Use std::vector for moribund_locations
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 struct thread_info *tp;
404
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 ALL_NON_EXITED_THREADS (tp)
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 static std::vector<bp_location *> moribund_locations;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block.reset ();
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = innermost_block.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 int i;
1013
1014 if (c->control_type == while_stepping_control)
1015 error (_("The 'while-stepping' command can "
1016 "only be used for tracepoints"));
1017
1018 check_no_tracepoint_commands (c->body_list_0.get ());
1019 check_no_tracepoint_commands (c->body_list_1.get ());
1020
1021 /* Not that command parsing removes leading whitespace and comment
1022 lines and also empty lines. So, we only need to check for
1023 command directly. */
1024 if (strstr (c->line, "collect ") == c->line)
1025 error (_("The 'collect' command can only be used for tracepoints"));
1026
1027 if (strstr (c->line, "teval ") == c->line)
1028 error (_("The 'teval' command can only be used for tracepoints"));
1029 }
1030 }
1031
1032 struct longjmp_breakpoint : public breakpoint
1033 {
1034 ~longjmp_breakpoint () override;
1035 };
1036
1037 /* Encapsulate tests for different types of tracepoints. */
1038
1039 static bool
1040 is_tracepoint_type (bptype type)
1041 {
1042 return (type == bp_tracepoint
1043 || type == bp_fast_tracepoint
1044 || type == bp_static_tracepoint);
1045 }
1046
1047 static bool
1048 is_longjmp_type (bptype type)
1049 {
1050 return type == bp_longjmp || type == bp_exception;
1051 }
1052
1053 int
1054 is_tracepoint (const struct breakpoint *b)
1055 {
1056 return is_tracepoint_type (b->type);
1057 }
1058
1059 /* Factory function to create an appropriate instance of breakpoint given
1060 TYPE. */
1061
1062 static std::unique_ptr<breakpoint>
1063 new_breakpoint_from_type (bptype type)
1064 {
1065 breakpoint *b;
1066
1067 if (is_tracepoint_type (type))
1068 b = new tracepoint ();
1069 else if (is_longjmp_type (type))
1070 b = new longjmp_breakpoint ();
1071 else
1072 b = new breakpoint ();
1073
1074 return std::unique_ptr<breakpoint> (b);
1075 }
1076
1077 /* A helper function that validates that COMMANDS are valid for a
1078 breakpoint. This function will throw an exception if a problem is
1079 found. */
1080
1081 static void
1082 validate_commands_for_breakpoint (struct breakpoint *b,
1083 struct command_line *commands)
1084 {
1085 if (is_tracepoint (b))
1086 {
1087 struct tracepoint *t = (struct tracepoint *) b;
1088 struct command_line *c;
1089 struct command_line *while_stepping = 0;
1090
1091 /* Reset the while-stepping step count. The previous commands
1092 might have included a while-stepping action, while the new
1093 ones might not. */
1094 t->step_count = 0;
1095
1096 /* We need to verify that each top-level element of commands is
1097 valid for tracepoints, that there's at most one
1098 while-stepping element, and that the while-stepping's body
1099 has valid tracing commands excluding nested while-stepping.
1100 We also need to validate the tracepoint action line in the
1101 context of the tracepoint --- validate_actionline actually
1102 has side effects, like setting the tracepoint's
1103 while-stepping STEP_COUNT, in addition to checking if the
1104 collect/teval actions parse and make sense in the
1105 tracepoint's context. */
1106 for (c = commands; c; c = c->next)
1107 {
1108 if (c->control_type == while_stepping_control)
1109 {
1110 if (b->type == bp_fast_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for fast tracepoint"));
1113 else if (b->type == bp_static_tracepoint)
1114 error (_("The 'while-stepping' command "
1115 "cannot be used for static tracepoint"));
1116
1117 if (while_stepping)
1118 error (_("The 'while-stepping' command "
1119 "can be used only once"));
1120 else
1121 while_stepping = c;
1122 }
1123
1124 validate_actionline (c->line, b);
1125 }
1126 if (while_stepping)
1127 {
1128 struct command_line *c2;
1129
1130 gdb_assert (while_stepping->body_list_1 == nullptr);
1131 c2 = while_stepping->body_list_0.get ();
1132 for (; c2; c2 = c2->next)
1133 {
1134 if (c2->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command cannot be nested"));
1136 }
1137 }
1138 }
1139 else
1140 {
1141 check_no_tracepoint_commands (commands);
1142 }
1143 }
1144
1145 /* Return a vector of all the static tracepoints set at ADDR. The
1146 caller is responsible for releasing the vector. */
1147
1148 std::vector<breakpoint *>
1149 static_tracepoints_here (CORE_ADDR addr)
1150 {
1151 struct breakpoint *b;
1152 std::vector<breakpoint *> found;
1153 struct bp_location *loc;
1154
1155 ALL_BREAKPOINTS (b)
1156 if (b->type == bp_static_tracepoint)
1157 {
1158 for (loc = b->loc; loc; loc = loc->next)
1159 if (loc->address == addr)
1160 found.push_back (b);
1161 }
1162
1163 return found;
1164 }
1165
1166 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1167 validate that only allowed commands are included. */
1168
1169 void
1170 breakpoint_set_commands (struct breakpoint *b,
1171 counted_command_line &&commands)
1172 {
1173 validate_commands_for_breakpoint (b, commands.get ());
1174
1175 b->commands = std::move (commands);
1176 gdb::observers::breakpoint_modified.notify (b);
1177 }
1178
1179 /* Set the internal `silent' flag on the breakpoint. Note that this
1180 is not the same as the "silent" that may appear in the breakpoint's
1181 commands. */
1182
1183 void
1184 breakpoint_set_silent (struct breakpoint *b, int silent)
1185 {
1186 int old_silent = b->silent;
1187
1188 b->silent = silent;
1189 if (old_silent != silent)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the thread for this breakpoint. If THREAD is -1, make the
1194 breakpoint work for any thread. */
1195
1196 void
1197 breakpoint_set_thread (struct breakpoint *b, int thread)
1198 {
1199 int old_thread = b->thread;
1200
1201 b->thread = thread;
1202 if (old_thread != thread)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 /* Set the task for this breakpoint. If TASK is 0, make the
1207 breakpoint work for any task. */
1208
1209 void
1210 breakpoint_set_task (struct breakpoint *b, int task)
1211 {
1212 int old_task = b->task;
1213
1214 b->task = task;
1215 if (old_task != task)
1216 gdb::observers::breakpoint_modified.notify (b);
1217 }
1218
1219 static void
1220 commands_command_1 (const char *arg, int from_tty,
1221 struct command_line *control)
1222 {
1223 counted_command_line cmd;
1224
1225 std::string new_arg;
1226
1227 if (arg == NULL || !*arg)
1228 {
1229 if (breakpoint_count - prev_breakpoint_count > 1)
1230 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1231 breakpoint_count);
1232 else if (breakpoint_count > 0)
1233 new_arg = string_printf ("%d", breakpoint_count);
1234 arg = new_arg.c_str ();
1235 }
1236
1237 map_breakpoint_numbers
1238 (arg, [&] (breakpoint *b)
1239 {
1240 if (cmd == NULL)
1241 {
1242 if (control != NULL)
1243 cmd = control->body_list_0;
1244 else
1245 {
1246 std::string str
1247 = string_printf (_("Type commands for breakpoint(s) "
1248 "%s, one per line."),
1249 arg);
1250
1251 auto do_validate = [=] (const char *line)
1252 {
1253 validate_actionline (line, b);
1254 };
1255 gdb::function_view<void (const char *)> validator;
1256 if (is_tracepoint (b))
1257 validator = do_validate;
1258
1259 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1260 }
1261 }
1262
1263 /* If a breakpoint was on the list more than once, we don't need to
1264 do anything. */
1265 if (b->commands != cmd)
1266 {
1267 validate_commands_for_breakpoint (b, cmd.get ());
1268 b->commands = cmd;
1269 gdb::observers::breakpoint_modified.notify (b);
1270 }
1271 });
1272 }
1273
1274 static void
1275 commands_command (const char *arg, int from_tty)
1276 {
1277 commands_command_1 (arg, from_tty, NULL);
1278 }
1279
1280 /* Like commands_command, but instead of reading the commands from
1281 input stream, takes them from an already parsed command structure.
1282
1283 This is used by cli-script.c to DTRT with breakpoint commands
1284 that are part of if and while bodies. */
1285 enum command_control_type
1286 commands_from_control_command (const char *arg, struct command_line *cmd)
1287 {
1288 commands_command_1 (arg, 0, cmd);
1289 return simple_control;
1290 }
1291
1292 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1293
1294 static int
1295 bp_location_has_shadow (struct bp_location *bl)
1296 {
1297 if (bl->loc_type != bp_loc_software_breakpoint)
1298 return 0;
1299 if (!bl->inserted)
1300 return 0;
1301 if (bl->target_info.shadow_len == 0)
1302 /* BL isn't valid, or doesn't shadow memory. */
1303 return 0;
1304 return 1;
1305 }
1306
1307 /* Update BUF, which is LEN bytes read from the target address
1308 MEMADDR, by replacing a memory breakpoint with its shadowed
1309 contents.
1310
1311 If READBUF is not NULL, this buffer must not overlap with the of
1312 the breakpoint location's shadow_contents buffer. Otherwise, a
1313 failed assertion internal error will be raised. */
1314
1315 static void
1316 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1317 const gdb_byte *writebuf_org,
1318 ULONGEST memaddr, LONGEST len,
1319 struct bp_target_info *target_info,
1320 struct gdbarch *gdbarch)
1321 {
1322 /* Now do full processing of the found relevant range of elements. */
1323 CORE_ADDR bp_addr = 0;
1324 int bp_size = 0;
1325 int bptoffset = 0;
1326
1327 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1328 current_program_space->aspace, 0))
1329 {
1330 /* The breakpoint is inserted in a different address space. */
1331 return;
1332 }
1333
1334 /* Addresses and length of the part of the breakpoint that
1335 we need to copy. */
1336 bp_addr = target_info->placed_address;
1337 bp_size = target_info->shadow_len;
1338
1339 if (bp_addr + bp_size <= memaddr)
1340 {
1341 /* The breakpoint is entirely before the chunk of memory we are
1342 reading. */
1343 return;
1344 }
1345
1346 if (bp_addr >= memaddr + len)
1347 {
1348 /* The breakpoint is entirely after the chunk of memory we are
1349 reading. */
1350 return;
1351 }
1352
1353 /* Offset within shadow_contents. */
1354 if (bp_addr < memaddr)
1355 {
1356 /* Only copy the second part of the breakpoint. */
1357 bp_size -= memaddr - bp_addr;
1358 bptoffset = memaddr - bp_addr;
1359 bp_addr = memaddr;
1360 }
1361
1362 if (bp_addr + bp_size > memaddr + len)
1363 {
1364 /* Only copy the first part of the breakpoint. */
1365 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1366 }
1367
1368 if (readbuf != NULL)
1369 {
1370 /* Verify that the readbuf buffer does not overlap with the
1371 shadow_contents buffer. */
1372 gdb_assert (target_info->shadow_contents >= readbuf + len
1373 || readbuf >= (target_info->shadow_contents
1374 + target_info->shadow_len));
1375
1376 /* Update the read buffer with this inserted breakpoint's
1377 shadow. */
1378 memcpy (readbuf + bp_addr - memaddr,
1379 target_info->shadow_contents + bptoffset, bp_size);
1380 }
1381 else
1382 {
1383 const unsigned char *bp;
1384 CORE_ADDR addr = target_info->reqstd_address;
1385 int placed_size;
1386
1387 /* Update the shadow with what we want to write to memory. */
1388 memcpy (target_info->shadow_contents + bptoffset,
1389 writebuf_org + bp_addr - memaddr, bp_size);
1390
1391 /* Determine appropriate breakpoint contents and size for this
1392 address. */
1393 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1394
1395 /* Update the final write buffer with this inserted
1396 breakpoint's INSN. */
1397 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1398 }
1399 }
1400
1401 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1402 by replacing any memory breakpoints with their shadowed contents.
1403
1404 If READBUF is not NULL, this buffer must not overlap with any of
1405 the breakpoint location's shadow_contents buffers. Otherwise,
1406 a failed assertion internal error will be raised.
1407
1408 The range of shadowed area by each bp_location is:
1409 bl->address - bp_locations_placed_address_before_address_max
1410 up to bl->address + bp_locations_shadow_len_after_address_max
1411 The range we were requested to resolve shadows for is:
1412 memaddr ... memaddr + len
1413 Thus the safe cutoff boundaries for performance optimization are
1414 memaddr + len <= (bl->address
1415 - bp_locations_placed_address_before_address_max)
1416 and:
1417 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1418
1419 void
1420 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1421 const gdb_byte *writebuf_org,
1422 ULONGEST memaddr, LONGEST len)
1423 {
1424 /* Left boundary, right boundary and median element of our binary
1425 search. */
1426 unsigned bc_l, bc_r, bc;
1427
1428 /* Find BC_L which is a leftmost element which may affect BUF
1429 content. It is safe to report lower value but a failure to
1430 report higher one. */
1431
1432 bc_l = 0;
1433 bc_r = bp_locations_count;
1434 while (bc_l + 1 < bc_r)
1435 {
1436 struct bp_location *bl;
1437
1438 bc = (bc_l + bc_r) / 2;
1439 bl = bp_locations[bc];
1440
1441 /* Check first BL->ADDRESS will not overflow due to the added
1442 constant. Then advance the left boundary only if we are sure
1443 the BC element can in no way affect the BUF content (MEMADDR
1444 to MEMADDR + LEN range).
1445
1446 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1447 offset so that we cannot miss a breakpoint with its shadow
1448 range tail still reaching MEMADDR. */
1449
1450 if ((bl->address + bp_locations_shadow_len_after_address_max
1451 >= bl->address)
1452 && (bl->address + bp_locations_shadow_len_after_address_max
1453 <= memaddr))
1454 bc_l = bc;
1455 else
1456 bc_r = bc;
1457 }
1458
1459 /* Due to the binary search above, we need to make sure we pick the
1460 first location that's at BC_L's address. E.g., if there are
1461 multiple locations at the same address, BC_L may end up pointing
1462 at a duplicate location, and miss the "master"/"inserted"
1463 location. Say, given locations L1, L2 and L3 at addresses A and
1464 B:
1465
1466 L1@A, L2@A, L3@B, ...
1467
1468 BC_L could end up pointing at location L2, while the "master"
1469 location could be L1. Since the `loc->inserted' flag is only set
1470 on "master" locations, we'd forget to restore the shadow of L1
1471 and L2. */
1472 while (bc_l > 0
1473 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1474 bc_l--;
1475
1476 /* Now do full processing of the found relevant range of elements. */
1477
1478 for (bc = bc_l; bc < bp_locations_count; bc++)
1479 {
1480 struct bp_location *bl = bp_locations[bc];
1481
1482 /* bp_location array has BL->OWNER always non-NULL. */
1483 if (bl->owner->type == bp_none)
1484 warning (_("reading through apparently deleted breakpoint #%d?"),
1485 bl->owner->number);
1486
1487 /* Performance optimization: any further element can no longer affect BUF
1488 content. */
1489
1490 if (bl->address >= bp_locations_placed_address_before_address_max
1491 && memaddr + len <= (bl->address
1492 - bp_locations_placed_address_before_address_max))
1493 break;
1494
1495 if (!bp_location_has_shadow (bl))
1496 continue;
1497
1498 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1499 memaddr, len, &bl->target_info, bl->gdbarch);
1500 }
1501 }
1502
1503 \f
1504
1505 /* Return true if BPT is either a software breakpoint or a hardware
1506 breakpoint. */
1507
1508 int
1509 is_breakpoint (const struct breakpoint *bpt)
1510 {
1511 return (bpt->type == bp_breakpoint
1512 || bpt->type == bp_hardware_breakpoint
1513 || bpt->type == bp_dprintf);
1514 }
1515
1516 /* Return true if BPT is of any hardware watchpoint kind. */
1517
1518 static int
1519 is_hardware_watchpoint (const struct breakpoint *bpt)
1520 {
1521 return (bpt->type == bp_hardware_watchpoint
1522 || bpt->type == bp_read_watchpoint
1523 || bpt->type == bp_access_watchpoint);
1524 }
1525
1526 /* Return true if BPT is of any watchpoint kind, hardware or
1527 software. */
1528
1529 int
1530 is_watchpoint (const struct breakpoint *bpt)
1531 {
1532 return (is_hardware_watchpoint (bpt)
1533 || bpt->type == bp_watchpoint);
1534 }
1535
1536 /* Returns true if the current thread and its running state are safe
1537 to evaluate or update watchpoint B. Watchpoints on local
1538 expressions need to be evaluated in the context of the thread that
1539 was current when the watchpoint was created, and, that thread needs
1540 to be stopped to be able to select the correct frame context.
1541 Watchpoints on global expressions can be evaluated on any thread,
1542 and in any state. It is presently left to the target allowing
1543 memory accesses when threads are running. */
1544
1545 static int
1546 watchpoint_in_thread_scope (struct watchpoint *b)
1547 {
1548 return (b->pspace == current_program_space
1549 && (b->watchpoint_thread == null_ptid
1550 || (inferior_ptid == b->watchpoint_thread
1551 && !inferior_thread ()->executing)));
1552 }
1553
1554 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1555 associated bp_watchpoint_scope breakpoint. */
1556
1557 static void
1558 watchpoint_del_at_next_stop (struct watchpoint *w)
1559 {
1560 if (w->related_breakpoint != w)
1561 {
1562 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1563 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1564 w->related_breakpoint->disposition = disp_del_at_next_stop;
1565 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1566 w->related_breakpoint = w;
1567 }
1568 w->disposition = disp_del_at_next_stop;
1569 }
1570
1571 /* Extract a bitfield value from value VAL using the bit parameters contained in
1572 watchpoint W. */
1573
1574 static struct value *
1575 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1576 {
1577 struct value *bit_val;
1578
1579 if (val == NULL)
1580 return NULL;
1581
1582 bit_val = allocate_value (value_type (val));
1583
1584 unpack_value_bitfield (bit_val,
1585 w->val_bitpos,
1586 w->val_bitsize,
1587 value_contents_for_printing (val),
1588 value_offset (val),
1589 val);
1590
1591 return bit_val;
1592 }
1593
1594 /* Allocate a dummy location and add it to B, which must be a software
1595 watchpoint. This is required because even if a software watchpoint
1596 is not watching any memory, bpstat_stop_status requires a location
1597 to be able to report stops. */
1598
1599 static void
1600 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1601 struct program_space *pspace)
1602 {
1603 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1604
1605 b->loc = allocate_bp_location (b);
1606 b->loc->pspace = pspace;
1607 b->loc->address = -1;
1608 b->loc->length = -1;
1609 }
1610
1611 /* Returns true if B is a software watchpoint that is not watching any
1612 memory (e.g., "watch $pc"). */
1613
1614 static int
1615 is_no_memory_software_watchpoint (struct breakpoint *b)
1616 {
1617 return (b->type == bp_watchpoint
1618 && b->loc != NULL
1619 && b->loc->next == NULL
1620 && b->loc->address == -1
1621 && b->loc->length == -1);
1622 }
1623
1624 /* Assuming that B is a watchpoint:
1625 - Reparse watchpoint expression, if REPARSE is non-zero
1626 - Evaluate expression and store the result in B->val
1627 - Evaluate the condition if there is one, and store the result
1628 in b->loc->cond.
1629 - Update the list of values that must be watched in B->loc.
1630
1631 If the watchpoint disposition is disp_del_at_next_stop, then do
1632 nothing. If this is local watchpoint that is out of scope, delete
1633 it.
1634
1635 Even with `set breakpoint always-inserted on' the watchpoints are
1636 removed + inserted on each stop here. Normal breakpoints must
1637 never be removed because they might be missed by a running thread
1638 when debugging in non-stop mode. On the other hand, hardware
1639 watchpoints (is_hardware_watchpoint; processed here) are specific
1640 to each LWP since they are stored in each LWP's hardware debug
1641 registers. Therefore, such LWP must be stopped first in order to
1642 be able to modify its hardware watchpoints.
1643
1644 Hardware watchpoints must be reset exactly once after being
1645 presented to the user. It cannot be done sooner, because it would
1646 reset the data used to present the watchpoint hit to the user. And
1647 it must not be done later because it could display the same single
1648 watchpoint hit during multiple GDB stops. Note that the latter is
1649 relevant only to the hardware watchpoint types bp_read_watchpoint
1650 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1651 not user-visible - its hit is suppressed if the memory content has
1652 not changed.
1653
1654 The following constraints influence the location where we can reset
1655 hardware watchpoints:
1656
1657 * target_stopped_by_watchpoint and target_stopped_data_address are
1658 called several times when GDB stops.
1659
1660 [linux]
1661 * Multiple hardware watchpoints can be hit at the same time,
1662 causing GDB to stop. GDB only presents one hardware watchpoint
1663 hit at a time as the reason for stopping, and all the other hits
1664 are presented later, one after the other, each time the user
1665 requests the execution to be resumed. Execution is not resumed
1666 for the threads still having pending hit event stored in
1667 LWP_INFO->STATUS. While the watchpoint is already removed from
1668 the inferior on the first stop the thread hit event is kept being
1669 reported from its cached value by linux_nat_stopped_data_address
1670 until the real thread resume happens after the watchpoint gets
1671 presented and thus its LWP_INFO->STATUS gets reset.
1672
1673 Therefore the hardware watchpoint hit can get safely reset on the
1674 watchpoint removal from inferior. */
1675
1676 static void
1677 update_watchpoint (struct watchpoint *b, int reparse)
1678 {
1679 int within_current_scope;
1680 struct frame_id saved_frame_id;
1681 int frame_saved;
1682
1683 /* If this is a local watchpoint, we only want to check if the
1684 watchpoint frame is in scope if the current thread is the thread
1685 that was used to create the watchpoint. */
1686 if (!watchpoint_in_thread_scope (b))
1687 return;
1688
1689 if (b->disposition == disp_del_at_next_stop)
1690 return;
1691
1692 frame_saved = 0;
1693
1694 /* Determine if the watchpoint is within scope. */
1695 if (b->exp_valid_block == NULL)
1696 within_current_scope = 1;
1697 else
1698 {
1699 struct frame_info *fi = get_current_frame ();
1700 struct gdbarch *frame_arch = get_frame_arch (fi);
1701 CORE_ADDR frame_pc = get_frame_pc (fi);
1702
1703 /* If we're at a point where the stack has been destroyed
1704 (e.g. in a function epilogue), unwinding may not work
1705 properly. Do not attempt to recreate locations at this
1706 point. See similar comments in watchpoint_check. */
1707 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1708 return;
1709
1710 /* Save the current frame's ID so we can restore it after
1711 evaluating the watchpoint expression on its own frame. */
1712 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1713 took a frame parameter, so that we didn't have to change the
1714 selected frame. */
1715 frame_saved = 1;
1716 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1717
1718 fi = frame_find_by_id (b->watchpoint_frame);
1719 within_current_scope = (fi != NULL);
1720 if (within_current_scope)
1721 select_frame (fi);
1722 }
1723
1724 /* We don't free locations. They are stored in the bp_location array
1725 and update_global_location_list will eventually delete them and
1726 remove breakpoints if needed. */
1727 b->loc = NULL;
1728
1729 if (within_current_scope && reparse)
1730 {
1731 const char *s;
1732
1733 b->exp.reset ();
1734 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1735 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1736 /* If the meaning of expression itself changed, the old value is
1737 no longer relevant. We don't want to report a watchpoint hit
1738 to the user when the old value and the new value may actually
1739 be completely different objects. */
1740 b->val = NULL;
1741 b->val_valid = 0;
1742
1743 /* Note that unlike with breakpoints, the watchpoint's condition
1744 expression is stored in the breakpoint object, not in the
1745 locations (re)created below. */
1746 if (b->cond_string != NULL)
1747 {
1748 b->cond_exp.reset ();
1749
1750 s = b->cond_string;
1751 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1752 }
1753 }
1754
1755 /* If we failed to parse the expression, for example because
1756 it refers to a global variable in a not-yet-loaded shared library,
1757 don't try to insert watchpoint. We don't automatically delete
1758 such watchpoint, though, since failure to parse expression
1759 is different from out-of-scope watchpoint. */
1760 if (!target_has_execution)
1761 {
1762 /* Without execution, memory can't change. No use to try and
1763 set watchpoint locations. The watchpoint will be reset when
1764 the target gains execution, through breakpoint_re_set. */
1765 if (!can_use_hw_watchpoints)
1766 {
1767 if (b->ops->works_in_software_mode (b))
1768 b->type = bp_watchpoint;
1769 else
1770 error (_("Can't set read/access watchpoint when "
1771 "hardware watchpoints are disabled."));
1772 }
1773 }
1774 else if (within_current_scope && b->exp)
1775 {
1776 int pc = 0;
1777 std::vector<value_ref_ptr> val_chain;
1778 struct value *v, *result, *next;
1779 struct program_space *frame_pspace;
1780
1781 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1782
1783 /* Avoid setting b->val if it's already set. The meaning of
1784 b->val is 'the last value' user saw, and we should update
1785 it only if we reported that last value to user. As it
1786 happens, the code that reports it updates b->val directly.
1787 We don't keep track of the memory value for masked
1788 watchpoints. */
1789 if (!b->val_valid && !is_masked_watchpoint (b))
1790 {
1791 if (b->val_bitsize != 0)
1792 v = extract_bitfield_from_watchpoint_value (b, v);
1793 b->val = release_value (v);
1794 b->val_valid = 1;
1795 }
1796
1797 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1798
1799 /* Look at each value on the value chain. */
1800 gdb_assert (!val_chain.empty ());
1801 for (const value_ref_ptr &iter : val_chain)
1802 {
1803 v = iter.get ();
1804
1805 /* If it's a memory location, and GDB actually needed
1806 its contents to evaluate the expression, then we
1807 must watch it. If the first value returned is
1808 still lazy, that means an error occurred reading it;
1809 watch it anyway in case it becomes readable. */
1810 if (VALUE_LVAL (v) == lval_memory
1811 && (v == val_chain[0] || ! value_lazy (v)))
1812 {
1813 struct type *vtype = check_typedef (value_type (v));
1814
1815 /* We only watch structs and arrays if user asked
1816 for it explicitly, never if they just happen to
1817 appear in the middle of some value chain. */
1818 if (v == result
1819 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1820 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1821 {
1822 CORE_ADDR addr;
1823 enum target_hw_bp_type type;
1824 struct bp_location *loc, **tmp;
1825 int bitpos = 0, bitsize = 0;
1826
1827 if (value_bitsize (v) != 0)
1828 {
1829 /* Extract the bit parameters out from the bitfield
1830 sub-expression. */
1831 bitpos = value_bitpos (v);
1832 bitsize = value_bitsize (v);
1833 }
1834 else if (v == result && b->val_bitsize != 0)
1835 {
1836 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1837 lvalue whose bit parameters are saved in the fields
1838 VAL_BITPOS and VAL_BITSIZE. */
1839 bitpos = b->val_bitpos;
1840 bitsize = b->val_bitsize;
1841 }
1842
1843 addr = value_address (v);
1844 if (bitsize != 0)
1845 {
1846 /* Skip the bytes that don't contain the bitfield. */
1847 addr += bitpos / 8;
1848 }
1849
1850 type = hw_write;
1851 if (b->type == bp_read_watchpoint)
1852 type = hw_read;
1853 else if (b->type == bp_access_watchpoint)
1854 type = hw_access;
1855
1856 loc = allocate_bp_location (b);
1857 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1858 ;
1859 *tmp = loc;
1860 loc->gdbarch = get_type_arch (value_type (v));
1861
1862 loc->pspace = frame_pspace;
1863 loc->address = address_significant (loc->gdbarch, addr);
1864
1865 if (bitsize != 0)
1866 {
1867 /* Just cover the bytes that make up the bitfield. */
1868 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1869 }
1870 else
1871 loc->length = TYPE_LENGTH (value_type (v));
1872
1873 loc->watchpoint_type = type;
1874 }
1875 }
1876 }
1877
1878 /* Change the type of breakpoint between hardware assisted or
1879 an ordinary watchpoint depending on the hardware support
1880 and free hardware slots. REPARSE is set when the inferior
1881 is started. */
1882 if (reparse)
1883 {
1884 int reg_cnt;
1885 enum bp_loc_type loc_type;
1886 struct bp_location *bl;
1887
1888 reg_cnt = can_use_hardware_watchpoint (val_chain);
1889
1890 if (reg_cnt)
1891 {
1892 int i, target_resources_ok, other_type_used;
1893 enum bptype type;
1894
1895 /* Use an exact watchpoint when there's only one memory region to be
1896 watched, and only one debug register is needed to watch it. */
1897 b->exact = target_exact_watchpoints && reg_cnt == 1;
1898
1899 /* We need to determine how many resources are already
1900 used for all other hardware watchpoints plus this one
1901 to see if we still have enough resources to also fit
1902 this watchpoint in as well. */
1903
1904 /* If this is a software watchpoint, we try to turn it
1905 to a hardware one -- count resources as if B was of
1906 hardware watchpoint type. */
1907 type = b->type;
1908 if (type == bp_watchpoint)
1909 type = bp_hardware_watchpoint;
1910
1911 /* This watchpoint may or may not have been placed on
1912 the list yet at this point (it won't be in the list
1913 if we're trying to create it for the first time,
1914 through watch_command), so always account for it
1915 manually. */
1916
1917 /* Count resources used by all watchpoints except B. */
1918 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1919
1920 /* Add in the resources needed for B. */
1921 i += hw_watchpoint_use_count (b);
1922
1923 target_resources_ok
1924 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1925 if (target_resources_ok <= 0)
1926 {
1927 int sw_mode = b->ops->works_in_software_mode (b);
1928
1929 if (target_resources_ok == 0 && !sw_mode)
1930 error (_("Target does not support this type of "
1931 "hardware watchpoint."));
1932 else if (target_resources_ok < 0 && !sw_mode)
1933 error (_("There are not enough available hardware "
1934 "resources for this watchpoint."));
1935
1936 /* Downgrade to software watchpoint. */
1937 b->type = bp_watchpoint;
1938 }
1939 else
1940 {
1941 /* If this was a software watchpoint, we've just
1942 found we have enough resources to turn it to a
1943 hardware watchpoint. Otherwise, this is a
1944 nop. */
1945 b->type = type;
1946 }
1947 }
1948 else if (!b->ops->works_in_software_mode (b))
1949 {
1950 if (!can_use_hw_watchpoints)
1951 error (_("Can't set read/access watchpoint when "
1952 "hardware watchpoints are disabled."));
1953 else
1954 error (_("Expression cannot be implemented with "
1955 "read/access watchpoint."));
1956 }
1957 else
1958 b->type = bp_watchpoint;
1959
1960 loc_type = (b->type == bp_watchpoint? bp_loc_other
1961 : bp_loc_hardware_watchpoint);
1962 for (bl = b->loc; bl; bl = bl->next)
1963 bl->loc_type = loc_type;
1964 }
1965
1966 /* If a software watchpoint is not watching any memory, then the
1967 above left it without any location set up. But,
1968 bpstat_stop_status requires a location to be able to report
1969 stops, so make sure there's at least a dummy one. */
1970 if (b->type == bp_watchpoint && b->loc == NULL)
1971 software_watchpoint_add_no_memory_location (b, frame_pspace);
1972 }
1973 else if (!within_current_scope)
1974 {
1975 printf_filtered (_("\
1976 Watchpoint %d deleted because the program has left the block\n\
1977 in which its expression is valid.\n"),
1978 b->number);
1979 watchpoint_del_at_next_stop (b);
1980 }
1981
1982 /* Restore the selected frame. */
1983 if (frame_saved)
1984 select_frame (frame_find_by_id (saved_frame_id));
1985 }
1986
1987
1988 /* Returns 1 iff breakpoint location should be
1989 inserted in the inferior. We don't differentiate the type of BL's owner
1990 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1991 breakpoint_ops is not defined, because in insert_bp_location,
1992 tracepoint's insert_location will not be called. */
1993 static int
1994 should_be_inserted (struct bp_location *bl)
1995 {
1996 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1997 return 0;
1998
1999 if (bl->owner->disposition == disp_del_at_next_stop)
2000 return 0;
2001
2002 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2003 return 0;
2004
2005 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2006 return 0;
2007
2008 /* This is set for example, when we're attached to the parent of a
2009 vfork, and have detached from the child. The child is running
2010 free, and we expect it to do an exec or exit, at which point the
2011 OS makes the parent schedulable again (and the target reports
2012 that the vfork is done). Until the child is done with the shared
2013 memory region, do not insert breakpoints in the parent, otherwise
2014 the child could still trip on the parent's breakpoints. Since
2015 the parent is blocked anyway, it won't miss any breakpoint. */
2016 if (bl->pspace->breakpoints_not_allowed)
2017 return 0;
2018
2019 /* Don't insert a breakpoint if we're trying to step past its
2020 location, except if the breakpoint is a single-step breakpoint,
2021 and the breakpoint's thread is the thread which is stepping past
2022 a breakpoint. */
2023 if ((bl->loc_type == bp_loc_software_breakpoint
2024 || bl->loc_type == bp_loc_hardware_breakpoint)
2025 && stepping_past_instruction_at (bl->pspace->aspace,
2026 bl->address)
2027 /* The single-step breakpoint may be inserted at the location
2028 we're trying to step if the instruction branches to itself.
2029 However, the instruction won't be executed at all and it may
2030 break the semantics of the instruction, for example, the
2031 instruction is a conditional branch or updates some flags.
2032 We can't fix it unless GDB is able to emulate the instruction
2033 or switch to displaced stepping. */
2034 && !(bl->owner->type == bp_single_step
2035 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2036 {
2037 if (debug_infrun)
2038 {
2039 fprintf_unfiltered (gdb_stdlog,
2040 "infrun: skipping breakpoint: "
2041 "stepping past insn at: %s\n",
2042 paddress (bl->gdbarch, bl->address));
2043 }
2044 return 0;
2045 }
2046
2047 /* Don't insert watchpoints if we're trying to step past the
2048 instruction that triggered one. */
2049 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2050 && stepping_past_nonsteppable_watchpoint ())
2051 {
2052 if (debug_infrun)
2053 {
2054 fprintf_unfiltered (gdb_stdlog,
2055 "infrun: stepping past non-steppable watchpoint. "
2056 "skipping watchpoint at %s:%d\n",
2057 paddress (bl->gdbarch, bl->address),
2058 bl->length);
2059 }
2060 return 0;
2061 }
2062
2063 return 1;
2064 }
2065
2066 /* Same as should_be_inserted but does the check assuming
2067 that the location is not duplicated. */
2068
2069 static int
2070 unduplicated_should_be_inserted (struct bp_location *bl)
2071 {
2072 int result;
2073 const int save_duplicate = bl->duplicate;
2074
2075 bl->duplicate = 0;
2076 result = should_be_inserted (bl);
2077 bl->duplicate = save_duplicate;
2078 return result;
2079 }
2080
2081 /* Parses a conditional described by an expression COND into an
2082 agent expression bytecode suitable for evaluation
2083 by the bytecode interpreter. Return NULL if there was
2084 any error during parsing. */
2085
2086 static agent_expr_up
2087 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2088 {
2089 if (cond == NULL)
2090 return NULL;
2091
2092 agent_expr_up aexpr;
2093
2094 /* We don't want to stop processing, so catch any errors
2095 that may show up. */
2096 TRY
2097 {
2098 aexpr = gen_eval_for_expr (scope, cond);
2099 }
2100
2101 CATCH (ex, RETURN_MASK_ERROR)
2102 {
2103 /* If we got here, it means the condition could not be parsed to a valid
2104 bytecode expression and thus can't be evaluated on the target's side.
2105 It's no use iterating through the conditions. */
2106 }
2107 END_CATCH
2108
2109 /* We have a valid agent expression. */
2110 return aexpr;
2111 }
2112
2113 /* Based on location BL, create a list of breakpoint conditions to be
2114 passed on to the target. If we have duplicated locations with different
2115 conditions, we will add such conditions to the list. The idea is that the
2116 target will evaluate the list of conditions and will only notify GDB when
2117 one of them is true. */
2118
2119 static void
2120 build_target_condition_list (struct bp_location *bl)
2121 {
2122 struct bp_location **locp = NULL, **loc2p;
2123 int null_condition_or_parse_error = 0;
2124 int modified = bl->needs_update;
2125 struct bp_location *loc;
2126
2127 /* Release conditions left over from a previous insert. */
2128 bl->target_info.conditions.clear ();
2129
2130 /* This is only meaningful if the target is
2131 evaluating conditions and if the user has
2132 opted for condition evaluation on the target's
2133 side. */
2134 if (gdb_evaluates_breakpoint_condition_p ()
2135 || !target_supports_evaluation_of_breakpoint_conditions ())
2136 return;
2137
2138 /* Do a first pass to check for locations with no assigned
2139 conditions or conditions that fail to parse to a valid agent expression
2140 bytecode. If any of these happen, then it's no use to send conditions
2141 to the target since this location will always trigger and generate a
2142 response back to GDB. */
2143 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2144 {
2145 loc = (*loc2p);
2146 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2147 {
2148 if (modified)
2149 {
2150 /* Re-parse the conditions since something changed. In that
2151 case we already freed the condition bytecodes (see
2152 force_breakpoint_reinsertion). We just
2153 need to parse the condition to bytecodes again. */
2154 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2155 loc->cond.get ());
2156 }
2157
2158 /* If we have a NULL bytecode expression, it means something
2159 went wrong or we have a null condition expression. */
2160 if (!loc->cond_bytecode)
2161 {
2162 null_condition_or_parse_error = 1;
2163 break;
2164 }
2165 }
2166 }
2167
2168 /* If any of these happened, it means we will have to evaluate the conditions
2169 for the location's address on gdb's side. It is no use keeping bytecodes
2170 for all the other duplicate locations, thus we free all of them here.
2171
2172 This is so we have a finer control over which locations' conditions are
2173 being evaluated by GDB or the remote stub. */
2174 if (null_condition_or_parse_error)
2175 {
2176 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2177 {
2178 loc = (*loc2p);
2179 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2180 {
2181 /* Only go as far as the first NULL bytecode is
2182 located. */
2183 if (!loc->cond_bytecode)
2184 return;
2185
2186 loc->cond_bytecode.reset ();
2187 }
2188 }
2189 }
2190
2191 /* No NULL conditions or failed bytecode generation. Build a condition list
2192 for this location's address. */
2193 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2194 {
2195 loc = (*loc2p);
2196 if (loc->cond
2197 && is_breakpoint (loc->owner)
2198 && loc->pspace->num == bl->pspace->num
2199 && loc->owner->enable_state == bp_enabled
2200 && loc->enabled)
2201 {
2202 /* Add the condition to the vector. This will be used later
2203 to send the conditions to the target. */
2204 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2205 }
2206 }
2207
2208 return;
2209 }
2210
2211 /* Parses a command described by string CMD into an agent expression
2212 bytecode suitable for evaluation by the bytecode interpreter.
2213 Return NULL if there was any error during parsing. */
2214
2215 static agent_expr_up
2216 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2217 {
2218 const char *cmdrest;
2219 const char *format_start, *format_end;
2220 struct gdbarch *gdbarch = get_current_arch ();
2221
2222 if (cmd == NULL)
2223 return NULL;
2224
2225 cmdrest = cmd;
2226
2227 if (*cmdrest == ',')
2228 ++cmdrest;
2229 cmdrest = skip_spaces (cmdrest);
2230
2231 if (*cmdrest++ != '"')
2232 error (_("No format string following the location"));
2233
2234 format_start = cmdrest;
2235
2236 format_pieces fpieces (&cmdrest);
2237
2238 format_end = cmdrest;
2239
2240 if (*cmdrest++ != '"')
2241 error (_("Bad format string, non-terminated '\"'."));
2242
2243 cmdrest = skip_spaces (cmdrest);
2244
2245 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2246 error (_("Invalid argument syntax"));
2247
2248 if (*cmdrest == ',')
2249 cmdrest++;
2250 cmdrest = skip_spaces (cmdrest);
2251
2252 /* For each argument, make an expression. */
2253
2254 std::vector<struct expression *> argvec;
2255 while (*cmdrest != '\0')
2256 {
2257 const char *cmd1;
2258
2259 cmd1 = cmdrest;
2260 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2261 argvec.push_back (expr.release ());
2262 cmdrest = cmd1;
2263 if (*cmdrest == ',')
2264 ++cmdrest;
2265 }
2266
2267 agent_expr_up aexpr;
2268
2269 /* We don't want to stop processing, so catch any errors
2270 that may show up. */
2271 TRY
2272 {
2273 aexpr = gen_printf (scope, gdbarch, 0, 0,
2274 format_start, format_end - format_start,
2275 argvec.size (), argvec.data ());
2276 }
2277 CATCH (ex, RETURN_MASK_ERROR)
2278 {
2279 /* If we got here, it means the command could not be parsed to a valid
2280 bytecode expression and thus can't be evaluated on the target's side.
2281 It's no use iterating through the other commands. */
2282 }
2283 END_CATCH
2284
2285 /* We have a valid agent expression, return it. */
2286 return aexpr;
2287 }
2288
2289 /* Based on location BL, create a list of breakpoint commands to be
2290 passed on to the target. If we have duplicated locations with
2291 different commands, we will add any such to the list. */
2292
2293 static void
2294 build_target_command_list (struct bp_location *bl)
2295 {
2296 struct bp_location **locp = NULL, **loc2p;
2297 int null_command_or_parse_error = 0;
2298 int modified = bl->needs_update;
2299 struct bp_location *loc;
2300
2301 /* Clear commands left over from a previous insert. */
2302 bl->target_info.tcommands.clear ();
2303
2304 if (!target_can_run_breakpoint_commands ())
2305 return;
2306
2307 /* For now, limit to agent-style dprintf breakpoints. */
2308 if (dprintf_style != dprintf_style_agent)
2309 return;
2310
2311 /* For now, if we have any duplicate location that isn't a dprintf,
2312 don't install the target-side commands, as that would make the
2313 breakpoint not be reported to the core, and we'd lose
2314 control. */
2315 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2316 {
2317 loc = (*loc2p);
2318 if (is_breakpoint (loc->owner)
2319 && loc->pspace->num == bl->pspace->num
2320 && loc->owner->type != bp_dprintf)
2321 return;
2322 }
2323
2324 /* Do a first pass to check for locations with no assigned
2325 conditions or conditions that fail to parse to a valid agent expression
2326 bytecode. If any of these happen, then it's no use to send conditions
2327 to the target since this location will always trigger and generate a
2328 response back to GDB. */
2329 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2330 {
2331 loc = (*loc2p);
2332 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2333 {
2334 if (modified)
2335 {
2336 /* Re-parse the commands since something changed. In that
2337 case we already freed the command bytecodes (see
2338 force_breakpoint_reinsertion). We just
2339 need to parse the command to bytecodes again. */
2340 loc->cmd_bytecode
2341 = parse_cmd_to_aexpr (bl->address,
2342 loc->owner->extra_string);
2343 }
2344
2345 /* If we have a NULL bytecode expression, it means something
2346 went wrong or we have a null command expression. */
2347 if (!loc->cmd_bytecode)
2348 {
2349 null_command_or_parse_error = 1;
2350 break;
2351 }
2352 }
2353 }
2354
2355 /* If anything failed, then we're not doing target-side commands,
2356 and so clean up. */
2357 if (null_command_or_parse_error)
2358 {
2359 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2360 {
2361 loc = (*loc2p);
2362 if (is_breakpoint (loc->owner)
2363 && loc->pspace->num == bl->pspace->num)
2364 {
2365 /* Only go as far as the first NULL bytecode is
2366 located. */
2367 if (loc->cmd_bytecode == NULL)
2368 return;
2369
2370 loc->cmd_bytecode.reset ();
2371 }
2372 }
2373 }
2374
2375 /* No NULL commands or failed bytecode generation. Build a command list
2376 for this location's address. */
2377 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2378 {
2379 loc = (*loc2p);
2380 if (loc->owner->extra_string
2381 && is_breakpoint (loc->owner)
2382 && loc->pspace->num == bl->pspace->num
2383 && loc->owner->enable_state == bp_enabled
2384 && loc->enabled)
2385 {
2386 /* Add the command to the vector. This will be used later
2387 to send the commands to the target. */
2388 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2389 }
2390 }
2391
2392 bl->target_info.persist = 0;
2393 /* Maybe flag this location as persistent. */
2394 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2395 bl->target_info.persist = 1;
2396 }
2397
2398 /* Return the kind of breakpoint on address *ADDR. Get the kind
2399 of breakpoint according to ADDR except single-step breakpoint.
2400 Get the kind of single-step breakpoint according to the current
2401 registers state. */
2402
2403 static int
2404 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2405 {
2406 if (bl->owner->type == bp_single_step)
2407 {
2408 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2409 struct regcache *regcache;
2410
2411 regcache = get_thread_regcache (thr);
2412
2413 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2414 regcache, addr);
2415 }
2416 else
2417 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2418 }
2419
2420 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2421 location. Any error messages are printed to TMP_ERROR_STREAM; and
2422 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2423 Returns 0 for success, 1 if the bp_location type is not supported or
2424 -1 for failure.
2425
2426 NOTE drow/2003-09-09: This routine could be broken down to an
2427 object-style method for each breakpoint or catchpoint type. */
2428 static int
2429 insert_bp_location (struct bp_location *bl,
2430 struct ui_file *tmp_error_stream,
2431 int *disabled_breaks,
2432 int *hw_breakpoint_error,
2433 int *hw_bp_error_explained_already)
2434 {
2435 gdb_exception bp_excpt = exception_none;
2436
2437 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2438 return 0;
2439
2440 /* Note we don't initialize bl->target_info, as that wipes out
2441 the breakpoint location's shadow_contents if the breakpoint
2442 is still inserted at that location. This in turn breaks
2443 target_read_memory which depends on these buffers when
2444 a memory read is requested at the breakpoint location:
2445 Once the target_info has been wiped, we fail to see that
2446 we have a breakpoint inserted at that address and thus
2447 read the breakpoint instead of returning the data saved in
2448 the breakpoint location's shadow contents. */
2449 bl->target_info.reqstd_address = bl->address;
2450 bl->target_info.placed_address_space = bl->pspace->aspace;
2451 bl->target_info.length = bl->length;
2452
2453 /* When working with target-side conditions, we must pass all the conditions
2454 for the same breakpoint address down to the target since GDB will not
2455 insert those locations. With a list of breakpoint conditions, the target
2456 can decide when to stop and notify GDB. */
2457
2458 if (is_breakpoint (bl->owner))
2459 {
2460 build_target_condition_list (bl);
2461 build_target_command_list (bl);
2462 /* Reset the modification marker. */
2463 bl->needs_update = 0;
2464 }
2465
2466 if (bl->loc_type == bp_loc_software_breakpoint
2467 || bl->loc_type == bp_loc_hardware_breakpoint)
2468 {
2469 if (bl->owner->type != bp_hardware_breakpoint)
2470 {
2471 /* If the explicitly specified breakpoint type
2472 is not hardware breakpoint, check the memory map to see
2473 if the breakpoint address is in read only memory or not.
2474
2475 Two important cases are:
2476 - location type is not hardware breakpoint, memory
2477 is readonly. We change the type of the location to
2478 hardware breakpoint.
2479 - location type is hardware breakpoint, memory is
2480 read-write. This means we've previously made the
2481 location hardware one, but then the memory map changed,
2482 so we undo.
2483
2484 When breakpoints are removed, remove_breakpoints will use
2485 location types we've just set here, the only possible
2486 problem is that memory map has changed during running
2487 program, but it's not going to work anyway with current
2488 gdb. */
2489 struct mem_region *mr
2490 = lookup_mem_region (bl->target_info.reqstd_address);
2491
2492 if (mr)
2493 {
2494 if (automatic_hardware_breakpoints)
2495 {
2496 enum bp_loc_type new_type;
2497
2498 if (mr->attrib.mode != MEM_RW)
2499 new_type = bp_loc_hardware_breakpoint;
2500 else
2501 new_type = bp_loc_software_breakpoint;
2502
2503 if (new_type != bl->loc_type)
2504 {
2505 static int said = 0;
2506
2507 bl->loc_type = new_type;
2508 if (!said)
2509 {
2510 fprintf_filtered (gdb_stdout,
2511 _("Note: automatically using "
2512 "hardware breakpoints for "
2513 "read-only addresses.\n"));
2514 said = 1;
2515 }
2516 }
2517 }
2518 else if (bl->loc_type == bp_loc_software_breakpoint
2519 && mr->attrib.mode != MEM_RW)
2520 {
2521 fprintf_unfiltered (tmp_error_stream,
2522 _("Cannot insert breakpoint %d.\n"
2523 "Cannot set software breakpoint "
2524 "at read-only address %s\n"),
2525 bl->owner->number,
2526 paddress (bl->gdbarch, bl->address));
2527 return 1;
2528 }
2529 }
2530 }
2531
2532 /* First check to see if we have to handle an overlay. */
2533 if (overlay_debugging == ovly_off
2534 || bl->section == NULL
2535 || !(section_is_overlay (bl->section)))
2536 {
2537 /* No overlay handling: just set the breakpoint. */
2538 TRY
2539 {
2540 int val;
2541
2542 val = bl->owner->ops->insert_location (bl);
2543 if (val)
2544 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2545 }
2546 CATCH (e, RETURN_MASK_ALL)
2547 {
2548 bp_excpt = e;
2549 }
2550 END_CATCH
2551 }
2552 else
2553 {
2554 /* This breakpoint is in an overlay section.
2555 Shall we set a breakpoint at the LMA? */
2556 if (!overlay_events_enabled)
2557 {
2558 /* Yes -- overlay event support is not active,
2559 so we must try to set a breakpoint at the LMA.
2560 This will not work for a hardware breakpoint. */
2561 if (bl->loc_type == bp_loc_hardware_breakpoint)
2562 warning (_("hardware breakpoint %d not supported in overlay!"),
2563 bl->owner->number);
2564 else
2565 {
2566 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2567 bl->section);
2568 /* Set a software (trap) breakpoint at the LMA. */
2569 bl->overlay_target_info = bl->target_info;
2570 bl->overlay_target_info.reqstd_address = addr;
2571
2572 /* No overlay handling: just set the breakpoint. */
2573 TRY
2574 {
2575 int val;
2576
2577 bl->overlay_target_info.kind
2578 = breakpoint_kind (bl, &addr);
2579 bl->overlay_target_info.placed_address = addr;
2580 val = target_insert_breakpoint (bl->gdbarch,
2581 &bl->overlay_target_info);
2582 if (val)
2583 bp_excpt
2584 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2585 }
2586 CATCH (e, RETURN_MASK_ALL)
2587 {
2588 bp_excpt = e;
2589 }
2590 END_CATCH
2591
2592 if (bp_excpt.reason != 0)
2593 fprintf_unfiltered (tmp_error_stream,
2594 "Overlay breakpoint %d "
2595 "failed: in ROM?\n",
2596 bl->owner->number);
2597 }
2598 }
2599 /* Shall we set a breakpoint at the VMA? */
2600 if (section_is_mapped (bl->section))
2601 {
2602 /* Yes. This overlay section is mapped into memory. */
2603 TRY
2604 {
2605 int val;
2606
2607 val = bl->owner->ops->insert_location (bl);
2608 if (val)
2609 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2610 }
2611 CATCH (e, RETURN_MASK_ALL)
2612 {
2613 bp_excpt = e;
2614 }
2615 END_CATCH
2616 }
2617 else
2618 {
2619 /* No. This breakpoint will not be inserted.
2620 No error, but do not mark the bp as 'inserted'. */
2621 return 0;
2622 }
2623 }
2624
2625 if (bp_excpt.reason != 0)
2626 {
2627 /* Can't set the breakpoint. */
2628
2629 /* In some cases, we might not be able to insert a
2630 breakpoint in a shared library that has already been
2631 removed, but we have not yet processed the shlib unload
2632 event. Unfortunately, some targets that implement
2633 breakpoint insertion themselves can't tell why the
2634 breakpoint insertion failed (e.g., the remote target
2635 doesn't define error codes), so we must treat generic
2636 errors as memory errors. */
2637 if (bp_excpt.reason == RETURN_ERROR
2638 && (bp_excpt.error == GENERIC_ERROR
2639 || bp_excpt.error == MEMORY_ERROR)
2640 && bl->loc_type == bp_loc_software_breakpoint
2641 && (solib_name_from_address (bl->pspace, bl->address)
2642 || shared_objfile_contains_address_p (bl->pspace,
2643 bl->address)))
2644 {
2645 /* See also: disable_breakpoints_in_shlibs. */
2646 bl->shlib_disabled = 1;
2647 gdb::observers::breakpoint_modified.notify (bl->owner);
2648 if (!*disabled_breaks)
2649 {
2650 fprintf_unfiltered (tmp_error_stream,
2651 "Cannot insert breakpoint %d.\n",
2652 bl->owner->number);
2653 fprintf_unfiltered (tmp_error_stream,
2654 "Temporarily disabling shared "
2655 "library breakpoints:\n");
2656 }
2657 *disabled_breaks = 1;
2658 fprintf_unfiltered (tmp_error_stream,
2659 "breakpoint #%d\n", bl->owner->number);
2660 return 0;
2661 }
2662 else
2663 {
2664 if (bl->loc_type == bp_loc_hardware_breakpoint)
2665 {
2666 *hw_breakpoint_error = 1;
2667 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2668 fprintf_unfiltered (tmp_error_stream,
2669 "Cannot insert hardware breakpoint %d%s",
2670 bl->owner->number,
2671 bp_excpt.message ? ":" : ".\n");
2672 if (bp_excpt.message != NULL)
2673 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2674 bp_excpt.message);
2675 }
2676 else
2677 {
2678 if (bp_excpt.message == NULL)
2679 {
2680 std::string message
2681 = memory_error_message (TARGET_XFER_E_IO,
2682 bl->gdbarch, bl->address);
2683
2684 fprintf_unfiltered (tmp_error_stream,
2685 "Cannot insert breakpoint %d.\n"
2686 "%s\n",
2687 bl->owner->number, message.c_str ());
2688 }
2689 else
2690 {
2691 fprintf_unfiltered (tmp_error_stream,
2692 "Cannot insert breakpoint %d: %s\n",
2693 bl->owner->number,
2694 bp_excpt.message);
2695 }
2696 }
2697 return 1;
2698
2699 }
2700 }
2701 else
2702 bl->inserted = 1;
2703
2704 return 0;
2705 }
2706
2707 else if (bl->loc_type == bp_loc_hardware_watchpoint
2708 /* NOTE drow/2003-09-08: This state only exists for removing
2709 watchpoints. It's not clear that it's necessary... */
2710 && bl->owner->disposition != disp_del_at_next_stop)
2711 {
2712 int val;
2713
2714 gdb_assert (bl->owner->ops != NULL
2715 && bl->owner->ops->insert_location != NULL);
2716
2717 val = bl->owner->ops->insert_location (bl);
2718
2719 /* If trying to set a read-watchpoint, and it turns out it's not
2720 supported, try emulating one with an access watchpoint. */
2721 if (val == 1 && bl->watchpoint_type == hw_read)
2722 {
2723 struct bp_location *loc, **loc_temp;
2724
2725 /* But don't try to insert it, if there's already another
2726 hw_access location that would be considered a duplicate
2727 of this one. */
2728 ALL_BP_LOCATIONS (loc, loc_temp)
2729 if (loc != bl
2730 && loc->watchpoint_type == hw_access
2731 && watchpoint_locations_match (bl, loc))
2732 {
2733 bl->duplicate = 1;
2734 bl->inserted = 1;
2735 bl->target_info = loc->target_info;
2736 bl->watchpoint_type = hw_access;
2737 val = 0;
2738 break;
2739 }
2740
2741 if (val == 1)
2742 {
2743 bl->watchpoint_type = hw_access;
2744 val = bl->owner->ops->insert_location (bl);
2745
2746 if (val)
2747 /* Back to the original value. */
2748 bl->watchpoint_type = hw_read;
2749 }
2750 }
2751
2752 bl->inserted = (val == 0);
2753 }
2754
2755 else if (bl->owner->type == bp_catchpoint)
2756 {
2757 int val;
2758
2759 gdb_assert (bl->owner->ops != NULL
2760 && bl->owner->ops->insert_location != NULL);
2761
2762 val = bl->owner->ops->insert_location (bl);
2763 if (val)
2764 {
2765 bl->owner->enable_state = bp_disabled;
2766
2767 if (val == 1)
2768 warning (_("\
2769 Error inserting catchpoint %d: Your system does not support this type\n\
2770 of catchpoint."), bl->owner->number);
2771 else
2772 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2773 }
2774
2775 bl->inserted = (val == 0);
2776
2777 /* We've already printed an error message if there was a problem
2778 inserting this catchpoint, and we've disabled the catchpoint,
2779 so just return success. */
2780 return 0;
2781 }
2782
2783 return 0;
2784 }
2785
2786 /* This function is called when program space PSPACE is about to be
2787 deleted. It takes care of updating breakpoints to not reference
2788 PSPACE anymore. */
2789
2790 void
2791 breakpoint_program_space_exit (struct program_space *pspace)
2792 {
2793 struct breakpoint *b, *b_temp;
2794 struct bp_location *loc, **loc_temp;
2795
2796 /* Remove any breakpoint that was set through this program space. */
2797 ALL_BREAKPOINTS_SAFE (b, b_temp)
2798 {
2799 if (b->pspace == pspace)
2800 delete_breakpoint (b);
2801 }
2802
2803 /* Breakpoints set through other program spaces could have locations
2804 bound to PSPACE as well. Remove those. */
2805 ALL_BP_LOCATIONS (loc, loc_temp)
2806 {
2807 struct bp_location *tmp;
2808
2809 if (loc->pspace == pspace)
2810 {
2811 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2812 if (loc->owner->loc == loc)
2813 loc->owner->loc = loc->next;
2814 else
2815 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2816 if (tmp->next == loc)
2817 {
2818 tmp->next = loc->next;
2819 break;
2820 }
2821 }
2822 }
2823
2824 /* Now update the global location list to permanently delete the
2825 removed locations above. */
2826 update_global_location_list (UGLL_DONT_INSERT);
2827 }
2828
2829 /* Make sure all breakpoints are inserted in inferior.
2830 Throws exception on any error.
2831 A breakpoint that is already inserted won't be inserted
2832 again, so calling this function twice is safe. */
2833 void
2834 insert_breakpoints (void)
2835 {
2836 struct breakpoint *bpt;
2837
2838 ALL_BREAKPOINTS (bpt)
2839 if (is_hardware_watchpoint (bpt))
2840 {
2841 struct watchpoint *w = (struct watchpoint *) bpt;
2842
2843 update_watchpoint (w, 0 /* don't reparse. */);
2844 }
2845
2846 /* Updating watchpoints creates new locations, so update the global
2847 location list. Explicitly tell ugll to insert locations and
2848 ignore breakpoints_always_inserted_mode. */
2849 update_global_location_list (UGLL_INSERT);
2850 }
2851
2852 /* Invoke CALLBACK for each of bp_location. */
2853
2854 void
2855 iterate_over_bp_locations (walk_bp_location_callback callback)
2856 {
2857 struct bp_location *loc, **loc_tmp;
2858
2859 ALL_BP_LOCATIONS (loc, loc_tmp)
2860 {
2861 callback (loc, NULL);
2862 }
2863 }
2864
2865 /* This is used when we need to synch breakpoint conditions between GDB and the
2866 target. It is the case with deleting and disabling of breakpoints when using
2867 always-inserted mode. */
2868
2869 static void
2870 update_inserted_breakpoint_locations (void)
2871 {
2872 struct bp_location *bl, **blp_tmp;
2873 int error_flag = 0;
2874 int val = 0;
2875 int disabled_breaks = 0;
2876 int hw_breakpoint_error = 0;
2877 int hw_bp_details_reported = 0;
2878
2879 string_file tmp_error_stream;
2880
2881 /* Explicitly mark the warning -- this will only be printed if
2882 there was an error. */
2883 tmp_error_stream.puts ("Warning:\n");
2884
2885 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2886
2887 ALL_BP_LOCATIONS (bl, blp_tmp)
2888 {
2889 /* We only want to update software breakpoints and hardware
2890 breakpoints. */
2891 if (!is_breakpoint (bl->owner))
2892 continue;
2893
2894 /* We only want to update locations that are already inserted
2895 and need updating. This is to avoid unwanted insertion during
2896 deletion of breakpoints. */
2897 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2898 continue;
2899
2900 switch_to_program_space_and_thread (bl->pspace);
2901
2902 /* For targets that support global breakpoints, there's no need
2903 to select an inferior to insert breakpoint to. In fact, even
2904 if we aren't attached to any process yet, we should still
2905 insert breakpoints. */
2906 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2907 && inferior_ptid == null_ptid)
2908 continue;
2909
2910 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2911 &hw_breakpoint_error, &hw_bp_details_reported);
2912 if (val)
2913 error_flag = val;
2914 }
2915
2916 if (error_flag)
2917 {
2918 target_terminal::ours_for_output ();
2919 error_stream (tmp_error_stream);
2920 }
2921 }
2922
2923 /* Used when starting or continuing the program. */
2924
2925 static void
2926 insert_breakpoint_locations (void)
2927 {
2928 struct breakpoint *bpt;
2929 struct bp_location *bl, **blp_tmp;
2930 int error_flag = 0;
2931 int val = 0;
2932 int disabled_breaks = 0;
2933 int hw_breakpoint_error = 0;
2934 int hw_bp_error_explained_already = 0;
2935
2936 string_file tmp_error_stream;
2937
2938 /* Explicitly mark the warning -- this will only be printed if
2939 there was an error. */
2940 tmp_error_stream.puts ("Warning:\n");
2941
2942 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2943
2944 ALL_BP_LOCATIONS (bl, blp_tmp)
2945 {
2946 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2947 continue;
2948
2949 /* There is no point inserting thread-specific breakpoints if
2950 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2951 has BL->OWNER always non-NULL. */
2952 if (bl->owner->thread != -1
2953 && !valid_global_thread_id (bl->owner->thread))
2954 continue;
2955
2956 switch_to_program_space_and_thread (bl->pspace);
2957
2958 /* For targets that support global breakpoints, there's no need
2959 to select an inferior to insert breakpoint to. In fact, even
2960 if we aren't attached to any process yet, we should still
2961 insert breakpoints. */
2962 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2963 && inferior_ptid == null_ptid)
2964 continue;
2965
2966 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2967 &hw_breakpoint_error, &hw_bp_error_explained_already);
2968 if (val)
2969 error_flag = val;
2970 }
2971
2972 /* If we failed to insert all locations of a watchpoint, remove
2973 them, as half-inserted watchpoint is of limited use. */
2974 ALL_BREAKPOINTS (bpt)
2975 {
2976 int some_failed = 0;
2977 struct bp_location *loc;
2978
2979 if (!is_hardware_watchpoint (bpt))
2980 continue;
2981
2982 if (!breakpoint_enabled (bpt))
2983 continue;
2984
2985 if (bpt->disposition == disp_del_at_next_stop)
2986 continue;
2987
2988 for (loc = bpt->loc; loc; loc = loc->next)
2989 if (!loc->inserted && should_be_inserted (loc))
2990 {
2991 some_failed = 1;
2992 break;
2993 }
2994 if (some_failed)
2995 {
2996 for (loc = bpt->loc; loc; loc = loc->next)
2997 if (loc->inserted)
2998 remove_breakpoint (loc);
2999
3000 hw_breakpoint_error = 1;
3001 tmp_error_stream.printf ("Could not insert "
3002 "hardware watchpoint %d.\n",
3003 bpt->number);
3004 error_flag = -1;
3005 }
3006 }
3007
3008 if (error_flag)
3009 {
3010 /* If a hardware breakpoint or watchpoint was inserted, add a
3011 message about possibly exhausted resources. */
3012 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3013 {
3014 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3015 You may have requested too many hardware breakpoints/watchpoints.\n");
3016 }
3017 target_terminal::ours_for_output ();
3018 error_stream (tmp_error_stream);
3019 }
3020 }
3021
3022 /* Used when the program stops.
3023 Returns zero if successful, or non-zero if there was a problem
3024 removing a breakpoint location. */
3025
3026 int
3027 remove_breakpoints (void)
3028 {
3029 struct bp_location *bl, **blp_tmp;
3030 int val = 0;
3031
3032 ALL_BP_LOCATIONS (bl, blp_tmp)
3033 {
3034 if (bl->inserted && !is_tracepoint (bl->owner))
3035 val |= remove_breakpoint (bl);
3036 }
3037 return val;
3038 }
3039
3040 /* When a thread exits, remove breakpoints that are related to
3041 that thread. */
3042
3043 static void
3044 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3045 {
3046 struct breakpoint *b, *b_tmp;
3047
3048 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3049 {
3050 if (b->thread == tp->global_num && user_breakpoint_p (b))
3051 {
3052 b->disposition = disp_del_at_next_stop;
3053
3054 printf_filtered (_("\
3055 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3056 b->number, print_thread_id (tp));
3057
3058 /* Hide it from the user. */
3059 b->number = 0;
3060 }
3061 }
3062 }
3063
3064 /* Remove breakpoints of inferior INF. */
3065
3066 int
3067 remove_breakpoints_inf (inferior *inf)
3068 {
3069 struct bp_location *bl, **blp_tmp;
3070 int val;
3071
3072 ALL_BP_LOCATIONS (bl, blp_tmp)
3073 {
3074 if (bl->pspace != inf->pspace)
3075 continue;
3076
3077 if (bl->inserted && !bl->target_info.persist)
3078 {
3079 val = remove_breakpoint (bl);
3080 if (val != 0)
3081 return val;
3082 }
3083 }
3084 return 0;
3085 }
3086
3087 static int internal_breakpoint_number = -1;
3088
3089 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3090 If INTERNAL is non-zero, the breakpoint number will be populated
3091 from internal_breakpoint_number and that variable decremented.
3092 Otherwise the breakpoint number will be populated from
3093 breakpoint_count and that value incremented. Internal breakpoints
3094 do not set the internal var bpnum. */
3095 static void
3096 set_breakpoint_number (int internal, struct breakpoint *b)
3097 {
3098 if (internal)
3099 b->number = internal_breakpoint_number--;
3100 else
3101 {
3102 set_breakpoint_count (breakpoint_count + 1);
3103 b->number = breakpoint_count;
3104 }
3105 }
3106
3107 static struct breakpoint *
3108 create_internal_breakpoint (struct gdbarch *gdbarch,
3109 CORE_ADDR address, enum bptype type,
3110 const struct breakpoint_ops *ops)
3111 {
3112 symtab_and_line sal;
3113 sal.pc = address;
3114 sal.section = find_pc_overlay (sal.pc);
3115 sal.pspace = current_program_space;
3116
3117 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3118 b->number = internal_breakpoint_number--;
3119 b->disposition = disp_donttouch;
3120
3121 return b;
3122 }
3123
3124 static const char *const longjmp_names[] =
3125 {
3126 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3127 };
3128 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3129
3130 /* Per-objfile data private to breakpoint.c. */
3131 struct breakpoint_objfile_data
3132 {
3133 /* Minimal symbol for "_ovly_debug_event" (if any). */
3134 struct bound_minimal_symbol overlay_msym {};
3135
3136 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3137 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3138
3139 /* True if we have looked for longjmp probes. */
3140 int longjmp_searched = 0;
3141
3142 /* SystemTap probe points for longjmp (if any). These are non-owning
3143 references. */
3144 std::vector<probe *> longjmp_probes;
3145
3146 /* Minimal symbol for "std::terminate()" (if any). */
3147 struct bound_minimal_symbol terminate_msym {};
3148
3149 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3150 struct bound_minimal_symbol exception_msym {};
3151
3152 /* True if we have looked for exception probes. */
3153 int exception_searched = 0;
3154
3155 /* SystemTap probe points for unwinding (if any). These are non-owning
3156 references. */
3157 std::vector<probe *> exception_probes;
3158 };
3159
3160 static const struct objfile_data *breakpoint_objfile_key;
3161
3162 /* Minimal symbol not found sentinel. */
3163 static struct minimal_symbol msym_not_found;
3164
3165 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3166
3167 static int
3168 msym_not_found_p (const struct minimal_symbol *msym)
3169 {
3170 return msym == &msym_not_found;
3171 }
3172
3173 /* Return per-objfile data needed by breakpoint.c.
3174 Allocate the data if necessary. */
3175
3176 static struct breakpoint_objfile_data *
3177 get_breakpoint_objfile_data (struct objfile *objfile)
3178 {
3179 struct breakpoint_objfile_data *bp_objfile_data;
3180
3181 bp_objfile_data = ((struct breakpoint_objfile_data *)
3182 objfile_data (objfile, breakpoint_objfile_key));
3183 if (bp_objfile_data == NULL)
3184 {
3185 bp_objfile_data = new breakpoint_objfile_data ();
3186 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3187 }
3188 return bp_objfile_data;
3189 }
3190
3191 static void
3192 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3193 {
3194 struct breakpoint_objfile_data *bp_objfile_data
3195 = (struct breakpoint_objfile_data *) data;
3196
3197 delete bp_objfile_data;
3198 }
3199
3200 static void
3201 create_overlay_event_breakpoint (void)
3202 {
3203 struct objfile *objfile;
3204 const char *const func_name = "_ovly_debug_event";
3205
3206 ALL_OBJFILES (objfile)
3207 {
3208 struct breakpoint *b;
3209 struct breakpoint_objfile_data *bp_objfile_data;
3210 CORE_ADDR addr;
3211 struct explicit_location explicit_loc;
3212
3213 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3214
3215 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3216 continue;
3217
3218 if (bp_objfile_data->overlay_msym.minsym == NULL)
3219 {
3220 struct bound_minimal_symbol m;
3221
3222 m = lookup_minimal_symbol_text (func_name, objfile);
3223 if (m.minsym == NULL)
3224 {
3225 /* Avoid future lookups in this objfile. */
3226 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3227 continue;
3228 }
3229 bp_objfile_data->overlay_msym = m;
3230 }
3231
3232 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3233 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3234 bp_overlay_event,
3235 &internal_breakpoint_ops);
3236 initialize_explicit_location (&explicit_loc);
3237 explicit_loc.function_name = ASTRDUP (func_name);
3238 b->location = new_explicit_location (&explicit_loc);
3239
3240 if (overlay_debugging == ovly_auto)
3241 {
3242 b->enable_state = bp_enabled;
3243 overlay_events_enabled = 1;
3244 }
3245 else
3246 {
3247 b->enable_state = bp_disabled;
3248 overlay_events_enabled = 0;
3249 }
3250 }
3251 }
3252
3253 static void
3254 create_longjmp_master_breakpoint (void)
3255 {
3256 struct program_space *pspace;
3257
3258 scoped_restore_current_program_space restore_pspace;
3259
3260 ALL_PSPACES (pspace)
3261 {
3262 struct objfile *objfile;
3263
3264 set_current_program_space (pspace);
3265
3266 ALL_OBJFILES (objfile)
3267 {
3268 int i;
3269 struct gdbarch *gdbarch;
3270 struct breakpoint_objfile_data *bp_objfile_data;
3271
3272 gdbarch = get_objfile_arch (objfile);
3273
3274 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3275
3276 if (!bp_objfile_data->longjmp_searched)
3277 {
3278 std::vector<probe *> ret
3279 = find_probes_in_objfile (objfile, "libc", "longjmp");
3280
3281 if (!ret.empty ())
3282 {
3283 /* We are only interested in checking one element. */
3284 probe *p = ret[0];
3285
3286 if (!p->can_evaluate_arguments ())
3287 {
3288 /* We cannot use the probe interface here, because it does
3289 not know how to evaluate arguments. */
3290 ret.clear ();
3291 }
3292 }
3293 bp_objfile_data->longjmp_probes = ret;
3294 bp_objfile_data->longjmp_searched = 1;
3295 }
3296
3297 if (!bp_objfile_data->longjmp_probes.empty ())
3298 {
3299 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3300
3301 for (probe *p : bp_objfile_data->longjmp_probes)
3302 {
3303 struct breakpoint *b;
3304
3305 b = create_internal_breakpoint (gdbarch,
3306 p->get_relocated_address (objfile),
3307 bp_longjmp_master,
3308 &internal_breakpoint_ops);
3309 b->location = new_probe_location ("-probe-stap libc:longjmp");
3310 b->enable_state = bp_disabled;
3311 }
3312
3313 continue;
3314 }
3315
3316 if (!gdbarch_get_longjmp_target_p (gdbarch))
3317 continue;
3318
3319 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3320 {
3321 struct breakpoint *b;
3322 const char *func_name;
3323 CORE_ADDR addr;
3324 struct explicit_location explicit_loc;
3325
3326 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3327 continue;
3328
3329 func_name = longjmp_names[i];
3330 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3331 {
3332 struct bound_minimal_symbol m;
3333
3334 m = lookup_minimal_symbol_text (func_name, objfile);
3335 if (m.minsym == NULL)
3336 {
3337 /* Prevent future lookups in this objfile. */
3338 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3339 continue;
3340 }
3341 bp_objfile_data->longjmp_msym[i] = m;
3342 }
3343
3344 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3345 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3346 &internal_breakpoint_ops);
3347 initialize_explicit_location (&explicit_loc);
3348 explicit_loc.function_name = ASTRDUP (func_name);
3349 b->location = new_explicit_location (&explicit_loc);
3350 b->enable_state = bp_disabled;
3351 }
3352 }
3353 }
3354 }
3355
3356 /* Create a master std::terminate breakpoint. */
3357 static void
3358 create_std_terminate_master_breakpoint (void)
3359 {
3360 struct program_space *pspace;
3361 const char *const func_name = "std::terminate()";
3362
3363 scoped_restore_current_program_space restore_pspace;
3364
3365 ALL_PSPACES (pspace)
3366 {
3367 struct objfile *objfile;
3368 CORE_ADDR addr;
3369
3370 set_current_program_space (pspace);
3371
3372 ALL_OBJFILES (objfile)
3373 {
3374 struct breakpoint *b;
3375 struct breakpoint_objfile_data *bp_objfile_data;
3376 struct explicit_location explicit_loc;
3377
3378 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3379
3380 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3381 continue;
3382
3383 if (bp_objfile_data->terminate_msym.minsym == NULL)
3384 {
3385 struct bound_minimal_symbol m;
3386
3387 m = lookup_minimal_symbol (func_name, NULL, objfile);
3388 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3389 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3390 {
3391 /* Prevent future lookups in this objfile. */
3392 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3393 continue;
3394 }
3395 bp_objfile_data->terminate_msym = m;
3396 }
3397
3398 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3399 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3400 bp_std_terminate_master,
3401 &internal_breakpoint_ops);
3402 initialize_explicit_location (&explicit_loc);
3403 explicit_loc.function_name = ASTRDUP (func_name);
3404 b->location = new_explicit_location (&explicit_loc);
3405 b->enable_state = bp_disabled;
3406 }
3407 }
3408 }
3409
3410 /* Install a master breakpoint on the unwinder's debug hook. */
3411
3412 static void
3413 create_exception_master_breakpoint (void)
3414 {
3415 struct objfile *objfile;
3416 const char *const func_name = "_Unwind_DebugHook";
3417
3418 ALL_OBJFILES (objfile)
3419 {
3420 struct breakpoint *b;
3421 struct gdbarch *gdbarch;
3422 struct breakpoint_objfile_data *bp_objfile_data;
3423 CORE_ADDR addr;
3424 struct explicit_location explicit_loc;
3425
3426 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3427
3428 /* We prefer the SystemTap probe point if it exists. */
3429 if (!bp_objfile_data->exception_searched)
3430 {
3431 std::vector<probe *> ret
3432 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3433
3434 if (!ret.empty ())
3435 {
3436 /* We are only interested in checking one element. */
3437 probe *p = ret[0];
3438
3439 if (!p->can_evaluate_arguments ())
3440 {
3441 /* We cannot use the probe interface here, because it does
3442 not know how to evaluate arguments. */
3443 ret.clear ();
3444 }
3445 }
3446 bp_objfile_data->exception_probes = ret;
3447 bp_objfile_data->exception_searched = 1;
3448 }
3449
3450 if (!bp_objfile_data->exception_probes.empty ())
3451 {
3452 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3453
3454 for (probe *p : bp_objfile_data->exception_probes)
3455 {
3456 struct breakpoint *b;
3457
3458 b = create_internal_breakpoint (gdbarch,
3459 p->get_relocated_address (objfile),
3460 bp_exception_master,
3461 &internal_breakpoint_ops);
3462 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3463 b->enable_state = bp_disabled;
3464 }
3465
3466 continue;
3467 }
3468
3469 /* Otherwise, try the hook function. */
3470
3471 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3472 continue;
3473
3474 gdbarch = get_objfile_arch (objfile);
3475
3476 if (bp_objfile_data->exception_msym.minsym == NULL)
3477 {
3478 struct bound_minimal_symbol debug_hook;
3479
3480 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3481 if (debug_hook.minsym == NULL)
3482 {
3483 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3484 continue;
3485 }
3486
3487 bp_objfile_data->exception_msym = debug_hook;
3488 }
3489
3490 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3491 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3492 current_top_target ());
3493 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3494 &internal_breakpoint_ops);
3495 initialize_explicit_location (&explicit_loc);
3496 explicit_loc.function_name = ASTRDUP (func_name);
3497 b->location = new_explicit_location (&explicit_loc);
3498 b->enable_state = bp_disabled;
3499 }
3500 }
3501
3502 /* Does B have a location spec? */
3503
3504 static int
3505 breakpoint_event_location_empty_p (const struct breakpoint *b)
3506 {
3507 return b->location != NULL && event_location_empty_p (b->location.get ());
3508 }
3509
3510 void
3511 update_breakpoints_after_exec (void)
3512 {
3513 struct breakpoint *b, *b_tmp;
3514 struct bp_location *bploc, **bplocp_tmp;
3515
3516 /* We're about to delete breakpoints from GDB's lists. If the
3517 INSERTED flag is true, GDB will try to lift the breakpoints by
3518 writing the breakpoints' "shadow contents" back into memory. The
3519 "shadow contents" are NOT valid after an exec, so GDB should not
3520 do that. Instead, the target is responsible from marking
3521 breakpoints out as soon as it detects an exec. We don't do that
3522 here instead, because there may be other attempts to delete
3523 breakpoints after detecting an exec and before reaching here. */
3524 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3525 if (bploc->pspace == current_program_space)
3526 gdb_assert (!bploc->inserted);
3527
3528 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3529 {
3530 if (b->pspace != current_program_space)
3531 continue;
3532
3533 /* Solib breakpoints must be explicitly reset after an exec(). */
3534 if (b->type == bp_shlib_event)
3535 {
3536 delete_breakpoint (b);
3537 continue;
3538 }
3539
3540 /* JIT breakpoints must be explicitly reset after an exec(). */
3541 if (b->type == bp_jit_event)
3542 {
3543 delete_breakpoint (b);
3544 continue;
3545 }
3546
3547 /* Thread event breakpoints must be set anew after an exec(),
3548 as must overlay event and longjmp master breakpoints. */
3549 if (b->type == bp_thread_event || b->type == bp_overlay_event
3550 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3551 || b->type == bp_exception_master)
3552 {
3553 delete_breakpoint (b);
3554 continue;
3555 }
3556
3557 /* Step-resume breakpoints are meaningless after an exec(). */
3558 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3559 {
3560 delete_breakpoint (b);
3561 continue;
3562 }
3563
3564 /* Just like single-step breakpoints. */
3565 if (b->type == bp_single_step)
3566 {
3567 delete_breakpoint (b);
3568 continue;
3569 }
3570
3571 /* Longjmp and longjmp-resume breakpoints are also meaningless
3572 after an exec. */
3573 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3574 || b->type == bp_longjmp_call_dummy
3575 || b->type == bp_exception || b->type == bp_exception_resume)
3576 {
3577 delete_breakpoint (b);
3578 continue;
3579 }
3580
3581 if (b->type == bp_catchpoint)
3582 {
3583 /* For now, none of the bp_catchpoint breakpoints need to
3584 do anything at this point. In the future, if some of
3585 the catchpoints need to something, we will need to add
3586 a new method, and call this method from here. */
3587 continue;
3588 }
3589
3590 /* bp_finish is a special case. The only way we ought to be able
3591 to see one of these when an exec() has happened, is if the user
3592 caught a vfork, and then said "finish". Ordinarily a finish just
3593 carries them to the call-site of the current callee, by setting
3594 a temporary bp there and resuming. But in this case, the finish
3595 will carry them entirely through the vfork & exec.
3596
3597 We don't want to allow a bp_finish to remain inserted now. But
3598 we can't safely delete it, 'cause finish_command has a handle to
3599 the bp on a bpstat, and will later want to delete it. There's a
3600 chance (and I've seen it happen) that if we delete the bp_finish
3601 here, that its storage will get reused by the time finish_command
3602 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3603 We really must allow finish_command to delete a bp_finish.
3604
3605 In the absence of a general solution for the "how do we know
3606 it's safe to delete something others may have handles to?"
3607 problem, what we'll do here is just uninsert the bp_finish, and
3608 let finish_command delete it.
3609
3610 (We know the bp_finish is "doomed" in the sense that it's
3611 momentary, and will be deleted as soon as finish_command sees
3612 the inferior stopped. So it doesn't matter that the bp's
3613 address is probably bogus in the new a.out, unlike e.g., the
3614 solib breakpoints.) */
3615
3616 if (b->type == bp_finish)
3617 {
3618 continue;
3619 }
3620
3621 /* Without a symbolic address, we have little hope of the
3622 pre-exec() address meaning the same thing in the post-exec()
3623 a.out. */
3624 if (breakpoint_event_location_empty_p (b))
3625 {
3626 delete_breakpoint (b);
3627 continue;
3628 }
3629 }
3630 }
3631
3632 int
3633 detach_breakpoints (ptid_t ptid)
3634 {
3635 struct bp_location *bl, **blp_tmp;
3636 int val = 0;
3637 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3638 struct inferior *inf = current_inferior ();
3639
3640 if (ptid.pid () == inferior_ptid.pid ())
3641 error (_("Cannot detach breakpoints of inferior_ptid"));
3642
3643 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3644 inferior_ptid = ptid;
3645 ALL_BP_LOCATIONS (bl, blp_tmp)
3646 {
3647 if (bl->pspace != inf->pspace)
3648 continue;
3649
3650 /* This function must physically remove breakpoints locations
3651 from the specified ptid, without modifying the breakpoint
3652 package's state. Locations of type bp_loc_other are only
3653 maintained at GDB side. So, there is no need to remove
3654 these bp_loc_other locations. Moreover, removing these
3655 would modify the breakpoint package's state. */
3656 if (bl->loc_type == bp_loc_other)
3657 continue;
3658
3659 if (bl->inserted)
3660 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3661 }
3662
3663 return val;
3664 }
3665
3666 /* Remove the breakpoint location BL from the current address space.
3667 Note that this is used to detach breakpoints from a child fork.
3668 When we get here, the child isn't in the inferior list, and neither
3669 do we have objects to represent its address space --- we should
3670 *not* look at bl->pspace->aspace here. */
3671
3672 static int
3673 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3674 {
3675 int val;
3676
3677 /* BL is never in moribund_locations by our callers. */
3678 gdb_assert (bl->owner != NULL);
3679
3680 /* The type of none suggests that owner is actually deleted.
3681 This should not ever happen. */
3682 gdb_assert (bl->owner->type != bp_none);
3683
3684 if (bl->loc_type == bp_loc_software_breakpoint
3685 || bl->loc_type == bp_loc_hardware_breakpoint)
3686 {
3687 /* "Normal" instruction breakpoint: either the standard
3688 trap-instruction bp (bp_breakpoint), or a
3689 bp_hardware_breakpoint. */
3690
3691 /* First check to see if we have to handle an overlay. */
3692 if (overlay_debugging == ovly_off
3693 || bl->section == NULL
3694 || !(section_is_overlay (bl->section)))
3695 {
3696 /* No overlay handling: just remove the breakpoint. */
3697
3698 /* If we're trying to uninsert a memory breakpoint that we
3699 know is set in a dynamic object that is marked
3700 shlib_disabled, then either the dynamic object was
3701 removed with "remove-symbol-file" or with
3702 "nosharedlibrary". In the former case, we don't know
3703 whether another dynamic object might have loaded over the
3704 breakpoint's address -- the user might well let us know
3705 about it next with add-symbol-file (the whole point of
3706 add-symbol-file is letting the user manually maintain a
3707 list of dynamically loaded objects). If we have the
3708 breakpoint's shadow memory, that is, this is a software
3709 breakpoint managed by GDB, check whether the breakpoint
3710 is still inserted in memory, to avoid overwriting wrong
3711 code with stale saved shadow contents. Note that HW
3712 breakpoints don't have shadow memory, as they're
3713 implemented using a mechanism that is not dependent on
3714 being able to modify the target's memory, and as such
3715 they should always be removed. */
3716 if (bl->shlib_disabled
3717 && bl->target_info.shadow_len != 0
3718 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3719 val = 0;
3720 else
3721 val = bl->owner->ops->remove_location (bl, reason);
3722 }
3723 else
3724 {
3725 /* This breakpoint is in an overlay section.
3726 Did we set a breakpoint at the LMA? */
3727 if (!overlay_events_enabled)
3728 {
3729 /* Yes -- overlay event support is not active, so we
3730 should have set a breakpoint at the LMA. Remove it.
3731 */
3732 /* Ignore any failures: if the LMA is in ROM, we will
3733 have already warned when we failed to insert it. */
3734 if (bl->loc_type == bp_loc_hardware_breakpoint)
3735 target_remove_hw_breakpoint (bl->gdbarch,
3736 &bl->overlay_target_info);
3737 else
3738 target_remove_breakpoint (bl->gdbarch,
3739 &bl->overlay_target_info,
3740 reason);
3741 }
3742 /* Did we set a breakpoint at the VMA?
3743 If so, we will have marked the breakpoint 'inserted'. */
3744 if (bl->inserted)
3745 {
3746 /* Yes -- remove it. Previously we did not bother to
3747 remove the breakpoint if the section had been
3748 unmapped, but let's not rely on that being safe. We
3749 don't know what the overlay manager might do. */
3750
3751 /* However, we should remove *software* breakpoints only
3752 if the section is still mapped, or else we overwrite
3753 wrong code with the saved shadow contents. */
3754 if (bl->loc_type == bp_loc_hardware_breakpoint
3755 || section_is_mapped (bl->section))
3756 val = bl->owner->ops->remove_location (bl, reason);
3757 else
3758 val = 0;
3759 }
3760 else
3761 {
3762 /* No -- not inserted, so no need to remove. No error. */
3763 val = 0;
3764 }
3765 }
3766
3767 /* In some cases, we might not be able to remove a breakpoint in
3768 a shared library that has already been removed, but we have
3769 not yet processed the shlib unload event. Similarly for an
3770 unloaded add-symbol-file object - the user might not yet have
3771 had the chance to remove-symbol-file it. shlib_disabled will
3772 be set if the library/object has already been removed, but
3773 the breakpoint hasn't been uninserted yet, e.g., after
3774 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3775 always-inserted mode. */
3776 if (val
3777 && (bl->loc_type == bp_loc_software_breakpoint
3778 && (bl->shlib_disabled
3779 || solib_name_from_address (bl->pspace, bl->address)
3780 || shared_objfile_contains_address_p (bl->pspace,
3781 bl->address))))
3782 val = 0;
3783
3784 if (val)
3785 return val;
3786 bl->inserted = (reason == DETACH_BREAKPOINT);
3787 }
3788 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3789 {
3790 gdb_assert (bl->owner->ops != NULL
3791 && bl->owner->ops->remove_location != NULL);
3792
3793 bl->inserted = (reason == DETACH_BREAKPOINT);
3794 bl->owner->ops->remove_location (bl, reason);
3795
3796 /* Failure to remove any of the hardware watchpoints comes here. */
3797 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3798 warning (_("Could not remove hardware watchpoint %d."),
3799 bl->owner->number);
3800 }
3801 else if (bl->owner->type == bp_catchpoint
3802 && breakpoint_enabled (bl->owner)
3803 && !bl->duplicate)
3804 {
3805 gdb_assert (bl->owner->ops != NULL
3806 && bl->owner->ops->remove_location != NULL);
3807
3808 val = bl->owner->ops->remove_location (bl, reason);
3809 if (val)
3810 return val;
3811
3812 bl->inserted = (reason == DETACH_BREAKPOINT);
3813 }
3814
3815 return 0;
3816 }
3817
3818 static int
3819 remove_breakpoint (struct bp_location *bl)
3820 {
3821 /* BL is never in moribund_locations by our callers. */
3822 gdb_assert (bl->owner != NULL);
3823
3824 /* The type of none suggests that owner is actually deleted.
3825 This should not ever happen. */
3826 gdb_assert (bl->owner->type != bp_none);
3827
3828 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3829
3830 switch_to_program_space_and_thread (bl->pspace);
3831
3832 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3833 }
3834
3835 /* Clear the "inserted" flag in all breakpoints. */
3836
3837 void
3838 mark_breakpoints_out (void)
3839 {
3840 struct bp_location *bl, **blp_tmp;
3841
3842 ALL_BP_LOCATIONS (bl, blp_tmp)
3843 if (bl->pspace == current_program_space)
3844 bl->inserted = 0;
3845 }
3846
3847 /* Clear the "inserted" flag in all breakpoints and delete any
3848 breakpoints which should go away between runs of the program.
3849
3850 Plus other such housekeeping that has to be done for breakpoints
3851 between runs.
3852
3853 Note: this function gets called at the end of a run (by
3854 generic_mourn_inferior) and when a run begins (by
3855 init_wait_for_inferior). */
3856
3857
3858
3859 void
3860 breakpoint_init_inferior (enum inf_context context)
3861 {
3862 struct breakpoint *b, *b_tmp;
3863 struct program_space *pspace = current_program_space;
3864
3865 /* If breakpoint locations are shared across processes, then there's
3866 nothing to do. */
3867 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3868 return;
3869
3870 mark_breakpoints_out ();
3871
3872 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3873 {
3874 if (b->loc && b->loc->pspace != pspace)
3875 continue;
3876
3877 switch (b->type)
3878 {
3879 case bp_call_dummy:
3880 case bp_longjmp_call_dummy:
3881
3882 /* If the call dummy breakpoint is at the entry point it will
3883 cause problems when the inferior is rerun, so we better get
3884 rid of it. */
3885
3886 case bp_watchpoint_scope:
3887
3888 /* Also get rid of scope breakpoints. */
3889
3890 case bp_shlib_event:
3891
3892 /* Also remove solib event breakpoints. Their addresses may
3893 have changed since the last time we ran the program.
3894 Actually we may now be debugging against different target;
3895 and so the solib backend that installed this breakpoint may
3896 not be used in by the target. E.g.,
3897
3898 (gdb) file prog-linux
3899 (gdb) run # native linux target
3900 ...
3901 (gdb) kill
3902 (gdb) file prog-win.exe
3903 (gdb) tar rem :9999 # remote Windows gdbserver.
3904 */
3905
3906 case bp_step_resume:
3907
3908 /* Also remove step-resume breakpoints. */
3909
3910 case bp_single_step:
3911
3912 /* Also remove single-step breakpoints. */
3913
3914 delete_breakpoint (b);
3915 break;
3916
3917 case bp_watchpoint:
3918 case bp_hardware_watchpoint:
3919 case bp_read_watchpoint:
3920 case bp_access_watchpoint:
3921 {
3922 struct watchpoint *w = (struct watchpoint *) b;
3923
3924 /* Likewise for watchpoints on local expressions. */
3925 if (w->exp_valid_block != NULL)
3926 delete_breakpoint (b);
3927 else
3928 {
3929 /* Get rid of existing locations, which are no longer
3930 valid. New ones will be created in
3931 update_watchpoint, when the inferior is restarted.
3932 The next update_global_location_list call will
3933 garbage collect them. */
3934 b->loc = NULL;
3935
3936 if (context == inf_starting)
3937 {
3938 /* Reset val field to force reread of starting value in
3939 insert_breakpoints. */
3940 w->val.reset (nullptr);
3941 w->val_valid = 0;
3942 }
3943 }
3944 }
3945 break;
3946 default:
3947 break;
3948 }
3949 }
3950
3951 /* Get rid of the moribund locations. */
3952 for (bp_location *bl : moribund_locations)
3953 decref_bp_location (&bl);
3954 moribund_locations.clear ();
3955 }
3956
3957 /* These functions concern about actual breakpoints inserted in the
3958 target --- to e.g. check if we need to do decr_pc adjustment or if
3959 we need to hop over the bkpt --- so we check for address space
3960 match, not program space. */
3961
3962 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3963 exists at PC. It returns ordinary_breakpoint_here if it's an
3964 ordinary breakpoint, or permanent_breakpoint_here if it's a
3965 permanent breakpoint.
3966 - When continuing from a location with an ordinary breakpoint, we
3967 actually single step once before calling insert_breakpoints.
3968 - When continuing from a location with a permanent breakpoint, we
3969 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3970 the target, to advance the PC past the breakpoint. */
3971
3972 enum breakpoint_here
3973 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3974 {
3975 struct bp_location *bl, **blp_tmp;
3976 int any_breakpoint_here = 0;
3977
3978 ALL_BP_LOCATIONS (bl, blp_tmp)
3979 {
3980 if (bl->loc_type != bp_loc_software_breakpoint
3981 && bl->loc_type != bp_loc_hardware_breakpoint)
3982 continue;
3983
3984 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3985 if ((breakpoint_enabled (bl->owner)
3986 || bl->permanent)
3987 && breakpoint_location_address_match (bl, aspace, pc))
3988 {
3989 if (overlay_debugging
3990 && section_is_overlay (bl->section)
3991 && !section_is_mapped (bl->section))
3992 continue; /* unmapped overlay -- can't be a match */
3993 else if (bl->permanent)
3994 return permanent_breakpoint_here;
3995 else
3996 any_breakpoint_here = 1;
3997 }
3998 }
3999
4000 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4001 }
4002
4003 /* See breakpoint.h. */
4004
4005 int
4006 breakpoint_in_range_p (const address_space *aspace,
4007 CORE_ADDR addr, ULONGEST len)
4008 {
4009 struct bp_location *bl, **blp_tmp;
4010
4011 ALL_BP_LOCATIONS (bl, blp_tmp)
4012 {
4013 if (bl->loc_type != bp_loc_software_breakpoint
4014 && bl->loc_type != bp_loc_hardware_breakpoint)
4015 continue;
4016
4017 if ((breakpoint_enabled (bl->owner)
4018 || bl->permanent)
4019 && breakpoint_location_address_range_overlap (bl, aspace,
4020 addr, len))
4021 {
4022 if (overlay_debugging
4023 && section_is_overlay (bl->section)
4024 && !section_is_mapped (bl->section))
4025 {
4026 /* Unmapped overlay -- can't be a match. */
4027 continue;
4028 }
4029
4030 return 1;
4031 }
4032 }
4033
4034 return 0;
4035 }
4036
4037 /* Return true if there's a moribund breakpoint at PC. */
4038
4039 int
4040 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4041 {
4042 for (bp_location *loc : moribund_locations)
4043 if (breakpoint_location_address_match (loc, aspace, pc))
4044 return 1;
4045
4046 return 0;
4047 }
4048
4049 /* Returns non-zero iff BL is inserted at PC, in address space
4050 ASPACE. */
4051
4052 static int
4053 bp_location_inserted_here_p (struct bp_location *bl,
4054 const address_space *aspace, CORE_ADDR pc)
4055 {
4056 if (bl->inserted
4057 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4058 aspace, pc))
4059 {
4060 if (overlay_debugging
4061 && section_is_overlay (bl->section)
4062 && !section_is_mapped (bl->section))
4063 return 0; /* unmapped overlay -- can't be a match */
4064 else
4065 return 1;
4066 }
4067 return 0;
4068 }
4069
4070 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4071
4072 int
4073 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4074 {
4075 struct bp_location **blp, **blp_tmp = NULL;
4076
4077 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4078 {
4079 struct bp_location *bl = *blp;
4080
4081 if (bl->loc_type != bp_loc_software_breakpoint
4082 && bl->loc_type != bp_loc_hardware_breakpoint)
4083 continue;
4084
4085 if (bp_location_inserted_here_p (bl, aspace, pc))
4086 return 1;
4087 }
4088 return 0;
4089 }
4090
4091 /* This function returns non-zero iff there is a software breakpoint
4092 inserted at PC. */
4093
4094 int
4095 software_breakpoint_inserted_here_p (const address_space *aspace,
4096 CORE_ADDR pc)
4097 {
4098 struct bp_location **blp, **blp_tmp = NULL;
4099
4100 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4101 {
4102 struct bp_location *bl = *blp;
4103
4104 if (bl->loc_type != bp_loc_software_breakpoint)
4105 continue;
4106
4107 if (bp_location_inserted_here_p (bl, aspace, pc))
4108 return 1;
4109 }
4110
4111 return 0;
4112 }
4113
4114 /* See breakpoint.h. */
4115
4116 int
4117 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4118 CORE_ADDR pc)
4119 {
4120 struct bp_location **blp, **blp_tmp = NULL;
4121
4122 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4123 {
4124 struct bp_location *bl = *blp;
4125
4126 if (bl->loc_type != bp_loc_hardware_breakpoint)
4127 continue;
4128
4129 if (bp_location_inserted_here_p (bl, aspace, pc))
4130 return 1;
4131 }
4132
4133 return 0;
4134 }
4135
4136 int
4137 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4138 CORE_ADDR addr, ULONGEST len)
4139 {
4140 struct breakpoint *bpt;
4141
4142 ALL_BREAKPOINTS (bpt)
4143 {
4144 struct bp_location *loc;
4145
4146 if (bpt->type != bp_hardware_watchpoint
4147 && bpt->type != bp_access_watchpoint)
4148 continue;
4149
4150 if (!breakpoint_enabled (bpt))
4151 continue;
4152
4153 for (loc = bpt->loc; loc; loc = loc->next)
4154 if (loc->pspace->aspace == aspace && loc->inserted)
4155 {
4156 CORE_ADDR l, h;
4157
4158 /* Check for intersection. */
4159 l = std::max<CORE_ADDR> (loc->address, addr);
4160 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4161 if (l < h)
4162 return 1;
4163 }
4164 }
4165 return 0;
4166 }
4167 \f
4168
4169 /* bpstat stuff. External routines' interfaces are documented
4170 in breakpoint.h. */
4171
4172 int
4173 is_catchpoint (struct breakpoint *ep)
4174 {
4175 return (ep->type == bp_catchpoint);
4176 }
4177
4178 /* Frees any storage that is part of a bpstat. Does not walk the
4179 'next' chain. */
4180
4181 bpstats::~bpstats ()
4182 {
4183 if (bp_location_at != NULL)
4184 decref_bp_location (&bp_location_at);
4185 }
4186
4187 /* Clear a bpstat so that it says we are not at any breakpoint.
4188 Also free any storage that is part of a bpstat. */
4189
4190 void
4191 bpstat_clear (bpstat *bsp)
4192 {
4193 bpstat p;
4194 bpstat q;
4195
4196 if (bsp == 0)
4197 return;
4198 p = *bsp;
4199 while (p != NULL)
4200 {
4201 q = p->next;
4202 delete p;
4203 p = q;
4204 }
4205 *bsp = NULL;
4206 }
4207
4208 bpstats::bpstats (const bpstats &other)
4209 : next (NULL),
4210 bp_location_at (other.bp_location_at),
4211 breakpoint_at (other.breakpoint_at),
4212 commands (other.commands),
4213 print (other.print),
4214 stop (other.stop),
4215 print_it (other.print_it)
4216 {
4217 if (other.old_val != NULL)
4218 old_val = release_value (value_copy (other.old_val.get ()));
4219 incref_bp_location (bp_location_at);
4220 }
4221
4222 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4223 is part of the bpstat is copied as well. */
4224
4225 bpstat
4226 bpstat_copy (bpstat bs)
4227 {
4228 bpstat p = NULL;
4229 bpstat tmp;
4230 bpstat retval = NULL;
4231
4232 if (bs == NULL)
4233 return bs;
4234
4235 for (; bs != NULL; bs = bs->next)
4236 {
4237 tmp = new bpstats (*bs);
4238
4239 if (p == NULL)
4240 /* This is the first thing in the chain. */
4241 retval = tmp;
4242 else
4243 p->next = tmp;
4244 p = tmp;
4245 }
4246 p->next = NULL;
4247 return retval;
4248 }
4249
4250 /* Find the bpstat associated with this breakpoint. */
4251
4252 bpstat
4253 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4254 {
4255 if (bsp == NULL)
4256 return NULL;
4257
4258 for (; bsp != NULL; bsp = bsp->next)
4259 {
4260 if (bsp->breakpoint_at == breakpoint)
4261 return bsp;
4262 }
4263 return NULL;
4264 }
4265
4266 /* See breakpoint.h. */
4267
4268 int
4269 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4270 {
4271 for (; bsp != NULL; bsp = bsp->next)
4272 {
4273 if (bsp->breakpoint_at == NULL)
4274 {
4275 /* A moribund location can never explain a signal other than
4276 GDB_SIGNAL_TRAP. */
4277 if (sig == GDB_SIGNAL_TRAP)
4278 return 1;
4279 }
4280 else
4281 {
4282 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4283 sig))
4284 return 1;
4285 }
4286 }
4287
4288 return 0;
4289 }
4290
4291 /* Put in *NUM the breakpoint number of the first breakpoint we are
4292 stopped at. *BSP upon return is a bpstat which points to the
4293 remaining breakpoints stopped at (but which is not guaranteed to be
4294 good for anything but further calls to bpstat_num).
4295
4296 Return 0 if passed a bpstat which does not indicate any breakpoints.
4297 Return -1 if stopped at a breakpoint that has been deleted since
4298 we set it.
4299 Return 1 otherwise. */
4300
4301 int
4302 bpstat_num (bpstat *bsp, int *num)
4303 {
4304 struct breakpoint *b;
4305
4306 if ((*bsp) == NULL)
4307 return 0; /* No more breakpoint values */
4308
4309 /* We assume we'll never have several bpstats that correspond to a
4310 single breakpoint -- otherwise, this function might return the
4311 same number more than once and this will look ugly. */
4312 b = (*bsp)->breakpoint_at;
4313 *bsp = (*bsp)->next;
4314 if (b == NULL)
4315 return -1; /* breakpoint that's been deleted since */
4316
4317 *num = b->number; /* We have its number */
4318 return 1;
4319 }
4320
4321 /* See breakpoint.h. */
4322
4323 void
4324 bpstat_clear_actions (void)
4325 {
4326 bpstat bs;
4327
4328 if (inferior_ptid == null_ptid)
4329 return;
4330
4331 thread_info *tp = inferior_thread ();
4332 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4333 {
4334 bs->commands = NULL;
4335 bs->old_val.reset (nullptr);
4336 }
4337 }
4338
4339 /* Called when a command is about to proceed the inferior. */
4340
4341 static void
4342 breakpoint_about_to_proceed (void)
4343 {
4344 if (inferior_ptid != null_ptid)
4345 {
4346 struct thread_info *tp = inferior_thread ();
4347
4348 /* Allow inferior function calls in breakpoint commands to not
4349 interrupt the command list. When the call finishes
4350 successfully, the inferior will be standing at the same
4351 breakpoint as if nothing happened. */
4352 if (tp->control.in_infcall)
4353 return;
4354 }
4355
4356 breakpoint_proceeded = 1;
4357 }
4358
4359 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4360 or its equivalent. */
4361
4362 static int
4363 command_line_is_silent (struct command_line *cmd)
4364 {
4365 return cmd && (strcmp ("silent", cmd->line) == 0);
4366 }
4367
4368 /* Execute all the commands associated with all the breakpoints at
4369 this location. Any of these commands could cause the process to
4370 proceed beyond this point, etc. We look out for such changes by
4371 checking the global "breakpoint_proceeded" after each command.
4372
4373 Returns true if a breakpoint command resumed the inferior. In that
4374 case, it is the caller's responsibility to recall it again with the
4375 bpstat of the current thread. */
4376
4377 static int
4378 bpstat_do_actions_1 (bpstat *bsp)
4379 {
4380 bpstat bs;
4381 int again = 0;
4382
4383 /* Avoid endless recursion if a `source' command is contained
4384 in bs->commands. */
4385 if (executing_breakpoint_commands)
4386 return 0;
4387
4388 scoped_restore save_executing
4389 = make_scoped_restore (&executing_breakpoint_commands, 1);
4390
4391 scoped_restore preventer = prevent_dont_repeat ();
4392
4393 /* This pointer will iterate over the list of bpstat's. */
4394 bs = *bsp;
4395
4396 breakpoint_proceeded = 0;
4397 for (; bs != NULL; bs = bs->next)
4398 {
4399 struct command_line *cmd = NULL;
4400
4401 /* Take ownership of the BSP's command tree, if it has one.
4402
4403 The command tree could legitimately contain commands like
4404 'step' and 'next', which call clear_proceed_status, which
4405 frees stop_bpstat's command tree. To make sure this doesn't
4406 free the tree we're executing out from under us, we need to
4407 take ownership of the tree ourselves. Since a given bpstat's
4408 commands are only executed once, we don't need to copy it; we
4409 can clear the pointer in the bpstat, and make sure we free
4410 the tree when we're done. */
4411 counted_command_line ccmd = bs->commands;
4412 bs->commands = NULL;
4413 if (ccmd != NULL)
4414 cmd = ccmd.get ();
4415 if (command_line_is_silent (cmd))
4416 {
4417 /* The action has been already done by bpstat_stop_status. */
4418 cmd = cmd->next;
4419 }
4420
4421 while (cmd != NULL)
4422 {
4423 execute_control_command (cmd);
4424
4425 if (breakpoint_proceeded)
4426 break;
4427 else
4428 cmd = cmd->next;
4429 }
4430
4431 if (breakpoint_proceeded)
4432 {
4433 if (current_ui->async)
4434 /* If we are in async mode, then the target might be still
4435 running, not stopped at any breakpoint, so nothing for
4436 us to do here -- just return to the event loop. */
4437 ;
4438 else
4439 /* In sync mode, when execute_control_command returns
4440 we're already standing on the next breakpoint.
4441 Breakpoint commands for that stop were not run, since
4442 execute_command does not run breakpoint commands --
4443 only command_line_handler does, but that one is not
4444 involved in execution of breakpoint commands. So, we
4445 can now execute breakpoint commands. It should be
4446 noted that making execute_command do bpstat actions is
4447 not an option -- in this case we'll have recursive
4448 invocation of bpstat for each breakpoint with a
4449 command, and can easily blow up GDB stack. Instead, we
4450 return true, which will trigger the caller to recall us
4451 with the new stop_bpstat. */
4452 again = 1;
4453 break;
4454 }
4455 }
4456 return again;
4457 }
4458
4459 /* Helper for bpstat_do_actions. Get the current thread, if there's
4460 one, is alive and has execution. Return NULL otherwise. */
4461
4462 static thread_info *
4463 get_bpstat_thread ()
4464 {
4465 if (inferior_ptid == null_ptid || !target_has_execution)
4466 return NULL;
4467
4468 thread_info *tp = inferior_thread ();
4469 if (tp->state == THREAD_EXITED || tp->executing)
4470 return NULL;
4471 return tp;
4472 }
4473
4474 void
4475 bpstat_do_actions (void)
4476 {
4477 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4478 thread_info *tp;
4479
4480 /* Do any commands attached to breakpoint we are stopped at. */
4481 while ((tp = get_bpstat_thread ()) != NULL)
4482 {
4483 /* Since in sync mode, bpstat_do_actions may resume the
4484 inferior, and only return when it is stopped at the next
4485 breakpoint, we keep doing breakpoint actions until it returns
4486 false to indicate the inferior was not resumed. */
4487 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4488 break;
4489 }
4490
4491 discard_cleanups (cleanup_if_error);
4492 }
4493
4494 /* Print out the (old or new) value associated with a watchpoint. */
4495
4496 static void
4497 watchpoint_value_print (struct value *val, struct ui_file *stream)
4498 {
4499 if (val == NULL)
4500 fprintf_unfiltered (stream, _("<unreadable>"));
4501 else
4502 {
4503 struct value_print_options opts;
4504 get_user_print_options (&opts);
4505 value_print (val, stream, &opts);
4506 }
4507 }
4508
4509 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4510 debugging multiple threads. */
4511
4512 void
4513 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4514 {
4515 if (uiout->is_mi_like_p ())
4516 return;
4517
4518 uiout->text ("\n");
4519
4520 if (show_thread_that_caused_stop ())
4521 {
4522 const char *name;
4523 struct thread_info *thr = inferior_thread ();
4524
4525 uiout->text ("Thread ");
4526 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4527
4528 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4529 if (name != NULL)
4530 {
4531 uiout->text (" \"");
4532 uiout->field_fmt ("name", "%s", name);
4533 uiout->text ("\"");
4534 }
4535
4536 uiout->text (" hit ");
4537 }
4538 }
4539
4540 /* Generic routine for printing messages indicating why we
4541 stopped. The behavior of this function depends on the value
4542 'print_it' in the bpstat structure. Under some circumstances we
4543 may decide not to print anything here and delegate the task to
4544 normal_stop(). */
4545
4546 static enum print_stop_action
4547 print_bp_stop_message (bpstat bs)
4548 {
4549 switch (bs->print_it)
4550 {
4551 case print_it_noop:
4552 /* Nothing should be printed for this bpstat entry. */
4553 return PRINT_UNKNOWN;
4554 break;
4555
4556 case print_it_done:
4557 /* We still want to print the frame, but we already printed the
4558 relevant messages. */
4559 return PRINT_SRC_AND_LOC;
4560 break;
4561
4562 case print_it_normal:
4563 {
4564 struct breakpoint *b = bs->breakpoint_at;
4565
4566 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4567 which has since been deleted. */
4568 if (b == NULL)
4569 return PRINT_UNKNOWN;
4570
4571 /* Normal case. Call the breakpoint's print_it method. */
4572 return b->ops->print_it (bs);
4573 }
4574 break;
4575
4576 default:
4577 internal_error (__FILE__, __LINE__,
4578 _("print_bp_stop_message: unrecognized enum value"));
4579 break;
4580 }
4581 }
4582
4583 /* A helper function that prints a shared library stopped event. */
4584
4585 static void
4586 print_solib_event (int is_catchpoint)
4587 {
4588 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4589 bool any_added = !current_program_space->added_solibs.empty ();
4590
4591 if (!is_catchpoint)
4592 {
4593 if (any_added || any_deleted)
4594 current_uiout->text (_("Stopped due to shared library event:\n"));
4595 else
4596 current_uiout->text (_("Stopped due to shared library event (no "
4597 "libraries added or removed)\n"));
4598 }
4599
4600 if (current_uiout->is_mi_like_p ())
4601 current_uiout->field_string ("reason",
4602 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4603
4604 if (any_deleted)
4605 {
4606 current_uiout->text (_(" Inferior unloaded "));
4607 ui_out_emit_list list_emitter (current_uiout, "removed");
4608 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4609 {
4610 const std::string &name = current_program_space->deleted_solibs[ix];
4611
4612 if (ix > 0)
4613 current_uiout->text (" ");
4614 current_uiout->field_string ("library", name);
4615 current_uiout->text ("\n");
4616 }
4617 }
4618
4619 if (any_added)
4620 {
4621 current_uiout->text (_(" Inferior loaded "));
4622 ui_out_emit_list list_emitter (current_uiout, "added");
4623 bool first = true;
4624 for (so_list *iter : current_program_space->added_solibs)
4625 {
4626 if (!first)
4627 current_uiout->text (" ");
4628 first = false;
4629 current_uiout->field_string ("library", iter->so_name);
4630 current_uiout->text ("\n");
4631 }
4632 }
4633 }
4634
4635 /* Print a message indicating what happened. This is called from
4636 normal_stop(). The input to this routine is the head of the bpstat
4637 list - a list of the eventpoints that caused this stop. KIND is
4638 the target_waitkind for the stopping event. This
4639 routine calls the generic print routine for printing a message
4640 about reasons for stopping. This will print (for example) the
4641 "Breakpoint n," part of the output. The return value of this
4642 routine is one of:
4643
4644 PRINT_UNKNOWN: Means we printed nothing.
4645 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4646 code to print the location. An example is
4647 "Breakpoint 1, " which should be followed by
4648 the location.
4649 PRINT_SRC_ONLY: Means we printed something, but there is no need
4650 to also print the location part of the message.
4651 An example is the catch/throw messages, which
4652 don't require a location appended to the end.
4653 PRINT_NOTHING: We have done some printing and we don't need any
4654 further info to be printed. */
4655
4656 enum print_stop_action
4657 bpstat_print (bpstat bs, int kind)
4658 {
4659 enum print_stop_action val;
4660
4661 /* Maybe another breakpoint in the chain caused us to stop.
4662 (Currently all watchpoints go on the bpstat whether hit or not.
4663 That probably could (should) be changed, provided care is taken
4664 with respect to bpstat_explains_signal). */
4665 for (; bs; bs = bs->next)
4666 {
4667 val = print_bp_stop_message (bs);
4668 if (val == PRINT_SRC_ONLY
4669 || val == PRINT_SRC_AND_LOC
4670 || val == PRINT_NOTHING)
4671 return val;
4672 }
4673
4674 /* If we had hit a shared library event breakpoint,
4675 print_bp_stop_message would print out this message. If we hit an
4676 OS-level shared library event, do the same thing. */
4677 if (kind == TARGET_WAITKIND_LOADED)
4678 {
4679 print_solib_event (0);
4680 return PRINT_NOTHING;
4681 }
4682
4683 /* We reached the end of the chain, or we got a null BS to start
4684 with and nothing was printed. */
4685 return PRINT_UNKNOWN;
4686 }
4687
4688 /* Evaluate the boolean expression EXP and return the result. */
4689
4690 static bool
4691 breakpoint_cond_eval (expression *exp)
4692 {
4693 struct value *mark = value_mark ();
4694 bool res = value_true (evaluate_expression (exp));
4695
4696 value_free_to_mark (mark);
4697 return res;
4698 }
4699
4700 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4701
4702 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4703 : next (NULL),
4704 bp_location_at (bl),
4705 breakpoint_at (bl->owner),
4706 commands (NULL),
4707 print (0),
4708 stop (0),
4709 print_it (print_it_normal)
4710 {
4711 incref_bp_location (bl);
4712 **bs_link_pointer = this;
4713 *bs_link_pointer = &next;
4714 }
4715
4716 bpstats::bpstats ()
4717 : next (NULL),
4718 bp_location_at (NULL),
4719 breakpoint_at (NULL),
4720 commands (NULL),
4721 print (0),
4722 stop (0),
4723 print_it (print_it_normal)
4724 {
4725 }
4726 \f
4727 /* The target has stopped with waitstatus WS. Check if any hardware
4728 watchpoints have triggered, according to the target. */
4729
4730 int
4731 watchpoints_triggered (struct target_waitstatus *ws)
4732 {
4733 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4734 CORE_ADDR addr;
4735 struct breakpoint *b;
4736
4737 if (!stopped_by_watchpoint)
4738 {
4739 /* We were not stopped by a watchpoint. Mark all watchpoints
4740 as not triggered. */
4741 ALL_BREAKPOINTS (b)
4742 if (is_hardware_watchpoint (b))
4743 {
4744 struct watchpoint *w = (struct watchpoint *) b;
4745
4746 w->watchpoint_triggered = watch_triggered_no;
4747 }
4748
4749 return 0;
4750 }
4751
4752 if (!target_stopped_data_address (current_top_target (), &addr))
4753 {
4754 /* We were stopped by a watchpoint, but we don't know where.
4755 Mark all watchpoints as unknown. */
4756 ALL_BREAKPOINTS (b)
4757 if (is_hardware_watchpoint (b))
4758 {
4759 struct watchpoint *w = (struct watchpoint *) b;
4760
4761 w->watchpoint_triggered = watch_triggered_unknown;
4762 }
4763
4764 return 1;
4765 }
4766
4767 /* The target could report the data address. Mark watchpoints
4768 affected by this data address as triggered, and all others as not
4769 triggered. */
4770
4771 ALL_BREAKPOINTS (b)
4772 if (is_hardware_watchpoint (b))
4773 {
4774 struct watchpoint *w = (struct watchpoint *) b;
4775 struct bp_location *loc;
4776
4777 w->watchpoint_triggered = watch_triggered_no;
4778 for (loc = b->loc; loc; loc = loc->next)
4779 {
4780 if (is_masked_watchpoint (b))
4781 {
4782 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4783 CORE_ADDR start = loc->address & w->hw_wp_mask;
4784
4785 if (newaddr == start)
4786 {
4787 w->watchpoint_triggered = watch_triggered_yes;
4788 break;
4789 }
4790 }
4791 /* Exact match not required. Within range is sufficient. */
4792 else if (target_watchpoint_addr_within_range (current_top_target (),
4793 addr, loc->address,
4794 loc->length))
4795 {
4796 w->watchpoint_triggered = watch_triggered_yes;
4797 break;
4798 }
4799 }
4800 }
4801
4802 return 1;
4803 }
4804
4805 /* Possible return values for watchpoint_check. */
4806 enum wp_check_result
4807 {
4808 /* The watchpoint has been deleted. */
4809 WP_DELETED = 1,
4810
4811 /* The value has changed. */
4812 WP_VALUE_CHANGED = 2,
4813
4814 /* The value has not changed. */
4815 WP_VALUE_NOT_CHANGED = 3,
4816
4817 /* Ignore this watchpoint, no matter if the value changed or not. */
4818 WP_IGNORE = 4,
4819 };
4820
4821 #define BP_TEMPFLAG 1
4822 #define BP_HARDWAREFLAG 2
4823
4824 /* Evaluate watchpoint condition expression and check if its value
4825 changed. */
4826
4827 static wp_check_result
4828 watchpoint_check (bpstat bs)
4829 {
4830 struct watchpoint *b;
4831 struct frame_info *fr;
4832 int within_current_scope;
4833
4834 /* BS is built from an existing struct breakpoint. */
4835 gdb_assert (bs->breakpoint_at != NULL);
4836 b = (struct watchpoint *) bs->breakpoint_at;
4837
4838 /* If this is a local watchpoint, we only want to check if the
4839 watchpoint frame is in scope if the current thread is the thread
4840 that was used to create the watchpoint. */
4841 if (!watchpoint_in_thread_scope (b))
4842 return WP_IGNORE;
4843
4844 if (b->exp_valid_block == NULL)
4845 within_current_scope = 1;
4846 else
4847 {
4848 struct frame_info *frame = get_current_frame ();
4849 struct gdbarch *frame_arch = get_frame_arch (frame);
4850 CORE_ADDR frame_pc = get_frame_pc (frame);
4851
4852 /* stack_frame_destroyed_p() returns a non-zero value if we're
4853 still in the function but the stack frame has already been
4854 invalidated. Since we can't rely on the values of local
4855 variables after the stack has been destroyed, we are treating
4856 the watchpoint in that state as `not changed' without further
4857 checking. Don't mark watchpoints as changed if the current
4858 frame is in an epilogue - even if they are in some other
4859 frame, our view of the stack is likely to be wrong and
4860 frame_find_by_id could error out. */
4861 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4862 return WP_IGNORE;
4863
4864 fr = frame_find_by_id (b->watchpoint_frame);
4865 within_current_scope = (fr != NULL);
4866
4867 /* If we've gotten confused in the unwinder, we might have
4868 returned a frame that can't describe this variable. */
4869 if (within_current_scope)
4870 {
4871 struct symbol *function;
4872
4873 function = get_frame_function (fr);
4874 if (function == NULL
4875 || !contained_in (b->exp_valid_block,
4876 SYMBOL_BLOCK_VALUE (function)))
4877 within_current_scope = 0;
4878 }
4879
4880 if (within_current_scope)
4881 /* If we end up stopping, the current frame will get selected
4882 in normal_stop. So this call to select_frame won't affect
4883 the user. */
4884 select_frame (fr);
4885 }
4886
4887 if (within_current_scope)
4888 {
4889 /* We use value_{,free_to_}mark because it could be a *long*
4890 time before we return to the command level and call
4891 free_all_values. We can't call free_all_values because we
4892 might be in the middle of evaluating a function call. */
4893
4894 int pc = 0;
4895 struct value *mark;
4896 struct value *new_val;
4897
4898 if (is_masked_watchpoint (b))
4899 /* Since we don't know the exact trigger address (from
4900 stopped_data_address), just tell the user we've triggered
4901 a mask watchpoint. */
4902 return WP_VALUE_CHANGED;
4903
4904 mark = value_mark ();
4905 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4906
4907 if (b->val_bitsize != 0)
4908 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4909
4910 /* We use value_equal_contents instead of value_equal because
4911 the latter coerces an array to a pointer, thus comparing just
4912 the address of the array instead of its contents. This is
4913 not what we want. */
4914 if ((b->val != NULL) != (new_val != NULL)
4915 || (b->val != NULL && !value_equal_contents (b->val.get (),
4916 new_val)))
4917 {
4918 bs->old_val = b->val;
4919 b->val = release_value (new_val);
4920 b->val_valid = 1;
4921 if (new_val != NULL)
4922 value_free_to_mark (mark);
4923 return WP_VALUE_CHANGED;
4924 }
4925 else
4926 {
4927 /* Nothing changed. */
4928 value_free_to_mark (mark);
4929 return WP_VALUE_NOT_CHANGED;
4930 }
4931 }
4932 else
4933 {
4934 /* This seems like the only logical thing to do because
4935 if we temporarily ignored the watchpoint, then when
4936 we reenter the block in which it is valid it contains
4937 garbage (in the case of a function, it may have two
4938 garbage values, one before and one after the prologue).
4939 So we can't even detect the first assignment to it and
4940 watch after that (since the garbage may or may not equal
4941 the first value assigned). */
4942 /* We print all the stop information in
4943 breakpoint_ops->print_it, but in this case, by the time we
4944 call breakpoint_ops->print_it this bp will be deleted
4945 already. So we have no choice but print the information
4946 here. */
4947
4948 SWITCH_THRU_ALL_UIS ()
4949 {
4950 struct ui_out *uiout = current_uiout;
4951
4952 if (uiout->is_mi_like_p ())
4953 uiout->field_string
4954 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4955 uiout->text ("\nWatchpoint ");
4956 uiout->field_int ("wpnum", b->number);
4957 uiout->text (" deleted because the program has left the block in\n"
4958 "which its expression is valid.\n");
4959 }
4960
4961 /* Make sure the watchpoint's commands aren't executed. */
4962 b->commands = NULL;
4963 watchpoint_del_at_next_stop (b);
4964
4965 return WP_DELETED;
4966 }
4967 }
4968
4969 /* Return true if it looks like target has stopped due to hitting
4970 breakpoint location BL. This function does not check if we should
4971 stop, only if BL explains the stop. */
4972
4973 static int
4974 bpstat_check_location (const struct bp_location *bl,
4975 const address_space *aspace, CORE_ADDR bp_addr,
4976 const struct target_waitstatus *ws)
4977 {
4978 struct breakpoint *b = bl->owner;
4979
4980 /* BL is from an existing breakpoint. */
4981 gdb_assert (b != NULL);
4982
4983 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4984 }
4985
4986 /* Determine if the watched values have actually changed, and we
4987 should stop. If not, set BS->stop to 0. */
4988
4989 static void
4990 bpstat_check_watchpoint (bpstat bs)
4991 {
4992 const struct bp_location *bl;
4993 struct watchpoint *b;
4994
4995 /* BS is built for existing struct breakpoint. */
4996 bl = bs->bp_location_at;
4997 gdb_assert (bl != NULL);
4998 b = (struct watchpoint *) bs->breakpoint_at;
4999 gdb_assert (b != NULL);
5000
5001 {
5002 int must_check_value = 0;
5003
5004 if (b->type == bp_watchpoint)
5005 /* For a software watchpoint, we must always check the
5006 watched value. */
5007 must_check_value = 1;
5008 else if (b->watchpoint_triggered == watch_triggered_yes)
5009 /* We have a hardware watchpoint (read, write, or access)
5010 and the target earlier reported an address watched by
5011 this watchpoint. */
5012 must_check_value = 1;
5013 else if (b->watchpoint_triggered == watch_triggered_unknown
5014 && b->type == bp_hardware_watchpoint)
5015 /* We were stopped by a hardware watchpoint, but the target could
5016 not report the data address. We must check the watchpoint's
5017 value. Access and read watchpoints are out of luck; without
5018 a data address, we can't figure it out. */
5019 must_check_value = 1;
5020
5021 if (must_check_value)
5022 {
5023 wp_check_result e;
5024
5025 TRY
5026 {
5027 e = watchpoint_check (bs);
5028 }
5029 CATCH (ex, RETURN_MASK_ALL)
5030 {
5031 exception_fprintf (gdb_stderr, ex,
5032 "Error evaluating expression "
5033 "for watchpoint %d\n",
5034 b->number);
5035
5036 SWITCH_THRU_ALL_UIS ()
5037 {
5038 printf_filtered (_("Watchpoint %d deleted.\n"),
5039 b->number);
5040 }
5041 watchpoint_del_at_next_stop (b);
5042 e = WP_DELETED;
5043 }
5044 END_CATCH
5045
5046 switch (e)
5047 {
5048 case WP_DELETED:
5049 /* We've already printed what needs to be printed. */
5050 bs->print_it = print_it_done;
5051 /* Stop. */
5052 break;
5053 case WP_IGNORE:
5054 bs->print_it = print_it_noop;
5055 bs->stop = 0;
5056 break;
5057 case WP_VALUE_CHANGED:
5058 if (b->type == bp_read_watchpoint)
5059 {
5060 /* There are two cases to consider here:
5061
5062 1. We're watching the triggered memory for reads.
5063 In that case, trust the target, and always report
5064 the watchpoint hit to the user. Even though
5065 reads don't cause value changes, the value may
5066 have changed since the last time it was read, and
5067 since we're not trapping writes, we will not see
5068 those, and as such we should ignore our notion of
5069 old value.
5070
5071 2. We're watching the triggered memory for both
5072 reads and writes. There are two ways this may
5073 happen:
5074
5075 2.1. This is a target that can't break on data
5076 reads only, but can break on accesses (reads or
5077 writes), such as e.g., x86. We detect this case
5078 at the time we try to insert read watchpoints.
5079
5080 2.2. Otherwise, the target supports read
5081 watchpoints, but, the user set an access or write
5082 watchpoint watching the same memory as this read
5083 watchpoint.
5084
5085 If we're watching memory writes as well as reads,
5086 ignore watchpoint hits when we find that the
5087 value hasn't changed, as reads don't cause
5088 changes. This still gives false positives when
5089 the program writes the same value to memory as
5090 what there was already in memory (we will confuse
5091 it for a read), but it's much better than
5092 nothing. */
5093
5094 int other_write_watchpoint = 0;
5095
5096 if (bl->watchpoint_type == hw_read)
5097 {
5098 struct breakpoint *other_b;
5099
5100 ALL_BREAKPOINTS (other_b)
5101 if (other_b->type == bp_hardware_watchpoint
5102 || other_b->type == bp_access_watchpoint)
5103 {
5104 struct watchpoint *other_w =
5105 (struct watchpoint *) other_b;
5106
5107 if (other_w->watchpoint_triggered
5108 == watch_triggered_yes)
5109 {
5110 other_write_watchpoint = 1;
5111 break;
5112 }
5113 }
5114 }
5115
5116 if (other_write_watchpoint
5117 || bl->watchpoint_type == hw_access)
5118 {
5119 /* We're watching the same memory for writes,
5120 and the value changed since the last time we
5121 updated it, so this trap must be for a write.
5122 Ignore it. */
5123 bs->print_it = print_it_noop;
5124 bs->stop = 0;
5125 }
5126 }
5127 break;
5128 case WP_VALUE_NOT_CHANGED:
5129 if (b->type == bp_hardware_watchpoint
5130 || b->type == bp_watchpoint)
5131 {
5132 /* Don't stop: write watchpoints shouldn't fire if
5133 the value hasn't changed. */
5134 bs->print_it = print_it_noop;
5135 bs->stop = 0;
5136 }
5137 /* Stop. */
5138 break;
5139 default:
5140 /* Can't happen. */
5141 break;
5142 }
5143 }
5144 else /* must_check_value == 0 */
5145 {
5146 /* This is a case where some watchpoint(s) triggered, but
5147 not at the address of this watchpoint, or else no
5148 watchpoint triggered after all. So don't print
5149 anything for this watchpoint. */
5150 bs->print_it = print_it_noop;
5151 bs->stop = 0;
5152 }
5153 }
5154 }
5155
5156 /* For breakpoints that are currently marked as telling gdb to stop,
5157 check conditions (condition proper, frame, thread and ignore count)
5158 of breakpoint referred to by BS. If we should not stop for this
5159 breakpoint, set BS->stop to 0. */
5160
5161 static void
5162 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5163 {
5164 const struct bp_location *bl;
5165 struct breakpoint *b;
5166 /* Assume stop. */
5167 bool condition_result = true;
5168 struct expression *cond;
5169
5170 gdb_assert (bs->stop);
5171
5172 /* BS is built for existing struct breakpoint. */
5173 bl = bs->bp_location_at;
5174 gdb_assert (bl != NULL);
5175 b = bs->breakpoint_at;
5176 gdb_assert (b != NULL);
5177
5178 /* Even if the target evaluated the condition on its end and notified GDB, we
5179 need to do so again since GDB does not know if we stopped due to a
5180 breakpoint or a single step breakpoint. */
5181
5182 if (frame_id_p (b->frame_id)
5183 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5184 {
5185 bs->stop = 0;
5186 return;
5187 }
5188
5189 /* If this is a thread/task-specific breakpoint, don't waste cpu
5190 evaluating the condition if this isn't the specified
5191 thread/task. */
5192 if ((b->thread != -1 && b->thread != thread->global_num)
5193 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5194 {
5195 bs->stop = 0;
5196 return;
5197 }
5198
5199 /* Evaluate extension language breakpoints that have a "stop" method
5200 implemented. */
5201 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5202
5203 if (is_watchpoint (b))
5204 {
5205 struct watchpoint *w = (struct watchpoint *) b;
5206
5207 cond = w->cond_exp.get ();
5208 }
5209 else
5210 cond = bl->cond.get ();
5211
5212 if (cond && b->disposition != disp_del_at_next_stop)
5213 {
5214 int within_current_scope = 1;
5215 struct watchpoint * w;
5216
5217 /* We use value_mark and value_free_to_mark because it could
5218 be a long time before we return to the command level and
5219 call free_all_values. We can't call free_all_values
5220 because we might be in the middle of evaluating a
5221 function call. */
5222 struct value *mark = value_mark ();
5223
5224 if (is_watchpoint (b))
5225 w = (struct watchpoint *) b;
5226 else
5227 w = NULL;
5228
5229 /* Need to select the frame, with all that implies so that
5230 the conditions will have the right context. Because we
5231 use the frame, we will not see an inlined function's
5232 variables when we arrive at a breakpoint at the start
5233 of the inlined function; the current frame will be the
5234 call site. */
5235 if (w == NULL || w->cond_exp_valid_block == NULL)
5236 select_frame (get_current_frame ());
5237 else
5238 {
5239 struct frame_info *frame;
5240
5241 /* For local watchpoint expressions, which particular
5242 instance of a local is being watched matters, so we
5243 keep track of the frame to evaluate the expression
5244 in. To evaluate the condition however, it doesn't
5245 really matter which instantiation of the function
5246 where the condition makes sense triggers the
5247 watchpoint. This allows an expression like "watch
5248 global if q > 10" set in `func', catch writes to
5249 global on all threads that call `func', or catch
5250 writes on all recursive calls of `func' by a single
5251 thread. We simply always evaluate the condition in
5252 the innermost frame that's executing where it makes
5253 sense to evaluate the condition. It seems
5254 intuitive. */
5255 frame = block_innermost_frame (w->cond_exp_valid_block);
5256 if (frame != NULL)
5257 select_frame (frame);
5258 else
5259 within_current_scope = 0;
5260 }
5261 if (within_current_scope)
5262 {
5263 TRY
5264 {
5265 condition_result = breakpoint_cond_eval (cond);
5266 }
5267 CATCH (ex, RETURN_MASK_ALL)
5268 {
5269 exception_fprintf (gdb_stderr, ex,
5270 "Error in testing breakpoint condition:\n");
5271 }
5272 END_CATCH
5273 }
5274 else
5275 {
5276 warning (_("Watchpoint condition cannot be tested "
5277 "in the current scope"));
5278 /* If we failed to set the right context for this
5279 watchpoint, unconditionally report it. */
5280 }
5281 /* FIXME-someday, should give breakpoint #. */
5282 value_free_to_mark (mark);
5283 }
5284
5285 if (cond && !condition_result)
5286 {
5287 bs->stop = 0;
5288 }
5289 else if (b->ignore_count > 0)
5290 {
5291 b->ignore_count--;
5292 bs->stop = 0;
5293 /* Increase the hit count even though we don't stop. */
5294 ++(b->hit_count);
5295 gdb::observers::breakpoint_modified.notify (b);
5296 }
5297 }
5298
5299 /* Returns true if we need to track moribund locations of LOC's type
5300 on the current target. */
5301
5302 static int
5303 need_moribund_for_location_type (struct bp_location *loc)
5304 {
5305 return ((loc->loc_type == bp_loc_software_breakpoint
5306 && !target_supports_stopped_by_sw_breakpoint ())
5307 || (loc->loc_type == bp_loc_hardware_breakpoint
5308 && !target_supports_stopped_by_hw_breakpoint ()));
5309 }
5310
5311 /* See breakpoint.h. */
5312
5313 bpstat
5314 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5315 const struct target_waitstatus *ws)
5316 {
5317 struct breakpoint *b;
5318 bpstat bs_head = NULL, *bs_link = &bs_head;
5319
5320 ALL_BREAKPOINTS (b)
5321 {
5322 if (!breakpoint_enabled (b))
5323 continue;
5324
5325 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5326 {
5327 /* For hardware watchpoints, we look only at the first
5328 location. The watchpoint_check function will work on the
5329 entire expression, not the individual locations. For
5330 read watchpoints, the watchpoints_triggered function has
5331 checked all locations already. */
5332 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5333 break;
5334
5335 if (!bl->enabled || bl->shlib_disabled)
5336 continue;
5337
5338 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5339 continue;
5340
5341 /* Come here if it's a watchpoint, or if the break address
5342 matches. */
5343
5344 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5345 explain stop. */
5346
5347 /* Assume we stop. Should we find a watchpoint that is not
5348 actually triggered, or if the condition of the breakpoint
5349 evaluates as false, we'll reset 'stop' to 0. */
5350 bs->stop = 1;
5351 bs->print = 1;
5352
5353 /* If this is a scope breakpoint, mark the associated
5354 watchpoint as triggered so that we will handle the
5355 out-of-scope event. We'll get to the watchpoint next
5356 iteration. */
5357 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5358 {
5359 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5360
5361 w->watchpoint_triggered = watch_triggered_yes;
5362 }
5363 }
5364 }
5365
5366 /* Check if a moribund breakpoint explains the stop. */
5367 if (!target_supports_stopped_by_sw_breakpoint ()
5368 || !target_supports_stopped_by_hw_breakpoint ())
5369 {
5370 for (bp_location *loc : moribund_locations)
5371 {
5372 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5373 && need_moribund_for_location_type (loc))
5374 {
5375 bpstat bs = new bpstats (loc, &bs_link);
5376 /* For hits of moribund locations, we should just proceed. */
5377 bs->stop = 0;
5378 bs->print = 0;
5379 bs->print_it = print_it_noop;
5380 }
5381 }
5382 }
5383
5384 return bs_head;
5385 }
5386
5387 /* See breakpoint.h. */
5388
5389 bpstat
5390 bpstat_stop_status (const address_space *aspace,
5391 CORE_ADDR bp_addr, thread_info *thread,
5392 const struct target_waitstatus *ws,
5393 bpstat stop_chain)
5394 {
5395 struct breakpoint *b = NULL;
5396 /* First item of allocated bpstat's. */
5397 bpstat bs_head = stop_chain;
5398 bpstat bs;
5399 int need_remove_insert;
5400 int removed_any;
5401
5402 /* First, build the bpstat chain with locations that explain a
5403 target stop, while being careful to not set the target running,
5404 as that may invalidate locations (in particular watchpoint
5405 locations are recreated). Resuming will happen here with
5406 breakpoint conditions or watchpoint expressions that include
5407 inferior function calls. */
5408 if (bs_head == NULL)
5409 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5410
5411 /* A bit of special processing for shlib breakpoints. We need to
5412 process solib loading here, so that the lists of loaded and
5413 unloaded libraries are correct before we handle "catch load" and
5414 "catch unload". */
5415 for (bs = bs_head; bs != NULL; bs = bs->next)
5416 {
5417 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5418 {
5419 handle_solib_event ();
5420 break;
5421 }
5422 }
5423
5424 /* Now go through the locations that caused the target to stop, and
5425 check whether we're interested in reporting this stop to higher
5426 layers, or whether we should resume the target transparently. */
5427
5428 removed_any = 0;
5429
5430 for (bs = bs_head; bs != NULL; bs = bs->next)
5431 {
5432 if (!bs->stop)
5433 continue;
5434
5435 b = bs->breakpoint_at;
5436 b->ops->check_status (bs);
5437 if (bs->stop)
5438 {
5439 bpstat_check_breakpoint_conditions (bs, thread);
5440
5441 if (bs->stop)
5442 {
5443 ++(b->hit_count);
5444 gdb::observers::breakpoint_modified.notify (b);
5445
5446 /* We will stop here. */
5447 if (b->disposition == disp_disable)
5448 {
5449 --(b->enable_count);
5450 if (b->enable_count <= 0)
5451 b->enable_state = bp_disabled;
5452 removed_any = 1;
5453 }
5454 if (b->silent)
5455 bs->print = 0;
5456 bs->commands = b->commands;
5457 if (command_line_is_silent (bs->commands
5458 ? bs->commands.get () : NULL))
5459 bs->print = 0;
5460
5461 b->ops->after_condition_true (bs);
5462 }
5463
5464 }
5465
5466 /* Print nothing for this entry if we don't stop or don't
5467 print. */
5468 if (!bs->stop || !bs->print)
5469 bs->print_it = print_it_noop;
5470 }
5471
5472 /* If we aren't stopping, the value of some hardware watchpoint may
5473 not have changed, but the intermediate memory locations we are
5474 watching may have. Don't bother if we're stopping; this will get
5475 done later. */
5476 need_remove_insert = 0;
5477 if (! bpstat_causes_stop (bs_head))
5478 for (bs = bs_head; bs != NULL; bs = bs->next)
5479 if (!bs->stop
5480 && bs->breakpoint_at
5481 && is_hardware_watchpoint (bs->breakpoint_at))
5482 {
5483 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5484
5485 update_watchpoint (w, 0 /* don't reparse. */);
5486 need_remove_insert = 1;
5487 }
5488
5489 if (need_remove_insert)
5490 update_global_location_list (UGLL_MAY_INSERT);
5491 else if (removed_any)
5492 update_global_location_list (UGLL_DONT_INSERT);
5493
5494 return bs_head;
5495 }
5496
5497 static void
5498 handle_jit_event (void)
5499 {
5500 struct frame_info *frame;
5501 struct gdbarch *gdbarch;
5502
5503 if (debug_infrun)
5504 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5505
5506 /* Switch terminal for any messages produced by
5507 breakpoint_re_set. */
5508 target_terminal::ours_for_output ();
5509
5510 frame = get_current_frame ();
5511 gdbarch = get_frame_arch (frame);
5512
5513 jit_event_handler (gdbarch);
5514
5515 target_terminal::inferior ();
5516 }
5517
5518 /* Prepare WHAT final decision for infrun. */
5519
5520 /* Decide what infrun needs to do with this bpstat. */
5521
5522 struct bpstat_what
5523 bpstat_what (bpstat bs_head)
5524 {
5525 struct bpstat_what retval;
5526 bpstat bs;
5527
5528 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5529 retval.call_dummy = STOP_NONE;
5530 retval.is_longjmp = 0;
5531
5532 for (bs = bs_head; bs != NULL; bs = bs->next)
5533 {
5534 /* Extract this BS's action. After processing each BS, we check
5535 if its action overrides all we've seem so far. */
5536 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5537 enum bptype bptype;
5538
5539 if (bs->breakpoint_at == NULL)
5540 {
5541 /* I suspect this can happen if it was a momentary
5542 breakpoint which has since been deleted. */
5543 bptype = bp_none;
5544 }
5545 else
5546 bptype = bs->breakpoint_at->type;
5547
5548 switch (bptype)
5549 {
5550 case bp_none:
5551 break;
5552 case bp_breakpoint:
5553 case bp_hardware_breakpoint:
5554 case bp_single_step:
5555 case bp_until:
5556 case bp_finish:
5557 case bp_shlib_event:
5558 if (bs->stop)
5559 {
5560 if (bs->print)
5561 this_action = BPSTAT_WHAT_STOP_NOISY;
5562 else
5563 this_action = BPSTAT_WHAT_STOP_SILENT;
5564 }
5565 else
5566 this_action = BPSTAT_WHAT_SINGLE;
5567 break;
5568 case bp_watchpoint:
5569 case bp_hardware_watchpoint:
5570 case bp_read_watchpoint:
5571 case bp_access_watchpoint:
5572 if (bs->stop)
5573 {
5574 if (bs->print)
5575 this_action = BPSTAT_WHAT_STOP_NOISY;
5576 else
5577 this_action = BPSTAT_WHAT_STOP_SILENT;
5578 }
5579 else
5580 {
5581 /* There was a watchpoint, but we're not stopping.
5582 This requires no further action. */
5583 }
5584 break;
5585 case bp_longjmp:
5586 case bp_longjmp_call_dummy:
5587 case bp_exception:
5588 if (bs->stop)
5589 {
5590 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5591 retval.is_longjmp = bptype != bp_exception;
5592 }
5593 else
5594 this_action = BPSTAT_WHAT_SINGLE;
5595 break;
5596 case bp_longjmp_resume:
5597 case bp_exception_resume:
5598 if (bs->stop)
5599 {
5600 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5601 retval.is_longjmp = bptype == bp_longjmp_resume;
5602 }
5603 else
5604 this_action = BPSTAT_WHAT_SINGLE;
5605 break;
5606 case bp_step_resume:
5607 if (bs->stop)
5608 this_action = BPSTAT_WHAT_STEP_RESUME;
5609 else
5610 {
5611 /* It is for the wrong frame. */
5612 this_action = BPSTAT_WHAT_SINGLE;
5613 }
5614 break;
5615 case bp_hp_step_resume:
5616 if (bs->stop)
5617 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5618 else
5619 {
5620 /* It is for the wrong frame. */
5621 this_action = BPSTAT_WHAT_SINGLE;
5622 }
5623 break;
5624 case bp_watchpoint_scope:
5625 case bp_thread_event:
5626 case bp_overlay_event:
5627 case bp_longjmp_master:
5628 case bp_std_terminate_master:
5629 case bp_exception_master:
5630 this_action = BPSTAT_WHAT_SINGLE;
5631 break;
5632 case bp_catchpoint:
5633 if (bs->stop)
5634 {
5635 if (bs->print)
5636 this_action = BPSTAT_WHAT_STOP_NOISY;
5637 else
5638 this_action = BPSTAT_WHAT_STOP_SILENT;
5639 }
5640 else
5641 {
5642 /* There was a catchpoint, but we're not stopping.
5643 This requires no further action. */
5644 }
5645 break;
5646 case bp_jit_event:
5647 this_action = BPSTAT_WHAT_SINGLE;
5648 break;
5649 case bp_call_dummy:
5650 /* Make sure the action is stop (silent or noisy),
5651 so infrun.c pops the dummy frame. */
5652 retval.call_dummy = STOP_STACK_DUMMY;
5653 this_action = BPSTAT_WHAT_STOP_SILENT;
5654 break;
5655 case bp_std_terminate:
5656 /* Make sure the action is stop (silent or noisy),
5657 so infrun.c pops the dummy frame. */
5658 retval.call_dummy = STOP_STD_TERMINATE;
5659 this_action = BPSTAT_WHAT_STOP_SILENT;
5660 break;
5661 case bp_tracepoint:
5662 case bp_fast_tracepoint:
5663 case bp_static_tracepoint:
5664 /* Tracepoint hits should not be reported back to GDB, and
5665 if one got through somehow, it should have been filtered
5666 out already. */
5667 internal_error (__FILE__, __LINE__,
5668 _("bpstat_what: tracepoint encountered"));
5669 break;
5670 case bp_gnu_ifunc_resolver:
5671 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5672 this_action = BPSTAT_WHAT_SINGLE;
5673 break;
5674 case bp_gnu_ifunc_resolver_return:
5675 /* The breakpoint will be removed, execution will restart from the
5676 PC of the former breakpoint. */
5677 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5678 break;
5679
5680 case bp_dprintf:
5681 if (bs->stop)
5682 this_action = BPSTAT_WHAT_STOP_SILENT;
5683 else
5684 this_action = BPSTAT_WHAT_SINGLE;
5685 break;
5686
5687 default:
5688 internal_error (__FILE__, __LINE__,
5689 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5690 }
5691
5692 retval.main_action = std::max (retval.main_action, this_action);
5693 }
5694
5695 return retval;
5696 }
5697
5698 void
5699 bpstat_run_callbacks (bpstat bs_head)
5700 {
5701 bpstat bs;
5702
5703 for (bs = bs_head; bs != NULL; bs = bs->next)
5704 {
5705 struct breakpoint *b = bs->breakpoint_at;
5706
5707 if (b == NULL)
5708 continue;
5709 switch (b->type)
5710 {
5711 case bp_jit_event:
5712 handle_jit_event ();
5713 break;
5714 case bp_gnu_ifunc_resolver:
5715 gnu_ifunc_resolver_stop (b);
5716 break;
5717 case bp_gnu_ifunc_resolver_return:
5718 gnu_ifunc_resolver_return_stop (b);
5719 break;
5720 }
5721 }
5722 }
5723
5724 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5725 without hardware support). This isn't related to a specific bpstat,
5726 just to things like whether watchpoints are set. */
5727
5728 int
5729 bpstat_should_step (void)
5730 {
5731 struct breakpoint *b;
5732
5733 ALL_BREAKPOINTS (b)
5734 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5735 return 1;
5736 return 0;
5737 }
5738
5739 int
5740 bpstat_causes_stop (bpstat bs)
5741 {
5742 for (; bs != NULL; bs = bs->next)
5743 if (bs->stop)
5744 return 1;
5745
5746 return 0;
5747 }
5748
5749 \f
5750
5751 /* Compute a string of spaces suitable to indent the next line
5752 so it starts at the position corresponding to the table column
5753 named COL_NAME in the currently active table of UIOUT. */
5754
5755 static char *
5756 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5757 {
5758 static char wrap_indent[80];
5759 int i, total_width, width, align;
5760 const char *text;
5761
5762 total_width = 0;
5763 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5764 {
5765 if (strcmp (text, col_name) == 0)
5766 {
5767 gdb_assert (total_width < sizeof wrap_indent);
5768 memset (wrap_indent, ' ', total_width);
5769 wrap_indent[total_width] = 0;
5770
5771 return wrap_indent;
5772 }
5773
5774 total_width += width + 1;
5775 }
5776
5777 return NULL;
5778 }
5779
5780 /* Determine if the locations of this breakpoint will have their conditions
5781 evaluated by the target, host or a mix of both. Returns the following:
5782
5783 "host": Host evals condition.
5784 "host or target": Host or Target evals condition.
5785 "target": Target evals condition.
5786 */
5787
5788 static const char *
5789 bp_condition_evaluator (struct breakpoint *b)
5790 {
5791 struct bp_location *bl;
5792 char host_evals = 0;
5793 char target_evals = 0;
5794
5795 if (!b)
5796 return NULL;
5797
5798 if (!is_breakpoint (b))
5799 return NULL;
5800
5801 if (gdb_evaluates_breakpoint_condition_p ()
5802 || !target_supports_evaluation_of_breakpoint_conditions ())
5803 return condition_evaluation_host;
5804
5805 for (bl = b->loc; bl; bl = bl->next)
5806 {
5807 if (bl->cond_bytecode)
5808 target_evals++;
5809 else
5810 host_evals++;
5811 }
5812
5813 if (host_evals && target_evals)
5814 return condition_evaluation_both;
5815 else if (target_evals)
5816 return condition_evaluation_target;
5817 else
5818 return condition_evaluation_host;
5819 }
5820
5821 /* Determine the breakpoint location's condition evaluator. This is
5822 similar to bp_condition_evaluator, but for locations. */
5823
5824 static const char *
5825 bp_location_condition_evaluator (struct bp_location *bl)
5826 {
5827 if (bl && !is_breakpoint (bl->owner))
5828 return NULL;
5829
5830 if (gdb_evaluates_breakpoint_condition_p ()
5831 || !target_supports_evaluation_of_breakpoint_conditions ())
5832 return condition_evaluation_host;
5833
5834 if (bl && bl->cond_bytecode)
5835 return condition_evaluation_target;
5836 else
5837 return condition_evaluation_host;
5838 }
5839
5840 /* Print the LOC location out of the list of B->LOC locations. */
5841
5842 static void
5843 print_breakpoint_location (struct breakpoint *b,
5844 struct bp_location *loc)
5845 {
5846 struct ui_out *uiout = current_uiout;
5847
5848 scoped_restore_current_program_space restore_pspace;
5849
5850 if (loc != NULL && loc->shlib_disabled)
5851 loc = NULL;
5852
5853 if (loc != NULL)
5854 set_current_program_space (loc->pspace);
5855
5856 if (b->display_canonical)
5857 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5858 else if (loc && loc->symtab)
5859 {
5860 const struct symbol *sym = loc->symbol;
5861
5862 if (sym)
5863 {
5864 uiout->text ("in ");
5865 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5866 uiout->text (" ");
5867 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5868 uiout->text ("at ");
5869 }
5870 uiout->field_string ("file",
5871 symtab_to_filename_for_display (loc->symtab));
5872 uiout->text (":");
5873
5874 if (uiout->is_mi_like_p ())
5875 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5876
5877 uiout->field_int ("line", loc->line_number);
5878 }
5879 else if (loc)
5880 {
5881 string_file stb;
5882
5883 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5884 demangle, "");
5885 uiout->field_stream ("at", stb);
5886 }
5887 else
5888 {
5889 uiout->field_string ("pending",
5890 event_location_to_string (b->location.get ()));
5891 /* If extra_string is available, it could be holding a condition
5892 or dprintf arguments. In either case, make sure it is printed,
5893 too, but only for non-MI streams. */
5894 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5895 {
5896 if (b->type == bp_dprintf)
5897 uiout->text (",");
5898 else
5899 uiout->text (" ");
5900 uiout->text (b->extra_string);
5901 }
5902 }
5903
5904 if (loc && is_breakpoint (b)
5905 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5906 && bp_condition_evaluator (b) == condition_evaluation_both)
5907 {
5908 uiout->text (" (");
5909 uiout->field_string ("evaluated-by",
5910 bp_location_condition_evaluator (loc));
5911 uiout->text (")");
5912 }
5913 }
5914
5915 static const char *
5916 bptype_string (enum bptype type)
5917 {
5918 struct ep_type_description
5919 {
5920 enum bptype type;
5921 const char *description;
5922 };
5923 static struct ep_type_description bptypes[] =
5924 {
5925 {bp_none, "?deleted?"},
5926 {bp_breakpoint, "breakpoint"},
5927 {bp_hardware_breakpoint, "hw breakpoint"},
5928 {bp_single_step, "sw single-step"},
5929 {bp_until, "until"},
5930 {bp_finish, "finish"},
5931 {bp_watchpoint, "watchpoint"},
5932 {bp_hardware_watchpoint, "hw watchpoint"},
5933 {bp_read_watchpoint, "read watchpoint"},
5934 {bp_access_watchpoint, "acc watchpoint"},
5935 {bp_longjmp, "longjmp"},
5936 {bp_longjmp_resume, "longjmp resume"},
5937 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5938 {bp_exception, "exception"},
5939 {bp_exception_resume, "exception resume"},
5940 {bp_step_resume, "step resume"},
5941 {bp_hp_step_resume, "high-priority step resume"},
5942 {bp_watchpoint_scope, "watchpoint scope"},
5943 {bp_call_dummy, "call dummy"},
5944 {bp_std_terminate, "std::terminate"},
5945 {bp_shlib_event, "shlib events"},
5946 {bp_thread_event, "thread events"},
5947 {bp_overlay_event, "overlay events"},
5948 {bp_longjmp_master, "longjmp master"},
5949 {bp_std_terminate_master, "std::terminate master"},
5950 {bp_exception_master, "exception master"},
5951 {bp_catchpoint, "catchpoint"},
5952 {bp_tracepoint, "tracepoint"},
5953 {bp_fast_tracepoint, "fast tracepoint"},
5954 {bp_static_tracepoint, "static tracepoint"},
5955 {bp_dprintf, "dprintf"},
5956 {bp_jit_event, "jit events"},
5957 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5958 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5959 };
5960
5961 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5962 || ((int) type != bptypes[(int) type].type))
5963 internal_error (__FILE__, __LINE__,
5964 _("bptypes table does not describe type #%d."),
5965 (int) type);
5966
5967 return bptypes[(int) type].description;
5968 }
5969
5970 /* For MI, output a field named 'thread-groups' with a list as the value.
5971 For CLI, prefix the list with the string 'inf'. */
5972
5973 static void
5974 output_thread_groups (struct ui_out *uiout,
5975 const char *field_name,
5976 const std::vector<int> &inf_nums,
5977 int mi_only)
5978 {
5979 int is_mi = uiout->is_mi_like_p ();
5980
5981 /* For backward compatibility, don't display inferiors in CLI unless
5982 there are several. Always display them for MI. */
5983 if (!is_mi && mi_only)
5984 return;
5985
5986 ui_out_emit_list list_emitter (uiout, field_name);
5987
5988 for (size_t i = 0; i < inf_nums.size (); i++)
5989 {
5990 if (is_mi)
5991 {
5992 char mi_group[10];
5993
5994 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5995 uiout->field_string (NULL, mi_group);
5996 }
5997 else
5998 {
5999 if (i == 0)
6000 uiout->text (" inf ");
6001 else
6002 uiout->text (", ");
6003
6004 uiout->text (plongest (inf_nums[i]));
6005 }
6006 }
6007 }
6008
6009 /* Print B to gdb_stdout. */
6010
6011 static void
6012 print_one_breakpoint_location (struct breakpoint *b,
6013 struct bp_location *loc,
6014 int loc_number,
6015 struct bp_location **last_loc,
6016 int allflag)
6017 {
6018 struct command_line *l;
6019 static char bpenables[] = "nynny";
6020
6021 struct ui_out *uiout = current_uiout;
6022 int header_of_multiple = 0;
6023 int part_of_multiple = (loc != NULL);
6024 struct value_print_options opts;
6025
6026 get_user_print_options (&opts);
6027
6028 gdb_assert (!loc || loc_number != 0);
6029 /* See comment in print_one_breakpoint concerning treatment of
6030 breakpoints with single disabled location. */
6031 if (loc == NULL
6032 && (b->loc != NULL
6033 && (b->loc->next != NULL || !b->loc->enabled)))
6034 header_of_multiple = 1;
6035 if (loc == NULL)
6036 loc = b->loc;
6037
6038 annotate_record ();
6039
6040 /* 1 */
6041 annotate_field (0);
6042 if (part_of_multiple)
6043 {
6044 char *formatted;
6045 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6046 uiout->field_string ("number", formatted);
6047 xfree (formatted);
6048 }
6049 else
6050 {
6051 uiout->field_int ("number", b->number);
6052 }
6053
6054 /* 2 */
6055 annotate_field (1);
6056 if (part_of_multiple)
6057 uiout->field_skip ("type");
6058 else
6059 uiout->field_string ("type", bptype_string (b->type));
6060
6061 /* 3 */
6062 annotate_field (2);
6063 if (part_of_multiple)
6064 uiout->field_skip ("disp");
6065 else
6066 uiout->field_string ("disp", bpdisp_text (b->disposition));
6067
6068
6069 /* 4 */
6070 annotate_field (3);
6071 if (part_of_multiple)
6072 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6073 else
6074 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6075 uiout->spaces (2);
6076
6077
6078 /* 5 and 6 */
6079 if (b->ops != NULL && b->ops->print_one != NULL)
6080 {
6081 /* Although the print_one can possibly print all locations,
6082 calling it here is not likely to get any nice result. So,
6083 make sure there's just one location. */
6084 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6085 b->ops->print_one (b, last_loc);
6086 }
6087 else
6088 switch (b->type)
6089 {
6090 case bp_none:
6091 internal_error (__FILE__, __LINE__,
6092 _("print_one_breakpoint: bp_none encountered\n"));
6093 break;
6094
6095 case bp_watchpoint:
6096 case bp_hardware_watchpoint:
6097 case bp_read_watchpoint:
6098 case bp_access_watchpoint:
6099 {
6100 struct watchpoint *w = (struct watchpoint *) b;
6101
6102 /* Field 4, the address, is omitted (which makes the columns
6103 not line up too nicely with the headers, but the effect
6104 is relatively readable). */
6105 if (opts.addressprint)
6106 uiout->field_skip ("addr");
6107 annotate_field (5);
6108 uiout->field_string ("what", w->exp_string);
6109 }
6110 break;
6111
6112 case bp_breakpoint:
6113 case bp_hardware_breakpoint:
6114 case bp_single_step:
6115 case bp_until:
6116 case bp_finish:
6117 case bp_longjmp:
6118 case bp_longjmp_resume:
6119 case bp_longjmp_call_dummy:
6120 case bp_exception:
6121 case bp_exception_resume:
6122 case bp_step_resume:
6123 case bp_hp_step_resume:
6124 case bp_watchpoint_scope:
6125 case bp_call_dummy:
6126 case bp_std_terminate:
6127 case bp_shlib_event:
6128 case bp_thread_event:
6129 case bp_overlay_event:
6130 case bp_longjmp_master:
6131 case bp_std_terminate_master:
6132 case bp_exception_master:
6133 case bp_tracepoint:
6134 case bp_fast_tracepoint:
6135 case bp_static_tracepoint:
6136 case bp_dprintf:
6137 case bp_jit_event:
6138 case bp_gnu_ifunc_resolver:
6139 case bp_gnu_ifunc_resolver_return:
6140 if (opts.addressprint)
6141 {
6142 annotate_field (4);
6143 if (header_of_multiple)
6144 uiout->field_string ("addr", "<MULTIPLE>");
6145 else if (b->loc == NULL || loc->shlib_disabled)
6146 uiout->field_string ("addr", "<PENDING>");
6147 else
6148 uiout->field_core_addr ("addr",
6149 loc->gdbarch, loc->address);
6150 }
6151 annotate_field (5);
6152 if (!header_of_multiple)
6153 print_breakpoint_location (b, loc);
6154 if (b->loc)
6155 *last_loc = b->loc;
6156 break;
6157 }
6158
6159
6160 if (loc != NULL && !header_of_multiple)
6161 {
6162 struct inferior *inf;
6163 std::vector<int> inf_nums;
6164 int mi_only = 1;
6165
6166 ALL_INFERIORS (inf)
6167 {
6168 if (inf->pspace == loc->pspace)
6169 inf_nums.push_back (inf->num);
6170 }
6171
6172 /* For backward compatibility, don't display inferiors in CLI unless
6173 there are several. Always display for MI. */
6174 if (allflag
6175 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6176 && (number_of_program_spaces () > 1
6177 || number_of_inferiors () > 1)
6178 /* LOC is for existing B, it cannot be in
6179 moribund_locations and thus having NULL OWNER. */
6180 && loc->owner->type != bp_catchpoint))
6181 mi_only = 0;
6182 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6183 }
6184
6185 if (!part_of_multiple)
6186 {
6187 if (b->thread != -1)
6188 {
6189 /* FIXME: This seems to be redundant and lost here; see the
6190 "stop only in" line a little further down. */
6191 uiout->text (" thread ");
6192 uiout->field_int ("thread", b->thread);
6193 }
6194 else if (b->task != 0)
6195 {
6196 uiout->text (" task ");
6197 uiout->field_int ("task", b->task);
6198 }
6199 }
6200
6201 uiout->text ("\n");
6202
6203 if (!part_of_multiple)
6204 b->ops->print_one_detail (b, uiout);
6205
6206 if (part_of_multiple && frame_id_p (b->frame_id))
6207 {
6208 annotate_field (6);
6209 uiout->text ("\tstop only in stack frame at ");
6210 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6211 the frame ID. */
6212 uiout->field_core_addr ("frame",
6213 b->gdbarch, b->frame_id.stack_addr);
6214 uiout->text ("\n");
6215 }
6216
6217 if (!part_of_multiple && b->cond_string)
6218 {
6219 annotate_field (7);
6220 if (is_tracepoint (b))
6221 uiout->text ("\ttrace only if ");
6222 else
6223 uiout->text ("\tstop only if ");
6224 uiout->field_string ("cond", b->cond_string);
6225
6226 /* Print whether the target is doing the breakpoint's condition
6227 evaluation. If GDB is doing the evaluation, don't print anything. */
6228 if (is_breakpoint (b)
6229 && breakpoint_condition_evaluation_mode ()
6230 == condition_evaluation_target)
6231 {
6232 uiout->text (" (");
6233 uiout->field_string ("evaluated-by",
6234 bp_condition_evaluator (b));
6235 uiout->text (" evals)");
6236 }
6237 uiout->text ("\n");
6238 }
6239
6240 if (!part_of_multiple && b->thread != -1)
6241 {
6242 /* FIXME should make an annotation for this. */
6243 uiout->text ("\tstop only in thread ");
6244 if (uiout->is_mi_like_p ())
6245 uiout->field_int ("thread", b->thread);
6246 else
6247 {
6248 struct thread_info *thr = find_thread_global_id (b->thread);
6249
6250 uiout->field_string ("thread", print_thread_id (thr));
6251 }
6252 uiout->text ("\n");
6253 }
6254
6255 if (!part_of_multiple)
6256 {
6257 if (b->hit_count)
6258 {
6259 /* FIXME should make an annotation for this. */
6260 if (is_catchpoint (b))
6261 uiout->text ("\tcatchpoint");
6262 else if (is_tracepoint (b))
6263 uiout->text ("\ttracepoint");
6264 else
6265 uiout->text ("\tbreakpoint");
6266 uiout->text (" already hit ");
6267 uiout->field_int ("times", b->hit_count);
6268 if (b->hit_count == 1)
6269 uiout->text (" time\n");
6270 else
6271 uiout->text (" times\n");
6272 }
6273 else
6274 {
6275 /* Output the count also if it is zero, but only if this is mi. */
6276 if (uiout->is_mi_like_p ())
6277 uiout->field_int ("times", b->hit_count);
6278 }
6279 }
6280
6281 if (!part_of_multiple && b->ignore_count)
6282 {
6283 annotate_field (8);
6284 uiout->text ("\tignore next ");
6285 uiout->field_int ("ignore", b->ignore_count);
6286 uiout->text (" hits\n");
6287 }
6288
6289 /* Note that an enable count of 1 corresponds to "enable once"
6290 behavior, which is reported by the combination of enablement and
6291 disposition, so we don't need to mention it here. */
6292 if (!part_of_multiple && b->enable_count > 1)
6293 {
6294 annotate_field (8);
6295 uiout->text ("\tdisable after ");
6296 /* Tweak the wording to clarify that ignore and enable counts
6297 are distinct, and have additive effect. */
6298 if (b->ignore_count)
6299 uiout->text ("additional ");
6300 else
6301 uiout->text ("next ");
6302 uiout->field_int ("enable", b->enable_count);
6303 uiout->text (" hits\n");
6304 }
6305
6306 if (!part_of_multiple && is_tracepoint (b))
6307 {
6308 struct tracepoint *tp = (struct tracepoint *) b;
6309
6310 if (tp->traceframe_usage)
6311 {
6312 uiout->text ("\ttrace buffer usage ");
6313 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6314 uiout->text (" bytes\n");
6315 }
6316 }
6317
6318 l = b->commands ? b->commands.get () : NULL;
6319 if (!part_of_multiple && l)
6320 {
6321 annotate_field (9);
6322 ui_out_emit_tuple tuple_emitter (uiout, "script");
6323 print_command_lines (uiout, l, 4);
6324 }
6325
6326 if (is_tracepoint (b))
6327 {
6328 struct tracepoint *t = (struct tracepoint *) b;
6329
6330 if (!part_of_multiple && t->pass_count)
6331 {
6332 annotate_field (10);
6333 uiout->text ("\tpass count ");
6334 uiout->field_int ("pass", t->pass_count);
6335 uiout->text (" \n");
6336 }
6337
6338 /* Don't display it when tracepoint or tracepoint location is
6339 pending. */
6340 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6341 {
6342 annotate_field (11);
6343
6344 if (uiout->is_mi_like_p ())
6345 uiout->field_string ("installed",
6346 loc->inserted ? "y" : "n");
6347 else
6348 {
6349 if (loc->inserted)
6350 uiout->text ("\t");
6351 else
6352 uiout->text ("\tnot ");
6353 uiout->text ("installed on target\n");
6354 }
6355 }
6356 }
6357
6358 if (uiout->is_mi_like_p () && !part_of_multiple)
6359 {
6360 if (is_watchpoint (b))
6361 {
6362 struct watchpoint *w = (struct watchpoint *) b;
6363
6364 uiout->field_string ("original-location", w->exp_string);
6365 }
6366 else if (b->location != NULL
6367 && event_location_to_string (b->location.get ()) != NULL)
6368 uiout->field_string ("original-location",
6369 event_location_to_string (b->location.get ()));
6370 }
6371 }
6372
6373 static void
6374 print_one_breakpoint (struct breakpoint *b,
6375 struct bp_location **last_loc,
6376 int allflag)
6377 {
6378 struct ui_out *uiout = current_uiout;
6379
6380 {
6381 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6382
6383 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6384 }
6385
6386 /* If this breakpoint has custom print function,
6387 it's already printed. Otherwise, print individual
6388 locations, if any. */
6389 if (b->ops == NULL || b->ops->print_one == NULL)
6390 {
6391 /* If breakpoint has a single location that is disabled, we
6392 print it as if it had several locations, since otherwise it's
6393 hard to represent "breakpoint enabled, location disabled"
6394 situation.
6395
6396 Note that while hardware watchpoints have several locations
6397 internally, that's not a property exposed to user. */
6398 if (b->loc
6399 && !is_hardware_watchpoint (b)
6400 && (b->loc->next || !b->loc->enabled))
6401 {
6402 struct bp_location *loc;
6403 int n = 1;
6404
6405 for (loc = b->loc; loc; loc = loc->next, ++n)
6406 {
6407 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6408 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6409 }
6410 }
6411 }
6412 }
6413
6414 static int
6415 breakpoint_address_bits (struct breakpoint *b)
6416 {
6417 int print_address_bits = 0;
6418 struct bp_location *loc;
6419
6420 /* Software watchpoints that aren't watching memory don't have an
6421 address to print. */
6422 if (is_no_memory_software_watchpoint (b))
6423 return 0;
6424
6425 for (loc = b->loc; loc; loc = loc->next)
6426 {
6427 int addr_bit;
6428
6429 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6430 if (addr_bit > print_address_bits)
6431 print_address_bits = addr_bit;
6432 }
6433
6434 return print_address_bits;
6435 }
6436
6437 /* See breakpoint.h. */
6438
6439 void
6440 print_breakpoint (breakpoint *b)
6441 {
6442 struct bp_location *dummy_loc = NULL;
6443 print_one_breakpoint (b, &dummy_loc, 0);
6444 }
6445
6446 /* Return true if this breakpoint was set by the user, false if it is
6447 internal or momentary. */
6448
6449 int
6450 user_breakpoint_p (struct breakpoint *b)
6451 {
6452 return b->number > 0;
6453 }
6454
6455 /* See breakpoint.h. */
6456
6457 int
6458 pending_breakpoint_p (struct breakpoint *b)
6459 {
6460 return b->loc == NULL;
6461 }
6462
6463 /* Print information on user settable breakpoint (watchpoint, etc)
6464 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6465 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6466 FILTER is non-NULL, call it on each breakpoint and only include the
6467 ones for which it returns non-zero. Return the total number of
6468 breakpoints listed. */
6469
6470 static int
6471 breakpoint_1 (const char *args, int allflag,
6472 int (*filter) (const struct breakpoint *))
6473 {
6474 struct breakpoint *b;
6475 struct bp_location *last_loc = NULL;
6476 int nr_printable_breakpoints;
6477 struct value_print_options opts;
6478 int print_address_bits = 0;
6479 int print_type_col_width = 14;
6480 struct ui_out *uiout = current_uiout;
6481
6482 get_user_print_options (&opts);
6483
6484 /* Compute the number of rows in the table, as well as the size
6485 required for address fields. */
6486 nr_printable_breakpoints = 0;
6487 ALL_BREAKPOINTS (b)
6488 {
6489 /* If we have a filter, only list the breakpoints it accepts. */
6490 if (filter && !filter (b))
6491 continue;
6492
6493 /* If we have an "args" string, it is a list of breakpoints to
6494 accept. Skip the others. */
6495 if (args != NULL && *args != '\0')
6496 {
6497 if (allflag && parse_and_eval_long (args) != b->number)
6498 continue;
6499 if (!allflag && !number_is_in_list (args, b->number))
6500 continue;
6501 }
6502
6503 if (allflag || user_breakpoint_p (b))
6504 {
6505 int addr_bit, type_len;
6506
6507 addr_bit = breakpoint_address_bits (b);
6508 if (addr_bit > print_address_bits)
6509 print_address_bits = addr_bit;
6510
6511 type_len = strlen (bptype_string (b->type));
6512 if (type_len > print_type_col_width)
6513 print_type_col_width = type_len;
6514
6515 nr_printable_breakpoints++;
6516 }
6517 }
6518
6519 {
6520 ui_out_emit_table table_emitter (uiout,
6521 opts.addressprint ? 6 : 5,
6522 nr_printable_breakpoints,
6523 "BreakpointTable");
6524
6525 if (nr_printable_breakpoints > 0)
6526 annotate_breakpoints_headers ();
6527 if (nr_printable_breakpoints > 0)
6528 annotate_field (0);
6529 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6530 if (nr_printable_breakpoints > 0)
6531 annotate_field (1);
6532 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6533 if (nr_printable_breakpoints > 0)
6534 annotate_field (2);
6535 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6536 if (nr_printable_breakpoints > 0)
6537 annotate_field (3);
6538 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6539 if (opts.addressprint)
6540 {
6541 if (nr_printable_breakpoints > 0)
6542 annotate_field (4);
6543 if (print_address_bits <= 32)
6544 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6545 else
6546 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6547 }
6548 if (nr_printable_breakpoints > 0)
6549 annotate_field (5);
6550 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6551 uiout->table_body ();
6552 if (nr_printable_breakpoints > 0)
6553 annotate_breakpoints_table ();
6554
6555 ALL_BREAKPOINTS (b)
6556 {
6557 QUIT;
6558 /* If we have a filter, only list the breakpoints it accepts. */
6559 if (filter && !filter (b))
6560 continue;
6561
6562 /* If we have an "args" string, it is a list of breakpoints to
6563 accept. Skip the others. */
6564
6565 if (args != NULL && *args != '\0')
6566 {
6567 if (allflag) /* maintenance info breakpoint */
6568 {
6569 if (parse_and_eval_long (args) != b->number)
6570 continue;
6571 }
6572 else /* all others */
6573 {
6574 if (!number_is_in_list (args, b->number))
6575 continue;
6576 }
6577 }
6578 /* We only print out user settable breakpoints unless the
6579 allflag is set. */
6580 if (allflag || user_breakpoint_p (b))
6581 print_one_breakpoint (b, &last_loc, allflag);
6582 }
6583 }
6584
6585 if (nr_printable_breakpoints == 0)
6586 {
6587 /* If there's a filter, let the caller decide how to report
6588 empty list. */
6589 if (!filter)
6590 {
6591 if (args == NULL || *args == '\0')
6592 uiout->message ("No breakpoints or watchpoints.\n");
6593 else
6594 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6595 args);
6596 }
6597 }
6598 else
6599 {
6600 if (last_loc && !server_command)
6601 set_next_address (last_loc->gdbarch, last_loc->address);
6602 }
6603
6604 /* FIXME? Should this be moved up so that it is only called when
6605 there have been breakpoints? */
6606 annotate_breakpoints_table_end ();
6607
6608 return nr_printable_breakpoints;
6609 }
6610
6611 /* Display the value of default-collect in a way that is generally
6612 compatible with the breakpoint list. */
6613
6614 static void
6615 default_collect_info (void)
6616 {
6617 struct ui_out *uiout = current_uiout;
6618
6619 /* If it has no value (which is frequently the case), say nothing; a
6620 message like "No default-collect." gets in user's face when it's
6621 not wanted. */
6622 if (!*default_collect)
6623 return;
6624
6625 /* The following phrase lines up nicely with per-tracepoint collect
6626 actions. */
6627 uiout->text ("default collect ");
6628 uiout->field_string ("default-collect", default_collect);
6629 uiout->text (" \n");
6630 }
6631
6632 static void
6633 info_breakpoints_command (const char *args, int from_tty)
6634 {
6635 breakpoint_1 (args, 0, NULL);
6636
6637 default_collect_info ();
6638 }
6639
6640 static void
6641 info_watchpoints_command (const char *args, int from_tty)
6642 {
6643 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6644 struct ui_out *uiout = current_uiout;
6645
6646 if (num_printed == 0)
6647 {
6648 if (args == NULL || *args == '\0')
6649 uiout->message ("No watchpoints.\n");
6650 else
6651 uiout->message ("No watchpoint matching '%s'.\n", args);
6652 }
6653 }
6654
6655 static void
6656 maintenance_info_breakpoints (const char *args, int from_tty)
6657 {
6658 breakpoint_1 (args, 1, NULL);
6659
6660 default_collect_info ();
6661 }
6662
6663 static int
6664 breakpoint_has_pc (struct breakpoint *b,
6665 struct program_space *pspace,
6666 CORE_ADDR pc, struct obj_section *section)
6667 {
6668 struct bp_location *bl = b->loc;
6669
6670 for (; bl; bl = bl->next)
6671 {
6672 if (bl->pspace == pspace
6673 && bl->address == pc
6674 && (!overlay_debugging || bl->section == section))
6675 return 1;
6676 }
6677 return 0;
6678 }
6679
6680 /* Print a message describing any user-breakpoints set at PC. This
6681 concerns with logical breakpoints, so we match program spaces, not
6682 address spaces. */
6683
6684 static void
6685 describe_other_breakpoints (struct gdbarch *gdbarch,
6686 struct program_space *pspace, CORE_ADDR pc,
6687 struct obj_section *section, int thread)
6688 {
6689 int others = 0;
6690 struct breakpoint *b;
6691
6692 ALL_BREAKPOINTS (b)
6693 others += (user_breakpoint_p (b)
6694 && breakpoint_has_pc (b, pspace, pc, section));
6695 if (others > 0)
6696 {
6697 if (others == 1)
6698 printf_filtered (_("Note: breakpoint "));
6699 else /* if (others == ???) */
6700 printf_filtered (_("Note: breakpoints "));
6701 ALL_BREAKPOINTS (b)
6702 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6703 {
6704 others--;
6705 printf_filtered ("%d", b->number);
6706 if (b->thread == -1 && thread != -1)
6707 printf_filtered (" (all threads)");
6708 else if (b->thread != -1)
6709 printf_filtered (" (thread %d)", b->thread);
6710 printf_filtered ("%s%s ",
6711 ((b->enable_state == bp_disabled
6712 || b->enable_state == bp_call_disabled)
6713 ? " (disabled)"
6714 : ""),
6715 (others > 1) ? ","
6716 : ((others == 1) ? " and" : ""));
6717 }
6718 printf_filtered (_("also set at pc "));
6719 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6720 printf_filtered (".\n");
6721 }
6722 }
6723 \f
6724
6725 /* Return true iff it is meaningful to use the address member of
6726 BPT locations. For some breakpoint types, the locations' address members
6727 are irrelevant and it makes no sense to attempt to compare them to other
6728 addresses (or use them for any other purpose either).
6729
6730 More specifically, each of the following breakpoint types will
6731 always have a zero valued location address and we don't want to mark
6732 breakpoints of any of these types to be a duplicate of an actual
6733 breakpoint location at address zero:
6734
6735 bp_watchpoint
6736 bp_catchpoint
6737
6738 */
6739
6740 static int
6741 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6742 {
6743 enum bptype type = bpt->type;
6744
6745 return (type != bp_watchpoint && type != bp_catchpoint);
6746 }
6747
6748 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6749 true if LOC1 and LOC2 represent the same watchpoint location. */
6750
6751 static int
6752 watchpoint_locations_match (struct bp_location *loc1,
6753 struct bp_location *loc2)
6754 {
6755 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6756 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6757
6758 /* Both of them must exist. */
6759 gdb_assert (w1 != NULL);
6760 gdb_assert (w2 != NULL);
6761
6762 /* If the target can evaluate the condition expression in hardware,
6763 then we we need to insert both watchpoints even if they are at
6764 the same place. Otherwise the watchpoint will only trigger when
6765 the condition of whichever watchpoint was inserted evaluates to
6766 true, not giving a chance for GDB to check the condition of the
6767 other watchpoint. */
6768 if ((w1->cond_exp
6769 && target_can_accel_watchpoint_condition (loc1->address,
6770 loc1->length,
6771 loc1->watchpoint_type,
6772 w1->cond_exp.get ()))
6773 || (w2->cond_exp
6774 && target_can_accel_watchpoint_condition (loc2->address,
6775 loc2->length,
6776 loc2->watchpoint_type,
6777 w2->cond_exp.get ())))
6778 return 0;
6779
6780 /* Note that this checks the owner's type, not the location's. In
6781 case the target does not support read watchpoints, but does
6782 support access watchpoints, we'll have bp_read_watchpoint
6783 watchpoints with hw_access locations. Those should be considered
6784 duplicates of hw_read locations. The hw_read locations will
6785 become hw_access locations later. */
6786 return (loc1->owner->type == loc2->owner->type
6787 && loc1->pspace->aspace == loc2->pspace->aspace
6788 && loc1->address == loc2->address
6789 && loc1->length == loc2->length);
6790 }
6791
6792 /* See breakpoint.h. */
6793
6794 int
6795 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6796 const address_space *aspace2, CORE_ADDR addr2)
6797 {
6798 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6799 || aspace1 == aspace2)
6800 && addr1 == addr2);
6801 }
6802
6803 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6804 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6805 matches ASPACE2. On targets that have global breakpoints, the address
6806 space doesn't really matter. */
6807
6808 static int
6809 breakpoint_address_match_range (const address_space *aspace1,
6810 CORE_ADDR addr1,
6811 int len1, const address_space *aspace2,
6812 CORE_ADDR addr2)
6813 {
6814 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6815 || aspace1 == aspace2)
6816 && addr2 >= addr1 && addr2 < addr1 + len1);
6817 }
6818
6819 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6820 a ranged breakpoint. In most targets, a match happens only if ASPACE
6821 matches the breakpoint's address space. On targets that have global
6822 breakpoints, the address space doesn't really matter. */
6823
6824 static int
6825 breakpoint_location_address_match (struct bp_location *bl,
6826 const address_space *aspace,
6827 CORE_ADDR addr)
6828 {
6829 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6830 aspace, addr)
6831 || (bl->length
6832 && breakpoint_address_match_range (bl->pspace->aspace,
6833 bl->address, bl->length,
6834 aspace, addr)));
6835 }
6836
6837 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6838 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6839 match happens only if ASPACE matches the breakpoint's address
6840 space. On targets that have global breakpoints, the address space
6841 doesn't really matter. */
6842
6843 static int
6844 breakpoint_location_address_range_overlap (struct bp_location *bl,
6845 const address_space *aspace,
6846 CORE_ADDR addr, int len)
6847 {
6848 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6849 || bl->pspace->aspace == aspace)
6850 {
6851 int bl_len = bl->length != 0 ? bl->length : 1;
6852
6853 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6854 return 1;
6855 }
6856 return 0;
6857 }
6858
6859 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6860 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6861 true, otherwise returns false. */
6862
6863 static int
6864 tracepoint_locations_match (struct bp_location *loc1,
6865 struct bp_location *loc2)
6866 {
6867 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6868 /* Since tracepoint locations are never duplicated with others', tracepoint
6869 locations at the same address of different tracepoints are regarded as
6870 different locations. */
6871 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6872 else
6873 return 0;
6874 }
6875
6876 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6877 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6878 represent the same location. */
6879
6880 static int
6881 breakpoint_locations_match (struct bp_location *loc1,
6882 struct bp_location *loc2)
6883 {
6884 int hw_point1, hw_point2;
6885
6886 /* Both of them must not be in moribund_locations. */
6887 gdb_assert (loc1->owner != NULL);
6888 gdb_assert (loc2->owner != NULL);
6889
6890 hw_point1 = is_hardware_watchpoint (loc1->owner);
6891 hw_point2 = is_hardware_watchpoint (loc2->owner);
6892
6893 if (hw_point1 != hw_point2)
6894 return 0;
6895 else if (hw_point1)
6896 return watchpoint_locations_match (loc1, loc2);
6897 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6898 return tracepoint_locations_match (loc1, loc2);
6899 else
6900 /* We compare bp_location.length in order to cover ranged breakpoints. */
6901 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6902 loc2->pspace->aspace, loc2->address)
6903 && loc1->length == loc2->length);
6904 }
6905
6906 static void
6907 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6908 int bnum, int have_bnum)
6909 {
6910 /* The longest string possibly returned by hex_string_custom
6911 is 50 chars. These must be at least that big for safety. */
6912 char astr1[64];
6913 char astr2[64];
6914
6915 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6916 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6917 if (have_bnum)
6918 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6919 bnum, astr1, astr2);
6920 else
6921 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6922 }
6923
6924 /* Adjust a breakpoint's address to account for architectural
6925 constraints on breakpoint placement. Return the adjusted address.
6926 Note: Very few targets require this kind of adjustment. For most
6927 targets, this function is simply the identity function. */
6928
6929 static CORE_ADDR
6930 adjust_breakpoint_address (struct gdbarch *gdbarch,
6931 CORE_ADDR bpaddr, enum bptype bptype)
6932 {
6933 if (bptype == bp_watchpoint
6934 || bptype == bp_hardware_watchpoint
6935 || bptype == bp_read_watchpoint
6936 || bptype == bp_access_watchpoint
6937 || bptype == bp_catchpoint)
6938 {
6939 /* Watchpoints and the various bp_catch_* eventpoints should not
6940 have their addresses modified. */
6941 return bpaddr;
6942 }
6943 else if (bptype == bp_single_step)
6944 {
6945 /* Single-step breakpoints should not have their addresses
6946 modified. If there's any architectural constrain that
6947 applies to this address, then it should have already been
6948 taken into account when the breakpoint was created in the
6949 first place. If we didn't do this, stepping through e.g.,
6950 Thumb-2 IT blocks would break. */
6951 return bpaddr;
6952 }
6953 else
6954 {
6955 CORE_ADDR adjusted_bpaddr = bpaddr;
6956
6957 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6958 {
6959 /* Some targets have architectural constraints on the placement
6960 of breakpoint instructions. Obtain the adjusted address. */
6961 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6962 }
6963
6964 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6965
6966 /* An adjusted breakpoint address can significantly alter
6967 a user's expectations. Print a warning if an adjustment
6968 is required. */
6969 if (adjusted_bpaddr != bpaddr)
6970 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6971
6972 return adjusted_bpaddr;
6973 }
6974 }
6975
6976 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6977 {
6978 bp_location *loc = this;
6979
6980 gdb_assert (ops != NULL);
6981
6982 loc->ops = ops;
6983 loc->owner = owner;
6984 loc->cond_bytecode = NULL;
6985 loc->shlib_disabled = 0;
6986 loc->enabled = 1;
6987
6988 switch (owner->type)
6989 {
6990 case bp_breakpoint:
6991 case bp_single_step:
6992 case bp_until:
6993 case bp_finish:
6994 case bp_longjmp:
6995 case bp_longjmp_resume:
6996 case bp_longjmp_call_dummy:
6997 case bp_exception:
6998 case bp_exception_resume:
6999 case bp_step_resume:
7000 case bp_hp_step_resume:
7001 case bp_watchpoint_scope:
7002 case bp_call_dummy:
7003 case bp_std_terminate:
7004 case bp_shlib_event:
7005 case bp_thread_event:
7006 case bp_overlay_event:
7007 case bp_jit_event:
7008 case bp_longjmp_master:
7009 case bp_std_terminate_master:
7010 case bp_exception_master:
7011 case bp_gnu_ifunc_resolver:
7012 case bp_gnu_ifunc_resolver_return:
7013 case bp_dprintf:
7014 loc->loc_type = bp_loc_software_breakpoint;
7015 mark_breakpoint_location_modified (loc);
7016 break;
7017 case bp_hardware_breakpoint:
7018 loc->loc_type = bp_loc_hardware_breakpoint;
7019 mark_breakpoint_location_modified (loc);
7020 break;
7021 case bp_hardware_watchpoint:
7022 case bp_read_watchpoint:
7023 case bp_access_watchpoint:
7024 loc->loc_type = bp_loc_hardware_watchpoint;
7025 break;
7026 case bp_watchpoint:
7027 case bp_catchpoint:
7028 case bp_tracepoint:
7029 case bp_fast_tracepoint:
7030 case bp_static_tracepoint:
7031 loc->loc_type = bp_loc_other;
7032 break;
7033 default:
7034 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7035 }
7036
7037 loc->refc = 1;
7038 }
7039
7040 /* Allocate a struct bp_location. */
7041
7042 static struct bp_location *
7043 allocate_bp_location (struct breakpoint *bpt)
7044 {
7045 return bpt->ops->allocate_location (bpt);
7046 }
7047
7048 static void
7049 free_bp_location (struct bp_location *loc)
7050 {
7051 loc->ops->dtor (loc);
7052 delete loc;
7053 }
7054
7055 /* Increment reference count. */
7056
7057 static void
7058 incref_bp_location (struct bp_location *bl)
7059 {
7060 ++bl->refc;
7061 }
7062
7063 /* Decrement reference count. If the reference count reaches 0,
7064 destroy the bp_location. Sets *BLP to NULL. */
7065
7066 static void
7067 decref_bp_location (struct bp_location **blp)
7068 {
7069 gdb_assert ((*blp)->refc > 0);
7070
7071 if (--(*blp)->refc == 0)
7072 free_bp_location (*blp);
7073 *blp = NULL;
7074 }
7075
7076 /* Add breakpoint B at the end of the global breakpoint chain. */
7077
7078 static breakpoint *
7079 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7080 {
7081 struct breakpoint *b1;
7082 struct breakpoint *result = b.get ();
7083
7084 /* Add this breakpoint to the end of the chain so that a list of
7085 breakpoints will come out in order of increasing numbers. */
7086
7087 b1 = breakpoint_chain;
7088 if (b1 == 0)
7089 breakpoint_chain = b.release ();
7090 else
7091 {
7092 while (b1->next)
7093 b1 = b1->next;
7094 b1->next = b.release ();
7095 }
7096
7097 return result;
7098 }
7099
7100 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7101
7102 static void
7103 init_raw_breakpoint_without_location (struct breakpoint *b,
7104 struct gdbarch *gdbarch,
7105 enum bptype bptype,
7106 const struct breakpoint_ops *ops)
7107 {
7108 gdb_assert (ops != NULL);
7109
7110 b->ops = ops;
7111 b->type = bptype;
7112 b->gdbarch = gdbarch;
7113 b->language = current_language->la_language;
7114 b->input_radix = input_radix;
7115 b->related_breakpoint = b;
7116 }
7117
7118 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7119 that has type BPTYPE and has no locations as yet. */
7120
7121 static struct breakpoint *
7122 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7123 enum bptype bptype,
7124 const struct breakpoint_ops *ops)
7125 {
7126 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7127
7128 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7129 return add_to_breakpoint_chain (std::move (b));
7130 }
7131
7132 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7133 resolutions should be made as the user specified the location explicitly
7134 enough. */
7135
7136 static void
7137 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7138 {
7139 gdb_assert (loc->owner != NULL);
7140
7141 if (loc->owner->type == bp_breakpoint
7142 || loc->owner->type == bp_hardware_breakpoint
7143 || is_tracepoint (loc->owner))
7144 {
7145 const char *function_name;
7146
7147 if (loc->msymbol != NULL
7148 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7149 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7150 && !explicit_loc)
7151 {
7152 struct breakpoint *b = loc->owner;
7153
7154 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7155
7156 if (b->type == bp_breakpoint && b->loc == loc
7157 && loc->next == NULL && b->related_breakpoint == b)
7158 {
7159 /* Create only the whole new breakpoint of this type but do not
7160 mess more complicated breakpoints with multiple locations. */
7161 b->type = bp_gnu_ifunc_resolver;
7162 /* Remember the resolver's address for use by the return
7163 breakpoint. */
7164 loc->related_address = loc->address;
7165 }
7166 }
7167 else
7168 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7169
7170 if (function_name)
7171 loc->function_name = xstrdup (function_name);
7172 }
7173 }
7174
7175 /* Attempt to determine architecture of location identified by SAL. */
7176 struct gdbarch *
7177 get_sal_arch (struct symtab_and_line sal)
7178 {
7179 if (sal.section)
7180 return get_objfile_arch (sal.section->objfile);
7181 if (sal.symtab)
7182 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7183
7184 return NULL;
7185 }
7186
7187 /* Low level routine for partially initializing a breakpoint of type
7188 BPTYPE. The newly created breakpoint's address, section, source
7189 file name, and line number are provided by SAL.
7190
7191 It is expected that the caller will complete the initialization of
7192 the newly created breakpoint struct as well as output any status
7193 information regarding the creation of a new breakpoint. */
7194
7195 static void
7196 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7197 struct symtab_and_line sal, enum bptype bptype,
7198 const struct breakpoint_ops *ops)
7199 {
7200 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7201
7202 add_location_to_breakpoint (b, &sal);
7203
7204 if (bptype != bp_catchpoint)
7205 gdb_assert (sal.pspace != NULL);
7206
7207 /* Store the program space that was used to set the breakpoint,
7208 except for ordinary breakpoints, which are independent of the
7209 program space. */
7210 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7211 b->pspace = sal.pspace;
7212 }
7213
7214 /* set_raw_breakpoint is a low level routine for allocating and
7215 partially initializing a breakpoint of type BPTYPE. The newly
7216 created breakpoint's address, section, source file name, and line
7217 number are provided by SAL. The newly created and partially
7218 initialized breakpoint is added to the breakpoint chain and
7219 is also returned as the value of this function.
7220
7221 It is expected that the caller will complete the initialization of
7222 the newly created breakpoint struct as well as output any status
7223 information regarding the creation of a new breakpoint. In
7224 particular, set_raw_breakpoint does NOT set the breakpoint
7225 number! Care should be taken to not allow an error to occur
7226 prior to completing the initialization of the breakpoint. If this
7227 should happen, a bogus breakpoint will be left on the chain. */
7228
7229 struct breakpoint *
7230 set_raw_breakpoint (struct gdbarch *gdbarch,
7231 struct symtab_and_line sal, enum bptype bptype,
7232 const struct breakpoint_ops *ops)
7233 {
7234 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7235
7236 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7237 return add_to_breakpoint_chain (std::move (b));
7238 }
7239
7240 /* Call this routine when stepping and nexting to enable a breakpoint
7241 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7242 initiated the operation. */
7243
7244 void
7245 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7246 {
7247 struct breakpoint *b, *b_tmp;
7248 int thread = tp->global_num;
7249
7250 /* To avoid having to rescan all objfile symbols at every step,
7251 we maintain a list of continually-inserted but always disabled
7252 longjmp "master" breakpoints. Here, we simply create momentary
7253 clones of those and enable them for the requested thread. */
7254 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7255 if (b->pspace == current_program_space
7256 && (b->type == bp_longjmp_master
7257 || b->type == bp_exception_master))
7258 {
7259 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7260 struct breakpoint *clone;
7261
7262 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7263 after their removal. */
7264 clone = momentary_breakpoint_from_master (b, type,
7265 &momentary_breakpoint_ops, 1);
7266 clone->thread = thread;
7267 }
7268
7269 tp->initiating_frame = frame;
7270 }
7271
7272 /* Delete all longjmp breakpoints from THREAD. */
7273 void
7274 delete_longjmp_breakpoint (int thread)
7275 {
7276 struct breakpoint *b, *b_tmp;
7277
7278 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7279 if (b->type == bp_longjmp || b->type == bp_exception)
7280 {
7281 if (b->thread == thread)
7282 delete_breakpoint (b);
7283 }
7284 }
7285
7286 void
7287 delete_longjmp_breakpoint_at_next_stop (int thread)
7288 {
7289 struct breakpoint *b, *b_tmp;
7290
7291 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7292 if (b->type == bp_longjmp || b->type == bp_exception)
7293 {
7294 if (b->thread == thread)
7295 b->disposition = disp_del_at_next_stop;
7296 }
7297 }
7298
7299 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7300 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7301 pointer to any of them. Return NULL if this system cannot place longjmp
7302 breakpoints. */
7303
7304 struct breakpoint *
7305 set_longjmp_breakpoint_for_call_dummy (void)
7306 {
7307 struct breakpoint *b, *retval = NULL;
7308
7309 ALL_BREAKPOINTS (b)
7310 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7311 {
7312 struct breakpoint *new_b;
7313
7314 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7315 &momentary_breakpoint_ops,
7316 1);
7317 new_b->thread = inferior_thread ()->global_num;
7318
7319 /* Link NEW_B into the chain of RETVAL breakpoints. */
7320
7321 gdb_assert (new_b->related_breakpoint == new_b);
7322 if (retval == NULL)
7323 retval = new_b;
7324 new_b->related_breakpoint = retval;
7325 while (retval->related_breakpoint != new_b->related_breakpoint)
7326 retval = retval->related_breakpoint;
7327 retval->related_breakpoint = new_b;
7328 }
7329
7330 return retval;
7331 }
7332
7333 /* Verify all existing dummy frames and their associated breakpoints for
7334 TP. Remove those which can no longer be found in the current frame
7335 stack.
7336
7337 You should call this function only at places where it is safe to currently
7338 unwind the whole stack. Failed stack unwind would discard live dummy
7339 frames. */
7340
7341 void
7342 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7343 {
7344 struct breakpoint *b, *b_tmp;
7345
7346 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7347 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7348 {
7349 struct breakpoint *dummy_b = b->related_breakpoint;
7350
7351 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7352 dummy_b = dummy_b->related_breakpoint;
7353 if (dummy_b->type != bp_call_dummy
7354 || frame_find_by_id (dummy_b->frame_id) != NULL)
7355 continue;
7356
7357 dummy_frame_discard (dummy_b->frame_id, tp);
7358
7359 while (b->related_breakpoint != b)
7360 {
7361 if (b_tmp == b->related_breakpoint)
7362 b_tmp = b->related_breakpoint->next;
7363 delete_breakpoint (b->related_breakpoint);
7364 }
7365 delete_breakpoint (b);
7366 }
7367 }
7368
7369 void
7370 enable_overlay_breakpoints (void)
7371 {
7372 struct breakpoint *b;
7373
7374 ALL_BREAKPOINTS (b)
7375 if (b->type == bp_overlay_event)
7376 {
7377 b->enable_state = bp_enabled;
7378 update_global_location_list (UGLL_MAY_INSERT);
7379 overlay_events_enabled = 1;
7380 }
7381 }
7382
7383 void
7384 disable_overlay_breakpoints (void)
7385 {
7386 struct breakpoint *b;
7387
7388 ALL_BREAKPOINTS (b)
7389 if (b->type == bp_overlay_event)
7390 {
7391 b->enable_state = bp_disabled;
7392 update_global_location_list (UGLL_DONT_INSERT);
7393 overlay_events_enabled = 0;
7394 }
7395 }
7396
7397 /* Set an active std::terminate breakpoint for each std::terminate
7398 master breakpoint. */
7399 void
7400 set_std_terminate_breakpoint (void)
7401 {
7402 struct breakpoint *b, *b_tmp;
7403
7404 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7405 if (b->pspace == current_program_space
7406 && b->type == bp_std_terminate_master)
7407 {
7408 momentary_breakpoint_from_master (b, bp_std_terminate,
7409 &momentary_breakpoint_ops, 1);
7410 }
7411 }
7412
7413 /* Delete all the std::terminate breakpoints. */
7414 void
7415 delete_std_terminate_breakpoint (void)
7416 {
7417 struct breakpoint *b, *b_tmp;
7418
7419 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7420 if (b->type == bp_std_terminate)
7421 delete_breakpoint (b);
7422 }
7423
7424 struct breakpoint *
7425 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7426 {
7427 struct breakpoint *b;
7428
7429 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7430 &internal_breakpoint_ops);
7431
7432 b->enable_state = bp_enabled;
7433 /* location has to be used or breakpoint_re_set will delete me. */
7434 b->location = new_address_location (b->loc->address, NULL, 0);
7435
7436 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7437
7438 return b;
7439 }
7440
7441 struct lang_and_radix
7442 {
7443 enum language lang;
7444 int radix;
7445 };
7446
7447 /* Create a breakpoint for JIT code registration and unregistration. */
7448
7449 struct breakpoint *
7450 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7451 {
7452 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7453 &internal_breakpoint_ops);
7454 }
7455
7456 /* Remove JIT code registration and unregistration breakpoint(s). */
7457
7458 void
7459 remove_jit_event_breakpoints (void)
7460 {
7461 struct breakpoint *b, *b_tmp;
7462
7463 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7464 if (b->type == bp_jit_event
7465 && b->loc->pspace == current_program_space)
7466 delete_breakpoint (b);
7467 }
7468
7469 void
7470 remove_solib_event_breakpoints (void)
7471 {
7472 struct breakpoint *b, *b_tmp;
7473
7474 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7475 if (b->type == bp_shlib_event
7476 && b->loc->pspace == current_program_space)
7477 delete_breakpoint (b);
7478 }
7479
7480 /* See breakpoint.h. */
7481
7482 void
7483 remove_solib_event_breakpoints_at_next_stop (void)
7484 {
7485 struct breakpoint *b, *b_tmp;
7486
7487 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7488 if (b->type == bp_shlib_event
7489 && b->loc->pspace == current_program_space)
7490 b->disposition = disp_del_at_next_stop;
7491 }
7492
7493 /* Helper for create_solib_event_breakpoint /
7494 create_and_insert_solib_event_breakpoint. Allows specifying which
7495 INSERT_MODE to pass through to update_global_location_list. */
7496
7497 static struct breakpoint *
7498 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7499 enum ugll_insert_mode insert_mode)
7500 {
7501 struct breakpoint *b;
7502
7503 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7504 &internal_breakpoint_ops);
7505 update_global_location_list_nothrow (insert_mode);
7506 return b;
7507 }
7508
7509 struct breakpoint *
7510 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7511 {
7512 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7513 }
7514
7515 /* See breakpoint.h. */
7516
7517 struct breakpoint *
7518 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7519 {
7520 struct breakpoint *b;
7521
7522 /* Explicitly tell update_global_location_list to insert
7523 locations. */
7524 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7525 if (!b->loc->inserted)
7526 {
7527 delete_breakpoint (b);
7528 return NULL;
7529 }
7530 return b;
7531 }
7532
7533 /* Disable any breakpoints that are on code in shared libraries. Only
7534 apply to enabled breakpoints, disabled ones can just stay disabled. */
7535
7536 void
7537 disable_breakpoints_in_shlibs (void)
7538 {
7539 struct bp_location *loc, **locp_tmp;
7540
7541 ALL_BP_LOCATIONS (loc, locp_tmp)
7542 {
7543 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7544 struct breakpoint *b = loc->owner;
7545
7546 /* We apply the check to all breakpoints, including disabled for
7547 those with loc->duplicate set. This is so that when breakpoint
7548 becomes enabled, or the duplicate is removed, gdb will try to
7549 insert all breakpoints. If we don't set shlib_disabled here,
7550 we'll try to insert those breakpoints and fail. */
7551 if (((b->type == bp_breakpoint)
7552 || (b->type == bp_jit_event)
7553 || (b->type == bp_hardware_breakpoint)
7554 || (is_tracepoint (b)))
7555 && loc->pspace == current_program_space
7556 && !loc->shlib_disabled
7557 && solib_name_from_address (loc->pspace, loc->address)
7558 )
7559 {
7560 loc->shlib_disabled = 1;
7561 }
7562 }
7563 }
7564
7565 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7566 notification of unloaded_shlib. Only apply to enabled breakpoints,
7567 disabled ones can just stay disabled. */
7568
7569 static void
7570 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7571 {
7572 struct bp_location *loc, **locp_tmp;
7573 int disabled_shlib_breaks = 0;
7574
7575 ALL_BP_LOCATIONS (loc, locp_tmp)
7576 {
7577 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7578 struct breakpoint *b = loc->owner;
7579
7580 if (solib->pspace == loc->pspace
7581 && !loc->shlib_disabled
7582 && (((b->type == bp_breakpoint
7583 || b->type == bp_jit_event
7584 || b->type == bp_hardware_breakpoint)
7585 && (loc->loc_type == bp_loc_hardware_breakpoint
7586 || loc->loc_type == bp_loc_software_breakpoint))
7587 || is_tracepoint (b))
7588 && solib_contains_address_p (solib, loc->address))
7589 {
7590 loc->shlib_disabled = 1;
7591 /* At this point, we cannot rely on remove_breakpoint
7592 succeeding so we must mark the breakpoint as not inserted
7593 to prevent future errors occurring in remove_breakpoints. */
7594 loc->inserted = 0;
7595
7596 /* This may cause duplicate notifications for the same breakpoint. */
7597 gdb::observers::breakpoint_modified.notify (b);
7598
7599 if (!disabled_shlib_breaks)
7600 {
7601 target_terminal::ours_for_output ();
7602 warning (_("Temporarily disabling breakpoints "
7603 "for unloaded shared library \"%s\""),
7604 solib->so_name);
7605 }
7606 disabled_shlib_breaks = 1;
7607 }
7608 }
7609 }
7610
7611 /* Disable any breakpoints and tracepoints in OBJFILE upon
7612 notification of free_objfile. Only apply to enabled breakpoints,
7613 disabled ones can just stay disabled. */
7614
7615 static void
7616 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7617 {
7618 struct breakpoint *b;
7619
7620 if (objfile == NULL)
7621 return;
7622
7623 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7624 managed by the user with add-symbol-file/remove-symbol-file.
7625 Similarly to how breakpoints in shared libraries are handled in
7626 response to "nosharedlibrary", mark breakpoints in such modules
7627 shlib_disabled so they end up uninserted on the next global
7628 location list update. Shared libraries not loaded by the user
7629 aren't handled here -- they're already handled in
7630 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7631 solib_unloaded observer. We skip objfiles that are not
7632 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7633 main objfile). */
7634 if ((objfile->flags & OBJF_SHARED) == 0
7635 || (objfile->flags & OBJF_USERLOADED) == 0)
7636 return;
7637
7638 ALL_BREAKPOINTS (b)
7639 {
7640 struct bp_location *loc;
7641 int bp_modified = 0;
7642
7643 if (!is_breakpoint (b) && !is_tracepoint (b))
7644 continue;
7645
7646 for (loc = b->loc; loc != NULL; loc = loc->next)
7647 {
7648 CORE_ADDR loc_addr = loc->address;
7649
7650 if (loc->loc_type != bp_loc_hardware_breakpoint
7651 && loc->loc_type != bp_loc_software_breakpoint)
7652 continue;
7653
7654 if (loc->shlib_disabled != 0)
7655 continue;
7656
7657 if (objfile->pspace != loc->pspace)
7658 continue;
7659
7660 if (loc->loc_type != bp_loc_hardware_breakpoint
7661 && loc->loc_type != bp_loc_software_breakpoint)
7662 continue;
7663
7664 if (is_addr_in_objfile (loc_addr, objfile))
7665 {
7666 loc->shlib_disabled = 1;
7667 /* At this point, we don't know whether the object was
7668 unmapped from the inferior or not, so leave the
7669 inserted flag alone. We'll handle failure to
7670 uninsert quietly, in case the object was indeed
7671 unmapped. */
7672
7673 mark_breakpoint_location_modified (loc);
7674
7675 bp_modified = 1;
7676 }
7677 }
7678
7679 if (bp_modified)
7680 gdb::observers::breakpoint_modified.notify (b);
7681 }
7682 }
7683
7684 /* FORK & VFORK catchpoints. */
7685
7686 /* An instance of this type is used to represent a fork or vfork
7687 catchpoint. A breakpoint is really of this type iff its ops pointer points
7688 to CATCH_FORK_BREAKPOINT_OPS. */
7689
7690 struct fork_catchpoint : public breakpoint
7691 {
7692 /* Process id of a child process whose forking triggered this
7693 catchpoint. This field is only valid immediately after this
7694 catchpoint has triggered. */
7695 ptid_t forked_inferior_pid;
7696 };
7697
7698 /* Implement the "insert" breakpoint_ops method for fork
7699 catchpoints. */
7700
7701 static int
7702 insert_catch_fork (struct bp_location *bl)
7703 {
7704 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7705 }
7706
7707 /* Implement the "remove" breakpoint_ops method for fork
7708 catchpoints. */
7709
7710 static int
7711 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7712 {
7713 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7714 }
7715
7716 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7717 catchpoints. */
7718
7719 static int
7720 breakpoint_hit_catch_fork (const struct bp_location *bl,
7721 const address_space *aspace, CORE_ADDR bp_addr,
7722 const struct target_waitstatus *ws)
7723 {
7724 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7725
7726 if (ws->kind != TARGET_WAITKIND_FORKED)
7727 return 0;
7728
7729 c->forked_inferior_pid = ws->value.related_pid;
7730 return 1;
7731 }
7732
7733 /* Implement the "print_it" breakpoint_ops method for fork
7734 catchpoints. */
7735
7736 static enum print_stop_action
7737 print_it_catch_fork (bpstat bs)
7738 {
7739 struct ui_out *uiout = current_uiout;
7740 struct breakpoint *b = bs->breakpoint_at;
7741 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7742
7743 annotate_catchpoint (b->number);
7744 maybe_print_thread_hit_breakpoint (uiout);
7745 if (b->disposition == disp_del)
7746 uiout->text ("Temporary catchpoint ");
7747 else
7748 uiout->text ("Catchpoint ");
7749 if (uiout->is_mi_like_p ())
7750 {
7751 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7752 uiout->field_string ("disp", bpdisp_text (b->disposition));
7753 }
7754 uiout->field_int ("bkptno", b->number);
7755 uiout->text (" (forked process ");
7756 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7757 uiout->text ("), ");
7758 return PRINT_SRC_AND_LOC;
7759 }
7760
7761 /* Implement the "print_one" breakpoint_ops method for fork
7762 catchpoints. */
7763
7764 static void
7765 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7766 {
7767 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7768 struct value_print_options opts;
7769 struct ui_out *uiout = current_uiout;
7770
7771 get_user_print_options (&opts);
7772
7773 /* Field 4, the address, is omitted (which makes the columns not
7774 line up too nicely with the headers, but the effect is relatively
7775 readable). */
7776 if (opts.addressprint)
7777 uiout->field_skip ("addr");
7778 annotate_field (5);
7779 uiout->text ("fork");
7780 if (c->forked_inferior_pid != null_ptid)
7781 {
7782 uiout->text (", process ");
7783 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7784 uiout->spaces (1);
7785 }
7786
7787 if (uiout->is_mi_like_p ())
7788 uiout->field_string ("catch-type", "fork");
7789 }
7790
7791 /* Implement the "print_mention" breakpoint_ops method for fork
7792 catchpoints. */
7793
7794 static void
7795 print_mention_catch_fork (struct breakpoint *b)
7796 {
7797 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7798 }
7799
7800 /* Implement the "print_recreate" breakpoint_ops method for fork
7801 catchpoints. */
7802
7803 static void
7804 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7805 {
7806 fprintf_unfiltered (fp, "catch fork");
7807 print_recreate_thread (b, fp);
7808 }
7809
7810 /* The breakpoint_ops structure to be used in fork catchpoints. */
7811
7812 static struct breakpoint_ops catch_fork_breakpoint_ops;
7813
7814 /* Implement the "insert" breakpoint_ops method for vfork
7815 catchpoints. */
7816
7817 static int
7818 insert_catch_vfork (struct bp_location *bl)
7819 {
7820 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7821 }
7822
7823 /* Implement the "remove" breakpoint_ops method for vfork
7824 catchpoints. */
7825
7826 static int
7827 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7828 {
7829 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7830 }
7831
7832 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7833 catchpoints. */
7834
7835 static int
7836 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7837 const address_space *aspace, CORE_ADDR bp_addr,
7838 const struct target_waitstatus *ws)
7839 {
7840 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7841
7842 if (ws->kind != TARGET_WAITKIND_VFORKED)
7843 return 0;
7844
7845 c->forked_inferior_pid = ws->value.related_pid;
7846 return 1;
7847 }
7848
7849 /* Implement the "print_it" breakpoint_ops method for vfork
7850 catchpoints. */
7851
7852 static enum print_stop_action
7853 print_it_catch_vfork (bpstat bs)
7854 {
7855 struct ui_out *uiout = current_uiout;
7856 struct breakpoint *b = bs->breakpoint_at;
7857 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7858
7859 annotate_catchpoint (b->number);
7860 maybe_print_thread_hit_breakpoint (uiout);
7861 if (b->disposition == disp_del)
7862 uiout->text ("Temporary catchpoint ");
7863 else
7864 uiout->text ("Catchpoint ");
7865 if (uiout->is_mi_like_p ())
7866 {
7867 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7868 uiout->field_string ("disp", bpdisp_text (b->disposition));
7869 }
7870 uiout->field_int ("bkptno", b->number);
7871 uiout->text (" (vforked process ");
7872 uiout->field_int ("newpid", c->forked_inferior_pid.pid ());
7873 uiout->text ("), ");
7874 return PRINT_SRC_AND_LOC;
7875 }
7876
7877 /* Implement the "print_one" breakpoint_ops method for vfork
7878 catchpoints. */
7879
7880 static void
7881 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7882 {
7883 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7884 struct value_print_options opts;
7885 struct ui_out *uiout = current_uiout;
7886
7887 get_user_print_options (&opts);
7888 /* Field 4, the address, is omitted (which makes the columns not
7889 line up too nicely with the headers, but the effect is relatively
7890 readable). */
7891 if (opts.addressprint)
7892 uiout->field_skip ("addr");
7893 annotate_field (5);
7894 uiout->text ("vfork");
7895 if (c->forked_inferior_pid != null_ptid)
7896 {
7897 uiout->text (", process ");
7898 uiout->field_int ("what", c->forked_inferior_pid.pid ());
7899 uiout->spaces (1);
7900 }
7901
7902 if (uiout->is_mi_like_p ())
7903 uiout->field_string ("catch-type", "vfork");
7904 }
7905
7906 /* Implement the "print_mention" breakpoint_ops method for vfork
7907 catchpoints. */
7908
7909 static void
7910 print_mention_catch_vfork (struct breakpoint *b)
7911 {
7912 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7913 }
7914
7915 /* Implement the "print_recreate" breakpoint_ops method for vfork
7916 catchpoints. */
7917
7918 static void
7919 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7920 {
7921 fprintf_unfiltered (fp, "catch vfork");
7922 print_recreate_thread (b, fp);
7923 }
7924
7925 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7926
7927 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7928
7929 /* An instance of this type is used to represent an solib catchpoint.
7930 A breakpoint is really of this type iff its ops pointer points to
7931 CATCH_SOLIB_BREAKPOINT_OPS. */
7932
7933 struct solib_catchpoint : public breakpoint
7934 {
7935 ~solib_catchpoint () override;
7936
7937 /* True for "catch load", false for "catch unload". */
7938 unsigned char is_load;
7939
7940 /* Regular expression to match, if any. COMPILED is only valid when
7941 REGEX is non-NULL. */
7942 char *regex;
7943 std::unique_ptr<compiled_regex> compiled;
7944 };
7945
7946 solib_catchpoint::~solib_catchpoint ()
7947 {
7948 xfree (this->regex);
7949 }
7950
7951 static int
7952 insert_catch_solib (struct bp_location *ignore)
7953 {
7954 return 0;
7955 }
7956
7957 static int
7958 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7959 {
7960 return 0;
7961 }
7962
7963 static int
7964 breakpoint_hit_catch_solib (const struct bp_location *bl,
7965 const address_space *aspace,
7966 CORE_ADDR bp_addr,
7967 const struct target_waitstatus *ws)
7968 {
7969 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7970 struct breakpoint *other;
7971
7972 if (ws->kind == TARGET_WAITKIND_LOADED)
7973 return 1;
7974
7975 ALL_BREAKPOINTS (other)
7976 {
7977 struct bp_location *other_bl;
7978
7979 if (other == bl->owner)
7980 continue;
7981
7982 if (other->type != bp_shlib_event)
7983 continue;
7984
7985 if (self->pspace != NULL && other->pspace != self->pspace)
7986 continue;
7987
7988 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7989 {
7990 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7991 return 1;
7992 }
7993 }
7994
7995 return 0;
7996 }
7997
7998 static void
7999 check_status_catch_solib (struct bpstats *bs)
8000 {
8001 struct solib_catchpoint *self
8002 = (struct solib_catchpoint *) bs->breakpoint_at;
8003
8004 if (self->is_load)
8005 {
8006 for (so_list *iter : current_program_space->added_solibs)
8007 {
8008 if (!self->regex
8009 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8010 return;
8011 }
8012 }
8013 else
8014 {
8015 for (const std::string &iter : current_program_space->deleted_solibs)
8016 {
8017 if (!self->regex
8018 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8019 return;
8020 }
8021 }
8022
8023 bs->stop = 0;
8024 bs->print_it = print_it_noop;
8025 }
8026
8027 static enum print_stop_action
8028 print_it_catch_solib (bpstat bs)
8029 {
8030 struct breakpoint *b = bs->breakpoint_at;
8031 struct ui_out *uiout = current_uiout;
8032
8033 annotate_catchpoint (b->number);
8034 maybe_print_thread_hit_breakpoint (uiout);
8035 if (b->disposition == disp_del)
8036 uiout->text ("Temporary catchpoint ");
8037 else
8038 uiout->text ("Catchpoint ");
8039 uiout->field_int ("bkptno", b->number);
8040 uiout->text ("\n");
8041 if (uiout->is_mi_like_p ())
8042 uiout->field_string ("disp", bpdisp_text (b->disposition));
8043 print_solib_event (1);
8044 return PRINT_SRC_AND_LOC;
8045 }
8046
8047 static void
8048 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8049 {
8050 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8051 struct value_print_options opts;
8052 struct ui_out *uiout = current_uiout;
8053 char *msg;
8054
8055 get_user_print_options (&opts);
8056 /* Field 4, the address, is omitted (which makes the columns not
8057 line up too nicely with the headers, but the effect is relatively
8058 readable). */
8059 if (opts.addressprint)
8060 {
8061 annotate_field (4);
8062 uiout->field_skip ("addr");
8063 }
8064
8065 annotate_field (5);
8066 if (self->is_load)
8067 {
8068 if (self->regex)
8069 msg = xstrprintf (_("load of library matching %s"), self->regex);
8070 else
8071 msg = xstrdup (_("load of library"));
8072 }
8073 else
8074 {
8075 if (self->regex)
8076 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8077 else
8078 msg = xstrdup (_("unload of library"));
8079 }
8080 uiout->field_string ("what", msg);
8081 xfree (msg);
8082
8083 if (uiout->is_mi_like_p ())
8084 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8085 }
8086
8087 static void
8088 print_mention_catch_solib (struct breakpoint *b)
8089 {
8090 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8091
8092 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8093 self->is_load ? "load" : "unload");
8094 }
8095
8096 static void
8097 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8098 {
8099 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8100
8101 fprintf_unfiltered (fp, "%s %s",
8102 b->disposition == disp_del ? "tcatch" : "catch",
8103 self->is_load ? "load" : "unload");
8104 if (self->regex)
8105 fprintf_unfiltered (fp, " %s", self->regex);
8106 fprintf_unfiltered (fp, "\n");
8107 }
8108
8109 static struct breakpoint_ops catch_solib_breakpoint_ops;
8110
8111 /* Shared helper function (MI and CLI) for creating and installing
8112 a shared object event catchpoint. If IS_LOAD is non-zero then
8113 the events to be caught are load events, otherwise they are
8114 unload events. If IS_TEMP is non-zero the catchpoint is a
8115 temporary one. If ENABLED is non-zero the catchpoint is
8116 created in an enabled state. */
8117
8118 void
8119 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8120 {
8121 struct gdbarch *gdbarch = get_current_arch ();
8122
8123 if (!arg)
8124 arg = "";
8125 arg = skip_spaces (arg);
8126
8127 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8128
8129 if (*arg != '\0')
8130 {
8131 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8132 _("Invalid regexp")));
8133 c->regex = xstrdup (arg);
8134 }
8135
8136 c->is_load = is_load;
8137 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8138 &catch_solib_breakpoint_ops);
8139
8140 c->enable_state = enabled ? bp_enabled : bp_disabled;
8141
8142 install_breakpoint (0, std::move (c), 1);
8143 }
8144
8145 /* A helper function that does all the work for "catch load" and
8146 "catch unload". */
8147
8148 static void
8149 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8150 struct cmd_list_element *command)
8151 {
8152 int tempflag;
8153 const int enabled = 1;
8154
8155 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8156
8157 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8158 }
8159
8160 static void
8161 catch_load_command_1 (const char *arg, int from_tty,
8162 struct cmd_list_element *command)
8163 {
8164 catch_load_or_unload (arg, from_tty, 1, command);
8165 }
8166
8167 static void
8168 catch_unload_command_1 (const char *arg, int from_tty,
8169 struct cmd_list_element *command)
8170 {
8171 catch_load_or_unload (arg, from_tty, 0, command);
8172 }
8173
8174 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8175 is non-zero, then make the breakpoint temporary. If COND_STRING is
8176 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8177 the breakpoint_ops structure associated to the catchpoint. */
8178
8179 void
8180 init_catchpoint (struct breakpoint *b,
8181 struct gdbarch *gdbarch, int tempflag,
8182 const char *cond_string,
8183 const struct breakpoint_ops *ops)
8184 {
8185 symtab_and_line sal;
8186 sal.pspace = current_program_space;
8187
8188 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8189
8190 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8191 b->disposition = tempflag ? disp_del : disp_donttouch;
8192 }
8193
8194 void
8195 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8196 {
8197 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8198 set_breakpoint_number (internal, b);
8199 if (is_tracepoint (b))
8200 set_tracepoint_count (breakpoint_count);
8201 if (!internal)
8202 mention (b);
8203 gdb::observers::breakpoint_created.notify (b);
8204
8205 if (update_gll)
8206 update_global_location_list (UGLL_MAY_INSERT);
8207 }
8208
8209 static void
8210 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8211 int tempflag, const char *cond_string,
8212 const struct breakpoint_ops *ops)
8213 {
8214 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8215
8216 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8217
8218 c->forked_inferior_pid = null_ptid;
8219
8220 install_breakpoint (0, std::move (c), 1);
8221 }
8222
8223 /* Exec catchpoints. */
8224
8225 /* An instance of this type is used to represent an exec catchpoint.
8226 A breakpoint is really of this type iff its ops pointer points to
8227 CATCH_EXEC_BREAKPOINT_OPS. */
8228
8229 struct exec_catchpoint : public breakpoint
8230 {
8231 ~exec_catchpoint () override;
8232
8233 /* Filename of a program whose exec triggered this catchpoint.
8234 This field is only valid immediately after this catchpoint has
8235 triggered. */
8236 char *exec_pathname;
8237 };
8238
8239 /* Exec catchpoint destructor. */
8240
8241 exec_catchpoint::~exec_catchpoint ()
8242 {
8243 xfree (this->exec_pathname);
8244 }
8245
8246 static int
8247 insert_catch_exec (struct bp_location *bl)
8248 {
8249 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8250 }
8251
8252 static int
8253 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8254 {
8255 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8256 }
8257
8258 static int
8259 breakpoint_hit_catch_exec (const struct bp_location *bl,
8260 const address_space *aspace, CORE_ADDR bp_addr,
8261 const struct target_waitstatus *ws)
8262 {
8263 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8264
8265 if (ws->kind != TARGET_WAITKIND_EXECD)
8266 return 0;
8267
8268 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8269 return 1;
8270 }
8271
8272 static enum print_stop_action
8273 print_it_catch_exec (bpstat bs)
8274 {
8275 struct ui_out *uiout = current_uiout;
8276 struct breakpoint *b = bs->breakpoint_at;
8277 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8278
8279 annotate_catchpoint (b->number);
8280 maybe_print_thread_hit_breakpoint (uiout);
8281 if (b->disposition == disp_del)
8282 uiout->text ("Temporary catchpoint ");
8283 else
8284 uiout->text ("Catchpoint ");
8285 if (uiout->is_mi_like_p ())
8286 {
8287 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8288 uiout->field_string ("disp", bpdisp_text (b->disposition));
8289 }
8290 uiout->field_int ("bkptno", b->number);
8291 uiout->text (" (exec'd ");
8292 uiout->field_string ("new-exec", c->exec_pathname);
8293 uiout->text ("), ");
8294
8295 return PRINT_SRC_AND_LOC;
8296 }
8297
8298 static void
8299 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8300 {
8301 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8302 struct value_print_options opts;
8303 struct ui_out *uiout = current_uiout;
8304
8305 get_user_print_options (&opts);
8306
8307 /* Field 4, the address, is omitted (which makes the columns
8308 not line up too nicely with the headers, but the effect
8309 is relatively readable). */
8310 if (opts.addressprint)
8311 uiout->field_skip ("addr");
8312 annotate_field (5);
8313 uiout->text ("exec");
8314 if (c->exec_pathname != NULL)
8315 {
8316 uiout->text (", program \"");
8317 uiout->field_string ("what", c->exec_pathname);
8318 uiout->text ("\" ");
8319 }
8320
8321 if (uiout->is_mi_like_p ())
8322 uiout->field_string ("catch-type", "exec");
8323 }
8324
8325 static void
8326 print_mention_catch_exec (struct breakpoint *b)
8327 {
8328 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8329 }
8330
8331 /* Implement the "print_recreate" breakpoint_ops method for exec
8332 catchpoints. */
8333
8334 static void
8335 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8336 {
8337 fprintf_unfiltered (fp, "catch exec");
8338 print_recreate_thread (b, fp);
8339 }
8340
8341 static struct breakpoint_ops catch_exec_breakpoint_ops;
8342
8343 static int
8344 hw_breakpoint_used_count (void)
8345 {
8346 int i = 0;
8347 struct breakpoint *b;
8348 struct bp_location *bl;
8349
8350 ALL_BREAKPOINTS (b)
8351 {
8352 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8353 for (bl = b->loc; bl; bl = bl->next)
8354 {
8355 /* Special types of hardware breakpoints may use more than
8356 one register. */
8357 i += b->ops->resources_needed (bl);
8358 }
8359 }
8360
8361 return i;
8362 }
8363
8364 /* Returns the resources B would use if it were a hardware
8365 watchpoint. */
8366
8367 static int
8368 hw_watchpoint_use_count (struct breakpoint *b)
8369 {
8370 int i = 0;
8371 struct bp_location *bl;
8372
8373 if (!breakpoint_enabled (b))
8374 return 0;
8375
8376 for (bl = b->loc; bl; bl = bl->next)
8377 {
8378 /* Special types of hardware watchpoints may use more than
8379 one register. */
8380 i += b->ops->resources_needed (bl);
8381 }
8382
8383 return i;
8384 }
8385
8386 /* Returns the sum the used resources of all hardware watchpoints of
8387 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8388 the sum of the used resources of all hardware watchpoints of other
8389 types _not_ TYPE. */
8390
8391 static int
8392 hw_watchpoint_used_count_others (struct breakpoint *except,
8393 enum bptype type, int *other_type_used)
8394 {
8395 int i = 0;
8396 struct breakpoint *b;
8397
8398 *other_type_used = 0;
8399 ALL_BREAKPOINTS (b)
8400 {
8401 if (b == except)
8402 continue;
8403 if (!breakpoint_enabled (b))
8404 continue;
8405
8406 if (b->type == type)
8407 i += hw_watchpoint_use_count (b);
8408 else if (is_hardware_watchpoint (b))
8409 *other_type_used = 1;
8410 }
8411
8412 return i;
8413 }
8414
8415 void
8416 disable_watchpoints_before_interactive_call_start (void)
8417 {
8418 struct breakpoint *b;
8419
8420 ALL_BREAKPOINTS (b)
8421 {
8422 if (is_watchpoint (b) && breakpoint_enabled (b))
8423 {
8424 b->enable_state = bp_call_disabled;
8425 update_global_location_list (UGLL_DONT_INSERT);
8426 }
8427 }
8428 }
8429
8430 void
8431 enable_watchpoints_after_interactive_call_stop (void)
8432 {
8433 struct breakpoint *b;
8434
8435 ALL_BREAKPOINTS (b)
8436 {
8437 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8438 {
8439 b->enable_state = bp_enabled;
8440 update_global_location_list (UGLL_MAY_INSERT);
8441 }
8442 }
8443 }
8444
8445 void
8446 disable_breakpoints_before_startup (void)
8447 {
8448 current_program_space->executing_startup = 1;
8449 update_global_location_list (UGLL_DONT_INSERT);
8450 }
8451
8452 void
8453 enable_breakpoints_after_startup (void)
8454 {
8455 current_program_space->executing_startup = 0;
8456 breakpoint_re_set ();
8457 }
8458
8459 /* Create a new single-step breakpoint for thread THREAD, with no
8460 locations. */
8461
8462 static struct breakpoint *
8463 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8464 {
8465 std::unique_ptr<breakpoint> b (new breakpoint ());
8466
8467 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8468 &momentary_breakpoint_ops);
8469
8470 b->disposition = disp_donttouch;
8471 b->frame_id = null_frame_id;
8472
8473 b->thread = thread;
8474 gdb_assert (b->thread != 0);
8475
8476 return add_to_breakpoint_chain (std::move (b));
8477 }
8478
8479 /* Set a momentary breakpoint of type TYPE at address specified by
8480 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8481 frame. */
8482
8483 breakpoint_up
8484 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8485 struct frame_id frame_id, enum bptype type)
8486 {
8487 struct breakpoint *b;
8488
8489 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8490 tail-called one. */
8491 gdb_assert (!frame_id_artificial_p (frame_id));
8492
8493 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8494 b->enable_state = bp_enabled;
8495 b->disposition = disp_donttouch;
8496 b->frame_id = frame_id;
8497
8498 b->thread = inferior_thread ()->global_num;
8499
8500 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8501
8502 return breakpoint_up (b);
8503 }
8504
8505 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8506 The new breakpoint will have type TYPE, use OPS as its
8507 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8508
8509 static struct breakpoint *
8510 momentary_breakpoint_from_master (struct breakpoint *orig,
8511 enum bptype type,
8512 const struct breakpoint_ops *ops,
8513 int loc_enabled)
8514 {
8515 struct breakpoint *copy;
8516
8517 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8518 copy->loc = allocate_bp_location (copy);
8519 set_breakpoint_location_function (copy->loc, 1);
8520
8521 copy->loc->gdbarch = orig->loc->gdbarch;
8522 copy->loc->requested_address = orig->loc->requested_address;
8523 copy->loc->address = orig->loc->address;
8524 copy->loc->section = orig->loc->section;
8525 copy->loc->pspace = orig->loc->pspace;
8526 copy->loc->probe = orig->loc->probe;
8527 copy->loc->line_number = orig->loc->line_number;
8528 copy->loc->symtab = orig->loc->symtab;
8529 copy->loc->enabled = loc_enabled;
8530 copy->frame_id = orig->frame_id;
8531 copy->thread = orig->thread;
8532 copy->pspace = orig->pspace;
8533
8534 copy->enable_state = bp_enabled;
8535 copy->disposition = disp_donttouch;
8536 copy->number = internal_breakpoint_number--;
8537
8538 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8539 return copy;
8540 }
8541
8542 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8543 ORIG is NULL. */
8544
8545 struct breakpoint *
8546 clone_momentary_breakpoint (struct breakpoint *orig)
8547 {
8548 /* If there's nothing to clone, then return nothing. */
8549 if (orig == NULL)
8550 return NULL;
8551
8552 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8553 }
8554
8555 breakpoint_up
8556 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8557 enum bptype type)
8558 {
8559 struct symtab_and_line sal;
8560
8561 sal = find_pc_line (pc, 0);
8562 sal.pc = pc;
8563 sal.section = find_pc_overlay (pc);
8564 sal.explicit_pc = 1;
8565
8566 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8567 }
8568 \f
8569
8570 /* Tell the user we have just set a breakpoint B. */
8571
8572 static void
8573 mention (struct breakpoint *b)
8574 {
8575 b->ops->print_mention (b);
8576 current_uiout->text ("\n");
8577 }
8578 \f
8579
8580 static int bp_loc_is_permanent (struct bp_location *loc);
8581
8582 static struct bp_location *
8583 add_location_to_breakpoint (struct breakpoint *b,
8584 const struct symtab_and_line *sal)
8585 {
8586 struct bp_location *loc, **tmp;
8587 CORE_ADDR adjusted_address;
8588 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8589
8590 if (loc_gdbarch == NULL)
8591 loc_gdbarch = b->gdbarch;
8592
8593 /* Adjust the breakpoint's address prior to allocating a location.
8594 Once we call allocate_bp_location(), that mostly uninitialized
8595 location will be placed on the location chain. Adjustment of the
8596 breakpoint may cause target_read_memory() to be called and we do
8597 not want its scan of the location chain to find a breakpoint and
8598 location that's only been partially initialized. */
8599 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8600 sal->pc, b->type);
8601
8602 /* Sort the locations by their ADDRESS. */
8603 loc = allocate_bp_location (b);
8604 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8605 tmp = &((*tmp)->next))
8606 ;
8607 loc->next = *tmp;
8608 *tmp = loc;
8609
8610 loc->requested_address = sal->pc;
8611 loc->address = adjusted_address;
8612 loc->pspace = sal->pspace;
8613 loc->probe.prob = sal->prob;
8614 loc->probe.objfile = sal->objfile;
8615 gdb_assert (loc->pspace != NULL);
8616 loc->section = sal->section;
8617 loc->gdbarch = loc_gdbarch;
8618 loc->line_number = sal->line;
8619 loc->symtab = sal->symtab;
8620 loc->symbol = sal->symbol;
8621 loc->msymbol = sal->msymbol;
8622 loc->objfile = sal->objfile;
8623
8624 set_breakpoint_location_function (loc,
8625 sal->explicit_pc || sal->explicit_line);
8626
8627 /* While by definition, permanent breakpoints are already present in the
8628 code, we don't mark the location as inserted. Normally one would expect
8629 that GDB could rely on that breakpoint instruction to stop the program,
8630 thus removing the need to insert its own breakpoint, except that executing
8631 the breakpoint instruction can kill the target instead of reporting a
8632 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8633 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8634 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8635 breakpoint be inserted normally results in QEMU knowing about the GDB
8636 breakpoint, and thus trap before the breakpoint instruction is executed.
8637 (If GDB later needs to continue execution past the permanent breakpoint,
8638 it manually increments the PC, thus avoiding executing the breakpoint
8639 instruction.) */
8640 if (bp_loc_is_permanent (loc))
8641 loc->permanent = 1;
8642
8643 return loc;
8644 }
8645 \f
8646
8647 /* See breakpoint.h. */
8648
8649 int
8650 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8651 {
8652 int len;
8653 CORE_ADDR addr;
8654 const gdb_byte *bpoint;
8655 gdb_byte *target_mem;
8656
8657 addr = address;
8658 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8659
8660 /* Software breakpoints unsupported? */
8661 if (bpoint == NULL)
8662 return 0;
8663
8664 target_mem = (gdb_byte *) alloca (len);
8665
8666 /* Enable the automatic memory restoration from breakpoints while
8667 we read the memory. Otherwise we could say about our temporary
8668 breakpoints they are permanent. */
8669 scoped_restore restore_memory
8670 = make_scoped_restore_show_memory_breakpoints (0);
8671
8672 if (target_read_memory (address, target_mem, len) == 0
8673 && memcmp (target_mem, bpoint, len) == 0)
8674 return 1;
8675
8676 return 0;
8677 }
8678
8679 /* Return 1 if LOC is pointing to a permanent breakpoint,
8680 return 0 otherwise. */
8681
8682 static int
8683 bp_loc_is_permanent (struct bp_location *loc)
8684 {
8685 gdb_assert (loc != NULL);
8686
8687 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8688 attempt to read from the addresses the locations of these breakpoint types
8689 point to. program_breakpoint_here_p, below, will attempt to read
8690 memory. */
8691 if (!breakpoint_address_is_meaningful (loc->owner))
8692 return 0;
8693
8694 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8695 switch_to_program_space_and_thread (loc->pspace);
8696 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8697 }
8698
8699 /* Build a command list for the dprintf corresponding to the current
8700 settings of the dprintf style options. */
8701
8702 static void
8703 update_dprintf_command_list (struct breakpoint *b)
8704 {
8705 char *dprintf_args = b->extra_string;
8706 char *printf_line = NULL;
8707
8708 if (!dprintf_args)
8709 return;
8710
8711 dprintf_args = skip_spaces (dprintf_args);
8712
8713 /* Allow a comma, as it may have terminated a location, but don't
8714 insist on it. */
8715 if (*dprintf_args == ',')
8716 ++dprintf_args;
8717 dprintf_args = skip_spaces (dprintf_args);
8718
8719 if (*dprintf_args != '"')
8720 error (_("Bad format string, missing '\"'."));
8721
8722 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8723 printf_line = xstrprintf ("printf %s", dprintf_args);
8724 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8725 {
8726 if (!dprintf_function)
8727 error (_("No function supplied for dprintf call"));
8728
8729 if (dprintf_channel && strlen (dprintf_channel) > 0)
8730 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8731 dprintf_function,
8732 dprintf_channel,
8733 dprintf_args);
8734 else
8735 printf_line = xstrprintf ("call (void) %s (%s)",
8736 dprintf_function,
8737 dprintf_args);
8738 }
8739 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8740 {
8741 if (target_can_run_breakpoint_commands ())
8742 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8743 else
8744 {
8745 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8746 printf_line = xstrprintf ("printf %s", dprintf_args);
8747 }
8748 }
8749 else
8750 internal_error (__FILE__, __LINE__,
8751 _("Invalid dprintf style."));
8752
8753 gdb_assert (printf_line != NULL);
8754
8755 /* Manufacture a printf sequence. */
8756 struct command_line *printf_cmd_line
8757 = new struct command_line (simple_control, printf_line);
8758 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8759 command_lines_deleter ()));
8760 }
8761
8762 /* Update all dprintf commands, making their command lists reflect
8763 current style settings. */
8764
8765 static void
8766 update_dprintf_commands (const char *args, int from_tty,
8767 struct cmd_list_element *c)
8768 {
8769 struct breakpoint *b;
8770
8771 ALL_BREAKPOINTS (b)
8772 {
8773 if (b->type == bp_dprintf)
8774 update_dprintf_command_list (b);
8775 }
8776 }
8777
8778 /* Create a breakpoint with SAL as location. Use LOCATION
8779 as a description of the location, and COND_STRING
8780 as condition expression. If LOCATION is NULL then create an
8781 "address location" from the address in the SAL. */
8782
8783 static void
8784 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8785 gdb::array_view<const symtab_and_line> sals,
8786 event_location_up &&location,
8787 gdb::unique_xmalloc_ptr<char> filter,
8788 gdb::unique_xmalloc_ptr<char> cond_string,
8789 gdb::unique_xmalloc_ptr<char> extra_string,
8790 enum bptype type, enum bpdisp disposition,
8791 int thread, int task, int ignore_count,
8792 const struct breakpoint_ops *ops, int from_tty,
8793 int enabled, int internal, unsigned flags,
8794 int display_canonical)
8795 {
8796 int i;
8797
8798 if (type == bp_hardware_breakpoint)
8799 {
8800 int target_resources_ok;
8801
8802 i = hw_breakpoint_used_count ();
8803 target_resources_ok =
8804 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8805 i + 1, 0);
8806 if (target_resources_ok == 0)
8807 error (_("No hardware breakpoint support in the target."));
8808 else if (target_resources_ok < 0)
8809 error (_("Hardware breakpoints used exceeds limit."));
8810 }
8811
8812 gdb_assert (!sals.empty ());
8813
8814 for (const auto &sal : sals)
8815 {
8816 struct bp_location *loc;
8817
8818 if (from_tty)
8819 {
8820 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8821 if (!loc_gdbarch)
8822 loc_gdbarch = gdbarch;
8823
8824 describe_other_breakpoints (loc_gdbarch,
8825 sal.pspace, sal.pc, sal.section, thread);
8826 }
8827
8828 if (&sal == &sals[0])
8829 {
8830 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8831 b->thread = thread;
8832 b->task = task;
8833
8834 b->cond_string = cond_string.release ();
8835 b->extra_string = extra_string.release ();
8836 b->ignore_count = ignore_count;
8837 b->enable_state = enabled ? bp_enabled : bp_disabled;
8838 b->disposition = disposition;
8839
8840 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8841 b->loc->inserted = 1;
8842
8843 if (type == bp_static_tracepoint)
8844 {
8845 struct tracepoint *t = (struct tracepoint *) b;
8846 struct static_tracepoint_marker marker;
8847
8848 if (strace_marker_p (b))
8849 {
8850 /* We already know the marker exists, otherwise, we
8851 wouldn't see a sal for it. */
8852 const char *p
8853 = &event_location_to_string (b->location.get ())[3];
8854 const char *endp;
8855
8856 p = skip_spaces (p);
8857
8858 endp = skip_to_space (p);
8859
8860 t->static_trace_marker_id.assign (p, endp - p);
8861
8862 printf_filtered (_("Probed static tracepoint "
8863 "marker \"%s\"\n"),
8864 t->static_trace_marker_id.c_str ());
8865 }
8866 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8867 {
8868 t->static_trace_marker_id = std::move (marker.str_id);
8869
8870 printf_filtered (_("Probed static tracepoint "
8871 "marker \"%s\"\n"),
8872 t->static_trace_marker_id.c_str ());
8873 }
8874 else
8875 warning (_("Couldn't determine the static "
8876 "tracepoint marker to probe"));
8877 }
8878
8879 loc = b->loc;
8880 }
8881 else
8882 {
8883 loc = add_location_to_breakpoint (b, &sal);
8884 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8885 loc->inserted = 1;
8886 }
8887
8888 if (b->cond_string)
8889 {
8890 const char *arg = b->cond_string;
8891
8892 loc->cond = parse_exp_1 (&arg, loc->address,
8893 block_for_pc (loc->address), 0);
8894 if (*arg)
8895 error (_("Garbage '%s' follows condition"), arg);
8896 }
8897
8898 /* Dynamic printf requires and uses additional arguments on the
8899 command line, otherwise it's an error. */
8900 if (type == bp_dprintf)
8901 {
8902 if (b->extra_string)
8903 update_dprintf_command_list (b);
8904 else
8905 error (_("Format string required"));
8906 }
8907 else if (b->extra_string)
8908 error (_("Garbage '%s' at end of command"), b->extra_string);
8909 }
8910
8911 b->display_canonical = display_canonical;
8912 if (location != NULL)
8913 b->location = std::move (location);
8914 else
8915 b->location = new_address_location (b->loc->address, NULL, 0);
8916 b->filter = filter.release ();
8917 }
8918
8919 static void
8920 create_breakpoint_sal (struct gdbarch *gdbarch,
8921 gdb::array_view<const symtab_and_line> sals,
8922 event_location_up &&location,
8923 gdb::unique_xmalloc_ptr<char> filter,
8924 gdb::unique_xmalloc_ptr<char> cond_string,
8925 gdb::unique_xmalloc_ptr<char> extra_string,
8926 enum bptype type, enum bpdisp disposition,
8927 int thread, int task, int ignore_count,
8928 const struct breakpoint_ops *ops, int from_tty,
8929 int enabled, int internal, unsigned flags,
8930 int display_canonical)
8931 {
8932 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8933
8934 init_breakpoint_sal (b.get (), gdbarch,
8935 sals, std::move (location),
8936 std::move (filter),
8937 std::move (cond_string),
8938 std::move (extra_string),
8939 type, disposition,
8940 thread, task, ignore_count,
8941 ops, from_tty,
8942 enabled, internal, flags,
8943 display_canonical);
8944
8945 install_breakpoint (internal, std::move (b), 0);
8946 }
8947
8948 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8949 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8950 value. COND_STRING, if not NULL, specified the condition to be
8951 used for all breakpoints. Essentially the only case where
8952 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8953 function. In that case, it's still not possible to specify
8954 separate conditions for different overloaded functions, so
8955 we take just a single condition string.
8956
8957 NOTE: If the function succeeds, the caller is expected to cleanup
8958 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8959 array contents). If the function fails (error() is called), the
8960 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8961 COND and SALS arrays and each of those arrays contents. */
8962
8963 static void
8964 create_breakpoints_sal (struct gdbarch *gdbarch,
8965 struct linespec_result *canonical,
8966 gdb::unique_xmalloc_ptr<char> cond_string,
8967 gdb::unique_xmalloc_ptr<char> extra_string,
8968 enum bptype type, enum bpdisp disposition,
8969 int thread, int task, int ignore_count,
8970 const struct breakpoint_ops *ops, int from_tty,
8971 int enabled, int internal, unsigned flags)
8972 {
8973 if (canonical->pre_expanded)
8974 gdb_assert (canonical->lsals.size () == 1);
8975
8976 for (const auto &lsal : canonical->lsals)
8977 {
8978 /* Note that 'location' can be NULL in the case of a plain
8979 'break', without arguments. */
8980 event_location_up location
8981 = (canonical->location != NULL
8982 ? copy_event_location (canonical->location.get ()) : NULL);
8983 gdb::unique_xmalloc_ptr<char> filter_string
8984 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8985
8986 create_breakpoint_sal (gdbarch, lsal.sals,
8987 std::move (location),
8988 std::move (filter_string),
8989 std::move (cond_string),
8990 std::move (extra_string),
8991 type, disposition,
8992 thread, task, ignore_count, ops,
8993 from_tty, enabled, internal, flags,
8994 canonical->special_display);
8995 }
8996 }
8997
8998 /* Parse LOCATION which is assumed to be a SAL specification possibly
8999 followed by conditionals. On return, SALS contains an array of SAL
9000 addresses found. LOCATION points to the end of the SAL (for
9001 linespec locations).
9002
9003 The array and the line spec strings are allocated on the heap, it is
9004 the caller's responsibility to free them. */
9005
9006 static void
9007 parse_breakpoint_sals (const struct event_location *location,
9008 struct linespec_result *canonical)
9009 {
9010 struct symtab_and_line cursal;
9011
9012 if (event_location_type (location) == LINESPEC_LOCATION)
9013 {
9014 const char *spec = get_linespec_location (location)->spec_string;
9015
9016 if (spec == NULL)
9017 {
9018 /* The last displayed codepoint, if it's valid, is our default
9019 breakpoint address. */
9020 if (last_displayed_sal_is_valid ())
9021 {
9022 /* Set sal's pspace, pc, symtab, and line to the values
9023 corresponding to the last call to print_frame_info.
9024 Be sure to reinitialize LINE with NOTCURRENT == 0
9025 as the breakpoint line number is inappropriate otherwise.
9026 find_pc_line would adjust PC, re-set it back. */
9027 symtab_and_line sal = get_last_displayed_sal ();
9028 CORE_ADDR pc = sal.pc;
9029
9030 sal = find_pc_line (pc, 0);
9031
9032 /* "break" without arguments is equivalent to "break *PC"
9033 where PC is the last displayed codepoint's address. So
9034 make sure to set sal.explicit_pc to prevent GDB from
9035 trying to expand the list of sals to include all other
9036 instances with the same symtab and line. */
9037 sal.pc = pc;
9038 sal.explicit_pc = 1;
9039
9040 struct linespec_sals lsal;
9041 lsal.sals = {sal};
9042 lsal.canonical = NULL;
9043
9044 canonical->lsals.push_back (std::move (lsal));
9045 return;
9046 }
9047 else
9048 error (_("No default breakpoint address now."));
9049 }
9050 }
9051
9052 /* Force almost all breakpoints to be in terms of the
9053 current_source_symtab (which is decode_line_1's default).
9054 This should produce the results we want almost all of the
9055 time while leaving default_breakpoint_* alone.
9056
9057 ObjC: However, don't match an Objective-C method name which
9058 may have a '+' or '-' succeeded by a '['. */
9059 cursal = get_current_source_symtab_and_line ();
9060 if (last_displayed_sal_is_valid ())
9061 {
9062 const char *spec = NULL;
9063
9064 if (event_location_type (location) == LINESPEC_LOCATION)
9065 spec = get_linespec_location (location)->spec_string;
9066
9067 if (!cursal.symtab
9068 || (spec != NULL
9069 && strchr ("+-", spec[0]) != NULL
9070 && spec[1] != '['))
9071 {
9072 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9073 get_last_displayed_symtab (),
9074 get_last_displayed_line (),
9075 canonical, NULL, NULL);
9076 return;
9077 }
9078 }
9079
9080 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9081 cursal.symtab, cursal.line, canonical, NULL, NULL);
9082 }
9083
9084
9085 /* Convert each SAL into a real PC. Verify that the PC can be
9086 inserted as a breakpoint. If it can't throw an error. */
9087
9088 static void
9089 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9090 {
9091 for (auto &sal : sals)
9092 resolve_sal_pc (&sal);
9093 }
9094
9095 /* Fast tracepoints may have restrictions on valid locations. For
9096 instance, a fast tracepoint using a jump instead of a trap will
9097 likely have to overwrite more bytes than a trap would, and so can
9098 only be placed where the instruction is longer than the jump, or a
9099 multi-instruction sequence does not have a jump into the middle of
9100 it, etc. */
9101
9102 static void
9103 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9104 gdb::array_view<const symtab_and_line> sals)
9105 {
9106 for (const auto &sal : sals)
9107 {
9108 struct gdbarch *sarch;
9109
9110 sarch = get_sal_arch (sal);
9111 /* We fall back to GDBARCH if there is no architecture
9112 associated with SAL. */
9113 if (sarch == NULL)
9114 sarch = gdbarch;
9115 std::string msg;
9116 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9117 error (_("May not have a fast tracepoint at %s%s"),
9118 paddress (sarch, sal.pc), msg.c_str ());
9119 }
9120 }
9121
9122 /* Given TOK, a string specification of condition and thread, as
9123 accepted by the 'break' command, extract the condition
9124 string and thread number and set *COND_STRING and *THREAD.
9125 PC identifies the context at which the condition should be parsed.
9126 If no condition is found, *COND_STRING is set to NULL.
9127 If no thread is found, *THREAD is set to -1. */
9128
9129 static void
9130 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9131 char **cond_string, int *thread, int *task,
9132 char **rest)
9133 {
9134 *cond_string = NULL;
9135 *thread = -1;
9136 *task = 0;
9137 *rest = NULL;
9138
9139 while (tok && *tok)
9140 {
9141 const char *end_tok;
9142 int toklen;
9143 const char *cond_start = NULL;
9144 const char *cond_end = NULL;
9145
9146 tok = skip_spaces (tok);
9147
9148 if ((*tok == '"' || *tok == ',') && rest)
9149 {
9150 *rest = savestring (tok, strlen (tok));
9151 return;
9152 }
9153
9154 end_tok = skip_to_space (tok);
9155
9156 toklen = end_tok - tok;
9157
9158 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9159 {
9160 tok = cond_start = end_tok + 1;
9161 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9162 cond_end = tok;
9163 *cond_string = savestring (cond_start, cond_end - cond_start);
9164 }
9165 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9166 {
9167 const char *tmptok;
9168 struct thread_info *thr;
9169
9170 tok = end_tok + 1;
9171 thr = parse_thread_id (tok, &tmptok);
9172 if (tok == tmptok)
9173 error (_("Junk after thread keyword."));
9174 *thread = thr->global_num;
9175 tok = tmptok;
9176 }
9177 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9178 {
9179 char *tmptok;
9180
9181 tok = end_tok + 1;
9182 *task = strtol (tok, &tmptok, 0);
9183 if (tok == tmptok)
9184 error (_("Junk after task keyword."));
9185 if (!valid_task_id (*task))
9186 error (_("Unknown task %d."), *task);
9187 tok = tmptok;
9188 }
9189 else if (rest)
9190 {
9191 *rest = savestring (tok, strlen (tok));
9192 return;
9193 }
9194 else
9195 error (_("Junk at end of arguments."));
9196 }
9197 }
9198
9199 /* Decode a static tracepoint marker spec. */
9200
9201 static std::vector<symtab_and_line>
9202 decode_static_tracepoint_spec (const char **arg_p)
9203 {
9204 const char *p = &(*arg_p)[3];
9205 const char *endp;
9206
9207 p = skip_spaces (p);
9208
9209 endp = skip_to_space (p);
9210
9211 std::string marker_str (p, endp - p);
9212
9213 std::vector<static_tracepoint_marker> markers
9214 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9215 if (markers.empty ())
9216 error (_("No known static tracepoint marker named %s"),
9217 marker_str.c_str ());
9218
9219 std::vector<symtab_and_line> sals;
9220 sals.reserve (markers.size ());
9221
9222 for (const static_tracepoint_marker &marker : markers)
9223 {
9224 symtab_and_line sal = find_pc_line (marker.address, 0);
9225 sal.pc = marker.address;
9226 sals.push_back (sal);
9227 }
9228
9229 *arg_p = endp;
9230 return sals;
9231 }
9232
9233 /* See breakpoint.h. */
9234
9235 int
9236 create_breakpoint (struct gdbarch *gdbarch,
9237 const struct event_location *location,
9238 const char *cond_string,
9239 int thread, const char *extra_string,
9240 int parse_extra,
9241 int tempflag, enum bptype type_wanted,
9242 int ignore_count,
9243 enum auto_boolean pending_break_support,
9244 const struct breakpoint_ops *ops,
9245 int from_tty, int enabled, int internal,
9246 unsigned flags)
9247 {
9248 struct linespec_result canonical;
9249 struct cleanup *bkpt_chain = NULL;
9250 int pending = 0;
9251 int task = 0;
9252 int prev_bkpt_count = breakpoint_count;
9253
9254 gdb_assert (ops != NULL);
9255
9256 /* If extra_string isn't useful, set it to NULL. */
9257 if (extra_string != NULL && *extra_string == '\0')
9258 extra_string = NULL;
9259
9260 TRY
9261 {
9262 ops->create_sals_from_location (location, &canonical, type_wanted);
9263 }
9264 CATCH (e, RETURN_MASK_ERROR)
9265 {
9266 /* If caller is interested in rc value from parse, set
9267 value. */
9268 if (e.error == NOT_FOUND_ERROR)
9269 {
9270 /* If pending breakpoint support is turned off, throw
9271 error. */
9272
9273 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9274 throw_exception (e);
9275
9276 exception_print (gdb_stderr, e);
9277
9278 /* If pending breakpoint support is auto query and the user
9279 selects no, then simply return the error code. */
9280 if (pending_break_support == AUTO_BOOLEAN_AUTO
9281 && !nquery (_("Make %s pending on future shared library load? "),
9282 bptype_string (type_wanted)))
9283 return 0;
9284
9285 /* At this point, either the user was queried about setting
9286 a pending breakpoint and selected yes, or pending
9287 breakpoint behavior is on and thus a pending breakpoint
9288 is defaulted on behalf of the user. */
9289 pending = 1;
9290 }
9291 else
9292 throw_exception (e);
9293 }
9294 END_CATCH
9295
9296 if (!pending && canonical.lsals.empty ())
9297 return 0;
9298
9299 /* ----------------------------- SNIP -----------------------------
9300 Anything added to the cleanup chain beyond this point is assumed
9301 to be part of a breakpoint. If the breakpoint create succeeds
9302 then the memory is not reclaimed. */
9303 bkpt_chain = make_cleanup (null_cleanup, 0);
9304
9305 /* Resolve all line numbers to PC's and verify that the addresses
9306 are ok for the target. */
9307 if (!pending)
9308 {
9309 for (auto &lsal : canonical.lsals)
9310 breakpoint_sals_to_pc (lsal.sals);
9311 }
9312
9313 /* Fast tracepoints may have additional restrictions on location. */
9314 if (!pending && type_wanted == bp_fast_tracepoint)
9315 {
9316 for (const auto &lsal : canonical.lsals)
9317 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9318 }
9319
9320 /* Verify that condition can be parsed, before setting any
9321 breakpoints. Allocate a separate condition expression for each
9322 breakpoint. */
9323 if (!pending)
9324 {
9325 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9326 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9327
9328 if (parse_extra)
9329 {
9330 char *rest;
9331 char *cond;
9332
9333 const linespec_sals &lsal = canonical.lsals[0];
9334
9335 /* Here we only parse 'arg' to separate condition
9336 from thread number, so parsing in context of first
9337 sal is OK. When setting the breakpoint we'll
9338 re-parse it in context of each sal. */
9339
9340 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9341 &cond, &thread, &task, &rest);
9342 cond_string_copy.reset (cond);
9343 extra_string_copy.reset (rest);
9344 }
9345 else
9346 {
9347 if (type_wanted != bp_dprintf
9348 && extra_string != NULL && *extra_string != '\0')
9349 error (_("Garbage '%s' at end of location"), extra_string);
9350
9351 /* Create a private copy of condition string. */
9352 if (cond_string)
9353 cond_string_copy.reset (xstrdup (cond_string));
9354 /* Create a private copy of any extra string. */
9355 if (extra_string)
9356 extra_string_copy.reset (xstrdup (extra_string));
9357 }
9358
9359 ops->create_breakpoints_sal (gdbarch, &canonical,
9360 std::move (cond_string_copy),
9361 std::move (extra_string_copy),
9362 type_wanted,
9363 tempflag ? disp_del : disp_donttouch,
9364 thread, task, ignore_count, ops,
9365 from_tty, enabled, internal, flags);
9366 }
9367 else
9368 {
9369 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9370
9371 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9372 b->location = copy_event_location (location);
9373
9374 if (parse_extra)
9375 b->cond_string = NULL;
9376 else
9377 {
9378 /* Create a private copy of condition string. */
9379 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9380 b->thread = thread;
9381 }
9382
9383 /* Create a private copy of any extra string. */
9384 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9385 b->ignore_count = ignore_count;
9386 b->disposition = tempflag ? disp_del : disp_donttouch;
9387 b->condition_not_parsed = 1;
9388 b->enable_state = enabled ? bp_enabled : bp_disabled;
9389 if ((type_wanted != bp_breakpoint
9390 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9391 b->pspace = current_program_space;
9392
9393 install_breakpoint (internal, std::move (b), 0);
9394 }
9395
9396 if (canonical.lsals.size () > 1)
9397 {
9398 warning (_("Multiple breakpoints were set.\nUse the "
9399 "\"delete\" command to delete unwanted breakpoints."));
9400 prev_breakpoint_count = prev_bkpt_count;
9401 }
9402
9403 /* That's it. Discard the cleanups for data inserted into the
9404 breakpoint. */
9405 discard_cleanups (bkpt_chain);
9406
9407 /* error call may happen here - have BKPT_CHAIN already discarded. */
9408 update_global_location_list (UGLL_MAY_INSERT);
9409
9410 return 1;
9411 }
9412
9413 /* Set a breakpoint.
9414 ARG is a string describing breakpoint address,
9415 condition, and thread.
9416 FLAG specifies if a breakpoint is hardware on,
9417 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9418 and BP_TEMPFLAG. */
9419
9420 static void
9421 break_command_1 (const char *arg, int flag, int from_tty)
9422 {
9423 int tempflag = flag & BP_TEMPFLAG;
9424 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9425 ? bp_hardware_breakpoint
9426 : bp_breakpoint);
9427 struct breakpoint_ops *ops;
9428
9429 event_location_up location = string_to_event_location (&arg, current_language);
9430
9431 /* Matching breakpoints on probes. */
9432 if (location != NULL
9433 && event_location_type (location.get ()) == PROBE_LOCATION)
9434 ops = &bkpt_probe_breakpoint_ops;
9435 else
9436 ops = &bkpt_breakpoint_ops;
9437
9438 create_breakpoint (get_current_arch (),
9439 location.get (),
9440 NULL, 0, arg, 1 /* parse arg */,
9441 tempflag, type_wanted,
9442 0 /* Ignore count */,
9443 pending_break_support,
9444 ops,
9445 from_tty,
9446 1 /* enabled */,
9447 0 /* internal */,
9448 0);
9449 }
9450
9451 /* Helper function for break_command_1 and disassemble_command. */
9452
9453 void
9454 resolve_sal_pc (struct symtab_and_line *sal)
9455 {
9456 CORE_ADDR pc;
9457
9458 if (sal->pc == 0 && sal->symtab != NULL)
9459 {
9460 if (!find_line_pc (sal->symtab, sal->line, &pc))
9461 error (_("No line %d in file \"%s\"."),
9462 sal->line, symtab_to_filename_for_display (sal->symtab));
9463 sal->pc = pc;
9464
9465 /* If this SAL corresponds to a breakpoint inserted using a line
9466 number, then skip the function prologue if necessary. */
9467 if (sal->explicit_line)
9468 skip_prologue_sal (sal);
9469 }
9470
9471 if (sal->section == 0 && sal->symtab != NULL)
9472 {
9473 const struct blockvector *bv;
9474 const struct block *b;
9475 struct symbol *sym;
9476
9477 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9478 SYMTAB_COMPUNIT (sal->symtab));
9479 if (bv != NULL)
9480 {
9481 sym = block_linkage_function (b);
9482 if (sym != NULL)
9483 {
9484 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9485 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9486 sym);
9487 }
9488 else
9489 {
9490 /* It really is worthwhile to have the section, so we'll
9491 just have to look harder. This case can be executed
9492 if we have line numbers but no functions (as can
9493 happen in assembly source). */
9494
9495 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9496 switch_to_program_space_and_thread (sal->pspace);
9497
9498 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9499 if (msym.minsym)
9500 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9501 }
9502 }
9503 }
9504 }
9505
9506 void
9507 break_command (const char *arg, int from_tty)
9508 {
9509 break_command_1 (arg, 0, from_tty);
9510 }
9511
9512 void
9513 tbreak_command (const char *arg, int from_tty)
9514 {
9515 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9516 }
9517
9518 static void
9519 hbreak_command (const char *arg, int from_tty)
9520 {
9521 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9522 }
9523
9524 static void
9525 thbreak_command (const char *arg, int from_tty)
9526 {
9527 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9528 }
9529
9530 static void
9531 stop_command (const char *arg, int from_tty)
9532 {
9533 printf_filtered (_("Specify the type of breakpoint to set.\n\
9534 Usage: stop in <function | address>\n\
9535 stop at <line>\n"));
9536 }
9537
9538 static void
9539 stopin_command (const char *arg, int from_tty)
9540 {
9541 int badInput = 0;
9542
9543 if (arg == (char *) NULL)
9544 badInput = 1;
9545 else if (*arg != '*')
9546 {
9547 const char *argptr = arg;
9548 int hasColon = 0;
9549
9550 /* Look for a ':'. If this is a line number specification, then
9551 say it is bad, otherwise, it should be an address or
9552 function/method name. */
9553 while (*argptr && !hasColon)
9554 {
9555 hasColon = (*argptr == ':');
9556 argptr++;
9557 }
9558
9559 if (hasColon)
9560 badInput = (*argptr != ':'); /* Not a class::method */
9561 else
9562 badInput = isdigit (*arg); /* a simple line number */
9563 }
9564
9565 if (badInput)
9566 printf_filtered (_("Usage: stop in <function | address>\n"));
9567 else
9568 break_command_1 (arg, 0, from_tty);
9569 }
9570
9571 static void
9572 stopat_command (const char *arg, int from_tty)
9573 {
9574 int badInput = 0;
9575
9576 if (arg == (char *) NULL || *arg == '*') /* no line number */
9577 badInput = 1;
9578 else
9579 {
9580 const char *argptr = arg;
9581 int hasColon = 0;
9582
9583 /* Look for a ':'. If there is a '::' then get out, otherwise
9584 it is probably a line number. */
9585 while (*argptr && !hasColon)
9586 {
9587 hasColon = (*argptr == ':');
9588 argptr++;
9589 }
9590
9591 if (hasColon)
9592 badInput = (*argptr == ':'); /* we have class::method */
9593 else
9594 badInput = !isdigit (*arg); /* not a line number */
9595 }
9596
9597 if (badInput)
9598 printf_filtered (_("Usage: stop at <line>\n"));
9599 else
9600 break_command_1 (arg, 0, from_tty);
9601 }
9602
9603 /* The dynamic printf command is mostly like a regular breakpoint, but
9604 with a prewired command list consisting of a single output command,
9605 built from extra arguments supplied on the dprintf command
9606 line. */
9607
9608 static void
9609 dprintf_command (const char *arg, int from_tty)
9610 {
9611 event_location_up location = string_to_event_location (&arg, current_language);
9612
9613 /* If non-NULL, ARG should have been advanced past the location;
9614 the next character must be ','. */
9615 if (arg != NULL)
9616 {
9617 if (arg[0] != ',' || arg[1] == '\0')
9618 error (_("Format string required"));
9619 else
9620 {
9621 /* Skip the comma. */
9622 ++arg;
9623 }
9624 }
9625
9626 create_breakpoint (get_current_arch (),
9627 location.get (),
9628 NULL, 0, arg, 1 /* parse arg */,
9629 0, bp_dprintf,
9630 0 /* Ignore count */,
9631 pending_break_support,
9632 &dprintf_breakpoint_ops,
9633 from_tty,
9634 1 /* enabled */,
9635 0 /* internal */,
9636 0);
9637 }
9638
9639 static void
9640 agent_printf_command (const char *arg, int from_tty)
9641 {
9642 error (_("May only run agent-printf on the target"));
9643 }
9644
9645 /* Implement the "breakpoint_hit" breakpoint_ops method for
9646 ranged breakpoints. */
9647
9648 static int
9649 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9650 const address_space *aspace,
9651 CORE_ADDR bp_addr,
9652 const struct target_waitstatus *ws)
9653 {
9654 if (ws->kind != TARGET_WAITKIND_STOPPED
9655 || ws->value.sig != GDB_SIGNAL_TRAP)
9656 return 0;
9657
9658 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9659 bl->length, aspace, bp_addr);
9660 }
9661
9662 /* Implement the "resources_needed" breakpoint_ops method for
9663 ranged breakpoints. */
9664
9665 static int
9666 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9667 {
9668 return target_ranged_break_num_registers ();
9669 }
9670
9671 /* Implement the "print_it" breakpoint_ops method for
9672 ranged breakpoints. */
9673
9674 static enum print_stop_action
9675 print_it_ranged_breakpoint (bpstat bs)
9676 {
9677 struct breakpoint *b = bs->breakpoint_at;
9678 struct bp_location *bl = b->loc;
9679 struct ui_out *uiout = current_uiout;
9680
9681 gdb_assert (b->type == bp_hardware_breakpoint);
9682
9683 /* Ranged breakpoints have only one location. */
9684 gdb_assert (bl && bl->next == NULL);
9685
9686 annotate_breakpoint (b->number);
9687
9688 maybe_print_thread_hit_breakpoint (uiout);
9689
9690 if (b->disposition == disp_del)
9691 uiout->text ("Temporary ranged breakpoint ");
9692 else
9693 uiout->text ("Ranged breakpoint ");
9694 if (uiout->is_mi_like_p ())
9695 {
9696 uiout->field_string ("reason",
9697 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9698 uiout->field_string ("disp", bpdisp_text (b->disposition));
9699 }
9700 uiout->field_int ("bkptno", b->number);
9701 uiout->text (", ");
9702
9703 return PRINT_SRC_AND_LOC;
9704 }
9705
9706 /* Implement the "print_one" breakpoint_ops method for
9707 ranged breakpoints. */
9708
9709 static void
9710 print_one_ranged_breakpoint (struct breakpoint *b,
9711 struct bp_location **last_loc)
9712 {
9713 struct bp_location *bl = b->loc;
9714 struct value_print_options opts;
9715 struct ui_out *uiout = current_uiout;
9716
9717 /* Ranged breakpoints have only one location. */
9718 gdb_assert (bl && bl->next == NULL);
9719
9720 get_user_print_options (&opts);
9721
9722 if (opts.addressprint)
9723 /* We don't print the address range here, it will be printed later
9724 by print_one_detail_ranged_breakpoint. */
9725 uiout->field_skip ("addr");
9726 annotate_field (5);
9727 print_breakpoint_location (b, bl);
9728 *last_loc = bl;
9729 }
9730
9731 /* Implement the "print_one_detail" breakpoint_ops method for
9732 ranged breakpoints. */
9733
9734 static void
9735 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9736 struct ui_out *uiout)
9737 {
9738 CORE_ADDR address_start, address_end;
9739 struct bp_location *bl = b->loc;
9740 string_file stb;
9741
9742 gdb_assert (bl);
9743
9744 address_start = bl->address;
9745 address_end = address_start + bl->length - 1;
9746
9747 uiout->text ("\taddress range: ");
9748 stb.printf ("[%s, %s]",
9749 print_core_address (bl->gdbarch, address_start),
9750 print_core_address (bl->gdbarch, address_end));
9751 uiout->field_stream ("addr", stb);
9752 uiout->text ("\n");
9753 }
9754
9755 /* Implement the "print_mention" breakpoint_ops method for
9756 ranged breakpoints. */
9757
9758 static void
9759 print_mention_ranged_breakpoint (struct breakpoint *b)
9760 {
9761 struct bp_location *bl = b->loc;
9762 struct ui_out *uiout = current_uiout;
9763
9764 gdb_assert (bl);
9765 gdb_assert (b->type == bp_hardware_breakpoint);
9766
9767 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9768 b->number, paddress (bl->gdbarch, bl->address),
9769 paddress (bl->gdbarch, bl->address + bl->length - 1));
9770 }
9771
9772 /* Implement the "print_recreate" breakpoint_ops method for
9773 ranged breakpoints. */
9774
9775 static void
9776 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9777 {
9778 fprintf_unfiltered (fp, "break-range %s, %s",
9779 event_location_to_string (b->location.get ()),
9780 event_location_to_string (b->location_range_end.get ()));
9781 print_recreate_thread (b, fp);
9782 }
9783
9784 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9785
9786 static struct breakpoint_ops ranged_breakpoint_ops;
9787
9788 /* Find the address where the end of the breakpoint range should be
9789 placed, given the SAL of the end of the range. This is so that if
9790 the user provides a line number, the end of the range is set to the
9791 last instruction of the given line. */
9792
9793 static CORE_ADDR
9794 find_breakpoint_range_end (struct symtab_and_line sal)
9795 {
9796 CORE_ADDR end;
9797
9798 /* If the user provided a PC value, use it. Otherwise,
9799 find the address of the end of the given location. */
9800 if (sal.explicit_pc)
9801 end = sal.pc;
9802 else
9803 {
9804 int ret;
9805 CORE_ADDR start;
9806
9807 ret = find_line_pc_range (sal, &start, &end);
9808 if (!ret)
9809 error (_("Could not find location of the end of the range."));
9810
9811 /* find_line_pc_range returns the start of the next line. */
9812 end--;
9813 }
9814
9815 return end;
9816 }
9817
9818 /* Implement the "break-range" CLI command. */
9819
9820 static void
9821 break_range_command (const char *arg, int from_tty)
9822 {
9823 const char *arg_start;
9824 struct linespec_result canonical_start, canonical_end;
9825 int bp_count, can_use_bp, length;
9826 CORE_ADDR end;
9827 struct breakpoint *b;
9828
9829 /* We don't support software ranged breakpoints. */
9830 if (target_ranged_break_num_registers () < 0)
9831 error (_("This target does not support hardware ranged breakpoints."));
9832
9833 bp_count = hw_breakpoint_used_count ();
9834 bp_count += target_ranged_break_num_registers ();
9835 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9836 bp_count, 0);
9837 if (can_use_bp < 0)
9838 error (_("Hardware breakpoints used exceeds limit."));
9839
9840 arg = skip_spaces (arg);
9841 if (arg == NULL || arg[0] == '\0')
9842 error(_("No address range specified."));
9843
9844 arg_start = arg;
9845 event_location_up start_location = string_to_event_location (&arg,
9846 current_language);
9847 parse_breakpoint_sals (start_location.get (), &canonical_start);
9848
9849 if (arg[0] != ',')
9850 error (_("Too few arguments."));
9851 else if (canonical_start.lsals.empty ())
9852 error (_("Could not find location of the beginning of the range."));
9853
9854 const linespec_sals &lsal_start = canonical_start.lsals[0];
9855
9856 if (canonical_start.lsals.size () > 1
9857 || lsal_start.sals.size () != 1)
9858 error (_("Cannot create a ranged breakpoint with multiple locations."));
9859
9860 const symtab_and_line &sal_start = lsal_start.sals[0];
9861 std::string addr_string_start (arg_start, arg - arg_start);
9862
9863 arg++; /* Skip the comma. */
9864 arg = skip_spaces (arg);
9865
9866 /* Parse the end location. */
9867
9868 arg_start = arg;
9869
9870 /* We call decode_line_full directly here instead of using
9871 parse_breakpoint_sals because we need to specify the start location's
9872 symtab and line as the default symtab and line for the end of the
9873 range. This makes it possible to have ranges like "foo.c:27, +14",
9874 where +14 means 14 lines from the start location. */
9875 event_location_up end_location = string_to_event_location (&arg,
9876 current_language);
9877 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9878 sal_start.symtab, sal_start.line,
9879 &canonical_end, NULL, NULL);
9880
9881 if (canonical_end.lsals.empty ())
9882 error (_("Could not find location of the end of the range."));
9883
9884 const linespec_sals &lsal_end = canonical_end.lsals[0];
9885 if (canonical_end.lsals.size () > 1
9886 || lsal_end.sals.size () != 1)
9887 error (_("Cannot create a ranged breakpoint with multiple locations."));
9888
9889 const symtab_and_line &sal_end = lsal_end.sals[0];
9890
9891 end = find_breakpoint_range_end (sal_end);
9892 if (sal_start.pc > end)
9893 error (_("Invalid address range, end precedes start."));
9894
9895 length = end - sal_start.pc + 1;
9896 if (length < 0)
9897 /* Length overflowed. */
9898 error (_("Address range too large."));
9899 else if (length == 1)
9900 {
9901 /* This range is simple enough to be handled by
9902 the `hbreak' command. */
9903 hbreak_command (&addr_string_start[0], 1);
9904
9905 return;
9906 }
9907
9908 /* Now set up the breakpoint. */
9909 b = set_raw_breakpoint (get_current_arch (), sal_start,
9910 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9911 set_breakpoint_count (breakpoint_count + 1);
9912 b->number = breakpoint_count;
9913 b->disposition = disp_donttouch;
9914 b->location = std::move (start_location);
9915 b->location_range_end = std::move (end_location);
9916 b->loc->length = length;
9917
9918 mention (b);
9919 gdb::observers::breakpoint_created.notify (b);
9920 update_global_location_list (UGLL_MAY_INSERT);
9921 }
9922
9923 /* Return non-zero if EXP is verified as constant. Returned zero
9924 means EXP is variable. Also the constant detection may fail for
9925 some constant expressions and in such case still falsely return
9926 zero. */
9927
9928 static int
9929 watchpoint_exp_is_const (const struct expression *exp)
9930 {
9931 int i = exp->nelts;
9932
9933 while (i > 0)
9934 {
9935 int oplenp, argsp;
9936
9937 /* We are only interested in the descriptor of each element. */
9938 operator_length (exp, i, &oplenp, &argsp);
9939 i -= oplenp;
9940
9941 switch (exp->elts[i].opcode)
9942 {
9943 case BINOP_ADD:
9944 case BINOP_SUB:
9945 case BINOP_MUL:
9946 case BINOP_DIV:
9947 case BINOP_REM:
9948 case BINOP_MOD:
9949 case BINOP_LSH:
9950 case BINOP_RSH:
9951 case BINOP_LOGICAL_AND:
9952 case BINOP_LOGICAL_OR:
9953 case BINOP_BITWISE_AND:
9954 case BINOP_BITWISE_IOR:
9955 case BINOP_BITWISE_XOR:
9956 case BINOP_EQUAL:
9957 case BINOP_NOTEQUAL:
9958 case BINOP_LESS:
9959 case BINOP_GTR:
9960 case BINOP_LEQ:
9961 case BINOP_GEQ:
9962 case BINOP_REPEAT:
9963 case BINOP_COMMA:
9964 case BINOP_EXP:
9965 case BINOP_MIN:
9966 case BINOP_MAX:
9967 case BINOP_INTDIV:
9968 case BINOP_CONCAT:
9969 case TERNOP_COND:
9970 case TERNOP_SLICE:
9971
9972 case OP_LONG:
9973 case OP_FLOAT:
9974 case OP_LAST:
9975 case OP_COMPLEX:
9976 case OP_STRING:
9977 case OP_ARRAY:
9978 case OP_TYPE:
9979 case OP_TYPEOF:
9980 case OP_DECLTYPE:
9981 case OP_TYPEID:
9982 case OP_NAME:
9983 case OP_OBJC_NSSTRING:
9984
9985 case UNOP_NEG:
9986 case UNOP_LOGICAL_NOT:
9987 case UNOP_COMPLEMENT:
9988 case UNOP_ADDR:
9989 case UNOP_HIGH:
9990 case UNOP_CAST:
9991
9992 case UNOP_CAST_TYPE:
9993 case UNOP_REINTERPRET_CAST:
9994 case UNOP_DYNAMIC_CAST:
9995 /* Unary, binary and ternary operators: We have to check
9996 their operands. If they are constant, then so is the
9997 result of that operation. For instance, if A and B are
9998 determined to be constants, then so is "A + B".
9999
10000 UNOP_IND is one exception to the rule above, because the
10001 value of *ADDR is not necessarily a constant, even when
10002 ADDR is. */
10003 break;
10004
10005 case OP_VAR_VALUE:
10006 /* Check whether the associated symbol is a constant.
10007
10008 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10009 possible that a buggy compiler could mark a variable as
10010 constant even when it is not, and TYPE_CONST would return
10011 true in this case, while SYMBOL_CLASS wouldn't.
10012
10013 We also have to check for function symbols because they
10014 are always constant. */
10015 {
10016 struct symbol *s = exp->elts[i + 2].symbol;
10017
10018 if (SYMBOL_CLASS (s) != LOC_BLOCK
10019 && SYMBOL_CLASS (s) != LOC_CONST
10020 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10021 return 0;
10022 break;
10023 }
10024
10025 /* The default action is to return 0 because we are using
10026 the optimistic approach here: If we don't know something,
10027 then it is not a constant. */
10028 default:
10029 return 0;
10030 }
10031 }
10032
10033 return 1;
10034 }
10035
10036 /* Watchpoint destructor. */
10037
10038 watchpoint::~watchpoint ()
10039 {
10040 xfree (this->exp_string);
10041 xfree (this->exp_string_reparse);
10042 }
10043
10044 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10045
10046 static void
10047 re_set_watchpoint (struct breakpoint *b)
10048 {
10049 struct watchpoint *w = (struct watchpoint *) b;
10050
10051 /* Watchpoint can be either on expression using entirely global
10052 variables, or it can be on local variables.
10053
10054 Watchpoints of the first kind are never auto-deleted, and even
10055 persist across program restarts. Since they can use variables
10056 from shared libraries, we need to reparse expression as libraries
10057 are loaded and unloaded.
10058
10059 Watchpoints on local variables can also change meaning as result
10060 of solib event. For example, if a watchpoint uses both a local
10061 and a global variables in expression, it's a local watchpoint,
10062 but unloading of a shared library will make the expression
10063 invalid. This is not a very common use case, but we still
10064 re-evaluate expression, to avoid surprises to the user.
10065
10066 Note that for local watchpoints, we re-evaluate it only if
10067 watchpoints frame id is still valid. If it's not, it means the
10068 watchpoint is out of scope and will be deleted soon. In fact,
10069 I'm not sure we'll ever be called in this case.
10070
10071 If a local watchpoint's frame id is still valid, then
10072 w->exp_valid_block is likewise valid, and we can safely use it.
10073
10074 Don't do anything about disabled watchpoints, since they will be
10075 reevaluated again when enabled. */
10076 update_watchpoint (w, 1 /* reparse */);
10077 }
10078
10079 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10080
10081 static int
10082 insert_watchpoint (struct bp_location *bl)
10083 {
10084 struct watchpoint *w = (struct watchpoint *) bl->owner;
10085 int length = w->exact ? 1 : bl->length;
10086
10087 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10088 w->cond_exp.get ());
10089 }
10090
10091 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10092
10093 static int
10094 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10095 {
10096 struct watchpoint *w = (struct watchpoint *) bl->owner;
10097 int length = w->exact ? 1 : bl->length;
10098
10099 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10100 w->cond_exp.get ());
10101 }
10102
10103 static int
10104 breakpoint_hit_watchpoint (const struct bp_location *bl,
10105 const address_space *aspace, CORE_ADDR bp_addr,
10106 const struct target_waitstatus *ws)
10107 {
10108 struct breakpoint *b = bl->owner;
10109 struct watchpoint *w = (struct watchpoint *) b;
10110
10111 /* Continuable hardware watchpoints are treated as non-existent if the
10112 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10113 some data address). Otherwise gdb won't stop on a break instruction
10114 in the code (not from a breakpoint) when a hardware watchpoint has
10115 been defined. Also skip watchpoints which we know did not trigger
10116 (did not match the data address). */
10117 if (is_hardware_watchpoint (b)
10118 && w->watchpoint_triggered == watch_triggered_no)
10119 return 0;
10120
10121 return 1;
10122 }
10123
10124 static void
10125 check_status_watchpoint (bpstat bs)
10126 {
10127 gdb_assert (is_watchpoint (bs->breakpoint_at));
10128
10129 bpstat_check_watchpoint (bs);
10130 }
10131
10132 /* Implement the "resources_needed" breakpoint_ops method for
10133 hardware watchpoints. */
10134
10135 static int
10136 resources_needed_watchpoint (const struct bp_location *bl)
10137 {
10138 struct watchpoint *w = (struct watchpoint *) bl->owner;
10139 int length = w->exact? 1 : bl->length;
10140
10141 return target_region_ok_for_hw_watchpoint (bl->address, length);
10142 }
10143
10144 /* Implement the "works_in_software_mode" breakpoint_ops method for
10145 hardware watchpoints. */
10146
10147 static int
10148 works_in_software_mode_watchpoint (const struct breakpoint *b)
10149 {
10150 /* Read and access watchpoints only work with hardware support. */
10151 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10152 }
10153
10154 static enum print_stop_action
10155 print_it_watchpoint (bpstat bs)
10156 {
10157 struct breakpoint *b;
10158 enum print_stop_action result;
10159 struct watchpoint *w;
10160 struct ui_out *uiout = current_uiout;
10161
10162 gdb_assert (bs->bp_location_at != NULL);
10163
10164 b = bs->breakpoint_at;
10165 w = (struct watchpoint *) b;
10166
10167 annotate_watchpoint (b->number);
10168 maybe_print_thread_hit_breakpoint (uiout);
10169
10170 string_file stb;
10171
10172 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10173 switch (b->type)
10174 {
10175 case bp_watchpoint:
10176 case bp_hardware_watchpoint:
10177 if (uiout->is_mi_like_p ())
10178 uiout->field_string
10179 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10180 mention (b);
10181 tuple_emitter.emplace (uiout, "value");
10182 uiout->text ("\nOld value = ");
10183 watchpoint_value_print (bs->old_val.get (), &stb);
10184 uiout->field_stream ("old", stb);
10185 uiout->text ("\nNew value = ");
10186 watchpoint_value_print (w->val.get (), &stb);
10187 uiout->field_stream ("new", stb);
10188 uiout->text ("\n");
10189 /* More than one watchpoint may have been triggered. */
10190 result = PRINT_UNKNOWN;
10191 break;
10192
10193 case bp_read_watchpoint:
10194 if (uiout->is_mi_like_p ())
10195 uiout->field_string
10196 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10197 mention (b);
10198 tuple_emitter.emplace (uiout, "value");
10199 uiout->text ("\nValue = ");
10200 watchpoint_value_print (w->val.get (), &stb);
10201 uiout->field_stream ("value", stb);
10202 uiout->text ("\n");
10203 result = PRINT_UNKNOWN;
10204 break;
10205
10206 case bp_access_watchpoint:
10207 if (bs->old_val != NULL)
10208 {
10209 if (uiout->is_mi_like_p ())
10210 uiout->field_string
10211 ("reason",
10212 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10213 mention (b);
10214 tuple_emitter.emplace (uiout, "value");
10215 uiout->text ("\nOld value = ");
10216 watchpoint_value_print (bs->old_val.get (), &stb);
10217 uiout->field_stream ("old", stb);
10218 uiout->text ("\nNew value = ");
10219 }
10220 else
10221 {
10222 mention (b);
10223 if (uiout->is_mi_like_p ())
10224 uiout->field_string
10225 ("reason",
10226 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10227 tuple_emitter.emplace (uiout, "value");
10228 uiout->text ("\nValue = ");
10229 }
10230 watchpoint_value_print (w->val.get (), &stb);
10231 uiout->field_stream ("new", stb);
10232 uiout->text ("\n");
10233 result = PRINT_UNKNOWN;
10234 break;
10235 default:
10236 result = PRINT_UNKNOWN;
10237 }
10238
10239 return result;
10240 }
10241
10242 /* Implement the "print_mention" breakpoint_ops method for hardware
10243 watchpoints. */
10244
10245 static void
10246 print_mention_watchpoint (struct breakpoint *b)
10247 {
10248 struct watchpoint *w = (struct watchpoint *) b;
10249 struct ui_out *uiout = current_uiout;
10250 const char *tuple_name;
10251
10252 switch (b->type)
10253 {
10254 case bp_watchpoint:
10255 uiout->text ("Watchpoint ");
10256 tuple_name = "wpt";
10257 break;
10258 case bp_hardware_watchpoint:
10259 uiout->text ("Hardware watchpoint ");
10260 tuple_name = "wpt";
10261 break;
10262 case bp_read_watchpoint:
10263 uiout->text ("Hardware read watchpoint ");
10264 tuple_name = "hw-rwpt";
10265 break;
10266 case bp_access_watchpoint:
10267 uiout->text ("Hardware access (read/write) watchpoint ");
10268 tuple_name = "hw-awpt";
10269 break;
10270 default:
10271 internal_error (__FILE__, __LINE__,
10272 _("Invalid hardware watchpoint type."));
10273 }
10274
10275 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10276 uiout->field_int ("number", b->number);
10277 uiout->text (": ");
10278 uiout->field_string ("exp", w->exp_string);
10279 }
10280
10281 /* Implement the "print_recreate" breakpoint_ops method for
10282 watchpoints. */
10283
10284 static void
10285 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10286 {
10287 struct watchpoint *w = (struct watchpoint *) b;
10288
10289 switch (b->type)
10290 {
10291 case bp_watchpoint:
10292 case bp_hardware_watchpoint:
10293 fprintf_unfiltered (fp, "watch");
10294 break;
10295 case bp_read_watchpoint:
10296 fprintf_unfiltered (fp, "rwatch");
10297 break;
10298 case bp_access_watchpoint:
10299 fprintf_unfiltered (fp, "awatch");
10300 break;
10301 default:
10302 internal_error (__FILE__, __LINE__,
10303 _("Invalid watchpoint type."));
10304 }
10305
10306 fprintf_unfiltered (fp, " %s", w->exp_string);
10307 print_recreate_thread (b, fp);
10308 }
10309
10310 /* Implement the "explains_signal" breakpoint_ops method for
10311 watchpoints. */
10312
10313 static int
10314 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10315 {
10316 /* A software watchpoint cannot cause a signal other than
10317 GDB_SIGNAL_TRAP. */
10318 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10319 return 0;
10320
10321 return 1;
10322 }
10323
10324 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10325
10326 static struct breakpoint_ops watchpoint_breakpoint_ops;
10327
10328 /* Implement the "insert" breakpoint_ops method for
10329 masked hardware watchpoints. */
10330
10331 static int
10332 insert_masked_watchpoint (struct bp_location *bl)
10333 {
10334 struct watchpoint *w = (struct watchpoint *) bl->owner;
10335
10336 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10337 bl->watchpoint_type);
10338 }
10339
10340 /* Implement the "remove" breakpoint_ops method for
10341 masked hardware watchpoints. */
10342
10343 static int
10344 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10345 {
10346 struct watchpoint *w = (struct watchpoint *) bl->owner;
10347
10348 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10349 bl->watchpoint_type);
10350 }
10351
10352 /* Implement the "resources_needed" breakpoint_ops method for
10353 masked hardware watchpoints. */
10354
10355 static int
10356 resources_needed_masked_watchpoint (const struct bp_location *bl)
10357 {
10358 struct watchpoint *w = (struct watchpoint *) bl->owner;
10359
10360 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10361 }
10362
10363 /* Implement the "works_in_software_mode" breakpoint_ops method for
10364 masked hardware watchpoints. */
10365
10366 static int
10367 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10368 {
10369 return 0;
10370 }
10371
10372 /* Implement the "print_it" breakpoint_ops method for
10373 masked hardware watchpoints. */
10374
10375 static enum print_stop_action
10376 print_it_masked_watchpoint (bpstat bs)
10377 {
10378 struct breakpoint *b = bs->breakpoint_at;
10379 struct ui_out *uiout = current_uiout;
10380
10381 /* Masked watchpoints have only one location. */
10382 gdb_assert (b->loc && b->loc->next == NULL);
10383
10384 annotate_watchpoint (b->number);
10385 maybe_print_thread_hit_breakpoint (uiout);
10386
10387 switch (b->type)
10388 {
10389 case bp_hardware_watchpoint:
10390 if (uiout->is_mi_like_p ())
10391 uiout->field_string
10392 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10393 break;
10394
10395 case bp_read_watchpoint:
10396 if (uiout->is_mi_like_p ())
10397 uiout->field_string
10398 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10399 break;
10400
10401 case bp_access_watchpoint:
10402 if (uiout->is_mi_like_p ())
10403 uiout->field_string
10404 ("reason",
10405 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10406 break;
10407 default:
10408 internal_error (__FILE__, __LINE__,
10409 _("Invalid hardware watchpoint type."));
10410 }
10411
10412 mention (b);
10413 uiout->text (_("\n\
10414 Check the underlying instruction at PC for the memory\n\
10415 address and value which triggered this watchpoint.\n"));
10416 uiout->text ("\n");
10417
10418 /* More than one watchpoint may have been triggered. */
10419 return PRINT_UNKNOWN;
10420 }
10421
10422 /* Implement the "print_one_detail" breakpoint_ops method for
10423 masked hardware watchpoints. */
10424
10425 static void
10426 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10427 struct ui_out *uiout)
10428 {
10429 struct watchpoint *w = (struct watchpoint *) b;
10430
10431 /* Masked watchpoints have only one location. */
10432 gdb_assert (b->loc && b->loc->next == NULL);
10433
10434 uiout->text ("\tmask ");
10435 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10436 uiout->text ("\n");
10437 }
10438
10439 /* Implement the "print_mention" breakpoint_ops method for
10440 masked hardware watchpoints. */
10441
10442 static void
10443 print_mention_masked_watchpoint (struct breakpoint *b)
10444 {
10445 struct watchpoint *w = (struct watchpoint *) b;
10446 struct ui_out *uiout = current_uiout;
10447 const char *tuple_name;
10448
10449 switch (b->type)
10450 {
10451 case bp_hardware_watchpoint:
10452 uiout->text ("Masked hardware watchpoint ");
10453 tuple_name = "wpt";
10454 break;
10455 case bp_read_watchpoint:
10456 uiout->text ("Masked hardware read watchpoint ");
10457 tuple_name = "hw-rwpt";
10458 break;
10459 case bp_access_watchpoint:
10460 uiout->text ("Masked hardware access (read/write) watchpoint ");
10461 tuple_name = "hw-awpt";
10462 break;
10463 default:
10464 internal_error (__FILE__, __LINE__,
10465 _("Invalid hardware watchpoint type."));
10466 }
10467
10468 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10469 uiout->field_int ("number", b->number);
10470 uiout->text (": ");
10471 uiout->field_string ("exp", w->exp_string);
10472 }
10473
10474 /* Implement the "print_recreate" breakpoint_ops method for
10475 masked hardware watchpoints. */
10476
10477 static void
10478 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10479 {
10480 struct watchpoint *w = (struct watchpoint *) b;
10481 char tmp[40];
10482
10483 switch (b->type)
10484 {
10485 case bp_hardware_watchpoint:
10486 fprintf_unfiltered (fp, "watch");
10487 break;
10488 case bp_read_watchpoint:
10489 fprintf_unfiltered (fp, "rwatch");
10490 break;
10491 case bp_access_watchpoint:
10492 fprintf_unfiltered (fp, "awatch");
10493 break;
10494 default:
10495 internal_error (__FILE__, __LINE__,
10496 _("Invalid hardware watchpoint type."));
10497 }
10498
10499 sprintf_vma (tmp, w->hw_wp_mask);
10500 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10501 print_recreate_thread (b, fp);
10502 }
10503
10504 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10505
10506 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10507
10508 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10509
10510 static int
10511 is_masked_watchpoint (const struct breakpoint *b)
10512 {
10513 return b->ops == &masked_watchpoint_breakpoint_ops;
10514 }
10515
10516 /* accessflag: hw_write: watch write,
10517 hw_read: watch read,
10518 hw_access: watch access (read or write) */
10519 static void
10520 watch_command_1 (const char *arg, int accessflag, int from_tty,
10521 int just_location, int internal)
10522 {
10523 struct breakpoint *scope_breakpoint = NULL;
10524 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10525 struct value *mark, *result;
10526 int saved_bitpos = 0, saved_bitsize = 0;
10527 const char *exp_start = NULL;
10528 const char *exp_end = NULL;
10529 const char *tok, *end_tok;
10530 int toklen = -1;
10531 const char *cond_start = NULL;
10532 const char *cond_end = NULL;
10533 enum bptype bp_type;
10534 int thread = -1;
10535 int pc = 0;
10536 /* Flag to indicate whether we are going to use masks for
10537 the hardware watchpoint. */
10538 int use_mask = 0;
10539 CORE_ADDR mask = 0;
10540
10541 /* Make sure that we actually have parameters to parse. */
10542 if (arg != NULL && arg[0] != '\0')
10543 {
10544 const char *value_start;
10545
10546 exp_end = arg + strlen (arg);
10547
10548 /* Look for "parameter value" pairs at the end
10549 of the arguments string. */
10550 for (tok = exp_end - 1; tok > arg; tok--)
10551 {
10552 /* Skip whitespace at the end of the argument list. */
10553 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10554 tok--;
10555
10556 /* Find the beginning of the last token.
10557 This is the value of the parameter. */
10558 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10559 tok--;
10560 value_start = tok + 1;
10561
10562 /* Skip whitespace. */
10563 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10564 tok--;
10565
10566 end_tok = tok;
10567
10568 /* Find the beginning of the second to last token.
10569 This is the parameter itself. */
10570 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10571 tok--;
10572 tok++;
10573 toklen = end_tok - tok + 1;
10574
10575 if (toklen == 6 && startswith (tok, "thread"))
10576 {
10577 struct thread_info *thr;
10578 /* At this point we've found a "thread" token, which means
10579 the user is trying to set a watchpoint that triggers
10580 only in a specific thread. */
10581 const char *endp;
10582
10583 if (thread != -1)
10584 error(_("You can specify only one thread."));
10585
10586 /* Extract the thread ID from the next token. */
10587 thr = parse_thread_id (value_start, &endp);
10588
10589 /* Check if the user provided a valid thread ID. */
10590 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10591 invalid_thread_id_error (value_start);
10592
10593 thread = thr->global_num;
10594 }
10595 else if (toklen == 4 && startswith (tok, "mask"))
10596 {
10597 /* We've found a "mask" token, which means the user wants to
10598 create a hardware watchpoint that is going to have the mask
10599 facility. */
10600 struct value *mask_value, *mark;
10601
10602 if (use_mask)
10603 error(_("You can specify only one mask."));
10604
10605 use_mask = just_location = 1;
10606
10607 mark = value_mark ();
10608 mask_value = parse_to_comma_and_eval (&value_start);
10609 mask = value_as_address (mask_value);
10610 value_free_to_mark (mark);
10611 }
10612 else
10613 /* We didn't recognize what we found. We should stop here. */
10614 break;
10615
10616 /* Truncate the string and get rid of the "parameter value" pair before
10617 the arguments string is parsed by the parse_exp_1 function. */
10618 exp_end = tok;
10619 }
10620 }
10621 else
10622 exp_end = arg;
10623
10624 /* Parse the rest of the arguments. From here on out, everything
10625 is in terms of a newly allocated string instead of the original
10626 ARG. */
10627 innermost_block.reset ();
10628 std::string expression (arg, exp_end - arg);
10629 exp_start = arg = expression.c_str ();
10630 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10631 exp_end = arg;
10632 /* Remove trailing whitespace from the expression before saving it.
10633 This makes the eventual display of the expression string a bit
10634 prettier. */
10635 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10636 --exp_end;
10637
10638 /* Checking if the expression is not constant. */
10639 if (watchpoint_exp_is_const (exp.get ()))
10640 {
10641 int len;
10642
10643 len = exp_end - exp_start;
10644 while (len > 0 && isspace (exp_start[len - 1]))
10645 len--;
10646 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10647 }
10648
10649 exp_valid_block = innermost_block.block ();
10650 mark = value_mark ();
10651 struct value *val_as_value = nullptr;
10652 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10653 just_location);
10654
10655 if (val_as_value != NULL && just_location)
10656 {
10657 saved_bitpos = value_bitpos (val_as_value);
10658 saved_bitsize = value_bitsize (val_as_value);
10659 }
10660
10661 value_ref_ptr val;
10662 if (just_location)
10663 {
10664 int ret;
10665
10666 exp_valid_block = NULL;
10667 val = release_value (value_addr (result));
10668 value_free_to_mark (mark);
10669
10670 if (use_mask)
10671 {
10672 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10673 mask);
10674 if (ret == -1)
10675 error (_("This target does not support masked watchpoints."));
10676 else if (ret == -2)
10677 error (_("Invalid mask or memory region."));
10678 }
10679 }
10680 else if (val_as_value != NULL)
10681 val = release_value (val_as_value);
10682
10683 tok = skip_spaces (arg);
10684 end_tok = skip_to_space (tok);
10685
10686 toklen = end_tok - tok;
10687 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10688 {
10689 innermost_block.reset ();
10690 tok = cond_start = end_tok + 1;
10691 parse_exp_1 (&tok, 0, 0, 0);
10692
10693 /* The watchpoint expression may not be local, but the condition
10694 may still be. E.g.: `watch global if local > 0'. */
10695 cond_exp_valid_block = innermost_block.block ();
10696
10697 cond_end = tok;
10698 }
10699 if (*tok)
10700 error (_("Junk at end of command."));
10701
10702 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10703
10704 /* Save this because create_internal_breakpoint below invalidates
10705 'wp_frame'. */
10706 frame_id watchpoint_frame = get_frame_id (wp_frame);
10707
10708 /* If the expression is "local", then set up a "watchpoint scope"
10709 breakpoint at the point where we've left the scope of the watchpoint
10710 expression. Create the scope breakpoint before the watchpoint, so
10711 that we will encounter it first in bpstat_stop_status. */
10712 if (exp_valid_block != NULL && wp_frame != NULL)
10713 {
10714 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10715
10716 if (frame_id_p (caller_frame_id))
10717 {
10718 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10719 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10720
10721 scope_breakpoint
10722 = create_internal_breakpoint (caller_arch, caller_pc,
10723 bp_watchpoint_scope,
10724 &momentary_breakpoint_ops);
10725
10726 /* create_internal_breakpoint could invalidate WP_FRAME. */
10727 wp_frame = NULL;
10728
10729 scope_breakpoint->enable_state = bp_enabled;
10730
10731 /* Automatically delete the breakpoint when it hits. */
10732 scope_breakpoint->disposition = disp_del;
10733
10734 /* Only break in the proper frame (help with recursion). */
10735 scope_breakpoint->frame_id = caller_frame_id;
10736
10737 /* Set the address at which we will stop. */
10738 scope_breakpoint->loc->gdbarch = caller_arch;
10739 scope_breakpoint->loc->requested_address = caller_pc;
10740 scope_breakpoint->loc->address
10741 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10742 scope_breakpoint->loc->requested_address,
10743 scope_breakpoint->type);
10744 }
10745 }
10746
10747 /* Now set up the breakpoint. We create all watchpoints as hardware
10748 watchpoints here even if hardware watchpoints are turned off, a call
10749 to update_watchpoint later in this function will cause the type to
10750 drop back to bp_watchpoint (software watchpoint) if required. */
10751
10752 if (accessflag == hw_read)
10753 bp_type = bp_read_watchpoint;
10754 else if (accessflag == hw_access)
10755 bp_type = bp_access_watchpoint;
10756 else
10757 bp_type = bp_hardware_watchpoint;
10758
10759 std::unique_ptr<watchpoint> w (new watchpoint ());
10760
10761 if (use_mask)
10762 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10763 &masked_watchpoint_breakpoint_ops);
10764 else
10765 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10766 &watchpoint_breakpoint_ops);
10767 w->thread = thread;
10768 w->disposition = disp_donttouch;
10769 w->pspace = current_program_space;
10770 w->exp = std::move (exp);
10771 w->exp_valid_block = exp_valid_block;
10772 w->cond_exp_valid_block = cond_exp_valid_block;
10773 if (just_location)
10774 {
10775 struct type *t = value_type (val.get ());
10776 CORE_ADDR addr = value_as_address (val.get ());
10777
10778 w->exp_string_reparse
10779 = current_language->la_watch_location_expression (t, addr).release ();
10780
10781 w->exp_string = xstrprintf ("-location %.*s",
10782 (int) (exp_end - exp_start), exp_start);
10783 }
10784 else
10785 w->exp_string = savestring (exp_start, exp_end - exp_start);
10786
10787 if (use_mask)
10788 {
10789 w->hw_wp_mask = mask;
10790 }
10791 else
10792 {
10793 w->val = val;
10794 w->val_bitpos = saved_bitpos;
10795 w->val_bitsize = saved_bitsize;
10796 w->val_valid = 1;
10797 }
10798
10799 if (cond_start)
10800 w->cond_string = savestring (cond_start, cond_end - cond_start);
10801 else
10802 w->cond_string = 0;
10803
10804 if (frame_id_p (watchpoint_frame))
10805 {
10806 w->watchpoint_frame = watchpoint_frame;
10807 w->watchpoint_thread = inferior_ptid;
10808 }
10809 else
10810 {
10811 w->watchpoint_frame = null_frame_id;
10812 w->watchpoint_thread = null_ptid;
10813 }
10814
10815 if (scope_breakpoint != NULL)
10816 {
10817 /* The scope breakpoint is related to the watchpoint. We will
10818 need to act on them together. */
10819 w->related_breakpoint = scope_breakpoint;
10820 scope_breakpoint->related_breakpoint = w.get ();
10821 }
10822
10823 if (!just_location)
10824 value_free_to_mark (mark);
10825
10826 /* Finally update the new watchpoint. This creates the locations
10827 that should be inserted. */
10828 update_watchpoint (w.get (), 1);
10829
10830 install_breakpoint (internal, std::move (w), 1);
10831 }
10832
10833 /* Return count of debug registers needed to watch the given expression.
10834 If the watchpoint cannot be handled in hardware return zero. */
10835
10836 static int
10837 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10838 {
10839 int found_memory_cnt = 0;
10840
10841 /* Did the user specifically forbid us to use hardware watchpoints? */
10842 if (!can_use_hw_watchpoints)
10843 return 0;
10844
10845 gdb_assert (!vals.empty ());
10846 struct value *head = vals[0].get ();
10847
10848 /* Make sure that the value of the expression depends only upon
10849 memory contents, and values computed from them within GDB. If we
10850 find any register references or function calls, we can't use a
10851 hardware watchpoint.
10852
10853 The idea here is that evaluating an expression generates a series
10854 of values, one holding the value of every subexpression. (The
10855 expression a*b+c has five subexpressions: a, b, a*b, c, and
10856 a*b+c.) GDB's values hold almost enough information to establish
10857 the criteria given above --- they identify memory lvalues,
10858 register lvalues, computed values, etcetera. So we can evaluate
10859 the expression, and then scan the chain of values that leaves
10860 behind to decide whether we can detect any possible change to the
10861 expression's final value using only hardware watchpoints.
10862
10863 However, I don't think that the values returned by inferior
10864 function calls are special in any way. So this function may not
10865 notice that an expression involving an inferior function call
10866 can't be watched with hardware watchpoints. FIXME. */
10867 for (const value_ref_ptr &iter : vals)
10868 {
10869 struct value *v = iter.get ();
10870
10871 if (VALUE_LVAL (v) == lval_memory)
10872 {
10873 if (v != head && value_lazy (v))
10874 /* A lazy memory lvalue in the chain is one that GDB never
10875 needed to fetch; we either just used its address (e.g.,
10876 `a' in `a.b') or we never needed it at all (e.g., `a'
10877 in `a,b'). This doesn't apply to HEAD; if that is
10878 lazy then it was not readable, but watch it anyway. */
10879 ;
10880 else
10881 {
10882 /* Ahh, memory we actually used! Check if we can cover
10883 it with hardware watchpoints. */
10884 struct type *vtype = check_typedef (value_type (v));
10885
10886 /* We only watch structs and arrays if user asked for it
10887 explicitly, never if they just happen to appear in a
10888 middle of some value chain. */
10889 if (v == head
10890 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10891 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10892 {
10893 CORE_ADDR vaddr = value_address (v);
10894 int len;
10895 int num_regs;
10896
10897 len = (target_exact_watchpoints
10898 && is_scalar_type_recursive (vtype))?
10899 1 : TYPE_LENGTH (value_type (v));
10900
10901 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10902 if (!num_regs)
10903 return 0;
10904 else
10905 found_memory_cnt += num_regs;
10906 }
10907 }
10908 }
10909 else if (VALUE_LVAL (v) != not_lval
10910 && deprecated_value_modifiable (v) == 0)
10911 return 0; /* These are values from the history (e.g., $1). */
10912 else if (VALUE_LVAL (v) == lval_register)
10913 return 0; /* Cannot watch a register with a HW watchpoint. */
10914 }
10915
10916 /* The expression itself looks suitable for using a hardware
10917 watchpoint, but give the target machine a chance to reject it. */
10918 return found_memory_cnt;
10919 }
10920
10921 void
10922 watch_command_wrapper (const char *arg, int from_tty, int internal)
10923 {
10924 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10925 }
10926
10927 /* A helper function that looks for the "-location" argument and then
10928 calls watch_command_1. */
10929
10930 static void
10931 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10932 {
10933 int just_location = 0;
10934
10935 if (arg
10936 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10937 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10938 {
10939 arg = skip_spaces (arg);
10940 just_location = 1;
10941 }
10942
10943 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10944 }
10945
10946 static void
10947 watch_command (const char *arg, int from_tty)
10948 {
10949 watch_maybe_just_location (arg, hw_write, from_tty);
10950 }
10951
10952 void
10953 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10954 {
10955 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10956 }
10957
10958 static void
10959 rwatch_command (const char *arg, int from_tty)
10960 {
10961 watch_maybe_just_location (arg, hw_read, from_tty);
10962 }
10963
10964 void
10965 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10966 {
10967 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10968 }
10969
10970 static void
10971 awatch_command (const char *arg, int from_tty)
10972 {
10973 watch_maybe_just_location (arg, hw_access, from_tty);
10974 }
10975 \f
10976
10977 /* Data for the FSM that manages the until(location)/advance commands
10978 in infcmd.c. Here because it uses the mechanisms of
10979 breakpoints. */
10980
10981 struct until_break_fsm
10982 {
10983 /* The base class. */
10984 struct thread_fsm thread_fsm;
10985
10986 /* The thread that as current when the command was executed. */
10987 int thread;
10988
10989 /* The breakpoint set at the destination location. */
10990 struct breakpoint *location_breakpoint;
10991
10992 /* Breakpoint set at the return address in the caller frame. May be
10993 NULL. */
10994 struct breakpoint *caller_breakpoint;
10995 };
10996
10997 static void until_break_fsm_clean_up (struct thread_fsm *self,
10998 struct thread_info *thread);
10999 static int until_break_fsm_should_stop (struct thread_fsm *self,
11000 struct thread_info *thread);
11001 static enum async_reply_reason
11002 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11003
11004 /* until_break_fsm's vtable. */
11005
11006 static struct thread_fsm_ops until_break_fsm_ops =
11007 {
11008 NULL, /* dtor */
11009 until_break_fsm_clean_up,
11010 until_break_fsm_should_stop,
11011 NULL, /* return_value */
11012 until_break_fsm_async_reply_reason,
11013 };
11014
11015 /* Allocate a new until_break_command_fsm. */
11016
11017 static struct until_break_fsm *
11018 new_until_break_fsm (struct interp *cmd_interp, int thread,
11019 breakpoint_up &&location_breakpoint,
11020 breakpoint_up &&caller_breakpoint)
11021 {
11022 struct until_break_fsm *sm;
11023
11024 sm = XCNEW (struct until_break_fsm);
11025 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11026
11027 sm->thread = thread;
11028 sm->location_breakpoint = location_breakpoint.release ();
11029 sm->caller_breakpoint = caller_breakpoint.release ();
11030
11031 return sm;
11032 }
11033
11034 /* Implementation of the 'should_stop' FSM method for the
11035 until(location)/advance commands. */
11036
11037 static int
11038 until_break_fsm_should_stop (struct thread_fsm *self,
11039 struct thread_info *tp)
11040 {
11041 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11042
11043 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11044 sm->location_breakpoint) != NULL
11045 || (sm->caller_breakpoint != NULL
11046 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11047 sm->caller_breakpoint) != NULL))
11048 thread_fsm_set_finished (self);
11049
11050 return 1;
11051 }
11052
11053 /* Implementation of the 'clean_up' FSM method for the
11054 until(location)/advance commands. */
11055
11056 static void
11057 until_break_fsm_clean_up (struct thread_fsm *self,
11058 struct thread_info *thread)
11059 {
11060 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11061
11062 /* Clean up our temporary breakpoints. */
11063 if (sm->location_breakpoint != NULL)
11064 {
11065 delete_breakpoint (sm->location_breakpoint);
11066 sm->location_breakpoint = NULL;
11067 }
11068 if (sm->caller_breakpoint != NULL)
11069 {
11070 delete_breakpoint (sm->caller_breakpoint);
11071 sm->caller_breakpoint = NULL;
11072 }
11073 delete_longjmp_breakpoint (sm->thread);
11074 }
11075
11076 /* Implementation of the 'async_reply_reason' FSM method for the
11077 until(location)/advance commands. */
11078
11079 static enum async_reply_reason
11080 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11081 {
11082 return EXEC_ASYNC_LOCATION_REACHED;
11083 }
11084
11085 void
11086 until_break_command (const char *arg, int from_tty, int anywhere)
11087 {
11088 struct frame_info *frame;
11089 struct gdbarch *frame_gdbarch;
11090 struct frame_id stack_frame_id;
11091 struct frame_id caller_frame_id;
11092 struct cleanup *old_chain;
11093 int thread;
11094 struct thread_info *tp;
11095 struct until_break_fsm *sm;
11096
11097 clear_proceed_status (0);
11098
11099 /* Set a breakpoint where the user wants it and at return from
11100 this function. */
11101
11102 event_location_up location = string_to_event_location (&arg, current_language);
11103
11104 std::vector<symtab_and_line> sals
11105 = (last_displayed_sal_is_valid ()
11106 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11107 get_last_displayed_symtab (),
11108 get_last_displayed_line ())
11109 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11110 NULL, (struct symtab *) NULL, 0));
11111
11112 if (sals.size () != 1)
11113 error (_("Couldn't get information on specified line."));
11114
11115 symtab_and_line &sal = sals[0];
11116
11117 if (*arg)
11118 error (_("Junk at end of arguments."));
11119
11120 resolve_sal_pc (&sal);
11121
11122 tp = inferior_thread ();
11123 thread = tp->global_num;
11124
11125 old_chain = make_cleanup (null_cleanup, NULL);
11126
11127 /* Note linespec handling above invalidates the frame chain.
11128 Installing a breakpoint also invalidates the frame chain (as it
11129 may need to switch threads), so do any frame handling before
11130 that. */
11131
11132 frame = get_selected_frame (NULL);
11133 frame_gdbarch = get_frame_arch (frame);
11134 stack_frame_id = get_stack_frame_id (frame);
11135 caller_frame_id = frame_unwind_caller_id (frame);
11136
11137 /* Keep within the current frame, or in frames called by the current
11138 one. */
11139
11140 breakpoint_up caller_breakpoint;
11141 if (frame_id_p (caller_frame_id))
11142 {
11143 struct symtab_and_line sal2;
11144 struct gdbarch *caller_gdbarch;
11145
11146 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11147 sal2.pc = frame_unwind_caller_pc (frame);
11148 caller_gdbarch = frame_unwind_caller_arch (frame);
11149 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11150 sal2,
11151 caller_frame_id,
11152 bp_until);
11153
11154 set_longjmp_breakpoint (tp, caller_frame_id);
11155 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11156 }
11157
11158 /* set_momentary_breakpoint could invalidate FRAME. */
11159 frame = NULL;
11160
11161 breakpoint_up location_breakpoint;
11162 if (anywhere)
11163 /* If the user told us to continue until a specified location,
11164 we don't specify a frame at which we need to stop. */
11165 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11166 null_frame_id, bp_until);
11167 else
11168 /* Otherwise, specify the selected frame, because we want to stop
11169 only at the very same frame. */
11170 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11171 stack_frame_id, bp_until);
11172
11173 sm = new_until_break_fsm (command_interp (), tp->global_num,
11174 std::move (location_breakpoint),
11175 std::move (caller_breakpoint));
11176 tp->thread_fsm = &sm->thread_fsm;
11177
11178 discard_cleanups (old_chain);
11179
11180 proceed (-1, GDB_SIGNAL_DEFAULT);
11181 }
11182
11183 /* This function attempts to parse an optional "if <cond>" clause
11184 from the arg string. If one is not found, it returns NULL.
11185
11186 Else, it returns a pointer to the condition string. (It does not
11187 attempt to evaluate the string against a particular block.) And,
11188 it updates arg to point to the first character following the parsed
11189 if clause in the arg string. */
11190
11191 const char *
11192 ep_parse_optional_if_clause (const char **arg)
11193 {
11194 const char *cond_string;
11195
11196 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11197 return NULL;
11198
11199 /* Skip the "if" keyword. */
11200 (*arg) += 2;
11201
11202 /* Skip any extra leading whitespace, and record the start of the
11203 condition string. */
11204 *arg = skip_spaces (*arg);
11205 cond_string = *arg;
11206
11207 /* Assume that the condition occupies the remainder of the arg
11208 string. */
11209 (*arg) += strlen (cond_string);
11210
11211 return cond_string;
11212 }
11213
11214 /* Commands to deal with catching events, such as signals, exceptions,
11215 process start/exit, etc. */
11216
11217 typedef enum
11218 {
11219 catch_fork_temporary, catch_vfork_temporary,
11220 catch_fork_permanent, catch_vfork_permanent
11221 }
11222 catch_fork_kind;
11223
11224 static void
11225 catch_fork_command_1 (const char *arg, int from_tty,
11226 struct cmd_list_element *command)
11227 {
11228 struct gdbarch *gdbarch = get_current_arch ();
11229 const char *cond_string = NULL;
11230 catch_fork_kind fork_kind;
11231 int tempflag;
11232
11233 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11234 tempflag = (fork_kind == catch_fork_temporary
11235 || fork_kind == catch_vfork_temporary);
11236
11237 if (!arg)
11238 arg = "";
11239 arg = skip_spaces (arg);
11240
11241 /* The allowed syntax is:
11242 catch [v]fork
11243 catch [v]fork if <cond>
11244
11245 First, check if there's an if clause. */
11246 cond_string = ep_parse_optional_if_clause (&arg);
11247
11248 if ((*arg != '\0') && !isspace (*arg))
11249 error (_("Junk at end of arguments."));
11250
11251 /* If this target supports it, create a fork or vfork catchpoint
11252 and enable reporting of such events. */
11253 switch (fork_kind)
11254 {
11255 case catch_fork_temporary:
11256 case catch_fork_permanent:
11257 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11258 &catch_fork_breakpoint_ops);
11259 break;
11260 case catch_vfork_temporary:
11261 case catch_vfork_permanent:
11262 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11263 &catch_vfork_breakpoint_ops);
11264 break;
11265 default:
11266 error (_("unsupported or unknown fork kind; cannot catch it"));
11267 break;
11268 }
11269 }
11270
11271 static void
11272 catch_exec_command_1 (const char *arg, int from_tty,
11273 struct cmd_list_element *command)
11274 {
11275 struct gdbarch *gdbarch = get_current_arch ();
11276 int tempflag;
11277 const char *cond_string = NULL;
11278
11279 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11280
11281 if (!arg)
11282 arg = "";
11283 arg = skip_spaces (arg);
11284
11285 /* The allowed syntax is:
11286 catch exec
11287 catch exec if <cond>
11288
11289 First, check if there's an if clause. */
11290 cond_string = ep_parse_optional_if_clause (&arg);
11291
11292 if ((*arg != '\0') && !isspace (*arg))
11293 error (_("Junk at end of arguments."));
11294
11295 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11296 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11297 &catch_exec_breakpoint_ops);
11298 c->exec_pathname = NULL;
11299
11300 install_breakpoint (0, std::move (c), 1);
11301 }
11302
11303 void
11304 init_ada_exception_breakpoint (struct breakpoint *b,
11305 struct gdbarch *gdbarch,
11306 struct symtab_and_line sal,
11307 const char *addr_string,
11308 const struct breakpoint_ops *ops,
11309 int tempflag,
11310 int enabled,
11311 int from_tty)
11312 {
11313 if (from_tty)
11314 {
11315 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11316 if (!loc_gdbarch)
11317 loc_gdbarch = gdbarch;
11318
11319 describe_other_breakpoints (loc_gdbarch,
11320 sal.pspace, sal.pc, sal.section, -1);
11321 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11322 version for exception catchpoints, because two catchpoints
11323 used for different exception names will use the same address.
11324 In this case, a "breakpoint ... also set at..." warning is
11325 unproductive. Besides, the warning phrasing is also a bit
11326 inappropriate, we should use the word catchpoint, and tell
11327 the user what type of catchpoint it is. The above is good
11328 enough for now, though. */
11329 }
11330
11331 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11332
11333 b->enable_state = enabled ? bp_enabled : bp_disabled;
11334 b->disposition = tempflag ? disp_del : disp_donttouch;
11335 b->location = string_to_event_location (&addr_string,
11336 language_def (language_ada));
11337 b->language = language_ada;
11338 }
11339
11340 static void
11341 catch_command (const char *arg, int from_tty)
11342 {
11343 error (_("Catch requires an event name."));
11344 }
11345 \f
11346
11347 static void
11348 tcatch_command (const char *arg, int from_tty)
11349 {
11350 error (_("Catch requires an event name."));
11351 }
11352
11353 /* Compare two breakpoints and return a strcmp-like result. */
11354
11355 static int
11356 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11357 {
11358 uintptr_t ua = (uintptr_t) a;
11359 uintptr_t ub = (uintptr_t) b;
11360
11361 if (a->number < b->number)
11362 return -1;
11363 else if (a->number > b->number)
11364 return 1;
11365
11366 /* Now sort by address, in case we see, e..g, two breakpoints with
11367 the number 0. */
11368 if (ua < ub)
11369 return -1;
11370 return ua > ub ? 1 : 0;
11371 }
11372
11373 /* Delete breakpoints by address or line. */
11374
11375 static void
11376 clear_command (const char *arg, int from_tty)
11377 {
11378 struct breakpoint *b;
11379 int default_match;
11380
11381 std::vector<symtab_and_line> decoded_sals;
11382 symtab_and_line last_sal;
11383 gdb::array_view<symtab_and_line> sals;
11384 if (arg)
11385 {
11386 decoded_sals
11387 = decode_line_with_current_source (arg,
11388 (DECODE_LINE_FUNFIRSTLINE
11389 | DECODE_LINE_LIST_MODE));
11390 default_match = 0;
11391 sals = decoded_sals;
11392 }
11393 else
11394 {
11395 /* Set sal's line, symtab, pc, and pspace to the values
11396 corresponding to the last call to print_frame_info. If the
11397 codepoint is not valid, this will set all the fields to 0. */
11398 last_sal = get_last_displayed_sal ();
11399 if (last_sal.symtab == 0)
11400 error (_("No source file specified."));
11401
11402 default_match = 1;
11403 sals = last_sal;
11404 }
11405
11406 /* We don't call resolve_sal_pc here. That's not as bad as it
11407 seems, because all existing breakpoints typically have both
11408 file/line and pc set. So, if clear is given file/line, we can
11409 match this to existing breakpoint without obtaining pc at all.
11410
11411 We only support clearing given the address explicitly
11412 present in breakpoint table. Say, we've set breakpoint
11413 at file:line. There were several PC values for that file:line,
11414 due to optimization, all in one block.
11415
11416 We've picked one PC value. If "clear" is issued with another
11417 PC corresponding to the same file:line, the breakpoint won't
11418 be cleared. We probably can still clear the breakpoint, but
11419 since the other PC value is never presented to user, user
11420 can only find it by guessing, and it does not seem important
11421 to support that. */
11422
11423 /* For each line spec given, delete bps which correspond to it. Do
11424 it in two passes, solely to preserve the current behavior that
11425 from_tty is forced true if we delete more than one
11426 breakpoint. */
11427
11428 std::vector<struct breakpoint *> found;
11429 for (const auto &sal : sals)
11430 {
11431 const char *sal_fullname;
11432
11433 /* If exact pc given, clear bpts at that pc.
11434 If line given (pc == 0), clear all bpts on specified line.
11435 If defaulting, clear all bpts on default line
11436 or at default pc.
11437
11438 defaulting sal.pc != 0 tests to do
11439
11440 0 1 pc
11441 1 1 pc _and_ line
11442 0 0 line
11443 1 0 <can't happen> */
11444
11445 sal_fullname = (sal.symtab == NULL
11446 ? NULL : symtab_to_fullname (sal.symtab));
11447
11448 /* Find all matching breakpoints and add them to 'found'. */
11449 ALL_BREAKPOINTS (b)
11450 {
11451 int match = 0;
11452 /* Are we going to delete b? */
11453 if (b->type != bp_none && !is_watchpoint (b))
11454 {
11455 struct bp_location *loc = b->loc;
11456 for (; loc; loc = loc->next)
11457 {
11458 /* If the user specified file:line, don't allow a PC
11459 match. This matches historical gdb behavior. */
11460 int pc_match = (!sal.explicit_line
11461 && sal.pc
11462 && (loc->pspace == sal.pspace)
11463 && (loc->address == sal.pc)
11464 && (!section_is_overlay (loc->section)
11465 || loc->section == sal.section));
11466 int line_match = 0;
11467
11468 if ((default_match || sal.explicit_line)
11469 && loc->symtab != NULL
11470 && sal_fullname != NULL
11471 && sal.pspace == loc->pspace
11472 && loc->line_number == sal.line
11473 && filename_cmp (symtab_to_fullname (loc->symtab),
11474 sal_fullname) == 0)
11475 line_match = 1;
11476
11477 if (pc_match || line_match)
11478 {
11479 match = 1;
11480 break;
11481 }
11482 }
11483 }
11484
11485 if (match)
11486 found.push_back (b);
11487 }
11488 }
11489
11490 /* Now go thru the 'found' chain and delete them. */
11491 if (found.empty ())
11492 {
11493 if (arg)
11494 error (_("No breakpoint at %s."), arg);
11495 else
11496 error (_("No breakpoint at this line."));
11497 }
11498
11499 /* Remove duplicates from the vec. */
11500 std::sort (found.begin (), found.end (),
11501 [] (const breakpoint *a, const breakpoint *b)
11502 {
11503 return compare_breakpoints (a, b) < 0;
11504 });
11505 found.erase (std::unique (found.begin (), found.end (),
11506 [] (const breakpoint *a, const breakpoint *b)
11507 {
11508 return compare_breakpoints (a, b) == 0;
11509 }),
11510 found.end ());
11511
11512 if (found.size () > 1)
11513 from_tty = 1; /* Always report if deleted more than one. */
11514 if (from_tty)
11515 {
11516 if (found.size () == 1)
11517 printf_unfiltered (_("Deleted breakpoint "));
11518 else
11519 printf_unfiltered (_("Deleted breakpoints "));
11520 }
11521
11522 for (breakpoint *iter : found)
11523 {
11524 if (from_tty)
11525 printf_unfiltered ("%d ", iter->number);
11526 delete_breakpoint (iter);
11527 }
11528 if (from_tty)
11529 putchar_unfiltered ('\n');
11530 }
11531 \f
11532 /* Delete breakpoint in BS if they are `delete' breakpoints and
11533 all breakpoints that are marked for deletion, whether hit or not.
11534 This is called after any breakpoint is hit, or after errors. */
11535
11536 void
11537 breakpoint_auto_delete (bpstat bs)
11538 {
11539 struct breakpoint *b, *b_tmp;
11540
11541 for (; bs; bs = bs->next)
11542 if (bs->breakpoint_at
11543 && bs->breakpoint_at->disposition == disp_del
11544 && bs->stop)
11545 delete_breakpoint (bs->breakpoint_at);
11546
11547 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11548 {
11549 if (b->disposition == disp_del_at_next_stop)
11550 delete_breakpoint (b);
11551 }
11552 }
11553
11554 /* A comparison function for bp_location AP and BP being interfaced to
11555 qsort. Sort elements primarily by their ADDRESS (no matter what
11556 does breakpoint_address_is_meaningful say for its OWNER),
11557 secondarily by ordering first permanent elements and
11558 terciarily just ensuring the array is sorted stable way despite
11559 qsort being an unstable algorithm. */
11560
11561 static int
11562 bp_locations_compare (const void *ap, const void *bp)
11563 {
11564 const struct bp_location *a = *(const struct bp_location **) ap;
11565 const struct bp_location *b = *(const struct bp_location **) bp;
11566
11567 if (a->address != b->address)
11568 return (a->address > b->address) - (a->address < b->address);
11569
11570 /* Sort locations at the same address by their pspace number, keeping
11571 locations of the same inferior (in a multi-inferior environment)
11572 grouped. */
11573
11574 if (a->pspace->num != b->pspace->num)
11575 return ((a->pspace->num > b->pspace->num)
11576 - (a->pspace->num < b->pspace->num));
11577
11578 /* Sort permanent breakpoints first. */
11579 if (a->permanent != b->permanent)
11580 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11581
11582 /* Make the internal GDB representation stable across GDB runs
11583 where A and B memory inside GDB can differ. Breakpoint locations of
11584 the same type at the same address can be sorted in arbitrary order. */
11585
11586 if (a->owner->number != b->owner->number)
11587 return ((a->owner->number > b->owner->number)
11588 - (a->owner->number < b->owner->number));
11589
11590 return (a > b) - (a < b);
11591 }
11592
11593 /* Set bp_locations_placed_address_before_address_max and
11594 bp_locations_shadow_len_after_address_max according to the current
11595 content of the bp_locations array. */
11596
11597 static void
11598 bp_locations_target_extensions_update (void)
11599 {
11600 struct bp_location *bl, **blp_tmp;
11601
11602 bp_locations_placed_address_before_address_max = 0;
11603 bp_locations_shadow_len_after_address_max = 0;
11604
11605 ALL_BP_LOCATIONS (bl, blp_tmp)
11606 {
11607 CORE_ADDR start, end, addr;
11608
11609 if (!bp_location_has_shadow (bl))
11610 continue;
11611
11612 start = bl->target_info.placed_address;
11613 end = start + bl->target_info.shadow_len;
11614
11615 gdb_assert (bl->address >= start);
11616 addr = bl->address - start;
11617 if (addr > bp_locations_placed_address_before_address_max)
11618 bp_locations_placed_address_before_address_max = addr;
11619
11620 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11621
11622 gdb_assert (bl->address < end);
11623 addr = end - bl->address;
11624 if (addr > bp_locations_shadow_len_after_address_max)
11625 bp_locations_shadow_len_after_address_max = addr;
11626 }
11627 }
11628
11629 /* Download tracepoint locations if they haven't been. */
11630
11631 static void
11632 download_tracepoint_locations (void)
11633 {
11634 struct breakpoint *b;
11635 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11636
11637 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11638
11639 ALL_TRACEPOINTS (b)
11640 {
11641 struct bp_location *bl;
11642 struct tracepoint *t;
11643 int bp_location_downloaded = 0;
11644
11645 if ((b->type == bp_fast_tracepoint
11646 ? !may_insert_fast_tracepoints
11647 : !may_insert_tracepoints))
11648 continue;
11649
11650 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11651 {
11652 if (target_can_download_tracepoint ())
11653 can_download_tracepoint = TRIBOOL_TRUE;
11654 else
11655 can_download_tracepoint = TRIBOOL_FALSE;
11656 }
11657
11658 if (can_download_tracepoint == TRIBOOL_FALSE)
11659 break;
11660
11661 for (bl = b->loc; bl; bl = bl->next)
11662 {
11663 /* In tracepoint, locations are _never_ duplicated, so
11664 should_be_inserted is equivalent to
11665 unduplicated_should_be_inserted. */
11666 if (!should_be_inserted (bl) || bl->inserted)
11667 continue;
11668
11669 switch_to_program_space_and_thread (bl->pspace);
11670
11671 target_download_tracepoint (bl);
11672
11673 bl->inserted = 1;
11674 bp_location_downloaded = 1;
11675 }
11676 t = (struct tracepoint *) b;
11677 t->number_on_target = b->number;
11678 if (bp_location_downloaded)
11679 gdb::observers::breakpoint_modified.notify (b);
11680 }
11681 }
11682
11683 /* Swap the insertion/duplication state between two locations. */
11684
11685 static void
11686 swap_insertion (struct bp_location *left, struct bp_location *right)
11687 {
11688 const int left_inserted = left->inserted;
11689 const int left_duplicate = left->duplicate;
11690 const int left_needs_update = left->needs_update;
11691 const struct bp_target_info left_target_info = left->target_info;
11692
11693 /* Locations of tracepoints can never be duplicated. */
11694 if (is_tracepoint (left->owner))
11695 gdb_assert (!left->duplicate);
11696 if (is_tracepoint (right->owner))
11697 gdb_assert (!right->duplicate);
11698
11699 left->inserted = right->inserted;
11700 left->duplicate = right->duplicate;
11701 left->needs_update = right->needs_update;
11702 left->target_info = right->target_info;
11703 right->inserted = left_inserted;
11704 right->duplicate = left_duplicate;
11705 right->needs_update = left_needs_update;
11706 right->target_info = left_target_info;
11707 }
11708
11709 /* Force the re-insertion of the locations at ADDRESS. This is called
11710 once a new/deleted/modified duplicate location is found and we are evaluating
11711 conditions on the target's side. Such conditions need to be updated on
11712 the target. */
11713
11714 static void
11715 force_breakpoint_reinsertion (struct bp_location *bl)
11716 {
11717 struct bp_location **locp = NULL, **loc2p;
11718 struct bp_location *loc;
11719 CORE_ADDR address = 0;
11720 int pspace_num;
11721
11722 address = bl->address;
11723 pspace_num = bl->pspace->num;
11724
11725 /* This is only meaningful if the target is
11726 evaluating conditions and if the user has
11727 opted for condition evaluation on the target's
11728 side. */
11729 if (gdb_evaluates_breakpoint_condition_p ()
11730 || !target_supports_evaluation_of_breakpoint_conditions ())
11731 return;
11732
11733 /* Flag all breakpoint locations with this address and
11734 the same program space as the location
11735 as "its condition has changed". We need to
11736 update the conditions on the target's side. */
11737 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11738 {
11739 loc = *loc2p;
11740
11741 if (!is_breakpoint (loc->owner)
11742 || pspace_num != loc->pspace->num)
11743 continue;
11744
11745 /* Flag the location appropriately. We use a different state to
11746 let everyone know that we already updated the set of locations
11747 with addr bl->address and program space bl->pspace. This is so
11748 we don't have to keep calling these functions just to mark locations
11749 that have already been marked. */
11750 loc->condition_changed = condition_updated;
11751
11752 /* Free the agent expression bytecode as well. We will compute
11753 it later on. */
11754 loc->cond_bytecode.reset ();
11755 }
11756 }
11757 /* Called whether new breakpoints are created, or existing breakpoints
11758 deleted, to update the global location list and recompute which
11759 locations are duplicate of which.
11760
11761 The INSERT_MODE flag determines whether locations may not, may, or
11762 shall be inserted now. See 'enum ugll_insert_mode' for more
11763 info. */
11764
11765 static void
11766 update_global_location_list (enum ugll_insert_mode insert_mode)
11767 {
11768 struct breakpoint *b;
11769 struct bp_location **locp, *loc;
11770 /* Last breakpoint location address that was marked for update. */
11771 CORE_ADDR last_addr = 0;
11772 /* Last breakpoint location program space that was marked for update. */
11773 int last_pspace_num = -1;
11774
11775 /* Used in the duplicates detection below. When iterating over all
11776 bp_locations, points to the first bp_location of a given address.
11777 Breakpoints and watchpoints of different types are never
11778 duplicates of each other. Keep one pointer for each type of
11779 breakpoint/watchpoint, so we only need to loop over all locations
11780 once. */
11781 struct bp_location *bp_loc_first; /* breakpoint */
11782 struct bp_location *wp_loc_first; /* hardware watchpoint */
11783 struct bp_location *awp_loc_first; /* access watchpoint */
11784 struct bp_location *rwp_loc_first; /* read watchpoint */
11785
11786 /* Saved former bp_locations array which we compare against the newly
11787 built bp_locations from the current state of ALL_BREAKPOINTS. */
11788 struct bp_location **old_locp;
11789 unsigned old_locations_count;
11790 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11791
11792 old_locations_count = bp_locations_count;
11793 bp_locations = NULL;
11794 bp_locations_count = 0;
11795
11796 ALL_BREAKPOINTS (b)
11797 for (loc = b->loc; loc; loc = loc->next)
11798 bp_locations_count++;
11799
11800 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11801 locp = bp_locations;
11802 ALL_BREAKPOINTS (b)
11803 for (loc = b->loc; loc; loc = loc->next)
11804 *locp++ = loc;
11805 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11806 bp_locations_compare);
11807
11808 bp_locations_target_extensions_update ();
11809
11810 /* Identify bp_location instances that are no longer present in the
11811 new list, and therefore should be freed. Note that it's not
11812 necessary that those locations should be removed from inferior --
11813 if there's another location at the same address (previously
11814 marked as duplicate), we don't need to remove/insert the
11815 location.
11816
11817 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11818 and former bp_location array state respectively. */
11819
11820 locp = bp_locations;
11821 for (old_locp = old_locations.get ();
11822 old_locp < old_locations.get () + old_locations_count;
11823 old_locp++)
11824 {
11825 struct bp_location *old_loc = *old_locp;
11826 struct bp_location **loc2p;
11827
11828 /* Tells if 'old_loc' is found among the new locations. If
11829 not, we have to free it. */
11830 int found_object = 0;
11831 /* Tells if the location should remain inserted in the target. */
11832 int keep_in_target = 0;
11833 int removed = 0;
11834
11835 /* Skip LOCP entries which will definitely never be needed.
11836 Stop either at or being the one matching OLD_LOC. */
11837 while (locp < bp_locations + bp_locations_count
11838 && (*locp)->address < old_loc->address)
11839 locp++;
11840
11841 for (loc2p = locp;
11842 (loc2p < bp_locations + bp_locations_count
11843 && (*loc2p)->address == old_loc->address);
11844 loc2p++)
11845 {
11846 /* Check if this is a new/duplicated location or a duplicated
11847 location that had its condition modified. If so, we want to send
11848 its condition to the target if evaluation of conditions is taking
11849 place there. */
11850 if ((*loc2p)->condition_changed == condition_modified
11851 && (last_addr != old_loc->address
11852 || last_pspace_num != old_loc->pspace->num))
11853 {
11854 force_breakpoint_reinsertion (*loc2p);
11855 last_pspace_num = old_loc->pspace->num;
11856 }
11857
11858 if (*loc2p == old_loc)
11859 found_object = 1;
11860 }
11861
11862 /* We have already handled this address, update it so that we don't
11863 have to go through updates again. */
11864 last_addr = old_loc->address;
11865
11866 /* Target-side condition evaluation: Handle deleted locations. */
11867 if (!found_object)
11868 force_breakpoint_reinsertion (old_loc);
11869
11870 /* If this location is no longer present, and inserted, look if
11871 there's maybe a new location at the same address. If so,
11872 mark that one inserted, and don't remove this one. This is
11873 needed so that we don't have a time window where a breakpoint
11874 at certain location is not inserted. */
11875
11876 if (old_loc->inserted)
11877 {
11878 /* If the location is inserted now, we might have to remove
11879 it. */
11880
11881 if (found_object && should_be_inserted (old_loc))
11882 {
11883 /* The location is still present in the location list,
11884 and still should be inserted. Don't do anything. */
11885 keep_in_target = 1;
11886 }
11887 else
11888 {
11889 /* This location still exists, but it won't be kept in the
11890 target since it may have been disabled. We proceed to
11891 remove its target-side condition. */
11892
11893 /* The location is either no longer present, or got
11894 disabled. See if there's another location at the
11895 same address, in which case we don't need to remove
11896 this one from the target. */
11897
11898 /* OLD_LOC comes from existing struct breakpoint. */
11899 if (breakpoint_address_is_meaningful (old_loc->owner))
11900 {
11901 for (loc2p = locp;
11902 (loc2p < bp_locations + bp_locations_count
11903 && (*loc2p)->address == old_loc->address);
11904 loc2p++)
11905 {
11906 struct bp_location *loc2 = *loc2p;
11907
11908 if (breakpoint_locations_match (loc2, old_loc))
11909 {
11910 /* Read watchpoint locations are switched to
11911 access watchpoints, if the former are not
11912 supported, but the latter are. */
11913 if (is_hardware_watchpoint (old_loc->owner))
11914 {
11915 gdb_assert (is_hardware_watchpoint (loc2->owner));
11916 loc2->watchpoint_type = old_loc->watchpoint_type;
11917 }
11918
11919 /* loc2 is a duplicated location. We need to check
11920 if it should be inserted in case it will be
11921 unduplicated. */
11922 if (loc2 != old_loc
11923 && unduplicated_should_be_inserted (loc2))
11924 {
11925 swap_insertion (old_loc, loc2);
11926 keep_in_target = 1;
11927 break;
11928 }
11929 }
11930 }
11931 }
11932 }
11933
11934 if (!keep_in_target)
11935 {
11936 if (remove_breakpoint (old_loc))
11937 {
11938 /* This is just about all we can do. We could keep
11939 this location on the global list, and try to
11940 remove it next time, but there's no particular
11941 reason why we will succeed next time.
11942
11943 Note that at this point, old_loc->owner is still
11944 valid, as delete_breakpoint frees the breakpoint
11945 only after calling us. */
11946 printf_filtered (_("warning: Error removing "
11947 "breakpoint %d\n"),
11948 old_loc->owner->number);
11949 }
11950 removed = 1;
11951 }
11952 }
11953
11954 if (!found_object)
11955 {
11956 if (removed && target_is_non_stop_p ()
11957 && need_moribund_for_location_type (old_loc))
11958 {
11959 /* This location was removed from the target. In
11960 non-stop mode, a race condition is possible where
11961 we've removed a breakpoint, but stop events for that
11962 breakpoint are already queued and will arrive later.
11963 We apply an heuristic to be able to distinguish such
11964 SIGTRAPs from other random SIGTRAPs: we keep this
11965 breakpoint location for a bit, and will retire it
11966 after we see some number of events. The theory here
11967 is that reporting of events should, "on the average",
11968 be fair, so after a while we'll see events from all
11969 threads that have anything of interest, and no longer
11970 need to keep this breakpoint location around. We
11971 don't hold locations forever so to reduce chances of
11972 mistaking a non-breakpoint SIGTRAP for a breakpoint
11973 SIGTRAP.
11974
11975 The heuristic failing can be disastrous on
11976 decr_pc_after_break targets.
11977
11978 On decr_pc_after_break targets, like e.g., x86-linux,
11979 if we fail to recognize a late breakpoint SIGTRAP,
11980 because events_till_retirement has reached 0 too
11981 soon, we'll fail to do the PC adjustment, and report
11982 a random SIGTRAP to the user. When the user resumes
11983 the inferior, it will most likely immediately crash
11984 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11985 corrupted, because of being resumed e.g., in the
11986 middle of a multi-byte instruction, or skipped a
11987 one-byte instruction. This was actually seen happen
11988 on native x86-linux, and should be less rare on
11989 targets that do not support new thread events, like
11990 remote, due to the heuristic depending on
11991 thread_count.
11992
11993 Mistaking a random SIGTRAP for a breakpoint trap
11994 causes similar symptoms (PC adjustment applied when
11995 it shouldn't), but then again, playing with SIGTRAPs
11996 behind the debugger's back is asking for trouble.
11997
11998 Since hardware watchpoint traps are always
11999 distinguishable from other traps, so we don't need to
12000 apply keep hardware watchpoint moribund locations
12001 around. We simply always ignore hardware watchpoint
12002 traps we can no longer explain. */
12003
12004 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12005 old_loc->owner = NULL;
12006
12007 moribund_locations.push_back (old_loc);
12008 }
12009 else
12010 {
12011 old_loc->owner = NULL;
12012 decref_bp_location (&old_loc);
12013 }
12014 }
12015 }
12016
12017 /* Rescan breakpoints at the same address and section, marking the
12018 first one as "first" and any others as "duplicates". This is so
12019 that the bpt instruction is only inserted once. If we have a
12020 permanent breakpoint at the same place as BPT, make that one the
12021 official one, and the rest as duplicates. Permanent breakpoints
12022 are sorted first for the same address.
12023
12024 Do the same for hardware watchpoints, but also considering the
12025 watchpoint's type (regular/access/read) and length. */
12026
12027 bp_loc_first = NULL;
12028 wp_loc_first = NULL;
12029 awp_loc_first = NULL;
12030 rwp_loc_first = NULL;
12031 ALL_BP_LOCATIONS (loc, locp)
12032 {
12033 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12034 non-NULL. */
12035 struct bp_location **loc_first_p;
12036 b = loc->owner;
12037
12038 if (!unduplicated_should_be_inserted (loc)
12039 || !breakpoint_address_is_meaningful (b)
12040 /* Don't detect duplicate for tracepoint locations because they are
12041 never duplicated. See the comments in field `duplicate' of
12042 `struct bp_location'. */
12043 || is_tracepoint (b))
12044 {
12045 /* Clear the condition modification flag. */
12046 loc->condition_changed = condition_unchanged;
12047 continue;
12048 }
12049
12050 if (b->type == bp_hardware_watchpoint)
12051 loc_first_p = &wp_loc_first;
12052 else if (b->type == bp_read_watchpoint)
12053 loc_first_p = &rwp_loc_first;
12054 else if (b->type == bp_access_watchpoint)
12055 loc_first_p = &awp_loc_first;
12056 else
12057 loc_first_p = &bp_loc_first;
12058
12059 if (*loc_first_p == NULL
12060 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12061 || !breakpoint_locations_match (loc, *loc_first_p))
12062 {
12063 *loc_first_p = loc;
12064 loc->duplicate = 0;
12065
12066 if (is_breakpoint (loc->owner) && loc->condition_changed)
12067 {
12068 loc->needs_update = 1;
12069 /* Clear the condition modification flag. */
12070 loc->condition_changed = condition_unchanged;
12071 }
12072 continue;
12073 }
12074
12075
12076 /* This and the above ensure the invariant that the first location
12077 is not duplicated, and is the inserted one.
12078 All following are marked as duplicated, and are not inserted. */
12079 if (loc->inserted)
12080 swap_insertion (loc, *loc_first_p);
12081 loc->duplicate = 1;
12082
12083 /* Clear the condition modification flag. */
12084 loc->condition_changed = condition_unchanged;
12085 }
12086
12087 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12088 {
12089 if (insert_mode != UGLL_DONT_INSERT)
12090 insert_breakpoint_locations ();
12091 else
12092 {
12093 /* Even though the caller told us to not insert new
12094 locations, we may still need to update conditions on the
12095 target's side of breakpoints that were already inserted
12096 if the target is evaluating breakpoint conditions. We
12097 only update conditions for locations that are marked
12098 "needs_update". */
12099 update_inserted_breakpoint_locations ();
12100 }
12101 }
12102
12103 if (insert_mode != UGLL_DONT_INSERT)
12104 download_tracepoint_locations ();
12105 }
12106
12107 void
12108 breakpoint_retire_moribund (void)
12109 {
12110 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12111 {
12112 struct bp_location *loc = moribund_locations[ix];
12113 if (--(loc->events_till_retirement) == 0)
12114 {
12115 decref_bp_location (&loc);
12116 unordered_remove (moribund_locations, ix);
12117 --ix;
12118 }
12119 }
12120 }
12121
12122 static void
12123 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12124 {
12125
12126 TRY
12127 {
12128 update_global_location_list (insert_mode);
12129 }
12130 CATCH (e, RETURN_MASK_ERROR)
12131 {
12132 }
12133 END_CATCH
12134 }
12135
12136 /* Clear BKP from a BPS. */
12137
12138 static void
12139 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12140 {
12141 bpstat bs;
12142
12143 for (bs = bps; bs; bs = bs->next)
12144 if (bs->breakpoint_at == bpt)
12145 {
12146 bs->breakpoint_at = NULL;
12147 bs->old_val = NULL;
12148 /* bs->commands will be freed later. */
12149 }
12150 }
12151
12152 /* Callback for iterate_over_threads. */
12153 static int
12154 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12155 {
12156 struct breakpoint *bpt = (struct breakpoint *) data;
12157
12158 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12159 return 0;
12160 }
12161
12162 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12163 callbacks. */
12164
12165 static void
12166 say_where (struct breakpoint *b)
12167 {
12168 struct value_print_options opts;
12169
12170 get_user_print_options (&opts);
12171
12172 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12173 single string. */
12174 if (b->loc == NULL)
12175 {
12176 /* For pending locations, the output differs slightly based
12177 on b->extra_string. If this is non-NULL, it contains either
12178 a condition or dprintf arguments. */
12179 if (b->extra_string == NULL)
12180 {
12181 printf_filtered (_(" (%s) pending."),
12182 event_location_to_string (b->location.get ()));
12183 }
12184 else if (b->type == bp_dprintf)
12185 {
12186 printf_filtered (_(" (%s,%s) pending."),
12187 event_location_to_string (b->location.get ()),
12188 b->extra_string);
12189 }
12190 else
12191 {
12192 printf_filtered (_(" (%s %s) pending."),
12193 event_location_to_string (b->location.get ()),
12194 b->extra_string);
12195 }
12196 }
12197 else
12198 {
12199 if (opts.addressprint || b->loc->symtab == NULL)
12200 {
12201 printf_filtered (" at ");
12202 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12203 gdb_stdout);
12204 }
12205 if (b->loc->symtab != NULL)
12206 {
12207 /* If there is a single location, we can print the location
12208 more nicely. */
12209 if (b->loc->next == NULL)
12210 printf_filtered (": file %s, line %d.",
12211 symtab_to_filename_for_display (b->loc->symtab),
12212 b->loc->line_number);
12213 else
12214 /* This is not ideal, but each location may have a
12215 different file name, and this at least reflects the
12216 real situation somewhat. */
12217 printf_filtered (": %s.",
12218 event_location_to_string (b->location.get ()));
12219 }
12220
12221 if (b->loc->next)
12222 {
12223 struct bp_location *loc = b->loc;
12224 int n = 0;
12225 for (; loc; loc = loc->next)
12226 ++n;
12227 printf_filtered (" (%d locations)", n);
12228 }
12229 }
12230 }
12231
12232 /* Default bp_location_ops methods. */
12233
12234 static void
12235 bp_location_dtor (struct bp_location *self)
12236 {
12237 xfree (self->function_name);
12238 }
12239
12240 static const struct bp_location_ops bp_location_ops =
12241 {
12242 bp_location_dtor
12243 };
12244
12245 /* Destructor for the breakpoint base class. */
12246
12247 breakpoint::~breakpoint ()
12248 {
12249 xfree (this->cond_string);
12250 xfree (this->extra_string);
12251 xfree (this->filter);
12252 }
12253
12254 static struct bp_location *
12255 base_breakpoint_allocate_location (struct breakpoint *self)
12256 {
12257 return new bp_location (&bp_location_ops, self);
12258 }
12259
12260 static void
12261 base_breakpoint_re_set (struct breakpoint *b)
12262 {
12263 /* Nothing to re-set. */
12264 }
12265
12266 #define internal_error_pure_virtual_called() \
12267 gdb_assert_not_reached ("pure virtual function called")
12268
12269 static int
12270 base_breakpoint_insert_location (struct bp_location *bl)
12271 {
12272 internal_error_pure_virtual_called ();
12273 }
12274
12275 static int
12276 base_breakpoint_remove_location (struct bp_location *bl,
12277 enum remove_bp_reason reason)
12278 {
12279 internal_error_pure_virtual_called ();
12280 }
12281
12282 static int
12283 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12284 const address_space *aspace,
12285 CORE_ADDR bp_addr,
12286 const struct target_waitstatus *ws)
12287 {
12288 internal_error_pure_virtual_called ();
12289 }
12290
12291 static void
12292 base_breakpoint_check_status (bpstat bs)
12293 {
12294 /* Always stop. */
12295 }
12296
12297 /* A "works_in_software_mode" breakpoint_ops method that just internal
12298 errors. */
12299
12300 static int
12301 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12302 {
12303 internal_error_pure_virtual_called ();
12304 }
12305
12306 /* A "resources_needed" breakpoint_ops method that just internal
12307 errors. */
12308
12309 static int
12310 base_breakpoint_resources_needed (const struct bp_location *bl)
12311 {
12312 internal_error_pure_virtual_called ();
12313 }
12314
12315 static enum print_stop_action
12316 base_breakpoint_print_it (bpstat bs)
12317 {
12318 internal_error_pure_virtual_called ();
12319 }
12320
12321 static void
12322 base_breakpoint_print_one_detail (const struct breakpoint *self,
12323 struct ui_out *uiout)
12324 {
12325 /* nothing */
12326 }
12327
12328 static void
12329 base_breakpoint_print_mention (struct breakpoint *b)
12330 {
12331 internal_error_pure_virtual_called ();
12332 }
12333
12334 static void
12335 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12336 {
12337 internal_error_pure_virtual_called ();
12338 }
12339
12340 static void
12341 base_breakpoint_create_sals_from_location
12342 (const struct event_location *location,
12343 struct linespec_result *canonical,
12344 enum bptype type_wanted)
12345 {
12346 internal_error_pure_virtual_called ();
12347 }
12348
12349 static void
12350 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12351 struct linespec_result *c,
12352 gdb::unique_xmalloc_ptr<char> cond_string,
12353 gdb::unique_xmalloc_ptr<char> extra_string,
12354 enum bptype type_wanted,
12355 enum bpdisp disposition,
12356 int thread,
12357 int task, int ignore_count,
12358 const struct breakpoint_ops *o,
12359 int from_tty, int enabled,
12360 int internal, unsigned flags)
12361 {
12362 internal_error_pure_virtual_called ();
12363 }
12364
12365 static std::vector<symtab_and_line>
12366 base_breakpoint_decode_location (struct breakpoint *b,
12367 const struct event_location *location,
12368 struct program_space *search_pspace)
12369 {
12370 internal_error_pure_virtual_called ();
12371 }
12372
12373 /* The default 'explains_signal' method. */
12374
12375 static int
12376 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12377 {
12378 return 1;
12379 }
12380
12381 /* The default "after_condition_true" method. */
12382
12383 static void
12384 base_breakpoint_after_condition_true (struct bpstats *bs)
12385 {
12386 /* Nothing to do. */
12387 }
12388
12389 struct breakpoint_ops base_breakpoint_ops =
12390 {
12391 base_breakpoint_allocate_location,
12392 base_breakpoint_re_set,
12393 base_breakpoint_insert_location,
12394 base_breakpoint_remove_location,
12395 base_breakpoint_breakpoint_hit,
12396 base_breakpoint_check_status,
12397 base_breakpoint_resources_needed,
12398 base_breakpoint_works_in_software_mode,
12399 base_breakpoint_print_it,
12400 NULL,
12401 base_breakpoint_print_one_detail,
12402 base_breakpoint_print_mention,
12403 base_breakpoint_print_recreate,
12404 base_breakpoint_create_sals_from_location,
12405 base_breakpoint_create_breakpoints_sal,
12406 base_breakpoint_decode_location,
12407 base_breakpoint_explains_signal,
12408 base_breakpoint_after_condition_true,
12409 };
12410
12411 /* Default breakpoint_ops methods. */
12412
12413 static void
12414 bkpt_re_set (struct breakpoint *b)
12415 {
12416 /* FIXME: is this still reachable? */
12417 if (breakpoint_event_location_empty_p (b))
12418 {
12419 /* Anything without a location can't be re-set. */
12420 delete_breakpoint (b);
12421 return;
12422 }
12423
12424 breakpoint_re_set_default (b);
12425 }
12426
12427 static int
12428 bkpt_insert_location (struct bp_location *bl)
12429 {
12430 CORE_ADDR addr = bl->target_info.reqstd_address;
12431
12432 bl->target_info.kind = breakpoint_kind (bl, &addr);
12433 bl->target_info.placed_address = addr;
12434
12435 if (bl->loc_type == bp_loc_hardware_breakpoint)
12436 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12437 else
12438 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12439 }
12440
12441 static int
12442 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12443 {
12444 if (bl->loc_type == bp_loc_hardware_breakpoint)
12445 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12446 else
12447 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12448 }
12449
12450 static int
12451 bkpt_breakpoint_hit (const struct bp_location *bl,
12452 const address_space *aspace, CORE_ADDR bp_addr,
12453 const struct target_waitstatus *ws)
12454 {
12455 if (ws->kind != TARGET_WAITKIND_STOPPED
12456 || ws->value.sig != GDB_SIGNAL_TRAP)
12457 return 0;
12458
12459 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12460 aspace, bp_addr))
12461 return 0;
12462
12463 if (overlay_debugging /* unmapped overlay section */
12464 && section_is_overlay (bl->section)
12465 && !section_is_mapped (bl->section))
12466 return 0;
12467
12468 return 1;
12469 }
12470
12471 static int
12472 dprintf_breakpoint_hit (const struct bp_location *bl,
12473 const address_space *aspace, CORE_ADDR bp_addr,
12474 const struct target_waitstatus *ws)
12475 {
12476 if (dprintf_style == dprintf_style_agent
12477 && target_can_run_breakpoint_commands ())
12478 {
12479 /* An agent-style dprintf never causes a stop. If we see a trap
12480 for this address it must be for a breakpoint that happens to
12481 be set at the same address. */
12482 return 0;
12483 }
12484
12485 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12486 }
12487
12488 static int
12489 bkpt_resources_needed (const struct bp_location *bl)
12490 {
12491 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12492
12493 return 1;
12494 }
12495
12496 static enum print_stop_action
12497 bkpt_print_it (bpstat bs)
12498 {
12499 struct breakpoint *b;
12500 const struct bp_location *bl;
12501 int bp_temp;
12502 struct ui_out *uiout = current_uiout;
12503
12504 gdb_assert (bs->bp_location_at != NULL);
12505
12506 bl = bs->bp_location_at;
12507 b = bs->breakpoint_at;
12508
12509 bp_temp = b->disposition == disp_del;
12510 if (bl->address != bl->requested_address)
12511 breakpoint_adjustment_warning (bl->requested_address,
12512 bl->address,
12513 b->number, 1);
12514 annotate_breakpoint (b->number);
12515 maybe_print_thread_hit_breakpoint (uiout);
12516
12517 if (bp_temp)
12518 uiout->text ("Temporary breakpoint ");
12519 else
12520 uiout->text ("Breakpoint ");
12521 if (uiout->is_mi_like_p ())
12522 {
12523 uiout->field_string ("reason",
12524 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12525 uiout->field_string ("disp", bpdisp_text (b->disposition));
12526 }
12527 uiout->field_int ("bkptno", b->number);
12528 uiout->text (", ");
12529
12530 return PRINT_SRC_AND_LOC;
12531 }
12532
12533 static void
12534 bkpt_print_mention (struct breakpoint *b)
12535 {
12536 if (current_uiout->is_mi_like_p ())
12537 return;
12538
12539 switch (b->type)
12540 {
12541 case bp_breakpoint:
12542 case bp_gnu_ifunc_resolver:
12543 if (b->disposition == disp_del)
12544 printf_filtered (_("Temporary breakpoint"));
12545 else
12546 printf_filtered (_("Breakpoint"));
12547 printf_filtered (_(" %d"), b->number);
12548 if (b->type == bp_gnu_ifunc_resolver)
12549 printf_filtered (_(" at gnu-indirect-function resolver"));
12550 break;
12551 case bp_hardware_breakpoint:
12552 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12553 break;
12554 case bp_dprintf:
12555 printf_filtered (_("Dprintf %d"), b->number);
12556 break;
12557 }
12558
12559 say_where (b);
12560 }
12561
12562 static void
12563 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12564 {
12565 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12566 fprintf_unfiltered (fp, "tbreak");
12567 else if (tp->type == bp_breakpoint)
12568 fprintf_unfiltered (fp, "break");
12569 else if (tp->type == bp_hardware_breakpoint
12570 && tp->disposition == disp_del)
12571 fprintf_unfiltered (fp, "thbreak");
12572 else if (tp->type == bp_hardware_breakpoint)
12573 fprintf_unfiltered (fp, "hbreak");
12574 else
12575 internal_error (__FILE__, __LINE__,
12576 _("unhandled breakpoint type %d"), (int) tp->type);
12577
12578 fprintf_unfiltered (fp, " %s",
12579 event_location_to_string (tp->location.get ()));
12580
12581 /* Print out extra_string if this breakpoint is pending. It might
12582 contain, for example, conditions that were set by the user. */
12583 if (tp->loc == NULL && tp->extra_string != NULL)
12584 fprintf_unfiltered (fp, " %s", tp->extra_string);
12585
12586 print_recreate_thread (tp, fp);
12587 }
12588
12589 static void
12590 bkpt_create_sals_from_location (const struct event_location *location,
12591 struct linespec_result *canonical,
12592 enum bptype type_wanted)
12593 {
12594 create_sals_from_location_default (location, canonical, type_wanted);
12595 }
12596
12597 static void
12598 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12599 struct linespec_result *canonical,
12600 gdb::unique_xmalloc_ptr<char> cond_string,
12601 gdb::unique_xmalloc_ptr<char> extra_string,
12602 enum bptype type_wanted,
12603 enum bpdisp disposition,
12604 int thread,
12605 int task, int ignore_count,
12606 const struct breakpoint_ops *ops,
12607 int from_tty, int enabled,
12608 int internal, unsigned flags)
12609 {
12610 create_breakpoints_sal_default (gdbarch, canonical,
12611 std::move (cond_string),
12612 std::move (extra_string),
12613 type_wanted,
12614 disposition, thread, task,
12615 ignore_count, ops, from_tty,
12616 enabled, internal, flags);
12617 }
12618
12619 static std::vector<symtab_and_line>
12620 bkpt_decode_location (struct breakpoint *b,
12621 const struct event_location *location,
12622 struct program_space *search_pspace)
12623 {
12624 return decode_location_default (b, location, search_pspace);
12625 }
12626
12627 /* Virtual table for internal breakpoints. */
12628
12629 static void
12630 internal_bkpt_re_set (struct breakpoint *b)
12631 {
12632 switch (b->type)
12633 {
12634 /* Delete overlay event and longjmp master breakpoints; they
12635 will be reset later by breakpoint_re_set. */
12636 case bp_overlay_event:
12637 case bp_longjmp_master:
12638 case bp_std_terminate_master:
12639 case bp_exception_master:
12640 delete_breakpoint (b);
12641 break;
12642
12643 /* This breakpoint is special, it's set up when the inferior
12644 starts and we really don't want to touch it. */
12645 case bp_shlib_event:
12646
12647 /* Like bp_shlib_event, this breakpoint type is special. Once
12648 it is set up, we do not want to touch it. */
12649 case bp_thread_event:
12650 break;
12651 }
12652 }
12653
12654 static void
12655 internal_bkpt_check_status (bpstat bs)
12656 {
12657 if (bs->breakpoint_at->type == bp_shlib_event)
12658 {
12659 /* If requested, stop when the dynamic linker notifies GDB of
12660 events. This allows the user to get control and place
12661 breakpoints in initializer routines for dynamically loaded
12662 objects (among other things). */
12663 bs->stop = stop_on_solib_events;
12664 bs->print = stop_on_solib_events;
12665 }
12666 else
12667 bs->stop = 0;
12668 }
12669
12670 static enum print_stop_action
12671 internal_bkpt_print_it (bpstat bs)
12672 {
12673 struct breakpoint *b;
12674
12675 b = bs->breakpoint_at;
12676
12677 switch (b->type)
12678 {
12679 case bp_shlib_event:
12680 /* Did we stop because the user set the stop_on_solib_events
12681 variable? (If so, we report this as a generic, "Stopped due
12682 to shlib event" message.) */
12683 print_solib_event (0);
12684 break;
12685
12686 case bp_thread_event:
12687 /* Not sure how we will get here.
12688 GDB should not stop for these breakpoints. */
12689 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12690 break;
12691
12692 case bp_overlay_event:
12693 /* By analogy with the thread event, GDB should not stop for these. */
12694 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12695 break;
12696
12697 case bp_longjmp_master:
12698 /* These should never be enabled. */
12699 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12700 break;
12701
12702 case bp_std_terminate_master:
12703 /* These should never be enabled. */
12704 printf_filtered (_("std::terminate Master Breakpoint: "
12705 "gdb should not stop!\n"));
12706 break;
12707
12708 case bp_exception_master:
12709 /* These should never be enabled. */
12710 printf_filtered (_("Exception Master Breakpoint: "
12711 "gdb should not stop!\n"));
12712 break;
12713 }
12714
12715 return PRINT_NOTHING;
12716 }
12717
12718 static void
12719 internal_bkpt_print_mention (struct breakpoint *b)
12720 {
12721 /* Nothing to mention. These breakpoints are internal. */
12722 }
12723
12724 /* Virtual table for momentary breakpoints */
12725
12726 static void
12727 momentary_bkpt_re_set (struct breakpoint *b)
12728 {
12729 /* Keep temporary breakpoints, which can be encountered when we step
12730 over a dlopen call and solib_add is resetting the breakpoints.
12731 Otherwise these should have been blown away via the cleanup chain
12732 or by breakpoint_init_inferior when we rerun the executable. */
12733 }
12734
12735 static void
12736 momentary_bkpt_check_status (bpstat bs)
12737 {
12738 /* Nothing. The point of these breakpoints is causing a stop. */
12739 }
12740
12741 static enum print_stop_action
12742 momentary_bkpt_print_it (bpstat bs)
12743 {
12744 return PRINT_UNKNOWN;
12745 }
12746
12747 static void
12748 momentary_bkpt_print_mention (struct breakpoint *b)
12749 {
12750 /* Nothing to mention. These breakpoints are internal. */
12751 }
12752
12753 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12754
12755 It gets cleared already on the removal of the first one of such placed
12756 breakpoints. This is OK as they get all removed altogether. */
12757
12758 longjmp_breakpoint::~longjmp_breakpoint ()
12759 {
12760 thread_info *tp = find_thread_global_id (this->thread);
12761
12762 if (tp != NULL)
12763 tp->initiating_frame = null_frame_id;
12764 }
12765
12766 /* Specific methods for probe breakpoints. */
12767
12768 static int
12769 bkpt_probe_insert_location (struct bp_location *bl)
12770 {
12771 int v = bkpt_insert_location (bl);
12772
12773 if (v == 0)
12774 {
12775 /* The insertion was successful, now let's set the probe's semaphore
12776 if needed. */
12777 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12778 }
12779
12780 return v;
12781 }
12782
12783 static int
12784 bkpt_probe_remove_location (struct bp_location *bl,
12785 enum remove_bp_reason reason)
12786 {
12787 /* Let's clear the semaphore before removing the location. */
12788 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12789
12790 return bkpt_remove_location (bl, reason);
12791 }
12792
12793 static void
12794 bkpt_probe_create_sals_from_location (const struct event_location *location,
12795 struct linespec_result *canonical,
12796 enum bptype type_wanted)
12797 {
12798 struct linespec_sals lsal;
12799
12800 lsal.sals = parse_probes (location, NULL, canonical);
12801 lsal.canonical
12802 = xstrdup (event_location_to_string (canonical->location.get ()));
12803 canonical->lsals.push_back (std::move (lsal));
12804 }
12805
12806 static std::vector<symtab_and_line>
12807 bkpt_probe_decode_location (struct breakpoint *b,
12808 const struct event_location *location,
12809 struct program_space *search_pspace)
12810 {
12811 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12812 if (sals.empty ())
12813 error (_("probe not found"));
12814 return sals;
12815 }
12816
12817 /* The breakpoint_ops structure to be used in tracepoints. */
12818
12819 static void
12820 tracepoint_re_set (struct breakpoint *b)
12821 {
12822 breakpoint_re_set_default (b);
12823 }
12824
12825 static int
12826 tracepoint_breakpoint_hit (const struct bp_location *bl,
12827 const address_space *aspace, CORE_ADDR bp_addr,
12828 const struct target_waitstatus *ws)
12829 {
12830 /* By definition, the inferior does not report stops at
12831 tracepoints. */
12832 return 0;
12833 }
12834
12835 static void
12836 tracepoint_print_one_detail (const struct breakpoint *self,
12837 struct ui_out *uiout)
12838 {
12839 struct tracepoint *tp = (struct tracepoint *) self;
12840 if (!tp->static_trace_marker_id.empty ())
12841 {
12842 gdb_assert (self->type == bp_static_tracepoint);
12843
12844 uiout->text ("\tmarker id is ");
12845 uiout->field_string ("static-tracepoint-marker-string-id",
12846 tp->static_trace_marker_id);
12847 uiout->text ("\n");
12848 }
12849 }
12850
12851 static void
12852 tracepoint_print_mention (struct breakpoint *b)
12853 {
12854 if (current_uiout->is_mi_like_p ())
12855 return;
12856
12857 switch (b->type)
12858 {
12859 case bp_tracepoint:
12860 printf_filtered (_("Tracepoint"));
12861 printf_filtered (_(" %d"), b->number);
12862 break;
12863 case bp_fast_tracepoint:
12864 printf_filtered (_("Fast tracepoint"));
12865 printf_filtered (_(" %d"), b->number);
12866 break;
12867 case bp_static_tracepoint:
12868 printf_filtered (_("Static tracepoint"));
12869 printf_filtered (_(" %d"), b->number);
12870 break;
12871 default:
12872 internal_error (__FILE__, __LINE__,
12873 _("unhandled tracepoint type %d"), (int) b->type);
12874 }
12875
12876 say_where (b);
12877 }
12878
12879 static void
12880 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12881 {
12882 struct tracepoint *tp = (struct tracepoint *) self;
12883
12884 if (self->type == bp_fast_tracepoint)
12885 fprintf_unfiltered (fp, "ftrace");
12886 else if (self->type == bp_static_tracepoint)
12887 fprintf_unfiltered (fp, "strace");
12888 else if (self->type == bp_tracepoint)
12889 fprintf_unfiltered (fp, "trace");
12890 else
12891 internal_error (__FILE__, __LINE__,
12892 _("unhandled tracepoint type %d"), (int) self->type);
12893
12894 fprintf_unfiltered (fp, " %s",
12895 event_location_to_string (self->location.get ()));
12896 print_recreate_thread (self, fp);
12897
12898 if (tp->pass_count)
12899 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12900 }
12901
12902 static void
12903 tracepoint_create_sals_from_location (const struct event_location *location,
12904 struct linespec_result *canonical,
12905 enum bptype type_wanted)
12906 {
12907 create_sals_from_location_default (location, canonical, type_wanted);
12908 }
12909
12910 static void
12911 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12912 struct linespec_result *canonical,
12913 gdb::unique_xmalloc_ptr<char> cond_string,
12914 gdb::unique_xmalloc_ptr<char> extra_string,
12915 enum bptype type_wanted,
12916 enum bpdisp disposition,
12917 int thread,
12918 int task, int ignore_count,
12919 const struct breakpoint_ops *ops,
12920 int from_tty, int enabled,
12921 int internal, unsigned flags)
12922 {
12923 create_breakpoints_sal_default (gdbarch, canonical,
12924 std::move (cond_string),
12925 std::move (extra_string),
12926 type_wanted,
12927 disposition, thread, task,
12928 ignore_count, ops, from_tty,
12929 enabled, internal, flags);
12930 }
12931
12932 static std::vector<symtab_and_line>
12933 tracepoint_decode_location (struct breakpoint *b,
12934 const struct event_location *location,
12935 struct program_space *search_pspace)
12936 {
12937 return decode_location_default (b, location, search_pspace);
12938 }
12939
12940 struct breakpoint_ops tracepoint_breakpoint_ops;
12941
12942 /* The breakpoint_ops structure to be use on tracepoints placed in a
12943 static probe. */
12944
12945 static void
12946 tracepoint_probe_create_sals_from_location
12947 (const struct event_location *location,
12948 struct linespec_result *canonical,
12949 enum bptype type_wanted)
12950 {
12951 /* We use the same method for breakpoint on probes. */
12952 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12953 }
12954
12955 static std::vector<symtab_and_line>
12956 tracepoint_probe_decode_location (struct breakpoint *b,
12957 const struct event_location *location,
12958 struct program_space *search_pspace)
12959 {
12960 /* We use the same method for breakpoint on probes. */
12961 return bkpt_probe_decode_location (b, location, search_pspace);
12962 }
12963
12964 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12965
12966 /* Dprintf breakpoint_ops methods. */
12967
12968 static void
12969 dprintf_re_set (struct breakpoint *b)
12970 {
12971 breakpoint_re_set_default (b);
12972
12973 /* extra_string should never be non-NULL for dprintf. */
12974 gdb_assert (b->extra_string != NULL);
12975
12976 /* 1 - connect to target 1, that can run breakpoint commands.
12977 2 - create a dprintf, which resolves fine.
12978 3 - disconnect from target 1
12979 4 - connect to target 2, that can NOT run breakpoint commands.
12980
12981 After steps #3/#4, you'll want the dprintf command list to
12982 be updated, because target 1 and 2 may well return different
12983 answers for target_can_run_breakpoint_commands().
12984 Given absence of finer grained resetting, we get to do
12985 it all the time. */
12986 if (b->extra_string != NULL)
12987 update_dprintf_command_list (b);
12988 }
12989
12990 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12991
12992 static void
12993 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12994 {
12995 fprintf_unfiltered (fp, "dprintf %s,%s",
12996 event_location_to_string (tp->location.get ()),
12997 tp->extra_string);
12998 print_recreate_thread (tp, fp);
12999 }
13000
13001 /* Implement the "after_condition_true" breakpoint_ops method for
13002 dprintf.
13003
13004 dprintf's are implemented with regular commands in their command
13005 list, but we run the commands here instead of before presenting the
13006 stop to the user, as dprintf's don't actually cause a stop. This
13007 also makes it so that the commands of multiple dprintfs at the same
13008 address are all handled. */
13009
13010 static void
13011 dprintf_after_condition_true (struct bpstats *bs)
13012 {
13013 struct bpstats tmp_bs;
13014 struct bpstats *tmp_bs_p = &tmp_bs;
13015
13016 /* dprintf's never cause a stop. This wasn't set in the
13017 check_status hook instead because that would make the dprintf's
13018 condition not be evaluated. */
13019 bs->stop = 0;
13020
13021 /* Run the command list here. Take ownership of it instead of
13022 copying. We never want these commands to run later in
13023 bpstat_do_actions, if a breakpoint that causes a stop happens to
13024 be set at same address as this dprintf, or even if running the
13025 commands here throws. */
13026 tmp_bs.commands = bs->commands;
13027 bs->commands = NULL;
13028
13029 bpstat_do_actions_1 (&tmp_bs_p);
13030
13031 /* 'tmp_bs.commands' will usually be NULL by now, but
13032 bpstat_do_actions_1 may return early without processing the whole
13033 list. */
13034 }
13035
13036 /* The breakpoint_ops structure to be used on static tracepoints with
13037 markers (`-m'). */
13038
13039 static void
13040 strace_marker_create_sals_from_location (const struct event_location *location,
13041 struct linespec_result *canonical,
13042 enum bptype type_wanted)
13043 {
13044 struct linespec_sals lsal;
13045 const char *arg_start, *arg;
13046
13047 arg = arg_start = get_linespec_location (location)->spec_string;
13048 lsal.sals = decode_static_tracepoint_spec (&arg);
13049
13050 std::string str (arg_start, arg - arg_start);
13051 const char *ptr = str.c_str ();
13052 canonical->location
13053 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13054
13055 lsal.canonical
13056 = xstrdup (event_location_to_string (canonical->location.get ()));
13057 canonical->lsals.push_back (std::move (lsal));
13058 }
13059
13060 static void
13061 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13062 struct linespec_result *canonical,
13063 gdb::unique_xmalloc_ptr<char> cond_string,
13064 gdb::unique_xmalloc_ptr<char> extra_string,
13065 enum bptype type_wanted,
13066 enum bpdisp disposition,
13067 int thread,
13068 int task, int ignore_count,
13069 const struct breakpoint_ops *ops,
13070 int from_tty, int enabled,
13071 int internal, unsigned flags)
13072 {
13073 const linespec_sals &lsal = canonical->lsals[0];
13074
13075 /* If the user is creating a static tracepoint by marker id
13076 (strace -m MARKER_ID), then store the sals index, so that
13077 breakpoint_re_set can try to match up which of the newly
13078 found markers corresponds to this one, and, don't try to
13079 expand multiple locations for each sal, given than SALS
13080 already should contain all sals for MARKER_ID. */
13081
13082 for (size_t i = 0; i < lsal.sals.size (); i++)
13083 {
13084 event_location_up location
13085 = copy_event_location (canonical->location.get ());
13086
13087 std::unique_ptr<tracepoint> tp (new tracepoint ());
13088 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13089 std::move (location), NULL,
13090 std::move (cond_string),
13091 std::move (extra_string),
13092 type_wanted, disposition,
13093 thread, task, ignore_count, ops,
13094 from_tty, enabled, internal, flags,
13095 canonical->special_display);
13096 /* Given that its possible to have multiple markers with
13097 the same string id, if the user is creating a static
13098 tracepoint by marker id ("strace -m MARKER_ID"), then
13099 store the sals index, so that breakpoint_re_set can
13100 try to match up which of the newly found markers
13101 corresponds to this one */
13102 tp->static_trace_marker_id_idx = i;
13103
13104 install_breakpoint (internal, std::move (tp), 0);
13105 }
13106 }
13107
13108 static std::vector<symtab_and_line>
13109 strace_marker_decode_location (struct breakpoint *b,
13110 const struct event_location *location,
13111 struct program_space *search_pspace)
13112 {
13113 struct tracepoint *tp = (struct tracepoint *) b;
13114 const char *s = get_linespec_location (location)->spec_string;
13115
13116 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13117 if (sals.size () > tp->static_trace_marker_id_idx)
13118 {
13119 sals[0] = sals[tp->static_trace_marker_id_idx];
13120 sals.resize (1);
13121 return sals;
13122 }
13123 else
13124 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13125 }
13126
13127 static struct breakpoint_ops strace_marker_breakpoint_ops;
13128
13129 static int
13130 strace_marker_p (struct breakpoint *b)
13131 {
13132 return b->ops == &strace_marker_breakpoint_ops;
13133 }
13134
13135 /* Delete a breakpoint and clean up all traces of it in the data
13136 structures. */
13137
13138 void
13139 delete_breakpoint (struct breakpoint *bpt)
13140 {
13141 struct breakpoint *b;
13142
13143 gdb_assert (bpt != NULL);
13144
13145 /* Has this bp already been deleted? This can happen because
13146 multiple lists can hold pointers to bp's. bpstat lists are
13147 especial culprits.
13148
13149 One example of this happening is a watchpoint's scope bp. When
13150 the scope bp triggers, we notice that the watchpoint is out of
13151 scope, and delete it. We also delete its scope bp. But the
13152 scope bp is marked "auto-deleting", and is already on a bpstat.
13153 That bpstat is then checked for auto-deleting bp's, which are
13154 deleted.
13155
13156 A real solution to this problem might involve reference counts in
13157 bp's, and/or giving them pointers back to their referencing
13158 bpstat's, and teaching delete_breakpoint to only free a bp's
13159 storage when no more references were extent. A cheaper bandaid
13160 was chosen. */
13161 if (bpt->type == bp_none)
13162 return;
13163
13164 /* At least avoid this stale reference until the reference counting
13165 of breakpoints gets resolved. */
13166 if (bpt->related_breakpoint != bpt)
13167 {
13168 struct breakpoint *related;
13169 struct watchpoint *w;
13170
13171 if (bpt->type == bp_watchpoint_scope)
13172 w = (struct watchpoint *) bpt->related_breakpoint;
13173 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13174 w = (struct watchpoint *) bpt;
13175 else
13176 w = NULL;
13177 if (w != NULL)
13178 watchpoint_del_at_next_stop (w);
13179
13180 /* Unlink bpt from the bpt->related_breakpoint ring. */
13181 for (related = bpt; related->related_breakpoint != bpt;
13182 related = related->related_breakpoint);
13183 related->related_breakpoint = bpt->related_breakpoint;
13184 bpt->related_breakpoint = bpt;
13185 }
13186
13187 /* watch_command_1 creates a watchpoint but only sets its number if
13188 update_watchpoint succeeds in creating its bp_locations. If there's
13189 a problem in that process, we'll be asked to delete the half-created
13190 watchpoint. In that case, don't announce the deletion. */
13191 if (bpt->number)
13192 gdb::observers::breakpoint_deleted.notify (bpt);
13193
13194 if (breakpoint_chain == bpt)
13195 breakpoint_chain = bpt->next;
13196
13197 ALL_BREAKPOINTS (b)
13198 if (b->next == bpt)
13199 {
13200 b->next = bpt->next;
13201 break;
13202 }
13203
13204 /* Be sure no bpstat's are pointing at the breakpoint after it's
13205 been freed. */
13206 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13207 in all threads for now. Note that we cannot just remove bpstats
13208 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13209 commands are associated with the bpstat; if we remove it here,
13210 then the later call to bpstat_do_actions (&stop_bpstat); in
13211 event-top.c won't do anything, and temporary breakpoints with
13212 commands won't work. */
13213
13214 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13215
13216 /* Now that breakpoint is removed from breakpoint list, update the
13217 global location list. This will remove locations that used to
13218 belong to this breakpoint. Do this before freeing the breakpoint
13219 itself, since remove_breakpoint looks at location's owner. It
13220 might be better design to have location completely
13221 self-contained, but it's not the case now. */
13222 update_global_location_list (UGLL_DONT_INSERT);
13223
13224 /* On the chance that someone will soon try again to delete this
13225 same bp, we mark it as deleted before freeing its storage. */
13226 bpt->type = bp_none;
13227 delete bpt;
13228 }
13229
13230 /* Iterator function to call a user-provided callback function once
13231 for each of B and its related breakpoints. */
13232
13233 static void
13234 iterate_over_related_breakpoints (struct breakpoint *b,
13235 gdb::function_view<void (breakpoint *)> function)
13236 {
13237 struct breakpoint *related;
13238
13239 related = b;
13240 do
13241 {
13242 struct breakpoint *next;
13243
13244 /* FUNCTION may delete RELATED. */
13245 next = related->related_breakpoint;
13246
13247 if (next == related)
13248 {
13249 /* RELATED is the last ring entry. */
13250 function (related);
13251
13252 /* FUNCTION may have deleted it, so we'd never reach back to
13253 B. There's nothing left to do anyway, so just break
13254 out. */
13255 break;
13256 }
13257 else
13258 function (related);
13259
13260 related = next;
13261 }
13262 while (related != b);
13263 }
13264
13265 static void
13266 delete_command (const char *arg, int from_tty)
13267 {
13268 struct breakpoint *b, *b_tmp;
13269
13270 dont_repeat ();
13271
13272 if (arg == 0)
13273 {
13274 int breaks_to_delete = 0;
13275
13276 /* Delete all breakpoints if no argument. Do not delete
13277 internal breakpoints, these have to be deleted with an
13278 explicit breakpoint number argument. */
13279 ALL_BREAKPOINTS (b)
13280 if (user_breakpoint_p (b))
13281 {
13282 breaks_to_delete = 1;
13283 break;
13284 }
13285
13286 /* Ask user only if there are some breakpoints to delete. */
13287 if (!from_tty
13288 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13289 {
13290 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13291 if (user_breakpoint_p (b))
13292 delete_breakpoint (b);
13293 }
13294 }
13295 else
13296 map_breakpoint_numbers
13297 (arg, [&] (breakpoint *b)
13298 {
13299 iterate_over_related_breakpoints (b, delete_breakpoint);
13300 });
13301 }
13302
13303 /* Return true if all locations of B bound to PSPACE are pending. If
13304 PSPACE is NULL, all locations of all program spaces are
13305 considered. */
13306
13307 static int
13308 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13309 {
13310 struct bp_location *loc;
13311
13312 for (loc = b->loc; loc != NULL; loc = loc->next)
13313 if ((pspace == NULL
13314 || loc->pspace == pspace)
13315 && !loc->shlib_disabled
13316 && !loc->pspace->executing_startup)
13317 return 0;
13318 return 1;
13319 }
13320
13321 /* Subroutine of update_breakpoint_locations to simplify it.
13322 Return non-zero if multiple fns in list LOC have the same name.
13323 Null names are ignored. */
13324
13325 static int
13326 ambiguous_names_p (struct bp_location *loc)
13327 {
13328 struct bp_location *l;
13329 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13330 xcalloc, xfree);
13331
13332 for (l = loc; l != NULL; l = l->next)
13333 {
13334 const char **slot;
13335 const char *name = l->function_name;
13336
13337 /* Allow for some names to be NULL, ignore them. */
13338 if (name == NULL)
13339 continue;
13340
13341 slot = (const char **) htab_find_slot (htab, (const void *) name,
13342 INSERT);
13343 /* NOTE: We can assume slot != NULL here because xcalloc never
13344 returns NULL. */
13345 if (*slot != NULL)
13346 {
13347 htab_delete (htab);
13348 return 1;
13349 }
13350 *slot = name;
13351 }
13352
13353 htab_delete (htab);
13354 return 0;
13355 }
13356
13357 /* When symbols change, it probably means the sources changed as well,
13358 and it might mean the static tracepoint markers are no longer at
13359 the same address or line numbers they used to be at last we
13360 checked. Losing your static tracepoints whenever you rebuild is
13361 undesirable. This function tries to resync/rematch gdb static
13362 tracepoints with the markers on the target, for static tracepoints
13363 that have not been set by marker id. Static tracepoint that have
13364 been set by marker id are reset by marker id in breakpoint_re_set.
13365 The heuristic is:
13366
13367 1) For a tracepoint set at a specific address, look for a marker at
13368 the old PC. If one is found there, assume to be the same marker.
13369 If the name / string id of the marker found is different from the
13370 previous known name, assume that means the user renamed the marker
13371 in the sources, and output a warning.
13372
13373 2) For a tracepoint set at a given line number, look for a marker
13374 at the new address of the old line number. If one is found there,
13375 assume to be the same marker. If the name / string id of the
13376 marker found is different from the previous known name, assume that
13377 means the user renamed the marker in the sources, and output a
13378 warning.
13379
13380 3) If a marker is no longer found at the same address or line, it
13381 may mean the marker no longer exists. But it may also just mean
13382 the code changed a bit. Maybe the user added a few lines of code
13383 that made the marker move up or down (in line number terms). Ask
13384 the target for info about the marker with the string id as we knew
13385 it. If found, update line number and address in the matching
13386 static tracepoint. This will get confused if there's more than one
13387 marker with the same ID (possible in UST, although unadvised
13388 precisely because it confuses tools). */
13389
13390 static struct symtab_and_line
13391 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13392 {
13393 struct tracepoint *tp = (struct tracepoint *) b;
13394 struct static_tracepoint_marker marker;
13395 CORE_ADDR pc;
13396
13397 pc = sal.pc;
13398 if (sal.line)
13399 find_line_pc (sal.symtab, sal.line, &pc);
13400
13401 if (target_static_tracepoint_marker_at (pc, &marker))
13402 {
13403 if (tp->static_trace_marker_id != marker.str_id)
13404 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13405 b->number, tp->static_trace_marker_id.c_str (),
13406 marker.str_id.c_str ());
13407
13408 tp->static_trace_marker_id = std::move (marker.str_id);
13409
13410 return sal;
13411 }
13412
13413 /* Old marker wasn't found on target at lineno. Try looking it up
13414 by string ID. */
13415 if (!sal.explicit_pc
13416 && sal.line != 0
13417 && sal.symtab != NULL
13418 && !tp->static_trace_marker_id.empty ())
13419 {
13420 std::vector<static_tracepoint_marker> markers
13421 = target_static_tracepoint_markers_by_strid
13422 (tp->static_trace_marker_id.c_str ());
13423
13424 if (!markers.empty ())
13425 {
13426 struct symbol *sym;
13427 struct static_tracepoint_marker *tpmarker;
13428 struct ui_out *uiout = current_uiout;
13429 struct explicit_location explicit_loc;
13430
13431 tpmarker = &markers[0];
13432
13433 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13434
13435 warning (_("marker for static tracepoint %d (%s) not "
13436 "found at previous line number"),
13437 b->number, tp->static_trace_marker_id.c_str ());
13438
13439 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13440 sym = find_pc_sect_function (tpmarker->address, NULL);
13441 uiout->text ("Now in ");
13442 if (sym)
13443 {
13444 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13445 uiout->text (" at ");
13446 }
13447 uiout->field_string ("file",
13448 symtab_to_filename_for_display (sal2.symtab));
13449 uiout->text (":");
13450
13451 if (uiout->is_mi_like_p ())
13452 {
13453 const char *fullname = symtab_to_fullname (sal2.symtab);
13454
13455 uiout->field_string ("fullname", fullname);
13456 }
13457
13458 uiout->field_int ("line", sal2.line);
13459 uiout->text ("\n");
13460
13461 b->loc->line_number = sal2.line;
13462 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13463
13464 b->location.reset (NULL);
13465 initialize_explicit_location (&explicit_loc);
13466 explicit_loc.source_filename
13467 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13468 explicit_loc.line_offset.offset = b->loc->line_number;
13469 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13470 b->location = new_explicit_location (&explicit_loc);
13471
13472 /* Might be nice to check if function changed, and warn if
13473 so. */
13474 }
13475 }
13476 return sal;
13477 }
13478
13479 /* Returns 1 iff locations A and B are sufficiently same that
13480 we don't need to report breakpoint as changed. */
13481
13482 static int
13483 locations_are_equal (struct bp_location *a, struct bp_location *b)
13484 {
13485 while (a && b)
13486 {
13487 if (a->address != b->address)
13488 return 0;
13489
13490 if (a->shlib_disabled != b->shlib_disabled)
13491 return 0;
13492
13493 if (a->enabled != b->enabled)
13494 return 0;
13495
13496 a = a->next;
13497 b = b->next;
13498 }
13499
13500 if ((a == NULL) != (b == NULL))
13501 return 0;
13502
13503 return 1;
13504 }
13505
13506 /* Split all locations of B that are bound to PSPACE out of B's
13507 location list to a separate list and return that list's head. If
13508 PSPACE is NULL, hoist out all locations of B. */
13509
13510 static struct bp_location *
13511 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13512 {
13513 struct bp_location head;
13514 struct bp_location *i = b->loc;
13515 struct bp_location **i_link = &b->loc;
13516 struct bp_location *hoisted = &head;
13517
13518 if (pspace == NULL)
13519 {
13520 i = b->loc;
13521 b->loc = NULL;
13522 return i;
13523 }
13524
13525 head.next = NULL;
13526
13527 while (i != NULL)
13528 {
13529 if (i->pspace == pspace)
13530 {
13531 *i_link = i->next;
13532 i->next = NULL;
13533 hoisted->next = i;
13534 hoisted = i;
13535 }
13536 else
13537 i_link = &i->next;
13538 i = *i_link;
13539 }
13540
13541 return head.next;
13542 }
13543
13544 /* Create new breakpoint locations for B (a hardware or software
13545 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13546 zero, then B is a ranged breakpoint. Only recreates locations for
13547 FILTER_PSPACE. Locations of other program spaces are left
13548 untouched. */
13549
13550 void
13551 update_breakpoint_locations (struct breakpoint *b,
13552 struct program_space *filter_pspace,
13553 gdb::array_view<const symtab_and_line> sals,
13554 gdb::array_view<const symtab_and_line> sals_end)
13555 {
13556 struct bp_location *existing_locations;
13557
13558 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13559 {
13560 /* Ranged breakpoints have only one start location and one end
13561 location. */
13562 b->enable_state = bp_disabled;
13563 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13564 "multiple locations found\n"),
13565 b->number);
13566 return;
13567 }
13568
13569 /* If there's no new locations, and all existing locations are
13570 pending, don't do anything. This optimizes the common case where
13571 all locations are in the same shared library, that was unloaded.
13572 We'd like to retain the location, so that when the library is
13573 loaded again, we don't loose the enabled/disabled status of the
13574 individual locations. */
13575 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13576 return;
13577
13578 existing_locations = hoist_existing_locations (b, filter_pspace);
13579
13580 for (const auto &sal : sals)
13581 {
13582 struct bp_location *new_loc;
13583
13584 switch_to_program_space_and_thread (sal.pspace);
13585
13586 new_loc = add_location_to_breakpoint (b, &sal);
13587
13588 /* Reparse conditions, they might contain references to the
13589 old symtab. */
13590 if (b->cond_string != NULL)
13591 {
13592 const char *s;
13593
13594 s = b->cond_string;
13595 TRY
13596 {
13597 new_loc->cond = parse_exp_1 (&s, sal.pc,
13598 block_for_pc (sal.pc),
13599 0);
13600 }
13601 CATCH (e, RETURN_MASK_ERROR)
13602 {
13603 warning (_("failed to reevaluate condition "
13604 "for breakpoint %d: %s"),
13605 b->number, e.message);
13606 new_loc->enabled = 0;
13607 }
13608 END_CATCH
13609 }
13610
13611 if (!sals_end.empty ())
13612 {
13613 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13614
13615 new_loc->length = end - sals[0].pc + 1;
13616 }
13617 }
13618
13619 /* If possible, carry over 'disable' status from existing
13620 breakpoints. */
13621 {
13622 struct bp_location *e = existing_locations;
13623 /* If there are multiple breakpoints with the same function name,
13624 e.g. for inline functions, comparing function names won't work.
13625 Instead compare pc addresses; this is just a heuristic as things
13626 may have moved, but in practice it gives the correct answer
13627 often enough until a better solution is found. */
13628 int have_ambiguous_names = ambiguous_names_p (b->loc);
13629
13630 for (; e; e = e->next)
13631 {
13632 if (!e->enabled && e->function_name)
13633 {
13634 struct bp_location *l = b->loc;
13635 if (have_ambiguous_names)
13636 {
13637 for (; l; l = l->next)
13638 if (breakpoint_locations_match (e, l))
13639 {
13640 l->enabled = 0;
13641 break;
13642 }
13643 }
13644 else
13645 {
13646 for (; l; l = l->next)
13647 if (l->function_name
13648 && strcmp (e->function_name, l->function_name) == 0)
13649 {
13650 l->enabled = 0;
13651 break;
13652 }
13653 }
13654 }
13655 }
13656 }
13657
13658 if (!locations_are_equal (existing_locations, b->loc))
13659 gdb::observers::breakpoint_modified.notify (b);
13660 }
13661
13662 /* Find the SaL locations corresponding to the given LOCATION.
13663 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13664
13665 static std::vector<symtab_and_line>
13666 location_to_sals (struct breakpoint *b, struct event_location *location,
13667 struct program_space *search_pspace, int *found)
13668 {
13669 struct gdb_exception exception = exception_none;
13670
13671 gdb_assert (b->ops != NULL);
13672
13673 std::vector<symtab_and_line> sals;
13674
13675 TRY
13676 {
13677 sals = b->ops->decode_location (b, location, search_pspace);
13678 }
13679 CATCH (e, RETURN_MASK_ERROR)
13680 {
13681 int not_found_and_ok = 0;
13682
13683 exception = e;
13684
13685 /* For pending breakpoints, it's expected that parsing will
13686 fail until the right shared library is loaded. User has
13687 already told to create pending breakpoints and don't need
13688 extra messages. If breakpoint is in bp_shlib_disabled
13689 state, then user already saw the message about that
13690 breakpoint being disabled, and don't want to see more
13691 errors. */
13692 if (e.error == NOT_FOUND_ERROR
13693 && (b->condition_not_parsed
13694 || (b->loc != NULL
13695 && search_pspace != NULL
13696 && b->loc->pspace != search_pspace)
13697 || (b->loc && b->loc->shlib_disabled)
13698 || (b->loc && b->loc->pspace->executing_startup)
13699 || b->enable_state == bp_disabled))
13700 not_found_and_ok = 1;
13701
13702 if (!not_found_and_ok)
13703 {
13704 /* We surely don't want to warn about the same breakpoint
13705 10 times. One solution, implemented here, is disable
13706 the breakpoint on error. Another solution would be to
13707 have separate 'warning emitted' flag. Since this
13708 happens only when a binary has changed, I don't know
13709 which approach is better. */
13710 b->enable_state = bp_disabled;
13711 throw_exception (e);
13712 }
13713 }
13714 END_CATCH
13715
13716 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13717 {
13718 for (auto &sal : sals)
13719 resolve_sal_pc (&sal);
13720 if (b->condition_not_parsed && b->extra_string != NULL)
13721 {
13722 char *cond_string, *extra_string;
13723 int thread, task;
13724
13725 find_condition_and_thread (b->extra_string, sals[0].pc,
13726 &cond_string, &thread, &task,
13727 &extra_string);
13728 gdb_assert (b->cond_string == NULL);
13729 if (cond_string)
13730 b->cond_string = cond_string;
13731 b->thread = thread;
13732 b->task = task;
13733 if (extra_string)
13734 {
13735 xfree (b->extra_string);
13736 b->extra_string = extra_string;
13737 }
13738 b->condition_not_parsed = 0;
13739 }
13740
13741 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13742 sals[0] = update_static_tracepoint (b, sals[0]);
13743
13744 *found = 1;
13745 }
13746 else
13747 *found = 0;
13748
13749 return sals;
13750 }
13751
13752 /* The default re_set method, for typical hardware or software
13753 breakpoints. Reevaluate the breakpoint and recreate its
13754 locations. */
13755
13756 static void
13757 breakpoint_re_set_default (struct breakpoint *b)
13758 {
13759 struct program_space *filter_pspace = current_program_space;
13760 std::vector<symtab_and_line> expanded, expanded_end;
13761
13762 int found;
13763 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13764 filter_pspace, &found);
13765 if (found)
13766 expanded = std::move (sals);
13767
13768 if (b->location_range_end != NULL)
13769 {
13770 std::vector<symtab_and_line> sals_end
13771 = location_to_sals (b, b->location_range_end.get (),
13772 filter_pspace, &found);
13773 if (found)
13774 expanded_end = std::move (sals_end);
13775 }
13776
13777 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13778 }
13779
13780 /* Default method for creating SALs from an address string. It basically
13781 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13782
13783 static void
13784 create_sals_from_location_default (const struct event_location *location,
13785 struct linespec_result *canonical,
13786 enum bptype type_wanted)
13787 {
13788 parse_breakpoint_sals (location, canonical);
13789 }
13790
13791 /* Call create_breakpoints_sal for the given arguments. This is the default
13792 function for the `create_breakpoints_sal' method of
13793 breakpoint_ops. */
13794
13795 static void
13796 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13797 struct linespec_result *canonical,
13798 gdb::unique_xmalloc_ptr<char> cond_string,
13799 gdb::unique_xmalloc_ptr<char> extra_string,
13800 enum bptype type_wanted,
13801 enum bpdisp disposition,
13802 int thread,
13803 int task, int ignore_count,
13804 const struct breakpoint_ops *ops,
13805 int from_tty, int enabled,
13806 int internal, unsigned flags)
13807 {
13808 create_breakpoints_sal (gdbarch, canonical,
13809 std::move (cond_string),
13810 std::move (extra_string),
13811 type_wanted, disposition,
13812 thread, task, ignore_count, ops, from_tty,
13813 enabled, internal, flags);
13814 }
13815
13816 /* Decode the line represented by S by calling decode_line_full. This is the
13817 default function for the `decode_location' method of breakpoint_ops. */
13818
13819 static std::vector<symtab_and_line>
13820 decode_location_default (struct breakpoint *b,
13821 const struct event_location *location,
13822 struct program_space *search_pspace)
13823 {
13824 struct linespec_result canonical;
13825
13826 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13827 (struct symtab *) NULL, 0,
13828 &canonical, multiple_symbols_all,
13829 b->filter);
13830
13831 /* We should get 0 or 1 resulting SALs. */
13832 gdb_assert (canonical.lsals.size () < 2);
13833
13834 if (!canonical.lsals.empty ())
13835 {
13836 const linespec_sals &lsal = canonical.lsals[0];
13837 return std::move (lsal.sals);
13838 }
13839 return {};
13840 }
13841
13842 /* Reset a breakpoint. */
13843
13844 static void
13845 breakpoint_re_set_one (breakpoint *b)
13846 {
13847 input_radix = b->input_radix;
13848 set_language (b->language);
13849
13850 b->ops->re_set (b);
13851 }
13852
13853 /* Re-set breakpoint locations for the current program space.
13854 Locations bound to other program spaces are left untouched. */
13855
13856 void
13857 breakpoint_re_set (void)
13858 {
13859 struct breakpoint *b, *b_tmp;
13860
13861 {
13862 scoped_restore_current_language save_language;
13863 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13864 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13865
13866 /* breakpoint_re_set_one sets the current_language to the language
13867 of the breakpoint it is resetting (see prepare_re_set_context)
13868 before re-evaluating the breakpoint's location. This change can
13869 unfortunately get undone by accident if the language_mode is set
13870 to auto, and we either switch frames, or more likely in this context,
13871 we select the current frame.
13872
13873 We prevent this by temporarily turning the language_mode to
13874 language_mode_manual. We restore it once all breakpoints
13875 have been reset. */
13876 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13877 language_mode = language_mode_manual;
13878
13879 /* Note: we must not try to insert locations until after all
13880 breakpoints have been re-set. Otherwise, e.g., when re-setting
13881 breakpoint 1, we'd insert the locations of breakpoint 2, which
13882 hadn't been re-set yet, and thus may have stale locations. */
13883
13884 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13885 {
13886 TRY
13887 {
13888 breakpoint_re_set_one (b);
13889 }
13890 CATCH (ex, RETURN_MASK_ALL)
13891 {
13892 exception_fprintf (gdb_stderr, ex,
13893 "Error in re-setting breakpoint %d: ",
13894 b->number);
13895 }
13896 END_CATCH
13897 }
13898
13899 jit_breakpoint_re_set ();
13900 }
13901
13902 create_overlay_event_breakpoint ();
13903 create_longjmp_master_breakpoint ();
13904 create_std_terminate_master_breakpoint ();
13905 create_exception_master_breakpoint ();
13906
13907 /* Now we can insert. */
13908 update_global_location_list (UGLL_MAY_INSERT);
13909 }
13910 \f
13911 /* Reset the thread number of this breakpoint:
13912
13913 - If the breakpoint is for all threads, leave it as-is.
13914 - Else, reset it to the current thread for inferior_ptid. */
13915 void
13916 breakpoint_re_set_thread (struct breakpoint *b)
13917 {
13918 if (b->thread != -1)
13919 {
13920 b->thread = inferior_thread ()->global_num;
13921
13922 /* We're being called after following a fork. The new fork is
13923 selected as current, and unless this was a vfork will have a
13924 different program space from the original thread. Reset that
13925 as well. */
13926 b->loc->pspace = current_program_space;
13927 }
13928 }
13929
13930 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13931 If from_tty is nonzero, it prints a message to that effect,
13932 which ends with a period (no newline). */
13933
13934 void
13935 set_ignore_count (int bptnum, int count, int from_tty)
13936 {
13937 struct breakpoint *b;
13938
13939 if (count < 0)
13940 count = 0;
13941
13942 ALL_BREAKPOINTS (b)
13943 if (b->number == bptnum)
13944 {
13945 if (is_tracepoint (b))
13946 {
13947 if (from_tty && count != 0)
13948 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13949 bptnum);
13950 return;
13951 }
13952
13953 b->ignore_count = count;
13954 if (from_tty)
13955 {
13956 if (count == 0)
13957 printf_filtered (_("Will stop next time "
13958 "breakpoint %d is reached."),
13959 bptnum);
13960 else if (count == 1)
13961 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13962 bptnum);
13963 else
13964 printf_filtered (_("Will ignore next %d "
13965 "crossings of breakpoint %d."),
13966 count, bptnum);
13967 }
13968 gdb::observers::breakpoint_modified.notify (b);
13969 return;
13970 }
13971
13972 error (_("No breakpoint number %d."), bptnum);
13973 }
13974
13975 /* Command to set ignore-count of breakpoint N to COUNT. */
13976
13977 static void
13978 ignore_command (const char *args, int from_tty)
13979 {
13980 const char *p = args;
13981 int num;
13982
13983 if (p == 0)
13984 error_no_arg (_("a breakpoint number"));
13985
13986 num = get_number (&p);
13987 if (num == 0)
13988 error (_("bad breakpoint number: '%s'"), args);
13989 if (*p == 0)
13990 error (_("Second argument (specified ignore-count) is missing."));
13991
13992 set_ignore_count (num,
13993 longest_to_int (value_as_long (parse_and_eval (p))),
13994 from_tty);
13995 if (from_tty)
13996 printf_filtered ("\n");
13997 }
13998 \f
13999
14000 /* Call FUNCTION on each of the breakpoints with numbers in the range
14001 defined by BP_NUM_RANGE (an inclusive range). */
14002
14003 static void
14004 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14005 gdb::function_view<void (breakpoint *)> function)
14006 {
14007 if (bp_num_range.first == 0)
14008 {
14009 warning (_("bad breakpoint number at or near '%d'"),
14010 bp_num_range.first);
14011 }
14012 else
14013 {
14014 struct breakpoint *b, *tmp;
14015
14016 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14017 {
14018 bool match = false;
14019
14020 ALL_BREAKPOINTS_SAFE (b, tmp)
14021 if (b->number == i)
14022 {
14023 match = true;
14024 function (b);
14025 break;
14026 }
14027 if (!match)
14028 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14029 }
14030 }
14031 }
14032
14033 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14034 ARGS. */
14035
14036 static void
14037 map_breakpoint_numbers (const char *args,
14038 gdb::function_view<void (breakpoint *)> function)
14039 {
14040 if (args == NULL || *args == '\0')
14041 error_no_arg (_("one or more breakpoint numbers"));
14042
14043 number_or_range_parser parser (args);
14044
14045 while (!parser.finished ())
14046 {
14047 int num = parser.get_number ();
14048 map_breakpoint_number_range (std::make_pair (num, num), function);
14049 }
14050 }
14051
14052 /* Return the breakpoint location structure corresponding to the
14053 BP_NUM and LOC_NUM values. */
14054
14055 static struct bp_location *
14056 find_location_by_number (int bp_num, int loc_num)
14057 {
14058 struct breakpoint *b;
14059
14060 ALL_BREAKPOINTS (b)
14061 if (b->number == bp_num)
14062 {
14063 break;
14064 }
14065
14066 if (!b || b->number != bp_num)
14067 error (_("Bad breakpoint number '%d'"), bp_num);
14068
14069 if (loc_num == 0)
14070 error (_("Bad breakpoint location number '%d'"), loc_num);
14071
14072 int n = 0;
14073 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14074 if (++n == loc_num)
14075 return loc;
14076
14077 error (_("Bad breakpoint location number '%d'"), loc_num);
14078 }
14079
14080 /* Modes of operation for extract_bp_num. */
14081 enum class extract_bp_kind
14082 {
14083 /* Extracting a breakpoint number. */
14084 bp,
14085
14086 /* Extracting a location number. */
14087 loc,
14088 };
14089
14090 /* Extract a breakpoint or location number (as determined by KIND)
14091 from the string starting at START. TRAILER is a character which
14092 can be found after the number. If you don't want a trailer, use
14093 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14094 string. This always returns a positive integer. */
14095
14096 static int
14097 extract_bp_num (extract_bp_kind kind, const char *start,
14098 int trailer, const char **end_out = NULL)
14099 {
14100 const char *end = start;
14101 int num = get_number_trailer (&end, trailer);
14102 if (num < 0)
14103 error (kind == extract_bp_kind::bp
14104 ? _("Negative breakpoint number '%.*s'")
14105 : _("Negative breakpoint location number '%.*s'"),
14106 int (end - start), start);
14107 if (num == 0)
14108 error (kind == extract_bp_kind::bp
14109 ? _("Bad breakpoint number '%.*s'")
14110 : _("Bad breakpoint location number '%.*s'"),
14111 int (end - start), start);
14112
14113 if (end_out != NULL)
14114 *end_out = end;
14115 return num;
14116 }
14117
14118 /* Extract a breakpoint or location range (as determined by KIND) in
14119 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14120 representing the (inclusive) range. The returned pair's elements
14121 are always positive integers. */
14122
14123 static std::pair<int, int>
14124 extract_bp_or_bp_range (extract_bp_kind kind,
14125 const std::string &arg,
14126 std::string::size_type arg_offset)
14127 {
14128 std::pair<int, int> range;
14129 const char *bp_loc = &arg[arg_offset];
14130 std::string::size_type dash = arg.find ('-', arg_offset);
14131 if (dash != std::string::npos)
14132 {
14133 /* bp_loc is a range (x-z). */
14134 if (arg.length () == dash + 1)
14135 error (kind == extract_bp_kind::bp
14136 ? _("Bad breakpoint number at or near: '%s'")
14137 : _("Bad breakpoint location number at or near: '%s'"),
14138 bp_loc);
14139
14140 const char *end;
14141 const char *start_first = bp_loc;
14142 const char *start_second = &arg[dash + 1];
14143 range.first = extract_bp_num (kind, start_first, '-');
14144 range.second = extract_bp_num (kind, start_second, '\0', &end);
14145
14146 if (range.first > range.second)
14147 error (kind == extract_bp_kind::bp
14148 ? _("Inverted breakpoint range at '%.*s'")
14149 : _("Inverted breakpoint location range at '%.*s'"),
14150 int (end - start_first), start_first);
14151 }
14152 else
14153 {
14154 /* bp_loc is a single value. */
14155 range.first = extract_bp_num (kind, bp_loc, '\0');
14156 range.second = range.first;
14157 }
14158 return range;
14159 }
14160
14161 /* Extract the breakpoint/location range specified by ARG. Returns
14162 the breakpoint range in BP_NUM_RANGE, and the location range in
14163 BP_LOC_RANGE.
14164
14165 ARG may be in any of the following forms:
14166
14167 x where 'x' is a breakpoint number.
14168 x-y where 'x' and 'y' specify a breakpoint numbers range.
14169 x.y where 'x' is a breakpoint number and 'y' a location number.
14170 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14171 location number range.
14172 */
14173
14174 static void
14175 extract_bp_number_and_location (const std::string &arg,
14176 std::pair<int, int> &bp_num_range,
14177 std::pair<int, int> &bp_loc_range)
14178 {
14179 std::string::size_type dot = arg.find ('.');
14180
14181 if (dot != std::string::npos)
14182 {
14183 /* Handle 'x.y' and 'x.y-z' cases. */
14184
14185 if (arg.length () == dot + 1 || dot == 0)
14186 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14187
14188 bp_num_range.first
14189 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14190 bp_num_range.second = bp_num_range.first;
14191
14192 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14193 arg, dot + 1);
14194 }
14195 else
14196 {
14197 /* Handle x and x-y cases. */
14198
14199 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14200 bp_loc_range.first = 0;
14201 bp_loc_range.second = 0;
14202 }
14203 }
14204
14205 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14206 specifies whether to enable or disable. */
14207
14208 static void
14209 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14210 {
14211 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14212 if (loc != NULL)
14213 {
14214 if (loc->enabled != enable)
14215 {
14216 loc->enabled = enable;
14217 mark_breakpoint_location_modified (loc);
14218 }
14219 if (target_supports_enable_disable_tracepoint ()
14220 && current_trace_status ()->running && loc->owner
14221 && is_tracepoint (loc->owner))
14222 target_disable_tracepoint (loc);
14223 }
14224 update_global_location_list (UGLL_DONT_INSERT);
14225 }
14226
14227 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14228 number of the breakpoint, and BP_LOC_RANGE specifies the
14229 (inclusive) range of location numbers of that breakpoint to
14230 enable/disable. ENABLE specifies whether to enable or disable the
14231 location. */
14232
14233 static void
14234 enable_disable_breakpoint_location_range (int bp_num,
14235 std::pair<int, int> &bp_loc_range,
14236 bool enable)
14237 {
14238 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14239 enable_disable_bp_num_loc (bp_num, i, enable);
14240 }
14241
14242 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14243 If from_tty is nonzero, it prints a message to that effect,
14244 which ends with a period (no newline). */
14245
14246 void
14247 disable_breakpoint (struct breakpoint *bpt)
14248 {
14249 /* Never disable a watchpoint scope breakpoint; we want to
14250 hit them when we leave scope so we can delete both the
14251 watchpoint and its scope breakpoint at that time. */
14252 if (bpt->type == bp_watchpoint_scope)
14253 return;
14254
14255 bpt->enable_state = bp_disabled;
14256
14257 /* Mark breakpoint locations modified. */
14258 mark_breakpoint_modified (bpt);
14259
14260 if (target_supports_enable_disable_tracepoint ()
14261 && current_trace_status ()->running && is_tracepoint (bpt))
14262 {
14263 struct bp_location *location;
14264
14265 for (location = bpt->loc; location; location = location->next)
14266 target_disable_tracepoint (location);
14267 }
14268
14269 update_global_location_list (UGLL_DONT_INSERT);
14270
14271 gdb::observers::breakpoint_modified.notify (bpt);
14272 }
14273
14274 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14275 specified in ARGS. ARGS may be in any of the formats handled by
14276 extract_bp_number_and_location. ENABLE specifies whether to enable
14277 or disable the breakpoints/locations. */
14278
14279 static void
14280 enable_disable_command (const char *args, int from_tty, bool enable)
14281 {
14282 if (args == 0)
14283 {
14284 struct breakpoint *bpt;
14285
14286 ALL_BREAKPOINTS (bpt)
14287 if (user_breakpoint_p (bpt))
14288 {
14289 if (enable)
14290 enable_breakpoint (bpt);
14291 else
14292 disable_breakpoint (bpt);
14293 }
14294 }
14295 else
14296 {
14297 std::string num = extract_arg (&args);
14298
14299 while (!num.empty ())
14300 {
14301 std::pair<int, int> bp_num_range, bp_loc_range;
14302
14303 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14304
14305 if (bp_loc_range.first == bp_loc_range.second
14306 && bp_loc_range.first == 0)
14307 {
14308 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14309 map_breakpoint_number_range (bp_num_range,
14310 enable
14311 ? enable_breakpoint
14312 : disable_breakpoint);
14313 }
14314 else
14315 {
14316 /* Handle breakpoint ids with formats 'x.y' or
14317 'x.y-z'. */
14318 enable_disable_breakpoint_location_range
14319 (bp_num_range.first, bp_loc_range, enable);
14320 }
14321 num = extract_arg (&args);
14322 }
14323 }
14324 }
14325
14326 /* The disable command disables the specified breakpoints/locations
14327 (or all defined breakpoints) so they're no longer effective in
14328 stopping the inferior. ARGS may be in any of the forms defined in
14329 extract_bp_number_and_location. */
14330
14331 static void
14332 disable_command (const char *args, int from_tty)
14333 {
14334 enable_disable_command (args, from_tty, false);
14335 }
14336
14337 static void
14338 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14339 int count)
14340 {
14341 int target_resources_ok;
14342
14343 if (bpt->type == bp_hardware_breakpoint)
14344 {
14345 int i;
14346 i = hw_breakpoint_used_count ();
14347 target_resources_ok =
14348 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14349 i + 1, 0);
14350 if (target_resources_ok == 0)
14351 error (_("No hardware breakpoint support in the target."));
14352 else if (target_resources_ok < 0)
14353 error (_("Hardware breakpoints used exceeds limit."));
14354 }
14355
14356 if (is_watchpoint (bpt))
14357 {
14358 /* Initialize it just to avoid a GCC false warning. */
14359 enum enable_state orig_enable_state = bp_disabled;
14360
14361 TRY
14362 {
14363 struct watchpoint *w = (struct watchpoint *) bpt;
14364
14365 orig_enable_state = bpt->enable_state;
14366 bpt->enable_state = bp_enabled;
14367 update_watchpoint (w, 1 /* reparse */);
14368 }
14369 CATCH (e, RETURN_MASK_ALL)
14370 {
14371 bpt->enable_state = orig_enable_state;
14372 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14373 bpt->number);
14374 return;
14375 }
14376 END_CATCH
14377 }
14378
14379 bpt->enable_state = bp_enabled;
14380
14381 /* Mark breakpoint locations modified. */
14382 mark_breakpoint_modified (bpt);
14383
14384 if (target_supports_enable_disable_tracepoint ()
14385 && current_trace_status ()->running && is_tracepoint (bpt))
14386 {
14387 struct bp_location *location;
14388
14389 for (location = bpt->loc; location; location = location->next)
14390 target_enable_tracepoint (location);
14391 }
14392
14393 bpt->disposition = disposition;
14394 bpt->enable_count = count;
14395 update_global_location_list (UGLL_MAY_INSERT);
14396
14397 gdb::observers::breakpoint_modified.notify (bpt);
14398 }
14399
14400
14401 void
14402 enable_breakpoint (struct breakpoint *bpt)
14403 {
14404 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14405 }
14406
14407 /* The enable command enables the specified breakpoints/locations (or
14408 all defined breakpoints) so they once again become (or continue to
14409 be) effective in stopping the inferior. ARGS may be in any of the
14410 forms defined in extract_bp_number_and_location. */
14411
14412 static void
14413 enable_command (const char *args, int from_tty)
14414 {
14415 enable_disable_command (args, from_tty, true);
14416 }
14417
14418 static void
14419 enable_once_command (const char *args, int from_tty)
14420 {
14421 map_breakpoint_numbers
14422 (args, [&] (breakpoint *b)
14423 {
14424 iterate_over_related_breakpoints
14425 (b, [&] (breakpoint *bpt)
14426 {
14427 enable_breakpoint_disp (bpt, disp_disable, 1);
14428 });
14429 });
14430 }
14431
14432 static void
14433 enable_count_command (const char *args, int from_tty)
14434 {
14435 int count;
14436
14437 if (args == NULL)
14438 error_no_arg (_("hit count"));
14439
14440 count = get_number (&args);
14441
14442 map_breakpoint_numbers
14443 (args, [&] (breakpoint *b)
14444 {
14445 iterate_over_related_breakpoints
14446 (b, [&] (breakpoint *bpt)
14447 {
14448 enable_breakpoint_disp (bpt, disp_disable, count);
14449 });
14450 });
14451 }
14452
14453 static void
14454 enable_delete_command (const char *args, int from_tty)
14455 {
14456 map_breakpoint_numbers
14457 (args, [&] (breakpoint *b)
14458 {
14459 iterate_over_related_breakpoints
14460 (b, [&] (breakpoint *bpt)
14461 {
14462 enable_breakpoint_disp (bpt, disp_del, 1);
14463 });
14464 });
14465 }
14466 \f
14467 static void
14468 set_breakpoint_cmd (const char *args, int from_tty)
14469 {
14470 }
14471
14472 static void
14473 show_breakpoint_cmd (const char *args, int from_tty)
14474 {
14475 }
14476
14477 /* Invalidate last known value of any hardware watchpoint if
14478 the memory which that value represents has been written to by
14479 GDB itself. */
14480
14481 static void
14482 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14483 CORE_ADDR addr, ssize_t len,
14484 const bfd_byte *data)
14485 {
14486 struct breakpoint *bp;
14487
14488 ALL_BREAKPOINTS (bp)
14489 if (bp->enable_state == bp_enabled
14490 && bp->type == bp_hardware_watchpoint)
14491 {
14492 struct watchpoint *wp = (struct watchpoint *) bp;
14493
14494 if (wp->val_valid && wp->val != nullptr)
14495 {
14496 struct bp_location *loc;
14497
14498 for (loc = bp->loc; loc != NULL; loc = loc->next)
14499 if (loc->loc_type == bp_loc_hardware_watchpoint
14500 && loc->address + loc->length > addr
14501 && addr + len > loc->address)
14502 {
14503 wp->val = NULL;
14504 wp->val_valid = 0;
14505 }
14506 }
14507 }
14508 }
14509
14510 /* Create and insert a breakpoint for software single step. */
14511
14512 void
14513 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14514 const address_space *aspace,
14515 CORE_ADDR next_pc)
14516 {
14517 struct thread_info *tp = inferior_thread ();
14518 struct symtab_and_line sal;
14519 CORE_ADDR pc = next_pc;
14520
14521 if (tp->control.single_step_breakpoints == NULL)
14522 {
14523 tp->control.single_step_breakpoints
14524 = new_single_step_breakpoint (tp->global_num, gdbarch);
14525 }
14526
14527 sal = find_pc_line (pc, 0);
14528 sal.pc = pc;
14529 sal.section = find_pc_overlay (pc);
14530 sal.explicit_pc = 1;
14531 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14532
14533 update_global_location_list (UGLL_INSERT);
14534 }
14535
14536 /* Insert single step breakpoints according to the current state. */
14537
14538 int
14539 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14540 {
14541 struct regcache *regcache = get_current_regcache ();
14542 std::vector<CORE_ADDR> next_pcs;
14543
14544 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14545
14546 if (!next_pcs.empty ())
14547 {
14548 struct frame_info *frame = get_current_frame ();
14549 const address_space *aspace = get_frame_address_space (frame);
14550
14551 for (CORE_ADDR pc : next_pcs)
14552 insert_single_step_breakpoint (gdbarch, aspace, pc);
14553
14554 return 1;
14555 }
14556 else
14557 return 0;
14558 }
14559
14560 /* See breakpoint.h. */
14561
14562 int
14563 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14564 const address_space *aspace,
14565 CORE_ADDR pc)
14566 {
14567 struct bp_location *loc;
14568
14569 for (loc = bp->loc; loc != NULL; loc = loc->next)
14570 if (loc->inserted
14571 && breakpoint_location_address_match (loc, aspace, pc))
14572 return 1;
14573
14574 return 0;
14575 }
14576
14577 /* Check whether a software single-step breakpoint is inserted at
14578 PC. */
14579
14580 int
14581 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14582 CORE_ADDR pc)
14583 {
14584 struct breakpoint *bpt;
14585
14586 ALL_BREAKPOINTS (bpt)
14587 {
14588 if (bpt->type == bp_single_step
14589 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14590 return 1;
14591 }
14592 return 0;
14593 }
14594
14595 /* Tracepoint-specific operations. */
14596
14597 /* Set tracepoint count to NUM. */
14598 static void
14599 set_tracepoint_count (int num)
14600 {
14601 tracepoint_count = num;
14602 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14603 }
14604
14605 static void
14606 trace_command (const char *arg, int from_tty)
14607 {
14608 struct breakpoint_ops *ops;
14609
14610 event_location_up location = string_to_event_location (&arg,
14611 current_language);
14612 if (location != NULL
14613 && event_location_type (location.get ()) == PROBE_LOCATION)
14614 ops = &tracepoint_probe_breakpoint_ops;
14615 else
14616 ops = &tracepoint_breakpoint_ops;
14617
14618 create_breakpoint (get_current_arch (),
14619 location.get (),
14620 NULL, 0, arg, 1 /* parse arg */,
14621 0 /* tempflag */,
14622 bp_tracepoint /* type_wanted */,
14623 0 /* Ignore count */,
14624 pending_break_support,
14625 ops,
14626 from_tty,
14627 1 /* enabled */,
14628 0 /* internal */, 0);
14629 }
14630
14631 static void
14632 ftrace_command (const char *arg, int from_tty)
14633 {
14634 event_location_up location = string_to_event_location (&arg,
14635 current_language);
14636 create_breakpoint (get_current_arch (),
14637 location.get (),
14638 NULL, 0, arg, 1 /* parse arg */,
14639 0 /* tempflag */,
14640 bp_fast_tracepoint /* type_wanted */,
14641 0 /* Ignore count */,
14642 pending_break_support,
14643 &tracepoint_breakpoint_ops,
14644 from_tty,
14645 1 /* enabled */,
14646 0 /* internal */, 0);
14647 }
14648
14649 /* strace command implementation. Creates a static tracepoint. */
14650
14651 static void
14652 strace_command (const char *arg, int from_tty)
14653 {
14654 struct breakpoint_ops *ops;
14655 event_location_up location;
14656
14657 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14658 or with a normal static tracepoint. */
14659 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14660 {
14661 ops = &strace_marker_breakpoint_ops;
14662 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14663 }
14664 else
14665 {
14666 ops = &tracepoint_breakpoint_ops;
14667 location = string_to_event_location (&arg, current_language);
14668 }
14669
14670 create_breakpoint (get_current_arch (),
14671 location.get (),
14672 NULL, 0, arg, 1 /* parse arg */,
14673 0 /* tempflag */,
14674 bp_static_tracepoint /* type_wanted */,
14675 0 /* Ignore count */,
14676 pending_break_support,
14677 ops,
14678 from_tty,
14679 1 /* enabled */,
14680 0 /* internal */, 0);
14681 }
14682
14683 /* Set up a fake reader function that gets command lines from a linked
14684 list that was acquired during tracepoint uploading. */
14685
14686 static struct uploaded_tp *this_utp;
14687 static int next_cmd;
14688
14689 static char *
14690 read_uploaded_action (void)
14691 {
14692 char *rslt = nullptr;
14693
14694 if (next_cmd < this_utp->cmd_strings.size ())
14695 {
14696 rslt = this_utp->cmd_strings[next_cmd];
14697 next_cmd++;
14698 }
14699
14700 return rslt;
14701 }
14702
14703 /* Given information about a tracepoint as recorded on a target (which
14704 can be either a live system or a trace file), attempt to create an
14705 equivalent GDB tracepoint. This is not a reliable process, since
14706 the target does not necessarily have all the information used when
14707 the tracepoint was originally defined. */
14708
14709 struct tracepoint *
14710 create_tracepoint_from_upload (struct uploaded_tp *utp)
14711 {
14712 const char *addr_str;
14713 char small_buf[100];
14714 struct tracepoint *tp;
14715
14716 if (utp->at_string)
14717 addr_str = utp->at_string;
14718 else
14719 {
14720 /* In the absence of a source location, fall back to raw
14721 address. Since there is no way to confirm that the address
14722 means the same thing as when the trace was started, warn the
14723 user. */
14724 warning (_("Uploaded tracepoint %d has no "
14725 "source location, using raw address"),
14726 utp->number);
14727 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14728 addr_str = small_buf;
14729 }
14730
14731 /* There's not much we can do with a sequence of bytecodes. */
14732 if (utp->cond && !utp->cond_string)
14733 warning (_("Uploaded tracepoint %d condition "
14734 "has no source form, ignoring it"),
14735 utp->number);
14736
14737 event_location_up location = string_to_event_location (&addr_str,
14738 current_language);
14739 if (!create_breakpoint (get_current_arch (),
14740 location.get (),
14741 utp->cond_string, -1, addr_str,
14742 0 /* parse cond/thread */,
14743 0 /* tempflag */,
14744 utp->type /* type_wanted */,
14745 0 /* Ignore count */,
14746 pending_break_support,
14747 &tracepoint_breakpoint_ops,
14748 0 /* from_tty */,
14749 utp->enabled /* enabled */,
14750 0 /* internal */,
14751 CREATE_BREAKPOINT_FLAGS_INSERTED))
14752 return NULL;
14753
14754 /* Get the tracepoint we just created. */
14755 tp = get_tracepoint (tracepoint_count);
14756 gdb_assert (tp != NULL);
14757
14758 if (utp->pass > 0)
14759 {
14760 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14761 tp->number);
14762
14763 trace_pass_command (small_buf, 0);
14764 }
14765
14766 /* If we have uploaded versions of the original commands, set up a
14767 special-purpose "reader" function and call the usual command line
14768 reader, then pass the result to the breakpoint command-setting
14769 function. */
14770 if (!utp->cmd_strings.empty ())
14771 {
14772 counted_command_line cmd_list;
14773
14774 this_utp = utp;
14775 next_cmd = 0;
14776
14777 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14778
14779 breakpoint_set_commands (tp, std::move (cmd_list));
14780 }
14781 else if (!utp->actions.empty ()
14782 || !utp->step_actions.empty ())
14783 warning (_("Uploaded tracepoint %d actions "
14784 "have no source form, ignoring them"),
14785 utp->number);
14786
14787 /* Copy any status information that might be available. */
14788 tp->hit_count = utp->hit_count;
14789 tp->traceframe_usage = utp->traceframe_usage;
14790
14791 return tp;
14792 }
14793
14794 /* Print information on tracepoint number TPNUM_EXP, or all if
14795 omitted. */
14796
14797 static void
14798 info_tracepoints_command (const char *args, int from_tty)
14799 {
14800 struct ui_out *uiout = current_uiout;
14801 int num_printed;
14802
14803 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14804
14805 if (num_printed == 0)
14806 {
14807 if (args == NULL || *args == '\0')
14808 uiout->message ("No tracepoints.\n");
14809 else
14810 uiout->message ("No tracepoint matching '%s'.\n", args);
14811 }
14812
14813 default_collect_info ();
14814 }
14815
14816 /* The 'enable trace' command enables tracepoints.
14817 Not supported by all targets. */
14818 static void
14819 enable_trace_command (const char *args, int from_tty)
14820 {
14821 enable_command (args, from_tty);
14822 }
14823
14824 /* The 'disable trace' command disables tracepoints.
14825 Not supported by all targets. */
14826 static void
14827 disable_trace_command (const char *args, int from_tty)
14828 {
14829 disable_command (args, from_tty);
14830 }
14831
14832 /* Remove a tracepoint (or all if no argument). */
14833 static void
14834 delete_trace_command (const char *arg, int from_tty)
14835 {
14836 struct breakpoint *b, *b_tmp;
14837
14838 dont_repeat ();
14839
14840 if (arg == 0)
14841 {
14842 int breaks_to_delete = 0;
14843
14844 /* Delete all breakpoints if no argument.
14845 Do not delete internal or call-dummy breakpoints, these
14846 have to be deleted with an explicit breakpoint number
14847 argument. */
14848 ALL_TRACEPOINTS (b)
14849 if (is_tracepoint (b) && user_breakpoint_p (b))
14850 {
14851 breaks_to_delete = 1;
14852 break;
14853 }
14854
14855 /* Ask user only if there are some breakpoints to delete. */
14856 if (!from_tty
14857 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14858 {
14859 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14860 if (is_tracepoint (b) && user_breakpoint_p (b))
14861 delete_breakpoint (b);
14862 }
14863 }
14864 else
14865 map_breakpoint_numbers
14866 (arg, [&] (breakpoint *b)
14867 {
14868 iterate_over_related_breakpoints (b, delete_breakpoint);
14869 });
14870 }
14871
14872 /* Helper function for trace_pass_command. */
14873
14874 static void
14875 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14876 {
14877 tp->pass_count = count;
14878 gdb::observers::breakpoint_modified.notify (tp);
14879 if (from_tty)
14880 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14881 tp->number, count);
14882 }
14883
14884 /* Set passcount for tracepoint.
14885
14886 First command argument is passcount, second is tracepoint number.
14887 If tracepoint number omitted, apply to most recently defined.
14888 Also accepts special argument "all". */
14889
14890 static void
14891 trace_pass_command (const char *args, int from_tty)
14892 {
14893 struct tracepoint *t1;
14894 ULONGEST count;
14895
14896 if (args == 0 || *args == 0)
14897 error (_("passcount command requires an "
14898 "argument (count + optional TP num)"));
14899
14900 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14901
14902 args = skip_spaces (args);
14903 if (*args && strncasecmp (args, "all", 3) == 0)
14904 {
14905 struct breakpoint *b;
14906
14907 args += 3; /* Skip special argument "all". */
14908 if (*args)
14909 error (_("Junk at end of arguments."));
14910
14911 ALL_TRACEPOINTS (b)
14912 {
14913 t1 = (struct tracepoint *) b;
14914 trace_pass_set_count (t1, count, from_tty);
14915 }
14916 }
14917 else if (*args == '\0')
14918 {
14919 t1 = get_tracepoint_by_number (&args, NULL);
14920 if (t1)
14921 trace_pass_set_count (t1, count, from_tty);
14922 }
14923 else
14924 {
14925 number_or_range_parser parser (args);
14926 while (!parser.finished ())
14927 {
14928 t1 = get_tracepoint_by_number (&args, &parser);
14929 if (t1)
14930 trace_pass_set_count (t1, count, from_tty);
14931 }
14932 }
14933 }
14934
14935 struct tracepoint *
14936 get_tracepoint (int num)
14937 {
14938 struct breakpoint *t;
14939
14940 ALL_TRACEPOINTS (t)
14941 if (t->number == num)
14942 return (struct tracepoint *) t;
14943
14944 return NULL;
14945 }
14946
14947 /* Find the tracepoint with the given target-side number (which may be
14948 different from the tracepoint number after disconnecting and
14949 reconnecting). */
14950
14951 struct tracepoint *
14952 get_tracepoint_by_number_on_target (int num)
14953 {
14954 struct breakpoint *b;
14955
14956 ALL_TRACEPOINTS (b)
14957 {
14958 struct tracepoint *t = (struct tracepoint *) b;
14959
14960 if (t->number_on_target == num)
14961 return t;
14962 }
14963
14964 return NULL;
14965 }
14966
14967 /* Utility: parse a tracepoint number and look it up in the list.
14968 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14969 If the argument is missing, the most recent tracepoint
14970 (tracepoint_count) is returned. */
14971
14972 struct tracepoint *
14973 get_tracepoint_by_number (const char **arg,
14974 number_or_range_parser *parser)
14975 {
14976 struct breakpoint *t;
14977 int tpnum;
14978 const char *instring = arg == NULL ? NULL : *arg;
14979
14980 if (parser != NULL)
14981 {
14982 gdb_assert (!parser->finished ());
14983 tpnum = parser->get_number ();
14984 }
14985 else if (arg == NULL || *arg == NULL || ! **arg)
14986 tpnum = tracepoint_count;
14987 else
14988 tpnum = get_number (arg);
14989
14990 if (tpnum <= 0)
14991 {
14992 if (instring && *instring)
14993 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14994 instring);
14995 else
14996 printf_filtered (_("No previous tracepoint\n"));
14997 return NULL;
14998 }
14999
15000 ALL_TRACEPOINTS (t)
15001 if (t->number == tpnum)
15002 {
15003 return (struct tracepoint *) t;
15004 }
15005
15006 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15007 return NULL;
15008 }
15009
15010 void
15011 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15012 {
15013 if (b->thread != -1)
15014 fprintf_unfiltered (fp, " thread %d", b->thread);
15015
15016 if (b->task != 0)
15017 fprintf_unfiltered (fp, " task %d", b->task);
15018
15019 fprintf_unfiltered (fp, "\n");
15020 }
15021
15022 /* Save information on user settable breakpoints (watchpoints, etc) to
15023 a new script file named FILENAME. If FILTER is non-NULL, call it
15024 on each breakpoint and only include the ones for which it returns
15025 non-zero. */
15026
15027 static void
15028 save_breakpoints (const char *filename, int from_tty,
15029 int (*filter) (const struct breakpoint *))
15030 {
15031 struct breakpoint *tp;
15032 int any = 0;
15033 int extra_trace_bits = 0;
15034
15035 if (filename == 0 || *filename == 0)
15036 error (_("Argument required (file name in which to save)"));
15037
15038 /* See if we have anything to save. */
15039 ALL_BREAKPOINTS (tp)
15040 {
15041 /* Skip internal and momentary breakpoints. */
15042 if (!user_breakpoint_p (tp))
15043 continue;
15044
15045 /* If we have a filter, only save the breakpoints it accepts. */
15046 if (filter && !filter (tp))
15047 continue;
15048
15049 any = 1;
15050
15051 if (is_tracepoint (tp))
15052 {
15053 extra_trace_bits = 1;
15054
15055 /* We can stop searching. */
15056 break;
15057 }
15058 }
15059
15060 if (!any)
15061 {
15062 warning (_("Nothing to save."));
15063 return;
15064 }
15065
15066 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15067
15068 stdio_file fp;
15069
15070 if (!fp.open (expanded_filename.get (), "w"))
15071 error (_("Unable to open file '%s' for saving (%s)"),
15072 expanded_filename.get (), safe_strerror (errno));
15073
15074 if (extra_trace_bits)
15075 save_trace_state_variables (&fp);
15076
15077 ALL_BREAKPOINTS (tp)
15078 {
15079 /* Skip internal and momentary breakpoints. */
15080 if (!user_breakpoint_p (tp))
15081 continue;
15082
15083 /* If we have a filter, only save the breakpoints it accepts. */
15084 if (filter && !filter (tp))
15085 continue;
15086
15087 tp->ops->print_recreate (tp, &fp);
15088
15089 /* Note, we can't rely on tp->number for anything, as we can't
15090 assume the recreated breakpoint numbers will match. Use $bpnum
15091 instead. */
15092
15093 if (tp->cond_string)
15094 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15095
15096 if (tp->ignore_count)
15097 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15098
15099 if (tp->type != bp_dprintf && tp->commands)
15100 {
15101 fp.puts (" commands\n");
15102
15103 current_uiout->redirect (&fp);
15104 TRY
15105 {
15106 print_command_lines (current_uiout, tp->commands.get (), 2);
15107 }
15108 CATCH (ex, RETURN_MASK_ALL)
15109 {
15110 current_uiout->redirect (NULL);
15111 throw_exception (ex);
15112 }
15113 END_CATCH
15114
15115 current_uiout->redirect (NULL);
15116 fp.puts (" end\n");
15117 }
15118
15119 if (tp->enable_state == bp_disabled)
15120 fp.puts ("disable $bpnum\n");
15121
15122 /* If this is a multi-location breakpoint, check if the locations
15123 should be individually disabled. Watchpoint locations are
15124 special, and not user visible. */
15125 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15126 {
15127 struct bp_location *loc;
15128 int n = 1;
15129
15130 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15131 if (!loc->enabled)
15132 fp.printf ("disable $bpnum.%d\n", n);
15133 }
15134 }
15135
15136 if (extra_trace_bits && *default_collect)
15137 fp.printf ("set default-collect %s\n", default_collect);
15138
15139 if (from_tty)
15140 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15141 }
15142
15143 /* The `save breakpoints' command. */
15144
15145 static void
15146 save_breakpoints_command (const char *args, int from_tty)
15147 {
15148 save_breakpoints (args, from_tty, NULL);
15149 }
15150
15151 /* The `save tracepoints' command. */
15152
15153 static void
15154 save_tracepoints_command (const char *args, int from_tty)
15155 {
15156 save_breakpoints (args, from_tty, is_tracepoint);
15157 }
15158
15159 /* Create a vector of all tracepoints. */
15160
15161 std::vector<breakpoint *>
15162 all_tracepoints (void)
15163 {
15164 std::vector<breakpoint *> tp_vec;
15165 struct breakpoint *tp;
15166
15167 ALL_TRACEPOINTS (tp)
15168 {
15169 tp_vec.push_back (tp);
15170 }
15171
15172 return tp_vec;
15173 }
15174
15175 \f
15176 /* This help string is used to consolidate all the help string for specifying
15177 locations used by several commands. */
15178
15179 #define LOCATION_HELP_STRING \
15180 "Linespecs are colon-separated lists of location parameters, such as\n\
15181 source filename, function name, label name, and line number.\n\
15182 Example: To specify the start of a label named \"the_top\" in the\n\
15183 function \"fact\" in the file \"factorial.c\", use\n\
15184 \"factorial.c:fact:the_top\".\n\
15185 \n\
15186 Address locations begin with \"*\" and specify an exact address in the\n\
15187 program. Example: To specify the fourth byte past the start function\n\
15188 \"main\", use \"*main + 4\".\n\
15189 \n\
15190 Explicit locations are similar to linespecs but use an option/argument\n\
15191 syntax to specify location parameters.\n\
15192 Example: To specify the start of the label named \"the_top\" in the\n\
15193 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15194 -function fact -label the_top\".\n\
15195 \n\
15196 By default, a specified function is matched against the program's\n\
15197 functions in all scopes. For C++, this means in all namespaces and\n\
15198 classes. For Ada, this means in all packages. E.g., in C++,\n\
15199 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15200 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15201 specified name as a complete fully-qualified name instead.\n"
15202
15203 /* This help string is used for the break, hbreak, tbreak and thbreak
15204 commands. It is defined as a macro to prevent duplication.
15205 COMMAND should be a string constant containing the name of the
15206 command. */
15207
15208 #define BREAK_ARGS_HELP(command) \
15209 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15210 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15211 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15212 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15213 `-probe-dtrace' (for a DTrace probe).\n\
15214 LOCATION may be a linespec, address, or explicit location as described\n\
15215 below.\n\
15216 \n\
15217 With no LOCATION, uses current execution address of the selected\n\
15218 stack frame. This is useful for breaking on return to a stack frame.\n\
15219 \n\
15220 THREADNUM is the number from \"info threads\".\n\
15221 CONDITION is a boolean expression.\n\
15222 \n" LOCATION_HELP_STRING "\n\
15223 Multiple breakpoints at one place are permitted, and useful if their\n\
15224 conditions are different.\n\
15225 \n\
15226 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15227
15228 /* List of subcommands for "catch". */
15229 static struct cmd_list_element *catch_cmdlist;
15230
15231 /* List of subcommands for "tcatch". */
15232 static struct cmd_list_element *tcatch_cmdlist;
15233
15234 void
15235 add_catch_command (const char *name, const char *docstring,
15236 cmd_const_sfunc_ftype *sfunc,
15237 completer_ftype *completer,
15238 void *user_data_catch,
15239 void *user_data_tcatch)
15240 {
15241 struct cmd_list_element *command;
15242
15243 command = add_cmd (name, class_breakpoint, docstring,
15244 &catch_cmdlist);
15245 set_cmd_sfunc (command, sfunc);
15246 set_cmd_context (command, user_data_catch);
15247 set_cmd_completer (command, completer);
15248
15249 command = add_cmd (name, class_breakpoint, docstring,
15250 &tcatch_cmdlist);
15251 set_cmd_sfunc (command, sfunc);
15252 set_cmd_context (command, user_data_tcatch);
15253 set_cmd_completer (command, completer);
15254 }
15255
15256 static void
15257 save_command (const char *arg, int from_tty)
15258 {
15259 printf_unfiltered (_("\"save\" must be followed by "
15260 "the name of a save subcommand.\n"));
15261 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15262 }
15263
15264 struct breakpoint *
15265 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15266 void *data)
15267 {
15268 struct breakpoint *b, *b_tmp;
15269
15270 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15271 {
15272 if ((*callback) (b, data))
15273 return b;
15274 }
15275
15276 return NULL;
15277 }
15278
15279 /* Zero if any of the breakpoint's locations could be a location where
15280 functions have been inlined, nonzero otherwise. */
15281
15282 static int
15283 is_non_inline_function (struct breakpoint *b)
15284 {
15285 /* The shared library event breakpoint is set on the address of a
15286 non-inline function. */
15287 if (b->type == bp_shlib_event)
15288 return 1;
15289
15290 return 0;
15291 }
15292
15293 /* Nonzero if the specified PC cannot be a location where functions
15294 have been inlined. */
15295
15296 int
15297 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15298 const struct target_waitstatus *ws)
15299 {
15300 struct breakpoint *b;
15301 struct bp_location *bl;
15302
15303 ALL_BREAKPOINTS (b)
15304 {
15305 if (!is_non_inline_function (b))
15306 continue;
15307
15308 for (bl = b->loc; bl != NULL; bl = bl->next)
15309 {
15310 if (!bl->shlib_disabled
15311 && bpstat_check_location (bl, aspace, pc, ws))
15312 return 1;
15313 }
15314 }
15315
15316 return 0;
15317 }
15318
15319 /* Remove any references to OBJFILE which is going to be freed. */
15320
15321 void
15322 breakpoint_free_objfile (struct objfile *objfile)
15323 {
15324 struct bp_location **locp, *loc;
15325
15326 ALL_BP_LOCATIONS (loc, locp)
15327 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15328 loc->symtab = NULL;
15329 }
15330
15331 void
15332 initialize_breakpoint_ops (void)
15333 {
15334 static int initialized = 0;
15335
15336 struct breakpoint_ops *ops;
15337
15338 if (initialized)
15339 return;
15340 initialized = 1;
15341
15342 /* The breakpoint_ops structure to be inherit by all kinds of
15343 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15344 internal and momentary breakpoints, etc.). */
15345 ops = &bkpt_base_breakpoint_ops;
15346 *ops = base_breakpoint_ops;
15347 ops->re_set = bkpt_re_set;
15348 ops->insert_location = bkpt_insert_location;
15349 ops->remove_location = bkpt_remove_location;
15350 ops->breakpoint_hit = bkpt_breakpoint_hit;
15351 ops->create_sals_from_location = bkpt_create_sals_from_location;
15352 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15353 ops->decode_location = bkpt_decode_location;
15354
15355 /* The breakpoint_ops structure to be used in regular breakpoints. */
15356 ops = &bkpt_breakpoint_ops;
15357 *ops = bkpt_base_breakpoint_ops;
15358 ops->re_set = bkpt_re_set;
15359 ops->resources_needed = bkpt_resources_needed;
15360 ops->print_it = bkpt_print_it;
15361 ops->print_mention = bkpt_print_mention;
15362 ops->print_recreate = bkpt_print_recreate;
15363
15364 /* Ranged breakpoints. */
15365 ops = &ranged_breakpoint_ops;
15366 *ops = bkpt_breakpoint_ops;
15367 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15368 ops->resources_needed = resources_needed_ranged_breakpoint;
15369 ops->print_it = print_it_ranged_breakpoint;
15370 ops->print_one = print_one_ranged_breakpoint;
15371 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15372 ops->print_mention = print_mention_ranged_breakpoint;
15373 ops->print_recreate = print_recreate_ranged_breakpoint;
15374
15375 /* Internal breakpoints. */
15376 ops = &internal_breakpoint_ops;
15377 *ops = bkpt_base_breakpoint_ops;
15378 ops->re_set = internal_bkpt_re_set;
15379 ops->check_status = internal_bkpt_check_status;
15380 ops->print_it = internal_bkpt_print_it;
15381 ops->print_mention = internal_bkpt_print_mention;
15382
15383 /* Momentary breakpoints. */
15384 ops = &momentary_breakpoint_ops;
15385 *ops = bkpt_base_breakpoint_ops;
15386 ops->re_set = momentary_bkpt_re_set;
15387 ops->check_status = momentary_bkpt_check_status;
15388 ops->print_it = momentary_bkpt_print_it;
15389 ops->print_mention = momentary_bkpt_print_mention;
15390
15391 /* Probe breakpoints. */
15392 ops = &bkpt_probe_breakpoint_ops;
15393 *ops = bkpt_breakpoint_ops;
15394 ops->insert_location = bkpt_probe_insert_location;
15395 ops->remove_location = bkpt_probe_remove_location;
15396 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15397 ops->decode_location = bkpt_probe_decode_location;
15398
15399 /* Watchpoints. */
15400 ops = &watchpoint_breakpoint_ops;
15401 *ops = base_breakpoint_ops;
15402 ops->re_set = re_set_watchpoint;
15403 ops->insert_location = insert_watchpoint;
15404 ops->remove_location = remove_watchpoint;
15405 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15406 ops->check_status = check_status_watchpoint;
15407 ops->resources_needed = resources_needed_watchpoint;
15408 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15409 ops->print_it = print_it_watchpoint;
15410 ops->print_mention = print_mention_watchpoint;
15411 ops->print_recreate = print_recreate_watchpoint;
15412 ops->explains_signal = explains_signal_watchpoint;
15413
15414 /* Masked watchpoints. */
15415 ops = &masked_watchpoint_breakpoint_ops;
15416 *ops = watchpoint_breakpoint_ops;
15417 ops->insert_location = insert_masked_watchpoint;
15418 ops->remove_location = remove_masked_watchpoint;
15419 ops->resources_needed = resources_needed_masked_watchpoint;
15420 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15421 ops->print_it = print_it_masked_watchpoint;
15422 ops->print_one_detail = print_one_detail_masked_watchpoint;
15423 ops->print_mention = print_mention_masked_watchpoint;
15424 ops->print_recreate = print_recreate_masked_watchpoint;
15425
15426 /* Tracepoints. */
15427 ops = &tracepoint_breakpoint_ops;
15428 *ops = base_breakpoint_ops;
15429 ops->re_set = tracepoint_re_set;
15430 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15431 ops->print_one_detail = tracepoint_print_one_detail;
15432 ops->print_mention = tracepoint_print_mention;
15433 ops->print_recreate = tracepoint_print_recreate;
15434 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15435 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15436 ops->decode_location = tracepoint_decode_location;
15437
15438 /* Probe tracepoints. */
15439 ops = &tracepoint_probe_breakpoint_ops;
15440 *ops = tracepoint_breakpoint_ops;
15441 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15442 ops->decode_location = tracepoint_probe_decode_location;
15443
15444 /* Static tracepoints with marker (`-m'). */
15445 ops = &strace_marker_breakpoint_ops;
15446 *ops = tracepoint_breakpoint_ops;
15447 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15448 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15449 ops->decode_location = strace_marker_decode_location;
15450
15451 /* Fork catchpoints. */
15452 ops = &catch_fork_breakpoint_ops;
15453 *ops = base_breakpoint_ops;
15454 ops->insert_location = insert_catch_fork;
15455 ops->remove_location = remove_catch_fork;
15456 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15457 ops->print_it = print_it_catch_fork;
15458 ops->print_one = print_one_catch_fork;
15459 ops->print_mention = print_mention_catch_fork;
15460 ops->print_recreate = print_recreate_catch_fork;
15461
15462 /* Vfork catchpoints. */
15463 ops = &catch_vfork_breakpoint_ops;
15464 *ops = base_breakpoint_ops;
15465 ops->insert_location = insert_catch_vfork;
15466 ops->remove_location = remove_catch_vfork;
15467 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15468 ops->print_it = print_it_catch_vfork;
15469 ops->print_one = print_one_catch_vfork;
15470 ops->print_mention = print_mention_catch_vfork;
15471 ops->print_recreate = print_recreate_catch_vfork;
15472
15473 /* Exec catchpoints. */
15474 ops = &catch_exec_breakpoint_ops;
15475 *ops = base_breakpoint_ops;
15476 ops->insert_location = insert_catch_exec;
15477 ops->remove_location = remove_catch_exec;
15478 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15479 ops->print_it = print_it_catch_exec;
15480 ops->print_one = print_one_catch_exec;
15481 ops->print_mention = print_mention_catch_exec;
15482 ops->print_recreate = print_recreate_catch_exec;
15483
15484 /* Solib-related catchpoints. */
15485 ops = &catch_solib_breakpoint_ops;
15486 *ops = base_breakpoint_ops;
15487 ops->insert_location = insert_catch_solib;
15488 ops->remove_location = remove_catch_solib;
15489 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15490 ops->check_status = check_status_catch_solib;
15491 ops->print_it = print_it_catch_solib;
15492 ops->print_one = print_one_catch_solib;
15493 ops->print_mention = print_mention_catch_solib;
15494 ops->print_recreate = print_recreate_catch_solib;
15495
15496 ops = &dprintf_breakpoint_ops;
15497 *ops = bkpt_base_breakpoint_ops;
15498 ops->re_set = dprintf_re_set;
15499 ops->resources_needed = bkpt_resources_needed;
15500 ops->print_it = bkpt_print_it;
15501 ops->print_mention = bkpt_print_mention;
15502 ops->print_recreate = dprintf_print_recreate;
15503 ops->after_condition_true = dprintf_after_condition_true;
15504 ops->breakpoint_hit = dprintf_breakpoint_hit;
15505 }
15506
15507 /* Chain containing all defined "enable breakpoint" subcommands. */
15508
15509 static struct cmd_list_element *enablebreaklist = NULL;
15510
15511 void
15512 _initialize_breakpoint (void)
15513 {
15514 struct cmd_list_element *c;
15515
15516 initialize_breakpoint_ops ();
15517
15518 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15519 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15520 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15521
15522 breakpoint_objfile_key
15523 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15524
15525 breakpoint_chain = 0;
15526 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15527 before a breakpoint is set. */
15528 breakpoint_count = 0;
15529
15530 tracepoint_count = 0;
15531
15532 add_com ("ignore", class_breakpoint, ignore_command, _("\
15533 Set ignore-count of breakpoint number N to COUNT.\n\
15534 Usage is `ignore N COUNT'."));
15535
15536 add_com ("commands", class_breakpoint, commands_command, _("\
15537 Set commands to be executed when the given breakpoints are hit.\n\
15538 Give a space-separated breakpoint list as argument after \"commands\".\n\
15539 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15540 (e.g. `5-7').\n\
15541 With no argument, the targeted breakpoint is the last one set.\n\
15542 The commands themselves follow starting on the next line.\n\
15543 Type a line containing \"end\" to indicate the end of them.\n\
15544 Give \"silent\" as the first line to make the breakpoint silent;\n\
15545 then no output is printed when it is hit, except what the commands print."));
15546
15547 c = add_com ("condition", class_breakpoint, condition_command, _("\
15548 Specify breakpoint number N to break only if COND is true.\n\
15549 Usage is `condition N COND', where N is an integer and COND is an\n\
15550 expression to be evaluated whenever breakpoint N is reached."));
15551 set_cmd_completer (c, condition_completer);
15552
15553 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15554 Set a temporary breakpoint.\n\
15555 Like \"break\" except the breakpoint is only temporary,\n\
15556 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15557 by using \"enable delete\" on the breakpoint number.\n\
15558 \n"
15559 BREAK_ARGS_HELP ("tbreak")));
15560 set_cmd_completer (c, location_completer);
15561
15562 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15563 Set a hardware assisted breakpoint.\n\
15564 Like \"break\" except the breakpoint requires hardware support,\n\
15565 some target hardware may not have this support.\n\
15566 \n"
15567 BREAK_ARGS_HELP ("hbreak")));
15568 set_cmd_completer (c, location_completer);
15569
15570 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15571 Set a temporary hardware assisted breakpoint.\n\
15572 Like \"hbreak\" except the breakpoint is only temporary,\n\
15573 so it will be deleted when hit.\n\
15574 \n"
15575 BREAK_ARGS_HELP ("thbreak")));
15576 set_cmd_completer (c, location_completer);
15577
15578 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15579 Enable some breakpoints.\n\
15580 Give breakpoint numbers (separated by spaces) as arguments.\n\
15581 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15582 This is used to cancel the effect of the \"disable\" command.\n\
15583 With a subcommand you can enable temporarily."),
15584 &enablelist, "enable ", 1, &cmdlist);
15585
15586 add_com_alias ("en", "enable", class_breakpoint, 1);
15587
15588 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15589 Enable some breakpoints.\n\
15590 Give breakpoint numbers (separated by spaces) as arguments.\n\
15591 This is used to cancel the effect of the \"disable\" command.\n\
15592 May be abbreviated to simply \"enable\".\n"),
15593 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15594
15595 add_cmd ("once", no_class, enable_once_command, _("\
15596 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15597 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15598 &enablebreaklist);
15599
15600 add_cmd ("delete", no_class, enable_delete_command, _("\
15601 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15602 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15603 &enablebreaklist);
15604
15605 add_cmd ("count", no_class, enable_count_command, _("\
15606 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15607 If a breakpoint is hit while enabled in this fashion,\n\
15608 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15609 &enablebreaklist);
15610
15611 add_cmd ("delete", no_class, enable_delete_command, _("\
15612 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15613 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15614 &enablelist);
15615
15616 add_cmd ("once", no_class, enable_once_command, _("\
15617 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15618 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15619 &enablelist);
15620
15621 add_cmd ("count", no_class, enable_count_command, _("\
15622 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15623 If a breakpoint is hit while enabled in this fashion,\n\
15624 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15625 &enablelist);
15626
15627 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15628 Disable some breakpoints.\n\
15629 Arguments are breakpoint numbers with spaces in between.\n\
15630 To disable all breakpoints, give no argument.\n\
15631 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15632 &disablelist, "disable ", 1, &cmdlist);
15633 add_com_alias ("dis", "disable", class_breakpoint, 1);
15634 add_com_alias ("disa", "disable", class_breakpoint, 1);
15635
15636 add_cmd ("breakpoints", class_alias, disable_command, _("\
15637 Disable some breakpoints.\n\
15638 Arguments are breakpoint numbers with spaces in between.\n\
15639 To disable all breakpoints, give no argument.\n\
15640 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15641 This command may be abbreviated \"disable\"."),
15642 &disablelist);
15643
15644 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15645 Delete some breakpoints or auto-display expressions.\n\
15646 Arguments are breakpoint numbers with spaces in between.\n\
15647 To delete all breakpoints, give no argument.\n\
15648 \n\
15649 Also a prefix command for deletion of other GDB objects.\n\
15650 The \"unset\" command is also an alias for \"delete\"."),
15651 &deletelist, "delete ", 1, &cmdlist);
15652 add_com_alias ("d", "delete", class_breakpoint, 1);
15653 add_com_alias ("del", "delete", class_breakpoint, 1);
15654
15655 add_cmd ("breakpoints", class_alias, delete_command, _("\
15656 Delete some breakpoints or auto-display expressions.\n\
15657 Arguments are breakpoint numbers with spaces in between.\n\
15658 To delete all breakpoints, give no argument.\n\
15659 This command may be abbreviated \"delete\"."),
15660 &deletelist);
15661
15662 add_com ("clear", class_breakpoint, clear_command, _("\
15663 Clear breakpoint at specified location.\n\
15664 Argument may be a linespec, explicit, or address location as described below.\n\
15665 \n\
15666 With no argument, clears all breakpoints in the line that the selected frame\n\
15667 is executing in.\n"
15668 "\n" LOCATION_HELP_STRING "\n\
15669 See also the \"delete\" command which clears breakpoints by number."));
15670 add_com_alias ("cl", "clear", class_breakpoint, 1);
15671
15672 c = add_com ("break", class_breakpoint, break_command, _("\
15673 Set breakpoint at specified location.\n"
15674 BREAK_ARGS_HELP ("break")));
15675 set_cmd_completer (c, location_completer);
15676
15677 add_com_alias ("b", "break", class_run, 1);
15678 add_com_alias ("br", "break", class_run, 1);
15679 add_com_alias ("bre", "break", class_run, 1);
15680 add_com_alias ("brea", "break", class_run, 1);
15681
15682 if (dbx_commands)
15683 {
15684 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15685 Break in function/address or break at a line in the current file."),
15686 &stoplist, "stop ", 1, &cmdlist);
15687 add_cmd ("in", class_breakpoint, stopin_command,
15688 _("Break in function or address."), &stoplist);
15689 add_cmd ("at", class_breakpoint, stopat_command,
15690 _("Break at a line in the current file."), &stoplist);
15691 add_com ("status", class_info, info_breakpoints_command, _("\
15692 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15693 The \"Type\" column indicates one of:\n\
15694 \tbreakpoint - normal breakpoint\n\
15695 \twatchpoint - watchpoint\n\
15696 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15697 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15698 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15699 address and file/line number respectively.\n\
15700 \n\
15701 Convenience variable \"$_\" and default examine address for \"x\"\n\
15702 are set to the address of the last breakpoint listed unless the command\n\
15703 is prefixed with \"server \".\n\n\
15704 Convenience variable \"$bpnum\" contains the number of the last\n\
15705 breakpoint set."));
15706 }
15707
15708 add_info ("breakpoints", info_breakpoints_command, _("\
15709 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15710 The \"Type\" column indicates one of:\n\
15711 \tbreakpoint - normal breakpoint\n\
15712 \twatchpoint - watchpoint\n\
15713 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15714 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15715 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15716 address and file/line number respectively.\n\
15717 \n\
15718 Convenience variable \"$_\" and default examine address for \"x\"\n\
15719 are set to the address of the last breakpoint listed unless the command\n\
15720 is prefixed with \"server \".\n\n\
15721 Convenience variable \"$bpnum\" contains the number of the last\n\
15722 breakpoint set."));
15723
15724 add_info_alias ("b", "breakpoints", 1);
15725
15726 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15727 Status of all breakpoints, or breakpoint number NUMBER.\n\
15728 The \"Type\" column indicates one of:\n\
15729 \tbreakpoint - normal breakpoint\n\
15730 \twatchpoint - watchpoint\n\
15731 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15732 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15733 \tuntil - internal breakpoint used by the \"until\" command\n\
15734 \tfinish - internal breakpoint used by the \"finish\" command\n\
15735 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15736 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15737 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15738 address and file/line number respectively.\n\
15739 \n\
15740 Convenience variable \"$_\" and default examine address for \"x\"\n\
15741 are set to the address of the last breakpoint listed unless the command\n\
15742 is prefixed with \"server \".\n\n\
15743 Convenience variable \"$bpnum\" contains the number of the last\n\
15744 breakpoint set."),
15745 &maintenanceinfolist);
15746
15747 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15748 Set catchpoints to catch events."),
15749 &catch_cmdlist, "catch ",
15750 0/*allow-unknown*/, &cmdlist);
15751
15752 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15753 Set temporary catchpoints to catch events."),
15754 &tcatch_cmdlist, "tcatch ",
15755 0/*allow-unknown*/, &cmdlist);
15756
15757 add_catch_command ("fork", _("Catch calls to fork."),
15758 catch_fork_command_1,
15759 NULL,
15760 (void *) (uintptr_t) catch_fork_permanent,
15761 (void *) (uintptr_t) catch_fork_temporary);
15762 add_catch_command ("vfork", _("Catch calls to vfork."),
15763 catch_fork_command_1,
15764 NULL,
15765 (void *) (uintptr_t) catch_vfork_permanent,
15766 (void *) (uintptr_t) catch_vfork_temporary);
15767 add_catch_command ("exec", _("Catch calls to exec."),
15768 catch_exec_command_1,
15769 NULL,
15770 CATCH_PERMANENT,
15771 CATCH_TEMPORARY);
15772 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15773 Usage: catch load [REGEX]\n\
15774 If REGEX is given, only stop for libraries matching the regular expression."),
15775 catch_load_command_1,
15776 NULL,
15777 CATCH_PERMANENT,
15778 CATCH_TEMPORARY);
15779 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15780 Usage: catch unload [REGEX]\n\
15781 If REGEX is given, only stop for libraries matching the regular expression."),
15782 catch_unload_command_1,
15783 NULL,
15784 CATCH_PERMANENT,
15785 CATCH_TEMPORARY);
15786
15787 c = add_com ("watch", class_breakpoint, watch_command, _("\
15788 Set a watchpoint for an expression.\n\
15789 Usage: watch [-l|-location] EXPRESSION\n\
15790 A watchpoint stops execution of your program whenever the value of\n\
15791 an expression changes.\n\
15792 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15793 the memory to which it refers."));
15794 set_cmd_completer (c, expression_completer);
15795
15796 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15797 Set a read watchpoint for an expression.\n\
15798 Usage: rwatch [-l|-location] EXPRESSION\n\
15799 A watchpoint stops execution of your program whenever the value of\n\
15800 an expression is read.\n\
15801 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15802 the memory to which it refers."));
15803 set_cmd_completer (c, expression_completer);
15804
15805 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15806 Set a watchpoint for an expression.\n\
15807 Usage: awatch [-l|-location] EXPRESSION\n\
15808 A watchpoint stops execution of your program whenever the value of\n\
15809 an expression is either read or written.\n\
15810 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15811 the memory to which it refers."));
15812 set_cmd_completer (c, expression_completer);
15813
15814 add_info ("watchpoints", info_watchpoints_command, _("\
15815 Status of specified watchpoints (all watchpoints if no argument)."));
15816
15817 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15818 respond to changes - contrary to the description. */
15819 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15820 &can_use_hw_watchpoints, _("\
15821 Set debugger's willingness to use watchpoint hardware."), _("\
15822 Show debugger's willingness to use watchpoint hardware."), _("\
15823 If zero, gdb will not use hardware for new watchpoints, even if\n\
15824 such is available. (However, any hardware watchpoints that were\n\
15825 created before setting this to nonzero, will continue to use watchpoint\n\
15826 hardware.)"),
15827 NULL,
15828 show_can_use_hw_watchpoints,
15829 &setlist, &showlist);
15830
15831 can_use_hw_watchpoints = 1;
15832
15833 /* Tracepoint manipulation commands. */
15834
15835 c = add_com ("trace", class_breakpoint, trace_command, _("\
15836 Set a tracepoint at specified location.\n\
15837 \n"
15838 BREAK_ARGS_HELP ("trace") "\n\
15839 Do \"help tracepoints\" for info on other tracepoint commands."));
15840 set_cmd_completer (c, location_completer);
15841
15842 add_com_alias ("tp", "trace", class_alias, 0);
15843 add_com_alias ("tr", "trace", class_alias, 1);
15844 add_com_alias ("tra", "trace", class_alias, 1);
15845 add_com_alias ("trac", "trace", class_alias, 1);
15846
15847 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15848 Set a fast tracepoint at specified location.\n\
15849 \n"
15850 BREAK_ARGS_HELP ("ftrace") "\n\
15851 Do \"help tracepoints\" for info on other tracepoint commands."));
15852 set_cmd_completer (c, location_completer);
15853
15854 c = add_com ("strace", class_breakpoint, strace_command, _("\
15855 Set a static tracepoint at location or marker.\n\
15856 \n\
15857 strace [LOCATION] [if CONDITION]\n\
15858 LOCATION may be a linespec, explicit, or address location (described below) \n\
15859 or -m MARKER_ID.\n\n\
15860 If a marker id is specified, probe the marker with that name. With\n\
15861 no LOCATION, uses current execution address of the selected stack frame.\n\
15862 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15863 This collects arbitrary user data passed in the probe point call to the\n\
15864 tracing library. You can inspect it when analyzing the trace buffer,\n\
15865 by printing the $_sdata variable like any other convenience variable.\n\
15866 \n\
15867 CONDITION is a boolean expression.\n\
15868 \n" LOCATION_HELP_STRING "\n\
15869 Multiple tracepoints at one place are permitted, and useful if their\n\
15870 conditions are different.\n\
15871 \n\
15872 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15873 Do \"help tracepoints\" for info on other tracepoint commands."));
15874 set_cmd_completer (c, location_completer);
15875
15876 add_info ("tracepoints", info_tracepoints_command, _("\
15877 Status of specified tracepoints (all tracepoints if no argument).\n\
15878 Convenience variable \"$tpnum\" contains the number of the\n\
15879 last tracepoint set."));
15880
15881 add_info_alias ("tp", "tracepoints", 1);
15882
15883 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15884 Delete specified tracepoints.\n\
15885 Arguments are tracepoint numbers, separated by spaces.\n\
15886 No argument means delete all tracepoints."),
15887 &deletelist);
15888 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15889
15890 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15891 Disable specified tracepoints.\n\
15892 Arguments are tracepoint numbers, separated by spaces.\n\
15893 No argument means disable all tracepoints."),
15894 &disablelist);
15895 deprecate_cmd (c, "disable");
15896
15897 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15898 Enable specified tracepoints.\n\
15899 Arguments are tracepoint numbers, separated by spaces.\n\
15900 No argument means enable all tracepoints."),
15901 &enablelist);
15902 deprecate_cmd (c, "enable");
15903
15904 add_com ("passcount", class_trace, trace_pass_command, _("\
15905 Set the passcount for a tracepoint.\n\
15906 The trace will end when the tracepoint has been passed 'count' times.\n\
15907 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15908 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15909
15910 add_prefix_cmd ("save", class_breakpoint, save_command,
15911 _("Save breakpoint definitions as a script."),
15912 &save_cmdlist, "save ",
15913 0/*allow-unknown*/, &cmdlist);
15914
15915 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15916 Save current breakpoint definitions as a script.\n\
15917 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15918 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15919 session to restore them."),
15920 &save_cmdlist);
15921 set_cmd_completer (c, filename_completer);
15922
15923 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15924 Save current tracepoint definitions as a script.\n\
15925 Use the 'source' command in another debug session to restore them."),
15926 &save_cmdlist);
15927 set_cmd_completer (c, filename_completer);
15928
15929 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15930 deprecate_cmd (c, "save tracepoints");
15931
15932 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15933 Breakpoint specific settings\n\
15934 Configure various breakpoint-specific variables such as\n\
15935 pending breakpoint behavior"),
15936 &breakpoint_set_cmdlist, "set breakpoint ",
15937 0/*allow-unknown*/, &setlist);
15938 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15939 Breakpoint specific settings\n\
15940 Configure various breakpoint-specific variables such as\n\
15941 pending breakpoint behavior"),
15942 &breakpoint_show_cmdlist, "show breakpoint ",
15943 0/*allow-unknown*/, &showlist);
15944
15945 add_setshow_auto_boolean_cmd ("pending", no_class,
15946 &pending_break_support, _("\
15947 Set debugger's behavior regarding pending breakpoints."), _("\
15948 Show debugger's behavior regarding pending breakpoints."), _("\
15949 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15950 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15951 an error. If auto, an unrecognized breakpoint location results in a\n\
15952 user-query to see if a pending breakpoint should be created."),
15953 NULL,
15954 show_pending_break_support,
15955 &breakpoint_set_cmdlist,
15956 &breakpoint_show_cmdlist);
15957
15958 pending_break_support = AUTO_BOOLEAN_AUTO;
15959
15960 add_setshow_boolean_cmd ("auto-hw", no_class,
15961 &automatic_hardware_breakpoints, _("\
15962 Set automatic usage of hardware breakpoints."), _("\
15963 Show automatic usage of hardware breakpoints."), _("\
15964 If set, the debugger will automatically use hardware breakpoints for\n\
15965 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15966 a warning will be emitted for such breakpoints."),
15967 NULL,
15968 show_automatic_hardware_breakpoints,
15969 &breakpoint_set_cmdlist,
15970 &breakpoint_show_cmdlist);
15971
15972 add_setshow_boolean_cmd ("always-inserted", class_support,
15973 &always_inserted_mode, _("\
15974 Set mode for inserting breakpoints."), _("\
15975 Show mode for inserting breakpoints."), _("\
15976 When this mode is on, breakpoints are inserted immediately as soon as\n\
15977 they're created, kept inserted even when execution stops, and removed\n\
15978 only when the user deletes them. When this mode is off (the default),\n\
15979 breakpoints are inserted only when execution continues, and removed\n\
15980 when execution stops."),
15981 NULL,
15982 &show_always_inserted_mode,
15983 &breakpoint_set_cmdlist,
15984 &breakpoint_show_cmdlist);
15985
15986 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15987 condition_evaluation_enums,
15988 &condition_evaluation_mode_1, _("\
15989 Set mode of breakpoint condition evaluation."), _("\
15990 Show mode of breakpoint condition evaluation."), _("\
15991 When this is set to \"host\", breakpoint conditions will be\n\
15992 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15993 breakpoint conditions will be downloaded to the target (if the target\n\
15994 supports such feature) and conditions will be evaluated on the target's side.\n\
15995 If this is set to \"auto\" (default), this will be automatically set to\n\
15996 \"target\" if it supports condition evaluation, otherwise it will\n\
15997 be set to \"gdb\""),
15998 &set_condition_evaluation_mode,
15999 &show_condition_evaluation_mode,
16000 &breakpoint_set_cmdlist,
16001 &breakpoint_show_cmdlist);
16002
16003 add_com ("break-range", class_breakpoint, break_range_command, _("\
16004 Set a breakpoint for an address range.\n\
16005 break-range START-LOCATION, END-LOCATION\n\
16006 where START-LOCATION and END-LOCATION can be one of the following:\n\
16007 LINENUM, for that line in the current file,\n\
16008 FILE:LINENUM, for that line in that file,\n\
16009 +OFFSET, for that number of lines after the current line\n\
16010 or the start of the range\n\
16011 FUNCTION, for the first line in that function,\n\
16012 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16013 *ADDRESS, for the instruction at that address.\n\
16014 \n\
16015 The breakpoint will stop execution of the inferior whenever it executes\n\
16016 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16017 range (including START-LOCATION and END-LOCATION)."));
16018
16019 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16020 Set a dynamic printf at specified location.\n\
16021 dprintf location,format string,arg1,arg2,...\n\
16022 location may be a linespec, explicit, or address location.\n"
16023 "\n" LOCATION_HELP_STRING));
16024 set_cmd_completer (c, location_completer);
16025
16026 add_setshow_enum_cmd ("dprintf-style", class_support,
16027 dprintf_style_enums, &dprintf_style, _("\
16028 Set the style of usage for dynamic printf."), _("\
16029 Show the style of usage for dynamic printf."), _("\
16030 This setting chooses how GDB will do a dynamic printf.\n\
16031 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16032 console, as with the \"printf\" command.\n\
16033 If the value is \"call\", the print is done by calling a function in your\n\
16034 program; by default printf(), but you can choose a different function or\n\
16035 output stream by setting dprintf-function and dprintf-channel."),
16036 update_dprintf_commands, NULL,
16037 &setlist, &showlist);
16038
16039 dprintf_function = xstrdup ("printf");
16040 add_setshow_string_cmd ("dprintf-function", class_support,
16041 &dprintf_function, _("\
16042 Set the function to use for dynamic printf"), _("\
16043 Show the function to use for dynamic printf"), NULL,
16044 update_dprintf_commands, NULL,
16045 &setlist, &showlist);
16046
16047 dprintf_channel = xstrdup ("");
16048 add_setshow_string_cmd ("dprintf-channel", class_support,
16049 &dprintf_channel, _("\
16050 Set the channel to use for dynamic printf"), _("\
16051 Show the channel to use for dynamic printf"), NULL,
16052 update_dprintf_commands, NULL,
16053 &setlist, &showlist);
16054
16055 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16056 &disconnected_dprintf, _("\
16057 Set whether dprintf continues after GDB disconnects."), _("\
16058 Show whether dprintf continues after GDB disconnects."), _("\
16059 Use this to let dprintf commands continue to hit and produce output\n\
16060 even if GDB disconnects or detaches from the target."),
16061 NULL,
16062 NULL,
16063 &setlist, &showlist);
16064
16065 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16066 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16067 (target agent only) This is useful for formatted output in user-defined commands."));
16068
16069 automatic_hardware_breakpoints = 1;
16070
16071 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16072 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16073 }