PR gdb/11568 - delete thread-specific breakpoints on thread exit
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131 static void clear_command (char *, int);
132
133 static void catch_command (char *, int);
134
135 static int can_use_hardware_watchpoint (struct value *);
136
137 static void break_command_1 (char *, int, int);
138
139 static void mention (struct breakpoint *);
140
141 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147 /* This function is used in gdbtk sources and thus can not be made
148 static. */
149 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154 static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int breakpoint_address_match (struct address_space *aspace1,
170 CORE_ADDR addr1,
171 struct address_space *aspace2,
172 CORE_ADDR addr2);
173
174 static int watchpoint_locations_match (struct bp_location *loc1,
175 struct bp_location *loc2);
176
177 static int breakpoint_location_address_match (struct bp_location *bl,
178 struct address_space *aspace,
179 CORE_ADDR addr);
180
181 static void breakpoints_info (char *, int);
182
183 static void watchpoints_info (char *, int);
184
185 static int breakpoint_1 (char *, int,
186 int (*) (const struct breakpoint *));
187
188 static int breakpoint_cond_eval (void *);
189
190 static void cleanup_executing_breakpoints (void *);
191
192 static void commands_command (char *, int);
193
194 static void condition_command (char *, int);
195
196 typedef enum
197 {
198 mark_inserted,
199 mark_uninserted
200 }
201 insertion_state_t;
202
203 static int remove_breakpoint (struct bp_location *, insertion_state_t);
204 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
205
206 static enum print_stop_action print_bp_stop_message (bpstat bs);
207
208 static int watchpoint_check (void *);
209
210 static void maintenance_info_breakpoints (char *, int);
211
212 static int hw_breakpoint_used_count (void);
213
214 static int hw_watchpoint_use_count (struct breakpoint *);
215
216 static int hw_watchpoint_used_count_others (struct breakpoint *except,
217 enum bptype type,
218 int *other_type_used);
219
220 static void hbreak_command (char *, int);
221
222 static void thbreak_command (char *, int);
223
224 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
225 int count);
226
227 static void stop_command (char *arg, int from_tty);
228
229 static void stopin_command (char *arg, int from_tty);
230
231 static void stopat_command (char *arg, int from_tty);
232
233 static void tcatch_command (char *arg, int from_tty);
234
235 static void detach_single_step_breakpoints (void);
236
237 static int single_step_breakpoint_inserted_here_p (struct address_space *,
238 CORE_ADDR pc);
239
240 static void free_bp_location (struct bp_location *loc);
241 static void incref_bp_location (struct bp_location *loc);
242 static void decref_bp_location (struct bp_location **loc);
243
244 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
245
246 static void update_global_location_list (int);
247
248 static void update_global_location_list_nothrow (int);
249
250 static int is_hardware_watchpoint (const struct breakpoint *bpt);
251
252 static void insert_breakpoint_locations (void);
253
254 static int syscall_catchpoint_p (struct breakpoint *b);
255
256 static void tracepoints_info (char *, int);
257
258 static void delete_trace_command (char *, int);
259
260 static void enable_trace_command (char *, int);
261
262 static void disable_trace_command (char *, int);
263
264 static void trace_pass_command (char *, int);
265
266 static void set_tracepoint_count (int num);
267
268 static int is_masked_watchpoint (const struct breakpoint *b);
269
270 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
271
272 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
273 otherwise. */
274
275 static int strace_marker_p (struct breakpoint *b);
276
277 /* The abstract base class all breakpoint_ops structures inherit
278 from. */
279 struct breakpoint_ops base_breakpoint_ops;
280
281 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
282 that are implemented on top of software or hardware breakpoints
283 (user breakpoints, internal and momentary breakpoints, etc.). */
284 static struct breakpoint_ops bkpt_base_breakpoint_ops;
285
286 /* Internal breakpoints class type. */
287 static struct breakpoint_ops internal_breakpoint_ops;
288
289 /* Momentary breakpoints class type. */
290 static struct breakpoint_ops momentary_breakpoint_ops;
291
292 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
293 static struct breakpoint_ops longjmp_breakpoint_ops;
294
295 /* The breakpoint_ops structure to be used in regular user created
296 breakpoints. */
297 struct breakpoint_ops bkpt_breakpoint_ops;
298
299 /* Breakpoints set on probes. */
300 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
301
302 /* Dynamic printf class type. */
303 struct breakpoint_ops dprintf_breakpoint_ops;
304
305 /* The style in which to perform a dynamic printf. This is a user
306 option because different output options have different tradeoffs;
307 if GDB does the printing, there is better error handling if there
308 is a problem with any of the arguments, but using an inferior
309 function lets you have special-purpose printers and sending of
310 output to the same place as compiled-in print functions. */
311
312 static const char dprintf_style_gdb[] = "gdb";
313 static const char dprintf_style_call[] = "call";
314 static const char dprintf_style_agent[] = "agent";
315 static const char *const dprintf_style_enums[] = {
316 dprintf_style_gdb,
317 dprintf_style_call,
318 dprintf_style_agent,
319 NULL
320 };
321 static const char *dprintf_style = dprintf_style_gdb;
322
323 /* The function to use for dynamic printf if the preferred style is to
324 call into the inferior. The value is simply a string that is
325 copied into the command, so it can be anything that GDB can
326 evaluate to a callable address, not necessarily a function name. */
327
328 static char *dprintf_function = "";
329
330 /* The channel to use for dynamic printf if the preferred style is to
331 call into the inferior; if a nonempty string, it will be passed to
332 the call as the first argument, with the format string as the
333 second. As with the dprintf function, this can be anything that
334 GDB knows how to evaluate, so in addition to common choices like
335 "stderr", this could be an app-specific expression like
336 "mystreams[curlogger]". */
337
338 static char *dprintf_channel = "";
339
340 /* True if dprintf commands should continue to operate even if GDB
341 has disconnected. */
342 static int disconnected_dprintf = 1;
343
344 /* A reference-counted struct command_line. This lets multiple
345 breakpoints share a single command list. */
346 struct counted_command_line
347 {
348 /* The reference count. */
349 int refc;
350
351 /* The command list. */
352 struct command_line *commands;
353 };
354
355 struct command_line *
356 breakpoint_commands (struct breakpoint *b)
357 {
358 return b->commands ? b->commands->commands : NULL;
359 }
360
361 /* Flag indicating that a command has proceeded the inferior past the
362 current breakpoint. */
363
364 static int breakpoint_proceeded;
365
366 const char *
367 bpdisp_text (enum bpdisp disp)
368 {
369 /* NOTE: the following values are a part of MI protocol and
370 represent values of 'disp' field returned when inferior stops at
371 a breakpoint. */
372 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
373
374 return bpdisps[(int) disp];
375 }
376
377 /* Prototypes for exported functions. */
378 /* If FALSE, gdb will not use hardware support for watchpoints, even
379 if such is available. */
380 static int can_use_hw_watchpoints;
381
382 static void
383 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c,
385 const char *value)
386 {
387 fprintf_filtered (file,
388 _("Debugger's willingness to use "
389 "watchpoint hardware is %s.\n"),
390 value);
391 }
392
393 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
394 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
395 for unrecognized breakpoint locations.
396 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
397 static enum auto_boolean pending_break_support;
398 static void
399 show_pending_break_support (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's behavior regarding "
405 "pending breakpoints is %s.\n"),
406 value);
407 }
408
409 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
410 set with "break" but falling in read-only memory.
411 If 0, gdb will warn about such breakpoints, but won't automatically
412 use hardware breakpoints. */
413 static int automatic_hardware_breakpoints;
414 static void
415 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Automatic usage of hardware breakpoints is %s.\n"),
421 value);
422 }
423
424 /* If on, gdb will keep breakpoints inserted even as inferior is
425 stopped, and immediately insert any new breakpoints. If off, gdb
426 will insert breakpoints into inferior only when resuming it, and
427 will remove breakpoints upon stop. If auto, GDB will behave as ON
428 if in non-stop mode, and as OFF if all-stop mode.*/
429
430 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
431
432 static void
433 show_always_inserted_mode (struct ui_file *file, int from_tty,
434 struct cmd_list_element *c, const char *value)
435 {
436 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
437 fprintf_filtered (file,
438 _("Always inserted breakpoint "
439 "mode is %s (currently %s).\n"),
440 value,
441 breakpoints_always_inserted_mode () ? "on" : "off");
442 else
443 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
444 value);
445 }
446
447 int
448 breakpoints_always_inserted_mode (void)
449 {
450 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
451 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
452 }
453
454 static const char condition_evaluation_both[] = "host or target";
455
456 /* Modes for breakpoint condition evaluation. */
457 static const char condition_evaluation_auto[] = "auto";
458 static const char condition_evaluation_host[] = "host";
459 static const char condition_evaluation_target[] = "target";
460 static const char *const condition_evaluation_enums[] = {
461 condition_evaluation_auto,
462 condition_evaluation_host,
463 condition_evaluation_target,
464 NULL
465 };
466
467 /* Global that holds the current mode for breakpoint condition evaluation. */
468 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
469
470 /* Global that we use to display information to the user (gets its value from
471 condition_evaluation_mode_1. */
472 static const char *condition_evaluation_mode = condition_evaluation_auto;
473
474 /* Translate a condition evaluation mode MODE into either "host"
475 or "target". This is used mostly to translate from "auto" to the
476 real setting that is being used. It returns the translated
477 evaluation mode. */
478
479 static const char *
480 translate_condition_evaluation_mode (const char *mode)
481 {
482 if (mode == condition_evaluation_auto)
483 {
484 if (target_supports_evaluation_of_breakpoint_conditions ())
485 return condition_evaluation_target;
486 else
487 return condition_evaluation_host;
488 }
489 else
490 return mode;
491 }
492
493 /* Discovers what condition_evaluation_auto translates to. */
494
495 static const char *
496 breakpoint_condition_evaluation_mode (void)
497 {
498 return translate_condition_evaluation_mode (condition_evaluation_mode);
499 }
500
501 /* Return true if GDB should evaluate breakpoint conditions or false
502 otherwise. */
503
504 static int
505 gdb_evaluates_breakpoint_condition_p (void)
506 {
507 const char *mode = breakpoint_condition_evaluation_mode ();
508
509 return (mode == condition_evaluation_host);
510 }
511
512 void _initialize_breakpoint (void);
513
514 /* Are we executing breakpoint commands? */
515 static int executing_breakpoint_commands;
516
517 /* Are overlay event breakpoints enabled? */
518 static int overlay_events_enabled;
519
520 /* See description in breakpoint.h. */
521 int target_exact_watchpoints = 0;
522
523 /* Walk the following statement or block through all breakpoints.
524 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
525 current breakpoint. */
526
527 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
528
529 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
530 for (B = breakpoint_chain; \
531 B ? (TMP=B->next, 1): 0; \
532 B = TMP)
533
534 /* Similar iterator for the low-level breakpoints. SAFE variant is
535 not provided so update_global_location_list must not be called
536 while executing the block of ALL_BP_LOCATIONS. */
537
538 #define ALL_BP_LOCATIONS(B,BP_TMP) \
539 for (BP_TMP = bp_location; \
540 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
541 BP_TMP++)
542
543 /* Iterates through locations with address ADDRESS for the currently selected
544 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
545 to where the loop should start from.
546 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
547 appropriate location to start with. */
548
549 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
550 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
551 BP_LOCP_TMP = BP_LOCP_START; \
552 BP_LOCP_START \
553 && (BP_LOCP_TMP < bp_location + bp_location_count \
554 && (*BP_LOCP_TMP)->address == ADDRESS); \
555 BP_LOCP_TMP++)
556
557 /* Iterator for tracepoints only. */
558
559 #define ALL_TRACEPOINTS(B) \
560 for (B = breakpoint_chain; B; B = B->next) \
561 if (is_tracepoint (B))
562
563 /* Chains of all breakpoints defined. */
564
565 struct breakpoint *breakpoint_chain;
566
567 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
568
569 static struct bp_location **bp_location;
570
571 /* Number of elements of BP_LOCATION. */
572
573 static unsigned bp_location_count;
574
575 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
576 ADDRESS for the current elements of BP_LOCATION which get a valid
577 result from bp_location_has_shadow. You can use it for roughly
578 limiting the subrange of BP_LOCATION to scan for shadow bytes for
579 an address you need to read. */
580
581 static CORE_ADDR bp_location_placed_address_before_address_max;
582
583 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
584 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
585 BP_LOCATION which get a valid result from bp_location_has_shadow.
586 You can use it for roughly limiting the subrange of BP_LOCATION to
587 scan for shadow bytes for an address you need to read. */
588
589 static CORE_ADDR bp_location_shadow_len_after_address_max;
590
591 /* The locations that no longer correspond to any breakpoint, unlinked
592 from bp_location array, but for which a hit may still be reported
593 by a target. */
594 VEC(bp_location_p) *moribund_locations = NULL;
595
596 /* Number of last breakpoint made. */
597
598 static int breakpoint_count;
599
600 /* The value of `breakpoint_count' before the last command that
601 created breakpoints. If the last (break-like) command created more
602 than one breakpoint, then the difference between BREAKPOINT_COUNT
603 and PREV_BREAKPOINT_COUNT is more than one. */
604 static int prev_breakpoint_count;
605
606 /* Number of last tracepoint made. */
607
608 static int tracepoint_count;
609
610 static struct cmd_list_element *breakpoint_set_cmdlist;
611 static struct cmd_list_element *breakpoint_show_cmdlist;
612 struct cmd_list_element *save_cmdlist;
613
614 /* Return whether a breakpoint is an active enabled breakpoint. */
615 static int
616 breakpoint_enabled (struct breakpoint *b)
617 {
618 return (b->enable_state == bp_enabled);
619 }
620
621 /* Set breakpoint count to NUM. */
622
623 static void
624 set_breakpoint_count (int num)
625 {
626 prev_breakpoint_count = breakpoint_count;
627 breakpoint_count = num;
628 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
629 }
630
631 /* Used by `start_rbreak_breakpoints' below, to record the current
632 breakpoint count before "rbreak" creates any breakpoint. */
633 static int rbreak_start_breakpoint_count;
634
635 /* Called at the start an "rbreak" command to record the first
636 breakpoint made. */
637
638 void
639 start_rbreak_breakpoints (void)
640 {
641 rbreak_start_breakpoint_count = breakpoint_count;
642 }
643
644 /* Called at the end of an "rbreak" command to record the last
645 breakpoint made. */
646
647 void
648 end_rbreak_breakpoints (void)
649 {
650 prev_breakpoint_count = rbreak_start_breakpoint_count;
651 }
652
653 /* Used in run_command to zero the hit count when a new run starts. */
654
655 void
656 clear_breakpoint_hit_counts (void)
657 {
658 struct breakpoint *b;
659
660 ALL_BREAKPOINTS (b)
661 b->hit_count = 0;
662 }
663
664 /* Allocate a new counted_command_line with reference count of 1.
665 The new structure owns COMMANDS. */
666
667 static struct counted_command_line *
668 alloc_counted_command_line (struct command_line *commands)
669 {
670 struct counted_command_line *result
671 = xmalloc (sizeof (struct counted_command_line));
672
673 result->refc = 1;
674 result->commands = commands;
675 return result;
676 }
677
678 /* Increment reference count. This does nothing if CMD is NULL. */
679
680 static void
681 incref_counted_command_line (struct counted_command_line *cmd)
682 {
683 if (cmd)
684 ++cmd->refc;
685 }
686
687 /* Decrement reference count. If the reference count reaches 0,
688 destroy the counted_command_line. Sets *CMDP to NULL. This does
689 nothing if *CMDP is NULL. */
690
691 static void
692 decref_counted_command_line (struct counted_command_line **cmdp)
693 {
694 if (*cmdp)
695 {
696 if (--(*cmdp)->refc == 0)
697 {
698 free_command_lines (&(*cmdp)->commands);
699 xfree (*cmdp);
700 }
701 *cmdp = NULL;
702 }
703 }
704
705 /* A cleanup function that calls decref_counted_command_line. */
706
707 static void
708 do_cleanup_counted_command_line (void *arg)
709 {
710 decref_counted_command_line (arg);
711 }
712
713 /* Create a cleanup that calls decref_counted_command_line on the
714 argument. */
715
716 static struct cleanup *
717 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
718 {
719 return make_cleanup (do_cleanup_counted_command_line, cmdp);
720 }
721
722 \f
723 /* Return the breakpoint with the specified number, or NULL
724 if the number does not refer to an existing breakpoint. */
725
726 struct breakpoint *
727 get_breakpoint (int num)
728 {
729 struct breakpoint *b;
730
731 ALL_BREAKPOINTS (b)
732 if (b->number == num)
733 return b;
734
735 return NULL;
736 }
737
738 \f
739
740 /* Mark locations as "conditions have changed" in case the target supports
741 evaluating conditions on its side. */
742
743 static void
744 mark_breakpoint_modified (struct breakpoint *b)
745 {
746 struct bp_location *loc;
747
748 /* This is only meaningful if the target is
749 evaluating conditions and if the user has
750 opted for condition evaluation on the target's
751 side. */
752 if (gdb_evaluates_breakpoint_condition_p ()
753 || !target_supports_evaluation_of_breakpoint_conditions ())
754 return;
755
756 if (!is_breakpoint (b))
757 return;
758
759 for (loc = b->loc; loc; loc = loc->next)
760 loc->condition_changed = condition_modified;
761 }
762
763 /* Mark location as "conditions have changed" in case the target supports
764 evaluating conditions on its side. */
765
766 static void
767 mark_breakpoint_location_modified (struct bp_location *loc)
768 {
769 /* This is only meaningful if the target is
770 evaluating conditions and if the user has
771 opted for condition evaluation on the target's
772 side. */
773 if (gdb_evaluates_breakpoint_condition_p ()
774 || !target_supports_evaluation_of_breakpoint_conditions ())
775
776 return;
777
778 if (!is_breakpoint (loc->owner))
779 return;
780
781 loc->condition_changed = condition_modified;
782 }
783
784 /* Sets the condition-evaluation mode using the static global
785 condition_evaluation_mode. */
786
787 static void
788 set_condition_evaluation_mode (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 const char *old_mode, *new_mode;
792
793 if ((condition_evaluation_mode_1 == condition_evaluation_target)
794 && !target_supports_evaluation_of_breakpoint_conditions ())
795 {
796 condition_evaluation_mode_1 = condition_evaluation_mode;
797 warning (_("Target does not support breakpoint condition evaluation.\n"
798 "Using host evaluation mode instead."));
799 return;
800 }
801
802 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
803 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
804
805 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
806 settings was "auto". */
807 condition_evaluation_mode = condition_evaluation_mode_1;
808
809 /* Only update the mode if the user picked a different one. */
810 if (new_mode != old_mode)
811 {
812 struct bp_location *loc, **loc_tmp;
813 /* If the user switched to a different evaluation mode, we
814 need to synch the changes with the target as follows:
815
816 "host" -> "target": Send all (valid) conditions to the target.
817 "target" -> "host": Remove all the conditions from the target.
818 */
819
820 if (new_mode == condition_evaluation_target)
821 {
822 /* Mark everything modified and synch conditions with the
823 target. */
824 ALL_BP_LOCATIONS (loc, loc_tmp)
825 mark_breakpoint_location_modified (loc);
826 }
827 else
828 {
829 /* Manually mark non-duplicate locations to synch conditions
830 with the target. We do this to remove all the conditions the
831 target knows about. */
832 ALL_BP_LOCATIONS (loc, loc_tmp)
833 if (is_breakpoint (loc->owner) && loc->inserted)
834 loc->needs_update = 1;
835 }
836
837 /* Do the update. */
838 update_global_location_list (1);
839 }
840
841 return;
842 }
843
844 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
845 what "auto" is translating to. */
846
847 static void
848 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
849 struct cmd_list_element *c, const char *value)
850 {
851 if (condition_evaluation_mode == condition_evaluation_auto)
852 fprintf_filtered (file,
853 _("Breakpoint condition evaluation "
854 "mode is %s (currently %s).\n"),
855 value,
856 breakpoint_condition_evaluation_mode ());
857 else
858 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
859 value);
860 }
861
862 /* A comparison function for bp_location AP and BP that is used by
863 bsearch. This comparison function only cares about addresses, unlike
864 the more general bp_location_compare function. */
865
866 static int
867 bp_location_compare_addrs (const void *ap, const void *bp)
868 {
869 struct bp_location *a = *(void **) ap;
870 struct bp_location *b = *(void **) bp;
871
872 if (a->address == b->address)
873 return 0;
874 else
875 return ((a->address > b->address) - (a->address < b->address));
876 }
877
878 /* Helper function to skip all bp_locations with addresses
879 less than ADDRESS. It returns the first bp_location that
880 is greater than or equal to ADDRESS. If none is found, just
881 return NULL. */
882
883 static struct bp_location **
884 get_first_locp_gte_addr (CORE_ADDR address)
885 {
886 struct bp_location dummy_loc;
887 struct bp_location *dummy_locp = &dummy_loc;
888 struct bp_location **locp_found = NULL;
889
890 /* Initialize the dummy location's address field. */
891 memset (&dummy_loc, 0, sizeof (struct bp_location));
892 dummy_loc.address = address;
893
894 /* Find a close match to the first location at ADDRESS. */
895 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
896 sizeof (struct bp_location **),
897 bp_location_compare_addrs);
898
899 /* Nothing was found, nothing left to do. */
900 if (locp_found == NULL)
901 return NULL;
902
903 /* We may have found a location that is at ADDRESS but is not the first in the
904 location's list. Go backwards (if possible) and locate the first one. */
905 while ((locp_found - 1) >= bp_location
906 && (*(locp_found - 1))->address == address)
907 locp_found--;
908
909 return locp_found;
910 }
911
912 void
913 set_breakpoint_condition (struct breakpoint *b, char *exp,
914 int from_tty)
915 {
916 xfree (b->cond_string);
917 b->cond_string = NULL;
918
919 if (is_watchpoint (b))
920 {
921 struct watchpoint *w = (struct watchpoint *) b;
922
923 xfree (w->cond_exp);
924 w->cond_exp = NULL;
925 }
926 else
927 {
928 struct bp_location *loc;
929
930 for (loc = b->loc; loc; loc = loc->next)
931 {
932 xfree (loc->cond);
933 loc->cond = NULL;
934
935 /* No need to free the condition agent expression
936 bytecode (if we have one). We will handle this
937 when we go through update_global_location_list. */
938 }
939 }
940
941 if (*exp == 0)
942 {
943 if (from_tty)
944 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
945 }
946 else
947 {
948 const char *arg = exp;
949
950 /* I don't know if it matters whether this is the string the user
951 typed in or the decompiled expression. */
952 b->cond_string = xstrdup (arg);
953 b->condition_not_parsed = 0;
954
955 if (is_watchpoint (b))
956 {
957 struct watchpoint *w = (struct watchpoint *) b;
958
959 innermost_block = NULL;
960 arg = exp;
961 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
962 if (*arg)
963 error (_("Junk at end of expression"));
964 w->cond_exp_valid_block = innermost_block;
965 }
966 else
967 {
968 struct bp_location *loc;
969
970 for (loc = b->loc; loc; loc = loc->next)
971 {
972 arg = exp;
973 loc->cond =
974 parse_exp_1 (&arg, loc->address,
975 block_for_pc (loc->address), 0);
976 if (*arg)
977 error (_("Junk at end of expression"));
978 }
979 }
980 }
981 mark_breakpoint_modified (b);
982
983 observer_notify_breakpoint_modified (b);
984 }
985
986 /* Completion for the "condition" command. */
987
988 static VEC (char_ptr) *
989 condition_completer (struct cmd_list_element *cmd,
990 const char *text, const char *word)
991 {
992 const char *space;
993
994 text = skip_spaces_const (text);
995 space = skip_to_space_const (text);
996 if (*space == '\0')
997 {
998 int len;
999 struct breakpoint *b;
1000 VEC (char_ptr) *result = NULL;
1001
1002 if (text[0] == '$')
1003 {
1004 /* We don't support completion of history indices. */
1005 if (isdigit (text[1]))
1006 return NULL;
1007 return complete_internalvar (&text[1]);
1008 }
1009
1010 /* We're completing the breakpoint number. */
1011 len = strlen (text);
1012
1013 ALL_BREAKPOINTS (b)
1014 {
1015 char number[50];
1016
1017 xsnprintf (number, sizeof (number), "%d", b->number);
1018
1019 if (strncmp (number, text, len) == 0)
1020 VEC_safe_push (char_ptr, result, xstrdup (number));
1021 }
1022
1023 return result;
1024 }
1025
1026 /* We're completing the expression part. */
1027 text = skip_spaces_const (space);
1028 return expression_completer (cmd, text, word);
1029 }
1030
1031 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1032
1033 static void
1034 condition_command (char *arg, int from_tty)
1035 {
1036 struct breakpoint *b;
1037 char *p;
1038 int bnum;
1039
1040 if (arg == 0)
1041 error_no_arg (_("breakpoint number"));
1042
1043 p = arg;
1044 bnum = get_number (&p);
1045 if (bnum == 0)
1046 error (_("Bad breakpoint argument: '%s'"), arg);
1047
1048 ALL_BREAKPOINTS (b)
1049 if (b->number == bnum)
1050 {
1051 /* Check if this breakpoint has a Python object assigned to
1052 it, and if it has a definition of the "stop"
1053 method. This method and conditions entered into GDB from
1054 the CLI are mutually exclusive. */
1055 if (b->py_bp_object
1056 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1057 error (_("Cannot set a condition where a Python 'stop' "
1058 "method has been defined in the breakpoint."));
1059 set_breakpoint_condition (b, p, from_tty);
1060
1061 if (is_breakpoint (b))
1062 update_global_location_list (1);
1063
1064 return;
1065 }
1066
1067 error (_("No breakpoint number %d."), bnum);
1068 }
1069
1070 /* Check that COMMAND do not contain commands that are suitable
1071 only for tracepoints and not suitable for ordinary breakpoints.
1072 Throw if any such commands is found. */
1073
1074 static void
1075 check_no_tracepoint_commands (struct command_line *commands)
1076 {
1077 struct command_line *c;
1078
1079 for (c = commands; c; c = c->next)
1080 {
1081 int i;
1082
1083 if (c->control_type == while_stepping_control)
1084 error (_("The 'while-stepping' command can "
1085 "only be used for tracepoints"));
1086
1087 for (i = 0; i < c->body_count; ++i)
1088 check_no_tracepoint_commands ((c->body_list)[i]);
1089
1090 /* Not that command parsing removes leading whitespace and comment
1091 lines and also empty lines. So, we only need to check for
1092 command directly. */
1093 if (strstr (c->line, "collect ") == c->line)
1094 error (_("The 'collect' command can only be used for tracepoints"));
1095
1096 if (strstr (c->line, "teval ") == c->line)
1097 error (_("The 'teval' command can only be used for tracepoints"));
1098 }
1099 }
1100
1101 /* Encapsulate tests for different types of tracepoints. */
1102
1103 static int
1104 is_tracepoint_type (enum bptype type)
1105 {
1106 return (type == bp_tracepoint
1107 || type == bp_fast_tracepoint
1108 || type == bp_static_tracepoint);
1109 }
1110
1111 int
1112 is_tracepoint (const struct breakpoint *b)
1113 {
1114 return is_tracepoint_type (b->type);
1115 }
1116
1117 /* A helper function that validates that COMMANDS are valid for a
1118 breakpoint. This function will throw an exception if a problem is
1119 found. */
1120
1121 static void
1122 validate_commands_for_breakpoint (struct breakpoint *b,
1123 struct command_line *commands)
1124 {
1125 if (is_tracepoint (b))
1126 {
1127 struct tracepoint *t = (struct tracepoint *) b;
1128 struct command_line *c;
1129 struct command_line *while_stepping = 0;
1130
1131 /* Reset the while-stepping step count. The previous commands
1132 might have included a while-stepping action, while the new
1133 ones might not. */
1134 t->step_count = 0;
1135
1136 /* We need to verify that each top-level element of commands is
1137 valid for tracepoints, that there's at most one
1138 while-stepping element, and that the while-stepping's body
1139 has valid tracing commands excluding nested while-stepping.
1140 We also need to validate the tracepoint action line in the
1141 context of the tracepoint --- validate_actionline actually
1142 has side effects, like setting the tracepoint's
1143 while-stepping STEP_COUNT, in addition to checking if the
1144 collect/teval actions parse and make sense in the
1145 tracepoint's context. */
1146 for (c = commands; c; c = c->next)
1147 {
1148 if (c->control_type == while_stepping_control)
1149 {
1150 if (b->type == bp_fast_tracepoint)
1151 error (_("The 'while-stepping' command "
1152 "cannot be used for fast tracepoint"));
1153 else if (b->type == bp_static_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for static tracepoint"));
1156
1157 if (while_stepping)
1158 error (_("The 'while-stepping' command "
1159 "can be used only once"));
1160 else
1161 while_stepping = c;
1162 }
1163
1164 validate_actionline (c->line, b);
1165 }
1166 if (while_stepping)
1167 {
1168 struct command_line *c2;
1169
1170 gdb_assert (while_stepping->body_count == 1);
1171 c2 = while_stepping->body_list[0];
1172 for (; c2; c2 = c2->next)
1173 {
1174 if (c2->control_type == while_stepping_control)
1175 error (_("The 'while-stepping' command cannot be nested"));
1176 }
1177 }
1178 }
1179 else
1180 {
1181 check_no_tracepoint_commands (commands);
1182 }
1183 }
1184
1185 /* Return a vector of all the static tracepoints set at ADDR. The
1186 caller is responsible for releasing the vector. */
1187
1188 VEC(breakpoint_p) *
1189 static_tracepoints_here (CORE_ADDR addr)
1190 {
1191 struct breakpoint *b;
1192 VEC(breakpoint_p) *found = 0;
1193 struct bp_location *loc;
1194
1195 ALL_BREAKPOINTS (b)
1196 if (b->type == bp_static_tracepoint)
1197 {
1198 for (loc = b->loc; loc; loc = loc->next)
1199 if (loc->address == addr)
1200 VEC_safe_push(breakpoint_p, found, b);
1201 }
1202
1203 return found;
1204 }
1205
1206 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1207 validate that only allowed commands are included. */
1208
1209 void
1210 breakpoint_set_commands (struct breakpoint *b,
1211 struct command_line *commands)
1212 {
1213 validate_commands_for_breakpoint (b, commands);
1214
1215 decref_counted_command_line (&b->commands);
1216 b->commands = alloc_counted_command_line (commands);
1217 observer_notify_breakpoint_modified (b);
1218 }
1219
1220 /* Set the internal `silent' flag on the breakpoint. Note that this
1221 is not the same as the "silent" that may appear in the breakpoint's
1222 commands. */
1223
1224 void
1225 breakpoint_set_silent (struct breakpoint *b, int silent)
1226 {
1227 int old_silent = b->silent;
1228
1229 b->silent = silent;
1230 if (old_silent != silent)
1231 observer_notify_breakpoint_modified (b);
1232 }
1233
1234 /* Set the thread for this breakpoint. If THREAD is -1, make the
1235 breakpoint work for any thread. */
1236
1237 void
1238 breakpoint_set_thread (struct breakpoint *b, int thread)
1239 {
1240 int old_thread = b->thread;
1241
1242 b->thread = thread;
1243 if (old_thread != thread)
1244 observer_notify_breakpoint_modified (b);
1245 }
1246
1247 /* Set the task for this breakpoint. If TASK is 0, make the
1248 breakpoint work for any task. */
1249
1250 void
1251 breakpoint_set_task (struct breakpoint *b, int task)
1252 {
1253 int old_task = b->task;
1254
1255 b->task = task;
1256 if (old_task != task)
1257 observer_notify_breakpoint_modified (b);
1258 }
1259
1260 void
1261 check_tracepoint_command (char *line, void *closure)
1262 {
1263 struct breakpoint *b = closure;
1264
1265 validate_actionline (line, b);
1266 }
1267
1268 /* A structure used to pass information through
1269 map_breakpoint_numbers. */
1270
1271 struct commands_info
1272 {
1273 /* True if the command was typed at a tty. */
1274 int from_tty;
1275
1276 /* The breakpoint range spec. */
1277 char *arg;
1278
1279 /* Non-NULL if the body of the commands are being read from this
1280 already-parsed command. */
1281 struct command_line *control;
1282
1283 /* The command lines read from the user, or NULL if they have not
1284 yet been read. */
1285 struct counted_command_line *cmd;
1286 };
1287
1288 /* A callback for map_breakpoint_numbers that sets the commands for
1289 commands_command. */
1290
1291 static void
1292 do_map_commands_command (struct breakpoint *b, void *data)
1293 {
1294 struct commands_info *info = data;
1295
1296 if (info->cmd == NULL)
1297 {
1298 struct command_line *l;
1299
1300 if (info->control != NULL)
1301 l = copy_command_lines (info->control->body_list[0]);
1302 else
1303 {
1304 struct cleanup *old_chain;
1305 char *str;
1306
1307 str = xstrprintf (_("Type commands for breakpoint(s) "
1308 "%s, one per line."),
1309 info->arg);
1310
1311 old_chain = make_cleanup (xfree, str);
1312
1313 l = read_command_lines (str,
1314 info->from_tty, 1,
1315 (is_tracepoint (b)
1316 ? check_tracepoint_command : 0),
1317 b);
1318
1319 do_cleanups (old_chain);
1320 }
1321
1322 info->cmd = alloc_counted_command_line (l);
1323 }
1324
1325 /* If a breakpoint was on the list more than once, we don't need to
1326 do anything. */
1327 if (b->commands != info->cmd)
1328 {
1329 validate_commands_for_breakpoint (b, info->cmd->commands);
1330 incref_counted_command_line (info->cmd);
1331 decref_counted_command_line (&b->commands);
1332 b->commands = info->cmd;
1333 observer_notify_breakpoint_modified (b);
1334 }
1335 }
1336
1337 static void
1338 commands_command_1 (char *arg, int from_tty,
1339 struct command_line *control)
1340 {
1341 struct cleanup *cleanups;
1342 struct commands_info info;
1343
1344 info.from_tty = from_tty;
1345 info.control = control;
1346 info.cmd = NULL;
1347 /* If we read command lines from the user, then `info' will hold an
1348 extra reference to the commands that we must clean up. */
1349 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1350
1351 if (arg == NULL || !*arg)
1352 {
1353 if (breakpoint_count - prev_breakpoint_count > 1)
1354 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1355 breakpoint_count);
1356 else if (breakpoint_count > 0)
1357 arg = xstrprintf ("%d", breakpoint_count);
1358 else
1359 {
1360 /* So that we don't try to free the incoming non-NULL
1361 argument in the cleanup below. Mapping breakpoint
1362 numbers will fail in this case. */
1363 arg = NULL;
1364 }
1365 }
1366 else
1367 /* The command loop has some static state, so we need to preserve
1368 our argument. */
1369 arg = xstrdup (arg);
1370
1371 if (arg != NULL)
1372 make_cleanup (xfree, arg);
1373
1374 info.arg = arg;
1375
1376 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1377
1378 if (info.cmd == NULL)
1379 error (_("No breakpoints specified."));
1380
1381 do_cleanups (cleanups);
1382 }
1383
1384 static void
1385 commands_command (char *arg, int from_tty)
1386 {
1387 commands_command_1 (arg, from_tty, NULL);
1388 }
1389
1390 /* Like commands_command, but instead of reading the commands from
1391 input stream, takes them from an already parsed command structure.
1392
1393 This is used by cli-script.c to DTRT with breakpoint commands
1394 that are part of if and while bodies. */
1395 enum command_control_type
1396 commands_from_control_command (char *arg, struct command_line *cmd)
1397 {
1398 commands_command_1 (arg, 0, cmd);
1399 return simple_control;
1400 }
1401
1402 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1403
1404 static int
1405 bp_location_has_shadow (struct bp_location *bl)
1406 {
1407 if (bl->loc_type != bp_loc_software_breakpoint)
1408 return 0;
1409 if (!bl->inserted)
1410 return 0;
1411 if (bl->target_info.shadow_len == 0)
1412 /* BL isn't valid, or doesn't shadow memory. */
1413 return 0;
1414 return 1;
1415 }
1416
1417 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1418 by replacing any memory breakpoints with their shadowed contents.
1419
1420 If READBUF is not NULL, this buffer must not overlap with any of
1421 the breakpoint location's shadow_contents buffers. Otherwise,
1422 a failed assertion internal error will be raised.
1423
1424 The range of shadowed area by each bp_location is:
1425 bl->address - bp_location_placed_address_before_address_max
1426 up to bl->address + bp_location_shadow_len_after_address_max
1427 The range we were requested to resolve shadows for is:
1428 memaddr ... memaddr + len
1429 Thus the safe cutoff boundaries for performance optimization are
1430 memaddr + len <= (bl->address
1431 - bp_location_placed_address_before_address_max)
1432 and:
1433 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1434
1435 void
1436 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1437 const gdb_byte *writebuf_org,
1438 ULONGEST memaddr, LONGEST len)
1439 {
1440 /* Left boundary, right boundary and median element of our binary
1441 search. */
1442 unsigned bc_l, bc_r, bc;
1443
1444 /* Find BC_L which is a leftmost element which may affect BUF
1445 content. It is safe to report lower value but a failure to
1446 report higher one. */
1447
1448 bc_l = 0;
1449 bc_r = bp_location_count;
1450 while (bc_l + 1 < bc_r)
1451 {
1452 struct bp_location *bl;
1453
1454 bc = (bc_l + bc_r) / 2;
1455 bl = bp_location[bc];
1456
1457 /* Check first BL->ADDRESS will not overflow due to the added
1458 constant. Then advance the left boundary only if we are sure
1459 the BC element can in no way affect the BUF content (MEMADDR
1460 to MEMADDR + LEN range).
1461
1462 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1463 offset so that we cannot miss a breakpoint with its shadow
1464 range tail still reaching MEMADDR. */
1465
1466 if ((bl->address + bp_location_shadow_len_after_address_max
1467 >= bl->address)
1468 && (bl->address + bp_location_shadow_len_after_address_max
1469 <= memaddr))
1470 bc_l = bc;
1471 else
1472 bc_r = bc;
1473 }
1474
1475 /* Due to the binary search above, we need to make sure we pick the
1476 first location that's at BC_L's address. E.g., if there are
1477 multiple locations at the same address, BC_L may end up pointing
1478 at a duplicate location, and miss the "master"/"inserted"
1479 location. Say, given locations L1, L2 and L3 at addresses A and
1480 B:
1481
1482 L1@A, L2@A, L3@B, ...
1483
1484 BC_L could end up pointing at location L2, while the "master"
1485 location could be L1. Since the `loc->inserted' flag is only set
1486 on "master" locations, we'd forget to restore the shadow of L1
1487 and L2. */
1488 while (bc_l > 0
1489 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1490 bc_l--;
1491
1492 /* Now do full processing of the found relevant range of elements. */
1493
1494 for (bc = bc_l; bc < bp_location_count; bc++)
1495 {
1496 struct bp_location *bl = bp_location[bc];
1497 CORE_ADDR bp_addr = 0;
1498 int bp_size = 0;
1499 int bptoffset = 0;
1500
1501 /* bp_location array has BL->OWNER always non-NULL. */
1502 if (bl->owner->type == bp_none)
1503 warning (_("reading through apparently deleted breakpoint #%d?"),
1504 bl->owner->number);
1505
1506 /* Performance optimization: any further element can no longer affect BUF
1507 content. */
1508
1509 if (bl->address >= bp_location_placed_address_before_address_max
1510 && memaddr + len <= (bl->address
1511 - bp_location_placed_address_before_address_max))
1512 break;
1513
1514 if (!bp_location_has_shadow (bl))
1515 continue;
1516 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1517 current_program_space->aspace, 0))
1518 continue;
1519
1520 /* Addresses and length of the part of the breakpoint that
1521 we need to copy. */
1522 bp_addr = bl->target_info.placed_address;
1523 bp_size = bl->target_info.shadow_len;
1524
1525 if (bp_addr + bp_size <= memaddr)
1526 /* The breakpoint is entirely before the chunk of memory we
1527 are reading. */
1528 continue;
1529
1530 if (bp_addr >= memaddr + len)
1531 /* The breakpoint is entirely after the chunk of memory we are
1532 reading. */
1533 continue;
1534
1535 /* Offset within shadow_contents. */
1536 if (bp_addr < memaddr)
1537 {
1538 /* Only copy the second part of the breakpoint. */
1539 bp_size -= memaddr - bp_addr;
1540 bptoffset = memaddr - bp_addr;
1541 bp_addr = memaddr;
1542 }
1543
1544 if (bp_addr + bp_size > memaddr + len)
1545 {
1546 /* Only copy the first part of the breakpoint. */
1547 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1548 }
1549
1550 if (readbuf != NULL)
1551 {
1552 /* Verify that the readbuf buffer does not overlap with
1553 the shadow_contents buffer. */
1554 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1555 || readbuf >= (bl->target_info.shadow_contents
1556 + bl->target_info.shadow_len));
1557
1558 /* Update the read buffer with this inserted breakpoint's
1559 shadow. */
1560 memcpy (readbuf + bp_addr - memaddr,
1561 bl->target_info.shadow_contents + bptoffset, bp_size);
1562 }
1563 else
1564 {
1565 struct gdbarch *gdbarch = bl->gdbarch;
1566 const unsigned char *bp;
1567 CORE_ADDR placed_address = bl->target_info.placed_address;
1568 int placed_size = bl->target_info.placed_size;
1569
1570 /* Update the shadow with what we want to write to memory. */
1571 memcpy (bl->target_info.shadow_contents + bptoffset,
1572 writebuf_org + bp_addr - memaddr, bp_size);
1573
1574 /* Determine appropriate breakpoint contents and size for this
1575 address. */
1576 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1577
1578 /* Update the final write buffer with this inserted
1579 breakpoint's INSN. */
1580 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1581 }
1582 }
1583 }
1584 \f
1585
1586 /* Return true if BPT is either a software breakpoint or a hardware
1587 breakpoint. */
1588
1589 int
1590 is_breakpoint (const struct breakpoint *bpt)
1591 {
1592 return (bpt->type == bp_breakpoint
1593 || bpt->type == bp_hardware_breakpoint
1594 || bpt->type == bp_dprintf);
1595 }
1596
1597 /* Return true if BPT is of any hardware watchpoint kind. */
1598
1599 static int
1600 is_hardware_watchpoint (const struct breakpoint *bpt)
1601 {
1602 return (bpt->type == bp_hardware_watchpoint
1603 || bpt->type == bp_read_watchpoint
1604 || bpt->type == bp_access_watchpoint);
1605 }
1606
1607 /* Return true if BPT is of any watchpoint kind, hardware or
1608 software. */
1609
1610 int
1611 is_watchpoint (const struct breakpoint *bpt)
1612 {
1613 return (is_hardware_watchpoint (bpt)
1614 || bpt->type == bp_watchpoint);
1615 }
1616
1617 /* Returns true if the current thread and its running state are safe
1618 to evaluate or update watchpoint B. Watchpoints on local
1619 expressions need to be evaluated in the context of the thread that
1620 was current when the watchpoint was created, and, that thread needs
1621 to be stopped to be able to select the correct frame context.
1622 Watchpoints on global expressions can be evaluated on any thread,
1623 and in any state. It is presently left to the target allowing
1624 memory accesses when threads are running. */
1625
1626 static int
1627 watchpoint_in_thread_scope (struct watchpoint *b)
1628 {
1629 return (b->base.pspace == current_program_space
1630 && (ptid_equal (b->watchpoint_thread, null_ptid)
1631 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1632 && !is_executing (inferior_ptid))));
1633 }
1634
1635 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1636 associated bp_watchpoint_scope breakpoint. */
1637
1638 static void
1639 watchpoint_del_at_next_stop (struct watchpoint *w)
1640 {
1641 struct breakpoint *b = &w->base;
1642
1643 if (b->related_breakpoint != b)
1644 {
1645 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1646 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1647 b->related_breakpoint->disposition = disp_del_at_next_stop;
1648 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1649 b->related_breakpoint = b;
1650 }
1651 b->disposition = disp_del_at_next_stop;
1652 }
1653
1654 /* Assuming that B is a watchpoint:
1655 - Reparse watchpoint expression, if REPARSE is non-zero
1656 - Evaluate expression and store the result in B->val
1657 - Evaluate the condition if there is one, and store the result
1658 in b->loc->cond.
1659 - Update the list of values that must be watched in B->loc.
1660
1661 If the watchpoint disposition is disp_del_at_next_stop, then do
1662 nothing. If this is local watchpoint that is out of scope, delete
1663 it.
1664
1665 Even with `set breakpoint always-inserted on' the watchpoints are
1666 removed + inserted on each stop here. Normal breakpoints must
1667 never be removed because they might be missed by a running thread
1668 when debugging in non-stop mode. On the other hand, hardware
1669 watchpoints (is_hardware_watchpoint; processed here) are specific
1670 to each LWP since they are stored in each LWP's hardware debug
1671 registers. Therefore, such LWP must be stopped first in order to
1672 be able to modify its hardware watchpoints.
1673
1674 Hardware watchpoints must be reset exactly once after being
1675 presented to the user. It cannot be done sooner, because it would
1676 reset the data used to present the watchpoint hit to the user. And
1677 it must not be done later because it could display the same single
1678 watchpoint hit during multiple GDB stops. Note that the latter is
1679 relevant only to the hardware watchpoint types bp_read_watchpoint
1680 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1681 not user-visible - its hit is suppressed if the memory content has
1682 not changed.
1683
1684 The following constraints influence the location where we can reset
1685 hardware watchpoints:
1686
1687 * target_stopped_by_watchpoint and target_stopped_data_address are
1688 called several times when GDB stops.
1689
1690 [linux]
1691 * Multiple hardware watchpoints can be hit at the same time,
1692 causing GDB to stop. GDB only presents one hardware watchpoint
1693 hit at a time as the reason for stopping, and all the other hits
1694 are presented later, one after the other, each time the user
1695 requests the execution to be resumed. Execution is not resumed
1696 for the threads still having pending hit event stored in
1697 LWP_INFO->STATUS. While the watchpoint is already removed from
1698 the inferior on the first stop the thread hit event is kept being
1699 reported from its cached value by linux_nat_stopped_data_address
1700 until the real thread resume happens after the watchpoint gets
1701 presented and thus its LWP_INFO->STATUS gets reset.
1702
1703 Therefore the hardware watchpoint hit can get safely reset on the
1704 watchpoint removal from inferior. */
1705
1706 static void
1707 update_watchpoint (struct watchpoint *b, int reparse)
1708 {
1709 int within_current_scope;
1710 struct frame_id saved_frame_id;
1711 int frame_saved;
1712
1713 /* If this is a local watchpoint, we only want to check if the
1714 watchpoint frame is in scope if the current thread is the thread
1715 that was used to create the watchpoint. */
1716 if (!watchpoint_in_thread_scope (b))
1717 return;
1718
1719 if (b->base.disposition == disp_del_at_next_stop)
1720 return;
1721
1722 frame_saved = 0;
1723
1724 /* Determine if the watchpoint is within scope. */
1725 if (b->exp_valid_block == NULL)
1726 within_current_scope = 1;
1727 else
1728 {
1729 struct frame_info *fi = get_current_frame ();
1730 struct gdbarch *frame_arch = get_frame_arch (fi);
1731 CORE_ADDR frame_pc = get_frame_pc (fi);
1732
1733 /* If we're in a function epilogue, unwinding may not work
1734 properly, so do not attempt to recreate locations at this
1735 point. See similar comments in watchpoint_check. */
1736 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1737 return;
1738
1739 /* Save the current frame's ID so we can restore it after
1740 evaluating the watchpoint expression on its own frame. */
1741 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1742 took a frame parameter, so that we didn't have to change the
1743 selected frame. */
1744 frame_saved = 1;
1745 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1746
1747 fi = frame_find_by_id (b->watchpoint_frame);
1748 within_current_scope = (fi != NULL);
1749 if (within_current_scope)
1750 select_frame (fi);
1751 }
1752
1753 /* We don't free locations. They are stored in the bp_location array
1754 and update_global_location_list will eventually delete them and
1755 remove breakpoints if needed. */
1756 b->base.loc = NULL;
1757
1758 if (within_current_scope && reparse)
1759 {
1760 const char *s;
1761
1762 if (b->exp)
1763 {
1764 xfree (b->exp);
1765 b->exp = NULL;
1766 }
1767 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1768 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1769 /* If the meaning of expression itself changed, the old value is
1770 no longer relevant. We don't want to report a watchpoint hit
1771 to the user when the old value and the new value may actually
1772 be completely different objects. */
1773 value_free (b->val);
1774 b->val = NULL;
1775 b->val_valid = 0;
1776
1777 /* Note that unlike with breakpoints, the watchpoint's condition
1778 expression is stored in the breakpoint object, not in the
1779 locations (re)created below. */
1780 if (b->base.cond_string != NULL)
1781 {
1782 if (b->cond_exp != NULL)
1783 {
1784 xfree (b->cond_exp);
1785 b->cond_exp = NULL;
1786 }
1787
1788 s = b->base.cond_string;
1789 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1790 }
1791 }
1792
1793 /* If we failed to parse the expression, for example because
1794 it refers to a global variable in a not-yet-loaded shared library,
1795 don't try to insert watchpoint. We don't automatically delete
1796 such watchpoint, though, since failure to parse expression
1797 is different from out-of-scope watchpoint. */
1798 if ( !target_has_execution)
1799 {
1800 /* Without execution, memory can't change. No use to try and
1801 set watchpoint locations. The watchpoint will be reset when
1802 the target gains execution, through breakpoint_re_set. */
1803 }
1804 else if (within_current_scope && b->exp)
1805 {
1806 int pc = 0;
1807 struct value *val_chain, *v, *result, *next;
1808 struct program_space *frame_pspace;
1809
1810 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1811
1812 /* Avoid setting b->val if it's already set. The meaning of
1813 b->val is 'the last value' user saw, and we should update
1814 it only if we reported that last value to user. As it
1815 happens, the code that reports it updates b->val directly.
1816 We don't keep track of the memory value for masked
1817 watchpoints. */
1818 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1819 {
1820 b->val = v;
1821 b->val_valid = 1;
1822 }
1823
1824 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1825
1826 /* Look at each value on the value chain. */
1827 for (v = val_chain; v; v = value_next (v))
1828 {
1829 /* If it's a memory location, and GDB actually needed
1830 its contents to evaluate the expression, then we
1831 must watch it. If the first value returned is
1832 still lazy, that means an error occurred reading it;
1833 watch it anyway in case it becomes readable. */
1834 if (VALUE_LVAL (v) == lval_memory
1835 && (v == val_chain || ! value_lazy (v)))
1836 {
1837 struct type *vtype = check_typedef (value_type (v));
1838
1839 /* We only watch structs and arrays if user asked
1840 for it explicitly, never if they just happen to
1841 appear in the middle of some value chain. */
1842 if (v == result
1843 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1844 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1845 {
1846 CORE_ADDR addr;
1847 int type;
1848 struct bp_location *loc, **tmp;
1849
1850 addr = value_address (v);
1851 type = hw_write;
1852 if (b->base.type == bp_read_watchpoint)
1853 type = hw_read;
1854 else if (b->base.type == bp_access_watchpoint)
1855 type = hw_access;
1856
1857 loc = allocate_bp_location (&b->base);
1858 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1859 ;
1860 *tmp = loc;
1861 loc->gdbarch = get_type_arch (value_type (v));
1862
1863 loc->pspace = frame_pspace;
1864 loc->address = addr;
1865 loc->length = TYPE_LENGTH (value_type (v));
1866 loc->watchpoint_type = type;
1867 }
1868 }
1869 }
1870
1871 /* Change the type of breakpoint between hardware assisted or
1872 an ordinary watchpoint depending on the hardware support
1873 and free hardware slots. REPARSE is set when the inferior
1874 is started. */
1875 if (reparse)
1876 {
1877 int reg_cnt;
1878 enum bp_loc_type loc_type;
1879 struct bp_location *bl;
1880
1881 reg_cnt = can_use_hardware_watchpoint (val_chain);
1882
1883 if (reg_cnt)
1884 {
1885 int i, target_resources_ok, other_type_used;
1886 enum bptype type;
1887
1888 /* Use an exact watchpoint when there's only one memory region to be
1889 watched, and only one debug register is needed to watch it. */
1890 b->exact = target_exact_watchpoints && reg_cnt == 1;
1891
1892 /* We need to determine how many resources are already
1893 used for all other hardware watchpoints plus this one
1894 to see if we still have enough resources to also fit
1895 this watchpoint in as well. */
1896
1897 /* If this is a software watchpoint, we try to turn it
1898 to a hardware one -- count resources as if B was of
1899 hardware watchpoint type. */
1900 type = b->base.type;
1901 if (type == bp_watchpoint)
1902 type = bp_hardware_watchpoint;
1903
1904 /* This watchpoint may or may not have been placed on
1905 the list yet at this point (it won't be in the list
1906 if we're trying to create it for the first time,
1907 through watch_command), so always account for it
1908 manually. */
1909
1910 /* Count resources used by all watchpoints except B. */
1911 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1912
1913 /* Add in the resources needed for B. */
1914 i += hw_watchpoint_use_count (&b->base);
1915
1916 target_resources_ok
1917 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1918 if (target_resources_ok <= 0)
1919 {
1920 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1921
1922 if (target_resources_ok == 0 && !sw_mode)
1923 error (_("Target does not support this type of "
1924 "hardware watchpoint."));
1925 else if (target_resources_ok < 0 && !sw_mode)
1926 error (_("There are not enough available hardware "
1927 "resources for this watchpoint."));
1928
1929 /* Downgrade to software watchpoint. */
1930 b->base.type = bp_watchpoint;
1931 }
1932 else
1933 {
1934 /* If this was a software watchpoint, we've just
1935 found we have enough resources to turn it to a
1936 hardware watchpoint. Otherwise, this is a
1937 nop. */
1938 b->base.type = type;
1939 }
1940 }
1941 else if (!b->base.ops->works_in_software_mode (&b->base))
1942 error (_("Expression cannot be implemented with "
1943 "read/access watchpoint."));
1944 else
1945 b->base.type = bp_watchpoint;
1946
1947 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1948 : bp_loc_hardware_watchpoint);
1949 for (bl = b->base.loc; bl; bl = bl->next)
1950 bl->loc_type = loc_type;
1951 }
1952
1953 for (v = val_chain; v; v = next)
1954 {
1955 next = value_next (v);
1956 if (v != b->val)
1957 value_free (v);
1958 }
1959
1960 /* If a software watchpoint is not watching any memory, then the
1961 above left it without any location set up. But,
1962 bpstat_stop_status requires a location to be able to report
1963 stops, so make sure there's at least a dummy one. */
1964 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1965 {
1966 struct breakpoint *base = &b->base;
1967 base->loc = allocate_bp_location (base);
1968 base->loc->pspace = frame_pspace;
1969 base->loc->address = -1;
1970 base->loc->length = -1;
1971 base->loc->watchpoint_type = -1;
1972 }
1973 }
1974 else if (!within_current_scope)
1975 {
1976 printf_filtered (_("\
1977 Watchpoint %d deleted because the program has left the block\n\
1978 in which its expression is valid.\n"),
1979 b->base.number);
1980 watchpoint_del_at_next_stop (b);
1981 }
1982
1983 /* Restore the selected frame. */
1984 if (frame_saved)
1985 select_frame (frame_find_by_id (saved_frame_id));
1986 }
1987
1988
1989 /* Returns 1 iff breakpoint location should be
1990 inserted in the inferior. We don't differentiate the type of BL's owner
1991 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1992 breakpoint_ops is not defined, because in insert_bp_location,
1993 tracepoint's insert_location will not be called. */
1994 static int
1995 should_be_inserted (struct bp_location *bl)
1996 {
1997 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1998 return 0;
1999
2000 if (bl->owner->disposition == disp_del_at_next_stop)
2001 return 0;
2002
2003 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2004 return 0;
2005
2006 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2007 return 0;
2008
2009 /* This is set for example, when we're attached to the parent of a
2010 vfork, and have detached from the child. The child is running
2011 free, and we expect it to do an exec or exit, at which point the
2012 OS makes the parent schedulable again (and the target reports
2013 that the vfork is done). Until the child is done with the shared
2014 memory region, do not insert breakpoints in the parent, otherwise
2015 the child could still trip on the parent's breakpoints. Since
2016 the parent is blocked anyway, it won't miss any breakpoint. */
2017 if (bl->pspace->breakpoints_not_allowed)
2018 return 0;
2019
2020 return 1;
2021 }
2022
2023 /* Same as should_be_inserted but does the check assuming
2024 that the location is not duplicated. */
2025
2026 static int
2027 unduplicated_should_be_inserted (struct bp_location *bl)
2028 {
2029 int result;
2030 const int save_duplicate = bl->duplicate;
2031
2032 bl->duplicate = 0;
2033 result = should_be_inserted (bl);
2034 bl->duplicate = save_duplicate;
2035 return result;
2036 }
2037
2038 /* Parses a conditional described by an expression COND into an
2039 agent expression bytecode suitable for evaluation
2040 by the bytecode interpreter. Return NULL if there was
2041 any error during parsing. */
2042
2043 static struct agent_expr *
2044 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2045 {
2046 struct agent_expr *aexpr = NULL;
2047 volatile struct gdb_exception ex;
2048
2049 if (!cond)
2050 return NULL;
2051
2052 /* We don't want to stop processing, so catch any errors
2053 that may show up. */
2054 TRY_CATCH (ex, RETURN_MASK_ERROR)
2055 {
2056 aexpr = gen_eval_for_expr (scope, cond);
2057 }
2058
2059 if (ex.reason < 0)
2060 {
2061 /* If we got here, it means the condition could not be parsed to a valid
2062 bytecode expression and thus can't be evaluated on the target's side.
2063 It's no use iterating through the conditions. */
2064 return NULL;
2065 }
2066
2067 /* We have a valid agent expression. */
2068 return aexpr;
2069 }
2070
2071 /* Based on location BL, create a list of breakpoint conditions to be
2072 passed on to the target. If we have duplicated locations with different
2073 conditions, we will add such conditions to the list. The idea is that the
2074 target will evaluate the list of conditions and will only notify GDB when
2075 one of them is true. */
2076
2077 static void
2078 build_target_condition_list (struct bp_location *bl)
2079 {
2080 struct bp_location **locp = NULL, **loc2p;
2081 int null_condition_or_parse_error = 0;
2082 int modified = bl->needs_update;
2083 struct bp_location *loc;
2084
2085 /* This is only meaningful if the target is
2086 evaluating conditions and if the user has
2087 opted for condition evaluation on the target's
2088 side. */
2089 if (gdb_evaluates_breakpoint_condition_p ()
2090 || !target_supports_evaluation_of_breakpoint_conditions ())
2091 return;
2092
2093 /* Do a first pass to check for locations with no assigned
2094 conditions or conditions that fail to parse to a valid agent expression
2095 bytecode. If any of these happen, then it's no use to send conditions
2096 to the target since this location will always trigger and generate a
2097 response back to GDB. */
2098 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2099 {
2100 loc = (*loc2p);
2101 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2102 {
2103 if (modified)
2104 {
2105 struct agent_expr *aexpr;
2106
2107 /* Re-parse the conditions since something changed. In that
2108 case we already freed the condition bytecodes (see
2109 force_breakpoint_reinsertion). We just
2110 need to parse the condition to bytecodes again. */
2111 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2112 loc->cond_bytecode = aexpr;
2113
2114 /* Check if we managed to parse the conditional expression
2115 correctly. If not, we will not send this condition
2116 to the target. */
2117 if (aexpr)
2118 continue;
2119 }
2120
2121 /* If we have a NULL bytecode expression, it means something
2122 went wrong or we have a null condition expression. */
2123 if (!loc->cond_bytecode)
2124 {
2125 null_condition_or_parse_error = 1;
2126 break;
2127 }
2128 }
2129 }
2130
2131 /* If any of these happened, it means we will have to evaluate the conditions
2132 for the location's address on gdb's side. It is no use keeping bytecodes
2133 for all the other duplicate locations, thus we free all of them here.
2134
2135 This is so we have a finer control over which locations' conditions are
2136 being evaluated by GDB or the remote stub. */
2137 if (null_condition_or_parse_error)
2138 {
2139 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2140 {
2141 loc = (*loc2p);
2142 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2143 {
2144 /* Only go as far as the first NULL bytecode is
2145 located. */
2146 if (!loc->cond_bytecode)
2147 return;
2148
2149 free_agent_expr (loc->cond_bytecode);
2150 loc->cond_bytecode = NULL;
2151 }
2152 }
2153 }
2154
2155 /* No NULL conditions or failed bytecode generation. Build a condition list
2156 for this location's address. */
2157 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2158 {
2159 loc = (*loc2p);
2160 if (loc->cond
2161 && is_breakpoint (loc->owner)
2162 && loc->pspace->num == bl->pspace->num
2163 && loc->owner->enable_state == bp_enabled
2164 && loc->enabled)
2165 /* Add the condition to the vector. This will be used later to send the
2166 conditions to the target. */
2167 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2168 loc->cond_bytecode);
2169 }
2170
2171 return;
2172 }
2173
2174 /* Parses a command described by string CMD into an agent expression
2175 bytecode suitable for evaluation by the bytecode interpreter.
2176 Return NULL if there was any error during parsing. */
2177
2178 static struct agent_expr *
2179 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2180 {
2181 struct cleanup *old_cleanups = 0;
2182 struct expression *expr, **argvec;
2183 struct agent_expr *aexpr = NULL;
2184 volatile struct gdb_exception ex;
2185 const char *cmdrest;
2186 const char *format_start, *format_end;
2187 struct format_piece *fpieces;
2188 int nargs;
2189 struct gdbarch *gdbarch = get_current_arch ();
2190
2191 if (!cmd)
2192 return NULL;
2193
2194 cmdrest = cmd;
2195
2196 if (*cmdrest == ',')
2197 ++cmdrest;
2198 cmdrest = skip_spaces_const (cmdrest);
2199
2200 if (*cmdrest++ != '"')
2201 error (_("No format string following the location"));
2202
2203 format_start = cmdrest;
2204
2205 fpieces = parse_format_string (&cmdrest);
2206
2207 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2208
2209 format_end = cmdrest;
2210
2211 if (*cmdrest++ != '"')
2212 error (_("Bad format string, non-terminated '\"'."));
2213
2214 cmdrest = skip_spaces_const (cmdrest);
2215
2216 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2217 error (_("Invalid argument syntax"));
2218
2219 if (*cmdrest == ',')
2220 cmdrest++;
2221 cmdrest = skip_spaces_const (cmdrest);
2222
2223 /* For each argument, make an expression. */
2224
2225 argvec = (struct expression **) alloca (strlen (cmd)
2226 * sizeof (struct expression *));
2227
2228 nargs = 0;
2229 while (*cmdrest != '\0')
2230 {
2231 const char *cmd1;
2232
2233 cmd1 = cmdrest;
2234 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2235 argvec[nargs++] = expr;
2236 cmdrest = cmd1;
2237 if (*cmdrest == ',')
2238 ++cmdrest;
2239 }
2240
2241 /* We don't want to stop processing, so catch any errors
2242 that may show up. */
2243 TRY_CATCH (ex, RETURN_MASK_ERROR)
2244 {
2245 aexpr = gen_printf (scope, gdbarch, 0, 0,
2246 format_start, format_end - format_start,
2247 fpieces, nargs, argvec);
2248 }
2249
2250 do_cleanups (old_cleanups);
2251
2252 if (ex.reason < 0)
2253 {
2254 /* If we got here, it means the command could not be parsed to a valid
2255 bytecode expression and thus can't be evaluated on the target's side.
2256 It's no use iterating through the other commands. */
2257 return NULL;
2258 }
2259
2260 /* We have a valid agent expression, return it. */
2261 return aexpr;
2262 }
2263
2264 /* Based on location BL, create a list of breakpoint commands to be
2265 passed on to the target. If we have duplicated locations with
2266 different commands, we will add any such to the list. */
2267
2268 static void
2269 build_target_command_list (struct bp_location *bl)
2270 {
2271 struct bp_location **locp = NULL, **loc2p;
2272 int null_command_or_parse_error = 0;
2273 int modified = bl->needs_update;
2274 struct bp_location *loc;
2275
2276 /* For now, limit to agent-style dprintf breakpoints. */
2277 if (bl->owner->type != bp_dprintf
2278 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2279 return;
2280
2281 if (!target_can_run_breakpoint_commands ())
2282 return;
2283
2284 /* Do a first pass to check for locations with no assigned
2285 conditions or conditions that fail to parse to a valid agent expression
2286 bytecode. If any of these happen, then it's no use to send conditions
2287 to the target since this location will always trigger and generate a
2288 response back to GDB. */
2289 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2290 {
2291 loc = (*loc2p);
2292 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2293 {
2294 if (modified)
2295 {
2296 struct agent_expr *aexpr;
2297
2298 /* Re-parse the commands since something changed. In that
2299 case we already freed the command bytecodes (see
2300 force_breakpoint_reinsertion). We just
2301 need to parse the command to bytecodes again. */
2302 aexpr = parse_cmd_to_aexpr (bl->address,
2303 loc->owner->extra_string);
2304 loc->cmd_bytecode = aexpr;
2305
2306 if (!aexpr)
2307 continue;
2308 }
2309
2310 /* If we have a NULL bytecode expression, it means something
2311 went wrong or we have a null command expression. */
2312 if (!loc->cmd_bytecode)
2313 {
2314 null_command_or_parse_error = 1;
2315 break;
2316 }
2317 }
2318 }
2319
2320 /* If anything failed, then we're not doing target-side commands,
2321 and so clean up. */
2322 if (null_command_or_parse_error)
2323 {
2324 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2325 {
2326 loc = (*loc2p);
2327 if (is_breakpoint (loc->owner)
2328 && loc->pspace->num == bl->pspace->num)
2329 {
2330 /* Only go as far as the first NULL bytecode is
2331 located. */
2332 if (loc->cmd_bytecode == NULL)
2333 return;
2334
2335 free_agent_expr (loc->cmd_bytecode);
2336 loc->cmd_bytecode = NULL;
2337 }
2338 }
2339 }
2340
2341 /* No NULL commands or failed bytecode generation. Build a command list
2342 for this location's address. */
2343 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2344 {
2345 loc = (*loc2p);
2346 if (loc->owner->extra_string
2347 && is_breakpoint (loc->owner)
2348 && loc->pspace->num == bl->pspace->num
2349 && loc->owner->enable_state == bp_enabled
2350 && loc->enabled)
2351 /* Add the command to the vector. This will be used later
2352 to send the commands to the target. */
2353 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2354 loc->cmd_bytecode);
2355 }
2356
2357 bl->target_info.persist = 0;
2358 /* Maybe flag this location as persistent. */
2359 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2360 bl->target_info.persist = 1;
2361 }
2362
2363 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2364 location. Any error messages are printed to TMP_ERROR_STREAM; and
2365 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2366 Returns 0 for success, 1 if the bp_location type is not supported or
2367 -1 for failure.
2368
2369 NOTE drow/2003-09-09: This routine could be broken down to an
2370 object-style method for each breakpoint or catchpoint type. */
2371 static int
2372 insert_bp_location (struct bp_location *bl,
2373 struct ui_file *tmp_error_stream,
2374 int *disabled_breaks,
2375 int *hw_breakpoint_error,
2376 int *hw_bp_error_explained_already)
2377 {
2378 int val = 0;
2379 char *hw_bp_err_string = NULL;
2380 struct gdb_exception e;
2381
2382 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2383 return 0;
2384
2385 /* Note we don't initialize bl->target_info, as that wipes out
2386 the breakpoint location's shadow_contents if the breakpoint
2387 is still inserted at that location. This in turn breaks
2388 target_read_memory which depends on these buffers when
2389 a memory read is requested at the breakpoint location:
2390 Once the target_info has been wiped, we fail to see that
2391 we have a breakpoint inserted at that address and thus
2392 read the breakpoint instead of returning the data saved in
2393 the breakpoint location's shadow contents. */
2394 bl->target_info.placed_address = bl->address;
2395 bl->target_info.placed_address_space = bl->pspace->aspace;
2396 bl->target_info.length = bl->length;
2397
2398 /* When working with target-side conditions, we must pass all the conditions
2399 for the same breakpoint address down to the target since GDB will not
2400 insert those locations. With a list of breakpoint conditions, the target
2401 can decide when to stop and notify GDB. */
2402
2403 if (is_breakpoint (bl->owner))
2404 {
2405 build_target_condition_list (bl);
2406 build_target_command_list (bl);
2407 /* Reset the modification marker. */
2408 bl->needs_update = 0;
2409 }
2410
2411 if (bl->loc_type == bp_loc_software_breakpoint
2412 || bl->loc_type == bp_loc_hardware_breakpoint)
2413 {
2414 if (bl->owner->type != bp_hardware_breakpoint)
2415 {
2416 /* If the explicitly specified breakpoint type
2417 is not hardware breakpoint, check the memory map to see
2418 if the breakpoint address is in read only memory or not.
2419
2420 Two important cases are:
2421 - location type is not hardware breakpoint, memory
2422 is readonly. We change the type of the location to
2423 hardware breakpoint.
2424 - location type is hardware breakpoint, memory is
2425 read-write. This means we've previously made the
2426 location hardware one, but then the memory map changed,
2427 so we undo.
2428
2429 When breakpoints are removed, remove_breakpoints will use
2430 location types we've just set here, the only possible
2431 problem is that memory map has changed during running
2432 program, but it's not going to work anyway with current
2433 gdb. */
2434 struct mem_region *mr
2435 = lookup_mem_region (bl->target_info.placed_address);
2436
2437 if (mr)
2438 {
2439 if (automatic_hardware_breakpoints)
2440 {
2441 enum bp_loc_type new_type;
2442
2443 if (mr->attrib.mode != MEM_RW)
2444 new_type = bp_loc_hardware_breakpoint;
2445 else
2446 new_type = bp_loc_software_breakpoint;
2447
2448 if (new_type != bl->loc_type)
2449 {
2450 static int said = 0;
2451
2452 bl->loc_type = new_type;
2453 if (!said)
2454 {
2455 fprintf_filtered (gdb_stdout,
2456 _("Note: automatically using "
2457 "hardware breakpoints for "
2458 "read-only addresses.\n"));
2459 said = 1;
2460 }
2461 }
2462 }
2463 else if (bl->loc_type == bp_loc_software_breakpoint
2464 && mr->attrib.mode != MEM_RW)
2465 warning (_("cannot set software breakpoint "
2466 "at readonly address %s"),
2467 paddress (bl->gdbarch, bl->address));
2468 }
2469 }
2470
2471 /* First check to see if we have to handle an overlay. */
2472 if (overlay_debugging == ovly_off
2473 || bl->section == NULL
2474 || !(section_is_overlay (bl->section)))
2475 {
2476 /* No overlay handling: just set the breakpoint. */
2477 TRY_CATCH (e, RETURN_MASK_ALL)
2478 {
2479 val = bl->owner->ops->insert_location (bl);
2480 }
2481 if (e.reason < 0)
2482 {
2483 val = 1;
2484 hw_bp_err_string = (char *) e.message;
2485 }
2486 }
2487 else
2488 {
2489 /* This breakpoint is in an overlay section.
2490 Shall we set a breakpoint at the LMA? */
2491 if (!overlay_events_enabled)
2492 {
2493 /* Yes -- overlay event support is not active,
2494 so we must try to set a breakpoint at the LMA.
2495 This will not work for a hardware breakpoint. */
2496 if (bl->loc_type == bp_loc_hardware_breakpoint)
2497 warning (_("hardware breakpoint %d not supported in overlay!"),
2498 bl->owner->number);
2499 else
2500 {
2501 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2502 bl->section);
2503 /* Set a software (trap) breakpoint at the LMA. */
2504 bl->overlay_target_info = bl->target_info;
2505 bl->overlay_target_info.placed_address = addr;
2506 val = target_insert_breakpoint (bl->gdbarch,
2507 &bl->overlay_target_info);
2508 if (val != 0)
2509 fprintf_unfiltered (tmp_error_stream,
2510 "Overlay breakpoint %d "
2511 "failed: in ROM?\n",
2512 bl->owner->number);
2513 }
2514 }
2515 /* Shall we set a breakpoint at the VMA? */
2516 if (section_is_mapped (bl->section))
2517 {
2518 /* Yes. This overlay section is mapped into memory. */
2519 TRY_CATCH (e, RETURN_MASK_ALL)
2520 {
2521 val = bl->owner->ops->insert_location (bl);
2522 }
2523 if (e.reason < 0)
2524 {
2525 val = 1;
2526 hw_bp_err_string = (char *) e.message;
2527 }
2528 }
2529 else
2530 {
2531 /* No. This breakpoint will not be inserted.
2532 No error, but do not mark the bp as 'inserted'. */
2533 return 0;
2534 }
2535 }
2536
2537 if (val)
2538 {
2539 /* Can't set the breakpoint. */
2540 if (solib_name_from_address (bl->pspace, bl->address))
2541 {
2542 /* See also: disable_breakpoints_in_shlibs. */
2543 val = 0;
2544 bl->shlib_disabled = 1;
2545 observer_notify_breakpoint_modified (bl->owner);
2546 if (!*disabled_breaks)
2547 {
2548 fprintf_unfiltered (tmp_error_stream,
2549 "Cannot insert breakpoint %d.\n",
2550 bl->owner->number);
2551 fprintf_unfiltered (tmp_error_stream,
2552 "Temporarily disabling shared "
2553 "library breakpoints:\n");
2554 }
2555 *disabled_breaks = 1;
2556 fprintf_unfiltered (tmp_error_stream,
2557 "breakpoint #%d\n", bl->owner->number);
2558 }
2559 else
2560 {
2561 if (bl->loc_type == bp_loc_hardware_breakpoint)
2562 {
2563 *hw_breakpoint_error = 1;
2564 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2565 fprintf_unfiltered (tmp_error_stream,
2566 "Cannot insert hardware breakpoint %d%s",
2567 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2568 if (hw_bp_err_string)
2569 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2570 }
2571 else
2572 {
2573 fprintf_unfiltered (tmp_error_stream,
2574 "Cannot insert breakpoint %d.\n",
2575 bl->owner->number);
2576 fprintf_filtered (tmp_error_stream,
2577 "Error accessing memory address ");
2578 fputs_filtered (paddress (bl->gdbarch, bl->address),
2579 tmp_error_stream);
2580 fprintf_filtered (tmp_error_stream, ": %s.\n",
2581 safe_strerror (val));
2582 }
2583
2584 }
2585 }
2586 else
2587 bl->inserted = 1;
2588
2589 return val;
2590 }
2591
2592 else if (bl->loc_type == bp_loc_hardware_watchpoint
2593 /* NOTE drow/2003-09-08: This state only exists for removing
2594 watchpoints. It's not clear that it's necessary... */
2595 && bl->owner->disposition != disp_del_at_next_stop)
2596 {
2597 gdb_assert (bl->owner->ops != NULL
2598 && bl->owner->ops->insert_location != NULL);
2599
2600 val = bl->owner->ops->insert_location (bl);
2601
2602 /* If trying to set a read-watchpoint, and it turns out it's not
2603 supported, try emulating one with an access watchpoint. */
2604 if (val == 1 && bl->watchpoint_type == hw_read)
2605 {
2606 struct bp_location *loc, **loc_temp;
2607
2608 /* But don't try to insert it, if there's already another
2609 hw_access location that would be considered a duplicate
2610 of this one. */
2611 ALL_BP_LOCATIONS (loc, loc_temp)
2612 if (loc != bl
2613 && loc->watchpoint_type == hw_access
2614 && watchpoint_locations_match (bl, loc))
2615 {
2616 bl->duplicate = 1;
2617 bl->inserted = 1;
2618 bl->target_info = loc->target_info;
2619 bl->watchpoint_type = hw_access;
2620 val = 0;
2621 break;
2622 }
2623
2624 if (val == 1)
2625 {
2626 bl->watchpoint_type = hw_access;
2627 val = bl->owner->ops->insert_location (bl);
2628
2629 if (val)
2630 /* Back to the original value. */
2631 bl->watchpoint_type = hw_read;
2632 }
2633 }
2634
2635 bl->inserted = (val == 0);
2636 }
2637
2638 else if (bl->owner->type == bp_catchpoint)
2639 {
2640 gdb_assert (bl->owner->ops != NULL
2641 && bl->owner->ops->insert_location != NULL);
2642
2643 val = bl->owner->ops->insert_location (bl);
2644 if (val)
2645 {
2646 bl->owner->enable_state = bp_disabled;
2647
2648 if (val == 1)
2649 warning (_("\
2650 Error inserting catchpoint %d: Your system does not support this type\n\
2651 of catchpoint."), bl->owner->number);
2652 else
2653 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2654 }
2655
2656 bl->inserted = (val == 0);
2657
2658 /* We've already printed an error message if there was a problem
2659 inserting this catchpoint, and we've disabled the catchpoint,
2660 so just return success. */
2661 return 0;
2662 }
2663
2664 return 0;
2665 }
2666
2667 /* This function is called when program space PSPACE is about to be
2668 deleted. It takes care of updating breakpoints to not reference
2669 PSPACE anymore. */
2670
2671 void
2672 breakpoint_program_space_exit (struct program_space *pspace)
2673 {
2674 struct breakpoint *b, *b_temp;
2675 struct bp_location *loc, **loc_temp;
2676
2677 /* Remove any breakpoint that was set through this program space. */
2678 ALL_BREAKPOINTS_SAFE (b, b_temp)
2679 {
2680 if (b->pspace == pspace)
2681 delete_breakpoint (b);
2682 }
2683
2684 /* Breakpoints set through other program spaces could have locations
2685 bound to PSPACE as well. Remove those. */
2686 ALL_BP_LOCATIONS (loc, loc_temp)
2687 {
2688 struct bp_location *tmp;
2689
2690 if (loc->pspace == pspace)
2691 {
2692 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2693 if (loc->owner->loc == loc)
2694 loc->owner->loc = loc->next;
2695 else
2696 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2697 if (tmp->next == loc)
2698 {
2699 tmp->next = loc->next;
2700 break;
2701 }
2702 }
2703 }
2704
2705 /* Now update the global location list to permanently delete the
2706 removed locations above. */
2707 update_global_location_list (0);
2708 }
2709
2710 /* Make sure all breakpoints are inserted in inferior.
2711 Throws exception on any error.
2712 A breakpoint that is already inserted won't be inserted
2713 again, so calling this function twice is safe. */
2714 void
2715 insert_breakpoints (void)
2716 {
2717 struct breakpoint *bpt;
2718
2719 ALL_BREAKPOINTS (bpt)
2720 if (is_hardware_watchpoint (bpt))
2721 {
2722 struct watchpoint *w = (struct watchpoint *) bpt;
2723
2724 update_watchpoint (w, 0 /* don't reparse. */);
2725 }
2726
2727 update_global_location_list (1);
2728
2729 /* update_global_location_list does not insert breakpoints when
2730 always_inserted_mode is not enabled. Explicitly insert them
2731 now. */
2732 if (!breakpoints_always_inserted_mode ())
2733 insert_breakpoint_locations ();
2734 }
2735
2736 /* Invoke CALLBACK for each of bp_location. */
2737
2738 void
2739 iterate_over_bp_locations (walk_bp_location_callback callback)
2740 {
2741 struct bp_location *loc, **loc_tmp;
2742
2743 ALL_BP_LOCATIONS (loc, loc_tmp)
2744 {
2745 callback (loc, NULL);
2746 }
2747 }
2748
2749 /* This is used when we need to synch breakpoint conditions between GDB and the
2750 target. It is the case with deleting and disabling of breakpoints when using
2751 always-inserted mode. */
2752
2753 static void
2754 update_inserted_breakpoint_locations (void)
2755 {
2756 struct bp_location *bl, **blp_tmp;
2757 int error_flag = 0;
2758 int val = 0;
2759 int disabled_breaks = 0;
2760 int hw_breakpoint_error = 0;
2761 int hw_bp_details_reported = 0;
2762
2763 struct ui_file *tmp_error_stream = mem_fileopen ();
2764 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2765
2766 /* Explicitly mark the warning -- this will only be printed if
2767 there was an error. */
2768 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2769
2770 save_current_space_and_thread ();
2771
2772 ALL_BP_LOCATIONS (bl, blp_tmp)
2773 {
2774 /* We only want to update software breakpoints and hardware
2775 breakpoints. */
2776 if (!is_breakpoint (bl->owner))
2777 continue;
2778
2779 /* We only want to update locations that are already inserted
2780 and need updating. This is to avoid unwanted insertion during
2781 deletion of breakpoints. */
2782 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2783 continue;
2784
2785 switch_to_program_space_and_thread (bl->pspace);
2786
2787 /* For targets that support global breakpoints, there's no need
2788 to select an inferior to insert breakpoint to. In fact, even
2789 if we aren't attached to any process yet, we should still
2790 insert breakpoints. */
2791 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2792 && ptid_equal (inferior_ptid, null_ptid))
2793 continue;
2794
2795 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2796 &hw_breakpoint_error, &hw_bp_details_reported);
2797 if (val)
2798 error_flag = val;
2799 }
2800
2801 if (error_flag)
2802 {
2803 target_terminal_ours_for_output ();
2804 error_stream (tmp_error_stream);
2805 }
2806
2807 do_cleanups (cleanups);
2808 }
2809
2810 /* Used when starting or continuing the program. */
2811
2812 static void
2813 insert_breakpoint_locations (void)
2814 {
2815 struct breakpoint *bpt;
2816 struct bp_location *bl, **blp_tmp;
2817 int error_flag = 0;
2818 int val = 0;
2819 int disabled_breaks = 0;
2820 int hw_breakpoint_error = 0;
2821 int hw_bp_error_explained_already = 0;
2822
2823 struct ui_file *tmp_error_stream = mem_fileopen ();
2824 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2825
2826 /* Explicitly mark the warning -- this will only be printed if
2827 there was an error. */
2828 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2829
2830 save_current_space_and_thread ();
2831
2832 ALL_BP_LOCATIONS (bl, blp_tmp)
2833 {
2834 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2835 continue;
2836
2837 /* There is no point inserting thread-specific breakpoints if
2838 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2839 has BL->OWNER always non-NULL. */
2840 if (bl->owner->thread != -1
2841 && !valid_thread_id (bl->owner->thread))
2842 continue;
2843
2844 switch_to_program_space_and_thread (bl->pspace);
2845
2846 /* For targets that support global breakpoints, there's no need
2847 to select an inferior to insert breakpoint to. In fact, even
2848 if we aren't attached to any process yet, we should still
2849 insert breakpoints. */
2850 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2851 && ptid_equal (inferior_ptid, null_ptid))
2852 continue;
2853
2854 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2855 &hw_breakpoint_error, &hw_bp_error_explained_already);
2856 if (val)
2857 error_flag = val;
2858 }
2859
2860 /* If we failed to insert all locations of a watchpoint, remove
2861 them, as half-inserted watchpoint is of limited use. */
2862 ALL_BREAKPOINTS (bpt)
2863 {
2864 int some_failed = 0;
2865 struct bp_location *loc;
2866
2867 if (!is_hardware_watchpoint (bpt))
2868 continue;
2869
2870 if (!breakpoint_enabled (bpt))
2871 continue;
2872
2873 if (bpt->disposition == disp_del_at_next_stop)
2874 continue;
2875
2876 for (loc = bpt->loc; loc; loc = loc->next)
2877 if (!loc->inserted && should_be_inserted (loc))
2878 {
2879 some_failed = 1;
2880 break;
2881 }
2882 if (some_failed)
2883 {
2884 for (loc = bpt->loc; loc; loc = loc->next)
2885 if (loc->inserted)
2886 remove_breakpoint (loc, mark_uninserted);
2887
2888 hw_breakpoint_error = 1;
2889 fprintf_unfiltered (tmp_error_stream,
2890 "Could not insert hardware watchpoint %d.\n",
2891 bpt->number);
2892 error_flag = -1;
2893 }
2894 }
2895
2896 if (error_flag)
2897 {
2898 /* If a hardware breakpoint or watchpoint was inserted, add a
2899 message about possibly exhausted resources. */
2900 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2901 {
2902 fprintf_unfiltered (tmp_error_stream,
2903 "Could not insert hardware breakpoints:\n\
2904 You may have requested too many hardware breakpoints/watchpoints.\n");
2905 }
2906 target_terminal_ours_for_output ();
2907 error_stream (tmp_error_stream);
2908 }
2909
2910 do_cleanups (cleanups);
2911 }
2912
2913 /* Used when the program stops.
2914 Returns zero if successful, or non-zero if there was a problem
2915 removing a breakpoint location. */
2916
2917 int
2918 remove_breakpoints (void)
2919 {
2920 struct bp_location *bl, **blp_tmp;
2921 int val = 0;
2922
2923 ALL_BP_LOCATIONS (bl, blp_tmp)
2924 {
2925 if (bl->inserted && !is_tracepoint (bl->owner))
2926 val |= remove_breakpoint (bl, mark_uninserted);
2927 }
2928 return val;
2929 }
2930
2931 /* When a thread exits, remove breakpoints that are related to
2932 that thread. */
2933
2934 static void
2935 remove_threaded_breakpoints (struct thread_info *tp, int silent)
2936 {
2937 struct breakpoint *b, *b_tmp;
2938
2939 ALL_BREAKPOINTS_SAFE (b, b_tmp)
2940 {
2941 if (b->thread == tp->num)
2942 {
2943 b->disposition = disp_del_at_next_stop;
2944
2945 printf_filtered (_("\
2946 Thread-specific breakpoint %d deleted - thread %d is gone.\n"),
2947 b->number, tp->num);
2948
2949 /* Hide it from the user. */
2950 b->number = 0;
2951 }
2952 }
2953 }
2954
2955 /* Remove breakpoints of process PID. */
2956
2957 int
2958 remove_breakpoints_pid (int pid)
2959 {
2960 struct bp_location *bl, **blp_tmp;
2961 int val;
2962 struct inferior *inf = find_inferior_pid (pid);
2963
2964 ALL_BP_LOCATIONS (bl, blp_tmp)
2965 {
2966 if (bl->pspace != inf->pspace)
2967 continue;
2968
2969 if (bl->owner->type == bp_dprintf)
2970 continue;
2971
2972 if (bl->inserted)
2973 {
2974 val = remove_breakpoint (bl, mark_uninserted);
2975 if (val != 0)
2976 return val;
2977 }
2978 }
2979 return 0;
2980 }
2981
2982 int
2983 reattach_breakpoints (int pid)
2984 {
2985 struct cleanup *old_chain;
2986 struct bp_location *bl, **blp_tmp;
2987 int val;
2988 struct ui_file *tmp_error_stream;
2989 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2990 struct inferior *inf;
2991 struct thread_info *tp;
2992
2993 tp = any_live_thread_of_process (pid);
2994 if (tp == NULL)
2995 return 1;
2996
2997 inf = find_inferior_pid (pid);
2998 old_chain = save_inferior_ptid ();
2999
3000 inferior_ptid = tp->ptid;
3001
3002 tmp_error_stream = mem_fileopen ();
3003 make_cleanup_ui_file_delete (tmp_error_stream);
3004
3005 ALL_BP_LOCATIONS (bl, blp_tmp)
3006 {
3007 if (bl->pspace != inf->pspace)
3008 continue;
3009
3010 if (bl->inserted)
3011 {
3012 bl->inserted = 0;
3013 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3014 if (val != 0)
3015 {
3016 do_cleanups (old_chain);
3017 return val;
3018 }
3019 }
3020 }
3021 do_cleanups (old_chain);
3022 return 0;
3023 }
3024
3025 static int internal_breakpoint_number = -1;
3026
3027 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3028 If INTERNAL is non-zero, the breakpoint number will be populated
3029 from internal_breakpoint_number and that variable decremented.
3030 Otherwise the breakpoint number will be populated from
3031 breakpoint_count and that value incremented. Internal breakpoints
3032 do not set the internal var bpnum. */
3033 static void
3034 set_breakpoint_number (int internal, struct breakpoint *b)
3035 {
3036 if (internal)
3037 b->number = internal_breakpoint_number--;
3038 else
3039 {
3040 set_breakpoint_count (breakpoint_count + 1);
3041 b->number = breakpoint_count;
3042 }
3043 }
3044
3045 static struct breakpoint *
3046 create_internal_breakpoint (struct gdbarch *gdbarch,
3047 CORE_ADDR address, enum bptype type,
3048 const struct breakpoint_ops *ops)
3049 {
3050 struct symtab_and_line sal;
3051 struct breakpoint *b;
3052
3053 init_sal (&sal); /* Initialize to zeroes. */
3054
3055 sal.pc = address;
3056 sal.section = find_pc_overlay (sal.pc);
3057 sal.pspace = current_program_space;
3058
3059 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3060 b->number = internal_breakpoint_number--;
3061 b->disposition = disp_donttouch;
3062
3063 return b;
3064 }
3065
3066 static const char *const longjmp_names[] =
3067 {
3068 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3069 };
3070 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3071
3072 /* Per-objfile data private to breakpoint.c. */
3073 struct breakpoint_objfile_data
3074 {
3075 /* Minimal symbol for "_ovly_debug_event" (if any). */
3076 struct minimal_symbol *overlay_msym;
3077
3078 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3079 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3080
3081 /* True if we have looked for longjmp probes. */
3082 int longjmp_searched;
3083
3084 /* SystemTap probe points for longjmp (if any). */
3085 VEC (probe_p) *longjmp_probes;
3086
3087 /* Minimal symbol for "std::terminate()" (if any). */
3088 struct minimal_symbol *terminate_msym;
3089
3090 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3091 struct minimal_symbol *exception_msym;
3092
3093 /* True if we have looked for exception probes. */
3094 int exception_searched;
3095
3096 /* SystemTap probe points for unwinding (if any). */
3097 VEC (probe_p) *exception_probes;
3098 };
3099
3100 static const struct objfile_data *breakpoint_objfile_key;
3101
3102 /* Minimal symbol not found sentinel. */
3103 static struct minimal_symbol msym_not_found;
3104
3105 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3106
3107 static int
3108 msym_not_found_p (const struct minimal_symbol *msym)
3109 {
3110 return msym == &msym_not_found;
3111 }
3112
3113 /* Return per-objfile data needed by breakpoint.c.
3114 Allocate the data if necessary. */
3115
3116 static struct breakpoint_objfile_data *
3117 get_breakpoint_objfile_data (struct objfile *objfile)
3118 {
3119 struct breakpoint_objfile_data *bp_objfile_data;
3120
3121 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3122 if (bp_objfile_data == NULL)
3123 {
3124 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3125 sizeof (*bp_objfile_data));
3126
3127 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3128 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3129 }
3130 return bp_objfile_data;
3131 }
3132
3133 static void
3134 free_breakpoint_probes (struct objfile *obj, void *data)
3135 {
3136 struct breakpoint_objfile_data *bp_objfile_data = data;
3137
3138 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3139 VEC_free (probe_p, bp_objfile_data->exception_probes);
3140 }
3141
3142 static void
3143 create_overlay_event_breakpoint (void)
3144 {
3145 struct objfile *objfile;
3146 const char *const func_name = "_ovly_debug_event";
3147
3148 ALL_OBJFILES (objfile)
3149 {
3150 struct breakpoint *b;
3151 struct breakpoint_objfile_data *bp_objfile_data;
3152 CORE_ADDR addr;
3153
3154 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3155
3156 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3157 continue;
3158
3159 if (bp_objfile_data->overlay_msym == NULL)
3160 {
3161 struct minimal_symbol *m;
3162
3163 m = lookup_minimal_symbol_text (func_name, objfile);
3164 if (m == NULL)
3165 {
3166 /* Avoid future lookups in this objfile. */
3167 bp_objfile_data->overlay_msym = &msym_not_found;
3168 continue;
3169 }
3170 bp_objfile_data->overlay_msym = m;
3171 }
3172
3173 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3174 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3175 bp_overlay_event,
3176 &internal_breakpoint_ops);
3177 b->addr_string = xstrdup (func_name);
3178
3179 if (overlay_debugging == ovly_auto)
3180 {
3181 b->enable_state = bp_enabled;
3182 overlay_events_enabled = 1;
3183 }
3184 else
3185 {
3186 b->enable_state = bp_disabled;
3187 overlay_events_enabled = 0;
3188 }
3189 }
3190 update_global_location_list (1);
3191 }
3192
3193 static void
3194 create_longjmp_master_breakpoint (void)
3195 {
3196 struct program_space *pspace;
3197 struct cleanup *old_chain;
3198
3199 old_chain = save_current_program_space ();
3200
3201 ALL_PSPACES (pspace)
3202 {
3203 struct objfile *objfile;
3204
3205 set_current_program_space (pspace);
3206
3207 ALL_OBJFILES (objfile)
3208 {
3209 int i;
3210 struct gdbarch *gdbarch;
3211 struct breakpoint_objfile_data *bp_objfile_data;
3212
3213 gdbarch = get_objfile_arch (objfile);
3214 if (!gdbarch_get_longjmp_target_p (gdbarch))
3215 continue;
3216
3217 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3218
3219 if (!bp_objfile_data->longjmp_searched)
3220 {
3221 VEC (probe_p) *ret;
3222
3223 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3224 if (ret != NULL)
3225 {
3226 /* We are only interested in checking one element. */
3227 struct probe *p = VEC_index (probe_p, ret, 0);
3228
3229 if (!can_evaluate_probe_arguments (p))
3230 {
3231 /* We cannot use the probe interface here, because it does
3232 not know how to evaluate arguments. */
3233 VEC_free (probe_p, ret);
3234 ret = NULL;
3235 }
3236 }
3237 bp_objfile_data->longjmp_probes = ret;
3238 bp_objfile_data->longjmp_searched = 1;
3239 }
3240
3241 if (bp_objfile_data->longjmp_probes != NULL)
3242 {
3243 int i;
3244 struct probe *probe;
3245 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3246
3247 for (i = 0;
3248 VEC_iterate (probe_p,
3249 bp_objfile_data->longjmp_probes,
3250 i, probe);
3251 ++i)
3252 {
3253 struct breakpoint *b;
3254
3255 b = create_internal_breakpoint (gdbarch, probe->address,
3256 bp_longjmp_master,
3257 &internal_breakpoint_ops);
3258 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3259 b->enable_state = bp_disabled;
3260 }
3261
3262 continue;
3263 }
3264
3265 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3266 {
3267 struct breakpoint *b;
3268 const char *func_name;
3269 CORE_ADDR addr;
3270
3271 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3272 continue;
3273
3274 func_name = longjmp_names[i];
3275 if (bp_objfile_data->longjmp_msym[i] == NULL)
3276 {
3277 struct minimal_symbol *m;
3278
3279 m = lookup_minimal_symbol_text (func_name, objfile);
3280 if (m == NULL)
3281 {
3282 /* Prevent future lookups in this objfile. */
3283 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3284 continue;
3285 }
3286 bp_objfile_data->longjmp_msym[i] = m;
3287 }
3288
3289 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3290 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3291 &internal_breakpoint_ops);
3292 b->addr_string = xstrdup (func_name);
3293 b->enable_state = bp_disabled;
3294 }
3295 }
3296 }
3297 update_global_location_list (1);
3298
3299 do_cleanups (old_chain);
3300 }
3301
3302 /* Create a master std::terminate breakpoint. */
3303 static void
3304 create_std_terminate_master_breakpoint (void)
3305 {
3306 struct program_space *pspace;
3307 struct cleanup *old_chain;
3308 const char *const func_name = "std::terminate()";
3309
3310 old_chain = save_current_program_space ();
3311
3312 ALL_PSPACES (pspace)
3313 {
3314 struct objfile *objfile;
3315 CORE_ADDR addr;
3316
3317 set_current_program_space (pspace);
3318
3319 ALL_OBJFILES (objfile)
3320 {
3321 struct breakpoint *b;
3322 struct breakpoint_objfile_data *bp_objfile_data;
3323
3324 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3325
3326 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3327 continue;
3328
3329 if (bp_objfile_data->terminate_msym == NULL)
3330 {
3331 struct minimal_symbol *m;
3332
3333 m = lookup_minimal_symbol (func_name, NULL, objfile);
3334 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3335 && MSYMBOL_TYPE (m) != mst_file_text))
3336 {
3337 /* Prevent future lookups in this objfile. */
3338 bp_objfile_data->terminate_msym = &msym_not_found;
3339 continue;
3340 }
3341 bp_objfile_data->terminate_msym = m;
3342 }
3343
3344 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3345 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3346 bp_std_terminate_master,
3347 &internal_breakpoint_ops);
3348 b->addr_string = xstrdup (func_name);
3349 b->enable_state = bp_disabled;
3350 }
3351 }
3352
3353 update_global_location_list (1);
3354
3355 do_cleanups (old_chain);
3356 }
3357
3358 /* Install a master breakpoint on the unwinder's debug hook. */
3359
3360 static void
3361 create_exception_master_breakpoint (void)
3362 {
3363 struct objfile *objfile;
3364 const char *const func_name = "_Unwind_DebugHook";
3365
3366 ALL_OBJFILES (objfile)
3367 {
3368 struct breakpoint *b;
3369 struct gdbarch *gdbarch;
3370 struct breakpoint_objfile_data *bp_objfile_data;
3371 CORE_ADDR addr;
3372
3373 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3374
3375 /* We prefer the SystemTap probe point if it exists. */
3376 if (!bp_objfile_data->exception_searched)
3377 {
3378 VEC (probe_p) *ret;
3379
3380 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3381
3382 if (ret != NULL)
3383 {
3384 /* We are only interested in checking one element. */
3385 struct probe *p = VEC_index (probe_p, ret, 0);
3386
3387 if (!can_evaluate_probe_arguments (p))
3388 {
3389 /* We cannot use the probe interface here, because it does
3390 not know how to evaluate arguments. */
3391 VEC_free (probe_p, ret);
3392 ret = NULL;
3393 }
3394 }
3395 bp_objfile_data->exception_probes = ret;
3396 bp_objfile_data->exception_searched = 1;
3397 }
3398
3399 if (bp_objfile_data->exception_probes != NULL)
3400 {
3401 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3402 int i;
3403 struct probe *probe;
3404
3405 for (i = 0;
3406 VEC_iterate (probe_p,
3407 bp_objfile_data->exception_probes,
3408 i, probe);
3409 ++i)
3410 {
3411 struct breakpoint *b;
3412
3413 b = create_internal_breakpoint (gdbarch, probe->address,
3414 bp_exception_master,
3415 &internal_breakpoint_ops);
3416 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3417 b->enable_state = bp_disabled;
3418 }
3419
3420 continue;
3421 }
3422
3423 /* Otherwise, try the hook function. */
3424
3425 if (msym_not_found_p (bp_objfile_data->exception_msym))
3426 continue;
3427
3428 gdbarch = get_objfile_arch (objfile);
3429
3430 if (bp_objfile_data->exception_msym == NULL)
3431 {
3432 struct minimal_symbol *debug_hook;
3433
3434 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3435 if (debug_hook == NULL)
3436 {
3437 bp_objfile_data->exception_msym = &msym_not_found;
3438 continue;
3439 }
3440
3441 bp_objfile_data->exception_msym = debug_hook;
3442 }
3443
3444 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3445 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3446 &current_target);
3447 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3448 &internal_breakpoint_ops);
3449 b->addr_string = xstrdup (func_name);
3450 b->enable_state = bp_disabled;
3451 }
3452
3453 update_global_location_list (1);
3454 }
3455
3456 void
3457 update_breakpoints_after_exec (void)
3458 {
3459 struct breakpoint *b, *b_tmp;
3460 struct bp_location *bploc, **bplocp_tmp;
3461
3462 /* We're about to delete breakpoints from GDB's lists. If the
3463 INSERTED flag is true, GDB will try to lift the breakpoints by
3464 writing the breakpoints' "shadow contents" back into memory. The
3465 "shadow contents" are NOT valid after an exec, so GDB should not
3466 do that. Instead, the target is responsible from marking
3467 breakpoints out as soon as it detects an exec. We don't do that
3468 here instead, because there may be other attempts to delete
3469 breakpoints after detecting an exec and before reaching here. */
3470 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3471 if (bploc->pspace == current_program_space)
3472 gdb_assert (!bploc->inserted);
3473
3474 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3475 {
3476 if (b->pspace != current_program_space)
3477 continue;
3478
3479 /* Solib breakpoints must be explicitly reset after an exec(). */
3480 if (b->type == bp_shlib_event)
3481 {
3482 delete_breakpoint (b);
3483 continue;
3484 }
3485
3486 /* JIT breakpoints must be explicitly reset after an exec(). */
3487 if (b->type == bp_jit_event)
3488 {
3489 delete_breakpoint (b);
3490 continue;
3491 }
3492
3493 /* Thread event breakpoints must be set anew after an exec(),
3494 as must overlay event and longjmp master breakpoints. */
3495 if (b->type == bp_thread_event || b->type == bp_overlay_event
3496 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3497 || b->type == bp_exception_master)
3498 {
3499 delete_breakpoint (b);
3500 continue;
3501 }
3502
3503 /* Step-resume breakpoints are meaningless after an exec(). */
3504 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3505 {
3506 delete_breakpoint (b);
3507 continue;
3508 }
3509
3510 /* Longjmp and longjmp-resume breakpoints are also meaningless
3511 after an exec. */
3512 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3513 || b->type == bp_longjmp_call_dummy
3514 || b->type == bp_exception || b->type == bp_exception_resume)
3515 {
3516 delete_breakpoint (b);
3517 continue;
3518 }
3519
3520 if (b->type == bp_catchpoint)
3521 {
3522 /* For now, none of the bp_catchpoint breakpoints need to
3523 do anything at this point. In the future, if some of
3524 the catchpoints need to something, we will need to add
3525 a new method, and call this method from here. */
3526 continue;
3527 }
3528
3529 /* bp_finish is a special case. The only way we ought to be able
3530 to see one of these when an exec() has happened, is if the user
3531 caught a vfork, and then said "finish". Ordinarily a finish just
3532 carries them to the call-site of the current callee, by setting
3533 a temporary bp there and resuming. But in this case, the finish
3534 will carry them entirely through the vfork & exec.
3535
3536 We don't want to allow a bp_finish to remain inserted now. But
3537 we can't safely delete it, 'cause finish_command has a handle to
3538 the bp on a bpstat, and will later want to delete it. There's a
3539 chance (and I've seen it happen) that if we delete the bp_finish
3540 here, that its storage will get reused by the time finish_command
3541 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3542 We really must allow finish_command to delete a bp_finish.
3543
3544 In the absence of a general solution for the "how do we know
3545 it's safe to delete something others may have handles to?"
3546 problem, what we'll do here is just uninsert the bp_finish, and
3547 let finish_command delete it.
3548
3549 (We know the bp_finish is "doomed" in the sense that it's
3550 momentary, and will be deleted as soon as finish_command sees
3551 the inferior stopped. So it doesn't matter that the bp's
3552 address is probably bogus in the new a.out, unlike e.g., the
3553 solib breakpoints.) */
3554
3555 if (b->type == bp_finish)
3556 {
3557 continue;
3558 }
3559
3560 /* Without a symbolic address, we have little hope of the
3561 pre-exec() address meaning the same thing in the post-exec()
3562 a.out. */
3563 if (b->addr_string == NULL)
3564 {
3565 delete_breakpoint (b);
3566 continue;
3567 }
3568 }
3569 /* FIXME what about longjmp breakpoints? Re-create them here? */
3570 create_overlay_event_breakpoint ();
3571 create_longjmp_master_breakpoint ();
3572 create_std_terminate_master_breakpoint ();
3573 create_exception_master_breakpoint ();
3574 }
3575
3576 int
3577 detach_breakpoints (ptid_t ptid)
3578 {
3579 struct bp_location *bl, **blp_tmp;
3580 int val = 0;
3581 struct cleanup *old_chain = save_inferior_ptid ();
3582 struct inferior *inf = current_inferior ();
3583
3584 if (PIDGET (ptid) == PIDGET (inferior_ptid))
3585 error (_("Cannot detach breakpoints of inferior_ptid"));
3586
3587 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3588 inferior_ptid = ptid;
3589 ALL_BP_LOCATIONS (bl, blp_tmp)
3590 {
3591 if (bl->pspace != inf->pspace)
3592 continue;
3593
3594 /* This function must physically remove breakpoints locations
3595 from the specified ptid, without modifying the breakpoint
3596 package's state. Locations of type bp_loc_other are only
3597 maintained at GDB side. So, there is no need to remove
3598 these bp_loc_other locations. Moreover, removing these
3599 would modify the breakpoint package's state. */
3600 if (bl->loc_type == bp_loc_other)
3601 continue;
3602
3603 if (bl->inserted)
3604 val |= remove_breakpoint_1 (bl, mark_inserted);
3605 }
3606
3607 /* Detach single-step breakpoints as well. */
3608 detach_single_step_breakpoints ();
3609
3610 do_cleanups (old_chain);
3611 return val;
3612 }
3613
3614 /* Remove the breakpoint location BL from the current address space.
3615 Note that this is used to detach breakpoints from a child fork.
3616 When we get here, the child isn't in the inferior list, and neither
3617 do we have objects to represent its address space --- we should
3618 *not* look at bl->pspace->aspace here. */
3619
3620 static int
3621 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3622 {
3623 int val;
3624
3625 /* BL is never in moribund_locations by our callers. */
3626 gdb_assert (bl->owner != NULL);
3627
3628 if (bl->owner->enable_state == bp_permanent)
3629 /* Permanent breakpoints cannot be inserted or removed. */
3630 return 0;
3631
3632 /* The type of none suggests that owner is actually deleted.
3633 This should not ever happen. */
3634 gdb_assert (bl->owner->type != bp_none);
3635
3636 if (bl->loc_type == bp_loc_software_breakpoint
3637 || bl->loc_type == bp_loc_hardware_breakpoint)
3638 {
3639 /* "Normal" instruction breakpoint: either the standard
3640 trap-instruction bp (bp_breakpoint), or a
3641 bp_hardware_breakpoint. */
3642
3643 /* First check to see if we have to handle an overlay. */
3644 if (overlay_debugging == ovly_off
3645 || bl->section == NULL
3646 || !(section_is_overlay (bl->section)))
3647 {
3648 /* No overlay handling: just remove the breakpoint. */
3649 val = bl->owner->ops->remove_location (bl);
3650 }
3651 else
3652 {
3653 /* This breakpoint is in an overlay section.
3654 Did we set a breakpoint at the LMA? */
3655 if (!overlay_events_enabled)
3656 {
3657 /* Yes -- overlay event support is not active, so we
3658 should have set a breakpoint at the LMA. Remove it.
3659 */
3660 /* Ignore any failures: if the LMA is in ROM, we will
3661 have already warned when we failed to insert it. */
3662 if (bl->loc_type == bp_loc_hardware_breakpoint)
3663 target_remove_hw_breakpoint (bl->gdbarch,
3664 &bl->overlay_target_info);
3665 else
3666 target_remove_breakpoint (bl->gdbarch,
3667 &bl->overlay_target_info);
3668 }
3669 /* Did we set a breakpoint at the VMA?
3670 If so, we will have marked the breakpoint 'inserted'. */
3671 if (bl->inserted)
3672 {
3673 /* Yes -- remove it. Previously we did not bother to
3674 remove the breakpoint if the section had been
3675 unmapped, but let's not rely on that being safe. We
3676 don't know what the overlay manager might do. */
3677
3678 /* However, we should remove *software* breakpoints only
3679 if the section is still mapped, or else we overwrite
3680 wrong code with the saved shadow contents. */
3681 if (bl->loc_type == bp_loc_hardware_breakpoint
3682 || section_is_mapped (bl->section))
3683 val = bl->owner->ops->remove_location (bl);
3684 else
3685 val = 0;
3686 }
3687 else
3688 {
3689 /* No -- not inserted, so no need to remove. No error. */
3690 val = 0;
3691 }
3692 }
3693
3694 /* In some cases, we might not be able to remove a breakpoint
3695 in a shared library that has already been removed, but we
3696 have not yet processed the shlib unload event. */
3697 if (val && solib_name_from_address (bl->pspace, bl->address))
3698 val = 0;
3699
3700 if (val)
3701 return val;
3702 bl->inserted = (is == mark_inserted);
3703 }
3704 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3705 {
3706 gdb_assert (bl->owner->ops != NULL
3707 && bl->owner->ops->remove_location != NULL);
3708
3709 bl->inserted = (is == mark_inserted);
3710 bl->owner->ops->remove_location (bl);
3711
3712 /* Failure to remove any of the hardware watchpoints comes here. */
3713 if ((is == mark_uninserted) && (bl->inserted))
3714 warning (_("Could not remove hardware watchpoint %d."),
3715 bl->owner->number);
3716 }
3717 else if (bl->owner->type == bp_catchpoint
3718 && breakpoint_enabled (bl->owner)
3719 && !bl->duplicate)
3720 {
3721 gdb_assert (bl->owner->ops != NULL
3722 && bl->owner->ops->remove_location != NULL);
3723
3724 val = bl->owner->ops->remove_location (bl);
3725 if (val)
3726 return val;
3727
3728 bl->inserted = (is == mark_inserted);
3729 }
3730
3731 return 0;
3732 }
3733
3734 static int
3735 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3736 {
3737 int ret;
3738 struct cleanup *old_chain;
3739
3740 /* BL is never in moribund_locations by our callers. */
3741 gdb_assert (bl->owner != NULL);
3742
3743 if (bl->owner->enable_state == bp_permanent)
3744 /* Permanent breakpoints cannot be inserted or removed. */
3745 return 0;
3746
3747 /* The type of none suggests that owner is actually deleted.
3748 This should not ever happen. */
3749 gdb_assert (bl->owner->type != bp_none);
3750
3751 old_chain = save_current_space_and_thread ();
3752
3753 switch_to_program_space_and_thread (bl->pspace);
3754
3755 ret = remove_breakpoint_1 (bl, is);
3756
3757 do_cleanups (old_chain);
3758 return ret;
3759 }
3760
3761 /* Clear the "inserted" flag in all breakpoints. */
3762
3763 void
3764 mark_breakpoints_out (void)
3765 {
3766 struct bp_location *bl, **blp_tmp;
3767
3768 ALL_BP_LOCATIONS (bl, blp_tmp)
3769 if (bl->pspace == current_program_space)
3770 bl->inserted = 0;
3771 }
3772
3773 /* Clear the "inserted" flag in all breakpoints and delete any
3774 breakpoints which should go away between runs of the program.
3775
3776 Plus other such housekeeping that has to be done for breakpoints
3777 between runs.
3778
3779 Note: this function gets called at the end of a run (by
3780 generic_mourn_inferior) and when a run begins (by
3781 init_wait_for_inferior). */
3782
3783
3784
3785 void
3786 breakpoint_init_inferior (enum inf_context context)
3787 {
3788 struct breakpoint *b, *b_tmp;
3789 struct bp_location *bl, **blp_tmp;
3790 int ix;
3791 struct program_space *pspace = current_program_space;
3792
3793 /* If breakpoint locations are shared across processes, then there's
3794 nothing to do. */
3795 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3796 return;
3797
3798 ALL_BP_LOCATIONS (bl, blp_tmp)
3799 {
3800 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3801 if (bl->pspace == pspace
3802 && bl->owner->enable_state != bp_permanent)
3803 bl->inserted = 0;
3804 }
3805
3806 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3807 {
3808 if (b->loc && b->loc->pspace != pspace)
3809 continue;
3810
3811 switch (b->type)
3812 {
3813 case bp_call_dummy:
3814 case bp_longjmp_call_dummy:
3815
3816 /* If the call dummy breakpoint is at the entry point it will
3817 cause problems when the inferior is rerun, so we better get
3818 rid of it. */
3819
3820 case bp_watchpoint_scope:
3821
3822 /* Also get rid of scope breakpoints. */
3823
3824 case bp_shlib_event:
3825
3826 /* Also remove solib event breakpoints. Their addresses may
3827 have changed since the last time we ran the program.
3828 Actually we may now be debugging against different target;
3829 and so the solib backend that installed this breakpoint may
3830 not be used in by the target. E.g.,
3831
3832 (gdb) file prog-linux
3833 (gdb) run # native linux target
3834 ...
3835 (gdb) kill
3836 (gdb) file prog-win.exe
3837 (gdb) tar rem :9999 # remote Windows gdbserver.
3838 */
3839
3840 case bp_step_resume:
3841
3842 /* Also remove step-resume breakpoints. */
3843
3844 delete_breakpoint (b);
3845 break;
3846
3847 case bp_watchpoint:
3848 case bp_hardware_watchpoint:
3849 case bp_read_watchpoint:
3850 case bp_access_watchpoint:
3851 {
3852 struct watchpoint *w = (struct watchpoint *) b;
3853
3854 /* Likewise for watchpoints on local expressions. */
3855 if (w->exp_valid_block != NULL)
3856 delete_breakpoint (b);
3857 else if (context == inf_starting)
3858 {
3859 /* Reset val field to force reread of starting value in
3860 insert_breakpoints. */
3861 if (w->val)
3862 value_free (w->val);
3863 w->val = NULL;
3864 w->val_valid = 0;
3865 }
3866 }
3867 break;
3868 default:
3869 break;
3870 }
3871 }
3872
3873 /* Get rid of the moribund locations. */
3874 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3875 decref_bp_location (&bl);
3876 VEC_free (bp_location_p, moribund_locations);
3877 }
3878
3879 /* These functions concern about actual breakpoints inserted in the
3880 target --- to e.g. check if we need to do decr_pc adjustment or if
3881 we need to hop over the bkpt --- so we check for address space
3882 match, not program space. */
3883
3884 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3885 exists at PC. It returns ordinary_breakpoint_here if it's an
3886 ordinary breakpoint, or permanent_breakpoint_here if it's a
3887 permanent breakpoint.
3888 - When continuing from a location with an ordinary breakpoint, we
3889 actually single step once before calling insert_breakpoints.
3890 - When continuing from a location with a permanent breakpoint, we
3891 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3892 the target, to advance the PC past the breakpoint. */
3893
3894 enum breakpoint_here
3895 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3896 {
3897 struct bp_location *bl, **blp_tmp;
3898 int any_breakpoint_here = 0;
3899
3900 ALL_BP_LOCATIONS (bl, blp_tmp)
3901 {
3902 if (bl->loc_type != bp_loc_software_breakpoint
3903 && bl->loc_type != bp_loc_hardware_breakpoint)
3904 continue;
3905
3906 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3907 if ((breakpoint_enabled (bl->owner)
3908 || bl->owner->enable_state == bp_permanent)
3909 && breakpoint_location_address_match (bl, aspace, pc))
3910 {
3911 if (overlay_debugging
3912 && section_is_overlay (bl->section)
3913 && !section_is_mapped (bl->section))
3914 continue; /* unmapped overlay -- can't be a match */
3915 else if (bl->owner->enable_state == bp_permanent)
3916 return permanent_breakpoint_here;
3917 else
3918 any_breakpoint_here = 1;
3919 }
3920 }
3921
3922 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3923 }
3924
3925 /* Return true if there's a moribund breakpoint at PC. */
3926
3927 int
3928 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3929 {
3930 struct bp_location *loc;
3931 int ix;
3932
3933 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3934 if (breakpoint_location_address_match (loc, aspace, pc))
3935 return 1;
3936
3937 return 0;
3938 }
3939
3940 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3941 inserted using regular breakpoint_chain / bp_location array
3942 mechanism. This does not check for single-step breakpoints, which
3943 are inserted and removed using direct target manipulation. */
3944
3945 int
3946 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3947 CORE_ADDR pc)
3948 {
3949 struct bp_location *bl, **blp_tmp;
3950
3951 ALL_BP_LOCATIONS (bl, blp_tmp)
3952 {
3953 if (bl->loc_type != bp_loc_software_breakpoint
3954 && bl->loc_type != bp_loc_hardware_breakpoint)
3955 continue;
3956
3957 if (bl->inserted
3958 && breakpoint_location_address_match (bl, aspace, pc))
3959 {
3960 if (overlay_debugging
3961 && section_is_overlay (bl->section)
3962 && !section_is_mapped (bl->section))
3963 continue; /* unmapped overlay -- can't be a match */
3964 else
3965 return 1;
3966 }
3967 }
3968 return 0;
3969 }
3970
3971 /* Returns non-zero iff there's either regular breakpoint
3972 or a single step breakpoint inserted at PC. */
3973
3974 int
3975 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3976 {
3977 if (regular_breakpoint_inserted_here_p (aspace, pc))
3978 return 1;
3979
3980 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3981 return 1;
3982
3983 return 0;
3984 }
3985
3986 /* This function returns non-zero iff there is a software breakpoint
3987 inserted at PC. */
3988
3989 int
3990 software_breakpoint_inserted_here_p (struct address_space *aspace,
3991 CORE_ADDR pc)
3992 {
3993 struct bp_location *bl, **blp_tmp;
3994
3995 ALL_BP_LOCATIONS (bl, blp_tmp)
3996 {
3997 if (bl->loc_type != bp_loc_software_breakpoint)
3998 continue;
3999
4000 if (bl->inserted
4001 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4002 aspace, pc))
4003 {
4004 if (overlay_debugging
4005 && section_is_overlay (bl->section)
4006 && !section_is_mapped (bl->section))
4007 continue; /* unmapped overlay -- can't be a match */
4008 else
4009 return 1;
4010 }
4011 }
4012
4013 /* Also check for software single-step breakpoints. */
4014 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4015 return 1;
4016
4017 return 0;
4018 }
4019
4020 int
4021 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4022 CORE_ADDR addr, ULONGEST len)
4023 {
4024 struct breakpoint *bpt;
4025
4026 ALL_BREAKPOINTS (bpt)
4027 {
4028 struct bp_location *loc;
4029
4030 if (bpt->type != bp_hardware_watchpoint
4031 && bpt->type != bp_access_watchpoint)
4032 continue;
4033
4034 if (!breakpoint_enabled (bpt))
4035 continue;
4036
4037 for (loc = bpt->loc; loc; loc = loc->next)
4038 if (loc->pspace->aspace == aspace && loc->inserted)
4039 {
4040 CORE_ADDR l, h;
4041
4042 /* Check for intersection. */
4043 l = max (loc->address, addr);
4044 h = min (loc->address + loc->length, addr + len);
4045 if (l < h)
4046 return 1;
4047 }
4048 }
4049 return 0;
4050 }
4051
4052 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4053 PC is valid for process/thread PTID. */
4054
4055 int
4056 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4057 ptid_t ptid)
4058 {
4059 struct bp_location *bl, **blp_tmp;
4060 /* The thread and task IDs associated to PTID, computed lazily. */
4061 int thread = -1;
4062 int task = 0;
4063
4064 ALL_BP_LOCATIONS (bl, blp_tmp)
4065 {
4066 if (bl->loc_type != bp_loc_software_breakpoint
4067 && bl->loc_type != bp_loc_hardware_breakpoint)
4068 continue;
4069
4070 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4071 if (!breakpoint_enabled (bl->owner)
4072 && bl->owner->enable_state != bp_permanent)
4073 continue;
4074
4075 if (!breakpoint_location_address_match (bl, aspace, pc))
4076 continue;
4077
4078 if (bl->owner->thread != -1)
4079 {
4080 /* This is a thread-specific breakpoint. Check that ptid
4081 matches that thread. If thread hasn't been computed yet,
4082 it is now time to do so. */
4083 if (thread == -1)
4084 thread = pid_to_thread_id (ptid);
4085 if (bl->owner->thread != thread)
4086 continue;
4087 }
4088
4089 if (bl->owner->task != 0)
4090 {
4091 /* This is a task-specific breakpoint. Check that ptid
4092 matches that task. If task hasn't been computed yet,
4093 it is now time to do so. */
4094 if (task == 0)
4095 task = ada_get_task_number (ptid);
4096 if (bl->owner->task != task)
4097 continue;
4098 }
4099
4100 if (overlay_debugging
4101 && section_is_overlay (bl->section)
4102 && !section_is_mapped (bl->section))
4103 continue; /* unmapped overlay -- can't be a match */
4104
4105 return 1;
4106 }
4107
4108 return 0;
4109 }
4110 \f
4111
4112 /* bpstat stuff. External routines' interfaces are documented
4113 in breakpoint.h. */
4114
4115 int
4116 is_catchpoint (struct breakpoint *ep)
4117 {
4118 return (ep->type == bp_catchpoint);
4119 }
4120
4121 /* Frees any storage that is part of a bpstat. Does not walk the
4122 'next' chain. */
4123
4124 static void
4125 bpstat_free (bpstat bs)
4126 {
4127 if (bs->old_val != NULL)
4128 value_free (bs->old_val);
4129 decref_counted_command_line (&bs->commands);
4130 decref_bp_location (&bs->bp_location_at);
4131 xfree (bs);
4132 }
4133
4134 /* Clear a bpstat so that it says we are not at any breakpoint.
4135 Also free any storage that is part of a bpstat. */
4136
4137 void
4138 bpstat_clear (bpstat *bsp)
4139 {
4140 bpstat p;
4141 bpstat q;
4142
4143 if (bsp == 0)
4144 return;
4145 p = *bsp;
4146 while (p != NULL)
4147 {
4148 q = p->next;
4149 bpstat_free (p);
4150 p = q;
4151 }
4152 *bsp = NULL;
4153 }
4154
4155 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4156 is part of the bpstat is copied as well. */
4157
4158 bpstat
4159 bpstat_copy (bpstat bs)
4160 {
4161 bpstat p = NULL;
4162 bpstat tmp;
4163 bpstat retval = NULL;
4164
4165 if (bs == NULL)
4166 return bs;
4167
4168 for (; bs != NULL; bs = bs->next)
4169 {
4170 tmp = (bpstat) xmalloc (sizeof (*tmp));
4171 memcpy (tmp, bs, sizeof (*tmp));
4172 incref_counted_command_line (tmp->commands);
4173 incref_bp_location (tmp->bp_location_at);
4174 if (bs->old_val != NULL)
4175 {
4176 tmp->old_val = value_copy (bs->old_val);
4177 release_value (tmp->old_val);
4178 }
4179
4180 if (p == NULL)
4181 /* This is the first thing in the chain. */
4182 retval = tmp;
4183 else
4184 p->next = tmp;
4185 p = tmp;
4186 }
4187 p->next = NULL;
4188 return retval;
4189 }
4190
4191 /* Find the bpstat associated with this breakpoint. */
4192
4193 bpstat
4194 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4195 {
4196 if (bsp == NULL)
4197 return NULL;
4198
4199 for (; bsp != NULL; bsp = bsp->next)
4200 {
4201 if (bsp->breakpoint_at == breakpoint)
4202 return bsp;
4203 }
4204 return NULL;
4205 }
4206
4207 /* See breakpoint.h. */
4208
4209 enum bpstat_signal_value
4210 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4211 {
4212 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4213
4214 for (; bsp != NULL; bsp = bsp->next)
4215 {
4216 /* Ensure that, if we ever entered this loop, then we at least
4217 return BPSTAT_SIGNAL_HIDE. */
4218 enum bpstat_signal_value newval;
4219
4220 if (bsp->breakpoint_at == NULL)
4221 {
4222 /* A moribund location can never explain a signal other than
4223 GDB_SIGNAL_TRAP. */
4224 if (sig == GDB_SIGNAL_TRAP)
4225 newval = BPSTAT_SIGNAL_HIDE;
4226 else
4227 newval = BPSTAT_SIGNAL_NO;
4228 }
4229 else
4230 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4231 sig);
4232
4233 if (newval > result)
4234 result = newval;
4235 }
4236
4237 return result;
4238 }
4239
4240 /* Put in *NUM the breakpoint number of the first breakpoint we are
4241 stopped at. *BSP upon return is a bpstat which points to the
4242 remaining breakpoints stopped at (but which is not guaranteed to be
4243 good for anything but further calls to bpstat_num).
4244
4245 Return 0 if passed a bpstat which does not indicate any breakpoints.
4246 Return -1 if stopped at a breakpoint that has been deleted since
4247 we set it.
4248 Return 1 otherwise. */
4249
4250 int
4251 bpstat_num (bpstat *bsp, int *num)
4252 {
4253 struct breakpoint *b;
4254
4255 if ((*bsp) == NULL)
4256 return 0; /* No more breakpoint values */
4257
4258 /* We assume we'll never have several bpstats that correspond to a
4259 single breakpoint -- otherwise, this function might return the
4260 same number more than once and this will look ugly. */
4261 b = (*bsp)->breakpoint_at;
4262 *bsp = (*bsp)->next;
4263 if (b == NULL)
4264 return -1; /* breakpoint that's been deleted since */
4265
4266 *num = b->number; /* We have its number */
4267 return 1;
4268 }
4269
4270 /* See breakpoint.h. */
4271
4272 void
4273 bpstat_clear_actions (void)
4274 {
4275 struct thread_info *tp;
4276 bpstat bs;
4277
4278 if (ptid_equal (inferior_ptid, null_ptid))
4279 return;
4280
4281 tp = find_thread_ptid (inferior_ptid);
4282 if (tp == NULL)
4283 return;
4284
4285 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4286 {
4287 decref_counted_command_line (&bs->commands);
4288
4289 if (bs->old_val != NULL)
4290 {
4291 value_free (bs->old_val);
4292 bs->old_val = NULL;
4293 }
4294 }
4295 }
4296
4297 /* Called when a command is about to proceed the inferior. */
4298
4299 static void
4300 breakpoint_about_to_proceed (void)
4301 {
4302 if (!ptid_equal (inferior_ptid, null_ptid))
4303 {
4304 struct thread_info *tp = inferior_thread ();
4305
4306 /* Allow inferior function calls in breakpoint commands to not
4307 interrupt the command list. When the call finishes
4308 successfully, the inferior will be standing at the same
4309 breakpoint as if nothing happened. */
4310 if (tp->control.in_infcall)
4311 return;
4312 }
4313
4314 breakpoint_proceeded = 1;
4315 }
4316
4317 /* Stub for cleaning up our state if we error-out of a breakpoint
4318 command. */
4319 static void
4320 cleanup_executing_breakpoints (void *ignore)
4321 {
4322 executing_breakpoint_commands = 0;
4323 }
4324
4325 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4326 or its equivalent. */
4327
4328 static int
4329 command_line_is_silent (struct command_line *cmd)
4330 {
4331 return cmd && (strcmp ("silent", cmd->line) == 0
4332 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4333 }
4334
4335 /* Execute all the commands associated with all the breakpoints at
4336 this location. Any of these commands could cause the process to
4337 proceed beyond this point, etc. We look out for such changes by
4338 checking the global "breakpoint_proceeded" after each command.
4339
4340 Returns true if a breakpoint command resumed the inferior. In that
4341 case, it is the caller's responsibility to recall it again with the
4342 bpstat of the current thread. */
4343
4344 static int
4345 bpstat_do_actions_1 (bpstat *bsp)
4346 {
4347 bpstat bs;
4348 struct cleanup *old_chain;
4349 int again = 0;
4350
4351 /* Avoid endless recursion if a `source' command is contained
4352 in bs->commands. */
4353 if (executing_breakpoint_commands)
4354 return 0;
4355
4356 executing_breakpoint_commands = 1;
4357 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4358
4359 prevent_dont_repeat ();
4360
4361 /* This pointer will iterate over the list of bpstat's. */
4362 bs = *bsp;
4363
4364 breakpoint_proceeded = 0;
4365 for (; bs != NULL; bs = bs->next)
4366 {
4367 struct counted_command_line *ccmd;
4368 struct command_line *cmd;
4369 struct cleanup *this_cmd_tree_chain;
4370
4371 /* Take ownership of the BSP's command tree, if it has one.
4372
4373 The command tree could legitimately contain commands like
4374 'step' and 'next', which call clear_proceed_status, which
4375 frees stop_bpstat's command tree. To make sure this doesn't
4376 free the tree we're executing out from under us, we need to
4377 take ownership of the tree ourselves. Since a given bpstat's
4378 commands are only executed once, we don't need to copy it; we
4379 can clear the pointer in the bpstat, and make sure we free
4380 the tree when we're done. */
4381 ccmd = bs->commands;
4382 bs->commands = NULL;
4383 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4384 cmd = ccmd ? ccmd->commands : NULL;
4385 if (command_line_is_silent (cmd))
4386 {
4387 /* The action has been already done by bpstat_stop_status. */
4388 cmd = cmd->next;
4389 }
4390
4391 while (cmd != NULL)
4392 {
4393 execute_control_command (cmd);
4394
4395 if (breakpoint_proceeded)
4396 break;
4397 else
4398 cmd = cmd->next;
4399 }
4400
4401 /* We can free this command tree now. */
4402 do_cleanups (this_cmd_tree_chain);
4403
4404 if (breakpoint_proceeded)
4405 {
4406 if (target_can_async_p ())
4407 /* If we are in async mode, then the target might be still
4408 running, not stopped at any breakpoint, so nothing for
4409 us to do here -- just return to the event loop. */
4410 ;
4411 else
4412 /* In sync mode, when execute_control_command returns
4413 we're already standing on the next breakpoint.
4414 Breakpoint commands for that stop were not run, since
4415 execute_command does not run breakpoint commands --
4416 only command_line_handler does, but that one is not
4417 involved in execution of breakpoint commands. So, we
4418 can now execute breakpoint commands. It should be
4419 noted that making execute_command do bpstat actions is
4420 not an option -- in this case we'll have recursive
4421 invocation of bpstat for each breakpoint with a
4422 command, and can easily blow up GDB stack. Instead, we
4423 return true, which will trigger the caller to recall us
4424 with the new stop_bpstat. */
4425 again = 1;
4426 break;
4427 }
4428 }
4429 do_cleanups (old_chain);
4430 return again;
4431 }
4432
4433 void
4434 bpstat_do_actions (void)
4435 {
4436 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4437
4438 /* Do any commands attached to breakpoint we are stopped at. */
4439 while (!ptid_equal (inferior_ptid, null_ptid)
4440 && target_has_execution
4441 && !is_exited (inferior_ptid)
4442 && !is_executing (inferior_ptid))
4443 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4444 and only return when it is stopped at the next breakpoint, we
4445 keep doing breakpoint actions until it returns false to
4446 indicate the inferior was not resumed. */
4447 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4448 break;
4449
4450 discard_cleanups (cleanup_if_error);
4451 }
4452
4453 /* Print out the (old or new) value associated with a watchpoint. */
4454
4455 static void
4456 watchpoint_value_print (struct value *val, struct ui_file *stream)
4457 {
4458 if (val == NULL)
4459 fprintf_unfiltered (stream, _("<unreadable>"));
4460 else
4461 {
4462 struct value_print_options opts;
4463 get_user_print_options (&opts);
4464 value_print (val, stream, &opts);
4465 }
4466 }
4467
4468 /* Generic routine for printing messages indicating why we
4469 stopped. The behavior of this function depends on the value
4470 'print_it' in the bpstat structure. Under some circumstances we
4471 may decide not to print anything here and delegate the task to
4472 normal_stop(). */
4473
4474 static enum print_stop_action
4475 print_bp_stop_message (bpstat bs)
4476 {
4477 switch (bs->print_it)
4478 {
4479 case print_it_noop:
4480 /* Nothing should be printed for this bpstat entry. */
4481 return PRINT_UNKNOWN;
4482 break;
4483
4484 case print_it_done:
4485 /* We still want to print the frame, but we already printed the
4486 relevant messages. */
4487 return PRINT_SRC_AND_LOC;
4488 break;
4489
4490 case print_it_normal:
4491 {
4492 struct breakpoint *b = bs->breakpoint_at;
4493
4494 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4495 which has since been deleted. */
4496 if (b == NULL)
4497 return PRINT_UNKNOWN;
4498
4499 /* Normal case. Call the breakpoint's print_it method. */
4500 return b->ops->print_it (bs);
4501 }
4502 break;
4503
4504 default:
4505 internal_error (__FILE__, __LINE__,
4506 _("print_bp_stop_message: unrecognized enum value"));
4507 break;
4508 }
4509 }
4510
4511 /* A helper function that prints a shared library stopped event. */
4512
4513 static void
4514 print_solib_event (int is_catchpoint)
4515 {
4516 int any_deleted
4517 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4518 int any_added
4519 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4520
4521 if (!is_catchpoint)
4522 {
4523 if (any_added || any_deleted)
4524 ui_out_text (current_uiout,
4525 _("Stopped due to shared library event:\n"));
4526 else
4527 ui_out_text (current_uiout,
4528 _("Stopped due to shared library event (no "
4529 "libraries added or removed)\n"));
4530 }
4531
4532 if (ui_out_is_mi_like_p (current_uiout))
4533 ui_out_field_string (current_uiout, "reason",
4534 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4535
4536 if (any_deleted)
4537 {
4538 struct cleanup *cleanup;
4539 char *name;
4540 int ix;
4541
4542 ui_out_text (current_uiout, _(" Inferior unloaded "));
4543 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4544 "removed");
4545 for (ix = 0;
4546 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4547 ix, name);
4548 ++ix)
4549 {
4550 if (ix > 0)
4551 ui_out_text (current_uiout, " ");
4552 ui_out_field_string (current_uiout, "library", name);
4553 ui_out_text (current_uiout, "\n");
4554 }
4555
4556 do_cleanups (cleanup);
4557 }
4558
4559 if (any_added)
4560 {
4561 struct so_list *iter;
4562 int ix;
4563 struct cleanup *cleanup;
4564
4565 ui_out_text (current_uiout, _(" Inferior loaded "));
4566 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4567 "added");
4568 for (ix = 0;
4569 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4570 ix, iter);
4571 ++ix)
4572 {
4573 if (ix > 0)
4574 ui_out_text (current_uiout, " ");
4575 ui_out_field_string (current_uiout, "library", iter->so_name);
4576 ui_out_text (current_uiout, "\n");
4577 }
4578
4579 do_cleanups (cleanup);
4580 }
4581 }
4582
4583 /* Print a message indicating what happened. This is called from
4584 normal_stop(). The input to this routine is the head of the bpstat
4585 list - a list of the eventpoints that caused this stop. KIND is
4586 the target_waitkind for the stopping event. This
4587 routine calls the generic print routine for printing a message
4588 about reasons for stopping. This will print (for example) the
4589 "Breakpoint n," part of the output. The return value of this
4590 routine is one of:
4591
4592 PRINT_UNKNOWN: Means we printed nothing.
4593 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4594 code to print the location. An example is
4595 "Breakpoint 1, " which should be followed by
4596 the location.
4597 PRINT_SRC_ONLY: Means we printed something, but there is no need
4598 to also print the location part of the message.
4599 An example is the catch/throw messages, which
4600 don't require a location appended to the end.
4601 PRINT_NOTHING: We have done some printing and we don't need any
4602 further info to be printed. */
4603
4604 enum print_stop_action
4605 bpstat_print (bpstat bs, int kind)
4606 {
4607 int val;
4608
4609 /* Maybe another breakpoint in the chain caused us to stop.
4610 (Currently all watchpoints go on the bpstat whether hit or not.
4611 That probably could (should) be changed, provided care is taken
4612 with respect to bpstat_explains_signal). */
4613 for (; bs; bs = bs->next)
4614 {
4615 val = print_bp_stop_message (bs);
4616 if (val == PRINT_SRC_ONLY
4617 || val == PRINT_SRC_AND_LOC
4618 || val == PRINT_NOTHING)
4619 return val;
4620 }
4621
4622 /* If we had hit a shared library event breakpoint,
4623 print_bp_stop_message would print out this message. If we hit an
4624 OS-level shared library event, do the same thing. */
4625 if (kind == TARGET_WAITKIND_LOADED)
4626 {
4627 print_solib_event (0);
4628 return PRINT_NOTHING;
4629 }
4630
4631 /* We reached the end of the chain, or we got a null BS to start
4632 with and nothing was printed. */
4633 return PRINT_UNKNOWN;
4634 }
4635
4636 /* Evaluate the expression EXP and return 1 if value is zero. This is
4637 used inside a catch_errors to evaluate the breakpoint condition.
4638 The argument is a "struct expression *" that has been cast to a
4639 "char *" to make it pass through catch_errors. */
4640
4641 static int
4642 breakpoint_cond_eval (void *exp)
4643 {
4644 struct value *mark = value_mark ();
4645 int i = !value_true (evaluate_expression ((struct expression *) exp));
4646
4647 value_free_to_mark (mark);
4648 return i;
4649 }
4650
4651 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4652
4653 static bpstat
4654 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4655 {
4656 bpstat bs;
4657
4658 bs = (bpstat) xmalloc (sizeof (*bs));
4659 bs->next = NULL;
4660 **bs_link_pointer = bs;
4661 *bs_link_pointer = &bs->next;
4662 bs->breakpoint_at = bl->owner;
4663 bs->bp_location_at = bl;
4664 incref_bp_location (bl);
4665 /* If the condition is false, etc., don't do the commands. */
4666 bs->commands = NULL;
4667 bs->old_val = NULL;
4668 bs->print_it = print_it_normal;
4669 return bs;
4670 }
4671 \f
4672 /* The target has stopped with waitstatus WS. Check if any hardware
4673 watchpoints have triggered, according to the target. */
4674
4675 int
4676 watchpoints_triggered (struct target_waitstatus *ws)
4677 {
4678 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4679 CORE_ADDR addr;
4680 struct breakpoint *b;
4681
4682 if (!stopped_by_watchpoint)
4683 {
4684 /* We were not stopped by a watchpoint. Mark all watchpoints
4685 as not triggered. */
4686 ALL_BREAKPOINTS (b)
4687 if (is_hardware_watchpoint (b))
4688 {
4689 struct watchpoint *w = (struct watchpoint *) b;
4690
4691 w->watchpoint_triggered = watch_triggered_no;
4692 }
4693
4694 return 0;
4695 }
4696
4697 if (!target_stopped_data_address (&current_target, &addr))
4698 {
4699 /* We were stopped by a watchpoint, but we don't know where.
4700 Mark all watchpoints as unknown. */
4701 ALL_BREAKPOINTS (b)
4702 if (is_hardware_watchpoint (b))
4703 {
4704 struct watchpoint *w = (struct watchpoint *) b;
4705
4706 w->watchpoint_triggered = watch_triggered_unknown;
4707 }
4708
4709 return stopped_by_watchpoint;
4710 }
4711
4712 /* The target could report the data address. Mark watchpoints
4713 affected by this data address as triggered, and all others as not
4714 triggered. */
4715
4716 ALL_BREAKPOINTS (b)
4717 if (is_hardware_watchpoint (b))
4718 {
4719 struct watchpoint *w = (struct watchpoint *) b;
4720 struct bp_location *loc;
4721
4722 w->watchpoint_triggered = watch_triggered_no;
4723 for (loc = b->loc; loc; loc = loc->next)
4724 {
4725 if (is_masked_watchpoint (b))
4726 {
4727 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4728 CORE_ADDR start = loc->address & w->hw_wp_mask;
4729
4730 if (newaddr == start)
4731 {
4732 w->watchpoint_triggered = watch_triggered_yes;
4733 break;
4734 }
4735 }
4736 /* Exact match not required. Within range is sufficient. */
4737 else if (target_watchpoint_addr_within_range (&current_target,
4738 addr, loc->address,
4739 loc->length))
4740 {
4741 w->watchpoint_triggered = watch_triggered_yes;
4742 break;
4743 }
4744 }
4745 }
4746
4747 return 1;
4748 }
4749
4750 /* Possible return values for watchpoint_check (this can't be an enum
4751 because of check_errors). */
4752 /* The watchpoint has been deleted. */
4753 #define WP_DELETED 1
4754 /* The value has changed. */
4755 #define WP_VALUE_CHANGED 2
4756 /* The value has not changed. */
4757 #define WP_VALUE_NOT_CHANGED 3
4758 /* Ignore this watchpoint, no matter if the value changed or not. */
4759 #define WP_IGNORE 4
4760
4761 #define BP_TEMPFLAG 1
4762 #define BP_HARDWAREFLAG 2
4763
4764 /* Evaluate watchpoint condition expression and check if its value
4765 changed.
4766
4767 P should be a pointer to struct bpstat, but is defined as a void *
4768 in order for this function to be usable with catch_errors. */
4769
4770 static int
4771 watchpoint_check (void *p)
4772 {
4773 bpstat bs = (bpstat) p;
4774 struct watchpoint *b;
4775 struct frame_info *fr;
4776 int within_current_scope;
4777
4778 /* BS is built from an existing struct breakpoint. */
4779 gdb_assert (bs->breakpoint_at != NULL);
4780 b = (struct watchpoint *) bs->breakpoint_at;
4781
4782 /* If this is a local watchpoint, we only want to check if the
4783 watchpoint frame is in scope if the current thread is the thread
4784 that was used to create the watchpoint. */
4785 if (!watchpoint_in_thread_scope (b))
4786 return WP_IGNORE;
4787
4788 if (b->exp_valid_block == NULL)
4789 within_current_scope = 1;
4790 else
4791 {
4792 struct frame_info *frame = get_current_frame ();
4793 struct gdbarch *frame_arch = get_frame_arch (frame);
4794 CORE_ADDR frame_pc = get_frame_pc (frame);
4795
4796 /* in_function_epilogue_p() returns a non-zero value if we're
4797 still in the function but the stack frame has already been
4798 invalidated. Since we can't rely on the values of local
4799 variables after the stack has been destroyed, we are treating
4800 the watchpoint in that state as `not changed' without further
4801 checking. Don't mark watchpoints as changed if the current
4802 frame is in an epilogue - even if they are in some other
4803 frame, our view of the stack is likely to be wrong and
4804 frame_find_by_id could error out. */
4805 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4806 return WP_IGNORE;
4807
4808 fr = frame_find_by_id (b->watchpoint_frame);
4809 within_current_scope = (fr != NULL);
4810
4811 /* If we've gotten confused in the unwinder, we might have
4812 returned a frame that can't describe this variable. */
4813 if (within_current_scope)
4814 {
4815 struct symbol *function;
4816
4817 function = get_frame_function (fr);
4818 if (function == NULL
4819 || !contained_in (b->exp_valid_block,
4820 SYMBOL_BLOCK_VALUE (function)))
4821 within_current_scope = 0;
4822 }
4823
4824 if (within_current_scope)
4825 /* If we end up stopping, the current frame will get selected
4826 in normal_stop. So this call to select_frame won't affect
4827 the user. */
4828 select_frame (fr);
4829 }
4830
4831 if (within_current_scope)
4832 {
4833 /* We use value_{,free_to_}mark because it could be a *long*
4834 time before we return to the command level and call
4835 free_all_values. We can't call free_all_values because we
4836 might be in the middle of evaluating a function call. */
4837
4838 int pc = 0;
4839 struct value *mark;
4840 struct value *new_val;
4841
4842 if (is_masked_watchpoint (&b->base))
4843 /* Since we don't know the exact trigger address (from
4844 stopped_data_address), just tell the user we've triggered
4845 a mask watchpoint. */
4846 return WP_VALUE_CHANGED;
4847
4848 mark = value_mark ();
4849 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4850
4851 /* We use value_equal_contents instead of value_equal because
4852 the latter coerces an array to a pointer, thus comparing just
4853 the address of the array instead of its contents. This is
4854 not what we want. */
4855 if ((b->val != NULL) != (new_val != NULL)
4856 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4857 {
4858 if (new_val != NULL)
4859 {
4860 release_value (new_val);
4861 value_free_to_mark (mark);
4862 }
4863 bs->old_val = b->val;
4864 b->val = new_val;
4865 b->val_valid = 1;
4866 return WP_VALUE_CHANGED;
4867 }
4868 else
4869 {
4870 /* Nothing changed. */
4871 value_free_to_mark (mark);
4872 return WP_VALUE_NOT_CHANGED;
4873 }
4874 }
4875 else
4876 {
4877 struct ui_out *uiout = current_uiout;
4878
4879 /* This seems like the only logical thing to do because
4880 if we temporarily ignored the watchpoint, then when
4881 we reenter the block in which it is valid it contains
4882 garbage (in the case of a function, it may have two
4883 garbage values, one before and one after the prologue).
4884 So we can't even detect the first assignment to it and
4885 watch after that (since the garbage may or may not equal
4886 the first value assigned). */
4887 /* We print all the stop information in
4888 breakpoint_ops->print_it, but in this case, by the time we
4889 call breakpoint_ops->print_it this bp will be deleted
4890 already. So we have no choice but print the information
4891 here. */
4892 if (ui_out_is_mi_like_p (uiout))
4893 ui_out_field_string
4894 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4895 ui_out_text (uiout, "\nWatchpoint ");
4896 ui_out_field_int (uiout, "wpnum", b->base.number);
4897 ui_out_text (uiout,
4898 " deleted because the program has left the block in\n\
4899 which its expression is valid.\n");
4900
4901 /* Make sure the watchpoint's commands aren't executed. */
4902 decref_counted_command_line (&b->base.commands);
4903 watchpoint_del_at_next_stop (b);
4904
4905 return WP_DELETED;
4906 }
4907 }
4908
4909 /* Return true if it looks like target has stopped due to hitting
4910 breakpoint location BL. This function does not check if we should
4911 stop, only if BL explains the stop. */
4912
4913 static int
4914 bpstat_check_location (const struct bp_location *bl,
4915 struct address_space *aspace, CORE_ADDR bp_addr,
4916 const struct target_waitstatus *ws)
4917 {
4918 struct breakpoint *b = bl->owner;
4919
4920 /* BL is from an existing breakpoint. */
4921 gdb_assert (b != NULL);
4922
4923 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4924 }
4925
4926 /* Determine if the watched values have actually changed, and we
4927 should stop. If not, set BS->stop to 0. */
4928
4929 static void
4930 bpstat_check_watchpoint (bpstat bs)
4931 {
4932 const struct bp_location *bl;
4933 struct watchpoint *b;
4934
4935 /* BS is built for existing struct breakpoint. */
4936 bl = bs->bp_location_at;
4937 gdb_assert (bl != NULL);
4938 b = (struct watchpoint *) bs->breakpoint_at;
4939 gdb_assert (b != NULL);
4940
4941 {
4942 int must_check_value = 0;
4943
4944 if (b->base.type == bp_watchpoint)
4945 /* For a software watchpoint, we must always check the
4946 watched value. */
4947 must_check_value = 1;
4948 else if (b->watchpoint_triggered == watch_triggered_yes)
4949 /* We have a hardware watchpoint (read, write, or access)
4950 and the target earlier reported an address watched by
4951 this watchpoint. */
4952 must_check_value = 1;
4953 else if (b->watchpoint_triggered == watch_triggered_unknown
4954 && b->base.type == bp_hardware_watchpoint)
4955 /* We were stopped by a hardware watchpoint, but the target could
4956 not report the data address. We must check the watchpoint's
4957 value. Access and read watchpoints are out of luck; without
4958 a data address, we can't figure it out. */
4959 must_check_value = 1;
4960
4961 if (must_check_value)
4962 {
4963 char *message
4964 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4965 b->base.number);
4966 struct cleanup *cleanups = make_cleanup (xfree, message);
4967 int e = catch_errors (watchpoint_check, bs, message,
4968 RETURN_MASK_ALL);
4969 do_cleanups (cleanups);
4970 switch (e)
4971 {
4972 case WP_DELETED:
4973 /* We've already printed what needs to be printed. */
4974 bs->print_it = print_it_done;
4975 /* Stop. */
4976 break;
4977 case WP_IGNORE:
4978 bs->print_it = print_it_noop;
4979 bs->stop = 0;
4980 break;
4981 case WP_VALUE_CHANGED:
4982 if (b->base.type == bp_read_watchpoint)
4983 {
4984 /* There are two cases to consider here:
4985
4986 1. We're watching the triggered memory for reads.
4987 In that case, trust the target, and always report
4988 the watchpoint hit to the user. Even though
4989 reads don't cause value changes, the value may
4990 have changed since the last time it was read, and
4991 since we're not trapping writes, we will not see
4992 those, and as such we should ignore our notion of
4993 old value.
4994
4995 2. We're watching the triggered memory for both
4996 reads and writes. There are two ways this may
4997 happen:
4998
4999 2.1. This is a target that can't break on data
5000 reads only, but can break on accesses (reads or
5001 writes), such as e.g., x86. We detect this case
5002 at the time we try to insert read watchpoints.
5003
5004 2.2. Otherwise, the target supports read
5005 watchpoints, but, the user set an access or write
5006 watchpoint watching the same memory as this read
5007 watchpoint.
5008
5009 If we're watching memory writes as well as reads,
5010 ignore watchpoint hits when we find that the
5011 value hasn't changed, as reads don't cause
5012 changes. This still gives false positives when
5013 the program writes the same value to memory as
5014 what there was already in memory (we will confuse
5015 it for a read), but it's much better than
5016 nothing. */
5017
5018 int other_write_watchpoint = 0;
5019
5020 if (bl->watchpoint_type == hw_read)
5021 {
5022 struct breakpoint *other_b;
5023
5024 ALL_BREAKPOINTS (other_b)
5025 if (other_b->type == bp_hardware_watchpoint
5026 || other_b->type == bp_access_watchpoint)
5027 {
5028 struct watchpoint *other_w =
5029 (struct watchpoint *) other_b;
5030
5031 if (other_w->watchpoint_triggered
5032 == watch_triggered_yes)
5033 {
5034 other_write_watchpoint = 1;
5035 break;
5036 }
5037 }
5038 }
5039
5040 if (other_write_watchpoint
5041 || bl->watchpoint_type == hw_access)
5042 {
5043 /* We're watching the same memory for writes,
5044 and the value changed since the last time we
5045 updated it, so this trap must be for a write.
5046 Ignore it. */
5047 bs->print_it = print_it_noop;
5048 bs->stop = 0;
5049 }
5050 }
5051 break;
5052 case WP_VALUE_NOT_CHANGED:
5053 if (b->base.type == bp_hardware_watchpoint
5054 || b->base.type == bp_watchpoint)
5055 {
5056 /* Don't stop: write watchpoints shouldn't fire if
5057 the value hasn't changed. */
5058 bs->print_it = print_it_noop;
5059 bs->stop = 0;
5060 }
5061 /* Stop. */
5062 break;
5063 default:
5064 /* Can't happen. */
5065 case 0:
5066 /* Error from catch_errors. */
5067 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5068 watchpoint_del_at_next_stop (b);
5069 /* We've already printed what needs to be printed. */
5070 bs->print_it = print_it_done;
5071 break;
5072 }
5073 }
5074 else /* must_check_value == 0 */
5075 {
5076 /* This is a case where some watchpoint(s) triggered, but
5077 not at the address of this watchpoint, or else no
5078 watchpoint triggered after all. So don't print
5079 anything for this watchpoint. */
5080 bs->print_it = print_it_noop;
5081 bs->stop = 0;
5082 }
5083 }
5084 }
5085
5086
5087 /* Check conditions (condition proper, frame, thread and ignore count)
5088 of breakpoint referred to by BS. If we should not stop for this
5089 breakpoint, set BS->stop to 0. */
5090
5091 static void
5092 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5093 {
5094 int thread_id = pid_to_thread_id (ptid);
5095 const struct bp_location *bl;
5096 struct breakpoint *b;
5097
5098 /* BS is built for existing struct breakpoint. */
5099 bl = bs->bp_location_at;
5100 gdb_assert (bl != NULL);
5101 b = bs->breakpoint_at;
5102 gdb_assert (b != NULL);
5103
5104 /* Even if the target evaluated the condition on its end and notified GDB, we
5105 need to do so again since GDB does not know if we stopped due to a
5106 breakpoint or a single step breakpoint. */
5107
5108 if (frame_id_p (b->frame_id)
5109 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5110 bs->stop = 0;
5111 else if (bs->stop)
5112 {
5113 int value_is_zero = 0;
5114 struct expression *cond;
5115
5116 /* Evaluate Python breakpoints that have a "stop"
5117 method implemented. */
5118 if (b->py_bp_object)
5119 bs->stop = gdbpy_should_stop (b->py_bp_object);
5120
5121 if (is_watchpoint (b))
5122 {
5123 struct watchpoint *w = (struct watchpoint *) b;
5124
5125 cond = w->cond_exp;
5126 }
5127 else
5128 cond = bl->cond;
5129
5130 if (cond && b->disposition != disp_del_at_next_stop)
5131 {
5132 int within_current_scope = 1;
5133 struct watchpoint * w;
5134
5135 /* We use value_mark and value_free_to_mark because it could
5136 be a long time before we return to the command level and
5137 call free_all_values. We can't call free_all_values
5138 because we might be in the middle of evaluating a
5139 function call. */
5140 struct value *mark = value_mark ();
5141
5142 if (is_watchpoint (b))
5143 w = (struct watchpoint *) b;
5144 else
5145 w = NULL;
5146
5147 /* Need to select the frame, with all that implies so that
5148 the conditions will have the right context. Because we
5149 use the frame, we will not see an inlined function's
5150 variables when we arrive at a breakpoint at the start
5151 of the inlined function; the current frame will be the
5152 call site. */
5153 if (w == NULL || w->cond_exp_valid_block == NULL)
5154 select_frame (get_current_frame ());
5155 else
5156 {
5157 struct frame_info *frame;
5158
5159 /* For local watchpoint expressions, which particular
5160 instance of a local is being watched matters, so we
5161 keep track of the frame to evaluate the expression
5162 in. To evaluate the condition however, it doesn't
5163 really matter which instantiation of the function
5164 where the condition makes sense triggers the
5165 watchpoint. This allows an expression like "watch
5166 global if q > 10" set in `func', catch writes to
5167 global on all threads that call `func', or catch
5168 writes on all recursive calls of `func' by a single
5169 thread. We simply always evaluate the condition in
5170 the innermost frame that's executing where it makes
5171 sense to evaluate the condition. It seems
5172 intuitive. */
5173 frame = block_innermost_frame (w->cond_exp_valid_block);
5174 if (frame != NULL)
5175 select_frame (frame);
5176 else
5177 within_current_scope = 0;
5178 }
5179 if (within_current_scope)
5180 value_is_zero
5181 = catch_errors (breakpoint_cond_eval, cond,
5182 "Error in testing breakpoint condition:\n",
5183 RETURN_MASK_ALL);
5184 else
5185 {
5186 warning (_("Watchpoint condition cannot be tested "
5187 "in the current scope"));
5188 /* If we failed to set the right context for this
5189 watchpoint, unconditionally report it. */
5190 value_is_zero = 0;
5191 }
5192 /* FIXME-someday, should give breakpoint #. */
5193 value_free_to_mark (mark);
5194 }
5195
5196 if (cond && value_is_zero)
5197 {
5198 bs->stop = 0;
5199 }
5200 else if (b->thread != -1 && b->thread != thread_id)
5201 {
5202 bs->stop = 0;
5203 }
5204 else if (b->ignore_count > 0)
5205 {
5206 b->ignore_count--;
5207 bs->stop = 0;
5208 /* Increase the hit count even though we don't stop. */
5209 ++(b->hit_count);
5210 observer_notify_breakpoint_modified (b);
5211 }
5212 }
5213 }
5214
5215
5216 /* Get a bpstat associated with having just stopped at address
5217 BP_ADDR in thread PTID.
5218
5219 Determine whether we stopped at a breakpoint, etc, or whether we
5220 don't understand this stop. Result is a chain of bpstat's such
5221 that:
5222
5223 if we don't understand the stop, the result is a null pointer.
5224
5225 if we understand why we stopped, the result is not null.
5226
5227 Each element of the chain refers to a particular breakpoint or
5228 watchpoint at which we have stopped. (We may have stopped for
5229 several reasons concurrently.)
5230
5231 Each element of the chain has valid next, breakpoint_at,
5232 commands, FIXME??? fields. */
5233
5234 bpstat
5235 bpstat_stop_status (struct address_space *aspace,
5236 CORE_ADDR bp_addr, ptid_t ptid,
5237 const struct target_waitstatus *ws)
5238 {
5239 struct breakpoint *b = NULL;
5240 struct bp_location *bl;
5241 struct bp_location *loc;
5242 /* First item of allocated bpstat's. */
5243 bpstat bs_head = NULL, *bs_link = &bs_head;
5244 /* Pointer to the last thing in the chain currently. */
5245 bpstat bs;
5246 int ix;
5247 int need_remove_insert;
5248 int removed_any;
5249
5250 /* First, build the bpstat chain with locations that explain a
5251 target stop, while being careful to not set the target running,
5252 as that may invalidate locations (in particular watchpoint
5253 locations are recreated). Resuming will happen here with
5254 breakpoint conditions or watchpoint expressions that include
5255 inferior function calls. */
5256
5257 ALL_BREAKPOINTS (b)
5258 {
5259 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5260 continue;
5261
5262 for (bl = b->loc; bl != NULL; bl = bl->next)
5263 {
5264 /* For hardware watchpoints, we look only at the first
5265 location. The watchpoint_check function will work on the
5266 entire expression, not the individual locations. For
5267 read watchpoints, the watchpoints_triggered function has
5268 checked all locations already. */
5269 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5270 break;
5271
5272 if (!bl->enabled || bl->shlib_disabled)
5273 continue;
5274
5275 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5276 continue;
5277
5278 /* Come here if it's a watchpoint, or if the break address
5279 matches. */
5280
5281 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5282 explain stop. */
5283
5284 /* Assume we stop. Should we find a watchpoint that is not
5285 actually triggered, or if the condition of the breakpoint
5286 evaluates as false, we'll reset 'stop' to 0. */
5287 bs->stop = 1;
5288 bs->print = 1;
5289
5290 /* If this is a scope breakpoint, mark the associated
5291 watchpoint as triggered so that we will handle the
5292 out-of-scope event. We'll get to the watchpoint next
5293 iteration. */
5294 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5295 {
5296 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5297
5298 w->watchpoint_triggered = watch_triggered_yes;
5299 }
5300 }
5301 }
5302
5303 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5304 {
5305 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5306 {
5307 bs = bpstat_alloc (loc, &bs_link);
5308 /* For hits of moribund locations, we should just proceed. */
5309 bs->stop = 0;
5310 bs->print = 0;
5311 bs->print_it = print_it_noop;
5312 }
5313 }
5314
5315 /* A bit of special processing for shlib breakpoints. We need to
5316 process solib loading here, so that the lists of loaded and
5317 unloaded libraries are correct before we handle "catch load" and
5318 "catch unload". */
5319 for (bs = bs_head; bs != NULL; bs = bs->next)
5320 {
5321 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5322 {
5323 handle_solib_event ();
5324 break;
5325 }
5326 }
5327
5328 /* Now go through the locations that caused the target to stop, and
5329 check whether we're interested in reporting this stop to higher
5330 layers, or whether we should resume the target transparently. */
5331
5332 removed_any = 0;
5333
5334 for (bs = bs_head; bs != NULL; bs = bs->next)
5335 {
5336 if (!bs->stop)
5337 continue;
5338
5339 b = bs->breakpoint_at;
5340 b->ops->check_status (bs);
5341 if (bs->stop)
5342 {
5343 bpstat_check_breakpoint_conditions (bs, ptid);
5344
5345 if (bs->stop)
5346 {
5347 ++(b->hit_count);
5348 observer_notify_breakpoint_modified (b);
5349
5350 /* We will stop here. */
5351 if (b->disposition == disp_disable)
5352 {
5353 --(b->enable_count);
5354 if (b->enable_count <= 0
5355 && b->enable_state != bp_permanent)
5356 b->enable_state = bp_disabled;
5357 removed_any = 1;
5358 }
5359 if (b->silent)
5360 bs->print = 0;
5361 bs->commands = b->commands;
5362 incref_counted_command_line (bs->commands);
5363 if (command_line_is_silent (bs->commands
5364 ? bs->commands->commands : NULL))
5365 bs->print = 0;
5366
5367 b->ops->after_condition_true (bs);
5368 }
5369
5370 }
5371
5372 /* Print nothing for this entry if we don't stop or don't
5373 print. */
5374 if (!bs->stop || !bs->print)
5375 bs->print_it = print_it_noop;
5376 }
5377
5378 /* If we aren't stopping, the value of some hardware watchpoint may
5379 not have changed, but the intermediate memory locations we are
5380 watching may have. Don't bother if we're stopping; this will get
5381 done later. */
5382 need_remove_insert = 0;
5383 if (! bpstat_causes_stop (bs_head))
5384 for (bs = bs_head; bs != NULL; bs = bs->next)
5385 if (!bs->stop
5386 && bs->breakpoint_at
5387 && is_hardware_watchpoint (bs->breakpoint_at))
5388 {
5389 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5390
5391 update_watchpoint (w, 0 /* don't reparse. */);
5392 need_remove_insert = 1;
5393 }
5394
5395 if (need_remove_insert)
5396 update_global_location_list (1);
5397 else if (removed_any)
5398 update_global_location_list (0);
5399
5400 return bs_head;
5401 }
5402
5403 static void
5404 handle_jit_event (void)
5405 {
5406 struct frame_info *frame;
5407 struct gdbarch *gdbarch;
5408
5409 /* Switch terminal for any messages produced by
5410 breakpoint_re_set. */
5411 target_terminal_ours_for_output ();
5412
5413 frame = get_current_frame ();
5414 gdbarch = get_frame_arch (frame);
5415
5416 jit_event_handler (gdbarch);
5417
5418 target_terminal_inferior ();
5419 }
5420
5421 /* Prepare WHAT final decision for infrun. */
5422
5423 /* Decide what infrun needs to do with this bpstat. */
5424
5425 struct bpstat_what
5426 bpstat_what (bpstat bs_head)
5427 {
5428 struct bpstat_what retval;
5429 int jit_event = 0;
5430 bpstat bs;
5431
5432 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5433 retval.call_dummy = STOP_NONE;
5434 retval.is_longjmp = 0;
5435
5436 for (bs = bs_head; bs != NULL; bs = bs->next)
5437 {
5438 /* Extract this BS's action. After processing each BS, we check
5439 if its action overrides all we've seem so far. */
5440 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5441 enum bptype bptype;
5442
5443 if (bs->breakpoint_at == NULL)
5444 {
5445 /* I suspect this can happen if it was a momentary
5446 breakpoint which has since been deleted. */
5447 bptype = bp_none;
5448 }
5449 else
5450 bptype = bs->breakpoint_at->type;
5451
5452 switch (bptype)
5453 {
5454 case bp_none:
5455 break;
5456 case bp_breakpoint:
5457 case bp_hardware_breakpoint:
5458 case bp_until:
5459 case bp_finish:
5460 case bp_shlib_event:
5461 if (bs->stop)
5462 {
5463 if (bs->print)
5464 this_action = BPSTAT_WHAT_STOP_NOISY;
5465 else
5466 this_action = BPSTAT_WHAT_STOP_SILENT;
5467 }
5468 else
5469 this_action = BPSTAT_WHAT_SINGLE;
5470 break;
5471 case bp_watchpoint:
5472 case bp_hardware_watchpoint:
5473 case bp_read_watchpoint:
5474 case bp_access_watchpoint:
5475 if (bs->stop)
5476 {
5477 if (bs->print)
5478 this_action = BPSTAT_WHAT_STOP_NOISY;
5479 else
5480 this_action = BPSTAT_WHAT_STOP_SILENT;
5481 }
5482 else
5483 {
5484 /* There was a watchpoint, but we're not stopping.
5485 This requires no further action. */
5486 }
5487 break;
5488 case bp_longjmp:
5489 case bp_longjmp_call_dummy:
5490 case bp_exception:
5491 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5492 retval.is_longjmp = bptype != bp_exception;
5493 break;
5494 case bp_longjmp_resume:
5495 case bp_exception_resume:
5496 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5497 retval.is_longjmp = bptype == bp_longjmp_resume;
5498 break;
5499 case bp_step_resume:
5500 if (bs->stop)
5501 this_action = BPSTAT_WHAT_STEP_RESUME;
5502 else
5503 {
5504 /* It is for the wrong frame. */
5505 this_action = BPSTAT_WHAT_SINGLE;
5506 }
5507 break;
5508 case bp_hp_step_resume:
5509 if (bs->stop)
5510 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5511 else
5512 {
5513 /* It is for the wrong frame. */
5514 this_action = BPSTAT_WHAT_SINGLE;
5515 }
5516 break;
5517 case bp_watchpoint_scope:
5518 case bp_thread_event:
5519 case bp_overlay_event:
5520 case bp_longjmp_master:
5521 case bp_std_terminate_master:
5522 case bp_exception_master:
5523 this_action = BPSTAT_WHAT_SINGLE;
5524 break;
5525 case bp_catchpoint:
5526 if (bs->stop)
5527 {
5528 if (bs->print)
5529 this_action = BPSTAT_WHAT_STOP_NOISY;
5530 else
5531 this_action = BPSTAT_WHAT_STOP_SILENT;
5532 }
5533 else
5534 {
5535 /* There was a catchpoint, but we're not stopping.
5536 This requires no further action. */
5537 }
5538 break;
5539 case bp_jit_event:
5540 jit_event = 1;
5541 this_action = BPSTAT_WHAT_SINGLE;
5542 break;
5543 case bp_call_dummy:
5544 /* Make sure the action is stop (silent or noisy),
5545 so infrun.c pops the dummy frame. */
5546 retval.call_dummy = STOP_STACK_DUMMY;
5547 this_action = BPSTAT_WHAT_STOP_SILENT;
5548 break;
5549 case bp_std_terminate:
5550 /* Make sure the action is stop (silent or noisy),
5551 so infrun.c pops the dummy frame. */
5552 retval.call_dummy = STOP_STD_TERMINATE;
5553 this_action = BPSTAT_WHAT_STOP_SILENT;
5554 break;
5555 case bp_tracepoint:
5556 case bp_fast_tracepoint:
5557 case bp_static_tracepoint:
5558 /* Tracepoint hits should not be reported back to GDB, and
5559 if one got through somehow, it should have been filtered
5560 out already. */
5561 internal_error (__FILE__, __LINE__,
5562 _("bpstat_what: tracepoint encountered"));
5563 break;
5564 case bp_gnu_ifunc_resolver:
5565 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5566 this_action = BPSTAT_WHAT_SINGLE;
5567 break;
5568 case bp_gnu_ifunc_resolver_return:
5569 /* The breakpoint will be removed, execution will restart from the
5570 PC of the former breakpoint. */
5571 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5572 break;
5573
5574 case bp_dprintf:
5575 if (bs->stop)
5576 this_action = BPSTAT_WHAT_STOP_SILENT;
5577 else
5578 this_action = BPSTAT_WHAT_SINGLE;
5579 break;
5580
5581 default:
5582 internal_error (__FILE__, __LINE__,
5583 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5584 }
5585
5586 retval.main_action = max (retval.main_action, this_action);
5587 }
5588
5589 /* These operations may affect the bs->breakpoint_at state so they are
5590 delayed after MAIN_ACTION is decided above. */
5591
5592 if (jit_event)
5593 {
5594 if (debug_infrun)
5595 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5596
5597 handle_jit_event ();
5598 }
5599
5600 for (bs = bs_head; bs != NULL; bs = bs->next)
5601 {
5602 struct breakpoint *b = bs->breakpoint_at;
5603
5604 if (b == NULL)
5605 continue;
5606 switch (b->type)
5607 {
5608 case bp_gnu_ifunc_resolver:
5609 gnu_ifunc_resolver_stop (b);
5610 break;
5611 case bp_gnu_ifunc_resolver_return:
5612 gnu_ifunc_resolver_return_stop (b);
5613 break;
5614 }
5615 }
5616
5617 return retval;
5618 }
5619
5620 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5621 without hardware support). This isn't related to a specific bpstat,
5622 just to things like whether watchpoints are set. */
5623
5624 int
5625 bpstat_should_step (void)
5626 {
5627 struct breakpoint *b;
5628
5629 ALL_BREAKPOINTS (b)
5630 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5631 return 1;
5632 return 0;
5633 }
5634
5635 int
5636 bpstat_causes_stop (bpstat bs)
5637 {
5638 for (; bs != NULL; bs = bs->next)
5639 if (bs->stop)
5640 return 1;
5641
5642 return 0;
5643 }
5644
5645 \f
5646
5647 /* Compute a string of spaces suitable to indent the next line
5648 so it starts at the position corresponding to the table column
5649 named COL_NAME in the currently active table of UIOUT. */
5650
5651 static char *
5652 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5653 {
5654 static char wrap_indent[80];
5655 int i, total_width, width, align;
5656 char *text;
5657
5658 total_width = 0;
5659 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5660 {
5661 if (strcmp (text, col_name) == 0)
5662 {
5663 gdb_assert (total_width < sizeof wrap_indent);
5664 memset (wrap_indent, ' ', total_width);
5665 wrap_indent[total_width] = 0;
5666
5667 return wrap_indent;
5668 }
5669
5670 total_width += width + 1;
5671 }
5672
5673 return NULL;
5674 }
5675
5676 /* Determine if the locations of this breakpoint will have their conditions
5677 evaluated by the target, host or a mix of both. Returns the following:
5678
5679 "host": Host evals condition.
5680 "host or target": Host or Target evals condition.
5681 "target": Target evals condition.
5682 */
5683
5684 static const char *
5685 bp_condition_evaluator (struct breakpoint *b)
5686 {
5687 struct bp_location *bl;
5688 char host_evals = 0;
5689 char target_evals = 0;
5690
5691 if (!b)
5692 return NULL;
5693
5694 if (!is_breakpoint (b))
5695 return NULL;
5696
5697 if (gdb_evaluates_breakpoint_condition_p ()
5698 || !target_supports_evaluation_of_breakpoint_conditions ())
5699 return condition_evaluation_host;
5700
5701 for (bl = b->loc; bl; bl = bl->next)
5702 {
5703 if (bl->cond_bytecode)
5704 target_evals++;
5705 else
5706 host_evals++;
5707 }
5708
5709 if (host_evals && target_evals)
5710 return condition_evaluation_both;
5711 else if (target_evals)
5712 return condition_evaluation_target;
5713 else
5714 return condition_evaluation_host;
5715 }
5716
5717 /* Determine the breakpoint location's condition evaluator. This is
5718 similar to bp_condition_evaluator, but for locations. */
5719
5720 static const char *
5721 bp_location_condition_evaluator (struct bp_location *bl)
5722 {
5723 if (bl && !is_breakpoint (bl->owner))
5724 return NULL;
5725
5726 if (gdb_evaluates_breakpoint_condition_p ()
5727 || !target_supports_evaluation_of_breakpoint_conditions ())
5728 return condition_evaluation_host;
5729
5730 if (bl && bl->cond_bytecode)
5731 return condition_evaluation_target;
5732 else
5733 return condition_evaluation_host;
5734 }
5735
5736 /* Print the LOC location out of the list of B->LOC locations. */
5737
5738 static void
5739 print_breakpoint_location (struct breakpoint *b,
5740 struct bp_location *loc)
5741 {
5742 struct ui_out *uiout = current_uiout;
5743 struct cleanup *old_chain = save_current_program_space ();
5744
5745 if (loc != NULL && loc->shlib_disabled)
5746 loc = NULL;
5747
5748 if (loc != NULL)
5749 set_current_program_space (loc->pspace);
5750
5751 if (b->display_canonical)
5752 ui_out_field_string (uiout, "what", b->addr_string);
5753 else if (loc && loc->symtab)
5754 {
5755 struct symbol *sym
5756 = find_pc_sect_function (loc->address, loc->section);
5757 if (sym)
5758 {
5759 ui_out_text (uiout, "in ");
5760 ui_out_field_string (uiout, "func",
5761 SYMBOL_PRINT_NAME (sym));
5762 ui_out_text (uiout, " ");
5763 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5764 ui_out_text (uiout, "at ");
5765 }
5766 ui_out_field_string (uiout, "file",
5767 symtab_to_filename_for_display (loc->symtab));
5768 ui_out_text (uiout, ":");
5769
5770 if (ui_out_is_mi_like_p (uiout))
5771 ui_out_field_string (uiout, "fullname",
5772 symtab_to_fullname (loc->symtab));
5773
5774 ui_out_field_int (uiout, "line", loc->line_number);
5775 }
5776 else if (loc)
5777 {
5778 struct ui_file *stb = mem_fileopen ();
5779 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5780
5781 print_address_symbolic (loc->gdbarch, loc->address, stb,
5782 demangle, "");
5783 ui_out_field_stream (uiout, "at", stb);
5784
5785 do_cleanups (stb_chain);
5786 }
5787 else
5788 ui_out_field_string (uiout, "pending", b->addr_string);
5789
5790 if (loc && is_breakpoint (b)
5791 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5792 && bp_condition_evaluator (b) == condition_evaluation_both)
5793 {
5794 ui_out_text (uiout, " (");
5795 ui_out_field_string (uiout, "evaluated-by",
5796 bp_location_condition_evaluator (loc));
5797 ui_out_text (uiout, ")");
5798 }
5799
5800 do_cleanups (old_chain);
5801 }
5802
5803 static const char *
5804 bptype_string (enum bptype type)
5805 {
5806 struct ep_type_description
5807 {
5808 enum bptype type;
5809 char *description;
5810 };
5811 static struct ep_type_description bptypes[] =
5812 {
5813 {bp_none, "?deleted?"},
5814 {bp_breakpoint, "breakpoint"},
5815 {bp_hardware_breakpoint, "hw breakpoint"},
5816 {bp_until, "until"},
5817 {bp_finish, "finish"},
5818 {bp_watchpoint, "watchpoint"},
5819 {bp_hardware_watchpoint, "hw watchpoint"},
5820 {bp_read_watchpoint, "read watchpoint"},
5821 {bp_access_watchpoint, "acc watchpoint"},
5822 {bp_longjmp, "longjmp"},
5823 {bp_longjmp_resume, "longjmp resume"},
5824 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5825 {bp_exception, "exception"},
5826 {bp_exception_resume, "exception resume"},
5827 {bp_step_resume, "step resume"},
5828 {bp_hp_step_resume, "high-priority step resume"},
5829 {bp_watchpoint_scope, "watchpoint scope"},
5830 {bp_call_dummy, "call dummy"},
5831 {bp_std_terminate, "std::terminate"},
5832 {bp_shlib_event, "shlib events"},
5833 {bp_thread_event, "thread events"},
5834 {bp_overlay_event, "overlay events"},
5835 {bp_longjmp_master, "longjmp master"},
5836 {bp_std_terminate_master, "std::terminate master"},
5837 {bp_exception_master, "exception master"},
5838 {bp_catchpoint, "catchpoint"},
5839 {bp_tracepoint, "tracepoint"},
5840 {bp_fast_tracepoint, "fast tracepoint"},
5841 {bp_static_tracepoint, "static tracepoint"},
5842 {bp_dprintf, "dprintf"},
5843 {bp_jit_event, "jit events"},
5844 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5845 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5846 };
5847
5848 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5849 || ((int) type != bptypes[(int) type].type))
5850 internal_error (__FILE__, __LINE__,
5851 _("bptypes table does not describe type #%d."),
5852 (int) type);
5853
5854 return bptypes[(int) type].description;
5855 }
5856
5857 /* For MI, output a field named 'thread-groups' with a list as the value.
5858 For CLI, prefix the list with the string 'inf'. */
5859
5860 static void
5861 output_thread_groups (struct ui_out *uiout,
5862 const char *field_name,
5863 VEC(int) *inf_num,
5864 int mi_only)
5865 {
5866 struct cleanup *back_to;
5867 int is_mi = ui_out_is_mi_like_p (uiout);
5868 int inf;
5869 int i;
5870
5871 /* For backward compatibility, don't display inferiors in CLI unless
5872 there are several. Always display them for MI. */
5873 if (!is_mi && mi_only)
5874 return;
5875
5876 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5877
5878 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5879 {
5880 if (is_mi)
5881 {
5882 char mi_group[10];
5883
5884 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5885 ui_out_field_string (uiout, NULL, mi_group);
5886 }
5887 else
5888 {
5889 if (i == 0)
5890 ui_out_text (uiout, " inf ");
5891 else
5892 ui_out_text (uiout, ", ");
5893
5894 ui_out_text (uiout, plongest (inf));
5895 }
5896 }
5897
5898 do_cleanups (back_to);
5899 }
5900
5901 /* Print B to gdb_stdout. */
5902
5903 static void
5904 print_one_breakpoint_location (struct breakpoint *b,
5905 struct bp_location *loc,
5906 int loc_number,
5907 struct bp_location **last_loc,
5908 int allflag)
5909 {
5910 struct command_line *l;
5911 static char bpenables[] = "nynny";
5912
5913 struct ui_out *uiout = current_uiout;
5914 int header_of_multiple = 0;
5915 int part_of_multiple = (loc != NULL);
5916 struct value_print_options opts;
5917
5918 get_user_print_options (&opts);
5919
5920 gdb_assert (!loc || loc_number != 0);
5921 /* See comment in print_one_breakpoint concerning treatment of
5922 breakpoints with single disabled location. */
5923 if (loc == NULL
5924 && (b->loc != NULL
5925 && (b->loc->next != NULL || !b->loc->enabled)))
5926 header_of_multiple = 1;
5927 if (loc == NULL)
5928 loc = b->loc;
5929
5930 annotate_record ();
5931
5932 /* 1 */
5933 annotate_field (0);
5934 if (part_of_multiple)
5935 {
5936 char *formatted;
5937 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5938 ui_out_field_string (uiout, "number", formatted);
5939 xfree (formatted);
5940 }
5941 else
5942 {
5943 ui_out_field_int (uiout, "number", b->number);
5944 }
5945
5946 /* 2 */
5947 annotate_field (1);
5948 if (part_of_multiple)
5949 ui_out_field_skip (uiout, "type");
5950 else
5951 ui_out_field_string (uiout, "type", bptype_string (b->type));
5952
5953 /* 3 */
5954 annotate_field (2);
5955 if (part_of_multiple)
5956 ui_out_field_skip (uiout, "disp");
5957 else
5958 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5959
5960
5961 /* 4 */
5962 annotate_field (3);
5963 if (part_of_multiple)
5964 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5965 else
5966 ui_out_field_fmt (uiout, "enabled", "%c",
5967 bpenables[(int) b->enable_state]);
5968 ui_out_spaces (uiout, 2);
5969
5970
5971 /* 5 and 6 */
5972 if (b->ops != NULL && b->ops->print_one != NULL)
5973 {
5974 /* Although the print_one can possibly print all locations,
5975 calling it here is not likely to get any nice result. So,
5976 make sure there's just one location. */
5977 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5978 b->ops->print_one (b, last_loc);
5979 }
5980 else
5981 switch (b->type)
5982 {
5983 case bp_none:
5984 internal_error (__FILE__, __LINE__,
5985 _("print_one_breakpoint: bp_none encountered\n"));
5986 break;
5987
5988 case bp_watchpoint:
5989 case bp_hardware_watchpoint:
5990 case bp_read_watchpoint:
5991 case bp_access_watchpoint:
5992 {
5993 struct watchpoint *w = (struct watchpoint *) b;
5994
5995 /* Field 4, the address, is omitted (which makes the columns
5996 not line up too nicely with the headers, but the effect
5997 is relatively readable). */
5998 if (opts.addressprint)
5999 ui_out_field_skip (uiout, "addr");
6000 annotate_field (5);
6001 ui_out_field_string (uiout, "what", w->exp_string);
6002 }
6003 break;
6004
6005 case bp_breakpoint:
6006 case bp_hardware_breakpoint:
6007 case bp_until:
6008 case bp_finish:
6009 case bp_longjmp:
6010 case bp_longjmp_resume:
6011 case bp_longjmp_call_dummy:
6012 case bp_exception:
6013 case bp_exception_resume:
6014 case bp_step_resume:
6015 case bp_hp_step_resume:
6016 case bp_watchpoint_scope:
6017 case bp_call_dummy:
6018 case bp_std_terminate:
6019 case bp_shlib_event:
6020 case bp_thread_event:
6021 case bp_overlay_event:
6022 case bp_longjmp_master:
6023 case bp_std_terminate_master:
6024 case bp_exception_master:
6025 case bp_tracepoint:
6026 case bp_fast_tracepoint:
6027 case bp_static_tracepoint:
6028 case bp_dprintf:
6029 case bp_jit_event:
6030 case bp_gnu_ifunc_resolver:
6031 case bp_gnu_ifunc_resolver_return:
6032 if (opts.addressprint)
6033 {
6034 annotate_field (4);
6035 if (header_of_multiple)
6036 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6037 else if (b->loc == NULL || loc->shlib_disabled)
6038 ui_out_field_string (uiout, "addr", "<PENDING>");
6039 else
6040 ui_out_field_core_addr (uiout, "addr",
6041 loc->gdbarch, loc->address);
6042 }
6043 annotate_field (5);
6044 if (!header_of_multiple)
6045 print_breakpoint_location (b, loc);
6046 if (b->loc)
6047 *last_loc = b->loc;
6048 break;
6049 }
6050
6051
6052 if (loc != NULL && !header_of_multiple)
6053 {
6054 struct inferior *inf;
6055 VEC(int) *inf_num = NULL;
6056 int mi_only = 1;
6057
6058 ALL_INFERIORS (inf)
6059 {
6060 if (inf->pspace == loc->pspace)
6061 VEC_safe_push (int, inf_num, inf->num);
6062 }
6063
6064 /* For backward compatibility, don't display inferiors in CLI unless
6065 there are several. Always display for MI. */
6066 if (allflag
6067 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6068 && (number_of_program_spaces () > 1
6069 || number_of_inferiors () > 1)
6070 /* LOC is for existing B, it cannot be in
6071 moribund_locations and thus having NULL OWNER. */
6072 && loc->owner->type != bp_catchpoint))
6073 mi_only = 0;
6074 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6075 VEC_free (int, inf_num);
6076 }
6077
6078 if (!part_of_multiple)
6079 {
6080 if (b->thread != -1)
6081 {
6082 /* FIXME: This seems to be redundant and lost here; see the
6083 "stop only in" line a little further down. */
6084 ui_out_text (uiout, " thread ");
6085 ui_out_field_int (uiout, "thread", b->thread);
6086 }
6087 else if (b->task != 0)
6088 {
6089 ui_out_text (uiout, " task ");
6090 ui_out_field_int (uiout, "task", b->task);
6091 }
6092 }
6093
6094 ui_out_text (uiout, "\n");
6095
6096 if (!part_of_multiple)
6097 b->ops->print_one_detail (b, uiout);
6098
6099 if (part_of_multiple && frame_id_p (b->frame_id))
6100 {
6101 annotate_field (6);
6102 ui_out_text (uiout, "\tstop only in stack frame at ");
6103 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6104 the frame ID. */
6105 ui_out_field_core_addr (uiout, "frame",
6106 b->gdbarch, b->frame_id.stack_addr);
6107 ui_out_text (uiout, "\n");
6108 }
6109
6110 if (!part_of_multiple && b->cond_string)
6111 {
6112 annotate_field (7);
6113 if (is_tracepoint (b))
6114 ui_out_text (uiout, "\ttrace only if ");
6115 else
6116 ui_out_text (uiout, "\tstop only if ");
6117 ui_out_field_string (uiout, "cond", b->cond_string);
6118
6119 /* Print whether the target is doing the breakpoint's condition
6120 evaluation. If GDB is doing the evaluation, don't print anything. */
6121 if (is_breakpoint (b)
6122 && breakpoint_condition_evaluation_mode ()
6123 == condition_evaluation_target)
6124 {
6125 ui_out_text (uiout, " (");
6126 ui_out_field_string (uiout, "evaluated-by",
6127 bp_condition_evaluator (b));
6128 ui_out_text (uiout, " evals)");
6129 }
6130 ui_out_text (uiout, "\n");
6131 }
6132
6133 if (!part_of_multiple && b->thread != -1)
6134 {
6135 /* FIXME should make an annotation for this. */
6136 ui_out_text (uiout, "\tstop only in thread ");
6137 ui_out_field_int (uiout, "thread", b->thread);
6138 ui_out_text (uiout, "\n");
6139 }
6140
6141 if (!part_of_multiple)
6142 {
6143 if (b->hit_count)
6144 {
6145 /* FIXME should make an annotation for this. */
6146 if (is_catchpoint (b))
6147 ui_out_text (uiout, "\tcatchpoint");
6148 else if (is_tracepoint (b))
6149 ui_out_text (uiout, "\ttracepoint");
6150 else
6151 ui_out_text (uiout, "\tbreakpoint");
6152 ui_out_text (uiout, " already hit ");
6153 ui_out_field_int (uiout, "times", b->hit_count);
6154 if (b->hit_count == 1)
6155 ui_out_text (uiout, " time\n");
6156 else
6157 ui_out_text (uiout, " times\n");
6158 }
6159 else
6160 {
6161 /* Output the count also if it is zero, but only if this is mi. */
6162 if (ui_out_is_mi_like_p (uiout))
6163 ui_out_field_int (uiout, "times", b->hit_count);
6164 }
6165 }
6166
6167 if (!part_of_multiple && b->ignore_count)
6168 {
6169 annotate_field (8);
6170 ui_out_text (uiout, "\tignore next ");
6171 ui_out_field_int (uiout, "ignore", b->ignore_count);
6172 ui_out_text (uiout, " hits\n");
6173 }
6174
6175 /* Note that an enable count of 1 corresponds to "enable once"
6176 behavior, which is reported by the combination of enablement and
6177 disposition, so we don't need to mention it here. */
6178 if (!part_of_multiple && b->enable_count > 1)
6179 {
6180 annotate_field (8);
6181 ui_out_text (uiout, "\tdisable after ");
6182 /* Tweak the wording to clarify that ignore and enable counts
6183 are distinct, and have additive effect. */
6184 if (b->ignore_count)
6185 ui_out_text (uiout, "additional ");
6186 else
6187 ui_out_text (uiout, "next ");
6188 ui_out_field_int (uiout, "enable", b->enable_count);
6189 ui_out_text (uiout, " hits\n");
6190 }
6191
6192 if (!part_of_multiple && is_tracepoint (b))
6193 {
6194 struct tracepoint *tp = (struct tracepoint *) b;
6195
6196 if (tp->traceframe_usage)
6197 {
6198 ui_out_text (uiout, "\ttrace buffer usage ");
6199 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6200 ui_out_text (uiout, " bytes\n");
6201 }
6202 }
6203
6204 l = b->commands ? b->commands->commands : NULL;
6205 if (!part_of_multiple && l)
6206 {
6207 struct cleanup *script_chain;
6208
6209 annotate_field (9);
6210 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6211 print_command_lines (uiout, l, 4);
6212 do_cleanups (script_chain);
6213 }
6214
6215 if (is_tracepoint (b))
6216 {
6217 struct tracepoint *t = (struct tracepoint *) b;
6218
6219 if (!part_of_multiple && t->pass_count)
6220 {
6221 annotate_field (10);
6222 ui_out_text (uiout, "\tpass count ");
6223 ui_out_field_int (uiout, "pass", t->pass_count);
6224 ui_out_text (uiout, " \n");
6225 }
6226
6227 /* Don't display it when tracepoint or tracepoint location is
6228 pending. */
6229 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6230 {
6231 annotate_field (11);
6232
6233 if (ui_out_is_mi_like_p (uiout))
6234 ui_out_field_string (uiout, "installed",
6235 loc->inserted ? "y" : "n");
6236 else
6237 {
6238 if (loc->inserted)
6239 ui_out_text (uiout, "\t");
6240 else
6241 ui_out_text (uiout, "\tnot ");
6242 ui_out_text (uiout, "installed on target\n");
6243 }
6244 }
6245 }
6246
6247 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6248 {
6249 if (is_watchpoint (b))
6250 {
6251 struct watchpoint *w = (struct watchpoint *) b;
6252
6253 ui_out_field_string (uiout, "original-location", w->exp_string);
6254 }
6255 else if (b->addr_string)
6256 ui_out_field_string (uiout, "original-location", b->addr_string);
6257 }
6258 }
6259
6260 static void
6261 print_one_breakpoint (struct breakpoint *b,
6262 struct bp_location **last_loc,
6263 int allflag)
6264 {
6265 struct cleanup *bkpt_chain;
6266 struct ui_out *uiout = current_uiout;
6267
6268 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6269
6270 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6271 do_cleanups (bkpt_chain);
6272
6273 /* If this breakpoint has custom print function,
6274 it's already printed. Otherwise, print individual
6275 locations, if any. */
6276 if (b->ops == NULL || b->ops->print_one == NULL)
6277 {
6278 /* If breakpoint has a single location that is disabled, we
6279 print it as if it had several locations, since otherwise it's
6280 hard to represent "breakpoint enabled, location disabled"
6281 situation.
6282
6283 Note that while hardware watchpoints have several locations
6284 internally, that's not a property exposed to user. */
6285 if (b->loc
6286 && !is_hardware_watchpoint (b)
6287 && (b->loc->next || !b->loc->enabled))
6288 {
6289 struct bp_location *loc;
6290 int n = 1;
6291
6292 for (loc = b->loc; loc; loc = loc->next, ++n)
6293 {
6294 struct cleanup *inner2 =
6295 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6296 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6297 do_cleanups (inner2);
6298 }
6299 }
6300 }
6301 }
6302
6303 static int
6304 breakpoint_address_bits (struct breakpoint *b)
6305 {
6306 int print_address_bits = 0;
6307 struct bp_location *loc;
6308
6309 for (loc = b->loc; loc; loc = loc->next)
6310 {
6311 int addr_bit;
6312
6313 /* Software watchpoints that aren't watching memory don't have
6314 an address to print. */
6315 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6316 continue;
6317
6318 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6319 if (addr_bit > print_address_bits)
6320 print_address_bits = addr_bit;
6321 }
6322
6323 return print_address_bits;
6324 }
6325
6326 struct captured_breakpoint_query_args
6327 {
6328 int bnum;
6329 };
6330
6331 static int
6332 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6333 {
6334 struct captured_breakpoint_query_args *args = data;
6335 struct breakpoint *b;
6336 struct bp_location *dummy_loc = NULL;
6337
6338 ALL_BREAKPOINTS (b)
6339 {
6340 if (args->bnum == b->number)
6341 {
6342 print_one_breakpoint (b, &dummy_loc, 0);
6343 return GDB_RC_OK;
6344 }
6345 }
6346 return GDB_RC_NONE;
6347 }
6348
6349 enum gdb_rc
6350 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6351 char **error_message)
6352 {
6353 struct captured_breakpoint_query_args args;
6354
6355 args.bnum = bnum;
6356 /* For the moment we don't trust print_one_breakpoint() to not throw
6357 an error. */
6358 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6359 error_message, RETURN_MASK_ALL) < 0)
6360 return GDB_RC_FAIL;
6361 else
6362 return GDB_RC_OK;
6363 }
6364
6365 /* Return true if this breakpoint was set by the user, false if it is
6366 internal or momentary. */
6367
6368 int
6369 user_breakpoint_p (struct breakpoint *b)
6370 {
6371 return b->number > 0;
6372 }
6373
6374 /* Print information on user settable breakpoint (watchpoint, etc)
6375 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6376 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6377 FILTER is non-NULL, call it on each breakpoint and only include the
6378 ones for which it returns non-zero. Return the total number of
6379 breakpoints listed. */
6380
6381 static int
6382 breakpoint_1 (char *args, int allflag,
6383 int (*filter) (const struct breakpoint *))
6384 {
6385 struct breakpoint *b;
6386 struct bp_location *last_loc = NULL;
6387 int nr_printable_breakpoints;
6388 struct cleanup *bkpttbl_chain;
6389 struct value_print_options opts;
6390 int print_address_bits = 0;
6391 int print_type_col_width = 14;
6392 struct ui_out *uiout = current_uiout;
6393
6394 get_user_print_options (&opts);
6395
6396 /* Compute the number of rows in the table, as well as the size
6397 required for address fields. */
6398 nr_printable_breakpoints = 0;
6399 ALL_BREAKPOINTS (b)
6400 {
6401 /* If we have a filter, only list the breakpoints it accepts. */
6402 if (filter && !filter (b))
6403 continue;
6404
6405 /* If we have an "args" string, it is a list of breakpoints to
6406 accept. Skip the others. */
6407 if (args != NULL && *args != '\0')
6408 {
6409 if (allflag && parse_and_eval_long (args) != b->number)
6410 continue;
6411 if (!allflag && !number_is_in_list (args, b->number))
6412 continue;
6413 }
6414
6415 if (allflag || user_breakpoint_p (b))
6416 {
6417 int addr_bit, type_len;
6418
6419 addr_bit = breakpoint_address_bits (b);
6420 if (addr_bit > print_address_bits)
6421 print_address_bits = addr_bit;
6422
6423 type_len = strlen (bptype_string (b->type));
6424 if (type_len > print_type_col_width)
6425 print_type_col_width = type_len;
6426
6427 nr_printable_breakpoints++;
6428 }
6429 }
6430
6431 if (opts.addressprint)
6432 bkpttbl_chain
6433 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6434 nr_printable_breakpoints,
6435 "BreakpointTable");
6436 else
6437 bkpttbl_chain
6438 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6439 nr_printable_breakpoints,
6440 "BreakpointTable");
6441
6442 if (nr_printable_breakpoints > 0)
6443 annotate_breakpoints_headers ();
6444 if (nr_printable_breakpoints > 0)
6445 annotate_field (0);
6446 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6447 if (nr_printable_breakpoints > 0)
6448 annotate_field (1);
6449 ui_out_table_header (uiout, print_type_col_width, ui_left,
6450 "type", "Type"); /* 2 */
6451 if (nr_printable_breakpoints > 0)
6452 annotate_field (2);
6453 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6454 if (nr_printable_breakpoints > 0)
6455 annotate_field (3);
6456 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6457 if (opts.addressprint)
6458 {
6459 if (nr_printable_breakpoints > 0)
6460 annotate_field (4);
6461 if (print_address_bits <= 32)
6462 ui_out_table_header (uiout, 10, ui_left,
6463 "addr", "Address"); /* 5 */
6464 else
6465 ui_out_table_header (uiout, 18, ui_left,
6466 "addr", "Address"); /* 5 */
6467 }
6468 if (nr_printable_breakpoints > 0)
6469 annotate_field (5);
6470 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6471 ui_out_table_body (uiout);
6472 if (nr_printable_breakpoints > 0)
6473 annotate_breakpoints_table ();
6474
6475 ALL_BREAKPOINTS (b)
6476 {
6477 QUIT;
6478 /* If we have a filter, only list the breakpoints it accepts. */
6479 if (filter && !filter (b))
6480 continue;
6481
6482 /* If we have an "args" string, it is a list of breakpoints to
6483 accept. Skip the others. */
6484
6485 if (args != NULL && *args != '\0')
6486 {
6487 if (allflag) /* maintenance info breakpoint */
6488 {
6489 if (parse_and_eval_long (args) != b->number)
6490 continue;
6491 }
6492 else /* all others */
6493 {
6494 if (!number_is_in_list (args, b->number))
6495 continue;
6496 }
6497 }
6498 /* We only print out user settable breakpoints unless the
6499 allflag is set. */
6500 if (allflag || user_breakpoint_p (b))
6501 print_one_breakpoint (b, &last_loc, allflag);
6502 }
6503
6504 do_cleanups (bkpttbl_chain);
6505
6506 if (nr_printable_breakpoints == 0)
6507 {
6508 /* If there's a filter, let the caller decide how to report
6509 empty list. */
6510 if (!filter)
6511 {
6512 if (args == NULL || *args == '\0')
6513 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6514 else
6515 ui_out_message (uiout, 0,
6516 "No breakpoint or watchpoint matching '%s'.\n",
6517 args);
6518 }
6519 }
6520 else
6521 {
6522 if (last_loc && !server_command)
6523 set_next_address (last_loc->gdbarch, last_loc->address);
6524 }
6525
6526 /* FIXME? Should this be moved up so that it is only called when
6527 there have been breakpoints? */
6528 annotate_breakpoints_table_end ();
6529
6530 return nr_printable_breakpoints;
6531 }
6532
6533 /* Display the value of default-collect in a way that is generally
6534 compatible with the breakpoint list. */
6535
6536 static void
6537 default_collect_info (void)
6538 {
6539 struct ui_out *uiout = current_uiout;
6540
6541 /* If it has no value (which is frequently the case), say nothing; a
6542 message like "No default-collect." gets in user's face when it's
6543 not wanted. */
6544 if (!*default_collect)
6545 return;
6546
6547 /* The following phrase lines up nicely with per-tracepoint collect
6548 actions. */
6549 ui_out_text (uiout, "default collect ");
6550 ui_out_field_string (uiout, "default-collect", default_collect);
6551 ui_out_text (uiout, " \n");
6552 }
6553
6554 static void
6555 breakpoints_info (char *args, int from_tty)
6556 {
6557 breakpoint_1 (args, 0, NULL);
6558
6559 default_collect_info ();
6560 }
6561
6562 static void
6563 watchpoints_info (char *args, int from_tty)
6564 {
6565 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6566 struct ui_out *uiout = current_uiout;
6567
6568 if (num_printed == 0)
6569 {
6570 if (args == NULL || *args == '\0')
6571 ui_out_message (uiout, 0, "No watchpoints.\n");
6572 else
6573 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6574 }
6575 }
6576
6577 static void
6578 maintenance_info_breakpoints (char *args, int from_tty)
6579 {
6580 breakpoint_1 (args, 1, NULL);
6581
6582 default_collect_info ();
6583 }
6584
6585 static int
6586 breakpoint_has_pc (struct breakpoint *b,
6587 struct program_space *pspace,
6588 CORE_ADDR pc, struct obj_section *section)
6589 {
6590 struct bp_location *bl = b->loc;
6591
6592 for (; bl; bl = bl->next)
6593 {
6594 if (bl->pspace == pspace
6595 && bl->address == pc
6596 && (!overlay_debugging || bl->section == section))
6597 return 1;
6598 }
6599 return 0;
6600 }
6601
6602 /* Print a message describing any user-breakpoints set at PC. This
6603 concerns with logical breakpoints, so we match program spaces, not
6604 address spaces. */
6605
6606 static void
6607 describe_other_breakpoints (struct gdbarch *gdbarch,
6608 struct program_space *pspace, CORE_ADDR pc,
6609 struct obj_section *section, int thread)
6610 {
6611 int others = 0;
6612 struct breakpoint *b;
6613
6614 ALL_BREAKPOINTS (b)
6615 others += (user_breakpoint_p (b)
6616 && breakpoint_has_pc (b, pspace, pc, section));
6617 if (others > 0)
6618 {
6619 if (others == 1)
6620 printf_filtered (_("Note: breakpoint "));
6621 else /* if (others == ???) */
6622 printf_filtered (_("Note: breakpoints "));
6623 ALL_BREAKPOINTS (b)
6624 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6625 {
6626 others--;
6627 printf_filtered ("%d", b->number);
6628 if (b->thread == -1 && thread != -1)
6629 printf_filtered (" (all threads)");
6630 else if (b->thread != -1)
6631 printf_filtered (" (thread %d)", b->thread);
6632 printf_filtered ("%s%s ",
6633 ((b->enable_state == bp_disabled
6634 || b->enable_state == bp_call_disabled)
6635 ? " (disabled)"
6636 : b->enable_state == bp_permanent
6637 ? " (permanent)"
6638 : ""),
6639 (others > 1) ? ","
6640 : ((others == 1) ? " and" : ""));
6641 }
6642 printf_filtered (_("also set at pc "));
6643 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6644 printf_filtered (".\n");
6645 }
6646 }
6647 \f
6648
6649 /* Return true iff it is meaningful to use the address member of
6650 BPT. For some breakpoint types, the address member is irrelevant
6651 and it makes no sense to attempt to compare it to other addresses
6652 (or use it for any other purpose either).
6653
6654 More specifically, each of the following breakpoint types will
6655 always have a zero valued address and we don't want to mark
6656 breakpoints of any of these types to be a duplicate of an actual
6657 breakpoint at address zero:
6658
6659 bp_watchpoint
6660 bp_catchpoint
6661
6662 */
6663
6664 static int
6665 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6666 {
6667 enum bptype type = bpt->type;
6668
6669 return (type != bp_watchpoint && type != bp_catchpoint);
6670 }
6671
6672 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6673 true if LOC1 and LOC2 represent the same watchpoint location. */
6674
6675 static int
6676 watchpoint_locations_match (struct bp_location *loc1,
6677 struct bp_location *loc2)
6678 {
6679 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6680 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6681
6682 /* Both of them must exist. */
6683 gdb_assert (w1 != NULL);
6684 gdb_assert (w2 != NULL);
6685
6686 /* If the target can evaluate the condition expression in hardware,
6687 then we we need to insert both watchpoints even if they are at
6688 the same place. Otherwise the watchpoint will only trigger when
6689 the condition of whichever watchpoint was inserted evaluates to
6690 true, not giving a chance for GDB to check the condition of the
6691 other watchpoint. */
6692 if ((w1->cond_exp
6693 && target_can_accel_watchpoint_condition (loc1->address,
6694 loc1->length,
6695 loc1->watchpoint_type,
6696 w1->cond_exp))
6697 || (w2->cond_exp
6698 && target_can_accel_watchpoint_condition (loc2->address,
6699 loc2->length,
6700 loc2->watchpoint_type,
6701 w2->cond_exp)))
6702 return 0;
6703
6704 /* Note that this checks the owner's type, not the location's. In
6705 case the target does not support read watchpoints, but does
6706 support access watchpoints, we'll have bp_read_watchpoint
6707 watchpoints with hw_access locations. Those should be considered
6708 duplicates of hw_read locations. The hw_read locations will
6709 become hw_access locations later. */
6710 return (loc1->owner->type == loc2->owner->type
6711 && loc1->pspace->aspace == loc2->pspace->aspace
6712 && loc1->address == loc2->address
6713 && loc1->length == loc2->length);
6714 }
6715
6716 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6717 same breakpoint location. In most targets, this can only be true
6718 if ASPACE1 matches ASPACE2. On targets that have global
6719 breakpoints, the address space doesn't really matter. */
6720
6721 static int
6722 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6723 struct address_space *aspace2, CORE_ADDR addr2)
6724 {
6725 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6726 || aspace1 == aspace2)
6727 && addr1 == addr2);
6728 }
6729
6730 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6731 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6732 matches ASPACE2. On targets that have global breakpoints, the address
6733 space doesn't really matter. */
6734
6735 static int
6736 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6737 int len1, struct address_space *aspace2,
6738 CORE_ADDR addr2)
6739 {
6740 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6741 || aspace1 == aspace2)
6742 && addr2 >= addr1 && addr2 < addr1 + len1);
6743 }
6744
6745 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6746 a ranged breakpoint. In most targets, a match happens only if ASPACE
6747 matches the breakpoint's address space. On targets that have global
6748 breakpoints, the address space doesn't really matter. */
6749
6750 static int
6751 breakpoint_location_address_match (struct bp_location *bl,
6752 struct address_space *aspace,
6753 CORE_ADDR addr)
6754 {
6755 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6756 aspace, addr)
6757 || (bl->length
6758 && breakpoint_address_match_range (bl->pspace->aspace,
6759 bl->address, bl->length,
6760 aspace, addr)));
6761 }
6762
6763 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6764 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6765 true, otherwise returns false. */
6766
6767 static int
6768 tracepoint_locations_match (struct bp_location *loc1,
6769 struct bp_location *loc2)
6770 {
6771 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6772 /* Since tracepoint locations are never duplicated with others', tracepoint
6773 locations at the same address of different tracepoints are regarded as
6774 different locations. */
6775 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6776 else
6777 return 0;
6778 }
6779
6780 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6781 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6782 represent the same location. */
6783
6784 static int
6785 breakpoint_locations_match (struct bp_location *loc1,
6786 struct bp_location *loc2)
6787 {
6788 int hw_point1, hw_point2;
6789
6790 /* Both of them must not be in moribund_locations. */
6791 gdb_assert (loc1->owner != NULL);
6792 gdb_assert (loc2->owner != NULL);
6793
6794 hw_point1 = is_hardware_watchpoint (loc1->owner);
6795 hw_point2 = is_hardware_watchpoint (loc2->owner);
6796
6797 if (hw_point1 != hw_point2)
6798 return 0;
6799 else if (hw_point1)
6800 return watchpoint_locations_match (loc1, loc2);
6801 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6802 return tracepoint_locations_match (loc1, loc2);
6803 else
6804 /* We compare bp_location.length in order to cover ranged breakpoints. */
6805 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6806 loc2->pspace->aspace, loc2->address)
6807 && loc1->length == loc2->length);
6808 }
6809
6810 static void
6811 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6812 int bnum, int have_bnum)
6813 {
6814 /* The longest string possibly returned by hex_string_custom
6815 is 50 chars. These must be at least that big for safety. */
6816 char astr1[64];
6817 char astr2[64];
6818
6819 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6820 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6821 if (have_bnum)
6822 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6823 bnum, astr1, astr2);
6824 else
6825 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6826 }
6827
6828 /* Adjust a breakpoint's address to account for architectural
6829 constraints on breakpoint placement. Return the adjusted address.
6830 Note: Very few targets require this kind of adjustment. For most
6831 targets, this function is simply the identity function. */
6832
6833 static CORE_ADDR
6834 adjust_breakpoint_address (struct gdbarch *gdbarch,
6835 CORE_ADDR bpaddr, enum bptype bptype)
6836 {
6837 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6838 {
6839 /* Very few targets need any kind of breakpoint adjustment. */
6840 return bpaddr;
6841 }
6842 else if (bptype == bp_watchpoint
6843 || bptype == bp_hardware_watchpoint
6844 || bptype == bp_read_watchpoint
6845 || bptype == bp_access_watchpoint
6846 || bptype == bp_catchpoint)
6847 {
6848 /* Watchpoints and the various bp_catch_* eventpoints should not
6849 have their addresses modified. */
6850 return bpaddr;
6851 }
6852 else
6853 {
6854 CORE_ADDR adjusted_bpaddr;
6855
6856 /* Some targets have architectural constraints on the placement
6857 of breakpoint instructions. Obtain the adjusted address. */
6858 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6859
6860 /* An adjusted breakpoint address can significantly alter
6861 a user's expectations. Print a warning if an adjustment
6862 is required. */
6863 if (adjusted_bpaddr != bpaddr)
6864 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6865
6866 return adjusted_bpaddr;
6867 }
6868 }
6869
6870 void
6871 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6872 struct breakpoint *owner)
6873 {
6874 memset (loc, 0, sizeof (*loc));
6875
6876 gdb_assert (ops != NULL);
6877
6878 loc->ops = ops;
6879 loc->owner = owner;
6880 loc->cond = NULL;
6881 loc->cond_bytecode = NULL;
6882 loc->shlib_disabled = 0;
6883 loc->enabled = 1;
6884
6885 switch (owner->type)
6886 {
6887 case bp_breakpoint:
6888 case bp_until:
6889 case bp_finish:
6890 case bp_longjmp:
6891 case bp_longjmp_resume:
6892 case bp_longjmp_call_dummy:
6893 case bp_exception:
6894 case bp_exception_resume:
6895 case bp_step_resume:
6896 case bp_hp_step_resume:
6897 case bp_watchpoint_scope:
6898 case bp_call_dummy:
6899 case bp_std_terminate:
6900 case bp_shlib_event:
6901 case bp_thread_event:
6902 case bp_overlay_event:
6903 case bp_jit_event:
6904 case bp_longjmp_master:
6905 case bp_std_terminate_master:
6906 case bp_exception_master:
6907 case bp_gnu_ifunc_resolver:
6908 case bp_gnu_ifunc_resolver_return:
6909 case bp_dprintf:
6910 loc->loc_type = bp_loc_software_breakpoint;
6911 mark_breakpoint_location_modified (loc);
6912 break;
6913 case bp_hardware_breakpoint:
6914 loc->loc_type = bp_loc_hardware_breakpoint;
6915 mark_breakpoint_location_modified (loc);
6916 break;
6917 case bp_hardware_watchpoint:
6918 case bp_read_watchpoint:
6919 case bp_access_watchpoint:
6920 loc->loc_type = bp_loc_hardware_watchpoint;
6921 break;
6922 case bp_watchpoint:
6923 case bp_catchpoint:
6924 case bp_tracepoint:
6925 case bp_fast_tracepoint:
6926 case bp_static_tracepoint:
6927 loc->loc_type = bp_loc_other;
6928 break;
6929 default:
6930 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6931 }
6932
6933 loc->refc = 1;
6934 }
6935
6936 /* Allocate a struct bp_location. */
6937
6938 static struct bp_location *
6939 allocate_bp_location (struct breakpoint *bpt)
6940 {
6941 return bpt->ops->allocate_location (bpt);
6942 }
6943
6944 static void
6945 free_bp_location (struct bp_location *loc)
6946 {
6947 loc->ops->dtor (loc);
6948 xfree (loc);
6949 }
6950
6951 /* Increment reference count. */
6952
6953 static void
6954 incref_bp_location (struct bp_location *bl)
6955 {
6956 ++bl->refc;
6957 }
6958
6959 /* Decrement reference count. If the reference count reaches 0,
6960 destroy the bp_location. Sets *BLP to NULL. */
6961
6962 static void
6963 decref_bp_location (struct bp_location **blp)
6964 {
6965 gdb_assert ((*blp)->refc > 0);
6966
6967 if (--(*blp)->refc == 0)
6968 free_bp_location (*blp);
6969 *blp = NULL;
6970 }
6971
6972 /* Add breakpoint B at the end of the global breakpoint chain. */
6973
6974 static void
6975 add_to_breakpoint_chain (struct breakpoint *b)
6976 {
6977 struct breakpoint *b1;
6978
6979 /* Add this breakpoint to the end of the chain so that a list of
6980 breakpoints will come out in order of increasing numbers. */
6981
6982 b1 = breakpoint_chain;
6983 if (b1 == 0)
6984 breakpoint_chain = b;
6985 else
6986 {
6987 while (b1->next)
6988 b1 = b1->next;
6989 b1->next = b;
6990 }
6991 }
6992
6993 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6994
6995 static void
6996 init_raw_breakpoint_without_location (struct breakpoint *b,
6997 struct gdbarch *gdbarch,
6998 enum bptype bptype,
6999 const struct breakpoint_ops *ops)
7000 {
7001 memset (b, 0, sizeof (*b));
7002
7003 gdb_assert (ops != NULL);
7004
7005 b->ops = ops;
7006 b->type = bptype;
7007 b->gdbarch = gdbarch;
7008 b->language = current_language->la_language;
7009 b->input_radix = input_radix;
7010 b->thread = -1;
7011 b->enable_state = bp_enabled;
7012 b->next = 0;
7013 b->silent = 0;
7014 b->ignore_count = 0;
7015 b->commands = NULL;
7016 b->frame_id = null_frame_id;
7017 b->condition_not_parsed = 0;
7018 b->py_bp_object = NULL;
7019 b->related_breakpoint = b;
7020 }
7021
7022 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7023 that has type BPTYPE and has no locations as yet. */
7024
7025 static struct breakpoint *
7026 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7027 enum bptype bptype,
7028 const struct breakpoint_ops *ops)
7029 {
7030 struct breakpoint *b = XNEW (struct breakpoint);
7031
7032 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7033 add_to_breakpoint_chain (b);
7034 return b;
7035 }
7036
7037 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7038 resolutions should be made as the user specified the location explicitly
7039 enough. */
7040
7041 static void
7042 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7043 {
7044 gdb_assert (loc->owner != NULL);
7045
7046 if (loc->owner->type == bp_breakpoint
7047 || loc->owner->type == bp_hardware_breakpoint
7048 || is_tracepoint (loc->owner))
7049 {
7050 int is_gnu_ifunc;
7051 const char *function_name;
7052 CORE_ADDR func_addr;
7053
7054 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7055 &func_addr, NULL, &is_gnu_ifunc);
7056
7057 if (is_gnu_ifunc && !explicit_loc)
7058 {
7059 struct breakpoint *b = loc->owner;
7060
7061 gdb_assert (loc->pspace == current_program_space);
7062 if (gnu_ifunc_resolve_name (function_name,
7063 &loc->requested_address))
7064 {
7065 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7066 loc->address = adjust_breakpoint_address (loc->gdbarch,
7067 loc->requested_address,
7068 b->type);
7069 }
7070 else if (b->type == bp_breakpoint && b->loc == loc
7071 && loc->next == NULL && b->related_breakpoint == b)
7072 {
7073 /* Create only the whole new breakpoint of this type but do not
7074 mess more complicated breakpoints with multiple locations. */
7075 b->type = bp_gnu_ifunc_resolver;
7076 /* Remember the resolver's address for use by the return
7077 breakpoint. */
7078 loc->related_address = func_addr;
7079 }
7080 }
7081
7082 if (function_name)
7083 loc->function_name = xstrdup (function_name);
7084 }
7085 }
7086
7087 /* Attempt to determine architecture of location identified by SAL. */
7088 struct gdbarch *
7089 get_sal_arch (struct symtab_and_line sal)
7090 {
7091 if (sal.section)
7092 return get_objfile_arch (sal.section->objfile);
7093 if (sal.symtab)
7094 return get_objfile_arch (sal.symtab->objfile);
7095
7096 return NULL;
7097 }
7098
7099 /* Low level routine for partially initializing a breakpoint of type
7100 BPTYPE. The newly created breakpoint's address, section, source
7101 file name, and line number are provided by SAL.
7102
7103 It is expected that the caller will complete the initialization of
7104 the newly created breakpoint struct as well as output any status
7105 information regarding the creation of a new breakpoint. */
7106
7107 static void
7108 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7109 struct symtab_and_line sal, enum bptype bptype,
7110 const struct breakpoint_ops *ops)
7111 {
7112 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7113
7114 add_location_to_breakpoint (b, &sal);
7115
7116 if (bptype != bp_catchpoint)
7117 gdb_assert (sal.pspace != NULL);
7118
7119 /* Store the program space that was used to set the breakpoint,
7120 except for ordinary breakpoints, which are independent of the
7121 program space. */
7122 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7123 b->pspace = sal.pspace;
7124 }
7125
7126 /* set_raw_breakpoint is a low level routine for allocating and
7127 partially initializing a breakpoint of type BPTYPE. The newly
7128 created breakpoint's address, section, source file name, and line
7129 number are provided by SAL. The newly created and partially
7130 initialized breakpoint is added to the breakpoint chain and
7131 is also returned as the value of this function.
7132
7133 It is expected that the caller will complete the initialization of
7134 the newly created breakpoint struct as well as output any status
7135 information regarding the creation of a new breakpoint. In
7136 particular, set_raw_breakpoint does NOT set the breakpoint
7137 number! Care should be taken to not allow an error to occur
7138 prior to completing the initialization of the breakpoint. If this
7139 should happen, a bogus breakpoint will be left on the chain. */
7140
7141 struct breakpoint *
7142 set_raw_breakpoint (struct gdbarch *gdbarch,
7143 struct symtab_and_line sal, enum bptype bptype,
7144 const struct breakpoint_ops *ops)
7145 {
7146 struct breakpoint *b = XNEW (struct breakpoint);
7147
7148 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7149 add_to_breakpoint_chain (b);
7150 return b;
7151 }
7152
7153
7154 /* Note that the breakpoint object B describes a permanent breakpoint
7155 instruction, hard-wired into the inferior's code. */
7156 void
7157 make_breakpoint_permanent (struct breakpoint *b)
7158 {
7159 struct bp_location *bl;
7160
7161 b->enable_state = bp_permanent;
7162
7163 /* By definition, permanent breakpoints are already present in the
7164 code. Mark all locations as inserted. For now,
7165 make_breakpoint_permanent is called in just one place, so it's
7166 hard to say if it's reasonable to have permanent breakpoint with
7167 multiple locations or not, but it's easy to implement. */
7168 for (bl = b->loc; bl; bl = bl->next)
7169 bl->inserted = 1;
7170 }
7171
7172 /* Call this routine when stepping and nexting to enable a breakpoint
7173 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7174 initiated the operation. */
7175
7176 void
7177 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7178 {
7179 struct breakpoint *b, *b_tmp;
7180 int thread = tp->num;
7181
7182 /* To avoid having to rescan all objfile symbols at every step,
7183 we maintain a list of continually-inserted but always disabled
7184 longjmp "master" breakpoints. Here, we simply create momentary
7185 clones of those and enable them for the requested thread. */
7186 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7187 if (b->pspace == current_program_space
7188 && (b->type == bp_longjmp_master
7189 || b->type == bp_exception_master))
7190 {
7191 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7192 struct breakpoint *clone;
7193
7194 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7195 after their removal. */
7196 clone = momentary_breakpoint_from_master (b, type,
7197 &longjmp_breakpoint_ops);
7198 clone->thread = thread;
7199 }
7200
7201 tp->initiating_frame = frame;
7202 }
7203
7204 /* Delete all longjmp breakpoints from THREAD. */
7205 void
7206 delete_longjmp_breakpoint (int thread)
7207 {
7208 struct breakpoint *b, *b_tmp;
7209
7210 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7211 if (b->type == bp_longjmp || b->type == bp_exception)
7212 {
7213 if (b->thread == thread)
7214 delete_breakpoint (b);
7215 }
7216 }
7217
7218 void
7219 delete_longjmp_breakpoint_at_next_stop (int thread)
7220 {
7221 struct breakpoint *b, *b_tmp;
7222
7223 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7224 if (b->type == bp_longjmp || b->type == bp_exception)
7225 {
7226 if (b->thread == thread)
7227 b->disposition = disp_del_at_next_stop;
7228 }
7229 }
7230
7231 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7232 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7233 pointer to any of them. Return NULL if this system cannot place longjmp
7234 breakpoints. */
7235
7236 struct breakpoint *
7237 set_longjmp_breakpoint_for_call_dummy (void)
7238 {
7239 struct breakpoint *b, *retval = NULL;
7240
7241 ALL_BREAKPOINTS (b)
7242 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7243 {
7244 struct breakpoint *new_b;
7245
7246 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7247 &momentary_breakpoint_ops);
7248 new_b->thread = pid_to_thread_id (inferior_ptid);
7249
7250 /* Link NEW_B into the chain of RETVAL breakpoints. */
7251
7252 gdb_assert (new_b->related_breakpoint == new_b);
7253 if (retval == NULL)
7254 retval = new_b;
7255 new_b->related_breakpoint = retval;
7256 while (retval->related_breakpoint != new_b->related_breakpoint)
7257 retval = retval->related_breakpoint;
7258 retval->related_breakpoint = new_b;
7259 }
7260
7261 return retval;
7262 }
7263
7264 /* Verify all existing dummy frames and their associated breakpoints for
7265 THREAD. Remove those which can no longer be found in the current frame
7266 stack.
7267
7268 You should call this function only at places where it is safe to currently
7269 unwind the whole stack. Failed stack unwind would discard live dummy
7270 frames. */
7271
7272 void
7273 check_longjmp_breakpoint_for_call_dummy (int thread)
7274 {
7275 struct breakpoint *b, *b_tmp;
7276
7277 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7278 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7279 {
7280 struct breakpoint *dummy_b = b->related_breakpoint;
7281
7282 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7283 dummy_b = dummy_b->related_breakpoint;
7284 if (dummy_b->type != bp_call_dummy
7285 || frame_find_by_id (dummy_b->frame_id) != NULL)
7286 continue;
7287
7288 dummy_frame_discard (dummy_b->frame_id);
7289
7290 while (b->related_breakpoint != b)
7291 {
7292 if (b_tmp == b->related_breakpoint)
7293 b_tmp = b->related_breakpoint->next;
7294 delete_breakpoint (b->related_breakpoint);
7295 }
7296 delete_breakpoint (b);
7297 }
7298 }
7299
7300 void
7301 enable_overlay_breakpoints (void)
7302 {
7303 struct breakpoint *b;
7304
7305 ALL_BREAKPOINTS (b)
7306 if (b->type == bp_overlay_event)
7307 {
7308 b->enable_state = bp_enabled;
7309 update_global_location_list (1);
7310 overlay_events_enabled = 1;
7311 }
7312 }
7313
7314 void
7315 disable_overlay_breakpoints (void)
7316 {
7317 struct breakpoint *b;
7318
7319 ALL_BREAKPOINTS (b)
7320 if (b->type == bp_overlay_event)
7321 {
7322 b->enable_state = bp_disabled;
7323 update_global_location_list (0);
7324 overlay_events_enabled = 0;
7325 }
7326 }
7327
7328 /* Set an active std::terminate breakpoint for each std::terminate
7329 master breakpoint. */
7330 void
7331 set_std_terminate_breakpoint (void)
7332 {
7333 struct breakpoint *b, *b_tmp;
7334
7335 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7336 if (b->pspace == current_program_space
7337 && b->type == bp_std_terminate_master)
7338 {
7339 momentary_breakpoint_from_master (b, bp_std_terminate,
7340 &momentary_breakpoint_ops);
7341 }
7342 }
7343
7344 /* Delete all the std::terminate breakpoints. */
7345 void
7346 delete_std_terminate_breakpoint (void)
7347 {
7348 struct breakpoint *b, *b_tmp;
7349
7350 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7351 if (b->type == bp_std_terminate)
7352 delete_breakpoint (b);
7353 }
7354
7355 struct breakpoint *
7356 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7357 {
7358 struct breakpoint *b;
7359
7360 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7361 &internal_breakpoint_ops);
7362
7363 b->enable_state = bp_enabled;
7364 /* addr_string has to be used or breakpoint_re_set will delete me. */
7365 b->addr_string
7366 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7367
7368 update_global_location_list_nothrow (1);
7369
7370 return b;
7371 }
7372
7373 void
7374 remove_thread_event_breakpoints (void)
7375 {
7376 struct breakpoint *b, *b_tmp;
7377
7378 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7379 if (b->type == bp_thread_event
7380 && b->loc->pspace == current_program_space)
7381 delete_breakpoint (b);
7382 }
7383
7384 struct lang_and_radix
7385 {
7386 enum language lang;
7387 int radix;
7388 };
7389
7390 /* Create a breakpoint for JIT code registration and unregistration. */
7391
7392 struct breakpoint *
7393 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7394 {
7395 struct breakpoint *b;
7396
7397 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7398 &internal_breakpoint_ops);
7399 update_global_location_list_nothrow (1);
7400 return b;
7401 }
7402
7403 /* Remove JIT code registration and unregistration breakpoint(s). */
7404
7405 void
7406 remove_jit_event_breakpoints (void)
7407 {
7408 struct breakpoint *b, *b_tmp;
7409
7410 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7411 if (b->type == bp_jit_event
7412 && b->loc->pspace == current_program_space)
7413 delete_breakpoint (b);
7414 }
7415
7416 void
7417 remove_solib_event_breakpoints (void)
7418 {
7419 struct breakpoint *b, *b_tmp;
7420
7421 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7422 if (b->type == bp_shlib_event
7423 && b->loc->pspace == current_program_space)
7424 delete_breakpoint (b);
7425 }
7426
7427 struct breakpoint *
7428 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7429 {
7430 struct breakpoint *b;
7431
7432 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7433 &internal_breakpoint_ops);
7434 update_global_location_list_nothrow (1);
7435 return b;
7436 }
7437
7438 /* Disable any breakpoints that are on code in shared libraries. Only
7439 apply to enabled breakpoints, disabled ones can just stay disabled. */
7440
7441 void
7442 disable_breakpoints_in_shlibs (void)
7443 {
7444 struct bp_location *loc, **locp_tmp;
7445
7446 ALL_BP_LOCATIONS (loc, locp_tmp)
7447 {
7448 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7449 struct breakpoint *b = loc->owner;
7450
7451 /* We apply the check to all breakpoints, including disabled for
7452 those with loc->duplicate set. This is so that when breakpoint
7453 becomes enabled, or the duplicate is removed, gdb will try to
7454 insert all breakpoints. If we don't set shlib_disabled here,
7455 we'll try to insert those breakpoints and fail. */
7456 if (((b->type == bp_breakpoint)
7457 || (b->type == bp_jit_event)
7458 || (b->type == bp_hardware_breakpoint)
7459 || (is_tracepoint (b)))
7460 && loc->pspace == current_program_space
7461 && !loc->shlib_disabled
7462 && solib_name_from_address (loc->pspace, loc->address)
7463 )
7464 {
7465 loc->shlib_disabled = 1;
7466 }
7467 }
7468 }
7469
7470 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7471 library. Only apply to enabled breakpoints, disabled ones can just stay
7472 disabled. */
7473
7474 static void
7475 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7476 {
7477 struct bp_location *loc, **locp_tmp;
7478 int disabled_shlib_breaks = 0;
7479
7480 /* SunOS a.out shared libraries are always mapped, so do not
7481 disable breakpoints; they will only be reported as unloaded
7482 through clear_solib when GDB discards its shared library
7483 list. See clear_solib for more information. */
7484 if (exec_bfd != NULL
7485 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7486 return;
7487
7488 ALL_BP_LOCATIONS (loc, locp_tmp)
7489 {
7490 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7491 struct breakpoint *b = loc->owner;
7492
7493 if (solib->pspace == loc->pspace
7494 && !loc->shlib_disabled
7495 && (((b->type == bp_breakpoint
7496 || b->type == bp_jit_event
7497 || b->type == bp_hardware_breakpoint)
7498 && (loc->loc_type == bp_loc_hardware_breakpoint
7499 || loc->loc_type == bp_loc_software_breakpoint))
7500 || is_tracepoint (b))
7501 && solib_contains_address_p (solib, loc->address))
7502 {
7503 loc->shlib_disabled = 1;
7504 /* At this point, we cannot rely on remove_breakpoint
7505 succeeding so we must mark the breakpoint as not inserted
7506 to prevent future errors occurring in remove_breakpoints. */
7507 loc->inserted = 0;
7508
7509 /* This may cause duplicate notifications for the same breakpoint. */
7510 observer_notify_breakpoint_modified (b);
7511
7512 if (!disabled_shlib_breaks)
7513 {
7514 target_terminal_ours_for_output ();
7515 warning (_("Temporarily disabling breakpoints "
7516 "for unloaded shared library \"%s\""),
7517 solib->so_name);
7518 }
7519 disabled_shlib_breaks = 1;
7520 }
7521 }
7522 }
7523
7524 /* FORK & VFORK catchpoints. */
7525
7526 /* An instance of this type is used to represent a fork or vfork
7527 catchpoint. It includes a "struct breakpoint" as a kind of base
7528 class; users downcast to "struct breakpoint *" when needed. A
7529 breakpoint is really of this type iff its ops pointer points to
7530 CATCH_FORK_BREAKPOINT_OPS. */
7531
7532 struct fork_catchpoint
7533 {
7534 /* The base class. */
7535 struct breakpoint base;
7536
7537 /* Process id of a child process whose forking triggered this
7538 catchpoint. This field is only valid immediately after this
7539 catchpoint has triggered. */
7540 ptid_t forked_inferior_pid;
7541 };
7542
7543 /* Implement the "insert" breakpoint_ops method for fork
7544 catchpoints. */
7545
7546 static int
7547 insert_catch_fork (struct bp_location *bl)
7548 {
7549 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
7550 }
7551
7552 /* Implement the "remove" breakpoint_ops method for fork
7553 catchpoints. */
7554
7555 static int
7556 remove_catch_fork (struct bp_location *bl)
7557 {
7558 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
7559 }
7560
7561 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7562 catchpoints. */
7563
7564 static int
7565 breakpoint_hit_catch_fork (const struct bp_location *bl,
7566 struct address_space *aspace, CORE_ADDR bp_addr,
7567 const struct target_waitstatus *ws)
7568 {
7569 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7570
7571 if (ws->kind != TARGET_WAITKIND_FORKED)
7572 return 0;
7573
7574 c->forked_inferior_pid = ws->value.related_pid;
7575 return 1;
7576 }
7577
7578 /* Implement the "print_it" breakpoint_ops method for fork
7579 catchpoints. */
7580
7581 static enum print_stop_action
7582 print_it_catch_fork (bpstat bs)
7583 {
7584 struct ui_out *uiout = current_uiout;
7585 struct breakpoint *b = bs->breakpoint_at;
7586 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7587
7588 annotate_catchpoint (b->number);
7589 if (b->disposition == disp_del)
7590 ui_out_text (uiout, "\nTemporary catchpoint ");
7591 else
7592 ui_out_text (uiout, "\nCatchpoint ");
7593 if (ui_out_is_mi_like_p (uiout))
7594 {
7595 ui_out_field_string (uiout, "reason",
7596 async_reason_lookup (EXEC_ASYNC_FORK));
7597 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7598 }
7599 ui_out_field_int (uiout, "bkptno", b->number);
7600 ui_out_text (uiout, " (forked process ");
7601 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7602 ui_out_text (uiout, "), ");
7603 return PRINT_SRC_AND_LOC;
7604 }
7605
7606 /* Implement the "print_one" breakpoint_ops method for fork
7607 catchpoints. */
7608
7609 static void
7610 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7611 {
7612 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7613 struct value_print_options opts;
7614 struct ui_out *uiout = current_uiout;
7615
7616 get_user_print_options (&opts);
7617
7618 /* Field 4, the address, is omitted (which makes the columns not
7619 line up too nicely with the headers, but the effect is relatively
7620 readable). */
7621 if (opts.addressprint)
7622 ui_out_field_skip (uiout, "addr");
7623 annotate_field (5);
7624 ui_out_text (uiout, "fork");
7625 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7626 {
7627 ui_out_text (uiout, ", process ");
7628 ui_out_field_int (uiout, "what",
7629 ptid_get_pid (c->forked_inferior_pid));
7630 ui_out_spaces (uiout, 1);
7631 }
7632
7633 if (ui_out_is_mi_like_p (uiout))
7634 ui_out_field_string (uiout, "catch-type", "fork");
7635 }
7636
7637 /* Implement the "print_mention" breakpoint_ops method for fork
7638 catchpoints. */
7639
7640 static void
7641 print_mention_catch_fork (struct breakpoint *b)
7642 {
7643 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7644 }
7645
7646 /* Implement the "print_recreate" breakpoint_ops method for fork
7647 catchpoints. */
7648
7649 static void
7650 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7651 {
7652 fprintf_unfiltered (fp, "catch fork");
7653 print_recreate_thread (b, fp);
7654 }
7655
7656 /* The breakpoint_ops structure to be used in fork catchpoints. */
7657
7658 static struct breakpoint_ops catch_fork_breakpoint_ops;
7659
7660 /* Implement the "insert" breakpoint_ops method for vfork
7661 catchpoints. */
7662
7663 static int
7664 insert_catch_vfork (struct bp_location *bl)
7665 {
7666 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
7667 }
7668
7669 /* Implement the "remove" breakpoint_ops method for vfork
7670 catchpoints. */
7671
7672 static int
7673 remove_catch_vfork (struct bp_location *bl)
7674 {
7675 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
7676 }
7677
7678 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7679 catchpoints. */
7680
7681 static int
7682 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7683 struct address_space *aspace, CORE_ADDR bp_addr,
7684 const struct target_waitstatus *ws)
7685 {
7686 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7687
7688 if (ws->kind != TARGET_WAITKIND_VFORKED)
7689 return 0;
7690
7691 c->forked_inferior_pid = ws->value.related_pid;
7692 return 1;
7693 }
7694
7695 /* Implement the "print_it" breakpoint_ops method for vfork
7696 catchpoints. */
7697
7698 static enum print_stop_action
7699 print_it_catch_vfork (bpstat bs)
7700 {
7701 struct ui_out *uiout = current_uiout;
7702 struct breakpoint *b = bs->breakpoint_at;
7703 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7704
7705 annotate_catchpoint (b->number);
7706 if (b->disposition == disp_del)
7707 ui_out_text (uiout, "\nTemporary catchpoint ");
7708 else
7709 ui_out_text (uiout, "\nCatchpoint ");
7710 if (ui_out_is_mi_like_p (uiout))
7711 {
7712 ui_out_field_string (uiout, "reason",
7713 async_reason_lookup (EXEC_ASYNC_VFORK));
7714 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7715 }
7716 ui_out_field_int (uiout, "bkptno", b->number);
7717 ui_out_text (uiout, " (vforked process ");
7718 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7719 ui_out_text (uiout, "), ");
7720 return PRINT_SRC_AND_LOC;
7721 }
7722
7723 /* Implement the "print_one" breakpoint_ops method for vfork
7724 catchpoints. */
7725
7726 static void
7727 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7728 {
7729 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7730 struct value_print_options opts;
7731 struct ui_out *uiout = current_uiout;
7732
7733 get_user_print_options (&opts);
7734 /* Field 4, the address, is omitted (which makes the columns not
7735 line up too nicely with the headers, but the effect is relatively
7736 readable). */
7737 if (opts.addressprint)
7738 ui_out_field_skip (uiout, "addr");
7739 annotate_field (5);
7740 ui_out_text (uiout, "vfork");
7741 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7742 {
7743 ui_out_text (uiout, ", process ");
7744 ui_out_field_int (uiout, "what",
7745 ptid_get_pid (c->forked_inferior_pid));
7746 ui_out_spaces (uiout, 1);
7747 }
7748
7749 if (ui_out_is_mi_like_p (uiout))
7750 ui_out_field_string (uiout, "catch-type", "vfork");
7751 }
7752
7753 /* Implement the "print_mention" breakpoint_ops method for vfork
7754 catchpoints. */
7755
7756 static void
7757 print_mention_catch_vfork (struct breakpoint *b)
7758 {
7759 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7760 }
7761
7762 /* Implement the "print_recreate" breakpoint_ops method for vfork
7763 catchpoints. */
7764
7765 static void
7766 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7767 {
7768 fprintf_unfiltered (fp, "catch vfork");
7769 print_recreate_thread (b, fp);
7770 }
7771
7772 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7773
7774 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7775
7776 /* An instance of this type is used to represent an solib catchpoint.
7777 It includes a "struct breakpoint" as a kind of base class; users
7778 downcast to "struct breakpoint *" when needed. A breakpoint is
7779 really of this type iff its ops pointer points to
7780 CATCH_SOLIB_BREAKPOINT_OPS. */
7781
7782 struct solib_catchpoint
7783 {
7784 /* The base class. */
7785 struct breakpoint base;
7786
7787 /* True for "catch load", false for "catch unload". */
7788 unsigned char is_load;
7789
7790 /* Regular expression to match, if any. COMPILED is only valid when
7791 REGEX is non-NULL. */
7792 char *regex;
7793 regex_t compiled;
7794 };
7795
7796 static void
7797 dtor_catch_solib (struct breakpoint *b)
7798 {
7799 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7800
7801 if (self->regex)
7802 regfree (&self->compiled);
7803 xfree (self->regex);
7804
7805 base_breakpoint_ops.dtor (b);
7806 }
7807
7808 static int
7809 insert_catch_solib (struct bp_location *ignore)
7810 {
7811 return 0;
7812 }
7813
7814 static int
7815 remove_catch_solib (struct bp_location *ignore)
7816 {
7817 return 0;
7818 }
7819
7820 static int
7821 breakpoint_hit_catch_solib (const struct bp_location *bl,
7822 struct address_space *aspace,
7823 CORE_ADDR bp_addr,
7824 const struct target_waitstatus *ws)
7825 {
7826 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7827 struct breakpoint *other;
7828
7829 if (ws->kind == TARGET_WAITKIND_LOADED)
7830 return 1;
7831
7832 ALL_BREAKPOINTS (other)
7833 {
7834 struct bp_location *other_bl;
7835
7836 if (other == bl->owner)
7837 continue;
7838
7839 if (other->type != bp_shlib_event)
7840 continue;
7841
7842 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7843 continue;
7844
7845 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7846 {
7847 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7848 return 1;
7849 }
7850 }
7851
7852 return 0;
7853 }
7854
7855 static void
7856 check_status_catch_solib (struct bpstats *bs)
7857 {
7858 struct solib_catchpoint *self
7859 = (struct solib_catchpoint *) bs->breakpoint_at;
7860 int ix;
7861
7862 if (self->is_load)
7863 {
7864 struct so_list *iter;
7865
7866 for (ix = 0;
7867 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7868 ix, iter);
7869 ++ix)
7870 {
7871 if (!self->regex
7872 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7873 return;
7874 }
7875 }
7876 else
7877 {
7878 char *iter;
7879
7880 for (ix = 0;
7881 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7882 ix, iter);
7883 ++ix)
7884 {
7885 if (!self->regex
7886 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7887 return;
7888 }
7889 }
7890
7891 bs->stop = 0;
7892 bs->print_it = print_it_noop;
7893 }
7894
7895 static enum print_stop_action
7896 print_it_catch_solib (bpstat bs)
7897 {
7898 struct breakpoint *b = bs->breakpoint_at;
7899 struct ui_out *uiout = current_uiout;
7900
7901 annotate_catchpoint (b->number);
7902 if (b->disposition == disp_del)
7903 ui_out_text (uiout, "\nTemporary catchpoint ");
7904 else
7905 ui_out_text (uiout, "\nCatchpoint ");
7906 ui_out_field_int (uiout, "bkptno", b->number);
7907 ui_out_text (uiout, "\n");
7908 if (ui_out_is_mi_like_p (uiout))
7909 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7910 print_solib_event (1);
7911 return PRINT_SRC_AND_LOC;
7912 }
7913
7914 static void
7915 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7916 {
7917 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7918 struct value_print_options opts;
7919 struct ui_out *uiout = current_uiout;
7920 char *msg;
7921
7922 get_user_print_options (&opts);
7923 /* Field 4, the address, is omitted (which makes the columns not
7924 line up too nicely with the headers, but the effect is relatively
7925 readable). */
7926 if (opts.addressprint)
7927 {
7928 annotate_field (4);
7929 ui_out_field_skip (uiout, "addr");
7930 }
7931
7932 annotate_field (5);
7933 if (self->is_load)
7934 {
7935 if (self->regex)
7936 msg = xstrprintf (_("load of library matching %s"), self->regex);
7937 else
7938 msg = xstrdup (_("load of library"));
7939 }
7940 else
7941 {
7942 if (self->regex)
7943 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7944 else
7945 msg = xstrdup (_("unload of library"));
7946 }
7947 ui_out_field_string (uiout, "what", msg);
7948 xfree (msg);
7949
7950 if (ui_out_is_mi_like_p (uiout))
7951 ui_out_field_string (uiout, "catch-type",
7952 self->is_load ? "load" : "unload");
7953 }
7954
7955 static void
7956 print_mention_catch_solib (struct breakpoint *b)
7957 {
7958 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7959
7960 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7961 self->is_load ? "load" : "unload");
7962 }
7963
7964 static void
7965 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7966 {
7967 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7968
7969 fprintf_unfiltered (fp, "%s %s",
7970 b->disposition == disp_del ? "tcatch" : "catch",
7971 self->is_load ? "load" : "unload");
7972 if (self->regex)
7973 fprintf_unfiltered (fp, " %s", self->regex);
7974 fprintf_unfiltered (fp, "\n");
7975 }
7976
7977 static struct breakpoint_ops catch_solib_breakpoint_ops;
7978
7979 /* Shared helper function (MI and CLI) for creating and installing
7980 a shared object event catchpoint. If IS_LOAD is non-zero then
7981 the events to be caught are load events, otherwise they are
7982 unload events. If IS_TEMP is non-zero the catchpoint is a
7983 temporary one. If ENABLED is non-zero the catchpoint is
7984 created in an enabled state. */
7985
7986 void
7987 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7988 {
7989 struct solib_catchpoint *c;
7990 struct gdbarch *gdbarch = get_current_arch ();
7991 struct cleanup *cleanup;
7992
7993 if (!arg)
7994 arg = "";
7995 arg = skip_spaces (arg);
7996
7997 c = XCNEW (struct solib_catchpoint);
7998 cleanup = make_cleanup (xfree, c);
7999
8000 if (*arg != '\0')
8001 {
8002 int errcode;
8003
8004 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8005 if (errcode != 0)
8006 {
8007 char *err = get_regcomp_error (errcode, &c->compiled);
8008
8009 make_cleanup (xfree, err);
8010 error (_("Invalid regexp (%s): %s"), err, arg);
8011 }
8012 c->regex = xstrdup (arg);
8013 }
8014
8015 c->is_load = is_load;
8016 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8017 &catch_solib_breakpoint_ops);
8018
8019 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8020
8021 discard_cleanups (cleanup);
8022 install_breakpoint (0, &c->base, 1);
8023 }
8024
8025 /* A helper function that does all the work for "catch load" and
8026 "catch unload". */
8027
8028 static void
8029 catch_load_or_unload (char *arg, int from_tty, int is_load,
8030 struct cmd_list_element *command)
8031 {
8032 int tempflag;
8033 const int enabled = 1;
8034
8035 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8036
8037 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8038 }
8039
8040 static void
8041 catch_load_command_1 (char *arg, int from_tty,
8042 struct cmd_list_element *command)
8043 {
8044 catch_load_or_unload (arg, from_tty, 1, command);
8045 }
8046
8047 static void
8048 catch_unload_command_1 (char *arg, int from_tty,
8049 struct cmd_list_element *command)
8050 {
8051 catch_load_or_unload (arg, from_tty, 0, command);
8052 }
8053
8054 /* An instance of this type is used to represent a syscall catchpoint.
8055 It includes a "struct breakpoint" as a kind of base class; users
8056 downcast to "struct breakpoint *" when needed. A breakpoint is
8057 really of this type iff its ops pointer points to
8058 CATCH_SYSCALL_BREAKPOINT_OPS. */
8059
8060 struct syscall_catchpoint
8061 {
8062 /* The base class. */
8063 struct breakpoint base;
8064
8065 /* Syscall numbers used for the 'catch syscall' feature. If no
8066 syscall has been specified for filtering, its value is NULL.
8067 Otherwise, it holds a list of all syscalls to be caught. The
8068 list elements are allocated with xmalloc. */
8069 VEC(int) *syscalls_to_be_caught;
8070 };
8071
8072 /* Implement the "dtor" breakpoint_ops method for syscall
8073 catchpoints. */
8074
8075 static void
8076 dtor_catch_syscall (struct breakpoint *b)
8077 {
8078 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8079
8080 VEC_free (int, c->syscalls_to_be_caught);
8081
8082 base_breakpoint_ops.dtor (b);
8083 }
8084
8085 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8086
8087 struct catch_syscall_inferior_data
8088 {
8089 /* We keep a count of the number of times the user has requested a
8090 particular syscall to be tracked, and pass this information to the
8091 target. This lets capable targets implement filtering directly. */
8092
8093 /* Number of times that "any" syscall is requested. */
8094 int any_syscall_count;
8095
8096 /* Count of each system call. */
8097 VEC(int) *syscalls_counts;
8098
8099 /* This counts all syscall catch requests, so we can readily determine
8100 if any catching is necessary. */
8101 int total_syscalls_count;
8102 };
8103
8104 static struct catch_syscall_inferior_data*
8105 get_catch_syscall_inferior_data (struct inferior *inf)
8106 {
8107 struct catch_syscall_inferior_data *inf_data;
8108
8109 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8110 if (inf_data == NULL)
8111 {
8112 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8113 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8114 }
8115
8116 return inf_data;
8117 }
8118
8119 static void
8120 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8121 {
8122 xfree (arg);
8123 }
8124
8125
8126 /* Implement the "insert" breakpoint_ops method for syscall
8127 catchpoints. */
8128
8129 static int
8130 insert_catch_syscall (struct bp_location *bl)
8131 {
8132 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8133 struct inferior *inf = current_inferior ();
8134 struct catch_syscall_inferior_data *inf_data
8135 = get_catch_syscall_inferior_data (inf);
8136
8137 ++inf_data->total_syscalls_count;
8138 if (!c->syscalls_to_be_caught)
8139 ++inf_data->any_syscall_count;
8140 else
8141 {
8142 int i, iter;
8143
8144 for (i = 0;
8145 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8146 i++)
8147 {
8148 int elem;
8149
8150 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8151 {
8152 int old_size = VEC_length (int, inf_data->syscalls_counts);
8153 uintptr_t vec_addr_offset
8154 = old_size * ((uintptr_t) sizeof (int));
8155 uintptr_t vec_addr;
8156 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8157 vec_addr = ((uintptr_t) VEC_address (int,
8158 inf_data->syscalls_counts)
8159 + vec_addr_offset);
8160 memset ((void *) vec_addr, 0,
8161 (iter + 1 - old_size) * sizeof (int));
8162 }
8163 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8164 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8165 }
8166 }
8167
8168 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8169 inf_data->total_syscalls_count != 0,
8170 inf_data->any_syscall_count,
8171 VEC_length (int,
8172 inf_data->syscalls_counts),
8173 VEC_address (int,
8174 inf_data->syscalls_counts));
8175 }
8176
8177 /* Implement the "remove" breakpoint_ops method for syscall
8178 catchpoints. */
8179
8180 static int
8181 remove_catch_syscall (struct bp_location *bl)
8182 {
8183 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8184 struct inferior *inf = current_inferior ();
8185 struct catch_syscall_inferior_data *inf_data
8186 = get_catch_syscall_inferior_data (inf);
8187
8188 --inf_data->total_syscalls_count;
8189 if (!c->syscalls_to_be_caught)
8190 --inf_data->any_syscall_count;
8191 else
8192 {
8193 int i, iter;
8194
8195 for (i = 0;
8196 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8197 i++)
8198 {
8199 int elem;
8200 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8201 /* Shouldn't happen. */
8202 continue;
8203 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8204 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8205 }
8206 }
8207
8208 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8209 inf_data->total_syscalls_count != 0,
8210 inf_data->any_syscall_count,
8211 VEC_length (int,
8212 inf_data->syscalls_counts),
8213 VEC_address (int,
8214 inf_data->syscalls_counts));
8215 }
8216
8217 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8218 catchpoints. */
8219
8220 static int
8221 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8222 struct address_space *aspace, CORE_ADDR bp_addr,
8223 const struct target_waitstatus *ws)
8224 {
8225 /* We must check if we are catching specific syscalls in this
8226 breakpoint. If we are, then we must guarantee that the called
8227 syscall is the same syscall we are catching. */
8228 int syscall_number = 0;
8229 const struct syscall_catchpoint *c
8230 = (const struct syscall_catchpoint *) bl->owner;
8231
8232 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8233 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8234 return 0;
8235
8236 syscall_number = ws->value.syscall_number;
8237
8238 /* Now, checking if the syscall is the same. */
8239 if (c->syscalls_to_be_caught)
8240 {
8241 int i, iter;
8242
8243 for (i = 0;
8244 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8245 i++)
8246 if (syscall_number == iter)
8247 break;
8248 /* Not the same. */
8249 if (!iter)
8250 return 0;
8251 }
8252
8253 return 1;
8254 }
8255
8256 /* Implement the "print_it" breakpoint_ops method for syscall
8257 catchpoints. */
8258
8259 static enum print_stop_action
8260 print_it_catch_syscall (bpstat bs)
8261 {
8262 struct ui_out *uiout = current_uiout;
8263 struct breakpoint *b = bs->breakpoint_at;
8264 /* These are needed because we want to know in which state a
8265 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8266 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8267 must print "called syscall" or "returned from syscall". */
8268 ptid_t ptid;
8269 struct target_waitstatus last;
8270 struct syscall s;
8271
8272 get_last_target_status (&ptid, &last);
8273
8274 get_syscall_by_number (last.value.syscall_number, &s);
8275
8276 annotate_catchpoint (b->number);
8277
8278 if (b->disposition == disp_del)
8279 ui_out_text (uiout, "\nTemporary catchpoint ");
8280 else
8281 ui_out_text (uiout, "\nCatchpoint ");
8282 if (ui_out_is_mi_like_p (uiout))
8283 {
8284 ui_out_field_string (uiout, "reason",
8285 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8286 ? EXEC_ASYNC_SYSCALL_ENTRY
8287 : EXEC_ASYNC_SYSCALL_RETURN));
8288 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8289 }
8290 ui_out_field_int (uiout, "bkptno", b->number);
8291
8292 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8293 ui_out_text (uiout, " (call to syscall ");
8294 else
8295 ui_out_text (uiout, " (returned from syscall ");
8296
8297 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8298 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8299 if (s.name != NULL)
8300 ui_out_field_string (uiout, "syscall-name", s.name);
8301
8302 ui_out_text (uiout, "), ");
8303
8304 return PRINT_SRC_AND_LOC;
8305 }
8306
8307 /* Implement the "print_one" breakpoint_ops method for syscall
8308 catchpoints. */
8309
8310 static void
8311 print_one_catch_syscall (struct breakpoint *b,
8312 struct bp_location **last_loc)
8313 {
8314 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8315 struct value_print_options opts;
8316 struct ui_out *uiout = current_uiout;
8317
8318 get_user_print_options (&opts);
8319 /* Field 4, the address, is omitted (which makes the columns not
8320 line up too nicely with the headers, but the effect is relatively
8321 readable). */
8322 if (opts.addressprint)
8323 ui_out_field_skip (uiout, "addr");
8324 annotate_field (5);
8325
8326 if (c->syscalls_to_be_caught
8327 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8328 ui_out_text (uiout, "syscalls \"");
8329 else
8330 ui_out_text (uiout, "syscall \"");
8331
8332 if (c->syscalls_to_be_caught)
8333 {
8334 int i, iter;
8335 char *text = xstrprintf ("%s", "");
8336
8337 for (i = 0;
8338 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8339 i++)
8340 {
8341 char *x = text;
8342 struct syscall s;
8343 get_syscall_by_number (iter, &s);
8344
8345 if (s.name != NULL)
8346 text = xstrprintf ("%s%s, ", text, s.name);
8347 else
8348 text = xstrprintf ("%s%d, ", text, iter);
8349
8350 /* We have to xfree the last 'text' (now stored at 'x')
8351 because xstrprintf dynamically allocates new space for it
8352 on every call. */
8353 xfree (x);
8354 }
8355 /* Remove the last comma. */
8356 text[strlen (text) - 2] = '\0';
8357 ui_out_field_string (uiout, "what", text);
8358 }
8359 else
8360 ui_out_field_string (uiout, "what", "<any syscall>");
8361 ui_out_text (uiout, "\" ");
8362
8363 if (ui_out_is_mi_like_p (uiout))
8364 ui_out_field_string (uiout, "catch-type", "syscall");
8365 }
8366
8367 /* Implement the "print_mention" breakpoint_ops method for syscall
8368 catchpoints. */
8369
8370 static void
8371 print_mention_catch_syscall (struct breakpoint *b)
8372 {
8373 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8374
8375 if (c->syscalls_to_be_caught)
8376 {
8377 int i, iter;
8378
8379 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8380 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8381 else
8382 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8383
8384 for (i = 0;
8385 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8386 i++)
8387 {
8388 struct syscall s;
8389 get_syscall_by_number (iter, &s);
8390
8391 if (s.name)
8392 printf_filtered (" '%s' [%d]", s.name, s.number);
8393 else
8394 printf_filtered (" %d", s.number);
8395 }
8396 printf_filtered (")");
8397 }
8398 else
8399 printf_filtered (_("Catchpoint %d (any syscall)"),
8400 b->number);
8401 }
8402
8403 /* Implement the "print_recreate" breakpoint_ops method for syscall
8404 catchpoints. */
8405
8406 static void
8407 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8408 {
8409 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8410
8411 fprintf_unfiltered (fp, "catch syscall");
8412
8413 if (c->syscalls_to_be_caught)
8414 {
8415 int i, iter;
8416
8417 for (i = 0;
8418 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8419 i++)
8420 {
8421 struct syscall s;
8422
8423 get_syscall_by_number (iter, &s);
8424 if (s.name)
8425 fprintf_unfiltered (fp, " %s", s.name);
8426 else
8427 fprintf_unfiltered (fp, " %d", s.number);
8428 }
8429 }
8430 print_recreate_thread (b, fp);
8431 }
8432
8433 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8434
8435 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8436
8437 /* Returns non-zero if 'b' is a syscall catchpoint. */
8438
8439 static int
8440 syscall_catchpoint_p (struct breakpoint *b)
8441 {
8442 return (b->ops == &catch_syscall_breakpoint_ops);
8443 }
8444
8445 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8446 is non-zero, then make the breakpoint temporary. If COND_STRING is
8447 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8448 the breakpoint_ops structure associated to the catchpoint. */
8449
8450 void
8451 init_catchpoint (struct breakpoint *b,
8452 struct gdbarch *gdbarch, int tempflag,
8453 char *cond_string,
8454 const struct breakpoint_ops *ops)
8455 {
8456 struct symtab_and_line sal;
8457
8458 init_sal (&sal);
8459 sal.pspace = current_program_space;
8460
8461 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8462
8463 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8464 b->disposition = tempflag ? disp_del : disp_donttouch;
8465 }
8466
8467 void
8468 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8469 {
8470 add_to_breakpoint_chain (b);
8471 set_breakpoint_number (internal, b);
8472 if (is_tracepoint (b))
8473 set_tracepoint_count (breakpoint_count);
8474 if (!internal)
8475 mention (b);
8476 observer_notify_breakpoint_created (b);
8477
8478 if (update_gll)
8479 update_global_location_list (1);
8480 }
8481
8482 static void
8483 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8484 int tempflag, char *cond_string,
8485 const struct breakpoint_ops *ops)
8486 {
8487 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8488
8489 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8490
8491 c->forked_inferior_pid = null_ptid;
8492
8493 install_breakpoint (0, &c->base, 1);
8494 }
8495
8496 /* Exec catchpoints. */
8497
8498 /* An instance of this type is used to represent an exec catchpoint.
8499 It includes a "struct breakpoint" as a kind of base class; users
8500 downcast to "struct breakpoint *" when needed. A breakpoint is
8501 really of this type iff its ops pointer points to
8502 CATCH_EXEC_BREAKPOINT_OPS. */
8503
8504 struct exec_catchpoint
8505 {
8506 /* The base class. */
8507 struct breakpoint base;
8508
8509 /* Filename of a program whose exec triggered this catchpoint.
8510 This field is only valid immediately after this catchpoint has
8511 triggered. */
8512 char *exec_pathname;
8513 };
8514
8515 /* Implement the "dtor" breakpoint_ops method for exec
8516 catchpoints. */
8517
8518 static void
8519 dtor_catch_exec (struct breakpoint *b)
8520 {
8521 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8522
8523 xfree (c->exec_pathname);
8524
8525 base_breakpoint_ops.dtor (b);
8526 }
8527
8528 static int
8529 insert_catch_exec (struct bp_location *bl)
8530 {
8531 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
8532 }
8533
8534 static int
8535 remove_catch_exec (struct bp_location *bl)
8536 {
8537 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
8538 }
8539
8540 static int
8541 breakpoint_hit_catch_exec (const struct bp_location *bl,
8542 struct address_space *aspace, CORE_ADDR bp_addr,
8543 const struct target_waitstatus *ws)
8544 {
8545 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8546
8547 if (ws->kind != TARGET_WAITKIND_EXECD)
8548 return 0;
8549
8550 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8551 return 1;
8552 }
8553
8554 static enum print_stop_action
8555 print_it_catch_exec (bpstat bs)
8556 {
8557 struct ui_out *uiout = current_uiout;
8558 struct breakpoint *b = bs->breakpoint_at;
8559 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8560
8561 annotate_catchpoint (b->number);
8562 if (b->disposition == disp_del)
8563 ui_out_text (uiout, "\nTemporary catchpoint ");
8564 else
8565 ui_out_text (uiout, "\nCatchpoint ");
8566 if (ui_out_is_mi_like_p (uiout))
8567 {
8568 ui_out_field_string (uiout, "reason",
8569 async_reason_lookup (EXEC_ASYNC_EXEC));
8570 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8571 }
8572 ui_out_field_int (uiout, "bkptno", b->number);
8573 ui_out_text (uiout, " (exec'd ");
8574 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8575 ui_out_text (uiout, "), ");
8576
8577 return PRINT_SRC_AND_LOC;
8578 }
8579
8580 static void
8581 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8582 {
8583 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8584 struct value_print_options opts;
8585 struct ui_out *uiout = current_uiout;
8586
8587 get_user_print_options (&opts);
8588
8589 /* Field 4, the address, is omitted (which makes the columns
8590 not line up too nicely with the headers, but the effect
8591 is relatively readable). */
8592 if (opts.addressprint)
8593 ui_out_field_skip (uiout, "addr");
8594 annotate_field (5);
8595 ui_out_text (uiout, "exec");
8596 if (c->exec_pathname != NULL)
8597 {
8598 ui_out_text (uiout, ", program \"");
8599 ui_out_field_string (uiout, "what", c->exec_pathname);
8600 ui_out_text (uiout, "\" ");
8601 }
8602
8603 if (ui_out_is_mi_like_p (uiout))
8604 ui_out_field_string (uiout, "catch-type", "exec");
8605 }
8606
8607 static void
8608 print_mention_catch_exec (struct breakpoint *b)
8609 {
8610 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8611 }
8612
8613 /* Implement the "print_recreate" breakpoint_ops method for exec
8614 catchpoints. */
8615
8616 static void
8617 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8618 {
8619 fprintf_unfiltered (fp, "catch exec");
8620 print_recreate_thread (b, fp);
8621 }
8622
8623 static struct breakpoint_ops catch_exec_breakpoint_ops;
8624
8625 static void
8626 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8627 const struct breakpoint_ops *ops)
8628 {
8629 struct syscall_catchpoint *c;
8630 struct gdbarch *gdbarch = get_current_arch ();
8631
8632 c = XNEW (struct syscall_catchpoint);
8633 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8634 c->syscalls_to_be_caught = filter;
8635
8636 install_breakpoint (0, &c->base, 1);
8637 }
8638
8639 static int
8640 hw_breakpoint_used_count (void)
8641 {
8642 int i = 0;
8643 struct breakpoint *b;
8644 struct bp_location *bl;
8645
8646 ALL_BREAKPOINTS (b)
8647 {
8648 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8649 for (bl = b->loc; bl; bl = bl->next)
8650 {
8651 /* Special types of hardware breakpoints may use more than
8652 one register. */
8653 i += b->ops->resources_needed (bl);
8654 }
8655 }
8656
8657 return i;
8658 }
8659
8660 /* Returns the resources B would use if it were a hardware
8661 watchpoint. */
8662
8663 static int
8664 hw_watchpoint_use_count (struct breakpoint *b)
8665 {
8666 int i = 0;
8667 struct bp_location *bl;
8668
8669 if (!breakpoint_enabled (b))
8670 return 0;
8671
8672 for (bl = b->loc; bl; bl = bl->next)
8673 {
8674 /* Special types of hardware watchpoints may use more than
8675 one register. */
8676 i += b->ops->resources_needed (bl);
8677 }
8678
8679 return i;
8680 }
8681
8682 /* Returns the sum the used resources of all hardware watchpoints of
8683 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8684 the sum of the used resources of all hardware watchpoints of other
8685 types _not_ TYPE. */
8686
8687 static int
8688 hw_watchpoint_used_count_others (struct breakpoint *except,
8689 enum bptype type, int *other_type_used)
8690 {
8691 int i = 0;
8692 struct breakpoint *b;
8693
8694 *other_type_used = 0;
8695 ALL_BREAKPOINTS (b)
8696 {
8697 if (b == except)
8698 continue;
8699 if (!breakpoint_enabled (b))
8700 continue;
8701
8702 if (b->type == type)
8703 i += hw_watchpoint_use_count (b);
8704 else if (is_hardware_watchpoint (b))
8705 *other_type_used = 1;
8706 }
8707
8708 return i;
8709 }
8710
8711 void
8712 disable_watchpoints_before_interactive_call_start (void)
8713 {
8714 struct breakpoint *b;
8715
8716 ALL_BREAKPOINTS (b)
8717 {
8718 if (is_watchpoint (b) && breakpoint_enabled (b))
8719 {
8720 b->enable_state = bp_call_disabled;
8721 update_global_location_list (0);
8722 }
8723 }
8724 }
8725
8726 void
8727 enable_watchpoints_after_interactive_call_stop (void)
8728 {
8729 struct breakpoint *b;
8730
8731 ALL_BREAKPOINTS (b)
8732 {
8733 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8734 {
8735 b->enable_state = bp_enabled;
8736 update_global_location_list (1);
8737 }
8738 }
8739 }
8740
8741 void
8742 disable_breakpoints_before_startup (void)
8743 {
8744 current_program_space->executing_startup = 1;
8745 update_global_location_list (0);
8746 }
8747
8748 void
8749 enable_breakpoints_after_startup (void)
8750 {
8751 current_program_space->executing_startup = 0;
8752 breakpoint_re_set ();
8753 }
8754
8755
8756 /* Set a breakpoint that will evaporate an end of command
8757 at address specified by SAL.
8758 Restrict it to frame FRAME if FRAME is nonzero. */
8759
8760 struct breakpoint *
8761 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8762 struct frame_id frame_id, enum bptype type)
8763 {
8764 struct breakpoint *b;
8765
8766 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8767 tail-called one. */
8768 gdb_assert (!frame_id_artificial_p (frame_id));
8769
8770 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8771 b->enable_state = bp_enabled;
8772 b->disposition = disp_donttouch;
8773 b->frame_id = frame_id;
8774
8775 /* If we're debugging a multi-threaded program, then we want
8776 momentary breakpoints to be active in only a single thread of
8777 control. */
8778 if (in_thread_list (inferior_ptid))
8779 b->thread = pid_to_thread_id (inferior_ptid);
8780
8781 update_global_location_list_nothrow (1);
8782
8783 return b;
8784 }
8785
8786 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8787 The new breakpoint will have type TYPE, and use OPS as it
8788 breakpoint_ops. */
8789
8790 static struct breakpoint *
8791 momentary_breakpoint_from_master (struct breakpoint *orig,
8792 enum bptype type,
8793 const struct breakpoint_ops *ops)
8794 {
8795 struct breakpoint *copy;
8796
8797 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8798 copy->loc = allocate_bp_location (copy);
8799 set_breakpoint_location_function (copy->loc, 1);
8800
8801 copy->loc->gdbarch = orig->loc->gdbarch;
8802 copy->loc->requested_address = orig->loc->requested_address;
8803 copy->loc->address = orig->loc->address;
8804 copy->loc->section = orig->loc->section;
8805 copy->loc->pspace = orig->loc->pspace;
8806 copy->loc->probe = orig->loc->probe;
8807 copy->loc->line_number = orig->loc->line_number;
8808 copy->loc->symtab = orig->loc->symtab;
8809 copy->frame_id = orig->frame_id;
8810 copy->thread = orig->thread;
8811 copy->pspace = orig->pspace;
8812
8813 copy->enable_state = bp_enabled;
8814 copy->disposition = disp_donttouch;
8815 copy->number = internal_breakpoint_number--;
8816
8817 update_global_location_list_nothrow (0);
8818 return copy;
8819 }
8820
8821 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8822 ORIG is NULL. */
8823
8824 struct breakpoint *
8825 clone_momentary_breakpoint (struct breakpoint *orig)
8826 {
8827 /* If there's nothing to clone, then return nothing. */
8828 if (orig == NULL)
8829 return NULL;
8830
8831 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8832 }
8833
8834 struct breakpoint *
8835 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8836 enum bptype type)
8837 {
8838 struct symtab_and_line sal;
8839
8840 sal = find_pc_line (pc, 0);
8841 sal.pc = pc;
8842 sal.section = find_pc_overlay (pc);
8843 sal.explicit_pc = 1;
8844
8845 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8846 }
8847 \f
8848
8849 /* Tell the user we have just set a breakpoint B. */
8850
8851 static void
8852 mention (struct breakpoint *b)
8853 {
8854 b->ops->print_mention (b);
8855 if (ui_out_is_mi_like_p (current_uiout))
8856 return;
8857 printf_filtered ("\n");
8858 }
8859 \f
8860
8861 static struct bp_location *
8862 add_location_to_breakpoint (struct breakpoint *b,
8863 const struct symtab_and_line *sal)
8864 {
8865 struct bp_location *loc, **tmp;
8866 CORE_ADDR adjusted_address;
8867 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8868
8869 if (loc_gdbarch == NULL)
8870 loc_gdbarch = b->gdbarch;
8871
8872 /* Adjust the breakpoint's address prior to allocating a location.
8873 Once we call allocate_bp_location(), that mostly uninitialized
8874 location will be placed on the location chain. Adjustment of the
8875 breakpoint may cause target_read_memory() to be called and we do
8876 not want its scan of the location chain to find a breakpoint and
8877 location that's only been partially initialized. */
8878 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8879 sal->pc, b->type);
8880
8881 /* Sort the locations by their ADDRESS. */
8882 loc = allocate_bp_location (b);
8883 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8884 tmp = &((*tmp)->next))
8885 ;
8886 loc->next = *tmp;
8887 *tmp = loc;
8888
8889 loc->requested_address = sal->pc;
8890 loc->address = adjusted_address;
8891 loc->pspace = sal->pspace;
8892 loc->probe = sal->probe;
8893 gdb_assert (loc->pspace != NULL);
8894 loc->section = sal->section;
8895 loc->gdbarch = loc_gdbarch;
8896 loc->line_number = sal->line;
8897 loc->symtab = sal->symtab;
8898
8899 set_breakpoint_location_function (loc,
8900 sal->explicit_pc || sal->explicit_line);
8901 return loc;
8902 }
8903 \f
8904
8905 /* Return 1 if LOC is pointing to a permanent breakpoint,
8906 return 0 otherwise. */
8907
8908 static int
8909 bp_loc_is_permanent (struct bp_location *loc)
8910 {
8911 int len;
8912 CORE_ADDR addr;
8913 const gdb_byte *bpoint;
8914 gdb_byte *target_mem;
8915 struct cleanup *cleanup;
8916 int retval = 0;
8917
8918 gdb_assert (loc != NULL);
8919
8920 addr = loc->address;
8921 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8922
8923 /* Software breakpoints unsupported? */
8924 if (bpoint == NULL)
8925 return 0;
8926
8927 target_mem = alloca (len);
8928
8929 /* Enable the automatic memory restoration from breakpoints while
8930 we read the memory. Otherwise we could say about our temporary
8931 breakpoints they are permanent. */
8932 cleanup = save_current_space_and_thread ();
8933
8934 switch_to_program_space_and_thread (loc->pspace);
8935 make_show_memory_breakpoints_cleanup (0);
8936
8937 if (target_read_memory (loc->address, target_mem, len) == 0
8938 && memcmp (target_mem, bpoint, len) == 0)
8939 retval = 1;
8940
8941 do_cleanups (cleanup);
8942
8943 return retval;
8944 }
8945
8946 /* Build a command list for the dprintf corresponding to the current
8947 settings of the dprintf style options. */
8948
8949 static void
8950 update_dprintf_command_list (struct breakpoint *b)
8951 {
8952 char *dprintf_args = b->extra_string;
8953 char *printf_line = NULL;
8954
8955 if (!dprintf_args)
8956 return;
8957
8958 dprintf_args = skip_spaces (dprintf_args);
8959
8960 /* Allow a comma, as it may have terminated a location, but don't
8961 insist on it. */
8962 if (*dprintf_args == ',')
8963 ++dprintf_args;
8964 dprintf_args = skip_spaces (dprintf_args);
8965
8966 if (*dprintf_args != '"')
8967 error (_("Bad format string, missing '\"'."));
8968
8969 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8970 printf_line = xstrprintf ("printf %s", dprintf_args);
8971 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8972 {
8973 if (!dprintf_function)
8974 error (_("No function supplied for dprintf call"));
8975
8976 if (dprintf_channel && strlen (dprintf_channel) > 0)
8977 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8978 dprintf_function,
8979 dprintf_channel,
8980 dprintf_args);
8981 else
8982 printf_line = xstrprintf ("call (void) %s (%s)",
8983 dprintf_function,
8984 dprintf_args);
8985 }
8986 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8987 {
8988 if (target_can_run_breakpoint_commands ())
8989 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8990 else
8991 {
8992 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8993 printf_line = xstrprintf ("printf %s", dprintf_args);
8994 }
8995 }
8996 else
8997 internal_error (__FILE__, __LINE__,
8998 _("Invalid dprintf style."));
8999
9000 gdb_assert (printf_line != NULL);
9001 /* Manufacture a printf sequence. */
9002 {
9003 struct command_line *printf_cmd_line
9004 = xmalloc (sizeof (struct command_line));
9005
9006 printf_cmd_line = xmalloc (sizeof (struct command_line));
9007 printf_cmd_line->control_type = simple_control;
9008 printf_cmd_line->body_count = 0;
9009 printf_cmd_line->body_list = NULL;
9010 printf_cmd_line->next = NULL;
9011 printf_cmd_line->line = printf_line;
9012
9013 breakpoint_set_commands (b, printf_cmd_line);
9014 }
9015 }
9016
9017 /* Update all dprintf commands, making their command lists reflect
9018 current style settings. */
9019
9020 static void
9021 update_dprintf_commands (char *args, int from_tty,
9022 struct cmd_list_element *c)
9023 {
9024 struct breakpoint *b;
9025
9026 ALL_BREAKPOINTS (b)
9027 {
9028 if (b->type == bp_dprintf)
9029 update_dprintf_command_list (b);
9030 }
9031 }
9032
9033 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9034 as textual description of the location, and COND_STRING
9035 as condition expression. */
9036
9037 static void
9038 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9039 struct symtabs_and_lines sals, char *addr_string,
9040 char *filter, char *cond_string,
9041 char *extra_string,
9042 enum bptype type, enum bpdisp disposition,
9043 int thread, int task, int ignore_count,
9044 const struct breakpoint_ops *ops, int from_tty,
9045 int enabled, int internal, unsigned flags,
9046 int display_canonical)
9047 {
9048 int i;
9049
9050 if (type == bp_hardware_breakpoint)
9051 {
9052 int target_resources_ok;
9053
9054 i = hw_breakpoint_used_count ();
9055 target_resources_ok =
9056 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9057 i + 1, 0);
9058 if (target_resources_ok == 0)
9059 error (_("No hardware breakpoint support in the target."));
9060 else if (target_resources_ok < 0)
9061 error (_("Hardware breakpoints used exceeds limit."));
9062 }
9063
9064 gdb_assert (sals.nelts > 0);
9065
9066 for (i = 0; i < sals.nelts; ++i)
9067 {
9068 struct symtab_and_line sal = sals.sals[i];
9069 struct bp_location *loc;
9070
9071 if (from_tty)
9072 {
9073 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9074 if (!loc_gdbarch)
9075 loc_gdbarch = gdbarch;
9076
9077 describe_other_breakpoints (loc_gdbarch,
9078 sal.pspace, sal.pc, sal.section, thread);
9079 }
9080
9081 if (i == 0)
9082 {
9083 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9084 b->thread = thread;
9085 b->task = task;
9086
9087 b->cond_string = cond_string;
9088 b->extra_string = extra_string;
9089 b->ignore_count = ignore_count;
9090 b->enable_state = enabled ? bp_enabled : bp_disabled;
9091 b->disposition = disposition;
9092
9093 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9094 b->loc->inserted = 1;
9095
9096 if (type == bp_static_tracepoint)
9097 {
9098 struct tracepoint *t = (struct tracepoint *) b;
9099 struct static_tracepoint_marker marker;
9100
9101 if (strace_marker_p (b))
9102 {
9103 /* We already know the marker exists, otherwise, we
9104 wouldn't see a sal for it. */
9105 char *p = &addr_string[3];
9106 char *endp;
9107 char *marker_str;
9108
9109 p = skip_spaces (p);
9110
9111 endp = skip_to_space (p);
9112
9113 marker_str = savestring (p, endp - p);
9114 t->static_trace_marker_id = marker_str;
9115
9116 printf_filtered (_("Probed static tracepoint "
9117 "marker \"%s\"\n"),
9118 t->static_trace_marker_id);
9119 }
9120 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9121 {
9122 t->static_trace_marker_id = xstrdup (marker.str_id);
9123 release_static_tracepoint_marker (&marker);
9124
9125 printf_filtered (_("Probed static tracepoint "
9126 "marker \"%s\"\n"),
9127 t->static_trace_marker_id);
9128 }
9129 else
9130 warning (_("Couldn't determine the static "
9131 "tracepoint marker to probe"));
9132 }
9133
9134 loc = b->loc;
9135 }
9136 else
9137 {
9138 loc = add_location_to_breakpoint (b, &sal);
9139 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9140 loc->inserted = 1;
9141 }
9142
9143 if (bp_loc_is_permanent (loc))
9144 make_breakpoint_permanent (b);
9145
9146 if (b->cond_string)
9147 {
9148 const char *arg = b->cond_string;
9149
9150 loc->cond = parse_exp_1 (&arg, loc->address,
9151 block_for_pc (loc->address), 0);
9152 if (*arg)
9153 error (_("Garbage '%s' follows condition"), arg);
9154 }
9155
9156 /* Dynamic printf requires and uses additional arguments on the
9157 command line, otherwise it's an error. */
9158 if (type == bp_dprintf)
9159 {
9160 if (b->extra_string)
9161 update_dprintf_command_list (b);
9162 else
9163 error (_("Format string required"));
9164 }
9165 else if (b->extra_string)
9166 error (_("Garbage '%s' at end of command"), b->extra_string);
9167 }
9168
9169 b->display_canonical = display_canonical;
9170 if (addr_string)
9171 b->addr_string = addr_string;
9172 else
9173 /* addr_string has to be used or breakpoint_re_set will delete
9174 me. */
9175 b->addr_string
9176 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9177 b->filter = filter;
9178 }
9179
9180 static void
9181 create_breakpoint_sal (struct gdbarch *gdbarch,
9182 struct symtabs_and_lines sals, char *addr_string,
9183 char *filter, char *cond_string,
9184 char *extra_string,
9185 enum bptype type, enum bpdisp disposition,
9186 int thread, int task, int ignore_count,
9187 const struct breakpoint_ops *ops, int from_tty,
9188 int enabled, int internal, unsigned flags,
9189 int display_canonical)
9190 {
9191 struct breakpoint *b;
9192 struct cleanup *old_chain;
9193
9194 if (is_tracepoint_type (type))
9195 {
9196 struct tracepoint *t;
9197
9198 t = XCNEW (struct tracepoint);
9199 b = &t->base;
9200 }
9201 else
9202 b = XNEW (struct breakpoint);
9203
9204 old_chain = make_cleanup (xfree, b);
9205
9206 init_breakpoint_sal (b, gdbarch,
9207 sals, addr_string,
9208 filter, cond_string, extra_string,
9209 type, disposition,
9210 thread, task, ignore_count,
9211 ops, from_tty,
9212 enabled, internal, flags,
9213 display_canonical);
9214 discard_cleanups (old_chain);
9215
9216 install_breakpoint (internal, b, 0);
9217 }
9218
9219 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9220 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9221 value. COND_STRING, if not NULL, specified the condition to be
9222 used for all breakpoints. Essentially the only case where
9223 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9224 function. In that case, it's still not possible to specify
9225 separate conditions for different overloaded functions, so
9226 we take just a single condition string.
9227
9228 NOTE: If the function succeeds, the caller is expected to cleanup
9229 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9230 array contents). If the function fails (error() is called), the
9231 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9232 COND and SALS arrays and each of those arrays contents. */
9233
9234 static void
9235 create_breakpoints_sal (struct gdbarch *gdbarch,
9236 struct linespec_result *canonical,
9237 char *cond_string, char *extra_string,
9238 enum bptype type, enum bpdisp disposition,
9239 int thread, int task, int ignore_count,
9240 const struct breakpoint_ops *ops, int from_tty,
9241 int enabled, int internal, unsigned flags)
9242 {
9243 int i;
9244 struct linespec_sals *lsal;
9245
9246 if (canonical->pre_expanded)
9247 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9248
9249 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9250 {
9251 /* Note that 'addr_string' can be NULL in the case of a plain
9252 'break', without arguments. */
9253 char *addr_string = (canonical->addr_string
9254 ? xstrdup (canonical->addr_string)
9255 : NULL);
9256 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9257 struct cleanup *inner = make_cleanup (xfree, addr_string);
9258
9259 make_cleanup (xfree, filter_string);
9260 create_breakpoint_sal (gdbarch, lsal->sals,
9261 addr_string,
9262 filter_string,
9263 cond_string, extra_string,
9264 type, disposition,
9265 thread, task, ignore_count, ops,
9266 from_tty, enabled, internal, flags,
9267 canonical->special_display);
9268 discard_cleanups (inner);
9269 }
9270 }
9271
9272 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9273 followed by conditionals. On return, SALS contains an array of SAL
9274 addresses found. ADDR_STRING contains a vector of (canonical)
9275 address strings. ADDRESS points to the end of the SAL.
9276
9277 The array and the line spec strings are allocated on the heap, it is
9278 the caller's responsibility to free them. */
9279
9280 static void
9281 parse_breakpoint_sals (char **address,
9282 struct linespec_result *canonical)
9283 {
9284 /* If no arg given, or if first arg is 'if ', use the default
9285 breakpoint. */
9286 if ((*address) == NULL
9287 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9288 {
9289 /* The last displayed codepoint, if it's valid, is our default breakpoint
9290 address. */
9291 if (last_displayed_sal_is_valid ())
9292 {
9293 struct linespec_sals lsal;
9294 struct symtab_and_line sal;
9295 CORE_ADDR pc;
9296
9297 init_sal (&sal); /* Initialize to zeroes. */
9298 lsal.sals.sals = (struct symtab_and_line *)
9299 xmalloc (sizeof (struct symtab_and_line));
9300
9301 /* Set sal's pspace, pc, symtab, and line to the values
9302 corresponding to the last call to print_frame_info.
9303 Be sure to reinitialize LINE with NOTCURRENT == 0
9304 as the breakpoint line number is inappropriate otherwise.
9305 find_pc_line would adjust PC, re-set it back. */
9306 get_last_displayed_sal (&sal);
9307 pc = sal.pc;
9308 sal = find_pc_line (pc, 0);
9309
9310 /* "break" without arguments is equivalent to "break *PC"
9311 where PC is the last displayed codepoint's address. So
9312 make sure to set sal.explicit_pc to prevent GDB from
9313 trying to expand the list of sals to include all other
9314 instances with the same symtab and line. */
9315 sal.pc = pc;
9316 sal.explicit_pc = 1;
9317
9318 lsal.sals.sals[0] = sal;
9319 lsal.sals.nelts = 1;
9320 lsal.canonical = NULL;
9321
9322 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9323 }
9324 else
9325 error (_("No default breakpoint address now."));
9326 }
9327 else
9328 {
9329 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9330
9331 /* Force almost all breakpoints to be in terms of the
9332 current_source_symtab (which is decode_line_1's default).
9333 This should produce the results we want almost all of the
9334 time while leaving default_breakpoint_* alone.
9335
9336 ObjC: However, don't match an Objective-C method name which
9337 may have a '+' or '-' succeeded by a '['. */
9338 if (last_displayed_sal_is_valid ()
9339 && (!cursal.symtab
9340 || ((strchr ("+-", (*address)[0]) != NULL)
9341 && ((*address)[1] != '['))))
9342 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9343 get_last_displayed_symtab (),
9344 get_last_displayed_line (),
9345 canonical, NULL, NULL);
9346 else
9347 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9348 cursal.symtab, cursal.line, canonical, NULL, NULL);
9349 }
9350 }
9351
9352
9353 /* Convert each SAL into a real PC. Verify that the PC can be
9354 inserted as a breakpoint. If it can't throw an error. */
9355
9356 static void
9357 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9358 {
9359 int i;
9360
9361 for (i = 0; i < sals->nelts; i++)
9362 resolve_sal_pc (&sals->sals[i]);
9363 }
9364
9365 /* Fast tracepoints may have restrictions on valid locations. For
9366 instance, a fast tracepoint using a jump instead of a trap will
9367 likely have to overwrite more bytes than a trap would, and so can
9368 only be placed where the instruction is longer than the jump, or a
9369 multi-instruction sequence does not have a jump into the middle of
9370 it, etc. */
9371
9372 static void
9373 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9374 struct symtabs_and_lines *sals)
9375 {
9376 int i, rslt;
9377 struct symtab_and_line *sal;
9378 char *msg;
9379 struct cleanup *old_chain;
9380
9381 for (i = 0; i < sals->nelts; i++)
9382 {
9383 struct gdbarch *sarch;
9384
9385 sal = &sals->sals[i];
9386
9387 sarch = get_sal_arch (*sal);
9388 /* We fall back to GDBARCH if there is no architecture
9389 associated with SAL. */
9390 if (sarch == NULL)
9391 sarch = gdbarch;
9392 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9393 NULL, &msg);
9394 old_chain = make_cleanup (xfree, msg);
9395
9396 if (!rslt)
9397 error (_("May not have a fast tracepoint at 0x%s%s"),
9398 paddress (sarch, sal->pc), (msg ? msg : ""));
9399
9400 do_cleanups (old_chain);
9401 }
9402 }
9403
9404 /* Issue an invalid thread ID error. */
9405
9406 static void ATTRIBUTE_NORETURN
9407 invalid_thread_id_error (int id)
9408 {
9409 error (_("Unknown thread %d."), id);
9410 }
9411
9412 /* Given TOK, a string specification of condition and thread, as
9413 accepted by the 'break' command, extract the condition
9414 string and thread number and set *COND_STRING and *THREAD.
9415 PC identifies the context at which the condition should be parsed.
9416 If no condition is found, *COND_STRING is set to NULL.
9417 If no thread is found, *THREAD is set to -1. */
9418
9419 static void
9420 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9421 char **cond_string, int *thread, int *task,
9422 char **rest)
9423 {
9424 *cond_string = NULL;
9425 *thread = -1;
9426 *task = 0;
9427 *rest = NULL;
9428
9429 while (tok && *tok)
9430 {
9431 const char *end_tok;
9432 int toklen;
9433 const char *cond_start = NULL;
9434 const char *cond_end = NULL;
9435
9436 tok = skip_spaces_const (tok);
9437
9438 if ((*tok == '"' || *tok == ',') && rest)
9439 {
9440 *rest = savestring (tok, strlen (tok));
9441 return;
9442 }
9443
9444 end_tok = skip_to_space_const (tok);
9445
9446 toklen = end_tok - tok;
9447
9448 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9449 {
9450 struct expression *expr;
9451
9452 tok = cond_start = end_tok + 1;
9453 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9454 xfree (expr);
9455 cond_end = tok;
9456 *cond_string = savestring (cond_start, cond_end - cond_start);
9457 }
9458 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9459 {
9460 char *tmptok;
9461
9462 tok = end_tok + 1;
9463 *thread = strtol (tok, &tmptok, 0);
9464 if (tok == tmptok)
9465 error (_("Junk after thread keyword."));
9466 if (!valid_thread_id (*thread))
9467 invalid_thread_id_error (*thread);
9468 tok = tmptok;
9469 }
9470 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9471 {
9472 char *tmptok;
9473
9474 tok = end_tok + 1;
9475 *task = strtol (tok, &tmptok, 0);
9476 if (tok == tmptok)
9477 error (_("Junk after task keyword."));
9478 if (!valid_task_id (*task))
9479 error (_("Unknown task %d."), *task);
9480 tok = tmptok;
9481 }
9482 else if (rest)
9483 {
9484 *rest = savestring (tok, strlen (tok));
9485 return;
9486 }
9487 else
9488 error (_("Junk at end of arguments."));
9489 }
9490 }
9491
9492 /* Decode a static tracepoint marker spec. */
9493
9494 static struct symtabs_and_lines
9495 decode_static_tracepoint_spec (char **arg_p)
9496 {
9497 VEC(static_tracepoint_marker_p) *markers = NULL;
9498 struct symtabs_and_lines sals;
9499 struct cleanup *old_chain;
9500 char *p = &(*arg_p)[3];
9501 char *endp;
9502 char *marker_str;
9503 int i;
9504
9505 p = skip_spaces (p);
9506
9507 endp = skip_to_space (p);
9508
9509 marker_str = savestring (p, endp - p);
9510 old_chain = make_cleanup (xfree, marker_str);
9511
9512 markers = target_static_tracepoint_markers_by_strid (marker_str);
9513 if (VEC_empty(static_tracepoint_marker_p, markers))
9514 error (_("No known static tracepoint marker named %s"), marker_str);
9515
9516 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9517 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9518
9519 for (i = 0; i < sals.nelts; i++)
9520 {
9521 struct static_tracepoint_marker *marker;
9522
9523 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9524
9525 init_sal (&sals.sals[i]);
9526
9527 sals.sals[i] = find_pc_line (marker->address, 0);
9528 sals.sals[i].pc = marker->address;
9529
9530 release_static_tracepoint_marker (marker);
9531 }
9532
9533 do_cleanups (old_chain);
9534
9535 *arg_p = endp;
9536 return sals;
9537 }
9538
9539 /* Set a breakpoint. This function is shared between CLI and MI
9540 functions for setting a breakpoint. This function has two major
9541 modes of operations, selected by the PARSE_ARG parameter. If
9542 non-zero, the function will parse ARG, extracting location,
9543 condition, thread and extra string. Otherwise, ARG is just the
9544 breakpoint's location, with condition, thread, and extra string
9545 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9546 If INTERNAL is non-zero, the breakpoint number will be allocated
9547 from the internal breakpoint count. Returns true if any breakpoint
9548 was created; false otherwise. */
9549
9550 int
9551 create_breakpoint (struct gdbarch *gdbarch,
9552 char *arg, char *cond_string,
9553 int thread, char *extra_string,
9554 int parse_arg,
9555 int tempflag, enum bptype type_wanted,
9556 int ignore_count,
9557 enum auto_boolean pending_break_support,
9558 const struct breakpoint_ops *ops,
9559 int from_tty, int enabled, int internal,
9560 unsigned flags)
9561 {
9562 volatile struct gdb_exception e;
9563 char *copy_arg = NULL;
9564 char *addr_start = arg;
9565 struct linespec_result canonical;
9566 struct cleanup *old_chain;
9567 struct cleanup *bkpt_chain = NULL;
9568 int pending = 0;
9569 int task = 0;
9570 int prev_bkpt_count = breakpoint_count;
9571
9572 gdb_assert (ops != NULL);
9573
9574 init_linespec_result (&canonical);
9575
9576 TRY_CATCH (e, RETURN_MASK_ALL)
9577 {
9578 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9579 addr_start, &copy_arg);
9580 }
9581
9582 /* If caller is interested in rc value from parse, set value. */
9583 switch (e.reason)
9584 {
9585 case GDB_NO_ERROR:
9586 if (VEC_empty (linespec_sals, canonical.sals))
9587 return 0;
9588 break;
9589 case RETURN_ERROR:
9590 switch (e.error)
9591 {
9592 case NOT_FOUND_ERROR:
9593
9594 /* If pending breakpoint support is turned off, throw
9595 error. */
9596
9597 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9598 throw_exception (e);
9599
9600 exception_print (gdb_stderr, e);
9601
9602 /* If pending breakpoint support is auto query and the user
9603 selects no, then simply return the error code. */
9604 if (pending_break_support == AUTO_BOOLEAN_AUTO
9605 && !nquery (_("Make %s pending on future shared library load? "),
9606 bptype_string (type_wanted)))
9607 return 0;
9608
9609 /* At this point, either the user was queried about setting
9610 a pending breakpoint and selected yes, or pending
9611 breakpoint behavior is on and thus a pending breakpoint
9612 is defaulted on behalf of the user. */
9613 {
9614 struct linespec_sals lsal;
9615
9616 copy_arg = xstrdup (addr_start);
9617 lsal.canonical = xstrdup (copy_arg);
9618 lsal.sals.nelts = 1;
9619 lsal.sals.sals = XNEW (struct symtab_and_line);
9620 init_sal (&lsal.sals.sals[0]);
9621 pending = 1;
9622 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9623 }
9624 break;
9625 default:
9626 throw_exception (e);
9627 }
9628 break;
9629 default:
9630 throw_exception (e);
9631 }
9632
9633 /* Create a chain of things that always need to be cleaned up. */
9634 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9635
9636 /* ----------------------------- SNIP -----------------------------
9637 Anything added to the cleanup chain beyond this point is assumed
9638 to be part of a breakpoint. If the breakpoint create succeeds
9639 then the memory is not reclaimed. */
9640 bkpt_chain = make_cleanup (null_cleanup, 0);
9641
9642 /* Resolve all line numbers to PC's and verify that the addresses
9643 are ok for the target. */
9644 if (!pending)
9645 {
9646 int ix;
9647 struct linespec_sals *iter;
9648
9649 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9650 breakpoint_sals_to_pc (&iter->sals);
9651 }
9652
9653 /* Fast tracepoints may have additional restrictions on location. */
9654 if (!pending && type_wanted == bp_fast_tracepoint)
9655 {
9656 int ix;
9657 struct linespec_sals *iter;
9658
9659 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9660 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9661 }
9662
9663 /* Verify that condition can be parsed, before setting any
9664 breakpoints. Allocate a separate condition expression for each
9665 breakpoint. */
9666 if (!pending)
9667 {
9668 if (parse_arg)
9669 {
9670 char *rest;
9671 struct linespec_sals *lsal;
9672
9673 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9674
9675 /* Here we only parse 'arg' to separate condition
9676 from thread number, so parsing in context of first
9677 sal is OK. When setting the breakpoint we'll
9678 re-parse it in context of each sal. */
9679
9680 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9681 &thread, &task, &rest);
9682 if (cond_string)
9683 make_cleanup (xfree, cond_string);
9684 if (rest)
9685 make_cleanup (xfree, rest);
9686 if (rest)
9687 extra_string = rest;
9688 }
9689 else
9690 {
9691 if (*arg != '\0')
9692 error (_("Garbage '%s' at end of location"), arg);
9693
9694 /* Create a private copy of condition string. */
9695 if (cond_string)
9696 {
9697 cond_string = xstrdup (cond_string);
9698 make_cleanup (xfree, cond_string);
9699 }
9700 /* Create a private copy of any extra string. */
9701 if (extra_string)
9702 {
9703 extra_string = xstrdup (extra_string);
9704 make_cleanup (xfree, extra_string);
9705 }
9706 }
9707
9708 ops->create_breakpoints_sal (gdbarch, &canonical,
9709 cond_string, extra_string, type_wanted,
9710 tempflag ? disp_del : disp_donttouch,
9711 thread, task, ignore_count, ops,
9712 from_tty, enabled, internal, flags);
9713 }
9714 else
9715 {
9716 struct breakpoint *b;
9717
9718 make_cleanup (xfree, copy_arg);
9719
9720 if (is_tracepoint_type (type_wanted))
9721 {
9722 struct tracepoint *t;
9723
9724 t = XCNEW (struct tracepoint);
9725 b = &t->base;
9726 }
9727 else
9728 b = XNEW (struct breakpoint);
9729
9730 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9731
9732 b->addr_string = copy_arg;
9733 if (parse_arg)
9734 b->cond_string = NULL;
9735 else
9736 {
9737 /* Create a private copy of condition string. */
9738 if (cond_string)
9739 {
9740 cond_string = xstrdup (cond_string);
9741 make_cleanup (xfree, cond_string);
9742 }
9743 b->cond_string = cond_string;
9744 }
9745 b->extra_string = NULL;
9746 b->ignore_count = ignore_count;
9747 b->disposition = tempflag ? disp_del : disp_donttouch;
9748 b->condition_not_parsed = 1;
9749 b->enable_state = enabled ? bp_enabled : bp_disabled;
9750 if ((type_wanted != bp_breakpoint
9751 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9752 b->pspace = current_program_space;
9753
9754 install_breakpoint (internal, b, 0);
9755 }
9756
9757 if (VEC_length (linespec_sals, canonical.sals) > 1)
9758 {
9759 warning (_("Multiple breakpoints were set.\nUse the "
9760 "\"delete\" command to delete unwanted breakpoints."));
9761 prev_breakpoint_count = prev_bkpt_count;
9762 }
9763
9764 /* That's it. Discard the cleanups for data inserted into the
9765 breakpoint. */
9766 discard_cleanups (bkpt_chain);
9767 /* But cleanup everything else. */
9768 do_cleanups (old_chain);
9769
9770 /* error call may happen here - have BKPT_CHAIN already discarded. */
9771 update_global_location_list (1);
9772
9773 return 1;
9774 }
9775
9776 /* Set a breakpoint.
9777 ARG is a string describing breakpoint address,
9778 condition, and thread.
9779 FLAG specifies if a breakpoint is hardware on,
9780 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9781 and BP_TEMPFLAG. */
9782
9783 static void
9784 break_command_1 (char *arg, int flag, int from_tty)
9785 {
9786 int tempflag = flag & BP_TEMPFLAG;
9787 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9788 ? bp_hardware_breakpoint
9789 : bp_breakpoint);
9790 struct breakpoint_ops *ops;
9791 const char *arg_cp = arg;
9792
9793 /* Matching breakpoints on probes. */
9794 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9795 ops = &bkpt_probe_breakpoint_ops;
9796 else
9797 ops = &bkpt_breakpoint_ops;
9798
9799 create_breakpoint (get_current_arch (),
9800 arg,
9801 NULL, 0, NULL, 1 /* parse arg */,
9802 tempflag, type_wanted,
9803 0 /* Ignore count */,
9804 pending_break_support,
9805 ops,
9806 from_tty,
9807 1 /* enabled */,
9808 0 /* internal */,
9809 0);
9810 }
9811
9812 /* Helper function for break_command_1 and disassemble_command. */
9813
9814 void
9815 resolve_sal_pc (struct symtab_and_line *sal)
9816 {
9817 CORE_ADDR pc;
9818
9819 if (sal->pc == 0 && sal->symtab != NULL)
9820 {
9821 if (!find_line_pc (sal->symtab, sal->line, &pc))
9822 error (_("No line %d in file \"%s\"."),
9823 sal->line, symtab_to_filename_for_display (sal->symtab));
9824 sal->pc = pc;
9825
9826 /* If this SAL corresponds to a breakpoint inserted using a line
9827 number, then skip the function prologue if necessary. */
9828 if (sal->explicit_line)
9829 skip_prologue_sal (sal);
9830 }
9831
9832 if (sal->section == 0 && sal->symtab != NULL)
9833 {
9834 struct blockvector *bv;
9835 struct block *b;
9836 struct symbol *sym;
9837
9838 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9839 if (bv != NULL)
9840 {
9841 sym = block_linkage_function (b);
9842 if (sym != NULL)
9843 {
9844 fixup_symbol_section (sym, sal->symtab->objfile);
9845 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9846 }
9847 else
9848 {
9849 /* It really is worthwhile to have the section, so we'll
9850 just have to look harder. This case can be executed
9851 if we have line numbers but no functions (as can
9852 happen in assembly source). */
9853
9854 struct bound_minimal_symbol msym;
9855 struct cleanup *old_chain = save_current_space_and_thread ();
9856
9857 switch_to_program_space_and_thread (sal->pspace);
9858
9859 msym = lookup_minimal_symbol_by_pc (sal->pc);
9860 if (msym.minsym)
9861 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9862
9863 do_cleanups (old_chain);
9864 }
9865 }
9866 }
9867 }
9868
9869 void
9870 break_command (char *arg, int from_tty)
9871 {
9872 break_command_1 (arg, 0, from_tty);
9873 }
9874
9875 void
9876 tbreak_command (char *arg, int from_tty)
9877 {
9878 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9879 }
9880
9881 static void
9882 hbreak_command (char *arg, int from_tty)
9883 {
9884 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9885 }
9886
9887 static void
9888 thbreak_command (char *arg, int from_tty)
9889 {
9890 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9891 }
9892
9893 static void
9894 stop_command (char *arg, int from_tty)
9895 {
9896 printf_filtered (_("Specify the type of breakpoint to set.\n\
9897 Usage: stop in <function | address>\n\
9898 stop at <line>\n"));
9899 }
9900
9901 static void
9902 stopin_command (char *arg, int from_tty)
9903 {
9904 int badInput = 0;
9905
9906 if (arg == (char *) NULL)
9907 badInput = 1;
9908 else if (*arg != '*')
9909 {
9910 char *argptr = arg;
9911 int hasColon = 0;
9912
9913 /* Look for a ':'. If this is a line number specification, then
9914 say it is bad, otherwise, it should be an address or
9915 function/method name. */
9916 while (*argptr && !hasColon)
9917 {
9918 hasColon = (*argptr == ':');
9919 argptr++;
9920 }
9921
9922 if (hasColon)
9923 badInput = (*argptr != ':'); /* Not a class::method */
9924 else
9925 badInput = isdigit (*arg); /* a simple line number */
9926 }
9927
9928 if (badInput)
9929 printf_filtered (_("Usage: stop in <function | address>\n"));
9930 else
9931 break_command_1 (arg, 0, from_tty);
9932 }
9933
9934 static void
9935 stopat_command (char *arg, int from_tty)
9936 {
9937 int badInput = 0;
9938
9939 if (arg == (char *) NULL || *arg == '*') /* no line number */
9940 badInput = 1;
9941 else
9942 {
9943 char *argptr = arg;
9944 int hasColon = 0;
9945
9946 /* Look for a ':'. If there is a '::' then get out, otherwise
9947 it is probably a line number. */
9948 while (*argptr && !hasColon)
9949 {
9950 hasColon = (*argptr == ':');
9951 argptr++;
9952 }
9953
9954 if (hasColon)
9955 badInput = (*argptr == ':'); /* we have class::method */
9956 else
9957 badInput = !isdigit (*arg); /* not a line number */
9958 }
9959
9960 if (badInput)
9961 printf_filtered (_("Usage: stop at <line>\n"));
9962 else
9963 break_command_1 (arg, 0, from_tty);
9964 }
9965
9966 /* The dynamic printf command is mostly like a regular breakpoint, but
9967 with a prewired command list consisting of a single output command,
9968 built from extra arguments supplied on the dprintf command
9969 line. */
9970
9971 static void
9972 dprintf_command (char *arg, int from_tty)
9973 {
9974 create_breakpoint (get_current_arch (),
9975 arg,
9976 NULL, 0, NULL, 1 /* parse arg */,
9977 0, bp_dprintf,
9978 0 /* Ignore count */,
9979 pending_break_support,
9980 &dprintf_breakpoint_ops,
9981 from_tty,
9982 1 /* enabled */,
9983 0 /* internal */,
9984 0);
9985 }
9986
9987 static void
9988 agent_printf_command (char *arg, int from_tty)
9989 {
9990 error (_("May only run agent-printf on the target"));
9991 }
9992
9993 /* Implement the "breakpoint_hit" breakpoint_ops method for
9994 ranged breakpoints. */
9995
9996 static int
9997 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9998 struct address_space *aspace,
9999 CORE_ADDR bp_addr,
10000 const struct target_waitstatus *ws)
10001 {
10002 if (ws->kind != TARGET_WAITKIND_STOPPED
10003 || ws->value.sig != GDB_SIGNAL_TRAP)
10004 return 0;
10005
10006 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10007 bl->length, aspace, bp_addr);
10008 }
10009
10010 /* Implement the "resources_needed" breakpoint_ops method for
10011 ranged breakpoints. */
10012
10013 static int
10014 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10015 {
10016 return target_ranged_break_num_registers ();
10017 }
10018
10019 /* Implement the "print_it" breakpoint_ops method for
10020 ranged breakpoints. */
10021
10022 static enum print_stop_action
10023 print_it_ranged_breakpoint (bpstat bs)
10024 {
10025 struct breakpoint *b = bs->breakpoint_at;
10026 struct bp_location *bl = b->loc;
10027 struct ui_out *uiout = current_uiout;
10028
10029 gdb_assert (b->type == bp_hardware_breakpoint);
10030
10031 /* Ranged breakpoints have only one location. */
10032 gdb_assert (bl && bl->next == NULL);
10033
10034 annotate_breakpoint (b->number);
10035 if (b->disposition == disp_del)
10036 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10037 else
10038 ui_out_text (uiout, "\nRanged breakpoint ");
10039 if (ui_out_is_mi_like_p (uiout))
10040 {
10041 ui_out_field_string (uiout, "reason",
10042 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10043 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10044 }
10045 ui_out_field_int (uiout, "bkptno", b->number);
10046 ui_out_text (uiout, ", ");
10047
10048 return PRINT_SRC_AND_LOC;
10049 }
10050
10051 /* Implement the "print_one" breakpoint_ops method for
10052 ranged breakpoints. */
10053
10054 static void
10055 print_one_ranged_breakpoint (struct breakpoint *b,
10056 struct bp_location **last_loc)
10057 {
10058 struct bp_location *bl = b->loc;
10059 struct value_print_options opts;
10060 struct ui_out *uiout = current_uiout;
10061
10062 /* Ranged breakpoints have only one location. */
10063 gdb_assert (bl && bl->next == NULL);
10064
10065 get_user_print_options (&opts);
10066
10067 if (opts.addressprint)
10068 /* We don't print the address range here, it will be printed later
10069 by print_one_detail_ranged_breakpoint. */
10070 ui_out_field_skip (uiout, "addr");
10071 annotate_field (5);
10072 print_breakpoint_location (b, bl);
10073 *last_loc = bl;
10074 }
10075
10076 /* Implement the "print_one_detail" breakpoint_ops method for
10077 ranged breakpoints. */
10078
10079 static void
10080 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10081 struct ui_out *uiout)
10082 {
10083 CORE_ADDR address_start, address_end;
10084 struct bp_location *bl = b->loc;
10085 struct ui_file *stb = mem_fileopen ();
10086 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10087
10088 gdb_assert (bl);
10089
10090 address_start = bl->address;
10091 address_end = address_start + bl->length - 1;
10092
10093 ui_out_text (uiout, "\taddress range: ");
10094 fprintf_unfiltered (stb, "[%s, %s]",
10095 print_core_address (bl->gdbarch, address_start),
10096 print_core_address (bl->gdbarch, address_end));
10097 ui_out_field_stream (uiout, "addr", stb);
10098 ui_out_text (uiout, "\n");
10099
10100 do_cleanups (cleanup);
10101 }
10102
10103 /* Implement the "print_mention" breakpoint_ops method for
10104 ranged breakpoints. */
10105
10106 static void
10107 print_mention_ranged_breakpoint (struct breakpoint *b)
10108 {
10109 struct bp_location *bl = b->loc;
10110 struct ui_out *uiout = current_uiout;
10111
10112 gdb_assert (bl);
10113 gdb_assert (b->type == bp_hardware_breakpoint);
10114
10115 if (ui_out_is_mi_like_p (uiout))
10116 return;
10117
10118 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10119 b->number, paddress (bl->gdbarch, bl->address),
10120 paddress (bl->gdbarch, bl->address + bl->length - 1));
10121 }
10122
10123 /* Implement the "print_recreate" breakpoint_ops method for
10124 ranged breakpoints. */
10125
10126 static void
10127 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10128 {
10129 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10130 b->addr_string_range_end);
10131 print_recreate_thread (b, fp);
10132 }
10133
10134 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10135
10136 static struct breakpoint_ops ranged_breakpoint_ops;
10137
10138 /* Find the address where the end of the breakpoint range should be
10139 placed, given the SAL of the end of the range. This is so that if
10140 the user provides a line number, the end of the range is set to the
10141 last instruction of the given line. */
10142
10143 static CORE_ADDR
10144 find_breakpoint_range_end (struct symtab_and_line sal)
10145 {
10146 CORE_ADDR end;
10147
10148 /* If the user provided a PC value, use it. Otherwise,
10149 find the address of the end of the given location. */
10150 if (sal.explicit_pc)
10151 end = sal.pc;
10152 else
10153 {
10154 int ret;
10155 CORE_ADDR start;
10156
10157 ret = find_line_pc_range (sal, &start, &end);
10158 if (!ret)
10159 error (_("Could not find location of the end of the range."));
10160
10161 /* find_line_pc_range returns the start of the next line. */
10162 end--;
10163 }
10164
10165 return end;
10166 }
10167
10168 /* Implement the "break-range" CLI command. */
10169
10170 static void
10171 break_range_command (char *arg, int from_tty)
10172 {
10173 char *arg_start, *addr_string_start, *addr_string_end;
10174 struct linespec_result canonical_start, canonical_end;
10175 int bp_count, can_use_bp, length;
10176 CORE_ADDR end;
10177 struct breakpoint *b;
10178 struct symtab_and_line sal_start, sal_end;
10179 struct cleanup *cleanup_bkpt;
10180 struct linespec_sals *lsal_start, *lsal_end;
10181
10182 /* We don't support software ranged breakpoints. */
10183 if (target_ranged_break_num_registers () < 0)
10184 error (_("This target does not support hardware ranged breakpoints."));
10185
10186 bp_count = hw_breakpoint_used_count ();
10187 bp_count += target_ranged_break_num_registers ();
10188 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10189 bp_count, 0);
10190 if (can_use_bp < 0)
10191 error (_("Hardware breakpoints used exceeds limit."));
10192
10193 arg = skip_spaces (arg);
10194 if (arg == NULL || arg[0] == '\0')
10195 error(_("No address range specified."));
10196
10197 init_linespec_result (&canonical_start);
10198
10199 arg_start = arg;
10200 parse_breakpoint_sals (&arg, &canonical_start);
10201
10202 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10203
10204 if (arg[0] != ',')
10205 error (_("Too few arguments."));
10206 else if (VEC_empty (linespec_sals, canonical_start.sals))
10207 error (_("Could not find location of the beginning of the range."));
10208
10209 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10210
10211 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10212 || lsal_start->sals.nelts != 1)
10213 error (_("Cannot create a ranged breakpoint with multiple locations."));
10214
10215 sal_start = lsal_start->sals.sals[0];
10216 addr_string_start = savestring (arg_start, arg - arg_start);
10217 make_cleanup (xfree, addr_string_start);
10218
10219 arg++; /* Skip the comma. */
10220 arg = skip_spaces (arg);
10221
10222 /* Parse the end location. */
10223
10224 init_linespec_result (&canonical_end);
10225 arg_start = arg;
10226
10227 /* We call decode_line_full directly here instead of using
10228 parse_breakpoint_sals because we need to specify the start location's
10229 symtab and line as the default symtab and line for the end of the
10230 range. This makes it possible to have ranges like "foo.c:27, +14",
10231 where +14 means 14 lines from the start location. */
10232 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10233 sal_start.symtab, sal_start.line,
10234 &canonical_end, NULL, NULL);
10235
10236 make_cleanup_destroy_linespec_result (&canonical_end);
10237
10238 if (VEC_empty (linespec_sals, canonical_end.sals))
10239 error (_("Could not find location of the end of the range."));
10240
10241 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10242 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10243 || lsal_end->sals.nelts != 1)
10244 error (_("Cannot create a ranged breakpoint with multiple locations."));
10245
10246 sal_end = lsal_end->sals.sals[0];
10247 addr_string_end = savestring (arg_start, arg - arg_start);
10248 make_cleanup (xfree, addr_string_end);
10249
10250 end = find_breakpoint_range_end (sal_end);
10251 if (sal_start.pc > end)
10252 error (_("Invalid address range, end precedes start."));
10253
10254 length = end - sal_start.pc + 1;
10255 if (length < 0)
10256 /* Length overflowed. */
10257 error (_("Address range too large."));
10258 else if (length == 1)
10259 {
10260 /* This range is simple enough to be handled by
10261 the `hbreak' command. */
10262 hbreak_command (addr_string_start, 1);
10263
10264 do_cleanups (cleanup_bkpt);
10265
10266 return;
10267 }
10268
10269 /* Now set up the breakpoint. */
10270 b = set_raw_breakpoint (get_current_arch (), sal_start,
10271 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10272 set_breakpoint_count (breakpoint_count + 1);
10273 b->number = breakpoint_count;
10274 b->disposition = disp_donttouch;
10275 b->addr_string = xstrdup (addr_string_start);
10276 b->addr_string_range_end = xstrdup (addr_string_end);
10277 b->loc->length = length;
10278
10279 do_cleanups (cleanup_bkpt);
10280
10281 mention (b);
10282 observer_notify_breakpoint_created (b);
10283 update_global_location_list (1);
10284 }
10285
10286 /* Return non-zero if EXP is verified as constant. Returned zero
10287 means EXP is variable. Also the constant detection may fail for
10288 some constant expressions and in such case still falsely return
10289 zero. */
10290
10291 static int
10292 watchpoint_exp_is_const (const struct expression *exp)
10293 {
10294 int i = exp->nelts;
10295
10296 while (i > 0)
10297 {
10298 int oplenp, argsp;
10299
10300 /* We are only interested in the descriptor of each element. */
10301 operator_length (exp, i, &oplenp, &argsp);
10302 i -= oplenp;
10303
10304 switch (exp->elts[i].opcode)
10305 {
10306 case BINOP_ADD:
10307 case BINOP_SUB:
10308 case BINOP_MUL:
10309 case BINOP_DIV:
10310 case BINOP_REM:
10311 case BINOP_MOD:
10312 case BINOP_LSH:
10313 case BINOP_RSH:
10314 case BINOP_LOGICAL_AND:
10315 case BINOP_LOGICAL_OR:
10316 case BINOP_BITWISE_AND:
10317 case BINOP_BITWISE_IOR:
10318 case BINOP_BITWISE_XOR:
10319 case BINOP_EQUAL:
10320 case BINOP_NOTEQUAL:
10321 case BINOP_LESS:
10322 case BINOP_GTR:
10323 case BINOP_LEQ:
10324 case BINOP_GEQ:
10325 case BINOP_REPEAT:
10326 case BINOP_COMMA:
10327 case BINOP_EXP:
10328 case BINOP_MIN:
10329 case BINOP_MAX:
10330 case BINOP_INTDIV:
10331 case BINOP_CONCAT:
10332 case BINOP_IN:
10333 case BINOP_RANGE:
10334 case TERNOP_COND:
10335 case TERNOP_SLICE:
10336
10337 case OP_LONG:
10338 case OP_DOUBLE:
10339 case OP_DECFLOAT:
10340 case OP_LAST:
10341 case OP_COMPLEX:
10342 case OP_STRING:
10343 case OP_ARRAY:
10344 case OP_TYPE:
10345 case OP_TYPEOF:
10346 case OP_DECLTYPE:
10347 case OP_TYPEID:
10348 case OP_NAME:
10349 case OP_OBJC_NSSTRING:
10350
10351 case UNOP_NEG:
10352 case UNOP_LOGICAL_NOT:
10353 case UNOP_COMPLEMENT:
10354 case UNOP_ADDR:
10355 case UNOP_HIGH:
10356 case UNOP_CAST:
10357
10358 case UNOP_CAST_TYPE:
10359 case UNOP_REINTERPRET_CAST:
10360 case UNOP_DYNAMIC_CAST:
10361 /* Unary, binary and ternary operators: We have to check
10362 their operands. If they are constant, then so is the
10363 result of that operation. For instance, if A and B are
10364 determined to be constants, then so is "A + B".
10365
10366 UNOP_IND is one exception to the rule above, because the
10367 value of *ADDR is not necessarily a constant, even when
10368 ADDR is. */
10369 break;
10370
10371 case OP_VAR_VALUE:
10372 /* Check whether the associated symbol is a constant.
10373
10374 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10375 possible that a buggy compiler could mark a variable as
10376 constant even when it is not, and TYPE_CONST would return
10377 true in this case, while SYMBOL_CLASS wouldn't.
10378
10379 We also have to check for function symbols because they
10380 are always constant. */
10381 {
10382 struct symbol *s = exp->elts[i + 2].symbol;
10383
10384 if (SYMBOL_CLASS (s) != LOC_BLOCK
10385 && SYMBOL_CLASS (s) != LOC_CONST
10386 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10387 return 0;
10388 break;
10389 }
10390
10391 /* The default action is to return 0 because we are using
10392 the optimistic approach here: If we don't know something,
10393 then it is not a constant. */
10394 default:
10395 return 0;
10396 }
10397 }
10398
10399 return 1;
10400 }
10401
10402 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10403
10404 static void
10405 dtor_watchpoint (struct breakpoint *self)
10406 {
10407 struct watchpoint *w = (struct watchpoint *) self;
10408
10409 xfree (w->cond_exp);
10410 xfree (w->exp);
10411 xfree (w->exp_string);
10412 xfree (w->exp_string_reparse);
10413 value_free (w->val);
10414
10415 base_breakpoint_ops.dtor (self);
10416 }
10417
10418 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10419
10420 static void
10421 re_set_watchpoint (struct breakpoint *b)
10422 {
10423 struct watchpoint *w = (struct watchpoint *) b;
10424
10425 /* Watchpoint can be either on expression using entirely global
10426 variables, or it can be on local variables.
10427
10428 Watchpoints of the first kind are never auto-deleted, and even
10429 persist across program restarts. Since they can use variables
10430 from shared libraries, we need to reparse expression as libraries
10431 are loaded and unloaded.
10432
10433 Watchpoints on local variables can also change meaning as result
10434 of solib event. For example, if a watchpoint uses both a local
10435 and a global variables in expression, it's a local watchpoint,
10436 but unloading of a shared library will make the expression
10437 invalid. This is not a very common use case, but we still
10438 re-evaluate expression, to avoid surprises to the user.
10439
10440 Note that for local watchpoints, we re-evaluate it only if
10441 watchpoints frame id is still valid. If it's not, it means the
10442 watchpoint is out of scope and will be deleted soon. In fact,
10443 I'm not sure we'll ever be called in this case.
10444
10445 If a local watchpoint's frame id is still valid, then
10446 w->exp_valid_block is likewise valid, and we can safely use it.
10447
10448 Don't do anything about disabled watchpoints, since they will be
10449 reevaluated again when enabled. */
10450 update_watchpoint (w, 1 /* reparse */);
10451 }
10452
10453 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10454
10455 static int
10456 insert_watchpoint (struct bp_location *bl)
10457 {
10458 struct watchpoint *w = (struct watchpoint *) bl->owner;
10459 int length = w->exact ? 1 : bl->length;
10460
10461 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10462 w->cond_exp);
10463 }
10464
10465 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10466
10467 static int
10468 remove_watchpoint (struct bp_location *bl)
10469 {
10470 struct watchpoint *w = (struct watchpoint *) bl->owner;
10471 int length = w->exact ? 1 : bl->length;
10472
10473 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10474 w->cond_exp);
10475 }
10476
10477 static int
10478 breakpoint_hit_watchpoint (const struct bp_location *bl,
10479 struct address_space *aspace, CORE_ADDR bp_addr,
10480 const struct target_waitstatus *ws)
10481 {
10482 struct breakpoint *b = bl->owner;
10483 struct watchpoint *w = (struct watchpoint *) b;
10484
10485 /* Continuable hardware watchpoints are treated as non-existent if the
10486 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10487 some data address). Otherwise gdb won't stop on a break instruction
10488 in the code (not from a breakpoint) when a hardware watchpoint has
10489 been defined. Also skip watchpoints which we know did not trigger
10490 (did not match the data address). */
10491 if (is_hardware_watchpoint (b)
10492 && w->watchpoint_triggered == watch_triggered_no)
10493 return 0;
10494
10495 return 1;
10496 }
10497
10498 static void
10499 check_status_watchpoint (bpstat bs)
10500 {
10501 gdb_assert (is_watchpoint (bs->breakpoint_at));
10502
10503 bpstat_check_watchpoint (bs);
10504 }
10505
10506 /* Implement the "resources_needed" breakpoint_ops method for
10507 hardware watchpoints. */
10508
10509 static int
10510 resources_needed_watchpoint (const struct bp_location *bl)
10511 {
10512 struct watchpoint *w = (struct watchpoint *) bl->owner;
10513 int length = w->exact? 1 : bl->length;
10514
10515 return target_region_ok_for_hw_watchpoint (bl->address, length);
10516 }
10517
10518 /* Implement the "works_in_software_mode" breakpoint_ops method for
10519 hardware watchpoints. */
10520
10521 static int
10522 works_in_software_mode_watchpoint (const struct breakpoint *b)
10523 {
10524 /* Read and access watchpoints only work with hardware support. */
10525 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10526 }
10527
10528 static enum print_stop_action
10529 print_it_watchpoint (bpstat bs)
10530 {
10531 struct cleanup *old_chain;
10532 struct breakpoint *b;
10533 struct ui_file *stb;
10534 enum print_stop_action result;
10535 struct watchpoint *w;
10536 struct ui_out *uiout = current_uiout;
10537
10538 gdb_assert (bs->bp_location_at != NULL);
10539
10540 b = bs->breakpoint_at;
10541 w = (struct watchpoint *) b;
10542
10543 stb = mem_fileopen ();
10544 old_chain = make_cleanup_ui_file_delete (stb);
10545
10546 switch (b->type)
10547 {
10548 case bp_watchpoint:
10549 case bp_hardware_watchpoint:
10550 annotate_watchpoint (b->number);
10551 if (ui_out_is_mi_like_p (uiout))
10552 ui_out_field_string
10553 (uiout, "reason",
10554 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10555 mention (b);
10556 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10557 ui_out_text (uiout, "\nOld value = ");
10558 watchpoint_value_print (bs->old_val, stb);
10559 ui_out_field_stream (uiout, "old", stb);
10560 ui_out_text (uiout, "\nNew value = ");
10561 watchpoint_value_print (w->val, stb);
10562 ui_out_field_stream (uiout, "new", stb);
10563 ui_out_text (uiout, "\n");
10564 /* More than one watchpoint may have been triggered. */
10565 result = PRINT_UNKNOWN;
10566 break;
10567
10568 case bp_read_watchpoint:
10569 if (ui_out_is_mi_like_p (uiout))
10570 ui_out_field_string
10571 (uiout, "reason",
10572 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10573 mention (b);
10574 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10575 ui_out_text (uiout, "\nValue = ");
10576 watchpoint_value_print (w->val, stb);
10577 ui_out_field_stream (uiout, "value", stb);
10578 ui_out_text (uiout, "\n");
10579 result = PRINT_UNKNOWN;
10580 break;
10581
10582 case bp_access_watchpoint:
10583 if (bs->old_val != NULL)
10584 {
10585 annotate_watchpoint (b->number);
10586 if (ui_out_is_mi_like_p (uiout))
10587 ui_out_field_string
10588 (uiout, "reason",
10589 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10590 mention (b);
10591 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10592 ui_out_text (uiout, "\nOld value = ");
10593 watchpoint_value_print (bs->old_val, stb);
10594 ui_out_field_stream (uiout, "old", stb);
10595 ui_out_text (uiout, "\nNew value = ");
10596 }
10597 else
10598 {
10599 mention (b);
10600 if (ui_out_is_mi_like_p (uiout))
10601 ui_out_field_string
10602 (uiout, "reason",
10603 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10604 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10605 ui_out_text (uiout, "\nValue = ");
10606 }
10607 watchpoint_value_print (w->val, stb);
10608 ui_out_field_stream (uiout, "new", stb);
10609 ui_out_text (uiout, "\n");
10610 result = PRINT_UNKNOWN;
10611 break;
10612 default:
10613 result = PRINT_UNKNOWN;
10614 }
10615
10616 do_cleanups (old_chain);
10617 return result;
10618 }
10619
10620 /* Implement the "print_mention" breakpoint_ops method for hardware
10621 watchpoints. */
10622
10623 static void
10624 print_mention_watchpoint (struct breakpoint *b)
10625 {
10626 struct cleanup *ui_out_chain;
10627 struct watchpoint *w = (struct watchpoint *) b;
10628 struct ui_out *uiout = current_uiout;
10629
10630 switch (b->type)
10631 {
10632 case bp_watchpoint:
10633 ui_out_text (uiout, "Watchpoint ");
10634 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10635 break;
10636 case bp_hardware_watchpoint:
10637 ui_out_text (uiout, "Hardware watchpoint ");
10638 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10639 break;
10640 case bp_read_watchpoint:
10641 ui_out_text (uiout, "Hardware read watchpoint ");
10642 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10643 break;
10644 case bp_access_watchpoint:
10645 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10646 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10647 break;
10648 default:
10649 internal_error (__FILE__, __LINE__,
10650 _("Invalid hardware watchpoint type."));
10651 }
10652
10653 ui_out_field_int (uiout, "number", b->number);
10654 ui_out_text (uiout, ": ");
10655 ui_out_field_string (uiout, "exp", w->exp_string);
10656 do_cleanups (ui_out_chain);
10657 }
10658
10659 /* Implement the "print_recreate" breakpoint_ops method for
10660 watchpoints. */
10661
10662 static void
10663 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10664 {
10665 struct watchpoint *w = (struct watchpoint *) b;
10666
10667 switch (b->type)
10668 {
10669 case bp_watchpoint:
10670 case bp_hardware_watchpoint:
10671 fprintf_unfiltered (fp, "watch");
10672 break;
10673 case bp_read_watchpoint:
10674 fprintf_unfiltered (fp, "rwatch");
10675 break;
10676 case bp_access_watchpoint:
10677 fprintf_unfiltered (fp, "awatch");
10678 break;
10679 default:
10680 internal_error (__FILE__, __LINE__,
10681 _("Invalid watchpoint type."));
10682 }
10683
10684 fprintf_unfiltered (fp, " %s", w->exp_string);
10685 print_recreate_thread (b, fp);
10686 }
10687
10688 /* Implement the "explains_signal" breakpoint_ops method for
10689 watchpoints. */
10690
10691 static enum bpstat_signal_value
10692 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10693 {
10694 /* A software watchpoint cannot cause a signal other than
10695 GDB_SIGNAL_TRAP. */
10696 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10697 return BPSTAT_SIGNAL_NO;
10698
10699 return BPSTAT_SIGNAL_HIDE;
10700 }
10701
10702 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10703
10704 static struct breakpoint_ops watchpoint_breakpoint_ops;
10705
10706 /* Implement the "insert" breakpoint_ops method for
10707 masked hardware watchpoints. */
10708
10709 static int
10710 insert_masked_watchpoint (struct bp_location *bl)
10711 {
10712 struct watchpoint *w = (struct watchpoint *) bl->owner;
10713
10714 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10715 bl->watchpoint_type);
10716 }
10717
10718 /* Implement the "remove" breakpoint_ops method for
10719 masked hardware watchpoints. */
10720
10721 static int
10722 remove_masked_watchpoint (struct bp_location *bl)
10723 {
10724 struct watchpoint *w = (struct watchpoint *) bl->owner;
10725
10726 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10727 bl->watchpoint_type);
10728 }
10729
10730 /* Implement the "resources_needed" breakpoint_ops method for
10731 masked hardware watchpoints. */
10732
10733 static int
10734 resources_needed_masked_watchpoint (const struct bp_location *bl)
10735 {
10736 struct watchpoint *w = (struct watchpoint *) bl->owner;
10737
10738 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10739 }
10740
10741 /* Implement the "works_in_software_mode" breakpoint_ops method for
10742 masked hardware watchpoints. */
10743
10744 static int
10745 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10746 {
10747 return 0;
10748 }
10749
10750 /* Implement the "print_it" breakpoint_ops method for
10751 masked hardware watchpoints. */
10752
10753 static enum print_stop_action
10754 print_it_masked_watchpoint (bpstat bs)
10755 {
10756 struct breakpoint *b = bs->breakpoint_at;
10757 struct ui_out *uiout = current_uiout;
10758
10759 /* Masked watchpoints have only one location. */
10760 gdb_assert (b->loc && b->loc->next == NULL);
10761
10762 switch (b->type)
10763 {
10764 case bp_hardware_watchpoint:
10765 annotate_watchpoint (b->number);
10766 if (ui_out_is_mi_like_p (uiout))
10767 ui_out_field_string
10768 (uiout, "reason",
10769 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10770 break;
10771
10772 case bp_read_watchpoint:
10773 if (ui_out_is_mi_like_p (uiout))
10774 ui_out_field_string
10775 (uiout, "reason",
10776 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10777 break;
10778
10779 case bp_access_watchpoint:
10780 if (ui_out_is_mi_like_p (uiout))
10781 ui_out_field_string
10782 (uiout, "reason",
10783 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10784 break;
10785 default:
10786 internal_error (__FILE__, __LINE__,
10787 _("Invalid hardware watchpoint type."));
10788 }
10789
10790 mention (b);
10791 ui_out_text (uiout, _("\n\
10792 Check the underlying instruction at PC for the memory\n\
10793 address and value which triggered this watchpoint.\n"));
10794 ui_out_text (uiout, "\n");
10795
10796 /* More than one watchpoint may have been triggered. */
10797 return PRINT_UNKNOWN;
10798 }
10799
10800 /* Implement the "print_one_detail" breakpoint_ops method for
10801 masked hardware watchpoints. */
10802
10803 static void
10804 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10805 struct ui_out *uiout)
10806 {
10807 struct watchpoint *w = (struct watchpoint *) b;
10808
10809 /* Masked watchpoints have only one location. */
10810 gdb_assert (b->loc && b->loc->next == NULL);
10811
10812 ui_out_text (uiout, "\tmask ");
10813 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10814 ui_out_text (uiout, "\n");
10815 }
10816
10817 /* Implement the "print_mention" breakpoint_ops method for
10818 masked hardware watchpoints. */
10819
10820 static void
10821 print_mention_masked_watchpoint (struct breakpoint *b)
10822 {
10823 struct watchpoint *w = (struct watchpoint *) b;
10824 struct ui_out *uiout = current_uiout;
10825 struct cleanup *ui_out_chain;
10826
10827 switch (b->type)
10828 {
10829 case bp_hardware_watchpoint:
10830 ui_out_text (uiout, "Masked hardware watchpoint ");
10831 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10832 break;
10833 case bp_read_watchpoint:
10834 ui_out_text (uiout, "Masked hardware read watchpoint ");
10835 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10836 break;
10837 case bp_access_watchpoint:
10838 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10839 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10840 break;
10841 default:
10842 internal_error (__FILE__, __LINE__,
10843 _("Invalid hardware watchpoint type."));
10844 }
10845
10846 ui_out_field_int (uiout, "number", b->number);
10847 ui_out_text (uiout, ": ");
10848 ui_out_field_string (uiout, "exp", w->exp_string);
10849 do_cleanups (ui_out_chain);
10850 }
10851
10852 /* Implement the "print_recreate" breakpoint_ops method for
10853 masked hardware watchpoints. */
10854
10855 static void
10856 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10857 {
10858 struct watchpoint *w = (struct watchpoint *) b;
10859 char tmp[40];
10860
10861 switch (b->type)
10862 {
10863 case bp_hardware_watchpoint:
10864 fprintf_unfiltered (fp, "watch");
10865 break;
10866 case bp_read_watchpoint:
10867 fprintf_unfiltered (fp, "rwatch");
10868 break;
10869 case bp_access_watchpoint:
10870 fprintf_unfiltered (fp, "awatch");
10871 break;
10872 default:
10873 internal_error (__FILE__, __LINE__,
10874 _("Invalid hardware watchpoint type."));
10875 }
10876
10877 sprintf_vma (tmp, w->hw_wp_mask);
10878 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10879 print_recreate_thread (b, fp);
10880 }
10881
10882 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10883
10884 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10885
10886 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10887
10888 static int
10889 is_masked_watchpoint (const struct breakpoint *b)
10890 {
10891 return b->ops == &masked_watchpoint_breakpoint_ops;
10892 }
10893
10894 /* accessflag: hw_write: watch write,
10895 hw_read: watch read,
10896 hw_access: watch access (read or write) */
10897 static void
10898 watch_command_1 (const char *arg, int accessflag, int from_tty,
10899 int just_location, int internal)
10900 {
10901 volatile struct gdb_exception e;
10902 struct breakpoint *b, *scope_breakpoint = NULL;
10903 struct expression *exp;
10904 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10905 struct value *val, *mark, *result;
10906 struct frame_info *frame;
10907 const char *exp_start = NULL;
10908 const char *exp_end = NULL;
10909 const char *tok, *end_tok;
10910 int toklen = -1;
10911 const char *cond_start = NULL;
10912 const char *cond_end = NULL;
10913 enum bptype bp_type;
10914 int thread = -1;
10915 int pc = 0;
10916 /* Flag to indicate whether we are going to use masks for
10917 the hardware watchpoint. */
10918 int use_mask = 0;
10919 CORE_ADDR mask = 0;
10920 struct watchpoint *w;
10921 char *expression;
10922 struct cleanup *back_to;
10923
10924 /* Make sure that we actually have parameters to parse. */
10925 if (arg != NULL && arg[0] != '\0')
10926 {
10927 const char *value_start;
10928
10929 exp_end = arg + strlen (arg);
10930
10931 /* Look for "parameter value" pairs at the end
10932 of the arguments string. */
10933 for (tok = exp_end - 1; tok > arg; tok--)
10934 {
10935 /* Skip whitespace at the end of the argument list. */
10936 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10937 tok--;
10938
10939 /* Find the beginning of the last token.
10940 This is the value of the parameter. */
10941 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10942 tok--;
10943 value_start = tok + 1;
10944
10945 /* Skip whitespace. */
10946 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10947 tok--;
10948
10949 end_tok = tok;
10950
10951 /* Find the beginning of the second to last token.
10952 This is the parameter itself. */
10953 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10954 tok--;
10955 tok++;
10956 toklen = end_tok - tok + 1;
10957
10958 if (toklen == 6 && !strncmp (tok, "thread", 6))
10959 {
10960 /* At this point we've found a "thread" token, which means
10961 the user is trying to set a watchpoint that triggers
10962 only in a specific thread. */
10963 char *endp;
10964
10965 if (thread != -1)
10966 error(_("You can specify only one thread."));
10967
10968 /* Extract the thread ID from the next token. */
10969 thread = strtol (value_start, &endp, 0);
10970
10971 /* Check if the user provided a valid numeric value for the
10972 thread ID. */
10973 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10974 error (_("Invalid thread ID specification %s."), value_start);
10975
10976 /* Check if the thread actually exists. */
10977 if (!valid_thread_id (thread))
10978 invalid_thread_id_error (thread);
10979 }
10980 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10981 {
10982 /* We've found a "mask" token, which means the user wants to
10983 create a hardware watchpoint that is going to have the mask
10984 facility. */
10985 struct value *mask_value, *mark;
10986
10987 if (use_mask)
10988 error(_("You can specify only one mask."));
10989
10990 use_mask = just_location = 1;
10991
10992 mark = value_mark ();
10993 mask_value = parse_to_comma_and_eval (&value_start);
10994 mask = value_as_address (mask_value);
10995 value_free_to_mark (mark);
10996 }
10997 else
10998 /* We didn't recognize what we found. We should stop here. */
10999 break;
11000
11001 /* Truncate the string and get rid of the "parameter value" pair before
11002 the arguments string is parsed by the parse_exp_1 function. */
11003 exp_end = tok;
11004 }
11005 }
11006 else
11007 exp_end = arg;
11008
11009 /* Parse the rest of the arguments. From here on out, everything
11010 is in terms of a newly allocated string instead of the original
11011 ARG. */
11012 innermost_block = NULL;
11013 expression = savestring (arg, exp_end - arg);
11014 back_to = make_cleanup (xfree, expression);
11015 exp_start = arg = expression;
11016 exp = parse_exp_1 (&arg, 0, 0, 0);
11017 exp_end = arg;
11018 /* Remove trailing whitespace from the expression before saving it.
11019 This makes the eventual display of the expression string a bit
11020 prettier. */
11021 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11022 --exp_end;
11023
11024 /* Checking if the expression is not constant. */
11025 if (watchpoint_exp_is_const (exp))
11026 {
11027 int len;
11028
11029 len = exp_end - exp_start;
11030 while (len > 0 && isspace (exp_start[len - 1]))
11031 len--;
11032 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11033 }
11034
11035 exp_valid_block = innermost_block;
11036 mark = value_mark ();
11037 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11038
11039 if (just_location)
11040 {
11041 int ret;
11042
11043 exp_valid_block = NULL;
11044 val = value_addr (result);
11045 release_value (val);
11046 value_free_to_mark (mark);
11047
11048 if (use_mask)
11049 {
11050 ret = target_masked_watch_num_registers (value_as_address (val),
11051 mask);
11052 if (ret == -1)
11053 error (_("This target does not support masked watchpoints."));
11054 else if (ret == -2)
11055 error (_("Invalid mask or memory region."));
11056 }
11057 }
11058 else if (val != NULL)
11059 release_value (val);
11060
11061 tok = skip_spaces_const (arg);
11062 end_tok = skip_to_space_const (tok);
11063
11064 toklen = end_tok - tok;
11065 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11066 {
11067 struct expression *cond;
11068
11069 innermost_block = NULL;
11070 tok = cond_start = end_tok + 1;
11071 cond = parse_exp_1 (&tok, 0, 0, 0);
11072
11073 /* The watchpoint expression may not be local, but the condition
11074 may still be. E.g.: `watch global if local > 0'. */
11075 cond_exp_valid_block = innermost_block;
11076
11077 xfree (cond);
11078 cond_end = tok;
11079 }
11080 if (*tok)
11081 error (_("Junk at end of command."));
11082
11083 if (accessflag == hw_read)
11084 bp_type = bp_read_watchpoint;
11085 else if (accessflag == hw_access)
11086 bp_type = bp_access_watchpoint;
11087 else
11088 bp_type = bp_hardware_watchpoint;
11089
11090 frame = block_innermost_frame (exp_valid_block);
11091
11092 /* If the expression is "local", then set up a "watchpoint scope"
11093 breakpoint at the point where we've left the scope of the watchpoint
11094 expression. Create the scope breakpoint before the watchpoint, so
11095 that we will encounter it first in bpstat_stop_status. */
11096 if (exp_valid_block && frame)
11097 {
11098 if (frame_id_p (frame_unwind_caller_id (frame)))
11099 {
11100 scope_breakpoint
11101 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11102 frame_unwind_caller_pc (frame),
11103 bp_watchpoint_scope,
11104 &momentary_breakpoint_ops);
11105
11106 scope_breakpoint->enable_state = bp_enabled;
11107
11108 /* Automatically delete the breakpoint when it hits. */
11109 scope_breakpoint->disposition = disp_del;
11110
11111 /* Only break in the proper frame (help with recursion). */
11112 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11113
11114 /* Set the address at which we will stop. */
11115 scope_breakpoint->loc->gdbarch
11116 = frame_unwind_caller_arch (frame);
11117 scope_breakpoint->loc->requested_address
11118 = frame_unwind_caller_pc (frame);
11119 scope_breakpoint->loc->address
11120 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11121 scope_breakpoint->loc->requested_address,
11122 scope_breakpoint->type);
11123 }
11124 }
11125
11126 /* Now set up the breakpoint. */
11127
11128 w = XCNEW (struct watchpoint);
11129 b = &w->base;
11130 if (use_mask)
11131 init_raw_breakpoint_without_location (b, NULL, bp_type,
11132 &masked_watchpoint_breakpoint_ops);
11133 else
11134 init_raw_breakpoint_without_location (b, NULL, bp_type,
11135 &watchpoint_breakpoint_ops);
11136 b->thread = thread;
11137 b->disposition = disp_donttouch;
11138 b->pspace = current_program_space;
11139 w->exp = exp;
11140 w->exp_valid_block = exp_valid_block;
11141 w->cond_exp_valid_block = cond_exp_valid_block;
11142 if (just_location)
11143 {
11144 struct type *t = value_type (val);
11145 CORE_ADDR addr = value_as_address (val);
11146 char *name;
11147
11148 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11149 name = type_to_string (t);
11150
11151 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11152 core_addr_to_string (addr));
11153 xfree (name);
11154
11155 w->exp_string = xstrprintf ("-location %.*s",
11156 (int) (exp_end - exp_start), exp_start);
11157
11158 /* The above expression is in C. */
11159 b->language = language_c;
11160 }
11161 else
11162 w->exp_string = savestring (exp_start, exp_end - exp_start);
11163
11164 if (use_mask)
11165 {
11166 w->hw_wp_mask = mask;
11167 }
11168 else
11169 {
11170 w->val = val;
11171 w->val_valid = 1;
11172 }
11173
11174 if (cond_start)
11175 b->cond_string = savestring (cond_start, cond_end - cond_start);
11176 else
11177 b->cond_string = 0;
11178
11179 if (frame)
11180 {
11181 w->watchpoint_frame = get_frame_id (frame);
11182 w->watchpoint_thread = inferior_ptid;
11183 }
11184 else
11185 {
11186 w->watchpoint_frame = null_frame_id;
11187 w->watchpoint_thread = null_ptid;
11188 }
11189
11190 if (scope_breakpoint != NULL)
11191 {
11192 /* The scope breakpoint is related to the watchpoint. We will
11193 need to act on them together. */
11194 b->related_breakpoint = scope_breakpoint;
11195 scope_breakpoint->related_breakpoint = b;
11196 }
11197
11198 if (!just_location)
11199 value_free_to_mark (mark);
11200
11201 TRY_CATCH (e, RETURN_MASK_ALL)
11202 {
11203 /* Finally update the new watchpoint. This creates the locations
11204 that should be inserted. */
11205 update_watchpoint (w, 1);
11206 }
11207 if (e.reason < 0)
11208 {
11209 delete_breakpoint (b);
11210 throw_exception (e);
11211 }
11212
11213 install_breakpoint (internal, b, 1);
11214 do_cleanups (back_to);
11215 }
11216
11217 /* Return count of debug registers needed to watch the given expression.
11218 If the watchpoint cannot be handled in hardware return zero. */
11219
11220 static int
11221 can_use_hardware_watchpoint (struct value *v)
11222 {
11223 int found_memory_cnt = 0;
11224 struct value *head = v;
11225
11226 /* Did the user specifically forbid us to use hardware watchpoints? */
11227 if (!can_use_hw_watchpoints)
11228 return 0;
11229
11230 /* Make sure that the value of the expression depends only upon
11231 memory contents, and values computed from them within GDB. If we
11232 find any register references or function calls, we can't use a
11233 hardware watchpoint.
11234
11235 The idea here is that evaluating an expression generates a series
11236 of values, one holding the value of every subexpression. (The
11237 expression a*b+c has five subexpressions: a, b, a*b, c, and
11238 a*b+c.) GDB's values hold almost enough information to establish
11239 the criteria given above --- they identify memory lvalues,
11240 register lvalues, computed values, etcetera. So we can evaluate
11241 the expression, and then scan the chain of values that leaves
11242 behind to decide whether we can detect any possible change to the
11243 expression's final value using only hardware watchpoints.
11244
11245 However, I don't think that the values returned by inferior
11246 function calls are special in any way. So this function may not
11247 notice that an expression involving an inferior function call
11248 can't be watched with hardware watchpoints. FIXME. */
11249 for (; v; v = value_next (v))
11250 {
11251 if (VALUE_LVAL (v) == lval_memory)
11252 {
11253 if (v != head && value_lazy (v))
11254 /* A lazy memory lvalue in the chain is one that GDB never
11255 needed to fetch; we either just used its address (e.g.,
11256 `a' in `a.b') or we never needed it at all (e.g., `a'
11257 in `a,b'). This doesn't apply to HEAD; if that is
11258 lazy then it was not readable, but watch it anyway. */
11259 ;
11260 else
11261 {
11262 /* Ahh, memory we actually used! Check if we can cover
11263 it with hardware watchpoints. */
11264 struct type *vtype = check_typedef (value_type (v));
11265
11266 /* We only watch structs and arrays if user asked for it
11267 explicitly, never if they just happen to appear in a
11268 middle of some value chain. */
11269 if (v == head
11270 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11271 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11272 {
11273 CORE_ADDR vaddr = value_address (v);
11274 int len;
11275 int num_regs;
11276
11277 len = (target_exact_watchpoints
11278 && is_scalar_type_recursive (vtype))?
11279 1 : TYPE_LENGTH (value_type (v));
11280
11281 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11282 if (!num_regs)
11283 return 0;
11284 else
11285 found_memory_cnt += num_regs;
11286 }
11287 }
11288 }
11289 else if (VALUE_LVAL (v) != not_lval
11290 && deprecated_value_modifiable (v) == 0)
11291 return 0; /* These are values from the history (e.g., $1). */
11292 else if (VALUE_LVAL (v) == lval_register)
11293 return 0; /* Cannot watch a register with a HW watchpoint. */
11294 }
11295
11296 /* The expression itself looks suitable for using a hardware
11297 watchpoint, but give the target machine a chance to reject it. */
11298 return found_memory_cnt;
11299 }
11300
11301 void
11302 watch_command_wrapper (char *arg, int from_tty, int internal)
11303 {
11304 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11305 }
11306
11307 /* A helper function that looks for the "-location" argument and then
11308 calls watch_command_1. */
11309
11310 static void
11311 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11312 {
11313 int just_location = 0;
11314
11315 if (arg
11316 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11317 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11318 {
11319 arg = skip_spaces (arg);
11320 just_location = 1;
11321 }
11322
11323 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11324 }
11325
11326 static void
11327 watch_command (char *arg, int from_tty)
11328 {
11329 watch_maybe_just_location (arg, hw_write, from_tty);
11330 }
11331
11332 void
11333 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11334 {
11335 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11336 }
11337
11338 static void
11339 rwatch_command (char *arg, int from_tty)
11340 {
11341 watch_maybe_just_location (arg, hw_read, from_tty);
11342 }
11343
11344 void
11345 awatch_command_wrapper (char *arg, int from_tty, int internal)
11346 {
11347 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11348 }
11349
11350 static void
11351 awatch_command (char *arg, int from_tty)
11352 {
11353 watch_maybe_just_location (arg, hw_access, from_tty);
11354 }
11355 \f
11356
11357 /* Helper routines for the until_command routine in infcmd.c. Here
11358 because it uses the mechanisms of breakpoints. */
11359
11360 struct until_break_command_continuation_args
11361 {
11362 struct breakpoint *breakpoint;
11363 struct breakpoint *breakpoint2;
11364 int thread_num;
11365 };
11366
11367 /* This function is called by fetch_inferior_event via the
11368 cmd_continuation pointer, to complete the until command. It takes
11369 care of cleaning up the temporary breakpoints set up by the until
11370 command. */
11371 static void
11372 until_break_command_continuation (void *arg, int err)
11373 {
11374 struct until_break_command_continuation_args *a = arg;
11375
11376 delete_breakpoint (a->breakpoint);
11377 if (a->breakpoint2)
11378 delete_breakpoint (a->breakpoint2);
11379 delete_longjmp_breakpoint (a->thread_num);
11380 }
11381
11382 void
11383 until_break_command (char *arg, int from_tty, int anywhere)
11384 {
11385 struct symtabs_and_lines sals;
11386 struct symtab_and_line sal;
11387 struct frame_info *frame;
11388 struct gdbarch *frame_gdbarch;
11389 struct frame_id stack_frame_id;
11390 struct frame_id caller_frame_id;
11391 struct breakpoint *breakpoint;
11392 struct breakpoint *breakpoint2 = NULL;
11393 struct cleanup *old_chain;
11394 int thread;
11395 struct thread_info *tp;
11396
11397 clear_proceed_status ();
11398
11399 /* Set a breakpoint where the user wants it and at return from
11400 this function. */
11401
11402 if (last_displayed_sal_is_valid ())
11403 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11404 get_last_displayed_symtab (),
11405 get_last_displayed_line ());
11406 else
11407 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11408 (struct symtab *) NULL, 0);
11409
11410 if (sals.nelts != 1)
11411 error (_("Couldn't get information on specified line."));
11412
11413 sal = sals.sals[0];
11414 xfree (sals.sals); /* malloc'd, so freed. */
11415
11416 if (*arg)
11417 error (_("Junk at end of arguments."));
11418
11419 resolve_sal_pc (&sal);
11420
11421 tp = inferior_thread ();
11422 thread = tp->num;
11423
11424 old_chain = make_cleanup (null_cleanup, NULL);
11425
11426 /* Note linespec handling above invalidates the frame chain.
11427 Installing a breakpoint also invalidates the frame chain (as it
11428 may need to switch threads), so do any frame handling before
11429 that. */
11430
11431 frame = get_selected_frame (NULL);
11432 frame_gdbarch = get_frame_arch (frame);
11433 stack_frame_id = get_stack_frame_id (frame);
11434 caller_frame_id = frame_unwind_caller_id (frame);
11435
11436 /* Keep within the current frame, or in frames called by the current
11437 one. */
11438
11439 if (frame_id_p (caller_frame_id))
11440 {
11441 struct symtab_and_line sal2;
11442
11443 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11444 sal2.pc = frame_unwind_caller_pc (frame);
11445 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11446 sal2,
11447 caller_frame_id,
11448 bp_until);
11449 make_cleanup_delete_breakpoint (breakpoint2);
11450
11451 set_longjmp_breakpoint (tp, caller_frame_id);
11452 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11453 }
11454
11455 /* set_momentary_breakpoint could invalidate FRAME. */
11456 frame = NULL;
11457
11458 if (anywhere)
11459 /* If the user told us to continue until a specified location,
11460 we don't specify a frame at which we need to stop. */
11461 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11462 null_frame_id, bp_until);
11463 else
11464 /* Otherwise, specify the selected frame, because we want to stop
11465 only at the very same frame. */
11466 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11467 stack_frame_id, bp_until);
11468 make_cleanup_delete_breakpoint (breakpoint);
11469
11470 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11471
11472 /* If we are running asynchronously, and proceed call above has
11473 actually managed to start the target, arrange for breakpoints to
11474 be deleted when the target stops. Otherwise, we're already
11475 stopped and delete breakpoints via cleanup chain. */
11476
11477 if (target_can_async_p () && is_running (inferior_ptid))
11478 {
11479 struct until_break_command_continuation_args *args;
11480 args = xmalloc (sizeof (*args));
11481
11482 args->breakpoint = breakpoint;
11483 args->breakpoint2 = breakpoint2;
11484 args->thread_num = thread;
11485
11486 discard_cleanups (old_chain);
11487 add_continuation (inferior_thread (),
11488 until_break_command_continuation, args,
11489 xfree);
11490 }
11491 else
11492 do_cleanups (old_chain);
11493 }
11494
11495 /* This function attempts to parse an optional "if <cond>" clause
11496 from the arg string. If one is not found, it returns NULL.
11497
11498 Else, it returns a pointer to the condition string. (It does not
11499 attempt to evaluate the string against a particular block.) And,
11500 it updates arg to point to the first character following the parsed
11501 if clause in the arg string. */
11502
11503 char *
11504 ep_parse_optional_if_clause (char **arg)
11505 {
11506 char *cond_string;
11507
11508 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11509 return NULL;
11510
11511 /* Skip the "if" keyword. */
11512 (*arg) += 2;
11513
11514 /* Skip any extra leading whitespace, and record the start of the
11515 condition string. */
11516 *arg = skip_spaces (*arg);
11517 cond_string = *arg;
11518
11519 /* Assume that the condition occupies the remainder of the arg
11520 string. */
11521 (*arg) += strlen (cond_string);
11522
11523 return cond_string;
11524 }
11525
11526 /* Commands to deal with catching events, such as signals, exceptions,
11527 process start/exit, etc. */
11528
11529 typedef enum
11530 {
11531 catch_fork_temporary, catch_vfork_temporary,
11532 catch_fork_permanent, catch_vfork_permanent
11533 }
11534 catch_fork_kind;
11535
11536 static void
11537 catch_fork_command_1 (char *arg, int from_tty,
11538 struct cmd_list_element *command)
11539 {
11540 struct gdbarch *gdbarch = get_current_arch ();
11541 char *cond_string = NULL;
11542 catch_fork_kind fork_kind;
11543 int tempflag;
11544
11545 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11546 tempflag = (fork_kind == catch_fork_temporary
11547 || fork_kind == catch_vfork_temporary);
11548
11549 if (!arg)
11550 arg = "";
11551 arg = skip_spaces (arg);
11552
11553 /* The allowed syntax is:
11554 catch [v]fork
11555 catch [v]fork if <cond>
11556
11557 First, check if there's an if clause. */
11558 cond_string = ep_parse_optional_if_clause (&arg);
11559
11560 if ((*arg != '\0') && !isspace (*arg))
11561 error (_("Junk at end of arguments."));
11562
11563 /* If this target supports it, create a fork or vfork catchpoint
11564 and enable reporting of such events. */
11565 switch (fork_kind)
11566 {
11567 case catch_fork_temporary:
11568 case catch_fork_permanent:
11569 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11570 &catch_fork_breakpoint_ops);
11571 break;
11572 case catch_vfork_temporary:
11573 case catch_vfork_permanent:
11574 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11575 &catch_vfork_breakpoint_ops);
11576 break;
11577 default:
11578 error (_("unsupported or unknown fork kind; cannot catch it"));
11579 break;
11580 }
11581 }
11582
11583 static void
11584 catch_exec_command_1 (char *arg, int from_tty,
11585 struct cmd_list_element *command)
11586 {
11587 struct exec_catchpoint *c;
11588 struct gdbarch *gdbarch = get_current_arch ();
11589 int tempflag;
11590 char *cond_string = NULL;
11591
11592 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11593
11594 if (!arg)
11595 arg = "";
11596 arg = skip_spaces (arg);
11597
11598 /* The allowed syntax is:
11599 catch exec
11600 catch exec if <cond>
11601
11602 First, check if there's an if clause. */
11603 cond_string = ep_parse_optional_if_clause (&arg);
11604
11605 if ((*arg != '\0') && !isspace (*arg))
11606 error (_("Junk at end of arguments."));
11607
11608 c = XNEW (struct exec_catchpoint);
11609 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11610 &catch_exec_breakpoint_ops);
11611 c->exec_pathname = NULL;
11612
11613 install_breakpoint (0, &c->base, 1);
11614 }
11615
11616 void
11617 init_ada_exception_breakpoint (struct breakpoint *b,
11618 struct gdbarch *gdbarch,
11619 struct symtab_and_line sal,
11620 char *addr_string,
11621 const struct breakpoint_ops *ops,
11622 int tempflag,
11623 int from_tty)
11624 {
11625 if (from_tty)
11626 {
11627 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11628 if (!loc_gdbarch)
11629 loc_gdbarch = gdbarch;
11630
11631 describe_other_breakpoints (loc_gdbarch,
11632 sal.pspace, sal.pc, sal.section, -1);
11633 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11634 version for exception catchpoints, because two catchpoints
11635 used for different exception names will use the same address.
11636 In this case, a "breakpoint ... also set at..." warning is
11637 unproductive. Besides, the warning phrasing is also a bit
11638 inappropriate, we should use the word catchpoint, and tell
11639 the user what type of catchpoint it is. The above is good
11640 enough for now, though. */
11641 }
11642
11643 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11644
11645 b->enable_state = bp_enabled;
11646 b->disposition = tempflag ? disp_del : disp_donttouch;
11647 b->addr_string = addr_string;
11648 b->language = language_ada;
11649 }
11650
11651 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11652 filter list, or NULL if no filtering is required. */
11653 static VEC(int) *
11654 catch_syscall_split_args (char *arg)
11655 {
11656 VEC(int) *result = NULL;
11657 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11658
11659 while (*arg != '\0')
11660 {
11661 int i, syscall_number;
11662 char *endptr;
11663 char cur_name[128];
11664 struct syscall s;
11665
11666 /* Skip whitespace. */
11667 arg = skip_spaces (arg);
11668
11669 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11670 cur_name[i] = arg[i];
11671 cur_name[i] = '\0';
11672 arg += i;
11673
11674 /* Check if the user provided a syscall name or a number. */
11675 syscall_number = (int) strtol (cur_name, &endptr, 0);
11676 if (*endptr == '\0')
11677 get_syscall_by_number (syscall_number, &s);
11678 else
11679 {
11680 /* We have a name. Let's check if it's valid and convert it
11681 to a number. */
11682 get_syscall_by_name (cur_name, &s);
11683
11684 if (s.number == UNKNOWN_SYSCALL)
11685 /* Here we have to issue an error instead of a warning,
11686 because GDB cannot do anything useful if there's no
11687 syscall number to be caught. */
11688 error (_("Unknown syscall name '%s'."), cur_name);
11689 }
11690
11691 /* Ok, it's valid. */
11692 VEC_safe_push (int, result, s.number);
11693 }
11694
11695 discard_cleanups (cleanup);
11696 return result;
11697 }
11698
11699 /* Implement the "catch syscall" command. */
11700
11701 static void
11702 catch_syscall_command_1 (char *arg, int from_tty,
11703 struct cmd_list_element *command)
11704 {
11705 int tempflag;
11706 VEC(int) *filter;
11707 struct syscall s;
11708 struct gdbarch *gdbarch = get_current_arch ();
11709
11710 /* Checking if the feature if supported. */
11711 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11712 error (_("The feature 'catch syscall' is not supported on \
11713 this architecture yet."));
11714
11715 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11716
11717 arg = skip_spaces (arg);
11718
11719 /* We need to do this first "dummy" translation in order
11720 to get the syscall XML file loaded or, most important,
11721 to display a warning to the user if there's no XML file
11722 for his/her architecture. */
11723 get_syscall_by_number (0, &s);
11724
11725 /* The allowed syntax is:
11726 catch syscall
11727 catch syscall <name | number> [<name | number> ... <name | number>]
11728
11729 Let's check if there's a syscall name. */
11730
11731 if (arg != NULL)
11732 filter = catch_syscall_split_args (arg);
11733 else
11734 filter = NULL;
11735
11736 create_syscall_event_catchpoint (tempflag, filter,
11737 &catch_syscall_breakpoint_ops);
11738 }
11739
11740 static void
11741 catch_command (char *arg, int from_tty)
11742 {
11743 error (_("Catch requires an event name."));
11744 }
11745 \f
11746
11747 static void
11748 tcatch_command (char *arg, int from_tty)
11749 {
11750 error (_("Catch requires an event name."));
11751 }
11752
11753 /* A qsort comparison function that sorts breakpoints in order. */
11754
11755 static int
11756 compare_breakpoints (const void *a, const void *b)
11757 {
11758 const breakpoint_p *ba = a;
11759 uintptr_t ua = (uintptr_t) *ba;
11760 const breakpoint_p *bb = b;
11761 uintptr_t ub = (uintptr_t) *bb;
11762
11763 if ((*ba)->number < (*bb)->number)
11764 return -1;
11765 else if ((*ba)->number > (*bb)->number)
11766 return 1;
11767
11768 /* Now sort by address, in case we see, e..g, two breakpoints with
11769 the number 0. */
11770 if (ua < ub)
11771 return -1;
11772 return ua > ub ? 1 : 0;
11773 }
11774
11775 /* Delete breakpoints by address or line. */
11776
11777 static void
11778 clear_command (char *arg, int from_tty)
11779 {
11780 struct breakpoint *b, *prev;
11781 VEC(breakpoint_p) *found = 0;
11782 int ix;
11783 int default_match;
11784 struct symtabs_and_lines sals;
11785 struct symtab_and_line sal;
11786 int i;
11787 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11788
11789 if (arg)
11790 {
11791 sals = decode_line_with_current_source (arg,
11792 (DECODE_LINE_FUNFIRSTLINE
11793 | DECODE_LINE_LIST_MODE));
11794 make_cleanup (xfree, sals.sals);
11795 default_match = 0;
11796 }
11797 else
11798 {
11799 sals.sals = (struct symtab_and_line *)
11800 xmalloc (sizeof (struct symtab_and_line));
11801 make_cleanup (xfree, sals.sals);
11802 init_sal (&sal); /* Initialize to zeroes. */
11803
11804 /* Set sal's line, symtab, pc, and pspace to the values
11805 corresponding to the last call to print_frame_info. If the
11806 codepoint is not valid, this will set all the fields to 0. */
11807 get_last_displayed_sal (&sal);
11808 if (sal.symtab == 0)
11809 error (_("No source file specified."));
11810
11811 sals.sals[0] = sal;
11812 sals.nelts = 1;
11813
11814 default_match = 1;
11815 }
11816
11817 /* We don't call resolve_sal_pc here. That's not as bad as it
11818 seems, because all existing breakpoints typically have both
11819 file/line and pc set. So, if clear is given file/line, we can
11820 match this to existing breakpoint without obtaining pc at all.
11821
11822 We only support clearing given the address explicitly
11823 present in breakpoint table. Say, we've set breakpoint
11824 at file:line. There were several PC values for that file:line,
11825 due to optimization, all in one block.
11826
11827 We've picked one PC value. If "clear" is issued with another
11828 PC corresponding to the same file:line, the breakpoint won't
11829 be cleared. We probably can still clear the breakpoint, but
11830 since the other PC value is never presented to user, user
11831 can only find it by guessing, and it does not seem important
11832 to support that. */
11833
11834 /* For each line spec given, delete bps which correspond to it. Do
11835 it in two passes, solely to preserve the current behavior that
11836 from_tty is forced true if we delete more than one
11837 breakpoint. */
11838
11839 found = NULL;
11840 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11841 for (i = 0; i < sals.nelts; i++)
11842 {
11843 const char *sal_fullname;
11844
11845 /* If exact pc given, clear bpts at that pc.
11846 If line given (pc == 0), clear all bpts on specified line.
11847 If defaulting, clear all bpts on default line
11848 or at default pc.
11849
11850 defaulting sal.pc != 0 tests to do
11851
11852 0 1 pc
11853 1 1 pc _and_ line
11854 0 0 line
11855 1 0 <can't happen> */
11856
11857 sal = sals.sals[i];
11858 sal_fullname = (sal.symtab == NULL
11859 ? NULL : symtab_to_fullname (sal.symtab));
11860
11861 /* Find all matching breakpoints and add them to 'found'. */
11862 ALL_BREAKPOINTS (b)
11863 {
11864 int match = 0;
11865 /* Are we going to delete b? */
11866 if (b->type != bp_none && !is_watchpoint (b))
11867 {
11868 struct bp_location *loc = b->loc;
11869 for (; loc; loc = loc->next)
11870 {
11871 /* If the user specified file:line, don't allow a PC
11872 match. This matches historical gdb behavior. */
11873 int pc_match = (!sal.explicit_line
11874 && sal.pc
11875 && (loc->pspace == sal.pspace)
11876 && (loc->address == sal.pc)
11877 && (!section_is_overlay (loc->section)
11878 || loc->section == sal.section));
11879 int line_match = 0;
11880
11881 if ((default_match || sal.explicit_line)
11882 && loc->symtab != NULL
11883 && sal_fullname != NULL
11884 && sal.pspace == loc->pspace
11885 && loc->line_number == sal.line
11886 && filename_cmp (symtab_to_fullname (loc->symtab),
11887 sal_fullname) == 0)
11888 line_match = 1;
11889
11890 if (pc_match || line_match)
11891 {
11892 match = 1;
11893 break;
11894 }
11895 }
11896 }
11897
11898 if (match)
11899 VEC_safe_push(breakpoint_p, found, b);
11900 }
11901 }
11902
11903 /* Now go thru the 'found' chain and delete them. */
11904 if (VEC_empty(breakpoint_p, found))
11905 {
11906 if (arg)
11907 error (_("No breakpoint at %s."), arg);
11908 else
11909 error (_("No breakpoint at this line."));
11910 }
11911
11912 /* Remove duplicates from the vec. */
11913 qsort (VEC_address (breakpoint_p, found),
11914 VEC_length (breakpoint_p, found),
11915 sizeof (breakpoint_p),
11916 compare_breakpoints);
11917 prev = VEC_index (breakpoint_p, found, 0);
11918 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11919 {
11920 if (b == prev)
11921 {
11922 VEC_ordered_remove (breakpoint_p, found, ix);
11923 --ix;
11924 }
11925 }
11926
11927 if (VEC_length(breakpoint_p, found) > 1)
11928 from_tty = 1; /* Always report if deleted more than one. */
11929 if (from_tty)
11930 {
11931 if (VEC_length(breakpoint_p, found) == 1)
11932 printf_unfiltered (_("Deleted breakpoint "));
11933 else
11934 printf_unfiltered (_("Deleted breakpoints "));
11935 }
11936
11937 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11938 {
11939 if (from_tty)
11940 printf_unfiltered ("%d ", b->number);
11941 delete_breakpoint (b);
11942 }
11943 if (from_tty)
11944 putchar_unfiltered ('\n');
11945
11946 do_cleanups (cleanups);
11947 }
11948 \f
11949 /* Delete breakpoint in BS if they are `delete' breakpoints and
11950 all breakpoints that are marked for deletion, whether hit or not.
11951 This is called after any breakpoint is hit, or after errors. */
11952
11953 void
11954 breakpoint_auto_delete (bpstat bs)
11955 {
11956 struct breakpoint *b, *b_tmp;
11957
11958 for (; bs; bs = bs->next)
11959 if (bs->breakpoint_at
11960 && bs->breakpoint_at->disposition == disp_del
11961 && bs->stop)
11962 delete_breakpoint (bs->breakpoint_at);
11963
11964 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11965 {
11966 if (b->disposition == disp_del_at_next_stop)
11967 delete_breakpoint (b);
11968 }
11969 }
11970
11971 /* A comparison function for bp_location AP and BP being interfaced to
11972 qsort. Sort elements primarily by their ADDRESS (no matter what
11973 does breakpoint_address_is_meaningful say for its OWNER),
11974 secondarily by ordering first bp_permanent OWNERed elements and
11975 terciarily just ensuring the array is sorted stable way despite
11976 qsort being an unstable algorithm. */
11977
11978 static int
11979 bp_location_compare (const void *ap, const void *bp)
11980 {
11981 struct bp_location *a = *(void **) ap;
11982 struct bp_location *b = *(void **) bp;
11983 /* A and B come from existing breakpoints having non-NULL OWNER. */
11984 int a_perm = a->owner->enable_state == bp_permanent;
11985 int b_perm = b->owner->enable_state == bp_permanent;
11986
11987 if (a->address != b->address)
11988 return (a->address > b->address) - (a->address < b->address);
11989
11990 /* Sort locations at the same address by their pspace number, keeping
11991 locations of the same inferior (in a multi-inferior environment)
11992 grouped. */
11993
11994 if (a->pspace->num != b->pspace->num)
11995 return ((a->pspace->num > b->pspace->num)
11996 - (a->pspace->num < b->pspace->num));
11997
11998 /* Sort permanent breakpoints first. */
11999 if (a_perm != b_perm)
12000 return (a_perm < b_perm) - (a_perm > b_perm);
12001
12002 /* Make the internal GDB representation stable across GDB runs
12003 where A and B memory inside GDB can differ. Breakpoint locations of
12004 the same type at the same address can be sorted in arbitrary order. */
12005
12006 if (a->owner->number != b->owner->number)
12007 return ((a->owner->number > b->owner->number)
12008 - (a->owner->number < b->owner->number));
12009
12010 return (a > b) - (a < b);
12011 }
12012
12013 /* Set bp_location_placed_address_before_address_max and
12014 bp_location_shadow_len_after_address_max according to the current
12015 content of the bp_location array. */
12016
12017 static void
12018 bp_location_target_extensions_update (void)
12019 {
12020 struct bp_location *bl, **blp_tmp;
12021
12022 bp_location_placed_address_before_address_max = 0;
12023 bp_location_shadow_len_after_address_max = 0;
12024
12025 ALL_BP_LOCATIONS (bl, blp_tmp)
12026 {
12027 CORE_ADDR start, end, addr;
12028
12029 if (!bp_location_has_shadow (bl))
12030 continue;
12031
12032 start = bl->target_info.placed_address;
12033 end = start + bl->target_info.shadow_len;
12034
12035 gdb_assert (bl->address >= start);
12036 addr = bl->address - start;
12037 if (addr > bp_location_placed_address_before_address_max)
12038 bp_location_placed_address_before_address_max = addr;
12039
12040 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12041
12042 gdb_assert (bl->address < end);
12043 addr = end - bl->address;
12044 if (addr > bp_location_shadow_len_after_address_max)
12045 bp_location_shadow_len_after_address_max = addr;
12046 }
12047 }
12048
12049 /* Download tracepoint locations if they haven't been. */
12050
12051 static void
12052 download_tracepoint_locations (void)
12053 {
12054 struct breakpoint *b;
12055 struct cleanup *old_chain;
12056
12057 if (!target_can_download_tracepoint ())
12058 return;
12059
12060 old_chain = save_current_space_and_thread ();
12061
12062 ALL_TRACEPOINTS (b)
12063 {
12064 struct bp_location *bl;
12065 struct tracepoint *t;
12066 int bp_location_downloaded = 0;
12067
12068 if ((b->type == bp_fast_tracepoint
12069 ? !may_insert_fast_tracepoints
12070 : !may_insert_tracepoints))
12071 continue;
12072
12073 for (bl = b->loc; bl; bl = bl->next)
12074 {
12075 /* In tracepoint, locations are _never_ duplicated, so
12076 should_be_inserted is equivalent to
12077 unduplicated_should_be_inserted. */
12078 if (!should_be_inserted (bl) || bl->inserted)
12079 continue;
12080
12081 switch_to_program_space_and_thread (bl->pspace);
12082
12083 target_download_tracepoint (bl);
12084
12085 bl->inserted = 1;
12086 bp_location_downloaded = 1;
12087 }
12088 t = (struct tracepoint *) b;
12089 t->number_on_target = b->number;
12090 if (bp_location_downloaded)
12091 observer_notify_breakpoint_modified (b);
12092 }
12093
12094 do_cleanups (old_chain);
12095 }
12096
12097 /* Swap the insertion/duplication state between two locations. */
12098
12099 static void
12100 swap_insertion (struct bp_location *left, struct bp_location *right)
12101 {
12102 const int left_inserted = left->inserted;
12103 const int left_duplicate = left->duplicate;
12104 const int left_needs_update = left->needs_update;
12105 const struct bp_target_info left_target_info = left->target_info;
12106
12107 /* Locations of tracepoints can never be duplicated. */
12108 if (is_tracepoint (left->owner))
12109 gdb_assert (!left->duplicate);
12110 if (is_tracepoint (right->owner))
12111 gdb_assert (!right->duplicate);
12112
12113 left->inserted = right->inserted;
12114 left->duplicate = right->duplicate;
12115 left->needs_update = right->needs_update;
12116 left->target_info = right->target_info;
12117 right->inserted = left_inserted;
12118 right->duplicate = left_duplicate;
12119 right->needs_update = left_needs_update;
12120 right->target_info = left_target_info;
12121 }
12122
12123 /* Force the re-insertion of the locations at ADDRESS. This is called
12124 once a new/deleted/modified duplicate location is found and we are evaluating
12125 conditions on the target's side. Such conditions need to be updated on
12126 the target. */
12127
12128 static void
12129 force_breakpoint_reinsertion (struct bp_location *bl)
12130 {
12131 struct bp_location **locp = NULL, **loc2p;
12132 struct bp_location *loc;
12133 CORE_ADDR address = 0;
12134 int pspace_num;
12135
12136 address = bl->address;
12137 pspace_num = bl->pspace->num;
12138
12139 /* This is only meaningful if the target is
12140 evaluating conditions and if the user has
12141 opted for condition evaluation on the target's
12142 side. */
12143 if (gdb_evaluates_breakpoint_condition_p ()
12144 || !target_supports_evaluation_of_breakpoint_conditions ())
12145 return;
12146
12147 /* Flag all breakpoint locations with this address and
12148 the same program space as the location
12149 as "its condition has changed". We need to
12150 update the conditions on the target's side. */
12151 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12152 {
12153 loc = *loc2p;
12154
12155 if (!is_breakpoint (loc->owner)
12156 || pspace_num != loc->pspace->num)
12157 continue;
12158
12159 /* Flag the location appropriately. We use a different state to
12160 let everyone know that we already updated the set of locations
12161 with addr bl->address and program space bl->pspace. This is so
12162 we don't have to keep calling these functions just to mark locations
12163 that have already been marked. */
12164 loc->condition_changed = condition_updated;
12165
12166 /* Free the agent expression bytecode as well. We will compute
12167 it later on. */
12168 if (loc->cond_bytecode)
12169 {
12170 free_agent_expr (loc->cond_bytecode);
12171 loc->cond_bytecode = NULL;
12172 }
12173 }
12174 }
12175
12176 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12177 into the inferior, only remove already-inserted locations that no
12178 longer should be inserted. Functions that delete a breakpoint or
12179 breakpoints should pass false, so that deleting a breakpoint
12180 doesn't have the side effect of inserting the locations of other
12181 breakpoints that are marked not-inserted, but should_be_inserted
12182 returns true on them.
12183
12184 This behaviour is useful is situations close to tear-down -- e.g.,
12185 after an exec, while the target still has execution, but breakpoint
12186 shadows of the previous executable image should *NOT* be restored
12187 to the new image; or before detaching, where the target still has
12188 execution and wants to delete breakpoints from GDB's lists, and all
12189 breakpoints had already been removed from the inferior. */
12190
12191 static void
12192 update_global_location_list (int should_insert)
12193 {
12194 struct breakpoint *b;
12195 struct bp_location **locp, *loc;
12196 struct cleanup *cleanups;
12197 /* Last breakpoint location address that was marked for update. */
12198 CORE_ADDR last_addr = 0;
12199 /* Last breakpoint location program space that was marked for update. */
12200 int last_pspace_num = -1;
12201
12202 /* Used in the duplicates detection below. When iterating over all
12203 bp_locations, points to the first bp_location of a given address.
12204 Breakpoints and watchpoints of different types are never
12205 duplicates of each other. Keep one pointer for each type of
12206 breakpoint/watchpoint, so we only need to loop over all locations
12207 once. */
12208 struct bp_location *bp_loc_first; /* breakpoint */
12209 struct bp_location *wp_loc_first; /* hardware watchpoint */
12210 struct bp_location *awp_loc_first; /* access watchpoint */
12211 struct bp_location *rwp_loc_first; /* read watchpoint */
12212
12213 /* Saved former bp_location array which we compare against the newly
12214 built bp_location from the current state of ALL_BREAKPOINTS. */
12215 struct bp_location **old_location, **old_locp;
12216 unsigned old_location_count;
12217
12218 old_location = bp_location;
12219 old_location_count = bp_location_count;
12220 bp_location = NULL;
12221 bp_location_count = 0;
12222 cleanups = make_cleanup (xfree, old_location);
12223
12224 ALL_BREAKPOINTS (b)
12225 for (loc = b->loc; loc; loc = loc->next)
12226 bp_location_count++;
12227
12228 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12229 locp = bp_location;
12230 ALL_BREAKPOINTS (b)
12231 for (loc = b->loc; loc; loc = loc->next)
12232 *locp++ = loc;
12233 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12234 bp_location_compare);
12235
12236 bp_location_target_extensions_update ();
12237
12238 /* Identify bp_location instances that are no longer present in the
12239 new list, and therefore should be freed. Note that it's not
12240 necessary that those locations should be removed from inferior --
12241 if there's another location at the same address (previously
12242 marked as duplicate), we don't need to remove/insert the
12243 location.
12244
12245 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12246 and former bp_location array state respectively. */
12247
12248 locp = bp_location;
12249 for (old_locp = old_location; old_locp < old_location + old_location_count;
12250 old_locp++)
12251 {
12252 struct bp_location *old_loc = *old_locp;
12253 struct bp_location **loc2p;
12254
12255 /* Tells if 'old_loc' is found among the new locations. If
12256 not, we have to free it. */
12257 int found_object = 0;
12258 /* Tells if the location should remain inserted in the target. */
12259 int keep_in_target = 0;
12260 int removed = 0;
12261
12262 /* Skip LOCP entries which will definitely never be needed.
12263 Stop either at or being the one matching OLD_LOC. */
12264 while (locp < bp_location + bp_location_count
12265 && (*locp)->address < old_loc->address)
12266 locp++;
12267
12268 for (loc2p = locp;
12269 (loc2p < bp_location + bp_location_count
12270 && (*loc2p)->address == old_loc->address);
12271 loc2p++)
12272 {
12273 /* Check if this is a new/duplicated location or a duplicated
12274 location that had its condition modified. If so, we want to send
12275 its condition to the target if evaluation of conditions is taking
12276 place there. */
12277 if ((*loc2p)->condition_changed == condition_modified
12278 && (last_addr != old_loc->address
12279 || last_pspace_num != old_loc->pspace->num))
12280 {
12281 force_breakpoint_reinsertion (*loc2p);
12282 last_pspace_num = old_loc->pspace->num;
12283 }
12284
12285 if (*loc2p == old_loc)
12286 found_object = 1;
12287 }
12288
12289 /* We have already handled this address, update it so that we don't
12290 have to go through updates again. */
12291 last_addr = old_loc->address;
12292
12293 /* Target-side condition evaluation: Handle deleted locations. */
12294 if (!found_object)
12295 force_breakpoint_reinsertion (old_loc);
12296
12297 /* If this location is no longer present, and inserted, look if
12298 there's maybe a new location at the same address. If so,
12299 mark that one inserted, and don't remove this one. This is
12300 needed so that we don't have a time window where a breakpoint
12301 at certain location is not inserted. */
12302
12303 if (old_loc->inserted)
12304 {
12305 /* If the location is inserted now, we might have to remove
12306 it. */
12307
12308 if (found_object && should_be_inserted (old_loc))
12309 {
12310 /* The location is still present in the location list,
12311 and still should be inserted. Don't do anything. */
12312 keep_in_target = 1;
12313 }
12314 else
12315 {
12316 /* This location still exists, but it won't be kept in the
12317 target since it may have been disabled. We proceed to
12318 remove its target-side condition. */
12319
12320 /* The location is either no longer present, or got
12321 disabled. See if there's another location at the
12322 same address, in which case we don't need to remove
12323 this one from the target. */
12324
12325 /* OLD_LOC comes from existing struct breakpoint. */
12326 if (breakpoint_address_is_meaningful (old_loc->owner))
12327 {
12328 for (loc2p = locp;
12329 (loc2p < bp_location + bp_location_count
12330 && (*loc2p)->address == old_loc->address);
12331 loc2p++)
12332 {
12333 struct bp_location *loc2 = *loc2p;
12334
12335 if (breakpoint_locations_match (loc2, old_loc))
12336 {
12337 /* Read watchpoint locations are switched to
12338 access watchpoints, if the former are not
12339 supported, but the latter are. */
12340 if (is_hardware_watchpoint (old_loc->owner))
12341 {
12342 gdb_assert (is_hardware_watchpoint (loc2->owner));
12343 loc2->watchpoint_type = old_loc->watchpoint_type;
12344 }
12345
12346 /* loc2 is a duplicated location. We need to check
12347 if it should be inserted in case it will be
12348 unduplicated. */
12349 if (loc2 != old_loc
12350 && unduplicated_should_be_inserted (loc2))
12351 {
12352 swap_insertion (old_loc, loc2);
12353 keep_in_target = 1;
12354 break;
12355 }
12356 }
12357 }
12358 }
12359 }
12360
12361 if (!keep_in_target)
12362 {
12363 if (remove_breakpoint (old_loc, mark_uninserted))
12364 {
12365 /* This is just about all we can do. We could keep
12366 this location on the global list, and try to
12367 remove it next time, but there's no particular
12368 reason why we will succeed next time.
12369
12370 Note that at this point, old_loc->owner is still
12371 valid, as delete_breakpoint frees the breakpoint
12372 only after calling us. */
12373 printf_filtered (_("warning: Error removing "
12374 "breakpoint %d\n"),
12375 old_loc->owner->number);
12376 }
12377 removed = 1;
12378 }
12379 }
12380
12381 if (!found_object)
12382 {
12383 if (removed && non_stop
12384 && breakpoint_address_is_meaningful (old_loc->owner)
12385 && !is_hardware_watchpoint (old_loc->owner))
12386 {
12387 /* This location was removed from the target. In
12388 non-stop mode, a race condition is possible where
12389 we've removed a breakpoint, but stop events for that
12390 breakpoint are already queued and will arrive later.
12391 We apply an heuristic to be able to distinguish such
12392 SIGTRAPs from other random SIGTRAPs: we keep this
12393 breakpoint location for a bit, and will retire it
12394 after we see some number of events. The theory here
12395 is that reporting of events should, "on the average",
12396 be fair, so after a while we'll see events from all
12397 threads that have anything of interest, and no longer
12398 need to keep this breakpoint location around. We
12399 don't hold locations forever so to reduce chances of
12400 mistaking a non-breakpoint SIGTRAP for a breakpoint
12401 SIGTRAP.
12402
12403 The heuristic failing can be disastrous on
12404 decr_pc_after_break targets.
12405
12406 On decr_pc_after_break targets, like e.g., x86-linux,
12407 if we fail to recognize a late breakpoint SIGTRAP,
12408 because events_till_retirement has reached 0 too
12409 soon, we'll fail to do the PC adjustment, and report
12410 a random SIGTRAP to the user. When the user resumes
12411 the inferior, it will most likely immediately crash
12412 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12413 corrupted, because of being resumed e.g., in the
12414 middle of a multi-byte instruction, or skipped a
12415 one-byte instruction. This was actually seen happen
12416 on native x86-linux, and should be less rare on
12417 targets that do not support new thread events, like
12418 remote, due to the heuristic depending on
12419 thread_count.
12420
12421 Mistaking a random SIGTRAP for a breakpoint trap
12422 causes similar symptoms (PC adjustment applied when
12423 it shouldn't), but then again, playing with SIGTRAPs
12424 behind the debugger's back is asking for trouble.
12425
12426 Since hardware watchpoint traps are always
12427 distinguishable from other traps, so we don't need to
12428 apply keep hardware watchpoint moribund locations
12429 around. We simply always ignore hardware watchpoint
12430 traps we can no longer explain. */
12431
12432 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12433 old_loc->owner = NULL;
12434
12435 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12436 }
12437 else
12438 {
12439 old_loc->owner = NULL;
12440 decref_bp_location (&old_loc);
12441 }
12442 }
12443 }
12444
12445 /* Rescan breakpoints at the same address and section, marking the
12446 first one as "first" and any others as "duplicates". This is so
12447 that the bpt instruction is only inserted once. If we have a
12448 permanent breakpoint at the same place as BPT, make that one the
12449 official one, and the rest as duplicates. Permanent breakpoints
12450 are sorted first for the same address.
12451
12452 Do the same for hardware watchpoints, but also considering the
12453 watchpoint's type (regular/access/read) and length. */
12454
12455 bp_loc_first = NULL;
12456 wp_loc_first = NULL;
12457 awp_loc_first = NULL;
12458 rwp_loc_first = NULL;
12459 ALL_BP_LOCATIONS (loc, locp)
12460 {
12461 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12462 non-NULL. */
12463 struct bp_location **loc_first_p;
12464 b = loc->owner;
12465
12466 if (!unduplicated_should_be_inserted (loc)
12467 || !breakpoint_address_is_meaningful (b)
12468 /* Don't detect duplicate for tracepoint locations because they are
12469 never duplicated. See the comments in field `duplicate' of
12470 `struct bp_location'. */
12471 || is_tracepoint (b))
12472 {
12473 /* Clear the condition modification flag. */
12474 loc->condition_changed = condition_unchanged;
12475 continue;
12476 }
12477
12478 /* Permanent breakpoint should always be inserted. */
12479 if (b->enable_state == bp_permanent && ! loc->inserted)
12480 internal_error (__FILE__, __LINE__,
12481 _("allegedly permanent breakpoint is not "
12482 "actually inserted"));
12483
12484 if (b->type == bp_hardware_watchpoint)
12485 loc_first_p = &wp_loc_first;
12486 else if (b->type == bp_read_watchpoint)
12487 loc_first_p = &rwp_loc_first;
12488 else if (b->type == bp_access_watchpoint)
12489 loc_first_p = &awp_loc_first;
12490 else
12491 loc_first_p = &bp_loc_first;
12492
12493 if (*loc_first_p == NULL
12494 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12495 || !breakpoint_locations_match (loc, *loc_first_p))
12496 {
12497 *loc_first_p = loc;
12498 loc->duplicate = 0;
12499
12500 if (is_breakpoint (loc->owner) && loc->condition_changed)
12501 {
12502 loc->needs_update = 1;
12503 /* Clear the condition modification flag. */
12504 loc->condition_changed = condition_unchanged;
12505 }
12506 continue;
12507 }
12508
12509
12510 /* This and the above ensure the invariant that the first location
12511 is not duplicated, and is the inserted one.
12512 All following are marked as duplicated, and are not inserted. */
12513 if (loc->inserted)
12514 swap_insertion (loc, *loc_first_p);
12515 loc->duplicate = 1;
12516
12517 /* Clear the condition modification flag. */
12518 loc->condition_changed = condition_unchanged;
12519
12520 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12521 && b->enable_state != bp_permanent)
12522 internal_error (__FILE__, __LINE__,
12523 _("another breakpoint was inserted on top of "
12524 "a permanent breakpoint"));
12525 }
12526
12527 if (breakpoints_always_inserted_mode ()
12528 && (have_live_inferiors ()
12529 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12530 {
12531 if (should_insert)
12532 insert_breakpoint_locations ();
12533 else
12534 {
12535 /* Though should_insert is false, we may need to update conditions
12536 on the target's side if it is evaluating such conditions. We
12537 only update conditions for locations that are marked
12538 "needs_update". */
12539 update_inserted_breakpoint_locations ();
12540 }
12541 }
12542
12543 if (should_insert)
12544 download_tracepoint_locations ();
12545
12546 do_cleanups (cleanups);
12547 }
12548
12549 void
12550 breakpoint_retire_moribund (void)
12551 {
12552 struct bp_location *loc;
12553 int ix;
12554
12555 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12556 if (--(loc->events_till_retirement) == 0)
12557 {
12558 decref_bp_location (&loc);
12559 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12560 --ix;
12561 }
12562 }
12563
12564 static void
12565 update_global_location_list_nothrow (int inserting)
12566 {
12567 volatile struct gdb_exception e;
12568
12569 TRY_CATCH (e, RETURN_MASK_ERROR)
12570 update_global_location_list (inserting);
12571 }
12572
12573 /* Clear BKP from a BPS. */
12574
12575 static void
12576 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12577 {
12578 bpstat bs;
12579
12580 for (bs = bps; bs; bs = bs->next)
12581 if (bs->breakpoint_at == bpt)
12582 {
12583 bs->breakpoint_at = NULL;
12584 bs->old_val = NULL;
12585 /* bs->commands will be freed later. */
12586 }
12587 }
12588
12589 /* Callback for iterate_over_threads. */
12590 static int
12591 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12592 {
12593 struct breakpoint *bpt = data;
12594
12595 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12596 return 0;
12597 }
12598
12599 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12600 callbacks. */
12601
12602 static void
12603 say_where (struct breakpoint *b)
12604 {
12605 struct value_print_options opts;
12606
12607 get_user_print_options (&opts);
12608
12609 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12610 single string. */
12611 if (b->loc == NULL)
12612 {
12613 printf_filtered (_(" (%s) pending."), b->addr_string);
12614 }
12615 else
12616 {
12617 if (opts.addressprint || b->loc->symtab == NULL)
12618 {
12619 printf_filtered (" at ");
12620 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12621 gdb_stdout);
12622 }
12623 if (b->loc->symtab != NULL)
12624 {
12625 /* If there is a single location, we can print the location
12626 more nicely. */
12627 if (b->loc->next == NULL)
12628 printf_filtered (": file %s, line %d.",
12629 symtab_to_filename_for_display (b->loc->symtab),
12630 b->loc->line_number);
12631 else
12632 /* This is not ideal, but each location may have a
12633 different file name, and this at least reflects the
12634 real situation somewhat. */
12635 printf_filtered (": %s.", b->addr_string);
12636 }
12637
12638 if (b->loc->next)
12639 {
12640 struct bp_location *loc = b->loc;
12641 int n = 0;
12642 for (; loc; loc = loc->next)
12643 ++n;
12644 printf_filtered (" (%d locations)", n);
12645 }
12646 }
12647 }
12648
12649 /* Default bp_location_ops methods. */
12650
12651 static void
12652 bp_location_dtor (struct bp_location *self)
12653 {
12654 xfree (self->cond);
12655 if (self->cond_bytecode)
12656 free_agent_expr (self->cond_bytecode);
12657 xfree (self->function_name);
12658 }
12659
12660 static const struct bp_location_ops bp_location_ops =
12661 {
12662 bp_location_dtor
12663 };
12664
12665 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12666 inherit from. */
12667
12668 static void
12669 base_breakpoint_dtor (struct breakpoint *self)
12670 {
12671 decref_counted_command_line (&self->commands);
12672 xfree (self->cond_string);
12673 xfree (self->extra_string);
12674 xfree (self->addr_string);
12675 xfree (self->filter);
12676 xfree (self->addr_string_range_end);
12677 }
12678
12679 static struct bp_location *
12680 base_breakpoint_allocate_location (struct breakpoint *self)
12681 {
12682 struct bp_location *loc;
12683
12684 loc = XNEW (struct bp_location);
12685 init_bp_location (loc, &bp_location_ops, self);
12686 return loc;
12687 }
12688
12689 static void
12690 base_breakpoint_re_set (struct breakpoint *b)
12691 {
12692 /* Nothing to re-set. */
12693 }
12694
12695 #define internal_error_pure_virtual_called() \
12696 gdb_assert_not_reached ("pure virtual function called")
12697
12698 static int
12699 base_breakpoint_insert_location (struct bp_location *bl)
12700 {
12701 internal_error_pure_virtual_called ();
12702 }
12703
12704 static int
12705 base_breakpoint_remove_location (struct bp_location *bl)
12706 {
12707 internal_error_pure_virtual_called ();
12708 }
12709
12710 static int
12711 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12712 struct address_space *aspace,
12713 CORE_ADDR bp_addr,
12714 const struct target_waitstatus *ws)
12715 {
12716 internal_error_pure_virtual_called ();
12717 }
12718
12719 static void
12720 base_breakpoint_check_status (bpstat bs)
12721 {
12722 /* Always stop. */
12723 }
12724
12725 /* A "works_in_software_mode" breakpoint_ops method that just internal
12726 errors. */
12727
12728 static int
12729 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12730 {
12731 internal_error_pure_virtual_called ();
12732 }
12733
12734 /* A "resources_needed" breakpoint_ops method that just internal
12735 errors. */
12736
12737 static int
12738 base_breakpoint_resources_needed (const struct bp_location *bl)
12739 {
12740 internal_error_pure_virtual_called ();
12741 }
12742
12743 static enum print_stop_action
12744 base_breakpoint_print_it (bpstat bs)
12745 {
12746 internal_error_pure_virtual_called ();
12747 }
12748
12749 static void
12750 base_breakpoint_print_one_detail (const struct breakpoint *self,
12751 struct ui_out *uiout)
12752 {
12753 /* nothing */
12754 }
12755
12756 static void
12757 base_breakpoint_print_mention (struct breakpoint *b)
12758 {
12759 internal_error_pure_virtual_called ();
12760 }
12761
12762 static void
12763 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12764 {
12765 internal_error_pure_virtual_called ();
12766 }
12767
12768 static void
12769 base_breakpoint_create_sals_from_address (char **arg,
12770 struct linespec_result *canonical,
12771 enum bptype type_wanted,
12772 char *addr_start,
12773 char **copy_arg)
12774 {
12775 internal_error_pure_virtual_called ();
12776 }
12777
12778 static void
12779 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12780 struct linespec_result *c,
12781 char *cond_string,
12782 char *extra_string,
12783 enum bptype type_wanted,
12784 enum bpdisp disposition,
12785 int thread,
12786 int task, int ignore_count,
12787 const struct breakpoint_ops *o,
12788 int from_tty, int enabled,
12789 int internal, unsigned flags)
12790 {
12791 internal_error_pure_virtual_called ();
12792 }
12793
12794 static void
12795 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12796 struct symtabs_and_lines *sals)
12797 {
12798 internal_error_pure_virtual_called ();
12799 }
12800
12801 /* The default 'explains_signal' method. */
12802
12803 static enum bpstat_signal_value
12804 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12805 {
12806 return BPSTAT_SIGNAL_HIDE;
12807 }
12808
12809 /* The default "after_condition_true" method. */
12810
12811 static void
12812 base_breakpoint_after_condition_true (struct bpstats *bs)
12813 {
12814 /* Nothing to do. */
12815 }
12816
12817 struct breakpoint_ops base_breakpoint_ops =
12818 {
12819 base_breakpoint_dtor,
12820 base_breakpoint_allocate_location,
12821 base_breakpoint_re_set,
12822 base_breakpoint_insert_location,
12823 base_breakpoint_remove_location,
12824 base_breakpoint_breakpoint_hit,
12825 base_breakpoint_check_status,
12826 base_breakpoint_resources_needed,
12827 base_breakpoint_works_in_software_mode,
12828 base_breakpoint_print_it,
12829 NULL,
12830 base_breakpoint_print_one_detail,
12831 base_breakpoint_print_mention,
12832 base_breakpoint_print_recreate,
12833 base_breakpoint_create_sals_from_address,
12834 base_breakpoint_create_breakpoints_sal,
12835 base_breakpoint_decode_linespec,
12836 base_breakpoint_explains_signal,
12837 base_breakpoint_after_condition_true,
12838 };
12839
12840 /* Default breakpoint_ops methods. */
12841
12842 static void
12843 bkpt_re_set (struct breakpoint *b)
12844 {
12845 /* FIXME: is this still reachable? */
12846 if (b->addr_string == NULL)
12847 {
12848 /* Anything without a string can't be re-set. */
12849 delete_breakpoint (b);
12850 return;
12851 }
12852
12853 breakpoint_re_set_default (b);
12854 }
12855
12856 static int
12857 bkpt_insert_location (struct bp_location *bl)
12858 {
12859 if (bl->loc_type == bp_loc_hardware_breakpoint)
12860 return target_insert_hw_breakpoint (bl->gdbarch,
12861 &bl->target_info);
12862 else
12863 return target_insert_breakpoint (bl->gdbarch,
12864 &bl->target_info);
12865 }
12866
12867 static int
12868 bkpt_remove_location (struct bp_location *bl)
12869 {
12870 if (bl->loc_type == bp_loc_hardware_breakpoint)
12871 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12872 else
12873 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12874 }
12875
12876 static int
12877 bkpt_breakpoint_hit (const struct bp_location *bl,
12878 struct address_space *aspace, CORE_ADDR bp_addr,
12879 const struct target_waitstatus *ws)
12880 {
12881 if (ws->kind != TARGET_WAITKIND_STOPPED
12882 || ws->value.sig != GDB_SIGNAL_TRAP)
12883 return 0;
12884
12885 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12886 aspace, bp_addr))
12887 return 0;
12888
12889 if (overlay_debugging /* unmapped overlay section */
12890 && section_is_overlay (bl->section)
12891 && !section_is_mapped (bl->section))
12892 return 0;
12893
12894 return 1;
12895 }
12896
12897 static int
12898 bkpt_resources_needed (const struct bp_location *bl)
12899 {
12900 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12901
12902 return 1;
12903 }
12904
12905 static enum print_stop_action
12906 bkpt_print_it (bpstat bs)
12907 {
12908 struct breakpoint *b;
12909 const struct bp_location *bl;
12910 int bp_temp;
12911 struct ui_out *uiout = current_uiout;
12912
12913 gdb_assert (bs->bp_location_at != NULL);
12914
12915 bl = bs->bp_location_at;
12916 b = bs->breakpoint_at;
12917
12918 bp_temp = b->disposition == disp_del;
12919 if (bl->address != bl->requested_address)
12920 breakpoint_adjustment_warning (bl->requested_address,
12921 bl->address,
12922 b->number, 1);
12923 annotate_breakpoint (b->number);
12924 if (bp_temp)
12925 ui_out_text (uiout, "\nTemporary breakpoint ");
12926 else
12927 ui_out_text (uiout, "\nBreakpoint ");
12928 if (ui_out_is_mi_like_p (uiout))
12929 {
12930 ui_out_field_string (uiout, "reason",
12931 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12932 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12933 }
12934 ui_out_field_int (uiout, "bkptno", b->number);
12935 ui_out_text (uiout, ", ");
12936
12937 return PRINT_SRC_AND_LOC;
12938 }
12939
12940 static void
12941 bkpt_print_mention (struct breakpoint *b)
12942 {
12943 if (ui_out_is_mi_like_p (current_uiout))
12944 return;
12945
12946 switch (b->type)
12947 {
12948 case bp_breakpoint:
12949 case bp_gnu_ifunc_resolver:
12950 if (b->disposition == disp_del)
12951 printf_filtered (_("Temporary breakpoint"));
12952 else
12953 printf_filtered (_("Breakpoint"));
12954 printf_filtered (_(" %d"), b->number);
12955 if (b->type == bp_gnu_ifunc_resolver)
12956 printf_filtered (_(" at gnu-indirect-function resolver"));
12957 break;
12958 case bp_hardware_breakpoint:
12959 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12960 break;
12961 case bp_dprintf:
12962 printf_filtered (_("Dprintf %d"), b->number);
12963 break;
12964 }
12965
12966 say_where (b);
12967 }
12968
12969 static void
12970 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12971 {
12972 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12973 fprintf_unfiltered (fp, "tbreak");
12974 else if (tp->type == bp_breakpoint)
12975 fprintf_unfiltered (fp, "break");
12976 else if (tp->type == bp_hardware_breakpoint
12977 && tp->disposition == disp_del)
12978 fprintf_unfiltered (fp, "thbreak");
12979 else if (tp->type == bp_hardware_breakpoint)
12980 fprintf_unfiltered (fp, "hbreak");
12981 else
12982 internal_error (__FILE__, __LINE__,
12983 _("unhandled breakpoint type %d"), (int) tp->type);
12984
12985 fprintf_unfiltered (fp, " %s", tp->addr_string);
12986 print_recreate_thread (tp, fp);
12987 }
12988
12989 static void
12990 bkpt_create_sals_from_address (char **arg,
12991 struct linespec_result *canonical,
12992 enum bptype type_wanted,
12993 char *addr_start, char **copy_arg)
12994 {
12995 create_sals_from_address_default (arg, canonical, type_wanted,
12996 addr_start, copy_arg);
12997 }
12998
12999 static void
13000 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13001 struct linespec_result *canonical,
13002 char *cond_string,
13003 char *extra_string,
13004 enum bptype type_wanted,
13005 enum bpdisp disposition,
13006 int thread,
13007 int task, int ignore_count,
13008 const struct breakpoint_ops *ops,
13009 int from_tty, int enabled,
13010 int internal, unsigned flags)
13011 {
13012 create_breakpoints_sal_default (gdbarch, canonical,
13013 cond_string, extra_string,
13014 type_wanted,
13015 disposition, thread, task,
13016 ignore_count, ops, from_tty,
13017 enabled, internal, flags);
13018 }
13019
13020 static void
13021 bkpt_decode_linespec (struct breakpoint *b, char **s,
13022 struct symtabs_and_lines *sals)
13023 {
13024 decode_linespec_default (b, s, sals);
13025 }
13026
13027 /* Virtual table for internal breakpoints. */
13028
13029 static void
13030 internal_bkpt_re_set (struct breakpoint *b)
13031 {
13032 switch (b->type)
13033 {
13034 /* Delete overlay event and longjmp master breakpoints; they
13035 will be reset later by breakpoint_re_set. */
13036 case bp_overlay_event:
13037 case bp_longjmp_master:
13038 case bp_std_terminate_master:
13039 case bp_exception_master:
13040 delete_breakpoint (b);
13041 break;
13042
13043 /* This breakpoint is special, it's set up when the inferior
13044 starts and we really don't want to touch it. */
13045 case bp_shlib_event:
13046
13047 /* Like bp_shlib_event, this breakpoint type is special. Once
13048 it is set up, we do not want to touch it. */
13049 case bp_thread_event:
13050 break;
13051 }
13052 }
13053
13054 static void
13055 internal_bkpt_check_status (bpstat bs)
13056 {
13057 if (bs->breakpoint_at->type == bp_shlib_event)
13058 {
13059 /* If requested, stop when the dynamic linker notifies GDB of
13060 events. This allows the user to get control and place
13061 breakpoints in initializer routines for dynamically loaded
13062 objects (among other things). */
13063 bs->stop = stop_on_solib_events;
13064 bs->print = stop_on_solib_events;
13065 }
13066 else
13067 bs->stop = 0;
13068 }
13069
13070 static enum print_stop_action
13071 internal_bkpt_print_it (bpstat bs)
13072 {
13073 struct breakpoint *b;
13074
13075 b = bs->breakpoint_at;
13076
13077 switch (b->type)
13078 {
13079 case bp_shlib_event:
13080 /* Did we stop because the user set the stop_on_solib_events
13081 variable? (If so, we report this as a generic, "Stopped due
13082 to shlib event" message.) */
13083 print_solib_event (0);
13084 break;
13085
13086 case bp_thread_event:
13087 /* Not sure how we will get here.
13088 GDB should not stop for these breakpoints. */
13089 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13090 break;
13091
13092 case bp_overlay_event:
13093 /* By analogy with the thread event, GDB should not stop for these. */
13094 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13095 break;
13096
13097 case bp_longjmp_master:
13098 /* These should never be enabled. */
13099 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13100 break;
13101
13102 case bp_std_terminate_master:
13103 /* These should never be enabled. */
13104 printf_filtered (_("std::terminate Master Breakpoint: "
13105 "gdb should not stop!\n"));
13106 break;
13107
13108 case bp_exception_master:
13109 /* These should never be enabled. */
13110 printf_filtered (_("Exception Master Breakpoint: "
13111 "gdb should not stop!\n"));
13112 break;
13113 }
13114
13115 return PRINT_NOTHING;
13116 }
13117
13118 static void
13119 internal_bkpt_print_mention (struct breakpoint *b)
13120 {
13121 /* Nothing to mention. These breakpoints are internal. */
13122 }
13123
13124 /* Virtual table for momentary breakpoints */
13125
13126 static void
13127 momentary_bkpt_re_set (struct breakpoint *b)
13128 {
13129 /* Keep temporary breakpoints, which can be encountered when we step
13130 over a dlopen call and solib_add is resetting the breakpoints.
13131 Otherwise these should have been blown away via the cleanup chain
13132 or by breakpoint_init_inferior when we rerun the executable. */
13133 }
13134
13135 static void
13136 momentary_bkpt_check_status (bpstat bs)
13137 {
13138 /* Nothing. The point of these breakpoints is causing a stop. */
13139 }
13140
13141 static enum print_stop_action
13142 momentary_bkpt_print_it (bpstat bs)
13143 {
13144 struct ui_out *uiout = current_uiout;
13145
13146 if (ui_out_is_mi_like_p (uiout))
13147 {
13148 struct breakpoint *b = bs->breakpoint_at;
13149
13150 switch (b->type)
13151 {
13152 case bp_finish:
13153 ui_out_field_string
13154 (uiout, "reason",
13155 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13156 break;
13157
13158 case bp_until:
13159 ui_out_field_string
13160 (uiout, "reason",
13161 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13162 break;
13163 }
13164 }
13165
13166 return PRINT_UNKNOWN;
13167 }
13168
13169 static void
13170 momentary_bkpt_print_mention (struct breakpoint *b)
13171 {
13172 /* Nothing to mention. These breakpoints are internal. */
13173 }
13174
13175 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13176
13177 It gets cleared already on the removal of the first one of such placed
13178 breakpoints. This is OK as they get all removed altogether. */
13179
13180 static void
13181 longjmp_bkpt_dtor (struct breakpoint *self)
13182 {
13183 struct thread_info *tp = find_thread_id (self->thread);
13184
13185 if (tp)
13186 tp->initiating_frame = null_frame_id;
13187
13188 momentary_breakpoint_ops.dtor (self);
13189 }
13190
13191 /* Specific methods for probe breakpoints. */
13192
13193 static int
13194 bkpt_probe_insert_location (struct bp_location *bl)
13195 {
13196 int v = bkpt_insert_location (bl);
13197
13198 if (v == 0)
13199 {
13200 /* The insertion was successful, now let's set the probe's semaphore
13201 if needed. */
13202 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13203 }
13204
13205 return v;
13206 }
13207
13208 static int
13209 bkpt_probe_remove_location (struct bp_location *bl)
13210 {
13211 /* Let's clear the semaphore before removing the location. */
13212 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13213
13214 return bkpt_remove_location (bl);
13215 }
13216
13217 static void
13218 bkpt_probe_create_sals_from_address (char **arg,
13219 struct linespec_result *canonical,
13220 enum bptype type_wanted,
13221 char *addr_start, char **copy_arg)
13222 {
13223 struct linespec_sals lsal;
13224
13225 lsal.sals = parse_probes (arg, canonical);
13226
13227 *copy_arg = xstrdup (canonical->addr_string);
13228 lsal.canonical = xstrdup (*copy_arg);
13229
13230 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13231 }
13232
13233 static void
13234 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13235 struct symtabs_and_lines *sals)
13236 {
13237 *sals = parse_probes (s, NULL);
13238 if (!sals->sals)
13239 error (_("probe not found"));
13240 }
13241
13242 /* The breakpoint_ops structure to be used in tracepoints. */
13243
13244 static void
13245 tracepoint_re_set (struct breakpoint *b)
13246 {
13247 breakpoint_re_set_default (b);
13248 }
13249
13250 static int
13251 tracepoint_breakpoint_hit (const struct bp_location *bl,
13252 struct address_space *aspace, CORE_ADDR bp_addr,
13253 const struct target_waitstatus *ws)
13254 {
13255 /* By definition, the inferior does not report stops at
13256 tracepoints. */
13257 return 0;
13258 }
13259
13260 static void
13261 tracepoint_print_one_detail (const struct breakpoint *self,
13262 struct ui_out *uiout)
13263 {
13264 struct tracepoint *tp = (struct tracepoint *) self;
13265 if (tp->static_trace_marker_id)
13266 {
13267 gdb_assert (self->type == bp_static_tracepoint);
13268
13269 ui_out_text (uiout, "\tmarker id is ");
13270 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13271 tp->static_trace_marker_id);
13272 ui_out_text (uiout, "\n");
13273 }
13274 }
13275
13276 static void
13277 tracepoint_print_mention (struct breakpoint *b)
13278 {
13279 if (ui_out_is_mi_like_p (current_uiout))
13280 return;
13281
13282 switch (b->type)
13283 {
13284 case bp_tracepoint:
13285 printf_filtered (_("Tracepoint"));
13286 printf_filtered (_(" %d"), b->number);
13287 break;
13288 case bp_fast_tracepoint:
13289 printf_filtered (_("Fast tracepoint"));
13290 printf_filtered (_(" %d"), b->number);
13291 break;
13292 case bp_static_tracepoint:
13293 printf_filtered (_("Static tracepoint"));
13294 printf_filtered (_(" %d"), b->number);
13295 break;
13296 default:
13297 internal_error (__FILE__, __LINE__,
13298 _("unhandled tracepoint type %d"), (int) b->type);
13299 }
13300
13301 say_where (b);
13302 }
13303
13304 static void
13305 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13306 {
13307 struct tracepoint *tp = (struct tracepoint *) self;
13308
13309 if (self->type == bp_fast_tracepoint)
13310 fprintf_unfiltered (fp, "ftrace");
13311 if (self->type == bp_static_tracepoint)
13312 fprintf_unfiltered (fp, "strace");
13313 else if (self->type == bp_tracepoint)
13314 fprintf_unfiltered (fp, "trace");
13315 else
13316 internal_error (__FILE__, __LINE__,
13317 _("unhandled tracepoint type %d"), (int) self->type);
13318
13319 fprintf_unfiltered (fp, " %s", self->addr_string);
13320 print_recreate_thread (self, fp);
13321
13322 if (tp->pass_count)
13323 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13324 }
13325
13326 static void
13327 tracepoint_create_sals_from_address (char **arg,
13328 struct linespec_result *canonical,
13329 enum bptype type_wanted,
13330 char *addr_start, char **copy_arg)
13331 {
13332 create_sals_from_address_default (arg, canonical, type_wanted,
13333 addr_start, copy_arg);
13334 }
13335
13336 static void
13337 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13338 struct linespec_result *canonical,
13339 char *cond_string,
13340 char *extra_string,
13341 enum bptype type_wanted,
13342 enum bpdisp disposition,
13343 int thread,
13344 int task, int ignore_count,
13345 const struct breakpoint_ops *ops,
13346 int from_tty, int enabled,
13347 int internal, unsigned flags)
13348 {
13349 create_breakpoints_sal_default (gdbarch, canonical,
13350 cond_string, extra_string,
13351 type_wanted,
13352 disposition, thread, task,
13353 ignore_count, ops, from_tty,
13354 enabled, internal, flags);
13355 }
13356
13357 static void
13358 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13359 struct symtabs_and_lines *sals)
13360 {
13361 decode_linespec_default (b, s, sals);
13362 }
13363
13364 struct breakpoint_ops tracepoint_breakpoint_ops;
13365
13366 /* The breakpoint_ops structure to be use on tracepoints placed in a
13367 static probe. */
13368
13369 static void
13370 tracepoint_probe_create_sals_from_address (char **arg,
13371 struct linespec_result *canonical,
13372 enum bptype type_wanted,
13373 char *addr_start, char **copy_arg)
13374 {
13375 /* We use the same method for breakpoint on probes. */
13376 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13377 addr_start, copy_arg);
13378 }
13379
13380 static void
13381 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13382 struct symtabs_and_lines *sals)
13383 {
13384 /* We use the same method for breakpoint on probes. */
13385 bkpt_probe_decode_linespec (b, s, sals);
13386 }
13387
13388 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13389
13390 /* Dprintf breakpoint_ops methods. */
13391
13392 static void
13393 dprintf_re_set (struct breakpoint *b)
13394 {
13395 breakpoint_re_set_default (b);
13396
13397 /* This breakpoint could have been pending, and be resolved now, and
13398 if so, we should now have the extra string. If we don't, the
13399 dprintf was malformed when created, but we couldn't tell because
13400 we can't extract the extra string until the location is
13401 resolved. */
13402 if (b->loc != NULL && b->extra_string == NULL)
13403 error (_("Format string required"));
13404
13405 /* 1 - connect to target 1, that can run breakpoint commands.
13406 2 - create a dprintf, which resolves fine.
13407 3 - disconnect from target 1
13408 4 - connect to target 2, that can NOT run breakpoint commands.
13409
13410 After steps #3/#4, you'll want the dprintf command list to
13411 be updated, because target 1 and 2 may well return different
13412 answers for target_can_run_breakpoint_commands().
13413 Given absence of finer grained resetting, we get to do
13414 it all the time. */
13415 if (b->extra_string != NULL)
13416 update_dprintf_command_list (b);
13417 }
13418
13419 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13420
13421 static void
13422 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13423 {
13424 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13425 tp->extra_string);
13426 print_recreate_thread (tp, fp);
13427 }
13428
13429 /* Implement the "after_condition_true" breakpoint_ops method for
13430 dprintf.
13431
13432 dprintf's are implemented with regular commands in their command
13433 list, but we run the commands here instead of before presenting the
13434 stop to the user, as dprintf's don't actually cause a stop. This
13435 also makes it so that the commands of multiple dprintfs at the same
13436 address are all handled. */
13437
13438 static void
13439 dprintf_after_condition_true (struct bpstats *bs)
13440 {
13441 struct cleanup *old_chain;
13442 struct bpstats tmp_bs = { NULL };
13443 struct bpstats *tmp_bs_p = &tmp_bs;
13444
13445 /* dprintf's never cause a stop. This wasn't set in the
13446 check_status hook instead because that would make the dprintf's
13447 condition not be evaluated. */
13448 bs->stop = 0;
13449
13450 /* Run the command list here. Take ownership of it instead of
13451 copying. We never want these commands to run later in
13452 bpstat_do_actions, if a breakpoint that causes a stop happens to
13453 be set at same address as this dprintf, or even if running the
13454 commands here throws. */
13455 tmp_bs.commands = bs->commands;
13456 bs->commands = NULL;
13457 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13458
13459 bpstat_do_actions_1 (&tmp_bs_p);
13460
13461 /* 'tmp_bs.commands' will usually be NULL by now, but
13462 bpstat_do_actions_1 may return early without processing the whole
13463 list. */
13464 do_cleanups (old_chain);
13465 }
13466
13467 /* The breakpoint_ops structure to be used on static tracepoints with
13468 markers (`-m'). */
13469
13470 static void
13471 strace_marker_create_sals_from_address (char **arg,
13472 struct linespec_result *canonical,
13473 enum bptype type_wanted,
13474 char *addr_start, char **copy_arg)
13475 {
13476 struct linespec_sals lsal;
13477
13478 lsal.sals = decode_static_tracepoint_spec (arg);
13479
13480 *copy_arg = savestring (addr_start, *arg - addr_start);
13481
13482 canonical->addr_string = xstrdup (*copy_arg);
13483 lsal.canonical = xstrdup (*copy_arg);
13484 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13485 }
13486
13487 static void
13488 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13489 struct linespec_result *canonical,
13490 char *cond_string,
13491 char *extra_string,
13492 enum bptype type_wanted,
13493 enum bpdisp disposition,
13494 int thread,
13495 int task, int ignore_count,
13496 const struct breakpoint_ops *ops,
13497 int from_tty, int enabled,
13498 int internal, unsigned flags)
13499 {
13500 int i;
13501 struct linespec_sals *lsal = VEC_index (linespec_sals,
13502 canonical->sals, 0);
13503
13504 /* If the user is creating a static tracepoint by marker id
13505 (strace -m MARKER_ID), then store the sals index, so that
13506 breakpoint_re_set can try to match up which of the newly
13507 found markers corresponds to this one, and, don't try to
13508 expand multiple locations for each sal, given than SALS
13509 already should contain all sals for MARKER_ID. */
13510
13511 for (i = 0; i < lsal->sals.nelts; ++i)
13512 {
13513 struct symtabs_and_lines expanded;
13514 struct tracepoint *tp;
13515 struct cleanup *old_chain;
13516 char *addr_string;
13517
13518 expanded.nelts = 1;
13519 expanded.sals = &lsal->sals.sals[i];
13520
13521 addr_string = xstrdup (canonical->addr_string);
13522 old_chain = make_cleanup (xfree, addr_string);
13523
13524 tp = XCNEW (struct tracepoint);
13525 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13526 addr_string, NULL,
13527 cond_string, extra_string,
13528 type_wanted, disposition,
13529 thread, task, ignore_count, ops,
13530 from_tty, enabled, internal, flags,
13531 canonical->special_display);
13532 /* Given that its possible to have multiple markers with
13533 the same string id, if the user is creating a static
13534 tracepoint by marker id ("strace -m MARKER_ID"), then
13535 store the sals index, so that breakpoint_re_set can
13536 try to match up which of the newly found markers
13537 corresponds to this one */
13538 tp->static_trace_marker_id_idx = i;
13539
13540 install_breakpoint (internal, &tp->base, 0);
13541
13542 discard_cleanups (old_chain);
13543 }
13544 }
13545
13546 static void
13547 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13548 struct symtabs_and_lines *sals)
13549 {
13550 struct tracepoint *tp = (struct tracepoint *) b;
13551
13552 *sals = decode_static_tracepoint_spec (s);
13553 if (sals->nelts > tp->static_trace_marker_id_idx)
13554 {
13555 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13556 sals->nelts = 1;
13557 }
13558 else
13559 error (_("marker %s not found"), tp->static_trace_marker_id);
13560 }
13561
13562 static struct breakpoint_ops strace_marker_breakpoint_ops;
13563
13564 static int
13565 strace_marker_p (struct breakpoint *b)
13566 {
13567 return b->ops == &strace_marker_breakpoint_ops;
13568 }
13569
13570 /* Delete a breakpoint and clean up all traces of it in the data
13571 structures. */
13572
13573 void
13574 delete_breakpoint (struct breakpoint *bpt)
13575 {
13576 struct breakpoint *b;
13577
13578 gdb_assert (bpt != NULL);
13579
13580 /* Has this bp already been deleted? This can happen because
13581 multiple lists can hold pointers to bp's. bpstat lists are
13582 especial culprits.
13583
13584 One example of this happening is a watchpoint's scope bp. When
13585 the scope bp triggers, we notice that the watchpoint is out of
13586 scope, and delete it. We also delete its scope bp. But the
13587 scope bp is marked "auto-deleting", and is already on a bpstat.
13588 That bpstat is then checked for auto-deleting bp's, which are
13589 deleted.
13590
13591 A real solution to this problem might involve reference counts in
13592 bp's, and/or giving them pointers back to their referencing
13593 bpstat's, and teaching delete_breakpoint to only free a bp's
13594 storage when no more references were extent. A cheaper bandaid
13595 was chosen. */
13596 if (bpt->type == bp_none)
13597 return;
13598
13599 /* At least avoid this stale reference until the reference counting
13600 of breakpoints gets resolved. */
13601 if (bpt->related_breakpoint != bpt)
13602 {
13603 struct breakpoint *related;
13604 struct watchpoint *w;
13605
13606 if (bpt->type == bp_watchpoint_scope)
13607 w = (struct watchpoint *) bpt->related_breakpoint;
13608 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13609 w = (struct watchpoint *) bpt;
13610 else
13611 w = NULL;
13612 if (w != NULL)
13613 watchpoint_del_at_next_stop (w);
13614
13615 /* Unlink bpt from the bpt->related_breakpoint ring. */
13616 for (related = bpt; related->related_breakpoint != bpt;
13617 related = related->related_breakpoint);
13618 related->related_breakpoint = bpt->related_breakpoint;
13619 bpt->related_breakpoint = bpt;
13620 }
13621
13622 /* watch_command_1 creates a watchpoint but only sets its number if
13623 update_watchpoint succeeds in creating its bp_locations. If there's
13624 a problem in that process, we'll be asked to delete the half-created
13625 watchpoint. In that case, don't announce the deletion. */
13626 if (bpt->number)
13627 observer_notify_breakpoint_deleted (bpt);
13628
13629 if (breakpoint_chain == bpt)
13630 breakpoint_chain = bpt->next;
13631
13632 ALL_BREAKPOINTS (b)
13633 if (b->next == bpt)
13634 {
13635 b->next = bpt->next;
13636 break;
13637 }
13638
13639 /* Be sure no bpstat's are pointing at the breakpoint after it's
13640 been freed. */
13641 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13642 in all threads for now. Note that we cannot just remove bpstats
13643 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13644 commands are associated with the bpstat; if we remove it here,
13645 then the later call to bpstat_do_actions (&stop_bpstat); in
13646 event-top.c won't do anything, and temporary breakpoints with
13647 commands won't work. */
13648
13649 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13650
13651 /* Now that breakpoint is removed from breakpoint list, update the
13652 global location list. This will remove locations that used to
13653 belong to this breakpoint. Do this before freeing the breakpoint
13654 itself, since remove_breakpoint looks at location's owner. It
13655 might be better design to have location completely
13656 self-contained, but it's not the case now. */
13657 update_global_location_list (0);
13658
13659 bpt->ops->dtor (bpt);
13660 /* On the chance that someone will soon try again to delete this
13661 same bp, we mark it as deleted before freeing its storage. */
13662 bpt->type = bp_none;
13663 xfree (bpt);
13664 }
13665
13666 static void
13667 do_delete_breakpoint_cleanup (void *b)
13668 {
13669 delete_breakpoint (b);
13670 }
13671
13672 struct cleanup *
13673 make_cleanup_delete_breakpoint (struct breakpoint *b)
13674 {
13675 return make_cleanup (do_delete_breakpoint_cleanup, b);
13676 }
13677
13678 /* Iterator function to call a user-provided callback function once
13679 for each of B and its related breakpoints. */
13680
13681 static void
13682 iterate_over_related_breakpoints (struct breakpoint *b,
13683 void (*function) (struct breakpoint *,
13684 void *),
13685 void *data)
13686 {
13687 struct breakpoint *related;
13688
13689 related = b;
13690 do
13691 {
13692 struct breakpoint *next;
13693
13694 /* FUNCTION may delete RELATED. */
13695 next = related->related_breakpoint;
13696
13697 if (next == related)
13698 {
13699 /* RELATED is the last ring entry. */
13700 function (related, data);
13701
13702 /* FUNCTION may have deleted it, so we'd never reach back to
13703 B. There's nothing left to do anyway, so just break
13704 out. */
13705 break;
13706 }
13707 else
13708 function (related, data);
13709
13710 related = next;
13711 }
13712 while (related != b);
13713 }
13714
13715 static void
13716 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13717 {
13718 delete_breakpoint (b);
13719 }
13720
13721 /* A callback for map_breakpoint_numbers that calls
13722 delete_breakpoint. */
13723
13724 static void
13725 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13726 {
13727 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13728 }
13729
13730 void
13731 delete_command (char *arg, int from_tty)
13732 {
13733 struct breakpoint *b, *b_tmp;
13734
13735 dont_repeat ();
13736
13737 if (arg == 0)
13738 {
13739 int breaks_to_delete = 0;
13740
13741 /* Delete all breakpoints if no argument. Do not delete
13742 internal breakpoints, these have to be deleted with an
13743 explicit breakpoint number argument. */
13744 ALL_BREAKPOINTS (b)
13745 if (user_breakpoint_p (b))
13746 {
13747 breaks_to_delete = 1;
13748 break;
13749 }
13750
13751 /* Ask user only if there are some breakpoints to delete. */
13752 if (!from_tty
13753 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13754 {
13755 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13756 if (user_breakpoint_p (b))
13757 delete_breakpoint (b);
13758 }
13759 }
13760 else
13761 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13762 }
13763
13764 static int
13765 all_locations_are_pending (struct bp_location *loc)
13766 {
13767 for (; loc; loc = loc->next)
13768 if (!loc->shlib_disabled
13769 && !loc->pspace->executing_startup)
13770 return 0;
13771 return 1;
13772 }
13773
13774 /* Subroutine of update_breakpoint_locations to simplify it.
13775 Return non-zero if multiple fns in list LOC have the same name.
13776 Null names are ignored. */
13777
13778 static int
13779 ambiguous_names_p (struct bp_location *loc)
13780 {
13781 struct bp_location *l;
13782 htab_t htab = htab_create_alloc (13, htab_hash_string,
13783 (int (*) (const void *,
13784 const void *)) streq,
13785 NULL, xcalloc, xfree);
13786
13787 for (l = loc; l != NULL; l = l->next)
13788 {
13789 const char **slot;
13790 const char *name = l->function_name;
13791
13792 /* Allow for some names to be NULL, ignore them. */
13793 if (name == NULL)
13794 continue;
13795
13796 slot = (const char **) htab_find_slot (htab, (const void *) name,
13797 INSERT);
13798 /* NOTE: We can assume slot != NULL here because xcalloc never
13799 returns NULL. */
13800 if (*slot != NULL)
13801 {
13802 htab_delete (htab);
13803 return 1;
13804 }
13805 *slot = name;
13806 }
13807
13808 htab_delete (htab);
13809 return 0;
13810 }
13811
13812 /* When symbols change, it probably means the sources changed as well,
13813 and it might mean the static tracepoint markers are no longer at
13814 the same address or line numbers they used to be at last we
13815 checked. Losing your static tracepoints whenever you rebuild is
13816 undesirable. This function tries to resync/rematch gdb static
13817 tracepoints with the markers on the target, for static tracepoints
13818 that have not been set by marker id. Static tracepoint that have
13819 been set by marker id are reset by marker id in breakpoint_re_set.
13820 The heuristic is:
13821
13822 1) For a tracepoint set at a specific address, look for a marker at
13823 the old PC. If one is found there, assume to be the same marker.
13824 If the name / string id of the marker found is different from the
13825 previous known name, assume that means the user renamed the marker
13826 in the sources, and output a warning.
13827
13828 2) For a tracepoint set at a given line number, look for a marker
13829 at the new address of the old line number. If one is found there,
13830 assume to be the same marker. If the name / string id of the
13831 marker found is different from the previous known name, assume that
13832 means the user renamed the marker in the sources, and output a
13833 warning.
13834
13835 3) If a marker is no longer found at the same address or line, it
13836 may mean the marker no longer exists. But it may also just mean
13837 the code changed a bit. Maybe the user added a few lines of code
13838 that made the marker move up or down (in line number terms). Ask
13839 the target for info about the marker with the string id as we knew
13840 it. If found, update line number and address in the matching
13841 static tracepoint. This will get confused if there's more than one
13842 marker with the same ID (possible in UST, although unadvised
13843 precisely because it confuses tools). */
13844
13845 static struct symtab_and_line
13846 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13847 {
13848 struct tracepoint *tp = (struct tracepoint *) b;
13849 struct static_tracepoint_marker marker;
13850 CORE_ADDR pc;
13851
13852 pc = sal.pc;
13853 if (sal.line)
13854 find_line_pc (sal.symtab, sal.line, &pc);
13855
13856 if (target_static_tracepoint_marker_at (pc, &marker))
13857 {
13858 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13859 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13860 b->number,
13861 tp->static_trace_marker_id, marker.str_id);
13862
13863 xfree (tp->static_trace_marker_id);
13864 tp->static_trace_marker_id = xstrdup (marker.str_id);
13865 release_static_tracepoint_marker (&marker);
13866
13867 return sal;
13868 }
13869
13870 /* Old marker wasn't found on target at lineno. Try looking it up
13871 by string ID. */
13872 if (!sal.explicit_pc
13873 && sal.line != 0
13874 && sal.symtab != NULL
13875 && tp->static_trace_marker_id != NULL)
13876 {
13877 VEC(static_tracepoint_marker_p) *markers;
13878
13879 markers
13880 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13881
13882 if (!VEC_empty(static_tracepoint_marker_p, markers))
13883 {
13884 struct symtab_and_line sal2;
13885 struct symbol *sym;
13886 struct static_tracepoint_marker *tpmarker;
13887 struct ui_out *uiout = current_uiout;
13888
13889 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13890
13891 xfree (tp->static_trace_marker_id);
13892 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13893
13894 warning (_("marker for static tracepoint %d (%s) not "
13895 "found at previous line number"),
13896 b->number, tp->static_trace_marker_id);
13897
13898 init_sal (&sal2);
13899
13900 sal2.pc = tpmarker->address;
13901
13902 sal2 = find_pc_line (tpmarker->address, 0);
13903 sym = find_pc_sect_function (tpmarker->address, NULL);
13904 ui_out_text (uiout, "Now in ");
13905 if (sym)
13906 {
13907 ui_out_field_string (uiout, "func",
13908 SYMBOL_PRINT_NAME (sym));
13909 ui_out_text (uiout, " at ");
13910 }
13911 ui_out_field_string (uiout, "file",
13912 symtab_to_filename_for_display (sal2.symtab));
13913 ui_out_text (uiout, ":");
13914
13915 if (ui_out_is_mi_like_p (uiout))
13916 {
13917 const char *fullname = symtab_to_fullname (sal2.symtab);
13918
13919 ui_out_field_string (uiout, "fullname", fullname);
13920 }
13921
13922 ui_out_field_int (uiout, "line", sal2.line);
13923 ui_out_text (uiout, "\n");
13924
13925 b->loc->line_number = sal2.line;
13926 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13927
13928 xfree (b->addr_string);
13929 b->addr_string = xstrprintf ("%s:%d",
13930 symtab_to_filename_for_display (sal2.symtab),
13931 b->loc->line_number);
13932
13933 /* Might be nice to check if function changed, and warn if
13934 so. */
13935
13936 release_static_tracepoint_marker (tpmarker);
13937 }
13938 }
13939 return sal;
13940 }
13941
13942 /* Returns 1 iff locations A and B are sufficiently same that
13943 we don't need to report breakpoint as changed. */
13944
13945 static int
13946 locations_are_equal (struct bp_location *a, struct bp_location *b)
13947 {
13948 while (a && b)
13949 {
13950 if (a->address != b->address)
13951 return 0;
13952
13953 if (a->shlib_disabled != b->shlib_disabled)
13954 return 0;
13955
13956 if (a->enabled != b->enabled)
13957 return 0;
13958
13959 a = a->next;
13960 b = b->next;
13961 }
13962
13963 if ((a == NULL) != (b == NULL))
13964 return 0;
13965
13966 return 1;
13967 }
13968
13969 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13970 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13971 a ranged breakpoint. */
13972
13973 void
13974 update_breakpoint_locations (struct breakpoint *b,
13975 struct symtabs_and_lines sals,
13976 struct symtabs_and_lines sals_end)
13977 {
13978 int i;
13979 struct bp_location *existing_locations = b->loc;
13980
13981 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13982 {
13983 /* Ranged breakpoints have only one start location and one end
13984 location. */
13985 b->enable_state = bp_disabled;
13986 update_global_location_list (1);
13987 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13988 "multiple locations found\n"),
13989 b->number);
13990 return;
13991 }
13992
13993 /* If there's no new locations, and all existing locations are
13994 pending, don't do anything. This optimizes the common case where
13995 all locations are in the same shared library, that was unloaded.
13996 We'd like to retain the location, so that when the library is
13997 loaded again, we don't loose the enabled/disabled status of the
13998 individual locations. */
13999 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14000 return;
14001
14002 b->loc = NULL;
14003
14004 for (i = 0; i < sals.nelts; ++i)
14005 {
14006 struct bp_location *new_loc;
14007
14008 switch_to_program_space_and_thread (sals.sals[i].pspace);
14009
14010 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14011
14012 /* Reparse conditions, they might contain references to the
14013 old symtab. */
14014 if (b->cond_string != NULL)
14015 {
14016 const char *s;
14017 volatile struct gdb_exception e;
14018
14019 s = b->cond_string;
14020 TRY_CATCH (e, RETURN_MASK_ERROR)
14021 {
14022 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14023 block_for_pc (sals.sals[i].pc),
14024 0);
14025 }
14026 if (e.reason < 0)
14027 {
14028 warning (_("failed to reevaluate condition "
14029 "for breakpoint %d: %s"),
14030 b->number, e.message);
14031 new_loc->enabled = 0;
14032 }
14033 }
14034
14035 if (sals_end.nelts)
14036 {
14037 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14038
14039 new_loc->length = end - sals.sals[0].pc + 1;
14040 }
14041 }
14042
14043 /* Update locations of permanent breakpoints. */
14044 if (b->enable_state == bp_permanent)
14045 make_breakpoint_permanent (b);
14046
14047 /* If possible, carry over 'disable' status from existing
14048 breakpoints. */
14049 {
14050 struct bp_location *e = existing_locations;
14051 /* If there are multiple breakpoints with the same function name,
14052 e.g. for inline functions, comparing function names won't work.
14053 Instead compare pc addresses; this is just a heuristic as things
14054 may have moved, but in practice it gives the correct answer
14055 often enough until a better solution is found. */
14056 int have_ambiguous_names = ambiguous_names_p (b->loc);
14057
14058 for (; e; e = e->next)
14059 {
14060 if (!e->enabled && e->function_name)
14061 {
14062 struct bp_location *l = b->loc;
14063 if (have_ambiguous_names)
14064 {
14065 for (; l; l = l->next)
14066 if (breakpoint_locations_match (e, l))
14067 {
14068 l->enabled = 0;
14069 break;
14070 }
14071 }
14072 else
14073 {
14074 for (; l; l = l->next)
14075 if (l->function_name
14076 && strcmp (e->function_name, l->function_name) == 0)
14077 {
14078 l->enabled = 0;
14079 break;
14080 }
14081 }
14082 }
14083 }
14084 }
14085
14086 if (!locations_are_equal (existing_locations, b->loc))
14087 observer_notify_breakpoint_modified (b);
14088
14089 update_global_location_list (1);
14090 }
14091
14092 /* Find the SaL locations corresponding to the given ADDR_STRING.
14093 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14094
14095 static struct symtabs_and_lines
14096 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14097 {
14098 char *s;
14099 struct symtabs_and_lines sals = {0};
14100 volatile struct gdb_exception e;
14101
14102 gdb_assert (b->ops != NULL);
14103 s = addr_string;
14104
14105 TRY_CATCH (e, RETURN_MASK_ERROR)
14106 {
14107 b->ops->decode_linespec (b, &s, &sals);
14108 }
14109 if (e.reason < 0)
14110 {
14111 int not_found_and_ok = 0;
14112 /* For pending breakpoints, it's expected that parsing will
14113 fail until the right shared library is loaded. User has
14114 already told to create pending breakpoints and don't need
14115 extra messages. If breakpoint is in bp_shlib_disabled
14116 state, then user already saw the message about that
14117 breakpoint being disabled, and don't want to see more
14118 errors. */
14119 if (e.error == NOT_FOUND_ERROR
14120 && (b->condition_not_parsed
14121 || (b->loc && b->loc->shlib_disabled)
14122 || (b->loc && b->loc->pspace->executing_startup)
14123 || b->enable_state == bp_disabled))
14124 not_found_and_ok = 1;
14125
14126 if (!not_found_and_ok)
14127 {
14128 /* We surely don't want to warn about the same breakpoint
14129 10 times. One solution, implemented here, is disable
14130 the breakpoint on error. Another solution would be to
14131 have separate 'warning emitted' flag. Since this
14132 happens only when a binary has changed, I don't know
14133 which approach is better. */
14134 b->enable_state = bp_disabled;
14135 throw_exception (e);
14136 }
14137 }
14138
14139 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14140 {
14141 int i;
14142
14143 for (i = 0; i < sals.nelts; ++i)
14144 resolve_sal_pc (&sals.sals[i]);
14145 if (b->condition_not_parsed && s && s[0])
14146 {
14147 char *cond_string, *extra_string;
14148 int thread, task;
14149
14150 find_condition_and_thread (s, sals.sals[0].pc,
14151 &cond_string, &thread, &task,
14152 &extra_string);
14153 if (cond_string)
14154 b->cond_string = cond_string;
14155 b->thread = thread;
14156 b->task = task;
14157 if (extra_string)
14158 b->extra_string = extra_string;
14159 b->condition_not_parsed = 0;
14160 }
14161
14162 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14163 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14164
14165 *found = 1;
14166 }
14167 else
14168 *found = 0;
14169
14170 return sals;
14171 }
14172
14173 /* The default re_set method, for typical hardware or software
14174 breakpoints. Reevaluate the breakpoint and recreate its
14175 locations. */
14176
14177 static void
14178 breakpoint_re_set_default (struct breakpoint *b)
14179 {
14180 int found;
14181 struct symtabs_and_lines sals, sals_end;
14182 struct symtabs_and_lines expanded = {0};
14183 struct symtabs_and_lines expanded_end = {0};
14184
14185 sals = addr_string_to_sals (b, b->addr_string, &found);
14186 if (found)
14187 {
14188 make_cleanup (xfree, sals.sals);
14189 expanded = sals;
14190 }
14191
14192 if (b->addr_string_range_end)
14193 {
14194 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14195 if (found)
14196 {
14197 make_cleanup (xfree, sals_end.sals);
14198 expanded_end = sals_end;
14199 }
14200 }
14201
14202 update_breakpoint_locations (b, expanded, expanded_end);
14203 }
14204
14205 /* Default method for creating SALs from an address string. It basically
14206 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14207
14208 static void
14209 create_sals_from_address_default (char **arg,
14210 struct linespec_result *canonical,
14211 enum bptype type_wanted,
14212 char *addr_start, char **copy_arg)
14213 {
14214 parse_breakpoint_sals (arg, canonical);
14215 }
14216
14217 /* Call create_breakpoints_sal for the given arguments. This is the default
14218 function for the `create_breakpoints_sal' method of
14219 breakpoint_ops. */
14220
14221 static void
14222 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14223 struct linespec_result *canonical,
14224 char *cond_string,
14225 char *extra_string,
14226 enum bptype type_wanted,
14227 enum bpdisp disposition,
14228 int thread,
14229 int task, int ignore_count,
14230 const struct breakpoint_ops *ops,
14231 int from_tty, int enabled,
14232 int internal, unsigned flags)
14233 {
14234 create_breakpoints_sal (gdbarch, canonical, cond_string,
14235 extra_string,
14236 type_wanted, disposition,
14237 thread, task, ignore_count, ops, from_tty,
14238 enabled, internal, flags);
14239 }
14240
14241 /* Decode the line represented by S by calling decode_line_full. This is the
14242 default function for the `decode_linespec' method of breakpoint_ops. */
14243
14244 static void
14245 decode_linespec_default (struct breakpoint *b, char **s,
14246 struct symtabs_and_lines *sals)
14247 {
14248 struct linespec_result canonical;
14249
14250 init_linespec_result (&canonical);
14251 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14252 (struct symtab *) NULL, 0,
14253 &canonical, multiple_symbols_all,
14254 b->filter);
14255
14256 /* We should get 0 or 1 resulting SALs. */
14257 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14258
14259 if (VEC_length (linespec_sals, canonical.sals) > 0)
14260 {
14261 struct linespec_sals *lsal;
14262
14263 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14264 *sals = lsal->sals;
14265 /* Arrange it so the destructor does not free the
14266 contents. */
14267 lsal->sals.sals = NULL;
14268 }
14269
14270 destroy_linespec_result (&canonical);
14271 }
14272
14273 /* Prepare the global context for a re-set of breakpoint B. */
14274
14275 static struct cleanup *
14276 prepare_re_set_context (struct breakpoint *b)
14277 {
14278 struct cleanup *cleanups;
14279
14280 input_radix = b->input_radix;
14281 cleanups = save_current_space_and_thread ();
14282 if (b->pspace != NULL)
14283 switch_to_program_space_and_thread (b->pspace);
14284 set_language (b->language);
14285
14286 return cleanups;
14287 }
14288
14289 /* Reset a breakpoint given it's struct breakpoint * BINT.
14290 The value we return ends up being the return value from catch_errors.
14291 Unused in this case. */
14292
14293 static int
14294 breakpoint_re_set_one (void *bint)
14295 {
14296 /* Get past catch_errs. */
14297 struct breakpoint *b = (struct breakpoint *) bint;
14298 struct cleanup *cleanups;
14299
14300 cleanups = prepare_re_set_context (b);
14301 b->ops->re_set (b);
14302 do_cleanups (cleanups);
14303 return 0;
14304 }
14305
14306 /* Re-set all breakpoints after symbols have been re-loaded. */
14307 void
14308 breakpoint_re_set (void)
14309 {
14310 struct breakpoint *b, *b_tmp;
14311 enum language save_language;
14312 int save_input_radix;
14313 struct cleanup *old_chain;
14314
14315 save_language = current_language->la_language;
14316 save_input_radix = input_radix;
14317 old_chain = save_current_program_space ();
14318
14319 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14320 {
14321 /* Format possible error msg. */
14322 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14323 b->number);
14324 struct cleanup *cleanups = make_cleanup (xfree, message);
14325 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14326 do_cleanups (cleanups);
14327 }
14328 set_language (save_language);
14329 input_radix = save_input_radix;
14330
14331 jit_breakpoint_re_set ();
14332
14333 do_cleanups (old_chain);
14334
14335 create_overlay_event_breakpoint ();
14336 create_longjmp_master_breakpoint ();
14337 create_std_terminate_master_breakpoint ();
14338 create_exception_master_breakpoint ();
14339 }
14340 \f
14341 /* Reset the thread number of this breakpoint:
14342
14343 - If the breakpoint is for all threads, leave it as-is.
14344 - Else, reset it to the current thread for inferior_ptid. */
14345 void
14346 breakpoint_re_set_thread (struct breakpoint *b)
14347 {
14348 if (b->thread != -1)
14349 {
14350 if (in_thread_list (inferior_ptid))
14351 b->thread = pid_to_thread_id (inferior_ptid);
14352
14353 /* We're being called after following a fork. The new fork is
14354 selected as current, and unless this was a vfork will have a
14355 different program space from the original thread. Reset that
14356 as well. */
14357 b->loc->pspace = current_program_space;
14358 }
14359 }
14360
14361 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14362 If from_tty is nonzero, it prints a message to that effect,
14363 which ends with a period (no newline). */
14364
14365 void
14366 set_ignore_count (int bptnum, int count, int from_tty)
14367 {
14368 struct breakpoint *b;
14369
14370 if (count < 0)
14371 count = 0;
14372
14373 ALL_BREAKPOINTS (b)
14374 if (b->number == bptnum)
14375 {
14376 if (is_tracepoint (b))
14377 {
14378 if (from_tty && count != 0)
14379 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14380 bptnum);
14381 return;
14382 }
14383
14384 b->ignore_count = count;
14385 if (from_tty)
14386 {
14387 if (count == 0)
14388 printf_filtered (_("Will stop next time "
14389 "breakpoint %d is reached."),
14390 bptnum);
14391 else if (count == 1)
14392 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14393 bptnum);
14394 else
14395 printf_filtered (_("Will ignore next %d "
14396 "crossings of breakpoint %d."),
14397 count, bptnum);
14398 }
14399 observer_notify_breakpoint_modified (b);
14400 return;
14401 }
14402
14403 error (_("No breakpoint number %d."), bptnum);
14404 }
14405
14406 /* Command to set ignore-count of breakpoint N to COUNT. */
14407
14408 static void
14409 ignore_command (char *args, int from_tty)
14410 {
14411 char *p = args;
14412 int num;
14413
14414 if (p == 0)
14415 error_no_arg (_("a breakpoint number"));
14416
14417 num = get_number (&p);
14418 if (num == 0)
14419 error (_("bad breakpoint number: '%s'"), args);
14420 if (*p == 0)
14421 error (_("Second argument (specified ignore-count) is missing."));
14422
14423 set_ignore_count (num,
14424 longest_to_int (value_as_long (parse_and_eval (p))),
14425 from_tty);
14426 if (from_tty)
14427 printf_filtered ("\n");
14428 }
14429 \f
14430 /* Call FUNCTION on each of the breakpoints
14431 whose numbers are given in ARGS. */
14432
14433 static void
14434 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14435 void *),
14436 void *data)
14437 {
14438 int num;
14439 struct breakpoint *b, *tmp;
14440 int match;
14441 struct get_number_or_range_state state;
14442
14443 if (args == 0)
14444 error_no_arg (_("one or more breakpoint numbers"));
14445
14446 init_number_or_range (&state, args);
14447
14448 while (!state.finished)
14449 {
14450 char *p = state.string;
14451
14452 match = 0;
14453
14454 num = get_number_or_range (&state);
14455 if (num == 0)
14456 {
14457 warning (_("bad breakpoint number at or near '%s'"), p);
14458 }
14459 else
14460 {
14461 ALL_BREAKPOINTS_SAFE (b, tmp)
14462 if (b->number == num)
14463 {
14464 match = 1;
14465 function (b, data);
14466 break;
14467 }
14468 if (match == 0)
14469 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14470 }
14471 }
14472 }
14473
14474 static struct bp_location *
14475 find_location_by_number (char *number)
14476 {
14477 char *dot = strchr (number, '.');
14478 char *p1;
14479 int bp_num;
14480 int loc_num;
14481 struct breakpoint *b;
14482 struct bp_location *loc;
14483
14484 *dot = '\0';
14485
14486 p1 = number;
14487 bp_num = get_number (&p1);
14488 if (bp_num == 0)
14489 error (_("Bad breakpoint number '%s'"), number);
14490
14491 ALL_BREAKPOINTS (b)
14492 if (b->number == bp_num)
14493 {
14494 break;
14495 }
14496
14497 if (!b || b->number != bp_num)
14498 error (_("Bad breakpoint number '%s'"), number);
14499
14500 p1 = dot+1;
14501 loc_num = get_number (&p1);
14502 if (loc_num == 0)
14503 error (_("Bad breakpoint location number '%s'"), number);
14504
14505 --loc_num;
14506 loc = b->loc;
14507 for (;loc_num && loc; --loc_num, loc = loc->next)
14508 ;
14509 if (!loc)
14510 error (_("Bad breakpoint location number '%s'"), dot+1);
14511
14512 return loc;
14513 }
14514
14515
14516 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14517 If from_tty is nonzero, it prints a message to that effect,
14518 which ends with a period (no newline). */
14519
14520 void
14521 disable_breakpoint (struct breakpoint *bpt)
14522 {
14523 /* Never disable a watchpoint scope breakpoint; we want to
14524 hit them when we leave scope so we can delete both the
14525 watchpoint and its scope breakpoint at that time. */
14526 if (bpt->type == bp_watchpoint_scope)
14527 return;
14528
14529 /* You can't disable permanent breakpoints. */
14530 if (bpt->enable_state == bp_permanent)
14531 return;
14532
14533 bpt->enable_state = bp_disabled;
14534
14535 /* Mark breakpoint locations modified. */
14536 mark_breakpoint_modified (bpt);
14537
14538 if (target_supports_enable_disable_tracepoint ()
14539 && current_trace_status ()->running && is_tracepoint (bpt))
14540 {
14541 struct bp_location *location;
14542
14543 for (location = bpt->loc; location; location = location->next)
14544 target_disable_tracepoint (location);
14545 }
14546
14547 update_global_location_list (0);
14548
14549 observer_notify_breakpoint_modified (bpt);
14550 }
14551
14552 /* A callback for iterate_over_related_breakpoints. */
14553
14554 static void
14555 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14556 {
14557 disable_breakpoint (b);
14558 }
14559
14560 /* A callback for map_breakpoint_numbers that calls
14561 disable_breakpoint. */
14562
14563 static void
14564 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14565 {
14566 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14567 }
14568
14569 static void
14570 disable_command (char *args, int from_tty)
14571 {
14572 if (args == 0)
14573 {
14574 struct breakpoint *bpt;
14575
14576 ALL_BREAKPOINTS (bpt)
14577 if (user_breakpoint_p (bpt))
14578 disable_breakpoint (bpt);
14579 }
14580 else
14581 {
14582 char *num = extract_arg (&args);
14583
14584 while (num)
14585 {
14586 if (strchr (num, '.'))
14587 {
14588 struct bp_location *loc = find_location_by_number (num);
14589
14590 if (loc)
14591 {
14592 if (loc->enabled)
14593 {
14594 loc->enabled = 0;
14595 mark_breakpoint_location_modified (loc);
14596 }
14597 if (target_supports_enable_disable_tracepoint ()
14598 && current_trace_status ()->running && loc->owner
14599 && is_tracepoint (loc->owner))
14600 target_disable_tracepoint (loc);
14601 }
14602 update_global_location_list (0);
14603 }
14604 else
14605 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14606 num = extract_arg (&args);
14607 }
14608 }
14609 }
14610
14611 static void
14612 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14613 int count)
14614 {
14615 int target_resources_ok;
14616
14617 if (bpt->type == bp_hardware_breakpoint)
14618 {
14619 int i;
14620 i = hw_breakpoint_used_count ();
14621 target_resources_ok =
14622 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14623 i + 1, 0);
14624 if (target_resources_ok == 0)
14625 error (_("No hardware breakpoint support in the target."));
14626 else if (target_resources_ok < 0)
14627 error (_("Hardware breakpoints used exceeds limit."));
14628 }
14629
14630 if (is_watchpoint (bpt))
14631 {
14632 /* Initialize it just to avoid a GCC false warning. */
14633 enum enable_state orig_enable_state = 0;
14634 volatile struct gdb_exception e;
14635
14636 TRY_CATCH (e, RETURN_MASK_ALL)
14637 {
14638 struct watchpoint *w = (struct watchpoint *) bpt;
14639
14640 orig_enable_state = bpt->enable_state;
14641 bpt->enable_state = bp_enabled;
14642 update_watchpoint (w, 1 /* reparse */);
14643 }
14644 if (e.reason < 0)
14645 {
14646 bpt->enable_state = orig_enable_state;
14647 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14648 bpt->number);
14649 return;
14650 }
14651 }
14652
14653 if (bpt->enable_state != bp_permanent)
14654 bpt->enable_state = bp_enabled;
14655
14656 bpt->enable_state = bp_enabled;
14657
14658 /* Mark breakpoint locations modified. */
14659 mark_breakpoint_modified (bpt);
14660
14661 if (target_supports_enable_disable_tracepoint ()
14662 && current_trace_status ()->running && is_tracepoint (bpt))
14663 {
14664 struct bp_location *location;
14665
14666 for (location = bpt->loc; location; location = location->next)
14667 target_enable_tracepoint (location);
14668 }
14669
14670 bpt->disposition = disposition;
14671 bpt->enable_count = count;
14672 update_global_location_list (1);
14673
14674 observer_notify_breakpoint_modified (bpt);
14675 }
14676
14677
14678 void
14679 enable_breakpoint (struct breakpoint *bpt)
14680 {
14681 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14682 }
14683
14684 static void
14685 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14686 {
14687 enable_breakpoint (bpt);
14688 }
14689
14690 /* A callback for map_breakpoint_numbers that calls
14691 enable_breakpoint. */
14692
14693 static void
14694 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14695 {
14696 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14697 }
14698
14699 /* The enable command enables the specified breakpoints (or all defined
14700 breakpoints) so they once again become (or continue to be) effective
14701 in stopping the inferior. */
14702
14703 static void
14704 enable_command (char *args, int from_tty)
14705 {
14706 if (args == 0)
14707 {
14708 struct breakpoint *bpt;
14709
14710 ALL_BREAKPOINTS (bpt)
14711 if (user_breakpoint_p (bpt))
14712 enable_breakpoint (bpt);
14713 }
14714 else
14715 {
14716 char *num = extract_arg (&args);
14717
14718 while (num)
14719 {
14720 if (strchr (num, '.'))
14721 {
14722 struct bp_location *loc = find_location_by_number (num);
14723
14724 if (loc)
14725 {
14726 if (!loc->enabled)
14727 {
14728 loc->enabled = 1;
14729 mark_breakpoint_location_modified (loc);
14730 }
14731 if (target_supports_enable_disable_tracepoint ()
14732 && current_trace_status ()->running && loc->owner
14733 && is_tracepoint (loc->owner))
14734 target_enable_tracepoint (loc);
14735 }
14736 update_global_location_list (1);
14737 }
14738 else
14739 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14740 num = extract_arg (&args);
14741 }
14742 }
14743 }
14744
14745 /* This struct packages up disposition data for application to multiple
14746 breakpoints. */
14747
14748 struct disp_data
14749 {
14750 enum bpdisp disp;
14751 int count;
14752 };
14753
14754 static void
14755 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14756 {
14757 struct disp_data disp_data = *(struct disp_data *) arg;
14758
14759 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14760 }
14761
14762 static void
14763 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14764 {
14765 struct disp_data disp = { disp_disable, 1 };
14766
14767 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14768 }
14769
14770 static void
14771 enable_once_command (char *args, int from_tty)
14772 {
14773 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14774 }
14775
14776 static void
14777 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14778 {
14779 struct disp_data disp = { disp_disable, *(int *) countptr };
14780
14781 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14782 }
14783
14784 static void
14785 enable_count_command (char *args, int from_tty)
14786 {
14787 int count = get_number (&args);
14788
14789 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14790 }
14791
14792 static void
14793 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14794 {
14795 struct disp_data disp = { disp_del, 1 };
14796
14797 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14798 }
14799
14800 static void
14801 enable_delete_command (char *args, int from_tty)
14802 {
14803 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14804 }
14805 \f
14806 static void
14807 set_breakpoint_cmd (char *args, int from_tty)
14808 {
14809 }
14810
14811 static void
14812 show_breakpoint_cmd (char *args, int from_tty)
14813 {
14814 }
14815
14816 /* Invalidate last known value of any hardware watchpoint if
14817 the memory which that value represents has been written to by
14818 GDB itself. */
14819
14820 static void
14821 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14822 CORE_ADDR addr, ssize_t len,
14823 const bfd_byte *data)
14824 {
14825 struct breakpoint *bp;
14826
14827 ALL_BREAKPOINTS (bp)
14828 if (bp->enable_state == bp_enabled
14829 && bp->type == bp_hardware_watchpoint)
14830 {
14831 struct watchpoint *wp = (struct watchpoint *) bp;
14832
14833 if (wp->val_valid && wp->val)
14834 {
14835 struct bp_location *loc;
14836
14837 for (loc = bp->loc; loc != NULL; loc = loc->next)
14838 if (loc->loc_type == bp_loc_hardware_watchpoint
14839 && loc->address + loc->length > addr
14840 && addr + len > loc->address)
14841 {
14842 value_free (wp->val);
14843 wp->val = NULL;
14844 wp->val_valid = 0;
14845 }
14846 }
14847 }
14848 }
14849
14850 /* Create and insert a raw software breakpoint at PC. Return an
14851 identifier, which should be used to remove the breakpoint later.
14852 In general, places which call this should be using something on the
14853 breakpoint chain instead; this function should be eliminated
14854 someday. */
14855
14856 void *
14857 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14858 struct address_space *aspace, CORE_ADDR pc)
14859 {
14860 struct bp_target_info *bp_tgt;
14861
14862 bp_tgt = XZALLOC (struct bp_target_info);
14863
14864 bp_tgt->placed_address_space = aspace;
14865 bp_tgt->placed_address = pc;
14866
14867 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14868 {
14869 /* Could not insert the breakpoint. */
14870 xfree (bp_tgt);
14871 return NULL;
14872 }
14873
14874 return bp_tgt;
14875 }
14876
14877 /* Remove a breakpoint BP inserted by
14878 deprecated_insert_raw_breakpoint. */
14879
14880 int
14881 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14882 {
14883 struct bp_target_info *bp_tgt = bp;
14884 int ret;
14885
14886 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14887 xfree (bp_tgt);
14888
14889 return ret;
14890 }
14891
14892 /* One (or perhaps two) breakpoints used for software single
14893 stepping. */
14894
14895 static void *single_step_breakpoints[2];
14896 static struct gdbarch *single_step_gdbarch[2];
14897
14898 /* Create and insert a breakpoint for software single step. */
14899
14900 void
14901 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14902 struct address_space *aspace,
14903 CORE_ADDR next_pc)
14904 {
14905 void **bpt_p;
14906
14907 if (single_step_breakpoints[0] == NULL)
14908 {
14909 bpt_p = &single_step_breakpoints[0];
14910 single_step_gdbarch[0] = gdbarch;
14911 }
14912 else
14913 {
14914 gdb_assert (single_step_breakpoints[1] == NULL);
14915 bpt_p = &single_step_breakpoints[1];
14916 single_step_gdbarch[1] = gdbarch;
14917 }
14918
14919 /* NOTE drow/2006-04-11: A future improvement to this function would
14920 be to only create the breakpoints once, and actually put them on
14921 the breakpoint chain. That would let us use set_raw_breakpoint.
14922 We could adjust the addresses each time they were needed. Doing
14923 this requires corresponding changes elsewhere where single step
14924 breakpoints are handled, however. So, for now, we use this. */
14925
14926 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14927 if (*bpt_p == NULL)
14928 error (_("Could not insert single-step breakpoint at %s"),
14929 paddress (gdbarch, next_pc));
14930 }
14931
14932 /* Check if the breakpoints used for software single stepping
14933 were inserted or not. */
14934
14935 int
14936 single_step_breakpoints_inserted (void)
14937 {
14938 return (single_step_breakpoints[0] != NULL
14939 || single_step_breakpoints[1] != NULL);
14940 }
14941
14942 /* Remove and delete any breakpoints used for software single step. */
14943
14944 void
14945 remove_single_step_breakpoints (void)
14946 {
14947 gdb_assert (single_step_breakpoints[0] != NULL);
14948
14949 /* See insert_single_step_breakpoint for more about this deprecated
14950 call. */
14951 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14952 single_step_breakpoints[0]);
14953 single_step_gdbarch[0] = NULL;
14954 single_step_breakpoints[0] = NULL;
14955
14956 if (single_step_breakpoints[1] != NULL)
14957 {
14958 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14959 single_step_breakpoints[1]);
14960 single_step_gdbarch[1] = NULL;
14961 single_step_breakpoints[1] = NULL;
14962 }
14963 }
14964
14965 /* Delete software single step breakpoints without removing them from
14966 the inferior. This is intended to be used if the inferior's address
14967 space where they were inserted is already gone, e.g. after exit or
14968 exec. */
14969
14970 void
14971 cancel_single_step_breakpoints (void)
14972 {
14973 int i;
14974
14975 for (i = 0; i < 2; i++)
14976 if (single_step_breakpoints[i])
14977 {
14978 xfree (single_step_breakpoints[i]);
14979 single_step_breakpoints[i] = NULL;
14980 single_step_gdbarch[i] = NULL;
14981 }
14982 }
14983
14984 /* Detach software single-step breakpoints from INFERIOR_PTID without
14985 removing them. */
14986
14987 static void
14988 detach_single_step_breakpoints (void)
14989 {
14990 int i;
14991
14992 for (i = 0; i < 2; i++)
14993 if (single_step_breakpoints[i])
14994 target_remove_breakpoint (single_step_gdbarch[i],
14995 single_step_breakpoints[i]);
14996 }
14997
14998 /* Check whether a software single-step breakpoint is inserted at
14999 PC. */
15000
15001 static int
15002 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15003 CORE_ADDR pc)
15004 {
15005 int i;
15006
15007 for (i = 0; i < 2; i++)
15008 {
15009 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15010 if (bp_tgt
15011 && breakpoint_address_match (bp_tgt->placed_address_space,
15012 bp_tgt->placed_address,
15013 aspace, pc))
15014 return 1;
15015 }
15016
15017 return 0;
15018 }
15019
15020 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15021 non-zero otherwise. */
15022 static int
15023 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15024 {
15025 if (syscall_catchpoint_p (bp)
15026 && bp->enable_state != bp_disabled
15027 && bp->enable_state != bp_call_disabled)
15028 return 1;
15029 else
15030 return 0;
15031 }
15032
15033 int
15034 catch_syscall_enabled (void)
15035 {
15036 struct catch_syscall_inferior_data *inf_data
15037 = get_catch_syscall_inferior_data (current_inferior ());
15038
15039 return inf_data->total_syscalls_count != 0;
15040 }
15041
15042 int
15043 catching_syscall_number (int syscall_number)
15044 {
15045 struct breakpoint *bp;
15046
15047 ALL_BREAKPOINTS (bp)
15048 if (is_syscall_catchpoint_enabled (bp))
15049 {
15050 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15051
15052 if (c->syscalls_to_be_caught)
15053 {
15054 int i, iter;
15055 for (i = 0;
15056 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15057 i++)
15058 if (syscall_number == iter)
15059 return 1;
15060 }
15061 else
15062 return 1;
15063 }
15064
15065 return 0;
15066 }
15067
15068 /* Complete syscall names. Used by "catch syscall". */
15069 static VEC (char_ptr) *
15070 catch_syscall_completer (struct cmd_list_element *cmd,
15071 const char *text, const char *word)
15072 {
15073 const char **list = get_syscall_names ();
15074 VEC (char_ptr) *retlist
15075 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15076
15077 xfree (list);
15078 return retlist;
15079 }
15080
15081 /* Tracepoint-specific operations. */
15082
15083 /* Set tracepoint count to NUM. */
15084 static void
15085 set_tracepoint_count (int num)
15086 {
15087 tracepoint_count = num;
15088 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15089 }
15090
15091 static void
15092 trace_command (char *arg, int from_tty)
15093 {
15094 struct breakpoint_ops *ops;
15095 const char *arg_cp = arg;
15096
15097 if (arg && probe_linespec_to_ops (&arg_cp))
15098 ops = &tracepoint_probe_breakpoint_ops;
15099 else
15100 ops = &tracepoint_breakpoint_ops;
15101
15102 create_breakpoint (get_current_arch (),
15103 arg,
15104 NULL, 0, NULL, 1 /* parse arg */,
15105 0 /* tempflag */,
15106 bp_tracepoint /* type_wanted */,
15107 0 /* Ignore count */,
15108 pending_break_support,
15109 ops,
15110 from_tty,
15111 1 /* enabled */,
15112 0 /* internal */, 0);
15113 }
15114
15115 static void
15116 ftrace_command (char *arg, int from_tty)
15117 {
15118 create_breakpoint (get_current_arch (),
15119 arg,
15120 NULL, 0, NULL, 1 /* parse arg */,
15121 0 /* tempflag */,
15122 bp_fast_tracepoint /* type_wanted */,
15123 0 /* Ignore count */,
15124 pending_break_support,
15125 &tracepoint_breakpoint_ops,
15126 from_tty,
15127 1 /* enabled */,
15128 0 /* internal */, 0);
15129 }
15130
15131 /* strace command implementation. Creates a static tracepoint. */
15132
15133 static void
15134 strace_command (char *arg, int from_tty)
15135 {
15136 struct breakpoint_ops *ops;
15137
15138 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15139 or with a normal static tracepoint. */
15140 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15141 ops = &strace_marker_breakpoint_ops;
15142 else
15143 ops = &tracepoint_breakpoint_ops;
15144
15145 create_breakpoint (get_current_arch (),
15146 arg,
15147 NULL, 0, NULL, 1 /* parse arg */,
15148 0 /* tempflag */,
15149 bp_static_tracepoint /* type_wanted */,
15150 0 /* Ignore count */,
15151 pending_break_support,
15152 ops,
15153 from_tty,
15154 1 /* enabled */,
15155 0 /* internal */, 0);
15156 }
15157
15158 /* Set up a fake reader function that gets command lines from a linked
15159 list that was acquired during tracepoint uploading. */
15160
15161 static struct uploaded_tp *this_utp;
15162 static int next_cmd;
15163
15164 static char *
15165 read_uploaded_action (void)
15166 {
15167 char *rslt;
15168
15169 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15170
15171 next_cmd++;
15172
15173 return rslt;
15174 }
15175
15176 /* Given information about a tracepoint as recorded on a target (which
15177 can be either a live system or a trace file), attempt to create an
15178 equivalent GDB tracepoint. This is not a reliable process, since
15179 the target does not necessarily have all the information used when
15180 the tracepoint was originally defined. */
15181
15182 struct tracepoint *
15183 create_tracepoint_from_upload (struct uploaded_tp *utp)
15184 {
15185 char *addr_str, small_buf[100];
15186 struct tracepoint *tp;
15187
15188 if (utp->at_string)
15189 addr_str = utp->at_string;
15190 else
15191 {
15192 /* In the absence of a source location, fall back to raw
15193 address. Since there is no way to confirm that the address
15194 means the same thing as when the trace was started, warn the
15195 user. */
15196 warning (_("Uploaded tracepoint %d has no "
15197 "source location, using raw address"),
15198 utp->number);
15199 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15200 addr_str = small_buf;
15201 }
15202
15203 /* There's not much we can do with a sequence of bytecodes. */
15204 if (utp->cond && !utp->cond_string)
15205 warning (_("Uploaded tracepoint %d condition "
15206 "has no source form, ignoring it"),
15207 utp->number);
15208
15209 if (!create_breakpoint (get_current_arch (),
15210 addr_str,
15211 utp->cond_string, -1, NULL,
15212 0 /* parse cond/thread */,
15213 0 /* tempflag */,
15214 utp->type /* type_wanted */,
15215 0 /* Ignore count */,
15216 pending_break_support,
15217 &tracepoint_breakpoint_ops,
15218 0 /* from_tty */,
15219 utp->enabled /* enabled */,
15220 0 /* internal */,
15221 CREATE_BREAKPOINT_FLAGS_INSERTED))
15222 return NULL;
15223
15224 /* Get the tracepoint we just created. */
15225 tp = get_tracepoint (tracepoint_count);
15226 gdb_assert (tp != NULL);
15227
15228 if (utp->pass > 0)
15229 {
15230 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15231 tp->base.number);
15232
15233 trace_pass_command (small_buf, 0);
15234 }
15235
15236 /* If we have uploaded versions of the original commands, set up a
15237 special-purpose "reader" function and call the usual command line
15238 reader, then pass the result to the breakpoint command-setting
15239 function. */
15240 if (!VEC_empty (char_ptr, utp->cmd_strings))
15241 {
15242 struct command_line *cmd_list;
15243
15244 this_utp = utp;
15245 next_cmd = 0;
15246
15247 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15248
15249 breakpoint_set_commands (&tp->base, cmd_list);
15250 }
15251 else if (!VEC_empty (char_ptr, utp->actions)
15252 || !VEC_empty (char_ptr, utp->step_actions))
15253 warning (_("Uploaded tracepoint %d actions "
15254 "have no source form, ignoring them"),
15255 utp->number);
15256
15257 /* Copy any status information that might be available. */
15258 tp->base.hit_count = utp->hit_count;
15259 tp->traceframe_usage = utp->traceframe_usage;
15260
15261 return tp;
15262 }
15263
15264 /* Print information on tracepoint number TPNUM_EXP, or all if
15265 omitted. */
15266
15267 static void
15268 tracepoints_info (char *args, int from_tty)
15269 {
15270 struct ui_out *uiout = current_uiout;
15271 int num_printed;
15272
15273 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15274
15275 if (num_printed == 0)
15276 {
15277 if (args == NULL || *args == '\0')
15278 ui_out_message (uiout, 0, "No tracepoints.\n");
15279 else
15280 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15281 }
15282
15283 default_collect_info ();
15284 }
15285
15286 /* The 'enable trace' command enables tracepoints.
15287 Not supported by all targets. */
15288 static void
15289 enable_trace_command (char *args, int from_tty)
15290 {
15291 enable_command (args, from_tty);
15292 }
15293
15294 /* The 'disable trace' command disables tracepoints.
15295 Not supported by all targets. */
15296 static void
15297 disable_trace_command (char *args, int from_tty)
15298 {
15299 disable_command (args, from_tty);
15300 }
15301
15302 /* Remove a tracepoint (or all if no argument). */
15303 static void
15304 delete_trace_command (char *arg, int from_tty)
15305 {
15306 struct breakpoint *b, *b_tmp;
15307
15308 dont_repeat ();
15309
15310 if (arg == 0)
15311 {
15312 int breaks_to_delete = 0;
15313
15314 /* Delete all breakpoints if no argument.
15315 Do not delete internal or call-dummy breakpoints, these
15316 have to be deleted with an explicit breakpoint number
15317 argument. */
15318 ALL_TRACEPOINTS (b)
15319 if (is_tracepoint (b) && user_breakpoint_p (b))
15320 {
15321 breaks_to_delete = 1;
15322 break;
15323 }
15324
15325 /* Ask user only if there are some breakpoints to delete. */
15326 if (!from_tty
15327 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15328 {
15329 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15330 if (is_tracepoint (b) && user_breakpoint_p (b))
15331 delete_breakpoint (b);
15332 }
15333 }
15334 else
15335 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15336 }
15337
15338 /* Helper function for trace_pass_command. */
15339
15340 static void
15341 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15342 {
15343 tp->pass_count = count;
15344 observer_notify_breakpoint_modified (&tp->base);
15345 if (from_tty)
15346 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15347 tp->base.number, count);
15348 }
15349
15350 /* Set passcount for tracepoint.
15351
15352 First command argument is passcount, second is tracepoint number.
15353 If tracepoint number omitted, apply to most recently defined.
15354 Also accepts special argument "all". */
15355
15356 static void
15357 trace_pass_command (char *args, int from_tty)
15358 {
15359 struct tracepoint *t1;
15360 unsigned int count;
15361
15362 if (args == 0 || *args == 0)
15363 error (_("passcount command requires an "
15364 "argument (count + optional TP num)"));
15365
15366 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15367
15368 args = skip_spaces (args);
15369 if (*args && strncasecmp (args, "all", 3) == 0)
15370 {
15371 struct breakpoint *b;
15372
15373 args += 3; /* Skip special argument "all". */
15374 if (*args)
15375 error (_("Junk at end of arguments."));
15376
15377 ALL_TRACEPOINTS (b)
15378 {
15379 t1 = (struct tracepoint *) b;
15380 trace_pass_set_count (t1, count, from_tty);
15381 }
15382 }
15383 else if (*args == '\0')
15384 {
15385 t1 = get_tracepoint_by_number (&args, NULL, 1);
15386 if (t1)
15387 trace_pass_set_count (t1, count, from_tty);
15388 }
15389 else
15390 {
15391 struct get_number_or_range_state state;
15392
15393 init_number_or_range (&state, args);
15394 while (!state.finished)
15395 {
15396 t1 = get_tracepoint_by_number (&args, &state, 1);
15397 if (t1)
15398 trace_pass_set_count (t1, count, from_tty);
15399 }
15400 }
15401 }
15402
15403 struct tracepoint *
15404 get_tracepoint (int num)
15405 {
15406 struct breakpoint *t;
15407
15408 ALL_TRACEPOINTS (t)
15409 if (t->number == num)
15410 return (struct tracepoint *) t;
15411
15412 return NULL;
15413 }
15414
15415 /* Find the tracepoint with the given target-side number (which may be
15416 different from the tracepoint number after disconnecting and
15417 reconnecting). */
15418
15419 struct tracepoint *
15420 get_tracepoint_by_number_on_target (int num)
15421 {
15422 struct breakpoint *b;
15423
15424 ALL_TRACEPOINTS (b)
15425 {
15426 struct tracepoint *t = (struct tracepoint *) b;
15427
15428 if (t->number_on_target == num)
15429 return t;
15430 }
15431
15432 return NULL;
15433 }
15434
15435 /* Utility: parse a tracepoint number and look it up in the list.
15436 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15437 If OPTIONAL_P is true, then if the argument is missing, the most
15438 recent tracepoint (tracepoint_count) is returned. */
15439 struct tracepoint *
15440 get_tracepoint_by_number (char **arg,
15441 struct get_number_or_range_state *state,
15442 int optional_p)
15443 {
15444 struct breakpoint *t;
15445 int tpnum;
15446 char *instring = arg == NULL ? NULL : *arg;
15447
15448 if (state)
15449 {
15450 gdb_assert (!state->finished);
15451 tpnum = get_number_or_range (state);
15452 }
15453 else if (arg == NULL || *arg == NULL || ! **arg)
15454 {
15455 if (optional_p)
15456 tpnum = tracepoint_count;
15457 else
15458 error_no_arg (_("tracepoint number"));
15459 }
15460 else
15461 tpnum = get_number (arg);
15462
15463 if (tpnum <= 0)
15464 {
15465 if (instring && *instring)
15466 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15467 instring);
15468 else
15469 printf_filtered (_("Tracepoint argument missing "
15470 "and no previous tracepoint\n"));
15471 return NULL;
15472 }
15473
15474 ALL_TRACEPOINTS (t)
15475 if (t->number == tpnum)
15476 {
15477 return (struct tracepoint *) t;
15478 }
15479
15480 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15481 return NULL;
15482 }
15483
15484 void
15485 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15486 {
15487 if (b->thread != -1)
15488 fprintf_unfiltered (fp, " thread %d", b->thread);
15489
15490 if (b->task != 0)
15491 fprintf_unfiltered (fp, " task %d", b->task);
15492
15493 fprintf_unfiltered (fp, "\n");
15494 }
15495
15496 /* Save information on user settable breakpoints (watchpoints, etc) to
15497 a new script file named FILENAME. If FILTER is non-NULL, call it
15498 on each breakpoint and only include the ones for which it returns
15499 non-zero. */
15500
15501 static void
15502 save_breakpoints (char *filename, int from_tty,
15503 int (*filter) (const struct breakpoint *))
15504 {
15505 struct breakpoint *tp;
15506 int any = 0;
15507 struct cleanup *cleanup;
15508 struct ui_file *fp;
15509 int extra_trace_bits = 0;
15510
15511 if (filename == 0 || *filename == 0)
15512 error (_("Argument required (file name in which to save)"));
15513
15514 /* See if we have anything to save. */
15515 ALL_BREAKPOINTS (tp)
15516 {
15517 /* Skip internal and momentary breakpoints. */
15518 if (!user_breakpoint_p (tp))
15519 continue;
15520
15521 /* If we have a filter, only save the breakpoints it accepts. */
15522 if (filter && !filter (tp))
15523 continue;
15524
15525 any = 1;
15526
15527 if (is_tracepoint (tp))
15528 {
15529 extra_trace_bits = 1;
15530
15531 /* We can stop searching. */
15532 break;
15533 }
15534 }
15535
15536 if (!any)
15537 {
15538 warning (_("Nothing to save."));
15539 return;
15540 }
15541
15542 filename = tilde_expand (filename);
15543 cleanup = make_cleanup (xfree, filename);
15544 fp = gdb_fopen (filename, "w");
15545 if (!fp)
15546 error (_("Unable to open file '%s' for saving (%s)"),
15547 filename, safe_strerror (errno));
15548 make_cleanup_ui_file_delete (fp);
15549
15550 if (extra_trace_bits)
15551 save_trace_state_variables (fp);
15552
15553 ALL_BREAKPOINTS (tp)
15554 {
15555 /* Skip internal and momentary breakpoints. */
15556 if (!user_breakpoint_p (tp))
15557 continue;
15558
15559 /* If we have a filter, only save the breakpoints it accepts. */
15560 if (filter && !filter (tp))
15561 continue;
15562
15563 tp->ops->print_recreate (tp, fp);
15564
15565 /* Note, we can't rely on tp->number for anything, as we can't
15566 assume the recreated breakpoint numbers will match. Use $bpnum
15567 instead. */
15568
15569 if (tp->cond_string)
15570 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15571
15572 if (tp->ignore_count)
15573 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15574
15575 if (tp->type != bp_dprintf && tp->commands)
15576 {
15577 volatile struct gdb_exception ex;
15578
15579 fprintf_unfiltered (fp, " commands\n");
15580
15581 ui_out_redirect (current_uiout, fp);
15582 TRY_CATCH (ex, RETURN_MASK_ALL)
15583 {
15584 print_command_lines (current_uiout, tp->commands->commands, 2);
15585 }
15586 ui_out_redirect (current_uiout, NULL);
15587
15588 if (ex.reason < 0)
15589 throw_exception (ex);
15590
15591 fprintf_unfiltered (fp, " end\n");
15592 }
15593
15594 if (tp->enable_state == bp_disabled)
15595 fprintf_unfiltered (fp, "disable\n");
15596
15597 /* If this is a multi-location breakpoint, check if the locations
15598 should be individually disabled. Watchpoint locations are
15599 special, and not user visible. */
15600 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15601 {
15602 struct bp_location *loc;
15603 int n = 1;
15604
15605 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15606 if (!loc->enabled)
15607 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15608 }
15609 }
15610
15611 if (extra_trace_bits && *default_collect)
15612 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15613
15614 if (from_tty)
15615 printf_filtered (_("Saved to file '%s'.\n"), filename);
15616 do_cleanups (cleanup);
15617 }
15618
15619 /* The `save breakpoints' command. */
15620
15621 static void
15622 save_breakpoints_command (char *args, int from_tty)
15623 {
15624 save_breakpoints (args, from_tty, NULL);
15625 }
15626
15627 /* The `save tracepoints' command. */
15628
15629 static void
15630 save_tracepoints_command (char *args, int from_tty)
15631 {
15632 save_breakpoints (args, from_tty, is_tracepoint);
15633 }
15634
15635 /* Create a vector of all tracepoints. */
15636
15637 VEC(breakpoint_p) *
15638 all_tracepoints (void)
15639 {
15640 VEC(breakpoint_p) *tp_vec = 0;
15641 struct breakpoint *tp;
15642
15643 ALL_TRACEPOINTS (tp)
15644 {
15645 VEC_safe_push (breakpoint_p, tp_vec, tp);
15646 }
15647
15648 return tp_vec;
15649 }
15650
15651 \f
15652 /* This help string is used for the break, hbreak, tbreak and thbreak
15653 commands. It is defined as a macro to prevent duplication.
15654 COMMAND should be a string constant containing the name of the
15655 command. */
15656 #define BREAK_ARGS_HELP(command) \
15657 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15658 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15659 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15660 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15661 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15662 If a line number is specified, break at start of code for that line.\n\
15663 If a function is specified, break at start of code for that function.\n\
15664 If an address is specified, break at that exact address.\n\
15665 With no LOCATION, uses current execution address of the selected\n\
15666 stack frame. This is useful for breaking on return to a stack frame.\n\
15667 \n\
15668 THREADNUM is the number from \"info threads\".\n\
15669 CONDITION is a boolean expression.\n\
15670 \n\
15671 Multiple breakpoints at one place are permitted, and useful if their\n\
15672 conditions are different.\n\
15673 \n\
15674 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15675
15676 /* List of subcommands for "catch". */
15677 static struct cmd_list_element *catch_cmdlist;
15678
15679 /* List of subcommands for "tcatch". */
15680 static struct cmd_list_element *tcatch_cmdlist;
15681
15682 void
15683 add_catch_command (char *name, char *docstring,
15684 void (*sfunc) (char *args, int from_tty,
15685 struct cmd_list_element *command),
15686 completer_ftype *completer,
15687 void *user_data_catch,
15688 void *user_data_tcatch)
15689 {
15690 struct cmd_list_element *command;
15691
15692 command = add_cmd (name, class_breakpoint, NULL, docstring,
15693 &catch_cmdlist);
15694 set_cmd_sfunc (command, sfunc);
15695 set_cmd_context (command, user_data_catch);
15696 set_cmd_completer (command, completer);
15697
15698 command = add_cmd (name, class_breakpoint, NULL, docstring,
15699 &tcatch_cmdlist);
15700 set_cmd_sfunc (command, sfunc);
15701 set_cmd_context (command, user_data_tcatch);
15702 set_cmd_completer (command, completer);
15703 }
15704
15705 static void
15706 clear_syscall_counts (struct inferior *inf)
15707 {
15708 struct catch_syscall_inferior_data *inf_data
15709 = get_catch_syscall_inferior_data (inf);
15710
15711 inf_data->total_syscalls_count = 0;
15712 inf_data->any_syscall_count = 0;
15713 VEC_free (int, inf_data->syscalls_counts);
15714 }
15715
15716 static void
15717 save_command (char *arg, int from_tty)
15718 {
15719 printf_unfiltered (_("\"save\" must be followed by "
15720 "the name of a save subcommand.\n"));
15721 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15722 }
15723
15724 struct breakpoint *
15725 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15726 void *data)
15727 {
15728 struct breakpoint *b, *b_tmp;
15729
15730 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15731 {
15732 if ((*callback) (b, data))
15733 return b;
15734 }
15735
15736 return NULL;
15737 }
15738
15739 /* Zero if any of the breakpoint's locations could be a location where
15740 functions have been inlined, nonzero otherwise. */
15741
15742 static int
15743 is_non_inline_function (struct breakpoint *b)
15744 {
15745 /* The shared library event breakpoint is set on the address of a
15746 non-inline function. */
15747 if (b->type == bp_shlib_event)
15748 return 1;
15749
15750 return 0;
15751 }
15752
15753 /* Nonzero if the specified PC cannot be a location where functions
15754 have been inlined. */
15755
15756 int
15757 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15758 const struct target_waitstatus *ws)
15759 {
15760 struct breakpoint *b;
15761 struct bp_location *bl;
15762
15763 ALL_BREAKPOINTS (b)
15764 {
15765 if (!is_non_inline_function (b))
15766 continue;
15767
15768 for (bl = b->loc; bl != NULL; bl = bl->next)
15769 {
15770 if (!bl->shlib_disabled
15771 && bpstat_check_location (bl, aspace, pc, ws))
15772 return 1;
15773 }
15774 }
15775
15776 return 0;
15777 }
15778
15779 /* Remove any references to OBJFILE which is going to be freed. */
15780
15781 void
15782 breakpoint_free_objfile (struct objfile *objfile)
15783 {
15784 struct bp_location **locp, *loc;
15785
15786 ALL_BP_LOCATIONS (loc, locp)
15787 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15788 loc->symtab = NULL;
15789 }
15790
15791 void
15792 initialize_breakpoint_ops (void)
15793 {
15794 static int initialized = 0;
15795
15796 struct breakpoint_ops *ops;
15797
15798 if (initialized)
15799 return;
15800 initialized = 1;
15801
15802 /* The breakpoint_ops structure to be inherit by all kinds of
15803 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15804 internal and momentary breakpoints, etc.). */
15805 ops = &bkpt_base_breakpoint_ops;
15806 *ops = base_breakpoint_ops;
15807 ops->re_set = bkpt_re_set;
15808 ops->insert_location = bkpt_insert_location;
15809 ops->remove_location = bkpt_remove_location;
15810 ops->breakpoint_hit = bkpt_breakpoint_hit;
15811 ops->create_sals_from_address = bkpt_create_sals_from_address;
15812 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15813 ops->decode_linespec = bkpt_decode_linespec;
15814
15815 /* The breakpoint_ops structure to be used in regular breakpoints. */
15816 ops = &bkpt_breakpoint_ops;
15817 *ops = bkpt_base_breakpoint_ops;
15818 ops->re_set = bkpt_re_set;
15819 ops->resources_needed = bkpt_resources_needed;
15820 ops->print_it = bkpt_print_it;
15821 ops->print_mention = bkpt_print_mention;
15822 ops->print_recreate = bkpt_print_recreate;
15823
15824 /* Ranged breakpoints. */
15825 ops = &ranged_breakpoint_ops;
15826 *ops = bkpt_breakpoint_ops;
15827 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15828 ops->resources_needed = resources_needed_ranged_breakpoint;
15829 ops->print_it = print_it_ranged_breakpoint;
15830 ops->print_one = print_one_ranged_breakpoint;
15831 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15832 ops->print_mention = print_mention_ranged_breakpoint;
15833 ops->print_recreate = print_recreate_ranged_breakpoint;
15834
15835 /* Internal breakpoints. */
15836 ops = &internal_breakpoint_ops;
15837 *ops = bkpt_base_breakpoint_ops;
15838 ops->re_set = internal_bkpt_re_set;
15839 ops->check_status = internal_bkpt_check_status;
15840 ops->print_it = internal_bkpt_print_it;
15841 ops->print_mention = internal_bkpt_print_mention;
15842
15843 /* Momentary breakpoints. */
15844 ops = &momentary_breakpoint_ops;
15845 *ops = bkpt_base_breakpoint_ops;
15846 ops->re_set = momentary_bkpt_re_set;
15847 ops->check_status = momentary_bkpt_check_status;
15848 ops->print_it = momentary_bkpt_print_it;
15849 ops->print_mention = momentary_bkpt_print_mention;
15850
15851 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15852 ops = &longjmp_breakpoint_ops;
15853 *ops = momentary_breakpoint_ops;
15854 ops->dtor = longjmp_bkpt_dtor;
15855
15856 /* Probe breakpoints. */
15857 ops = &bkpt_probe_breakpoint_ops;
15858 *ops = bkpt_breakpoint_ops;
15859 ops->insert_location = bkpt_probe_insert_location;
15860 ops->remove_location = bkpt_probe_remove_location;
15861 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15862 ops->decode_linespec = bkpt_probe_decode_linespec;
15863
15864 /* Watchpoints. */
15865 ops = &watchpoint_breakpoint_ops;
15866 *ops = base_breakpoint_ops;
15867 ops->dtor = dtor_watchpoint;
15868 ops->re_set = re_set_watchpoint;
15869 ops->insert_location = insert_watchpoint;
15870 ops->remove_location = remove_watchpoint;
15871 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15872 ops->check_status = check_status_watchpoint;
15873 ops->resources_needed = resources_needed_watchpoint;
15874 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15875 ops->print_it = print_it_watchpoint;
15876 ops->print_mention = print_mention_watchpoint;
15877 ops->print_recreate = print_recreate_watchpoint;
15878 ops->explains_signal = explains_signal_watchpoint;
15879
15880 /* Masked watchpoints. */
15881 ops = &masked_watchpoint_breakpoint_ops;
15882 *ops = watchpoint_breakpoint_ops;
15883 ops->insert_location = insert_masked_watchpoint;
15884 ops->remove_location = remove_masked_watchpoint;
15885 ops->resources_needed = resources_needed_masked_watchpoint;
15886 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15887 ops->print_it = print_it_masked_watchpoint;
15888 ops->print_one_detail = print_one_detail_masked_watchpoint;
15889 ops->print_mention = print_mention_masked_watchpoint;
15890 ops->print_recreate = print_recreate_masked_watchpoint;
15891
15892 /* Tracepoints. */
15893 ops = &tracepoint_breakpoint_ops;
15894 *ops = base_breakpoint_ops;
15895 ops->re_set = tracepoint_re_set;
15896 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15897 ops->print_one_detail = tracepoint_print_one_detail;
15898 ops->print_mention = tracepoint_print_mention;
15899 ops->print_recreate = tracepoint_print_recreate;
15900 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15901 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15902 ops->decode_linespec = tracepoint_decode_linespec;
15903
15904 /* Probe tracepoints. */
15905 ops = &tracepoint_probe_breakpoint_ops;
15906 *ops = tracepoint_breakpoint_ops;
15907 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15908 ops->decode_linespec = tracepoint_probe_decode_linespec;
15909
15910 /* Static tracepoints with marker (`-m'). */
15911 ops = &strace_marker_breakpoint_ops;
15912 *ops = tracepoint_breakpoint_ops;
15913 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15914 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15915 ops->decode_linespec = strace_marker_decode_linespec;
15916
15917 /* Fork catchpoints. */
15918 ops = &catch_fork_breakpoint_ops;
15919 *ops = base_breakpoint_ops;
15920 ops->insert_location = insert_catch_fork;
15921 ops->remove_location = remove_catch_fork;
15922 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15923 ops->print_it = print_it_catch_fork;
15924 ops->print_one = print_one_catch_fork;
15925 ops->print_mention = print_mention_catch_fork;
15926 ops->print_recreate = print_recreate_catch_fork;
15927
15928 /* Vfork catchpoints. */
15929 ops = &catch_vfork_breakpoint_ops;
15930 *ops = base_breakpoint_ops;
15931 ops->insert_location = insert_catch_vfork;
15932 ops->remove_location = remove_catch_vfork;
15933 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15934 ops->print_it = print_it_catch_vfork;
15935 ops->print_one = print_one_catch_vfork;
15936 ops->print_mention = print_mention_catch_vfork;
15937 ops->print_recreate = print_recreate_catch_vfork;
15938
15939 /* Exec catchpoints. */
15940 ops = &catch_exec_breakpoint_ops;
15941 *ops = base_breakpoint_ops;
15942 ops->dtor = dtor_catch_exec;
15943 ops->insert_location = insert_catch_exec;
15944 ops->remove_location = remove_catch_exec;
15945 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15946 ops->print_it = print_it_catch_exec;
15947 ops->print_one = print_one_catch_exec;
15948 ops->print_mention = print_mention_catch_exec;
15949 ops->print_recreate = print_recreate_catch_exec;
15950
15951 /* Syscall catchpoints. */
15952 ops = &catch_syscall_breakpoint_ops;
15953 *ops = base_breakpoint_ops;
15954 ops->dtor = dtor_catch_syscall;
15955 ops->insert_location = insert_catch_syscall;
15956 ops->remove_location = remove_catch_syscall;
15957 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15958 ops->print_it = print_it_catch_syscall;
15959 ops->print_one = print_one_catch_syscall;
15960 ops->print_mention = print_mention_catch_syscall;
15961 ops->print_recreate = print_recreate_catch_syscall;
15962
15963 /* Solib-related catchpoints. */
15964 ops = &catch_solib_breakpoint_ops;
15965 *ops = base_breakpoint_ops;
15966 ops->dtor = dtor_catch_solib;
15967 ops->insert_location = insert_catch_solib;
15968 ops->remove_location = remove_catch_solib;
15969 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15970 ops->check_status = check_status_catch_solib;
15971 ops->print_it = print_it_catch_solib;
15972 ops->print_one = print_one_catch_solib;
15973 ops->print_mention = print_mention_catch_solib;
15974 ops->print_recreate = print_recreate_catch_solib;
15975
15976 ops = &dprintf_breakpoint_ops;
15977 *ops = bkpt_base_breakpoint_ops;
15978 ops->re_set = dprintf_re_set;
15979 ops->resources_needed = bkpt_resources_needed;
15980 ops->print_it = bkpt_print_it;
15981 ops->print_mention = bkpt_print_mention;
15982 ops->print_recreate = dprintf_print_recreate;
15983 ops->after_condition_true = dprintf_after_condition_true;
15984 }
15985
15986 /* Chain containing all defined "enable breakpoint" subcommands. */
15987
15988 static struct cmd_list_element *enablebreaklist = NULL;
15989
15990 void
15991 _initialize_breakpoint (void)
15992 {
15993 struct cmd_list_element *c;
15994
15995 initialize_breakpoint_ops ();
15996
15997 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15998 observer_attach_inferior_exit (clear_syscall_counts);
15999 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16000
16001 breakpoint_objfile_key
16002 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16003
16004 catch_syscall_inferior_data
16005 = register_inferior_data_with_cleanup (NULL,
16006 catch_syscall_inferior_data_cleanup);
16007
16008 breakpoint_chain = 0;
16009 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16010 before a breakpoint is set. */
16011 breakpoint_count = 0;
16012
16013 tracepoint_count = 0;
16014
16015 add_com ("ignore", class_breakpoint, ignore_command, _("\
16016 Set ignore-count of breakpoint number N to COUNT.\n\
16017 Usage is `ignore N COUNT'."));
16018 if (xdb_commands)
16019 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16020
16021 add_com ("commands", class_breakpoint, commands_command, _("\
16022 Set commands to be executed when a breakpoint is hit.\n\
16023 Give breakpoint number as argument after \"commands\".\n\
16024 With no argument, the targeted breakpoint is the last one set.\n\
16025 The commands themselves follow starting on the next line.\n\
16026 Type a line containing \"end\" to indicate the end of them.\n\
16027 Give \"silent\" as the first line to make the breakpoint silent;\n\
16028 then no output is printed when it is hit, except what the commands print."));
16029
16030 c = add_com ("condition", class_breakpoint, condition_command, _("\
16031 Specify breakpoint number N to break only if COND is true.\n\
16032 Usage is `condition N COND', where N is an integer and COND is an\n\
16033 expression to be evaluated whenever breakpoint N is reached."));
16034 set_cmd_completer (c, condition_completer);
16035
16036 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16037 Set a temporary breakpoint.\n\
16038 Like \"break\" except the breakpoint is only temporary,\n\
16039 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16040 by using \"enable delete\" on the breakpoint number.\n\
16041 \n"
16042 BREAK_ARGS_HELP ("tbreak")));
16043 set_cmd_completer (c, location_completer);
16044
16045 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16046 Set a hardware assisted breakpoint.\n\
16047 Like \"break\" except the breakpoint requires hardware support,\n\
16048 some target hardware may not have this support.\n\
16049 \n"
16050 BREAK_ARGS_HELP ("hbreak")));
16051 set_cmd_completer (c, location_completer);
16052
16053 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16054 Set a temporary hardware assisted breakpoint.\n\
16055 Like \"hbreak\" except the breakpoint is only temporary,\n\
16056 so it will be deleted when hit.\n\
16057 \n"
16058 BREAK_ARGS_HELP ("thbreak")));
16059 set_cmd_completer (c, location_completer);
16060
16061 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16062 Enable some breakpoints.\n\
16063 Give breakpoint numbers (separated by spaces) as arguments.\n\
16064 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16065 This is used to cancel the effect of the \"disable\" command.\n\
16066 With a subcommand you can enable temporarily."),
16067 &enablelist, "enable ", 1, &cmdlist);
16068 if (xdb_commands)
16069 add_com ("ab", class_breakpoint, enable_command, _("\
16070 Enable some breakpoints.\n\
16071 Give breakpoint numbers (separated by spaces) as arguments.\n\
16072 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16073 This is used to cancel the effect of the \"disable\" command.\n\
16074 With a subcommand you can enable temporarily."));
16075
16076 add_com_alias ("en", "enable", class_breakpoint, 1);
16077
16078 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16079 Enable some breakpoints.\n\
16080 Give breakpoint numbers (separated by spaces) as arguments.\n\
16081 This is used to cancel the effect of the \"disable\" command.\n\
16082 May be abbreviated to simply \"enable\".\n"),
16083 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16084
16085 add_cmd ("once", no_class, enable_once_command, _("\
16086 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16087 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16088 &enablebreaklist);
16089
16090 add_cmd ("delete", no_class, enable_delete_command, _("\
16091 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16092 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16093 &enablebreaklist);
16094
16095 add_cmd ("count", no_class, enable_count_command, _("\
16096 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16097 If a breakpoint is hit while enabled in this fashion,\n\
16098 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16099 &enablebreaklist);
16100
16101 add_cmd ("delete", no_class, enable_delete_command, _("\
16102 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16103 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16104 &enablelist);
16105
16106 add_cmd ("once", no_class, enable_once_command, _("\
16107 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16108 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16109 &enablelist);
16110
16111 add_cmd ("count", no_class, enable_count_command, _("\
16112 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16113 If a breakpoint is hit while enabled in this fashion,\n\
16114 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16115 &enablelist);
16116
16117 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16118 Disable some breakpoints.\n\
16119 Arguments are breakpoint numbers with spaces in between.\n\
16120 To disable all breakpoints, give no argument.\n\
16121 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16122 &disablelist, "disable ", 1, &cmdlist);
16123 add_com_alias ("dis", "disable", class_breakpoint, 1);
16124 add_com_alias ("disa", "disable", class_breakpoint, 1);
16125 if (xdb_commands)
16126 add_com ("sb", class_breakpoint, disable_command, _("\
16127 Disable some breakpoints.\n\
16128 Arguments are breakpoint numbers with spaces in between.\n\
16129 To disable all breakpoints, give no argument.\n\
16130 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16131
16132 add_cmd ("breakpoints", class_alias, disable_command, _("\
16133 Disable some breakpoints.\n\
16134 Arguments are breakpoint numbers with spaces in between.\n\
16135 To disable all breakpoints, give no argument.\n\
16136 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16137 This command may be abbreviated \"disable\"."),
16138 &disablelist);
16139
16140 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16141 Delete some breakpoints or auto-display expressions.\n\
16142 Arguments are breakpoint numbers with spaces in between.\n\
16143 To delete all breakpoints, give no argument.\n\
16144 \n\
16145 Also a prefix command for deletion of other GDB objects.\n\
16146 The \"unset\" command is also an alias for \"delete\"."),
16147 &deletelist, "delete ", 1, &cmdlist);
16148 add_com_alias ("d", "delete", class_breakpoint, 1);
16149 add_com_alias ("del", "delete", class_breakpoint, 1);
16150 if (xdb_commands)
16151 add_com ("db", class_breakpoint, delete_command, _("\
16152 Delete some breakpoints.\n\
16153 Arguments are breakpoint numbers with spaces in between.\n\
16154 To delete all breakpoints, give no argument.\n"));
16155
16156 add_cmd ("breakpoints", class_alias, delete_command, _("\
16157 Delete some breakpoints or auto-display expressions.\n\
16158 Arguments are breakpoint numbers with spaces in between.\n\
16159 To delete all breakpoints, give no argument.\n\
16160 This command may be abbreviated \"delete\"."),
16161 &deletelist);
16162
16163 add_com ("clear", class_breakpoint, clear_command, _("\
16164 Clear breakpoint at specified line or function.\n\
16165 Argument may be line number, function name, or \"*\" and an address.\n\
16166 If line number is specified, all breakpoints in that line are cleared.\n\
16167 If function is specified, breakpoints at beginning of function are cleared.\n\
16168 If an address is specified, breakpoints at that address are cleared.\n\
16169 \n\
16170 With no argument, clears all breakpoints in the line that the selected frame\n\
16171 is executing in.\n\
16172 \n\
16173 See also the \"delete\" command which clears breakpoints by number."));
16174 add_com_alias ("cl", "clear", class_breakpoint, 1);
16175
16176 c = add_com ("break", class_breakpoint, break_command, _("\
16177 Set breakpoint at specified line or function.\n"
16178 BREAK_ARGS_HELP ("break")));
16179 set_cmd_completer (c, location_completer);
16180
16181 add_com_alias ("b", "break", class_run, 1);
16182 add_com_alias ("br", "break", class_run, 1);
16183 add_com_alias ("bre", "break", class_run, 1);
16184 add_com_alias ("brea", "break", class_run, 1);
16185
16186 if (xdb_commands)
16187 add_com_alias ("ba", "break", class_breakpoint, 1);
16188
16189 if (dbx_commands)
16190 {
16191 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16192 Break in function/address or break at a line in the current file."),
16193 &stoplist, "stop ", 1, &cmdlist);
16194 add_cmd ("in", class_breakpoint, stopin_command,
16195 _("Break in function or address."), &stoplist);
16196 add_cmd ("at", class_breakpoint, stopat_command,
16197 _("Break at a line in the current file."), &stoplist);
16198 add_com ("status", class_info, breakpoints_info, _("\
16199 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16200 The \"Type\" column indicates one of:\n\
16201 \tbreakpoint - normal breakpoint\n\
16202 \twatchpoint - watchpoint\n\
16203 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16204 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16205 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16206 address and file/line number respectively.\n\
16207 \n\
16208 Convenience variable \"$_\" and default examine address for \"x\"\n\
16209 are set to the address of the last breakpoint listed unless the command\n\
16210 is prefixed with \"server \".\n\n\
16211 Convenience variable \"$bpnum\" contains the number of the last\n\
16212 breakpoint set."));
16213 }
16214
16215 add_info ("breakpoints", breakpoints_info, _("\
16216 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16217 The \"Type\" column indicates one of:\n\
16218 \tbreakpoint - normal breakpoint\n\
16219 \twatchpoint - watchpoint\n\
16220 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16221 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16222 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16223 address and file/line number respectively.\n\
16224 \n\
16225 Convenience variable \"$_\" and default examine address for \"x\"\n\
16226 are set to the address of the last breakpoint listed unless the command\n\
16227 is prefixed with \"server \".\n\n\
16228 Convenience variable \"$bpnum\" contains the number of the last\n\
16229 breakpoint set."));
16230
16231 add_info_alias ("b", "breakpoints", 1);
16232
16233 if (xdb_commands)
16234 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16235 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16236 The \"Type\" column indicates one of:\n\
16237 \tbreakpoint - normal breakpoint\n\
16238 \twatchpoint - watchpoint\n\
16239 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16240 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16241 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16242 address and file/line number respectively.\n\
16243 \n\
16244 Convenience variable \"$_\" and default examine address for \"x\"\n\
16245 are set to the address of the last breakpoint listed unless the command\n\
16246 is prefixed with \"server \".\n\n\
16247 Convenience variable \"$bpnum\" contains the number of the last\n\
16248 breakpoint set."));
16249
16250 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16251 Status of all breakpoints, or breakpoint number NUMBER.\n\
16252 The \"Type\" column indicates one of:\n\
16253 \tbreakpoint - normal breakpoint\n\
16254 \twatchpoint - watchpoint\n\
16255 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16256 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16257 \tuntil - internal breakpoint used by the \"until\" command\n\
16258 \tfinish - internal breakpoint used by the \"finish\" command\n\
16259 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16260 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16261 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16262 address and file/line number respectively.\n\
16263 \n\
16264 Convenience variable \"$_\" and default examine address for \"x\"\n\
16265 are set to the address of the last breakpoint listed unless the command\n\
16266 is prefixed with \"server \".\n\n\
16267 Convenience variable \"$bpnum\" contains the number of the last\n\
16268 breakpoint set."),
16269 &maintenanceinfolist);
16270
16271 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16272 Set catchpoints to catch events."),
16273 &catch_cmdlist, "catch ",
16274 0/*allow-unknown*/, &cmdlist);
16275
16276 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16277 Set temporary catchpoints to catch events."),
16278 &tcatch_cmdlist, "tcatch ",
16279 0/*allow-unknown*/, &cmdlist);
16280
16281 add_catch_command ("fork", _("Catch calls to fork."),
16282 catch_fork_command_1,
16283 NULL,
16284 (void *) (uintptr_t) catch_fork_permanent,
16285 (void *) (uintptr_t) catch_fork_temporary);
16286 add_catch_command ("vfork", _("Catch calls to vfork."),
16287 catch_fork_command_1,
16288 NULL,
16289 (void *) (uintptr_t) catch_vfork_permanent,
16290 (void *) (uintptr_t) catch_vfork_temporary);
16291 add_catch_command ("exec", _("Catch calls to exec."),
16292 catch_exec_command_1,
16293 NULL,
16294 CATCH_PERMANENT,
16295 CATCH_TEMPORARY);
16296 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16297 Usage: catch load [REGEX]\n\
16298 If REGEX is given, only stop for libraries matching the regular expression."),
16299 catch_load_command_1,
16300 NULL,
16301 CATCH_PERMANENT,
16302 CATCH_TEMPORARY);
16303 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16304 Usage: catch unload [REGEX]\n\
16305 If REGEX is given, only stop for libraries matching the regular expression."),
16306 catch_unload_command_1,
16307 NULL,
16308 CATCH_PERMANENT,
16309 CATCH_TEMPORARY);
16310 add_catch_command ("syscall", _("\
16311 Catch system calls by their names and/or numbers.\n\
16312 Arguments say which system calls to catch. If no arguments\n\
16313 are given, every system call will be caught.\n\
16314 Arguments, if given, should be one or more system call names\n\
16315 (if your system supports that), or system call numbers."),
16316 catch_syscall_command_1,
16317 catch_syscall_completer,
16318 CATCH_PERMANENT,
16319 CATCH_TEMPORARY);
16320
16321 c = add_com ("watch", class_breakpoint, watch_command, _("\
16322 Set a watchpoint for an expression.\n\
16323 Usage: watch [-l|-location] EXPRESSION\n\
16324 A watchpoint stops execution of your program whenever the value of\n\
16325 an expression changes.\n\
16326 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16327 the memory to which it refers."));
16328 set_cmd_completer (c, expression_completer);
16329
16330 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16331 Set a read watchpoint for an expression.\n\
16332 Usage: rwatch [-l|-location] EXPRESSION\n\
16333 A watchpoint stops execution of your program whenever the value of\n\
16334 an expression is read.\n\
16335 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16336 the memory to which it refers."));
16337 set_cmd_completer (c, expression_completer);
16338
16339 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16340 Set a watchpoint for an expression.\n\
16341 Usage: awatch [-l|-location] EXPRESSION\n\
16342 A watchpoint stops execution of your program whenever the value of\n\
16343 an expression is either read or written.\n\
16344 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16345 the memory to which it refers."));
16346 set_cmd_completer (c, expression_completer);
16347
16348 add_info ("watchpoints", watchpoints_info, _("\
16349 Status of specified watchpoints (all watchpoints if no argument)."));
16350
16351 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16352 respond to changes - contrary to the description. */
16353 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16354 &can_use_hw_watchpoints, _("\
16355 Set debugger's willingness to use watchpoint hardware."), _("\
16356 Show debugger's willingness to use watchpoint hardware."), _("\
16357 If zero, gdb will not use hardware for new watchpoints, even if\n\
16358 such is available. (However, any hardware watchpoints that were\n\
16359 created before setting this to nonzero, will continue to use watchpoint\n\
16360 hardware.)"),
16361 NULL,
16362 show_can_use_hw_watchpoints,
16363 &setlist, &showlist);
16364
16365 can_use_hw_watchpoints = 1;
16366
16367 /* Tracepoint manipulation commands. */
16368
16369 c = add_com ("trace", class_breakpoint, trace_command, _("\
16370 Set a tracepoint at specified line or function.\n\
16371 \n"
16372 BREAK_ARGS_HELP ("trace") "\n\
16373 Do \"help tracepoints\" for info on other tracepoint commands."));
16374 set_cmd_completer (c, location_completer);
16375
16376 add_com_alias ("tp", "trace", class_alias, 0);
16377 add_com_alias ("tr", "trace", class_alias, 1);
16378 add_com_alias ("tra", "trace", class_alias, 1);
16379 add_com_alias ("trac", "trace", class_alias, 1);
16380
16381 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16382 Set a fast tracepoint at specified line or function.\n\
16383 \n"
16384 BREAK_ARGS_HELP ("ftrace") "\n\
16385 Do \"help tracepoints\" for info on other tracepoint commands."));
16386 set_cmd_completer (c, location_completer);
16387
16388 c = add_com ("strace", class_breakpoint, strace_command, _("\
16389 Set a static tracepoint at specified line, function or marker.\n\
16390 \n\
16391 strace [LOCATION] [if CONDITION]\n\
16392 LOCATION may be a line number, function name, \"*\" and an address,\n\
16393 or -m MARKER_ID.\n\
16394 If a line number is specified, probe the marker at start of code\n\
16395 for that line. If a function is specified, probe the marker at start\n\
16396 of code for that function. If an address is specified, probe the marker\n\
16397 at that exact address. If a marker id is specified, probe the marker\n\
16398 with that name. With no LOCATION, uses current execution address of\n\
16399 the selected stack frame.\n\
16400 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16401 This collects arbitrary user data passed in the probe point call to the\n\
16402 tracing library. You can inspect it when analyzing the trace buffer,\n\
16403 by printing the $_sdata variable like any other convenience variable.\n\
16404 \n\
16405 CONDITION is a boolean expression.\n\
16406 \n\
16407 Multiple tracepoints at one place are permitted, and useful if their\n\
16408 conditions are different.\n\
16409 \n\
16410 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16411 Do \"help tracepoints\" for info on other tracepoint commands."));
16412 set_cmd_completer (c, location_completer);
16413
16414 add_info ("tracepoints", tracepoints_info, _("\
16415 Status of specified tracepoints (all tracepoints if no argument).\n\
16416 Convenience variable \"$tpnum\" contains the number of the\n\
16417 last tracepoint set."));
16418
16419 add_info_alias ("tp", "tracepoints", 1);
16420
16421 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16422 Delete specified tracepoints.\n\
16423 Arguments are tracepoint numbers, separated by spaces.\n\
16424 No argument means delete all tracepoints."),
16425 &deletelist);
16426 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16427
16428 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16429 Disable specified tracepoints.\n\
16430 Arguments are tracepoint numbers, separated by spaces.\n\
16431 No argument means disable all tracepoints."),
16432 &disablelist);
16433 deprecate_cmd (c, "disable");
16434
16435 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16436 Enable specified tracepoints.\n\
16437 Arguments are tracepoint numbers, separated by spaces.\n\
16438 No argument means enable all tracepoints."),
16439 &enablelist);
16440 deprecate_cmd (c, "enable");
16441
16442 add_com ("passcount", class_trace, trace_pass_command, _("\
16443 Set the passcount for a tracepoint.\n\
16444 The trace will end when the tracepoint has been passed 'count' times.\n\
16445 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16446 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16447
16448 add_prefix_cmd ("save", class_breakpoint, save_command,
16449 _("Save breakpoint definitions as a script."),
16450 &save_cmdlist, "save ",
16451 0/*allow-unknown*/, &cmdlist);
16452
16453 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16454 Save current breakpoint definitions as a script.\n\
16455 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16456 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16457 session to restore them."),
16458 &save_cmdlist);
16459 set_cmd_completer (c, filename_completer);
16460
16461 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16462 Save current tracepoint definitions as a script.\n\
16463 Use the 'source' command in another debug session to restore them."),
16464 &save_cmdlist);
16465 set_cmd_completer (c, filename_completer);
16466
16467 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16468 deprecate_cmd (c, "save tracepoints");
16469
16470 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16471 Breakpoint specific settings\n\
16472 Configure various breakpoint-specific variables such as\n\
16473 pending breakpoint behavior"),
16474 &breakpoint_set_cmdlist, "set breakpoint ",
16475 0/*allow-unknown*/, &setlist);
16476 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16477 Breakpoint specific settings\n\
16478 Configure various breakpoint-specific variables such as\n\
16479 pending breakpoint behavior"),
16480 &breakpoint_show_cmdlist, "show breakpoint ",
16481 0/*allow-unknown*/, &showlist);
16482
16483 add_setshow_auto_boolean_cmd ("pending", no_class,
16484 &pending_break_support, _("\
16485 Set debugger's behavior regarding pending breakpoints."), _("\
16486 Show debugger's behavior regarding pending breakpoints."), _("\
16487 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16488 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16489 an error. If auto, an unrecognized breakpoint location results in a\n\
16490 user-query to see if a pending breakpoint should be created."),
16491 NULL,
16492 show_pending_break_support,
16493 &breakpoint_set_cmdlist,
16494 &breakpoint_show_cmdlist);
16495
16496 pending_break_support = AUTO_BOOLEAN_AUTO;
16497
16498 add_setshow_boolean_cmd ("auto-hw", no_class,
16499 &automatic_hardware_breakpoints, _("\
16500 Set automatic usage of hardware breakpoints."), _("\
16501 Show automatic usage of hardware breakpoints."), _("\
16502 If set, the debugger will automatically use hardware breakpoints for\n\
16503 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16504 a warning will be emitted for such breakpoints."),
16505 NULL,
16506 show_automatic_hardware_breakpoints,
16507 &breakpoint_set_cmdlist,
16508 &breakpoint_show_cmdlist);
16509
16510 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16511 &always_inserted_mode, _("\
16512 Set mode for inserting breakpoints."), _("\
16513 Show mode for inserting breakpoints."), _("\
16514 When this mode is off, breakpoints are inserted in inferior when it is\n\
16515 resumed, and removed when execution stops. When this mode is on,\n\
16516 breakpoints are inserted immediately and removed only when the user\n\
16517 deletes the breakpoint. When this mode is auto (which is the default),\n\
16518 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16519 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16520 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16521 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16522 NULL,
16523 &show_always_inserted_mode,
16524 &breakpoint_set_cmdlist,
16525 &breakpoint_show_cmdlist);
16526
16527 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16528 condition_evaluation_enums,
16529 &condition_evaluation_mode_1, _("\
16530 Set mode of breakpoint condition evaluation."), _("\
16531 Show mode of breakpoint condition evaluation."), _("\
16532 When this is set to \"host\", breakpoint conditions will be\n\
16533 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16534 breakpoint conditions will be downloaded to the target (if the target\n\
16535 supports such feature) and conditions will be evaluated on the target's side.\n\
16536 If this is set to \"auto\" (default), this will be automatically set to\n\
16537 \"target\" if it supports condition evaluation, otherwise it will\n\
16538 be set to \"gdb\""),
16539 &set_condition_evaluation_mode,
16540 &show_condition_evaluation_mode,
16541 &breakpoint_set_cmdlist,
16542 &breakpoint_show_cmdlist);
16543
16544 add_com ("break-range", class_breakpoint, break_range_command, _("\
16545 Set a breakpoint for an address range.\n\
16546 break-range START-LOCATION, END-LOCATION\n\
16547 where START-LOCATION and END-LOCATION can be one of the following:\n\
16548 LINENUM, for that line in the current file,\n\
16549 FILE:LINENUM, for that line in that file,\n\
16550 +OFFSET, for that number of lines after the current line\n\
16551 or the start of the range\n\
16552 FUNCTION, for the first line in that function,\n\
16553 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16554 *ADDRESS, for the instruction at that address.\n\
16555 \n\
16556 The breakpoint will stop execution of the inferior whenever it executes\n\
16557 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16558 range (including START-LOCATION and END-LOCATION)."));
16559
16560 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16561 Set a dynamic printf at specified line or function.\n\
16562 dprintf location,format string,arg1,arg2,...\n\
16563 location may be a line number, function name, or \"*\" and an address.\n\
16564 If a line number is specified, break at start of code for that line.\n\
16565 If a function is specified, break at start of code for that function."));
16566 set_cmd_completer (c, location_completer);
16567
16568 add_setshow_enum_cmd ("dprintf-style", class_support,
16569 dprintf_style_enums, &dprintf_style, _("\
16570 Set the style of usage for dynamic printf."), _("\
16571 Show the style of usage for dynamic printf."), _("\
16572 This setting chooses how GDB will do a dynamic printf.\n\
16573 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16574 console, as with the \"printf\" command.\n\
16575 If the value is \"call\", the print is done by calling a function in your\n\
16576 program; by default printf(), but you can choose a different function or\n\
16577 output stream by setting dprintf-function and dprintf-channel."),
16578 update_dprintf_commands, NULL,
16579 &setlist, &showlist);
16580
16581 dprintf_function = xstrdup ("printf");
16582 add_setshow_string_cmd ("dprintf-function", class_support,
16583 &dprintf_function, _("\
16584 Set the function to use for dynamic printf"), _("\
16585 Show the function to use for dynamic printf"), NULL,
16586 update_dprintf_commands, NULL,
16587 &setlist, &showlist);
16588
16589 dprintf_channel = xstrdup ("");
16590 add_setshow_string_cmd ("dprintf-channel", class_support,
16591 &dprintf_channel, _("\
16592 Set the channel to use for dynamic printf"), _("\
16593 Show the channel to use for dynamic printf"), NULL,
16594 update_dprintf_commands, NULL,
16595 &setlist, &showlist);
16596
16597 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16598 &disconnected_dprintf, _("\
16599 Set whether dprintf continues after GDB disconnects."), _("\
16600 Show whether dprintf continues after GDB disconnects."), _("\
16601 Use this to let dprintf commands continue to hit and produce output\n\
16602 even if GDB disconnects or detaches from the target."),
16603 NULL,
16604 NULL,
16605 &setlist, &showlist);
16606
16607 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16608 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16609 (target agent only) This is useful for formatted output in user-defined commands."));
16610
16611 automatic_hardware_breakpoints = 1;
16612
16613 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16614 observer_attach_thread_exit (remove_threaded_breakpoints);
16615 }