gdb: use function_view for iterate_over_bp_locations' callback
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "stack.h"
63 #include "ax-gdb.h"
64 #include "dummy-frame.h"
65 #include "interps.h"
66 #include "gdbsupport/format.h"
67 #include "thread-fsm.h"
68 #include "tid-parse.h"
69 #include "cli/cli-style.h"
70
71 /* readline include files */
72 #include "readline/tilde.h"
73
74 /* readline defines this. */
75 #undef savestring
76
77 #include "mi/mi-common.h"
78 #include "extension.h"
79 #include <algorithm>
80 #include "progspace-and-thread.h"
81 #include "gdbsupport/array-view.h"
82 #include "gdbsupport/gdb_optional.h"
83
84 /* Prototypes for local functions. */
85
86 static void map_breakpoint_numbers (const char *,
87 gdb::function_view<void (breakpoint *)>);
88
89 static void breakpoint_re_set_default (struct breakpoint *);
90
91 static void
92 create_sals_from_location_default (struct event_location *location,
93 struct linespec_result *canonical,
94 enum bptype type_wanted);
95
96 static void create_breakpoints_sal_default (struct gdbarch *,
97 struct linespec_result *,
98 gdb::unique_xmalloc_ptr<char>,
99 gdb::unique_xmalloc_ptr<char>,
100 enum bptype,
101 enum bpdisp, int, int,
102 int,
103 const struct breakpoint_ops *,
104 int, int, int, unsigned);
105
106 static std::vector<symtab_and_line> decode_location_default
107 (struct breakpoint *b, struct event_location *location,
108 struct program_space *search_pspace);
109
110 static int can_use_hardware_watchpoint
111 (const std::vector<value_ref_ptr> &vals);
112
113 static void mention (struct breakpoint *);
114
115 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
116 enum bptype,
117 const struct breakpoint_ops *);
118 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
119 const struct symtab_and_line *);
120
121 /* This function is used in gdbtk sources and thus can not be made
122 static. */
123 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
124 struct symtab_and_line,
125 enum bptype,
126 const struct breakpoint_ops *);
127
128 static struct breakpoint *
129 momentary_breakpoint_from_master (struct breakpoint *orig,
130 enum bptype type,
131 const struct breakpoint_ops *ops,
132 int loc_enabled);
133
134 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
135
136 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
137 CORE_ADDR bpaddr,
138 enum bptype bptype);
139
140 static void describe_other_breakpoints (struct gdbarch *,
141 struct program_space *, CORE_ADDR,
142 struct obj_section *, int);
143
144 static int watchpoint_locations_match (struct bp_location *loc1,
145 struct bp_location *loc2);
146
147 static int breakpoint_locations_match (struct bp_location *loc1,
148 struct bp_location *loc2,
149 bool sw_hw_bps_match = false);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void decref_bp_location (struct bp_location **loc);
176
177 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
178
179 /* update_global_location_list's modes of operation wrt to whether to
180 insert locations now. */
181 enum ugll_insert_mode
182 {
183 /* Don't insert any breakpoint locations into the inferior, only
184 remove already-inserted locations that no longer should be
185 inserted. Functions that delete a breakpoint or breakpoints
186 should specify this mode, so that deleting a breakpoint doesn't
187 have the side effect of inserting the locations of other
188 breakpoints that are marked not-inserted, but should_be_inserted
189 returns true on them.
190
191 This behavior is useful is situations close to tear-down -- e.g.,
192 after an exec, while the target still has execution, but
193 breakpoint shadows of the previous executable image should *NOT*
194 be restored to the new image; or before detaching, where the
195 target still has execution and wants to delete breakpoints from
196 GDB's lists, and all breakpoints had already been removed from
197 the inferior. */
198 UGLL_DONT_INSERT,
199
200 /* May insert breakpoints iff breakpoints_should_be_inserted_now
201 claims breakpoints should be inserted now. */
202 UGLL_MAY_INSERT,
203
204 /* Insert locations now, irrespective of
205 breakpoints_should_be_inserted_now. E.g., say all threads are
206 stopped right now, and the user did "continue". We need to
207 insert breakpoints _before_ resuming the target, but
208 UGLL_MAY_INSERT wouldn't insert them, because
209 breakpoints_should_be_inserted_now returns false at that point,
210 as no thread is running yet. */
211 UGLL_INSERT
212 };
213
214 static void update_global_location_list (enum ugll_insert_mode);
215
216 static void update_global_location_list_nothrow (enum ugll_insert_mode);
217
218 static void insert_breakpoint_locations (void);
219
220 static void trace_pass_command (const char *, int);
221
222 static void set_tracepoint_count (int num);
223
224 static bool is_masked_watchpoint (const struct breakpoint *b);
225
226 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
227
228 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
229 otherwise. */
230
231 static int strace_marker_p (struct breakpoint *b);
232
233 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
234 that are implemented on top of software or hardware breakpoints
235 (user breakpoints, internal and momentary breakpoints, etc.). */
236 static struct breakpoint_ops bkpt_base_breakpoint_ops;
237
238 /* Internal breakpoints class type. */
239 static struct breakpoint_ops internal_breakpoint_ops;
240
241 /* Momentary breakpoints class type. */
242 static struct breakpoint_ops momentary_breakpoint_ops;
243
244 /* The breakpoint_ops structure to be used in regular user created
245 breakpoints. */
246 struct breakpoint_ops bkpt_breakpoint_ops;
247
248 /* Breakpoints set on probes. */
249 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
250
251 /* Tracepoints set on probes. */
252 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
253
254 /* Dynamic printf class type. */
255 struct breakpoint_ops dprintf_breakpoint_ops;
256
257 /* The style in which to perform a dynamic printf. This is a user
258 option because different output options have different tradeoffs;
259 if GDB does the printing, there is better error handling if there
260 is a problem with any of the arguments, but using an inferior
261 function lets you have special-purpose printers and sending of
262 output to the same place as compiled-in print functions. */
263
264 static const char dprintf_style_gdb[] = "gdb";
265 static const char dprintf_style_call[] = "call";
266 static const char dprintf_style_agent[] = "agent";
267 static const char *const dprintf_style_enums[] = {
268 dprintf_style_gdb,
269 dprintf_style_call,
270 dprintf_style_agent,
271 NULL
272 };
273 static const char *dprintf_style = dprintf_style_gdb;
274
275 /* The function to use for dynamic printf if the preferred style is to
276 call into the inferior. The value is simply a string that is
277 copied into the command, so it can be anything that GDB can
278 evaluate to a callable address, not necessarily a function name. */
279
280 static char *dprintf_function;
281
282 /* The channel to use for dynamic printf if the preferred style is to
283 call into the inferior; if a nonempty string, it will be passed to
284 the call as the first argument, with the format string as the
285 second. As with the dprintf function, this can be anything that
286 GDB knows how to evaluate, so in addition to common choices like
287 "stderr", this could be an app-specific expression like
288 "mystreams[curlogger]". */
289
290 static char *dprintf_channel;
291
292 /* True if dprintf commands should continue to operate even if GDB
293 has disconnected. */
294 static bool disconnected_dprintf = true;
295
296 struct command_line *
297 breakpoint_commands (struct breakpoint *b)
298 {
299 return b->commands ? b->commands.get () : NULL;
300 }
301
302 /* Flag indicating that a command has proceeded the inferior past the
303 current breakpoint. */
304
305 static bool breakpoint_proceeded;
306
307 const char *
308 bpdisp_text (enum bpdisp disp)
309 {
310 /* NOTE: the following values are a part of MI protocol and
311 represent values of 'disp' field returned when inferior stops at
312 a breakpoint. */
313 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
314
315 return bpdisps[(int) disp];
316 }
317
318 /* Prototypes for exported functions. */
319 /* If FALSE, gdb will not use hardware support for watchpoints, even
320 if such is available. */
321 static int can_use_hw_watchpoints;
322
323 static void
324 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
325 struct cmd_list_element *c,
326 const char *value)
327 {
328 fprintf_filtered (file,
329 _("Debugger's willingness to use "
330 "watchpoint hardware is %s.\n"),
331 value);
332 }
333
334 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
335 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
336 for unrecognized breakpoint locations.
337 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
338 static enum auto_boolean pending_break_support;
339 static void
340 show_pending_break_support (struct ui_file *file, int from_tty,
341 struct cmd_list_element *c,
342 const char *value)
343 {
344 fprintf_filtered (file,
345 _("Debugger's behavior regarding "
346 "pending breakpoints is %s.\n"),
347 value);
348 }
349
350 /* If true, gdb will automatically use hardware breakpoints for breakpoints
351 set with "break" but falling in read-only memory.
352 If false, gdb will warn about such breakpoints, but won't automatically
353 use hardware breakpoints. */
354 static bool automatic_hardware_breakpoints;
355 static void
356 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
357 struct cmd_list_element *c,
358 const char *value)
359 {
360 fprintf_filtered (file,
361 _("Automatic usage of hardware breakpoints is %s.\n"),
362 value);
363 }
364
365 /* If on, GDB keeps breakpoints inserted even if the inferior is
366 stopped, and immediately inserts any new breakpoints as soon as
367 they're created. If off (default), GDB keeps breakpoints off of
368 the target as long as possible. That is, it delays inserting
369 breakpoints until the next resume, and removes them again when the
370 target fully stops. This is a bit safer in case GDB crashes while
371 processing user input. */
372 static bool always_inserted_mode = false;
373
374 static void
375 show_always_inserted_mode (struct ui_file *file, int from_tty,
376 struct cmd_list_element *c, const char *value)
377 {
378 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
379 value);
380 }
381
382 /* See breakpoint.h. */
383
384 int
385 breakpoints_should_be_inserted_now (void)
386 {
387 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
388 {
389 /* If breakpoints are global, they should be inserted even if no
390 thread under gdb's control is running, or even if there are
391 no threads under GDB's control yet. */
392 return 1;
393 }
394 else
395 {
396 if (always_inserted_mode)
397 {
398 /* The user wants breakpoints inserted even if all threads
399 are stopped. */
400 return 1;
401 }
402
403 for (inferior *inf : all_inferiors ())
404 if (inf->has_execution ()
405 && threads_are_executing (inf->process_target ()))
406 return 1;
407
408 /* Don't remove breakpoints yet if, even though all threads are
409 stopped, we still have events to process. */
410 for (thread_info *tp : all_non_exited_threads ())
411 if (tp->resumed
412 && tp->suspend.waitstatus_pending_p)
413 return 1;
414 }
415 return 0;
416 }
417
418 static const char condition_evaluation_both[] = "host or target";
419
420 /* Modes for breakpoint condition evaluation. */
421 static const char condition_evaluation_auto[] = "auto";
422 static const char condition_evaluation_host[] = "host";
423 static const char condition_evaluation_target[] = "target";
424 static const char *const condition_evaluation_enums[] = {
425 condition_evaluation_auto,
426 condition_evaluation_host,
427 condition_evaluation_target,
428 NULL
429 };
430
431 /* Global that holds the current mode for breakpoint condition evaluation. */
432 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
433
434 /* Global that we use to display information to the user (gets its value from
435 condition_evaluation_mode_1. */
436 static const char *condition_evaluation_mode = condition_evaluation_auto;
437
438 /* Translate a condition evaluation mode MODE into either "host"
439 or "target". This is used mostly to translate from "auto" to the
440 real setting that is being used. It returns the translated
441 evaluation mode. */
442
443 static const char *
444 translate_condition_evaluation_mode (const char *mode)
445 {
446 if (mode == condition_evaluation_auto)
447 {
448 if (target_supports_evaluation_of_breakpoint_conditions ())
449 return condition_evaluation_target;
450 else
451 return condition_evaluation_host;
452 }
453 else
454 return mode;
455 }
456
457 /* Discovers what condition_evaluation_auto translates to. */
458
459 static const char *
460 breakpoint_condition_evaluation_mode (void)
461 {
462 return translate_condition_evaluation_mode (condition_evaluation_mode);
463 }
464
465 /* Return true if GDB should evaluate breakpoint conditions or false
466 otherwise. */
467
468 static int
469 gdb_evaluates_breakpoint_condition_p (void)
470 {
471 const char *mode = breakpoint_condition_evaluation_mode ();
472
473 return (mode == condition_evaluation_host);
474 }
475
476 /* Are we executing breakpoint commands? */
477 static int executing_breakpoint_commands;
478
479 /* Are overlay event breakpoints enabled? */
480 static int overlay_events_enabled;
481
482 /* See description in breakpoint.h. */
483 bool target_exact_watchpoints = false;
484
485 /* Walk the following statement or block through all breakpoints.
486 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
487 current breakpoint. */
488
489 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
490
491 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
492 for (B = breakpoint_chain; \
493 B ? (TMP=B->next, 1): 0; \
494 B = TMP)
495
496 /* Similar iterator for the low-level breakpoints. SAFE variant is
497 not provided so update_global_location_list must not be called
498 while executing the block of ALL_BP_LOCATIONS. */
499
500 #define ALL_BP_LOCATIONS(B,BP_TMP) \
501 for (BP_TMP = bp_locations; \
502 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
503 BP_TMP++)
504
505 /* Iterates through locations with address ADDRESS for the currently selected
506 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
507 to where the loop should start from.
508 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
509 appropriate location to start with. */
510
511 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
512 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
513 BP_LOCP_TMP = BP_LOCP_START; \
514 BP_LOCP_START \
515 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
516 && (*BP_LOCP_TMP)->address == ADDRESS); \
517 BP_LOCP_TMP++)
518
519 /* Iterator for tracepoints only. */
520
521 #define ALL_TRACEPOINTS(B) \
522 for (B = breakpoint_chain; B; B = B->next) \
523 if (is_tracepoint (B))
524
525 /* Chains of all breakpoints defined. */
526
527 static struct breakpoint *breakpoint_chain;
528
529 /* Array is sorted by bp_location_is_less_than - primarily by the ADDRESS. */
530
531 static struct bp_location **bp_locations;
532
533 /* Number of elements of BP_LOCATIONS. */
534
535 static unsigned bp_locations_count;
536
537 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
538 ADDRESS for the current elements of BP_LOCATIONS which get a valid
539 result from bp_location_has_shadow. You can use it for roughly
540 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
541 an address you need to read. */
542
543 static CORE_ADDR bp_locations_placed_address_before_address_max;
544
545 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
546 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
547 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
548 You can use it for roughly limiting the subrange of BP_LOCATIONS to
549 scan for shadow bytes for an address you need to read. */
550
551 static CORE_ADDR bp_locations_shadow_len_after_address_max;
552
553 /* The locations that no longer correspond to any breakpoint, unlinked
554 from the bp_locations array, but for which a hit may still be
555 reported by a target. */
556 static std::vector<bp_location *> moribund_locations;
557
558 /* Number of last breakpoint made. */
559
560 static int breakpoint_count;
561
562 /* The value of `breakpoint_count' before the last command that
563 created breakpoints. If the last (break-like) command created more
564 than one breakpoint, then the difference between BREAKPOINT_COUNT
565 and PREV_BREAKPOINT_COUNT is more than one. */
566 static int prev_breakpoint_count;
567
568 /* Number of last tracepoint made. */
569
570 static int tracepoint_count;
571
572 static struct cmd_list_element *breakpoint_set_cmdlist;
573 static struct cmd_list_element *breakpoint_show_cmdlist;
574 struct cmd_list_element *save_cmdlist;
575
576 /* See declaration at breakpoint.h. */
577
578 struct breakpoint *
579 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
580 void *user_data)
581 {
582 struct breakpoint *b = NULL;
583
584 ALL_BREAKPOINTS (b)
585 {
586 if (func (b, user_data) != 0)
587 break;
588 }
589
590 return b;
591 }
592
593 /* Return whether a breakpoint is an active enabled breakpoint. */
594 static int
595 breakpoint_enabled (struct breakpoint *b)
596 {
597 return (b->enable_state == bp_enabled);
598 }
599
600 /* Set breakpoint count to NUM. */
601
602 static void
603 set_breakpoint_count (int num)
604 {
605 prev_breakpoint_count = breakpoint_count;
606 breakpoint_count = num;
607 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
608 }
609
610 /* Used by `start_rbreak_breakpoints' below, to record the current
611 breakpoint count before "rbreak" creates any breakpoint. */
612 static int rbreak_start_breakpoint_count;
613
614 /* Called at the start an "rbreak" command to record the first
615 breakpoint made. */
616
617 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
618 {
619 rbreak_start_breakpoint_count = breakpoint_count;
620 }
621
622 /* Called at the end of an "rbreak" command to record the last
623 breakpoint made. */
624
625 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
626 {
627 prev_breakpoint_count = rbreak_start_breakpoint_count;
628 }
629
630 /* Used in run_command to zero the hit count when a new run starts. */
631
632 void
633 clear_breakpoint_hit_counts (void)
634 {
635 struct breakpoint *b;
636
637 ALL_BREAKPOINTS (b)
638 b->hit_count = 0;
639 }
640
641 \f
642 /* Return the breakpoint with the specified number, or NULL
643 if the number does not refer to an existing breakpoint. */
644
645 struct breakpoint *
646 get_breakpoint (int num)
647 {
648 struct breakpoint *b;
649
650 ALL_BREAKPOINTS (b)
651 if (b->number == num)
652 return b;
653
654 return NULL;
655 }
656
657 \f
658
659 /* Mark locations as "conditions have changed" in case the target supports
660 evaluating conditions on its side. */
661
662 static void
663 mark_breakpoint_modified (struct breakpoint *b)
664 {
665 struct bp_location *loc;
666
667 /* This is only meaningful if the target is
668 evaluating conditions and if the user has
669 opted for condition evaluation on the target's
670 side. */
671 if (gdb_evaluates_breakpoint_condition_p ()
672 || !target_supports_evaluation_of_breakpoint_conditions ())
673 return;
674
675 if (!is_breakpoint (b))
676 return;
677
678 for (loc = b->loc; loc; loc = loc->next)
679 loc->condition_changed = condition_modified;
680 }
681
682 /* Mark location as "conditions have changed" in case the target supports
683 evaluating conditions on its side. */
684
685 static void
686 mark_breakpoint_location_modified (struct bp_location *loc)
687 {
688 /* This is only meaningful if the target is
689 evaluating conditions and if the user has
690 opted for condition evaluation on the target's
691 side. */
692 if (gdb_evaluates_breakpoint_condition_p ()
693 || !target_supports_evaluation_of_breakpoint_conditions ())
694
695 return;
696
697 if (!is_breakpoint (loc->owner))
698 return;
699
700 loc->condition_changed = condition_modified;
701 }
702
703 /* Sets the condition-evaluation mode using the static global
704 condition_evaluation_mode. */
705
706 static void
707 set_condition_evaluation_mode (const char *args, int from_tty,
708 struct cmd_list_element *c)
709 {
710 const char *old_mode, *new_mode;
711
712 if ((condition_evaluation_mode_1 == condition_evaluation_target)
713 && !target_supports_evaluation_of_breakpoint_conditions ())
714 {
715 condition_evaluation_mode_1 = condition_evaluation_mode;
716 warning (_("Target does not support breakpoint condition evaluation.\n"
717 "Using host evaluation mode instead."));
718 return;
719 }
720
721 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
722 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
723
724 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
725 settings was "auto". */
726 condition_evaluation_mode = condition_evaluation_mode_1;
727
728 /* Only update the mode if the user picked a different one. */
729 if (new_mode != old_mode)
730 {
731 struct bp_location *loc, **loc_tmp;
732 /* If the user switched to a different evaluation mode, we
733 need to synch the changes with the target as follows:
734
735 "host" -> "target": Send all (valid) conditions to the target.
736 "target" -> "host": Remove all the conditions from the target.
737 */
738
739 if (new_mode == condition_evaluation_target)
740 {
741 /* Mark everything modified and synch conditions with the
742 target. */
743 ALL_BP_LOCATIONS (loc, loc_tmp)
744 mark_breakpoint_location_modified (loc);
745 }
746 else
747 {
748 /* Manually mark non-duplicate locations to synch conditions
749 with the target. We do this to remove all the conditions the
750 target knows about. */
751 ALL_BP_LOCATIONS (loc, loc_tmp)
752 if (is_breakpoint (loc->owner) && loc->inserted)
753 loc->needs_update = 1;
754 }
755
756 /* Do the update. */
757 update_global_location_list (UGLL_MAY_INSERT);
758 }
759
760 return;
761 }
762
763 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
764 what "auto" is translating to. */
765
766 static void
767 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
768 struct cmd_list_element *c, const char *value)
769 {
770 if (condition_evaluation_mode == condition_evaluation_auto)
771 fprintf_filtered (file,
772 _("Breakpoint condition evaluation "
773 "mode is %s (currently %s).\n"),
774 value,
775 breakpoint_condition_evaluation_mode ());
776 else
777 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
778 value);
779 }
780
781 /* A comparison function for bp_location AP and BP that is used by
782 bsearch. This comparison function only cares about addresses, unlike
783 the more general bp_location_is_less_than function. */
784
785 static int
786 bp_locations_compare_addrs (const void *ap, const void *bp)
787 {
788 const struct bp_location *a = *(const struct bp_location **) ap;
789 const struct bp_location *b = *(const struct bp_location **) bp;
790
791 if (a->address == b->address)
792 return 0;
793 else
794 return ((a->address > b->address) - (a->address < b->address));
795 }
796
797 /* Helper function to skip all bp_locations with addresses
798 less than ADDRESS. It returns the first bp_location that
799 is greater than or equal to ADDRESS. If none is found, just
800 return NULL. */
801
802 static struct bp_location **
803 get_first_locp_gte_addr (CORE_ADDR address)
804 {
805 struct bp_location dummy_loc;
806 struct bp_location *dummy_locp = &dummy_loc;
807 struct bp_location **locp_found = NULL;
808
809 /* Initialize the dummy location's address field. */
810 dummy_loc.address = address;
811
812 /* Find a close match to the first location at ADDRESS. */
813 locp_found = ((struct bp_location **)
814 bsearch (&dummy_locp, bp_locations, bp_locations_count,
815 sizeof (struct bp_location **),
816 bp_locations_compare_addrs));
817
818 /* Nothing was found, nothing left to do. */
819 if (locp_found == NULL)
820 return NULL;
821
822 /* We may have found a location that is at ADDRESS but is not the first in the
823 location's list. Go backwards (if possible) and locate the first one. */
824 while ((locp_found - 1) >= bp_locations
825 && (*(locp_found - 1))->address == address)
826 locp_found--;
827
828 return locp_found;
829 }
830
831 /* Parse COND_STRING in the context of LOC and set as the condition
832 expression of LOC. BP_NUM is the number of LOC's owner, LOC_NUM is
833 the number of LOC within its owner. In case of parsing error, mark
834 LOC as DISABLED_BY_COND. In case of success, unset DISABLED_BY_COND. */
835
836 static void
837 set_breakpoint_location_condition (const char *cond_string, bp_location *loc,
838 int bp_num, int loc_num)
839 {
840 bool has_junk = false;
841 try
842 {
843 expression_up new_exp = parse_exp_1 (&cond_string, loc->address,
844 block_for_pc (loc->address), 0);
845 if (*cond_string != 0)
846 has_junk = true;
847 else
848 {
849 loc->cond = std::move (new_exp);
850 if (loc->disabled_by_cond && loc->enabled)
851 printf_filtered (_("Breakpoint %d's condition is now valid at "
852 "location %d, enabling.\n"),
853 bp_num, loc_num);
854
855 loc->disabled_by_cond = false;
856 }
857 }
858 catch (const gdb_exception_error &e)
859 {
860 if (loc->enabled)
861 {
862 /* Warn if a user-enabled location is now becoming disabled-by-cond.
863 BP_NUM is 0 if the breakpoint is being defined for the first
864 time using the "break ... if ..." command, and non-zero if
865 already defined. */
866 if (bp_num != 0)
867 warning (_("failed to validate condition at location %d.%d, "
868 "disabling:\n %s"), bp_num, loc_num, e.what ());
869 else
870 warning (_("failed to validate condition at location %d, "
871 "disabling:\n %s"), loc_num, e.what ());
872 }
873
874 loc->disabled_by_cond = true;
875 }
876
877 if (has_junk)
878 error (_("Garbage '%s' follows condition"), cond_string);
879 }
880
881 void
882 set_breakpoint_condition (struct breakpoint *b, const char *exp,
883 int from_tty, bool force)
884 {
885 if (*exp == 0)
886 {
887 xfree (b->cond_string);
888 b->cond_string = nullptr;
889
890 if (is_watchpoint (b))
891 static_cast<watchpoint *> (b)->cond_exp.reset ();
892 else
893 {
894 int loc_num = 1;
895 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
896 {
897 loc->cond.reset ();
898 if (loc->disabled_by_cond && loc->enabled)
899 printf_filtered (_("Breakpoint %d's condition is now valid at "
900 "location %d, enabling.\n"),
901 b->number, loc_num);
902 loc->disabled_by_cond = false;
903 loc_num++;
904
905 /* No need to free the condition agent expression
906 bytecode (if we have one). We will handle this
907 when we go through update_global_location_list. */
908 }
909 }
910
911 if (from_tty)
912 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
913 }
914 else
915 {
916 if (is_watchpoint (b))
917 {
918 innermost_block_tracker tracker;
919 const char *arg = exp;
920 expression_up new_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
921 if (*arg != 0)
922 error (_("Junk at end of expression"));
923 watchpoint *w = static_cast<watchpoint *> (b);
924 w->cond_exp = std::move (new_exp);
925 w->cond_exp_valid_block = tracker.block ();
926 }
927 else
928 {
929 /* Parse and set condition expressions. We make two passes.
930 In the first, we parse the condition string to see if it
931 is valid in at least one location. If so, the condition
932 would be accepted. So we go ahead and set the locations'
933 conditions. In case no valid case is found, we throw
934 the error and the condition string will be rejected.
935 This two-pass approach is taken to avoid setting the
936 state of locations in case of a reject. */
937 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
938 {
939 try
940 {
941 const char *arg = exp;
942 parse_exp_1 (&arg, loc->address,
943 block_for_pc (loc->address), 0);
944 if (*arg != 0)
945 error (_("Junk at end of expression"));
946 break;
947 }
948 catch (const gdb_exception_error &e)
949 {
950 /* Condition string is invalid. If this happens to
951 be the last loc, abandon (if not forced) or continue
952 (if forced). */
953 if (loc->next == nullptr && !force)
954 throw;
955 }
956 }
957
958 /* If we reach here, the condition is valid at some locations. */
959 int loc_num = 1;
960 for (bp_location *loc = b->loc; loc != nullptr;
961 loc = loc->next, loc_num++)
962 set_breakpoint_location_condition (exp, loc, b->number, loc_num);
963 }
964
965 /* We know that the new condition parsed successfully. The
966 condition string of the breakpoint can be safely updated. */
967 xfree (b->cond_string);
968 b->cond_string = xstrdup (exp);
969 b->condition_not_parsed = 0;
970 }
971 mark_breakpoint_modified (b);
972
973 gdb::observers::breakpoint_modified.notify (b);
974 }
975
976 /* The options for the "condition" command. */
977
978 struct condition_command_opts
979 {
980 /* For "-force". */
981 bool force_condition = false;
982 };
983
984 static const gdb::option::option_def condition_command_option_defs[] = {
985
986 gdb::option::flag_option_def<condition_command_opts> {
987 "force",
988 [] (condition_command_opts *opts) { return &opts->force_condition; },
989 N_("Set the condition even if it is invalid for all current locations."),
990 },
991
992 };
993
994 /* Create an option_def_group for the "condition" options, with
995 CC_OPTS as context. */
996
997 static inline gdb::option::option_def_group
998 make_condition_command_options_def_group (condition_command_opts *cc_opts)
999 {
1000 return {{condition_command_option_defs}, cc_opts};
1001 }
1002
1003 /* Completion for the "condition" command. */
1004
1005 static void
1006 condition_completer (struct cmd_list_element *cmd,
1007 completion_tracker &tracker,
1008 const char *text, const char * /*word*/)
1009 {
1010 bool has_no_arguments = (*text == '\0');
1011 condition_command_opts cc_opts;
1012 const auto group = make_condition_command_options_def_group (&cc_opts);
1013 if (gdb::option::complete_options
1014 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group))
1015 return;
1016
1017 text = skip_spaces (text);
1018 const char *space = skip_to_space (text);
1019 if (*space == '\0')
1020 {
1021 int len;
1022 struct breakpoint *b;
1023
1024 if (text[0] == '$')
1025 {
1026 tracker.advance_custom_word_point_by (1);
1027 /* We don't support completion of history indices. */
1028 if (!isdigit (text[1]))
1029 complete_internalvar (tracker, &text[1]);
1030 return;
1031 }
1032
1033 /* Suggest the "-force" flag if no arguments are given. If
1034 arguments were passed, they either already include the flag,
1035 or we are beyond the point of suggesting it because it's
1036 positionally the first argument. */
1037 if (has_no_arguments)
1038 gdb::option::complete_on_all_options (tracker, group);
1039
1040 /* We're completing the breakpoint number. */
1041 len = strlen (text);
1042
1043 ALL_BREAKPOINTS (b)
1044 {
1045 char number[50];
1046
1047 xsnprintf (number, sizeof (number), "%d", b->number);
1048
1049 if (strncmp (number, text, len) == 0)
1050 tracker.add_completion (make_unique_xstrdup (number));
1051 }
1052
1053 return;
1054 }
1055
1056 /* We're completing the expression part. Skip the breakpoint num. */
1057 const char *exp_start = skip_spaces (space);
1058 tracker.advance_custom_word_point_by (exp_start - text);
1059 text = exp_start;
1060 const char *word = advance_to_expression_complete_word_point (tracker, text);
1061 expression_completer (cmd, tracker, text, word);
1062 }
1063
1064 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1065
1066 static void
1067 condition_command (const char *arg, int from_tty)
1068 {
1069 struct breakpoint *b;
1070 const char *p;
1071 int bnum;
1072
1073 if (arg == 0)
1074 error_no_arg (_("breakpoint number"));
1075
1076 p = arg;
1077
1078 /* Check if the "-force" flag was passed. */
1079 condition_command_opts cc_opts;
1080 const auto group = make_condition_command_options_def_group (&cc_opts);
1081 gdb::option::process_options
1082 (&p, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
1083
1084 bnum = get_number (&p);
1085 if (bnum == 0)
1086 error (_("Bad breakpoint argument: '%s'"), arg);
1087
1088 ALL_BREAKPOINTS (b)
1089 if (b->number == bnum)
1090 {
1091 /* Check if this breakpoint has a "stop" method implemented in an
1092 extension language. This method and conditions entered into GDB
1093 from the CLI are mutually exclusive. */
1094 const struct extension_language_defn *extlang
1095 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1096
1097 if (extlang != NULL)
1098 {
1099 error (_("Only one stop condition allowed. There is currently"
1100 " a %s stop condition defined for this breakpoint."),
1101 ext_lang_capitalized_name (extlang));
1102 }
1103 set_breakpoint_condition (b, p, from_tty, cc_opts.force_condition);
1104
1105 if (is_breakpoint (b))
1106 update_global_location_list (UGLL_MAY_INSERT);
1107
1108 return;
1109 }
1110
1111 error (_("No breakpoint number %d."), bnum);
1112 }
1113
1114 /* Check that COMMAND do not contain commands that are suitable
1115 only for tracepoints and not suitable for ordinary breakpoints.
1116 Throw if any such commands is found. */
1117
1118 static void
1119 check_no_tracepoint_commands (struct command_line *commands)
1120 {
1121 struct command_line *c;
1122
1123 for (c = commands; c; c = c->next)
1124 {
1125 if (c->control_type == while_stepping_control)
1126 error (_("The 'while-stepping' command can "
1127 "only be used for tracepoints"));
1128
1129 check_no_tracepoint_commands (c->body_list_0.get ());
1130 check_no_tracepoint_commands (c->body_list_1.get ());
1131
1132 /* Not that command parsing removes leading whitespace and comment
1133 lines and also empty lines. So, we only need to check for
1134 command directly. */
1135 if (strstr (c->line, "collect ") == c->line)
1136 error (_("The 'collect' command can only be used for tracepoints"));
1137
1138 if (strstr (c->line, "teval ") == c->line)
1139 error (_("The 'teval' command can only be used for tracepoints"));
1140 }
1141 }
1142
1143 struct longjmp_breakpoint : public breakpoint
1144 {
1145 ~longjmp_breakpoint () override;
1146 };
1147
1148 /* Encapsulate tests for different types of tracepoints. */
1149
1150 static bool
1151 is_tracepoint_type (bptype type)
1152 {
1153 return (type == bp_tracepoint
1154 || type == bp_fast_tracepoint
1155 || type == bp_static_tracepoint);
1156 }
1157
1158 static bool
1159 is_longjmp_type (bptype type)
1160 {
1161 return type == bp_longjmp || type == bp_exception;
1162 }
1163
1164 /* See breakpoint.h. */
1165
1166 bool
1167 is_tracepoint (const struct breakpoint *b)
1168 {
1169 return is_tracepoint_type (b->type);
1170 }
1171
1172 /* Factory function to create an appropriate instance of breakpoint given
1173 TYPE. */
1174
1175 static std::unique_ptr<breakpoint>
1176 new_breakpoint_from_type (bptype type)
1177 {
1178 breakpoint *b;
1179
1180 if (is_tracepoint_type (type))
1181 b = new tracepoint ();
1182 else if (is_longjmp_type (type))
1183 b = new longjmp_breakpoint ();
1184 else
1185 b = new breakpoint ();
1186
1187 return std::unique_ptr<breakpoint> (b);
1188 }
1189
1190 /* A helper function that validates that COMMANDS are valid for a
1191 breakpoint. This function will throw an exception if a problem is
1192 found. */
1193
1194 static void
1195 validate_commands_for_breakpoint (struct breakpoint *b,
1196 struct command_line *commands)
1197 {
1198 if (is_tracepoint (b))
1199 {
1200 struct tracepoint *t = (struct tracepoint *) b;
1201 struct command_line *c;
1202 struct command_line *while_stepping = 0;
1203
1204 /* Reset the while-stepping step count. The previous commands
1205 might have included a while-stepping action, while the new
1206 ones might not. */
1207 t->step_count = 0;
1208
1209 /* We need to verify that each top-level element of commands is
1210 valid for tracepoints, that there's at most one
1211 while-stepping element, and that the while-stepping's body
1212 has valid tracing commands excluding nested while-stepping.
1213 We also need to validate the tracepoint action line in the
1214 context of the tracepoint --- validate_actionline actually
1215 has side effects, like setting the tracepoint's
1216 while-stepping STEP_COUNT, in addition to checking if the
1217 collect/teval actions parse and make sense in the
1218 tracepoint's context. */
1219 for (c = commands; c; c = c->next)
1220 {
1221 if (c->control_type == while_stepping_control)
1222 {
1223 if (b->type == bp_fast_tracepoint)
1224 error (_("The 'while-stepping' command "
1225 "cannot be used for fast tracepoint"));
1226 else if (b->type == bp_static_tracepoint)
1227 error (_("The 'while-stepping' command "
1228 "cannot be used for static tracepoint"));
1229
1230 if (while_stepping)
1231 error (_("The 'while-stepping' command "
1232 "can be used only once"));
1233 else
1234 while_stepping = c;
1235 }
1236
1237 validate_actionline (c->line, b);
1238 }
1239 if (while_stepping)
1240 {
1241 struct command_line *c2;
1242
1243 gdb_assert (while_stepping->body_list_1 == nullptr);
1244 c2 = while_stepping->body_list_0.get ();
1245 for (; c2; c2 = c2->next)
1246 {
1247 if (c2->control_type == while_stepping_control)
1248 error (_("The 'while-stepping' command cannot be nested"));
1249 }
1250 }
1251 }
1252 else
1253 {
1254 check_no_tracepoint_commands (commands);
1255 }
1256 }
1257
1258 /* Return a vector of all the static tracepoints set at ADDR. The
1259 caller is responsible for releasing the vector. */
1260
1261 std::vector<breakpoint *>
1262 static_tracepoints_here (CORE_ADDR addr)
1263 {
1264 struct breakpoint *b;
1265 std::vector<breakpoint *> found;
1266 struct bp_location *loc;
1267
1268 ALL_BREAKPOINTS (b)
1269 if (b->type == bp_static_tracepoint)
1270 {
1271 for (loc = b->loc; loc; loc = loc->next)
1272 if (loc->address == addr)
1273 found.push_back (b);
1274 }
1275
1276 return found;
1277 }
1278
1279 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1280 validate that only allowed commands are included. */
1281
1282 void
1283 breakpoint_set_commands (struct breakpoint *b,
1284 counted_command_line &&commands)
1285 {
1286 validate_commands_for_breakpoint (b, commands.get ());
1287
1288 b->commands = std::move (commands);
1289 gdb::observers::breakpoint_modified.notify (b);
1290 }
1291
1292 /* Set the internal `silent' flag on the breakpoint. Note that this
1293 is not the same as the "silent" that may appear in the breakpoint's
1294 commands. */
1295
1296 void
1297 breakpoint_set_silent (struct breakpoint *b, int silent)
1298 {
1299 int old_silent = b->silent;
1300
1301 b->silent = silent;
1302 if (old_silent != silent)
1303 gdb::observers::breakpoint_modified.notify (b);
1304 }
1305
1306 /* Set the thread for this breakpoint. If THREAD is -1, make the
1307 breakpoint work for any thread. */
1308
1309 void
1310 breakpoint_set_thread (struct breakpoint *b, int thread)
1311 {
1312 int old_thread = b->thread;
1313
1314 b->thread = thread;
1315 if (old_thread != thread)
1316 gdb::observers::breakpoint_modified.notify (b);
1317 }
1318
1319 /* Set the task for this breakpoint. If TASK is 0, make the
1320 breakpoint work for any task. */
1321
1322 void
1323 breakpoint_set_task (struct breakpoint *b, int task)
1324 {
1325 int old_task = b->task;
1326
1327 b->task = task;
1328 if (old_task != task)
1329 gdb::observers::breakpoint_modified.notify (b);
1330 }
1331
1332 static void
1333 commands_command_1 (const char *arg, int from_tty,
1334 struct command_line *control)
1335 {
1336 counted_command_line cmd;
1337 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1338 NULL after the call to read_command_lines if the user provides an empty
1339 list of command by just typing "end". */
1340 bool cmd_read = false;
1341
1342 std::string new_arg;
1343
1344 if (arg == NULL || !*arg)
1345 {
1346 /* Argument not explicitly given. Synthesize it. */
1347 if (breakpoint_count - prev_breakpoint_count > 1)
1348 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1349 breakpoint_count);
1350 else if (breakpoint_count > 0)
1351 new_arg = string_printf ("%d", breakpoint_count);
1352 }
1353 else
1354 {
1355 /* Create a copy of ARG. This is needed because the "commands"
1356 command may be coming from a script. In that case, the read
1357 line buffer is going to be overwritten in the lambda of
1358 'map_breakpoint_numbers' below when reading the next line
1359 before we are are done parsing the breakpoint numbers. */
1360 new_arg = arg;
1361 }
1362 arg = new_arg.c_str ();
1363
1364 map_breakpoint_numbers
1365 (arg, [&] (breakpoint *b)
1366 {
1367 if (!cmd_read)
1368 {
1369 gdb_assert (cmd == NULL);
1370 if (control != NULL)
1371 cmd = control->body_list_0;
1372 else
1373 {
1374 std::string str
1375 = string_printf (_("Type commands for breakpoint(s) "
1376 "%s, one per line."),
1377 arg);
1378
1379 auto do_validate = [=] (const char *line)
1380 {
1381 validate_actionline (line, b);
1382 };
1383 gdb::function_view<void (const char *)> validator;
1384 if (is_tracepoint (b))
1385 validator = do_validate;
1386
1387 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1388 }
1389 cmd_read = true;
1390 }
1391
1392 /* If a breakpoint was on the list more than once, we don't need to
1393 do anything. */
1394 if (b->commands != cmd)
1395 {
1396 validate_commands_for_breakpoint (b, cmd.get ());
1397 b->commands = cmd;
1398 gdb::observers::breakpoint_modified.notify (b);
1399 }
1400 });
1401 }
1402
1403 static void
1404 commands_command (const char *arg, int from_tty)
1405 {
1406 commands_command_1 (arg, from_tty, NULL);
1407 }
1408
1409 /* Like commands_command, but instead of reading the commands from
1410 input stream, takes them from an already parsed command structure.
1411
1412 This is used by cli-script.c to DTRT with breakpoint commands
1413 that are part of if and while bodies. */
1414 enum command_control_type
1415 commands_from_control_command (const char *arg, struct command_line *cmd)
1416 {
1417 commands_command_1 (arg, 0, cmd);
1418 return simple_control;
1419 }
1420
1421 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1422
1423 static int
1424 bp_location_has_shadow (struct bp_location *bl)
1425 {
1426 if (bl->loc_type != bp_loc_software_breakpoint)
1427 return 0;
1428 if (!bl->inserted)
1429 return 0;
1430 if (bl->target_info.shadow_len == 0)
1431 /* BL isn't valid, or doesn't shadow memory. */
1432 return 0;
1433 return 1;
1434 }
1435
1436 /* Update BUF, which is LEN bytes read from the target address
1437 MEMADDR, by replacing a memory breakpoint with its shadowed
1438 contents.
1439
1440 If READBUF is not NULL, this buffer must not overlap with the of
1441 the breakpoint location's shadow_contents buffer. Otherwise, a
1442 failed assertion internal error will be raised. */
1443
1444 static void
1445 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1446 const gdb_byte *writebuf_org,
1447 ULONGEST memaddr, LONGEST len,
1448 struct bp_target_info *target_info,
1449 struct gdbarch *gdbarch)
1450 {
1451 /* Now do full processing of the found relevant range of elements. */
1452 CORE_ADDR bp_addr = 0;
1453 int bp_size = 0;
1454 int bptoffset = 0;
1455
1456 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1457 current_program_space->aspace, 0))
1458 {
1459 /* The breakpoint is inserted in a different address space. */
1460 return;
1461 }
1462
1463 /* Addresses and length of the part of the breakpoint that
1464 we need to copy. */
1465 bp_addr = target_info->placed_address;
1466 bp_size = target_info->shadow_len;
1467
1468 if (bp_addr + bp_size <= memaddr)
1469 {
1470 /* The breakpoint is entirely before the chunk of memory we are
1471 reading. */
1472 return;
1473 }
1474
1475 if (bp_addr >= memaddr + len)
1476 {
1477 /* The breakpoint is entirely after the chunk of memory we are
1478 reading. */
1479 return;
1480 }
1481
1482 /* Offset within shadow_contents. */
1483 if (bp_addr < memaddr)
1484 {
1485 /* Only copy the second part of the breakpoint. */
1486 bp_size -= memaddr - bp_addr;
1487 bptoffset = memaddr - bp_addr;
1488 bp_addr = memaddr;
1489 }
1490
1491 if (bp_addr + bp_size > memaddr + len)
1492 {
1493 /* Only copy the first part of the breakpoint. */
1494 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1495 }
1496
1497 if (readbuf != NULL)
1498 {
1499 /* Verify that the readbuf buffer does not overlap with the
1500 shadow_contents buffer. */
1501 gdb_assert (target_info->shadow_contents >= readbuf + len
1502 || readbuf >= (target_info->shadow_contents
1503 + target_info->shadow_len));
1504
1505 /* Update the read buffer with this inserted breakpoint's
1506 shadow. */
1507 memcpy (readbuf + bp_addr - memaddr,
1508 target_info->shadow_contents + bptoffset, bp_size);
1509 }
1510 else
1511 {
1512 const unsigned char *bp;
1513 CORE_ADDR addr = target_info->reqstd_address;
1514 int placed_size;
1515
1516 /* Update the shadow with what we want to write to memory. */
1517 memcpy (target_info->shadow_contents + bptoffset,
1518 writebuf_org + bp_addr - memaddr, bp_size);
1519
1520 /* Determine appropriate breakpoint contents and size for this
1521 address. */
1522 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1523
1524 /* Update the final write buffer with this inserted
1525 breakpoint's INSN. */
1526 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1527 }
1528 }
1529
1530 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1531 by replacing any memory breakpoints with their shadowed contents.
1532
1533 If READBUF is not NULL, this buffer must not overlap with any of
1534 the breakpoint location's shadow_contents buffers. Otherwise,
1535 a failed assertion internal error will be raised.
1536
1537 The range of shadowed area by each bp_location is:
1538 bl->address - bp_locations_placed_address_before_address_max
1539 up to bl->address + bp_locations_shadow_len_after_address_max
1540 The range we were requested to resolve shadows for is:
1541 memaddr ... memaddr + len
1542 Thus the safe cutoff boundaries for performance optimization are
1543 memaddr + len <= (bl->address
1544 - bp_locations_placed_address_before_address_max)
1545 and:
1546 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1547
1548 void
1549 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1550 const gdb_byte *writebuf_org,
1551 ULONGEST memaddr, LONGEST len)
1552 {
1553 /* Left boundary, right boundary and median element of our binary
1554 search. */
1555 unsigned bc_l, bc_r, bc;
1556
1557 /* Find BC_L which is a leftmost element which may affect BUF
1558 content. It is safe to report lower value but a failure to
1559 report higher one. */
1560
1561 bc_l = 0;
1562 bc_r = bp_locations_count;
1563 while (bc_l + 1 < bc_r)
1564 {
1565 struct bp_location *bl;
1566
1567 bc = (bc_l + bc_r) / 2;
1568 bl = bp_locations[bc];
1569
1570 /* Check first BL->ADDRESS will not overflow due to the added
1571 constant. Then advance the left boundary only if we are sure
1572 the BC element can in no way affect the BUF content (MEMADDR
1573 to MEMADDR + LEN range).
1574
1575 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1576 offset so that we cannot miss a breakpoint with its shadow
1577 range tail still reaching MEMADDR. */
1578
1579 if ((bl->address + bp_locations_shadow_len_after_address_max
1580 >= bl->address)
1581 && (bl->address + bp_locations_shadow_len_after_address_max
1582 <= memaddr))
1583 bc_l = bc;
1584 else
1585 bc_r = bc;
1586 }
1587
1588 /* Due to the binary search above, we need to make sure we pick the
1589 first location that's at BC_L's address. E.g., if there are
1590 multiple locations at the same address, BC_L may end up pointing
1591 at a duplicate location, and miss the "master"/"inserted"
1592 location. Say, given locations L1, L2 and L3 at addresses A and
1593 B:
1594
1595 L1@A, L2@A, L3@B, ...
1596
1597 BC_L could end up pointing at location L2, while the "master"
1598 location could be L1. Since the `loc->inserted' flag is only set
1599 on "master" locations, we'd forget to restore the shadow of L1
1600 and L2. */
1601 while (bc_l > 0
1602 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1603 bc_l--;
1604
1605 /* Now do full processing of the found relevant range of elements. */
1606
1607 for (bc = bc_l; bc < bp_locations_count; bc++)
1608 {
1609 struct bp_location *bl = bp_locations[bc];
1610
1611 /* bp_location array has BL->OWNER always non-NULL. */
1612 if (bl->owner->type == bp_none)
1613 warning (_("reading through apparently deleted breakpoint #%d?"),
1614 bl->owner->number);
1615
1616 /* Performance optimization: any further element can no longer affect BUF
1617 content. */
1618
1619 if (bl->address >= bp_locations_placed_address_before_address_max
1620 && memaddr + len <= (bl->address
1621 - bp_locations_placed_address_before_address_max))
1622 break;
1623
1624 if (!bp_location_has_shadow (bl))
1625 continue;
1626
1627 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1628 memaddr, len, &bl->target_info, bl->gdbarch);
1629 }
1630 }
1631
1632 /* See breakpoint.h. */
1633
1634 bool
1635 is_breakpoint (const struct breakpoint *bpt)
1636 {
1637 return (bpt->type == bp_breakpoint
1638 || bpt->type == bp_hardware_breakpoint
1639 || bpt->type == bp_dprintf);
1640 }
1641
1642 /* Return true if BPT is of any hardware watchpoint kind. */
1643
1644 static bool
1645 is_hardware_watchpoint (const struct breakpoint *bpt)
1646 {
1647 return (bpt->type == bp_hardware_watchpoint
1648 || bpt->type == bp_read_watchpoint
1649 || bpt->type == bp_access_watchpoint);
1650 }
1651
1652 /* See breakpoint.h. */
1653
1654 bool
1655 is_watchpoint (const struct breakpoint *bpt)
1656 {
1657 return (is_hardware_watchpoint (bpt)
1658 || bpt->type == bp_watchpoint);
1659 }
1660
1661 /* Returns true if the current thread and its running state are safe
1662 to evaluate or update watchpoint B. Watchpoints on local
1663 expressions need to be evaluated in the context of the thread that
1664 was current when the watchpoint was created, and, that thread needs
1665 to be stopped to be able to select the correct frame context.
1666 Watchpoints on global expressions can be evaluated on any thread,
1667 and in any state. It is presently left to the target allowing
1668 memory accesses when threads are running. */
1669
1670 static int
1671 watchpoint_in_thread_scope (struct watchpoint *b)
1672 {
1673 return (b->pspace == current_program_space
1674 && (b->watchpoint_thread == null_ptid
1675 || (inferior_ptid == b->watchpoint_thread
1676 && !inferior_thread ()->executing)));
1677 }
1678
1679 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1680 associated bp_watchpoint_scope breakpoint. */
1681
1682 static void
1683 watchpoint_del_at_next_stop (struct watchpoint *w)
1684 {
1685 if (w->related_breakpoint != w)
1686 {
1687 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1688 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1689 w->related_breakpoint->disposition = disp_del_at_next_stop;
1690 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1691 w->related_breakpoint = w;
1692 }
1693 w->disposition = disp_del_at_next_stop;
1694 }
1695
1696 /* Extract a bitfield value from value VAL using the bit parameters contained in
1697 watchpoint W. */
1698
1699 static struct value *
1700 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1701 {
1702 struct value *bit_val;
1703
1704 if (val == NULL)
1705 return NULL;
1706
1707 bit_val = allocate_value (value_type (val));
1708
1709 unpack_value_bitfield (bit_val,
1710 w->val_bitpos,
1711 w->val_bitsize,
1712 value_contents_for_printing (val),
1713 value_offset (val),
1714 val);
1715
1716 return bit_val;
1717 }
1718
1719 /* Allocate a dummy location and add it to B, which must be a software
1720 watchpoint. This is required because even if a software watchpoint
1721 is not watching any memory, bpstat_stop_status requires a location
1722 to be able to report stops. */
1723
1724 static void
1725 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1726 struct program_space *pspace)
1727 {
1728 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1729
1730 b->loc = allocate_bp_location (b);
1731 b->loc->pspace = pspace;
1732 b->loc->address = -1;
1733 b->loc->length = -1;
1734 }
1735
1736 /* Returns true if B is a software watchpoint that is not watching any
1737 memory (e.g., "watch $pc"). */
1738
1739 static bool
1740 is_no_memory_software_watchpoint (struct breakpoint *b)
1741 {
1742 return (b->type == bp_watchpoint
1743 && b->loc != NULL
1744 && b->loc->next == NULL
1745 && b->loc->address == -1
1746 && b->loc->length == -1);
1747 }
1748
1749 /* Assuming that B is a watchpoint:
1750 - Reparse watchpoint expression, if REPARSE is non-zero
1751 - Evaluate expression and store the result in B->val
1752 - Evaluate the condition if there is one, and store the result
1753 in b->loc->cond.
1754 - Update the list of values that must be watched in B->loc.
1755
1756 If the watchpoint disposition is disp_del_at_next_stop, then do
1757 nothing. If this is local watchpoint that is out of scope, delete
1758 it.
1759
1760 Even with `set breakpoint always-inserted on' the watchpoints are
1761 removed + inserted on each stop here. Normal breakpoints must
1762 never be removed because they might be missed by a running thread
1763 when debugging in non-stop mode. On the other hand, hardware
1764 watchpoints (is_hardware_watchpoint; processed here) are specific
1765 to each LWP since they are stored in each LWP's hardware debug
1766 registers. Therefore, such LWP must be stopped first in order to
1767 be able to modify its hardware watchpoints.
1768
1769 Hardware watchpoints must be reset exactly once after being
1770 presented to the user. It cannot be done sooner, because it would
1771 reset the data used to present the watchpoint hit to the user. And
1772 it must not be done later because it could display the same single
1773 watchpoint hit during multiple GDB stops. Note that the latter is
1774 relevant only to the hardware watchpoint types bp_read_watchpoint
1775 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1776 not user-visible - its hit is suppressed if the memory content has
1777 not changed.
1778
1779 The following constraints influence the location where we can reset
1780 hardware watchpoints:
1781
1782 * target_stopped_by_watchpoint and target_stopped_data_address are
1783 called several times when GDB stops.
1784
1785 [linux]
1786 * Multiple hardware watchpoints can be hit at the same time,
1787 causing GDB to stop. GDB only presents one hardware watchpoint
1788 hit at a time as the reason for stopping, and all the other hits
1789 are presented later, one after the other, each time the user
1790 requests the execution to be resumed. Execution is not resumed
1791 for the threads still having pending hit event stored in
1792 LWP_INFO->STATUS. While the watchpoint is already removed from
1793 the inferior on the first stop the thread hit event is kept being
1794 reported from its cached value by linux_nat_stopped_data_address
1795 until the real thread resume happens after the watchpoint gets
1796 presented and thus its LWP_INFO->STATUS gets reset.
1797
1798 Therefore the hardware watchpoint hit can get safely reset on the
1799 watchpoint removal from inferior. */
1800
1801 static void
1802 update_watchpoint (struct watchpoint *b, int reparse)
1803 {
1804 int within_current_scope;
1805 struct frame_id saved_frame_id;
1806 int frame_saved;
1807
1808 /* If this is a local watchpoint, we only want to check if the
1809 watchpoint frame is in scope if the current thread is the thread
1810 that was used to create the watchpoint. */
1811 if (!watchpoint_in_thread_scope (b))
1812 return;
1813
1814 if (b->disposition == disp_del_at_next_stop)
1815 return;
1816
1817 frame_saved = 0;
1818
1819 /* Determine if the watchpoint is within scope. */
1820 if (b->exp_valid_block == NULL)
1821 within_current_scope = 1;
1822 else
1823 {
1824 struct frame_info *fi = get_current_frame ();
1825 struct gdbarch *frame_arch = get_frame_arch (fi);
1826 CORE_ADDR frame_pc = get_frame_pc (fi);
1827
1828 /* If we're at a point where the stack has been destroyed
1829 (e.g. in a function epilogue), unwinding may not work
1830 properly. Do not attempt to recreate locations at this
1831 point. See similar comments in watchpoint_check. */
1832 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1833 return;
1834
1835 /* Save the current frame's ID so we can restore it after
1836 evaluating the watchpoint expression on its own frame. */
1837 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1838 took a frame parameter, so that we didn't have to change the
1839 selected frame. */
1840 frame_saved = 1;
1841 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1842
1843 fi = frame_find_by_id (b->watchpoint_frame);
1844 within_current_scope = (fi != NULL);
1845 if (within_current_scope)
1846 select_frame (fi);
1847 }
1848
1849 /* We don't free locations. They are stored in the bp_location array
1850 and update_global_location_list will eventually delete them and
1851 remove breakpoints if needed. */
1852 b->loc = NULL;
1853
1854 if (within_current_scope && reparse)
1855 {
1856 const char *s;
1857
1858 b->exp.reset ();
1859 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1860 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1861 /* If the meaning of expression itself changed, the old value is
1862 no longer relevant. We don't want to report a watchpoint hit
1863 to the user when the old value and the new value may actually
1864 be completely different objects. */
1865 b->val = NULL;
1866 b->val_valid = false;
1867
1868 /* Note that unlike with breakpoints, the watchpoint's condition
1869 expression is stored in the breakpoint object, not in the
1870 locations (re)created below. */
1871 if (b->cond_string != NULL)
1872 {
1873 b->cond_exp.reset ();
1874
1875 s = b->cond_string;
1876 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1877 }
1878 }
1879
1880 /* If we failed to parse the expression, for example because
1881 it refers to a global variable in a not-yet-loaded shared library,
1882 don't try to insert watchpoint. We don't automatically delete
1883 such watchpoint, though, since failure to parse expression
1884 is different from out-of-scope watchpoint. */
1885 if (!target_has_execution ())
1886 {
1887 /* Without execution, memory can't change. No use to try and
1888 set watchpoint locations. The watchpoint will be reset when
1889 the target gains execution, through breakpoint_re_set. */
1890 if (!can_use_hw_watchpoints)
1891 {
1892 if (b->ops->works_in_software_mode (b))
1893 b->type = bp_watchpoint;
1894 else
1895 error (_("Can't set read/access watchpoint when "
1896 "hardware watchpoints are disabled."));
1897 }
1898 }
1899 else if (within_current_scope && b->exp)
1900 {
1901 std::vector<value_ref_ptr> val_chain;
1902 struct value *v, *result;
1903 struct program_space *frame_pspace;
1904
1905 fetch_subexp_value (b->exp.get (), b->exp->op.get (), &v, &result,
1906 &val_chain, false);
1907
1908 /* Avoid setting b->val if it's already set. The meaning of
1909 b->val is 'the last value' user saw, and we should update
1910 it only if we reported that last value to user. As it
1911 happens, the code that reports it updates b->val directly.
1912 We don't keep track of the memory value for masked
1913 watchpoints. */
1914 if (!b->val_valid && !is_masked_watchpoint (b))
1915 {
1916 if (b->val_bitsize != 0)
1917 v = extract_bitfield_from_watchpoint_value (b, v);
1918 b->val = release_value (v);
1919 b->val_valid = true;
1920 }
1921
1922 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1923
1924 /* Look at each value on the value chain. */
1925 gdb_assert (!val_chain.empty ());
1926 for (const value_ref_ptr &iter : val_chain)
1927 {
1928 v = iter.get ();
1929
1930 /* If it's a memory location, and GDB actually needed
1931 its contents to evaluate the expression, then we
1932 must watch it. If the first value returned is
1933 still lazy, that means an error occurred reading it;
1934 watch it anyway in case it becomes readable. */
1935 if (VALUE_LVAL (v) == lval_memory
1936 && (v == val_chain[0] || ! value_lazy (v)))
1937 {
1938 struct type *vtype = check_typedef (value_type (v));
1939
1940 /* We only watch structs and arrays if user asked
1941 for it explicitly, never if they just happen to
1942 appear in the middle of some value chain. */
1943 if (v == result
1944 || (vtype->code () != TYPE_CODE_STRUCT
1945 && vtype->code () != TYPE_CODE_ARRAY))
1946 {
1947 CORE_ADDR addr;
1948 enum target_hw_bp_type type;
1949 struct bp_location *loc, **tmp;
1950 int bitpos = 0, bitsize = 0;
1951
1952 if (value_bitsize (v) != 0)
1953 {
1954 /* Extract the bit parameters out from the bitfield
1955 sub-expression. */
1956 bitpos = value_bitpos (v);
1957 bitsize = value_bitsize (v);
1958 }
1959 else if (v == result && b->val_bitsize != 0)
1960 {
1961 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1962 lvalue whose bit parameters are saved in the fields
1963 VAL_BITPOS and VAL_BITSIZE. */
1964 bitpos = b->val_bitpos;
1965 bitsize = b->val_bitsize;
1966 }
1967
1968 addr = value_address (v);
1969 if (bitsize != 0)
1970 {
1971 /* Skip the bytes that don't contain the bitfield. */
1972 addr += bitpos / 8;
1973 }
1974
1975 type = hw_write;
1976 if (b->type == bp_read_watchpoint)
1977 type = hw_read;
1978 else if (b->type == bp_access_watchpoint)
1979 type = hw_access;
1980
1981 loc = allocate_bp_location (b);
1982 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1983 ;
1984 *tmp = loc;
1985 loc->gdbarch = value_type (v)->arch ();
1986
1987 loc->pspace = frame_pspace;
1988 loc->address = address_significant (loc->gdbarch, addr);
1989
1990 if (bitsize != 0)
1991 {
1992 /* Just cover the bytes that make up the bitfield. */
1993 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1994 }
1995 else
1996 loc->length = TYPE_LENGTH (value_type (v));
1997
1998 loc->watchpoint_type = type;
1999 }
2000 }
2001 }
2002
2003 /* Change the type of breakpoint between hardware assisted or
2004 an ordinary watchpoint depending on the hardware support
2005 and free hardware slots. REPARSE is set when the inferior
2006 is started. */
2007 if (reparse)
2008 {
2009 int reg_cnt;
2010 enum bp_loc_type loc_type;
2011 struct bp_location *bl;
2012
2013 reg_cnt = can_use_hardware_watchpoint (val_chain);
2014
2015 if (reg_cnt)
2016 {
2017 int i, target_resources_ok, other_type_used;
2018 enum bptype type;
2019
2020 /* Use an exact watchpoint when there's only one memory region to be
2021 watched, and only one debug register is needed to watch it. */
2022 b->exact = target_exact_watchpoints && reg_cnt == 1;
2023
2024 /* We need to determine how many resources are already
2025 used for all other hardware watchpoints plus this one
2026 to see if we still have enough resources to also fit
2027 this watchpoint in as well. */
2028
2029 /* If this is a software watchpoint, we try to turn it
2030 to a hardware one -- count resources as if B was of
2031 hardware watchpoint type. */
2032 type = b->type;
2033 if (type == bp_watchpoint)
2034 type = bp_hardware_watchpoint;
2035
2036 /* This watchpoint may or may not have been placed on
2037 the list yet at this point (it won't be in the list
2038 if we're trying to create it for the first time,
2039 through watch_command), so always account for it
2040 manually. */
2041
2042 /* Count resources used by all watchpoints except B. */
2043 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
2044
2045 /* Add in the resources needed for B. */
2046 i += hw_watchpoint_use_count (b);
2047
2048 target_resources_ok
2049 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2050 if (target_resources_ok <= 0)
2051 {
2052 int sw_mode = b->ops->works_in_software_mode (b);
2053
2054 if (target_resources_ok == 0 && !sw_mode)
2055 error (_("Target does not support this type of "
2056 "hardware watchpoint."));
2057 else if (target_resources_ok < 0 && !sw_mode)
2058 error (_("There are not enough available hardware "
2059 "resources for this watchpoint."));
2060
2061 /* Downgrade to software watchpoint. */
2062 b->type = bp_watchpoint;
2063 }
2064 else
2065 {
2066 /* If this was a software watchpoint, we've just
2067 found we have enough resources to turn it to a
2068 hardware watchpoint. Otherwise, this is a
2069 nop. */
2070 b->type = type;
2071 }
2072 }
2073 else if (!b->ops->works_in_software_mode (b))
2074 {
2075 if (!can_use_hw_watchpoints)
2076 error (_("Can't set read/access watchpoint when "
2077 "hardware watchpoints are disabled."));
2078 else
2079 error (_("Expression cannot be implemented with "
2080 "read/access watchpoint."));
2081 }
2082 else
2083 b->type = bp_watchpoint;
2084
2085 loc_type = (b->type == bp_watchpoint? bp_loc_other
2086 : bp_loc_hardware_watchpoint);
2087 for (bl = b->loc; bl; bl = bl->next)
2088 bl->loc_type = loc_type;
2089 }
2090
2091 /* If a software watchpoint is not watching any memory, then the
2092 above left it without any location set up. But,
2093 bpstat_stop_status requires a location to be able to report
2094 stops, so make sure there's at least a dummy one. */
2095 if (b->type == bp_watchpoint && b->loc == NULL)
2096 software_watchpoint_add_no_memory_location (b, frame_pspace);
2097 }
2098 else if (!within_current_scope)
2099 {
2100 printf_filtered (_("\
2101 Watchpoint %d deleted because the program has left the block\n\
2102 in which its expression is valid.\n"),
2103 b->number);
2104 watchpoint_del_at_next_stop (b);
2105 }
2106
2107 /* Restore the selected frame. */
2108 if (frame_saved)
2109 select_frame (frame_find_by_id (saved_frame_id));
2110 }
2111
2112
2113 /* Returns 1 iff breakpoint location should be
2114 inserted in the inferior. We don't differentiate the type of BL's owner
2115 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2116 breakpoint_ops is not defined, because in insert_bp_location,
2117 tracepoint's insert_location will not be called. */
2118 static int
2119 should_be_inserted (struct bp_location *bl)
2120 {
2121 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2122 return 0;
2123
2124 if (bl->owner->disposition == disp_del_at_next_stop)
2125 return 0;
2126
2127 if (!bl->enabled || bl->disabled_by_cond
2128 || bl->shlib_disabled || bl->duplicate)
2129 return 0;
2130
2131 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2132 return 0;
2133
2134 /* This is set for example, when we're attached to the parent of a
2135 vfork, and have detached from the child. The child is running
2136 free, and we expect it to do an exec or exit, at which point the
2137 OS makes the parent schedulable again (and the target reports
2138 that the vfork is done). Until the child is done with the shared
2139 memory region, do not insert breakpoints in the parent, otherwise
2140 the child could still trip on the parent's breakpoints. Since
2141 the parent is blocked anyway, it won't miss any breakpoint. */
2142 if (bl->pspace->breakpoints_not_allowed)
2143 return 0;
2144
2145 /* Don't insert a breakpoint if we're trying to step past its
2146 location, except if the breakpoint is a single-step breakpoint,
2147 and the breakpoint's thread is the thread which is stepping past
2148 a breakpoint. */
2149 if ((bl->loc_type == bp_loc_software_breakpoint
2150 || bl->loc_type == bp_loc_hardware_breakpoint)
2151 && stepping_past_instruction_at (bl->pspace->aspace,
2152 bl->address)
2153 /* The single-step breakpoint may be inserted at the location
2154 we're trying to step if the instruction branches to itself.
2155 However, the instruction won't be executed at all and it may
2156 break the semantics of the instruction, for example, the
2157 instruction is a conditional branch or updates some flags.
2158 We can't fix it unless GDB is able to emulate the instruction
2159 or switch to displaced stepping. */
2160 && !(bl->owner->type == bp_single_step
2161 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2162 {
2163 infrun_debug_printf ("skipping breakpoint: stepping past insn at: %s",
2164 paddress (bl->gdbarch, bl->address));
2165 return 0;
2166 }
2167
2168 /* Don't insert watchpoints if we're trying to step past the
2169 instruction that triggered one. */
2170 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2171 && stepping_past_nonsteppable_watchpoint ())
2172 {
2173 infrun_debug_printf ("stepping past non-steppable watchpoint. "
2174 "skipping watchpoint at %s:%d",
2175 paddress (bl->gdbarch, bl->address), bl->length);
2176 return 0;
2177 }
2178
2179 return 1;
2180 }
2181
2182 /* Same as should_be_inserted but does the check assuming
2183 that the location is not duplicated. */
2184
2185 static int
2186 unduplicated_should_be_inserted (struct bp_location *bl)
2187 {
2188 int result;
2189 const int save_duplicate = bl->duplicate;
2190
2191 bl->duplicate = 0;
2192 result = should_be_inserted (bl);
2193 bl->duplicate = save_duplicate;
2194 return result;
2195 }
2196
2197 /* Parses a conditional described by an expression COND into an
2198 agent expression bytecode suitable for evaluation
2199 by the bytecode interpreter. Return NULL if there was
2200 any error during parsing. */
2201
2202 static agent_expr_up
2203 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2204 {
2205 if (cond == NULL)
2206 return NULL;
2207
2208 agent_expr_up aexpr;
2209
2210 /* We don't want to stop processing, so catch any errors
2211 that may show up. */
2212 try
2213 {
2214 aexpr = gen_eval_for_expr (scope, cond);
2215 }
2216
2217 catch (const gdb_exception_error &ex)
2218 {
2219 /* If we got here, it means the condition could not be parsed to a valid
2220 bytecode expression and thus can't be evaluated on the target's side.
2221 It's no use iterating through the conditions. */
2222 }
2223
2224 /* We have a valid agent expression. */
2225 return aexpr;
2226 }
2227
2228 /* Based on location BL, create a list of breakpoint conditions to be
2229 passed on to the target. If we have duplicated locations with different
2230 conditions, we will add such conditions to the list. The idea is that the
2231 target will evaluate the list of conditions and will only notify GDB when
2232 one of them is true. */
2233
2234 static void
2235 build_target_condition_list (struct bp_location *bl)
2236 {
2237 struct bp_location **locp = NULL, **loc2p;
2238 int null_condition_or_parse_error = 0;
2239 int modified = bl->needs_update;
2240 struct bp_location *loc;
2241
2242 /* Release conditions left over from a previous insert. */
2243 bl->target_info.conditions.clear ();
2244
2245 /* This is only meaningful if the target is
2246 evaluating conditions and if the user has
2247 opted for condition evaluation on the target's
2248 side. */
2249 if (gdb_evaluates_breakpoint_condition_p ()
2250 || !target_supports_evaluation_of_breakpoint_conditions ())
2251 return;
2252
2253 /* Do a first pass to check for locations with no assigned
2254 conditions or conditions that fail to parse to a valid agent
2255 expression bytecode. If any of these happen, then it's no use to
2256 send conditions to the target since this location will always
2257 trigger and generate a response back to GDB. Note we consider
2258 all locations at the same address irrespective of type, i.e.,
2259 even if the locations aren't considered duplicates (e.g.,
2260 software breakpoint and hardware breakpoint at the same
2261 address). */
2262 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2263 {
2264 loc = (*loc2p);
2265 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2266 {
2267 if (modified)
2268 {
2269 /* Re-parse the conditions since something changed. In that
2270 case we already freed the condition bytecodes (see
2271 force_breakpoint_reinsertion). We just
2272 need to parse the condition to bytecodes again. */
2273 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2274 loc->cond.get ());
2275 }
2276
2277 /* If we have a NULL bytecode expression, it means something
2278 went wrong or we have a null condition expression. */
2279 if (!loc->cond_bytecode)
2280 {
2281 null_condition_or_parse_error = 1;
2282 break;
2283 }
2284 }
2285 }
2286
2287 /* If any of these happened, it means we will have to evaluate the conditions
2288 for the location's address on gdb's side. It is no use keeping bytecodes
2289 for all the other duplicate locations, thus we free all of them here.
2290
2291 This is so we have a finer control over which locations' conditions are
2292 being evaluated by GDB or the remote stub. */
2293 if (null_condition_or_parse_error)
2294 {
2295 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2296 {
2297 loc = (*loc2p);
2298 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2299 {
2300 /* Only go as far as the first NULL bytecode is
2301 located. */
2302 if (!loc->cond_bytecode)
2303 return;
2304
2305 loc->cond_bytecode.reset ();
2306 }
2307 }
2308 }
2309
2310 /* No NULL conditions or failed bytecode generation. Build a
2311 condition list for this location's address. If we have software
2312 and hardware locations at the same address, they aren't
2313 considered duplicates, but we still marge all the conditions
2314 anyway, as it's simpler, and doesn't really make a practical
2315 difference. */
2316 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2317 {
2318 loc = (*loc2p);
2319 if (loc->cond
2320 && is_breakpoint (loc->owner)
2321 && loc->pspace->num == bl->pspace->num
2322 && loc->owner->enable_state == bp_enabled
2323 && loc->enabled
2324 && !loc->disabled_by_cond)
2325 {
2326 /* Add the condition to the vector. This will be used later
2327 to send the conditions to the target. */
2328 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2329 }
2330 }
2331
2332 return;
2333 }
2334
2335 /* Parses a command described by string CMD into an agent expression
2336 bytecode suitable for evaluation by the bytecode interpreter.
2337 Return NULL if there was any error during parsing. */
2338
2339 static agent_expr_up
2340 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2341 {
2342 const char *cmdrest;
2343 const char *format_start, *format_end;
2344 struct gdbarch *gdbarch = get_current_arch ();
2345
2346 if (cmd == NULL)
2347 return NULL;
2348
2349 cmdrest = cmd;
2350
2351 if (*cmdrest == ',')
2352 ++cmdrest;
2353 cmdrest = skip_spaces (cmdrest);
2354
2355 if (*cmdrest++ != '"')
2356 error (_("No format string following the location"));
2357
2358 format_start = cmdrest;
2359
2360 format_pieces fpieces (&cmdrest);
2361
2362 format_end = cmdrest;
2363
2364 if (*cmdrest++ != '"')
2365 error (_("Bad format string, non-terminated '\"'."));
2366
2367 cmdrest = skip_spaces (cmdrest);
2368
2369 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2370 error (_("Invalid argument syntax"));
2371
2372 if (*cmdrest == ',')
2373 cmdrest++;
2374 cmdrest = skip_spaces (cmdrest);
2375
2376 /* For each argument, make an expression. */
2377
2378 std::vector<struct expression *> argvec;
2379 while (*cmdrest != '\0')
2380 {
2381 const char *cmd1;
2382
2383 cmd1 = cmdrest;
2384 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2385 argvec.push_back (expr.release ());
2386 cmdrest = cmd1;
2387 if (*cmdrest == ',')
2388 ++cmdrest;
2389 }
2390
2391 agent_expr_up aexpr;
2392
2393 /* We don't want to stop processing, so catch any errors
2394 that may show up. */
2395 try
2396 {
2397 aexpr = gen_printf (scope, gdbarch, 0, 0,
2398 format_start, format_end - format_start,
2399 argvec.size (), argvec.data ());
2400 }
2401 catch (const gdb_exception_error &ex)
2402 {
2403 /* If we got here, it means the command could not be parsed to a valid
2404 bytecode expression and thus can't be evaluated on the target's side.
2405 It's no use iterating through the other commands. */
2406 }
2407
2408 /* We have a valid agent expression, return it. */
2409 return aexpr;
2410 }
2411
2412 /* Based on location BL, create a list of breakpoint commands to be
2413 passed on to the target. If we have duplicated locations with
2414 different commands, we will add any such to the list. */
2415
2416 static void
2417 build_target_command_list (struct bp_location *bl)
2418 {
2419 struct bp_location **locp = NULL, **loc2p;
2420 int null_command_or_parse_error = 0;
2421 int modified = bl->needs_update;
2422 struct bp_location *loc;
2423
2424 /* Clear commands left over from a previous insert. */
2425 bl->target_info.tcommands.clear ();
2426
2427 if (!target_can_run_breakpoint_commands ())
2428 return;
2429
2430 /* For now, limit to agent-style dprintf breakpoints. */
2431 if (dprintf_style != dprintf_style_agent)
2432 return;
2433
2434 /* For now, if we have any location at the same address that isn't a
2435 dprintf, don't install the target-side commands, as that would
2436 make the breakpoint not be reported to the core, and we'd lose
2437 control. */
2438 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2439 {
2440 loc = (*loc2p);
2441 if (is_breakpoint (loc->owner)
2442 && loc->pspace->num == bl->pspace->num
2443 && loc->owner->type != bp_dprintf)
2444 return;
2445 }
2446
2447 /* Do a first pass to check for locations with no assigned
2448 conditions or conditions that fail to parse to a valid agent expression
2449 bytecode. If any of these happen, then it's no use to send conditions
2450 to the target since this location will always trigger and generate a
2451 response back to GDB. */
2452 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2453 {
2454 loc = (*loc2p);
2455 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2456 {
2457 if (modified)
2458 {
2459 /* Re-parse the commands since something changed. In that
2460 case we already freed the command bytecodes (see
2461 force_breakpoint_reinsertion). We just
2462 need to parse the command to bytecodes again. */
2463 loc->cmd_bytecode
2464 = parse_cmd_to_aexpr (bl->address,
2465 loc->owner->extra_string);
2466 }
2467
2468 /* If we have a NULL bytecode expression, it means something
2469 went wrong or we have a null command expression. */
2470 if (!loc->cmd_bytecode)
2471 {
2472 null_command_or_parse_error = 1;
2473 break;
2474 }
2475 }
2476 }
2477
2478 /* If anything failed, then we're not doing target-side commands,
2479 and so clean up. */
2480 if (null_command_or_parse_error)
2481 {
2482 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2483 {
2484 loc = (*loc2p);
2485 if (is_breakpoint (loc->owner)
2486 && loc->pspace->num == bl->pspace->num)
2487 {
2488 /* Only go as far as the first NULL bytecode is
2489 located. */
2490 if (loc->cmd_bytecode == NULL)
2491 return;
2492
2493 loc->cmd_bytecode.reset ();
2494 }
2495 }
2496 }
2497
2498 /* No NULL commands or failed bytecode generation. Build a command
2499 list for all duplicate locations at this location's address.
2500 Note that here we must care for whether the breakpoint location
2501 types are considered duplicates, otherwise, say, if we have a
2502 software and hardware location at the same address, the target
2503 could end up running the commands twice. For the moment, we only
2504 support targets-side commands with dprintf, but it doesn't hurt
2505 to be pedantically correct in case that changes. */
2506 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2507 {
2508 loc = (*loc2p);
2509 if (breakpoint_locations_match (bl, loc)
2510 && loc->owner->extra_string
2511 && is_breakpoint (loc->owner)
2512 && loc->pspace->num == bl->pspace->num
2513 && loc->owner->enable_state == bp_enabled
2514 && loc->enabled
2515 && !loc->disabled_by_cond)
2516 {
2517 /* Add the command to the vector. This will be used later
2518 to send the commands to the target. */
2519 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2520 }
2521 }
2522
2523 bl->target_info.persist = 0;
2524 /* Maybe flag this location as persistent. */
2525 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2526 bl->target_info.persist = 1;
2527 }
2528
2529 /* Return the kind of breakpoint on address *ADDR. Get the kind
2530 of breakpoint according to ADDR except single-step breakpoint.
2531 Get the kind of single-step breakpoint according to the current
2532 registers state. */
2533
2534 static int
2535 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2536 {
2537 if (bl->owner->type == bp_single_step)
2538 {
2539 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2540 struct regcache *regcache;
2541
2542 regcache = get_thread_regcache (thr);
2543
2544 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2545 regcache, addr);
2546 }
2547 else
2548 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2549 }
2550
2551 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2552 location. Any error messages are printed to TMP_ERROR_STREAM; and
2553 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2554 Returns 0 for success, 1 if the bp_location type is not supported or
2555 -1 for failure.
2556
2557 NOTE drow/2003-09-09: This routine could be broken down to an
2558 object-style method for each breakpoint or catchpoint type. */
2559 static int
2560 insert_bp_location (struct bp_location *bl,
2561 struct ui_file *tmp_error_stream,
2562 int *disabled_breaks,
2563 int *hw_breakpoint_error,
2564 int *hw_bp_error_explained_already)
2565 {
2566 gdb_exception bp_excpt;
2567
2568 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2569 return 0;
2570
2571 /* Note we don't initialize bl->target_info, as that wipes out
2572 the breakpoint location's shadow_contents if the breakpoint
2573 is still inserted at that location. This in turn breaks
2574 target_read_memory which depends on these buffers when
2575 a memory read is requested at the breakpoint location:
2576 Once the target_info has been wiped, we fail to see that
2577 we have a breakpoint inserted at that address and thus
2578 read the breakpoint instead of returning the data saved in
2579 the breakpoint location's shadow contents. */
2580 bl->target_info.reqstd_address = bl->address;
2581 bl->target_info.placed_address_space = bl->pspace->aspace;
2582 bl->target_info.length = bl->length;
2583
2584 /* When working with target-side conditions, we must pass all the conditions
2585 for the same breakpoint address down to the target since GDB will not
2586 insert those locations. With a list of breakpoint conditions, the target
2587 can decide when to stop and notify GDB. */
2588
2589 if (is_breakpoint (bl->owner))
2590 {
2591 build_target_condition_list (bl);
2592 build_target_command_list (bl);
2593 /* Reset the modification marker. */
2594 bl->needs_update = 0;
2595 }
2596
2597 /* If "set breakpoint auto-hw" is "on" and a software breakpoint was
2598 set at a read-only address, then a breakpoint location will have
2599 been changed to hardware breakpoint before we get here. If it is
2600 "off" however, error out before actually trying to insert the
2601 breakpoint, with a nicer error message. */
2602 if (bl->loc_type == bp_loc_software_breakpoint
2603 && !automatic_hardware_breakpoints)
2604 {
2605 mem_region *mr = lookup_mem_region (bl->address);
2606
2607 if (mr != nullptr && mr->attrib.mode != MEM_RW)
2608 {
2609 fprintf_unfiltered (tmp_error_stream,
2610 _("Cannot insert breakpoint %d.\n"
2611 "Cannot set software breakpoint "
2612 "at read-only address %s\n"),
2613 bl->owner->number,
2614 paddress (bl->gdbarch, bl->address));
2615 return 1;
2616 }
2617 }
2618
2619 if (bl->loc_type == bp_loc_software_breakpoint
2620 || bl->loc_type == bp_loc_hardware_breakpoint)
2621 {
2622 /* First check to see if we have to handle an overlay. */
2623 if (overlay_debugging == ovly_off
2624 || bl->section == NULL
2625 || !(section_is_overlay (bl->section)))
2626 {
2627 /* No overlay handling: just set the breakpoint. */
2628 try
2629 {
2630 int val;
2631
2632 val = bl->owner->ops->insert_location (bl);
2633 if (val)
2634 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2635 }
2636 catch (gdb_exception &e)
2637 {
2638 bp_excpt = std::move (e);
2639 }
2640 }
2641 else
2642 {
2643 /* This breakpoint is in an overlay section.
2644 Shall we set a breakpoint at the LMA? */
2645 if (!overlay_events_enabled)
2646 {
2647 /* Yes -- overlay event support is not active,
2648 so we must try to set a breakpoint at the LMA.
2649 This will not work for a hardware breakpoint. */
2650 if (bl->loc_type == bp_loc_hardware_breakpoint)
2651 warning (_("hardware breakpoint %d not supported in overlay!"),
2652 bl->owner->number);
2653 else
2654 {
2655 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2656 bl->section);
2657 /* Set a software (trap) breakpoint at the LMA. */
2658 bl->overlay_target_info = bl->target_info;
2659 bl->overlay_target_info.reqstd_address = addr;
2660
2661 /* No overlay handling: just set the breakpoint. */
2662 try
2663 {
2664 int val;
2665
2666 bl->overlay_target_info.kind
2667 = breakpoint_kind (bl, &addr);
2668 bl->overlay_target_info.placed_address = addr;
2669 val = target_insert_breakpoint (bl->gdbarch,
2670 &bl->overlay_target_info);
2671 if (val)
2672 bp_excpt
2673 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2674 }
2675 catch (gdb_exception &e)
2676 {
2677 bp_excpt = std::move (e);
2678 }
2679
2680 if (bp_excpt.reason != 0)
2681 fprintf_unfiltered (tmp_error_stream,
2682 "Overlay breakpoint %d "
2683 "failed: in ROM?\n",
2684 bl->owner->number);
2685 }
2686 }
2687 /* Shall we set a breakpoint at the VMA? */
2688 if (section_is_mapped (bl->section))
2689 {
2690 /* Yes. This overlay section is mapped into memory. */
2691 try
2692 {
2693 int val;
2694
2695 val = bl->owner->ops->insert_location (bl);
2696 if (val)
2697 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2698 }
2699 catch (gdb_exception &e)
2700 {
2701 bp_excpt = std::move (e);
2702 }
2703 }
2704 else
2705 {
2706 /* No. This breakpoint will not be inserted.
2707 No error, but do not mark the bp as 'inserted'. */
2708 return 0;
2709 }
2710 }
2711
2712 if (bp_excpt.reason != 0)
2713 {
2714 /* Can't set the breakpoint. */
2715
2716 /* In some cases, we might not be able to insert a
2717 breakpoint in a shared library that has already been
2718 removed, but we have not yet processed the shlib unload
2719 event. Unfortunately, some targets that implement
2720 breakpoint insertion themselves can't tell why the
2721 breakpoint insertion failed (e.g., the remote target
2722 doesn't define error codes), so we must treat generic
2723 errors as memory errors. */
2724 if (bp_excpt.reason == RETURN_ERROR
2725 && (bp_excpt.error == GENERIC_ERROR
2726 || bp_excpt.error == MEMORY_ERROR)
2727 && bl->loc_type == bp_loc_software_breakpoint
2728 && (solib_name_from_address (bl->pspace, bl->address)
2729 || shared_objfile_contains_address_p (bl->pspace,
2730 bl->address)))
2731 {
2732 /* See also: disable_breakpoints_in_shlibs. */
2733 bl->shlib_disabled = 1;
2734 gdb::observers::breakpoint_modified.notify (bl->owner);
2735 if (!*disabled_breaks)
2736 {
2737 fprintf_unfiltered (tmp_error_stream,
2738 "Cannot insert breakpoint %d.\n",
2739 bl->owner->number);
2740 fprintf_unfiltered (tmp_error_stream,
2741 "Temporarily disabling shared "
2742 "library breakpoints:\n");
2743 }
2744 *disabled_breaks = 1;
2745 fprintf_unfiltered (tmp_error_stream,
2746 "breakpoint #%d\n", bl->owner->number);
2747 return 0;
2748 }
2749 else
2750 {
2751 if (bl->loc_type == bp_loc_hardware_breakpoint)
2752 {
2753 *hw_breakpoint_error = 1;
2754 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2755 fprintf_unfiltered (tmp_error_stream,
2756 "Cannot insert hardware breakpoint %d%s",
2757 bl->owner->number,
2758 bp_excpt.message ? ":" : ".\n");
2759 if (bp_excpt.message != NULL)
2760 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2761 bp_excpt.what ());
2762 }
2763 else
2764 {
2765 if (bp_excpt.message == NULL)
2766 {
2767 std::string message
2768 = memory_error_message (TARGET_XFER_E_IO,
2769 bl->gdbarch, bl->address);
2770
2771 fprintf_unfiltered (tmp_error_stream,
2772 "Cannot insert breakpoint %d.\n"
2773 "%s\n",
2774 bl->owner->number, message.c_str ());
2775 }
2776 else
2777 {
2778 fprintf_unfiltered (tmp_error_stream,
2779 "Cannot insert breakpoint %d: %s\n",
2780 bl->owner->number,
2781 bp_excpt.what ());
2782 }
2783 }
2784 return 1;
2785
2786 }
2787 }
2788 else
2789 bl->inserted = 1;
2790
2791 return 0;
2792 }
2793
2794 else if (bl->loc_type == bp_loc_hardware_watchpoint
2795 /* NOTE drow/2003-09-08: This state only exists for removing
2796 watchpoints. It's not clear that it's necessary... */
2797 && bl->owner->disposition != disp_del_at_next_stop)
2798 {
2799 int val;
2800
2801 gdb_assert (bl->owner->ops != NULL
2802 && bl->owner->ops->insert_location != NULL);
2803
2804 val = bl->owner->ops->insert_location (bl);
2805
2806 /* If trying to set a read-watchpoint, and it turns out it's not
2807 supported, try emulating one with an access watchpoint. */
2808 if (val == 1 && bl->watchpoint_type == hw_read)
2809 {
2810 struct bp_location *loc, **loc_temp;
2811
2812 /* But don't try to insert it, if there's already another
2813 hw_access location that would be considered a duplicate
2814 of this one. */
2815 ALL_BP_LOCATIONS (loc, loc_temp)
2816 if (loc != bl
2817 && loc->watchpoint_type == hw_access
2818 && watchpoint_locations_match (bl, loc))
2819 {
2820 bl->duplicate = 1;
2821 bl->inserted = 1;
2822 bl->target_info = loc->target_info;
2823 bl->watchpoint_type = hw_access;
2824 val = 0;
2825 break;
2826 }
2827
2828 if (val == 1)
2829 {
2830 bl->watchpoint_type = hw_access;
2831 val = bl->owner->ops->insert_location (bl);
2832
2833 if (val)
2834 /* Back to the original value. */
2835 bl->watchpoint_type = hw_read;
2836 }
2837 }
2838
2839 bl->inserted = (val == 0);
2840 }
2841
2842 else if (bl->owner->type == bp_catchpoint)
2843 {
2844 int val;
2845
2846 gdb_assert (bl->owner->ops != NULL
2847 && bl->owner->ops->insert_location != NULL);
2848
2849 val = bl->owner->ops->insert_location (bl);
2850 if (val)
2851 {
2852 bl->owner->enable_state = bp_disabled;
2853
2854 if (val == 1)
2855 warning (_("\
2856 Error inserting catchpoint %d: Your system does not support this type\n\
2857 of catchpoint."), bl->owner->number);
2858 else
2859 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2860 }
2861
2862 bl->inserted = (val == 0);
2863
2864 /* We've already printed an error message if there was a problem
2865 inserting this catchpoint, and we've disabled the catchpoint,
2866 so just return success. */
2867 return 0;
2868 }
2869
2870 return 0;
2871 }
2872
2873 /* This function is called when program space PSPACE is about to be
2874 deleted. It takes care of updating breakpoints to not reference
2875 PSPACE anymore. */
2876
2877 void
2878 breakpoint_program_space_exit (struct program_space *pspace)
2879 {
2880 struct breakpoint *b, *b_temp;
2881 struct bp_location *loc, **loc_temp;
2882
2883 /* Remove any breakpoint that was set through this program space. */
2884 ALL_BREAKPOINTS_SAFE (b, b_temp)
2885 {
2886 if (b->pspace == pspace)
2887 delete_breakpoint (b);
2888 }
2889
2890 /* Breakpoints set through other program spaces could have locations
2891 bound to PSPACE as well. Remove those. */
2892 ALL_BP_LOCATIONS (loc, loc_temp)
2893 {
2894 struct bp_location *tmp;
2895
2896 if (loc->pspace == pspace)
2897 {
2898 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2899 if (loc->owner->loc == loc)
2900 loc->owner->loc = loc->next;
2901 else
2902 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2903 if (tmp->next == loc)
2904 {
2905 tmp->next = loc->next;
2906 break;
2907 }
2908 }
2909 }
2910
2911 /* Now update the global location list to permanently delete the
2912 removed locations above. */
2913 update_global_location_list (UGLL_DONT_INSERT);
2914 }
2915
2916 /* Make sure all breakpoints are inserted in inferior.
2917 Throws exception on any error.
2918 A breakpoint that is already inserted won't be inserted
2919 again, so calling this function twice is safe. */
2920 void
2921 insert_breakpoints (void)
2922 {
2923 struct breakpoint *bpt;
2924
2925 ALL_BREAKPOINTS (bpt)
2926 if (is_hardware_watchpoint (bpt))
2927 {
2928 struct watchpoint *w = (struct watchpoint *) bpt;
2929
2930 update_watchpoint (w, 0 /* don't reparse. */);
2931 }
2932
2933 /* Updating watchpoints creates new locations, so update the global
2934 location list. Explicitly tell ugll to insert locations and
2935 ignore breakpoints_always_inserted_mode. Also,
2936 update_global_location_list tries to "upgrade" software
2937 breakpoints to hardware breakpoints to handle "set breakpoint
2938 auto-hw", so we need to call it even if we don't have new
2939 locations. */
2940 update_global_location_list (UGLL_INSERT);
2941 }
2942
2943 /* Invoke CALLBACK for each of bp_location. */
2944
2945 void
2946 iterate_over_bp_locations (gdb::function_view<void (bp_location *)> callback)
2947 {
2948 struct bp_location *loc, **loc_tmp;
2949
2950 ALL_BP_LOCATIONS (loc, loc_tmp)
2951 {
2952 callback (loc);
2953 }
2954 }
2955
2956 /* This is used when we need to synch breakpoint conditions between GDB and the
2957 target. It is the case with deleting and disabling of breakpoints when using
2958 always-inserted mode. */
2959
2960 static void
2961 update_inserted_breakpoint_locations (void)
2962 {
2963 struct bp_location *bl, **blp_tmp;
2964 int error_flag = 0;
2965 int val = 0;
2966 int disabled_breaks = 0;
2967 int hw_breakpoint_error = 0;
2968 int hw_bp_details_reported = 0;
2969
2970 string_file tmp_error_stream;
2971
2972 /* Explicitly mark the warning -- this will only be printed if
2973 there was an error. */
2974 tmp_error_stream.puts ("Warning:\n");
2975
2976 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2977
2978 ALL_BP_LOCATIONS (bl, blp_tmp)
2979 {
2980 /* We only want to update software breakpoints and hardware
2981 breakpoints. */
2982 if (!is_breakpoint (bl->owner))
2983 continue;
2984
2985 /* We only want to update locations that are already inserted
2986 and need updating. This is to avoid unwanted insertion during
2987 deletion of breakpoints. */
2988 if (!bl->inserted || !bl->needs_update)
2989 continue;
2990
2991 switch_to_program_space_and_thread (bl->pspace);
2992
2993 /* For targets that support global breakpoints, there's no need
2994 to select an inferior to insert breakpoint to. In fact, even
2995 if we aren't attached to any process yet, we should still
2996 insert breakpoints. */
2997 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2998 && (inferior_ptid == null_ptid || !target_has_execution ()))
2999 continue;
3000
3001 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3002 &hw_breakpoint_error, &hw_bp_details_reported);
3003 if (val)
3004 error_flag = val;
3005 }
3006
3007 if (error_flag)
3008 {
3009 target_terminal::ours_for_output ();
3010 error_stream (tmp_error_stream);
3011 }
3012 }
3013
3014 /* Used when starting or continuing the program. */
3015
3016 static void
3017 insert_breakpoint_locations (void)
3018 {
3019 struct breakpoint *bpt;
3020 struct bp_location *bl, **blp_tmp;
3021 int error_flag = 0;
3022 int val = 0;
3023 int disabled_breaks = 0;
3024 int hw_breakpoint_error = 0;
3025 int hw_bp_error_explained_already = 0;
3026
3027 string_file tmp_error_stream;
3028
3029 /* Explicitly mark the warning -- this will only be printed if
3030 there was an error. */
3031 tmp_error_stream.puts ("Warning:\n");
3032
3033 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3034
3035 ALL_BP_LOCATIONS (bl, blp_tmp)
3036 {
3037 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3038 continue;
3039
3040 /* There is no point inserting thread-specific breakpoints if
3041 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3042 has BL->OWNER always non-NULL. */
3043 if (bl->owner->thread != -1
3044 && !valid_global_thread_id (bl->owner->thread))
3045 continue;
3046
3047 switch_to_program_space_and_thread (bl->pspace);
3048
3049 /* For targets that support global breakpoints, there's no need
3050 to select an inferior to insert breakpoint to. In fact, even
3051 if we aren't attached to any process yet, we should still
3052 insert breakpoints. */
3053 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3054 && (inferior_ptid == null_ptid || !target_has_execution ()))
3055 continue;
3056
3057 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3058 &hw_breakpoint_error, &hw_bp_error_explained_already);
3059 if (val)
3060 error_flag = val;
3061 }
3062
3063 /* If we failed to insert all locations of a watchpoint, remove
3064 them, as half-inserted watchpoint is of limited use. */
3065 ALL_BREAKPOINTS (bpt)
3066 {
3067 int some_failed = 0;
3068 struct bp_location *loc;
3069
3070 if (!is_hardware_watchpoint (bpt))
3071 continue;
3072
3073 if (!breakpoint_enabled (bpt))
3074 continue;
3075
3076 if (bpt->disposition == disp_del_at_next_stop)
3077 continue;
3078
3079 for (loc = bpt->loc; loc; loc = loc->next)
3080 if (!loc->inserted && should_be_inserted (loc))
3081 {
3082 some_failed = 1;
3083 break;
3084 }
3085 if (some_failed)
3086 {
3087 for (loc = bpt->loc; loc; loc = loc->next)
3088 if (loc->inserted)
3089 remove_breakpoint (loc);
3090
3091 hw_breakpoint_error = 1;
3092 tmp_error_stream.printf ("Could not insert "
3093 "hardware watchpoint %d.\n",
3094 bpt->number);
3095 error_flag = -1;
3096 }
3097 }
3098
3099 if (error_flag)
3100 {
3101 /* If a hardware breakpoint or watchpoint was inserted, add a
3102 message about possibly exhausted resources. */
3103 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3104 {
3105 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3106 You may have requested too many hardware breakpoints/watchpoints.\n");
3107 }
3108 target_terminal::ours_for_output ();
3109 error_stream (tmp_error_stream);
3110 }
3111 }
3112
3113 /* Used when the program stops.
3114 Returns zero if successful, or non-zero if there was a problem
3115 removing a breakpoint location. */
3116
3117 int
3118 remove_breakpoints (void)
3119 {
3120 struct bp_location *bl, **blp_tmp;
3121 int val = 0;
3122
3123 ALL_BP_LOCATIONS (bl, blp_tmp)
3124 {
3125 if (bl->inserted && !is_tracepoint (bl->owner))
3126 val |= remove_breakpoint (bl);
3127 }
3128 return val;
3129 }
3130
3131 /* When a thread exits, remove breakpoints that are related to
3132 that thread. */
3133
3134 static void
3135 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3136 {
3137 struct breakpoint *b, *b_tmp;
3138
3139 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3140 {
3141 if (b->thread == tp->global_num && user_breakpoint_p (b))
3142 {
3143 b->disposition = disp_del_at_next_stop;
3144
3145 printf_filtered (_("\
3146 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3147 b->number, print_thread_id (tp));
3148
3149 /* Hide it from the user. */
3150 b->number = 0;
3151 }
3152 }
3153 }
3154
3155 /* See breakpoint.h. */
3156
3157 void
3158 remove_breakpoints_inf (inferior *inf)
3159 {
3160 struct bp_location *bl, **blp_tmp;
3161 int val;
3162
3163 ALL_BP_LOCATIONS (bl, blp_tmp)
3164 {
3165 if (bl->pspace != inf->pspace)
3166 continue;
3167
3168 if (bl->inserted && !bl->target_info.persist)
3169 {
3170 val = remove_breakpoint (bl);
3171 if (val != 0)
3172 return;
3173 }
3174 }
3175 }
3176
3177 static int internal_breakpoint_number = -1;
3178
3179 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3180 If INTERNAL is non-zero, the breakpoint number will be populated
3181 from internal_breakpoint_number and that variable decremented.
3182 Otherwise the breakpoint number will be populated from
3183 breakpoint_count and that value incremented. Internal breakpoints
3184 do not set the internal var bpnum. */
3185 static void
3186 set_breakpoint_number (int internal, struct breakpoint *b)
3187 {
3188 if (internal)
3189 b->number = internal_breakpoint_number--;
3190 else
3191 {
3192 set_breakpoint_count (breakpoint_count + 1);
3193 b->number = breakpoint_count;
3194 }
3195 }
3196
3197 static struct breakpoint *
3198 create_internal_breakpoint (struct gdbarch *gdbarch,
3199 CORE_ADDR address, enum bptype type,
3200 const struct breakpoint_ops *ops)
3201 {
3202 symtab_and_line sal;
3203 sal.pc = address;
3204 sal.section = find_pc_overlay (sal.pc);
3205 sal.pspace = current_program_space;
3206
3207 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3208 b->number = internal_breakpoint_number--;
3209 b->disposition = disp_donttouch;
3210
3211 return b;
3212 }
3213
3214 static const char *const longjmp_names[] =
3215 {
3216 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3217 };
3218 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3219
3220 /* Per-objfile data private to breakpoint.c. */
3221 struct breakpoint_objfile_data
3222 {
3223 /* Minimal symbol for "_ovly_debug_event" (if any). */
3224 struct bound_minimal_symbol overlay_msym {};
3225
3226 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3227 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3228
3229 /* True if we have looked for longjmp probes. */
3230 int longjmp_searched = 0;
3231
3232 /* SystemTap probe points for longjmp (if any). These are non-owning
3233 references. */
3234 std::vector<probe *> longjmp_probes;
3235
3236 /* Minimal symbol for "std::terminate()" (if any). */
3237 struct bound_minimal_symbol terminate_msym {};
3238
3239 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3240 struct bound_minimal_symbol exception_msym {};
3241
3242 /* True if we have looked for exception probes. */
3243 int exception_searched = 0;
3244
3245 /* SystemTap probe points for unwinding (if any). These are non-owning
3246 references. */
3247 std::vector<probe *> exception_probes;
3248 };
3249
3250 static const struct objfile_key<breakpoint_objfile_data>
3251 breakpoint_objfile_key;
3252
3253 /* Minimal symbol not found sentinel. */
3254 static struct minimal_symbol msym_not_found;
3255
3256 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3257
3258 static int
3259 msym_not_found_p (const struct minimal_symbol *msym)
3260 {
3261 return msym == &msym_not_found;
3262 }
3263
3264 /* Return per-objfile data needed by breakpoint.c.
3265 Allocate the data if necessary. */
3266
3267 static struct breakpoint_objfile_data *
3268 get_breakpoint_objfile_data (struct objfile *objfile)
3269 {
3270 struct breakpoint_objfile_data *bp_objfile_data;
3271
3272 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3273 if (bp_objfile_data == NULL)
3274 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3275 return bp_objfile_data;
3276 }
3277
3278 static void
3279 create_overlay_event_breakpoint (void)
3280 {
3281 const char *const func_name = "_ovly_debug_event";
3282
3283 for (objfile *objfile : current_program_space->objfiles ())
3284 {
3285 struct breakpoint *b;
3286 struct breakpoint_objfile_data *bp_objfile_data;
3287 CORE_ADDR addr;
3288 struct explicit_location explicit_loc;
3289
3290 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3291
3292 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3293 continue;
3294
3295 if (bp_objfile_data->overlay_msym.minsym == NULL)
3296 {
3297 struct bound_minimal_symbol m;
3298
3299 m = lookup_minimal_symbol_text (func_name, objfile);
3300 if (m.minsym == NULL)
3301 {
3302 /* Avoid future lookups in this objfile. */
3303 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3304 continue;
3305 }
3306 bp_objfile_data->overlay_msym = m;
3307 }
3308
3309 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3310 b = create_internal_breakpoint (objfile->arch (), addr,
3311 bp_overlay_event,
3312 &internal_breakpoint_ops);
3313 initialize_explicit_location (&explicit_loc);
3314 explicit_loc.function_name = ASTRDUP (func_name);
3315 b->location = new_explicit_location (&explicit_loc);
3316
3317 if (overlay_debugging == ovly_auto)
3318 {
3319 b->enable_state = bp_enabled;
3320 overlay_events_enabled = 1;
3321 }
3322 else
3323 {
3324 b->enable_state = bp_disabled;
3325 overlay_events_enabled = 0;
3326 }
3327 }
3328 }
3329
3330 /* Install a master longjmp breakpoint for OBJFILE using a probe. Return
3331 true if a breakpoint was installed. */
3332
3333 static bool
3334 create_longjmp_master_breakpoint_probe (objfile *objfile)
3335 {
3336 struct gdbarch *gdbarch = objfile->arch ();
3337 struct breakpoint_objfile_data *bp_objfile_data
3338 = get_breakpoint_objfile_data (objfile);
3339
3340 if (!bp_objfile_data->longjmp_searched)
3341 {
3342 std::vector<probe *> ret
3343 = find_probes_in_objfile (objfile, "libc", "longjmp");
3344
3345 if (!ret.empty ())
3346 {
3347 /* We are only interested in checking one element. */
3348 probe *p = ret[0];
3349
3350 if (!p->can_evaluate_arguments ())
3351 {
3352 /* We cannot use the probe interface here,
3353 because it does not know how to evaluate
3354 arguments. */
3355 ret.clear ();
3356 }
3357 }
3358 bp_objfile_data->longjmp_probes = ret;
3359 bp_objfile_data->longjmp_searched = 1;
3360 }
3361
3362 if (bp_objfile_data->longjmp_probes.empty ())
3363 return false;
3364
3365 for (probe *p : bp_objfile_data->longjmp_probes)
3366 {
3367 struct breakpoint *b;
3368
3369 b = create_internal_breakpoint (gdbarch,
3370 p->get_relocated_address (objfile),
3371 bp_longjmp_master,
3372 &internal_breakpoint_ops);
3373 b->location = new_probe_location ("-probe-stap libc:longjmp");
3374 b->enable_state = bp_disabled;
3375 }
3376
3377 return true;
3378 }
3379
3380 /* Install master longjmp breakpoints for OBJFILE using longjmp_names.
3381 Return true if at least one breakpoint was installed. */
3382
3383 static bool
3384 create_longjmp_master_breakpoint_names (objfile *objfile)
3385 {
3386 struct gdbarch *gdbarch = objfile->arch ();
3387 if (!gdbarch_get_longjmp_target_p (gdbarch))
3388 return false;
3389
3390 struct breakpoint_objfile_data *bp_objfile_data
3391 = get_breakpoint_objfile_data (objfile);
3392 unsigned int installed_bp = 0;
3393
3394 for (int i = 0; i < NUM_LONGJMP_NAMES; i++)
3395 {
3396 struct breakpoint *b;
3397 const char *func_name;
3398 CORE_ADDR addr;
3399 struct explicit_location explicit_loc;
3400
3401 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3402 continue;
3403
3404 func_name = longjmp_names[i];
3405 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3406 {
3407 struct bound_minimal_symbol m;
3408
3409 m = lookup_minimal_symbol_text (func_name, objfile);
3410 if (m.minsym == NULL)
3411 {
3412 /* Prevent future lookups in this objfile. */
3413 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3414 continue;
3415 }
3416 bp_objfile_data->longjmp_msym[i] = m;
3417 }
3418
3419 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3420 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3421 &internal_breakpoint_ops);
3422 initialize_explicit_location (&explicit_loc);
3423 explicit_loc.function_name = ASTRDUP (func_name);
3424 b->location = new_explicit_location (&explicit_loc);
3425 b->enable_state = bp_disabled;
3426 installed_bp++;
3427 }
3428
3429 return installed_bp > 0;
3430 }
3431
3432 /* Create a master longjmp breakpoint. */
3433
3434 static void
3435 create_longjmp_master_breakpoint (void)
3436 {
3437 scoped_restore_current_program_space restore_pspace;
3438
3439 for (struct program_space *pspace : program_spaces)
3440 {
3441 set_current_program_space (pspace);
3442
3443 for (objfile *obj : current_program_space->objfiles ())
3444 {
3445 /* Skip separate debug object, it's handled in the loop below. */
3446 if (obj->separate_debug_objfile_backlink != nullptr)
3447 continue;
3448
3449 /* Try a probe kind breakpoint on main objfile. */
3450 if (create_longjmp_master_breakpoint_probe (obj))
3451 continue;
3452
3453 /* Try longjmp_names kind breakpoints on main and separate_debug
3454 objfiles. */
3455 for (objfile *debug_objfile : obj->separate_debug_objfiles ())
3456 if (create_longjmp_master_breakpoint_names (debug_objfile))
3457 break;
3458 }
3459 }
3460 }
3461
3462 /* Create a master std::terminate breakpoint. */
3463 static void
3464 create_std_terminate_master_breakpoint (void)
3465 {
3466 const char *const func_name = "std::terminate()";
3467
3468 scoped_restore_current_program_space restore_pspace;
3469
3470 for (struct program_space *pspace : program_spaces)
3471 {
3472 CORE_ADDR addr;
3473
3474 set_current_program_space (pspace);
3475
3476 for (objfile *objfile : current_program_space->objfiles ())
3477 {
3478 struct breakpoint *b;
3479 struct breakpoint_objfile_data *bp_objfile_data;
3480 struct explicit_location explicit_loc;
3481
3482 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3483
3484 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3485 continue;
3486
3487 if (bp_objfile_data->terminate_msym.minsym == NULL)
3488 {
3489 struct bound_minimal_symbol m;
3490
3491 m = lookup_minimal_symbol (func_name, NULL, objfile);
3492 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3493 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3494 {
3495 /* Prevent future lookups in this objfile. */
3496 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3497 continue;
3498 }
3499 bp_objfile_data->terminate_msym = m;
3500 }
3501
3502 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3503 b = create_internal_breakpoint (objfile->arch (), addr,
3504 bp_std_terminate_master,
3505 &internal_breakpoint_ops);
3506 initialize_explicit_location (&explicit_loc);
3507 explicit_loc.function_name = ASTRDUP (func_name);
3508 b->location = new_explicit_location (&explicit_loc);
3509 b->enable_state = bp_disabled;
3510 }
3511 }
3512 }
3513
3514 /* Install a master breakpoint on the unwinder's debug hook for OBJFILE using a
3515 probe. Return true if a breakpoint was installed. */
3516
3517 static bool
3518 create_exception_master_breakpoint_probe (objfile *objfile)
3519 {
3520 struct breakpoint *b;
3521 struct gdbarch *gdbarch;
3522 struct breakpoint_objfile_data *bp_objfile_data;
3523
3524 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3525
3526 /* We prefer the SystemTap probe point if it exists. */
3527 if (!bp_objfile_data->exception_searched)
3528 {
3529 std::vector<probe *> ret
3530 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3531
3532 if (!ret.empty ())
3533 {
3534 /* We are only interested in checking one element. */
3535 probe *p = ret[0];
3536
3537 if (!p->can_evaluate_arguments ())
3538 {
3539 /* We cannot use the probe interface here, because it does
3540 not know how to evaluate arguments. */
3541 ret.clear ();
3542 }
3543 }
3544 bp_objfile_data->exception_probes = ret;
3545 bp_objfile_data->exception_searched = 1;
3546 }
3547
3548 if (bp_objfile_data->exception_probes.empty ())
3549 return false;
3550
3551 gdbarch = objfile->arch ();
3552
3553 for (probe *p : bp_objfile_data->exception_probes)
3554 {
3555 b = create_internal_breakpoint (gdbarch,
3556 p->get_relocated_address (objfile),
3557 bp_exception_master,
3558 &internal_breakpoint_ops);
3559 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3560 b->enable_state = bp_disabled;
3561 }
3562
3563 return true;
3564 }
3565
3566 /* Install a master breakpoint on the unwinder's debug hook for OBJFILE using
3567 _Unwind_DebugHook. Return true if a breakpoint was installed. */
3568
3569 static bool
3570 create_exception_master_breakpoint_hook (objfile *objfile)
3571 {
3572 const char *const func_name = "_Unwind_DebugHook";
3573 struct breakpoint *b;
3574 struct gdbarch *gdbarch;
3575 struct breakpoint_objfile_data *bp_objfile_data;
3576 CORE_ADDR addr;
3577 struct explicit_location explicit_loc;
3578
3579 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3580
3581 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3582 return false;
3583
3584 gdbarch = objfile->arch ();
3585
3586 if (bp_objfile_data->exception_msym.minsym == NULL)
3587 {
3588 struct bound_minimal_symbol debug_hook;
3589
3590 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3591 if (debug_hook.minsym == NULL)
3592 {
3593 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3594 return false;
3595 }
3596
3597 bp_objfile_data->exception_msym = debug_hook;
3598 }
3599
3600 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3601 addr = gdbarch_convert_from_func_ptr_addr
3602 (gdbarch, addr, current_inferior ()->top_target ());
3603 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3604 &internal_breakpoint_ops);
3605 initialize_explicit_location (&explicit_loc);
3606 explicit_loc.function_name = ASTRDUP (func_name);
3607 b->location = new_explicit_location (&explicit_loc);
3608 b->enable_state = bp_disabled;
3609
3610 return true;
3611 }
3612
3613 /* Install a master breakpoint on the unwinder's debug hook. */
3614
3615 static void
3616 create_exception_master_breakpoint (void)
3617 {
3618 for (objfile *obj : current_program_space->objfiles ())
3619 {
3620 /* Skip separate debug object. */
3621 if (obj->separate_debug_objfile_backlink)
3622 continue;
3623
3624 /* Try a probe kind breakpoint. */
3625 if (create_exception_master_breakpoint_probe (obj))
3626 continue;
3627
3628 /* Iterate over main and separate debug objects and try an
3629 _Unwind_DebugHook kind breakpoint. */
3630 for (objfile *debug_objfile : obj->separate_debug_objfiles ())
3631 if (create_exception_master_breakpoint_hook (debug_objfile))
3632 break;
3633 }
3634 }
3635
3636 /* Does B have a location spec? */
3637
3638 static int
3639 breakpoint_event_location_empty_p (const struct breakpoint *b)
3640 {
3641 return b->location != NULL && event_location_empty_p (b->location.get ());
3642 }
3643
3644 void
3645 update_breakpoints_after_exec (void)
3646 {
3647 struct breakpoint *b, *b_tmp;
3648 struct bp_location *bploc, **bplocp_tmp;
3649
3650 /* We're about to delete breakpoints from GDB's lists. If the
3651 INSERTED flag is true, GDB will try to lift the breakpoints by
3652 writing the breakpoints' "shadow contents" back into memory. The
3653 "shadow contents" are NOT valid after an exec, so GDB should not
3654 do that. Instead, the target is responsible from marking
3655 breakpoints out as soon as it detects an exec. We don't do that
3656 here instead, because there may be other attempts to delete
3657 breakpoints after detecting an exec and before reaching here. */
3658 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3659 if (bploc->pspace == current_program_space)
3660 gdb_assert (!bploc->inserted);
3661
3662 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3663 {
3664 if (b->pspace != current_program_space)
3665 continue;
3666
3667 /* Solib breakpoints must be explicitly reset after an exec(). */
3668 if (b->type == bp_shlib_event)
3669 {
3670 delete_breakpoint (b);
3671 continue;
3672 }
3673
3674 /* JIT breakpoints must be explicitly reset after an exec(). */
3675 if (b->type == bp_jit_event)
3676 {
3677 delete_breakpoint (b);
3678 continue;
3679 }
3680
3681 /* Thread event breakpoints must be set anew after an exec(),
3682 as must overlay event and longjmp master breakpoints. */
3683 if (b->type == bp_thread_event || b->type == bp_overlay_event
3684 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3685 || b->type == bp_exception_master)
3686 {
3687 delete_breakpoint (b);
3688 continue;
3689 }
3690
3691 /* Step-resume breakpoints are meaningless after an exec(). */
3692 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3693 {
3694 delete_breakpoint (b);
3695 continue;
3696 }
3697
3698 /* Just like single-step breakpoints. */
3699 if (b->type == bp_single_step)
3700 {
3701 delete_breakpoint (b);
3702 continue;
3703 }
3704
3705 /* Longjmp and longjmp-resume breakpoints are also meaningless
3706 after an exec. */
3707 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3708 || b->type == bp_longjmp_call_dummy
3709 || b->type == bp_exception || b->type == bp_exception_resume)
3710 {
3711 delete_breakpoint (b);
3712 continue;
3713 }
3714
3715 if (b->type == bp_catchpoint)
3716 {
3717 /* For now, none of the bp_catchpoint breakpoints need to
3718 do anything at this point. In the future, if some of
3719 the catchpoints need to something, we will need to add
3720 a new method, and call this method from here. */
3721 continue;
3722 }
3723
3724 /* bp_finish is a special case. The only way we ought to be able
3725 to see one of these when an exec() has happened, is if the user
3726 caught a vfork, and then said "finish". Ordinarily a finish just
3727 carries them to the call-site of the current callee, by setting
3728 a temporary bp there and resuming. But in this case, the finish
3729 will carry them entirely through the vfork & exec.
3730
3731 We don't want to allow a bp_finish to remain inserted now. But
3732 we can't safely delete it, 'cause finish_command has a handle to
3733 the bp on a bpstat, and will later want to delete it. There's a
3734 chance (and I've seen it happen) that if we delete the bp_finish
3735 here, that its storage will get reused by the time finish_command
3736 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3737 We really must allow finish_command to delete a bp_finish.
3738
3739 In the absence of a general solution for the "how do we know
3740 it's safe to delete something others may have handles to?"
3741 problem, what we'll do here is just uninsert the bp_finish, and
3742 let finish_command delete it.
3743
3744 (We know the bp_finish is "doomed" in the sense that it's
3745 momentary, and will be deleted as soon as finish_command sees
3746 the inferior stopped. So it doesn't matter that the bp's
3747 address is probably bogus in the new a.out, unlike e.g., the
3748 solib breakpoints.) */
3749
3750 if (b->type == bp_finish)
3751 {
3752 continue;
3753 }
3754
3755 /* Without a symbolic address, we have little hope of the
3756 pre-exec() address meaning the same thing in the post-exec()
3757 a.out. */
3758 if (breakpoint_event_location_empty_p (b))
3759 {
3760 delete_breakpoint (b);
3761 continue;
3762 }
3763 }
3764 }
3765
3766 int
3767 detach_breakpoints (ptid_t ptid)
3768 {
3769 struct bp_location *bl, **blp_tmp;
3770 int val = 0;
3771 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3772 struct inferior *inf = current_inferior ();
3773
3774 if (ptid.pid () == inferior_ptid.pid ())
3775 error (_("Cannot detach breakpoints of inferior_ptid"));
3776
3777 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3778 inferior_ptid = ptid;
3779 ALL_BP_LOCATIONS (bl, blp_tmp)
3780 {
3781 if (bl->pspace != inf->pspace)
3782 continue;
3783
3784 /* This function must physically remove breakpoints locations
3785 from the specified ptid, without modifying the breakpoint
3786 package's state. Locations of type bp_loc_other are only
3787 maintained at GDB side. So, there is no need to remove
3788 these bp_loc_other locations. Moreover, removing these
3789 would modify the breakpoint package's state. */
3790 if (bl->loc_type == bp_loc_other)
3791 continue;
3792
3793 if (bl->inserted)
3794 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3795 }
3796
3797 return val;
3798 }
3799
3800 /* Remove the breakpoint location BL from the current address space.
3801 Note that this is used to detach breakpoints from a child fork.
3802 When we get here, the child isn't in the inferior list, and neither
3803 do we have objects to represent its address space --- we should
3804 *not* look at bl->pspace->aspace here. */
3805
3806 static int
3807 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3808 {
3809 int val;
3810
3811 /* BL is never in moribund_locations by our callers. */
3812 gdb_assert (bl->owner != NULL);
3813
3814 /* The type of none suggests that owner is actually deleted.
3815 This should not ever happen. */
3816 gdb_assert (bl->owner->type != bp_none);
3817
3818 if (bl->loc_type == bp_loc_software_breakpoint
3819 || bl->loc_type == bp_loc_hardware_breakpoint)
3820 {
3821 /* "Normal" instruction breakpoint: either the standard
3822 trap-instruction bp (bp_breakpoint), or a
3823 bp_hardware_breakpoint. */
3824
3825 /* First check to see if we have to handle an overlay. */
3826 if (overlay_debugging == ovly_off
3827 || bl->section == NULL
3828 || !(section_is_overlay (bl->section)))
3829 {
3830 /* No overlay handling: just remove the breakpoint. */
3831
3832 /* If we're trying to uninsert a memory breakpoint that we
3833 know is set in a dynamic object that is marked
3834 shlib_disabled, then either the dynamic object was
3835 removed with "remove-symbol-file" or with
3836 "nosharedlibrary". In the former case, we don't know
3837 whether another dynamic object might have loaded over the
3838 breakpoint's address -- the user might well let us know
3839 about it next with add-symbol-file (the whole point of
3840 add-symbol-file is letting the user manually maintain a
3841 list of dynamically loaded objects). If we have the
3842 breakpoint's shadow memory, that is, this is a software
3843 breakpoint managed by GDB, check whether the breakpoint
3844 is still inserted in memory, to avoid overwriting wrong
3845 code with stale saved shadow contents. Note that HW
3846 breakpoints don't have shadow memory, as they're
3847 implemented using a mechanism that is not dependent on
3848 being able to modify the target's memory, and as such
3849 they should always be removed. */
3850 if (bl->shlib_disabled
3851 && bl->target_info.shadow_len != 0
3852 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3853 val = 0;
3854 else
3855 val = bl->owner->ops->remove_location (bl, reason);
3856 }
3857 else
3858 {
3859 /* This breakpoint is in an overlay section.
3860 Did we set a breakpoint at the LMA? */
3861 if (!overlay_events_enabled)
3862 {
3863 /* Yes -- overlay event support is not active, so we
3864 should have set a breakpoint at the LMA. Remove it.
3865 */
3866 /* Ignore any failures: if the LMA is in ROM, we will
3867 have already warned when we failed to insert it. */
3868 if (bl->loc_type == bp_loc_hardware_breakpoint)
3869 target_remove_hw_breakpoint (bl->gdbarch,
3870 &bl->overlay_target_info);
3871 else
3872 target_remove_breakpoint (bl->gdbarch,
3873 &bl->overlay_target_info,
3874 reason);
3875 }
3876 /* Did we set a breakpoint at the VMA?
3877 If so, we will have marked the breakpoint 'inserted'. */
3878 if (bl->inserted)
3879 {
3880 /* Yes -- remove it. Previously we did not bother to
3881 remove the breakpoint if the section had been
3882 unmapped, but let's not rely on that being safe. We
3883 don't know what the overlay manager might do. */
3884
3885 /* However, we should remove *software* breakpoints only
3886 if the section is still mapped, or else we overwrite
3887 wrong code with the saved shadow contents. */
3888 if (bl->loc_type == bp_loc_hardware_breakpoint
3889 || section_is_mapped (bl->section))
3890 val = bl->owner->ops->remove_location (bl, reason);
3891 else
3892 val = 0;
3893 }
3894 else
3895 {
3896 /* No -- not inserted, so no need to remove. No error. */
3897 val = 0;
3898 }
3899 }
3900
3901 /* In some cases, we might not be able to remove a breakpoint in
3902 a shared library that has already been removed, but we have
3903 not yet processed the shlib unload event. Similarly for an
3904 unloaded add-symbol-file object - the user might not yet have
3905 had the chance to remove-symbol-file it. shlib_disabled will
3906 be set if the library/object has already been removed, but
3907 the breakpoint hasn't been uninserted yet, e.g., after
3908 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3909 always-inserted mode. */
3910 if (val
3911 && (bl->loc_type == bp_loc_software_breakpoint
3912 && (bl->shlib_disabled
3913 || solib_name_from_address (bl->pspace, bl->address)
3914 || shared_objfile_contains_address_p (bl->pspace,
3915 bl->address))))
3916 val = 0;
3917
3918 if (val)
3919 return val;
3920 bl->inserted = (reason == DETACH_BREAKPOINT);
3921 }
3922 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3923 {
3924 gdb_assert (bl->owner->ops != NULL
3925 && bl->owner->ops->remove_location != NULL);
3926
3927 bl->inserted = (reason == DETACH_BREAKPOINT);
3928 bl->owner->ops->remove_location (bl, reason);
3929
3930 /* Failure to remove any of the hardware watchpoints comes here. */
3931 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3932 warning (_("Could not remove hardware watchpoint %d."),
3933 bl->owner->number);
3934 }
3935 else if (bl->owner->type == bp_catchpoint
3936 && breakpoint_enabled (bl->owner)
3937 && !bl->duplicate)
3938 {
3939 gdb_assert (bl->owner->ops != NULL
3940 && bl->owner->ops->remove_location != NULL);
3941
3942 val = bl->owner->ops->remove_location (bl, reason);
3943 if (val)
3944 return val;
3945
3946 bl->inserted = (reason == DETACH_BREAKPOINT);
3947 }
3948
3949 return 0;
3950 }
3951
3952 static int
3953 remove_breakpoint (struct bp_location *bl)
3954 {
3955 /* BL is never in moribund_locations by our callers. */
3956 gdb_assert (bl->owner != NULL);
3957
3958 /* The type of none suggests that owner is actually deleted.
3959 This should not ever happen. */
3960 gdb_assert (bl->owner->type != bp_none);
3961
3962 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3963
3964 switch_to_program_space_and_thread (bl->pspace);
3965
3966 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3967 }
3968
3969 /* Clear the "inserted" flag in all breakpoints. */
3970
3971 void
3972 mark_breakpoints_out (void)
3973 {
3974 struct bp_location *bl, **blp_tmp;
3975
3976 ALL_BP_LOCATIONS (bl, blp_tmp)
3977 if (bl->pspace == current_program_space)
3978 bl->inserted = 0;
3979 }
3980
3981 /* Clear the "inserted" flag in all breakpoints and delete any
3982 breakpoints which should go away between runs of the program.
3983
3984 Plus other such housekeeping that has to be done for breakpoints
3985 between runs.
3986
3987 Note: this function gets called at the end of a run (by
3988 generic_mourn_inferior) and when a run begins (by
3989 init_wait_for_inferior). */
3990
3991
3992
3993 void
3994 breakpoint_init_inferior (enum inf_context context)
3995 {
3996 struct breakpoint *b, *b_tmp;
3997 struct program_space *pspace = current_program_space;
3998
3999 /* If breakpoint locations are shared across processes, then there's
4000 nothing to do. */
4001 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4002 return;
4003
4004 mark_breakpoints_out ();
4005
4006 ALL_BREAKPOINTS_SAFE (b, b_tmp)
4007 {
4008 if (b->loc && b->loc->pspace != pspace)
4009 continue;
4010
4011 switch (b->type)
4012 {
4013 case bp_call_dummy:
4014 case bp_longjmp_call_dummy:
4015
4016 /* If the call dummy breakpoint is at the entry point it will
4017 cause problems when the inferior is rerun, so we better get
4018 rid of it. */
4019
4020 case bp_watchpoint_scope:
4021
4022 /* Also get rid of scope breakpoints. */
4023
4024 case bp_shlib_event:
4025
4026 /* Also remove solib event breakpoints. Their addresses may
4027 have changed since the last time we ran the program.
4028 Actually we may now be debugging against different target;
4029 and so the solib backend that installed this breakpoint may
4030 not be used in by the target. E.g.,
4031
4032 (gdb) file prog-linux
4033 (gdb) run # native linux target
4034 ...
4035 (gdb) kill
4036 (gdb) file prog-win.exe
4037 (gdb) tar rem :9999 # remote Windows gdbserver.
4038 */
4039
4040 case bp_step_resume:
4041
4042 /* Also remove step-resume breakpoints. */
4043
4044 case bp_single_step:
4045
4046 /* Also remove single-step breakpoints. */
4047
4048 delete_breakpoint (b);
4049 break;
4050
4051 case bp_watchpoint:
4052 case bp_hardware_watchpoint:
4053 case bp_read_watchpoint:
4054 case bp_access_watchpoint:
4055 {
4056 struct watchpoint *w = (struct watchpoint *) b;
4057
4058 /* Likewise for watchpoints on local expressions. */
4059 if (w->exp_valid_block != NULL)
4060 delete_breakpoint (b);
4061 else
4062 {
4063 /* Get rid of existing locations, which are no longer
4064 valid. New ones will be created in
4065 update_watchpoint, when the inferior is restarted.
4066 The next update_global_location_list call will
4067 garbage collect them. */
4068 b->loc = NULL;
4069
4070 if (context == inf_starting)
4071 {
4072 /* Reset val field to force reread of starting value in
4073 insert_breakpoints. */
4074 w->val.reset (nullptr);
4075 w->val_valid = false;
4076 }
4077 }
4078 }
4079 break;
4080 default:
4081 break;
4082 }
4083 }
4084
4085 /* Get rid of the moribund locations. */
4086 for (bp_location *bl : moribund_locations)
4087 decref_bp_location (&bl);
4088 moribund_locations.clear ();
4089 }
4090
4091 /* These functions concern about actual breakpoints inserted in the
4092 target --- to e.g. check if we need to do decr_pc adjustment or if
4093 we need to hop over the bkpt --- so we check for address space
4094 match, not program space. */
4095
4096 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4097 exists at PC. It returns ordinary_breakpoint_here if it's an
4098 ordinary breakpoint, or permanent_breakpoint_here if it's a
4099 permanent breakpoint.
4100 - When continuing from a location with an ordinary breakpoint, we
4101 actually single step once before calling insert_breakpoints.
4102 - When continuing from a location with a permanent breakpoint, we
4103 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4104 the target, to advance the PC past the breakpoint. */
4105
4106 enum breakpoint_here
4107 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4108 {
4109 struct bp_location *bl, **blp_tmp;
4110 int any_breakpoint_here = 0;
4111
4112 ALL_BP_LOCATIONS (bl, blp_tmp)
4113 {
4114 if (bl->loc_type != bp_loc_software_breakpoint
4115 && bl->loc_type != bp_loc_hardware_breakpoint)
4116 continue;
4117
4118 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4119 if ((breakpoint_enabled (bl->owner)
4120 || bl->permanent)
4121 && breakpoint_location_address_match (bl, aspace, pc))
4122 {
4123 if (overlay_debugging
4124 && section_is_overlay (bl->section)
4125 && !section_is_mapped (bl->section))
4126 continue; /* unmapped overlay -- can't be a match */
4127 else if (bl->permanent)
4128 return permanent_breakpoint_here;
4129 else
4130 any_breakpoint_here = 1;
4131 }
4132 }
4133
4134 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4135 }
4136
4137 /* See breakpoint.h. */
4138
4139 int
4140 breakpoint_in_range_p (const address_space *aspace,
4141 CORE_ADDR addr, ULONGEST len)
4142 {
4143 struct bp_location *bl, **blp_tmp;
4144
4145 ALL_BP_LOCATIONS (bl, blp_tmp)
4146 {
4147 if (bl->loc_type != bp_loc_software_breakpoint
4148 && bl->loc_type != bp_loc_hardware_breakpoint)
4149 continue;
4150
4151 if ((breakpoint_enabled (bl->owner)
4152 || bl->permanent)
4153 && breakpoint_location_address_range_overlap (bl, aspace,
4154 addr, len))
4155 {
4156 if (overlay_debugging
4157 && section_is_overlay (bl->section)
4158 && !section_is_mapped (bl->section))
4159 {
4160 /* Unmapped overlay -- can't be a match. */
4161 continue;
4162 }
4163
4164 return 1;
4165 }
4166 }
4167
4168 return 0;
4169 }
4170
4171 /* Return true if there's a moribund breakpoint at PC. */
4172
4173 int
4174 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4175 {
4176 for (bp_location *loc : moribund_locations)
4177 if (breakpoint_location_address_match (loc, aspace, pc))
4178 return 1;
4179
4180 return 0;
4181 }
4182
4183 /* Returns non-zero iff BL is inserted at PC, in address space
4184 ASPACE. */
4185
4186 static int
4187 bp_location_inserted_here_p (struct bp_location *bl,
4188 const address_space *aspace, CORE_ADDR pc)
4189 {
4190 if (bl->inserted
4191 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4192 aspace, pc))
4193 {
4194 if (overlay_debugging
4195 && section_is_overlay (bl->section)
4196 && !section_is_mapped (bl->section))
4197 return 0; /* unmapped overlay -- can't be a match */
4198 else
4199 return 1;
4200 }
4201 return 0;
4202 }
4203
4204 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4205
4206 int
4207 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4208 {
4209 struct bp_location **blp, **blp_tmp = NULL;
4210
4211 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4212 {
4213 struct bp_location *bl = *blp;
4214
4215 if (bl->loc_type != bp_loc_software_breakpoint
4216 && bl->loc_type != bp_loc_hardware_breakpoint)
4217 continue;
4218
4219 if (bp_location_inserted_here_p (bl, aspace, pc))
4220 return 1;
4221 }
4222 return 0;
4223 }
4224
4225 /* This function returns non-zero iff there is a software breakpoint
4226 inserted at PC. */
4227
4228 int
4229 software_breakpoint_inserted_here_p (const address_space *aspace,
4230 CORE_ADDR pc)
4231 {
4232 struct bp_location **blp, **blp_tmp = NULL;
4233
4234 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4235 {
4236 struct bp_location *bl = *blp;
4237
4238 if (bl->loc_type != bp_loc_software_breakpoint)
4239 continue;
4240
4241 if (bp_location_inserted_here_p (bl, aspace, pc))
4242 return 1;
4243 }
4244
4245 return 0;
4246 }
4247
4248 /* See breakpoint.h. */
4249
4250 int
4251 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4252 CORE_ADDR pc)
4253 {
4254 struct bp_location **blp, **blp_tmp = NULL;
4255
4256 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4257 {
4258 struct bp_location *bl = *blp;
4259
4260 if (bl->loc_type != bp_loc_hardware_breakpoint)
4261 continue;
4262
4263 if (bp_location_inserted_here_p (bl, aspace, pc))
4264 return 1;
4265 }
4266
4267 return 0;
4268 }
4269
4270 int
4271 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4272 CORE_ADDR addr, ULONGEST len)
4273 {
4274 struct breakpoint *bpt;
4275
4276 ALL_BREAKPOINTS (bpt)
4277 {
4278 struct bp_location *loc;
4279
4280 if (bpt->type != bp_hardware_watchpoint
4281 && bpt->type != bp_access_watchpoint)
4282 continue;
4283
4284 if (!breakpoint_enabled (bpt))
4285 continue;
4286
4287 for (loc = bpt->loc; loc; loc = loc->next)
4288 if (loc->pspace->aspace == aspace && loc->inserted)
4289 {
4290 CORE_ADDR l, h;
4291
4292 /* Check for intersection. */
4293 l = std::max<CORE_ADDR> (loc->address, addr);
4294 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4295 if (l < h)
4296 return 1;
4297 }
4298 }
4299 return 0;
4300 }
4301
4302 /* See breakpoint.h. */
4303
4304 bool
4305 is_catchpoint (struct breakpoint *b)
4306 {
4307 return (b->type == bp_catchpoint);
4308 }
4309
4310 /* Clear a bpstat so that it says we are not at any breakpoint.
4311 Also free any storage that is part of a bpstat. */
4312
4313 void
4314 bpstat_clear (bpstat *bsp)
4315 {
4316 bpstat p;
4317 bpstat q;
4318
4319 if (bsp == 0)
4320 return;
4321 p = *bsp;
4322 while (p != NULL)
4323 {
4324 q = p->next;
4325 delete p;
4326 p = q;
4327 }
4328 *bsp = NULL;
4329 }
4330
4331 bpstats::bpstats (const bpstats &other)
4332 : next (NULL),
4333 bp_location_at (other.bp_location_at),
4334 breakpoint_at (other.breakpoint_at),
4335 commands (other.commands),
4336 print (other.print),
4337 stop (other.stop),
4338 print_it (other.print_it)
4339 {
4340 if (other.old_val != NULL)
4341 old_val = release_value (value_copy (other.old_val.get ()));
4342 }
4343
4344 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4345 is part of the bpstat is copied as well. */
4346
4347 bpstat
4348 bpstat_copy (bpstat bs)
4349 {
4350 bpstat p = NULL;
4351 bpstat tmp;
4352 bpstat retval = NULL;
4353
4354 if (bs == NULL)
4355 return bs;
4356
4357 for (; bs != NULL; bs = bs->next)
4358 {
4359 tmp = new bpstats (*bs);
4360
4361 if (p == NULL)
4362 /* This is the first thing in the chain. */
4363 retval = tmp;
4364 else
4365 p->next = tmp;
4366 p = tmp;
4367 }
4368 p->next = NULL;
4369 return retval;
4370 }
4371
4372 /* Find the bpstat associated with this breakpoint. */
4373
4374 bpstat
4375 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4376 {
4377 if (bsp == NULL)
4378 return NULL;
4379
4380 for (; bsp != NULL; bsp = bsp->next)
4381 {
4382 if (bsp->breakpoint_at == breakpoint)
4383 return bsp;
4384 }
4385 return NULL;
4386 }
4387
4388 /* See breakpoint.h. */
4389
4390 bool
4391 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4392 {
4393 for (; bsp != NULL; bsp = bsp->next)
4394 {
4395 if (bsp->breakpoint_at == NULL)
4396 {
4397 /* A moribund location can never explain a signal other than
4398 GDB_SIGNAL_TRAP. */
4399 if (sig == GDB_SIGNAL_TRAP)
4400 return true;
4401 }
4402 else
4403 {
4404 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4405 sig))
4406 return true;
4407 }
4408 }
4409
4410 return false;
4411 }
4412
4413 /* Put in *NUM the breakpoint number of the first breakpoint we are
4414 stopped at. *BSP upon return is a bpstat which points to the
4415 remaining breakpoints stopped at (but which is not guaranteed to be
4416 good for anything but further calls to bpstat_num).
4417
4418 Return 0 if passed a bpstat which does not indicate any breakpoints.
4419 Return -1 if stopped at a breakpoint that has been deleted since
4420 we set it.
4421 Return 1 otherwise. */
4422
4423 int
4424 bpstat_num (bpstat *bsp, int *num)
4425 {
4426 struct breakpoint *b;
4427
4428 if ((*bsp) == NULL)
4429 return 0; /* No more breakpoint values */
4430
4431 /* We assume we'll never have several bpstats that correspond to a
4432 single breakpoint -- otherwise, this function might return the
4433 same number more than once and this will look ugly. */
4434 b = (*bsp)->breakpoint_at;
4435 *bsp = (*bsp)->next;
4436 if (b == NULL)
4437 return -1; /* breakpoint that's been deleted since */
4438
4439 *num = b->number; /* We have its number */
4440 return 1;
4441 }
4442
4443 /* See breakpoint.h. */
4444
4445 void
4446 bpstat_clear_actions (void)
4447 {
4448 bpstat bs;
4449
4450 if (inferior_ptid == null_ptid)
4451 return;
4452
4453 thread_info *tp = inferior_thread ();
4454 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4455 {
4456 bs->commands = NULL;
4457 bs->old_val.reset (nullptr);
4458 }
4459 }
4460
4461 /* Called when a command is about to proceed the inferior. */
4462
4463 static void
4464 breakpoint_about_to_proceed (void)
4465 {
4466 if (inferior_ptid != null_ptid)
4467 {
4468 struct thread_info *tp = inferior_thread ();
4469
4470 /* Allow inferior function calls in breakpoint commands to not
4471 interrupt the command list. When the call finishes
4472 successfully, the inferior will be standing at the same
4473 breakpoint as if nothing happened. */
4474 if (tp->control.in_infcall)
4475 return;
4476 }
4477
4478 breakpoint_proceeded = 1;
4479 }
4480
4481 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4482 or its equivalent. */
4483
4484 static int
4485 command_line_is_silent (struct command_line *cmd)
4486 {
4487 return cmd && (strcmp ("silent", cmd->line) == 0);
4488 }
4489
4490 /* Execute all the commands associated with all the breakpoints at
4491 this location. Any of these commands could cause the process to
4492 proceed beyond this point, etc. We look out for such changes by
4493 checking the global "breakpoint_proceeded" after each command.
4494
4495 Returns true if a breakpoint command resumed the inferior. In that
4496 case, it is the caller's responsibility to recall it again with the
4497 bpstat of the current thread. */
4498
4499 static int
4500 bpstat_do_actions_1 (bpstat *bsp)
4501 {
4502 bpstat bs;
4503 int again = 0;
4504
4505 /* Avoid endless recursion if a `source' command is contained
4506 in bs->commands. */
4507 if (executing_breakpoint_commands)
4508 return 0;
4509
4510 scoped_restore save_executing
4511 = make_scoped_restore (&executing_breakpoint_commands, 1);
4512
4513 scoped_restore preventer = prevent_dont_repeat ();
4514
4515 /* This pointer will iterate over the list of bpstat's. */
4516 bs = *bsp;
4517
4518 breakpoint_proceeded = 0;
4519 for (; bs != NULL; bs = bs->next)
4520 {
4521 struct command_line *cmd = NULL;
4522
4523 /* Take ownership of the BSP's command tree, if it has one.
4524
4525 The command tree could legitimately contain commands like
4526 'step' and 'next', which call clear_proceed_status, which
4527 frees stop_bpstat's command tree. To make sure this doesn't
4528 free the tree we're executing out from under us, we need to
4529 take ownership of the tree ourselves. Since a given bpstat's
4530 commands are only executed once, we don't need to copy it; we
4531 can clear the pointer in the bpstat, and make sure we free
4532 the tree when we're done. */
4533 counted_command_line ccmd = bs->commands;
4534 bs->commands = NULL;
4535 if (ccmd != NULL)
4536 cmd = ccmd.get ();
4537 if (command_line_is_silent (cmd))
4538 {
4539 /* The action has been already done by bpstat_stop_status. */
4540 cmd = cmd->next;
4541 }
4542
4543 while (cmd != NULL)
4544 {
4545 execute_control_command (cmd);
4546
4547 if (breakpoint_proceeded)
4548 break;
4549 else
4550 cmd = cmd->next;
4551 }
4552
4553 if (breakpoint_proceeded)
4554 {
4555 if (current_ui->async)
4556 /* If we are in async mode, then the target might be still
4557 running, not stopped at any breakpoint, so nothing for
4558 us to do here -- just return to the event loop. */
4559 ;
4560 else
4561 /* In sync mode, when execute_control_command returns
4562 we're already standing on the next breakpoint.
4563 Breakpoint commands for that stop were not run, since
4564 execute_command does not run breakpoint commands --
4565 only command_line_handler does, but that one is not
4566 involved in execution of breakpoint commands. So, we
4567 can now execute breakpoint commands. It should be
4568 noted that making execute_command do bpstat actions is
4569 not an option -- in this case we'll have recursive
4570 invocation of bpstat for each breakpoint with a
4571 command, and can easily blow up GDB stack. Instead, we
4572 return true, which will trigger the caller to recall us
4573 with the new stop_bpstat. */
4574 again = 1;
4575 break;
4576 }
4577 }
4578 return again;
4579 }
4580
4581 /* Helper for bpstat_do_actions. Get the current thread, if there's
4582 one, is alive and has execution. Return NULL otherwise. */
4583
4584 static thread_info *
4585 get_bpstat_thread ()
4586 {
4587 if (inferior_ptid == null_ptid || !target_has_execution ())
4588 return NULL;
4589
4590 thread_info *tp = inferior_thread ();
4591 if (tp->state == THREAD_EXITED || tp->executing)
4592 return NULL;
4593 return tp;
4594 }
4595
4596 void
4597 bpstat_do_actions (void)
4598 {
4599 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4600 thread_info *tp;
4601
4602 /* Do any commands attached to breakpoint we are stopped at. */
4603 while ((tp = get_bpstat_thread ()) != NULL)
4604 {
4605 /* Since in sync mode, bpstat_do_actions may resume the
4606 inferior, and only return when it is stopped at the next
4607 breakpoint, we keep doing breakpoint actions until it returns
4608 false to indicate the inferior was not resumed. */
4609 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4610 break;
4611 }
4612
4613 cleanup_if_error.release ();
4614 }
4615
4616 /* Print out the (old or new) value associated with a watchpoint. */
4617
4618 static void
4619 watchpoint_value_print (struct value *val, struct ui_file *stream)
4620 {
4621 if (val == NULL)
4622 fprintf_styled (stream, metadata_style.style (), _("<unreadable>"));
4623 else
4624 {
4625 struct value_print_options opts;
4626 get_user_print_options (&opts);
4627 value_print (val, stream, &opts);
4628 }
4629 }
4630
4631 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4632 debugging multiple threads. */
4633
4634 void
4635 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4636 {
4637 if (uiout->is_mi_like_p ())
4638 return;
4639
4640 uiout->text ("\n");
4641
4642 if (show_thread_that_caused_stop ())
4643 {
4644 const char *name;
4645 struct thread_info *thr = inferior_thread ();
4646
4647 uiout->text ("Thread ");
4648 uiout->field_string ("thread-id", print_thread_id (thr));
4649
4650 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4651 if (name != NULL)
4652 {
4653 uiout->text (" \"");
4654 uiout->field_string ("name", name);
4655 uiout->text ("\"");
4656 }
4657
4658 uiout->text (" hit ");
4659 }
4660 }
4661
4662 /* Generic routine for printing messages indicating why we
4663 stopped. The behavior of this function depends on the value
4664 'print_it' in the bpstat structure. Under some circumstances we
4665 may decide not to print anything here and delegate the task to
4666 normal_stop(). */
4667
4668 static enum print_stop_action
4669 print_bp_stop_message (bpstat bs)
4670 {
4671 switch (bs->print_it)
4672 {
4673 case print_it_noop:
4674 /* Nothing should be printed for this bpstat entry. */
4675 return PRINT_UNKNOWN;
4676 break;
4677
4678 case print_it_done:
4679 /* We still want to print the frame, but we already printed the
4680 relevant messages. */
4681 return PRINT_SRC_AND_LOC;
4682 break;
4683
4684 case print_it_normal:
4685 {
4686 struct breakpoint *b = bs->breakpoint_at;
4687
4688 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4689 which has since been deleted. */
4690 if (b == NULL)
4691 return PRINT_UNKNOWN;
4692
4693 /* Normal case. Call the breakpoint's print_it method. */
4694 return b->ops->print_it (bs);
4695 }
4696 break;
4697
4698 default:
4699 internal_error (__FILE__, __LINE__,
4700 _("print_bp_stop_message: unrecognized enum value"));
4701 break;
4702 }
4703 }
4704
4705 /* A helper function that prints a shared library stopped event. */
4706
4707 static void
4708 print_solib_event (int is_catchpoint)
4709 {
4710 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4711 bool any_added = !current_program_space->added_solibs.empty ();
4712
4713 if (!is_catchpoint)
4714 {
4715 if (any_added || any_deleted)
4716 current_uiout->text (_("Stopped due to shared library event:\n"));
4717 else
4718 current_uiout->text (_("Stopped due to shared library event (no "
4719 "libraries added or removed)\n"));
4720 }
4721
4722 if (current_uiout->is_mi_like_p ())
4723 current_uiout->field_string ("reason",
4724 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4725
4726 if (any_deleted)
4727 {
4728 current_uiout->text (_(" Inferior unloaded "));
4729 ui_out_emit_list list_emitter (current_uiout, "removed");
4730 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4731 {
4732 const std::string &name = current_program_space->deleted_solibs[ix];
4733
4734 if (ix > 0)
4735 current_uiout->text (" ");
4736 current_uiout->field_string ("library", name);
4737 current_uiout->text ("\n");
4738 }
4739 }
4740
4741 if (any_added)
4742 {
4743 current_uiout->text (_(" Inferior loaded "));
4744 ui_out_emit_list list_emitter (current_uiout, "added");
4745 bool first = true;
4746 for (so_list *iter : current_program_space->added_solibs)
4747 {
4748 if (!first)
4749 current_uiout->text (" ");
4750 first = false;
4751 current_uiout->field_string ("library", iter->so_name);
4752 current_uiout->text ("\n");
4753 }
4754 }
4755 }
4756
4757 /* Print a message indicating what happened. This is called from
4758 normal_stop(). The input to this routine is the head of the bpstat
4759 list - a list of the eventpoints that caused this stop. KIND is
4760 the target_waitkind for the stopping event. This
4761 routine calls the generic print routine for printing a message
4762 about reasons for stopping. This will print (for example) the
4763 "Breakpoint n," part of the output. The return value of this
4764 routine is one of:
4765
4766 PRINT_UNKNOWN: Means we printed nothing.
4767 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4768 code to print the location. An example is
4769 "Breakpoint 1, " which should be followed by
4770 the location.
4771 PRINT_SRC_ONLY: Means we printed something, but there is no need
4772 to also print the location part of the message.
4773 An example is the catch/throw messages, which
4774 don't require a location appended to the end.
4775 PRINT_NOTHING: We have done some printing and we don't need any
4776 further info to be printed. */
4777
4778 enum print_stop_action
4779 bpstat_print (bpstat bs, int kind)
4780 {
4781 enum print_stop_action val;
4782
4783 /* Maybe another breakpoint in the chain caused us to stop.
4784 (Currently all watchpoints go on the bpstat whether hit or not.
4785 That probably could (should) be changed, provided care is taken
4786 with respect to bpstat_explains_signal). */
4787 for (; bs; bs = bs->next)
4788 {
4789 val = print_bp_stop_message (bs);
4790 if (val == PRINT_SRC_ONLY
4791 || val == PRINT_SRC_AND_LOC
4792 || val == PRINT_NOTHING)
4793 return val;
4794 }
4795
4796 /* If we had hit a shared library event breakpoint,
4797 print_bp_stop_message would print out this message. If we hit an
4798 OS-level shared library event, do the same thing. */
4799 if (kind == TARGET_WAITKIND_LOADED)
4800 {
4801 print_solib_event (0);
4802 return PRINT_NOTHING;
4803 }
4804
4805 /* We reached the end of the chain, or we got a null BS to start
4806 with and nothing was printed. */
4807 return PRINT_UNKNOWN;
4808 }
4809
4810 /* Evaluate the boolean expression EXP and return the result. */
4811
4812 static bool
4813 breakpoint_cond_eval (expression *exp)
4814 {
4815 struct value *mark = value_mark ();
4816 bool res = value_true (evaluate_expression (exp));
4817
4818 value_free_to_mark (mark);
4819 return res;
4820 }
4821
4822 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4823
4824 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4825 : next (NULL),
4826 bp_location_at (bp_location_ref_ptr::new_reference (bl)),
4827 breakpoint_at (bl->owner),
4828 commands (NULL),
4829 print (0),
4830 stop (0),
4831 print_it (print_it_normal)
4832 {
4833 **bs_link_pointer = this;
4834 *bs_link_pointer = &next;
4835 }
4836
4837 bpstats::bpstats ()
4838 : next (NULL),
4839 breakpoint_at (NULL),
4840 commands (NULL),
4841 print (0),
4842 stop (0),
4843 print_it (print_it_normal)
4844 {
4845 }
4846 \f
4847 /* The target has stopped with waitstatus WS. Check if any hardware
4848 watchpoints have triggered, according to the target. */
4849
4850 int
4851 watchpoints_triggered (struct target_waitstatus *ws)
4852 {
4853 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4854 CORE_ADDR addr;
4855 struct breakpoint *b;
4856
4857 if (!stopped_by_watchpoint)
4858 {
4859 /* We were not stopped by a watchpoint. Mark all watchpoints
4860 as not triggered. */
4861 ALL_BREAKPOINTS (b)
4862 if (is_hardware_watchpoint (b))
4863 {
4864 struct watchpoint *w = (struct watchpoint *) b;
4865
4866 w->watchpoint_triggered = watch_triggered_no;
4867 }
4868
4869 return 0;
4870 }
4871
4872 if (!target_stopped_data_address (current_inferior ()->top_target (), &addr))
4873 {
4874 /* We were stopped by a watchpoint, but we don't know where.
4875 Mark all watchpoints as unknown. */
4876 ALL_BREAKPOINTS (b)
4877 if (is_hardware_watchpoint (b))
4878 {
4879 struct watchpoint *w = (struct watchpoint *) b;
4880
4881 w->watchpoint_triggered = watch_triggered_unknown;
4882 }
4883
4884 return 1;
4885 }
4886
4887 /* The target could report the data address. Mark watchpoints
4888 affected by this data address as triggered, and all others as not
4889 triggered. */
4890
4891 ALL_BREAKPOINTS (b)
4892 if (is_hardware_watchpoint (b))
4893 {
4894 struct watchpoint *w = (struct watchpoint *) b;
4895 struct bp_location *loc;
4896
4897 w->watchpoint_triggered = watch_triggered_no;
4898 for (loc = b->loc; loc; loc = loc->next)
4899 {
4900 if (is_masked_watchpoint (b))
4901 {
4902 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4903 CORE_ADDR start = loc->address & w->hw_wp_mask;
4904
4905 if (newaddr == start)
4906 {
4907 w->watchpoint_triggered = watch_triggered_yes;
4908 break;
4909 }
4910 }
4911 /* Exact match not required. Within range is sufficient. */
4912 else if (target_watchpoint_addr_within_range
4913 (current_inferior ()->top_target (), addr, loc->address,
4914 loc->length))
4915 {
4916 w->watchpoint_triggered = watch_triggered_yes;
4917 break;
4918 }
4919 }
4920 }
4921
4922 return 1;
4923 }
4924
4925 /* Possible return values for watchpoint_check. */
4926 enum wp_check_result
4927 {
4928 /* The watchpoint has been deleted. */
4929 WP_DELETED = 1,
4930
4931 /* The value has changed. */
4932 WP_VALUE_CHANGED = 2,
4933
4934 /* The value has not changed. */
4935 WP_VALUE_NOT_CHANGED = 3,
4936
4937 /* Ignore this watchpoint, no matter if the value changed or not. */
4938 WP_IGNORE = 4,
4939 };
4940
4941 #define BP_TEMPFLAG 1
4942 #define BP_HARDWAREFLAG 2
4943
4944 /* Evaluate watchpoint condition expression and check if its value
4945 changed. */
4946
4947 static wp_check_result
4948 watchpoint_check (bpstat bs)
4949 {
4950 struct watchpoint *b;
4951 struct frame_info *fr;
4952 int within_current_scope;
4953
4954 /* BS is built from an existing struct breakpoint. */
4955 gdb_assert (bs->breakpoint_at != NULL);
4956 b = (struct watchpoint *) bs->breakpoint_at;
4957
4958 /* If this is a local watchpoint, we only want to check if the
4959 watchpoint frame is in scope if the current thread is the thread
4960 that was used to create the watchpoint. */
4961 if (!watchpoint_in_thread_scope (b))
4962 return WP_IGNORE;
4963
4964 if (b->exp_valid_block == NULL)
4965 within_current_scope = 1;
4966 else
4967 {
4968 struct frame_info *frame = get_current_frame ();
4969 struct gdbarch *frame_arch = get_frame_arch (frame);
4970 CORE_ADDR frame_pc = get_frame_pc (frame);
4971
4972 /* stack_frame_destroyed_p() returns a non-zero value if we're
4973 still in the function but the stack frame has already been
4974 invalidated. Since we can't rely on the values of local
4975 variables after the stack has been destroyed, we are treating
4976 the watchpoint in that state as `not changed' without further
4977 checking. Don't mark watchpoints as changed if the current
4978 frame is in an epilogue - even if they are in some other
4979 frame, our view of the stack is likely to be wrong and
4980 frame_find_by_id could error out. */
4981 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4982 return WP_IGNORE;
4983
4984 fr = frame_find_by_id (b->watchpoint_frame);
4985 within_current_scope = (fr != NULL);
4986
4987 /* If we've gotten confused in the unwinder, we might have
4988 returned a frame that can't describe this variable. */
4989 if (within_current_scope)
4990 {
4991 struct symbol *function;
4992
4993 function = get_frame_function (fr);
4994 if (function == NULL
4995 || !contained_in (b->exp_valid_block,
4996 SYMBOL_BLOCK_VALUE (function)))
4997 within_current_scope = 0;
4998 }
4999
5000 if (within_current_scope)
5001 /* If we end up stopping, the current frame will get selected
5002 in normal_stop. So this call to select_frame won't affect
5003 the user. */
5004 select_frame (fr);
5005 }
5006
5007 if (within_current_scope)
5008 {
5009 /* We use value_{,free_to_}mark because it could be a *long*
5010 time before we return to the command level and call
5011 free_all_values. We can't call free_all_values because we
5012 might be in the middle of evaluating a function call. */
5013
5014 struct value *mark;
5015 struct value *new_val;
5016
5017 if (is_masked_watchpoint (b))
5018 /* Since we don't know the exact trigger address (from
5019 stopped_data_address), just tell the user we've triggered
5020 a mask watchpoint. */
5021 return WP_VALUE_CHANGED;
5022
5023 mark = value_mark ();
5024 fetch_subexp_value (b->exp.get (), b->exp->op.get (), &new_val,
5025 NULL, NULL, false);
5026
5027 if (b->val_bitsize != 0)
5028 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5029
5030 /* We use value_equal_contents instead of value_equal because
5031 the latter coerces an array to a pointer, thus comparing just
5032 the address of the array instead of its contents. This is
5033 not what we want. */
5034 if ((b->val != NULL) != (new_val != NULL)
5035 || (b->val != NULL && !value_equal_contents (b->val.get (),
5036 new_val)))
5037 {
5038 bs->old_val = b->val;
5039 b->val = release_value (new_val);
5040 b->val_valid = true;
5041 if (new_val != NULL)
5042 value_free_to_mark (mark);
5043 return WP_VALUE_CHANGED;
5044 }
5045 else
5046 {
5047 /* Nothing changed. */
5048 value_free_to_mark (mark);
5049 return WP_VALUE_NOT_CHANGED;
5050 }
5051 }
5052 else
5053 {
5054 /* This seems like the only logical thing to do because
5055 if we temporarily ignored the watchpoint, then when
5056 we reenter the block in which it is valid it contains
5057 garbage (in the case of a function, it may have two
5058 garbage values, one before and one after the prologue).
5059 So we can't even detect the first assignment to it and
5060 watch after that (since the garbage may or may not equal
5061 the first value assigned). */
5062 /* We print all the stop information in
5063 breakpoint_ops->print_it, but in this case, by the time we
5064 call breakpoint_ops->print_it this bp will be deleted
5065 already. So we have no choice but print the information
5066 here. */
5067
5068 SWITCH_THRU_ALL_UIS ()
5069 {
5070 struct ui_out *uiout = current_uiout;
5071
5072 if (uiout->is_mi_like_p ())
5073 uiout->field_string
5074 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5075 uiout->message ("\nWatchpoint %pF deleted because the program has "
5076 "left the block in\n"
5077 "which its expression is valid.\n",
5078 signed_field ("wpnum", b->number));
5079 }
5080
5081 /* Make sure the watchpoint's commands aren't executed. */
5082 b->commands = NULL;
5083 watchpoint_del_at_next_stop (b);
5084
5085 return WP_DELETED;
5086 }
5087 }
5088
5089 /* Return true if it looks like target has stopped due to hitting
5090 breakpoint location BL. This function does not check if we should
5091 stop, only if BL explains the stop. */
5092
5093 static int
5094 bpstat_check_location (const struct bp_location *bl,
5095 const address_space *aspace, CORE_ADDR bp_addr,
5096 const struct target_waitstatus *ws)
5097 {
5098 struct breakpoint *b = bl->owner;
5099
5100 /* BL is from an existing breakpoint. */
5101 gdb_assert (b != NULL);
5102
5103 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5104 }
5105
5106 /* Determine if the watched values have actually changed, and we
5107 should stop. If not, set BS->stop to 0. */
5108
5109 static void
5110 bpstat_check_watchpoint (bpstat bs)
5111 {
5112 const struct bp_location *bl;
5113 struct watchpoint *b;
5114
5115 /* BS is built for existing struct breakpoint. */
5116 bl = bs->bp_location_at.get ();
5117 gdb_assert (bl != NULL);
5118 b = (struct watchpoint *) bs->breakpoint_at;
5119 gdb_assert (b != NULL);
5120
5121 {
5122 int must_check_value = 0;
5123
5124 if (b->type == bp_watchpoint)
5125 /* For a software watchpoint, we must always check the
5126 watched value. */
5127 must_check_value = 1;
5128 else if (b->watchpoint_triggered == watch_triggered_yes)
5129 /* We have a hardware watchpoint (read, write, or access)
5130 and the target earlier reported an address watched by
5131 this watchpoint. */
5132 must_check_value = 1;
5133 else if (b->watchpoint_triggered == watch_triggered_unknown
5134 && b->type == bp_hardware_watchpoint)
5135 /* We were stopped by a hardware watchpoint, but the target could
5136 not report the data address. We must check the watchpoint's
5137 value. Access and read watchpoints are out of luck; without
5138 a data address, we can't figure it out. */
5139 must_check_value = 1;
5140
5141 if (must_check_value)
5142 {
5143 wp_check_result e;
5144
5145 try
5146 {
5147 e = watchpoint_check (bs);
5148 }
5149 catch (const gdb_exception &ex)
5150 {
5151 exception_fprintf (gdb_stderr, ex,
5152 "Error evaluating expression "
5153 "for watchpoint %d\n",
5154 b->number);
5155
5156 SWITCH_THRU_ALL_UIS ()
5157 {
5158 printf_filtered (_("Watchpoint %d deleted.\n"),
5159 b->number);
5160 }
5161 watchpoint_del_at_next_stop (b);
5162 e = WP_DELETED;
5163 }
5164
5165 switch (e)
5166 {
5167 case WP_DELETED:
5168 /* We've already printed what needs to be printed. */
5169 bs->print_it = print_it_done;
5170 /* Stop. */
5171 break;
5172 case WP_IGNORE:
5173 bs->print_it = print_it_noop;
5174 bs->stop = 0;
5175 break;
5176 case WP_VALUE_CHANGED:
5177 if (b->type == bp_read_watchpoint)
5178 {
5179 /* There are two cases to consider here:
5180
5181 1. We're watching the triggered memory for reads.
5182 In that case, trust the target, and always report
5183 the watchpoint hit to the user. Even though
5184 reads don't cause value changes, the value may
5185 have changed since the last time it was read, and
5186 since we're not trapping writes, we will not see
5187 those, and as such we should ignore our notion of
5188 old value.
5189
5190 2. We're watching the triggered memory for both
5191 reads and writes. There are two ways this may
5192 happen:
5193
5194 2.1. This is a target that can't break on data
5195 reads only, but can break on accesses (reads or
5196 writes), such as e.g., x86. We detect this case
5197 at the time we try to insert read watchpoints.
5198
5199 2.2. Otherwise, the target supports read
5200 watchpoints, but, the user set an access or write
5201 watchpoint watching the same memory as this read
5202 watchpoint.
5203
5204 If we're watching memory writes as well as reads,
5205 ignore watchpoint hits when we find that the
5206 value hasn't changed, as reads don't cause
5207 changes. This still gives false positives when
5208 the program writes the same value to memory as
5209 what there was already in memory (we will confuse
5210 it for a read), but it's much better than
5211 nothing. */
5212
5213 int other_write_watchpoint = 0;
5214
5215 if (bl->watchpoint_type == hw_read)
5216 {
5217 struct breakpoint *other_b;
5218
5219 ALL_BREAKPOINTS (other_b)
5220 if (other_b->type == bp_hardware_watchpoint
5221 || other_b->type == bp_access_watchpoint)
5222 {
5223 struct watchpoint *other_w =
5224 (struct watchpoint *) other_b;
5225
5226 if (other_w->watchpoint_triggered
5227 == watch_triggered_yes)
5228 {
5229 other_write_watchpoint = 1;
5230 break;
5231 }
5232 }
5233 }
5234
5235 if (other_write_watchpoint
5236 || bl->watchpoint_type == hw_access)
5237 {
5238 /* We're watching the same memory for writes,
5239 and the value changed since the last time we
5240 updated it, so this trap must be for a write.
5241 Ignore it. */
5242 bs->print_it = print_it_noop;
5243 bs->stop = 0;
5244 }
5245 }
5246 break;
5247 case WP_VALUE_NOT_CHANGED:
5248 if (b->type == bp_hardware_watchpoint
5249 || b->type == bp_watchpoint)
5250 {
5251 /* Don't stop: write watchpoints shouldn't fire if
5252 the value hasn't changed. */
5253 bs->print_it = print_it_noop;
5254 bs->stop = 0;
5255 }
5256 /* Stop. */
5257 break;
5258 default:
5259 /* Can't happen. */
5260 break;
5261 }
5262 }
5263 else /* must_check_value == 0 */
5264 {
5265 /* This is a case where some watchpoint(s) triggered, but
5266 not at the address of this watchpoint, or else no
5267 watchpoint triggered after all. So don't print
5268 anything for this watchpoint. */
5269 bs->print_it = print_it_noop;
5270 bs->stop = 0;
5271 }
5272 }
5273 }
5274
5275 /* For breakpoints that are currently marked as telling gdb to stop,
5276 check conditions (condition proper, frame, thread and ignore count)
5277 of breakpoint referred to by BS. If we should not stop for this
5278 breakpoint, set BS->stop to 0. */
5279
5280 static void
5281 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5282 {
5283 const struct bp_location *bl;
5284 struct breakpoint *b;
5285 /* Assume stop. */
5286 bool condition_result = true;
5287 struct expression *cond;
5288
5289 gdb_assert (bs->stop);
5290
5291 /* BS is built for existing struct breakpoint. */
5292 bl = bs->bp_location_at.get ();
5293 gdb_assert (bl != NULL);
5294 b = bs->breakpoint_at;
5295 gdb_assert (b != NULL);
5296
5297 /* Even if the target evaluated the condition on its end and notified GDB, we
5298 need to do so again since GDB does not know if we stopped due to a
5299 breakpoint or a single step breakpoint. */
5300
5301 if (frame_id_p (b->frame_id)
5302 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5303 {
5304 bs->stop = 0;
5305 return;
5306 }
5307
5308 /* If this is a thread/task-specific breakpoint, don't waste cpu
5309 evaluating the condition if this isn't the specified
5310 thread/task. */
5311 if ((b->thread != -1 && b->thread != thread->global_num)
5312 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5313 {
5314 bs->stop = 0;
5315 return;
5316 }
5317
5318 /* Evaluate extension language breakpoints that have a "stop" method
5319 implemented. */
5320 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5321
5322 if (is_watchpoint (b))
5323 {
5324 struct watchpoint *w = (struct watchpoint *) b;
5325
5326 cond = w->cond_exp.get ();
5327 }
5328 else
5329 cond = bl->cond.get ();
5330
5331 if (cond && b->disposition != disp_del_at_next_stop)
5332 {
5333 int within_current_scope = 1;
5334 struct watchpoint * w;
5335
5336 /* We use value_mark and value_free_to_mark because it could
5337 be a long time before we return to the command level and
5338 call free_all_values. We can't call free_all_values
5339 because we might be in the middle of evaluating a
5340 function call. */
5341 struct value *mark = value_mark ();
5342
5343 if (is_watchpoint (b))
5344 w = (struct watchpoint *) b;
5345 else
5346 w = NULL;
5347
5348 /* Need to select the frame, with all that implies so that
5349 the conditions will have the right context. Because we
5350 use the frame, we will not see an inlined function's
5351 variables when we arrive at a breakpoint at the start
5352 of the inlined function; the current frame will be the
5353 call site. */
5354 if (w == NULL || w->cond_exp_valid_block == NULL)
5355 select_frame (get_current_frame ());
5356 else
5357 {
5358 struct frame_info *frame;
5359
5360 /* For local watchpoint expressions, which particular
5361 instance of a local is being watched matters, so we
5362 keep track of the frame to evaluate the expression
5363 in. To evaluate the condition however, it doesn't
5364 really matter which instantiation of the function
5365 where the condition makes sense triggers the
5366 watchpoint. This allows an expression like "watch
5367 global if q > 10" set in `func', catch writes to
5368 global on all threads that call `func', or catch
5369 writes on all recursive calls of `func' by a single
5370 thread. We simply always evaluate the condition in
5371 the innermost frame that's executing where it makes
5372 sense to evaluate the condition. It seems
5373 intuitive. */
5374 frame = block_innermost_frame (w->cond_exp_valid_block);
5375 if (frame != NULL)
5376 select_frame (frame);
5377 else
5378 within_current_scope = 0;
5379 }
5380 if (within_current_scope)
5381 {
5382 try
5383 {
5384 condition_result = breakpoint_cond_eval (cond);
5385 }
5386 catch (const gdb_exception &ex)
5387 {
5388 exception_fprintf (gdb_stderr, ex,
5389 "Error in testing breakpoint condition:\n");
5390 }
5391 }
5392 else
5393 {
5394 warning (_("Watchpoint condition cannot be tested "
5395 "in the current scope"));
5396 /* If we failed to set the right context for this
5397 watchpoint, unconditionally report it. */
5398 }
5399 /* FIXME-someday, should give breakpoint #. */
5400 value_free_to_mark (mark);
5401 }
5402
5403 if (cond && !condition_result)
5404 {
5405 bs->stop = 0;
5406 }
5407 else if (b->ignore_count > 0)
5408 {
5409 b->ignore_count--;
5410 bs->stop = 0;
5411 /* Increase the hit count even though we don't stop. */
5412 ++(b->hit_count);
5413 gdb::observers::breakpoint_modified.notify (b);
5414 }
5415 }
5416
5417 /* Returns true if we need to track moribund locations of LOC's type
5418 on the current target. */
5419
5420 static int
5421 need_moribund_for_location_type (struct bp_location *loc)
5422 {
5423 return ((loc->loc_type == bp_loc_software_breakpoint
5424 && !target_supports_stopped_by_sw_breakpoint ())
5425 || (loc->loc_type == bp_loc_hardware_breakpoint
5426 && !target_supports_stopped_by_hw_breakpoint ()));
5427 }
5428
5429 /* See breakpoint.h. */
5430
5431 bpstat
5432 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5433 const struct target_waitstatus *ws)
5434 {
5435 struct breakpoint *b;
5436 bpstat bs_head = NULL, *bs_link = &bs_head;
5437
5438 ALL_BREAKPOINTS (b)
5439 {
5440 if (!breakpoint_enabled (b))
5441 continue;
5442
5443 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5444 {
5445 /* For hardware watchpoints, we look only at the first
5446 location. The watchpoint_check function will work on the
5447 entire expression, not the individual locations. For
5448 read watchpoints, the watchpoints_triggered function has
5449 checked all locations already. */
5450 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5451 break;
5452
5453 if (!bl->enabled || bl->disabled_by_cond || bl->shlib_disabled)
5454 continue;
5455
5456 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5457 continue;
5458
5459 /* Come here if it's a watchpoint, or if the break address
5460 matches. */
5461
5462 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5463 explain stop. */
5464
5465 /* Assume we stop. Should we find a watchpoint that is not
5466 actually triggered, or if the condition of the breakpoint
5467 evaluates as false, we'll reset 'stop' to 0. */
5468 bs->stop = 1;
5469 bs->print = 1;
5470
5471 /* If this is a scope breakpoint, mark the associated
5472 watchpoint as triggered so that we will handle the
5473 out-of-scope event. We'll get to the watchpoint next
5474 iteration. */
5475 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5476 {
5477 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5478
5479 w->watchpoint_triggered = watch_triggered_yes;
5480 }
5481 }
5482 }
5483
5484 /* Check if a moribund breakpoint explains the stop. */
5485 if (!target_supports_stopped_by_sw_breakpoint ()
5486 || !target_supports_stopped_by_hw_breakpoint ())
5487 {
5488 for (bp_location *loc : moribund_locations)
5489 {
5490 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5491 && need_moribund_for_location_type (loc))
5492 {
5493 bpstat bs = new bpstats (loc, &bs_link);
5494 /* For hits of moribund locations, we should just proceed. */
5495 bs->stop = 0;
5496 bs->print = 0;
5497 bs->print_it = print_it_noop;
5498 }
5499 }
5500 }
5501
5502 return bs_head;
5503 }
5504
5505 /* See breakpoint.h. */
5506
5507 bpstat
5508 bpstat_stop_status (const address_space *aspace,
5509 CORE_ADDR bp_addr, thread_info *thread,
5510 const struct target_waitstatus *ws,
5511 bpstat stop_chain)
5512 {
5513 struct breakpoint *b = NULL;
5514 /* First item of allocated bpstat's. */
5515 bpstat bs_head = stop_chain;
5516 bpstat bs;
5517 int need_remove_insert;
5518 int removed_any;
5519
5520 /* First, build the bpstat chain with locations that explain a
5521 target stop, while being careful to not set the target running,
5522 as that may invalidate locations (in particular watchpoint
5523 locations are recreated). Resuming will happen here with
5524 breakpoint conditions or watchpoint expressions that include
5525 inferior function calls. */
5526 if (bs_head == NULL)
5527 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5528
5529 /* A bit of special processing for shlib breakpoints. We need to
5530 process solib loading here, so that the lists of loaded and
5531 unloaded libraries are correct before we handle "catch load" and
5532 "catch unload". */
5533 for (bs = bs_head; bs != NULL; bs = bs->next)
5534 {
5535 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5536 {
5537 handle_solib_event ();
5538 break;
5539 }
5540 }
5541
5542 /* Now go through the locations that caused the target to stop, and
5543 check whether we're interested in reporting this stop to higher
5544 layers, or whether we should resume the target transparently. */
5545
5546 removed_any = 0;
5547
5548 for (bs = bs_head; bs != NULL; bs = bs->next)
5549 {
5550 if (!bs->stop)
5551 continue;
5552
5553 b = bs->breakpoint_at;
5554 b->ops->check_status (bs);
5555 if (bs->stop)
5556 {
5557 bpstat_check_breakpoint_conditions (bs, thread);
5558
5559 if (bs->stop)
5560 {
5561 ++(b->hit_count);
5562 gdb::observers::breakpoint_modified.notify (b);
5563
5564 /* We will stop here. */
5565 if (b->disposition == disp_disable)
5566 {
5567 --(b->enable_count);
5568 if (b->enable_count <= 0)
5569 b->enable_state = bp_disabled;
5570 removed_any = 1;
5571 }
5572 if (b->silent)
5573 bs->print = 0;
5574 bs->commands = b->commands;
5575 if (command_line_is_silent (bs->commands
5576 ? bs->commands.get () : NULL))
5577 bs->print = 0;
5578
5579 b->ops->after_condition_true (bs);
5580 }
5581
5582 }
5583
5584 /* Print nothing for this entry if we don't stop or don't
5585 print. */
5586 if (!bs->stop || !bs->print)
5587 bs->print_it = print_it_noop;
5588 }
5589
5590 /* If we aren't stopping, the value of some hardware watchpoint may
5591 not have changed, but the intermediate memory locations we are
5592 watching may have. Don't bother if we're stopping; this will get
5593 done later. */
5594 need_remove_insert = 0;
5595 if (! bpstat_causes_stop (bs_head))
5596 for (bs = bs_head; bs != NULL; bs = bs->next)
5597 if (!bs->stop
5598 && bs->breakpoint_at
5599 && is_hardware_watchpoint (bs->breakpoint_at))
5600 {
5601 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5602
5603 update_watchpoint (w, 0 /* don't reparse. */);
5604 need_remove_insert = 1;
5605 }
5606
5607 if (need_remove_insert)
5608 update_global_location_list (UGLL_MAY_INSERT);
5609 else if (removed_any)
5610 update_global_location_list (UGLL_DONT_INSERT);
5611
5612 return bs_head;
5613 }
5614
5615 static void
5616 handle_jit_event (CORE_ADDR address)
5617 {
5618 struct gdbarch *gdbarch;
5619
5620 infrun_debug_printf ("handling bp_jit_event");
5621
5622 /* Switch terminal for any messages produced by
5623 breakpoint_re_set. */
5624 target_terminal::ours_for_output ();
5625
5626 gdbarch = get_frame_arch (get_current_frame ());
5627 /* This event is caused by a breakpoint set in `jit_breakpoint_re_set`,
5628 thus it is expected that its objectfile can be found through
5629 minimal symbol lookup. If it doesn't work (and assert fails), it
5630 most likely means that `jit_breakpoint_re_set` was changes and this
5631 function needs to be updated too. */
5632 bound_minimal_symbol jit_bp_sym = lookup_minimal_symbol_by_pc (address);
5633 gdb_assert (jit_bp_sym.objfile != nullptr);
5634 jit_event_handler (gdbarch, jit_bp_sym.objfile);
5635
5636 target_terminal::inferior ();
5637 }
5638
5639 /* Prepare WHAT final decision for infrun. */
5640
5641 /* Decide what infrun needs to do with this bpstat. */
5642
5643 struct bpstat_what
5644 bpstat_what (bpstat bs_head)
5645 {
5646 struct bpstat_what retval;
5647 bpstat bs;
5648
5649 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5650 retval.call_dummy = STOP_NONE;
5651 retval.is_longjmp = false;
5652
5653 for (bs = bs_head; bs != NULL; bs = bs->next)
5654 {
5655 /* Extract this BS's action. After processing each BS, we check
5656 if its action overrides all we've seem so far. */
5657 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5658 enum bptype bptype;
5659
5660 if (bs->breakpoint_at == NULL)
5661 {
5662 /* I suspect this can happen if it was a momentary
5663 breakpoint which has since been deleted. */
5664 bptype = bp_none;
5665 }
5666 else
5667 bptype = bs->breakpoint_at->type;
5668
5669 switch (bptype)
5670 {
5671 case bp_none:
5672 break;
5673 case bp_breakpoint:
5674 case bp_hardware_breakpoint:
5675 case bp_single_step:
5676 case bp_until:
5677 case bp_finish:
5678 case bp_shlib_event:
5679 if (bs->stop)
5680 {
5681 if (bs->print)
5682 this_action = BPSTAT_WHAT_STOP_NOISY;
5683 else
5684 this_action = BPSTAT_WHAT_STOP_SILENT;
5685 }
5686 else
5687 this_action = BPSTAT_WHAT_SINGLE;
5688 break;
5689 case bp_watchpoint:
5690 case bp_hardware_watchpoint:
5691 case bp_read_watchpoint:
5692 case bp_access_watchpoint:
5693 if (bs->stop)
5694 {
5695 if (bs->print)
5696 this_action = BPSTAT_WHAT_STOP_NOISY;
5697 else
5698 this_action = BPSTAT_WHAT_STOP_SILENT;
5699 }
5700 else
5701 {
5702 /* There was a watchpoint, but we're not stopping.
5703 This requires no further action. */
5704 }
5705 break;
5706 case bp_longjmp:
5707 case bp_longjmp_call_dummy:
5708 case bp_exception:
5709 if (bs->stop)
5710 {
5711 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5712 retval.is_longjmp = bptype != bp_exception;
5713 }
5714 else
5715 this_action = BPSTAT_WHAT_SINGLE;
5716 break;
5717 case bp_longjmp_resume:
5718 case bp_exception_resume:
5719 if (bs->stop)
5720 {
5721 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5722 retval.is_longjmp = bptype == bp_longjmp_resume;
5723 }
5724 else
5725 this_action = BPSTAT_WHAT_SINGLE;
5726 break;
5727 case bp_step_resume:
5728 if (bs->stop)
5729 this_action = BPSTAT_WHAT_STEP_RESUME;
5730 else
5731 {
5732 /* It is for the wrong frame. */
5733 this_action = BPSTAT_WHAT_SINGLE;
5734 }
5735 break;
5736 case bp_hp_step_resume:
5737 if (bs->stop)
5738 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5739 else
5740 {
5741 /* It is for the wrong frame. */
5742 this_action = BPSTAT_WHAT_SINGLE;
5743 }
5744 break;
5745 case bp_watchpoint_scope:
5746 case bp_thread_event:
5747 case bp_overlay_event:
5748 case bp_longjmp_master:
5749 case bp_std_terminate_master:
5750 case bp_exception_master:
5751 this_action = BPSTAT_WHAT_SINGLE;
5752 break;
5753 case bp_catchpoint:
5754 if (bs->stop)
5755 {
5756 if (bs->print)
5757 this_action = BPSTAT_WHAT_STOP_NOISY;
5758 else
5759 this_action = BPSTAT_WHAT_STOP_SILENT;
5760 }
5761 else
5762 {
5763 /* Some catchpoints are implemented with breakpoints.
5764 For those, we need to step over the breakpoint. */
5765 if (bs->bp_location_at->loc_type != bp_loc_other)
5766 this_action = BPSTAT_WHAT_SINGLE;
5767 }
5768 break;
5769 case bp_jit_event:
5770 this_action = BPSTAT_WHAT_SINGLE;
5771 break;
5772 case bp_call_dummy:
5773 /* Make sure the action is stop (silent or noisy),
5774 so infrun.c pops the dummy frame. */
5775 retval.call_dummy = STOP_STACK_DUMMY;
5776 this_action = BPSTAT_WHAT_STOP_SILENT;
5777 break;
5778 case bp_std_terminate:
5779 /* Make sure the action is stop (silent or noisy),
5780 so infrun.c pops the dummy frame. */
5781 retval.call_dummy = STOP_STD_TERMINATE;
5782 this_action = BPSTAT_WHAT_STOP_SILENT;
5783 break;
5784 case bp_tracepoint:
5785 case bp_fast_tracepoint:
5786 case bp_static_tracepoint:
5787 /* Tracepoint hits should not be reported back to GDB, and
5788 if one got through somehow, it should have been filtered
5789 out already. */
5790 internal_error (__FILE__, __LINE__,
5791 _("bpstat_what: tracepoint encountered"));
5792 break;
5793 case bp_gnu_ifunc_resolver:
5794 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5795 this_action = BPSTAT_WHAT_SINGLE;
5796 break;
5797 case bp_gnu_ifunc_resolver_return:
5798 /* The breakpoint will be removed, execution will restart from the
5799 PC of the former breakpoint. */
5800 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5801 break;
5802
5803 case bp_dprintf:
5804 if (bs->stop)
5805 this_action = BPSTAT_WHAT_STOP_SILENT;
5806 else
5807 this_action = BPSTAT_WHAT_SINGLE;
5808 break;
5809
5810 default:
5811 internal_error (__FILE__, __LINE__,
5812 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5813 }
5814
5815 retval.main_action = std::max (retval.main_action, this_action);
5816 }
5817
5818 return retval;
5819 }
5820
5821 void
5822 bpstat_run_callbacks (bpstat bs_head)
5823 {
5824 bpstat bs;
5825
5826 for (bs = bs_head; bs != NULL; bs = bs->next)
5827 {
5828 struct breakpoint *b = bs->breakpoint_at;
5829
5830 if (b == NULL)
5831 continue;
5832 switch (b->type)
5833 {
5834 case bp_jit_event:
5835 handle_jit_event (bs->bp_location_at->address);
5836 break;
5837 case bp_gnu_ifunc_resolver:
5838 gnu_ifunc_resolver_stop (b);
5839 break;
5840 case bp_gnu_ifunc_resolver_return:
5841 gnu_ifunc_resolver_return_stop (b);
5842 break;
5843 }
5844 }
5845 }
5846
5847 /* See breakpoint.h. */
5848
5849 bool
5850 bpstat_should_step ()
5851 {
5852 struct breakpoint *b;
5853
5854 ALL_BREAKPOINTS (b)
5855 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5856 return true;
5857 return false;
5858 }
5859
5860 /* See breakpoint.h. */
5861
5862 bool
5863 bpstat_causes_stop (bpstat bs)
5864 {
5865 for (; bs != NULL; bs = bs->next)
5866 if (bs->stop)
5867 return true;
5868
5869 return false;
5870 }
5871
5872 \f
5873
5874 /* Compute a string of spaces suitable to indent the next line
5875 so it starts at the position corresponding to the table column
5876 named COL_NAME in the currently active table of UIOUT. */
5877
5878 static char *
5879 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5880 {
5881 static char wrap_indent[80];
5882 int i, total_width, width, align;
5883 const char *text;
5884
5885 total_width = 0;
5886 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5887 {
5888 if (strcmp (text, col_name) == 0)
5889 {
5890 gdb_assert (total_width < sizeof wrap_indent);
5891 memset (wrap_indent, ' ', total_width);
5892 wrap_indent[total_width] = 0;
5893
5894 return wrap_indent;
5895 }
5896
5897 total_width += width + 1;
5898 }
5899
5900 return NULL;
5901 }
5902
5903 /* Determine if the locations of this breakpoint will have their conditions
5904 evaluated by the target, host or a mix of both. Returns the following:
5905
5906 "host": Host evals condition.
5907 "host or target": Host or Target evals condition.
5908 "target": Target evals condition.
5909 */
5910
5911 static const char *
5912 bp_condition_evaluator (struct breakpoint *b)
5913 {
5914 struct bp_location *bl;
5915 char host_evals = 0;
5916 char target_evals = 0;
5917
5918 if (!b)
5919 return NULL;
5920
5921 if (!is_breakpoint (b))
5922 return NULL;
5923
5924 if (gdb_evaluates_breakpoint_condition_p ()
5925 || !target_supports_evaluation_of_breakpoint_conditions ())
5926 return condition_evaluation_host;
5927
5928 for (bl = b->loc; bl; bl = bl->next)
5929 {
5930 if (bl->cond_bytecode)
5931 target_evals++;
5932 else
5933 host_evals++;
5934 }
5935
5936 if (host_evals && target_evals)
5937 return condition_evaluation_both;
5938 else if (target_evals)
5939 return condition_evaluation_target;
5940 else
5941 return condition_evaluation_host;
5942 }
5943
5944 /* Determine the breakpoint location's condition evaluator. This is
5945 similar to bp_condition_evaluator, but for locations. */
5946
5947 static const char *
5948 bp_location_condition_evaluator (struct bp_location *bl)
5949 {
5950 if (bl && !is_breakpoint (bl->owner))
5951 return NULL;
5952
5953 if (gdb_evaluates_breakpoint_condition_p ()
5954 || !target_supports_evaluation_of_breakpoint_conditions ())
5955 return condition_evaluation_host;
5956
5957 if (bl && bl->cond_bytecode)
5958 return condition_evaluation_target;
5959 else
5960 return condition_evaluation_host;
5961 }
5962
5963 /* Print the LOC location out of the list of B->LOC locations. */
5964
5965 static void
5966 print_breakpoint_location (struct breakpoint *b,
5967 struct bp_location *loc)
5968 {
5969 struct ui_out *uiout = current_uiout;
5970
5971 scoped_restore_current_program_space restore_pspace;
5972
5973 if (loc != NULL && loc->shlib_disabled)
5974 loc = NULL;
5975
5976 if (loc != NULL)
5977 set_current_program_space (loc->pspace);
5978
5979 if (b->display_canonical)
5980 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5981 else if (loc && loc->symtab)
5982 {
5983 const struct symbol *sym = loc->symbol;
5984
5985 if (sym)
5986 {
5987 uiout->text ("in ");
5988 uiout->field_string ("func", sym->print_name (),
5989 function_name_style.style ());
5990 uiout->text (" ");
5991 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5992 uiout->text ("at ");
5993 }
5994 uiout->field_string ("file",
5995 symtab_to_filename_for_display (loc->symtab),
5996 file_name_style.style ());
5997 uiout->text (":");
5998
5999 if (uiout->is_mi_like_p ())
6000 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
6001
6002 uiout->field_signed ("line", loc->line_number);
6003 }
6004 else if (loc)
6005 {
6006 string_file stb;
6007
6008 print_address_symbolic (loc->gdbarch, loc->address, &stb,
6009 demangle, "");
6010 uiout->field_stream ("at", stb);
6011 }
6012 else
6013 {
6014 uiout->field_string ("pending",
6015 event_location_to_string (b->location.get ()));
6016 /* If extra_string is available, it could be holding a condition
6017 or dprintf arguments. In either case, make sure it is printed,
6018 too, but only for non-MI streams. */
6019 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
6020 {
6021 if (b->type == bp_dprintf)
6022 uiout->text (",");
6023 else
6024 uiout->text (" ");
6025 uiout->text (b->extra_string);
6026 }
6027 }
6028
6029 if (loc && is_breakpoint (b)
6030 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6031 && bp_condition_evaluator (b) == condition_evaluation_both)
6032 {
6033 uiout->text (" (");
6034 uiout->field_string ("evaluated-by",
6035 bp_location_condition_evaluator (loc));
6036 uiout->text (")");
6037 }
6038 }
6039
6040 static const char *
6041 bptype_string (enum bptype type)
6042 {
6043 struct ep_type_description
6044 {
6045 enum bptype type;
6046 const char *description;
6047 };
6048 static struct ep_type_description bptypes[] =
6049 {
6050 {bp_none, "?deleted?"},
6051 {bp_breakpoint, "breakpoint"},
6052 {bp_hardware_breakpoint, "hw breakpoint"},
6053 {bp_single_step, "sw single-step"},
6054 {bp_until, "until"},
6055 {bp_finish, "finish"},
6056 {bp_watchpoint, "watchpoint"},
6057 {bp_hardware_watchpoint, "hw watchpoint"},
6058 {bp_read_watchpoint, "read watchpoint"},
6059 {bp_access_watchpoint, "acc watchpoint"},
6060 {bp_longjmp, "longjmp"},
6061 {bp_longjmp_resume, "longjmp resume"},
6062 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6063 {bp_exception, "exception"},
6064 {bp_exception_resume, "exception resume"},
6065 {bp_step_resume, "step resume"},
6066 {bp_hp_step_resume, "high-priority step resume"},
6067 {bp_watchpoint_scope, "watchpoint scope"},
6068 {bp_call_dummy, "call dummy"},
6069 {bp_std_terminate, "std::terminate"},
6070 {bp_shlib_event, "shlib events"},
6071 {bp_thread_event, "thread events"},
6072 {bp_overlay_event, "overlay events"},
6073 {bp_longjmp_master, "longjmp master"},
6074 {bp_std_terminate_master, "std::terminate master"},
6075 {bp_exception_master, "exception master"},
6076 {bp_catchpoint, "catchpoint"},
6077 {bp_tracepoint, "tracepoint"},
6078 {bp_fast_tracepoint, "fast tracepoint"},
6079 {bp_static_tracepoint, "static tracepoint"},
6080 {bp_dprintf, "dprintf"},
6081 {bp_jit_event, "jit events"},
6082 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6083 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6084 };
6085
6086 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6087 || ((int) type != bptypes[(int) type].type))
6088 internal_error (__FILE__, __LINE__,
6089 _("bptypes table does not describe type #%d."),
6090 (int) type);
6091
6092 return bptypes[(int) type].description;
6093 }
6094
6095 /* For MI, output a field named 'thread-groups' with a list as the value.
6096 For CLI, prefix the list with the string 'inf'. */
6097
6098 static void
6099 output_thread_groups (struct ui_out *uiout,
6100 const char *field_name,
6101 const std::vector<int> &inf_nums,
6102 int mi_only)
6103 {
6104 int is_mi = uiout->is_mi_like_p ();
6105
6106 /* For backward compatibility, don't display inferiors in CLI unless
6107 there are several. Always display them for MI. */
6108 if (!is_mi && mi_only)
6109 return;
6110
6111 ui_out_emit_list list_emitter (uiout, field_name);
6112
6113 for (size_t i = 0; i < inf_nums.size (); i++)
6114 {
6115 if (is_mi)
6116 {
6117 char mi_group[10];
6118
6119 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6120 uiout->field_string (NULL, mi_group);
6121 }
6122 else
6123 {
6124 if (i == 0)
6125 uiout->text (" inf ");
6126 else
6127 uiout->text (", ");
6128
6129 uiout->text (plongest (inf_nums[i]));
6130 }
6131 }
6132 }
6133
6134 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
6135 instead of going via breakpoint_ops::print_one. This makes "maint
6136 info breakpoints" show the software breakpoint locations of
6137 catchpoints, which are considered internal implementation
6138 detail. */
6139
6140 static void
6141 print_one_breakpoint_location (struct breakpoint *b,
6142 struct bp_location *loc,
6143 int loc_number,
6144 struct bp_location **last_loc,
6145 int allflag, bool raw_loc)
6146 {
6147 struct command_line *l;
6148 static char bpenables[] = "nynny";
6149
6150 struct ui_out *uiout = current_uiout;
6151 int header_of_multiple = 0;
6152 int part_of_multiple = (loc != NULL);
6153 struct value_print_options opts;
6154
6155 get_user_print_options (&opts);
6156
6157 gdb_assert (!loc || loc_number != 0);
6158 /* See comment in print_one_breakpoint concerning treatment of
6159 breakpoints with single disabled location. */
6160 if (loc == NULL
6161 && (b->loc != NULL
6162 && (b->loc->next != NULL
6163 || !b->loc->enabled || b->loc->disabled_by_cond)))
6164 header_of_multiple = 1;
6165 if (loc == NULL)
6166 loc = b->loc;
6167
6168 annotate_record ();
6169
6170 /* 1 */
6171 annotate_field (0);
6172 if (part_of_multiple)
6173 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6174 else
6175 uiout->field_signed ("number", b->number);
6176
6177 /* 2 */
6178 annotate_field (1);
6179 if (part_of_multiple)
6180 uiout->field_skip ("type");
6181 else
6182 uiout->field_string ("type", bptype_string (b->type));
6183
6184 /* 3 */
6185 annotate_field (2);
6186 if (part_of_multiple)
6187 uiout->field_skip ("disp");
6188 else
6189 uiout->field_string ("disp", bpdisp_text (b->disposition));
6190
6191 /* 4 */
6192 annotate_field (3);
6193 /* For locations that are disabled because of an invalid condition,
6194 display "N*" on CLI, where "*" refers to a footnote below the
6195 table. For MI, simply display a "N" without a footnote. */
6196 const char *N = (uiout->is_mi_like_p ()) ? "N" : "N*";
6197 if (part_of_multiple)
6198 uiout->field_string ("enabled", (loc->disabled_by_cond ? N
6199 : (loc->enabled ? "y" : "n")));
6200 else
6201 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6202
6203 /* 5 and 6 */
6204 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL)
6205 b->ops->print_one (b, last_loc);
6206 else
6207 {
6208 if (is_watchpoint (b))
6209 {
6210 struct watchpoint *w = (struct watchpoint *) b;
6211
6212 /* Field 4, the address, is omitted (which makes the columns
6213 not line up too nicely with the headers, but the effect
6214 is relatively readable). */
6215 if (opts.addressprint)
6216 uiout->field_skip ("addr");
6217 annotate_field (5);
6218 uiout->field_string ("what", w->exp_string);
6219 }
6220 else if (!is_catchpoint (b) || is_exception_catchpoint (b)
6221 || is_ada_exception_catchpoint (b))
6222 {
6223 if (opts.addressprint)
6224 {
6225 annotate_field (4);
6226 if (header_of_multiple)
6227 uiout->field_string ("addr", "<MULTIPLE>",
6228 metadata_style.style ());
6229 else if (b->loc == NULL || loc->shlib_disabled)
6230 uiout->field_string ("addr", "<PENDING>",
6231 metadata_style.style ());
6232 else
6233 uiout->field_core_addr ("addr",
6234 loc->gdbarch, loc->address);
6235 }
6236 annotate_field (5);
6237 if (!header_of_multiple)
6238 print_breakpoint_location (b, loc);
6239 if (b->loc)
6240 *last_loc = b->loc;
6241 }
6242 }
6243
6244 if (loc != NULL && !header_of_multiple)
6245 {
6246 std::vector<int> inf_nums;
6247 int mi_only = 1;
6248
6249 for (inferior *inf : all_inferiors ())
6250 {
6251 if (inf->pspace == loc->pspace)
6252 inf_nums.push_back (inf->num);
6253 }
6254
6255 /* For backward compatibility, don't display inferiors in CLI unless
6256 there are several. Always display for MI. */
6257 if (allflag
6258 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6259 && (program_spaces.size () > 1
6260 || number_of_inferiors () > 1)
6261 /* LOC is for existing B, it cannot be in
6262 moribund_locations and thus having NULL OWNER. */
6263 && loc->owner->type != bp_catchpoint))
6264 mi_only = 0;
6265 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6266 }
6267
6268 if (!part_of_multiple)
6269 {
6270 if (b->thread != -1)
6271 {
6272 /* FIXME: This seems to be redundant and lost here; see the
6273 "stop only in" line a little further down. */
6274 uiout->text (" thread ");
6275 uiout->field_signed ("thread", b->thread);
6276 }
6277 else if (b->task != 0)
6278 {
6279 uiout->text (" task ");
6280 uiout->field_signed ("task", b->task);
6281 }
6282 }
6283
6284 uiout->text ("\n");
6285
6286 if (!part_of_multiple)
6287 b->ops->print_one_detail (b, uiout);
6288
6289 if (part_of_multiple && frame_id_p (b->frame_id))
6290 {
6291 annotate_field (6);
6292 uiout->text ("\tstop only in stack frame at ");
6293 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6294 the frame ID. */
6295 uiout->field_core_addr ("frame",
6296 b->gdbarch, b->frame_id.stack_addr);
6297 uiout->text ("\n");
6298 }
6299
6300 if (!part_of_multiple && b->cond_string)
6301 {
6302 annotate_field (7);
6303 if (is_tracepoint (b))
6304 uiout->text ("\ttrace only if ");
6305 else
6306 uiout->text ("\tstop only if ");
6307 uiout->field_string ("cond", b->cond_string);
6308
6309 /* Print whether the target is doing the breakpoint's condition
6310 evaluation. If GDB is doing the evaluation, don't print anything. */
6311 if (is_breakpoint (b)
6312 && breakpoint_condition_evaluation_mode ()
6313 == condition_evaluation_target)
6314 {
6315 uiout->message (" (%pF evals)",
6316 string_field ("evaluated-by",
6317 bp_condition_evaluator (b)));
6318 }
6319 uiout->text ("\n");
6320 }
6321
6322 if (!part_of_multiple && b->thread != -1)
6323 {
6324 /* FIXME should make an annotation for this. */
6325 uiout->text ("\tstop only in thread ");
6326 if (uiout->is_mi_like_p ())
6327 uiout->field_signed ("thread", b->thread);
6328 else
6329 {
6330 struct thread_info *thr = find_thread_global_id (b->thread);
6331
6332 uiout->field_string ("thread", print_thread_id (thr));
6333 }
6334 uiout->text ("\n");
6335 }
6336
6337 if (!part_of_multiple)
6338 {
6339 if (b->hit_count)
6340 {
6341 /* FIXME should make an annotation for this. */
6342 if (is_catchpoint (b))
6343 uiout->text ("\tcatchpoint");
6344 else if (is_tracepoint (b))
6345 uiout->text ("\ttracepoint");
6346 else
6347 uiout->text ("\tbreakpoint");
6348 uiout->text (" already hit ");
6349 uiout->field_signed ("times", b->hit_count);
6350 if (b->hit_count == 1)
6351 uiout->text (" time\n");
6352 else
6353 uiout->text (" times\n");
6354 }
6355 else
6356 {
6357 /* Output the count also if it is zero, but only if this is mi. */
6358 if (uiout->is_mi_like_p ())
6359 uiout->field_signed ("times", b->hit_count);
6360 }
6361 }
6362
6363 if (!part_of_multiple && b->ignore_count)
6364 {
6365 annotate_field (8);
6366 uiout->message ("\tignore next %pF hits\n",
6367 signed_field ("ignore", b->ignore_count));
6368 }
6369
6370 /* Note that an enable count of 1 corresponds to "enable once"
6371 behavior, which is reported by the combination of enablement and
6372 disposition, so we don't need to mention it here. */
6373 if (!part_of_multiple && b->enable_count > 1)
6374 {
6375 annotate_field (8);
6376 uiout->text ("\tdisable after ");
6377 /* Tweak the wording to clarify that ignore and enable counts
6378 are distinct, and have additive effect. */
6379 if (b->ignore_count)
6380 uiout->text ("additional ");
6381 else
6382 uiout->text ("next ");
6383 uiout->field_signed ("enable", b->enable_count);
6384 uiout->text (" hits\n");
6385 }
6386
6387 if (!part_of_multiple && is_tracepoint (b))
6388 {
6389 struct tracepoint *tp = (struct tracepoint *) b;
6390
6391 if (tp->traceframe_usage)
6392 {
6393 uiout->text ("\ttrace buffer usage ");
6394 uiout->field_signed ("traceframe-usage", tp->traceframe_usage);
6395 uiout->text (" bytes\n");
6396 }
6397 }
6398
6399 l = b->commands ? b->commands.get () : NULL;
6400 if (!part_of_multiple && l)
6401 {
6402 annotate_field (9);
6403 ui_out_emit_tuple tuple_emitter (uiout, "script");
6404 print_command_lines (uiout, l, 4);
6405 }
6406
6407 if (is_tracepoint (b))
6408 {
6409 struct tracepoint *t = (struct tracepoint *) b;
6410
6411 if (!part_of_multiple && t->pass_count)
6412 {
6413 annotate_field (10);
6414 uiout->text ("\tpass count ");
6415 uiout->field_signed ("pass", t->pass_count);
6416 uiout->text (" \n");
6417 }
6418
6419 /* Don't display it when tracepoint or tracepoint location is
6420 pending. */
6421 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6422 {
6423 annotate_field (11);
6424
6425 if (uiout->is_mi_like_p ())
6426 uiout->field_string ("installed",
6427 loc->inserted ? "y" : "n");
6428 else
6429 {
6430 if (loc->inserted)
6431 uiout->text ("\t");
6432 else
6433 uiout->text ("\tnot ");
6434 uiout->text ("installed on target\n");
6435 }
6436 }
6437 }
6438
6439 if (uiout->is_mi_like_p () && !part_of_multiple)
6440 {
6441 if (is_watchpoint (b))
6442 {
6443 struct watchpoint *w = (struct watchpoint *) b;
6444
6445 uiout->field_string ("original-location", w->exp_string);
6446 }
6447 else if (b->location != NULL
6448 && event_location_to_string (b->location.get ()) != NULL)
6449 uiout->field_string ("original-location",
6450 event_location_to_string (b->location.get ()));
6451 }
6452 }
6453
6454 /* See breakpoint.h. */
6455
6456 bool fix_multi_location_breakpoint_output_globally = false;
6457
6458 static void
6459 print_one_breakpoint (struct breakpoint *b,
6460 struct bp_location **last_loc,
6461 int allflag)
6462 {
6463 struct ui_out *uiout = current_uiout;
6464 bool use_fixed_output
6465 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6466 || fix_multi_location_breakpoint_output_globally);
6467
6468 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6469 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false);
6470
6471 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6472 are outside. */
6473 if (!use_fixed_output)
6474 bkpt_tuple_emitter.reset ();
6475
6476 /* If this breakpoint has custom print function,
6477 it's already printed. Otherwise, print individual
6478 locations, if any. */
6479 if (b->ops == NULL
6480 || b->ops->print_one == NULL
6481 || allflag)
6482 {
6483 /* If breakpoint has a single location that is disabled, we
6484 print it as if it had several locations, since otherwise it's
6485 hard to represent "breakpoint enabled, location disabled"
6486 situation.
6487
6488 Note that while hardware watchpoints have several locations
6489 internally, that's not a property exposed to users.
6490
6491 Likewise, while catchpoints may be implemented with
6492 breakpoints (e.g., catch throw), that's not a property
6493 exposed to users. We do however display the internal
6494 breakpoint locations with "maint info breakpoints". */
6495 if (!is_hardware_watchpoint (b)
6496 && (!is_catchpoint (b) || is_exception_catchpoint (b)
6497 || is_ada_exception_catchpoint (b))
6498 && (allflag
6499 || (b->loc && (b->loc->next
6500 || !b->loc->enabled
6501 || b->loc->disabled_by_cond))))
6502 {
6503 gdb::optional<ui_out_emit_list> locations_list;
6504
6505 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6506 MI record. For later versions, place breakpoint locations in a
6507 list. */
6508 if (uiout->is_mi_like_p () && use_fixed_output)
6509 locations_list.emplace (uiout, "locations");
6510
6511 int n = 1;
6512 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6513 {
6514 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6515 print_one_breakpoint_location (b, loc, n, last_loc,
6516 allflag, allflag);
6517 }
6518 }
6519 }
6520 }
6521
6522 static int
6523 breakpoint_address_bits (struct breakpoint *b)
6524 {
6525 int print_address_bits = 0;
6526 struct bp_location *loc;
6527
6528 /* Software watchpoints that aren't watching memory don't have an
6529 address to print. */
6530 if (is_no_memory_software_watchpoint (b))
6531 return 0;
6532
6533 for (loc = b->loc; loc; loc = loc->next)
6534 {
6535 int addr_bit;
6536
6537 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6538 if (addr_bit > print_address_bits)
6539 print_address_bits = addr_bit;
6540 }
6541
6542 return print_address_bits;
6543 }
6544
6545 /* See breakpoint.h. */
6546
6547 void
6548 print_breakpoint (breakpoint *b)
6549 {
6550 struct bp_location *dummy_loc = NULL;
6551 print_one_breakpoint (b, &dummy_loc, 0);
6552 }
6553
6554 /* Return true if this breakpoint was set by the user, false if it is
6555 internal or momentary. */
6556
6557 int
6558 user_breakpoint_p (struct breakpoint *b)
6559 {
6560 return b->number > 0;
6561 }
6562
6563 /* See breakpoint.h. */
6564
6565 int
6566 pending_breakpoint_p (struct breakpoint *b)
6567 {
6568 return b->loc == NULL;
6569 }
6570
6571 /* Print information on breakpoints (including watchpoints and tracepoints).
6572
6573 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as
6574 understood by number_or_range_parser. Only breakpoints included in this
6575 list are then printed.
6576
6577 If SHOW_INTERNAL is true, print internal breakpoints.
6578
6579 If FILTER is non-NULL, call it on each breakpoint and only include the
6580 ones for which it returns true.
6581
6582 Return the total number of breakpoints listed. */
6583
6584 static int
6585 breakpoint_1 (const char *bp_num_list, bool show_internal,
6586 bool (*filter) (const struct breakpoint *))
6587 {
6588 struct breakpoint *b;
6589 struct bp_location *last_loc = NULL;
6590 int nr_printable_breakpoints;
6591 struct value_print_options opts;
6592 int print_address_bits = 0;
6593 int print_type_col_width = 14;
6594 struct ui_out *uiout = current_uiout;
6595 bool has_disabled_by_cond_location = false;
6596
6597 get_user_print_options (&opts);
6598
6599 /* Compute the number of rows in the table, as well as the size
6600 required for address fields. */
6601 nr_printable_breakpoints = 0;
6602 ALL_BREAKPOINTS (b)
6603 {
6604 /* If we have a filter, only list the breakpoints it accepts. */
6605 if (filter && !filter (b))
6606 continue;
6607
6608 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6609 accept. Skip the others. */
6610 if (bp_num_list != NULL && *bp_num_list != '\0')
6611 {
6612 if (show_internal && parse_and_eval_long (bp_num_list) != b->number)
6613 continue;
6614 if (!show_internal && !number_is_in_list (bp_num_list, b->number))
6615 continue;
6616 }
6617
6618 if (show_internal || user_breakpoint_p (b))
6619 {
6620 int addr_bit, type_len;
6621
6622 addr_bit = breakpoint_address_bits (b);
6623 if (addr_bit > print_address_bits)
6624 print_address_bits = addr_bit;
6625
6626 type_len = strlen (bptype_string (b->type));
6627 if (type_len > print_type_col_width)
6628 print_type_col_width = type_len;
6629
6630 nr_printable_breakpoints++;
6631 }
6632 }
6633
6634 {
6635 ui_out_emit_table table_emitter (uiout,
6636 opts.addressprint ? 6 : 5,
6637 nr_printable_breakpoints,
6638 "BreakpointTable");
6639
6640 if (nr_printable_breakpoints > 0)
6641 annotate_breakpoints_headers ();
6642 if (nr_printable_breakpoints > 0)
6643 annotate_field (0);
6644 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6645 if (nr_printable_breakpoints > 0)
6646 annotate_field (1);
6647 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6648 if (nr_printable_breakpoints > 0)
6649 annotate_field (2);
6650 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6651 if (nr_printable_breakpoints > 0)
6652 annotate_field (3);
6653 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6654 if (opts.addressprint)
6655 {
6656 if (nr_printable_breakpoints > 0)
6657 annotate_field (4);
6658 if (print_address_bits <= 32)
6659 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6660 else
6661 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6662 }
6663 if (nr_printable_breakpoints > 0)
6664 annotate_field (5);
6665 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6666 uiout->table_body ();
6667 if (nr_printable_breakpoints > 0)
6668 annotate_breakpoints_table ();
6669
6670 ALL_BREAKPOINTS (b)
6671 {
6672 QUIT;
6673 /* If we have a filter, only list the breakpoints it accepts. */
6674 if (filter && !filter (b))
6675 continue;
6676
6677 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6678 accept. Skip the others. */
6679
6680 if (bp_num_list != NULL && *bp_num_list != '\0')
6681 {
6682 if (show_internal) /* maintenance info breakpoint */
6683 {
6684 if (parse_and_eval_long (bp_num_list) != b->number)
6685 continue;
6686 }
6687 else /* all others */
6688 {
6689 if (!number_is_in_list (bp_num_list, b->number))
6690 continue;
6691 }
6692 }
6693 /* We only print out user settable breakpoints unless the
6694 show_internal is set. */
6695 if (show_internal || user_breakpoint_p (b))
6696 {
6697 print_one_breakpoint (b, &last_loc, show_internal);
6698 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
6699 if (loc->disabled_by_cond)
6700 has_disabled_by_cond_location = true;
6701 }
6702 }
6703 }
6704
6705 if (nr_printable_breakpoints == 0)
6706 {
6707 /* If there's a filter, let the caller decide how to report
6708 empty list. */
6709 if (!filter)
6710 {
6711 if (bp_num_list == NULL || *bp_num_list == '\0')
6712 uiout->message ("No breakpoints or watchpoints.\n");
6713 else
6714 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6715 bp_num_list);
6716 }
6717 }
6718 else
6719 {
6720 if (last_loc && !server_command)
6721 set_next_address (last_loc->gdbarch, last_loc->address);
6722
6723 if (has_disabled_by_cond_location && !uiout->is_mi_like_p ())
6724 uiout->message (_("(*): Breakpoint condition is invalid at this "
6725 "location.\n"));
6726 }
6727
6728 /* FIXME? Should this be moved up so that it is only called when
6729 there have been breakpoints? */
6730 annotate_breakpoints_table_end ();
6731
6732 return nr_printable_breakpoints;
6733 }
6734
6735 /* Display the value of default-collect in a way that is generally
6736 compatible with the breakpoint list. */
6737
6738 static void
6739 default_collect_info (void)
6740 {
6741 struct ui_out *uiout = current_uiout;
6742
6743 /* If it has no value (which is frequently the case), say nothing; a
6744 message like "No default-collect." gets in user's face when it's
6745 not wanted. */
6746 if (!*default_collect)
6747 return;
6748
6749 /* The following phrase lines up nicely with per-tracepoint collect
6750 actions. */
6751 uiout->text ("default collect ");
6752 uiout->field_string ("default-collect", default_collect);
6753 uiout->text (" \n");
6754 }
6755
6756 static void
6757 info_breakpoints_command (const char *args, int from_tty)
6758 {
6759 breakpoint_1 (args, false, NULL);
6760
6761 default_collect_info ();
6762 }
6763
6764 static void
6765 info_watchpoints_command (const char *args, int from_tty)
6766 {
6767 int num_printed = breakpoint_1 (args, false, is_watchpoint);
6768 struct ui_out *uiout = current_uiout;
6769
6770 if (num_printed == 0)
6771 {
6772 if (args == NULL || *args == '\0')
6773 uiout->message ("No watchpoints.\n");
6774 else
6775 uiout->message ("No watchpoint matching '%s'.\n", args);
6776 }
6777 }
6778
6779 static void
6780 maintenance_info_breakpoints (const char *args, int from_tty)
6781 {
6782 breakpoint_1 (args, true, NULL);
6783
6784 default_collect_info ();
6785 }
6786
6787 static int
6788 breakpoint_has_pc (struct breakpoint *b,
6789 struct program_space *pspace,
6790 CORE_ADDR pc, struct obj_section *section)
6791 {
6792 struct bp_location *bl = b->loc;
6793
6794 for (; bl; bl = bl->next)
6795 {
6796 if (bl->pspace == pspace
6797 && bl->address == pc
6798 && (!overlay_debugging || bl->section == section))
6799 return 1;
6800 }
6801 return 0;
6802 }
6803
6804 /* Print a message describing any user-breakpoints set at PC. This
6805 concerns with logical breakpoints, so we match program spaces, not
6806 address spaces. */
6807
6808 static void
6809 describe_other_breakpoints (struct gdbarch *gdbarch,
6810 struct program_space *pspace, CORE_ADDR pc,
6811 struct obj_section *section, int thread)
6812 {
6813 int others = 0;
6814 struct breakpoint *b;
6815
6816 ALL_BREAKPOINTS (b)
6817 others += (user_breakpoint_p (b)
6818 && breakpoint_has_pc (b, pspace, pc, section));
6819 if (others > 0)
6820 {
6821 if (others == 1)
6822 printf_filtered (_("Note: breakpoint "));
6823 else /* if (others == ???) */
6824 printf_filtered (_("Note: breakpoints "));
6825 ALL_BREAKPOINTS (b)
6826 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6827 {
6828 others--;
6829 printf_filtered ("%d", b->number);
6830 if (b->thread == -1 && thread != -1)
6831 printf_filtered (" (all threads)");
6832 else if (b->thread != -1)
6833 printf_filtered (" (thread %d)", b->thread);
6834 printf_filtered ("%s%s ",
6835 ((b->enable_state == bp_disabled
6836 || b->enable_state == bp_call_disabled)
6837 ? " (disabled)"
6838 : ""),
6839 (others > 1) ? ","
6840 : ((others == 1) ? " and" : ""));
6841 }
6842 current_uiout->message (_("also set at pc %ps.\n"),
6843 styled_string (address_style.style (),
6844 paddress (gdbarch, pc)));
6845 }
6846 }
6847 \f
6848
6849 /* Return true iff it is meaningful to use the address member of LOC.
6850 For some breakpoint types, the locations' address members are
6851 irrelevant and it makes no sense to attempt to compare them to
6852 other addresses (or use them for any other purpose either).
6853
6854 More specifically, software watchpoints and catchpoints that are
6855 not backed by breakpoints always have a zero valued location
6856 address and we don't want to mark breakpoints of any of these types
6857 to be a duplicate of an actual breakpoint location at address
6858 zero. */
6859
6860 static bool
6861 bl_address_is_meaningful (bp_location *loc)
6862 {
6863 return loc->loc_type != bp_loc_other;
6864 }
6865
6866 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6867 true if LOC1 and LOC2 represent the same watchpoint location. */
6868
6869 static int
6870 watchpoint_locations_match (struct bp_location *loc1,
6871 struct bp_location *loc2)
6872 {
6873 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6874 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6875
6876 /* Both of them must exist. */
6877 gdb_assert (w1 != NULL);
6878 gdb_assert (w2 != NULL);
6879
6880 /* If the target can evaluate the condition expression in hardware,
6881 then we we need to insert both watchpoints even if they are at
6882 the same place. Otherwise the watchpoint will only trigger when
6883 the condition of whichever watchpoint was inserted evaluates to
6884 true, not giving a chance for GDB to check the condition of the
6885 other watchpoint. */
6886 if ((w1->cond_exp
6887 && target_can_accel_watchpoint_condition (loc1->address,
6888 loc1->length,
6889 loc1->watchpoint_type,
6890 w1->cond_exp.get ()))
6891 || (w2->cond_exp
6892 && target_can_accel_watchpoint_condition (loc2->address,
6893 loc2->length,
6894 loc2->watchpoint_type,
6895 w2->cond_exp.get ())))
6896 return 0;
6897
6898 /* Note that this checks the owner's type, not the location's. In
6899 case the target does not support read watchpoints, but does
6900 support access watchpoints, we'll have bp_read_watchpoint
6901 watchpoints with hw_access locations. Those should be considered
6902 duplicates of hw_read locations. The hw_read locations will
6903 become hw_access locations later. */
6904 return (loc1->owner->type == loc2->owner->type
6905 && loc1->pspace->aspace == loc2->pspace->aspace
6906 && loc1->address == loc2->address
6907 && loc1->length == loc2->length);
6908 }
6909
6910 /* See breakpoint.h. */
6911
6912 int
6913 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6914 const address_space *aspace2, CORE_ADDR addr2)
6915 {
6916 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6917 || aspace1 == aspace2)
6918 && addr1 == addr2);
6919 }
6920
6921 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6922 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6923 matches ASPACE2. On targets that have global breakpoints, the address
6924 space doesn't really matter. */
6925
6926 static int
6927 breakpoint_address_match_range (const address_space *aspace1,
6928 CORE_ADDR addr1,
6929 int len1, const address_space *aspace2,
6930 CORE_ADDR addr2)
6931 {
6932 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6933 || aspace1 == aspace2)
6934 && addr2 >= addr1 && addr2 < addr1 + len1);
6935 }
6936
6937 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6938 a ranged breakpoint. In most targets, a match happens only if ASPACE
6939 matches the breakpoint's address space. On targets that have global
6940 breakpoints, the address space doesn't really matter. */
6941
6942 static int
6943 breakpoint_location_address_match (struct bp_location *bl,
6944 const address_space *aspace,
6945 CORE_ADDR addr)
6946 {
6947 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6948 aspace, addr)
6949 || (bl->length
6950 && breakpoint_address_match_range (bl->pspace->aspace,
6951 bl->address, bl->length,
6952 aspace, addr)));
6953 }
6954
6955 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6956 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6957 match happens only if ASPACE matches the breakpoint's address
6958 space. On targets that have global breakpoints, the address space
6959 doesn't really matter. */
6960
6961 static int
6962 breakpoint_location_address_range_overlap (struct bp_location *bl,
6963 const address_space *aspace,
6964 CORE_ADDR addr, int len)
6965 {
6966 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6967 || bl->pspace->aspace == aspace)
6968 {
6969 int bl_len = bl->length != 0 ? bl->length : 1;
6970
6971 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6972 return 1;
6973 }
6974 return 0;
6975 }
6976
6977 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6978 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6979 true, otherwise returns false. */
6980
6981 static int
6982 tracepoint_locations_match (struct bp_location *loc1,
6983 struct bp_location *loc2)
6984 {
6985 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6986 /* Since tracepoint locations are never duplicated with others', tracepoint
6987 locations at the same address of different tracepoints are regarded as
6988 different locations. */
6989 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6990 else
6991 return 0;
6992 }
6993
6994 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6995 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6996 the same location. If SW_HW_BPS_MATCH is true, then software
6997 breakpoint locations and hardware breakpoint locations match,
6998 otherwise they don't. */
6999
7000 static int
7001 breakpoint_locations_match (struct bp_location *loc1,
7002 struct bp_location *loc2,
7003 bool sw_hw_bps_match)
7004 {
7005 int hw_point1, hw_point2;
7006
7007 /* Both of them must not be in moribund_locations. */
7008 gdb_assert (loc1->owner != NULL);
7009 gdb_assert (loc2->owner != NULL);
7010
7011 hw_point1 = is_hardware_watchpoint (loc1->owner);
7012 hw_point2 = is_hardware_watchpoint (loc2->owner);
7013
7014 if (hw_point1 != hw_point2)
7015 return 0;
7016 else if (hw_point1)
7017 return watchpoint_locations_match (loc1, loc2);
7018 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7019 return tracepoint_locations_match (loc1, loc2);
7020 else
7021 /* We compare bp_location.length in order to cover ranged
7022 breakpoints. Keep this in sync with
7023 bp_location_is_less_than. */
7024 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7025 loc2->pspace->aspace, loc2->address)
7026 && (loc1->loc_type == loc2->loc_type || sw_hw_bps_match)
7027 && loc1->length == loc2->length);
7028 }
7029
7030 static void
7031 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7032 int bnum, int have_bnum)
7033 {
7034 /* The longest string possibly returned by hex_string_custom
7035 is 50 chars. These must be at least that big for safety. */
7036 char astr1[64];
7037 char astr2[64];
7038
7039 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7040 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7041 if (have_bnum)
7042 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7043 bnum, astr1, astr2);
7044 else
7045 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7046 }
7047
7048 /* Adjust a breakpoint's address to account for architectural
7049 constraints on breakpoint placement. Return the adjusted address.
7050 Note: Very few targets require this kind of adjustment. For most
7051 targets, this function is simply the identity function. */
7052
7053 static CORE_ADDR
7054 adjust_breakpoint_address (struct gdbarch *gdbarch,
7055 CORE_ADDR bpaddr, enum bptype bptype)
7056 {
7057 if (bptype == bp_watchpoint
7058 || bptype == bp_hardware_watchpoint
7059 || bptype == bp_read_watchpoint
7060 || bptype == bp_access_watchpoint
7061 || bptype == bp_catchpoint)
7062 {
7063 /* Watchpoints and the various bp_catch_* eventpoints should not
7064 have their addresses modified. */
7065 return bpaddr;
7066 }
7067 else if (bptype == bp_single_step)
7068 {
7069 /* Single-step breakpoints should not have their addresses
7070 modified. If there's any architectural constrain that
7071 applies to this address, then it should have already been
7072 taken into account when the breakpoint was created in the
7073 first place. If we didn't do this, stepping through e.g.,
7074 Thumb-2 IT blocks would break. */
7075 return bpaddr;
7076 }
7077 else
7078 {
7079 CORE_ADDR adjusted_bpaddr = bpaddr;
7080
7081 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7082 {
7083 /* Some targets have architectural constraints on the placement
7084 of breakpoint instructions. Obtain the adjusted address. */
7085 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7086 }
7087
7088 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
7089
7090 /* An adjusted breakpoint address can significantly alter
7091 a user's expectations. Print a warning if an adjustment
7092 is required. */
7093 if (adjusted_bpaddr != bpaddr)
7094 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7095
7096 return adjusted_bpaddr;
7097 }
7098 }
7099
7100 static bp_loc_type
7101 bp_location_from_bp_type (bptype type)
7102 {
7103 switch (type)
7104 {
7105 case bp_breakpoint:
7106 case bp_single_step:
7107 case bp_until:
7108 case bp_finish:
7109 case bp_longjmp:
7110 case bp_longjmp_resume:
7111 case bp_longjmp_call_dummy:
7112 case bp_exception:
7113 case bp_exception_resume:
7114 case bp_step_resume:
7115 case bp_hp_step_resume:
7116 case bp_watchpoint_scope:
7117 case bp_call_dummy:
7118 case bp_std_terminate:
7119 case bp_shlib_event:
7120 case bp_thread_event:
7121 case bp_overlay_event:
7122 case bp_jit_event:
7123 case bp_longjmp_master:
7124 case bp_std_terminate_master:
7125 case bp_exception_master:
7126 case bp_gnu_ifunc_resolver:
7127 case bp_gnu_ifunc_resolver_return:
7128 case bp_dprintf:
7129 return bp_loc_software_breakpoint;
7130 case bp_hardware_breakpoint:
7131 return bp_loc_hardware_breakpoint;
7132 case bp_hardware_watchpoint:
7133 case bp_read_watchpoint:
7134 case bp_access_watchpoint:
7135 return bp_loc_hardware_watchpoint;
7136 case bp_watchpoint:
7137 case bp_catchpoint:
7138 case bp_tracepoint:
7139 case bp_fast_tracepoint:
7140 case bp_static_tracepoint:
7141 return bp_loc_other;
7142 default:
7143 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7144 }
7145 }
7146
7147 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
7148 {
7149 this->owner = owner;
7150 this->cond_bytecode = NULL;
7151 this->shlib_disabled = 0;
7152 this->enabled = 1;
7153 this->disabled_by_cond = false;
7154
7155 this->loc_type = type;
7156
7157 if (this->loc_type == bp_loc_software_breakpoint
7158 || this->loc_type == bp_loc_hardware_breakpoint)
7159 mark_breakpoint_location_modified (this);
7160
7161 incref ();
7162 }
7163
7164 bp_location::bp_location (breakpoint *owner)
7165 : bp_location::bp_location (owner,
7166 bp_location_from_bp_type (owner->type))
7167 {
7168 }
7169
7170 /* Allocate a struct bp_location. */
7171
7172 static struct bp_location *
7173 allocate_bp_location (struct breakpoint *bpt)
7174 {
7175 return bpt->ops->allocate_location (bpt);
7176 }
7177
7178 /* Decrement reference count. If the reference count reaches 0,
7179 destroy the bp_location. Sets *BLP to NULL. */
7180
7181 static void
7182 decref_bp_location (struct bp_location **blp)
7183 {
7184 bp_location_ref_policy::decref (*blp);
7185 *blp = NULL;
7186 }
7187
7188 /* Add breakpoint B at the end of the global breakpoint chain. */
7189
7190 static breakpoint *
7191 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7192 {
7193 struct breakpoint *b1;
7194 struct breakpoint *result = b.get ();
7195
7196 /* Add this breakpoint to the end of the chain so that a list of
7197 breakpoints will come out in order of increasing numbers. */
7198
7199 b1 = breakpoint_chain;
7200 if (b1 == 0)
7201 breakpoint_chain = b.release ();
7202 else
7203 {
7204 while (b1->next)
7205 b1 = b1->next;
7206 b1->next = b.release ();
7207 }
7208
7209 return result;
7210 }
7211
7212 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7213
7214 static void
7215 init_raw_breakpoint_without_location (struct breakpoint *b,
7216 struct gdbarch *gdbarch,
7217 enum bptype bptype,
7218 const struct breakpoint_ops *ops)
7219 {
7220 gdb_assert (ops != NULL);
7221
7222 b->ops = ops;
7223 b->type = bptype;
7224 b->gdbarch = gdbarch;
7225 b->language = current_language->la_language;
7226 b->input_radix = input_radix;
7227 b->related_breakpoint = b;
7228 }
7229
7230 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7231 that has type BPTYPE and has no locations as yet. */
7232
7233 static struct breakpoint *
7234 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7235 enum bptype bptype,
7236 const struct breakpoint_ops *ops)
7237 {
7238 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7239
7240 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7241 return add_to_breakpoint_chain (std::move (b));
7242 }
7243
7244 /* Initialize loc->function_name. */
7245
7246 static void
7247 set_breakpoint_location_function (struct bp_location *loc)
7248 {
7249 gdb_assert (loc->owner != NULL);
7250
7251 if (loc->owner->type == bp_breakpoint
7252 || loc->owner->type == bp_hardware_breakpoint
7253 || is_tracepoint (loc->owner))
7254 {
7255 const char *function_name;
7256
7257 if (loc->msymbol != NULL
7258 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7259 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7260 {
7261 struct breakpoint *b = loc->owner;
7262
7263 function_name = loc->msymbol->linkage_name ();
7264
7265 if (b->type == bp_breakpoint && b->loc == loc
7266 && loc->next == NULL && b->related_breakpoint == b)
7267 {
7268 /* Create only the whole new breakpoint of this type but do not
7269 mess more complicated breakpoints with multiple locations. */
7270 b->type = bp_gnu_ifunc_resolver;
7271 /* Remember the resolver's address for use by the return
7272 breakpoint. */
7273 loc->related_address = loc->address;
7274 }
7275 }
7276 else
7277 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7278
7279 if (function_name)
7280 loc->function_name = xstrdup (function_name);
7281 }
7282 }
7283
7284 /* Attempt to determine architecture of location identified by SAL. */
7285 struct gdbarch *
7286 get_sal_arch (struct symtab_and_line sal)
7287 {
7288 if (sal.section)
7289 return sal.section->objfile->arch ();
7290 if (sal.symtab)
7291 return SYMTAB_OBJFILE (sal.symtab)->arch ();
7292
7293 return NULL;
7294 }
7295
7296 /* Low level routine for partially initializing a breakpoint of type
7297 BPTYPE. The newly created breakpoint's address, section, source
7298 file name, and line number are provided by SAL.
7299
7300 It is expected that the caller will complete the initialization of
7301 the newly created breakpoint struct as well as output any status
7302 information regarding the creation of a new breakpoint. */
7303
7304 static void
7305 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7306 struct symtab_and_line sal, enum bptype bptype,
7307 const struct breakpoint_ops *ops)
7308 {
7309 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7310
7311 add_location_to_breakpoint (b, &sal);
7312
7313 if (bptype != bp_catchpoint)
7314 gdb_assert (sal.pspace != NULL);
7315
7316 /* Store the program space that was used to set the breakpoint,
7317 except for ordinary breakpoints, which are independent of the
7318 program space. */
7319 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7320 b->pspace = sal.pspace;
7321 }
7322
7323 /* set_raw_breakpoint is a low level routine for allocating and
7324 partially initializing a breakpoint of type BPTYPE. The newly
7325 created breakpoint's address, section, source file name, and line
7326 number are provided by SAL. The newly created and partially
7327 initialized breakpoint is added to the breakpoint chain and
7328 is also returned as the value of this function.
7329
7330 It is expected that the caller will complete the initialization of
7331 the newly created breakpoint struct as well as output any status
7332 information regarding the creation of a new breakpoint. In
7333 particular, set_raw_breakpoint does NOT set the breakpoint
7334 number! Care should be taken to not allow an error to occur
7335 prior to completing the initialization of the breakpoint. If this
7336 should happen, a bogus breakpoint will be left on the chain. */
7337
7338 struct breakpoint *
7339 set_raw_breakpoint (struct gdbarch *gdbarch,
7340 struct symtab_and_line sal, enum bptype bptype,
7341 const struct breakpoint_ops *ops)
7342 {
7343 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7344
7345 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7346 return add_to_breakpoint_chain (std::move (b));
7347 }
7348
7349 /* Call this routine when stepping and nexting to enable a breakpoint
7350 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7351 initiated the operation. */
7352
7353 void
7354 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7355 {
7356 struct breakpoint *b, *b_tmp;
7357 int thread = tp->global_num;
7358
7359 /* To avoid having to rescan all objfile symbols at every step,
7360 we maintain a list of continually-inserted but always disabled
7361 longjmp "master" breakpoints. Here, we simply create momentary
7362 clones of those and enable them for the requested thread. */
7363 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7364 if (b->pspace == current_program_space
7365 && (b->type == bp_longjmp_master
7366 || b->type == bp_exception_master))
7367 {
7368 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7369 struct breakpoint *clone;
7370
7371 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7372 after their removal. */
7373 clone = momentary_breakpoint_from_master (b, type,
7374 &momentary_breakpoint_ops, 1);
7375 clone->thread = thread;
7376 }
7377
7378 tp->initiating_frame = frame;
7379 }
7380
7381 /* Delete all longjmp breakpoints from THREAD. */
7382 void
7383 delete_longjmp_breakpoint (int thread)
7384 {
7385 struct breakpoint *b, *b_tmp;
7386
7387 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7388 if (b->type == bp_longjmp || b->type == bp_exception)
7389 {
7390 if (b->thread == thread)
7391 delete_breakpoint (b);
7392 }
7393 }
7394
7395 void
7396 delete_longjmp_breakpoint_at_next_stop (int thread)
7397 {
7398 struct breakpoint *b, *b_tmp;
7399
7400 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7401 if (b->type == bp_longjmp || b->type == bp_exception)
7402 {
7403 if (b->thread == thread)
7404 b->disposition = disp_del_at_next_stop;
7405 }
7406 }
7407
7408 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7409 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7410 pointer to any of them. Return NULL if this system cannot place longjmp
7411 breakpoints. */
7412
7413 struct breakpoint *
7414 set_longjmp_breakpoint_for_call_dummy (void)
7415 {
7416 struct breakpoint *b, *retval = NULL;
7417
7418 ALL_BREAKPOINTS (b)
7419 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7420 {
7421 struct breakpoint *new_b;
7422
7423 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7424 &momentary_breakpoint_ops,
7425 1);
7426 new_b->thread = inferior_thread ()->global_num;
7427
7428 /* Link NEW_B into the chain of RETVAL breakpoints. */
7429
7430 gdb_assert (new_b->related_breakpoint == new_b);
7431 if (retval == NULL)
7432 retval = new_b;
7433 new_b->related_breakpoint = retval;
7434 while (retval->related_breakpoint != new_b->related_breakpoint)
7435 retval = retval->related_breakpoint;
7436 retval->related_breakpoint = new_b;
7437 }
7438
7439 return retval;
7440 }
7441
7442 /* Verify all existing dummy frames and their associated breakpoints for
7443 TP. Remove those which can no longer be found in the current frame
7444 stack.
7445
7446 You should call this function only at places where it is safe to currently
7447 unwind the whole stack. Failed stack unwind would discard live dummy
7448 frames. */
7449
7450 void
7451 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7452 {
7453 struct breakpoint *b, *b_tmp;
7454
7455 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7456 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7457 {
7458 struct breakpoint *dummy_b = b->related_breakpoint;
7459
7460 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7461 dummy_b = dummy_b->related_breakpoint;
7462 if (dummy_b->type != bp_call_dummy
7463 || frame_find_by_id (dummy_b->frame_id) != NULL)
7464 continue;
7465
7466 dummy_frame_discard (dummy_b->frame_id, tp);
7467
7468 while (b->related_breakpoint != b)
7469 {
7470 if (b_tmp == b->related_breakpoint)
7471 b_tmp = b->related_breakpoint->next;
7472 delete_breakpoint (b->related_breakpoint);
7473 }
7474 delete_breakpoint (b);
7475 }
7476 }
7477
7478 void
7479 enable_overlay_breakpoints (void)
7480 {
7481 struct breakpoint *b;
7482
7483 ALL_BREAKPOINTS (b)
7484 if (b->type == bp_overlay_event)
7485 {
7486 b->enable_state = bp_enabled;
7487 update_global_location_list (UGLL_MAY_INSERT);
7488 overlay_events_enabled = 1;
7489 }
7490 }
7491
7492 void
7493 disable_overlay_breakpoints (void)
7494 {
7495 struct breakpoint *b;
7496
7497 ALL_BREAKPOINTS (b)
7498 if (b->type == bp_overlay_event)
7499 {
7500 b->enable_state = bp_disabled;
7501 update_global_location_list (UGLL_DONT_INSERT);
7502 overlay_events_enabled = 0;
7503 }
7504 }
7505
7506 /* Set an active std::terminate breakpoint for each std::terminate
7507 master breakpoint. */
7508 void
7509 set_std_terminate_breakpoint (void)
7510 {
7511 struct breakpoint *b, *b_tmp;
7512
7513 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7514 if (b->pspace == current_program_space
7515 && b->type == bp_std_terminate_master)
7516 {
7517 momentary_breakpoint_from_master (b, bp_std_terminate,
7518 &momentary_breakpoint_ops, 1);
7519 }
7520 }
7521
7522 /* Delete all the std::terminate breakpoints. */
7523 void
7524 delete_std_terminate_breakpoint (void)
7525 {
7526 struct breakpoint *b, *b_tmp;
7527
7528 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7529 if (b->type == bp_std_terminate)
7530 delete_breakpoint (b);
7531 }
7532
7533 struct breakpoint *
7534 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7535 {
7536 struct breakpoint *b;
7537
7538 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7539 &internal_breakpoint_ops);
7540
7541 b->enable_state = bp_enabled;
7542 /* location has to be used or breakpoint_re_set will delete me. */
7543 b->location = new_address_location (b->loc->address, NULL, 0);
7544
7545 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7546
7547 return b;
7548 }
7549
7550 struct lang_and_radix
7551 {
7552 enum language lang;
7553 int radix;
7554 };
7555
7556 /* Create a breakpoint for JIT code registration and unregistration. */
7557
7558 struct breakpoint *
7559 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7560 {
7561 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7562 &internal_breakpoint_ops);
7563 }
7564
7565 /* Remove JIT code registration and unregistration breakpoint(s). */
7566
7567 void
7568 remove_jit_event_breakpoints (void)
7569 {
7570 struct breakpoint *b, *b_tmp;
7571
7572 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7573 if (b->type == bp_jit_event
7574 && b->loc->pspace == current_program_space)
7575 delete_breakpoint (b);
7576 }
7577
7578 void
7579 remove_solib_event_breakpoints (void)
7580 {
7581 struct breakpoint *b, *b_tmp;
7582
7583 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7584 if (b->type == bp_shlib_event
7585 && b->loc->pspace == current_program_space)
7586 delete_breakpoint (b);
7587 }
7588
7589 /* See breakpoint.h. */
7590
7591 void
7592 remove_solib_event_breakpoints_at_next_stop (void)
7593 {
7594 struct breakpoint *b, *b_tmp;
7595
7596 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7597 if (b->type == bp_shlib_event
7598 && b->loc->pspace == current_program_space)
7599 b->disposition = disp_del_at_next_stop;
7600 }
7601
7602 /* Helper for create_solib_event_breakpoint /
7603 create_and_insert_solib_event_breakpoint. Allows specifying which
7604 INSERT_MODE to pass through to update_global_location_list. */
7605
7606 static struct breakpoint *
7607 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7608 enum ugll_insert_mode insert_mode)
7609 {
7610 struct breakpoint *b;
7611
7612 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7613 &internal_breakpoint_ops);
7614 update_global_location_list_nothrow (insert_mode);
7615 return b;
7616 }
7617
7618 struct breakpoint *
7619 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7620 {
7621 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7622 }
7623
7624 /* See breakpoint.h. */
7625
7626 struct breakpoint *
7627 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7628 {
7629 struct breakpoint *b;
7630
7631 /* Explicitly tell update_global_location_list to insert
7632 locations. */
7633 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7634 if (!b->loc->inserted)
7635 {
7636 delete_breakpoint (b);
7637 return NULL;
7638 }
7639 return b;
7640 }
7641
7642 /* Disable any breakpoints that are on code in shared libraries. Only
7643 apply to enabled breakpoints, disabled ones can just stay disabled. */
7644
7645 void
7646 disable_breakpoints_in_shlibs (void)
7647 {
7648 struct bp_location *loc, **locp_tmp;
7649
7650 ALL_BP_LOCATIONS (loc, locp_tmp)
7651 {
7652 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7653 struct breakpoint *b = loc->owner;
7654
7655 /* We apply the check to all breakpoints, including disabled for
7656 those with loc->duplicate set. This is so that when breakpoint
7657 becomes enabled, or the duplicate is removed, gdb will try to
7658 insert all breakpoints. If we don't set shlib_disabled here,
7659 we'll try to insert those breakpoints and fail. */
7660 if (((b->type == bp_breakpoint)
7661 || (b->type == bp_jit_event)
7662 || (b->type == bp_hardware_breakpoint)
7663 || (is_tracepoint (b)))
7664 && loc->pspace == current_program_space
7665 && !loc->shlib_disabled
7666 && solib_name_from_address (loc->pspace, loc->address)
7667 )
7668 {
7669 loc->shlib_disabled = 1;
7670 }
7671 }
7672 }
7673
7674 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7675 notification of unloaded_shlib. Only apply to enabled breakpoints,
7676 disabled ones can just stay disabled. */
7677
7678 static void
7679 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7680 {
7681 struct bp_location *loc, **locp_tmp;
7682 int disabled_shlib_breaks = 0;
7683
7684 ALL_BP_LOCATIONS (loc, locp_tmp)
7685 {
7686 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7687 struct breakpoint *b = loc->owner;
7688
7689 if (solib->pspace == loc->pspace
7690 && !loc->shlib_disabled
7691 && (((b->type == bp_breakpoint
7692 || b->type == bp_jit_event
7693 || b->type == bp_hardware_breakpoint)
7694 && (loc->loc_type == bp_loc_hardware_breakpoint
7695 || loc->loc_type == bp_loc_software_breakpoint))
7696 || is_tracepoint (b))
7697 && solib_contains_address_p (solib, loc->address))
7698 {
7699 loc->shlib_disabled = 1;
7700 /* At this point, we cannot rely on remove_breakpoint
7701 succeeding so we must mark the breakpoint as not inserted
7702 to prevent future errors occurring in remove_breakpoints. */
7703 loc->inserted = 0;
7704
7705 /* This may cause duplicate notifications for the same breakpoint. */
7706 gdb::observers::breakpoint_modified.notify (b);
7707
7708 if (!disabled_shlib_breaks)
7709 {
7710 target_terminal::ours_for_output ();
7711 warning (_("Temporarily disabling breakpoints "
7712 "for unloaded shared library \"%s\""),
7713 solib->so_name);
7714 }
7715 disabled_shlib_breaks = 1;
7716 }
7717 }
7718 }
7719
7720 /* Disable any breakpoints and tracepoints in OBJFILE upon
7721 notification of free_objfile. Only apply to enabled breakpoints,
7722 disabled ones can just stay disabled. */
7723
7724 static void
7725 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7726 {
7727 struct breakpoint *b;
7728
7729 if (objfile == NULL)
7730 return;
7731
7732 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7733 managed by the user with add-symbol-file/remove-symbol-file.
7734 Similarly to how breakpoints in shared libraries are handled in
7735 response to "nosharedlibrary", mark breakpoints in such modules
7736 shlib_disabled so they end up uninserted on the next global
7737 location list update. Shared libraries not loaded by the user
7738 aren't handled here -- they're already handled in
7739 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7740 solib_unloaded observer. We skip objfiles that are not
7741 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7742 main objfile). */
7743 if ((objfile->flags & OBJF_SHARED) == 0
7744 || (objfile->flags & OBJF_USERLOADED) == 0)
7745 return;
7746
7747 ALL_BREAKPOINTS (b)
7748 {
7749 struct bp_location *loc;
7750 int bp_modified = 0;
7751
7752 if (!is_breakpoint (b) && !is_tracepoint (b))
7753 continue;
7754
7755 for (loc = b->loc; loc != NULL; loc = loc->next)
7756 {
7757 CORE_ADDR loc_addr = loc->address;
7758
7759 if (loc->loc_type != bp_loc_hardware_breakpoint
7760 && loc->loc_type != bp_loc_software_breakpoint)
7761 continue;
7762
7763 if (loc->shlib_disabled != 0)
7764 continue;
7765
7766 if (objfile->pspace != loc->pspace)
7767 continue;
7768
7769 if (loc->loc_type != bp_loc_hardware_breakpoint
7770 && loc->loc_type != bp_loc_software_breakpoint)
7771 continue;
7772
7773 if (is_addr_in_objfile (loc_addr, objfile))
7774 {
7775 loc->shlib_disabled = 1;
7776 /* At this point, we don't know whether the object was
7777 unmapped from the inferior or not, so leave the
7778 inserted flag alone. We'll handle failure to
7779 uninsert quietly, in case the object was indeed
7780 unmapped. */
7781
7782 mark_breakpoint_location_modified (loc);
7783
7784 bp_modified = 1;
7785 }
7786 }
7787
7788 if (bp_modified)
7789 gdb::observers::breakpoint_modified.notify (b);
7790 }
7791 }
7792
7793 /* FORK & VFORK catchpoints. */
7794
7795 /* An instance of this type is used to represent a fork or vfork
7796 catchpoint. A breakpoint is really of this type iff its ops pointer points
7797 to CATCH_FORK_BREAKPOINT_OPS. */
7798
7799 struct fork_catchpoint : public breakpoint
7800 {
7801 /* Process id of a child process whose forking triggered this
7802 catchpoint. This field is only valid immediately after this
7803 catchpoint has triggered. */
7804 ptid_t forked_inferior_pid;
7805 };
7806
7807 /* Implement the "insert" breakpoint_ops method for fork
7808 catchpoints. */
7809
7810 static int
7811 insert_catch_fork (struct bp_location *bl)
7812 {
7813 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7814 }
7815
7816 /* Implement the "remove" breakpoint_ops method for fork
7817 catchpoints. */
7818
7819 static int
7820 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7821 {
7822 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7823 }
7824
7825 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7826 catchpoints. */
7827
7828 static int
7829 breakpoint_hit_catch_fork (const struct bp_location *bl,
7830 const address_space *aspace, CORE_ADDR bp_addr,
7831 const struct target_waitstatus *ws)
7832 {
7833 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7834
7835 if (ws->kind != TARGET_WAITKIND_FORKED)
7836 return 0;
7837
7838 c->forked_inferior_pid = ws->value.related_pid;
7839 return 1;
7840 }
7841
7842 /* Implement the "print_it" breakpoint_ops method for fork
7843 catchpoints. */
7844
7845 static enum print_stop_action
7846 print_it_catch_fork (bpstat bs)
7847 {
7848 struct ui_out *uiout = current_uiout;
7849 struct breakpoint *b = bs->breakpoint_at;
7850 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7851
7852 annotate_catchpoint (b->number);
7853 maybe_print_thread_hit_breakpoint (uiout);
7854 if (b->disposition == disp_del)
7855 uiout->text ("Temporary catchpoint ");
7856 else
7857 uiout->text ("Catchpoint ");
7858 if (uiout->is_mi_like_p ())
7859 {
7860 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7861 uiout->field_string ("disp", bpdisp_text (b->disposition));
7862 }
7863 uiout->field_signed ("bkptno", b->number);
7864 uiout->text (" (forked process ");
7865 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7866 uiout->text ("), ");
7867 return PRINT_SRC_AND_LOC;
7868 }
7869
7870 /* Implement the "print_one" breakpoint_ops method for fork
7871 catchpoints. */
7872
7873 static void
7874 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7875 {
7876 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7877 struct value_print_options opts;
7878 struct ui_out *uiout = current_uiout;
7879
7880 get_user_print_options (&opts);
7881
7882 /* Field 4, the address, is omitted (which makes the columns not
7883 line up too nicely with the headers, but the effect is relatively
7884 readable). */
7885 if (opts.addressprint)
7886 uiout->field_skip ("addr");
7887 annotate_field (5);
7888 uiout->text ("fork");
7889 if (c->forked_inferior_pid != null_ptid)
7890 {
7891 uiout->text (", process ");
7892 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7893 uiout->spaces (1);
7894 }
7895
7896 if (uiout->is_mi_like_p ())
7897 uiout->field_string ("catch-type", "fork");
7898 }
7899
7900 /* Implement the "print_mention" breakpoint_ops method for fork
7901 catchpoints. */
7902
7903 static void
7904 print_mention_catch_fork (struct breakpoint *b)
7905 {
7906 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7907 }
7908
7909 /* Implement the "print_recreate" breakpoint_ops method for fork
7910 catchpoints. */
7911
7912 static void
7913 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7914 {
7915 fprintf_unfiltered (fp, "catch fork");
7916 print_recreate_thread (b, fp);
7917 }
7918
7919 /* The breakpoint_ops structure to be used in fork catchpoints. */
7920
7921 static struct breakpoint_ops catch_fork_breakpoint_ops;
7922
7923 /* Implement the "insert" breakpoint_ops method for vfork
7924 catchpoints. */
7925
7926 static int
7927 insert_catch_vfork (struct bp_location *bl)
7928 {
7929 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7930 }
7931
7932 /* Implement the "remove" breakpoint_ops method for vfork
7933 catchpoints. */
7934
7935 static int
7936 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7937 {
7938 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7939 }
7940
7941 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7942 catchpoints. */
7943
7944 static int
7945 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7946 const address_space *aspace, CORE_ADDR bp_addr,
7947 const struct target_waitstatus *ws)
7948 {
7949 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7950
7951 if (ws->kind != TARGET_WAITKIND_VFORKED)
7952 return 0;
7953
7954 c->forked_inferior_pid = ws->value.related_pid;
7955 return 1;
7956 }
7957
7958 /* Implement the "print_it" breakpoint_ops method for vfork
7959 catchpoints. */
7960
7961 static enum print_stop_action
7962 print_it_catch_vfork (bpstat bs)
7963 {
7964 struct ui_out *uiout = current_uiout;
7965 struct breakpoint *b = bs->breakpoint_at;
7966 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7967
7968 annotate_catchpoint (b->number);
7969 maybe_print_thread_hit_breakpoint (uiout);
7970 if (b->disposition == disp_del)
7971 uiout->text ("Temporary catchpoint ");
7972 else
7973 uiout->text ("Catchpoint ");
7974 if (uiout->is_mi_like_p ())
7975 {
7976 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7977 uiout->field_string ("disp", bpdisp_text (b->disposition));
7978 }
7979 uiout->field_signed ("bkptno", b->number);
7980 uiout->text (" (vforked process ");
7981 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7982 uiout->text ("), ");
7983 return PRINT_SRC_AND_LOC;
7984 }
7985
7986 /* Implement the "print_one" breakpoint_ops method for vfork
7987 catchpoints. */
7988
7989 static void
7990 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7991 {
7992 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7993 struct value_print_options opts;
7994 struct ui_out *uiout = current_uiout;
7995
7996 get_user_print_options (&opts);
7997 /* Field 4, the address, is omitted (which makes the columns not
7998 line up too nicely with the headers, but the effect is relatively
7999 readable). */
8000 if (opts.addressprint)
8001 uiout->field_skip ("addr");
8002 annotate_field (5);
8003 uiout->text ("vfork");
8004 if (c->forked_inferior_pid != null_ptid)
8005 {
8006 uiout->text (", process ");
8007 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
8008 uiout->spaces (1);
8009 }
8010
8011 if (uiout->is_mi_like_p ())
8012 uiout->field_string ("catch-type", "vfork");
8013 }
8014
8015 /* Implement the "print_mention" breakpoint_ops method for vfork
8016 catchpoints. */
8017
8018 static void
8019 print_mention_catch_vfork (struct breakpoint *b)
8020 {
8021 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
8022 }
8023
8024 /* Implement the "print_recreate" breakpoint_ops method for vfork
8025 catchpoints. */
8026
8027 static void
8028 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
8029 {
8030 fprintf_unfiltered (fp, "catch vfork");
8031 print_recreate_thread (b, fp);
8032 }
8033
8034 /* The breakpoint_ops structure to be used in vfork catchpoints. */
8035
8036 static struct breakpoint_ops catch_vfork_breakpoint_ops;
8037
8038 /* An instance of this type is used to represent an solib catchpoint.
8039 A breakpoint is really of this type iff its ops pointer points to
8040 CATCH_SOLIB_BREAKPOINT_OPS. */
8041
8042 struct solib_catchpoint : public breakpoint
8043 {
8044 ~solib_catchpoint () override;
8045
8046 /* True for "catch load", false for "catch unload". */
8047 bool is_load;
8048
8049 /* Regular expression to match, if any. COMPILED is only valid when
8050 REGEX is non-NULL. */
8051 char *regex;
8052 std::unique_ptr<compiled_regex> compiled;
8053 };
8054
8055 solib_catchpoint::~solib_catchpoint ()
8056 {
8057 xfree (this->regex);
8058 }
8059
8060 static int
8061 insert_catch_solib (struct bp_location *ignore)
8062 {
8063 return 0;
8064 }
8065
8066 static int
8067 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8068 {
8069 return 0;
8070 }
8071
8072 static int
8073 breakpoint_hit_catch_solib (const struct bp_location *bl,
8074 const address_space *aspace,
8075 CORE_ADDR bp_addr,
8076 const struct target_waitstatus *ws)
8077 {
8078 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8079 struct breakpoint *other;
8080
8081 if (ws->kind == TARGET_WAITKIND_LOADED)
8082 return 1;
8083
8084 ALL_BREAKPOINTS (other)
8085 {
8086 struct bp_location *other_bl;
8087
8088 if (other == bl->owner)
8089 continue;
8090
8091 if (other->type != bp_shlib_event)
8092 continue;
8093
8094 if (self->pspace != NULL && other->pspace != self->pspace)
8095 continue;
8096
8097 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8098 {
8099 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8100 return 1;
8101 }
8102 }
8103
8104 return 0;
8105 }
8106
8107 static void
8108 check_status_catch_solib (struct bpstats *bs)
8109 {
8110 struct solib_catchpoint *self
8111 = (struct solib_catchpoint *) bs->breakpoint_at;
8112
8113 if (self->is_load)
8114 {
8115 for (so_list *iter : current_program_space->added_solibs)
8116 {
8117 if (!self->regex
8118 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8119 return;
8120 }
8121 }
8122 else
8123 {
8124 for (const std::string &iter : current_program_space->deleted_solibs)
8125 {
8126 if (!self->regex
8127 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8128 return;
8129 }
8130 }
8131
8132 bs->stop = 0;
8133 bs->print_it = print_it_noop;
8134 }
8135
8136 static enum print_stop_action
8137 print_it_catch_solib (bpstat bs)
8138 {
8139 struct breakpoint *b = bs->breakpoint_at;
8140 struct ui_out *uiout = current_uiout;
8141
8142 annotate_catchpoint (b->number);
8143 maybe_print_thread_hit_breakpoint (uiout);
8144 if (b->disposition == disp_del)
8145 uiout->text ("Temporary catchpoint ");
8146 else
8147 uiout->text ("Catchpoint ");
8148 uiout->field_signed ("bkptno", b->number);
8149 uiout->text ("\n");
8150 if (uiout->is_mi_like_p ())
8151 uiout->field_string ("disp", bpdisp_text (b->disposition));
8152 print_solib_event (1);
8153 return PRINT_SRC_AND_LOC;
8154 }
8155
8156 static void
8157 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8158 {
8159 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8160 struct value_print_options opts;
8161 struct ui_out *uiout = current_uiout;
8162
8163 get_user_print_options (&opts);
8164 /* Field 4, the address, is omitted (which makes the columns not
8165 line up too nicely with the headers, but the effect is relatively
8166 readable). */
8167 if (opts.addressprint)
8168 {
8169 annotate_field (4);
8170 uiout->field_skip ("addr");
8171 }
8172
8173 std::string msg;
8174 annotate_field (5);
8175 if (self->is_load)
8176 {
8177 if (self->regex)
8178 msg = string_printf (_("load of library matching %s"), self->regex);
8179 else
8180 msg = _("load of library");
8181 }
8182 else
8183 {
8184 if (self->regex)
8185 msg = string_printf (_("unload of library matching %s"), self->regex);
8186 else
8187 msg = _("unload of library");
8188 }
8189 uiout->field_string ("what", msg);
8190
8191 if (uiout->is_mi_like_p ())
8192 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8193 }
8194
8195 static void
8196 print_mention_catch_solib (struct breakpoint *b)
8197 {
8198 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8199
8200 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8201 self->is_load ? "load" : "unload");
8202 }
8203
8204 static void
8205 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8206 {
8207 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8208
8209 fprintf_unfiltered (fp, "%s %s",
8210 b->disposition == disp_del ? "tcatch" : "catch",
8211 self->is_load ? "load" : "unload");
8212 if (self->regex)
8213 fprintf_unfiltered (fp, " %s", self->regex);
8214 fprintf_unfiltered (fp, "\n");
8215 }
8216
8217 static struct breakpoint_ops catch_solib_breakpoint_ops;
8218
8219 /* See breakpoint.h. */
8220
8221 void
8222 add_solib_catchpoint (const char *arg, bool is_load, bool is_temp, bool enabled)
8223 {
8224 struct gdbarch *gdbarch = get_current_arch ();
8225
8226 if (!arg)
8227 arg = "";
8228 arg = skip_spaces (arg);
8229
8230 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8231
8232 if (*arg != '\0')
8233 {
8234 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8235 _("Invalid regexp")));
8236 c->regex = xstrdup (arg);
8237 }
8238
8239 c->is_load = is_load;
8240 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8241 &catch_solib_breakpoint_ops);
8242
8243 c->enable_state = enabled ? bp_enabled : bp_disabled;
8244
8245 install_breakpoint (0, std::move (c), 1);
8246 }
8247
8248 /* A helper function that does all the work for "catch load" and
8249 "catch unload". */
8250
8251 static void
8252 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8253 struct cmd_list_element *command)
8254 {
8255 const int enabled = 1;
8256 bool temp = get_cmd_context (command) == CATCH_TEMPORARY;
8257
8258 add_solib_catchpoint (arg, is_load, temp, enabled);
8259 }
8260
8261 static void
8262 catch_load_command_1 (const char *arg, int from_tty,
8263 struct cmd_list_element *command)
8264 {
8265 catch_load_or_unload (arg, from_tty, 1, command);
8266 }
8267
8268 static void
8269 catch_unload_command_1 (const char *arg, int from_tty,
8270 struct cmd_list_element *command)
8271 {
8272 catch_load_or_unload (arg, from_tty, 0, command);
8273 }
8274
8275 /* See breakpoint.h. */
8276
8277 void
8278 init_catchpoint (struct breakpoint *b,
8279 struct gdbarch *gdbarch, bool temp,
8280 const char *cond_string,
8281 const struct breakpoint_ops *ops)
8282 {
8283 symtab_and_line sal;
8284 sal.pspace = current_program_space;
8285
8286 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8287
8288 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8289 b->disposition = temp ? disp_del : disp_donttouch;
8290 }
8291
8292 void
8293 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8294 {
8295 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8296 set_breakpoint_number (internal, b);
8297 if (is_tracepoint (b))
8298 set_tracepoint_count (breakpoint_count);
8299 if (!internal)
8300 mention (b);
8301 gdb::observers::breakpoint_created.notify (b);
8302
8303 if (update_gll)
8304 update_global_location_list (UGLL_MAY_INSERT);
8305 }
8306
8307 static void
8308 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8309 bool temp, const char *cond_string,
8310 const struct breakpoint_ops *ops)
8311 {
8312 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8313
8314 init_catchpoint (c.get (), gdbarch, temp, cond_string, ops);
8315
8316 c->forked_inferior_pid = null_ptid;
8317
8318 install_breakpoint (0, std::move (c), 1);
8319 }
8320
8321 /* Exec catchpoints. */
8322
8323 /* An instance of this type is used to represent an exec catchpoint.
8324 A breakpoint is really of this type iff its ops pointer points to
8325 CATCH_EXEC_BREAKPOINT_OPS. */
8326
8327 struct exec_catchpoint : public breakpoint
8328 {
8329 ~exec_catchpoint () override;
8330
8331 /* Filename of a program whose exec triggered this catchpoint.
8332 This field is only valid immediately after this catchpoint has
8333 triggered. */
8334 char *exec_pathname;
8335 };
8336
8337 /* Exec catchpoint destructor. */
8338
8339 exec_catchpoint::~exec_catchpoint ()
8340 {
8341 xfree (this->exec_pathname);
8342 }
8343
8344 static int
8345 insert_catch_exec (struct bp_location *bl)
8346 {
8347 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8348 }
8349
8350 static int
8351 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8352 {
8353 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8354 }
8355
8356 static int
8357 breakpoint_hit_catch_exec (const struct bp_location *bl,
8358 const address_space *aspace, CORE_ADDR bp_addr,
8359 const struct target_waitstatus *ws)
8360 {
8361 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8362
8363 if (ws->kind != TARGET_WAITKIND_EXECD)
8364 return 0;
8365
8366 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8367 return 1;
8368 }
8369
8370 static enum print_stop_action
8371 print_it_catch_exec (bpstat bs)
8372 {
8373 struct ui_out *uiout = current_uiout;
8374 struct breakpoint *b = bs->breakpoint_at;
8375 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8376
8377 annotate_catchpoint (b->number);
8378 maybe_print_thread_hit_breakpoint (uiout);
8379 if (b->disposition == disp_del)
8380 uiout->text ("Temporary catchpoint ");
8381 else
8382 uiout->text ("Catchpoint ");
8383 if (uiout->is_mi_like_p ())
8384 {
8385 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8386 uiout->field_string ("disp", bpdisp_text (b->disposition));
8387 }
8388 uiout->field_signed ("bkptno", b->number);
8389 uiout->text (" (exec'd ");
8390 uiout->field_string ("new-exec", c->exec_pathname);
8391 uiout->text ("), ");
8392
8393 return PRINT_SRC_AND_LOC;
8394 }
8395
8396 static void
8397 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8398 {
8399 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8400 struct value_print_options opts;
8401 struct ui_out *uiout = current_uiout;
8402
8403 get_user_print_options (&opts);
8404
8405 /* Field 4, the address, is omitted (which makes the columns
8406 not line up too nicely with the headers, but the effect
8407 is relatively readable). */
8408 if (opts.addressprint)
8409 uiout->field_skip ("addr");
8410 annotate_field (5);
8411 uiout->text ("exec");
8412 if (c->exec_pathname != NULL)
8413 {
8414 uiout->text (", program \"");
8415 uiout->field_string ("what", c->exec_pathname);
8416 uiout->text ("\" ");
8417 }
8418
8419 if (uiout->is_mi_like_p ())
8420 uiout->field_string ("catch-type", "exec");
8421 }
8422
8423 static void
8424 print_mention_catch_exec (struct breakpoint *b)
8425 {
8426 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8427 }
8428
8429 /* Implement the "print_recreate" breakpoint_ops method for exec
8430 catchpoints. */
8431
8432 static void
8433 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8434 {
8435 fprintf_unfiltered (fp, "catch exec");
8436 print_recreate_thread (b, fp);
8437 }
8438
8439 static struct breakpoint_ops catch_exec_breakpoint_ops;
8440
8441 static int
8442 hw_breakpoint_used_count (void)
8443 {
8444 int i = 0;
8445 struct breakpoint *b;
8446 struct bp_location *bl;
8447
8448 ALL_BREAKPOINTS (b)
8449 {
8450 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8451 for (bl = b->loc; bl; bl = bl->next)
8452 {
8453 /* Special types of hardware breakpoints may use more than
8454 one register. */
8455 i += b->ops->resources_needed (bl);
8456 }
8457 }
8458
8459 return i;
8460 }
8461
8462 /* Returns the resources B would use if it were a hardware
8463 watchpoint. */
8464
8465 static int
8466 hw_watchpoint_use_count (struct breakpoint *b)
8467 {
8468 int i = 0;
8469 struct bp_location *bl;
8470
8471 if (!breakpoint_enabled (b))
8472 return 0;
8473
8474 for (bl = b->loc; bl; bl = bl->next)
8475 {
8476 /* Special types of hardware watchpoints may use more than
8477 one register. */
8478 i += b->ops->resources_needed (bl);
8479 }
8480
8481 return i;
8482 }
8483
8484 /* Returns the sum the used resources of all hardware watchpoints of
8485 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8486 the sum of the used resources of all hardware watchpoints of other
8487 types _not_ TYPE. */
8488
8489 static int
8490 hw_watchpoint_used_count_others (struct breakpoint *except,
8491 enum bptype type, int *other_type_used)
8492 {
8493 int i = 0;
8494 struct breakpoint *b;
8495
8496 *other_type_used = 0;
8497 ALL_BREAKPOINTS (b)
8498 {
8499 if (b == except)
8500 continue;
8501 if (!breakpoint_enabled (b))
8502 continue;
8503
8504 if (b->type == type)
8505 i += hw_watchpoint_use_count (b);
8506 else if (is_hardware_watchpoint (b))
8507 *other_type_used = 1;
8508 }
8509
8510 return i;
8511 }
8512
8513 void
8514 disable_watchpoints_before_interactive_call_start (void)
8515 {
8516 struct breakpoint *b;
8517
8518 ALL_BREAKPOINTS (b)
8519 {
8520 if (is_watchpoint (b) && breakpoint_enabled (b))
8521 {
8522 b->enable_state = bp_call_disabled;
8523 update_global_location_list (UGLL_DONT_INSERT);
8524 }
8525 }
8526 }
8527
8528 void
8529 enable_watchpoints_after_interactive_call_stop (void)
8530 {
8531 struct breakpoint *b;
8532
8533 ALL_BREAKPOINTS (b)
8534 {
8535 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8536 {
8537 b->enable_state = bp_enabled;
8538 update_global_location_list (UGLL_MAY_INSERT);
8539 }
8540 }
8541 }
8542
8543 void
8544 disable_breakpoints_before_startup (void)
8545 {
8546 current_program_space->executing_startup = 1;
8547 update_global_location_list (UGLL_DONT_INSERT);
8548 }
8549
8550 void
8551 enable_breakpoints_after_startup (void)
8552 {
8553 current_program_space->executing_startup = 0;
8554 breakpoint_re_set ();
8555 }
8556
8557 /* Create a new single-step breakpoint for thread THREAD, with no
8558 locations. */
8559
8560 static struct breakpoint *
8561 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8562 {
8563 std::unique_ptr<breakpoint> b (new breakpoint ());
8564
8565 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8566 &momentary_breakpoint_ops);
8567
8568 b->disposition = disp_donttouch;
8569 b->frame_id = null_frame_id;
8570
8571 b->thread = thread;
8572 gdb_assert (b->thread != 0);
8573
8574 return add_to_breakpoint_chain (std::move (b));
8575 }
8576
8577 /* Set a momentary breakpoint of type TYPE at address specified by
8578 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8579 frame. */
8580
8581 breakpoint_up
8582 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8583 struct frame_id frame_id, enum bptype type)
8584 {
8585 struct breakpoint *b;
8586
8587 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8588 tail-called one. */
8589 gdb_assert (!frame_id_artificial_p (frame_id));
8590
8591 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8592 b->enable_state = bp_enabled;
8593 b->disposition = disp_donttouch;
8594 b->frame_id = frame_id;
8595
8596 b->thread = inferior_thread ()->global_num;
8597
8598 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8599
8600 return breakpoint_up (b);
8601 }
8602
8603 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8604 The new breakpoint will have type TYPE, use OPS as its
8605 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8606
8607 static struct breakpoint *
8608 momentary_breakpoint_from_master (struct breakpoint *orig,
8609 enum bptype type,
8610 const struct breakpoint_ops *ops,
8611 int loc_enabled)
8612 {
8613 struct breakpoint *copy;
8614
8615 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8616 copy->loc = allocate_bp_location (copy);
8617 set_breakpoint_location_function (copy->loc);
8618
8619 copy->loc->gdbarch = orig->loc->gdbarch;
8620 copy->loc->requested_address = orig->loc->requested_address;
8621 copy->loc->address = orig->loc->address;
8622 copy->loc->section = orig->loc->section;
8623 copy->loc->pspace = orig->loc->pspace;
8624 copy->loc->probe = orig->loc->probe;
8625 copy->loc->line_number = orig->loc->line_number;
8626 copy->loc->symtab = orig->loc->symtab;
8627 copy->loc->enabled = loc_enabled;
8628 copy->frame_id = orig->frame_id;
8629 copy->thread = orig->thread;
8630 copy->pspace = orig->pspace;
8631
8632 copy->enable_state = bp_enabled;
8633 copy->disposition = disp_donttouch;
8634 copy->number = internal_breakpoint_number--;
8635
8636 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8637 return copy;
8638 }
8639
8640 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8641 ORIG is NULL. */
8642
8643 struct breakpoint *
8644 clone_momentary_breakpoint (struct breakpoint *orig)
8645 {
8646 /* If there's nothing to clone, then return nothing. */
8647 if (orig == NULL)
8648 return NULL;
8649
8650 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8651 }
8652
8653 breakpoint_up
8654 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8655 enum bptype type)
8656 {
8657 struct symtab_and_line sal;
8658
8659 sal = find_pc_line (pc, 0);
8660 sal.pc = pc;
8661 sal.section = find_pc_overlay (pc);
8662 sal.explicit_pc = 1;
8663
8664 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8665 }
8666 \f
8667
8668 /* Tell the user we have just set a breakpoint B. */
8669
8670 static void
8671 mention (struct breakpoint *b)
8672 {
8673 b->ops->print_mention (b);
8674 current_uiout->text ("\n");
8675 }
8676 \f
8677
8678 static bool bp_loc_is_permanent (struct bp_location *loc);
8679
8680 /* Handle "set breakpoint auto-hw on".
8681
8682 If the explicitly specified breakpoint type is not hardware
8683 breakpoint, check the memory map to see whether the breakpoint
8684 address is in read-only memory.
8685
8686 - location type is not hardware breakpoint, memory is read-only.
8687 We change the type of the location to hardware breakpoint.
8688
8689 - location type is hardware breakpoint, memory is read-write. This
8690 means we've previously made the location hardware one, but then the
8691 memory map changed, so we undo.
8692 */
8693
8694 static void
8695 handle_automatic_hardware_breakpoints (bp_location *bl)
8696 {
8697 if (automatic_hardware_breakpoints
8698 && bl->owner->type != bp_hardware_breakpoint
8699 && (bl->loc_type == bp_loc_software_breakpoint
8700 || bl->loc_type == bp_loc_hardware_breakpoint))
8701 {
8702 /* When breakpoints are removed, remove_breakpoints will use
8703 location types we've just set here, the only possible problem
8704 is that memory map has changed during running program, but
8705 it's not going to work anyway with current gdb. */
8706 mem_region *mr = lookup_mem_region (bl->address);
8707
8708 if (mr != nullptr)
8709 {
8710 enum bp_loc_type new_type;
8711
8712 if (mr->attrib.mode != MEM_RW)
8713 new_type = bp_loc_hardware_breakpoint;
8714 else
8715 new_type = bp_loc_software_breakpoint;
8716
8717 if (new_type != bl->loc_type)
8718 {
8719 static bool said = false;
8720
8721 bl->loc_type = new_type;
8722 if (!said)
8723 {
8724 fprintf_filtered (gdb_stdout,
8725 _("Note: automatically using "
8726 "hardware breakpoints for "
8727 "read-only addresses.\n"));
8728 said = true;
8729 }
8730 }
8731 }
8732 }
8733 }
8734
8735 static struct bp_location *
8736 add_location_to_breakpoint (struct breakpoint *b,
8737 const struct symtab_and_line *sal)
8738 {
8739 struct bp_location *loc, **tmp;
8740 CORE_ADDR adjusted_address;
8741 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8742
8743 if (loc_gdbarch == NULL)
8744 loc_gdbarch = b->gdbarch;
8745
8746 /* Adjust the breakpoint's address prior to allocating a location.
8747 Once we call allocate_bp_location(), that mostly uninitialized
8748 location will be placed on the location chain. Adjustment of the
8749 breakpoint may cause target_read_memory() to be called and we do
8750 not want its scan of the location chain to find a breakpoint and
8751 location that's only been partially initialized. */
8752 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8753 sal->pc, b->type);
8754
8755 /* Sort the locations by their ADDRESS. */
8756 loc = allocate_bp_location (b);
8757 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8758 tmp = &((*tmp)->next))
8759 ;
8760 loc->next = *tmp;
8761 *tmp = loc;
8762
8763 loc->requested_address = sal->pc;
8764 loc->address = adjusted_address;
8765 loc->pspace = sal->pspace;
8766 loc->probe.prob = sal->prob;
8767 loc->probe.objfile = sal->objfile;
8768 gdb_assert (loc->pspace != NULL);
8769 loc->section = sal->section;
8770 loc->gdbarch = loc_gdbarch;
8771 loc->line_number = sal->line;
8772 loc->symtab = sal->symtab;
8773 loc->symbol = sal->symbol;
8774 loc->msymbol = sal->msymbol;
8775 loc->objfile = sal->objfile;
8776
8777 set_breakpoint_location_function (loc);
8778
8779 /* While by definition, permanent breakpoints are already present in the
8780 code, we don't mark the location as inserted. Normally one would expect
8781 that GDB could rely on that breakpoint instruction to stop the program,
8782 thus removing the need to insert its own breakpoint, except that executing
8783 the breakpoint instruction can kill the target instead of reporting a
8784 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8785 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8786 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8787 breakpoint be inserted normally results in QEMU knowing about the GDB
8788 breakpoint, and thus trap before the breakpoint instruction is executed.
8789 (If GDB later needs to continue execution past the permanent breakpoint,
8790 it manually increments the PC, thus avoiding executing the breakpoint
8791 instruction.) */
8792 if (bp_loc_is_permanent (loc))
8793 loc->permanent = 1;
8794
8795 return loc;
8796 }
8797 \f
8798
8799 /* Return true if LOC is pointing to a permanent breakpoint,
8800 return false otherwise. */
8801
8802 static bool
8803 bp_loc_is_permanent (struct bp_location *loc)
8804 {
8805 gdb_assert (loc != NULL);
8806
8807 /* If we have a non-breakpoint-backed catchpoint or a software
8808 watchpoint, just return 0. We should not attempt to read from
8809 the addresses the locations of these breakpoint types point to.
8810 gdbarch_program_breakpoint_here_p, below, will attempt to read
8811 memory. */
8812 if (!bl_address_is_meaningful (loc))
8813 return false;
8814
8815 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8816 switch_to_program_space_and_thread (loc->pspace);
8817 return gdbarch_program_breakpoint_here_p (loc->gdbarch, loc->address);
8818 }
8819
8820 /* Build a command list for the dprintf corresponding to the current
8821 settings of the dprintf style options. */
8822
8823 static void
8824 update_dprintf_command_list (struct breakpoint *b)
8825 {
8826 char *dprintf_args = b->extra_string;
8827 char *printf_line = NULL;
8828
8829 if (!dprintf_args)
8830 return;
8831
8832 dprintf_args = skip_spaces (dprintf_args);
8833
8834 /* Allow a comma, as it may have terminated a location, but don't
8835 insist on it. */
8836 if (*dprintf_args == ',')
8837 ++dprintf_args;
8838 dprintf_args = skip_spaces (dprintf_args);
8839
8840 if (*dprintf_args != '"')
8841 error (_("Bad format string, missing '\"'."));
8842
8843 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8844 printf_line = xstrprintf ("printf %s", dprintf_args);
8845 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8846 {
8847 if (!dprintf_function)
8848 error (_("No function supplied for dprintf call"));
8849
8850 if (dprintf_channel && strlen (dprintf_channel) > 0)
8851 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8852 dprintf_function,
8853 dprintf_channel,
8854 dprintf_args);
8855 else
8856 printf_line = xstrprintf ("call (void) %s (%s)",
8857 dprintf_function,
8858 dprintf_args);
8859 }
8860 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8861 {
8862 if (target_can_run_breakpoint_commands ())
8863 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8864 else
8865 {
8866 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8867 printf_line = xstrprintf ("printf %s", dprintf_args);
8868 }
8869 }
8870 else
8871 internal_error (__FILE__, __LINE__,
8872 _("Invalid dprintf style."));
8873
8874 gdb_assert (printf_line != NULL);
8875
8876 /* Manufacture a printf sequence. */
8877 struct command_line *printf_cmd_line
8878 = new struct command_line (simple_control, printf_line);
8879 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8880 command_lines_deleter ()));
8881 }
8882
8883 /* Update all dprintf commands, making their command lists reflect
8884 current style settings. */
8885
8886 static void
8887 update_dprintf_commands (const char *args, int from_tty,
8888 struct cmd_list_element *c)
8889 {
8890 struct breakpoint *b;
8891
8892 ALL_BREAKPOINTS (b)
8893 {
8894 if (b->type == bp_dprintf)
8895 update_dprintf_command_list (b);
8896 }
8897 }
8898
8899 /* Create a breakpoint with SAL as location. Use LOCATION
8900 as a description of the location, and COND_STRING
8901 as condition expression. If LOCATION is NULL then create an
8902 "address location" from the address in the SAL. */
8903
8904 static void
8905 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8906 gdb::array_view<const symtab_and_line> sals,
8907 event_location_up &&location,
8908 gdb::unique_xmalloc_ptr<char> filter,
8909 gdb::unique_xmalloc_ptr<char> cond_string,
8910 gdb::unique_xmalloc_ptr<char> extra_string,
8911 enum bptype type, enum bpdisp disposition,
8912 int thread, int task, int ignore_count,
8913 const struct breakpoint_ops *ops, int from_tty,
8914 int enabled, int internal, unsigned flags,
8915 int display_canonical)
8916 {
8917 int i;
8918
8919 if (type == bp_hardware_breakpoint)
8920 {
8921 int target_resources_ok;
8922
8923 i = hw_breakpoint_used_count ();
8924 target_resources_ok =
8925 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8926 i + 1, 0);
8927 if (target_resources_ok == 0)
8928 error (_("No hardware breakpoint support in the target."));
8929 else if (target_resources_ok < 0)
8930 error (_("Hardware breakpoints used exceeds limit."));
8931 }
8932
8933 gdb_assert (!sals.empty ());
8934
8935 for (const auto &sal : sals)
8936 {
8937 struct bp_location *loc;
8938
8939 if (from_tty)
8940 {
8941 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8942 if (!loc_gdbarch)
8943 loc_gdbarch = gdbarch;
8944
8945 describe_other_breakpoints (loc_gdbarch,
8946 sal.pspace, sal.pc, sal.section, thread);
8947 }
8948
8949 if (&sal == &sals[0])
8950 {
8951 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8952 b->thread = thread;
8953 b->task = task;
8954
8955 b->cond_string = cond_string.release ();
8956 b->extra_string = extra_string.release ();
8957 b->ignore_count = ignore_count;
8958 b->enable_state = enabled ? bp_enabled : bp_disabled;
8959 b->disposition = disposition;
8960
8961 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8962 b->loc->inserted = 1;
8963
8964 if (type == bp_static_tracepoint)
8965 {
8966 struct tracepoint *t = (struct tracepoint *) b;
8967 struct static_tracepoint_marker marker;
8968
8969 if (strace_marker_p (b))
8970 {
8971 /* We already know the marker exists, otherwise, we
8972 wouldn't see a sal for it. */
8973 const char *p
8974 = &event_location_to_string (b->location.get ())[3];
8975 const char *endp;
8976
8977 p = skip_spaces (p);
8978
8979 endp = skip_to_space (p);
8980
8981 t->static_trace_marker_id.assign (p, endp - p);
8982
8983 printf_filtered (_("Probed static tracepoint "
8984 "marker \"%s\"\n"),
8985 t->static_trace_marker_id.c_str ());
8986 }
8987 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8988 {
8989 t->static_trace_marker_id = std::move (marker.str_id);
8990
8991 printf_filtered (_("Probed static tracepoint "
8992 "marker \"%s\"\n"),
8993 t->static_trace_marker_id.c_str ());
8994 }
8995 else
8996 warning (_("Couldn't determine the static "
8997 "tracepoint marker to probe"));
8998 }
8999
9000 loc = b->loc;
9001 }
9002 else
9003 {
9004 loc = add_location_to_breakpoint (b, &sal);
9005 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9006 loc->inserted = 1;
9007 }
9008
9009 /* Do not set breakpoint locations conditions yet. As locations
9010 are inserted, they get sorted based on their addresses. Let
9011 the list stabilize to have reliable location numbers. */
9012
9013 /* Dynamic printf requires and uses additional arguments on the
9014 command line, otherwise it's an error. */
9015 if (type == bp_dprintf)
9016 {
9017 if (b->extra_string)
9018 update_dprintf_command_list (b);
9019 else
9020 error (_("Format string required"));
9021 }
9022 else if (b->extra_string)
9023 error (_("Garbage '%s' at end of command"), b->extra_string);
9024 }
9025
9026
9027 /* The order of the locations is now stable. Set the location
9028 condition using the location's number. */
9029 int loc_num = 1;
9030 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
9031 {
9032 if (b->cond_string != nullptr)
9033 set_breakpoint_location_condition (b->cond_string, loc, b->number,
9034 loc_num);
9035
9036 ++loc_num;
9037 }
9038
9039 b->display_canonical = display_canonical;
9040 if (location != NULL)
9041 b->location = std::move (location);
9042 else
9043 b->location = new_address_location (b->loc->address, NULL, 0);
9044 b->filter = std::move (filter);
9045 }
9046
9047 static void
9048 create_breakpoint_sal (struct gdbarch *gdbarch,
9049 gdb::array_view<const symtab_and_line> sals,
9050 event_location_up &&location,
9051 gdb::unique_xmalloc_ptr<char> filter,
9052 gdb::unique_xmalloc_ptr<char> cond_string,
9053 gdb::unique_xmalloc_ptr<char> extra_string,
9054 enum bptype type, enum bpdisp disposition,
9055 int thread, int task, int ignore_count,
9056 const struct breakpoint_ops *ops, int from_tty,
9057 int enabled, int internal, unsigned flags,
9058 int display_canonical)
9059 {
9060 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9061
9062 init_breakpoint_sal (b.get (), gdbarch,
9063 sals, std::move (location),
9064 std::move (filter),
9065 std::move (cond_string),
9066 std::move (extra_string),
9067 type, disposition,
9068 thread, task, ignore_count,
9069 ops, from_tty,
9070 enabled, internal, flags,
9071 display_canonical);
9072
9073 install_breakpoint (internal, std::move (b), 0);
9074 }
9075
9076 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9077 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9078 value. COND_STRING, if not NULL, specified the condition to be
9079 used for all breakpoints. Essentially the only case where
9080 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9081 function. In that case, it's still not possible to specify
9082 separate conditions for different overloaded functions, so
9083 we take just a single condition string.
9084
9085 NOTE: If the function succeeds, the caller is expected to cleanup
9086 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9087 array contents). If the function fails (error() is called), the
9088 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9089 COND and SALS arrays and each of those arrays contents. */
9090
9091 static void
9092 create_breakpoints_sal (struct gdbarch *gdbarch,
9093 struct linespec_result *canonical,
9094 gdb::unique_xmalloc_ptr<char> cond_string,
9095 gdb::unique_xmalloc_ptr<char> extra_string,
9096 enum bptype type, enum bpdisp disposition,
9097 int thread, int task, int ignore_count,
9098 const struct breakpoint_ops *ops, int from_tty,
9099 int enabled, int internal, unsigned flags)
9100 {
9101 if (canonical->pre_expanded)
9102 gdb_assert (canonical->lsals.size () == 1);
9103
9104 for (const auto &lsal : canonical->lsals)
9105 {
9106 /* Note that 'location' can be NULL in the case of a plain
9107 'break', without arguments. */
9108 event_location_up location
9109 = (canonical->location != NULL
9110 ? copy_event_location (canonical->location.get ()) : NULL);
9111 gdb::unique_xmalloc_ptr<char> filter_string
9112 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9113
9114 create_breakpoint_sal (gdbarch, lsal.sals,
9115 std::move (location),
9116 std::move (filter_string),
9117 std::move (cond_string),
9118 std::move (extra_string),
9119 type, disposition,
9120 thread, task, ignore_count, ops,
9121 from_tty, enabled, internal, flags,
9122 canonical->special_display);
9123 }
9124 }
9125
9126 /* Parse LOCATION which is assumed to be a SAL specification possibly
9127 followed by conditionals. On return, SALS contains an array of SAL
9128 addresses found. LOCATION points to the end of the SAL (for
9129 linespec locations).
9130
9131 The array and the line spec strings are allocated on the heap, it is
9132 the caller's responsibility to free them. */
9133
9134 static void
9135 parse_breakpoint_sals (struct event_location *location,
9136 struct linespec_result *canonical)
9137 {
9138 struct symtab_and_line cursal;
9139
9140 if (event_location_type (location) == LINESPEC_LOCATION)
9141 {
9142 const char *spec = get_linespec_location (location)->spec_string;
9143
9144 if (spec == NULL)
9145 {
9146 /* The last displayed codepoint, if it's valid, is our default
9147 breakpoint address. */
9148 if (last_displayed_sal_is_valid ())
9149 {
9150 /* Set sal's pspace, pc, symtab, and line to the values
9151 corresponding to the last call to print_frame_info.
9152 Be sure to reinitialize LINE with NOTCURRENT == 0
9153 as the breakpoint line number is inappropriate otherwise.
9154 find_pc_line would adjust PC, re-set it back. */
9155 symtab_and_line sal = get_last_displayed_sal ();
9156 CORE_ADDR pc = sal.pc;
9157
9158 sal = find_pc_line (pc, 0);
9159
9160 /* "break" without arguments is equivalent to "break *PC"
9161 where PC is the last displayed codepoint's address. So
9162 make sure to set sal.explicit_pc to prevent GDB from
9163 trying to expand the list of sals to include all other
9164 instances with the same symtab and line. */
9165 sal.pc = pc;
9166 sal.explicit_pc = 1;
9167
9168 struct linespec_sals lsal;
9169 lsal.sals = {sal};
9170 lsal.canonical = NULL;
9171
9172 canonical->lsals.push_back (std::move (lsal));
9173 return;
9174 }
9175 else
9176 error (_("No default breakpoint address now."));
9177 }
9178 }
9179
9180 /* Force almost all breakpoints to be in terms of the
9181 current_source_symtab (which is decode_line_1's default).
9182 This should produce the results we want almost all of the
9183 time while leaving default_breakpoint_* alone.
9184
9185 ObjC: However, don't match an Objective-C method name which
9186 may have a '+' or '-' succeeded by a '['. */
9187 cursal = get_current_source_symtab_and_line ();
9188 if (last_displayed_sal_is_valid ())
9189 {
9190 const char *spec = NULL;
9191
9192 if (event_location_type (location) == LINESPEC_LOCATION)
9193 spec = get_linespec_location (location)->spec_string;
9194
9195 if (!cursal.symtab
9196 || (spec != NULL
9197 && strchr ("+-", spec[0]) != NULL
9198 && spec[1] != '['))
9199 {
9200 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9201 get_last_displayed_symtab (),
9202 get_last_displayed_line (),
9203 canonical, NULL, NULL);
9204 return;
9205 }
9206 }
9207
9208 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9209 cursal.symtab, cursal.line, canonical, NULL, NULL);
9210 }
9211
9212
9213 /* Convert each SAL into a real PC. Verify that the PC can be
9214 inserted as a breakpoint. If it can't throw an error. */
9215
9216 static void
9217 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9218 {
9219 for (auto &sal : sals)
9220 resolve_sal_pc (&sal);
9221 }
9222
9223 /* Fast tracepoints may have restrictions on valid locations. For
9224 instance, a fast tracepoint using a jump instead of a trap will
9225 likely have to overwrite more bytes than a trap would, and so can
9226 only be placed where the instruction is longer than the jump, or a
9227 multi-instruction sequence does not have a jump into the middle of
9228 it, etc. */
9229
9230 static void
9231 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9232 gdb::array_view<const symtab_and_line> sals)
9233 {
9234 for (const auto &sal : sals)
9235 {
9236 struct gdbarch *sarch;
9237
9238 sarch = get_sal_arch (sal);
9239 /* We fall back to GDBARCH if there is no architecture
9240 associated with SAL. */
9241 if (sarch == NULL)
9242 sarch = gdbarch;
9243 std::string msg;
9244 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9245 error (_("May not have a fast tracepoint at %s%s"),
9246 paddress (sarch, sal.pc), msg.c_str ());
9247 }
9248 }
9249
9250 /* Given TOK, a string specification of condition and thread, as
9251 accepted by the 'break' command, extract the condition
9252 string and thread number and set *COND_STRING and *THREAD.
9253 PC identifies the context at which the condition should be parsed.
9254 If no condition is found, *COND_STRING is set to NULL.
9255 If no thread is found, *THREAD is set to -1. */
9256
9257 static void
9258 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9259 char **cond_string, int *thread, int *task,
9260 char **rest)
9261 {
9262 *cond_string = NULL;
9263 *thread = -1;
9264 *task = 0;
9265 *rest = NULL;
9266 bool force = false;
9267
9268 while (tok && *tok)
9269 {
9270 const char *end_tok;
9271 int toklen;
9272 const char *cond_start = NULL;
9273 const char *cond_end = NULL;
9274
9275 tok = skip_spaces (tok);
9276
9277 if ((*tok == '"' || *tok == ',') && rest)
9278 {
9279 *rest = savestring (tok, strlen (tok));
9280 return;
9281 }
9282
9283 end_tok = skip_to_space (tok);
9284
9285 toklen = end_tok - tok;
9286
9287 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9288 {
9289 tok = cond_start = end_tok + 1;
9290 try
9291 {
9292 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9293 }
9294 catch (const gdb_exception_error &)
9295 {
9296 if (!force)
9297 throw;
9298 else
9299 tok = tok + strlen (tok);
9300 }
9301 cond_end = tok;
9302 *cond_string = savestring (cond_start, cond_end - cond_start);
9303 }
9304 else if (toklen >= 1 && strncmp (tok, "-force-condition", toklen) == 0)
9305 {
9306 tok = tok + toklen;
9307 force = true;
9308 }
9309 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9310 {
9311 const char *tmptok;
9312 struct thread_info *thr;
9313
9314 tok = end_tok + 1;
9315 thr = parse_thread_id (tok, &tmptok);
9316 if (tok == tmptok)
9317 error (_("Junk after thread keyword."));
9318 *thread = thr->global_num;
9319 tok = tmptok;
9320 }
9321 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9322 {
9323 char *tmptok;
9324
9325 tok = end_tok + 1;
9326 *task = strtol (tok, &tmptok, 0);
9327 if (tok == tmptok)
9328 error (_("Junk after task keyword."));
9329 if (!valid_task_id (*task))
9330 error (_("Unknown task %d."), *task);
9331 tok = tmptok;
9332 }
9333 else if (rest)
9334 {
9335 *rest = savestring (tok, strlen (tok));
9336 return;
9337 }
9338 else
9339 error (_("Junk at end of arguments."));
9340 }
9341 }
9342
9343 /* Call 'find_condition_and_thread' for each sal in SALS until a parse
9344 succeeds. The parsed values are written to COND_STRING, THREAD,
9345 TASK, and REST. See the comment of 'find_condition_and_thread'
9346 for the description of these parameters and INPUT. */
9347
9348 static void
9349 find_condition_and_thread_for_sals (const std::vector<symtab_and_line> &sals,
9350 const char *input, char **cond_string,
9351 int *thread, int *task, char **rest)
9352 {
9353 int num_failures = 0;
9354 for (auto &sal : sals)
9355 {
9356 char *cond = nullptr;
9357 int thread_id = 0;
9358 int task_id = 0;
9359 char *remaining = nullptr;
9360
9361 /* Here we want to parse 'arg' to separate condition from thread
9362 number. But because parsing happens in a context and the
9363 contexts of sals might be different, try each until there is
9364 success. Finding one successful parse is sufficient for our
9365 goal. When setting the breakpoint we'll re-parse the
9366 condition in the context of each sal. */
9367 try
9368 {
9369 find_condition_and_thread (input, sal.pc, &cond, &thread_id,
9370 &task_id, &remaining);
9371 *cond_string = cond;
9372 *thread = thread_id;
9373 *task = task_id;
9374 *rest = remaining;
9375 break;
9376 }
9377 catch (const gdb_exception_error &e)
9378 {
9379 num_failures++;
9380 /* If no sal remains, do not continue. */
9381 if (num_failures == sals.size ())
9382 throw;
9383 }
9384 }
9385 }
9386
9387 /* Decode a static tracepoint marker spec. */
9388
9389 static std::vector<symtab_and_line>
9390 decode_static_tracepoint_spec (const char **arg_p)
9391 {
9392 const char *p = &(*arg_p)[3];
9393 const char *endp;
9394
9395 p = skip_spaces (p);
9396
9397 endp = skip_to_space (p);
9398
9399 std::string marker_str (p, endp - p);
9400
9401 std::vector<static_tracepoint_marker> markers
9402 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9403 if (markers.empty ())
9404 error (_("No known static tracepoint marker named %s"),
9405 marker_str.c_str ());
9406
9407 std::vector<symtab_and_line> sals;
9408 sals.reserve (markers.size ());
9409
9410 for (const static_tracepoint_marker &marker : markers)
9411 {
9412 symtab_and_line sal = find_pc_line (marker.address, 0);
9413 sal.pc = marker.address;
9414 sals.push_back (sal);
9415 }
9416
9417 *arg_p = endp;
9418 return sals;
9419 }
9420
9421 /* Returns the breakpoint ops appropriate for use with with LOCATION_TYPE and
9422 according to IS_TRACEPOINT. */
9423
9424 static const struct breakpoint_ops *
9425 breakpoint_ops_for_event_location_type (enum event_location_type location_type,
9426 bool is_tracepoint)
9427 {
9428 if (is_tracepoint)
9429 {
9430 if (location_type == PROBE_LOCATION)
9431 return &tracepoint_probe_breakpoint_ops;
9432 else
9433 return &tracepoint_breakpoint_ops;
9434 }
9435 else
9436 {
9437 if (location_type == PROBE_LOCATION)
9438 return &bkpt_probe_breakpoint_ops;
9439 else
9440 return &bkpt_breakpoint_ops;
9441 }
9442 }
9443
9444 /* See breakpoint.h. */
9445
9446 const struct breakpoint_ops *
9447 breakpoint_ops_for_event_location (const struct event_location *location,
9448 bool is_tracepoint)
9449 {
9450 if (location != nullptr)
9451 return breakpoint_ops_for_event_location_type
9452 (event_location_type (location), is_tracepoint);
9453 return is_tracepoint ? &tracepoint_breakpoint_ops : &bkpt_breakpoint_ops;
9454 }
9455
9456 /* See breakpoint.h. */
9457
9458 int
9459 create_breakpoint (struct gdbarch *gdbarch,
9460 struct event_location *location,
9461 const char *cond_string,
9462 int thread, const char *extra_string,
9463 bool force_condition, int parse_extra,
9464 int tempflag, enum bptype type_wanted,
9465 int ignore_count,
9466 enum auto_boolean pending_break_support,
9467 const struct breakpoint_ops *ops,
9468 int from_tty, int enabled, int internal,
9469 unsigned flags)
9470 {
9471 struct linespec_result canonical;
9472 int pending = 0;
9473 int task = 0;
9474 int prev_bkpt_count = breakpoint_count;
9475
9476 gdb_assert (ops != NULL);
9477
9478 /* If extra_string isn't useful, set it to NULL. */
9479 if (extra_string != NULL && *extra_string == '\0')
9480 extra_string = NULL;
9481
9482 try
9483 {
9484 ops->create_sals_from_location (location, &canonical, type_wanted);
9485 }
9486 catch (const gdb_exception_error &e)
9487 {
9488 /* If caller is interested in rc value from parse, set
9489 value. */
9490 if (e.error == NOT_FOUND_ERROR)
9491 {
9492 /* If pending breakpoint support is turned off, throw
9493 error. */
9494
9495 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9496 throw;
9497
9498 exception_print (gdb_stderr, e);
9499
9500 /* If pending breakpoint support is auto query and the user
9501 selects no, then simply return the error code. */
9502 if (pending_break_support == AUTO_BOOLEAN_AUTO
9503 && !nquery (_("Make %s pending on future shared library load? "),
9504 bptype_string (type_wanted)))
9505 return 0;
9506
9507 /* At this point, either the user was queried about setting
9508 a pending breakpoint and selected yes, or pending
9509 breakpoint behavior is on and thus a pending breakpoint
9510 is defaulted on behalf of the user. */
9511 pending = 1;
9512 }
9513 else
9514 throw;
9515 }
9516
9517 if (!pending && canonical.lsals.empty ())
9518 return 0;
9519
9520 /* Resolve all line numbers to PC's and verify that the addresses
9521 are ok for the target. */
9522 if (!pending)
9523 {
9524 for (auto &lsal : canonical.lsals)
9525 breakpoint_sals_to_pc (lsal.sals);
9526 }
9527
9528 /* Fast tracepoints may have additional restrictions on location. */
9529 if (!pending && type_wanted == bp_fast_tracepoint)
9530 {
9531 for (const auto &lsal : canonical.lsals)
9532 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9533 }
9534
9535 /* Verify that condition can be parsed, before setting any
9536 breakpoints. Allocate a separate condition expression for each
9537 breakpoint. */
9538 if (!pending)
9539 {
9540 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9541 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9542
9543 if (parse_extra)
9544 {
9545 char *rest;
9546 char *cond;
9547
9548 const linespec_sals &lsal = canonical.lsals[0];
9549
9550 find_condition_and_thread_for_sals (lsal.sals, extra_string,
9551 &cond, &thread, &task, &rest);
9552 cond_string_copy.reset (cond);
9553 extra_string_copy.reset (rest);
9554 }
9555 else
9556 {
9557 if (type_wanted != bp_dprintf
9558 && extra_string != NULL && *extra_string != '\0')
9559 error (_("Garbage '%s' at end of location"), extra_string);
9560
9561 /* Check the validity of the condition. We should error out
9562 if the condition is invalid at all of the locations and
9563 if it is not forced. In the PARSE_EXTRA case above, this
9564 check is done when parsing the EXTRA_STRING. */
9565 if (cond_string != nullptr && !force_condition)
9566 {
9567 int num_failures = 0;
9568 const linespec_sals &lsal = canonical.lsals[0];
9569 for (const auto &sal : lsal.sals)
9570 {
9571 const char *cond = cond_string;
9572 try
9573 {
9574 parse_exp_1 (&cond, sal.pc, block_for_pc (sal.pc), 0);
9575 /* One success is sufficient to keep going. */
9576 break;
9577 }
9578 catch (const gdb_exception_error &)
9579 {
9580 num_failures++;
9581 /* If this is the last sal, error out. */
9582 if (num_failures == lsal.sals.size ())
9583 throw;
9584 }
9585 }
9586 }
9587
9588 /* Create a private copy of condition string. */
9589 if (cond_string)
9590 cond_string_copy.reset (xstrdup (cond_string));
9591 /* Create a private copy of any extra string. */
9592 if (extra_string)
9593 extra_string_copy.reset (xstrdup (extra_string));
9594 }
9595
9596 ops->create_breakpoints_sal (gdbarch, &canonical,
9597 std::move (cond_string_copy),
9598 std::move (extra_string_copy),
9599 type_wanted,
9600 tempflag ? disp_del : disp_donttouch,
9601 thread, task, ignore_count, ops,
9602 from_tty, enabled, internal, flags);
9603 }
9604 else
9605 {
9606 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9607
9608 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9609 b->location = copy_event_location (location);
9610
9611 if (parse_extra)
9612 b->cond_string = NULL;
9613 else
9614 {
9615 /* Create a private copy of condition string. */
9616 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9617 b->thread = thread;
9618 }
9619
9620 /* Create a private copy of any extra string. */
9621 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9622 b->ignore_count = ignore_count;
9623 b->disposition = tempflag ? disp_del : disp_donttouch;
9624 b->condition_not_parsed = 1;
9625 b->enable_state = enabled ? bp_enabled : bp_disabled;
9626 if ((type_wanted != bp_breakpoint
9627 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9628 b->pspace = current_program_space;
9629
9630 install_breakpoint (internal, std::move (b), 0);
9631 }
9632
9633 if (canonical.lsals.size () > 1)
9634 {
9635 warning (_("Multiple breakpoints were set.\nUse the "
9636 "\"delete\" command to delete unwanted breakpoints."));
9637 prev_breakpoint_count = prev_bkpt_count;
9638 }
9639
9640 update_global_location_list (UGLL_MAY_INSERT);
9641
9642 return 1;
9643 }
9644
9645 /* Set a breakpoint.
9646 ARG is a string describing breakpoint address,
9647 condition, and thread.
9648 FLAG specifies if a breakpoint is hardware on,
9649 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9650 and BP_TEMPFLAG. */
9651
9652 static void
9653 break_command_1 (const char *arg, int flag, int from_tty)
9654 {
9655 int tempflag = flag & BP_TEMPFLAG;
9656 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9657 ? bp_hardware_breakpoint
9658 : bp_breakpoint);
9659
9660 event_location_up location = string_to_event_location (&arg, current_language);
9661 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
9662 (location.get (), false /* is_tracepoint */);
9663
9664 create_breakpoint (get_current_arch (),
9665 location.get (),
9666 NULL, 0, arg, false, 1 /* parse arg */,
9667 tempflag, type_wanted,
9668 0 /* Ignore count */,
9669 pending_break_support,
9670 ops,
9671 from_tty,
9672 1 /* enabled */,
9673 0 /* internal */,
9674 0);
9675 }
9676
9677 /* Helper function for break_command_1 and disassemble_command. */
9678
9679 void
9680 resolve_sal_pc (struct symtab_and_line *sal)
9681 {
9682 CORE_ADDR pc;
9683
9684 if (sal->pc == 0 && sal->symtab != NULL)
9685 {
9686 if (!find_line_pc (sal->symtab, sal->line, &pc))
9687 error (_("No line %d in file \"%s\"."),
9688 sal->line, symtab_to_filename_for_display (sal->symtab));
9689 sal->pc = pc;
9690
9691 /* If this SAL corresponds to a breakpoint inserted using a line
9692 number, then skip the function prologue if necessary. */
9693 if (sal->explicit_line)
9694 skip_prologue_sal (sal);
9695 }
9696
9697 if (sal->section == 0 && sal->symtab != NULL)
9698 {
9699 const struct blockvector *bv;
9700 const struct block *b;
9701 struct symbol *sym;
9702
9703 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9704 SYMTAB_COMPUNIT (sal->symtab));
9705 if (bv != NULL)
9706 {
9707 sym = block_linkage_function (b);
9708 if (sym != NULL)
9709 {
9710 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9711 sal->section = sym->obj_section (SYMTAB_OBJFILE (sal->symtab));
9712 }
9713 else
9714 {
9715 /* It really is worthwhile to have the section, so we'll
9716 just have to look harder. This case can be executed
9717 if we have line numbers but no functions (as can
9718 happen in assembly source). */
9719
9720 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9721 switch_to_program_space_and_thread (sal->pspace);
9722
9723 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9724 if (msym.minsym)
9725 sal->section = msym.obj_section ();
9726 }
9727 }
9728 }
9729 }
9730
9731 void
9732 break_command (const char *arg, int from_tty)
9733 {
9734 break_command_1 (arg, 0, from_tty);
9735 }
9736
9737 void
9738 tbreak_command (const char *arg, int from_tty)
9739 {
9740 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9741 }
9742
9743 static void
9744 hbreak_command (const char *arg, int from_tty)
9745 {
9746 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9747 }
9748
9749 static void
9750 thbreak_command (const char *arg, int from_tty)
9751 {
9752 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9753 }
9754
9755 static void
9756 stop_command (const char *arg, int from_tty)
9757 {
9758 printf_filtered (_("Specify the type of breakpoint to set.\n\
9759 Usage: stop in <function | address>\n\
9760 stop at <line>\n"));
9761 }
9762
9763 static void
9764 stopin_command (const char *arg, int from_tty)
9765 {
9766 int badInput = 0;
9767
9768 if (arg == NULL)
9769 badInput = 1;
9770 else if (*arg != '*')
9771 {
9772 const char *argptr = arg;
9773 int hasColon = 0;
9774
9775 /* Look for a ':'. If this is a line number specification, then
9776 say it is bad, otherwise, it should be an address or
9777 function/method name. */
9778 while (*argptr && !hasColon)
9779 {
9780 hasColon = (*argptr == ':');
9781 argptr++;
9782 }
9783
9784 if (hasColon)
9785 badInput = (*argptr != ':'); /* Not a class::method */
9786 else
9787 badInput = isdigit (*arg); /* a simple line number */
9788 }
9789
9790 if (badInput)
9791 printf_filtered (_("Usage: stop in <function | address>\n"));
9792 else
9793 break_command_1 (arg, 0, from_tty);
9794 }
9795
9796 static void
9797 stopat_command (const char *arg, int from_tty)
9798 {
9799 int badInput = 0;
9800
9801 if (arg == NULL || *arg == '*') /* no line number */
9802 badInput = 1;
9803 else
9804 {
9805 const char *argptr = arg;
9806 int hasColon = 0;
9807
9808 /* Look for a ':'. If there is a '::' then get out, otherwise
9809 it is probably a line number. */
9810 while (*argptr && !hasColon)
9811 {
9812 hasColon = (*argptr == ':');
9813 argptr++;
9814 }
9815
9816 if (hasColon)
9817 badInput = (*argptr == ':'); /* we have class::method */
9818 else
9819 badInput = !isdigit (*arg); /* not a line number */
9820 }
9821
9822 if (badInput)
9823 printf_filtered (_("Usage: stop at LINE\n"));
9824 else
9825 break_command_1 (arg, 0, from_tty);
9826 }
9827
9828 /* The dynamic printf command is mostly like a regular breakpoint, but
9829 with a prewired command list consisting of a single output command,
9830 built from extra arguments supplied on the dprintf command
9831 line. */
9832
9833 static void
9834 dprintf_command (const char *arg, int from_tty)
9835 {
9836 event_location_up location = string_to_event_location (&arg, current_language);
9837
9838 /* If non-NULL, ARG should have been advanced past the location;
9839 the next character must be ','. */
9840 if (arg != NULL)
9841 {
9842 if (arg[0] != ',' || arg[1] == '\0')
9843 error (_("Format string required"));
9844 else
9845 {
9846 /* Skip the comma. */
9847 ++arg;
9848 }
9849 }
9850
9851 create_breakpoint (get_current_arch (),
9852 location.get (),
9853 NULL, 0, arg, false, 1 /* parse arg */,
9854 0, bp_dprintf,
9855 0 /* Ignore count */,
9856 pending_break_support,
9857 &dprintf_breakpoint_ops,
9858 from_tty,
9859 1 /* enabled */,
9860 0 /* internal */,
9861 0);
9862 }
9863
9864 static void
9865 agent_printf_command (const char *arg, int from_tty)
9866 {
9867 error (_("May only run agent-printf on the target"));
9868 }
9869
9870 /* Implement the "breakpoint_hit" breakpoint_ops method for
9871 ranged breakpoints. */
9872
9873 static int
9874 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9875 const address_space *aspace,
9876 CORE_ADDR bp_addr,
9877 const struct target_waitstatus *ws)
9878 {
9879 if (ws->kind != TARGET_WAITKIND_STOPPED
9880 || ws->value.sig != GDB_SIGNAL_TRAP)
9881 return 0;
9882
9883 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9884 bl->length, aspace, bp_addr);
9885 }
9886
9887 /* Implement the "resources_needed" breakpoint_ops method for
9888 ranged breakpoints. */
9889
9890 static int
9891 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9892 {
9893 return target_ranged_break_num_registers ();
9894 }
9895
9896 /* Implement the "print_it" breakpoint_ops method for
9897 ranged breakpoints. */
9898
9899 static enum print_stop_action
9900 print_it_ranged_breakpoint (bpstat bs)
9901 {
9902 struct breakpoint *b = bs->breakpoint_at;
9903 struct bp_location *bl = b->loc;
9904 struct ui_out *uiout = current_uiout;
9905
9906 gdb_assert (b->type == bp_hardware_breakpoint);
9907
9908 /* Ranged breakpoints have only one location. */
9909 gdb_assert (bl && bl->next == NULL);
9910
9911 annotate_breakpoint (b->number);
9912
9913 maybe_print_thread_hit_breakpoint (uiout);
9914
9915 if (b->disposition == disp_del)
9916 uiout->text ("Temporary ranged breakpoint ");
9917 else
9918 uiout->text ("Ranged breakpoint ");
9919 if (uiout->is_mi_like_p ())
9920 {
9921 uiout->field_string ("reason",
9922 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9923 uiout->field_string ("disp", bpdisp_text (b->disposition));
9924 }
9925 uiout->field_signed ("bkptno", b->number);
9926 uiout->text (", ");
9927
9928 return PRINT_SRC_AND_LOC;
9929 }
9930
9931 /* Implement the "print_one" breakpoint_ops method for
9932 ranged breakpoints. */
9933
9934 static void
9935 print_one_ranged_breakpoint (struct breakpoint *b,
9936 struct bp_location **last_loc)
9937 {
9938 struct bp_location *bl = b->loc;
9939 struct value_print_options opts;
9940 struct ui_out *uiout = current_uiout;
9941
9942 /* Ranged breakpoints have only one location. */
9943 gdb_assert (bl && bl->next == NULL);
9944
9945 get_user_print_options (&opts);
9946
9947 if (opts.addressprint)
9948 /* We don't print the address range here, it will be printed later
9949 by print_one_detail_ranged_breakpoint. */
9950 uiout->field_skip ("addr");
9951 annotate_field (5);
9952 print_breakpoint_location (b, bl);
9953 *last_loc = bl;
9954 }
9955
9956 /* Implement the "print_one_detail" breakpoint_ops method for
9957 ranged breakpoints. */
9958
9959 static void
9960 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9961 struct ui_out *uiout)
9962 {
9963 CORE_ADDR address_start, address_end;
9964 struct bp_location *bl = b->loc;
9965 string_file stb;
9966
9967 gdb_assert (bl);
9968
9969 address_start = bl->address;
9970 address_end = address_start + bl->length - 1;
9971
9972 uiout->text ("\taddress range: ");
9973 stb.printf ("[%s, %s]",
9974 print_core_address (bl->gdbarch, address_start),
9975 print_core_address (bl->gdbarch, address_end));
9976 uiout->field_stream ("addr", stb);
9977 uiout->text ("\n");
9978 }
9979
9980 /* Implement the "print_mention" breakpoint_ops method for
9981 ranged breakpoints. */
9982
9983 static void
9984 print_mention_ranged_breakpoint (struct breakpoint *b)
9985 {
9986 struct bp_location *bl = b->loc;
9987 struct ui_out *uiout = current_uiout;
9988
9989 gdb_assert (bl);
9990 gdb_assert (b->type == bp_hardware_breakpoint);
9991
9992 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9993 b->number, paddress (bl->gdbarch, bl->address),
9994 paddress (bl->gdbarch, bl->address + bl->length - 1));
9995 }
9996
9997 /* Implement the "print_recreate" breakpoint_ops method for
9998 ranged breakpoints. */
9999
10000 static void
10001 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10002 {
10003 fprintf_unfiltered (fp, "break-range %s, %s",
10004 event_location_to_string (b->location.get ()),
10005 event_location_to_string (b->location_range_end.get ()));
10006 print_recreate_thread (b, fp);
10007 }
10008
10009 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10010
10011 static struct breakpoint_ops ranged_breakpoint_ops;
10012
10013 /* Find the address where the end of the breakpoint range should be
10014 placed, given the SAL of the end of the range. This is so that if
10015 the user provides a line number, the end of the range is set to the
10016 last instruction of the given line. */
10017
10018 static CORE_ADDR
10019 find_breakpoint_range_end (struct symtab_and_line sal)
10020 {
10021 CORE_ADDR end;
10022
10023 /* If the user provided a PC value, use it. Otherwise,
10024 find the address of the end of the given location. */
10025 if (sal.explicit_pc)
10026 end = sal.pc;
10027 else
10028 {
10029 int ret;
10030 CORE_ADDR start;
10031
10032 ret = find_line_pc_range (sal, &start, &end);
10033 if (!ret)
10034 error (_("Could not find location of the end of the range."));
10035
10036 /* find_line_pc_range returns the start of the next line. */
10037 end--;
10038 }
10039
10040 return end;
10041 }
10042
10043 /* Implement the "break-range" CLI command. */
10044
10045 static void
10046 break_range_command (const char *arg, int from_tty)
10047 {
10048 const char *arg_start;
10049 struct linespec_result canonical_start, canonical_end;
10050 int bp_count, can_use_bp, length;
10051 CORE_ADDR end;
10052 struct breakpoint *b;
10053
10054 /* We don't support software ranged breakpoints. */
10055 if (target_ranged_break_num_registers () < 0)
10056 error (_("This target does not support hardware ranged breakpoints."));
10057
10058 bp_count = hw_breakpoint_used_count ();
10059 bp_count += target_ranged_break_num_registers ();
10060 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10061 bp_count, 0);
10062 if (can_use_bp < 0)
10063 error (_("Hardware breakpoints used exceeds limit."));
10064
10065 arg = skip_spaces (arg);
10066 if (arg == NULL || arg[0] == '\0')
10067 error(_("No address range specified."));
10068
10069 arg_start = arg;
10070 event_location_up start_location = string_to_event_location (&arg,
10071 current_language);
10072 parse_breakpoint_sals (start_location.get (), &canonical_start);
10073
10074 if (arg[0] != ',')
10075 error (_("Too few arguments."));
10076 else if (canonical_start.lsals.empty ())
10077 error (_("Could not find location of the beginning of the range."));
10078
10079 const linespec_sals &lsal_start = canonical_start.lsals[0];
10080
10081 if (canonical_start.lsals.size () > 1
10082 || lsal_start.sals.size () != 1)
10083 error (_("Cannot create a ranged breakpoint with multiple locations."));
10084
10085 const symtab_and_line &sal_start = lsal_start.sals[0];
10086 std::string addr_string_start (arg_start, arg - arg_start);
10087
10088 arg++; /* Skip the comma. */
10089 arg = skip_spaces (arg);
10090
10091 /* Parse the end location. */
10092
10093 arg_start = arg;
10094
10095 /* We call decode_line_full directly here instead of using
10096 parse_breakpoint_sals because we need to specify the start location's
10097 symtab and line as the default symtab and line for the end of the
10098 range. This makes it possible to have ranges like "foo.c:27, +14",
10099 where +14 means 14 lines from the start location. */
10100 event_location_up end_location = string_to_event_location (&arg,
10101 current_language);
10102 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10103 sal_start.symtab, sal_start.line,
10104 &canonical_end, NULL, NULL);
10105
10106 if (canonical_end.lsals.empty ())
10107 error (_("Could not find location of the end of the range."));
10108
10109 const linespec_sals &lsal_end = canonical_end.lsals[0];
10110 if (canonical_end.lsals.size () > 1
10111 || lsal_end.sals.size () != 1)
10112 error (_("Cannot create a ranged breakpoint with multiple locations."));
10113
10114 const symtab_and_line &sal_end = lsal_end.sals[0];
10115
10116 end = find_breakpoint_range_end (sal_end);
10117 if (sal_start.pc > end)
10118 error (_("Invalid address range, end precedes start."));
10119
10120 length = end - sal_start.pc + 1;
10121 if (length < 0)
10122 /* Length overflowed. */
10123 error (_("Address range too large."));
10124 else if (length == 1)
10125 {
10126 /* This range is simple enough to be handled by
10127 the `hbreak' command. */
10128 hbreak_command (&addr_string_start[0], 1);
10129
10130 return;
10131 }
10132
10133 /* Now set up the breakpoint. */
10134 b = set_raw_breakpoint (get_current_arch (), sal_start,
10135 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10136 set_breakpoint_count (breakpoint_count + 1);
10137 b->number = breakpoint_count;
10138 b->disposition = disp_donttouch;
10139 b->location = std::move (start_location);
10140 b->location_range_end = std::move (end_location);
10141 b->loc->length = length;
10142
10143 mention (b);
10144 gdb::observers::breakpoint_created.notify (b);
10145 update_global_location_list (UGLL_MAY_INSERT);
10146 }
10147
10148 /* Return non-zero if EXP is verified as constant. Returned zero
10149 means EXP is variable. Also the constant detection may fail for
10150 some constant expressions and in such case still falsely return
10151 zero. */
10152
10153 static bool
10154 watchpoint_exp_is_const (const struct expression *exp)
10155 {
10156 return exp->op->constant_p ();
10157 }
10158
10159 /* Watchpoint destructor. */
10160
10161 watchpoint::~watchpoint ()
10162 {
10163 xfree (this->exp_string);
10164 xfree (this->exp_string_reparse);
10165 }
10166
10167 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10168
10169 static void
10170 re_set_watchpoint (struct breakpoint *b)
10171 {
10172 struct watchpoint *w = (struct watchpoint *) b;
10173
10174 /* Watchpoint can be either on expression using entirely global
10175 variables, or it can be on local variables.
10176
10177 Watchpoints of the first kind are never auto-deleted, and even
10178 persist across program restarts. Since they can use variables
10179 from shared libraries, we need to reparse expression as libraries
10180 are loaded and unloaded.
10181
10182 Watchpoints on local variables can also change meaning as result
10183 of solib event. For example, if a watchpoint uses both a local
10184 and a global variables in expression, it's a local watchpoint,
10185 but unloading of a shared library will make the expression
10186 invalid. This is not a very common use case, but we still
10187 re-evaluate expression, to avoid surprises to the user.
10188
10189 Note that for local watchpoints, we re-evaluate it only if
10190 watchpoints frame id is still valid. If it's not, it means the
10191 watchpoint is out of scope and will be deleted soon. In fact,
10192 I'm not sure we'll ever be called in this case.
10193
10194 If a local watchpoint's frame id is still valid, then
10195 w->exp_valid_block is likewise valid, and we can safely use it.
10196
10197 Don't do anything about disabled watchpoints, since they will be
10198 reevaluated again when enabled. */
10199 update_watchpoint (w, 1 /* reparse */);
10200 }
10201
10202 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10203
10204 static int
10205 insert_watchpoint (struct bp_location *bl)
10206 {
10207 struct watchpoint *w = (struct watchpoint *) bl->owner;
10208 int length = w->exact ? 1 : bl->length;
10209
10210 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10211 w->cond_exp.get ());
10212 }
10213
10214 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10215
10216 static int
10217 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10218 {
10219 struct watchpoint *w = (struct watchpoint *) bl->owner;
10220 int length = w->exact ? 1 : bl->length;
10221
10222 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10223 w->cond_exp.get ());
10224 }
10225
10226 static int
10227 breakpoint_hit_watchpoint (const struct bp_location *bl,
10228 const address_space *aspace, CORE_ADDR bp_addr,
10229 const struct target_waitstatus *ws)
10230 {
10231 struct breakpoint *b = bl->owner;
10232 struct watchpoint *w = (struct watchpoint *) b;
10233
10234 /* Continuable hardware watchpoints are treated as non-existent if the
10235 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10236 some data address). Otherwise gdb won't stop on a break instruction
10237 in the code (not from a breakpoint) when a hardware watchpoint has
10238 been defined. Also skip watchpoints which we know did not trigger
10239 (did not match the data address). */
10240 if (is_hardware_watchpoint (b)
10241 && w->watchpoint_triggered == watch_triggered_no)
10242 return 0;
10243
10244 return 1;
10245 }
10246
10247 static void
10248 check_status_watchpoint (bpstat bs)
10249 {
10250 gdb_assert (is_watchpoint (bs->breakpoint_at));
10251
10252 bpstat_check_watchpoint (bs);
10253 }
10254
10255 /* Implement the "resources_needed" breakpoint_ops method for
10256 hardware watchpoints. */
10257
10258 static int
10259 resources_needed_watchpoint (const struct bp_location *bl)
10260 {
10261 struct watchpoint *w = (struct watchpoint *) bl->owner;
10262 int length = w->exact? 1 : bl->length;
10263
10264 return target_region_ok_for_hw_watchpoint (bl->address, length);
10265 }
10266
10267 /* Implement the "works_in_software_mode" breakpoint_ops method for
10268 hardware watchpoints. */
10269
10270 static int
10271 works_in_software_mode_watchpoint (const struct breakpoint *b)
10272 {
10273 /* Read and access watchpoints only work with hardware support. */
10274 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10275 }
10276
10277 static enum print_stop_action
10278 print_it_watchpoint (bpstat bs)
10279 {
10280 struct breakpoint *b;
10281 enum print_stop_action result;
10282 struct watchpoint *w;
10283 struct ui_out *uiout = current_uiout;
10284
10285 gdb_assert (bs->bp_location_at != NULL);
10286
10287 b = bs->breakpoint_at;
10288 w = (struct watchpoint *) b;
10289
10290 annotate_watchpoint (b->number);
10291 maybe_print_thread_hit_breakpoint (uiout);
10292
10293 string_file stb;
10294
10295 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10296 switch (b->type)
10297 {
10298 case bp_watchpoint:
10299 case bp_hardware_watchpoint:
10300 if (uiout->is_mi_like_p ())
10301 uiout->field_string
10302 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10303 mention (b);
10304 tuple_emitter.emplace (uiout, "value");
10305 uiout->text ("\nOld value = ");
10306 watchpoint_value_print (bs->old_val.get (), &stb);
10307 uiout->field_stream ("old", stb);
10308 uiout->text ("\nNew value = ");
10309 watchpoint_value_print (w->val.get (), &stb);
10310 uiout->field_stream ("new", stb);
10311 uiout->text ("\n");
10312 /* More than one watchpoint may have been triggered. */
10313 result = PRINT_UNKNOWN;
10314 break;
10315
10316 case bp_read_watchpoint:
10317 if (uiout->is_mi_like_p ())
10318 uiout->field_string
10319 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10320 mention (b);
10321 tuple_emitter.emplace (uiout, "value");
10322 uiout->text ("\nValue = ");
10323 watchpoint_value_print (w->val.get (), &stb);
10324 uiout->field_stream ("value", stb);
10325 uiout->text ("\n");
10326 result = PRINT_UNKNOWN;
10327 break;
10328
10329 case bp_access_watchpoint:
10330 if (bs->old_val != NULL)
10331 {
10332 if (uiout->is_mi_like_p ())
10333 uiout->field_string
10334 ("reason",
10335 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10336 mention (b);
10337 tuple_emitter.emplace (uiout, "value");
10338 uiout->text ("\nOld value = ");
10339 watchpoint_value_print (bs->old_val.get (), &stb);
10340 uiout->field_stream ("old", stb);
10341 uiout->text ("\nNew value = ");
10342 }
10343 else
10344 {
10345 mention (b);
10346 if (uiout->is_mi_like_p ())
10347 uiout->field_string
10348 ("reason",
10349 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10350 tuple_emitter.emplace (uiout, "value");
10351 uiout->text ("\nValue = ");
10352 }
10353 watchpoint_value_print (w->val.get (), &stb);
10354 uiout->field_stream ("new", stb);
10355 uiout->text ("\n");
10356 result = PRINT_UNKNOWN;
10357 break;
10358 default:
10359 result = PRINT_UNKNOWN;
10360 }
10361
10362 return result;
10363 }
10364
10365 /* Implement the "print_mention" breakpoint_ops method for hardware
10366 watchpoints. */
10367
10368 static void
10369 print_mention_watchpoint (struct breakpoint *b)
10370 {
10371 struct watchpoint *w = (struct watchpoint *) b;
10372 struct ui_out *uiout = current_uiout;
10373 const char *tuple_name;
10374
10375 switch (b->type)
10376 {
10377 case bp_watchpoint:
10378 uiout->text ("Watchpoint ");
10379 tuple_name = "wpt";
10380 break;
10381 case bp_hardware_watchpoint:
10382 uiout->text ("Hardware watchpoint ");
10383 tuple_name = "wpt";
10384 break;
10385 case bp_read_watchpoint:
10386 uiout->text ("Hardware read watchpoint ");
10387 tuple_name = "hw-rwpt";
10388 break;
10389 case bp_access_watchpoint:
10390 uiout->text ("Hardware access (read/write) watchpoint ");
10391 tuple_name = "hw-awpt";
10392 break;
10393 default:
10394 internal_error (__FILE__, __LINE__,
10395 _("Invalid hardware watchpoint type."));
10396 }
10397
10398 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10399 uiout->field_signed ("number", b->number);
10400 uiout->text (": ");
10401 uiout->field_string ("exp", w->exp_string);
10402 }
10403
10404 /* Implement the "print_recreate" breakpoint_ops method for
10405 watchpoints. */
10406
10407 static void
10408 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10409 {
10410 struct watchpoint *w = (struct watchpoint *) b;
10411
10412 switch (b->type)
10413 {
10414 case bp_watchpoint:
10415 case bp_hardware_watchpoint:
10416 fprintf_unfiltered (fp, "watch");
10417 break;
10418 case bp_read_watchpoint:
10419 fprintf_unfiltered (fp, "rwatch");
10420 break;
10421 case bp_access_watchpoint:
10422 fprintf_unfiltered (fp, "awatch");
10423 break;
10424 default:
10425 internal_error (__FILE__, __LINE__,
10426 _("Invalid watchpoint type."));
10427 }
10428
10429 fprintf_unfiltered (fp, " %s", w->exp_string);
10430 print_recreate_thread (b, fp);
10431 }
10432
10433 /* Implement the "explains_signal" breakpoint_ops method for
10434 watchpoints. */
10435
10436 static int
10437 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10438 {
10439 /* A software watchpoint cannot cause a signal other than
10440 GDB_SIGNAL_TRAP. */
10441 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10442 return 0;
10443
10444 return 1;
10445 }
10446
10447 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10448
10449 static struct breakpoint_ops watchpoint_breakpoint_ops;
10450
10451 /* Implement the "insert" breakpoint_ops method for
10452 masked hardware watchpoints. */
10453
10454 static int
10455 insert_masked_watchpoint (struct bp_location *bl)
10456 {
10457 struct watchpoint *w = (struct watchpoint *) bl->owner;
10458
10459 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10460 bl->watchpoint_type);
10461 }
10462
10463 /* Implement the "remove" breakpoint_ops method for
10464 masked hardware watchpoints. */
10465
10466 static int
10467 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10468 {
10469 struct watchpoint *w = (struct watchpoint *) bl->owner;
10470
10471 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10472 bl->watchpoint_type);
10473 }
10474
10475 /* Implement the "resources_needed" breakpoint_ops method for
10476 masked hardware watchpoints. */
10477
10478 static int
10479 resources_needed_masked_watchpoint (const struct bp_location *bl)
10480 {
10481 struct watchpoint *w = (struct watchpoint *) bl->owner;
10482
10483 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10484 }
10485
10486 /* Implement the "works_in_software_mode" breakpoint_ops method for
10487 masked hardware watchpoints. */
10488
10489 static int
10490 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10491 {
10492 return 0;
10493 }
10494
10495 /* Implement the "print_it" breakpoint_ops method for
10496 masked hardware watchpoints. */
10497
10498 static enum print_stop_action
10499 print_it_masked_watchpoint (bpstat bs)
10500 {
10501 struct breakpoint *b = bs->breakpoint_at;
10502 struct ui_out *uiout = current_uiout;
10503
10504 /* Masked watchpoints have only one location. */
10505 gdb_assert (b->loc && b->loc->next == NULL);
10506
10507 annotate_watchpoint (b->number);
10508 maybe_print_thread_hit_breakpoint (uiout);
10509
10510 switch (b->type)
10511 {
10512 case bp_hardware_watchpoint:
10513 if (uiout->is_mi_like_p ())
10514 uiout->field_string
10515 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10516 break;
10517
10518 case bp_read_watchpoint:
10519 if (uiout->is_mi_like_p ())
10520 uiout->field_string
10521 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10522 break;
10523
10524 case bp_access_watchpoint:
10525 if (uiout->is_mi_like_p ())
10526 uiout->field_string
10527 ("reason",
10528 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10529 break;
10530 default:
10531 internal_error (__FILE__, __LINE__,
10532 _("Invalid hardware watchpoint type."));
10533 }
10534
10535 mention (b);
10536 uiout->text (_("\n\
10537 Check the underlying instruction at PC for the memory\n\
10538 address and value which triggered this watchpoint.\n"));
10539 uiout->text ("\n");
10540
10541 /* More than one watchpoint may have been triggered. */
10542 return PRINT_UNKNOWN;
10543 }
10544
10545 /* Implement the "print_one_detail" breakpoint_ops method for
10546 masked hardware watchpoints. */
10547
10548 static void
10549 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10550 struct ui_out *uiout)
10551 {
10552 struct watchpoint *w = (struct watchpoint *) b;
10553
10554 /* Masked watchpoints have only one location. */
10555 gdb_assert (b->loc && b->loc->next == NULL);
10556
10557 uiout->text ("\tmask ");
10558 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10559 uiout->text ("\n");
10560 }
10561
10562 /* Implement the "print_mention" breakpoint_ops method for
10563 masked hardware watchpoints. */
10564
10565 static void
10566 print_mention_masked_watchpoint (struct breakpoint *b)
10567 {
10568 struct watchpoint *w = (struct watchpoint *) b;
10569 struct ui_out *uiout = current_uiout;
10570 const char *tuple_name;
10571
10572 switch (b->type)
10573 {
10574 case bp_hardware_watchpoint:
10575 uiout->text ("Masked hardware watchpoint ");
10576 tuple_name = "wpt";
10577 break;
10578 case bp_read_watchpoint:
10579 uiout->text ("Masked hardware read watchpoint ");
10580 tuple_name = "hw-rwpt";
10581 break;
10582 case bp_access_watchpoint:
10583 uiout->text ("Masked hardware access (read/write) watchpoint ");
10584 tuple_name = "hw-awpt";
10585 break;
10586 default:
10587 internal_error (__FILE__, __LINE__,
10588 _("Invalid hardware watchpoint type."));
10589 }
10590
10591 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10592 uiout->field_signed ("number", b->number);
10593 uiout->text (": ");
10594 uiout->field_string ("exp", w->exp_string);
10595 }
10596
10597 /* Implement the "print_recreate" breakpoint_ops method for
10598 masked hardware watchpoints. */
10599
10600 static void
10601 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10602 {
10603 struct watchpoint *w = (struct watchpoint *) b;
10604
10605 switch (b->type)
10606 {
10607 case bp_hardware_watchpoint:
10608 fprintf_unfiltered (fp, "watch");
10609 break;
10610 case bp_read_watchpoint:
10611 fprintf_unfiltered (fp, "rwatch");
10612 break;
10613 case bp_access_watchpoint:
10614 fprintf_unfiltered (fp, "awatch");
10615 break;
10616 default:
10617 internal_error (__FILE__, __LINE__,
10618 _("Invalid hardware watchpoint type."));
10619 }
10620
10621 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string,
10622 phex (w->hw_wp_mask, sizeof (CORE_ADDR)));
10623 print_recreate_thread (b, fp);
10624 }
10625
10626 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10627
10628 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10629
10630 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10631
10632 static bool
10633 is_masked_watchpoint (const struct breakpoint *b)
10634 {
10635 return b->ops == &masked_watchpoint_breakpoint_ops;
10636 }
10637
10638 /* accessflag: hw_write: watch write,
10639 hw_read: watch read,
10640 hw_access: watch access (read or write) */
10641 static void
10642 watch_command_1 (const char *arg, int accessflag, int from_tty,
10643 bool just_location, bool internal)
10644 {
10645 struct breakpoint *scope_breakpoint = NULL;
10646 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10647 struct value *result;
10648 int saved_bitpos = 0, saved_bitsize = 0;
10649 const char *exp_start = NULL;
10650 const char *exp_end = NULL;
10651 const char *tok, *end_tok;
10652 int toklen = -1;
10653 const char *cond_start = NULL;
10654 const char *cond_end = NULL;
10655 enum bptype bp_type;
10656 int thread = -1;
10657 /* Flag to indicate whether we are going to use masks for
10658 the hardware watchpoint. */
10659 bool use_mask = false;
10660 CORE_ADDR mask = 0;
10661
10662 /* Make sure that we actually have parameters to parse. */
10663 if (arg != NULL && arg[0] != '\0')
10664 {
10665 const char *value_start;
10666
10667 exp_end = arg + strlen (arg);
10668
10669 /* Look for "parameter value" pairs at the end
10670 of the arguments string. */
10671 for (tok = exp_end - 1; tok > arg; tok--)
10672 {
10673 /* Skip whitespace at the end of the argument list. */
10674 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10675 tok--;
10676
10677 /* Find the beginning of the last token.
10678 This is the value of the parameter. */
10679 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10680 tok--;
10681 value_start = tok + 1;
10682
10683 /* Skip whitespace. */
10684 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10685 tok--;
10686
10687 end_tok = tok;
10688
10689 /* Find the beginning of the second to last token.
10690 This is the parameter itself. */
10691 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10692 tok--;
10693 tok++;
10694 toklen = end_tok - tok + 1;
10695
10696 if (toklen == 6 && startswith (tok, "thread"))
10697 {
10698 struct thread_info *thr;
10699 /* At this point we've found a "thread" token, which means
10700 the user is trying to set a watchpoint that triggers
10701 only in a specific thread. */
10702 const char *endp;
10703
10704 if (thread != -1)
10705 error(_("You can specify only one thread."));
10706
10707 /* Extract the thread ID from the next token. */
10708 thr = parse_thread_id (value_start, &endp);
10709
10710 /* Check if the user provided a valid thread ID. */
10711 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10712 invalid_thread_id_error (value_start);
10713
10714 thread = thr->global_num;
10715 }
10716 else if (toklen == 4 && startswith (tok, "mask"))
10717 {
10718 /* We've found a "mask" token, which means the user wants to
10719 create a hardware watchpoint that is going to have the mask
10720 facility. */
10721 struct value *mask_value, *mark;
10722
10723 if (use_mask)
10724 error(_("You can specify only one mask."));
10725
10726 use_mask = just_location = true;
10727
10728 mark = value_mark ();
10729 mask_value = parse_to_comma_and_eval (&value_start);
10730 mask = value_as_address (mask_value);
10731 value_free_to_mark (mark);
10732 }
10733 else
10734 /* We didn't recognize what we found. We should stop here. */
10735 break;
10736
10737 /* Truncate the string and get rid of the "parameter value" pair before
10738 the arguments string is parsed by the parse_exp_1 function. */
10739 exp_end = tok;
10740 }
10741 }
10742 else
10743 exp_end = arg;
10744
10745 /* Parse the rest of the arguments. From here on out, everything
10746 is in terms of a newly allocated string instead of the original
10747 ARG. */
10748 std::string expression (arg, exp_end - arg);
10749 exp_start = arg = expression.c_str ();
10750 innermost_block_tracker tracker;
10751 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10752 exp_end = arg;
10753 /* Remove trailing whitespace from the expression before saving it.
10754 This makes the eventual display of the expression string a bit
10755 prettier. */
10756 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10757 --exp_end;
10758
10759 /* Checking if the expression is not constant. */
10760 if (watchpoint_exp_is_const (exp.get ()))
10761 {
10762 int len;
10763
10764 len = exp_end - exp_start;
10765 while (len > 0 && isspace (exp_start[len - 1]))
10766 len--;
10767 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10768 }
10769
10770 exp_valid_block = tracker.block ();
10771 struct value *mark = value_mark ();
10772 struct value *val_as_value = nullptr;
10773 fetch_subexp_value (exp.get (), exp->op.get (), &val_as_value, &result, NULL,
10774 just_location);
10775
10776 if (val_as_value != NULL && just_location)
10777 {
10778 saved_bitpos = value_bitpos (val_as_value);
10779 saved_bitsize = value_bitsize (val_as_value);
10780 }
10781
10782 value_ref_ptr val;
10783 if (just_location)
10784 {
10785 int ret;
10786
10787 exp_valid_block = NULL;
10788 val = release_value (value_addr (result));
10789 value_free_to_mark (mark);
10790
10791 if (use_mask)
10792 {
10793 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10794 mask);
10795 if (ret == -1)
10796 error (_("This target does not support masked watchpoints."));
10797 else if (ret == -2)
10798 error (_("Invalid mask or memory region."));
10799 }
10800 }
10801 else if (val_as_value != NULL)
10802 val = release_value (val_as_value);
10803
10804 tok = skip_spaces (arg);
10805 end_tok = skip_to_space (tok);
10806
10807 toklen = end_tok - tok;
10808 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10809 {
10810 tok = cond_start = end_tok + 1;
10811 innermost_block_tracker if_tracker;
10812 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10813
10814 /* The watchpoint expression may not be local, but the condition
10815 may still be. E.g.: `watch global if local > 0'. */
10816 cond_exp_valid_block = if_tracker.block ();
10817
10818 cond_end = tok;
10819 }
10820 if (*tok)
10821 error (_("Junk at end of command."));
10822
10823 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10824
10825 /* Save this because create_internal_breakpoint below invalidates
10826 'wp_frame'. */
10827 frame_id watchpoint_frame = get_frame_id (wp_frame);
10828
10829 /* If the expression is "local", then set up a "watchpoint scope"
10830 breakpoint at the point where we've left the scope of the watchpoint
10831 expression. Create the scope breakpoint before the watchpoint, so
10832 that we will encounter it first in bpstat_stop_status. */
10833 if (exp_valid_block != NULL && wp_frame != NULL)
10834 {
10835 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10836
10837 if (frame_id_p (caller_frame_id))
10838 {
10839 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10840 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10841
10842 scope_breakpoint
10843 = create_internal_breakpoint (caller_arch, caller_pc,
10844 bp_watchpoint_scope,
10845 &momentary_breakpoint_ops);
10846
10847 /* create_internal_breakpoint could invalidate WP_FRAME. */
10848 wp_frame = NULL;
10849
10850 scope_breakpoint->enable_state = bp_enabled;
10851
10852 /* Automatically delete the breakpoint when it hits. */
10853 scope_breakpoint->disposition = disp_del;
10854
10855 /* Only break in the proper frame (help with recursion). */
10856 scope_breakpoint->frame_id = caller_frame_id;
10857
10858 /* Set the address at which we will stop. */
10859 scope_breakpoint->loc->gdbarch = caller_arch;
10860 scope_breakpoint->loc->requested_address = caller_pc;
10861 scope_breakpoint->loc->address
10862 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10863 scope_breakpoint->loc->requested_address,
10864 scope_breakpoint->type);
10865 }
10866 }
10867
10868 /* Now set up the breakpoint. We create all watchpoints as hardware
10869 watchpoints here even if hardware watchpoints are turned off, a call
10870 to update_watchpoint later in this function will cause the type to
10871 drop back to bp_watchpoint (software watchpoint) if required. */
10872
10873 if (accessflag == hw_read)
10874 bp_type = bp_read_watchpoint;
10875 else if (accessflag == hw_access)
10876 bp_type = bp_access_watchpoint;
10877 else
10878 bp_type = bp_hardware_watchpoint;
10879
10880 std::unique_ptr<watchpoint> w (new watchpoint ());
10881
10882 if (use_mask)
10883 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10884 &masked_watchpoint_breakpoint_ops);
10885 else
10886 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10887 &watchpoint_breakpoint_ops);
10888 w->thread = thread;
10889 w->disposition = disp_donttouch;
10890 w->pspace = current_program_space;
10891 w->exp = std::move (exp);
10892 w->exp_valid_block = exp_valid_block;
10893 w->cond_exp_valid_block = cond_exp_valid_block;
10894 if (just_location)
10895 {
10896 struct type *t = value_type (val.get ());
10897 CORE_ADDR addr = value_as_address (val.get ());
10898
10899 w->exp_string_reparse
10900 = current_language->watch_location_expression (t, addr).release ();
10901
10902 w->exp_string = xstrprintf ("-location %.*s",
10903 (int) (exp_end - exp_start), exp_start);
10904 }
10905 else
10906 w->exp_string = savestring (exp_start, exp_end - exp_start);
10907
10908 if (use_mask)
10909 {
10910 w->hw_wp_mask = mask;
10911 }
10912 else
10913 {
10914 w->val = val;
10915 w->val_bitpos = saved_bitpos;
10916 w->val_bitsize = saved_bitsize;
10917 w->val_valid = true;
10918 }
10919
10920 if (cond_start)
10921 w->cond_string = savestring (cond_start, cond_end - cond_start);
10922 else
10923 w->cond_string = 0;
10924
10925 if (frame_id_p (watchpoint_frame))
10926 {
10927 w->watchpoint_frame = watchpoint_frame;
10928 w->watchpoint_thread = inferior_ptid;
10929 }
10930 else
10931 {
10932 w->watchpoint_frame = null_frame_id;
10933 w->watchpoint_thread = null_ptid;
10934 }
10935
10936 if (scope_breakpoint != NULL)
10937 {
10938 /* The scope breakpoint is related to the watchpoint. We will
10939 need to act on them together. */
10940 w->related_breakpoint = scope_breakpoint;
10941 scope_breakpoint->related_breakpoint = w.get ();
10942 }
10943
10944 if (!just_location)
10945 value_free_to_mark (mark);
10946
10947 /* Finally update the new watchpoint. This creates the locations
10948 that should be inserted. */
10949 update_watchpoint (w.get (), 1);
10950
10951 install_breakpoint (internal, std::move (w), 1);
10952 }
10953
10954 /* Return count of debug registers needed to watch the given expression.
10955 If the watchpoint cannot be handled in hardware return zero. */
10956
10957 static int
10958 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10959 {
10960 int found_memory_cnt = 0;
10961
10962 /* Did the user specifically forbid us to use hardware watchpoints? */
10963 if (!can_use_hw_watchpoints)
10964 return 0;
10965
10966 gdb_assert (!vals.empty ());
10967 struct value *head = vals[0].get ();
10968
10969 /* Make sure that the value of the expression depends only upon
10970 memory contents, and values computed from them within GDB. If we
10971 find any register references or function calls, we can't use a
10972 hardware watchpoint.
10973
10974 The idea here is that evaluating an expression generates a series
10975 of values, one holding the value of every subexpression. (The
10976 expression a*b+c has five subexpressions: a, b, a*b, c, and
10977 a*b+c.) GDB's values hold almost enough information to establish
10978 the criteria given above --- they identify memory lvalues,
10979 register lvalues, computed values, etcetera. So we can evaluate
10980 the expression, and then scan the chain of values that leaves
10981 behind to decide whether we can detect any possible change to the
10982 expression's final value using only hardware watchpoints.
10983
10984 However, I don't think that the values returned by inferior
10985 function calls are special in any way. So this function may not
10986 notice that an expression involving an inferior function call
10987 can't be watched with hardware watchpoints. FIXME. */
10988 for (const value_ref_ptr &iter : vals)
10989 {
10990 struct value *v = iter.get ();
10991
10992 if (VALUE_LVAL (v) == lval_memory)
10993 {
10994 if (v != head && value_lazy (v))
10995 /* A lazy memory lvalue in the chain is one that GDB never
10996 needed to fetch; we either just used its address (e.g.,
10997 `a' in `a.b') or we never needed it at all (e.g., `a'
10998 in `a,b'). This doesn't apply to HEAD; if that is
10999 lazy then it was not readable, but watch it anyway. */
11000 ;
11001 else
11002 {
11003 /* Ahh, memory we actually used! Check if we can cover
11004 it with hardware watchpoints. */
11005 struct type *vtype = check_typedef (value_type (v));
11006
11007 /* We only watch structs and arrays if user asked for it
11008 explicitly, never if they just happen to appear in a
11009 middle of some value chain. */
11010 if (v == head
11011 || (vtype->code () != TYPE_CODE_STRUCT
11012 && vtype->code () != TYPE_CODE_ARRAY))
11013 {
11014 CORE_ADDR vaddr = value_address (v);
11015 int len;
11016 int num_regs;
11017
11018 len = (target_exact_watchpoints
11019 && is_scalar_type_recursive (vtype))?
11020 1 : TYPE_LENGTH (value_type (v));
11021
11022 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11023 if (!num_regs)
11024 return 0;
11025 else
11026 found_memory_cnt += num_regs;
11027 }
11028 }
11029 }
11030 else if (VALUE_LVAL (v) != not_lval
11031 && deprecated_value_modifiable (v) == 0)
11032 return 0; /* These are values from the history (e.g., $1). */
11033 else if (VALUE_LVAL (v) == lval_register)
11034 return 0; /* Cannot watch a register with a HW watchpoint. */
11035 }
11036
11037 /* The expression itself looks suitable for using a hardware
11038 watchpoint, but give the target machine a chance to reject it. */
11039 return found_memory_cnt;
11040 }
11041
11042 void
11043 watch_command_wrapper (const char *arg, int from_tty, bool internal)
11044 {
11045 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11046 }
11047
11048 /* Options for the watch, awatch, and rwatch commands. */
11049
11050 struct watch_options
11051 {
11052 /* For -location. */
11053 bool location = false;
11054 };
11055
11056 /* Definitions of options for the "watch", "awatch", and "rwatch" commands.
11057
11058 Historically GDB always accepted both '-location' and '-l' flags for
11059 these commands (both flags being synonyms). When converting to the
11060 newer option scheme only '-location' is added here. That's fine (for
11061 backward compatibility) as any non-ambiguous prefix of a flag will be
11062 accepted, so '-l', '-loc', are now all accepted.
11063
11064 What this means is that, if in the future, we add any new flag here
11065 that starts with '-l' then this will break backward compatibility, so
11066 please, don't do that! */
11067
11068 static const gdb::option::option_def watch_option_defs[] = {
11069 gdb::option::flag_option_def<watch_options> {
11070 "location",
11071 [] (watch_options *opt) { return &opt->location; },
11072 N_("\
11073 This evaluates EXPRESSION and watches the memory to which is refers.\n\
11074 -l can be used as a short form of -location."),
11075 },
11076 };
11077
11078 /* Returns the option group used by 'watch', 'awatch', and 'rwatch'
11079 commands. */
11080
11081 static gdb::option::option_def_group
11082 make_watch_options_def_group (watch_options *opts)
11083 {
11084 return {{watch_option_defs}, opts};
11085 }
11086
11087 /* A helper function that looks for the "-location" argument and then
11088 calls watch_command_1. */
11089
11090 static void
11091 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
11092 {
11093 watch_options opts;
11094 auto grp = make_watch_options_def_group (&opts);
11095 gdb::option::process_options
11096 (&arg, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
11097 if (arg != nullptr && *arg == '\0')
11098 arg = nullptr;
11099
11100 watch_command_1 (arg, accessflag, from_tty, opts.location, false);
11101 }
11102
11103 /* Command completion for 'watch', 'awatch', and 'rwatch' commands. */
11104 static void
11105 watch_command_completer (struct cmd_list_element *ignore,
11106 completion_tracker &tracker,
11107 const char *text, const char * /*word*/)
11108 {
11109 const auto group = make_watch_options_def_group (nullptr);
11110 if (gdb::option::complete_options
11111 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
11112 return;
11113
11114 const char *word = advance_to_expression_complete_word_point (tracker, text);
11115 expression_completer (ignore, tracker, text, word);
11116 }
11117
11118 static void
11119 watch_command (const char *arg, int from_tty)
11120 {
11121 watch_maybe_just_location (arg, hw_write, from_tty);
11122 }
11123
11124 void
11125 rwatch_command_wrapper (const char *arg, int from_tty, bool internal)
11126 {
11127 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11128 }
11129
11130 static void
11131 rwatch_command (const char *arg, int from_tty)
11132 {
11133 watch_maybe_just_location (arg, hw_read, from_tty);
11134 }
11135
11136 void
11137 awatch_command_wrapper (const char *arg, int from_tty, bool internal)
11138 {
11139 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11140 }
11141
11142 static void
11143 awatch_command (const char *arg, int from_tty)
11144 {
11145 watch_maybe_just_location (arg, hw_access, from_tty);
11146 }
11147 \f
11148
11149 /* Data for the FSM that manages the until(location)/advance commands
11150 in infcmd.c. Here because it uses the mechanisms of
11151 breakpoints. */
11152
11153 struct until_break_fsm : public thread_fsm
11154 {
11155 /* The thread that was current when the command was executed. */
11156 int thread;
11157
11158 /* The breakpoint set at the return address in the caller frame,
11159 plus breakpoints at all the destination locations. */
11160 std::vector<breakpoint_up> breakpoints;
11161
11162 until_break_fsm (struct interp *cmd_interp, int thread,
11163 std::vector<breakpoint_up> &&breakpoints)
11164 : thread_fsm (cmd_interp),
11165 thread (thread),
11166 breakpoints (std::move (breakpoints))
11167 {
11168 }
11169
11170 void clean_up (struct thread_info *thread) override;
11171 bool should_stop (struct thread_info *thread) override;
11172 enum async_reply_reason do_async_reply_reason () override;
11173 };
11174
11175 /* Implementation of the 'should_stop' FSM method for the
11176 until(location)/advance commands. */
11177
11178 bool
11179 until_break_fsm::should_stop (struct thread_info *tp)
11180 {
11181 for (const breakpoint_up &bp : breakpoints)
11182 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11183 bp.get ()) != NULL)
11184 {
11185 set_finished ();
11186 break;
11187 }
11188
11189 return true;
11190 }
11191
11192 /* Implementation of the 'clean_up' FSM method for the
11193 until(location)/advance commands. */
11194
11195 void
11196 until_break_fsm::clean_up (struct thread_info *)
11197 {
11198 /* Clean up our temporary breakpoints. */
11199 breakpoints.clear ();
11200 delete_longjmp_breakpoint (thread);
11201 }
11202
11203 /* Implementation of the 'async_reply_reason' FSM method for the
11204 until(location)/advance commands. */
11205
11206 enum async_reply_reason
11207 until_break_fsm::do_async_reply_reason ()
11208 {
11209 return EXEC_ASYNC_LOCATION_REACHED;
11210 }
11211
11212 void
11213 until_break_command (const char *arg, int from_tty, int anywhere)
11214 {
11215 struct frame_info *frame;
11216 struct gdbarch *frame_gdbarch;
11217 struct frame_id stack_frame_id;
11218 struct frame_id caller_frame_id;
11219 int thread;
11220 struct thread_info *tp;
11221
11222 clear_proceed_status (0);
11223
11224 /* Set a breakpoint where the user wants it and at return from
11225 this function. */
11226
11227 event_location_up location = string_to_event_location (&arg, current_language);
11228
11229 std::vector<symtab_and_line> sals
11230 = (last_displayed_sal_is_valid ()
11231 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11232 get_last_displayed_symtab (),
11233 get_last_displayed_line ())
11234 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11235 NULL, NULL, 0));
11236
11237 if (sals.empty ())
11238 error (_("Couldn't get information on specified line."));
11239
11240 if (*arg)
11241 error (_("Junk at end of arguments."));
11242
11243 tp = inferior_thread ();
11244 thread = tp->global_num;
11245
11246 /* Note linespec handling above invalidates the frame chain.
11247 Installing a breakpoint also invalidates the frame chain (as it
11248 may need to switch threads), so do any frame handling before
11249 that. */
11250
11251 frame = get_selected_frame (NULL);
11252 frame_gdbarch = get_frame_arch (frame);
11253 stack_frame_id = get_stack_frame_id (frame);
11254 caller_frame_id = frame_unwind_caller_id (frame);
11255
11256 /* Keep within the current frame, or in frames called by the current
11257 one. */
11258
11259 std::vector<breakpoint_up> breakpoints;
11260
11261 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11262
11263 if (frame_id_p (caller_frame_id))
11264 {
11265 struct symtab_and_line sal2;
11266 struct gdbarch *caller_gdbarch;
11267
11268 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11269 sal2.pc = frame_unwind_caller_pc (frame);
11270 caller_gdbarch = frame_unwind_caller_arch (frame);
11271
11272 breakpoint_up caller_breakpoint
11273 = set_momentary_breakpoint (caller_gdbarch, sal2,
11274 caller_frame_id, bp_until);
11275 breakpoints.emplace_back (std::move (caller_breakpoint));
11276
11277 set_longjmp_breakpoint (tp, caller_frame_id);
11278 lj_deleter.emplace (thread);
11279 }
11280
11281 /* set_momentary_breakpoint could invalidate FRAME. */
11282 frame = NULL;
11283
11284 /* If the user told us to continue until a specified location, we
11285 don't specify a frame at which we need to stop. Otherwise,
11286 specify the selected frame, because we want to stop only at the
11287 very same frame. */
11288 frame_id stop_frame_id = anywhere ? null_frame_id : stack_frame_id;
11289
11290 for (symtab_and_line &sal : sals)
11291 {
11292 resolve_sal_pc (&sal);
11293
11294 breakpoint_up location_breakpoint
11295 = set_momentary_breakpoint (frame_gdbarch, sal,
11296 stop_frame_id, bp_until);
11297 breakpoints.emplace_back (std::move (location_breakpoint));
11298 }
11299
11300 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11301 std::move (breakpoints));
11302
11303 if (lj_deleter)
11304 lj_deleter->release ();
11305
11306 proceed (-1, GDB_SIGNAL_DEFAULT);
11307 }
11308
11309 /* This function attempts to parse an optional "if <cond>" clause
11310 from the arg string. If one is not found, it returns NULL.
11311
11312 Else, it returns a pointer to the condition string. (It does not
11313 attempt to evaluate the string against a particular block.) And,
11314 it updates arg to point to the first character following the parsed
11315 if clause in the arg string. */
11316
11317 const char *
11318 ep_parse_optional_if_clause (const char **arg)
11319 {
11320 const char *cond_string;
11321
11322 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11323 return NULL;
11324
11325 /* Skip the "if" keyword. */
11326 (*arg) += 2;
11327
11328 /* Skip any extra leading whitespace, and record the start of the
11329 condition string. */
11330 *arg = skip_spaces (*arg);
11331 cond_string = *arg;
11332
11333 /* Assume that the condition occupies the remainder of the arg
11334 string. */
11335 (*arg) += strlen (cond_string);
11336
11337 return cond_string;
11338 }
11339
11340 /* Commands to deal with catching events, such as signals, exceptions,
11341 process start/exit, etc. */
11342
11343 typedef enum
11344 {
11345 catch_fork_temporary, catch_vfork_temporary,
11346 catch_fork_permanent, catch_vfork_permanent
11347 }
11348 catch_fork_kind;
11349
11350 static void
11351 catch_fork_command_1 (const char *arg, int from_tty,
11352 struct cmd_list_element *command)
11353 {
11354 struct gdbarch *gdbarch = get_current_arch ();
11355 const char *cond_string = NULL;
11356 catch_fork_kind fork_kind;
11357
11358 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11359 bool temp = (fork_kind == catch_fork_temporary
11360 || fork_kind == catch_vfork_temporary);
11361
11362 if (!arg)
11363 arg = "";
11364 arg = skip_spaces (arg);
11365
11366 /* The allowed syntax is:
11367 catch [v]fork
11368 catch [v]fork if <cond>
11369
11370 First, check if there's an if clause. */
11371 cond_string = ep_parse_optional_if_clause (&arg);
11372
11373 if ((*arg != '\0') && !isspace (*arg))
11374 error (_("Junk at end of arguments."));
11375
11376 /* If this target supports it, create a fork or vfork catchpoint
11377 and enable reporting of such events. */
11378 switch (fork_kind)
11379 {
11380 case catch_fork_temporary:
11381 case catch_fork_permanent:
11382 create_fork_vfork_event_catchpoint (gdbarch, temp, cond_string,
11383 &catch_fork_breakpoint_ops);
11384 break;
11385 case catch_vfork_temporary:
11386 case catch_vfork_permanent:
11387 create_fork_vfork_event_catchpoint (gdbarch, temp, cond_string,
11388 &catch_vfork_breakpoint_ops);
11389 break;
11390 default:
11391 error (_("unsupported or unknown fork kind; cannot catch it"));
11392 break;
11393 }
11394 }
11395
11396 static void
11397 catch_exec_command_1 (const char *arg, int from_tty,
11398 struct cmd_list_element *command)
11399 {
11400 struct gdbarch *gdbarch = get_current_arch ();
11401 const char *cond_string = NULL;
11402 bool temp = get_cmd_context (command) == CATCH_TEMPORARY;
11403
11404 if (!arg)
11405 arg = "";
11406 arg = skip_spaces (arg);
11407
11408 /* The allowed syntax is:
11409 catch exec
11410 catch exec if <cond>
11411
11412 First, check if there's an if clause. */
11413 cond_string = ep_parse_optional_if_clause (&arg);
11414
11415 if ((*arg != '\0') && !isspace (*arg))
11416 error (_("Junk at end of arguments."));
11417
11418 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11419 init_catchpoint (c.get (), gdbarch, temp, cond_string,
11420 &catch_exec_breakpoint_ops);
11421 c->exec_pathname = NULL;
11422
11423 install_breakpoint (0, std::move (c), 1);
11424 }
11425
11426 void
11427 init_ada_exception_breakpoint (struct breakpoint *b,
11428 struct gdbarch *gdbarch,
11429 struct symtab_and_line sal,
11430 const char *addr_string,
11431 const struct breakpoint_ops *ops,
11432 int tempflag,
11433 int enabled,
11434 int from_tty)
11435 {
11436 if (from_tty)
11437 {
11438 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11439 if (!loc_gdbarch)
11440 loc_gdbarch = gdbarch;
11441
11442 describe_other_breakpoints (loc_gdbarch,
11443 sal.pspace, sal.pc, sal.section, -1);
11444 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11445 version for exception catchpoints, because two catchpoints
11446 used for different exception names will use the same address.
11447 In this case, a "breakpoint ... also set at..." warning is
11448 unproductive. Besides, the warning phrasing is also a bit
11449 inappropriate, we should use the word catchpoint, and tell
11450 the user what type of catchpoint it is. The above is good
11451 enough for now, though. */
11452 }
11453
11454 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
11455
11456 b->enable_state = enabled ? bp_enabled : bp_disabled;
11457 b->disposition = tempflag ? disp_del : disp_donttouch;
11458 b->location = string_to_event_location (&addr_string,
11459 language_def (language_ada));
11460 b->language = language_ada;
11461 }
11462
11463 \f
11464
11465 /* Compare two breakpoints and return a strcmp-like result. */
11466
11467 static int
11468 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11469 {
11470 uintptr_t ua = (uintptr_t) a;
11471 uintptr_t ub = (uintptr_t) b;
11472
11473 if (a->number < b->number)
11474 return -1;
11475 else if (a->number > b->number)
11476 return 1;
11477
11478 /* Now sort by address, in case we see, e..g, two breakpoints with
11479 the number 0. */
11480 if (ua < ub)
11481 return -1;
11482 return ua > ub ? 1 : 0;
11483 }
11484
11485 /* Delete breakpoints by address or line. */
11486
11487 static void
11488 clear_command (const char *arg, int from_tty)
11489 {
11490 struct breakpoint *b;
11491 int default_match;
11492
11493 std::vector<symtab_and_line> decoded_sals;
11494 symtab_and_line last_sal;
11495 gdb::array_view<symtab_and_line> sals;
11496 if (arg)
11497 {
11498 decoded_sals
11499 = decode_line_with_current_source (arg,
11500 (DECODE_LINE_FUNFIRSTLINE
11501 | DECODE_LINE_LIST_MODE));
11502 default_match = 0;
11503 sals = decoded_sals;
11504 }
11505 else
11506 {
11507 /* Set sal's line, symtab, pc, and pspace to the values
11508 corresponding to the last call to print_frame_info. If the
11509 codepoint is not valid, this will set all the fields to 0. */
11510 last_sal = get_last_displayed_sal ();
11511 if (last_sal.symtab == 0)
11512 error (_("No source file specified."));
11513
11514 default_match = 1;
11515 sals = last_sal;
11516 }
11517
11518 /* We don't call resolve_sal_pc here. That's not as bad as it
11519 seems, because all existing breakpoints typically have both
11520 file/line and pc set. So, if clear is given file/line, we can
11521 match this to existing breakpoint without obtaining pc at all.
11522
11523 We only support clearing given the address explicitly
11524 present in breakpoint table. Say, we've set breakpoint
11525 at file:line. There were several PC values for that file:line,
11526 due to optimization, all in one block.
11527
11528 We've picked one PC value. If "clear" is issued with another
11529 PC corresponding to the same file:line, the breakpoint won't
11530 be cleared. We probably can still clear the breakpoint, but
11531 since the other PC value is never presented to user, user
11532 can only find it by guessing, and it does not seem important
11533 to support that. */
11534
11535 /* For each line spec given, delete bps which correspond to it. Do
11536 it in two passes, solely to preserve the current behavior that
11537 from_tty is forced true if we delete more than one
11538 breakpoint. */
11539
11540 std::vector<struct breakpoint *> found;
11541 for (const auto &sal : sals)
11542 {
11543 const char *sal_fullname;
11544
11545 /* If exact pc given, clear bpts at that pc.
11546 If line given (pc == 0), clear all bpts on specified line.
11547 If defaulting, clear all bpts on default line
11548 or at default pc.
11549
11550 defaulting sal.pc != 0 tests to do
11551
11552 0 1 pc
11553 1 1 pc _and_ line
11554 0 0 line
11555 1 0 <can't happen> */
11556
11557 sal_fullname = (sal.symtab == NULL
11558 ? NULL : symtab_to_fullname (sal.symtab));
11559
11560 /* Find all matching breakpoints and add them to 'found'. */
11561 ALL_BREAKPOINTS (b)
11562 {
11563 int match = 0;
11564 /* Are we going to delete b? */
11565 if (b->type != bp_none && !is_watchpoint (b))
11566 {
11567 struct bp_location *loc = b->loc;
11568 for (; loc; loc = loc->next)
11569 {
11570 /* If the user specified file:line, don't allow a PC
11571 match. This matches historical gdb behavior. */
11572 int pc_match = (!sal.explicit_line
11573 && sal.pc
11574 && (loc->pspace == sal.pspace)
11575 && (loc->address == sal.pc)
11576 && (!section_is_overlay (loc->section)
11577 || loc->section == sal.section));
11578 int line_match = 0;
11579
11580 if ((default_match || sal.explicit_line)
11581 && loc->symtab != NULL
11582 && sal_fullname != NULL
11583 && sal.pspace == loc->pspace
11584 && loc->line_number == sal.line
11585 && filename_cmp (symtab_to_fullname (loc->symtab),
11586 sal_fullname) == 0)
11587 line_match = 1;
11588
11589 if (pc_match || line_match)
11590 {
11591 match = 1;
11592 break;
11593 }
11594 }
11595 }
11596
11597 if (match)
11598 found.push_back (b);
11599 }
11600 }
11601
11602 /* Now go thru the 'found' chain and delete them. */
11603 if (found.empty ())
11604 {
11605 if (arg)
11606 error (_("No breakpoint at %s."), arg);
11607 else
11608 error (_("No breakpoint at this line."));
11609 }
11610
11611 /* Remove duplicates from the vec. */
11612 std::sort (found.begin (), found.end (),
11613 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11614 {
11615 return compare_breakpoints (bp_a, bp_b) < 0;
11616 });
11617 found.erase (std::unique (found.begin (), found.end (),
11618 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11619 {
11620 return compare_breakpoints (bp_a, bp_b) == 0;
11621 }),
11622 found.end ());
11623
11624 if (found.size () > 1)
11625 from_tty = 1; /* Always report if deleted more than one. */
11626 if (from_tty)
11627 {
11628 if (found.size () == 1)
11629 printf_unfiltered (_("Deleted breakpoint "));
11630 else
11631 printf_unfiltered (_("Deleted breakpoints "));
11632 }
11633
11634 for (breakpoint *iter : found)
11635 {
11636 if (from_tty)
11637 printf_unfiltered ("%d ", iter->number);
11638 delete_breakpoint (iter);
11639 }
11640 if (from_tty)
11641 putchar_unfiltered ('\n');
11642 }
11643 \f
11644 /* Delete breakpoint in BS if they are `delete' breakpoints and
11645 all breakpoints that are marked for deletion, whether hit or not.
11646 This is called after any breakpoint is hit, or after errors. */
11647
11648 void
11649 breakpoint_auto_delete (bpstat bs)
11650 {
11651 struct breakpoint *b, *b_tmp;
11652
11653 for (; bs; bs = bs->next)
11654 if (bs->breakpoint_at
11655 && bs->breakpoint_at->disposition == disp_del
11656 && bs->stop)
11657 delete_breakpoint (bs->breakpoint_at);
11658
11659 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11660 {
11661 if (b->disposition == disp_del_at_next_stop)
11662 delete_breakpoint (b);
11663 }
11664 }
11665
11666 /* A comparison function for bp_location AP and BP being interfaced to
11667 std::sort. Sort elements primarily by their ADDRESS (no matter what
11668 bl_address_is_meaningful says), secondarily by ordering first
11669 permanent elements and terciarily just ensuring the array is sorted
11670 stable way despite std::sort being an unstable algorithm. */
11671
11672 static int
11673 bp_location_is_less_than (const bp_location *a, const bp_location *b)
11674 {
11675 if (a->address != b->address)
11676 return a->address < b->address;
11677
11678 /* Sort locations at the same address by their pspace number, keeping
11679 locations of the same inferior (in a multi-inferior environment)
11680 grouped. */
11681
11682 if (a->pspace->num != b->pspace->num)
11683 return a->pspace->num < b->pspace->num;
11684
11685 /* Sort permanent breakpoints first. */
11686 if (a->permanent != b->permanent)
11687 return a->permanent > b->permanent;
11688
11689 /* Sort by type in order to make duplicate determination easier.
11690 See update_global_location_list. This is kept in sync with
11691 breakpoint_locations_match. */
11692 if (a->loc_type < b->loc_type)
11693 return true;
11694
11695 /* Likewise, for range-breakpoints, sort by length. */
11696 if (a->loc_type == bp_loc_hardware_breakpoint
11697 && b->loc_type == bp_loc_hardware_breakpoint
11698 && a->length < b->length)
11699 return true;
11700
11701 /* Make the internal GDB representation stable across GDB runs
11702 where A and B memory inside GDB can differ. Breakpoint locations of
11703 the same type at the same address can be sorted in arbitrary order. */
11704
11705 if (a->owner->number != b->owner->number)
11706 return a->owner->number < b->owner->number;
11707
11708 return a < b;
11709 }
11710
11711 /* Set bp_locations_placed_address_before_address_max and
11712 bp_locations_shadow_len_after_address_max according to the current
11713 content of the bp_locations array. */
11714
11715 static void
11716 bp_locations_target_extensions_update (void)
11717 {
11718 struct bp_location *bl, **blp_tmp;
11719
11720 bp_locations_placed_address_before_address_max = 0;
11721 bp_locations_shadow_len_after_address_max = 0;
11722
11723 ALL_BP_LOCATIONS (bl, blp_tmp)
11724 {
11725 CORE_ADDR start, end, addr;
11726
11727 if (!bp_location_has_shadow (bl))
11728 continue;
11729
11730 start = bl->target_info.placed_address;
11731 end = start + bl->target_info.shadow_len;
11732
11733 gdb_assert (bl->address >= start);
11734 addr = bl->address - start;
11735 if (addr > bp_locations_placed_address_before_address_max)
11736 bp_locations_placed_address_before_address_max = addr;
11737
11738 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11739
11740 gdb_assert (bl->address < end);
11741 addr = end - bl->address;
11742 if (addr > bp_locations_shadow_len_after_address_max)
11743 bp_locations_shadow_len_after_address_max = addr;
11744 }
11745 }
11746
11747 /* Download tracepoint locations if they haven't been. */
11748
11749 static void
11750 download_tracepoint_locations (void)
11751 {
11752 struct breakpoint *b;
11753 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11754
11755 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11756
11757 ALL_TRACEPOINTS (b)
11758 {
11759 struct bp_location *bl;
11760 struct tracepoint *t;
11761 int bp_location_downloaded = 0;
11762
11763 if ((b->type == bp_fast_tracepoint
11764 ? !may_insert_fast_tracepoints
11765 : !may_insert_tracepoints))
11766 continue;
11767
11768 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11769 {
11770 if (target_can_download_tracepoint ())
11771 can_download_tracepoint = TRIBOOL_TRUE;
11772 else
11773 can_download_tracepoint = TRIBOOL_FALSE;
11774 }
11775
11776 if (can_download_tracepoint == TRIBOOL_FALSE)
11777 break;
11778
11779 for (bl = b->loc; bl; bl = bl->next)
11780 {
11781 /* In tracepoint, locations are _never_ duplicated, so
11782 should_be_inserted is equivalent to
11783 unduplicated_should_be_inserted. */
11784 if (!should_be_inserted (bl) || bl->inserted)
11785 continue;
11786
11787 switch_to_program_space_and_thread (bl->pspace);
11788
11789 target_download_tracepoint (bl);
11790
11791 bl->inserted = 1;
11792 bp_location_downloaded = 1;
11793 }
11794 t = (struct tracepoint *) b;
11795 t->number_on_target = b->number;
11796 if (bp_location_downloaded)
11797 gdb::observers::breakpoint_modified.notify (b);
11798 }
11799 }
11800
11801 /* Swap the insertion/duplication state between two locations. */
11802
11803 static void
11804 swap_insertion (struct bp_location *left, struct bp_location *right)
11805 {
11806 const int left_inserted = left->inserted;
11807 const int left_duplicate = left->duplicate;
11808 const int left_needs_update = left->needs_update;
11809 const struct bp_target_info left_target_info = left->target_info;
11810
11811 /* Locations of tracepoints can never be duplicated. */
11812 if (is_tracepoint (left->owner))
11813 gdb_assert (!left->duplicate);
11814 if (is_tracepoint (right->owner))
11815 gdb_assert (!right->duplicate);
11816
11817 left->inserted = right->inserted;
11818 left->duplicate = right->duplicate;
11819 left->needs_update = right->needs_update;
11820 left->target_info = right->target_info;
11821 right->inserted = left_inserted;
11822 right->duplicate = left_duplicate;
11823 right->needs_update = left_needs_update;
11824 right->target_info = left_target_info;
11825 }
11826
11827 /* Force the re-insertion of the locations at ADDRESS. This is called
11828 once a new/deleted/modified duplicate location is found and we are evaluating
11829 conditions on the target's side. Such conditions need to be updated on
11830 the target. */
11831
11832 static void
11833 force_breakpoint_reinsertion (struct bp_location *bl)
11834 {
11835 struct bp_location **locp = NULL, **loc2p;
11836 struct bp_location *loc;
11837 CORE_ADDR address = 0;
11838 int pspace_num;
11839
11840 address = bl->address;
11841 pspace_num = bl->pspace->num;
11842
11843 /* This is only meaningful if the target is
11844 evaluating conditions and if the user has
11845 opted for condition evaluation on the target's
11846 side. */
11847 if (gdb_evaluates_breakpoint_condition_p ()
11848 || !target_supports_evaluation_of_breakpoint_conditions ())
11849 return;
11850
11851 /* Flag all breakpoint locations with this address and
11852 the same program space as the location
11853 as "its condition has changed". We need to
11854 update the conditions on the target's side. */
11855 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11856 {
11857 loc = *loc2p;
11858
11859 if (!is_breakpoint (loc->owner)
11860 || pspace_num != loc->pspace->num)
11861 continue;
11862
11863 /* Flag the location appropriately. We use a different state to
11864 let everyone know that we already updated the set of locations
11865 with addr bl->address and program space bl->pspace. This is so
11866 we don't have to keep calling these functions just to mark locations
11867 that have already been marked. */
11868 loc->condition_changed = condition_updated;
11869
11870 /* Free the agent expression bytecode as well. We will compute
11871 it later on. */
11872 loc->cond_bytecode.reset ();
11873 }
11874 }
11875
11876 /* Called whether new breakpoints are created, or existing breakpoints
11877 deleted, to update the global location list and recompute which
11878 locations are duplicate of which.
11879
11880 The INSERT_MODE flag determines whether locations may not, may, or
11881 shall be inserted now. See 'enum ugll_insert_mode' for more
11882 info. */
11883
11884 static void
11885 update_global_location_list (enum ugll_insert_mode insert_mode)
11886 {
11887 struct breakpoint *b;
11888 struct bp_location **locp, *loc;
11889 /* Last breakpoint location address that was marked for update. */
11890 CORE_ADDR last_addr = 0;
11891 /* Last breakpoint location program space that was marked for update. */
11892 int last_pspace_num = -1;
11893
11894 /* Used in the duplicates detection below. When iterating over all
11895 bp_locations, points to the first bp_location of a given address.
11896 Breakpoints and watchpoints of different types are never
11897 duplicates of each other. Keep one pointer for each type of
11898 breakpoint/watchpoint, so we only need to loop over all locations
11899 once. */
11900 struct bp_location *bp_loc_first; /* breakpoint */
11901 struct bp_location *wp_loc_first; /* hardware watchpoint */
11902 struct bp_location *awp_loc_first; /* access watchpoint */
11903 struct bp_location *rwp_loc_first; /* read watchpoint */
11904
11905 /* Saved former bp_locations array which we compare against the newly
11906 built bp_locations from the current state of ALL_BREAKPOINTS. */
11907 struct bp_location **old_locp;
11908 unsigned old_locations_count;
11909 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11910
11911 old_locations_count = bp_locations_count;
11912 bp_locations = NULL;
11913 bp_locations_count = 0;
11914
11915 ALL_BREAKPOINTS (b)
11916 for (loc = b->loc; loc; loc = loc->next)
11917 bp_locations_count++;
11918
11919 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11920 locp = bp_locations;
11921 ALL_BREAKPOINTS (b)
11922 for (loc = b->loc; loc; loc = loc->next)
11923 *locp++ = loc;
11924
11925 /* See if we need to "upgrade" a software breakpoint to a hardware
11926 breakpoint. Do this before deciding whether locations are
11927 duplicates. Also do this before sorting because sorting order
11928 depends on location type. */
11929 for (locp = bp_locations;
11930 locp < bp_locations + bp_locations_count;
11931 locp++)
11932 {
11933 loc = *locp;
11934 if (!loc->inserted && should_be_inserted (loc))
11935 handle_automatic_hardware_breakpoints (loc);
11936 }
11937
11938 std::sort (bp_locations, bp_locations + bp_locations_count,
11939 bp_location_is_less_than);
11940
11941 bp_locations_target_extensions_update ();
11942
11943 /* Identify bp_location instances that are no longer present in the
11944 new list, and therefore should be freed. Note that it's not
11945 necessary that those locations should be removed from inferior --
11946 if there's another location at the same address (previously
11947 marked as duplicate), we don't need to remove/insert the
11948 location.
11949
11950 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11951 and former bp_location array state respectively. */
11952
11953 locp = bp_locations;
11954 for (old_locp = old_locations.get ();
11955 old_locp < old_locations.get () + old_locations_count;
11956 old_locp++)
11957 {
11958 struct bp_location *old_loc = *old_locp;
11959 struct bp_location **loc2p;
11960
11961 /* Tells if 'old_loc' is found among the new locations. If
11962 not, we have to free it. */
11963 int found_object = 0;
11964 /* Tells if the location should remain inserted in the target. */
11965 int keep_in_target = 0;
11966 int removed = 0;
11967
11968 /* Skip LOCP entries which will definitely never be needed.
11969 Stop either at or being the one matching OLD_LOC. */
11970 while (locp < bp_locations + bp_locations_count
11971 && (*locp)->address < old_loc->address)
11972 locp++;
11973
11974 for (loc2p = locp;
11975 (loc2p < bp_locations + bp_locations_count
11976 && (*loc2p)->address == old_loc->address);
11977 loc2p++)
11978 {
11979 /* Check if this is a new/duplicated location or a duplicated
11980 location that had its condition modified. If so, we want to send
11981 its condition to the target if evaluation of conditions is taking
11982 place there. */
11983 if ((*loc2p)->condition_changed == condition_modified
11984 && (last_addr != old_loc->address
11985 || last_pspace_num != old_loc->pspace->num))
11986 {
11987 force_breakpoint_reinsertion (*loc2p);
11988 last_pspace_num = old_loc->pspace->num;
11989 }
11990
11991 if (*loc2p == old_loc)
11992 found_object = 1;
11993 }
11994
11995 /* We have already handled this address, update it so that we don't
11996 have to go through updates again. */
11997 last_addr = old_loc->address;
11998
11999 /* Target-side condition evaluation: Handle deleted locations. */
12000 if (!found_object)
12001 force_breakpoint_reinsertion (old_loc);
12002
12003 /* If this location is no longer present, and inserted, look if
12004 there's maybe a new location at the same address. If so,
12005 mark that one inserted, and don't remove this one. This is
12006 needed so that we don't have a time window where a breakpoint
12007 at certain location is not inserted. */
12008
12009 if (old_loc->inserted)
12010 {
12011 /* If the location is inserted now, we might have to remove
12012 it. */
12013
12014 if (found_object && should_be_inserted (old_loc))
12015 {
12016 /* The location is still present in the location list,
12017 and still should be inserted. Don't do anything. */
12018 keep_in_target = 1;
12019 }
12020 else
12021 {
12022 /* This location still exists, but it won't be kept in the
12023 target since it may have been disabled. We proceed to
12024 remove its target-side condition. */
12025
12026 /* The location is either no longer present, or got
12027 disabled. See if there's another location at the
12028 same address, in which case we don't need to remove
12029 this one from the target. */
12030
12031 /* OLD_LOC comes from existing struct breakpoint. */
12032 if (bl_address_is_meaningful (old_loc))
12033 {
12034 for (loc2p = locp;
12035 (loc2p < bp_locations + bp_locations_count
12036 && (*loc2p)->address == old_loc->address);
12037 loc2p++)
12038 {
12039 struct bp_location *loc2 = *loc2p;
12040
12041 if (loc2 == old_loc)
12042 continue;
12043
12044 if (breakpoint_locations_match (loc2, old_loc))
12045 {
12046 /* Read watchpoint locations are switched to
12047 access watchpoints, if the former are not
12048 supported, but the latter are. */
12049 if (is_hardware_watchpoint (old_loc->owner))
12050 {
12051 gdb_assert (is_hardware_watchpoint (loc2->owner));
12052 loc2->watchpoint_type = old_loc->watchpoint_type;
12053 }
12054
12055 /* loc2 is a duplicated location. We need to check
12056 if it should be inserted in case it will be
12057 unduplicated. */
12058 if (unduplicated_should_be_inserted (loc2))
12059 {
12060 swap_insertion (old_loc, loc2);
12061 keep_in_target = 1;
12062 break;
12063 }
12064 }
12065 }
12066 }
12067 }
12068
12069 if (!keep_in_target)
12070 {
12071 if (remove_breakpoint (old_loc))
12072 {
12073 /* This is just about all we can do. We could keep
12074 this location on the global list, and try to
12075 remove it next time, but there's no particular
12076 reason why we will succeed next time.
12077
12078 Note that at this point, old_loc->owner is still
12079 valid, as delete_breakpoint frees the breakpoint
12080 only after calling us. */
12081 printf_filtered (_("warning: Error removing "
12082 "breakpoint %d\n"),
12083 old_loc->owner->number);
12084 }
12085 removed = 1;
12086 }
12087 }
12088
12089 if (!found_object)
12090 {
12091 if (removed && target_is_non_stop_p ()
12092 && need_moribund_for_location_type (old_loc))
12093 {
12094 /* This location was removed from the target. In
12095 non-stop mode, a race condition is possible where
12096 we've removed a breakpoint, but stop events for that
12097 breakpoint are already queued and will arrive later.
12098 We apply an heuristic to be able to distinguish such
12099 SIGTRAPs from other random SIGTRAPs: we keep this
12100 breakpoint location for a bit, and will retire it
12101 after we see some number of events. The theory here
12102 is that reporting of events should, "on the average",
12103 be fair, so after a while we'll see events from all
12104 threads that have anything of interest, and no longer
12105 need to keep this breakpoint location around. We
12106 don't hold locations forever so to reduce chances of
12107 mistaking a non-breakpoint SIGTRAP for a breakpoint
12108 SIGTRAP.
12109
12110 The heuristic failing can be disastrous on
12111 decr_pc_after_break targets.
12112
12113 On decr_pc_after_break targets, like e.g., x86-linux,
12114 if we fail to recognize a late breakpoint SIGTRAP,
12115 because events_till_retirement has reached 0 too
12116 soon, we'll fail to do the PC adjustment, and report
12117 a random SIGTRAP to the user. When the user resumes
12118 the inferior, it will most likely immediately crash
12119 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12120 corrupted, because of being resumed e.g., in the
12121 middle of a multi-byte instruction, or skipped a
12122 one-byte instruction. This was actually seen happen
12123 on native x86-linux, and should be less rare on
12124 targets that do not support new thread events, like
12125 remote, due to the heuristic depending on
12126 thread_count.
12127
12128 Mistaking a random SIGTRAP for a breakpoint trap
12129 causes similar symptoms (PC adjustment applied when
12130 it shouldn't), but then again, playing with SIGTRAPs
12131 behind the debugger's back is asking for trouble.
12132
12133 Since hardware watchpoint traps are always
12134 distinguishable from other traps, so we don't need to
12135 apply keep hardware watchpoint moribund locations
12136 around. We simply always ignore hardware watchpoint
12137 traps we can no longer explain. */
12138
12139 process_stratum_target *proc_target = nullptr;
12140 for (inferior *inf : all_inferiors ())
12141 if (inf->pspace == old_loc->pspace)
12142 {
12143 proc_target = inf->process_target ();
12144 break;
12145 }
12146 if (proc_target != nullptr)
12147 old_loc->events_till_retirement
12148 = 3 * (thread_count (proc_target) + 1);
12149 else
12150 old_loc->events_till_retirement = 1;
12151 old_loc->owner = NULL;
12152
12153 moribund_locations.push_back (old_loc);
12154 }
12155 else
12156 {
12157 old_loc->owner = NULL;
12158 decref_bp_location (&old_loc);
12159 }
12160 }
12161 }
12162
12163 /* Rescan breakpoints at the same address and section, marking the
12164 first one as "first" and any others as "duplicates". This is so
12165 that the bpt instruction is only inserted once. If we have a
12166 permanent breakpoint at the same place as BPT, make that one the
12167 official one, and the rest as duplicates. Permanent breakpoints
12168 are sorted first for the same address.
12169
12170 Do the same for hardware watchpoints, but also considering the
12171 watchpoint's type (regular/access/read) and length. */
12172
12173 bp_loc_first = NULL;
12174 wp_loc_first = NULL;
12175 awp_loc_first = NULL;
12176 rwp_loc_first = NULL;
12177 ALL_BP_LOCATIONS (loc, locp)
12178 {
12179 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12180 non-NULL. */
12181 struct bp_location **loc_first_p;
12182 b = loc->owner;
12183
12184 if (!unduplicated_should_be_inserted (loc)
12185 || !bl_address_is_meaningful (loc)
12186 /* Don't detect duplicate for tracepoint locations because they are
12187 never duplicated. See the comments in field `duplicate' of
12188 `struct bp_location'. */
12189 || is_tracepoint (b))
12190 {
12191 /* Clear the condition modification flag. */
12192 loc->condition_changed = condition_unchanged;
12193 continue;
12194 }
12195
12196 if (b->type == bp_hardware_watchpoint)
12197 loc_first_p = &wp_loc_first;
12198 else if (b->type == bp_read_watchpoint)
12199 loc_first_p = &rwp_loc_first;
12200 else if (b->type == bp_access_watchpoint)
12201 loc_first_p = &awp_loc_first;
12202 else
12203 loc_first_p = &bp_loc_first;
12204
12205 if (*loc_first_p == NULL
12206 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12207 || !breakpoint_locations_match (loc, *loc_first_p))
12208 {
12209 *loc_first_p = loc;
12210 loc->duplicate = 0;
12211
12212 if (is_breakpoint (loc->owner) && loc->condition_changed)
12213 {
12214 loc->needs_update = 1;
12215 /* Clear the condition modification flag. */
12216 loc->condition_changed = condition_unchanged;
12217 }
12218 continue;
12219 }
12220
12221
12222 /* This and the above ensure the invariant that the first location
12223 is not duplicated, and is the inserted one.
12224 All following are marked as duplicated, and are not inserted. */
12225 if (loc->inserted)
12226 swap_insertion (loc, *loc_first_p);
12227 loc->duplicate = 1;
12228
12229 /* Clear the condition modification flag. */
12230 loc->condition_changed = condition_unchanged;
12231 }
12232
12233 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12234 {
12235 if (insert_mode != UGLL_DONT_INSERT)
12236 insert_breakpoint_locations ();
12237 else
12238 {
12239 /* Even though the caller told us to not insert new
12240 locations, we may still need to update conditions on the
12241 target's side of breakpoints that were already inserted
12242 if the target is evaluating breakpoint conditions. We
12243 only update conditions for locations that are marked
12244 "needs_update". */
12245 update_inserted_breakpoint_locations ();
12246 }
12247 }
12248
12249 if (insert_mode != UGLL_DONT_INSERT)
12250 download_tracepoint_locations ();
12251 }
12252
12253 void
12254 breakpoint_retire_moribund (void)
12255 {
12256 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12257 {
12258 struct bp_location *loc = moribund_locations[ix];
12259 if (--(loc->events_till_retirement) == 0)
12260 {
12261 decref_bp_location (&loc);
12262 unordered_remove (moribund_locations, ix);
12263 --ix;
12264 }
12265 }
12266 }
12267
12268 static void
12269 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12270 {
12271
12272 try
12273 {
12274 update_global_location_list (insert_mode);
12275 }
12276 catch (const gdb_exception_error &e)
12277 {
12278 }
12279 }
12280
12281 /* Clear BKP from a BPS. */
12282
12283 static void
12284 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12285 {
12286 bpstat bs;
12287
12288 for (bs = bps; bs; bs = bs->next)
12289 if (bs->breakpoint_at == bpt)
12290 {
12291 bs->breakpoint_at = NULL;
12292 bs->old_val = NULL;
12293 /* bs->commands will be freed later. */
12294 }
12295 }
12296
12297 /* Callback for iterate_over_threads. */
12298 static int
12299 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12300 {
12301 struct breakpoint *bpt = (struct breakpoint *) data;
12302
12303 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12304 return 0;
12305 }
12306
12307 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12308 callbacks. */
12309
12310 static void
12311 say_where (struct breakpoint *b)
12312 {
12313 struct value_print_options opts;
12314
12315 get_user_print_options (&opts);
12316
12317 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12318 single string. */
12319 if (b->loc == NULL)
12320 {
12321 /* For pending locations, the output differs slightly based
12322 on b->extra_string. If this is non-NULL, it contains either
12323 a condition or dprintf arguments. */
12324 if (b->extra_string == NULL)
12325 {
12326 printf_filtered (_(" (%s) pending."),
12327 event_location_to_string (b->location.get ()));
12328 }
12329 else if (b->type == bp_dprintf)
12330 {
12331 printf_filtered (_(" (%s,%s) pending."),
12332 event_location_to_string (b->location.get ()),
12333 b->extra_string);
12334 }
12335 else
12336 {
12337 printf_filtered (_(" (%s %s) pending."),
12338 event_location_to_string (b->location.get ()),
12339 b->extra_string);
12340 }
12341 }
12342 else
12343 {
12344 if (opts.addressprint || b->loc->symtab == NULL)
12345 printf_filtered (" at %ps",
12346 styled_string (address_style.style (),
12347 paddress (b->loc->gdbarch,
12348 b->loc->address)));
12349 if (b->loc->symtab != NULL)
12350 {
12351 /* If there is a single location, we can print the location
12352 more nicely. */
12353 if (b->loc->next == NULL)
12354 {
12355 const char *filename
12356 = symtab_to_filename_for_display (b->loc->symtab);
12357 printf_filtered (": file %ps, line %d.",
12358 styled_string (file_name_style.style (),
12359 filename),
12360 b->loc->line_number);
12361 }
12362 else
12363 /* This is not ideal, but each location may have a
12364 different file name, and this at least reflects the
12365 real situation somewhat. */
12366 printf_filtered (": %s.",
12367 event_location_to_string (b->location.get ()));
12368 }
12369
12370 if (b->loc->next)
12371 {
12372 struct bp_location *loc = b->loc;
12373 int n = 0;
12374 for (; loc; loc = loc->next)
12375 ++n;
12376 printf_filtered (" (%d locations)", n);
12377 }
12378 }
12379 }
12380
12381 bp_location::~bp_location ()
12382 {
12383 xfree (function_name);
12384 }
12385
12386 /* Destructor for the breakpoint base class. */
12387
12388 breakpoint::~breakpoint ()
12389 {
12390 xfree (this->cond_string);
12391 xfree (this->extra_string);
12392 }
12393
12394 static struct bp_location *
12395 base_breakpoint_allocate_location (struct breakpoint *self)
12396 {
12397 return new bp_location (self);
12398 }
12399
12400 static void
12401 base_breakpoint_re_set (struct breakpoint *b)
12402 {
12403 /* Nothing to re-set. */
12404 }
12405
12406 #define internal_error_pure_virtual_called() \
12407 gdb_assert_not_reached ("pure virtual function called")
12408
12409 static int
12410 base_breakpoint_insert_location (struct bp_location *bl)
12411 {
12412 internal_error_pure_virtual_called ();
12413 }
12414
12415 static int
12416 base_breakpoint_remove_location (struct bp_location *bl,
12417 enum remove_bp_reason reason)
12418 {
12419 internal_error_pure_virtual_called ();
12420 }
12421
12422 static int
12423 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12424 const address_space *aspace,
12425 CORE_ADDR bp_addr,
12426 const struct target_waitstatus *ws)
12427 {
12428 internal_error_pure_virtual_called ();
12429 }
12430
12431 static void
12432 base_breakpoint_check_status (bpstat bs)
12433 {
12434 /* Always stop. */
12435 }
12436
12437 /* A "works_in_software_mode" breakpoint_ops method that just internal
12438 errors. */
12439
12440 static int
12441 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12442 {
12443 internal_error_pure_virtual_called ();
12444 }
12445
12446 /* A "resources_needed" breakpoint_ops method that just internal
12447 errors. */
12448
12449 static int
12450 base_breakpoint_resources_needed (const struct bp_location *bl)
12451 {
12452 internal_error_pure_virtual_called ();
12453 }
12454
12455 static enum print_stop_action
12456 base_breakpoint_print_it (bpstat bs)
12457 {
12458 internal_error_pure_virtual_called ();
12459 }
12460
12461 static void
12462 base_breakpoint_print_one_detail (const struct breakpoint *self,
12463 struct ui_out *uiout)
12464 {
12465 /* nothing */
12466 }
12467
12468 static void
12469 base_breakpoint_print_mention (struct breakpoint *b)
12470 {
12471 internal_error_pure_virtual_called ();
12472 }
12473
12474 static void
12475 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12476 {
12477 internal_error_pure_virtual_called ();
12478 }
12479
12480 static void
12481 base_breakpoint_create_sals_from_location
12482 (struct event_location *location,
12483 struct linespec_result *canonical,
12484 enum bptype type_wanted)
12485 {
12486 internal_error_pure_virtual_called ();
12487 }
12488
12489 static void
12490 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12491 struct linespec_result *c,
12492 gdb::unique_xmalloc_ptr<char> cond_string,
12493 gdb::unique_xmalloc_ptr<char> extra_string,
12494 enum bptype type_wanted,
12495 enum bpdisp disposition,
12496 int thread,
12497 int task, int ignore_count,
12498 const struct breakpoint_ops *o,
12499 int from_tty, int enabled,
12500 int internal, unsigned flags)
12501 {
12502 internal_error_pure_virtual_called ();
12503 }
12504
12505 static std::vector<symtab_and_line>
12506 base_breakpoint_decode_location (struct breakpoint *b,
12507 struct event_location *location,
12508 struct program_space *search_pspace)
12509 {
12510 internal_error_pure_virtual_called ();
12511 }
12512
12513 /* The default 'explains_signal' method. */
12514
12515 static int
12516 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12517 {
12518 return 1;
12519 }
12520
12521 /* The default "after_condition_true" method. */
12522
12523 static void
12524 base_breakpoint_after_condition_true (struct bpstats *bs)
12525 {
12526 /* Nothing to do. */
12527 }
12528
12529 struct breakpoint_ops base_breakpoint_ops =
12530 {
12531 base_breakpoint_allocate_location,
12532 base_breakpoint_re_set,
12533 base_breakpoint_insert_location,
12534 base_breakpoint_remove_location,
12535 base_breakpoint_breakpoint_hit,
12536 base_breakpoint_check_status,
12537 base_breakpoint_resources_needed,
12538 base_breakpoint_works_in_software_mode,
12539 base_breakpoint_print_it,
12540 NULL,
12541 base_breakpoint_print_one_detail,
12542 base_breakpoint_print_mention,
12543 base_breakpoint_print_recreate,
12544 base_breakpoint_create_sals_from_location,
12545 base_breakpoint_create_breakpoints_sal,
12546 base_breakpoint_decode_location,
12547 base_breakpoint_explains_signal,
12548 base_breakpoint_after_condition_true,
12549 };
12550
12551 /* Default breakpoint_ops methods. */
12552
12553 static void
12554 bkpt_re_set (struct breakpoint *b)
12555 {
12556 /* FIXME: is this still reachable? */
12557 if (breakpoint_event_location_empty_p (b))
12558 {
12559 /* Anything without a location can't be re-set. */
12560 delete_breakpoint (b);
12561 return;
12562 }
12563
12564 breakpoint_re_set_default (b);
12565 }
12566
12567 static int
12568 bkpt_insert_location (struct bp_location *bl)
12569 {
12570 CORE_ADDR addr = bl->target_info.reqstd_address;
12571
12572 bl->target_info.kind = breakpoint_kind (bl, &addr);
12573 bl->target_info.placed_address = addr;
12574
12575 if (bl->loc_type == bp_loc_hardware_breakpoint)
12576 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12577 else
12578 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12579 }
12580
12581 static int
12582 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12583 {
12584 if (bl->loc_type == bp_loc_hardware_breakpoint)
12585 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12586 else
12587 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12588 }
12589
12590 static int
12591 bkpt_breakpoint_hit (const struct bp_location *bl,
12592 const address_space *aspace, CORE_ADDR bp_addr,
12593 const struct target_waitstatus *ws)
12594 {
12595 if (ws->kind != TARGET_WAITKIND_STOPPED
12596 || ws->value.sig != GDB_SIGNAL_TRAP)
12597 return 0;
12598
12599 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12600 aspace, bp_addr))
12601 return 0;
12602
12603 if (overlay_debugging /* unmapped overlay section */
12604 && section_is_overlay (bl->section)
12605 && !section_is_mapped (bl->section))
12606 return 0;
12607
12608 return 1;
12609 }
12610
12611 static int
12612 dprintf_breakpoint_hit (const struct bp_location *bl,
12613 const address_space *aspace, CORE_ADDR bp_addr,
12614 const struct target_waitstatus *ws)
12615 {
12616 if (dprintf_style == dprintf_style_agent
12617 && target_can_run_breakpoint_commands ())
12618 {
12619 /* An agent-style dprintf never causes a stop. If we see a trap
12620 for this address it must be for a breakpoint that happens to
12621 be set at the same address. */
12622 return 0;
12623 }
12624
12625 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12626 }
12627
12628 static int
12629 bkpt_resources_needed (const struct bp_location *bl)
12630 {
12631 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12632
12633 return 1;
12634 }
12635
12636 static enum print_stop_action
12637 bkpt_print_it (bpstat bs)
12638 {
12639 struct breakpoint *b;
12640 const struct bp_location *bl;
12641 int bp_temp;
12642 struct ui_out *uiout = current_uiout;
12643
12644 gdb_assert (bs->bp_location_at != NULL);
12645
12646 bl = bs->bp_location_at.get ();
12647 b = bs->breakpoint_at;
12648
12649 bp_temp = b->disposition == disp_del;
12650 if (bl->address != bl->requested_address)
12651 breakpoint_adjustment_warning (bl->requested_address,
12652 bl->address,
12653 b->number, 1);
12654 annotate_breakpoint (b->number);
12655 maybe_print_thread_hit_breakpoint (uiout);
12656
12657 if (uiout->is_mi_like_p ())
12658 {
12659 uiout->field_string ("reason",
12660 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12661 uiout->field_string ("disp", bpdisp_text (b->disposition));
12662 }
12663 if (bp_temp)
12664 uiout->message ("Temporary breakpoint %pF, ",
12665 signed_field ("bkptno", b->number));
12666 else
12667 uiout->message ("Breakpoint %pF, ",
12668 signed_field ("bkptno", b->number));
12669
12670 return PRINT_SRC_AND_LOC;
12671 }
12672
12673 static void
12674 bkpt_print_mention (struct breakpoint *b)
12675 {
12676 if (current_uiout->is_mi_like_p ())
12677 return;
12678
12679 switch (b->type)
12680 {
12681 case bp_breakpoint:
12682 case bp_gnu_ifunc_resolver:
12683 if (b->disposition == disp_del)
12684 printf_filtered (_("Temporary breakpoint"));
12685 else
12686 printf_filtered (_("Breakpoint"));
12687 printf_filtered (_(" %d"), b->number);
12688 if (b->type == bp_gnu_ifunc_resolver)
12689 printf_filtered (_(" at gnu-indirect-function resolver"));
12690 break;
12691 case bp_hardware_breakpoint:
12692 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12693 break;
12694 case bp_dprintf:
12695 printf_filtered (_("Dprintf %d"), b->number);
12696 break;
12697 }
12698
12699 say_where (b);
12700 }
12701
12702 static void
12703 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12704 {
12705 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12706 fprintf_unfiltered (fp, "tbreak");
12707 else if (tp->type == bp_breakpoint)
12708 fprintf_unfiltered (fp, "break");
12709 else if (tp->type == bp_hardware_breakpoint
12710 && tp->disposition == disp_del)
12711 fprintf_unfiltered (fp, "thbreak");
12712 else if (tp->type == bp_hardware_breakpoint)
12713 fprintf_unfiltered (fp, "hbreak");
12714 else
12715 internal_error (__FILE__, __LINE__,
12716 _("unhandled breakpoint type %d"), (int) tp->type);
12717
12718 fprintf_unfiltered (fp, " %s",
12719 event_location_to_string (tp->location.get ()));
12720
12721 /* Print out extra_string if this breakpoint is pending. It might
12722 contain, for example, conditions that were set by the user. */
12723 if (tp->loc == NULL && tp->extra_string != NULL)
12724 fprintf_unfiltered (fp, " %s", tp->extra_string);
12725
12726 print_recreate_thread (tp, fp);
12727 }
12728
12729 static void
12730 bkpt_create_sals_from_location (struct event_location *location,
12731 struct linespec_result *canonical,
12732 enum bptype type_wanted)
12733 {
12734 create_sals_from_location_default (location, canonical, type_wanted);
12735 }
12736
12737 static void
12738 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12739 struct linespec_result *canonical,
12740 gdb::unique_xmalloc_ptr<char> cond_string,
12741 gdb::unique_xmalloc_ptr<char> extra_string,
12742 enum bptype type_wanted,
12743 enum bpdisp disposition,
12744 int thread,
12745 int task, int ignore_count,
12746 const struct breakpoint_ops *ops,
12747 int from_tty, int enabled,
12748 int internal, unsigned flags)
12749 {
12750 create_breakpoints_sal_default (gdbarch, canonical,
12751 std::move (cond_string),
12752 std::move (extra_string),
12753 type_wanted,
12754 disposition, thread, task,
12755 ignore_count, ops, from_tty,
12756 enabled, internal, flags);
12757 }
12758
12759 static std::vector<symtab_and_line>
12760 bkpt_decode_location (struct breakpoint *b,
12761 struct event_location *location,
12762 struct program_space *search_pspace)
12763 {
12764 return decode_location_default (b, location, search_pspace);
12765 }
12766
12767 /* Virtual table for internal breakpoints. */
12768
12769 static void
12770 internal_bkpt_re_set (struct breakpoint *b)
12771 {
12772 switch (b->type)
12773 {
12774 /* Delete overlay event and longjmp master breakpoints; they
12775 will be reset later by breakpoint_re_set. */
12776 case bp_overlay_event:
12777 case bp_longjmp_master:
12778 case bp_std_terminate_master:
12779 case bp_exception_master:
12780 delete_breakpoint (b);
12781 break;
12782
12783 /* This breakpoint is special, it's set up when the inferior
12784 starts and we really don't want to touch it. */
12785 case bp_shlib_event:
12786
12787 /* Like bp_shlib_event, this breakpoint type is special. Once
12788 it is set up, we do not want to touch it. */
12789 case bp_thread_event:
12790 break;
12791 }
12792 }
12793
12794 static void
12795 internal_bkpt_check_status (bpstat bs)
12796 {
12797 if (bs->breakpoint_at->type == bp_shlib_event)
12798 {
12799 /* If requested, stop when the dynamic linker notifies GDB of
12800 events. This allows the user to get control and place
12801 breakpoints in initializer routines for dynamically loaded
12802 objects (among other things). */
12803 bs->stop = stop_on_solib_events;
12804 bs->print = stop_on_solib_events;
12805 }
12806 else
12807 bs->stop = 0;
12808 }
12809
12810 static enum print_stop_action
12811 internal_bkpt_print_it (bpstat bs)
12812 {
12813 struct breakpoint *b;
12814
12815 b = bs->breakpoint_at;
12816
12817 switch (b->type)
12818 {
12819 case bp_shlib_event:
12820 /* Did we stop because the user set the stop_on_solib_events
12821 variable? (If so, we report this as a generic, "Stopped due
12822 to shlib event" message.) */
12823 print_solib_event (0);
12824 break;
12825
12826 case bp_thread_event:
12827 /* Not sure how we will get here.
12828 GDB should not stop for these breakpoints. */
12829 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12830 break;
12831
12832 case bp_overlay_event:
12833 /* By analogy with the thread event, GDB should not stop for these. */
12834 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12835 break;
12836
12837 case bp_longjmp_master:
12838 /* These should never be enabled. */
12839 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12840 break;
12841
12842 case bp_std_terminate_master:
12843 /* These should never be enabled. */
12844 printf_filtered (_("std::terminate Master Breakpoint: "
12845 "gdb should not stop!\n"));
12846 break;
12847
12848 case bp_exception_master:
12849 /* These should never be enabled. */
12850 printf_filtered (_("Exception Master Breakpoint: "
12851 "gdb should not stop!\n"));
12852 break;
12853 }
12854
12855 return PRINT_NOTHING;
12856 }
12857
12858 static void
12859 internal_bkpt_print_mention (struct breakpoint *b)
12860 {
12861 /* Nothing to mention. These breakpoints are internal. */
12862 }
12863
12864 /* Virtual table for momentary breakpoints */
12865
12866 static void
12867 momentary_bkpt_re_set (struct breakpoint *b)
12868 {
12869 /* Keep temporary breakpoints, which can be encountered when we step
12870 over a dlopen call and solib_add is resetting the breakpoints.
12871 Otherwise these should have been blown away via the cleanup chain
12872 or by breakpoint_init_inferior when we rerun the executable. */
12873 }
12874
12875 static void
12876 momentary_bkpt_check_status (bpstat bs)
12877 {
12878 /* Nothing. The point of these breakpoints is causing a stop. */
12879 }
12880
12881 static enum print_stop_action
12882 momentary_bkpt_print_it (bpstat bs)
12883 {
12884 return PRINT_UNKNOWN;
12885 }
12886
12887 static void
12888 momentary_bkpt_print_mention (struct breakpoint *b)
12889 {
12890 /* Nothing to mention. These breakpoints are internal. */
12891 }
12892
12893 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12894
12895 It gets cleared already on the removal of the first one of such placed
12896 breakpoints. This is OK as they get all removed altogether. */
12897
12898 longjmp_breakpoint::~longjmp_breakpoint ()
12899 {
12900 thread_info *tp = find_thread_global_id (this->thread);
12901
12902 if (tp != NULL)
12903 tp->initiating_frame = null_frame_id;
12904 }
12905
12906 /* Specific methods for probe breakpoints. */
12907
12908 static int
12909 bkpt_probe_insert_location (struct bp_location *bl)
12910 {
12911 int v = bkpt_insert_location (bl);
12912
12913 if (v == 0)
12914 {
12915 /* The insertion was successful, now let's set the probe's semaphore
12916 if needed. */
12917 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12918 }
12919
12920 return v;
12921 }
12922
12923 static int
12924 bkpt_probe_remove_location (struct bp_location *bl,
12925 enum remove_bp_reason reason)
12926 {
12927 /* Let's clear the semaphore before removing the location. */
12928 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12929
12930 return bkpt_remove_location (bl, reason);
12931 }
12932
12933 static void
12934 bkpt_probe_create_sals_from_location (struct event_location *location,
12935 struct linespec_result *canonical,
12936 enum bptype type_wanted)
12937 {
12938 struct linespec_sals lsal;
12939
12940 lsal.sals = parse_probes (location, NULL, canonical);
12941 lsal.canonical
12942 = xstrdup (event_location_to_string (canonical->location.get ()));
12943 canonical->lsals.push_back (std::move (lsal));
12944 }
12945
12946 static std::vector<symtab_and_line>
12947 bkpt_probe_decode_location (struct breakpoint *b,
12948 struct event_location *location,
12949 struct program_space *search_pspace)
12950 {
12951 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12952 if (sals.empty ())
12953 error (_("probe not found"));
12954 return sals;
12955 }
12956
12957 /* The breakpoint_ops structure to be used in tracepoints. */
12958
12959 static void
12960 tracepoint_re_set (struct breakpoint *b)
12961 {
12962 breakpoint_re_set_default (b);
12963 }
12964
12965 static int
12966 tracepoint_breakpoint_hit (const struct bp_location *bl,
12967 const address_space *aspace, CORE_ADDR bp_addr,
12968 const struct target_waitstatus *ws)
12969 {
12970 /* By definition, the inferior does not report stops at
12971 tracepoints. */
12972 return 0;
12973 }
12974
12975 static void
12976 tracepoint_print_one_detail (const struct breakpoint *self,
12977 struct ui_out *uiout)
12978 {
12979 struct tracepoint *tp = (struct tracepoint *) self;
12980 if (!tp->static_trace_marker_id.empty ())
12981 {
12982 gdb_assert (self->type == bp_static_tracepoint);
12983
12984 uiout->message ("\tmarker id is %pF\n",
12985 string_field ("static-tracepoint-marker-string-id",
12986 tp->static_trace_marker_id.c_str ()));
12987 }
12988 }
12989
12990 static void
12991 tracepoint_print_mention (struct breakpoint *b)
12992 {
12993 if (current_uiout->is_mi_like_p ())
12994 return;
12995
12996 switch (b->type)
12997 {
12998 case bp_tracepoint:
12999 printf_filtered (_("Tracepoint"));
13000 printf_filtered (_(" %d"), b->number);
13001 break;
13002 case bp_fast_tracepoint:
13003 printf_filtered (_("Fast tracepoint"));
13004 printf_filtered (_(" %d"), b->number);
13005 break;
13006 case bp_static_tracepoint:
13007 printf_filtered (_("Static tracepoint"));
13008 printf_filtered (_(" %d"), b->number);
13009 break;
13010 default:
13011 internal_error (__FILE__, __LINE__,
13012 _("unhandled tracepoint type %d"), (int) b->type);
13013 }
13014
13015 say_where (b);
13016 }
13017
13018 static void
13019 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13020 {
13021 struct tracepoint *tp = (struct tracepoint *) self;
13022
13023 if (self->type == bp_fast_tracepoint)
13024 fprintf_unfiltered (fp, "ftrace");
13025 else if (self->type == bp_static_tracepoint)
13026 fprintf_unfiltered (fp, "strace");
13027 else if (self->type == bp_tracepoint)
13028 fprintf_unfiltered (fp, "trace");
13029 else
13030 internal_error (__FILE__, __LINE__,
13031 _("unhandled tracepoint type %d"), (int) self->type);
13032
13033 fprintf_unfiltered (fp, " %s",
13034 event_location_to_string (self->location.get ()));
13035 print_recreate_thread (self, fp);
13036
13037 if (tp->pass_count)
13038 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13039 }
13040
13041 static void
13042 tracepoint_create_sals_from_location (struct event_location *location,
13043 struct linespec_result *canonical,
13044 enum bptype type_wanted)
13045 {
13046 create_sals_from_location_default (location, canonical, type_wanted);
13047 }
13048
13049 static void
13050 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13051 struct linespec_result *canonical,
13052 gdb::unique_xmalloc_ptr<char> cond_string,
13053 gdb::unique_xmalloc_ptr<char> extra_string,
13054 enum bptype type_wanted,
13055 enum bpdisp disposition,
13056 int thread,
13057 int task, int ignore_count,
13058 const struct breakpoint_ops *ops,
13059 int from_tty, int enabled,
13060 int internal, unsigned flags)
13061 {
13062 create_breakpoints_sal_default (gdbarch, canonical,
13063 std::move (cond_string),
13064 std::move (extra_string),
13065 type_wanted,
13066 disposition, thread, task,
13067 ignore_count, ops, from_tty,
13068 enabled, internal, flags);
13069 }
13070
13071 static std::vector<symtab_and_line>
13072 tracepoint_decode_location (struct breakpoint *b,
13073 struct event_location *location,
13074 struct program_space *search_pspace)
13075 {
13076 return decode_location_default (b, location, search_pspace);
13077 }
13078
13079 struct breakpoint_ops tracepoint_breakpoint_ops;
13080
13081 /* Virtual table for tracepoints on static probes. */
13082
13083 static void
13084 tracepoint_probe_create_sals_from_location
13085 (struct event_location *location,
13086 struct linespec_result *canonical,
13087 enum bptype type_wanted)
13088 {
13089 /* We use the same method for breakpoint on probes. */
13090 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13091 }
13092
13093 static std::vector<symtab_and_line>
13094 tracepoint_probe_decode_location (struct breakpoint *b,
13095 struct event_location *location,
13096 struct program_space *search_pspace)
13097 {
13098 /* We use the same method for breakpoint on probes. */
13099 return bkpt_probe_decode_location (b, location, search_pspace);
13100 }
13101
13102 /* Dprintf breakpoint_ops methods. */
13103
13104 static void
13105 dprintf_re_set (struct breakpoint *b)
13106 {
13107 breakpoint_re_set_default (b);
13108
13109 /* extra_string should never be non-NULL for dprintf. */
13110 gdb_assert (b->extra_string != NULL);
13111
13112 /* 1 - connect to target 1, that can run breakpoint commands.
13113 2 - create a dprintf, which resolves fine.
13114 3 - disconnect from target 1
13115 4 - connect to target 2, that can NOT run breakpoint commands.
13116
13117 After steps #3/#4, you'll want the dprintf command list to
13118 be updated, because target 1 and 2 may well return different
13119 answers for target_can_run_breakpoint_commands().
13120 Given absence of finer grained resetting, we get to do
13121 it all the time. */
13122 if (b->extra_string != NULL)
13123 update_dprintf_command_list (b);
13124 }
13125
13126 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13127
13128 static void
13129 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13130 {
13131 fprintf_unfiltered (fp, "dprintf %s,%s",
13132 event_location_to_string (tp->location.get ()),
13133 tp->extra_string);
13134 print_recreate_thread (tp, fp);
13135 }
13136
13137 /* Implement the "after_condition_true" breakpoint_ops method for
13138 dprintf.
13139
13140 dprintf's are implemented with regular commands in their command
13141 list, but we run the commands here instead of before presenting the
13142 stop to the user, as dprintf's don't actually cause a stop. This
13143 also makes it so that the commands of multiple dprintfs at the same
13144 address are all handled. */
13145
13146 static void
13147 dprintf_after_condition_true (struct bpstats *bs)
13148 {
13149 struct bpstats tmp_bs;
13150 struct bpstats *tmp_bs_p = &tmp_bs;
13151
13152 /* dprintf's never cause a stop. This wasn't set in the
13153 check_status hook instead because that would make the dprintf's
13154 condition not be evaluated. */
13155 bs->stop = 0;
13156
13157 /* Run the command list here. Take ownership of it instead of
13158 copying. We never want these commands to run later in
13159 bpstat_do_actions, if a breakpoint that causes a stop happens to
13160 be set at same address as this dprintf, or even if running the
13161 commands here throws. */
13162 tmp_bs.commands = bs->commands;
13163 bs->commands = NULL;
13164
13165 bpstat_do_actions_1 (&tmp_bs_p);
13166
13167 /* 'tmp_bs.commands' will usually be NULL by now, but
13168 bpstat_do_actions_1 may return early without processing the whole
13169 list. */
13170 }
13171
13172 /* The breakpoint_ops structure to be used on static tracepoints with
13173 markers (`-m'). */
13174
13175 static void
13176 strace_marker_create_sals_from_location (struct event_location *location,
13177 struct linespec_result *canonical,
13178 enum bptype type_wanted)
13179 {
13180 struct linespec_sals lsal;
13181 const char *arg_start, *arg;
13182
13183 arg = arg_start = get_linespec_location (location)->spec_string;
13184 lsal.sals = decode_static_tracepoint_spec (&arg);
13185
13186 std::string str (arg_start, arg - arg_start);
13187 const char *ptr = str.c_str ();
13188 canonical->location
13189 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13190
13191 lsal.canonical
13192 = xstrdup (event_location_to_string (canonical->location.get ()));
13193 canonical->lsals.push_back (std::move (lsal));
13194 }
13195
13196 static void
13197 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13198 struct linespec_result *canonical,
13199 gdb::unique_xmalloc_ptr<char> cond_string,
13200 gdb::unique_xmalloc_ptr<char> extra_string,
13201 enum bptype type_wanted,
13202 enum bpdisp disposition,
13203 int thread,
13204 int task, int ignore_count,
13205 const struct breakpoint_ops *ops,
13206 int from_tty, int enabled,
13207 int internal, unsigned flags)
13208 {
13209 const linespec_sals &lsal = canonical->lsals[0];
13210
13211 /* If the user is creating a static tracepoint by marker id
13212 (strace -m MARKER_ID), then store the sals index, so that
13213 breakpoint_re_set can try to match up which of the newly
13214 found markers corresponds to this one, and, don't try to
13215 expand multiple locations for each sal, given than SALS
13216 already should contain all sals for MARKER_ID. */
13217
13218 for (size_t i = 0; i < lsal.sals.size (); i++)
13219 {
13220 event_location_up location
13221 = copy_event_location (canonical->location.get ());
13222
13223 std::unique_ptr<tracepoint> tp (new tracepoint ());
13224 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13225 std::move (location), NULL,
13226 std::move (cond_string),
13227 std::move (extra_string),
13228 type_wanted, disposition,
13229 thread, task, ignore_count, ops,
13230 from_tty, enabled, internal, flags,
13231 canonical->special_display);
13232 /* Given that its possible to have multiple markers with
13233 the same string id, if the user is creating a static
13234 tracepoint by marker id ("strace -m MARKER_ID"), then
13235 store the sals index, so that breakpoint_re_set can
13236 try to match up which of the newly found markers
13237 corresponds to this one */
13238 tp->static_trace_marker_id_idx = i;
13239
13240 install_breakpoint (internal, std::move (tp), 0);
13241 }
13242 }
13243
13244 static std::vector<symtab_and_line>
13245 strace_marker_decode_location (struct breakpoint *b,
13246 struct event_location *location,
13247 struct program_space *search_pspace)
13248 {
13249 struct tracepoint *tp = (struct tracepoint *) b;
13250 const char *s = get_linespec_location (location)->spec_string;
13251
13252 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13253 if (sals.size () > tp->static_trace_marker_id_idx)
13254 {
13255 sals[0] = sals[tp->static_trace_marker_id_idx];
13256 sals.resize (1);
13257 return sals;
13258 }
13259 else
13260 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13261 }
13262
13263 static struct breakpoint_ops strace_marker_breakpoint_ops;
13264
13265 static int
13266 strace_marker_p (struct breakpoint *b)
13267 {
13268 return b->ops == &strace_marker_breakpoint_ops;
13269 }
13270
13271 /* Delete a breakpoint and clean up all traces of it in the data
13272 structures. */
13273
13274 void
13275 delete_breakpoint (struct breakpoint *bpt)
13276 {
13277 struct breakpoint *b;
13278
13279 gdb_assert (bpt != NULL);
13280
13281 /* Has this bp already been deleted? This can happen because
13282 multiple lists can hold pointers to bp's. bpstat lists are
13283 especial culprits.
13284
13285 One example of this happening is a watchpoint's scope bp. When
13286 the scope bp triggers, we notice that the watchpoint is out of
13287 scope, and delete it. We also delete its scope bp. But the
13288 scope bp is marked "auto-deleting", and is already on a bpstat.
13289 That bpstat is then checked for auto-deleting bp's, which are
13290 deleted.
13291
13292 A real solution to this problem might involve reference counts in
13293 bp's, and/or giving them pointers back to their referencing
13294 bpstat's, and teaching delete_breakpoint to only free a bp's
13295 storage when no more references were extent. A cheaper bandaid
13296 was chosen. */
13297 if (bpt->type == bp_none)
13298 return;
13299
13300 /* At least avoid this stale reference until the reference counting
13301 of breakpoints gets resolved. */
13302 if (bpt->related_breakpoint != bpt)
13303 {
13304 struct breakpoint *related;
13305 struct watchpoint *w;
13306
13307 if (bpt->type == bp_watchpoint_scope)
13308 w = (struct watchpoint *) bpt->related_breakpoint;
13309 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13310 w = (struct watchpoint *) bpt;
13311 else
13312 w = NULL;
13313 if (w != NULL)
13314 watchpoint_del_at_next_stop (w);
13315
13316 /* Unlink bpt from the bpt->related_breakpoint ring. */
13317 for (related = bpt; related->related_breakpoint != bpt;
13318 related = related->related_breakpoint);
13319 related->related_breakpoint = bpt->related_breakpoint;
13320 bpt->related_breakpoint = bpt;
13321 }
13322
13323 /* watch_command_1 creates a watchpoint but only sets its number if
13324 update_watchpoint succeeds in creating its bp_locations. If there's
13325 a problem in that process, we'll be asked to delete the half-created
13326 watchpoint. In that case, don't announce the deletion. */
13327 if (bpt->number)
13328 gdb::observers::breakpoint_deleted.notify (bpt);
13329
13330 if (breakpoint_chain == bpt)
13331 breakpoint_chain = bpt->next;
13332
13333 ALL_BREAKPOINTS (b)
13334 if (b->next == bpt)
13335 {
13336 b->next = bpt->next;
13337 break;
13338 }
13339
13340 /* Be sure no bpstat's are pointing at the breakpoint after it's
13341 been freed. */
13342 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13343 in all threads for now. Note that we cannot just remove bpstats
13344 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13345 commands are associated with the bpstat; if we remove it here,
13346 then the later call to bpstat_do_actions (&stop_bpstat); in
13347 event-top.c won't do anything, and temporary breakpoints with
13348 commands won't work. */
13349
13350 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13351
13352 /* Now that breakpoint is removed from breakpoint list, update the
13353 global location list. This will remove locations that used to
13354 belong to this breakpoint. Do this before freeing the breakpoint
13355 itself, since remove_breakpoint looks at location's owner. It
13356 might be better design to have location completely
13357 self-contained, but it's not the case now. */
13358 update_global_location_list (UGLL_DONT_INSERT);
13359
13360 /* On the chance that someone will soon try again to delete this
13361 same bp, we mark it as deleted before freeing its storage. */
13362 bpt->type = bp_none;
13363 delete bpt;
13364 }
13365
13366 /* Iterator function to call a user-provided callback function once
13367 for each of B and its related breakpoints. */
13368
13369 static void
13370 iterate_over_related_breakpoints (struct breakpoint *b,
13371 gdb::function_view<void (breakpoint *)> function)
13372 {
13373 struct breakpoint *related;
13374
13375 related = b;
13376 do
13377 {
13378 struct breakpoint *next;
13379
13380 /* FUNCTION may delete RELATED. */
13381 next = related->related_breakpoint;
13382
13383 if (next == related)
13384 {
13385 /* RELATED is the last ring entry. */
13386 function (related);
13387
13388 /* FUNCTION may have deleted it, so we'd never reach back to
13389 B. There's nothing left to do anyway, so just break
13390 out. */
13391 break;
13392 }
13393 else
13394 function (related);
13395
13396 related = next;
13397 }
13398 while (related != b);
13399 }
13400
13401 static void
13402 delete_command (const char *arg, int from_tty)
13403 {
13404 struct breakpoint *b, *b_tmp;
13405
13406 dont_repeat ();
13407
13408 if (arg == 0)
13409 {
13410 int breaks_to_delete = 0;
13411
13412 /* Delete all breakpoints if no argument. Do not delete
13413 internal breakpoints, these have to be deleted with an
13414 explicit breakpoint number argument. */
13415 ALL_BREAKPOINTS (b)
13416 if (user_breakpoint_p (b))
13417 {
13418 breaks_to_delete = 1;
13419 break;
13420 }
13421
13422 /* Ask user only if there are some breakpoints to delete. */
13423 if (!from_tty
13424 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13425 {
13426 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13427 if (user_breakpoint_p (b))
13428 delete_breakpoint (b);
13429 }
13430 }
13431 else
13432 map_breakpoint_numbers
13433 (arg, [&] (breakpoint *br)
13434 {
13435 iterate_over_related_breakpoints (br, delete_breakpoint);
13436 });
13437 }
13438
13439 /* Return true if all locations of B bound to PSPACE are pending. If
13440 PSPACE is NULL, all locations of all program spaces are
13441 considered. */
13442
13443 static int
13444 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13445 {
13446 struct bp_location *loc;
13447
13448 for (loc = b->loc; loc != NULL; loc = loc->next)
13449 if ((pspace == NULL
13450 || loc->pspace == pspace)
13451 && !loc->shlib_disabled
13452 && !loc->pspace->executing_startup)
13453 return 0;
13454 return 1;
13455 }
13456
13457 /* Subroutine of update_breakpoint_locations to simplify it.
13458 Return non-zero if multiple fns in list LOC have the same name.
13459 Null names are ignored. */
13460
13461 static int
13462 ambiguous_names_p (struct bp_location *loc)
13463 {
13464 struct bp_location *l;
13465 htab_up htab (htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13466 xcalloc, xfree));
13467
13468 for (l = loc; l != NULL; l = l->next)
13469 {
13470 const char **slot;
13471 const char *name = l->function_name;
13472
13473 /* Allow for some names to be NULL, ignore them. */
13474 if (name == NULL)
13475 continue;
13476
13477 slot = (const char **) htab_find_slot (htab.get (), (const void *) name,
13478 INSERT);
13479 /* NOTE: We can assume slot != NULL here because xcalloc never
13480 returns NULL. */
13481 if (*slot != NULL)
13482 return 1;
13483 *slot = name;
13484 }
13485
13486 return 0;
13487 }
13488
13489 /* When symbols change, it probably means the sources changed as well,
13490 and it might mean the static tracepoint markers are no longer at
13491 the same address or line numbers they used to be at last we
13492 checked. Losing your static tracepoints whenever you rebuild is
13493 undesirable. This function tries to resync/rematch gdb static
13494 tracepoints with the markers on the target, for static tracepoints
13495 that have not been set by marker id. Static tracepoint that have
13496 been set by marker id are reset by marker id in breakpoint_re_set.
13497 The heuristic is:
13498
13499 1) For a tracepoint set at a specific address, look for a marker at
13500 the old PC. If one is found there, assume to be the same marker.
13501 If the name / string id of the marker found is different from the
13502 previous known name, assume that means the user renamed the marker
13503 in the sources, and output a warning.
13504
13505 2) For a tracepoint set at a given line number, look for a marker
13506 at the new address of the old line number. If one is found there,
13507 assume to be the same marker. If the name / string id of the
13508 marker found is different from the previous known name, assume that
13509 means the user renamed the marker in the sources, and output a
13510 warning.
13511
13512 3) If a marker is no longer found at the same address or line, it
13513 may mean the marker no longer exists. But it may also just mean
13514 the code changed a bit. Maybe the user added a few lines of code
13515 that made the marker move up or down (in line number terms). Ask
13516 the target for info about the marker with the string id as we knew
13517 it. If found, update line number and address in the matching
13518 static tracepoint. This will get confused if there's more than one
13519 marker with the same ID (possible in UST, although unadvised
13520 precisely because it confuses tools). */
13521
13522 static struct symtab_and_line
13523 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13524 {
13525 struct tracepoint *tp = (struct tracepoint *) b;
13526 struct static_tracepoint_marker marker;
13527 CORE_ADDR pc;
13528
13529 pc = sal.pc;
13530 if (sal.line)
13531 find_line_pc (sal.symtab, sal.line, &pc);
13532
13533 if (target_static_tracepoint_marker_at (pc, &marker))
13534 {
13535 if (tp->static_trace_marker_id != marker.str_id)
13536 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13537 b->number, tp->static_trace_marker_id.c_str (),
13538 marker.str_id.c_str ());
13539
13540 tp->static_trace_marker_id = std::move (marker.str_id);
13541
13542 return sal;
13543 }
13544
13545 /* Old marker wasn't found on target at lineno. Try looking it up
13546 by string ID. */
13547 if (!sal.explicit_pc
13548 && sal.line != 0
13549 && sal.symtab != NULL
13550 && !tp->static_trace_marker_id.empty ())
13551 {
13552 std::vector<static_tracepoint_marker> markers
13553 = target_static_tracepoint_markers_by_strid
13554 (tp->static_trace_marker_id.c_str ());
13555
13556 if (!markers.empty ())
13557 {
13558 struct symbol *sym;
13559 struct static_tracepoint_marker *tpmarker;
13560 struct ui_out *uiout = current_uiout;
13561 struct explicit_location explicit_loc;
13562
13563 tpmarker = &markers[0];
13564
13565 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13566
13567 warning (_("marker for static tracepoint %d (%s) not "
13568 "found at previous line number"),
13569 b->number, tp->static_trace_marker_id.c_str ());
13570
13571 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13572 sym = find_pc_sect_function (tpmarker->address, NULL);
13573 uiout->text ("Now in ");
13574 if (sym)
13575 {
13576 uiout->field_string ("func", sym->print_name (),
13577 function_name_style.style ());
13578 uiout->text (" at ");
13579 }
13580 uiout->field_string ("file",
13581 symtab_to_filename_for_display (sal2.symtab),
13582 file_name_style.style ());
13583 uiout->text (":");
13584
13585 if (uiout->is_mi_like_p ())
13586 {
13587 const char *fullname = symtab_to_fullname (sal2.symtab);
13588
13589 uiout->field_string ("fullname", fullname);
13590 }
13591
13592 uiout->field_signed ("line", sal2.line);
13593 uiout->text ("\n");
13594
13595 b->loc->line_number = sal2.line;
13596 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13597
13598 b->location.reset (NULL);
13599 initialize_explicit_location (&explicit_loc);
13600 explicit_loc.source_filename
13601 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13602 explicit_loc.line_offset.offset = b->loc->line_number;
13603 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13604 b->location = new_explicit_location (&explicit_loc);
13605
13606 /* Might be nice to check if function changed, and warn if
13607 so. */
13608 }
13609 }
13610 return sal;
13611 }
13612
13613 /* Returns 1 iff locations A and B are sufficiently same that
13614 we don't need to report breakpoint as changed. */
13615
13616 static int
13617 locations_are_equal (struct bp_location *a, struct bp_location *b)
13618 {
13619 while (a && b)
13620 {
13621 if (a->address != b->address)
13622 return 0;
13623
13624 if (a->shlib_disabled != b->shlib_disabled)
13625 return 0;
13626
13627 if (a->enabled != b->enabled)
13628 return 0;
13629
13630 if (a->disabled_by_cond != b->disabled_by_cond)
13631 return 0;
13632
13633 a = a->next;
13634 b = b->next;
13635 }
13636
13637 if ((a == NULL) != (b == NULL))
13638 return 0;
13639
13640 return 1;
13641 }
13642
13643 /* Split all locations of B that are bound to PSPACE out of B's
13644 location list to a separate list and return that list's head. If
13645 PSPACE is NULL, hoist out all locations of B. */
13646
13647 static struct bp_location *
13648 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13649 {
13650 struct bp_location head;
13651 struct bp_location *i = b->loc;
13652 struct bp_location **i_link = &b->loc;
13653 struct bp_location *hoisted = &head;
13654
13655 if (pspace == NULL)
13656 {
13657 i = b->loc;
13658 b->loc = NULL;
13659 return i;
13660 }
13661
13662 head.next = NULL;
13663
13664 while (i != NULL)
13665 {
13666 if (i->pspace == pspace)
13667 {
13668 *i_link = i->next;
13669 i->next = NULL;
13670 hoisted->next = i;
13671 hoisted = i;
13672 }
13673 else
13674 i_link = &i->next;
13675 i = *i_link;
13676 }
13677
13678 return head.next;
13679 }
13680
13681 /* Create new breakpoint locations for B (a hardware or software
13682 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13683 zero, then B is a ranged breakpoint. Only recreates locations for
13684 FILTER_PSPACE. Locations of other program spaces are left
13685 untouched. */
13686
13687 void
13688 update_breakpoint_locations (struct breakpoint *b,
13689 struct program_space *filter_pspace,
13690 gdb::array_view<const symtab_and_line> sals,
13691 gdb::array_view<const symtab_and_line> sals_end)
13692 {
13693 struct bp_location *existing_locations;
13694
13695 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13696 {
13697 /* Ranged breakpoints have only one start location and one end
13698 location. */
13699 b->enable_state = bp_disabled;
13700 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13701 "multiple locations found\n"),
13702 b->number);
13703 return;
13704 }
13705
13706 /* If there's no new locations, and all existing locations are
13707 pending, don't do anything. This optimizes the common case where
13708 all locations are in the same shared library, that was unloaded.
13709 We'd like to retain the location, so that when the library is
13710 loaded again, we don't loose the enabled/disabled status of the
13711 individual locations. */
13712 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13713 return;
13714
13715 existing_locations = hoist_existing_locations (b, filter_pspace);
13716
13717 for (const auto &sal : sals)
13718 {
13719 struct bp_location *new_loc;
13720
13721 switch_to_program_space_and_thread (sal.pspace);
13722
13723 new_loc = add_location_to_breakpoint (b, &sal);
13724
13725 /* Reparse conditions, they might contain references to the
13726 old symtab. */
13727 if (b->cond_string != NULL)
13728 {
13729 const char *s;
13730
13731 s = b->cond_string;
13732 try
13733 {
13734 new_loc->cond = parse_exp_1 (&s, sal.pc,
13735 block_for_pc (sal.pc),
13736 0);
13737 }
13738 catch (const gdb_exception_error &e)
13739 {
13740 new_loc->disabled_by_cond = true;
13741 }
13742 }
13743
13744 if (!sals_end.empty ())
13745 {
13746 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13747
13748 new_loc->length = end - sals[0].pc + 1;
13749 }
13750 }
13751
13752 /* If possible, carry over 'disable' status from existing
13753 breakpoints. */
13754 {
13755 struct bp_location *e = existing_locations;
13756 /* If there are multiple breakpoints with the same function name,
13757 e.g. for inline functions, comparing function names won't work.
13758 Instead compare pc addresses; this is just a heuristic as things
13759 may have moved, but in practice it gives the correct answer
13760 often enough until a better solution is found. */
13761 int have_ambiguous_names = ambiguous_names_p (b->loc);
13762
13763 for (; e; e = e->next)
13764 {
13765 if ((!e->enabled || e->disabled_by_cond) && e->function_name)
13766 {
13767 struct bp_location *l = b->loc;
13768 if (have_ambiguous_names)
13769 {
13770 for (; l; l = l->next)
13771 {
13772 /* Ignore software vs hardware location type at
13773 this point, because with "set breakpoint
13774 auto-hw", after a re-set, locations that were
13775 hardware can end up as software, or vice versa.
13776 As mentioned above, this is an heuristic and in
13777 practice should give the correct answer often
13778 enough. */
13779 if (breakpoint_locations_match (e, l, true))
13780 {
13781 l->enabled = e->enabled;
13782 l->disabled_by_cond = e->disabled_by_cond;
13783 break;
13784 }
13785 }
13786 }
13787 else
13788 {
13789 for (; l; l = l->next)
13790 if (l->function_name
13791 && strcmp (e->function_name, l->function_name) == 0)
13792 {
13793 l->enabled = e->enabled;
13794 l->disabled_by_cond = e->disabled_by_cond;
13795 break;
13796 }
13797 }
13798 }
13799 }
13800 }
13801
13802 if (!locations_are_equal (existing_locations, b->loc))
13803 gdb::observers::breakpoint_modified.notify (b);
13804 }
13805
13806 /* Find the SaL locations corresponding to the given LOCATION.
13807 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13808
13809 static std::vector<symtab_and_line>
13810 location_to_sals (struct breakpoint *b, struct event_location *location,
13811 struct program_space *search_pspace, int *found)
13812 {
13813 struct gdb_exception exception;
13814
13815 gdb_assert (b->ops != NULL);
13816
13817 std::vector<symtab_and_line> sals;
13818
13819 try
13820 {
13821 sals = b->ops->decode_location (b, location, search_pspace);
13822 }
13823 catch (gdb_exception_error &e)
13824 {
13825 int not_found_and_ok = 0;
13826
13827 /* For pending breakpoints, it's expected that parsing will
13828 fail until the right shared library is loaded. User has
13829 already told to create pending breakpoints and don't need
13830 extra messages. If breakpoint is in bp_shlib_disabled
13831 state, then user already saw the message about that
13832 breakpoint being disabled, and don't want to see more
13833 errors. */
13834 if (e.error == NOT_FOUND_ERROR
13835 && (b->condition_not_parsed
13836 || (b->loc != NULL
13837 && search_pspace != NULL
13838 && b->loc->pspace != search_pspace)
13839 || (b->loc && b->loc->shlib_disabled)
13840 || (b->loc && b->loc->pspace->executing_startup)
13841 || b->enable_state == bp_disabled))
13842 not_found_and_ok = 1;
13843
13844 if (!not_found_and_ok)
13845 {
13846 /* We surely don't want to warn about the same breakpoint
13847 10 times. One solution, implemented here, is disable
13848 the breakpoint on error. Another solution would be to
13849 have separate 'warning emitted' flag. Since this
13850 happens only when a binary has changed, I don't know
13851 which approach is better. */
13852 b->enable_state = bp_disabled;
13853 throw;
13854 }
13855
13856 exception = std::move (e);
13857 }
13858
13859 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13860 {
13861 for (auto &sal : sals)
13862 resolve_sal_pc (&sal);
13863 if (b->condition_not_parsed && b->extra_string != NULL)
13864 {
13865 char *cond_string, *extra_string;
13866 int thread, task;
13867
13868 find_condition_and_thread_for_sals (sals, b->extra_string,
13869 &cond_string, &thread,
13870 &task, &extra_string);
13871 gdb_assert (b->cond_string == NULL);
13872 if (cond_string)
13873 b->cond_string = cond_string;
13874 b->thread = thread;
13875 b->task = task;
13876 if (extra_string)
13877 {
13878 xfree (b->extra_string);
13879 b->extra_string = extra_string;
13880 }
13881 b->condition_not_parsed = 0;
13882 }
13883
13884 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13885 sals[0] = update_static_tracepoint (b, sals[0]);
13886
13887 *found = 1;
13888 }
13889 else
13890 *found = 0;
13891
13892 return sals;
13893 }
13894
13895 /* The default re_set method, for typical hardware or software
13896 breakpoints. Reevaluate the breakpoint and recreate its
13897 locations. */
13898
13899 static void
13900 breakpoint_re_set_default (struct breakpoint *b)
13901 {
13902 struct program_space *filter_pspace = current_program_space;
13903 std::vector<symtab_and_line> expanded, expanded_end;
13904
13905 int found;
13906 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13907 filter_pspace, &found);
13908 if (found)
13909 expanded = std::move (sals);
13910
13911 if (b->location_range_end != NULL)
13912 {
13913 std::vector<symtab_and_line> sals_end
13914 = location_to_sals (b, b->location_range_end.get (),
13915 filter_pspace, &found);
13916 if (found)
13917 expanded_end = std::move (sals_end);
13918 }
13919
13920 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13921 }
13922
13923 /* Default method for creating SALs from an address string. It basically
13924 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13925
13926 static void
13927 create_sals_from_location_default (struct event_location *location,
13928 struct linespec_result *canonical,
13929 enum bptype type_wanted)
13930 {
13931 parse_breakpoint_sals (location, canonical);
13932 }
13933
13934 /* Call create_breakpoints_sal for the given arguments. This is the default
13935 function for the `create_breakpoints_sal' method of
13936 breakpoint_ops. */
13937
13938 static void
13939 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13940 struct linespec_result *canonical,
13941 gdb::unique_xmalloc_ptr<char> cond_string,
13942 gdb::unique_xmalloc_ptr<char> extra_string,
13943 enum bptype type_wanted,
13944 enum bpdisp disposition,
13945 int thread,
13946 int task, int ignore_count,
13947 const struct breakpoint_ops *ops,
13948 int from_tty, int enabled,
13949 int internal, unsigned flags)
13950 {
13951 create_breakpoints_sal (gdbarch, canonical,
13952 std::move (cond_string),
13953 std::move (extra_string),
13954 type_wanted, disposition,
13955 thread, task, ignore_count, ops, from_tty,
13956 enabled, internal, flags);
13957 }
13958
13959 /* Decode the line represented by S by calling decode_line_full. This is the
13960 default function for the `decode_location' method of breakpoint_ops. */
13961
13962 static std::vector<symtab_and_line>
13963 decode_location_default (struct breakpoint *b,
13964 struct event_location *location,
13965 struct program_space *search_pspace)
13966 {
13967 struct linespec_result canonical;
13968
13969 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13970 NULL, 0, &canonical, multiple_symbols_all,
13971 b->filter.get ());
13972
13973 /* We should get 0 or 1 resulting SALs. */
13974 gdb_assert (canonical.lsals.size () < 2);
13975
13976 if (!canonical.lsals.empty ())
13977 {
13978 const linespec_sals &lsal = canonical.lsals[0];
13979 return std::move (lsal.sals);
13980 }
13981 return {};
13982 }
13983
13984 /* Reset a breakpoint. */
13985
13986 static void
13987 breakpoint_re_set_one (breakpoint *b)
13988 {
13989 input_radix = b->input_radix;
13990 set_language (b->language);
13991
13992 b->ops->re_set (b);
13993 }
13994
13995 /* Re-set breakpoint locations for the current program space.
13996 Locations bound to other program spaces are left untouched. */
13997
13998 void
13999 breakpoint_re_set (void)
14000 {
14001 struct breakpoint *b, *b_tmp;
14002
14003 {
14004 scoped_restore_current_language save_language;
14005 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
14006 scoped_restore_current_pspace_and_thread restore_pspace_thread;
14007
14008 /* breakpoint_re_set_one sets the current_language to the language
14009 of the breakpoint it is resetting (see prepare_re_set_context)
14010 before re-evaluating the breakpoint's location. This change can
14011 unfortunately get undone by accident if the language_mode is set
14012 to auto, and we either switch frames, or more likely in this context,
14013 we select the current frame.
14014
14015 We prevent this by temporarily turning the language_mode to
14016 language_mode_manual. We restore it once all breakpoints
14017 have been reset. */
14018 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
14019 language_mode = language_mode_manual;
14020
14021 /* Note: we must not try to insert locations until after all
14022 breakpoints have been re-set. Otherwise, e.g., when re-setting
14023 breakpoint 1, we'd insert the locations of breakpoint 2, which
14024 hadn't been re-set yet, and thus may have stale locations. */
14025
14026 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14027 {
14028 try
14029 {
14030 breakpoint_re_set_one (b);
14031 }
14032 catch (const gdb_exception &ex)
14033 {
14034 exception_fprintf (gdb_stderr, ex,
14035 "Error in re-setting breakpoint %d: ",
14036 b->number);
14037 }
14038 }
14039
14040 jit_breakpoint_re_set ();
14041 }
14042
14043 create_overlay_event_breakpoint ();
14044 create_longjmp_master_breakpoint ();
14045 create_std_terminate_master_breakpoint ();
14046 create_exception_master_breakpoint ();
14047
14048 /* Now we can insert. */
14049 update_global_location_list (UGLL_MAY_INSERT);
14050 }
14051 \f
14052 /* Reset the thread number of this breakpoint:
14053
14054 - If the breakpoint is for all threads, leave it as-is.
14055 - Else, reset it to the current thread for inferior_ptid. */
14056 void
14057 breakpoint_re_set_thread (struct breakpoint *b)
14058 {
14059 if (b->thread != -1)
14060 {
14061 b->thread = inferior_thread ()->global_num;
14062
14063 /* We're being called after following a fork. The new fork is
14064 selected as current, and unless this was a vfork will have a
14065 different program space from the original thread. Reset that
14066 as well. */
14067 b->loc->pspace = current_program_space;
14068 }
14069 }
14070
14071 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14072 If from_tty is nonzero, it prints a message to that effect,
14073 which ends with a period (no newline). */
14074
14075 void
14076 set_ignore_count (int bptnum, int count, int from_tty)
14077 {
14078 struct breakpoint *b;
14079
14080 if (count < 0)
14081 count = 0;
14082
14083 ALL_BREAKPOINTS (b)
14084 if (b->number == bptnum)
14085 {
14086 if (is_tracepoint (b))
14087 {
14088 if (from_tty && count != 0)
14089 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14090 bptnum);
14091 return;
14092 }
14093
14094 b->ignore_count = count;
14095 if (from_tty)
14096 {
14097 if (count == 0)
14098 printf_filtered (_("Will stop next time "
14099 "breakpoint %d is reached."),
14100 bptnum);
14101 else if (count == 1)
14102 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14103 bptnum);
14104 else
14105 printf_filtered (_("Will ignore next %d "
14106 "crossings of breakpoint %d."),
14107 count, bptnum);
14108 }
14109 gdb::observers::breakpoint_modified.notify (b);
14110 return;
14111 }
14112
14113 error (_("No breakpoint number %d."), bptnum);
14114 }
14115
14116 /* Command to set ignore-count of breakpoint N to COUNT. */
14117
14118 static void
14119 ignore_command (const char *args, int from_tty)
14120 {
14121 const char *p = args;
14122 int num;
14123
14124 if (p == 0)
14125 error_no_arg (_("a breakpoint number"));
14126
14127 num = get_number (&p);
14128 if (num == 0)
14129 error (_("bad breakpoint number: '%s'"), args);
14130 if (*p == 0)
14131 error (_("Second argument (specified ignore-count) is missing."));
14132
14133 set_ignore_count (num,
14134 longest_to_int (value_as_long (parse_and_eval (p))),
14135 from_tty);
14136 if (from_tty)
14137 printf_filtered ("\n");
14138 }
14139 \f
14140
14141 /* Call FUNCTION on each of the breakpoints with numbers in the range
14142 defined by BP_NUM_RANGE (an inclusive range). */
14143
14144 static void
14145 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14146 gdb::function_view<void (breakpoint *)> function)
14147 {
14148 if (bp_num_range.first == 0)
14149 {
14150 warning (_("bad breakpoint number at or near '%d'"),
14151 bp_num_range.first);
14152 }
14153 else
14154 {
14155 struct breakpoint *b, *tmp;
14156
14157 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14158 {
14159 bool match = false;
14160
14161 ALL_BREAKPOINTS_SAFE (b, tmp)
14162 if (b->number == i)
14163 {
14164 match = true;
14165 function (b);
14166 break;
14167 }
14168 if (!match)
14169 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14170 }
14171 }
14172 }
14173
14174 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14175 ARGS. */
14176
14177 static void
14178 map_breakpoint_numbers (const char *args,
14179 gdb::function_view<void (breakpoint *)> function)
14180 {
14181 if (args == NULL || *args == '\0')
14182 error_no_arg (_("one or more breakpoint numbers"));
14183
14184 number_or_range_parser parser (args);
14185
14186 while (!parser.finished ())
14187 {
14188 int num = parser.get_number ();
14189 map_breakpoint_number_range (std::make_pair (num, num), function);
14190 }
14191 }
14192
14193 /* Return the breakpoint location structure corresponding to the
14194 BP_NUM and LOC_NUM values. */
14195
14196 static struct bp_location *
14197 find_location_by_number (int bp_num, int loc_num)
14198 {
14199 struct breakpoint *b;
14200
14201 ALL_BREAKPOINTS (b)
14202 if (b->number == bp_num)
14203 {
14204 break;
14205 }
14206
14207 if (!b || b->number != bp_num)
14208 error (_("Bad breakpoint number '%d'"), bp_num);
14209
14210 if (loc_num == 0)
14211 error (_("Bad breakpoint location number '%d'"), loc_num);
14212
14213 int n = 0;
14214 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14215 if (++n == loc_num)
14216 return loc;
14217
14218 error (_("Bad breakpoint location number '%d'"), loc_num);
14219 }
14220
14221 /* Modes of operation for extract_bp_num. */
14222 enum class extract_bp_kind
14223 {
14224 /* Extracting a breakpoint number. */
14225 bp,
14226
14227 /* Extracting a location number. */
14228 loc,
14229 };
14230
14231 /* Extract a breakpoint or location number (as determined by KIND)
14232 from the string starting at START. TRAILER is a character which
14233 can be found after the number. If you don't want a trailer, use
14234 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14235 string. This always returns a positive integer. */
14236
14237 static int
14238 extract_bp_num (extract_bp_kind kind, const char *start,
14239 int trailer, const char **end_out = NULL)
14240 {
14241 const char *end = start;
14242 int num = get_number_trailer (&end, trailer);
14243 if (num < 0)
14244 error (kind == extract_bp_kind::bp
14245 ? _("Negative breakpoint number '%.*s'")
14246 : _("Negative breakpoint location number '%.*s'"),
14247 int (end - start), start);
14248 if (num == 0)
14249 error (kind == extract_bp_kind::bp
14250 ? _("Bad breakpoint number '%.*s'")
14251 : _("Bad breakpoint location number '%.*s'"),
14252 int (end - start), start);
14253
14254 if (end_out != NULL)
14255 *end_out = end;
14256 return num;
14257 }
14258
14259 /* Extract a breakpoint or location range (as determined by KIND) in
14260 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14261 representing the (inclusive) range. The returned pair's elements
14262 are always positive integers. */
14263
14264 static std::pair<int, int>
14265 extract_bp_or_bp_range (extract_bp_kind kind,
14266 const std::string &arg,
14267 std::string::size_type arg_offset)
14268 {
14269 std::pair<int, int> range;
14270 const char *bp_loc = &arg[arg_offset];
14271 std::string::size_type dash = arg.find ('-', arg_offset);
14272 if (dash != std::string::npos)
14273 {
14274 /* bp_loc is a range (x-z). */
14275 if (arg.length () == dash + 1)
14276 error (kind == extract_bp_kind::bp
14277 ? _("Bad breakpoint number at or near: '%s'")
14278 : _("Bad breakpoint location number at or near: '%s'"),
14279 bp_loc);
14280
14281 const char *end;
14282 const char *start_first = bp_loc;
14283 const char *start_second = &arg[dash + 1];
14284 range.first = extract_bp_num (kind, start_first, '-');
14285 range.second = extract_bp_num (kind, start_second, '\0', &end);
14286
14287 if (range.first > range.second)
14288 error (kind == extract_bp_kind::bp
14289 ? _("Inverted breakpoint range at '%.*s'")
14290 : _("Inverted breakpoint location range at '%.*s'"),
14291 int (end - start_first), start_first);
14292 }
14293 else
14294 {
14295 /* bp_loc is a single value. */
14296 range.first = extract_bp_num (kind, bp_loc, '\0');
14297 range.second = range.first;
14298 }
14299 return range;
14300 }
14301
14302 /* Extract the breakpoint/location range specified by ARG. Returns
14303 the breakpoint range in BP_NUM_RANGE, and the location range in
14304 BP_LOC_RANGE.
14305
14306 ARG may be in any of the following forms:
14307
14308 x where 'x' is a breakpoint number.
14309 x-y where 'x' and 'y' specify a breakpoint numbers range.
14310 x.y where 'x' is a breakpoint number and 'y' a location number.
14311 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14312 location number range.
14313 */
14314
14315 static void
14316 extract_bp_number_and_location (const std::string &arg,
14317 std::pair<int, int> &bp_num_range,
14318 std::pair<int, int> &bp_loc_range)
14319 {
14320 std::string::size_type dot = arg.find ('.');
14321
14322 if (dot != std::string::npos)
14323 {
14324 /* Handle 'x.y' and 'x.y-z' cases. */
14325
14326 if (arg.length () == dot + 1 || dot == 0)
14327 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14328
14329 bp_num_range.first
14330 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14331 bp_num_range.second = bp_num_range.first;
14332
14333 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14334 arg, dot + 1);
14335 }
14336 else
14337 {
14338 /* Handle x and x-y cases. */
14339
14340 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14341 bp_loc_range.first = 0;
14342 bp_loc_range.second = 0;
14343 }
14344 }
14345
14346 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14347 specifies whether to enable or disable. */
14348
14349 static void
14350 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14351 {
14352 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14353 if (loc != NULL)
14354 {
14355 if (loc->disabled_by_cond && enable)
14356 error (_("Breakpoint %d's condition is invalid at location %d, "
14357 "cannot enable."), bp_num, loc_num);
14358
14359 if (loc->enabled != enable)
14360 {
14361 loc->enabled = enable;
14362 mark_breakpoint_location_modified (loc);
14363 }
14364 if (target_supports_enable_disable_tracepoint ()
14365 && current_trace_status ()->running && loc->owner
14366 && is_tracepoint (loc->owner))
14367 target_disable_tracepoint (loc);
14368 }
14369 update_global_location_list (UGLL_DONT_INSERT);
14370
14371 gdb::observers::breakpoint_modified.notify (loc->owner);
14372 }
14373
14374 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14375 number of the breakpoint, and BP_LOC_RANGE specifies the
14376 (inclusive) range of location numbers of that breakpoint to
14377 enable/disable. ENABLE specifies whether to enable or disable the
14378 location. */
14379
14380 static void
14381 enable_disable_breakpoint_location_range (int bp_num,
14382 std::pair<int, int> &bp_loc_range,
14383 bool enable)
14384 {
14385 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14386 enable_disable_bp_num_loc (bp_num, i, enable);
14387 }
14388
14389 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14390 If from_tty is nonzero, it prints a message to that effect,
14391 which ends with a period (no newline). */
14392
14393 void
14394 disable_breakpoint (struct breakpoint *bpt)
14395 {
14396 /* Never disable a watchpoint scope breakpoint; we want to
14397 hit them when we leave scope so we can delete both the
14398 watchpoint and its scope breakpoint at that time. */
14399 if (bpt->type == bp_watchpoint_scope)
14400 return;
14401
14402 bpt->enable_state = bp_disabled;
14403
14404 /* Mark breakpoint locations modified. */
14405 mark_breakpoint_modified (bpt);
14406
14407 if (target_supports_enable_disable_tracepoint ()
14408 && current_trace_status ()->running && is_tracepoint (bpt))
14409 {
14410 struct bp_location *location;
14411
14412 for (location = bpt->loc; location; location = location->next)
14413 target_disable_tracepoint (location);
14414 }
14415
14416 update_global_location_list (UGLL_DONT_INSERT);
14417
14418 gdb::observers::breakpoint_modified.notify (bpt);
14419 }
14420
14421 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14422 specified in ARGS. ARGS may be in any of the formats handled by
14423 extract_bp_number_and_location. ENABLE specifies whether to enable
14424 or disable the breakpoints/locations. */
14425
14426 static void
14427 enable_disable_command (const char *args, int from_tty, bool enable)
14428 {
14429 if (args == 0)
14430 {
14431 struct breakpoint *bpt;
14432
14433 ALL_BREAKPOINTS (bpt)
14434 if (user_breakpoint_p (bpt))
14435 {
14436 if (enable)
14437 enable_breakpoint (bpt);
14438 else
14439 disable_breakpoint (bpt);
14440 }
14441 }
14442 else
14443 {
14444 std::string num = extract_arg (&args);
14445
14446 while (!num.empty ())
14447 {
14448 std::pair<int, int> bp_num_range, bp_loc_range;
14449
14450 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14451
14452 if (bp_loc_range.first == bp_loc_range.second
14453 && bp_loc_range.first == 0)
14454 {
14455 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14456 map_breakpoint_number_range (bp_num_range,
14457 enable
14458 ? enable_breakpoint
14459 : disable_breakpoint);
14460 }
14461 else
14462 {
14463 /* Handle breakpoint ids with formats 'x.y' or
14464 'x.y-z'. */
14465 enable_disable_breakpoint_location_range
14466 (bp_num_range.first, bp_loc_range, enable);
14467 }
14468 num = extract_arg (&args);
14469 }
14470 }
14471 }
14472
14473 /* The disable command disables the specified breakpoints/locations
14474 (or all defined breakpoints) so they're no longer effective in
14475 stopping the inferior. ARGS may be in any of the forms defined in
14476 extract_bp_number_and_location. */
14477
14478 static void
14479 disable_command (const char *args, int from_tty)
14480 {
14481 enable_disable_command (args, from_tty, false);
14482 }
14483
14484 static void
14485 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14486 int count)
14487 {
14488 int target_resources_ok;
14489
14490 if (bpt->type == bp_hardware_breakpoint)
14491 {
14492 int i;
14493 i = hw_breakpoint_used_count ();
14494 target_resources_ok =
14495 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14496 i + 1, 0);
14497 if (target_resources_ok == 0)
14498 error (_("No hardware breakpoint support in the target."));
14499 else if (target_resources_ok < 0)
14500 error (_("Hardware breakpoints used exceeds limit."));
14501 }
14502
14503 if (is_watchpoint (bpt))
14504 {
14505 /* Initialize it just to avoid a GCC false warning. */
14506 enum enable_state orig_enable_state = bp_disabled;
14507
14508 try
14509 {
14510 struct watchpoint *w = (struct watchpoint *) bpt;
14511
14512 orig_enable_state = bpt->enable_state;
14513 bpt->enable_state = bp_enabled;
14514 update_watchpoint (w, 1 /* reparse */);
14515 }
14516 catch (const gdb_exception &e)
14517 {
14518 bpt->enable_state = orig_enable_state;
14519 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14520 bpt->number);
14521 return;
14522 }
14523 }
14524
14525 bpt->enable_state = bp_enabled;
14526
14527 /* Mark breakpoint locations modified. */
14528 mark_breakpoint_modified (bpt);
14529
14530 if (target_supports_enable_disable_tracepoint ()
14531 && current_trace_status ()->running && is_tracepoint (bpt))
14532 {
14533 struct bp_location *location;
14534
14535 for (location = bpt->loc; location; location = location->next)
14536 target_enable_tracepoint (location);
14537 }
14538
14539 bpt->disposition = disposition;
14540 bpt->enable_count = count;
14541 update_global_location_list (UGLL_MAY_INSERT);
14542
14543 gdb::observers::breakpoint_modified.notify (bpt);
14544 }
14545
14546
14547 void
14548 enable_breakpoint (struct breakpoint *bpt)
14549 {
14550 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14551 }
14552
14553 /* The enable command enables the specified breakpoints/locations (or
14554 all defined breakpoints) so they once again become (or continue to
14555 be) effective in stopping the inferior. ARGS may be in any of the
14556 forms defined in extract_bp_number_and_location. */
14557
14558 static void
14559 enable_command (const char *args, int from_tty)
14560 {
14561 enable_disable_command (args, from_tty, true);
14562 }
14563
14564 static void
14565 enable_once_command (const char *args, int from_tty)
14566 {
14567 map_breakpoint_numbers
14568 (args, [&] (breakpoint *b)
14569 {
14570 iterate_over_related_breakpoints
14571 (b, [&] (breakpoint *bpt)
14572 {
14573 enable_breakpoint_disp (bpt, disp_disable, 1);
14574 });
14575 });
14576 }
14577
14578 static void
14579 enable_count_command (const char *args, int from_tty)
14580 {
14581 int count;
14582
14583 if (args == NULL)
14584 error_no_arg (_("hit count"));
14585
14586 count = get_number (&args);
14587
14588 map_breakpoint_numbers
14589 (args, [&] (breakpoint *b)
14590 {
14591 iterate_over_related_breakpoints
14592 (b, [&] (breakpoint *bpt)
14593 {
14594 enable_breakpoint_disp (bpt, disp_disable, count);
14595 });
14596 });
14597 }
14598
14599 static void
14600 enable_delete_command (const char *args, int from_tty)
14601 {
14602 map_breakpoint_numbers
14603 (args, [&] (breakpoint *b)
14604 {
14605 iterate_over_related_breakpoints
14606 (b, [&] (breakpoint *bpt)
14607 {
14608 enable_breakpoint_disp (bpt, disp_del, 1);
14609 });
14610 });
14611 }
14612 \f
14613 /* Invalidate last known value of any hardware watchpoint if
14614 the memory which that value represents has been written to by
14615 GDB itself. */
14616
14617 static void
14618 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14619 CORE_ADDR addr, ssize_t len,
14620 const bfd_byte *data)
14621 {
14622 struct breakpoint *bp;
14623
14624 ALL_BREAKPOINTS (bp)
14625 if (bp->enable_state == bp_enabled
14626 && bp->type == bp_hardware_watchpoint)
14627 {
14628 struct watchpoint *wp = (struct watchpoint *) bp;
14629
14630 if (wp->val_valid && wp->val != nullptr)
14631 {
14632 struct bp_location *loc;
14633
14634 for (loc = bp->loc; loc != NULL; loc = loc->next)
14635 if (loc->loc_type == bp_loc_hardware_watchpoint
14636 && loc->address + loc->length > addr
14637 && addr + len > loc->address)
14638 {
14639 wp->val = NULL;
14640 wp->val_valid = false;
14641 }
14642 }
14643 }
14644 }
14645
14646 /* Create and insert a breakpoint for software single step. */
14647
14648 void
14649 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14650 const address_space *aspace,
14651 CORE_ADDR next_pc)
14652 {
14653 struct thread_info *tp = inferior_thread ();
14654 struct symtab_and_line sal;
14655 CORE_ADDR pc = next_pc;
14656
14657 if (tp->control.single_step_breakpoints == NULL)
14658 {
14659 tp->control.single_step_breakpoints
14660 = new_single_step_breakpoint (tp->global_num, gdbarch);
14661 }
14662
14663 sal = find_pc_line (pc, 0);
14664 sal.pc = pc;
14665 sal.section = find_pc_overlay (pc);
14666 sal.explicit_pc = 1;
14667 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14668
14669 update_global_location_list (UGLL_INSERT);
14670 }
14671
14672 /* Insert single step breakpoints according to the current state. */
14673
14674 int
14675 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14676 {
14677 struct regcache *regcache = get_current_regcache ();
14678 std::vector<CORE_ADDR> next_pcs;
14679
14680 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14681
14682 if (!next_pcs.empty ())
14683 {
14684 struct frame_info *frame = get_current_frame ();
14685 const address_space *aspace = get_frame_address_space (frame);
14686
14687 for (CORE_ADDR pc : next_pcs)
14688 insert_single_step_breakpoint (gdbarch, aspace, pc);
14689
14690 return 1;
14691 }
14692 else
14693 return 0;
14694 }
14695
14696 /* See breakpoint.h. */
14697
14698 int
14699 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14700 const address_space *aspace,
14701 CORE_ADDR pc)
14702 {
14703 struct bp_location *loc;
14704
14705 for (loc = bp->loc; loc != NULL; loc = loc->next)
14706 if (loc->inserted
14707 && breakpoint_location_address_match (loc, aspace, pc))
14708 return 1;
14709
14710 return 0;
14711 }
14712
14713 /* Check whether a software single-step breakpoint is inserted at
14714 PC. */
14715
14716 int
14717 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14718 CORE_ADDR pc)
14719 {
14720 struct breakpoint *bpt;
14721
14722 ALL_BREAKPOINTS (bpt)
14723 {
14724 if (bpt->type == bp_single_step
14725 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14726 return 1;
14727 }
14728 return 0;
14729 }
14730
14731 /* Tracepoint-specific operations. */
14732
14733 /* Set tracepoint count to NUM. */
14734 static void
14735 set_tracepoint_count (int num)
14736 {
14737 tracepoint_count = num;
14738 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14739 }
14740
14741 static void
14742 trace_command (const char *arg, int from_tty)
14743 {
14744 event_location_up location = string_to_event_location (&arg,
14745 current_language);
14746 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
14747 (location.get (), true /* is_tracepoint */);
14748
14749 create_breakpoint (get_current_arch (),
14750 location.get (),
14751 NULL, 0, arg, false, 1 /* parse arg */,
14752 0 /* tempflag */,
14753 bp_tracepoint /* type_wanted */,
14754 0 /* Ignore count */,
14755 pending_break_support,
14756 ops,
14757 from_tty,
14758 1 /* enabled */,
14759 0 /* internal */, 0);
14760 }
14761
14762 static void
14763 ftrace_command (const char *arg, int from_tty)
14764 {
14765 event_location_up location = string_to_event_location (&arg,
14766 current_language);
14767 create_breakpoint (get_current_arch (),
14768 location.get (),
14769 NULL, 0, arg, false, 1 /* parse arg */,
14770 0 /* tempflag */,
14771 bp_fast_tracepoint /* type_wanted */,
14772 0 /* Ignore count */,
14773 pending_break_support,
14774 &tracepoint_breakpoint_ops,
14775 from_tty,
14776 1 /* enabled */,
14777 0 /* internal */, 0);
14778 }
14779
14780 /* strace command implementation. Creates a static tracepoint. */
14781
14782 static void
14783 strace_command (const char *arg, int from_tty)
14784 {
14785 struct breakpoint_ops *ops;
14786 event_location_up location;
14787
14788 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14789 or with a normal static tracepoint. */
14790 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14791 {
14792 ops = &strace_marker_breakpoint_ops;
14793 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14794 }
14795 else
14796 {
14797 ops = &tracepoint_breakpoint_ops;
14798 location = string_to_event_location (&arg, current_language);
14799 }
14800
14801 create_breakpoint (get_current_arch (),
14802 location.get (),
14803 NULL, 0, arg, false, 1 /* parse arg */,
14804 0 /* tempflag */,
14805 bp_static_tracepoint /* type_wanted */,
14806 0 /* Ignore count */,
14807 pending_break_support,
14808 ops,
14809 from_tty,
14810 1 /* enabled */,
14811 0 /* internal */, 0);
14812 }
14813
14814 /* Set up a fake reader function that gets command lines from a linked
14815 list that was acquired during tracepoint uploading. */
14816
14817 static struct uploaded_tp *this_utp;
14818 static int next_cmd;
14819
14820 static char *
14821 read_uploaded_action (void)
14822 {
14823 char *rslt = nullptr;
14824
14825 if (next_cmd < this_utp->cmd_strings.size ())
14826 {
14827 rslt = this_utp->cmd_strings[next_cmd].get ();
14828 next_cmd++;
14829 }
14830
14831 return rslt;
14832 }
14833
14834 /* Given information about a tracepoint as recorded on a target (which
14835 can be either a live system or a trace file), attempt to create an
14836 equivalent GDB tracepoint. This is not a reliable process, since
14837 the target does not necessarily have all the information used when
14838 the tracepoint was originally defined. */
14839
14840 struct tracepoint *
14841 create_tracepoint_from_upload (struct uploaded_tp *utp)
14842 {
14843 const char *addr_str;
14844 char small_buf[100];
14845 struct tracepoint *tp;
14846
14847 if (utp->at_string)
14848 addr_str = utp->at_string.get ();
14849 else
14850 {
14851 /* In the absence of a source location, fall back to raw
14852 address. Since there is no way to confirm that the address
14853 means the same thing as when the trace was started, warn the
14854 user. */
14855 warning (_("Uploaded tracepoint %d has no "
14856 "source location, using raw address"),
14857 utp->number);
14858 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14859 addr_str = small_buf;
14860 }
14861
14862 /* There's not much we can do with a sequence of bytecodes. */
14863 if (utp->cond && !utp->cond_string)
14864 warning (_("Uploaded tracepoint %d condition "
14865 "has no source form, ignoring it"),
14866 utp->number);
14867
14868 event_location_up location = string_to_event_location (&addr_str,
14869 current_language);
14870 if (!create_breakpoint (get_current_arch (),
14871 location.get (),
14872 utp->cond_string.get (), -1, addr_str,
14873 false /* force_condition */,
14874 0 /* parse cond/thread */,
14875 0 /* tempflag */,
14876 utp->type /* type_wanted */,
14877 0 /* Ignore count */,
14878 pending_break_support,
14879 &tracepoint_breakpoint_ops,
14880 0 /* from_tty */,
14881 utp->enabled /* enabled */,
14882 0 /* internal */,
14883 CREATE_BREAKPOINT_FLAGS_INSERTED))
14884 return NULL;
14885
14886 /* Get the tracepoint we just created. */
14887 tp = get_tracepoint (tracepoint_count);
14888 gdb_assert (tp != NULL);
14889
14890 if (utp->pass > 0)
14891 {
14892 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14893 tp->number);
14894
14895 trace_pass_command (small_buf, 0);
14896 }
14897
14898 /* If we have uploaded versions of the original commands, set up a
14899 special-purpose "reader" function and call the usual command line
14900 reader, then pass the result to the breakpoint command-setting
14901 function. */
14902 if (!utp->cmd_strings.empty ())
14903 {
14904 counted_command_line cmd_list;
14905
14906 this_utp = utp;
14907 next_cmd = 0;
14908
14909 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14910
14911 breakpoint_set_commands (tp, std::move (cmd_list));
14912 }
14913 else if (!utp->actions.empty ()
14914 || !utp->step_actions.empty ())
14915 warning (_("Uploaded tracepoint %d actions "
14916 "have no source form, ignoring them"),
14917 utp->number);
14918
14919 /* Copy any status information that might be available. */
14920 tp->hit_count = utp->hit_count;
14921 tp->traceframe_usage = utp->traceframe_usage;
14922
14923 return tp;
14924 }
14925
14926 /* Print information on tracepoint number TPNUM_EXP, or all if
14927 omitted. */
14928
14929 static void
14930 info_tracepoints_command (const char *args, int from_tty)
14931 {
14932 struct ui_out *uiout = current_uiout;
14933 int num_printed;
14934
14935 num_printed = breakpoint_1 (args, false, is_tracepoint);
14936
14937 if (num_printed == 0)
14938 {
14939 if (args == NULL || *args == '\0')
14940 uiout->message ("No tracepoints.\n");
14941 else
14942 uiout->message ("No tracepoint matching '%s'.\n", args);
14943 }
14944
14945 default_collect_info ();
14946 }
14947
14948 /* The 'enable trace' command enables tracepoints.
14949 Not supported by all targets. */
14950 static void
14951 enable_trace_command (const char *args, int from_tty)
14952 {
14953 enable_command (args, from_tty);
14954 }
14955
14956 /* The 'disable trace' command disables tracepoints.
14957 Not supported by all targets. */
14958 static void
14959 disable_trace_command (const char *args, int from_tty)
14960 {
14961 disable_command (args, from_tty);
14962 }
14963
14964 /* Remove a tracepoint (or all if no argument). */
14965 static void
14966 delete_trace_command (const char *arg, int from_tty)
14967 {
14968 struct breakpoint *b, *b_tmp;
14969
14970 dont_repeat ();
14971
14972 if (arg == 0)
14973 {
14974 int breaks_to_delete = 0;
14975
14976 /* Delete all breakpoints if no argument.
14977 Do not delete internal or call-dummy breakpoints, these
14978 have to be deleted with an explicit breakpoint number
14979 argument. */
14980 ALL_TRACEPOINTS (b)
14981 if (is_tracepoint (b) && user_breakpoint_p (b))
14982 {
14983 breaks_to_delete = 1;
14984 break;
14985 }
14986
14987 /* Ask user only if there are some breakpoints to delete. */
14988 if (!from_tty
14989 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14990 {
14991 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14992 if (is_tracepoint (b) && user_breakpoint_p (b))
14993 delete_breakpoint (b);
14994 }
14995 }
14996 else
14997 map_breakpoint_numbers
14998 (arg, [&] (breakpoint *br)
14999 {
15000 iterate_over_related_breakpoints (br, delete_breakpoint);
15001 });
15002 }
15003
15004 /* Helper function for trace_pass_command. */
15005
15006 static void
15007 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15008 {
15009 tp->pass_count = count;
15010 gdb::observers::breakpoint_modified.notify (tp);
15011 if (from_tty)
15012 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15013 tp->number, count);
15014 }
15015
15016 /* Set passcount for tracepoint.
15017
15018 First command argument is passcount, second is tracepoint number.
15019 If tracepoint number omitted, apply to most recently defined.
15020 Also accepts special argument "all". */
15021
15022 static void
15023 trace_pass_command (const char *args, int from_tty)
15024 {
15025 struct tracepoint *t1;
15026 ULONGEST count;
15027
15028 if (args == 0 || *args == 0)
15029 error (_("passcount command requires an "
15030 "argument (count + optional TP num)"));
15031
15032 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
15033
15034 args = skip_spaces (args);
15035 if (*args && strncasecmp (args, "all", 3) == 0)
15036 {
15037 struct breakpoint *b;
15038
15039 args += 3; /* Skip special argument "all". */
15040 if (*args)
15041 error (_("Junk at end of arguments."));
15042
15043 ALL_TRACEPOINTS (b)
15044 {
15045 t1 = (struct tracepoint *) b;
15046 trace_pass_set_count (t1, count, from_tty);
15047 }
15048 }
15049 else if (*args == '\0')
15050 {
15051 t1 = get_tracepoint_by_number (&args, NULL);
15052 if (t1)
15053 trace_pass_set_count (t1, count, from_tty);
15054 }
15055 else
15056 {
15057 number_or_range_parser parser (args);
15058 while (!parser.finished ())
15059 {
15060 t1 = get_tracepoint_by_number (&args, &parser);
15061 if (t1)
15062 trace_pass_set_count (t1, count, from_tty);
15063 }
15064 }
15065 }
15066
15067 struct tracepoint *
15068 get_tracepoint (int num)
15069 {
15070 struct breakpoint *t;
15071
15072 ALL_TRACEPOINTS (t)
15073 if (t->number == num)
15074 return (struct tracepoint *) t;
15075
15076 return NULL;
15077 }
15078
15079 /* Find the tracepoint with the given target-side number (which may be
15080 different from the tracepoint number after disconnecting and
15081 reconnecting). */
15082
15083 struct tracepoint *
15084 get_tracepoint_by_number_on_target (int num)
15085 {
15086 struct breakpoint *b;
15087
15088 ALL_TRACEPOINTS (b)
15089 {
15090 struct tracepoint *t = (struct tracepoint *) b;
15091
15092 if (t->number_on_target == num)
15093 return t;
15094 }
15095
15096 return NULL;
15097 }
15098
15099 /* Utility: parse a tracepoint number and look it up in the list.
15100 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15101 If the argument is missing, the most recent tracepoint
15102 (tracepoint_count) is returned. */
15103
15104 struct tracepoint *
15105 get_tracepoint_by_number (const char **arg,
15106 number_or_range_parser *parser)
15107 {
15108 struct breakpoint *t;
15109 int tpnum;
15110 const char *instring = arg == NULL ? NULL : *arg;
15111
15112 if (parser != NULL)
15113 {
15114 gdb_assert (!parser->finished ());
15115 tpnum = parser->get_number ();
15116 }
15117 else if (arg == NULL || *arg == NULL || ! **arg)
15118 tpnum = tracepoint_count;
15119 else
15120 tpnum = get_number (arg);
15121
15122 if (tpnum <= 0)
15123 {
15124 if (instring && *instring)
15125 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15126 instring);
15127 else
15128 printf_filtered (_("No previous tracepoint\n"));
15129 return NULL;
15130 }
15131
15132 ALL_TRACEPOINTS (t)
15133 if (t->number == tpnum)
15134 {
15135 return (struct tracepoint *) t;
15136 }
15137
15138 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15139 return NULL;
15140 }
15141
15142 void
15143 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15144 {
15145 if (b->thread != -1)
15146 fprintf_unfiltered (fp, " thread %d", b->thread);
15147
15148 if (b->task != 0)
15149 fprintf_unfiltered (fp, " task %d", b->task);
15150
15151 fprintf_unfiltered (fp, "\n");
15152 }
15153
15154 /* Save information on user settable breakpoints (watchpoints, etc) to
15155 a new script file named FILENAME. If FILTER is non-NULL, call it
15156 on each breakpoint and only include the ones for which it returns
15157 true. */
15158
15159 static void
15160 save_breakpoints (const char *filename, int from_tty,
15161 bool (*filter) (const struct breakpoint *))
15162 {
15163 struct breakpoint *tp;
15164 int any = 0;
15165 int extra_trace_bits = 0;
15166
15167 if (filename == 0 || *filename == 0)
15168 error (_("Argument required (file name in which to save)"));
15169
15170 /* See if we have anything to save. */
15171 ALL_BREAKPOINTS (tp)
15172 {
15173 /* Skip internal and momentary breakpoints. */
15174 if (!user_breakpoint_p (tp))
15175 continue;
15176
15177 /* If we have a filter, only save the breakpoints it accepts. */
15178 if (filter && !filter (tp))
15179 continue;
15180
15181 any = 1;
15182
15183 if (is_tracepoint (tp))
15184 {
15185 extra_trace_bits = 1;
15186
15187 /* We can stop searching. */
15188 break;
15189 }
15190 }
15191
15192 if (!any)
15193 {
15194 warning (_("Nothing to save."));
15195 return;
15196 }
15197
15198 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15199
15200 stdio_file fp;
15201
15202 if (!fp.open (expanded_filename.get (), "w"))
15203 error (_("Unable to open file '%s' for saving (%s)"),
15204 expanded_filename.get (), safe_strerror (errno));
15205
15206 if (extra_trace_bits)
15207 save_trace_state_variables (&fp);
15208
15209 ALL_BREAKPOINTS (tp)
15210 {
15211 /* Skip internal and momentary breakpoints. */
15212 if (!user_breakpoint_p (tp))
15213 continue;
15214
15215 /* If we have a filter, only save the breakpoints it accepts. */
15216 if (filter && !filter (tp))
15217 continue;
15218
15219 tp->ops->print_recreate (tp, &fp);
15220
15221 /* Note, we can't rely on tp->number for anything, as we can't
15222 assume the recreated breakpoint numbers will match. Use $bpnum
15223 instead. */
15224
15225 if (tp->cond_string)
15226 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15227
15228 if (tp->ignore_count)
15229 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15230
15231 if (tp->type != bp_dprintf && tp->commands)
15232 {
15233 fp.puts (" commands\n");
15234
15235 current_uiout->redirect (&fp);
15236 try
15237 {
15238 print_command_lines (current_uiout, tp->commands.get (), 2);
15239 }
15240 catch (const gdb_exception &ex)
15241 {
15242 current_uiout->redirect (NULL);
15243 throw;
15244 }
15245
15246 current_uiout->redirect (NULL);
15247 fp.puts (" end\n");
15248 }
15249
15250 if (tp->enable_state == bp_disabled)
15251 fp.puts ("disable $bpnum\n");
15252
15253 /* If this is a multi-location breakpoint, check if the locations
15254 should be individually disabled. Watchpoint locations are
15255 special, and not user visible. */
15256 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15257 {
15258 struct bp_location *loc;
15259 int n = 1;
15260
15261 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15262 if (!loc->enabled)
15263 fp.printf ("disable $bpnum.%d\n", n);
15264 }
15265 }
15266
15267 if (extra_trace_bits && *default_collect)
15268 fp.printf ("set default-collect %s\n", default_collect);
15269
15270 if (from_tty)
15271 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15272 }
15273
15274 /* The `save breakpoints' command. */
15275
15276 static void
15277 save_breakpoints_command (const char *args, int from_tty)
15278 {
15279 save_breakpoints (args, from_tty, NULL);
15280 }
15281
15282 /* The `save tracepoints' command. */
15283
15284 static void
15285 save_tracepoints_command (const char *args, int from_tty)
15286 {
15287 save_breakpoints (args, from_tty, is_tracepoint);
15288 }
15289
15290 /* Create a vector of all tracepoints. */
15291
15292 std::vector<breakpoint *>
15293 all_tracepoints (void)
15294 {
15295 std::vector<breakpoint *> tp_vec;
15296 struct breakpoint *tp;
15297
15298 ALL_TRACEPOINTS (tp)
15299 {
15300 tp_vec.push_back (tp);
15301 }
15302
15303 return tp_vec;
15304 }
15305
15306 \f
15307 /* This help string is used to consolidate all the help string for specifying
15308 locations used by several commands. */
15309
15310 #define LOCATION_HELP_STRING \
15311 "Linespecs are colon-separated lists of location parameters, such as\n\
15312 source filename, function name, label name, and line number.\n\
15313 Example: To specify the start of a label named \"the_top\" in the\n\
15314 function \"fact\" in the file \"factorial.c\", use\n\
15315 \"factorial.c:fact:the_top\".\n\
15316 \n\
15317 Address locations begin with \"*\" and specify an exact address in the\n\
15318 program. Example: To specify the fourth byte past the start function\n\
15319 \"main\", use \"*main + 4\".\n\
15320 \n\
15321 Explicit locations are similar to linespecs but use an option/argument\n\
15322 syntax to specify location parameters.\n\
15323 Example: To specify the start of the label named \"the_top\" in the\n\
15324 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15325 -function fact -label the_top\".\n\
15326 \n\
15327 By default, a specified function is matched against the program's\n\
15328 functions in all scopes. For C++, this means in all namespaces and\n\
15329 classes. For Ada, this means in all packages. E.g., in C++,\n\
15330 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15331 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15332 specified name as a complete fully-qualified name instead."
15333
15334 /* This help string is used for the break, hbreak, tbreak and thbreak
15335 commands. It is defined as a macro to prevent duplication.
15336 COMMAND should be a string constant containing the name of the
15337 command. */
15338
15339 #define BREAK_ARGS_HELP(command) \
15340 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM]\n\
15341 \t[-force-condition] [if CONDITION]\n\
15342 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15343 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15344 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15345 `-probe-dtrace' (for a DTrace probe).\n\
15346 LOCATION may be a linespec, address, or explicit location as described\n\
15347 below.\n\
15348 \n\
15349 With no LOCATION, uses current execution address of the selected\n\
15350 stack frame. This is useful for breaking on return to a stack frame.\n\
15351 \n\
15352 THREADNUM is the number from \"info threads\".\n\
15353 CONDITION is a boolean expression.\n\
15354 \n\
15355 With the \"-force-condition\" flag, the condition is defined even when\n\
15356 it is invalid for all current locations.\n\
15357 \n" LOCATION_HELP_STRING "\n\n\
15358 Multiple breakpoints at one place are permitted, and useful if their\n\
15359 conditions are different.\n\
15360 \n\
15361 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15362
15363 /* List of subcommands for "catch". */
15364 static struct cmd_list_element *catch_cmdlist;
15365
15366 /* List of subcommands for "tcatch". */
15367 static struct cmd_list_element *tcatch_cmdlist;
15368
15369 void
15370 add_catch_command (const char *name, const char *docstring,
15371 cmd_const_sfunc_ftype *sfunc,
15372 completer_ftype *completer,
15373 void *user_data_catch,
15374 void *user_data_tcatch)
15375 {
15376 struct cmd_list_element *command;
15377
15378 command = add_cmd (name, class_breakpoint, docstring,
15379 &catch_cmdlist);
15380 set_cmd_sfunc (command, sfunc);
15381 set_cmd_context (command, user_data_catch);
15382 set_cmd_completer (command, completer);
15383
15384 command = add_cmd (name, class_breakpoint, docstring,
15385 &tcatch_cmdlist);
15386 set_cmd_sfunc (command, sfunc);
15387 set_cmd_context (command, user_data_tcatch);
15388 set_cmd_completer (command, completer);
15389 }
15390
15391 struct breakpoint *
15392 iterate_over_breakpoints (gdb::function_view<bool (breakpoint *)> callback)
15393 {
15394 struct breakpoint *b, *b_tmp;
15395
15396 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15397 {
15398 if (callback (b))
15399 return b;
15400 }
15401
15402 return NULL;
15403 }
15404
15405 /* Zero if any of the breakpoint's locations could be a location where
15406 functions have been inlined, nonzero otherwise. */
15407
15408 static int
15409 is_non_inline_function (struct breakpoint *b)
15410 {
15411 /* The shared library event breakpoint is set on the address of a
15412 non-inline function. */
15413 if (b->type == bp_shlib_event)
15414 return 1;
15415
15416 return 0;
15417 }
15418
15419 /* Nonzero if the specified PC cannot be a location where functions
15420 have been inlined. */
15421
15422 int
15423 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15424 const struct target_waitstatus *ws)
15425 {
15426 struct breakpoint *b;
15427 struct bp_location *bl;
15428
15429 ALL_BREAKPOINTS (b)
15430 {
15431 if (!is_non_inline_function (b))
15432 continue;
15433
15434 for (bl = b->loc; bl != NULL; bl = bl->next)
15435 {
15436 if (!bl->shlib_disabled
15437 && bpstat_check_location (bl, aspace, pc, ws))
15438 return 1;
15439 }
15440 }
15441
15442 return 0;
15443 }
15444
15445 /* Remove any references to OBJFILE which is going to be freed. */
15446
15447 void
15448 breakpoint_free_objfile (struct objfile *objfile)
15449 {
15450 struct bp_location **locp, *loc;
15451
15452 ALL_BP_LOCATIONS (loc, locp)
15453 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15454 loc->symtab = NULL;
15455 }
15456
15457 void
15458 initialize_breakpoint_ops (void)
15459 {
15460 static int initialized = 0;
15461
15462 struct breakpoint_ops *ops;
15463
15464 if (initialized)
15465 return;
15466 initialized = 1;
15467
15468 /* The breakpoint_ops structure to be inherit by all kinds of
15469 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15470 internal and momentary breakpoints, etc.). */
15471 ops = &bkpt_base_breakpoint_ops;
15472 *ops = base_breakpoint_ops;
15473 ops->re_set = bkpt_re_set;
15474 ops->insert_location = bkpt_insert_location;
15475 ops->remove_location = bkpt_remove_location;
15476 ops->breakpoint_hit = bkpt_breakpoint_hit;
15477 ops->create_sals_from_location = bkpt_create_sals_from_location;
15478 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15479 ops->decode_location = bkpt_decode_location;
15480
15481 /* The breakpoint_ops structure to be used in regular breakpoints. */
15482 ops = &bkpt_breakpoint_ops;
15483 *ops = bkpt_base_breakpoint_ops;
15484 ops->re_set = bkpt_re_set;
15485 ops->resources_needed = bkpt_resources_needed;
15486 ops->print_it = bkpt_print_it;
15487 ops->print_mention = bkpt_print_mention;
15488 ops->print_recreate = bkpt_print_recreate;
15489
15490 /* Ranged breakpoints. */
15491 ops = &ranged_breakpoint_ops;
15492 *ops = bkpt_breakpoint_ops;
15493 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15494 ops->resources_needed = resources_needed_ranged_breakpoint;
15495 ops->print_it = print_it_ranged_breakpoint;
15496 ops->print_one = print_one_ranged_breakpoint;
15497 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15498 ops->print_mention = print_mention_ranged_breakpoint;
15499 ops->print_recreate = print_recreate_ranged_breakpoint;
15500
15501 /* Internal breakpoints. */
15502 ops = &internal_breakpoint_ops;
15503 *ops = bkpt_base_breakpoint_ops;
15504 ops->re_set = internal_bkpt_re_set;
15505 ops->check_status = internal_bkpt_check_status;
15506 ops->print_it = internal_bkpt_print_it;
15507 ops->print_mention = internal_bkpt_print_mention;
15508
15509 /* Momentary breakpoints. */
15510 ops = &momentary_breakpoint_ops;
15511 *ops = bkpt_base_breakpoint_ops;
15512 ops->re_set = momentary_bkpt_re_set;
15513 ops->check_status = momentary_bkpt_check_status;
15514 ops->print_it = momentary_bkpt_print_it;
15515 ops->print_mention = momentary_bkpt_print_mention;
15516
15517 /* Probe breakpoints. */
15518 ops = &bkpt_probe_breakpoint_ops;
15519 *ops = bkpt_breakpoint_ops;
15520 ops->insert_location = bkpt_probe_insert_location;
15521 ops->remove_location = bkpt_probe_remove_location;
15522 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15523 ops->decode_location = bkpt_probe_decode_location;
15524
15525 /* Watchpoints. */
15526 ops = &watchpoint_breakpoint_ops;
15527 *ops = base_breakpoint_ops;
15528 ops->re_set = re_set_watchpoint;
15529 ops->insert_location = insert_watchpoint;
15530 ops->remove_location = remove_watchpoint;
15531 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15532 ops->check_status = check_status_watchpoint;
15533 ops->resources_needed = resources_needed_watchpoint;
15534 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15535 ops->print_it = print_it_watchpoint;
15536 ops->print_mention = print_mention_watchpoint;
15537 ops->print_recreate = print_recreate_watchpoint;
15538 ops->explains_signal = explains_signal_watchpoint;
15539
15540 /* Masked watchpoints. */
15541 ops = &masked_watchpoint_breakpoint_ops;
15542 *ops = watchpoint_breakpoint_ops;
15543 ops->insert_location = insert_masked_watchpoint;
15544 ops->remove_location = remove_masked_watchpoint;
15545 ops->resources_needed = resources_needed_masked_watchpoint;
15546 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15547 ops->print_it = print_it_masked_watchpoint;
15548 ops->print_one_detail = print_one_detail_masked_watchpoint;
15549 ops->print_mention = print_mention_masked_watchpoint;
15550 ops->print_recreate = print_recreate_masked_watchpoint;
15551
15552 /* Tracepoints. */
15553 ops = &tracepoint_breakpoint_ops;
15554 *ops = base_breakpoint_ops;
15555 ops->re_set = tracepoint_re_set;
15556 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15557 ops->print_one_detail = tracepoint_print_one_detail;
15558 ops->print_mention = tracepoint_print_mention;
15559 ops->print_recreate = tracepoint_print_recreate;
15560 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15561 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15562 ops->decode_location = tracepoint_decode_location;
15563
15564 /* Probe tracepoints. */
15565 ops = &tracepoint_probe_breakpoint_ops;
15566 *ops = tracepoint_breakpoint_ops;
15567 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15568 ops->decode_location = tracepoint_probe_decode_location;
15569
15570 /* Static tracepoints with marker (`-m'). */
15571 ops = &strace_marker_breakpoint_ops;
15572 *ops = tracepoint_breakpoint_ops;
15573 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15574 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15575 ops->decode_location = strace_marker_decode_location;
15576
15577 /* Fork catchpoints. */
15578 ops = &catch_fork_breakpoint_ops;
15579 *ops = base_breakpoint_ops;
15580 ops->insert_location = insert_catch_fork;
15581 ops->remove_location = remove_catch_fork;
15582 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15583 ops->print_it = print_it_catch_fork;
15584 ops->print_one = print_one_catch_fork;
15585 ops->print_mention = print_mention_catch_fork;
15586 ops->print_recreate = print_recreate_catch_fork;
15587
15588 /* Vfork catchpoints. */
15589 ops = &catch_vfork_breakpoint_ops;
15590 *ops = base_breakpoint_ops;
15591 ops->insert_location = insert_catch_vfork;
15592 ops->remove_location = remove_catch_vfork;
15593 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15594 ops->print_it = print_it_catch_vfork;
15595 ops->print_one = print_one_catch_vfork;
15596 ops->print_mention = print_mention_catch_vfork;
15597 ops->print_recreate = print_recreate_catch_vfork;
15598
15599 /* Exec catchpoints. */
15600 ops = &catch_exec_breakpoint_ops;
15601 *ops = base_breakpoint_ops;
15602 ops->insert_location = insert_catch_exec;
15603 ops->remove_location = remove_catch_exec;
15604 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15605 ops->print_it = print_it_catch_exec;
15606 ops->print_one = print_one_catch_exec;
15607 ops->print_mention = print_mention_catch_exec;
15608 ops->print_recreate = print_recreate_catch_exec;
15609
15610 /* Solib-related catchpoints. */
15611 ops = &catch_solib_breakpoint_ops;
15612 *ops = base_breakpoint_ops;
15613 ops->insert_location = insert_catch_solib;
15614 ops->remove_location = remove_catch_solib;
15615 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15616 ops->check_status = check_status_catch_solib;
15617 ops->print_it = print_it_catch_solib;
15618 ops->print_one = print_one_catch_solib;
15619 ops->print_mention = print_mention_catch_solib;
15620 ops->print_recreate = print_recreate_catch_solib;
15621
15622 ops = &dprintf_breakpoint_ops;
15623 *ops = bkpt_base_breakpoint_ops;
15624 ops->re_set = dprintf_re_set;
15625 ops->resources_needed = bkpt_resources_needed;
15626 ops->print_it = bkpt_print_it;
15627 ops->print_mention = bkpt_print_mention;
15628 ops->print_recreate = dprintf_print_recreate;
15629 ops->after_condition_true = dprintf_after_condition_true;
15630 ops->breakpoint_hit = dprintf_breakpoint_hit;
15631 }
15632
15633 /* Chain containing all defined "enable breakpoint" subcommands. */
15634
15635 static struct cmd_list_element *enablebreaklist = NULL;
15636
15637 /* See breakpoint.h. */
15638
15639 cmd_list_element *commands_cmd_element = nullptr;
15640
15641 void _initialize_breakpoint ();
15642 void
15643 _initialize_breakpoint ()
15644 {
15645 struct cmd_list_element *c;
15646
15647 initialize_breakpoint_ops ();
15648
15649 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15650 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15651 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15652
15653 breakpoint_chain = 0;
15654 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15655 before a breakpoint is set. */
15656 breakpoint_count = 0;
15657
15658 tracepoint_count = 0;
15659
15660 add_com ("ignore", class_breakpoint, ignore_command, _("\
15661 Set ignore-count of breakpoint number N to COUNT.\n\
15662 Usage is `ignore N COUNT'."));
15663
15664 commands_cmd_element = add_com ("commands", class_breakpoint,
15665 commands_command, _("\
15666 Set commands to be executed when the given breakpoints are hit.\n\
15667 Give a space-separated breakpoint list as argument after \"commands\".\n\
15668 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15669 (e.g. `5-7').\n\
15670 With no argument, the targeted breakpoint is the last one set.\n\
15671 The commands themselves follow starting on the next line.\n\
15672 Type a line containing \"end\" to indicate the end of them.\n\
15673 Give \"silent\" as the first line to make the breakpoint silent;\n\
15674 then no output is printed when it is hit, except what the commands print."));
15675
15676 const auto cc_opts = make_condition_command_options_def_group (nullptr);
15677 static std::string condition_command_help
15678 = gdb::option::build_help (_("\
15679 Specify breakpoint number N to break only if COND is true.\n\
15680 Usage is `condition [OPTION] N COND', where N is an integer and COND\n\
15681 is an expression to be evaluated whenever breakpoint N is reached.\n\
15682 \n\
15683 Options:\n\
15684 %OPTIONS%"), cc_opts);
15685
15686 c = add_com ("condition", class_breakpoint, condition_command,
15687 condition_command_help.c_str ());
15688 set_cmd_completer_handle_brkchars (c, condition_completer);
15689
15690 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15691 Set a temporary breakpoint.\n\
15692 Like \"break\" except the breakpoint is only temporary,\n\
15693 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15694 by using \"enable delete\" on the breakpoint number.\n\
15695 \n"
15696 BREAK_ARGS_HELP ("tbreak")));
15697 set_cmd_completer (c, location_completer);
15698
15699 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15700 Set a hardware assisted breakpoint.\n\
15701 Like \"break\" except the breakpoint requires hardware support,\n\
15702 some target hardware may not have this support.\n\
15703 \n"
15704 BREAK_ARGS_HELP ("hbreak")));
15705 set_cmd_completer (c, location_completer);
15706
15707 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15708 Set a temporary hardware assisted breakpoint.\n\
15709 Like \"hbreak\" except the breakpoint is only temporary,\n\
15710 so it will be deleted when hit.\n\
15711 \n"
15712 BREAK_ARGS_HELP ("thbreak")));
15713 set_cmd_completer (c, location_completer);
15714
15715 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15716 Enable all or some breakpoints.\n\
15717 Usage: enable [BREAKPOINTNUM]...\n\
15718 Give breakpoint numbers (separated by spaces) as arguments.\n\
15719 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15720 This is used to cancel the effect of the \"disable\" command.\n\
15721 With a subcommand you can enable temporarily."),
15722 &enablelist, "enable ", 1, &cmdlist);
15723
15724 add_com_alias ("en", "enable", class_breakpoint, 1);
15725
15726 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15727 Enable all or some breakpoints.\n\
15728 Usage: enable breakpoints [BREAKPOINTNUM]...\n\
15729 Give breakpoint numbers (separated by spaces) as arguments.\n\
15730 This is used to cancel the effect of the \"disable\" command.\n\
15731 May be abbreviated to simply \"enable\"."),
15732 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15733
15734 add_cmd ("once", no_class, enable_once_command, _("\
15735 Enable some breakpoints for one hit.\n\
15736 Usage: enable breakpoints once BREAKPOINTNUM...\n\
15737 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15738 &enablebreaklist);
15739
15740 add_cmd ("delete", no_class, enable_delete_command, _("\
15741 Enable some breakpoints and delete when hit.\n\
15742 Usage: enable breakpoints delete BREAKPOINTNUM...\n\
15743 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15744 &enablebreaklist);
15745
15746 add_cmd ("count", no_class, enable_count_command, _("\
15747 Enable some breakpoints for COUNT hits.\n\
15748 Usage: enable breakpoints count COUNT BREAKPOINTNUM...\n\
15749 If a breakpoint is hit while enabled in this fashion,\n\
15750 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15751 &enablebreaklist);
15752
15753 add_cmd ("delete", no_class, enable_delete_command, _("\
15754 Enable some breakpoints and delete when hit.\n\
15755 Usage: enable delete BREAKPOINTNUM...\n\
15756 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15757 &enablelist);
15758
15759 add_cmd ("once", no_class, enable_once_command, _("\
15760 Enable some breakpoints for one hit.\n\
15761 Usage: enable once BREAKPOINTNUM...\n\
15762 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15763 &enablelist);
15764
15765 add_cmd ("count", no_class, enable_count_command, _("\
15766 Enable some breakpoints for COUNT hits.\n\
15767 Usage: enable count COUNT BREAKPOINTNUM...\n\
15768 If a breakpoint is hit while enabled in this fashion,\n\
15769 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15770 &enablelist);
15771
15772 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15773 Disable all or some breakpoints.\n\
15774 Usage: disable [BREAKPOINTNUM]...\n\
15775 Arguments are breakpoint numbers with spaces in between.\n\
15776 To disable all breakpoints, give no argument.\n\
15777 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15778 &disablelist, "disable ", 1, &cmdlist);
15779 add_com_alias ("dis", "disable", class_breakpoint, 1);
15780 add_com_alias ("disa", "disable", class_breakpoint, 1);
15781
15782 add_cmd ("breakpoints", class_breakpoint, disable_command, _("\
15783 Disable all or some breakpoints.\n\
15784 Usage: disable breakpoints [BREAKPOINTNUM]...\n\
15785 Arguments are breakpoint numbers with spaces in between.\n\
15786 To disable all breakpoints, give no argument.\n\
15787 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15788 This command may be abbreviated \"disable\"."),
15789 &disablelist);
15790
15791 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15792 Delete all or some breakpoints.\n\
15793 Usage: delete [BREAKPOINTNUM]...\n\
15794 Arguments are breakpoint numbers with spaces in between.\n\
15795 To delete all breakpoints, give no argument.\n\
15796 \n\
15797 Also a prefix command for deletion of other GDB objects."),
15798 &deletelist, "delete ", 1, &cmdlist);
15799 add_com_alias ("d", "delete", class_breakpoint, 1);
15800 add_com_alias ("del", "delete", class_breakpoint, 1);
15801
15802 add_cmd ("breakpoints", class_breakpoint, delete_command, _("\
15803 Delete all or some breakpoints or auto-display expressions.\n\
15804 Usage: delete breakpoints [BREAKPOINTNUM]...\n\
15805 Arguments are breakpoint numbers with spaces in between.\n\
15806 To delete all breakpoints, give no argument.\n\
15807 This command may be abbreviated \"delete\"."),
15808 &deletelist);
15809
15810 add_com ("clear", class_breakpoint, clear_command, _("\
15811 Clear breakpoint at specified location.\n\
15812 Argument may be a linespec, explicit, or address location as described below.\n\
15813 \n\
15814 With no argument, clears all breakpoints in the line that the selected frame\n\
15815 is executing in.\n"
15816 "\n" LOCATION_HELP_STRING "\n\n\
15817 See also the \"delete\" command which clears breakpoints by number."));
15818 add_com_alias ("cl", "clear", class_breakpoint, 1);
15819
15820 c = add_com ("break", class_breakpoint, break_command, _("\
15821 Set breakpoint at specified location.\n"
15822 BREAK_ARGS_HELP ("break")));
15823 set_cmd_completer (c, location_completer);
15824
15825 add_com_alias ("b", "break", class_run, 1);
15826 add_com_alias ("br", "break", class_run, 1);
15827 add_com_alias ("bre", "break", class_run, 1);
15828 add_com_alias ("brea", "break", class_run, 1);
15829
15830 if (dbx_commands)
15831 {
15832 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15833 Break in function/address or break at a line in the current file."),
15834 &stoplist, "stop ", 1, &cmdlist);
15835 add_cmd ("in", class_breakpoint, stopin_command,
15836 _("Break in function or address."), &stoplist);
15837 add_cmd ("at", class_breakpoint, stopat_command,
15838 _("Break at a line in the current file."), &stoplist);
15839 add_com ("status", class_info, info_breakpoints_command, _("\
15840 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15841 The \"Type\" column indicates one of:\n\
15842 \tbreakpoint - normal breakpoint\n\
15843 \twatchpoint - watchpoint\n\
15844 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15845 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15846 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15847 address and file/line number respectively.\n\
15848 \n\
15849 Convenience variable \"$_\" and default examine address for \"x\"\n\
15850 are set to the address of the last breakpoint listed unless the command\n\
15851 is prefixed with \"server \".\n\n\
15852 Convenience variable \"$bpnum\" contains the number of the last\n\
15853 breakpoint set."));
15854 }
15855
15856 add_info ("breakpoints", info_breakpoints_command, _("\
15857 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15858 The \"Type\" column indicates one of:\n\
15859 \tbreakpoint - normal breakpoint\n\
15860 \twatchpoint - watchpoint\n\
15861 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15862 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15863 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15864 address and file/line number respectively.\n\
15865 \n\
15866 Convenience variable \"$_\" and default examine address for \"x\"\n\
15867 are set to the address of the last breakpoint listed unless the command\n\
15868 is prefixed with \"server \".\n\n\
15869 Convenience variable \"$bpnum\" contains the number of the last\n\
15870 breakpoint set."));
15871
15872 add_info_alias ("b", "breakpoints", 1);
15873
15874 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15875 Status of all breakpoints, or breakpoint number NUMBER.\n\
15876 The \"Type\" column indicates one of:\n\
15877 \tbreakpoint - normal breakpoint\n\
15878 \twatchpoint - watchpoint\n\
15879 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15880 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15881 \tuntil - internal breakpoint used by the \"until\" command\n\
15882 \tfinish - internal breakpoint used by the \"finish\" command\n\
15883 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15884 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15885 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15886 address and file/line number respectively.\n\
15887 \n\
15888 Convenience variable \"$_\" and default examine address for \"x\"\n\
15889 are set to the address of the last breakpoint listed unless the command\n\
15890 is prefixed with \"server \".\n\n\
15891 Convenience variable \"$bpnum\" contains the number of the last\n\
15892 breakpoint set."),
15893 &maintenanceinfolist);
15894
15895 add_basic_prefix_cmd ("catch", class_breakpoint, _("\
15896 Set catchpoints to catch events."),
15897 &catch_cmdlist, "catch ",
15898 0/*allow-unknown*/, &cmdlist);
15899
15900 add_basic_prefix_cmd ("tcatch", class_breakpoint, _("\
15901 Set temporary catchpoints to catch events."),
15902 &tcatch_cmdlist, "tcatch ",
15903 0/*allow-unknown*/, &cmdlist);
15904
15905 add_catch_command ("fork", _("Catch calls to fork."),
15906 catch_fork_command_1,
15907 NULL,
15908 (void *) (uintptr_t) catch_fork_permanent,
15909 (void *) (uintptr_t) catch_fork_temporary);
15910 add_catch_command ("vfork", _("Catch calls to vfork."),
15911 catch_fork_command_1,
15912 NULL,
15913 (void *) (uintptr_t) catch_vfork_permanent,
15914 (void *) (uintptr_t) catch_vfork_temporary);
15915 add_catch_command ("exec", _("Catch calls to exec."),
15916 catch_exec_command_1,
15917 NULL,
15918 CATCH_PERMANENT,
15919 CATCH_TEMPORARY);
15920 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15921 Usage: catch load [REGEX]\n\
15922 If REGEX is given, only stop for libraries matching the regular expression."),
15923 catch_load_command_1,
15924 NULL,
15925 CATCH_PERMANENT,
15926 CATCH_TEMPORARY);
15927 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15928 Usage: catch unload [REGEX]\n\
15929 If REGEX is given, only stop for libraries matching the regular expression."),
15930 catch_unload_command_1,
15931 NULL,
15932 CATCH_PERMANENT,
15933 CATCH_TEMPORARY);
15934
15935 const auto opts = make_watch_options_def_group (nullptr);
15936
15937 static const std::string watch_help = gdb::option::build_help (_("\
15938 Set a watchpoint for EXPRESSION.\n\
15939 Usage: watch [-location] EXPRESSION\n\
15940 \n\
15941 Options:\n\
15942 %OPTIONS%\n\
15943 \n\
15944 A watchpoint stops execution of your program whenever the value of\n\
15945 an expression changes."), opts);
15946 c = add_com ("watch", class_breakpoint, watch_command,
15947 watch_help.c_str ());
15948 set_cmd_completer_handle_brkchars (c, watch_command_completer);
15949
15950 static const std::string rwatch_help = gdb::option::build_help (_("\
15951 Set a read watchpoint for EXPRESSION.\n\
15952 Usage: rwatch [-location] EXPRESSION\n\
15953 \n\
15954 Options:\n\
15955 %OPTIONS%\n\
15956 \n\
15957 A read watchpoint stops execution of your program whenever the value of\n\
15958 an expression is read."), opts);
15959 c = add_com ("rwatch", class_breakpoint, rwatch_command,
15960 rwatch_help.c_str ());
15961 set_cmd_completer_handle_brkchars (c, watch_command_completer);
15962
15963 static const std::string awatch_help = gdb::option::build_help (_("\
15964 Set an access watchpoint for EXPRESSION.\n\
15965 Usage: awatch [-location] EXPRESSION\n\
15966 \n\
15967 Options:\n\
15968 %OPTIONS%\n\
15969 \n\
15970 An access watchpoint stops execution of your program whenever the value\n\
15971 of an expression is either read or written."), opts);
15972 c = add_com ("awatch", class_breakpoint, awatch_command,
15973 awatch_help.c_str ());
15974 set_cmd_completer_handle_brkchars (c, watch_command_completer);
15975
15976 add_info ("watchpoints", info_watchpoints_command, _("\
15977 Status of specified watchpoints (all watchpoints if no argument)."));
15978
15979 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15980 respond to changes - contrary to the description. */
15981 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15982 &can_use_hw_watchpoints, _("\
15983 Set debugger's willingness to use watchpoint hardware."), _("\
15984 Show debugger's willingness to use watchpoint hardware."), _("\
15985 If zero, gdb will not use hardware for new watchpoints, even if\n\
15986 such is available. (However, any hardware watchpoints that were\n\
15987 created before setting this to nonzero, will continue to use watchpoint\n\
15988 hardware.)"),
15989 NULL,
15990 show_can_use_hw_watchpoints,
15991 &setlist, &showlist);
15992
15993 can_use_hw_watchpoints = 1;
15994
15995 /* Tracepoint manipulation commands. */
15996
15997 c = add_com ("trace", class_breakpoint, trace_command, _("\
15998 Set a tracepoint at specified location.\n\
15999 \n"
16000 BREAK_ARGS_HELP ("trace") "\n\
16001 Do \"help tracepoints\" for info on other tracepoint commands."));
16002 set_cmd_completer (c, location_completer);
16003
16004 add_com_alias ("tp", "trace", class_breakpoint, 0);
16005 add_com_alias ("tr", "trace", class_breakpoint, 1);
16006 add_com_alias ("tra", "trace", class_breakpoint, 1);
16007 add_com_alias ("trac", "trace", class_breakpoint, 1);
16008
16009 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16010 Set a fast tracepoint at specified location.\n\
16011 \n"
16012 BREAK_ARGS_HELP ("ftrace") "\n\
16013 Do \"help tracepoints\" for info on other tracepoint commands."));
16014 set_cmd_completer (c, location_completer);
16015
16016 c = add_com ("strace", class_breakpoint, strace_command, _("\
16017 Set a static tracepoint at location or marker.\n\
16018 \n\
16019 strace [LOCATION] [if CONDITION]\n\
16020 LOCATION may be a linespec, explicit, or address location (described below) \n\
16021 or -m MARKER_ID.\n\n\
16022 If a marker id is specified, probe the marker with that name. With\n\
16023 no LOCATION, uses current execution address of the selected stack frame.\n\
16024 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16025 This collects arbitrary user data passed in the probe point call to the\n\
16026 tracing library. You can inspect it when analyzing the trace buffer,\n\
16027 by printing the $_sdata variable like any other convenience variable.\n\
16028 \n\
16029 CONDITION is a boolean expression.\n\
16030 \n" LOCATION_HELP_STRING "\n\n\
16031 Multiple tracepoints at one place are permitted, and useful if their\n\
16032 conditions are different.\n\
16033 \n\
16034 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16035 Do \"help tracepoints\" for info on other tracepoint commands."));
16036 set_cmd_completer (c, location_completer);
16037
16038 add_info ("tracepoints", info_tracepoints_command, _("\
16039 Status of specified tracepoints (all tracepoints if no argument).\n\
16040 Convenience variable \"$tpnum\" contains the number of the\n\
16041 last tracepoint set."));
16042
16043 add_info_alias ("tp", "tracepoints", 1);
16044
16045 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16046 Delete specified tracepoints.\n\
16047 Arguments are tracepoint numbers, separated by spaces.\n\
16048 No argument means delete all tracepoints."),
16049 &deletelist);
16050 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16051
16052 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16053 Disable specified tracepoints.\n\
16054 Arguments are tracepoint numbers, separated by spaces.\n\
16055 No argument means disable all tracepoints."),
16056 &disablelist);
16057 deprecate_cmd (c, "disable");
16058
16059 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16060 Enable specified tracepoints.\n\
16061 Arguments are tracepoint numbers, separated by spaces.\n\
16062 No argument means enable all tracepoints."),
16063 &enablelist);
16064 deprecate_cmd (c, "enable");
16065
16066 add_com ("passcount", class_trace, trace_pass_command, _("\
16067 Set the passcount for a tracepoint.\n\
16068 The trace will end when the tracepoint has been passed 'count' times.\n\
16069 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16070 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16071
16072 add_basic_prefix_cmd ("save", class_breakpoint,
16073 _("Save breakpoint definitions as a script."),
16074 &save_cmdlist, "save ",
16075 0/*allow-unknown*/, &cmdlist);
16076
16077 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16078 Save current breakpoint definitions as a script.\n\
16079 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16080 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16081 session to restore them."),
16082 &save_cmdlist);
16083 set_cmd_completer (c, filename_completer);
16084
16085 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16086 Save current tracepoint definitions as a script.\n\
16087 Use the 'source' command in another debug session to restore them."),
16088 &save_cmdlist);
16089 set_cmd_completer (c, filename_completer);
16090
16091 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16092 deprecate_cmd (c, "save tracepoints");
16093
16094 add_basic_prefix_cmd ("breakpoint", class_maintenance, _("\
16095 Breakpoint specific settings.\n\
16096 Configure various breakpoint-specific variables such as\n\
16097 pending breakpoint behavior."),
16098 &breakpoint_set_cmdlist, "set breakpoint ",
16099 0/*allow-unknown*/, &setlist);
16100 add_show_prefix_cmd ("breakpoint", class_maintenance, _("\
16101 Breakpoint specific settings.\n\
16102 Configure various breakpoint-specific variables such as\n\
16103 pending breakpoint behavior."),
16104 &breakpoint_show_cmdlist, "show breakpoint ",
16105 0/*allow-unknown*/, &showlist);
16106
16107 add_setshow_auto_boolean_cmd ("pending", no_class,
16108 &pending_break_support, _("\
16109 Set debugger's behavior regarding pending breakpoints."), _("\
16110 Show debugger's behavior regarding pending breakpoints."), _("\
16111 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16112 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16113 an error. If auto, an unrecognized breakpoint location results in a\n\
16114 user-query to see if a pending breakpoint should be created."),
16115 NULL,
16116 show_pending_break_support,
16117 &breakpoint_set_cmdlist,
16118 &breakpoint_show_cmdlist);
16119
16120 pending_break_support = AUTO_BOOLEAN_AUTO;
16121
16122 add_setshow_boolean_cmd ("auto-hw", no_class,
16123 &automatic_hardware_breakpoints, _("\
16124 Set automatic usage of hardware breakpoints."), _("\
16125 Show automatic usage of hardware breakpoints."), _("\
16126 If set, the debugger will automatically use hardware breakpoints for\n\
16127 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16128 a warning will be emitted for such breakpoints."),
16129 NULL,
16130 show_automatic_hardware_breakpoints,
16131 &breakpoint_set_cmdlist,
16132 &breakpoint_show_cmdlist);
16133
16134 add_setshow_boolean_cmd ("always-inserted", class_support,
16135 &always_inserted_mode, _("\
16136 Set mode for inserting breakpoints."), _("\
16137 Show mode for inserting breakpoints."), _("\
16138 When this mode is on, breakpoints are inserted immediately as soon as\n\
16139 they're created, kept inserted even when execution stops, and removed\n\
16140 only when the user deletes them. When this mode is off (the default),\n\
16141 breakpoints are inserted only when execution continues, and removed\n\
16142 when execution stops."),
16143 NULL,
16144 &show_always_inserted_mode,
16145 &breakpoint_set_cmdlist,
16146 &breakpoint_show_cmdlist);
16147
16148 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16149 condition_evaluation_enums,
16150 &condition_evaluation_mode_1, _("\
16151 Set mode of breakpoint condition evaluation."), _("\
16152 Show mode of breakpoint condition evaluation."), _("\
16153 When this is set to \"host\", breakpoint conditions will be\n\
16154 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16155 breakpoint conditions will be downloaded to the target (if the target\n\
16156 supports such feature) and conditions will be evaluated on the target's side.\n\
16157 If this is set to \"auto\" (default), this will be automatically set to\n\
16158 \"target\" if it supports condition evaluation, otherwise it will\n\
16159 be set to \"host\"."),
16160 &set_condition_evaluation_mode,
16161 &show_condition_evaluation_mode,
16162 &breakpoint_set_cmdlist,
16163 &breakpoint_show_cmdlist);
16164
16165 add_com ("break-range", class_breakpoint, break_range_command, _("\
16166 Set a breakpoint for an address range.\n\
16167 break-range START-LOCATION, END-LOCATION\n\
16168 where START-LOCATION and END-LOCATION can be one of the following:\n\
16169 LINENUM, for that line in the current file,\n\
16170 FILE:LINENUM, for that line in that file,\n\
16171 +OFFSET, for that number of lines after the current line\n\
16172 or the start of the range\n\
16173 FUNCTION, for the first line in that function,\n\
16174 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16175 *ADDRESS, for the instruction at that address.\n\
16176 \n\
16177 The breakpoint will stop execution of the inferior whenever it executes\n\
16178 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16179 range (including START-LOCATION and END-LOCATION)."));
16180
16181 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16182 Set a dynamic printf at specified location.\n\
16183 dprintf location,format string,arg1,arg2,...\n\
16184 location may be a linespec, explicit, or address location.\n"
16185 "\n" LOCATION_HELP_STRING));
16186 set_cmd_completer (c, location_completer);
16187
16188 add_setshow_enum_cmd ("dprintf-style", class_support,
16189 dprintf_style_enums, &dprintf_style, _("\
16190 Set the style of usage for dynamic printf."), _("\
16191 Show the style of usage for dynamic printf."), _("\
16192 This setting chooses how GDB will do a dynamic printf.\n\
16193 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16194 console, as with the \"printf\" command.\n\
16195 If the value is \"call\", the print is done by calling a function in your\n\
16196 program; by default printf(), but you can choose a different function or\n\
16197 output stream by setting dprintf-function and dprintf-channel."),
16198 update_dprintf_commands, NULL,
16199 &setlist, &showlist);
16200
16201 dprintf_function = xstrdup ("printf");
16202 add_setshow_string_cmd ("dprintf-function", class_support,
16203 &dprintf_function, _("\
16204 Set the function to use for dynamic printf."), _("\
16205 Show the function to use for dynamic printf."), NULL,
16206 update_dprintf_commands, NULL,
16207 &setlist, &showlist);
16208
16209 dprintf_channel = xstrdup ("");
16210 add_setshow_string_cmd ("dprintf-channel", class_support,
16211 &dprintf_channel, _("\
16212 Set the channel to use for dynamic printf."), _("\
16213 Show the channel to use for dynamic printf."), NULL,
16214 update_dprintf_commands, NULL,
16215 &setlist, &showlist);
16216
16217 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16218 &disconnected_dprintf, _("\
16219 Set whether dprintf continues after GDB disconnects."), _("\
16220 Show whether dprintf continues after GDB disconnects."), _("\
16221 Use this to let dprintf commands continue to hit and produce output\n\
16222 even if GDB disconnects or detaches from the target."),
16223 NULL,
16224 NULL,
16225 &setlist, &showlist);
16226
16227 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16228 Target agent only formatted printing, like the C \"printf\" function.\n\
16229 Usage: agent-printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
16230 This supports most C printf format specifications, like %s, %d, etc.\n\
16231 This is useful for formatted output in user-defined commands."));
16232
16233 automatic_hardware_breakpoints = true;
16234
16235 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16236 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16237 }