Use counted_command_line everywhere
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint
121 (const std::vector<value_ref_ptr> &vals);
122
123 static void mention (struct breakpoint *);
124
125 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
126 enum bptype,
127 const struct breakpoint_ops *);
128 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
129 const struct symtab_and_line *);
130
131 /* This function is used in gdbtk sources and thus can not be made
132 static. */
133 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
134 struct symtab_and_line,
135 enum bptype,
136 const struct breakpoint_ops *);
137
138 static struct breakpoint *
139 momentary_breakpoint_from_master (struct breakpoint *orig,
140 enum bptype type,
141 const struct breakpoint_ops *ops,
142 int loc_enabled);
143
144 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
145
146 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
147 CORE_ADDR bpaddr,
148 enum bptype bptype);
149
150 static void describe_other_breakpoints (struct gdbarch *,
151 struct program_space *, CORE_ADDR,
152 struct obj_section *, int);
153
154 static int watchpoint_locations_match (struct bp_location *loc1,
155 struct bp_location *loc2);
156
157 static int breakpoint_location_address_match (struct bp_location *bl,
158 const struct address_space *aspace,
159 CORE_ADDR addr);
160
161 static int breakpoint_location_address_range_overlap (struct bp_location *,
162 const address_space *,
163 CORE_ADDR, int);
164
165 static int remove_breakpoint (struct bp_location *);
166 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
167
168 static enum print_stop_action print_bp_stop_message (bpstat bs);
169
170 static int hw_breakpoint_used_count (void);
171
172 static int hw_watchpoint_use_count (struct breakpoint *);
173
174 static int hw_watchpoint_used_count_others (struct breakpoint *except,
175 enum bptype type,
176 int *other_type_used);
177
178 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
179 int count);
180
181 static void free_bp_location (struct bp_location *loc);
182 static void incref_bp_location (struct bp_location *loc);
183 static void decref_bp_location (struct bp_location **loc);
184
185 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
186
187 /* update_global_location_list's modes of operation wrt to whether to
188 insert locations now. */
189 enum ugll_insert_mode
190 {
191 /* Don't insert any breakpoint locations into the inferior, only
192 remove already-inserted locations that no longer should be
193 inserted. Functions that delete a breakpoint or breakpoints
194 should specify this mode, so that deleting a breakpoint doesn't
195 have the side effect of inserting the locations of other
196 breakpoints that are marked not-inserted, but should_be_inserted
197 returns true on them.
198
199 This behavior is useful is situations close to tear-down -- e.g.,
200 after an exec, while the target still has execution, but
201 breakpoint shadows of the previous executable image should *NOT*
202 be restored to the new image; or before detaching, where the
203 target still has execution and wants to delete breakpoints from
204 GDB's lists, and all breakpoints had already been removed from
205 the inferior. */
206 UGLL_DONT_INSERT,
207
208 /* May insert breakpoints iff breakpoints_should_be_inserted_now
209 claims breakpoints should be inserted now. */
210 UGLL_MAY_INSERT,
211
212 /* Insert locations now, irrespective of
213 breakpoints_should_be_inserted_now. E.g., say all threads are
214 stopped right now, and the user did "continue". We need to
215 insert breakpoints _before_ resuming the target, but
216 UGLL_MAY_INSERT wouldn't insert them, because
217 breakpoints_should_be_inserted_now returns false at that point,
218 as no thread is running yet. */
219 UGLL_INSERT
220 };
221
222 static void update_global_location_list (enum ugll_insert_mode);
223
224 static void update_global_location_list_nothrow (enum ugll_insert_mode);
225
226 static int is_hardware_watchpoint (const struct breakpoint *bpt);
227
228 static void insert_breakpoint_locations (void);
229
230 static void trace_pass_command (const char *, int);
231
232 static void set_tracepoint_count (int num);
233
234 static int is_masked_watchpoint (const struct breakpoint *b);
235
236 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
237
238 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
239 otherwise. */
240
241 static int strace_marker_p (struct breakpoint *b);
242
243 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
244 that are implemented on top of software or hardware breakpoints
245 (user breakpoints, internal and momentary breakpoints, etc.). */
246 static struct breakpoint_ops bkpt_base_breakpoint_ops;
247
248 /* Internal breakpoints class type. */
249 static struct breakpoint_ops internal_breakpoint_ops;
250
251 /* Momentary breakpoints class type. */
252 static struct breakpoint_ops momentary_breakpoint_ops;
253
254 /* The breakpoint_ops structure to be used in regular user created
255 breakpoints. */
256 struct breakpoint_ops bkpt_breakpoint_ops;
257
258 /* Breakpoints set on probes. */
259 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
260
261 /* Dynamic printf class type. */
262 struct breakpoint_ops dprintf_breakpoint_ops;
263
264 /* The style in which to perform a dynamic printf. This is a user
265 option because different output options have different tradeoffs;
266 if GDB does the printing, there is better error handling if there
267 is a problem with any of the arguments, but using an inferior
268 function lets you have special-purpose printers and sending of
269 output to the same place as compiled-in print functions. */
270
271 static const char dprintf_style_gdb[] = "gdb";
272 static const char dprintf_style_call[] = "call";
273 static const char dprintf_style_agent[] = "agent";
274 static const char *const dprintf_style_enums[] = {
275 dprintf_style_gdb,
276 dprintf_style_call,
277 dprintf_style_agent,
278 NULL
279 };
280 static const char *dprintf_style = dprintf_style_gdb;
281
282 /* The function to use for dynamic printf if the preferred style is to
283 call into the inferior. The value is simply a string that is
284 copied into the command, so it can be anything that GDB can
285 evaluate to a callable address, not necessarily a function name. */
286
287 static char *dprintf_function;
288
289 /* The channel to use for dynamic printf if the preferred style is to
290 call into the inferior; if a nonempty string, it will be passed to
291 the call as the first argument, with the format string as the
292 second. As with the dprintf function, this can be anything that
293 GDB knows how to evaluate, so in addition to common choices like
294 "stderr", this could be an app-specific expression like
295 "mystreams[curlogger]". */
296
297 static char *dprintf_channel;
298
299 /* True if dprintf commands should continue to operate even if GDB
300 has disconnected. */
301 static int disconnected_dprintf = 1;
302
303 struct command_line *
304 breakpoint_commands (struct breakpoint *b)
305 {
306 return b->commands ? b->commands.get () : NULL;
307 }
308
309 /* Flag indicating that a command has proceeded the inferior past the
310 current breakpoint. */
311
312 static int breakpoint_proceeded;
313
314 const char *
315 bpdisp_text (enum bpdisp disp)
316 {
317 /* NOTE: the following values are a part of MI protocol and
318 represent values of 'disp' field returned when inferior stops at
319 a breakpoint. */
320 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
321
322 return bpdisps[(int) disp];
323 }
324
325 /* Prototypes for exported functions. */
326 /* If FALSE, gdb will not use hardware support for watchpoints, even
327 if such is available. */
328 static int can_use_hw_watchpoints;
329
330 static void
331 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
332 struct cmd_list_element *c,
333 const char *value)
334 {
335 fprintf_filtered (file,
336 _("Debugger's willingness to use "
337 "watchpoint hardware is %s.\n"),
338 value);
339 }
340
341 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
342 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
343 for unrecognized breakpoint locations.
344 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
345 static enum auto_boolean pending_break_support;
346 static void
347 show_pending_break_support (struct ui_file *file, int from_tty,
348 struct cmd_list_element *c,
349 const char *value)
350 {
351 fprintf_filtered (file,
352 _("Debugger's behavior regarding "
353 "pending breakpoints is %s.\n"),
354 value);
355 }
356
357 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
358 set with "break" but falling in read-only memory.
359 If 0, gdb will warn about such breakpoints, but won't automatically
360 use hardware breakpoints. */
361 static int automatic_hardware_breakpoints;
362 static void
363 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
364 struct cmd_list_element *c,
365 const char *value)
366 {
367 fprintf_filtered (file,
368 _("Automatic usage of hardware breakpoints is %s.\n"),
369 value);
370 }
371
372 /* If on, GDB keeps breakpoints inserted even if the inferior is
373 stopped, and immediately inserts any new breakpoints as soon as
374 they're created. If off (default), GDB keeps breakpoints off of
375 the target as long as possible. That is, it delays inserting
376 breakpoints until the next resume, and removes them again when the
377 target fully stops. This is a bit safer in case GDB crashes while
378 processing user input. */
379 static int always_inserted_mode = 0;
380
381 static void
382 show_always_inserted_mode (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c, const char *value)
384 {
385 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
386 value);
387 }
388
389 /* See breakpoint.h. */
390
391 int
392 breakpoints_should_be_inserted_now (void)
393 {
394 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
395 {
396 /* If breakpoints are global, they should be inserted even if no
397 thread under gdb's control is running, or even if there are
398 no threads under GDB's control yet. */
399 return 1;
400 }
401 else if (target_has_execution)
402 {
403 struct thread_info *tp;
404
405 if (always_inserted_mode)
406 {
407 /* The user wants breakpoints inserted even if all threads
408 are stopped. */
409 return 1;
410 }
411
412 if (threads_are_executing ())
413 return 1;
414
415 /* Don't remove breakpoints yet if, even though all threads are
416 stopped, we still have events to process. */
417 ALL_NON_EXITED_THREADS (tp)
418 if (tp->resumed
419 && tp->suspend.waitstatus_pending_p)
420 return 1;
421 }
422 return 0;
423 }
424
425 static const char condition_evaluation_both[] = "host or target";
426
427 /* Modes for breakpoint condition evaluation. */
428 static const char condition_evaluation_auto[] = "auto";
429 static const char condition_evaluation_host[] = "host";
430 static const char condition_evaluation_target[] = "target";
431 static const char *const condition_evaluation_enums[] = {
432 condition_evaluation_auto,
433 condition_evaluation_host,
434 condition_evaluation_target,
435 NULL
436 };
437
438 /* Global that holds the current mode for breakpoint condition evaluation. */
439 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
440
441 /* Global that we use to display information to the user (gets its value from
442 condition_evaluation_mode_1. */
443 static const char *condition_evaluation_mode = condition_evaluation_auto;
444
445 /* Translate a condition evaluation mode MODE into either "host"
446 or "target". This is used mostly to translate from "auto" to the
447 real setting that is being used. It returns the translated
448 evaluation mode. */
449
450 static const char *
451 translate_condition_evaluation_mode (const char *mode)
452 {
453 if (mode == condition_evaluation_auto)
454 {
455 if (target_supports_evaluation_of_breakpoint_conditions ())
456 return condition_evaluation_target;
457 else
458 return condition_evaluation_host;
459 }
460 else
461 return mode;
462 }
463
464 /* Discovers what condition_evaluation_auto translates to. */
465
466 static const char *
467 breakpoint_condition_evaluation_mode (void)
468 {
469 return translate_condition_evaluation_mode (condition_evaluation_mode);
470 }
471
472 /* Return true if GDB should evaluate breakpoint conditions or false
473 otherwise. */
474
475 static int
476 gdb_evaluates_breakpoint_condition_p (void)
477 {
478 const char *mode = breakpoint_condition_evaluation_mode ();
479
480 return (mode == condition_evaluation_host);
481 }
482
483 /* Are we executing breakpoint commands? */
484 static int executing_breakpoint_commands;
485
486 /* Are overlay event breakpoints enabled? */
487 static int overlay_events_enabled;
488
489 /* See description in breakpoint.h. */
490 int target_exact_watchpoints = 0;
491
492 /* Walk the following statement or block through all breakpoints.
493 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
494 current breakpoint. */
495
496 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
497
498 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
499 for (B = breakpoint_chain; \
500 B ? (TMP=B->next, 1): 0; \
501 B = TMP)
502
503 /* Similar iterator for the low-level breakpoints. SAFE variant is
504 not provided so update_global_location_list must not be called
505 while executing the block of ALL_BP_LOCATIONS. */
506
507 #define ALL_BP_LOCATIONS(B,BP_TMP) \
508 for (BP_TMP = bp_locations; \
509 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
510 BP_TMP++)
511
512 /* Iterates through locations with address ADDRESS for the currently selected
513 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
514 to where the loop should start from.
515 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
516 appropriate location to start with. */
517
518 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
519 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
520 BP_LOCP_TMP = BP_LOCP_START; \
521 BP_LOCP_START \
522 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
523 && (*BP_LOCP_TMP)->address == ADDRESS); \
524 BP_LOCP_TMP++)
525
526 /* Iterator for tracepoints only. */
527
528 #define ALL_TRACEPOINTS(B) \
529 for (B = breakpoint_chain; B; B = B->next) \
530 if (is_tracepoint (B))
531
532 /* Chains of all breakpoints defined. */
533
534 struct breakpoint *breakpoint_chain;
535
536 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
537
538 static struct bp_location **bp_locations;
539
540 /* Number of elements of BP_LOCATIONS. */
541
542 static unsigned bp_locations_count;
543
544 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
545 ADDRESS for the current elements of BP_LOCATIONS which get a valid
546 result from bp_location_has_shadow. You can use it for roughly
547 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
548 an address you need to read. */
549
550 static CORE_ADDR bp_locations_placed_address_before_address_max;
551
552 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
553 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
554 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
555 You can use it for roughly limiting the subrange of BP_LOCATIONS to
556 scan for shadow bytes for an address you need to read. */
557
558 static CORE_ADDR bp_locations_shadow_len_after_address_max;
559
560 /* The locations that no longer correspond to any breakpoint, unlinked
561 from the bp_locations array, but for which a hit may still be
562 reported by a target. */
563 VEC(bp_location_p) *moribund_locations = NULL;
564
565 /* Number of last breakpoint made. */
566
567 static int breakpoint_count;
568
569 /* The value of `breakpoint_count' before the last command that
570 created breakpoints. If the last (break-like) command created more
571 than one breakpoint, then the difference between BREAKPOINT_COUNT
572 and PREV_BREAKPOINT_COUNT is more than one. */
573 static int prev_breakpoint_count;
574
575 /* Number of last tracepoint made. */
576
577 static int tracepoint_count;
578
579 static struct cmd_list_element *breakpoint_set_cmdlist;
580 static struct cmd_list_element *breakpoint_show_cmdlist;
581 struct cmd_list_element *save_cmdlist;
582
583 /* See declaration at breakpoint.h. */
584
585 struct breakpoint *
586 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
587 void *user_data)
588 {
589 struct breakpoint *b = NULL;
590
591 ALL_BREAKPOINTS (b)
592 {
593 if (func (b, user_data) != 0)
594 break;
595 }
596
597 return b;
598 }
599
600 /* Return whether a breakpoint is an active enabled breakpoint. */
601 static int
602 breakpoint_enabled (struct breakpoint *b)
603 {
604 return (b->enable_state == bp_enabled);
605 }
606
607 /* Set breakpoint count to NUM. */
608
609 static void
610 set_breakpoint_count (int num)
611 {
612 prev_breakpoint_count = breakpoint_count;
613 breakpoint_count = num;
614 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
615 }
616
617 /* Used by `start_rbreak_breakpoints' below, to record the current
618 breakpoint count before "rbreak" creates any breakpoint. */
619 static int rbreak_start_breakpoint_count;
620
621 /* Called at the start an "rbreak" command to record the first
622 breakpoint made. */
623
624 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
625 {
626 rbreak_start_breakpoint_count = breakpoint_count;
627 }
628
629 /* Called at the end of an "rbreak" command to record the last
630 breakpoint made. */
631
632 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
633 {
634 prev_breakpoint_count = rbreak_start_breakpoint_count;
635 }
636
637 /* Used in run_command to zero the hit count when a new run starts. */
638
639 void
640 clear_breakpoint_hit_counts (void)
641 {
642 struct breakpoint *b;
643
644 ALL_BREAKPOINTS (b)
645 b->hit_count = 0;
646 }
647
648 \f
649 /* Return the breakpoint with the specified number, or NULL
650 if the number does not refer to an existing breakpoint. */
651
652 struct breakpoint *
653 get_breakpoint (int num)
654 {
655 struct breakpoint *b;
656
657 ALL_BREAKPOINTS (b)
658 if (b->number == num)
659 return b;
660
661 return NULL;
662 }
663
664 \f
665
666 /* Mark locations as "conditions have changed" in case the target supports
667 evaluating conditions on its side. */
668
669 static void
670 mark_breakpoint_modified (struct breakpoint *b)
671 {
672 struct bp_location *loc;
673
674 /* This is only meaningful if the target is
675 evaluating conditions and if the user has
676 opted for condition evaluation on the target's
677 side. */
678 if (gdb_evaluates_breakpoint_condition_p ()
679 || !target_supports_evaluation_of_breakpoint_conditions ())
680 return;
681
682 if (!is_breakpoint (b))
683 return;
684
685 for (loc = b->loc; loc; loc = loc->next)
686 loc->condition_changed = condition_modified;
687 }
688
689 /* Mark location as "conditions have changed" in case the target supports
690 evaluating conditions on its side. */
691
692 static void
693 mark_breakpoint_location_modified (struct bp_location *loc)
694 {
695 /* This is only meaningful if the target is
696 evaluating conditions and if the user has
697 opted for condition evaluation on the target's
698 side. */
699 if (gdb_evaluates_breakpoint_condition_p ()
700 || !target_supports_evaluation_of_breakpoint_conditions ())
701
702 return;
703
704 if (!is_breakpoint (loc->owner))
705 return;
706
707 loc->condition_changed = condition_modified;
708 }
709
710 /* Sets the condition-evaluation mode using the static global
711 condition_evaluation_mode. */
712
713 static void
714 set_condition_evaluation_mode (const char *args, int from_tty,
715 struct cmd_list_element *c)
716 {
717 const char *old_mode, *new_mode;
718
719 if ((condition_evaluation_mode_1 == condition_evaluation_target)
720 && !target_supports_evaluation_of_breakpoint_conditions ())
721 {
722 condition_evaluation_mode_1 = condition_evaluation_mode;
723 warning (_("Target does not support breakpoint condition evaluation.\n"
724 "Using host evaluation mode instead."));
725 return;
726 }
727
728 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
729 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
730
731 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
732 settings was "auto". */
733 condition_evaluation_mode = condition_evaluation_mode_1;
734
735 /* Only update the mode if the user picked a different one. */
736 if (new_mode != old_mode)
737 {
738 struct bp_location *loc, **loc_tmp;
739 /* If the user switched to a different evaluation mode, we
740 need to synch the changes with the target as follows:
741
742 "host" -> "target": Send all (valid) conditions to the target.
743 "target" -> "host": Remove all the conditions from the target.
744 */
745
746 if (new_mode == condition_evaluation_target)
747 {
748 /* Mark everything modified and synch conditions with the
749 target. */
750 ALL_BP_LOCATIONS (loc, loc_tmp)
751 mark_breakpoint_location_modified (loc);
752 }
753 else
754 {
755 /* Manually mark non-duplicate locations to synch conditions
756 with the target. We do this to remove all the conditions the
757 target knows about. */
758 ALL_BP_LOCATIONS (loc, loc_tmp)
759 if (is_breakpoint (loc->owner) && loc->inserted)
760 loc->needs_update = 1;
761 }
762
763 /* Do the update. */
764 update_global_location_list (UGLL_MAY_INSERT);
765 }
766
767 return;
768 }
769
770 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
771 what "auto" is translating to. */
772
773 static void
774 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
775 struct cmd_list_element *c, const char *value)
776 {
777 if (condition_evaluation_mode == condition_evaluation_auto)
778 fprintf_filtered (file,
779 _("Breakpoint condition evaluation "
780 "mode is %s (currently %s).\n"),
781 value,
782 breakpoint_condition_evaluation_mode ());
783 else
784 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
785 value);
786 }
787
788 /* A comparison function for bp_location AP and BP that is used by
789 bsearch. This comparison function only cares about addresses, unlike
790 the more general bp_locations_compare function. */
791
792 static int
793 bp_locations_compare_addrs (const void *ap, const void *bp)
794 {
795 const struct bp_location *a = *(const struct bp_location **) ap;
796 const struct bp_location *b = *(const struct bp_location **) bp;
797
798 if (a->address == b->address)
799 return 0;
800 else
801 return ((a->address > b->address) - (a->address < b->address));
802 }
803
804 /* Helper function to skip all bp_locations with addresses
805 less than ADDRESS. It returns the first bp_location that
806 is greater than or equal to ADDRESS. If none is found, just
807 return NULL. */
808
809 static struct bp_location **
810 get_first_locp_gte_addr (CORE_ADDR address)
811 {
812 struct bp_location dummy_loc;
813 struct bp_location *dummy_locp = &dummy_loc;
814 struct bp_location **locp_found = NULL;
815
816 /* Initialize the dummy location's address field. */
817 dummy_loc.address = address;
818
819 /* Find a close match to the first location at ADDRESS. */
820 locp_found = ((struct bp_location **)
821 bsearch (&dummy_locp, bp_locations, bp_locations_count,
822 sizeof (struct bp_location **),
823 bp_locations_compare_addrs));
824
825 /* Nothing was found, nothing left to do. */
826 if (locp_found == NULL)
827 return NULL;
828
829 /* We may have found a location that is at ADDRESS but is not the first in the
830 location's list. Go backwards (if possible) and locate the first one. */
831 while ((locp_found - 1) >= bp_locations
832 && (*(locp_found - 1))->address == address)
833 locp_found--;
834
835 return locp_found;
836 }
837
838 void
839 set_breakpoint_condition (struct breakpoint *b, const char *exp,
840 int from_tty)
841 {
842 xfree (b->cond_string);
843 b->cond_string = NULL;
844
845 if (is_watchpoint (b))
846 {
847 struct watchpoint *w = (struct watchpoint *) b;
848
849 w->cond_exp.reset ();
850 }
851 else
852 {
853 struct bp_location *loc;
854
855 for (loc = b->loc; loc; loc = loc->next)
856 {
857 loc->cond.reset ();
858
859 /* No need to free the condition agent expression
860 bytecode (if we have one). We will handle this
861 when we go through update_global_location_list. */
862 }
863 }
864
865 if (*exp == 0)
866 {
867 if (from_tty)
868 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
869 }
870 else
871 {
872 const char *arg = exp;
873
874 /* I don't know if it matters whether this is the string the user
875 typed in or the decompiled expression. */
876 b->cond_string = xstrdup (arg);
877 b->condition_not_parsed = 0;
878
879 if (is_watchpoint (b))
880 {
881 struct watchpoint *w = (struct watchpoint *) b;
882
883 innermost_block.reset ();
884 arg = exp;
885 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
886 if (*arg)
887 error (_("Junk at end of expression"));
888 w->cond_exp_valid_block = innermost_block.block ();
889 }
890 else
891 {
892 struct bp_location *loc;
893
894 for (loc = b->loc; loc; loc = loc->next)
895 {
896 arg = exp;
897 loc->cond =
898 parse_exp_1 (&arg, loc->address,
899 block_for_pc (loc->address), 0);
900 if (*arg)
901 error (_("Junk at end of expression"));
902 }
903 }
904 }
905 mark_breakpoint_modified (b);
906
907 gdb::observers::breakpoint_modified.notify (b);
908 }
909
910 /* Completion for the "condition" command. */
911
912 static void
913 condition_completer (struct cmd_list_element *cmd,
914 completion_tracker &tracker,
915 const char *text, const char *word)
916 {
917 const char *space;
918
919 text = skip_spaces (text);
920 space = skip_to_space (text);
921 if (*space == '\0')
922 {
923 int len;
924 struct breakpoint *b;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 int i;
1013
1014 if (c->control_type == while_stepping_control)
1015 error (_("The 'while-stepping' command can "
1016 "only be used for tracepoints"));
1017
1018 check_no_tracepoint_commands (c->body_list_0.get ());
1019 check_no_tracepoint_commands (c->body_list_1.get ());
1020
1021 /* Not that command parsing removes leading whitespace and comment
1022 lines and also empty lines. So, we only need to check for
1023 command directly. */
1024 if (strstr (c->line, "collect ") == c->line)
1025 error (_("The 'collect' command can only be used for tracepoints"));
1026
1027 if (strstr (c->line, "teval ") == c->line)
1028 error (_("The 'teval' command can only be used for tracepoints"));
1029 }
1030 }
1031
1032 struct longjmp_breakpoint : public breakpoint
1033 {
1034 ~longjmp_breakpoint () override;
1035 };
1036
1037 /* Encapsulate tests for different types of tracepoints. */
1038
1039 static bool
1040 is_tracepoint_type (bptype type)
1041 {
1042 return (type == bp_tracepoint
1043 || type == bp_fast_tracepoint
1044 || type == bp_static_tracepoint);
1045 }
1046
1047 static bool
1048 is_longjmp_type (bptype type)
1049 {
1050 return type == bp_longjmp || type == bp_exception;
1051 }
1052
1053 int
1054 is_tracepoint (const struct breakpoint *b)
1055 {
1056 return is_tracepoint_type (b->type);
1057 }
1058
1059 /* Factory function to create an appropriate instance of breakpoint given
1060 TYPE. */
1061
1062 static std::unique_ptr<breakpoint>
1063 new_breakpoint_from_type (bptype type)
1064 {
1065 breakpoint *b;
1066
1067 if (is_tracepoint_type (type))
1068 b = new tracepoint ();
1069 else if (is_longjmp_type (type))
1070 b = new longjmp_breakpoint ();
1071 else
1072 b = new breakpoint ();
1073
1074 return std::unique_ptr<breakpoint> (b);
1075 }
1076
1077 /* A helper function that validates that COMMANDS are valid for a
1078 breakpoint. This function will throw an exception if a problem is
1079 found. */
1080
1081 static void
1082 validate_commands_for_breakpoint (struct breakpoint *b,
1083 struct command_line *commands)
1084 {
1085 if (is_tracepoint (b))
1086 {
1087 struct tracepoint *t = (struct tracepoint *) b;
1088 struct command_line *c;
1089 struct command_line *while_stepping = 0;
1090
1091 /* Reset the while-stepping step count. The previous commands
1092 might have included a while-stepping action, while the new
1093 ones might not. */
1094 t->step_count = 0;
1095
1096 /* We need to verify that each top-level element of commands is
1097 valid for tracepoints, that there's at most one
1098 while-stepping element, and that the while-stepping's body
1099 has valid tracing commands excluding nested while-stepping.
1100 We also need to validate the tracepoint action line in the
1101 context of the tracepoint --- validate_actionline actually
1102 has side effects, like setting the tracepoint's
1103 while-stepping STEP_COUNT, in addition to checking if the
1104 collect/teval actions parse and make sense in the
1105 tracepoint's context. */
1106 for (c = commands; c; c = c->next)
1107 {
1108 if (c->control_type == while_stepping_control)
1109 {
1110 if (b->type == bp_fast_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for fast tracepoint"));
1113 else if (b->type == bp_static_tracepoint)
1114 error (_("The 'while-stepping' command "
1115 "cannot be used for static tracepoint"));
1116
1117 if (while_stepping)
1118 error (_("The 'while-stepping' command "
1119 "can be used only once"));
1120 else
1121 while_stepping = c;
1122 }
1123
1124 validate_actionline (c->line, b);
1125 }
1126 if (while_stepping)
1127 {
1128 struct command_line *c2;
1129
1130 gdb_assert (while_stepping->body_list_1 == nullptr);
1131 c2 = while_stepping->body_list_0.get ();
1132 for (; c2; c2 = c2->next)
1133 {
1134 if (c2->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command cannot be nested"));
1136 }
1137 }
1138 }
1139 else
1140 {
1141 check_no_tracepoint_commands (commands);
1142 }
1143 }
1144
1145 /* Return a vector of all the static tracepoints set at ADDR. The
1146 caller is responsible for releasing the vector. */
1147
1148 VEC(breakpoint_p) *
1149 static_tracepoints_here (CORE_ADDR addr)
1150 {
1151 struct breakpoint *b;
1152 VEC(breakpoint_p) *found = 0;
1153 struct bp_location *loc;
1154
1155 ALL_BREAKPOINTS (b)
1156 if (b->type == bp_static_tracepoint)
1157 {
1158 for (loc = b->loc; loc; loc = loc->next)
1159 if (loc->address == addr)
1160 VEC_safe_push(breakpoint_p, found, b);
1161 }
1162
1163 return found;
1164 }
1165
1166 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1167 validate that only allowed commands are included. */
1168
1169 void
1170 breakpoint_set_commands (struct breakpoint *b,
1171 counted_command_line &&commands)
1172 {
1173 validate_commands_for_breakpoint (b, commands.get ());
1174
1175 b->commands = std::move (commands);
1176 gdb::observers::breakpoint_modified.notify (b);
1177 }
1178
1179 /* Set the internal `silent' flag on the breakpoint. Note that this
1180 is not the same as the "silent" that may appear in the breakpoint's
1181 commands. */
1182
1183 void
1184 breakpoint_set_silent (struct breakpoint *b, int silent)
1185 {
1186 int old_silent = b->silent;
1187
1188 b->silent = silent;
1189 if (old_silent != silent)
1190 gdb::observers::breakpoint_modified.notify (b);
1191 }
1192
1193 /* Set the thread for this breakpoint. If THREAD is -1, make the
1194 breakpoint work for any thread. */
1195
1196 void
1197 breakpoint_set_thread (struct breakpoint *b, int thread)
1198 {
1199 int old_thread = b->thread;
1200
1201 b->thread = thread;
1202 if (old_thread != thread)
1203 gdb::observers::breakpoint_modified.notify (b);
1204 }
1205
1206 /* Set the task for this breakpoint. If TASK is 0, make the
1207 breakpoint work for any task. */
1208
1209 void
1210 breakpoint_set_task (struct breakpoint *b, int task)
1211 {
1212 int old_task = b->task;
1213
1214 b->task = task;
1215 if (old_task != task)
1216 gdb::observers::breakpoint_modified.notify (b);
1217 }
1218
1219 void
1220 check_tracepoint_command (char *line, void *closure)
1221 {
1222 struct breakpoint *b = (struct breakpoint *) closure;
1223
1224 validate_actionline (line, b);
1225 }
1226
1227 static void
1228 commands_command_1 (const char *arg, int from_tty,
1229 struct command_line *control)
1230 {
1231 counted_command_line cmd;
1232
1233 std::string new_arg;
1234
1235 if (arg == NULL || !*arg)
1236 {
1237 if (breakpoint_count - prev_breakpoint_count > 1)
1238 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1239 breakpoint_count);
1240 else if (breakpoint_count > 0)
1241 new_arg = string_printf ("%d", breakpoint_count);
1242 arg = new_arg.c_str ();
1243 }
1244
1245 map_breakpoint_numbers
1246 (arg, [&] (breakpoint *b)
1247 {
1248 if (cmd == NULL)
1249 {
1250 if (control != NULL)
1251 cmd = control->body_list_0;
1252 else
1253 {
1254 std::string str
1255 = string_printf (_("Type commands for breakpoint(s) "
1256 "%s, one per line."),
1257 arg);
1258
1259 cmd = read_command_lines (&str[0],
1260 from_tty, 1,
1261 (is_tracepoint (b)
1262 ? check_tracepoint_command : 0),
1263 b);
1264 }
1265 }
1266
1267 /* If a breakpoint was on the list more than once, we don't need to
1268 do anything. */
1269 if (b->commands != cmd)
1270 {
1271 validate_commands_for_breakpoint (b, cmd.get ());
1272 b->commands = cmd;
1273 gdb::observers::breakpoint_modified.notify (b);
1274 }
1275 });
1276 }
1277
1278 static void
1279 commands_command (const char *arg, int from_tty)
1280 {
1281 commands_command_1 (arg, from_tty, NULL);
1282 }
1283
1284 /* Like commands_command, but instead of reading the commands from
1285 input stream, takes them from an already parsed command structure.
1286
1287 This is used by cli-script.c to DTRT with breakpoint commands
1288 that are part of if and while bodies. */
1289 enum command_control_type
1290 commands_from_control_command (const char *arg, struct command_line *cmd)
1291 {
1292 commands_command_1 (arg, 0, cmd);
1293 return simple_control;
1294 }
1295
1296 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1297
1298 static int
1299 bp_location_has_shadow (struct bp_location *bl)
1300 {
1301 if (bl->loc_type != bp_loc_software_breakpoint)
1302 return 0;
1303 if (!bl->inserted)
1304 return 0;
1305 if (bl->target_info.shadow_len == 0)
1306 /* BL isn't valid, or doesn't shadow memory. */
1307 return 0;
1308 return 1;
1309 }
1310
1311 /* Update BUF, which is LEN bytes read from the target address
1312 MEMADDR, by replacing a memory breakpoint with its shadowed
1313 contents.
1314
1315 If READBUF is not NULL, this buffer must not overlap with the of
1316 the breakpoint location's shadow_contents buffer. Otherwise, a
1317 failed assertion internal error will be raised. */
1318
1319 static void
1320 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1321 const gdb_byte *writebuf_org,
1322 ULONGEST memaddr, LONGEST len,
1323 struct bp_target_info *target_info,
1324 struct gdbarch *gdbarch)
1325 {
1326 /* Now do full processing of the found relevant range of elements. */
1327 CORE_ADDR bp_addr = 0;
1328 int bp_size = 0;
1329 int bptoffset = 0;
1330
1331 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1332 current_program_space->aspace, 0))
1333 {
1334 /* The breakpoint is inserted in a different address space. */
1335 return;
1336 }
1337
1338 /* Addresses and length of the part of the breakpoint that
1339 we need to copy. */
1340 bp_addr = target_info->placed_address;
1341 bp_size = target_info->shadow_len;
1342
1343 if (bp_addr + bp_size <= memaddr)
1344 {
1345 /* The breakpoint is entirely before the chunk of memory we are
1346 reading. */
1347 return;
1348 }
1349
1350 if (bp_addr >= memaddr + len)
1351 {
1352 /* The breakpoint is entirely after the chunk of memory we are
1353 reading. */
1354 return;
1355 }
1356
1357 /* Offset within shadow_contents. */
1358 if (bp_addr < memaddr)
1359 {
1360 /* Only copy the second part of the breakpoint. */
1361 bp_size -= memaddr - bp_addr;
1362 bptoffset = memaddr - bp_addr;
1363 bp_addr = memaddr;
1364 }
1365
1366 if (bp_addr + bp_size > memaddr + len)
1367 {
1368 /* Only copy the first part of the breakpoint. */
1369 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1370 }
1371
1372 if (readbuf != NULL)
1373 {
1374 /* Verify that the readbuf buffer does not overlap with the
1375 shadow_contents buffer. */
1376 gdb_assert (target_info->shadow_contents >= readbuf + len
1377 || readbuf >= (target_info->shadow_contents
1378 + target_info->shadow_len));
1379
1380 /* Update the read buffer with this inserted breakpoint's
1381 shadow. */
1382 memcpy (readbuf + bp_addr - memaddr,
1383 target_info->shadow_contents + bptoffset, bp_size);
1384 }
1385 else
1386 {
1387 const unsigned char *bp;
1388 CORE_ADDR addr = target_info->reqstd_address;
1389 int placed_size;
1390
1391 /* Update the shadow with what we want to write to memory. */
1392 memcpy (target_info->shadow_contents + bptoffset,
1393 writebuf_org + bp_addr - memaddr, bp_size);
1394
1395 /* Determine appropriate breakpoint contents and size for this
1396 address. */
1397 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1398
1399 /* Update the final write buffer with this inserted
1400 breakpoint's INSN. */
1401 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1402 }
1403 }
1404
1405 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1406 by replacing any memory breakpoints with their shadowed contents.
1407
1408 If READBUF is not NULL, this buffer must not overlap with any of
1409 the breakpoint location's shadow_contents buffers. Otherwise,
1410 a failed assertion internal error will be raised.
1411
1412 The range of shadowed area by each bp_location is:
1413 bl->address - bp_locations_placed_address_before_address_max
1414 up to bl->address + bp_locations_shadow_len_after_address_max
1415 The range we were requested to resolve shadows for is:
1416 memaddr ... memaddr + len
1417 Thus the safe cutoff boundaries for performance optimization are
1418 memaddr + len <= (bl->address
1419 - bp_locations_placed_address_before_address_max)
1420 and:
1421 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1422
1423 void
1424 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1425 const gdb_byte *writebuf_org,
1426 ULONGEST memaddr, LONGEST len)
1427 {
1428 /* Left boundary, right boundary and median element of our binary
1429 search. */
1430 unsigned bc_l, bc_r, bc;
1431
1432 /* Find BC_L which is a leftmost element which may affect BUF
1433 content. It is safe to report lower value but a failure to
1434 report higher one. */
1435
1436 bc_l = 0;
1437 bc_r = bp_locations_count;
1438 while (bc_l + 1 < bc_r)
1439 {
1440 struct bp_location *bl;
1441
1442 bc = (bc_l + bc_r) / 2;
1443 bl = bp_locations[bc];
1444
1445 /* Check first BL->ADDRESS will not overflow due to the added
1446 constant. Then advance the left boundary only if we are sure
1447 the BC element can in no way affect the BUF content (MEMADDR
1448 to MEMADDR + LEN range).
1449
1450 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1451 offset so that we cannot miss a breakpoint with its shadow
1452 range tail still reaching MEMADDR. */
1453
1454 if ((bl->address + bp_locations_shadow_len_after_address_max
1455 >= bl->address)
1456 && (bl->address + bp_locations_shadow_len_after_address_max
1457 <= memaddr))
1458 bc_l = bc;
1459 else
1460 bc_r = bc;
1461 }
1462
1463 /* Due to the binary search above, we need to make sure we pick the
1464 first location that's at BC_L's address. E.g., if there are
1465 multiple locations at the same address, BC_L may end up pointing
1466 at a duplicate location, and miss the "master"/"inserted"
1467 location. Say, given locations L1, L2 and L3 at addresses A and
1468 B:
1469
1470 L1@A, L2@A, L3@B, ...
1471
1472 BC_L could end up pointing at location L2, while the "master"
1473 location could be L1. Since the `loc->inserted' flag is only set
1474 on "master" locations, we'd forget to restore the shadow of L1
1475 and L2. */
1476 while (bc_l > 0
1477 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1478 bc_l--;
1479
1480 /* Now do full processing of the found relevant range of elements. */
1481
1482 for (bc = bc_l; bc < bp_locations_count; bc++)
1483 {
1484 struct bp_location *bl = bp_locations[bc];
1485
1486 /* bp_location array has BL->OWNER always non-NULL. */
1487 if (bl->owner->type == bp_none)
1488 warning (_("reading through apparently deleted breakpoint #%d?"),
1489 bl->owner->number);
1490
1491 /* Performance optimization: any further element can no longer affect BUF
1492 content. */
1493
1494 if (bl->address >= bp_locations_placed_address_before_address_max
1495 && memaddr + len <= (bl->address
1496 - bp_locations_placed_address_before_address_max))
1497 break;
1498
1499 if (!bp_location_has_shadow (bl))
1500 continue;
1501
1502 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1503 memaddr, len, &bl->target_info, bl->gdbarch);
1504 }
1505 }
1506
1507 \f
1508
1509 /* Return true if BPT is either a software breakpoint or a hardware
1510 breakpoint. */
1511
1512 int
1513 is_breakpoint (const struct breakpoint *bpt)
1514 {
1515 return (bpt->type == bp_breakpoint
1516 || bpt->type == bp_hardware_breakpoint
1517 || bpt->type == bp_dprintf);
1518 }
1519
1520 /* Return true if BPT is of any hardware watchpoint kind. */
1521
1522 static int
1523 is_hardware_watchpoint (const struct breakpoint *bpt)
1524 {
1525 return (bpt->type == bp_hardware_watchpoint
1526 || bpt->type == bp_read_watchpoint
1527 || bpt->type == bp_access_watchpoint);
1528 }
1529
1530 /* Return true if BPT is of any watchpoint kind, hardware or
1531 software. */
1532
1533 int
1534 is_watchpoint (const struct breakpoint *bpt)
1535 {
1536 return (is_hardware_watchpoint (bpt)
1537 || bpt->type == bp_watchpoint);
1538 }
1539
1540 /* Returns true if the current thread and its running state are safe
1541 to evaluate or update watchpoint B. Watchpoints on local
1542 expressions need to be evaluated in the context of the thread that
1543 was current when the watchpoint was created, and, that thread needs
1544 to be stopped to be able to select the correct frame context.
1545 Watchpoints on global expressions can be evaluated on any thread,
1546 and in any state. It is presently left to the target allowing
1547 memory accesses when threads are running. */
1548
1549 static int
1550 watchpoint_in_thread_scope (struct watchpoint *b)
1551 {
1552 return (b->pspace == current_program_space
1553 && (ptid_equal (b->watchpoint_thread, null_ptid)
1554 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1555 && !is_executing (inferior_ptid))));
1556 }
1557
1558 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1559 associated bp_watchpoint_scope breakpoint. */
1560
1561 static void
1562 watchpoint_del_at_next_stop (struct watchpoint *w)
1563 {
1564 if (w->related_breakpoint != w)
1565 {
1566 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1567 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1568 w->related_breakpoint->disposition = disp_del_at_next_stop;
1569 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1570 w->related_breakpoint = w;
1571 }
1572 w->disposition = disp_del_at_next_stop;
1573 }
1574
1575 /* Extract a bitfield value from value VAL using the bit parameters contained in
1576 watchpoint W. */
1577
1578 static struct value *
1579 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1580 {
1581 struct value *bit_val;
1582
1583 if (val == NULL)
1584 return NULL;
1585
1586 bit_val = allocate_value (value_type (val));
1587
1588 unpack_value_bitfield (bit_val,
1589 w->val_bitpos,
1590 w->val_bitsize,
1591 value_contents_for_printing (val),
1592 value_offset (val),
1593 val);
1594
1595 return bit_val;
1596 }
1597
1598 /* Allocate a dummy location and add it to B, which must be a software
1599 watchpoint. This is required because even if a software watchpoint
1600 is not watching any memory, bpstat_stop_status requires a location
1601 to be able to report stops. */
1602
1603 static void
1604 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1605 struct program_space *pspace)
1606 {
1607 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1608
1609 b->loc = allocate_bp_location (b);
1610 b->loc->pspace = pspace;
1611 b->loc->address = -1;
1612 b->loc->length = -1;
1613 }
1614
1615 /* Returns true if B is a software watchpoint that is not watching any
1616 memory (e.g., "watch $pc"). */
1617
1618 static int
1619 is_no_memory_software_watchpoint (struct breakpoint *b)
1620 {
1621 return (b->type == bp_watchpoint
1622 && b->loc != NULL
1623 && b->loc->next == NULL
1624 && b->loc->address == -1
1625 && b->loc->length == -1);
1626 }
1627
1628 /* Assuming that B is a watchpoint:
1629 - Reparse watchpoint expression, if REPARSE is non-zero
1630 - Evaluate expression and store the result in B->val
1631 - Evaluate the condition if there is one, and store the result
1632 in b->loc->cond.
1633 - Update the list of values that must be watched in B->loc.
1634
1635 If the watchpoint disposition is disp_del_at_next_stop, then do
1636 nothing. If this is local watchpoint that is out of scope, delete
1637 it.
1638
1639 Even with `set breakpoint always-inserted on' the watchpoints are
1640 removed + inserted on each stop here. Normal breakpoints must
1641 never be removed because they might be missed by a running thread
1642 when debugging in non-stop mode. On the other hand, hardware
1643 watchpoints (is_hardware_watchpoint; processed here) are specific
1644 to each LWP since they are stored in each LWP's hardware debug
1645 registers. Therefore, such LWP must be stopped first in order to
1646 be able to modify its hardware watchpoints.
1647
1648 Hardware watchpoints must be reset exactly once after being
1649 presented to the user. It cannot be done sooner, because it would
1650 reset the data used to present the watchpoint hit to the user. And
1651 it must not be done later because it could display the same single
1652 watchpoint hit during multiple GDB stops. Note that the latter is
1653 relevant only to the hardware watchpoint types bp_read_watchpoint
1654 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1655 not user-visible - its hit is suppressed if the memory content has
1656 not changed.
1657
1658 The following constraints influence the location where we can reset
1659 hardware watchpoints:
1660
1661 * target_stopped_by_watchpoint and target_stopped_data_address are
1662 called several times when GDB stops.
1663
1664 [linux]
1665 * Multiple hardware watchpoints can be hit at the same time,
1666 causing GDB to stop. GDB only presents one hardware watchpoint
1667 hit at a time as the reason for stopping, and all the other hits
1668 are presented later, one after the other, each time the user
1669 requests the execution to be resumed. Execution is not resumed
1670 for the threads still having pending hit event stored in
1671 LWP_INFO->STATUS. While the watchpoint is already removed from
1672 the inferior on the first stop the thread hit event is kept being
1673 reported from its cached value by linux_nat_stopped_data_address
1674 until the real thread resume happens after the watchpoint gets
1675 presented and thus its LWP_INFO->STATUS gets reset.
1676
1677 Therefore the hardware watchpoint hit can get safely reset on the
1678 watchpoint removal from inferior. */
1679
1680 static void
1681 update_watchpoint (struct watchpoint *b, int reparse)
1682 {
1683 int within_current_scope;
1684 struct frame_id saved_frame_id;
1685 int frame_saved;
1686
1687 /* If this is a local watchpoint, we only want to check if the
1688 watchpoint frame is in scope if the current thread is the thread
1689 that was used to create the watchpoint. */
1690 if (!watchpoint_in_thread_scope (b))
1691 return;
1692
1693 if (b->disposition == disp_del_at_next_stop)
1694 return;
1695
1696 frame_saved = 0;
1697
1698 /* Determine if the watchpoint is within scope. */
1699 if (b->exp_valid_block == NULL)
1700 within_current_scope = 1;
1701 else
1702 {
1703 struct frame_info *fi = get_current_frame ();
1704 struct gdbarch *frame_arch = get_frame_arch (fi);
1705 CORE_ADDR frame_pc = get_frame_pc (fi);
1706
1707 /* If we're at a point where the stack has been destroyed
1708 (e.g. in a function epilogue), unwinding may not work
1709 properly. Do not attempt to recreate locations at this
1710 point. See similar comments in watchpoint_check. */
1711 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1712 return;
1713
1714 /* Save the current frame's ID so we can restore it after
1715 evaluating the watchpoint expression on its own frame. */
1716 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1717 took a frame parameter, so that we didn't have to change the
1718 selected frame. */
1719 frame_saved = 1;
1720 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1721
1722 fi = frame_find_by_id (b->watchpoint_frame);
1723 within_current_scope = (fi != NULL);
1724 if (within_current_scope)
1725 select_frame (fi);
1726 }
1727
1728 /* We don't free locations. They are stored in the bp_location array
1729 and update_global_location_list will eventually delete them and
1730 remove breakpoints if needed. */
1731 b->loc = NULL;
1732
1733 if (within_current_scope && reparse)
1734 {
1735 const char *s;
1736
1737 b->exp.reset ();
1738 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1739 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1740 /* If the meaning of expression itself changed, the old value is
1741 no longer relevant. We don't want to report a watchpoint hit
1742 to the user when the old value and the new value may actually
1743 be completely different objects. */
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 std::vector<value_ref_ptr> val_chain;
1782 struct value *v, *result, *next;
1783 struct program_space *frame_pspace;
1784
1785 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1786
1787 /* Avoid setting b->val if it's already set. The meaning of
1788 b->val is 'the last value' user saw, and we should update
1789 it only if we reported that last value to user. As it
1790 happens, the code that reports it updates b->val directly.
1791 We don't keep track of the memory value for masked
1792 watchpoints. */
1793 if (!b->val_valid && !is_masked_watchpoint (b))
1794 {
1795 if (b->val_bitsize != 0)
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 b->val = release_value (v);
1798 b->val_valid = 1;
1799 }
1800
1801 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1802
1803 /* Look at each value on the value chain. */
1804 gdb_assert (!val_chain.empty ());
1805 for (const value_ref_ptr &iter : val_chain)
1806 {
1807 v = iter.get ();
1808
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain[0] || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = address_significant (loc->gdbarch, addr);
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 /* If a software watchpoint is not watching any memory, then the
1971 above left it without any location set up. But,
1972 bpstat_stop_status requires a location to be able to report
1973 stops, so make sure there's at least a dummy one. */
1974 if (b->type == bp_watchpoint && b->loc == NULL)
1975 software_watchpoint_add_no_memory_location (b, frame_pspace);
1976 }
1977 else if (!within_current_scope)
1978 {
1979 printf_filtered (_("\
1980 Watchpoint %d deleted because the program has left the block\n\
1981 in which its expression is valid.\n"),
1982 b->number);
1983 watchpoint_del_at_next_stop (b);
1984 }
1985
1986 /* Restore the selected frame. */
1987 if (frame_saved)
1988 select_frame (frame_find_by_id (saved_frame_id));
1989 }
1990
1991
1992 /* Returns 1 iff breakpoint location should be
1993 inserted in the inferior. We don't differentiate the type of BL's owner
1994 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1995 breakpoint_ops is not defined, because in insert_bp_location,
1996 tracepoint's insert_location will not be called. */
1997 static int
1998 should_be_inserted (struct bp_location *bl)
1999 {
2000 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2001 return 0;
2002
2003 if (bl->owner->disposition == disp_del_at_next_stop)
2004 return 0;
2005
2006 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2007 return 0;
2008
2009 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2010 return 0;
2011
2012 /* This is set for example, when we're attached to the parent of a
2013 vfork, and have detached from the child. The child is running
2014 free, and we expect it to do an exec or exit, at which point the
2015 OS makes the parent schedulable again (and the target reports
2016 that the vfork is done). Until the child is done with the shared
2017 memory region, do not insert breakpoints in the parent, otherwise
2018 the child could still trip on the parent's breakpoints. Since
2019 the parent is blocked anyway, it won't miss any breakpoint. */
2020 if (bl->pspace->breakpoints_not_allowed)
2021 return 0;
2022
2023 /* Don't insert a breakpoint if we're trying to step past its
2024 location, except if the breakpoint is a single-step breakpoint,
2025 and the breakpoint's thread is the thread which is stepping past
2026 a breakpoint. */
2027 if ((bl->loc_type == bp_loc_software_breakpoint
2028 || bl->loc_type == bp_loc_hardware_breakpoint)
2029 && stepping_past_instruction_at (bl->pspace->aspace,
2030 bl->address)
2031 /* The single-step breakpoint may be inserted at the location
2032 we're trying to step if the instruction branches to itself.
2033 However, the instruction won't be executed at all and it may
2034 break the semantics of the instruction, for example, the
2035 instruction is a conditional branch or updates some flags.
2036 We can't fix it unless GDB is able to emulate the instruction
2037 or switch to displaced stepping. */
2038 && !(bl->owner->type == bp_single_step
2039 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2040 {
2041 if (debug_infrun)
2042 {
2043 fprintf_unfiltered (gdb_stdlog,
2044 "infrun: skipping breakpoint: "
2045 "stepping past insn at: %s\n",
2046 paddress (bl->gdbarch, bl->address));
2047 }
2048 return 0;
2049 }
2050
2051 /* Don't insert watchpoints if we're trying to step past the
2052 instruction that triggered one. */
2053 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2054 && stepping_past_nonsteppable_watchpoint ())
2055 {
2056 if (debug_infrun)
2057 {
2058 fprintf_unfiltered (gdb_stdlog,
2059 "infrun: stepping past non-steppable watchpoint. "
2060 "skipping watchpoint at %s:%d\n",
2061 paddress (bl->gdbarch, bl->address),
2062 bl->length);
2063 }
2064 return 0;
2065 }
2066
2067 return 1;
2068 }
2069
2070 /* Same as should_be_inserted but does the check assuming
2071 that the location is not duplicated. */
2072
2073 static int
2074 unduplicated_should_be_inserted (struct bp_location *bl)
2075 {
2076 int result;
2077 const int save_duplicate = bl->duplicate;
2078
2079 bl->duplicate = 0;
2080 result = should_be_inserted (bl);
2081 bl->duplicate = save_duplicate;
2082 return result;
2083 }
2084
2085 /* Parses a conditional described by an expression COND into an
2086 agent expression bytecode suitable for evaluation
2087 by the bytecode interpreter. Return NULL if there was
2088 any error during parsing. */
2089
2090 static agent_expr_up
2091 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2092 {
2093 if (cond == NULL)
2094 return NULL;
2095
2096 agent_expr_up aexpr;
2097
2098 /* We don't want to stop processing, so catch any errors
2099 that may show up. */
2100 TRY
2101 {
2102 aexpr = gen_eval_for_expr (scope, cond);
2103 }
2104
2105 CATCH (ex, RETURN_MASK_ERROR)
2106 {
2107 /* If we got here, it means the condition could not be parsed to a valid
2108 bytecode expression and thus can't be evaluated on the target's side.
2109 It's no use iterating through the conditions. */
2110 }
2111 END_CATCH
2112
2113 /* We have a valid agent expression. */
2114 return aexpr;
2115 }
2116
2117 /* Based on location BL, create a list of breakpoint conditions to be
2118 passed on to the target. If we have duplicated locations with different
2119 conditions, we will add such conditions to the list. The idea is that the
2120 target will evaluate the list of conditions and will only notify GDB when
2121 one of them is true. */
2122
2123 static void
2124 build_target_condition_list (struct bp_location *bl)
2125 {
2126 struct bp_location **locp = NULL, **loc2p;
2127 int null_condition_or_parse_error = 0;
2128 int modified = bl->needs_update;
2129 struct bp_location *loc;
2130
2131 /* Release conditions left over from a previous insert. */
2132 bl->target_info.conditions.clear ();
2133
2134 /* This is only meaningful if the target is
2135 evaluating conditions and if the user has
2136 opted for condition evaluation on the target's
2137 side. */
2138 if (gdb_evaluates_breakpoint_condition_p ()
2139 || !target_supports_evaluation_of_breakpoint_conditions ())
2140 return;
2141
2142 /* Do a first pass to check for locations with no assigned
2143 conditions or conditions that fail to parse to a valid agent expression
2144 bytecode. If any of these happen, then it's no use to send conditions
2145 to the target since this location will always trigger and generate a
2146 response back to GDB. */
2147 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2148 {
2149 loc = (*loc2p);
2150 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2151 {
2152 if (modified)
2153 {
2154 /* Re-parse the conditions since something changed. In that
2155 case we already freed the condition bytecodes (see
2156 force_breakpoint_reinsertion). We just
2157 need to parse the condition to bytecodes again. */
2158 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2159 loc->cond.get ());
2160 }
2161
2162 /* If we have a NULL bytecode expression, it means something
2163 went wrong or we have a null condition expression. */
2164 if (!loc->cond_bytecode)
2165 {
2166 null_condition_or_parse_error = 1;
2167 break;
2168 }
2169 }
2170 }
2171
2172 /* If any of these happened, it means we will have to evaluate the conditions
2173 for the location's address on gdb's side. It is no use keeping bytecodes
2174 for all the other duplicate locations, thus we free all of them here.
2175
2176 This is so we have a finer control over which locations' conditions are
2177 being evaluated by GDB or the remote stub. */
2178 if (null_condition_or_parse_error)
2179 {
2180 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2181 {
2182 loc = (*loc2p);
2183 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2184 {
2185 /* Only go as far as the first NULL bytecode is
2186 located. */
2187 if (!loc->cond_bytecode)
2188 return;
2189
2190 loc->cond_bytecode.reset ();
2191 }
2192 }
2193 }
2194
2195 /* No NULL conditions or failed bytecode generation. Build a condition list
2196 for this location's address. */
2197 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2198 {
2199 loc = (*loc2p);
2200 if (loc->cond
2201 && is_breakpoint (loc->owner)
2202 && loc->pspace->num == bl->pspace->num
2203 && loc->owner->enable_state == bp_enabled
2204 && loc->enabled)
2205 {
2206 /* Add the condition to the vector. This will be used later
2207 to send the conditions to the target. */
2208 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2209 }
2210 }
2211
2212 return;
2213 }
2214
2215 /* Parses a command described by string CMD into an agent expression
2216 bytecode suitable for evaluation by the bytecode interpreter.
2217 Return NULL if there was any error during parsing. */
2218
2219 static agent_expr_up
2220 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2221 {
2222 const char *cmdrest;
2223 const char *format_start, *format_end;
2224 struct gdbarch *gdbarch = get_current_arch ();
2225
2226 if (cmd == NULL)
2227 return NULL;
2228
2229 cmdrest = cmd;
2230
2231 if (*cmdrest == ',')
2232 ++cmdrest;
2233 cmdrest = skip_spaces (cmdrest);
2234
2235 if (*cmdrest++ != '"')
2236 error (_("No format string following the location"));
2237
2238 format_start = cmdrest;
2239
2240 format_pieces fpieces (&cmdrest);
2241
2242 format_end = cmdrest;
2243
2244 if (*cmdrest++ != '"')
2245 error (_("Bad format string, non-terminated '\"'."));
2246
2247 cmdrest = skip_spaces (cmdrest);
2248
2249 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2250 error (_("Invalid argument syntax"));
2251
2252 if (*cmdrest == ',')
2253 cmdrest++;
2254 cmdrest = skip_spaces (cmdrest);
2255
2256 /* For each argument, make an expression. */
2257
2258 std::vector<struct expression *> argvec;
2259 while (*cmdrest != '\0')
2260 {
2261 const char *cmd1;
2262
2263 cmd1 = cmdrest;
2264 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2265 argvec.push_back (expr.release ());
2266 cmdrest = cmd1;
2267 if (*cmdrest == ',')
2268 ++cmdrest;
2269 }
2270
2271 agent_expr_up aexpr;
2272
2273 /* We don't want to stop processing, so catch any errors
2274 that may show up. */
2275 TRY
2276 {
2277 aexpr = gen_printf (scope, gdbarch, 0, 0,
2278 format_start, format_end - format_start,
2279 argvec.size (), argvec.data ());
2280 }
2281 CATCH (ex, RETURN_MASK_ERROR)
2282 {
2283 /* If we got here, it means the command could not be parsed to a valid
2284 bytecode expression and thus can't be evaluated on the target's side.
2285 It's no use iterating through the other commands. */
2286 }
2287 END_CATCH
2288
2289 /* We have a valid agent expression, return it. */
2290 return aexpr;
2291 }
2292
2293 /* Based on location BL, create a list of breakpoint commands to be
2294 passed on to the target. If we have duplicated locations with
2295 different commands, we will add any such to the list. */
2296
2297 static void
2298 build_target_command_list (struct bp_location *bl)
2299 {
2300 struct bp_location **locp = NULL, **loc2p;
2301 int null_command_or_parse_error = 0;
2302 int modified = bl->needs_update;
2303 struct bp_location *loc;
2304
2305 /* Clear commands left over from a previous insert. */
2306 bl->target_info.tcommands.clear ();
2307
2308 if (!target_can_run_breakpoint_commands ())
2309 return;
2310
2311 /* For now, limit to agent-style dprintf breakpoints. */
2312 if (dprintf_style != dprintf_style_agent)
2313 return;
2314
2315 /* For now, if we have any duplicate location that isn't a dprintf,
2316 don't install the target-side commands, as that would make the
2317 breakpoint not be reported to the core, and we'd lose
2318 control. */
2319 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2320 {
2321 loc = (*loc2p);
2322 if (is_breakpoint (loc->owner)
2323 && loc->pspace->num == bl->pspace->num
2324 && loc->owner->type != bp_dprintf)
2325 return;
2326 }
2327
2328 /* Do a first pass to check for locations with no assigned
2329 conditions or conditions that fail to parse to a valid agent expression
2330 bytecode. If any of these happen, then it's no use to send conditions
2331 to the target since this location will always trigger and generate a
2332 response back to GDB. */
2333 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2334 {
2335 loc = (*loc2p);
2336 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2337 {
2338 if (modified)
2339 {
2340 /* Re-parse the commands since something changed. In that
2341 case we already freed the command bytecodes (see
2342 force_breakpoint_reinsertion). We just
2343 need to parse the command to bytecodes again. */
2344 loc->cmd_bytecode
2345 = parse_cmd_to_aexpr (bl->address,
2346 loc->owner->extra_string);
2347 }
2348
2349 /* If we have a NULL bytecode expression, it means something
2350 went wrong or we have a null command expression. */
2351 if (!loc->cmd_bytecode)
2352 {
2353 null_command_or_parse_error = 1;
2354 break;
2355 }
2356 }
2357 }
2358
2359 /* If anything failed, then we're not doing target-side commands,
2360 and so clean up. */
2361 if (null_command_or_parse_error)
2362 {
2363 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2364 {
2365 loc = (*loc2p);
2366 if (is_breakpoint (loc->owner)
2367 && loc->pspace->num == bl->pspace->num)
2368 {
2369 /* Only go as far as the first NULL bytecode is
2370 located. */
2371 if (loc->cmd_bytecode == NULL)
2372 return;
2373
2374 loc->cmd_bytecode.reset ();
2375 }
2376 }
2377 }
2378
2379 /* No NULL commands or failed bytecode generation. Build a command list
2380 for this location's address. */
2381 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2382 {
2383 loc = (*loc2p);
2384 if (loc->owner->extra_string
2385 && is_breakpoint (loc->owner)
2386 && loc->pspace->num == bl->pspace->num
2387 && loc->owner->enable_state == bp_enabled
2388 && loc->enabled)
2389 {
2390 /* Add the command to the vector. This will be used later
2391 to send the commands to the target. */
2392 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2393 }
2394 }
2395
2396 bl->target_info.persist = 0;
2397 /* Maybe flag this location as persistent. */
2398 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2399 bl->target_info.persist = 1;
2400 }
2401
2402 /* Return the kind of breakpoint on address *ADDR. Get the kind
2403 of breakpoint according to ADDR except single-step breakpoint.
2404 Get the kind of single-step breakpoint according to the current
2405 registers state. */
2406
2407 static int
2408 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2409 {
2410 if (bl->owner->type == bp_single_step)
2411 {
2412 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2413 struct regcache *regcache;
2414
2415 regcache = get_thread_regcache (thr->ptid);
2416
2417 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2418 regcache, addr);
2419 }
2420 else
2421 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2422 }
2423
2424 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2425 location. Any error messages are printed to TMP_ERROR_STREAM; and
2426 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2427 Returns 0 for success, 1 if the bp_location type is not supported or
2428 -1 for failure.
2429
2430 NOTE drow/2003-09-09: This routine could be broken down to an
2431 object-style method for each breakpoint or catchpoint type. */
2432 static int
2433 insert_bp_location (struct bp_location *bl,
2434 struct ui_file *tmp_error_stream,
2435 int *disabled_breaks,
2436 int *hw_breakpoint_error,
2437 int *hw_bp_error_explained_already)
2438 {
2439 gdb_exception bp_excpt = exception_none;
2440
2441 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2442 return 0;
2443
2444 /* Note we don't initialize bl->target_info, as that wipes out
2445 the breakpoint location's shadow_contents if the breakpoint
2446 is still inserted at that location. This in turn breaks
2447 target_read_memory which depends on these buffers when
2448 a memory read is requested at the breakpoint location:
2449 Once the target_info has been wiped, we fail to see that
2450 we have a breakpoint inserted at that address and thus
2451 read the breakpoint instead of returning the data saved in
2452 the breakpoint location's shadow contents. */
2453 bl->target_info.reqstd_address = bl->address;
2454 bl->target_info.placed_address_space = bl->pspace->aspace;
2455 bl->target_info.length = bl->length;
2456
2457 /* When working with target-side conditions, we must pass all the conditions
2458 for the same breakpoint address down to the target since GDB will not
2459 insert those locations. With a list of breakpoint conditions, the target
2460 can decide when to stop and notify GDB. */
2461
2462 if (is_breakpoint (bl->owner))
2463 {
2464 build_target_condition_list (bl);
2465 build_target_command_list (bl);
2466 /* Reset the modification marker. */
2467 bl->needs_update = 0;
2468 }
2469
2470 if (bl->loc_type == bp_loc_software_breakpoint
2471 || bl->loc_type == bp_loc_hardware_breakpoint)
2472 {
2473 if (bl->owner->type != bp_hardware_breakpoint)
2474 {
2475 /* If the explicitly specified breakpoint type
2476 is not hardware breakpoint, check the memory map to see
2477 if the breakpoint address is in read only memory or not.
2478
2479 Two important cases are:
2480 - location type is not hardware breakpoint, memory
2481 is readonly. We change the type of the location to
2482 hardware breakpoint.
2483 - location type is hardware breakpoint, memory is
2484 read-write. This means we've previously made the
2485 location hardware one, but then the memory map changed,
2486 so we undo.
2487
2488 When breakpoints are removed, remove_breakpoints will use
2489 location types we've just set here, the only possible
2490 problem is that memory map has changed during running
2491 program, but it's not going to work anyway with current
2492 gdb. */
2493 struct mem_region *mr
2494 = lookup_mem_region (bl->target_info.reqstd_address);
2495
2496 if (mr)
2497 {
2498 if (automatic_hardware_breakpoints)
2499 {
2500 enum bp_loc_type new_type;
2501
2502 if (mr->attrib.mode != MEM_RW)
2503 new_type = bp_loc_hardware_breakpoint;
2504 else
2505 new_type = bp_loc_software_breakpoint;
2506
2507 if (new_type != bl->loc_type)
2508 {
2509 static int said = 0;
2510
2511 bl->loc_type = new_type;
2512 if (!said)
2513 {
2514 fprintf_filtered (gdb_stdout,
2515 _("Note: automatically using "
2516 "hardware breakpoints for "
2517 "read-only addresses.\n"));
2518 said = 1;
2519 }
2520 }
2521 }
2522 else if (bl->loc_type == bp_loc_software_breakpoint
2523 && mr->attrib.mode != MEM_RW)
2524 {
2525 fprintf_unfiltered (tmp_error_stream,
2526 _("Cannot insert breakpoint %d.\n"
2527 "Cannot set software breakpoint "
2528 "at read-only address %s\n"),
2529 bl->owner->number,
2530 paddress (bl->gdbarch, bl->address));
2531 return 1;
2532 }
2533 }
2534 }
2535
2536 /* First check to see if we have to handle an overlay. */
2537 if (overlay_debugging == ovly_off
2538 || bl->section == NULL
2539 || !(section_is_overlay (bl->section)))
2540 {
2541 /* No overlay handling: just set the breakpoint. */
2542 TRY
2543 {
2544 int val;
2545
2546 val = bl->owner->ops->insert_location (bl);
2547 if (val)
2548 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2549 }
2550 CATCH (e, RETURN_MASK_ALL)
2551 {
2552 bp_excpt = e;
2553 }
2554 END_CATCH
2555 }
2556 else
2557 {
2558 /* This breakpoint is in an overlay section.
2559 Shall we set a breakpoint at the LMA? */
2560 if (!overlay_events_enabled)
2561 {
2562 /* Yes -- overlay event support is not active,
2563 so we must try to set a breakpoint at the LMA.
2564 This will not work for a hardware breakpoint. */
2565 if (bl->loc_type == bp_loc_hardware_breakpoint)
2566 warning (_("hardware breakpoint %d not supported in overlay!"),
2567 bl->owner->number);
2568 else
2569 {
2570 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2571 bl->section);
2572 /* Set a software (trap) breakpoint at the LMA. */
2573 bl->overlay_target_info = bl->target_info;
2574 bl->overlay_target_info.reqstd_address = addr;
2575
2576 /* No overlay handling: just set the breakpoint. */
2577 TRY
2578 {
2579 int val;
2580
2581 bl->overlay_target_info.kind
2582 = breakpoint_kind (bl, &addr);
2583 bl->overlay_target_info.placed_address = addr;
2584 val = target_insert_breakpoint (bl->gdbarch,
2585 &bl->overlay_target_info);
2586 if (val)
2587 bp_excpt
2588 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2589 }
2590 CATCH (e, RETURN_MASK_ALL)
2591 {
2592 bp_excpt = e;
2593 }
2594 END_CATCH
2595
2596 if (bp_excpt.reason != 0)
2597 fprintf_unfiltered (tmp_error_stream,
2598 "Overlay breakpoint %d "
2599 "failed: in ROM?\n",
2600 bl->owner->number);
2601 }
2602 }
2603 /* Shall we set a breakpoint at the VMA? */
2604 if (section_is_mapped (bl->section))
2605 {
2606 /* Yes. This overlay section is mapped into memory. */
2607 TRY
2608 {
2609 int val;
2610
2611 val = bl->owner->ops->insert_location (bl);
2612 if (val)
2613 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2614 }
2615 CATCH (e, RETURN_MASK_ALL)
2616 {
2617 bp_excpt = e;
2618 }
2619 END_CATCH
2620 }
2621 else
2622 {
2623 /* No. This breakpoint will not be inserted.
2624 No error, but do not mark the bp as 'inserted'. */
2625 return 0;
2626 }
2627 }
2628
2629 if (bp_excpt.reason != 0)
2630 {
2631 /* Can't set the breakpoint. */
2632
2633 /* In some cases, we might not be able to insert a
2634 breakpoint in a shared library that has already been
2635 removed, but we have not yet processed the shlib unload
2636 event. Unfortunately, some targets that implement
2637 breakpoint insertion themselves can't tell why the
2638 breakpoint insertion failed (e.g., the remote target
2639 doesn't define error codes), so we must treat generic
2640 errors as memory errors. */
2641 if (bp_excpt.reason == RETURN_ERROR
2642 && (bp_excpt.error == GENERIC_ERROR
2643 || bp_excpt.error == MEMORY_ERROR)
2644 && bl->loc_type == bp_loc_software_breakpoint
2645 && (solib_name_from_address (bl->pspace, bl->address)
2646 || shared_objfile_contains_address_p (bl->pspace,
2647 bl->address)))
2648 {
2649 /* See also: disable_breakpoints_in_shlibs. */
2650 bl->shlib_disabled = 1;
2651 gdb::observers::breakpoint_modified.notify (bl->owner);
2652 if (!*disabled_breaks)
2653 {
2654 fprintf_unfiltered (tmp_error_stream,
2655 "Cannot insert breakpoint %d.\n",
2656 bl->owner->number);
2657 fprintf_unfiltered (tmp_error_stream,
2658 "Temporarily disabling shared "
2659 "library breakpoints:\n");
2660 }
2661 *disabled_breaks = 1;
2662 fprintf_unfiltered (tmp_error_stream,
2663 "breakpoint #%d\n", bl->owner->number);
2664 return 0;
2665 }
2666 else
2667 {
2668 if (bl->loc_type == bp_loc_hardware_breakpoint)
2669 {
2670 *hw_breakpoint_error = 1;
2671 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2672 fprintf_unfiltered (tmp_error_stream,
2673 "Cannot insert hardware breakpoint %d%s",
2674 bl->owner->number,
2675 bp_excpt.message ? ":" : ".\n");
2676 if (bp_excpt.message != NULL)
2677 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2678 bp_excpt.message);
2679 }
2680 else
2681 {
2682 if (bp_excpt.message == NULL)
2683 {
2684 std::string message
2685 = memory_error_message (TARGET_XFER_E_IO,
2686 bl->gdbarch, bl->address);
2687
2688 fprintf_unfiltered (tmp_error_stream,
2689 "Cannot insert breakpoint %d.\n"
2690 "%s\n",
2691 bl->owner->number, message.c_str ());
2692 }
2693 else
2694 {
2695 fprintf_unfiltered (tmp_error_stream,
2696 "Cannot insert breakpoint %d: %s\n",
2697 bl->owner->number,
2698 bp_excpt.message);
2699 }
2700 }
2701 return 1;
2702
2703 }
2704 }
2705 else
2706 bl->inserted = 1;
2707
2708 return 0;
2709 }
2710
2711 else if (bl->loc_type == bp_loc_hardware_watchpoint
2712 /* NOTE drow/2003-09-08: This state only exists for removing
2713 watchpoints. It's not clear that it's necessary... */
2714 && bl->owner->disposition != disp_del_at_next_stop)
2715 {
2716 int val;
2717
2718 gdb_assert (bl->owner->ops != NULL
2719 && bl->owner->ops->insert_location != NULL);
2720
2721 val = bl->owner->ops->insert_location (bl);
2722
2723 /* If trying to set a read-watchpoint, and it turns out it's not
2724 supported, try emulating one with an access watchpoint. */
2725 if (val == 1 && bl->watchpoint_type == hw_read)
2726 {
2727 struct bp_location *loc, **loc_temp;
2728
2729 /* But don't try to insert it, if there's already another
2730 hw_access location that would be considered a duplicate
2731 of this one. */
2732 ALL_BP_LOCATIONS (loc, loc_temp)
2733 if (loc != bl
2734 && loc->watchpoint_type == hw_access
2735 && watchpoint_locations_match (bl, loc))
2736 {
2737 bl->duplicate = 1;
2738 bl->inserted = 1;
2739 bl->target_info = loc->target_info;
2740 bl->watchpoint_type = hw_access;
2741 val = 0;
2742 break;
2743 }
2744
2745 if (val == 1)
2746 {
2747 bl->watchpoint_type = hw_access;
2748 val = bl->owner->ops->insert_location (bl);
2749
2750 if (val)
2751 /* Back to the original value. */
2752 bl->watchpoint_type = hw_read;
2753 }
2754 }
2755
2756 bl->inserted = (val == 0);
2757 }
2758
2759 else if (bl->owner->type == bp_catchpoint)
2760 {
2761 int val;
2762
2763 gdb_assert (bl->owner->ops != NULL
2764 && bl->owner->ops->insert_location != NULL);
2765
2766 val = bl->owner->ops->insert_location (bl);
2767 if (val)
2768 {
2769 bl->owner->enable_state = bp_disabled;
2770
2771 if (val == 1)
2772 warning (_("\
2773 Error inserting catchpoint %d: Your system does not support this type\n\
2774 of catchpoint."), bl->owner->number);
2775 else
2776 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2777 }
2778
2779 bl->inserted = (val == 0);
2780
2781 /* We've already printed an error message if there was a problem
2782 inserting this catchpoint, and we've disabled the catchpoint,
2783 so just return success. */
2784 return 0;
2785 }
2786
2787 return 0;
2788 }
2789
2790 /* This function is called when program space PSPACE is about to be
2791 deleted. It takes care of updating breakpoints to not reference
2792 PSPACE anymore. */
2793
2794 void
2795 breakpoint_program_space_exit (struct program_space *pspace)
2796 {
2797 struct breakpoint *b, *b_temp;
2798 struct bp_location *loc, **loc_temp;
2799
2800 /* Remove any breakpoint that was set through this program space. */
2801 ALL_BREAKPOINTS_SAFE (b, b_temp)
2802 {
2803 if (b->pspace == pspace)
2804 delete_breakpoint (b);
2805 }
2806
2807 /* Breakpoints set through other program spaces could have locations
2808 bound to PSPACE as well. Remove those. */
2809 ALL_BP_LOCATIONS (loc, loc_temp)
2810 {
2811 struct bp_location *tmp;
2812
2813 if (loc->pspace == pspace)
2814 {
2815 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2816 if (loc->owner->loc == loc)
2817 loc->owner->loc = loc->next;
2818 else
2819 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2820 if (tmp->next == loc)
2821 {
2822 tmp->next = loc->next;
2823 break;
2824 }
2825 }
2826 }
2827
2828 /* Now update the global location list to permanently delete the
2829 removed locations above. */
2830 update_global_location_list (UGLL_DONT_INSERT);
2831 }
2832
2833 /* Make sure all breakpoints are inserted in inferior.
2834 Throws exception on any error.
2835 A breakpoint that is already inserted won't be inserted
2836 again, so calling this function twice is safe. */
2837 void
2838 insert_breakpoints (void)
2839 {
2840 struct breakpoint *bpt;
2841
2842 ALL_BREAKPOINTS (bpt)
2843 if (is_hardware_watchpoint (bpt))
2844 {
2845 struct watchpoint *w = (struct watchpoint *) bpt;
2846
2847 update_watchpoint (w, 0 /* don't reparse. */);
2848 }
2849
2850 /* Updating watchpoints creates new locations, so update the global
2851 location list. Explicitly tell ugll to insert locations and
2852 ignore breakpoints_always_inserted_mode. */
2853 update_global_location_list (UGLL_INSERT);
2854 }
2855
2856 /* Invoke CALLBACK for each of bp_location. */
2857
2858 void
2859 iterate_over_bp_locations (walk_bp_location_callback callback)
2860 {
2861 struct bp_location *loc, **loc_tmp;
2862
2863 ALL_BP_LOCATIONS (loc, loc_tmp)
2864 {
2865 callback (loc, NULL);
2866 }
2867 }
2868
2869 /* This is used when we need to synch breakpoint conditions between GDB and the
2870 target. It is the case with deleting and disabling of breakpoints when using
2871 always-inserted mode. */
2872
2873 static void
2874 update_inserted_breakpoint_locations (void)
2875 {
2876 struct bp_location *bl, **blp_tmp;
2877 int error_flag = 0;
2878 int val = 0;
2879 int disabled_breaks = 0;
2880 int hw_breakpoint_error = 0;
2881 int hw_bp_details_reported = 0;
2882
2883 string_file tmp_error_stream;
2884
2885 /* Explicitly mark the warning -- this will only be printed if
2886 there was an error. */
2887 tmp_error_stream.puts ("Warning:\n");
2888
2889 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2890
2891 ALL_BP_LOCATIONS (bl, blp_tmp)
2892 {
2893 /* We only want to update software breakpoints and hardware
2894 breakpoints. */
2895 if (!is_breakpoint (bl->owner))
2896 continue;
2897
2898 /* We only want to update locations that are already inserted
2899 and need updating. This is to avoid unwanted insertion during
2900 deletion of breakpoints. */
2901 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2902 continue;
2903
2904 switch_to_program_space_and_thread (bl->pspace);
2905
2906 /* For targets that support global breakpoints, there's no need
2907 to select an inferior to insert breakpoint to. In fact, even
2908 if we aren't attached to any process yet, we should still
2909 insert breakpoints. */
2910 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2911 && ptid_equal (inferior_ptid, null_ptid))
2912 continue;
2913
2914 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2915 &hw_breakpoint_error, &hw_bp_details_reported);
2916 if (val)
2917 error_flag = val;
2918 }
2919
2920 if (error_flag)
2921 {
2922 target_terminal::ours_for_output ();
2923 error_stream (tmp_error_stream);
2924 }
2925 }
2926
2927 /* Used when starting or continuing the program. */
2928
2929 static void
2930 insert_breakpoint_locations (void)
2931 {
2932 struct breakpoint *bpt;
2933 struct bp_location *bl, **blp_tmp;
2934 int error_flag = 0;
2935 int val = 0;
2936 int disabled_breaks = 0;
2937 int hw_breakpoint_error = 0;
2938 int hw_bp_error_explained_already = 0;
2939
2940 string_file tmp_error_stream;
2941
2942 /* Explicitly mark the warning -- this will only be printed if
2943 there was an error. */
2944 tmp_error_stream.puts ("Warning:\n");
2945
2946 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2947
2948 ALL_BP_LOCATIONS (bl, blp_tmp)
2949 {
2950 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2951 continue;
2952
2953 /* There is no point inserting thread-specific breakpoints if
2954 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2955 has BL->OWNER always non-NULL. */
2956 if (bl->owner->thread != -1
2957 && !valid_global_thread_id (bl->owner->thread))
2958 continue;
2959
2960 switch_to_program_space_and_thread (bl->pspace);
2961
2962 /* For targets that support global breakpoints, there's no need
2963 to select an inferior to insert breakpoint to. In fact, even
2964 if we aren't attached to any process yet, we should still
2965 insert breakpoints. */
2966 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2967 && ptid_equal (inferior_ptid, null_ptid))
2968 continue;
2969
2970 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2971 &hw_breakpoint_error, &hw_bp_error_explained_already);
2972 if (val)
2973 error_flag = val;
2974 }
2975
2976 /* If we failed to insert all locations of a watchpoint, remove
2977 them, as half-inserted watchpoint is of limited use. */
2978 ALL_BREAKPOINTS (bpt)
2979 {
2980 int some_failed = 0;
2981 struct bp_location *loc;
2982
2983 if (!is_hardware_watchpoint (bpt))
2984 continue;
2985
2986 if (!breakpoint_enabled (bpt))
2987 continue;
2988
2989 if (bpt->disposition == disp_del_at_next_stop)
2990 continue;
2991
2992 for (loc = bpt->loc; loc; loc = loc->next)
2993 if (!loc->inserted && should_be_inserted (loc))
2994 {
2995 some_failed = 1;
2996 break;
2997 }
2998 if (some_failed)
2999 {
3000 for (loc = bpt->loc; loc; loc = loc->next)
3001 if (loc->inserted)
3002 remove_breakpoint (loc);
3003
3004 hw_breakpoint_error = 1;
3005 tmp_error_stream.printf ("Could not insert "
3006 "hardware watchpoint %d.\n",
3007 bpt->number);
3008 error_flag = -1;
3009 }
3010 }
3011
3012 if (error_flag)
3013 {
3014 /* If a hardware breakpoint or watchpoint was inserted, add a
3015 message about possibly exhausted resources. */
3016 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3017 {
3018 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3019 You may have requested too many hardware breakpoints/watchpoints.\n");
3020 }
3021 target_terminal::ours_for_output ();
3022 error_stream (tmp_error_stream);
3023 }
3024 }
3025
3026 /* Used when the program stops.
3027 Returns zero if successful, or non-zero if there was a problem
3028 removing a breakpoint location. */
3029
3030 int
3031 remove_breakpoints (void)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val = 0;
3035
3036 ALL_BP_LOCATIONS (bl, blp_tmp)
3037 {
3038 if (bl->inserted && !is_tracepoint (bl->owner))
3039 val |= remove_breakpoint (bl);
3040 }
3041 return val;
3042 }
3043
3044 /* When a thread exits, remove breakpoints that are related to
3045 that thread. */
3046
3047 static void
3048 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3049 {
3050 struct breakpoint *b, *b_tmp;
3051
3052 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3053 {
3054 if (b->thread == tp->global_num && user_breakpoint_p (b))
3055 {
3056 b->disposition = disp_del_at_next_stop;
3057
3058 printf_filtered (_("\
3059 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3060 b->number, print_thread_id (tp));
3061
3062 /* Hide it from the user. */
3063 b->number = 0;
3064 }
3065 }
3066 }
3067
3068 /* Remove breakpoints of process PID. */
3069
3070 int
3071 remove_breakpoints_pid (int pid)
3072 {
3073 struct bp_location *bl, **blp_tmp;
3074 int val;
3075 struct inferior *inf = find_inferior_pid (pid);
3076
3077 ALL_BP_LOCATIONS (bl, blp_tmp)
3078 {
3079 if (bl->pspace != inf->pspace)
3080 continue;
3081
3082 if (bl->inserted && !bl->target_info.persist)
3083 {
3084 val = remove_breakpoint (bl);
3085 if (val != 0)
3086 return val;
3087 }
3088 }
3089 return 0;
3090 }
3091
3092 static int internal_breakpoint_number = -1;
3093
3094 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3095 If INTERNAL is non-zero, the breakpoint number will be populated
3096 from internal_breakpoint_number and that variable decremented.
3097 Otherwise the breakpoint number will be populated from
3098 breakpoint_count and that value incremented. Internal breakpoints
3099 do not set the internal var bpnum. */
3100 static void
3101 set_breakpoint_number (int internal, struct breakpoint *b)
3102 {
3103 if (internal)
3104 b->number = internal_breakpoint_number--;
3105 else
3106 {
3107 set_breakpoint_count (breakpoint_count + 1);
3108 b->number = breakpoint_count;
3109 }
3110 }
3111
3112 static struct breakpoint *
3113 create_internal_breakpoint (struct gdbarch *gdbarch,
3114 CORE_ADDR address, enum bptype type,
3115 const struct breakpoint_ops *ops)
3116 {
3117 symtab_and_line sal;
3118 sal.pc = address;
3119 sal.section = find_pc_overlay (sal.pc);
3120 sal.pspace = current_program_space;
3121
3122 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3123 b->number = internal_breakpoint_number--;
3124 b->disposition = disp_donttouch;
3125
3126 return b;
3127 }
3128
3129 static const char *const longjmp_names[] =
3130 {
3131 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3132 };
3133 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3134
3135 /* Per-objfile data private to breakpoint.c. */
3136 struct breakpoint_objfile_data
3137 {
3138 /* Minimal symbol for "_ovly_debug_event" (if any). */
3139 struct bound_minimal_symbol overlay_msym {};
3140
3141 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3142 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3143
3144 /* True if we have looked for longjmp probes. */
3145 int longjmp_searched = 0;
3146
3147 /* SystemTap probe points for longjmp (if any). These are non-owning
3148 references. */
3149 std::vector<probe *> longjmp_probes;
3150
3151 /* Minimal symbol for "std::terminate()" (if any). */
3152 struct bound_minimal_symbol terminate_msym {};
3153
3154 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3155 struct bound_minimal_symbol exception_msym {};
3156
3157 /* True if we have looked for exception probes. */
3158 int exception_searched = 0;
3159
3160 /* SystemTap probe points for unwinding (if any). These are non-owning
3161 references. */
3162 std::vector<probe *> exception_probes;
3163 };
3164
3165 static const struct objfile_data *breakpoint_objfile_key;
3166
3167 /* Minimal symbol not found sentinel. */
3168 static struct minimal_symbol msym_not_found;
3169
3170 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3171
3172 static int
3173 msym_not_found_p (const struct minimal_symbol *msym)
3174 {
3175 return msym == &msym_not_found;
3176 }
3177
3178 /* Return per-objfile data needed by breakpoint.c.
3179 Allocate the data if necessary. */
3180
3181 static struct breakpoint_objfile_data *
3182 get_breakpoint_objfile_data (struct objfile *objfile)
3183 {
3184 struct breakpoint_objfile_data *bp_objfile_data;
3185
3186 bp_objfile_data = ((struct breakpoint_objfile_data *)
3187 objfile_data (objfile, breakpoint_objfile_key));
3188 if (bp_objfile_data == NULL)
3189 {
3190 bp_objfile_data = new breakpoint_objfile_data ();
3191 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3192 }
3193 return bp_objfile_data;
3194 }
3195
3196 static void
3197 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3198 {
3199 struct breakpoint_objfile_data *bp_objfile_data
3200 = (struct breakpoint_objfile_data *) data;
3201
3202 delete bp_objfile_data;
3203 }
3204
3205 static void
3206 create_overlay_event_breakpoint (void)
3207 {
3208 struct objfile *objfile;
3209 const char *const func_name = "_ovly_debug_event";
3210
3211 ALL_OBJFILES (objfile)
3212 {
3213 struct breakpoint *b;
3214 struct breakpoint_objfile_data *bp_objfile_data;
3215 CORE_ADDR addr;
3216 struct explicit_location explicit_loc;
3217
3218 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3219
3220 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3221 continue;
3222
3223 if (bp_objfile_data->overlay_msym.minsym == NULL)
3224 {
3225 struct bound_minimal_symbol m;
3226
3227 m = lookup_minimal_symbol_text (func_name, objfile);
3228 if (m.minsym == NULL)
3229 {
3230 /* Avoid future lookups in this objfile. */
3231 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3232 continue;
3233 }
3234 bp_objfile_data->overlay_msym = m;
3235 }
3236
3237 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3238 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3239 bp_overlay_event,
3240 &internal_breakpoint_ops);
3241 initialize_explicit_location (&explicit_loc);
3242 explicit_loc.function_name = ASTRDUP (func_name);
3243 b->location = new_explicit_location (&explicit_loc);
3244
3245 if (overlay_debugging == ovly_auto)
3246 {
3247 b->enable_state = bp_enabled;
3248 overlay_events_enabled = 1;
3249 }
3250 else
3251 {
3252 b->enable_state = bp_disabled;
3253 overlay_events_enabled = 0;
3254 }
3255 }
3256 }
3257
3258 static void
3259 create_longjmp_master_breakpoint (void)
3260 {
3261 struct program_space *pspace;
3262
3263 scoped_restore_current_program_space restore_pspace;
3264
3265 ALL_PSPACES (pspace)
3266 {
3267 struct objfile *objfile;
3268
3269 set_current_program_space (pspace);
3270
3271 ALL_OBJFILES (objfile)
3272 {
3273 int i;
3274 struct gdbarch *gdbarch;
3275 struct breakpoint_objfile_data *bp_objfile_data;
3276
3277 gdbarch = get_objfile_arch (objfile);
3278
3279 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3280
3281 if (!bp_objfile_data->longjmp_searched)
3282 {
3283 std::vector<probe *> ret
3284 = find_probes_in_objfile (objfile, "libc", "longjmp");
3285
3286 if (!ret.empty ())
3287 {
3288 /* We are only interested in checking one element. */
3289 probe *p = ret[0];
3290
3291 if (!p->can_evaluate_arguments ())
3292 {
3293 /* We cannot use the probe interface here, because it does
3294 not know how to evaluate arguments. */
3295 ret.clear ();
3296 }
3297 }
3298 bp_objfile_data->longjmp_probes = ret;
3299 bp_objfile_data->longjmp_searched = 1;
3300 }
3301
3302 if (!bp_objfile_data->longjmp_probes.empty ())
3303 {
3304 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3305
3306 for (probe *p : bp_objfile_data->longjmp_probes)
3307 {
3308 struct breakpoint *b;
3309
3310 b = create_internal_breakpoint (gdbarch,
3311 p->get_relocated_address (objfile),
3312 bp_longjmp_master,
3313 &internal_breakpoint_ops);
3314 b->location = new_probe_location ("-probe-stap libc:longjmp");
3315 b->enable_state = bp_disabled;
3316 }
3317
3318 continue;
3319 }
3320
3321 if (!gdbarch_get_longjmp_target_p (gdbarch))
3322 continue;
3323
3324 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3325 {
3326 struct breakpoint *b;
3327 const char *func_name;
3328 CORE_ADDR addr;
3329 struct explicit_location explicit_loc;
3330
3331 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3332 continue;
3333
3334 func_name = longjmp_names[i];
3335 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3336 {
3337 struct bound_minimal_symbol m;
3338
3339 m = lookup_minimal_symbol_text (func_name, objfile);
3340 if (m.minsym == NULL)
3341 {
3342 /* Prevent future lookups in this objfile. */
3343 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3344 continue;
3345 }
3346 bp_objfile_data->longjmp_msym[i] = m;
3347 }
3348
3349 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3350 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3351 &internal_breakpoint_ops);
3352 initialize_explicit_location (&explicit_loc);
3353 explicit_loc.function_name = ASTRDUP (func_name);
3354 b->location = new_explicit_location (&explicit_loc);
3355 b->enable_state = bp_disabled;
3356 }
3357 }
3358 }
3359 }
3360
3361 /* Create a master std::terminate breakpoint. */
3362 static void
3363 create_std_terminate_master_breakpoint (void)
3364 {
3365 struct program_space *pspace;
3366 const char *const func_name = "std::terminate()";
3367
3368 scoped_restore_current_program_space restore_pspace;
3369
3370 ALL_PSPACES (pspace)
3371 {
3372 struct objfile *objfile;
3373 CORE_ADDR addr;
3374
3375 set_current_program_space (pspace);
3376
3377 ALL_OBJFILES (objfile)
3378 {
3379 struct breakpoint *b;
3380 struct breakpoint_objfile_data *bp_objfile_data;
3381 struct explicit_location explicit_loc;
3382
3383 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3384
3385 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3386 continue;
3387
3388 if (bp_objfile_data->terminate_msym.minsym == NULL)
3389 {
3390 struct bound_minimal_symbol m;
3391
3392 m = lookup_minimal_symbol (func_name, NULL, objfile);
3393 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3394 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3395 {
3396 /* Prevent future lookups in this objfile. */
3397 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3398 continue;
3399 }
3400 bp_objfile_data->terminate_msym = m;
3401 }
3402
3403 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3404 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3405 bp_std_terminate_master,
3406 &internal_breakpoint_ops);
3407 initialize_explicit_location (&explicit_loc);
3408 explicit_loc.function_name = ASTRDUP (func_name);
3409 b->location = new_explicit_location (&explicit_loc);
3410 b->enable_state = bp_disabled;
3411 }
3412 }
3413 }
3414
3415 /* Install a master breakpoint on the unwinder's debug hook. */
3416
3417 static void
3418 create_exception_master_breakpoint (void)
3419 {
3420 struct objfile *objfile;
3421 const char *const func_name = "_Unwind_DebugHook";
3422
3423 ALL_OBJFILES (objfile)
3424 {
3425 struct breakpoint *b;
3426 struct gdbarch *gdbarch;
3427 struct breakpoint_objfile_data *bp_objfile_data;
3428 CORE_ADDR addr;
3429 struct explicit_location explicit_loc;
3430
3431 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3432
3433 /* We prefer the SystemTap probe point if it exists. */
3434 if (!bp_objfile_data->exception_searched)
3435 {
3436 std::vector<probe *> ret
3437 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3438
3439 if (!ret.empty ())
3440 {
3441 /* We are only interested in checking one element. */
3442 probe *p = ret[0];
3443
3444 if (!p->can_evaluate_arguments ())
3445 {
3446 /* We cannot use the probe interface here, because it does
3447 not know how to evaluate arguments. */
3448 ret.clear ();
3449 }
3450 }
3451 bp_objfile_data->exception_probes = ret;
3452 bp_objfile_data->exception_searched = 1;
3453 }
3454
3455 if (!bp_objfile_data->exception_probes.empty ())
3456 {
3457 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3458
3459 for (probe *p : bp_objfile_data->exception_probes)
3460 {
3461 struct breakpoint *b;
3462
3463 b = create_internal_breakpoint (gdbarch,
3464 p->get_relocated_address (objfile),
3465 bp_exception_master,
3466 &internal_breakpoint_ops);
3467 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3468 b->enable_state = bp_disabled;
3469 }
3470
3471 continue;
3472 }
3473
3474 /* Otherwise, try the hook function. */
3475
3476 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3477 continue;
3478
3479 gdbarch = get_objfile_arch (objfile);
3480
3481 if (bp_objfile_data->exception_msym.minsym == NULL)
3482 {
3483 struct bound_minimal_symbol debug_hook;
3484
3485 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3486 if (debug_hook.minsym == NULL)
3487 {
3488 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3489 continue;
3490 }
3491
3492 bp_objfile_data->exception_msym = debug_hook;
3493 }
3494
3495 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3496 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr, target_stack);
3497 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3498 &internal_breakpoint_ops);
3499 initialize_explicit_location (&explicit_loc);
3500 explicit_loc.function_name = ASTRDUP (func_name);
3501 b->location = new_explicit_location (&explicit_loc);
3502 b->enable_state = bp_disabled;
3503 }
3504 }
3505
3506 /* Does B have a location spec? */
3507
3508 static int
3509 breakpoint_event_location_empty_p (const struct breakpoint *b)
3510 {
3511 return b->location != NULL && event_location_empty_p (b->location.get ());
3512 }
3513
3514 void
3515 update_breakpoints_after_exec (void)
3516 {
3517 struct breakpoint *b, *b_tmp;
3518 struct bp_location *bploc, **bplocp_tmp;
3519
3520 /* We're about to delete breakpoints from GDB's lists. If the
3521 INSERTED flag is true, GDB will try to lift the breakpoints by
3522 writing the breakpoints' "shadow contents" back into memory. The
3523 "shadow contents" are NOT valid after an exec, so GDB should not
3524 do that. Instead, the target is responsible from marking
3525 breakpoints out as soon as it detects an exec. We don't do that
3526 here instead, because there may be other attempts to delete
3527 breakpoints after detecting an exec and before reaching here. */
3528 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3529 if (bploc->pspace == current_program_space)
3530 gdb_assert (!bploc->inserted);
3531
3532 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3533 {
3534 if (b->pspace != current_program_space)
3535 continue;
3536
3537 /* Solib breakpoints must be explicitly reset after an exec(). */
3538 if (b->type == bp_shlib_event)
3539 {
3540 delete_breakpoint (b);
3541 continue;
3542 }
3543
3544 /* JIT breakpoints must be explicitly reset after an exec(). */
3545 if (b->type == bp_jit_event)
3546 {
3547 delete_breakpoint (b);
3548 continue;
3549 }
3550
3551 /* Thread event breakpoints must be set anew after an exec(),
3552 as must overlay event and longjmp master breakpoints. */
3553 if (b->type == bp_thread_event || b->type == bp_overlay_event
3554 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3555 || b->type == bp_exception_master)
3556 {
3557 delete_breakpoint (b);
3558 continue;
3559 }
3560
3561 /* Step-resume breakpoints are meaningless after an exec(). */
3562 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3563 {
3564 delete_breakpoint (b);
3565 continue;
3566 }
3567
3568 /* Just like single-step breakpoints. */
3569 if (b->type == bp_single_step)
3570 {
3571 delete_breakpoint (b);
3572 continue;
3573 }
3574
3575 /* Longjmp and longjmp-resume breakpoints are also meaningless
3576 after an exec. */
3577 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3578 || b->type == bp_longjmp_call_dummy
3579 || b->type == bp_exception || b->type == bp_exception_resume)
3580 {
3581 delete_breakpoint (b);
3582 continue;
3583 }
3584
3585 if (b->type == bp_catchpoint)
3586 {
3587 /* For now, none of the bp_catchpoint breakpoints need to
3588 do anything at this point. In the future, if some of
3589 the catchpoints need to something, we will need to add
3590 a new method, and call this method from here. */
3591 continue;
3592 }
3593
3594 /* bp_finish is a special case. The only way we ought to be able
3595 to see one of these when an exec() has happened, is if the user
3596 caught a vfork, and then said "finish". Ordinarily a finish just
3597 carries them to the call-site of the current callee, by setting
3598 a temporary bp there and resuming. But in this case, the finish
3599 will carry them entirely through the vfork & exec.
3600
3601 We don't want to allow a bp_finish to remain inserted now. But
3602 we can't safely delete it, 'cause finish_command has a handle to
3603 the bp on a bpstat, and will later want to delete it. There's a
3604 chance (and I've seen it happen) that if we delete the bp_finish
3605 here, that its storage will get reused by the time finish_command
3606 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3607 We really must allow finish_command to delete a bp_finish.
3608
3609 In the absence of a general solution for the "how do we know
3610 it's safe to delete something others may have handles to?"
3611 problem, what we'll do here is just uninsert the bp_finish, and
3612 let finish_command delete it.
3613
3614 (We know the bp_finish is "doomed" in the sense that it's
3615 momentary, and will be deleted as soon as finish_command sees
3616 the inferior stopped. So it doesn't matter that the bp's
3617 address is probably bogus in the new a.out, unlike e.g., the
3618 solib breakpoints.) */
3619
3620 if (b->type == bp_finish)
3621 {
3622 continue;
3623 }
3624
3625 /* Without a symbolic address, we have little hope of the
3626 pre-exec() address meaning the same thing in the post-exec()
3627 a.out. */
3628 if (breakpoint_event_location_empty_p (b))
3629 {
3630 delete_breakpoint (b);
3631 continue;
3632 }
3633 }
3634 }
3635
3636 int
3637 detach_breakpoints (ptid_t ptid)
3638 {
3639 struct bp_location *bl, **blp_tmp;
3640 int val = 0;
3641 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3642 struct inferior *inf = current_inferior ();
3643
3644 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3645 error (_("Cannot detach breakpoints of inferior_ptid"));
3646
3647 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3648 inferior_ptid = ptid;
3649 ALL_BP_LOCATIONS (bl, blp_tmp)
3650 {
3651 if (bl->pspace != inf->pspace)
3652 continue;
3653
3654 /* This function must physically remove breakpoints locations
3655 from the specified ptid, without modifying the breakpoint
3656 package's state. Locations of type bp_loc_other are only
3657 maintained at GDB side. So, there is no need to remove
3658 these bp_loc_other locations. Moreover, removing these
3659 would modify the breakpoint package's state. */
3660 if (bl->loc_type == bp_loc_other)
3661 continue;
3662
3663 if (bl->inserted)
3664 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3665 }
3666
3667 return val;
3668 }
3669
3670 /* Remove the breakpoint location BL from the current address space.
3671 Note that this is used to detach breakpoints from a child fork.
3672 When we get here, the child isn't in the inferior list, and neither
3673 do we have objects to represent its address space --- we should
3674 *not* look at bl->pspace->aspace here. */
3675
3676 static int
3677 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3678 {
3679 int val;
3680
3681 /* BL is never in moribund_locations by our callers. */
3682 gdb_assert (bl->owner != NULL);
3683
3684 /* The type of none suggests that owner is actually deleted.
3685 This should not ever happen. */
3686 gdb_assert (bl->owner->type != bp_none);
3687
3688 if (bl->loc_type == bp_loc_software_breakpoint
3689 || bl->loc_type == bp_loc_hardware_breakpoint)
3690 {
3691 /* "Normal" instruction breakpoint: either the standard
3692 trap-instruction bp (bp_breakpoint), or a
3693 bp_hardware_breakpoint. */
3694
3695 /* First check to see if we have to handle an overlay. */
3696 if (overlay_debugging == ovly_off
3697 || bl->section == NULL
3698 || !(section_is_overlay (bl->section)))
3699 {
3700 /* No overlay handling: just remove the breakpoint. */
3701
3702 /* If we're trying to uninsert a memory breakpoint that we
3703 know is set in a dynamic object that is marked
3704 shlib_disabled, then either the dynamic object was
3705 removed with "remove-symbol-file" or with
3706 "nosharedlibrary". In the former case, we don't know
3707 whether another dynamic object might have loaded over the
3708 breakpoint's address -- the user might well let us know
3709 about it next with add-symbol-file (the whole point of
3710 add-symbol-file is letting the user manually maintain a
3711 list of dynamically loaded objects). If we have the
3712 breakpoint's shadow memory, that is, this is a software
3713 breakpoint managed by GDB, check whether the breakpoint
3714 is still inserted in memory, to avoid overwriting wrong
3715 code with stale saved shadow contents. Note that HW
3716 breakpoints don't have shadow memory, as they're
3717 implemented using a mechanism that is not dependent on
3718 being able to modify the target's memory, and as such
3719 they should always be removed. */
3720 if (bl->shlib_disabled
3721 && bl->target_info.shadow_len != 0
3722 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3723 val = 0;
3724 else
3725 val = bl->owner->ops->remove_location (bl, reason);
3726 }
3727 else
3728 {
3729 /* This breakpoint is in an overlay section.
3730 Did we set a breakpoint at the LMA? */
3731 if (!overlay_events_enabled)
3732 {
3733 /* Yes -- overlay event support is not active, so we
3734 should have set a breakpoint at the LMA. Remove it.
3735 */
3736 /* Ignore any failures: if the LMA is in ROM, we will
3737 have already warned when we failed to insert it. */
3738 if (bl->loc_type == bp_loc_hardware_breakpoint)
3739 target_remove_hw_breakpoint (bl->gdbarch,
3740 &bl->overlay_target_info);
3741 else
3742 target_remove_breakpoint (bl->gdbarch,
3743 &bl->overlay_target_info,
3744 reason);
3745 }
3746 /* Did we set a breakpoint at the VMA?
3747 If so, we will have marked the breakpoint 'inserted'. */
3748 if (bl->inserted)
3749 {
3750 /* Yes -- remove it. Previously we did not bother to
3751 remove the breakpoint if the section had been
3752 unmapped, but let's not rely on that being safe. We
3753 don't know what the overlay manager might do. */
3754
3755 /* However, we should remove *software* breakpoints only
3756 if the section is still mapped, or else we overwrite
3757 wrong code with the saved shadow contents. */
3758 if (bl->loc_type == bp_loc_hardware_breakpoint
3759 || section_is_mapped (bl->section))
3760 val = bl->owner->ops->remove_location (bl, reason);
3761 else
3762 val = 0;
3763 }
3764 else
3765 {
3766 /* No -- not inserted, so no need to remove. No error. */
3767 val = 0;
3768 }
3769 }
3770
3771 /* In some cases, we might not be able to remove a breakpoint in
3772 a shared library that has already been removed, but we have
3773 not yet processed the shlib unload event. Similarly for an
3774 unloaded add-symbol-file object - the user might not yet have
3775 had the chance to remove-symbol-file it. shlib_disabled will
3776 be set if the library/object has already been removed, but
3777 the breakpoint hasn't been uninserted yet, e.g., after
3778 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3779 always-inserted mode. */
3780 if (val
3781 && (bl->loc_type == bp_loc_software_breakpoint
3782 && (bl->shlib_disabled
3783 || solib_name_from_address (bl->pspace, bl->address)
3784 || shared_objfile_contains_address_p (bl->pspace,
3785 bl->address))))
3786 val = 0;
3787
3788 if (val)
3789 return val;
3790 bl->inserted = (reason == DETACH_BREAKPOINT);
3791 }
3792 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3793 {
3794 gdb_assert (bl->owner->ops != NULL
3795 && bl->owner->ops->remove_location != NULL);
3796
3797 bl->inserted = (reason == DETACH_BREAKPOINT);
3798 bl->owner->ops->remove_location (bl, reason);
3799
3800 /* Failure to remove any of the hardware watchpoints comes here. */
3801 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3802 warning (_("Could not remove hardware watchpoint %d."),
3803 bl->owner->number);
3804 }
3805 else if (bl->owner->type == bp_catchpoint
3806 && breakpoint_enabled (bl->owner)
3807 && !bl->duplicate)
3808 {
3809 gdb_assert (bl->owner->ops != NULL
3810 && bl->owner->ops->remove_location != NULL);
3811
3812 val = bl->owner->ops->remove_location (bl, reason);
3813 if (val)
3814 return val;
3815
3816 bl->inserted = (reason == DETACH_BREAKPOINT);
3817 }
3818
3819 return 0;
3820 }
3821
3822 static int
3823 remove_breakpoint (struct bp_location *bl)
3824 {
3825 /* BL is never in moribund_locations by our callers. */
3826 gdb_assert (bl->owner != NULL);
3827
3828 /* The type of none suggests that owner is actually deleted.
3829 This should not ever happen. */
3830 gdb_assert (bl->owner->type != bp_none);
3831
3832 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3833
3834 switch_to_program_space_and_thread (bl->pspace);
3835
3836 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3837 }
3838
3839 /* Clear the "inserted" flag in all breakpoints. */
3840
3841 void
3842 mark_breakpoints_out (void)
3843 {
3844 struct bp_location *bl, **blp_tmp;
3845
3846 ALL_BP_LOCATIONS (bl, blp_tmp)
3847 if (bl->pspace == current_program_space)
3848 bl->inserted = 0;
3849 }
3850
3851 /* Clear the "inserted" flag in all breakpoints and delete any
3852 breakpoints which should go away between runs of the program.
3853
3854 Plus other such housekeeping that has to be done for breakpoints
3855 between runs.
3856
3857 Note: this function gets called at the end of a run (by
3858 generic_mourn_inferior) and when a run begins (by
3859 init_wait_for_inferior). */
3860
3861
3862
3863 void
3864 breakpoint_init_inferior (enum inf_context context)
3865 {
3866 struct breakpoint *b, *b_tmp;
3867 struct bp_location *bl;
3868 int ix;
3869 struct program_space *pspace = current_program_space;
3870
3871 /* If breakpoint locations are shared across processes, then there's
3872 nothing to do. */
3873 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3874 return;
3875
3876 mark_breakpoints_out ();
3877
3878 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3879 {
3880 if (b->loc && b->loc->pspace != pspace)
3881 continue;
3882
3883 switch (b->type)
3884 {
3885 case bp_call_dummy:
3886 case bp_longjmp_call_dummy:
3887
3888 /* If the call dummy breakpoint is at the entry point it will
3889 cause problems when the inferior is rerun, so we better get
3890 rid of it. */
3891
3892 case bp_watchpoint_scope:
3893
3894 /* Also get rid of scope breakpoints. */
3895
3896 case bp_shlib_event:
3897
3898 /* Also remove solib event breakpoints. Their addresses may
3899 have changed since the last time we ran the program.
3900 Actually we may now be debugging against different target;
3901 and so the solib backend that installed this breakpoint may
3902 not be used in by the target. E.g.,
3903
3904 (gdb) file prog-linux
3905 (gdb) run # native linux target
3906 ...
3907 (gdb) kill
3908 (gdb) file prog-win.exe
3909 (gdb) tar rem :9999 # remote Windows gdbserver.
3910 */
3911
3912 case bp_step_resume:
3913
3914 /* Also remove step-resume breakpoints. */
3915
3916 case bp_single_step:
3917
3918 /* Also remove single-step breakpoints. */
3919
3920 delete_breakpoint (b);
3921 break;
3922
3923 case bp_watchpoint:
3924 case bp_hardware_watchpoint:
3925 case bp_read_watchpoint:
3926 case bp_access_watchpoint:
3927 {
3928 struct watchpoint *w = (struct watchpoint *) b;
3929
3930 /* Likewise for watchpoints on local expressions. */
3931 if (w->exp_valid_block != NULL)
3932 delete_breakpoint (b);
3933 else
3934 {
3935 /* Get rid of existing locations, which are no longer
3936 valid. New ones will be created in
3937 update_watchpoint, when the inferior is restarted.
3938 The next update_global_location_list call will
3939 garbage collect them. */
3940 b->loc = NULL;
3941
3942 if (context == inf_starting)
3943 {
3944 /* Reset val field to force reread of starting value in
3945 insert_breakpoints. */
3946 w->val.reset (nullptr);
3947 w->val_valid = 0;
3948 }
3949 }
3950 }
3951 break;
3952 default:
3953 break;
3954 }
3955 }
3956
3957 /* Get rid of the moribund locations. */
3958 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3959 decref_bp_location (&bl);
3960 VEC_free (bp_location_p, moribund_locations);
3961 }
3962
3963 /* These functions concern about actual breakpoints inserted in the
3964 target --- to e.g. check if we need to do decr_pc adjustment or if
3965 we need to hop over the bkpt --- so we check for address space
3966 match, not program space. */
3967
3968 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3969 exists at PC. It returns ordinary_breakpoint_here if it's an
3970 ordinary breakpoint, or permanent_breakpoint_here if it's a
3971 permanent breakpoint.
3972 - When continuing from a location with an ordinary breakpoint, we
3973 actually single step once before calling insert_breakpoints.
3974 - When continuing from a location with a permanent breakpoint, we
3975 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3976 the target, to advance the PC past the breakpoint. */
3977
3978 enum breakpoint_here
3979 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3980 {
3981 struct bp_location *bl, **blp_tmp;
3982 int any_breakpoint_here = 0;
3983
3984 ALL_BP_LOCATIONS (bl, blp_tmp)
3985 {
3986 if (bl->loc_type != bp_loc_software_breakpoint
3987 && bl->loc_type != bp_loc_hardware_breakpoint)
3988 continue;
3989
3990 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3991 if ((breakpoint_enabled (bl->owner)
3992 || bl->permanent)
3993 && breakpoint_location_address_match (bl, aspace, pc))
3994 {
3995 if (overlay_debugging
3996 && section_is_overlay (bl->section)
3997 && !section_is_mapped (bl->section))
3998 continue; /* unmapped overlay -- can't be a match */
3999 else if (bl->permanent)
4000 return permanent_breakpoint_here;
4001 else
4002 any_breakpoint_here = 1;
4003 }
4004 }
4005
4006 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4007 }
4008
4009 /* See breakpoint.h. */
4010
4011 int
4012 breakpoint_in_range_p (const address_space *aspace,
4013 CORE_ADDR addr, ULONGEST len)
4014 {
4015 struct bp_location *bl, **blp_tmp;
4016
4017 ALL_BP_LOCATIONS (bl, blp_tmp)
4018 {
4019 if (bl->loc_type != bp_loc_software_breakpoint
4020 && bl->loc_type != bp_loc_hardware_breakpoint)
4021 continue;
4022
4023 if ((breakpoint_enabled (bl->owner)
4024 || bl->permanent)
4025 && breakpoint_location_address_range_overlap (bl, aspace,
4026 addr, len))
4027 {
4028 if (overlay_debugging
4029 && section_is_overlay (bl->section)
4030 && !section_is_mapped (bl->section))
4031 {
4032 /* Unmapped overlay -- can't be a match. */
4033 continue;
4034 }
4035
4036 return 1;
4037 }
4038 }
4039
4040 return 0;
4041 }
4042
4043 /* Return true if there's a moribund breakpoint at PC. */
4044
4045 int
4046 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4047 {
4048 struct bp_location *loc;
4049 int ix;
4050
4051 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4052 if (breakpoint_location_address_match (loc, aspace, pc))
4053 return 1;
4054
4055 return 0;
4056 }
4057
4058 /* Returns non-zero iff BL is inserted at PC, in address space
4059 ASPACE. */
4060
4061 static int
4062 bp_location_inserted_here_p (struct bp_location *bl,
4063 const address_space *aspace, CORE_ADDR pc)
4064 {
4065 if (bl->inserted
4066 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4067 aspace, pc))
4068 {
4069 if (overlay_debugging
4070 && section_is_overlay (bl->section)
4071 && !section_is_mapped (bl->section))
4072 return 0; /* unmapped overlay -- can't be a match */
4073 else
4074 return 1;
4075 }
4076 return 0;
4077 }
4078
4079 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4080
4081 int
4082 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4083 {
4084 struct bp_location **blp, **blp_tmp = NULL;
4085
4086 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4087 {
4088 struct bp_location *bl = *blp;
4089
4090 if (bl->loc_type != bp_loc_software_breakpoint
4091 && bl->loc_type != bp_loc_hardware_breakpoint)
4092 continue;
4093
4094 if (bp_location_inserted_here_p (bl, aspace, pc))
4095 return 1;
4096 }
4097 return 0;
4098 }
4099
4100 /* This function returns non-zero iff there is a software breakpoint
4101 inserted at PC. */
4102
4103 int
4104 software_breakpoint_inserted_here_p (const address_space *aspace,
4105 CORE_ADDR pc)
4106 {
4107 struct bp_location **blp, **blp_tmp = NULL;
4108
4109 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4110 {
4111 struct bp_location *bl = *blp;
4112
4113 if (bl->loc_type != bp_loc_software_breakpoint)
4114 continue;
4115
4116 if (bp_location_inserted_here_p (bl, aspace, pc))
4117 return 1;
4118 }
4119
4120 return 0;
4121 }
4122
4123 /* See breakpoint.h. */
4124
4125 int
4126 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4127 CORE_ADDR pc)
4128 {
4129 struct bp_location **blp, **blp_tmp = NULL;
4130
4131 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4132 {
4133 struct bp_location *bl = *blp;
4134
4135 if (bl->loc_type != bp_loc_hardware_breakpoint)
4136 continue;
4137
4138 if (bp_location_inserted_here_p (bl, aspace, pc))
4139 return 1;
4140 }
4141
4142 return 0;
4143 }
4144
4145 int
4146 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4147 CORE_ADDR addr, ULONGEST len)
4148 {
4149 struct breakpoint *bpt;
4150
4151 ALL_BREAKPOINTS (bpt)
4152 {
4153 struct bp_location *loc;
4154
4155 if (bpt->type != bp_hardware_watchpoint
4156 && bpt->type != bp_access_watchpoint)
4157 continue;
4158
4159 if (!breakpoint_enabled (bpt))
4160 continue;
4161
4162 for (loc = bpt->loc; loc; loc = loc->next)
4163 if (loc->pspace->aspace == aspace && loc->inserted)
4164 {
4165 CORE_ADDR l, h;
4166
4167 /* Check for intersection. */
4168 l = std::max<CORE_ADDR> (loc->address, addr);
4169 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4170 if (l < h)
4171 return 1;
4172 }
4173 }
4174 return 0;
4175 }
4176 \f
4177
4178 /* bpstat stuff. External routines' interfaces are documented
4179 in breakpoint.h. */
4180
4181 int
4182 is_catchpoint (struct breakpoint *ep)
4183 {
4184 return (ep->type == bp_catchpoint);
4185 }
4186
4187 /* Frees any storage that is part of a bpstat. Does not walk the
4188 'next' chain. */
4189
4190 bpstats::~bpstats ()
4191 {
4192 if (bp_location_at != NULL)
4193 decref_bp_location (&bp_location_at);
4194 }
4195
4196 /* Clear a bpstat so that it says we are not at any breakpoint.
4197 Also free any storage that is part of a bpstat. */
4198
4199 void
4200 bpstat_clear (bpstat *bsp)
4201 {
4202 bpstat p;
4203 bpstat q;
4204
4205 if (bsp == 0)
4206 return;
4207 p = *bsp;
4208 while (p != NULL)
4209 {
4210 q = p->next;
4211 delete p;
4212 p = q;
4213 }
4214 *bsp = NULL;
4215 }
4216
4217 bpstats::bpstats (const bpstats &other)
4218 : next (NULL),
4219 bp_location_at (other.bp_location_at),
4220 breakpoint_at (other.breakpoint_at),
4221 commands (other.commands),
4222 print (other.print),
4223 stop (other.stop),
4224 print_it (other.print_it)
4225 {
4226 if (other.old_val != NULL)
4227 old_val = release_value (value_copy (other.old_val.get ()));
4228 incref_bp_location (bp_location_at);
4229 }
4230
4231 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4232 is part of the bpstat is copied as well. */
4233
4234 bpstat
4235 bpstat_copy (bpstat bs)
4236 {
4237 bpstat p = NULL;
4238 bpstat tmp;
4239 bpstat retval = NULL;
4240
4241 if (bs == NULL)
4242 return bs;
4243
4244 for (; bs != NULL; bs = bs->next)
4245 {
4246 tmp = new bpstats (*bs);
4247
4248 if (p == NULL)
4249 /* This is the first thing in the chain. */
4250 retval = tmp;
4251 else
4252 p->next = tmp;
4253 p = tmp;
4254 }
4255 p->next = NULL;
4256 return retval;
4257 }
4258
4259 /* Find the bpstat associated with this breakpoint. */
4260
4261 bpstat
4262 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4263 {
4264 if (bsp == NULL)
4265 return NULL;
4266
4267 for (; bsp != NULL; bsp = bsp->next)
4268 {
4269 if (bsp->breakpoint_at == breakpoint)
4270 return bsp;
4271 }
4272 return NULL;
4273 }
4274
4275 /* See breakpoint.h. */
4276
4277 int
4278 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4279 {
4280 for (; bsp != NULL; bsp = bsp->next)
4281 {
4282 if (bsp->breakpoint_at == NULL)
4283 {
4284 /* A moribund location can never explain a signal other than
4285 GDB_SIGNAL_TRAP. */
4286 if (sig == GDB_SIGNAL_TRAP)
4287 return 1;
4288 }
4289 else
4290 {
4291 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4292 sig))
4293 return 1;
4294 }
4295 }
4296
4297 return 0;
4298 }
4299
4300 /* Put in *NUM the breakpoint number of the first breakpoint we are
4301 stopped at. *BSP upon return is a bpstat which points to the
4302 remaining breakpoints stopped at (but which is not guaranteed to be
4303 good for anything but further calls to bpstat_num).
4304
4305 Return 0 if passed a bpstat which does not indicate any breakpoints.
4306 Return -1 if stopped at a breakpoint that has been deleted since
4307 we set it.
4308 Return 1 otherwise. */
4309
4310 int
4311 bpstat_num (bpstat *bsp, int *num)
4312 {
4313 struct breakpoint *b;
4314
4315 if ((*bsp) == NULL)
4316 return 0; /* No more breakpoint values */
4317
4318 /* We assume we'll never have several bpstats that correspond to a
4319 single breakpoint -- otherwise, this function might return the
4320 same number more than once and this will look ugly. */
4321 b = (*bsp)->breakpoint_at;
4322 *bsp = (*bsp)->next;
4323 if (b == NULL)
4324 return -1; /* breakpoint that's been deleted since */
4325
4326 *num = b->number; /* We have its number */
4327 return 1;
4328 }
4329
4330 /* See breakpoint.h. */
4331
4332 void
4333 bpstat_clear_actions (void)
4334 {
4335 struct thread_info *tp;
4336 bpstat bs;
4337
4338 if (ptid_equal (inferior_ptid, null_ptid))
4339 return;
4340
4341 tp = find_thread_ptid (inferior_ptid);
4342 if (tp == NULL)
4343 return;
4344
4345 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4346 {
4347 bs->commands = NULL;
4348 bs->old_val.reset (nullptr);
4349 }
4350 }
4351
4352 /* Called when a command is about to proceed the inferior. */
4353
4354 static void
4355 breakpoint_about_to_proceed (void)
4356 {
4357 if (!ptid_equal (inferior_ptid, null_ptid))
4358 {
4359 struct thread_info *tp = inferior_thread ();
4360
4361 /* Allow inferior function calls in breakpoint commands to not
4362 interrupt the command list. When the call finishes
4363 successfully, the inferior will be standing at the same
4364 breakpoint as if nothing happened. */
4365 if (tp->control.in_infcall)
4366 return;
4367 }
4368
4369 breakpoint_proceeded = 1;
4370 }
4371
4372 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4373 or its equivalent. */
4374
4375 static int
4376 command_line_is_silent (struct command_line *cmd)
4377 {
4378 return cmd && (strcmp ("silent", cmd->line) == 0);
4379 }
4380
4381 /* Execute all the commands associated with all the breakpoints at
4382 this location. Any of these commands could cause the process to
4383 proceed beyond this point, etc. We look out for such changes by
4384 checking the global "breakpoint_proceeded" after each command.
4385
4386 Returns true if a breakpoint command resumed the inferior. In that
4387 case, it is the caller's responsibility to recall it again with the
4388 bpstat of the current thread. */
4389
4390 static int
4391 bpstat_do_actions_1 (bpstat *bsp)
4392 {
4393 bpstat bs;
4394 int again = 0;
4395
4396 /* Avoid endless recursion if a `source' command is contained
4397 in bs->commands. */
4398 if (executing_breakpoint_commands)
4399 return 0;
4400
4401 scoped_restore save_executing
4402 = make_scoped_restore (&executing_breakpoint_commands, 1);
4403
4404 scoped_restore preventer = prevent_dont_repeat ();
4405
4406 /* This pointer will iterate over the list of bpstat's. */
4407 bs = *bsp;
4408
4409 breakpoint_proceeded = 0;
4410 for (; bs != NULL; bs = bs->next)
4411 {
4412 struct command_line *cmd = NULL;
4413
4414 /* Take ownership of the BSP's command tree, if it has one.
4415
4416 The command tree could legitimately contain commands like
4417 'step' and 'next', which call clear_proceed_status, which
4418 frees stop_bpstat's command tree. To make sure this doesn't
4419 free the tree we're executing out from under us, we need to
4420 take ownership of the tree ourselves. Since a given bpstat's
4421 commands are only executed once, we don't need to copy it; we
4422 can clear the pointer in the bpstat, and make sure we free
4423 the tree when we're done. */
4424 counted_command_line ccmd = bs->commands;
4425 bs->commands = NULL;
4426 if (ccmd != NULL)
4427 cmd = ccmd.get ();
4428 if (command_line_is_silent (cmd))
4429 {
4430 /* The action has been already done by bpstat_stop_status. */
4431 cmd = cmd->next;
4432 }
4433
4434 while (cmd != NULL)
4435 {
4436 execute_control_command (cmd);
4437
4438 if (breakpoint_proceeded)
4439 break;
4440 else
4441 cmd = cmd->next;
4442 }
4443
4444 if (breakpoint_proceeded)
4445 {
4446 if (current_ui->async)
4447 /* If we are in async mode, then the target might be still
4448 running, not stopped at any breakpoint, so nothing for
4449 us to do here -- just return to the event loop. */
4450 ;
4451 else
4452 /* In sync mode, when execute_control_command returns
4453 we're already standing on the next breakpoint.
4454 Breakpoint commands for that stop were not run, since
4455 execute_command does not run breakpoint commands --
4456 only command_line_handler does, but that one is not
4457 involved in execution of breakpoint commands. So, we
4458 can now execute breakpoint commands. It should be
4459 noted that making execute_command do bpstat actions is
4460 not an option -- in this case we'll have recursive
4461 invocation of bpstat for each breakpoint with a
4462 command, and can easily blow up GDB stack. Instead, we
4463 return true, which will trigger the caller to recall us
4464 with the new stop_bpstat. */
4465 again = 1;
4466 break;
4467 }
4468 }
4469 return again;
4470 }
4471
4472 void
4473 bpstat_do_actions (void)
4474 {
4475 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4476
4477 /* Do any commands attached to breakpoint we are stopped at. */
4478 while (!ptid_equal (inferior_ptid, null_ptid)
4479 && target_has_execution
4480 && !is_exited (inferior_ptid)
4481 && !is_executing (inferior_ptid))
4482 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4483 and only return when it is stopped at the next breakpoint, we
4484 keep doing breakpoint actions until it returns false to
4485 indicate the inferior was not resumed. */
4486 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4487 break;
4488
4489 discard_cleanups (cleanup_if_error);
4490 }
4491
4492 /* Print out the (old or new) value associated with a watchpoint. */
4493
4494 static void
4495 watchpoint_value_print (struct value *val, struct ui_file *stream)
4496 {
4497 if (val == NULL)
4498 fprintf_unfiltered (stream, _("<unreadable>"));
4499 else
4500 {
4501 struct value_print_options opts;
4502 get_user_print_options (&opts);
4503 value_print (val, stream, &opts);
4504 }
4505 }
4506
4507 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4508 debugging multiple threads. */
4509
4510 void
4511 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4512 {
4513 if (uiout->is_mi_like_p ())
4514 return;
4515
4516 uiout->text ("\n");
4517
4518 if (show_thread_that_caused_stop ())
4519 {
4520 const char *name;
4521 struct thread_info *thr = inferior_thread ();
4522
4523 uiout->text ("Thread ");
4524 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4525
4526 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4527 if (name != NULL)
4528 {
4529 uiout->text (" \"");
4530 uiout->field_fmt ("name", "%s", name);
4531 uiout->text ("\"");
4532 }
4533
4534 uiout->text (" hit ");
4535 }
4536 }
4537
4538 /* Generic routine for printing messages indicating why we
4539 stopped. The behavior of this function depends on the value
4540 'print_it' in the bpstat structure. Under some circumstances we
4541 may decide not to print anything here and delegate the task to
4542 normal_stop(). */
4543
4544 static enum print_stop_action
4545 print_bp_stop_message (bpstat bs)
4546 {
4547 switch (bs->print_it)
4548 {
4549 case print_it_noop:
4550 /* Nothing should be printed for this bpstat entry. */
4551 return PRINT_UNKNOWN;
4552 break;
4553
4554 case print_it_done:
4555 /* We still want to print the frame, but we already printed the
4556 relevant messages. */
4557 return PRINT_SRC_AND_LOC;
4558 break;
4559
4560 case print_it_normal:
4561 {
4562 struct breakpoint *b = bs->breakpoint_at;
4563
4564 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4565 which has since been deleted. */
4566 if (b == NULL)
4567 return PRINT_UNKNOWN;
4568
4569 /* Normal case. Call the breakpoint's print_it method. */
4570 return b->ops->print_it (bs);
4571 }
4572 break;
4573
4574 default:
4575 internal_error (__FILE__, __LINE__,
4576 _("print_bp_stop_message: unrecognized enum value"));
4577 break;
4578 }
4579 }
4580
4581 /* A helper function that prints a shared library stopped event. */
4582
4583 static void
4584 print_solib_event (int is_catchpoint)
4585 {
4586 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4587 int any_added
4588 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4589
4590 if (!is_catchpoint)
4591 {
4592 if (any_added || any_deleted)
4593 current_uiout->text (_("Stopped due to shared library event:\n"));
4594 else
4595 current_uiout->text (_("Stopped due to shared library event (no "
4596 "libraries added or removed)\n"));
4597 }
4598
4599 if (current_uiout->is_mi_like_p ())
4600 current_uiout->field_string ("reason",
4601 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4602
4603 if (any_deleted)
4604 {
4605 current_uiout->text (_(" Inferior unloaded "));
4606 ui_out_emit_list list_emitter (current_uiout, "removed");
4607 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4608 {
4609 const std::string &name = current_program_space->deleted_solibs[ix];
4610
4611 if (ix > 0)
4612 current_uiout->text (" ");
4613 current_uiout->field_string ("library", name);
4614 current_uiout->text ("\n");
4615 }
4616 }
4617
4618 if (any_added)
4619 {
4620 struct so_list *iter;
4621 int ix;
4622
4623 current_uiout->text (_(" Inferior loaded "));
4624 ui_out_emit_list list_emitter (current_uiout, "added");
4625 for (ix = 0;
4626 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4627 ix, iter);
4628 ++ix)
4629 {
4630 if (ix > 0)
4631 current_uiout->text (" ");
4632 current_uiout->field_string ("library", iter->so_name);
4633 current_uiout->text ("\n");
4634 }
4635 }
4636 }
4637
4638 /* Print a message indicating what happened. This is called from
4639 normal_stop(). The input to this routine is the head of the bpstat
4640 list - a list of the eventpoints that caused this stop. KIND is
4641 the target_waitkind for the stopping event. This
4642 routine calls the generic print routine for printing a message
4643 about reasons for stopping. This will print (for example) the
4644 "Breakpoint n," part of the output. The return value of this
4645 routine is one of:
4646
4647 PRINT_UNKNOWN: Means we printed nothing.
4648 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4649 code to print the location. An example is
4650 "Breakpoint 1, " which should be followed by
4651 the location.
4652 PRINT_SRC_ONLY: Means we printed something, but there is no need
4653 to also print the location part of the message.
4654 An example is the catch/throw messages, which
4655 don't require a location appended to the end.
4656 PRINT_NOTHING: We have done some printing and we don't need any
4657 further info to be printed. */
4658
4659 enum print_stop_action
4660 bpstat_print (bpstat bs, int kind)
4661 {
4662 enum print_stop_action val;
4663
4664 /* Maybe another breakpoint in the chain caused us to stop.
4665 (Currently all watchpoints go on the bpstat whether hit or not.
4666 That probably could (should) be changed, provided care is taken
4667 with respect to bpstat_explains_signal). */
4668 for (; bs; bs = bs->next)
4669 {
4670 val = print_bp_stop_message (bs);
4671 if (val == PRINT_SRC_ONLY
4672 || val == PRINT_SRC_AND_LOC
4673 || val == PRINT_NOTHING)
4674 return val;
4675 }
4676
4677 /* If we had hit a shared library event breakpoint,
4678 print_bp_stop_message would print out this message. If we hit an
4679 OS-level shared library event, do the same thing. */
4680 if (kind == TARGET_WAITKIND_LOADED)
4681 {
4682 print_solib_event (0);
4683 return PRINT_NOTHING;
4684 }
4685
4686 /* We reached the end of the chain, or we got a null BS to start
4687 with and nothing was printed. */
4688 return PRINT_UNKNOWN;
4689 }
4690
4691 /* Evaluate the boolean expression EXP and return the result. */
4692
4693 static bool
4694 breakpoint_cond_eval (expression *exp)
4695 {
4696 struct value *mark = value_mark ();
4697 bool res = value_true (evaluate_expression (exp));
4698
4699 value_free_to_mark (mark);
4700 return res;
4701 }
4702
4703 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4704
4705 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4706 : next (NULL),
4707 bp_location_at (bl),
4708 breakpoint_at (bl->owner),
4709 commands (NULL),
4710 print (0),
4711 stop (0),
4712 print_it (print_it_normal)
4713 {
4714 incref_bp_location (bl);
4715 **bs_link_pointer = this;
4716 *bs_link_pointer = &next;
4717 }
4718
4719 bpstats::bpstats ()
4720 : next (NULL),
4721 bp_location_at (NULL),
4722 breakpoint_at (NULL),
4723 commands (NULL),
4724 print (0),
4725 stop (0),
4726 print_it (print_it_normal)
4727 {
4728 }
4729 \f
4730 /* The target has stopped with waitstatus WS. Check if any hardware
4731 watchpoints have triggered, according to the target. */
4732
4733 int
4734 watchpoints_triggered (struct target_waitstatus *ws)
4735 {
4736 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4737 CORE_ADDR addr;
4738 struct breakpoint *b;
4739
4740 if (!stopped_by_watchpoint)
4741 {
4742 /* We were not stopped by a watchpoint. Mark all watchpoints
4743 as not triggered. */
4744 ALL_BREAKPOINTS (b)
4745 if (is_hardware_watchpoint (b))
4746 {
4747 struct watchpoint *w = (struct watchpoint *) b;
4748
4749 w->watchpoint_triggered = watch_triggered_no;
4750 }
4751
4752 return 0;
4753 }
4754
4755 if (!target_stopped_data_address (target_stack, &addr))
4756 {
4757 /* We were stopped by a watchpoint, but we don't know where.
4758 Mark all watchpoints as unknown. */
4759 ALL_BREAKPOINTS (b)
4760 if (is_hardware_watchpoint (b))
4761 {
4762 struct watchpoint *w = (struct watchpoint *) b;
4763
4764 w->watchpoint_triggered = watch_triggered_unknown;
4765 }
4766
4767 return 1;
4768 }
4769
4770 /* The target could report the data address. Mark watchpoints
4771 affected by this data address as triggered, and all others as not
4772 triggered. */
4773
4774 ALL_BREAKPOINTS (b)
4775 if (is_hardware_watchpoint (b))
4776 {
4777 struct watchpoint *w = (struct watchpoint *) b;
4778 struct bp_location *loc;
4779
4780 w->watchpoint_triggered = watch_triggered_no;
4781 for (loc = b->loc; loc; loc = loc->next)
4782 {
4783 if (is_masked_watchpoint (b))
4784 {
4785 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4786 CORE_ADDR start = loc->address & w->hw_wp_mask;
4787
4788 if (newaddr == start)
4789 {
4790 w->watchpoint_triggered = watch_triggered_yes;
4791 break;
4792 }
4793 }
4794 /* Exact match not required. Within range is sufficient. */
4795 else if (target_watchpoint_addr_within_range (target_stack,
4796 addr, loc->address,
4797 loc->length))
4798 {
4799 w->watchpoint_triggered = watch_triggered_yes;
4800 break;
4801 }
4802 }
4803 }
4804
4805 return 1;
4806 }
4807
4808 /* Possible return values for watchpoint_check. */
4809 enum wp_check_result
4810 {
4811 /* The watchpoint has been deleted. */
4812 WP_DELETED = 1,
4813
4814 /* The value has changed. */
4815 WP_VALUE_CHANGED = 2,
4816
4817 /* The value has not changed. */
4818 WP_VALUE_NOT_CHANGED = 3,
4819
4820 /* Ignore this watchpoint, no matter if the value changed or not. */
4821 WP_IGNORE = 4,
4822 };
4823
4824 #define BP_TEMPFLAG 1
4825 #define BP_HARDWAREFLAG 2
4826
4827 /* Evaluate watchpoint condition expression and check if its value
4828 changed. */
4829
4830 static wp_check_result
4831 watchpoint_check (bpstat bs)
4832 {
4833 struct watchpoint *b;
4834 struct frame_info *fr;
4835 int within_current_scope;
4836
4837 /* BS is built from an existing struct breakpoint. */
4838 gdb_assert (bs->breakpoint_at != NULL);
4839 b = (struct watchpoint *) bs->breakpoint_at;
4840
4841 /* If this is a local watchpoint, we only want to check if the
4842 watchpoint frame is in scope if the current thread is the thread
4843 that was used to create the watchpoint. */
4844 if (!watchpoint_in_thread_scope (b))
4845 return WP_IGNORE;
4846
4847 if (b->exp_valid_block == NULL)
4848 within_current_scope = 1;
4849 else
4850 {
4851 struct frame_info *frame = get_current_frame ();
4852 struct gdbarch *frame_arch = get_frame_arch (frame);
4853 CORE_ADDR frame_pc = get_frame_pc (frame);
4854
4855 /* stack_frame_destroyed_p() returns a non-zero value if we're
4856 still in the function but the stack frame has already been
4857 invalidated. Since we can't rely on the values of local
4858 variables after the stack has been destroyed, we are treating
4859 the watchpoint in that state as `not changed' without further
4860 checking. Don't mark watchpoints as changed if the current
4861 frame is in an epilogue - even if they are in some other
4862 frame, our view of the stack is likely to be wrong and
4863 frame_find_by_id could error out. */
4864 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4865 return WP_IGNORE;
4866
4867 fr = frame_find_by_id (b->watchpoint_frame);
4868 within_current_scope = (fr != NULL);
4869
4870 /* If we've gotten confused in the unwinder, we might have
4871 returned a frame that can't describe this variable. */
4872 if (within_current_scope)
4873 {
4874 struct symbol *function;
4875
4876 function = get_frame_function (fr);
4877 if (function == NULL
4878 || !contained_in (b->exp_valid_block,
4879 SYMBOL_BLOCK_VALUE (function)))
4880 within_current_scope = 0;
4881 }
4882
4883 if (within_current_scope)
4884 /* If we end up stopping, the current frame will get selected
4885 in normal_stop. So this call to select_frame won't affect
4886 the user. */
4887 select_frame (fr);
4888 }
4889
4890 if (within_current_scope)
4891 {
4892 /* We use value_{,free_to_}mark because it could be a *long*
4893 time before we return to the command level and call
4894 free_all_values. We can't call free_all_values because we
4895 might be in the middle of evaluating a function call. */
4896
4897 int pc = 0;
4898 struct value *mark;
4899 struct value *new_val;
4900
4901 if (is_masked_watchpoint (b))
4902 /* Since we don't know the exact trigger address (from
4903 stopped_data_address), just tell the user we've triggered
4904 a mask watchpoint. */
4905 return WP_VALUE_CHANGED;
4906
4907 mark = value_mark ();
4908 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4909
4910 if (b->val_bitsize != 0)
4911 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4912
4913 /* We use value_equal_contents instead of value_equal because
4914 the latter coerces an array to a pointer, thus comparing just
4915 the address of the array instead of its contents. This is
4916 not what we want. */
4917 if ((b->val != NULL) != (new_val != NULL)
4918 || (b->val != NULL && !value_equal_contents (b->val.get (),
4919 new_val)))
4920 {
4921 bs->old_val = b->val;
4922 b->val = release_value (new_val);
4923 b->val_valid = 1;
4924 if (new_val != NULL)
4925 value_free_to_mark (mark);
4926 return WP_VALUE_CHANGED;
4927 }
4928 else
4929 {
4930 /* Nothing changed. */
4931 value_free_to_mark (mark);
4932 return WP_VALUE_NOT_CHANGED;
4933 }
4934 }
4935 else
4936 {
4937 /* This seems like the only logical thing to do because
4938 if we temporarily ignored the watchpoint, then when
4939 we reenter the block in which it is valid it contains
4940 garbage (in the case of a function, it may have two
4941 garbage values, one before and one after the prologue).
4942 So we can't even detect the first assignment to it and
4943 watch after that (since the garbage may or may not equal
4944 the first value assigned). */
4945 /* We print all the stop information in
4946 breakpoint_ops->print_it, but in this case, by the time we
4947 call breakpoint_ops->print_it this bp will be deleted
4948 already. So we have no choice but print the information
4949 here. */
4950
4951 SWITCH_THRU_ALL_UIS ()
4952 {
4953 struct ui_out *uiout = current_uiout;
4954
4955 if (uiout->is_mi_like_p ())
4956 uiout->field_string
4957 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4958 uiout->text ("\nWatchpoint ");
4959 uiout->field_int ("wpnum", b->number);
4960 uiout->text (" deleted because the program has left the block in\n"
4961 "which its expression is valid.\n");
4962 }
4963
4964 /* Make sure the watchpoint's commands aren't executed. */
4965 b->commands = NULL;
4966 watchpoint_del_at_next_stop (b);
4967
4968 return WP_DELETED;
4969 }
4970 }
4971
4972 /* Return true if it looks like target has stopped due to hitting
4973 breakpoint location BL. This function does not check if we should
4974 stop, only if BL explains the stop. */
4975
4976 static int
4977 bpstat_check_location (const struct bp_location *bl,
4978 const address_space *aspace, CORE_ADDR bp_addr,
4979 const struct target_waitstatus *ws)
4980 {
4981 struct breakpoint *b = bl->owner;
4982
4983 /* BL is from an existing breakpoint. */
4984 gdb_assert (b != NULL);
4985
4986 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4987 }
4988
4989 /* Determine if the watched values have actually changed, and we
4990 should stop. If not, set BS->stop to 0. */
4991
4992 static void
4993 bpstat_check_watchpoint (bpstat bs)
4994 {
4995 const struct bp_location *bl;
4996 struct watchpoint *b;
4997
4998 /* BS is built for existing struct breakpoint. */
4999 bl = bs->bp_location_at;
5000 gdb_assert (bl != NULL);
5001 b = (struct watchpoint *) bs->breakpoint_at;
5002 gdb_assert (b != NULL);
5003
5004 {
5005 int must_check_value = 0;
5006
5007 if (b->type == bp_watchpoint)
5008 /* For a software watchpoint, we must always check the
5009 watched value. */
5010 must_check_value = 1;
5011 else if (b->watchpoint_triggered == watch_triggered_yes)
5012 /* We have a hardware watchpoint (read, write, or access)
5013 and the target earlier reported an address watched by
5014 this watchpoint. */
5015 must_check_value = 1;
5016 else if (b->watchpoint_triggered == watch_triggered_unknown
5017 && b->type == bp_hardware_watchpoint)
5018 /* We were stopped by a hardware watchpoint, but the target could
5019 not report the data address. We must check the watchpoint's
5020 value. Access and read watchpoints are out of luck; without
5021 a data address, we can't figure it out. */
5022 must_check_value = 1;
5023
5024 if (must_check_value)
5025 {
5026 wp_check_result e;
5027
5028 TRY
5029 {
5030 e = watchpoint_check (bs);
5031 }
5032 CATCH (ex, RETURN_MASK_ALL)
5033 {
5034 exception_fprintf (gdb_stderr, ex,
5035 "Error evaluating expression "
5036 "for watchpoint %d\n",
5037 b->number);
5038
5039 SWITCH_THRU_ALL_UIS ()
5040 {
5041 printf_filtered (_("Watchpoint %d deleted.\n"),
5042 b->number);
5043 }
5044 watchpoint_del_at_next_stop (b);
5045 e = WP_DELETED;
5046 }
5047 END_CATCH
5048
5049 switch (e)
5050 {
5051 case WP_DELETED:
5052 /* We've already printed what needs to be printed. */
5053 bs->print_it = print_it_done;
5054 /* Stop. */
5055 break;
5056 case WP_IGNORE:
5057 bs->print_it = print_it_noop;
5058 bs->stop = 0;
5059 break;
5060 case WP_VALUE_CHANGED:
5061 if (b->type == bp_read_watchpoint)
5062 {
5063 /* There are two cases to consider here:
5064
5065 1. We're watching the triggered memory for reads.
5066 In that case, trust the target, and always report
5067 the watchpoint hit to the user. Even though
5068 reads don't cause value changes, the value may
5069 have changed since the last time it was read, and
5070 since we're not trapping writes, we will not see
5071 those, and as such we should ignore our notion of
5072 old value.
5073
5074 2. We're watching the triggered memory for both
5075 reads and writes. There are two ways this may
5076 happen:
5077
5078 2.1. This is a target that can't break on data
5079 reads only, but can break on accesses (reads or
5080 writes), such as e.g., x86. We detect this case
5081 at the time we try to insert read watchpoints.
5082
5083 2.2. Otherwise, the target supports read
5084 watchpoints, but, the user set an access or write
5085 watchpoint watching the same memory as this read
5086 watchpoint.
5087
5088 If we're watching memory writes as well as reads,
5089 ignore watchpoint hits when we find that the
5090 value hasn't changed, as reads don't cause
5091 changes. This still gives false positives when
5092 the program writes the same value to memory as
5093 what there was already in memory (we will confuse
5094 it for a read), but it's much better than
5095 nothing. */
5096
5097 int other_write_watchpoint = 0;
5098
5099 if (bl->watchpoint_type == hw_read)
5100 {
5101 struct breakpoint *other_b;
5102
5103 ALL_BREAKPOINTS (other_b)
5104 if (other_b->type == bp_hardware_watchpoint
5105 || other_b->type == bp_access_watchpoint)
5106 {
5107 struct watchpoint *other_w =
5108 (struct watchpoint *) other_b;
5109
5110 if (other_w->watchpoint_triggered
5111 == watch_triggered_yes)
5112 {
5113 other_write_watchpoint = 1;
5114 break;
5115 }
5116 }
5117 }
5118
5119 if (other_write_watchpoint
5120 || bl->watchpoint_type == hw_access)
5121 {
5122 /* We're watching the same memory for writes,
5123 and the value changed since the last time we
5124 updated it, so this trap must be for a write.
5125 Ignore it. */
5126 bs->print_it = print_it_noop;
5127 bs->stop = 0;
5128 }
5129 }
5130 break;
5131 case WP_VALUE_NOT_CHANGED:
5132 if (b->type == bp_hardware_watchpoint
5133 || b->type == bp_watchpoint)
5134 {
5135 /* Don't stop: write watchpoints shouldn't fire if
5136 the value hasn't changed. */
5137 bs->print_it = print_it_noop;
5138 bs->stop = 0;
5139 }
5140 /* Stop. */
5141 break;
5142 default:
5143 /* Can't happen. */
5144 break;
5145 }
5146 }
5147 else /* must_check_value == 0 */
5148 {
5149 /* This is a case where some watchpoint(s) triggered, but
5150 not at the address of this watchpoint, or else no
5151 watchpoint triggered after all. So don't print
5152 anything for this watchpoint. */
5153 bs->print_it = print_it_noop;
5154 bs->stop = 0;
5155 }
5156 }
5157 }
5158
5159 /* For breakpoints that are currently marked as telling gdb to stop,
5160 check conditions (condition proper, frame, thread and ignore count)
5161 of breakpoint referred to by BS. If we should not stop for this
5162 breakpoint, set BS->stop to 0. */
5163
5164 static void
5165 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5166 {
5167 const struct bp_location *bl;
5168 struct breakpoint *b;
5169 /* Assume stop. */
5170 bool condition_result = true;
5171 struct expression *cond;
5172
5173 gdb_assert (bs->stop);
5174
5175 /* BS is built for existing struct breakpoint. */
5176 bl = bs->bp_location_at;
5177 gdb_assert (bl != NULL);
5178 b = bs->breakpoint_at;
5179 gdb_assert (b != NULL);
5180
5181 /* Even if the target evaluated the condition on its end and notified GDB, we
5182 need to do so again since GDB does not know if we stopped due to a
5183 breakpoint or a single step breakpoint. */
5184
5185 if (frame_id_p (b->frame_id)
5186 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5187 {
5188 bs->stop = 0;
5189 return;
5190 }
5191
5192 /* If this is a thread/task-specific breakpoint, don't waste cpu
5193 evaluating the condition if this isn't the specified
5194 thread/task. */
5195 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5196 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5197
5198 {
5199 bs->stop = 0;
5200 return;
5201 }
5202
5203 /* Evaluate extension language breakpoints that have a "stop" method
5204 implemented. */
5205 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5206
5207 if (is_watchpoint (b))
5208 {
5209 struct watchpoint *w = (struct watchpoint *) b;
5210
5211 cond = w->cond_exp.get ();
5212 }
5213 else
5214 cond = bl->cond.get ();
5215
5216 if (cond && b->disposition != disp_del_at_next_stop)
5217 {
5218 int within_current_scope = 1;
5219 struct watchpoint * w;
5220
5221 /* We use value_mark and value_free_to_mark because it could
5222 be a long time before we return to the command level and
5223 call free_all_values. We can't call free_all_values
5224 because we might be in the middle of evaluating a
5225 function call. */
5226 struct value *mark = value_mark ();
5227
5228 if (is_watchpoint (b))
5229 w = (struct watchpoint *) b;
5230 else
5231 w = NULL;
5232
5233 /* Need to select the frame, with all that implies so that
5234 the conditions will have the right context. Because we
5235 use the frame, we will not see an inlined function's
5236 variables when we arrive at a breakpoint at the start
5237 of the inlined function; the current frame will be the
5238 call site. */
5239 if (w == NULL || w->cond_exp_valid_block == NULL)
5240 select_frame (get_current_frame ());
5241 else
5242 {
5243 struct frame_info *frame;
5244
5245 /* For local watchpoint expressions, which particular
5246 instance of a local is being watched matters, so we
5247 keep track of the frame to evaluate the expression
5248 in. To evaluate the condition however, it doesn't
5249 really matter which instantiation of the function
5250 where the condition makes sense triggers the
5251 watchpoint. This allows an expression like "watch
5252 global if q > 10" set in `func', catch writes to
5253 global on all threads that call `func', or catch
5254 writes on all recursive calls of `func' by a single
5255 thread. We simply always evaluate the condition in
5256 the innermost frame that's executing where it makes
5257 sense to evaluate the condition. It seems
5258 intuitive. */
5259 frame = block_innermost_frame (w->cond_exp_valid_block);
5260 if (frame != NULL)
5261 select_frame (frame);
5262 else
5263 within_current_scope = 0;
5264 }
5265 if (within_current_scope)
5266 {
5267 TRY
5268 {
5269 condition_result = breakpoint_cond_eval (cond);
5270 }
5271 CATCH (ex, RETURN_MASK_ALL)
5272 {
5273 exception_fprintf (gdb_stderr, ex,
5274 "Error in testing breakpoint condition:\n");
5275 }
5276 END_CATCH
5277 }
5278 else
5279 {
5280 warning (_("Watchpoint condition cannot be tested "
5281 "in the current scope"));
5282 /* If we failed to set the right context for this
5283 watchpoint, unconditionally report it. */
5284 }
5285 /* FIXME-someday, should give breakpoint #. */
5286 value_free_to_mark (mark);
5287 }
5288
5289 if (cond && !condition_result)
5290 {
5291 bs->stop = 0;
5292 }
5293 else if (b->ignore_count > 0)
5294 {
5295 b->ignore_count--;
5296 bs->stop = 0;
5297 /* Increase the hit count even though we don't stop. */
5298 ++(b->hit_count);
5299 gdb::observers::breakpoint_modified.notify (b);
5300 }
5301 }
5302
5303 /* Returns true if we need to track moribund locations of LOC's type
5304 on the current target. */
5305
5306 static int
5307 need_moribund_for_location_type (struct bp_location *loc)
5308 {
5309 return ((loc->loc_type == bp_loc_software_breakpoint
5310 && !target_supports_stopped_by_sw_breakpoint ())
5311 || (loc->loc_type == bp_loc_hardware_breakpoint
5312 && !target_supports_stopped_by_hw_breakpoint ()));
5313 }
5314
5315
5316 /* Get a bpstat associated with having just stopped at address
5317 BP_ADDR in thread PTID.
5318
5319 Determine whether we stopped at a breakpoint, etc, or whether we
5320 don't understand this stop. Result is a chain of bpstat's such
5321 that:
5322
5323 if we don't understand the stop, the result is a null pointer.
5324
5325 if we understand why we stopped, the result is not null.
5326
5327 Each element of the chain refers to a particular breakpoint or
5328 watchpoint at which we have stopped. (We may have stopped for
5329 several reasons concurrently.)
5330
5331 Each element of the chain has valid next, breakpoint_at,
5332 commands, FIXME??? fields. */
5333
5334 bpstat
5335 bpstat_stop_status (const address_space *aspace,
5336 CORE_ADDR bp_addr, ptid_t ptid,
5337 const struct target_waitstatus *ws)
5338 {
5339 struct breakpoint *b = NULL;
5340 struct bp_location *bl;
5341 struct bp_location *loc;
5342 /* First item of allocated bpstat's. */
5343 bpstat bs_head = NULL, *bs_link = &bs_head;
5344 /* Pointer to the last thing in the chain currently. */
5345 bpstat bs;
5346 int ix;
5347 int need_remove_insert;
5348 int removed_any;
5349
5350 /* First, build the bpstat chain with locations that explain a
5351 target stop, while being careful to not set the target running,
5352 as that may invalidate locations (in particular watchpoint
5353 locations are recreated). Resuming will happen here with
5354 breakpoint conditions or watchpoint expressions that include
5355 inferior function calls. */
5356
5357 ALL_BREAKPOINTS (b)
5358 {
5359 if (!breakpoint_enabled (b))
5360 continue;
5361
5362 for (bl = b->loc; bl != NULL; bl = bl->next)
5363 {
5364 /* For hardware watchpoints, we look only at the first
5365 location. The watchpoint_check function will work on the
5366 entire expression, not the individual locations. For
5367 read watchpoints, the watchpoints_triggered function has
5368 checked all locations already. */
5369 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5370 break;
5371
5372 if (!bl->enabled || bl->shlib_disabled)
5373 continue;
5374
5375 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5376 continue;
5377
5378 /* Come here if it's a watchpoint, or if the break address
5379 matches. */
5380
5381 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5382 explain stop. */
5383
5384 /* Assume we stop. Should we find a watchpoint that is not
5385 actually triggered, or if the condition of the breakpoint
5386 evaluates as false, we'll reset 'stop' to 0. */
5387 bs->stop = 1;
5388 bs->print = 1;
5389
5390 /* If this is a scope breakpoint, mark the associated
5391 watchpoint as triggered so that we will handle the
5392 out-of-scope event. We'll get to the watchpoint next
5393 iteration. */
5394 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5395 {
5396 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5397
5398 w->watchpoint_triggered = watch_triggered_yes;
5399 }
5400 }
5401 }
5402
5403 /* Check if a moribund breakpoint explains the stop. */
5404 if (!target_supports_stopped_by_sw_breakpoint ()
5405 || !target_supports_stopped_by_hw_breakpoint ())
5406 {
5407 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5408 {
5409 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5410 && need_moribund_for_location_type (loc))
5411 {
5412 bs = new bpstats (loc, &bs_link);
5413 /* For hits of moribund locations, we should just proceed. */
5414 bs->stop = 0;
5415 bs->print = 0;
5416 bs->print_it = print_it_noop;
5417 }
5418 }
5419 }
5420
5421 /* A bit of special processing for shlib breakpoints. We need to
5422 process solib loading here, so that the lists of loaded and
5423 unloaded libraries are correct before we handle "catch load" and
5424 "catch unload". */
5425 for (bs = bs_head; bs != NULL; bs = bs->next)
5426 {
5427 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5428 {
5429 handle_solib_event ();
5430 break;
5431 }
5432 }
5433
5434 /* Now go through the locations that caused the target to stop, and
5435 check whether we're interested in reporting this stop to higher
5436 layers, or whether we should resume the target transparently. */
5437
5438 removed_any = 0;
5439
5440 for (bs = bs_head; bs != NULL; bs = bs->next)
5441 {
5442 if (!bs->stop)
5443 continue;
5444
5445 b = bs->breakpoint_at;
5446 b->ops->check_status (bs);
5447 if (bs->stop)
5448 {
5449 bpstat_check_breakpoint_conditions (bs, ptid);
5450
5451 if (bs->stop)
5452 {
5453 ++(b->hit_count);
5454 gdb::observers::breakpoint_modified.notify (b);
5455
5456 /* We will stop here. */
5457 if (b->disposition == disp_disable)
5458 {
5459 --(b->enable_count);
5460 if (b->enable_count <= 0)
5461 b->enable_state = bp_disabled;
5462 removed_any = 1;
5463 }
5464 if (b->silent)
5465 bs->print = 0;
5466 bs->commands = b->commands;
5467 if (command_line_is_silent (bs->commands
5468 ? bs->commands.get () : NULL))
5469 bs->print = 0;
5470
5471 b->ops->after_condition_true (bs);
5472 }
5473
5474 }
5475
5476 /* Print nothing for this entry if we don't stop or don't
5477 print. */
5478 if (!bs->stop || !bs->print)
5479 bs->print_it = print_it_noop;
5480 }
5481
5482 /* If we aren't stopping, the value of some hardware watchpoint may
5483 not have changed, but the intermediate memory locations we are
5484 watching may have. Don't bother if we're stopping; this will get
5485 done later. */
5486 need_remove_insert = 0;
5487 if (! bpstat_causes_stop (bs_head))
5488 for (bs = bs_head; bs != NULL; bs = bs->next)
5489 if (!bs->stop
5490 && bs->breakpoint_at
5491 && is_hardware_watchpoint (bs->breakpoint_at))
5492 {
5493 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5494
5495 update_watchpoint (w, 0 /* don't reparse. */);
5496 need_remove_insert = 1;
5497 }
5498
5499 if (need_remove_insert)
5500 update_global_location_list (UGLL_MAY_INSERT);
5501 else if (removed_any)
5502 update_global_location_list (UGLL_DONT_INSERT);
5503
5504 return bs_head;
5505 }
5506
5507 static void
5508 handle_jit_event (void)
5509 {
5510 struct frame_info *frame;
5511 struct gdbarch *gdbarch;
5512
5513 if (debug_infrun)
5514 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5515
5516 /* Switch terminal for any messages produced by
5517 breakpoint_re_set. */
5518 target_terminal::ours_for_output ();
5519
5520 frame = get_current_frame ();
5521 gdbarch = get_frame_arch (frame);
5522
5523 jit_event_handler (gdbarch);
5524
5525 target_terminal::inferior ();
5526 }
5527
5528 /* Prepare WHAT final decision for infrun. */
5529
5530 /* Decide what infrun needs to do with this bpstat. */
5531
5532 struct bpstat_what
5533 bpstat_what (bpstat bs_head)
5534 {
5535 struct bpstat_what retval;
5536 bpstat bs;
5537
5538 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5539 retval.call_dummy = STOP_NONE;
5540 retval.is_longjmp = 0;
5541
5542 for (bs = bs_head; bs != NULL; bs = bs->next)
5543 {
5544 /* Extract this BS's action. After processing each BS, we check
5545 if its action overrides all we've seem so far. */
5546 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5547 enum bptype bptype;
5548
5549 if (bs->breakpoint_at == NULL)
5550 {
5551 /* I suspect this can happen if it was a momentary
5552 breakpoint which has since been deleted. */
5553 bptype = bp_none;
5554 }
5555 else
5556 bptype = bs->breakpoint_at->type;
5557
5558 switch (bptype)
5559 {
5560 case bp_none:
5561 break;
5562 case bp_breakpoint:
5563 case bp_hardware_breakpoint:
5564 case bp_single_step:
5565 case bp_until:
5566 case bp_finish:
5567 case bp_shlib_event:
5568 if (bs->stop)
5569 {
5570 if (bs->print)
5571 this_action = BPSTAT_WHAT_STOP_NOISY;
5572 else
5573 this_action = BPSTAT_WHAT_STOP_SILENT;
5574 }
5575 else
5576 this_action = BPSTAT_WHAT_SINGLE;
5577 break;
5578 case bp_watchpoint:
5579 case bp_hardware_watchpoint:
5580 case bp_read_watchpoint:
5581 case bp_access_watchpoint:
5582 if (bs->stop)
5583 {
5584 if (bs->print)
5585 this_action = BPSTAT_WHAT_STOP_NOISY;
5586 else
5587 this_action = BPSTAT_WHAT_STOP_SILENT;
5588 }
5589 else
5590 {
5591 /* There was a watchpoint, but we're not stopping.
5592 This requires no further action. */
5593 }
5594 break;
5595 case bp_longjmp:
5596 case bp_longjmp_call_dummy:
5597 case bp_exception:
5598 if (bs->stop)
5599 {
5600 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5601 retval.is_longjmp = bptype != bp_exception;
5602 }
5603 else
5604 this_action = BPSTAT_WHAT_SINGLE;
5605 break;
5606 case bp_longjmp_resume:
5607 case bp_exception_resume:
5608 if (bs->stop)
5609 {
5610 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5611 retval.is_longjmp = bptype == bp_longjmp_resume;
5612 }
5613 else
5614 this_action = BPSTAT_WHAT_SINGLE;
5615 break;
5616 case bp_step_resume:
5617 if (bs->stop)
5618 this_action = BPSTAT_WHAT_STEP_RESUME;
5619 else
5620 {
5621 /* It is for the wrong frame. */
5622 this_action = BPSTAT_WHAT_SINGLE;
5623 }
5624 break;
5625 case bp_hp_step_resume:
5626 if (bs->stop)
5627 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5628 else
5629 {
5630 /* It is for the wrong frame. */
5631 this_action = BPSTAT_WHAT_SINGLE;
5632 }
5633 break;
5634 case bp_watchpoint_scope:
5635 case bp_thread_event:
5636 case bp_overlay_event:
5637 case bp_longjmp_master:
5638 case bp_std_terminate_master:
5639 case bp_exception_master:
5640 this_action = BPSTAT_WHAT_SINGLE;
5641 break;
5642 case bp_catchpoint:
5643 if (bs->stop)
5644 {
5645 if (bs->print)
5646 this_action = BPSTAT_WHAT_STOP_NOISY;
5647 else
5648 this_action = BPSTAT_WHAT_STOP_SILENT;
5649 }
5650 else
5651 {
5652 /* There was a catchpoint, but we're not stopping.
5653 This requires no further action. */
5654 }
5655 break;
5656 case bp_jit_event:
5657 this_action = BPSTAT_WHAT_SINGLE;
5658 break;
5659 case bp_call_dummy:
5660 /* Make sure the action is stop (silent or noisy),
5661 so infrun.c pops the dummy frame. */
5662 retval.call_dummy = STOP_STACK_DUMMY;
5663 this_action = BPSTAT_WHAT_STOP_SILENT;
5664 break;
5665 case bp_std_terminate:
5666 /* Make sure the action is stop (silent or noisy),
5667 so infrun.c pops the dummy frame. */
5668 retval.call_dummy = STOP_STD_TERMINATE;
5669 this_action = BPSTAT_WHAT_STOP_SILENT;
5670 break;
5671 case bp_tracepoint:
5672 case bp_fast_tracepoint:
5673 case bp_static_tracepoint:
5674 /* Tracepoint hits should not be reported back to GDB, and
5675 if one got through somehow, it should have been filtered
5676 out already. */
5677 internal_error (__FILE__, __LINE__,
5678 _("bpstat_what: tracepoint encountered"));
5679 break;
5680 case bp_gnu_ifunc_resolver:
5681 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5682 this_action = BPSTAT_WHAT_SINGLE;
5683 break;
5684 case bp_gnu_ifunc_resolver_return:
5685 /* The breakpoint will be removed, execution will restart from the
5686 PC of the former breakpoint. */
5687 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5688 break;
5689
5690 case bp_dprintf:
5691 if (bs->stop)
5692 this_action = BPSTAT_WHAT_STOP_SILENT;
5693 else
5694 this_action = BPSTAT_WHAT_SINGLE;
5695 break;
5696
5697 default:
5698 internal_error (__FILE__, __LINE__,
5699 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5700 }
5701
5702 retval.main_action = std::max (retval.main_action, this_action);
5703 }
5704
5705 return retval;
5706 }
5707
5708 void
5709 bpstat_run_callbacks (bpstat bs_head)
5710 {
5711 bpstat bs;
5712
5713 for (bs = bs_head; bs != NULL; bs = bs->next)
5714 {
5715 struct breakpoint *b = bs->breakpoint_at;
5716
5717 if (b == NULL)
5718 continue;
5719 switch (b->type)
5720 {
5721 case bp_jit_event:
5722 handle_jit_event ();
5723 break;
5724 case bp_gnu_ifunc_resolver:
5725 gnu_ifunc_resolver_stop (b);
5726 break;
5727 case bp_gnu_ifunc_resolver_return:
5728 gnu_ifunc_resolver_return_stop (b);
5729 break;
5730 }
5731 }
5732 }
5733
5734 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5735 without hardware support). This isn't related to a specific bpstat,
5736 just to things like whether watchpoints are set. */
5737
5738 int
5739 bpstat_should_step (void)
5740 {
5741 struct breakpoint *b;
5742
5743 ALL_BREAKPOINTS (b)
5744 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5745 return 1;
5746 return 0;
5747 }
5748
5749 int
5750 bpstat_causes_stop (bpstat bs)
5751 {
5752 for (; bs != NULL; bs = bs->next)
5753 if (bs->stop)
5754 return 1;
5755
5756 return 0;
5757 }
5758
5759 \f
5760
5761 /* Compute a string of spaces suitable to indent the next line
5762 so it starts at the position corresponding to the table column
5763 named COL_NAME in the currently active table of UIOUT. */
5764
5765 static char *
5766 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5767 {
5768 static char wrap_indent[80];
5769 int i, total_width, width, align;
5770 const char *text;
5771
5772 total_width = 0;
5773 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5774 {
5775 if (strcmp (text, col_name) == 0)
5776 {
5777 gdb_assert (total_width < sizeof wrap_indent);
5778 memset (wrap_indent, ' ', total_width);
5779 wrap_indent[total_width] = 0;
5780
5781 return wrap_indent;
5782 }
5783
5784 total_width += width + 1;
5785 }
5786
5787 return NULL;
5788 }
5789
5790 /* Determine if the locations of this breakpoint will have their conditions
5791 evaluated by the target, host or a mix of both. Returns the following:
5792
5793 "host": Host evals condition.
5794 "host or target": Host or Target evals condition.
5795 "target": Target evals condition.
5796 */
5797
5798 static const char *
5799 bp_condition_evaluator (struct breakpoint *b)
5800 {
5801 struct bp_location *bl;
5802 char host_evals = 0;
5803 char target_evals = 0;
5804
5805 if (!b)
5806 return NULL;
5807
5808 if (!is_breakpoint (b))
5809 return NULL;
5810
5811 if (gdb_evaluates_breakpoint_condition_p ()
5812 || !target_supports_evaluation_of_breakpoint_conditions ())
5813 return condition_evaluation_host;
5814
5815 for (bl = b->loc; bl; bl = bl->next)
5816 {
5817 if (bl->cond_bytecode)
5818 target_evals++;
5819 else
5820 host_evals++;
5821 }
5822
5823 if (host_evals && target_evals)
5824 return condition_evaluation_both;
5825 else if (target_evals)
5826 return condition_evaluation_target;
5827 else
5828 return condition_evaluation_host;
5829 }
5830
5831 /* Determine the breakpoint location's condition evaluator. This is
5832 similar to bp_condition_evaluator, but for locations. */
5833
5834 static const char *
5835 bp_location_condition_evaluator (struct bp_location *bl)
5836 {
5837 if (bl && !is_breakpoint (bl->owner))
5838 return NULL;
5839
5840 if (gdb_evaluates_breakpoint_condition_p ()
5841 || !target_supports_evaluation_of_breakpoint_conditions ())
5842 return condition_evaluation_host;
5843
5844 if (bl && bl->cond_bytecode)
5845 return condition_evaluation_target;
5846 else
5847 return condition_evaluation_host;
5848 }
5849
5850 /* Print the LOC location out of the list of B->LOC locations. */
5851
5852 static void
5853 print_breakpoint_location (struct breakpoint *b,
5854 struct bp_location *loc)
5855 {
5856 struct ui_out *uiout = current_uiout;
5857
5858 scoped_restore_current_program_space restore_pspace;
5859
5860 if (loc != NULL && loc->shlib_disabled)
5861 loc = NULL;
5862
5863 if (loc != NULL)
5864 set_current_program_space (loc->pspace);
5865
5866 if (b->display_canonical)
5867 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5868 else if (loc && loc->symtab)
5869 {
5870 const struct symbol *sym = loc->symbol;
5871
5872 if (sym == NULL)
5873 sym = find_pc_sect_function (loc->address, loc->section);
5874
5875 if (sym)
5876 {
5877 uiout->text ("in ");
5878 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5879 uiout->text (" ");
5880 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5881 uiout->text ("at ");
5882 }
5883 uiout->field_string ("file",
5884 symtab_to_filename_for_display (loc->symtab));
5885 uiout->text (":");
5886
5887 if (uiout->is_mi_like_p ())
5888 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5889
5890 uiout->field_int ("line", loc->line_number);
5891 }
5892 else if (loc)
5893 {
5894 string_file stb;
5895
5896 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5897 demangle, "");
5898 uiout->field_stream ("at", stb);
5899 }
5900 else
5901 {
5902 uiout->field_string ("pending",
5903 event_location_to_string (b->location.get ()));
5904 /* If extra_string is available, it could be holding a condition
5905 or dprintf arguments. In either case, make sure it is printed,
5906 too, but only for non-MI streams. */
5907 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5908 {
5909 if (b->type == bp_dprintf)
5910 uiout->text (",");
5911 else
5912 uiout->text (" ");
5913 uiout->text (b->extra_string);
5914 }
5915 }
5916
5917 if (loc && is_breakpoint (b)
5918 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5919 && bp_condition_evaluator (b) == condition_evaluation_both)
5920 {
5921 uiout->text (" (");
5922 uiout->field_string ("evaluated-by",
5923 bp_location_condition_evaluator (loc));
5924 uiout->text (")");
5925 }
5926 }
5927
5928 static const char *
5929 bptype_string (enum bptype type)
5930 {
5931 struct ep_type_description
5932 {
5933 enum bptype type;
5934 const char *description;
5935 };
5936 static struct ep_type_description bptypes[] =
5937 {
5938 {bp_none, "?deleted?"},
5939 {bp_breakpoint, "breakpoint"},
5940 {bp_hardware_breakpoint, "hw breakpoint"},
5941 {bp_single_step, "sw single-step"},
5942 {bp_until, "until"},
5943 {bp_finish, "finish"},
5944 {bp_watchpoint, "watchpoint"},
5945 {bp_hardware_watchpoint, "hw watchpoint"},
5946 {bp_read_watchpoint, "read watchpoint"},
5947 {bp_access_watchpoint, "acc watchpoint"},
5948 {bp_longjmp, "longjmp"},
5949 {bp_longjmp_resume, "longjmp resume"},
5950 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5951 {bp_exception, "exception"},
5952 {bp_exception_resume, "exception resume"},
5953 {bp_step_resume, "step resume"},
5954 {bp_hp_step_resume, "high-priority step resume"},
5955 {bp_watchpoint_scope, "watchpoint scope"},
5956 {bp_call_dummy, "call dummy"},
5957 {bp_std_terminate, "std::terminate"},
5958 {bp_shlib_event, "shlib events"},
5959 {bp_thread_event, "thread events"},
5960 {bp_overlay_event, "overlay events"},
5961 {bp_longjmp_master, "longjmp master"},
5962 {bp_std_terminate_master, "std::terminate master"},
5963 {bp_exception_master, "exception master"},
5964 {bp_catchpoint, "catchpoint"},
5965 {bp_tracepoint, "tracepoint"},
5966 {bp_fast_tracepoint, "fast tracepoint"},
5967 {bp_static_tracepoint, "static tracepoint"},
5968 {bp_dprintf, "dprintf"},
5969 {bp_jit_event, "jit events"},
5970 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5971 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5972 };
5973
5974 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5975 || ((int) type != bptypes[(int) type].type))
5976 internal_error (__FILE__, __LINE__,
5977 _("bptypes table does not describe type #%d."),
5978 (int) type);
5979
5980 return bptypes[(int) type].description;
5981 }
5982
5983 /* For MI, output a field named 'thread-groups' with a list as the value.
5984 For CLI, prefix the list with the string 'inf'. */
5985
5986 static void
5987 output_thread_groups (struct ui_out *uiout,
5988 const char *field_name,
5989 const std::vector<int> &inf_nums,
5990 int mi_only)
5991 {
5992 int is_mi = uiout->is_mi_like_p ();
5993
5994 /* For backward compatibility, don't display inferiors in CLI unless
5995 there are several. Always display them for MI. */
5996 if (!is_mi && mi_only)
5997 return;
5998
5999 ui_out_emit_list list_emitter (uiout, field_name);
6000
6001 for (size_t i = 0; i < inf_nums.size (); i++)
6002 {
6003 if (is_mi)
6004 {
6005 char mi_group[10];
6006
6007 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6008 uiout->field_string (NULL, mi_group);
6009 }
6010 else
6011 {
6012 if (i == 0)
6013 uiout->text (" inf ");
6014 else
6015 uiout->text (", ");
6016
6017 uiout->text (plongest (inf_nums[i]));
6018 }
6019 }
6020 }
6021
6022 /* Print B to gdb_stdout. */
6023
6024 static void
6025 print_one_breakpoint_location (struct breakpoint *b,
6026 struct bp_location *loc,
6027 int loc_number,
6028 struct bp_location **last_loc,
6029 int allflag)
6030 {
6031 struct command_line *l;
6032 static char bpenables[] = "nynny";
6033
6034 struct ui_out *uiout = current_uiout;
6035 int header_of_multiple = 0;
6036 int part_of_multiple = (loc != NULL);
6037 struct value_print_options opts;
6038
6039 get_user_print_options (&opts);
6040
6041 gdb_assert (!loc || loc_number != 0);
6042 /* See comment in print_one_breakpoint concerning treatment of
6043 breakpoints with single disabled location. */
6044 if (loc == NULL
6045 && (b->loc != NULL
6046 && (b->loc->next != NULL || !b->loc->enabled)))
6047 header_of_multiple = 1;
6048 if (loc == NULL)
6049 loc = b->loc;
6050
6051 annotate_record ();
6052
6053 /* 1 */
6054 annotate_field (0);
6055 if (part_of_multiple)
6056 {
6057 char *formatted;
6058 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6059 uiout->field_string ("number", formatted);
6060 xfree (formatted);
6061 }
6062 else
6063 {
6064 uiout->field_int ("number", b->number);
6065 }
6066
6067 /* 2 */
6068 annotate_field (1);
6069 if (part_of_multiple)
6070 uiout->field_skip ("type");
6071 else
6072 uiout->field_string ("type", bptype_string (b->type));
6073
6074 /* 3 */
6075 annotate_field (2);
6076 if (part_of_multiple)
6077 uiout->field_skip ("disp");
6078 else
6079 uiout->field_string ("disp", bpdisp_text (b->disposition));
6080
6081
6082 /* 4 */
6083 annotate_field (3);
6084 if (part_of_multiple)
6085 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6086 else
6087 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6088 uiout->spaces (2);
6089
6090
6091 /* 5 and 6 */
6092 if (b->ops != NULL && b->ops->print_one != NULL)
6093 {
6094 /* Although the print_one can possibly print all locations,
6095 calling it here is not likely to get any nice result. So,
6096 make sure there's just one location. */
6097 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6098 b->ops->print_one (b, last_loc);
6099 }
6100 else
6101 switch (b->type)
6102 {
6103 case bp_none:
6104 internal_error (__FILE__, __LINE__,
6105 _("print_one_breakpoint: bp_none encountered\n"));
6106 break;
6107
6108 case bp_watchpoint:
6109 case bp_hardware_watchpoint:
6110 case bp_read_watchpoint:
6111 case bp_access_watchpoint:
6112 {
6113 struct watchpoint *w = (struct watchpoint *) b;
6114
6115 /* Field 4, the address, is omitted (which makes the columns
6116 not line up too nicely with the headers, but the effect
6117 is relatively readable). */
6118 if (opts.addressprint)
6119 uiout->field_skip ("addr");
6120 annotate_field (5);
6121 uiout->field_string ("what", w->exp_string);
6122 }
6123 break;
6124
6125 case bp_breakpoint:
6126 case bp_hardware_breakpoint:
6127 case bp_single_step:
6128 case bp_until:
6129 case bp_finish:
6130 case bp_longjmp:
6131 case bp_longjmp_resume:
6132 case bp_longjmp_call_dummy:
6133 case bp_exception:
6134 case bp_exception_resume:
6135 case bp_step_resume:
6136 case bp_hp_step_resume:
6137 case bp_watchpoint_scope:
6138 case bp_call_dummy:
6139 case bp_std_terminate:
6140 case bp_shlib_event:
6141 case bp_thread_event:
6142 case bp_overlay_event:
6143 case bp_longjmp_master:
6144 case bp_std_terminate_master:
6145 case bp_exception_master:
6146 case bp_tracepoint:
6147 case bp_fast_tracepoint:
6148 case bp_static_tracepoint:
6149 case bp_dprintf:
6150 case bp_jit_event:
6151 case bp_gnu_ifunc_resolver:
6152 case bp_gnu_ifunc_resolver_return:
6153 if (opts.addressprint)
6154 {
6155 annotate_field (4);
6156 if (header_of_multiple)
6157 uiout->field_string ("addr", "<MULTIPLE>");
6158 else if (b->loc == NULL || loc->shlib_disabled)
6159 uiout->field_string ("addr", "<PENDING>");
6160 else
6161 uiout->field_core_addr ("addr",
6162 loc->gdbarch, loc->address);
6163 }
6164 annotate_field (5);
6165 if (!header_of_multiple)
6166 print_breakpoint_location (b, loc);
6167 if (b->loc)
6168 *last_loc = b->loc;
6169 break;
6170 }
6171
6172
6173 if (loc != NULL && !header_of_multiple)
6174 {
6175 struct inferior *inf;
6176 std::vector<int> inf_nums;
6177 int mi_only = 1;
6178
6179 ALL_INFERIORS (inf)
6180 {
6181 if (inf->pspace == loc->pspace)
6182 inf_nums.push_back (inf->num);
6183 }
6184
6185 /* For backward compatibility, don't display inferiors in CLI unless
6186 there are several. Always display for MI. */
6187 if (allflag
6188 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6189 && (number_of_program_spaces () > 1
6190 || number_of_inferiors () > 1)
6191 /* LOC is for existing B, it cannot be in
6192 moribund_locations and thus having NULL OWNER. */
6193 && loc->owner->type != bp_catchpoint))
6194 mi_only = 0;
6195 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6196 }
6197
6198 if (!part_of_multiple)
6199 {
6200 if (b->thread != -1)
6201 {
6202 /* FIXME: This seems to be redundant and lost here; see the
6203 "stop only in" line a little further down. */
6204 uiout->text (" thread ");
6205 uiout->field_int ("thread", b->thread);
6206 }
6207 else if (b->task != 0)
6208 {
6209 uiout->text (" task ");
6210 uiout->field_int ("task", b->task);
6211 }
6212 }
6213
6214 uiout->text ("\n");
6215
6216 if (!part_of_multiple)
6217 b->ops->print_one_detail (b, uiout);
6218
6219 if (part_of_multiple && frame_id_p (b->frame_id))
6220 {
6221 annotate_field (6);
6222 uiout->text ("\tstop only in stack frame at ");
6223 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6224 the frame ID. */
6225 uiout->field_core_addr ("frame",
6226 b->gdbarch, b->frame_id.stack_addr);
6227 uiout->text ("\n");
6228 }
6229
6230 if (!part_of_multiple && b->cond_string)
6231 {
6232 annotate_field (7);
6233 if (is_tracepoint (b))
6234 uiout->text ("\ttrace only if ");
6235 else
6236 uiout->text ("\tstop only if ");
6237 uiout->field_string ("cond", b->cond_string);
6238
6239 /* Print whether the target is doing the breakpoint's condition
6240 evaluation. If GDB is doing the evaluation, don't print anything. */
6241 if (is_breakpoint (b)
6242 && breakpoint_condition_evaluation_mode ()
6243 == condition_evaluation_target)
6244 {
6245 uiout->text (" (");
6246 uiout->field_string ("evaluated-by",
6247 bp_condition_evaluator (b));
6248 uiout->text (" evals)");
6249 }
6250 uiout->text ("\n");
6251 }
6252
6253 if (!part_of_multiple && b->thread != -1)
6254 {
6255 /* FIXME should make an annotation for this. */
6256 uiout->text ("\tstop only in thread ");
6257 if (uiout->is_mi_like_p ())
6258 uiout->field_int ("thread", b->thread);
6259 else
6260 {
6261 struct thread_info *thr = find_thread_global_id (b->thread);
6262
6263 uiout->field_string ("thread", print_thread_id (thr));
6264 }
6265 uiout->text ("\n");
6266 }
6267
6268 if (!part_of_multiple)
6269 {
6270 if (b->hit_count)
6271 {
6272 /* FIXME should make an annotation for this. */
6273 if (is_catchpoint (b))
6274 uiout->text ("\tcatchpoint");
6275 else if (is_tracepoint (b))
6276 uiout->text ("\ttracepoint");
6277 else
6278 uiout->text ("\tbreakpoint");
6279 uiout->text (" already hit ");
6280 uiout->field_int ("times", b->hit_count);
6281 if (b->hit_count == 1)
6282 uiout->text (" time\n");
6283 else
6284 uiout->text (" times\n");
6285 }
6286 else
6287 {
6288 /* Output the count also if it is zero, but only if this is mi. */
6289 if (uiout->is_mi_like_p ())
6290 uiout->field_int ("times", b->hit_count);
6291 }
6292 }
6293
6294 if (!part_of_multiple && b->ignore_count)
6295 {
6296 annotate_field (8);
6297 uiout->text ("\tignore next ");
6298 uiout->field_int ("ignore", b->ignore_count);
6299 uiout->text (" hits\n");
6300 }
6301
6302 /* Note that an enable count of 1 corresponds to "enable once"
6303 behavior, which is reported by the combination of enablement and
6304 disposition, so we don't need to mention it here. */
6305 if (!part_of_multiple && b->enable_count > 1)
6306 {
6307 annotate_field (8);
6308 uiout->text ("\tdisable after ");
6309 /* Tweak the wording to clarify that ignore and enable counts
6310 are distinct, and have additive effect. */
6311 if (b->ignore_count)
6312 uiout->text ("additional ");
6313 else
6314 uiout->text ("next ");
6315 uiout->field_int ("enable", b->enable_count);
6316 uiout->text (" hits\n");
6317 }
6318
6319 if (!part_of_multiple && is_tracepoint (b))
6320 {
6321 struct tracepoint *tp = (struct tracepoint *) b;
6322
6323 if (tp->traceframe_usage)
6324 {
6325 uiout->text ("\ttrace buffer usage ");
6326 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6327 uiout->text (" bytes\n");
6328 }
6329 }
6330
6331 l = b->commands ? b->commands.get () : NULL;
6332 if (!part_of_multiple && l)
6333 {
6334 annotate_field (9);
6335 ui_out_emit_tuple tuple_emitter (uiout, "script");
6336 print_command_lines (uiout, l, 4);
6337 }
6338
6339 if (is_tracepoint (b))
6340 {
6341 struct tracepoint *t = (struct tracepoint *) b;
6342
6343 if (!part_of_multiple && t->pass_count)
6344 {
6345 annotate_field (10);
6346 uiout->text ("\tpass count ");
6347 uiout->field_int ("pass", t->pass_count);
6348 uiout->text (" \n");
6349 }
6350
6351 /* Don't display it when tracepoint or tracepoint location is
6352 pending. */
6353 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6354 {
6355 annotate_field (11);
6356
6357 if (uiout->is_mi_like_p ())
6358 uiout->field_string ("installed",
6359 loc->inserted ? "y" : "n");
6360 else
6361 {
6362 if (loc->inserted)
6363 uiout->text ("\t");
6364 else
6365 uiout->text ("\tnot ");
6366 uiout->text ("installed on target\n");
6367 }
6368 }
6369 }
6370
6371 if (uiout->is_mi_like_p () && !part_of_multiple)
6372 {
6373 if (is_watchpoint (b))
6374 {
6375 struct watchpoint *w = (struct watchpoint *) b;
6376
6377 uiout->field_string ("original-location", w->exp_string);
6378 }
6379 else if (b->location != NULL
6380 && event_location_to_string (b->location.get ()) != NULL)
6381 uiout->field_string ("original-location",
6382 event_location_to_string (b->location.get ()));
6383 }
6384 }
6385
6386 static void
6387 print_one_breakpoint (struct breakpoint *b,
6388 struct bp_location **last_loc,
6389 int allflag)
6390 {
6391 struct ui_out *uiout = current_uiout;
6392
6393 {
6394 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6395
6396 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6397 }
6398
6399 /* If this breakpoint has custom print function,
6400 it's already printed. Otherwise, print individual
6401 locations, if any. */
6402 if (b->ops == NULL || b->ops->print_one == NULL)
6403 {
6404 /* If breakpoint has a single location that is disabled, we
6405 print it as if it had several locations, since otherwise it's
6406 hard to represent "breakpoint enabled, location disabled"
6407 situation.
6408
6409 Note that while hardware watchpoints have several locations
6410 internally, that's not a property exposed to user. */
6411 if (b->loc
6412 && !is_hardware_watchpoint (b)
6413 && (b->loc->next || !b->loc->enabled))
6414 {
6415 struct bp_location *loc;
6416 int n = 1;
6417
6418 for (loc = b->loc; loc; loc = loc->next, ++n)
6419 {
6420 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6421 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6422 }
6423 }
6424 }
6425 }
6426
6427 static int
6428 breakpoint_address_bits (struct breakpoint *b)
6429 {
6430 int print_address_bits = 0;
6431 struct bp_location *loc;
6432
6433 /* Software watchpoints that aren't watching memory don't have an
6434 address to print. */
6435 if (is_no_memory_software_watchpoint (b))
6436 return 0;
6437
6438 for (loc = b->loc; loc; loc = loc->next)
6439 {
6440 int addr_bit;
6441
6442 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6443 if (addr_bit > print_address_bits)
6444 print_address_bits = addr_bit;
6445 }
6446
6447 return print_address_bits;
6448 }
6449
6450 /* See breakpoint.h. */
6451
6452 void
6453 print_breakpoint (breakpoint *b)
6454 {
6455 struct bp_location *dummy_loc = NULL;
6456 print_one_breakpoint (b, &dummy_loc, 0);
6457 }
6458
6459 /* Return true if this breakpoint was set by the user, false if it is
6460 internal or momentary. */
6461
6462 int
6463 user_breakpoint_p (struct breakpoint *b)
6464 {
6465 return b->number > 0;
6466 }
6467
6468 /* See breakpoint.h. */
6469
6470 int
6471 pending_breakpoint_p (struct breakpoint *b)
6472 {
6473 return b->loc == NULL;
6474 }
6475
6476 /* Print information on user settable breakpoint (watchpoint, etc)
6477 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6478 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6479 FILTER is non-NULL, call it on each breakpoint and only include the
6480 ones for which it returns non-zero. Return the total number of
6481 breakpoints listed. */
6482
6483 static int
6484 breakpoint_1 (const char *args, int allflag,
6485 int (*filter) (const struct breakpoint *))
6486 {
6487 struct breakpoint *b;
6488 struct bp_location *last_loc = NULL;
6489 int nr_printable_breakpoints;
6490 struct value_print_options opts;
6491 int print_address_bits = 0;
6492 int print_type_col_width = 14;
6493 struct ui_out *uiout = current_uiout;
6494
6495 get_user_print_options (&opts);
6496
6497 /* Compute the number of rows in the table, as well as the size
6498 required for address fields. */
6499 nr_printable_breakpoints = 0;
6500 ALL_BREAKPOINTS (b)
6501 {
6502 /* If we have a filter, only list the breakpoints it accepts. */
6503 if (filter && !filter (b))
6504 continue;
6505
6506 /* If we have an "args" string, it is a list of breakpoints to
6507 accept. Skip the others. */
6508 if (args != NULL && *args != '\0')
6509 {
6510 if (allflag && parse_and_eval_long (args) != b->number)
6511 continue;
6512 if (!allflag && !number_is_in_list (args, b->number))
6513 continue;
6514 }
6515
6516 if (allflag || user_breakpoint_p (b))
6517 {
6518 int addr_bit, type_len;
6519
6520 addr_bit = breakpoint_address_bits (b);
6521 if (addr_bit > print_address_bits)
6522 print_address_bits = addr_bit;
6523
6524 type_len = strlen (bptype_string (b->type));
6525 if (type_len > print_type_col_width)
6526 print_type_col_width = type_len;
6527
6528 nr_printable_breakpoints++;
6529 }
6530 }
6531
6532 {
6533 ui_out_emit_table table_emitter (uiout,
6534 opts.addressprint ? 6 : 5,
6535 nr_printable_breakpoints,
6536 "BreakpointTable");
6537
6538 if (nr_printable_breakpoints > 0)
6539 annotate_breakpoints_headers ();
6540 if (nr_printable_breakpoints > 0)
6541 annotate_field (0);
6542 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6543 if (nr_printable_breakpoints > 0)
6544 annotate_field (1);
6545 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6546 if (nr_printable_breakpoints > 0)
6547 annotate_field (2);
6548 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6549 if (nr_printable_breakpoints > 0)
6550 annotate_field (3);
6551 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6552 if (opts.addressprint)
6553 {
6554 if (nr_printable_breakpoints > 0)
6555 annotate_field (4);
6556 if (print_address_bits <= 32)
6557 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6558 else
6559 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6560 }
6561 if (nr_printable_breakpoints > 0)
6562 annotate_field (5);
6563 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6564 uiout->table_body ();
6565 if (nr_printable_breakpoints > 0)
6566 annotate_breakpoints_table ();
6567
6568 ALL_BREAKPOINTS (b)
6569 {
6570 QUIT;
6571 /* If we have a filter, only list the breakpoints it accepts. */
6572 if (filter && !filter (b))
6573 continue;
6574
6575 /* If we have an "args" string, it is a list of breakpoints to
6576 accept. Skip the others. */
6577
6578 if (args != NULL && *args != '\0')
6579 {
6580 if (allflag) /* maintenance info breakpoint */
6581 {
6582 if (parse_and_eval_long (args) != b->number)
6583 continue;
6584 }
6585 else /* all others */
6586 {
6587 if (!number_is_in_list (args, b->number))
6588 continue;
6589 }
6590 }
6591 /* We only print out user settable breakpoints unless the
6592 allflag is set. */
6593 if (allflag || user_breakpoint_p (b))
6594 print_one_breakpoint (b, &last_loc, allflag);
6595 }
6596 }
6597
6598 if (nr_printable_breakpoints == 0)
6599 {
6600 /* If there's a filter, let the caller decide how to report
6601 empty list. */
6602 if (!filter)
6603 {
6604 if (args == NULL || *args == '\0')
6605 uiout->message ("No breakpoints or watchpoints.\n");
6606 else
6607 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6608 args);
6609 }
6610 }
6611 else
6612 {
6613 if (last_loc && !server_command)
6614 set_next_address (last_loc->gdbarch, last_loc->address);
6615 }
6616
6617 /* FIXME? Should this be moved up so that it is only called when
6618 there have been breakpoints? */
6619 annotate_breakpoints_table_end ();
6620
6621 return nr_printable_breakpoints;
6622 }
6623
6624 /* Display the value of default-collect in a way that is generally
6625 compatible with the breakpoint list. */
6626
6627 static void
6628 default_collect_info (void)
6629 {
6630 struct ui_out *uiout = current_uiout;
6631
6632 /* If it has no value (which is frequently the case), say nothing; a
6633 message like "No default-collect." gets in user's face when it's
6634 not wanted. */
6635 if (!*default_collect)
6636 return;
6637
6638 /* The following phrase lines up nicely with per-tracepoint collect
6639 actions. */
6640 uiout->text ("default collect ");
6641 uiout->field_string ("default-collect", default_collect);
6642 uiout->text (" \n");
6643 }
6644
6645 static void
6646 info_breakpoints_command (const char *args, int from_tty)
6647 {
6648 breakpoint_1 (args, 0, NULL);
6649
6650 default_collect_info ();
6651 }
6652
6653 static void
6654 info_watchpoints_command (const char *args, int from_tty)
6655 {
6656 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6657 struct ui_out *uiout = current_uiout;
6658
6659 if (num_printed == 0)
6660 {
6661 if (args == NULL || *args == '\0')
6662 uiout->message ("No watchpoints.\n");
6663 else
6664 uiout->message ("No watchpoint matching '%s'.\n", args);
6665 }
6666 }
6667
6668 static void
6669 maintenance_info_breakpoints (const char *args, int from_tty)
6670 {
6671 breakpoint_1 (args, 1, NULL);
6672
6673 default_collect_info ();
6674 }
6675
6676 static int
6677 breakpoint_has_pc (struct breakpoint *b,
6678 struct program_space *pspace,
6679 CORE_ADDR pc, struct obj_section *section)
6680 {
6681 struct bp_location *bl = b->loc;
6682
6683 for (; bl; bl = bl->next)
6684 {
6685 if (bl->pspace == pspace
6686 && bl->address == pc
6687 && (!overlay_debugging || bl->section == section))
6688 return 1;
6689 }
6690 return 0;
6691 }
6692
6693 /* Print a message describing any user-breakpoints set at PC. This
6694 concerns with logical breakpoints, so we match program spaces, not
6695 address spaces. */
6696
6697 static void
6698 describe_other_breakpoints (struct gdbarch *gdbarch,
6699 struct program_space *pspace, CORE_ADDR pc,
6700 struct obj_section *section, int thread)
6701 {
6702 int others = 0;
6703 struct breakpoint *b;
6704
6705 ALL_BREAKPOINTS (b)
6706 others += (user_breakpoint_p (b)
6707 && breakpoint_has_pc (b, pspace, pc, section));
6708 if (others > 0)
6709 {
6710 if (others == 1)
6711 printf_filtered (_("Note: breakpoint "));
6712 else /* if (others == ???) */
6713 printf_filtered (_("Note: breakpoints "));
6714 ALL_BREAKPOINTS (b)
6715 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6716 {
6717 others--;
6718 printf_filtered ("%d", b->number);
6719 if (b->thread == -1 && thread != -1)
6720 printf_filtered (" (all threads)");
6721 else if (b->thread != -1)
6722 printf_filtered (" (thread %d)", b->thread);
6723 printf_filtered ("%s%s ",
6724 ((b->enable_state == bp_disabled
6725 || b->enable_state == bp_call_disabled)
6726 ? " (disabled)"
6727 : ""),
6728 (others > 1) ? ","
6729 : ((others == 1) ? " and" : ""));
6730 }
6731 printf_filtered (_("also set at pc "));
6732 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6733 printf_filtered (".\n");
6734 }
6735 }
6736 \f
6737
6738 /* Return true iff it is meaningful to use the address member of
6739 BPT locations. For some breakpoint types, the locations' address members
6740 are irrelevant and it makes no sense to attempt to compare them to other
6741 addresses (or use them for any other purpose either).
6742
6743 More specifically, each of the following breakpoint types will
6744 always have a zero valued location address and we don't want to mark
6745 breakpoints of any of these types to be a duplicate of an actual
6746 breakpoint location at address zero:
6747
6748 bp_watchpoint
6749 bp_catchpoint
6750
6751 */
6752
6753 static int
6754 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6755 {
6756 enum bptype type = bpt->type;
6757
6758 return (type != bp_watchpoint && type != bp_catchpoint);
6759 }
6760
6761 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6762 true if LOC1 and LOC2 represent the same watchpoint location. */
6763
6764 static int
6765 watchpoint_locations_match (struct bp_location *loc1,
6766 struct bp_location *loc2)
6767 {
6768 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6769 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6770
6771 /* Both of them must exist. */
6772 gdb_assert (w1 != NULL);
6773 gdb_assert (w2 != NULL);
6774
6775 /* If the target can evaluate the condition expression in hardware,
6776 then we we need to insert both watchpoints even if they are at
6777 the same place. Otherwise the watchpoint will only trigger when
6778 the condition of whichever watchpoint was inserted evaluates to
6779 true, not giving a chance for GDB to check the condition of the
6780 other watchpoint. */
6781 if ((w1->cond_exp
6782 && target_can_accel_watchpoint_condition (loc1->address,
6783 loc1->length,
6784 loc1->watchpoint_type,
6785 w1->cond_exp.get ()))
6786 || (w2->cond_exp
6787 && target_can_accel_watchpoint_condition (loc2->address,
6788 loc2->length,
6789 loc2->watchpoint_type,
6790 w2->cond_exp.get ())))
6791 return 0;
6792
6793 /* Note that this checks the owner's type, not the location's. In
6794 case the target does not support read watchpoints, but does
6795 support access watchpoints, we'll have bp_read_watchpoint
6796 watchpoints with hw_access locations. Those should be considered
6797 duplicates of hw_read locations. The hw_read locations will
6798 become hw_access locations later. */
6799 return (loc1->owner->type == loc2->owner->type
6800 && loc1->pspace->aspace == loc2->pspace->aspace
6801 && loc1->address == loc2->address
6802 && loc1->length == loc2->length);
6803 }
6804
6805 /* See breakpoint.h. */
6806
6807 int
6808 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6809 const address_space *aspace2, CORE_ADDR addr2)
6810 {
6811 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6812 || aspace1 == aspace2)
6813 && addr1 == addr2);
6814 }
6815
6816 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6817 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6818 matches ASPACE2. On targets that have global breakpoints, the address
6819 space doesn't really matter. */
6820
6821 static int
6822 breakpoint_address_match_range (const address_space *aspace1,
6823 CORE_ADDR addr1,
6824 int len1, const address_space *aspace2,
6825 CORE_ADDR addr2)
6826 {
6827 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6828 || aspace1 == aspace2)
6829 && addr2 >= addr1 && addr2 < addr1 + len1);
6830 }
6831
6832 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6833 a ranged breakpoint. In most targets, a match happens only if ASPACE
6834 matches the breakpoint's address space. On targets that have global
6835 breakpoints, the address space doesn't really matter. */
6836
6837 static int
6838 breakpoint_location_address_match (struct bp_location *bl,
6839 const address_space *aspace,
6840 CORE_ADDR addr)
6841 {
6842 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6843 aspace, addr)
6844 || (bl->length
6845 && breakpoint_address_match_range (bl->pspace->aspace,
6846 bl->address, bl->length,
6847 aspace, addr)));
6848 }
6849
6850 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6851 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6852 match happens only if ASPACE matches the breakpoint's address
6853 space. On targets that have global breakpoints, the address space
6854 doesn't really matter. */
6855
6856 static int
6857 breakpoint_location_address_range_overlap (struct bp_location *bl,
6858 const address_space *aspace,
6859 CORE_ADDR addr, int len)
6860 {
6861 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6862 || bl->pspace->aspace == aspace)
6863 {
6864 int bl_len = bl->length != 0 ? bl->length : 1;
6865
6866 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6867 return 1;
6868 }
6869 return 0;
6870 }
6871
6872 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6873 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6874 true, otherwise returns false. */
6875
6876 static int
6877 tracepoint_locations_match (struct bp_location *loc1,
6878 struct bp_location *loc2)
6879 {
6880 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6881 /* Since tracepoint locations are never duplicated with others', tracepoint
6882 locations at the same address of different tracepoints are regarded as
6883 different locations. */
6884 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6885 else
6886 return 0;
6887 }
6888
6889 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6890 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6891 represent the same location. */
6892
6893 static int
6894 breakpoint_locations_match (struct bp_location *loc1,
6895 struct bp_location *loc2)
6896 {
6897 int hw_point1, hw_point2;
6898
6899 /* Both of them must not be in moribund_locations. */
6900 gdb_assert (loc1->owner != NULL);
6901 gdb_assert (loc2->owner != NULL);
6902
6903 hw_point1 = is_hardware_watchpoint (loc1->owner);
6904 hw_point2 = is_hardware_watchpoint (loc2->owner);
6905
6906 if (hw_point1 != hw_point2)
6907 return 0;
6908 else if (hw_point1)
6909 return watchpoint_locations_match (loc1, loc2);
6910 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6911 return tracepoint_locations_match (loc1, loc2);
6912 else
6913 /* We compare bp_location.length in order to cover ranged breakpoints. */
6914 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6915 loc2->pspace->aspace, loc2->address)
6916 && loc1->length == loc2->length);
6917 }
6918
6919 static void
6920 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6921 int bnum, int have_bnum)
6922 {
6923 /* The longest string possibly returned by hex_string_custom
6924 is 50 chars. These must be at least that big for safety. */
6925 char astr1[64];
6926 char astr2[64];
6927
6928 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6929 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6930 if (have_bnum)
6931 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6932 bnum, astr1, astr2);
6933 else
6934 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6935 }
6936
6937 /* Adjust a breakpoint's address to account for architectural
6938 constraints on breakpoint placement. Return the adjusted address.
6939 Note: Very few targets require this kind of adjustment. For most
6940 targets, this function is simply the identity function. */
6941
6942 static CORE_ADDR
6943 adjust_breakpoint_address (struct gdbarch *gdbarch,
6944 CORE_ADDR bpaddr, enum bptype bptype)
6945 {
6946 if (bptype == bp_watchpoint
6947 || bptype == bp_hardware_watchpoint
6948 || bptype == bp_read_watchpoint
6949 || bptype == bp_access_watchpoint
6950 || bptype == bp_catchpoint)
6951 {
6952 /* Watchpoints and the various bp_catch_* eventpoints should not
6953 have their addresses modified. */
6954 return bpaddr;
6955 }
6956 else if (bptype == bp_single_step)
6957 {
6958 /* Single-step breakpoints should not have their addresses
6959 modified. If there's any architectural constrain that
6960 applies to this address, then it should have already been
6961 taken into account when the breakpoint was created in the
6962 first place. If we didn't do this, stepping through e.g.,
6963 Thumb-2 IT blocks would break. */
6964 return bpaddr;
6965 }
6966 else
6967 {
6968 CORE_ADDR adjusted_bpaddr = bpaddr;
6969
6970 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6971 {
6972 /* Some targets have architectural constraints on the placement
6973 of breakpoint instructions. Obtain the adjusted address. */
6974 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6975 }
6976
6977 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6978
6979 /* An adjusted breakpoint address can significantly alter
6980 a user's expectations. Print a warning if an adjustment
6981 is required. */
6982 if (adjusted_bpaddr != bpaddr)
6983 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6984
6985 return adjusted_bpaddr;
6986 }
6987 }
6988
6989 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6990 {
6991 bp_location *loc = this;
6992
6993 gdb_assert (ops != NULL);
6994
6995 loc->ops = ops;
6996 loc->owner = owner;
6997 loc->cond_bytecode = NULL;
6998 loc->shlib_disabled = 0;
6999 loc->enabled = 1;
7000
7001 switch (owner->type)
7002 {
7003 case bp_breakpoint:
7004 case bp_single_step:
7005 case bp_until:
7006 case bp_finish:
7007 case bp_longjmp:
7008 case bp_longjmp_resume:
7009 case bp_longjmp_call_dummy:
7010 case bp_exception:
7011 case bp_exception_resume:
7012 case bp_step_resume:
7013 case bp_hp_step_resume:
7014 case bp_watchpoint_scope:
7015 case bp_call_dummy:
7016 case bp_std_terminate:
7017 case bp_shlib_event:
7018 case bp_thread_event:
7019 case bp_overlay_event:
7020 case bp_jit_event:
7021 case bp_longjmp_master:
7022 case bp_std_terminate_master:
7023 case bp_exception_master:
7024 case bp_gnu_ifunc_resolver:
7025 case bp_gnu_ifunc_resolver_return:
7026 case bp_dprintf:
7027 loc->loc_type = bp_loc_software_breakpoint;
7028 mark_breakpoint_location_modified (loc);
7029 break;
7030 case bp_hardware_breakpoint:
7031 loc->loc_type = bp_loc_hardware_breakpoint;
7032 mark_breakpoint_location_modified (loc);
7033 break;
7034 case bp_hardware_watchpoint:
7035 case bp_read_watchpoint:
7036 case bp_access_watchpoint:
7037 loc->loc_type = bp_loc_hardware_watchpoint;
7038 break;
7039 case bp_watchpoint:
7040 case bp_catchpoint:
7041 case bp_tracepoint:
7042 case bp_fast_tracepoint:
7043 case bp_static_tracepoint:
7044 loc->loc_type = bp_loc_other;
7045 break;
7046 default:
7047 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7048 }
7049
7050 loc->refc = 1;
7051 }
7052
7053 /* Allocate a struct bp_location. */
7054
7055 static struct bp_location *
7056 allocate_bp_location (struct breakpoint *bpt)
7057 {
7058 return bpt->ops->allocate_location (bpt);
7059 }
7060
7061 static void
7062 free_bp_location (struct bp_location *loc)
7063 {
7064 loc->ops->dtor (loc);
7065 delete loc;
7066 }
7067
7068 /* Increment reference count. */
7069
7070 static void
7071 incref_bp_location (struct bp_location *bl)
7072 {
7073 ++bl->refc;
7074 }
7075
7076 /* Decrement reference count. If the reference count reaches 0,
7077 destroy the bp_location. Sets *BLP to NULL. */
7078
7079 static void
7080 decref_bp_location (struct bp_location **blp)
7081 {
7082 gdb_assert ((*blp)->refc > 0);
7083
7084 if (--(*blp)->refc == 0)
7085 free_bp_location (*blp);
7086 *blp = NULL;
7087 }
7088
7089 /* Add breakpoint B at the end of the global breakpoint chain. */
7090
7091 static breakpoint *
7092 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7093 {
7094 struct breakpoint *b1;
7095 struct breakpoint *result = b.get ();
7096
7097 /* Add this breakpoint to the end of the chain so that a list of
7098 breakpoints will come out in order of increasing numbers. */
7099
7100 b1 = breakpoint_chain;
7101 if (b1 == 0)
7102 breakpoint_chain = b.release ();
7103 else
7104 {
7105 while (b1->next)
7106 b1 = b1->next;
7107 b1->next = b.release ();
7108 }
7109
7110 return result;
7111 }
7112
7113 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7114
7115 static void
7116 init_raw_breakpoint_without_location (struct breakpoint *b,
7117 struct gdbarch *gdbarch,
7118 enum bptype bptype,
7119 const struct breakpoint_ops *ops)
7120 {
7121 gdb_assert (ops != NULL);
7122
7123 b->ops = ops;
7124 b->type = bptype;
7125 b->gdbarch = gdbarch;
7126 b->language = current_language->la_language;
7127 b->input_radix = input_radix;
7128 b->related_breakpoint = b;
7129 }
7130
7131 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7132 that has type BPTYPE and has no locations as yet. */
7133
7134 static struct breakpoint *
7135 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7136 enum bptype bptype,
7137 const struct breakpoint_ops *ops)
7138 {
7139 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7140
7141 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7142 return add_to_breakpoint_chain (std::move (b));
7143 }
7144
7145 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7146 resolutions should be made as the user specified the location explicitly
7147 enough. */
7148
7149 static void
7150 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7151 {
7152 gdb_assert (loc->owner != NULL);
7153
7154 if (loc->owner->type == bp_breakpoint
7155 || loc->owner->type == bp_hardware_breakpoint
7156 || is_tracepoint (loc->owner))
7157 {
7158 const char *function_name;
7159
7160 if (loc->msymbol != NULL
7161 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7162 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc)
7163 && !explicit_loc)
7164 {
7165 struct breakpoint *b = loc->owner;
7166
7167 function_name = MSYMBOL_LINKAGE_NAME (loc->msymbol);
7168
7169 if (b->type == bp_breakpoint && b->loc == loc
7170 && loc->next == NULL && b->related_breakpoint == b)
7171 {
7172 /* Create only the whole new breakpoint of this type but do not
7173 mess more complicated breakpoints with multiple locations. */
7174 b->type = bp_gnu_ifunc_resolver;
7175 /* Remember the resolver's address for use by the return
7176 breakpoint. */
7177 loc->related_address = loc->address;
7178 }
7179 }
7180 else
7181 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7182
7183 if (function_name)
7184 loc->function_name = xstrdup (function_name);
7185 }
7186 }
7187
7188 /* Attempt to determine architecture of location identified by SAL. */
7189 struct gdbarch *
7190 get_sal_arch (struct symtab_and_line sal)
7191 {
7192 if (sal.section)
7193 return get_objfile_arch (sal.section->objfile);
7194 if (sal.symtab)
7195 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7196
7197 return NULL;
7198 }
7199
7200 /* Low level routine for partially initializing a breakpoint of type
7201 BPTYPE. The newly created breakpoint's address, section, source
7202 file name, and line number are provided by SAL.
7203
7204 It is expected that the caller will complete the initialization of
7205 the newly created breakpoint struct as well as output any status
7206 information regarding the creation of a new breakpoint. */
7207
7208 static void
7209 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7210 struct symtab_and_line sal, enum bptype bptype,
7211 const struct breakpoint_ops *ops)
7212 {
7213 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7214
7215 add_location_to_breakpoint (b, &sal);
7216
7217 if (bptype != bp_catchpoint)
7218 gdb_assert (sal.pspace != NULL);
7219
7220 /* Store the program space that was used to set the breakpoint,
7221 except for ordinary breakpoints, which are independent of the
7222 program space. */
7223 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7224 b->pspace = sal.pspace;
7225 }
7226
7227 /* set_raw_breakpoint is a low level routine for allocating and
7228 partially initializing a breakpoint of type BPTYPE. The newly
7229 created breakpoint's address, section, source file name, and line
7230 number are provided by SAL. The newly created and partially
7231 initialized breakpoint is added to the breakpoint chain and
7232 is also returned as the value of this function.
7233
7234 It is expected that the caller will complete the initialization of
7235 the newly created breakpoint struct as well as output any status
7236 information regarding the creation of a new breakpoint. In
7237 particular, set_raw_breakpoint does NOT set the breakpoint
7238 number! Care should be taken to not allow an error to occur
7239 prior to completing the initialization of the breakpoint. If this
7240 should happen, a bogus breakpoint will be left on the chain. */
7241
7242 struct breakpoint *
7243 set_raw_breakpoint (struct gdbarch *gdbarch,
7244 struct symtab_and_line sal, enum bptype bptype,
7245 const struct breakpoint_ops *ops)
7246 {
7247 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7248
7249 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7250 return add_to_breakpoint_chain (std::move (b));
7251 }
7252
7253 /* Call this routine when stepping and nexting to enable a breakpoint
7254 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7255 initiated the operation. */
7256
7257 void
7258 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7259 {
7260 struct breakpoint *b, *b_tmp;
7261 int thread = tp->global_num;
7262
7263 /* To avoid having to rescan all objfile symbols at every step,
7264 we maintain a list of continually-inserted but always disabled
7265 longjmp "master" breakpoints. Here, we simply create momentary
7266 clones of those and enable them for the requested thread. */
7267 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7268 if (b->pspace == current_program_space
7269 && (b->type == bp_longjmp_master
7270 || b->type == bp_exception_master))
7271 {
7272 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7273 struct breakpoint *clone;
7274
7275 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7276 after their removal. */
7277 clone = momentary_breakpoint_from_master (b, type,
7278 &momentary_breakpoint_ops, 1);
7279 clone->thread = thread;
7280 }
7281
7282 tp->initiating_frame = frame;
7283 }
7284
7285 /* Delete all longjmp breakpoints from THREAD. */
7286 void
7287 delete_longjmp_breakpoint (int thread)
7288 {
7289 struct breakpoint *b, *b_tmp;
7290
7291 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7292 if (b->type == bp_longjmp || b->type == bp_exception)
7293 {
7294 if (b->thread == thread)
7295 delete_breakpoint (b);
7296 }
7297 }
7298
7299 void
7300 delete_longjmp_breakpoint_at_next_stop (int thread)
7301 {
7302 struct breakpoint *b, *b_tmp;
7303
7304 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7305 if (b->type == bp_longjmp || b->type == bp_exception)
7306 {
7307 if (b->thread == thread)
7308 b->disposition = disp_del_at_next_stop;
7309 }
7310 }
7311
7312 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7313 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7314 pointer to any of them. Return NULL if this system cannot place longjmp
7315 breakpoints. */
7316
7317 struct breakpoint *
7318 set_longjmp_breakpoint_for_call_dummy (void)
7319 {
7320 struct breakpoint *b, *retval = NULL;
7321
7322 ALL_BREAKPOINTS (b)
7323 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7324 {
7325 struct breakpoint *new_b;
7326
7327 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7328 &momentary_breakpoint_ops,
7329 1);
7330 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7331
7332 /* Link NEW_B into the chain of RETVAL breakpoints. */
7333
7334 gdb_assert (new_b->related_breakpoint == new_b);
7335 if (retval == NULL)
7336 retval = new_b;
7337 new_b->related_breakpoint = retval;
7338 while (retval->related_breakpoint != new_b->related_breakpoint)
7339 retval = retval->related_breakpoint;
7340 retval->related_breakpoint = new_b;
7341 }
7342
7343 return retval;
7344 }
7345
7346 /* Verify all existing dummy frames and their associated breakpoints for
7347 TP. Remove those which can no longer be found in the current frame
7348 stack.
7349
7350 You should call this function only at places where it is safe to currently
7351 unwind the whole stack. Failed stack unwind would discard live dummy
7352 frames. */
7353
7354 void
7355 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7356 {
7357 struct breakpoint *b, *b_tmp;
7358
7359 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7360 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7361 {
7362 struct breakpoint *dummy_b = b->related_breakpoint;
7363
7364 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7365 dummy_b = dummy_b->related_breakpoint;
7366 if (dummy_b->type != bp_call_dummy
7367 || frame_find_by_id (dummy_b->frame_id) != NULL)
7368 continue;
7369
7370 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7371
7372 while (b->related_breakpoint != b)
7373 {
7374 if (b_tmp == b->related_breakpoint)
7375 b_tmp = b->related_breakpoint->next;
7376 delete_breakpoint (b->related_breakpoint);
7377 }
7378 delete_breakpoint (b);
7379 }
7380 }
7381
7382 void
7383 enable_overlay_breakpoints (void)
7384 {
7385 struct breakpoint *b;
7386
7387 ALL_BREAKPOINTS (b)
7388 if (b->type == bp_overlay_event)
7389 {
7390 b->enable_state = bp_enabled;
7391 update_global_location_list (UGLL_MAY_INSERT);
7392 overlay_events_enabled = 1;
7393 }
7394 }
7395
7396 void
7397 disable_overlay_breakpoints (void)
7398 {
7399 struct breakpoint *b;
7400
7401 ALL_BREAKPOINTS (b)
7402 if (b->type == bp_overlay_event)
7403 {
7404 b->enable_state = bp_disabled;
7405 update_global_location_list (UGLL_DONT_INSERT);
7406 overlay_events_enabled = 0;
7407 }
7408 }
7409
7410 /* Set an active std::terminate breakpoint for each std::terminate
7411 master breakpoint. */
7412 void
7413 set_std_terminate_breakpoint (void)
7414 {
7415 struct breakpoint *b, *b_tmp;
7416
7417 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7418 if (b->pspace == current_program_space
7419 && b->type == bp_std_terminate_master)
7420 {
7421 momentary_breakpoint_from_master (b, bp_std_terminate,
7422 &momentary_breakpoint_ops, 1);
7423 }
7424 }
7425
7426 /* Delete all the std::terminate breakpoints. */
7427 void
7428 delete_std_terminate_breakpoint (void)
7429 {
7430 struct breakpoint *b, *b_tmp;
7431
7432 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7433 if (b->type == bp_std_terminate)
7434 delete_breakpoint (b);
7435 }
7436
7437 struct breakpoint *
7438 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7439 {
7440 struct breakpoint *b;
7441
7442 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7443 &internal_breakpoint_ops);
7444
7445 b->enable_state = bp_enabled;
7446 /* location has to be used or breakpoint_re_set will delete me. */
7447 b->location = new_address_location (b->loc->address, NULL, 0);
7448
7449 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7450
7451 return b;
7452 }
7453
7454 struct lang_and_radix
7455 {
7456 enum language lang;
7457 int radix;
7458 };
7459
7460 /* Create a breakpoint for JIT code registration and unregistration. */
7461
7462 struct breakpoint *
7463 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7464 {
7465 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7466 &internal_breakpoint_ops);
7467 }
7468
7469 /* Remove JIT code registration and unregistration breakpoint(s). */
7470
7471 void
7472 remove_jit_event_breakpoints (void)
7473 {
7474 struct breakpoint *b, *b_tmp;
7475
7476 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7477 if (b->type == bp_jit_event
7478 && b->loc->pspace == current_program_space)
7479 delete_breakpoint (b);
7480 }
7481
7482 void
7483 remove_solib_event_breakpoints (void)
7484 {
7485 struct breakpoint *b, *b_tmp;
7486
7487 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7488 if (b->type == bp_shlib_event
7489 && b->loc->pspace == current_program_space)
7490 delete_breakpoint (b);
7491 }
7492
7493 /* See breakpoint.h. */
7494
7495 void
7496 remove_solib_event_breakpoints_at_next_stop (void)
7497 {
7498 struct breakpoint *b, *b_tmp;
7499
7500 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7501 if (b->type == bp_shlib_event
7502 && b->loc->pspace == current_program_space)
7503 b->disposition = disp_del_at_next_stop;
7504 }
7505
7506 /* Helper for create_solib_event_breakpoint /
7507 create_and_insert_solib_event_breakpoint. Allows specifying which
7508 INSERT_MODE to pass through to update_global_location_list. */
7509
7510 static struct breakpoint *
7511 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7512 enum ugll_insert_mode insert_mode)
7513 {
7514 struct breakpoint *b;
7515
7516 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7517 &internal_breakpoint_ops);
7518 update_global_location_list_nothrow (insert_mode);
7519 return b;
7520 }
7521
7522 struct breakpoint *
7523 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7524 {
7525 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7526 }
7527
7528 /* See breakpoint.h. */
7529
7530 struct breakpoint *
7531 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7532 {
7533 struct breakpoint *b;
7534
7535 /* Explicitly tell update_global_location_list to insert
7536 locations. */
7537 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7538 if (!b->loc->inserted)
7539 {
7540 delete_breakpoint (b);
7541 return NULL;
7542 }
7543 return b;
7544 }
7545
7546 /* Disable any breakpoints that are on code in shared libraries. Only
7547 apply to enabled breakpoints, disabled ones can just stay disabled. */
7548
7549 void
7550 disable_breakpoints_in_shlibs (void)
7551 {
7552 struct bp_location *loc, **locp_tmp;
7553
7554 ALL_BP_LOCATIONS (loc, locp_tmp)
7555 {
7556 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7557 struct breakpoint *b = loc->owner;
7558
7559 /* We apply the check to all breakpoints, including disabled for
7560 those with loc->duplicate set. This is so that when breakpoint
7561 becomes enabled, or the duplicate is removed, gdb will try to
7562 insert all breakpoints. If we don't set shlib_disabled here,
7563 we'll try to insert those breakpoints and fail. */
7564 if (((b->type == bp_breakpoint)
7565 || (b->type == bp_jit_event)
7566 || (b->type == bp_hardware_breakpoint)
7567 || (is_tracepoint (b)))
7568 && loc->pspace == current_program_space
7569 && !loc->shlib_disabled
7570 && solib_name_from_address (loc->pspace, loc->address)
7571 )
7572 {
7573 loc->shlib_disabled = 1;
7574 }
7575 }
7576 }
7577
7578 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7579 notification of unloaded_shlib. Only apply to enabled breakpoints,
7580 disabled ones can just stay disabled. */
7581
7582 static void
7583 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7584 {
7585 struct bp_location *loc, **locp_tmp;
7586 int disabled_shlib_breaks = 0;
7587
7588 ALL_BP_LOCATIONS (loc, locp_tmp)
7589 {
7590 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7591 struct breakpoint *b = loc->owner;
7592
7593 if (solib->pspace == loc->pspace
7594 && !loc->shlib_disabled
7595 && (((b->type == bp_breakpoint
7596 || b->type == bp_jit_event
7597 || b->type == bp_hardware_breakpoint)
7598 && (loc->loc_type == bp_loc_hardware_breakpoint
7599 || loc->loc_type == bp_loc_software_breakpoint))
7600 || is_tracepoint (b))
7601 && solib_contains_address_p (solib, loc->address))
7602 {
7603 loc->shlib_disabled = 1;
7604 /* At this point, we cannot rely on remove_breakpoint
7605 succeeding so we must mark the breakpoint as not inserted
7606 to prevent future errors occurring in remove_breakpoints. */
7607 loc->inserted = 0;
7608
7609 /* This may cause duplicate notifications for the same breakpoint. */
7610 gdb::observers::breakpoint_modified.notify (b);
7611
7612 if (!disabled_shlib_breaks)
7613 {
7614 target_terminal::ours_for_output ();
7615 warning (_("Temporarily disabling breakpoints "
7616 "for unloaded shared library \"%s\""),
7617 solib->so_name);
7618 }
7619 disabled_shlib_breaks = 1;
7620 }
7621 }
7622 }
7623
7624 /* Disable any breakpoints and tracepoints in OBJFILE upon
7625 notification of free_objfile. Only apply to enabled breakpoints,
7626 disabled ones can just stay disabled. */
7627
7628 static void
7629 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7630 {
7631 struct breakpoint *b;
7632
7633 if (objfile == NULL)
7634 return;
7635
7636 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7637 managed by the user with add-symbol-file/remove-symbol-file.
7638 Similarly to how breakpoints in shared libraries are handled in
7639 response to "nosharedlibrary", mark breakpoints in such modules
7640 shlib_disabled so they end up uninserted on the next global
7641 location list update. Shared libraries not loaded by the user
7642 aren't handled here -- they're already handled in
7643 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7644 solib_unloaded observer. We skip objfiles that are not
7645 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7646 main objfile). */
7647 if ((objfile->flags & OBJF_SHARED) == 0
7648 || (objfile->flags & OBJF_USERLOADED) == 0)
7649 return;
7650
7651 ALL_BREAKPOINTS (b)
7652 {
7653 struct bp_location *loc;
7654 int bp_modified = 0;
7655
7656 if (!is_breakpoint (b) && !is_tracepoint (b))
7657 continue;
7658
7659 for (loc = b->loc; loc != NULL; loc = loc->next)
7660 {
7661 CORE_ADDR loc_addr = loc->address;
7662
7663 if (loc->loc_type != bp_loc_hardware_breakpoint
7664 && loc->loc_type != bp_loc_software_breakpoint)
7665 continue;
7666
7667 if (loc->shlib_disabled != 0)
7668 continue;
7669
7670 if (objfile->pspace != loc->pspace)
7671 continue;
7672
7673 if (loc->loc_type != bp_loc_hardware_breakpoint
7674 && loc->loc_type != bp_loc_software_breakpoint)
7675 continue;
7676
7677 if (is_addr_in_objfile (loc_addr, objfile))
7678 {
7679 loc->shlib_disabled = 1;
7680 /* At this point, we don't know whether the object was
7681 unmapped from the inferior or not, so leave the
7682 inserted flag alone. We'll handle failure to
7683 uninsert quietly, in case the object was indeed
7684 unmapped. */
7685
7686 mark_breakpoint_location_modified (loc);
7687
7688 bp_modified = 1;
7689 }
7690 }
7691
7692 if (bp_modified)
7693 gdb::observers::breakpoint_modified.notify (b);
7694 }
7695 }
7696
7697 /* FORK & VFORK catchpoints. */
7698
7699 /* An instance of this type is used to represent a fork or vfork
7700 catchpoint. A breakpoint is really of this type iff its ops pointer points
7701 to CATCH_FORK_BREAKPOINT_OPS. */
7702
7703 struct fork_catchpoint : public breakpoint
7704 {
7705 /* Process id of a child process whose forking triggered this
7706 catchpoint. This field is only valid immediately after this
7707 catchpoint has triggered. */
7708 ptid_t forked_inferior_pid;
7709 };
7710
7711 /* Implement the "insert" breakpoint_ops method for fork
7712 catchpoints. */
7713
7714 static int
7715 insert_catch_fork (struct bp_location *bl)
7716 {
7717 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7718 }
7719
7720 /* Implement the "remove" breakpoint_ops method for fork
7721 catchpoints. */
7722
7723 static int
7724 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7725 {
7726 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7727 }
7728
7729 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7730 catchpoints. */
7731
7732 static int
7733 breakpoint_hit_catch_fork (const struct bp_location *bl,
7734 const address_space *aspace, CORE_ADDR bp_addr,
7735 const struct target_waitstatus *ws)
7736 {
7737 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7738
7739 if (ws->kind != TARGET_WAITKIND_FORKED)
7740 return 0;
7741
7742 c->forked_inferior_pid = ws->value.related_pid;
7743 return 1;
7744 }
7745
7746 /* Implement the "print_it" breakpoint_ops method for fork
7747 catchpoints. */
7748
7749 static enum print_stop_action
7750 print_it_catch_fork (bpstat bs)
7751 {
7752 struct ui_out *uiout = current_uiout;
7753 struct breakpoint *b = bs->breakpoint_at;
7754 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7755
7756 annotate_catchpoint (b->number);
7757 maybe_print_thread_hit_breakpoint (uiout);
7758 if (b->disposition == disp_del)
7759 uiout->text ("Temporary catchpoint ");
7760 else
7761 uiout->text ("Catchpoint ");
7762 if (uiout->is_mi_like_p ())
7763 {
7764 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7765 uiout->field_string ("disp", bpdisp_text (b->disposition));
7766 }
7767 uiout->field_int ("bkptno", b->number);
7768 uiout->text (" (forked process ");
7769 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7770 uiout->text ("), ");
7771 return PRINT_SRC_AND_LOC;
7772 }
7773
7774 /* Implement the "print_one" breakpoint_ops method for fork
7775 catchpoints. */
7776
7777 static void
7778 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7779 {
7780 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7781 struct value_print_options opts;
7782 struct ui_out *uiout = current_uiout;
7783
7784 get_user_print_options (&opts);
7785
7786 /* Field 4, the address, is omitted (which makes the columns not
7787 line up too nicely with the headers, but the effect is relatively
7788 readable). */
7789 if (opts.addressprint)
7790 uiout->field_skip ("addr");
7791 annotate_field (5);
7792 uiout->text ("fork");
7793 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7794 {
7795 uiout->text (", process ");
7796 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7797 uiout->spaces (1);
7798 }
7799
7800 if (uiout->is_mi_like_p ())
7801 uiout->field_string ("catch-type", "fork");
7802 }
7803
7804 /* Implement the "print_mention" breakpoint_ops method for fork
7805 catchpoints. */
7806
7807 static void
7808 print_mention_catch_fork (struct breakpoint *b)
7809 {
7810 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7811 }
7812
7813 /* Implement the "print_recreate" breakpoint_ops method for fork
7814 catchpoints. */
7815
7816 static void
7817 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7818 {
7819 fprintf_unfiltered (fp, "catch fork");
7820 print_recreate_thread (b, fp);
7821 }
7822
7823 /* The breakpoint_ops structure to be used in fork catchpoints. */
7824
7825 static struct breakpoint_ops catch_fork_breakpoint_ops;
7826
7827 /* Implement the "insert" breakpoint_ops method for vfork
7828 catchpoints. */
7829
7830 static int
7831 insert_catch_vfork (struct bp_location *bl)
7832 {
7833 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7834 }
7835
7836 /* Implement the "remove" breakpoint_ops method for vfork
7837 catchpoints. */
7838
7839 static int
7840 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7841 {
7842 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7843 }
7844
7845 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7846 catchpoints. */
7847
7848 static int
7849 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7850 const address_space *aspace, CORE_ADDR bp_addr,
7851 const struct target_waitstatus *ws)
7852 {
7853 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7854
7855 if (ws->kind != TARGET_WAITKIND_VFORKED)
7856 return 0;
7857
7858 c->forked_inferior_pid = ws->value.related_pid;
7859 return 1;
7860 }
7861
7862 /* Implement the "print_it" breakpoint_ops method for vfork
7863 catchpoints. */
7864
7865 static enum print_stop_action
7866 print_it_catch_vfork (bpstat bs)
7867 {
7868 struct ui_out *uiout = current_uiout;
7869 struct breakpoint *b = bs->breakpoint_at;
7870 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7871
7872 annotate_catchpoint (b->number);
7873 maybe_print_thread_hit_breakpoint (uiout);
7874 if (b->disposition == disp_del)
7875 uiout->text ("Temporary catchpoint ");
7876 else
7877 uiout->text ("Catchpoint ");
7878 if (uiout->is_mi_like_p ())
7879 {
7880 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7881 uiout->field_string ("disp", bpdisp_text (b->disposition));
7882 }
7883 uiout->field_int ("bkptno", b->number);
7884 uiout->text (" (vforked process ");
7885 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7886 uiout->text ("), ");
7887 return PRINT_SRC_AND_LOC;
7888 }
7889
7890 /* Implement the "print_one" breakpoint_ops method for vfork
7891 catchpoints. */
7892
7893 static void
7894 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7895 {
7896 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7897 struct value_print_options opts;
7898 struct ui_out *uiout = current_uiout;
7899
7900 get_user_print_options (&opts);
7901 /* Field 4, the address, is omitted (which makes the columns not
7902 line up too nicely with the headers, but the effect is relatively
7903 readable). */
7904 if (opts.addressprint)
7905 uiout->field_skip ("addr");
7906 annotate_field (5);
7907 uiout->text ("vfork");
7908 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7909 {
7910 uiout->text (", process ");
7911 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7912 uiout->spaces (1);
7913 }
7914
7915 if (uiout->is_mi_like_p ())
7916 uiout->field_string ("catch-type", "vfork");
7917 }
7918
7919 /* Implement the "print_mention" breakpoint_ops method for vfork
7920 catchpoints. */
7921
7922 static void
7923 print_mention_catch_vfork (struct breakpoint *b)
7924 {
7925 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7926 }
7927
7928 /* Implement the "print_recreate" breakpoint_ops method for vfork
7929 catchpoints. */
7930
7931 static void
7932 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7933 {
7934 fprintf_unfiltered (fp, "catch vfork");
7935 print_recreate_thread (b, fp);
7936 }
7937
7938 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7939
7940 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7941
7942 /* An instance of this type is used to represent an solib catchpoint.
7943 A breakpoint is really of this type iff its ops pointer points to
7944 CATCH_SOLIB_BREAKPOINT_OPS. */
7945
7946 struct solib_catchpoint : public breakpoint
7947 {
7948 ~solib_catchpoint () override;
7949
7950 /* True for "catch load", false for "catch unload". */
7951 unsigned char is_load;
7952
7953 /* Regular expression to match, if any. COMPILED is only valid when
7954 REGEX is non-NULL. */
7955 char *regex;
7956 std::unique_ptr<compiled_regex> compiled;
7957 };
7958
7959 solib_catchpoint::~solib_catchpoint ()
7960 {
7961 xfree (this->regex);
7962 }
7963
7964 static int
7965 insert_catch_solib (struct bp_location *ignore)
7966 {
7967 return 0;
7968 }
7969
7970 static int
7971 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7972 {
7973 return 0;
7974 }
7975
7976 static int
7977 breakpoint_hit_catch_solib (const struct bp_location *bl,
7978 const address_space *aspace,
7979 CORE_ADDR bp_addr,
7980 const struct target_waitstatus *ws)
7981 {
7982 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7983 struct breakpoint *other;
7984
7985 if (ws->kind == TARGET_WAITKIND_LOADED)
7986 return 1;
7987
7988 ALL_BREAKPOINTS (other)
7989 {
7990 struct bp_location *other_bl;
7991
7992 if (other == bl->owner)
7993 continue;
7994
7995 if (other->type != bp_shlib_event)
7996 continue;
7997
7998 if (self->pspace != NULL && other->pspace != self->pspace)
7999 continue;
8000
8001 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8002 {
8003 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8004 return 1;
8005 }
8006 }
8007
8008 return 0;
8009 }
8010
8011 static void
8012 check_status_catch_solib (struct bpstats *bs)
8013 {
8014 struct solib_catchpoint *self
8015 = (struct solib_catchpoint *) bs->breakpoint_at;
8016
8017 if (self->is_load)
8018 {
8019 struct so_list *iter;
8020
8021 for (int ix = 0;
8022 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8023 ix, iter);
8024 ++ix)
8025 {
8026 if (!self->regex
8027 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8028 return;
8029 }
8030 }
8031 else
8032 {
8033 for (const std::string &iter : current_program_space->deleted_solibs)
8034 {
8035 if (!self->regex
8036 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8037 return;
8038 }
8039 }
8040
8041 bs->stop = 0;
8042 bs->print_it = print_it_noop;
8043 }
8044
8045 static enum print_stop_action
8046 print_it_catch_solib (bpstat bs)
8047 {
8048 struct breakpoint *b = bs->breakpoint_at;
8049 struct ui_out *uiout = current_uiout;
8050
8051 annotate_catchpoint (b->number);
8052 maybe_print_thread_hit_breakpoint (uiout);
8053 if (b->disposition == disp_del)
8054 uiout->text ("Temporary catchpoint ");
8055 else
8056 uiout->text ("Catchpoint ");
8057 uiout->field_int ("bkptno", b->number);
8058 uiout->text ("\n");
8059 if (uiout->is_mi_like_p ())
8060 uiout->field_string ("disp", bpdisp_text (b->disposition));
8061 print_solib_event (1);
8062 return PRINT_SRC_AND_LOC;
8063 }
8064
8065 static void
8066 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8067 {
8068 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8069 struct value_print_options opts;
8070 struct ui_out *uiout = current_uiout;
8071 char *msg;
8072
8073 get_user_print_options (&opts);
8074 /* Field 4, the address, is omitted (which makes the columns not
8075 line up too nicely with the headers, but the effect is relatively
8076 readable). */
8077 if (opts.addressprint)
8078 {
8079 annotate_field (4);
8080 uiout->field_skip ("addr");
8081 }
8082
8083 annotate_field (5);
8084 if (self->is_load)
8085 {
8086 if (self->regex)
8087 msg = xstrprintf (_("load of library matching %s"), self->regex);
8088 else
8089 msg = xstrdup (_("load of library"));
8090 }
8091 else
8092 {
8093 if (self->regex)
8094 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8095 else
8096 msg = xstrdup (_("unload of library"));
8097 }
8098 uiout->field_string ("what", msg);
8099 xfree (msg);
8100
8101 if (uiout->is_mi_like_p ())
8102 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8103 }
8104
8105 static void
8106 print_mention_catch_solib (struct breakpoint *b)
8107 {
8108 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8109
8110 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8111 self->is_load ? "load" : "unload");
8112 }
8113
8114 static void
8115 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8116 {
8117 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8118
8119 fprintf_unfiltered (fp, "%s %s",
8120 b->disposition == disp_del ? "tcatch" : "catch",
8121 self->is_load ? "load" : "unload");
8122 if (self->regex)
8123 fprintf_unfiltered (fp, " %s", self->regex);
8124 fprintf_unfiltered (fp, "\n");
8125 }
8126
8127 static struct breakpoint_ops catch_solib_breakpoint_ops;
8128
8129 /* Shared helper function (MI and CLI) for creating and installing
8130 a shared object event catchpoint. If IS_LOAD is non-zero then
8131 the events to be caught are load events, otherwise they are
8132 unload events. If IS_TEMP is non-zero the catchpoint is a
8133 temporary one. If ENABLED is non-zero the catchpoint is
8134 created in an enabled state. */
8135
8136 void
8137 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8138 {
8139 struct gdbarch *gdbarch = get_current_arch ();
8140
8141 if (!arg)
8142 arg = "";
8143 arg = skip_spaces (arg);
8144
8145 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8146
8147 if (*arg != '\0')
8148 {
8149 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8150 _("Invalid regexp")));
8151 c->regex = xstrdup (arg);
8152 }
8153
8154 c->is_load = is_load;
8155 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8156 &catch_solib_breakpoint_ops);
8157
8158 c->enable_state = enabled ? bp_enabled : bp_disabled;
8159
8160 install_breakpoint (0, std::move (c), 1);
8161 }
8162
8163 /* A helper function that does all the work for "catch load" and
8164 "catch unload". */
8165
8166 static void
8167 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8168 struct cmd_list_element *command)
8169 {
8170 int tempflag;
8171 const int enabled = 1;
8172
8173 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8174
8175 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8176 }
8177
8178 static void
8179 catch_load_command_1 (const char *arg, int from_tty,
8180 struct cmd_list_element *command)
8181 {
8182 catch_load_or_unload (arg, from_tty, 1, command);
8183 }
8184
8185 static void
8186 catch_unload_command_1 (const char *arg, int from_tty,
8187 struct cmd_list_element *command)
8188 {
8189 catch_load_or_unload (arg, from_tty, 0, command);
8190 }
8191
8192 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8193 is non-zero, then make the breakpoint temporary. If COND_STRING is
8194 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8195 the breakpoint_ops structure associated to the catchpoint. */
8196
8197 void
8198 init_catchpoint (struct breakpoint *b,
8199 struct gdbarch *gdbarch, int tempflag,
8200 const char *cond_string,
8201 const struct breakpoint_ops *ops)
8202 {
8203 symtab_and_line sal;
8204 sal.pspace = current_program_space;
8205
8206 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8207
8208 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8209 b->disposition = tempflag ? disp_del : disp_donttouch;
8210 }
8211
8212 void
8213 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8214 {
8215 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8216 set_breakpoint_number (internal, b);
8217 if (is_tracepoint (b))
8218 set_tracepoint_count (breakpoint_count);
8219 if (!internal)
8220 mention (b);
8221 gdb::observers::breakpoint_created.notify (b);
8222
8223 if (update_gll)
8224 update_global_location_list (UGLL_MAY_INSERT);
8225 }
8226
8227 static void
8228 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8229 int tempflag, const char *cond_string,
8230 const struct breakpoint_ops *ops)
8231 {
8232 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8233
8234 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8235
8236 c->forked_inferior_pid = null_ptid;
8237
8238 install_breakpoint (0, std::move (c), 1);
8239 }
8240
8241 /* Exec catchpoints. */
8242
8243 /* An instance of this type is used to represent an exec catchpoint.
8244 A breakpoint is really of this type iff its ops pointer points to
8245 CATCH_EXEC_BREAKPOINT_OPS. */
8246
8247 struct exec_catchpoint : public breakpoint
8248 {
8249 ~exec_catchpoint () override;
8250
8251 /* Filename of a program whose exec triggered this catchpoint.
8252 This field is only valid immediately after this catchpoint has
8253 triggered. */
8254 char *exec_pathname;
8255 };
8256
8257 /* Exec catchpoint destructor. */
8258
8259 exec_catchpoint::~exec_catchpoint ()
8260 {
8261 xfree (this->exec_pathname);
8262 }
8263
8264 static int
8265 insert_catch_exec (struct bp_location *bl)
8266 {
8267 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8268 }
8269
8270 static int
8271 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8272 {
8273 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8274 }
8275
8276 static int
8277 breakpoint_hit_catch_exec (const struct bp_location *bl,
8278 const address_space *aspace, CORE_ADDR bp_addr,
8279 const struct target_waitstatus *ws)
8280 {
8281 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8282
8283 if (ws->kind != TARGET_WAITKIND_EXECD)
8284 return 0;
8285
8286 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8287 return 1;
8288 }
8289
8290 static enum print_stop_action
8291 print_it_catch_exec (bpstat bs)
8292 {
8293 struct ui_out *uiout = current_uiout;
8294 struct breakpoint *b = bs->breakpoint_at;
8295 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8296
8297 annotate_catchpoint (b->number);
8298 maybe_print_thread_hit_breakpoint (uiout);
8299 if (b->disposition == disp_del)
8300 uiout->text ("Temporary catchpoint ");
8301 else
8302 uiout->text ("Catchpoint ");
8303 if (uiout->is_mi_like_p ())
8304 {
8305 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8306 uiout->field_string ("disp", bpdisp_text (b->disposition));
8307 }
8308 uiout->field_int ("bkptno", b->number);
8309 uiout->text (" (exec'd ");
8310 uiout->field_string ("new-exec", c->exec_pathname);
8311 uiout->text ("), ");
8312
8313 return PRINT_SRC_AND_LOC;
8314 }
8315
8316 static void
8317 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8318 {
8319 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8320 struct value_print_options opts;
8321 struct ui_out *uiout = current_uiout;
8322
8323 get_user_print_options (&opts);
8324
8325 /* Field 4, the address, is omitted (which makes the columns
8326 not line up too nicely with the headers, but the effect
8327 is relatively readable). */
8328 if (opts.addressprint)
8329 uiout->field_skip ("addr");
8330 annotate_field (5);
8331 uiout->text ("exec");
8332 if (c->exec_pathname != NULL)
8333 {
8334 uiout->text (", program \"");
8335 uiout->field_string ("what", c->exec_pathname);
8336 uiout->text ("\" ");
8337 }
8338
8339 if (uiout->is_mi_like_p ())
8340 uiout->field_string ("catch-type", "exec");
8341 }
8342
8343 static void
8344 print_mention_catch_exec (struct breakpoint *b)
8345 {
8346 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8347 }
8348
8349 /* Implement the "print_recreate" breakpoint_ops method for exec
8350 catchpoints. */
8351
8352 static void
8353 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8354 {
8355 fprintf_unfiltered (fp, "catch exec");
8356 print_recreate_thread (b, fp);
8357 }
8358
8359 static struct breakpoint_ops catch_exec_breakpoint_ops;
8360
8361 static int
8362 hw_breakpoint_used_count (void)
8363 {
8364 int i = 0;
8365 struct breakpoint *b;
8366 struct bp_location *bl;
8367
8368 ALL_BREAKPOINTS (b)
8369 {
8370 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8371 for (bl = b->loc; bl; bl = bl->next)
8372 {
8373 /* Special types of hardware breakpoints may use more than
8374 one register. */
8375 i += b->ops->resources_needed (bl);
8376 }
8377 }
8378
8379 return i;
8380 }
8381
8382 /* Returns the resources B would use if it were a hardware
8383 watchpoint. */
8384
8385 static int
8386 hw_watchpoint_use_count (struct breakpoint *b)
8387 {
8388 int i = 0;
8389 struct bp_location *bl;
8390
8391 if (!breakpoint_enabled (b))
8392 return 0;
8393
8394 for (bl = b->loc; bl; bl = bl->next)
8395 {
8396 /* Special types of hardware watchpoints may use more than
8397 one register. */
8398 i += b->ops->resources_needed (bl);
8399 }
8400
8401 return i;
8402 }
8403
8404 /* Returns the sum the used resources of all hardware watchpoints of
8405 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8406 the sum of the used resources of all hardware watchpoints of other
8407 types _not_ TYPE. */
8408
8409 static int
8410 hw_watchpoint_used_count_others (struct breakpoint *except,
8411 enum bptype type, int *other_type_used)
8412 {
8413 int i = 0;
8414 struct breakpoint *b;
8415
8416 *other_type_used = 0;
8417 ALL_BREAKPOINTS (b)
8418 {
8419 if (b == except)
8420 continue;
8421 if (!breakpoint_enabled (b))
8422 continue;
8423
8424 if (b->type == type)
8425 i += hw_watchpoint_use_count (b);
8426 else if (is_hardware_watchpoint (b))
8427 *other_type_used = 1;
8428 }
8429
8430 return i;
8431 }
8432
8433 void
8434 disable_watchpoints_before_interactive_call_start (void)
8435 {
8436 struct breakpoint *b;
8437
8438 ALL_BREAKPOINTS (b)
8439 {
8440 if (is_watchpoint (b) && breakpoint_enabled (b))
8441 {
8442 b->enable_state = bp_call_disabled;
8443 update_global_location_list (UGLL_DONT_INSERT);
8444 }
8445 }
8446 }
8447
8448 void
8449 enable_watchpoints_after_interactive_call_stop (void)
8450 {
8451 struct breakpoint *b;
8452
8453 ALL_BREAKPOINTS (b)
8454 {
8455 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8456 {
8457 b->enable_state = bp_enabled;
8458 update_global_location_list (UGLL_MAY_INSERT);
8459 }
8460 }
8461 }
8462
8463 void
8464 disable_breakpoints_before_startup (void)
8465 {
8466 current_program_space->executing_startup = 1;
8467 update_global_location_list (UGLL_DONT_INSERT);
8468 }
8469
8470 void
8471 enable_breakpoints_after_startup (void)
8472 {
8473 current_program_space->executing_startup = 0;
8474 breakpoint_re_set ();
8475 }
8476
8477 /* Create a new single-step breakpoint for thread THREAD, with no
8478 locations. */
8479
8480 static struct breakpoint *
8481 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8482 {
8483 std::unique_ptr<breakpoint> b (new breakpoint ());
8484
8485 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8486 &momentary_breakpoint_ops);
8487
8488 b->disposition = disp_donttouch;
8489 b->frame_id = null_frame_id;
8490
8491 b->thread = thread;
8492 gdb_assert (b->thread != 0);
8493
8494 return add_to_breakpoint_chain (std::move (b));
8495 }
8496
8497 /* Set a momentary breakpoint of type TYPE at address specified by
8498 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8499 frame. */
8500
8501 breakpoint_up
8502 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8503 struct frame_id frame_id, enum bptype type)
8504 {
8505 struct breakpoint *b;
8506
8507 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8508 tail-called one. */
8509 gdb_assert (!frame_id_artificial_p (frame_id));
8510
8511 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8512 b->enable_state = bp_enabled;
8513 b->disposition = disp_donttouch;
8514 b->frame_id = frame_id;
8515
8516 /* If we're debugging a multi-threaded program, then we want
8517 momentary breakpoints to be active in only a single thread of
8518 control. */
8519 if (in_thread_list (inferior_ptid))
8520 b->thread = ptid_to_global_thread_id (inferior_ptid);
8521
8522 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8523
8524 return breakpoint_up (b);
8525 }
8526
8527 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8528 The new breakpoint will have type TYPE, use OPS as its
8529 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8530
8531 static struct breakpoint *
8532 momentary_breakpoint_from_master (struct breakpoint *orig,
8533 enum bptype type,
8534 const struct breakpoint_ops *ops,
8535 int loc_enabled)
8536 {
8537 struct breakpoint *copy;
8538
8539 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8540 copy->loc = allocate_bp_location (copy);
8541 set_breakpoint_location_function (copy->loc, 1);
8542
8543 copy->loc->gdbarch = orig->loc->gdbarch;
8544 copy->loc->requested_address = orig->loc->requested_address;
8545 copy->loc->address = orig->loc->address;
8546 copy->loc->section = orig->loc->section;
8547 copy->loc->pspace = orig->loc->pspace;
8548 copy->loc->probe = orig->loc->probe;
8549 copy->loc->line_number = orig->loc->line_number;
8550 copy->loc->symtab = orig->loc->symtab;
8551 copy->loc->enabled = loc_enabled;
8552 copy->frame_id = orig->frame_id;
8553 copy->thread = orig->thread;
8554 copy->pspace = orig->pspace;
8555
8556 copy->enable_state = bp_enabled;
8557 copy->disposition = disp_donttouch;
8558 copy->number = internal_breakpoint_number--;
8559
8560 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8561 return copy;
8562 }
8563
8564 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8565 ORIG is NULL. */
8566
8567 struct breakpoint *
8568 clone_momentary_breakpoint (struct breakpoint *orig)
8569 {
8570 /* If there's nothing to clone, then return nothing. */
8571 if (orig == NULL)
8572 return NULL;
8573
8574 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8575 }
8576
8577 breakpoint_up
8578 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8579 enum bptype type)
8580 {
8581 struct symtab_and_line sal;
8582
8583 sal = find_pc_line (pc, 0);
8584 sal.pc = pc;
8585 sal.section = find_pc_overlay (pc);
8586 sal.explicit_pc = 1;
8587
8588 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8589 }
8590 \f
8591
8592 /* Tell the user we have just set a breakpoint B. */
8593
8594 static void
8595 mention (struct breakpoint *b)
8596 {
8597 b->ops->print_mention (b);
8598 current_uiout->text ("\n");
8599 }
8600 \f
8601
8602 static int bp_loc_is_permanent (struct bp_location *loc);
8603
8604 static struct bp_location *
8605 add_location_to_breakpoint (struct breakpoint *b,
8606 const struct symtab_and_line *sal)
8607 {
8608 struct bp_location *loc, **tmp;
8609 CORE_ADDR adjusted_address;
8610 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8611
8612 if (loc_gdbarch == NULL)
8613 loc_gdbarch = b->gdbarch;
8614
8615 /* Adjust the breakpoint's address prior to allocating a location.
8616 Once we call allocate_bp_location(), that mostly uninitialized
8617 location will be placed on the location chain. Adjustment of the
8618 breakpoint may cause target_read_memory() to be called and we do
8619 not want its scan of the location chain to find a breakpoint and
8620 location that's only been partially initialized. */
8621 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8622 sal->pc, b->type);
8623
8624 /* Sort the locations by their ADDRESS. */
8625 loc = allocate_bp_location (b);
8626 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8627 tmp = &((*tmp)->next))
8628 ;
8629 loc->next = *tmp;
8630 *tmp = loc;
8631
8632 loc->requested_address = sal->pc;
8633 loc->address = adjusted_address;
8634 loc->pspace = sal->pspace;
8635 loc->probe.prob = sal->prob;
8636 loc->probe.objfile = sal->objfile;
8637 gdb_assert (loc->pspace != NULL);
8638 loc->section = sal->section;
8639 loc->gdbarch = loc_gdbarch;
8640 loc->line_number = sal->line;
8641 loc->symtab = sal->symtab;
8642 loc->symbol = sal->symbol;
8643 loc->msymbol = sal->msymbol;
8644 loc->objfile = sal->objfile;
8645
8646 set_breakpoint_location_function (loc,
8647 sal->explicit_pc || sal->explicit_line);
8648
8649 /* While by definition, permanent breakpoints are already present in the
8650 code, we don't mark the location as inserted. Normally one would expect
8651 that GDB could rely on that breakpoint instruction to stop the program,
8652 thus removing the need to insert its own breakpoint, except that executing
8653 the breakpoint instruction can kill the target instead of reporting a
8654 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8655 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8656 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8657 breakpoint be inserted normally results in QEMU knowing about the GDB
8658 breakpoint, and thus trap before the breakpoint instruction is executed.
8659 (If GDB later needs to continue execution past the permanent breakpoint,
8660 it manually increments the PC, thus avoiding executing the breakpoint
8661 instruction.) */
8662 if (bp_loc_is_permanent (loc))
8663 loc->permanent = 1;
8664
8665 return loc;
8666 }
8667 \f
8668
8669 /* See breakpoint.h. */
8670
8671 int
8672 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8673 {
8674 int len;
8675 CORE_ADDR addr;
8676 const gdb_byte *bpoint;
8677 gdb_byte *target_mem;
8678
8679 addr = address;
8680 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8681
8682 /* Software breakpoints unsupported? */
8683 if (bpoint == NULL)
8684 return 0;
8685
8686 target_mem = (gdb_byte *) alloca (len);
8687
8688 /* Enable the automatic memory restoration from breakpoints while
8689 we read the memory. Otherwise we could say about our temporary
8690 breakpoints they are permanent. */
8691 scoped_restore restore_memory
8692 = make_scoped_restore_show_memory_breakpoints (0);
8693
8694 if (target_read_memory (address, target_mem, len) == 0
8695 && memcmp (target_mem, bpoint, len) == 0)
8696 return 1;
8697
8698 return 0;
8699 }
8700
8701 /* Return 1 if LOC is pointing to a permanent breakpoint,
8702 return 0 otherwise. */
8703
8704 static int
8705 bp_loc_is_permanent (struct bp_location *loc)
8706 {
8707 gdb_assert (loc != NULL);
8708
8709 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8710 attempt to read from the addresses the locations of these breakpoint types
8711 point to. program_breakpoint_here_p, below, will attempt to read
8712 memory. */
8713 if (!breakpoint_address_is_meaningful (loc->owner))
8714 return 0;
8715
8716 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8717 switch_to_program_space_and_thread (loc->pspace);
8718 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8719 }
8720
8721 /* Build a command list for the dprintf corresponding to the current
8722 settings of the dprintf style options. */
8723
8724 static void
8725 update_dprintf_command_list (struct breakpoint *b)
8726 {
8727 char *dprintf_args = b->extra_string;
8728 char *printf_line = NULL;
8729
8730 if (!dprintf_args)
8731 return;
8732
8733 dprintf_args = skip_spaces (dprintf_args);
8734
8735 /* Allow a comma, as it may have terminated a location, but don't
8736 insist on it. */
8737 if (*dprintf_args == ',')
8738 ++dprintf_args;
8739 dprintf_args = skip_spaces (dprintf_args);
8740
8741 if (*dprintf_args != '"')
8742 error (_("Bad format string, missing '\"'."));
8743
8744 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8745 printf_line = xstrprintf ("printf %s", dprintf_args);
8746 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8747 {
8748 if (!dprintf_function)
8749 error (_("No function supplied for dprintf call"));
8750
8751 if (dprintf_channel && strlen (dprintf_channel) > 0)
8752 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8753 dprintf_function,
8754 dprintf_channel,
8755 dprintf_args);
8756 else
8757 printf_line = xstrprintf ("call (void) %s (%s)",
8758 dprintf_function,
8759 dprintf_args);
8760 }
8761 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8762 {
8763 if (target_can_run_breakpoint_commands ())
8764 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8765 else
8766 {
8767 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8768 printf_line = xstrprintf ("printf %s", dprintf_args);
8769 }
8770 }
8771 else
8772 internal_error (__FILE__, __LINE__,
8773 _("Invalid dprintf style."));
8774
8775 gdb_assert (printf_line != NULL);
8776
8777 /* Manufacture a printf sequence. */
8778 struct command_line *printf_cmd_line
8779 = new struct command_line (simple_control, printf_line);
8780 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8781 command_lines_deleter ()));
8782 }
8783
8784 /* Update all dprintf commands, making their command lists reflect
8785 current style settings. */
8786
8787 static void
8788 update_dprintf_commands (const char *args, int from_tty,
8789 struct cmd_list_element *c)
8790 {
8791 struct breakpoint *b;
8792
8793 ALL_BREAKPOINTS (b)
8794 {
8795 if (b->type == bp_dprintf)
8796 update_dprintf_command_list (b);
8797 }
8798 }
8799
8800 /* Create a breakpoint with SAL as location. Use LOCATION
8801 as a description of the location, and COND_STRING
8802 as condition expression. If LOCATION is NULL then create an
8803 "address location" from the address in the SAL. */
8804
8805 static void
8806 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8807 gdb::array_view<const symtab_and_line> sals,
8808 event_location_up &&location,
8809 gdb::unique_xmalloc_ptr<char> filter,
8810 gdb::unique_xmalloc_ptr<char> cond_string,
8811 gdb::unique_xmalloc_ptr<char> extra_string,
8812 enum bptype type, enum bpdisp disposition,
8813 int thread, int task, int ignore_count,
8814 const struct breakpoint_ops *ops, int from_tty,
8815 int enabled, int internal, unsigned flags,
8816 int display_canonical)
8817 {
8818 int i;
8819
8820 if (type == bp_hardware_breakpoint)
8821 {
8822 int target_resources_ok;
8823
8824 i = hw_breakpoint_used_count ();
8825 target_resources_ok =
8826 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8827 i + 1, 0);
8828 if (target_resources_ok == 0)
8829 error (_("No hardware breakpoint support in the target."));
8830 else if (target_resources_ok < 0)
8831 error (_("Hardware breakpoints used exceeds limit."));
8832 }
8833
8834 gdb_assert (!sals.empty ());
8835
8836 for (const auto &sal : sals)
8837 {
8838 struct bp_location *loc;
8839
8840 if (from_tty)
8841 {
8842 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8843 if (!loc_gdbarch)
8844 loc_gdbarch = gdbarch;
8845
8846 describe_other_breakpoints (loc_gdbarch,
8847 sal.pspace, sal.pc, sal.section, thread);
8848 }
8849
8850 if (&sal == &sals[0])
8851 {
8852 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8853 b->thread = thread;
8854 b->task = task;
8855
8856 b->cond_string = cond_string.release ();
8857 b->extra_string = extra_string.release ();
8858 b->ignore_count = ignore_count;
8859 b->enable_state = enabled ? bp_enabled : bp_disabled;
8860 b->disposition = disposition;
8861
8862 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8863 b->loc->inserted = 1;
8864
8865 if (type == bp_static_tracepoint)
8866 {
8867 struct tracepoint *t = (struct tracepoint *) b;
8868 struct static_tracepoint_marker marker;
8869
8870 if (strace_marker_p (b))
8871 {
8872 /* We already know the marker exists, otherwise, we
8873 wouldn't see a sal for it. */
8874 const char *p
8875 = &event_location_to_string (b->location.get ())[3];
8876 const char *endp;
8877
8878 p = skip_spaces (p);
8879
8880 endp = skip_to_space (p);
8881
8882 t->static_trace_marker_id.assign (p, endp - p);
8883
8884 printf_filtered (_("Probed static tracepoint "
8885 "marker \"%s\"\n"),
8886 t->static_trace_marker_id.c_str ());
8887 }
8888 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8889 {
8890 t->static_trace_marker_id = std::move (marker.str_id);
8891
8892 printf_filtered (_("Probed static tracepoint "
8893 "marker \"%s\"\n"),
8894 t->static_trace_marker_id.c_str ());
8895 }
8896 else
8897 warning (_("Couldn't determine the static "
8898 "tracepoint marker to probe"));
8899 }
8900
8901 loc = b->loc;
8902 }
8903 else
8904 {
8905 loc = add_location_to_breakpoint (b, &sal);
8906 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8907 loc->inserted = 1;
8908 }
8909
8910 if (b->cond_string)
8911 {
8912 const char *arg = b->cond_string;
8913
8914 loc->cond = parse_exp_1 (&arg, loc->address,
8915 block_for_pc (loc->address), 0);
8916 if (*arg)
8917 error (_("Garbage '%s' follows condition"), arg);
8918 }
8919
8920 /* Dynamic printf requires and uses additional arguments on the
8921 command line, otherwise it's an error. */
8922 if (type == bp_dprintf)
8923 {
8924 if (b->extra_string)
8925 update_dprintf_command_list (b);
8926 else
8927 error (_("Format string required"));
8928 }
8929 else if (b->extra_string)
8930 error (_("Garbage '%s' at end of command"), b->extra_string);
8931 }
8932
8933 b->display_canonical = display_canonical;
8934 if (location != NULL)
8935 b->location = std::move (location);
8936 else
8937 b->location = new_address_location (b->loc->address, NULL, 0);
8938 b->filter = filter.release ();
8939 }
8940
8941 static void
8942 create_breakpoint_sal (struct gdbarch *gdbarch,
8943 gdb::array_view<const symtab_and_line> sals,
8944 event_location_up &&location,
8945 gdb::unique_xmalloc_ptr<char> filter,
8946 gdb::unique_xmalloc_ptr<char> cond_string,
8947 gdb::unique_xmalloc_ptr<char> extra_string,
8948 enum bptype type, enum bpdisp disposition,
8949 int thread, int task, int ignore_count,
8950 const struct breakpoint_ops *ops, int from_tty,
8951 int enabled, int internal, unsigned flags,
8952 int display_canonical)
8953 {
8954 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8955
8956 init_breakpoint_sal (b.get (), gdbarch,
8957 sals, std::move (location),
8958 std::move (filter),
8959 std::move (cond_string),
8960 std::move (extra_string),
8961 type, disposition,
8962 thread, task, ignore_count,
8963 ops, from_tty,
8964 enabled, internal, flags,
8965 display_canonical);
8966
8967 install_breakpoint (internal, std::move (b), 0);
8968 }
8969
8970 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8971 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8972 value. COND_STRING, if not NULL, specified the condition to be
8973 used for all breakpoints. Essentially the only case where
8974 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8975 function. In that case, it's still not possible to specify
8976 separate conditions for different overloaded functions, so
8977 we take just a single condition string.
8978
8979 NOTE: If the function succeeds, the caller is expected to cleanup
8980 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8981 array contents). If the function fails (error() is called), the
8982 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8983 COND and SALS arrays and each of those arrays contents. */
8984
8985 static void
8986 create_breakpoints_sal (struct gdbarch *gdbarch,
8987 struct linespec_result *canonical,
8988 gdb::unique_xmalloc_ptr<char> cond_string,
8989 gdb::unique_xmalloc_ptr<char> extra_string,
8990 enum bptype type, enum bpdisp disposition,
8991 int thread, int task, int ignore_count,
8992 const struct breakpoint_ops *ops, int from_tty,
8993 int enabled, int internal, unsigned flags)
8994 {
8995 if (canonical->pre_expanded)
8996 gdb_assert (canonical->lsals.size () == 1);
8997
8998 for (const auto &lsal : canonical->lsals)
8999 {
9000 /* Note that 'location' can be NULL in the case of a plain
9001 'break', without arguments. */
9002 event_location_up location
9003 = (canonical->location != NULL
9004 ? copy_event_location (canonical->location.get ()) : NULL);
9005 gdb::unique_xmalloc_ptr<char> filter_string
9006 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9007
9008 create_breakpoint_sal (gdbarch, lsal.sals,
9009 std::move (location),
9010 std::move (filter_string),
9011 std::move (cond_string),
9012 std::move (extra_string),
9013 type, disposition,
9014 thread, task, ignore_count, ops,
9015 from_tty, enabled, internal, flags,
9016 canonical->special_display);
9017 }
9018 }
9019
9020 /* Parse LOCATION which is assumed to be a SAL specification possibly
9021 followed by conditionals. On return, SALS contains an array of SAL
9022 addresses found. LOCATION points to the end of the SAL (for
9023 linespec locations).
9024
9025 The array and the line spec strings are allocated on the heap, it is
9026 the caller's responsibility to free them. */
9027
9028 static void
9029 parse_breakpoint_sals (const struct event_location *location,
9030 struct linespec_result *canonical)
9031 {
9032 struct symtab_and_line cursal;
9033
9034 if (event_location_type (location) == LINESPEC_LOCATION)
9035 {
9036 const char *spec = get_linespec_location (location)->spec_string;
9037
9038 if (spec == NULL)
9039 {
9040 /* The last displayed codepoint, if it's valid, is our default
9041 breakpoint address. */
9042 if (last_displayed_sal_is_valid ())
9043 {
9044 /* Set sal's pspace, pc, symtab, and line to the values
9045 corresponding to the last call to print_frame_info.
9046 Be sure to reinitialize LINE with NOTCURRENT == 0
9047 as the breakpoint line number is inappropriate otherwise.
9048 find_pc_line would adjust PC, re-set it back. */
9049 symtab_and_line sal = get_last_displayed_sal ();
9050 CORE_ADDR pc = sal.pc;
9051
9052 sal = find_pc_line (pc, 0);
9053
9054 /* "break" without arguments is equivalent to "break *PC"
9055 where PC is the last displayed codepoint's address. So
9056 make sure to set sal.explicit_pc to prevent GDB from
9057 trying to expand the list of sals to include all other
9058 instances with the same symtab and line. */
9059 sal.pc = pc;
9060 sal.explicit_pc = 1;
9061
9062 struct linespec_sals lsal;
9063 lsal.sals = {sal};
9064 lsal.canonical = NULL;
9065
9066 canonical->lsals.push_back (std::move (lsal));
9067 return;
9068 }
9069 else
9070 error (_("No default breakpoint address now."));
9071 }
9072 }
9073
9074 /* Force almost all breakpoints to be in terms of the
9075 current_source_symtab (which is decode_line_1's default).
9076 This should produce the results we want almost all of the
9077 time while leaving default_breakpoint_* alone.
9078
9079 ObjC: However, don't match an Objective-C method name which
9080 may have a '+' or '-' succeeded by a '['. */
9081 cursal = get_current_source_symtab_and_line ();
9082 if (last_displayed_sal_is_valid ())
9083 {
9084 const char *spec = NULL;
9085
9086 if (event_location_type (location) == LINESPEC_LOCATION)
9087 spec = get_linespec_location (location)->spec_string;
9088
9089 if (!cursal.symtab
9090 || (spec != NULL
9091 && strchr ("+-", spec[0]) != NULL
9092 && spec[1] != '['))
9093 {
9094 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9095 get_last_displayed_symtab (),
9096 get_last_displayed_line (),
9097 canonical, NULL, NULL);
9098 return;
9099 }
9100 }
9101
9102 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9103 cursal.symtab, cursal.line, canonical, NULL, NULL);
9104 }
9105
9106
9107 /* Convert each SAL into a real PC. Verify that the PC can be
9108 inserted as a breakpoint. If it can't throw an error. */
9109
9110 static void
9111 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9112 {
9113 for (auto &sal : sals)
9114 resolve_sal_pc (&sal);
9115 }
9116
9117 /* Fast tracepoints may have restrictions on valid locations. For
9118 instance, a fast tracepoint using a jump instead of a trap will
9119 likely have to overwrite more bytes than a trap would, and so can
9120 only be placed where the instruction is longer than the jump, or a
9121 multi-instruction sequence does not have a jump into the middle of
9122 it, etc. */
9123
9124 static void
9125 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9126 gdb::array_view<const symtab_and_line> sals)
9127 {
9128 for (const auto &sal : sals)
9129 {
9130 struct gdbarch *sarch;
9131
9132 sarch = get_sal_arch (sal);
9133 /* We fall back to GDBARCH if there is no architecture
9134 associated with SAL. */
9135 if (sarch == NULL)
9136 sarch = gdbarch;
9137 std::string msg;
9138 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9139 error (_("May not have a fast tracepoint at %s%s"),
9140 paddress (sarch, sal.pc), msg.c_str ());
9141 }
9142 }
9143
9144 /* Given TOK, a string specification of condition and thread, as
9145 accepted by the 'break' command, extract the condition
9146 string and thread number and set *COND_STRING and *THREAD.
9147 PC identifies the context at which the condition should be parsed.
9148 If no condition is found, *COND_STRING is set to NULL.
9149 If no thread is found, *THREAD is set to -1. */
9150
9151 static void
9152 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9153 char **cond_string, int *thread, int *task,
9154 char **rest)
9155 {
9156 *cond_string = NULL;
9157 *thread = -1;
9158 *task = 0;
9159 *rest = NULL;
9160
9161 while (tok && *tok)
9162 {
9163 const char *end_tok;
9164 int toklen;
9165 const char *cond_start = NULL;
9166 const char *cond_end = NULL;
9167
9168 tok = skip_spaces (tok);
9169
9170 if ((*tok == '"' || *tok == ',') && rest)
9171 {
9172 *rest = savestring (tok, strlen (tok));
9173 return;
9174 }
9175
9176 end_tok = skip_to_space (tok);
9177
9178 toklen = end_tok - tok;
9179
9180 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9181 {
9182 tok = cond_start = end_tok + 1;
9183 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9184 cond_end = tok;
9185 *cond_string = savestring (cond_start, cond_end - cond_start);
9186 }
9187 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9188 {
9189 const char *tmptok;
9190 struct thread_info *thr;
9191
9192 tok = end_tok + 1;
9193 thr = parse_thread_id (tok, &tmptok);
9194 if (tok == tmptok)
9195 error (_("Junk after thread keyword."));
9196 *thread = thr->global_num;
9197 tok = tmptok;
9198 }
9199 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9200 {
9201 char *tmptok;
9202
9203 tok = end_tok + 1;
9204 *task = strtol (tok, &tmptok, 0);
9205 if (tok == tmptok)
9206 error (_("Junk after task keyword."));
9207 if (!valid_task_id (*task))
9208 error (_("Unknown task %d."), *task);
9209 tok = tmptok;
9210 }
9211 else if (rest)
9212 {
9213 *rest = savestring (tok, strlen (tok));
9214 return;
9215 }
9216 else
9217 error (_("Junk at end of arguments."));
9218 }
9219 }
9220
9221 /* Decode a static tracepoint marker spec. */
9222
9223 static std::vector<symtab_and_line>
9224 decode_static_tracepoint_spec (const char **arg_p)
9225 {
9226 const char *p = &(*arg_p)[3];
9227 const char *endp;
9228
9229 p = skip_spaces (p);
9230
9231 endp = skip_to_space (p);
9232
9233 std::string marker_str (p, endp - p);
9234
9235 std::vector<static_tracepoint_marker> markers
9236 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9237 if (markers.empty ())
9238 error (_("No known static tracepoint marker named %s"),
9239 marker_str.c_str ());
9240
9241 std::vector<symtab_and_line> sals;
9242 sals.reserve (markers.size ());
9243
9244 for (const static_tracepoint_marker &marker : markers)
9245 {
9246 symtab_and_line sal = find_pc_line (marker.address, 0);
9247 sal.pc = marker.address;
9248 sals.push_back (sal);
9249 }
9250
9251 *arg_p = endp;
9252 return sals;
9253 }
9254
9255 /* See breakpoint.h. */
9256
9257 int
9258 create_breakpoint (struct gdbarch *gdbarch,
9259 const struct event_location *location,
9260 const char *cond_string,
9261 int thread, const char *extra_string,
9262 int parse_extra,
9263 int tempflag, enum bptype type_wanted,
9264 int ignore_count,
9265 enum auto_boolean pending_break_support,
9266 const struct breakpoint_ops *ops,
9267 int from_tty, int enabled, int internal,
9268 unsigned flags)
9269 {
9270 struct linespec_result canonical;
9271 struct cleanup *bkpt_chain = NULL;
9272 int pending = 0;
9273 int task = 0;
9274 int prev_bkpt_count = breakpoint_count;
9275
9276 gdb_assert (ops != NULL);
9277
9278 /* If extra_string isn't useful, set it to NULL. */
9279 if (extra_string != NULL && *extra_string == '\0')
9280 extra_string = NULL;
9281
9282 TRY
9283 {
9284 ops->create_sals_from_location (location, &canonical, type_wanted);
9285 }
9286 CATCH (e, RETURN_MASK_ERROR)
9287 {
9288 /* If caller is interested in rc value from parse, set
9289 value. */
9290 if (e.error == NOT_FOUND_ERROR)
9291 {
9292 /* If pending breakpoint support is turned off, throw
9293 error. */
9294
9295 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9296 throw_exception (e);
9297
9298 exception_print (gdb_stderr, e);
9299
9300 /* If pending breakpoint support is auto query and the user
9301 selects no, then simply return the error code. */
9302 if (pending_break_support == AUTO_BOOLEAN_AUTO
9303 && !nquery (_("Make %s pending on future shared library load? "),
9304 bptype_string (type_wanted)))
9305 return 0;
9306
9307 /* At this point, either the user was queried about setting
9308 a pending breakpoint and selected yes, or pending
9309 breakpoint behavior is on and thus a pending breakpoint
9310 is defaulted on behalf of the user. */
9311 pending = 1;
9312 }
9313 else
9314 throw_exception (e);
9315 }
9316 END_CATCH
9317
9318 if (!pending && canonical.lsals.empty ())
9319 return 0;
9320
9321 /* ----------------------------- SNIP -----------------------------
9322 Anything added to the cleanup chain beyond this point is assumed
9323 to be part of a breakpoint. If the breakpoint create succeeds
9324 then the memory is not reclaimed. */
9325 bkpt_chain = make_cleanup (null_cleanup, 0);
9326
9327 /* Resolve all line numbers to PC's and verify that the addresses
9328 are ok for the target. */
9329 if (!pending)
9330 {
9331 for (auto &lsal : canonical.lsals)
9332 breakpoint_sals_to_pc (lsal.sals);
9333 }
9334
9335 /* Fast tracepoints may have additional restrictions on location. */
9336 if (!pending && type_wanted == bp_fast_tracepoint)
9337 {
9338 for (const auto &lsal : canonical.lsals)
9339 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9340 }
9341
9342 /* Verify that condition can be parsed, before setting any
9343 breakpoints. Allocate a separate condition expression for each
9344 breakpoint. */
9345 if (!pending)
9346 {
9347 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9348 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9349
9350 if (parse_extra)
9351 {
9352 char *rest;
9353 char *cond;
9354
9355 const linespec_sals &lsal = canonical.lsals[0];
9356
9357 /* Here we only parse 'arg' to separate condition
9358 from thread number, so parsing in context of first
9359 sal is OK. When setting the breakpoint we'll
9360 re-parse it in context of each sal. */
9361
9362 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9363 &cond, &thread, &task, &rest);
9364 cond_string_copy.reset (cond);
9365 extra_string_copy.reset (rest);
9366 }
9367 else
9368 {
9369 if (type_wanted != bp_dprintf
9370 && extra_string != NULL && *extra_string != '\0')
9371 error (_("Garbage '%s' at end of location"), extra_string);
9372
9373 /* Create a private copy of condition string. */
9374 if (cond_string)
9375 cond_string_copy.reset (xstrdup (cond_string));
9376 /* Create a private copy of any extra string. */
9377 if (extra_string)
9378 extra_string_copy.reset (xstrdup (extra_string));
9379 }
9380
9381 ops->create_breakpoints_sal (gdbarch, &canonical,
9382 std::move (cond_string_copy),
9383 std::move (extra_string_copy),
9384 type_wanted,
9385 tempflag ? disp_del : disp_donttouch,
9386 thread, task, ignore_count, ops,
9387 from_tty, enabled, internal, flags);
9388 }
9389 else
9390 {
9391 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9392
9393 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9394 b->location = copy_event_location (location);
9395
9396 if (parse_extra)
9397 b->cond_string = NULL;
9398 else
9399 {
9400 /* Create a private copy of condition string. */
9401 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9402 b->thread = thread;
9403 }
9404
9405 /* Create a private copy of any extra string. */
9406 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9407 b->ignore_count = ignore_count;
9408 b->disposition = tempflag ? disp_del : disp_donttouch;
9409 b->condition_not_parsed = 1;
9410 b->enable_state = enabled ? bp_enabled : bp_disabled;
9411 if ((type_wanted != bp_breakpoint
9412 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9413 b->pspace = current_program_space;
9414
9415 install_breakpoint (internal, std::move (b), 0);
9416 }
9417
9418 if (canonical.lsals.size () > 1)
9419 {
9420 warning (_("Multiple breakpoints were set.\nUse the "
9421 "\"delete\" command to delete unwanted breakpoints."));
9422 prev_breakpoint_count = prev_bkpt_count;
9423 }
9424
9425 /* That's it. Discard the cleanups for data inserted into the
9426 breakpoint. */
9427 discard_cleanups (bkpt_chain);
9428
9429 /* error call may happen here - have BKPT_CHAIN already discarded. */
9430 update_global_location_list (UGLL_MAY_INSERT);
9431
9432 return 1;
9433 }
9434
9435 /* Set a breakpoint.
9436 ARG is a string describing breakpoint address,
9437 condition, and thread.
9438 FLAG specifies if a breakpoint is hardware on,
9439 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9440 and BP_TEMPFLAG. */
9441
9442 static void
9443 break_command_1 (const char *arg, int flag, int from_tty)
9444 {
9445 int tempflag = flag & BP_TEMPFLAG;
9446 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9447 ? bp_hardware_breakpoint
9448 : bp_breakpoint);
9449 struct breakpoint_ops *ops;
9450
9451 event_location_up location = string_to_event_location (&arg, current_language);
9452
9453 /* Matching breakpoints on probes. */
9454 if (location != NULL
9455 && event_location_type (location.get ()) == PROBE_LOCATION)
9456 ops = &bkpt_probe_breakpoint_ops;
9457 else
9458 ops = &bkpt_breakpoint_ops;
9459
9460 create_breakpoint (get_current_arch (),
9461 location.get (),
9462 NULL, 0, arg, 1 /* parse arg */,
9463 tempflag, type_wanted,
9464 0 /* Ignore count */,
9465 pending_break_support,
9466 ops,
9467 from_tty,
9468 1 /* enabled */,
9469 0 /* internal */,
9470 0);
9471 }
9472
9473 /* Helper function for break_command_1 and disassemble_command. */
9474
9475 void
9476 resolve_sal_pc (struct symtab_and_line *sal)
9477 {
9478 CORE_ADDR pc;
9479
9480 if (sal->pc == 0 && sal->symtab != NULL)
9481 {
9482 if (!find_line_pc (sal->symtab, sal->line, &pc))
9483 error (_("No line %d in file \"%s\"."),
9484 sal->line, symtab_to_filename_for_display (sal->symtab));
9485 sal->pc = pc;
9486
9487 /* If this SAL corresponds to a breakpoint inserted using a line
9488 number, then skip the function prologue if necessary. */
9489 if (sal->explicit_line)
9490 skip_prologue_sal (sal);
9491 }
9492
9493 if (sal->section == 0 && sal->symtab != NULL)
9494 {
9495 const struct blockvector *bv;
9496 const struct block *b;
9497 struct symbol *sym;
9498
9499 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9500 SYMTAB_COMPUNIT (sal->symtab));
9501 if (bv != NULL)
9502 {
9503 sym = block_linkage_function (b);
9504 if (sym != NULL)
9505 {
9506 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9507 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9508 sym);
9509 }
9510 else
9511 {
9512 /* It really is worthwhile to have the section, so we'll
9513 just have to look harder. This case can be executed
9514 if we have line numbers but no functions (as can
9515 happen in assembly source). */
9516
9517 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9518 switch_to_program_space_and_thread (sal->pspace);
9519
9520 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9521 if (msym.minsym)
9522 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9523 }
9524 }
9525 }
9526 }
9527
9528 void
9529 break_command (const char *arg, int from_tty)
9530 {
9531 break_command_1 (arg, 0, from_tty);
9532 }
9533
9534 void
9535 tbreak_command (const char *arg, int from_tty)
9536 {
9537 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9538 }
9539
9540 static void
9541 hbreak_command (const char *arg, int from_tty)
9542 {
9543 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9544 }
9545
9546 static void
9547 thbreak_command (const char *arg, int from_tty)
9548 {
9549 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9550 }
9551
9552 static void
9553 stop_command (const char *arg, int from_tty)
9554 {
9555 printf_filtered (_("Specify the type of breakpoint to set.\n\
9556 Usage: stop in <function | address>\n\
9557 stop at <line>\n"));
9558 }
9559
9560 static void
9561 stopin_command (const char *arg, int from_tty)
9562 {
9563 int badInput = 0;
9564
9565 if (arg == (char *) NULL)
9566 badInput = 1;
9567 else if (*arg != '*')
9568 {
9569 const char *argptr = arg;
9570 int hasColon = 0;
9571
9572 /* Look for a ':'. If this is a line number specification, then
9573 say it is bad, otherwise, it should be an address or
9574 function/method name. */
9575 while (*argptr && !hasColon)
9576 {
9577 hasColon = (*argptr == ':');
9578 argptr++;
9579 }
9580
9581 if (hasColon)
9582 badInput = (*argptr != ':'); /* Not a class::method */
9583 else
9584 badInput = isdigit (*arg); /* a simple line number */
9585 }
9586
9587 if (badInput)
9588 printf_filtered (_("Usage: stop in <function | address>\n"));
9589 else
9590 break_command_1 (arg, 0, from_tty);
9591 }
9592
9593 static void
9594 stopat_command (const char *arg, int from_tty)
9595 {
9596 int badInput = 0;
9597
9598 if (arg == (char *) NULL || *arg == '*') /* no line number */
9599 badInput = 1;
9600 else
9601 {
9602 const char *argptr = arg;
9603 int hasColon = 0;
9604
9605 /* Look for a ':'. If there is a '::' then get out, otherwise
9606 it is probably a line number. */
9607 while (*argptr && !hasColon)
9608 {
9609 hasColon = (*argptr == ':');
9610 argptr++;
9611 }
9612
9613 if (hasColon)
9614 badInput = (*argptr == ':'); /* we have class::method */
9615 else
9616 badInput = !isdigit (*arg); /* not a line number */
9617 }
9618
9619 if (badInput)
9620 printf_filtered (_("Usage: stop at <line>\n"));
9621 else
9622 break_command_1 (arg, 0, from_tty);
9623 }
9624
9625 /* The dynamic printf command is mostly like a regular breakpoint, but
9626 with a prewired command list consisting of a single output command,
9627 built from extra arguments supplied on the dprintf command
9628 line. */
9629
9630 static void
9631 dprintf_command (const char *arg, int from_tty)
9632 {
9633 event_location_up location = string_to_event_location (&arg, current_language);
9634
9635 /* If non-NULL, ARG should have been advanced past the location;
9636 the next character must be ','. */
9637 if (arg != NULL)
9638 {
9639 if (arg[0] != ',' || arg[1] == '\0')
9640 error (_("Format string required"));
9641 else
9642 {
9643 /* Skip the comma. */
9644 ++arg;
9645 }
9646 }
9647
9648 create_breakpoint (get_current_arch (),
9649 location.get (),
9650 NULL, 0, arg, 1 /* parse arg */,
9651 0, bp_dprintf,
9652 0 /* Ignore count */,
9653 pending_break_support,
9654 &dprintf_breakpoint_ops,
9655 from_tty,
9656 1 /* enabled */,
9657 0 /* internal */,
9658 0);
9659 }
9660
9661 static void
9662 agent_printf_command (const char *arg, int from_tty)
9663 {
9664 error (_("May only run agent-printf on the target"));
9665 }
9666
9667 /* Implement the "breakpoint_hit" breakpoint_ops method for
9668 ranged breakpoints. */
9669
9670 static int
9671 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9672 const address_space *aspace,
9673 CORE_ADDR bp_addr,
9674 const struct target_waitstatus *ws)
9675 {
9676 if (ws->kind != TARGET_WAITKIND_STOPPED
9677 || ws->value.sig != GDB_SIGNAL_TRAP)
9678 return 0;
9679
9680 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9681 bl->length, aspace, bp_addr);
9682 }
9683
9684 /* Implement the "resources_needed" breakpoint_ops method for
9685 ranged breakpoints. */
9686
9687 static int
9688 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9689 {
9690 return target_ranged_break_num_registers ();
9691 }
9692
9693 /* Implement the "print_it" breakpoint_ops method for
9694 ranged breakpoints. */
9695
9696 static enum print_stop_action
9697 print_it_ranged_breakpoint (bpstat bs)
9698 {
9699 struct breakpoint *b = bs->breakpoint_at;
9700 struct bp_location *bl = b->loc;
9701 struct ui_out *uiout = current_uiout;
9702
9703 gdb_assert (b->type == bp_hardware_breakpoint);
9704
9705 /* Ranged breakpoints have only one location. */
9706 gdb_assert (bl && bl->next == NULL);
9707
9708 annotate_breakpoint (b->number);
9709
9710 maybe_print_thread_hit_breakpoint (uiout);
9711
9712 if (b->disposition == disp_del)
9713 uiout->text ("Temporary ranged breakpoint ");
9714 else
9715 uiout->text ("Ranged breakpoint ");
9716 if (uiout->is_mi_like_p ())
9717 {
9718 uiout->field_string ("reason",
9719 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9720 uiout->field_string ("disp", bpdisp_text (b->disposition));
9721 }
9722 uiout->field_int ("bkptno", b->number);
9723 uiout->text (", ");
9724
9725 return PRINT_SRC_AND_LOC;
9726 }
9727
9728 /* Implement the "print_one" breakpoint_ops method for
9729 ranged breakpoints. */
9730
9731 static void
9732 print_one_ranged_breakpoint (struct breakpoint *b,
9733 struct bp_location **last_loc)
9734 {
9735 struct bp_location *bl = b->loc;
9736 struct value_print_options opts;
9737 struct ui_out *uiout = current_uiout;
9738
9739 /* Ranged breakpoints have only one location. */
9740 gdb_assert (bl && bl->next == NULL);
9741
9742 get_user_print_options (&opts);
9743
9744 if (opts.addressprint)
9745 /* We don't print the address range here, it will be printed later
9746 by print_one_detail_ranged_breakpoint. */
9747 uiout->field_skip ("addr");
9748 annotate_field (5);
9749 print_breakpoint_location (b, bl);
9750 *last_loc = bl;
9751 }
9752
9753 /* Implement the "print_one_detail" breakpoint_ops method for
9754 ranged breakpoints. */
9755
9756 static void
9757 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9758 struct ui_out *uiout)
9759 {
9760 CORE_ADDR address_start, address_end;
9761 struct bp_location *bl = b->loc;
9762 string_file stb;
9763
9764 gdb_assert (bl);
9765
9766 address_start = bl->address;
9767 address_end = address_start + bl->length - 1;
9768
9769 uiout->text ("\taddress range: ");
9770 stb.printf ("[%s, %s]",
9771 print_core_address (bl->gdbarch, address_start),
9772 print_core_address (bl->gdbarch, address_end));
9773 uiout->field_stream ("addr", stb);
9774 uiout->text ("\n");
9775 }
9776
9777 /* Implement the "print_mention" breakpoint_ops method for
9778 ranged breakpoints. */
9779
9780 static void
9781 print_mention_ranged_breakpoint (struct breakpoint *b)
9782 {
9783 struct bp_location *bl = b->loc;
9784 struct ui_out *uiout = current_uiout;
9785
9786 gdb_assert (bl);
9787 gdb_assert (b->type == bp_hardware_breakpoint);
9788
9789 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9790 b->number, paddress (bl->gdbarch, bl->address),
9791 paddress (bl->gdbarch, bl->address + bl->length - 1));
9792 }
9793
9794 /* Implement the "print_recreate" breakpoint_ops method for
9795 ranged breakpoints. */
9796
9797 static void
9798 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9799 {
9800 fprintf_unfiltered (fp, "break-range %s, %s",
9801 event_location_to_string (b->location.get ()),
9802 event_location_to_string (b->location_range_end.get ()));
9803 print_recreate_thread (b, fp);
9804 }
9805
9806 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9807
9808 static struct breakpoint_ops ranged_breakpoint_ops;
9809
9810 /* Find the address where the end of the breakpoint range should be
9811 placed, given the SAL of the end of the range. This is so that if
9812 the user provides a line number, the end of the range is set to the
9813 last instruction of the given line. */
9814
9815 static CORE_ADDR
9816 find_breakpoint_range_end (struct symtab_and_line sal)
9817 {
9818 CORE_ADDR end;
9819
9820 /* If the user provided a PC value, use it. Otherwise,
9821 find the address of the end of the given location. */
9822 if (sal.explicit_pc)
9823 end = sal.pc;
9824 else
9825 {
9826 int ret;
9827 CORE_ADDR start;
9828
9829 ret = find_line_pc_range (sal, &start, &end);
9830 if (!ret)
9831 error (_("Could not find location of the end of the range."));
9832
9833 /* find_line_pc_range returns the start of the next line. */
9834 end--;
9835 }
9836
9837 return end;
9838 }
9839
9840 /* Implement the "break-range" CLI command. */
9841
9842 static void
9843 break_range_command (const char *arg, int from_tty)
9844 {
9845 const char *arg_start;
9846 struct linespec_result canonical_start, canonical_end;
9847 int bp_count, can_use_bp, length;
9848 CORE_ADDR end;
9849 struct breakpoint *b;
9850
9851 /* We don't support software ranged breakpoints. */
9852 if (target_ranged_break_num_registers () < 0)
9853 error (_("This target does not support hardware ranged breakpoints."));
9854
9855 bp_count = hw_breakpoint_used_count ();
9856 bp_count += target_ranged_break_num_registers ();
9857 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9858 bp_count, 0);
9859 if (can_use_bp < 0)
9860 error (_("Hardware breakpoints used exceeds limit."));
9861
9862 arg = skip_spaces (arg);
9863 if (arg == NULL || arg[0] == '\0')
9864 error(_("No address range specified."));
9865
9866 arg_start = arg;
9867 event_location_up start_location = string_to_event_location (&arg,
9868 current_language);
9869 parse_breakpoint_sals (start_location.get (), &canonical_start);
9870
9871 if (arg[0] != ',')
9872 error (_("Too few arguments."));
9873 else if (canonical_start.lsals.empty ())
9874 error (_("Could not find location of the beginning of the range."));
9875
9876 const linespec_sals &lsal_start = canonical_start.lsals[0];
9877
9878 if (canonical_start.lsals.size () > 1
9879 || lsal_start.sals.size () != 1)
9880 error (_("Cannot create a ranged breakpoint with multiple locations."));
9881
9882 const symtab_and_line &sal_start = lsal_start.sals[0];
9883 std::string addr_string_start (arg_start, arg - arg_start);
9884
9885 arg++; /* Skip the comma. */
9886 arg = skip_spaces (arg);
9887
9888 /* Parse the end location. */
9889
9890 arg_start = arg;
9891
9892 /* We call decode_line_full directly here instead of using
9893 parse_breakpoint_sals because we need to specify the start location's
9894 symtab and line as the default symtab and line for the end of the
9895 range. This makes it possible to have ranges like "foo.c:27, +14",
9896 where +14 means 14 lines from the start location. */
9897 event_location_up end_location = string_to_event_location (&arg,
9898 current_language);
9899 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9900 sal_start.symtab, sal_start.line,
9901 &canonical_end, NULL, NULL);
9902
9903 if (canonical_end.lsals.empty ())
9904 error (_("Could not find location of the end of the range."));
9905
9906 const linespec_sals &lsal_end = canonical_end.lsals[0];
9907 if (canonical_end.lsals.size () > 1
9908 || lsal_end.sals.size () != 1)
9909 error (_("Cannot create a ranged breakpoint with multiple locations."));
9910
9911 const symtab_and_line &sal_end = lsal_end.sals[0];
9912
9913 end = find_breakpoint_range_end (sal_end);
9914 if (sal_start.pc > end)
9915 error (_("Invalid address range, end precedes start."));
9916
9917 length = end - sal_start.pc + 1;
9918 if (length < 0)
9919 /* Length overflowed. */
9920 error (_("Address range too large."));
9921 else if (length == 1)
9922 {
9923 /* This range is simple enough to be handled by
9924 the `hbreak' command. */
9925 hbreak_command (&addr_string_start[0], 1);
9926
9927 return;
9928 }
9929
9930 /* Now set up the breakpoint. */
9931 b = set_raw_breakpoint (get_current_arch (), sal_start,
9932 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9933 set_breakpoint_count (breakpoint_count + 1);
9934 b->number = breakpoint_count;
9935 b->disposition = disp_donttouch;
9936 b->location = std::move (start_location);
9937 b->location_range_end = std::move (end_location);
9938 b->loc->length = length;
9939
9940 mention (b);
9941 gdb::observers::breakpoint_created.notify (b);
9942 update_global_location_list (UGLL_MAY_INSERT);
9943 }
9944
9945 /* Return non-zero if EXP is verified as constant. Returned zero
9946 means EXP is variable. Also the constant detection may fail for
9947 some constant expressions and in such case still falsely return
9948 zero. */
9949
9950 static int
9951 watchpoint_exp_is_const (const struct expression *exp)
9952 {
9953 int i = exp->nelts;
9954
9955 while (i > 0)
9956 {
9957 int oplenp, argsp;
9958
9959 /* We are only interested in the descriptor of each element. */
9960 operator_length (exp, i, &oplenp, &argsp);
9961 i -= oplenp;
9962
9963 switch (exp->elts[i].opcode)
9964 {
9965 case BINOP_ADD:
9966 case BINOP_SUB:
9967 case BINOP_MUL:
9968 case BINOP_DIV:
9969 case BINOP_REM:
9970 case BINOP_MOD:
9971 case BINOP_LSH:
9972 case BINOP_RSH:
9973 case BINOP_LOGICAL_AND:
9974 case BINOP_LOGICAL_OR:
9975 case BINOP_BITWISE_AND:
9976 case BINOP_BITWISE_IOR:
9977 case BINOP_BITWISE_XOR:
9978 case BINOP_EQUAL:
9979 case BINOP_NOTEQUAL:
9980 case BINOP_LESS:
9981 case BINOP_GTR:
9982 case BINOP_LEQ:
9983 case BINOP_GEQ:
9984 case BINOP_REPEAT:
9985 case BINOP_COMMA:
9986 case BINOP_EXP:
9987 case BINOP_MIN:
9988 case BINOP_MAX:
9989 case BINOP_INTDIV:
9990 case BINOP_CONCAT:
9991 case TERNOP_COND:
9992 case TERNOP_SLICE:
9993
9994 case OP_LONG:
9995 case OP_FLOAT:
9996 case OP_LAST:
9997 case OP_COMPLEX:
9998 case OP_STRING:
9999 case OP_ARRAY:
10000 case OP_TYPE:
10001 case OP_TYPEOF:
10002 case OP_DECLTYPE:
10003 case OP_TYPEID:
10004 case OP_NAME:
10005 case OP_OBJC_NSSTRING:
10006
10007 case UNOP_NEG:
10008 case UNOP_LOGICAL_NOT:
10009 case UNOP_COMPLEMENT:
10010 case UNOP_ADDR:
10011 case UNOP_HIGH:
10012 case UNOP_CAST:
10013
10014 case UNOP_CAST_TYPE:
10015 case UNOP_REINTERPRET_CAST:
10016 case UNOP_DYNAMIC_CAST:
10017 /* Unary, binary and ternary operators: We have to check
10018 their operands. If they are constant, then so is the
10019 result of that operation. For instance, if A and B are
10020 determined to be constants, then so is "A + B".
10021
10022 UNOP_IND is one exception to the rule above, because the
10023 value of *ADDR is not necessarily a constant, even when
10024 ADDR is. */
10025 break;
10026
10027 case OP_VAR_VALUE:
10028 /* Check whether the associated symbol is a constant.
10029
10030 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10031 possible that a buggy compiler could mark a variable as
10032 constant even when it is not, and TYPE_CONST would return
10033 true in this case, while SYMBOL_CLASS wouldn't.
10034
10035 We also have to check for function symbols because they
10036 are always constant. */
10037 {
10038 struct symbol *s = exp->elts[i + 2].symbol;
10039
10040 if (SYMBOL_CLASS (s) != LOC_BLOCK
10041 && SYMBOL_CLASS (s) != LOC_CONST
10042 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10043 return 0;
10044 break;
10045 }
10046
10047 /* The default action is to return 0 because we are using
10048 the optimistic approach here: If we don't know something,
10049 then it is not a constant. */
10050 default:
10051 return 0;
10052 }
10053 }
10054
10055 return 1;
10056 }
10057
10058 /* Watchpoint destructor. */
10059
10060 watchpoint::~watchpoint ()
10061 {
10062 xfree (this->exp_string);
10063 xfree (this->exp_string_reparse);
10064 }
10065
10066 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10067
10068 static void
10069 re_set_watchpoint (struct breakpoint *b)
10070 {
10071 struct watchpoint *w = (struct watchpoint *) b;
10072
10073 /* Watchpoint can be either on expression using entirely global
10074 variables, or it can be on local variables.
10075
10076 Watchpoints of the first kind are never auto-deleted, and even
10077 persist across program restarts. Since they can use variables
10078 from shared libraries, we need to reparse expression as libraries
10079 are loaded and unloaded.
10080
10081 Watchpoints on local variables can also change meaning as result
10082 of solib event. For example, if a watchpoint uses both a local
10083 and a global variables in expression, it's a local watchpoint,
10084 but unloading of a shared library will make the expression
10085 invalid. This is not a very common use case, but we still
10086 re-evaluate expression, to avoid surprises to the user.
10087
10088 Note that for local watchpoints, we re-evaluate it only if
10089 watchpoints frame id is still valid. If it's not, it means the
10090 watchpoint is out of scope and will be deleted soon. In fact,
10091 I'm not sure we'll ever be called in this case.
10092
10093 If a local watchpoint's frame id is still valid, then
10094 w->exp_valid_block is likewise valid, and we can safely use it.
10095
10096 Don't do anything about disabled watchpoints, since they will be
10097 reevaluated again when enabled. */
10098 update_watchpoint (w, 1 /* reparse */);
10099 }
10100
10101 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10102
10103 static int
10104 insert_watchpoint (struct bp_location *bl)
10105 {
10106 struct watchpoint *w = (struct watchpoint *) bl->owner;
10107 int length = w->exact ? 1 : bl->length;
10108
10109 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10110 w->cond_exp.get ());
10111 }
10112
10113 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10114
10115 static int
10116 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10117 {
10118 struct watchpoint *w = (struct watchpoint *) bl->owner;
10119 int length = w->exact ? 1 : bl->length;
10120
10121 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10122 w->cond_exp.get ());
10123 }
10124
10125 static int
10126 breakpoint_hit_watchpoint (const struct bp_location *bl,
10127 const address_space *aspace, CORE_ADDR bp_addr,
10128 const struct target_waitstatus *ws)
10129 {
10130 struct breakpoint *b = bl->owner;
10131 struct watchpoint *w = (struct watchpoint *) b;
10132
10133 /* Continuable hardware watchpoints are treated as non-existent if the
10134 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10135 some data address). Otherwise gdb won't stop on a break instruction
10136 in the code (not from a breakpoint) when a hardware watchpoint has
10137 been defined. Also skip watchpoints which we know did not trigger
10138 (did not match the data address). */
10139 if (is_hardware_watchpoint (b)
10140 && w->watchpoint_triggered == watch_triggered_no)
10141 return 0;
10142
10143 return 1;
10144 }
10145
10146 static void
10147 check_status_watchpoint (bpstat bs)
10148 {
10149 gdb_assert (is_watchpoint (bs->breakpoint_at));
10150
10151 bpstat_check_watchpoint (bs);
10152 }
10153
10154 /* Implement the "resources_needed" breakpoint_ops method for
10155 hardware watchpoints. */
10156
10157 static int
10158 resources_needed_watchpoint (const struct bp_location *bl)
10159 {
10160 struct watchpoint *w = (struct watchpoint *) bl->owner;
10161 int length = w->exact? 1 : bl->length;
10162
10163 return target_region_ok_for_hw_watchpoint (bl->address, length);
10164 }
10165
10166 /* Implement the "works_in_software_mode" breakpoint_ops method for
10167 hardware watchpoints. */
10168
10169 static int
10170 works_in_software_mode_watchpoint (const struct breakpoint *b)
10171 {
10172 /* Read and access watchpoints only work with hardware support. */
10173 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10174 }
10175
10176 static enum print_stop_action
10177 print_it_watchpoint (bpstat bs)
10178 {
10179 struct breakpoint *b;
10180 enum print_stop_action result;
10181 struct watchpoint *w;
10182 struct ui_out *uiout = current_uiout;
10183
10184 gdb_assert (bs->bp_location_at != NULL);
10185
10186 b = bs->breakpoint_at;
10187 w = (struct watchpoint *) b;
10188
10189 annotate_watchpoint (b->number);
10190 maybe_print_thread_hit_breakpoint (uiout);
10191
10192 string_file stb;
10193
10194 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10195 switch (b->type)
10196 {
10197 case bp_watchpoint:
10198 case bp_hardware_watchpoint:
10199 if (uiout->is_mi_like_p ())
10200 uiout->field_string
10201 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10202 mention (b);
10203 tuple_emitter.emplace (uiout, "value");
10204 uiout->text ("\nOld value = ");
10205 watchpoint_value_print (bs->old_val.get (), &stb);
10206 uiout->field_stream ("old", stb);
10207 uiout->text ("\nNew value = ");
10208 watchpoint_value_print (w->val.get (), &stb);
10209 uiout->field_stream ("new", stb);
10210 uiout->text ("\n");
10211 /* More than one watchpoint may have been triggered. */
10212 result = PRINT_UNKNOWN;
10213 break;
10214
10215 case bp_read_watchpoint:
10216 if (uiout->is_mi_like_p ())
10217 uiout->field_string
10218 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10219 mention (b);
10220 tuple_emitter.emplace (uiout, "value");
10221 uiout->text ("\nValue = ");
10222 watchpoint_value_print (w->val.get (), &stb);
10223 uiout->field_stream ("value", stb);
10224 uiout->text ("\n");
10225 result = PRINT_UNKNOWN;
10226 break;
10227
10228 case bp_access_watchpoint:
10229 if (bs->old_val != NULL)
10230 {
10231 if (uiout->is_mi_like_p ())
10232 uiout->field_string
10233 ("reason",
10234 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10235 mention (b);
10236 tuple_emitter.emplace (uiout, "value");
10237 uiout->text ("\nOld value = ");
10238 watchpoint_value_print (bs->old_val.get (), &stb);
10239 uiout->field_stream ("old", stb);
10240 uiout->text ("\nNew value = ");
10241 }
10242 else
10243 {
10244 mention (b);
10245 if (uiout->is_mi_like_p ())
10246 uiout->field_string
10247 ("reason",
10248 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10249 tuple_emitter.emplace (uiout, "value");
10250 uiout->text ("\nValue = ");
10251 }
10252 watchpoint_value_print (w->val.get (), &stb);
10253 uiout->field_stream ("new", stb);
10254 uiout->text ("\n");
10255 result = PRINT_UNKNOWN;
10256 break;
10257 default:
10258 result = PRINT_UNKNOWN;
10259 }
10260
10261 return result;
10262 }
10263
10264 /* Implement the "print_mention" breakpoint_ops method for hardware
10265 watchpoints. */
10266
10267 static void
10268 print_mention_watchpoint (struct breakpoint *b)
10269 {
10270 struct watchpoint *w = (struct watchpoint *) b;
10271 struct ui_out *uiout = current_uiout;
10272 const char *tuple_name;
10273
10274 switch (b->type)
10275 {
10276 case bp_watchpoint:
10277 uiout->text ("Watchpoint ");
10278 tuple_name = "wpt";
10279 break;
10280 case bp_hardware_watchpoint:
10281 uiout->text ("Hardware watchpoint ");
10282 tuple_name = "wpt";
10283 break;
10284 case bp_read_watchpoint:
10285 uiout->text ("Hardware read watchpoint ");
10286 tuple_name = "hw-rwpt";
10287 break;
10288 case bp_access_watchpoint:
10289 uiout->text ("Hardware access (read/write) watchpoint ");
10290 tuple_name = "hw-awpt";
10291 break;
10292 default:
10293 internal_error (__FILE__, __LINE__,
10294 _("Invalid hardware watchpoint type."));
10295 }
10296
10297 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10298 uiout->field_int ("number", b->number);
10299 uiout->text (": ");
10300 uiout->field_string ("exp", w->exp_string);
10301 }
10302
10303 /* Implement the "print_recreate" breakpoint_ops method for
10304 watchpoints. */
10305
10306 static void
10307 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10308 {
10309 struct watchpoint *w = (struct watchpoint *) b;
10310
10311 switch (b->type)
10312 {
10313 case bp_watchpoint:
10314 case bp_hardware_watchpoint:
10315 fprintf_unfiltered (fp, "watch");
10316 break;
10317 case bp_read_watchpoint:
10318 fprintf_unfiltered (fp, "rwatch");
10319 break;
10320 case bp_access_watchpoint:
10321 fprintf_unfiltered (fp, "awatch");
10322 break;
10323 default:
10324 internal_error (__FILE__, __LINE__,
10325 _("Invalid watchpoint type."));
10326 }
10327
10328 fprintf_unfiltered (fp, " %s", w->exp_string);
10329 print_recreate_thread (b, fp);
10330 }
10331
10332 /* Implement the "explains_signal" breakpoint_ops method for
10333 watchpoints. */
10334
10335 static int
10336 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10337 {
10338 /* A software watchpoint cannot cause a signal other than
10339 GDB_SIGNAL_TRAP. */
10340 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10341 return 0;
10342
10343 return 1;
10344 }
10345
10346 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10347
10348 static struct breakpoint_ops watchpoint_breakpoint_ops;
10349
10350 /* Implement the "insert" breakpoint_ops method for
10351 masked hardware watchpoints. */
10352
10353 static int
10354 insert_masked_watchpoint (struct bp_location *bl)
10355 {
10356 struct watchpoint *w = (struct watchpoint *) bl->owner;
10357
10358 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10359 bl->watchpoint_type);
10360 }
10361
10362 /* Implement the "remove" breakpoint_ops method for
10363 masked hardware watchpoints. */
10364
10365 static int
10366 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10367 {
10368 struct watchpoint *w = (struct watchpoint *) bl->owner;
10369
10370 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10371 bl->watchpoint_type);
10372 }
10373
10374 /* Implement the "resources_needed" breakpoint_ops method for
10375 masked hardware watchpoints. */
10376
10377 static int
10378 resources_needed_masked_watchpoint (const struct bp_location *bl)
10379 {
10380 struct watchpoint *w = (struct watchpoint *) bl->owner;
10381
10382 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10383 }
10384
10385 /* Implement the "works_in_software_mode" breakpoint_ops method for
10386 masked hardware watchpoints. */
10387
10388 static int
10389 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10390 {
10391 return 0;
10392 }
10393
10394 /* Implement the "print_it" breakpoint_ops method for
10395 masked hardware watchpoints. */
10396
10397 static enum print_stop_action
10398 print_it_masked_watchpoint (bpstat bs)
10399 {
10400 struct breakpoint *b = bs->breakpoint_at;
10401 struct ui_out *uiout = current_uiout;
10402
10403 /* Masked watchpoints have only one location. */
10404 gdb_assert (b->loc && b->loc->next == NULL);
10405
10406 annotate_watchpoint (b->number);
10407 maybe_print_thread_hit_breakpoint (uiout);
10408
10409 switch (b->type)
10410 {
10411 case bp_hardware_watchpoint:
10412 if (uiout->is_mi_like_p ())
10413 uiout->field_string
10414 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10415 break;
10416
10417 case bp_read_watchpoint:
10418 if (uiout->is_mi_like_p ())
10419 uiout->field_string
10420 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10421 break;
10422
10423 case bp_access_watchpoint:
10424 if (uiout->is_mi_like_p ())
10425 uiout->field_string
10426 ("reason",
10427 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10428 break;
10429 default:
10430 internal_error (__FILE__, __LINE__,
10431 _("Invalid hardware watchpoint type."));
10432 }
10433
10434 mention (b);
10435 uiout->text (_("\n\
10436 Check the underlying instruction at PC for the memory\n\
10437 address and value which triggered this watchpoint.\n"));
10438 uiout->text ("\n");
10439
10440 /* More than one watchpoint may have been triggered. */
10441 return PRINT_UNKNOWN;
10442 }
10443
10444 /* Implement the "print_one_detail" breakpoint_ops method for
10445 masked hardware watchpoints. */
10446
10447 static void
10448 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10449 struct ui_out *uiout)
10450 {
10451 struct watchpoint *w = (struct watchpoint *) b;
10452
10453 /* Masked watchpoints have only one location. */
10454 gdb_assert (b->loc && b->loc->next == NULL);
10455
10456 uiout->text ("\tmask ");
10457 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10458 uiout->text ("\n");
10459 }
10460
10461 /* Implement the "print_mention" breakpoint_ops method for
10462 masked hardware watchpoints. */
10463
10464 static void
10465 print_mention_masked_watchpoint (struct breakpoint *b)
10466 {
10467 struct watchpoint *w = (struct watchpoint *) b;
10468 struct ui_out *uiout = current_uiout;
10469 const char *tuple_name;
10470
10471 switch (b->type)
10472 {
10473 case bp_hardware_watchpoint:
10474 uiout->text ("Masked hardware watchpoint ");
10475 tuple_name = "wpt";
10476 break;
10477 case bp_read_watchpoint:
10478 uiout->text ("Masked hardware read watchpoint ");
10479 tuple_name = "hw-rwpt";
10480 break;
10481 case bp_access_watchpoint:
10482 uiout->text ("Masked hardware access (read/write) watchpoint ");
10483 tuple_name = "hw-awpt";
10484 break;
10485 default:
10486 internal_error (__FILE__, __LINE__,
10487 _("Invalid hardware watchpoint type."));
10488 }
10489
10490 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10491 uiout->field_int ("number", b->number);
10492 uiout->text (": ");
10493 uiout->field_string ("exp", w->exp_string);
10494 }
10495
10496 /* Implement the "print_recreate" breakpoint_ops method for
10497 masked hardware watchpoints. */
10498
10499 static void
10500 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10501 {
10502 struct watchpoint *w = (struct watchpoint *) b;
10503 char tmp[40];
10504
10505 switch (b->type)
10506 {
10507 case bp_hardware_watchpoint:
10508 fprintf_unfiltered (fp, "watch");
10509 break;
10510 case bp_read_watchpoint:
10511 fprintf_unfiltered (fp, "rwatch");
10512 break;
10513 case bp_access_watchpoint:
10514 fprintf_unfiltered (fp, "awatch");
10515 break;
10516 default:
10517 internal_error (__FILE__, __LINE__,
10518 _("Invalid hardware watchpoint type."));
10519 }
10520
10521 sprintf_vma (tmp, w->hw_wp_mask);
10522 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10523 print_recreate_thread (b, fp);
10524 }
10525
10526 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10527
10528 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10529
10530 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10531
10532 static int
10533 is_masked_watchpoint (const struct breakpoint *b)
10534 {
10535 return b->ops == &masked_watchpoint_breakpoint_ops;
10536 }
10537
10538 /* accessflag: hw_write: watch write,
10539 hw_read: watch read,
10540 hw_access: watch access (read or write) */
10541 static void
10542 watch_command_1 (const char *arg, int accessflag, int from_tty,
10543 int just_location, int internal)
10544 {
10545 struct breakpoint *scope_breakpoint = NULL;
10546 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10547 struct value *mark, *result;
10548 int saved_bitpos = 0, saved_bitsize = 0;
10549 const char *exp_start = NULL;
10550 const char *exp_end = NULL;
10551 const char *tok, *end_tok;
10552 int toklen = -1;
10553 const char *cond_start = NULL;
10554 const char *cond_end = NULL;
10555 enum bptype bp_type;
10556 int thread = -1;
10557 int pc = 0;
10558 /* Flag to indicate whether we are going to use masks for
10559 the hardware watchpoint. */
10560 int use_mask = 0;
10561 CORE_ADDR mask = 0;
10562
10563 /* Make sure that we actually have parameters to parse. */
10564 if (arg != NULL && arg[0] != '\0')
10565 {
10566 const char *value_start;
10567
10568 exp_end = arg + strlen (arg);
10569
10570 /* Look for "parameter value" pairs at the end
10571 of the arguments string. */
10572 for (tok = exp_end - 1; tok > arg; tok--)
10573 {
10574 /* Skip whitespace at the end of the argument list. */
10575 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10576 tok--;
10577
10578 /* Find the beginning of the last token.
10579 This is the value of the parameter. */
10580 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10581 tok--;
10582 value_start = tok + 1;
10583
10584 /* Skip whitespace. */
10585 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10586 tok--;
10587
10588 end_tok = tok;
10589
10590 /* Find the beginning of the second to last token.
10591 This is the parameter itself. */
10592 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10593 tok--;
10594 tok++;
10595 toklen = end_tok - tok + 1;
10596
10597 if (toklen == 6 && startswith (tok, "thread"))
10598 {
10599 struct thread_info *thr;
10600 /* At this point we've found a "thread" token, which means
10601 the user is trying to set a watchpoint that triggers
10602 only in a specific thread. */
10603 const char *endp;
10604
10605 if (thread != -1)
10606 error(_("You can specify only one thread."));
10607
10608 /* Extract the thread ID from the next token. */
10609 thr = parse_thread_id (value_start, &endp);
10610
10611 /* Check if the user provided a valid thread ID. */
10612 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10613 invalid_thread_id_error (value_start);
10614
10615 thread = thr->global_num;
10616 }
10617 else if (toklen == 4 && startswith (tok, "mask"))
10618 {
10619 /* We've found a "mask" token, which means the user wants to
10620 create a hardware watchpoint that is going to have the mask
10621 facility. */
10622 struct value *mask_value, *mark;
10623
10624 if (use_mask)
10625 error(_("You can specify only one mask."));
10626
10627 use_mask = just_location = 1;
10628
10629 mark = value_mark ();
10630 mask_value = parse_to_comma_and_eval (&value_start);
10631 mask = value_as_address (mask_value);
10632 value_free_to_mark (mark);
10633 }
10634 else
10635 /* We didn't recognize what we found. We should stop here. */
10636 break;
10637
10638 /* Truncate the string and get rid of the "parameter value" pair before
10639 the arguments string is parsed by the parse_exp_1 function. */
10640 exp_end = tok;
10641 }
10642 }
10643 else
10644 exp_end = arg;
10645
10646 /* Parse the rest of the arguments. From here on out, everything
10647 is in terms of a newly allocated string instead of the original
10648 ARG. */
10649 innermost_block.reset ();
10650 std::string expression (arg, exp_end - arg);
10651 exp_start = arg = expression.c_str ();
10652 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10653 exp_end = arg;
10654 /* Remove trailing whitespace from the expression before saving it.
10655 This makes the eventual display of the expression string a bit
10656 prettier. */
10657 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10658 --exp_end;
10659
10660 /* Checking if the expression is not constant. */
10661 if (watchpoint_exp_is_const (exp.get ()))
10662 {
10663 int len;
10664
10665 len = exp_end - exp_start;
10666 while (len > 0 && isspace (exp_start[len - 1]))
10667 len--;
10668 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10669 }
10670
10671 exp_valid_block = innermost_block.block ();
10672 mark = value_mark ();
10673 struct value *val_as_value = nullptr;
10674 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10675 just_location);
10676
10677 if (val_as_value != NULL && just_location)
10678 {
10679 saved_bitpos = value_bitpos (val_as_value);
10680 saved_bitsize = value_bitsize (val_as_value);
10681 }
10682
10683 value_ref_ptr val;
10684 if (just_location)
10685 {
10686 int ret;
10687
10688 exp_valid_block = NULL;
10689 val = release_value (value_addr (result));
10690 value_free_to_mark (mark);
10691
10692 if (use_mask)
10693 {
10694 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10695 mask);
10696 if (ret == -1)
10697 error (_("This target does not support masked watchpoints."));
10698 else if (ret == -2)
10699 error (_("Invalid mask or memory region."));
10700 }
10701 }
10702 else if (val_as_value != NULL)
10703 val = release_value (val_as_value);
10704
10705 tok = skip_spaces (arg);
10706 end_tok = skip_to_space (tok);
10707
10708 toklen = end_tok - tok;
10709 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10710 {
10711 innermost_block.reset ();
10712 tok = cond_start = end_tok + 1;
10713 parse_exp_1 (&tok, 0, 0, 0);
10714
10715 /* The watchpoint expression may not be local, but the condition
10716 may still be. E.g.: `watch global if local > 0'. */
10717 cond_exp_valid_block = innermost_block.block ();
10718
10719 cond_end = tok;
10720 }
10721 if (*tok)
10722 error (_("Junk at end of command."));
10723
10724 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10725
10726 /* Save this because create_internal_breakpoint below invalidates
10727 'wp_frame'. */
10728 frame_id watchpoint_frame = get_frame_id (wp_frame);
10729
10730 /* If the expression is "local", then set up a "watchpoint scope"
10731 breakpoint at the point where we've left the scope of the watchpoint
10732 expression. Create the scope breakpoint before the watchpoint, so
10733 that we will encounter it first in bpstat_stop_status. */
10734 if (exp_valid_block != NULL && wp_frame != NULL)
10735 {
10736 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10737
10738 if (frame_id_p (caller_frame_id))
10739 {
10740 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10741 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10742
10743 scope_breakpoint
10744 = create_internal_breakpoint (caller_arch, caller_pc,
10745 bp_watchpoint_scope,
10746 &momentary_breakpoint_ops);
10747
10748 /* create_internal_breakpoint could invalidate WP_FRAME. */
10749 wp_frame = NULL;
10750
10751 scope_breakpoint->enable_state = bp_enabled;
10752
10753 /* Automatically delete the breakpoint when it hits. */
10754 scope_breakpoint->disposition = disp_del;
10755
10756 /* Only break in the proper frame (help with recursion). */
10757 scope_breakpoint->frame_id = caller_frame_id;
10758
10759 /* Set the address at which we will stop. */
10760 scope_breakpoint->loc->gdbarch = caller_arch;
10761 scope_breakpoint->loc->requested_address = caller_pc;
10762 scope_breakpoint->loc->address
10763 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10764 scope_breakpoint->loc->requested_address,
10765 scope_breakpoint->type);
10766 }
10767 }
10768
10769 /* Now set up the breakpoint. We create all watchpoints as hardware
10770 watchpoints here even if hardware watchpoints are turned off, a call
10771 to update_watchpoint later in this function will cause the type to
10772 drop back to bp_watchpoint (software watchpoint) if required. */
10773
10774 if (accessflag == hw_read)
10775 bp_type = bp_read_watchpoint;
10776 else if (accessflag == hw_access)
10777 bp_type = bp_access_watchpoint;
10778 else
10779 bp_type = bp_hardware_watchpoint;
10780
10781 std::unique_ptr<watchpoint> w (new watchpoint ());
10782
10783 if (use_mask)
10784 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10785 &masked_watchpoint_breakpoint_ops);
10786 else
10787 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10788 &watchpoint_breakpoint_ops);
10789 w->thread = thread;
10790 w->disposition = disp_donttouch;
10791 w->pspace = current_program_space;
10792 w->exp = std::move (exp);
10793 w->exp_valid_block = exp_valid_block;
10794 w->cond_exp_valid_block = cond_exp_valid_block;
10795 if (just_location)
10796 {
10797 struct type *t = value_type (val.get ());
10798 CORE_ADDR addr = value_as_address (val.get ());
10799
10800 w->exp_string_reparse
10801 = current_language->la_watch_location_expression (t, addr).release ();
10802
10803 w->exp_string = xstrprintf ("-location %.*s",
10804 (int) (exp_end - exp_start), exp_start);
10805 }
10806 else
10807 w->exp_string = savestring (exp_start, exp_end - exp_start);
10808
10809 if (use_mask)
10810 {
10811 w->hw_wp_mask = mask;
10812 }
10813 else
10814 {
10815 w->val = val;
10816 w->val_bitpos = saved_bitpos;
10817 w->val_bitsize = saved_bitsize;
10818 w->val_valid = 1;
10819 }
10820
10821 if (cond_start)
10822 w->cond_string = savestring (cond_start, cond_end - cond_start);
10823 else
10824 w->cond_string = 0;
10825
10826 if (frame_id_p (watchpoint_frame))
10827 {
10828 w->watchpoint_frame = watchpoint_frame;
10829 w->watchpoint_thread = inferior_ptid;
10830 }
10831 else
10832 {
10833 w->watchpoint_frame = null_frame_id;
10834 w->watchpoint_thread = null_ptid;
10835 }
10836
10837 if (scope_breakpoint != NULL)
10838 {
10839 /* The scope breakpoint is related to the watchpoint. We will
10840 need to act on them together. */
10841 w->related_breakpoint = scope_breakpoint;
10842 scope_breakpoint->related_breakpoint = w.get ();
10843 }
10844
10845 if (!just_location)
10846 value_free_to_mark (mark);
10847
10848 /* Finally update the new watchpoint. This creates the locations
10849 that should be inserted. */
10850 update_watchpoint (w.get (), 1);
10851
10852 install_breakpoint (internal, std::move (w), 1);
10853 }
10854
10855 /* Return count of debug registers needed to watch the given expression.
10856 If the watchpoint cannot be handled in hardware return zero. */
10857
10858 static int
10859 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10860 {
10861 int found_memory_cnt = 0;
10862
10863 /* Did the user specifically forbid us to use hardware watchpoints? */
10864 if (!can_use_hw_watchpoints)
10865 return 0;
10866
10867 gdb_assert (!vals.empty ());
10868 struct value *head = vals[0].get ();
10869
10870 /* Make sure that the value of the expression depends only upon
10871 memory contents, and values computed from them within GDB. If we
10872 find any register references or function calls, we can't use a
10873 hardware watchpoint.
10874
10875 The idea here is that evaluating an expression generates a series
10876 of values, one holding the value of every subexpression. (The
10877 expression a*b+c has five subexpressions: a, b, a*b, c, and
10878 a*b+c.) GDB's values hold almost enough information to establish
10879 the criteria given above --- they identify memory lvalues,
10880 register lvalues, computed values, etcetera. So we can evaluate
10881 the expression, and then scan the chain of values that leaves
10882 behind to decide whether we can detect any possible change to the
10883 expression's final value using only hardware watchpoints.
10884
10885 However, I don't think that the values returned by inferior
10886 function calls are special in any way. So this function may not
10887 notice that an expression involving an inferior function call
10888 can't be watched with hardware watchpoints. FIXME. */
10889 for (const value_ref_ptr &iter : vals)
10890 {
10891 struct value *v = iter.get ();
10892
10893 if (VALUE_LVAL (v) == lval_memory)
10894 {
10895 if (v != head && value_lazy (v))
10896 /* A lazy memory lvalue in the chain is one that GDB never
10897 needed to fetch; we either just used its address (e.g.,
10898 `a' in `a.b') or we never needed it at all (e.g., `a'
10899 in `a,b'). This doesn't apply to HEAD; if that is
10900 lazy then it was not readable, but watch it anyway. */
10901 ;
10902 else
10903 {
10904 /* Ahh, memory we actually used! Check if we can cover
10905 it with hardware watchpoints. */
10906 struct type *vtype = check_typedef (value_type (v));
10907
10908 /* We only watch structs and arrays if user asked for it
10909 explicitly, never if they just happen to appear in a
10910 middle of some value chain. */
10911 if (v == head
10912 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10913 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10914 {
10915 CORE_ADDR vaddr = value_address (v);
10916 int len;
10917 int num_regs;
10918
10919 len = (target_exact_watchpoints
10920 && is_scalar_type_recursive (vtype))?
10921 1 : TYPE_LENGTH (value_type (v));
10922
10923 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10924 if (!num_regs)
10925 return 0;
10926 else
10927 found_memory_cnt += num_regs;
10928 }
10929 }
10930 }
10931 else if (VALUE_LVAL (v) != not_lval
10932 && deprecated_value_modifiable (v) == 0)
10933 return 0; /* These are values from the history (e.g., $1). */
10934 else if (VALUE_LVAL (v) == lval_register)
10935 return 0; /* Cannot watch a register with a HW watchpoint. */
10936 }
10937
10938 /* The expression itself looks suitable for using a hardware
10939 watchpoint, but give the target machine a chance to reject it. */
10940 return found_memory_cnt;
10941 }
10942
10943 void
10944 watch_command_wrapper (const char *arg, int from_tty, int internal)
10945 {
10946 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10947 }
10948
10949 /* A helper function that looks for the "-location" argument and then
10950 calls watch_command_1. */
10951
10952 static void
10953 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10954 {
10955 int just_location = 0;
10956
10957 if (arg
10958 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10959 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10960 {
10961 arg = skip_spaces (arg);
10962 just_location = 1;
10963 }
10964
10965 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10966 }
10967
10968 static void
10969 watch_command (const char *arg, int from_tty)
10970 {
10971 watch_maybe_just_location (arg, hw_write, from_tty);
10972 }
10973
10974 void
10975 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10976 {
10977 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10978 }
10979
10980 static void
10981 rwatch_command (const char *arg, int from_tty)
10982 {
10983 watch_maybe_just_location (arg, hw_read, from_tty);
10984 }
10985
10986 void
10987 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10988 {
10989 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10990 }
10991
10992 static void
10993 awatch_command (const char *arg, int from_tty)
10994 {
10995 watch_maybe_just_location (arg, hw_access, from_tty);
10996 }
10997 \f
10998
10999 /* Data for the FSM that manages the until(location)/advance commands
11000 in infcmd.c. Here because it uses the mechanisms of
11001 breakpoints. */
11002
11003 struct until_break_fsm
11004 {
11005 /* The base class. */
11006 struct thread_fsm thread_fsm;
11007
11008 /* The thread that as current when the command was executed. */
11009 int thread;
11010
11011 /* The breakpoint set at the destination location. */
11012 struct breakpoint *location_breakpoint;
11013
11014 /* Breakpoint set at the return address in the caller frame. May be
11015 NULL. */
11016 struct breakpoint *caller_breakpoint;
11017 };
11018
11019 static void until_break_fsm_clean_up (struct thread_fsm *self,
11020 struct thread_info *thread);
11021 static int until_break_fsm_should_stop (struct thread_fsm *self,
11022 struct thread_info *thread);
11023 static enum async_reply_reason
11024 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11025
11026 /* until_break_fsm's vtable. */
11027
11028 static struct thread_fsm_ops until_break_fsm_ops =
11029 {
11030 NULL, /* dtor */
11031 until_break_fsm_clean_up,
11032 until_break_fsm_should_stop,
11033 NULL, /* return_value */
11034 until_break_fsm_async_reply_reason,
11035 };
11036
11037 /* Allocate a new until_break_command_fsm. */
11038
11039 static struct until_break_fsm *
11040 new_until_break_fsm (struct interp *cmd_interp, int thread,
11041 breakpoint_up &&location_breakpoint,
11042 breakpoint_up &&caller_breakpoint)
11043 {
11044 struct until_break_fsm *sm;
11045
11046 sm = XCNEW (struct until_break_fsm);
11047 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11048
11049 sm->thread = thread;
11050 sm->location_breakpoint = location_breakpoint.release ();
11051 sm->caller_breakpoint = caller_breakpoint.release ();
11052
11053 return sm;
11054 }
11055
11056 /* Implementation of the 'should_stop' FSM method for the
11057 until(location)/advance commands. */
11058
11059 static int
11060 until_break_fsm_should_stop (struct thread_fsm *self,
11061 struct thread_info *tp)
11062 {
11063 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11064
11065 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11066 sm->location_breakpoint) != NULL
11067 || (sm->caller_breakpoint != NULL
11068 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11069 sm->caller_breakpoint) != NULL))
11070 thread_fsm_set_finished (self);
11071
11072 return 1;
11073 }
11074
11075 /* Implementation of the 'clean_up' FSM method for the
11076 until(location)/advance commands. */
11077
11078 static void
11079 until_break_fsm_clean_up (struct thread_fsm *self,
11080 struct thread_info *thread)
11081 {
11082 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11083
11084 /* Clean up our temporary breakpoints. */
11085 if (sm->location_breakpoint != NULL)
11086 {
11087 delete_breakpoint (sm->location_breakpoint);
11088 sm->location_breakpoint = NULL;
11089 }
11090 if (sm->caller_breakpoint != NULL)
11091 {
11092 delete_breakpoint (sm->caller_breakpoint);
11093 sm->caller_breakpoint = NULL;
11094 }
11095 delete_longjmp_breakpoint (sm->thread);
11096 }
11097
11098 /* Implementation of the 'async_reply_reason' FSM method for the
11099 until(location)/advance commands. */
11100
11101 static enum async_reply_reason
11102 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11103 {
11104 return EXEC_ASYNC_LOCATION_REACHED;
11105 }
11106
11107 void
11108 until_break_command (const char *arg, int from_tty, int anywhere)
11109 {
11110 struct frame_info *frame;
11111 struct gdbarch *frame_gdbarch;
11112 struct frame_id stack_frame_id;
11113 struct frame_id caller_frame_id;
11114 struct cleanup *old_chain;
11115 int thread;
11116 struct thread_info *tp;
11117 struct until_break_fsm *sm;
11118
11119 clear_proceed_status (0);
11120
11121 /* Set a breakpoint where the user wants it and at return from
11122 this function. */
11123
11124 event_location_up location = string_to_event_location (&arg, current_language);
11125
11126 std::vector<symtab_and_line> sals
11127 = (last_displayed_sal_is_valid ()
11128 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11129 get_last_displayed_symtab (),
11130 get_last_displayed_line ())
11131 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11132 NULL, (struct symtab *) NULL, 0));
11133
11134 if (sals.size () != 1)
11135 error (_("Couldn't get information on specified line."));
11136
11137 symtab_and_line &sal = sals[0];
11138
11139 if (*arg)
11140 error (_("Junk at end of arguments."));
11141
11142 resolve_sal_pc (&sal);
11143
11144 tp = inferior_thread ();
11145 thread = tp->global_num;
11146
11147 old_chain = make_cleanup (null_cleanup, NULL);
11148
11149 /* Note linespec handling above invalidates the frame chain.
11150 Installing a breakpoint also invalidates the frame chain (as it
11151 may need to switch threads), so do any frame handling before
11152 that. */
11153
11154 frame = get_selected_frame (NULL);
11155 frame_gdbarch = get_frame_arch (frame);
11156 stack_frame_id = get_stack_frame_id (frame);
11157 caller_frame_id = frame_unwind_caller_id (frame);
11158
11159 /* Keep within the current frame, or in frames called by the current
11160 one. */
11161
11162 breakpoint_up caller_breakpoint;
11163 if (frame_id_p (caller_frame_id))
11164 {
11165 struct symtab_and_line sal2;
11166 struct gdbarch *caller_gdbarch;
11167
11168 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11169 sal2.pc = frame_unwind_caller_pc (frame);
11170 caller_gdbarch = frame_unwind_caller_arch (frame);
11171 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11172 sal2,
11173 caller_frame_id,
11174 bp_until);
11175
11176 set_longjmp_breakpoint (tp, caller_frame_id);
11177 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11178 }
11179
11180 /* set_momentary_breakpoint could invalidate FRAME. */
11181 frame = NULL;
11182
11183 breakpoint_up location_breakpoint;
11184 if (anywhere)
11185 /* If the user told us to continue until a specified location,
11186 we don't specify a frame at which we need to stop. */
11187 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11188 null_frame_id, bp_until);
11189 else
11190 /* Otherwise, specify the selected frame, because we want to stop
11191 only at the very same frame. */
11192 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11193 stack_frame_id, bp_until);
11194
11195 sm = new_until_break_fsm (command_interp (), tp->global_num,
11196 std::move (location_breakpoint),
11197 std::move (caller_breakpoint));
11198 tp->thread_fsm = &sm->thread_fsm;
11199
11200 discard_cleanups (old_chain);
11201
11202 proceed (-1, GDB_SIGNAL_DEFAULT);
11203 }
11204
11205 /* This function attempts to parse an optional "if <cond>" clause
11206 from the arg string. If one is not found, it returns NULL.
11207
11208 Else, it returns a pointer to the condition string. (It does not
11209 attempt to evaluate the string against a particular block.) And,
11210 it updates arg to point to the first character following the parsed
11211 if clause in the arg string. */
11212
11213 const char *
11214 ep_parse_optional_if_clause (const char **arg)
11215 {
11216 const char *cond_string;
11217
11218 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11219 return NULL;
11220
11221 /* Skip the "if" keyword. */
11222 (*arg) += 2;
11223
11224 /* Skip any extra leading whitespace, and record the start of the
11225 condition string. */
11226 *arg = skip_spaces (*arg);
11227 cond_string = *arg;
11228
11229 /* Assume that the condition occupies the remainder of the arg
11230 string. */
11231 (*arg) += strlen (cond_string);
11232
11233 return cond_string;
11234 }
11235
11236 /* Commands to deal with catching events, such as signals, exceptions,
11237 process start/exit, etc. */
11238
11239 typedef enum
11240 {
11241 catch_fork_temporary, catch_vfork_temporary,
11242 catch_fork_permanent, catch_vfork_permanent
11243 }
11244 catch_fork_kind;
11245
11246 static void
11247 catch_fork_command_1 (const char *arg, int from_tty,
11248 struct cmd_list_element *command)
11249 {
11250 struct gdbarch *gdbarch = get_current_arch ();
11251 const char *cond_string = NULL;
11252 catch_fork_kind fork_kind;
11253 int tempflag;
11254
11255 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11256 tempflag = (fork_kind == catch_fork_temporary
11257 || fork_kind == catch_vfork_temporary);
11258
11259 if (!arg)
11260 arg = "";
11261 arg = skip_spaces (arg);
11262
11263 /* The allowed syntax is:
11264 catch [v]fork
11265 catch [v]fork if <cond>
11266
11267 First, check if there's an if clause. */
11268 cond_string = ep_parse_optional_if_clause (&arg);
11269
11270 if ((*arg != '\0') && !isspace (*arg))
11271 error (_("Junk at end of arguments."));
11272
11273 /* If this target supports it, create a fork or vfork catchpoint
11274 and enable reporting of such events. */
11275 switch (fork_kind)
11276 {
11277 case catch_fork_temporary:
11278 case catch_fork_permanent:
11279 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11280 &catch_fork_breakpoint_ops);
11281 break;
11282 case catch_vfork_temporary:
11283 case catch_vfork_permanent:
11284 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11285 &catch_vfork_breakpoint_ops);
11286 break;
11287 default:
11288 error (_("unsupported or unknown fork kind; cannot catch it"));
11289 break;
11290 }
11291 }
11292
11293 static void
11294 catch_exec_command_1 (const char *arg, int from_tty,
11295 struct cmd_list_element *command)
11296 {
11297 struct gdbarch *gdbarch = get_current_arch ();
11298 int tempflag;
11299 const char *cond_string = NULL;
11300
11301 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11302
11303 if (!arg)
11304 arg = "";
11305 arg = skip_spaces (arg);
11306
11307 /* The allowed syntax is:
11308 catch exec
11309 catch exec if <cond>
11310
11311 First, check if there's an if clause. */
11312 cond_string = ep_parse_optional_if_clause (&arg);
11313
11314 if ((*arg != '\0') && !isspace (*arg))
11315 error (_("Junk at end of arguments."));
11316
11317 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11318 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11319 &catch_exec_breakpoint_ops);
11320 c->exec_pathname = NULL;
11321
11322 install_breakpoint (0, std::move (c), 1);
11323 }
11324
11325 void
11326 init_ada_exception_breakpoint (struct breakpoint *b,
11327 struct gdbarch *gdbarch,
11328 struct symtab_and_line sal,
11329 const char *addr_string,
11330 const struct breakpoint_ops *ops,
11331 int tempflag,
11332 int enabled,
11333 int from_tty)
11334 {
11335 if (from_tty)
11336 {
11337 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11338 if (!loc_gdbarch)
11339 loc_gdbarch = gdbarch;
11340
11341 describe_other_breakpoints (loc_gdbarch,
11342 sal.pspace, sal.pc, sal.section, -1);
11343 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11344 version for exception catchpoints, because two catchpoints
11345 used for different exception names will use the same address.
11346 In this case, a "breakpoint ... also set at..." warning is
11347 unproductive. Besides, the warning phrasing is also a bit
11348 inappropriate, we should use the word catchpoint, and tell
11349 the user what type of catchpoint it is. The above is good
11350 enough for now, though. */
11351 }
11352
11353 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11354
11355 b->enable_state = enabled ? bp_enabled : bp_disabled;
11356 b->disposition = tempflag ? disp_del : disp_donttouch;
11357 b->location = string_to_event_location (&addr_string,
11358 language_def (language_ada));
11359 b->language = language_ada;
11360 }
11361
11362 static void
11363 catch_command (const char *arg, int from_tty)
11364 {
11365 error (_("Catch requires an event name."));
11366 }
11367 \f
11368
11369 static void
11370 tcatch_command (const char *arg, int from_tty)
11371 {
11372 error (_("Catch requires an event name."));
11373 }
11374
11375 /* Compare two breakpoints and return a strcmp-like result. */
11376
11377 static int
11378 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11379 {
11380 uintptr_t ua = (uintptr_t) a;
11381 uintptr_t ub = (uintptr_t) b;
11382
11383 if (a->number < b->number)
11384 return -1;
11385 else if (a->number > b->number)
11386 return 1;
11387
11388 /* Now sort by address, in case we see, e..g, two breakpoints with
11389 the number 0. */
11390 if (ua < ub)
11391 return -1;
11392 return ua > ub ? 1 : 0;
11393 }
11394
11395 /* Delete breakpoints by address or line. */
11396
11397 static void
11398 clear_command (const char *arg, int from_tty)
11399 {
11400 struct breakpoint *b;
11401 int default_match;
11402
11403 std::vector<symtab_and_line> decoded_sals;
11404 symtab_and_line last_sal;
11405 gdb::array_view<symtab_and_line> sals;
11406 if (arg)
11407 {
11408 decoded_sals
11409 = decode_line_with_current_source (arg,
11410 (DECODE_LINE_FUNFIRSTLINE
11411 | DECODE_LINE_LIST_MODE));
11412 default_match = 0;
11413 sals = decoded_sals;
11414 }
11415 else
11416 {
11417 /* Set sal's line, symtab, pc, and pspace to the values
11418 corresponding to the last call to print_frame_info. If the
11419 codepoint is not valid, this will set all the fields to 0. */
11420 last_sal = get_last_displayed_sal ();
11421 if (last_sal.symtab == 0)
11422 error (_("No source file specified."));
11423
11424 default_match = 1;
11425 sals = last_sal;
11426 }
11427
11428 /* We don't call resolve_sal_pc here. That's not as bad as it
11429 seems, because all existing breakpoints typically have both
11430 file/line and pc set. So, if clear is given file/line, we can
11431 match this to existing breakpoint without obtaining pc at all.
11432
11433 We only support clearing given the address explicitly
11434 present in breakpoint table. Say, we've set breakpoint
11435 at file:line. There were several PC values for that file:line,
11436 due to optimization, all in one block.
11437
11438 We've picked one PC value. If "clear" is issued with another
11439 PC corresponding to the same file:line, the breakpoint won't
11440 be cleared. We probably can still clear the breakpoint, but
11441 since the other PC value is never presented to user, user
11442 can only find it by guessing, and it does not seem important
11443 to support that. */
11444
11445 /* For each line spec given, delete bps which correspond to it. Do
11446 it in two passes, solely to preserve the current behavior that
11447 from_tty is forced true if we delete more than one
11448 breakpoint. */
11449
11450 std::vector<struct breakpoint *> found;
11451 for (const auto &sal : sals)
11452 {
11453 const char *sal_fullname;
11454
11455 /* If exact pc given, clear bpts at that pc.
11456 If line given (pc == 0), clear all bpts on specified line.
11457 If defaulting, clear all bpts on default line
11458 or at default pc.
11459
11460 defaulting sal.pc != 0 tests to do
11461
11462 0 1 pc
11463 1 1 pc _and_ line
11464 0 0 line
11465 1 0 <can't happen> */
11466
11467 sal_fullname = (sal.symtab == NULL
11468 ? NULL : symtab_to_fullname (sal.symtab));
11469
11470 /* Find all matching breakpoints and add them to 'found'. */
11471 ALL_BREAKPOINTS (b)
11472 {
11473 int match = 0;
11474 /* Are we going to delete b? */
11475 if (b->type != bp_none && !is_watchpoint (b))
11476 {
11477 struct bp_location *loc = b->loc;
11478 for (; loc; loc = loc->next)
11479 {
11480 /* If the user specified file:line, don't allow a PC
11481 match. This matches historical gdb behavior. */
11482 int pc_match = (!sal.explicit_line
11483 && sal.pc
11484 && (loc->pspace == sal.pspace)
11485 && (loc->address == sal.pc)
11486 && (!section_is_overlay (loc->section)
11487 || loc->section == sal.section));
11488 int line_match = 0;
11489
11490 if ((default_match || sal.explicit_line)
11491 && loc->symtab != NULL
11492 && sal_fullname != NULL
11493 && sal.pspace == loc->pspace
11494 && loc->line_number == sal.line
11495 && filename_cmp (symtab_to_fullname (loc->symtab),
11496 sal_fullname) == 0)
11497 line_match = 1;
11498
11499 if (pc_match || line_match)
11500 {
11501 match = 1;
11502 break;
11503 }
11504 }
11505 }
11506
11507 if (match)
11508 found.push_back (b);
11509 }
11510 }
11511
11512 /* Now go thru the 'found' chain and delete them. */
11513 if (found.empty ())
11514 {
11515 if (arg)
11516 error (_("No breakpoint at %s."), arg);
11517 else
11518 error (_("No breakpoint at this line."));
11519 }
11520
11521 /* Remove duplicates from the vec. */
11522 std::sort (found.begin (), found.end (),
11523 [] (const breakpoint *a, const breakpoint *b)
11524 {
11525 return compare_breakpoints (a, b) < 0;
11526 });
11527 found.erase (std::unique (found.begin (), found.end (),
11528 [] (const breakpoint *a, const breakpoint *b)
11529 {
11530 return compare_breakpoints (a, b) == 0;
11531 }),
11532 found.end ());
11533
11534 if (found.size () > 1)
11535 from_tty = 1; /* Always report if deleted more than one. */
11536 if (from_tty)
11537 {
11538 if (found.size () == 1)
11539 printf_unfiltered (_("Deleted breakpoint "));
11540 else
11541 printf_unfiltered (_("Deleted breakpoints "));
11542 }
11543
11544 for (breakpoint *iter : found)
11545 {
11546 if (from_tty)
11547 printf_unfiltered ("%d ", iter->number);
11548 delete_breakpoint (iter);
11549 }
11550 if (from_tty)
11551 putchar_unfiltered ('\n');
11552 }
11553 \f
11554 /* Delete breakpoint in BS if they are `delete' breakpoints and
11555 all breakpoints that are marked for deletion, whether hit or not.
11556 This is called after any breakpoint is hit, or after errors. */
11557
11558 void
11559 breakpoint_auto_delete (bpstat bs)
11560 {
11561 struct breakpoint *b, *b_tmp;
11562
11563 for (; bs; bs = bs->next)
11564 if (bs->breakpoint_at
11565 && bs->breakpoint_at->disposition == disp_del
11566 && bs->stop)
11567 delete_breakpoint (bs->breakpoint_at);
11568
11569 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11570 {
11571 if (b->disposition == disp_del_at_next_stop)
11572 delete_breakpoint (b);
11573 }
11574 }
11575
11576 /* A comparison function for bp_location AP and BP being interfaced to
11577 qsort. Sort elements primarily by their ADDRESS (no matter what
11578 does breakpoint_address_is_meaningful say for its OWNER),
11579 secondarily by ordering first permanent elements and
11580 terciarily just ensuring the array is sorted stable way despite
11581 qsort being an unstable algorithm. */
11582
11583 static int
11584 bp_locations_compare (const void *ap, const void *bp)
11585 {
11586 const struct bp_location *a = *(const struct bp_location **) ap;
11587 const struct bp_location *b = *(const struct bp_location **) bp;
11588
11589 if (a->address != b->address)
11590 return (a->address > b->address) - (a->address < b->address);
11591
11592 /* Sort locations at the same address by their pspace number, keeping
11593 locations of the same inferior (in a multi-inferior environment)
11594 grouped. */
11595
11596 if (a->pspace->num != b->pspace->num)
11597 return ((a->pspace->num > b->pspace->num)
11598 - (a->pspace->num < b->pspace->num));
11599
11600 /* Sort permanent breakpoints first. */
11601 if (a->permanent != b->permanent)
11602 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11603
11604 /* Make the internal GDB representation stable across GDB runs
11605 where A and B memory inside GDB can differ. Breakpoint locations of
11606 the same type at the same address can be sorted in arbitrary order. */
11607
11608 if (a->owner->number != b->owner->number)
11609 return ((a->owner->number > b->owner->number)
11610 - (a->owner->number < b->owner->number));
11611
11612 return (a > b) - (a < b);
11613 }
11614
11615 /* Set bp_locations_placed_address_before_address_max and
11616 bp_locations_shadow_len_after_address_max according to the current
11617 content of the bp_locations array. */
11618
11619 static void
11620 bp_locations_target_extensions_update (void)
11621 {
11622 struct bp_location *bl, **blp_tmp;
11623
11624 bp_locations_placed_address_before_address_max = 0;
11625 bp_locations_shadow_len_after_address_max = 0;
11626
11627 ALL_BP_LOCATIONS (bl, blp_tmp)
11628 {
11629 CORE_ADDR start, end, addr;
11630
11631 if (!bp_location_has_shadow (bl))
11632 continue;
11633
11634 start = bl->target_info.placed_address;
11635 end = start + bl->target_info.shadow_len;
11636
11637 gdb_assert (bl->address >= start);
11638 addr = bl->address - start;
11639 if (addr > bp_locations_placed_address_before_address_max)
11640 bp_locations_placed_address_before_address_max = addr;
11641
11642 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11643
11644 gdb_assert (bl->address < end);
11645 addr = end - bl->address;
11646 if (addr > bp_locations_shadow_len_after_address_max)
11647 bp_locations_shadow_len_after_address_max = addr;
11648 }
11649 }
11650
11651 /* Download tracepoint locations if they haven't been. */
11652
11653 static void
11654 download_tracepoint_locations (void)
11655 {
11656 struct breakpoint *b;
11657 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11658
11659 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11660
11661 ALL_TRACEPOINTS (b)
11662 {
11663 struct bp_location *bl;
11664 struct tracepoint *t;
11665 int bp_location_downloaded = 0;
11666
11667 if ((b->type == bp_fast_tracepoint
11668 ? !may_insert_fast_tracepoints
11669 : !may_insert_tracepoints))
11670 continue;
11671
11672 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11673 {
11674 if (target_can_download_tracepoint ())
11675 can_download_tracepoint = TRIBOOL_TRUE;
11676 else
11677 can_download_tracepoint = TRIBOOL_FALSE;
11678 }
11679
11680 if (can_download_tracepoint == TRIBOOL_FALSE)
11681 break;
11682
11683 for (bl = b->loc; bl; bl = bl->next)
11684 {
11685 /* In tracepoint, locations are _never_ duplicated, so
11686 should_be_inserted is equivalent to
11687 unduplicated_should_be_inserted. */
11688 if (!should_be_inserted (bl) || bl->inserted)
11689 continue;
11690
11691 switch_to_program_space_and_thread (bl->pspace);
11692
11693 target_download_tracepoint (bl);
11694
11695 bl->inserted = 1;
11696 bp_location_downloaded = 1;
11697 }
11698 t = (struct tracepoint *) b;
11699 t->number_on_target = b->number;
11700 if (bp_location_downloaded)
11701 gdb::observers::breakpoint_modified.notify (b);
11702 }
11703 }
11704
11705 /* Swap the insertion/duplication state between two locations. */
11706
11707 static void
11708 swap_insertion (struct bp_location *left, struct bp_location *right)
11709 {
11710 const int left_inserted = left->inserted;
11711 const int left_duplicate = left->duplicate;
11712 const int left_needs_update = left->needs_update;
11713 const struct bp_target_info left_target_info = left->target_info;
11714
11715 /* Locations of tracepoints can never be duplicated. */
11716 if (is_tracepoint (left->owner))
11717 gdb_assert (!left->duplicate);
11718 if (is_tracepoint (right->owner))
11719 gdb_assert (!right->duplicate);
11720
11721 left->inserted = right->inserted;
11722 left->duplicate = right->duplicate;
11723 left->needs_update = right->needs_update;
11724 left->target_info = right->target_info;
11725 right->inserted = left_inserted;
11726 right->duplicate = left_duplicate;
11727 right->needs_update = left_needs_update;
11728 right->target_info = left_target_info;
11729 }
11730
11731 /* Force the re-insertion of the locations at ADDRESS. This is called
11732 once a new/deleted/modified duplicate location is found and we are evaluating
11733 conditions on the target's side. Such conditions need to be updated on
11734 the target. */
11735
11736 static void
11737 force_breakpoint_reinsertion (struct bp_location *bl)
11738 {
11739 struct bp_location **locp = NULL, **loc2p;
11740 struct bp_location *loc;
11741 CORE_ADDR address = 0;
11742 int pspace_num;
11743
11744 address = bl->address;
11745 pspace_num = bl->pspace->num;
11746
11747 /* This is only meaningful if the target is
11748 evaluating conditions and if the user has
11749 opted for condition evaluation on the target's
11750 side. */
11751 if (gdb_evaluates_breakpoint_condition_p ()
11752 || !target_supports_evaluation_of_breakpoint_conditions ())
11753 return;
11754
11755 /* Flag all breakpoint locations with this address and
11756 the same program space as the location
11757 as "its condition has changed". We need to
11758 update the conditions on the target's side. */
11759 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11760 {
11761 loc = *loc2p;
11762
11763 if (!is_breakpoint (loc->owner)
11764 || pspace_num != loc->pspace->num)
11765 continue;
11766
11767 /* Flag the location appropriately. We use a different state to
11768 let everyone know that we already updated the set of locations
11769 with addr bl->address and program space bl->pspace. This is so
11770 we don't have to keep calling these functions just to mark locations
11771 that have already been marked. */
11772 loc->condition_changed = condition_updated;
11773
11774 /* Free the agent expression bytecode as well. We will compute
11775 it later on. */
11776 loc->cond_bytecode.reset ();
11777 }
11778 }
11779 /* Called whether new breakpoints are created, or existing breakpoints
11780 deleted, to update the global location list and recompute which
11781 locations are duplicate of which.
11782
11783 The INSERT_MODE flag determines whether locations may not, may, or
11784 shall be inserted now. See 'enum ugll_insert_mode' for more
11785 info. */
11786
11787 static void
11788 update_global_location_list (enum ugll_insert_mode insert_mode)
11789 {
11790 struct breakpoint *b;
11791 struct bp_location **locp, *loc;
11792 /* Last breakpoint location address that was marked for update. */
11793 CORE_ADDR last_addr = 0;
11794 /* Last breakpoint location program space that was marked for update. */
11795 int last_pspace_num = -1;
11796
11797 /* Used in the duplicates detection below. When iterating over all
11798 bp_locations, points to the first bp_location of a given address.
11799 Breakpoints and watchpoints of different types are never
11800 duplicates of each other. Keep one pointer for each type of
11801 breakpoint/watchpoint, so we only need to loop over all locations
11802 once. */
11803 struct bp_location *bp_loc_first; /* breakpoint */
11804 struct bp_location *wp_loc_first; /* hardware watchpoint */
11805 struct bp_location *awp_loc_first; /* access watchpoint */
11806 struct bp_location *rwp_loc_first; /* read watchpoint */
11807
11808 /* Saved former bp_locations array which we compare against the newly
11809 built bp_locations from the current state of ALL_BREAKPOINTS. */
11810 struct bp_location **old_locp;
11811 unsigned old_locations_count;
11812 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11813
11814 old_locations_count = bp_locations_count;
11815 bp_locations = NULL;
11816 bp_locations_count = 0;
11817
11818 ALL_BREAKPOINTS (b)
11819 for (loc = b->loc; loc; loc = loc->next)
11820 bp_locations_count++;
11821
11822 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11823 locp = bp_locations;
11824 ALL_BREAKPOINTS (b)
11825 for (loc = b->loc; loc; loc = loc->next)
11826 *locp++ = loc;
11827 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11828 bp_locations_compare);
11829
11830 bp_locations_target_extensions_update ();
11831
11832 /* Identify bp_location instances that are no longer present in the
11833 new list, and therefore should be freed. Note that it's not
11834 necessary that those locations should be removed from inferior --
11835 if there's another location at the same address (previously
11836 marked as duplicate), we don't need to remove/insert the
11837 location.
11838
11839 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11840 and former bp_location array state respectively. */
11841
11842 locp = bp_locations;
11843 for (old_locp = old_locations.get ();
11844 old_locp < old_locations.get () + old_locations_count;
11845 old_locp++)
11846 {
11847 struct bp_location *old_loc = *old_locp;
11848 struct bp_location **loc2p;
11849
11850 /* Tells if 'old_loc' is found among the new locations. If
11851 not, we have to free it. */
11852 int found_object = 0;
11853 /* Tells if the location should remain inserted in the target. */
11854 int keep_in_target = 0;
11855 int removed = 0;
11856
11857 /* Skip LOCP entries which will definitely never be needed.
11858 Stop either at or being the one matching OLD_LOC. */
11859 while (locp < bp_locations + bp_locations_count
11860 && (*locp)->address < old_loc->address)
11861 locp++;
11862
11863 for (loc2p = locp;
11864 (loc2p < bp_locations + bp_locations_count
11865 && (*loc2p)->address == old_loc->address);
11866 loc2p++)
11867 {
11868 /* Check if this is a new/duplicated location or a duplicated
11869 location that had its condition modified. If so, we want to send
11870 its condition to the target if evaluation of conditions is taking
11871 place there. */
11872 if ((*loc2p)->condition_changed == condition_modified
11873 && (last_addr != old_loc->address
11874 || last_pspace_num != old_loc->pspace->num))
11875 {
11876 force_breakpoint_reinsertion (*loc2p);
11877 last_pspace_num = old_loc->pspace->num;
11878 }
11879
11880 if (*loc2p == old_loc)
11881 found_object = 1;
11882 }
11883
11884 /* We have already handled this address, update it so that we don't
11885 have to go through updates again. */
11886 last_addr = old_loc->address;
11887
11888 /* Target-side condition evaluation: Handle deleted locations. */
11889 if (!found_object)
11890 force_breakpoint_reinsertion (old_loc);
11891
11892 /* If this location is no longer present, and inserted, look if
11893 there's maybe a new location at the same address. If so,
11894 mark that one inserted, and don't remove this one. This is
11895 needed so that we don't have a time window where a breakpoint
11896 at certain location is not inserted. */
11897
11898 if (old_loc->inserted)
11899 {
11900 /* If the location is inserted now, we might have to remove
11901 it. */
11902
11903 if (found_object && should_be_inserted (old_loc))
11904 {
11905 /* The location is still present in the location list,
11906 and still should be inserted. Don't do anything. */
11907 keep_in_target = 1;
11908 }
11909 else
11910 {
11911 /* This location still exists, but it won't be kept in the
11912 target since it may have been disabled. We proceed to
11913 remove its target-side condition. */
11914
11915 /* The location is either no longer present, or got
11916 disabled. See if there's another location at the
11917 same address, in which case we don't need to remove
11918 this one from the target. */
11919
11920 /* OLD_LOC comes from existing struct breakpoint. */
11921 if (breakpoint_address_is_meaningful (old_loc->owner))
11922 {
11923 for (loc2p = locp;
11924 (loc2p < bp_locations + bp_locations_count
11925 && (*loc2p)->address == old_loc->address);
11926 loc2p++)
11927 {
11928 struct bp_location *loc2 = *loc2p;
11929
11930 if (breakpoint_locations_match (loc2, old_loc))
11931 {
11932 /* Read watchpoint locations are switched to
11933 access watchpoints, if the former are not
11934 supported, but the latter are. */
11935 if (is_hardware_watchpoint (old_loc->owner))
11936 {
11937 gdb_assert (is_hardware_watchpoint (loc2->owner));
11938 loc2->watchpoint_type = old_loc->watchpoint_type;
11939 }
11940
11941 /* loc2 is a duplicated location. We need to check
11942 if it should be inserted in case it will be
11943 unduplicated. */
11944 if (loc2 != old_loc
11945 && unduplicated_should_be_inserted (loc2))
11946 {
11947 swap_insertion (old_loc, loc2);
11948 keep_in_target = 1;
11949 break;
11950 }
11951 }
11952 }
11953 }
11954 }
11955
11956 if (!keep_in_target)
11957 {
11958 if (remove_breakpoint (old_loc))
11959 {
11960 /* This is just about all we can do. We could keep
11961 this location on the global list, and try to
11962 remove it next time, but there's no particular
11963 reason why we will succeed next time.
11964
11965 Note that at this point, old_loc->owner is still
11966 valid, as delete_breakpoint frees the breakpoint
11967 only after calling us. */
11968 printf_filtered (_("warning: Error removing "
11969 "breakpoint %d\n"),
11970 old_loc->owner->number);
11971 }
11972 removed = 1;
11973 }
11974 }
11975
11976 if (!found_object)
11977 {
11978 if (removed && target_is_non_stop_p ()
11979 && need_moribund_for_location_type (old_loc))
11980 {
11981 /* This location was removed from the target. In
11982 non-stop mode, a race condition is possible where
11983 we've removed a breakpoint, but stop events for that
11984 breakpoint are already queued and will arrive later.
11985 We apply an heuristic to be able to distinguish such
11986 SIGTRAPs from other random SIGTRAPs: we keep this
11987 breakpoint location for a bit, and will retire it
11988 after we see some number of events. The theory here
11989 is that reporting of events should, "on the average",
11990 be fair, so after a while we'll see events from all
11991 threads that have anything of interest, and no longer
11992 need to keep this breakpoint location around. We
11993 don't hold locations forever so to reduce chances of
11994 mistaking a non-breakpoint SIGTRAP for a breakpoint
11995 SIGTRAP.
11996
11997 The heuristic failing can be disastrous on
11998 decr_pc_after_break targets.
11999
12000 On decr_pc_after_break targets, like e.g., x86-linux,
12001 if we fail to recognize a late breakpoint SIGTRAP,
12002 because events_till_retirement has reached 0 too
12003 soon, we'll fail to do the PC adjustment, and report
12004 a random SIGTRAP to the user. When the user resumes
12005 the inferior, it will most likely immediately crash
12006 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12007 corrupted, because of being resumed e.g., in the
12008 middle of a multi-byte instruction, or skipped a
12009 one-byte instruction. This was actually seen happen
12010 on native x86-linux, and should be less rare on
12011 targets that do not support new thread events, like
12012 remote, due to the heuristic depending on
12013 thread_count.
12014
12015 Mistaking a random SIGTRAP for a breakpoint trap
12016 causes similar symptoms (PC adjustment applied when
12017 it shouldn't), but then again, playing with SIGTRAPs
12018 behind the debugger's back is asking for trouble.
12019
12020 Since hardware watchpoint traps are always
12021 distinguishable from other traps, so we don't need to
12022 apply keep hardware watchpoint moribund locations
12023 around. We simply always ignore hardware watchpoint
12024 traps we can no longer explain. */
12025
12026 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12027 old_loc->owner = NULL;
12028
12029 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12030 }
12031 else
12032 {
12033 old_loc->owner = NULL;
12034 decref_bp_location (&old_loc);
12035 }
12036 }
12037 }
12038
12039 /* Rescan breakpoints at the same address and section, marking the
12040 first one as "first" and any others as "duplicates". This is so
12041 that the bpt instruction is only inserted once. If we have a
12042 permanent breakpoint at the same place as BPT, make that one the
12043 official one, and the rest as duplicates. Permanent breakpoints
12044 are sorted first for the same address.
12045
12046 Do the same for hardware watchpoints, but also considering the
12047 watchpoint's type (regular/access/read) and length. */
12048
12049 bp_loc_first = NULL;
12050 wp_loc_first = NULL;
12051 awp_loc_first = NULL;
12052 rwp_loc_first = NULL;
12053 ALL_BP_LOCATIONS (loc, locp)
12054 {
12055 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12056 non-NULL. */
12057 struct bp_location **loc_first_p;
12058 b = loc->owner;
12059
12060 if (!unduplicated_should_be_inserted (loc)
12061 || !breakpoint_address_is_meaningful (b)
12062 /* Don't detect duplicate for tracepoint locations because they are
12063 never duplicated. See the comments in field `duplicate' of
12064 `struct bp_location'. */
12065 || is_tracepoint (b))
12066 {
12067 /* Clear the condition modification flag. */
12068 loc->condition_changed = condition_unchanged;
12069 continue;
12070 }
12071
12072 if (b->type == bp_hardware_watchpoint)
12073 loc_first_p = &wp_loc_first;
12074 else if (b->type == bp_read_watchpoint)
12075 loc_first_p = &rwp_loc_first;
12076 else if (b->type == bp_access_watchpoint)
12077 loc_first_p = &awp_loc_first;
12078 else
12079 loc_first_p = &bp_loc_first;
12080
12081 if (*loc_first_p == NULL
12082 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12083 || !breakpoint_locations_match (loc, *loc_first_p))
12084 {
12085 *loc_first_p = loc;
12086 loc->duplicate = 0;
12087
12088 if (is_breakpoint (loc->owner) && loc->condition_changed)
12089 {
12090 loc->needs_update = 1;
12091 /* Clear the condition modification flag. */
12092 loc->condition_changed = condition_unchanged;
12093 }
12094 continue;
12095 }
12096
12097
12098 /* This and the above ensure the invariant that the first location
12099 is not duplicated, and is the inserted one.
12100 All following are marked as duplicated, and are not inserted. */
12101 if (loc->inserted)
12102 swap_insertion (loc, *loc_first_p);
12103 loc->duplicate = 1;
12104
12105 /* Clear the condition modification flag. */
12106 loc->condition_changed = condition_unchanged;
12107 }
12108
12109 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12110 {
12111 if (insert_mode != UGLL_DONT_INSERT)
12112 insert_breakpoint_locations ();
12113 else
12114 {
12115 /* Even though the caller told us to not insert new
12116 locations, we may still need to update conditions on the
12117 target's side of breakpoints that were already inserted
12118 if the target is evaluating breakpoint conditions. We
12119 only update conditions for locations that are marked
12120 "needs_update". */
12121 update_inserted_breakpoint_locations ();
12122 }
12123 }
12124
12125 if (insert_mode != UGLL_DONT_INSERT)
12126 download_tracepoint_locations ();
12127 }
12128
12129 void
12130 breakpoint_retire_moribund (void)
12131 {
12132 struct bp_location *loc;
12133 int ix;
12134
12135 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12136 if (--(loc->events_till_retirement) == 0)
12137 {
12138 decref_bp_location (&loc);
12139 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12140 --ix;
12141 }
12142 }
12143
12144 static void
12145 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12146 {
12147
12148 TRY
12149 {
12150 update_global_location_list (insert_mode);
12151 }
12152 CATCH (e, RETURN_MASK_ERROR)
12153 {
12154 }
12155 END_CATCH
12156 }
12157
12158 /* Clear BKP from a BPS. */
12159
12160 static void
12161 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12162 {
12163 bpstat bs;
12164
12165 for (bs = bps; bs; bs = bs->next)
12166 if (bs->breakpoint_at == bpt)
12167 {
12168 bs->breakpoint_at = NULL;
12169 bs->old_val = NULL;
12170 /* bs->commands will be freed later. */
12171 }
12172 }
12173
12174 /* Callback for iterate_over_threads. */
12175 static int
12176 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12177 {
12178 struct breakpoint *bpt = (struct breakpoint *) data;
12179
12180 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12181 return 0;
12182 }
12183
12184 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12185 callbacks. */
12186
12187 static void
12188 say_where (struct breakpoint *b)
12189 {
12190 struct value_print_options opts;
12191
12192 get_user_print_options (&opts);
12193
12194 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12195 single string. */
12196 if (b->loc == NULL)
12197 {
12198 /* For pending locations, the output differs slightly based
12199 on b->extra_string. If this is non-NULL, it contains either
12200 a condition or dprintf arguments. */
12201 if (b->extra_string == NULL)
12202 {
12203 printf_filtered (_(" (%s) pending."),
12204 event_location_to_string (b->location.get ()));
12205 }
12206 else if (b->type == bp_dprintf)
12207 {
12208 printf_filtered (_(" (%s,%s) pending."),
12209 event_location_to_string (b->location.get ()),
12210 b->extra_string);
12211 }
12212 else
12213 {
12214 printf_filtered (_(" (%s %s) pending."),
12215 event_location_to_string (b->location.get ()),
12216 b->extra_string);
12217 }
12218 }
12219 else
12220 {
12221 if (opts.addressprint || b->loc->symtab == NULL)
12222 {
12223 printf_filtered (" at ");
12224 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12225 gdb_stdout);
12226 }
12227 if (b->loc->symtab != NULL)
12228 {
12229 /* If there is a single location, we can print the location
12230 more nicely. */
12231 if (b->loc->next == NULL)
12232 printf_filtered (": file %s, line %d.",
12233 symtab_to_filename_for_display (b->loc->symtab),
12234 b->loc->line_number);
12235 else
12236 /* This is not ideal, but each location may have a
12237 different file name, and this at least reflects the
12238 real situation somewhat. */
12239 printf_filtered (": %s.",
12240 event_location_to_string (b->location.get ()));
12241 }
12242
12243 if (b->loc->next)
12244 {
12245 struct bp_location *loc = b->loc;
12246 int n = 0;
12247 for (; loc; loc = loc->next)
12248 ++n;
12249 printf_filtered (" (%d locations)", n);
12250 }
12251 }
12252 }
12253
12254 /* Default bp_location_ops methods. */
12255
12256 static void
12257 bp_location_dtor (struct bp_location *self)
12258 {
12259 xfree (self->function_name);
12260 }
12261
12262 static const struct bp_location_ops bp_location_ops =
12263 {
12264 bp_location_dtor
12265 };
12266
12267 /* Destructor for the breakpoint base class. */
12268
12269 breakpoint::~breakpoint ()
12270 {
12271 xfree (this->cond_string);
12272 xfree (this->extra_string);
12273 xfree (this->filter);
12274 }
12275
12276 static struct bp_location *
12277 base_breakpoint_allocate_location (struct breakpoint *self)
12278 {
12279 return new bp_location (&bp_location_ops, self);
12280 }
12281
12282 static void
12283 base_breakpoint_re_set (struct breakpoint *b)
12284 {
12285 /* Nothing to re-set. */
12286 }
12287
12288 #define internal_error_pure_virtual_called() \
12289 gdb_assert_not_reached ("pure virtual function called")
12290
12291 static int
12292 base_breakpoint_insert_location (struct bp_location *bl)
12293 {
12294 internal_error_pure_virtual_called ();
12295 }
12296
12297 static int
12298 base_breakpoint_remove_location (struct bp_location *bl,
12299 enum remove_bp_reason reason)
12300 {
12301 internal_error_pure_virtual_called ();
12302 }
12303
12304 static int
12305 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12306 const address_space *aspace,
12307 CORE_ADDR bp_addr,
12308 const struct target_waitstatus *ws)
12309 {
12310 internal_error_pure_virtual_called ();
12311 }
12312
12313 static void
12314 base_breakpoint_check_status (bpstat bs)
12315 {
12316 /* Always stop. */
12317 }
12318
12319 /* A "works_in_software_mode" breakpoint_ops method that just internal
12320 errors. */
12321
12322 static int
12323 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12324 {
12325 internal_error_pure_virtual_called ();
12326 }
12327
12328 /* A "resources_needed" breakpoint_ops method that just internal
12329 errors. */
12330
12331 static int
12332 base_breakpoint_resources_needed (const struct bp_location *bl)
12333 {
12334 internal_error_pure_virtual_called ();
12335 }
12336
12337 static enum print_stop_action
12338 base_breakpoint_print_it (bpstat bs)
12339 {
12340 internal_error_pure_virtual_called ();
12341 }
12342
12343 static void
12344 base_breakpoint_print_one_detail (const struct breakpoint *self,
12345 struct ui_out *uiout)
12346 {
12347 /* nothing */
12348 }
12349
12350 static void
12351 base_breakpoint_print_mention (struct breakpoint *b)
12352 {
12353 internal_error_pure_virtual_called ();
12354 }
12355
12356 static void
12357 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12358 {
12359 internal_error_pure_virtual_called ();
12360 }
12361
12362 static void
12363 base_breakpoint_create_sals_from_location
12364 (const struct event_location *location,
12365 struct linespec_result *canonical,
12366 enum bptype type_wanted)
12367 {
12368 internal_error_pure_virtual_called ();
12369 }
12370
12371 static void
12372 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12373 struct linespec_result *c,
12374 gdb::unique_xmalloc_ptr<char> cond_string,
12375 gdb::unique_xmalloc_ptr<char> extra_string,
12376 enum bptype type_wanted,
12377 enum bpdisp disposition,
12378 int thread,
12379 int task, int ignore_count,
12380 const struct breakpoint_ops *o,
12381 int from_tty, int enabled,
12382 int internal, unsigned flags)
12383 {
12384 internal_error_pure_virtual_called ();
12385 }
12386
12387 static std::vector<symtab_and_line>
12388 base_breakpoint_decode_location (struct breakpoint *b,
12389 const struct event_location *location,
12390 struct program_space *search_pspace)
12391 {
12392 internal_error_pure_virtual_called ();
12393 }
12394
12395 /* The default 'explains_signal' method. */
12396
12397 static int
12398 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12399 {
12400 return 1;
12401 }
12402
12403 /* The default "after_condition_true" method. */
12404
12405 static void
12406 base_breakpoint_after_condition_true (struct bpstats *bs)
12407 {
12408 /* Nothing to do. */
12409 }
12410
12411 struct breakpoint_ops base_breakpoint_ops =
12412 {
12413 base_breakpoint_allocate_location,
12414 base_breakpoint_re_set,
12415 base_breakpoint_insert_location,
12416 base_breakpoint_remove_location,
12417 base_breakpoint_breakpoint_hit,
12418 base_breakpoint_check_status,
12419 base_breakpoint_resources_needed,
12420 base_breakpoint_works_in_software_mode,
12421 base_breakpoint_print_it,
12422 NULL,
12423 base_breakpoint_print_one_detail,
12424 base_breakpoint_print_mention,
12425 base_breakpoint_print_recreate,
12426 base_breakpoint_create_sals_from_location,
12427 base_breakpoint_create_breakpoints_sal,
12428 base_breakpoint_decode_location,
12429 base_breakpoint_explains_signal,
12430 base_breakpoint_after_condition_true,
12431 };
12432
12433 /* Default breakpoint_ops methods. */
12434
12435 static void
12436 bkpt_re_set (struct breakpoint *b)
12437 {
12438 /* FIXME: is this still reachable? */
12439 if (breakpoint_event_location_empty_p (b))
12440 {
12441 /* Anything without a location can't be re-set. */
12442 delete_breakpoint (b);
12443 return;
12444 }
12445
12446 breakpoint_re_set_default (b);
12447 }
12448
12449 static int
12450 bkpt_insert_location (struct bp_location *bl)
12451 {
12452 CORE_ADDR addr = bl->target_info.reqstd_address;
12453
12454 bl->target_info.kind = breakpoint_kind (bl, &addr);
12455 bl->target_info.placed_address = addr;
12456
12457 if (bl->loc_type == bp_loc_hardware_breakpoint)
12458 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12459 else
12460 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12461 }
12462
12463 static int
12464 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12465 {
12466 if (bl->loc_type == bp_loc_hardware_breakpoint)
12467 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12468 else
12469 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12470 }
12471
12472 static int
12473 bkpt_breakpoint_hit (const struct bp_location *bl,
12474 const address_space *aspace, CORE_ADDR bp_addr,
12475 const struct target_waitstatus *ws)
12476 {
12477 if (ws->kind != TARGET_WAITKIND_STOPPED
12478 || ws->value.sig != GDB_SIGNAL_TRAP)
12479 return 0;
12480
12481 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12482 aspace, bp_addr))
12483 return 0;
12484
12485 if (overlay_debugging /* unmapped overlay section */
12486 && section_is_overlay (bl->section)
12487 && !section_is_mapped (bl->section))
12488 return 0;
12489
12490 return 1;
12491 }
12492
12493 static int
12494 dprintf_breakpoint_hit (const struct bp_location *bl,
12495 const address_space *aspace, CORE_ADDR bp_addr,
12496 const struct target_waitstatus *ws)
12497 {
12498 if (dprintf_style == dprintf_style_agent
12499 && target_can_run_breakpoint_commands ())
12500 {
12501 /* An agent-style dprintf never causes a stop. If we see a trap
12502 for this address it must be for a breakpoint that happens to
12503 be set at the same address. */
12504 return 0;
12505 }
12506
12507 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12508 }
12509
12510 static int
12511 bkpt_resources_needed (const struct bp_location *bl)
12512 {
12513 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12514
12515 return 1;
12516 }
12517
12518 static enum print_stop_action
12519 bkpt_print_it (bpstat bs)
12520 {
12521 struct breakpoint *b;
12522 const struct bp_location *bl;
12523 int bp_temp;
12524 struct ui_out *uiout = current_uiout;
12525
12526 gdb_assert (bs->bp_location_at != NULL);
12527
12528 bl = bs->bp_location_at;
12529 b = bs->breakpoint_at;
12530
12531 bp_temp = b->disposition == disp_del;
12532 if (bl->address != bl->requested_address)
12533 breakpoint_adjustment_warning (bl->requested_address,
12534 bl->address,
12535 b->number, 1);
12536 annotate_breakpoint (b->number);
12537 maybe_print_thread_hit_breakpoint (uiout);
12538
12539 if (bp_temp)
12540 uiout->text ("Temporary breakpoint ");
12541 else
12542 uiout->text ("Breakpoint ");
12543 if (uiout->is_mi_like_p ())
12544 {
12545 uiout->field_string ("reason",
12546 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12547 uiout->field_string ("disp", bpdisp_text (b->disposition));
12548 }
12549 uiout->field_int ("bkptno", b->number);
12550 uiout->text (", ");
12551
12552 return PRINT_SRC_AND_LOC;
12553 }
12554
12555 static void
12556 bkpt_print_mention (struct breakpoint *b)
12557 {
12558 if (current_uiout->is_mi_like_p ())
12559 return;
12560
12561 switch (b->type)
12562 {
12563 case bp_breakpoint:
12564 case bp_gnu_ifunc_resolver:
12565 if (b->disposition == disp_del)
12566 printf_filtered (_("Temporary breakpoint"));
12567 else
12568 printf_filtered (_("Breakpoint"));
12569 printf_filtered (_(" %d"), b->number);
12570 if (b->type == bp_gnu_ifunc_resolver)
12571 printf_filtered (_(" at gnu-indirect-function resolver"));
12572 break;
12573 case bp_hardware_breakpoint:
12574 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12575 break;
12576 case bp_dprintf:
12577 printf_filtered (_("Dprintf %d"), b->number);
12578 break;
12579 }
12580
12581 say_where (b);
12582 }
12583
12584 static void
12585 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12586 {
12587 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12588 fprintf_unfiltered (fp, "tbreak");
12589 else if (tp->type == bp_breakpoint)
12590 fprintf_unfiltered (fp, "break");
12591 else if (tp->type == bp_hardware_breakpoint
12592 && tp->disposition == disp_del)
12593 fprintf_unfiltered (fp, "thbreak");
12594 else if (tp->type == bp_hardware_breakpoint)
12595 fprintf_unfiltered (fp, "hbreak");
12596 else
12597 internal_error (__FILE__, __LINE__,
12598 _("unhandled breakpoint type %d"), (int) tp->type);
12599
12600 fprintf_unfiltered (fp, " %s",
12601 event_location_to_string (tp->location.get ()));
12602
12603 /* Print out extra_string if this breakpoint is pending. It might
12604 contain, for example, conditions that were set by the user. */
12605 if (tp->loc == NULL && tp->extra_string != NULL)
12606 fprintf_unfiltered (fp, " %s", tp->extra_string);
12607
12608 print_recreate_thread (tp, fp);
12609 }
12610
12611 static void
12612 bkpt_create_sals_from_location (const struct event_location *location,
12613 struct linespec_result *canonical,
12614 enum bptype type_wanted)
12615 {
12616 create_sals_from_location_default (location, canonical, type_wanted);
12617 }
12618
12619 static void
12620 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12621 struct linespec_result *canonical,
12622 gdb::unique_xmalloc_ptr<char> cond_string,
12623 gdb::unique_xmalloc_ptr<char> extra_string,
12624 enum bptype type_wanted,
12625 enum bpdisp disposition,
12626 int thread,
12627 int task, int ignore_count,
12628 const struct breakpoint_ops *ops,
12629 int from_tty, int enabled,
12630 int internal, unsigned flags)
12631 {
12632 create_breakpoints_sal_default (gdbarch, canonical,
12633 std::move (cond_string),
12634 std::move (extra_string),
12635 type_wanted,
12636 disposition, thread, task,
12637 ignore_count, ops, from_tty,
12638 enabled, internal, flags);
12639 }
12640
12641 static std::vector<symtab_and_line>
12642 bkpt_decode_location (struct breakpoint *b,
12643 const struct event_location *location,
12644 struct program_space *search_pspace)
12645 {
12646 return decode_location_default (b, location, search_pspace);
12647 }
12648
12649 /* Virtual table for internal breakpoints. */
12650
12651 static void
12652 internal_bkpt_re_set (struct breakpoint *b)
12653 {
12654 switch (b->type)
12655 {
12656 /* Delete overlay event and longjmp master breakpoints; they
12657 will be reset later by breakpoint_re_set. */
12658 case bp_overlay_event:
12659 case bp_longjmp_master:
12660 case bp_std_terminate_master:
12661 case bp_exception_master:
12662 delete_breakpoint (b);
12663 break;
12664
12665 /* This breakpoint is special, it's set up when the inferior
12666 starts and we really don't want to touch it. */
12667 case bp_shlib_event:
12668
12669 /* Like bp_shlib_event, this breakpoint type is special. Once
12670 it is set up, we do not want to touch it. */
12671 case bp_thread_event:
12672 break;
12673 }
12674 }
12675
12676 static void
12677 internal_bkpt_check_status (bpstat bs)
12678 {
12679 if (bs->breakpoint_at->type == bp_shlib_event)
12680 {
12681 /* If requested, stop when the dynamic linker notifies GDB of
12682 events. This allows the user to get control and place
12683 breakpoints in initializer routines for dynamically loaded
12684 objects (among other things). */
12685 bs->stop = stop_on_solib_events;
12686 bs->print = stop_on_solib_events;
12687 }
12688 else
12689 bs->stop = 0;
12690 }
12691
12692 static enum print_stop_action
12693 internal_bkpt_print_it (bpstat bs)
12694 {
12695 struct breakpoint *b;
12696
12697 b = bs->breakpoint_at;
12698
12699 switch (b->type)
12700 {
12701 case bp_shlib_event:
12702 /* Did we stop because the user set the stop_on_solib_events
12703 variable? (If so, we report this as a generic, "Stopped due
12704 to shlib event" message.) */
12705 print_solib_event (0);
12706 break;
12707
12708 case bp_thread_event:
12709 /* Not sure how we will get here.
12710 GDB should not stop for these breakpoints. */
12711 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12712 break;
12713
12714 case bp_overlay_event:
12715 /* By analogy with the thread event, GDB should not stop for these. */
12716 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12717 break;
12718
12719 case bp_longjmp_master:
12720 /* These should never be enabled. */
12721 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12722 break;
12723
12724 case bp_std_terminate_master:
12725 /* These should never be enabled. */
12726 printf_filtered (_("std::terminate Master Breakpoint: "
12727 "gdb should not stop!\n"));
12728 break;
12729
12730 case bp_exception_master:
12731 /* These should never be enabled. */
12732 printf_filtered (_("Exception Master Breakpoint: "
12733 "gdb should not stop!\n"));
12734 break;
12735 }
12736
12737 return PRINT_NOTHING;
12738 }
12739
12740 static void
12741 internal_bkpt_print_mention (struct breakpoint *b)
12742 {
12743 /* Nothing to mention. These breakpoints are internal. */
12744 }
12745
12746 /* Virtual table for momentary breakpoints */
12747
12748 static void
12749 momentary_bkpt_re_set (struct breakpoint *b)
12750 {
12751 /* Keep temporary breakpoints, which can be encountered when we step
12752 over a dlopen call and solib_add is resetting the breakpoints.
12753 Otherwise these should have been blown away via the cleanup chain
12754 or by breakpoint_init_inferior when we rerun the executable. */
12755 }
12756
12757 static void
12758 momentary_bkpt_check_status (bpstat bs)
12759 {
12760 /* Nothing. The point of these breakpoints is causing a stop. */
12761 }
12762
12763 static enum print_stop_action
12764 momentary_bkpt_print_it (bpstat bs)
12765 {
12766 return PRINT_UNKNOWN;
12767 }
12768
12769 static void
12770 momentary_bkpt_print_mention (struct breakpoint *b)
12771 {
12772 /* Nothing to mention. These breakpoints are internal. */
12773 }
12774
12775 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12776
12777 It gets cleared already on the removal of the first one of such placed
12778 breakpoints. This is OK as they get all removed altogether. */
12779
12780 longjmp_breakpoint::~longjmp_breakpoint ()
12781 {
12782 thread_info *tp = find_thread_global_id (this->thread);
12783
12784 if (tp != NULL)
12785 tp->initiating_frame = null_frame_id;
12786 }
12787
12788 /* Specific methods for probe breakpoints. */
12789
12790 static int
12791 bkpt_probe_insert_location (struct bp_location *bl)
12792 {
12793 int v = bkpt_insert_location (bl);
12794
12795 if (v == 0)
12796 {
12797 /* The insertion was successful, now let's set the probe's semaphore
12798 if needed. */
12799 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12800 }
12801
12802 return v;
12803 }
12804
12805 static int
12806 bkpt_probe_remove_location (struct bp_location *bl,
12807 enum remove_bp_reason reason)
12808 {
12809 /* Let's clear the semaphore before removing the location. */
12810 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12811
12812 return bkpt_remove_location (bl, reason);
12813 }
12814
12815 static void
12816 bkpt_probe_create_sals_from_location (const struct event_location *location,
12817 struct linespec_result *canonical,
12818 enum bptype type_wanted)
12819 {
12820 struct linespec_sals lsal;
12821
12822 lsal.sals = parse_probes (location, NULL, canonical);
12823 lsal.canonical
12824 = xstrdup (event_location_to_string (canonical->location.get ()));
12825 canonical->lsals.push_back (std::move (lsal));
12826 }
12827
12828 static std::vector<symtab_and_line>
12829 bkpt_probe_decode_location (struct breakpoint *b,
12830 const struct event_location *location,
12831 struct program_space *search_pspace)
12832 {
12833 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12834 if (sals.empty ())
12835 error (_("probe not found"));
12836 return sals;
12837 }
12838
12839 /* The breakpoint_ops structure to be used in tracepoints. */
12840
12841 static void
12842 tracepoint_re_set (struct breakpoint *b)
12843 {
12844 breakpoint_re_set_default (b);
12845 }
12846
12847 static int
12848 tracepoint_breakpoint_hit (const struct bp_location *bl,
12849 const address_space *aspace, CORE_ADDR bp_addr,
12850 const struct target_waitstatus *ws)
12851 {
12852 /* By definition, the inferior does not report stops at
12853 tracepoints. */
12854 return 0;
12855 }
12856
12857 static void
12858 tracepoint_print_one_detail (const struct breakpoint *self,
12859 struct ui_out *uiout)
12860 {
12861 struct tracepoint *tp = (struct tracepoint *) self;
12862 if (!tp->static_trace_marker_id.empty ())
12863 {
12864 gdb_assert (self->type == bp_static_tracepoint);
12865
12866 uiout->text ("\tmarker id is ");
12867 uiout->field_string ("static-tracepoint-marker-string-id",
12868 tp->static_trace_marker_id);
12869 uiout->text ("\n");
12870 }
12871 }
12872
12873 static void
12874 tracepoint_print_mention (struct breakpoint *b)
12875 {
12876 if (current_uiout->is_mi_like_p ())
12877 return;
12878
12879 switch (b->type)
12880 {
12881 case bp_tracepoint:
12882 printf_filtered (_("Tracepoint"));
12883 printf_filtered (_(" %d"), b->number);
12884 break;
12885 case bp_fast_tracepoint:
12886 printf_filtered (_("Fast tracepoint"));
12887 printf_filtered (_(" %d"), b->number);
12888 break;
12889 case bp_static_tracepoint:
12890 printf_filtered (_("Static tracepoint"));
12891 printf_filtered (_(" %d"), b->number);
12892 break;
12893 default:
12894 internal_error (__FILE__, __LINE__,
12895 _("unhandled tracepoint type %d"), (int) b->type);
12896 }
12897
12898 say_where (b);
12899 }
12900
12901 static void
12902 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12903 {
12904 struct tracepoint *tp = (struct tracepoint *) self;
12905
12906 if (self->type == bp_fast_tracepoint)
12907 fprintf_unfiltered (fp, "ftrace");
12908 else if (self->type == bp_static_tracepoint)
12909 fprintf_unfiltered (fp, "strace");
12910 else if (self->type == bp_tracepoint)
12911 fprintf_unfiltered (fp, "trace");
12912 else
12913 internal_error (__FILE__, __LINE__,
12914 _("unhandled tracepoint type %d"), (int) self->type);
12915
12916 fprintf_unfiltered (fp, " %s",
12917 event_location_to_string (self->location.get ()));
12918 print_recreate_thread (self, fp);
12919
12920 if (tp->pass_count)
12921 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12922 }
12923
12924 static void
12925 tracepoint_create_sals_from_location (const struct event_location *location,
12926 struct linespec_result *canonical,
12927 enum bptype type_wanted)
12928 {
12929 create_sals_from_location_default (location, canonical, type_wanted);
12930 }
12931
12932 static void
12933 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12934 struct linespec_result *canonical,
12935 gdb::unique_xmalloc_ptr<char> cond_string,
12936 gdb::unique_xmalloc_ptr<char> extra_string,
12937 enum bptype type_wanted,
12938 enum bpdisp disposition,
12939 int thread,
12940 int task, int ignore_count,
12941 const struct breakpoint_ops *ops,
12942 int from_tty, int enabled,
12943 int internal, unsigned flags)
12944 {
12945 create_breakpoints_sal_default (gdbarch, canonical,
12946 std::move (cond_string),
12947 std::move (extra_string),
12948 type_wanted,
12949 disposition, thread, task,
12950 ignore_count, ops, from_tty,
12951 enabled, internal, flags);
12952 }
12953
12954 static std::vector<symtab_and_line>
12955 tracepoint_decode_location (struct breakpoint *b,
12956 const struct event_location *location,
12957 struct program_space *search_pspace)
12958 {
12959 return decode_location_default (b, location, search_pspace);
12960 }
12961
12962 struct breakpoint_ops tracepoint_breakpoint_ops;
12963
12964 /* The breakpoint_ops structure to be use on tracepoints placed in a
12965 static probe. */
12966
12967 static void
12968 tracepoint_probe_create_sals_from_location
12969 (const struct event_location *location,
12970 struct linespec_result *canonical,
12971 enum bptype type_wanted)
12972 {
12973 /* We use the same method for breakpoint on probes. */
12974 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12975 }
12976
12977 static std::vector<symtab_and_line>
12978 tracepoint_probe_decode_location (struct breakpoint *b,
12979 const struct event_location *location,
12980 struct program_space *search_pspace)
12981 {
12982 /* We use the same method for breakpoint on probes. */
12983 return bkpt_probe_decode_location (b, location, search_pspace);
12984 }
12985
12986 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
12987
12988 /* Dprintf breakpoint_ops methods. */
12989
12990 static void
12991 dprintf_re_set (struct breakpoint *b)
12992 {
12993 breakpoint_re_set_default (b);
12994
12995 /* extra_string should never be non-NULL for dprintf. */
12996 gdb_assert (b->extra_string != NULL);
12997
12998 /* 1 - connect to target 1, that can run breakpoint commands.
12999 2 - create a dprintf, which resolves fine.
13000 3 - disconnect from target 1
13001 4 - connect to target 2, that can NOT run breakpoint commands.
13002
13003 After steps #3/#4, you'll want the dprintf command list to
13004 be updated, because target 1 and 2 may well return different
13005 answers for target_can_run_breakpoint_commands().
13006 Given absence of finer grained resetting, we get to do
13007 it all the time. */
13008 if (b->extra_string != NULL)
13009 update_dprintf_command_list (b);
13010 }
13011
13012 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13013
13014 static void
13015 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13016 {
13017 fprintf_unfiltered (fp, "dprintf %s,%s",
13018 event_location_to_string (tp->location.get ()),
13019 tp->extra_string);
13020 print_recreate_thread (tp, fp);
13021 }
13022
13023 /* Implement the "after_condition_true" breakpoint_ops method for
13024 dprintf.
13025
13026 dprintf's are implemented with regular commands in their command
13027 list, but we run the commands here instead of before presenting the
13028 stop to the user, as dprintf's don't actually cause a stop. This
13029 also makes it so that the commands of multiple dprintfs at the same
13030 address are all handled. */
13031
13032 static void
13033 dprintf_after_condition_true (struct bpstats *bs)
13034 {
13035 struct bpstats tmp_bs;
13036 struct bpstats *tmp_bs_p = &tmp_bs;
13037
13038 /* dprintf's never cause a stop. This wasn't set in the
13039 check_status hook instead because that would make the dprintf's
13040 condition not be evaluated. */
13041 bs->stop = 0;
13042
13043 /* Run the command list here. Take ownership of it instead of
13044 copying. We never want these commands to run later in
13045 bpstat_do_actions, if a breakpoint that causes a stop happens to
13046 be set at same address as this dprintf, or even if running the
13047 commands here throws. */
13048 tmp_bs.commands = bs->commands;
13049 bs->commands = NULL;
13050
13051 bpstat_do_actions_1 (&tmp_bs_p);
13052
13053 /* 'tmp_bs.commands' will usually be NULL by now, but
13054 bpstat_do_actions_1 may return early without processing the whole
13055 list. */
13056 }
13057
13058 /* The breakpoint_ops structure to be used on static tracepoints with
13059 markers (`-m'). */
13060
13061 static void
13062 strace_marker_create_sals_from_location (const struct event_location *location,
13063 struct linespec_result *canonical,
13064 enum bptype type_wanted)
13065 {
13066 struct linespec_sals lsal;
13067 const char *arg_start, *arg;
13068
13069 arg = arg_start = get_linespec_location (location)->spec_string;
13070 lsal.sals = decode_static_tracepoint_spec (&arg);
13071
13072 std::string str (arg_start, arg - arg_start);
13073 const char *ptr = str.c_str ();
13074 canonical->location
13075 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13076
13077 lsal.canonical
13078 = xstrdup (event_location_to_string (canonical->location.get ()));
13079 canonical->lsals.push_back (std::move (lsal));
13080 }
13081
13082 static void
13083 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13084 struct linespec_result *canonical,
13085 gdb::unique_xmalloc_ptr<char> cond_string,
13086 gdb::unique_xmalloc_ptr<char> extra_string,
13087 enum bptype type_wanted,
13088 enum bpdisp disposition,
13089 int thread,
13090 int task, int ignore_count,
13091 const struct breakpoint_ops *ops,
13092 int from_tty, int enabled,
13093 int internal, unsigned flags)
13094 {
13095 const linespec_sals &lsal = canonical->lsals[0];
13096
13097 /* If the user is creating a static tracepoint by marker id
13098 (strace -m MARKER_ID), then store the sals index, so that
13099 breakpoint_re_set can try to match up which of the newly
13100 found markers corresponds to this one, and, don't try to
13101 expand multiple locations for each sal, given than SALS
13102 already should contain all sals for MARKER_ID. */
13103
13104 for (size_t i = 0; i < lsal.sals.size (); i++)
13105 {
13106 event_location_up location
13107 = copy_event_location (canonical->location.get ());
13108
13109 std::unique_ptr<tracepoint> tp (new tracepoint ());
13110 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13111 std::move (location), NULL,
13112 std::move (cond_string),
13113 std::move (extra_string),
13114 type_wanted, disposition,
13115 thread, task, ignore_count, ops,
13116 from_tty, enabled, internal, flags,
13117 canonical->special_display);
13118 /* Given that its possible to have multiple markers with
13119 the same string id, if the user is creating a static
13120 tracepoint by marker id ("strace -m MARKER_ID"), then
13121 store the sals index, so that breakpoint_re_set can
13122 try to match up which of the newly found markers
13123 corresponds to this one */
13124 tp->static_trace_marker_id_idx = i;
13125
13126 install_breakpoint (internal, std::move (tp), 0);
13127 }
13128 }
13129
13130 static std::vector<symtab_and_line>
13131 strace_marker_decode_location (struct breakpoint *b,
13132 const struct event_location *location,
13133 struct program_space *search_pspace)
13134 {
13135 struct tracepoint *tp = (struct tracepoint *) b;
13136 const char *s = get_linespec_location (location)->spec_string;
13137
13138 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13139 if (sals.size () > tp->static_trace_marker_id_idx)
13140 {
13141 sals[0] = sals[tp->static_trace_marker_id_idx];
13142 sals.resize (1);
13143 return sals;
13144 }
13145 else
13146 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13147 }
13148
13149 static struct breakpoint_ops strace_marker_breakpoint_ops;
13150
13151 static int
13152 strace_marker_p (struct breakpoint *b)
13153 {
13154 return b->ops == &strace_marker_breakpoint_ops;
13155 }
13156
13157 /* Delete a breakpoint and clean up all traces of it in the data
13158 structures. */
13159
13160 void
13161 delete_breakpoint (struct breakpoint *bpt)
13162 {
13163 struct breakpoint *b;
13164
13165 gdb_assert (bpt != NULL);
13166
13167 /* Has this bp already been deleted? This can happen because
13168 multiple lists can hold pointers to bp's. bpstat lists are
13169 especial culprits.
13170
13171 One example of this happening is a watchpoint's scope bp. When
13172 the scope bp triggers, we notice that the watchpoint is out of
13173 scope, and delete it. We also delete its scope bp. But the
13174 scope bp is marked "auto-deleting", and is already on a bpstat.
13175 That bpstat is then checked for auto-deleting bp's, which are
13176 deleted.
13177
13178 A real solution to this problem might involve reference counts in
13179 bp's, and/or giving them pointers back to their referencing
13180 bpstat's, and teaching delete_breakpoint to only free a bp's
13181 storage when no more references were extent. A cheaper bandaid
13182 was chosen. */
13183 if (bpt->type == bp_none)
13184 return;
13185
13186 /* At least avoid this stale reference until the reference counting
13187 of breakpoints gets resolved. */
13188 if (bpt->related_breakpoint != bpt)
13189 {
13190 struct breakpoint *related;
13191 struct watchpoint *w;
13192
13193 if (bpt->type == bp_watchpoint_scope)
13194 w = (struct watchpoint *) bpt->related_breakpoint;
13195 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13196 w = (struct watchpoint *) bpt;
13197 else
13198 w = NULL;
13199 if (w != NULL)
13200 watchpoint_del_at_next_stop (w);
13201
13202 /* Unlink bpt from the bpt->related_breakpoint ring. */
13203 for (related = bpt; related->related_breakpoint != bpt;
13204 related = related->related_breakpoint);
13205 related->related_breakpoint = bpt->related_breakpoint;
13206 bpt->related_breakpoint = bpt;
13207 }
13208
13209 /* watch_command_1 creates a watchpoint but only sets its number if
13210 update_watchpoint succeeds in creating its bp_locations. If there's
13211 a problem in that process, we'll be asked to delete the half-created
13212 watchpoint. In that case, don't announce the deletion. */
13213 if (bpt->number)
13214 gdb::observers::breakpoint_deleted.notify (bpt);
13215
13216 if (breakpoint_chain == bpt)
13217 breakpoint_chain = bpt->next;
13218
13219 ALL_BREAKPOINTS (b)
13220 if (b->next == bpt)
13221 {
13222 b->next = bpt->next;
13223 break;
13224 }
13225
13226 /* Be sure no bpstat's are pointing at the breakpoint after it's
13227 been freed. */
13228 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13229 in all threads for now. Note that we cannot just remove bpstats
13230 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13231 commands are associated with the bpstat; if we remove it here,
13232 then the later call to bpstat_do_actions (&stop_bpstat); in
13233 event-top.c won't do anything, and temporary breakpoints with
13234 commands won't work. */
13235
13236 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13237
13238 /* Now that breakpoint is removed from breakpoint list, update the
13239 global location list. This will remove locations that used to
13240 belong to this breakpoint. Do this before freeing the breakpoint
13241 itself, since remove_breakpoint looks at location's owner. It
13242 might be better design to have location completely
13243 self-contained, but it's not the case now. */
13244 update_global_location_list (UGLL_DONT_INSERT);
13245
13246 /* On the chance that someone will soon try again to delete this
13247 same bp, we mark it as deleted before freeing its storage. */
13248 bpt->type = bp_none;
13249 delete bpt;
13250 }
13251
13252 /* Iterator function to call a user-provided callback function once
13253 for each of B and its related breakpoints. */
13254
13255 static void
13256 iterate_over_related_breakpoints (struct breakpoint *b,
13257 gdb::function_view<void (breakpoint *)> function)
13258 {
13259 struct breakpoint *related;
13260
13261 related = b;
13262 do
13263 {
13264 struct breakpoint *next;
13265
13266 /* FUNCTION may delete RELATED. */
13267 next = related->related_breakpoint;
13268
13269 if (next == related)
13270 {
13271 /* RELATED is the last ring entry. */
13272 function (related);
13273
13274 /* FUNCTION may have deleted it, so we'd never reach back to
13275 B. There's nothing left to do anyway, so just break
13276 out. */
13277 break;
13278 }
13279 else
13280 function (related);
13281
13282 related = next;
13283 }
13284 while (related != b);
13285 }
13286
13287 static void
13288 delete_command (const char *arg, int from_tty)
13289 {
13290 struct breakpoint *b, *b_tmp;
13291
13292 dont_repeat ();
13293
13294 if (arg == 0)
13295 {
13296 int breaks_to_delete = 0;
13297
13298 /* Delete all breakpoints if no argument. Do not delete
13299 internal breakpoints, these have to be deleted with an
13300 explicit breakpoint number argument. */
13301 ALL_BREAKPOINTS (b)
13302 if (user_breakpoint_p (b))
13303 {
13304 breaks_to_delete = 1;
13305 break;
13306 }
13307
13308 /* Ask user only if there are some breakpoints to delete. */
13309 if (!from_tty
13310 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13311 {
13312 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13313 if (user_breakpoint_p (b))
13314 delete_breakpoint (b);
13315 }
13316 }
13317 else
13318 map_breakpoint_numbers
13319 (arg, [&] (breakpoint *b)
13320 {
13321 iterate_over_related_breakpoints (b, delete_breakpoint);
13322 });
13323 }
13324
13325 /* Return true if all locations of B bound to PSPACE are pending. If
13326 PSPACE is NULL, all locations of all program spaces are
13327 considered. */
13328
13329 static int
13330 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13331 {
13332 struct bp_location *loc;
13333
13334 for (loc = b->loc; loc != NULL; loc = loc->next)
13335 if ((pspace == NULL
13336 || loc->pspace == pspace)
13337 && !loc->shlib_disabled
13338 && !loc->pspace->executing_startup)
13339 return 0;
13340 return 1;
13341 }
13342
13343 /* Subroutine of update_breakpoint_locations to simplify it.
13344 Return non-zero if multiple fns in list LOC have the same name.
13345 Null names are ignored. */
13346
13347 static int
13348 ambiguous_names_p (struct bp_location *loc)
13349 {
13350 struct bp_location *l;
13351 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13352 xcalloc, xfree);
13353
13354 for (l = loc; l != NULL; l = l->next)
13355 {
13356 const char **slot;
13357 const char *name = l->function_name;
13358
13359 /* Allow for some names to be NULL, ignore them. */
13360 if (name == NULL)
13361 continue;
13362
13363 slot = (const char **) htab_find_slot (htab, (const void *) name,
13364 INSERT);
13365 /* NOTE: We can assume slot != NULL here because xcalloc never
13366 returns NULL. */
13367 if (*slot != NULL)
13368 {
13369 htab_delete (htab);
13370 return 1;
13371 }
13372 *slot = name;
13373 }
13374
13375 htab_delete (htab);
13376 return 0;
13377 }
13378
13379 /* When symbols change, it probably means the sources changed as well,
13380 and it might mean the static tracepoint markers are no longer at
13381 the same address or line numbers they used to be at last we
13382 checked. Losing your static tracepoints whenever you rebuild is
13383 undesirable. This function tries to resync/rematch gdb static
13384 tracepoints with the markers on the target, for static tracepoints
13385 that have not been set by marker id. Static tracepoint that have
13386 been set by marker id are reset by marker id in breakpoint_re_set.
13387 The heuristic is:
13388
13389 1) For a tracepoint set at a specific address, look for a marker at
13390 the old PC. If one is found there, assume to be the same marker.
13391 If the name / string id of the marker found is different from the
13392 previous known name, assume that means the user renamed the marker
13393 in the sources, and output a warning.
13394
13395 2) For a tracepoint set at a given line number, look for a marker
13396 at the new address of the old line number. If one is found there,
13397 assume to be the same marker. If the name / string id of the
13398 marker found is different from the previous known name, assume that
13399 means the user renamed the marker in the sources, and output a
13400 warning.
13401
13402 3) If a marker is no longer found at the same address or line, it
13403 may mean the marker no longer exists. But it may also just mean
13404 the code changed a bit. Maybe the user added a few lines of code
13405 that made the marker move up or down (in line number terms). Ask
13406 the target for info about the marker with the string id as we knew
13407 it. If found, update line number and address in the matching
13408 static tracepoint. This will get confused if there's more than one
13409 marker with the same ID (possible in UST, although unadvised
13410 precisely because it confuses tools). */
13411
13412 static struct symtab_and_line
13413 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13414 {
13415 struct tracepoint *tp = (struct tracepoint *) b;
13416 struct static_tracepoint_marker marker;
13417 CORE_ADDR pc;
13418
13419 pc = sal.pc;
13420 if (sal.line)
13421 find_line_pc (sal.symtab, sal.line, &pc);
13422
13423 if (target_static_tracepoint_marker_at (pc, &marker))
13424 {
13425 if (tp->static_trace_marker_id != marker.str_id)
13426 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13427 b->number, tp->static_trace_marker_id.c_str (),
13428 marker.str_id.c_str ());
13429
13430 tp->static_trace_marker_id = std::move (marker.str_id);
13431
13432 return sal;
13433 }
13434
13435 /* Old marker wasn't found on target at lineno. Try looking it up
13436 by string ID. */
13437 if (!sal.explicit_pc
13438 && sal.line != 0
13439 && sal.symtab != NULL
13440 && !tp->static_trace_marker_id.empty ())
13441 {
13442 std::vector<static_tracepoint_marker> markers
13443 = target_static_tracepoint_markers_by_strid
13444 (tp->static_trace_marker_id.c_str ());
13445
13446 if (!markers.empty ())
13447 {
13448 struct symbol *sym;
13449 struct static_tracepoint_marker *tpmarker;
13450 struct ui_out *uiout = current_uiout;
13451 struct explicit_location explicit_loc;
13452
13453 tpmarker = &markers[0];
13454
13455 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13456
13457 warning (_("marker for static tracepoint %d (%s) not "
13458 "found at previous line number"),
13459 b->number, tp->static_trace_marker_id.c_str ());
13460
13461 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13462 sym = find_pc_sect_function (tpmarker->address, NULL);
13463 uiout->text ("Now in ");
13464 if (sym)
13465 {
13466 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13467 uiout->text (" at ");
13468 }
13469 uiout->field_string ("file",
13470 symtab_to_filename_for_display (sal2.symtab));
13471 uiout->text (":");
13472
13473 if (uiout->is_mi_like_p ())
13474 {
13475 const char *fullname = symtab_to_fullname (sal2.symtab);
13476
13477 uiout->field_string ("fullname", fullname);
13478 }
13479
13480 uiout->field_int ("line", sal2.line);
13481 uiout->text ("\n");
13482
13483 b->loc->line_number = sal2.line;
13484 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13485
13486 b->location.reset (NULL);
13487 initialize_explicit_location (&explicit_loc);
13488 explicit_loc.source_filename
13489 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13490 explicit_loc.line_offset.offset = b->loc->line_number;
13491 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13492 b->location = new_explicit_location (&explicit_loc);
13493
13494 /* Might be nice to check if function changed, and warn if
13495 so. */
13496 }
13497 }
13498 return sal;
13499 }
13500
13501 /* Returns 1 iff locations A and B are sufficiently same that
13502 we don't need to report breakpoint as changed. */
13503
13504 static int
13505 locations_are_equal (struct bp_location *a, struct bp_location *b)
13506 {
13507 while (a && b)
13508 {
13509 if (a->address != b->address)
13510 return 0;
13511
13512 if (a->shlib_disabled != b->shlib_disabled)
13513 return 0;
13514
13515 if (a->enabled != b->enabled)
13516 return 0;
13517
13518 a = a->next;
13519 b = b->next;
13520 }
13521
13522 if ((a == NULL) != (b == NULL))
13523 return 0;
13524
13525 return 1;
13526 }
13527
13528 /* Split all locations of B that are bound to PSPACE out of B's
13529 location list to a separate list and return that list's head. If
13530 PSPACE is NULL, hoist out all locations of B. */
13531
13532 static struct bp_location *
13533 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13534 {
13535 struct bp_location head;
13536 struct bp_location *i = b->loc;
13537 struct bp_location **i_link = &b->loc;
13538 struct bp_location *hoisted = &head;
13539
13540 if (pspace == NULL)
13541 {
13542 i = b->loc;
13543 b->loc = NULL;
13544 return i;
13545 }
13546
13547 head.next = NULL;
13548
13549 while (i != NULL)
13550 {
13551 if (i->pspace == pspace)
13552 {
13553 *i_link = i->next;
13554 i->next = NULL;
13555 hoisted->next = i;
13556 hoisted = i;
13557 }
13558 else
13559 i_link = &i->next;
13560 i = *i_link;
13561 }
13562
13563 return head.next;
13564 }
13565
13566 /* Create new breakpoint locations for B (a hardware or software
13567 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13568 zero, then B is a ranged breakpoint. Only recreates locations for
13569 FILTER_PSPACE. Locations of other program spaces are left
13570 untouched. */
13571
13572 void
13573 update_breakpoint_locations (struct breakpoint *b,
13574 struct program_space *filter_pspace,
13575 gdb::array_view<const symtab_and_line> sals,
13576 gdb::array_view<const symtab_and_line> sals_end)
13577 {
13578 struct bp_location *existing_locations;
13579
13580 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13581 {
13582 /* Ranged breakpoints have only one start location and one end
13583 location. */
13584 b->enable_state = bp_disabled;
13585 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13586 "multiple locations found\n"),
13587 b->number);
13588 return;
13589 }
13590
13591 /* If there's no new locations, and all existing locations are
13592 pending, don't do anything. This optimizes the common case where
13593 all locations are in the same shared library, that was unloaded.
13594 We'd like to retain the location, so that when the library is
13595 loaded again, we don't loose the enabled/disabled status of the
13596 individual locations. */
13597 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13598 return;
13599
13600 existing_locations = hoist_existing_locations (b, filter_pspace);
13601
13602 for (const auto &sal : sals)
13603 {
13604 struct bp_location *new_loc;
13605
13606 switch_to_program_space_and_thread (sal.pspace);
13607
13608 new_loc = add_location_to_breakpoint (b, &sal);
13609
13610 /* Reparse conditions, they might contain references to the
13611 old symtab. */
13612 if (b->cond_string != NULL)
13613 {
13614 const char *s;
13615
13616 s = b->cond_string;
13617 TRY
13618 {
13619 new_loc->cond = parse_exp_1 (&s, sal.pc,
13620 block_for_pc (sal.pc),
13621 0);
13622 }
13623 CATCH (e, RETURN_MASK_ERROR)
13624 {
13625 warning (_("failed to reevaluate condition "
13626 "for breakpoint %d: %s"),
13627 b->number, e.message);
13628 new_loc->enabled = 0;
13629 }
13630 END_CATCH
13631 }
13632
13633 if (!sals_end.empty ())
13634 {
13635 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13636
13637 new_loc->length = end - sals[0].pc + 1;
13638 }
13639 }
13640
13641 /* If possible, carry over 'disable' status from existing
13642 breakpoints. */
13643 {
13644 struct bp_location *e = existing_locations;
13645 /* If there are multiple breakpoints with the same function name,
13646 e.g. for inline functions, comparing function names won't work.
13647 Instead compare pc addresses; this is just a heuristic as things
13648 may have moved, but in practice it gives the correct answer
13649 often enough until a better solution is found. */
13650 int have_ambiguous_names = ambiguous_names_p (b->loc);
13651
13652 for (; e; e = e->next)
13653 {
13654 if (!e->enabled && e->function_name)
13655 {
13656 struct bp_location *l = b->loc;
13657 if (have_ambiguous_names)
13658 {
13659 for (; l; l = l->next)
13660 if (breakpoint_locations_match (e, l))
13661 {
13662 l->enabled = 0;
13663 break;
13664 }
13665 }
13666 else
13667 {
13668 for (; l; l = l->next)
13669 if (l->function_name
13670 && strcmp (e->function_name, l->function_name) == 0)
13671 {
13672 l->enabled = 0;
13673 break;
13674 }
13675 }
13676 }
13677 }
13678 }
13679
13680 if (!locations_are_equal (existing_locations, b->loc))
13681 gdb::observers::breakpoint_modified.notify (b);
13682 }
13683
13684 /* Find the SaL locations corresponding to the given LOCATION.
13685 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13686
13687 static std::vector<symtab_and_line>
13688 location_to_sals (struct breakpoint *b, struct event_location *location,
13689 struct program_space *search_pspace, int *found)
13690 {
13691 struct gdb_exception exception = exception_none;
13692
13693 gdb_assert (b->ops != NULL);
13694
13695 std::vector<symtab_and_line> sals;
13696
13697 TRY
13698 {
13699 sals = b->ops->decode_location (b, location, search_pspace);
13700 }
13701 CATCH (e, RETURN_MASK_ERROR)
13702 {
13703 int not_found_and_ok = 0;
13704
13705 exception = e;
13706
13707 /* For pending breakpoints, it's expected that parsing will
13708 fail until the right shared library is loaded. User has
13709 already told to create pending breakpoints and don't need
13710 extra messages. If breakpoint is in bp_shlib_disabled
13711 state, then user already saw the message about that
13712 breakpoint being disabled, and don't want to see more
13713 errors. */
13714 if (e.error == NOT_FOUND_ERROR
13715 && (b->condition_not_parsed
13716 || (b->loc != NULL
13717 && search_pspace != NULL
13718 && b->loc->pspace != search_pspace)
13719 || (b->loc && b->loc->shlib_disabled)
13720 || (b->loc && b->loc->pspace->executing_startup)
13721 || b->enable_state == bp_disabled))
13722 not_found_and_ok = 1;
13723
13724 if (!not_found_and_ok)
13725 {
13726 /* We surely don't want to warn about the same breakpoint
13727 10 times. One solution, implemented here, is disable
13728 the breakpoint on error. Another solution would be to
13729 have separate 'warning emitted' flag. Since this
13730 happens only when a binary has changed, I don't know
13731 which approach is better. */
13732 b->enable_state = bp_disabled;
13733 throw_exception (e);
13734 }
13735 }
13736 END_CATCH
13737
13738 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13739 {
13740 for (auto &sal : sals)
13741 resolve_sal_pc (&sal);
13742 if (b->condition_not_parsed && b->extra_string != NULL)
13743 {
13744 char *cond_string, *extra_string;
13745 int thread, task;
13746
13747 find_condition_and_thread (b->extra_string, sals[0].pc,
13748 &cond_string, &thread, &task,
13749 &extra_string);
13750 gdb_assert (b->cond_string == NULL);
13751 if (cond_string)
13752 b->cond_string = cond_string;
13753 b->thread = thread;
13754 b->task = task;
13755 if (extra_string)
13756 {
13757 xfree (b->extra_string);
13758 b->extra_string = extra_string;
13759 }
13760 b->condition_not_parsed = 0;
13761 }
13762
13763 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13764 sals[0] = update_static_tracepoint (b, sals[0]);
13765
13766 *found = 1;
13767 }
13768 else
13769 *found = 0;
13770
13771 return sals;
13772 }
13773
13774 /* The default re_set method, for typical hardware or software
13775 breakpoints. Reevaluate the breakpoint and recreate its
13776 locations. */
13777
13778 static void
13779 breakpoint_re_set_default (struct breakpoint *b)
13780 {
13781 struct program_space *filter_pspace = current_program_space;
13782 std::vector<symtab_and_line> expanded, expanded_end;
13783
13784 int found;
13785 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13786 filter_pspace, &found);
13787 if (found)
13788 expanded = std::move (sals);
13789
13790 if (b->location_range_end != NULL)
13791 {
13792 std::vector<symtab_and_line> sals_end
13793 = location_to_sals (b, b->location_range_end.get (),
13794 filter_pspace, &found);
13795 if (found)
13796 expanded_end = std::move (sals_end);
13797 }
13798
13799 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13800 }
13801
13802 /* Default method for creating SALs from an address string. It basically
13803 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13804
13805 static void
13806 create_sals_from_location_default (const struct event_location *location,
13807 struct linespec_result *canonical,
13808 enum bptype type_wanted)
13809 {
13810 parse_breakpoint_sals (location, canonical);
13811 }
13812
13813 /* Call create_breakpoints_sal for the given arguments. This is the default
13814 function for the `create_breakpoints_sal' method of
13815 breakpoint_ops. */
13816
13817 static void
13818 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13819 struct linespec_result *canonical,
13820 gdb::unique_xmalloc_ptr<char> cond_string,
13821 gdb::unique_xmalloc_ptr<char> extra_string,
13822 enum bptype type_wanted,
13823 enum bpdisp disposition,
13824 int thread,
13825 int task, int ignore_count,
13826 const struct breakpoint_ops *ops,
13827 int from_tty, int enabled,
13828 int internal, unsigned flags)
13829 {
13830 create_breakpoints_sal (gdbarch, canonical,
13831 std::move (cond_string),
13832 std::move (extra_string),
13833 type_wanted, disposition,
13834 thread, task, ignore_count, ops, from_tty,
13835 enabled, internal, flags);
13836 }
13837
13838 /* Decode the line represented by S by calling decode_line_full. This is the
13839 default function for the `decode_location' method of breakpoint_ops. */
13840
13841 static std::vector<symtab_and_line>
13842 decode_location_default (struct breakpoint *b,
13843 const struct event_location *location,
13844 struct program_space *search_pspace)
13845 {
13846 struct linespec_result canonical;
13847
13848 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13849 (struct symtab *) NULL, 0,
13850 &canonical, multiple_symbols_all,
13851 b->filter);
13852
13853 /* We should get 0 or 1 resulting SALs. */
13854 gdb_assert (canonical.lsals.size () < 2);
13855
13856 if (!canonical.lsals.empty ())
13857 {
13858 const linespec_sals &lsal = canonical.lsals[0];
13859 return std::move (lsal.sals);
13860 }
13861 return {};
13862 }
13863
13864 /* Reset a breakpoint. */
13865
13866 static void
13867 breakpoint_re_set_one (breakpoint *b)
13868 {
13869 input_radix = b->input_radix;
13870 set_language (b->language);
13871
13872 b->ops->re_set (b);
13873 }
13874
13875 /* Re-set breakpoint locations for the current program space.
13876 Locations bound to other program spaces are left untouched. */
13877
13878 void
13879 breakpoint_re_set (void)
13880 {
13881 struct breakpoint *b, *b_tmp;
13882
13883 {
13884 scoped_restore_current_language save_language;
13885 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13886 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13887
13888 /* Note: we must not try to insert locations until after all
13889 breakpoints have been re-set. Otherwise, e.g., when re-setting
13890 breakpoint 1, we'd insert the locations of breakpoint 2, which
13891 hadn't been re-set yet, and thus may have stale locations. */
13892
13893 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13894 {
13895 TRY
13896 {
13897 breakpoint_re_set_one (b);
13898 }
13899 CATCH (ex, RETURN_MASK_ALL)
13900 {
13901 exception_fprintf (gdb_stderr, ex,
13902 "Error in re-setting breakpoint %d: ",
13903 b->number);
13904 }
13905 END_CATCH
13906 }
13907
13908 jit_breakpoint_re_set ();
13909 }
13910
13911 create_overlay_event_breakpoint ();
13912 create_longjmp_master_breakpoint ();
13913 create_std_terminate_master_breakpoint ();
13914 create_exception_master_breakpoint ();
13915
13916 /* Now we can insert. */
13917 update_global_location_list (UGLL_MAY_INSERT);
13918 }
13919 \f
13920 /* Reset the thread number of this breakpoint:
13921
13922 - If the breakpoint is for all threads, leave it as-is.
13923 - Else, reset it to the current thread for inferior_ptid. */
13924 void
13925 breakpoint_re_set_thread (struct breakpoint *b)
13926 {
13927 if (b->thread != -1)
13928 {
13929 if (in_thread_list (inferior_ptid))
13930 b->thread = ptid_to_global_thread_id (inferior_ptid);
13931
13932 /* We're being called after following a fork. The new fork is
13933 selected as current, and unless this was a vfork will have a
13934 different program space from the original thread. Reset that
13935 as well. */
13936 b->loc->pspace = current_program_space;
13937 }
13938 }
13939
13940 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13941 If from_tty is nonzero, it prints a message to that effect,
13942 which ends with a period (no newline). */
13943
13944 void
13945 set_ignore_count (int bptnum, int count, int from_tty)
13946 {
13947 struct breakpoint *b;
13948
13949 if (count < 0)
13950 count = 0;
13951
13952 ALL_BREAKPOINTS (b)
13953 if (b->number == bptnum)
13954 {
13955 if (is_tracepoint (b))
13956 {
13957 if (from_tty && count != 0)
13958 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13959 bptnum);
13960 return;
13961 }
13962
13963 b->ignore_count = count;
13964 if (from_tty)
13965 {
13966 if (count == 0)
13967 printf_filtered (_("Will stop next time "
13968 "breakpoint %d is reached."),
13969 bptnum);
13970 else if (count == 1)
13971 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13972 bptnum);
13973 else
13974 printf_filtered (_("Will ignore next %d "
13975 "crossings of breakpoint %d."),
13976 count, bptnum);
13977 }
13978 gdb::observers::breakpoint_modified.notify (b);
13979 return;
13980 }
13981
13982 error (_("No breakpoint number %d."), bptnum);
13983 }
13984
13985 /* Command to set ignore-count of breakpoint N to COUNT. */
13986
13987 static void
13988 ignore_command (const char *args, int from_tty)
13989 {
13990 const char *p = args;
13991 int num;
13992
13993 if (p == 0)
13994 error_no_arg (_("a breakpoint number"));
13995
13996 num = get_number (&p);
13997 if (num == 0)
13998 error (_("bad breakpoint number: '%s'"), args);
13999 if (*p == 0)
14000 error (_("Second argument (specified ignore-count) is missing."));
14001
14002 set_ignore_count (num,
14003 longest_to_int (value_as_long (parse_and_eval (p))),
14004 from_tty);
14005 if (from_tty)
14006 printf_filtered ("\n");
14007 }
14008 \f
14009
14010 /* Call FUNCTION on each of the breakpoints with numbers in the range
14011 defined by BP_NUM_RANGE (an inclusive range). */
14012
14013 static void
14014 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14015 gdb::function_view<void (breakpoint *)> function)
14016 {
14017 if (bp_num_range.first == 0)
14018 {
14019 warning (_("bad breakpoint number at or near '%d'"),
14020 bp_num_range.first);
14021 }
14022 else
14023 {
14024 struct breakpoint *b, *tmp;
14025
14026 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14027 {
14028 bool match = false;
14029
14030 ALL_BREAKPOINTS_SAFE (b, tmp)
14031 if (b->number == i)
14032 {
14033 match = true;
14034 function (b);
14035 break;
14036 }
14037 if (!match)
14038 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14039 }
14040 }
14041 }
14042
14043 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14044 ARGS. */
14045
14046 static void
14047 map_breakpoint_numbers (const char *args,
14048 gdb::function_view<void (breakpoint *)> function)
14049 {
14050 if (args == NULL || *args == '\0')
14051 error_no_arg (_("one or more breakpoint numbers"));
14052
14053 number_or_range_parser parser (args);
14054
14055 while (!parser.finished ())
14056 {
14057 int num = parser.get_number ();
14058 map_breakpoint_number_range (std::make_pair (num, num), function);
14059 }
14060 }
14061
14062 /* Return the breakpoint location structure corresponding to the
14063 BP_NUM and LOC_NUM values. */
14064
14065 static struct bp_location *
14066 find_location_by_number (int bp_num, int loc_num)
14067 {
14068 struct breakpoint *b;
14069
14070 ALL_BREAKPOINTS (b)
14071 if (b->number == bp_num)
14072 {
14073 break;
14074 }
14075
14076 if (!b || b->number != bp_num)
14077 error (_("Bad breakpoint number '%d'"), bp_num);
14078
14079 if (loc_num == 0)
14080 error (_("Bad breakpoint location number '%d'"), loc_num);
14081
14082 int n = 0;
14083 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14084 if (++n == loc_num)
14085 return loc;
14086
14087 error (_("Bad breakpoint location number '%d'"), loc_num);
14088 }
14089
14090 /* Modes of operation for extract_bp_num. */
14091 enum class extract_bp_kind
14092 {
14093 /* Extracting a breakpoint number. */
14094 bp,
14095
14096 /* Extracting a location number. */
14097 loc,
14098 };
14099
14100 /* Extract a breakpoint or location number (as determined by KIND)
14101 from the string starting at START. TRAILER is a character which
14102 can be found after the number. If you don't want a trailer, use
14103 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14104 string. This always returns a positive integer. */
14105
14106 static int
14107 extract_bp_num (extract_bp_kind kind, const char *start,
14108 int trailer, const char **end_out = NULL)
14109 {
14110 const char *end = start;
14111 int num = get_number_trailer (&end, trailer);
14112 if (num < 0)
14113 error (kind == extract_bp_kind::bp
14114 ? _("Negative breakpoint number '%.*s'")
14115 : _("Negative breakpoint location number '%.*s'"),
14116 int (end - start), start);
14117 if (num == 0)
14118 error (kind == extract_bp_kind::bp
14119 ? _("Bad breakpoint number '%.*s'")
14120 : _("Bad breakpoint location number '%.*s'"),
14121 int (end - start), start);
14122
14123 if (end_out != NULL)
14124 *end_out = end;
14125 return num;
14126 }
14127
14128 /* Extract a breakpoint or location range (as determined by KIND) in
14129 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14130 representing the (inclusive) range. The returned pair's elements
14131 are always positive integers. */
14132
14133 static std::pair<int, int>
14134 extract_bp_or_bp_range (extract_bp_kind kind,
14135 const std::string &arg,
14136 std::string::size_type arg_offset)
14137 {
14138 std::pair<int, int> range;
14139 const char *bp_loc = &arg[arg_offset];
14140 std::string::size_type dash = arg.find ('-', arg_offset);
14141 if (dash != std::string::npos)
14142 {
14143 /* bp_loc is a range (x-z). */
14144 if (arg.length () == dash + 1)
14145 error (kind == extract_bp_kind::bp
14146 ? _("Bad breakpoint number at or near: '%s'")
14147 : _("Bad breakpoint location number at or near: '%s'"),
14148 bp_loc);
14149
14150 const char *end;
14151 const char *start_first = bp_loc;
14152 const char *start_second = &arg[dash + 1];
14153 range.first = extract_bp_num (kind, start_first, '-');
14154 range.second = extract_bp_num (kind, start_second, '\0', &end);
14155
14156 if (range.first > range.second)
14157 error (kind == extract_bp_kind::bp
14158 ? _("Inverted breakpoint range at '%.*s'")
14159 : _("Inverted breakpoint location range at '%.*s'"),
14160 int (end - start_first), start_first);
14161 }
14162 else
14163 {
14164 /* bp_loc is a single value. */
14165 range.first = extract_bp_num (kind, bp_loc, '\0');
14166 range.second = range.first;
14167 }
14168 return range;
14169 }
14170
14171 /* Extract the breakpoint/location range specified by ARG. Returns
14172 the breakpoint range in BP_NUM_RANGE, and the location range in
14173 BP_LOC_RANGE.
14174
14175 ARG may be in any of the following forms:
14176
14177 x where 'x' is a breakpoint number.
14178 x-y where 'x' and 'y' specify a breakpoint numbers range.
14179 x.y where 'x' is a breakpoint number and 'y' a location number.
14180 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14181 location number range.
14182 */
14183
14184 static void
14185 extract_bp_number_and_location (const std::string &arg,
14186 std::pair<int, int> &bp_num_range,
14187 std::pair<int, int> &bp_loc_range)
14188 {
14189 std::string::size_type dot = arg.find ('.');
14190
14191 if (dot != std::string::npos)
14192 {
14193 /* Handle 'x.y' and 'x.y-z' cases. */
14194
14195 if (arg.length () == dot + 1 || dot == 0)
14196 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14197
14198 bp_num_range.first
14199 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14200 bp_num_range.second = bp_num_range.first;
14201
14202 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14203 arg, dot + 1);
14204 }
14205 else
14206 {
14207 /* Handle x and x-y cases. */
14208
14209 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14210 bp_loc_range.first = 0;
14211 bp_loc_range.second = 0;
14212 }
14213 }
14214
14215 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14216 specifies whether to enable or disable. */
14217
14218 static void
14219 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14220 {
14221 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14222 if (loc != NULL)
14223 {
14224 if (loc->enabled != enable)
14225 {
14226 loc->enabled = enable;
14227 mark_breakpoint_location_modified (loc);
14228 }
14229 if (target_supports_enable_disable_tracepoint ()
14230 && current_trace_status ()->running && loc->owner
14231 && is_tracepoint (loc->owner))
14232 target_disable_tracepoint (loc);
14233 }
14234 update_global_location_list (UGLL_DONT_INSERT);
14235 }
14236
14237 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14238 number of the breakpoint, and BP_LOC_RANGE specifies the
14239 (inclusive) range of location numbers of that breakpoint to
14240 enable/disable. ENABLE specifies whether to enable or disable the
14241 location. */
14242
14243 static void
14244 enable_disable_breakpoint_location_range (int bp_num,
14245 std::pair<int, int> &bp_loc_range,
14246 bool enable)
14247 {
14248 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14249 enable_disable_bp_num_loc (bp_num, i, enable);
14250 }
14251
14252 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14253 If from_tty is nonzero, it prints a message to that effect,
14254 which ends with a period (no newline). */
14255
14256 void
14257 disable_breakpoint (struct breakpoint *bpt)
14258 {
14259 /* Never disable a watchpoint scope breakpoint; we want to
14260 hit them when we leave scope so we can delete both the
14261 watchpoint and its scope breakpoint at that time. */
14262 if (bpt->type == bp_watchpoint_scope)
14263 return;
14264
14265 bpt->enable_state = bp_disabled;
14266
14267 /* Mark breakpoint locations modified. */
14268 mark_breakpoint_modified (bpt);
14269
14270 if (target_supports_enable_disable_tracepoint ()
14271 && current_trace_status ()->running && is_tracepoint (bpt))
14272 {
14273 struct bp_location *location;
14274
14275 for (location = bpt->loc; location; location = location->next)
14276 target_disable_tracepoint (location);
14277 }
14278
14279 update_global_location_list (UGLL_DONT_INSERT);
14280
14281 gdb::observers::breakpoint_modified.notify (bpt);
14282 }
14283
14284 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14285 specified in ARGS. ARGS may be in any of the formats handled by
14286 extract_bp_number_and_location. ENABLE specifies whether to enable
14287 or disable the breakpoints/locations. */
14288
14289 static void
14290 enable_disable_command (const char *args, int from_tty, bool enable)
14291 {
14292 if (args == 0)
14293 {
14294 struct breakpoint *bpt;
14295
14296 ALL_BREAKPOINTS (bpt)
14297 if (user_breakpoint_p (bpt))
14298 {
14299 if (enable)
14300 enable_breakpoint (bpt);
14301 else
14302 disable_breakpoint (bpt);
14303 }
14304 }
14305 else
14306 {
14307 std::string num = extract_arg (&args);
14308
14309 while (!num.empty ())
14310 {
14311 std::pair<int, int> bp_num_range, bp_loc_range;
14312
14313 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14314
14315 if (bp_loc_range.first == bp_loc_range.second
14316 && bp_loc_range.first == 0)
14317 {
14318 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14319 map_breakpoint_number_range (bp_num_range,
14320 enable
14321 ? enable_breakpoint
14322 : disable_breakpoint);
14323 }
14324 else
14325 {
14326 /* Handle breakpoint ids with formats 'x.y' or
14327 'x.y-z'. */
14328 enable_disable_breakpoint_location_range
14329 (bp_num_range.first, bp_loc_range, enable);
14330 }
14331 num = extract_arg (&args);
14332 }
14333 }
14334 }
14335
14336 /* The disable command disables the specified breakpoints/locations
14337 (or all defined breakpoints) so they're no longer effective in
14338 stopping the inferior. ARGS may be in any of the forms defined in
14339 extract_bp_number_and_location. */
14340
14341 static void
14342 disable_command (const char *args, int from_tty)
14343 {
14344 enable_disable_command (args, from_tty, false);
14345 }
14346
14347 static void
14348 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14349 int count)
14350 {
14351 int target_resources_ok;
14352
14353 if (bpt->type == bp_hardware_breakpoint)
14354 {
14355 int i;
14356 i = hw_breakpoint_used_count ();
14357 target_resources_ok =
14358 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14359 i + 1, 0);
14360 if (target_resources_ok == 0)
14361 error (_("No hardware breakpoint support in the target."));
14362 else if (target_resources_ok < 0)
14363 error (_("Hardware breakpoints used exceeds limit."));
14364 }
14365
14366 if (is_watchpoint (bpt))
14367 {
14368 /* Initialize it just to avoid a GCC false warning. */
14369 enum enable_state orig_enable_state = bp_disabled;
14370
14371 TRY
14372 {
14373 struct watchpoint *w = (struct watchpoint *) bpt;
14374
14375 orig_enable_state = bpt->enable_state;
14376 bpt->enable_state = bp_enabled;
14377 update_watchpoint (w, 1 /* reparse */);
14378 }
14379 CATCH (e, RETURN_MASK_ALL)
14380 {
14381 bpt->enable_state = orig_enable_state;
14382 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14383 bpt->number);
14384 return;
14385 }
14386 END_CATCH
14387 }
14388
14389 bpt->enable_state = bp_enabled;
14390
14391 /* Mark breakpoint locations modified. */
14392 mark_breakpoint_modified (bpt);
14393
14394 if (target_supports_enable_disable_tracepoint ()
14395 && current_trace_status ()->running && is_tracepoint (bpt))
14396 {
14397 struct bp_location *location;
14398
14399 for (location = bpt->loc; location; location = location->next)
14400 target_enable_tracepoint (location);
14401 }
14402
14403 bpt->disposition = disposition;
14404 bpt->enable_count = count;
14405 update_global_location_list (UGLL_MAY_INSERT);
14406
14407 gdb::observers::breakpoint_modified.notify (bpt);
14408 }
14409
14410
14411 void
14412 enable_breakpoint (struct breakpoint *bpt)
14413 {
14414 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14415 }
14416
14417 /* The enable command enables the specified breakpoints/locations (or
14418 all defined breakpoints) so they once again become (or continue to
14419 be) effective in stopping the inferior. ARGS may be in any of the
14420 forms defined in extract_bp_number_and_location. */
14421
14422 static void
14423 enable_command (const char *args, int from_tty)
14424 {
14425 enable_disable_command (args, from_tty, true);
14426 }
14427
14428 static void
14429 enable_once_command (const char *args, int from_tty)
14430 {
14431 map_breakpoint_numbers
14432 (args, [&] (breakpoint *b)
14433 {
14434 iterate_over_related_breakpoints
14435 (b, [&] (breakpoint *bpt)
14436 {
14437 enable_breakpoint_disp (bpt, disp_disable, 1);
14438 });
14439 });
14440 }
14441
14442 static void
14443 enable_count_command (const char *args, int from_tty)
14444 {
14445 int count;
14446
14447 if (args == NULL)
14448 error_no_arg (_("hit count"));
14449
14450 count = get_number (&args);
14451
14452 map_breakpoint_numbers
14453 (args, [&] (breakpoint *b)
14454 {
14455 iterate_over_related_breakpoints
14456 (b, [&] (breakpoint *bpt)
14457 {
14458 enable_breakpoint_disp (bpt, disp_disable, count);
14459 });
14460 });
14461 }
14462
14463 static void
14464 enable_delete_command (const char *args, int from_tty)
14465 {
14466 map_breakpoint_numbers
14467 (args, [&] (breakpoint *b)
14468 {
14469 iterate_over_related_breakpoints
14470 (b, [&] (breakpoint *bpt)
14471 {
14472 enable_breakpoint_disp (bpt, disp_del, 1);
14473 });
14474 });
14475 }
14476 \f
14477 static void
14478 set_breakpoint_cmd (const char *args, int from_tty)
14479 {
14480 }
14481
14482 static void
14483 show_breakpoint_cmd (const char *args, int from_tty)
14484 {
14485 }
14486
14487 /* Invalidate last known value of any hardware watchpoint if
14488 the memory which that value represents has been written to by
14489 GDB itself. */
14490
14491 static void
14492 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14493 CORE_ADDR addr, ssize_t len,
14494 const bfd_byte *data)
14495 {
14496 struct breakpoint *bp;
14497
14498 ALL_BREAKPOINTS (bp)
14499 if (bp->enable_state == bp_enabled
14500 && bp->type == bp_hardware_watchpoint)
14501 {
14502 struct watchpoint *wp = (struct watchpoint *) bp;
14503
14504 if (wp->val_valid && wp->val != nullptr)
14505 {
14506 struct bp_location *loc;
14507
14508 for (loc = bp->loc; loc != NULL; loc = loc->next)
14509 if (loc->loc_type == bp_loc_hardware_watchpoint
14510 && loc->address + loc->length > addr
14511 && addr + len > loc->address)
14512 {
14513 wp->val = NULL;
14514 wp->val_valid = 0;
14515 }
14516 }
14517 }
14518 }
14519
14520 /* Create and insert a breakpoint for software single step. */
14521
14522 void
14523 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14524 const address_space *aspace,
14525 CORE_ADDR next_pc)
14526 {
14527 struct thread_info *tp = inferior_thread ();
14528 struct symtab_and_line sal;
14529 CORE_ADDR pc = next_pc;
14530
14531 if (tp->control.single_step_breakpoints == NULL)
14532 {
14533 tp->control.single_step_breakpoints
14534 = new_single_step_breakpoint (tp->global_num, gdbarch);
14535 }
14536
14537 sal = find_pc_line (pc, 0);
14538 sal.pc = pc;
14539 sal.section = find_pc_overlay (pc);
14540 sal.explicit_pc = 1;
14541 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14542
14543 update_global_location_list (UGLL_INSERT);
14544 }
14545
14546 /* Insert single step breakpoints according to the current state. */
14547
14548 int
14549 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14550 {
14551 struct regcache *regcache = get_current_regcache ();
14552 std::vector<CORE_ADDR> next_pcs;
14553
14554 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14555
14556 if (!next_pcs.empty ())
14557 {
14558 struct frame_info *frame = get_current_frame ();
14559 const address_space *aspace = get_frame_address_space (frame);
14560
14561 for (CORE_ADDR pc : next_pcs)
14562 insert_single_step_breakpoint (gdbarch, aspace, pc);
14563
14564 return 1;
14565 }
14566 else
14567 return 0;
14568 }
14569
14570 /* See breakpoint.h. */
14571
14572 int
14573 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14574 const address_space *aspace,
14575 CORE_ADDR pc)
14576 {
14577 struct bp_location *loc;
14578
14579 for (loc = bp->loc; loc != NULL; loc = loc->next)
14580 if (loc->inserted
14581 && breakpoint_location_address_match (loc, aspace, pc))
14582 return 1;
14583
14584 return 0;
14585 }
14586
14587 /* Check whether a software single-step breakpoint is inserted at
14588 PC. */
14589
14590 int
14591 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14592 CORE_ADDR pc)
14593 {
14594 struct breakpoint *bpt;
14595
14596 ALL_BREAKPOINTS (bpt)
14597 {
14598 if (bpt->type == bp_single_step
14599 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14600 return 1;
14601 }
14602 return 0;
14603 }
14604
14605 /* Tracepoint-specific operations. */
14606
14607 /* Set tracepoint count to NUM. */
14608 static void
14609 set_tracepoint_count (int num)
14610 {
14611 tracepoint_count = num;
14612 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14613 }
14614
14615 static void
14616 trace_command (const char *arg, int from_tty)
14617 {
14618 struct breakpoint_ops *ops;
14619
14620 event_location_up location = string_to_event_location (&arg,
14621 current_language);
14622 if (location != NULL
14623 && event_location_type (location.get ()) == PROBE_LOCATION)
14624 ops = &tracepoint_probe_breakpoint_ops;
14625 else
14626 ops = &tracepoint_breakpoint_ops;
14627
14628 create_breakpoint (get_current_arch (),
14629 location.get (),
14630 NULL, 0, arg, 1 /* parse arg */,
14631 0 /* tempflag */,
14632 bp_tracepoint /* type_wanted */,
14633 0 /* Ignore count */,
14634 pending_break_support,
14635 ops,
14636 from_tty,
14637 1 /* enabled */,
14638 0 /* internal */, 0);
14639 }
14640
14641 static void
14642 ftrace_command (const char *arg, int from_tty)
14643 {
14644 event_location_up location = string_to_event_location (&arg,
14645 current_language);
14646 create_breakpoint (get_current_arch (),
14647 location.get (),
14648 NULL, 0, arg, 1 /* parse arg */,
14649 0 /* tempflag */,
14650 bp_fast_tracepoint /* type_wanted */,
14651 0 /* Ignore count */,
14652 pending_break_support,
14653 &tracepoint_breakpoint_ops,
14654 from_tty,
14655 1 /* enabled */,
14656 0 /* internal */, 0);
14657 }
14658
14659 /* strace command implementation. Creates a static tracepoint. */
14660
14661 static void
14662 strace_command (const char *arg, int from_tty)
14663 {
14664 struct breakpoint_ops *ops;
14665 event_location_up location;
14666
14667 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14668 or with a normal static tracepoint. */
14669 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14670 {
14671 ops = &strace_marker_breakpoint_ops;
14672 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14673 }
14674 else
14675 {
14676 ops = &tracepoint_breakpoint_ops;
14677 location = string_to_event_location (&arg, current_language);
14678 }
14679
14680 create_breakpoint (get_current_arch (),
14681 location.get (),
14682 NULL, 0, arg, 1 /* parse arg */,
14683 0 /* tempflag */,
14684 bp_static_tracepoint /* type_wanted */,
14685 0 /* Ignore count */,
14686 pending_break_support,
14687 ops,
14688 from_tty,
14689 1 /* enabled */,
14690 0 /* internal */, 0);
14691 }
14692
14693 /* Set up a fake reader function that gets command lines from a linked
14694 list that was acquired during tracepoint uploading. */
14695
14696 static struct uploaded_tp *this_utp;
14697 static int next_cmd;
14698
14699 static char *
14700 read_uploaded_action (void)
14701 {
14702 char *rslt = nullptr;
14703
14704 if (next_cmd < this_utp->cmd_strings.size ())
14705 {
14706 rslt = this_utp->cmd_strings[next_cmd];
14707 next_cmd++;
14708 }
14709
14710 return rslt;
14711 }
14712
14713 /* Given information about a tracepoint as recorded on a target (which
14714 can be either a live system or a trace file), attempt to create an
14715 equivalent GDB tracepoint. This is not a reliable process, since
14716 the target does not necessarily have all the information used when
14717 the tracepoint was originally defined. */
14718
14719 struct tracepoint *
14720 create_tracepoint_from_upload (struct uploaded_tp *utp)
14721 {
14722 const char *addr_str;
14723 char small_buf[100];
14724 struct tracepoint *tp;
14725
14726 if (utp->at_string)
14727 addr_str = utp->at_string;
14728 else
14729 {
14730 /* In the absence of a source location, fall back to raw
14731 address. Since there is no way to confirm that the address
14732 means the same thing as when the trace was started, warn the
14733 user. */
14734 warning (_("Uploaded tracepoint %d has no "
14735 "source location, using raw address"),
14736 utp->number);
14737 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14738 addr_str = small_buf;
14739 }
14740
14741 /* There's not much we can do with a sequence of bytecodes. */
14742 if (utp->cond && !utp->cond_string)
14743 warning (_("Uploaded tracepoint %d condition "
14744 "has no source form, ignoring it"),
14745 utp->number);
14746
14747 event_location_up location = string_to_event_location (&addr_str,
14748 current_language);
14749 if (!create_breakpoint (get_current_arch (),
14750 location.get (),
14751 utp->cond_string, -1, addr_str,
14752 0 /* parse cond/thread */,
14753 0 /* tempflag */,
14754 utp->type /* type_wanted */,
14755 0 /* Ignore count */,
14756 pending_break_support,
14757 &tracepoint_breakpoint_ops,
14758 0 /* from_tty */,
14759 utp->enabled /* enabled */,
14760 0 /* internal */,
14761 CREATE_BREAKPOINT_FLAGS_INSERTED))
14762 return NULL;
14763
14764 /* Get the tracepoint we just created. */
14765 tp = get_tracepoint (tracepoint_count);
14766 gdb_assert (tp != NULL);
14767
14768 if (utp->pass > 0)
14769 {
14770 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14771 tp->number);
14772
14773 trace_pass_command (small_buf, 0);
14774 }
14775
14776 /* If we have uploaded versions of the original commands, set up a
14777 special-purpose "reader" function and call the usual command line
14778 reader, then pass the result to the breakpoint command-setting
14779 function. */
14780 if (!utp->cmd_strings.empty ())
14781 {
14782 counted_command_line cmd_list;
14783
14784 this_utp = utp;
14785 next_cmd = 0;
14786
14787 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14788
14789 breakpoint_set_commands (tp, std::move (cmd_list));
14790 }
14791 else if (!utp->actions.empty ()
14792 || !utp->step_actions.empty ())
14793 warning (_("Uploaded tracepoint %d actions "
14794 "have no source form, ignoring them"),
14795 utp->number);
14796
14797 /* Copy any status information that might be available. */
14798 tp->hit_count = utp->hit_count;
14799 tp->traceframe_usage = utp->traceframe_usage;
14800
14801 return tp;
14802 }
14803
14804 /* Print information on tracepoint number TPNUM_EXP, or all if
14805 omitted. */
14806
14807 static void
14808 info_tracepoints_command (const char *args, int from_tty)
14809 {
14810 struct ui_out *uiout = current_uiout;
14811 int num_printed;
14812
14813 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14814
14815 if (num_printed == 0)
14816 {
14817 if (args == NULL || *args == '\0')
14818 uiout->message ("No tracepoints.\n");
14819 else
14820 uiout->message ("No tracepoint matching '%s'.\n", args);
14821 }
14822
14823 default_collect_info ();
14824 }
14825
14826 /* The 'enable trace' command enables tracepoints.
14827 Not supported by all targets. */
14828 static void
14829 enable_trace_command (const char *args, int from_tty)
14830 {
14831 enable_command (args, from_tty);
14832 }
14833
14834 /* The 'disable trace' command disables tracepoints.
14835 Not supported by all targets. */
14836 static void
14837 disable_trace_command (const char *args, int from_tty)
14838 {
14839 disable_command (args, from_tty);
14840 }
14841
14842 /* Remove a tracepoint (or all if no argument). */
14843 static void
14844 delete_trace_command (const char *arg, int from_tty)
14845 {
14846 struct breakpoint *b, *b_tmp;
14847
14848 dont_repeat ();
14849
14850 if (arg == 0)
14851 {
14852 int breaks_to_delete = 0;
14853
14854 /* Delete all breakpoints if no argument.
14855 Do not delete internal or call-dummy breakpoints, these
14856 have to be deleted with an explicit breakpoint number
14857 argument. */
14858 ALL_TRACEPOINTS (b)
14859 if (is_tracepoint (b) && user_breakpoint_p (b))
14860 {
14861 breaks_to_delete = 1;
14862 break;
14863 }
14864
14865 /* Ask user only if there are some breakpoints to delete. */
14866 if (!from_tty
14867 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14868 {
14869 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14870 if (is_tracepoint (b) && user_breakpoint_p (b))
14871 delete_breakpoint (b);
14872 }
14873 }
14874 else
14875 map_breakpoint_numbers
14876 (arg, [&] (breakpoint *b)
14877 {
14878 iterate_over_related_breakpoints (b, delete_breakpoint);
14879 });
14880 }
14881
14882 /* Helper function for trace_pass_command. */
14883
14884 static void
14885 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14886 {
14887 tp->pass_count = count;
14888 gdb::observers::breakpoint_modified.notify (tp);
14889 if (from_tty)
14890 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14891 tp->number, count);
14892 }
14893
14894 /* Set passcount for tracepoint.
14895
14896 First command argument is passcount, second is tracepoint number.
14897 If tracepoint number omitted, apply to most recently defined.
14898 Also accepts special argument "all". */
14899
14900 static void
14901 trace_pass_command (const char *args, int from_tty)
14902 {
14903 struct tracepoint *t1;
14904 ULONGEST count;
14905
14906 if (args == 0 || *args == 0)
14907 error (_("passcount command requires an "
14908 "argument (count + optional TP num)"));
14909
14910 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14911
14912 args = skip_spaces (args);
14913 if (*args && strncasecmp (args, "all", 3) == 0)
14914 {
14915 struct breakpoint *b;
14916
14917 args += 3; /* Skip special argument "all". */
14918 if (*args)
14919 error (_("Junk at end of arguments."));
14920
14921 ALL_TRACEPOINTS (b)
14922 {
14923 t1 = (struct tracepoint *) b;
14924 trace_pass_set_count (t1, count, from_tty);
14925 }
14926 }
14927 else if (*args == '\0')
14928 {
14929 t1 = get_tracepoint_by_number (&args, NULL);
14930 if (t1)
14931 trace_pass_set_count (t1, count, from_tty);
14932 }
14933 else
14934 {
14935 number_or_range_parser parser (args);
14936 while (!parser.finished ())
14937 {
14938 t1 = get_tracepoint_by_number (&args, &parser);
14939 if (t1)
14940 trace_pass_set_count (t1, count, from_tty);
14941 }
14942 }
14943 }
14944
14945 struct tracepoint *
14946 get_tracepoint (int num)
14947 {
14948 struct breakpoint *t;
14949
14950 ALL_TRACEPOINTS (t)
14951 if (t->number == num)
14952 return (struct tracepoint *) t;
14953
14954 return NULL;
14955 }
14956
14957 /* Find the tracepoint with the given target-side number (which may be
14958 different from the tracepoint number after disconnecting and
14959 reconnecting). */
14960
14961 struct tracepoint *
14962 get_tracepoint_by_number_on_target (int num)
14963 {
14964 struct breakpoint *b;
14965
14966 ALL_TRACEPOINTS (b)
14967 {
14968 struct tracepoint *t = (struct tracepoint *) b;
14969
14970 if (t->number_on_target == num)
14971 return t;
14972 }
14973
14974 return NULL;
14975 }
14976
14977 /* Utility: parse a tracepoint number and look it up in the list.
14978 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14979 If the argument is missing, the most recent tracepoint
14980 (tracepoint_count) is returned. */
14981
14982 struct tracepoint *
14983 get_tracepoint_by_number (const char **arg,
14984 number_or_range_parser *parser)
14985 {
14986 struct breakpoint *t;
14987 int tpnum;
14988 const char *instring = arg == NULL ? NULL : *arg;
14989
14990 if (parser != NULL)
14991 {
14992 gdb_assert (!parser->finished ());
14993 tpnum = parser->get_number ();
14994 }
14995 else if (arg == NULL || *arg == NULL || ! **arg)
14996 tpnum = tracepoint_count;
14997 else
14998 tpnum = get_number (arg);
14999
15000 if (tpnum <= 0)
15001 {
15002 if (instring && *instring)
15003 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15004 instring);
15005 else
15006 printf_filtered (_("No previous tracepoint\n"));
15007 return NULL;
15008 }
15009
15010 ALL_TRACEPOINTS (t)
15011 if (t->number == tpnum)
15012 {
15013 return (struct tracepoint *) t;
15014 }
15015
15016 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15017 return NULL;
15018 }
15019
15020 void
15021 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15022 {
15023 if (b->thread != -1)
15024 fprintf_unfiltered (fp, " thread %d", b->thread);
15025
15026 if (b->task != 0)
15027 fprintf_unfiltered (fp, " task %d", b->task);
15028
15029 fprintf_unfiltered (fp, "\n");
15030 }
15031
15032 /* Save information on user settable breakpoints (watchpoints, etc) to
15033 a new script file named FILENAME. If FILTER is non-NULL, call it
15034 on each breakpoint and only include the ones for which it returns
15035 non-zero. */
15036
15037 static void
15038 save_breakpoints (const char *filename, int from_tty,
15039 int (*filter) (const struct breakpoint *))
15040 {
15041 struct breakpoint *tp;
15042 int any = 0;
15043 int extra_trace_bits = 0;
15044
15045 if (filename == 0 || *filename == 0)
15046 error (_("Argument required (file name in which to save)"));
15047
15048 /* See if we have anything to save. */
15049 ALL_BREAKPOINTS (tp)
15050 {
15051 /* Skip internal and momentary breakpoints. */
15052 if (!user_breakpoint_p (tp))
15053 continue;
15054
15055 /* If we have a filter, only save the breakpoints it accepts. */
15056 if (filter && !filter (tp))
15057 continue;
15058
15059 any = 1;
15060
15061 if (is_tracepoint (tp))
15062 {
15063 extra_trace_bits = 1;
15064
15065 /* We can stop searching. */
15066 break;
15067 }
15068 }
15069
15070 if (!any)
15071 {
15072 warning (_("Nothing to save."));
15073 return;
15074 }
15075
15076 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15077
15078 stdio_file fp;
15079
15080 if (!fp.open (expanded_filename.get (), "w"))
15081 error (_("Unable to open file '%s' for saving (%s)"),
15082 expanded_filename.get (), safe_strerror (errno));
15083
15084 if (extra_trace_bits)
15085 save_trace_state_variables (&fp);
15086
15087 ALL_BREAKPOINTS (tp)
15088 {
15089 /* Skip internal and momentary breakpoints. */
15090 if (!user_breakpoint_p (tp))
15091 continue;
15092
15093 /* If we have a filter, only save the breakpoints it accepts. */
15094 if (filter && !filter (tp))
15095 continue;
15096
15097 tp->ops->print_recreate (tp, &fp);
15098
15099 /* Note, we can't rely on tp->number for anything, as we can't
15100 assume the recreated breakpoint numbers will match. Use $bpnum
15101 instead. */
15102
15103 if (tp->cond_string)
15104 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15105
15106 if (tp->ignore_count)
15107 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15108
15109 if (tp->type != bp_dprintf && tp->commands)
15110 {
15111 fp.puts (" commands\n");
15112
15113 current_uiout->redirect (&fp);
15114 TRY
15115 {
15116 print_command_lines (current_uiout, tp->commands.get (), 2);
15117 }
15118 CATCH (ex, RETURN_MASK_ALL)
15119 {
15120 current_uiout->redirect (NULL);
15121 throw_exception (ex);
15122 }
15123 END_CATCH
15124
15125 current_uiout->redirect (NULL);
15126 fp.puts (" end\n");
15127 }
15128
15129 if (tp->enable_state == bp_disabled)
15130 fp.puts ("disable $bpnum\n");
15131
15132 /* If this is a multi-location breakpoint, check if the locations
15133 should be individually disabled. Watchpoint locations are
15134 special, and not user visible. */
15135 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15136 {
15137 struct bp_location *loc;
15138 int n = 1;
15139
15140 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15141 if (!loc->enabled)
15142 fp.printf ("disable $bpnum.%d\n", n);
15143 }
15144 }
15145
15146 if (extra_trace_bits && *default_collect)
15147 fp.printf ("set default-collect %s\n", default_collect);
15148
15149 if (from_tty)
15150 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15151 }
15152
15153 /* The `save breakpoints' command. */
15154
15155 static void
15156 save_breakpoints_command (const char *args, int from_tty)
15157 {
15158 save_breakpoints (args, from_tty, NULL);
15159 }
15160
15161 /* The `save tracepoints' command. */
15162
15163 static void
15164 save_tracepoints_command (const char *args, int from_tty)
15165 {
15166 save_breakpoints (args, from_tty, is_tracepoint);
15167 }
15168
15169 /* Create a vector of all tracepoints. */
15170
15171 VEC(breakpoint_p) *
15172 all_tracepoints (void)
15173 {
15174 VEC(breakpoint_p) *tp_vec = 0;
15175 struct breakpoint *tp;
15176
15177 ALL_TRACEPOINTS (tp)
15178 {
15179 VEC_safe_push (breakpoint_p, tp_vec, tp);
15180 }
15181
15182 return tp_vec;
15183 }
15184
15185 \f
15186 /* This help string is used to consolidate all the help string for specifying
15187 locations used by several commands. */
15188
15189 #define LOCATION_HELP_STRING \
15190 "Linespecs are colon-separated lists of location parameters, such as\n\
15191 source filename, function name, label name, and line number.\n\
15192 Example: To specify the start of a label named \"the_top\" in the\n\
15193 function \"fact\" in the file \"factorial.c\", use\n\
15194 \"factorial.c:fact:the_top\".\n\
15195 \n\
15196 Address locations begin with \"*\" and specify an exact address in the\n\
15197 program. Example: To specify the fourth byte past the start function\n\
15198 \"main\", use \"*main + 4\".\n\
15199 \n\
15200 Explicit locations are similar to linespecs but use an option/argument\n\
15201 syntax to specify location parameters.\n\
15202 Example: To specify the start of the label named \"the_top\" in the\n\
15203 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15204 -function fact -label the_top\".\n\
15205 \n\
15206 By default, a specified function is matched against the program's\n\
15207 functions in all scopes. For C++, this means in all namespaces and\n\
15208 classes. For Ada, this means in all packages. E.g., in C++,\n\
15209 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15210 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15211 specified name as a complete fully-qualified name instead.\n"
15212
15213 /* This help string is used for the break, hbreak, tbreak and thbreak
15214 commands. It is defined as a macro to prevent duplication.
15215 COMMAND should be a string constant containing the name of the
15216 command. */
15217
15218 #define BREAK_ARGS_HELP(command) \
15219 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15220 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15221 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15222 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15223 `-probe-dtrace' (for a DTrace probe).\n\
15224 LOCATION may be a linespec, address, or explicit location as described\n\
15225 below.\n\
15226 \n\
15227 With no LOCATION, uses current execution address of the selected\n\
15228 stack frame. This is useful for breaking on return to a stack frame.\n\
15229 \n\
15230 THREADNUM is the number from \"info threads\".\n\
15231 CONDITION is a boolean expression.\n\
15232 \n" LOCATION_HELP_STRING "\n\
15233 Multiple breakpoints at one place are permitted, and useful if their\n\
15234 conditions are different.\n\
15235 \n\
15236 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15237
15238 /* List of subcommands for "catch". */
15239 static struct cmd_list_element *catch_cmdlist;
15240
15241 /* List of subcommands for "tcatch". */
15242 static struct cmd_list_element *tcatch_cmdlist;
15243
15244 void
15245 add_catch_command (const char *name, const char *docstring,
15246 cmd_const_sfunc_ftype *sfunc,
15247 completer_ftype *completer,
15248 void *user_data_catch,
15249 void *user_data_tcatch)
15250 {
15251 struct cmd_list_element *command;
15252
15253 command = add_cmd (name, class_breakpoint, docstring,
15254 &catch_cmdlist);
15255 set_cmd_sfunc (command, sfunc);
15256 set_cmd_context (command, user_data_catch);
15257 set_cmd_completer (command, completer);
15258
15259 command = add_cmd (name, class_breakpoint, docstring,
15260 &tcatch_cmdlist);
15261 set_cmd_sfunc (command, sfunc);
15262 set_cmd_context (command, user_data_tcatch);
15263 set_cmd_completer (command, completer);
15264 }
15265
15266 static void
15267 save_command (const char *arg, int from_tty)
15268 {
15269 printf_unfiltered (_("\"save\" must be followed by "
15270 "the name of a save subcommand.\n"));
15271 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15272 }
15273
15274 struct breakpoint *
15275 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15276 void *data)
15277 {
15278 struct breakpoint *b, *b_tmp;
15279
15280 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15281 {
15282 if ((*callback) (b, data))
15283 return b;
15284 }
15285
15286 return NULL;
15287 }
15288
15289 /* Zero if any of the breakpoint's locations could be a location where
15290 functions have been inlined, nonzero otherwise. */
15291
15292 static int
15293 is_non_inline_function (struct breakpoint *b)
15294 {
15295 /* The shared library event breakpoint is set on the address of a
15296 non-inline function. */
15297 if (b->type == bp_shlib_event)
15298 return 1;
15299
15300 return 0;
15301 }
15302
15303 /* Nonzero if the specified PC cannot be a location where functions
15304 have been inlined. */
15305
15306 int
15307 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15308 const struct target_waitstatus *ws)
15309 {
15310 struct breakpoint *b;
15311 struct bp_location *bl;
15312
15313 ALL_BREAKPOINTS (b)
15314 {
15315 if (!is_non_inline_function (b))
15316 continue;
15317
15318 for (bl = b->loc; bl != NULL; bl = bl->next)
15319 {
15320 if (!bl->shlib_disabled
15321 && bpstat_check_location (bl, aspace, pc, ws))
15322 return 1;
15323 }
15324 }
15325
15326 return 0;
15327 }
15328
15329 /* Remove any references to OBJFILE which is going to be freed. */
15330
15331 void
15332 breakpoint_free_objfile (struct objfile *objfile)
15333 {
15334 struct bp_location **locp, *loc;
15335
15336 ALL_BP_LOCATIONS (loc, locp)
15337 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15338 loc->symtab = NULL;
15339 }
15340
15341 void
15342 initialize_breakpoint_ops (void)
15343 {
15344 static int initialized = 0;
15345
15346 struct breakpoint_ops *ops;
15347
15348 if (initialized)
15349 return;
15350 initialized = 1;
15351
15352 /* The breakpoint_ops structure to be inherit by all kinds of
15353 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15354 internal and momentary breakpoints, etc.). */
15355 ops = &bkpt_base_breakpoint_ops;
15356 *ops = base_breakpoint_ops;
15357 ops->re_set = bkpt_re_set;
15358 ops->insert_location = bkpt_insert_location;
15359 ops->remove_location = bkpt_remove_location;
15360 ops->breakpoint_hit = bkpt_breakpoint_hit;
15361 ops->create_sals_from_location = bkpt_create_sals_from_location;
15362 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15363 ops->decode_location = bkpt_decode_location;
15364
15365 /* The breakpoint_ops structure to be used in regular breakpoints. */
15366 ops = &bkpt_breakpoint_ops;
15367 *ops = bkpt_base_breakpoint_ops;
15368 ops->re_set = bkpt_re_set;
15369 ops->resources_needed = bkpt_resources_needed;
15370 ops->print_it = bkpt_print_it;
15371 ops->print_mention = bkpt_print_mention;
15372 ops->print_recreate = bkpt_print_recreate;
15373
15374 /* Ranged breakpoints. */
15375 ops = &ranged_breakpoint_ops;
15376 *ops = bkpt_breakpoint_ops;
15377 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15378 ops->resources_needed = resources_needed_ranged_breakpoint;
15379 ops->print_it = print_it_ranged_breakpoint;
15380 ops->print_one = print_one_ranged_breakpoint;
15381 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15382 ops->print_mention = print_mention_ranged_breakpoint;
15383 ops->print_recreate = print_recreate_ranged_breakpoint;
15384
15385 /* Internal breakpoints. */
15386 ops = &internal_breakpoint_ops;
15387 *ops = bkpt_base_breakpoint_ops;
15388 ops->re_set = internal_bkpt_re_set;
15389 ops->check_status = internal_bkpt_check_status;
15390 ops->print_it = internal_bkpt_print_it;
15391 ops->print_mention = internal_bkpt_print_mention;
15392
15393 /* Momentary breakpoints. */
15394 ops = &momentary_breakpoint_ops;
15395 *ops = bkpt_base_breakpoint_ops;
15396 ops->re_set = momentary_bkpt_re_set;
15397 ops->check_status = momentary_bkpt_check_status;
15398 ops->print_it = momentary_bkpt_print_it;
15399 ops->print_mention = momentary_bkpt_print_mention;
15400
15401 /* Probe breakpoints. */
15402 ops = &bkpt_probe_breakpoint_ops;
15403 *ops = bkpt_breakpoint_ops;
15404 ops->insert_location = bkpt_probe_insert_location;
15405 ops->remove_location = bkpt_probe_remove_location;
15406 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15407 ops->decode_location = bkpt_probe_decode_location;
15408
15409 /* Watchpoints. */
15410 ops = &watchpoint_breakpoint_ops;
15411 *ops = base_breakpoint_ops;
15412 ops->re_set = re_set_watchpoint;
15413 ops->insert_location = insert_watchpoint;
15414 ops->remove_location = remove_watchpoint;
15415 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15416 ops->check_status = check_status_watchpoint;
15417 ops->resources_needed = resources_needed_watchpoint;
15418 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15419 ops->print_it = print_it_watchpoint;
15420 ops->print_mention = print_mention_watchpoint;
15421 ops->print_recreate = print_recreate_watchpoint;
15422 ops->explains_signal = explains_signal_watchpoint;
15423
15424 /* Masked watchpoints. */
15425 ops = &masked_watchpoint_breakpoint_ops;
15426 *ops = watchpoint_breakpoint_ops;
15427 ops->insert_location = insert_masked_watchpoint;
15428 ops->remove_location = remove_masked_watchpoint;
15429 ops->resources_needed = resources_needed_masked_watchpoint;
15430 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15431 ops->print_it = print_it_masked_watchpoint;
15432 ops->print_one_detail = print_one_detail_masked_watchpoint;
15433 ops->print_mention = print_mention_masked_watchpoint;
15434 ops->print_recreate = print_recreate_masked_watchpoint;
15435
15436 /* Tracepoints. */
15437 ops = &tracepoint_breakpoint_ops;
15438 *ops = base_breakpoint_ops;
15439 ops->re_set = tracepoint_re_set;
15440 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15441 ops->print_one_detail = tracepoint_print_one_detail;
15442 ops->print_mention = tracepoint_print_mention;
15443 ops->print_recreate = tracepoint_print_recreate;
15444 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15445 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15446 ops->decode_location = tracepoint_decode_location;
15447
15448 /* Probe tracepoints. */
15449 ops = &tracepoint_probe_breakpoint_ops;
15450 *ops = tracepoint_breakpoint_ops;
15451 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15452 ops->decode_location = tracepoint_probe_decode_location;
15453
15454 /* Static tracepoints with marker (`-m'). */
15455 ops = &strace_marker_breakpoint_ops;
15456 *ops = tracepoint_breakpoint_ops;
15457 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15458 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15459 ops->decode_location = strace_marker_decode_location;
15460
15461 /* Fork catchpoints. */
15462 ops = &catch_fork_breakpoint_ops;
15463 *ops = base_breakpoint_ops;
15464 ops->insert_location = insert_catch_fork;
15465 ops->remove_location = remove_catch_fork;
15466 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15467 ops->print_it = print_it_catch_fork;
15468 ops->print_one = print_one_catch_fork;
15469 ops->print_mention = print_mention_catch_fork;
15470 ops->print_recreate = print_recreate_catch_fork;
15471
15472 /* Vfork catchpoints. */
15473 ops = &catch_vfork_breakpoint_ops;
15474 *ops = base_breakpoint_ops;
15475 ops->insert_location = insert_catch_vfork;
15476 ops->remove_location = remove_catch_vfork;
15477 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15478 ops->print_it = print_it_catch_vfork;
15479 ops->print_one = print_one_catch_vfork;
15480 ops->print_mention = print_mention_catch_vfork;
15481 ops->print_recreate = print_recreate_catch_vfork;
15482
15483 /* Exec catchpoints. */
15484 ops = &catch_exec_breakpoint_ops;
15485 *ops = base_breakpoint_ops;
15486 ops->insert_location = insert_catch_exec;
15487 ops->remove_location = remove_catch_exec;
15488 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15489 ops->print_it = print_it_catch_exec;
15490 ops->print_one = print_one_catch_exec;
15491 ops->print_mention = print_mention_catch_exec;
15492 ops->print_recreate = print_recreate_catch_exec;
15493
15494 /* Solib-related catchpoints. */
15495 ops = &catch_solib_breakpoint_ops;
15496 *ops = base_breakpoint_ops;
15497 ops->insert_location = insert_catch_solib;
15498 ops->remove_location = remove_catch_solib;
15499 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15500 ops->check_status = check_status_catch_solib;
15501 ops->print_it = print_it_catch_solib;
15502 ops->print_one = print_one_catch_solib;
15503 ops->print_mention = print_mention_catch_solib;
15504 ops->print_recreate = print_recreate_catch_solib;
15505
15506 ops = &dprintf_breakpoint_ops;
15507 *ops = bkpt_base_breakpoint_ops;
15508 ops->re_set = dprintf_re_set;
15509 ops->resources_needed = bkpt_resources_needed;
15510 ops->print_it = bkpt_print_it;
15511 ops->print_mention = bkpt_print_mention;
15512 ops->print_recreate = dprintf_print_recreate;
15513 ops->after_condition_true = dprintf_after_condition_true;
15514 ops->breakpoint_hit = dprintf_breakpoint_hit;
15515 }
15516
15517 /* Chain containing all defined "enable breakpoint" subcommands. */
15518
15519 static struct cmd_list_element *enablebreaklist = NULL;
15520
15521 void
15522 _initialize_breakpoint (void)
15523 {
15524 struct cmd_list_element *c;
15525
15526 initialize_breakpoint_ops ();
15527
15528 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15529 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15530 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15531
15532 breakpoint_objfile_key
15533 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15534
15535 breakpoint_chain = 0;
15536 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15537 before a breakpoint is set. */
15538 breakpoint_count = 0;
15539
15540 tracepoint_count = 0;
15541
15542 add_com ("ignore", class_breakpoint, ignore_command, _("\
15543 Set ignore-count of breakpoint number N to COUNT.\n\
15544 Usage is `ignore N COUNT'."));
15545
15546 add_com ("commands", class_breakpoint, commands_command, _("\
15547 Set commands to be executed when the given breakpoints are hit.\n\
15548 Give a space-separated breakpoint list as argument after \"commands\".\n\
15549 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15550 (e.g. `5-7').\n\
15551 With no argument, the targeted breakpoint is the last one set.\n\
15552 The commands themselves follow starting on the next line.\n\
15553 Type a line containing \"end\" to indicate the end of them.\n\
15554 Give \"silent\" as the first line to make the breakpoint silent;\n\
15555 then no output is printed when it is hit, except what the commands print."));
15556
15557 c = add_com ("condition", class_breakpoint, condition_command, _("\
15558 Specify breakpoint number N to break only if COND is true.\n\
15559 Usage is `condition N COND', where N is an integer and COND is an\n\
15560 expression to be evaluated whenever breakpoint N is reached."));
15561 set_cmd_completer (c, condition_completer);
15562
15563 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15564 Set a temporary breakpoint.\n\
15565 Like \"break\" except the breakpoint is only temporary,\n\
15566 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15567 by using \"enable delete\" on the breakpoint number.\n\
15568 \n"
15569 BREAK_ARGS_HELP ("tbreak")));
15570 set_cmd_completer (c, location_completer);
15571
15572 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15573 Set a hardware assisted breakpoint.\n\
15574 Like \"break\" except the breakpoint requires hardware support,\n\
15575 some target hardware may not have this support.\n\
15576 \n"
15577 BREAK_ARGS_HELP ("hbreak")));
15578 set_cmd_completer (c, location_completer);
15579
15580 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15581 Set a temporary hardware assisted breakpoint.\n\
15582 Like \"hbreak\" except the breakpoint is only temporary,\n\
15583 so it will be deleted when hit.\n\
15584 \n"
15585 BREAK_ARGS_HELP ("thbreak")));
15586 set_cmd_completer (c, location_completer);
15587
15588 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15589 Enable some breakpoints.\n\
15590 Give breakpoint numbers (separated by spaces) as arguments.\n\
15591 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15592 This is used to cancel the effect of the \"disable\" command.\n\
15593 With a subcommand you can enable temporarily."),
15594 &enablelist, "enable ", 1, &cmdlist);
15595
15596 add_com_alias ("en", "enable", class_breakpoint, 1);
15597
15598 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15599 Enable some breakpoints.\n\
15600 Give breakpoint numbers (separated by spaces) as arguments.\n\
15601 This is used to cancel the effect of the \"disable\" command.\n\
15602 May be abbreviated to simply \"enable\".\n"),
15603 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15604
15605 add_cmd ("once", no_class, enable_once_command, _("\
15606 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15607 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15608 &enablebreaklist);
15609
15610 add_cmd ("delete", no_class, enable_delete_command, _("\
15611 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15612 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15613 &enablebreaklist);
15614
15615 add_cmd ("count", no_class, enable_count_command, _("\
15616 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15617 If a breakpoint is hit while enabled in this fashion,\n\
15618 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15619 &enablebreaklist);
15620
15621 add_cmd ("delete", no_class, enable_delete_command, _("\
15622 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15623 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15624 &enablelist);
15625
15626 add_cmd ("once", no_class, enable_once_command, _("\
15627 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15628 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15629 &enablelist);
15630
15631 add_cmd ("count", no_class, enable_count_command, _("\
15632 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15633 If a breakpoint is hit while enabled in this fashion,\n\
15634 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15635 &enablelist);
15636
15637 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15638 Disable some breakpoints.\n\
15639 Arguments are breakpoint numbers with spaces in between.\n\
15640 To disable all breakpoints, give no argument.\n\
15641 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15642 &disablelist, "disable ", 1, &cmdlist);
15643 add_com_alias ("dis", "disable", class_breakpoint, 1);
15644 add_com_alias ("disa", "disable", class_breakpoint, 1);
15645
15646 add_cmd ("breakpoints", class_alias, disable_command, _("\
15647 Disable some breakpoints.\n\
15648 Arguments are breakpoint numbers with spaces in between.\n\
15649 To disable all breakpoints, give no argument.\n\
15650 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15651 This command may be abbreviated \"disable\"."),
15652 &disablelist);
15653
15654 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15655 Delete some breakpoints or auto-display expressions.\n\
15656 Arguments are breakpoint numbers with spaces in between.\n\
15657 To delete all breakpoints, give no argument.\n\
15658 \n\
15659 Also a prefix command for deletion of other GDB objects.\n\
15660 The \"unset\" command is also an alias for \"delete\"."),
15661 &deletelist, "delete ", 1, &cmdlist);
15662 add_com_alias ("d", "delete", class_breakpoint, 1);
15663 add_com_alias ("del", "delete", class_breakpoint, 1);
15664
15665 add_cmd ("breakpoints", class_alias, delete_command, _("\
15666 Delete some breakpoints or auto-display expressions.\n\
15667 Arguments are breakpoint numbers with spaces in between.\n\
15668 To delete all breakpoints, give no argument.\n\
15669 This command may be abbreviated \"delete\"."),
15670 &deletelist);
15671
15672 add_com ("clear", class_breakpoint, clear_command, _("\
15673 Clear breakpoint at specified location.\n\
15674 Argument may be a linespec, explicit, or address location as described below.\n\
15675 \n\
15676 With no argument, clears all breakpoints in the line that the selected frame\n\
15677 is executing in.\n"
15678 "\n" LOCATION_HELP_STRING "\n\
15679 See also the \"delete\" command which clears breakpoints by number."));
15680 add_com_alias ("cl", "clear", class_breakpoint, 1);
15681
15682 c = add_com ("break", class_breakpoint, break_command, _("\
15683 Set breakpoint at specified location.\n"
15684 BREAK_ARGS_HELP ("break")));
15685 set_cmd_completer (c, location_completer);
15686
15687 add_com_alias ("b", "break", class_run, 1);
15688 add_com_alias ("br", "break", class_run, 1);
15689 add_com_alias ("bre", "break", class_run, 1);
15690 add_com_alias ("brea", "break", class_run, 1);
15691
15692 if (dbx_commands)
15693 {
15694 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15695 Break in function/address or break at a line in the current file."),
15696 &stoplist, "stop ", 1, &cmdlist);
15697 add_cmd ("in", class_breakpoint, stopin_command,
15698 _("Break in function or address."), &stoplist);
15699 add_cmd ("at", class_breakpoint, stopat_command,
15700 _("Break at a line in the current file."), &stoplist);
15701 add_com ("status", class_info, info_breakpoints_command, _("\
15702 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15703 The \"Type\" column indicates one of:\n\
15704 \tbreakpoint - normal breakpoint\n\
15705 \twatchpoint - watchpoint\n\
15706 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15707 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15708 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15709 address and file/line number respectively.\n\
15710 \n\
15711 Convenience variable \"$_\" and default examine address for \"x\"\n\
15712 are set to the address of the last breakpoint listed unless the command\n\
15713 is prefixed with \"server \".\n\n\
15714 Convenience variable \"$bpnum\" contains the number of the last\n\
15715 breakpoint set."));
15716 }
15717
15718 add_info ("breakpoints", info_breakpoints_command, _("\
15719 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15720 The \"Type\" column indicates one of:\n\
15721 \tbreakpoint - normal breakpoint\n\
15722 \twatchpoint - watchpoint\n\
15723 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15724 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15725 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15726 address and file/line number respectively.\n\
15727 \n\
15728 Convenience variable \"$_\" and default examine address for \"x\"\n\
15729 are set to the address of the last breakpoint listed unless the command\n\
15730 is prefixed with \"server \".\n\n\
15731 Convenience variable \"$bpnum\" contains the number of the last\n\
15732 breakpoint set."));
15733
15734 add_info_alias ("b", "breakpoints", 1);
15735
15736 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15737 Status of all breakpoints, or breakpoint number NUMBER.\n\
15738 The \"Type\" column indicates one of:\n\
15739 \tbreakpoint - normal breakpoint\n\
15740 \twatchpoint - watchpoint\n\
15741 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15742 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15743 \tuntil - internal breakpoint used by the \"until\" command\n\
15744 \tfinish - internal breakpoint used by the \"finish\" command\n\
15745 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15746 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15747 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15748 address and file/line number respectively.\n\
15749 \n\
15750 Convenience variable \"$_\" and default examine address for \"x\"\n\
15751 are set to the address of the last breakpoint listed unless the command\n\
15752 is prefixed with \"server \".\n\n\
15753 Convenience variable \"$bpnum\" contains the number of the last\n\
15754 breakpoint set."),
15755 &maintenanceinfolist);
15756
15757 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15758 Set catchpoints to catch events."),
15759 &catch_cmdlist, "catch ",
15760 0/*allow-unknown*/, &cmdlist);
15761
15762 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15763 Set temporary catchpoints to catch events."),
15764 &tcatch_cmdlist, "tcatch ",
15765 0/*allow-unknown*/, &cmdlist);
15766
15767 add_catch_command ("fork", _("Catch calls to fork."),
15768 catch_fork_command_1,
15769 NULL,
15770 (void *) (uintptr_t) catch_fork_permanent,
15771 (void *) (uintptr_t) catch_fork_temporary);
15772 add_catch_command ("vfork", _("Catch calls to vfork."),
15773 catch_fork_command_1,
15774 NULL,
15775 (void *) (uintptr_t) catch_vfork_permanent,
15776 (void *) (uintptr_t) catch_vfork_temporary);
15777 add_catch_command ("exec", _("Catch calls to exec."),
15778 catch_exec_command_1,
15779 NULL,
15780 CATCH_PERMANENT,
15781 CATCH_TEMPORARY);
15782 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15783 Usage: catch load [REGEX]\n\
15784 If REGEX is given, only stop for libraries matching the regular expression."),
15785 catch_load_command_1,
15786 NULL,
15787 CATCH_PERMANENT,
15788 CATCH_TEMPORARY);
15789 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15790 Usage: catch unload [REGEX]\n\
15791 If REGEX is given, only stop for libraries matching the regular expression."),
15792 catch_unload_command_1,
15793 NULL,
15794 CATCH_PERMANENT,
15795 CATCH_TEMPORARY);
15796
15797 c = add_com ("watch", class_breakpoint, watch_command, _("\
15798 Set a watchpoint for an expression.\n\
15799 Usage: watch [-l|-location] EXPRESSION\n\
15800 A watchpoint stops execution of your program whenever the value of\n\
15801 an expression changes.\n\
15802 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15803 the memory to which it refers."));
15804 set_cmd_completer (c, expression_completer);
15805
15806 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15807 Set a read watchpoint for an expression.\n\
15808 Usage: rwatch [-l|-location] EXPRESSION\n\
15809 A watchpoint stops execution of your program whenever the value of\n\
15810 an expression is read.\n\
15811 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15812 the memory to which it refers."));
15813 set_cmd_completer (c, expression_completer);
15814
15815 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15816 Set a watchpoint for an expression.\n\
15817 Usage: awatch [-l|-location] EXPRESSION\n\
15818 A watchpoint stops execution of your program whenever the value of\n\
15819 an expression is either read or written.\n\
15820 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15821 the memory to which it refers."));
15822 set_cmd_completer (c, expression_completer);
15823
15824 add_info ("watchpoints", info_watchpoints_command, _("\
15825 Status of specified watchpoints (all watchpoints if no argument)."));
15826
15827 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15828 respond to changes - contrary to the description. */
15829 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15830 &can_use_hw_watchpoints, _("\
15831 Set debugger's willingness to use watchpoint hardware."), _("\
15832 Show debugger's willingness to use watchpoint hardware."), _("\
15833 If zero, gdb will not use hardware for new watchpoints, even if\n\
15834 such is available. (However, any hardware watchpoints that were\n\
15835 created before setting this to nonzero, will continue to use watchpoint\n\
15836 hardware.)"),
15837 NULL,
15838 show_can_use_hw_watchpoints,
15839 &setlist, &showlist);
15840
15841 can_use_hw_watchpoints = 1;
15842
15843 /* Tracepoint manipulation commands. */
15844
15845 c = add_com ("trace", class_breakpoint, trace_command, _("\
15846 Set a tracepoint at specified location.\n\
15847 \n"
15848 BREAK_ARGS_HELP ("trace") "\n\
15849 Do \"help tracepoints\" for info on other tracepoint commands."));
15850 set_cmd_completer (c, location_completer);
15851
15852 add_com_alias ("tp", "trace", class_alias, 0);
15853 add_com_alias ("tr", "trace", class_alias, 1);
15854 add_com_alias ("tra", "trace", class_alias, 1);
15855 add_com_alias ("trac", "trace", class_alias, 1);
15856
15857 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15858 Set a fast tracepoint at specified location.\n\
15859 \n"
15860 BREAK_ARGS_HELP ("ftrace") "\n\
15861 Do \"help tracepoints\" for info on other tracepoint commands."));
15862 set_cmd_completer (c, location_completer);
15863
15864 c = add_com ("strace", class_breakpoint, strace_command, _("\
15865 Set a static tracepoint at location or marker.\n\
15866 \n\
15867 strace [LOCATION] [if CONDITION]\n\
15868 LOCATION may be a linespec, explicit, or address location (described below) \n\
15869 or -m MARKER_ID.\n\n\
15870 If a marker id is specified, probe the marker with that name. With\n\
15871 no LOCATION, uses current execution address of the selected stack frame.\n\
15872 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15873 This collects arbitrary user data passed in the probe point call to the\n\
15874 tracing library. You can inspect it when analyzing the trace buffer,\n\
15875 by printing the $_sdata variable like any other convenience variable.\n\
15876 \n\
15877 CONDITION is a boolean expression.\n\
15878 \n" LOCATION_HELP_STRING "\n\
15879 Multiple tracepoints at one place are permitted, and useful if their\n\
15880 conditions are different.\n\
15881 \n\
15882 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15883 Do \"help tracepoints\" for info on other tracepoint commands."));
15884 set_cmd_completer (c, location_completer);
15885
15886 add_info ("tracepoints", info_tracepoints_command, _("\
15887 Status of specified tracepoints (all tracepoints if no argument).\n\
15888 Convenience variable \"$tpnum\" contains the number of the\n\
15889 last tracepoint set."));
15890
15891 add_info_alias ("tp", "tracepoints", 1);
15892
15893 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15894 Delete specified tracepoints.\n\
15895 Arguments are tracepoint numbers, separated by spaces.\n\
15896 No argument means delete all tracepoints."),
15897 &deletelist);
15898 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15899
15900 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15901 Disable specified tracepoints.\n\
15902 Arguments are tracepoint numbers, separated by spaces.\n\
15903 No argument means disable all tracepoints."),
15904 &disablelist);
15905 deprecate_cmd (c, "disable");
15906
15907 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15908 Enable specified tracepoints.\n\
15909 Arguments are tracepoint numbers, separated by spaces.\n\
15910 No argument means enable all tracepoints."),
15911 &enablelist);
15912 deprecate_cmd (c, "enable");
15913
15914 add_com ("passcount", class_trace, trace_pass_command, _("\
15915 Set the passcount for a tracepoint.\n\
15916 The trace will end when the tracepoint has been passed 'count' times.\n\
15917 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15918 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15919
15920 add_prefix_cmd ("save", class_breakpoint, save_command,
15921 _("Save breakpoint definitions as a script."),
15922 &save_cmdlist, "save ",
15923 0/*allow-unknown*/, &cmdlist);
15924
15925 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15926 Save current breakpoint definitions as a script.\n\
15927 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15928 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15929 session to restore them."),
15930 &save_cmdlist);
15931 set_cmd_completer (c, filename_completer);
15932
15933 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15934 Save current tracepoint definitions as a script.\n\
15935 Use the 'source' command in another debug session to restore them."),
15936 &save_cmdlist);
15937 set_cmd_completer (c, filename_completer);
15938
15939 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15940 deprecate_cmd (c, "save tracepoints");
15941
15942 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15943 Breakpoint specific settings\n\
15944 Configure various breakpoint-specific variables such as\n\
15945 pending breakpoint behavior"),
15946 &breakpoint_set_cmdlist, "set breakpoint ",
15947 0/*allow-unknown*/, &setlist);
15948 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15949 Breakpoint specific settings\n\
15950 Configure various breakpoint-specific variables such as\n\
15951 pending breakpoint behavior"),
15952 &breakpoint_show_cmdlist, "show breakpoint ",
15953 0/*allow-unknown*/, &showlist);
15954
15955 add_setshow_auto_boolean_cmd ("pending", no_class,
15956 &pending_break_support, _("\
15957 Set debugger's behavior regarding pending breakpoints."), _("\
15958 Show debugger's behavior regarding pending breakpoints."), _("\
15959 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15960 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15961 an error. If auto, an unrecognized breakpoint location results in a\n\
15962 user-query to see if a pending breakpoint should be created."),
15963 NULL,
15964 show_pending_break_support,
15965 &breakpoint_set_cmdlist,
15966 &breakpoint_show_cmdlist);
15967
15968 pending_break_support = AUTO_BOOLEAN_AUTO;
15969
15970 add_setshow_boolean_cmd ("auto-hw", no_class,
15971 &automatic_hardware_breakpoints, _("\
15972 Set automatic usage of hardware breakpoints."), _("\
15973 Show automatic usage of hardware breakpoints."), _("\
15974 If set, the debugger will automatically use hardware breakpoints for\n\
15975 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15976 a warning will be emitted for such breakpoints."),
15977 NULL,
15978 show_automatic_hardware_breakpoints,
15979 &breakpoint_set_cmdlist,
15980 &breakpoint_show_cmdlist);
15981
15982 add_setshow_boolean_cmd ("always-inserted", class_support,
15983 &always_inserted_mode, _("\
15984 Set mode for inserting breakpoints."), _("\
15985 Show mode for inserting breakpoints."), _("\
15986 When this mode is on, breakpoints are inserted immediately as soon as\n\
15987 they're created, kept inserted even when execution stops, and removed\n\
15988 only when the user deletes them. When this mode is off (the default),\n\
15989 breakpoints are inserted only when execution continues, and removed\n\
15990 when execution stops."),
15991 NULL,
15992 &show_always_inserted_mode,
15993 &breakpoint_set_cmdlist,
15994 &breakpoint_show_cmdlist);
15995
15996 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15997 condition_evaluation_enums,
15998 &condition_evaluation_mode_1, _("\
15999 Set mode of breakpoint condition evaluation."), _("\
16000 Show mode of breakpoint condition evaluation."), _("\
16001 When this is set to \"host\", breakpoint conditions will be\n\
16002 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16003 breakpoint conditions will be downloaded to the target (if the target\n\
16004 supports such feature) and conditions will be evaluated on the target's side.\n\
16005 If this is set to \"auto\" (default), this will be automatically set to\n\
16006 \"target\" if it supports condition evaluation, otherwise it will\n\
16007 be set to \"gdb\""),
16008 &set_condition_evaluation_mode,
16009 &show_condition_evaluation_mode,
16010 &breakpoint_set_cmdlist,
16011 &breakpoint_show_cmdlist);
16012
16013 add_com ("break-range", class_breakpoint, break_range_command, _("\
16014 Set a breakpoint for an address range.\n\
16015 break-range START-LOCATION, END-LOCATION\n\
16016 where START-LOCATION and END-LOCATION can be one of the following:\n\
16017 LINENUM, for that line in the current file,\n\
16018 FILE:LINENUM, for that line in that file,\n\
16019 +OFFSET, for that number of lines after the current line\n\
16020 or the start of the range\n\
16021 FUNCTION, for the first line in that function,\n\
16022 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16023 *ADDRESS, for the instruction at that address.\n\
16024 \n\
16025 The breakpoint will stop execution of the inferior whenever it executes\n\
16026 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16027 range (including START-LOCATION and END-LOCATION)."));
16028
16029 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16030 Set a dynamic printf at specified location.\n\
16031 dprintf location,format string,arg1,arg2,...\n\
16032 location may be a linespec, explicit, or address location.\n"
16033 "\n" LOCATION_HELP_STRING));
16034 set_cmd_completer (c, location_completer);
16035
16036 add_setshow_enum_cmd ("dprintf-style", class_support,
16037 dprintf_style_enums, &dprintf_style, _("\
16038 Set the style of usage for dynamic printf."), _("\
16039 Show the style of usage for dynamic printf."), _("\
16040 This setting chooses how GDB will do a dynamic printf.\n\
16041 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16042 console, as with the \"printf\" command.\n\
16043 If the value is \"call\", the print is done by calling a function in your\n\
16044 program; by default printf(), but you can choose a different function or\n\
16045 output stream by setting dprintf-function and dprintf-channel."),
16046 update_dprintf_commands, NULL,
16047 &setlist, &showlist);
16048
16049 dprintf_function = xstrdup ("printf");
16050 add_setshow_string_cmd ("dprintf-function", class_support,
16051 &dprintf_function, _("\
16052 Set the function to use for dynamic printf"), _("\
16053 Show the function to use for dynamic printf"), NULL,
16054 update_dprintf_commands, NULL,
16055 &setlist, &showlist);
16056
16057 dprintf_channel = xstrdup ("");
16058 add_setshow_string_cmd ("dprintf-channel", class_support,
16059 &dprintf_channel, _("\
16060 Set the channel to use for dynamic printf"), _("\
16061 Show the channel to use for dynamic printf"), NULL,
16062 update_dprintf_commands, NULL,
16063 &setlist, &showlist);
16064
16065 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16066 &disconnected_dprintf, _("\
16067 Set whether dprintf continues after GDB disconnects."), _("\
16068 Show whether dprintf continues after GDB disconnects."), _("\
16069 Use this to let dprintf commands continue to hit and produce output\n\
16070 even if GDB disconnects or detaches from the target."),
16071 NULL,
16072 NULL,
16073 &setlist, &showlist);
16074
16075 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16076 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16077 (target agent only) This is useful for formatted output in user-defined commands."));
16078
16079 automatic_hardware_breakpoints = 1;
16080
16081 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16082 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16083 }