Introduce a gdb_ref_ptr specialization for struct value
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint (struct value *);
121
122 static void mention (struct breakpoint *);
123
124 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
125 enum bptype,
126 const struct breakpoint_ops *);
127 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
128 const struct symtab_and_line *);
129
130 /* This function is used in gdbtk sources and thus can not be made
131 static. */
132 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
133 struct symtab_and_line,
134 enum bptype,
135 const struct breakpoint_ops *);
136
137 static struct breakpoint *
138 momentary_breakpoint_from_master (struct breakpoint *orig,
139 enum bptype type,
140 const struct breakpoint_ops *ops,
141 int loc_enabled);
142
143 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
144
145 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
146 CORE_ADDR bpaddr,
147 enum bptype bptype);
148
149 static void describe_other_breakpoints (struct gdbarch *,
150 struct program_space *, CORE_ADDR,
151 struct obj_section *, int);
152
153 static int watchpoint_locations_match (struct bp_location *loc1,
154 struct bp_location *loc2);
155
156 static int breakpoint_location_address_match (struct bp_location *bl,
157 const struct address_space *aspace,
158 CORE_ADDR addr);
159
160 static int breakpoint_location_address_range_overlap (struct bp_location *,
161 const address_space *,
162 CORE_ADDR, int);
163
164 static int remove_breakpoint (struct bp_location *);
165 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
166
167 static enum print_stop_action print_bp_stop_message (bpstat bs);
168
169 static int hw_breakpoint_used_count (void);
170
171 static int hw_watchpoint_use_count (struct breakpoint *);
172
173 static int hw_watchpoint_used_count_others (struct breakpoint *except,
174 enum bptype type,
175 int *other_type_used);
176
177 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
178 int count);
179
180 static void free_bp_location (struct bp_location *loc);
181 static void incref_bp_location (struct bp_location *loc);
182 static void decref_bp_location (struct bp_location **loc);
183
184 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
185
186 /* update_global_location_list's modes of operation wrt to whether to
187 insert locations now. */
188 enum ugll_insert_mode
189 {
190 /* Don't insert any breakpoint locations into the inferior, only
191 remove already-inserted locations that no longer should be
192 inserted. Functions that delete a breakpoint or breakpoints
193 should specify this mode, so that deleting a breakpoint doesn't
194 have the side effect of inserting the locations of other
195 breakpoints that are marked not-inserted, but should_be_inserted
196 returns true on them.
197
198 This behavior is useful is situations close to tear-down -- e.g.,
199 after an exec, while the target still has execution, but
200 breakpoint shadows of the previous executable image should *NOT*
201 be restored to the new image; or before detaching, where the
202 target still has execution and wants to delete breakpoints from
203 GDB's lists, and all breakpoints had already been removed from
204 the inferior. */
205 UGLL_DONT_INSERT,
206
207 /* May insert breakpoints iff breakpoints_should_be_inserted_now
208 claims breakpoints should be inserted now. */
209 UGLL_MAY_INSERT,
210
211 /* Insert locations now, irrespective of
212 breakpoints_should_be_inserted_now. E.g., say all threads are
213 stopped right now, and the user did "continue". We need to
214 insert breakpoints _before_ resuming the target, but
215 UGLL_MAY_INSERT wouldn't insert them, because
216 breakpoints_should_be_inserted_now returns false at that point,
217 as no thread is running yet. */
218 UGLL_INSERT
219 };
220
221 static void update_global_location_list (enum ugll_insert_mode);
222
223 static void update_global_location_list_nothrow (enum ugll_insert_mode);
224
225 static int is_hardware_watchpoint (const struct breakpoint *bpt);
226
227 static void insert_breakpoint_locations (void);
228
229 static void trace_pass_command (const char *, int);
230
231 static void set_tracepoint_count (int num);
232
233 static int is_masked_watchpoint (const struct breakpoint *b);
234
235 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
236
237 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
238 otherwise. */
239
240 static int strace_marker_p (struct breakpoint *b);
241
242 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
243 that are implemented on top of software or hardware breakpoints
244 (user breakpoints, internal and momentary breakpoints, etc.). */
245 static struct breakpoint_ops bkpt_base_breakpoint_ops;
246
247 /* Internal breakpoints class type. */
248 static struct breakpoint_ops internal_breakpoint_ops;
249
250 /* Momentary breakpoints class type. */
251 static struct breakpoint_ops momentary_breakpoint_ops;
252
253 /* The breakpoint_ops structure to be used in regular user created
254 breakpoints. */
255 struct breakpoint_ops bkpt_breakpoint_ops;
256
257 /* Breakpoints set on probes. */
258 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
259
260 /* Dynamic printf class type. */
261 struct breakpoint_ops dprintf_breakpoint_ops;
262
263 /* The style in which to perform a dynamic printf. This is a user
264 option because different output options have different tradeoffs;
265 if GDB does the printing, there is better error handling if there
266 is a problem with any of the arguments, but using an inferior
267 function lets you have special-purpose printers and sending of
268 output to the same place as compiled-in print functions. */
269
270 static const char dprintf_style_gdb[] = "gdb";
271 static const char dprintf_style_call[] = "call";
272 static const char dprintf_style_agent[] = "agent";
273 static const char *const dprintf_style_enums[] = {
274 dprintf_style_gdb,
275 dprintf_style_call,
276 dprintf_style_agent,
277 NULL
278 };
279 static const char *dprintf_style = dprintf_style_gdb;
280
281 /* The function to use for dynamic printf if the preferred style is to
282 call into the inferior. The value is simply a string that is
283 copied into the command, so it can be anything that GDB can
284 evaluate to a callable address, not necessarily a function name. */
285
286 static char *dprintf_function;
287
288 /* The channel to use for dynamic printf if the preferred style is to
289 call into the inferior; if a nonempty string, it will be passed to
290 the call as the first argument, with the format string as the
291 second. As with the dprintf function, this can be anything that
292 GDB knows how to evaluate, so in addition to common choices like
293 "stderr", this could be an app-specific expression like
294 "mystreams[curlogger]". */
295
296 static char *dprintf_channel;
297
298 /* True if dprintf commands should continue to operate even if GDB
299 has disconnected. */
300 static int disconnected_dprintf = 1;
301
302 struct command_line *
303 breakpoint_commands (struct breakpoint *b)
304 {
305 return b->commands ? b->commands.get () : NULL;
306 }
307
308 /* Flag indicating that a command has proceeded the inferior past the
309 current breakpoint. */
310
311 static int breakpoint_proceeded;
312
313 const char *
314 bpdisp_text (enum bpdisp disp)
315 {
316 /* NOTE: the following values are a part of MI protocol and
317 represent values of 'disp' field returned when inferior stops at
318 a breakpoint. */
319 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
320
321 return bpdisps[(int) disp];
322 }
323
324 /* Prototypes for exported functions. */
325 /* If FALSE, gdb will not use hardware support for watchpoints, even
326 if such is available. */
327 static int can_use_hw_watchpoints;
328
329 static void
330 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
331 struct cmd_list_element *c,
332 const char *value)
333 {
334 fprintf_filtered (file,
335 _("Debugger's willingness to use "
336 "watchpoint hardware is %s.\n"),
337 value);
338 }
339
340 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
341 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
342 for unrecognized breakpoint locations.
343 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
344 static enum auto_boolean pending_break_support;
345 static void
346 show_pending_break_support (struct ui_file *file, int from_tty,
347 struct cmd_list_element *c,
348 const char *value)
349 {
350 fprintf_filtered (file,
351 _("Debugger's behavior regarding "
352 "pending breakpoints is %s.\n"),
353 value);
354 }
355
356 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
357 set with "break" but falling in read-only memory.
358 If 0, gdb will warn about such breakpoints, but won't automatically
359 use hardware breakpoints. */
360 static int automatic_hardware_breakpoints;
361 static void
362 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
363 struct cmd_list_element *c,
364 const char *value)
365 {
366 fprintf_filtered (file,
367 _("Automatic usage of hardware breakpoints is %s.\n"),
368 value);
369 }
370
371 /* If on, GDB keeps breakpoints inserted even if the inferior is
372 stopped, and immediately inserts any new breakpoints as soon as
373 they're created. If off (default), GDB keeps breakpoints off of
374 the target as long as possible. That is, it delays inserting
375 breakpoints until the next resume, and removes them again when the
376 target fully stops. This is a bit safer in case GDB crashes while
377 processing user input. */
378 static int always_inserted_mode = 0;
379
380 static void
381 show_always_inserted_mode (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383 {
384 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
385 value);
386 }
387
388 /* See breakpoint.h. */
389
390 int
391 breakpoints_should_be_inserted_now (void)
392 {
393 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
394 {
395 /* If breakpoints are global, they should be inserted even if no
396 thread under gdb's control is running, or even if there are
397 no threads under GDB's control yet. */
398 return 1;
399 }
400 else if (target_has_execution)
401 {
402 struct thread_info *tp;
403
404 if (always_inserted_mode)
405 {
406 /* The user wants breakpoints inserted even if all threads
407 are stopped. */
408 return 1;
409 }
410
411 if (threads_are_executing ())
412 return 1;
413
414 /* Don't remove breakpoints yet if, even though all threads are
415 stopped, we still have events to process. */
416 ALL_NON_EXITED_THREADS (tp)
417 if (tp->resumed
418 && tp->suspend.waitstatus_pending_p)
419 return 1;
420 }
421 return 0;
422 }
423
424 static const char condition_evaluation_both[] = "host or target";
425
426 /* Modes for breakpoint condition evaluation. */
427 static const char condition_evaluation_auto[] = "auto";
428 static const char condition_evaluation_host[] = "host";
429 static const char condition_evaluation_target[] = "target";
430 static const char *const condition_evaluation_enums[] = {
431 condition_evaluation_auto,
432 condition_evaluation_host,
433 condition_evaluation_target,
434 NULL
435 };
436
437 /* Global that holds the current mode for breakpoint condition evaluation. */
438 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
439
440 /* Global that we use to display information to the user (gets its value from
441 condition_evaluation_mode_1. */
442 static const char *condition_evaluation_mode = condition_evaluation_auto;
443
444 /* Translate a condition evaluation mode MODE into either "host"
445 or "target". This is used mostly to translate from "auto" to the
446 real setting that is being used. It returns the translated
447 evaluation mode. */
448
449 static const char *
450 translate_condition_evaluation_mode (const char *mode)
451 {
452 if (mode == condition_evaluation_auto)
453 {
454 if (target_supports_evaluation_of_breakpoint_conditions ())
455 return condition_evaluation_target;
456 else
457 return condition_evaluation_host;
458 }
459 else
460 return mode;
461 }
462
463 /* Discovers what condition_evaluation_auto translates to. */
464
465 static const char *
466 breakpoint_condition_evaluation_mode (void)
467 {
468 return translate_condition_evaluation_mode (condition_evaluation_mode);
469 }
470
471 /* Return true if GDB should evaluate breakpoint conditions or false
472 otherwise. */
473
474 static int
475 gdb_evaluates_breakpoint_condition_p (void)
476 {
477 const char *mode = breakpoint_condition_evaluation_mode ();
478
479 return (mode == condition_evaluation_host);
480 }
481
482 /* Are we executing breakpoint commands? */
483 static int executing_breakpoint_commands;
484
485 /* Are overlay event breakpoints enabled? */
486 static int overlay_events_enabled;
487
488 /* See description in breakpoint.h. */
489 int target_exact_watchpoints = 0;
490
491 /* Walk the following statement or block through all breakpoints.
492 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
493 current breakpoint. */
494
495 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
496
497 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
498 for (B = breakpoint_chain; \
499 B ? (TMP=B->next, 1): 0; \
500 B = TMP)
501
502 /* Similar iterator for the low-level breakpoints. SAFE variant is
503 not provided so update_global_location_list must not be called
504 while executing the block of ALL_BP_LOCATIONS. */
505
506 #define ALL_BP_LOCATIONS(B,BP_TMP) \
507 for (BP_TMP = bp_locations; \
508 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
509 BP_TMP++)
510
511 /* Iterates through locations with address ADDRESS for the currently selected
512 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
513 to where the loop should start from.
514 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
515 appropriate location to start with. */
516
517 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
518 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
519 BP_LOCP_TMP = BP_LOCP_START; \
520 BP_LOCP_START \
521 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
522 && (*BP_LOCP_TMP)->address == ADDRESS); \
523 BP_LOCP_TMP++)
524
525 /* Iterator for tracepoints only. */
526
527 #define ALL_TRACEPOINTS(B) \
528 for (B = breakpoint_chain; B; B = B->next) \
529 if (is_tracepoint (B))
530
531 /* Chains of all breakpoints defined. */
532
533 struct breakpoint *breakpoint_chain;
534
535 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
536
537 static struct bp_location **bp_locations;
538
539 /* Number of elements of BP_LOCATIONS. */
540
541 static unsigned bp_locations_count;
542
543 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
544 ADDRESS for the current elements of BP_LOCATIONS which get a valid
545 result from bp_location_has_shadow. You can use it for roughly
546 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
547 an address you need to read. */
548
549 static CORE_ADDR bp_locations_placed_address_before_address_max;
550
551 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
552 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
553 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
554 You can use it for roughly limiting the subrange of BP_LOCATIONS to
555 scan for shadow bytes for an address you need to read. */
556
557 static CORE_ADDR bp_locations_shadow_len_after_address_max;
558
559 /* The locations that no longer correspond to any breakpoint, unlinked
560 from the bp_locations array, but for which a hit may still be
561 reported by a target. */
562 VEC(bp_location_p) *moribund_locations = NULL;
563
564 /* Number of last breakpoint made. */
565
566 static int breakpoint_count;
567
568 /* The value of `breakpoint_count' before the last command that
569 created breakpoints. If the last (break-like) command created more
570 than one breakpoint, then the difference between BREAKPOINT_COUNT
571 and PREV_BREAKPOINT_COUNT is more than one. */
572 static int prev_breakpoint_count;
573
574 /* Number of last tracepoint made. */
575
576 static int tracepoint_count;
577
578 static struct cmd_list_element *breakpoint_set_cmdlist;
579 static struct cmd_list_element *breakpoint_show_cmdlist;
580 struct cmd_list_element *save_cmdlist;
581
582 /* See declaration at breakpoint.h. */
583
584 struct breakpoint *
585 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
586 void *user_data)
587 {
588 struct breakpoint *b = NULL;
589
590 ALL_BREAKPOINTS (b)
591 {
592 if (func (b, user_data) != 0)
593 break;
594 }
595
596 return b;
597 }
598
599 /* Return whether a breakpoint is an active enabled breakpoint. */
600 static int
601 breakpoint_enabled (struct breakpoint *b)
602 {
603 return (b->enable_state == bp_enabled);
604 }
605
606 /* Set breakpoint count to NUM. */
607
608 static void
609 set_breakpoint_count (int num)
610 {
611 prev_breakpoint_count = breakpoint_count;
612 breakpoint_count = num;
613 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
614 }
615
616 /* Used by `start_rbreak_breakpoints' below, to record the current
617 breakpoint count before "rbreak" creates any breakpoint. */
618 static int rbreak_start_breakpoint_count;
619
620 /* Called at the start an "rbreak" command to record the first
621 breakpoint made. */
622
623 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
624 {
625 rbreak_start_breakpoint_count = breakpoint_count;
626 }
627
628 /* Called at the end of an "rbreak" command to record the last
629 breakpoint made. */
630
631 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
632 {
633 prev_breakpoint_count = rbreak_start_breakpoint_count;
634 }
635
636 /* Used in run_command to zero the hit count when a new run starts. */
637
638 void
639 clear_breakpoint_hit_counts (void)
640 {
641 struct breakpoint *b;
642
643 ALL_BREAKPOINTS (b)
644 b->hit_count = 0;
645 }
646
647 \f
648 /* Return the breakpoint with the specified number, or NULL
649 if the number does not refer to an existing breakpoint. */
650
651 struct breakpoint *
652 get_breakpoint (int num)
653 {
654 struct breakpoint *b;
655
656 ALL_BREAKPOINTS (b)
657 if (b->number == num)
658 return b;
659
660 return NULL;
661 }
662
663 \f
664
665 /* Mark locations as "conditions have changed" in case the target supports
666 evaluating conditions on its side. */
667
668 static void
669 mark_breakpoint_modified (struct breakpoint *b)
670 {
671 struct bp_location *loc;
672
673 /* This is only meaningful if the target is
674 evaluating conditions and if the user has
675 opted for condition evaluation on the target's
676 side. */
677 if (gdb_evaluates_breakpoint_condition_p ()
678 || !target_supports_evaluation_of_breakpoint_conditions ())
679 return;
680
681 if (!is_breakpoint (b))
682 return;
683
684 for (loc = b->loc; loc; loc = loc->next)
685 loc->condition_changed = condition_modified;
686 }
687
688 /* Mark location as "conditions have changed" in case the target supports
689 evaluating conditions on its side. */
690
691 static void
692 mark_breakpoint_location_modified (struct bp_location *loc)
693 {
694 /* This is only meaningful if the target is
695 evaluating conditions and if the user has
696 opted for condition evaluation on the target's
697 side. */
698 if (gdb_evaluates_breakpoint_condition_p ()
699 || !target_supports_evaluation_of_breakpoint_conditions ())
700
701 return;
702
703 if (!is_breakpoint (loc->owner))
704 return;
705
706 loc->condition_changed = condition_modified;
707 }
708
709 /* Sets the condition-evaluation mode using the static global
710 condition_evaluation_mode. */
711
712 static void
713 set_condition_evaluation_mode (const char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 const char *old_mode, *new_mode;
717
718 if ((condition_evaluation_mode_1 == condition_evaluation_target)
719 && !target_supports_evaluation_of_breakpoint_conditions ())
720 {
721 condition_evaluation_mode_1 = condition_evaluation_mode;
722 warning (_("Target does not support breakpoint condition evaluation.\n"
723 "Using host evaluation mode instead."));
724 return;
725 }
726
727 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
728 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
729
730 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
731 settings was "auto". */
732 condition_evaluation_mode = condition_evaluation_mode_1;
733
734 /* Only update the mode if the user picked a different one. */
735 if (new_mode != old_mode)
736 {
737 struct bp_location *loc, **loc_tmp;
738 /* If the user switched to a different evaluation mode, we
739 need to synch the changes with the target as follows:
740
741 "host" -> "target": Send all (valid) conditions to the target.
742 "target" -> "host": Remove all the conditions from the target.
743 */
744
745 if (new_mode == condition_evaluation_target)
746 {
747 /* Mark everything modified and synch conditions with the
748 target. */
749 ALL_BP_LOCATIONS (loc, loc_tmp)
750 mark_breakpoint_location_modified (loc);
751 }
752 else
753 {
754 /* Manually mark non-duplicate locations to synch conditions
755 with the target. We do this to remove all the conditions the
756 target knows about. */
757 ALL_BP_LOCATIONS (loc, loc_tmp)
758 if (is_breakpoint (loc->owner) && loc->inserted)
759 loc->needs_update = 1;
760 }
761
762 /* Do the update. */
763 update_global_location_list (UGLL_MAY_INSERT);
764 }
765
766 return;
767 }
768
769 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
770 what "auto" is translating to. */
771
772 static void
773 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
774 struct cmd_list_element *c, const char *value)
775 {
776 if (condition_evaluation_mode == condition_evaluation_auto)
777 fprintf_filtered (file,
778 _("Breakpoint condition evaluation "
779 "mode is %s (currently %s).\n"),
780 value,
781 breakpoint_condition_evaluation_mode ());
782 else
783 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
784 value);
785 }
786
787 /* A comparison function for bp_location AP and BP that is used by
788 bsearch. This comparison function only cares about addresses, unlike
789 the more general bp_locations_compare function. */
790
791 static int
792 bp_locations_compare_addrs (const void *ap, const void *bp)
793 {
794 const struct bp_location *a = *(const struct bp_location **) ap;
795 const struct bp_location *b = *(const struct bp_location **) bp;
796
797 if (a->address == b->address)
798 return 0;
799 else
800 return ((a->address > b->address) - (a->address < b->address));
801 }
802
803 /* Helper function to skip all bp_locations with addresses
804 less than ADDRESS. It returns the first bp_location that
805 is greater than or equal to ADDRESS. If none is found, just
806 return NULL. */
807
808 static struct bp_location **
809 get_first_locp_gte_addr (CORE_ADDR address)
810 {
811 struct bp_location dummy_loc;
812 struct bp_location *dummy_locp = &dummy_loc;
813 struct bp_location **locp_found = NULL;
814
815 /* Initialize the dummy location's address field. */
816 dummy_loc.address = address;
817
818 /* Find a close match to the first location at ADDRESS. */
819 locp_found = ((struct bp_location **)
820 bsearch (&dummy_locp, bp_locations, bp_locations_count,
821 sizeof (struct bp_location **),
822 bp_locations_compare_addrs));
823
824 /* Nothing was found, nothing left to do. */
825 if (locp_found == NULL)
826 return NULL;
827
828 /* We may have found a location that is at ADDRESS but is not the first in the
829 location's list. Go backwards (if possible) and locate the first one. */
830 while ((locp_found - 1) >= bp_locations
831 && (*(locp_found - 1))->address == address)
832 locp_found--;
833
834 return locp_found;
835 }
836
837 void
838 set_breakpoint_condition (struct breakpoint *b, const char *exp,
839 int from_tty)
840 {
841 xfree (b->cond_string);
842 b->cond_string = NULL;
843
844 if (is_watchpoint (b))
845 {
846 struct watchpoint *w = (struct watchpoint *) b;
847
848 w->cond_exp.reset ();
849 }
850 else
851 {
852 struct bp_location *loc;
853
854 for (loc = b->loc; loc; loc = loc->next)
855 {
856 loc->cond.reset ();
857
858 /* No need to free the condition agent expression
859 bytecode (if we have one). We will handle this
860 when we go through update_global_location_list. */
861 }
862 }
863
864 if (*exp == 0)
865 {
866 if (from_tty)
867 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
868 }
869 else
870 {
871 const char *arg = exp;
872
873 /* I don't know if it matters whether this is the string the user
874 typed in or the decompiled expression. */
875 b->cond_string = xstrdup (arg);
876 b->condition_not_parsed = 0;
877
878 if (is_watchpoint (b))
879 {
880 struct watchpoint *w = (struct watchpoint *) b;
881
882 innermost_block.reset ();
883 arg = exp;
884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
885 if (*arg)
886 error (_("Junk at end of expression"));
887 w->cond_exp_valid_block = innermost_block.block ();
888 }
889 else
890 {
891 struct bp_location *loc;
892
893 for (loc = b->loc; loc; loc = loc->next)
894 {
895 arg = exp;
896 loc->cond =
897 parse_exp_1 (&arg, loc->address,
898 block_for_pc (loc->address), 0);
899 if (*arg)
900 error (_("Junk at end of expression"));
901 }
902 }
903 }
904 mark_breakpoint_modified (b);
905
906 gdb::observers::breakpoint_modified.notify (b);
907 }
908
909 /* Completion for the "condition" command. */
910
911 static void
912 condition_completer (struct cmd_list_element *cmd,
913 completion_tracker &tracker,
914 const char *text, const char *word)
915 {
916 const char *space;
917
918 text = skip_spaces (text);
919 space = skip_to_space (text);
920 if (*space == '\0')
921 {
922 int len;
923 struct breakpoint *b;
924
925 if (text[0] == '$')
926 {
927 /* We don't support completion of history indices. */
928 if (!isdigit (text[1]))
929 complete_internalvar (tracker, &text[1]);
930 return;
931 }
932
933 /* We're completing the breakpoint number. */
934 len = strlen (text);
935
936 ALL_BREAKPOINTS (b)
937 {
938 char number[50];
939
940 xsnprintf (number, sizeof (number), "%d", b->number);
941
942 if (strncmp (number, text, len) == 0)
943 {
944 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
945 tracker.add_completion (std::move (copy));
946 }
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 int i;
1012
1013 if (c->control_type == while_stepping_control)
1014 error (_("The 'while-stepping' command can "
1015 "only be used for tracepoints"));
1016
1017 for (i = 0; i < c->body_count; ++i)
1018 check_no_tracepoint_commands ((c->body_list)[i]);
1019
1020 /* Not that command parsing removes leading whitespace and comment
1021 lines and also empty lines. So, we only need to check for
1022 command directly. */
1023 if (strstr (c->line, "collect ") == c->line)
1024 error (_("The 'collect' command can only be used for tracepoints"));
1025
1026 if (strstr (c->line, "teval ") == c->line)
1027 error (_("The 'teval' command can only be used for tracepoints"));
1028 }
1029 }
1030
1031 struct longjmp_breakpoint : public breakpoint
1032 {
1033 ~longjmp_breakpoint () override;
1034 };
1035
1036 /* Encapsulate tests for different types of tracepoints. */
1037
1038 static bool
1039 is_tracepoint_type (bptype type)
1040 {
1041 return (type == bp_tracepoint
1042 || type == bp_fast_tracepoint
1043 || type == bp_static_tracepoint);
1044 }
1045
1046 static bool
1047 is_longjmp_type (bptype type)
1048 {
1049 return type == bp_longjmp || type == bp_exception;
1050 }
1051
1052 int
1053 is_tracepoint (const struct breakpoint *b)
1054 {
1055 return is_tracepoint_type (b->type);
1056 }
1057
1058 /* Factory function to create an appropriate instance of breakpoint given
1059 TYPE. */
1060
1061 static std::unique_ptr<breakpoint>
1062 new_breakpoint_from_type (bptype type)
1063 {
1064 breakpoint *b;
1065
1066 if (is_tracepoint_type (type))
1067 b = new tracepoint ();
1068 else if (is_longjmp_type (type))
1069 b = new longjmp_breakpoint ();
1070 else
1071 b = new breakpoint ();
1072
1073 return std::unique_ptr<breakpoint> (b);
1074 }
1075
1076 /* A helper function that validates that COMMANDS are valid for a
1077 breakpoint. This function will throw an exception if a problem is
1078 found. */
1079
1080 static void
1081 validate_commands_for_breakpoint (struct breakpoint *b,
1082 struct command_line *commands)
1083 {
1084 if (is_tracepoint (b))
1085 {
1086 struct tracepoint *t = (struct tracepoint *) b;
1087 struct command_line *c;
1088 struct command_line *while_stepping = 0;
1089
1090 /* Reset the while-stepping step count. The previous commands
1091 might have included a while-stepping action, while the new
1092 ones might not. */
1093 t->step_count = 0;
1094
1095 /* We need to verify that each top-level element of commands is
1096 valid for tracepoints, that there's at most one
1097 while-stepping element, and that the while-stepping's body
1098 has valid tracing commands excluding nested while-stepping.
1099 We also need to validate the tracepoint action line in the
1100 context of the tracepoint --- validate_actionline actually
1101 has side effects, like setting the tracepoint's
1102 while-stepping STEP_COUNT, in addition to checking if the
1103 collect/teval actions parse and make sense in the
1104 tracepoint's context. */
1105 for (c = commands; c; c = c->next)
1106 {
1107 if (c->control_type == while_stepping_control)
1108 {
1109 if (b->type == bp_fast_tracepoint)
1110 error (_("The 'while-stepping' command "
1111 "cannot be used for fast tracepoint"));
1112 else if (b->type == bp_static_tracepoint)
1113 error (_("The 'while-stepping' command "
1114 "cannot be used for static tracepoint"));
1115
1116 if (while_stepping)
1117 error (_("The 'while-stepping' command "
1118 "can be used only once"));
1119 else
1120 while_stepping = c;
1121 }
1122
1123 validate_actionline (c->line, b);
1124 }
1125 if (while_stepping)
1126 {
1127 struct command_line *c2;
1128
1129 gdb_assert (while_stepping->body_count == 1);
1130 c2 = while_stepping->body_list[0];
1131 for (; c2; c2 = c2->next)
1132 {
1133 if (c2->control_type == while_stepping_control)
1134 error (_("The 'while-stepping' command cannot be nested"));
1135 }
1136 }
1137 }
1138 else
1139 {
1140 check_no_tracepoint_commands (commands);
1141 }
1142 }
1143
1144 /* Return a vector of all the static tracepoints set at ADDR. The
1145 caller is responsible for releasing the vector. */
1146
1147 VEC(breakpoint_p) *
1148 static_tracepoints_here (CORE_ADDR addr)
1149 {
1150 struct breakpoint *b;
1151 VEC(breakpoint_p) *found = 0;
1152 struct bp_location *loc;
1153
1154 ALL_BREAKPOINTS (b)
1155 if (b->type == bp_static_tracepoint)
1156 {
1157 for (loc = b->loc; loc; loc = loc->next)
1158 if (loc->address == addr)
1159 VEC_safe_push(breakpoint_p, found, b);
1160 }
1161
1162 return found;
1163 }
1164
1165 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1166 validate that only allowed commands are included. */
1167
1168 void
1169 breakpoint_set_commands (struct breakpoint *b,
1170 command_line_up &&commands)
1171 {
1172 validate_commands_for_breakpoint (b, commands.get ());
1173
1174 b->commands = std::move (commands);
1175 gdb::observers::breakpoint_modified.notify (b);
1176 }
1177
1178 /* Set the internal `silent' flag on the breakpoint. Note that this
1179 is not the same as the "silent" that may appear in the breakpoint's
1180 commands. */
1181
1182 void
1183 breakpoint_set_silent (struct breakpoint *b, int silent)
1184 {
1185 int old_silent = b->silent;
1186
1187 b->silent = silent;
1188 if (old_silent != silent)
1189 gdb::observers::breakpoint_modified.notify (b);
1190 }
1191
1192 /* Set the thread for this breakpoint. If THREAD is -1, make the
1193 breakpoint work for any thread. */
1194
1195 void
1196 breakpoint_set_thread (struct breakpoint *b, int thread)
1197 {
1198 int old_thread = b->thread;
1199
1200 b->thread = thread;
1201 if (old_thread != thread)
1202 gdb::observers::breakpoint_modified.notify (b);
1203 }
1204
1205 /* Set the task for this breakpoint. If TASK is 0, make the
1206 breakpoint work for any task. */
1207
1208 void
1209 breakpoint_set_task (struct breakpoint *b, int task)
1210 {
1211 int old_task = b->task;
1212
1213 b->task = task;
1214 if (old_task != task)
1215 gdb::observers::breakpoint_modified.notify (b);
1216 }
1217
1218 void
1219 check_tracepoint_command (char *line, void *closure)
1220 {
1221 struct breakpoint *b = (struct breakpoint *) closure;
1222
1223 validate_actionline (line, b);
1224 }
1225
1226 static void
1227 commands_command_1 (const char *arg, int from_tty,
1228 struct command_line *control)
1229 {
1230 counted_command_line cmd;
1231
1232 std::string new_arg;
1233
1234 if (arg == NULL || !*arg)
1235 {
1236 if (breakpoint_count - prev_breakpoint_count > 1)
1237 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1238 breakpoint_count);
1239 else if (breakpoint_count > 0)
1240 new_arg = string_printf ("%d", breakpoint_count);
1241 arg = new_arg.c_str ();
1242 }
1243
1244 map_breakpoint_numbers
1245 (arg, [&] (breakpoint *b)
1246 {
1247 if (cmd == NULL)
1248 {
1249 if (control != NULL)
1250 cmd = copy_command_lines (control->body_list[0]);
1251 else
1252 {
1253 std::string str
1254 = string_printf (_("Type commands for breakpoint(s) "
1255 "%s, one per line."),
1256 arg);
1257
1258 cmd = read_command_lines (&str[0],
1259 from_tty, 1,
1260 (is_tracepoint (b)
1261 ? check_tracepoint_command : 0),
1262 b);
1263 }
1264 }
1265
1266 /* If a breakpoint was on the list more than once, we don't need to
1267 do anything. */
1268 if (b->commands != cmd)
1269 {
1270 validate_commands_for_breakpoint (b, cmd.get ());
1271 b->commands = cmd;
1272 gdb::observers::breakpoint_modified.notify (b);
1273 }
1274 });
1275 }
1276
1277 static void
1278 commands_command (const char *arg, int from_tty)
1279 {
1280 commands_command_1 (arg, from_tty, NULL);
1281 }
1282
1283 /* Like commands_command, but instead of reading the commands from
1284 input stream, takes them from an already parsed command structure.
1285
1286 This is used by cli-script.c to DTRT with breakpoint commands
1287 that are part of if and while bodies. */
1288 enum command_control_type
1289 commands_from_control_command (const char *arg, struct command_line *cmd)
1290 {
1291 commands_command_1 (arg, 0, cmd);
1292 return simple_control;
1293 }
1294
1295 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1296
1297 static int
1298 bp_location_has_shadow (struct bp_location *bl)
1299 {
1300 if (bl->loc_type != bp_loc_software_breakpoint)
1301 return 0;
1302 if (!bl->inserted)
1303 return 0;
1304 if (bl->target_info.shadow_len == 0)
1305 /* BL isn't valid, or doesn't shadow memory. */
1306 return 0;
1307 return 1;
1308 }
1309
1310 /* Update BUF, which is LEN bytes read from the target address
1311 MEMADDR, by replacing a memory breakpoint with its shadowed
1312 contents.
1313
1314 If READBUF is not NULL, this buffer must not overlap with the of
1315 the breakpoint location's shadow_contents buffer. Otherwise, a
1316 failed assertion internal error will be raised. */
1317
1318 static void
1319 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1320 const gdb_byte *writebuf_org,
1321 ULONGEST memaddr, LONGEST len,
1322 struct bp_target_info *target_info,
1323 struct gdbarch *gdbarch)
1324 {
1325 /* Now do full processing of the found relevant range of elements. */
1326 CORE_ADDR bp_addr = 0;
1327 int bp_size = 0;
1328 int bptoffset = 0;
1329
1330 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1331 current_program_space->aspace, 0))
1332 {
1333 /* The breakpoint is inserted in a different address space. */
1334 return;
1335 }
1336
1337 /* Addresses and length of the part of the breakpoint that
1338 we need to copy. */
1339 bp_addr = target_info->placed_address;
1340 bp_size = target_info->shadow_len;
1341
1342 if (bp_addr + bp_size <= memaddr)
1343 {
1344 /* The breakpoint is entirely before the chunk of memory we are
1345 reading. */
1346 return;
1347 }
1348
1349 if (bp_addr >= memaddr + len)
1350 {
1351 /* The breakpoint is entirely after the chunk of memory we are
1352 reading. */
1353 return;
1354 }
1355
1356 /* Offset within shadow_contents. */
1357 if (bp_addr < memaddr)
1358 {
1359 /* Only copy the second part of the breakpoint. */
1360 bp_size -= memaddr - bp_addr;
1361 bptoffset = memaddr - bp_addr;
1362 bp_addr = memaddr;
1363 }
1364
1365 if (bp_addr + bp_size > memaddr + len)
1366 {
1367 /* Only copy the first part of the breakpoint. */
1368 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1369 }
1370
1371 if (readbuf != NULL)
1372 {
1373 /* Verify that the readbuf buffer does not overlap with the
1374 shadow_contents buffer. */
1375 gdb_assert (target_info->shadow_contents >= readbuf + len
1376 || readbuf >= (target_info->shadow_contents
1377 + target_info->shadow_len));
1378
1379 /* Update the read buffer with this inserted breakpoint's
1380 shadow. */
1381 memcpy (readbuf + bp_addr - memaddr,
1382 target_info->shadow_contents + bptoffset, bp_size);
1383 }
1384 else
1385 {
1386 const unsigned char *bp;
1387 CORE_ADDR addr = target_info->reqstd_address;
1388 int placed_size;
1389
1390 /* Update the shadow with what we want to write to memory. */
1391 memcpy (target_info->shadow_contents + bptoffset,
1392 writebuf_org + bp_addr - memaddr, bp_size);
1393
1394 /* Determine appropriate breakpoint contents and size for this
1395 address. */
1396 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1397
1398 /* Update the final write buffer with this inserted
1399 breakpoint's INSN. */
1400 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1401 }
1402 }
1403
1404 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1405 by replacing any memory breakpoints with their shadowed contents.
1406
1407 If READBUF is not NULL, this buffer must not overlap with any of
1408 the breakpoint location's shadow_contents buffers. Otherwise,
1409 a failed assertion internal error will be raised.
1410
1411 The range of shadowed area by each bp_location is:
1412 bl->address - bp_locations_placed_address_before_address_max
1413 up to bl->address + bp_locations_shadow_len_after_address_max
1414 The range we were requested to resolve shadows for is:
1415 memaddr ... memaddr + len
1416 Thus the safe cutoff boundaries for performance optimization are
1417 memaddr + len <= (bl->address
1418 - bp_locations_placed_address_before_address_max)
1419 and:
1420 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1421
1422 void
1423 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1424 const gdb_byte *writebuf_org,
1425 ULONGEST memaddr, LONGEST len)
1426 {
1427 /* Left boundary, right boundary and median element of our binary
1428 search. */
1429 unsigned bc_l, bc_r, bc;
1430
1431 /* Find BC_L which is a leftmost element which may affect BUF
1432 content. It is safe to report lower value but a failure to
1433 report higher one. */
1434
1435 bc_l = 0;
1436 bc_r = bp_locations_count;
1437 while (bc_l + 1 < bc_r)
1438 {
1439 struct bp_location *bl;
1440
1441 bc = (bc_l + bc_r) / 2;
1442 bl = bp_locations[bc];
1443
1444 /* Check first BL->ADDRESS will not overflow due to the added
1445 constant. Then advance the left boundary only if we are sure
1446 the BC element can in no way affect the BUF content (MEMADDR
1447 to MEMADDR + LEN range).
1448
1449 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1450 offset so that we cannot miss a breakpoint with its shadow
1451 range tail still reaching MEMADDR. */
1452
1453 if ((bl->address + bp_locations_shadow_len_after_address_max
1454 >= bl->address)
1455 && (bl->address + bp_locations_shadow_len_after_address_max
1456 <= memaddr))
1457 bc_l = bc;
1458 else
1459 bc_r = bc;
1460 }
1461
1462 /* Due to the binary search above, we need to make sure we pick the
1463 first location that's at BC_L's address. E.g., if there are
1464 multiple locations at the same address, BC_L may end up pointing
1465 at a duplicate location, and miss the "master"/"inserted"
1466 location. Say, given locations L1, L2 and L3 at addresses A and
1467 B:
1468
1469 L1@A, L2@A, L3@B, ...
1470
1471 BC_L could end up pointing at location L2, while the "master"
1472 location could be L1. Since the `loc->inserted' flag is only set
1473 on "master" locations, we'd forget to restore the shadow of L1
1474 and L2. */
1475 while (bc_l > 0
1476 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1477 bc_l--;
1478
1479 /* Now do full processing of the found relevant range of elements. */
1480
1481 for (bc = bc_l; bc < bp_locations_count; bc++)
1482 {
1483 struct bp_location *bl = bp_locations[bc];
1484
1485 /* bp_location array has BL->OWNER always non-NULL. */
1486 if (bl->owner->type == bp_none)
1487 warning (_("reading through apparently deleted breakpoint #%d?"),
1488 bl->owner->number);
1489
1490 /* Performance optimization: any further element can no longer affect BUF
1491 content. */
1492
1493 if (bl->address >= bp_locations_placed_address_before_address_max
1494 && memaddr + len <= (bl->address
1495 - bp_locations_placed_address_before_address_max))
1496 break;
1497
1498 if (!bp_location_has_shadow (bl))
1499 continue;
1500
1501 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1502 memaddr, len, &bl->target_info, bl->gdbarch);
1503 }
1504 }
1505
1506 \f
1507
1508 /* Return true if BPT is either a software breakpoint or a hardware
1509 breakpoint. */
1510
1511 int
1512 is_breakpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_breakpoint
1515 || bpt->type == bp_hardware_breakpoint
1516 || bpt->type == bp_dprintf);
1517 }
1518
1519 /* Return true if BPT is of any hardware watchpoint kind. */
1520
1521 static int
1522 is_hardware_watchpoint (const struct breakpoint *bpt)
1523 {
1524 return (bpt->type == bp_hardware_watchpoint
1525 || bpt->type == bp_read_watchpoint
1526 || bpt->type == bp_access_watchpoint);
1527 }
1528
1529 /* Return true if BPT is of any watchpoint kind, hardware or
1530 software. */
1531
1532 int
1533 is_watchpoint (const struct breakpoint *bpt)
1534 {
1535 return (is_hardware_watchpoint (bpt)
1536 || bpt->type == bp_watchpoint);
1537 }
1538
1539 /* Returns true if the current thread and its running state are safe
1540 to evaluate or update watchpoint B. Watchpoints on local
1541 expressions need to be evaluated in the context of the thread that
1542 was current when the watchpoint was created, and, that thread needs
1543 to be stopped to be able to select the correct frame context.
1544 Watchpoints on global expressions can be evaluated on any thread,
1545 and in any state. It is presently left to the target allowing
1546 memory accesses when threads are running. */
1547
1548 static int
1549 watchpoint_in_thread_scope (struct watchpoint *b)
1550 {
1551 return (b->pspace == current_program_space
1552 && (ptid_equal (b->watchpoint_thread, null_ptid)
1553 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1554 && !is_executing (inferior_ptid))));
1555 }
1556
1557 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1558 associated bp_watchpoint_scope breakpoint. */
1559
1560 static void
1561 watchpoint_del_at_next_stop (struct watchpoint *w)
1562 {
1563 if (w->related_breakpoint != w)
1564 {
1565 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1566 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1567 w->related_breakpoint->disposition = disp_del_at_next_stop;
1568 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1569 w->related_breakpoint = w;
1570 }
1571 w->disposition = disp_del_at_next_stop;
1572 }
1573
1574 /* Extract a bitfield value from value VAL using the bit parameters contained in
1575 watchpoint W. */
1576
1577 static struct value *
1578 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1579 {
1580 struct value *bit_val;
1581
1582 if (val == NULL)
1583 return NULL;
1584
1585 bit_val = allocate_value (value_type (val));
1586
1587 unpack_value_bitfield (bit_val,
1588 w->val_bitpos,
1589 w->val_bitsize,
1590 value_contents_for_printing (val),
1591 value_offset (val),
1592 val);
1593
1594 return bit_val;
1595 }
1596
1597 /* Allocate a dummy location and add it to B, which must be a software
1598 watchpoint. This is required because even if a software watchpoint
1599 is not watching any memory, bpstat_stop_status requires a location
1600 to be able to report stops. */
1601
1602 static void
1603 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1604 struct program_space *pspace)
1605 {
1606 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1607
1608 b->loc = allocate_bp_location (b);
1609 b->loc->pspace = pspace;
1610 b->loc->address = -1;
1611 b->loc->length = -1;
1612 }
1613
1614 /* Returns true if B is a software watchpoint that is not watching any
1615 memory (e.g., "watch $pc"). */
1616
1617 static int
1618 is_no_memory_software_watchpoint (struct breakpoint *b)
1619 {
1620 return (b->type == bp_watchpoint
1621 && b->loc != NULL
1622 && b->loc->next == NULL
1623 && b->loc->address == -1
1624 && b->loc->length == -1);
1625 }
1626
1627 /* Assuming that B is a watchpoint:
1628 - Reparse watchpoint expression, if REPARSE is non-zero
1629 - Evaluate expression and store the result in B->val
1630 - Evaluate the condition if there is one, and store the result
1631 in b->loc->cond.
1632 - Update the list of values that must be watched in B->loc.
1633
1634 If the watchpoint disposition is disp_del_at_next_stop, then do
1635 nothing. If this is local watchpoint that is out of scope, delete
1636 it.
1637
1638 Even with `set breakpoint always-inserted on' the watchpoints are
1639 removed + inserted on each stop here. Normal breakpoints must
1640 never be removed because they might be missed by a running thread
1641 when debugging in non-stop mode. On the other hand, hardware
1642 watchpoints (is_hardware_watchpoint; processed here) are specific
1643 to each LWP since they are stored in each LWP's hardware debug
1644 registers. Therefore, such LWP must be stopped first in order to
1645 be able to modify its hardware watchpoints.
1646
1647 Hardware watchpoints must be reset exactly once after being
1648 presented to the user. It cannot be done sooner, because it would
1649 reset the data used to present the watchpoint hit to the user. And
1650 it must not be done later because it could display the same single
1651 watchpoint hit during multiple GDB stops. Note that the latter is
1652 relevant only to the hardware watchpoint types bp_read_watchpoint
1653 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1654 not user-visible - its hit is suppressed if the memory content has
1655 not changed.
1656
1657 The following constraints influence the location where we can reset
1658 hardware watchpoints:
1659
1660 * target_stopped_by_watchpoint and target_stopped_data_address are
1661 called several times when GDB stops.
1662
1663 [linux]
1664 * Multiple hardware watchpoints can be hit at the same time,
1665 causing GDB to stop. GDB only presents one hardware watchpoint
1666 hit at a time as the reason for stopping, and all the other hits
1667 are presented later, one after the other, each time the user
1668 requests the execution to be resumed. Execution is not resumed
1669 for the threads still having pending hit event stored in
1670 LWP_INFO->STATUS. While the watchpoint is already removed from
1671 the inferior on the first stop the thread hit event is kept being
1672 reported from its cached value by linux_nat_stopped_data_address
1673 until the real thread resume happens after the watchpoint gets
1674 presented and thus its LWP_INFO->STATUS gets reset.
1675
1676 Therefore the hardware watchpoint hit can get safely reset on the
1677 watchpoint removal from inferior. */
1678
1679 static void
1680 update_watchpoint (struct watchpoint *b, int reparse)
1681 {
1682 int within_current_scope;
1683 struct frame_id saved_frame_id;
1684 int frame_saved;
1685
1686 /* If this is a local watchpoint, we only want to check if the
1687 watchpoint frame is in scope if the current thread is the thread
1688 that was used to create the watchpoint. */
1689 if (!watchpoint_in_thread_scope (b))
1690 return;
1691
1692 if (b->disposition == disp_del_at_next_stop)
1693 return;
1694
1695 frame_saved = 0;
1696
1697 /* Determine if the watchpoint is within scope. */
1698 if (b->exp_valid_block == NULL)
1699 within_current_scope = 1;
1700 else
1701 {
1702 struct frame_info *fi = get_current_frame ();
1703 struct gdbarch *frame_arch = get_frame_arch (fi);
1704 CORE_ADDR frame_pc = get_frame_pc (fi);
1705
1706 /* If we're at a point where the stack has been destroyed
1707 (e.g. in a function epilogue), unwinding may not work
1708 properly. Do not attempt to recreate locations at this
1709 point. See similar comments in watchpoint_check. */
1710 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1711 return;
1712
1713 /* Save the current frame's ID so we can restore it after
1714 evaluating the watchpoint expression on its own frame. */
1715 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1716 took a frame parameter, so that we didn't have to change the
1717 selected frame. */
1718 frame_saved = 1;
1719 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1720
1721 fi = frame_find_by_id (b->watchpoint_frame);
1722 within_current_scope = (fi != NULL);
1723 if (within_current_scope)
1724 select_frame (fi);
1725 }
1726
1727 /* We don't free locations. They are stored in the bp_location array
1728 and update_global_location_list will eventually delete them and
1729 remove breakpoints if needed. */
1730 b->loc = NULL;
1731
1732 if (within_current_scope && reparse)
1733 {
1734 const char *s;
1735
1736 b->exp.reset ();
1737 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1738 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1739 /* If the meaning of expression itself changed, the old value is
1740 no longer relevant. We don't want to report a watchpoint hit
1741 to the user when the old value and the new value may actually
1742 be completely different objects. */
1743 value_decref (b->val);
1744 b->val = NULL;
1745 b->val_valid = 0;
1746
1747 /* Note that unlike with breakpoints, the watchpoint's condition
1748 expression is stored in the breakpoint object, not in the
1749 locations (re)created below. */
1750 if (b->cond_string != NULL)
1751 {
1752 b->cond_exp.reset ();
1753
1754 s = b->cond_string;
1755 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1756 }
1757 }
1758
1759 /* If we failed to parse the expression, for example because
1760 it refers to a global variable in a not-yet-loaded shared library,
1761 don't try to insert watchpoint. We don't automatically delete
1762 such watchpoint, though, since failure to parse expression
1763 is different from out-of-scope watchpoint. */
1764 if (!target_has_execution)
1765 {
1766 /* Without execution, memory can't change. No use to try and
1767 set watchpoint locations. The watchpoint will be reset when
1768 the target gains execution, through breakpoint_re_set. */
1769 if (!can_use_hw_watchpoints)
1770 {
1771 if (b->ops->works_in_software_mode (b))
1772 b->type = bp_watchpoint;
1773 else
1774 error (_("Can't set read/access watchpoint when "
1775 "hardware watchpoints are disabled."));
1776 }
1777 }
1778 else if (within_current_scope && b->exp)
1779 {
1780 int pc = 0;
1781 struct value *val_chain, *v, *result, *next;
1782 struct program_space *frame_pspace;
1783
1784 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1785
1786 /* Avoid setting b->val if it's already set. The meaning of
1787 b->val is 'the last value' user saw, and we should update
1788 it only if we reported that last value to user. As it
1789 happens, the code that reports it updates b->val directly.
1790 We don't keep track of the memory value for masked
1791 watchpoints. */
1792 if (!b->val_valid && !is_masked_watchpoint (b))
1793 {
1794 if (b->val_bitsize != 0)
1795 {
1796 v = extract_bitfield_from_watchpoint_value (b, v);
1797 if (v != NULL)
1798 release_value (v).release ();
1799 }
1800 b->val = v;
1801 b->val_valid = 1;
1802 }
1803
1804 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1805
1806 /* Look at each value on the value chain. */
1807 for (v = val_chain; v; v = value_next (v))
1808 {
1809 /* If it's a memory location, and GDB actually needed
1810 its contents to evaluate the expression, then we
1811 must watch it. If the first value returned is
1812 still lazy, that means an error occurred reading it;
1813 watch it anyway in case it becomes readable. */
1814 if (VALUE_LVAL (v) == lval_memory
1815 && (v == val_chain || ! value_lazy (v)))
1816 {
1817 struct type *vtype = check_typedef (value_type (v));
1818
1819 /* We only watch structs and arrays if user asked
1820 for it explicitly, never if they just happen to
1821 appear in the middle of some value chain. */
1822 if (v == result
1823 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1824 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1825 {
1826 CORE_ADDR addr;
1827 enum target_hw_bp_type type;
1828 struct bp_location *loc, **tmp;
1829 int bitpos = 0, bitsize = 0;
1830
1831 if (value_bitsize (v) != 0)
1832 {
1833 /* Extract the bit parameters out from the bitfield
1834 sub-expression. */
1835 bitpos = value_bitpos (v);
1836 bitsize = value_bitsize (v);
1837 }
1838 else if (v == result && b->val_bitsize != 0)
1839 {
1840 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1841 lvalue whose bit parameters are saved in the fields
1842 VAL_BITPOS and VAL_BITSIZE. */
1843 bitpos = b->val_bitpos;
1844 bitsize = b->val_bitsize;
1845 }
1846
1847 addr = value_address (v);
1848 if (bitsize != 0)
1849 {
1850 /* Skip the bytes that don't contain the bitfield. */
1851 addr += bitpos / 8;
1852 }
1853
1854 type = hw_write;
1855 if (b->type == bp_read_watchpoint)
1856 type = hw_read;
1857 else if (b->type == bp_access_watchpoint)
1858 type = hw_access;
1859
1860 loc = allocate_bp_location (b);
1861 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1862 ;
1863 *tmp = loc;
1864 loc->gdbarch = get_type_arch (value_type (v));
1865
1866 loc->pspace = frame_pspace;
1867 loc->address = address_significant (loc->gdbarch, addr);
1868
1869 if (bitsize != 0)
1870 {
1871 /* Just cover the bytes that make up the bitfield. */
1872 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1873 }
1874 else
1875 loc->length = TYPE_LENGTH (value_type (v));
1876
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (b);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->ops->works_in_software_mode (b);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->type = type;
1950 }
1951 }
1952 else if (!b->ops->works_in_software_mode (b))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->type = bp_watchpoint;
1963
1964 loc_type = (b->type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 for (v = val_chain; v; v = next)
1971 {
1972 next = value_next (v);
1973 if (v != b->val)
1974 value_decref (v);
1975 }
1976
1977 /* If a software watchpoint is not watching any memory, then the
1978 above left it without any location set up. But,
1979 bpstat_stop_status requires a location to be able to report
1980 stops, so make sure there's at least a dummy one. */
1981 if (b->type == bp_watchpoint && b->loc == NULL)
1982 software_watchpoint_add_no_memory_location (b, frame_pspace);
1983 }
1984 else if (!within_current_scope)
1985 {
1986 printf_filtered (_("\
1987 Watchpoint %d deleted because the program has left the block\n\
1988 in which its expression is valid.\n"),
1989 b->number);
1990 watchpoint_del_at_next_stop (b);
1991 }
1992
1993 /* Restore the selected frame. */
1994 if (frame_saved)
1995 select_frame (frame_find_by_id (saved_frame_id));
1996 }
1997
1998
1999 /* Returns 1 iff breakpoint location should be
2000 inserted in the inferior. We don't differentiate the type of BL's owner
2001 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2002 breakpoint_ops is not defined, because in insert_bp_location,
2003 tracepoint's insert_location will not be called. */
2004 static int
2005 should_be_inserted (struct bp_location *bl)
2006 {
2007 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2008 return 0;
2009
2010 if (bl->owner->disposition == disp_del_at_next_stop)
2011 return 0;
2012
2013 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2014 return 0;
2015
2016 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2017 return 0;
2018
2019 /* This is set for example, when we're attached to the parent of a
2020 vfork, and have detached from the child. The child is running
2021 free, and we expect it to do an exec or exit, at which point the
2022 OS makes the parent schedulable again (and the target reports
2023 that the vfork is done). Until the child is done with the shared
2024 memory region, do not insert breakpoints in the parent, otherwise
2025 the child could still trip on the parent's breakpoints. Since
2026 the parent is blocked anyway, it won't miss any breakpoint. */
2027 if (bl->pspace->breakpoints_not_allowed)
2028 return 0;
2029
2030 /* Don't insert a breakpoint if we're trying to step past its
2031 location, except if the breakpoint is a single-step breakpoint,
2032 and the breakpoint's thread is the thread which is stepping past
2033 a breakpoint. */
2034 if ((bl->loc_type == bp_loc_software_breakpoint
2035 || bl->loc_type == bp_loc_hardware_breakpoint)
2036 && stepping_past_instruction_at (bl->pspace->aspace,
2037 bl->address)
2038 /* The single-step breakpoint may be inserted at the location
2039 we're trying to step if the instruction branches to itself.
2040 However, the instruction won't be executed at all and it may
2041 break the semantics of the instruction, for example, the
2042 instruction is a conditional branch or updates some flags.
2043 We can't fix it unless GDB is able to emulate the instruction
2044 or switch to displaced stepping. */
2045 && !(bl->owner->type == bp_single_step
2046 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2047 {
2048 if (debug_infrun)
2049 {
2050 fprintf_unfiltered (gdb_stdlog,
2051 "infrun: skipping breakpoint: "
2052 "stepping past insn at: %s\n",
2053 paddress (bl->gdbarch, bl->address));
2054 }
2055 return 0;
2056 }
2057
2058 /* Don't insert watchpoints if we're trying to step past the
2059 instruction that triggered one. */
2060 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2061 && stepping_past_nonsteppable_watchpoint ())
2062 {
2063 if (debug_infrun)
2064 {
2065 fprintf_unfiltered (gdb_stdlog,
2066 "infrun: stepping past non-steppable watchpoint. "
2067 "skipping watchpoint at %s:%d\n",
2068 paddress (bl->gdbarch, bl->address),
2069 bl->length);
2070 }
2071 return 0;
2072 }
2073
2074 return 1;
2075 }
2076
2077 /* Same as should_be_inserted but does the check assuming
2078 that the location is not duplicated. */
2079
2080 static int
2081 unduplicated_should_be_inserted (struct bp_location *bl)
2082 {
2083 int result;
2084 const int save_duplicate = bl->duplicate;
2085
2086 bl->duplicate = 0;
2087 result = should_be_inserted (bl);
2088 bl->duplicate = save_duplicate;
2089 return result;
2090 }
2091
2092 /* Parses a conditional described by an expression COND into an
2093 agent expression bytecode suitable for evaluation
2094 by the bytecode interpreter. Return NULL if there was
2095 any error during parsing. */
2096
2097 static agent_expr_up
2098 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2099 {
2100 if (cond == NULL)
2101 return NULL;
2102
2103 agent_expr_up aexpr;
2104
2105 /* We don't want to stop processing, so catch any errors
2106 that may show up. */
2107 TRY
2108 {
2109 aexpr = gen_eval_for_expr (scope, cond);
2110 }
2111
2112 CATCH (ex, RETURN_MASK_ERROR)
2113 {
2114 /* If we got here, it means the condition could not be parsed to a valid
2115 bytecode expression and thus can't be evaluated on the target's side.
2116 It's no use iterating through the conditions. */
2117 }
2118 END_CATCH
2119
2120 /* We have a valid agent expression. */
2121 return aexpr;
2122 }
2123
2124 /* Based on location BL, create a list of breakpoint conditions to be
2125 passed on to the target. If we have duplicated locations with different
2126 conditions, we will add such conditions to the list. The idea is that the
2127 target will evaluate the list of conditions and will only notify GDB when
2128 one of them is true. */
2129
2130 static void
2131 build_target_condition_list (struct bp_location *bl)
2132 {
2133 struct bp_location **locp = NULL, **loc2p;
2134 int null_condition_or_parse_error = 0;
2135 int modified = bl->needs_update;
2136 struct bp_location *loc;
2137
2138 /* Release conditions left over from a previous insert. */
2139 bl->target_info.conditions.clear ();
2140
2141 /* This is only meaningful if the target is
2142 evaluating conditions and if the user has
2143 opted for condition evaluation on the target's
2144 side. */
2145 if (gdb_evaluates_breakpoint_condition_p ()
2146 || !target_supports_evaluation_of_breakpoint_conditions ())
2147 return;
2148
2149 /* Do a first pass to check for locations with no assigned
2150 conditions or conditions that fail to parse to a valid agent expression
2151 bytecode. If any of these happen, then it's no use to send conditions
2152 to the target since this location will always trigger and generate a
2153 response back to GDB. */
2154 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2155 {
2156 loc = (*loc2p);
2157 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2158 {
2159 if (modified)
2160 {
2161 /* Re-parse the conditions since something changed. In that
2162 case we already freed the condition bytecodes (see
2163 force_breakpoint_reinsertion). We just
2164 need to parse the condition to bytecodes again. */
2165 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2166 loc->cond.get ());
2167 }
2168
2169 /* If we have a NULL bytecode expression, it means something
2170 went wrong or we have a null condition expression. */
2171 if (!loc->cond_bytecode)
2172 {
2173 null_condition_or_parse_error = 1;
2174 break;
2175 }
2176 }
2177 }
2178
2179 /* If any of these happened, it means we will have to evaluate the conditions
2180 for the location's address on gdb's side. It is no use keeping bytecodes
2181 for all the other duplicate locations, thus we free all of them here.
2182
2183 This is so we have a finer control over which locations' conditions are
2184 being evaluated by GDB or the remote stub. */
2185 if (null_condition_or_parse_error)
2186 {
2187 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2188 {
2189 loc = (*loc2p);
2190 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2191 {
2192 /* Only go as far as the first NULL bytecode is
2193 located. */
2194 if (!loc->cond_bytecode)
2195 return;
2196
2197 loc->cond_bytecode.reset ();
2198 }
2199 }
2200 }
2201
2202 /* No NULL conditions or failed bytecode generation. Build a condition list
2203 for this location's address. */
2204 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2205 {
2206 loc = (*loc2p);
2207 if (loc->cond
2208 && is_breakpoint (loc->owner)
2209 && loc->pspace->num == bl->pspace->num
2210 && loc->owner->enable_state == bp_enabled
2211 && loc->enabled)
2212 {
2213 /* Add the condition to the vector. This will be used later
2214 to send the conditions to the target. */
2215 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2216 }
2217 }
2218
2219 return;
2220 }
2221
2222 /* Parses a command described by string CMD into an agent expression
2223 bytecode suitable for evaluation by the bytecode interpreter.
2224 Return NULL if there was any error during parsing. */
2225
2226 static agent_expr_up
2227 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2228 {
2229 const char *cmdrest;
2230 const char *format_start, *format_end;
2231 struct gdbarch *gdbarch = get_current_arch ();
2232
2233 if (cmd == NULL)
2234 return NULL;
2235
2236 cmdrest = cmd;
2237
2238 if (*cmdrest == ',')
2239 ++cmdrest;
2240 cmdrest = skip_spaces (cmdrest);
2241
2242 if (*cmdrest++ != '"')
2243 error (_("No format string following the location"));
2244
2245 format_start = cmdrest;
2246
2247 format_pieces fpieces (&cmdrest);
2248
2249 format_end = cmdrest;
2250
2251 if (*cmdrest++ != '"')
2252 error (_("Bad format string, non-terminated '\"'."));
2253
2254 cmdrest = skip_spaces (cmdrest);
2255
2256 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2257 error (_("Invalid argument syntax"));
2258
2259 if (*cmdrest == ',')
2260 cmdrest++;
2261 cmdrest = skip_spaces (cmdrest);
2262
2263 /* For each argument, make an expression. */
2264
2265 std::vector<struct expression *> argvec;
2266 while (*cmdrest != '\0')
2267 {
2268 const char *cmd1;
2269
2270 cmd1 = cmdrest;
2271 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2272 argvec.push_back (expr.release ());
2273 cmdrest = cmd1;
2274 if (*cmdrest == ',')
2275 ++cmdrest;
2276 }
2277
2278 agent_expr_up aexpr;
2279
2280 /* We don't want to stop processing, so catch any errors
2281 that may show up. */
2282 TRY
2283 {
2284 aexpr = gen_printf (scope, gdbarch, 0, 0,
2285 format_start, format_end - format_start,
2286 argvec.size (), argvec.data ());
2287 }
2288 CATCH (ex, RETURN_MASK_ERROR)
2289 {
2290 /* If we got here, it means the command could not be parsed to a valid
2291 bytecode expression and thus can't be evaluated on the target's side.
2292 It's no use iterating through the other commands. */
2293 }
2294 END_CATCH
2295
2296 /* We have a valid agent expression, return it. */
2297 return aexpr;
2298 }
2299
2300 /* Based on location BL, create a list of breakpoint commands to be
2301 passed on to the target. If we have duplicated locations with
2302 different commands, we will add any such to the list. */
2303
2304 static void
2305 build_target_command_list (struct bp_location *bl)
2306 {
2307 struct bp_location **locp = NULL, **loc2p;
2308 int null_command_or_parse_error = 0;
2309 int modified = bl->needs_update;
2310 struct bp_location *loc;
2311
2312 /* Clear commands left over from a previous insert. */
2313 bl->target_info.tcommands.clear ();
2314
2315 if (!target_can_run_breakpoint_commands ())
2316 return;
2317
2318 /* For now, limit to agent-style dprintf breakpoints. */
2319 if (dprintf_style != dprintf_style_agent)
2320 return;
2321
2322 /* For now, if we have any duplicate location that isn't a dprintf,
2323 don't install the target-side commands, as that would make the
2324 breakpoint not be reported to the core, and we'd lose
2325 control. */
2326 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2327 {
2328 loc = (*loc2p);
2329 if (is_breakpoint (loc->owner)
2330 && loc->pspace->num == bl->pspace->num
2331 && loc->owner->type != bp_dprintf)
2332 return;
2333 }
2334
2335 /* Do a first pass to check for locations with no assigned
2336 conditions or conditions that fail to parse to a valid agent expression
2337 bytecode. If any of these happen, then it's no use to send conditions
2338 to the target since this location will always trigger and generate a
2339 response back to GDB. */
2340 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2341 {
2342 loc = (*loc2p);
2343 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2344 {
2345 if (modified)
2346 {
2347 /* Re-parse the commands since something changed. In that
2348 case we already freed the command bytecodes (see
2349 force_breakpoint_reinsertion). We just
2350 need to parse the command to bytecodes again. */
2351 loc->cmd_bytecode
2352 = parse_cmd_to_aexpr (bl->address,
2353 loc->owner->extra_string);
2354 }
2355
2356 /* If we have a NULL bytecode expression, it means something
2357 went wrong or we have a null command expression. */
2358 if (!loc->cmd_bytecode)
2359 {
2360 null_command_or_parse_error = 1;
2361 break;
2362 }
2363 }
2364 }
2365
2366 /* If anything failed, then we're not doing target-side commands,
2367 and so clean up. */
2368 if (null_command_or_parse_error)
2369 {
2370 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2371 {
2372 loc = (*loc2p);
2373 if (is_breakpoint (loc->owner)
2374 && loc->pspace->num == bl->pspace->num)
2375 {
2376 /* Only go as far as the first NULL bytecode is
2377 located. */
2378 if (loc->cmd_bytecode == NULL)
2379 return;
2380
2381 loc->cmd_bytecode.reset ();
2382 }
2383 }
2384 }
2385
2386 /* No NULL commands or failed bytecode generation. Build a command list
2387 for this location's address. */
2388 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2389 {
2390 loc = (*loc2p);
2391 if (loc->owner->extra_string
2392 && is_breakpoint (loc->owner)
2393 && loc->pspace->num == bl->pspace->num
2394 && loc->owner->enable_state == bp_enabled
2395 && loc->enabled)
2396 {
2397 /* Add the command to the vector. This will be used later
2398 to send the commands to the target. */
2399 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2400 }
2401 }
2402
2403 bl->target_info.persist = 0;
2404 /* Maybe flag this location as persistent. */
2405 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2406 bl->target_info.persist = 1;
2407 }
2408
2409 /* Return the kind of breakpoint on address *ADDR. Get the kind
2410 of breakpoint according to ADDR except single-step breakpoint.
2411 Get the kind of single-step breakpoint according to the current
2412 registers state. */
2413
2414 static int
2415 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2416 {
2417 if (bl->owner->type == bp_single_step)
2418 {
2419 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2420 struct regcache *regcache;
2421
2422 regcache = get_thread_regcache (thr->ptid);
2423
2424 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2425 regcache, addr);
2426 }
2427 else
2428 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2429 }
2430
2431 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2432 location. Any error messages are printed to TMP_ERROR_STREAM; and
2433 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2434 Returns 0 for success, 1 if the bp_location type is not supported or
2435 -1 for failure.
2436
2437 NOTE drow/2003-09-09: This routine could be broken down to an
2438 object-style method for each breakpoint or catchpoint type. */
2439 static int
2440 insert_bp_location (struct bp_location *bl,
2441 struct ui_file *tmp_error_stream,
2442 int *disabled_breaks,
2443 int *hw_breakpoint_error,
2444 int *hw_bp_error_explained_already)
2445 {
2446 gdb_exception bp_excpt = exception_none;
2447
2448 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2449 return 0;
2450
2451 /* Note we don't initialize bl->target_info, as that wipes out
2452 the breakpoint location's shadow_contents if the breakpoint
2453 is still inserted at that location. This in turn breaks
2454 target_read_memory which depends on these buffers when
2455 a memory read is requested at the breakpoint location:
2456 Once the target_info has been wiped, we fail to see that
2457 we have a breakpoint inserted at that address and thus
2458 read the breakpoint instead of returning the data saved in
2459 the breakpoint location's shadow contents. */
2460 bl->target_info.reqstd_address = bl->address;
2461 bl->target_info.placed_address_space = bl->pspace->aspace;
2462 bl->target_info.length = bl->length;
2463
2464 /* When working with target-side conditions, we must pass all the conditions
2465 for the same breakpoint address down to the target since GDB will not
2466 insert those locations. With a list of breakpoint conditions, the target
2467 can decide when to stop and notify GDB. */
2468
2469 if (is_breakpoint (bl->owner))
2470 {
2471 build_target_condition_list (bl);
2472 build_target_command_list (bl);
2473 /* Reset the modification marker. */
2474 bl->needs_update = 0;
2475 }
2476
2477 if (bl->loc_type == bp_loc_software_breakpoint
2478 || bl->loc_type == bp_loc_hardware_breakpoint)
2479 {
2480 if (bl->owner->type != bp_hardware_breakpoint)
2481 {
2482 /* If the explicitly specified breakpoint type
2483 is not hardware breakpoint, check the memory map to see
2484 if the breakpoint address is in read only memory or not.
2485
2486 Two important cases are:
2487 - location type is not hardware breakpoint, memory
2488 is readonly. We change the type of the location to
2489 hardware breakpoint.
2490 - location type is hardware breakpoint, memory is
2491 read-write. This means we've previously made the
2492 location hardware one, but then the memory map changed,
2493 so we undo.
2494
2495 When breakpoints are removed, remove_breakpoints will use
2496 location types we've just set here, the only possible
2497 problem is that memory map has changed during running
2498 program, but it's not going to work anyway with current
2499 gdb. */
2500 struct mem_region *mr
2501 = lookup_mem_region (bl->target_info.reqstd_address);
2502
2503 if (mr)
2504 {
2505 if (automatic_hardware_breakpoints)
2506 {
2507 enum bp_loc_type new_type;
2508
2509 if (mr->attrib.mode != MEM_RW)
2510 new_type = bp_loc_hardware_breakpoint;
2511 else
2512 new_type = bp_loc_software_breakpoint;
2513
2514 if (new_type != bl->loc_type)
2515 {
2516 static int said = 0;
2517
2518 bl->loc_type = new_type;
2519 if (!said)
2520 {
2521 fprintf_filtered (gdb_stdout,
2522 _("Note: automatically using "
2523 "hardware breakpoints for "
2524 "read-only addresses.\n"));
2525 said = 1;
2526 }
2527 }
2528 }
2529 else if (bl->loc_type == bp_loc_software_breakpoint
2530 && mr->attrib.mode != MEM_RW)
2531 {
2532 fprintf_unfiltered (tmp_error_stream,
2533 _("Cannot insert breakpoint %d.\n"
2534 "Cannot set software breakpoint "
2535 "at read-only address %s\n"),
2536 bl->owner->number,
2537 paddress (bl->gdbarch, bl->address));
2538 return 1;
2539 }
2540 }
2541 }
2542
2543 /* First check to see if we have to handle an overlay. */
2544 if (overlay_debugging == ovly_off
2545 || bl->section == NULL
2546 || !(section_is_overlay (bl->section)))
2547 {
2548 /* No overlay handling: just set the breakpoint. */
2549 TRY
2550 {
2551 int val;
2552
2553 val = bl->owner->ops->insert_location (bl);
2554 if (val)
2555 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2556 }
2557 CATCH (e, RETURN_MASK_ALL)
2558 {
2559 bp_excpt = e;
2560 }
2561 END_CATCH
2562 }
2563 else
2564 {
2565 /* This breakpoint is in an overlay section.
2566 Shall we set a breakpoint at the LMA? */
2567 if (!overlay_events_enabled)
2568 {
2569 /* Yes -- overlay event support is not active,
2570 so we must try to set a breakpoint at the LMA.
2571 This will not work for a hardware breakpoint. */
2572 if (bl->loc_type == bp_loc_hardware_breakpoint)
2573 warning (_("hardware breakpoint %d not supported in overlay!"),
2574 bl->owner->number);
2575 else
2576 {
2577 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2578 bl->section);
2579 /* Set a software (trap) breakpoint at the LMA. */
2580 bl->overlay_target_info = bl->target_info;
2581 bl->overlay_target_info.reqstd_address = addr;
2582
2583 /* No overlay handling: just set the breakpoint. */
2584 TRY
2585 {
2586 int val;
2587
2588 bl->overlay_target_info.kind
2589 = breakpoint_kind (bl, &addr);
2590 bl->overlay_target_info.placed_address = addr;
2591 val = target_insert_breakpoint (bl->gdbarch,
2592 &bl->overlay_target_info);
2593 if (val)
2594 bp_excpt
2595 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2596 }
2597 CATCH (e, RETURN_MASK_ALL)
2598 {
2599 bp_excpt = e;
2600 }
2601 END_CATCH
2602
2603 if (bp_excpt.reason != 0)
2604 fprintf_unfiltered (tmp_error_stream,
2605 "Overlay breakpoint %d "
2606 "failed: in ROM?\n",
2607 bl->owner->number);
2608 }
2609 }
2610 /* Shall we set a breakpoint at the VMA? */
2611 if (section_is_mapped (bl->section))
2612 {
2613 /* Yes. This overlay section is mapped into memory. */
2614 TRY
2615 {
2616 int val;
2617
2618 val = bl->owner->ops->insert_location (bl);
2619 if (val)
2620 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2621 }
2622 CATCH (e, RETURN_MASK_ALL)
2623 {
2624 bp_excpt = e;
2625 }
2626 END_CATCH
2627 }
2628 else
2629 {
2630 /* No. This breakpoint will not be inserted.
2631 No error, but do not mark the bp as 'inserted'. */
2632 return 0;
2633 }
2634 }
2635
2636 if (bp_excpt.reason != 0)
2637 {
2638 /* Can't set the breakpoint. */
2639
2640 /* In some cases, we might not be able to insert a
2641 breakpoint in a shared library that has already been
2642 removed, but we have not yet processed the shlib unload
2643 event. Unfortunately, some targets that implement
2644 breakpoint insertion themselves can't tell why the
2645 breakpoint insertion failed (e.g., the remote target
2646 doesn't define error codes), so we must treat generic
2647 errors as memory errors. */
2648 if (bp_excpt.reason == RETURN_ERROR
2649 && (bp_excpt.error == GENERIC_ERROR
2650 || bp_excpt.error == MEMORY_ERROR)
2651 && bl->loc_type == bp_loc_software_breakpoint
2652 && (solib_name_from_address (bl->pspace, bl->address)
2653 || shared_objfile_contains_address_p (bl->pspace,
2654 bl->address)))
2655 {
2656 /* See also: disable_breakpoints_in_shlibs. */
2657 bl->shlib_disabled = 1;
2658 gdb::observers::breakpoint_modified.notify (bl->owner);
2659 if (!*disabled_breaks)
2660 {
2661 fprintf_unfiltered (tmp_error_stream,
2662 "Cannot insert breakpoint %d.\n",
2663 bl->owner->number);
2664 fprintf_unfiltered (tmp_error_stream,
2665 "Temporarily disabling shared "
2666 "library breakpoints:\n");
2667 }
2668 *disabled_breaks = 1;
2669 fprintf_unfiltered (tmp_error_stream,
2670 "breakpoint #%d\n", bl->owner->number);
2671 return 0;
2672 }
2673 else
2674 {
2675 if (bl->loc_type == bp_loc_hardware_breakpoint)
2676 {
2677 *hw_breakpoint_error = 1;
2678 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2679 fprintf_unfiltered (tmp_error_stream,
2680 "Cannot insert hardware breakpoint %d%s",
2681 bl->owner->number,
2682 bp_excpt.message ? ":" : ".\n");
2683 if (bp_excpt.message != NULL)
2684 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2685 bp_excpt.message);
2686 }
2687 else
2688 {
2689 if (bp_excpt.message == NULL)
2690 {
2691 std::string message
2692 = memory_error_message (TARGET_XFER_E_IO,
2693 bl->gdbarch, bl->address);
2694
2695 fprintf_unfiltered (tmp_error_stream,
2696 "Cannot insert breakpoint %d.\n"
2697 "%s\n",
2698 bl->owner->number, message.c_str ());
2699 }
2700 else
2701 {
2702 fprintf_unfiltered (tmp_error_stream,
2703 "Cannot insert breakpoint %d: %s\n",
2704 bl->owner->number,
2705 bp_excpt.message);
2706 }
2707 }
2708 return 1;
2709
2710 }
2711 }
2712 else
2713 bl->inserted = 1;
2714
2715 return 0;
2716 }
2717
2718 else if (bl->loc_type == bp_loc_hardware_watchpoint
2719 /* NOTE drow/2003-09-08: This state only exists for removing
2720 watchpoints. It's not clear that it's necessary... */
2721 && bl->owner->disposition != disp_del_at_next_stop)
2722 {
2723 int val;
2724
2725 gdb_assert (bl->owner->ops != NULL
2726 && bl->owner->ops->insert_location != NULL);
2727
2728 val = bl->owner->ops->insert_location (bl);
2729
2730 /* If trying to set a read-watchpoint, and it turns out it's not
2731 supported, try emulating one with an access watchpoint. */
2732 if (val == 1 && bl->watchpoint_type == hw_read)
2733 {
2734 struct bp_location *loc, **loc_temp;
2735
2736 /* But don't try to insert it, if there's already another
2737 hw_access location that would be considered a duplicate
2738 of this one. */
2739 ALL_BP_LOCATIONS (loc, loc_temp)
2740 if (loc != bl
2741 && loc->watchpoint_type == hw_access
2742 && watchpoint_locations_match (bl, loc))
2743 {
2744 bl->duplicate = 1;
2745 bl->inserted = 1;
2746 bl->target_info = loc->target_info;
2747 bl->watchpoint_type = hw_access;
2748 val = 0;
2749 break;
2750 }
2751
2752 if (val == 1)
2753 {
2754 bl->watchpoint_type = hw_access;
2755 val = bl->owner->ops->insert_location (bl);
2756
2757 if (val)
2758 /* Back to the original value. */
2759 bl->watchpoint_type = hw_read;
2760 }
2761 }
2762
2763 bl->inserted = (val == 0);
2764 }
2765
2766 else if (bl->owner->type == bp_catchpoint)
2767 {
2768 int val;
2769
2770 gdb_assert (bl->owner->ops != NULL
2771 && bl->owner->ops->insert_location != NULL);
2772
2773 val = bl->owner->ops->insert_location (bl);
2774 if (val)
2775 {
2776 bl->owner->enable_state = bp_disabled;
2777
2778 if (val == 1)
2779 warning (_("\
2780 Error inserting catchpoint %d: Your system does not support this type\n\
2781 of catchpoint."), bl->owner->number);
2782 else
2783 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2784 }
2785
2786 bl->inserted = (val == 0);
2787
2788 /* We've already printed an error message if there was a problem
2789 inserting this catchpoint, and we've disabled the catchpoint,
2790 so just return success. */
2791 return 0;
2792 }
2793
2794 return 0;
2795 }
2796
2797 /* This function is called when program space PSPACE is about to be
2798 deleted. It takes care of updating breakpoints to not reference
2799 PSPACE anymore. */
2800
2801 void
2802 breakpoint_program_space_exit (struct program_space *pspace)
2803 {
2804 struct breakpoint *b, *b_temp;
2805 struct bp_location *loc, **loc_temp;
2806
2807 /* Remove any breakpoint that was set through this program space. */
2808 ALL_BREAKPOINTS_SAFE (b, b_temp)
2809 {
2810 if (b->pspace == pspace)
2811 delete_breakpoint (b);
2812 }
2813
2814 /* Breakpoints set through other program spaces could have locations
2815 bound to PSPACE as well. Remove those. */
2816 ALL_BP_LOCATIONS (loc, loc_temp)
2817 {
2818 struct bp_location *tmp;
2819
2820 if (loc->pspace == pspace)
2821 {
2822 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2823 if (loc->owner->loc == loc)
2824 loc->owner->loc = loc->next;
2825 else
2826 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2827 if (tmp->next == loc)
2828 {
2829 tmp->next = loc->next;
2830 break;
2831 }
2832 }
2833 }
2834
2835 /* Now update the global location list to permanently delete the
2836 removed locations above. */
2837 update_global_location_list (UGLL_DONT_INSERT);
2838 }
2839
2840 /* Make sure all breakpoints are inserted in inferior.
2841 Throws exception on any error.
2842 A breakpoint that is already inserted won't be inserted
2843 again, so calling this function twice is safe. */
2844 void
2845 insert_breakpoints (void)
2846 {
2847 struct breakpoint *bpt;
2848
2849 ALL_BREAKPOINTS (bpt)
2850 if (is_hardware_watchpoint (bpt))
2851 {
2852 struct watchpoint *w = (struct watchpoint *) bpt;
2853
2854 update_watchpoint (w, 0 /* don't reparse. */);
2855 }
2856
2857 /* Updating watchpoints creates new locations, so update the global
2858 location list. Explicitly tell ugll to insert locations and
2859 ignore breakpoints_always_inserted_mode. */
2860 update_global_location_list (UGLL_INSERT);
2861 }
2862
2863 /* Invoke CALLBACK for each of bp_location. */
2864
2865 void
2866 iterate_over_bp_locations (walk_bp_location_callback callback)
2867 {
2868 struct bp_location *loc, **loc_tmp;
2869
2870 ALL_BP_LOCATIONS (loc, loc_tmp)
2871 {
2872 callback (loc, NULL);
2873 }
2874 }
2875
2876 /* This is used when we need to synch breakpoint conditions between GDB and the
2877 target. It is the case with deleting and disabling of breakpoints when using
2878 always-inserted mode. */
2879
2880 static void
2881 update_inserted_breakpoint_locations (void)
2882 {
2883 struct bp_location *bl, **blp_tmp;
2884 int error_flag = 0;
2885 int val = 0;
2886 int disabled_breaks = 0;
2887 int hw_breakpoint_error = 0;
2888 int hw_bp_details_reported = 0;
2889
2890 string_file tmp_error_stream;
2891
2892 /* Explicitly mark the warning -- this will only be printed if
2893 there was an error. */
2894 tmp_error_stream.puts ("Warning:\n");
2895
2896 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2897
2898 ALL_BP_LOCATIONS (bl, blp_tmp)
2899 {
2900 /* We only want to update software breakpoints and hardware
2901 breakpoints. */
2902 if (!is_breakpoint (bl->owner))
2903 continue;
2904
2905 /* We only want to update locations that are already inserted
2906 and need updating. This is to avoid unwanted insertion during
2907 deletion of breakpoints. */
2908 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2909 continue;
2910
2911 switch_to_program_space_and_thread (bl->pspace);
2912
2913 /* For targets that support global breakpoints, there's no need
2914 to select an inferior to insert breakpoint to. In fact, even
2915 if we aren't attached to any process yet, we should still
2916 insert breakpoints. */
2917 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2918 && ptid_equal (inferior_ptid, null_ptid))
2919 continue;
2920
2921 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2922 &hw_breakpoint_error, &hw_bp_details_reported);
2923 if (val)
2924 error_flag = val;
2925 }
2926
2927 if (error_flag)
2928 {
2929 target_terminal::ours_for_output ();
2930 error_stream (tmp_error_stream);
2931 }
2932 }
2933
2934 /* Used when starting or continuing the program. */
2935
2936 static void
2937 insert_breakpoint_locations (void)
2938 {
2939 struct breakpoint *bpt;
2940 struct bp_location *bl, **blp_tmp;
2941 int error_flag = 0;
2942 int val = 0;
2943 int disabled_breaks = 0;
2944 int hw_breakpoint_error = 0;
2945 int hw_bp_error_explained_already = 0;
2946
2947 string_file tmp_error_stream;
2948
2949 /* Explicitly mark the warning -- this will only be printed if
2950 there was an error. */
2951 tmp_error_stream.puts ("Warning:\n");
2952
2953 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2954
2955 ALL_BP_LOCATIONS (bl, blp_tmp)
2956 {
2957 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2958 continue;
2959
2960 /* There is no point inserting thread-specific breakpoints if
2961 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2962 has BL->OWNER always non-NULL. */
2963 if (bl->owner->thread != -1
2964 && !valid_global_thread_id (bl->owner->thread))
2965 continue;
2966
2967 switch_to_program_space_and_thread (bl->pspace);
2968
2969 /* For targets that support global breakpoints, there's no need
2970 to select an inferior to insert breakpoint to. In fact, even
2971 if we aren't attached to any process yet, we should still
2972 insert breakpoints. */
2973 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2974 && ptid_equal (inferior_ptid, null_ptid))
2975 continue;
2976
2977 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2978 &hw_breakpoint_error, &hw_bp_error_explained_already);
2979 if (val)
2980 error_flag = val;
2981 }
2982
2983 /* If we failed to insert all locations of a watchpoint, remove
2984 them, as half-inserted watchpoint is of limited use. */
2985 ALL_BREAKPOINTS (bpt)
2986 {
2987 int some_failed = 0;
2988 struct bp_location *loc;
2989
2990 if (!is_hardware_watchpoint (bpt))
2991 continue;
2992
2993 if (!breakpoint_enabled (bpt))
2994 continue;
2995
2996 if (bpt->disposition == disp_del_at_next_stop)
2997 continue;
2998
2999 for (loc = bpt->loc; loc; loc = loc->next)
3000 if (!loc->inserted && should_be_inserted (loc))
3001 {
3002 some_failed = 1;
3003 break;
3004 }
3005 if (some_failed)
3006 {
3007 for (loc = bpt->loc; loc; loc = loc->next)
3008 if (loc->inserted)
3009 remove_breakpoint (loc);
3010
3011 hw_breakpoint_error = 1;
3012 tmp_error_stream.printf ("Could not insert "
3013 "hardware watchpoint %d.\n",
3014 bpt->number);
3015 error_flag = -1;
3016 }
3017 }
3018
3019 if (error_flag)
3020 {
3021 /* If a hardware breakpoint or watchpoint was inserted, add a
3022 message about possibly exhausted resources. */
3023 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3024 {
3025 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3026 You may have requested too many hardware breakpoints/watchpoints.\n");
3027 }
3028 target_terminal::ours_for_output ();
3029 error_stream (tmp_error_stream);
3030 }
3031 }
3032
3033 /* Used when the program stops.
3034 Returns zero if successful, or non-zero if there was a problem
3035 removing a breakpoint location. */
3036
3037 int
3038 remove_breakpoints (void)
3039 {
3040 struct bp_location *bl, **blp_tmp;
3041 int val = 0;
3042
3043 ALL_BP_LOCATIONS (bl, blp_tmp)
3044 {
3045 if (bl->inserted && !is_tracepoint (bl->owner))
3046 val |= remove_breakpoint (bl);
3047 }
3048 return val;
3049 }
3050
3051 /* When a thread exits, remove breakpoints that are related to
3052 that thread. */
3053
3054 static void
3055 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3056 {
3057 struct breakpoint *b, *b_tmp;
3058
3059 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3060 {
3061 if (b->thread == tp->global_num && user_breakpoint_p (b))
3062 {
3063 b->disposition = disp_del_at_next_stop;
3064
3065 printf_filtered (_("\
3066 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3067 b->number, print_thread_id (tp));
3068
3069 /* Hide it from the user. */
3070 b->number = 0;
3071 }
3072 }
3073 }
3074
3075 /* Remove breakpoints of process PID. */
3076
3077 int
3078 remove_breakpoints_pid (int pid)
3079 {
3080 struct bp_location *bl, **blp_tmp;
3081 int val;
3082 struct inferior *inf = find_inferior_pid (pid);
3083
3084 ALL_BP_LOCATIONS (bl, blp_tmp)
3085 {
3086 if (bl->pspace != inf->pspace)
3087 continue;
3088
3089 if (bl->inserted && !bl->target_info.persist)
3090 {
3091 val = remove_breakpoint (bl);
3092 if (val != 0)
3093 return val;
3094 }
3095 }
3096 return 0;
3097 }
3098
3099 static int internal_breakpoint_number = -1;
3100
3101 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3102 If INTERNAL is non-zero, the breakpoint number will be populated
3103 from internal_breakpoint_number and that variable decremented.
3104 Otherwise the breakpoint number will be populated from
3105 breakpoint_count and that value incremented. Internal breakpoints
3106 do not set the internal var bpnum. */
3107 static void
3108 set_breakpoint_number (int internal, struct breakpoint *b)
3109 {
3110 if (internal)
3111 b->number = internal_breakpoint_number--;
3112 else
3113 {
3114 set_breakpoint_count (breakpoint_count + 1);
3115 b->number = breakpoint_count;
3116 }
3117 }
3118
3119 static struct breakpoint *
3120 create_internal_breakpoint (struct gdbarch *gdbarch,
3121 CORE_ADDR address, enum bptype type,
3122 const struct breakpoint_ops *ops)
3123 {
3124 symtab_and_line sal;
3125 sal.pc = address;
3126 sal.section = find_pc_overlay (sal.pc);
3127 sal.pspace = current_program_space;
3128
3129 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3130 b->number = internal_breakpoint_number--;
3131 b->disposition = disp_donttouch;
3132
3133 return b;
3134 }
3135
3136 static const char *const longjmp_names[] =
3137 {
3138 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3139 };
3140 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3141
3142 /* Per-objfile data private to breakpoint.c. */
3143 struct breakpoint_objfile_data
3144 {
3145 /* Minimal symbol for "_ovly_debug_event" (if any). */
3146 struct bound_minimal_symbol overlay_msym {};
3147
3148 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3149 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3150
3151 /* True if we have looked for longjmp probes. */
3152 int longjmp_searched = 0;
3153
3154 /* SystemTap probe points for longjmp (if any). These are non-owning
3155 references. */
3156 std::vector<probe *> longjmp_probes;
3157
3158 /* Minimal symbol for "std::terminate()" (if any). */
3159 struct bound_minimal_symbol terminate_msym {};
3160
3161 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3162 struct bound_minimal_symbol exception_msym {};
3163
3164 /* True if we have looked for exception probes. */
3165 int exception_searched = 0;
3166
3167 /* SystemTap probe points for unwinding (if any). These are non-owning
3168 references. */
3169 std::vector<probe *> exception_probes;
3170 };
3171
3172 static const struct objfile_data *breakpoint_objfile_key;
3173
3174 /* Minimal symbol not found sentinel. */
3175 static struct minimal_symbol msym_not_found;
3176
3177 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3178
3179 static int
3180 msym_not_found_p (const struct minimal_symbol *msym)
3181 {
3182 return msym == &msym_not_found;
3183 }
3184
3185 /* Return per-objfile data needed by breakpoint.c.
3186 Allocate the data if necessary. */
3187
3188 static struct breakpoint_objfile_data *
3189 get_breakpoint_objfile_data (struct objfile *objfile)
3190 {
3191 struct breakpoint_objfile_data *bp_objfile_data;
3192
3193 bp_objfile_data = ((struct breakpoint_objfile_data *)
3194 objfile_data (objfile, breakpoint_objfile_key));
3195 if (bp_objfile_data == NULL)
3196 {
3197 bp_objfile_data = new breakpoint_objfile_data ();
3198 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3199 }
3200 return bp_objfile_data;
3201 }
3202
3203 static void
3204 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3205 {
3206 struct breakpoint_objfile_data *bp_objfile_data
3207 = (struct breakpoint_objfile_data *) data;
3208
3209 delete bp_objfile_data;
3210 }
3211
3212 static void
3213 create_overlay_event_breakpoint (void)
3214 {
3215 struct objfile *objfile;
3216 const char *const func_name = "_ovly_debug_event";
3217
3218 ALL_OBJFILES (objfile)
3219 {
3220 struct breakpoint *b;
3221 struct breakpoint_objfile_data *bp_objfile_data;
3222 CORE_ADDR addr;
3223 struct explicit_location explicit_loc;
3224
3225 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3226
3227 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3228 continue;
3229
3230 if (bp_objfile_data->overlay_msym.minsym == NULL)
3231 {
3232 struct bound_minimal_symbol m;
3233
3234 m = lookup_minimal_symbol_text (func_name, objfile);
3235 if (m.minsym == NULL)
3236 {
3237 /* Avoid future lookups in this objfile. */
3238 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3239 continue;
3240 }
3241 bp_objfile_data->overlay_msym = m;
3242 }
3243
3244 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3245 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3246 bp_overlay_event,
3247 &internal_breakpoint_ops);
3248 initialize_explicit_location (&explicit_loc);
3249 explicit_loc.function_name = ASTRDUP (func_name);
3250 b->location = new_explicit_location (&explicit_loc);
3251
3252 if (overlay_debugging == ovly_auto)
3253 {
3254 b->enable_state = bp_enabled;
3255 overlay_events_enabled = 1;
3256 }
3257 else
3258 {
3259 b->enable_state = bp_disabled;
3260 overlay_events_enabled = 0;
3261 }
3262 }
3263 }
3264
3265 static void
3266 create_longjmp_master_breakpoint (void)
3267 {
3268 struct program_space *pspace;
3269
3270 scoped_restore_current_program_space restore_pspace;
3271
3272 ALL_PSPACES (pspace)
3273 {
3274 struct objfile *objfile;
3275
3276 set_current_program_space (pspace);
3277
3278 ALL_OBJFILES (objfile)
3279 {
3280 int i;
3281 struct gdbarch *gdbarch;
3282 struct breakpoint_objfile_data *bp_objfile_data;
3283
3284 gdbarch = get_objfile_arch (objfile);
3285
3286 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3287
3288 if (!bp_objfile_data->longjmp_searched)
3289 {
3290 std::vector<probe *> ret
3291 = find_probes_in_objfile (objfile, "libc", "longjmp");
3292
3293 if (!ret.empty ())
3294 {
3295 /* We are only interested in checking one element. */
3296 probe *p = ret[0];
3297
3298 if (!p->can_evaluate_arguments ())
3299 {
3300 /* We cannot use the probe interface here, because it does
3301 not know how to evaluate arguments. */
3302 ret.clear ();
3303 }
3304 }
3305 bp_objfile_data->longjmp_probes = ret;
3306 bp_objfile_data->longjmp_searched = 1;
3307 }
3308
3309 if (!bp_objfile_data->longjmp_probes.empty ())
3310 {
3311 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3312
3313 for (probe *p : bp_objfile_data->longjmp_probes)
3314 {
3315 struct breakpoint *b;
3316
3317 b = create_internal_breakpoint (gdbarch,
3318 p->get_relocated_address (objfile),
3319 bp_longjmp_master,
3320 &internal_breakpoint_ops);
3321 b->location = new_probe_location ("-probe-stap libc:longjmp");
3322 b->enable_state = bp_disabled;
3323 }
3324
3325 continue;
3326 }
3327
3328 if (!gdbarch_get_longjmp_target_p (gdbarch))
3329 continue;
3330
3331 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3332 {
3333 struct breakpoint *b;
3334 const char *func_name;
3335 CORE_ADDR addr;
3336 struct explicit_location explicit_loc;
3337
3338 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3339 continue;
3340
3341 func_name = longjmp_names[i];
3342 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3343 {
3344 struct bound_minimal_symbol m;
3345
3346 m = lookup_minimal_symbol_text (func_name, objfile);
3347 if (m.minsym == NULL)
3348 {
3349 /* Prevent future lookups in this objfile. */
3350 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3351 continue;
3352 }
3353 bp_objfile_data->longjmp_msym[i] = m;
3354 }
3355
3356 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3357 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3358 &internal_breakpoint_ops);
3359 initialize_explicit_location (&explicit_loc);
3360 explicit_loc.function_name = ASTRDUP (func_name);
3361 b->location = new_explicit_location (&explicit_loc);
3362 b->enable_state = bp_disabled;
3363 }
3364 }
3365 }
3366 }
3367
3368 /* Create a master std::terminate breakpoint. */
3369 static void
3370 create_std_terminate_master_breakpoint (void)
3371 {
3372 struct program_space *pspace;
3373 const char *const func_name = "std::terminate()";
3374
3375 scoped_restore_current_program_space restore_pspace;
3376
3377 ALL_PSPACES (pspace)
3378 {
3379 struct objfile *objfile;
3380 CORE_ADDR addr;
3381
3382 set_current_program_space (pspace);
3383
3384 ALL_OBJFILES (objfile)
3385 {
3386 struct breakpoint *b;
3387 struct breakpoint_objfile_data *bp_objfile_data;
3388 struct explicit_location explicit_loc;
3389
3390 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3391
3392 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3393 continue;
3394
3395 if (bp_objfile_data->terminate_msym.minsym == NULL)
3396 {
3397 struct bound_minimal_symbol m;
3398
3399 m = lookup_minimal_symbol (func_name, NULL, objfile);
3400 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3401 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3402 {
3403 /* Prevent future lookups in this objfile. */
3404 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3405 continue;
3406 }
3407 bp_objfile_data->terminate_msym = m;
3408 }
3409
3410 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3411 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3412 bp_std_terminate_master,
3413 &internal_breakpoint_ops);
3414 initialize_explicit_location (&explicit_loc);
3415 explicit_loc.function_name = ASTRDUP (func_name);
3416 b->location = new_explicit_location (&explicit_loc);
3417 b->enable_state = bp_disabled;
3418 }
3419 }
3420 }
3421
3422 /* Install a master breakpoint on the unwinder's debug hook. */
3423
3424 static void
3425 create_exception_master_breakpoint (void)
3426 {
3427 struct objfile *objfile;
3428 const char *const func_name = "_Unwind_DebugHook";
3429
3430 ALL_OBJFILES (objfile)
3431 {
3432 struct breakpoint *b;
3433 struct gdbarch *gdbarch;
3434 struct breakpoint_objfile_data *bp_objfile_data;
3435 CORE_ADDR addr;
3436 struct explicit_location explicit_loc;
3437
3438 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3439
3440 /* We prefer the SystemTap probe point if it exists. */
3441 if (!bp_objfile_data->exception_searched)
3442 {
3443 std::vector<probe *> ret
3444 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3445
3446 if (!ret.empty ())
3447 {
3448 /* We are only interested in checking one element. */
3449 probe *p = ret[0];
3450
3451 if (!p->can_evaluate_arguments ())
3452 {
3453 /* We cannot use the probe interface here, because it does
3454 not know how to evaluate arguments. */
3455 ret.clear ();
3456 }
3457 }
3458 bp_objfile_data->exception_probes = ret;
3459 bp_objfile_data->exception_searched = 1;
3460 }
3461
3462 if (!bp_objfile_data->exception_probes.empty ())
3463 {
3464 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3465
3466 for (probe *p : bp_objfile_data->exception_probes)
3467 {
3468 struct breakpoint *b;
3469
3470 b = create_internal_breakpoint (gdbarch,
3471 p->get_relocated_address (objfile),
3472 bp_exception_master,
3473 &internal_breakpoint_ops);
3474 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3475 b->enable_state = bp_disabled;
3476 }
3477
3478 continue;
3479 }
3480
3481 /* Otherwise, try the hook function. */
3482
3483 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3484 continue;
3485
3486 gdbarch = get_objfile_arch (objfile);
3487
3488 if (bp_objfile_data->exception_msym.minsym == NULL)
3489 {
3490 struct bound_minimal_symbol debug_hook;
3491
3492 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3493 if (debug_hook.minsym == NULL)
3494 {
3495 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3496 continue;
3497 }
3498
3499 bp_objfile_data->exception_msym = debug_hook;
3500 }
3501
3502 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3503 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3504 &current_target);
3505 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3506 &internal_breakpoint_ops);
3507 initialize_explicit_location (&explicit_loc);
3508 explicit_loc.function_name = ASTRDUP (func_name);
3509 b->location = new_explicit_location (&explicit_loc);
3510 b->enable_state = bp_disabled;
3511 }
3512 }
3513
3514 /* Does B have a location spec? */
3515
3516 static int
3517 breakpoint_event_location_empty_p (const struct breakpoint *b)
3518 {
3519 return b->location != NULL && event_location_empty_p (b->location.get ());
3520 }
3521
3522 void
3523 update_breakpoints_after_exec (void)
3524 {
3525 struct breakpoint *b, *b_tmp;
3526 struct bp_location *bploc, **bplocp_tmp;
3527
3528 /* We're about to delete breakpoints from GDB's lists. If the
3529 INSERTED flag is true, GDB will try to lift the breakpoints by
3530 writing the breakpoints' "shadow contents" back into memory. The
3531 "shadow contents" are NOT valid after an exec, so GDB should not
3532 do that. Instead, the target is responsible from marking
3533 breakpoints out as soon as it detects an exec. We don't do that
3534 here instead, because there may be other attempts to delete
3535 breakpoints after detecting an exec and before reaching here. */
3536 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3537 if (bploc->pspace == current_program_space)
3538 gdb_assert (!bploc->inserted);
3539
3540 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3541 {
3542 if (b->pspace != current_program_space)
3543 continue;
3544
3545 /* Solib breakpoints must be explicitly reset after an exec(). */
3546 if (b->type == bp_shlib_event)
3547 {
3548 delete_breakpoint (b);
3549 continue;
3550 }
3551
3552 /* JIT breakpoints must be explicitly reset after an exec(). */
3553 if (b->type == bp_jit_event)
3554 {
3555 delete_breakpoint (b);
3556 continue;
3557 }
3558
3559 /* Thread event breakpoints must be set anew after an exec(),
3560 as must overlay event and longjmp master breakpoints. */
3561 if (b->type == bp_thread_event || b->type == bp_overlay_event
3562 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3563 || b->type == bp_exception_master)
3564 {
3565 delete_breakpoint (b);
3566 continue;
3567 }
3568
3569 /* Step-resume breakpoints are meaningless after an exec(). */
3570 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3571 {
3572 delete_breakpoint (b);
3573 continue;
3574 }
3575
3576 /* Just like single-step breakpoints. */
3577 if (b->type == bp_single_step)
3578 {
3579 delete_breakpoint (b);
3580 continue;
3581 }
3582
3583 /* Longjmp and longjmp-resume breakpoints are also meaningless
3584 after an exec. */
3585 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3586 || b->type == bp_longjmp_call_dummy
3587 || b->type == bp_exception || b->type == bp_exception_resume)
3588 {
3589 delete_breakpoint (b);
3590 continue;
3591 }
3592
3593 if (b->type == bp_catchpoint)
3594 {
3595 /* For now, none of the bp_catchpoint breakpoints need to
3596 do anything at this point. In the future, if some of
3597 the catchpoints need to something, we will need to add
3598 a new method, and call this method from here. */
3599 continue;
3600 }
3601
3602 /* bp_finish is a special case. The only way we ought to be able
3603 to see one of these when an exec() has happened, is if the user
3604 caught a vfork, and then said "finish". Ordinarily a finish just
3605 carries them to the call-site of the current callee, by setting
3606 a temporary bp there and resuming. But in this case, the finish
3607 will carry them entirely through the vfork & exec.
3608
3609 We don't want to allow a bp_finish to remain inserted now. But
3610 we can't safely delete it, 'cause finish_command has a handle to
3611 the bp on a bpstat, and will later want to delete it. There's a
3612 chance (and I've seen it happen) that if we delete the bp_finish
3613 here, that its storage will get reused by the time finish_command
3614 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3615 We really must allow finish_command to delete a bp_finish.
3616
3617 In the absence of a general solution for the "how do we know
3618 it's safe to delete something others may have handles to?"
3619 problem, what we'll do here is just uninsert the bp_finish, and
3620 let finish_command delete it.
3621
3622 (We know the bp_finish is "doomed" in the sense that it's
3623 momentary, and will be deleted as soon as finish_command sees
3624 the inferior stopped. So it doesn't matter that the bp's
3625 address is probably bogus in the new a.out, unlike e.g., the
3626 solib breakpoints.) */
3627
3628 if (b->type == bp_finish)
3629 {
3630 continue;
3631 }
3632
3633 /* Without a symbolic address, we have little hope of the
3634 pre-exec() address meaning the same thing in the post-exec()
3635 a.out. */
3636 if (breakpoint_event_location_empty_p (b))
3637 {
3638 delete_breakpoint (b);
3639 continue;
3640 }
3641 }
3642 }
3643
3644 int
3645 detach_breakpoints (ptid_t ptid)
3646 {
3647 struct bp_location *bl, **blp_tmp;
3648 int val = 0;
3649 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3650 struct inferior *inf = current_inferior ();
3651
3652 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3653 error (_("Cannot detach breakpoints of inferior_ptid"));
3654
3655 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3656 inferior_ptid = ptid;
3657 ALL_BP_LOCATIONS (bl, blp_tmp)
3658 {
3659 if (bl->pspace != inf->pspace)
3660 continue;
3661
3662 /* This function must physically remove breakpoints locations
3663 from the specified ptid, without modifying the breakpoint
3664 package's state. Locations of type bp_loc_other are only
3665 maintained at GDB side. So, there is no need to remove
3666 these bp_loc_other locations. Moreover, removing these
3667 would modify the breakpoint package's state. */
3668 if (bl->loc_type == bp_loc_other)
3669 continue;
3670
3671 if (bl->inserted)
3672 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3673 }
3674
3675 return val;
3676 }
3677
3678 /* Remove the breakpoint location BL from the current address space.
3679 Note that this is used to detach breakpoints from a child fork.
3680 When we get here, the child isn't in the inferior list, and neither
3681 do we have objects to represent its address space --- we should
3682 *not* look at bl->pspace->aspace here. */
3683
3684 static int
3685 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3686 {
3687 int val;
3688
3689 /* BL is never in moribund_locations by our callers. */
3690 gdb_assert (bl->owner != NULL);
3691
3692 /* The type of none suggests that owner is actually deleted.
3693 This should not ever happen. */
3694 gdb_assert (bl->owner->type != bp_none);
3695
3696 if (bl->loc_type == bp_loc_software_breakpoint
3697 || bl->loc_type == bp_loc_hardware_breakpoint)
3698 {
3699 /* "Normal" instruction breakpoint: either the standard
3700 trap-instruction bp (bp_breakpoint), or a
3701 bp_hardware_breakpoint. */
3702
3703 /* First check to see if we have to handle an overlay. */
3704 if (overlay_debugging == ovly_off
3705 || bl->section == NULL
3706 || !(section_is_overlay (bl->section)))
3707 {
3708 /* No overlay handling: just remove the breakpoint. */
3709
3710 /* If we're trying to uninsert a memory breakpoint that we
3711 know is set in a dynamic object that is marked
3712 shlib_disabled, then either the dynamic object was
3713 removed with "remove-symbol-file" or with
3714 "nosharedlibrary". In the former case, we don't know
3715 whether another dynamic object might have loaded over the
3716 breakpoint's address -- the user might well let us know
3717 about it next with add-symbol-file (the whole point of
3718 add-symbol-file is letting the user manually maintain a
3719 list of dynamically loaded objects). If we have the
3720 breakpoint's shadow memory, that is, this is a software
3721 breakpoint managed by GDB, check whether the breakpoint
3722 is still inserted in memory, to avoid overwriting wrong
3723 code with stale saved shadow contents. Note that HW
3724 breakpoints don't have shadow memory, as they're
3725 implemented using a mechanism that is not dependent on
3726 being able to modify the target's memory, and as such
3727 they should always be removed. */
3728 if (bl->shlib_disabled
3729 && bl->target_info.shadow_len != 0
3730 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3731 val = 0;
3732 else
3733 val = bl->owner->ops->remove_location (bl, reason);
3734 }
3735 else
3736 {
3737 /* This breakpoint is in an overlay section.
3738 Did we set a breakpoint at the LMA? */
3739 if (!overlay_events_enabled)
3740 {
3741 /* Yes -- overlay event support is not active, so we
3742 should have set a breakpoint at the LMA. Remove it.
3743 */
3744 /* Ignore any failures: if the LMA is in ROM, we will
3745 have already warned when we failed to insert it. */
3746 if (bl->loc_type == bp_loc_hardware_breakpoint)
3747 target_remove_hw_breakpoint (bl->gdbarch,
3748 &bl->overlay_target_info);
3749 else
3750 target_remove_breakpoint (bl->gdbarch,
3751 &bl->overlay_target_info,
3752 reason);
3753 }
3754 /* Did we set a breakpoint at the VMA?
3755 If so, we will have marked the breakpoint 'inserted'. */
3756 if (bl->inserted)
3757 {
3758 /* Yes -- remove it. Previously we did not bother to
3759 remove the breakpoint if the section had been
3760 unmapped, but let's not rely on that being safe. We
3761 don't know what the overlay manager might do. */
3762
3763 /* However, we should remove *software* breakpoints only
3764 if the section is still mapped, or else we overwrite
3765 wrong code with the saved shadow contents. */
3766 if (bl->loc_type == bp_loc_hardware_breakpoint
3767 || section_is_mapped (bl->section))
3768 val = bl->owner->ops->remove_location (bl, reason);
3769 else
3770 val = 0;
3771 }
3772 else
3773 {
3774 /* No -- not inserted, so no need to remove. No error. */
3775 val = 0;
3776 }
3777 }
3778
3779 /* In some cases, we might not be able to remove a breakpoint in
3780 a shared library that has already been removed, but we have
3781 not yet processed the shlib unload event. Similarly for an
3782 unloaded add-symbol-file object - the user might not yet have
3783 had the chance to remove-symbol-file it. shlib_disabled will
3784 be set if the library/object has already been removed, but
3785 the breakpoint hasn't been uninserted yet, e.g., after
3786 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3787 always-inserted mode. */
3788 if (val
3789 && (bl->loc_type == bp_loc_software_breakpoint
3790 && (bl->shlib_disabled
3791 || solib_name_from_address (bl->pspace, bl->address)
3792 || shared_objfile_contains_address_p (bl->pspace,
3793 bl->address))))
3794 val = 0;
3795
3796 if (val)
3797 return val;
3798 bl->inserted = (reason == DETACH_BREAKPOINT);
3799 }
3800 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3801 {
3802 gdb_assert (bl->owner->ops != NULL
3803 && bl->owner->ops->remove_location != NULL);
3804
3805 bl->inserted = (reason == DETACH_BREAKPOINT);
3806 bl->owner->ops->remove_location (bl, reason);
3807
3808 /* Failure to remove any of the hardware watchpoints comes here. */
3809 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3810 warning (_("Could not remove hardware watchpoint %d."),
3811 bl->owner->number);
3812 }
3813 else if (bl->owner->type == bp_catchpoint
3814 && breakpoint_enabled (bl->owner)
3815 && !bl->duplicate)
3816 {
3817 gdb_assert (bl->owner->ops != NULL
3818 && bl->owner->ops->remove_location != NULL);
3819
3820 val = bl->owner->ops->remove_location (bl, reason);
3821 if (val)
3822 return val;
3823
3824 bl->inserted = (reason == DETACH_BREAKPOINT);
3825 }
3826
3827 return 0;
3828 }
3829
3830 static int
3831 remove_breakpoint (struct bp_location *bl)
3832 {
3833 /* BL is never in moribund_locations by our callers. */
3834 gdb_assert (bl->owner != NULL);
3835
3836 /* The type of none suggests that owner is actually deleted.
3837 This should not ever happen. */
3838 gdb_assert (bl->owner->type != bp_none);
3839
3840 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3841
3842 switch_to_program_space_and_thread (bl->pspace);
3843
3844 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3845 }
3846
3847 /* Clear the "inserted" flag in all breakpoints. */
3848
3849 void
3850 mark_breakpoints_out (void)
3851 {
3852 struct bp_location *bl, **blp_tmp;
3853
3854 ALL_BP_LOCATIONS (bl, blp_tmp)
3855 if (bl->pspace == current_program_space)
3856 bl->inserted = 0;
3857 }
3858
3859 /* Clear the "inserted" flag in all breakpoints and delete any
3860 breakpoints which should go away between runs of the program.
3861
3862 Plus other such housekeeping that has to be done for breakpoints
3863 between runs.
3864
3865 Note: this function gets called at the end of a run (by
3866 generic_mourn_inferior) and when a run begins (by
3867 init_wait_for_inferior). */
3868
3869
3870
3871 void
3872 breakpoint_init_inferior (enum inf_context context)
3873 {
3874 struct breakpoint *b, *b_tmp;
3875 struct bp_location *bl;
3876 int ix;
3877 struct program_space *pspace = current_program_space;
3878
3879 /* If breakpoint locations are shared across processes, then there's
3880 nothing to do. */
3881 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3882 return;
3883
3884 mark_breakpoints_out ();
3885
3886 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3887 {
3888 if (b->loc && b->loc->pspace != pspace)
3889 continue;
3890
3891 switch (b->type)
3892 {
3893 case bp_call_dummy:
3894 case bp_longjmp_call_dummy:
3895
3896 /* If the call dummy breakpoint is at the entry point it will
3897 cause problems when the inferior is rerun, so we better get
3898 rid of it. */
3899
3900 case bp_watchpoint_scope:
3901
3902 /* Also get rid of scope breakpoints. */
3903
3904 case bp_shlib_event:
3905
3906 /* Also remove solib event breakpoints. Their addresses may
3907 have changed since the last time we ran the program.
3908 Actually we may now be debugging against different target;
3909 and so the solib backend that installed this breakpoint may
3910 not be used in by the target. E.g.,
3911
3912 (gdb) file prog-linux
3913 (gdb) run # native linux target
3914 ...
3915 (gdb) kill
3916 (gdb) file prog-win.exe
3917 (gdb) tar rem :9999 # remote Windows gdbserver.
3918 */
3919
3920 case bp_step_resume:
3921
3922 /* Also remove step-resume breakpoints. */
3923
3924 case bp_single_step:
3925
3926 /* Also remove single-step breakpoints. */
3927
3928 delete_breakpoint (b);
3929 break;
3930
3931 case bp_watchpoint:
3932 case bp_hardware_watchpoint:
3933 case bp_read_watchpoint:
3934 case bp_access_watchpoint:
3935 {
3936 struct watchpoint *w = (struct watchpoint *) b;
3937
3938 /* Likewise for watchpoints on local expressions. */
3939 if (w->exp_valid_block != NULL)
3940 delete_breakpoint (b);
3941 else
3942 {
3943 /* Get rid of existing locations, which are no longer
3944 valid. New ones will be created in
3945 update_watchpoint, when the inferior is restarted.
3946 The next update_global_location_list call will
3947 garbage collect them. */
3948 b->loc = NULL;
3949
3950 if (context == inf_starting)
3951 {
3952 /* Reset val field to force reread of starting value in
3953 insert_breakpoints. */
3954 if (w->val)
3955 value_decref (w->val);
3956 w->val = NULL;
3957 w->val_valid = 0;
3958 }
3959 }
3960 }
3961 break;
3962 default:
3963 break;
3964 }
3965 }
3966
3967 /* Get rid of the moribund locations. */
3968 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3969 decref_bp_location (&bl);
3970 VEC_free (bp_location_p, moribund_locations);
3971 }
3972
3973 /* These functions concern about actual breakpoints inserted in the
3974 target --- to e.g. check if we need to do decr_pc adjustment or if
3975 we need to hop over the bkpt --- so we check for address space
3976 match, not program space. */
3977
3978 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3979 exists at PC. It returns ordinary_breakpoint_here if it's an
3980 ordinary breakpoint, or permanent_breakpoint_here if it's a
3981 permanent breakpoint.
3982 - When continuing from a location with an ordinary breakpoint, we
3983 actually single step once before calling insert_breakpoints.
3984 - When continuing from a location with a permanent breakpoint, we
3985 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3986 the target, to advance the PC past the breakpoint. */
3987
3988 enum breakpoint_here
3989 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3990 {
3991 struct bp_location *bl, **blp_tmp;
3992 int any_breakpoint_here = 0;
3993
3994 ALL_BP_LOCATIONS (bl, blp_tmp)
3995 {
3996 if (bl->loc_type != bp_loc_software_breakpoint
3997 && bl->loc_type != bp_loc_hardware_breakpoint)
3998 continue;
3999
4000 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4001 if ((breakpoint_enabled (bl->owner)
4002 || bl->permanent)
4003 && breakpoint_location_address_match (bl, aspace, pc))
4004 {
4005 if (overlay_debugging
4006 && section_is_overlay (bl->section)
4007 && !section_is_mapped (bl->section))
4008 continue; /* unmapped overlay -- can't be a match */
4009 else if (bl->permanent)
4010 return permanent_breakpoint_here;
4011 else
4012 any_breakpoint_here = 1;
4013 }
4014 }
4015
4016 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4017 }
4018
4019 /* See breakpoint.h. */
4020
4021 int
4022 breakpoint_in_range_p (const address_space *aspace,
4023 CORE_ADDR addr, ULONGEST len)
4024 {
4025 struct bp_location *bl, **blp_tmp;
4026
4027 ALL_BP_LOCATIONS (bl, blp_tmp)
4028 {
4029 if (bl->loc_type != bp_loc_software_breakpoint
4030 && bl->loc_type != bp_loc_hardware_breakpoint)
4031 continue;
4032
4033 if ((breakpoint_enabled (bl->owner)
4034 || bl->permanent)
4035 && breakpoint_location_address_range_overlap (bl, aspace,
4036 addr, len))
4037 {
4038 if (overlay_debugging
4039 && section_is_overlay (bl->section)
4040 && !section_is_mapped (bl->section))
4041 {
4042 /* Unmapped overlay -- can't be a match. */
4043 continue;
4044 }
4045
4046 return 1;
4047 }
4048 }
4049
4050 return 0;
4051 }
4052
4053 /* Return true if there's a moribund breakpoint at PC. */
4054
4055 int
4056 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4057 {
4058 struct bp_location *loc;
4059 int ix;
4060
4061 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4062 if (breakpoint_location_address_match (loc, aspace, pc))
4063 return 1;
4064
4065 return 0;
4066 }
4067
4068 /* Returns non-zero iff BL is inserted at PC, in address space
4069 ASPACE. */
4070
4071 static int
4072 bp_location_inserted_here_p (struct bp_location *bl,
4073 const address_space *aspace, CORE_ADDR pc)
4074 {
4075 if (bl->inserted
4076 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4077 aspace, pc))
4078 {
4079 if (overlay_debugging
4080 && section_is_overlay (bl->section)
4081 && !section_is_mapped (bl->section))
4082 return 0; /* unmapped overlay -- can't be a match */
4083 else
4084 return 1;
4085 }
4086 return 0;
4087 }
4088
4089 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4090
4091 int
4092 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4093 {
4094 struct bp_location **blp, **blp_tmp = NULL;
4095
4096 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4097 {
4098 struct bp_location *bl = *blp;
4099
4100 if (bl->loc_type != bp_loc_software_breakpoint
4101 && bl->loc_type != bp_loc_hardware_breakpoint)
4102 continue;
4103
4104 if (bp_location_inserted_here_p (bl, aspace, pc))
4105 return 1;
4106 }
4107 return 0;
4108 }
4109
4110 /* This function returns non-zero iff there is a software breakpoint
4111 inserted at PC. */
4112
4113 int
4114 software_breakpoint_inserted_here_p (const address_space *aspace,
4115 CORE_ADDR pc)
4116 {
4117 struct bp_location **blp, **blp_tmp = NULL;
4118
4119 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4120 {
4121 struct bp_location *bl = *blp;
4122
4123 if (bl->loc_type != bp_loc_software_breakpoint)
4124 continue;
4125
4126 if (bp_location_inserted_here_p (bl, aspace, pc))
4127 return 1;
4128 }
4129
4130 return 0;
4131 }
4132
4133 /* See breakpoint.h. */
4134
4135 int
4136 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4137 CORE_ADDR pc)
4138 {
4139 struct bp_location **blp, **blp_tmp = NULL;
4140
4141 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4142 {
4143 struct bp_location *bl = *blp;
4144
4145 if (bl->loc_type != bp_loc_hardware_breakpoint)
4146 continue;
4147
4148 if (bp_location_inserted_here_p (bl, aspace, pc))
4149 return 1;
4150 }
4151
4152 return 0;
4153 }
4154
4155 int
4156 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4157 CORE_ADDR addr, ULONGEST len)
4158 {
4159 struct breakpoint *bpt;
4160
4161 ALL_BREAKPOINTS (bpt)
4162 {
4163 struct bp_location *loc;
4164
4165 if (bpt->type != bp_hardware_watchpoint
4166 && bpt->type != bp_access_watchpoint)
4167 continue;
4168
4169 if (!breakpoint_enabled (bpt))
4170 continue;
4171
4172 for (loc = bpt->loc; loc; loc = loc->next)
4173 if (loc->pspace->aspace == aspace && loc->inserted)
4174 {
4175 CORE_ADDR l, h;
4176
4177 /* Check for intersection. */
4178 l = std::max<CORE_ADDR> (loc->address, addr);
4179 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4180 if (l < h)
4181 return 1;
4182 }
4183 }
4184 return 0;
4185 }
4186 \f
4187
4188 /* bpstat stuff. External routines' interfaces are documented
4189 in breakpoint.h. */
4190
4191 int
4192 is_catchpoint (struct breakpoint *ep)
4193 {
4194 return (ep->type == bp_catchpoint);
4195 }
4196
4197 /* Frees any storage that is part of a bpstat. Does not walk the
4198 'next' chain. */
4199
4200 bpstats::~bpstats ()
4201 {
4202 if (old_val != NULL)
4203 value_decref (old_val);
4204 if (bp_location_at != NULL)
4205 decref_bp_location (&bp_location_at);
4206 }
4207
4208 /* Clear a bpstat so that it says we are not at any breakpoint.
4209 Also free any storage that is part of a bpstat. */
4210
4211 void
4212 bpstat_clear (bpstat *bsp)
4213 {
4214 bpstat p;
4215 bpstat q;
4216
4217 if (bsp == 0)
4218 return;
4219 p = *bsp;
4220 while (p != NULL)
4221 {
4222 q = p->next;
4223 delete p;
4224 p = q;
4225 }
4226 *bsp = NULL;
4227 }
4228
4229 bpstats::bpstats (const bpstats &other)
4230 : next (NULL),
4231 bp_location_at (other.bp_location_at),
4232 breakpoint_at (other.breakpoint_at),
4233 commands (other.commands),
4234 old_val (other.old_val),
4235 print (other.print),
4236 stop (other.stop),
4237 print_it (other.print_it)
4238 {
4239 if (old_val != NULL)
4240 old_val = release_value (value_copy (old_val)).release ();
4241 incref_bp_location (bp_location_at);
4242 }
4243
4244 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4245 is part of the bpstat is copied as well. */
4246
4247 bpstat
4248 bpstat_copy (bpstat bs)
4249 {
4250 bpstat p = NULL;
4251 bpstat tmp;
4252 bpstat retval = NULL;
4253
4254 if (bs == NULL)
4255 return bs;
4256
4257 for (; bs != NULL; bs = bs->next)
4258 {
4259 tmp = new bpstats (*bs);
4260
4261 if (p == NULL)
4262 /* This is the first thing in the chain. */
4263 retval = tmp;
4264 else
4265 p->next = tmp;
4266 p = tmp;
4267 }
4268 p->next = NULL;
4269 return retval;
4270 }
4271
4272 /* Find the bpstat associated with this breakpoint. */
4273
4274 bpstat
4275 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4276 {
4277 if (bsp == NULL)
4278 return NULL;
4279
4280 for (; bsp != NULL; bsp = bsp->next)
4281 {
4282 if (bsp->breakpoint_at == breakpoint)
4283 return bsp;
4284 }
4285 return NULL;
4286 }
4287
4288 /* See breakpoint.h. */
4289
4290 int
4291 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4292 {
4293 for (; bsp != NULL; bsp = bsp->next)
4294 {
4295 if (bsp->breakpoint_at == NULL)
4296 {
4297 /* A moribund location can never explain a signal other than
4298 GDB_SIGNAL_TRAP. */
4299 if (sig == GDB_SIGNAL_TRAP)
4300 return 1;
4301 }
4302 else
4303 {
4304 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4305 sig))
4306 return 1;
4307 }
4308 }
4309
4310 return 0;
4311 }
4312
4313 /* Put in *NUM the breakpoint number of the first breakpoint we are
4314 stopped at. *BSP upon return is a bpstat which points to the
4315 remaining breakpoints stopped at (but which is not guaranteed to be
4316 good for anything but further calls to bpstat_num).
4317
4318 Return 0 if passed a bpstat which does not indicate any breakpoints.
4319 Return -1 if stopped at a breakpoint that has been deleted since
4320 we set it.
4321 Return 1 otherwise. */
4322
4323 int
4324 bpstat_num (bpstat *bsp, int *num)
4325 {
4326 struct breakpoint *b;
4327
4328 if ((*bsp) == NULL)
4329 return 0; /* No more breakpoint values */
4330
4331 /* We assume we'll never have several bpstats that correspond to a
4332 single breakpoint -- otherwise, this function might return the
4333 same number more than once and this will look ugly. */
4334 b = (*bsp)->breakpoint_at;
4335 *bsp = (*bsp)->next;
4336 if (b == NULL)
4337 return -1; /* breakpoint that's been deleted since */
4338
4339 *num = b->number; /* We have its number */
4340 return 1;
4341 }
4342
4343 /* See breakpoint.h. */
4344
4345 void
4346 bpstat_clear_actions (void)
4347 {
4348 struct thread_info *tp;
4349 bpstat bs;
4350
4351 if (ptid_equal (inferior_ptid, null_ptid))
4352 return;
4353
4354 tp = find_thread_ptid (inferior_ptid);
4355 if (tp == NULL)
4356 return;
4357
4358 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4359 {
4360 bs->commands = NULL;
4361
4362 if (bs->old_val != NULL)
4363 {
4364 value_decref (bs->old_val);
4365 bs->old_val = NULL;
4366 }
4367 }
4368 }
4369
4370 /* Called when a command is about to proceed the inferior. */
4371
4372 static void
4373 breakpoint_about_to_proceed (void)
4374 {
4375 if (!ptid_equal (inferior_ptid, null_ptid))
4376 {
4377 struct thread_info *tp = inferior_thread ();
4378
4379 /* Allow inferior function calls in breakpoint commands to not
4380 interrupt the command list. When the call finishes
4381 successfully, the inferior will be standing at the same
4382 breakpoint as if nothing happened. */
4383 if (tp->control.in_infcall)
4384 return;
4385 }
4386
4387 breakpoint_proceeded = 1;
4388 }
4389
4390 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4391 or its equivalent. */
4392
4393 static int
4394 command_line_is_silent (struct command_line *cmd)
4395 {
4396 return cmd && (strcmp ("silent", cmd->line) == 0);
4397 }
4398
4399 /* Execute all the commands associated with all the breakpoints at
4400 this location. Any of these commands could cause the process to
4401 proceed beyond this point, etc. We look out for such changes by
4402 checking the global "breakpoint_proceeded" after each command.
4403
4404 Returns true if a breakpoint command resumed the inferior. In that
4405 case, it is the caller's responsibility to recall it again with the
4406 bpstat of the current thread. */
4407
4408 static int
4409 bpstat_do_actions_1 (bpstat *bsp)
4410 {
4411 bpstat bs;
4412 int again = 0;
4413
4414 /* Avoid endless recursion if a `source' command is contained
4415 in bs->commands. */
4416 if (executing_breakpoint_commands)
4417 return 0;
4418
4419 scoped_restore save_executing
4420 = make_scoped_restore (&executing_breakpoint_commands, 1);
4421
4422 scoped_restore preventer = prevent_dont_repeat ();
4423
4424 /* This pointer will iterate over the list of bpstat's. */
4425 bs = *bsp;
4426
4427 breakpoint_proceeded = 0;
4428 for (; bs != NULL; bs = bs->next)
4429 {
4430 struct command_line *cmd = NULL;
4431
4432 /* Take ownership of the BSP's command tree, if it has one.
4433
4434 The command tree could legitimately contain commands like
4435 'step' and 'next', which call clear_proceed_status, which
4436 frees stop_bpstat's command tree. To make sure this doesn't
4437 free the tree we're executing out from under us, we need to
4438 take ownership of the tree ourselves. Since a given bpstat's
4439 commands are only executed once, we don't need to copy it; we
4440 can clear the pointer in the bpstat, and make sure we free
4441 the tree when we're done. */
4442 counted_command_line ccmd = bs->commands;
4443 bs->commands = NULL;
4444 if (ccmd != NULL)
4445 cmd = ccmd.get ();
4446 if (command_line_is_silent (cmd))
4447 {
4448 /* The action has been already done by bpstat_stop_status. */
4449 cmd = cmd->next;
4450 }
4451
4452 while (cmd != NULL)
4453 {
4454 execute_control_command (cmd);
4455
4456 if (breakpoint_proceeded)
4457 break;
4458 else
4459 cmd = cmd->next;
4460 }
4461
4462 if (breakpoint_proceeded)
4463 {
4464 if (current_ui->async)
4465 /* If we are in async mode, then the target might be still
4466 running, not stopped at any breakpoint, so nothing for
4467 us to do here -- just return to the event loop. */
4468 ;
4469 else
4470 /* In sync mode, when execute_control_command returns
4471 we're already standing on the next breakpoint.
4472 Breakpoint commands for that stop were not run, since
4473 execute_command does not run breakpoint commands --
4474 only command_line_handler does, but that one is not
4475 involved in execution of breakpoint commands. So, we
4476 can now execute breakpoint commands. It should be
4477 noted that making execute_command do bpstat actions is
4478 not an option -- in this case we'll have recursive
4479 invocation of bpstat for each breakpoint with a
4480 command, and can easily blow up GDB stack. Instead, we
4481 return true, which will trigger the caller to recall us
4482 with the new stop_bpstat. */
4483 again = 1;
4484 break;
4485 }
4486 }
4487 return again;
4488 }
4489
4490 void
4491 bpstat_do_actions (void)
4492 {
4493 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4494
4495 /* Do any commands attached to breakpoint we are stopped at. */
4496 while (!ptid_equal (inferior_ptid, null_ptid)
4497 && target_has_execution
4498 && !is_exited (inferior_ptid)
4499 && !is_executing (inferior_ptid))
4500 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4501 and only return when it is stopped at the next breakpoint, we
4502 keep doing breakpoint actions until it returns false to
4503 indicate the inferior was not resumed. */
4504 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4505 break;
4506
4507 discard_cleanups (cleanup_if_error);
4508 }
4509
4510 /* Print out the (old or new) value associated with a watchpoint. */
4511
4512 static void
4513 watchpoint_value_print (struct value *val, struct ui_file *stream)
4514 {
4515 if (val == NULL)
4516 fprintf_unfiltered (stream, _("<unreadable>"));
4517 else
4518 {
4519 struct value_print_options opts;
4520 get_user_print_options (&opts);
4521 value_print (val, stream, &opts);
4522 }
4523 }
4524
4525 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4526 debugging multiple threads. */
4527
4528 void
4529 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4530 {
4531 if (uiout->is_mi_like_p ())
4532 return;
4533
4534 uiout->text ("\n");
4535
4536 if (show_thread_that_caused_stop ())
4537 {
4538 const char *name;
4539 struct thread_info *thr = inferior_thread ();
4540
4541 uiout->text ("Thread ");
4542 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4543
4544 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4545 if (name != NULL)
4546 {
4547 uiout->text (" \"");
4548 uiout->field_fmt ("name", "%s", name);
4549 uiout->text ("\"");
4550 }
4551
4552 uiout->text (" hit ");
4553 }
4554 }
4555
4556 /* Generic routine for printing messages indicating why we
4557 stopped. The behavior of this function depends on the value
4558 'print_it' in the bpstat structure. Under some circumstances we
4559 may decide not to print anything here and delegate the task to
4560 normal_stop(). */
4561
4562 static enum print_stop_action
4563 print_bp_stop_message (bpstat bs)
4564 {
4565 switch (bs->print_it)
4566 {
4567 case print_it_noop:
4568 /* Nothing should be printed for this bpstat entry. */
4569 return PRINT_UNKNOWN;
4570 break;
4571
4572 case print_it_done:
4573 /* We still want to print the frame, but we already printed the
4574 relevant messages. */
4575 return PRINT_SRC_AND_LOC;
4576 break;
4577
4578 case print_it_normal:
4579 {
4580 struct breakpoint *b = bs->breakpoint_at;
4581
4582 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4583 which has since been deleted. */
4584 if (b == NULL)
4585 return PRINT_UNKNOWN;
4586
4587 /* Normal case. Call the breakpoint's print_it method. */
4588 return b->ops->print_it (bs);
4589 }
4590 break;
4591
4592 default:
4593 internal_error (__FILE__, __LINE__,
4594 _("print_bp_stop_message: unrecognized enum value"));
4595 break;
4596 }
4597 }
4598
4599 /* A helper function that prints a shared library stopped event. */
4600
4601 static void
4602 print_solib_event (int is_catchpoint)
4603 {
4604 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4605 int any_added
4606 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4607
4608 if (!is_catchpoint)
4609 {
4610 if (any_added || any_deleted)
4611 current_uiout->text (_("Stopped due to shared library event:\n"));
4612 else
4613 current_uiout->text (_("Stopped due to shared library event (no "
4614 "libraries added or removed)\n"));
4615 }
4616
4617 if (current_uiout->is_mi_like_p ())
4618 current_uiout->field_string ("reason",
4619 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4620
4621 if (any_deleted)
4622 {
4623 current_uiout->text (_(" Inferior unloaded "));
4624 ui_out_emit_list list_emitter (current_uiout, "removed");
4625 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4626 {
4627 const std::string &name = current_program_space->deleted_solibs[ix];
4628
4629 if (ix > 0)
4630 current_uiout->text (" ");
4631 current_uiout->field_string ("library", name);
4632 current_uiout->text ("\n");
4633 }
4634 }
4635
4636 if (any_added)
4637 {
4638 struct so_list *iter;
4639 int ix;
4640
4641 current_uiout->text (_(" Inferior loaded "));
4642 ui_out_emit_list list_emitter (current_uiout, "added");
4643 for (ix = 0;
4644 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4645 ix, iter);
4646 ++ix)
4647 {
4648 if (ix > 0)
4649 current_uiout->text (" ");
4650 current_uiout->field_string ("library", iter->so_name);
4651 current_uiout->text ("\n");
4652 }
4653 }
4654 }
4655
4656 /* Print a message indicating what happened. This is called from
4657 normal_stop(). The input to this routine is the head of the bpstat
4658 list - a list of the eventpoints that caused this stop. KIND is
4659 the target_waitkind for the stopping event. This
4660 routine calls the generic print routine for printing a message
4661 about reasons for stopping. This will print (for example) the
4662 "Breakpoint n," part of the output. The return value of this
4663 routine is one of:
4664
4665 PRINT_UNKNOWN: Means we printed nothing.
4666 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4667 code to print the location. An example is
4668 "Breakpoint 1, " which should be followed by
4669 the location.
4670 PRINT_SRC_ONLY: Means we printed something, but there is no need
4671 to also print the location part of the message.
4672 An example is the catch/throw messages, which
4673 don't require a location appended to the end.
4674 PRINT_NOTHING: We have done some printing and we don't need any
4675 further info to be printed. */
4676
4677 enum print_stop_action
4678 bpstat_print (bpstat bs, int kind)
4679 {
4680 enum print_stop_action val;
4681
4682 /* Maybe another breakpoint in the chain caused us to stop.
4683 (Currently all watchpoints go on the bpstat whether hit or not.
4684 That probably could (should) be changed, provided care is taken
4685 with respect to bpstat_explains_signal). */
4686 for (; bs; bs = bs->next)
4687 {
4688 val = print_bp_stop_message (bs);
4689 if (val == PRINT_SRC_ONLY
4690 || val == PRINT_SRC_AND_LOC
4691 || val == PRINT_NOTHING)
4692 return val;
4693 }
4694
4695 /* If we had hit a shared library event breakpoint,
4696 print_bp_stop_message would print out this message. If we hit an
4697 OS-level shared library event, do the same thing. */
4698 if (kind == TARGET_WAITKIND_LOADED)
4699 {
4700 print_solib_event (0);
4701 return PRINT_NOTHING;
4702 }
4703
4704 /* We reached the end of the chain, or we got a null BS to start
4705 with and nothing was printed. */
4706 return PRINT_UNKNOWN;
4707 }
4708
4709 /* Evaluate the boolean expression EXP and return the result. */
4710
4711 static bool
4712 breakpoint_cond_eval (expression *exp)
4713 {
4714 struct value *mark = value_mark ();
4715 bool res = value_true (evaluate_expression (exp));
4716
4717 value_free_to_mark (mark);
4718 return res;
4719 }
4720
4721 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4722
4723 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4724 : next (NULL),
4725 bp_location_at (bl),
4726 breakpoint_at (bl->owner),
4727 commands (NULL),
4728 old_val (NULL),
4729 print (0),
4730 stop (0),
4731 print_it (print_it_normal)
4732 {
4733 incref_bp_location (bl);
4734 **bs_link_pointer = this;
4735 *bs_link_pointer = &next;
4736 }
4737
4738 bpstats::bpstats ()
4739 : next (NULL),
4740 bp_location_at (NULL),
4741 breakpoint_at (NULL),
4742 commands (NULL),
4743 old_val (NULL),
4744 print (0),
4745 stop (0),
4746 print_it (print_it_normal)
4747 {
4748 }
4749 \f
4750 /* The target has stopped with waitstatus WS. Check if any hardware
4751 watchpoints have triggered, according to the target. */
4752
4753 int
4754 watchpoints_triggered (struct target_waitstatus *ws)
4755 {
4756 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4757 CORE_ADDR addr;
4758 struct breakpoint *b;
4759
4760 if (!stopped_by_watchpoint)
4761 {
4762 /* We were not stopped by a watchpoint. Mark all watchpoints
4763 as not triggered. */
4764 ALL_BREAKPOINTS (b)
4765 if (is_hardware_watchpoint (b))
4766 {
4767 struct watchpoint *w = (struct watchpoint *) b;
4768
4769 w->watchpoint_triggered = watch_triggered_no;
4770 }
4771
4772 return 0;
4773 }
4774
4775 if (!target_stopped_data_address (&current_target, &addr))
4776 {
4777 /* We were stopped by a watchpoint, but we don't know where.
4778 Mark all watchpoints as unknown. */
4779 ALL_BREAKPOINTS (b)
4780 if (is_hardware_watchpoint (b))
4781 {
4782 struct watchpoint *w = (struct watchpoint *) b;
4783
4784 w->watchpoint_triggered = watch_triggered_unknown;
4785 }
4786
4787 return 1;
4788 }
4789
4790 /* The target could report the data address. Mark watchpoints
4791 affected by this data address as triggered, and all others as not
4792 triggered. */
4793
4794 ALL_BREAKPOINTS (b)
4795 if (is_hardware_watchpoint (b))
4796 {
4797 struct watchpoint *w = (struct watchpoint *) b;
4798 struct bp_location *loc;
4799
4800 w->watchpoint_triggered = watch_triggered_no;
4801 for (loc = b->loc; loc; loc = loc->next)
4802 {
4803 if (is_masked_watchpoint (b))
4804 {
4805 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4806 CORE_ADDR start = loc->address & w->hw_wp_mask;
4807
4808 if (newaddr == start)
4809 {
4810 w->watchpoint_triggered = watch_triggered_yes;
4811 break;
4812 }
4813 }
4814 /* Exact match not required. Within range is sufficient. */
4815 else if (target_watchpoint_addr_within_range (&current_target,
4816 addr, loc->address,
4817 loc->length))
4818 {
4819 w->watchpoint_triggered = watch_triggered_yes;
4820 break;
4821 }
4822 }
4823 }
4824
4825 return 1;
4826 }
4827
4828 /* Possible return values for watchpoint_check. */
4829 enum wp_check_result
4830 {
4831 /* The watchpoint has been deleted. */
4832 WP_DELETED = 1,
4833
4834 /* The value has changed. */
4835 WP_VALUE_CHANGED = 2,
4836
4837 /* The value has not changed. */
4838 WP_VALUE_NOT_CHANGED = 3,
4839
4840 /* Ignore this watchpoint, no matter if the value changed or not. */
4841 WP_IGNORE = 4,
4842 };
4843
4844 #define BP_TEMPFLAG 1
4845 #define BP_HARDWAREFLAG 2
4846
4847 /* Evaluate watchpoint condition expression and check if its value
4848 changed. */
4849
4850 static wp_check_result
4851 watchpoint_check (bpstat bs)
4852 {
4853 struct watchpoint *b;
4854 struct frame_info *fr;
4855 int within_current_scope;
4856
4857 /* BS is built from an existing struct breakpoint. */
4858 gdb_assert (bs->breakpoint_at != NULL);
4859 b = (struct watchpoint *) bs->breakpoint_at;
4860
4861 /* If this is a local watchpoint, we only want to check if the
4862 watchpoint frame is in scope if the current thread is the thread
4863 that was used to create the watchpoint. */
4864 if (!watchpoint_in_thread_scope (b))
4865 return WP_IGNORE;
4866
4867 if (b->exp_valid_block == NULL)
4868 within_current_scope = 1;
4869 else
4870 {
4871 struct frame_info *frame = get_current_frame ();
4872 struct gdbarch *frame_arch = get_frame_arch (frame);
4873 CORE_ADDR frame_pc = get_frame_pc (frame);
4874
4875 /* stack_frame_destroyed_p() returns a non-zero value if we're
4876 still in the function but the stack frame has already been
4877 invalidated. Since we can't rely on the values of local
4878 variables after the stack has been destroyed, we are treating
4879 the watchpoint in that state as `not changed' without further
4880 checking. Don't mark watchpoints as changed if the current
4881 frame is in an epilogue - even if they are in some other
4882 frame, our view of the stack is likely to be wrong and
4883 frame_find_by_id could error out. */
4884 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4885 return WP_IGNORE;
4886
4887 fr = frame_find_by_id (b->watchpoint_frame);
4888 within_current_scope = (fr != NULL);
4889
4890 /* If we've gotten confused in the unwinder, we might have
4891 returned a frame that can't describe this variable. */
4892 if (within_current_scope)
4893 {
4894 struct symbol *function;
4895
4896 function = get_frame_function (fr);
4897 if (function == NULL
4898 || !contained_in (b->exp_valid_block,
4899 SYMBOL_BLOCK_VALUE (function)))
4900 within_current_scope = 0;
4901 }
4902
4903 if (within_current_scope)
4904 /* If we end up stopping, the current frame will get selected
4905 in normal_stop. So this call to select_frame won't affect
4906 the user. */
4907 select_frame (fr);
4908 }
4909
4910 if (within_current_scope)
4911 {
4912 /* We use value_{,free_to_}mark because it could be a *long*
4913 time before we return to the command level and call
4914 free_all_values. We can't call free_all_values because we
4915 might be in the middle of evaluating a function call. */
4916
4917 int pc = 0;
4918 struct value *mark;
4919 struct value *new_val;
4920
4921 if (is_masked_watchpoint (b))
4922 /* Since we don't know the exact trigger address (from
4923 stopped_data_address), just tell the user we've triggered
4924 a mask watchpoint. */
4925 return WP_VALUE_CHANGED;
4926
4927 mark = value_mark ();
4928 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4929
4930 if (b->val_bitsize != 0)
4931 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4932
4933 /* We use value_equal_contents instead of value_equal because
4934 the latter coerces an array to a pointer, thus comparing just
4935 the address of the array instead of its contents. This is
4936 not what we want. */
4937 if ((b->val != NULL) != (new_val != NULL)
4938 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4939 {
4940 if (new_val != NULL)
4941 {
4942 release_value (new_val).release ();
4943 value_free_to_mark (mark);
4944 }
4945 bs->old_val = b->val;
4946 b->val = new_val;
4947 b->val_valid = 1;
4948 return WP_VALUE_CHANGED;
4949 }
4950 else
4951 {
4952 /* Nothing changed. */
4953 value_free_to_mark (mark);
4954 return WP_VALUE_NOT_CHANGED;
4955 }
4956 }
4957 else
4958 {
4959 /* This seems like the only logical thing to do because
4960 if we temporarily ignored the watchpoint, then when
4961 we reenter the block in which it is valid it contains
4962 garbage (in the case of a function, it may have two
4963 garbage values, one before and one after the prologue).
4964 So we can't even detect the first assignment to it and
4965 watch after that (since the garbage may or may not equal
4966 the first value assigned). */
4967 /* We print all the stop information in
4968 breakpoint_ops->print_it, but in this case, by the time we
4969 call breakpoint_ops->print_it this bp will be deleted
4970 already. So we have no choice but print the information
4971 here. */
4972
4973 SWITCH_THRU_ALL_UIS ()
4974 {
4975 struct ui_out *uiout = current_uiout;
4976
4977 if (uiout->is_mi_like_p ())
4978 uiout->field_string
4979 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4980 uiout->text ("\nWatchpoint ");
4981 uiout->field_int ("wpnum", b->number);
4982 uiout->text (" deleted because the program has left the block in\n"
4983 "which its expression is valid.\n");
4984 }
4985
4986 /* Make sure the watchpoint's commands aren't executed. */
4987 b->commands = NULL;
4988 watchpoint_del_at_next_stop (b);
4989
4990 return WP_DELETED;
4991 }
4992 }
4993
4994 /* Return true if it looks like target has stopped due to hitting
4995 breakpoint location BL. This function does not check if we should
4996 stop, only if BL explains the stop. */
4997
4998 static int
4999 bpstat_check_location (const struct bp_location *bl,
5000 const address_space *aspace, CORE_ADDR bp_addr,
5001 const struct target_waitstatus *ws)
5002 {
5003 struct breakpoint *b = bl->owner;
5004
5005 /* BL is from an existing breakpoint. */
5006 gdb_assert (b != NULL);
5007
5008 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5009 }
5010
5011 /* Determine if the watched values have actually changed, and we
5012 should stop. If not, set BS->stop to 0. */
5013
5014 static void
5015 bpstat_check_watchpoint (bpstat bs)
5016 {
5017 const struct bp_location *bl;
5018 struct watchpoint *b;
5019
5020 /* BS is built for existing struct breakpoint. */
5021 bl = bs->bp_location_at;
5022 gdb_assert (bl != NULL);
5023 b = (struct watchpoint *) bs->breakpoint_at;
5024 gdb_assert (b != NULL);
5025
5026 {
5027 int must_check_value = 0;
5028
5029 if (b->type == bp_watchpoint)
5030 /* For a software watchpoint, we must always check the
5031 watched value. */
5032 must_check_value = 1;
5033 else if (b->watchpoint_triggered == watch_triggered_yes)
5034 /* We have a hardware watchpoint (read, write, or access)
5035 and the target earlier reported an address watched by
5036 this watchpoint. */
5037 must_check_value = 1;
5038 else if (b->watchpoint_triggered == watch_triggered_unknown
5039 && b->type == bp_hardware_watchpoint)
5040 /* We were stopped by a hardware watchpoint, but the target could
5041 not report the data address. We must check the watchpoint's
5042 value. Access and read watchpoints are out of luck; without
5043 a data address, we can't figure it out. */
5044 must_check_value = 1;
5045
5046 if (must_check_value)
5047 {
5048 wp_check_result e;
5049
5050 TRY
5051 {
5052 e = watchpoint_check (bs);
5053 }
5054 CATCH (ex, RETURN_MASK_ALL)
5055 {
5056 exception_fprintf (gdb_stderr, ex,
5057 "Error evaluating expression "
5058 "for watchpoint %d\n",
5059 b->number);
5060
5061 SWITCH_THRU_ALL_UIS ()
5062 {
5063 printf_filtered (_("Watchpoint %d deleted.\n"),
5064 b->number);
5065 }
5066 watchpoint_del_at_next_stop (b);
5067 e = WP_DELETED;
5068 }
5069 END_CATCH
5070
5071 switch (e)
5072 {
5073 case WP_DELETED:
5074 /* We've already printed what needs to be printed. */
5075 bs->print_it = print_it_done;
5076 /* Stop. */
5077 break;
5078 case WP_IGNORE:
5079 bs->print_it = print_it_noop;
5080 bs->stop = 0;
5081 break;
5082 case WP_VALUE_CHANGED:
5083 if (b->type == bp_read_watchpoint)
5084 {
5085 /* There are two cases to consider here:
5086
5087 1. We're watching the triggered memory for reads.
5088 In that case, trust the target, and always report
5089 the watchpoint hit to the user. Even though
5090 reads don't cause value changes, the value may
5091 have changed since the last time it was read, and
5092 since we're not trapping writes, we will not see
5093 those, and as such we should ignore our notion of
5094 old value.
5095
5096 2. We're watching the triggered memory for both
5097 reads and writes. There are two ways this may
5098 happen:
5099
5100 2.1. This is a target that can't break on data
5101 reads only, but can break on accesses (reads or
5102 writes), such as e.g., x86. We detect this case
5103 at the time we try to insert read watchpoints.
5104
5105 2.2. Otherwise, the target supports read
5106 watchpoints, but, the user set an access or write
5107 watchpoint watching the same memory as this read
5108 watchpoint.
5109
5110 If we're watching memory writes as well as reads,
5111 ignore watchpoint hits when we find that the
5112 value hasn't changed, as reads don't cause
5113 changes. This still gives false positives when
5114 the program writes the same value to memory as
5115 what there was already in memory (we will confuse
5116 it for a read), but it's much better than
5117 nothing. */
5118
5119 int other_write_watchpoint = 0;
5120
5121 if (bl->watchpoint_type == hw_read)
5122 {
5123 struct breakpoint *other_b;
5124
5125 ALL_BREAKPOINTS (other_b)
5126 if (other_b->type == bp_hardware_watchpoint
5127 || other_b->type == bp_access_watchpoint)
5128 {
5129 struct watchpoint *other_w =
5130 (struct watchpoint *) other_b;
5131
5132 if (other_w->watchpoint_triggered
5133 == watch_triggered_yes)
5134 {
5135 other_write_watchpoint = 1;
5136 break;
5137 }
5138 }
5139 }
5140
5141 if (other_write_watchpoint
5142 || bl->watchpoint_type == hw_access)
5143 {
5144 /* We're watching the same memory for writes,
5145 and the value changed since the last time we
5146 updated it, so this trap must be for a write.
5147 Ignore it. */
5148 bs->print_it = print_it_noop;
5149 bs->stop = 0;
5150 }
5151 }
5152 break;
5153 case WP_VALUE_NOT_CHANGED:
5154 if (b->type == bp_hardware_watchpoint
5155 || b->type == bp_watchpoint)
5156 {
5157 /* Don't stop: write watchpoints shouldn't fire if
5158 the value hasn't changed. */
5159 bs->print_it = print_it_noop;
5160 bs->stop = 0;
5161 }
5162 /* Stop. */
5163 break;
5164 default:
5165 /* Can't happen. */
5166 break;
5167 }
5168 }
5169 else /* must_check_value == 0 */
5170 {
5171 /* This is a case where some watchpoint(s) triggered, but
5172 not at the address of this watchpoint, or else no
5173 watchpoint triggered after all. So don't print
5174 anything for this watchpoint. */
5175 bs->print_it = print_it_noop;
5176 bs->stop = 0;
5177 }
5178 }
5179 }
5180
5181 /* For breakpoints that are currently marked as telling gdb to stop,
5182 check conditions (condition proper, frame, thread and ignore count)
5183 of breakpoint referred to by BS. If we should not stop for this
5184 breakpoint, set BS->stop to 0. */
5185
5186 static void
5187 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5188 {
5189 const struct bp_location *bl;
5190 struct breakpoint *b;
5191 /* Assume stop. */
5192 bool condition_result = true;
5193 struct expression *cond;
5194
5195 gdb_assert (bs->stop);
5196
5197 /* BS is built for existing struct breakpoint. */
5198 bl = bs->bp_location_at;
5199 gdb_assert (bl != NULL);
5200 b = bs->breakpoint_at;
5201 gdb_assert (b != NULL);
5202
5203 /* Even if the target evaluated the condition on its end and notified GDB, we
5204 need to do so again since GDB does not know if we stopped due to a
5205 breakpoint or a single step breakpoint. */
5206
5207 if (frame_id_p (b->frame_id)
5208 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5209 {
5210 bs->stop = 0;
5211 return;
5212 }
5213
5214 /* If this is a thread/task-specific breakpoint, don't waste cpu
5215 evaluating the condition if this isn't the specified
5216 thread/task. */
5217 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5218 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5219
5220 {
5221 bs->stop = 0;
5222 return;
5223 }
5224
5225 /* Evaluate extension language breakpoints that have a "stop" method
5226 implemented. */
5227 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5228
5229 if (is_watchpoint (b))
5230 {
5231 struct watchpoint *w = (struct watchpoint *) b;
5232
5233 cond = w->cond_exp.get ();
5234 }
5235 else
5236 cond = bl->cond.get ();
5237
5238 if (cond && b->disposition != disp_del_at_next_stop)
5239 {
5240 int within_current_scope = 1;
5241 struct watchpoint * w;
5242
5243 /* We use value_mark and value_free_to_mark because it could
5244 be a long time before we return to the command level and
5245 call free_all_values. We can't call free_all_values
5246 because we might be in the middle of evaluating a
5247 function call. */
5248 struct value *mark = value_mark ();
5249
5250 if (is_watchpoint (b))
5251 w = (struct watchpoint *) b;
5252 else
5253 w = NULL;
5254
5255 /* Need to select the frame, with all that implies so that
5256 the conditions will have the right context. Because we
5257 use the frame, we will not see an inlined function's
5258 variables when we arrive at a breakpoint at the start
5259 of the inlined function; the current frame will be the
5260 call site. */
5261 if (w == NULL || w->cond_exp_valid_block == NULL)
5262 select_frame (get_current_frame ());
5263 else
5264 {
5265 struct frame_info *frame;
5266
5267 /* For local watchpoint expressions, which particular
5268 instance of a local is being watched matters, so we
5269 keep track of the frame to evaluate the expression
5270 in. To evaluate the condition however, it doesn't
5271 really matter which instantiation of the function
5272 where the condition makes sense triggers the
5273 watchpoint. This allows an expression like "watch
5274 global if q > 10" set in `func', catch writes to
5275 global on all threads that call `func', or catch
5276 writes on all recursive calls of `func' by a single
5277 thread. We simply always evaluate the condition in
5278 the innermost frame that's executing where it makes
5279 sense to evaluate the condition. It seems
5280 intuitive. */
5281 frame = block_innermost_frame (w->cond_exp_valid_block);
5282 if (frame != NULL)
5283 select_frame (frame);
5284 else
5285 within_current_scope = 0;
5286 }
5287 if (within_current_scope)
5288 {
5289 TRY
5290 {
5291 condition_result = breakpoint_cond_eval (cond);
5292 }
5293 CATCH (ex, RETURN_MASK_ALL)
5294 {
5295 exception_fprintf (gdb_stderr, ex,
5296 "Error in testing breakpoint condition:\n");
5297 }
5298 END_CATCH
5299 }
5300 else
5301 {
5302 warning (_("Watchpoint condition cannot be tested "
5303 "in the current scope"));
5304 /* If we failed to set the right context for this
5305 watchpoint, unconditionally report it. */
5306 }
5307 /* FIXME-someday, should give breakpoint #. */
5308 value_free_to_mark (mark);
5309 }
5310
5311 if (cond && !condition_result)
5312 {
5313 bs->stop = 0;
5314 }
5315 else if (b->ignore_count > 0)
5316 {
5317 b->ignore_count--;
5318 bs->stop = 0;
5319 /* Increase the hit count even though we don't stop. */
5320 ++(b->hit_count);
5321 gdb::observers::breakpoint_modified.notify (b);
5322 }
5323 }
5324
5325 /* Returns true if we need to track moribund locations of LOC's type
5326 on the current target. */
5327
5328 static int
5329 need_moribund_for_location_type (struct bp_location *loc)
5330 {
5331 return ((loc->loc_type == bp_loc_software_breakpoint
5332 && !target_supports_stopped_by_sw_breakpoint ())
5333 || (loc->loc_type == bp_loc_hardware_breakpoint
5334 && !target_supports_stopped_by_hw_breakpoint ()));
5335 }
5336
5337
5338 /* Get a bpstat associated with having just stopped at address
5339 BP_ADDR in thread PTID.
5340
5341 Determine whether we stopped at a breakpoint, etc, or whether we
5342 don't understand this stop. Result is a chain of bpstat's such
5343 that:
5344
5345 if we don't understand the stop, the result is a null pointer.
5346
5347 if we understand why we stopped, the result is not null.
5348
5349 Each element of the chain refers to a particular breakpoint or
5350 watchpoint at which we have stopped. (We may have stopped for
5351 several reasons concurrently.)
5352
5353 Each element of the chain has valid next, breakpoint_at,
5354 commands, FIXME??? fields. */
5355
5356 bpstat
5357 bpstat_stop_status (const address_space *aspace,
5358 CORE_ADDR bp_addr, ptid_t ptid,
5359 const struct target_waitstatus *ws)
5360 {
5361 struct breakpoint *b = NULL;
5362 struct bp_location *bl;
5363 struct bp_location *loc;
5364 /* First item of allocated bpstat's. */
5365 bpstat bs_head = NULL, *bs_link = &bs_head;
5366 /* Pointer to the last thing in the chain currently. */
5367 bpstat bs;
5368 int ix;
5369 int need_remove_insert;
5370 int removed_any;
5371
5372 /* First, build the bpstat chain with locations that explain a
5373 target stop, while being careful to not set the target running,
5374 as that may invalidate locations (in particular watchpoint
5375 locations are recreated). Resuming will happen here with
5376 breakpoint conditions or watchpoint expressions that include
5377 inferior function calls. */
5378
5379 ALL_BREAKPOINTS (b)
5380 {
5381 if (!breakpoint_enabled (b))
5382 continue;
5383
5384 for (bl = b->loc; bl != NULL; bl = bl->next)
5385 {
5386 /* For hardware watchpoints, we look only at the first
5387 location. The watchpoint_check function will work on the
5388 entire expression, not the individual locations. For
5389 read watchpoints, the watchpoints_triggered function has
5390 checked all locations already. */
5391 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5392 break;
5393
5394 if (!bl->enabled || bl->shlib_disabled)
5395 continue;
5396
5397 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5398 continue;
5399
5400 /* Come here if it's a watchpoint, or if the break address
5401 matches. */
5402
5403 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5404 explain stop. */
5405
5406 /* Assume we stop. Should we find a watchpoint that is not
5407 actually triggered, or if the condition of the breakpoint
5408 evaluates as false, we'll reset 'stop' to 0. */
5409 bs->stop = 1;
5410 bs->print = 1;
5411
5412 /* If this is a scope breakpoint, mark the associated
5413 watchpoint as triggered so that we will handle the
5414 out-of-scope event. We'll get to the watchpoint next
5415 iteration. */
5416 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5417 {
5418 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5419
5420 w->watchpoint_triggered = watch_triggered_yes;
5421 }
5422 }
5423 }
5424
5425 /* Check if a moribund breakpoint explains the stop. */
5426 if (!target_supports_stopped_by_sw_breakpoint ()
5427 || !target_supports_stopped_by_hw_breakpoint ())
5428 {
5429 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5430 {
5431 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5432 && need_moribund_for_location_type (loc))
5433 {
5434 bs = new bpstats (loc, &bs_link);
5435 /* For hits of moribund locations, we should just proceed. */
5436 bs->stop = 0;
5437 bs->print = 0;
5438 bs->print_it = print_it_noop;
5439 }
5440 }
5441 }
5442
5443 /* A bit of special processing for shlib breakpoints. We need to
5444 process solib loading here, so that the lists of loaded and
5445 unloaded libraries are correct before we handle "catch load" and
5446 "catch unload". */
5447 for (bs = bs_head; bs != NULL; bs = bs->next)
5448 {
5449 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5450 {
5451 handle_solib_event ();
5452 break;
5453 }
5454 }
5455
5456 /* Now go through the locations that caused the target to stop, and
5457 check whether we're interested in reporting this stop to higher
5458 layers, or whether we should resume the target transparently. */
5459
5460 removed_any = 0;
5461
5462 for (bs = bs_head; bs != NULL; bs = bs->next)
5463 {
5464 if (!bs->stop)
5465 continue;
5466
5467 b = bs->breakpoint_at;
5468 b->ops->check_status (bs);
5469 if (bs->stop)
5470 {
5471 bpstat_check_breakpoint_conditions (bs, ptid);
5472
5473 if (bs->stop)
5474 {
5475 ++(b->hit_count);
5476 gdb::observers::breakpoint_modified.notify (b);
5477
5478 /* We will stop here. */
5479 if (b->disposition == disp_disable)
5480 {
5481 --(b->enable_count);
5482 if (b->enable_count <= 0)
5483 b->enable_state = bp_disabled;
5484 removed_any = 1;
5485 }
5486 if (b->silent)
5487 bs->print = 0;
5488 bs->commands = b->commands;
5489 if (command_line_is_silent (bs->commands
5490 ? bs->commands.get () : NULL))
5491 bs->print = 0;
5492
5493 b->ops->after_condition_true (bs);
5494 }
5495
5496 }
5497
5498 /* Print nothing for this entry if we don't stop or don't
5499 print. */
5500 if (!bs->stop || !bs->print)
5501 bs->print_it = print_it_noop;
5502 }
5503
5504 /* If we aren't stopping, the value of some hardware watchpoint may
5505 not have changed, but the intermediate memory locations we are
5506 watching may have. Don't bother if we're stopping; this will get
5507 done later. */
5508 need_remove_insert = 0;
5509 if (! bpstat_causes_stop (bs_head))
5510 for (bs = bs_head; bs != NULL; bs = bs->next)
5511 if (!bs->stop
5512 && bs->breakpoint_at
5513 && is_hardware_watchpoint (bs->breakpoint_at))
5514 {
5515 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5516
5517 update_watchpoint (w, 0 /* don't reparse. */);
5518 need_remove_insert = 1;
5519 }
5520
5521 if (need_remove_insert)
5522 update_global_location_list (UGLL_MAY_INSERT);
5523 else if (removed_any)
5524 update_global_location_list (UGLL_DONT_INSERT);
5525
5526 return bs_head;
5527 }
5528
5529 static void
5530 handle_jit_event (void)
5531 {
5532 struct frame_info *frame;
5533 struct gdbarch *gdbarch;
5534
5535 if (debug_infrun)
5536 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5537
5538 /* Switch terminal for any messages produced by
5539 breakpoint_re_set. */
5540 target_terminal::ours_for_output ();
5541
5542 frame = get_current_frame ();
5543 gdbarch = get_frame_arch (frame);
5544
5545 jit_event_handler (gdbarch);
5546
5547 target_terminal::inferior ();
5548 }
5549
5550 /* Prepare WHAT final decision for infrun. */
5551
5552 /* Decide what infrun needs to do with this bpstat. */
5553
5554 struct bpstat_what
5555 bpstat_what (bpstat bs_head)
5556 {
5557 struct bpstat_what retval;
5558 bpstat bs;
5559
5560 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5561 retval.call_dummy = STOP_NONE;
5562 retval.is_longjmp = 0;
5563
5564 for (bs = bs_head; bs != NULL; bs = bs->next)
5565 {
5566 /* Extract this BS's action. After processing each BS, we check
5567 if its action overrides all we've seem so far. */
5568 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5569 enum bptype bptype;
5570
5571 if (bs->breakpoint_at == NULL)
5572 {
5573 /* I suspect this can happen if it was a momentary
5574 breakpoint which has since been deleted. */
5575 bptype = bp_none;
5576 }
5577 else
5578 bptype = bs->breakpoint_at->type;
5579
5580 switch (bptype)
5581 {
5582 case bp_none:
5583 break;
5584 case bp_breakpoint:
5585 case bp_hardware_breakpoint:
5586 case bp_single_step:
5587 case bp_until:
5588 case bp_finish:
5589 case bp_shlib_event:
5590 if (bs->stop)
5591 {
5592 if (bs->print)
5593 this_action = BPSTAT_WHAT_STOP_NOISY;
5594 else
5595 this_action = BPSTAT_WHAT_STOP_SILENT;
5596 }
5597 else
5598 this_action = BPSTAT_WHAT_SINGLE;
5599 break;
5600 case bp_watchpoint:
5601 case bp_hardware_watchpoint:
5602 case bp_read_watchpoint:
5603 case bp_access_watchpoint:
5604 if (bs->stop)
5605 {
5606 if (bs->print)
5607 this_action = BPSTAT_WHAT_STOP_NOISY;
5608 else
5609 this_action = BPSTAT_WHAT_STOP_SILENT;
5610 }
5611 else
5612 {
5613 /* There was a watchpoint, but we're not stopping.
5614 This requires no further action. */
5615 }
5616 break;
5617 case bp_longjmp:
5618 case bp_longjmp_call_dummy:
5619 case bp_exception:
5620 if (bs->stop)
5621 {
5622 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5623 retval.is_longjmp = bptype != bp_exception;
5624 }
5625 else
5626 this_action = BPSTAT_WHAT_SINGLE;
5627 break;
5628 case bp_longjmp_resume:
5629 case bp_exception_resume:
5630 if (bs->stop)
5631 {
5632 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5633 retval.is_longjmp = bptype == bp_longjmp_resume;
5634 }
5635 else
5636 this_action = BPSTAT_WHAT_SINGLE;
5637 break;
5638 case bp_step_resume:
5639 if (bs->stop)
5640 this_action = BPSTAT_WHAT_STEP_RESUME;
5641 else
5642 {
5643 /* It is for the wrong frame. */
5644 this_action = BPSTAT_WHAT_SINGLE;
5645 }
5646 break;
5647 case bp_hp_step_resume:
5648 if (bs->stop)
5649 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5650 else
5651 {
5652 /* It is for the wrong frame. */
5653 this_action = BPSTAT_WHAT_SINGLE;
5654 }
5655 break;
5656 case bp_watchpoint_scope:
5657 case bp_thread_event:
5658 case bp_overlay_event:
5659 case bp_longjmp_master:
5660 case bp_std_terminate_master:
5661 case bp_exception_master:
5662 this_action = BPSTAT_WHAT_SINGLE;
5663 break;
5664 case bp_catchpoint:
5665 if (bs->stop)
5666 {
5667 if (bs->print)
5668 this_action = BPSTAT_WHAT_STOP_NOISY;
5669 else
5670 this_action = BPSTAT_WHAT_STOP_SILENT;
5671 }
5672 else
5673 {
5674 /* There was a catchpoint, but we're not stopping.
5675 This requires no further action. */
5676 }
5677 break;
5678 case bp_jit_event:
5679 this_action = BPSTAT_WHAT_SINGLE;
5680 break;
5681 case bp_call_dummy:
5682 /* Make sure the action is stop (silent or noisy),
5683 so infrun.c pops the dummy frame. */
5684 retval.call_dummy = STOP_STACK_DUMMY;
5685 this_action = BPSTAT_WHAT_STOP_SILENT;
5686 break;
5687 case bp_std_terminate:
5688 /* Make sure the action is stop (silent or noisy),
5689 so infrun.c pops the dummy frame. */
5690 retval.call_dummy = STOP_STD_TERMINATE;
5691 this_action = BPSTAT_WHAT_STOP_SILENT;
5692 break;
5693 case bp_tracepoint:
5694 case bp_fast_tracepoint:
5695 case bp_static_tracepoint:
5696 /* Tracepoint hits should not be reported back to GDB, and
5697 if one got through somehow, it should have been filtered
5698 out already. */
5699 internal_error (__FILE__, __LINE__,
5700 _("bpstat_what: tracepoint encountered"));
5701 break;
5702 case bp_gnu_ifunc_resolver:
5703 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5704 this_action = BPSTAT_WHAT_SINGLE;
5705 break;
5706 case bp_gnu_ifunc_resolver_return:
5707 /* The breakpoint will be removed, execution will restart from the
5708 PC of the former breakpoint. */
5709 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5710 break;
5711
5712 case bp_dprintf:
5713 if (bs->stop)
5714 this_action = BPSTAT_WHAT_STOP_SILENT;
5715 else
5716 this_action = BPSTAT_WHAT_SINGLE;
5717 break;
5718
5719 default:
5720 internal_error (__FILE__, __LINE__,
5721 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5722 }
5723
5724 retval.main_action = std::max (retval.main_action, this_action);
5725 }
5726
5727 return retval;
5728 }
5729
5730 void
5731 bpstat_run_callbacks (bpstat bs_head)
5732 {
5733 bpstat bs;
5734
5735 for (bs = bs_head; bs != NULL; bs = bs->next)
5736 {
5737 struct breakpoint *b = bs->breakpoint_at;
5738
5739 if (b == NULL)
5740 continue;
5741 switch (b->type)
5742 {
5743 case bp_jit_event:
5744 handle_jit_event ();
5745 break;
5746 case bp_gnu_ifunc_resolver:
5747 gnu_ifunc_resolver_stop (b);
5748 break;
5749 case bp_gnu_ifunc_resolver_return:
5750 gnu_ifunc_resolver_return_stop (b);
5751 break;
5752 }
5753 }
5754 }
5755
5756 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5757 without hardware support). This isn't related to a specific bpstat,
5758 just to things like whether watchpoints are set. */
5759
5760 int
5761 bpstat_should_step (void)
5762 {
5763 struct breakpoint *b;
5764
5765 ALL_BREAKPOINTS (b)
5766 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5767 return 1;
5768 return 0;
5769 }
5770
5771 int
5772 bpstat_causes_stop (bpstat bs)
5773 {
5774 for (; bs != NULL; bs = bs->next)
5775 if (bs->stop)
5776 return 1;
5777
5778 return 0;
5779 }
5780
5781 \f
5782
5783 /* Compute a string of spaces suitable to indent the next line
5784 so it starts at the position corresponding to the table column
5785 named COL_NAME in the currently active table of UIOUT. */
5786
5787 static char *
5788 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5789 {
5790 static char wrap_indent[80];
5791 int i, total_width, width, align;
5792 const char *text;
5793
5794 total_width = 0;
5795 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5796 {
5797 if (strcmp (text, col_name) == 0)
5798 {
5799 gdb_assert (total_width < sizeof wrap_indent);
5800 memset (wrap_indent, ' ', total_width);
5801 wrap_indent[total_width] = 0;
5802
5803 return wrap_indent;
5804 }
5805
5806 total_width += width + 1;
5807 }
5808
5809 return NULL;
5810 }
5811
5812 /* Determine if the locations of this breakpoint will have their conditions
5813 evaluated by the target, host or a mix of both. Returns the following:
5814
5815 "host": Host evals condition.
5816 "host or target": Host or Target evals condition.
5817 "target": Target evals condition.
5818 */
5819
5820 static const char *
5821 bp_condition_evaluator (struct breakpoint *b)
5822 {
5823 struct bp_location *bl;
5824 char host_evals = 0;
5825 char target_evals = 0;
5826
5827 if (!b)
5828 return NULL;
5829
5830 if (!is_breakpoint (b))
5831 return NULL;
5832
5833 if (gdb_evaluates_breakpoint_condition_p ()
5834 || !target_supports_evaluation_of_breakpoint_conditions ())
5835 return condition_evaluation_host;
5836
5837 for (bl = b->loc; bl; bl = bl->next)
5838 {
5839 if (bl->cond_bytecode)
5840 target_evals++;
5841 else
5842 host_evals++;
5843 }
5844
5845 if (host_evals && target_evals)
5846 return condition_evaluation_both;
5847 else if (target_evals)
5848 return condition_evaluation_target;
5849 else
5850 return condition_evaluation_host;
5851 }
5852
5853 /* Determine the breakpoint location's condition evaluator. This is
5854 similar to bp_condition_evaluator, but for locations. */
5855
5856 static const char *
5857 bp_location_condition_evaluator (struct bp_location *bl)
5858 {
5859 if (bl && !is_breakpoint (bl->owner))
5860 return NULL;
5861
5862 if (gdb_evaluates_breakpoint_condition_p ()
5863 || !target_supports_evaluation_of_breakpoint_conditions ())
5864 return condition_evaluation_host;
5865
5866 if (bl && bl->cond_bytecode)
5867 return condition_evaluation_target;
5868 else
5869 return condition_evaluation_host;
5870 }
5871
5872 /* Print the LOC location out of the list of B->LOC locations. */
5873
5874 static void
5875 print_breakpoint_location (struct breakpoint *b,
5876 struct bp_location *loc)
5877 {
5878 struct ui_out *uiout = current_uiout;
5879
5880 scoped_restore_current_program_space restore_pspace;
5881
5882 if (loc != NULL && loc->shlib_disabled)
5883 loc = NULL;
5884
5885 if (loc != NULL)
5886 set_current_program_space (loc->pspace);
5887
5888 if (b->display_canonical)
5889 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5890 else if (loc && loc->symtab)
5891 {
5892 const struct symbol *sym = loc->symbol;
5893
5894 if (sym == NULL)
5895 sym = find_pc_sect_function (loc->address, loc->section);
5896
5897 if (sym)
5898 {
5899 uiout->text ("in ");
5900 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5901 uiout->text (" ");
5902 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5903 uiout->text ("at ");
5904 }
5905 uiout->field_string ("file",
5906 symtab_to_filename_for_display (loc->symtab));
5907 uiout->text (":");
5908
5909 if (uiout->is_mi_like_p ())
5910 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5911
5912 uiout->field_int ("line", loc->line_number);
5913 }
5914 else if (loc)
5915 {
5916 string_file stb;
5917
5918 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5919 demangle, "");
5920 uiout->field_stream ("at", stb);
5921 }
5922 else
5923 {
5924 uiout->field_string ("pending",
5925 event_location_to_string (b->location.get ()));
5926 /* If extra_string is available, it could be holding a condition
5927 or dprintf arguments. In either case, make sure it is printed,
5928 too, but only for non-MI streams. */
5929 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5930 {
5931 if (b->type == bp_dprintf)
5932 uiout->text (",");
5933 else
5934 uiout->text (" ");
5935 uiout->text (b->extra_string);
5936 }
5937 }
5938
5939 if (loc && is_breakpoint (b)
5940 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5941 && bp_condition_evaluator (b) == condition_evaluation_both)
5942 {
5943 uiout->text (" (");
5944 uiout->field_string ("evaluated-by",
5945 bp_location_condition_evaluator (loc));
5946 uiout->text (")");
5947 }
5948 }
5949
5950 static const char *
5951 bptype_string (enum bptype type)
5952 {
5953 struct ep_type_description
5954 {
5955 enum bptype type;
5956 const char *description;
5957 };
5958 static struct ep_type_description bptypes[] =
5959 {
5960 {bp_none, "?deleted?"},
5961 {bp_breakpoint, "breakpoint"},
5962 {bp_hardware_breakpoint, "hw breakpoint"},
5963 {bp_single_step, "sw single-step"},
5964 {bp_until, "until"},
5965 {bp_finish, "finish"},
5966 {bp_watchpoint, "watchpoint"},
5967 {bp_hardware_watchpoint, "hw watchpoint"},
5968 {bp_read_watchpoint, "read watchpoint"},
5969 {bp_access_watchpoint, "acc watchpoint"},
5970 {bp_longjmp, "longjmp"},
5971 {bp_longjmp_resume, "longjmp resume"},
5972 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5973 {bp_exception, "exception"},
5974 {bp_exception_resume, "exception resume"},
5975 {bp_step_resume, "step resume"},
5976 {bp_hp_step_resume, "high-priority step resume"},
5977 {bp_watchpoint_scope, "watchpoint scope"},
5978 {bp_call_dummy, "call dummy"},
5979 {bp_std_terminate, "std::terminate"},
5980 {bp_shlib_event, "shlib events"},
5981 {bp_thread_event, "thread events"},
5982 {bp_overlay_event, "overlay events"},
5983 {bp_longjmp_master, "longjmp master"},
5984 {bp_std_terminate_master, "std::terminate master"},
5985 {bp_exception_master, "exception master"},
5986 {bp_catchpoint, "catchpoint"},
5987 {bp_tracepoint, "tracepoint"},
5988 {bp_fast_tracepoint, "fast tracepoint"},
5989 {bp_static_tracepoint, "static tracepoint"},
5990 {bp_dprintf, "dprintf"},
5991 {bp_jit_event, "jit events"},
5992 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5993 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5994 };
5995
5996 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5997 || ((int) type != bptypes[(int) type].type))
5998 internal_error (__FILE__, __LINE__,
5999 _("bptypes table does not describe type #%d."),
6000 (int) type);
6001
6002 return bptypes[(int) type].description;
6003 }
6004
6005 /* For MI, output a field named 'thread-groups' with a list as the value.
6006 For CLI, prefix the list with the string 'inf'. */
6007
6008 static void
6009 output_thread_groups (struct ui_out *uiout,
6010 const char *field_name,
6011 const std::vector<int> &inf_nums,
6012 int mi_only)
6013 {
6014 int is_mi = uiout->is_mi_like_p ();
6015
6016 /* For backward compatibility, don't display inferiors in CLI unless
6017 there are several. Always display them for MI. */
6018 if (!is_mi && mi_only)
6019 return;
6020
6021 ui_out_emit_list list_emitter (uiout, field_name);
6022
6023 for (size_t i = 0; i < inf_nums.size (); i++)
6024 {
6025 if (is_mi)
6026 {
6027 char mi_group[10];
6028
6029 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6030 uiout->field_string (NULL, mi_group);
6031 }
6032 else
6033 {
6034 if (i == 0)
6035 uiout->text (" inf ");
6036 else
6037 uiout->text (", ");
6038
6039 uiout->text (plongest (inf_nums[i]));
6040 }
6041 }
6042 }
6043
6044 /* Print B to gdb_stdout. */
6045
6046 static void
6047 print_one_breakpoint_location (struct breakpoint *b,
6048 struct bp_location *loc,
6049 int loc_number,
6050 struct bp_location **last_loc,
6051 int allflag)
6052 {
6053 struct command_line *l;
6054 static char bpenables[] = "nynny";
6055
6056 struct ui_out *uiout = current_uiout;
6057 int header_of_multiple = 0;
6058 int part_of_multiple = (loc != NULL);
6059 struct value_print_options opts;
6060
6061 get_user_print_options (&opts);
6062
6063 gdb_assert (!loc || loc_number != 0);
6064 /* See comment in print_one_breakpoint concerning treatment of
6065 breakpoints with single disabled location. */
6066 if (loc == NULL
6067 && (b->loc != NULL
6068 && (b->loc->next != NULL || !b->loc->enabled)))
6069 header_of_multiple = 1;
6070 if (loc == NULL)
6071 loc = b->loc;
6072
6073 annotate_record ();
6074
6075 /* 1 */
6076 annotate_field (0);
6077 if (part_of_multiple)
6078 {
6079 char *formatted;
6080 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6081 uiout->field_string ("number", formatted);
6082 xfree (formatted);
6083 }
6084 else
6085 {
6086 uiout->field_int ("number", b->number);
6087 }
6088
6089 /* 2 */
6090 annotate_field (1);
6091 if (part_of_multiple)
6092 uiout->field_skip ("type");
6093 else
6094 uiout->field_string ("type", bptype_string (b->type));
6095
6096 /* 3 */
6097 annotate_field (2);
6098 if (part_of_multiple)
6099 uiout->field_skip ("disp");
6100 else
6101 uiout->field_string ("disp", bpdisp_text (b->disposition));
6102
6103
6104 /* 4 */
6105 annotate_field (3);
6106 if (part_of_multiple)
6107 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6108 else
6109 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6110 uiout->spaces (2);
6111
6112
6113 /* 5 and 6 */
6114 if (b->ops != NULL && b->ops->print_one != NULL)
6115 {
6116 /* Although the print_one can possibly print all locations,
6117 calling it here is not likely to get any nice result. So,
6118 make sure there's just one location. */
6119 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6120 b->ops->print_one (b, last_loc);
6121 }
6122 else
6123 switch (b->type)
6124 {
6125 case bp_none:
6126 internal_error (__FILE__, __LINE__,
6127 _("print_one_breakpoint: bp_none encountered\n"));
6128 break;
6129
6130 case bp_watchpoint:
6131 case bp_hardware_watchpoint:
6132 case bp_read_watchpoint:
6133 case bp_access_watchpoint:
6134 {
6135 struct watchpoint *w = (struct watchpoint *) b;
6136
6137 /* Field 4, the address, is omitted (which makes the columns
6138 not line up too nicely with the headers, but the effect
6139 is relatively readable). */
6140 if (opts.addressprint)
6141 uiout->field_skip ("addr");
6142 annotate_field (5);
6143 uiout->field_string ("what", w->exp_string);
6144 }
6145 break;
6146
6147 case bp_breakpoint:
6148 case bp_hardware_breakpoint:
6149 case bp_single_step:
6150 case bp_until:
6151 case bp_finish:
6152 case bp_longjmp:
6153 case bp_longjmp_resume:
6154 case bp_longjmp_call_dummy:
6155 case bp_exception:
6156 case bp_exception_resume:
6157 case bp_step_resume:
6158 case bp_hp_step_resume:
6159 case bp_watchpoint_scope:
6160 case bp_call_dummy:
6161 case bp_std_terminate:
6162 case bp_shlib_event:
6163 case bp_thread_event:
6164 case bp_overlay_event:
6165 case bp_longjmp_master:
6166 case bp_std_terminate_master:
6167 case bp_exception_master:
6168 case bp_tracepoint:
6169 case bp_fast_tracepoint:
6170 case bp_static_tracepoint:
6171 case bp_dprintf:
6172 case bp_jit_event:
6173 case bp_gnu_ifunc_resolver:
6174 case bp_gnu_ifunc_resolver_return:
6175 if (opts.addressprint)
6176 {
6177 annotate_field (4);
6178 if (header_of_multiple)
6179 uiout->field_string ("addr", "<MULTIPLE>");
6180 else if (b->loc == NULL || loc->shlib_disabled)
6181 uiout->field_string ("addr", "<PENDING>");
6182 else
6183 uiout->field_core_addr ("addr",
6184 loc->gdbarch, loc->address);
6185 }
6186 annotate_field (5);
6187 if (!header_of_multiple)
6188 print_breakpoint_location (b, loc);
6189 if (b->loc)
6190 *last_loc = b->loc;
6191 break;
6192 }
6193
6194
6195 if (loc != NULL && !header_of_multiple)
6196 {
6197 struct inferior *inf;
6198 std::vector<int> inf_nums;
6199 int mi_only = 1;
6200
6201 ALL_INFERIORS (inf)
6202 {
6203 if (inf->pspace == loc->pspace)
6204 inf_nums.push_back (inf->num);
6205 }
6206
6207 /* For backward compatibility, don't display inferiors in CLI unless
6208 there are several. Always display for MI. */
6209 if (allflag
6210 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6211 && (number_of_program_spaces () > 1
6212 || number_of_inferiors () > 1)
6213 /* LOC is for existing B, it cannot be in
6214 moribund_locations and thus having NULL OWNER. */
6215 && loc->owner->type != bp_catchpoint))
6216 mi_only = 0;
6217 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6218 }
6219
6220 if (!part_of_multiple)
6221 {
6222 if (b->thread != -1)
6223 {
6224 /* FIXME: This seems to be redundant and lost here; see the
6225 "stop only in" line a little further down. */
6226 uiout->text (" thread ");
6227 uiout->field_int ("thread", b->thread);
6228 }
6229 else if (b->task != 0)
6230 {
6231 uiout->text (" task ");
6232 uiout->field_int ("task", b->task);
6233 }
6234 }
6235
6236 uiout->text ("\n");
6237
6238 if (!part_of_multiple)
6239 b->ops->print_one_detail (b, uiout);
6240
6241 if (part_of_multiple && frame_id_p (b->frame_id))
6242 {
6243 annotate_field (6);
6244 uiout->text ("\tstop only in stack frame at ");
6245 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6246 the frame ID. */
6247 uiout->field_core_addr ("frame",
6248 b->gdbarch, b->frame_id.stack_addr);
6249 uiout->text ("\n");
6250 }
6251
6252 if (!part_of_multiple && b->cond_string)
6253 {
6254 annotate_field (7);
6255 if (is_tracepoint (b))
6256 uiout->text ("\ttrace only if ");
6257 else
6258 uiout->text ("\tstop only if ");
6259 uiout->field_string ("cond", b->cond_string);
6260
6261 /* Print whether the target is doing the breakpoint's condition
6262 evaluation. If GDB is doing the evaluation, don't print anything. */
6263 if (is_breakpoint (b)
6264 && breakpoint_condition_evaluation_mode ()
6265 == condition_evaluation_target)
6266 {
6267 uiout->text (" (");
6268 uiout->field_string ("evaluated-by",
6269 bp_condition_evaluator (b));
6270 uiout->text (" evals)");
6271 }
6272 uiout->text ("\n");
6273 }
6274
6275 if (!part_of_multiple && b->thread != -1)
6276 {
6277 /* FIXME should make an annotation for this. */
6278 uiout->text ("\tstop only in thread ");
6279 if (uiout->is_mi_like_p ())
6280 uiout->field_int ("thread", b->thread);
6281 else
6282 {
6283 struct thread_info *thr = find_thread_global_id (b->thread);
6284
6285 uiout->field_string ("thread", print_thread_id (thr));
6286 }
6287 uiout->text ("\n");
6288 }
6289
6290 if (!part_of_multiple)
6291 {
6292 if (b->hit_count)
6293 {
6294 /* FIXME should make an annotation for this. */
6295 if (is_catchpoint (b))
6296 uiout->text ("\tcatchpoint");
6297 else if (is_tracepoint (b))
6298 uiout->text ("\ttracepoint");
6299 else
6300 uiout->text ("\tbreakpoint");
6301 uiout->text (" already hit ");
6302 uiout->field_int ("times", b->hit_count);
6303 if (b->hit_count == 1)
6304 uiout->text (" time\n");
6305 else
6306 uiout->text (" times\n");
6307 }
6308 else
6309 {
6310 /* Output the count also if it is zero, but only if this is mi. */
6311 if (uiout->is_mi_like_p ())
6312 uiout->field_int ("times", b->hit_count);
6313 }
6314 }
6315
6316 if (!part_of_multiple && b->ignore_count)
6317 {
6318 annotate_field (8);
6319 uiout->text ("\tignore next ");
6320 uiout->field_int ("ignore", b->ignore_count);
6321 uiout->text (" hits\n");
6322 }
6323
6324 /* Note that an enable count of 1 corresponds to "enable once"
6325 behavior, which is reported by the combination of enablement and
6326 disposition, so we don't need to mention it here. */
6327 if (!part_of_multiple && b->enable_count > 1)
6328 {
6329 annotate_field (8);
6330 uiout->text ("\tdisable after ");
6331 /* Tweak the wording to clarify that ignore and enable counts
6332 are distinct, and have additive effect. */
6333 if (b->ignore_count)
6334 uiout->text ("additional ");
6335 else
6336 uiout->text ("next ");
6337 uiout->field_int ("enable", b->enable_count);
6338 uiout->text (" hits\n");
6339 }
6340
6341 if (!part_of_multiple && is_tracepoint (b))
6342 {
6343 struct tracepoint *tp = (struct tracepoint *) b;
6344
6345 if (tp->traceframe_usage)
6346 {
6347 uiout->text ("\ttrace buffer usage ");
6348 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6349 uiout->text (" bytes\n");
6350 }
6351 }
6352
6353 l = b->commands ? b->commands.get () : NULL;
6354 if (!part_of_multiple && l)
6355 {
6356 annotate_field (9);
6357 ui_out_emit_tuple tuple_emitter (uiout, "script");
6358 print_command_lines (uiout, l, 4);
6359 }
6360
6361 if (is_tracepoint (b))
6362 {
6363 struct tracepoint *t = (struct tracepoint *) b;
6364
6365 if (!part_of_multiple && t->pass_count)
6366 {
6367 annotate_field (10);
6368 uiout->text ("\tpass count ");
6369 uiout->field_int ("pass", t->pass_count);
6370 uiout->text (" \n");
6371 }
6372
6373 /* Don't display it when tracepoint or tracepoint location is
6374 pending. */
6375 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6376 {
6377 annotate_field (11);
6378
6379 if (uiout->is_mi_like_p ())
6380 uiout->field_string ("installed",
6381 loc->inserted ? "y" : "n");
6382 else
6383 {
6384 if (loc->inserted)
6385 uiout->text ("\t");
6386 else
6387 uiout->text ("\tnot ");
6388 uiout->text ("installed on target\n");
6389 }
6390 }
6391 }
6392
6393 if (uiout->is_mi_like_p () && !part_of_multiple)
6394 {
6395 if (is_watchpoint (b))
6396 {
6397 struct watchpoint *w = (struct watchpoint *) b;
6398
6399 uiout->field_string ("original-location", w->exp_string);
6400 }
6401 else if (b->location != NULL
6402 && event_location_to_string (b->location.get ()) != NULL)
6403 uiout->field_string ("original-location",
6404 event_location_to_string (b->location.get ()));
6405 }
6406 }
6407
6408 static void
6409 print_one_breakpoint (struct breakpoint *b,
6410 struct bp_location **last_loc,
6411 int allflag)
6412 {
6413 struct ui_out *uiout = current_uiout;
6414
6415 {
6416 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6417
6418 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6419 }
6420
6421 /* If this breakpoint has custom print function,
6422 it's already printed. Otherwise, print individual
6423 locations, if any. */
6424 if (b->ops == NULL || b->ops->print_one == NULL)
6425 {
6426 /* If breakpoint has a single location that is disabled, we
6427 print it as if it had several locations, since otherwise it's
6428 hard to represent "breakpoint enabled, location disabled"
6429 situation.
6430
6431 Note that while hardware watchpoints have several locations
6432 internally, that's not a property exposed to user. */
6433 if (b->loc
6434 && !is_hardware_watchpoint (b)
6435 && (b->loc->next || !b->loc->enabled))
6436 {
6437 struct bp_location *loc;
6438 int n = 1;
6439
6440 for (loc = b->loc; loc; loc = loc->next, ++n)
6441 {
6442 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6443 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6444 }
6445 }
6446 }
6447 }
6448
6449 static int
6450 breakpoint_address_bits (struct breakpoint *b)
6451 {
6452 int print_address_bits = 0;
6453 struct bp_location *loc;
6454
6455 /* Software watchpoints that aren't watching memory don't have an
6456 address to print. */
6457 if (is_no_memory_software_watchpoint (b))
6458 return 0;
6459
6460 for (loc = b->loc; loc; loc = loc->next)
6461 {
6462 int addr_bit;
6463
6464 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6465 if (addr_bit > print_address_bits)
6466 print_address_bits = addr_bit;
6467 }
6468
6469 return print_address_bits;
6470 }
6471
6472 /* See breakpoint.h. */
6473
6474 void
6475 print_breakpoint (breakpoint *b)
6476 {
6477 struct bp_location *dummy_loc = NULL;
6478 print_one_breakpoint (b, &dummy_loc, 0);
6479 }
6480
6481 /* Return true if this breakpoint was set by the user, false if it is
6482 internal or momentary. */
6483
6484 int
6485 user_breakpoint_p (struct breakpoint *b)
6486 {
6487 return b->number > 0;
6488 }
6489
6490 /* See breakpoint.h. */
6491
6492 int
6493 pending_breakpoint_p (struct breakpoint *b)
6494 {
6495 return b->loc == NULL;
6496 }
6497
6498 /* Print information on user settable breakpoint (watchpoint, etc)
6499 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6500 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6501 FILTER is non-NULL, call it on each breakpoint and only include the
6502 ones for which it returns non-zero. Return the total number of
6503 breakpoints listed. */
6504
6505 static int
6506 breakpoint_1 (const char *args, int allflag,
6507 int (*filter) (const struct breakpoint *))
6508 {
6509 struct breakpoint *b;
6510 struct bp_location *last_loc = NULL;
6511 int nr_printable_breakpoints;
6512 struct value_print_options opts;
6513 int print_address_bits = 0;
6514 int print_type_col_width = 14;
6515 struct ui_out *uiout = current_uiout;
6516
6517 get_user_print_options (&opts);
6518
6519 /* Compute the number of rows in the table, as well as the size
6520 required for address fields. */
6521 nr_printable_breakpoints = 0;
6522 ALL_BREAKPOINTS (b)
6523 {
6524 /* If we have a filter, only list the breakpoints it accepts. */
6525 if (filter && !filter (b))
6526 continue;
6527
6528 /* If we have an "args" string, it is a list of breakpoints to
6529 accept. Skip the others. */
6530 if (args != NULL && *args != '\0')
6531 {
6532 if (allflag && parse_and_eval_long (args) != b->number)
6533 continue;
6534 if (!allflag && !number_is_in_list (args, b->number))
6535 continue;
6536 }
6537
6538 if (allflag || user_breakpoint_p (b))
6539 {
6540 int addr_bit, type_len;
6541
6542 addr_bit = breakpoint_address_bits (b);
6543 if (addr_bit > print_address_bits)
6544 print_address_bits = addr_bit;
6545
6546 type_len = strlen (bptype_string (b->type));
6547 if (type_len > print_type_col_width)
6548 print_type_col_width = type_len;
6549
6550 nr_printable_breakpoints++;
6551 }
6552 }
6553
6554 {
6555 ui_out_emit_table table_emitter (uiout,
6556 opts.addressprint ? 6 : 5,
6557 nr_printable_breakpoints,
6558 "BreakpointTable");
6559
6560 if (nr_printable_breakpoints > 0)
6561 annotate_breakpoints_headers ();
6562 if (nr_printable_breakpoints > 0)
6563 annotate_field (0);
6564 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6565 if (nr_printable_breakpoints > 0)
6566 annotate_field (1);
6567 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6568 if (nr_printable_breakpoints > 0)
6569 annotate_field (2);
6570 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6571 if (nr_printable_breakpoints > 0)
6572 annotate_field (3);
6573 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6574 if (opts.addressprint)
6575 {
6576 if (nr_printable_breakpoints > 0)
6577 annotate_field (4);
6578 if (print_address_bits <= 32)
6579 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6580 else
6581 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6582 }
6583 if (nr_printable_breakpoints > 0)
6584 annotate_field (5);
6585 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6586 uiout->table_body ();
6587 if (nr_printable_breakpoints > 0)
6588 annotate_breakpoints_table ();
6589
6590 ALL_BREAKPOINTS (b)
6591 {
6592 QUIT;
6593 /* If we have a filter, only list the breakpoints it accepts. */
6594 if (filter && !filter (b))
6595 continue;
6596
6597 /* If we have an "args" string, it is a list of breakpoints to
6598 accept. Skip the others. */
6599
6600 if (args != NULL && *args != '\0')
6601 {
6602 if (allflag) /* maintenance info breakpoint */
6603 {
6604 if (parse_and_eval_long (args) != b->number)
6605 continue;
6606 }
6607 else /* all others */
6608 {
6609 if (!number_is_in_list (args, b->number))
6610 continue;
6611 }
6612 }
6613 /* We only print out user settable breakpoints unless the
6614 allflag is set. */
6615 if (allflag || user_breakpoint_p (b))
6616 print_one_breakpoint (b, &last_loc, allflag);
6617 }
6618 }
6619
6620 if (nr_printable_breakpoints == 0)
6621 {
6622 /* If there's a filter, let the caller decide how to report
6623 empty list. */
6624 if (!filter)
6625 {
6626 if (args == NULL || *args == '\0')
6627 uiout->message ("No breakpoints or watchpoints.\n");
6628 else
6629 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6630 args);
6631 }
6632 }
6633 else
6634 {
6635 if (last_loc && !server_command)
6636 set_next_address (last_loc->gdbarch, last_loc->address);
6637 }
6638
6639 /* FIXME? Should this be moved up so that it is only called when
6640 there have been breakpoints? */
6641 annotate_breakpoints_table_end ();
6642
6643 return nr_printable_breakpoints;
6644 }
6645
6646 /* Display the value of default-collect in a way that is generally
6647 compatible with the breakpoint list. */
6648
6649 static void
6650 default_collect_info (void)
6651 {
6652 struct ui_out *uiout = current_uiout;
6653
6654 /* If it has no value (which is frequently the case), say nothing; a
6655 message like "No default-collect." gets in user's face when it's
6656 not wanted. */
6657 if (!*default_collect)
6658 return;
6659
6660 /* The following phrase lines up nicely with per-tracepoint collect
6661 actions. */
6662 uiout->text ("default collect ");
6663 uiout->field_string ("default-collect", default_collect);
6664 uiout->text (" \n");
6665 }
6666
6667 static void
6668 info_breakpoints_command (const char *args, int from_tty)
6669 {
6670 breakpoint_1 (args, 0, NULL);
6671
6672 default_collect_info ();
6673 }
6674
6675 static void
6676 info_watchpoints_command (const char *args, int from_tty)
6677 {
6678 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6679 struct ui_out *uiout = current_uiout;
6680
6681 if (num_printed == 0)
6682 {
6683 if (args == NULL || *args == '\0')
6684 uiout->message ("No watchpoints.\n");
6685 else
6686 uiout->message ("No watchpoint matching '%s'.\n", args);
6687 }
6688 }
6689
6690 static void
6691 maintenance_info_breakpoints (const char *args, int from_tty)
6692 {
6693 breakpoint_1 (args, 1, NULL);
6694
6695 default_collect_info ();
6696 }
6697
6698 static int
6699 breakpoint_has_pc (struct breakpoint *b,
6700 struct program_space *pspace,
6701 CORE_ADDR pc, struct obj_section *section)
6702 {
6703 struct bp_location *bl = b->loc;
6704
6705 for (; bl; bl = bl->next)
6706 {
6707 if (bl->pspace == pspace
6708 && bl->address == pc
6709 && (!overlay_debugging || bl->section == section))
6710 return 1;
6711 }
6712 return 0;
6713 }
6714
6715 /* Print a message describing any user-breakpoints set at PC. This
6716 concerns with logical breakpoints, so we match program spaces, not
6717 address spaces. */
6718
6719 static void
6720 describe_other_breakpoints (struct gdbarch *gdbarch,
6721 struct program_space *pspace, CORE_ADDR pc,
6722 struct obj_section *section, int thread)
6723 {
6724 int others = 0;
6725 struct breakpoint *b;
6726
6727 ALL_BREAKPOINTS (b)
6728 others += (user_breakpoint_p (b)
6729 && breakpoint_has_pc (b, pspace, pc, section));
6730 if (others > 0)
6731 {
6732 if (others == 1)
6733 printf_filtered (_("Note: breakpoint "));
6734 else /* if (others == ???) */
6735 printf_filtered (_("Note: breakpoints "));
6736 ALL_BREAKPOINTS (b)
6737 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6738 {
6739 others--;
6740 printf_filtered ("%d", b->number);
6741 if (b->thread == -1 && thread != -1)
6742 printf_filtered (" (all threads)");
6743 else if (b->thread != -1)
6744 printf_filtered (" (thread %d)", b->thread);
6745 printf_filtered ("%s%s ",
6746 ((b->enable_state == bp_disabled
6747 || b->enable_state == bp_call_disabled)
6748 ? " (disabled)"
6749 : ""),
6750 (others > 1) ? ","
6751 : ((others == 1) ? " and" : ""));
6752 }
6753 printf_filtered (_("also set at pc "));
6754 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6755 printf_filtered (".\n");
6756 }
6757 }
6758 \f
6759
6760 /* Return true iff it is meaningful to use the address member of
6761 BPT locations. For some breakpoint types, the locations' address members
6762 are irrelevant and it makes no sense to attempt to compare them to other
6763 addresses (or use them for any other purpose either).
6764
6765 More specifically, each of the following breakpoint types will
6766 always have a zero valued location address and we don't want to mark
6767 breakpoints of any of these types to be a duplicate of an actual
6768 breakpoint location at address zero:
6769
6770 bp_watchpoint
6771 bp_catchpoint
6772
6773 */
6774
6775 static int
6776 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6777 {
6778 enum bptype type = bpt->type;
6779
6780 return (type != bp_watchpoint && type != bp_catchpoint);
6781 }
6782
6783 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6784 true if LOC1 and LOC2 represent the same watchpoint location. */
6785
6786 static int
6787 watchpoint_locations_match (struct bp_location *loc1,
6788 struct bp_location *loc2)
6789 {
6790 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6791 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6792
6793 /* Both of them must exist. */
6794 gdb_assert (w1 != NULL);
6795 gdb_assert (w2 != NULL);
6796
6797 /* If the target can evaluate the condition expression in hardware,
6798 then we we need to insert both watchpoints even if they are at
6799 the same place. Otherwise the watchpoint will only trigger when
6800 the condition of whichever watchpoint was inserted evaluates to
6801 true, not giving a chance for GDB to check the condition of the
6802 other watchpoint. */
6803 if ((w1->cond_exp
6804 && target_can_accel_watchpoint_condition (loc1->address,
6805 loc1->length,
6806 loc1->watchpoint_type,
6807 w1->cond_exp.get ()))
6808 || (w2->cond_exp
6809 && target_can_accel_watchpoint_condition (loc2->address,
6810 loc2->length,
6811 loc2->watchpoint_type,
6812 w2->cond_exp.get ())))
6813 return 0;
6814
6815 /* Note that this checks the owner's type, not the location's. In
6816 case the target does not support read watchpoints, but does
6817 support access watchpoints, we'll have bp_read_watchpoint
6818 watchpoints with hw_access locations. Those should be considered
6819 duplicates of hw_read locations. The hw_read locations will
6820 become hw_access locations later. */
6821 return (loc1->owner->type == loc2->owner->type
6822 && loc1->pspace->aspace == loc2->pspace->aspace
6823 && loc1->address == loc2->address
6824 && loc1->length == loc2->length);
6825 }
6826
6827 /* See breakpoint.h. */
6828
6829 int
6830 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6831 const address_space *aspace2, CORE_ADDR addr2)
6832 {
6833 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6834 || aspace1 == aspace2)
6835 && addr1 == addr2);
6836 }
6837
6838 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6839 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6840 matches ASPACE2. On targets that have global breakpoints, the address
6841 space doesn't really matter. */
6842
6843 static int
6844 breakpoint_address_match_range (const address_space *aspace1,
6845 CORE_ADDR addr1,
6846 int len1, const address_space *aspace2,
6847 CORE_ADDR addr2)
6848 {
6849 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6850 || aspace1 == aspace2)
6851 && addr2 >= addr1 && addr2 < addr1 + len1);
6852 }
6853
6854 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6855 a ranged breakpoint. In most targets, a match happens only if ASPACE
6856 matches the breakpoint's address space. On targets that have global
6857 breakpoints, the address space doesn't really matter. */
6858
6859 static int
6860 breakpoint_location_address_match (struct bp_location *bl,
6861 const address_space *aspace,
6862 CORE_ADDR addr)
6863 {
6864 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6865 aspace, addr)
6866 || (bl->length
6867 && breakpoint_address_match_range (bl->pspace->aspace,
6868 bl->address, bl->length,
6869 aspace, addr)));
6870 }
6871
6872 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6873 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6874 match happens only if ASPACE matches the breakpoint's address
6875 space. On targets that have global breakpoints, the address space
6876 doesn't really matter. */
6877
6878 static int
6879 breakpoint_location_address_range_overlap (struct bp_location *bl,
6880 const address_space *aspace,
6881 CORE_ADDR addr, int len)
6882 {
6883 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6884 || bl->pspace->aspace == aspace)
6885 {
6886 int bl_len = bl->length != 0 ? bl->length : 1;
6887
6888 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6889 return 1;
6890 }
6891 return 0;
6892 }
6893
6894 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6895 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6896 true, otherwise returns false. */
6897
6898 static int
6899 tracepoint_locations_match (struct bp_location *loc1,
6900 struct bp_location *loc2)
6901 {
6902 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6903 /* Since tracepoint locations are never duplicated with others', tracepoint
6904 locations at the same address of different tracepoints are regarded as
6905 different locations. */
6906 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6907 else
6908 return 0;
6909 }
6910
6911 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6912 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6913 represent the same location. */
6914
6915 static int
6916 breakpoint_locations_match (struct bp_location *loc1,
6917 struct bp_location *loc2)
6918 {
6919 int hw_point1, hw_point2;
6920
6921 /* Both of them must not be in moribund_locations. */
6922 gdb_assert (loc1->owner != NULL);
6923 gdb_assert (loc2->owner != NULL);
6924
6925 hw_point1 = is_hardware_watchpoint (loc1->owner);
6926 hw_point2 = is_hardware_watchpoint (loc2->owner);
6927
6928 if (hw_point1 != hw_point2)
6929 return 0;
6930 else if (hw_point1)
6931 return watchpoint_locations_match (loc1, loc2);
6932 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6933 return tracepoint_locations_match (loc1, loc2);
6934 else
6935 /* We compare bp_location.length in order to cover ranged breakpoints. */
6936 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6937 loc2->pspace->aspace, loc2->address)
6938 && loc1->length == loc2->length);
6939 }
6940
6941 static void
6942 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6943 int bnum, int have_bnum)
6944 {
6945 /* The longest string possibly returned by hex_string_custom
6946 is 50 chars. These must be at least that big for safety. */
6947 char astr1[64];
6948 char astr2[64];
6949
6950 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6951 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6952 if (have_bnum)
6953 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6954 bnum, astr1, astr2);
6955 else
6956 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6957 }
6958
6959 /* Adjust a breakpoint's address to account for architectural
6960 constraints on breakpoint placement. Return the adjusted address.
6961 Note: Very few targets require this kind of adjustment. For most
6962 targets, this function is simply the identity function. */
6963
6964 static CORE_ADDR
6965 adjust_breakpoint_address (struct gdbarch *gdbarch,
6966 CORE_ADDR bpaddr, enum bptype bptype)
6967 {
6968 if (bptype == bp_watchpoint
6969 || bptype == bp_hardware_watchpoint
6970 || bptype == bp_read_watchpoint
6971 || bptype == bp_access_watchpoint
6972 || bptype == bp_catchpoint)
6973 {
6974 /* Watchpoints and the various bp_catch_* eventpoints should not
6975 have their addresses modified. */
6976 return bpaddr;
6977 }
6978 else if (bptype == bp_single_step)
6979 {
6980 /* Single-step breakpoints should not have their addresses
6981 modified. If there's any architectural constrain that
6982 applies to this address, then it should have already been
6983 taken into account when the breakpoint was created in the
6984 first place. If we didn't do this, stepping through e.g.,
6985 Thumb-2 IT blocks would break. */
6986 return bpaddr;
6987 }
6988 else
6989 {
6990 CORE_ADDR adjusted_bpaddr = bpaddr;
6991
6992 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6993 {
6994 /* Some targets have architectural constraints on the placement
6995 of breakpoint instructions. Obtain the adjusted address. */
6996 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6997 }
6998
6999 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
7000
7001 /* An adjusted breakpoint address can significantly alter
7002 a user's expectations. Print a warning if an adjustment
7003 is required. */
7004 if (adjusted_bpaddr != bpaddr)
7005 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7006
7007 return adjusted_bpaddr;
7008 }
7009 }
7010
7011 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7012 {
7013 bp_location *loc = this;
7014
7015 gdb_assert (ops != NULL);
7016
7017 loc->ops = ops;
7018 loc->owner = owner;
7019 loc->cond_bytecode = NULL;
7020 loc->shlib_disabled = 0;
7021 loc->enabled = 1;
7022
7023 switch (owner->type)
7024 {
7025 case bp_breakpoint:
7026 case bp_single_step:
7027 case bp_until:
7028 case bp_finish:
7029 case bp_longjmp:
7030 case bp_longjmp_resume:
7031 case bp_longjmp_call_dummy:
7032 case bp_exception:
7033 case bp_exception_resume:
7034 case bp_step_resume:
7035 case bp_hp_step_resume:
7036 case bp_watchpoint_scope:
7037 case bp_call_dummy:
7038 case bp_std_terminate:
7039 case bp_shlib_event:
7040 case bp_thread_event:
7041 case bp_overlay_event:
7042 case bp_jit_event:
7043 case bp_longjmp_master:
7044 case bp_std_terminate_master:
7045 case bp_exception_master:
7046 case bp_gnu_ifunc_resolver:
7047 case bp_gnu_ifunc_resolver_return:
7048 case bp_dprintf:
7049 loc->loc_type = bp_loc_software_breakpoint;
7050 mark_breakpoint_location_modified (loc);
7051 break;
7052 case bp_hardware_breakpoint:
7053 loc->loc_type = bp_loc_hardware_breakpoint;
7054 mark_breakpoint_location_modified (loc);
7055 break;
7056 case bp_hardware_watchpoint:
7057 case bp_read_watchpoint:
7058 case bp_access_watchpoint:
7059 loc->loc_type = bp_loc_hardware_watchpoint;
7060 break;
7061 case bp_watchpoint:
7062 case bp_catchpoint:
7063 case bp_tracepoint:
7064 case bp_fast_tracepoint:
7065 case bp_static_tracepoint:
7066 loc->loc_type = bp_loc_other;
7067 break;
7068 default:
7069 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7070 }
7071
7072 loc->refc = 1;
7073 }
7074
7075 /* Allocate a struct bp_location. */
7076
7077 static struct bp_location *
7078 allocate_bp_location (struct breakpoint *bpt)
7079 {
7080 return bpt->ops->allocate_location (bpt);
7081 }
7082
7083 static void
7084 free_bp_location (struct bp_location *loc)
7085 {
7086 loc->ops->dtor (loc);
7087 delete loc;
7088 }
7089
7090 /* Increment reference count. */
7091
7092 static void
7093 incref_bp_location (struct bp_location *bl)
7094 {
7095 ++bl->refc;
7096 }
7097
7098 /* Decrement reference count. If the reference count reaches 0,
7099 destroy the bp_location. Sets *BLP to NULL. */
7100
7101 static void
7102 decref_bp_location (struct bp_location **blp)
7103 {
7104 gdb_assert ((*blp)->refc > 0);
7105
7106 if (--(*blp)->refc == 0)
7107 free_bp_location (*blp);
7108 *blp = NULL;
7109 }
7110
7111 /* Add breakpoint B at the end of the global breakpoint chain. */
7112
7113 static breakpoint *
7114 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7115 {
7116 struct breakpoint *b1;
7117 struct breakpoint *result = b.get ();
7118
7119 /* Add this breakpoint to the end of the chain so that a list of
7120 breakpoints will come out in order of increasing numbers. */
7121
7122 b1 = breakpoint_chain;
7123 if (b1 == 0)
7124 breakpoint_chain = b.release ();
7125 else
7126 {
7127 while (b1->next)
7128 b1 = b1->next;
7129 b1->next = b.release ();
7130 }
7131
7132 return result;
7133 }
7134
7135 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7136
7137 static void
7138 init_raw_breakpoint_without_location (struct breakpoint *b,
7139 struct gdbarch *gdbarch,
7140 enum bptype bptype,
7141 const struct breakpoint_ops *ops)
7142 {
7143 gdb_assert (ops != NULL);
7144
7145 b->ops = ops;
7146 b->type = bptype;
7147 b->gdbarch = gdbarch;
7148 b->language = current_language->la_language;
7149 b->input_radix = input_radix;
7150 b->related_breakpoint = b;
7151 }
7152
7153 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7154 that has type BPTYPE and has no locations as yet. */
7155
7156 static struct breakpoint *
7157 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7158 enum bptype bptype,
7159 const struct breakpoint_ops *ops)
7160 {
7161 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7162
7163 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7164 return add_to_breakpoint_chain (std::move (b));
7165 }
7166
7167 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7168 resolutions should be made as the user specified the location explicitly
7169 enough. */
7170
7171 static void
7172 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7173 {
7174 gdb_assert (loc->owner != NULL);
7175
7176 if (loc->owner->type == bp_breakpoint
7177 || loc->owner->type == bp_hardware_breakpoint
7178 || is_tracepoint (loc->owner))
7179 {
7180 int is_gnu_ifunc;
7181 const char *function_name;
7182 CORE_ADDR func_addr;
7183
7184 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7185 &func_addr, NULL, &is_gnu_ifunc);
7186
7187 if (is_gnu_ifunc && !explicit_loc)
7188 {
7189 struct breakpoint *b = loc->owner;
7190
7191 gdb_assert (loc->pspace == current_program_space);
7192 if (gnu_ifunc_resolve_name (function_name,
7193 &loc->requested_address))
7194 {
7195 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7196 loc->address = adjust_breakpoint_address (loc->gdbarch,
7197 loc->requested_address,
7198 b->type);
7199 }
7200 else if (b->type == bp_breakpoint && b->loc == loc
7201 && loc->next == NULL && b->related_breakpoint == b)
7202 {
7203 /* Create only the whole new breakpoint of this type but do not
7204 mess more complicated breakpoints with multiple locations. */
7205 b->type = bp_gnu_ifunc_resolver;
7206 /* Remember the resolver's address for use by the return
7207 breakpoint. */
7208 loc->related_address = func_addr;
7209 }
7210 }
7211
7212 if (function_name)
7213 loc->function_name = xstrdup (function_name);
7214 }
7215 }
7216
7217 /* Attempt to determine architecture of location identified by SAL. */
7218 struct gdbarch *
7219 get_sal_arch (struct symtab_and_line sal)
7220 {
7221 if (sal.section)
7222 return get_objfile_arch (sal.section->objfile);
7223 if (sal.symtab)
7224 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7225
7226 return NULL;
7227 }
7228
7229 /* Low level routine for partially initializing a breakpoint of type
7230 BPTYPE. The newly created breakpoint's address, section, source
7231 file name, and line number are provided by SAL.
7232
7233 It is expected that the caller will complete the initialization of
7234 the newly created breakpoint struct as well as output any status
7235 information regarding the creation of a new breakpoint. */
7236
7237 static void
7238 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7239 struct symtab_and_line sal, enum bptype bptype,
7240 const struct breakpoint_ops *ops)
7241 {
7242 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7243
7244 add_location_to_breakpoint (b, &sal);
7245
7246 if (bptype != bp_catchpoint)
7247 gdb_assert (sal.pspace != NULL);
7248
7249 /* Store the program space that was used to set the breakpoint,
7250 except for ordinary breakpoints, which are independent of the
7251 program space. */
7252 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7253 b->pspace = sal.pspace;
7254 }
7255
7256 /* set_raw_breakpoint is a low level routine for allocating and
7257 partially initializing a breakpoint of type BPTYPE. The newly
7258 created breakpoint's address, section, source file name, and line
7259 number are provided by SAL. The newly created and partially
7260 initialized breakpoint is added to the breakpoint chain and
7261 is also returned as the value of this function.
7262
7263 It is expected that the caller will complete the initialization of
7264 the newly created breakpoint struct as well as output any status
7265 information regarding the creation of a new breakpoint. In
7266 particular, set_raw_breakpoint does NOT set the breakpoint
7267 number! Care should be taken to not allow an error to occur
7268 prior to completing the initialization of the breakpoint. If this
7269 should happen, a bogus breakpoint will be left on the chain. */
7270
7271 struct breakpoint *
7272 set_raw_breakpoint (struct gdbarch *gdbarch,
7273 struct symtab_and_line sal, enum bptype bptype,
7274 const struct breakpoint_ops *ops)
7275 {
7276 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7277
7278 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7279 return add_to_breakpoint_chain (std::move (b));
7280 }
7281
7282 /* Call this routine when stepping and nexting to enable a breakpoint
7283 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7284 initiated the operation. */
7285
7286 void
7287 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7288 {
7289 struct breakpoint *b, *b_tmp;
7290 int thread = tp->global_num;
7291
7292 /* To avoid having to rescan all objfile symbols at every step,
7293 we maintain a list of continually-inserted but always disabled
7294 longjmp "master" breakpoints. Here, we simply create momentary
7295 clones of those and enable them for the requested thread. */
7296 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7297 if (b->pspace == current_program_space
7298 && (b->type == bp_longjmp_master
7299 || b->type == bp_exception_master))
7300 {
7301 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7302 struct breakpoint *clone;
7303
7304 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7305 after their removal. */
7306 clone = momentary_breakpoint_from_master (b, type,
7307 &momentary_breakpoint_ops, 1);
7308 clone->thread = thread;
7309 }
7310
7311 tp->initiating_frame = frame;
7312 }
7313
7314 /* Delete all longjmp breakpoints from THREAD. */
7315 void
7316 delete_longjmp_breakpoint (int thread)
7317 {
7318 struct breakpoint *b, *b_tmp;
7319
7320 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7321 if (b->type == bp_longjmp || b->type == bp_exception)
7322 {
7323 if (b->thread == thread)
7324 delete_breakpoint (b);
7325 }
7326 }
7327
7328 void
7329 delete_longjmp_breakpoint_at_next_stop (int thread)
7330 {
7331 struct breakpoint *b, *b_tmp;
7332
7333 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7334 if (b->type == bp_longjmp || b->type == bp_exception)
7335 {
7336 if (b->thread == thread)
7337 b->disposition = disp_del_at_next_stop;
7338 }
7339 }
7340
7341 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7342 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7343 pointer to any of them. Return NULL if this system cannot place longjmp
7344 breakpoints. */
7345
7346 struct breakpoint *
7347 set_longjmp_breakpoint_for_call_dummy (void)
7348 {
7349 struct breakpoint *b, *retval = NULL;
7350
7351 ALL_BREAKPOINTS (b)
7352 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7353 {
7354 struct breakpoint *new_b;
7355
7356 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7357 &momentary_breakpoint_ops,
7358 1);
7359 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7360
7361 /* Link NEW_B into the chain of RETVAL breakpoints. */
7362
7363 gdb_assert (new_b->related_breakpoint == new_b);
7364 if (retval == NULL)
7365 retval = new_b;
7366 new_b->related_breakpoint = retval;
7367 while (retval->related_breakpoint != new_b->related_breakpoint)
7368 retval = retval->related_breakpoint;
7369 retval->related_breakpoint = new_b;
7370 }
7371
7372 return retval;
7373 }
7374
7375 /* Verify all existing dummy frames and their associated breakpoints for
7376 TP. Remove those which can no longer be found in the current frame
7377 stack.
7378
7379 You should call this function only at places where it is safe to currently
7380 unwind the whole stack. Failed stack unwind would discard live dummy
7381 frames. */
7382
7383 void
7384 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7385 {
7386 struct breakpoint *b, *b_tmp;
7387
7388 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7389 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7390 {
7391 struct breakpoint *dummy_b = b->related_breakpoint;
7392
7393 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7394 dummy_b = dummy_b->related_breakpoint;
7395 if (dummy_b->type != bp_call_dummy
7396 || frame_find_by_id (dummy_b->frame_id) != NULL)
7397 continue;
7398
7399 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7400
7401 while (b->related_breakpoint != b)
7402 {
7403 if (b_tmp == b->related_breakpoint)
7404 b_tmp = b->related_breakpoint->next;
7405 delete_breakpoint (b->related_breakpoint);
7406 }
7407 delete_breakpoint (b);
7408 }
7409 }
7410
7411 void
7412 enable_overlay_breakpoints (void)
7413 {
7414 struct breakpoint *b;
7415
7416 ALL_BREAKPOINTS (b)
7417 if (b->type == bp_overlay_event)
7418 {
7419 b->enable_state = bp_enabled;
7420 update_global_location_list (UGLL_MAY_INSERT);
7421 overlay_events_enabled = 1;
7422 }
7423 }
7424
7425 void
7426 disable_overlay_breakpoints (void)
7427 {
7428 struct breakpoint *b;
7429
7430 ALL_BREAKPOINTS (b)
7431 if (b->type == bp_overlay_event)
7432 {
7433 b->enable_state = bp_disabled;
7434 update_global_location_list (UGLL_DONT_INSERT);
7435 overlay_events_enabled = 0;
7436 }
7437 }
7438
7439 /* Set an active std::terminate breakpoint for each std::terminate
7440 master breakpoint. */
7441 void
7442 set_std_terminate_breakpoint (void)
7443 {
7444 struct breakpoint *b, *b_tmp;
7445
7446 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7447 if (b->pspace == current_program_space
7448 && b->type == bp_std_terminate_master)
7449 {
7450 momentary_breakpoint_from_master (b, bp_std_terminate,
7451 &momentary_breakpoint_ops, 1);
7452 }
7453 }
7454
7455 /* Delete all the std::terminate breakpoints. */
7456 void
7457 delete_std_terminate_breakpoint (void)
7458 {
7459 struct breakpoint *b, *b_tmp;
7460
7461 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7462 if (b->type == bp_std_terminate)
7463 delete_breakpoint (b);
7464 }
7465
7466 struct breakpoint *
7467 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7468 {
7469 struct breakpoint *b;
7470
7471 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7472 &internal_breakpoint_ops);
7473
7474 b->enable_state = bp_enabled;
7475 /* location has to be used or breakpoint_re_set will delete me. */
7476 b->location = new_address_location (b->loc->address, NULL, 0);
7477
7478 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7479
7480 return b;
7481 }
7482
7483 struct lang_and_radix
7484 {
7485 enum language lang;
7486 int radix;
7487 };
7488
7489 /* Create a breakpoint for JIT code registration and unregistration. */
7490
7491 struct breakpoint *
7492 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7493 {
7494 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7495 &internal_breakpoint_ops);
7496 }
7497
7498 /* Remove JIT code registration and unregistration breakpoint(s). */
7499
7500 void
7501 remove_jit_event_breakpoints (void)
7502 {
7503 struct breakpoint *b, *b_tmp;
7504
7505 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7506 if (b->type == bp_jit_event
7507 && b->loc->pspace == current_program_space)
7508 delete_breakpoint (b);
7509 }
7510
7511 void
7512 remove_solib_event_breakpoints (void)
7513 {
7514 struct breakpoint *b, *b_tmp;
7515
7516 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7517 if (b->type == bp_shlib_event
7518 && b->loc->pspace == current_program_space)
7519 delete_breakpoint (b);
7520 }
7521
7522 /* See breakpoint.h. */
7523
7524 void
7525 remove_solib_event_breakpoints_at_next_stop (void)
7526 {
7527 struct breakpoint *b, *b_tmp;
7528
7529 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7530 if (b->type == bp_shlib_event
7531 && b->loc->pspace == current_program_space)
7532 b->disposition = disp_del_at_next_stop;
7533 }
7534
7535 /* Helper for create_solib_event_breakpoint /
7536 create_and_insert_solib_event_breakpoint. Allows specifying which
7537 INSERT_MODE to pass through to update_global_location_list. */
7538
7539 static struct breakpoint *
7540 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7541 enum ugll_insert_mode insert_mode)
7542 {
7543 struct breakpoint *b;
7544
7545 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7546 &internal_breakpoint_ops);
7547 update_global_location_list_nothrow (insert_mode);
7548 return b;
7549 }
7550
7551 struct breakpoint *
7552 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7553 {
7554 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7555 }
7556
7557 /* See breakpoint.h. */
7558
7559 struct breakpoint *
7560 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7561 {
7562 struct breakpoint *b;
7563
7564 /* Explicitly tell update_global_location_list to insert
7565 locations. */
7566 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7567 if (!b->loc->inserted)
7568 {
7569 delete_breakpoint (b);
7570 return NULL;
7571 }
7572 return b;
7573 }
7574
7575 /* Disable any breakpoints that are on code in shared libraries. Only
7576 apply to enabled breakpoints, disabled ones can just stay disabled. */
7577
7578 void
7579 disable_breakpoints_in_shlibs (void)
7580 {
7581 struct bp_location *loc, **locp_tmp;
7582
7583 ALL_BP_LOCATIONS (loc, locp_tmp)
7584 {
7585 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7586 struct breakpoint *b = loc->owner;
7587
7588 /* We apply the check to all breakpoints, including disabled for
7589 those with loc->duplicate set. This is so that when breakpoint
7590 becomes enabled, or the duplicate is removed, gdb will try to
7591 insert all breakpoints. If we don't set shlib_disabled here,
7592 we'll try to insert those breakpoints and fail. */
7593 if (((b->type == bp_breakpoint)
7594 || (b->type == bp_jit_event)
7595 || (b->type == bp_hardware_breakpoint)
7596 || (is_tracepoint (b)))
7597 && loc->pspace == current_program_space
7598 && !loc->shlib_disabled
7599 && solib_name_from_address (loc->pspace, loc->address)
7600 )
7601 {
7602 loc->shlib_disabled = 1;
7603 }
7604 }
7605 }
7606
7607 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7608 notification of unloaded_shlib. Only apply to enabled breakpoints,
7609 disabled ones can just stay disabled. */
7610
7611 static void
7612 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7613 {
7614 struct bp_location *loc, **locp_tmp;
7615 int disabled_shlib_breaks = 0;
7616
7617 ALL_BP_LOCATIONS (loc, locp_tmp)
7618 {
7619 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7620 struct breakpoint *b = loc->owner;
7621
7622 if (solib->pspace == loc->pspace
7623 && !loc->shlib_disabled
7624 && (((b->type == bp_breakpoint
7625 || b->type == bp_jit_event
7626 || b->type == bp_hardware_breakpoint)
7627 && (loc->loc_type == bp_loc_hardware_breakpoint
7628 || loc->loc_type == bp_loc_software_breakpoint))
7629 || is_tracepoint (b))
7630 && solib_contains_address_p (solib, loc->address))
7631 {
7632 loc->shlib_disabled = 1;
7633 /* At this point, we cannot rely on remove_breakpoint
7634 succeeding so we must mark the breakpoint as not inserted
7635 to prevent future errors occurring in remove_breakpoints. */
7636 loc->inserted = 0;
7637
7638 /* This may cause duplicate notifications for the same breakpoint. */
7639 gdb::observers::breakpoint_modified.notify (b);
7640
7641 if (!disabled_shlib_breaks)
7642 {
7643 target_terminal::ours_for_output ();
7644 warning (_("Temporarily disabling breakpoints "
7645 "for unloaded shared library \"%s\""),
7646 solib->so_name);
7647 }
7648 disabled_shlib_breaks = 1;
7649 }
7650 }
7651 }
7652
7653 /* Disable any breakpoints and tracepoints in OBJFILE upon
7654 notification of free_objfile. Only apply to enabled breakpoints,
7655 disabled ones can just stay disabled. */
7656
7657 static void
7658 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7659 {
7660 struct breakpoint *b;
7661
7662 if (objfile == NULL)
7663 return;
7664
7665 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7666 managed by the user with add-symbol-file/remove-symbol-file.
7667 Similarly to how breakpoints in shared libraries are handled in
7668 response to "nosharedlibrary", mark breakpoints in such modules
7669 shlib_disabled so they end up uninserted on the next global
7670 location list update. Shared libraries not loaded by the user
7671 aren't handled here -- they're already handled in
7672 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7673 solib_unloaded observer. We skip objfiles that are not
7674 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7675 main objfile). */
7676 if ((objfile->flags & OBJF_SHARED) == 0
7677 || (objfile->flags & OBJF_USERLOADED) == 0)
7678 return;
7679
7680 ALL_BREAKPOINTS (b)
7681 {
7682 struct bp_location *loc;
7683 int bp_modified = 0;
7684
7685 if (!is_breakpoint (b) && !is_tracepoint (b))
7686 continue;
7687
7688 for (loc = b->loc; loc != NULL; loc = loc->next)
7689 {
7690 CORE_ADDR loc_addr = loc->address;
7691
7692 if (loc->loc_type != bp_loc_hardware_breakpoint
7693 && loc->loc_type != bp_loc_software_breakpoint)
7694 continue;
7695
7696 if (loc->shlib_disabled != 0)
7697 continue;
7698
7699 if (objfile->pspace != loc->pspace)
7700 continue;
7701
7702 if (loc->loc_type != bp_loc_hardware_breakpoint
7703 && loc->loc_type != bp_loc_software_breakpoint)
7704 continue;
7705
7706 if (is_addr_in_objfile (loc_addr, objfile))
7707 {
7708 loc->shlib_disabled = 1;
7709 /* At this point, we don't know whether the object was
7710 unmapped from the inferior or not, so leave the
7711 inserted flag alone. We'll handle failure to
7712 uninsert quietly, in case the object was indeed
7713 unmapped. */
7714
7715 mark_breakpoint_location_modified (loc);
7716
7717 bp_modified = 1;
7718 }
7719 }
7720
7721 if (bp_modified)
7722 gdb::observers::breakpoint_modified.notify (b);
7723 }
7724 }
7725
7726 /* FORK & VFORK catchpoints. */
7727
7728 /* An instance of this type is used to represent a fork or vfork
7729 catchpoint. A breakpoint is really of this type iff its ops pointer points
7730 to CATCH_FORK_BREAKPOINT_OPS. */
7731
7732 struct fork_catchpoint : public breakpoint
7733 {
7734 /* Process id of a child process whose forking triggered this
7735 catchpoint. This field is only valid immediately after this
7736 catchpoint has triggered. */
7737 ptid_t forked_inferior_pid;
7738 };
7739
7740 /* Implement the "insert" breakpoint_ops method for fork
7741 catchpoints. */
7742
7743 static int
7744 insert_catch_fork (struct bp_location *bl)
7745 {
7746 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7747 }
7748
7749 /* Implement the "remove" breakpoint_ops method for fork
7750 catchpoints. */
7751
7752 static int
7753 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7754 {
7755 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7756 }
7757
7758 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7759 catchpoints. */
7760
7761 static int
7762 breakpoint_hit_catch_fork (const struct bp_location *bl,
7763 const address_space *aspace, CORE_ADDR bp_addr,
7764 const struct target_waitstatus *ws)
7765 {
7766 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7767
7768 if (ws->kind != TARGET_WAITKIND_FORKED)
7769 return 0;
7770
7771 c->forked_inferior_pid = ws->value.related_pid;
7772 return 1;
7773 }
7774
7775 /* Implement the "print_it" breakpoint_ops method for fork
7776 catchpoints. */
7777
7778 static enum print_stop_action
7779 print_it_catch_fork (bpstat bs)
7780 {
7781 struct ui_out *uiout = current_uiout;
7782 struct breakpoint *b = bs->breakpoint_at;
7783 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7784
7785 annotate_catchpoint (b->number);
7786 maybe_print_thread_hit_breakpoint (uiout);
7787 if (b->disposition == disp_del)
7788 uiout->text ("Temporary catchpoint ");
7789 else
7790 uiout->text ("Catchpoint ");
7791 if (uiout->is_mi_like_p ())
7792 {
7793 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7794 uiout->field_string ("disp", bpdisp_text (b->disposition));
7795 }
7796 uiout->field_int ("bkptno", b->number);
7797 uiout->text (" (forked process ");
7798 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7799 uiout->text ("), ");
7800 return PRINT_SRC_AND_LOC;
7801 }
7802
7803 /* Implement the "print_one" breakpoint_ops method for fork
7804 catchpoints. */
7805
7806 static void
7807 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7808 {
7809 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7810 struct value_print_options opts;
7811 struct ui_out *uiout = current_uiout;
7812
7813 get_user_print_options (&opts);
7814
7815 /* Field 4, the address, is omitted (which makes the columns not
7816 line up too nicely with the headers, but the effect is relatively
7817 readable). */
7818 if (opts.addressprint)
7819 uiout->field_skip ("addr");
7820 annotate_field (5);
7821 uiout->text ("fork");
7822 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7823 {
7824 uiout->text (", process ");
7825 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7826 uiout->spaces (1);
7827 }
7828
7829 if (uiout->is_mi_like_p ())
7830 uiout->field_string ("catch-type", "fork");
7831 }
7832
7833 /* Implement the "print_mention" breakpoint_ops method for fork
7834 catchpoints. */
7835
7836 static void
7837 print_mention_catch_fork (struct breakpoint *b)
7838 {
7839 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7840 }
7841
7842 /* Implement the "print_recreate" breakpoint_ops method for fork
7843 catchpoints. */
7844
7845 static void
7846 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7847 {
7848 fprintf_unfiltered (fp, "catch fork");
7849 print_recreate_thread (b, fp);
7850 }
7851
7852 /* The breakpoint_ops structure to be used in fork catchpoints. */
7853
7854 static struct breakpoint_ops catch_fork_breakpoint_ops;
7855
7856 /* Implement the "insert" breakpoint_ops method for vfork
7857 catchpoints. */
7858
7859 static int
7860 insert_catch_vfork (struct bp_location *bl)
7861 {
7862 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7863 }
7864
7865 /* Implement the "remove" breakpoint_ops method for vfork
7866 catchpoints. */
7867
7868 static int
7869 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7870 {
7871 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7872 }
7873
7874 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7875 catchpoints. */
7876
7877 static int
7878 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7879 const address_space *aspace, CORE_ADDR bp_addr,
7880 const struct target_waitstatus *ws)
7881 {
7882 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7883
7884 if (ws->kind != TARGET_WAITKIND_VFORKED)
7885 return 0;
7886
7887 c->forked_inferior_pid = ws->value.related_pid;
7888 return 1;
7889 }
7890
7891 /* Implement the "print_it" breakpoint_ops method for vfork
7892 catchpoints. */
7893
7894 static enum print_stop_action
7895 print_it_catch_vfork (bpstat bs)
7896 {
7897 struct ui_out *uiout = current_uiout;
7898 struct breakpoint *b = bs->breakpoint_at;
7899 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7900
7901 annotate_catchpoint (b->number);
7902 maybe_print_thread_hit_breakpoint (uiout);
7903 if (b->disposition == disp_del)
7904 uiout->text ("Temporary catchpoint ");
7905 else
7906 uiout->text ("Catchpoint ");
7907 if (uiout->is_mi_like_p ())
7908 {
7909 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7910 uiout->field_string ("disp", bpdisp_text (b->disposition));
7911 }
7912 uiout->field_int ("bkptno", b->number);
7913 uiout->text (" (vforked process ");
7914 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7915 uiout->text ("), ");
7916 return PRINT_SRC_AND_LOC;
7917 }
7918
7919 /* Implement the "print_one" breakpoint_ops method for vfork
7920 catchpoints. */
7921
7922 static void
7923 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7924 {
7925 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7926 struct value_print_options opts;
7927 struct ui_out *uiout = current_uiout;
7928
7929 get_user_print_options (&opts);
7930 /* Field 4, the address, is omitted (which makes the columns not
7931 line up too nicely with the headers, but the effect is relatively
7932 readable). */
7933 if (opts.addressprint)
7934 uiout->field_skip ("addr");
7935 annotate_field (5);
7936 uiout->text ("vfork");
7937 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7938 {
7939 uiout->text (", process ");
7940 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7941 uiout->spaces (1);
7942 }
7943
7944 if (uiout->is_mi_like_p ())
7945 uiout->field_string ("catch-type", "vfork");
7946 }
7947
7948 /* Implement the "print_mention" breakpoint_ops method for vfork
7949 catchpoints. */
7950
7951 static void
7952 print_mention_catch_vfork (struct breakpoint *b)
7953 {
7954 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7955 }
7956
7957 /* Implement the "print_recreate" breakpoint_ops method for vfork
7958 catchpoints. */
7959
7960 static void
7961 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7962 {
7963 fprintf_unfiltered (fp, "catch vfork");
7964 print_recreate_thread (b, fp);
7965 }
7966
7967 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7968
7969 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7970
7971 /* An instance of this type is used to represent an solib catchpoint.
7972 A breakpoint is really of this type iff its ops pointer points to
7973 CATCH_SOLIB_BREAKPOINT_OPS. */
7974
7975 struct solib_catchpoint : public breakpoint
7976 {
7977 ~solib_catchpoint () override;
7978
7979 /* True for "catch load", false for "catch unload". */
7980 unsigned char is_load;
7981
7982 /* Regular expression to match, if any. COMPILED is only valid when
7983 REGEX is non-NULL. */
7984 char *regex;
7985 std::unique_ptr<compiled_regex> compiled;
7986 };
7987
7988 solib_catchpoint::~solib_catchpoint ()
7989 {
7990 xfree (this->regex);
7991 }
7992
7993 static int
7994 insert_catch_solib (struct bp_location *ignore)
7995 {
7996 return 0;
7997 }
7998
7999 static int
8000 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8001 {
8002 return 0;
8003 }
8004
8005 static int
8006 breakpoint_hit_catch_solib (const struct bp_location *bl,
8007 const address_space *aspace,
8008 CORE_ADDR bp_addr,
8009 const struct target_waitstatus *ws)
8010 {
8011 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8012 struct breakpoint *other;
8013
8014 if (ws->kind == TARGET_WAITKIND_LOADED)
8015 return 1;
8016
8017 ALL_BREAKPOINTS (other)
8018 {
8019 struct bp_location *other_bl;
8020
8021 if (other == bl->owner)
8022 continue;
8023
8024 if (other->type != bp_shlib_event)
8025 continue;
8026
8027 if (self->pspace != NULL && other->pspace != self->pspace)
8028 continue;
8029
8030 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8031 {
8032 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8033 return 1;
8034 }
8035 }
8036
8037 return 0;
8038 }
8039
8040 static void
8041 check_status_catch_solib (struct bpstats *bs)
8042 {
8043 struct solib_catchpoint *self
8044 = (struct solib_catchpoint *) bs->breakpoint_at;
8045
8046 if (self->is_load)
8047 {
8048 struct so_list *iter;
8049
8050 for (int ix = 0;
8051 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8052 ix, iter);
8053 ++ix)
8054 {
8055 if (!self->regex
8056 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8057 return;
8058 }
8059 }
8060 else
8061 {
8062 for (const std::string &iter : current_program_space->deleted_solibs)
8063 {
8064 if (!self->regex
8065 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8066 return;
8067 }
8068 }
8069
8070 bs->stop = 0;
8071 bs->print_it = print_it_noop;
8072 }
8073
8074 static enum print_stop_action
8075 print_it_catch_solib (bpstat bs)
8076 {
8077 struct breakpoint *b = bs->breakpoint_at;
8078 struct ui_out *uiout = current_uiout;
8079
8080 annotate_catchpoint (b->number);
8081 maybe_print_thread_hit_breakpoint (uiout);
8082 if (b->disposition == disp_del)
8083 uiout->text ("Temporary catchpoint ");
8084 else
8085 uiout->text ("Catchpoint ");
8086 uiout->field_int ("bkptno", b->number);
8087 uiout->text ("\n");
8088 if (uiout->is_mi_like_p ())
8089 uiout->field_string ("disp", bpdisp_text (b->disposition));
8090 print_solib_event (1);
8091 return PRINT_SRC_AND_LOC;
8092 }
8093
8094 static void
8095 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8096 {
8097 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8098 struct value_print_options opts;
8099 struct ui_out *uiout = current_uiout;
8100 char *msg;
8101
8102 get_user_print_options (&opts);
8103 /* Field 4, the address, is omitted (which makes the columns not
8104 line up too nicely with the headers, but the effect is relatively
8105 readable). */
8106 if (opts.addressprint)
8107 {
8108 annotate_field (4);
8109 uiout->field_skip ("addr");
8110 }
8111
8112 annotate_field (5);
8113 if (self->is_load)
8114 {
8115 if (self->regex)
8116 msg = xstrprintf (_("load of library matching %s"), self->regex);
8117 else
8118 msg = xstrdup (_("load of library"));
8119 }
8120 else
8121 {
8122 if (self->regex)
8123 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8124 else
8125 msg = xstrdup (_("unload of library"));
8126 }
8127 uiout->field_string ("what", msg);
8128 xfree (msg);
8129
8130 if (uiout->is_mi_like_p ())
8131 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8132 }
8133
8134 static void
8135 print_mention_catch_solib (struct breakpoint *b)
8136 {
8137 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8138
8139 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8140 self->is_load ? "load" : "unload");
8141 }
8142
8143 static void
8144 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8145 {
8146 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8147
8148 fprintf_unfiltered (fp, "%s %s",
8149 b->disposition == disp_del ? "tcatch" : "catch",
8150 self->is_load ? "load" : "unload");
8151 if (self->regex)
8152 fprintf_unfiltered (fp, " %s", self->regex);
8153 fprintf_unfiltered (fp, "\n");
8154 }
8155
8156 static struct breakpoint_ops catch_solib_breakpoint_ops;
8157
8158 /* Shared helper function (MI and CLI) for creating and installing
8159 a shared object event catchpoint. If IS_LOAD is non-zero then
8160 the events to be caught are load events, otherwise they are
8161 unload events. If IS_TEMP is non-zero the catchpoint is a
8162 temporary one. If ENABLED is non-zero the catchpoint is
8163 created in an enabled state. */
8164
8165 void
8166 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8167 {
8168 struct gdbarch *gdbarch = get_current_arch ();
8169
8170 if (!arg)
8171 arg = "";
8172 arg = skip_spaces (arg);
8173
8174 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8175
8176 if (*arg != '\0')
8177 {
8178 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8179 _("Invalid regexp")));
8180 c->regex = xstrdup (arg);
8181 }
8182
8183 c->is_load = is_load;
8184 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8185 &catch_solib_breakpoint_ops);
8186
8187 c->enable_state = enabled ? bp_enabled : bp_disabled;
8188
8189 install_breakpoint (0, std::move (c), 1);
8190 }
8191
8192 /* A helper function that does all the work for "catch load" and
8193 "catch unload". */
8194
8195 static void
8196 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8197 struct cmd_list_element *command)
8198 {
8199 int tempflag;
8200 const int enabled = 1;
8201
8202 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8203
8204 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8205 }
8206
8207 static void
8208 catch_load_command_1 (const char *arg, int from_tty,
8209 struct cmd_list_element *command)
8210 {
8211 catch_load_or_unload (arg, from_tty, 1, command);
8212 }
8213
8214 static void
8215 catch_unload_command_1 (const char *arg, int from_tty,
8216 struct cmd_list_element *command)
8217 {
8218 catch_load_or_unload (arg, from_tty, 0, command);
8219 }
8220
8221 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8222 is non-zero, then make the breakpoint temporary. If COND_STRING is
8223 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8224 the breakpoint_ops structure associated to the catchpoint. */
8225
8226 void
8227 init_catchpoint (struct breakpoint *b,
8228 struct gdbarch *gdbarch, int tempflag,
8229 const char *cond_string,
8230 const struct breakpoint_ops *ops)
8231 {
8232 symtab_and_line sal;
8233 sal.pspace = current_program_space;
8234
8235 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8236
8237 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8238 b->disposition = tempflag ? disp_del : disp_donttouch;
8239 }
8240
8241 void
8242 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8243 {
8244 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8245 set_breakpoint_number (internal, b);
8246 if (is_tracepoint (b))
8247 set_tracepoint_count (breakpoint_count);
8248 if (!internal)
8249 mention (b);
8250 gdb::observers::breakpoint_created.notify (b);
8251
8252 if (update_gll)
8253 update_global_location_list (UGLL_MAY_INSERT);
8254 }
8255
8256 static void
8257 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8258 int tempflag, const char *cond_string,
8259 const struct breakpoint_ops *ops)
8260 {
8261 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8262
8263 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8264
8265 c->forked_inferior_pid = null_ptid;
8266
8267 install_breakpoint (0, std::move (c), 1);
8268 }
8269
8270 /* Exec catchpoints. */
8271
8272 /* An instance of this type is used to represent an exec catchpoint.
8273 A breakpoint is really of this type iff its ops pointer points to
8274 CATCH_EXEC_BREAKPOINT_OPS. */
8275
8276 struct exec_catchpoint : public breakpoint
8277 {
8278 ~exec_catchpoint () override;
8279
8280 /* Filename of a program whose exec triggered this catchpoint.
8281 This field is only valid immediately after this catchpoint has
8282 triggered. */
8283 char *exec_pathname;
8284 };
8285
8286 /* Exec catchpoint destructor. */
8287
8288 exec_catchpoint::~exec_catchpoint ()
8289 {
8290 xfree (this->exec_pathname);
8291 }
8292
8293 static int
8294 insert_catch_exec (struct bp_location *bl)
8295 {
8296 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8297 }
8298
8299 static int
8300 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8301 {
8302 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8303 }
8304
8305 static int
8306 breakpoint_hit_catch_exec (const struct bp_location *bl,
8307 const address_space *aspace, CORE_ADDR bp_addr,
8308 const struct target_waitstatus *ws)
8309 {
8310 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8311
8312 if (ws->kind != TARGET_WAITKIND_EXECD)
8313 return 0;
8314
8315 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8316 return 1;
8317 }
8318
8319 static enum print_stop_action
8320 print_it_catch_exec (bpstat bs)
8321 {
8322 struct ui_out *uiout = current_uiout;
8323 struct breakpoint *b = bs->breakpoint_at;
8324 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8325
8326 annotate_catchpoint (b->number);
8327 maybe_print_thread_hit_breakpoint (uiout);
8328 if (b->disposition == disp_del)
8329 uiout->text ("Temporary catchpoint ");
8330 else
8331 uiout->text ("Catchpoint ");
8332 if (uiout->is_mi_like_p ())
8333 {
8334 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8335 uiout->field_string ("disp", bpdisp_text (b->disposition));
8336 }
8337 uiout->field_int ("bkptno", b->number);
8338 uiout->text (" (exec'd ");
8339 uiout->field_string ("new-exec", c->exec_pathname);
8340 uiout->text ("), ");
8341
8342 return PRINT_SRC_AND_LOC;
8343 }
8344
8345 static void
8346 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8347 {
8348 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8349 struct value_print_options opts;
8350 struct ui_out *uiout = current_uiout;
8351
8352 get_user_print_options (&opts);
8353
8354 /* Field 4, the address, is omitted (which makes the columns
8355 not line up too nicely with the headers, but the effect
8356 is relatively readable). */
8357 if (opts.addressprint)
8358 uiout->field_skip ("addr");
8359 annotate_field (5);
8360 uiout->text ("exec");
8361 if (c->exec_pathname != NULL)
8362 {
8363 uiout->text (", program \"");
8364 uiout->field_string ("what", c->exec_pathname);
8365 uiout->text ("\" ");
8366 }
8367
8368 if (uiout->is_mi_like_p ())
8369 uiout->field_string ("catch-type", "exec");
8370 }
8371
8372 static void
8373 print_mention_catch_exec (struct breakpoint *b)
8374 {
8375 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8376 }
8377
8378 /* Implement the "print_recreate" breakpoint_ops method for exec
8379 catchpoints. */
8380
8381 static void
8382 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8383 {
8384 fprintf_unfiltered (fp, "catch exec");
8385 print_recreate_thread (b, fp);
8386 }
8387
8388 static struct breakpoint_ops catch_exec_breakpoint_ops;
8389
8390 static int
8391 hw_breakpoint_used_count (void)
8392 {
8393 int i = 0;
8394 struct breakpoint *b;
8395 struct bp_location *bl;
8396
8397 ALL_BREAKPOINTS (b)
8398 {
8399 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8400 for (bl = b->loc; bl; bl = bl->next)
8401 {
8402 /* Special types of hardware breakpoints may use more than
8403 one register. */
8404 i += b->ops->resources_needed (bl);
8405 }
8406 }
8407
8408 return i;
8409 }
8410
8411 /* Returns the resources B would use if it were a hardware
8412 watchpoint. */
8413
8414 static int
8415 hw_watchpoint_use_count (struct breakpoint *b)
8416 {
8417 int i = 0;
8418 struct bp_location *bl;
8419
8420 if (!breakpoint_enabled (b))
8421 return 0;
8422
8423 for (bl = b->loc; bl; bl = bl->next)
8424 {
8425 /* Special types of hardware watchpoints may use more than
8426 one register. */
8427 i += b->ops->resources_needed (bl);
8428 }
8429
8430 return i;
8431 }
8432
8433 /* Returns the sum the used resources of all hardware watchpoints of
8434 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8435 the sum of the used resources of all hardware watchpoints of other
8436 types _not_ TYPE. */
8437
8438 static int
8439 hw_watchpoint_used_count_others (struct breakpoint *except,
8440 enum bptype type, int *other_type_used)
8441 {
8442 int i = 0;
8443 struct breakpoint *b;
8444
8445 *other_type_used = 0;
8446 ALL_BREAKPOINTS (b)
8447 {
8448 if (b == except)
8449 continue;
8450 if (!breakpoint_enabled (b))
8451 continue;
8452
8453 if (b->type == type)
8454 i += hw_watchpoint_use_count (b);
8455 else if (is_hardware_watchpoint (b))
8456 *other_type_used = 1;
8457 }
8458
8459 return i;
8460 }
8461
8462 void
8463 disable_watchpoints_before_interactive_call_start (void)
8464 {
8465 struct breakpoint *b;
8466
8467 ALL_BREAKPOINTS (b)
8468 {
8469 if (is_watchpoint (b) && breakpoint_enabled (b))
8470 {
8471 b->enable_state = bp_call_disabled;
8472 update_global_location_list (UGLL_DONT_INSERT);
8473 }
8474 }
8475 }
8476
8477 void
8478 enable_watchpoints_after_interactive_call_stop (void)
8479 {
8480 struct breakpoint *b;
8481
8482 ALL_BREAKPOINTS (b)
8483 {
8484 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8485 {
8486 b->enable_state = bp_enabled;
8487 update_global_location_list (UGLL_MAY_INSERT);
8488 }
8489 }
8490 }
8491
8492 void
8493 disable_breakpoints_before_startup (void)
8494 {
8495 current_program_space->executing_startup = 1;
8496 update_global_location_list (UGLL_DONT_INSERT);
8497 }
8498
8499 void
8500 enable_breakpoints_after_startup (void)
8501 {
8502 current_program_space->executing_startup = 0;
8503 breakpoint_re_set ();
8504 }
8505
8506 /* Create a new single-step breakpoint for thread THREAD, with no
8507 locations. */
8508
8509 static struct breakpoint *
8510 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8511 {
8512 std::unique_ptr<breakpoint> b (new breakpoint ());
8513
8514 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8515 &momentary_breakpoint_ops);
8516
8517 b->disposition = disp_donttouch;
8518 b->frame_id = null_frame_id;
8519
8520 b->thread = thread;
8521 gdb_assert (b->thread != 0);
8522
8523 return add_to_breakpoint_chain (std::move (b));
8524 }
8525
8526 /* Set a momentary breakpoint of type TYPE at address specified by
8527 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8528 frame. */
8529
8530 breakpoint_up
8531 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8532 struct frame_id frame_id, enum bptype type)
8533 {
8534 struct breakpoint *b;
8535
8536 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8537 tail-called one. */
8538 gdb_assert (!frame_id_artificial_p (frame_id));
8539
8540 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8541 b->enable_state = bp_enabled;
8542 b->disposition = disp_donttouch;
8543 b->frame_id = frame_id;
8544
8545 /* If we're debugging a multi-threaded program, then we want
8546 momentary breakpoints to be active in only a single thread of
8547 control. */
8548 if (in_thread_list (inferior_ptid))
8549 b->thread = ptid_to_global_thread_id (inferior_ptid);
8550
8551 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8552
8553 return breakpoint_up (b);
8554 }
8555
8556 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8557 The new breakpoint will have type TYPE, use OPS as its
8558 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8559
8560 static struct breakpoint *
8561 momentary_breakpoint_from_master (struct breakpoint *orig,
8562 enum bptype type,
8563 const struct breakpoint_ops *ops,
8564 int loc_enabled)
8565 {
8566 struct breakpoint *copy;
8567
8568 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8569 copy->loc = allocate_bp_location (copy);
8570 set_breakpoint_location_function (copy->loc, 1);
8571
8572 copy->loc->gdbarch = orig->loc->gdbarch;
8573 copy->loc->requested_address = orig->loc->requested_address;
8574 copy->loc->address = orig->loc->address;
8575 copy->loc->section = orig->loc->section;
8576 copy->loc->pspace = orig->loc->pspace;
8577 copy->loc->probe = orig->loc->probe;
8578 copy->loc->line_number = orig->loc->line_number;
8579 copy->loc->symtab = orig->loc->symtab;
8580 copy->loc->enabled = loc_enabled;
8581 copy->frame_id = orig->frame_id;
8582 copy->thread = orig->thread;
8583 copy->pspace = orig->pspace;
8584
8585 copy->enable_state = bp_enabled;
8586 copy->disposition = disp_donttouch;
8587 copy->number = internal_breakpoint_number--;
8588
8589 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8590 return copy;
8591 }
8592
8593 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8594 ORIG is NULL. */
8595
8596 struct breakpoint *
8597 clone_momentary_breakpoint (struct breakpoint *orig)
8598 {
8599 /* If there's nothing to clone, then return nothing. */
8600 if (orig == NULL)
8601 return NULL;
8602
8603 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8604 }
8605
8606 breakpoint_up
8607 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8608 enum bptype type)
8609 {
8610 struct symtab_and_line sal;
8611
8612 sal = find_pc_line (pc, 0);
8613 sal.pc = pc;
8614 sal.section = find_pc_overlay (pc);
8615 sal.explicit_pc = 1;
8616
8617 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8618 }
8619 \f
8620
8621 /* Tell the user we have just set a breakpoint B. */
8622
8623 static void
8624 mention (struct breakpoint *b)
8625 {
8626 b->ops->print_mention (b);
8627 if (current_uiout->is_mi_like_p ())
8628 return;
8629 printf_filtered ("\n");
8630 }
8631 \f
8632
8633 static int bp_loc_is_permanent (struct bp_location *loc);
8634
8635 static struct bp_location *
8636 add_location_to_breakpoint (struct breakpoint *b,
8637 const struct symtab_and_line *sal)
8638 {
8639 struct bp_location *loc, **tmp;
8640 CORE_ADDR adjusted_address;
8641 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8642
8643 if (loc_gdbarch == NULL)
8644 loc_gdbarch = b->gdbarch;
8645
8646 /* Adjust the breakpoint's address prior to allocating a location.
8647 Once we call allocate_bp_location(), that mostly uninitialized
8648 location will be placed on the location chain. Adjustment of the
8649 breakpoint may cause target_read_memory() to be called and we do
8650 not want its scan of the location chain to find a breakpoint and
8651 location that's only been partially initialized. */
8652 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8653 sal->pc, b->type);
8654
8655 /* Sort the locations by their ADDRESS. */
8656 loc = allocate_bp_location (b);
8657 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8658 tmp = &((*tmp)->next))
8659 ;
8660 loc->next = *tmp;
8661 *tmp = loc;
8662
8663 loc->requested_address = sal->pc;
8664 loc->address = adjusted_address;
8665 loc->pspace = sal->pspace;
8666 loc->probe.prob = sal->prob;
8667 loc->probe.objfile = sal->objfile;
8668 gdb_assert (loc->pspace != NULL);
8669 loc->section = sal->section;
8670 loc->gdbarch = loc_gdbarch;
8671 loc->line_number = sal->line;
8672 loc->symtab = sal->symtab;
8673 loc->symbol = sal->symbol;
8674
8675 set_breakpoint_location_function (loc,
8676 sal->explicit_pc || sal->explicit_line);
8677
8678 /* While by definition, permanent breakpoints are already present in the
8679 code, we don't mark the location as inserted. Normally one would expect
8680 that GDB could rely on that breakpoint instruction to stop the program,
8681 thus removing the need to insert its own breakpoint, except that executing
8682 the breakpoint instruction can kill the target instead of reporting a
8683 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8684 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8685 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8686 breakpoint be inserted normally results in QEMU knowing about the GDB
8687 breakpoint, and thus trap before the breakpoint instruction is executed.
8688 (If GDB later needs to continue execution past the permanent breakpoint,
8689 it manually increments the PC, thus avoiding executing the breakpoint
8690 instruction.) */
8691 if (bp_loc_is_permanent (loc))
8692 loc->permanent = 1;
8693
8694 return loc;
8695 }
8696 \f
8697
8698 /* See breakpoint.h. */
8699
8700 int
8701 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8702 {
8703 int len;
8704 CORE_ADDR addr;
8705 const gdb_byte *bpoint;
8706 gdb_byte *target_mem;
8707
8708 addr = address;
8709 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8710
8711 /* Software breakpoints unsupported? */
8712 if (bpoint == NULL)
8713 return 0;
8714
8715 target_mem = (gdb_byte *) alloca (len);
8716
8717 /* Enable the automatic memory restoration from breakpoints while
8718 we read the memory. Otherwise we could say about our temporary
8719 breakpoints they are permanent. */
8720 scoped_restore restore_memory
8721 = make_scoped_restore_show_memory_breakpoints (0);
8722
8723 if (target_read_memory (address, target_mem, len) == 0
8724 && memcmp (target_mem, bpoint, len) == 0)
8725 return 1;
8726
8727 return 0;
8728 }
8729
8730 /* Return 1 if LOC is pointing to a permanent breakpoint,
8731 return 0 otherwise. */
8732
8733 static int
8734 bp_loc_is_permanent (struct bp_location *loc)
8735 {
8736 gdb_assert (loc != NULL);
8737
8738 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8739 attempt to read from the addresses the locations of these breakpoint types
8740 point to. program_breakpoint_here_p, below, will attempt to read
8741 memory. */
8742 if (!breakpoint_address_is_meaningful (loc->owner))
8743 return 0;
8744
8745 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8746 switch_to_program_space_and_thread (loc->pspace);
8747 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8748 }
8749
8750 /* Build a command list for the dprintf corresponding to the current
8751 settings of the dprintf style options. */
8752
8753 static void
8754 update_dprintf_command_list (struct breakpoint *b)
8755 {
8756 char *dprintf_args = b->extra_string;
8757 char *printf_line = NULL;
8758
8759 if (!dprintf_args)
8760 return;
8761
8762 dprintf_args = skip_spaces (dprintf_args);
8763
8764 /* Allow a comma, as it may have terminated a location, but don't
8765 insist on it. */
8766 if (*dprintf_args == ',')
8767 ++dprintf_args;
8768 dprintf_args = skip_spaces (dprintf_args);
8769
8770 if (*dprintf_args != '"')
8771 error (_("Bad format string, missing '\"'."));
8772
8773 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8774 printf_line = xstrprintf ("printf %s", dprintf_args);
8775 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8776 {
8777 if (!dprintf_function)
8778 error (_("No function supplied for dprintf call"));
8779
8780 if (dprintf_channel && strlen (dprintf_channel) > 0)
8781 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8782 dprintf_function,
8783 dprintf_channel,
8784 dprintf_args);
8785 else
8786 printf_line = xstrprintf ("call (void) %s (%s)",
8787 dprintf_function,
8788 dprintf_args);
8789 }
8790 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8791 {
8792 if (target_can_run_breakpoint_commands ())
8793 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8794 else
8795 {
8796 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8797 printf_line = xstrprintf ("printf %s", dprintf_args);
8798 }
8799 }
8800 else
8801 internal_error (__FILE__, __LINE__,
8802 _("Invalid dprintf style."));
8803
8804 gdb_assert (printf_line != NULL);
8805 /* Manufacture a printf sequence. */
8806 {
8807 struct command_line *printf_cmd_line = XNEW (struct command_line);
8808
8809 printf_cmd_line->control_type = simple_control;
8810 printf_cmd_line->body_count = 0;
8811 printf_cmd_line->body_list = NULL;
8812 printf_cmd_line->next = NULL;
8813 printf_cmd_line->line = printf_line;
8814
8815 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8816 }
8817 }
8818
8819 /* Update all dprintf commands, making their command lists reflect
8820 current style settings. */
8821
8822 static void
8823 update_dprintf_commands (const char *args, int from_tty,
8824 struct cmd_list_element *c)
8825 {
8826 struct breakpoint *b;
8827
8828 ALL_BREAKPOINTS (b)
8829 {
8830 if (b->type == bp_dprintf)
8831 update_dprintf_command_list (b);
8832 }
8833 }
8834
8835 /* Create a breakpoint with SAL as location. Use LOCATION
8836 as a description of the location, and COND_STRING
8837 as condition expression. If LOCATION is NULL then create an
8838 "address location" from the address in the SAL. */
8839
8840 static void
8841 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8842 gdb::array_view<const symtab_and_line> sals,
8843 event_location_up &&location,
8844 gdb::unique_xmalloc_ptr<char> filter,
8845 gdb::unique_xmalloc_ptr<char> cond_string,
8846 gdb::unique_xmalloc_ptr<char> extra_string,
8847 enum bptype type, enum bpdisp disposition,
8848 int thread, int task, int ignore_count,
8849 const struct breakpoint_ops *ops, int from_tty,
8850 int enabled, int internal, unsigned flags,
8851 int display_canonical)
8852 {
8853 int i;
8854
8855 if (type == bp_hardware_breakpoint)
8856 {
8857 int target_resources_ok;
8858
8859 i = hw_breakpoint_used_count ();
8860 target_resources_ok =
8861 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8862 i + 1, 0);
8863 if (target_resources_ok == 0)
8864 error (_("No hardware breakpoint support in the target."));
8865 else if (target_resources_ok < 0)
8866 error (_("Hardware breakpoints used exceeds limit."));
8867 }
8868
8869 gdb_assert (!sals.empty ());
8870
8871 for (const auto &sal : sals)
8872 {
8873 struct bp_location *loc;
8874
8875 if (from_tty)
8876 {
8877 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8878 if (!loc_gdbarch)
8879 loc_gdbarch = gdbarch;
8880
8881 describe_other_breakpoints (loc_gdbarch,
8882 sal.pspace, sal.pc, sal.section, thread);
8883 }
8884
8885 if (&sal == &sals[0])
8886 {
8887 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8888 b->thread = thread;
8889 b->task = task;
8890
8891 b->cond_string = cond_string.release ();
8892 b->extra_string = extra_string.release ();
8893 b->ignore_count = ignore_count;
8894 b->enable_state = enabled ? bp_enabled : bp_disabled;
8895 b->disposition = disposition;
8896
8897 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8898 b->loc->inserted = 1;
8899
8900 if (type == bp_static_tracepoint)
8901 {
8902 struct tracepoint *t = (struct tracepoint *) b;
8903 struct static_tracepoint_marker marker;
8904
8905 if (strace_marker_p (b))
8906 {
8907 /* We already know the marker exists, otherwise, we
8908 wouldn't see a sal for it. */
8909 const char *p
8910 = &event_location_to_string (b->location.get ())[3];
8911 const char *endp;
8912
8913 p = skip_spaces (p);
8914
8915 endp = skip_to_space (p);
8916
8917 t->static_trace_marker_id.assign (p, endp - p);
8918
8919 printf_filtered (_("Probed static tracepoint "
8920 "marker \"%s\"\n"),
8921 t->static_trace_marker_id.c_str ());
8922 }
8923 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8924 {
8925 t->static_trace_marker_id = std::move (marker.str_id);
8926
8927 printf_filtered (_("Probed static tracepoint "
8928 "marker \"%s\"\n"),
8929 t->static_trace_marker_id.c_str ());
8930 }
8931 else
8932 warning (_("Couldn't determine the static "
8933 "tracepoint marker to probe"));
8934 }
8935
8936 loc = b->loc;
8937 }
8938 else
8939 {
8940 loc = add_location_to_breakpoint (b, &sal);
8941 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8942 loc->inserted = 1;
8943 }
8944
8945 if (b->cond_string)
8946 {
8947 const char *arg = b->cond_string;
8948
8949 loc->cond = parse_exp_1 (&arg, loc->address,
8950 block_for_pc (loc->address), 0);
8951 if (*arg)
8952 error (_("Garbage '%s' follows condition"), arg);
8953 }
8954
8955 /* Dynamic printf requires and uses additional arguments on the
8956 command line, otherwise it's an error. */
8957 if (type == bp_dprintf)
8958 {
8959 if (b->extra_string)
8960 update_dprintf_command_list (b);
8961 else
8962 error (_("Format string required"));
8963 }
8964 else if (b->extra_string)
8965 error (_("Garbage '%s' at end of command"), b->extra_string);
8966 }
8967
8968 b->display_canonical = display_canonical;
8969 if (location != NULL)
8970 b->location = std::move (location);
8971 else
8972 b->location = new_address_location (b->loc->address, NULL, 0);
8973 b->filter = filter.release ();
8974 }
8975
8976 static void
8977 create_breakpoint_sal (struct gdbarch *gdbarch,
8978 gdb::array_view<const symtab_and_line> sals,
8979 event_location_up &&location,
8980 gdb::unique_xmalloc_ptr<char> filter,
8981 gdb::unique_xmalloc_ptr<char> cond_string,
8982 gdb::unique_xmalloc_ptr<char> extra_string,
8983 enum bptype type, enum bpdisp disposition,
8984 int thread, int task, int ignore_count,
8985 const struct breakpoint_ops *ops, int from_tty,
8986 int enabled, int internal, unsigned flags,
8987 int display_canonical)
8988 {
8989 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8990
8991 init_breakpoint_sal (b.get (), gdbarch,
8992 sals, std::move (location),
8993 std::move (filter),
8994 std::move (cond_string),
8995 std::move (extra_string),
8996 type, disposition,
8997 thread, task, ignore_count,
8998 ops, from_tty,
8999 enabled, internal, flags,
9000 display_canonical);
9001
9002 install_breakpoint (internal, std::move (b), 0);
9003 }
9004
9005 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9006 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9007 value. COND_STRING, if not NULL, specified the condition to be
9008 used for all breakpoints. Essentially the only case where
9009 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9010 function. In that case, it's still not possible to specify
9011 separate conditions for different overloaded functions, so
9012 we take just a single condition string.
9013
9014 NOTE: If the function succeeds, the caller is expected to cleanup
9015 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9016 array contents). If the function fails (error() is called), the
9017 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9018 COND and SALS arrays and each of those arrays contents. */
9019
9020 static void
9021 create_breakpoints_sal (struct gdbarch *gdbarch,
9022 struct linespec_result *canonical,
9023 gdb::unique_xmalloc_ptr<char> cond_string,
9024 gdb::unique_xmalloc_ptr<char> extra_string,
9025 enum bptype type, enum bpdisp disposition,
9026 int thread, int task, int ignore_count,
9027 const struct breakpoint_ops *ops, int from_tty,
9028 int enabled, int internal, unsigned flags)
9029 {
9030 if (canonical->pre_expanded)
9031 gdb_assert (canonical->lsals.size () == 1);
9032
9033 for (const auto &lsal : canonical->lsals)
9034 {
9035 /* Note that 'location' can be NULL in the case of a plain
9036 'break', without arguments. */
9037 event_location_up location
9038 = (canonical->location != NULL
9039 ? copy_event_location (canonical->location.get ()) : NULL);
9040 gdb::unique_xmalloc_ptr<char> filter_string
9041 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9042
9043 create_breakpoint_sal (gdbarch, lsal.sals,
9044 std::move (location),
9045 std::move (filter_string),
9046 std::move (cond_string),
9047 std::move (extra_string),
9048 type, disposition,
9049 thread, task, ignore_count, ops,
9050 from_tty, enabled, internal, flags,
9051 canonical->special_display);
9052 }
9053 }
9054
9055 /* Parse LOCATION which is assumed to be a SAL specification possibly
9056 followed by conditionals. On return, SALS contains an array of SAL
9057 addresses found. LOCATION points to the end of the SAL (for
9058 linespec locations).
9059
9060 The array and the line spec strings are allocated on the heap, it is
9061 the caller's responsibility to free them. */
9062
9063 static void
9064 parse_breakpoint_sals (const struct event_location *location,
9065 struct linespec_result *canonical)
9066 {
9067 struct symtab_and_line cursal;
9068
9069 if (event_location_type (location) == LINESPEC_LOCATION)
9070 {
9071 const char *spec = get_linespec_location (location)->spec_string;
9072
9073 if (spec == NULL)
9074 {
9075 /* The last displayed codepoint, if it's valid, is our default
9076 breakpoint address. */
9077 if (last_displayed_sal_is_valid ())
9078 {
9079 /* Set sal's pspace, pc, symtab, and line to the values
9080 corresponding to the last call to print_frame_info.
9081 Be sure to reinitialize LINE with NOTCURRENT == 0
9082 as the breakpoint line number is inappropriate otherwise.
9083 find_pc_line would adjust PC, re-set it back. */
9084 symtab_and_line sal = get_last_displayed_sal ();
9085 CORE_ADDR pc = sal.pc;
9086
9087 sal = find_pc_line (pc, 0);
9088
9089 /* "break" without arguments is equivalent to "break *PC"
9090 where PC is the last displayed codepoint's address. So
9091 make sure to set sal.explicit_pc to prevent GDB from
9092 trying to expand the list of sals to include all other
9093 instances with the same symtab and line. */
9094 sal.pc = pc;
9095 sal.explicit_pc = 1;
9096
9097 struct linespec_sals lsal;
9098 lsal.sals = {sal};
9099 lsal.canonical = NULL;
9100
9101 canonical->lsals.push_back (std::move (lsal));
9102 return;
9103 }
9104 else
9105 error (_("No default breakpoint address now."));
9106 }
9107 }
9108
9109 /* Force almost all breakpoints to be in terms of the
9110 current_source_symtab (which is decode_line_1's default).
9111 This should produce the results we want almost all of the
9112 time while leaving default_breakpoint_* alone.
9113
9114 ObjC: However, don't match an Objective-C method name which
9115 may have a '+' or '-' succeeded by a '['. */
9116 cursal = get_current_source_symtab_and_line ();
9117 if (last_displayed_sal_is_valid ())
9118 {
9119 const char *spec = NULL;
9120
9121 if (event_location_type (location) == LINESPEC_LOCATION)
9122 spec = get_linespec_location (location)->spec_string;
9123
9124 if (!cursal.symtab
9125 || (spec != NULL
9126 && strchr ("+-", spec[0]) != NULL
9127 && spec[1] != '['))
9128 {
9129 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9130 get_last_displayed_symtab (),
9131 get_last_displayed_line (),
9132 canonical, NULL, NULL);
9133 return;
9134 }
9135 }
9136
9137 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9138 cursal.symtab, cursal.line, canonical, NULL, NULL);
9139 }
9140
9141
9142 /* Convert each SAL into a real PC. Verify that the PC can be
9143 inserted as a breakpoint. If it can't throw an error. */
9144
9145 static void
9146 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9147 {
9148 for (auto &sal : sals)
9149 resolve_sal_pc (&sal);
9150 }
9151
9152 /* Fast tracepoints may have restrictions on valid locations. For
9153 instance, a fast tracepoint using a jump instead of a trap will
9154 likely have to overwrite more bytes than a trap would, and so can
9155 only be placed where the instruction is longer than the jump, or a
9156 multi-instruction sequence does not have a jump into the middle of
9157 it, etc. */
9158
9159 static void
9160 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9161 gdb::array_view<const symtab_and_line> sals)
9162 {
9163 for (const auto &sal : sals)
9164 {
9165 struct gdbarch *sarch;
9166
9167 sarch = get_sal_arch (sal);
9168 /* We fall back to GDBARCH if there is no architecture
9169 associated with SAL. */
9170 if (sarch == NULL)
9171 sarch = gdbarch;
9172 std::string msg;
9173 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9174 error (_("May not have a fast tracepoint at %s%s"),
9175 paddress (sarch, sal.pc), msg.c_str ());
9176 }
9177 }
9178
9179 /* Given TOK, a string specification of condition and thread, as
9180 accepted by the 'break' command, extract the condition
9181 string and thread number and set *COND_STRING and *THREAD.
9182 PC identifies the context at which the condition should be parsed.
9183 If no condition is found, *COND_STRING is set to NULL.
9184 If no thread is found, *THREAD is set to -1. */
9185
9186 static void
9187 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9188 char **cond_string, int *thread, int *task,
9189 char **rest)
9190 {
9191 *cond_string = NULL;
9192 *thread = -1;
9193 *task = 0;
9194 *rest = NULL;
9195
9196 while (tok && *tok)
9197 {
9198 const char *end_tok;
9199 int toklen;
9200 const char *cond_start = NULL;
9201 const char *cond_end = NULL;
9202
9203 tok = skip_spaces (tok);
9204
9205 if ((*tok == '"' || *tok == ',') && rest)
9206 {
9207 *rest = savestring (tok, strlen (tok));
9208 return;
9209 }
9210
9211 end_tok = skip_to_space (tok);
9212
9213 toklen = end_tok - tok;
9214
9215 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9216 {
9217 tok = cond_start = end_tok + 1;
9218 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9219 cond_end = tok;
9220 *cond_string = savestring (cond_start, cond_end - cond_start);
9221 }
9222 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9223 {
9224 const char *tmptok;
9225 struct thread_info *thr;
9226
9227 tok = end_tok + 1;
9228 thr = parse_thread_id (tok, &tmptok);
9229 if (tok == tmptok)
9230 error (_("Junk after thread keyword."));
9231 *thread = thr->global_num;
9232 tok = tmptok;
9233 }
9234 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9235 {
9236 char *tmptok;
9237
9238 tok = end_tok + 1;
9239 *task = strtol (tok, &tmptok, 0);
9240 if (tok == tmptok)
9241 error (_("Junk after task keyword."));
9242 if (!valid_task_id (*task))
9243 error (_("Unknown task %d."), *task);
9244 tok = tmptok;
9245 }
9246 else if (rest)
9247 {
9248 *rest = savestring (tok, strlen (tok));
9249 return;
9250 }
9251 else
9252 error (_("Junk at end of arguments."));
9253 }
9254 }
9255
9256 /* Decode a static tracepoint marker spec. */
9257
9258 static std::vector<symtab_and_line>
9259 decode_static_tracepoint_spec (const char **arg_p)
9260 {
9261 const char *p = &(*arg_p)[3];
9262 const char *endp;
9263
9264 p = skip_spaces (p);
9265
9266 endp = skip_to_space (p);
9267
9268 std::string marker_str (p, endp - p);
9269
9270 std::vector<static_tracepoint_marker> markers
9271 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9272 if (markers.empty ())
9273 error (_("No known static tracepoint marker named %s"),
9274 marker_str.c_str ());
9275
9276 std::vector<symtab_and_line> sals;
9277 sals.reserve (markers.size ());
9278
9279 for (const static_tracepoint_marker &marker : markers)
9280 {
9281 symtab_and_line sal = find_pc_line (marker.address, 0);
9282 sal.pc = marker.address;
9283 sals.push_back (sal);
9284 }
9285
9286 *arg_p = endp;
9287 return sals;
9288 }
9289
9290 /* See breakpoint.h. */
9291
9292 int
9293 create_breakpoint (struct gdbarch *gdbarch,
9294 const struct event_location *location,
9295 const char *cond_string,
9296 int thread, const char *extra_string,
9297 int parse_extra,
9298 int tempflag, enum bptype type_wanted,
9299 int ignore_count,
9300 enum auto_boolean pending_break_support,
9301 const struct breakpoint_ops *ops,
9302 int from_tty, int enabled, int internal,
9303 unsigned flags)
9304 {
9305 struct linespec_result canonical;
9306 struct cleanup *bkpt_chain = NULL;
9307 int pending = 0;
9308 int task = 0;
9309 int prev_bkpt_count = breakpoint_count;
9310
9311 gdb_assert (ops != NULL);
9312
9313 /* If extra_string isn't useful, set it to NULL. */
9314 if (extra_string != NULL && *extra_string == '\0')
9315 extra_string = NULL;
9316
9317 TRY
9318 {
9319 ops->create_sals_from_location (location, &canonical, type_wanted);
9320 }
9321 CATCH (e, RETURN_MASK_ERROR)
9322 {
9323 /* If caller is interested in rc value from parse, set
9324 value. */
9325 if (e.error == NOT_FOUND_ERROR)
9326 {
9327 /* If pending breakpoint support is turned off, throw
9328 error. */
9329
9330 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9331 throw_exception (e);
9332
9333 exception_print (gdb_stderr, e);
9334
9335 /* If pending breakpoint support is auto query and the user
9336 selects no, then simply return the error code. */
9337 if (pending_break_support == AUTO_BOOLEAN_AUTO
9338 && !nquery (_("Make %s pending on future shared library load? "),
9339 bptype_string (type_wanted)))
9340 return 0;
9341
9342 /* At this point, either the user was queried about setting
9343 a pending breakpoint and selected yes, or pending
9344 breakpoint behavior is on and thus a pending breakpoint
9345 is defaulted on behalf of the user. */
9346 pending = 1;
9347 }
9348 else
9349 throw_exception (e);
9350 }
9351 END_CATCH
9352
9353 if (!pending && canonical.lsals.empty ())
9354 return 0;
9355
9356 /* ----------------------------- SNIP -----------------------------
9357 Anything added to the cleanup chain beyond this point is assumed
9358 to be part of a breakpoint. If the breakpoint create succeeds
9359 then the memory is not reclaimed. */
9360 bkpt_chain = make_cleanup (null_cleanup, 0);
9361
9362 /* Resolve all line numbers to PC's and verify that the addresses
9363 are ok for the target. */
9364 if (!pending)
9365 {
9366 for (auto &lsal : canonical.lsals)
9367 breakpoint_sals_to_pc (lsal.sals);
9368 }
9369
9370 /* Fast tracepoints may have additional restrictions on location. */
9371 if (!pending && type_wanted == bp_fast_tracepoint)
9372 {
9373 for (const auto &lsal : canonical.lsals)
9374 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9375 }
9376
9377 /* Verify that condition can be parsed, before setting any
9378 breakpoints. Allocate a separate condition expression for each
9379 breakpoint. */
9380 if (!pending)
9381 {
9382 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9383 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9384
9385 if (parse_extra)
9386 {
9387 char *rest;
9388 char *cond;
9389
9390 const linespec_sals &lsal = canonical.lsals[0];
9391
9392 /* Here we only parse 'arg' to separate condition
9393 from thread number, so parsing in context of first
9394 sal is OK. When setting the breakpoint we'll
9395 re-parse it in context of each sal. */
9396
9397 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9398 &cond, &thread, &task, &rest);
9399 cond_string_copy.reset (cond);
9400 extra_string_copy.reset (rest);
9401 }
9402 else
9403 {
9404 if (type_wanted != bp_dprintf
9405 && extra_string != NULL && *extra_string != '\0')
9406 error (_("Garbage '%s' at end of location"), extra_string);
9407
9408 /* Create a private copy of condition string. */
9409 if (cond_string)
9410 cond_string_copy.reset (xstrdup (cond_string));
9411 /* Create a private copy of any extra string. */
9412 if (extra_string)
9413 extra_string_copy.reset (xstrdup (extra_string));
9414 }
9415
9416 ops->create_breakpoints_sal (gdbarch, &canonical,
9417 std::move (cond_string_copy),
9418 std::move (extra_string_copy),
9419 type_wanted,
9420 tempflag ? disp_del : disp_donttouch,
9421 thread, task, ignore_count, ops,
9422 from_tty, enabled, internal, flags);
9423 }
9424 else
9425 {
9426 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9427
9428 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9429 b->location = copy_event_location (location);
9430
9431 if (parse_extra)
9432 b->cond_string = NULL;
9433 else
9434 {
9435 /* Create a private copy of condition string. */
9436 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9437 b->thread = thread;
9438 }
9439
9440 /* Create a private copy of any extra string. */
9441 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9442 b->ignore_count = ignore_count;
9443 b->disposition = tempflag ? disp_del : disp_donttouch;
9444 b->condition_not_parsed = 1;
9445 b->enable_state = enabled ? bp_enabled : bp_disabled;
9446 if ((type_wanted != bp_breakpoint
9447 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9448 b->pspace = current_program_space;
9449
9450 install_breakpoint (internal, std::move (b), 0);
9451 }
9452
9453 if (canonical.lsals.size () > 1)
9454 {
9455 warning (_("Multiple breakpoints were set.\nUse the "
9456 "\"delete\" command to delete unwanted breakpoints."));
9457 prev_breakpoint_count = prev_bkpt_count;
9458 }
9459
9460 /* That's it. Discard the cleanups for data inserted into the
9461 breakpoint. */
9462 discard_cleanups (bkpt_chain);
9463
9464 /* error call may happen here - have BKPT_CHAIN already discarded. */
9465 update_global_location_list (UGLL_MAY_INSERT);
9466
9467 return 1;
9468 }
9469
9470 /* Set a breakpoint.
9471 ARG is a string describing breakpoint address,
9472 condition, and thread.
9473 FLAG specifies if a breakpoint is hardware on,
9474 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9475 and BP_TEMPFLAG. */
9476
9477 static void
9478 break_command_1 (const char *arg, int flag, int from_tty)
9479 {
9480 int tempflag = flag & BP_TEMPFLAG;
9481 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9482 ? bp_hardware_breakpoint
9483 : bp_breakpoint);
9484 struct breakpoint_ops *ops;
9485
9486 event_location_up location = string_to_event_location (&arg, current_language);
9487
9488 /* Matching breakpoints on probes. */
9489 if (location != NULL
9490 && event_location_type (location.get ()) == PROBE_LOCATION)
9491 ops = &bkpt_probe_breakpoint_ops;
9492 else
9493 ops = &bkpt_breakpoint_ops;
9494
9495 create_breakpoint (get_current_arch (),
9496 location.get (),
9497 NULL, 0, arg, 1 /* parse arg */,
9498 tempflag, type_wanted,
9499 0 /* Ignore count */,
9500 pending_break_support,
9501 ops,
9502 from_tty,
9503 1 /* enabled */,
9504 0 /* internal */,
9505 0);
9506 }
9507
9508 /* Helper function for break_command_1 and disassemble_command. */
9509
9510 void
9511 resolve_sal_pc (struct symtab_and_line *sal)
9512 {
9513 CORE_ADDR pc;
9514
9515 if (sal->pc == 0 && sal->symtab != NULL)
9516 {
9517 if (!find_line_pc (sal->symtab, sal->line, &pc))
9518 error (_("No line %d in file \"%s\"."),
9519 sal->line, symtab_to_filename_for_display (sal->symtab));
9520 sal->pc = pc;
9521
9522 /* If this SAL corresponds to a breakpoint inserted using a line
9523 number, then skip the function prologue if necessary. */
9524 if (sal->explicit_line)
9525 skip_prologue_sal (sal);
9526 }
9527
9528 if (sal->section == 0 && sal->symtab != NULL)
9529 {
9530 const struct blockvector *bv;
9531 const struct block *b;
9532 struct symbol *sym;
9533
9534 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9535 SYMTAB_COMPUNIT (sal->symtab));
9536 if (bv != NULL)
9537 {
9538 sym = block_linkage_function (b);
9539 if (sym != NULL)
9540 {
9541 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9542 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9543 sym);
9544 }
9545 else
9546 {
9547 /* It really is worthwhile to have the section, so we'll
9548 just have to look harder. This case can be executed
9549 if we have line numbers but no functions (as can
9550 happen in assembly source). */
9551
9552 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9553 switch_to_program_space_and_thread (sal->pspace);
9554
9555 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9556 if (msym.minsym)
9557 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9558 }
9559 }
9560 }
9561 }
9562
9563 void
9564 break_command (const char *arg, int from_tty)
9565 {
9566 break_command_1 (arg, 0, from_tty);
9567 }
9568
9569 void
9570 tbreak_command (const char *arg, int from_tty)
9571 {
9572 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9573 }
9574
9575 static void
9576 hbreak_command (const char *arg, int from_tty)
9577 {
9578 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9579 }
9580
9581 static void
9582 thbreak_command (const char *arg, int from_tty)
9583 {
9584 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9585 }
9586
9587 static void
9588 stop_command (const char *arg, int from_tty)
9589 {
9590 printf_filtered (_("Specify the type of breakpoint to set.\n\
9591 Usage: stop in <function | address>\n\
9592 stop at <line>\n"));
9593 }
9594
9595 static void
9596 stopin_command (const char *arg, int from_tty)
9597 {
9598 int badInput = 0;
9599
9600 if (arg == (char *) NULL)
9601 badInput = 1;
9602 else if (*arg != '*')
9603 {
9604 const char *argptr = arg;
9605 int hasColon = 0;
9606
9607 /* Look for a ':'. If this is a line number specification, then
9608 say it is bad, otherwise, it should be an address or
9609 function/method name. */
9610 while (*argptr && !hasColon)
9611 {
9612 hasColon = (*argptr == ':');
9613 argptr++;
9614 }
9615
9616 if (hasColon)
9617 badInput = (*argptr != ':'); /* Not a class::method */
9618 else
9619 badInput = isdigit (*arg); /* a simple line number */
9620 }
9621
9622 if (badInput)
9623 printf_filtered (_("Usage: stop in <function | address>\n"));
9624 else
9625 break_command_1 (arg, 0, from_tty);
9626 }
9627
9628 static void
9629 stopat_command (const char *arg, int from_tty)
9630 {
9631 int badInput = 0;
9632
9633 if (arg == (char *) NULL || *arg == '*') /* no line number */
9634 badInput = 1;
9635 else
9636 {
9637 const char *argptr = arg;
9638 int hasColon = 0;
9639
9640 /* Look for a ':'. If there is a '::' then get out, otherwise
9641 it is probably a line number. */
9642 while (*argptr && !hasColon)
9643 {
9644 hasColon = (*argptr == ':');
9645 argptr++;
9646 }
9647
9648 if (hasColon)
9649 badInput = (*argptr == ':'); /* we have class::method */
9650 else
9651 badInput = !isdigit (*arg); /* not a line number */
9652 }
9653
9654 if (badInput)
9655 printf_filtered (_("Usage: stop at <line>\n"));
9656 else
9657 break_command_1 (arg, 0, from_tty);
9658 }
9659
9660 /* The dynamic printf command is mostly like a regular breakpoint, but
9661 with a prewired command list consisting of a single output command,
9662 built from extra arguments supplied on the dprintf command
9663 line. */
9664
9665 static void
9666 dprintf_command (const char *arg, int from_tty)
9667 {
9668 event_location_up location = string_to_event_location (&arg, current_language);
9669
9670 /* If non-NULL, ARG should have been advanced past the location;
9671 the next character must be ','. */
9672 if (arg != NULL)
9673 {
9674 if (arg[0] != ',' || arg[1] == '\0')
9675 error (_("Format string required"));
9676 else
9677 {
9678 /* Skip the comma. */
9679 ++arg;
9680 }
9681 }
9682
9683 create_breakpoint (get_current_arch (),
9684 location.get (),
9685 NULL, 0, arg, 1 /* parse arg */,
9686 0, bp_dprintf,
9687 0 /* Ignore count */,
9688 pending_break_support,
9689 &dprintf_breakpoint_ops,
9690 from_tty,
9691 1 /* enabled */,
9692 0 /* internal */,
9693 0);
9694 }
9695
9696 static void
9697 agent_printf_command (const char *arg, int from_tty)
9698 {
9699 error (_("May only run agent-printf on the target"));
9700 }
9701
9702 /* Implement the "breakpoint_hit" breakpoint_ops method for
9703 ranged breakpoints. */
9704
9705 static int
9706 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9707 const address_space *aspace,
9708 CORE_ADDR bp_addr,
9709 const struct target_waitstatus *ws)
9710 {
9711 if (ws->kind != TARGET_WAITKIND_STOPPED
9712 || ws->value.sig != GDB_SIGNAL_TRAP)
9713 return 0;
9714
9715 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9716 bl->length, aspace, bp_addr);
9717 }
9718
9719 /* Implement the "resources_needed" breakpoint_ops method for
9720 ranged breakpoints. */
9721
9722 static int
9723 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9724 {
9725 return target_ranged_break_num_registers ();
9726 }
9727
9728 /* Implement the "print_it" breakpoint_ops method for
9729 ranged breakpoints. */
9730
9731 static enum print_stop_action
9732 print_it_ranged_breakpoint (bpstat bs)
9733 {
9734 struct breakpoint *b = bs->breakpoint_at;
9735 struct bp_location *bl = b->loc;
9736 struct ui_out *uiout = current_uiout;
9737
9738 gdb_assert (b->type == bp_hardware_breakpoint);
9739
9740 /* Ranged breakpoints have only one location. */
9741 gdb_assert (bl && bl->next == NULL);
9742
9743 annotate_breakpoint (b->number);
9744
9745 maybe_print_thread_hit_breakpoint (uiout);
9746
9747 if (b->disposition == disp_del)
9748 uiout->text ("Temporary ranged breakpoint ");
9749 else
9750 uiout->text ("Ranged breakpoint ");
9751 if (uiout->is_mi_like_p ())
9752 {
9753 uiout->field_string ("reason",
9754 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9755 uiout->field_string ("disp", bpdisp_text (b->disposition));
9756 }
9757 uiout->field_int ("bkptno", b->number);
9758 uiout->text (", ");
9759
9760 return PRINT_SRC_AND_LOC;
9761 }
9762
9763 /* Implement the "print_one" breakpoint_ops method for
9764 ranged breakpoints. */
9765
9766 static void
9767 print_one_ranged_breakpoint (struct breakpoint *b,
9768 struct bp_location **last_loc)
9769 {
9770 struct bp_location *bl = b->loc;
9771 struct value_print_options opts;
9772 struct ui_out *uiout = current_uiout;
9773
9774 /* Ranged breakpoints have only one location. */
9775 gdb_assert (bl && bl->next == NULL);
9776
9777 get_user_print_options (&opts);
9778
9779 if (opts.addressprint)
9780 /* We don't print the address range here, it will be printed later
9781 by print_one_detail_ranged_breakpoint. */
9782 uiout->field_skip ("addr");
9783 annotate_field (5);
9784 print_breakpoint_location (b, bl);
9785 *last_loc = bl;
9786 }
9787
9788 /* Implement the "print_one_detail" breakpoint_ops method for
9789 ranged breakpoints. */
9790
9791 static void
9792 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9793 struct ui_out *uiout)
9794 {
9795 CORE_ADDR address_start, address_end;
9796 struct bp_location *bl = b->loc;
9797 string_file stb;
9798
9799 gdb_assert (bl);
9800
9801 address_start = bl->address;
9802 address_end = address_start + bl->length - 1;
9803
9804 uiout->text ("\taddress range: ");
9805 stb.printf ("[%s, %s]",
9806 print_core_address (bl->gdbarch, address_start),
9807 print_core_address (bl->gdbarch, address_end));
9808 uiout->field_stream ("addr", stb);
9809 uiout->text ("\n");
9810 }
9811
9812 /* Implement the "print_mention" breakpoint_ops method for
9813 ranged breakpoints. */
9814
9815 static void
9816 print_mention_ranged_breakpoint (struct breakpoint *b)
9817 {
9818 struct bp_location *bl = b->loc;
9819 struct ui_out *uiout = current_uiout;
9820
9821 gdb_assert (bl);
9822 gdb_assert (b->type == bp_hardware_breakpoint);
9823
9824 if (uiout->is_mi_like_p ())
9825 return;
9826
9827 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9828 b->number, paddress (bl->gdbarch, bl->address),
9829 paddress (bl->gdbarch, bl->address + bl->length - 1));
9830 }
9831
9832 /* Implement the "print_recreate" breakpoint_ops method for
9833 ranged breakpoints. */
9834
9835 static void
9836 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9837 {
9838 fprintf_unfiltered (fp, "break-range %s, %s",
9839 event_location_to_string (b->location.get ()),
9840 event_location_to_string (b->location_range_end.get ()));
9841 print_recreate_thread (b, fp);
9842 }
9843
9844 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9845
9846 static struct breakpoint_ops ranged_breakpoint_ops;
9847
9848 /* Find the address where the end of the breakpoint range should be
9849 placed, given the SAL of the end of the range. This is so that if
9850 the user provides a line number, the end of the range is set to the
9851 last instruction of the given line. */
9852
9853 static CORE_ADDR
9854 find_breakpoint_range_end (struct symtab_and_line sal)
9855 {
9856 CORE_ADDR end;
9857
9858 /* If the user provided a PC value, use it. Otherwise,
9859 find the address of the end of the given location. */
9860 if (sal.explicit_pc)
9861 end = sal.pc;
9862 else
9863 {
9864 int ret;
9865 CORE_ADDR start;
9866
9867 ret = find_line_pc_range (sal, &start, &end);
9868 if (!ret)
9869 error (_("Could not find location of the end of the range."));
9870
9871 /* find_line_pc_range returns the start of the next line. */
9872 end--;
9873 }
9874
9875 return end;
9876 }
9877
9878 /* Implement the "break-range" CLI command. */
9879
9880 static void
9881 break_range_command (const char *arg, int from_tty)
9882 {
9883 const char *arg_start;
9884 struct linespec_result canonical_start, canonical_end;
9885 int bp_count, can_use_bp, length;
9886 CORE_ADDR end;
9887 struct breakpoint *b;
9888
9889 /* We don't support software ranged breakpoints. */
9890 if (target_ranged_break_num_registers () < 0)
9891 error (_("This target does not support hardware ranged breakpoints."));
9892
9893 bp_count = hw_breakpoint_used_count ();
9894 bp_count += target_ranged_break_num_registers ();
9895 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9896 bp_count, 0);
9897 if (can_use_bp < 0)
9898 error (_("Hardware breakpoints used exceeds limit."));
9899
9900 arg = skip_spaces (arg);
9901 if (arg == NULL || arg[0] == '\0')
9902 error(_("No address range specified."));
9903
9904 arg_start = arg;
9905 event_location_up start_location = string_to_event_location (&arg,
9906 current_language);
9907 parse_breakpoint_sals (start_location.get (), &canonical_start);
9908
9909 if (arg[0] != ',')
9910 error (_("Too few arguments."));
9911 else if (canonical_start.lsals.empty ())
9912 error (_("Could not find location of the beginning of the range."));
9913
9914 const linespec_sals &lsal_start = canonical_start.lsals[0];
9915
9916 if (canonical_start.lsals.size () > 1
9917 || lsal_start.sals.size () != 1)
9918 error (_("Cannot create a ranged breakpoint with multiple locations."));
9919
9920 const symtab_and_line &sal_start = lsal_start.sals[0];
9921 std::string addr_string_start (arg_start, arg - arg_start);
9922
9923 arg++; /* Skip the comma. */
9924 arg = skip_spaces (arg);
9925
9926 /* Parse the end location. */
9927
9928 arg_start = arg;
9929
9930 /* We call decode_line_full directly here instead of using
9931 parse_breakpoint_sals because we need to specify the start location's
9932 symtab and line as the default symtab and line for the end of the
9933 range. This makes it possible to have ranges like "foo.c:27, +14",
9934 where +14 means 14 lines from the start location. */
9935 event_location_up end_location = string_to_event_location (&arg,
9936 current_language);
9937 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9938 sal_start.symtab, sal_start.line,
9939 &canonical_end, NULL, NULL);
9940
9941 if (canonical_end.lsals.empty ())
9942 error (_("Could not find location of the end of the range."));
9943
9944 const linespec_sals &lsal_end = canonical_end.lsals[0];
9945 if (canonical_end.lsals.size () > 1
9946 || lsal_end.sals.size () != 1)
9947 error (_("Cannot create a ranged breakpoint with multiple locations."));
9948
9949 const symtab_and_line &sal_end = lsal_end.sals[0];
9950
9951 end = find_breakpoint_range_end (sal_end);
9952 if (sal_start.pc > end)
9953 error (_("Invalid address range, end precedes start."));
9954
9955 length = end - sal_start.pc + 1;
9956 if (length < 0)
9957 /* Length overflowed. */
9958 error (_("Address range too large."));
9959 else if (length == 1)
9960 {
9961 /* This range is simple enough to be handled by
9962 the `hbreak' command. */
9963 hbreak_command (&addr_string_start[0], 1);
9964
9965 return;
9966 }
9967
9968 /* Now set up the breakpoint. */
9969 b = set_raw_breakpoint (get_current_arch (), sal_start,
9970 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9971 set_breakpoint_count (breakpoint_count + 1);
9972 b->number = breakpoint_count;
9973 b->disposition = disp_donttouch;
9974 b->location = std::move (start_location);
9975 b->location_range_end = std::move (end_location);
9976 b->loc->length = length;
9977
9978 mention (b);
9979 gdb::observers::breakpoint_created.notify (b);
9980 update_global_location_list (UGLL_MAY_INSERT);
9981 }
9982
9983 /* Return non-zero if EXP is verified as constant. Returned zero
9984 means EXP is variable. Also the constant detection may fail for
9985 some constant expressions and in such case still falsely return
9986 zero. */
9987
9988 static int
9989 watchpoint_exp_is_const (const struct expression *exp)
9990 {
9991 int i = exp->nelts;
9992
9993 while (i > 0)
9994 {
9995 int oplenp, argsp;
9996
9997 /* We are only interested in the descriptor of each element. */
9998 operator_length (exp, i, &oplenp, &argsp);
9999 i -= oplenp;
10000
10001 switch (exp->elts[i].opcode)
10002 {
10003 case BINOP_ADD:
10004 case BINOP_SUB:
10005 case BINOP_MUL:
10006 case BINOP_DIV:
10007 case BINOP_REM:
10008 case BINOP_MOD:
10009 case BINOP_LSH:
10010 case BINOP_RSH:
10011 case BINOP_LOGICAL_AND:
10012 case BINOP_LOGICAL_OR:
10013 case BINOP_BITWISE_AND:
10014 case BINOP_BITWISE_IOR:
10015 case BINOP_BITWISE_XOR:
10016 case BINOP_EQUAL:
10017 case BINOP_NOTEQUAL:
10018 case BINOP_LESS:
10019 case BINOP_GTR:
10020 case BINOP_LEQ:
10021 case BINOP_GEQ:
10022 case BINOP_REPEAT:
10023 case BINOP_COMMA:
10024 case BINOP_EXP:
10025 case BINOP_MIN:
10026 case BINOP_MAX:
10027 case BINOP_INTDIV:
10028 case BINOP_CONCAT:
10029 case TERNOP_COND:
10030 case TERNOP_SLICE:
10031
10032 case OP_LONG:
10033 case OP_FLOAT:
10034 case OP_LAST:
10035 case OP_COMPLEX:
10036 case OP_STRING:
10037 case OP_ARRAY:
10038 case OP_TYPE:
10039 case OP_TYPEOF:
10040 case OP_DECLTYPE:
10041 case OP_TYPEID:
10042 case OP_NAME:
10043 case OP_OBJC_NSSTRING:
10044
10045 case UNOP_NEG:
10046 case UNOP_LOGICAL_NOT:
10047 case UNOP_COMPLEMENT:
10048 case UNOP_ADDR:
10049 case UNOP_HIGH:
10050 case UNOP_CAST:
10051
10052 case UNOP_CAST_TYPE:
10053 case UNOP_REINTERPRET_CAST:
10054 case UNOP_DYNAMIC_CAST:
10055 /* Unary, binary and ternary operators: We have to check
10056 their operands. If they are constant, then so is the
10057 result of that operation. For instance, if A and B are
10058 determined to be constants, then so is "A + B".
10059
10060 UNOP_IND is one exception to the rule above, because the
10061 value of *ADDR is not necessarily a constant, even when
10062 ADDR is. */
10063 break;
10064
10065 case OP_VAR_VALUE:
10066 /* Check whether the associated symbol is a constant.
10067
10068 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10069 possible that a buggy compiler could mark a variable as
10070 constant even when it is not, and TYPE_CONST would return
10071 true in this case, while SYMBOL_CLASS wouldn't.
10072
10073 We also have to check for function symbols because they
10074 are always constant. */
10075 {
10076 struct symbol *s = exp->elts[i + 2].symbol;
10077
10078 if (SYMBOL_CLASS (s) != LOC_BLOCK
10079 && SYMBOL_CLASS (s) != LOC_CONST
10080 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10081 return 0;
10082 break;
10083 }
10084
10085 /* The default action is to return 0 because we are using
10086 the optimistic approach here: If we don't know something,
10087 then it is not a constant. */
10088 default:
10089 return 0;
10090 }
10091 }
10092
10093 return 1;
10094 }
10095
10096 /* Watchpoint destructor. */
10097
10098 watchpoint::~watchpoint ()
10099 {
10100 xfree (this->exp_string);
10101 xfree (this->exp_string_reparse);
10102 value_decref (this->val);
10103 }
10104
10105 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10106
10107 static void
10108 re_set_watchpoint (struct breakpoint *b)
10109 {
10110 struct watchpoint *w = (struct watchpoint *) b;
10111
10112 /* Watchpoint can be either on expression using entirely global
10113 variables, or it can be on local variables.
10114
10115 Watchpoints of the first kind are never auto-deleted, and even
10116 persist across program restarts. Since they can use variables
10117 from shared libraries, we need to reparse expression as libraries
10118 are loaded and unloaded.
10119
10120 Watchpoints on local variables can also change meaning as result
10121 of solib event. For example, if a watchpoint uses both a local
10122 and a global variables in expression, it's a local watchpoint,
10123 but unloading of a shared library will make the expression
10124 invalid. This is not a very common use case, but we still
10125 re-evaluate expression, to avoid surprises to the user.
10126
10127 Note that for local watchpoints, we re-evaluate it only if
10128 watchpoints frame id is still valid. If it's not, it means the
10129 watchpoint is out of scope and will be deleted soon. In fact,
10130 I'm not sure we'll ever be called in this case.
10131
10132 If a local watchpoint's frame id is still valid, then
10133 w->exp_valid_block is likewise valid, and we can safely use it.
10134
10135 Don't do anything about disabled watchpoints, since they will be
10136 reevaluated again when enabled. */
10137 update_watchpoint (w, 1 /* reparse */);
10138 }
10139
10140 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10141
10142 static int
10143 insert_watchpoint (struct bp_location *bl)
10144 {
10145 struct watchpoint *w = (struct watchpoint *) bl->owner;
10146 int length = w->exact ? 1 : bl->length;
10147
10148 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10149 w->cond_exp.get ());
10150 }
10151
10152 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10153
10154 static int
10155 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10156 {
10157 struct watchpoint *w = (struct watchpoint *) bl->owner;
10158 int length = w->exact ? 1 : bl->length;
10159
10160 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10161 w->cond_exp.get ());
10162 }
10163
10164 static int
10165 breakpoint_hit_watchpoint (const struct bp_location *bl,
10166 const address_space *aspace, CORE_ADDR bp_addr,
10167 const struct target_waitstatus *ws)
10168 {
10169 struct breakpoint *b = bl->owner;
10170 struct watchpoint *w = (struct watchpoint *) b;
10171
10172 /* Continuable hardware watchpoints are treated as non-existent if the
10173 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10174 some data address). Otherwise gdb won't stop on a break instruction
10175 in the code (not from a breakpoint) when a hardware watchpoint has
10176 been defined. Also skip watchpoints which we know did not trigger
10177 (did not match the data address). */
10178 if (is_hardware_watchpoint (b)
10179 && w->watchpoint_triggered == watch_triggered_no)
10180 return 0;
10181
10182 return 1;
10183 }
10184
10185 static void
10186 check_status_watchpoint (bpstat bs)
10187 {
10188 gdb_assert (is_watchpoint (bs->breakpoint_at));
10189
10190 bpstat_check_watchpoint (bs);
10191 }
10192
10193 /* Implement the "resources_needed" breakpoint_ops method for
10194 hardware watchpoints. */
10195
10196 static int
10197 resources_needed_watchpoint (const struct bp_location *bl)
10198 {
10199 struct watchpoint *w = (struct watchpoint *) bl->owner;
10200 int length = w->exact? 1 : bl->length;
10201
10202 return target_region_ok_for_hw_watchpoint (bl->address, length);
10203 }
10204
10205 /* Implement the "works_in_software_mode" breakpoint_ops method for
10206 hardware watchpoints. */
10207
10208 static int
10209 works_in_software_mode_watchpoint (const struct breakpoint *b)
10210 {
10211 /* Read and access watchpoints only work with hardware support. */
10212 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10213 }
10214
10215 static enum print_stop_action
10216 print_it_watchpoint (bpstat bs)
10217 {
10218 struct breakpoint *b;
10219 enum print_stop_action result;
10220 struct watchpoint *w;
10221 struct ui_out *uiout = current_uiout;
10222
10223 gdb_assert (bs->bp_location_at != NULL);
10224
10225 b = bs->breakpoint_at;
10226 w = (struct watchpoint *) b;
10227
10228 annotate_watchpoint (b->number);
10229 maybe_print_thread_hit_breakpoint (uiout);
10230
10231 string_file stb;
10232
10233 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10234 switch (b->type)
10235 {
10236 case bp_watchpoint:
10237 case bp_hardware_watchpoint:
10238 if (uiout->is_mi_like_p ())
10239 uiout->field_string
10240 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10241 mention (b);
10242 tuple_emitter.emplace (uiout, "value");
10243 uiout->text ("\nOld value = ");
10244 watchpoint_value_print (bs->old_val, &stb);
10245 uiout->field_stream ("old", stb);
10246 uiout->text ("\nNew value = ");
10247 watchpoint_value_print (w->val, &stb);
10248 uiout->field_stream ("new", stb);
10249 uiout->text ("\n");
10250 /* More than one watchpoint may have been triggered. */
10251 result = PRINT_UNKNOWN;
10252 break;
10253
10254 case bp_read_watchpoint:
10255 if (uiout->is_mi_like_p ())
10256 uiout->field_string
10257 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10258 mention (b);
10259 tuple_emitter.emplace (uiout, "value");
10260 uiout->text ("\nValue = ");
10261 watchpoint_value_print (w->val, &stb);
10262 uiout->field_stream ("value", stb);
10263 uiout->text ("\n");
10264 result = PRINT_UNKNOWN;
10265 break;
10266
10267 case bp_access_watchpoint:
10268 if (bs->old_val != NULL)
10269 {
10270 if (uiout->is_mi_like_p ())
10271 uiout->field_string
10272 ("reason",
10273 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10274 mention (b);
10275 tuple_emitter.emplace (uiout, "value");
10276 uiout->text ("\nOld value = ");
10277 watchpoint_value_print (bs->old_val, &stb);
10278 uiout->field_stream ("old", stb);
10279 uiout->text ("\nNew value = ");
10280 }
10281 else
10282 {
10283 mention (b);
10284 if (uiout->is_mi_like_p ())
10285 uiout->field_string
10286 ("reason",
10287 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10288 tuple_emitter.emplace (uiout, "value");
10289 uiout->text ("\nValue = ");
10290 }
10291 watchpoint_value_print (w->val, &stb);
10292 uiout->field_stream ("new", stb);
10293 uiout->text ("\n");
10294 result = PRINT_UNKNOWN;
10295 break;
10296 default:
10297 result = PRINT_UNKNOWN;
10298 }
10299
10300 return result;
10301 }
10302
10303 /* Implement the "print_mention" breakpoint_ops method for hardware
10304 watchpoints. */
10305
10306 static void
10307 print_mention_watchpoint (struct breakpoint *b)
10308 {
10309 struct watchpoint *w = (struct watchpoint *) b;
10310 struct ui_out *uiout = current_uiout;
10311 const char *tuple_name;
10312
10313 switch (b->type)
10314 {
10315 case bp_watchpoint:
10316 uiout->text ("Watchpoint ");
10317 tuple_name = "wpt";
10318 break;
10319 case bp_hardware_watchpoint:
10320 uiout->text ("Hardware watchpoint ");
10321 tuple_name = "wpt";
10322 break;
10323 case bp_read_watchpoint:
10324 uiout->text ("Hardware read watchpoint ");
10325 tuple_name = "hw-rwpt";
10326 break;
10327 case bp_access_watchpoint:
10328 uiout->text ("Hardware access (read/write) watchpoint ");
10329 tuple_name = "hw-awpt";
10330 break;
10331 default:
10332 internal_error (__FILE__, __LINE__,
10333 _("Invalid hardware watchpoint type."));
10334 }
10335
10336 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10337 uiout->field_int ("number", b->number);
10338 uiout->text (": ");
10339 uiout->field_string ("exp", w->exp_string);
10340 }
10341
10342 /* Implement the "print_recreate" breakpoint_ops method for
10343 watchpoints. */
10344
10345 static void
10346 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10347 {
10348 struct watchpoint *w = (struct watchpoint *) b;
10349
10350 switch (b->type)
10351 {
10352 case bp_watchpoint:
10353 case bp_hardware_watchpoint:
10354 fprintf_unfiltered (fp, "watch");
10355 break;
10356 case bp_read_watchpoint:
10357 fprintf_unfiltered (fp, "rwatch");
10358 break;
10359 case bp_access_watchpoint:
10360 fprintf_unfiltered (fp, "awatch");
10361 break;
10362 default:
10363 internal_error (__FILE__, __LINE__,
10364 _("Invalid watchpoint type."));
10365 }
10366
10367 fprintf_unfiltered (fp, " %s", w->exp_string);
10368 print_recreate_thread (b, fp);
10369 }
10370
10371 /* Implement the "explains_signal" breakpoint_ops method for
10372 watchpoints. */
10373
10374 static int
10375 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10376 {
10377 /* A software watchpoint cannot cause a signal other than
10378 GDB_SIGNAL_TRAP. */
10379 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10380 return 0;
10381
10382 return 1;
10383 }
10384
10385 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10386
10387 static struct breakpoint_ops watchpoint_breakpoint_ops;
10388
10389 /* Implement the "insert" breakpoint_ops method for
10390 masked hardware watchpoints. */
10391
10392 static int
10393 insert_masked_watchpoint (struct bp_location *bl)
10394 {
10395 struct watchpoint *w = (struct watchpoint *) bl->owner;
10396
10397 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10398 bl->watchpoint_type);
10399 }
10400
10401 /* Implement the "remove" breakpoint_ops method for
10402 masked hardware watchpoints. */
10403
10404 static int
10405 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10406 {
10407 struct watchpoint *w = (struct watchpoint *) bl->owner;
10408
10409 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10410 bl->watchpoint_type);
10411 }
10412
10413 /* Implement the "resources_needed" breakpoint_ops method for
10414 masked hardware watchpoints. */
10415
10416 static int
10417 resources_needed_masked_watchpoint (const struct bp_location *bl)
10418 {
10419 struct watchpoint *w = (struct watchpoint *) bl->owner;
10420
10421 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10422 }
10423
10424 /* Implement the "works_in_software_mode" breakpoint_ops method for
10425 masked hardware watchpoints. */
10426
10427 static int
10428 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10429 {
10430 return 0;
10431 }
10432
10433 /* Implement the "print_it" breakpoint_ops method for
10434 masked hardware watchpoints. */
10435
10436 static enum print_stop_action
10437 print_it_masked_watchpoint (bpstat bs)
10438 {
10439 struct breakpoint *b = bs->breakpoint_at;
10440 struct ui_out *uiout = current_uiout;
10441
10442 /* Masked watchpoints have only one location. */
10443 gdb_assert (b->loc && b->loc->next == NULL);
10444
10445 annotate_watchpoint (b->number);
10446 maybe_print_thread_hit_breakpoint (uiout);
10447
10448 switch (b->type)
10449 {
10450 case bp_hardware_watchpoint:
10451 if (uiout->is_mi_like_p ())
10452 uiout->field_string
10453 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10454 break;
10455
10456 case bp_read_watchpoint:
10457 if (uiout->is_mi_like_p ())
10458 uiout->field_string
10459 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10460 break;
10461
10462 case bp_access_watchpoint:
10463 if (uiout->is_mi_like_p ())
10464 uiout->field_string
10465 ("reason",
10466 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10467 break;
10468 default:
10469 internal_error (__FILE__, __LINE__,
10470 _("Invalid hardware watchpoint type."));
10471 }
10472
10473 mention (b);
10474 uiout->text (_("\n\
10475 Check the underlying instruction at PC for the memory\n\
10476 address and value which triggered this watchpoint.\n"));
10477 uiout->text ("\n");
10478
10479 /* More than one watchpoint may have been triggered. */
10480 return PRINT_UNKNOWN;
10481 }
10482
10483 /* Implement the "print_one_detail" breakpoint_ops method for
10484 masked hardware watchpoints. */
10485
10486 static void
10487 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10488 struct ui_out *uiout)
10489 {
10490 struct watchpoint *w = (struct watchpoint *) b;
10491
10492 /* Masked watchpoints have only one location. */
10493 gdb_assert (b->loc && b->loc->next == NULL);
10494
10495 uiout->text ("\tmask ");
10496 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10497 uiout->text ("\n");
10498 }
10499
10500 /* Implement the "print_mention" breakpoint_ops method for
10501 masked hardware watchpoints. */
10502
10503 static void
10504 print_mention_masked_watchpoint (struct breakpoint *b)
10505 {
10506 struct watchpoint *w = (struct watchpoint *) b;
10507 struct ui_out *uiout = current_uiout;
10508 const char *tuple_name;
10509
10510 switch (b->type)
10511 {
10512 case bp_hardware_watchpoint:
10513 uiout->text ("Masked hardware watchpoint ");
10514 tuple_name = "wpt";
10515 break;
10516 case bp_read_watchpoint:
10517 uiout->text ("Masked hardware read watchpoint ");
10518 tuple_name = "hw-rwpt";
10519 break;
10520 case bp_access_watchpoint:
10521 uiout->text ("Masked hardware access (read/write) watchpoint ");
10522 tuple_name = "hw-awpt";
10523 break;
10524 default:
10525 internal_error (__FILE__, __LINE__,
10526 _("Invalid hardware watchpoint type."));
10527 }
10528
10529 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10530 uiout->field_int ("number", b->number);
10531 uiout->text (": ");
10532 uiout->field_string ("exp", w->exp_string);
10533 }
10534
10535 /* Implement the "print_recreate" breakpoint_ops method for
10536 masked hardware watchpoints. */
10537
10538 static void
10539 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10540 {
10541 struct watchpoint *w = (struct watchpoint *) b;
10542 char tmp[40];
10543
10544 switch (b->type)
10545 {
10546 case bp_hardware_watchpoint:
10547 fprintf_unfiltered (fp, "watch");
10548 break;
10549 case bp_read_watchpoint:
10550 fprintf_unfiltered (fp, "rwatch");
10551 break;
10552 case bp_access_watchpoint:
10553 fprintf_unfiltered (fp, "awatch");
10554 break;
10555 default:
10556 internal_error (__FILE__, __LINE__,
10557 _("Invalid hardware watchpoint type."));
10558 }
10559
10560 sprintf_vma (tmp, w->hw_wp_mask);
10561 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10562 print_recreate_thread (b, fp);
10563 }
10564
10565 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10566
10567 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10568
10569 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10570
10571 static int
10572 is_masked_watchpoint (const struct breakpoint *b)
10573 {
10574 return b->ops == &masked_watchpoint_breakpoint_ops;
10575 }
10576
10577 /* accessflag: hw_write: watch write,
10578 hw_read: watch read,
10579 hw_access: watch access (read or write) */
10580 static void
10581 watch_command_1 (const char *arg, int accessflag, int from_tty,
10582 int just_location, int internal)
10583 {
10584 struct breakpoint *scope_breakpoint = NULL;
10585 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10586 struct value *val, *mark, *result;
10587 int saved_bitpos = 0, saved_bitsize = 0;
10588 const char *exp_start = NULL;
10589 const char *exp_end = NULL;
10590 const char *tok, *end_tok;
10591 int toklen = -1;
10592 const char *cond_start = NULL;
10593 const char *cond_end = NULL;
10594 enum bptype bp_type;
10595 int thread = -1;
10596 int pc = 0;
10597 /* Flag to indicate whether we are going to use masks for
10598 the hardware watchpoint. */
10599 int use_mask = 0;
10600 CORE_ADDR mask = 0;
10601
10602 /* Make sure that we actually have parameters to parse. */
10603 if (arg != NULL && arg[0] != '\0')
10604 {
10605 const char *value_start;
10606
10607 exp_end = arg + strlen (arg);
10608
10609 /* Look for "parameter value" pairs at the end
10610 of the arguments string. */
10611 for (tok = exp_end - 1; tok > arg; tok--)
10612 {
10613 /* Skip whitespace at the end of the argument list. */
10614 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10615 tok--;
10616
10617 /* Find the beginning of the last token.
10618 This is the value of the parameter. */
10619 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10620 tok--;
10621 value_start = tok + 1;
10622
10623 /* Skip whitespace. */
10624 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10625 tok--;
10626
10627 end_tok = tok;
10628
10629 /* Find the beginning of the second to last token.
10630 This is the parameter itself. */
10631 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10632 tok--;
10633 tok++;
10634 toklen = end_tok - tok + 1;
10635
10636 if (toklen == 6 && startswith (tok, "thread"))
10637 {
10638 struct thread_info *thr;
10639 /* At this point we've found a "thread" token, which means
10640 the user is trying to set a watchpoint that triggers
10641 only in a specific thread. */
10642 const char *endp;
10643
10644 if (thread != -1)
10645 error(_("You can specify only one thread."));
10646
10647 /* Extract the thread ID from the next token. */
10648 thr = parse_thread_id (value_start, &endp);
10649
10650 /* Check if the user provided a valid thread ID. */
10651 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10652 invalid_thread_id_error (value_start);
10653
10654 thread = thr->global_num;
10655 }
10656 else if (toklen == 4 && startswith (tok, "mask"))
10657 {
10658 /* We've found a "mask" token, which means the user wants to
10659 create a hardware watchpoint that is going to have the mask
10660 facility. */
10661 struct value *mask_value, *mark;
10662
10663 if (use_mask)
10664 error(_("You can specify only one mask."));
10665
10666 use_mask = just_location = 1;
10667
10668 mark = value_mark ();
10669 mask_value = parse_to_comma_and_eval (&value_start);
10670 mask = value_as_address (mask_value);
10671 value_free_to_mark (mark);
10672 }
10673 else
10674 /* We didn't recognize what we found. We should stop here. */
10675 break;
10676
10677 /* Truncate the string and get rid of the "parameter value" pair before
10678 the arguments string is parsed by the parse_exp_1 function. */
10679 exp_end = tok;
10680 }
10681 }
10682 else
10683 exp_end = arg;
10684
10685 /* Parse the rest of the arguments. From here on out, everything
10686 is in terms of a newly allocated string instead of the original
10687 ARG. */
10688 innermost_block.reset ();
10689 std::string expression (arg, exp_end - arg);
10690 exp_start = arg = expression.c_str ();
10691 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10692 exp_end = arg;
10693 /* Remove trailing whitespace from the expression before saving it.
10694 This makes the eventual display of the expression string a bit
10695 prettier. */
10696 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10697 --exp_end;
10698
10699 /* Checking if the expression is not constant. */
10700 if (watchpoint_exp_is_const (exp.get ()))
10701 {
10702 int len;
10703
10704 len = exp_end - exp_start;
10705 while (len > 0 && isspace (exp_start[len - 1]))
10706 len--;
10707 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10708 }
10709
10710 exp_valid_block = innermost_block.block ();
10711 mark = value_mark ();
10712 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
10713
10714 if (val != NULL && just_location)
10715 {
10716 saved_bitpos = value_bitpos (val);
10717 saved_bitsize = value_bitsize (val);
10718 }
10719
10720 if (just_location)
10721 {
10722 int ret;
10723
10724 exp_valid_block = NULL;
10725 val = release_value (value_addr (result)).release ();
10726 value_free_to_mark (mark);
10727
10728 if (use_mask)
10729 {
10730 ret = target_masked_watch_num_registers (value_as_address (val),
10731 mask);
10732 if (ret == -1)
10733 error (_("This target does not support masked watchpoints."));
10734 else if (ret == -2)
10735 error (_("Invalid mask or memory region."));
10736 }
10737 }
10738 else if (val != NULL)
10739 release_value (val).release ();
10740
10741 tok = skip_spaces (arg);
10742 end_tok = skip_to_space (tok);
10743
10744 toklen = end_tok - tok;
10745 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10746 {
10747 innermost_block.reset ();
10748 tok = cond_start = end_tok + 1;
10749 parse_exp_1 (&tok, 0, 0, 0);
10750
10751 /* The watchpoint expression may not be local, but the condition
10752 may still be. E.g.: `watch global if local > 0'. */
10753 cond_exp_valid_block = innermost_block.block ();
10754
10755 cond_end = tok;
10756 }
10757 if (*tok)
10758 error (_("Junk at end of command."));
10759
10760 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10761
10762 /* Save this because create_internal_breakpoint below invalidates
10763 'wp_frame'. */
10764 frame_id watchpoint_frame = get_frame_id (wp_frame);
10765
10766 /* If the expression is "local", then set up a "watchpoint scope"
10767 breakpoint at the point where we've left the scope of the watchpoint
10768 expression. Create the scope breakpoint before the watchpoint, so
10769 that we will encounter it first in bpstat_stop_status. */
10770 if (exp_valid_block != NULL && wp_frame != NULL)
10771 {
10772 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10773
10774 if (frame_id_p (caller_frame_id))
10775 {
10776 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10777 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10778
10779 scope_breakpoint
10780 = create_internal_breakpoint (caller_arch, caller_pc,
10781 bp_watchpoint_scope,
10782 &momentary_breakpoint_ops);
10783
10784 /* create_internal_breakpoint could invalidate WP_FRAME. */
10785 wp_frame = NULL;
10786
10787 scope_breakpoint->enable_state = bp_enabled;
10788
10789 /* Automatically delete the breakpoint when it hits. */
10790 scope_breakpoint->disposition = disp_del;
10791
10792 /* Only break in the proper frame (help with recursion). */
10793 scope_breakpoint->frame_id = caller_frame_id;
10794
10795 /* Set the address at which we will stop. */
10796 scope_breakpoint->loc->gdbarch = caller_arch;
10797 scope_breakpoint->loc->requested_address = caller_pc;
10798 scope_breakpoint->loc->address
10799 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10800 scope_breakpoint->loc->requested_address,
10801 scope_breakpoint->type);
10802 }
10803 }
10804
10805 /* Now set up the breakpoint. We create all watchpoints as hardware
10806 watchpoints here even if hardware watchpoints are turned off, a call
10807 to update_watchpoint later in this function will cause the type to
10808 drop back to bp_watchpoint (software watchpoint) if required. */
10809
10810 if (accessflag == hw_read)
10811 bp_type = bp_read_watchpoint;
10812 else if (accessflag == hw_access)
10813 bp_type = bp_access_watchpoint;
10814 else
10815 bp_type = bp_hardware_watchpoint;
10816
10817 std::unique_ptr<watchpoint> w (new watchpoint ());
10818
10819 if (use_mask)
10820 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10821 &masked_watchpoint_breakpoint_ops);
10822 else
10823 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10824 &watchpoint_breakpoint_ops);
10825 w->thread = thread;
10826 w->disposition = disp_donttouch;
10827 w->pspace = current_program_space;
10828 w->exp = std::move (exp);
10829 w->exp_valid_block = exp_valid_block;
10830 w->cond_exp_valid_block = cond_exp_valid_block;
10831 if (just_location)
10832 {
10833 struct type *t = value_type (val);
10834 CORE_ADDR addr = value_as_address (val);
10835
10836 w->exp_string_reparse
10837 = current_language->la_watch_location_expression (t, addr).release ();
10838
10839 w->exp_string = xstrprintf ("-location %.*s",
10840 (int) (exp_end - exp_start), exp_start);
10841 }
10842 else
10843 w->exp_string = savestring (exp_start, exp_end - exp_start);
10844
10845 if (use_mask)
10846 {
10847 w->hw_wp_mask = mask;
10848 }
10849 else
10850 {
10851 w->val = val;
10852 w->val_bitpos = saved_bitpos;
10853 w->val_bitsize = saved_bitsize;
10854 w->val_valid = 1;
10855 }
10856
10857 if (cond_start)
10858 w->cond_string = savestring (cond_start, cond_end - cond_start);
10859 else
10860 w->cond_string = 0;
10861
10862 if (frame_id_p (watchpoint_frame))
10863 {
10864 w->watchpoint_frame = watchpoint_frame;
10865 w->watchpoint_thread = inferior_ptid;
10866 }
10867 else
10868 {
10869 w->watchpoint_frame = null_frame_id;
10870 w->watchpoint_thread = null_ptid;
10871 }
10872
10873 if (scope_breakpoint != NULL)
10874 {
10875 /* The scope breakpoint is related to the watchpoint. We will
10876 need to act on them together. */
10877 w->related_breakpoint = scope_breakpoint;
10878 scope_breakpoint->related_breakpoint = w.get ();
10879 }
10880
10881 if (!just_location)
10882 value_free_to_mark (mark);
10883
10884 /* Finally update the new watchpoint. This creates the locations
10885 that should be inserted. */
10886 update_watchpoint (w.get (), 1);
10887
10888 install_breakpoint (internal, std::move (w), 1);
10889 }
10890
10891 /* Return count of debug registers needed to watch the given expression.
10892 If the watchpoint cannot be handled in hardware return zero. */
10893
10894 static int
10895 can_use_hardware_watchpoint (struct value *v)
10896 {
10897 int found_memory_cnt = 0;
10898 struct value *head = v;
10899
10900 /* Did the user specifically forbid us to use hardware watchpoints? */
10901 if (!can_use_hw_watchpoints)
10902 return 0;
10903
10904 /* Make sure that the value of the expression depends only upon
10905 memory contents, and values computed from them within GDB. If we
10906 find any register references or function calls, we can't use a
10907 hardware watchpoint.
10908
10909 The idea here is that evaluating an expression generates a series
10910 of values, one holding the value of every subexpression. (The
10911 expression a*b+c has five subexpressions: a, b, a*b, c, and
10912 a*b+c.) GDB's values hold almost enough information to establish
10913 the criteria given above --- they identify memory lvalues,
10914 register lvalues, computed values, etcetera. So we can evaluate
10915 the expression, and then scan the chain of values that leaves
10916 behind to decide whether we can detect any possible change to the
10917 expression's final value using only hardware watchpoints.
10918
10919 However, I don't think that the values returned by inferior
10920 function calls are special in any way. So this function may not
10921 notice that an expression involving an inferior function call
10922 can't be watched with hardware watchpoints. FIXME. */
10923 for (; v; v = value_next (v))
10924 {
10925 if (VALUE_LVAL (v) == lval_memory)
10926 {
10927 if (v != head && value_lazy (v))
10928 /* A lazy memory lvalue in the chain is one that GDB never
10929 needed to fetch; we either just used its address (e.g.,
10930 `a' in `a.b') or we never needed it at all (e.g., `a'
10931 in `a,b'). This doesn't apply to HEAD; if that is
10932 lazy then it was not readable, but watch it anyway. */
10933 ;
10934 else
10935 {
10936 /* Ahh, memory we actually used! Check if we can cover
10937 it with hardware watchpoints. */
10938 struct type *vtype = check_typedef (value_type (v));
10939
10940 /* We only watch structs and arrays if user asked for it
10941 explicitly, never if they just happen to appear in a
10942 middle of some value chain. */
10943 if (v == head
10944 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10945 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10946 {
10947 CORE_ADDR vaddr = value_address (v);
10948 int len;
10949 int num_regs;
10950
10951 len = (target_exact_watchpoints
10952 && is_scalar_type_recursive (vtype))?
10953 1 : TYPE_LENGTH (value_type (v));
10954
10955 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10956 if (!num_regs)
10957 return 0;
10958 else
10959 found_memory_cnt += num_regs;
10960 }
10961 }
10962 }
10963 else if (VALUE_LVAL (v) != not_lval
10964 && deprecated_value_modifiable (v) == 0)
10965 return 0; /* These are values from the history (e.g., $1). */
10966 else if (VALUE_LVAL (v) == lval_register)
10967 return 0; /* Cannot watch a register with a HW watchpoint. */
10968 }
10969
10970 /* The expression itself looks suitable for using a hardware
10971 watchpoint, but give the target machine a chance to reject it. */
10972 return found_memory_cnt;
10973 }
10974
10975 void
10976 watch_command_wrapper (const char *arg, int from_tty, int internal)
10977 {
10978 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10979 }
10980
10981 /* A helper function that looks for the "-location" argument and then
10982 calls watch_command_1. */
10983
10984 static void
10985 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10986 {
10987 int just_location = 0;
10988
10989 if (arg
10990 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10991 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10992 {
10993 arg = skip_spaces (arg);
10994 just_location = 1;
10995 }
10996
10997 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10998 }
10999
11000 static void
11001 watch_command (const char *arg, int from_tty)
11002 {
11003 watch_maybe_just_location (arg, hw_write, from_tty);
11004 }
11005
11006 void
11007 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
11008 {
11009 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11010 }
11011
11012 static void
11013 rwatch_command (const char *arg, int from_tty)
11014 {
11015 watch_maybe_just_location (arg, hw_read, from_tty);
11016 }
11017
11018 void
11019 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11020 {
11021 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11022 }
11023
11024 static void
11025 awatch_command (const char *arg, int from_tty)
11026 {
11027 watch_maybe_just_location (arg, hw_access, from_tty);
11028 }
11029 \f
11030
11031 /* Data for the FSM that manages the until(location)/advance commands
11032 in infcmd.c. Here because it uses the mechanisms of
11033 breakpoints. */
11034
11035 struct until_break_fsm
11036 {
11037 /* The base class. */
11038 struct thread_fsm thread_fsm;
11039
11040 /* The thread that as current when the command was executed. */
11041 int thread;
11042
11043 /* The breakpoint set at the destination location. */
11044 struct breakpoint *location_breakpoint;
11045
11046 /* Breakpoint set at the return address in the caller frame. May be
11047 NULL. */
11048 struct breakpoint *caller_breakpoint;
11049 };
11050
11051 static void until_break_fsm_clean_up (struct thread_fsm *self,
11052 struct thread_info *thread);
11053 static int until_break_fsm_should_stop (struct thread_fsm *self,
11054 struct thread_info *thread);
11055 static enum async_reply_reason
11056 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11057
11058 /* until_break_fsm's vtable. */
11059
11060 static struct thread_fsm_ops until_break_fsm_ops =
11061 {
11062 NULL, /* dtor */
11063 until_break_fsm_clean_up,
11064 until_break_fsm_should_stop,
11065 NULL, /* return_value */
11066 until_break_fsm_async_reply_reason,
11067 };
11068
11069 /* Allocate a new until_break_command_fsm. */
11070
11071 static struct until_break_fsm *
11072 new_until_break_fsm (struct interp *cmd_interp, int thread,
11073 breakpoint_up &&location_breakpoint,
11074 breakpoint_up &&caller_breakpoint)
11075 {
11076 struct until_break_fsm *sm;
11077
11078 sm = XCNEW (struct until_break_fsm);
11079 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11080
11081 sm->thread = thread;
11082 sm->location_breakpoint = location_breakpoint.release ();
11083 sm->caller_breakpoint = caller_breakpoint.release ();
11084
11085 return sm;
11086 }
11087
11088 /* Implementation of the 'should_stop' FSM method for the
11089 until(location)/advance commands. */
11090
11091 static int
11092 until_break_fsm_should_stop (struct thread_fsm *self,
11093 struct thread_info *tp)
11094 {
11095 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11096
11097 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11098 sm->location_breakpoint) != NULL
11099 || (sm->caller_breakpoint != NULL
11100 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11101 sm->caller_breakpoint) != NULL))
11102 thread_fsm_set_finished (self);
11103
11104 return 1;
11105 }
11106
11107 /* Implementation of the 'clean_up' FSM method for the
11108 until(location)/advance commands. */
11109
11110 static void
11111 until_break_fsm_clean_up (struct thread_fsm *self,
11112 struct thread_info *thread)
11113 {
11114 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11115
11116 /* Clean up our temporary breakpoints. */
11117 if (sm->location_breakpoint != NULL)
11118 {
11119 delete_breakpoint (sm->location_breakpoint);
11120 sm->location_breakpoint = NULL;
11121 }
11122 if (sm->caller_breakpoint != NULL)
11123 {
11124 delete_breakpoint (sm->caller_breakpoint);
11125 sm->caller_breakpoint = NULL;
11126 }
11127 delete_longjmp_breakpoint (sm->thread);
11128 }
11129
11130 /* Implementation of the 'async_reply_reason' FSM method for the
11131 until(location)/advance commands. */
11132
11133 static enum async_reply_reason
11134 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11135 {
11136 return EXEC_ASYNC_LOCATION_REACHED;
11137 }
11138
11139 void
11140 until_break_command (const char *arg, int from_tty, int anywhere)
11141 {
11142 struct frame_info *frame;
11143 struct gdbarch *frame_gdbarch;
11144 struct frame_id stack_frame_id;
11145 struct frame_id caller_frame_id;
11146 struct cleanup *old_chain;
11147 int thread;
11148 struct thread_info *tp;
11149 struct until_break_fsm *sm;
11150
11151 clear_proceed_status (0);
11152
11153 /* Set a breakpoint where the user wants it and at return from
11154 this function. */
11155
11156 event_location_up location = string_to_event_location (&arg, current_language);
11157
11158 std::vector<symtab_and_line> sals
11159 = (last_displayed_sal_is_valid ()
11160 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11161 get_last_displayed_symtab (),
11162 get_last_displayed_line ())
11163 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11164 NULL, (struct symtab *) NULL, 0));
11165
11166 if (sals.size () != 1)
11167 error (_("Couldn't get information on specified line."));
11168
11169 symtab_and_line &sal = sals[0];
11170
11171 if (*arg)
11172 error (_("Junk at end of arguments."));
11173
11174 resolve_sal_pc (&sal);
11175
11176 tp = inferior_thread ();
11177 thread = tp->global_num;
11178
11179 old_chain = make_cleanup (null_cleanup, NULL);
11180
11181 /* Note linespec handling above invalidates the frame chain.
11182 Installing a breakpoint also invalidates the frame chain (as it
11183 may need to switch threads), so do any frame handling before
11184 that. */
11185
11186 frame = get_selected_frame (NULL);
11187 frame_gdbarch = get_frame_arch (frame);
11188 stack_frame_id = get_stack_frame_id (frame);
11189 caller_frame_id = frame_unwind_caller_id (frame);
11190
11191 /* Keep within the current frame, or in frames called by the current
11192 one. */
11193
11194 breakpoint_up caller_breakpoint;
11195 if (frame_id_p (caller_frame_id))
11196 {
11197 struct symtab_and_line sal2;
11198 struct gdbarch *caller_gdbarch;
11199
11200 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11201 sal2.pc = frame_unwind_caller_pc (frame);
11202 caller_gdbarch = frame_unwind_caller_arch (frame);
11203 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11204 sal2,
11205 caller_frame_id,
11206 bp_until);
11207
11208 set_longjmp_breakpoint (tp, caller_frame_id);
11209 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11210 }
11211
11212 /* set_momentary_breakpoint could invalidate FRAME. */
11213 frame = NULL;
11214
11215 breakpoint_up location_breakpoint;
11216 if (anywhere)
11217 /* If the user told us to continue until a specified location,
11218 we don't specify a frame at which we need to stop. */
11219 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11220 null_frame_id, bp_until);
11221 else
11222 /* Otherwise, specify the selected frame, because we want to stop
11223 only at the very same frame. */
11224 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11225 stack_frame_id, bp_until);
11226
11227 sm = new_until_break_fsm (command_interp (), tp->global_num,
11228 std::move (location_breakpoint),
11229 std::move (caller_breakpoint));
11230 tp->thread_fsm = &sm->thread_fsm;
11231
11232 discard_cleanups (old_chain);
11233
11234 proceed (-1, GDB_SIGNAL_DEFAULT);
11235 }
11236
11237 /* This function attempts to parse an optional "if <cond>" clause
11238 from the arg string. If one is not found, it returns NULL.
11239
11240 Else, it returns a pointer to the condition string. (It does not
11241 attempt to evaluate the string against a particular block.) And,
11242 it updates arg to point to the first character following the parsed
11243 if clause in the arg string. */
11244
11245 const char *
11246 ep_parse_optional_if_clause (const char **arg)
11247 {
11248 const char *cond_string;
11249
11250 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11251 return NULL;
11252
11253 /* Skip the "if" keyword. */
11254 (*arg) += 2;
11255
11256 /* Skip any extra leading whitespace, and record the start of the
11257 condition string. */
11258 *arg = skip_spaces (*arg);
11259 cond_string = *arg;
11260
11261 /* Assume that the condition occupies the remainder of the arg
11262 string. */
11263 (*arg) += strlen (cond_string);
11264
11265 return cond_string;
11266 }
11267
11268 /* Commands to deal with catching events, such as signals, exceptions,
11269 process start/exit, etc. */
11270
11271 typedef enum
11272 {
11273 catch_fork_temporary, catch_vfork_temporary,
11274 catch_fork_permanent, catch_vfork_permanent
11275 }
11276 catch_fork_kind;
11277
11278 static void
11279 catch_fork_command_1 (const char *arg, int from_tty,
11280 struct cmd_list_element *command)
11281 {
11282 struct gdbarch *gdbarch = get_current_arch ();
11283 const char *cond_string = NULL;
11284 catch_fork_kind fork_kind;
11285 int tempflag;
11286
11287 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11288 tempflag = (fork_kind == catch_fork_temporary
11289 || fork_kind == catch_vfork_temporary);
11290
11291 if (!arg)
11292 arg = "";
11293 arg = skip_spaces (arg);
11294
11295 /* The allowed syntax is:
11296 catch [v]fork
11297 catch [v]fork if <cond>
11298
11299 First, check if there's an if clause. */
11300 cond_string = ep_parse_optional_if_clause (&arg);
11301
11302 if ((*arg != '\0') && !isspace (*arg))
11303 error (_("Junk at end of arguments."));
11304
11305 /* If this target supports it, create a fork or vfork catchpoint
11306 and enable reporting of such events. */
11307 switch (fork_kind)
11308 {
11309 case catch_fork_temporary:
11310 case catch_fork_permanent:
11311 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11312 &catch_fork_breakpoint_ops);
11313 break;
11314 case catch_vfork_temporary:
11315 case catch_vfork_permanent:
11316 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11317 &catch_vfork_breakpoint_ops);
11318 break;
11319 default:
11320 error (_("unsupported or unknown fork kind; cannot catch it"));
11321 break;
11322 }
11323 }
11324
11325 static void
11326 catch_exec_command_1 (const char *arg, int from_tty,
11327 struct cmd_list_element *command)
11328 {
11329 struct gdbarch *gdbarch = get_current_arch ();
11330 int tempflag;
11331 const char *cond_string = NULL;
11332
11333 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11334
11335 if (!arg)
11336 arg = "";
11337 arg = skip_spaces (arg);
11338
11339 /* The allowed syntax is:
11340 catch exec
11341 catch exec if <cond>
11342
11343 First, check if there's an if clause. */
11344 cond_string = ep_parse_optional_if_clause (&arg);
11345
11346 if ((*arg != '\0') && !isspace (*arg))
11347 error (_("Junk at end of arguments."));
11348
11349 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11350 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11351 &catch_exec_breakpoint_ops);
11352 c->exec_pathname = NULL;
11353
11354 install_breakpoint (0, std::move (c), 1);
11355 }
11356
11357 void
11358 init_ada_exception_breakpoint (struct breakpoint *b,
11359 struct gdbarch *gdbarch,
11360 struct symtab_and_line sal,
11361 const char *addr_string,
11362 const struct breakpoint_ops *ops,
11363 int tempflag,
11364 int enabled,
11365 int from_tty)
11366 {
11367 if (from_tty)
11368 {
11369 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11370 if (!loc_gdbarch)
11371 loc_gdbarch = gdbarch;
11372
11373 describe_other_breakpoints (loc_gdbarch,
11374 sal.pspace, sal.pc, sal.section, -1);
11375 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11376 version for exception catchpoints, because two catchpoints
11377 used for different exception names will use the same address.
11378 In this case, a "breakpoint ... also set at..." warning is
11379 unproductive. Besides, the warning phrasing is also a bit
11380 inappropriate, we should use the word catchpoint, and tell
11381 the user what type of catchpoint it is. The above is good
11382 enough for now, though. */
11383 }
11384
11385 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11386
11387 b->enable_state = enabled ? bp_enabled : bp_disabled;
11388 b->disposition = tempflag ? disp_del : disp_donttouch;
11389 b->location = string_to_event_location (&addr_string,
11390 language_def (language_ada));
11391 b->language = language_ada;
11392 }
11393
11394 static void
11395 catch_command (const char *arg, int from_tty)
11396 {
11397 error (_("Catch requires an event name."));
11398 }
11399 \f
11400
11401 static void
11402 tcatch_command (const char *arg, int from_tty)
11403 {
11404 error (_("Catch requires an event name."));
11405 }
11406
11407 /* Compare two breakpoints and return a strcmp-like result. */
11408
11409 static int
11410 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11411 {
11412 uintptr_t ua = (uintptr_t) a;
11413 uintptr_t ub = (uintptr_t) b;
11414
11415 if (a->number < b->number)
11416 return -1;
11417 else if (a->number > b->number)
11418 return 1;
11419
11420 /* Now sort by address, in case we see, e..g, two breakpoints with
11421 the number 0. */
11422 if (ua < ub)
11423 return -1;
11424 return ua > ub ? 1 : 0;
11425 }
11426
11427 /* Delete breakpoints by address or line. */
11428
11429 static void
11430 clear_command (const char *arg, int from_tty)
11431 {
11432 struct breakpoint *b;
11433 int default_match;
11434
11435 std::vector<symtab_and_line> decoded_sals;
11436 symtab_and_line last_sal;
11437 gdb::array_view<symtab_and_line> sals;
11438 if (arg)
11439 {
11440 decoded_sals
11441 = decode_line_with_current_source (arg,
11442 (DECODE_LINE_FUNFIRSTLINE
11443 | DECODE_LINE_LIST_MODE));
11444 default_match = 0;
11445 sals = decoded_sals;
11446 }
11447 else
11448 {
11449 /* Set sal's line, symtab, pc, and pspace to the values
11450 corresponding to the last call to print_frame_info. If the
11451 codepoint is not valid, this will set all the fields to 0. */
11452 last_sal = get_last_displayed_sal ();
11453 if (last_sal.symtab == 0)
11454 error (_("No source file specified."));
11455
11456 default_match = 1;
11457 sals = last_sal;
11458 }
11459
11460 /* We don't call resolve_sal_pc here. That's not as bad as it
11461 seems, because all existing breakpoints typically have both
11462 file/line and pc set. So, if clear is given file/line, we can
11463 match this to existing breakpoint without obtaining pc at all.
11464
11465 We only support clearing given the address explicitly
11466 present in breakpoint table. Say, we've set breakpoint
11467 at file:line. There were several PC values for that file:line,
11468 due to optimization, all in one block.
11469
11470 We've picked one PC value. If "clear" is issued with another
11471 PC corresponding to the same file:line, the breakpoint won't
11472 be cleared. We probably can still clear the breakpoint, but
11473 since the other PC value is never presented to user, user
11474 can only find it by guessing, and it does not seem important
11475 to support that. */
11476
11477 /* For each line spec given, delete bps which correspond to it. Do
11478 it in two passes, solely to preserve the current behavior that
11479 from_tty is forced true if we delete more than one
11480 breakpoint. */
11481
11482 std::vector<struct breakpoint *> found;
11483 for (const auto &sal : sals)
11484 {
11485 const char *sal_fullname;
11486
11487 /* If exact pc given, clear bpts at that pc.
11488 If line given (pc == 0), clear all bpts on specified line.
11489 If defaulting, clear all bpts on default line
11490 or at default pc.
11491
11492 defaulting sal.pc != 0 tests to do
11493
11494 0 1 pc
11495 1 1 pc _and_ line
11496 0 0 line
11497 1 0 <can't happen> */
11498
11499 sal_fullname = (sal.symtab == NULL
11500 ? NULL : symtab_to_fullname (sal.symtab));
11501
11502 /* Find all matching breakpoints and add them to 'found'. */
11503 ALL_BREAKPOINTS (b)
11504 {
11505 int match = 0;
11506 /* Are we going to delete b? */
11507 if (b->type != bp_none && !is_watchpoint (b))
11508 {
11509 struct bp_location *loc = b->loc;
11510 for (; loc; loc = loc->next)
11511 {
11512 /* If the user specified file:line, don't allow a PC
11513 match. This matches historical gdb behavior. */
11514 int pc_match = (!sal.explicit_line
11515 && sal.pc
11516 && (loc->pspace == sal.pspace)
11517 && (loc->address == sal.pc)
11518 && (!section_is_overlay (loc->section)
11519 || loc->section == sal.section));
11520 int line_match = 0;
11521
11522 if ((default_match || sal.explicit_line)
11523 && loc->symtab != NULL
11524 && sal_fullname != NULL
11525 && sal.pspace == loc->pspace
11526 && loc->line_number == sal.line
11527 && filename_cmp (symtab_to_fullname (loc->symtab),
11528 sal_fullname) == 0)
11529 line_match = 1;
11530
11531 if (pc_match || line_match)
11532 {
11533 match = 1;
11534 break;
11535 }
11536 }
11537 }
11538
11539 if (match)
11540 found.push_back (b);
11541 }
11542 }
11543
11544 /* Now go thru the 'found' chain and delete them. */
11545 if (found.empty ())
11546 {
11547 if (arg)
11548 error (_("No breakpoint at %s."), arg);
11549 else
11550 error (_("No breakpoint at this line."));
11551 }
11552
11553 /* Remove duplicates from the vec. */
11554 std::sort (found.begin (), found.end (),
11555 [] (const breakpoint *a, const breakpoint *b)
11556 {
11557 return compare_breakpoints (a, b) < 0;
11558 });
11559 found.erase (std::unique (found.begin (), found.end (),
11560 [] (const breakpoint *a, const breakpoint *b)
11561 {
11562 return compare_breakpoints (a, b) == 0;
11563 }),
11564 found.end ());
11565
11566 if (found.size () > 1)
11567 from_tty = 1; /* Always report if deleted more than one. */
11568 if (from_tty)
11569 {
11570 if (found.size () == 1)
11571 printf_unfiltered (_("Deleted breakpoint "));
11572 else
11573 printf_unfiltered (_("Deleted breakpoints "));
11574 }
11575
11576 for (breakpoint *iter : found)
11577 {
11578 if (from_tty)
11579 printf_unfiltered ("%d ", iter->number);
11580 delete_breakpoint (iter);
11581 }
11582 if (from_tty)
11583 putchar_unfiltered ('\n');
11584 }
11585 \f
11586 /* Delete breakpoint in BS if they are `delete' breakpoints and
11587 all breakpoints that are marked for deletion, whether hit or not.
11588 This is called after any breakpoint is hit, or after errors. */
11589
11590 void
11591 breakpoint_auto_delete (bpstat bs)
11592 {
11593 struct breakpoint *b, *b_tmp;
11594
11595 for (; bs; bs = bs->next)
11596 if (bs->breakpoint_at
11597 && bs->breakpoint_at->disposition == disp_del
11598 && bs->stop)
11599 delete_breakpoint (bs->breakpoint_at);
11600
11601 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11602 {
11603 if (b->disposition == disp_del_at_next_stop)
11604 delete_breakpoint (b);
11605 }
11606 }
11607
11608 /* A comparison function for bp_location AP and BP being interfaced to
11609 qsort. Sort elements primarily by their ADDRESS (no matter what
11610 does breakpoint_address_is_meaningful say for its OWNER),
11611 secondarily by ordering first permanent elements and
11612 terciarily just ensuring the array is sorted stable way despite
11613 qsort being an unstable algorithm. */
11614
11615 static int
11616 bp_locations_compare (const void *ap, const void *bp)
11617 {
11618 const struct bp_location *a = *(const struct bp_location **) ap;
11619 const struct bp_location *b = *(const struct bp_location **) bp;
11620
11621 if (a->address != b->address)
11622 return (a->address > b->address) - (a->address < b->address);
11623
11624 /* Sort locations at the same address by their pspace number, keeping
11625 locations of the same inferior (in a multi-inferior environment)
11626 grouped. */
11627
11628 if (a->pspace->num != b->pspace->num)
11629 return ((a->pspace->num > b->pspace->num)
11630 - (a->pspace->num < b->pspace->num));
11631
11632 /* Sort permanent breakpoints first. */
11633 if (a->permanent != b->permanent)
11634 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11635
11636 /* Make the internal GDB representation stable across GDB runs
11637 where A and B memory inside GDB can differ. Breakpoint locations of
11638 the same type at the same address can be sorted in arbitrary order. */
11639
11640 if (a->owner->number != b->owner->number)
11641 return ((a->owner->number > b->owner->number)
11642 - (a->owner->number < b->owner->number));
11643
11644 return (a > b) - (a < b);
11645 }
11646
11647 /* Set bp_locations_placed_address_before_address_max and
11648 bp_locations_shadow_len_after_address_max according to the current
11649 content of the bp_locations array. */
11650
11651 static void
11652 bp_locations_target_extensions_update (void)
11653 {
11654 struct bp_location *bl, **blp_tmp;
11655
11656 bp_locations_placed_address_before_address_max = 0;
11657 bp_locations_shadow_len_after_address_max = 0;
11658
11659 ALL_BP_LOCATIONS (bl, blp_tmp)
11660 {
11661 CORE_ADDR start, end, addr;
11662
11663 if (!bp_location_has_shadow (bl))
11664 continue;
11665
11666 start = bl->target_info.placed_address;
11667 end = start + bl->target_info.shadow_len;
11668
11669 gdb_assert (bl->address >= start);
11670 addr = bl->address - start;
11671 if (addr > bp_locations_placed_address_before_address_max)
11672 bp_locations_placed_address_before_address_max = addr;
11673
11674 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11675
11676 gdb_assert (bl->address < end);
11677 addr = end - bl->address;
11678 if (addr > bp_locations_shadow_len_after_address_max)
11679 bp_locations_shadow_len_after_address_max = addr;
11680 }
11681 }
11682
11683 /* Download tracepoint locations if they haven't been. */
11684
11685 static void
11686 download_tracepoint_locations (void)
11687 {
11688 struct breakpoint *b;
11689 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11690
11691 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11692
11693 ALL_TRACEPOINTS (b)
11694 {
11695 struct bp_location *bl;
11696 struct tracepoint *t;
11697 int bp_location_downloaded = 0;
11698
11699 if ((b->type == bp_fast_tracepoint
11700 ? !may_insert_fast_tracepoints
11701 : !may_insert_tracepoints))
11702 continue;
11703
11704 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11705 {
11706 if (target_can_download_tracepoint ())
11707 can_download_tracepoint = TRIBOOL_TRUE;
11708 else
11709 can_download_tracepoint = TRIBOOL_FALSE;
11710 }
11711
11712 if (can_download_tracepoint == TRIBOOL_FALSE)
11713 break;
11714
11715 for (bl = b->loc; bl; bl = bl->next)
11716 {
11717 /* In tracepoint, locations are _never_ duplicated, so
11718 should_be_inserted is equivalent to
11719 unduplicated_should_be_inserted. */
11720 if (!should_be_inserted (bl) || bl->inserted)
11721 continue;
11722
11723 switch_to_program_space_and_thread (bl->pspace);
11724
11725 target_download_tracepoint (bl);
11726
11727 bl->inserted = 1;
11728 bp_location_downloaded = 1;
11729 }
11730 t = (struct tracepoint *) b;
11731 t->number_on_target = b->number;
11732 if (bp_location_downloaded)
11733 gdb::observers::breakpoint_modified.notify (b);
11734 }
11735 }
11736
11737 /* Swap the insertion/duplication state between two locations. */
11738
11739 static void
11740 swap_insertion (struct bp_location *left, struct bp_location *right)
11741 {
11742 const int left_inserted = left->inserted;
11743 const int left_duplicate = left->duplicate;
11744 const int left_needs_update = left->needs_update;
11745 const struct bp_target_info left_target_info = left->target_info;
11746
11747 /* Locations of tracepoints can never be duplicated. */
11748 if (is_tracepoint (left->owner))
11749 gdb_assert (!left->duplicate);
11750 if (is_tracepoint (right->owner))
11751 gdb_assert (!right->duplicate);
11752
11753 left->inserted = right->inserted;
11754 left->duplicate = right->duplicate;
11755 left->needs_update = right->needs_update;
11756 left->target_info = right->target_info;
11757 right->inserted = left_inserted;
11758 right->duplicate = left_duplicate;
11759 right->needs_update = left_needs_update;
11760 right->target_info = left_target_info;
11761 }
11762
11763 /* Force the re-insertion of the locations at ADDRESS. This is called
11764 once a new/deleted/modified duplicate location is found and we are evaluating
11765 conditions on the target's side. Such conditions need to be updated on
11766 the target. */
11767
11768 static void
11769 force_breakpoint_reinsertion (struct bp_location *bl)
11770 {
11771 struct bp_location **locp = NULL, **loc2p;
11772 struct bp_location *loc;
11773 CORE_ADDR address = 0;
11774 int pspace_num;
11775
11776 address = bl->address;
11777 pspace_num = bl->pspace->num;
11778
11779 /* This is only meaningful if the target is
11780 evaluating conditions and if the user has
11781 opted for condition evaluation on the target's
11782 side. */
11783 if (gdb_evaluates_breakpoint_condition_p ()
11784 || !target_supports_evaluation_of_breakpoint_conditions ())
11785 return;
11786
11787 /* Flag all breakpoint locations with this address and
11788 the same program space as the location
11789 as "its condition has changed". We need to
11790 update the conditions on the target's side. */
11791 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11792 {
11793 loc = *loc2p;
11794
11795 if (!is_breakpoint (loc->owner)
11796 || pspace_num != loc->pspace->num)
11797 continue;
11798
11799 /* Flag the location appropriately. We use a different state to
11800 let everyone know that we already updated the set of locations
11801 with addr bl->address and program space bl->pspace. This is so
11802 we don't have to keep calling these functions just to mark locations
11803 that have already been marked. */
11804 loc->condition_changed = condition_updated;
11805
11806 /* Free the agent expression bytecode as well. We will compute
11807 it later on. */
11808 loc->cond_bytecode.reset ();
11809 }
11810 }
11811 /* Called whether new breakpoints are created, or existing breakpoints
11812 deleted, to update the global location list and recompute which
11813 locations are duplicate of which.
11814
11815 The INSERT_MODE flag determines whether locations may not, may, or
11816 shall be inserted now. See 'enum ugll_insert_mode' for more
11817 info. */
11818
11819 static void
11820 update_global_location_list (enum ugll_insert_mode insert_mode)
11821 {
11822 struct breakpoint *b;
11823 struct bp_location **locp, *loc;
11824 /* Last breakpoint location address that was marked for update. */
11825 CORE_ADDR last_addr = 0;
11826 /* Last breakpoint location program space that was marked for update. */
11827 int last_pspace_num = -1;
11828
11829 /* Used in the duplicates detection below. When iterating over all
11830 bp_locations, points to the first bp_location of a given address.
11831 Breakpoints and watchpoints of different types are never
11832 duplicates of each other. Keep one pointer for each type of
11833 breakpoint/watchpoint, so we only need to loop over all locations
11834 once. */
11835 struct bp_location *bp_loc_first; /* breakpoint */
11836 struct bp_location *wp_loc_first; /* hardware watchpoint */
11837 struct bp_location *awp_loc_first; /* access watchpoint */
11838 struct bp_location *rwp_loc_first; /* read watchpoint */
11839
11840 /* Saved former bp_locations array which we compare against the newly
11841 built bp_locations from the current state of ALL_BREAKPOINTS. */
11842 struct bp_location **old_locp;
11843 unsigned old_locations_count;
11844 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11845
11846 old_locations_count = bp_locations_count;
11847 bp_locations = NULL;
11848 bp_locations_count = 0;
11849
11850 ALL_BREAKPOINTS (b)
11851 for (loc = b->loc; loc; loc = loc->next)
11852 bp_locations_count++;
11853
11854 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11855 locp = bp_locations;
11856 ALL_BREAKPOINTS (b)
11857 for (loc = b->loc; loc; loc = loc->next)
11858 *locp++ = loc;
11859 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11860 bp_locations_compare);
11861
11862 bp_locations_target_extensions_update ();
11863
11864 /* Identify bp_location instances that are no longer present in the
11865 new list, and therefore should be freed. Note that it's not
11866 necessary that those locations should be removed from inferior --
11867 if there's another location at the same address (previously
11868 marked as duplicate), we don't need to remove/insert the
11869 location.
11870
11871 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11872 and former bp_location array state respectively. */
11873
11874 locp = bp_locations;
11875 for (old_locp = old_locations.get ();
11876 old_locp < old_locations.get () + old_locations_count;
11877 old_locp++)
11878 {
11879 struct bp_location *old_loc = *old_locp;
11880 struct bp_location **loc2p;
11881
11882 /* Tells if 'old_loc' is found among the new locations. If
11883 not, we have to free it. */
11884 int found_object = 0;
11885 /* Tells if the location should remain inserted in the target. */
11886 int keep_in_target = 0;
11887 int removed = 0;
11888
11889 /* Skip LOCP entries which will definitely never be needed.
11890 Stop either at or being the one matching OLD_LOC. */
11891 while (locp < bp_locations + bp_locations_count
11892 && (*locp)->address < old_loc->address)
11893 locp++;
11894
11895 for (loc2p = locp;
11896 (loc2p < bp_locations + bp_locations_count
11897 && (*loc2p)->address == old_loc->address);
11898 loc2p++)
11899 {
11900 /* Check if this is a new/duplicated location or a duplicated
11901 location that had its condition modified. If so, we want to send
11902 its condition to the target if evaluation of conditions is taking
11903 place there. */
11904 if ((*loc2p)->condition_changed == condition_modified
11905 && (last_addr != old_loc->address
11906 || last_pspace_num != old_loc->pspace->num))
11907 {
11908 force_breakpoint_reinsertion (*loc2p);
11909 last_pspace_num = old_loc->pspace->num;
11910 }
11911
11912 if (*loc2p == old_loc)
11913 found_object = 1;
11914 }
11915
11916 /* We have already handled this address, update it so that we don't
11917 have to go through updates again. */
11918 last_addr = old_loc->address;
11919
11920 /* Target-side condition evaluation: Handle deleted locations. */
11921 if (!found_object)
11922 force_breakpoint_reinsertion (old_loc);
11923
11924 /* If this location is no longer present, and inserted, look if
11925 there's maybe a new location at the same address. If so,
11926 mark that one inserted, and don't remove this one. This is
11927 needed so that we don't have a time window where a breakpoint
11928 at certain location is not inserted. */
11929
11930 if (old_loc->inserted)
11931 {
11932 /* If the location is inserted now, we might have to remove
11933 it. */
11934
11935 if (found_object && should_be_inserted (old_loc))
11936 {
11937 /* The location is still present in the location list,
11938 and still should be inserted. Don't do anything. */
11939 keep_in_target = 1;
11940 }
11941 else
11942 {
11943 /* This location still exists, but it won't be kept in the
11944 target since it may have been disabled. We proceed to
11945 remove its target-side condition. */
11946
11947 /* The location is either no longer present, or got
11948 disabled. See if there's another location at the
11949 same address, in which case we don't need to remove
11950 this one from the target. */
11951
11952 /* OLD_LOC comes from existing struct breakpoint. */
11953 if (breakpoint_address_is_meaningful (old_loc->owner))
11954 {
11955 for (loc2p = locp;
11956 (loc2p < bp_locations + bp_locations_count
11957 && (*loc2p)->address == old_loc->address);
11958 loc2p++)
11959 {
11960 struct bp_location *loc2 = *loc2p;
11961
11962 if (breakpoint_locations_match (loc2, old_loc))
11963 {
11964 /* Read watchpoint locations are switched to
11965 access watchpoints, if the former are not
11966 supported, but the latter are. */
11967 if (is_hardware_watchpoint (old_loc->owner))
11968 {
11969 gdb_assert (is_hardware_watchpoint (loc2->owner));
11970 loc2->watchpoint_type = old_loc->watchpoint_type;
11971 }
11972
11973 /* loc2 is a duplicated location. We need to check
11974 if it should be inserted in case it will be
11975 unduplicated. */
11976 if (loc2 != old_loc
11977 && unduplicated_should_be_inserted (loc2))
11978 {
11979 swap_insertion (old_loc, loc2);
11980 keep_in_target = 1;
11981 break;
11982 }
11983 }
11984 }
11985 }
11986 }
11987
11988 if (!keep_in_target)
11989 {
11990 if (remove_breakpoint (old_loc))
11991 {
11992 /* This is just about all we can do. We could keep
11993 this location on the global list, and try to
11994 remove it next time, but there's no particular
11995 reason why we will succeed next time.
11996
11997 Note that at this point, old_loc->owner is still
11998 valid, as delete_breakpoint frees the breakpoint
11999 only after calling us. */
12000 printf_filtered (_("warning: Error removing "
12001 "breakpoint %d\n"),
12002 old_loc->owner->number);
12003 }
12004 removed = 1;
12005 }
12006 }
12007
12008 if (!found_object)
12009 {
12010 if (removed && target_is_non_stop_p ()
12011 && need_moribund_for_location_type (old_loc))
12012 {
12013 /* This location was removed from the target. In
12014 non-stop mode, a race condition is possible where
12015 we've removed a breakpoint, but stop events for that
12016 breakpoint are already queued and will arrive later.
12017 We apply an heuristic to be able to distinguish such
12018 SIGTRAPs from other random SIGTRAPs: we keep this
12019 breakpoint location for a bit, and will retire it
12020 after we see some number of events. The theory here
12021 is that reporting of events should, "on the average",
12022 be fair, so after a while we'll see events from all
12023 threads that have anything of interest, and no longer
12024 need to keep this breakpoint location around. We
12025 don't hold locations forever so to reduce chances of
12026 mistaking a non-breakpoint SIGTRAP for a breakpoint
12027 SIGTRAP.
12028
12029 The heuristic failing can be disastrous on
12030 decr_pc_after_break targets.
12031
12032 On decr_pc_after_break targets, like e.g., x86-linux,
12033 if we fail to recognize a late breakpoint SIGTRAP,
12034 because events_till_retirement has reached 0 too
12035 soon, we'll fail to do the PC adjustment, and report
12036 a random SIGTRAP to the user. When the user resumes
12037 the inferior, it will most likely immediately crash
12038 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12039 corrupted, because of being resumed e.g., in the
12040 middle of a multi-byte instruction, or skipped a
12041 one-byte instruction. This was actually seen happen
12042 on native x86-linux, and should be less rare on
12043 targets that do not support new thread events, like
12044 remote, due to the heuristic depending on
12045 thread_count.
12046
12047 Mistaking a random SIGTRAP for a breakpoint trap
12048 causes similar symptoms (PC adjustment applied when
12049 it shouldn't), but then again, playing with SIGTRAPs
12050 behind the debugger's back is asking for trouble.
12051
12052 Since hardware watchpoint traps are always
12053 distinguishable from other traps, so we don't need to
12054 apply keep hardware watchpoint moribund locations
12055 around. We simply always ignore hardware watchpoint
12056 traps we can no longer explain. */
12057
12058 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12059 old_loc->owner = NULL;
12060
12061 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12062 }
12063 else
12064 {
12065 old_loc->owner = NULL;
12066 decref_bp_location (&old_loc);
12067 }
12068 }
12069 }
12070
12071 /* Rescan breakpoints at the same address and section, marking the
12072 first one as "first" and any others as "duplicates". This is so
12073 that the bpt instruction is only inserted once. If we have a
12074 permanent breakpoint at the same place as BPT, make that one the
12075 official one, and the rest as duplicates. Permanent breakpoints
12076 are sorted first for the same address.
12077
12078 Do the same for hardware watchpoints, but also considering the
12079 watchpoint's type (regular/access/read) and length. */
12080
12081 bp_loc_first = NULL;
12082 wp_loc_first = NULL;
12083 awp_loc_first = NULL;
12084 rwp_loc_first = NULL;
12085 ALL_BP_LOCATIONS (loc, locp)
12086 {
12087 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12088 non-NULL. */
12089 struct bp_location **loc_first_p;
12090 b = loc->owner;
12091
12092 if (!unduplicated_should_be_inserted (loc)
12093 || !breakpoint_address_is_meaningful (b)
12094 /* Don't detect duplicate for tracepoint locations because they are
12095 never duplicated. See the comments in field `duplicate' of
12096 `struct bp_location'. */
12097 || is_tracepoint (b))
12098 {
12099 /* Clear the condition modification flag. */
12100 loc->condition_changed = condition_unchanged;
12101 continue;
12102 }
12103
12104 if (b->type == bp_hardware_watchpoint)
12105 loc_first_p = &wp_loc_first;
12106 else if (b->type == bp_read_watchpoint)
12107 loc_first_p = &rwp_loc_first;
12108 else if (b->type == bp_access_watchpoint)
12109 loc_first_p = &awp_loc_first;
12110 else
12111 loc_first_p = &bp_loc_first;
12112
12113 if (*loc_first_p == NULL
12114 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12115 || !breakpoint_locations_match (loc, *loc_first_p))
12116 {
12117 *loc_first_p = loc;
12118 loc->duplicate = 0;
12119
12120 if (is_breakpoint (loc->owner) && loc->condition_changed)
12121 {
12122 loc->needs_update = 1;
12123 /* Clear the condition modification flag. */
12124 loc->condition_changed = condition_unchanged;
12125 }
12126 continue;
12127 }
12128
12129
12130 /* This and the above ensure the invariant that the first location
12131 is not duplicated, and is the inserted one.
12132 All following are marked as duplicated, and are not inserted. */
12133 if (loc->inserted)
12134 swap_insertion (loc, *loc_first_p);
12135 loc->duplicate = 1;
12136
12137 /* Clear the condition modification flag. */
12138 loc->condition_changed = condition_unchanged;
12139 }
12140
12141 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12142 {
12143 if (insert_mode != UGLL_DONT_INSERT)
12144 insert_breakpoint_locations ();
12145 else
12146 {
12147 /* Even though the caller told us to not insert new
12148 locations, we may still need to update conditions on the
12149 target's side of breakpoints that were already inserted
12150 if the target is evaluating breakpoint conditions. We
12151 only update conditions for locations that are marked
12152 "needs_update". */
12153 update_inserted_breakpoint_locations ();
12154 }
12155 }
12156
12157 if (insert_mode != UGLL_DONT_INSERT)
12158 download_tracepoint_locations ();
12159 }
12160
12161 void
12162 breakpoint_retire_moribund (void)
12163 {
12164 struct bp_location *loc;
12165 int ix;
12166
12167 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12168 if (--(loc->events_till_retirement) == 0)
12169 {
12170 decref_bp_location (&loc);
12171 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12172 --ix;
12173 }
12174 }
12175
12176 static void
12177 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12178 {
12179
12180 TRY
12181 {
12182 update_global_location_list (insert_mode);
12183 }
12184 CATCH (e, RETURN_MASK_ERROR)
12185 {
12186 }
12187 END_CATCH
12188 }
12189
12190 /* Clear BKP from a BPS. */
12191
12192 static void
12193 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12194 {
12195 bpstat bs;
12196
12197 for (bs = bps; bs; bs = bs->next)
12198 if (bs->breakpoint_at == bpt)
12199 {
12200 bs->breakpoint_at = NULL;
12201 bs->old_val = NULL;
12202 /* bs->commands will be freed later. */
12203 }
12204 }
12205
12206 /* Callback for iterate_over_threads. */
12207 static int
12208 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12209 {
12210 struct breakpoint *bpt = (struct breakpoint *) data;
12211
12212 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12213 return 0;
12214 }
12215
12216 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12217 callbacks. */
12218
12219 static void
12220 say_where (struct breakpoint *b)
12221 {
12222 struct value_print_options opts;
12223
12224 get_user_print_options (&opts);
12225
12226 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12227 single string. */
12228 if (b->loc == NULL)
12229 {
12230 /* For pending locations, the output differs slightly based
12231 on b->extra_string. If this is non-NULL, it contains either
12232 a condition or dprintf arguments. */
12233 if (b->extra_string == NULL)
12234 {
12235 printf_filtered (_(" (%s) pending."),
12236 event_location_to_string (b->location.get ()));
12237 }
12238 else if (b->type == bp_dprintf)
12239 {
12240 printf_filtered (_(" (%s,%s) pending."),
12241 event_location_to_string (b->location.get ()),
12242 b->extra_string);
12243 }
12244 else
12245 {
12246 printf_filtered (_(" (%s %s) pending."),
12247 event_location_to_string (b->location.get ()),
12248 b->extra_string);
12249 }
12250 }
12251 else
12252 {
12253 if (opts.addressprint || b->loc->symtab == NULL)
12254 {
12255 printf_filtered (" at ");
12256 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12257 gdb_stdout);
12258 }
12259 if (b->loc->symtab != NULL)
12260 {
12261 /* If there is a single location, we can print the location
12262 more nicely. */
12263 if (b->loc->next == NULL)
12264 printf_filtered (": file %s, line %d.",
12265 symtab_to_filename_for_display (b->loc->symtab),
12266 b->loc->line_number);
12267 else
12268 /* This is not ideal, but each location may have a
12269 different file name, and this at least reflects the
12270 real situation somewhat. */
12271 printf_filtered (": %s.",
12272 event_location_to_string (b->location.get ()));
12273 }
12274
12275 if (b->loc->next)
12276 {
12277 struct bp_location *loc = b->loc;
12278 int n = 0;
12279 for (; loc; loc = loc->next)
12280 ++n;
12281 printf_filtered (" (%d locations)", n);
12282 }
12283 }
12284 }
12285
12286 /* Default bp_location_ops methods. */
12287
12288 static void
12289 bp_location_dtor (struct bp_location *self)
12290 {
12291 xfree (self->function_name);
12292 }
12293
12294 static const struct bp_location_ops bp_location_ops =
12295 {
12296 bp_location_dtor
12297 };
12298
12299 /* Destructor for the breakpoint base class. */
12300
12301 breakpoint::~breakpoint ()
12302 {
12303 xfree (this->cond_string);
12304 xfree (this->extra_string);
12305 xfree (this->filter);
12306 }
12307
12308 static struct bp_location *
12309 base_breakpoint_allocate_location (struct breakpoint *self)
12310 {
12311 return new bp_location (&bp_location_ops, self);
12312 }
12313
12314 static void
12315 base_breakpoint_re_set (struct breakpoint *b)
12316 {
12317 /* Nothing to re-set. */
12318 }
12319
12320 #define internal_error_pure_virtual_called() \
12321 gdb_assert_not_reached ("pure virtual function called")
12322
12323 static int
12324 base_breakpoint_insert_location (struct bp_location *bl)
12325 {
12326 internal_error_pure_virtual_called ();
12327 }
12328
12329 static int
12330 base_breakpoint_remove_location (struct bp_location *bl,
12331 enum remove_bp_reason reason)
12332 {
12333 internal_error_pure_virtual_called ();
12334 }
12335
12336 static int
12337 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12338 const address_space *aspace,
12339 CORE_ADDR bp_addr,
12340 const struct target_waitstatus *ws)
12341 {
12342 internal_error_pure_virtual_called ();
12343 }
12344
12345 static void
12346 base_breakpoint_check_status (bpstat bs)
12347 {
12348 /* Always stop. */
12349 }
12350
12351 /* A "works_in_software_mode" breakpoint_ops method that just internal
12352 errors. */
12353
12354 static int
12355 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12356 {
12357 internal_error_pure_virtual_called ();
12358 }
12359
12360 /* A "resources_needed" breakpoint_ops method that just internal
12361 errors. */
12362
12363 static int
12364 base_breakpoint_resources_needed (const struct bp_location *bl)
12365 {
12366 internal_error_pure_virtual_called ();
12367 }
12368
12369 static enum print_stop_action
12370 base_breakpoint_print_it (bpstat bs)
12371 {
12372 internal_error_pure_virtual_called ();
12373 }
12374
12375 static void
12376 base_breakpoint_print_one_detail (const struct breakpoint *self,
12377 struct ui_out *uiout)
12378 {
12379 /* nothing */
12380 }
12381
12382 static void
12383 base_breakpoint_print_mention (struct breakpoint *b)
12384 {
12385 internal_error_pure_virtual_called ();
12386 }
12387
12388 static void
12389 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12390 {
12391 internal_error_pure_virtual_called ();
12392 }
12393
12394 static void
12395 base_breakpoint_create_sals_from_location
12396 (const struct event_location *location,
12397 struct linespec_result *canonical,
12398 enum bptype type_wanted)
12399 {
12400 internal_error_pure_virtual_called ();
12401 }
12402
12403 static void
12404 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12405 struct linespec_result *c,
12406 gdb::unique_xmalloc_ptr<char> cond_string,
12407 gdb::unique_xmalloc_ptr<char> extra_string,
12408 enum bptype type_wanted,
12409 enum bpdisp disposition,
12410 int thread,
12411 int task, int ignore_count,
12412 const struct breakpoint_ops *o,
12413 int from_tty, int enabled,
12414 int internal, unsigned flags)
12415 {
12416 internal_error_pure_virtual_called ();
12417 }
12418
12419 static std::vector<symtab_and_line>
12420 base_breakpoint_decode_location (struct breakpoint *b,
12421 const struct event_location *location,
12422 struct program_space *search_pspace)
12423 {
12424 internal_error_pure_virtual_called ();
12425 }
12426
12427 /* The default 'explains_signal' method. */
12428
12429 static int
12430 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12431 {
12432 return 1;
12433 }
12434
12435 /* The default "after_condition_true" method. */
12436
12437 static void
12438 base_breakpoint_after_condition_true (struct bpstats *bs)
12439 {
12440 /* Nothing to do. */
12441 }
12442
12443 struct breakpoint_ops base_breakpoint_ops =
12444 {
12445 base_breakpoint_allocate_location,
12446 base_breakpoint_re_set,
12447 base_breakpoint_insert_location,
12448 base_breakpoint_remove_location,
12449 base_breakpoint_breakpoint_hit,
12450 base_breakpoint_check_status,
12451 base_breakpoint_resources_needed,
12452 base_breakpoint_works_in_software_mode,
12453 base_breakpoint_print_it,
12454 NULL,
12455 base_breakpoint_print_one_detail,
12456 base_breakpoint_print_mention,
12457 base_breakpoint_print_recreate,
12458 base_breakpoint_create_sals_from_location,
12459 base_breakpoint_create_breakpoints_sal,
12460 base_breakpoint_decode_location,
12461 base_breakpoint_explains_signal,
12462 base_breakpoint_after_condition_true,
12463 };
12464
12465 /* Default breakpoint_ops methods. */
12466
12467 static void
12468 bkpt_re_set (struct breakpoint *b)
12469 {
12470 /* FIXME: is this still reachable? */
12471 if (breakpoint_event_location_empty_p (b))
12472 {
12473 /* Anything without a location can't be re-set. */
12474 delete_breakpoint (b);
12475 return;
12476 }
12477
12478 breakpoint_re_set_default (b);
12479 }
12480
12481 static int
12482 bkpt_insert_location (struct bp_location *bl)
12483 {
12484 CORE_ADDR addr = bl->target_info.reqstd_address;
12485
12486 bl->target_info.kind = breakpoint_kind (bl, &addr);
12487 bl->target_info.placed_address = addr;
12488
12489 if (bl->loc_type == bp_loc_hardware_breakpoint)
12490 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12491 else
12492 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12493 }
12494
12495 static int
12496 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12497 {
12498 if (bl->loc_type == bp_loc_hardware_breakpoint)
12499 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12500 else
12501 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12502 }
12503
12504 static int
12505 bkpt_breakpoint_hit (const struct bp_location *bl,
12506 const address_space *aspace, CORE_ADDR bp_addr,
12507 const struct target_waitstatus *ws)
12508 {
12509 if (ws->kind != TARGET_WAITKIND_STOPPED
12510 || ws->value.sig != GDB_SIGNAL_TRAP)
12511 return 0;
12512
12513 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12514 aspace, bp_addr))
12515 return 0;
12516
12517 if (overlay_debugging /* unmapped overlay section */
12518 && section_is_overlay (bl->section)
12519 && !section_is_mapped (bl->section))
12520 return 0;
12521
12522 return 1;
12523 }
12524
12525 static int
12526 dprintf_breakpoint_hit (const struct bp_location *bl,
12527 const address_space *aspace, CORE_ADDR bp_addr,
12528 const struct target_waitstatus *ws)
12529 {
12530 if (dprintf_style == dprintf_style_agent
12531 && target_can_run_breakpoint_commands ())
12532 {
12533 /* An agent-style dprintf never causes a stop. If we see a trap
12534 for this address it must be for a breakpoint that happens to
12535 be set at the same address. */
12536 return 0;
12537 }
12538
12539 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12540 }
12541
12542 static int
12543 bkpt_resources_needed (const struct bp_location *bl)
12544 {
12545 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12546
12547 return 1;
12548 }
12549
12550 static enum print_stop_action
12551 bkpt_print_it (bpstat bs)
12552 {
12553 struct breakpoint *b;
12554 const struct bp_location *bl;
12555 int bp_temp;
12556 struct ui_out *uiout = current_uiout;
12557
12558 gdb_assert (bs->bp_location_at != NULL);
12559
12560 bl = bs->bp_location_at;
12561 b = bs->breakpoint_at;
12562
12563 bp_temp = b->disposition == disp_del;
12564 if (bl->address != bl->requested_address)
12565 breakpoint_adjustment_warning (bl->requested_address,
12566 bl->address,
12567 b->number, 1);
12568 annotate_breakpoint (b->number);
12569 maybe_print_thread_hit_breakpoint (uiout);
12570
12571 if (bp_temp)
12572 uiout->text ("Temporary breakpoint ");
12573 else
12574 uiout->text ("Breakpoint ");
12575 if (uiout->is_mi_like_p ())
12576 {
12577 uiout->field_string ("reason",
12578 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12579 uiout->field_string ("disp", bpdisp_text (b->disposition));
12580 }
12581 uiout->field_int ("bkptno", b->number);
12582 uiout->text (", ");
12583
12584 return PRINT_SRC_AND_LOC;
12585 }
12586
12587 static void
12588 bkpt_print_mention (struct breakpoint *b)
12589 {
12590 if (current_uiout->is_mi_like_p ())
12591 return;
12592
12593 switch (b->type)
12594 {
12595 case bp_breakpoint:
12596 case bp_gnu_ifunc_resolver:
12597 if (b->disposition == disp_del)
12598 printf_filtered (_("Temporary breakpoint"));
12599 else
12600 printf_filtered (_("Breakpoint"));
12601 printf_filtered (_(" %d"), b->number);
12602 if (b->type == bp_gnu_ifunc_resolver)
12603 printf_filtered (_(" at gnu-indirect-function resolver"));
12604 break;
12605 case bp_hardware_breakpoint:
12606 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12607 break;
12608 case bp_dprintf:
12609 printf_filtered (_("Dprintf %d"), b->number);
12610 break;
12611 }
12612
12613 say_where (b);
12614 }
12615
12616 static void
12617 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12618 {
12619 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12620 fprintf_unfiltered (fp, "tbreak");
12621 else if (tp->type == bp_breakpoint)
12622 fprintf_unfiltered (fp, "break");
12623 else if (tp->type == bp_hardware_breakpoint
12624 && tp->disposition == disp_del)
12625 fprintf_unfiltered (fp, "thbreak");
12626 else if (tp->type == bp_hardware_breakpoint)
12627 fprintf_unfiltered (fp, "hbreak");
12628 else
12629 internal_error (__FILE__, __LINE__,
12630 _("unhandled breakpoint type %d"), (int) tp->type);
12631
12632 fprintf_unfiltered (fp, " %s",
12633 event_location_to_string (tp->location.get ()));
12634
12635 /* Print out extra_string if this breakpoint is pending. It might
12636 contain, for example, conditions that were set by the user. */
12637 if (tp->loc == NULL && tp->extra_string != NULL)
12638 fprintf_unfiltered (fp, " %s", tp->extra_string);
12639
12640 print_recreate_thread (tp, fp);
12641 }
12642
12643 static void
12644 bkpt_create_sals_from_location (const struct event_location *location,
12645 struct linespec_result *canonical,
12646 enum bptype type_wanted)
12647 {
12648 create_sals_from_location_default (location, canonical, type_wanted);
12649 }
12650
12651 static void
12652 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12653 struct linespec_result *canonical,
12654 gdb::unique_xmalloc_ptr<char> cond_string,
12655 gdb::unique_xmalloc_ptr<char> extra_string,
12656 enum bptype type_wanted,
12657 enum bpdisp disposition,
12658 int thread,
12659 int task, int ignore_count,
12660 const struct breakpoint_ops *ops,
12661 int from_tty, int enabled,
12662 int internal, unsigned flags)
12663 {
12664 create_breakpoints_sal_default (gdbarch, canonical,
12665 std::move (cond_string),
12666 std::move (extra_string),
12667 type_wanted,
12668 disposition, thread, task,
12669 ignore_count, ops, from_tty,
12670 enabled, internal, flags);
12671 }
12672
12673 static std::vector<symtab_and_line>
12674 bkpt_decode_location (struct breakpoint *b,
12675 const struct event_location *location,
12676 struct program_space *search_pspace)
12677 {
12678 return decode_location_default (b, location, search_pspace);
12679 }
12680
12681 /* Virtual table for internal breakpoints. */
12682
12683 static void
12684 internal_bkpt_re_set (struct breakpoint *b)
12685 {
12686 switch (b->type)
12687 {
12688 /* Delete overlay event and longjmp master breakpoints; they
12689 will be reset later by breakpoint_re_set. */
12690 case bp_overlay_event:
12691 case bp_longjmp_master:
12692 case bp_std_terminate_master:
12693 case bp_exception_master:
12694 delete_breakpoint (b);
12695 break;
12696
12697 /* This breakpoint is special, it's set up when the inferior
12698 starts and we really don't want to touch it. */
12699 case bp_shlib_event:
12700
12701 /* Like bp_shlib_event, this breakpoint type is special. Once
12702 it is set up, we do not want to touch it. */
12703 case bp_thread_event:
12704 break;
12705 }
12706 }
12707
12708 static void
12709 internal_bkpt_check_status (bpstat bs)
12710 {
12711 if (bs->breakpoint_at->type == bp_shlib_event)
12712 {
12713 /* If requested, stop when the dynamic linker notifies GDB of
12714 events. This allows the user to get control and place
12715 breakpoints in initializer routines for dynamically loaded
12716 objects (among other things). */
12717 bs->stop = stop_on_solib_events;
12718 bs->print = stop_on_solib_events;
12719 }
12720 else
12721 bs->stop = 0;
12722 }
12723
12724 static enum print_stop_action
12725 internal_bkpt_print_it (bpstat bs)
12726 {
12727 struct breakpoint *b;
12728
12729 b = bs->breakpoint_at;
12730
12731 switch (b->type)
12732 {
12733 case bp_shlib_event:
12734 /* Did we stop because the user set the stop_on_solib_events
12735 variable? (If so, we report this as a generic, "Stopped due
12736 to shlib event" message.) */
12737 print_solib_event (0);
12738 break;
12739
12740 case bp_thread_event:
12741 /* Not sure how we will get here.
12742 GDB should not stop for these breakpoints. */
12743 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12744 break;
12745
12746 case bp_overlay_event:
12747 /* By analogy with the thread event, GDB should not stop for these. */
12748 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12749 break;
12750
12751 case bp_longjmp_master:
12752 /* These should never be enabled. */
12753 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12754 break;
12755
12756 case bp_std_terminate_master:
12757 /* These should never be enabled. */
12758 printf_filtered (_("std::terminate Master Breakpoint: "
12759 "gdb should not stop!\n"));
12760 break;
12761
12762 case bp_exception_master:
12763 /* These should never be enabled. */
12764 printf_filtered (_("Exception Master Breakpoint: "
12765 "gdb should not stop!\n"));
12766 break;
12767 }
12768
12769 return PRINT_NOTHING;
12770 }
12771
12772 static void
12773 internal_bkpt_print_mention (struct breakpoint *b)
12774 {
12775 /* Nothing to mention. These breakpoints are internal. */
12776 }
12777
12778 /* Virtual table for momentary breakpoints */
12779
12780 static void
12781 momentary_bkpt_re_set (struct breakpoint *b)
12782 {
12783 /* Keep temporary breakpoints, which can be encountered when we step
12784 over a dlopen call and solib_add is resetting the breakpoints.
12785 Otherwise these should have been blown away via the cleanup chain
12786 or by breakpoint_init_inferior when we rerun the executable. */
12787 }
12788
12789 static void
12790 momentary_bkpt_check_status (bpstat bs)
12791 {
12792 /* Nothing. The point of these breakpoints is causing a stop. */
12793 }
12794
12795 static enum print_stop_action
12796 momentary_bkpt_print_it (bpstat bs)
12797 {
12798 return PRINT_UNKNOWN;
12799 }
12800
12801 static void
12802 momentary_bkpt_print_mention (struct breakpoint *b)
12803 {
12804 /* Nothing to mention. These breakpoints are internal. */
12805 }
12806
12807 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12808
12809 It gets cleared already on the removal of the first one of such placed
12810 breakpoints. This is OK as they get all removed altogether. */
12811
12812 longjmp_breakpoint::~longjmp_breakpoint ()
12813 {
12814 thread_info *tp = find_thread_global_id (this->thread);
12815
12816 if (tp != NULL)
12817 tp->initiating_frame = null_frame_id;
12818 }
12819
12820 /* Specific methods for probe breakpoints. */
12821
12822 static int
12823 bkpt_probe_insert_location (struct bp_location *bl)
12824 {
12825 int v = bkpt_insert_location (bl);
12826
12827 if (v == 0)
12828 {
12829 /* The insertion was successful, now let's set the probe's semaphore
12830 if needed. */
12831 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12832 }
12833
12834 return v;
12835 }
12836
12837 static int
12838 bkpt_probe_remove_location (struct bp_location *bl,
12839 enum remove_bp_reason reason)
12840 {
12841 /* Let's clear the semaphore before removing the location. */
12842 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12843
12844 return bkpt_remove_location (bl, reason);
12845 }
12846
12847 static void
12848 bkpt_probe_create_sals_from_location (const struct event_location *location,
12849 struct linespec_result *canonical,
12850 enum bptype type_wanted)
12851 {
12852 struct linespec_sals lsal;
12853
12854 lsal.sals = parse_probes (location, NULL, canonical);
12855 lsal.canonical
12856 = xstrdup (event_location_to_string (canonical->location.get ()));
12857 canonical->lsals.push_back (std::move (lsal));
12858 }
12859
12860 static std::vector<symtab_and_line>
12861 bkpt_probe_decode_location (struct breakpoint *b,
12862 const struct event_location *location,
12863 struct program_space *search_pspace)
12864 {
12865 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12866 if (sals.empty ())
12867 error (_("probe not found"));
12868 return sals;
12869 }
12870
12871 /* The breakpoint_ops structure to be used in tracepoints. */
12872
12873 static void
12874 tracepoint_re_set (struct breakpoint *b)
12875 {
12876 breakpoint_re_set_default (b);
12877 }
12878
12879 static int
12880 tracepoint_breakpoint_hit (const struct bp_location *bl,
12881 const address_space *aspace, CORE_ADDR bp_addr,
12882 const struct target_waitstatus *ws)
12883 {
12884 /* By definition, the inferior does not report stops at
12885 tracepoints. */
12886 return 0;
12887 }
12888
12889 static void
12890 tracepoint_print_one_detail (const struct breakpoint *self,
12891 struct ui_out *uiout)
12892 {
12893 struct tracepoint *tp = (struct tracepoint *) self;
12894 if (!tp->static_trace_marker_id.empty ())
12895 {
12896 gdb_assert (self->type == bp_static_tracepoint);
12897
12898 uiout->text ("\tmarker id is ");
12899 uiout->field_string ("static-tracepoint-marker-string-id",
12900 tp->static_trace_marker_id);
12901 uiout->text ("\n");
12902 }
12903 }
12904
12905 static void
12906 tracepoint_print_mention (struct breakpoint *b)
12907 {
12908 if (current_uiout->is_mi_like_p ())
12909 return;
12910
12911 switch (b->type)
12912 {
12913 case bp_tracepoint:
12914 printf_filtered (_("Tracepoint"));
12915 printf_filtered (_(" %d"), b->number);
12916 break;
12917 case bp_fast_tracepoint:
12918 printf_filtered (_("Fast tracepoint"));
12919 printf_filtered (_(" %d"), b->number);
12920 break;
12921 case bp_static_tracepoint:
12922 printf_filtered (_("Static tracepoint"));
12923 printf_filtered (_(" %d"), b->number);
12924 break;
12925 default:
12926 internal_error (__FILE__, __LINE__,
12927 _("unhandled tracepoint type %d"), (int) b->type);
12928 }
12929
12930 say_where (b);
12931 }
12932
12933 static void
12934 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12935 {
12936 struct tracepoint *tp = (struct tracepoint *) self;
12937
12938 if (self->type == bp_fast_tracepoint)
12939 fprintf_unfiltered (fp, "ftrace");
12940 else if (self->type == bp_static_tracepoint)
12941 fprintf_unfiltered (fp, "strace");
12942 else if (self->type == bp_tracepoint)
12943 fprintf_unfiltered (fp, "trace");
12944 else
12945 internal_error (__FILE__, __LINE__,
12946 _("unhandled tracepoint type %d"), (int) self->type);
12947
12948 fprintf_unfiltered (fp, " %s",
12949 event_location_to_string (self->location.get ()));
12950 print_recreate_thread (self, fp);
12951
12952 if (tp->pass_count)
12953 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12954 }
12955
12956 static void
12957 tracepoint_create_sals_from_location (const struct event_location *location,
12958 struct linespec_result *canonical,
12959 enum bptype type_wanted)
12960 {
12961 create_sals_from_location_default (location, canonical, type_wanted);
12962 }
12963
12964 static void
12965 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12966 struct linespec_result *canonical,
12967 gdb::unique_xmalloc_ptr<char> cond_string,
12968 gdb::unique_xmalloc_ptr<char> extra_string,
12969 enum bptype type_wanted,
12970 enum bpdisp disposition,
12971 int thread,
12972 int task, int ignore_count,
12973 const struct breakpoint_ops *ops,
12974 int from_tty, int enabled,
12975 int internal, unsigned flags)
12976 {
12977 create_breakpoints_sal_default (gdbarch, canonical,
12978 std::move (cond_string),
12979 std::move (extra_string),
12980 type_wanted,
12981 disposition, thread, task,
12982 ignore_count, ops, from_tty,
12983 enabled, internal, flags);
12984 }
12985
12986 static std::vector<symtab_and_line>
12987 tracepoint_decode_location (struct breakpoint *b,
12988 const struct event_location *location,
12989 struct program_space *search_pspace)
12990 {
12991 return decode_location_default (b, location, search_pspace);
12992 }
12993
12994 struct breakpoint_ops tracepoint_breakpoint_ops;
12995
12996 /* The breakpoint_ops structure to be use on tracepoints placed in a
12997 static probe. */
12998
12999 static void
13000 tracepoint_probe_create_sals_from_location
13001 (const struct event_location *location,
13002 struct linespec_result *canonical,
13003 enum bptype type_wanted)
13004 {
13005 /* We use the same method for breakpoint on probes. */
13006 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13007 }
13008
13009 static std::vector<symtab_and_line>
13010 tracepoint_probe_decode_location (struct breakpoint *b,
13011 const struct event_location *location,
13012 struct program_space *search_pspace)
13013 {
13014 /* We use the same method for breakpoint on probes. */
13015 return bkpt_probe_decode_location (b, location, search_pspace);
13016 }
13017
13018 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13019
13020 /* Dprintf breakpoint_ops methods. */
13021
13022 static void
13023 dprintf_re_set (struct breakpoint *b)
13024 {
13025 breakpoint_re_set_default (b);
13026
13027 /* extra_string should never be non-NULL for dprintf. */
13028 gdb_assert (b->extra_string != NULL);
13029
13030 /* 1 - connect to target 1, that can run breakpoint commands.
13031 2 - create a dprintf, which resolves fine.
13032 3 - disconnect from target 1
13033 4 - connect to target 2, that can NOT run breakpoint commands.
13034
13035 After steps #3/#4, you'll want the dprintf command list to
13036 be updated, because target 1 and 2 may well return different
13037 answers for target_can_run_breakpoint_commands().
13038 Given absence of finer grained resetting, we get to do
13039 it all the time. */
13040 if (b->extra_string != NULL)
13041 update_dprintf_command_list (b);
13042 }
13043
13044 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13045
13046 static void
13047 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13048 {
13049 fprintf_unfiltered (fp, "dprintf %s,%s",
13050 event_location_to_string (tp->location.get ()),
13051 tp->extra_string);
13052 print_recreate_thread (tp, fp);
13053 }
13054
13055 /* Implement the "after_condition_true" breakpoint_ops method for
13056 dprintf.
13057
13058 dprintf's are implemented with regular commands in their command
13059 list, but we run the commands here instead of before presenting the
13060 stop to the user, as dprintf's don't actually cause a stop. This
13061 also makes it so that the commands of multiple dprintfs at the same
13062 address are all handled. */
13063
13064 static void
13065 dprintf_after_condition_true (struct bpstats *bs)
13066 {
13067 struct bpstats tmp_bs;
13068 struct bpstats *tmp_bs_p = &tmp_bs;
13069
13070 /* dprintf's never cause a stop. This wasn't set in the
13071 check_status hook instead because that would make the dprintf's
13072 condition not be evaluated. */
13073 bs->stop = 0;
13074
13075 /* Run the command list here. Take ownership of it instead of
13076 copying. We never want these commands to run later in
13077 bpstat_do_actions, if a breakpoint that causes a stop happens to
13078 be set at same address as this dprintf, or even if running the
13079 commands here throws. */
13080 tmp_bs.commands = bs->commands;
13081 bs->commands = NULL;
13082
13083 bpstat_do_actions_1 (&tmp_bs_p);
13084
13085 /* 'tmp_bs.commands' will usually be NULL by now, but
13086 bpstat_do_actions_1 may return early without processing the whole
13087 list. */
13088 }
13089
13090 /* The breakpoint_ops structure to be used on static tracepoints with
13091 markers (`-m'). */
13092
13093 static void
13094 strace_marker_create_sals_from_location (const struct event_location *location,
13095 struct linespec_result *canonical,
13096 enum bptype type_wanted)
13097 {
13098 struct linespec_sals lsal;
13099 const char *arg_start, *arg;
13100
13101 arg = arg_start = get_linespec_location (location)->spec_string;
13102 lsal.sals = decode_static_tracepoint_spec (&arg);
13103
13104 std::string str (arg_start, arg - arg_start);
13105 const char *ptr = str.c_str ();
13106 canonical->location
13107 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13108
13109 lsal.canonical
13110 = xstrdup (event_location_to_string (canonical->location.get ()));
13111 canonical->lsals.push_back (std::move (lsal));
13112 }
13113
13114 static void
13115 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13116 struct linespec_result *canonical,
13117 gdb::unique_xmalloc_ptr<char> cond_string,
13118 gdb::unique_xmalloc_ptr<char> extra_string,
13119 enum bptype type_wanted,
13120 enum bpdisp disposition,
13121 int thread,
13122 int task, int ignore_count,
13123 const struct breakpoint_ops *ops,
13124 int from_tty, int enabled,
13125 int internal, unsigned flags)
13126 {
13127 const linespec_sals &lsal = canonical->lsals[0];
13128
13129 /* If the user is creating a static tracepoint by marker id
13130 (strace -m MARKER_ID), then store the sals index, so that
13131 breakpoint_re_set can try to match up which of the newly
13132 found markers corresponds to this one, and, don't try to
13133 expand multiple locations for each sal, given than SALS
13134 already should contain all sals for MARKER_ID. */
13135
13136 for (size_t i = 0; i < lsal.sals.size (); i++)
13137 {
13138 event_location_up location
13139 = copy_event_location (canonical->location.get ());
13140
13141 std::unique_ptr<tracepoint> tp (new tracepoint ());
13142 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13143 std::move (location), NULL,
13144 std::move (cond_string),
13145 std::move (extra_string),
13146 type_wanted, disposition,
13147 thread, task, ignore_count, ops,
13148 from_tty, enabled, internal, flags,
13149 canonical->special_display);
13150 /* Given that its possible to have multiple markers with
13151 the same string id, if the user is creating a static
13152 tracepoint by marker id ("strace -m MARKER_ID"), then
13153 store the sals index, so that breakpoint_re_set can
13154 try to match up which of the newly found markers
13155 corresponds to this one */
13156 tp->static_trace_marker_id_idx = i;
13157
13158 install_breakpoint (internal, std::move (tp), 0);
13159 }
13160 }
13161
13162 static std::vector<symtab_and_line>
13163 strace_marker_decode_location (struct breakpoint *b,
13164 const struct event_location *location,
13165 struct program_space *search_pspace)
13166 {
13167 struct tracepoint *tp = (struct tracepoint *) b;
13168 const char *s = get_linespec_location (location)->spec_string;
13169
13170 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13171 if (sals.size () > tp->static_trace_marker_id_idx)
13172 {
13173 sals[0] = sals[tp->static_trace_marker_id_idx];
13174 sals.resize (1);
13175 return sals;
13176 }
13177 else
13178 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13179 }
13180
13181 static struct breakpoint_ops strace_marker_breakpoint_ops;
13182
13183 static int
13184 strace_marker_p (struct breakpoint *b)
13185 {
13186 return b->ops == &strace_marker_breakpoint_ops;
13187 }
13188
13189 /* Delete a breakpoint and clean up all traces of it in the data
13190 structures. */
13191
13192 void
13193 delete_breakpoint (struct breakpoint *bpt)
13194 {
13195 struct breakpoint *b;
13196
13197 gdb_assert (bpt != NULL);
13198
13199 /* Has this bp already been deleted? This can happen because
13200 multiple lists can hold pointers to bp's. bpstat lists are
13201 especial culprits.
13202
13203 One example of this happening is a watchpoint's scope bp. When
13204 the scope bp triggers, we notice that the watchpoint is out of
13205 scope, and delete it. We also delete its scope bp. But the
13206 scope bp is marked "auto-deleting", and is already on a bpstat.
13207 That bpstat is then checked for auto-deleting bp's, which are
13208 deleted.
13209
13210 A real solution to this problem might involve reference counts in
13211 bp's, and/or giving them pointers back to their referencing
13212 bpstat's, and teaching delete_breakpoint to only free a bp's
13213 storage when no more references were extent. A cheaper bandaid
13214 was chosen. */
13215 if (bpt->type == bp_none)
13216 return;
13217
13218 /* At least avoid this stale reference until the reference counting
13219 of breakpoints gets resolved. */
13220 if (bpt->related_breakpoint != bpt)
13221 {
13222 struct breakpoint *related;
13223 struct watchpoint *w;
13224
13225 if (bpt->type == bp_watchpoint_scope)
13226 w = (struct watchpoint *) bpt->related_breakpoint;
13227 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13228 w = (struct watchpoint *) bpt;
13229 else
13230 w = NULL;
13231 if (w != NULL)
13232 watchpoint_del_at_next_stop (w);
13233
13234 /* Unlink bpt from the bpt->related_breakpoint ring. */
13235 for (related = bpt; related->related_breakpoint != bpt;
13236 related = related->related_breakpoint);
13237 related->related_breakpoint = bpt->related_breakpoint;
13238 bpt->related_breakpoint = bpt;
13239 }
13240
13241 /* watch_command_1 creates a watchpoint but only sets its number if
13242 update_watchpoint succeeds in creating its bp_locations. If there's
13243 a problem in that process, we'll be asked to delete the half-created
13244 watchpoint. In that case, don't announce the deletion. */
13245 if (bpt->number)
13246 gdb::observers::breakpoint_deleted.notify (bpt);
13247
13248 if (breakpoint_chain == bpt)
13249 breakpoint_chain = bpt->next;
13250
13251 ALL_BREAKPOINTS (b)
13252 if (b->next == bpt)
13253 {
13254 b->next = bpt->next;
13255 break;
13256 }
13257
13258 /* Be sure no bpstat's are pointing at the breakpoint after it's
13259 been freed. */
13260 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13261 in all threads for now. Note that we cannot just remove bpstats
13262 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13263 commands are associated with the bpstat; if we remove it here,
13264 then the later call to bpstat_do_actions (&stop_bpstat); in
13265 event-top.c won't do anything, and temporary breakpoints with
13266 commands won't work. */
13267
13268 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13269
13270 /* Now that breakpoint is removed from breakpoint list, update the
13271 global location list. This will remove locations that used to
13272 belong to this breakpoint. Do this before freeing the breakpoint
13273 itself, since remove_breakpoint looks at location's owner. It
13274 might be better design to have location completely
13275 self-contained, but it's not the case now. */
13276 update_global_location_list (UGLL_DONT_INSERT);
13277
13278 /* On the chance that someone will soon try again to delete this
13279 same bp, we mark it as deleted before freeing its storage. */
13280 bpt->type = bp_none;
13281 delete bpt;
13282 }
13283
13284 /* Iterator function to call a user-provided callback function once
13285 for each of B and its related breakpoints. */
13286
13287 static void
13288 iterate_over_related_breakpoints (struct breakpoint *b,
13289 gdb::function_view<void (breakpoint *)> function)
13290 {
13291 struct breakpoint *related;
13292
13293 related = b;
13294 do
13295 {
13296 struct breakpoint *next;
13297
13298 /* FUNCTION may delete RELATED. */
13299 next = related->related_breakpoint;
13300
13301 if (next == related)
13302 {
13303 /* RELATED is the last ring entry. */
13304 function (related);
13305
13306 /* FUNCTION may have deleted it, so we'd never reach back to
13307 B. There's nothing left to do anyway, so just break
13308 out. */
13309 break;
13310 }
13311 else
13312 function (related);
13313
13314 related = next;
13315 }
13316 while (related != b);
13317 }
13318
13319 static void
13320 delete_command (const char *arg, int from_tty)
13321 {
13322 struct breakpoint *b, *b_tmp;
13323
13324 dont_repeat ();
13325
13326 if (arg == 0)
13327 {
13328 int breaks_to_delete = 0;
13329
13330 /* Delete all breakpoints if no argument. Do not delete
13331 internal breakpoints, these have to be deleted with an
13332 explicit breakpoint number argument. */
13333 ALL_BREAKPOINTS (b)
13334 if (user_breakpoint_p (b))
13335 {
13336 breaks_to_delete = 1;
13337 break;
13338 }
13339
13340 /* Ask user only if there are some breakpoints to delete. */
13341 if (!from_tty
13342 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13343 {
13344 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13345 if (user_breakpoint_p (b))
13346 delete_breakpoint (b);
13347 }
13348 }
13349 else
13350 map_breakpoint_numbers
13351 (arg, [&] (breakpoint *b)
13352 {
13353 iterate_over_related_breakpoints (b, delete_breakpoint);
13354 });
13355 }
13356
13357 /* Return true if all locations of B bound to PSPACE are pending. If
13358 PSPACE is NULL, all locations of all program spaces are
13359 considered. */
13360
13361 static int
13362 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13363 {
13364 struct bp_location *loc;
13365
13366 for (loc = b->loc; loc != NULL; loc = loc->next)
13367 if ((pspace == NULL
13368 || loc->pspace == pspace)
13369 && !loc->shlib_disabled
13370 && !loc->pspace->executing_startup)
13371 return 0;
13372 return 1;
13373 }
13374
13375 /* Subroutine of update_breakpoint_locations to simplify it.
13376 Return non-zero if multiple fns in list LOC have the same name.
13377 Null names are ignored. */
13378
13379 static int
13380 ambiguous_names_p (struct bp_location *loc)
13381 {
13382 struct bp_location *l;
13383 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13384 xcalloc, xfree);
13385
13386 for (l = loc; l != NULL; l = l->next)
13387 {
13388 const char **slot;
13389 const char *name = l->function_name;
13390
13391 /* Allow for some names to be NULL, ignore them. */
13392 if (name == NULL)
13393 continue;
13394
13395 slot = (const char **) htab_find_slot (htab, (const void *) name,
13396 INSERT);
13397 /* NOTE: We can assume slot != NULL here because xcalloc never
13398 returns NULL. */
13399 if (*slot != NULL)
13400 {
13401 htab_delete (htab);
13402 return 1;
13403 }
13404 *slot = name;
13405 }
13406
13407 htab_delete (htab);
13408 return 0;
13409 }
13410
13411 /* When symbols change, it probably means the sources changed as well,
13412 and it might mean the static tracepoint markers are no longer at
13413 the same address or line numbers they used to be at last we
13414 checked. Losing your static tracepoints whenever you rebuild is
13415 undesirable. This function tries to resync/rematch gdb static
13416 tracepoints with the markers on the target, for static tracepoints
13417 that have not been set by marker id. Static tracepoint that have
13418 been set by marker id are reset by marker id in breakpoint_re_set.
13419 The heuristic is:
13420
13421 1) For a tracepoint set at a specific address, look for a marker at
13422 the old PC. If one is found there, assume to be the same marker.
13423 If the name / string id of the marker found is different from the
13424 previous known name, assume that means the user renamed the marker
13425 in the sources, and output a warning.
13426
13427 2) For a tracepoint set at a given line number, look for a marker
13428 at the new address of the old line number. If one is found there,
13429 assume to be the same marker. If the name / string id of the
13430 marker found is different from the previous known name, assume that
13431 means the user renamed the marker in the sources, and output a
13432 warning.
13433
13434 3) If a marker is no longer found at the same address or line, it
13435 may mean the marker no longer exists. But it may also just mean
13436 the code changed a bit. Maybe the user added a few lines of code
13437 that made the marker move up or down (in line number terms). Ask
13438 the target for info about the marker with the string id as we knew
13439 it. If found, update line number and address in the matching
13440 static tracepoint. This will get confused if there's more than one
13441 marker with the same ID (possible in UST, although unadvised
13442 precisely because it confuses tools). */
13443
13444 static struct symtab_and_line
13445 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13446 {
13447 struct tracepoint *tp = (struct tracepoint *) b;
13448 struct static_tracepoint_marker marker;
13449 CORE_ADDR pc;
13450
13451 pc = sal.pc;
13452 if (sal.line)
13453 find_line_pc (sal.symtab, sal.line, &pc);
13454
13455 if (target_static_tracepoint_marker_at (pc, &marker))
13456 {
13457 if (tp->static_trace_marker_id != marker.str_id)
13458 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13459 b->number, tp->static_trace_marker_id.c_str (),
13460 marker.str_id.c_str ());
13461
13462 tp->static_trace_marker_id = std::move (marker.str_id);
13463
13464 return sal;
13465 }
13466
13467 /* Old marker wasn't found on target at lineno. Try looking it up
13468 by string ID. */
13469 if (!sal.explicit_pc
13470 && sal.line != 0
13471 && sal.symtab != NULL
13472 && !tp->static_trace_marker_id.empty ())
13473 {
13474 std::vector<static_tracepoint_marker> markers
13475 = target_static_tracepoint_markers_by_strid
13476 (tp->static_trace_marker_id.c_str ());
13477
13478 if (!markers.empty ())
13479 {
13480 struct symbol *sym;
13481 struct static_tracepoint_marker *tpmarker;
13482 struct ui_out *uiout = current_uiout;
13483 struct explicit_location explicit_loc;
13484
13485 tpmarker = &markers[0];
13486
13487 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13488
13489 warning (_("marker for static tracepoint %d (%s) not "
13490 "found at previous line number"),
13491 b->number, tp->static_trace_marker_id.c_str ());
13492
13493 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13494 sym = find_pc_sect_function (tpmarker->address, NULL);
13495 uiout->text ("Now in ");
13496 if (sym)
13497 {
13498 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13499 uiout->text (" at ");
13500 }
13501 uiout->field_string ("file",
13502 symtab_to_filename_for_display (sal2.symtab));
13503 uiout->text (":");
13504
13505 if (uiout->is_mi_like_p ())
13506 {
13507 const char *fullname = symtab_to_fullname (sal2.symtab);
13508
13509 uiout->field_string ("fullname", fullname);
13510 }
13511
13512 uiout->field_int ("line", sal2.line);
13513 uiout->text ("\n");
13514
13515 b->loc->line_number = sal2.line;
13516 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13517
13518 b->location.reset (NULL);
13519 initialize_explicit_location (&explicit_loc);
13520 explicit_loc.source_filename
13521 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13522 explicit_loc.line_offset.offset = b->loc->line_number;
13523 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13524 b->location = new_explicit_location (&explicit_loc);
13525
13526 /* Might be nice to check if function changed, and warn if
13527 so. */
13528 }
13529 }
13530 return sal;
13531 }
13532
13533 /* Returns 1 iff locations A and B are sufficiently same that
13534 we don't need to report breakpoint as changed. */
13535
13536 static int
13537 locations_are_equal (struct bp_location *a, struct bp_location *b)
13538 {
13539 while (a && b)
13540 {
13541 if (a->address != b->address)
13542 return 0;
13543
13544 if (a->shlib_disabled != b->shlib_disabled)
13545 return 0;
13546
13547 if (a->enabled != b->enabled)
13548 return 0;
13549
13550 a = a->next;
13551 b = b->next;
13552 }
13553
13554 if ((a == NULL) != (b == NULL))
13555 return 0;
13556
13557 return 1;
13558 }
13559
13560 /* Split all locations of B that are bound to PSPACE out of B's
13561 location list to a separate list and return that list's head. If
13562 PSPACE is NULL, hoist out all locations of B. */
13563
13564 static struct bp_location *
13565 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13566 {
13567 struct bp_location head;
13568 struct bp_location *i = b->loc;
13569 struct bp_location **i_link = &b->loc;
13570 struct bp_location *hoisted = &head;
13571
13572 if (pspace == NULL)
13573 {
13574 i = b->loc;
13575 b->loc = NULL;
13576 return i;
13577 }
13578
13579 head.next = NULL;
13580
13581 while (i != NULL)
13582 {
13583 if (i->pspace == pspace)
13584 {
13585 *i_link = i->next;
13586 i->next = NULL;
13587 hoisted->next = i;
13588 hoisted = i;
13589 }
13590 else
13591 i_link = &i->next;
13592 i = *i_link;
13593 }
13594
13595 return head.next;
13596 }
13597
13598 /* Create new breakpoint locations for B (a hardware or software
13599 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13600 zero, then B is a ranged breakpoint. Only recreates locations for
13601 FILTER_PSPACE. Locations of other program spaces are left
13602 untouched. */
13603
13604 void
13605 update_breakpoint_locations (struct breakpoint *b,
13606 struct program_space *filter_pspace,
13607 gdb::array_view<const symtab_and_line> sals,
13608 gdb::array_view<const symtab_and_line> sals_end)
13609 {
13610 struct bp_location *existing_locations;
13611
13612 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13613 {
13614 /* Ranged breakpoints have only one start location and one end
13615 location. */
13616 b->enable_state = bp_disabled;
13617 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13618 "multiple locations found\n"),
13619 b->number);
13620 return;
13621 }
13622
13623 /* If there's no new locations, and all existing locations are
13624 pending, don't do anything. This optimizes the common case where
13625 all locations are in the same shared library, that was unloaded.
13626 We'd like to retain the location, so that when the library is
13627 loaded again, we don't loose the enabled/disabled status of the
13628 individual locations. */
13629 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13630 return;
13631
13632 existing_locations = hoist_existing_locations (b, filter_pspace);
13633
13634 for (const auto &sal : sals)
13635 {
13636 struct bp_location *new_loc;
13637
13638 switch_to_program_space_and_thread (sal.pspace);
13639
13640 new_loc = add_location_to_breakpoint (b, &sal);
13641
13642 /* Reparse conditions, they might contain references to the
13643 old symtab. */
13644 if (b->cond_string != NULL)
13645 {
13646 const char *s;
13647
13648 s = b->cond_string;
13649 TRY
13650 {
13651 new_loc->cond = parse_exp_1 (&s, sal.pc,
13652 block_for_pc (sal.pc),
13653 0);
13654 }
13655 CATCH (e, RETURN_MASK_ERROR)
13656 {
13657 warning (_("failed to reevaluate condition "
13658 "for breakpoint %d: %s"),
13659 b->number, e.message);
13660 new_loc->enabled = 0;
13661 }
13662 END_CATCH
13663 }
13664
13665 if (!sals_end.empty ())
13666 {
13667 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13668
13669 new_loc->length = end - sals[0].pc + 1;
13670 }
13671 }
13672
13673 /* If possible, carry over 'disable' status from existing
13674 breakpoints. */
13675 {
13676 struct bp_location *e = existing_locations;
13677 /* If there are multiple breakpoints with the same function name,
13678 e.g. for inline functions, comparing function names won't work.
13679 Instead compare pc addresses; this is just a heuristic as things
13680 may have moved, but in practice it gives the correct answer
13681 often enough until a better solution is found. */
13682 int have_ambiguous_names = ambiguous_names_p (b->loc);
13683
13684 for (; e; e = e->next)
13685 {
13686 if (!e->enabled && e->function_name)
13687 {
13688 struct bp_location *l = b->loc;
13689 if (have_ambiguous_names)
13690 {
13691 for (; l; l = l->next)
13692 if (breakpoint_locations_match (e, l))
13693 {
13694 l->enabled = 0;
13695 break;
13696 }
13697 }
13698 else
13699 {
13700 for (; l; l = l->next)
13701 if (l->function_name
13702 && strcmp (e->function_name, l->function_name) == 0)
13703 {
13704 l->enabled = 0;
13705 break;
13706 }
13707 }
13708 }
13709 }
13710 }
13711
13712 if (!locations_are_equal (existing_locations, b->loc))
13713 gdb::observers::breakpoint_modified.notify (b);
13714 }
13715
13716 /* Find the SaL locations corresponding to the given LOCATION.
13717 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13718
13719 static std::vector<symtab_and_line>
13720 location_to_sals (struct breakpoint *b, struct event_location *location,
13721 struct program_space *search_pspace, int *found)
13722 {
13723 struct gdb_exception exception = exception_none;
13724
13725 gdb_assert (b->ops != NULL);
13726
13727 std::vector<symtab_and_line> sals;
13728
13729 TRY
13730 {
13731 sals = b->ops->decode_location (b, location, search_pspace);
13732 }
13733 CATCH (e, RETURN_MASK_ERROR)
13734 {
13735 int not_found_and_ok = 0;
13736
13737 exception = e;
13738
13739 /* For pending breakpoints, it's expected that parsing will
13740 fail until the right shared library is loaded. User has
13741 already told to create pending breakpoints and don't need
13742 extra messages. If breakpoint is in bp_shlib_disabled
13743 state, then user already saw the message about that
13744 breakpoint being disabled, and don't want to see more
13745 errors. */
13746 if (e.error == NOT_FOUND_ERROR
13747 && (b->condition_not_parsed
13748 || (b->loc != NULL
13749 && search_pspace != NULL
13750 && b->loc->pspace != search_pspace)
13751 || (b->loc && b->loc->shlib_disabled)
13752 || (b->loc && b->loc->pspace->executing_startup)
13753 || b->enable_state == bp_disabled))
13754 not_found_and_ok = 1;
13755
13756 if (!not_found_and_ok)
13757 {
13758 /* We surely don't want to warn about the same breakpoint
13759 10 times. One solution, implemented here, is disable
13760 the breakpoint on error. Another solution would be to
13761 have separate 'warning emitted' flag. Since this
13762 happens only when a binary has changed, I don't know
13763 which approach is better. */
13764 b->enable_state = bp_disabled;
13765 throw_exception (e);
13766 }
13767 }
13768 END_CATCH
13769
13770 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13771 {
13772 for (auto &sal : sals)
13773 resolve_sal_pc (&sal);
13774 if (b->condition_not_parsed && b->extra_string != NULL)
13775 {
13776 char *cond_string, *extra_string;
13777 int thread, task;
13778
13779 find_condition_and_thread (b->extra_string, sals[0].pc,
13780 &cond_string, &thread, &task,
13781 &extra_string);
13782 gdb_assert (b->cond_string == NULL);
13783 if (cond_string)
13784 b->cond_string = cond_string;
13785 b->thread = thread;
13786 b->task = task;
13787 if (extra_string)
13788 {
13789 xfree (b->extra_string);
13790 b->extra_string = extra_string;
13791 }
13792 b->condition_not_parsed = 0;
13793 }
13794
13795 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13796 sals[0] = update_static_tracepoint (b, sals[0]);
13797
13798 *found = 1;
13799 }
13800 else
13801 *found = 0;
13802
13803 return sals;
13804 }
13805
13806 /* The default re_set method, for typical hardware or software
13807 breakpoints. Reevaluate the breakpoint and recreate its
13808 locations. */
13809
13810 static void
13811 breakpoint_re_set_default (struct breakpoint *b)
13812 {
13813 struct program_space *filter_pspace = current_program_space;
13814 std::vector<symtab_and_line> expanded, expanded_end;
13815
13816 int found;
13817 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13818 filter_pspace, &found);
13819 if (found)
13820 expanded = std::move (sals);
13821
13822 if (b->location_range_end != NULL)
13823 {
13824 std::vector<symtab_and_line> sals_end
13825 = location_to_sals (b, b->location_range_end.get (),
13826 filter_pspace, &found);
13827 if (found)
13828 expanded_end = std::move (sals_end);
13829 }
13830
13831 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13832 }
13833
13834 /* Default method for creating SALs from an address string. It basically
13835 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13836
13837 static void
13838 create_sals_from_location_default (const struct event_location *location,
13839 struct linespec_result *canonical,
13840 enum bptype type_wanted)
13841 {
13842 parse_breakpoint_sals (location, canonical);
13843 }
13844
13845 /* Call create_breakpoints_sal for the given arguments. This is the default
13846 function for the `create_breakpoints_sal' method of
13847 breakpoint_ops. */
13848
13849 static void
13850 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13851 struct linespec_result *canonical,
13852 gdb::unique_xmalloc_ptr<char> cond_string,
13853 gdb::unique_xmalloc_ptr<char> extra_string,
13854 enum bptype type_wanted,
13855 enum bpdisp disposition,
13856 int thread,
13857 int task, int ignore_count,
13858 const struct breakpoint_ops *ops,
13859 int from_tty, int enabled,
13860 int internal, unsigned flags)
13861 {
13862 create_breakpoints_sal (gdbarch, canonical,
13863 std::move (cond_string),
13864 std::move (extra_string),
13865 type_wanted, disposition,
13866 thread, task, ignore_count, ops, from_tty,
13867 enabled, internal, flags);
13868 }
13869
13870 /* Decode the line represented by S by calling decode_line_full. This is the
13871 default function for the `decode_location' method of breakpoint_ops. */
13872
13873 static std::vector<symtab_and_line>
13874 decode_location_default (struct breakpoint *b,
13875 const struct event_location *location,
13876 struct program_space *search_pspace)
13877 {
13878 struct linespec_result canonical;
13879
13880 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13881 (struct symtab *) NULL, 0,
13882 &canonical, multiple_symbols_all,
13883 b->filter);
13884
13885 /* We should get 0 or 1 resulting SALs. */
13886 gdb_assert (canonical.lsals.size () < 2);
13887
13888 if (!canonical.lsals.empty ())
13889 {
13890 const linespec_sals &lsal = canonical.lsals[0];
13891 return std::move (lsal.sals);
13892 }
13893 return {};
13894 }
13895
13896 /* Reset a breakpoint. */
13897
13898 static void
13899 breakpoint_re_set_one (breakpoint *b)
13900 {
13901 input_radix = b->input_radix;
13902 set_language (b->language);
13903
13904 b->ops->re_set (b);
13905 }
13906
13907 /* Re-set breakpoint locations for the current program space.
13908 Locations bound to other program spaces are left untouched. */
13909
13910 void
13911 breakpoint_re_set (void)
13912 {
13913 struct breakpoint *b, *b_tmp;
13914
13915 {
13916 scoped_restore_current_language save_language;
13917 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13918 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13919
13920 /* Note: we must not try to insert locations until after all
13921 breakpoints have been re-set. Otherwise, e.g., when re-setting
13922 breakpoint 1, we'd insert the locations of breakpoint 2, which
13923 hadn't been re-set yet, and thus may have stale locations. */
13924
13925 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13926 {
13927 TRY
13928 {
13929 breakpoint_re_set_one (b);
13930 }
13931 CATCH (ex, RETURN_MASK_ALL)
13932 {
13933 exception_fprintf (gdb_stderr, ex,
13934 "Error in re-setting breakpoint %d: ",
13935 b->number);
13936 }
13937 END_CATCH
13938 }
13939
13940 jit_breakpoint_re_set ();
13941 }
13942
13943 create_overlay_event_breakpoint ();
13944 create_longjmp_master_breakpoint ();
13945 create_std_terminate_master_breakpoint ();
13946 create_exception_master_breakpoint ();
13947
13948 /* Now we can insert. */
13949 update_global_location_list (UGLL_MAY_INSERT);
13950 }
13951 \f
13952 /* Reset the thread number of this breakpoint:
13953
13954 - If the breakpoint is for all threads, leave it as-is.
13955 - Else, reset it to the current thread for inferior_ptid. */
13956 void
13957 breakpoint_re_set_thread (struct breakpoint *b)
13958 {
13959 if (b->thread != -1)
13960 {
13961 if (in_thread_list (inferior_ptid))
13962 b->thread = ptid_to_global_thread_id (inferior_ptid);
13963
13964 /* We're being called after following a fork. The new fork is
13965 selected as current, and unless this was a vfork will have a
13966 different program space from the original thread. Reset that
13967 as well. */
13968 b->loc->pspace = current_program_space;
13969 }
13970 }
13971
13972 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13973 If from_tty is nonzero, it prints a message to that effect,
13974 which ends with a period (no newline). */
13975
13976 void
13977 set_ignore_count (int bptnum, int count, int from_tty)
13978 {
13979 struct breakpoint *b;
13980
13981 if (count < 0)
13982 count = 0;
13983
13984 ALL_BREAKPOINTS (b)
13985 if (b->number == bptnum)
13986 {
13987 if (is_tracepoint (b))
13988 {
13989 if (from_tty && count != 0)
13990 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13991 bptnum);
13992 return;
13993 }
13994
13995 b->ignore_count = count;
13996 if (from_tty)
13997 {
13998 if (count == 0)
13999 printf_filtered (_("Will stop next time "
14000 "breakpoint %d is reached."),
14001 bptnum);
14002 else if (count == 1)
14003 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14004 bptnum);
14005 else
14006 printf_filtered (_("Will ignore next %d "
14007 "crossings of breakpoint %d."),
14008 count, bptnum);
14009 }
14010 gdb::observers::breakpoint_modified.notify (b);
14011 return;
14012 }
14013
14014 error (_("No breakpoint number %d."), bptnum);
14015 }
14016
14017 /* Command to set ignore-count of breakpoint N to COUNT. */
14018
14019 static void
14020 ignore_command (const char *args, int from_tty)
14021 {
14022 const char *p = args;
14023 int num;
14024
14025 if (p == 0)
14026 error_no_arg (_("a breakpoint number"));
14027
14028 num = get_number (&p);
14029 if (num == 0)
14030 error (_("bad breakpoint number: '%s'"), args);
14031 if (*p == 0)
14032 error (_("Second argument (specified ignore-count) is missing."));
14033
14034 set_ignore_count (num,
14035 longest_to_int (value_as_long (parse_and_eval (p))),
14036 from_tty);
14037 if (from_tty)
14038 printf_filtered ("\n");
14039 }
14040 \f
14041
14042 /* Call FUNCTION on each of the breakpoints with numbers in the range
14043 defined by BP_NUM_RANGE (an inclusive range). */
14044
14045 static void
14046 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14047 gdb::function_view<void (breakpoint *)> function)
14048 {
14049 if (bp_num_range.first == 0)
14050 {
14051 warning (_("bad breakpoint number at or near '%d'"),
14052 bp_num_range.first);
14053 }
14054 else
14055 {
14056 struct breakpoint *b, *tmp;
14057
14058 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14059 {
14060 bool match = false;
14061
14062 ALL_BREAKPOINTS_SAFE (b, tmp)
14063 if (b->number == i)
14064 {
14065 match = true;
14066 function (b);
14067 break;
14068 }
14069 if (!match)
14070 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14071 }
14072 }
14073 }
14074
14075 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14076 ARGS. */
14077
14078 static void
14079 map_breakpoint_numbers (const char *args,
14080 gdb::function_view<void (breakpoint *)> function)
14081 {
14082 if (args == NULL || *args == '\0')
14083 error_no_arg (_("one or more breakpoint numbers"));
14084
14085 number_or_range_parser parser (args);
14086
14087 while (!parser.finished ())
14088 {
14089 int num = parser.get_number ();
14090 map_breakpoint_number_range (std::make_pair (num, num), function);
14091 }
14092 }
14093
14094 /* Return the breakpoint location structure corresponding to the
14095 BP_NUM and LOC_NUM values. */
14096
14097 static struct bp_location *
14098 find_location_by_number (int bp_num, int loc_num)
14099 {
14100 struct breakpoint *b;
14101
14102 ALL_BREAKPOINTS (b)
14103 if (b->number == bp_num)
14104 {
14105 break;
14106 }
14107
14108 if (!b || b->number != bp_num)
14109 error (_("Bad breakpoint number '%d'"), bp_num);
14110
14111 if (loc_num == 0)
14112 error (_("Bad breakpoint location number '%d'"), loc_num);
14113
14114 int n = 0;
14115 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14116 if (++n == loc_num)
14117 return loc;
14118
14119 error (_("Bad breakpoint location number '%d'"), loc_num);
14120 }
14121
14122 /* Modes of operation for extract_bp_num. */
14123 enum class extract_bp_kind
14124 {
14125 /* Extracting a breakpoint number. */
14126 bp,
14127
14128 /* Extracting a location number. */
14129 loc,
14130 };
14131
14132 /* Extract a breakpoint or location number (as determined by KIND)
14133 from the string starting at START. TRAILER is a character which
14134 can be found after the number. If you don't want a trailer, use
14135 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14136 string. This always returns a positive integer. */
14137
14138 static int
14139 extract_bp_num (extract_bp_kind kind, const char *start,
14140 int trailer, const char **end_out = NULL)
14141 {
14142 const char *end = start;
14143 int num = get_number_trailer (&end, trailer);
14144 if (num < 0)
14145 error (kind == extract_bp_kind::bp
14146 ? _("Negative breakpoint number '%.*s'")
14147 : _("Negative breakpoint location number '%.*s'"),
14148 int (end - start), start);
14149 if (num == 0)
14150 error (kind == extract_bp_kind::bp
14151 ? _("Bad breakpoint number '%.*s'")
14152 : _("Bad breakpoint location number '%.*s'"),
14153 int (end - start), start);
14154
14155 if (end_out != NULL)
14156 *end_out = end;
14157 return num;
14158 }
14159
14160 /* Extract a breakpoint or location range (as determined by KIND) in
14161 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14162 representing the (inclusive) range. The returned pair's elements
14163 are always positive integers. */
14164
14165 static std::pair<int, int>
14166 extract_bp_or_bp_range (extract_bp_kind kind,
14167 const std::string &arg,
14168 std::string::size_type arg_offset)
14169 {
14170 std::pair<int, int> range;
14171 const char *bp_loc = &arg[arg_offset];
14172 std::string::size_type dash = arg.find ('-', arg_offset);
14173 if (dash != std::string::npos)
14174 {
14175 /* bp_loc is a range (x-z). */
14176 if (arg.length () == dash + 1)
14177 error (kind == extract_bp_kind::bp
14178 ? _("Bad breakpoint number at or near: '%s'")
14179 : _("Bad breakpoint location number at or near: '%s'"),
14180 bp_loc);
14181
14182 const char *end;
14183 const char *start_first = bp_loc;
14184 const char *start_second = &arg[dash + 1];
14185 range.first = extract_bp_num (kind, start_first, '-');
14186 range.second = extract_bp_num (kind, start_second, '\0', &end);
14187
14188 if (range.first > range.second)
14189 error (kind == extract_bp_kind::bp
14190 ? _("Inverted breakpoint range at '%.*s'")
14191 : _("Inverted breakpoint location range at '%.*s'"),
14192 int (end - start_first), start_first);
14193 }
14194 else
14195 {
14196 /* bp_loc is a single value. */
14197 range.first = extract_bp_num (kind, bp_loc, '\0');
14198 range.second = range.first;
14199 }
14200 return range;
14201 }
14202
14203 /* Extract the breakpoint/location range specified by ARG. Returns
14204 the breakpoint range in BP_NUM_RANGE, and the location range in
14205 BP_LOC_RANGE.
14206
14207 ARG may be in any of the following forms:
14208
14209 x where 'x' is a breakpoint number.
14210 x-y where 'x' and 'y' specify a breakpoint numbers range.
14211 x.y where 'x' is a breakpoint number and 'y' a location number.
14212 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14213 location number range.
14214 */
14215
14216 static void
14217 extract_bp_number_and_location (const std::string &arg,
14218 std::pair<int, int> &bp_num_range,
14219 std::pair<int, int> &bp_loc_range)
14220 {
14221 std::string::size_type dot = arg.find ('.');
14222
14223 if (dot != std::string::npos)
14224 {
14225 /* Handle 'x.y' and 'x.y-z' cases. */
14226
14227 if (arg.length () == dot + 1 || dot == 0)
14228 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14229
14230 bp_num_range.first
14231 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14232 bp_num_range.second = bp_num_range.first;
14233
14234 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14235 arg, dot + 1);
14236 }
14237 else
14238 {
14239 /* Handle x and x-y cases. */
14240
14241 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14242 bp_loc_range.first = 0;
14243 bp_loc_range.second = 0;
14244 }
14245 }
14246
14247 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14248 specifies whether to enable or disable. */
14249
14250 static void
14251 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14252 {
14253 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14254 if (loc != NULL)
14255 {
14256 if (loc->enabled != enable)
14257 {
14258 loc->enabled = enable;
14259 mark_breakpoint_location_modified (loc);
14260 }
14261 if (target_supports_enable_disable_tracepoint ()
14262 && current_trace_status ()->running && loc->owner
14263 && is_tracepoint (loc->owner))
14264 target_disable_tracepoint (loc);
14265 }
14266 update_global_location_list (UGLL_DONT_INSERT);
14267 }
14268
14269 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14270 number of the breakpoint, and BP_LOC_RANGE specifies the
14271 (inclusive) range of location numbers of that breakpoint to
14272 enable/disable. ENABLE specifies whether to enable or disable the
14273 location. */
14274
14275 static void
14276 enable_disable_breakpoint_location_range (int bp_num,
14277 std::pair<int, int> &bp_loc_range,
14278 bool enable)
14279 {
14280 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14281 enable_disable_bp_num_loc (bp_num, i, enable);
14282 }
14283
14284 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14285 If from_tty is nonzero, it prints a message to that effect,
14286 which ends with a period (no newline). */
14287
14288 void
14289 disable_breakpoint (struct breakpoint *bpt)
14290 {
14291 /* Never disable a watchpoint scope breakpoint; we want to
14292 hit them when we leave scope so we can delete both the
14293 watchpoint and its scope breakpoint at that time. */
14294 if (bpt->type == bp_watchpoint_scope)
14295 return;
14296
14297 bpt->enable_state = bp_disabled;
14298
14299 /* Mark breakpoint locations modified. */
14300 mark_breakpoint_modified (bpt);
14301
14302 if (target_supports_enable_disable_tracepoint ()
14303 && current_trace_status ()->running && is_tracepoint (bpt))
14304 {
14305 struct bp_location *location;
14306
14307 for (location = bpt->loc; location; location = location->next)
14308 target_disable_tracepoint (location);
14309 }
14310
14311 update_global_location_list (UGLL_DONT_INSERT);
14312
14313 gdb::observers::breakpoint_modified.notify (bpt);
14314 }
14315
14316 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14317 specified in ARGS. ARGS may be in any of the formats handled by
14318 extract_bp_number_and_location. ENABLE specifies whether to enable
14319 or disable the breakpoints/locations. */
14320
14321 static void
14322 enable_disable_command (const char *args, int from_tty, bool enable)
14323 {
14324 if (args == 0)
14325 {
14326 struct breakpoint *bpt;
14327
14328 ALL_BREAKPOINTS (bpt)
14329 if (user_breakpoint_p (bpt))
14330 {
14331 if (enable)
14332 enable_breakpoint (bpt);
14333 else
14334 disable_breakpoint (bpt);
14335 }
14336 }
14337 else
14338 {
14339 std::string num = extract_arg (&args);
14340
14341 while (!num.empty ())
14342 {
14343 std::pair<int, int> bp_num_range, bp_loc_range;
14344
14345 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14346
14347 if (bp_loc_range.first == bp_loc_range.second
14348 && bp_loc_range.first == 0)
14349 {
14350 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14351 map_breakpoint_number_range (bp_num_range,
14352 enable
14353 ? enable_breakpoint
14354 : disable_breakpoint);
14355 }
14356 else
14357 {
14358 /* Handle breakpoint ids with formats 'x.y' or
14359 'x.y-z'. */
14360 enable_disable_breakpoint_location_range
14361 (bp_num_range.first, bp_loc_range, enable);
14362 }
14363 num = extract_arg (&args);
14364 }
14365 }
14366 }
14367
14368 /* The disable command disables the specified breakpoints/locations
14369 (or all defined breakpoints) so they're no longer effective in
14370 stopping the inferior. ARGS may be in any of the forms defined in
14371 extract_bp_number_and_location. */
14372
14373 static void
14374 disable_command (const char *args, int from_tty)
14375 {
14376 enable_disable_command (args, from_tty, false);
14377 }
14378
14379 static void
14380 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14381 int count)
14382 {
14383 int target_resources_ok;
14384
14385 if (bpt->type == bp_hardware_breakpoint)
14386 {
14387 int i;
14388 i = hw_breakpoint_used_count ();
14389 target_resources_ok =
14390 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14391 i + 1, 0);
14392 if (target_resources_ok == 0)
14393 error (_("No hardware breakpoint support in the target."));
14394 else if (target_resources_ok < 0)
14395 error (_("Hardware breakpoints used exceeds limit."));
14396 }
14397
14398 if (is_watchpoint (bpt))
14399 {
14400 /* Initialize it just to avoid a GCC false warning. */
14401 enum enable_state orig_enable_state = bp_disabled;
14402
14403 TRY
14404 {
14405 struct watchpoint *w = (struct watchpoint *) bpt;
14406
14407 orig_enable_state = bpt->enable_state;
14408 bpt->enable_state = bp_enabled;
14409 update_watchpoint (w, 1 /* reparse */);
14410 }
14411 CATCH (e, RETURN_MASK_ALL)
14412 {
14413 bpt->enable_state = orig_enable_state;
14414 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14415 bpt->number);
14416 return;
14417 }
14418 END_CATCH
14419 }
14420
14421 bpt->enable_state = bp_enabled;
14422
14423 /* Mark breakpoint locations modified. */
14424 mark_breakpoint_modified (bpt);
14425
14426 if (target_supports_enable_disable_tracepoint ()
14427 && current_trace_status ()->running && is_tracepoint (bpt))
14428 {
14429 struct bp_location *location;
14430
14431 for (location = bpt->loc; location; location = location->next)
14432 target_enable_tracepoint (location);
14433 }
14434
14435 bpt->disposition = disposition;
14436 bpt->enable_count = count;
14437 update_global_location_list (UGLL_MAY_INSERT);
14438
14439 gdb::observers::breakpoint_modified.notify (bpt);
14440 }
14441
14442
14443 void
14444 enable_breakpoint (struct breakpoint *bpt)
14445 {
14446 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14447 }
14448
14449 /* The enable command enables the specified breakpoints/locations (or
14450 all defined breakpoints) so they once again become (or continue to
14451 be) effective in stopping the inferior. ARGS may be in any of the
14452 forms defined in extract_bp_number_and_location. */
14453
14454 static void
14455 enable_command (const char *args, int from_tty)
14456 {
14457 enable_disable_command (args, from_tty, true);
14458 }
14459
14460 static void
14461 enable_once_command (const char *args, int from_tty)
14462 {
14463 map_breakpoint_numbers
14464 (args, [&] (breakpoint *b)
14465 {
14466 iterate_over_related_breakpoints
14467 (b, [&] (breakpoint *bpt)
14468 {
14469 enable_breakpoint_disp (bpt, disp_disable, 1);
14470 });
14471 });
14472 }
14473
14474 static void
14475 enable_count_command (const char *args, int from_tty)
14476 {
14477 int count;
14478
14479 if (args == NULL)
14480 error_no_arg (_("hit count"));
14481
14482 count = get_number (&args);
14483
14484 map_breakpoint_numbers
14485 (args, [&] (breakpoint *b)
14486 {
14487 iterate_over_related_breakpoints
14488 (b, [&] (breakpoint *bpt)
14489 {
14490 enable_breakpoint_disp (bpt, disp_disable, count);
14491 });
14492 });
14493 }
14494
14495 static void
14496 enable_delete_command (const char *args, int from_tty)
14497 {
14498 map_breakpoint_numbers
14499 (args, [&] (breakpoint *b)
14500 {
14501 iterate_over_related_breakpoints
14502 (b, [&] (breakpoint *bpt)
14503 {
14504 enable_breakpoint_disp (bpt, disp_del, 1);
14505 });
14506 });
14507 }
14508 \f
14509 static void
14510 set_breakpoint_cmd (const char *args, int from_tty)
14511 {
14512 }
14513
14514 static void
14515 show_breakpoint_cmd (const char *args, int from_tty)
14516 {
14517 }
14518
14519 /* Invalidate last known value of any hardware watchpoint if
14520 the memory which that value represents has been written to by
14521 GDB itself. */
14522
14523 static void
14524 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14525 CORE_ADDR addr, ssize_t len,
14526 const bfd_byte *data)
14527 {
14528 struct breakpoint *bp;
14529
14530 ALL_BREAKPOINTS (bp)
14531 if (bp->enable_state == bp_enabled
14532 && bp->type == bp_hardware_watchpoint)
14533 {
14534 struct watchpoint *wp = (struct watchpoint *) bp;
14535
14536 if (wp->val_valid && wp->val)
14537 {
14538 struct bp_location *loc;
14539
14540 for (loc = bp->loc; loc != NULL; loc = loc->next)
14541 if (loc->loc_type == bp_loc_hardware_watchpoint
14542 && loc->address + loc->length > addr
14543 && addr + len > loc->address)
14544 {
14545 value_decref (wp->val);
14546 wp->val = NULL;
14547 wp->val_valid = 0;
14548 }
14549 }
14550 }
14551 }
14552
14553 /* Create and insert a breakpoint for software single step. */
14554
14555 void
14556 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14557 const address_space *aspace,
14558 CORE_ADDR next_pc)
14559 {
14560 struct thread_info *tp = inferior_thread ();
14561 struct symtab_and_line sal;
14562 CORE_ADDR pc = next_pc;
14563
14564 if (tp->control.single_step_breakpoints == NULL)
14565 {
14566 tp->control.single_step_breakpoints
14567 = new_single_step_breakpoint (tp->global_num, gdbarch);
14568 }
14569
14570 sal = find_pc_line (pc, 0);
14571 sal.pc = pc;
14572 sal.section = find_pc_overlay (pc);
14573 sal.explicit_pc = 1;
14574 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14575
14576 update_global_location_list (UGLL_INSERT);
14577 }
14578
14579 /* Insert single step breakpoints according to the current state. */
14580
14581 int
14582 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14583 {
14584 struct regcache *regcache = get_current_regcache ();
14585 std::vector<CORE_ADDR> next_pcs;
14586
14587 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14588
14589 if (!next_pcs.empty ())
14590 {
14591 struct frame_info *frame = get_current_frame ();
14592 const address_space *aspace = get_frame_address_space (frame);
14593
14594 for (CORE_ADDR pc : next_pcs)
14595 insert_single_step_breakpoint (gdbarch, aspace, pc);
14596
14597 return 1;
14598 }
14599 else
14600 return 0;
14601 }
14602
14603 /* See breakpoint.h. */
14604
14605 int
14606 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14607 const address_space *aspace,
14608 CORE_ADDR pc)
14609 {
14610 struct bp_location *loc;
14611
14612 for (loc = bp->loc; loc != NULL; loc = loc->next)
14613 if (loc->inserted
14614 && breakpoint_location_address_match (loc, aspace, pc))
14615 return 1;
14616
14617 return 0;
14618 }
14619
14620 /* Check whether a software single-step breakpoint is inserted at
14621 PC. */
14622
14623 int
14624 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14625 CORE_ADDR pc)
14626 {
14627 struct breakpoint *bpt;
14628
14629 ALL_BREAKPOINTS (bpt)
14630 {
14631 if (bpt->type == bp_single_step
14632 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14633 return 1;
14634 }
14635 return 0;
14636 }
14637
14638 /* Tracepoint-specific operations. */
14639
14640 /* Set tracepoint count to NUM. */
14641 static void
14642 set_tracepoint_count (int num)
14643 {
14644 tracepoint_count = num;
14645 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14646 }
14647
14648 static void
14649 trace_command (const char *arg, int from_tty)
14650 {
14651 struct breakpoint_ops *ops;
14652
14653 event_location_up location = string_to_event_location (&arg,
14654 current_language);
14655 if (location != NULL
14656 && event_location_type (location.get ()) == PROBE_LOCATION)
14657 ops = &tracepoint_probe_breakpoint_ops;
14658 else
14659 ops = &tracepoint_breakpoint_ops;
14660
14661 create_breakpoint (get_current_arch (),
14662 location.get (),
14663 NULL, 0, arg, 1 /* parse arg */,
14664 0 /* tempflag */,
14665 bp_tracepoint /* type_wanted */,
14666 0 /* Ignore count */,
14667 pending_break_support,
14668 ops,
14669 from_tty,
14670 1 /* enabled */,
14671 0 /* internal */, 0);
14672 }
14673
14674 static void
14675 ftrace_command (const char *arg, int from_tty)
14676 {
14677 event_location_up location = string_to_event_location (&arg,
14678 current_language);
14679 create_breakpoint (get_current_arch (),
14680 location.get (),
14681 NULL, 0, arg, 1 /* parse arg */,
14682 0 /* tempflag */,
14683 bp_fast_tracepoint /* type_wanted */,
14684 0 /* Ignore count */,
14685 pending_break_support,
14686 &tracepoint_breakpoint_ops,
14687 from_tty,
14688 1 /* enabled */,
14689 0 /* internal */, 0);
14690 }
14691
14692 /* strace command implementation. Creates a static tracepoint. */
14693
14694 static void
14695 strace_command (const char *arg, int from_tty)
14696 {
14697 struct breakpoint_ops *ops;
14698 event_location_up location;
14699
14700 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14701 or with a normal static tracepoint. */
14702 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14703 {
14704 ops = &strace_marker_breakpoint_ops;
14705 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14706 }
14707 else
14708 {
14709 ops = &tracepoint_breakpoint_ops;
14710 location = string_to_event_location (&arg, current_language);
14711 }
14712
14713 create_breakpoint (get_current_arch (),
14714 location.get (),
14715 NULL, 0, arg, 1 /* parse arg */,
14716 0 /* tempflag */,
14717 bp_static_tracepoint /* type_wanted */,
14718 0 /* Ignore count */,
14719 pending_break_support,
14720 ops,
14721 from_tty,
14722 1 /* enabled */,
14723 0 /* internal */, 0);
14724 }
14725
14726 /* Set up a fake reader function that gets command lines from a linked
14727 list that was acquired during tracepoint uploading. */
14728
14729 static struct uploaded_tp *this_utp;
14730 static int next_cmd;
14731
14732 static char *
14733 read_uploaded_action (void)
14734 {
14735 char *rslt = nullptr;
14736
14737 if (next_cmd < this_utp->cmd_strings.size ())
14738 {
14739 rslt = this_utp->cmd_strings[next_cmd];
14740 next_cmd++;
14741 }
14742
14743 return rslt;
14744 }
14745
14746 /* Given information about a tracepoint as recorded on a target (which
14747 can be either a live system or a trace file), attempt to create an
14748 equivalent GDB tracepoint. This is not a reliable process, since
14749 the target does not necessarily have all the information used when
14750 the tracepoint was originally defined. */
14751
14752 struct tracepoint *
14753 create_tracepoint_from_upload (struct uploaded_tp *utp)
14754 {
14755 const char *addr_str;
14756 char small_buf[100];
14757 struct tracepoint *tp;
14758
14759 if (utp->at_string)
14760 addr_str = utp->at_string;
14761 else
14762 {
14763 /* In the absence of a source location, fall back to raw
14764 address. Since there is no way to confirm that the address
14765 means the same thing as when the trace was started, warn the
14766 user. */
14767 warning (_("Uploaded tracepoint %d has no "
14768 "source location, using raw address"),
14769 utp->number);
14770 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14771 addr_str = small_buf;
14772 }
14773
14774 /* There's not much we can do with a sequence of bytecodes. */
14775 if (utp->cond && !utp->cond_string)
14776 warning (_("Uploaded tracepoint %d condition "
14777 "has no source form, ignoring it"),
14778 utp->number);
14779
14780 event_location_up location = string_to_event_location (&addr_str,
14781 current_language);
14782 if (!create_breakpoint (get_current_arch (),
14783 location.get (),
14784 utp->cond_string, -1, addr_str,
14785 0 /* parse cond/thread */,
14786 0 /* tempflag */,
14787 utp->type /* type_wanted */,
14788 0 /* Ignore count */,
14789 pending_break_support,
14790 &tracepoint_breakpoint_ops,
14791 0 /* from_tty */,
14792 utp->enabled /* enabled */,
14793 0 /* internal */,
14794 CREATE_BREAKPOINT_FLAGS_INSERTED))
14795 return NULL;
14796
14797 /* Get the tracepoint we just created. */
14798 tp = get_tracepoint (tracepoint_count);
14799 gdb_assert (tp != NULL);
14800
14801 if (utp->pass > 0)
14802 {
14803 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14804 tp->number);
14805
14806 trace_pass_command (small_buf, 0);
14807 }
14808
14809 /* If we have uploaded versions of the original commands, set up a
14810 special-purpose "reader" function and call the usual command line
14811 reader, then pass the result to the breakpoint command-setting
14812 function. */
14813 if (!utp->cmd_strings.empty ())
14814 {
14815 command_line_up cmd_list;
14816
14817 this_utp = utp;
14818 next_cmd = 0;
14819
14820 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14821
14822 breakpoint_set_commands (tp, std::move (cmd_list));
14823 }
14824 else if (!utp->actions.empty ()
14825 || !utp->step_actions.empty ())
14826 warning (_("Uploaded tracepoint %d actions "
14827 "have no source form, ignoring them"),
14828 utp->number);
14829
14830 /* Copy any status information that might be available. */
14831 tp->hit_count = utp->hit_count;
14832 tp->traceframe_usage = utp->traceframe_usage;
14833
14834 return tp;
14835 }
14836
14837 /* Print information on tracepoint number TPNUM_EXP, or all if
14838 omitted. */
14839
14840 static void
14841 info_tracepoints_command (const char *args, int from_tty)
14842 {
14843 struct ui_out *uiout = current_uiout;
14844 int num_printed;
14845
14846 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14847
14848 if (num_printed == 0)
14849 {
14850 if (args == NULL || *args == '\0')
14851 uiout->message ("No tracepoints.\n");
14852 else
14853 uiout->message ("No tracepoint matching '%s'.\n", args);
14854 }
14855
14856 default_collect_info ();
14857 }
14858
14859 /* The 'enable trace' command enables tracepoints.
14860 Not supported by all targets. */
14861 static void
14862 enable_trace_command (const char *args, int from_tty)
14863 {
14864 enable_command (args, from_tty);
14865 }
14866
14867 /* The 'disable trace' command disables tracepoints.
14868 Not supported by all targets. */
14869 static void
14870 disable_trace_command (const char *args, int from_tty)
14871 {
14872 disable_command (args, from_tty);
14873 }
14874
14875 /* Remove a tracepoint (or all if no argument). */
14876 static void
14877 delete_trace_command (const char *arg, int from_tty)
14878 {
14879 struct breakpoint *b, *b_tmp;
14880
14881 dont_repeat ();
14882
14883 if (arg == 0)
14884 {
14885 int breaks_to_delete = 0;
14886
14887 /* Delete all breakpoints if no argument.
14888 Do not delete internal or call-dummy breakpoints, these
14889 have to be deleted with an explicit breakpoint number
14890 argument. */
14891 ALL_TRACEPOINTS (b)
14892 if (is_tracepoint (b) && user_breakpoint_p (b))
14893 {
14894 breaks_to_delete = 1;
14895 break;
14896 }
14897
14898 /* Ask user only if there are some breakpoints to delete. */
14899 if (!from_tty
14900 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14901 {
14902 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14903 if (is_tracepoint (b) && user_breakpoint_p (b))
14904 delete_breakpoint (b);
14905 }
14906 }
14907 else
14908 map_breakpoint_numbers
14909 (arg, [&] (breakpoint *b)
14910 {
14911 iterate_over_related_breakpoints (b, delete_breakpoint);
14912 });
14913 }
14914
14915 /* Helper function for trace_pass_command. */
14916
14917 static void
14918 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14919 {
14920 tp->pass_count = count;
14921 gdb::observers::breakpoint_modified.notify (tp);
14922 if (from_tty)
14923 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14924 tp->number, count);
14925 }
14926
14927 /* Set passcount for tracepoint.
14928
14929 First command argument is passcount, second is tracepoint number.
14930 If tracepoint number omitted, apply to most recently defined.
14931 Also accepts special argument "all". */
14932
14933 static void
14934 trace_pass_command (const char *args, int from_tty)
14935 {
14936 struct tracepoint *t1;
14937 ULONGEST count;
14938
14939 if (args == 0 || *args == 0)
14940 error (_("passcount command requires an "
14941 "argument (count + optional TP num)"));
14942
14943 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14944
14945 args = skip_spaces (args);
14946 if (*args && strncasecmp (args, "all", 3) == 0)
14947 {
14948 struct breakpoint *b;
14949
14950 args += 3; /* Skip special argument "all". */
14951 if (*args)
14952 error (_("Junk at end of arguments."));
14953
14954 ALL_TRACEPOINTS (b)
14955 {
14956 t1 = (struct tracepoint *) b;
14957 trace_pass_set_count (t1, count, from_tty);
14958 }
14959 }
14960 else if (*args == '\0')
14961 {
14962 t1 = get_tracepoint_by_number (&args, NULL);
14963 if (t1)
14964 trace_pass_set_count (t1, count, from_tty);
14965 }
14966 else
14967 {
14968 number_or_range_parser parser (args);
14969 while (!parser.finished ())
14970 {
14971 t1 = get_tracepoint_by_number (&args, &parser);
14972 if (t1)
14973 trace_pass_set_count (t1, count, from_tty);
14974 }
14975 }
14976 }
14977
14978 struct tracepoint *
14979 get_tracepoint (int num)
14980 {
14981 struct breakpoint *t;
14982
14983 ALL_TRACEPOINTS (t)
14984 if (t->number == num)
14985 return (struct tracepoint *) t;
14986
14987 return NULL;
14988 }
14989
14990 /* Find the tracepoint with the given target-side number (which may be
14991 different from the tracepoint number after disconnecting and
14992 reconnecting). */
14993
14994 struct tracepoint *
14995 get_tracepoint_by_number_on_target (int num)
14996 {
14997 struct breakpoint *b;
14998
14999 ALL_TRACEPOINTS (b)
15000 {
15001 struct tracepoint *t = (struct tracepoint *) b;
15002
15003 if (t->number_on_target == num)
15004 return t;
15005 }
15006
15007 return NULL;
15008 }
15009
15010 /* Utility: parse a tracepoint number and look it up in the list.
15011 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15012 If the argument is missing, the most recent tracepoint
15013 (tracepoint_count) is returned. */
15014
15015 struct tracepoint *
15016 get_tracepoint_by_number (const char **arg,
15017 number_or_range_parser *parser)
15018 {
15019 struct breakpoint *t;
15020 int tpnum;
15021 const char *instring = arg == NULL ? NULL : *arg;
15022
15023 if (parser != NULL)
15024 {
15025 gdb_assert (!parser->finished ());
15026 tpnum = parser->get_number ();
15027 }
15028 else if (arg == NULL || *arg == NULL || ! **arg)
15029 tpnum = tracepoint_count;
15030 else
15031 tpnum = get_number (arg);
15032
15033 if (tpnum <= 0)
15034 {
15035 if (instring && *instring)
15036 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15037 instring);
15038 else
15039 printf_filtered (_("No previous tracepoint\n"));
15040 return NULL;
15041 }
15042
15043 ALL_TRACEPOINTS (t)
15044 if (t->number == tpnum)
15045 {
15046 return (struct tracepoint *) t;
15047 }
15048
15049 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15050 return NULL;
15051 }
15052
15053 void
15054 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15055 {
15056 if (b->thread != -1)
15057 fprintf_unfiltered (fp, " thread %d", b->thread);
15058
15059 if (b->task != 0)
15060 fprintf_unfiltered (fp, " task %d", b->task);
15061
15062 fprintf_unfiltered (fp, "\n");
15063 }
15064
15065 /* Save information on user settable breakpoints (watchpoints, etc) to
15066 a new script file named FILENAME. If FILTER is non-NULL, call it
15067 on each breakpoint and only include the ones for which it returns
15068 non-zero. */
15069
15070 static void
15071 save_breakpoints (const char *filename, int from_tty,
15072 int (*filter) (const struct breakpoint *))
15073 {
15074 struct breakpoint *tp;
15075 int any = 0;
15076 int extra_trace_bits = 0;
15077
15078 if (filename == 0 || *filename == 0)
15079 error (_("Argument required (file name in which to save)"));
15080
15081 /* See if we have anything to save. */
15082 ALL_BREAKPOINTS (tp)
15083 {
15084 /* Skip internal and momentary breakpoints. */
15085 if (!user_breakpoint_p (tp))
15086 continue;
15087
15088 /* If we have a filter, only save the breakpoints it accepts. */
15089 if (filter && !filter (tp))
15090 continue;
15091
15092 any = 1;
15093
15094 if (is_tracepoint (tp))
15095 {
15096 extra_trace_bits = 1;
15097
15098 /* We can stop searching. */
15099 break;
15100 }
15101 }
15102
15103 if (!any)
15104 {
15105 warning (_("Nothing to save."));
15106 return;
15107 }
15108
15109 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15110
15111 stdio_file fp;
15112
15113 if (!fp.open (expanded_filename.get (), "w"))
15114 error (_("Unable to open file '%s' for saving (%s)"),
15115 expanded_filename.get (), safe_strerror (errno));
15116
15117 if (extra_trace_bits)
15118 save_trace_state_variables (&fp);
15119
15120 ALL_BREAKPOINTS (tp)
15121 {
15122 /* Skip internal and momentary breakpoints. */
15123 if (!user_breakpoint_p (tp))
15124 continue;
15125
15126 /* If we have a filter, only save the breakpoints it accepts. */
15127 if (filter && !filter (tp))
15128 continue;
15129
15130 tp->ops->print_recreate (tp, &fp);
15131
15132 /* Note, we can't rely on tp->number for anything, as we can't
15133 assume the recreated breakpoint numbers will match. Use $bpnum
15134 instead. */
15135
15136 if (tp->cond_string)
15137 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15138
15139 if (tp->ignore_count)
15140 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15141
15142 if (tp->type != bp_dprintf && tp->commands)
15143 {
15144 fp.puts (" commands\n");
15145
15146 current_uiout->redirect (&fp);
15147 TRY
15148 {
15149 print_command_lines (current_uiout, tp->commands.get (), 2);
15150 }
15151 CATCH (ex, RETURN_MASK_ALL)
15152 {
15153 current_uiout->redirect (NULL);
15154 throw_exception (ex);
15155 }
15156 END_CATCH
15157
15158 current_uiout->redirect (NULL);
15159 fp.puts (" end\n");
15160 }
15161
15162 if (tp->enable_state == bp_disabled)
15163 fp.puts ("disable $bpnum\n");
15164
15165 /* If this is a multi-location breakpoint, check if the locations
15166 should be individually disabled. Watchpoint locations are
15167 special, and not user visible. */
15168 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15169 {
15170 struct bp_location *loc;
15171 int n = 1;
15172
15173 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15174 if (!loc->enabled)
15175 fp.printf ("disable $bpnum.%d\n", n);
15176 }
15177 }
15178
15179 if (extra_trace_bits && *default_collect)
15180 fp.printf ("set default-collect %s\n", default_collect);
15181
15182 if (from_tty)
15183 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15184 }
15185
15186 /* The `save breakpoints' command. */
15187
15188 static void
15189 save_breakpoints_command (const char *args, int from_tty)
15190 {
15191 save_breakpoints (args, from_tty, NULL);
15192 }
15193
15194 /* The `save tracepoints' command. */
15195
15196 static void
15197 save_tracepoints_command (const char *args, int from_tty)
15198 {
15199 save_breakpoints (args, from_tty, is_tracepoint);
15200 }
15201
15202 /* Create a vector of all tracepoints. */
15203
15204 VEC(breakpoint_p) *
15205 all_tracepoints (void)
15206 {
15207 VEC(breakpoint_p) *tp_vec = 0;
15208 struct breakpoint *tp;
15209
15210 ALL_TRACEPOINTS (tp)
15211 {
15212 VEC_safe_push (breakpoint_p, tp_vec, tp);
15213 }
15214
15215 return tp_vec;
15216 }
15217
15218 \f
15219 /* This help string is used to consolidate all the help string for specifying
15220 locations used by several commands. */
15221
15222 #define LOCATION_HELP_STRING \
15223 "Linespecs are colon-separated lists of location parameters, such as\n\
15224 source filename, function name, label name, and line number.\n\
15225 Example: To specify the start of a label named \"the_top\" in the\n\
15226 function \"fact\" in the file \"factorial.c\", use\n\
15227 \"factorial.c:fact:the_top\".\n\
15228 \n\
15229 Address locations begin with \"*\" and specify an exact address in the\n\
15230 program. Example: To specify the fourth byte past the start function\n\
15231 \"main\", use \"*main + 4\".\n\
15232 \n\
15233 Explicit locations are similar to linespecs but use an option/argument\n\
15234 syntax to specify location parameters.\n\
15235 Example: To specify the start of the label named \"the_top\" in the\n\
15236 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15237 -function fact -label the_top\".\n\
15238 \n\
15239 By default, a specified function is matched against the program's\n\
15240 functions in all scopes. For C++, this means in all namespaces and\n\
15241 classes. For Ada, this means in all packages. E.g., in C++,\n\
15242 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15243 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15244 specified name as a complete fully-qualified name instead.\n"
15245
15246 /* This help string is used for the break, hbreak, tbreak and thbreak
15247 commands. It is defined as a macro to prevent duplication.
15248 COMMAND should be a string constant containing the name of the
15249 command. */
15250
15251 #define BREAK_ARGS_HELP(command) \
15252 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15253 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15254 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15255 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15256 `-probe-dtrace' (for a DTrace probe).\n\
15257 LOCATION may be a linespec, address, or explicit location as described\n\
15258 below.\n\
15259 \n\
15260 With no LOCATION, uses current execution address of the selected\n\
15261 stack frame. This is useful for breaking on return to a stack frame.\n\
15262 \n\
15263 THREADNUM is the number from \"info threads\".\n\
15264 CONDITION is a boolean expression.\n\
15265 \n" LOCATION_HELP_STRING "\n\
15266 Multiple breakpoints at one place are permitted, and useful if their\n\
15267 conditions are different.\n\
15268 \n\
15269 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15270
15271 /* List of subcommands for "catch". */
15272 static struct cmd_list_element *catch_cmdlist;
15273
15274 /* List of subcommands for "tcatch". */
15275 static struct cmd_list_element *tcatch_cmdlist;
15276
15277 void
15278 add_catch_command (const char *name, const char *docstring,
15279 cmd_const_sfunc_ftype *sfunc,
15280 completer_ftype *completer,
15281 void *user_data_catch,
15282 void *user_data_tcatch)
15283 {
15284 struct cmd_list_element *command;
15285
15286 command = add_cmd (name, class_breakpoint, docstring,
15287 &catch_cmdlist);
15288 set_cmd_sfunc (command, sfunc);
15289 set_cmd_context (command, user_data_catch);
15290 set_cmd_completer (command, completer);
15291
15292 command = add_cmd (name, class_breakpoint, docstring,
15293 &tcatch_cmdlist);
15294 set_cmd_sfunc (command, sfunc);
15295 set_cmd_context (command, user_data_tcatch);
15296 set_cmd_completer (command, completer);
15297 }
15298
15299 static void
15300 save_command (const char *arg, int from_tty)
15301 {
15302 printf_unfiltered (_("\"save\" must be followed by "
15303 "the name of a save subcommand.\n"));
15304 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15305 }
15306
15307 struct breakpoint *
15308 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15309 void *data)
15310 {
15311 struct breakpoint *b, *b_tmp;
15312
15313 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15314 {
15315 if ((*callback) (b, data))
15316 return b;
15317 }
15318
15319 return NULL;
15320 }
15321
15322 /* Zero if any of the breakpoint's locations could be a location where
15323 functions have been inlined, nonzero otherwise. */
15324
15325 static int
15326 is_non_inline_function (struct breakpoint *b)
15327 {
15328 /* The shared library event breakpoint is set on the address of a
15329 non-inline function. */
15330 if (b->type == bp_shlib_event)
15331 return 1;
15332
15333 return 0;
15334 }
15335
15336 /* Nonzero if the specified PC cannot be a location where functions
15337 have been inlined. */
15338
15339 int
15340 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15341 const struct target_waitstatus *ws)
15342 {
15343 struct breakpoint *b;
15344 struct bp_location *bl;
15345
15346 ALL_BREAKPOINTS (b)
15347 {
15348 if (!is_non_inline_function (b))
15349 continue;
15350
15351 for (bl = b->loc; bl != NULL; bl = bl->next)
15352 {
15353 if (!bl->shlib_disabled
15354 && bpstat_check_location (bl, aspace, pc, ws))
15355 return 1;
15356 }
15357 }
15358
15359 return 0;
15360 }
15361
15362 /* Remove any references to OBJFILE which is going to be freed. */
15363
15364 void
15365 breakpoint_free_objfile (struct objfile *objfile)
15366 {
15367 struct bp_location **locp, *loc;
15368
15369 ALL_BP_LOCATIONS (loc, locp)
15370 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15371 loc->symtab = NULL;
15372 }
15373
15374 void
15375 initialize_breakpoint_ops (void)
15376 {
15377 static int initialized = 0;
15378
15379 struct breakpoint_ops *ops;
15380
15381 if (initialized)
15382 return;
15383 initialized = 1;
15384
15385 /* The breakpoint_ops structure to be inherit by all kinds of
15386 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15387 internal and momentary breakpoints, etc.). */
15388 ops = &bkpt_base_breakpoint_ops;
15389 *ops = base_breakpoint_ops;
15390 ops->re_set = bkpt_re_set;
15391 ops->insert_location = bkpt_insert_location;
15392 ops->remove_location = bkpt_remove_location;
15393 ops->breakpoint_hit = bkpt_breakpoint_hit;
15394 ops->create_sals_from_location = bkpt_create_sals_from_location;
15395 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15396 ops->decode_location = bkpt_decode_location;
15397
15398 /* The breakpoint_ops structure to be used in regular breakpoints. */
15399 ops = &bkpt_breakpoint_ops;
15400 *ops = bkpt_base_breakpoint_ops;
15401 ops->re_set = bkpt_re_set;
15402 ops->resources_needed = bkpt_resources_needed;
15403 ops->print_it = bkpt_print_it;
15404 ops->print_mention = bkpt_print_mention;
15405 ops->print_recreate = bkpt_print_recreate;
15406
15407 /* Ranged breakpoints. */
15408 ops = &ranged_breakpoint_ops;
15409 *ops = bkpt_breakpoint_ops;
15410 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15411 ops->resources_needed = resources_needed_ranged_breakpoint;
15412 ops->print_it = print_it_ranged_breakpoint;
15413 ops->print_one = print_one_ranged_breakpoint;
15414 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15415 ops->print_mention = print_mention_ranged_breakpoint;
15416 ops->print_recreate = print_recreate_ranged_breakpoint;
15417
15418 /* Internal breakpoints. */
15419 ops = &internal_breakpoint_ops;
15420 *ops = bkpt_base_breakpoint_ops;
15421 ops->re_set = internal_bkpt_re_set;
15422 ops->check_status = internal_bkpt_check_status;
15423 ops->print_it = internal_bkpt_print_it;
15424 ops->print_mention = internal_bkpt_print_mention;
15425
15426 /* Momentary breakpoints. */
15427 ops = &momentary_breakpoint_ops;
15428 *ops = bkpt_base_breakpoint_ops;
15429 ops->re_set = momentary_bkpt_re_set;
15430 ops->check_status = momentary_bkpt_check_status;
15431 ops->print_it = momentary_bkpt_print_it;
15432 ops->print_mention = momentary_bkpt_print_mention;
15433
15434 /* Probe breakpoints. */
15435 ops = &bkpt_probe_breakpoint_ops;
15436 *ops = bkpt_breakpoint_ops;
15437 ops->insert_location = bkpt_probe_insert_location;
15438 ops->remove_location = bkpt_probe_remove_location;
15439 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15440 ops->decode_location = bkpt_probe_decode_location;
15441
15442 /* Watchpoints. */
15443 ops = &watchpoint_breakpoint_ops;
15444 *ops = base_breakpoint_ops;
15445 ops->re_set = re_set_watchpoint;
15446 ops->insert_location = insert_watchpoint;
15447 ops->remove_location = remove_watchpoint;
15448 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15449 ops->check_status = check_status_watchpoint;
15450 ops->resources_needed = resources_needed_watchpoint;
15451 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15452 ops->print_it = print_it_watchpoint;
15453 ops->print_mention = print_mention_watchpoint;
15454 ops->print_recreate = print_recreate_watchpoint;
15455 ops->explains_signal = explains_signal_watchpoint;
15456
15457 /* Masked watchpoints. */
15458 ops = &masked_watchpoint_breakpoint_ops;
15459 *ops = watchpoint_breakpoint_ops;
15460 ops->insert_location = insert_masked_watchpoint;
15461 ops->remove_location = remove_masked_watchpoint;
15462 ops->resources_needed = resources_needed_masked_watchpoint;
15463 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15464 ops->print_it = print_it_masked_watchpoint;
15465 ops->print_one_detail = print_one_detail_masked_watchpoint;
15466 ops->print_mention = print_mention_masked_watchpoint;
15467 ops->print_recreate = print_recreate_masked_watchpoint;
15468
15469 /* Tracepoints. */
15470 ops = &tracepoint_breakpoint_ops;
15471 *ops = base_breakpoint_ops;
15472 ops->re_set = tracepoint_re_set;
15473 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15474 ops->print_one_detail = tracepoint_print_one_detail;
15475 ops->print_mention = tracepoint_print_mention;
15476 ops->print_recreate = tracepoint_print_recreate;
15477 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15478 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15479 ops->decode_location = tracepoint_decode_location;
15480
15481 /* Probe tracepoints. */
15482 ops = &tracepoint_probe_breakpoint_ops;
15483 *ops = tracepoint_breakpoint_ops;
15484 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15485 ops->decode_location = tracepoint_probe_decode_location;
15486
15487 /* Static tracepoints with marker (`-m'). */
15488 ops = &strace_marker_breakpoint_ops;
15489 *ops = tracepoint_breakpoint_ops;
15490 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15491 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15492 ops->decode_location = strace_marker_decode_location;
15493
15494 /* Fork catchpoints. */
15495 ops = &catch_fork_breakpoint_ops;
15496 *ops = base_breakpoint_ops;
15497 ops->insert_location = insert_catch_fork;
15498 ops->remove_location = remove_catch_fork;
15499 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15500 ops->print_it = print_it_catch_fork;
15501 ops->print_one = print_one_catch_fork;
15502 ops->print_mention = print_mention_catch_fork;
15503 ops->print_recreate = print_recreate_catch_fork;
15504
15505 /* Vfork catchpoints. */
15506 ops = &catch_vfork_breakpoint_ops;
15507 *ops = base_breakpoint_ops;
15508 ops->insert_location = insert_catch_vfork;
15509 ops->remove_location = remove_catch_vfork;
15510 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15511 ops->print_it = print_it_catch_vfork;
15512 ops->print_one = print_one_catch_vfork;
15513 ops->print_mention = print_mention_catch_vfork;
15514 ops->print_recreate = print_recreate_catch_vfork;
15515
15516 /* Exec catchpoints. */
15517 ops = &catch_exec_breakpoint_ops;
15518 *ops = base_breakpoint_ops;
15519 ops->insert_location = insert_catch_exec;
15520 ops->remove_location = remove_catch_exec;
15521 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15522 ops->print_it = print_it_catch_exec;
15523 ops->print_one = print_one_catch_exec;
15524 ops->print_mention = print_mention_catch_exec;
15525 ops->print_recreate = print_recreate_catch_exec;
15526
15527 /* Solib-related catchpoints. */
15528 ops = &catch_solib_breakpoint_ops;
15529 *ops = base_breakpoint_ops;
15530 ops->insert_location = insert_catch_solib;
15531 ops->remove_location = remove_catch_solib;
15532 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15533 ops->check_status = check_status_catch_solib;
15534 ops->print_it = print_it_catch_solib;
15535 ops->print_one = print_one_catch_solib;
15536 ops->print_mention = print_mention_catch_solib;
15537 ops->print_recreate = print_recreate_catch_solib;
15538
15539 ops = &dprintf_breakpoint_ops;
15540 *ops = bkpt_base_breakpoint_ops;
15541 ops->re_set = dprintf_re_set;
15542 ops->resources_needed = bkpt_resources_needed;
15543 ops->print_it = bkpt_print_it;
15544 ops->print_mention = bkpt_print_mention;
15545 ops->print_recreate = dprintf_print_recreate;
15546 ops->after_condition_true = dprintf_after_condition_true;
15547 ops->breakpoint_hit = dprintf_breakpoint_hit;
15548 }
15549
15550 /* Chain containing all defined "enable breakpoint" subcommands. */
15551
15552 static struct cmd_list_element *enablebreaklist = NULL;
15553
15554 void
15555 _initialize_breakpoint (void)
15556 {
15557 struct cmd_list_element *c;
15558
15559 initialize_breakpoint_ops ();
15560
15561 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15562 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15563 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15564
15565 breakpoint_objfile_key
15566 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15567
15568 breakpoint_chain = 0;
15569 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15570 before a breakpoint is set. */
15571 breakpoint_count = 0;
15572
15573 tracepoint_count = 0;
15574
15575 add_com ("ignore", class_breakpoint, ignore_command, _("\
15576 Set ignore-count of breakpoint number N to COUNT.\n\
15577 Usage is `ignore N COUNT'."));
15578
15579 add_com ("commands", class_breakpoint, commands_command, _("\
15580 Set commands to be executed when the given breakpoints are hit.\n\
15581 Give a space-separated breakpoint list as argument after \"commands\".\n\
15582 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15583 (e.g. `5-7').\n\
15584 With no argument, the targeted breakpoint is the last one set.\n\
15585 The commands themselves follow starting on the next line.\n\
15586 Type a line containing \"end\" to indicate the end of them.\n\
15587 Give \"silent\" as the first line to make the breakpoint silent;\n\
15588 then no output is printed when it is hit, except what the commands print."));
15589
15590 c = add_com ("condition", class_breakpoint, condition_command, _("\
15591 Specify breakpoint number N to break only if COND is true.\n\
15592 Usage is `condition N COND', where N is an integer and COND is an\n\
15593 expression to be evaluated whenever breakpoint N is reached."));
15594 set_cmd_completer (c, condition_completer);
15595
15596 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15597 Set a temporary breakpoint.\n\
15598 Like \"break\" except the breakpoint is only temporary,\n\
15599 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15600 by using \"enable delete\" on the breakpoint number.\n\
15601 \n"
15602 BREAK_ARGS_HELP ("tbreak")));
15603 set_cmd_completer (c, location_completer);
15604
15605 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15606 Set a hardware assisted breakpoint.\n\
15607 Like \"break\" except the breakpoint requires hardware support,\n\
15608 some target hardware may not have this support.\n\
15609 \n"
15610 BREAK_ARGS_HELP ("hbreak")));
15611 set_cmd_completer (c, location_completer);
15612
15613 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15614 Set a temporary hardware assisted breakpoint.\n\
15615 Like \"hbreak\" except the breakpoint is only temporary,\n\
15616 so it will be deleted when hit.\n\
15617 \n"
15618 BREAK_ARGS_HELP ("thbreak")));
15619 set_cmd_completer (c, location_completer);
15620
15621 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15622 Enable some breakpoints.\n\
15623 Give breakpoint numbers (separated by spaces) as arguments.\n\
15624 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15625 This is used to cancel the effect of the \"disable\" command.\n\
15626 With a subcommand you can enable temporarily."),
15627 &enablelist, "enable ", 1, &cmdlist);
15628
15629 add_com_alias ("en", "enable", class_breakpoint, 1);
15630
15631 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15632 Enable some breakpoints.\n\
15633 Give breakpoint numbers (separated by spaces) as arguments.\n\
15634 This is used to cancel the effect of the \"disable\" command.\n\
15635 May be abbreviated to simply \"enable\".\n"),
15636 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15637
15638 add_cmd ("once", no_class, enable_once_command, _("\
15639 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15640 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15641 &enablebreaklist);
15642
15643 add_cmd ("delete", no_class, enable_delete_command, _("\
15644 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15645 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15646 &enablebreaklist);
15647
15648 add_cmd ("count", no_class, enable_count_command, _("\
15649 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15650 If a breakpoint is hit while enabled in this fashion,\n\
15651 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15652 &enablebreaklist);
15653
15654 add_cmd ("delete", no_class, enable_delete_command, _("\
15655 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15656 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15657 &enablelist);
15658
15659 add_cmd ("once", no_class, enable_once_command, _("\
15660 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15661 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15662 &enablelist);
15663
15664 add_cmd ("count", no_class, enable_count_command, _("\
15665 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15666 If a breakpoint is hit while enabled in this fashion,\n\
15667 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15668 &enablelist);
15669
15670 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15671 Disable some breakpoints.\n\
15672 Arguments are breakpoint numbers with spaces in between.\n\
15673 To disable all breakpoints, give no argument.\n\
15674 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15675 &disablelist, "disable ", 1, &cmdlist);
15676 add_com_alias ("dis", "disable", class_breakpoint, 1);
15677 add_com_alias ("disa", "disable", class_breakpoint, 1);
15678
15679 add_cmd ("breakpoints", class_alias, disable_command, _("\
15680 Disable some breakpoints.\n\
15681 Arguments are breakpoint numbers with spaces in between.\n\
15682 To disable all breakpoints, give no argument.\n\
15683 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15684 This command may be abbreviated \"disable\"."),
15685 &disablelist);
15686
15687 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15688 Delete some breakpoints or auto-display expressions.\n\
15689 Arguments are breakpoint numbers with spaces in between.\n\
15690 To delete all breakpoints, give no argument.\n\
15691 \n\
15692 Also a prefix command for deletion of other GDB objects.\n\
15693 The \"unset\" command is also an alias for \"delete\"."),
15694 &deletelist, "delete ", 1, &cmdlist);
15695 add_com_alias ("d", "delete", class_breakpoint, 1);
15696 add_com_alias ("del", "delete", class_breakpoint, 1);
15697
15698 add_cmd ("breakpoints", class_alias, delete_command, _("\
15699 Delete some breakpoints or auto-display expressions.\n\
15700 Arguments are breakpoint numbers with spaces in between.\n\
15701 To delete all breakpoints, give no argument.\n\
15702 This command may be abbreviated \"delete\"."),
15703 &deletelist);
15704
15705 add_com ("clear", class_breakpoint, clear_command, _("\
15706 Clear breakpoint at specified location.\n\
15707 Argument may be a linespec, explicit, or address location as described below.\n\
15708 \n\
15709 With no argument, clears all breakpoints in the line that the selected frame\n\
15710 is executing in.\n"
15711 "\n" LOCATION_HELP_STRING "\n\
15712 See also the \"delete\" command which clears breakpoints by number."));
15713 add_com_alias ("cl", "clear", class_breakpoint, 1);
15714
15715 c = add_com ("break", class_breakpoint, break_command, _("\
15716 Set breakpoint at specified location.\n"
15717 BREAK_ARGS_HELP ("break")));
15718 set_cmd_completer (c, location_completer);
15719
15720 add_com_alias ("b", "break", class_run, 1);
15721 add_com_alias ("br", "break", class_run, 1);
15722 add_com_alias ("bre", "break", class_run, 1);
15723 add_com_alias ("brea", "break", class_run, 1);
15724
15725 if (dbx_commands)
15726 {
15727 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15728 Break in function/address or break at a line in the current file."),
15729 &stoplist, "stop ", 1, &cmdlist);
15730 add_cmd ("in", class_breakpoint, stopin_command,
15731 _("Break in function or address."), &stoplist);
15732 add_cmd ("at", class_breakpoint, stopat_command,
15733 _("Break at a line in the current file."), &stoplist);
15734 add_com ("status", class_info, info_breakpoints_command, _("\
15735 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15736 The \"Type\" column indicates one of:\n\
15737 \tbreakpoint - normal breakpoint\n\
15738 \twatchpoint - watchpoint\n\
15739 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15740 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15741 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15742 address and file/line number respectively.\n\
15743 \n\
15744 Convenience variable \"$_\" and default examine address for \"x\"\n\
15745 are set to the address of the last breakpoint listed unless the command\n\
15746 is prefixed with \"server \".\n\n\
15747 Convenience variable \"$bpnum\" contains the number of the last\n\
15748 breakpoint set."));
15749 }
15750
15751 add_info ("breakpoints", info_breakpoints_command, _("\
15752 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15753 The \"Type\" column indicates one of:\n\
15754 \tbreakpoint - normal breakpoint\n\
15755 \twatchpoint - watchpoint\n\
15756 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15757 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15758 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15759 address and file/line number respectively.\n\
15760 \n\
15761 Convenience variable \"$_\" and default examine address for \"x\"\n\
15762 are set to the address of the last breakpoint listed unless the command\n\
15763 is prefixed with \"server \".\n\n\
15764 Convenience variable \"$bpnum\" contains the number of the last\n\
15765 breakpoint set."));
15766
15767 add_info_alias ("b", "breakpoints", 1);
15768
15769 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15770 Status of all breakpoints, or breakpoint number NUMBER.\n\
15771 The \"Type\" column indicates one of:\n\
15772 \tbreakpoint - normal breakpoint\n\
15773 \twatchpoint - watchpoint\n\
15774 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15775 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15776 \tuntil - internal breakpoint used by the \"until\" command\n\
15777 \tfinish - internal breakpoint used by the \"finish\" command\n\
15778 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15779 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15780 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15781 address and file/line number respectively.\n\
15782 \n\
15783 Convenience variable \"$_\" and default examine address for \"x\"\n\
15784 are set to the address of the last breakpoint listed unless the command\n\
15785 is prefixed with \"server \".\n\n\
15786 Convenience variable \"$bpnum\" contains the number of the last\n\
15787 breakpoint set."),
15788 &maintenanceinfolist);
15789
15790 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15791 Set catchpoints to catch events."),
15792 &catch_cmdlist, "catch ",
15793 0/*allow-unknown*/, &cmdlist);
15794
15795 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15796 Set temporary catchpoints to catch events."),
15797 &tcatch_cmdlist, "tcatch ",
15798 0/*allow-unknown*/, &cmdlist);
15799
15800 add_catch_command ("fork", _("Catch calls to fork."),
15801 catch_fork_command_1,
15802 NULL,
15803 (void *) (uintptr_t) catch_fork_permanent,
15804 (void *) (uintptr_t) catch_fork_temporary);
15805 add_catch_command ("vfork", _("Catch calls to vfork."),
15806 catch_fork_command_1,
15807 NULL,
15808 (void *) (uintptr_t) catch_vfork_permanent,
15809 (void *) (uintptr_t) catch_vfork_temporary);
15810 add_catch_command ("exec", _("Catch calls to exec."),
15811 catch_exec_command_1,
15812 NULL,
15813 CATCH_PERMANENT,
15814 CATCH_TEMPORARY);
15815 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15816 Usage: catch load [REGEX]\n\
15817 If REGEX is given, only stop for libraries matching the regular expression."),
15818 catch_load_command_1,
15819 NULL,
15820 CATCH_PERMANENT,
15821 CATCH_TEMPORARY);
15822 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15823 Usage: catch unload [REGEX]\n\
15824 If REGEX is given, only stop for libraries matching the regular expression."),
15825 catch_unload_command_1,
15826 NULL,
15827 CATCH_PERMANENT,
15828 CATCH_TEMPORARY);
15829
15830 c = add_com ("watch", class_breakpoint, watch_command, _("\
15831 Set a watchpoint for an expression.\n\
15832 Usage: watch [-l|-location] EXPRESSION\n\
15833 A watchpoint stops execution of your program whenever the value of\n\
15834 an expression changes.\n\
15835 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15836 the memory to which it refers."));
15837 set_cmd_completer (c, expression_completer);
15838
15839 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15840 Set a read watchpoint for an expression.\n\
15841 Usage: rwatch [-l|-location] EXPRESSION\n\
15842 A watchpoint stops execution of your program whenever the value of\n\
15843 an expression is read.\n\
15844 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15845 the memory to which it refers."));
15846 set_cmd_completer (c, expression_completer);
15847
15848 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15849 Set a watchpoint for an expression.\n\
15850 Usage: awatch [-l|-location] EXPRESSION\n\
15851 A watchpoint stops execution of your program whenever the value of\n\
15852 an expression is either read or written.\n\
15853 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15854 the memory to which it refers."));
15855 set_cmd_completer (c, expression_completer);
15856
15857 add_info ("watchpoints", info_watchpoints_command, _("\
15858 Status of specified watchpoints (all watchpoints if no argument)."));
15859
15860 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15861 respond to changes - contrary to the description. */
15862 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15863 &can_use_hw_watchpoints, _("\
15864 Set debugger's willingness to use watchpoint hardware."), _("\
15865 Show debugger's willingness to use watchpoint hardware."), _("\
15866 If zero, gdb will not use hardware for new watchpoints, even if\n\
15867 such is available. (However, any hardware watchpoints that were\n\
15868 created before setting this to nonzero, will continue to use watchpoint\n\
15869 hardware.)"),
15870 NULL,
15871 show_can_use_hw_watchpoints,
15872 &setlist, &showlist);
15873
15874 can_use_hw_watchpoints = 1;
15875
15876 /* Tracepoint manipulation commands. */
15877
15878 c = add_com ("trace", class_breakpoint, trace_command, _("\
15879 Set a tracepoint at specified location.\n\
15880 \n"
15881 BREAK_ARGS_HELP ("trace") "\n\
15882 Do \"help tracepoints\" for info on other tracepoint commands."));
15883 set_cmd_completer (c, location_completer);
15884
15885 add_com_alias ("tp", "trace", class_alias, 0);
15886 add_com_alias ("tr", "trace", class_alias, 1);
15887 add_com_alias ("tra", "trace", class_alias, 1);
15888 add_com_alias ("trac", "trace", class_alias, 1);
15889
15890 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15891 Set a fast tracepoint at specified location.\n\
15892 \n"
15893 BREAK_ARGS_HELP ("ftrace") "\n\
15894 Do \"help tracepoints\" for info on other tracepoint commands."));
15895 set_cmd_completer (c, location_completer);
15896
15897 c = add_com ("strace", class_breakpoint, strace_command, _("\
15898 Set a static tracepoint at location or marker.\n\
15899 \n\
15900 strace [LOCATION] [if CONDITION]\n\
15901 LOCATION may be a linespec, explicit, or address location (described below) \n\
15902 or -m MARKER_ID.\n\n\
15903 If a marker id is specified, probe the marker with that name. With\n\
15904 no LOCATION, uses current execution address of the selected stack frame.\n\
15905 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15906 This collects arbitrary user data passed in the probe point call to the\n\
15907 tracing library. You can inspect it when analyzing the trace buffer,\n\
15908 by printing the $_sdata variable like any other convenience variable.\n\
15909 \n\
15910 CONDITION is a boolean expression.\n\
15911 \n" LOCATION_HELP_STRING "\n\
15912 Multiple tracepoints at one place are permitted, and useful if their\n\
15913 conditions are different.\n\
15914 \n\
15915 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15916 Do \"help tracepoints\" for info on other tracepoint commands."));
15917 set_cmd_completer (c, location_completer);
15918
15919 add_info ("tracepoints", info_tracepoints_command, _("\
15920 Status of specified tracepoints (all tracepoints if no argument).\n\
15921 Convenience variable \"$tpnum\" contains the number of the\n\
15922 last tracepoint set."));
15923
15924 add_info_alias ("tp", "tracepoints", 1);
15925
15926 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15927 Delete specified tracepoints.\n\
15928 Arguments are tracepoint numbers, separated by spaces.\n\
15929 No argument means delete all tracepoints."),
15930 &deletelist);
15931 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15932
15933 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15934 Disable specified tracepoints.\n\
15935 Arguments are tracepoint numbers, separated by spaces.\n\
15936 No argument means disable all tracepoints."),
15937 &disablelist);
15938 deprecate_cmd (c, "disable");
15939
15940 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15941 Enable specified tracepoints.\n\
15942 Arguments are tracepoint numbers, separated by spaces.\n\
15943 No argument means enable all tracepoints."),
15944 &enablelist);
15945 deprecate_cmd (c, "enable");
15946
15947 add_com ("passcount", class_trace, trace_pass_command, _("\
15948 Set the passcount for a tracepoint.\n\
15949 The trace will end when the tracepoint has been passed 'count' times.\n\
15950 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15951 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15952
15953 add_prefix_cmd ("save", class_breakpoint, save_command,
15954 _("Save breakpoint definitions as a script."),
15955 &save_cmdlist, "save ",
15956 0/*allow-unknown*/, &cmdlist);
15957
15958 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15959 Save current breakpoint definitions as a script.\n\
15960 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15961 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15962 session to restore them."),
15963 &save_cmdlist);
15964 set_cmd_completer (c, filename_completer);
15965
15966 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15967 Save current tracepoint definitions as a script.\n\
15968 Use the 'source' command in another debug session to restore them."),
15969 &save_cmdlist);
15970 set_cmd_completer (c, filename_completer);
15971
15972 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15973 deprecate_cmd (c, "save tracepoints");
15974
15975 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15976 Breakpoint specific settings\n\
15977 Configure various breakpoint-specific variables such as\n\
15978 pending breakpoint behavior"),
15979 &breakpoint_set_cmdlist, "set breakpoint ",
15980 0/*allow-unknown*/, &setlist);
15981 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15982 Breakpoint specific settings\n\
15983 Configure various breakpoint-specific variables such as\n\
15984 pending breakpoint behavior"),
15985 &breakpoint_show_cmdlist, "show breakpoint ",
15986 0/*allow-unknown*/, &showlist);
15987
15988 add_setshow_auto_boolean_cmd ("pending", no_class,
15989 &pending_break_support, _("\
15990 Set debugger's behavior regarding pending breakpoints."), _("\
15991 Show debugger's behavior regarding pending breakpoints."), _("\
15992 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15993 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15994 an error. If auto, an unrecognized breakpoint location results in a\n\
15995 user-query to see if a pending breakpoint should be created."),
15996 NULL,
15997 show_pending_break_support,
15998 &breakpoint_set_cmdlist,
15999 &breakpoint_show_cmdlist);
16000
16001 pending_break_support = AUTO_BOOLEAN_AUTO;
16002
16003 add_setshow_boolean_cmd ("auto-hw", no_class,
16004 &automatic_hardware_breakpoints, _("\
16005 Set automatic usage of hardware breakpoints."), _("\
16006 Show automatic usage of hardware breakpoints."), _("\
16007 If set, the debugger will automatically use hardware breakpoints for\n\
16008 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16009 a warning will be emitted for such breakpoints."),
16010 NULL,
16011 show_automatic_hardware_breakpoints,
16012 &breakpoint_set_cmdlist,
16013 &breakpoint_show_cmdlist);
16014
16015 add_setshow_boolean_cmd ("always-inserted", class_support,
16016 &always_inserted_mode, _("\
16017 Set mode for inserting breakpoints."), _("\
16018 Show mode for inserting breakpoints."), _("\
16019 When this mode is on, breakpoints are inserted immediately as soon as\n\
16020 they're created, kept inserted even when execution stops, and removed\n\
16021 only when the user deletes them. When this mode is off (the default),\n\
16022 breakpoints are inserted only when execution continues, and removed\n\
16023 when execution stops."),
16024 NULL,
16025 &show_always_inserted_mode,
16026 &breakpoint_set_cmdlist,
16027 &breakpoint_show_cmdlist);
16028
16029 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16030 condition_evaluation_enums,
16031 &condition_evaluation_mode_1, _("\
16032 Set mode of breakpoint condition evaluation."), _("\
16033 Show mode of breakpoint condition evaluation."), _("\
16034 When this is set to \"host\", breakpoint conditions will be\n\
16035 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16036 breakpoint conditions will be downloaded to the target (if the target\n\
16037 supports such feature) and conditions will be evaluated on the target's side.\n\
16038 If this is set to \"auto\" (default), this will be automatically set to\n\
16039 \"target\" if it supports condition evaluation, otherwise it will\n\
16040 be set to \"gdb\""),
16041 &set_condition_evaluation_mode,
16042 &show_condition_evaluation_mode,
16043 &breakpoint_set_cmdlist,
16044 &breakpoint_show_cmdlist);
16045
16046 add_com ("break-range", class_breakpoint, break_range_command, _("\
16047 Set a breakpoint for an address range.\n\
16048 break-range START-LOCATION, END-LOCATION\n\
16049 where START-LOCATION and END-LOCATION can be one of the following:\n\
16050 LINENUM, for that line in the current file,\n\
16051 FILE:LINENUM, for that line in that file,\n\
16052 +OFFSET, for that number of lines after the current line\n\
16053 or the start of the range\n\
16054 FUNCTION, for the first line in that function,\n\
16055 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16056 *ADDRESS, for the instruction at that address.\n\
16057 \n\
16058 The breakpoint will stop execution of the inferior whenever it executes\n\
16059 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16060 range (including START-LOCATION and END-LOCATION)."));
16061
16062 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16063 Set a dynamic printf at specified location.\n\
16064 dprintf location,format string,arg1,arg2,...\n\
16065 location may be a linespec, explicit, or address location.\n"
16066 "\n" LOCATION_HELP_STRING));
16067 set_cmd_completer (c, location_completer);
16068
16069 add_setshow_enum_cmd ("dprintf-style", class_support,
16070 dprintf_style_enums, &dprintf_style, _("\
16071 Set the style of usage for dynamic printf."), _("\
16072 Show the style of usage for dynamic printf."), _("\
16073 This setting chooses how GDB will do a dynamic printf.\n\
16074 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16075 console, as with the \"printf\" command.\n\
16076 If the value is \"call\", the print is done by calling a function in your\n\
16077 program; by default printf(), but you can choose a different function or\n\
16078 output stream by setting dprintf-function and dprintf-channel."),
16079 update_dprintf_commands, NULL,
16080 &setlist, &showlist);
16081
16082 dprintf_function = xstrdup ("printf");
16083 add_setshow_string_cmd ("dprintf-function", class_support,
16084 &dprintf_function, _("\
16085 Set the function to use for dynamic printf"), _("\
16086 Show the function to use for dynamic printf"), NULL,
16087 update_dprintf_commands, NULL,
16088 &setlist, &showlist);
16089
16090 dprintf_channel = xstrdup ("");
16091 add_setshow_string_cmd ("dprintf-channel", class_support,
16092 &dprintf_channel, _("\
16093 Set the channel to use for dynamic printf"), _("\
16094 Show the channel to use for dynamic printf"), NULL,
16095 update_dprintf_commands, NULL,
16096 &setlist, &showlist);
16097
16098 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16099 &disconnected_dprintf, _("\
16100 Set whether dprintf continues after GDB disconnects."), _("\
16101 Show whether dprintf continues after GDB disconnects."), _("\
16102 Use this to let dprintf commands continue to hit and produce output\n\
16103 even if GDB disconnects or detaches from the target."),
16104 NULL,
16105 NULL,
16106 &setlist, &showlist);
16107
16108 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16109 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16110 (target agent only) This is useful for formatted output in user-defined commands."));
16111
16112 automatic_hardware_breakpoints = 1;
16113
16114 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16115 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16116 }