482 /* See description in breakpoint.h. */
483 bool target_exact_watchpoints = false;
484
485 /* Walk the following statement or block through all breakpoints.
486 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
487 current breakpoint. */
488
489 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
490
491 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
492 for (B = breakpoint_chain; \
493 B ? (TMP=B->next, 1): 0; \
494 B = TMP)
495
496 /* Similar iterator for the low-level breakpoints. SAFE variant is
497 not provided so update_global_location_list must not be called
498 while executing the block of ALL_BP_LOCATIONS. */
499
500 #define ALL_BP_LOCATIONS(B,BP_TMP) \
501 for (BP_TMP = bp_locations; \
502 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
503 BP_TMP++)
504
505 /* Iterates through locations with address ADDRESS for the currently selected
506 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
507 to where the loop should start from.
508 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
509 appropriate location to start with. */
510
511 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
512 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
513 BP_LOCP_TMP = BP_LOCP_START; \
514 BP_LOCP_START \
515 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
516 && (*BP_LOCP_TMP)->address == ADDRESS); \
517 BP_LOCP_TMP++)
518
519 /* Iterator for tracepoints only. */
520
521 #define ALL_TRACEPOINTS(B) \
522 for (B = breakpoint_chain; B; B = B->next) \
523 if (is_tracepoint (B))
524
525 /* Chains of all breakpoints defined. */
526
527 static struct breakpoint *breakpoint_chain;
528
529 /* Array is sorted by bp_location_is_less_than - primarily by the ADDRESS. */
530
531 static struct bp_location **bp_locations;
532
533 /* Number of elements of BP_LOCATIONS. */
534
535 static unsigned bp_locations_count;
536
537 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
538 ADDRESS for the current elements of BP_LOCATIONS which get a valid
539 result from bp_location_has_shadow. You can use it for roughly
540 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
541 an address you need to read. */
542
543 static CORE_ADDR bp_locations_placed_address_before_address_max;
544
545 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
546 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
547 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
548 You can use it for roughly limiting the subrange of BP_LOCATIONS to
549 scan for shadow bytes for an address you need to read. */
550
551 static CORE_ADDR bp_locations_shadow_len_after_address_max;
552
553 /* The locations that no longer correspond to any breakpoint, unlinked
554 from the bp_locations array, but for which a hit may still be
555 reported by a target. */
556 static std::vector<bp_location *> moribund_locations;
557
558 /* Number of last breakpoint made. */
559
560 static int breakpoint_count;
561
562 /* The value of `breakpoint_count' before the last command that
563 created breakpoints. If the last (break-like) command created more
564 than one breakpoint, then the difference between BREAKPOINT_COUNT
565 and PREV_BREAKPOINT_COUNT is more than one. */
566 static int prev_breakpoint_count;
567
568 /* Number of last tracepoint made. */
569
570 static int tracepoint_count;
571
572 static struct cmd_list_element *breakpoint_set_cmdlist;
573 static struct cmd_list_element *breakpoint_show_cmdlist;
574 struct cmd_list_element *save_cmdlist;
575
576 /* See declaration at breakpoint.h. */
577
578 struct breakpoint *
579 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
580 void *user_data)
581 {
582 struct breakpoint *b = NULL;
583
584 ALL_BREAKPOINTS (b)
585 {
586 if (func (b, user_data) != 0)
587 break;
588 }
589
590 return b;
591 }
592
593 /* Return whether a breakpoint is an active enabled breakpoint. */
594 static int
595 breakpoint_enabled (struct breakpoint *b)
596 {
597 return (b->enable_state == bp_enabled);
598 }
599
600 /* Set breakpoint count to NUM. */
601
602 static void
603 set_breakpoint_count (int num)
604 {
605 prev_breakpoint_count = breakpoint_count;
606 breakpoint_count = num;
607 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
608 }
609
610 /* Used by `start_rbreak_breakpoints' below, to record the current
611 breakpoint count before "rbreak" creates any breakpoint. */
612 static int rbreak_start_breakpoint_count;
613
614 /* Called at the start an "rbreak" command to record the first
615 breakpoint made. */
616
617 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
618 {
619 rbreak_start_breakpoint_count = breakpoint_count;
620 }
621
622 /* Called at the end of an "rbreak" command to record the last
623 breakpoint made. */
624
625 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
626 {
627 prev_breakpoint_count = rbreak_start_breakpoint_count;
628 }
629
630 /* Used in run_command to zero the hit count when a new run starts. */
631
632 void
633 clear_breakpoint_hit_counts (void)
634 {
635 struct breakpoint *b;
636
637 ALL_BREAKPOINTS (b)
638 b->hit_count = 0;
639 }
640
641 \f
642 /* Return the breakpoint with the specified number, or NULL
643 if the number does not refer to an existing breakpoint. */
644
645 struct breakpoint *
646 get_breakpoint (int num)
647 {
648 struct breakpoint *b;
649
650 ALL_BREAKPOINTS (b)
651 if (b->number == num)
652 return b;
653
654 return NULL;
655 }
656
657 \f
658
659 /* Mark locations as "conditions have changed" in case the target supports
660 evaluating conditions on its side. */
661
662 static void
663 mark_breakpoint_modified (struct breakpoint *b)
664 {
665 struct bp_location *loc;
666
667 /* This is only meaningful if the target is
668 evaluating conditions and if the user has
669 opted for condition evaluation on the target's
670 side. */
671 if (gdb_evaluates_breakpoint_condition_p ()
672 || !target_supports_evaluation_of_breakpoint_conditions ())
673 return;
674
675 if (!is_breakpoint (b))
676 return;
677
678 for (loc = b->loc; loc; loc = loc->next)
679 loc->condition_changed = condition_modified;
680 }
681
682 /* Mark location as "conditions have changed" in case the target supports
683 evaluating conditions on its side. */
684
685 static void
686 mark_breakpoint_location_modified (struct bp_location *loc)
687 {
688 /* This is only meaningful if the target is
689 evaluating conditions and if the user has
690 opted for condition evaluation on the target's
691 side. */
692 if (gdb_evaluates_breakpoint_condition_p ()
693 || !target_supports_evaluation_of_breakpoint_conditions ())
694
695 return;
696
697 if (!is_breakpoint (loc->owner))
698 return;
699
700 loc->condition_changed = condition_modified;
701 }
702
703 /* Sets the condition-evaluation mode using the static global
704 condition_evaluation_mode. */
705
706 static void
707 set_condition_evaluation_mode (const char *args, int from_tty,
708 struct cmd_list_element *c)
709 {
710 const char *old_mode, *new_mode;
711
712 if ((condition_evaluation_mode_1 == condition_evaluation_target)
713 && !target_supports_evaluation_of_breakpoint_conditions ())
714 {
715 condition_evaluation_mode_1 = condition_evaluation_mode;
716 warning (_("Target does not support breakpoint condition evaluation.\n"
717 "Using host evaluation mode instead."));
718 return;
719 }
720
721 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
722 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
723
724 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
725 settings was "auto". */
726 condition_evaluation_mode = condition_evaluation_mode_1;
727
728 /* Only update the mode if the user picked a different one. */
729 if (new_mode != old_mode)
730 {
731 struct bp_location *loc, **loc_tmp;
732 /* If the user switched to a different evaluation mode, we
733 need to synch the changes with the target as follows:
734
735 "host" -> "target": Send all (valid) conditions to the target.
736 "target" -> "host": Remove all the conditions from the target.
737 */
738
739 if (new_mode == condition_evaluation_target)
740 {
741 /* Mark everything modified and synch conditions with the
742 target. */
743 ALL_BP_LOCATIONS (loc, loc_tmp)
744 mark_breakpoint_location_modified (loc);
745 }
746 else
747 {
748 /* Manually mark non-duplicate locations to synch conditions
749 with the target. We do this to remove all the conditions the
750 target knows about. */
751 ALL_BP_LOCATIONS (loc, loc_tmp)
752 if (is_breakpoint (loc->owner) && loc->inserted)
753 loc->needs_update = 1;
754 }
755
756 /* Do the update. */
757 update_global_location_list (UGLL_MAY_INSERT);
758 }
759
760 return;
761 }
762
763 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
764 what "auto" is translating to. */
765
766 static void
767 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
768 struct cmd_list_element *c, const char *value)
769 {
770 if (condition_evaluation_mode == condition_evaluation_auto)
771 fprintf_filtered (file,
772 _("Breakpoint condition evaluation "
773 "mode is %s (currently %s).\n"),
774 value,
775 breakpoint_condition_evaluation_mode ());
776 else
777 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
778 value);
779 }
780
781 /* A comparison function for bp_location AP and BP that is used by
782 bsearch. This comparison function only cares about addresses, unlike
783 the more general bp_location_is_less_than function. */
784
785 static int
786 bp_locations_compare_addrs (const void *ap, const void *bp)
787 {
788 const struct bp_location *a = *(const struct bp_location **) ap;
789 const struct bp_location *b = *(const struct bp_location **) bp;
790
791 if (a->address == b->address)
792 return 0;
793 else
794 return ((a->address > b->address) - (a->address < b->address));
795 }
796
797 /* Helper function to skip all bp_locations with addresses
798 less than ADDRESS. It returns the first bp_location that
799 is greater than or equal to ADDRESS. If none is found, just
800 return NULL. */
801
802 static struct bp_location **
803 get_first_locp_gte_addr (CORE_ADDR address)
804 {
805 struct bp_location dummy_loc;
806 struct bp_location *dummy_locp = &dummy_loc;
807 struct bp_location **locp_found = NULL;
808
809 /* Initialize the dummy location's address field. */
810 dummy_loc.address = address;
811
812 /* Find a close match to the first location at ADDRESS. */
813 locp_found = ((struct bp_location **)
814 bsearch (&dummy_locp, bp_locations, bp_locations_count,
815 sizeof (struct bp_location **),
816 bp_locations_compare_addrs));
817
818 /* Nothing was found, nothing left to do. */
819 if (locp_found == NULL)
820 return NULL;
821
822 /* We may have found a location that is at ADDRESS but is not the first in the
823 location's list. Go backwards (if possible) and locate the first one. */
824 while ((locp_found - 1) >= bp_locations
825 && (*(locp_found - 1))->address == address)
826 locp_found--;
827
828 return locp_found;
829 }
830
831 /* Parse COND_STRING in the context of LOC and set as the condition
832 expression of LOC. BP_NUM is the number of LOC's owner, LOC_NUM is
833 the number of LOC within its owner. In case of parsing error, mark
834 LOC as DISABLED_BY_COND. In case of success, unset DISABLED_BY_COND. */
835
836 static void
837 set_breakpoint_location_condition (const char *cond_string, bp_location *loc,
838 int bp_num, int loc_num)
839 {
840 bool has_junk = false;
841 try
842 {
843 expression_up new_exp = parse_exp_1 (&cond_string, loc->address,
844 block_for_pc (loc->address), 0);
845 if (*cond_string != 0)
846 has_junk = true;
847 else
848 {
849 loc->cond = std::move (new_exp);
850 if (loc->disabled_by_cond && loc->enabled)
851 printf_filtered (_("Breakpoint %d's condition is now valid at "
852 "location %d, enabling.\n"),
853 bp_num, loc_num);
854
855 loc->disabled_by_cond = false;
856 }
857 }
858 catch (const gdb_exception_error &e)
859 {
860 if (loc->enabled)
861 {
862 /* Warn if a user-enabled location is now becoming disabled-by-cond.
863 BP_NUM is 0 if the breakpoint is being defined for the first
864 time using the "break ... if ..." command, and non-zero if
865 already defined. */
866 if (bp_num != 0)
867 warning (_("failed to validate condition at location %d.%d, "
868 "disabling:\n %s"), bp_num, loc_num, e.what ());
869 else
870 warning (_("failed to validate condition at location %d, "
871 "disabling:\n %s"), loc_num, e.what ());
872 }
873
874 loc->disabled_by_cond = true;
875 }
876
877 if (has_junk)
878 error (_("Garbage '%s' follows condition"), cond_string);
879 }
880
881 void
882 set_breakpoint_condition (struct breakpoint *b, const char *exp,
883 int from_tty, bool force)
884 {
885 if (*exp == 0)
886 {
887 xfree (b->cond_string);
888 b->cond_string = nullptr;
889
890 if (is_watchpoint (b))
891 static_cast<watchpoint *> (b)->cond_exp.reset ();
892 else
893 {
894 int loc_num = 1;
895 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
896 {
897 loc->cond.reset ();
898 if (loc->disabled_by_cond && loc->enabled)
899 printf_filtered (_("Breakpoint %d's condition is now valid at "
900 "location %d, enabling.\n"),
901 b->number, loc_num);
902 loc->disabled_by_cond = false;
903 loc_num++;
904
905 /* No need to free the condition agent expression
906 bytecode (if we have one). We will handle this
907 when we go through update_global_location_list. */
908 }
909 }
910
911 if (from_tty)
912 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
913 }
914 else
915 {
916 if (is_watchpoint (b))
917 {
918 innermost_block_tracker tracker;
919 const char *arg = exp;
920 expression_up new_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
921 if (*arg != 0)
922 error (_("Junk at end of expression"));
923 watchpoint *w = static_cast<watchpoint *> (b);
924 w->cond_exp = std::move (new_exp);
925 w->cond_exp_valid_block = tracker.block ();
926 }
927 else
928 {
929 /* Parse and set condition expressions. We make two passes.
930 In the first, we parse the condition string to see if it
931 is valid in at least one location. If so, the condition
932 would be accepted. So we go ahead and set the locations'
933 conditions. In case no valid case is found, we throw
934 the error and the condition string will be rejected.
935 This two-pass approach is taken to avoid setting the
936 state of locations in case of a reject. */
937 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
938 {
939 try
940 {
941 const char *arg = exp;
942 parse_exp_1 (&arg, loc->address,
943 block_for_pc (loc->address), 0);
944 if (*arg != 0)
945 error (_("Junk at end of expression"));
946 break;
947 }
948 catch (const gdb_exception_error &e)
949 {
950 /* Condition string is invalid. If this happens to
951 be the last loc, abandon (if not forced) or continue
952 (if forced). */
953 if (loc->next == nullptr && !force)
954 throw;
955 }
956 }
957
958 /* If we reach here, the condition is valid at some locations. */
959 int loc_num = 1;
960 for (bp_location *loc = b->loc; loc != nullptr;
961 loc = loc->next, loc_num++)
962 set_breakpoint_location_condition (exp, loc, b->number, loc_num);
963 }
964
965 /* We know that the new condition parsed successfully. The
966 condition string of the breakpoint can be safely updated. */
967 xfree (b->cond_string);
968 b->cond_string = xstrdup (exp);
969 b->condition_not_parsed = 0;
970 }
971 mark_breakpoint_modified (b);
972
973 gdb::observers::breakpoint_modified.notify (b);
974 }
975
976 /* The options for the "condition" command. */
977
978 struct condition_command_opts
979 {
980 /* For "-force". */
981 bool force_condition = false;
982 };
983
984 static const gdb::option::option_def condition_command_option_defs[] = {
985
986 gdb::option::flag_option_def<condition_command_opts> {
987 "force",
988 [] (condition_command_opts *opts) { return &opts->force_condition; },
989 N_("Set the condition even if it is invalid for all current locations."),
990 },
991
992 };
993
994 /* Create an option_def_group for the "condition" options, with
995 CC_OPTS as context. */
996
997 static inline gdb::option::option_def_group
998 make_condition_command_options_def_group (condition_command_opts *cc_opts)
999 {
1000 return {{condition_command_option_defs}, cc_opts};
1001 }
1002
1003 /* Completion for the "condition" command. */
1004
1005 static void
1006 condition_completer (struct cmd_list_element *cmd,
1007 completion_tracker &tracker,
1008 const char *text, const char * /*word*/)
1009 {
1010 bool has_no_arguments = (*text == '\0');
1011 condition_command_opts cc_opts;
1012 const auto group = make_condition_command_options_def_group (&cc_opts);
1013 if (gdb::option::complete_options
1014 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group))
1015 return;
1016
1017 text = skip_spaces (text);
1018 const char *space = skip_to_space (text);
1019 if (*space == '\0')
1020 {
1021 int len;
1022 struct breakpoint *b;
1023
1024 if (text[0] == '$')
1025 {
1026 tracker.advance_custom_word_point_by (1);
1027 /* We don't support completion of history indices. */
1028 if (!isdigit (text[1]))
1029 complete_internalvar (tracker, &text[1]);
1030 return;
1031 }
1032
1033 /* Suggest the "-force" flag if no arguments are given. If
1034 arguments were passed, they either already include the flag,
1035 or we are beyond the point of suggesting it because it's
1036 positionally the first argument. */
1037 if (has_no_arguments)
1038 gdb::option::complete_on_all_options (tracker, group);
1039
1040 /* We're completing the breakpoint number. */
1041 len = strlen (text);
1042
1043 ALL_BREAKPOINTS (b)
1044 {
1045 char number[50];
1046
1047 xsnprintf (number, sizeof (number), "%d", b->number);
1048
1049 if (strncmp (number, text, len) == 0)
1050 tracker.add_completion (make_unique_xstrdup (number));
1051 }
1052
1053 return;
1054 }
1055
1056 /* We're completing the expression part. Skip the breakpoint num. */
1057 const char *exp_start = skip_spaces (space);
1058 tracker.advance_custom_word_point_by (exp_start - text);
1059 text = exp_start;
1060 const char *word = advance_to_expression_complete_word_point (tracker, text);
1061 expression_completer (cmd, tracker, text, word);
1062 }
1063
1064 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1065
1066 static void
1067 condition_command (const char *arg, int from_tty)
1068 {
1069 struct breakpoint *b;
1070 const char *p;
1071 int bnum;
1072
1073 if (arg == 0)
1074 error_no_arg (_("breakpoint number"));
1075
1076 p = arg;
1077
1078 /* Check if the "-force" flag was passed. */
1079 condition_command_opts cc_opts;
1080 const auto group = make_condition_command_options_def_group (&cc_opts);
1081 gdb::option::process_options
1082 (&p, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
1083
1084 bnum = get_number (&p);
1085 if (bnum == 0)
1086 error (_("Bad breakpoint argument: '%s'"), arg);
1087
1088 ALL_BREAKPOINTS (b)
1089 if (b->number == bnum)
1090 {
1091 /* Check if this breakpoint has a "stop" method implemented in an
1092 extension language. This method and conditions entered into GDB
1093 from the CLI are mutually exclusive. */
1094 const struct extension_language_defn *extlang
1095 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1096
1097 if (extlang != NULL)
1098 {
1099 error (_("Only one stop condition allowed. There is currently"
1100 " a %s stop condition defined for this breakpoint."),
1101 ext_lang_capitalized_name (extlang));
1102 }
1103 set_breakpoint_condition (b, p, from_tty, cc_opts.force_condition);
1104
1105 if (is_breakpoint (b))
1106 update_global_location_list (UGLL_MAY_INSERT);
1107
1108 return;
1109 }
1110
1111 error (_("No breakpoint number %d."), bnum);
1112 }
1113
1114 /* Check that COMMAND do not contain commands that are suitable
1115 only for tracepoints and not suitable for ordinary breakpoints.
1116 Throw if any such commands is found. */
1117
1118 static void
1119 check_no_tracepoint_commands (struct command_line *commands)
1120 {
1121 struct command_line *c;
1122
1123 for (c = commands; c; c = c->next)
1124 {
1125 if (c->control_type == while_stepping_control)
1126 error (_("The 'while-stepping' command can "
1127 "only be used for tracepoints"));
1128
1129 check_no_tracepoint_commands (c->body_list_0.get ());
1130 check_no_tracepoint_commands (c->body_list_1.get ());
1131
1132 /* Not that command parsing removes leading whitespace and comment
1133 lines and also empty lines. So, we only need to check for
1134 command directly. */
1135 if (strstr (c->line, "collect ") == c->line)
1136 error (_("The 'collect' command can only be used for tracepoints"));
1137
1138 if (strstr (c->line, "teval ") == c->line)
1139 error (_("The 'teval' command can only be used for tracepoints"));
1140 }
1141 }
1142
1143 struct longjmp_breakpoint : public breakpoint
1144 {
1145 ~longjmp_breakpoint () override;
1146 };
1147
1148 /* Encapsulate tests for different types of tracepoints. */
1149
1150 static bool
1151 is_tracepoint_type (bptype type)
1152 {
1153 return (type == bp_tracepoint
1154 || type == bp_fast_tracepoint
1155 || type == bp_static_tracepoint);
1156 }
1157
1158 static bool
1159 is_longjmp_type (bptype type)
1160 {
1161 return type == bp_longjmp || type == bp_exception;
1162 }
1163
1164 /* See breakpoint.h. */
1165
1166 bool
1167 is_tracepoint (const struct breakpoint *b)
1168 {
1169 return is_tracepoint_type (b->type);
1170 }
1171
1172 /* Factory function to create an appropriate instance of breakpoint given
1173 TYPE. */
1174
1175 static std::unique_ptr<breakpoint>
1176 new_breakpoint_from_type (bptype type)
1177 {
1178 breakpoint *b;
1179
1180 if (is_tracepoint_type (type))
1181 b = new tracepoint ();
1182 else if (is_longjmp_type (type))
1183 b = new longjmp_breakpoint ();
1184 else
1185 b = new breakpoint ();
1186
1187 return std::unique_ptr<breakpoint> (b);
1188 }
1189
1190 /* A helper function that validates that COMMANDS are valid for a
1191 breakpoint. This function will throw an exception if a problem is
1192 found. */
1193
1194 static void
1195 validate_commands_for_breakpoint (struct breakpoint *b,
1196 struct command_line *commands)
1197 {
1198 if (is_tracepoint (b))
1199 {
1200 struct tracepoint *t = (struct tracepoint *) b;
1201 struct command_line *c;
1202 struct command_line *while_stepping = 0;
1203
1204 /* Reset the while-stepping step count. The previous commands
1205 might have included a while-stepping action, while the new
1206 ones might not. */
1207 t->step_count = 0;
1208
1209 /* We need to verify that each top-level element of commands is
1210 valid for tracepoints, that there's at most one
1211 while-stepping element, and that the while-stepping's body
1212 has valid tracing commands excluding nested while-stepping.
1213 We also need to validate the tracepoint action line in the
1214 context of the tracepoint --- validate_actionline actually
1215 has side effects, like setting the tracepoint's
1216 while-stepping STEP_COUNT, in addition to checking if the
1217 collect/teval actions parse and make sense in the
1218 tracepoint's context. */
1219 for (c = commands; c; c = c->next)
1220 {
1221 if (c->control_type == while_stepping_control)
1222 {
1223 if (b->type == bp_fast_tracepoint)
1224 error (_("The 'while-stepping' command "
1225 "cannot be used for fast tracepoint"));
1226 else if (b->type == bp_static_tracepoint)
1227 error (_("The 'while-stepping' command "
1228 "cannot be used for static tracepoint"));
1229
1230 if (while_stepping)
1231 error (_("The 'while-stepping' command "
1232 "can be used only once"));
1233 else
1234 while_stepping = c;
1235 }
1236
1237 validate_actionline (c->line, b);
1238 }
1239 if (while_stepping)
1240 {
1241 struct command_line *c2;
1242
1243 gdb_assert (while_stepping->body_list_1 == nullptr);
1244 c2 = while_stepping->body_list_0.get ();
1245 for (; c2; c2 = c2->next)
1246 {
1247 if (c2->control_type == while_stepping_control)
1248 error (_("The 'while-stepping' command cannot be nested"));
1249 }
1250 }
1251 }
1252 else
1253 {
1254 check_no_tracepoint_commands (commands);
1255 }
1256 }
1257
1258 /* Return a vector of all the static tracepoints set at ADDR. The
1259 caller is responsible for releasing the vector. */
1260
1261 std::vector<breakpoint *>
1262 static_tracepoints_here (CORE_ADDR addr)
1263 {
1264 struct breakpoint *b;
1265 std::vector<breakpoint *> found;
1266 struct bp_location *loc;
1267
1268 ALL_BREAKPOINTS (b)
1269 if (b->type == bp_static_tracepoint)
1270 {
1271 for (loc = b->loc; loc; loc = loc->next)
1272 if (loc->address == addr)
1273 found.push_back (b);
1274 }
1275
1276 return found;
1277 }
1278
1279 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1280 validate that only allowed commands are included. */
1281
1282 void
1283 breakpoint_set_commands (struct breakpoint *b,
1284 counted_command_line &&commands)
1285 {
1286 validate_commands_for_breakpoint (b, commands.get ());
1287
1288 b->commands = std::move (commands);
1289 gdb::observers::breakpoint_modified.notify (b);
1290 }
1291
1292 /* Set the internal `silent' flag on the breakpoint. Note that this
1293 is not the same as the "silent" that may appear in the breakpoint's
1294 commands. */
1295
1296 void
1297 breakpoint_set_silent (struct breakpoint *b, int silent)
1298 {
1299 int old_silent = b->silent;
1300
1301 b->silent = silent;
1302 if (old_silent != silent)
1303 gdb::observers::breakpoint_modified.notify (b);
1304 }
1305
1306 /* Set the thread for this breakpoint. If THREAD is -1, make the
1307 breakpoint work for any thread. */
1308
1309 void
1310 breakpoint_set_thread (struct breakpoint *b, int thread)
1311 {
1312 int old_thread = b->thread;
1313
1314 b->thread = thread;
1315 if (old_thread != thread)
1316 gdb::observers::breakpoint_modified.notify (b);
1317 }
1318
1319 /* Set the task for this breakpoint. If TASK is 0, make the
1320 breakpoint work for any task. */
1321
1322 void
1323 breakpoint_set_task (struct breakpoint *b, int task)
1324 {
1325 int old_task = b->task;
1326
1327 b->task = task;
1328 if (old_task != task)
1329 gdb::observers::breakpoint_modified.notify (b);
1330 }
1331
1332 static void
1333 commands_command_1 (const char *arg, int from_tty,
1334 struct command_line *control)
1335 {
1336 counted_command_line cmd;
1337 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1338 NULL after the call to read_command_lines if the user provides an empty
1339 list of command by just typing "end". */
1340 bool cmd_read = false;
1341
1342 std::string new_arg;
1343
1344 if (arg == NULL || !*arg)
1345 {
1346 /* Argument not explicitly given. Synthesize it. */
1347 if (breakpoint_count - prev_breakpoint_count > 1)
1348 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1349 breakpoint_count);
1350 else if (breakpoint_count > 0)
1351 new_arg = string_printf ("%d", breakpoint_count);
1352 }
1353 else
1354 {
1355 /* Create a copy of ARG. This is needed because the "commands"
1356 command may be coming from a script. In that case, the read
1357 line buffer is going to be overwritten in the lambda of
1358 'map_breakpoint_numbers' below when reading the next line
1359 before we are are done parsing the breakpoint numbers. */
1360 new_arg = arg;
1361 }
1362 arg = new_arg.c_str ();
1363
1364 map_breakpoint_numbers
1365 (arg, [&] (breakpoint *b)
1366 {
1367 if (!cmd_read)
1368 {
1369 gdb_assert (cmd == NULL);
1370 if (control != NULL)
1371 cmd = control->body_list_0;
1372 else
1373 {
1374 std::string str
1375 = string_printf (_("Type commands for breakpoint(s) "
1376 "%s, one per line."),
1377 arg);
1378
1379 auto do_validate = [=] (const char *line)
1380 {
1381 validate_actionline (line, b);
1382 };
1383 gdb::function_view<void (const char *)> validator;
1384 if (is_tracepoint (b))
1385 validator = do_validate;
1386
1387 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1388 }
1389 cmd_read = true;
1390 }
1391
1392 /* If a breakpoint was on the list more than once, we don't need to
1393 do anything. */
1394 if (b->commands != cmd)
1395 {
1396 validate_commands_for_breakpoint (b, cmd.get ());
1397 b->commands = cmd;
1398 gdb::observers::breakpoint_modified.notify (b);
1399 }
1400 });
1401 }
1402
1403 static void
1404 commands_command (const char *arg, int from_tty)
1405 {
1406 commands_command_1 (arg, from_tty, NULL);
1407 }
1408
1409 /* Like commands_command, but instead of reading the commands from
1410 input stream, takes them from an already parsed command structure.
1411
1412 This is used by cli-script.c to DTRT with breakpoint commands
1413 that are part of if and while bodies. */
1414 enum command_control_type
1415 commands_from_control_command (const char *arg, struct command_line *cmd)
1416 {
1417 commands_command_1 (arg, 0, cmd);
1418 return simple_control;
1419 }
1420
1421 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1422
1423 static int
1424 bp_location_has_shadow (struct bp_location *bl)
1425 {
1426 if (bl->loc_type != bp_loc_software_breakpoint)
1427 return 0;
1428 if (!bl->inserted)
1429 return 0;
1430 if (bl->target_info.shadow_len == 0)
1431 /* BL isn't valid, or doesn't shadow memory. */
1432 return 0;
1433 return 1;
1434 }
1435
1436 /* Update BUF, which is LEN bytes read from the target address
1437 MEMADDR, by replacing a memory breakpoint with its shadowed
1438 contents.
1439
1440 If READBUF is not NULL, this buffer must not overlap with the of
1441 the breakpoint location's shadow_contents buffer. Otherwise, a
1442 failed assertion internal error will be raised. */
1443
1444 static void
1445 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1446 const gdb_byte *writebuf_org,
1447 ULONGEST memaddr, LONGEST len,
1448 struct bp_target_info *target_info,
1449 struct gdbarch *gdbarch)
1450 {
1451 /* Now do full processing of the found relevant range of elements. */
1452 CORE_ADDR bp_addr = 0;
1453 int bp_size = 0;
1454 int bptoffset = 0;
1455
1456 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1457 current_program_space->aspace, 0))
1458 {
1459 /* The breakpoint is inserted in a different address space. */
1460 return;
1461 }
1462
1463 /* Addresses and length of the part of the breakpoint that
1464 we need to copy. */
1465 bp_addr = target_info->placed_address;
1466 bp_size = target_info->shadow_len;
1467
1468 if (bp_addr + bp_size <= memaddr)
1469 {
1470 /* The breakpoint is entirely before the chunk of memory we are
1471 reading. */
1472 return;
1473 }
1474
1475 if (bp_addr >= memaddr + len)
1476 {
1477 /* The breakpoint is entirely after the chunk of memory we are
1478 reading. */
1479 return;
1480 }
1481
1482 /* Offset within shadow_contents. */
1483 if (bp_addr < memaddr)
1484 {
1485 /* Only copy the second part of the breakpoint. */
1486 bp_size -= memaddr - bp_addr;
1487 bptoffset = memaddr - bp_addr;
1488 bp_addr = memaddr;
1489 }
1490
1491 if (bp_addr + bp_size > memaddr + len)
1492 {
1493 /* Only copy the first part of the breakpoint. */
1494 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1495 }
1496
1497 if (readbuf != NULL)
1498 {
1499 /* Verify that the readbuf buffer does not overlap with the
1500 shadow_contents buffer. */
1501 gdb_assert (target_info->shadow_contents >= readbuf + len
1502 || readbuf >= (target_info->shadow_contents
1503 + target_info->shadow_len));
1504
1505 /* Update the read buffer with this inserted breakpoint's
1506 shadow. */
1507 memcpy (readbuf + bp_addr - memaddr,
1508 target_info->shadow_contents + bptoffset, bp_size);
1509 }
1510 else
1511 {
1512 const unsigned char *bp;
1513 CORE_ADDR addr = target_info->reqstd_address;
1514 int placed_size;
1515
1516 /* Update the shadow with what we want to write to memory. */
1517 memcpy (target_info->shadow_contents + bptoffset,
1518 writebuf_org + bp_addr - memaddr, bp_size);
1519
1520 /* Determine appropriate breakpoint contents and size for this
1521 address. */
1522 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1523
1524 /* Update the final write buffer with this inserted
1525 breakpoint's INSN. */
1526 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1527 }
1528 }
1529
1530 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1531 by replacing any memory breakpoints with their shadowed contents.
1532
1533 If READBUF is not NULL, this buffer must not overlap with any of
1534 the breakpoint location's shadow_contents buffers. Otherwise,
1535 a failed assertion internal error will be raised.
1536
1537 The range of shadowed area by each bp_location is:
1538 bl->address - bp_locations_placed_address_before_address_max
1539 up to bl->address + bp_locations_shadow_len_after_address_max
1540 The range we were requested to resolve shadows for is:
1541 memaddr ... memaddr + len
1542 Thus the safe cutoff boundaries for performance optimization are
1543 memaddr + len <= (bl->address
1544 - bp_locations_placed_address_before_address_max)
1545 and:
1546 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1547
1548 void
1549 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1550 const gdb_byte *writebuf_org,
1551 ULONGEST memaddr, LONGEST len)
1552 {
1553 /* Left boundary, right boundary and median element of our binary
1554 search. */
1555 unsigned bc_l, bc_r, bc;
1556
1557 /* Find BC_L which is a leftmost element which may affect BUF
1558 content. It is safe to report lower value but a failure to
1559 report higher one. */
1560
1561 bc_l = 0;
1562 bc_r = bp_locations_count;
1563 while (bc_l + 1 < bc_r)
1564 {
1565 struct bp_location *bl;
1566
1567 bc = (bc_l + bc_r) / 2;
1568 bl = bp_locations[bc];
1569
1570 /* Check first BL->ADDRESS will not overflow due to the added
1571 constant. Then advance the left boundary only if we are sure
1572 the BC element can in no way affect the BUF content (MEMADDR
1573 to MEMADDR + LEN range).
1574
1575 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1576 offset so that we cannot miss a breakpoint with its shadow
1577 range tail still reaching MEMADDR. */
1578
1579 if ((bl->address + bp_locations_shadow_len_after_address_max
1580 >= bl->address)
1581 && (bl->address + bp_locations_shadow_len_after_address_max
1582 <= memaddr))
1583 bc_l = bc;
1584 else
1585 bc_r = bc;
1586 }
1587
1588 /* Due to the binary search above, we need to make sure we pick the
1589 first location that's at BC_L's address. E.g., if there are
1590 multiple locations at the same address, BC_L may end up pointing
1591 at a duplicate location, and miss the "master"/"inserted"
1592 location. Say, given locations L1, L2 and L3 at addresses A and
1593 B:
1594
1595 L1@A, L2@A, L3@B, ...
1596
1597 BC_L could end up pointing at location L2, while the "master"
1598 location could be L1. Since the `loc->inserted' flag is only set
1599 on "master" locations, we'd forget to restore the shadow of L1
1600 and L2. */
1601 while (bc_l > 0
1602 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1603 bc_l--;
1604
1605 /* Now do full processing of the found relevant range of elements. */
1606
1607 for (bc = bc_l; bc < bp_locations_count; bc++)
1608 {
1609 struct bp_location *bl = bp_locations[bc];
1610
1611 /* bp_location array has BL->OWNER always non-NULL. */
1612 if (bl->owner->type == bp_none)
1613 warning (_("reading through apparently deleted breakpoint #%d?"),
1614 bl->owner->number);
1615
1616 /* Performance optimization: any further element can no longer affect BUF
1617 content. */
1618
1619 if (bl->address >= bp_locations_placed_address_before_address_max
1620 && memaddr + len <= (bl->address
1621 - bp_locations_placed_address_before_address_max))
1622 break;
1623
1624 if (!bp_location_has_shadow (bl))
1625 continue;
1626
1627 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1628 memaddr, len, &bl->target_info, bl->gdbarch);
1629 }
1630 }
1631
1632 /* See breakpoint.h. */
1633
1634 bool
1635 is_breakpoint (const struct breakpoint *bpt)
1636 {
1637 return (bpt->type == bp_breakpoint
1638 || bpt->type == bp_hardware_breakpoint
1639 || bpt->type == bp_dprintf);
1640 }
1641
1642 /* Return true if BPT is of any hardware watchpoint kind. */
1643
1644 static bool
1645 is_hardware_watchpoint (const struct breakpoint *bpt)
1646 {
1647 return (bpt->type == bp_hardware_watchpoint
1648 || bpt->type == bp_read_watchpoint
1649 || bpt->type == bp_access_watchpoint);
1650 }
1651
1652 /* See breakpoint.h. */
1653
1654 bool
1655 is_watchpoint (const struct breakpoint *bpt)
1656 {
1657 return (is_hardware_watchpoint (bpt)
1658 || bpt->type == bp_watchpoint);
1659 }
1660
1661 /* Returns true if the current thread and its running state are safe
1662 to evaluate or update watchpoint B. Watchpoints on local
1663 expressions need to be evaluated in the context of the thread that
1664 was current when the watchpoint was created, and, that thread needs
1665 to be stopped to be able to select the correct frame context.
1666 Watchpoints on global expressions can be evaluated on any thread,
1667 and in any state. It is presently left to the target allowing
1668 memory accesses when threads are running. */
1669
1670 static int
1671 watchpoint_in_thread_scope (struct watchpoint *b)
1672 {
1673 return (b->pspace == current_program_space
1674 && (b->watchpoint_thread == null_ptid
1675 || (inferior_ptid == b->watchpoint_thread
1676 && !inferior_thread ()->executing)));
1677 }
1678
1679 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1680 associated bp_watchpoint_scope breakpoint. */
1681
1682 static void
1683 watchpoint_del_at_next_stop (struct watchpoint *w)
1684 {
1685 if (w->related_breakpoint != w)
1686 {
1687 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1688 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1689 w->related_breakpoint->disposition = disp_del_at_next_stop;
1690 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1691 w->related_breakpoint = w;
1692 }
1693 w->disposition = disp_del_at_next_stop;
1694 }
1695
1696 /* Extract a bitfield value from value VAL using the bit parameters contained in
1697 watchpoint W. */
1698
1699 static struct value *
1700 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1701 {
1702 struct value *bit_val;
1703
1704 if (val == NULL)
1705 return NULL;
1706
1707 bit_val = allocate_value (value_type (val));
1708
1709 unpack_value_bitfield (bit_val,
1710 w->val_bitpos,
1711 w->val_bitsize,
1712 value_contents_for_printing (val),
1713 value_offset (val),
1714 val);
1715
1716 return bit_val;
1717 }
1718
1719 /* Allocate a dummy location and add it to B, which must be a software
1720 watchpoint. This is required because even if a software watchpoint
1721 is not watching any memory, bpstat_stop_status requires a location
1722 to be able to report stops. */
1723
1724 static void
1725 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1726 struct program_space *pspace)
1727 {
1728 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1729
1730 b->loc = allocate_bp_location (b);
1731 b->loc->pspace = pspace;
1732 b->loc->address = -1;
1733 b->loc->length = -1;
1734 }
1735
1736 /* Returns true if B is a software watchpoint that is not watching any
1737 memory (e.g., "watch $pc"). */
1738
1739 static bool
1740 is_no_memory_software_watchpoint (struct breakpoint *b)
1741 {
1742 return (b->type == bp_watchpoint
1743 && b->loc != NULL
1744 && b->loc->next == NULL
1745 && b->loc->address == -1
1746 && b->loc->length == -1);
1747 }
1748
1749 /* Assuming that B is a watchpoint:
1750 - Reparse watchpoint expression, if REPARSE is non-zero
1751 - Evaluate expression and store the result in B->val
1752 - Evaluate the condition if there is one, and store the result
1753 in b->loc->cond.
1754 - Update the list of values that must be watched in B->loc.
1755
1756 If the watchpoint disposition is disp_del_at_next_stop, then do
1757 nothing. If this is local watchpoint that is out of scope, delete
1758 it.
1759
1760 Even with `set breakpoint always-inserted on' the watchpoints are
1761 removed + inserted on each stop here. Normal breakpoints must
1762 never be removed because they might be missed by a running thread
1763 when debugging in non-stop mode. On the other hand, hardware
1764 watchpoints (is_hardware_watchpoint; processed here) are specific
1765 to each LWP since they are stored in each LWP's hardware debug
1766 registers. Therefore, such LWP must be stopped first in order to
1767 be able to modify its hardware watchpoints.
1768
1769 Hardware watchpoints must be reset exactly once after being
1770 presented to the user. It cannot be done sooner, because it would
1771 reset the data used to present the watchpoint hit to the user. And
1772 it must not be done later because it could display the same single
1773 watchpoint hit during multiple GDB stops. Note that the latter is
1774 relevant only to the hardware watchpoint types bp_read_watchpoint
1775 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1776 not user-visible - its hit is suppressed if the memory content has
1777 not changed.
1778
1779 The following constraints influence the location where we can reset
1780 hardware watchpoints:
1781
1782 * target_stopped_by_watchpoint and target_stopped_data_address are
1783 called several times when GDB stops.
1784
1785 [linux]
1786 * Multiple hardware watchpoints can be hit at the same time,
1787 causing GDB to stop. GDB only presents one hardware watchpoint
1788 hit at a time as the reason for stopping, and all the other hits
1789 are presented later, one after the other, each time the user
1790 requests the execution to be resumed. Execution is not resumed
1791 for the threads still having pending hit event stored in
1792 LWP_INFO->STATUS. While the watchpoint is already removed from
1793 the inferior on the first stop the thread hit event is kept being
1794 reported from its cached value by linux_nat_stopped_data_address
1795 until the real thread resume happens after the watchpoint gets
1796 presented and thus its LWP_INFO->STATUS gets reset.
1797
1798 Therefore the hardware watchpoint hit can get safely reset on the
1799 watchpoint removal from inferior. */
1800
1801 static void
1802 update_watchpoint (struct watchpoint *b, int reparse)
1803 {
1804 int within_current_scope;
1805 struct frame_id saved_frame_id;
1806 int frame_saved;
1807
1808 /* If this is a local watchpoint, we only want to check if the
1809 watchpoint frame is in scope if the current thread is the thread
1810 that was used to create the watchpoint. */
1811 if (!watchpoint_in_thread_scope (b))
1812 return;
1813
1814 if (b->disposition == disp_del_at_next_stop)
1815 return;
1816
1817 frame_saved = 0;
1818
1819 /* Determine if the watchpoint is within scope. */
1820 if (b->exp_valid_block == NULL)
1821 within_current_scope = 1;
1822 else
1823 {
1824 struct frame_info *fi = get_current_frame ();
1825 struct gdbarch *frame_arch = get_frame_arch (fi);
1826 CORE_ADDR frame_pc = get_frame_pc (fi);
1827
1828 /* If we're at a point where the stack has been destroyed
1829 (e.g. in a function epilogue), unwinding may not work
1830 properly. Do not attempt to recreate locations at this
1831 point. See similar comments in watchpoint_check. */
1832 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1833 return;
1834
1835 /* Save the current frame's ID so we can restore it after
1836 evaluating the watchpoint expression on its own frame. */
1837 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1838 took a frame parameter, so that we didn't have to change the
1839 selected frame. */
1840 frame_saved = 1;
1841 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1842
1843 fi = frame_find_by_id (b->watchpoint_frame);
1844 within_current_scope = (fi != NULL);
1845 if (within_current_scope)
1846 select_frame (fi);
1847 }
1848
1849 /* We don't free locations. They are stored in the bp_location array
1850 and update_global_location_list will eventually delete them and
1851 remove breakpoints if needed. */
1852 b->loc = NULL;
1853
1854 if (within_current_scope && reparse)
1855 {
1856 const char *s;
1857
1858 b->exp.reset ();
1859 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1860 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1861 /* If the meaning of expression itself changed, the old value is
1862 no longer relevant. We don't want to report a watchpoint hit
1863 to the user when the old value and the new value may actually
1864 be completely different objects. */
1865 b->val = NULL;
1866 b->val_valid = false;
1867
1868 /* Note that unlike with breakpoints, the watchpoint's condition
1869 expression is stored in the breakpoint object, not in the
1870 locations (re)created below. */
1871 if (b->cond_string != NULL)
1872 {
1873 b->cond_exp.reset ();
1874
1875 s = b->cond_string;
1876 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1877 }
1878 }
1879
1880 /* If we failed to parse the expression, for example because
1881 it refers to a global variable in a not-yet-loaded shared library,
1882 don't try to insert watchpoint. We don't automatically delete
1883 such watchpoint, though, since failure to parse expression
1884 is different from out-of-scope watchpoint. */
1885 if (!target_has_execution ())
1886 {
1887 /* Without execution, memory can't change. No use to try and
1888 set watchpoint locations. The watchpoint will be reset when
1889 the target gains execution, through breakpoint_re_set. */
1890 if (!can_use_hw_watchpoints)
1891 {
1892 if (b->ops->works_in_software_mode (b))
1893 b->type = bp_watchpoint;
1894 else
1895 error (_("Can't set read/access watchpoint when "
1896 "hardware watchpoints are disabled."));
1897 }
1898 }
1899 else if (within_current_scope && b->exp)
1900 {
1901 int pc = 0;
1902 std::vector<value_ref_ptr> val_chain;
1903 struct value *v, *result;
1904 struct program_space *frame_pspace;
1905
1906 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, false);
1907
1908 /* Avoid setting b->val if it's already set. The meaning of
1909 b->val is 'the last value' user saw, and we should update
1910 it only if we reported that last value to user. As it
1911 happens, the code that reports it updates b->val directly.
1912 We don't keep track of the memory value for masked
1913 watchpoints. */
1914 if (!b->val_valid && !is_masked_watchpoint (b))
1915 {
1916 if (b->val_bitsize != 0)
1917 v = extract_bitfield_from_watchpoint_value (b, v);
1918 b->val = release_value (v);
1919 b->val_valid = true;
1920 }
1921
1922 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1923
1924 /* Look at each value on the value chain. */
1925 gdb_assert (!val_chain.empty ());
1926 for (const value_ref_ptr &iter : val_chain)
1927 {
1928 v = iter.get ();
1929
1930 /* If it's a memory location, and GDB actually needed
1931 its contents to evaluate the expression, then we
1932 must watch it. If the first value returned is
1933 still lazy, that means an error occurred reading it;
1934 watch it anyway in case it becomes readable. */
1935 if (VALUE_LVAL (v) == lval_memory
1936 && (v == val_chain[0] || ! value_lazy (v)))
1937 {
1938 struct type *vtype = check_typedef (value_type (v));
1939
1940 /* We only watch structs and arrays if user asked
1941 for it explicitly, never if they just happen to
1942 appear in the middle of some value chain. */
1943 if (v == result
1944 || (vtype->code () != TYPE_CODE_STRUCT
1945 && vtype->code () != TYPE_CODE_ARRAY))
1946 {
1947 CORE_ADDR addr;
1948 enum target_hw_bp_type type;
1949 struct bp_location *loc, **tmp;
1950 int bitpos = 0, bitsize = 0;
1951
1952 if (value_bitsize (v) != 0)
1953 {
1954 /* Extract the bit parameters out from the bitfield
1955 sub-expression. */
1956 bitpos = value_bitpos (v);
1957 bitsize = value_bitsize (v);
1958 }
1959 else if (v == result && b->val_bitsize != 0)
1960 {
1961 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1962 lvalue whose bit parameters are saved in the fields
1963 VAL_BITPOS and VAL_BITSIZE. */
1964 bitpos = b->val_bitpos;
1965 bitsize = b->val_bitsize;
1966 }
1967
1968 addr = value_address (v);
1969 if (bitsize != 0)
1970 {
1971 /* Skip the bytes that don't contain the bitfield. */
1972 addr += bitpos / 8;
1973 }
1974
1975 type = hw_write;
1976 if (b->type == bp_read_watchpoint)
1977 type = hw_read;
1978 else if (b->type == bp_access_watchpoint)
1979 type = hw_access;
1980
1981 loc = allocate_bp_location (b);
1982 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1983 ;
1984 *tmp = loc;
1985 loc->gdbarch = get_type_arch (value_type (v));
1986
1987 loc->pspace = frame_pspace;
1988 loc->address = address_significant (loc->gdbarch, addr);
1989
1990 if (bitsize != 0)
1991 {
1992 /* Just cover the bytes that make up the bitfield. */
1993 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1994 }
1995 else
1996 loc->length = TYPE_LENGTH (value_type (v));
1997
1998 loc->watchpoint_type = type;
1999 }
2000 }
2001 }
2002
2003 /* Change the type of breakpoint between hardware assisted or
2004 an ordinary watchpoint depending on the hardware support
2005 and free hardware slots. REPARSE is set when the inferior
2006 is started. */
2007 if (reparse)
2008 {
2009 int reg_cnt;
2010 enum bp_loc_type loc_type;
2011 struct bp_location *bl;
2012
2013 reg_cnt = can_use_hardware_watchpoint (val_chain);
2014
2015 if (reg_cnt)
2016 {
2017 int i, target_resources_ok, other_type_used;
2018 enum bptype type;
2019
2020 /* Use an exact watchpoint when there's only one memory region to be
2021 watched, and only one debug register is needed to watch it. */
2022 b->exact = target_exact_watchpoints && reg_cnt == 1;
2023
2024 /* We need to determine how many resources are already
2025 used for all other hardware watchpoints plus this one
2026 to see if we still have enough resources to also fit
2027 this watchpoint in as well. */
2028
2029 /* If this is a software watchpoint, we try to turn it
2030 to a hardware one -- count resources as if B was of
2031 hardware watchpoint type. */
2032 type = b->type;
2033 if (type == bp_watchpoint)
2034 type = bp_hardware_watchpoint;
2035
2036 /* This watchpoint may or may not have been placed on
2037 the list yet at this point (it won't be in the list
2038 if we're trying to create it for the first time,
2039 through watch_command), so always account for it
2040 manually. */
2041
2042 /* Count resources used by all watchpoints except B. */
2043 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
2044
2045 /* Add in the resources needed for B. */
2046 i += hw_watchpoint_use_count (b);
2047
2048 target_resources_ok
2049 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2050 if (target_resources_ok <= 0)
2051 {
2052 int sw_mode = b->ops->works_in_software_mode (b);
2053
2054 if (target_resources_ok == 0 && !sw_mode)
2055 error (_("Target does not support this type of "
2056 "hardware watchpoint."));
2057 else if (target_resources_ok < 0 && !sw_mode)
2058 error (_("There are not enough available hardware "
2059 "resources for this watchpoint."));
2060
2061 /* Downgrade to software watchpoint. */
2062 b->type = bp_watchpoint;
2063 }
2064 else
2065 {
2066 /* If this was a software watchpoint, we've just
2067 found we have enough resources to turn it to a
2068 hardware watchpoint. Otherwise, this is a
2069 nop. */
2070 b->type = type;
2071 }
2072 }
2073 else if (!b->ops->works_in_software_mode (b))
2074 {
2075 if (!can_use_hw_watchpoints)
2076 error (_("Can't set read/access watchpoint when "
2077 "hardware watchpoints are disabled."));
2078 else
2079 error (_("Expression cannot be implemented with "
2080 "read/access watchpoint."));
2081 }
2082 else
2083 b->type = bp_watchpoint;
2084
2085 loc_type = (b->type == bp_watchpoint? bp_loc_other
2086 : bp_loc_hardware_watchpoint);
2087 for (bl = b->loc; bl; bl = bl->next)
2088 bl->loc_type = loc_type;
2089 }
2090
2091 /* If a software watchpoint is not watching any memory, then the
2092 above left it without any location set up. But,
2093 bpstat_stop_status requires a location to be able to report
2094 stops, so make sure there's at least a dummy one. */
2095 if (b->type == bp_watchpoint && b->loc == NULL)
2096 software_watchpoint_add_no_memory_location (b, frame_pspace);
2097 }
2098 else if (!within_current_scope)
2099 {
2100 printf_filtered (_("\
2101 Watchpoint %d deleted because the program has left the block\n\
2102 in which its expression is valid.\n"),
2103 b->number);
2104 watchpoint_del_at_next_stop (b);
2105 }
2106
2107 /* Restore the selected frame. */
2108 if (frame_saved)
2109 select_frame (frame_find_by_id (saved_frame_id));
2110 }
2111
2112
2113 /* Returns 1 iff breakpoint location should be
2114 inserted in the inferior. We don't differentiate the type of BL's owner
2115 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2116 breakpoint_ops is not defined, because in insert_bp_location,
2117 tracepoint's insert_location will not be called. */
2118 static int
2119 should_be_inserted (struct bp_location *bl)
2120 {
2121 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2122 return 0;
2123
2124 if (bl->owner->disposition == disp_del_at_next_stop)
2125 return 0;
2126
2127 if (!bl->enabled || bl->disabled_by_cond
2128 || bl->shlib_disabled || bl->duplicate)
2129 return 0;
2130
2131 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2132 return 0;
2133
2134 /* This is set for example, when we're attached to the parent of a
2135 vfork, and have detached from the child. The child is running
2136 free, and we expect it to do an exec or exit, at which point the
2137 OS makes the parent schedulable again (and the target reports
2138 that the vfork is done). Until the child is done with the shared
2139 memory region, do not insert breakpoints in the parent, otherwise
2140 the child could still trip on the parent's breakpoints. Since
2141 the parent is blocked anyway, it won't miss any breakpoint. */
2142 if (bl->pspace->breakpoints_not_allowed)
2143 return 0;
2144
2145 /* Don't insert a breakpoint if we're trying to step past its
2146 location, except if the breakpoint is a single-step breakpoint,
2147 and the breakpoint's thread is the thread which is stepping past
2148 a breakpoint. */
2149 if ((bl->loc_type == bp_loc_software_breakpoint
2150 || bl->loc_type == bp_loc_hardware_breakpoint)
2151 && stepping_past_instruction_at (bl->pspace->aspace,
2152 bl->address)
2153 /* The single-step breakpoint may be inserted at the location
2154 we're trying to step if the instruction branches to itself.
2155 However, the instruction won't be executed at all and it may
2156 break the semantics of the instruction, for example, the
2157 instruction is a conditional branch or updates some flags.
2158 We can't fix it unless GDB is able to emulate the instruction
2159 or switch to displaced stepping. */
2160 && !(bl->owner->type == bp_single_step
2161 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2162 {
2163 infrun_debug_printf ("skipping breakpoint: stepping past insn at: %s",
2164 paddress (bl->gdbarch, bl->address));
2165 return 0;
2166 }
2167
2168 /* Don't insert watchpoints if we're trying to step past the
2169 instruction that triggered one. */
2170 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2171 && stepping_past_nonsteppable_watchpoint ())
2172 {
2173 infrun_debug_printf ("stepping past non-steppable watchpoint. "
2174 "skipping watchpoint at %s:%d",
2175 paddress (bl->gdbarch, bl->address), bl->length);
2176 return 0;
2177 }
2178
2179 return 1;
2180 }
2181
2182 /* Same as should_be_inserted but does the check assuming
2183 that the location is not duplicated. */
2184
2185 static int
2186 unduplicated_should_be_inserted (struct bp_location *bl)
2187 {
2188 int result;
2189 const int save_duplicate = bl->duplicate;
2190
2191 bl->duplicate = 0;
2192 result = should_be_inserted (bl);
2193 bl->duplicate = save_duplicate;
2194 return result;
2195 }
2196
2197 /* Parses a conditional described by an expression COND into an
2198 agent expression bytecode suitable for evaluation
2199 by the bytecode interpreter. Return NULL if there was
2200 any error during parsing. */
2201
2202 static agent_expr_up
2203 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2204 {
2205 if (cond == NULL)
2206 return NULL;
2207
2208 agent_expr_up aexpr;
2209
2210 /* We don't want to stop processing, so catch any errors
2211 that may show up. */
2212 try
2213 {
2214 aexpr = gen_eval_for_expr (scope, cond);
2215 }
2216
2217 catch (const gdb_exception_error &ex)
2218 {
2219 /* If we got here, it means the condition could not be parsed to a valid
2220 bytecode expression and thus can't be evaluated on the target's side.
2221 It's no use iterating through the conditions. */
2222 }
2223
2224 /* We have a valid agent expression. */
2225 return aexpr;
2226 }
2227
2228 /* Based on location BL, create a list of breakpoint conditions to be
2229 passed on to the target. If we have duplicated locations with different
2230 conditions, we will add such conditions to the list. The idea is that the
2231 target will evaluate the list of conditions and will only notify GDB when
2232 one of them is true. */
2233
2234 static void
2235 build_target_condition_list (struct bp_location *bl)
2236 {
2237 struct bp_location **locp = NULL, **loc2p;
2238 int null_condition_or_parse_error = 0;
2239 int modified = bl->needs_update;
2240 struct bp_location *loc;
2241
2242 /* Release conditions left over from a previous insert. */
2243 bl->target_info.conditions.clear ();
2244
2245 /* This is only meaningful if the target is
2246 evaluating conditions and if the user has
2247 opted for condition evaluation on the target's
2248 side. */
2249 if (gdb_evaluates_breakpoint_condition_p ()
2250 || !target_supports_evaluation_of_breakpoint_conditions ())
2251 return;
2252
2253 /* Do a first pass to check for locations with no assigned
2254 conditions or conditions that fail to parse to a valid agent
2255 expression bytecode. If any of these happen, then it's no use to
2256 send conditions to the target since this location will always
2257 trigger and generate a response back to GDB. Note we consider
2258 all locations at the same address irrespective of type, i.e.,
2259 even if the locations aren't considered duplicates (e.g.,
2260 software breakpoint and hardware breakpoint at the same
2261 address). */
2262 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2263 {
2264 loc = (*loc2p);
2265 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2266 {
2267 if (modified)
2268 {
2269 /* Re-parse the conditions since something changed. In that
2270 case we already freed the condition bytecodes (see
2271 force_breakpoint_reinsertion). We just
2272 need to parse the condition to bytecodes again. */
2273 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2274 loc->cond.get ());
2275 }
2276
2277 /* If we have a NULL bytecode expression, it means something
2278 went wrong or we have a null condition expression. */
2279 if (!loc->cond_bytecode)
2280 {
2281 null_condition_or_parse_error = 1;
2282 break;
2283 }
2284 }
2285 }
2286
2287 /* If any of these happened, it means we will have to evaluate the conditions
2288 for the location's address on gdb's side. It is no use keeping bytecodes
2289 for all the other duplicate locations, thus we free all of them here.
2290
2291 This is so we have a finer control over which locations' conditions are
2292 being evaluated by GDB or the remote stub. */
2293 if (null_condition_or_parse_error)
2294 {
2295 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2296 {
2297 loc = (*loc2p);
2298 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2299 {
2300 /* Only go as far as the first NULL bytecode is
2301 located. */
2302 if (!loc->cond_bytecode)
2303 return;
2304
2305 loc->cond_bytecode.reset ();
2306 }
2307 }
2308 }
2309
2310 /* No NULL conditions or failed bytecode generation. Build a
2311 condition list for this location's address. If we have software
2312 and hardware locations at the same address, they aren't
2313 considered duplicates, but we still marge all the conditions
2314 anyway, as it's simpler, and doesn't really make a practical
2315 difference. */
2316 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2317 {
2318 loc = (*loc2p);
2319 if (loc->cond
2320 && is_breakpoint (loc->owner)
2321 && loc->pspace->num == bl->pspace->num
2322 && loc->owner->enable_state == bp_enabled
2323 && loc->enabled
2324 && !loc->disabled_by_cond)
2325 {
2326 /* Add the condition to the vector. This will be used later
2327 to send the conditions to the target. */
2328 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2329 }
2330 }
2331
2332 return;
2333 }
2334
2335 /* Parses a command described by string CMD into an agent expression
2336 bytecode suitable for evaluation by the bytecode interpreter.
2337 Return NULL if there was any error during parsing. */
2338
2339 static agent_expr_up
2340 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2341 {
2342 const char *cmdrest;
2343 const char *format_start, *format_end;
2344 struct gdbarch *gdbarch = get_current_arch ();
2345
2346 if (cmd == NULL)
2347 return NULL;
2348
2349 cmdrest = cmd;
2350
2351 if (*cmdrest == ',')
2352 ++cmdrest;
2353 cmdrest = skip_spaces (cmdrest);
2354
2355 if (*cmdrest++ != '"')
2356 error (_("No format string following the location"));
2357
2358 format_start = cmdrest;
2359
2360 format_pieces fpieces (&cmdrest);
2361
2362 format_end = cmdrest;
2363
2364 if (*cmdrest++ != '"')
2365 error (_("Bad format string, non-terminated '\"'."));
2366
2367 cmdrest = skip_spaces (cmdrest);
2368
2369 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2370 error (_("Invalid argument syntax"));
2371
2372 if (*cmdrest == ',')
2373 cmdrest++;
2374 cmdrest = skip_spaces (cmdrest);
2375
2376 /* For each argument, make an expression. */
2377
2378 std::vector<struct expression *> argvec;
2379 while (*cmdrest != '\0')
2380 {
2381 const char *cmd1;
2382
2383 cmd1 = cmdrest;
2384 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2385 argvec.push_back (expr.release ());
2386 cmdrest = cmd1;
2387 if (*cmdrest == ',')
2388 ++cmdrest;
2389 }
2390
2391 agent_expr_up aexpr;
2392
2393 /* We don't want to stop processing, so catch any errors
2394 that may show up. */
2395 try
2396 {
2397 aexpr = gen_printf (scope, gdbarch, 0, 0,
2398 format_start, format_end - format_start,
2399 argvec.size (), argvec.data ());
2400 }
2401 catch (const gdb_exception_error &ex)
2402 {
2403 /* If we got here, it means the command could not be parsed to a valid
2404 bytecode expression and thus can't be evaluated on the target's side.
2405 It's no use iterating through the other commands. */
2406 }
2407
2408 /* We have a valid agent expression, return it. */
2409 return aexpr;
2410 }
2411
2412 /* Based on location BL, create a list of breakpoint commands to be
2413 passed on to the target. If we have duplicated locations with
2414 different commands, we will add any such to the list. */
2415
2416 static void
2417 build_target_command_list (struct bp_location *bl)
2418 {
2419 struct bp_location **locp = NULL, **loc2p;
2420 int null_command_or_parse_error = 0;
2421 int modified = bl->needs_update;
2422 struct bp_location *loc;
2423
2424 /* Clear commands left over from a previous insert. */
2425 bl->target_info.tcommands.clear ();
2426
2427 if (!target_can_run_breakpoint_commands ())
2428 return;
2429
2430 /* For now, limit to agent-style dprintf breakpoints. */
2431 if (dprintf_style != dprintf_style_agent)
2432 return;
2433
2434 /* For now, if we have any location at the same address that isn't a
2435 dprintf, don't install the target-side commands, as that would
2436 make the breakpoint not be reported to the core, and we'd lose
2437 control. */
2438 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2439 {
2440 loc = (*loc2p);
2441 if (is_breakpoint (loc->owner)
2442 && loc->pspace->num == bl->pspace->num
2443 && loc->owner->type != bp_dprintf)
2444 return;
2445 }
2446
2447 /* Do a first pass to check for locations with no assigned
2448 conditions or conditions that fail to parse to a valid agent expression
2449 bytecode. If any of these happen, then it's no use to send conditions
2450 to the target since this location will always trigger and generate a
2451 response back to GDB. */
2452 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2453 {
2454 loc = (*loc2p);
2455 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2456 {
2457 if (modified)
2458 {
2459 /* Re-parse the commands since something changed. In that
2460 case we already freed the command bytecodes (see
2461 force_breakpoint_reinsertion). We just
2462 need to parse the command to bytecodes again. */
2463 loc->cmd_bytecode
2464 = parse_cmd_to_aexpr (bl->address,
2465 loc->owner->extra_string);
2466 }
2467
2468 /* If we have a NULL bytecode expression, it means something
2469 went wrong or we have a null command expression. */
2470 if (!loc->cmd_bytecode)
2471 {
2472 null_command_or_parse_error = 1;
2473 break;
2474 }
2475 }
2476 }
2477
2478 /* If anything failed, then we're not doing target-side commands,
2479 and so clean up. */
2480 if (null_command_or_parse_error)
2481 {
2482 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2483 {
2484 loc = (*loc2p);
2485 if (is_breakpoint (loc->owner)
2486 && loc->pspace->num == bl->pspace->num)
2487 {
2488 /* Only go as far as the first NULL bytecode is
2489 located. */
2490 if (loc->cmd_bytecode == NULL)
2491 return;
2492
2493 loc->cmd_bytecode.reset ();
2494 }
2495 }
2496 }
2497
2498 /* No NULL commands or failed bytecode generation. Build a command
2499 list for all duplicate locations at this location's address.
2500 Note that here we must care for whether the breakpoint location
2501 types are considered duplicates, otherwise, say, if we have a
2502 software and hardware location at the same address, the target
2503 could end up running the commands twice. For the moment, we only
2504 support targets-side commands with dprintf, but it doesn't hurt
2505 to be pedantically correct in case that changes. */
2506 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2507 {
2508 loc = (*loc2p);
2509 if (breakpoint_locations_match (bl, loc)
2510 && loc->owner->extra_string
2511 && is_breakpoint (loc->owner)
2512 && loc->pspace->num == bl->pspace->num
2513 && loc->owner->enable_state == bp_enabled
2514 && loc->enabled
2515 && !loc->disabled_by_cond)
2516 {
2517 /* Add the command to the vector. This will be used later
2518 to send the commands to the target. */
2519 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2520 }
2521 }
2522
2523 bl->target_info.persist = 0;
2524 /* Maybe flag this location as persistent. */
2525 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2526 bl->target_info.persist = 1;
2527 }
2528
2529 /* Return the kind of breakpoint on address *ADDR. Get the kind
2530 of breakpoint according to ADDR except single-step breakpoint.
2531 Get the kind of single-step breakpoint according to the current
2532 registers state. */
2533
2534 static int
2535 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2536 {
2537 if (bl->owner->type == bp_single_step)
2538 {
2539 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2540 struct regcache *regcache;
2541
2542 regcache = get_thread_regcache (thr);
2543
2544 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2545 regcache, addr);
2546 }
2547 else
2548 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2549 }
2550
2551 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2552 location. Any error messages are printed to TMP_ERROR_STREAM; and
2553 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2554 Returns 0 for success, 1 if the bp_location type is not supported or
2555 -1 for failure.
2556
2557 NOTE drow/2003-09-09: This routine could be broken down to an
2558 object-style method for each breakpoint or catchpoint type. */
2559 static int
2560 insert_bp_location (struct bp_location *bl,
2561 struct ui_file *tmp_error_stream,
2562 int *disabled_breaks,
2563 int *hw_breakpoint_error,
2564 int *hw_bp_error_explained_already)
2565 {
2566 gdb_exception bp_excpt;
2567
2568 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2569 return 0;
2570
2571 /* Note we don't initialize bl->target_info, as that wipes out
2572 the breakpoint location's shadow_contents if the breakpoint
2573 is still inserted at that location. This in turn breaks
2574 target_read_memory which depends on these buffers when
2575 a memory read is requested at the breakpoint location:
2576 Once the target_info has been wiped, we fail to see that
2577 we have a breakpoint inserted at that address and thus
2578 read the breakpoint instead of returning the data saved in
2579 the breakpoint location's shadow contents. */
2580 bl->target_info.reqstd_address = bl->address;
2581 bl->target_info.placed_address_space = bl->pspace->aspace;
2582 bl->target_info.length = bl->length;
2583
2584 /* When working with target-side conditions, we must pass all the conditions
2585 for the same breakpoint address down to the target since GDB will not
2586 insert those locations. With a list of breakpoint conditions, the target
2587 can decide when to stop and notify GDB. */
2588
2589 if (is_breakpoint (bl->owner))
2590 {
2591 build_target_condition_list (bl);
2592 build_target_command_list (bl);
2593 /* Reset the modification marker. */
2594 bl->needs_update = 0;
2595 }
2596
2597 /* If "set breakpoint auto-hw" is "on" and a software breakpoint was
2598 set at a read-only address, then a breakpoint location will have
2599 been changed to hardware breakpoint before we get here. If it is
2600 "off" however, error out before actually trying to insert the
2601 breakpoint, with a nicer error message. */
2602 if (bl->loc_type == bp_loc_software_breakpoint
2603 && !automatic_hardware_breakpoints)
2604 {
2605 mem_region *mr = lookup_mem_region (bl->address);
2606
2607 if (mr != nullptr && mr->attrib.mode != MEM_RW)
2608 {
2609 fprintf_unfiltered (tmp_error_stream,
2610 _("Cannot insert breakpoint %d.\n"
2611 "Cannot set software breakpoint "
2612 "at read-only address %s\n"),
2613 bl->owner->number,
2614 paddress (bl->gdbarch, bl->address));
2615 return 1;
2616 }
2617 }
2618
2619 if (bl->loc_type == bp_loc_software_breakpoint
2620 || bl->loc_type == bp_loc_hardware_breakpoint)
2621 {
2622 /* First check to see if we have to handle an overlay. */
2623 if (overlay_debugging == ovly_off
2624 || bl->section == NULL
2625 || !(section_is_overlay (bl->section)))
2626 {
2627 /* No overlay handling: just set the breakpoint. */
2628 try
2629 {
2630 int val;
2631
2632 val = bl->owner->ops->insert_location (bl);
2633 if (val)
2634 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2635 }
2636 catch (gdb_exception &e)
2637 {
2638 bp_excpt = std::move (e);
2639 }
2640 }
2641 else
2642 {
2643 /* This breakpoint is in an overlay section.
2644 Shall we set a breakpoint at the LMA? */
2645 if (!overlay_events_enabled)
2646 {
2647 /* Yes -- overlay event support is not active,
2648 so we must try to set a breakpoint at the LMA.
2649 This will not work for a hardware breakpoint. */
2650 if (bl->loc_type == bp_loc_hardware_breakpoint)
2651 warning (_("hardware breakpoint %d not supported in overlay!"),
2652 bl->owner->number);
2653 else
2654 {
2655 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2656 bl->section);
2657 /* Set a software (trap) breakpoint at the LMA. */
2658 bl->overlay_target_info = bl->target_info;
2659 bl->overlay_target_info.reqstd_address = addr;
2660
2661 /* No overlay handling: just set the breakpoint. */
2662 try
2663 {
2664 int val;
2665
2666 bl->overlay_target_info.kind
2667 = breakpoint_kind (bl, &addr);
2668 bl->overlay_target_info.placed_address = addr;
2669 val = target_insert_breakpoint (bl->gdbarch,
2670 &bl->overlay_target_info);
2671 if (val)
2672 bp_excpt
2673 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2674 }
2675 catch (gdb_exception &e)
2676 {
2677 bp_excpt = std::move (e);
2678 }
2679
2680 if (bp_excpt.reason != 0)
2681 fprintf_unfiltered (tmp_error_stream,
2682 "Overlay breakpoint %d "
2683 "failed: in ROM?\n",
2684 bl->owner->number);
2685 }
2686 }
2687 /* Shall we set a breakpoint at the VMA? */
2688 if (section_is_mapped (bl->section))
2689 {
2690 /* Yes. This overlay section is mapped into memory. */
2691 try
2692 {
2693 int val;
2694
2695 val = bl->owner->ops->insert_location (bl);
2696 if (val)
2697 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2698 }
2699 catch (gdb_exception &e)
2700 {
2701 bp_excpt = std::move (e);
2702 }
2703 }
2704 else
2705 {
2706 /* No. This breakpoint will not be inserted.
2707 No error, but do not mark the bp as 'inserted'. */
2708 return 0;
2709 }
2710 }
2711
2712 if (bp_excpt.reason != 0)
2713 {
2714 /* Can't set the breakpoint. */
2715
2716 /* In some cases, we might not be able to insert a
2717 breakpoint in a shared library that has already been
2718 removed, but we have not yet processed the shlib unload
2719 event. Unfortunately, some targets that implement
2720 breakpoint insertion themselves can't tell why the
2721 breakpoint insertion failed (e.g., the remote target
2722 doesn't define error codes), so we must treat generic
2723 errors as memory errors. */
2724 if (bp_excpt.reason == RETURN_ERROR
2725 && (bp_excpt.error == GENERIC_ERROR
2726 || bp_excpt.error == MEMORY_ERROR)
2727 && bl->loc_type == bp_loc_software_breakpoint
2728 && (solib_name_from_address (bl->pspace, bl->address)
2729 || shared_objfile_contains_address_p (bl->pspace,
2730 bl->address)))
2731 {
2732 /* See also: disable_breakpoints_in_shlibs. */
2733 bl->shlib_disabled = 1;
2734 gdb::observers::breakpoint_modified.notify (bl->owner);
2735 if (!*disabled_breaks)
2736 {
2737 fprintf_unfiltered (tmp_error_stream,
2738 "Cannot insert breakpoint %d.\n",
2739 bl->owner->number);
2740 fprintf_unfiltered (tmp_error_stream,
2741 "Temporarily disabling shared "
2742 "library breakpoints:\n");
2743 }
2744 *disabled_breaks = 1;
2745 fprintf_unfiltered (tmp_error_stream,
2746 "breakpoint #%d\n", bl->owner->number);
2747 return 0;
2748 }
2749 else
2750 {
2751 if (bl->loc_type == bp_loc_hardware_breakpoint)
2752 {
2753 *hw_breakpoint_error = 1;
2754 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2755 fprintf_unfiltered (tmp_error_stream,
2756 "Cannot insert hardware breakpoint %d%s",
2757 bl->owner->number,
2758 bp_excpt.message ? ":" : ".\n");
2759 if (bp_excpt.message != NULL)
2760 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2761 bp_excpt.what ());
2762 }
2763 else
2764 {
2765 if (bp_excpt.message == NULL)
2766 {
2767 std::string message
2768 = memory_error_message (TARGET_XFER_E_IO,
2769 bl->gdbarch, bl->address);
2770
2771 fprintf_unfiltered (tmp_error_stream,
2772 "Cannot insert breakpoint %d.\n"
2773 "%s\n",
2774 bl->owner->number, message.c_str ());
2775 }
2776 else
2777 {
2778 fprintf_unfiltered (tmp_error_stream,
2779 "Cannot insert breakpoint %d: %s\n",
2780 bl->owner->number,
2781 bp_excpt.what ());
2782 }
2783 }
2784 return 1;
2785
2786 }
2787 }
2788 else
2789 bl->inserted = 1;
2790
2791 return 0;
2792 }
2793
2794 else if (bl->loc_type == bp_loc_hardware_watchpoint
2795 /* NOTE drow/2003-09-08: This state only exists for removing
2796 watchpoints. It's not clear that it's necessary... */
2797 && bl->owner->disposition != disp_del_at_next_stop)
2798 {
2799 int val;
2800
2801 gdb_assert (bl->owner->ops != NULL
2802 && bl->owner->ops->insert_location != NULL);
2803
2804 val = bl->owner->ops->insert_location (bl);
2805
2806 /* If trying to set a read-watchpoint, and it turns out it's not
2807 supported, try emulating one with an access watchpoint. */
2808 if (val == 1 && bl->watchpoint_type == hw_read)
2809 {
2810 struct bp_location *loc, **loc_temp;
2811
2812 /* But don't try to insert it, if there's already another
2813 hw_access location that would be considered a duplicate
2814 of this one. */
2815 ALL_BP_LOCATIONS (loc, loc_temp)
2816 if (loc != bl
2817 && loc->watchpoint_type == hw_access
2818 && watchpoint_locations_match (bl, loc))
2819 {
2820 bl->duplicate = 1;
2821 bl->inserted = 1;
2822 bl->target_info = loc->target_info;
2823 bl->watchpoint_type = hw_access;
2824 val = 0;
2825 break;
2826 }
2827
2828 if (val == 1)
2829 {
2830 bl->watchpoint_type = hw_access;
2831 val = bl->owner->ops->insert_location (bl);
2832
2833 if (val)
2834 /* Back to the original value. */
2835 bl->watchpoint_type = hw_read;
2836 }
2837 }
2838
2839 bl->inserted = (val == 0);
2840 }
2841
2842 else if (bl->owner->type == bp_catchpoint)
2843 {
2844 int val;
2845
2846 gdb_assert (bl->owner->ops != NULL
2847 && bl->owner->ops->insert_location != NULL);
2848
2849 val = bl->owner->ops->insert_location (bl);
2850 if (val)
2851 {
2852 bl->owner->enable_state = bp_disabled;
2853
2854 if (val == 1)
2855 warning (_("\
2856 Error inserting catchpoint %d: Your system does not support this type\n\
2857 of catchpoint."), bl->owner->number);
2858 else
2859 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2860 }
2861
2862 bl->inserted = (val == 0);
2863
2864 /* We've already printed an error message if there was a problem
2865 inserting this catchpoint, and we've disabled the catchpoint,
2866 so just return success. */
2867 return 0;
2868 }
2869
2870 return 0;
2871 }
2872
2873 /* This function is called when program space PSPACE is about to be
2874 deleted. It takes care of updating breakpoints to not reference
2875 PSPACE anymore. */
2876
2877 void
2878 breakpoint_program_space_exit (struct program_space *pspace)
2879 {
2880 struct breakpoint *b, *b_temp;
2881 struct bp_location *loc, **loc_temp;
2882
2883 /* Remove any breakpoint that was set through this program space. */
2884 ALL_BREAKPOINTS_SAFE (b, b_temp)
2885 {
2886 if (b->pspace == pspace)
2887 delete_breakpoint (b);
2888 }
2889
2890 /* Breakpoints set through other program spaces could have locations
2891 bound to PSPACE as well. Remove those. */
2892 ALL_BP_LOCATIONS (loc, loc_temp)
2893 {
2894 struct bp_location *tmp;
2895
2896 if (loc->pspace == pspace)
2897 {
2898 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2899 if (loc->owner->loc == loc)
2900 loc->owner->loc = loc->next;
2901 else
2902 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2903 if (tmp->next == loc)
2904 {
2905 tmp->next = loc->next;
2906 break;
2907 }
2908 }
2909 }
2910
2911 /* Now update the global location list to permanently delete the
2912 removed locations above. */
2913 update_global_location_list (UGLL_DONT_INSERT);
2914 }
2915
2916 /* Make sure all breakpoints are inserted in inferior.
2917 Throws exception on any error.
2918 A breakpoint that is already inserted won't be inserted
2919 again, so calling this function twice is safe. */
2920 void
2921 insert_breakpoints (void)
2922 {
2923 struct breakpoint *bpt;
2924
2925 ALL_BREAKPOINTS (bpt)
2926 if (is_hardware_watchpoint (bpt))
2927 {
2928 struct watchpoint *w = (struct watchpoint *) bpt;
2929
2930 update_watchpoint (w, 0 /* don't reparse. */);
2931 }
2932
2933 /* Updating watchpoints creates new locations, so update the global
2934 location list. Explicitly tell ugll to insert locations and
2935 ignore breakpoints_always_inserted_mode. Also,
2936 update_global_location_list tries to "upgrade" software
2937 breakpoints to hardware breakpoints to handle "set breakpoint
2938 auto-hw", so we need to call it even if we don't have new
2939 locations. */
2940 update_global_location_list (UGLL_INSERT);
2941 }
2942
2943 /* Invoke CALLBACK for each of bp_location. */
2944
2945 void
2946 iterate_over_bp_locations (walk_bp_location_callback callback)
2947 {
2948 struct bp_location *loc, **loc_tmp;
2949
2950 ALL_BP_LOCATIONS (loc, loc_tmp)
2951 {
2952 callback (loc, NULL);
2953 }
2954 }
2955
2956 /* This is used when we need to synch breakpoint conditions between GDB and the
2957 target. It is the case with deleting and disabling of breakpoints when using
2958 always-inserted mode. */
2959
2960 static void
2961 update_inserted_breakpoint_locations (void)
2962 {
2963 struct bp_location *bl, **blp_tmp;
2964 int error_flag = 0;
2965 int val = 0;
2966 int disabled_breaks = 0;
2967 int hw_breakpoint_error = 0;
2968 int hw_bp_details_reported = 0;
2969
2970 string_file tmp_error_stream;
2971
2972 /* Explicitly mark the warning -- this will only be printed if
2973 there was an error. */
2974 tmp_error_stream.puts ("Warning:\n");
2975
2976 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2977
2978 ALL_BP_LOCATIONS (bl, blp_tmp)
2979 {
2980 /* We only want to update software breakpoints and hardware
2981 breakpoints. */
2982 if (!is_breakpoint (bl->owner))
2983 continue;
2984
2985 /* We only want to update locations that are already inserted
2986 and need updating. This is to avoid unwanted insertion during
2987 deletion of breakpoints. */
2988 if (!bl->inserted || !bl->needs_update)
2989 continue;
2990
2991 switch_to_program_space_and_thread (bl->pspace);
2992
2993 /* For targets that support global breakpoints, there's no need
2994 to select an inferior to insert breakpoint to. In fact, even
2995 if we aren't attached to any process yet, we should still
2996 insert breakpoints. */
2997 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2998 && (inferior_ptid == null_ptid || !target_has_execution ()))
2999 continue;
3000
3001 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3002 &hw_breakpoint_error, &hw_bp_details_reported);
3003 if (val)
3004 error_flag = val;
3005 }
3006
3007 if (error_flag)
3008 {
3009 target_terminal::ours_for_output ();
3010 error_stream (tmp_error_stream);
3011 }
3012 }
3013
3014 /* Used when starting or continuing the program. */
3015
3016 static void
3017 insert_breakpoint_locations (void)
3018 {
3019 struct breakpoint *bpt;
3020 struct bp_location *bl, **blp_tmp;
3021 int error_flag = 0;
3022 int val = 0;
3023 int disabled_breaks = 0;
3024 int hw_breakpoint_error = 0;
3025 int hw_bp_error_explained_already = 0;
3026
3027 string_file tmp_error_stream;
3028
3029 /* Explicitly mark the warning -- this will only be printed if
3030 there was an error. */
3031 tmp_error_stream.puts ("Warning:\n");
3032
3033 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3034
3035 ALL_BP_LOCATIONS (bl, blp_tmp)
3036 {
3037 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3038 continue;
3039
3040 /* There is no point inserting thread-specific breakpoints if
3041 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3042 has BL->OWNER always non-NULL. */
3043 if (bl->owner->thread != -1
3044 && !valid_global_thread_id (bl->owner->thread))
3045 continue;
3046
3047 switch_to_program_space_and_thread (bl->pspace);
3048
3049 /* For targets that support global breakpoints, there's no need
3050 to select an inferior to insert breakpoint to. In fact, even
3051 if we aren't attached to any process yet, we should still
3052 insert breakpoints. */
3053 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3054 && (inferior_ptid == null_ptid || !target_has_execution ()))
3055 continue;
3056
3057 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3058 &hw_breakpoint_error, &hw_bp_error_explained_already);
3059 if (val)
3060 error_flag = val;
3061 }
3062
3063 /* If we failed to insert all locations of a watchpoint, remove
3064 them, as half-inserted watchpoint is of limited use. */
3065 ALL_BREAKPOINTS (bpt)
3066 {
3067 int some_failed = 0;
3068 struct bp_location *loc;
3069
3070 if (!is_hardware_watchpoint (bpt))
3071 continue;
3072
3073 if (!breakpoint_enabled (bpt))
3074 continue;
3075
3076 if (bpt->disposition == disp_del_at_next_stop)
3077 continue;
3078
3079 for (loc = bpt->loc; loc; loc = loc->next)
3080 if (!loc->inserted && should_be_inserted (loc))
3081 {
3082 some_failed = 1;
3083 break;
3084 }
3085 if (some_failed)
3086 {
3087 for (loc = bpt->loc; loc; loc = loc->next)
3088 if (loc->inserted)
3089 remove_breakpoint (loc);
3090
3091 hw_breakpoint_error = 1;
3092 tmp_error_stream.printf ("Could not insert "
3093 "hardware watchpoint %d.\n",
3094 bpt->number);
3095 error_flag = -1;
3096 }
3097 }
3098
3099 if (error_flag)
3100 {
3101 /* If a hardware breakpoint or watchpoint was inserted, add a
3102 message about possibly exhausted resources. */
3103 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3104 {
3105 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3106 You may have requested too many hardware breakpoints/watchpoints.\n");
3107 }
3108 target_terminal::ours_for_output ();
3109 error_stream (tmp_error_stream);
3110 }
3111 }
3112
3113 /* Used when the program stops.
3114 Returns zero if successful, or non-zero if there was a problem
3115 removing a breakpoint location. */
3116
3117 int
3118 remove_breakpoints (void)
3119 {
3120 struct bp_location *bl, **blp_tmp;
3121 int val = 0;
3122
3123 ALL_BP_LOCATIONS (bl, blp_tmp)
3124 {
3125 if (bl->inserted && !is_tracepoint (bl->owner))
3126 val |= remove_breakpoint (bl);
3127 }
3128 return val;
3129 }
3130
3131 /* When a thread exits, remove breakpoints that are related to
3132 that thread. */
3133
3134 static void
3135 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3136 {
3137 struct breakpoint *b, *b_tmp;
3138
3139 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3140 {
3141 if (b->thread == tp->global_num && user_breakpoint_p (b))
3142 {
3143 b->disposition = disp_del_at_next_stop;
3144
3145 printf_filtered (_("\
3146 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3147 b->number, print_thread_id (tp));
3148
3149 /* Hide it from the user. */
3150 b->number = 0;
3151 }
3152 }
3153 }
3154
3155 /* See breakpoint.h. */
3156
3157 void
3158 remove_breakpoints_inf (inferior *inf)
3159 {
3160 struct bp_location *bl, **blp_tmp;
3161 int val;
3162
3163 ALL_BP_LOCATIONS (bl, blp_tmp)
3164 {
3165 if (bl->pspace != inf->pspace)
3166 continue;
3167
3168 if (bl->inserted && !bl->target_info.persist)
3169 {
3170 val = remove_breakpoint (bl);
3171 if (val != 0)
3172 return;
3173 }
3174 }
3175 }
3176
3177 static int internal_breakpoint_number = -1;
3178
3179 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3180 If INTERNAL is non-zero, the breakpoint number will be populated
3181 from internal_breakpoint_number and that variable decremented.
3182 Otherwise the breakpoint number will be populated from
3183 breakpoint_count and that value incremented. Internal breakpoints
3184 do not set the internal var bpnum. */
3185 static void
3186 set_breakpoint_number (int internal, struct breakpoint *b)
3187 {
3188 if (internal)
3189 b->number = internal_breakpoint_number--;
3190 else
3191 {
3192 set_breakpoint_count (breakpoint_count + 1);
3193 b->number = breakpoint_count;
3194 }
3195 }
3196
3197 static struct breakpoint *
3198 create_internal_breakpoint (struct gdbarch *gdbarch,
3199 CORE_ADDR address, enum bptype type,
3200 const struct breakpoint_ops *ops)
3201 {
3202 symtab_and_line sal;
3203 sal.pc = address;
3204 sal.section = find_pc_overlay (sal.pc);
3205 sal.pspace = current_program_space;
3206
3207 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3208 b->number = internal_breakpoint_number--;
3209 b->disposition = disp_donttouch;
3210
3211 return b;
3212 }
3213
3214 static const char *const longjmp_names[] =
3215 {
3216 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3217 };
3218 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3219
3220 /* Per-objfile data private to breakpoint.c. */
3221 struct breakpoint_objfile_data
3222 {
3223 /* Minimal symbol for "_ovly_debug_event" (if any). */
3224 struct bound_minimal_symbol overlay_msym {};
3225
3226 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3227 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3228
3229 /* True if we have looked for longjmp probes. */
3230 int longjmp_searched = 0;
3231
3232 /* SystemTap probe points for longjmp (if any). These are non-owning
3233 references. */
3234 std::vector<probe *> longjmp_probes;
3235
3236 /* Minimal symbol for "std::terminate()" (if any). */
3237 struct bound_minimal_symbol terminate_msym {};
3238
3239 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3240 struct bound_minimal_symbol exception_msym {};
3241
3242 /* True if we have looked for exception probes. */
3243 int exception_searched = 0;
3244
3245 /* SystemTap probe points for unwinding (if any). These are non-owning
3246 references. */
3247 std::vector<probe *> exception_probes;
3248 };
3249
3250 static const struct objfile_key<breakpoint_objfile_data>
3251 breakpoint_objfile_key;
3252
3253 /* Minimal symbol not found sentinel. */
3254 static struct minimal_symbol msym_not_found;
3255
3256 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3257
3258 static int
3259 msym_not_found_p (const struct minimal_symbol *msym)
3260 {
3261 return msym == &msym_not_found;
3262 }
3263
3264 /* Return per-objfile data needed by breakpoint.c.
3265 Allocate the data if necessary. */
3266
3267 static struct breakpoint_objfile_data *
3268 get_breakpoint_objfile_data (struct objfile *objfile)
3269 {
3270 struct breakpoint_objfile_data *bp_objfile_data;
3271
3272 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3273 if (bp_objfile_data == NULL)
3274 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3275 return bp_objfile_data;
3276 }
3277
3278 static void
3279 create_overlay_event_breakpoint (void)
3280 {
3281 const char *const func_name = "_ovly_debug_event";
3282
3283 for (objfile *objfile : current_program_space->objfiles ())
3284 {
3285 struct breakpoint *b;
3286 struct breakpoint_objfile_data *bp_objfile_data;
3287 CORE_ADDR addr;
3288 struct explicit_location explicit_loc;
3289
3290 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3291
3292 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3293 continue;
3294
3295 if (bp_objfile_data->overlay_msym.minsym == NULL)
3296 {
3297 struct bound_minimal_symbol m;
3298
3299 m = lookup_minimal_symbol_text (func_name, objfile);
3300 if (m.minsym == NULL)
3301 {
3302 /* Avoid future lookups in this objfile. */
3303 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3304 continue;
3305 }
3306 bp_objfile_data->overlay_msym = m;
3307 }
3308
3309 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3310 b = create_internal_breakpoint (objfile->arch (), addr,
3311 bp_overlay_event,
3312 &internal_breakpoint_ops);
3313 initialize_explicit_location (&explicit_loc);
3314 explicit_loc.function_name = ASTRDUP (func_name);
3315 b->location = new_explicit_location (&explicit_loc);
3316
3317 if (overlay_debugging == ovly_auto)
3318 {
3319 b->enable_state = bp_enabled;
3320 overlay_events_enabled = 1;
3321 }
3322 else
3323 {
3324 b->enable_state = bp_disabled;
3325 overlay_events_enabled = 0;
3326 }
3327 }
3328 }
3329
3330 static void
3331 create_longjmp_master_breakpoint (void)
3332 {
3333 scoped_restore_current_program_space restore_pspace;
3334
3335 for (struct program_space *pspace : program_spaces)
3336 {
3337 set_current_program_space (pspace);
3338
3339 for (objfile *objfile : current_program_space->objfiles ())
3340 {
3341 int i;
3342 struct gdbarch *gdbarch;
3343 struct breakpoint_objfile_data *bp_objfile_data;
3344
3345 gdbarch = objfile->arch ();
3346
3347 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3348
3349 if (!bp_objfile_data->longjmp_searched)
3350 {
3351 std::vector<probe *> ret
3352 = find_probes_in_objfile (objfile, "libc", "longjmp");
3353
3354 if (!ret.empty ())
3355 {
3356 /* We are only interested in checking one element. */
3357 probe *p = ret[0];
3358
3359 if (!p->can_evaluate_arguments ())
3360 {
3361 /* We cannot use the probe interface here,
3362 because it does not know how to evaluate
3363 arguments. */
3364 ret.clear ();
3365 }
3366 }
3367 bp_objfile_data->longjmp_probes = ret;
3368 bp_objfile_data->longjmp_searched = 1;
3369 }
3370
3371 if (!bp_objfile_data->longjmp_probes.empty ())
3372 {
3373 for (probe *p : bp_objfile_data->longjmp_probes)
3374 {
3375 struct breakpoint *b;
3376
3377 b = create_internal_breakpoint (gdbarch,
3378 p->get_relocated_address (objfile),
3379 bp_longjmp_master,
3380 &internal_breakpoint_ops);
3381 b->location = new_probe_location ("-probe-stap libc:longjmp");
3382 b->enable_state = bp_disabled;
3383 }
3384
3385 continue;
3386 }
3387
3388 if (!gdbarch_get_longjmp_target_p (gdbarch))
3389 continue;
3390
3391 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3392 {
3393 struct breakpoint *b;
3394 const char *func_name;
3395 CORE_ADDR addr;
3396 struct explicit_location explicit_loc;
3397
3398 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3399 continue;
3400
3401 func_name = longjmp_names[i];
3402 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3403 {
3404 struct bound_minimal_symbol m;
3405
3406 m = lookup_minimal_symbol_text (func_name, objfile);
3407 if (m.minsym == NULL)
3408 {
3409 /* Prevent future lookups in this objfile. */
3410 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3411 continue;
3412 }
3413 bp_objfile_data->longjmp_msym[i] = m;
3414 }
3415
3416 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3417 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3418 &internal_breakpoint_ops);
3419 initialize_explicit_location (&explicit_loc);
3420 explicit_loc.function_name = ASTRDUP (func_name);
3421 b->location = new_explicit_location (&explicit_loc);
3422 b->enable_state = bp_disabled;
3423 }
3424 }
3425 }
3426 }
3427
3428 /* Create a master std::terminate breakpoint. */
3429 static void
3430 create_std_terminate_master_breakpoint (void)
3431 {
3432 const char *const func_name = "std::terminate()";
3433
3434 scoped_restore_current_program_space restore_pspace;
3435
3436 for (struct program_space *pspace : program_spaces)
3437 {
3438 CORE_ADDR addr;
3439
3440 set_current_program_space (pspace);
3441
3442 for (objfile *objfile : current_program_space->objfiles ())
3443 {
3444 struct breakpoint *b;
3445 struct breakpoint_objfile_data *bp_objfile_data;
3446 struct explicit_location explicit_loc;
3447
3448 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3449
3450 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3451 continue;
3452
3453 if (bp_objfile_data->terminate_msym.minsym == NULL)
3454 {
3455 struct bound_minimal_symbol m;
3456
3457 m = lookup_minimal_symbol (func_name, NULL, objfile);
3458 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3459 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3460 {
3461 /* Prevent future lookups in this objfile. */
3462 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3463 continue;
3464 }
3465 bp_objfile_data->terminate_msym = m;
3466 }
3467
3468 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3469 b = create_internal_breakpoint (objfile->arch (), addr,
3470 bp_std_terminate_master,
3471 &internal_breakpoint_ops);
3472 initialize_explicit_location (&explicit_loc);
3473 explicit_loc.function_name = ASTRDUP (func_name);
3474 b->location = new_explicit_location (&explicit_loc);
3475 b->enable_state = bp_disabled;
3476 }
3477 }
3478 }
3479
3480 /* Install a master breakpoint on the unwinder's debug hook. */
3481
3482 static void
3483 create_exception_master_breakpoint (void)
3484 {
3485 const char *const func_name = "_Unwind_DebugHook";
3486
3487 for (objfile *objfile : current_program_space->objfiles ())
3488 {
3489 struct breakpoint *b;
3490 struct gdbarch *gdbarch;
3491 struct breakpoint_objfile_data *bp_objfile_data;
3492 CORE_ADDR addr;
3493 struct explicit_location explicit_loc;
3494
3495 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3496
3497 /* We prefer the SystemTap probe point if it exists. */
3498 if (!bp_objfile_data->exception_searched)
3499 {
3500 std::vector<probe *> ret
3501 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3502
3503 if (!ret.empty ())
3504 {
3505 /* We are only interested in checking one element. */
3506 probe *p = ret[0];
3507
3508 if (!p->can_evaluate_arguments ())
3509 {
3510 /* We cannot use the probe interface here, because it does
3511 not know how to evaluate arguments. */
3512 ret.clear ();
3513 }
3514 }
3515 bp_objfile_data->exception_probes = ret;
3516 bp_objfile_data->exception_searched = 1;
3517 }
3518
3519 if (!bp_objfile_data->exception_probes.empty ())
3520 {
3521 gdbarch = objfile->arch ();
3522
3523 for (probe *p : bp_objfile_data->exception_probes)
3524 {
3525 b = create_internal_breakpoint (gdbarch,
3526 p->get_relocated_address (objfile),
3527 bp_exception_master,
3528 &internal_breakpoint_ops);
3529 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3530 b->enable_state = bp_disabled;
3531 }
3532
3533 continue;
3534 }
3535
3536 /* Otherwise, try the hook function. */
3537
3538 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3539 continue;
3540
3541 gdbarch = objfile->arch ();
3542
3543 if (bp_objfile_data->exception_msym.minsym == NULL)
3544 {
3545 struct bound_minimal_symbol debug_hook;
3546
3547 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3548 if (debug_hook.minsym == NULL)
3549 {
3550 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3551 continue;
3552 }
3553
3554 bp_objfile_data->exception_msym = debug_hook;
3555 }
3556
3557 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3558 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3559 current_top_target ());
3560 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3561 &internal_breakpoint_ops);
3562 initialize_explicit_location (&explicit_loc);
3563 explicit_loc.function_name = ASTRDUP (func_name);
3564 b->location = new_explicit_location (&explicit_loc);
3565 b->enable_state = bp_disabled;
3566 }
3567 }
3568
3569 /* Does B have a location spec? */
3570
3571 static int
3572 breakpoint_event_location_empty_p (const struct breakpoint *b)
3573 {
3574 return b->location != NULL && event_location_empty_p (b->location.get ());
3575 }
3576
3577 void
3578 update_breakpoints_after_exec (void)
3579 {
3580 struct breakpoint *b, *b_tmp;
3581 struct bp_location *bploc, **bplocp_tmp;
3582
3583 /* We're about to delete breakpoints from GDB's lists. If the
3584 INSERTED flag is true, GDB will try to lift the breakpoints by
3585 writing the breakpoints' "shadow contents" back into memory. The
3586 "shadow contents" are NOT valid after an exec, so GDB should not
3587 do that. Instead, the target is responsible from marking
3588 breakpoints out as soon as it detects an exec. We don't do that
3589 here instead, because there may be other attempts to delete
3590 breakpoints after detecting an exec and before reaching here. */
3591 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3592 if (bploc->pspace == current_program_space)
3593 gdb_assert (!bploc->inserted);
3594
3595 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3596 {
3597 if (b->pspace != current_program_space)
3598 continue;
3599
3600 /* Solib breakpoints must be explicitly reset after an exec(). */
3601 if (b->type == bp_shlib_event)
3602 {
3603 delete_breakpoint (b);
3604 continue;
3605 }
3606
3607 /* JIT breakpoints must be explicitly reset after an exec(). */
3608 if (b->type == bp_jit_event)
3609 {
3610 delete_breakpoint (b);
3611 continue;
3612 }
3613
3614 /* Thread event breakpoints must be set anew after an exec(),
3615 as must overlay event and longjmp master breakpoints. */
3616 if (b->type == bp_thread_event || b->type == bp_overlay_event
3617 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3618 || b->type == bp_exception_master)
3619 {
3620 delete_breakpoint (b);
3621 continue;
3622 }
3623
3624 /* Step-resume breakpoints are meaningless after an exec(). */
3625 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3626 {
3627 delete_breakpoint (b);
3628 continue;
3629 }
3630
3631 /* Just like single-step breakpoints. */
3632 if (b->type == bp_single_step)
3633 {
3634 delete_breakpoint (b);
3635 continue;
3636 }
3637
3638 /* Longjmp and longjmp-resume breakpoints are also meaningless
3639 after an exec. */
3640 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3641 || b->type == bp_longjmp_call_dummy
3642 || b->type == bp_exception || b->type == bp_exception_resume)
3643 {
3644 delete_breakpoint (b);
3645 continue;
3646 }
3647
3648 if (b->type == bp_catchpoint)
3649 {
3650 /* For now, none of the bp_catchpoint breakpoints need to
3651 do anything at this point. In the future, if some of
3652 the catchpoints need to something, we will need to add
3653 a new method, and call this method from here. */
3654 continue;
3655 }
3656
3657 /* bp_finish is a special case. The only way we ought to be able
3658 to see one of these when an exec() has happened, is if the user
3659 caught a vfork, and then said "finish". Ordinarily a finish just
3660 carries them to the call-site of the current callee, by setting
3661 a temporary bp there and resuming. But in this case, the finish
3662 will carry them entirely through the vfork & exec.
3663
3664 We don't want to allow a bp_finish to remain inserted now. But
3665 we can't safely delete it, 'cause finish_command has a handle to
3666 the bp on a bpstat, and will later want to delete it. There's a
3667 chance (and I've seen it happen) that if we delete the bp_finish
3668 here, that its storage will get reused by the time finish_command
3669 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3670 We really must allow finish_command to delete a bp_finish.
3671
3672 In the absence of a general solution for the "how do we know
3673 it's safe to delete something others may have handles to?"
3674 problem, what we'll do here is just uninsert the bp_finish, and
3675 let finish_command delete it.
3676
3677 (We know the bp_finish is "doomed" in the sense that it's
3678 momentary, and will be deleted as soon as finish_command sees
3679 the inferior stopped. So it doesn't matter that the bp's
3680 address is probably bogus in the new a.out, unlike e.g., the
3681 solib breakpoints.) */
3682
3683 if (b->type == bp_finish)
3684 {
3685 continue;
3686 }
3687
3688 /* Without a symbolic address, we have little hope of the
3689 pre-exec() address meaning the same thing in the post-exec()
3690 a.out. */
3691 if (breakpoint_event_location_empty_p (b))
3692 {
3693 delete_breakpoint (b);
3694 continue;
3695 }
3696 }
3697 }
3698
3699 int
3700 detach_breakpoints (ptid_t ptid)
3701 {
3702 struct bp_location *bl, **blp_tmp;
3703 int val = 0;
3704 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3705 struct inferior *inf = current_inferior ();
3706
3707 if (ptid.pid () == inferior_ptid.pid ())
3708 error (_("Cannot detach breakpoints of inferior_ptid"));
3709
3710 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3711 inferior_ptid = ptid;
3712 ALL_BP_LOCATIONS (bl, blp_tmp)
3713 {
3714 if (bl->pspace != inf->pspace)
3715 continue;
3716
3717 /* This function must physically remove breakpoints locations
3718 from the specified ptid, without modifying the breakpoint
3719 package's state. Locations of type bp_loc_other are only
3720 maintained at GDB side. So, there is no need to remove
3721 these bp_loc_other locations. Moreover, removing these
3722 would modify the breakpoint package's state. */
3723 if (bl->loc_type == bp_loc_other)
3724 continue;
3725
3726 if (bl->inserted)
3727 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3728 }
3729
3730 return val;
3731 }
3732
3733 /* Remove the breakpoint location BL from the current address space.
3734 Note that this is used to detach breakpoints from a child fork.
3735 When we get here, the child isn't in the inferior list, and neither
3736 do we have objects to represent its address space --- we should
3737 *not* look at bl->pspace->aspace here. */
3738
3739 static int
3740 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3741 {
3742 int val;
3743
3744 /* BL is never in moribund_locations by our callers. */
3745 gdb_assert (bl->owner != NULL);
3746
3747 /* The type of none suggests that owner is actually deleted.
3748 This should not ever happen. */
3749 gdb_assert (bl->owner->type != bp_none);
3750
3751 if (bl->loc_type == bp_loc_software_breakpoint
3752 || bl->loc_type == bp_loc_hardware_breakpoint)
3753 {
3754 /* "Normal" instruction breakpoint: either the standard
3755 trap-instruction bp (bp_breakpoint), or a
3756 bp_hardware_breakpoint. */
3757
3758 /* First check to see if we have to handle an overlay. */
3759 if (overlay_debugging == ovly_off
3760 || bl->section == NULL
3761 || !(section_is_overlay (bl->section)))
3762 {
3763 /* No overlay handling: just remove the breakpoint. */
3764
3765 /* If we're trying to uninsert a memory breakpoint that we
3766 know is set in a dynamic object that is marked
3767 shlib_disabled, then either the dynamic object was
3768 removed with "remove-symbol-file" or with
3769 "nosharedlibrary". In the former case, we don't know
3770 whether another dynamic object might have loaded over the
3771 breakpoint's address -- the user might well let us know
3772 about it next with add-symbol-file (the whole point of
3773 add-symbol-file is letting the user manually maintain a
3774 list of dynamically loaded objects). If we have the
3775 breakpoint's shadow memory, that is, this is a software
3776 breakpoint managed by GDB, check whether the breakpoint
3777 is still inserted in memory, to avoid overwriting wrong
3778 code with stale saved shadow contents. Note that HW
3779 breakpoints don't have shadow memory, as they're
3780 implemented using a mechanism that is not dependent on
3781 being able to modify the target's memory, and as such
3782 they should always be removed. */
3783 if (bl->shlib_disabled
3784 && bl->target_info.shadow_len != 0
3785 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3786 val = 0;
3787 else
3788 val = bl->owner->ops->remove_location (bl, reason);
3789 }
3790 else
3791 {
3792 /* This breakpoint is in an overlay section.
3793 Did we set a breakpoint at the LMA? */
3794 if (!overlay_events_enabled)
3795 {
3796 /* Yes -- overlay event support is not active, so we
3797 should have set a breakpoint at the LMA. Remove it.
3798 */
3799 /* Ignore any failures: if the LMA is in ROM, we will
3800 have already warned when we failed to insert it. */
3801 if (bl->loc_type == bp_loc_hardware_breakpoint)
3802 target_remove_hw_breakpoint (bl->gdbarch,
3803 &bl->overlay_target_info);
3804 else
3805 target_remove_breakpoint (bl->gdbarch,
3806 &bl->overlay_target_info,
3807 reason);
3808 }
3809 /* Did we set a breakpoint at the VMA?
3810 If so, we will have marked the breakpoint 'inserted'. */
3811 if (bl->inserted)
3812 {
3813 /* Yes -- remove it. Previously we did not bother to
3814 remove the breakpoint if the section had been
3815 unmapped, but let's not rely on that being safe. We
3816 don't know what the overlay manager might do. */
3817
3818 /* However, we should remove *software* breakpoints only
3819 if the section is still mapped, or else we overwrite
3820 wrong code with the saved shadow contents. */
3821 if (bl->loc_type == bp_loc_hardware_breakpoint
3822 || section_is_mapped (bl->section))
3823 val = bl->owner->ops->remove_location (bl, reason);
3824 else
3825 val = 0;
3826 }
3827 else
3828 {
3829 /* No -- not inserted, so no need to remove. No error. */
3830 val = 0;
3831 }
3832 }
3833
3834 /* In some cases, we might not be able to remove a breakpoint in
3835 a shared library that has already been removed, but we have
3836 not yet processed the shlib unload event. Similarly for an
3837 unloaded add-symbol-file object - the user might not yet have
3838 had the chance to remove-symbol-file it. shlib_disabled will
3839 be set if the library/object has already been removed, but
3840 the breakpoint hasn't been uninserted yet, e.g., after
3841 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3842 always-inserted mode. */
3843 if (val
3844 && (bl->loc_type == bp_loc_software_breakpoint
3845 && (bl->shlib_disabled
3846 || solib_name_from_address (bl->pspace, bl->address)
3847 || shared_objfile_contains_address_p (bl->pspace,
3848 bl->address))))
3849 val = 0;
3850
3851 if (val)
3852 return val;
3853 bl->inserted = (reason == DETACH_BREAKPOINT);
3854 }
3855 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3856 {
3857 gdb_assert (bl->owner->ops != NULL
3858 && bl->owner->ops->remove_location != NULL);
3859
3860 bl->inserted = (reason == DETACH_BREAKPOINT);
3861 bl->owner->ops->remove_location (bl, reason);
3862
3863 /* Failure to remove any of the hardware watchpoints comes here. */
3864 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3865 warning (_("Could not remove hardware watchpoint %d."),
3866 bl->owner->number);
3867 }
3868 else if (bl->owner->type == bp_catchpoint
3869 && breakpoint_enabled (bl->owner)
3870 && !bl->duplicate)
3871 {
3872 gdb_assert (bl->owner->ops != NULL
3873 && bl->owner->ops->remove_location != NULL);
3874
3875 val = bl->owner->ops->remove_location (bl, reason);
3876 if (val)
3877 return val;
3878
3879 bl->inserted = (reason == DETACH_BREAKPOINT);
3880 }
3881
3882 return 0;
3883 }
3884
3885 static int
3886 remove_breakpoint (struct bp_location *bl)
3887 {
3888 /* BL is never in moribund_locations by our callers. */
3889 gdb_assert (bl->owner != NULL);
3890
3891 /* The type of none suggests that owner is actually deleted.
3892 This should not ever happen. */
3893 gdb_assert (bl->owner->type != bp_none);
3894
3895 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3896
3897 switch_to_program_space_and_thread (bl->pspace);
3898
3899 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3900 }
3901
3902 /* Clear the "inserted" flag in all breakpoints. */
3903
3904 void
3905 mark_breakpoints_out (void)
3906 {
3907 struct bp_location *bl, **blp_tmp;
3908
3909 ALL_BP_LOCATIONS (bl, blp_tmp)
3910 if (bl->pspace == current_program_space)
3911 bl->inserted = 0;
3912 }
3913
3914 /* Clear the "inserted" flag in all breakpoints and delete any
3915 breakpoints which should go away between runs of the program.
3916
3917 Plus other such housekeeping that has to be done for breakpoints
3918 between runs.
3919
3920 Note: this function gets called at the end of a run (by
3921 generic_mourn_inferior) and when a run begins (by
3922 init_wait_for_inferior). */
3923
3924
3925
3926 void
3927 breakpoint_init_inferior (enum inf_context context)
3928 {
3929 struct breakpoint *b, *b_tmp;
3930 struct program_space *pspace = current_program_space;
3931
3932 /* If breakpoint locations are shared across processes, then there's
3933 nothing to do. */
3934 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3935 return;
3936
3937 mark_breakpoints_out ();
3938
3939 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3940 {
3941 if (b->loc && b->loc->pspace != pspace)
3942 continue;
3943
3944 switch (b->type)
3945 {
3946 case bp_call_dummy:
3947 case bp_longjmp_call_dummy:
3948
3949 /* If the call dummy breakpoint is at the entry point it will
3950 cause problems when the inferior is rerun, so we better get
3951 rid of it. */
3952
3953 case bp_watchpoint_scope:
3954
3955 /* Also get rid of scope breakpoints. */
3956
3957 case bp_shlib_event:
3958
3959 /* Also remove solib event breakpoints. Their addresses may
3960 have changed since the last time we ran the program.
3961 Actually we may now be debugging against different target;
3962 and so the solib backend that installed this breakpoint may
3963 not be used in by the target. E.g.,
3964
3965 (gdb) file prog-linux
3966 (gdb) run # native linux target
3967 ...
3968 (gdb) kill
3969 (gdb) file prog-win.exe
3970 (gdb) tar rem :9999 # remote Windows gdbserver.
3971 */
3972
3973 case bp_step_resume:
3974
3975 /* Also remove step-resume breakpoints. */
3976
3977 case bp_single_step:
3978
3979 /* Also remove single-step breakpoints. */
3980
3981 delete_breakpoint (b);
3982 break;
3983
3984 case bp_watchpoint:
3985 case bp_hardware_watchpoint:
3986 case bp_read_watchpoint:
3987 case bp_access_watchpoint:
3988 {
3989 struct watchpoint *w = (struct watchpoint *) b;
3990
3991 /* Likewise for watchpoints on local expressions. */
3992 if (w->exp_valid_block != NULL)
3993 delete_breakpoint (b);
3994 else
3995 {
3996 /* Get rid of existing locations, which are no longer
3997 valid. New ones will be created in
3998 update_watchpoint, when the inferior is restarted.
3999 The next update_global_location_list call will
4000 garbage collect them. */
4001 b->loc = NULL;
4002
4003 if (context == inf_starting)
4004 {
4005 /* Reset val field to force reread of starting value in
4006 insert_breakpoints. */
4007 w->val.reset (nullptr);
4008 w->val_valid = false;
4009 }
4010 }
4011 }
4012 break;
4013 default:
4014 break;
4015 }
4016 }
4017
4018 /* Get rid of the moribund locations. */
4019 for (bp_location *bl : moribund_locations)
4020 decref_bp_location (&bl);
4021 moribund_locations.clear ();
4022 }
4023
4024 /* These functions concern about actual breakpoints inserted in the
4025 target --- to e.g. check if we need to do decr_pc adjustment or if
4026 we need to hop over the bkpt --- so we check for address space
4027 match, not program space. */
4028
4029 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4030 exists at PC. It returns ordinary_breakpoint_here if it's an
4031 ordinary breakpoint, or permanent_breakpoint_here if it's a
4032 permanent breakpoint.
4033 - When continuing from a location with an ordinary breakpoint, we
4034 actually single step once before calling insert_breakpoints.
4035 - When continuing from a location with a permanent breakpoint, we
4036 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4037 the target, to advance the PC past the breakpoint. */
4038
4039 enum breakpoint_here
4040 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4041 {
4042 struct bp_location *bl, **blp_tmp;
4043 int any_breakpoint_here = 0;
4044
4045 ALL_BP_LOCATIONS (bl, blp_tmp)
4046 {
4047 if (bl->loc_type != bp_loc_software_breakpoint
4048 && bl->loc_type != bp_loc_hardware_breakpoint)
4049 continue;
4050
4051 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4052 if ((breakpoint_enabled (bl->owner)
4053 || bl->permanent)
4054 && breakpoint_location_address_match (bl, aspace, pc))
4055 {
4056 if (overlay_debugging
4057 && section_is_overlay (bl->section)
4058 && !section_is_mapped (bl->section))
4059 continue; /* unmapped overlay -- can't be a match */
4060 else if (bl->permanent)
4061 return permanent_breakpoint_here;
4062 else
4063 any_breakpoint_here = 1;
4064 }
4065 }
4066
4067 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4068 }
4069
4070 /* See breakpoint.h. */
4071
4072 int
4073 breakpoint_in_range_p (const address_space *aspace,
4074 CORE_ADDR addr, ULONGEST len)
4075 {
4076 struct bp_location *bl, **blp_tmp;
4077
4078 ALL_BP_LOCATIONS (bl, blp_tmp)
4079 {
4080 if (bl->loc_type != bp_loc_software_breakpoint
4081 && bl->loc_type != bp_loc_hardware_breakpoint)
4082 continue;
4083
4084 if ((breakpoint_enabled (bl->owner)
4085 || bl->permanent)
4086 && breakpoint_location_address_range_overlap (bl, aspace,
4087 addr, len))
4088 {
4089 if (overlay_debugging
4090 && section_is_overlay (bl->section)
4091 && !section_is_mapped (bl->section))
4092 {
4093 /* Unmapped overlay -- can't be a match. */
4094 continue;
4095 }
4096
4097 return 1;
4098 }
4099 }
4100
4101 return 0;
4102 }
4103
4104 /* Return true if there's a moribund breakpoint at PC. */
4105
4106 int
4107 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4108 {
4109 for (bp_location *loc : moribund_locations)
4110 if (breakpoint_location_address_match (loc, aspace, pc))
4111 return 1;
4112
4113 return 0;
4114 }
4115
4116 /* Returns non-zero iff BL is inserted at PC, in address space
4117 ASPACE. */
4118
4119 static int
4120 bp_location_inserted_here_p (struct bp_location *bl,
4121 const address_space *aspace, CORE_ADDR pc)
4122 {
4123 if (bl->inserted
4124 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4125 aspace, pc))
4126 {
4127 if (overlay_debugging
4128 && section_is_overlay (bl->section)
4129 && !section_is_mapped (bl->section))
4130 return 0; /* unmapped overlay -- can't be a match */
4131 else
4132 return 1;
4133 }
4134 return 0;
4135 }
4136
4137 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4138
4139 int
4140 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4141 {
4142 struct bp_location **blp, **blp_tmp = NULL;
4143
4144 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4145 {
4146 struct bp_location *bl = *blp;
4147
4148 if (bl->loc_type != bp_loc_software_breakpoint
4149 && bl->loc_type != bp_loc_hardware_breakpoint)
4150 continue;
4151
4152 if (bp_location_inserted_here_p (bl, aspace, pc))
4153 return 1;
4154 }
4155 return 0;
4156 }
4157
4158 /* This function returns non-zero iff there is a software breakpoint
4159 inserted at PC. */
4160
4161 int
4162 software_breakpoint_inserted_here_p (const address_space *aspace,
4163 CORE_ADDR pc)
4164 {
4165 struct bp_location **blp, **blp_tmp = NULL;
4166
4167 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4168 {
4169 struct bp_location *bl = *blp;
4170
4171 if (bl->loc_type != bp_loc_software_breakpoint)
4172 continue;
4173
4174 if (bp_location_inserted_here_p (bl, aspace, pc))
4175 return 1;
4176 }
4177
4178 return 0;
4179 }
4180
4181 /* See breakpoint.h. */
4182
4183 int
4184 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4185 CORE_ADDR pc)
4186 {
4187 struct bp_location **blp, **blp_tmp = NULL;
4188
4189 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4190 {
4191 struct bp_location *bl = *blp;
4192
4193 if (bl->loc_type != bp_loc_hardware_breakpoint)
4194 continue;
4195
4196 if (bp_location_inserted_here_p (bl, aspace, pc))
4197 return 1;
4198 }
4199
4200 return 0;
4201 }
4202
4203 int
4204 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4205 CORE_ADDR addr, ULONGEST len)
4206 {
4207 struct breakpoint *bpt;
4208
4209 ALL_BREAKPOINTS (bpt)
4210 {
4211 struct bp_location *loc;
4212
4213 if (bpt->type != bp_hardware_watchpoint
4214 && bpt->type != bp_access_watchpoint)
4215 continue;
4216
4217 if (!breakpoint_enabled (bpt))
4218 continue;
4219
4220 for (loc = bpt->loc; loc; loc = loc->next)
4221 if (loc->pspace->aspace == aspace && loc->inserted)
4222 {
4223 CORE_ADDR l, h;
4224
4225 /* Check for intersection. */
4226 l = std::max<CORE_ADDR> (loc->address, addr);
4227 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4228 if (l < h)
4229 return 1;
4230 }
4231 }
4232 return 0;
4233 }
4234
4235 /* See breakpoint.h. */
4236
4237 bool
4238 is_catchpoint (struct breakpoint *b)
4239 {
4240 return (b->type == bp_catchpoint);
4241 }
4242
4243 /* Clear a bpstat so that it says we are not at any breakpoint.
4244 Also free any storage that is part of a bpstat. */
4245
4246 void
4247 bpstat_clear (bpstat *bsp)
4248 {
4249 bpstat p;
4250 bpstat q;
4251
4252 if (bsp == 0)
4253 return;
4254 p = *bsp;
4255 while (p != NULL)
4256 {
4257 q = p->next;
4258 delete p;
4259 p = q;
4260 }
4261 *bsp = NULL;
4262 }
4263
4264 bpstats::bpstats (const bpstats &other)
4265 : next (NULL),
4266 bp_location_at (other.bp_location_at),
4267 breakpoint_at (other.breakpoint_at),
4268 commands (other.commands),
4269 print (other.print),
4270 stop (other.stop),
4271 print_it (other.print_it)
4272 {
4273 if (other.old_val != NULL)
4274 old_val = release_value (value_copy (other.old_val.get ()));
4275 }
4276
4277 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4278 is part of the bpstat is copied as well. */
4279
4280 bpstat
4281 bpstat_copy (bpstat bs)
4282 {
4283 bpstat p = NULL;
4284 bpstat tmp;
4285 bpstat retval = NULL;
4286
4287 if (bs == NULL)
4288 return bs;
4289
4290 for (; bs != NULL; bs = bs->next)
4291 {
4292 tmp = new bpstats (*bs);
4293
4294 if (p == NULL)
4295 /* This is the first thing in the chain. */
4296 retval = tmp;
4297 else
4298 p->next = tmp;
4299 p = tmp;
4300 }
4301 p->next = NULL;
4302 return retval;
4303 }
4304
4305 /* Find the bpstat associated with this breakpoint. */
4306
4307 bpstat
4308 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4309 {
4310 if (bsp == NULL)
4311 return NULL;
4312
4313 for (; bsp != NULL; bsp = bsp->next)
4314 {
4315 if (bsp->breakpoint_at == breakpoint)
4316 return bsp;
4317 }
4318 return NULL;
4319 }
4320
4321 /* See breakpoint.h. */
4322
4323 bool
4324 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4325 {
4326 for (; bsp != NULL; bsp = bsp->next)
4327 {
4328 if (bsp->breakpoint_at == NULL)
4329 {
4330 /* A moribund location can never explain a signal other than
4331 GDB_SIGNAL_TRAP. */
4332 if (sig == GDB_SIGNAL_TRAP)
4333 return true;
4334 }
4335 else
4336 {
4337 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4338 sig))
4339 return true;
4340 }
4341 }
4342
4343 return false;
4344 }
4345
4346 /* Put in *NUM the breakpoint number of the first breakpoint we are
4347 stopped at. *BSP upon return is a bpstat which points to the
4348 remaining breakpoints stopped at (but which is not guaranteed to be
4349 good for anything but further calls to bpstat_num).
4350
4351 Return 0 if passed a bpstat which does not indicate any breakpoints.
4352 Return -1 if stopped at a breakpoint that has been deleted since
4353 we set it.
4354 Return 1 otherwise. */
4355
4356 int
4357 bpstat_num (bpstat *bsp, int *num)
4358 {
4359 struct breakpoint *b;
4360
4361 if ((*bsp) == NULL)
4362 return 0; /* No more breakpoint values */
4363
4364 /* We assume we'll never have several bpstats that correspond to a
4365 single breakpoint -- otherwise, this function might return the
4366 same number more than once and this will look ugly. */
4367 b = (*bsp)->breakpoint_at;
4368 *bsp = (*bsp)->next;
4369 if (b == NULL)
4370 return -1; /* breakpoint that's been deleted since */
4371
4372 *num = b->number; /* We have its number */
4373 return 1;
4374 }
4375
4376 /* See breakpoint.h. */
4377
4378 void
4379 bpstat_clear_actions (void)
4380 {
4381 bpstat bs;
4382
4383 if (inferior_ptid == null_ptid)
4384 return;
4385
4386 thread_info *tp = inferior_thread ();
4387 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4388 {
4389 bs->commands = NULL;
4390 bs->old_val.reset (nullptr);
4391 }
4392 }
4393
4394 /* Called when a command is about to proceed the inferior. */
4395
4396 static void
4397 breakpoint_about_to_proceed (void)
4398 {
4399 if (inferior_ptid != null_ptid)
4400 {
4401 struct thread_info *tp = inferior_thread ();
4402
4403 /* Allow inferior function calls in breakpoint commands to not
4404 interrupt the command list. When the call finishes
4405 successfully, the inferior will be standing at the same
4406 breakpoint as if nothing happened. */
4407 if (tp->control.in_infcall)
4408 return;
4409 }
4410
4411 breakpoint_proceeded = 1;
4412 }
4413
4414 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4415 or its equivalent. */
4416
4417 static int
4418 command_line_is_silent (struct command_line *cmd)
4419 {
4420 return cmd && (strcmp ("silent", cmd->line) == 0);
4421 }
4422
4423 /* Execute all the commands associated with all the breakpoints at
4424 this location. Any of these commands could cause the process to
4425 proceed beyond this point, etc. We look out for such changes by
4426 checking the global "breakpoint_proceeded" after each command.
4427
4428 Returns true if a breakpoint command resumed the inferior. In that
4429 case, it is the caller's responsibility to recall it again with the
4430 bpstat of the current thread. */
4431
4432 static int
4433 bpstat_do_actions_1 (bpstat *bsp)
4434 {
4435 bpstat bs;
4436 int again = 0;
4437
4438 /* Avoid endless recursion if a `source' command is contained
4439 in bs->commands. */
4440 if (executing_breakpoint_commands)
4441 return 0;
4442
4443 scoped_restore save_executing
4444 = make_scoped_restore (&executing_breakpoint_commands, 1);
4445
4446 scoped_restore preventer = prevent_dont_repeat ();
4447
4448 /* This pointer will iterate over the list of bpstat's. */
4449 bs = *bsp;
4450
4451 breakpoint_proceeded = 0;
4452 for (; bs != NULL; bs = bs->next)
4453 {
4454 struct command_line *cmd = NULL;
4455
4456 /* Take ownership of the BSP's command tree, if it has one.
4457
4458 The command tree could legitimately contain commands like
4459 'step' and 'next', which call clear_proceed_status, which
4460 frees stop_bpstat's command tree. To make sure this doesn't
4461 free the tree we're executing out from under us, we need to
4462 take ownership of the tree ourselves. Since a given bpstat's
4463 commands are only executed once, we don't need to copy it; we
4464 can clear the pointer in the bpstat, and make sure we free
4465 the tree when we're done. */
4466 counted_command_line ccmd = bs->commands;
4467 bs->commands = NULL;
4468 if (ccmd != NULL)
4469 cmd = ccmd.get ();
4470 if (command_line_is_silent (cmd))
4471 {
4472 /* The action has been already done by bpstat_stop_status. */
4473 cmd = cmd->next;
4474 }
4475
4476 while (cmd != NULL)
4477 {
4478 execute_control_command (cmd);
4479
4480 if (breakpoint_proceeded)
4481 break;
4482 else
4483 cmd = cmd->next;
4484 }
4485
4486 if (breakpoint_proceeded)
4487 {
4488 if (current_ui->async)
4489 /* If we are in async mode, then the target might be still
4490 running, not stopped at any breakpoint, so nothing for
4491 us to do here -- just return to the event loop. */
4492 ;
4493 else
4494 /* In sync mode, when execute_control_command returns
4495 we're already standing on the next breakpoint.
4496 Breakpoint commands for that stop were not run, since
4497 execute_command does not run breakpoint commands --
4498 only command_line_handler does, but that one is not
4499 involved in execution of breakpoint commands. So, we
4500 can now execute breakpoint commands. It should be
4501 noted that making execute_command do bpstat actions is
4502 not an option -- in this case we'll have recursive
4503 invocation of bpstat for each breakpoint with a
4504 command, and can easily blow up GDB stack. Instead, we
4505 return true, which will trigger the caller to recall us
4506 with the new stop_bpstat. */
4507 again = 1;
4508 break;
4509 }
4510 }
4511 return again;
4512 }
4513
4514 /* Helper for bpstat_do_actions. Get the current thread, if there's
4515 one, is alive and has execution. Return NULL otherwise. */
4516
4517 static thread_info *
4518 get_bpstat_thread ()
4519 {
4520 if (inferior_ptid == null_ptid || !target_has_execution ())
4521 return NULL;
4522
4523 thread_info *tp = inferior_thread ();
4524 if (tp->state == THREAD_EXITED || tp->executing)
4525 return NULL;
4526 return tp;
4527 }
4528
4529 void
4530 bpstat_do_actions (void)
4531 {
4532 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4533 thread_info *tp;
4534
4535 /* Do any commands attached to breakpoint we are stopped at. */
4536 while ((tp = get_bpstat_thread ()) != NULL)
4537 {
4538 /* Since in sync mode, bpstat_do_actions may resume the
4539 inferior, and only return when it is stopped at the next
4540 breakpoint, we keep doing breakpoint actions until it returns
4541 false to indicate the inferior was not resumed. */
4542 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4543 break;
4544 }
4545
4546 cleanup_if_error.release ();
4547 }
4548
4549 /* Print out the (old or new) value associated with a watchpoint. */
4550
4551 static void
4552 watchpoint_value_print (struct value *val, struct ui_file *stream)
4553 {
4554 if (val == NULL)
4555 fprintf_styled (stream, metadata_style.style (), _("<unreadable>"));
4556 else
4557 {
4558 struct value_print_options opts;
4559 get_user_print_options (&opts);
4560 value_print (val, stream, &opts);
4561 }
4562 }
4563
4564 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4565 debugging multiple threads. */
4566
4567 void
4568 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4569 {
4570 if (uiout->is_mi_like_p ())
4571 return;
4572
4573 uiout->text ("\n");
4574
4575 if (show_thread_that_caused_stop ())
4576 {
4577 const char *name;
4578 struct thread_info *thr = inferior_thread ();
4579
4580 uiout->text ("Thread ");
4581 uiout->field_string ("thread-id", print_thread_id (thr));
4582
4583 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4584 if (name != NULL)
4585 {
4586 uiout->text (" \"");
4587 uiout->field_string ("name", name);
4588 uiout->text ("\"");
4589 }
4590
4591 uiout->text (" hit ");
4592 }
4593 }
4594
4595 /* Generic routine for printing messages indicating why we
4596 stopped. The behavior of this function depends on the value
4597 'print_it' in the bpstat structure. Under some circumstances we
4598 may decide not to print anything here and delegate the task to
4599 normal_stop(). */
4600
4601 static enum print_stop_action
4602 print_bp_stop_message (bpstat bs)
4603 {
4604 switch (bs->print_it)
4605 {
4606 case print_it_noop:
4607 /* Nothing should be printed for this bpstat entry. */
4608 return PRINT_UNKNOWN;
4609 break;
4610
4611 case print_it_done:
4612 /* We still want to print the frame, but we already printed the
4613 relevant messages. */
4614 return PRINT_SRC_AND_LOC;
4615 break;
4616
4617 case print_it_normal:
4618 {
4619 struct breakpoint *b = bs->breakpoint_at;
4620
4621 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4622 which has since been deleted. */
4623 if (b == NULL)
4624 return PRINT_UNKNOWN;
4625
4626 /* Normal case. Call the breakpoint's print_it method. */
4627 return b->ops->print_it (bs);
4628 }
4629 break;
4630
4631 default:
4632 internal_error (__FILE__, __LINE__,
4633 _("print_bp_stop_message: unrecognized enum value"));
4634 break;
4635 }
4636 }
4637
4638 /* A helper function that prints a shared library stopped event. */
4639
4640 static void
4641 print_solib_event (int is_catchpoint)
4642 {
4643 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4644 bool any_added = !current_program_space->added_solibs.empty ();
4645
4646 if (!is_catchpoint)
4647 {
4648 if (any_added || any_deleted)
4649 current_uiout->text (_("Stopped due to shared library event:\n"));
4650 else
4651 current_uiout->text (_("Stopped due to shared library event (no "
4652 "libraries added or removed)\n"));
4653 }
4654
4655 if (current_uiout->is_mi_like_p ())
4656 current_uiout->field_string ("reason",
4657 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4658
4659 if (any_deleted)
4660 {
4661 current_uiout->text (_(" Inferior unloaded "));
4662 ui_out_emit_list list_emitter (current_uiout, "removed");
4663 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4664 {
4665 const std::string &name = current_program_space->deleted_solibs[ix];
4666
4667 if (ix > 0)
4668 current_uiout->text (" ");
4669 current_uiout->field_string ("library", name);
4670 current_uiout->text ("\n");
4671 }
4672 }
4673
4674 if (any_added)
4675 {
4676 current_uiout->text (_(" Inferior loaded "));
4677 ui_out_emit_list list_emitter (current_uiout, "added");
4678 bool first = true;
4679 for (so_list *iter : current_program_space->added_solibs)
4680 {
4681 if (!first)
4682 current_uiout->text (" ");
4683 first = false;
4684 current_uiout->field_string ("library", iter->so_name);
4685 current_uiout->text ("\n");
4686 }
4687 }
4688 }
4689
4690 /* Print a message indicating what happened. This is called from
4691 normal_stop(). The input to this routine is the head of the bpstat
4692 list - a list of the eventpoints that caused this stop. KIND is
4693 the target_waitkind for the stopping event. This
4694 routine calls the generic print routine for printing a message
4695 about reasons for stopping. This will print (for example) the
4696 "Breakpoint n," part of the output. The return value of this
4697 routine is one of:
4698
4699 PRINT_UNKNOWN: Means we printed nothing.
4700 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4701 code to print the location. An example is
4702 "Breakpoint 1, " which should be followed by
4703 the location.
4704 PRINT_SRC_ONLY: Means we printed something, but there is no need
4705 to also print the location part of the message.
4706 An example is the catch/throw messages, which
4707 don't require a location appended to the end.
4708 PRINT_NOTHING: We have done some printing and we don't need any
4709 further info to be printed. */
4710
4711 enum print_stop_action
4712 bpstat_print (bpstat bs, int kind)
4713 {
4714 enum print_stop_action val;
4715
4716 /* Maybe another breakpoint in the chain caused us to stop.
4717 (Currently all watchpoints go on the bpstat whether hit or not.
4718 That probably could (should) be changed, provided care is taken
4719 with respect to bpstat_explains_signal). */
4720 for (; bs; bs = bs->next)
4721 {
4722 val = print_bp_stop_message (bs);
4723 if (val == PRINT_SRC_ONLY
4724 || val == PRINT_SRC_AND_LOC
4725 || val == PRINT_NOTHING)
4726 return val;
4727 }
4728
4729 /* If we had hit a shared library event breakpoint,
4730 print_bp_stop_message would print out this message. If we hit an
4731 OS-level shared library event, do the same thing. */
4732 if (kind == TARGET_WAITKIND_LOADED)
4733 {
4734 print_solib_event (0);
4735 return PRINT_NOTHING;
4736 }
4737
4738 /* We reached the end of the chain, or we got a null BS to start
4739 with and nothing was printed. */
4740 return PRINT_UNKNOWN;
4741 }
4742
4743 /* Evaluate the boolean expression EXP and return the result. */
4744
4745 static bool
4746 breakpoint_cond_eval (expression *exp)
4747 {
4748 struct value *mark = value_mark ();
4749 bool res = value_true (evaluate_expression (exp));
4750
4751 value_free_to_mark (mark);
4752 return res;
4753 }
4754
4755 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4756
4757 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4758 : next (NULL),
4759 bp_location_at (bp_location_ref_ptr::new_reference (bl)),
4760 breakpoint_at (bl->owner),
4761 commands (NULL),
4762 print (0),
4763 stop (0),
4764 print_it (print_it_normal)
4765 {
4766 **bs_link_pointer = this;
4767 *bs_link_pointer = &next;
4768 }
4769
4770 bpstats::bpstats ()
4771 : next (NULL),
4772 breakpoint_at (NULL),
4773 commands (NULL),
4774 print (0),
4775 stop (0),
4776 print_it (print_it_normal)
4777 {
4778 }
4779 \f
4780 /* The target has stopped with waitstatus WS. Check if any hardware
4781 watchpoints have triggered, according to the target. */
4782
4783 int
4784 watchpoints_triggered (struct target_waitstatus *ws)
4785 {
4786 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4787 CORE_ADDR addr;
4788 struct breakpoint *b;
4789
4790 if (!stopped_by_watchpoint)
4791 {
4792 /* We were not stopped by a watchpoint. Mark all watchpoints
4793 as not triggered. */
4794 ALL_BREAKPOINTS (b)
4795 if (is_hardware_watchpoint (b))
4796 {
4797 struct watchpoint *w = (struct watchpoint *) b;
4798
4799 w->watchpoint_triggered = watch_triggered_no;
4800 }
4801
4802 return 0;
4803 }
4804
4805 if (!target_stopped_data_address (current_top_target (), &addr))
4806 {
4807 /* We were stopped by a watchpoint, but we don't know where.
4808 Mark all watchpoints as unknown. */
4809 ALL_BREAKPOINTS (b)
4810 if (is_hardware_watchpoint (b))
4811 {
4812 struct watchpoint *w = (struct watchpoint *) b;
4813
4814 w->watchpoint_triggered = watch_triggered_unknown;
4815 }
4816
4817 return 1;
4818 }
4819
4820 /* The target could report the data address. Mark watchpoints
4821 affected by this data address as triggered, and all others as not
4822 triggered. */
4823
4824 ALL_BREAKPOINTS (b)
4825 if (is_hardware_watchpoint (b))
4826 {
4827 struct watchpoint *w = (struct watchpoint *) b;
4828 struct bp_location *loc;
4829
4830 w->watchpoint_triggered = watch_triggered_no;
4831 for (loc = b->loc; loc; loc = loc->next)
4832 {
4833 if (is_masked_watchpoint (b))
4834 {
4835 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4836 CORE_ADDR start = loc->address & w->hw_wp_mask;
4837
4838 if (newaddr == start)
4839 {
4840 w->watchpoint_triggered = watch_triggered_yes;
4841 break;
4842 }
4843 }
4844 /* Exact match not required. Within range is sufficient. */
4845 else if (target_watchpoint_addr_within_range (current_top_target (),
4846 addr, loc->address,
4847 loc->length))
4848 {
4849 w->watchpoint_triggered = watch_triggered_yes;
4850 break;
4851 }
4852 }
4853 }
4854
4855 return 1;
4856 }
4857
4858 /* Possible return values for watchpoint_check. */
4859 enum wp_check_result
4860 {
4861 /* The watchpoint has been deleted. */
4862 WP_DELETED = 1,
4863
4864 /* The value has changed. */
4865 WP_VALUE_CHANGED = 2,
4866
4867 /* The value has not changed. */
4868 WP_VALUE_NOT_CHANGED = 3,
4869
4870 /* Ignore this watchpoint, no matter if the value changed or not. */
4871 WP_IGNORE = 4,
4872 };
4873
4874 #define BP_TEMPFLAG 1
4875 #define BP_HARDWAREFLAG 2
4876
4877 /* Evaluate watchpoint condition expression and check if its value
4878 changed. */
4879
4880 static wp_check_result
4881 watchpoint_check (bpstat bs)
4882 {
4883 struct watchpoint *b;
4884 struct frame_info *fr;
4885 int within_current_scope;
4886
4887 /* BS is built from an existing struct breakpoint. */
4888 gdb_assert (bs->breakpoint_at != NULL);
4889 b = (struct watchpoint *) bs->breakpoint_at;
4890
4891 /* If this is a local watchpoint, we only want to check if the
4892 watchpoint frame is in scope if the current thread is the thread
4893 that was used to create the watchpoint. */
4894 if (!watchpoint_in_thread_scope (b))
4895 return WP_IGNORE;
4896
4897 if (b->exp_valid_block == NULL)
4898 within_current_scope = 1;
4899 else
4900 {
4901 struct frame_info *frame = get_current_frame ();
4902 struct gdbarch *frame_arch = get_frame_arch (frame);
4903 CORE_ADDR frame_pc = get_frame_pc (frame);
4904
4905 /* stack_frame_destroyed_p() returns a non-zero value if we're
4906 still in the function but the stack frame has already been
4907 invalidated. Since we can't rely on the values of local
4908 variables after the stack has been destroyed, we are treating
4909 the watchpoint in that state as `not changed' without further
4910 checking. Don't mark watchpoints as changed if the current
4911 frame is in an epilogue - even if they are in some other
4912 frame, our view of the stack is likely to be wrong and
4913 frame_find_by_id could error out. */
4914 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4915 return WP_IGNORE;
4916
4917 fr = frame_find_by_id (b->watchpoint_frame);
4918 within_current_scope = (fr != NULL);
4919
4920 /* If we've gotten confused in the unwinder, we might have
4921 returned a frame that can't describe this variable. */
4922 if (within_current_scope)
4923 {
4924 struct symbol *function;
4925
4926 function = get_frame_function (fr);
4927 if (function == NULL
4928 || !contained_in (b->exp_valid_block,
4929 SYMBOL_BLOCK_VALUE (function)))
4930 within_current_scope = 0;
4931 }
4932
4933 if (within_current_scope)
4934 /* If we end up stopping, the current frame will get selected
4935 in normal_stop. So this call to select_frame won't affect
4936 the user. */
4937 select_frame (fr);
4938 }
4939
4940 if (within_current_scope)
4941 {
4942 /* We use value_{,free_to_}mark because it could be a *long*
4943 time before we return to the command level and call
4944 free_all_values. We can't call free_all_values because we
4945 might be in the middle of evaluating a function call. */
4946
4947 int pc = 0;
4948 struct value *mark;
4949 struct value *new_val;
4950
4951 if (is_masked_watchpoint (b))
4952 /* Since we don't know the exact trigger address (from
4953 stopped_data_address), just tell the user we've triggered
4954 a mask watchpoint. */
4955 return WP_VALUE_CHANGED;
4956
4957 mark = value_mark ();
4958 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, false);
4959
4960 if (b->val_bitsize != 0)
4961 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4962
4963 /* We use value_equal_contents instead of value_equal because
4964 the latter coerces an array to a pointer, thus comparing just
4965 the address of the array instead of its contents. This is
4966 not what we want. */
4967 if ((b->val != NULL) != (new_val != NULL)
4968 || (b->val != NULL && !value_equal_contents (b->val.get (),
4969 new_val)))
4970 {
4971 bs->old_val = b->val;
4972 b->val = release_value (new_val);
4973 b->val_valid = true;
4974 if (new_val != NULL)
4975 value_free_to_mark (mark);
4976 return WP_VALUE_CHANGED;
4977 }
4978 else
4979 {
4980 /* Nothing changed. */
4981 value_free_to_mark (mark);
4982 return WP_VALUE_NOT_CHANGED;
4983 }
4984 }
4985 else
4986 {
4987 /* This seems like the only logical thing to do because
4988 if we temporarily ignored the watchpoint, then when
4989 we reenter the block in which it is valid it contains
4990 garbage (in the case of a function, it may have two
4991 garbage values, one before and one after the prologue).
4992 So we can't even detect the first assignment to it and
4993 watch after that (since the garbage may or may not equal
4994 the first value assigned). */
4995 /* We print all the stop information in
4996 breakpoint_ops->print_it, but in this case, by the time we
4997 call breakpoint_ops->print_it this bp will be deleted
4998 already. So we have no choice but print the information
4999 here. */
5000
5001 SWITCH_THRU_ALL_UIS ()
5002 {
5003 struct ui_out *uiout = current_uiout;
5004
5005 if (uiout->is_mi_like_p ())
5006 uiout->field_string
5007 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5008 uiout->message ("\nWatchpoint %pF deleted because the program has "
5009 "left the block in\n"
5010 "which its expression is valid.\n",
5011 signed_field ("wpnum", b->number));
5012 }
5013
5014 /* Make sure the watchpoint's commands aren't executed. */
5015 b->commands = NULL;
5016 watchpoint_del_at_next_stop (b);
5017
5018 return WP_DELETED;
5019 }
5020 }
5021
5022 /* Return true if it looks like target has stopped due to hitting
5023 breakpoint location BL. This function does not check if we should
5024 stop, only if BL explains the stop. */
5025
5026 static int
5027 bpstat_check_location (const struct bp_location *bl,
5028 const address_space *aspace, CORE_ADDR bp_addr,
5029 const struct target_waitstatus *ws)
5030 {
5031 struct breakpoint *b = bl->owner;
5032
5033 /* BL is from an existing breakpoint. */
5034 gdb_assert (b != NULL);
5035
5036 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5037 }
5038
5039 /* Determine if the watched values have actually changed, and we
5040 should stop. If not, set BS->stop to 0. */
5041
5042 static void
5043 bpstat_check_watchpoint (bpstat bs)
5044 {
5045 const struct bp_location *bl;
5046 struct watchpoint *b;
5047
5048 /* BS is built for existing struct breakpoint. */
5049 bl = bs->bp_location_at.get ();
5050 gdb_assert (bl != NULL);
5051 b = (struct watchpoint *) bs->breakpoint_at;
5052 gdb_assert (b != NULL);
5053
5054 {
5055 int must_check_value = 0;
5056
5057 if (b->type == bp_watchpoint)
5058 /* For a software watchpoint, we must always check the
5059 watched value. */
5060 must_check_value = 1;
5061 else if (b->watchpoint_triggered == watch_triggered_yes)
5062 /* We have a hardware watchpoint (read, write, or access)
5063 and the target earlier reported an address watched by
5064 this watchpoint. */
5065 must_check_value = 1;
5066 else if (b->watchpoint_triggered == watch_triggered_unknown
5067 && b->type == bp_hardware_watchpoint)
5068 /* We were stopped by a hardware watchpoint, but the target could
5069 not report the data address. We must check the watchpoint's
5070 value. Access and read watchpoints are out of luck; without
5071 a data address, we can't figure it out. */
5072 must_check_value = 1;
5073
5074 if (must_check_value)
5075 {
5076 wp_check_result e;
5077
5078 try
5079 {
5080 e = watchpoint_check (bs);
5081 }
5082 catch (const gdb_exception &ex)
5083 {
5084 exception_fprintf (gdb_stderr, ex,
5085 "Error evaluating expression "
5086 "for watchpoint %d\n",
5087 b->number);
5088
5089 SWITCH_THRU_ALL_UIS ()
5090 {
5091 printf_filtered (_("Watchpoint %d deleted.\n"),
5092 b->number);
5093 }
5094 watchpoint_del_at_next_stop (b);
5095 e = WP_DELETED;
5096 }
5097
5098 switch (e)
5099 {
5100 case WP_DELETED:
5101 /* We've already printed what needs to be printed. */
5102 bs->print_it = print_it_done;
5103 /* Stop. */
5104 break;
5105 case WP_IGNORE:
5106 bs->print_it = print_it_noop;
5107 bs->stop = 0;
5108 break;
5109 case WP_VALUE_CHANGED:
5110 if (b->type == bp_read_watchpoint)
5111 {
5112 /* There are two cases to consider here:
5113
5114 1. We're watching the triggered memory for reads.
5115 In that case, trust the target, and always report
5116 the watchpoint hit to the user. Even though
5117 reads don't cause value changes, the value may
5118 have changed since the last time it was read, and
5119 since we're not trapping writes, we will not see
5120 those, and as such we should ignore our notion of
5121 old value.
5122
5123 2. We're watching the triggered memory for both
5124 reads and writes. There are two ways this may
5125 happen:
5126
5127 2.1. This is a target that can't break on data
5128 reads only, but can break on accesses (reads or
5129 writes), such as e.g., x86. We detect this case
5130 at the time we try to insert read watchpoints.
5131
5132 2.2. Otherwise, the target supports read
5133 watchpoints, but, the user set an access or write
5134 watchpoint watching the same memory as this read
5135 watchpoint.
5136
5137 If we're watching memory writes as well as reads,
5138 ignore watchpoint hits when we find that the
5139 value hasn't changed, as reads don't cause
5140 changes. This still gives false positives when
5141 the program writes the same value to memory as
5142 what there was already in memory (we will confuse
5143 it for a read), but it's much better than
5144 nothing. */
5145
5146 int other_write_watchpoint = 0;
5147
5148 if (bl->watchpoint_type == hw_read)
5149 {
5150 struct breakpoint *other_b;
5151
5152 ALL_BREAKPOINTS (other_b)
5153 if (other_b->type == bp_hardware_watchpoint
5154 || other_b->type == bp_access_watchpoint)
5155 {
5156 struct watchpoint *other_w =
5157 (struct watchpoint *) other_b;
5158
5159 if (other_w->watchpoint_triggered
5160 == watch_triggered_yes)
5161 {
5162 other_write_watchpoint = 1;
5163 break;
5164 }
5165 }
5166 }
5167
5168 if (other_write_watchpoint
5169 || bl->watchpoint_type == hw_access)
5170 {
5171 /* We're watching the same memory for writes,
5172 and the value changed since the last time we
5173 updated it, so this trap must be for a write.
5174 Ignore it. */
5175 bs->print_it = print_it_noop;
5176 bs->stop = 0;
5177 }
5178 }
5179 break;
5180 case WP_VALUE_NOT_CHANGED:
5181 if (b->type == bp_hardware_watchpoint
5182 || b->type == bp_watchpoint)
5183 {
5184 /* Don't stop: write watchpoints shouldn't fire if
5185 the value hasn't changed. */
5186 bs->print_it = print_it_noop;
5187 bs->stop = 0;
5188 }
5189 /* Stop. */
5190 break;
5191 default:
5192 /* Can't happen. */
5193 break;
5194 }
5195 }
5196 else /* must_check_value == 0 */
5197 {
5198 /* This is a case where some watchpoint(s) triggered, but
5199 not at the address of this watchpoint, or else no
5200 watchpoint triggered after all. So don't print
5201 anything for this watchpoint. */
5202 bs->print_it = print_it_noop;
5203 bs->stop = 0;
5204 }
5205 }
5206 }
5207
5208 /* For breakpoints that are currently marked as telling gdb to stop,
5209 check conditions (condition proper, frame, thread and ignore count)
5210 of breakpoint referred to by BS. If we should not stop for this
5211 breakpoint, set BS->stop to 0. */
5212
5213 static void
5214 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5215 {
5216 const struct bp_location *bl;
5217 struct breakpoint *b;
5218 /* Assume stop. */
5219 bool condition_result = true;
5220 struct expression *cond;
5221
5222 gdb_assert (bs->stop);
5223
5224 /* BS is built for existing struct breakpoint. */
5225 bl = bs->bp_location_at.get ();
5226 gdb_assert (bl != NULL);
5227 b = bs->breakpoint_at;
5228 gdb_assert (b != NULL);
5229
5230 /* Even if the target evaluated the condition on its end and notified GDB, we
5231 need to do so again since GDB does not know if we stopped due to a
5232 breakpoint or a single step breakpoint. */
5233
5234 if (frame_id_p (b->frame_id)
5235 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5236 {
5237 bs->stop = 0;
5238 return;
5239 }
5240
5241 /* If this is a thread/task-specific breakpoint, don't waste cpu
5242 evaluating the condition if this isn't the specified
5243 thread/task. */
5244 if ((b->thread != -1 && b->thread != thread->global_num)
5245 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5246 {
5247 bs->stop = 0;
5248 return;
5249 }
5250
5251 /* Evaluate extension language breakpoints that have a "stop" method
5252 implemented. */
5253 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5254
5255 if (is_watchpoint (b))
5256 {
5257 struct watchpoint *w = (struct watchpoint *) b;
5258
5259 cond = w->cond_exp.get ();
5260 }
5261 else
5262 cond = bl->cond.get ();
5263
5264 if (cond && b->disposition != disp_del_at_next_stop)
5265 {
5266 int within_current_scope = 1;
5267 struct watchpoint * w;
5268
5269 /* We use value_mark and value_free_to_mark because it could
5270 be a long time before we return to the command level and
5271 call free_all_values. We can't call free_all_values
5272 because we might be in the middle of evaluating a
5273 function call. */
5274 struct value *mark = value_mark ();
5275
5276 if (is_watchpoint (b))
5277 w = (struct watchpoint *) b;
5278 else
5279 w = NULL;
5280
5281 /* Need to select the frame, with all that implies so that
5282 the conditions will have the right context. Because we
5283 use the frame, we will not see an inlined function's
5284 variables when we arrive at a breakpoint at the start
5285 of the inlined function; the current frame will be the
5286 call site. */
5287 if (w == NULL || w->cond_exp_valid_block == NULL)
5288 select_frame (get_current_frame ());
5289 else
5290 {
5291 struct frame_info *frame;
5292
5293 /* For local watchpoint expressions, which particular
5294 instance of a local is being watched matters, so we
5295 keep track of the frame to evaluate the expression
5296 in. To evaluate the condition however, it doesn't
5297 really matter which instantiation of the function
5298 where the condition makes sense triggers the
5299 watchpoint. This allows an expression like "watch
5300 global if q > 10" set in `func', catch writes to
5301 global on all threads that call `func', or catch
5302 writes on all recursive calls of `func' by a single
5303 thread. We simply always evaluate the condition in
5304 the innermost frame that's executing where it makes
5305 sense to evaluate the condition. It seems
5306 intuitive. */
5307 frame = block_innermost_frame (w->cond_exp_valid_block);
5308 if (frame != NULL)
5309 select_frame (frame);
5310 else
5311 within_current_scope = 0;
5312 }
5313 if (within_current_scope)
5314 {
5315 try
5316 {
5317 condition_result = breakpoint_cond_eval (cond);
5318 }
5319 catch (const gdb_exception &ex)
5320 {
5321 exception_fprintf (gdb_stderr, ex,
5322 "Error in testing breakpoint condition:\n");
5323 }
5324 }
5325 else
5326 {
5327 warning (_("Watchpoint condition cannot be tested "
5328 "in the current scope"));
5329 /* If we failed to set the right context for this
5330 watchpoint, unconditionally report it. */
5331 }
5332 /* FIXME-someday, should give breakpoint #. */
5333 value_free_to_mark (mark);
5334 }
5335
5336 if (cond && !condition_result)
5337 {
5338 bs->stop = 0;
5339 }
5340 else if (b->ignore_count > 0)
5341 {
5342 b->ignore_count--;
5343 bs->stop = 0;
5344 /* Increase the hit count even though we don't stop. */
5345 ++(b->hit_count);
5346 gdb::observers::breakpoint_modified.notify (b);
5347 }
5348 }
5349
5350 /* Returns true if we need to track moribund locations of LOC's type
5351 on the current target. */
5352
5353 static int
5354 need_moribund_for_location_type (struct bp_location *loc)
5355 {
5356 return ((loc->loc_type == bp_loc_software_breakpoint
5357 && !target_supports_stopped_by_sw_breakpoint ())
5358 || (loc->loc_type == bp_loc_hardware_breakpoint
5359 && !target_supports_stopped_by_hw_breakpoint ()));
5360 }
5361
5362 /* See breakpoint.h. */
5363
5364 bpstat
5365 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5366 const struct target_waitstatus *ws)
5367 {
5368 struct breakpoint *b;
5369 bpstat bs_head = NULL, *bs_link = &bs_head;
5370
5371 ALL_BREAKPOINTS (b)
5372 {
5373 if (!breakpoint_enabled (b))
5374 continue;
5375
5376 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5377 {
5378 /* For hardware watchpoints, we look only at the first
5379 location. The watchpoint_check function will work on the
5380 entire expression, not the individual locations. For
5381 read watchpoints, the watchpoints_triggered function has
5382 checked all locations already. */
5383 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5384 break;
5385
5386 if (!bl->enabled || bl->disabled_by_cond || bl->shlib_disabled)
5387 continue;
5388
5389 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5390 continue;
5391
5392 /* Come here if it's a watchpoint, or if the break address
5393 matches. */
5394
5395 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5396 explain stop. */
5397
5398 /* Assume we stop. Should we find a watchpoint that is not
5399 actually triggered, or if the condition of the breakpoint
5400 evaluates as false, we'll reset 'stop' to 0. */
5401 bs->stop = 1;
5402 bs->print = 1;
5403
5404 /* If this is a scope breakpoint, mark the associated
5405 watchpoint as triggered so that we will handle the
5406 out-of-scope event. We'll get to the watchpoint next
5407 iteration. */
5408 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5409 {
5410 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5411
5412 w->watchpoint_triggered = watch_triggered_yes;
5413 }
5414 }
5415 }
5416
5417 /* Check if a moribund breakpoint explains the stop. */
5418 if (!target_supports_stopped_by_sw_breakpoint ()
5419 || !target_supports_stopped_by_hw_breakpoint ())
5420 {
5421 for (bp_location *loc : moribund_locations)
5422 {
5423 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5424 && need_moribund_for_location_type (loc))
5425 {
5426 bpstat bs = new bpstats (loc, &bs_link);
5427 /* For hits of moribund locations, we should just proceed. */
5428 bs->stop = 0;
5429 bs->print = 0;
5430 bs->print_it = print_it_noop;
5431 }
5432 }
5433 }
5434
5435 return bs_head;
5436 }
5437
5438 /* See breakpoint.h. */
5439
5440 bpstat
5441 bpstat_stop_status (const address_space *aspace,
5442 CORE_ADDR bp_addr, thread_info *thread,
5443 const struct target_waitstatus *ws,
5444 bpstat stop_chain)
5445 {
5446 struct breakpoint *b = NULL;
5447 /* First item of allocated bpstat's. */
5448 bpstat bs_head = stop_chain;
5449 bpstat bs;
5450 int need_remove_insert;
5451 int removed_any;
5452
5453 /* First, build the bpstat chain with locations that explain a
5454 target stop, while being careful to not set the target running,
5455 as that may invalidate locations (in particular watchpoint
5456 locations are recreated). Resuming will happen here with
5457 breakpoint conditions or watchpoint expressions that include
5458 inferior function calls. */
5459 if (bs_head == NULL)
5460 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5461
5462 /* A bit of special processing for shlib breakpoints. We need to
5463 process solib loading here, so that the lists of loaded and
5464 unloaded libraries are correct before we handle "catch load" and
5465 "catch unload". */
5466 for (bs = bs_head; bs != NULL; bs = bs->next)
5467 {
5468 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5469 {
5470 handle_solib_event ();
5471 break;
5472 }
5473 }
5474
5475 /* Now go through the locations that caused the target to stop, and
5476 check whether we're interested in reporting this stop to higher
5477 layers, or whether we should resume the target transparently. */
5478
5479 removed_any = 0;
5480
5481 for (bs = bs_head; bs != NULL; bs = bs->next)
5482 {
5483 if (!bs->stop)
5484 continue;
5485
5486 b = bs->breakpoint_at;
5487 b->ops->check_status (bs);
5488 if (bs->stop)
5489 {
5490 bpstat_check_breakpoint_conditions (bs, thread);
5491
5492 if (bs->stop)
5493 {
5494 ++(b->hit_count);
5495 gdb::observers::breakpoint_modified.notify (b);
5496
5497 /* We will stop here. */
5498 if (b->disposition == disp_disable)
5499 {
5500 --(b->enable_count);
5501 if (b->enable_count <= 0)
5502 b->enable_state = bp_disabled;
5503 removed_any = 1;
5504 }
5505 if (b->silent)
5506 bs->print = 0;
5507 bs->commands = b->commands;
5508 if (command_line_is_silent (bs->commands
5509 ? bs->commands.get () : NULL))
5510 bs->print = 0;
5511
5512 b->ops->after_condition_true (bs);
5513 }
5514
5515 }
5516
5517 /* Print nothing for this entry if we don't stop or don't
5518 print. */
5519 if (!bs->stop || !bs->print)
5520 bs->print_it = print_it_noop;
5521 }
5522
5523 /* If we aren't stopping, the value of some hardware watchpoint may
5524 not have changed, but the intermediate memory locations we are
5525 watching may have. Don't bother if we're stopping; this will get
5526 done later. */
5527 need_remove_insert = 0;
5528 if (! bpstat_causes_stop (bs_head))
5529 for (bs = bs_head; bs != NULL; bs = bs->next)
5530 if (!bs->stop
5531 && bs->breakpoint_at
5532 && is_hardware_watchpoint (bs->breakpoint_at))
5533 {
5534 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5535
5536 update_watchpoint (w, 0 /* don't reparse. */);
5537 need_remove_insert = 1;
5538 }
5539
5540 if (need_remove_insert)
5541 update_global_location_list (UGLL_MAY_INSERT);
5542 else if (removed_any)
5543 update_global_location_list (UGLL_DONT_INSERT);
5544
5545 return bs_head;
5546 }
5547
5548 static void
5549 handle_jit_event (CORE_ADDR address)
5550 {
5551 struct gdbarch *gdbarch;
5552
5553 infrun_debug_printf ("handling bp_jit_event");
5554
5555 /* Switch terminal for any messages produced by
5556 breakpoint_re_set. */
5557 target_terminal::ours_for_output ();
5558
5559 gdbarch = get_frame_arch (get_current_frame ());
5560 /* This event is caused by a breakpoint set in `jit_breakpoint_re_set`,
5561 thus it is expected that its objectfile can be found through
5562 minimal symbol lookup. If it doesn't work (and assert fails), it
5563 most likely means that `jit_breakpoint_re_set` was changes and this
5564 function needs to be updated too. */
5565 bound_minimal_symbol jit_bp_sym = lookup_minimal_symbol_by_pc (address);
5566 gdb_assert (jit_bp_sym.objfile != nullptr);
5567 jit_event_handler (gdbarch, jit_bp_sym.objfile);
5568
5569 target_terminal::inferior ();
5570 }
5571
5572 /* Prepare WHAT final decision for infrun. */
5573
5574 /* Decide what infrun needs to do with this bpstat. */
5575
5576 struct bpstat_what
5577 bpstat_what (bpstat bs_head)
5578 {
5579 struct bpstat_what retval;
5580 bpstat bs;
5581
5582 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5583 retval.call_dummy = STOP_NONE;
5584 retval.is_longjmp = false;
5585
5586 for (bs = bs_head; bs != NULL; bs = bs->next)
5587 {
5588 /* Extract this BS's action. After processing each BS, we check
5589 if its action overrides all we've seem so far. */
5590 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5591 enum bptype bptype;
5592
5593 if (bs->breakpoint_at == NULL)
5594 {
5595 /* I suspect this can happen if it was a momentary
5596 breakpoint which has since been deleted. */
5597 bptype = bp_none;
5598 }
5599 else
5600 bptype = bs->breakpoint_at->type;
5601
5602 switch (bptype)
5603 {
5604 case bp_none:
5605 break;
5606 case bp_breakpoint:
5607 case bp_hardware_breakpoint:
5608 case bp_single_step:
5609 case bp_until:
5610 case bp_finish:
5611 case bp_shlib_event:
5612 if (bs->stop)
5613 {
5614 if (bs->print)
5615 this_action = BPSTAT_WHAT_STOP_NOISY;
5616 else
5617 this_action = BPSTAT_WHAT_STOP_SILENT;
5618 }
5619 else
5620 this_action = BPSTAT_WHAT_SINGLE;
5621 break;
5622 case bp_watchpoint:
5623 case bp_hardware_watchpoint:
5624 case bp_read_watchpoint:
5625 case bp_access_watchpoint:
5626 if (bs->stop)
5627 {
5628 if (bs->print)
5629 this_action = BPSTAT_WHAT_STOP_NOISY;
5630 else
5631 this_action = BPSTAT_WHAT_STOP_SILENT;
5632 }
5633 else
5634 {
5635 /* There was a watchpoint, but we're not stopping.
5636 This requires no further action. */
5637 }
5638 break;
5639 case bp_longjmp:
5640 case bp_longjmp_call_dummy:
5641 case bp_exception:
5642 if (bs->stop)
5643 {
5644 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5645 retval.is_longjmp = bptype != bp_exception;
5646 }
5647 else
5648 this_action = BPSTAT_WHAT_SINGLE;
5649 break;
5650 case bp_longjmp_resume:
5651 case bp_exception_resume:
5652 if (bs->stop)
5653 {
5654 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5655 retval.is_longjmp = bptype == bp_longjmp_resume;
5656 }
5657 else
5658 this_action = BPSTAT_WHAT_SINGLE;
5659 break;
5660 case bp_step_resume:
5661 if (bs->stop)
5662 this_action = BPSTAT_WHAT_STEP_RESUME;
5663 else
5664 {
5665 /* It is for the wrong frame. */
5666 this_action = BPSTAT_WHAT_SINGLE;
5667 }
5668 break;
5669 case bp_hp_step_resume:
5670 if (bs->stop)
5671 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5672 else
5673 {
5674 /* It is for the wrong frame. */
5675 this_action = BPSTAT_WHAT_SINGLE;
5676 }
5677 break;
5678 case bp_watchpoint_scope:
5679 case bp_thread_event:
5680 case bp_overlay_event:
5681 case bp_longjmp_master:
5682 case bp_std_terminate_master:
5683 case bp_exception_master:
5684 this_action = BPSTAT_WHAT_SINGLE;
5685 break;
5686 case bp_catchpoint:
5687 if (bs->stop)
5688 {
5689 if (bs->print)
5690 this_action = BPSTAT_WHAT_STOP_NOISY;
5691 else
5692 this_action = BPSTAT_WHAT_STOP_SILENT;
5693 }
5694 else
5695 {
5696 /* Some catchpoints are implemented with breakpoints.
5697 For those, we need to step over the breakpoint. */
5698 if (bs->bp_location_at->loc_type != bp_loc_other)
5699 this_action = BPSTAT_WHAT_SINGLE;
5700 }
5701 break;
5702 case bp_jit_event:
5703 this_action = BPSTAT_WHAT_SINGLE;
5704 break;
5705 case bp_call_dummy:
5706 /* Make sure the action is stop (silent or noisy),
5707 so infrun.c pops the dummy frame. */
5708 retval.call_dummy = STOP_STACK_DUMMY;
5709 this_action = BPSTAT_WHAT_STOP_SILENT;
5710 break;
5711 case bp_std_terminate:
5712 /* Make sure the action is stop (silent or noisy),
5713 so infrun.c pops the dummy frame. */
5714 retval.call_dummy = STOP_STD_TERMINATE;
5715 this_action = BPSTAT_WHAT_STOP_SILENT;
5716 break;
5717 case bp_tracepoint:
5718 case bp_fast_tracepoint:
5719 case bp_static_tracepoint:
5720 /* Tracepoint hits should not be reported back to GDB, and
5721 if one got through somehow, it should have been filtered
5722 out already. */
5723 internal_error (__FILE__, __LINE__,
5724 _("bpstat_what: tracepoint encountered"));
5725 break;
5726 case bp_gnu_ifunc_resolver:
5727 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5728 this_action = BPSTAT_WHAT_SINGLE;
5729 break;
5730 case bp_gnu_ifunc_resolver_return:
5731 /* The breakpoint will be removed, execution will restart from the
5732 PC of the former breakpoint. */
5733 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5734 break;
5735
5736 case bp_dprintf:
5737 if (bs->stop)
5738 this_action = BPSTAT_WHAT_STOP_SILENT;
5739 else
5740 this_action = BPSTAT_WHAT_SINGLE;
5741 break;
5742
5743 default:
5744 internal_error (__FILE__, __LINE__,
5745 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5746 }
5747
5748 retval.main_action = std::max (retval.main_action, this_action);
5749 }
5750
5751 return retval;
5752 }
5753
5754 void
5755 bpstat_run_callbacks (bpstat bs_head)
5756 {
5757 bpstat bs;
5758
5759 for (bs = bs_head; bs != NULL; bs = bs->next)
5760 {
5761 struct breakpoint *b = bs->breakpoint_at;
5762
5763 if (b == NULL)
5764 continue;
5765 switch (b->type)
5766 {
5767 case bp_jit_event:
5768 handle_jit_event (bs->bp_location_at->address);
5769 break;
5770 case bp_gnu_ifunc_resolver:
5771 gnu_ifunc_resolver_stop (b);
5772 break;
5773 case bp_gnu_ifunc_resolver_return:
5774 gnu_ifunc_resolver_return_stop (b);
5775 break;
5776 }
5777 }
5778 }
5779
5780 /* See breakpoint.h. */
5781
5782 bool
5783 bpstat_should_step ()
5784 {
5785 struct breakpoint *b;
5786
5787 ALL_BREAKPOINTS (b)
5788 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5789 return true;
5790 return false;
5791 }
5792
5793 /* See breakpoint.h. */
5794
5795 bool
5796 bpstat_causes_stop (bpstat bs)
5797 {
5798 for (; bs != NULL; bs = bs->next)
5799 if (bs->stop)
5800 return true;
5801
5802 return false;
5803 }
5804
5805 \f
5806
5807 /* Compute a string of spaces suitable to indent the next line
5808 so it starts at the position corresponding to the table column
5809 named COL_NAME in the currently active table of UIOUT. */
5810
5811 static char *
5812 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5813 {
5814 static char wrap_indent[80];
5815 int i, total_width, width, align;
5816 const char *text;
5817
5818 total_width = 0;
5819 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5820 {
5821 if (strcmp (text, col_name) == 0)
5822 {
5823 gdb_assert (total_width < sizeof wrap_indent);
5824 memset (wrap_indent, ' ', total_width);
5825 wrap_indent[total_width] = 0;
5826
5827 return wrap_indent;
5828 }
5829
5830 total_width += width + 1;
5831 }
5832
5833 return NULL;
5834 }
5835
5836 /* Determine if the locations of this breakpoint will have their conditions
5837 evaluated by the target, host or a mix of both. Returns the following:
5838
5839 "host": Host evals condition.
5840 "host or target": Host or Target evals condition.
5841 "target": Target evals condition.
5842 */
5843
5844 static const char *
5845 bp_condition_evaluator (struct breakpoint *b)
5846 {
5847 struct bp_location *bl;
5848 char host_evals = 0;
5849 char target_evals = 0;
5850
5851 if (!b)
5852 return NULL;
5853
5854 if (!is_breakpoint (b))
5855 return NULL;
5856
5857 if (gdb_evaluates_breakpoint_condition_p ()
5858 || !target_supports_evaluation_of_breakpoint_conditions ())
5859 return condition_evaluation_host;
5860
5861 for (bl = b->loc; bl; bl = bl->next)
5862 {
5863 if (bl->cond_bytecode)
5864 target_evals++;
5865 else
5866 host_evals++;
5867 }
5868
5869 if (host_evals && target_evals)
5870 return condition_evaluation_both;
5871 else if (target_evals)
5872 return condition_evaluation_target;
5873 else
5874 return condition_evaluation_host;
5875 }
5876
5877 /* Determine the breakpoint location's condition evaluator. This is
5878 similar to bp_condition_evaluator, but for locations. */
5879
5880 static const char *
5881 bp_location_condition_evaluator (struct bp_location *bl)
5882 {
5883 if (bl && !is_breakpoint (bl->owner))
5884 return NULL;
5885
5886 if (gdb_evaluates_breakpoint_condition_p ()
5887 || !target_supports_evaluation_of_breakpoint_conditions ())
5888 return condition_evaluation_host;
5889
5890 if (bl && bl->cond_bytecode)
5891 return condition_evaluation_target;
5892 else
5893 return condition_evaluation_host;
5894 }
5895
5896 /* Print the LOC location out of the list of B->LOC locations. */
5897
5898 static void
5899 print_breakpoint_location (struct breakpoint *b,
5900 struct bp_location *loc)
5901 {
5902 struct ui_out *uiout = current_uiout;
5903
5904 scoped_restore_current_program_space restore_pspace;
5905
5906 if (loc != NULL && loc->shlib_disabled)
5907 loc = NULL;
5908
5909 if (loc != NULL)
5910 set_current_program_space (loc->pspace);
5911
5912 if (b->display_canonical)
5913 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5914 else if (loc && loc->symtab)
5915 {
5916 const struct symbol *sym = loc->symbol;
5917
5918 if (sym)
5919 {
5920 uiout->text ("in ");
5921 uiout->field_string ("func", sym->print_name (),
5922 function_name_style.style ());
5923 uiout->text (" ");
5924 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5925 uiout->text ("at ");
5926 }
5927 uiout->field_string ("file",
5928 symtab_to_filename_for_display (loc->symtab),
5929 file_name_style.style ());
5930 uiout->text (":");
5931
5932 if (uiout->is_mi_like_p ())
5933 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5934
5935 uiout->field_signed ("line", loc->line_number);
5936 }
5937 else if (loc)
5938 {
5939 string_file stb;
5940
5941 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5942 demangle, "");
5943 uiout->field_stream ("at", stb);
5944 }
5945 else
5946 {
5947 uiout->field_string ("pending",
5948 event_location_to_string (b->location.get ()));
5949 /* If extra_string is available, it could be holding a condition
5950 or dprintf arguments. In either case, make sure it is printed,
5951 too, but only for non-MI streams. */
5952 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5953 {
5954 if (b->type == bp_dprintf)
5955 uiout->text (",");
5956 else
5957 uiout->text (" ");
5958 uiout->text (b->extra_string);
5959 }
5960 }
5961
5962 if (loc && is_breakpoint (b)
5963 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5964 && bp_condition_evaluator (b) == condition_evaluation_both)
5965 {
5966 uiout->text (" (");
5967 uiout->field_string ("evaluated-by",
5968 bp_location_condition_evaluator (loc));
5969 uiout->text (")");
5970 }
5971 }
5972
5973 static const char *
5974 bptype_string (enum bptype type)
5975 {
5976 struct ep_type_description
5977 {
5978 enum bptype type;
5979 const char *description;
5980 };
5981 static struct ep_type_description bptypes[] =
5982 {
5983 {bp_none, "?deleted?"},
5984 {bp_breakpoint, "breakpoint"},
5985 {bp_hardware_breakpoint, "hw breakpoint"},
5986 {bp_single_step, "sw single-step"},
5987 {bp_until, "until"},
5988 {bp_finish, "finish"},
5989 {bp_watchpoint, "watchpoint"},
5990 {bp_hardware_watchpoint, "hw watchpoint"},
5991 {bp_read_watchpoint, "read watchpoint"},
5992 {bp_access_watchpoint, "acc watchpoint"},
5993 {bp_longjmp, "longjmp"},
5994 {bp_longjmp_resume, "longjmp resume"},
5995 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5996 {bp_exception, "exception"},
5997 {bp_exception_resume, "exception resume"},
5998 {bp_step_resume, "step resume"},
5999 {bp_hp_step_resume, "high-priority step resume"},
6000 {bp_watchpoint_scope, "watchpoint scope"},
6001 {bp_call_dummy, "call dummy"},
6002 {bp_std_terminate, "std::terminate"},
6003 {bp_shlib_event, "shlib events"},
6004 {bp_thread_event, "thread events"},
6005 {bp_overlay_event, "overlay events"},
6006 {bp_longjmp_master, "longjmp master"},
6007 {bp_std_terminate_master, "std::terminate master"},
6008 {bp_exception_master, "exception master"},
6009 {bp_catchpoint, "catchpoint"},
6010 {bp_tracepoint, "tracepoint"},
6011 {bp_fast_tracepoint, "fast tracepoint"},
6012 {bp_static_tracepoint, "static tracepoint"},
6013 {bp_dprintf, "dprintf"},
6014 {bp_jit_event, "jit events"},
6015 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6016 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6017 };
6018
6019 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6020 || ((int) type != bptypes[(int) type].type))
6021 internal_error (__FILE__, __LINE__,
6022 _("bptypes table does not describe type #%d."),
6023 (int) type);
6024
6025 return bptypes[(int) type].description;
6026 }
6027
6028 /* For MI, output a field named 'thread-groups' with a list as the value.
6029 For CLI, prefix the list with the string 'inf'. */
6030
6031 static void
6032 output_thread_groups (struct ui_out *uiout,
6033 const char *field_name,
6034 const std::vector<int> &inf_nums,
6035 int mi_only)
6036 {
6037 int is_mi = uiout->is_mi_like_p ();
6038
6039 /* For backward compatibility, don't display inferiors in CLI unless
6040 there are several. Always display them for MI. */
6041 if (!is_mi && mi_only)
6042 return;
6043
6044 ui_out_emit_list list_emitter (uiout, field_name);
6045
6046 for (size_t i = 0; i < inf_nums.size (); i++)
6047 {
6048 if (is_mi)
6049 {
6050 char mi_group[10];
6051
6052 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6053 uiout->field_string (NULL, mi_group);
6054 }
6055 else
6056 {
6057 if (i == 0)
6058 uiout->text (" inf ");
6059 else
6060 uiout->text (", ");
6061
6062 uiout->text (plongest (inf_nums[i]));
6063 }
6064 }
6065 }
6066
6067 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
6068 instead of going via breakpoint_ops::print_one. This makes "maint
6069 info breakpoints" show the software breakpoint locations of
6070 catchpoints, which are considered internal implementation
6071 detail. */
6072
6073 static void
6074 print_one_breakpoint_location (struct breakpoint *b,
6075 struct bp_location *loc,
6076 int loc_number,
6077 struct bp_location **last_loc,
6078 int allflag, bool raw_loc)
6079 {
6080 struct command_line *l;
6081 static char bpenables[] = "nynny";
6082
6083 struct ui_out *uiout = current_uiout;
6084 int header_of_multiple = 0;
6085 int part_of_multiple = (loc != NULL);
6086 struct value_print_options opts;
6087
6088 get_user_print_options (&opts);
6089
6090 gdb_assert (!loc || loc_number != 0);
6091 /* See comment in print_one_breakpoint concerning treatment of
6092 breakpoints with single disabled location. */
6093 if (loc == NULL
6094 && (b->loc != NULL
6095 && (b->loc->next != NULL
6096 || !b->loc->enabled || b->loc->disabled_by_cond)))
6097 header_of_multiple = 1;
6098 if (loc == NULL)
6099 loc = b->loc;
6100
6101 annotate_record ();
6102
6103 /* 1 */
6104 annotate_field (0);
6105 if (part_of_multiple)
6106 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6107 else
6108 uiout->field_signed ("number", b->number);
6109
6110 /* 2 */
6111 annotate_field (1);
6112 if (part_of_multiple)
6113 uiout->field_skip ("type");
6114 else
6115 uiout->field_string ("type", bptype_string (b->type));
6116
6117 /* 3 */
6118 annotate_field (2);
6119 if (part_of_multiple)
6120 uiout->field_skip ("disp");
6121 else
6122 uiout->field_string ("disp", bpdisp_text (b->disposition));
6123
6124 /* 4 */
6125 annotate_field (3);
6126 if (part_of_multiple)
6127 uiout->field_string ("enabled", (loc->disabled_by_cond ? "N*"
6128 : (loc->enabled ? "y" : "n")));
6129 else
6130 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6131
6132 /* 5 and 6 */
6133 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL)
6134 b->ops->print_one (b, last_loc);
6135 else
6136 {
6137 if (is_watchpoint (b))
6138 {
6139 struct watchpoint *w = (struct watchpoint *) b;
6140
6141 /* Field 4, the address, is omitted (which makes the columns
6142 not line up too nicely with the headers, but the effect
6143 is relatively readable). */
6144 if (opts.addressprint)
6145 uiout->field_skip ("addr");
6146 annotate_field (5);
6147 uiout->field_string ("what", w->exp_string);
6148 }
6149 else if (!is_catchpoint (b) || is_exception_catchpoint (b)
6150 || is_ada_exception_catchpoint (b))
6151 {
6152 if (opts.addressprint)
6153 {
6154 annotate_field (4);
6155 if (header_of_multiple)
6156 uiout->field_string ("addr", "<MULTIPLE>",
6157 metadata_style.style ());
6158 else if (b->loc == NULL || loc->shlib_disabled)
6159 uiout->field_string ("addr", "<PENDING>",
6160 metadata_style.style ());
6161 else
6162 uiout->field_core_addr ("addr",
6163 loc->gdbarch, loc->address);
6164 }
6165 annotate_field (5);
6166 if (!header_of_multiple)
6167 print_breakpoint_location (b, loc);
6168 if (b->loc)
6169 *last_loc = b->loc;
6170 }
6171 }
6172
6173 if (loc != NULL && !header_of_multiple)
6174 {
6175 std::vector<int> inf_nums;
6176 int mi_only = 1;
6177
6178 for (inferior *inf : all_inferiors ())
6179 {
6180 if (inf->pspace == loc->pspace)
6181 inf_nums.push_back (inf->num);
6182 }
6183
6184 /* For backward compatibility, don't display inferiors in CLI unless
6185 there are several. Always display for MI. */
6186 if (allflag
6187 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6188 && (program_spaces.size () > 1
6189 || number_of_inferiors () > 1)
6190 /* LOC is for existing B, it cannot be in
6191 moribund_locations and thus having NULL OWNER. */
6192 && loc->owner->type != bp_catchpoint))
6193 mi_only = 0;
6194 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6195 }
6196
6197 if (!part_of_multiple)
6198 {
6199 if (b->thread != -1)
6200 {
6201 /* FIXME: This seems to be redundant and lost here; see the
6202 "stop only in" line a little further down. */
6203 uiout->text (" thread ");
6204 uiout->field_signed ("thread", b->thread);
6205 }
6206 else if (b->task != 0)
6207 {
6208 uiout->text (" task ");
6209 uiout->field_signed ("task", b->task);
6210 }
6211 }
6212
6213 uiout->text ("\n");
6214
6215 if (!part_of_multiple)
6216 b->ops->print_one_detail (b, uiout);
6217
6218 if (part_of_multiple && frame_id_p (b->frame_id))
6219 {
6220 annotate_field (6);
6221 uiout->text ("\tstop only in stack frame at ");
6222 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6223 the frame ID. */
6224 uiout->field_core_addr ("frame",
6225 b->gdbarch, b->frame_id.stack_addr);
6226 uiout->text ("\n");
6227 }
6228
6229 if (!part_of_multiple && b->cond_string)
6230 {
6231 annotate_field (7);
6232 if (is_tracepoint (b))
6233 uiout->text ("\ttrace only if ");
6234 else
6235 uiout->text ("\tstop only if ");
6236 uiout->field_string ("cond", b->cond_string);
6237
6238 /* Print whether the target is doing the breakpoint's condition
6239 evaluation. If GDB is doing the evaluation, don't print anything. */
6240 if (is_breakpoint (b)
6241 && breakpoint_condition_evaluation_mode ()
6242 == condition_evaluation_target)
6243 {
6244 uiout->message (" (%pF evals)",
6245 string_field ("evaluated-by",
6246 bp_condition_evaluator (b)));
6247 }
6248 uiout->text ("\n");
6249 }
6250
6251 if (!part_of_multiple && b->thread != -1)
6252 {
6253 /* FIXME should make an annotation for this. */
6254 uiout->text ("\tstop only in thread ");
6255 if (uiout->is_mi_like_p ())
6256 uiout->field_signed ("thread", b->thread);
6257 else
6258 {
6259 struct thread_info *thr = find_thread_global_id (b->thread);
6260
6261 uiout->field_string ("thread", print_thread_id (thr));
6262 }
6263 uiout->text ("\n");
6264 }
6265
6266 if (!part_of_multiple)
6267 {
6268 if (b->hit_count)
6269 {
6270 /* FIXME should make an annotation for this. */
6271 if (is_catchpoint (b))
6272 uiout->text ("\tcatchpoint");
6273 else if (is_tracepoint (b))
6274 uiout->text ("\ttracepoint");
6275 else
6276 uiout->text ("\tbreakpoint");
6277 uiout->text (" already hit ");
6278 uiout->field_signed ("times", b->hit_count);
6279 if (b->hit_count == 1)
6280 uiout->text (" time\n");
6281 else
6282 uiout->text (" times\n");
6283 }
6284 else
6285 {
6286 /* Output the count also if it is zero, but only if this is mi. */
6287 if (uiout->is_mi_like_p ())
6288 uiout->field_signed ("times", b->hit_count);
6289 }
6290 }
6291
6292 if (!part_of_multiple && b->ignore_count)
6293 {
6294 annotate_field (8);
6295 uiout->message ("\tignore next %pF hits\n",
6296 signed_field ("ignore", b->ignore_count));
6297 }
6298
6299 /* Note that an enable count of 1 corresponds to "enable once"
6300 behavior, which is reported by the combination of enablement and
6301 disposition, so we don't need to mention it here. */
6302 if (!part_of_multiple && b->enable_count > 1)
6303 {
6304 annotate_field (8);
6305 uiout->text ("\tdisable after ");
6306 /* Tweak the wording to clarify that ignore and enable counts
6307 are distinct, and have additive effect. */
6308 if (b->ignore_count)
6309 uiout->text ("additional ");
6310 else
6311 uiout->text ("next ");
6312 uiout->field_signed ("enable", b->enable_count);
6313 uiout->text (" hits\n");
6314 }
6315
6316 if (!part_of_multiple && is_tracepoint (b))
6317 {
6318 struct tracepoint *tp = (struct tracepoint *) b;
6319
6320 if (tp->traceframe_usage)
6321 {
6322 uiout->text ("\ttrace buffer usage ");
6323 uiout->field_signed ("traceframe-usage", tp->traceframe_usage);
6324 uiout->text (" bytes\n");
6325 }
6326 }
6327
6328 l = b->commands ? b->commands.get () : NULL;
6329 if (!part_of_multiple && l)
6330 {
6331 annotate_field (9);
6332 ui_out_emit_tuple tuple_emitter (uiout, "script");
6333 print_command_lines (uiout, l, 4);
6334 }
6335
6336 if (is_tracepoint (b))
6337 {
6338 struct tracepoint *t = (struct tracepoint *) b;
6339
6340 if (!part_of_multiple && t->pass_count)
6341 {
6342 annotate_field (10);
6343 uiout->text ("\tpass count ");
6344 uiout->field_signed ("pass", t->pass_count);
6345 uiout->text (" \n");
6346 }
6347
6348 /* Don't display it when tracepoint or tracepoint location is
6349 pending. */
6350 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6351 {
6352 annotate_field (11);
6353
6354 if (uiout->is_mi_like_p ())
6355 uiout->field_string ("installed",
6356 loc->inserted ? "y" : "n");
6357 else
6358 {
6359 if (loc->inserted)
6360 uiout->text ("\t");
6361 else
6362 uiout->text ("\tnot ");
6363 uiout->text ("installed on target\n");
6364 }
6365 }
6366 }
6367
6368 if (uiout->is_mi_like_p () && !part_of_multiple)
6369 {
6370 if (is_watchpoint (b))
6371 {
6372 struct watchpoint *w = (struct watchpoint *) b;
6373
6374 uiout->field_string ("original-location", w->exp_string);
6375 }
6376 else if (b->location != NULL
6377 && event_location_to_string (b->location.get ()) != NULL)
6378 uiout->field_string ("original-location",
6379 event_location_to_string (b->location.get ()));
6380 }
6381 }
6382
6383 /* See breakpoint.h. */
6384
6385 bool fix_multi_location_breakpoint_output_globally = false;
6386
6387 static void
6388 print_one_breakpoint (struct breakpoint *b,
6389 struct bp_location **last_loc,
6390 int allflag)
6391 {
6392 struct ui_out *uiout = current_uiout;
6393 bool use_fixed_output
6394 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6395 || fix_multi_location_breakpoint_output_globally);
6396
6397 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6398 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false);
6399
6400 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6401 are outside. */
6402 if (!use_fixed_output)
6403 bkpt_tuple_emitter.reset ();
6404
6405 /* If this breakpoint has custom print function,
6406 it's already printed. Otherwise, print individual
6407 locations, if any. */
6408 if (b->ops == NULL
6409 || b->ops->print_one == NULL
6410 || allflag)
6411 {
6412 /* If breakpoint has a single location that is disabled, we
6413 print it as if it had several locations, since otherwise it's
6414 hard to represent "breakpoint enabled, location disabled"
6415 situation.
6416
6417 Note that while hardware watchpoints have several locations
6418 internally, that's not a property exposed to users.
6419
6420 Likewise, while catchpoints may be implemented with
6421 breakpoints (e.g., catch throw), that's not a property
6422 exposed to users. We do however display the internal
6423 breakpoint locations with "maint info breakpoints". */
6424 if (!is_hardware_watchpoint (b)
6425 && (!is_catchpoint (b) || is_exception_catchpoint (b)
6426 || is_ada_exception_catchpoint (b))
6427 && (allflag
6428 || (b->loc && (b->loc->next
6429 || !b->loc->enabled
6430 || b->loc->disabled_by_cond))))
6431 {
6432 gdb::optional<ui_out_emit_list> locations_list;
6433
6434 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6435 MI record. For later versions, place breakpoint locations in a
6436 list. */
6437 if (uiout->is_mi_like_p () && use_fixed_output)
6438 locations_list.emplace (uiout, "locations");
6439
6440 int n = 1;
6441 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6442 {
6443 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6444 print_one_breakpoint_location (b, loc, n, last_loc,
6445 allflag, allflag);
6446 }
6447 }
6448 }
6449 }
6450
6451 static int
6452 breakpoint_address_bits (struct breakpoint *b)
6453 {
6454 int print_address_bits = 0;
6455 struct bp_location *loc;
6456
6457 /* Software watchpoints that aren't watching memory don't have an
6458 address to print. */
6459 if (is_no_memory_software_watchpoint (b))
6460 return 0;
6461
6462 for (loc = b->loc; loc; loc = loc->next)
6463 {
6464 int addr_bit;
6465
6466 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6467 if (addr_bit > print_address_bits)
6468 print_address_bits = addr_bit;
6469 }
6470
6471 return print_address_bits;
6472 }
6473
6474 /* See breakpoint.h. */
6475
6476 void
6477 print_breakpoint (breakpoint *b)
6478 {
6479 struct bp_location *dummy_loc = NULL;
6480 print_one_breakpoint (b, &dummy_loc, 0);
6481 }
6482
6483 /* Return true if this breakpoint was set by the user, false if it is
6484 internal or momentary. */
6485
6486 int
6487 user_breakpoint_p (struct breakpoint *b)
6488 {
6489 return b->number > 0;
6490 }
6491
6492 /* See breakpoint.h. */
6493
6494 int
6495 pending_breakpoint_p (struct breakpoint *b)
6496 {
6497 return b->loc == NULL;
6498 }
6499
6500 /* Print information on breakpoints (including watchpoints and tracepoints).
6501
6502 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as
6503 understood by number_or_range_parser. Only breakpoints included in this
6504 list are then printed.
6505
6506 If SHOW_INTERNAL is true, print internal breakpoints.
6507
6508 If FILTER is non-NULL, call it on each breakpoint and only include the
6509 ones for which it returns true.
6510
6511 Return the total number of breakpoints listed. */
6512
6513 static int
6514 breakpoint_1 (const char *bp_num_list, bool show_internal,
6515 bool (*filter) (const struct breakpoint *))
6516 {
6517 struct breakpoint *b;
6518 struct bp_location *last_loc = NULL;
6519 int nr_printable_breakpoints;
6520 struct value_print_options opts;
6521 int print_address_bits = 0;
6522 int print_type_col_width = 14;
6523 struct ui_out *uiout = current_uiout;
6524 bool has_disabled_by_cond_location = false;
6525
6526 get_user_print_options (&opts);
6527
6528 /* Compute the number of rows in the table, as well as the size
6529 required for address fields. */
6530 nr_printable_breakpoints = 0;
6531 ALL_BREAKPOINTS (b)
6532 {
6533 /* If we have a filter, only list the breakpoints it accepts. */
6534 if (filter && !filter (b))
6535 continue;
6536
6537 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6538 accept. Skip the others. */
6539 if (bp_num_list != NULL && *bp_num_list != '\0')
6540 {
6541 if (show_internal && parse_and_eval_long (bp_num_list) != b->number)
6542 continue;
6543 if (!show_internal && !number_is_in_list (bp_num_list, b->number))
6544 continue;
6545 }
6546
6547 if (show_internal || user_breakpoint_p (b))
6548 {
6549 int addr_bit, type_len;
6550
6551 addr_bit = breakpoint_address_bits (b);
6552 if (addr_bit > print_address_bits)
6553 print_address_bits = addr_bit;
6554
6555 type_len = strlen (bptype_string (b->type));
6556 if (type_len > print_type_col_width)
6557 print_type_col_width = type_len;
6558
6559 nr_printable_breakpoints++;
6560 }
6561 }
6562
6563 {
6564 ui_out_emit_table table_emitter (uiout,
6565 opts.addressprint ? 6 : 5,
6566 nr_printable_breakpoints,
6567 "BreakpointTable");
6568
6569 if (nr_printable_breakpoints > 0)
6570 annotate_breakpoints_headers ();
6571 if (nr_printable_breakpoints > 0)
6572 annotate_field (0);
6573 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6574 if (nr_printable_breakpoints > 0)
6575 annotate_field (1);
6576 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6577 if (nr_printable_breakpoints > 0)
6578 annotate_field (2);
6579 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6580 if (nr_printable_breakpoints > 0)
6581 annotate_field (3);
6582 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6583 if (opts.addressprint)
6584 {
6585 if (nr_printable_breakpoints > 0)
6586 annotate_field (4);
6587 if (print_address_bits <= 32)
6588 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6589 else
6590 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6591 }
6592 if (nr_printable_breakpoints > 0)
6593 annotate_field (5);
6594 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6595 uiout->table_body ();
6596 if (nr_printable_breakpoints > 0)
6597 annotate_breakpoints_table ();
6598
6599 ALL_BREAKPOINTS (b)
6600 {
6601 QUIT;
6602 /* If we have a filter, only list the breakpoints it accepts. */
6603 if (filter && !filter (b))
6604 continue;
6605
6606 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6607 accept. Skip the others. */
6608
6609 if (bp_num_list != NULL && *bp_num_list != '\0')
6610 {
6611 if (show_internal) /* maintenance info breakpoint */
6612 {
6613 if (parse_and_eval_long (bp_num_list) != b->number)
6614 continue;
6615 }
6616 else /* all others */
6617 {
6618 if (!number_is_in_list (bp_num_list, b->number))
6619 continue;
6620 }
6621 }
6622 /* We only print out user settable breakpoints unless the
6623 show_internal is set. */
6624 if (show_internal || user_breakpoint_p (b))
6625 {
6626 print_one_breakpoint (b, &last_loc, show_internal);
6627 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
6628 if (loc->disabled_by_cond)
6629 has_disabled_by_cond_location = true;
6630 }
6631 }
6632 }
6633
6634 if (nr_printable_breakpoints == 0)
6635 {
6636 /* If there's a filter, let the caller decide how to report
6637 empty list. */
6638 if (!filter)
6639 {
6640 if (bp_num_list == NULL || *bp_num_list == '\0')
6641 uiout->message ("No breakpoints or watchpoints.\n");
6642 else
6643 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6644 bp_num_list);
6645 }
6646 }
6647 else
6648 {
6649 if (last_loc && !server_command)
6650 set_next_address (last_loc->gdbarch, last_loc->address);
6651
6652 if (has_disabled_by_cond_location)
6653 uiout->message (_("(*): Breakpoint condition is invalid at this "
6654 "location.\n"));
6655 }
6656
6657 /* FIXME? Should this be moved up so that it is only called when
6658 there have been breakpoints? */
6659 annotate_breakpoints_table_end ();
6660
6661 return nr_printable_breakpoints;
6662 }
6663
6664 /* Display the value of default-collect in a way that is generally
6665 compatible with the breakpoint list. */
6666
6667 static void
6668 default_collect_info (void)
6669 {
6670 struct ui_out *uiout = current_uiout;
6671
6672 /* If it has no value (which is frequently the case), say nothing; a
6673 message like "No default-collect." gets in user's face when it's
6674 not wanted. */
6675 if (!*default_collect)
6676 return;
6677
6678 /* The following phrase lines up nicely with per-tracepoint collect
6679 actions. */
6680 uiout->text ("default collect ");
6681 uiout->field_string ("default-collect", default_collect);
6682 uiout->text (" \n");
6683 }
6684
6685 static void
6686 info_breakpoints_command (const char *args, int from_tty)
6687 {
6688 breakpoint_1 (args, false, NULL);
6689
6690 default_collect_info ();
6691 }
6692
6693 static void
6694 info_watchpoints_command (const char *args, int from_tty)
6695 {
6696 int num_printed = breakpoint_1 (args, false, is_watchpoint);
6697 struct ui_out *uiout = current_uiout;
6698
6699 if (num_printed == 0)
6700 {
6701 if (args == NULL || *args == '\0')
6702 uiout->message ("No watchpoints.\n");
6703 else
6704 uiout->message ("No watchpoint matching '%s'.\n", args);
6705 }
6706 }
6707
6708 static void
6709 maintenance_info_breakpoints (const char *args, int from_tty)
6710 {
6711 breakpoint_1 (args, true, NULL);
6712
6713 default_collect_info ();
6714 }
6715
6716 static int
6717 breakpoint_has_pc (struct breakpoint *b,
6718 struct program_space *pspace,
6719 CORE_ADDR pc, struct obj_section *section)
6720 {
6721 struct bp_location *bl = b->loc;
6722
6723 for (; bl; bl = bl->next)
6724 {
6725 if (bl->pspace == pspace
6726 && bl->address == pc
6727 && (!overlay_debugging || bl->section == section))
6728 return 1;
6729 }
6730 return 0;
6731 }
6732
6733 /* Print a message describing any user-breakpoints set at PC. This
6734 concerns with logical breakpoints, so we match program spaces, not
6735 address spaces. */
6736
6737 static void
6738 describe_other_breakpoints (struct gdbarch *gdbarch,
6739 struct program_space *pspace, CORE_ADDR pc,
6740 struct obj_section *section, int thread)
6741 {
6742 int others = 0;
6743 struct breakpoint *b;
6744
6745 ALL_BREAKPOINTS (b)
6746 others += (user_breakpoint_p (b)
6747 && breakpoint_has_pc (b, pspace, pc, section));
6748 if (others > 0)
6749 {
6750 if (others == 1)
6751 printf_filtered (_("Note: breakpoint "));
6752 else /* if (others == ???) */
6753 printf_filtered (_("Note: breakpoints "));
6754 ALL_BREAKPOINTS (b)
6755 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6756 {
6757 others--;
6758 printf_filtered ("%d", b->number);
6759 if (b->thread == -1 && thread != -1)
6760 printf_filtered (" (all threads)");
6761 else if (b->thread != -1)
6762 printf_filtered (" (thread %d)", b->thread);
6763 printf_filtered ("%s%s ",
6764 ((b->enable_state == bp_disabled
6765 || b->enable_state == bp_call_disabled)
6766 ? " (disabled)"
6767 : ""),
6768 (others > 1) ? ","
6769 : ((others == 1) ? " and" : ""));
6770 }
6771 current_uiout->message (_("also set at pc %ps.\n"),
6772 styled_string (address_style.style (),
6773 paddress (gdbarch, pc)));
6774 }
6775 }
6776 \f
6777
6778 /* Return true iff it is meaningful to use the address member of LOC.
6779 For some breakpoint types, the locations' address members are
6780 irrelevant and it makes no sense to attempt to compare them to
6781 other addresses (or use them for any other purpose either).
6782
6783 More specifically, software watchpoints and catchpoints that are
6784 not backed by breakpoints always have a zero valued location
6785 address and we don't want to mark breakpoints of any of these types
6786 to be a duplicate of an actual breakpoint location at address
6787 zero. */
6788
6789 static bool
6790 bl_address_is_meaningful (bp_location *loc)
6791 {
6792 return loc->loc_type != bp_loc_other;
6793 }
6794
6795 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6796 true if LOC1 and LOC2 represent the same watchpoint location. */
6797
6798 static int
6799 watchpoint_locations_match (struct bp_location *loc1,
6800 struct bp_location *loc2)
6801 {
6802 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6803 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6804
6805 /* Both of them must exist. */
6806 gdb_assert (w1 != NULL);
6807 gdb_assert (w2 != NULL);
6808
6809 /* If the target can evaluate the condition expression in hardware,
6810 then we we need to insert both watchpoints even if they are at
6811 the same place. Otherwise the watchpoint will only trigger when
6812 the condition of whichever watchpoint was inserted evaluates to
6813 true, not giving a chance for GDB to check the condition of the
6814 other watchpoint. */
6815 if ((w1->cond_exp
6816 && target_can_accel_watchpoint_condition (loc1->address,
6817 loc1->length,
6818 loc1->watchpoint_type,
6819 w1->cond_exp.get ()))
6820 || (w2->cond_exp
6821 && target_can_accel_watchpoint_condition (loc2->address,
6822 loc2->length,
6823 loc2->watchpoint_type,
6824 w2->cond_exp.get ())))
6825 return 0;
6826
6827 /* Note that this checks the owner's type, not the location's. In
6828 case the target does not support read watchpoints, but does
6829 support access watchpoints, we'll have bp_read_watchpoint
6830 watchpoints with hw_access locations. Those should be considered
6831 duplicates of hw_read locations. The hw_read locations will
6832 become hw_access locations later. */
6833 return (loc1->owner->type == loc2->owner->type
6834 && loc1->pspace->aspace == loc2->pspace->aspace
6835 && loc1->address == loc2->address
6836 && loc1->length == loc2->length);
6837 }
6838
6839 /* See breakpoint.h. */
6840
6841 int
6842 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6843 const address_space *aspace2, CORE_ADDR addr2)
6844 {
6845 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6846 || aspace1 == aspace2)
6847 && addr1 == addr2);
6848 }
6849
6850 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6851 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6852 matches ASPACE2. On targets that have global breakpoints, the address
6853 space doesn't really matter. */
6854
6855 static int
6856 breakpoint_address_match_range (const address_space *aspace1,
6857 CORE_ADDR addr1,
6858 int len1, const address_space *aspace2,
6859 CORE_ADDR addr2)
6860 {
6861 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6862 || aspace1 == aspace2)
6863 && addr2 >= addr1 && addr2 < addr1 + len1);
6864 }
6865
6866 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6867 a ranged breakpoint. In most targets, a match happens only if ASPACE
6868 matches the breakpoint's address space. On targets that have global
6869 breakpoints, the address space doesn't really matter. */
6870
6871 static int
6872 breakpoint_location_address_match (struct bp_location *bl,
6873 const address_space *aspace,
6874 CORE_ADDR addr)
6875 {
6876 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6877 aspace, addr)
6878 || (bl->length
6879 && breakpoint_address_match_range (bl->pspace->aspace,
6880 bl->address, bl->length,
6881 aspace, addr)));
6882 }
6883
6884 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6885 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6886 match happens only if ASPACE matches the breakpoint's address
6887 space. On targets that have global breakpoints, the address space
6888 doesn't really matter. */
6889
6890 static int
6891 breakpoint_location_address_range_overlap (struct bp_location *bl,
6892 const address_space *aspace,
6893 CORE_ADDR addr, int len)
6894 {
6895 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6896 || bl->pspace->aspace == aspace)
6897 {
6898 int bl_len = bl->length != 0 ? bl->length : 1;
6899
6900 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6901 return 1;
6902 }
6903 return 0;
6904 }
6905
6906 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6907 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6908 true, otherwise returns false. */
6909
6910 static int
6911 tracepoint_locations_match (struct bp_location *loc1,
6912 struct bp_location *loc2)
6913 {
6914 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6915 /* Since tracepoint locations are never duplicated with others', tracepoint
6916 locations at the same address of different tracepoints are regarded as
6917 different locations. */
6918 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6919 else
6920 return 0;
6921 }
6922
6923 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6924 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6925 the same location. If SW_HW_BPS_MATCH is true, then software
6926 breakpoint locations and hardware breakpoint locations match,
6927 otherwise they don't. */
6928
6929 static int
6930 breakpoint_locations_match (struct bp_location *loc1,
6931 struct bp_location *loc2,
6932 bool sw_hw_bps_match)
6933 {
6934 int hw_point1, hw_point2;
6935
6936 /* Both of them must not be in moribund_locations. */
6937 gdb_assert (loc1->owner != NULL);
6938 gdb_assert (loc2->owner != NULL);
6939
6940 hw_point1 = is_hardware_watchpoint (loc1->owner);
6941 hw_point2 = is_hardware_watchpoint (loc2->owner);
6942
6943 if (hw_point1 != hw_point2)
6944 return 0;
6945 else if (hw_point1)
6946 return watchpoint_locations_match (loc1, loc2);
6947 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6948 return tracepoint_locations_match (loc1, loc2);
6949 else
6950 /* We compare bp_location.length in order to cover ranged
6951 breakpoints. Keep this in sync with
6952 bp_location_is_less_than. */
6953 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6954 loc2->pspace->aspace, loc2->address)
6955 && (loc1->loc_type == loc2->loc_type || sw_hw_bps_match)
6956 && loc1->length == loc2->length);
6957 }
6958
6959 static void
6960 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6961 int bnum, int have_bnum)
6962 {
6963 /* The longest string possibly returned by hex_string_custom
6964 is 50 chars. These must be at least that big for safety. */
6965 char astr1[64];
6966 char astr2[64];
6967
6968 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6969 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6970 if (have_bnum)
6971 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6972 bnum, astr1, astr2);
6973 else
6974 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6975 }
6976
6977 /* Adjust a breakpoint's address to account for architectural
6978 constraints on breakpoint placement. Return the adjusted address.
6979 Note: Very few targets require this kind of adjustment. For most
6980 targets, this function is simply the identity function. */
6981
6982 static CORE_ADDR
6983 adjust_breakpoint_address (struct gdbarch *gdbarch,
6984 CORE_ADDR bpaddr, enum bptype bptype)
6985 {
6986 if (bptype == bp_watchpoint
6987 || bptype == bp_hardware_watchpoint
6988 || bptype == bp_read_watchpoint
6989 || bptype == bp_access_watchpoint
6990 || bptype == bp_catchpoint)
6991 {
6992 /* Watchpoints and the various bp_catch_* eventpoints should not
6993 have their addresses modified. */
6994 return bpaddr;
6995 }
6996 else if (bptype == bp_single_step)
6997 {
6998 /* Single-step breakpoints should not have their addresses
6999 modified. If there's any architectural constrain that
7000 applies to this address, then it should have already been
7001 taken into account when the breakpoint was created in the
7002 first place. If we didn't do this, stepping through e.g.,
7003 Thumb-2 IT blocks would break. */
7004 return bpaddr;
7005 }
7006 else
7007 {
7008 CORE_ADDR adjusted_bpaddr = bpaddr;
7009
7010 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7011 {
7012 /* Some targets have architectural constraints on the placement
7013 of breakpoint instructions. Obtain the adjusted address. */
7014 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7015 }
7016
7017 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
7018
7019 /* An adjusted breakpoint address can significantly alter
7020 a user's expectations. Print a warning if an adjustment
7021 is required. */
7022 if (adjusted_bpaddr != bpaddr)
7023 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7024
7025 return adjusted_bpaddr;
7026 }
7027 }
7028
7029 static bp_loc_type
7030 bp_location_from_bp_type (bptype type)
7031 {
7032 switch (type)
7033 {
7034 case bp_breakpoint:
7035 case bp_single_step:
7036 case bp_until:
7037 case bp_finish:
7038 case bp_longjmp:
7039 case bp_longjmp_resume:
7040 case bp_longjmp_call_dummy:
7041 case bp_exception:
7042 case bp_exception_resume:
7043 case bp_step_resume:
7044 case bp_hp_step_resume:
7045 case bp_watchpoint_scope:
7046 case bp_call_dummy:
7047 case bp_std_terminate:
7048 case bp_shlib_event:
7049 case bp_thread_event:
7050 case bp_overlay_event:
7051 case bp_jit_event:
7052 case bp_longjmp_master:
7053 case bp_std_terminate_master:
7054 case bp_exception_master:
7055 case bp_gnu_ifunc_resolver:
7056 case bp_gnu_ifunc_resolver_return:
7057 case bp_dprintf:
7058 return bp_loc_software_breakpoint;
7059 case bp_hardware_breakpoint:
7060 return bp_loc_hardware_breakpoint;
7061 case bp_hardware_watchpoint:
7062 case bp_read_watchpoint:
7063 case bp_access_watchpoint:
7064 return bp_loc_hardware_watchpoint;
7065 case bp_watchpoint:
7066 case bp_catchpoint:
7067 case bp_tracepoint:
7068 case bp_fast_tracepoint:
7069 case bp_static_tracepoint:
7070 return bp_loc_other;
7071 default:
7072 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7073 }
7074 }
7075
7076 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
7077 {
7078 this->owner = owner;
7079 this->cond_bytecode = NULL;
7080 this->shlib_disabled = 0;
7081 this->enabled = 1;
7082 this->disabled_by_cond = false;
7083
7084 this->loc_type = type;
7085
7086 if (this->loc_type == bp_loc_software_breakpoint
7087 || this->loc_type == bp_loc_hardware_breakpoint)
7088 mark_breakpoint_location_modified (this);
7089
7090 incref ();
7091 }
7092
7093 bp_location::bp_location (breakpoint *owner)
7094 : bp_location::bp_location (owner,
7095 bp_location_from_bp_type (owner->type))
7096 {
7097 }
7098
7099 /* Allocate a struct bp_location. */
7100
7101 static struct bp_location *
7102 allocate_bp_location (struct breakpoint *bpt)
7103 {
7104 return bpt->ops->allocate_location (bpt);
7105 }
7106
7107 /* Decrement reference count. If the reference count reaches 0,
7108 destroy the bp_location. Sets *BLP to NULL. */
7109
7110 static void
7111 decref_bp_location (struct bp_location **blp)
7112 {
7113 bp_location_ref_policy::decref (*blp);
7114 *blp = NULL;
7115 }
7116
7117 /* Add breakpoint B at the end of the global breakpoint chain. */
7118
7119 static breakpoint *
7120 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7121 {
7122 struct breakpoint *b1;
7123 struct breakpoint *result = b.get ();
7124
7125 /* Add this breakpoint to the end of the chain so that a list of
7126 breakpoints will come out in order of increasing numbers. */
7127
7128 b1 = breakpoint_chain;
7129 if (b1 == 0)
7130 breakpoint_chain = b.release ();
7131 else
7132 {
7133 while (b1->next)
7134 b1 = b1->next;
7135 b1->next = b.release ();
7136 }
7137
7138 return result;
7139 }
7140
7141 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7142
7143 static void
7144 init_raw_breakpoint_without_location (struct breakpoint *b,
7145 struct gdbarch *gdbarch,
7146 enum bptype bptype,
7147 const struct breakpoint_ops *ops)
7148 {
7149 gdb_assert (ops != NULL);
7150
7151 b->ops = ops;
7152 b->type = bptype;
7153 b->gdbarch = gdbarch;
7154 b->language = current_language->la_language;
7155 b->input_radix = input_radix;
7156 b->related_breakpoint = b;
7157 }
7158
7159 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7160 that has type BPTYPE and has no locations as yet. */
7161
7162 static struct breakpoint *
7163 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7164 enum bptype bptype,
7165 const struct breakpoint_ops *ops)
7166 {
7167 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7168
7169 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7170 return add_to_breakpoint_chain (std::move (b));
7171 }
7172
7173 /* Initialize loc->function_name. */
7174
7175 static void
7176 set_breakpoint_location_function (struct bp_location *loc)
7177 {
7178 gdb_assert (loc->owner != NULL);
7179
7180 if (loc->owner->type == bp_breakpoint
7181 || loc->owner->type == bp_hardware_breakpoint
7182 || is_tracepoint (loc->owner))
7183 {
7184 const char *function_name;
7185
7186 if (loc->msymbol != NULL
7187 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7188 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7189 {
7190 struct breakpoint *b = loc->owner;
7191
7192 function_name = loc->msymbol->linkage_name ();
7193
7194 if (b->type == bp_breakpoint && b->loc == loc
7195 && loc->next == NULL && b->related_breakpoint == b)
7196 {
7197 /* Create only the whole new breakpoint of this type but do not
7198 mess more complicated breakpoints with multiple locations. */
7199 b->type = bp_gnu_ifunc_resolver;
7200 /* Remember the resolver's address for use by the return
7201 breakpoint. */
7202 loc->related_address = loc->address;
7203 }
7204 }
7205 else
7206 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7207
7208 if (function_name)
7209 loc->function_name = xstrdup (function_name);
7210 }
7211 }
7212
7213 /* Attempt to determine architecture of location identified by SAL. */
7214 struct gdbarch *
7215 get_sal_arch (struct symtab_and_line sal)
7216 {
7217 if (sal.section)
7218 return sal.section->objfile->arch ();
7219 if (sal.symtab)
7220 return SYMTAB_OBJFILE (sal.symtab)->arch ();
7221
7222 return NULL;
7223 }
7224
7225 /* Low level routine for partially initializing a breakpoint of type
7226 BPTYPE. The newly created breakpoint's address, section, source
7227 file name, and line number are provided by SAL.
7228
7229 It is expected that the caller will complete the initialization of
7230 the newly created breakpoint struct as well as output any status
7231 information regarding the creation of a new breakpoint. */
7232
7233 static void
7234 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7235 struct symtab_and_line sal, enum bptype bptype,
7236 const struct breakpoint_ops *ops)
7237 {
7238 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7239
7240 add_location_to_breakpoint (b, &sal);
7241
7242 if (bptype != bp_catchpoint)
7243 gdb_assert (sal.pspace != NULL);
7244
7245 /* Store the program space that was used to set the breakpoint,
7246 except for ordinary breakpoints, which are independent of the
7247 program space. */
7248 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7249 b->pspace = sal.pspace;
7250 }
7251
7252 /* set_raw_breakpoint is a low level routine for allocating and
7253 partially initializing a breakpoint of type BPTYPE. The newly
7254 created breakpoint's address, section, source file name, and line
7255 number are provided by SAL. The newly created and partially
7256 initialized breakpoint is added to the breakpoint chain and
7257 is also returned as the value of this function.
7258
7259 It is expected that the caller will complete the initialization of
7260 the newly created breakpoint struct as well as output any status
7261 information regarding the creation of a new breakpoint. In
7262 particular, set_raw_breakpoint does NOT set the breakpoint
7263 number! Care should be taken to not allow an error to occur
7264 prior to completing the initialization of the breakpoint. If this
7265 should happen, a bogus breakpoint will be left on the chain. */
7266
7267 struct breakpoint *
7268 set_raw_breakpoint (struct gdbarch *gdbarch,
7269 struct symtab_and_line sal, enum bptype bptype,
7270 const struct breakpoint_ops *ops)
7271 {
7272 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7273
7274 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7275 return add_to_breakpoint_chain (std::move (b));
7276 }
7277
7278 /* Call this routine when stepping and nexting to enable a breakpoint
7279 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7280 initiated the operation. */
7281
7282 void
7283 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7284 {
7285 struct breakpoint *b, *b_tmp;
7286 int thread = tp->global_num;
7287
7288 /* To avoid having to rescan all objfile symbols at every step,
7289 we maintain a list of continually-inserted but always disabled
7290 longjmp "master" breakpoints. Here, we simply create momentary
7291 clones of those and enable them for the requested thread. */
7292 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7293 if (b->pspace == current_program_space
7294 && (b->type == bp_longjmp_master
7295 || b->type == bp_exception_master))
7296 {
7297 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7298 struct breakpoint *clone;
7299
7300 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7301 after their removal. */
7302 clone = momentary_breakpoint_from_master (b, type,
7303 &momentary_breakpoint_ops, 1);
7304 clone->thread = thread;
7305 }
7306
7307 tp->initiating_frame = frame;
7308 }
7309
7310 /* Delete all longjmp breakpoints from THREAD. */
7311 void
7312 delete_longjmp_breakpoint (int thread)
7313 {
7314 struct breakpoint *b, *b_tmp;
7315
7316 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7317 if (b->type == bp_longjmp || b->type == bp_exception)
7318 {
7319 if (b->thread == thread)
7320 delete_breakpoint (b);
7321 }
7322 }
7323
7324 void
7325 delete_longjmp_breakpoint_at_next_stop (int thread)
7326 {
7327 struct breakpoint *b, *b_tmp;
7328
7329 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7330 if (b->type == bp_longjmp || b->type == bp_exception)
7331 {
7332 if (b->thread == thread)
7333 b->disposition = disp_del_at_next_stop;
7334 }
7335 }
7336
7337 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7338 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7339 pointer to any of them. Return NULL if this system cannot place longjmp
7340 breakpoints. */
7341
7342 struct breakpoint *
7343 set_longjmp_breakpoint_for_call_dummy (void)
7344 {
7345 struct breakpoint *b, *retval = NULL;
7346
7347 ALL_BREAKPOINTS (b)
7348 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7349 {
7350 struct breakpoint *new_b;
7351
7352 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7353 &momentary_breakpoint_ops,
7354 1);
7355 new_b->thread = inferior_thread ()->global_num;
7356
7357 /* Link NEW_B into the chain of RETVAL breakpoints. */
7358
7359 gdb_assert (new_b->related_breakpoint == new_b);
7360 if (retval == NULL)
7361 retval = new_b;
7362 new_b->related_breakpoint = retval;
7363 while (retval->related_breakpoint != new_b->related_breakpoint)
7364 retval = retval->related_breakpoint;
7365 retval->related_breakpoint = new_b;
7366 }
7367
7368 return retval;
7369 }
7370
7371 /* Verify all existing dummy frames and their associated breakpoints for
7372 TP. Remove those which can no longer be found in the current frame
7373 stack.
7374
7375 You should call this function only at places where it is safe to currently
7376 unwind the whole stack. Failed stack unwind would discard live dummy
7377 frames. */
7378
7379 void
7380 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7381 {
7382 struct breakpoint *b, *b_tmp;
7383
7384 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7385 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7386 {
7387 struct breakpoint *dummy_b = b->related_breakpoint;
7388
7389 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7390 dummy_b = dummy_b->related_breakpoint;
7391 if (dummy_b->type != bp_call_dummy
7392 || frame_find_by_id (dummy_b->frame_id) != NULL)
7393 continue;
7394
7395 dummy_frame_discard (dummy_b->frame_id, tp);
7396
7397 while (b->related_breakpoint != b)
7398 {
7399 if (b_tmp == b->related_breakpoint)
7400 b_tmp = b->related_breakpoint->next;
7401 delete_breakpoint (b->related_breakpoint);
7402 }
7403 delete_breakpoint (b);
7404 }
7405 }
7406
7407 void
7408 enable_overlay_breakpoints (void)
7409 {
7410 struct breakpoint *b;
7411
7412 ALL_BREAKPOINTS (b)
7413 if (b->type == bp_overlay_event)
7414 {
7415 b->enable_state = bp_enabled;
7416 update_global_location_list (UGLL_MAY_INSERT);
7417 overlay_events_enabled = 1;
7418 }
7419 }
7420
7421 void
7422 disable_overlay_breakpoints (void)
7423 {
7424 struct breakpoint *b;
7425
7426 ALL_BREAKPOINTS (b)
7427 if (b->type == bp_overlay_event)
7428 {
7429 b->enable_state = bp_disabled;
7430 update_global_location_list (UGLL_DONT_INSERT);
7431 overlay_events_enabled = 0;
7432 }
7433 }
7434
7435 /* Set an active std::terminate breakpoint for each std::terminate
7436 master breakpoint. */
7437 void
7438 set_std_terminate_breakpoint (void)
7439 {
7440 struct breakpoint *b, *b_tmp;
7441
7442 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7443 if (b->pspace == current_program_space
7444 && b->type == bp_std_terminate_master)
7445 {
7446 momentary_breakpoint_from_master (b, bp_std_terminate,
7447 &momentary_breakpoint_ops, 1);
7448 }
7449 }
7450
7451 /* Delete all the std::terminate breakpoints. */
7452 void
7453 delete_std_terminate_breakpoint (void)
7454 {
7455 struct breakpoint *b, *b_tmp;
7456
7457 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7458 if (b->type == bp_std_terminate)
7459 delete_breakpoint (b);
7460 }
7461
7462 struct breakpoint *
7463 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7464 {
7465 struct breakpoint *b;
7466
7467 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7468 &internal_breakpoint_ops);
7469
7470 b->enable_state = bp_enabled;
7471 /* location has to be used or breakpoint_re_set will delete me. */
7472 b->location = new_address_location (b->loc->address, NULL, 0);
7473
7474 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7475
7476 return b;
7477 }
7478
7479 struct lang_and_radix
7480 {
7481 enum language lang;
7482 int radix;
7483 };
7484
7485 /* Create a breakpoint for JIT code registration and unregistration. */
7486
7487 struct breakpoint *
7488 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7489 {
7490 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7491 &internal_breakpoint_ops);
7492 }
7493
7494 /* Remove JIT code registration and unregistration breakpoint(s). */
7495
7496 void
7497 remove_jit_event_breakpoints (void)
7498 {
7499 struct breakpoint *b, *b_tmp;
7500
7501 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7502 if (b->type == bp_jit_event
7503 && b->loc->pspace == current_program_space)
7504 delete_breakpoint (b);
7505 }
7506
7507 void
7508 remove_solib_event_breakpoints (void)
7509 {
7510 struct breakpoint *b, *b_tmp;
7511
7512 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7513 if (b->type == bp_shlib_event
7514 && b->loc->pspace == current_program_space)
7515 delete_breakpoint (b);
7516 }
7517
7518 /* See breakpoint.h. */
7519
7520 void
7521 remove_solib_event_breakpoints_at_next_stop (void)
7522 {
7523 struct breakpoint *b, *b_tmp;
7524
7525 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7526 if (b->type == bp_shlib_event
7527 && b->loc->pspace == current_program_space)
7528 b->disposition = disp_del_at_next_stop;
7529 }
7530
7531 /* Helper for create_solib_event_breakpoint /
7532 create_and_insert_solib_event_breakpoint. Allows specifying which
7533 INSERT_MODE to pass through to update_global_location_list. */
7534
7535 static struct breakpoint *
7536 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7537 enum ugll_insert_mode insert_mode)
7538 {
7539 struct breakpoint *b;
7540
7541 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7542 &internal_breakpoint_ops);
7543 update_global_location_list_nothrow (insert_mode);
7544 return b;
7545 }
7546
7547 struct breakpoint *
7548 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7549 {
7550 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7551 }
7552
7553 /* See breakpoint.h. */
7554
7555 struct breakpoint *
7556 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7557 {
7558 struct breakpoint *b;
7559
7560 /* Explicitly tell update_global_location_list to insert
7561 locations. */
7562 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7563 if (!b->loc->inserted)
7564 {
7565 delete_breakpoint (b);
7566 return NULL;
7567 }
7568 return b;
7569 }
7570
7571 /* Disable any breakpoints that are on code in shared libraries. Only
7572 apply to enabled breakpoints, disabled ones can just stay disabled. */
7573
7574 void
7575 disable_breakpoints_in_shlibs (void)
7576 {
7577 struct bp_location *loc, **locp_tmp;
7578
7579 ALL_BP_LOCATIONS (loc, locp_tmp)
7580 {
7581 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7582 struct breakpoint *b = loc->owner;
7583
7584 /* We apply the check to all breakpoints, including disabled for
7585 those with loc->duplicate set. This is so that when breakpoint
7586 becomes enabled, or the duplicate is removed, gdb will try to
7587 insert all breakpoints. If we don't set shlib_disabled here,
7588 we'll try to insert those breakpoints and fail. */
7589 if (((b->type == bp_breakpoint)
7590 || (b->type == bp_jit_event)
7591 || (b->type == bp_hardware_breakpoint)
7592 || (is_tracepoint (b)))
7593 && loc->pspace == current_program_space
7594 && !loc->shlib_disabled
7595 && solib_name_from_address (loc->pspace, loc->address)
7596 )
7597 {
7598 loc->shlib_disabled = 1;
7599 }
7600 }
7601 }
7602
7603 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7604 notification of unloaded_shlib. Only apply to enabled breakpoints,
7605 disabled ones can just stay disabled. */
7606
7607 static void
7608 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7609 {
7610 struct bp_location *loc, **locp_tmp;
7611 int disabled_shlib_breaks = 0;
7612
7613 ALL_BP_LOCATIONS (loc, locp_tmp)
7614 {
7615 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7616 struct breakpoint *b = loc->owner;
7617
7618 if (solib->pspace == loc->pspace
7619 && !loc->shlib_disabled
7620 && (((b->type == bp_breakpoint
7621 || b->type == bp_jit_event
7622 || b->type == bp_hardware_breakpoint)
7623 && (loc->loc_type == bp_loc_hardware_breakpoint
7624 || loc->loc_type == bp_loc_software_breakpoint))
7625 || is_tracepoint (b))
7626 && solib_contains_address_p (solib, loc->address))
7627 {
7628 loc->shlib_disabled = 1;
7629 /* At this point, we cannot rely on remove_breakpoint
7630 succeeding so we must mark the breakpoint as not inserted
7631 to prevent future errors occurring in remove_breakpoints. */
7632 loc->inserted = 0;
7633
7634 /* This may cause duplicate notifications for the same breakpoint. */
7635 gdb::observers::breakpoint_modified.notify (b);
7636
7637 if (!disabled_shlib_breaks)
7638 {
7639 target_terminal::ours_for_output ();
7640 warning (_("Temporarily disabling breakpoints "
7641 "for unloaded shared library \"%s\""),
7642 solib->so_name);
7643 }
7644 disabled_shlib_breaks = 1;
7645 }
7646 }
7647 }
7648
7649 /* Disable any breakpoints and tracepoints in OBJFILE upon
7650 notification of free_objfile. Only apply to enabled breakpoints,
7651 disabled ones can just stay disabled. */
7652
7653 static void
7654 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7655 {
7656 struct breakpoint *b;
7657
7658 if (objfile == NULL)
7659 return;
7660
7661 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7662 managed by the user with add-symbol-file/remove-symbol-file.
7663 Similarly to how breakpoints in shared libraries are handled in
7664 response to "nosharedlibrary", mark breakpoints in such modules
7665 shlib_disabled so they end up uninserted on the next global
7666 location list update. Shared libraries not loaded by the user
7667 aren't handled here -- they're already handled in
7668 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7669 solib_unloaded observer. We skip objfiles that are not
7670 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7671 main objfile). */
7672 if ((objfile->flags & OBJF_SHARED) == 0
7673 || (objfile->flags & OBJF_USERLOADED) == 0)
7674 return;
7675
7676 ALL_BREAKPOINTS (b)
7677 {
7678 struct bp_location *loc;
7679 int bp_modified = 0;
7680
7681 if (!is_breakpoint (b) && !is_tracepoint (b))
7682 continue;
7683
7684 for (loc = b->loc; loc != NULL; loc = loc->next)
7685 {
7686 CORE_ADDR loc_addr = loc->address;
7687
7688 if (loc->loc_type != bp_loc_hardware_breakpoint
7689 && loc->loc_type != bp_loc_software_breakpoint)
7690 continue;
7691
7692 if (loc->shlib_disabled != 0)
7693 continue;
7694
7695 if (objfile->pspace != loc->pspace)
7696 continue;
7697
7698 if (loc->loc_type != bp_loc_hardware_breakpoint
7699 && loc->loc_type != bp_loc_software_breakpoint)
7700 continue;
7701
7702 if (is_addr_in_objfile (loc_addr, objfile))
7703 {
7704 loc->shlib_disabled = 1;
7705 /* At this point, we don't know whether the object was
7706 unmapped from the inferior or not, so leave the
7707 inserted flag alone. We'll handle failure to
7708 uninsert quietly, in case the object was indeed
7709 unmapped. */
7710
7711 mark_breakpoint_location_modified (loc);
7712
7713 bp_modified = 1;
7714 }
7715 }
7716
7717 if (bp_modified)
7718 gdb::observers::breakpoint_modified.notify (b);
7719 }
7720 }
7721
7722 /* FORK & VFORK catchpoints. */
7723
7724 /* An instance of this type is used to represent a fork or vfork
7725 catchpoint. A breakpoint is really of this type iff its ops pointer points
7726 to CATCH_FORK_BREAKPOINT_OPS. */
7727
7728 struct fork_catchpoint : public breakpoint
7729 {
7730 /* Process id of a child process whose forking triggered this
7731 catchpoint. This field is only valid immediately after this
7732 catchpoint has triggered. */
7733 ptid_t forked_inferior_pid;
7734 };
7735
7736 /* Implement the "insert" breakpoint_ops method for fork
7737 catchpoints. */
7738
7739 static int
7740 insert_catch_fork (struct bp_location *bl)
7741 {
7742 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7743 }
7744
7745 /* Implement the "remove" breakpoint_ops method for fork
7746 catchpoints. */
7747
7748 static int
7749 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7750 {
7751 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7752 }
7753
7754 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7755 catchpoints. */
7756
7757 static int
7758 breakpoint_hit_catch_fork (const struct bp_location *bl,
7759 const address_space *aspace, CORE_ADDR bp_addr,
7760 const struct target_waitstatus *ws)
7761 {
7762 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7763
7764 if (ws->kind != TARGET_WAITKIND_FORKED)
7765 return 0;
7766
7767 c->forked_inferior_pid = ws->value.related_pid;
7768 return 1;
7769 }
7770
7771 /* Implement the "print_it" breakpoint_ops method for fork
7772 catchpoints. */
7773
7774 static enum print_stop_action
7775 print_it_catch_fork (bpstat bs)
7776 {
7777 struct ui_out *uiout = current_uiout;
7778 struct breakpoint *b = bs->breakpoint_at;
7779 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7780
7781 annotate_catchpoint (b->number);
7782 maybe_print_thread_hit_breakpoint (uiout);
7783 if (b->disposition == disp_del)
7784 uiout->text ("Temporary catchpoint ");
7785 else
7786 uiout->text ("Catchpoint ");
7787 if (uiout->is_mi_like_p ())
7788 {
7789 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7790 uiout->field_string ("disp", bpdisp_text (b->disposition));
7791 }
7792 uiout->field_signed ("bkptno", b->number);
7793 uiout->text (" (forked process ");
7794 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7795 uiout->text ("), ");
7796 return PRINT_SRC_AND_LOC;
7797 }
7798
7799 /* Implement the "print_one" breakpoint_ops method for fork
7800 catchpoints. */
7801
7802 static void
7803 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7804 {
7805 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7806 struct value_print_options opts;
7807 struct ui_out *uiout = current_uiout;
7808
7809 get_user_print_options (&opts);
7810
7811 /* Field 4, the address, is omitted (which makes the columns not
7812 line up too nicely with the headers, but the effect is relatively
7813 readable). */
7814 if (opts.addressprint)
7815 uiout->field_skip ("addr");
7816 annotate_field (5);
7817 uiout->text ("fork");
7818 if (c->forked_inferior_pid != null_ptid)
7819 {
7820 uiout->text (", process ");
7821 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7822 uiout->spaces (1);
7823 }
7824
7825 if (uiout->is_mi_like_p ())
7826 uiout->field_string ("catch-type", "fork");
7827 }
7828
7829 /* Implement the "print_mention" breakpoint_ops method for fork
7830 catchpoints. */
7831
7832 static void
7833 print_mention_catch_fork (struct breakpoint *b)
7834 {
7835 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7836 }
7837
7838 /* Implement the "print_recreate" breakpoint_ops method for fork
7839 catchpoints. */
7840
7841 static void
7842 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7843 {
7844 fprintf_unfiltered (fp, "catch fork");
7845 print_recreate_thread (b, fp);
7846 }
7847
7848 /* The breakpoint_ops structure to be used in fork catchpoints. */
7849
7850 static struct breakpoint_ops catch_fork_breakpoint_ops;
7851
7852 /* Implement the "insert" breakpoint_ops method for vfork
7853 catchpoints. */
7854
7855 static int
7856 insert_catch_vfork (struct bp_location *bl)
7857 {
7858 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7859 }
7860
7861 /* Implement the "remove" breakpoint_ops method for vfork
7862 catchpoints. */
7863
7864 static int
7865 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7866 {
7867 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7868 }
7869
7870 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7871 catchpoints. */
7872
7873 static int
7874 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7875 const address_space *aspace, CORE_ADDR bp_addr,
7876 const struct target_waitstatus *ws)
7877 {
7878 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7879
7880 if (ws->kind != TARGET_WAITKIND_VFORKED)
7881 return 0;
7882
7883 c->forked_inferior_pid = ws->value.related_pid;
7884 return 1;
7885 }
7886
7887 /* Implement the "print_it" breakpoint_ops method for vfork
7888 catchpoints. */
7889
7890 static enum print_stop_action
7891 print_it_catch_vfork (bpstat bs)
7892 {
7893 struct ui_out *uiout = current_uiout;
7894 struct breakpoint *b = bs->breakpoint_at;
7895 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7896
7897 annotate_catchpoint (b->number);
7898 maybe_print_thread_hit_breakpoint (uiout);
7899 if (b->disposition == disp_del)
7900 uiout->text ("Temporary catchpoint ");
7901 else
7902 uiout->text ("Catchpoint ");
7903 if (uiout->is_mi_like_p ())
7904 {
7905 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7906 uiout->field_string ("disp", bpdisp_text (b->disposition));
7907 }
7908 uiout->field_signed ("bkptno", b->number);
7909 uiout->text (" (vforked process ");
7910 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7911 uiout->text ("), ");
7912 return PRINT_SRC_AND_LOC;
7913 }
7914
7915 /* Implement the "print_one" breakpoint_ops method for vfork
7916 catchpoints. */
7917
7918 static void
7919 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7920 {
7921 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7922 struct value_print_options opts;
7923 struct ui_out *uiout = current_uiout;
7924
7925 get_user_print_options (&opts);
7926 /* Field 4, the address, is omitted (which makes the columns not
7927 line up too nicely with the headers, but the effect is relatively
7928 readable). */
7929 if (opts.addressprint)
7930 uiout->field_skip ("addr");
7931 annotate_field (5);
7932 uiout->text ("vfork");
7933 if (c->forked_inferior_pid != null_ptid)
7934 {
7935 uiout->text (", process ");
7936 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7937 uiout->spaces (1);
7938 }
7939
7940 if (uiout->is_mi_like_p ())
7941 uiout->field_string ("catch-type", "vfork");
7942 }
7943
7944 /* Implement the "print_mention" breakpoint_ops method for vfork
7945 catchpoints. */
7946
7947 static void
7948 print_mention_catch_vfork (struct breakpoint *b)
7949 {
7950 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7951 }
7952
7953 /* Implement the "print_recreate" breakpoint_ops method for vfork
7954 catchpoints. */
7955
7956 static void
7957 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7958 {
7959 fprintf_unfiltered (fp, "catch vfork");
7960 print_recreate_thread (b, fp);
7961 }
7962
7963 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7964
7965 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7966
7967 /* An instance of this type is used to represent an solib catchpoint.
7968 A breakpoint is really of this type iff its ops pointer points to
7969 CATCH_SOLIB_BREAKPOINT_OPS. */
7970
7971 struct solib_catchpoint : public breakpoint
7972 {
7973 ~solib_catchpoint () override;
7974
7975 /* True for "catch load", false for "catch unload". */
7976 bool is_load;
7977
7978 /* Regular expression to match, if any. COMPILED is only valid when
7979 REGEX is non-NULL. */
7980 char *regex;
7981 std::unique_ptr<compiled_regex> compiled;
7982 };
7983
7984 solib_catchpoint::~solib_catchpoint ()
7985 {
7986 xfree (this->regex);
7987 }
7988
7989 static int
7990 insert_catch_solib (struct bp_location *ignore)
7991 {
7992 return 0;
7993 }
7994
7995 static int
7996 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7997 {
7998 return 0;
7999 }
8000
8001 static int
8002 breakpoint_hit_catch_solib (const struct bp_location *bl,
8003 const address_space *aspace,
8004 CORE_ADDR bp_addr,
8005 const struct target_waitstatus *ws)
8006 {
8007 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8008 struct breakpoint *other;
8009
8010 if (ws->kind == TARGET_WAITKIND_LOADED)
8011 return 1;
8012
8013 ALL_BREAKPOINTS (other)
8014 {
8015 struct bp_location *other_bl;
8016
8017 if (other == bl->owner)
8018 continue;
8019
8020 if (other->type != bp_shlib_event)
8021 continue;
8022
8023 if (self->pspace != NULL && other->pspace != self->pspace)
8024 continue;
8025
8026 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8027 {
8028 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8029 return 1;
8030 }
8031 }
8032
8033 return 0;
8034 }
8035
8036 static void
8037 check_status_catch_solib (struct bpstats *bs)
8038 {
8039 struct solib_catchpoint *self
8040 = (struct solib_catchpoint *) bs->breakpoint_at;
8041
8042 if (self->is_load)
8043 {
8044 for (so_list *iter : current_program_space->added_solibs)
8045 {
8046 if (!self->regex
8047 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8048 return;
8049 }
8050 }
8051 else
8052 {
8053 for (const std::string &iter : current_program_space->deleted_solibs)
8054 {
8055 if (!self->regex
8056 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8057 return;
8058 }
8059 }
8060
8061 bs->stop = 0;
8062 bs->print_it = print_it_noop;
8063 }
8064
8065 static enum print_stop_action
8066 print_it_catch_solib (bpstat bs)
8067 {
8068 struct breakpoint *b = bs->breakpoint_at;
8069 struct ui_out *uiout = current_uiout;
8070
8071 annotate_catchpoint (b->number);
8072 maybe_print_thread_hit_breakpoint (uiout);
8073 if (b->disposition == disp_del)
8074 uiout->text ("Temporary catchpoint ");
8075 else
8076 uiout->text ("Catchpoint ");
8077 uiout->field_signed ("bkptno", b->number);
8078 uiout->text ("\n");
8079 if (uiout->is_mi_like_p ())
8080 uiout->field_string ("disp", bpdisp_text (b->disposition));
8081 print_solib_event (1);
8082 return PRINT_SRC_AND_LOC;
8083 }
8084
8085 static void
8086 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8087 {
8088 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8089 struct value_print_options opts;
8090 struct ui_out *uiout = current_uiout;
8091
8092 get_user_print_options (&opts);
8093 /* Field 4, the address, is omitted (which makes the columns not
8094 line up too nicely with the headers, but the effect is relatively
8095 readable). */
8096 if (opts.addressprint)
8097 {
8098 annotate_field (4);
8099 uiout->field_skip ("addr");
8100 }
8101
8102 std::string msg;
8103 annotate_field (5);
8104 if (self->is_load)
8105 {
8106 if (self->regex)
8107 msg = string_printf (_("load of library matching %s"), self->regex);
8108 else
8109 msg = _("load of library");
8110 }
8111 else
8112 {
8113 if (self->regex)
8114 msg = string_printf (_("unload of library matching %s"), self->regex);
8115 else
8116 msg = _("unload of library");
8117 }
8118 uiout->field_string ("what", msg);
8119
8120 if (uiout->is_mi_like_p ())
8121 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8122 }
8123
8124 static void
8125 print_mention_catch_solib (struct breakpoint *b)
8126 {
8127 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8128
8129 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8130 self->is_load ? "load" : "unload");
8131 }
8132
8133 static void
8134 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8135 {
8136 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8137
8138 fprintf_unfiltered (fp, "%s %s",
8139 b->disposition == disp_del ? "tcatch" : "catch",
8140 self->is_load ? "load" : "unload");
8141 if (self->regex)
8142 fprintf_unfiltered (fp, " %s", self->regex);
8143 fprintf_unfiltered (fp, "\n");
8144 }
8145
8146 static struct breakpoint_ops catch_solib_breakpoint_ops;
8147
8148 /* See breakpoint.h. */
8149
8150 void
8151 add_solib_catchpoint (const char *arg, bool is_load, bool is_temp, bool enabled)
8152 {
8153 struct gdbarch *gdbarch = get_current_arch ();
8154
8155 if (!arg)
8156 arg = "";
8157 arg = skip_spaces (arg);
8158
8159 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8160
8161 if (*arg != '\0')
8162 {
8163 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8164 _("Invalid regexp")));
8165 c->regex = xstrdup (arg);
8166 }
8167
8168 c->is_load = is_load;
8169 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8170 &catch_solib_breakpoint_ops);
8171
8172 c->enable_state = enabled ? bp_enabled : bp_disabled;
8173
8174 install_breakpoint (0, std::move (c), 1);
8175 }
8176
8177 /* A helper function that does all the work for "catch load" and
8178 "catch unload". */
8179
8180 static void
8181 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8182 struct cmd_list_element *command)
8183 {
8184 const int enabled = 1;
8185 bool temp = get_cmd_context (command) == CATCH_TEMPORARY;
8186
8187 add_solib_catchpoint (arg, is_load, temp, enabled);
8188 }
8189
8190 static void
8191 catch_load_command_1 (const char *arg, int from_tty,
8192 struct cmd_list_element *command)
8193 {
8194 catch_load_or_unload (arg, from_tty, 1, command);
8195 }
8196
8197 static void
8198 catch_unload_command_1 (const char *arg, int from_tty,
8199 struct cmd_list_element *command)
8200 {
8201 catch_load_or_unload (arg, from_tty, 0, command);
8202 }
8203
8204 /* See breakpoint.h. */
8205
8206 void
8207 init_catchpoint (struct breakpoint *b,
8208 struct gdbarch *gdbarch, bool temp,
8209 const char *cond_string,
8210 const struct breakpoint_ops *ops)
8211 {
8212 symtab_and_line sal;
8213 sal.pspace = current_program_space;
8214
8215 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8216
8217 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8218 b->disposition = temp ? disp_del : disp_donttouch;
8219 }
8220
8221 void
8222 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8223 {
8224 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8225 set_breakpoint_number (internal, b);
8226 if (is_tracepoint (b))
8227 set_tracepoint_count (breakpoint_count);
8228 if (!internal)
8229 mention (b);
8230 gdb::observers::breakpoint_created.notify (b);
8231
8232 if (update_gll)
8233 update_global_location_list (UGLL_MAY_INSERT);
8234 }
8235
8236 static void
8237 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8238 bool temp, const char *cond_string,
8239 const struct breakpoint_ops *ops)
8240 {
8241 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8242
8243 init_catchpoint (c.get (), gdbarch, temp, cond_string, ops);
8244
8245 c->forked_inferior_pid = null_ptid;
8246
8247 install_breakpoint (0, std::move (c), 1);
8248 }
8249
8250 /* Exec catchpoints. */
8251
8252 /* An instance of this type is used to represent an exec catchpoint.
8253 A breakpoint is really of this type iff its ops pointer points to
8254 CATCH_EXEC_BREAKPOINT_OPS. */
8255
8256 struct exec_catchpoint : public breakpoint
8257 {
8258 ~exec_catchpoint () override;
8259
8260 /* Filename of a program whose exec triggered this catchpoint.
8261 This field is only valid immediately after this catchpoint has
8262 triggered. */
8263 char *exec_pathname;
8264 };
8265
8266 /* Exec catchpoint destructor. */
8267
8268 exec_catchpoint::~exec_catchpoint ()
8269 {
8270 xfree (this->exec_pathname);
8271 }
8272
8273 static int
8274 insert_catch_exec (struct bp_location *bl)
8275 {
8276 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8277 }
8278
8279 static int
8280 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8281 {
8282 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8283 }
8284
8285 static int
8286 breakpoint_hit_catch_exec (const struct bp_location *bl,
8287 const address_space *aspace, CORE_ADDR bp_addr,
8288 const struct target_waitstatus *ws)
8289 {
8290 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8291
8292 if (ws->kind != TARGET_WAITKIND_EXECD)
8293 return 0;
8294
8295 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8296 return 1;
8297 }
8298
8299 static enum print_stop_action
8300 print_it_catch_exec (bpstat bs)
8301 {
8302 struct ui_out *uiout = current_uiout;
8303 struct breakpoint *b = bs->breakpoint_at;
8304 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8305
8306 annotate_catchpoint (b->number);
8307 maybe_print_thread_hit_breakpoint (uiout);
8308 if (b->disposition == disp_del)
8309 uiout->text ("Temporary catchpoint ");
8310 else
8311 uiout->text ("Catchpoint ");
8312 if (uiout->is_mi_like_p ())
8313 {
8314 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8315 uiout->field_string ("disp", bpdisp_text (b->disposition));
8316 }
8317 uiout->field_signed ("bkptno", b->number);
8318 uiout->text (" (exec'd ");
8319 uiout->field_string ("new-exec", c->exec_pathname);
8320 uiout->text ("), ");
8321
8322 return PRINT_SRC_AND_LOC;
8323 }
8324
8325 static void
8326 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8327 {
8328 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8329 struct value_print_options opts;
8330 struct ui_out *uiout = current_uiout;
8331
8332 get_user_print_options (&opts);
8333
8334 /* Field 4, the address, is omitted (which makes the columns
8335 not line up too nicely with the headers, but the effect
8336 is relatively readable). */
8337 if (opts.addressprint)
8338 uiout->field_skip ("addr");
8339 annotate_field (5);
8340 uiout->text ("exec");
8341 if (c->exec_pathname != NULL)
8342 {
8343 uiout->text (", program \"");
8344 uiout->field_string ("what", c->exec_pathname);
8345 uiout->text ("\" ");
8346 }
8347
8348 if (uiout->is_mi_like_p ())
8349 uiout->field_string ("catch-type", "exec");
8350 }
8351
8352 static void
8353 print_mention_catch_exec (struct breakpoint *b)
8354 {
8355 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8356 }
8357
8358 /* Implement the "print_recreate" breakpoint_ops method for exec
8359 catchpoints. */
8360
8361 static void
8362 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8363 {
8364 fprintf_unfiltered (fp, "catch exec");
8365 print_recreate_thread (b, fp);
8366 }
8367
8368 static struct breakpoint_ops catch_exec_breakpoint_ops;
8369
8370 static int
8371 hw_breakpoint_used_count (void)
8372 {
8373 int i = 0;
8374 struct breakpoint *b;
8375 struct bp_location *bl;
8376
8377 ALL_BREAKPOINTS (b)
8378 {
8379 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8380 for (bl = b->loc; bl; bl = bl->next)
8381 {
8382 /* Special types of hardware breakpoints may use more than
8383 one register. */
8384 i += b->ops->resources_needed (bl);
8385 }
8386 }
8387
8388 return i;
8389 }
8390
8391 /* Returns the resources B would use if it were a hardware
8392 watchpoint. */
8393
8394 static int
8395 hw_watchpoint_use_count (struct breakpoint *b)
8396 {
8397 int i = 0;
8398 struct bp_location *bl;
8399
8400 if (!breakpoint_enabled (b))
8401 return 0;
8402
8403 for (bl = b->loc; bl; bl = bl->next)
8404 {
8405 /* Special types of hardware watchpoints may use more than
8406 one register. */
8407 i += b->ops->resources_needed (bl);
8408 }
8409
8410 return i;
8411 }
8412
8413 /* Returns the sum the used resources of all hardware watchpoints of
8414 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8415 the sum of the used resources of all hardware watchpoints of other
8416 types _not_ TYPE. */
8417
8418 static int
8419 hw_watchpoint_used_count_others (struct breakpoint *except,
8420 enum bptype type, int *other_type_used)
8421 {
8422 int i = 0;
8423 struct breakpoint *b;
8424
8425 *other_type_used = 0;
8426 ALL_BREAKPOINTS (b)
8427 {
8428 if (b == except)
8429 continue;
8430 if (!breakpoint_enabled (b))
8431 continue;
8432
8433 if (b->type == type)
8434 i += hw_watchpoint_use_count (b);
8435 else if (is_hardware_watchpoint (b))
8436 *other_type_used = 1;
8437 }
8438
8439 return i;
8440 }
8441
8442 void
8443 disable_watchpoints_before_interactive_call_start (void)
8444 {
8445 struct breakpoint *b;
8446
8447 ALL_BREAKPOINTS (b)
8448 {
8449 if (is_watchpoint (b) && breakpoint_enabled (b))
8450 {
8451 b->enable_state = bp_call_disabled;
8452 update_global_location_list (UGLL_DONT_INSERT);
8453 }
8454 }
8455 }
8456
8457 void
8458 enable_watchpoints_after_interactive_call_stop (void)
8459 {
8460 struct breakpoint *b;
8461
8462 ALL_BREAKPOINTS (b)
8463 {
8464 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8465 {
8466 b->enable_state = bp_enabled;
8467 update_global_location_list (UGLL_MAY_INSERT);
8468 }
8469 }
8470 }
8471
8472 void
8473 disable_breakpoints_before_startup (void)
8474 {
8475 current_program_space->executing_startup = 1;
8476 update_global_location_list (UGLL_DONT_INSERT);
8477 }
8478
8479 void
8480 enable_breakpoints_after_startup (void)
8481 {
8482 current_program_space->executing_startup = 0;
8483 breakpoint_re_set ();
8484 }
8485
8486 /* Create a new single-step breakpoint for thread THREAD, with no
8487 locations. */
8488
8489 static struct breakpoint *
8490 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8491 {
8492 std::unique_ptr<breakpoint> b (new breakpoint ());
8493
8494 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8495 &momentary_breakpoint_ops);
8496
8497 b->disposition = disp_donttouch;
8498 b->frame_id = null_frame_id;
8499
8500 b->thread = thread;
8501 gdb_assert (b->thread != 0);
8502
8503 return add_to_breakpoint_chain (std::move (b));
8504 }
8505
8506 /* Set a momentary breakpoint of type TYPE at address specified by
8507 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8508 frame. */
8509
8510 breakpoint_up
8511 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8512 struct frame_id frame_id, enum bptype type)
8513 {
8514 struct breakpoint *b;
8515
8516 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8517 tail-called one. */
8518 gdb_assert (!frame_id_artificial_p (frame_id));
8519
8520 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8521 b->enable_state = bp_enabled;
8522 b->disposition = disp_donttouch;
8523 b->frame_id = frame_id;
8524
8525 b->thread = inferior_thread ()->global_num;
8526
8527 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8528
8529 return breakpoint_up (b);
8530 }
8531
8532 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8533 The new breakpoint will have type TYPE, use OPS as its
8534 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8535
8536 static struct breakpoint *
8537 momentary_breakpoint_from_master (struct breakpoint *orig,
8538 enum bptype type,
8539 const struct breakpoint_ops *ops,
8540 int loc_enabled)
8541 {
8542 struct breakpoint *copy;
8543
8544 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8545 copy->loc = allocate_bp_location (copy);
8546 set_breakpoint_location_function (copy->loc);
8547
8548 copy->loc->gdbarch = orig->loc->gdbarch;
8549 copy->loc->requested_address = orig->loc->requested_address;
8550 copy->loc->address = orig->loc->address;
8551 copy->loc->section = orig->loc->section;
8552 copy->loc->pspace = orig->loc->pspace;
8553 copy->loc->probe = orig->loc->probe;
8554 copy->loc->line_number = orig->loc->line_number;
8555 copy->loc->symtab = orig->loc->symtab;
8556 copy->loc->enabled = loc_enabled;
8557 copy->frame_id = orig->frame_id;
8558 copy->thread = orig->thread;
8559 copy->pspace = orig->pspace;
8560
8561 copy->enable_state = bp_enabled;
8562 copy->disposition = disp_donttouch;
8563 copy->number = internal_breakpoint_number--;
8564
8565 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8566 return copy;
8567 }
8568
8569 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8570 ORIG is NULL. */
8571
8572 struct breakpoint *
8573 clone_momentary_breakpoint (struct breakpoint *orig)
8574 {
8575 /* If there's nothing to clone, then return nothing. */
8576 if (orig == NULL)
8577 return NULL;
8578
8579 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8580 }
8581
8582 breakpoint_up
8583 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8584 enum bptype type)
8585 {
8586 struct symtab_and_line sal;
8587
8588 sal = find_pc_line (pc, 0);
8589 sal.pc = pc;
8590 sal.section = find_pc_overlay (pc);
8591 sal.explicit_pc = 1;
8592
8593 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8594 }
8595 \f
8596
8597 /* Tell the user we have just set a breakpoint B. */
8598
8599 static void
8600 mention (struct breakpoint *b)
8601 {
8602 b->ops->print_mention (b);
8603 current_uiout->text ("\n");
8604 }
8605 \f
8606
8607 static bool bp_loc_is_permanent (struct bp_location *loc);
8608
8609 /* Handle "set breakpoint auto-hw on".
8610
8611 If the explicitly specified breakpoint type is not hardware
8612 breakpoint, check the memory map to see whether the breakpoint
8613 address is in read-only memory.
8614
8615 - location type is not hardware breakpoint, memory is read-only.
8616 We change the type of the location to hardware breakpoint.
8617
8618 - location type is hardware breakpoint, memory is read-write. This
8619 means we've previously made the location hardware one, but then the
8620 memory map changed, so we undo.
8621 */
8622
8623 static void
8624 handle_automatic_hardware_breakpoints (bp_location *bl)
8625 {
8626 if (automatic_hardware_breakpoints
8627 && bl->owner->type != bp_hardware_breakpoint
8628 && (bl->loc_type == bp_loc_software_breakpoint
8629 || bl->loc_type == bp_loc_hardware_breakpoint))
8630 {
8631 /* When breakpoints are removed, remove_breakpoints will use
8632 location types we've just set here, the only possible problem
8633 is that memory map has changed during running program, but
8634 it's not going to work anyway with current gdb. */
8635 mem_region *mr = lookup_mem_region (bl->address);
8636
8637 if (mr != nullptr)
8638 {
8639 enum bp_loc_type new_type;
8640
8641 if (mr->attrib.mode != MEM_RW)
8642 new_type = bp_loc_hardware_breakpoint;
8643 else
8644 new_type = bp_loc_software_breakpoint;
8645
8646 if (new_type != bl->loc_type)
8647 {
8648 static bool said = false;
8649
8650 bl->loc_type = new_type;
8651 if (!said)
8652 {
8653 fprintf_filtered (gdb_stdout,
8654 _("Note: automatically using "
8655 "hardware breakpoints for "
8656 "read-only addresses.\n"));
8657 said = true;
8658 }
8659 }
8660 }
8661 }
8662 }
8663
8664 static struct bp_location *
8665 add_location_to_breakpoint (struct breakpoint *b,
8666 const struct symtab_and_line *sal)
8667 {
8668 struct bp_location *loc, **tmp;
8669 CORE_ADDR adjusted_address;
8670 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8671
8672 if (loc_gdbarch == NULL)
8673 loc_gdbarch = b->gdbarch;
8674
8675 /* Adjust the breakpoint's address prior to allocating a location.
8676 Once we call allocate_bp_location(), that mostly uninitialized
8677 location will be placed on the location chain. Adjustment of the
8678 breakpoint may cause target_read_memory() to be called and we do
8679 not want its scan of the location chain to find a breakpoint and
8680 location that's only been partially initialized. */
8681 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8682 sal->pc, b->type);
8683
8684 /* Sort the locations by their ADDRESS. */
8685 loc = allocate_bp_location (b);
8686 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8687 tmp = &((*tmp)->next))
8688 ;
8689 loc->next = *tmp;
8690 *tmp = loc;
8691
8692 loc->requested_address = sal->pc;
8693 loc->address = adjusted_address;
8694 loc->pspace = sal->pspace;
8695 loc->probe.prob = sal->prob;
8696 loc->probe.objfile = sal->objfile;
8697 gdb_assert (loc->pspace != NULL);
8698 loc->section = sal->section;
8699 loc->gdbarch = loc_gdbarch;
8700 loc->line_number = sal->line;
8701 loc->symtab = sal->symtab;
8702 loc->symbol = sal->symbol;
8703 loc->msymbol = sal->msymbol;
8704 loc->objfile = sal->objfile;
8705
8706 set_breakpoint_location_function (loc);
8707
8708 /* While by definition, permanent breakpoints are already present in the
8709 code, we don't mark the location as inserted. Normally one would expect
8710 that GDB could rely on that breakpoint instruction to stop the program,
8711 thus removing the need to insert its own breakpoint, except that executing
8712 the breakpoint instruction can kill the target instead of reporting a
8713 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8714 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8715 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8716 breakpoint be inserted normally results in QEMU knowing about the GDB
8717 breakpoint, and thus trap before the breakpoint instruction is executed.
8718 (If GDB later needs to continue execution past the permanent breakpoint,
8719 it manually increments the PC, thus avoiding executing the breakpoint
8720 instruction.) */
8721 if (bp_loc_is_permanent (loc))
8722 loc->permanent = 1;
8723
8724 return loc;
8725 }
8726 \f
8727
8728 /* Return true if LOC is pointing to a permanent breakpoint,
8729 return false otherwise. */
8730
8731 static bool
8732 bp_loc_is_permanent (struct bp_location *loc)
8733 {
8734 gdb_assert (loc != NULL);
8735
8736 /* If we have a non-breakpoint-backed catchpoint or a software
8737 watchpoint, just return 0. We should not attempt to read from
8738 the addresses the locations of these breakpoint types point to.
8739 gdbarch_program_breakpoint_here_p, below, will attempt to read
8740 memory. */
8741 if (!bl_address_is_meaningful (loc))
8742 return false;
8743
8744 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8745 switch_to_program_space_and_thread (loc->pspace);
8746 return gdbarch_program_breakpoint_here_p (loc->gdbarch, loc->address);
8747 }
8748
8749 /* Build a command list for the dprintf corresponding to the current
8750 settings of the dprintf style options. */
8751
8752 static void
8753 update_dprintf_command_list (struct breakpoint *b)
8754 {
8755 char *dprintf_args = b->extra_string;
8756 char *printf_line = NULL;
8757
8758 if (!dprintf_args)
8759 return;
8760
8761 dprintf_args = skip_spaces (dprintf_args);
8762
8763 /* Allow a comma, as it may have terminated a location, but don't
8764 insist on it. */
8765 if (*dprintf_args == ',')
8766 ++dprintf_args;
8767 dprintf_args = skip_spaces (dprintf_args);
8768
8769 if (*dprintf_args != '"')
8770 error (_("Bad format string, missing '\"'."));
8771
8772 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8773 printf_line = xstrprintf ("printf %s", dprintf_args);
8774 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8775 {
8776 if (!dprintf_function)
8777 error (_("No function supplied for dprintf call"));
8778
8779 if (dprintf_channel && strlen (dprintf_channel) > 0)
8780 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8781 dprintf_function,
8782 dprintf_channel,
8783 dprintf_args);
8784 else
8785 printf_line = xstrprintf ("call (void) %s (%s)",
8786 dprintf_function,
8787 dprintf_args);
8788 }
8789 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8790 {
8791 if (target_can_run_breakpoint_commands ())
8792 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8793 else
8794 {
8795 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8796 printf_line = xstrprintf ("printf %s", dprintf_args);
8797 }
8798 }
8799 else
8800 internal_error (__FILE__, __LINE__,
8801 _("Invalid dprintf style."));
8802
8803 gdb_assert (printf_line != NULL);
8804
8805 /* Manufacture a printf sequence. */
8806 struct command_line *printf_cmd_line
8807 = new struct command_line (simple_control, printf_line);
8808 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8809 command_lines_deleter ()));
8810 }
8811
8812 /* Update all dprintf commands, making their command lists reflect
8813 current style settings. */
8814
8815 static void
8816 update_dprintf_commands (const char *args, int from_tty,
8817 struct cmd_list_element *c)
8818 {
8819 struct breakpoint *b;
8820
8821 ALL_BREAKPOINTS (b)
8822 {
8823 if (b->type == bp_dprintf)
8824 update_dprintf_command_list (b);
8825 }
8826 }
8827
8828 /* Create a breakpoint with SAL as location. Use LOCATION
8829 as a description of the location, and COND_STRING
8830 as condition expression. If LOCATION is NULL then create an
8831 "address location" from the address in the SAL. */
8832
8833 static void
8834 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8835 gdb::array_view<const symtab_and_line> sals,
8836 event_location_up &&location,
8837 gdb::unique_xmalloc_ptr<char> filter,
8838 gdb::unique_xmalloc_ptr<char> cond_string,
8839 gdb::unique_xmalloc_ptr<char> extra_string,
8840 enum bptype type, enum bpdisp disposition,
8841 int thread, int task, int ignore_count,
8842 const struct breakpoint_ops *ops, int from_tty,
8843 int enabled, int internal, unsigned flags,
8844 int display_canonical)
8845 {
8846 int i;
8847
8848 if (type == bp_hardware_breakpoint)
8849 {
8850 int target_resources_ok;
8851
8852 i = hw_breakpoint_used_count ();
8853 target_resources_ok =
8854 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8855 i + 1, 0);
8856 if (target_resources_ok == 0)
8857 error (_("No hardware breakpoint support in the target."));
8858 else if (target_resources_ok < 0)
8859 error (_("Hardware breakpoints used exceeds limit."));
8860 }
8861
8862 gdb_assert (!sals.empty ());
8863
8864 for (const auto &sal : sals)
8865 {
8866 struct bp_location *loc;
8867
8868 if (from_tty)
8869 {
8870 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8871 if (!loc_gdbarch)
8872 loc_gdbarch = gdbarch;
8873
8874 describe_other_breakpoints (loc_gdbarch,
8875 sal.pspace, sal.pc, sal.section, thread);
8876 }
8877
8878 if (&sal == &sals[0])
8879 {
8880 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8881 b->thread = thread;
8882 b->task = task;
8883
8884 b->cond_string = cond_string.release ();
8885 b->extra_string = extra_string.release ();
8886 b->ignore_count = ignore_count;
8887 b->enable_state = enabled ? bp_enabled : bp_disabled;
8888 b->disposition = disposition;
8889
8890 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8891 b->loc->inserted = 1;
8892
8893 if (type == bp_static_tracepoint)
8894 {
8895 struct tracepoint *t = (struct tracepoint *) b;
8896 struct static_tracepoint_marker marker;
8897
8898 if (strace_marker_p (b))
8899 {
8900 /* We already know the marker exists, otherwise, we
8901 wouldn't see a sal for it. */
8902 const char *p
8903 = &event_location_to_string (b->location.get ())[3];
8904 const char *endp;
8905
8906 p = skip_spaces (p);
8907
8908 endp = skip_to_space (p);
8909
8910 t->static_trace_marker_id.assign (p, endp - p);
8911
8912 printf_filtered (_("Probed static tracepoint "
8913 "marker \"%s\"\n"),
8914 t->static_trace_marker_id.c_str ());
8915 }
8916 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8917 {
8918 t->static_trace_marker_id = std::move (marker.str_id);
8919
8920 printf_filtered (_("Probed static tracepoint "
8921 "marker \"%s\"\n"),
8922 t->static_trace_marker_id.c_str ());
8923 }
8924 else
8925 warning (_("Couldn't determine the static "
8926 "tracepoint marker to probe"));
8927 }
8928
8929 loc = b->loc;
8930 }
8931 else
8932 {
8933 loc = add_location_to_breakpoint (b, &sal);
8934 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8935 loc->inserted = 1;
8936 }
8937
8938 /* Do not set breakpoint locations conditions yet. As locations
8939 are inserted, they get sorted based on their addresses. Let
8940 the list stabilize to have reliable location numbers. */
8941
8942 /* Dynamic printf requires and uses additional arguments on the
8943 command line, otherwise it's an error. */
8944 if (type == bp_dprintf)
8945 {
8946 if (b->extra_string)
8947 update_dprintf_command_list (b);
8948 else
8949 error (_("Format string required"));
8950 }
8951 else if (b->extra_string)
8952 error (_("Garbage '%s' at end of command"), b->extra_string);
8953 }
8954
8955
8956 /* The order of the locations is now stable. Set the location
8957 condition using the location's number. */
8958 int loc_num = 1;
8959 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
8960 {
8961 if (b->cond_string != nullptr)
8962 set_breakpoint_location_condition (b->cond_string, loc, b->number,
8963 loc_num);
8964
8965 ++loc_num;
8966 }
8967
8968 b->display_canonical = display_canonical;
8969 if (location != NULL)
8970 b->location = std::move (location);
8971 else
8972 b->location = new_address_location (b->loc->address, NULL, 0);
8973 b->filter = std::move (filter);
8974 }
8975
8976 static void
8977 create_breakpoint_sal (struct gdbarch *gdbarch,
8978 gdb::array_view<const symtab_and_line> sals,
8979 event_location_up &&location,
8980 gdb::unique_xmalloc_ptr<char> filter,
8981 gdb::unique_xmalloc_ptr<char> cond_string,
8982 gdb::unique_xmalloc_ptr<char> extra_string,
8983 enum bptype type, enum bpdisp disposition,
8984 int thread, int task, int ignore_count,
8985 const struct breakpoint_ops *ops, int from_tty,
8986 int enabled, int internal, unsigned flags,
8987 int display_canonical)
8988 {
8989 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8990
8991 init_breakpoint_sal (b.get (), gdbarch,
8992 sals, std::move (location),
8993 std::move (filter),
8994 std::move (cond_string),
8995 std::move (extra_string),
8996 type, disposition,
8997 thread, task, ignore_count,
8998 ops, from_tty,
8999 enabled, internal, flags,
9000 display_canonical);
9001
9002 install_breakpoint (internal, std::move (b), 0);
9003 }
9004
9005 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9006 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9007 value. COND_STRING, if not NULL, specified the condition to be
9008 used for all breakpoints. Essentially the only case where
9009 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9010 function. In that case, it's still not possible to specify
9011 separate conditions for different overloaded functions, so
9012 we take just a single condition string.
9013
9014 NOTE: If the function succeeds, the caller is expected to cleanup
9015 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9016 array contents). If the function fails (error() is called), the
9017 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9018 COND and SALS arrays and each of those arrays contents. */
9019
9020 static void
9021 create_breakpoints_sal (struct gdbarch *gdbarch,
9022 struct linespec_result *canonical,
9023 gdb::unique_xmalloc_ptr<char> cond_string,
9024 gdb::unique_xmalloc_ptr<char> extra_string,
9025 enum bptype type, enum bpdisp disposition,
9026 int thread, int task, int ignore_count,
9027 const struct breakpoint_ops *ops, int from_tty,
9028 int enabled, int internal, unsigned flags)
9029 {
9030 if (canonical->pre_expanded)
9031 gdb_assert (canonical->lsals.size () == 1);
9032
9033 for (const auto &lsal : canonical->lsals)
9034 {
9035 /* Note that 'location' can be NULL in the case of a plain
9036 'break', without arguments. */
9037 event_location_up location
9038 = (canonical->location != NULL
9039 ? copy_event_location (canonical->location.get ()) : NULL);
9040 gdb::unique_xmalloc_ptr<char> filter_string
9041 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9042
9043 create_breakpoint_sal (gdbarch, lsal.sals,
9044 std::move (location),
9045 std::move (filter_string),
9046 std::move (cond_string),
9047 std::move (extra_string),
9048 type, disposition,
9049 thread, task, ignore_count, ops,
9050 from_tty, enabled, internal, flags,
9051 canonical->special_display);
9052 }
9053 }
9054
9055 /* Parse LOCATION which is assumed to be a SAL specification possibly
9056 followed by conditionals. On return, SALS contains an array of SAL
9057 addresses found. LOCATION points to the end of the SAL (for
9058 linespec locations).
9059
9060 The array and the line spec strings are allocated on the heap, it is
9061 the caller's responsibility to free them. */
9062
9063 static void
9064 parse_breakpoint_sals (struct event_location *location,
9065 struct linespec_result *canonical)
9066 {
9067 struct symtab_and_line cursal;
9068
9069 if (event_location_type (location) == LINESPEC_LOCATION)
9070 {
9071 const char *spec = get_linespec_location (location)->spec_string;
9072
9073 if (spec == NULL)
9074 {
9075 /* The last displayed codepoint, if it's valid, is our default
9076 breakpoint address. */
9077 if (last_displayed_sal_is_valid ())
9078 {
9079 /* Set sal's pspace, pc, symtab, and line to the values
9080 corresponding to the last call to print_frame_info.
9081 Be sure to reinitialize LINE with NOTCURRENT == 0
9082 as the breakpoint line number is inappropriate otherwise.
9083 find_pc_line would adjust PC, re-set it back. */
9084 symtab_and_line sal = get_last_displayed_sal ();
9085 CORE_ADDR pc = sal.pc;
9086
9087 sal = find_pc_line (pc, 0);
9088
9089 /* "break" without arguments is equivalent to "break *PC"
9090 where PC is the last displayed codepoint's address. So
9091 make sure to set sal.explicit_pc to prevent GDB from
9092 trying to expand the list of sals to include all other
9093 instances with the same symtab and line. */
9094 sal.pc = pc;
9095 sal.explicit_pc = 1;
9096
9097 struct linespec_sals lsal;
9098 lsal.sals = {sal};
9099 lsal.canonical = NULL;
9100
9101 canonical->lsals.push_back (std::move (lsal));
9102 return;
9103 }
9104 else
9105 error (_("No default breakpoint address now."));
9106 }
9107 }
9108
9109 /* Force almost all breakpoints to be in terms of the
9110 current_source_symtab (which is decode_line_1's default).
9111 This should produce the results we want almost all of the
9112 time while leaving default_breakpoint_* alone.
9113
9114 ObjC: However, don't match an Objective-C method name which
9115 may have a '+' or '-' succeeded by a '['. */
9116 cursal = get_current_source_symtab_and_line ();
9117 if (last_displayed_sal_is_valid ())
9118 {
9119 const char *spec = NULL;
9120
9121 if (event_location_type (location) == LINESPEC_LOCATION)
9122 spec = get_linespec_location (location)->spec_string;
9123
9124 if (!cursal.symtab
9125 || (spec != NULL
9126 && strchr ("+-", spec[0]) != NULL
9127 && spec[1] != '['))
9128 {
9129 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9130 get_last_displayed_symtab (),
9131 get_last_displayed_line (),
9132 canonical, NULL, NULL);
9133 return;
9134 }
9135 }
9136
9137 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9138 cursal.symtab, cursal.line, canonical, NULL, NULL);
9139 }
9140
9141
9142 /* Convert each SAL into a real PC. Verify that the PC can be
9143 inserted as a breakpoint. If it can't throw an error. */
9144
9145 static void
9146 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9147 {
9148 for (auto &sal : sals)
9149 resolve_sal_pc (&sal);
9150 }
9151
9152 /* Fast tracepoints may have restrictions on valid locations. For
9153 instance, a fast tracepoint using a jump instead of a trap will
9154 likely have to overwrite more bytes than a trap would, and so can
9155 only be placed where the instruction is longer than the jump, or a
9156 multi-instruction sequence does not have a jump into the middle of
9157 it, etc. */
9158
9159 static void
9160 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9161 gdb::array_view<const symtab_and_line> sals)
9162 {
9163 for (const auto &sal : sals)
9164 {
9165 struct gdbarch *sarch;
9166
9167 sarch = get_sal_arch (sal);
9168 /* We fall back to GDBARCH if there is no architecture
9169 associated with SAL. */
9170 if (sarch == NULL)
9171 sarch = gdbarch;
9172 std::string msg;
9173 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9174 error (_("May not have a fast tracepoint at %s%s"),
9175 paddress (sarch, sal.pc), msg.c_str ());
9176 }
9177 }
9178
9179 /* Given TOK, a string specification of condition and thread, as
9180 accepted by the 'break' command, extract the condition
9181 string and thread number and set *COND_STRING and *THREAD.
9182 PC identifies the context at which the condition should be parsed.
9183 If no condition is found, *COND_STRING is set to NULL.
9184 If no thread is found, *THREAD is set to -1. */
9185
9186 static void
9187 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9188 char **cond_string, int *thread, int *task,
9189 char **rest)
9190 {
9191 *cond_string = NULL;
9192 *thread = -1;
9193 *task = 0;
9194 *rest = NULL;
9195 bool force = false;
9196
9197 while (tok && *tok)
9198 {
9199 const char *end_tok;
9200 int toklen;
9201 const char *cond_start = NULL;
9202 const char *cond_end = NULL;
9203
9204 tok = skip_spaces (tok);
9205
9206 if ((*tok == '"' || *tok == ',') && rest)
9207 {
9208 *rest = savestring (tok, strlen (tok));
9209 return;
9210 }
9211
9212 end_tok = skip_to_space (tok);
9213
9214 toklen = end_tok - tok;
9215
9216 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9217 {
9218 tok = cond_start = end_tok + 1;
9219 try
9220 {
9221 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9222 }
9223 catch (const gdb_exception_error &)
9224 {
9225 if (!force)
9226 throw;
9227 else
9228 tok = tok + strlen (tok);
9229 }
9230 cond_end = tok;
9231 *cond_string = savestring (cond_start, cond_end - cond_start);
9232 }
9233 else if (toklen >= 1 && strncmp (tok, "-force-condition", toklen) == 0)
9234 {
9235 tok = tok + toklen;
9236 force = true;
9237 }
9238 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9239 {
9240 const char *tmptok;
9241 struct thread_info *thr;
9242
9243 tok = end_tok + 1;
9244 thr = parse_thread_id (tok, &tmptok);
9245 if (tok == tmptok)
9246 error (_("Junk after thread keyword."));
9247 *thread = thr->global_num;
9248 tok = tmptok;
9249 }
9250 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9251 {
9252 char *tmptok;
9253
9254 tok = end_tok + 1;
9255 *task = strtol (tok, &tmptok, 0);
9256 if (tok == tmptok)
9257 error (_("Junk after task keyword."));
9258 if (!valid_task_id (*task))
9259 error (_("Unknown task %d."), *task);
9260 tok = tmptok;
9261 }
9262 else if (rest)
9263 {
9264 *rest = savestring (tok, strlen (tok));
9265 return;
9266 }
9267 else
9268 error (_("Junk at end of arguments."));
9269 }
9270 }
9271
9272 /* Call 'find_condition_and_thread' for each sal in SALS until a parse
9273 succeeds. The parsed values are written to COND_STRING, THREAD,
9274 TASK, and REST. See the comment of 'find_condition_and_thread'
9275 for the description of these parameters and INPUT. */
9276
9277 static void
9278 find_condition_and_thread_for_sals (const std::vector<symtab_and_line> &sals,
9279 const char *input, char **cond_string,
9280 int *thread, int *task, char **rest)
9281 {
9282 int num_failures = 0;
9283 for (auto &sal : sals)
9284 {
9285 char *cond = nullptr;
9286 int thread_id = 0;
9287 int task_id = 0;
9288 char *remaining = nullptr;
9289
9290 /* Here we want to parse 'arg' to separate condition from thread
9291 number. But because parsing happens in a context and the
9292 contexts of sals might be different, try each until there is
9293 success. Finding one successful parse is sufficient for our
9294 goal. When setting the breakpoint we'll re-parse the
9295 condition in the context of each sal. */
9296 try
9297 {
9298 find_condition_and_thread (input, sal.pc, &cond, &thread_id,
9299 &task_id, &remaining);
9300 *cond_string = cond;
9301 *thread = thread_id;
9302 *task = task_id;
9303 *rest = remaining;
9304 break;
9305 }
9306 catch (const gdb_exception_error &e)
9307 {
9308 num_failures++;
9309 /* If no sal remains, do not continue. */
9310 if (num_failures == sals.size ())
9311 throw;
9312 }
9313 }
9314 }
9315
9316 /* Decode a static tracepoint marker spec. */
9317
9318 static std::vector<symtab_and_line>
9319 decode_static_tracepoint_spec (const char **arg_p)
9320 {
9321 const char *p = &(*arg_p)[3];
9322 const char *endp;
9323
9324 p = skip_spaces (p);
9325
9326 endp = skip_to_space (p);
9327
9328 std::string marker_str (p, endp - p);
9329
9330 std::vector<static_tracepoint_marker> markers
9331 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9332 if (markers.empty ())
9333 error (_("No known static tracepoint marker named %s"),
9334 marker_str.c_str ());
9335
9336 std::vector<symtab_and_line> sals;
9337 sals.reserve (markers.size ());
9338
9339 for (const static_tracepoint_marker &marker : markers)
9340 {
9341 symtab_and_line sal = find_pc_line (marker.address, 0);
9342 sal.pc = marker.address;
9343 sals.push_back (sal);
9344 }
9345
9346 *arg_p = endp;
9347 return sals;
9348 }
9349
9350 /* Returns the breakpoint ops appropriate for use with with LOCATION_TYPE and
9351 according to IS_TRACEPOINT. */
9352
9353 static const struct breakpoint_ops *
9354 breakpoint_ops_for_event_location_type (enum event_location_type location_type,
9355 bool is_tracepoint)
9356 {
9357 if (is_tracepoint)
9358 {
9359 if (location_type == PROBE_LOCATION)
9360 return &tracepoint_probe_breakpoint_ops;
9361 else
9362 return &tracepoint_breakpoint_ops;
9363 }
9364 else
9365 {
9366 if (location_type == PROBE_LOCATION)
9367 return &bkpt_probe_breakpoint_ops;
9368 else
9369 return &bkpt_breakpoint_ops;
9370 }
9371 }
9372
9373 /* See breakpoint.h. */
9374
9375 const struct breakpoint_ops *
9376 breakpoint_ops_for_event_location (const struct event_location *location,
9377 bool is_tracepoint)
9378 {
9379 if (location != nullptr)
9380 return breakpoint_ops_for_event_location_type
9381 (event_location_type (location), is_tracepoint);
9382 return is_tracepoint ? &tracepoint_breakpoint_ops : &bkpt_breakpoint_ops;
9383 }
9384
9385 /* See breakpoint.h. */
9386
9387 int
9388 create_breakpoint (struct gdbarch *gdbarch,
9389 struct event_location *location,
9390 const char *cond_string,
9391 int thread, const char *extra_string,
9392 int parse_extra,
9393 int tempflag, enum bptype type_wanted,
9394 int ignore_count,
9395 enum auto_boolean pending_break_support,
9396 const struct breakpoint_ops *ops,
9397 int from_tty, int enabled, int internal,
9398 unsigned flags)
9399 {
9400 struct linespec_result canonical;
9401 int pending = 0;
9402 int task = 0;
9403 int prev_bkpt_count = breakpoint_count;
9404
9405 gdb_assert (ops != NULL);
9406
9407 /* If extra_string isn't useful, set it to NULL. */
9408 if (extra_string != NULL && *extra_string == '\0')
9409 extra_string = NULL;
9410
9411 try
9412 {
9413 ops->create_sals_from_location (location, &canonical, type_wanted);
9414 }
9415 catch (const gdb_exception_error &e)
9416 {
9417 /* If caller is interested in rc value from parse, set
9418 value. */
9419 if (e.error == NOT_FOUND_ERROR)
9420 {
9421 /* If pending breakpoint support is turned off, throw
9422 error. */
9423
9424 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9425 throw;
9426
9427 exception_print (gdb_stderr, e);
9428
9429 /* If pending breakpoint support is auto query and the user
9430 selects no, then simply return the error code. */
9431 if (pending_break_support == AUTO_BOOLEAN_AUTO
9432 && !nquery (_("Make %s pending on future shared library load? "),
9433 bptype_string (type_wanted)))
9434 return 0;
9435
9436 /* At this point, either the user was queried about setting
9437 a pending breakpoint and selected yes, or pending
9438 breakpoint behavior is on and thus a pending breakpoint
9439 is defaulted on behalf of the user. */
9440 pending = 1;
9441 }
9442 else
9443 throw;
9444 }
9445
9446 if (!pending && canonical.lsals.empty ())
9447 return 0;
9448
9449 /* Resolve all line numbers to PC's and verify that the addresses
9450 are ok for the target. */
9451 if (!pending)
9452 {
9453 for (auto &lsal : canonical.lsals)
9454 breakpoint_sals_to_pc (lsal.sals);
9455 }
9456
9457 /* Fast tracepoints may have additional restrictions on location. */
9458 if (!pending && type_wanted == bp_fast_tracepoint)
9459 {
9460 for (const auto &lsal : canonical.lsals)
9461 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9462 }
9463
9464 /* Verify that condition can be parsed, before setting any
9465 breakpoints. Allocate a separate condition expression for each
9466 breakpoint. */
9467 if (!pending)
9468 {
9469 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9470 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9471
9472 if (parse_extra)
9473 {
9474 char *rest;
9475 char *cond;
9476
9477 const linespec_sals &lsal = canonical.lsals[0];
9478
9479 find_condition_and_thread_for_sals (lsal.sals, extra_string,
9480 &cond, &thread, &task, &rest);
9481 cond_string_copy.reset (cond);
9482 extra_string_copy.reset (rest);
9483 }
9484 else
9485 {
9486 if (type_wanted != bp_dprintf
9487 && extra_string != NULL && *extra_string != '\0')
9488 error (_("Garbage '%s' at end of location"), extra_string);
9489
9490 /* Create a private copy of condition string. */
9491 if (cond_string)
9492 cond_string_copy.reset (xstrdup (cond_string));
9493 /* Create a private copy of any extra string. */
9494 if (extra_string)
9495 extra_string_copy.reset (xstrdup (extra_string));
9496 }
9497
9498 ops->create_breakpoints_sal (gdbarch, &canonical,
9499 std::move (cond_string_copy),
9500 std::move (extra_string_copy),
9501 type_wanted,
9502 tempflag ? disp_del : disp_donttouch,
9503 thread, task, ignore_count, ops,
9504 from_tty, enabled, internal, flags);
9505 }
9506 else
9507 {
9508 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9509
9510 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9511 b->location = copy_event_location (location);
9512
9513 if (parse_extra)
9514 b->cond_string = NULL;
9515 else
9516 {
9517 /* Create a private copy of condition string. */
9518 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9519 b->thread = thread;
9520 }
9521
9522 /* Create a private copy of any extra string. */
9523 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9524 b->ignore_count = ignore_count;
9525 b->disposition = tempflag ? disp_del : disp_donttouch;
9526 b->condition_not_parsed = 1;
9527 b->enable_state = enabled ? bp_enabled : bp_disabled;
9528 if ((type_wanted != bp_breakpoint
9529 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9530 b->pspace = current_program_space;
9531
9532 install_breakpoint (internal, std::move (b), 0);
9533 }
9534
9535 if (canonical.lsals.size () > 1)
9536 {
9537 warning (_("Multiple breakpoints were set.\nUse the "
9538 "\"delete\" command to delete unwanted breakpoints."));
9539 prev_breakpoint_count = prev_bkpt_count;
9540 }
9541
9542 update_global_location_list (UGLL_MAY_INSERT);
9543
9544 return 1;
9545 }
9546
9547 /* Set a breakpoint.
9548 ARG is a string describing breakpoint address,
9549 condition, and thread.
9550 FLAG specifies if a breakpoint is hardware on,
9551 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9552 and BP_TEMPFLAG. */
9553
9554 static void
9555 break_command_1 (const char *arg, int flag, int from_tty)
9556 {
9557 int tempflag = flag & BP_TEMPFLAG;
9558 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9559 ? bp_hardware_breakpoint
9560 : bp_breakpoint);
9561
9562 event_location_up location = string_to_event_location (&arg, current_language);
9563 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
9564 (location.get (), false /* is_tracepoint */);
9565
9566 create_breakpoint (get_current_arch (),
9567 location.get (),
9568 NULL, 0, arg, 1 /* parse arg */,
9569 tempflag, type_wanted,
9570 0 /* Ignore count */,
9571 pending_break_support,
9572 ops,
9573 from_tty,
9574 1 /* enabled */,
9575 0 /* internal */,
9576 0);
9577 }
9578
9579 /* Helper function for break_command_1 and disassemble_command. */
9580
9581 void
9582 resolve_sal_pc (struct symtab_and_line *sal)
9583 {
9584 CORE_ADDR pc;
9585
9586 if (sal->pc == 0 && sal->symtab != NULL)
9587 {
9588 if (!find_line_pc (sal->symtab, sal->line, &pc))
9589 error (_("No line %d in file \"%s\"."),
9590 sal->line, symtab_to_filename_for_display (sal->symtab));
9591 sal->pc = pc;
9592
9593 /* If this SAL corresponds to a breakpoint inserted using a line
9594 number, then skip the function prologue if necessary. */
9595 if (sal->explicit_line)
9596 skip_prologue_sal (sal);
9597 }
9598
9599 if (sal->section == 0 && sal->symtab != NULL)
9600 {
9601 const struct blockvector *bv;
9602 const struct block *b;
9603 struct symbol *sym;
9604
9605 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9606 SYMTAB_COMPUNIT (sal->symtab));
9607 if (bv != NULL)
9608 {
9609 sym = block_linkage_function (b);
9610 if (sym != NULL)
9611 {
9612 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9613 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9614 sym);
9615 }
9616 else
9617 {
9618 /* It really is worthwhile to have the section, so we'll
9619 just have to look harder. This case can be executed
9620 if we have line numbers but no functions (as can
9621 happen in assembly source). */
9622
9623 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9624 switch_to_program_space_and_thread (sal->pspace);
9625
9626 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9627 if (msym.minsym)
9628 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9629 }
9630 }
9631 }
9632 }
9633
9634 void
9635 break_command (const char *arg, int from_tty)
9636 {
9637 break_command_1 (arg, 0, from_tty);
9638 }
9639
9640 void
9641 tbreak_command (const char *arg, int from_tty)
9642 {
9643 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9644 }
9645
9646 static void
9647 hbreak_command (const char *arg, int from_tty)
9648 {
9649 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9650 }
9651
9652 static void
9653 thbreak_command (const char *arg, int from_tty)
9654 {
9655 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9656 }
9657
9658 static void
9659 stop_command (const char *arg, int from_tty)
9660 {
9661 printf_filtered (_("Specify the type of breakpoint to set.\n\
9662 Usage: stop in <function | address>\n\
9663 stop at <line>\n"));
9664 }
9665
9666 static void
9667 stopin_command (const char *arg, int from_tty)
9668 {
9669 int badInput = 0;
9670
9671 if (arg == NULL)
9672 badInput = 1;
9673 else if (*arg != '*')
9674 {
9675 const char *argptr = arg;
9676 int hasColon = 0;
9677
9678 /* Look for a ':'. If this is a line number specification, then
9679 say it is bad, otherwise, it should be an address or
9680 function/method name. */
9681 while (*argptr && !hasColon)
9682 {
9683 hasColon = (*argptr == ':');
9684 argptr++;
9685 }
9686
9687 if (hasColon)
9688 badInput = (*argptr != ':'); /* Not a class::method */
9689 else
9690 badInput = isdigit (*arg); /* a simple line number */
9691 }
9692
9693 if (badInput)
9694 printf_filtered (_("Usage: stop in <function | address>\n"));
9695 else
9696 break_command_1 (arg, 0, from_tty);
9697 }
9698
9699 static void
9700 stopat_command (const char *arg, int from_tty)
9701 {
9702 int badInput = 0;
9703
9704 if (arg == NULL || *arg == '*') /* no line number */
9705 badInput = 1;
9706 else
9707 {
9708 const char *argptr = arg;
9709 int hasColon = 0;
9710
9711 /* Look for a ':'. If there is a '::' then get out, otherwise
9712 it is probably a line number. */
9713 while (*argptr && !hasColon)
9714 {
9715 hasColon = (*argptr == ':');
9716 argptr++;
9717 }
9718
9719 if (hasColon)
9720 badInput = (*argptr == ':'); /* we have class::method */
9721 else
9722 badInput = !isdigit (*arg); /* not a line number */
9723 }
9724
9725 if (badInput)
9726 printf_filtered (_("Usage: stop at LINE\n"));
9727 else
9728 break_command_1 (arg, 0, from_tty);
9729 }
9730
9731 /* The dynamic printf command is mostly like a regular breakpoint, but
9732 with a prewired command list consisting of a single output command,
9733 built from extra arguments supplied on the dprintf command
9734 line. */
9735
9736 static void
9737 dprintf_command (const char *arg, int from_tty)
9738 {
9739 event_location_up location = string_to_event_location (&arg, current_language);
9740
9741 /* If non-NULL, ARG should have been advanced past the location;
9742 the next character must be ','. */
9743 if (arg != NULL)
9744 {
9745 if (arg[0] != ',' || arg[1] == '\0')
9746 error (_("Format string required"));
9747 else
9748 {
9749 /* Skip the comma. */
9750 ++arg;
9751 }
9752 }
9753
9754 create_breakpoint (get_current_arch (),
9755 location.get (),
9756 NULL, 0, arg, 1 /* parse arg */,
9757 0, bp_dprintf,
9758 0 /* Ignore count */,
9759 pending_break_support,
9760 &dprintf_breakpoint_ops,
9761 from_tty,
9762 1 /* enabled */,
9763 0 /* internal */,
9764 0);
9765 }
9766
9767 static void
9768 agent_printf_command (const char *arg, int from_tty)
9769 {
9770 error (_("May only run agent-printf on the target"));
9771 }
9772
9773 /* Implement the "breakpoint_hit" breakpoint_ops method for
9774 ranged breakpoints. */
9775
9776 static int
9777 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9778 const address_space *aspace,
9779 CORE_ADDR bp_addr,
9780 const struct target_waitstatus *ws)
9781 {
9782 if (ws->kind != TARGET_WAITKIND_STOPPED
9783 || ws->value.sig != GDB_SIGNAL_TRAP)
9784 return 0;
9785
9786 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9787 bl->length, aspace, bp_addr);
9788 }
9789
9790 /* Implement the "resources_needed" breakpoint_ops method for
9791 ranged breakpoints. */
9792
9793 static int
9794 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9795 {
9796 return target_ranged_break_num_registers ();
9797 }
9798
9799 /* Implement the "print_it" breakpoint_ops method for
9800 ranged breakpoints. */
9801
9802 static enum print_stop_action
9803 print_it_ranged_breakpoint (bpstat bs)
9804 {
9805 struct breakpoint *b = bs->breakpoint_at;
9806 struct bp_location *bl = b->loc;
9807 struct ui_out *uiout = current_uiout;
9808
9809 gdb_assert (b->type == bp_hardware_breakpoint);
9810
9811 /* Ranged breakpoints have only one location. */
9812 gdb_assert (bl && bl->next == NULL);
9813
9814 annotate_breakpoint (b->number);
9815
9816 maybe_print_thread_hit_breakpoint (uiout);
9817
9818 if (b->disposition == disp_del)
9819 uiout->text ("Temporary ranged breakpoint ");
9820 else
9821 uiout->text ("Ranged breakpoint ");
9822 if (uiout->is_mi_like_p ())
9823 {
9824 uiout->field_string ("reason",
9825 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9826 uiout->field_string ("disp", bpdisp_text (b->disposition));
9827 }
9828 uiout->field_signed ("bkptno", b->number);
9829 uiout->text (", ");
9830
9831 return PRINT_SRC_AND_LOC;
9832 }
9833
9834 /* Implement the "print_one" breakpoint_ops method for
9835 ranged breakpoints. */
9836
9837 static void
9838 print_one_ranged_breakpoint (struct breakpoint *b,
9839 struct bp_location **last_loc)
9840 {
9841 struct bp_location *bl = b->loc;
9842 struct value_print_options opts;
9843 struct ui_out *uiout = current_uiout;
9844
9845 /* Ranged breakpoints have only one location. */
9846 gdb_assert (bl && bl->next == NULL);
9847
9848 get_user_print_options (&opts);
9849
9850 if (opts.addressprint)
9851 /* We don't print the address range here, it will be printed later
9852 by print_one_detail_ranged_breakpoint. */
9853 uiout->field_skip ("addr");
9854 annotate_field (5);
9855 print_breakpoint_location (b, bl);
9856 *last_loc = bl;
9857 }
9858
9859 /* Implement the "print_one_detail" breakpoint_ops method for
9860 ranged breakpoints. */
9861
9862 static void
9863 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9864 struct ui_out *uiout)
9865 {
9866 CORE_ADDR address_start, address_end;
9867 struct bp_location *bl = b->loc;
9868 string_file stb;
9869
9870 gdb_assert (bl);
9871
9872 address_start = bl->address;
9873 address_end = address_start + bl->length - 1;
9874
9875 uiout->text ("\taddress range: ");
9876 stb.printf ("[%s, %s]",
9877 print_core_address (bl->gdbarch, address_start),
9878 print_core_address (bl->gdbarch, address_end));
9879 uiout->field_stream ("addr", stb);
9880 uiout->text ("\n");
9881 }
9882
9883 /* Implement the "print_mention" breakpoint_ops method for
9884 ranged breakpoints. */
9885
9886 static void
9887 print_mention_ranged_breakpoint (struct breakpoint *b)
9888 {
9889 struct bp_location *bl = b->loc;
9890 struct ui_out *uiout = current_uiout;
9891
9892 gdb_assert (bl);
9893 gdb_assert (b->type == bp_hardware_breakpoint);
9894
9895 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9896 b->number, paddress (bl->gdbarch, bl->address),
9897 paddress (bl->gdbarch, bl->address + bl->length - 1));
9898 }
9899
9900 /* Implement the "print_recreate" breakpoint_ops method for
9901 ranged breakpoints. */
9902
9903 static void
9904 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9905 {
9906 fprintf_unfiltered (fp, "break-range %s, %s",
9907 event_location_to_string (b->location.get ()),
9908 event_location_to_string (b->location_range_end.get ()));
9909 print_recreate_thread (b, fp);
9910 }
9911
9912 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9913
9914 static struct breakpoint_ops ranged_breakpoint_ops;
9915
9916 /* Find the address where the end of the breakpoint range should be
9917 placed, given the SAL of the end of the range. This is so that if
9918 the user provides a line number, the end of the range is set to the
9919 last instruction of the given line. */
9920
9921 static CORE_ADDR
9922 find_breakpoint_range_end (struct symtab_and_line sal)
9923 {
9924 CORE_ADDR end;
9925
9926 /* If the user provided a PC value, use it. Otherwise,
9927 find the address of the end of the given location. */
9928 if (sal.explicit_pc)
9929 end = sal.pc;
9930 else
9931 {
9932 int ret;
9933 CORE_ADDR start;
9934
9935 ret = find_line_pc_range (sal, &start, &end);
9936 if (!ret)
9937 error (_("Could not find location of the end of the range."));
9938
9939 /* find_line_pc_range returns the start of the next line. */
9940 end--;
9941 }
9942
9943 return end;
9944 }
9945
9946 /* Implement the "break-range" CLI command. */
9947
9948 static void
9949 break_range_command (const char *arg, int from_tty)
9950 {
9951 const char *arg_start;
9952 struct linespec_result canonical_start, canonical_end;
9953 int bp_count, can_use_bp, length;
9954 CORE_ADDR end;
9955 struct breakpoint *b;
9956
9957 /* We don't support software ranged breakpoints. */
9958 if (target_ranged_break_num_registers () < 0)
9959 error (_("This target does not support hardware ranged breakpoints."));
9960
9961 bp_count = hw_breakpoint_used_count ();
9962 bp_count += target_ranged_break_num_registers ();
9963 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9964 bp_count, 0);
9965 if (can_use_bp < 0)
9966 error (_("Hardware breakpoints used exceeds limit."));
9967
9968 arg = skip_spaces (arg);
9969 if (arg == NULL || arg[0] == '\0')
9970 error(_("No address range specified."));
9971
9972 arg_start = arg;
9973 event_location_up start_location = string_to_event_location (&arg,
9974 current_language);
9975 parse_breakpoint_sals (start_location.get (), &canonical_start);
9976
9977 if (arg[0] != ',')
9978 error (_("Too few arguments."));
9979 else if (canonical_start.lsals.empty ())
9980 error (_("Could not find location of the beginning of the range."));
9981
9982 const linespec_sals &lsal_start = canonical_start.lsals[0];
9983
9984 if (canonical_start.lsals.size () > 1
9985 || lsal_start.sals.size () != 1)
9986 error (_("Cannot create a ranged breakpoint with multiple locations."));
9987
9988 const symtab_and_line &sal_start = lsal_start.sals[0];
9989 std::string addr_string_start (arg_start, arg - arg_start);
9990
9991 arg++; /* Skip the comma. */
9992 arg = skip_spaces (arg);
9993
9994 /* Parse the end location. */
9995
9996 arg_start = arg;
9997
9998 /* We call decode_line_full directly here instead of using
9999 parse_breakpoint_sals because we need to specify the start location's
10000 symtab and line as the default symtab and line for the end of the
10001 range. This makes it possible to have ranges like "foo.c:27, +14",
10002 where +14 means 14 lines from the start location. */
10003 event_location_up end_location = string_to_event_location (&arg,
10004 current_language);
10005 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10006 sal_start.symtab, sal_start.line,
10007 &canonical_end, NULL, NULL);
10008
10009 if (canonical_end.lsals.empty ())
10010 error (_("Could not find location of the end of the range."));
10011
10012 const linespec_sals &lsal_end = canonical_end.lsals[0];
10013 if (canonical_end.lsals.size () > 1
10014 || lsal_end.sals.size () != 1)
10015 error (_("Cannot create a ranged breakpoint with multiple locations."));
10016
10017 const symtab_and_line &sal_end = lsal_end.sals[0];
10018
10019 end = find_breakpoint_range_end (sal_end);
10020 if (sal_start.pc > end)
10021 error (_("Invalid address range, end precedes start."));
10022
10023 length = end - sal_start.pc + 1;
10024 if (length < 0)
10025 /* Length overflowed. */
10026 error (_("Address range too large."));
10027 else if (length == 1)
10028 {
10029 /* This range is simple enough to be handled by
10030 the `hbreak' command. */
10031 hbreak_command (&addr_string_start[0], 1);
10032
10033 return;
10034 }
10035
10036 /* Now set up the breakpoint. */
10037 b = set_raw_breakpoint (get_current_arch (), sal_start,
10038 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10039 set_breakpoint_count (breakpoint_count + 1);
10040 b->number = breakpoint_count;
10041 b->disposition = disp_donttouch;
10042 b->location = std::move (start_location);
10043 b->location_range_end = std::move (end_location);
10044 b->loc->length = length;
10045
10046 mention (b);
10047 gdb::observers::breakpoint_created.notify (b);
10048 update_global_location_list (UGLL_MAY_INSERT);
10049 }
10050
10051 /* Return non-zero if EXP is verified as constant. Returned zero
10052 means EXP is variable. Also the constant detection may fail for
10053 some constant expressions and in such case still falsely return
10054 zero. */
10055
10056 static bool
10057 watchpoint_exp_is_const (const struct expression *exp)
10058 {
10059 int i = exp->nelts;
10060
10061 while (i > 0)
10062 {
10063 int oplenp, argsp;
10064
10065 /* We are only interested in the descriptor of each element. */
10066 operator_length (exp, i, &oplenp, &argsp);
10067 i -= oplenp;
10068
10069 switch (exp->elts[i].opcode)
10070 {
10071 case BINOP_ADD:
10072 case BINOP_SUB:
10073 case BINOP_MUL:
10074 case BINOP_DIV:
10075 case BINOP_REM:
10076 case BINOP_MOD:
10077 case BINOP_LSH:
10078 case BINOP_RSH:
10079 case BINOP_LOGICAL_AND:
10080 case BINOP_LOGICAL_OR:
10081 case BINOP_BITWISE_AND:
10082 case BINOP_BITWISE_IOR:
10083 case BINOP_BITWISE_XOR:
10084 case BINOP_EQUAL:
10085 case BINOP_NOTEQUAL:
10086 case BINOP_LESS:
10087 case BINOP_GTR:
10088 case BINOP_LEQ:
10089 case BINOP_GEQ:
10090 case BINOP_REPEAT:
10091 case BINOP_COMMA:
10092 case BINOP_EXP:
10093 case BINOP_MIN:
10094 case BINOP_MAX:
10095 case BINOP_INTDIV:
10096 case BINOP_CONCAT:
10097 case TERNOP_COND:
10098 case TERNOP_SLICE:
10099
10100 case OP_LONG:
10101 case OP_FLOAT:
10102 case OP_LAST:
10103 case OP_COMPLEX:
10104 case OP_STRING:
10105 case OP_ARRAY:
10106 case OP_TYPE:
10107 case OP_TYPEOF:
10108 case OP_DECLTYPE:
10109 case OP_TYPEID:
10110 case OP_NAME:
10111 case OP_OBJC_NSSTRING:
10112
10113 case UNOP_NEG:
10114 case UNOP_LOGICAL_NOT:
10115 case UNOP_COMPLEMENT:
10116 case UNOP_ADDR:
10117 case UNOP_HIGH:
10118 case UNOP_CAST:
10119
10120 case UNOP_CAST_TYPE:
10121 case UNOP_REINTERPRET_CAST:
10122 case UNOP_DYNAMIC_CAST:
10123 /* Unary, binary and ternary operators: We have to check
10124 their operands. If they are constant, then so is the
10125 result of that operation. For instance, if A and B are
10126 determined to be constants, then so is "A + B".
10127
10128 UNOP_IND is one exception to the rule above, because the
10129 value of *ADDR is not necessarily a constant, even when
10130 ADDR is. */
10131 break;
10132
10133 case OP_VAR_VALUE:
10134 /* Check whether the associated symbol is a constant.
10135
10136 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10137 possible that a buggy compiler could mark a variable as
10138 constant even when it is not, and TYPE_CONST would return
10139 true in this case, while SYMBOL_CLASS wouldn't.
10140
10141 We also have to check for function symbols because they
10142 are always constant. */
10143 {
10144 struct symbol *s = exp->elts[i + 2].symbol;
10145
10146 if (SYMBOL_CLASS (s) != LOC_BLOCK
10147 && SYMBOL_CLASS (s) != LOC_CONST
10148 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10149 return false;
10150 break;
10151 }
10152
10153 /* The default action is to return 0 because we are using
10154 the optimistic approach here: If we don't know something,
10155 then it is not a constant. */
10156 default:
10157 return false;
10158 }
10159 }
10160
10161 return true;
10162 }
10163
10164 /* Watchpoint destructor. */
10165
10166 watchpoint::~watchpoint ()
10167 {
10168 xfree (this->exp_string);
10169 xfree (this->exp_string_reparse);
10170 }
10171
10172 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10173
10174 static void
10175 re_set_watchpoint (struct breakpoint *b)
10176 {
10177 struct watchpoint *w = (struct watchpoint *) b;
10178
10179 /* Watchpoint can be either on expression using entirely global
10180 variables, or it can be on local variables.
10181
10182 Watchpoints of the first kind are never auto-deleted, and even
10183 persist across program restarts. Since they can use variables
10184 from shared libraries, we need to reparse expression as libraries
10185 are loaded and unloaded.
10186
10187 Watchpoints on local variables can also change meaning as result
10188 of solib event. For example, if a watchpoint uses both a local
10189 and a global variables in expression, it's a local watchpoint,
10190 but unloading of a shared library will make the expression
10191 invalid. This is not a very common use case, but we still
10192 re-evaluate expression, to avoid surprises to the user.
10193
10194 Note that for local watchpoints, we re-evaluate it only if
10195 watchpoints frame id is still valid. If it's not, it means the
10196 watchpoint is out of scope and will be deleted soon. In fact,
10197 I'm not sure we'll ever be called in this case.
10198
10199 If a local watchpoint's frame id is still valid, then
10200 w->exp_valid_block is likewise valid, and we can safely use it.
10201
10202 Don't do anything about disabled watchpoints, since they will be
10203 reevaluated again when enabled. */
10204 update_watchpoint (w, 1 /* reparse */);
10205 }
10206
10207 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10208
10209 static int
10210 insert_watchpoint (struct bp_location *bl)
10211 {
10212 struct watchpoint *w = (struct watchpoint *) bl->owner;
10213 int length = w->exact ? 1 : bl->length;
10214
10215 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10216 w->cond_exp.get ());
10217 }
10218
10219 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10220
10221 static int
10222 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10223 {
10224 struct watchpoint *w = (struct watchpoint *) bl->owner;
10225 int length = w->exact ? 1 : bl->length;
10226
10227 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10228 w->cond_exp.get ());
10229 }
10230
10231 static int
10232 breakpoint_hit_watchpoint (const struct bp_location *bl,
10233 const address_space *aspace, CORE_ADDR bp_addr,
10234 const struct target_waitstatus *ws)
10235 {
10236 struct breakpoint *b = bl->owner;
10237 struct watchpoint *w = (struct watchpoint *) b;
10238
10239 /* Continuable hardware watchpoints are treated as non-existent if the
10240 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10241 some data address). Otherwise gdb won't stop on a break instruction
10242 in the code (not from a breakpoint) when a hardware watchpoint has
10243 been defined. Also skip watchpoints which we know did not trigger
10244 (did not match the data address). */
10245 if (is_hardware_watchpoint (b)
10246 && w->watchpoint_triggered == watch_triggered_no)
10247 return 0;
10248
10249 return 1;
10250 }
10251
10252 static void
10253 check_status_watchpoint (bpstat bs)
10254 {
10255 gdb_assert (is_watchpoint (bs->breakpoint_at));
10256
10257 bpstat_check_watchpoint (bs);
10258 }
10259
10260 /* Implement the "resources_needed" breakpoint_ops method for
10261 hardware watchpoints. */
10262
10263 static int
10264 resources_needed_watchpoint (const struct bp_location *bl)
10265 {
10266 struct watchpoint *w = (struct watchpoint *) bl->owner;
10267 int length = w->exact? 1 : bl->length;
10268
10269 return target_region_ok_for_hw_watchpoint (bl->address, length);
10270 }
10271
10272 /* Implement the "works_in_software_mode" breakpoint_ops method for
10273 hardware watchpoints. */
10274
10275 static int
10276 works_in_software_mode_watchpoint (const struct breakpoint *b)
10277 {
10278 /* Read and access watchpoints only work with hardware support. */
10279 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10280 }
10281
10282 static enum print_stop_action
10283 print_it_watchpoint (bpstat bs)
10284 {
10285 struct breakpoint *b;
10286 enum print_stop_action result;
10287 struct watchpoint *w;
10288 struct ui_out *uiout = current_uiout;
10289
10290 gdb_assert (bs->bp_location_at != NULL);
10291
10292 b = bs->breakpoint_at;
10293 w = (struct watchpoint *) b;
10294
10295 annotate_watchpoint (b->number);
10296 maybe_print_thread_hit_breakpoint (uiout);
10297
10298 string_file stb;
10299
10300 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10301 switch (b->type)
10302 {
10303 case bp_watchpoint:
10304 case bp_hardware_watchpoint:
10305 if (uiout->is_mi_like_p ())
10306 uiout->field_string
10307 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10308 mention (b);
10309 tuple_emitter.emplace (uiout, "value");
10310 uiout->text ("\nOld value = ");
10311 watchpoint_value_print (bs->old_val.get (), &stb);
10312 uiout->field_stream ("old", stb);
10313 uiout->text ("\nNew value = ");
10314 watchpoint_value_print (w->val.get (), &stb);
10315 uiout->field_stream ("new", stb);
10316 uiout->text ("\n");
10317 /* More than one watchpoint may have been triggered. */
10318 result = PRINT_UNKNOWN;
10319 break;
10320
10321 case bp_read_watchpoint:
10322 if (uiout->is_mi_like_p ())
10323 uiout->field_string
10324 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10325 mention (b);
10326 tuple_emitter.emplace (uiout, "value");
10327 uiout->text ("\nValue = ");
10328 watchpoint_value_print (w->val.get (), &stb);
10329 uiout->field_stream ("value", stb);
10330 uiout->text ("\n");
10331 result = PRINT_UNKNOWN;
10332 break;
10333
10334 case bp_access_watchpoint:
10335 if (bs->old_val != NULL)
10336 {
10337 if (uiout->is_mi_like_p ())
10338 uiout->field_string
10339 ("reason",
10340 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10341 mention (b);
10342 tuple_emitter.emplace (uiout, "value");
10343 uiout->text ("\nOld value = ");
10344 watchpoint_value_print (bs->old_val.get (), &stb);
10345 uiout->field_stream ("old", stb);
10346 uiout->text ("\nNew value = ");
10347 }
10348 else
10349 {
10350 mention (b);
10351 if (uiout->is_mi_like_p ())
10352 uiout->field_string
10353 ("reason",
10354 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10355 tuple_emitter.emplace (uiout, "value");
10356 uiout->text ("\nValue = ");
10357 }
10358 watchpoint_value_print (w->val.get (), &stb);
10359 uiout->field_stream ("new", stb);
10360 uiout->text ("\n");
10361 result = PRINT_UNKNOWN;
10362 break;
10363 default:
10364 result = PRINT_UNKNOWN;
10365 }
10366
10367 return result;
10368 }
10369
10370 /* Implement the "print_mention" breakpoint_ops method for hardware
10371 watchpoints. */
10372
10373 static void
10374 print_mention_watchpoint (struct breakpoint *b)
10375 {
10376 struct watchpoint *w = (struct watchpoint *) b;
10377 struct ui_out *uiout = current_uiout;
10378 const char *tuple_name;
10379
10380 switch (b->type)
10381 {
10382 case bp_watchpoint:
10383 uiout->text ("Watchpoint ");
10384 tuple_name = "wpt";
10385 break;
10386 case bp_hardware_watchpoint:
10387 uiout->text ("Hardware watchpoint ");
10388 tuple_name = "wpt";
10389 break;
10390 case bp_read_watchpoint:
10391 uiout->text ("Hardware read watchpoint ");
10392 tuple_name = "hw-rwpt";
10393 break;
10394 case bp_access_watchpoint:
10395 uiout->text ("Hardware access (read/write) watchpoint ");
10396 tuple_name = "hw-awpt";
10397 break;
10398 default:
10399 internal_error (__FILE__, __LINE__,
10400 _("Invalid hardware watchpoint type."));
10401 }
10402
10403 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10404 uiout->field_signed ("number", b->number);
10405 uiout->text (": ");
10406 uiout->field_string ("exp", w->exp_string);
10407 }
10408
10409 /* Implement the "print_recreate" breakpoint_ops method for
10410 watchpoints. */
10411
10412 static void
10413 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10414 {
10415 struct watchpoint *w = (struct watchpoint *) b;
10416
10417 switch (b->type)
10418 {
10419 case bp_watchpoint:
10420 case bp_hardware_watchpoint:
10421 fprintf_unfiltered (fp, "watch");
10422 break;
10423 case bp_read_watchpoint:
10424 fprintf_unfiltered (fp, "rwatch");
10425 break;
10426 case bp_access_watchpoint:
10427 fprintf_unfiltered (fp, "awatch");
10428 break;
10429 default:
10430 internal_error (__FILE__, __LINE__,
10431 _("Invalid watchpoint type."));
10432 }
10433
10434 fprintf_unfiltered (fp, " %s", w->exp_string);
10435 print_recreate_thread (b, fp);
10436 }
10437
10438 /* Implement the "explains_signal" breakpoint_ops method for
10439 watchpoints. */
10440
10441 static int
10442 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10443 {
10444 /* A software watchpoint cannot cause a signal other than
10445 GDB_SIGNAL_TRAP. */
10446 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10447 return 0;
10448
10449 return 1;
10450 }
10451
10452 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10453
10454 static struct breakpoint_ops watchpoint_breakpoint_ops;
10455
10456 /* Implement the "insert" breakpoint_ops method for
10457 masked hardware watchpoints. */
10458
10459 static int
10460 insert_masked_watchpoint (struct bp_location *bl)
10461 {
10462 struct watchpoint *w = (struct watchpoint *) bl->owner;
10463
10464 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10465 bl->watchpoint_type);
10466 }
10467
10468 /* Implement the "remove" breakpoint_ops method for
10469 masked hardware watchpoints. */
10470
10471 static int
10472 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10473 {
10474 struct watchpoint *w = (struct watchpoint *) bl->owner;
10475
10476 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10477 bl->watchpoint_type);
10478 }
10479
10480 /* Implement the "resources_needed" breakpoint_ops method for
10481 masked hardware watchpoints. */
10482
10483 static int
10484 resources_needed_masked_watchpoint (const struct bp_location *bl)
10485 {
10486 struct watchpoint *w = (struct watchpoint *) bl->owner;
10487
10488 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10489 }
10490
10491 /* Implement the "works_in_software_mode" breakpoint_ops method for
10492 masked hardware watchpoints. */
10493
10494 static int
10495 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10496 {
10497 return 0;
10498 }
10499
10500 /* Implement the "print_it" breakpoint_ops method for
10501 masked hardware watchpoints. */
10502
10503 static enum print_stop_action
10504 print_it_masked_watchpoint (bpstat bs)
10505 {
10506 struct breakpoint *b = bs->breakpoint_at;
10507 struct ui_out *uiout = current_uiout;
10508
10509 /* Masked watchpoints have only one location. */
10510 gdb_assert (b->loc && b->loc->next == NULL);
10511
10512 annotate_watchpoint (b->number);
10513 maybe_print_thread_hit_breakpoint (uiout);
10514
10515 switch (b->type)
10516 {
10517 case bp_hardware_watchpoint:
10518 if (uiout->is_mi_like_p ())
10519 uiout->field_string
10520 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10521 break;
10522
10523 case bp_read_watchpoint:
10524 if (uiout->is_mi_like_p ())
10525 uiout->field_string
10526 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10527 break;
10528
10529 case bp_access_watchpoint:
10530 if (uiout->is_mi_like_p ())
10531 uiout->field_string
10532 ("reason",
10533 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10534 break;
10535 default:
10536 internal_error (__FILE__, __LINE__,
10537 _("Invalid hardware watchpoint type."));
10538 }
10539
10540 mention (b);
10541 uiout->text (_("\n\
10542 Check the underlying instruction at PC for the memory\n\
10543 address and value which triggered this watchpoint.\n"));
10544 uiout->text ("\n");
10545
10546 /* More than one watchpoint may have been triggered. */
10547 return PRINT_UNKNOWN;
10548 }
10549
10550 /* Implement the "print_one_detail" breakpoint_ops method for
10551 masked hardware watchpoints. */
10552
10553 static void
10554 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10555 struct ui_out *uiout)
10556 {
10557 struct watchpoint *w = (struct watchpoint *) b;
10558
10559 /* Masked watchpoints have only one location. */
10560 gdb_assert (b->loc && b->loc->next == NULL);
10561
10562 uiout->text ("\tmask ");
10563 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10564 uiout->text ("\n");
10565 }
10566
10567 /* Implement the "print_mention" breakpoint_ops method for
10568 masked hardware watchpoints. */
10569
10570 static void
10571 print_mention_masked_watchpoint (struct breakpoint *b)
10572 {
10573 struct watchpoint *w = (struct watchpoint *) b;
10574 struct ui_out *uiout = current_uiout;
10575 const char *tuple_name;
10576
10577 switch (b->type)
10578 {
10579 case bp_hardware_watchpoint:
10580 uiout->text ("Masked hardware watchpoint ");
10581 tuple_name = "wpt";
10582 break;
10583 case bp_read_watchpoint:
10584 uiout->text ("Masked hardware read watchpoint ");
10585 tuple_name = "hw-rwpt";
10586 break;
10587 case bp_access_watchpoint:
10588 uiout->text ("Masked hardware access (read/write) watchpoint ");
10589 tuple_name = "hw-awpt";
10590 break;
10591 default:
10592 internal_error (__FILE__, __LINE__,
10593 _("Invalid hardware watchpoint type."));
10594 }
10595
10596 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10597 uiout->field_signed ("number", b->number);
10598 uiout->text (": ");
10599 uiout->field_string ("exp", w->exp_string);
10600 }
10601
10602 /* Implement the "print_recreate" breakpoint_ops method for
10603 masked hardware watchpoints. */
10604
10605 static void
10606 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10607 {
10608 struct watchpoint *w = (struct watchpoint *) b;
10609
10610 switch (b->type)
10611 {
10612 case bp_hardware_watchpoint:
10613 fprintf_unfiltered (fp, "watch");
10614 break;
10615 case bp_read_watchpoint:
10616 fprintf_unfiltered (fp, "rwatch");
10617 break;
10618 case bp_access_watchpoint:
10619 fprintf_unfiltered (fp, "awatch");
10620 break;
10621 default:
10622 internal_error (__FILE__, __LINE__,
10623 _("Invalid hardware watchpoint type."));
10624 }
10625
10626 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string,
10627 phex (w->hw_wp_mask, sizeof (CORE_ADDR)));
10628 print_recreate_thread (b, fp);
10629 }
10630
10631 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10632
10633 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10634
10635 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10636
10637 static bool
10638 is_masked_watchpoint (const struct breakpoint *b)
10639 {
10640 return b->ops == &masked_watchpoint_breakpoint_ops;
10641 }
10642
10643 /* accessflag: hw_write: watch write,
10644 hw_read: watch read,
10645 hw_access: watch access (read or write) */
10646 static void
10647 watch_command_1 (const char *arg, int accessflag, int from_tty,
10648 bool just_location, bool internal)
10649 {
10650 struct breakpoint *scope_breakpoint = NULL;
10651 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10652 struct value *result;
10653 int saved_bitpos = 0, saved_bitsize = 0;
10654 const char *exp_start = NULL;
10655 const char *exp_end = NULL;
10656 const char *tok, *end_tok;
10657 int toklen = -1;
10658 const char *cond_start = NULL;
10659 const char *cond_end = NULL;
10660 enum bptype bp_type;
10661 int thread = -1;
10662 int pc = 0;
10663 /* Flag to indicate whether we are going to use masks for
10664 the hardware watchpoint. */
10665 bool use_mask = false;
10666 CORE_ADDR mask = 0;
10667
10668 /* Make sure that we actually have parameters to parse. */
10669 if (arg != NULL && arg[0] != '\0')
10670 {
10671 const char *value_start;
10672
10673 exp_end = arg + strlen (arg);
10674
10675 /* Look for "parameter value" pairs at the end
10676 of the arguments string. */
10677 for (tok = exp_end - 1; tok > arg; tok--)
10678 {
10679 /* Skip whitespace at the end of the argument list. */
10680 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10681 tok--;
10682
10683 /* Find the beginning of the last token.
10684 This is the value of the parameter. */
10685 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10686 tok--;
10687 value_start = tok + 1;
10688
10689 /* Skip whitespace. */
10690 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10691 tok--;
10692
10693 end_tok = tok;
10694
10695 /* Find the beginning of the second to last token.
10696 This is the parameter itself. */
10697 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10698 tok--;
10699 tok++;
10700 toklen = end_tok - tok + 1;
10701
10702 if (toklen == 6 && startswith (tok, "thread"))
10703 {
10704 struct thread_info *thr;
10705 /* At this point we've found a "thread" token, which means
10706 the user is trying to set a watchpoint that triggers
10707 only in a specific thread. */
10708 const char *endp;
10709
10710 if (thread != -1)
10711 error(_("You can specify only one thread."));
10712
10713 /* Extract the thread ID from the next token. */
10714 thr = parse_thread_id (value_start, &endp);
10715
10716 /* Check if the user provided a valid thread ID. */
10717 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10718 invalid_thread_id_error (value_start);
10719
10720 thread = thr->global_num;
10721 }
10722 else if (toklen == 4 && startswith (tok, "mask"))
10723 {
10724 /* We've found a "mask" token, which means the user wants to
10725 create a hardware watchpoint that is going to have the mask
10726 facility. */
10727 struct value *mask_value, *mark;
10728
10729 if (use_mask)
10730 error(_("You can specify only one mask."));
10731
10732 use_mask = just_location = true;
10733
10734 mark = value_mark ();
10735 mask_value = parse_to_comma_and_eval (&value_start);
10736 mask = value_as_address (mask_value);
10737 value_free_to_mark (mark);
10738 }
10739 else
10740 /* We didn't recognize what we found. We should stop here. */
10741 break;
10742
10743 /* Truncate the string and get rid of the "parameter value" pair before
10744 the arguments string is parsed by the parse_exp_1 function. */
10745 exp_end = tok;
10746 }
10747 }
10748 else
10749 exp_end = arg;
10750
10751 /* Parse the rest of the arguments. From here on out, everything
10752 is in terms of a newly allocated string instead of the original
10753 ARG. */
10754 std::string expression (arg, exp_end - arg);
10755 exp_start = arg = expression.c_str ();
10756 innermost_block_tracker tracker;
10757 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10758 exp_end = arg;
10759 /* Remove trailing whitespace from the expression before saving it.
10760 This makes the eventual display of the expression string a bit
10761 prettier. */
10762 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10763 --exp_end;
10764
10765 /* Checking if the expression is not constant. */
10766 if (watchpoint_exp_is_const (exp.get ()))
10767 {
10768 int len;
10769
10770 len = exp_end - exp_start;
10771 while (len > 0 && isspace (exp_start[len - 1]))
10772 len--;
10773 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10774 }
10775
10776 exp_valid_block = tracker.block ();
10777 struct value *mark = value_mark ();
10778 struct value *val_as_value = nullptr;
10779 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10780 just_location);
10781
10782 if (val_as_value != NULL && just_location)
10783 {
10784 saved_bitpos = value_bitpos (val_as_value);
10785 saved_bitsize = value_bitsize (val_as_value);
10786 }
10787
10788 value_ref_ptr val;
10789 if (just_location)
10790 {
10791 int ret;
10792
10793 exp_valid_block = NULL;
10794 val = release_value (value_addr (result));
10795 value_free_to_mark (mark);
10796
10797 if (use_mask)
10798 {
10799 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10800 mask);
10801 if (ret == -1)
10802 error (_("This target does not support masked watchpoints."));
10803 else if (ret == -2)
10804 error (_("Invalid mask or memory region."));
10805 }
10806 }
10807 else if (val_as_value != NULL)
10808 val = release_value (val_as_value);
10809
10810 tok = skip_spaces (arg);
10811 end_tok = skip_to_space (tok);
10812
10813 toklen = end_tok - tok;
10814 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10815 {
10816 tok = cond_start = end_tok + 1;
10817 innermost_block_tracker if_tracker;
10818 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10819
10820 /* The watchpoint expression may not be local, but the condition
10821 may still be. E.g.: `watch global if local > 0'. */
10822 cond_exp_valid_block = if_tracker.block ();
10823
10824 cond_end = tok;
10825 }
10826 if (*tok)
10827 error (_("Junk at end of command."));
10828
10829 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10830
10831 /* Save this because create_internal_breakpoint below invalidates
10832 'wp_frame'. */
10833 frame_id watchpoint_frame = get_frame_id (wp_frame);
10834
10835 /* If the expression is "local", then set up a "watchpoint scope"
10836 breakpoint at the point where we've left the scope of the watchpoint
10837 expression. Create the scope breakpoint before the watchpoint, so
10838 that we will encounter it first in bpstat_stop_status. */
10839 if (exp_valid_block != NULL && wp_frame != NULL)
10840 {
10841 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10842
10843 if (frame_id_p (caller_frame_id))
10844 {
10845 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10846 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10847
10848 scope_breakpoint
10849 = create_internal_breakpoint (caller_arch, caller_pc,
10850 bp_watchpoint_scope,
10851 &momentary_breakpoint_ops);
10852
10853 /* create_internal_breakpoint could invalidate WP_FRAME. */
10854 wp_frame = NULL;
10855
10856 scope_breakpoint->enable_state = bp_enabled;
10857
10858 /* Automatically delete the breakpoint when it hits. */
10859 scope_breakpoint->disposition = disp_del;
10860
10861 /* Only break in the proper frame (help with recursion). */
10862 scope_breakpoint->frame_id = caller_frame_id;
10863
10864 /* Set the address at which we will stop. */
10865 scope_breakpoint->loc->gdbarch = caller_arch;
10866 scope_breakpoint->loc->requested_address = caller_pc;
10867 scope_breakpoint->loc->address
10868 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10869 scope_breakpoint->loc->requested_address,
10870 scope_breakpoint->type);
10871 }
10872 }
10873
10874 /* Now set up the breakpoint. We create all watchpoints as hardware
10875 watchpoints here even if hardware watchpoints are turned off, a call
10876 to update_watchpoint later in this function will cause the type to
10877 drop back to bp_watchpoint (software watchpoint) if required. */
10878
10879 if (accessflag == hw_read)
10880 bp_type = bp_read_watchpoint;
10881 else if (accessflag == hw_access)
10882 bp_type = bp_access_watchpoint;
10883 else
10884 bp_type = bp_hardware_watchpoint;
10885
10886 std::unique_ptr<watchpoint> w (new watchpoint ());
10887
10888 if (use_mask)
10889 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10890 &masked_watchpoint_breakpoint_ops);
10891 else
10892 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10893 &watchpoint_breakpoint_ops);
10894 w->thread = thread;
10895 w->disposition = disp_donttouch;
10896 w->pspace = current_program_space;
10897 w->exp = std::move (exp);
10898 w->exp_valid_block = exp_valid_block;
10899 w->cond_exp_valid_block = cond_exp_valid_block;
10900 if (just_location)
10901 {
10902 struct type *t = value_type (val.get ());
10903 CORE_ADDR addr = value_as_address (val.get ());
10904
10905 w->exp_string_reparse
10906 = current_language->watch_location_expression (t, addr).release ();
10907
10908 w->exp_string = xstrprintf ("-location %.*s",
10909 (int) (exp_end - exp_start), exp_start);
10910 }
10911 else
10912 w->exp_string = savestring (exp_start, exp_end - exp_start);
10913
10914 if (use_mask)
10915 {
10916 w->hw_wp_mask = mask;
10917 }
10918 else
10919 {
10920 w->val = val;
10921 w->val_bitpos = saved_bitpos;
10922 w->val_bitsize = saved_bitsize;
10923 w->val_valid = true;
10924 }
10925
10926 if (cond_start)
10927 w->cond_string = savestring (cond_start, cond_end - cond_start);
10928 else
10929 w->cond_string = 0;
10930
10931 if (frame_id_p (watchpoint_frame))
10932 {
10933 w->watchpoint_frame = watchpoint_frame;
10934 w->watchpoint_thread = inferior_ptid;
10935 }
10936 else
10937 {
10938 w->watchpoint_frame = null_frame_id;
10939 w->watchpoint_thread = null_ptid;
10940 }
10941
10942 if (scope_breakpoint != NULL)
10943 {
10944 /* The scope breakpoint is related to the watchpoint. We will
10945 need to act on them together. */
10946 w->related_breakpoint = scope_breakpoint;
10947 scope_breakpoint->related_breakpoint = w.get ();
10948 }
10949
10950 if (!just_location)
10951 value_free_to_mark (mark);
10952
10953 /* Finally update the new watchpoint. This creates the locations
10954 that should be inserted. */
10955 update_watchpoint (w.get (), 1);
10956
10957 install_breakpoint (internal, std::move (w), 1);
10958 }
10959
10960 /* Return count of debug registers needed to watch the given expression.
10961 If the watchpoint cannot be handled in hardware return zero. */
10962
10963 static int
10964 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10965 {
10966 int found_memory_cnt = 0;
10967
10968 /* Did the user specifically forbid us to use hardware watchpoints? */
10969 if (!can_use_hw_watchpoints)
10970 return 0;
10971
10972 gdb_assert (!vals.empty ());
10973 struct value *head = vals[0].get ();
10974
10975 /* Make sure that the value of the expression depends only upon
10976 memory contents, and values computed from them within GDB. If we
10977 find any register references or function calls, we can't use a
10978 hardware watchpoint.
10979
10980 The idea here is that evaluating an expression generates a series
10981 of values, one holding the value of every subexpression. (The
10982 expression a*b+c has five subexpressions: a, b, a*b, c, and
10983 a*b+c.) GDB's values hold almost enough information to establish
10984 the criteria given above --- they identify memory lvalues,
10985 register lvalues, computed values, etcetera. So we can evaluate
10986 the expression, and then scan the chain of values that leaves
10987 behind to decide whether we can detect any possible change to the
10988 expression's final value using only hardware watchpoints.
10989
10990 However, I don't think that the values returned by inferior
10991 function calls are special in any way. So this function may not
10992 notice that an expression involving an inferior function call
10993 can't be watched with hardware watchpoints. FIXME. */
10994 for (const value_ref_ptr &iter : vals)
10995 {
10996 struct value *v = iter.get ();
10997
10998 if (VALUE_LVAL (v) == lval_memory)
10999 {
11000 if (v != head && value_lazy (v))
11001 /* A lazy memory lvalue in the chain is one that GDB never
11002 needed to fetch; we either just used its address (e.g.,
11003 `a' in `a.b') or we never needed it at all (e.g., `a'
11004 in `a,b'). This doesn't apply to HEAD; if that is
11005 lazy then it was not readable, but watch it anyway. */
11006 ;
11007 else
11008 {
11009 /* Ahh, memory we actually used! Check if we can cover
11010 it with hardware watchpoints. */
11011 struct type *vtype = check_typedef (value_type (v));
11012
11013 /* We only watch structs and arrays if user asked for it
11014 explicitly, never if they just happen to appear in a
11015 middle of some value chain. */
11016 if (v == head
11017 || (vtype->code () != TYPE_CODE_STRUCT
11018 && vtype->code () != TYPE_CODE_ARRAY))
11019 {
11020 CORE_ADDR vaddr = value_address (v);
11021 int len;
11022 int num_regs;
11023
11024 len = (target_exact_watchpoints
11025 && is_scalar_type_recursive (vtype))?
11026 1 : TYPE_LENGTH (value_type (v));
11027
11028 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11029 if (!num_regs)
11030 return 0;
11031 else
11032 found_memory_cnt += num_regs;
11033 }
11034 }
11035 }
11036 else if (VALUE_LVAL (v) != not_lval
11037 && deprecated_value_modifiable (v) == 0)
11038 return 0; /* These are values from the history (e.g., $1). */
11039 else if (VALUE_LVAL (v) == lval_register)
11040 return 0; /* Cannot watch a register with a HW watchpoint. */
11041 }
11042
11043 /* The expression itself looks suitable for using a hardware
11044 watchpoint, but give the target machine a chance to reject it. */
11045 return found_memory_cnt;
11046 }
11047
11048 void
11049 watch_command_wrapper (const char *arg, int from_tty, bool internal)
11050 {
11051 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11052 }
11053
11054 /* Options for the watch, awatch, and rwatch commands. */
11055
11056 struct watch_options
11057 {
11058 /* For -location. */
11059 bool location = false;
11060 };
11061
11062 /* Definitions of options for the "watch", "awatch", and "rwatch" commands.
11063
11064 Historically GDB always accepted both '-location' and '-l' flags for
11065 these commands (both flags being synonyms). When converting to the
11066 newer option scheme only '-location' is added here. That's fine (for
11067 backward compatibility) as any non-ambiguous prefix of a flag will be
11068 accepted, so '-l', '-loc', are now all accepted.
11069
11070 What this means is that, if in the future, we add any new flag here
11071 that starts with '-l' then this will break backward compatibility, so
11072 please, don't do that! */
11073
11074 static const gdb::option::option_def watch_option_defs[] = {
11075 gdb::option::flag_option_def<watch_options> {
11076 "location",
11077 [] (watch_options *opt) { return &opt->location; },
11078 N_("\
11079 This evaluates EXPRESSION and watches the memory to which is refers.\n\
11080 -l can be used as a short form of -location."),
11081 },
11082 };
11083
11084 /* Returns the option group used by 'watch', 'awatch', and 'rwatch'
11085 commands. */
11086
11087 static gdb::option::option_def_group
11088 make_watch_options_def_group (watch_options *opts)
11089 {
11090 return {{watch_option_defs}, opts};
11091 }
11092
11093 /* A helper function that looks for the "-location" argument and then
11094 calls watch_command_1. */
11095
11096 static void
11097 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
11098 {
11099 watch_options opts;
11100 auto grp = make_watch_options_def_group (&opts);
11101 gdb::option::process_options
11102 (&arg, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
11103 if (arg != nullptr && *arg == '\0')
11104 arg = nullptr;
11105
11106 watch_command_1 (arg, accessflag, from_tty, opts.location, false);
11107 }
11108
11109 /* Command completion for 'watch', 'awatch', and 'rwatch' commands. */
11110 static void
11111 watch_command_completer (struct cmd_list_element *ignore,
11112 completion_tracker &tracker,
11113 const char *text, const char * /*word*/)
11114 {
11115 const auto group = make_watch_options_def_group (nullptr);
11116 if (gdb::option::complete_options
11117 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
11118 return;
11119
11120 const char *word = advance_to_expression_complete_word_point (tracker, text);
11121 expression_completer (ignore, tracker, text, word);
11122 }
11123
11124 static void
11125 watch_command (const char *arg, int from_tty)
11126 {
11127 watch_maybe_just_location (arg, hw_write, from_tty);
11128 }
11129
11130 void
11131 rwatch_command_wrapper (const char *arg, int from_tty, bool internal)
11132 {
11133 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11134 }
11135
11136 static void
11137 rwatch_command (const char *arg, int from_tty)
11138 {
11139 watch_maybe_just_location (arg, hw_read, from_tty);
11140 }
11141
11142 void
11143 awatch_command_wrapper (const char *arg, int from_tty, bool internal)
11144 {
11145 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11146 }
11147
11148 static void
11149 awatch_command (const char *arg, int from_tty)
11150 {
11151 watch_maybe_just_location (arg, hw_access, from_tty);
11152 }
11153 \f
11154
11155 /* Data for the FSM that manages the until(location)/advance commands
11156 in infcmd.c. Here because it uses the mechanisms of
11157 breakpoints. */
11158
11159 struct until_break_fsm : public thread_fsm
11160 {
11161 /* The thread that was current when the command was executed. */
11162 int thread;
11163
11164 /* The breakpoint set at the return address in the caller frame,
11165 plus breakpoints at all the destination locations. */
11166 std::vector<breakpoint_up> breakpoints;
11167
11168 until_break_fsm (struct interp *cmd_interp, int thread,
11169 std::vector<breakpoint_up> &&breakpoints)
11170 : thread_fsm (cmd_interp),
11171 thread (thread),
11172 breakpoints (std::move (breakpoints))
11173 {
11174 }
11175
11176 void clean_up (struct thread_info *thread) override;
11177 bool should_stop (struct thread_info *thread) override;
11178 enum async_reply_reason do_async_reply_reason () override;
11179 };
11180
11181 /* Implementation of the 'should_stop' FSM method for the
11182 until(location)/advance commands. */
11183
11184 bool
11185 until_break_fsm::should_stop (struct thread_info *tp)
11186 {
11187 for (const breakpoint_up &bp : breakpoints)
11188 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11189 bp.get ()) != NULL)
11190 {
11191 set_finished ();
11192 break;
11193 }
11194
11195 return true;
11196 }
11197
11198 /* Implementation of the 'clean_up' FSM method for the
11199 until(location)/advance commands. */
11200
11201 void
11202 until_break_fsm::clean_up (struct thread_info *)
11203 {
11204 /* Clean up our temporary breakpoints. */
11205 breakpoints.clear ();
11206 delete_longjmp_breakpoint (thread);
11207 }
11208
11209 /* Implementation of the 'async_reply_reason' FSM method for the
11210 until(location)/advance commands. */
11211
11212 enum async_reply_reason
11213 until_break_fsm::do_async_reply_reason ()
11214 {
11215 return EXEC_ASYNC_LOCATION_REACHED;
11216 }
11217
11218 void
11219 until_break_command (const char *arg, int from_tty, int anywhere)
11220 {
11221 struct frame_info *frame;
11222 struct gdbarch *frame_gdbarch;
11223 struct frame_id stack_frame_id;
11224 struct frame_id caller_frame_id;
11225 int thread;
11226 struct thread_info *tp;
11227
11228 clear_proceed_status (0);
11229
11230 /* Set a breakpoint where the user wants it and at return from
11231 this function. */
11232
11233 event_location_up location = string_to_event_location (&arg, current_language);
11234
11235 std::vector<symtab_and_line> sals
11236 = (last_displayed_sal_is_valid ()
11237 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11238 get_last_displayed_symtab (),
11239 get_last_displayed_line ())
11240 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11241 NULL, NULL, 0));
11242
11243 if (sals.empty ())
11244 error (_("Couldn't get information on specified line."));
11245
11246 if (*arg)
11247 error (_("Junk at end of arguments."));
11248
11249 tp = inferior_thread ();
11250 thread = tp->global_num;
11251
11252 /* Note linespec handling above invalidates the frame chain.
11253 Installing a breakpoint also invalidates the frame chain (as it
11254 may need to switch threads), so do any frame handling before
11255 that. */
11256
11257 frame = get_selected_frame (NULL);
11258 frame_gdbarch = get_frame_arch (frame);
11259 stack_frame_id = get_stack_frame_id (frame);
11260 caller_frame_id = frame_unwind_caller_id (frame);
11261
11262 /* Keep within the current frame, or in frames called by the current
11263 one. */
11264
11265 std::vector<breakpoint_up> breakpoints;
11266
11267 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11268
11269 if (frame_id_p (caller_frame_id))
11270 {
11271 struct symtab_and_line sal2;
11272 struct gdbarch *caller_gdbarch;
11273
11274 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11275 sal2.pc = frame_unwind_caller_pc (frame);
11276 caller_gdbarch = frame_unwind_caller_arch (frame);
11277
11278 breakpoint_up caller_breakpoint
11279 = set_momentary_breakpoint (caller_gdbarch, sal2,
11280 caller_frame_id, bp_until);
11281 breakpoints.emplace_back (std::move (caller_breakpoint));
11282
11283 set_longjmp_breakpoint (tp, caller_frame_id);
11284 lj_deleter.emplace (thread);
11285 }
11286
11287 /* set_momentary_breakpoint could invalidate FRAME. */
11288 frame = NULL;
11289
11290 /* If the user told us to continue until a specified location, we
11291 don't specify a frame at which we need to stop. Otherwise,
11292 specify the selected frame, because we want to stop only at the
11293 very same frame. */
11294 frame_id stop_frame_id = anywhere ? null_frame_id : stack_frame_id;
11295
11296 for (symtab_and_line &sal : sals)
11297 {
11298 resolve_sal_pc (&sal);
11299
11300 breakpoint_up location_breakpoint
11301 = set_momentary_breakpoint (frame_gdbarch, sal,
11302 stop_frame_id, bp_until);
11303 breakpoints.emplace_back (std::move (location_breakpoint));
11304 }
11305
11306 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11307 std::move (breakpoints));
11308
11309 if (lj_deleter)
11310 lj_deleter->release ();
11311
11312 proceed (-1, GDB_SIGNAL_DEFAULT);
11313 }
11314
11315 /* This function attempts to parse an optional "if <cond>" clause
11316 from the arg string. If one is not found, it returns NULL.
11317
11318 Else, it returns a pointer to the condition string. (It does not
11319 attempt to evaluate the string against a particular block.) And,
11320 it updates arg to point to the first character following the parsed
11321 if clause in the arg string. */
11322
11323 const char *
11324 ep_parse_optional_if_clause (const char **arg)
11325 {
11326 const char *cond_string;
11327
11328 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11329 return NULL;
11330
11331 /* Skip the "if" keyword. */
11332 (*arg) += 2;
11333
11334 /* Skip any extra leading whitespace, and record the start of the
11335 condition string. */
11336 *arg = skip_spaces (*arg);
11337 cond_string = *arg;
11338
11339 /* Assume that the condition occupies the remainder of the arg
11340 string. */
11341 (*arg) += strlen (cond_string);
11342
11343 return cond_string;
11344 }
11345
11346 /* Commands to deal with catching events, such as signals, exceptions,
11347 process start/exit, etc. */
11348
11349 typedef enum
11350 {
11351 catch_fork_temporary, catch_vfork_temporary,
11352 catch_fork_permanent, catch_vfork_permanent
11353 }
11354 catch_fork_kind;
11355
11356 static void
11357 catch_fork_command_1 (const char *arg, int from_tty,
11358 struct cmd_list_element *command)
11359 {
11360 struct gdbarch *gdbarch = get_current_arch ();
11361 const char *cond_string = NULL;
11362 catch_fork_kind fork_kind;
11363
11364 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11365 bool temp = (fork_kind == catch_fork_temporary
11366 || fork_kind == catch_vfork_temporary);
11367
11368 if (!arg)
11369 arg = "";
11370 arg = skip_spaces (arg);
11371
11372 /* The allowed syntax is:
11373 catch [v]fork
11374 catch [v]fork if <cond>
11375
11376 First, check if there's an if clause. */
11377 cond_string = ep_parse_optional_if_clause (&arg);
11378
11379 if ((*arg != '\0') && !isspace (*arg))
11380 error (_("Junk at end of arguments."));
11381
11382 /* If this target supports it, create a fork or vfork catchpoint
11383 and enable reporting of such events. */
11384 switch (fork_kind)
11385 {
11386 case catch_fork_temporary:
11387 case catch_fork_permanent:
11388 create_fork_vfork_event_catchpoint (gdbarch, temp, cond_string,
11389 &catch_fork_breakpoint_ops);
11390 break;
11391 case catch_vfork_temporary:
11392 case catch_vfork_permanent:
11393 create_fork_vfork_event_catchpoint (gdbarch, temp, cond_string,
11394 &catch_vfork_breakpoint_ops);
11395 break;
11396 default:
11397 error (_("unsupported or unknown fork kind; cannot catch it"));
11398 break;
11399 }
11400 }
11401
11402 static void
11403 catch_exec_command_1 (const char *arg, int from_tty,
11404 struct cmd_list_element *command)
11405 {
11406 struct gdbarch *gdbarch = get_current_arch ();
11407 const char *cond_string = NULL;
11408 bool temp = get_cmd_context (command) == CATCH_TEMPORARY;
11409
11410 if (!arg)
11411 arg = "";
11412 arg = skip_spaces (arg);
11413
11414 /* The allowed syntax is:
11415 catch exec
11416 catch exec if <cond>
11417
11418 First, check if there's an if clause. */
11419 cond_string = ep_parse_optional_if_clause (&arg);
11420
11421 if ((*arg != '\0') && !isspace (*arg))
11422 error (_("Junk at end of arguments."));
11423
11424 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11425 init_catchpoint (c.get (), gdbarch, temp, cond_string,
11426 &catch_exec_breakpoint_ops);
11427 c->exec_pathname = NULL;
11428
11429 install_breakpoint (0, std::move (c), 1);
11430 }
11431
11432 void
11433 init_ada_exception_breakpoint (struct breakpoint *b,
11434 struct gdbarch *gdbarch,
11435 struct symtab_and_line sal,
11436 const char *addr_string,
11437 const struct breakpoint_ops *ops,
11438 int tempflag,
11439 int enabled,
11440 int from_tty)
11441 {
11442 if (from_tty)
11443 {
11444 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11445 if (!loc_gdbarch)
11446 loc_gdbarch = gdbarch;
11447
11448 describe_other_breakpoints (loc_gdbarch,
11449 sal.pspace, sal.pc, sal.section, -1);
11450 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11451 version for exception catchpoints, because two catchpoints
11452 used for different exception names will use the same address.
11453 In this case, a "breakpoint ... also set at..." warning is
11454 unproductive. Besides, the warning phrasing is also a bit
11455 inappropriate, we should use the word catchpoint, and tell
11456 the user what type of catchpoint it is. The above is good
11457 enough for now, though. */
11458 }
11459
11460 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
11461
11462 b->enable_state = enabled ? bp_enabled : bp_disabled;
11463 b->disposition = tempflag ? disp_del : disp_donttouch;
11464 b->location = string_to_event_location (&addr_string,
11465 language_def (language_ada));
11466 b->language = language_ada;
11467 }
11468
11469 \f
11470
11471 /* Compare two breakpoints and return a strcmp-like result. */
11472
11473 static int
11474 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11475 {
11476 uintptr_t ua = (uintptr_t) a;
11477 uintptr_t ub = (uintptr_t) b;
11478
11479 if (a->number < b->number)
11480 return -1;
11481 else if (a->number > b->number)
11482 return 1;
11483
11484 /* Now sort by address, in case we see, e..g, two breakpoints with
11485 the number 0. */
11486 if (ua < ub)
11487 return -1;
11488 return ua > ub ? 1 : 0;
11489 }
11490
11491 /* Delete breakpoints by address or line. */
11492
11493 static void
11494 clear_command (const char *arg, int from_tty)
11495 {
11496 struct breakpoint *b;
11497 int default_match;
11498
11499 std::vector<symtab_and_line> decoded_sals;
11500 symtab_and_line last_sal;
11501 gdb::array_view<symtab_and_line> sals;
11502 if (arg)
11503 {
11504 decoded_sals
11505 = decode_line_with_current_source (arg,
11506 (DECODE_LINE_FUNFIRSTLINE
11507 | DECODE_LINE_LIST_MODE));
11508 default_match = 0;
11509 sals = decoded_sals;
11510 }
11511 else
11512 {
11513 /* Set sal's line, symtab, pc, and pspace to the values
11514 corresponding to the last call to print_frame_info. If the
11515 codepoint is not valid, this will set all the fields to 0. */
11516 last_sal = get_last_displayed_sal ();
11517 if (last_sal.symtab == 0)
11518 error (_("No source file specified."));
11519
11520 default_match = 1;
11521 sals = last_sal;
11522 }
11523
11524 /* We don't call resolve_sal_pc here. That's not as bad as it
11525 seems, because all existing breakpoints typically have both
11526 file/line and pc set. So, if clear is given file/line, we can
11527 match this to existing breakpoint without obtaining pc at all.
11528
11529 We only support clearing given the address explicitly
11530 present in breakpoint table. Say, we've set breakpoint
11531 at file:line. There were several PC values for that file:line,
11532 due to optimization, all in one block.
11533
11534 We've picked one PC value. If "clear" is issued with another
11535 PC corresponding to the same file:line, the breakpoint won't
11536 be cleared. We probably can still clear the breakpoint, but
11537 since the other PC value is never presented to user, user
11538 can only find it by guessing, and it does not seem important
11539 to support that. */
11540
11541 /* For each line spec given, delete bps which correspond to it. Do
11542 it in two passes, solely to preserve the current behavior that
11543 from_tty is forced true if we delete more than one
11544 breakpoint. */
11545
11546 std::vector<struct breakpoint *> found;
11547 for (const auto &sal : sals)
11548 {
11549 const char *sal_fullname;
11550
11551 /* If exact pc given, clear bpts at that pc.
11552 If line given (pc == 0), clear all bpts on specified line.
11553 If defaulting, clear all bpts on default line
11554 or at default pc.
11555
11556 defaulting sal.pc != 0 tests to do
11557
11558 0 1 pc
11559 1 1 pc _and_ line
11560 0 0 line
11561 1 0 <can't happen> */
11562
11563 sal_fullname = (sal.symtab == NULL
11564 ? NULL : symtab_to_fullname (sal.symtab));
11565
11566 /* Find all matching breakpoints and add them to 'found'. */
11567 ALL_BREAKPOINTS (b)
11568 {
11569 int match = 0;
11570 /* Are we going to delete b? */
11571 if (b->type != bp_none && !is_watchpoint (b))
11572 {
11573 struct bp_location *loc = b->loc;
11574 for (; loc; loc = loc->next)
11575 {
11576 /* If the user specified file:line, don't allow a PC
11577 match. This matches historical gdb behavior. */
11578 int pc_match = (!sal.explicit_line
11579 && sal.pc
11580 && (loc->pspace == sal.pspace)
11581 && (loc->address == sal.pc)
11582 && (!section_is_overlay (loc->section)
11583 || loc->section == sal.section));
11584 int line_match = 0;
11585
11586 if ((default_match || sal.explicit_line)
11587 && loc->symtab != NULL
11588 && sal_fullname != NULL
11589 && sal.pspace == loc->pspace
11590 && loc->line_number == sal.line
11591 && filename_cmp (symtab_to_fullname (loc->symtab),
11592 sal_fullname) == 0)
11593 line_match = 1;
11594
11595 if (pc_match || line_match)
11596 {
11597 match = 1;
11598 break;
11599 }
11600 }
11601 }
11602
11603 if (match)
11604 found.push_back (b);
11605 }
11606 }
11607
11608 /* Now go thru the 'found' chain and delete them. */
11609 if (found.empty ())
11610 {
11611 if (arg)
11612 error (_("No breakpoint at %s."), arg);
11613 else
11614 error (_("No breakpoint at this line."));
11615 }
11616
11617 /* Remove duplicates from the vec. */
11618 std::sort (found.begin (), found.end (),
11619 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11620 {
11621 return compare_breakpoints (bp_a, bp_b) < 0;
11622 });
11623 found.erase (std::unique (found.begin (), found.end (),
11624 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11625 {
11626 return compare_breakpoints (bp_a, bp_b) == 0;
11627 }),
11628 found.end ());
11629
11630 if (found.size () > 1)
11631 from_tty = 1; /* Always report if deleted more than one. */
11632 if (from_tty)
11633 {
11634 if (found.size () == 1)
11635 printf_unfiltered (_("Deleted breakpoint "));
11636 else
11637 printf_unfiltered (_("Deleted breakpoints "));
11638 }
11639
11640 for (breakpoint *iter : found)
11641 {
11642 if (from_tty)
11643 printf_unfiltered ("%d ", iter->number);
11644 delete_breakpoint (iter);
11645 }
11646 if (from_tty)
11647 putchar_unfiltered ('\n');
11648 }
11649 \f
11650 /* Delete breakpoint in BS if they are `delete' breakpoints and
11651 all breakpoints that are marked for deletion, whether hit or not.
11652 This is called after any breakpoint is hit, or after errors. */
11653
11654 void
11655 breakpoint_auto_delete (bpstat bs)
11656 {
11657 struct breakpoint *b, *b_tmp;
11658
11659 for (; bs; bs = bs->next)
11660 if (bs->breakpoint_at
11661 && bs->breakpoint_at->disposition == disp_del
11662 && bs->stop)
11663 delete_breakpoint (bs->breakpoint_at);
11664
11665 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11666 {
11667 if (b->disposition == disp_del_at_next_stop)
11668 delete_breakpoint (b);
11669 }
11670 }
11671
11672 /* A comparison function for bp_location AP and BP being interfaced to
11673 std::sort. Sort elements primarily by their ADDRESS (no matter what
11674 bl_address_is_meaningful says), secondarily by ordering first
11675 permanent elements and terciarily just ensuring the array is sorted
11676 stable way despite std::sort being an unstable algorithm. */
11677
11678 static int
11679 bp_location_is_less_than (const bp_location *a, const bp_location *b)
11680 {
11681 if (a->address != b->address)
11682 return a->address < b->address;
11683
11684 /* Sort locations at the same address by their pspace number, keeping
11685 locations of the same inferior (in a multi-inferior environment)
11686 grouped. */
11687
11688 if (a->pspace->num != b->pspace->num)
11689 return a->pspace->num < b->pspace->num;
11690
11691 /* Sort permanent breakpoints first. */
11692 if (a->permanent != b->permanent)
11693 return a->permanent > b->permanent;
11694
11695 /* Sort by type in order to make duplicate determination easier.
11696 See update_global_location_list. This is kept in sync with
11697 breakpoint_locations_match. */
11698 if (a->loc_type < b->loc_type)
11699 return true;
11700
11701 /* Likewise, for range-breakpoints, sort by length. */
11702 if (a->loc_type == bp_loc_hardware_breakpoint
11703 && b->loc_type == bp_loc_hardware_breakpoint
11704 && a->length < b->length)
11705 return true;
11706
11707 /* Make the internal GDB representation stable across GDB runs
11708 where A and B memory inside GDB can differ. Breakpoint locations of
11709 the same type at the same address can be sorted in arbitrary order. */
11710
11711 if (a->owner->number != b->owner->number)
11712 return a->owner->number < b->owner->number;
11713
11714 return a < b;
11715 }
11716
11717 /* Set bp_locations_placed_address_before_address_max and
11718 bp_locations_shadow_len_after_address_max according to the current
11719 content of the bp_locations array. */
11720
11721 static void
11722 bp_locations_target_extensions_update (void)
11723 {
11724 struct bp_location *bl, **blp_tmp;
11725
11726 bp_locations_placed_address_before_address_max = 0;
11727 bp_locations_shadow_len_after_address_max = 0;
11728
11729 ALL_BP_LOCATIONS (bl, blp_tmp)
11730 {
11731 CORE_ADDR start, end, addr;
11732
11733 if (!bp_location_has_shadow (bl))
11734 continue;
11735
11736 start = bl->target_info.placed_address;
11737 end = start + bl->target_info.shadow_len;
11738
11739 gdb_assert (bl->address >= start);
11740 addr = bl->address - start;
11741 if (addr > bp_locations_placed_address_before_address_max)
11742 bp_locations_placed_address_before_address_max = addr;
11743
11744 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11745
11746 gdb_assert (bl->address < end);
11747 addr = end - bl->address;
11748 if (addr > bp_locations_shadow_len_after_address_max)
11749 bp_locations_shadow_len_after_address_max = addr;
11750 }
11751 }
11752
11753 /* Download tracepoint locations if they haven't been. */
11754
11755 static void
11756 download_tracepoint_locations (void)
11757 {
11758 struct breakpoint *b;
11759 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11760
11761 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11762
11763 ALL_TRACEPOINTS (b)
11764 {
11765 struct bp_location *bl;
11766 struct tracepoint *t;
11767 int bp_location_downloaded = 0;
11768
11769 if ((b->type == bp_fast_tracepoint
11770 ? !may_insert_fast_tracepoints
11771 : !may_insert_tracepoints))
11772 continue;
11773
11774 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11775 {
11776 if (target_can_download_tracepoint ())
11777 can_download_tracepoint = TRIBOOL_TRUE;
11778 else
11779 can_download_tracepoint = TRIBOOL_FALSE;
11780 }
11781
11782 if (can_download_tracepoint == TRIBOOL_FALSE)
11783 break;
11784
11785 for (bl = b->loc; bl; bl = bl->next)
11786 {
11787 /* In tracepoint, locations are _never_ duplicated, so
11788 should_be_inserted is equivalent to
11789 unduplicated_should_be_inserted. */
11790 if (!should_be_inserted (bl) || bl->inserted)
11791 continue;
11792
11793 switch_to_program_space_and_thread (bl->pspace);
11794
11795 target_download_tracepoint (bl);
11796
11797 bl->inserted = 1;
11798 bp_location_downloaded = 1;
11799 }
11800 t = (struct tracepoint *) b;
11801 t->number_on_target = b->number;
11802 if (bp_location_downloaded)
11803 gdb::observers::breakpoint_modified.notify (b);
11804 }
11805 }
11806
11807 /* Swap the insertion/duplication state between two locations. */
11808
11809 static void
11810 swap_insertion (struct bp_location *left, struct bp_location *right)
11811 {
11812 const int left_inserted = left->inserted;
11813 const int left_duplicate = left->duplicate;
11814 const int left_needs_update = left->needs_update;
11815 const struct bp_target_info left_target_info = left->target_info;
11816
11817 /* Locations of tracepoints can never be duplicated. */
11818 if (is_tracepoint (left->owner))
11819 gdb_assert (!left->duplicate);
11820 if (is_tracepoint (right->owner))
11821 gdb_assert (!right->duplicate);
11822
11823 left->inserted = right->inserted;
11824 left->duplicate = right->duplicate;
11825 left->needs_update = right->needs_update;
11826 left->target_info = right->target_info;
11827 right->inserted = left_inserted;
11828 right->duplicate = left_duplicate;
11829 right->needs_update = left_needs_update;
11830 right->target_info = left_target_info;
11831 }
11832
11833 /* Force the re-insertion of the locations at ADDRESS. This is called
11834 once a new/deleted/modified duplicate location is found and we are evaluating
11835 conditions on the target's side. Such conditions need to be updated on
11836 the target. */
11837
11838 static void
11839 force_breakpoint_reinsertion (struct bp_location *bl)
11840 {
11841 struct bp_location **locp = NULL, **loc2p;
11842 struct bp_location *loc;
11843 CORE_ADDR address = 0;
11844 int pspace_num;
11845
11846 address = bl->address;
11847 pspace_num = bl->pspace->num;
11848
11849 /* This is only meaningful if the target is
11850 evaluating conditions and if the user has
11851 opted for condition evaluation on the target's
11852 side. */
11853 if (gdb_evaluates_breakpoint_condition_p ()
11854 || !target_supports_evaluation_of_breakpoint_conditions ())
11855 return;
11856
11857 /* Flag all breakpoint locations with this address and
11858 the same program space as the location
11859 as "its condition has changed". We need to
11860 update the conditions on the target's side. */
11861 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11862 {
11863 loc = *loc2p;
11864
11865 if (!is_breakpoint (loc->owner)
11866 || pspace_num != loc->pspace->num)
11867 continue;
11868
11869 /* Flag the location appropriately. We use a different state to
11870 let everyone know that we already updated the set of locations
11871 with addr bl->address and program space bl->pspace. This is so
11872 we don't have to keep calling these functions just to mark locations
11873 that have already been marked. */
11874 loc->condition_changed = condition_updated;
11875
11876 /* Free the agent expression bytecode as well. We will compute
11877 it later on. */
11878 loc->cond_bytecode.reset ();
11879 }
11880 }
11881
11882 /* Called whether new breakpoints are created, or existing breakpoints
11883 deleted, to update the global location list and recompute which
11884 locations are duplicate of which.
11885
11886 The INSERT_MODE flag determines whether locations may not, may, or
11887 shall be inserted now. See 'enum ugll_insert_mode' for more
11888 info. */
11889
11890 static void
11891 update_global_location_list (enum ugll_insert_mode insert_mode)
11892 {
11893 struct breakpoint *b;
11894 struct bp_location **locp, *loc;
11895 /* Last breakpoint location address that was marked for update. */
11896 CORE_ADDR last_addr = 0;
11897 /* Last breakpoint location program space that was marked for update. */
11898 int last_pspace_num = -1;
11899
11900 /* Used in the duplicates detection below. When iterating over all
11901 bp_locations, points to the first bp_location of a given address.
11902 Breakpoints and watchpoints of different types are never
11903 duplicates of each other. Keep one pointer for each type of
11904 breakpoint/watchpoint, so we only need to loop over all locations
11905 once. */
11906 struct bp_location *bp_loc_first; /* breakpoint */
11907 struct bp_location *wp_loc_first; /* hardware watchpoint */
11908 struct bp_location *awp_loc_first; /* access watchpoint */
11909 struct bp_location *rwp_loc_first; /* read watchpoint */
11910
11911 /* Saved former bp_locations array which we compare against the newly
11912 built bp_locations from the current state of ALL_BREAKPOINTS. */
11913 struct bp_location **old_locp;
11914 unsigned old_locations_count;
11915 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11916
11917 old_locations_count = bp_locations_count;
11918 bp_locations = NULL;
11919 bp_locations_count = 0;
11920
11921 ALL_BREAKPOINTS (b)
11922 for (loc = b->loc; loc; loc = loc->next)
11923 bp_locations_count++;
11924
11925 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11926 locp = bp_locations;
11927 ALL_BREAKPOINTS (b)
11928 for (loc = b->loc; loc; loc = loc->next)
11929 *locp++ = loc;
11930
11931 /* See if we need to "upgrade" a software breakpoint to a hardware
11932 breakpoint. Do this before deciding whether locations are
11933 duplicates. Also do this before sorting because sorting order
11934 depends on location type. */
11935 for (locp = bp_locations;
11936 locp < bp_locations + bp_locations_count;
11937 locp++)
11938 {
11939 loc = *locp;
11940 if (!loc->inserted && should_be_inserted (loc))
11941 handle_automatic_hardware_breakpoints (loc);
11942 }
11943
11944 std::sort (bp_locations, bp_locations + bp_locations_count,
11945 bp_location_is_less_than);
11946
11947 bp_locations_target_extensions_update ();
11948
11949 /* Identify bp_location instances that are no longer present in the
11950 new list, and therefore should be freed. Note that it's not
11951 necessary that those locations should be removed from inferior --
11952 if there's another location at the same address (previously
11953 marked as duplicate), we don't need to remove/insert the
11954 location.
11955
11956 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11957 and former bp_location array state respectively. */
11958
11959 locp = bp_locations;
11960 for (old_locp = old_locations.get ();
11961 old_locp < old_locations.get () + old_locations_count;
11962 old_locp++)
11963 {
11964 struct bp_location *old_loc = *old_locp;
11965 struct bp_location **loc2p;
11966
11967 /* Tells if 'old_loc' is found among the new locations. If
11968 not, we have to free it. */
11969 int found_object = 0;
11970 /* Tells if the location should remain inserted in the target. */
11971 int keep_in_target = 0;
11972 int removed = 0;
11973
11974 /* Skip LOCP entries which will definitely never be needed.
11975 Stop either at or being the one matching OLD_LOC. */
11976 while (locp < bp_locations + bp_locations_count
11977 && (*locp)->address < old_loc->address)
11978 locp++;
11979
11980 for (loc2p = locp;
11981 (loc2p < bp_locations + bp_locations_count
11982 && (*loc2p)->address == old_loc->address);
11983 loc2p++)
11984 {
11985 /* Check if this is a new/duplicated location or a duplicated
11986 location that had its condition modified. If so, we want to send
11987 its condition to the target if evaluation of conditions is taking
11988 place there. */
11989 if ((*loc2p)->condition_changed == condition_modified
11990 && (last_addr != old_loc->address
11991 || last_pspace_num != old_loc->pspace->num))
11992 {
11993 force_breakpoint_reinsertion (*loc2p);
11994 last_pspace_num = old_loc->pspace->num;
11995 }
11996
11997 if (*loc2p == old_loc)
11998 found_object = 1;
11999 }
12000
12001 /* We have already handled this address, update it so that we don't
12002 have to go through updates again. */
12003 last_addr = old_loc->address;
12004
12005 /* Target-side condition evaluation: Handle deleted locations. */
12006 if (!found_object)
12007 force_breakpoint_reinsertion (old_loc);
12008
12009 /* If this location is no longer present, and inserted, look if
12010 there's maybe a new location at the same address. If so,
12011 mark that one inserted, and don't remove this one. This is
12012 needed so that we don't have a time window where a breakpoint
12013 at certain location is not inserted. */
12014
12015 if (old_loc->inserted)
12016 {
12017 /* If the location is inserted now, we might have to remove
12018 it. */
12019
12020 if (found_object && should_be_inserted (old_loc))
12021 {
12022 /* The location is still present in the location list,
12023 and still should be inserted. Don't do anything. */
12024 keep_in_target = 1;
12025 }
12026 else
12027 {
12028 /* This location still exists, but it won't be kept in the
12029 target since it may have been disabled. We proceed to
12030 remove its target-side condition. */
12031
12032 /* The location is either no longer present, or got
12033 disabled. See if there's another location at the
12034 same address, in which case we don't need to remove
12035 this one from the target. */
12036
12037 /* OLD_LOC comes from existing struct breakpoint. */
12038 if (bl_address_is_meaningful (old_loc))
12039 {
12040 for (loc2p = locp;
12041 (loc2p < bp_locations + bp_locations_count
12042 && (*loc2p)->address == old_loc->address);
12043 loc2p++)
12044 {
12045 struct bp_location *loc2 = *loc2p;
12046
12047 if (loc2 == old_loc)
12048 continue;
12049
12050 if (breakpoint_locations_match (loc2, old_loc))
12051 {
12052 /* Read watchpoint locations are switched to
12053 access watchpoints, if the former are not
12054 supported, but the latter are. */
12055 if (is_hardware_watchpoint (old_loc->owner))
12056 {
12057 gdb_assert (is_hardware_watchpoint (loc2->owner));
12058 loc2->watchpoint_type = old_loc->watchpoint_type;
12059 }
12060
12061 /* loc2 is a duplicated location. We need to check
12062 if it should be inserted in case it will be
12063 unduplicated. */
12064 if (unduplicated_should_be_inserted (loc2))
12065 {
12066 swap_insertion (old_loc, loc2);
12067 keep_in_target = 1;
12068 break;
12069 }
12070 }
12071 }
12072 }
12073 }
12074
12075 if (!keep_in_target)
12076 {
12077 if (remove_breakpoint (old_loc))
12078 {
12079 /* This is just about all we can do. We could keep
12080 this location on the global list, and try to
12081 remove it next time, but there's no particular
12082 reason why we will succeed next time.
12083
12084 Note that at this point, old_loc->owner is still
12085 valid, as delete_breakpoint frees the breakpoint
12086 only after calling us. */
12087 printf_filtered (_("warning: Error removing "
12088 "breakpoint %d\n"),
12089 old_loc->owner->number);
12090 }
12091 removed = 1;
12092 }
12093 }
12094
12095 if (!found_object)
12096 {
12097 if (removed && target_is_non_stop_p ()
12098 && need_moribund_for_location_type (old_loc))
12099 {
12100 /* This location was removed from the target. In
12101 non-stop mode, a race condition is possible where
12102 we've removed a breakpoint, but stop events for that
12103 breakpoint are already queued and will arrive later.
12104 We apply an heuristic to be able to distinguish such
12105 SIGTRAPs from other random SIGTRAPs: we keep this
12106 breakpoint location for a bit, and will retire it
12107 after we see some number of events. The theory here
12108 is that reporting of events should, "on the average",
12109 be fair, so after a while we'll see events from all
12110 threads that have anything of interest, and no longer
12111 need to keep this breakpoint location around. We
12112 don't hold locations forever so to reduce chances of
12113 mistaking a non-breakpoint SIGTRAP for a breakpoint
12114 SIGTRAP.
12115
12116 The heuristic failing can be disastrous on
12117 decr_pc_after_break targets.
12118
12119 On decr_pc_after_break targets, like e.g., x86-linux,
12120 if we fail to recognize a late breakpoint SIGTRAP,
12121 because events_till_retirement has reached 0 too
12122 soon, we'll fail to do the PC adjustment, and report
12123 a random SIGTRAP to the user. When the user resumes
12124 the inferior, it will most likely immediately crash
12125 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12126 corrupted, because of being resumed e.g., in the
12127 middle of a multi-byte instruction, or skipped a
12128 one-byte instruction. This was actually seen happen
12129 on native x86-linux, and should be less rare on
12130 targets that do not support new thread events, like
12131 remote, due to the heuristic depending on
12132 thread_count.
12133
12134 Mistaking a random SIGTRAP for a breakpoint trap
12135 causes similar symptoms (PC adjustment applied when
12136 it shouldn't), but then again, playing with SIGTRAPs
12137 behind the debugger's back is asking for trouble.
12138
12139 Since hardware watchpoint traps are always
12140 distinguishable from other traps, so we don't need to
12141 apply keep hardware watchpoint moribund locations
12142 around. We simply always ignore hardware watchpoint
12143 traps we can no longer explain. */
12144
12145 process_stratum_target *proc_target = nullptr;
12146 for (inferior *inf : all_inferiors ())
12147 if (inf->pspace == old_loc->pspace)
12148 {
12149 proc_target = inf->process_target ();
12150 break;
12151 }
12152 if (proc_target != nullptr)
12153 old_loc->events_till_retirement
12154 = 3 * (thread_count (proc_target) + 1);
12155 else
12156 old_loc->events_till_retirement = 1;
12157 old_loc->owner = NULL;
12158
12159 moribund_locations.push_back (old_loc);
12160 }
12161 else
12162 {
12163 old_loc->owner = NULL;
12164 decref_bp_location (&old_loc);
12165 }
12166 }
12167 }
12168
12169 /* Rescan breakpoints at the same address and section, marking the
12170 first one as "first" and any others as "duplicates". This is so
12171 that the bpt instruction is only inserted once. If we have a
12172 permanent breakpoint at the same place as BPT, make that one the
12173 official one, and the rest as duplicates. Permanent breakpoints
12174 are sorted first for the same address.
12175
12176 Do the same for hardware watchpoints, but also considering the
12177 watchpoint's type (regular/access/read) and length. */
12178
12179 bp_loc_first = NULL;
12180 wp_loc_first = NULL;
12181 awp_loc_first = NULL;
12182 rwp_loc_first = NULL;
12183 ALL_BP_LOCATIONS (loc, locp)
12184 {
12185 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12186 non-NULL. */
12187 struct bp_location **loc_first_p;
12188 b = loc->owner;
12189
12190 if (!unduplicated_should_be_inserted (loc)
12191 || !bl_address_is_meaningful (loc)
12192 /* Don't detect duplicate for tracepoint locations because they are
12193 never duplicated. See the comments in field `duplicate' of
12194 `struct bp_location'. */
12195 || is_tracepoint (b))
12196 {
12197 /* Clear the condition modification flag. */
12198 loc->condition_changed = condition_unchanged;
12199 continue;
12200 }
12201
12202 if (b->type == bp_hardware_watchpoint)
12203 loc_first_p = &wp_loc_first;
12204 else if (b->type == bp_read_watchpoint)
12205 loc_first_p = &rwp_loc_first;
12206 else if (b->type == bp_access_watchpoint)
12207 loc_first_p = &awp_loc_first;
12208 else
12209 loc_first_p = &bp_loc_first;
12210
12211 if (*loc_first_p == NULL
12212 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12213 || !breakpoint_locations_match (loc, *loc_first_p))
12214 {
12215 *loc_first_p = loc;
12216 loc->duplicate = 0;
12217
12218 if (is_breakpoint (loc->owner) && loc->condition_changed)
12219 {
12220 loc->needs_update = 1;
12221 /* Clear the condition modification flag. */
12222 loc->condition_changed = condition_unchanged;
12223 }
12224 continue;
12225 }
12226
12227
12228 /* This and the above ensure the invariant that the first location
12229 is not duplicated, and is the inserted one.
12230 All following are marked as duplicated, and are not inserted. */
12231 if (loc->inserted)
12232 swap_insertion (loc, *loc_first_p);
12233 loc->duplicate = 1;
12234
12235 /* Clear the condition modification flag. */
12236 loc->condition_changed = condition_unchanged;
12237 }
12238
12239 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12240 {
12241 if (insert_mode != UGLL_DONT_INSERT)
12242 insert_breakpoint_locations ();
12243 else
12244 {
12245 /* Even though the caller told us to not insert new
12246 locations, we may still need to update conditions on the
12247 target's side of breakpoints that were already inserted
12248 if the target is evaluating breakpoint conditions. We
12249 only update conditions for locations that are marked
12250 "needs_update". */
12251 update_inserted_breakpoint_locations ();
12252 }
12253 }
12254
12255 if (insert_mode != UGLL_DONT_INSERT)
12256 download_tracepoint_locations ();
12257 }
12258
12259 void
12260 breakpoint_retire_moribund (void)
12261 {
12262 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12263 {
12264 struct bp_location *loc = moribund_locations[ix];
12265 if (--(loc->events_till_retirement) == 0)
12266 {
12267 decref_bp_location (&loc);
12268 unordered_remove (moribund_locations, ix);
12269 --ix;
12270 }
12271 }
12272 }
12273
12274 static void
12275 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12276 {
12277
12278 try
12279 {
12280 update_global_location_list (insert_mode);
12281 }
12282 catch (const gdb_exception_error &e)
12283 {
12284 }
12285 }
12286
12287 /* Clear BKP from a BPS. */
12288
12289 static void
12290 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12291 {
12292 bpstat bs;
12293
12294 for (bs = bps; bs; bs = bs->next)
12295 if (bs->breakpoint_at == bpt)
12296 {
12297 bs->breakpoint_at = NULL;
12298 bs->old_val = NULL;
12299 /* bs->commands will be freed later. */
12300 }
12301 }
12302
12303 /* Callback for iterate_over_threads. */
12304 static int
12305 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12306 {
12307 struct breakpoint *bpt = (struct breakpoint *) data;
12308
12309 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12310 return 0;
12311 }
12312
12313 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12314 callbacks. */
12315
12316 static void
12317 say_where (struct breakpoint *b)
12318 {
12319 struct value_print_options opts;
12320
12321 get_user_print_options (&opts);
12322
12323 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12324 single string. */
12325 if (b->loc == NULL)
12326 {
12327 /* For pending locations, the output differs slightly based
12328 on b->extra_string. If this is non-NULL, it contains either
12329 a condition or dprintf arguments. */
12330 if (b->extra_string == NULL)
12331 {
12332 printf_filtered (_(" (%s) pending."),
12333 event_location_to_string (b->location.get ()));
12334 }
12335 else if (b->type == bp_dprintf)
12336 {
12337 printf_filtered (_(" (%s,%s) pending."),
12338 event_location_to_string (b->location.get ()),
12339 b->extra_string);
12340 }
12341 else
12342 {
12343 printf_filtered (_(" (%s %s) pending."),
12344 event_location_to_string (b->location.get ()),
12345 b->extra_string);
12346 }
12347 }
12348 else
12349 {
12350 if (opts.addressprint || b->loc->symtab == NULL)
12351 printf_filtered (" at %ps",
12352 styled_string (address_style.style (),
12353 paddress (b->loc->gdbarch,
12354 b->loc->address)));
12355 if (b->loc->symtab != NULL)
12356 {
12357 /* If there is a single location, we can print the location
12358 more nicely. */
12359 if (b->loc->next == NULL)
12360 {
12361 const char *filename
12362 = symtab_to_filename_for_display (b->loc->symtab);
12363 printf_filtered (": file %ps, line %d.",
12364 styled_string (file_name_style.style (),
12365 filename),
12366 b->loc->line_number);
12367 }
12368 else
12369 /* This is not ideal, but each location may have a
12370 different file name, and this at least reflects the
12371 real situation somewhat. */
12372 printf_filtered (": %s.",
12373 event_location_to_string (b->location.get ()));
12374 }
12375
12376 if (b->loc->next)
12377 {
12378 struct bp_location *loc = b->loc;
12379 int n = 0;
12380 for (; loc; loc = loc->next)
12381 ++n;
12382 printf_filtered (" (%d locations)", n);
12383 }
12384 }
12385 }
12386
12387 bp_location::~bp_location ()
12388 {
12389 xfree (function_name);
12390 }
12391
12392 /* Destructor for the breakpoint base class. */
12393
12394 breakpoint::~breakpoint ()
12395 {
12396 xfree (this->cond_string);
12397 xfree (this->extra_string);
12398 }
12399
12400 static struct bp_location *
12401 base_breakpoint_allocate_location (struct breakpoint *self)
12402 {
12403 return new bp_location (self);
12404 }
12405
12406 static void
12407 base_breakpoint_re_set (struct breakpoint *b)
12408 {
12409 /* Nothing to re-set. */
12410 }
12411
12412 #define internal_error_pure_virtual_called() \
12413 gdb_assert_not_reached ("pure virtual function called")
12414
12415 static int
12416 base_breakpoint_insert_location (struct bp_location *bl)
12417 {
12418 internal_error_pure_virtual_called ();
12419 }
12420
12421 static int
12422 base_breakpoint_remove_location (struct bp_location *bl,
12423 enum remove_bp_reason reason)
12424 {
12425 internal_error_pure_virtual_called ();
12426 }
12427
12428 static int
12429 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12430 const address_space *aspace,
12431 CORE_ADDR bp_addr,
12432 const struct target_waitstatus *ws)
12433 {
12434 internal_error_pure_virtual_called ();
12435 }
12436
12437 static void
12438 base_breakpoint_check_status (bpstat bs)
12439 {
12440 /* Always stop. */
12441 }
12442
12443 /* A "works_in_software_mode" breakpoint_ops method that just internal
12444 errors. */
12445
12446 static int
12447 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12448 {
12449 internal_error_pure_virtual_called ();
12450 }
12451
12452 /* A "resources_needed" breakpoint_ops method that just internal
12453 errors. */
12454
12455 static int
12456 base_breakpoint_resources_needed (const struct bp_location *bl)
12457 {
12458 internal_error_pure_virtual_called ();
12459 }
12460
12461 static enum print_stop_action
12462 base_breakpoint_print_it (bpstat bs)
12463 {
12464 internal_error_pure_virtual_called ();
12465 }
12466
12467 static void
12468 base_breakpoint_print_one_detail (const struct breakpoint *self,
12469 struct ui_out *uiout)
12470 {
12471 /* nothing */
12472 }
12473
12474 static void
12475 base_breakpoint_print_mention (struct breakpoint *b)
12476 {
12477 internal_error_pure_virtual_called ();
12478 }
12479
12480 static void
12481 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12482 {
12483 internal_error_pure_virtual_called ();
12484 }
12485
12486 static void
12487 base_breakpoint_create_sals_from_location
12488 (struct event_location *location,
12489 struct linespec_result *canonical,
12490 enum bptype type_wanted)
12491 {
12492 internal_error_pure_virtual_called ();
12493 }
12494
12495 static void
12496 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12497 struct linespec_result *c,
12498 gdb::unique_xmalloc_ptr<char> cond_string,
12499 gdb::unique_xmalloc_ptr<char> extra_string,
12500 enum bptype type_wanted,
12501 enum bpdisp disposition,
12502 int thread,
12503 int task, int ignore_count,
12504 const struct breakpoint_ops *o,
12505 int from_tty, int enabled,
12506 int internal, unsigned flags)
12507 {
12508 internal_error_pure_virtual_called ();
12509 }
12510
12511 static std::vector<symtab_and_line>
12512 base_breakpoint_decode_location (struct breakpoint *b,
12513 struct event_location *location,
12514 struct program_space *search_pspace)
12515 {
12516 internal_error_pure_virtual_called ();
12517 }
12518
12519 /* The default 'explains_signal' method. */
12520
12521 static int
12522 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12523 {
12524 return 1;
12525 }
12526
12527 /* The default "after_condition_true" method. */
12528
12529 static void
12530 base_breakpoint_after_condition_true (struct bpstats *bs)
12531 {
12532 /* Nothing to do. */
12533 }
12534
12535 struct breakpoint_ops base_breakpoint_ops =
12536 {
12537 base_breakpoint_allocate_location,
12538 base_breakpoint_re_set,
12539 base_breakpoint_insert_location,
12540 base_breakpoint_remove_location,
12541 base_breakpoint_breakpoint_hit,
12542 base_breakpoint_check_status,
12543 base_breakpoint_resources_needed,
12544 base_breakpoint_works_in_software_mode,
12545 base_breakpoint_print_it,
12546 NULL,
12547 base_breakpoint_print_one_detail,
12548 base_breakpoint_print_mention,
12549 base_breakpoint_print_recreate,
12550 base_breakpoint_create_sals_from_location,
12551 base_breakpoint_create_breakpoints_sal,
12552 base_breakpoint_decode_location,
12553 base_breakpoint_explains_signal,
12554 base_breakpoint_after_condition_true,
12555 };
12556
12557 /* Default breakpoint_ops methods. */
12558
12559 static void
12560 bkpt_re_set (struct breakpoint *b)
12561 {
12562 /* FIXME: is this still reachable? */
12563 if (breakpoint_event_location_empty_p (b))
12564 {
12565 /* Anything without a location can't be re-set. */
12566 delete_breakpoint (b);
12567 return;
12568 }
12569
12570 breakpoint_re_set_default (b);
12571 }
12572
12573 static int
12574 bkpt_insert_location (struct bp_location *bl)
12575 {
12576 CORE_ADDR addr = bl->target_info.reqstd_address;
12577
12578 bl->target_info.kind = breakpoint_kind (bl, &addr);
12579 bl->target_info.placed_address = addr;
12580
12581 if (bl->loc_type == bp_loc_hardware_breakpoint)
12582 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12583 else
12584 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12585 }
12586
12587 static int
12588 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12589 {
12590 if (bl->loc_type == bp_loc_hardware_breakpoint)
12591 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12592 else
12593 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12594 }
12595
12596 static int
12597 bkpt_breakpoint_hit (const struct bp_location *bl,
12598 const address_space *aspace, CORE_ADDR bp_addr,
12599 const struct target_waitstatus *ws)
12600 {
12601 if (ws->kind != TARGET_WAITKIND_STOPPED
12602 || ws->value.sig != GDB_SIGNAL_TRAP)
12603 return 0;
12604
12605 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12606 aspace, bp_addr))
12607 return 0;
12608
12609 if (overlay_debugging /* unmapped overlay section */
12610 && section_is_overlay (bl->section)
12611 && !section_is_mapped (bl->section))
12612 return 0;
12613
12614 return 1;
12615 }
12616
12617 static int
12618 dprintf_breakpoint_hit (const struct bp_location *bl,
12619 const address_space *aspace, CORE_ADDR bp_addr,
12620 const struct target_waitstatus *ws)
12621 {
12622 if (dprintf_style == dprintf_style_agent
12623 && target_can_run_breakpoint_commands ())
12624 {
12625 /* An agent-style dprintf never causes a stop. If we see a trap
12626 for this address it must be for a breakpoint that happens to
12627 be set at the same address. */
12628 return 0;
12629 }
12630
12631 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12632 }
12633
12634 static int
12635 bkpt_resources_needed (const struct bp_location *bl)
12636 {
12637 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12638
12639 return 1;
12640 }
12641
12642 static enum print_stop_action
12643 bkpt_print_it (bpstat bs)
12644 {
12645 struct breakpoint *b;
12646 const struct bp_location *bl;
12647 int bp_temp;
12648 struct ui_out *uiout = current_uiout;
12649
12650 gdb_assert (bs->bp_location_at != NULL);
12651
12652 bl = bs->bp_location_at.get ();
12653 b = bs->breakpoint_at;
12654
12655 bp_temp = b->disposition == disp_del;
12656 if (bl->address != bl->requested_address)
12657 breakpoint_adjustment_warning (bl->requested_address,
12658 bl->address,
12659 b->number, 1);
12660 annotate_breakpoint (b->number);
12661 maybe_print_thread_hit_breakpoint (uiout);
12662
12663 if (uiout->is_mi_like_p ())
12664 {
12665 uiout->field_string ("reason",
12666 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12667 uiout->field_string ("disp", bpdisp_text (b->disposition));
12668 }
12669 if (bp_temp)
12670 uiout->message ("Temporary breakpoint %pF, ",
12671 signed_field ("bkptno", b->number));
12672 else
12673 uiout->message ("Breakpoint %pF, ",
12674 signed_field ("bkptno", b->number));
12675
12676 return PRINT_SRC_AND_LOC;
12677 }
12678
12679 static void
12680 bkpt_print_mention (struct breakpoint *b)
12681 {
12682 if (current_uiout->is_mi_like_p ())
12683 return;
12684
12685 switch (b->type)
12686 {
12687 case bp_breakpoint:
12688 case bp_gnu_ifunc_resolver:
12689 if (b->disposition == disp_del)
12690 printf_filtered (_("Temporary breakpoint"));
12691 else
12692 printf_filtered (_("Breakpoint"));
12693 printf_filtered (_(" %d"), b->number);
12694 if (b->type == bp_gnu_ifunc_resolver)
12695 printf_filtered (_(" at gnu-indirect-function resolver"));
12696 break;
12697 case bp_hardware_breakpoint:
12698 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12699 break;
12700 case bp_dprintf:
12701 printf_filtered (_("Dprintf %d"), b->number);
12702 break;
12703 }
12704
12705 say_where (b);
12706 }
12707
12708 static void
12709 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12710 {
12711 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12712 fprintf_unfiltered (fp, "tbreak");
12713 else if (tp->type == bp_breakpoint)
12714 fprintf_unfiltered (fp, "break");
12715 else if (tp->type == bp_hardware_breakpoint
12716 && tp->disposition == disp_del)
12717 fprintf_unfiltered (fp, "thbreak");
12718 else if (tp->type == bp_hardware_breakpoint)
12719 fprintf_unfiltered (fp, "hbreak");
12720 else
12721 internal_error (__FILE__, __LINE__,
12722 _("unhandled breakpoint type %d"), (int) tp->type);
12723
12724 fprintf_unfiltered (fp, " %s",
12725 event_location_to_string (tp->location.get ()));
12726
12727 /* Print out extra_string if this breakpoint is pending. It might
12728 contain, for example, conditions that were set by the user. */
12729 if (tp->loc == NULL && tp->extra_string != NULL)
12730 fprintf_unfiltered (fp, " %s", tp->extra_string);
12731
12732 print_recreate_thread (tp, fp);
12733 }
12734
12735 static void
12736 bkpt_create_sals_from_location (struct event_location *location,
12737 struct linespec_result *canonical,
12738 enum bptype type_wanted)
12739 {
12740 create_sals_from_location_default (location, canonical, type_wanted);
12741 }
12742
12743 static void
12744 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12745 struct linespec_result *canonical,
12746 gdb::unique_xmalloc_ptr<char> cond_string,
12747 gdb::unique_xmalloc_ptr<char> extra_string,
12748 enum bptype type_wanted,
12749 enum bpdisp disposition,
12750 int thread,
12751 int task, int ignore_count,
12752 const struct breakpoint_ops *ops,
12753 int from_tty, int enabled,
12754 int internal, unsigned flags)
12755 {
12756 create_breakpoints_sal_default (gdbarch, canonical,
12757 std::move (cond_string),
12758 std::move (extra_string),
12759 type_wanted,
12760 disposition, thread, task,
12761 ignore_count, ops, from_tty,
12762 enabled, internal, flags);
12763 }
12764
12765 static std::vector<symtab_and_line>
12766 bkpt_decode_location (struct breakpoint *b,
12767 struct event_location *location,
12768 struct program_space *search_pspace)
12769 {
12770 return decode_location_default (b, location, search_pspace);
12771 }
12772
12773 /* Virtual table for internal breakpoints. */
12774
12775 static void
12776 internal_bkpt_re_set (struct breakpoint *b)
12777 {
12778 switch (b->type)
12779 {
12780 /* Delete overlay event and longjmp master breakpoints; they
12781 will be reset later by breakpoint_re_set. */
12782 case bp_overlay_event:
12783 case bp_longjmp_master:
12784 case bp_std_terminate_master:
12785 case bp_exception_master:
12786 delete_breakpoint (b);
12787 break;
12788
12789 /* This breakpoint is special, it's set up when the inferior
12790 starts and we really don't want to touch it. */
12791 case bp_shlib_event:
12792
12793 /* Like bp_shlib_event, this breakpoint type is special. Once
12794 it is set up, we do not want to touch it. */
12795 case bp_thread_event:
12796 break;
12797 }
12798 }
12799
12800 static void
12801 internal_bkpt_check_status (bpstat bs)
12802 {
12803 if (bs->breakpoint_at->type == bp_shlib_event)
12804 {
12805 /* If requested, stop when the dynamic linker notifies GDB of
12806 events. This allows the user to get control and place
12807 breakpoints in initializer routines for dynamically loaded
12808 objects (among other things). */
12809 bs->stop = stop_on_solib_events;
12810 bs->print = stop_on_solib_events;
12811 }
12812 else
12813 bs->stop = 0;
12814 }
12815
12816 static enum print_stop_action
12817 internal_bkpt_print_it (bpstat bs)
12818 {
12819 struct breakpoint *b;
12820
12821 b = bs->breakpoint_at;
12822
12823 switch (b->type)
12824 {
12825 case bp_shlib_event:
12826 /* Did we stop because the user set the stop_on_solib_events
12827 variable? (If so, we report this as a generic, "Stopped due
12828 to shlib event" message.) */
12829 print_solib_event (0);
12830 break;
12831
12832 case bp_thread_event:
12833 /* Not sure how we will get here.
12834 GDB should not stop for these breakpoints. */
12835 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12836 break;
12837
12838 case bp_overlay_event:
12839 /* By analogy with the thread event, GDB should not stop for these. */
12840 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12841 break;
12842
12843 case bp_longjmp_master:
12844 /* These should never be enabled. */
12845 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12846 break;
12847
12848 case bp_std_terminate_master:
12849 /* These should never be enabled. */
12850 printf_filtered (_("std::terminate Master Breakpoint: "
12851 "gdb should not stop!\n"));
12852 break;
12853
12854 case bp_exception_master:
12855 /* These should never be enabled. */
12856 printf_filtered (_("Exception Master Breakpoint: "
12857 "gdb should not stop!\n"));
12858 break;
12859 }
12860
12861 return PRINT_NOTHING;
12862 }
12863
12864 static void
12865 internal_bkpt_print_mention (struct breakpoint *b)
12866 {
12867 /* Nothing to mention. These breakpoints are internal. */
12868 }
12869
12870 /* Virtual table for momentary breakpoints */
12871
12872 static void
12873 momentary_bkpt_re_set (struct breakpoint *b)
12874 {
12875 /* Keep temporary breakpoints, which can be encountered when we step
12876 over a dlopen call and solib_add is resetting the breakpoints.
12877 Otherwise these should have been blown away via the cleanup chain
12878 or by breakpoint_init_inferior when we rerun the executable. */
12879 }
12880
12881 static void
12882 momentary_bkpt_check_status (bpstat bs)
12883 {
12884 /* Nothing. The point of these breakpoints is causing a stop. */
12885 }
12886
12887 static enum print_stop_action
12888 momentary_bkpt_print_it (bpstat bs)
12889 {
12890 return PRINT_UNKNOWN;
12891 }
12892
12893 static void
12894 momentary_bkpt_print_mention (struct breakpoint *b)
12895 {
12896 /* Nothing to mention. These breakpoints are internal. */
12897 }
12898
12899 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12900
12901 It gets cleared already on the removal of the first one of such placed
12902 breakpoints. This is OK as they get all removed altogether. */
12903
12904 longjmp_breakpoint::~longjmp_breakpoint ()
12905 {
12906 thread_info *tp = find_thread_global_id (this->thread);
12907
12908 if (tp != NULL)
12909 tp->initiating_frame = null_frame_id;
12910 }
12911
12912 /* Specific methods for probe breakpoints. */
12913
12914 static int
12915 bkpt_probe_insert_location (struct bp_location *bl)
12916 {
12917 int v = bkpt_insert_location (bl);
12918
12919 if (v == 0)
12920 {
12921 /* The insertion was successful, now let's set the probe's semaphore
12922 if needed. */
12923 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12924 }
12925
12926 return v;
12927 }
12928
12929 static int
12930 bkpt_probe_remove_location (struct bp_location *bl,
12931 enum remove_bp_reason reason)
12932 {
12933 /* Let's clear the semaphore before removing the location. */
12934 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12935
12936 return bkpt_remove_location (bl, reason);
12937 }
12938
12939 static void
12940 bkpt_probe_create_sals_from_location (struct event_location *location,
12941 struct linespec_result *canonical,
12942 enum bptype type_wanted)
12943 {
12944 struct linespec_sals lsal;
12945
12946 lsal.sals = parse_probes (location, NULL, canonical);
12947 lsal.canonical
12948 = xstrdup (event_location_to_string (canonical->location.get ()));
12949 canonical->lsals.push_back (std::move (lsal));
12950 }
12951
12952 static std::vector<symtab_and_line>
12953 bkpt_probe_decode_location (struct breakpoint *b,
12954 struct event_location *location,
12955 struct program_space *search_pspace)
12956 {
12957 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12958 if (sals.empty ())
12959 error (_("probe not found"));
12960 return sals;
12961 }
12962
12963 /* The breakpoint_ops structure to be used in tracepoints. */
12964
12965 static void
12966 tracepoint_re_set (struct breakpoint *b)
12967 {
12968 breakpoint_re_set_default (b);
12969 }
12970
12971 static int
12972 tracepoint_breakpoint_hit (const struct bp_location *bl,
12973 const address_space *aspace, CORE_ADDR bp_addr,
12974 const struct target_waitstatus *ws)
12975 {
12976 /* By definition, the inferior does not report stops at
12977 tracepoints. */
12978 return 0;
12979 }
12980
12981 static void
12982 tracepoint_print_one_detail (const struct breakpoint *self,
12983 struct ui_out *uiout)
12984 {
12985 struct tracepoint *tp = (struct tracepoint *) self;
12986 if (!tp->static_trace_marker_id.empty ())
12987 {
12988 gdb_assert (self->type == bp_static_tracepoint);
12989
12990 uiout->message ("\tmarker id is %pF\n",
12991 string_field ("static-tracepoint-marker-string-id",
12992 tp->static_trace_marker_id.c_str ()));
12993 }
12994 }
12995
12996 static void
12997 tracepoint_print_mention (struct breakpoint *b)
12998 {
12999 if (current_uiout->is_mi_like_p ())
13000 return;
13001
13002 switch (b->type)
13003 {
13004 case bp_tracepoint:
13005 printf_filtered (_("Tracepoint"));
13006 printf_filtered (_(" %d"), b->number);
13007 break;
13008 case bp_fast_tracepoint:
13009 printf_filtered (_("Fast tracepoint"));
13010 printf_filtered (_(" %d"), b->number);
13011 break;
13012 case bp_static_tracepoint:
13013 printf_filtered (_("Static tracepoint"));
13014 printf_filtered (_(" %d"), b->number);
13015 break;
13016 default:
13017 internal_error (__FILE__, __LINE__,
13018 _("unhandled tracepoint type %d"), (int) b->type);
13019 }
13020
13021 say_where (b);
13022 }
13023
13024 static void
13025 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13026 {
13027 struct tracepoint *tp = (struct tracepoint *) self;
13028
13029 if (self->type == bp_fast_tracepoint)
13030 fprintf_unfiltered (fp, "ftrace");
13031 else if (self->type == bp_static_tracepoint)
13032 fprintf_unfiltered (fp, "strace");
13033 else if (self->type == bp_tracepoint)
13034 fprintf_unfiltered (fp, "trace");
13035 else
13036 internal_error (__FILE__, __LINE__,
13037 _("unhandled tracepoint type %d"), (int) self->type);
13038
13039 fprintf_unfiltered (fp, " %s",
13040 event_location_to_string (self->location.get ()));
13041 print_recreate_thread (self, fp);
13042
13043 if (tp->pass_count)
13044 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13045 }
13046
13047 static void
13048 tracepoint_create_sals_from_location (struct event_location *location,
13049 struct linespec_result *canonical,
13050 enum bptype type_wanted)
13051 {
13052 create_sals_from_location_default (location, canonical, type_wanted);
13053 }
13054
13055 static void
13056 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13057 struct linespec_result *canonical,
13058 gdb::unique_xmalloc_ptr<char> cond_string,
13059 gdb::unique_xmalloc_ptr<char> extra_string,
13060 enum bptype type_wanted,
13061 enum bpdisp disposition,
13062 int thread,
13063 int task, int ignore_count,
13064 const struct breakpoint_ops *ops,
13065 int from_tty, int enabled,
13066 int internal, unsigned flags)
13067 {
13068 create_breakpoints_sal_default (gdbarch, canonical,
13069 std::move (cond_string),
13070 std::move (extra_string),
13071 type_wanted,
13072 disposition, thread, task,
13073 ignore_count, ops, from_tty,
13074 enabled, internal, flags);
13075 }
13076
13077 static std::vector<symtab_and_line>
13078 tracepoint_decode_location (struct breakpoint *b,
13079 struct event_location *location,
13080 struct program_space *search_pspace)
13081 {
13082 return decode_location_default (b, location, search_pspace);
13083 }
13084
13085 struct breakpoint_ops tracepoint_breakpoint_ops;
13086
13087 /* Virtual table for tracepoints on static probes. */
13088
13089 static void
13090 tracepoint_probe_create_sals_from_location
13091 (struct event_location *location,
13092 struct linespec_result *canonical,
13093 enum bptype type_wanted)
13094 {
13095 /* We use the same method for breakpoint on probes. */
13096 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13097 }
13098
13099 static std::vector<symtab_and_line>
13100 tracepoint_probe_decode_location (struct breakpoint *b,
13101 struct event_location *location,
13102 struct program_space *search_pspace)
13103 {
13104 /* We use the same method for breakpoint on probes. */
13105 return bkpt_probe_decode_location (b, location, search_pspace);
13106 }
13107
13108 /* Dprintf breakpoint_ops methods. */
13109
13110 static void
13111 dprintf_re_set (struct breakpoint *b)
13112 {
13113 breakpoint_re_set_default (b);
13114
13115 /* extra_string should never be non-NULL for dprintf. */
13116 gdb_assert (b->extra_string != NULL);
13117
13118 /* 1 - connect to target 1, that can run breakpoint commands.
13119 2 - create a dprintf, which resolves fine.
13120 3 - disconnect from target 1
13121 4 - connect to target 2, that can NOT run breakpoint commands.
13122
13123 After steps #3/#4, you'll want the dprintf command list to
13124 be updated, because target 1 and 2 may well return different
13125 answers for target_can_run_breakpoint_commands().
13126 Given absence of finer grained resetting, we get to do
13127 it all the time. */
13128 if (b->extra_string != NULL)
13129 update_dprintf_command_list (b);
13130 }
13131
13132 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13133
13134 static void
13135 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13136 {
13137 fprintf_unfiltered (fp, "dprintf %s,%s",
13138 event_location_to_string (tp->location.get ()),
13139 tp->extra_string);
13140 print_recreate_thread (tp, fp);
13141 }
13142
13143 /* Implement the "after_condition_true" breakpoint_ops method for
13144 dprintf.
13145
13146 dprintf's are implemented with regular commands in their command
13147 list, but we run the commands here instead of before presenting the
13148 stop to the user, as dprintf's don't actually cause a stop. This
13149 also makes it so that the commands of multiple dprintfs at the same
13150 address are all handled. */
13151
13152 static void
13153 dprintf_after_condition_true (struct bpstats *bs)
13154 {
13155 struct bpstats tmp_bs;
13156 struct bpstats *tmp_bs_p = &tmp_bs;
13157
13158 /* dprintf's never cause a stop. This wasn't set in the
13159 check_status hook instead because that would make the dprintf's
13160 condition not be evaluated. */
13161 bs->stop = 0;
13162
13163 /* Run the command list here. Take ownership of it instead of
13164 copying. We never want these commands to run later in
13165 bpstat_do_actions, if a breakpoint that causes a stop happens to
13166 be set at same address as this dprintf, or even if running the
13167 commands here throws. */
13168 tmp_bs.commands = bs->commands;
13169 bs->commands = NULL;
13170
13171 bpstat_do_actions_1 (&tmp_bs_p);
13172
13173 /* 'tmp_bs.commands' will usually be NULL by now, but
13174 bpstat_do_actions_1 may return early without processing the whole
13175 list. */
13176 }
13177
13178 /* The breakpoint_ops structure to be used on static tracepoints with
13179 markers (`-m'). */
13180
13181 static void
13182 strace_marker_create_sals_from_location (struct event_location *location,
13183 struct linespec_result *canonical,
13184 enum bptype type_wanted)
13185 {
13186 struct linespec_sals lsal;
13187 const char *arg_start, *arg;
13188
13189 arg = arg_start = get_linespec_location (location)->spec_string;
13190 lsal.sals = decode_static_tracepoint_spec (&arg);
13191
13192 std::string str (arg_start, arg - arg_start);
13193 const char *ptr = str.c_str ();
13194 canonical->location
13195 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13196
13197 lsal.canonical
13198 = xstrdup (event_location_to_string (canonical->location.get ()));
13199 canonical->lsals.push_back (std::move (lsal));
13200 }
13201
13202 static void
13203 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13204 struct linespec_result *canonical,
13205 gdb::unique_xmalloc_ptr<char> cond_string,
13206 gdb::unique_xmalloc_ptr<char> extra_string,
13207 enum bptype type_wanted,
13208 enum bpdisp disposition,
13209 int thread,
13210 int task, int ignore_count,
13211 const struct breakpoint_ops *ops,
13212 int from_tty, int enabled,
13213 int internal, unsigned flags)
13214 {
13215 const linespec_sals &lsal = canonical->lsals[0];
13216
13217 /* If the user is creating a static tracepoint by marker id
13218 (strace -m MARKER_ID), then store the sals index, so that
13219 breakpoint_re_set can try to match up which of the newly
13220 found markers corresponds to this one, and, don't try to
13221 expand multiple locations for each sal, given than SALS
13222 already should contain all sals for MARKER_ID. */
13223
13224 for (size_t i = 0; i < lsal.sals.size (); i++)
13225 {
13226 event_location_up location
13227 = copy_event_location (canonical->location.get ());
13228
13229 std::unique_ptr<tracepoint> tp (new tracepoint ());
13230 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13231 std::move (location), NULL,
13232 std::move (cond_string),
13233 std::move (extra_string),
13234 type_wanted, disposition,
13235 thread, task, ignore_count, ops,
13236 from_tty, enabled, internal, flags,
13237 canonical->special_display);
13238 /* Given that its possible to have multiple markers with
13239 the same string id, if the user is creating a static
13240 tracepoint by marker id ("strace -m MARKER_ID"), then
13241 store the sals index, so that breakpoint_re_set can
13242 try to match up which of the newly found markers
13243 corresponds to this one */
13244 tp->static_trace_marker_id_idx = i;
13245
13246 install_breakpoint (internal, std::move (tp), 0);
13247 }
13248 }
13249
13250 static std::vector<symtab_and_line>
13251 strace_marker_decode_location (struct breakpoint *b,
13252 struct event_location *location,
13253 struct program_space *search_pspace)
13254 {
13255 struct tracepoint *tp = (struct tracepoint *) b;
13256 const char *s = get_linespec_location (location)->spec_string;
13257
13258 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13259 if (sals.size () > tp->static_trace_marker_id_idx)
13260 {
13261 sals[0] = sals[tp->static_trace_marker_id_idx];
13262 sals.resize (1);
13263 return sals;
13264 }
13265 else
13266 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13267 }
13268
13269 static struct breakpoint_ops strace_marker_breakpoint_ops;
13270
13271 static int
13272 strace_marker_p (struct breakpoint *b)
13273 {
13274 return b->ops == &strace_marker_breakpoint_ops;
13275 }
13276
13277 /* Delete a breakpoint and clean up all traces of it in the data
13278 structures. */
13279
13280 void
13281 delete_breakpoint (struct breakpoint *bpt)
13282 {
13283 struct breakpoint *b;
13284
13285 gdb_assert (bpt != NULL);
13286
13287 /* Has this bp already been deleted? This can happen because
13288 multiple lists can hold pointers to bp's. bpstat lists are
13289 especial culprits.
13290
13291 One example of this happening is a watchpoint's scope bp. When
13292 the scope bp triggers, we notice that the watchpoint is out of
13293 scope, and delete it. We also delete its scope bp. But the
13294 scope bp is marked "auto-deleting", and is already on a bpstat.
13295 That bpstat is then checked for auto-deleting bp's, which are
13296 deleted.
13297
13298 A real solution to this problem might involve reference counts in
13299 bp's, and/or giving them pointers back to their referencing
13300 bpstat's, and teaching delete_breakpoint to only free a bp's
13301 storage when no more references were extent. A cheaper bandaid
13302 was chosen. */
13303 if (bpt->type == bp_none)
13304 return;
13305
13306 /* At least avoid this stale reference until the reference counting
13307 of breakpoints gets resolved. */
13308 if (bpt->related_breakpoint != bpt)
13309 {
13310 struct breakpoint *related;
13311 struct watchpoint *w;
13312
13313 if (bpt->type == bp_watchpoint_scope)
13314 w = (struct watchpoint *) bpt->related_breakpoint;
13315 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13316 w = (struct watchpoint *) bpt;
13317 else
13318 w = NULL;
13319 if (w != NULL)
13320 watchpoint_del_at_next_stop (w);
13321
13322 /* Unlink bpt from the bpt->related_breakpoint ring. */
13323 for (related = bpt; related->related_breakpoint != bpt;
13324 related = related->related_breakpoint);
13325 related->related_breakpoint = bpt->related_breakpoint;
13326 bpt->related_breakpoint = bpt;
13327 }
13328
13329 /* watch_command_1 creates a watchpoint but only sets its number if
13330 update_watchpoint succeeds in creating its bp_locations. If there's
13331 a problem in that process, we'll be asked to delete the half-created
13332 watchpoint. In that case, don't announce the deletion. */
13333 if (bpt->number)
13334 gdb::observers::breakpoint_deleted.notify (bpt);
13335
13336 if (breakpoint_chain == bpt)
13337 breakpoint_chain = bpt->next;
13338
13339 ALL_BREAKPOINTS (b)
13340 if (b->next == bpt)
13341 {
13342 b->next = bpt->next;
13343 break;
13344 }
13345
13346 /* Be sure no bpstat's are pointing at the breakpoint after it's
13347 been freed. */
13348 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13349 in all threads for now. Note that we cannot just remove bpstats
13350 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13351 commands are associated with the bpstat; if we remove it here,
13352 then the later call to bpstat_do_actions (&stop_bpstat); in
13353 event-top.c won't do anything, and temporary breakpoints with
13354 commands won't work. */
13355
13356 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13357
13358 /* Now that breakpoint is removed from breakpoint list, update the
13359 global location list. This will remove locations that used to
13360 belong to this breakpoint. Do this before freeing the breakpoint
13361 itself, since remove_breakpoint looks at location's owner. It
13362 might be better design to have location completely
13363 self-contained, but it's not the case now. */
13364 update_global_location_list (UGLL_DONT_INSERT);
13365
13366 /* On the chance that someone will soon try again to delete this
13367 same bp, we mark it as deleted before freeing its storage. */
13368 bpt->type = bp_none;
13369 delete bpt;
13370 }
13371
13372 /* Iterator function to call a user-provided callback function once
13373 for each of B and its related breakpoints. */
13374
13375 static void
13376 iterate_over_related_breakpoints (struct breakpoint *b,
13377 gdb::function_view<void (breakpoint *)> function)
13378 {
13379 struct breakpoint *related;
13380
13381 related = b;
13382 do
13383 {
13384 struct breakpoint *next;
13385
13386 /* FUNCTION may delete RELATED. */
13387 next = related->related_breakpoint;
13388
13389 if (next == related)
13390 {
13391 /* RELATED is the last ring entry. */
13392 function (related);
13393
13394 /* FUNCTION may have deleted it, so we'd never reach back to
13395 B. There's nothing left to do anyway, so just break
13396 out. */
13397 break;
13398 }
13399 else
13400 function (related);
13401
13402 related = next;
13403 }
13404 while (related != b);
13405 }
13406
13407 static void
13408 delete_command (const char *arg, int from_tty)
13409 {
13410 struct breakpoint *b, *b_tmp;
13411
13412 dont_repeat ();
13413
13414 if (arg == 0)
13415 {
13416 int breaks_to_delete = 0;
13417
13418 /* Delete all breakpoints if no argument. Do not delete
13419 internal breakpoints, these have to be deleted with an
13420 explicit breakpoint number argument. */
13421 ALL_BREAKPOINTS (b)
13422 if (user_breakpoint_p (b))
13423 {
13424 breaks_to_delete = 1;
13425 break;
13426 }
13427
13428 /* Ask user only if there are some breakpoints to delete. */
13429 if (!from_tty
13430 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13431 {
13432 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13433 if (user_breakpoint_p (b))
13434 delete_breakpoint (b);
13435 }
13436 }
13437 else
13438 map_breakpoint_numbers
13439 (arg, [&] (breakpoint *br)
13440 {
13441 iterate_over_related_breakpoints (br, delete_breakpoint);
13442 });
13443 }
13444
13445 /* Return true if all locations of B bound to PSPACE are pending. If
13446 PSPACE is NULL, all locations of all program spaces are
13447 considered. */
13448
13449 static int
13450 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13451 {
13452 struct bp_location *loc;
13453
13454 for (loc = b->loc; loc != NULL; loc = loc->next)
13455 if ((pspace == NULL
13456 || loc->pspace == pspace)
13457 && !loc->shlib_disabled
13458 && !loc->pspace->executing_startup)
13459 return 0;
13460 return 1;
13461 }
13462
13463 /* Subroutine of update_breakpoint_locations to simplify it.
13464 Return non-zero if multiple fns in list LOC have the same name.
13465 Null names are ignored. */
13466
13467 static int
13468 ambiguous_names_p (struct bp_location *loc)
13469 {
13470 struct bp_location *l;
13471 htab_up htab (htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13472 xcalloc, xfree));
13473
13474 for (l = loc; l != NULL; l = l->next)
13475 {
13476 const char **slot;
13477 const char *name = l->function_name;
13478
13479 /* Allow for some names to be NULL, ignore them. */
13480 if (name == NULL)
13481 continue;
13482
13483 slot = (const char **) htab_find_slot (htab.get (), (const void *) name,
13484 INSERT);
13485 /* NOTE: We can assume slot != NULL here because xcalloc never
13486 returns NULL. */
13487 if (*slot != NULL)
13488 return 1;
13489 *slot = name;
13490 }
13491
13492 return 0;
13493 }
13494
13495 /* When symbols change, it probably means the sources changed as well,
13496 and it might mean the static tracepoint markers are no longer at
13497 the same address or line numbers they used to be at last we
13498 checked. Losing your static tracepoints whenever you rebuild is
13499 undesirable. This function tries to resync/rematch gdb static
13500 tracepoints with the markers on the target, for static tracepoints
13501 that have not been set by marker id. Static tracepoint that have
13502 been set by marker id are reset by marker id in breakpoint_re_set.
13503 The heuristic is:
13504
13505 1) For a tracepoint set at a specific address, look for a marker at
13506 the old PC. If one is found there, assume to be the same marker.
13507 If the name / string id of the marker found is different from the
13508 previous known name, assume that means the user renamed the marker
13509 in the sources, and output a warning.
13510
13511 2) For a tracepoint set at a given line number, look for a marker
13512 at the new address of the old line number. If one is found there,
13513 assume to be the same marker. If the name / string id of the
13514 marker found is different from the previous known name, assume that
13515 means the user renamed the marker in the sources, and output a
13516 warning.
13517
13518 3) If a marker is no longer found at the same address or line, it
13519 may mean the marker no longer exists. But it may also just mean
13520 the code changed a bit. Maybe the user added a few lines of code
13521 that made the marker move up or down (in line number terms). Ask
13522 the target for info about the marker with the string id as we knew
13523 it. If found, update line number and address in the matching
13524 static tracepoint. This will get confused if there's more than one
13525 marker with the same ID (possible in UST, although unadvised
13526 precisely because it confuses tools). */
13527
13528 static struct symtab_and_line
13529 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13530 {
13531 struct tracepoint *tp = (struct tracepoint *) b;
13532 struct static_tracepoint_marker marker;
13533 CORE_ADDR pc;
13534
13535 pc = sal.pc;
13536 if (sal.line)
13537 find_line_pc (sal.symtab, sal.line, &pc);
13538
13539 if (target_static_tracepoint_marker_at (pc, &marker))
13540 {
13541 if (tp->static_trace_marker_id != marker.str_id)
13542 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13543 b->number, tp->static_trace_marker_id.c_str (),
13544 marker.str_id.c_str ());
13545
13546 tp->static_trace_marker_id = std::move (marker.str_id);
13547
13548 return sal;
13549 }
13550
13551 /* Old marker wasn't found on target at lineno. Try looking it up
13552 by string ID. */
13553 if (!sal.explicit_pc
13554 && sal.line != 0
13555 && sal.symtab != NULL
13556 && !tp->static_trace_marker_id.empty ())
13557 {
13558 std::vector<static_tracepoint_marker> markers
13559 = target_static_tracepoint_markers_by_strid
13560 (tp->static_trace_marker_id.c_str ());
13561
13562 if (!markers.empty ())
13563 {
13564 struct symbol *sym;
13565 struct static_tracepoint_marker *tpmarker;
13566 struct ui_out *uiout = current_uiout;
13567 struct explicit_location explicit_loc;
13568
13569 tpmarker = &markers[0];
13570
13571 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13572
13573 warning (_("marker for static tracepoint %d (%s) not "
13574 "found at previous line number"),
13575 b->number, tp->static_trace_marker_id.c_str ());
13576
13577 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13578 sym = find_pc_sect_function (tpmarker->address, NULL);
13579 uiout->text ("Now in ");
13580 if (sym)
13581 {
13582 uiout->field_string ("func", sym->print_name (),
13583 function_name_style.style ());
13584 uiout->text (" at ");
13585 }
13586 uiout->field_string ("file",
13587 symtab_to_filename_for_display (sal2.symtab),
13588 file_name_style.style ());
13589 uiout->text (":");
13590
13591 if (uiout->is_mi_like_p ())
13592 {
13593 const char *fullname = symtab_to_fullname (sal2.symtab);
13594
13595 uiout->field_string ("fullname", fullname);
13596 }
13597
13598 uiout->field_signed ("line", sal2.line);
13599 uiout->text ("\n");
13600
13601 b->loc->line_number = sal2.line;
13602 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13603
13604 b->location.reset (NULL);
13605 initialize_explicit_location (&explicit_loc);
13606 explicit_loc.source_filename
13607 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13608 explicit_loc.line_offset.offset = b->loc->line_number;
13609 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13610 b->location = new_explicit_location (&explicit_loc);
13611
13612 /* Might be nice to check if function changed, and warn if
13613 so. */
13614 }
13615 }
13616 return sal;
13617 }
13618
13619 /* Returns 1 iff locations A and B are sufficiently same that
13620 we don't need to report breakpoint as changed. */
13621
13622 static int
13623 locations_are_equal (struct bp_location *a, struct bp_location *b)
13624 {
13625 while (a && b)
13626 {
13627 if (a->address != b->address)
13628 return 0;
13629
13630 if (a->shlib_disabled != b->shlib_disabled)
13631 return 0;
13632
13633 if (a->enabled != b->enabled)
13634 return 0;
13635
13636 if (a->disabled_by_cond != b->disabled_by_cond)
13637 return 0;
13638
13639 a = a->next;
13640 b = b->next;
13641 }
13642
13643 if ((a == NULL) != (b == NULL))
13644 return 0;
13645
13646 return 1;
13647 }
13648
13649 /* Split all locations of B that are bound to PSPACE out of B's
13650 location list to a separate list and return that list's head. If
13651 PSPACE is NULL, hoist out all locations of B. */
13652
13653 static struct bp_location *
13654 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13655 {
13656 struct bp_location head;
13657 struct bp_location *i = b->loc;
13658 struct bp_location **i_link = &b->loc;
13659 struct bp_location *hoisted = &head;
13660
13661 if (pspace == NULL)
13662 {
13663 i = b->loc;
13664 b->loc = NULL;
13665 return i;
13666 }
13667
13668 head.next = NULL;
13669
13670 while (i != NULL)
13671 {
13672 if (i->pspace == pspace)
13673 {
13674 *i_link = i->next;
13675 i->next = NULL;
13676 hoisted->next = i;
13677 hoisted = i;
13678 }
13679 else
13680 i_link = &i->next;
13681 i = *i_link;
13682 }
13683
13684 return head.next;
13685 }
13686
13687 /* Create new breakpoint locations for B (a hardware or software
13688 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13689 zero, then B is a ranged breakpoint. Only recreates locations for
13690 FILTER_PSPACE. Locations of other program spaces are left
13691 untouched. */
13692
13693 void
13694 update_breakpoint_locations (struct breakpoint *b,
13695 struct program_space *filter_pspace,
13696 gdb::array_view<const symtab_and_line> sals,
13697 gdb::array_view<const symtab_and_line> sals_end)
13698 {
13699 struct bp_location *existing_locations;
13700
13701 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13702 {
13703 /* Ranged breakpoints have only one start location and one end
13704 location. */
13705 b->enable_state = bp_disabled;
13706 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13707 "multiple locations found\n"),
13708 b->number);
13709 return;
13710 }
13711
13712 /* If there's no new locations, and all existing locations are
13713 pending, don't do anything. This optimizes the common case where
13714 all locations are in the same shared library, that was unloaded.
13715 We'd like to retain the location, so that when the library is
13716 loaded again, we don't loose the enabled/disabled status of the
13717 individual locations. */
13718 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13719 return;
13720
13721 existing_locations = hoist_existing_locations (b, filter_pspace);
13722
13723 for (const auto &sal : sals)
13724 {
13725 struct bp_location *new_loc;
13726
13727 switch_to_program_space_and_thread (sal.pspace);
13728
13729 new_loc = add_location_to_breakpoint (b, &sal);
13730
13731 /* Reparse conditions, they might contain references to the
13732 old symtab. */
13733 if (b->cond_string != NULL)
13734 {
13735 const char *s;
13736
13737 s = b->cond_string;
13738 try
13739 {
13740 new_loc->cond = parse_exp_1 (&s, sal.pc,
13741 block_for_pc (sal.pc),
13742 0);
13743 }
13744 catch (const gdb_exception_error &e)
13745 {
13746 new_loc->disabled_by_cond = true;
13747 }
13748 }
13749
13750 if (!sals_end.empty ())
13751 {
13752 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13753
13754 new_loc->length = end - sals[0].pc + 1;
13755 }
13756 }
13757
13758 /* If possible, carry over 'disable' status from existing
13759 breakpoints. */
13760 {
13761 struct bp_location *e = existing_locations;
13762 /* If there are multiple breakpoints with the same function name,
13763 e.g. for inline functions, comparing function names won't work.
13764 Instead compare pc addresses; this is just a heuristic as things
13765 may have moved, but in practice it gives the correct answer
13766 often enough until a better solution is found. */
13767 int have_ambiguous_names = ambiguous_names_p (b->loc);
13768
13769 for (; e; e = e->next)
13770 {
13771 if ((!e->enabled || e->disabled_by_cond) && e->function_name)
13772 {
13773 struct bp_location *l = b->loc;
13774 if (have_ambiguous_names)
13775 {
13776 for (; l; l = l->next)
13777 {
13778 /* Ignore software vs hardware location type at
13779 this point, because with "set breakpoint
13780 auto-hw", after a re-set, locations that were
13781 hardware can end up as software, or vice versa.
13782 As mentioned above, this is an heuristic and in
13783 practice should give the correct answer often
13784 enough. */
13785 if (breakpoint_locations_match (e, l, true))
13786 {
13787 l->enabled = e->enabled;
13788 l->disabled_by_cond = e->disabled_by_cond;
13789 break;
13790 }
13791 }
13792 }
13793 else
13794 {
13795 for (; l; l = l->next)
13796 if (l->function_name
13797 && strcmp (e->function_name, l->function_name) == 0)
13798 {
13799 l->enabled = e->enabled;
13800 l->disabled_by_cond = e->disabled_by_cond;
13801 break;
13802 }
13803 }
13804 }
13805 }
13806 }
13807
13808 if (!locations_are_equal (existing_locations, b->loc))
13809 gdb::observers::breakpoint_modified.notify (b);
13810 }
13811
13812 /* Find the SaL locations corresponding to the given LOCATION.
13813 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13814
13815 static std::vector<symtab_and_line>
13816 location_to_sals (struct breakpoint *b, struct event_location *location,
13817 struct program_space *search_pspace, int *found)
13818 {
13819 struct gdb_exception exception;
13820
13821 gdb_assert (b->ops != NULL);
13822
13823 std::vector<symtab_and_line> sals;
13824
13825 try
13826 {
13827 sals = b->ops->decode_location (b, location, search_pspace);
13828 }
13829 catch (gdb_exception_error &e)
13830 {
13831 int not_found_and_ok = 0;
13832
13833 /* For pending breakpoints, it's expected that parsing will
13834 fail until the right shared library is loaded. User has
13835 already told to create pending breakpoints and don't need
13836 extra messages. If breakpoint is in bp_shlib_disabled
13837 state, then user already saw the message about that
13838 breakpoint being disabled, and don't want to see more
13839 errors. */
13840 if (e.error == NOT_FOUND_ERROR
13841 && (b->condition_not_parsed
13842 || (b->loc != NULL
13843 && search_pspace != NULL
13844 && b->loc->pspace != search_pspace)
13845 || (b->loc && b->loc->shlib_disabled)
13846 || (b->loc && b->loc->pspace->executing_startup)
13847 || b->enable_state == bp_disabled))
13848 not_found_and_ok = 1;
13849
13850 if (!not_found_and_ok)
13851 {
13852 /* We surely don't want to warn about the same breakpoint
13853 10 times. One solution, implemented here, is disable
13854 the breakpoint on error. Another solution would be to
13855 have separate 'warning emitted' flag. Since this
13856 happens only when a binary has changed, I don't know
13857 which approach is better. */
13858 b->enable_state = bp_disabled;
13859 throw;
13860 }
13861
13862 exception = std::move (e);
13863 }
13864
13865 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13866 {
13867 for (auto &sal : sals)
13868 resolve_sal_pc (&sal);
13869 if (b->condition_not_parsed && b->extra_string != NULL)
13870 {
13871 char *cond_string, *extra_string;
13872 int thread, task;
13873
13874 find_condition_and_thread_for_sals (sals, b->extra_string,
13875 &cond_string, &thread,
13876 &task, &extra_string);
13877 gdb_assert (b->cond_string == NULL);
13878 if (cond_string)
13879 b->cond_string = cond_string;
13880 b->thread = thread;
13881 b->task = task;
13882 if (extra_string)
13883 {
13884 xfree (b->extra_string);
13885 b->extra_string = extra_string;
13886 }
13887 b->condition_not_parsed = 0;
13888 }
13889
13890 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13891 sals[0] = update_static_tracepoint (b, sals[0]);
13892
13893 *found = 1;
13894 }
13895 else
13896 *found = 0;
13897
13898 return sals;
13899 }
13900
13901 /* The default re_set method, for typical hardware or software
13902 breakpoints. Reevaluate the breakpoint and recreate its
13903 locations. */
13904
13905 static void
13906 breakpoint_re_set_default (struct breakpoint *b)
13907 {
13908 struct program_space *filter_pspace = current_program_space;
13909 std::vector<symtab_and_line> expanded, expanded_end;
13910
13911 int found;
13912 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13913 filter_pspace, &found);
13914 if (found)
13915 expanded = std::move (sals);
13916
13917 if (b->location_range_end != NULL)
13918 {
13919 std::vector<symtab_and_line> sals_end
13920 = location_to_sals (b, b->location_range_end.get (),
13921 filter_pspace, &found);
13922 if (found)
13923 expanded_end = std::move (sals_end);
13924 }
13925
13926 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13927 }
13928
13929 /* Default method for creating SALs from an address string. It basically
13930 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13931
13932 static void
13933 create_sals_from_location_default (struct event_location *location,
13934 struct linespec_result *canonical,
13935 enum bptype type_wanted)
13936 {
13937 parse_breakpoint_sals (location, canonical);
13938 }
13939
13940 /* Call create_breakpoints_sal for the given arguments. This is the default
13941 function for the `create_breakpoints_sal' method of
13942 breakpoint_ops. */
13943
13944 static void
13945 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13946 struct linespec_result *canonical,
13947 gdb::unique_xmalloc_ptr<char> cond_string,
13948 gdb::unique_xmalloc_ptr<char> extra_string,
13949 enum bptype type_wanted,
13950 enum bpdisp disposition,
13951 int thread,
13952 int task, int ignore_count,
13953 const struct breakpoint_ops *ops,
13954 int from_tty, int enabled,
13955 int internal, unsigned flags)
13956 {
13957 create_breakpoints_sal (gdbarch, canonical,
13958 std::move (cond_string),
13959 std::move (extra_string),
13960 type_wanted, disposition,
13961 thread, task, ignore_count, ops, from_tty,
13962 enabled, internal, flags);
13963 }
13964
13965 /* Decode the line represented by S by calling decode_line_full. This is the
13966 default function for the `decode_location' method of breakpoint_ops. */
13967
13968 static std::vector<symtab_and_line>
13969 decode_location_default (struct breakpoint *b,
13970 struct event_location *location,
13971 struct program_space *search_pspace)
13972 {
13973 struct linespec_result canonical;
13974
13975 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13976 NULL, 0, &canonical, multiple_symbols_all,
13977 b->filter.get ());
13978
13979 /* We should get 0 or 1 resulting SALs. */
13980 gdb_assert (canonical.lsals.size () < 2);
13981
13982 if (!canonical.lsals.empty ())
13983 {
13984 const linespec_sals &lsal = canonical.lsals[0];
13985 return std::move (lsal.sals);
13986 }
13987 return {};
13988 }
13989
13990 /* Reset a breakpoint. */
13991
13992 static void
13993 breakpoint_re_set_one (breakpoint *b)
13994 {
13995 input_radix = b->input_radix;
13996 set_language (b->language);
13997
13998 b->ops->re_set (b);
13999 }
14000
14001 /* Re-set breakpoint locations for the current program space.
14002 Locations bound to other program spaces are left untouched. */
14003
14004 void
14005 breakpoint_re_set (void)
14006 {
14007 struct breakpoint *b, *b_tmp;
14008
14009 {
14010 scoped_restore_current_language save_language;
14011 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
14012 scoped_restore_current_pspace_and_thread restore_pspace_thread;
14013
14014 /* breakpoint_re_set_one sets the current_language to the language
14015 of the breakpoint it is resetting (see prepare_re_set_context)
14016 before re-evaluating the breakpoint's location. This change can
14017 unfortunately get undone by accident if the language_mode is set
14018 to auto, and we either switch frames, or more likely in this context,
14019 we select the current frame.
14020
14021 We prevent this by temporarily turning the language_mode to
14022 language_mode_manual. We restore it once all breakpoints
14023 have been reset. */
14024 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
14025 language_mode = language_mode_manual;
14026
14027 /* Note: we must not try to insert locations until after all
14028 breakpoints have been re-set. Otherwise, e.g., when re-setting
14029 breakpoint 1, we'd insert the locations of breakpoint 2, which
14030 hadn't been re-set yet, and thus may have stale locations. */
14031
14032 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14033 {
14034 try
14035 {
14036 breakpoint_re_set_one (b);
14037 }
14038 catch (const gdb_exception &ex)
14039 {
14040 exception_fprintf (gdb_stderr, ex,
14041 "Error in re-setting breakpoint %d: ",
14042 b->number);
14043 }
14044 }
14045
14046 jit_breakpoint_re_set ();
14047 }
14048
14049 create_overlay_event_breakpoint ();
14050 create_longjmp_master_breakpoint ();
14051 create_std_terminate_master_breakpoint ();
14052 create_exception_master_breakpoint ();
14053
14054 /* Now we can insert. */
14055 update_global_location_list (UGLL_MAY_INSERT);
14056 }
14057 \f
14058 /* Reset the thread number of this breakpoint:
14059
14060 - If the breakpoint is for all threads, leave it as-is.
14061 - Else, reset it to the current thread for inferior_ptid. */
14062 void
14063 breakpoint_re_set_thread (struct breakpoint *b)
14064 {
14065 if (b->thread != -1)
14066 {
14067 b->thread = inferior_thread ()->global_num;
14068
14069 /* We're being called after following a fork. The new fork is
14070 selected as current, and unless this was a vfork will have a
14071 different program space from the original thread. Reset that
14072 as well. */
14073 b->loc->pspace = current_program_space;
14074 }
14075 }
14076
14077 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14078 If from_tty is nonzero, it prints a message to that effect,
14079 which ends with a period (no newline). */
14080
14081 void
14082 set_ignore_count (int bptnum, int count, int from_tty)
14083 {
14084 struct breakpoint *b;
14085
14086 if (count < 0)
14087 count = 0;
14088
14089 ALL_BREAKPOINTS (b)
14090 if (b->number == bptnum)
14091 {
14092 if (is_tracepoint (b))
14093 {
14094 if (from_tty && count != 0)
14095 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14096 bptnum);
14097 return;
14098 }
14099
14100 b->ignore_count = count;
14101 if (from_tty)
14102 {
14103 if (count == 0)
14104 printf_filtered (_("Will stop next time "
14105 "breakpoint %d is reached."),
14106 bptnum);
14107 else if (count == 1)
14108 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14109 bptnum);
14110 else
14111 printf_filtered (_("Will ignore next %d "
14112 "crossings of breakpoint %d."),
14113 count, bptnum);
14114 }
14115 gdb::observers::breakpoint_modified.notify (b);
14116 return;
14117 }
14118
14119 error (_("No breakpoint number %d."), bptnum);
14120 }
14121
14122 /* Command to set ignore-count of breakpoint N to COUNT. */
14123
14124 static void
14125 ignore_command (const char *args, int from_tty)
14126 {
14127 const char *p = args;
14128 int num;
14129
14130 if (p == 0)
14131 error_no_arg (_("a breakpoint number"));
14132
14133 num = get_number (&p);
14134 if (num == 0)
14135 error (_("bad breakpoint number: '%s'"), args);
14136 if (*p == 0)
14137 error (_("Second argument (specified ignore-count) is missing."));
14138
14139 set_ignore_count (num,
14140 longest_to_int (value_as_long (parse_and_eval (p))),
14141 from_tty);
14142 if (from_tty)
14143 printf_filtered ("\n");
14144 }
14145 \f
14146
14147 /* Call FUNCTION on each of the breakpoints with numbers in the range
14148 defined by BP_NUM_RANGE (an inclusive range). */
14149
14150 static void
14151 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14152 gdb::function_view<void (breakpoint *)> function)
14153 {
14154 if (bp_num_range.first == 0)
14155 {
14156 warning (_("bad breakpoint number at or near '%d'"),
14157 bp_num_range.first);
14158 }
14159 else
14160 {
14161 struct breakpoint *b, *tmp;
14162
14163 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14164 {
14165 bool match = false;
14166
14167 ALL_BREAKPOINTS_SAFE (b, tmp)
14168 if (b->number == i)
14169 {
14170 match = true;
14171 function (b);
14172 break;
14173 }
14174 if (!match)
14175 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14176 }
14177 }
14178 }
14179
14180 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14181 ARGS. */
14182
14183 static void
14184 map_breakpoint_numbers (const char *args,
14185 gdb::function_view<void (breakpoint *)> function)
14186 {
14187 if (args == NULL || *args == '\0')
14188 error_no_arg (_("one or more breakpoint numbers"));
14189
14190 number_or_range_parser parser (args);
14191
14192 while (!parser.finished ())
14193 {
14194 int num = parser.get_number ();
14195 map_breakpoint_number_range (std::make_pair (num, num), function);
14196 }
14197 }
14198
14199 /* Return the breakpoint location structure corresponding to the
14200 BP_NUM and LOC_NUM values. */
14201
14202 static struct bp_location *
14203 find_location_by_number (int bp_num, int loc_num)
14204 {
14205 struct breakpoint *b;
14206
14207 ALL_BREAKPOINTS (b)
14208 if (b->number == bp_num)
14209 {
14210 break;
14211 }
14212
14213 if (!b || b->number != bp_num)
14214 error (_("Bad breakpoint number '%d'"), bp_num);
14215
14216 if (loc_num == 0)
14217 error (_("Bad breakpoint location number '%d'"), loc_num);
14218
14219 int n = 0;
14220 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14221 if (++n == loc_num)
14222 return loc;
14223
14224 error (_("Bad breakpoint location number '%d'"), loc_num);
14225 }
14226
14227 /* Modes of operation for extract_bp_num. */
14228 enum class extract_bp_kind
14229 {
14230 /* Extracting a breakpoint number. */
14231 bp,
14232
14233 /* Extracting a location number. */
14234 loc,
14235 };
14236
14237 /* Extract a breakpoint or location number (as determined by KIND)
14238 from the string starting at START. TRAILER is a character which
14239 can be found after the number. If you don't want a trailer, use
14240 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14241 string. This always returns a positive integer. */
14242
14243 static int
14244 extract_bp_num (extract_bp_kind kind, const char *start,
14245 int trailer, const char **end_out = NULL)
14246 {
14247 const char *end = start;
14248 int num = get_number_trailer (&end, trailer);
14249 if (num < 0)
14250 error (kind == extract_bp_kind::bp
14251 ? _("Negative breakpoint number '%.*s'")
14252 : _("Negative breakpoint location number '%.*s'"),
14253 int (end - start), start);
14254 if (num == 0)
14255 error (kind == extract_bp_kind::bp
14256 ? _("Bad breakpoint number '%.*s'")
14257 : _("Bad breakpoint location number '%.*s'"),
14258 int (end - start), start);
14259
14260 if (end_out != NULL)
14261 *end_out = end;
14262 return num;
14263 }
14264
14265 /* Extract a breakpoint or location range (as determined by KIND) in
14266 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14267 representing the (inclusive) range. The returned pair's elements
14268 are always positive integers. */
14269
14270 static std::pair<int, int>
14271 extract_bp_or_bp_range (extract_bp_kind kind,
14272 const std::string &arg,
14273 std::string::size_type arg_offset)
14274 {
14275 std::pair<int, int> range;
14276 const char *bp_loc = &arg[arg_offset];
14277 std::string::size_type dash = arg.find ('-', arg_offset);
14278 if (dash != std::string::npos)
14279 {
14280 /* bp_loc is a range (x-z). */
14281 if (arg.length () == dash + 1)
14282 error (kind == extract_bp_kind::bp
14283 ? _("Bad breakpoint number at or near: '%s'")
14284 : _("Bad breakpoint location number at or near: '%s'"),
14285 bp_loc);
14286
14287 const char *end;
14288 const char *start_first = bp_loc;
14289 const char *start_second = &arg[dash + 1];
14290 range.first = extract_bp_num (kind, start_first, '-');
14291 range.second = extract_bp_num (kind, start_second, '\0', &end);
14292
14293 if (range.first > range.second)
14294 error (kind == extract_bp_kind::bp
14295 ? _("Inverted breakpoint range at '%.*s'")
14296 : _("Inverted breakpoint location range at '%.*s'"),
14297 int (end - start_first), start_first);
14298 }
14299 else
14300 {
14301 /* bp_loc is a single value. */
14302 range.first = extract_bp_num (kind, bp_loc, '\0');
14303 range.second = range.first;
14304 }
14305 return range;
14306 }
14307
14308 /* Extract the breakpoint/location range specified by ARG. Returns
14309 the breakpoint range in BP_NUM_RANGE, and the location range in
14310 BP_LOC_RANGE.
14311
14312 ARG may be in any of the following forms:
14313
14314 x where 'x' is a breakpoint number.
14315 x-y where 'x' and 'y' specify a breakpoint numbers range.
14316 x.y where 'x' is a breakpoint number and 'y' a location number.
14317 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14318 location number range.
14319 */
14320
14321 static void
14322 extract_bp_number_and_location (const std::string &arg,
14323 std::pair<int, int> &bp_num_range,
14324 std::pair<int, int> &bp_loc_range)
14325 {
14326 std::string::size_type dot = arg.find ('.');
14327
14328 if (dot != std::string::npos)
14329 {
14330 /* Handle 'x.y' and 'x.y-z' cases. */
14331
14332 if (arg.length () == dot + 1 || dot == 0)
14333 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14334
14335 bp_num_range.first
14336 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14337 bp_num_range.second = bp_num_range.first;
14338
14339 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14340 arg, dot + 1);
14341 }
14342 else
14343 {
14344 /* Handle x and x-y cases. */
14345
14346 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14347 bp_loc_range.first = 0;
14348 bp_loc_range.second = 0;
14349 }
14350 }
14351
14352 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14353 specifies whether to enable or disable. */
14354
14355 static void
14356 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14357 {
14358 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14359 if (loc != NULL)
14360 {
14361 if (loc->disabled_by_cond && enable)
14362 error (_("Breakpoint %d's condition is invalid at location %d, "
14363 "cannot enable."), bp_num, loc_num);
14364
14365 if (loc->enabled != enable)
14366 {
14367 loc->enabled = enable;
14368 mark_breakpoint_location_modified (loc);
14369 }
14370 if (target_supports_enable_disable_tracepoint ()
14371 && current_trace_status ()->running && loc->owner
14372 && is_tracepoint (loc->owner))
14373 target_disable_tracepoint (loc);
14374 }
14375 update_global_location_list (UGLL_DONT_INSERT);
14376
14377 gdb::observers::breakpoint_modified.notify (loc->owner);
14378 }
14379
14380 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14381 number of the breakpoint, and BP_LOC_RANGE specifies the
14382 (inclusive) range of location numbers of that breakpoint to
14383 enable/disable. ENABLE specifies whether to enable or disable the
14384 location. */
14385
14386 static void
14387 enable_disable_breakpoint_location_range (int bp_num,
14388 std::pair<int, int> &bp_loc_range,
14389 bool enable)
14390 {
14391 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14392 enable_disable_bp_num_loc (bp_num, i, enable);
14393 }
14394
14395 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14396 If from_tty is nonzero, it prints a message to that effect,
14397 which ends with a period (no newline). */
14398
14399 void
14400 disable_breakpoint (struct breakpoint *bpt)
14401 {
14402 /* Never disable a watchpoint scope breakpoint; we want to
14403 hit them when we leave scope so we can delete both the
14404 watchpoint and its scope breakpoint at that time. */
14405 if (bpt->type == bp_watchpoint_scope)
14406 return;
14407
14408 bpt->enable_state = bp_disabled;
14409
14410 /* Mark breakpoint locations modified. */
14411 mark_breakpoint_modified (bpt);
14412
14413 if (target_supports_enable_disable_tracepoint ()
14414 && current_trace_status ()->running && is_tracepoint (bpt))
14415 {
14416 struct bp_location *location;
14417
14418 for (location = bpt->loc; location; location = location->next)
14419 target_disable_tracepoint (location);
14420 }
14421
14422 update_global_location_list (UGLL_DONT_INSERT);
14423
14424 gdb::observers::breakpoint_modified.notify (bpt);
14425 }
14426
14427 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14428 specified in ARGS. ARGS may be in any of the formats handled by
14429 extract_bp_number_and_location. ENABLE specifies whether to enable
14430 or disable the breakpoints/locations. */
14431
14432 static void
14433 enable_disable_command (const char *args, int from_tty, bool enable)
14434 {
14435 if (args == 0)
14436 {
14437 struct breakpoint *bpt;
14438
14439 ALL_BREAKPOINTS (bpt)
14440 if (user_breakpoint_p (bpt))
14441 {
14442 if (enable)
14443 enable_breakpoint (bpt);
14444 else
14445 disable_breakpoint (bpt);
14446 }
14447 }
14448 else
14449 {
14450 std::string num = extract_arg (&args);
14451
14452 while (!num.empty ())
14453 {
14454 std::pair<int, int> bp_num_range, bp_loc_range;
14455
14456 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14457
14458 if (bp_loc_range.first == bp_loc_range.second
14459 && bp_loc_range.first == 0)
14460 {
14461 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14462 map_breakpoint_number_range (bp_num_range,
14463 enable
14464 ? enable_breakpoint
14465 : disable_breakpoint);
14466 }
14467 else
14468 {
14469 /* Handle breakpoint ids with formats 'x.y' or
14470 'x.y-z'. */
14471 enable_disable_breakpoint_location_range
14472 (bp_num_range.first, bp_loc_range, enable);
14473 }
14474 num = extract_arg (&args);
14475 }
14476 }
14477 }
14478
14479 /* The disable command disables the specified breakpoints/locations
14480 (or all defined breakpoints) so they're no longer effective in
14481 stopping the inferior. ARGS may be in any of the forms defined in
14482 extract_bp_number_and_location. */
14483
14484 static void
14485 disable_command (const char *args, int from_tty)
14486 {
14487 enable_disable_command (args, from_tty, false);
14488 }
14489
14490 static void
14491 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14492 int count)
14493 {
14494 int target_resources_ok;
14495
14496 if (bpt->type == bp_hardware_breakpoint)
14497 {
14498 int i;
14499 i = hw_breakpoint_used_count ();
14500 target_resources_ok =
14501 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14502 i + 1, 0);
14503 if (target_resources_ok == 0)
14504 error (_("No hardware breakpoint support in the target."));
14505 else if (target_resources_ok < 0)
14506 error (_("Hardware breakpoints used exceeds limit."));
14507 }
14508
14509 if (is_watchpoint (bpt))
14510 {
14511 /* Initialize it just to avoid a GCC false warning. */
14512 enum enable_state orig_enable_state = bp_disabled;
14513
14514 try
14515 {
14516 struct watchpoint *w = (struct watchpoint *) bpt;
14517
14518 orig_enable_state = bpt->enable_state;
14519 bpt->enable_state = bp_enabled;
14520 update_watchpoint (w, 1 /* reparse */);
14521 }
14522 catch (const gdb_exception &e)
14523 {
14524 bpt->enable_state = orig_enable_state;
14525 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14526 bpt->number);
14527 return;
14528 }
14529 }
14530
14531 bpt->enable_state = bp_enabled;
14532
14533 /* Mark breakpoint locations modified. */
14534 mark_breakpoint_modified (bpt);
14535
14536 if (target_supports_enable_disable_tracepoint ()
14537 && current_trace_status ()->running && is_tracepoint (bpt))
14538 {
14539 struct bp_location *location;
14540
14541 for (location = bpt->loc; location; location = location->next)
14542 target_enable_tracepoint (location);
14543 }
14544
14545 bpt->disposition = disposition;
14546 bpt->enable_count = count;
14547 update_global_location_list (UGLL_MAY_INSERT);
14548
14549 gdb::observers::breakpoint_modified.notify (bpt);
14550 }
14551
14552
14553 void
14554 enable_breakpoint (struct breakpoint *bpt)
14555 {
14556 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14557 }
14558
14559 /* The enable command enables the specified breakpoints/locations (or
14560 all defined breakpoints) so they once again become (or continue to
14561 be) effective in stopping the inferior. ARGS may be in any of the
14562 forms defined in extract_bp_number_and_location. */
14563
14564 static void
14565 enable_command (const char *args, int from_tty)
14566 {
14567 enable_disable_command (args, from_tty, true);
14568 }
14569
14570 static void
14571 enable_once_command (const char *args, int from_tty)
14572 {
14573 map_breakpoint_numbers
14574 (args, [&] (breakpoint *b)
14575 {
14576 iterate_over_related_breakpoints
14577 (b, [&] (breakpoint *bpt)
14578 {
14579 enable_breakpoint_disp (bpt, disp_disable, 1);
14580 });
14581 });
14582 }
14583
14584 static void
14585 enable_count_command (const char *args, int from_tty)
14586 {
14587 int count;
14588
14589 if (args == NULL)
14590 error_no_arg (_("hit count"));
14591
14592 count = get_number (&args);
14593
14594 map_breakpoint_numbers
14595 (args, [&] (breakpoint *b)
14596 {
14597 iterate_over_related_breakpoints
14598 (b, [&] (breakpoint *bpt)
14599 {
14600 enable_breakpoint_disp (bpt, disp_disable, count);
14601 });
14602 });
14603 }
14604
14605 static void
14606 enable_delete_command (const char *args, int from_tty)
14607 {
14608 map_breakpoint_numbers
14609 (args, [&] (breakpoint *b)
14610 {
14611 iterate_over_related_breakpoints
14612 (b, [&] (breakpoint *bpt)
14613 {
14614 enable_breakpoint_disp (bpt, disp_del, 1);
14615 });
14616 });
14617 }
14618 \f
14619 /* Invalidate last known value of any hardware watchpoint if
14620 the memory which that value represents has been written to by
14621 GDB itself. */
14622
14623 static void
14624 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14625 CORE_ADDR addr, ssize_t len,
14626 const bfd_byte *data)
14627 {
14628 struct breakpoint *bp;
14629
14630 ALL_BREAKPOINTS (bp)
14631 if (bp->enable_state == bp_enabled
14632 && bp->type == bp_hardware_watchpoint)
14633 {
14634 struct watchpoint *wp = (struct watchpoint *) bp;
14635
14636 if (wp->val_valid && wp->val != nullptr)
14637 {
14638 struct bp_location *loc;
14639
14640 for (loc = bp->loc; loc != NULL; loc = loc->next)
14641 if (loc->loc_type == bp_loc_hardware_watchpoint
14642 && loc->address + loc->length > addr
14643 && addr + len > loc->address)
14644 {
14645 wp->val = NULL;
14646 wp->val_valid = false;
14647 }
14648 }
14649 }
14650 }
14651
14652 /* Create and insert a breakpoint for software single step. */
14653
14654 void
14655 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14656 const address_space *aspace,
14657 CORE_ADDR next_pc)
14658 {
14659 struct thread_info *tp = inferior_thread ();
14660 struct symtab_and_line sal;
14661 CORE_ADDR pc = next_pc;
14662
14663 if (tp->control.single_step_breakpoints == NULL)
14664 {
14665 tp->control.single_step_breakpoints
14666 = new_single_step_breakpoint (tp->global_num, gdbarch);
14667 }
14668
14669 sal = find_pc_line (pc, 0);
14670 sal.pc = pc;
14671 sal.section = find_pc_overlay (pc);
14672 sal.explicit_pc = 1;
14673 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14674
14675 update_global_location_list (UGLL_INSERT);
14676 }
14677
14678 /* Insert single step breakpoints according to the current state. */
14679
14680 int
14681 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14682 {
14683 struct regcache *regcache = get_current_regcache ();
14684 std::vector<CORE_ADDR> next_pcs;
14685
14686 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14687
14688 if (!next_pcs.empty ())
14689 {
14690 struct frame_info *frame = get_current_frame ();
14691 const address_space *aspace = get_frame_address_space (frame);
14692
14693 for (CORE_ADDR pc : next_pcs)
14694 insert_single_step_breakpoint (gdbarch, aspace, pc);
14695
14696 return 1;
14697 }
14698 else
14699 return 0;
14700 }
14701
14702 /* See breakpoint.h. */
14703
14704 int
14705 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14706 const address_space *aspace,
14707 CORE_ADDR pc)
14708 {
14709 struct bp_location *loc;
14710
14711 for (loc = bp->loc; loc != NULL; loc = loc->next)
14712 if (loc->inserted
14713 && breakpoint_location_address_match (loc, aspace, pc))
14714 return 1;
14715
14716 return 0;
14717 }
14718
14719 /* Check whether a software single-step breakpoint is inserted at
14720 PC. */
14721
14722 int
14723 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14724 CORE_ADDR pc)
14725 {
14726 struct breakpoint *bpt;
14727
14728 ALL_BREAKPOINTS (bpt)
14729 {
14730 if (bpt->type == bp_single_step
14731 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14732 return 1;
14733 }
14734 return 0;
14735 }
14736
14737 /* Tracepoint-specific operations. */
14738
14739 /* Set tracepoint count to NUM. */
14740 static void
14741 set_tracepoint_count (int num)
14742 {
14743 tracepoint_count = num;
14744 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14745 }
14746
14747 static void
14748 trace_command (const char *arg, int from_tty)
14749 {
14750 event_location_up location = string_to_event_location (&arg,
14751 current_language);
14752 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
14753 (location.get (), true /* is_tracepoint */);
14754
14755 create_breakpoint (get_current_arch (),
14756 location.get (),
14757 NULL, 0, arg, 1 /* parse arg */,
14758 0 /* tempflag */,
14759 bp_tracepoint /* type_wanted */,
14760 0 /* Ignore count */,
14761 pending_break_support,
14762 ops,
14763 from_tty,
14764 1 /* enabled */,
14765 0 /* internal */, 0);
14766 }
14767
14768 static void
14769 ftrace_command (const char *arg, int from_tty)
14770 {
14771 event_location_up location = string_to_event_location (&arg,
14772 current_language);
14773 create_breakpoint (get_current_arch (),
14774 location.get (),
14775 NULL, 0, arg, 1 /* parse arg */,
14776 0 /* tempflag */,
14777 bp_fast_tracepoint /* type_wanted */,
14778 0 /* Ignore count */,
14779 pending_break_support,
14780 &tracepoint_breakpoint_ops,
14781 from_tty,
14782 1 /* enabled */,
14783 0 /* internal */, 0);
14784 }
14785
14786 /* strace command implementation. Creates a static tracepoint. */
14787
14788 static void
14789 strace_command (const char *arg, int from_tty)
14790 {
14791 struct breakpoint_ops *ops;
14792 event_location_up location;
14793
14794 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14795 or with a normal static tracepoint. */
14796 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14797 {
14798 ops = &strace_marker_breakpoint_ops;
14799 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14800 }
14801 else
14802 {
14803 ops = &tracepoint_breakpoint_ops;
14804 location = string_to_event_location (&arg, current_language);
14805 }
14806
14807 create_breakpoint (get_current_arch (),
14808 location.get (),
14809 NULL, 0, arg, 1 /* parse arg */,
14810 0 /* tempflag */,
14811 bp_static_tracepoint /* type_wanted */,
14812 0 /* Ignore count */,
14813 pending_break_support,
14814 ops,
14815 from_tty,
14816 1 /* enabled */,
14817 0 /* internal */, 0);
14818 }
14819
14820 /* Set up a fake reader function that gets command lines from a linked
14821 list that was acquired during tracepoint uploading. */
14822
14823 static struct uploaded_tp *this_utp;
14824 static int next_cmd;
14825
14826 static char *
14827 read_uploaded_action (void)
14828 {
14829 char *rslt = nullptr;
14830
14831 if (next_cmd < this_utp->cmd_strings.size ())
14832 {
14833 rslt = this_utp->cmd_strings[next_cmd].get ();
14834 next_cmd++;
14835 }
14836
14837 return rslt;
14838 }
14839
14840 /* Given information about a tracepoint as recorded on a target (which
14841 can be either a live system or a trace file), attempt to create an
14842 equivalent GDB tracepoint. This is not a reliable process, since
14843 the target does not necessarily have all the information used when
14844 the tracepoint was originally defined. */
14845
14846 struct tracepoint *
14847 create_tracepoint_from_upload (struct uploaded_tp *utp)
14848 {
14849 const char *addr_str;
14850 char small_buf[100];
14851 struct tracepoint *tp;
14852
14853 if (utp->at_string)
14854 addr_str = utp->at_string.get ();
14855 else
14856 {
14857 /* In the absence of a source location, fall back to raw
14858 address. Since there is no way to confirm that the address
14859 means the same thing as when the trace was started, warn the
14860 user. */
14861 warning (_("Uploaded tracepoint %d has no "
14862 "source location, using raw address"),
14863 utp->number);
14864 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14865 addr_str = small_buf;
14866 }
14867
14868 /* There's not much we can do with a sequence of bytecodes. */
14869 if (utp->cond && !utp->cond_string)
14870 warning (_("Uploaded tracepoint %d condition "
14871 "has no source form, ignoring it"),
14872 utp->number);
14873
14874 event_location_up location = string_to_event_location (&addr_str,
14875 current_language);
14876 if (!create_breakpoint (get_current_arch (),
14877 location.get (),
14878 utp->cond_string.get (), -1, addr_str,
14879 0 /* parse cond/thread */,
14880 0 /* tempflag */,
14881 utp->type /* type_wanted */,
14882 0 /* Ignore count */,
14883 pending_break_support,
14884 &tracepoint_breakpoint_ops,
14885 0 /* from_tty */,
14886 utp->enabled /* enabled */,
14887 0 /* internal */,
14888 CREATE_BREAKPOINT_FLAGS_INSERTED))
14889 return NULL;
14890
14891 /* Get the tracepoint we just created. */
14892 tp = get_tracepoint (tracepoint_count);
14893 gdb_assert (tp != NULL);
14894
14895 if (utp->pass > 0)
14896 {
14897 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14898 tp->number);
14899
14900 trace_pass_command (small_buf, 0);
14901 }
14902
14903 /* If we have uploaded versions of the original commands, set up a
14904 special-purpose "reader" function and call the usual command line
14905 reader, then pass the result to the breakpoint command-setting
14906 function. */
14907 if (!utp->cmd_strings.empty ())
14908 {
14909 counted_command_line cmd_list;
14910
14911 this_utp = utp;
14912 next_cmd = 0;
14913
14914 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14915
14916 breakpoint_set_commands (tp, std::move (cmd_list));
14917 }
14918 else if (!utp->actions.empty ()
14919 || !utp->step_actions.empty ())
14920 warning (_("Uploaded tracepoint %d actions "
14921 "have no source form, ignoring them"),
14922 utp->number);
14923
14924 /* Copy any status information that might be available. */
14925 tp->hit_count = utp->hit_count;
14926 tp->traceframe_usage = utp->traceframe_usage;
14927
14928 return tp;
14929 }
14930
14931 /* Print information on tracepoint number TPNUM_EXP, or all if
14932 omitted. */
14933
14934 static void
14935 info_tracepoints_command (const char *args, int from_tty)
14936 {
14937 struct ui_out *uiout = current_uiout;
14938 int num_printed;
14939
14940 num_printed = breakpoint_1 (args, false, is_tracepoint);
14941
14942 if (num_printed == 0)
14943 {
14944 if (args == NULL || *args == '\0')
14945 uiout->message ("No tracepoints.\n");
14946 else
14947 uiout->message ("No tracepoint matching '%s'.\n", args);
14948 }
14949
14950 default_collect_info ();
14951 }
14952
14953 /* The 'enable trace' command enables tracepoints.
14954 Not supported by all targets. */
14955 static void
14956 enable_trace_command (const char *args, int from_tty)
14957 {
14958 enable_command (args, from_tty);
14959 }
14960
14961 /* The 'disable trace' command disables tracepoints.
14962 Not supported by all targets. */
14963 static void
14964 disable_trace_command (const char *args, int from_tty)
14965 {
14966 disable_command (args, from_tty);
14967 }
14968
14969 /* Remove a tracepoint (or all if no argument). */
14970 static void
14971 delete_trace_command (const char *arg, int from_tty)
14972 {
14973 struct breakpoint *b, *b_tmp;
14974
14975 dont_repeat ();
14976
14977 if (arg == 0)
14978 {
14979 int breaks_to_delete = 0;
14980
14981 /* Delete all breakpoints if no argument.
14982 Do not delete internal or call-dummy breakpoints, these
14983 have to be deleted with an explicit breakpoint number
14984 argument. */
14985 ALL_TRACEPOINTS (b)
14986 if (is_tracepoint (b) && user_breakpoint_p (b))
14987 {
14988 breaks_to_delete = 1;
14989 break;
14990 }
14991
14992 /* Ask user only if there are some breakpoints to delete. */
14993 if (!from_tty
14994 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14995 {
14996 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14997 if (is_tracepoint (b) && user_breakpoint_p (b))
14998 delete_breakpoint (b);
14999 }
15000 }
15001 else
15002 map_breakpoint_numbers
15003 (arg, [&] (breakpoint *br)
15004 {
15005 iterate_over_related_breakpoints (br, delete_breakpoint);
15006 });
15007 }
15008
15009 /* Helper function for trace_pass_command. */
15010
15011 static void
15012 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15013 {
15014 tp->pass_count = count;
15015 gdb::observers::breakpoint_modified.notify (tp);
15016 if (from_tty)
15017 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15018 tp->number, count);
15019 }
15020
15021 /* Set passcount for tracepoint.
15022
15023 First command argument is passcount, second is tracepoint number.
15024 If tracepoint number omitted, apply to most recently defined.
15025 Also accepts special argument "all". */
15026
15027 static void
15028 trace_pass_command (const char *args, int from_tty)
15029 {
15030 struct tracepoint *t1;
15031 ULONGEST count;
15032
15033 if (args == 0 || *args == 0)
15034 error (_("passcount command requires an "
15035 "argument (count + optional TP num)"));
15036
15037 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
15038
15039 args = skip_spaces (args);
15040 if (*args && strncasecmp (args, "all", 3) == 0)
15041 {
15042 struct breakpoint *b;
15043
15044 args += 3; /* Skip special argument "all". */
15045 if (*args)
15046 error (_("Junk at end of arguments."));
15047
15048 ALL_TRACEPOINTS (b)
15049 {
15050 t1 = (struct tracepoint *) b;
15051 trace_pass_set_count (t1, count, from_tty);
15052 }
15053 }
15054 else if (*args == '\0')
15055 {
15056 t1 = get_tracepoint_by_number (&args, NULL);
15057 if (t1)
15058 trace_pass_set_count (t1, count, from_tty);
15059 }
15060 else
15061 {
15062 number_or_range_parser parser (args);
15063 while (!parser.finished ())
15064 {
15065 t1 = get_tracepoint_by_number (&args, &parser);
15066 if (t1)
15067 trace_pass_set_count (t1, count, from_tty);
15068 }
15069 }
15070 }
15071
15072 struct tracepoint *
15073 get_tracepoint (int num)
15074 {
15075 struct breakpoint *t;
15076
15077 ALL_TRACEPOINTS (t)
15078 if (t->number == num)
15079 return (struct tracepoint *) t;
15080
15081 return NULL;
15082 }
15083
15084 /* Find the tracepoint with the given target-side number (which may be
15085 different from the tracepoint number after disconnecting and
15086 reconnecting). */
15087
15088 struct tracepoint *
15089 get_tracepoint_by_number_on_target (int num)
15090 {
15091 struct breakpoint *b;
15092
15093 ALL_TRACEPOINTS (b)
15094 {
15095 struct tracepoint *t = (struct tracepoint *) b;
15096
15097 if (t->number_on_target == num)
15098 return t;
15099 }
15100
15101 return NULL;
15102 }
15103
15104 /* Utility: parse a tracepoint number and look it up in the list.
15105 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15106 If the argument is missing, the most recent tracepoint
15107 (tracepoint_count) is returned. */
15108
15109 struct tracepoint *
15110 get_tracepoint_by_number (const char **arg,
15111 number_or_range_parser *parser)
15112 {
15113 struct breakpoint *t;
15114 int tpnum;
15115 const char *instring = arg == NULL ? NULL : *arg;
15116
15117 if (parser != NULL)
15118 {
15119 gdb_assert (!parser->finished ());
15120 tpnum = parser->get_number ();
15121 }
15122 else if (arg == NULL || *arg == NULL || ! **arg)
15123 tpnum = tracepoint_count;
15124 else
15125 tpnum = get_number (arg);
15126
15127 if (tpnum <= 0)
15128 {
15129 if (instring && *instring)
15130 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15131 instring);
15132 else
15133 printf_filtered (_("No previous tracepoint\n"));
15134 return NULL;
15135 }
15136
15137 ALL_TRACEPOINTS (t)
15138 if (t->number == tpnum)
15139 {
15140 return (struct tracepoint *) t;
15141 }
15142
15143 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15144 return NULL;
15145 }
15146
15147 void
15148 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15149 {
15150 if (b->thread != -1)
15151 fprintf_unfiltered (fp, " thread %d", b->thread);
15152
15153 if (b->task != 0)
15154 fprintf_unfiltered (fp, " task %d", b->task);
15155
15156 fprintf_unfiltered (fp, "\n");
15157 }
15158
15159 /* Save information on user settable breakpoints (watchpoints, etc) to
15160 a new script file named FILENAME. If FILTER is non-NULL, call it
15161 on each breakpoint and only include the ones for which it returns
15162 true. */
15163
15164 static void
15165 save_breakpoints (const char *filename, int from_tty,
15166 bool (*filter) (const struct breakpoint *))
15167 {
15168 struct breakpoint *tp;
15169 int any = 0;
15170 int extra_trace_bits = 0;
15171
15172 if (filename == 0 || *filename == 0)
15173 error (_("Argument required (file name in which to save)"));
15174
15175 /* See if we have anything to save. */
15176 ALL_BREAKPOINTS (tp)
15177 {
15178 /* Skip internal and momentary breakpoints. */
15179 if (!user_breakpoint_p (tp))
15180 continue;
15181
15182 /* If we have a filter, only save the breakpoints it accepts. */
15183 if (filter && !filter (tp))
15184 continue;
15185
15186 any = 1;
15187
15188 if (is_tracepoint (tp))
15189 {
15190 extra_trace_bits = 1;
15191
15192 /* We can stop searching. */
15193 break;
15194 }
15195 }
15196
15197 if (!any)
15198 {
15199 warning (_("Nothing to save."));
15200 return;
15201 }
15202
15203 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15204
15205 stdio_file fp;
15206
15207 if (!fp.open (expanded_filename.get (), "w"))
15208 error (_("Unable to open file '%s' for saving (%s)"),
15209 expanded_filename.get (), safe_strerror (errno));
15210
15211 if (extra_trace_bits)
15212 save_trace_state_variables (&fp);
15213
15214 ALL_BREAKPOINTS (tp)
15215 {
15216 /* Skip internal and momentary breakpoints. */
15217 if (!user_breakpoint_p (tp))
15218 continue;
15219
15220 /* If we have a filter, only save the breakpoints it accepts. */
15221 if (filter && !filter (tp))
15222 continue;
15223
15224 tp->ops->print_recreate (tp, &fp);
15225
15226 /* Note, we can't rely on tp->number for anything, as we can't
15227 assume the recreated breakpoint numbers will match. Use $bpnum
15228 instead. */
15229
15230 if (tp->cond_string)
15231 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15232
15233 if (tp->ignore_count)
15234 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15235
15236 if (tp->type != bp_dprintf && tp->commands)
15237 {
15238 fp.puts (" commands\n");
15239
15240 current_uiout->redirect (&fp);
15241 try
15242 {
15243 print_command_lines (current_uiout, tp->commands.get (), 2);
15244 }
15245 catch (const gdb_exception &ex)
15246 {
15247 current_uiout->redirect (NULL);
15248 throw;
15249 }
15250
15251 current_uiout->redirect (NULL);
15252 fp.puts (" end\n");
15253 }
15254
15255 if (tp->enable_state == bp_disabled)
15256 fp.puts ("disable $bpnum\n");
15257
15258 /* If this is a multi-location breakpoint, check if the locations
15259 should be individually disabled. Watchpoint locations are
15260 special, and not user visible. */
15261 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15262 {
15263 struct bp_location *loc;
15264 int n = 1;
15265
15266 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15267 if (!loc->enabled)
15268 fp.printf ("disable $bpnum.%d\n", n);
15269 }
15270 }
15271
15272 if (extra_trace_bits && *default_collect)
15273 fp.printf ("set default-collect %s\n", default_collect);
15274
15275 if (from_tty)
15276 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15277 }
15278
15279 /* The `save breakpoints' command. */
15280
15281 static void
15282 save_breakpoints_command (const char *args, int from_tty)
15283 {
15284 save_breakpoints (args, from_tty, NULL);
15285 }
15286
15287 /* The `save tracepoints' command. */
15288
15289 static void
15290 save_tracepoints_command (const char *args, int from_tty)
15291 {
15292 save_breakpoints (args, from_tty, is_tracepoint);
15293 }
15294
15295 /* Create a vector of all tracepoints. */
15296
15297 std::vector<breakpoint *>
15298 all_tracepoints (void)
15299 {
15300 std::vector<breakpoint *> tp_vec;
15301 struct breakpoint *tp;
15302
15303 ALL_TRACEPOINTS (tp)
15304 {
15305 tp_vec.push_back (tp);
15306 }
15307
15308 return tp_vec;
15309 }
15310
15311 \f
15312 /* This help string is used to consolidate all the help string for specifying
15313 locations used by several commands. */
15314
15315 #define LOCATION_HELP_STRING \
15316 "Linespecs are colon-separated lists of location parameters, such as\n\
15317 source filename, function name, label name, and line number.\n\
15318 Example: To specify the start of a label named \"the_top\" in the\n\
15319 function \"fact\" in the file \"factorial.c\", use\n\
15320 \"factorial.c:fact:the_top\".\n\
15321 \n\
15322 Address locations begin with \"*\" and specify an exact address in the\n\
15323 program. Example: To specify the fourth byte past the start function\n\
15324 \"main\", use \"*main + 4\".\n\
15325 \n\
15326 Explicit locations are similar to linespecs but use an option/argument\n\
15327 syntax to specify location parameters.\n\
15328 Example: To specify the start of the label named \"the_top\" in the\n\
15329 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15330 -function fact -label the_top\".\n\
15331 \n\
15332 By default, a specified function is matched against the program's\n\
15333 functions in all scopes. For C++, this means in all namespaces and\n\
15334 classes. For Ada, this means in all packages. E.g., in C++,\n\
15335 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15336 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15337 specified name as a complete fully-qualified name instead."
15338
15339 /* This help string is used for the break, hbreak, tbreak and thbreak
15340 commands. It is defined as a macro to prevent duplication.
15341 COMMAND should be a string constant containing the name of the
15342 command. */
15343
15344 #define BREAK_ARGS_HELP(command) \
15345 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM]\n\
15346 \t[-force-condition] [if CONDITION]\n\
15347 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15348 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15349 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15350 `-probe-dtrace' (for a DTrace probe).\n\
15351 LOCATION may be a linespec, address, or explicit location as described\n\
15352 below.\n\
15353 \n\
15354 With no LOCATION, uses current execution address of the selected\n\
15355 stack frame. This is useful for breaking on return to a stack frame.\n\
15356 \n\
15357 THREADNUM is the number from \"info threads\".\n\
15358 CONDITION is a boolean expression.\n\
15359 \n\
15360 With the \"-force-condition\" flag, the condition is defined even when\n\
15361 it is invalid for all current locations.\n\
15362 \n" LOCATION_HELP_STRING "\n\n\
15363 Multiple breakpoints at one place are permitted, and useful if their\n\
15364 conditions are different.\n\
15365 \n\
15366 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15367
15368 /* List of subcommands for "catch". */
15369 static struct cmd_list_element *catch_cmdlist;
15370
15371 /* List of subcommands for "tcatch". */
15372 static struct cmd_list_element *tcatch_cmdlist;
15373
15374 void
15375 add_catch_command (const char *name, const char *docstring,
15376 cmd_const_sfunc_ftype *sfunc,
15377 completer_ftype *completer,
15378 void *user_data_catch,
15379 void *user_data_tcatch)
15380 {
15381 struct cmd_list_element *command;
15382
15383 command = add_cmd (name, class_breakpoint, docstring,
15384 &catch_cmdlist);
15385 set_cmd_sfunc (command, sfunc);
15386 set_cmd_context (command, user_data_catch);
15387 set_cmd_completer (command, completer);
15388
15389 command = add_cmd (name, class_breakpoint, docstring,
15390 &tcatch_cmdlist);
15391 set_cmd_sfunc (command, sfunc);
15392 set_cmd_context (command, user_data_tcatch);
15393 set_cmd_completer (command, completer);
15394 }
15395
15396 struct breakpoint *
15397 iterate_over_breakpoints (gdb::function_view<bool (breakpoint *)> callback)
15398 {
15399 struct breakpoint *b, *b_tmp;
15400
15401 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15402 {
15403 if (callback (b))
15404 return b;
15405 }
15406
15407 return NULL;
15408 }
15409
15410 /* Zero if any of the breakpoint's locations could be a location where
15411 functions have been inlined, nonzero otherwise. */
15412
15413 static int
15414 is_non_inline_function (struct breakpoint *b)
15415 {
15416 /* The shared library event breakpoint is set on the address of a
15417 non-inline function. */
15418 if (b->type == bp_shlib_event)
15419 return 1;
15420
15421 return 0;
15422 }
15423
15424 /* Nonzero if the specified PC cannot be a location where functions
15425 have been inlined. */
15426
15427 int
15428 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15429 const struct target_waitstatus *ws)
15430 {
15431 struct breakpoint *b;
15432 struct bp_location *bl;
15433
15434 ALL_BREAKPOINTS (b)
15435 {
15436 if (!is_non_inline_function (b))
15437 continue;
15438
15439 for (bl = b->loc; bl != NULL; bl = bl->next)
15440 {
15441 if (!bl->shlib_disabled
15442 && bpstat_check_location (bl, aspace, pc, ws))
15443 return 1;
15444 }
15445 }
15446
15447 return 0;
15448 }
15449
15450 /* Remove any references to OBJFILE which is going to be freed. */
15451
15452 void
15453 breakpoint_free_objfile (struct objfile *objfile)
15454 {
15455 struct bp_location **locp, *loc;
15456
15457 ALL_BP_LOCATIONS (loc, locp)
15458 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15459 loc->symtab = NULL;
15460 }
15461
15462 void
15463 initialize_breakpoint_ops (void)
15464 {
15465 static int initialized = 0;
15466
15467 struct breakpoint_ops *ops;
15468
15469 if (initialized)
15470 return;
15471 initialized = 1;
15472
15473 /* The breakpoint_ops structure to be inherit by all kinds of
15474 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15475 internal and momentary breakpoints, etc.). */
15476 ops = &bkpt_base_breakpoint_ops;
15477 *ops = base_breakpoint_ops;
15478 ops->re_set = bkpt_re_set;
15479 ops->insert_location = bkpt_insert_location;
15480 ops->remove_location = bkpt_remove_location;
15481 ops->breakpoint_hit = bkpt_breakpoint_hit;
15482 ops->create_sals_from_location = bkpt_create_sals_from_location;
15483 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15484 ops->decode_location = bkpt_decode_location;
15485
15486 /* The breakpoint_ops structure to be used in regular breakpoints. */
15487 ops = &bkpt_breakpoint_ops;
15488 *ops = bkpt_base_breakpoint_ops;
15489 ops->re_set = bkpt_re_set;
15490 ops->resources_needed = bkpt_resources_needed;
15491 ops->print_it = bkpt_print_it;
15492 ops->print_mention = bkpt_print_mention;
15493 ops->print_recreate = bkpt_print_recreate;
15494
15495 /* Ranged breakpoints. */
15496 ops = &ranged_breakpoint_ops;
15497 *ops = bkpt_breakpoint_ops;
15498 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15499 ops->resources_needed = resources_needed_ranged_breakpoint;
15500 ops->print_it = print_it_ranged_breakpoint;
15501 ops->print_one = print_one_ranged_breakpoint;
15502 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15503 ops->print_mention = print_mention_ranged_breakpoint;
15504 ops->print_recreate = print_recreate_ranged_breakpoint;
15505
15506 /* Internal breakpoints. */
15507 ops = &internal_breakpoint_ops;
15508 *ops = bkpt_base_breakpoint_ops;
15509 ops->re_set = internal_bkpt_re_set;
15510 ops->check_status = internal_bkpt_check_status;
15511 ops->print_it = internal_bkpt_print_it;
15512 ops->print_mention = internal_bkpt_print_mention;
15513
15514 /* Momentary breakpoints. */
15515 ops = &momentary_breakpoint_ops;
15516 *ops = bkpt_base_breakpoint_ops;
15517 ops->re_set = momentary_bkpt_re_set;
15518 ops->check_status = momentary_bkpt_check_status;
15519 ops->print_it = momentary_bkpt_print_it;
15520 ops->print_mention = momentary_bkpt_print_mention;
15521
15522 /* Probe breakpoints. */
15523 ops = &bkpt_probe_breakpoint_ops;
15524 *ops = bkpt_breakpoint_ops;
15525 ops->insert_location = bkpt_probe_insert_location;
15526 ops->remove_location = bkpt_probe_remove_location;
15527 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15528 ops->decode_location = bkpt_probe_decode_location;
15529
15530 /* Watchpoints. */
15531 ops = &watchpoint_breakpoint_ops;
15532 *ops = base_breakpoint_ops;
15533 ops->re_set = re_set_watchpoint;
15534 ops->insert_location = insert_watchpoint;
15535 ops->remove_location = remove_watchpoint;
15536 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15537 ops->check_status = check_status_watchpoint;
15538 ops->resources_needed = resources_needed_watchpoint;
15539 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15540 ops->print_it = print_it_watchpoint;
15541 ops->print_mention = print_mention_watchpoint;
15542 ops->print_recreate = print_recreate_watchpoint;
15543 ops->explains_signal = explains_signal_watchpoint;
15544
15545 /* Masked watchpoints. */
15546 ops = &masked_watchpoint_breakpoint_ops;
15547 *ops = watchpoint_breakpoint_ops;
15548 ops->insert_location = insert_masked_watchpoint;
15549 ops->remove_location = remove_masked_watchpoint;
15550 ops->resources_needed = resources_needed_masked_watchpoint;
15551 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15552 ops->print_it = print_it_masked_watchpoint;
15553 ops->print_one_detail = print_one_detail_masked_watchpoint;
15554 ops->print_mention = print_mention_masked_watchpoint;
15555 ops->print_recreate = print_recreate_masked_watchpoint;
15556
15557 /* Tracepoints. */
15558 ops = &tracepoint_breakpoint_ops;
15559 *ops = base_breakpoint_ops;
15560 ops->re_set = tracepoint_re_set;
15561 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15562 ops->print_one_detail = tracepoint_print_one_detail;
15563 ops->print_mention = tracepoint_print_mention;
15564 ops->print_recreate = tracepoint_print_recreate;
15565 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15566 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15567 ops->decode_location = tracepoint_decode_location;
15568
15569 /* Probe tracepoints. */
15570 ops = &tracepoint_probe_breakpoint_ops;
15571 *ops = tracepoint_breakpoint_ops;
15572 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15573 ops->decode_location = tracepoint_probe_decode_location;
15574
15575 /* Static tracepoints with marker (`-m'). */
15576 ops = &strace_marker_breakpoint_ops;
15577 *ops = tracepoint_breakpoint_ops;
15578 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15579 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15580 ops->decode_location = strace_marker_decode_location;
15581
15582 /* Fork catchpoints. */
15583 ops = &catch_fork_breakpoint_ops;
15584 *ops = base_breakpoint_ops;
15585 ops->insert_location = insert_catch_fork;
15586 ops->remove_location = remove_catch_fork;
15587 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15588 ops->print_it = print_it_catch_fork;
15589 ops->print_one = print_one_catch_fork;
15590 ops->print_mention = print_mention_catch_fork;
15591 ops->print_recreate = print_recreate_catch_fork;
15592
15593 /* Vfork catchpoints. */
15594 ops = &catch_vfork_breakpoint_ops;
15595 *ops = base_breakpoint_ops;
15596 ops->insert_location = insert_catch_vfork;
15597 ops->remove_location = remove_catch_vfork;
15598 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15599 ops->print_it = print_it_catch_vfork;
15600 ops->print_one = print_one_catch_vfork;
15601 ops->print_mention = print_mention_catch_vfork;
15602 ops->print_recreate = print_recreate_catch_vfork;
15603
15604 /* Exec catchpoints. */
15605 ops = &catch_exec_breakpoint_ops;
15606 *ops = base_breakpoint_ops;
15607 ops->insert_location = insert_catch_exec;
15608 ops->remove_location = remove_catch_exec;
15609 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15610 ops->print_it = print_it_catch_exec;
15611 ops->print_one = print_one_catch_exec;
15612 ops->print_mention = print_mention_catch_exec;
15613 ops->print_recreate = print_recreate_catch_exec;
15614
15615 /* Solib-related catchpoints. */
15616 ops = &catch_solib_breakpoint_ops;
15617 *ops = base_breakpoint_ops;
15618 ops->insert_location = insert_catch_solib;
15619 ops->remove_location = remove_catch_solib;
15620 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15621 ops->check_status = check_status_catch_solib;
15622 ops->print_it = print_it_catch_solib;
15623 ops->print_one = print_one_catch_solib;
15624 ops->print_mention = print_mention_catch_solib;
15625 ops->print_recreate = print_recreate_catch_solib;
15626
15627 ops = &dprintf_breakpoint_ops;
15628 *ops = bkpt_base_breakpoint_ops;
15629 ops->re_set = dprintf_re_set;
15630 ops->resources_needed = bkpt_resources_needed;
15631 ops->print_it = bkpt_print_it;
15632 ops->print_mention = bkpt_print_mention;
15633 ops->print_recreate = dprintf_print_recreate;
15634 ops->after_condition_true = dprintf_after_condition_true;
15635 ops->breakpoint_hit = dprintf_breakpoint_hit;
15636 }
15637
15638 /* Chain containing all defined "enable breakpoint" subcommands. */
15639
15640 static struct cmd_list_element *enablebreaklist = NULL;
15641
15642 /* See breakpoint.h. */
15643
15644 cmd_list_element *commands_cmd_element = nullptr;
15645
15646 void _initialize_breakpoint ();
15647 void
15648 _initialize_breakpoint ()
15649 {
15650 struct cmd_list_element *c;
15651
15652 initialize_breakpoint_ops ();
15653
15654 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15655 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15656 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15657
15658 breakpoint_chain = 0;
15659 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15660 before a breakpoint is set. */
15661 breakpoint_count = 0;
15662
15663 tracepoint_count = 0;
15664
15665 add_com ("ignore", class_breakpoint, ignore_command, _("\
15666 Set ignore-count of breakpoint number N to COUNT.\n\
15667 Usage is `ignore N COUNT'."));
15668
15669 commands_cmd_element = add_com ("commands", class_breakpoint,
15670 commands_command, _("\
15671 Set commands to be executed when the given breakpoints are hit.\n\
15672 Give a space-separated breakpoint list as argument after \"commands\".\n\
15673 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15674 (e.g. `5-7').\n\
15675 With no argument, the targeted breakpoint is the last one set.\n\
15676 The commands themselves follow starting on the next line.\n\
15677 Type a line containing \"end\" to indicate the end of them.\n\
15678 Give \"silent\" as the first line to make the breakpoint silent;\n\
15679 then no output is printed when it is hit, except what the commands print."));
15680
15681 const auto cc_opts = make_condition_command_options_def_group (nullptr);
15682 static std::string condition_command_help
15683 = gdb::option::build_help (_("\
15684 Specify breakpoint number N to break only if COND is true.\n\
15685 Usage is `condition [OPTION] N COND', where N is an integer and COND\n\
15686 is an expression to be evaluated whenever breakpoint N is reached.\n\
15687 \n\
15688 Options:\n\
15689 %OPTIONS%"), cc_opts);
15690
15691 c = add_com ("condition", class_breakpoint, condition_command,
15692 condition_command_help.c_str ());
15693 set_cmd_completer_handle_brkchars (c, condition_completer);
15694
15695 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15696 Set a temporary breakpoint.\n\
15697 Like \"break\" except the breakpoint is only temporary,\n\
15698 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15699 by using \"enable delete\" on the breakpoint number.\n\
15700 \n"
15701 BREAK_ARGS_HELP ("tbreak")));
15702 set_cmd_completer (c, location_completer);
15703
15704 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15705 Set a hardware assisted breakpoint.\n\
15706 Like \"break\" except the breakpoint requires hardware support,\n\
15707 some target hardware may not have this support.\n\
15708 \n"
15709 BREAK_ARGS_HELP ("hbreak")));
15710 set_cmd_completer (c, location_completer);
15711
15712 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15713 Set a temporary hardware assisted breakpoint.\n\
15714 Like \"hbreak\" except the breakpoint is only temporary,\n\
15715 so it will be deleted when hit.\n\
15716 \n"
15717 BREAK_ARGS_HELP ("thbreak")));
15718 set_cmd_completer (c, location_completer);
15719
15720 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15721 Enable all or some breakpoints.\n\
15722 Usage: enable [BREAKPOINTNUM]...\n\
15723 Give breakpoint numbers (separated by spaces) as arguments.\n\
15724 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15725 This is used to cancel the effect of the \"disable\" command.\n\
15726 With a subcommand you can enable temporarily."),
15727 &enablelist, "enable ", 1, &cmdlist);
15728
15729 add_com_alias ("en", "enable", class_breakpoint, 1);
15730
15731 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15732 Enable all or some breakpoints.\n\
15733 Usage: enable breakpoints [BREAKPOINTNUM]...\n\
15734 Give breakpoint numbers (separated by spaces) as arguments.\n\
15735 This is used to cancel the effect of the \"disable\" command.\n\
15736 May be abbreviated to simply \"enable\"."),
15737 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15738
15739 add_cmd ("once", no_class, enable_once_command, _("\
15740 Enable some breakpoints for one hit.\n\
15741 Usage: enable breakpoints once BREAKPOINTNUM...\n\
15742 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15743 &enablebreaklist);
15744
15745 add_cmd ("delete", no_class, enable_delete_command, _("\
15746 Enable some breakpoints and delete when hit.\n\
15747 Usage: enable breakpoints delete BREAKPOINTNUM...\n\
15748 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15749 &enablebreaklist);
15750
15751 add_cmd ("count", no_class, enable_count_command, _("\
15752 Enable some breakpoints for COUNT hits.\n\
15753 Usage: enable breakpoints count COUNT BREAKPOINTNUM...\n\
15754 If a breakpoint is hit while enabled in this fashion,\n\
15755 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15756 &enablebreaklist);
15757
15758 add_cmd ("delete", no_class, enable_delete_command, _("\
15759 Enable some breakpoints and delete when hit.\n\
15760 Usage: enable delete BREAKPOINTNUM...\n\
15761 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15762 &enablelist);
15763
15764 add_cmd ("once", no_class, enable_once_command, _("\
15765 Enable some breakpoints for one hit.\n\
15766 Usage: enable once BREAKPOINTNUM...\n\
15767 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15768 &enablelist);
15769
15770 add_cmd ("count", no_class, enable_count_command, _("\
15771 Enable some breakpoints for COUNT hits.\n\
15772 Usage: enable count COUNT BREAKPOINTNUM...\n\
15773 If a breakpoint is hit while enabled in this fashion,\n\
15774 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15775 &enablelist);
15776
15777 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15778 Disable all or some breakpoints.\n\
15779 Usage: disable [BREAKPOINTNUM]...\n\
15780 Arguments are breakpoint numbers with spaces in between.\n\
15781 To disable all breakpoints, give no argument.\n\
15782 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15783 &disablelist, "disable ", 1, &cmdlist);
15784 add_com_alias ("dis", "disable", class_breakpoint, 1);
15785 add_com_alias ("disa", "disable", class_breakpoint, 1);
15786
15787 add_cmd ("breakpoints", class_breakpoint, disable_command, _("\
15788 Disable all or some breakpoints.\n\
15789 Usage: disable breakpoints [BREAKPOINTNUM]...\n\
15790 Arguments are breakpoint numbers with spaces in between.\n\
15791 To disable all breakpoints, give no argument.\n\
15792 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15793 This command may be abbreviated \"disable\"."),
15794 &disablelist);
15795
15796 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15797 Delete all or some breakpoints.\n\
15798 Usage: delete [BREAKPOINTNUM]...\n\
15799 Arguments are breakpoint numbers with spaces in between.\n\
15800 To delete all breakpoints, give no argument.\n\
15801 \n\
15802 Also a prefix command for deletion of other GDB objects."),
15803 &deletelist, "delete ", 1, &cmdlist);
15804 add_com_alias ("d", "delete", class_breakpoint, 1);
15805 add_com_alias ("del", "delete", class_breakpoint, 1);
15806
15807 add_cmd ("breakpoints", class_breakpoint, delete_command, _("\
15808 Delete all or some breakpoints or auto-display expressions.\n\
15809 Usage: delete breakpoints [BREAKPOINTNUM]...\n\
15810 Arguments are breakpoint numbers with spaces in between.\n\
15811 To delete all breakpoints, give no argument.\n\
15812 This command may be abbreviated \"delete\"."),
15813 &deletelist);
15814
15815 add_com ("clear", class_breakpoint, clear_command, _("\
15816 Clear breakpoint at specified location.\n\
15817 Argument may be a linespec, explicit, or address location as described below.\n\
15818 \n\
15819 With no argument, clears all breakpoints in the line that the selected frame\n\
15820 is executing in.\n"
15821 "\n" LOCATION_HELP_STRING "\n\n\
15822 See also the \"delete\" command which clears breakpoints by number."));
15823 add_com_alias ("cl", "clear", class_breakpoint, 1);
15824
15825 c = add_com ("break", class_breakpoint, break_command, _("\
15826 Set breakpoint at specified location.\n"
15827 BREAK_ARGS_HELP ("break")));
15828 set_cmd_completer (c, location_completer);
15829
15830 add_com_alias ("b", "break", class_run, 1);
15831 add_com_alias ("br", "break", class_run, 1);
15832 add_com_alias ("bre", "break", class_run, 1);
15833 add_com_alias ("brea", "break", class_run, 1);
15834
15835 if (dbx_commands)
15836 {
15837 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15838 Break in function/address or break at a line in the current file."),
15839 &stoplist, "stop ", 1, &cmdlist);
15840 add_cmd ("in", class_breakpoint, stopin_command,
15841 _("Break in function or address."), &stoplist);
15842 add_cmd ("at", class_breakpoint, stopat_command,
15843 _("Break at a line in the current file."), &stoplist);
15844 add_com ("status", class_info, info_breakpoints_command, _("\
15845 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15846 The \"Type\" column indicates one of:\n\
15847 \tbreakpoint - normal breakpoint\n\
15848 \twatchpoint - watchpoint\n\
15849 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15850 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15851 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15852 address and file/line number respectively.\n\
15853 \n\
15854 Convenience variable \"$_\" and default examine address for \"x\"\n\
15855 are set to the address of the last breakpoint listed unless the command\n\
15856 is prefixed with \"server \".\n\n\
15857 Convenience variable \"$bpnum\" contains the number of the last\n\
15858 breakpoint set."));
15859 }
15860
15861 add_info ("breakpoints", info_breakpoints_command, _("\
15862 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15863 The \"Type\" column indicates one of:\n\
15864 \tbreakpoint - normal breakpoint\n\
15865 \twatchpoint - watchpoint\n\
15866 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15867 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15868 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15869 address and file/line number respectively.\n\
15870 \n\
15871 Convenience variable \"$_\" and default examine address for \"x\"\n\
15872 are set to the address of the last breakpoint listed unless the command\n\
15873 is prefixed with \"server \".\n\n\
15874 Convenience variable \"$bpnum\" contains the number of the last\n\
15875 breakpoint set."));
15876
15877 add_info_alias ("b", "breakpoints", 1);
15878
15879 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15880 Status of all breakpoints, or breakpoint number NUMBER.\n\
15881 The \"Type\" column indicates one of:\n\
15882 \tbreakpoint - normal breakpoint\n\
15883 \twatchpoint - watchpoint\n\
15884 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15885 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15886 \tuntil - internal breakpoint used by the \"until\" command\n\
15887 \tfinish - internal breakpoint used by the \"finish\" command\n\
15888 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15889 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15890 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15891 address and file/line number respectively.\n\
15892 \n\
15893 Convenience variable \"$_\" and default examine address for \"x\"\n\
15894 are set to the address of the last breakpoint listed unless the command\n\
15895 is prefixed with \"server \".\n\n\
15896 Convenience variable \"$bpnum\" contains the number of the last\n\
15897 breakpoint set."),
15898 &maintenanceinfolist);
15899
15900 add_basic_prefix_cmd ("catch", class_breakpoint, _("\
15901 Set catchpoints to catch events."),
15902 &catch_cmdlist, "catch ",
15903 0/*allow-unknown*/, &cmdlist);
15904
15905 add_basic_prefix_cmd ("tcatch", class_breakpoint, _("\
15906 Set temporary catchpoints to catch events."),
15907 &tcatch_cmdlist, "tcatch ",
15908 0/*allow-unknown*/, &cmdlist);
15909
15910 add_catch_command ("fork", _("Catch calls to fork."),
15911 catch_fork_command_1,
15912 NULL,
15913 (void *) (uintptr_t) catch_fork_permanent,
15914 (void *) (uintptr_t) catch_fork_temporary);
15915 add_catch_command ("vfork", _("Catch calls to vfork."),
15916 catch_fork_command_1,
15917 NULL,
15918 (void *) (uintptr_t) catch_vfork_permanent,
15919 (void *) (uintptr_t) catch_vfork_temporary);
15920 add_catch_command ("exec", _("Catch calls to exec."),
15921 catch_exec_command_1,
15922 NULL,
15923 CATCH_PERMANENT,
15924 CATCH_TEMPORARY);
15925 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15926 Usage: catch load [REGEX]\n\
15927 If REGEX is given, only stop for libraries matching the regular expression."),
15928 catch_load_command_1,
15929 NULL,
15930 CATCH_PERMANENT,
15931 CATCH_TEMPORARY);
15932 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15933 Usage: catch unload [REGEX]\n\
15934 If REGEX is given, only stop for libraries matching the regular expression."),
15935 catch_unload_command_1,
15936 NULL,
15937 CATCH_PERMANENT,
15938 CATCH_TEMPORARY);
15939
15940 const auto opts = make_watch_options_def_group (nullptr);
15941
15942 static const std::string watch_help = gdb::option::build_help (_("\
15943 Set a watchpoint for EXPRESSION.\n\
15944 Usage: watch [-location] EXPRESSION\n\
15945 \n\
15946 Options:\n\
15947 %OPTIONS%\n\
15948 \n\
15949 A watchpoint stops execution of your program whenever the value of\n\
15950 an expression changes."), opts);
15951 c = add_com ("watch", class_breakpoint, watch_command,
15952 watch_help.c_str ());
15953 set_cmd_completer_handle_brkchars (c, watch_command_completer);
15954
15955 static const std::string rwatch_help = gdb::option::build_help (_("\
15956 Set a read watchpoint for EXPRESSION.\n\
15957 Usage: rwatch [-location] EXPRESSION\n\
15958 \n\
15959 Options:\n\
15960 %OPTIONS%\n\
15961 \n\
15962 A read watchpoint stops execution of your program whenever the value of\n\
15963 an expression is read."), opts);
15964 c = add_com ("rwatch", class_breakpoint, rwatch_command,
15965 rwatch_help.c_str ());
15966 set_cmd_completer_handle_brkchars (c, watch_command_completer);
15967
15968 static const std::string awatch_help = gdb::option::build_help (_("\
15969 Set an access watchpoint for EXPRESSION.\n\
15970 Usage: awatch [-location] EXPRESSION\n\
15971 \n\
15972 Options:\n\
15973 %OPTIONS%\n\
15974 \n\
15975 An access watchpoint stops execution of your program whenever the value\n\
15976 of an expression is either read or written."), opts);
15977 c = add_com ("awatch", class_breakpoint, awatch_command,
15978 awatch_help.c_str ());
15979 set_cmd_completer_handle_brkchars (c, watch_command_completer);
15980
15981 add_info ("watchpoints", info_watchpoints_command, _("\
15982 Status of specified watchpoints (all watchpoints if no argument)."));
15983
15984 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15985 respond to changes - contrary to the description. */
15986 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15987 &can_use_hw_watchpoints, _("\
15988 Set debugger's willingness to use watchpoint hardware."), _("\
15989 Show debugger's willingness to use watchpoint hardware."), _("\
15990 If zero, gdb will not use hardware for new watchpoints, even if\n\
15991 such is available. (However, any hardware watchpoints that were\n\
15992 created before setting this to nonzero, will continue to use watchpoint\n\
15993 hardware.)"),
15994 NULL,
15995 show_can_use_hw_watchpoints,
15996 &setlist, &showlist);
15997
15998 can_use_hw_watchpoints = 1;
15999
16000 /* Tracepoint manipulation commands. */
16001
16002 c = add_com ("trace", class_breakpoint, trace_command, _("\
16003 Set a tracepoint at specified location.\n\
16004 \n"
16005 BREAK_ARGS_HELP ("trace") "\n\
16006 Do \"help tracepoints\" for info on other tracepoint commands."));
16007 set_cmd_completer (c, location_completer);
16008
16009 add_com_alias ("tp", "trace", class_breakpoint, 0);
16010 add_com_alias ("tr", "trace", class_breakpoint, 1);
16011 add_com_alias ("tra", "trace", class_breakpoint, 1);
16012 add_com_alias ("trac", "trace", class_breakpoint, 1);
16013
16014 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16015 Set a fast tracepoint at specified location.\n\
16016 \n"
16017 BREAK_ARGS_HELP ("ftrace") "\n\
16018 Do \"help tracepoints\" for info on other tracepoint commands."));
16019 set_cmd_completer (c, location_completer);
16020
16021 c = add_com ("strace", class_breakpoint, strace_command, _("\
16022 Set a static tracepoint at location or marker.\n\
16023 \n\
16024 strace [LOCATION] [if CONDITION]\n\
16025 LOCATION may be a linespec, explicit, or address location (described below) \n\
16026 or -m MARKER_ID.\n\n\
16027 If a marker id is specified, probe the marker with that name. With\n\
16028 no LOCATION, uses current execution address of the selected stack frame.\n\
16029 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16030 This collects arbitrary user data passed in the probe point call to the\n\
16031 tracing library. You can inspect it when analyzing the trace buffer,\n\
16032 by printing the $_sdata variable like any other convenience variable.\n\
16033 \n\
16034 CONDITION is a boolean expression.\n\
16035 \n" LOCATION_HELP_STRING "\n\n\
16036 Multiple tracepoints at one place are permitted, and useful if their\n\
16037 conditions are different.\n\
16038 \n\
16039 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16040 Do \"help tracepoints\" for info on other tracepoint commands."));
16041 set_cmd_completer (c, location_completer);
16042
16043 add_info ("tracepoints", info_tracepoints_command, _("\
16044 Status of specified tracepoints (all tracepoints if no argument).\n\
16045 Convenience variable \"$tpnum\" contains the number of the\n\
16046 last tracepoint set."));
16047
16048 add_info_alias ("tp", "tracepoints", 1);
16049
16050 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16051 Delete specified tracepoints.\n\
16052 Arguments are tracepoint numbers, separated by spaces.\n\
16053 No argument means delete all tracepoints."),
16054 &deletelist);
16055 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16056
16057 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16058 Disable specified tracepoints.\n\
16059 Arguments are tracepoint numbers, separated by spaces.\n\
16060 No argument means disable all tracepoints."),
16061 &disablelist);
16062 deprecate_cmd (c, "disable");
16063
16064 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16065 Enable specified tracepoints.\n\
16066 Arguments are tracepoint numbers, separated by spaces.\n\
16067 No argument means enable all tracepoints."),
16068 &enablelist);
16069 deprecate_cmd (c, "enable");
16070
16071 add_com ("passcount", class_trace, trace_pass_command, _("\
16072 Set the passcount for a tracepoint.\n\
16073 The trace will end when the tracepoint has been passed 'count' times.\n\
16074 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16075 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16076
16077 add_basic_prefix_cmd ("save", class_breakpoint,
16078 _("Save breakpoint definitions as a script."),
16079 &save_cmdlist, "save ",
16080 0/*allow-unknown*/, &cmdlist);
16081
16082 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16083 Save current breakpoint definitions as a script.\n\
16084 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16085 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16086 session to restore them."),
16087 &save_cmdlist);
16088 set_cmd_completer (c, filename_completer);
16089
16090 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16091 Save current tracepoint definitions as a script.\n\
16092 Use the 'source' command in another debug session to restore them."),
16093 &save_cmdlist);
16094 set_cmd_completer (c, filename_completer);
16095
16096 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16097 deprecate_cmd (c, "save tracepoints");
16098
16099 add_basic_prefix_cmd ("breakpoint", class_maintenance, _("\
16100 Breakpoint specific settings.\n\
16101 Configure various breakpoint-specific variables such as\n\
16102 pending breakpoint behavior."),
16103 &breakpoint_set_cmdlist, "set breakpoint ",
16104 0/*allow-unknown*/, &setlist);
16105 add_show_prefix_cmd ("breakpoint", class_maintenance, _("\
16106 Breakpoint specific settings.\n\
16107 Configure various breakpoint-specific variables such as\n\
16108 pending breakpoint behavior."),
16109 &breakpoint_show_cmdlist, "show breakpoint ",
16110 0/*allow-unknown*/, &showlist);
16111
16112 add_setshow_auto_boolean_cmd ("pending", no_class,
16113 &pending_break_support, _("\
16114 Set debugger's behavior regarding pending breakpoints."), _("\
16115 Show debugger's behavior regarding pending breakpoints."), _("\
16116 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16117 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16118 an error. If auto, an unrecognized breakpoint location results in a\n\
16119 user-query to see if a pending breakpoint should be created."),
16120 NULL,
16121 show_pending_break_support,
16122 &breakpoint_set_cmdlist,
16123 &breakpoint_show_cmdlist);
16124
16125 pending_break_support = AUTO_BOOLEAN_AUTO;
16126
16127 add_setshow_boolean_cmd ("auto-hw", no_class,
16128 &automatic_hardware_breakpoints, _("\
16129 Set automatic usage of hardware breakpoints."), _("\
16130 Show automatic usage of hardware breakpoints."), _("\
16131 If set, the debugger will automatically use hardware breakpoints for\n\
16132 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16133 a warning will be emitted for such breakpoints."),
16134 NULL,
16135 show_automatic_hardware_breakpoints,
16136 &breakpoint_set_cmdlist,
16137 &breakpoint_show_cmdlist);
16138
16139 add_setshow_boolean_cmd ("always-inserted", class_support,
16140 &always_inserted_mode, _("\
16141 Set mode for inserting breakpoints."), _("\
16142 Show mode for inserting breakpoints."), _("\
16143 When this mode is on, breakpoints are inserted immediately as soon as\n\
16144 they're created, kept inserted even when execution stops, and removed\n\
16145 only when the user deletes them. When this mode is off (the default),\n\
16146 breakpoints are inserted only when execution continues, and removed\n\
16147 when execution stops."),
16148 NULL,
16149 &show_always_inserted_mode,
16150 &breakpoint_set_cmdlist,
16151 &breakpoint_show_cmdlist);
16152
16153 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16154 condition_evaluation_enums,
16155 &condition_evaluation_mode_1, _("\
16156 Set mode of breakpoint condition evaluation."), _("\
16157 Show mode of breakpoint condition evaluation."), _("\
16158 When this is set to \"host\", breakpoint conditions will be\n\
16159 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16160 breakpoint conditions will be downloaded to the target (if the target\n\
16161 supports such feature) and conditions will be evaluated on the target's side.\n\
16162 If this is set to \"auto\" (default), this will be automatically set to\n\
16163 \"target\" if it supports condition evaluation, otherwise it will\n\
16164 be set to \"host\"."),
16165 &set_condition_evaluation_mode,
16166 &show_condition_evaluation_mode,
16167 &breakpoint_set_cmdlist,
16168 &breakpoint_show_cmdlist);
16169
16170 add_com ("break-range", class_breakpoint, break_range_command, _("\
16171 Set a breakpoint for an address range.\n\
16172 break-range START-LOCATION, END-LOCATION\n\
16173 where START-LOCATION and END-LOCATION can be one of the following:\n\
16174 LINENUM, for that line in the current file,\n\
16175 FILE:LINENUM, for that line in that file,\n\
16176 +OFFSET, for that number of lines after the current line\n\
16177 or the start of the range\n\
16178 FUNCTION, for the first line in that function,\n\
16179 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16180 *ADDRESS, for the instruction at that address.\n\
16181 \n\
16182 The breakpoint will stop execution of the inferior whenever it executes\n\
16183 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16184 range (including START-LOCATION and END-LOCATION)."));
16185
16186 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16187 Set a dynamic printf at specified location.\n\
16188 dprintf location,format string,arg1,arg2,...\n\
16189 location may be a linespec, explicit, or address location.\n"
16190 "\n" LOCATION_HELP_STRING));
16191 set_cmd_completer (c, location_completer);
16192
16193 add_setshow_enum_cmd ("dprintf-style", class_support,
16194 dprintf_style_enums, &dprintf_style, _("\
16195 Set the style of usage for dynamic printf."), _("\
16196 Show the style of usage for dynamic printf."), _("\
16197 This setting chooses how GDB will do a dynamic printf.\n\
16198 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16199 console, as with the \"printf\" command.\n\
16200 If the value is \"call\", the print is done by calling a function in your\n\
16201 program; by default printf(), but you can choose a different function or\n\
16202 output stream by setting dprintf-function and dprintf-channel."),
16203 update_dprintf_commands, NULL,
16204 &setlist, &showlist);
16205
16206 dprintf_function = xstrdup ("printf");
16207 add_setshow_string_cmd ("dprintf-function", class_support,
16208 &dprintf_function, _("\
16209 Set the function to use for dynamic printf."), _("\
16210 Show the function to use for dynamic printf."), NULL,
16211 update_dprintf_commands, NULL,
16212 &setlist, &showlist);
16213
16214 dprintf_channel = xstrdup ("");
16215 add_setshow_string_cmd ("dprintf-channel", class_support,
16216 &dprintf_channel, _("\
16217 Set the channel to use for dynamic printf."), _("\
16218 Show the channel to use for dynamic printf."), NULL,
16219 update_dprintf_commands, NULL,
16220 &setlist, &showlist);
16221
16222 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16223 &disconnected_dprintf, _("\
16224 Set whether dprintf continues after GDB disconnects."), _("\
16225 Show whether dprintf continues after GDB disconnects."), _("\
16226 Use this to let dprintf commands continue to hit and produce output\n\
16227 even if GDB disconnects or detaches from the target."),
16228 NULL,
16229 NULL,
16230 &setlist, &showlist);
16231
16232 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16233 Target agent only formatted printing, like the C \"printf\" function.\n\
16234 Usage: agent-printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
16235 This supports most C printf format specifications, like %s, %d, etc.\n\
16236 This is useful for formatted output in user-defined commands."));
16237
16238 automatic_hardware_breakpoints = true;
16239
16240 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16241 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16242 }