New GDB/MI commands to catch Ada exceptions
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131 static void clear_command (char *, int);
132
133 static void catch_command (char *, int);
134
135 static int can_use_hardware_watchpoint (struct value *);
136
137 static void break_command_1 (char *, int, int);
138
139 static void mention (struct breakpoint *);
140
141 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147 /* This function is used in gdbtk sources and thus can not be made
148 static. */
149 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154 static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int breakpoint_address_match (struct address_space *aspace1,
170 CORE_ADDR addr1,
171 struct address_space *aspace2,
172 CORE_ADDR addr2);
173
174 static int watchpoint_locations_match (struct bp_location *loc1,
175 struct bp_location *loc2);
176
177 static int breakpoint_location_address_match (struct bp_location *bl,
178 struct address_space *aspace,
179 CORE_ADDR addr);
180
181 static void breakpoints_info (char *, int);
182
183 static void watchpoints_info (char *, int);
184
185 static int breakpoint_1 (char *, int,
186 int (*) (const struct breakpoint *));
187
188 static int breakpoint_cond_eval (void *);
189
190 static void cleanup_executing_breakpoints (void *);
191
192 static void commands_command (char *, int);
193
194 static void condition_command (char *, int);
195
196 typedef enum
197 {
198 mark_inserted,
199 mark_uninserted
200 }
201 insertion_state_t;
202
203 static int remove_breakpoint (struct bp_location *, insertion_state_t);
204 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
205
206 static enum print_stop_action print_bp_stop_message (bpstat bs);
207
208 static int watchpoint_check (void *);
209
210 static void maintenance_info_breakpoints (char *, int);
211
212 static int hw_breakpoint_used_count (void);
213
214 static int hw_watchpoint_use_count (struct breakpoint *);
215
216 static int hw_watchpoint_used_count_others (struct breakpoint *except,
217 enum bptype type,
218 int *other_type_used);
219
220 static void hbreak_command (char *, int);
221
222 static void thbreak_command (char *, int);
223
224 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
225 int count);
226
227 static void stop_command (char *arg, int from_tty);
228
229 static void stopin_command (char *arg, int from_tty);
230
231 static void stopat_command (char *arg, int from_tty);
232
233 static void tcatch_command (char *arg, int from_tty);
234
235 static void detach_single_step_breakpoints (void);
236
237 static int single_step_breakpoint_inserted_here_p (struct address_space *,
238 CORE_ADDR pc);
239
240 static void free_bp_location (struct bp_location *loc);
241 static void incref_bp_location (struct bp_location *loc);
242 static void decref_bp_location (struct bp_location **loc);
243
244 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
245
246 static void update_global_location_list (int);
247
248 static void update_global_location_list_nothrow (int);
249
250 static int is_hardware_watchpoint (const struct breakpoint *bpt);
251
252 static void insert_breakpoint_locations (void);
253
254 static int syscall_catchpoint_p (struct breakpoint *b);
255
256 static void tracepoints_info (char *, int);
257
258 static void delete_trace_command (char *, int);
259
260 static void enable_trace_command (char *, int);
261
262 static void disable_trace_command (char *, int);
263
264 static void trace_pass_command (char *, int);
265
266 static void set_tracepoint_count (int num);
267
268 static int is_masked_watchpoint (const struct breakpoint *b);
269
270 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
271
272 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
273 otherwise. */
274
275 static int strace_marker_p (struct breakpoint *b);
276
277 /* The abstract base class all breakpoint_ops structures inherit
278 from. */
279 struct breakpoint_ops base_breakpoint_ops;
280
281 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
282 that are implemented on top of software or hardware breakpoints
283 (user breakpoints, internal and momentary breakpoints, etc.). */
284 static struct breakpoint_ops bkpt_base_breakpoint_ops;
285
286 /* Internal breakpoints class type. */
287 static struct breakpoint_ops internal_breakpoint_ops;
288
289 /* Momentary breakpoints class type. */
290 static struct breakpoint_ops momentary_breakpoint_ops;
291
292 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
293 static struct breakpoint_ops longjmp_breakpoint_ops;
294
295 /* The breakpoint_ops structure to be used in regular user created
296 breakpoints. */
297 struct breakpoint_ops bkpt_breakpoint_ops;
298
299 /* Breakpoints set on probes. */
300 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
301
302 /* Dynamic printf class type. */
303 struct breakpoint_ops dprintf_breakpoint_ops;
304
305 /* The style in which to perform a dynamic printf. This is a user
306 option because different output options have different tradeoffs;
307 if GDB does the printing, there is better error handling if there
308 is a problem with any of the arguments, but using an inferior
309 function lets you have special-purpose printers and sending of
310 output to the same place as compiled-in print functions. */
311
312 static const char dprintf_style_gdb[] = "gdb";
313 static const char dprintf_style_call[] = "call";
314 static const char dprintf_style_agent[] = "agent";
315 static const char *const dprintf_style_enums[] = {
316 dprintf_style_gdb,
317 dprintf_style_call,
318 dprintf_style_agent,
319 NULL
320 };
321 static const char *dprintf_style = dprintf_style_gdb;
322
323 /* The function to use for dynamic printf if the preferred style is to
324 call into the inferior. The value is simply a string that is
325 copied into the command, so it can be anything that GDB can
326 evaluate to a callable address, not necessarily a function name. */
327
328 static char *dprintf_function = "";
329
330 /* The channel to use for dynamic printf if the preferred style is to
331 call into the inferior; if a nonempty string, it will be passed to
332 the call as the first argument, with the format string as the
333 second. As with the dprintf function, this can be anything that
334 GDB knows how to evaluate, so in addition to common choices like
335 "stderr", this could be an app-specific expression like
336 "mystreams[curlogger]". */
337
338 static char *dprintf_channel = "";
339
340 /* True if dprintf commands should continue to operate even if GDB
341 has disconnected. */
342 static int disconnected_dprintf = 1;
343
344 /* A reference-counted struct command_line. This lets multiple
345 breakpoints share a single command list. */
346 struct counted_command_line
347 {
348 /* The reference count. */
349 int refc;
350
351 /* The command list. */
352 struct command_line *commands;
353 };
354
355 struct command_line *
356 breakpoint_commands (struct breakpoint *b)
357 {
358 return b->commands ? b->commands->commands : NULL;
359 }
360
361 /* Flag indicating that a command has proceeded the inferior past the
362 current breakpoint. */
363
364 static int breakpoint_proceeded;
365
366 const char *
367 bpdisp_text (enum bpdisp disp)
368 {
369 /* NOTE: the following values are a part of MI protocol and
370 represent values of 'disp' field returned when inferior stops at
371 a breakpoint. */
372 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
373
374 return bpdisps[(int) disp];
375 }
376
377 /* Prototypes for exported functions. */
378 /* If FALSE, gdb will not use hardware support for watchpoints, even
379 if such is available. */
380 static int can_use_hw_watchpoints;
381
382 static void
383 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c,
385 const char *value)
386 {
387 fprintf_filtered (file,
388 _("Debugger's willingness to use "
389 "watchpoint hardware is %s.\n"),
390 value);
391 }
392
393 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
394 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
395 for unrecognized breakpoint locations.
396 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
397 static enum auto_boolean pending_break_support;
398 static void
399 show_pending_break_support (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's behavior regarding "
405 "pending breakpoints is %s.\n"),
406 value);
407 }
408
409 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
410 set with "break" but falling in read-only memory.
411 If 0, gdb will warn about such breakpoints, but won't automatically
412 use hardware breakpoints. */
413 static int automatic_hardware_breakpoints;
414 static void
415 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Automatic usage of hardware breakpoints is %s.\n"),
421 value);
422 }
423
424 /* If on, gdb will keep breakpoints inserted even as inferior is
425 stopped, and immediately insert any new breakpoints. If off, gdb
426 will insert breakpoints into inferior only when resuming it, and
427 will remove breakpoints upon stop. If auto, GDB will behave as ON
428 if in non-stop mode, and as OFF if all-stop mode.*/
429
430 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
431
432 static void
433 show_always_inserted_mode (struct ui_file *file, int from_tty,
434 struct cmd_list_element *c, const char *value)
435 {
436 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
437 fprintf_filtered (file,
438 _("Always inserted breakpoint "
439 "mode is %s (currently %s).\n"),
440 value,
441 breakpoints_always_inserted_mode () ? "on" : "off");
442 else
443 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
444 value);
445 }
446
447 int
448 breakpoints_always_inserted_mode (void)
449 {
450 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
451 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
452 }
453
454 static const char condition_evaluation_both[] = "host or target";
455
456 /* Modes for breakpoint condition evaluation. */
457 static const char condition_evaluation_auto[] = "auto";
458 static const char condition_evaluation_host[] = "host";
459 static const char condition_evaluation_target[] = "target";
460 static const char *const condition_evaluation_enums[] = {
461 condition_evaluation_auto,
462 condition_evaluation_host,
463 condition_evaluation_target,
464 NULL
465 };
466
467 /* Global that holds the current mode for breakpoint condition evaluation. */
468 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
469
470 /* Global that we use to display information to the user (gets its value from
471 condition_evaluation_mode_1. */
472 static const char *condition_evaluation_mode = condition_evaluation_auto;
473
474 /* Translate a condition evaluation mode MODE into either "host"
475 or "target". This is used mostly to translate from "auto" to the
476 real setting that is being used. It returns the translated
477 evaluation mode. */
478
479 static const char *
480 translate_condition_evaluation_mode (const char *mode)
481 {
482 if (mode == condition_evaluation_auto)
483 {
484 if (target_supports_evaluation_of_breakpoint_conditions ())
485 return condition_evaluation_target;
486 else
487 return condition_evaluation_host;
488 }
489 else
490 return mode;
491 }
492
493 /* Discovers what condition_evaluation_auto translates to. */
494
495 static const char *
496 breakpoint_condition_evaluation_mode (void)
497 {
498 return translate_condition_evaluation_mode (condition_evaluation_mode);
499 }
500
501 /* Return true if GDB should evaluate breakpoint conditions or false
502 otherwise. */
503
504 static int
505 gdb_evaluates_breakpoint_condition_p (void)
506 {
507 const char *mode = breakpoint_condition_evaluation_mode ();
508
509 return (mode == condition_evaluation_host);
510 }
511
512 void _initialize_breakpoint (void);
513
514 /* Are we executing breakpoint commands? */
515 static int executing_breakpoint_commands;
516
517 /* Are overlay event breakpoints enabled? */
518 static int overlay_events_enabled;
519
520 /* See description in breakpoint.h. */
521 int target_exact_watchpoints = 0;
522
523 /* Walk the following statement or block through all breakpoints.
524 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
525 current breakpoint. */
526
527 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
528
529 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
530 for (B = breakpoint_chain; \
531 B ? (TMP=B->next, 1): 0; \
532 B = TMP)
533
534 /* Similar iterator for the low-level breakpoints. SAFE variant is
535 not provided so update_global_location_list must not be called
536 while executing the block of ALL_BP_LOCATIONS. */
537
538 #define ALL_BP_LOCATIONS(B,BP_TMP) \
539 for (BP_TMP = bp_location; \
540 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
541 BP_TMP++)
542
543 /* Iterates through locations with address ADDRESS for the currently selected
544 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
545 to where the loop should start from.
546 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
547 appropriate location to start with. */
548
549 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
550 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
551 BP_LOCP_TMP = BP_LOCP_START; \
552 BP_LOCP_START \
553 && (BP_LOCP_TMP < bp_location + bp_location_count \
554 && (*BP_LOCP_TMP)->address == ADDRESS); \
555 BP_LOCP_TMP++)
556
557 /* Iterator for tracepoints only. */
558
559 #define ALL_TRACEPOINTS(B) \
560 for (B = breakpoint_chain; B; B = B->next) \
561 if (is_tracepoint (B))
562
563 /* Chains of all breakpoints defined. */
564
565 struct breakpoint *breakpoint_chain;
566
567 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
568
569 static struct bp_location **bp_location;
570
571 /* Number of elements of BP_LOCATION. */
572
573 static unsigned bp_location_count;
574
575 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
576 ADDRESS for the current elements of BP_LOCATION which get a valid
577 result from bp_location_has_shadow. You can use it for roughly
578 limiting the subrange of BP_LOCATION to scan for shadow bytes for
579 an address you need to read. */
580
581 static CORE_ADDR bp_location_placed_address_before_address_max;
582
583 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
584 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
585 BP_LOCATION which get a valid result from bp_location_has_shadow.
586 You can use it for roughly limiting the subrange of BP_LOCATION to
587 scan for shadow bytes for an address you need to read. */
588
589 static CORE_ADDR bp_location_shadow_len_after_address_max;
590
591 /* The locations that no longer correspond to any breakpoint, unlinked
592 from bp_location array, but for which a hit may still be reported
593 by a target. */
594 VEC(bp_location_p) *moribund_locations = NULL;
595
596 /* Number of last breakpoint made. */
597
598 static int breakpoint_count;
599
600 /* The value of `breakpoint_count' before the last command that
601 created breakpoints. If the last (break-like) command created more
602 than one breakpoint, then the difference between BREAKPOINT_COUNT
603 and PREV_BREAKPOINT_COUNT is more than one. */
604 static int prev_breakpoint_count;
605
606 /* Number of last tracepoint made. */
607
608 static int tracepoint_count;
609
610 static struct cmd_list_element *breakpoint_set_cmdlist;
611 static struct cmd_list_element *breakpoint_show_cmdlist;
612 struct cmd_list_element *save_cmdlist;
613
614 /* Return whether a breakpoint is an active enabled breakpoint. */
615 static int
616 breakpoint_enabled (struct breakpoint *b)
617 {
618 return (b->enable_state == bp_enabled);
619 }
620
621 /* Set breakpoint count to NUM. */
622
623 static void
624 set_breakpoint_count (int num)
625 {
626 prev_breakpoint_count = breakpoint_count;
627 breakpoint_count = num;
628 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
629 }
630
631 /* Used by `start_rbreak_breakpoints' below, to record the current
632 breakpoint count before "rbreak" creates any breakpoint. */
633 static int rbreak_start_breakpoint_count;
634
635 /* Called at the start an "rbreak" command to record the first
636 breakpoint made. */
637
638 void
639 start_rbreak_breakpoints (void)
640 {
641 rbreak_start_breakpoint_count = breakpoint_count;
642 }
643
644 /* Called at the end of an "rbreak" command to record the last
645 breakpoint made. */
646
647 void
648 end_rbreak_breakpoints (void)
649 {
650 prev_breakpoint_count = rbreak_start_breakpoint_count;
651 }
652
653 /* Used in run_command to zero the hit count when a new run starts. */
654
655 void
656 clear_breakpoint_hit_counts (void)
657 {
658 struct breakpoint *b;
659
660 ALL_BREAKPOINTS (b)
661 b->hit_count = 0;
662 }
663
664 /* Allocate a new counted_command_line with reference count of 1.
665 The new structure owns COMMANDS. */
666
667 static struct counted_command_line *
668 alloc_counted_command_line (struct command_line *commands)
669 {
670 struct counted_command_line *result
671 = xmalloc (sizeof (struct counted_command_line));
672
673 result->refc = 1;
674 result->commands = commands;
675 return result;
676 }
677
678 /* Increment reference count. This does nothing if CMD is NULL. */
679
680 static void
681 incref_counted_command_line (struct counted_command_line *cmd)
682 {
683 if (cmd)
684 ++cmd->refc;
685 }
686
687 /* Decrement reference count. If the reference count reaches 0,
688 destroy the counted_command_line. Sets *CMDP to NULL. This does
689 nothing if *CMDP is NULL. */
690
691 static void
692 decref_counted_command_line (struct counted_command_line **cmdp)
693 {
694 if (*cmdp)
695 {
696 if (--(*cmdp)->refc == 0)
697 {
698 free_command_lines (&(*cmdp)->commands);
699 xfree (*cmdp);
700 }
701 *cmdp = NULL;
702 }
703 }
704
705 /* A cleanup function that calls decref_counted_command_line. */
706
707 static void
708 do_cleanup_counted_command_line (void *arg)
709 {
710 decref_counted_command_line (arg);
711 }
712
713 /* Create a cleanup that calls decref_counted_command_line on the
714 argument. */
715
716 static struct cleanup *
717 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
718 {
719 return make_cleanup (do_cleanup_counted_command_line, cmdp);
720 }
721
722 \f
723 /* Return the breakpoint with the specified number, or NULL
724 if the number does not refer to an existing breakpoint. */
725
726 struct breakpoint *
727 get_breakpoint (int num)
728 {
729 struct breakpoint *b;
730
731 ALL_BREAKPOINTS (b)
732 if (b->number == num)
733 return b;
734
735 return NULL;
736 }
737
738 \f
739
740 /* Mark locations as "conditions have changed" in case the target supports
741 evaluating conditions on its side. */
742
743 static void
744 mark_breakpoint_modified (struct breakpoint *b)
745 {
746 struct bp_location *loc;
747
748 /* This is only meaningful if the target is
749 evaluating conditions and if the user has
750 opted for condition evaluation on the target's
751 side. */
752 if (gdb_evaluates_breakpoint_condition_p ()
753 || !target_supports_evaluation_of_breakpoint_conditions ())
754 return;
755
756 if (!is_breakpoint (b))
757 return;
758
759 for (loc = b->loc; loc; loc = loc->next)
760 loc->condition_changed = condition_modified;
761 }
762
763 /* Mark location as "conditions have changed" in case the target supports
764 evaluating conditions on its side. */
765
766 static void
767 mark_breakpoint_location_modified (struct bp_location *loc)
768 {
769 /* This is only meaningful if the target is
770 evaluating conditions and if the user has
771 opted for condition evaluation on the target's
772 side. */
773 if (gdb_evaluates_breakpoint_condition_p ()
774 || !target_supports_evaluation_of_breakpoint_conditions ())
775
776 return;
777
778 if (!is_breakpoint (loc->owner))
779 return;
780
781 loc->condition_changed = condition_modified;
782 }
783
784 /* Sets the condition-evaluation mode using the static global
785 condition_evaluation_mode. */
786
787 static void
788 set_condition_evaluation_mode (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 const char *old_mode, *new_mode;
792
793 if ((condition_evaluation_mode_1 == condition_evaluation_target)
794 && !target_supports_evaluation_of_breakpoint_conditions ())
795 {
796 condition_evaluation_mode_1 = condition_evaluation_mode;
797 warning (_("Target does not support breakpoint condition evaluation.\n"
798 "Using host evaluation mode instead."));
799 return;
800 }
801
802 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
803 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
804
805 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
806 settings was "auto". */
807 condition_evaluation_mode = condition_evaluation_mode_1;
808
809 /* Only update the mode if the user picked a different one. */
810 if (new_mode != old_mode)
811 {
812 struct bp_location *loc, **loc_tmp;
813 /* If the user switched to a different evaluation mode, we
814 need to synch the changes with the target as follows:
815
816 "host" -> "target": Send all (valid) conditions to the target.
817 "target" -> "host": Remove all the conditions from the target.
818 */
819
820 if (new_mode == condition_evaluation_target)
821 {
822 /* Mark everything modified and synch conditions with the
823 target. */
824 ALL_BP_LOCATIONS (loc, loc_tmp)
825 mark_breakpoint_location_modified (loc);
826 }
827 else
828 {
829 /* Manually mark non-duplicate locations to synch conditions
830 with the target. We do this to remove all the conditions the
831 target knows about. */
832 ALL_BP_LOCATIONS (loc, loc_tmp)
833 if (is_breakpoint (loc->owner) && loc->inserted)
834 loc->needs_update = 1;
835 }
836
837 /* Do the update. */
838 update_global_location_list (1);
839 }
840
841 return;
842 }
843
844 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
845 what "auto" is translating to. */
846
847 static void
848 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
849 struct cmd_list_element *c, const char *value)
850 {
851 if (condition_evaluation_mode == condition_evaluation_auto)
852 fprintf_filtered (file,
853 _("Breakpoint condition evaluation "
854 "mode is %s (currently %s).\n"),
855 value,
856 breakpoint_condition_evaluation_mode ());
857 else
858 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
859 value);
860 }
861
862 /* A comparison function for bp_location AP and BP that is used by
863 bsearch. This comparison function only cares about addresses, unlike
864 the more general bp_location_compare function. */
865
866 static int
867 bp_location_compare_addrs (const void *ap, const void *bp)
868 {
869 struct bp_location *a = *(void **) ap;
870 struct bp_location *b = *(void **) bp;
871
872 if (a->address == b->address)
873 return 0;
874 else
875 return ((a->address > b->address) - (a->address < b->address));
876 }
877
878 /* Helper function to skip all bp_locations with addresses
879 less than ADDRESS. It returns the first bp_location that
880 is greater than or equal to ADDRESS. If none is found, just
881 return NULL. */
882
883 static struct bp_location **
884 get_first_locp_gte_addr (CORE_ADDR address)
885 {
886 struct bp_location dummy_loc;
887 struct bp_location *dummy_locp = &dummy_loc;
888 struct bp_location **locp_found = NULL;
889
890 /* Initialize the dummy location's address field. */
891 memset (&dummy_loc, 0, sizeof (struct bp_location));
892 dummy_loc.address = address;
893
894 /* Find a close match to the first location at ADDRESS. */
895 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
896 sizeof (struct bp_location **),
897 bp_location_compare_addrs);
898
899 /* Nothing was found, nothing left to do. */
900 if (locp_found == NULL)
901 return NULL;
902
903 /* We may have found a location that is at ADDRESS but is not the first in the
904 location's list. Go backwards (if possible) and locate the first one. */
905 while ((locp_found - 1) >= bp_location
906 && (*(locp_found - 1))->address == address)
907 locp_found--;
908
909 return locp_found;
910 }
911
912 void
913 set_breakpoint_condition (struct breakpoint *b, char *exp,
914 int from_tty)
915 {
916 xfree (b->cond_string);
917 b->cond_string = NULL;
918
919 if (is_watchpoint (b))
920 {
921 struct watchpoint *w = (struct watchpoint *) b;
922
923 xfree (w->cond_exp);
924 w->cond_exp = NULL;
925 }
926 else
927 {
928 struct bp_location *loc;
929
930 for (loc = b->loc; loc; loc = loc->next)
931 {
932 xfree (loc->cond);
933 loc->cond = NULL;
934
935 /* No need to free the condition agent expression
936 bytecode (if we have one). We will handle this
937 when we go through update_global_location_list. */
938 }
939 }
940
941 if (*exp == 0)
942 {
943 if (from_tty)
944 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
945 }
946 else
947 {
948 const char *arg = exp;
949
950 /* I don't know if it matters whether this is the string the user
951 typed in or the decompiled expression. */
952 b->cond_string = xstrdup (arg);
953 b->condition_not_parsed = 0;
954
955 if (is_watchpoint (b))
956 {
957 struct watchpoint *w = (struct watchpoint *) b;
958
959 innermost_block = NULL;
960 arg = exp;
961 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
962 if (*arg)
963 error (_("Junk at end of expression"));
964 w->cond_exp_valid_block = innermost_block;
965 }
966 else
967 {
968 struct bp_location *loc;
969
970 for (loc = b->loc; loc; loc = loc->next)
971 {
972 arg = exp;
973 loc->cond =
974 parse_exp_1 (&arg, loc->address,
975 block_for_pc (loc->address), 0);
976 if (*arg)
977 error (_("Junk at end of expression"));
978 }
979 }
980 }
981 mark_breakpoint_modified (b);
982
983 observer_notify_breakpoint_modified (b);
984 }
985
986 /* Completion for the "condition" command. */
987
988 static VEC (char_ptr) *
989 condition_completer (struct cmd_list_element *cmd,
990 const char *text, const char *word)
991 {
992 const char *space;
993
994 text = skip_spaces_const (text);
995 space = skip_to_space_const (text);
996 if (*space == '\0')
997 {
998 int len;
999 struct breakpoint *b;
1000 VEC (char_ptr) *result = NULL;
1001
1002 if (text[0] == '$')
1003 {
1004 /* We don't support completion of history indices. */
1005 if (isdigit (text[1]))
1006 return NULL;
1007 return complete_internalvar (&text[1]);
1008 }
1009
1010 /* We're completing the breakpoint number. */
1011 len = strlen (text);
1012
1013 ALL_BREAKPOINTS (b)
1014 {
1015 char number[50];
1016
1017 xsnprintf (number, sizeof (number), "%d", b->number);
1018
1019 if (strncmp (number, text, len) == 0)
1020 VEC_safe_push (char_ptr, result, xstrdup (number));
1021 }
1022
1023 return result;
1024 }
1025
1026 /* We're completing the expression part. */
1027 text = skip_spaces_const (space);
1028 return expression_completer (cmd, text, word);
1029 }
1030
1031 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1032
1033 static void
1034 condition_command (char *arg, int from_tty)
1035 {
1036 struct breakpoint *b;
1037 char *p;
1038 int bnum;
1039
1040 if (arg == 0)
1041 error_no_arg (_("breakpoint number"));
1042
1043 p = arg;
1044 bnum = get_number (&p);
1045 if (bnum == 0)
1046 error (_("Bad breakpoint argument: '%s'"), arg);
1047
1048 ALL_BREAKPOINTS (b)
1049 if (b->number == bnum)
1050 {
1051 /* Check if this breakpoint has a Python object assigned to
1052 it, and if it has a definition of the "stop"
1053 method. This method and conditions entered into GDB from
1054 the CLI are mutually exclusive. */
1055 if (b->py_bp_object
1056 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1057 error (_("Cannot set a condition where a Python 'stop' "
1058 "method has been defined in the breakpoint."));
1059 set_breakpoint_condition (b, p, from_tty);
1060
1061 if (is_breakpoint (b))
1062 update_global_location_list (1);
1063
1064 return;
1065 }
1066
1067 error (_("No breakpoint number %d."), bnum);
1068 }
1069
1070 /* Check that COMMAND do not contain commands that are suitable
1071 only for tracepoints and not suitable for ordinary breakpoints.
1072 Throw if any such commands is found. */
1073
1074 static void
1075 check_no_tracepoint_commands (struct command_line *commands)
1076 {
1077 struct command_line *c;
1078
1079 for (c = commands; c; c = c->next)
1080 {
1081 int i;
1082
1083 if (c->control_type == while_stepping_control)
1084 error (_("The 'while-stepping' command can "
1085 "only be used for tracepoints"));
1086
1087 for (i = 0; i < c->body_count; ++i)
1088 check_no_tracepoint_commands ((c->body_list)[i]);
1089
1090 /* Not that command parsing removes leading whitespace and comment
1091 lines and also empty lines. So, we only need to check for
1092 command directly. */
1093 if (strstr (c->line, "collect ") == c->line)
1094 error (_("The 'collect' command can only be used for tracepoints"));
1095
1096 if (strstr (c->line, "teval ") == c->line)
1097 error (_("The 'teval' command can only be used for tracepoints"));
1098 }
1099 }
1100
1101 /* Encapsulate tests for different types of tracepoints. */
1102
1103 static int
1104 is_tracepoint_type (enum bptype type)
1105 {
1106 return (type == bp_tracepoint
1107 || type == bp_fast_tracepoint
1108 || type == bp_static_tracepoint);
1109 }
1110
1111 int
1112 is_tracepoint (const struct breakpoint *b)
1113 {
1114 return is_tracepoint_type (b->type);
1115 }
1116
1117 /* A helper function that validates that COMMANDS are valid for a
1118 breakpoint. This function will throw an exception if a problem is
1119 found. */
1120
1121 static void
1122 validate_commands_for_breakpoint (struct breakpoint *b,
1123 struct command_line *commands)
1124 {
1125 if (is_tracepoint (b))
1126 {
1127 struct tracepoint *t = (struct tracepoint *) b;
1128 struct command_line *c;
1129 struct command_line *while_stepping = 0;
1130
1131 /* Reset the while-stepping step count. The previous commands
1132 might have included a while-stepping action, while the new
1133 ones might not. */
1134 t->step_count = 0;
1135
1136 /* We need to verify that each top-level element of commands is
1137 valid for tracepoints, that there's at most one
1138 while-stepping element, and that the while-stepping's body
1139 has valid tracing commands excluding nested while-stepping.
1140 We also need to validate the tracepoint action line in the
1141 context of the tracepoint --- validate_actionline actually
1142 has side effects, like setting the tracepoint's
1143 while-stepping STEP_COUNT, in addition to checking if the
1144 collect/teval actions parse and make sense in the
1145 tracepoint's context. */
1146 for (c = commands; c; c = c->next)
1147 {
1148 if (c->control_type == while_stepping_control)
1149 {
1150 if (b->type == bp_fast_tracepoint)
1151 error (_("The 'while-stepping' command "
1152 "cannot be used for fast tracepoint"));
1153 else if (b->type == bp_static_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for static tracepoint"));
1156
1157 if (while_stepping)
1158 error (_("The 'while-stepping' command "
1159 "can be used only once"));
1160 else
1161 while_stepping = c;
1162 }
1163
1164 validate_actionline (c->line, b);
1165 }
1166 if (while_stepping)
1167 {
1168 struct command_line *c2;
1169
1170 gdb_assert (while_stepping->body_count == 1);
1171 c2 = while_stepping->body_list[0];
1172 for (; c2; c2 = c2->next)
1173 {
1174 if (c2->control_type == while_stepping_control)
1175 error (_("The 'while-stepping' command cannot be nested"));
1176 }
1177 }
1178 }
1179 else
1180 {
1181 check_no_tracepoint_commands (commands);
1182 }
1183 }
1184
1185 /* Return a vector of all the static tracepoints set at ADDR. The
1186 caller is responsible for releasing the vector. */
1187
1188 VEC(breakpoint_p) *
1189 static_tracepoints_here (CORE_ADDR addr)
1190 {
1191 struct breakpoint *b;
1192 VEC(breakpoint_p) *found = 0;
1193 struct bp_location *loc;
1194
1195 ALL_BREAKPOINTS (b)
1196 if (b->type == bp_static_tracepoint)
1197 {
1198 for (loc = b->loc; loc; loc = loc->next)
1199 if (loc->address == addr)
1200 VEC_safe_push(breakpoint_p, found, b);
1201 }
1202
1203 return found;
1204 }
1205
1206 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1207 validate that only allowed commands are included. */
1208
1209 void
1210 breakpoint_set_commands (struct breakpoint *b,
1211 struct command_line *commands)
1212 {
1213 validate_commands_for_breakpoint (b, commands);
1214
1215 decref_counted_command_line (&b->commands);
1216 b->commands = alloc_counted_command_line (commands);
1217 observer_notify_breakpoint_modified (b);
1218 }
1219
1220 /* Set the internal `silent' flag on the breakpoint. Note that this
1221 is not the same as the "silent" that may appear in the breakpoint's
1222 commands. */
1223
1224 void
1225 breakpoint_set_silent (struct breakpoint *b, int silent)
1226 {
1227 int old_silent = b->silent;
1228
1229 b->silent = silent;
1230 if (old_silent != silent)
1231 observer_notify_breakpoint_modified (b);
1232 }
1233
1234 /* Set the thread for this breakpoint. If THREAD is -1, make the
1235 breakpoint work for any thread. */
1236
1237 void
1238 breakpoint_set_thread (struct breakpoint *b, int thread)
1239 {
1240 int old_thread = b->thread;
1241
1242 b->thread = thread;
1243 if (old_thread != thread)
1244 observer_notify_breakpoint_modified (b);
1245 }
1246
1247 /* Set the task for this breakpoint. If TASK is 0, make the
1248 breakpoint work for any task. */
1249
1250 void
1251 breakpoint_set_task (struct breakpoint *b, int task)
1252 {
1253 int old_task = b->task;
1254
1255 b->task = task;
1256 if (old_task != task)
1257 observer_notify_breakpoint_modified (b);
1258 }
1259
1260 void
1261 check_tracepoint_command (char *line, void *closure)
1262 {
1263 struct breakpoint *b = closure;
1264
1265 validate_actionline (line, b);
1266 }
1267
1268 /* A structure used to pass information through
1269 map_breakpoint_numbers. */
1270
1271 struct commands_info
1272 {
1273 /* True if the command was typed at a tty. */
1274 int from_tty;
1275
1276 /* The breakpoint range spec. */
1277 char *arg;
1278
1279 /* Non-NULL if the body of the commands are being read from this
1280 already-parsed command. */
1281 struct command_line *control;
1282
1283 /* The command lines read from the user, or NULL if they have not
1284 yet been read. */
1285 struct counted_command_line *cmd;
1286 };
1287
1288 /* A callback for map_breakpoint_numbers that sets the commands for
1289 commands_command. */
1290
1291 static void
1292 do_map_commands_command (struct breakpoint *b, void *data)
1293 {
1294 struct commands_info *info = data;
1295
1296 if (info->cmd == NULL)
1297 {
1298 struct command_line *l;
1299
1300 if (info->control != NULL)
1301 l = copy_command_lines (info->control->body_list[0]);
1302 else
1303 {
1304 struct cleanup *old_chain;
1305 char *str;
1306
1307 str = xstrprintf (_("Type commands for breakpoint(s) "
1308 "%s, one per line."),
1309 info->arg);
1310
1311 old_chain = make_cleanup (xfree, str);
1312
1313 l = read_command_lines (str,
1314 info->from_tty, 1,
1315 (is_tracepoint (b)
1316 ? check_tracepoint_command : 0),
1317 b);
1318
1319 do_cleanups (old_chain);
1320 }
1321
1322 info->cmd = alloc_counted_command_line (l);
1323 }
1324
1325 /* If a breakpoint was on the list more than once, we don't need to
1326 do anything. */
1327 if (b->commands != info->cmd)
1328 {
1329 validate_commands_for_breakpoint (b, info->cmd->commands);
1330 incref_counted_command_line (info->cmd);
1331 decref_counted_command_line (&b->commands);
1332 b->commands = info->cmd;
1333 observer_notify_breakpoint_modified (b);
1334 }
1335 }
1336
1337 static void
1338 commands_command_1 (char *arg, int from_tty,
1339 struct command_line *control)
1340 {
1341 struct cleanup *cleanups;
1342 struct commands_info info;
1343
1344 info.from_tty = from_tty;
1345 info.control = control;
1346 info.cmd = NULL;
1347 /* If we read command lines from the user, then `info' will hold an
1348 extra reference to the commands that we must clean up. */
1349 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1350
1351 if (arg == NULL || !*arg)
1352 {
1353 if (breakpoint_count - prev_breakpoint_count > 1)
1354 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1355 breakpoint_count);
1356 else if (breakpoint_count > 0)
1357 arg = xstrprintf ("%d", breakpoint_count);
1358 else
1359 {
1360 /* So that we don't try to free the incoming non-NULL
1361 argument in the cleanup below. Mapping breakpoint
1362 numbers will fail in this case. */
1363 arg = NULL;
1364 }
1365 }
1366 else
1367 /* The command loop has some static state, so we need to preserve
1368 our argument. */
1369 arg = xstrdup (arg);
1370
1371 if (arg != NULL)
1372 make_cleanup (xfree, arg);
1373
1374 info.arg = arg;
1375
1376 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1377
1378 if (info.cmd == NULL)
1379 error (_("No breakpoints specified."));
1380
1381 do_cleanups (cleanups);
1382 }
1383
1384 static void
1385 commands_command (char *arg, int from_tty)
1386 {
1387 commands_command_1 (arg, from_tty, NULL);
1388 }
1389
1390 /* Like commands_command, but instead of reading the commands from
1391 input stream, takes them from an already parsed command structure.
1392
1393 This is used by cli-script.c to DTRT with breakpoint commands
1394 that are part of if and while bodies. */
1395 enum command_control_type
1396 commands_from_control_command (char *arg, struct command_line *cmd)
1397 {
1398 commands_command_1 (arg, 0, cmd);
1399 return simple_control;
1400 }
1401
1402 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1403
1404 static int
1405 bp_location_has_shadow (struct bp_location *bl)
1406 {
1407 if (bl->loc_type != bp_loc_software_breakpoint)
1408 return 0;
1409 if (!bl->inserted)
1410 return 0;
1411 if (bl->target_info.shadow_len == 0)
1412 /* BL isn't valid, or doesn't shadow memory. */
1413 return 0;
1414 return 1;
1415 }
1416
1417 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1418 by replacing any memory breakpoints with their shadowed contents.
1419
1420 If READBUF is not NULL, this buffer must not overlap with any of
1421 the breakpoint location's shadow_contents buffers. Otherwise,
1422 a failed assertion internal error will be raised.
1423
1424 The range of shadowed area by each bp_location is:
1425 bl->address - bp_location_placed_address_before_address_max
1426 up to bl->address + bp_location_shadow_len_after_address_max
1427 The range we were requested to resolve shadows for is:
1428 memaddr ... memaddr + len
1429 Thus the safe cutoff boundaries for performance optimization are
1430 memaddr + len <= (bl->address
1431 - bp_location_placed_address_before_address_max)
1432 and:
1433 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1434
1435 void
1436 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1437 const gdb_byte *writebuf_org,
1438 ULONGEST memaddr, LONGEST len)
1439 {
1440 /* Left boundary, right boundary and median element of our binary
1441 search. */
1442 unsigned bc_l, bc_r, bc;
1443
1444 /* Find BC_L which is a leftmost element which may affect BUF
1445 content. It is safe to report lower value but a failure to
1446 report higher one. */
1447
1448 bc_l = 0;
1449 bc_r = bp_location_count;
1450 while (bc_l + 1 < bc_r)
1451 {
1452 struct bp_location *bl;
1453
1454 bc = (bc_l + bc_r) / 2;
1455 bl = bp_location[bc];
1456
1457 /* Check first BL->ADDRESS will not overflow due to the added
1458 constant. Then advance the left boundary only if we are sure
1459 the BC element can in no way affect the BUF content (MEMADDR
1460 to MEMADDR + LEN range).
1461
1462 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1463 offset so that we cannot miss a breakpoint with its shadow
1464 range tail still reaching MEMADDR. */
1465
1466 if ((bl->address + bp_location_shadow_len_after_address_max
1467 >= bl->address)
1468 && (bl->address + bp_location_shadow_len_after_address_max
1469 <= memaddr))
1470 bc_l = bc;
1471 else
1472 bc_r = bc;
1473 }
1474
1475 /* Due to the binary search above, we need to make sure we pick the
1476 first location that's at BC_L's address. E.g., if there are
1477 multiple locations at the same address, BC_L may end up pointing
1478 at a duplicate location, and miss the "master"/"inserted"
1479 location. Say, given locations L1, L2 and L3 at addresses A and
1480 B:
1481
1482 L1@A, L2@A, L3@B, ...
1483
1484 BC_L could end up pointing at location L2, while the "master"
1485 location could be L1. Since the `loc->inserted' flag is only set
1486 on "master" locations, we'd forget to restore the shadow of L1
1487 and L2. */
1488 while (bc_l > 0
1489 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1490 bc_l--;
1491
1492 /* Now do full processing of the found relevant range of elements. */
1493
1494 for (bc = bc_l; bc < bp_location_count; bc++)
1495 {
1496 struct bp_location *bl = bp_location[bc];
1497 CORE_ADDR bp_addr = 0;
1498 int bp_size = 0;
1499 int bptoffset = 0;
1500
1501 /* bp_location array has BL->OWNER always non-NULL. */
1502 if (bl->owner->type == bp_none)
1503 warning (_("reading through apparently deleted breakpoint #%d?"),
1504 bl->owner->number);
1505
1506 /* Performance optimization: any further element can no longer affect BUF
1507 content. */
1508
1509 if (bl->address >= bp_location_placed_address_before_address_max
1510 && memaddr + len <= (bl->address
1511 - bp_location_placed_address_before_address_max))
1512 break;
1513
1514 if (!bp_location_has_shadow (bl))
1515 continue;
1516 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1517 current_program_space->aspace, 0))
1518 continue;
1519
1520 /* Addresses and length of the part of the breakpoint that
1521 we need to copy. */
1522 bp_addr = bl->target_info.placed_address;
1523 bp_size = bl->target_info.shadow_len;
1524
1525 if (bp_addr + bp_size <= memaddr)
1526 /* The breakpoint is entirely before the chunk of memory we
1527 are reading. */
1528 continue;
1529
1530 if (bp_addr >= memaddr + len)
1531 /* The breakpoint is entirely after the chunk of memory we are
1532 reading. */
1533 continue;
1534
1535 /* Offset within shadow_contents. */
1536 if (bp_addr < memaddr)
1537 {
1538 /* Only copy the second part of the breakpoint. */
1539 bp_size -= memaddr - bp_addr;
1540 bptoffset = memaddr - bp_addr;
1541 bp_addr = memaddr;
1542 }
1543
1544 if (bp_addr + bp_size > memaddr + len)
1545 {
1546 /* Only copy the first part of the breakpoint. */
1547 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1548 }
1549
1550 if (readbuf != NULL)
1551 {
1552 /* Verify that the readbuf buffer does not overlap with
1553 the shadow_contents buffer. */
1554 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1555 || readbuf >= (bl->target_info.shadow_contents
1556 + bl->target_info.shadow_len));
1557
1558 /* Update the read buffer with this inserted breakpoint's
1559 shadow. */
1560 memcpy (readbuf + bp_addr - memaddr,
1561 bl->target_info.shadow_contents + bptoffset, bp_size);
1562 }
1563 else
1564 {
1565 struct gdbarch *gdbarch = bl->gdbarch;
1566 const unsigned char *bp;
1567 CORE_ADDR placed_address = bl->target_info.placed_address;
1568 int placed_size = bl->target_info.placed_size;
1569
1570 /* Update the shadow with what we want to write to memory. */
1571 memcpy (bl->target_info.shadow_contents + bptoffset,
1572 writebuf_org + bp_addr - memaddr, bp_size);
1573
1574 /* Determine appropriate breakpoint contents and size for this
1575 address. */
1576 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1577
1578 /* Update the final write buffer with this inserted
1579 breakpoint's INSN. */
1580 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1581 }
1582 }
1583 }
1584 \f
1585
1586 /* Return true if BPT is either a software breakpoint or a hardware
1587 breakpoint. */
1588
1589 int
1590 is_breakpoint (const struct breakpoint *bpt)
1591 {
1592 return (bpt->type == bp_breakpoint
1593 || bpt->type == bp_hardware_breakpoint
1594 || bpt->type == bp_dprintf);
1595 }
1596
1597 /* Return true if BPT is of any hardware watchpoint kind. */
1598
1599 static int
1600 is_hardware_watchpoint (const struct breakpoint *bpt)
1601 {
1602 return (bpt->type == bp_hardware_watchpoint
1603 || bpt->type == bp_read_watchpoint
1604 || bpt->type == bp_access_watchpoint);
1605 }
1606
1607 /* Return true if BPT is of any watchpoint kind, hardware or
1608 software. */
1609
1610 int
1611 is_watchpoint (const struct breakpoint *bpt)
1612 {
1613 return (is_hardware_watchpoint (bpt)
1614 || bpt->type == bp_watchpoint);
1615 }
1616
1617 /* Returns true if the current thread and its running state are safe
1618 to evaluate or update watchpoint B. Watchpoints on local
1619 expressions need to be evaluated in the context of the thread that
1620 was current when the watchpoint was created, and, that thread needs
1621 to be stopped to be able to select the correct frame context.
1622 Watchpoints on global expressions can be evaluated on any thread,
1623 and in any state. It is presently left to the target allowing
1624 memory accesses when threads are running. */
1625
1626 static int
1627 watchpoint_in_thread_scope (struct watchpoint *b)
1628 {
1629 return (b->base.pspace == current_program_space
1630 && (ptid_equal (b->watchpoint_thread, null_ptid)
1631 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1632 && !is_executing (inferior_ptid))));
1633 }
1634
1635 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1636 associated bp_watchpoint_scope breakpoint. */
1637
1638 static void
1639 watchpoint_del_at_next_stop (struct watchpoint *w)
1640 {
1641 struct breakpoint *b = &w->base;
1642
1643 if (b->related_breakpoint != b)
1644 {
1645 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1646 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1647 b->related_breakpoint->disposition = disp_del_at_next_stop;
1648 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1649 b->related_breakpoint = b;
1650 }
1651 b->disposition = disp_del_at_next_stop;
1652 }
1653
1654 /* Assuming that B is a watchpoint:
1655 - Reparse watchpoint expression, if REPARSE is non-zero
1656 - Evaluate expression and store the result in B->val
1657 - Evaluate the condition if there is one, and store the result
1658 in b->loc->cond.
1659 - Update the list of values that must be watched in B->loc.
1660
1661 If the watchpoint disposition is disp_del_at_next_stop, then do
1662 nothing. If this is local watchpoint that is out of scope, delete
1663 it.
1664
1665 Even with `set breakpoint always-inserted on' the watchpoints are
1666 removed + inserted on each stop here. Normal breakpoints must
1667 never be removed because they might be missed by a running thread
1668 when debugging in non-stop mode. On the other hand, hardware
1669 watchpoints (is_hardware_watchpoint; processed here) are specific
1670 to each LWP since they are stored in each LWP's hardware debug
1671 registers. Therefore, such LWP must be stopped first in order to
1672 be able to modify its hardware watchpoints.
1673
1674 Hardware watchpoints must be reset exactly once after being
1675 presented to the user. It cannot be done sooner, because it would
1676 reset the data used to present the watchpoint hit to the user. And
1677 it must not be done later because it could display the same single
1678 watchpoint hit during multiple GDB stops. Note that the latter is
1679 relevant only to the hardware watchpoint types bp_read_watchpoint
1680 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1681 not user-visible - its hit is suppressed if the memory content has
1682 not changed.
1683
1684 The following constraints influence the location where we can reset
1685 hardware watchpoints:
1686
1687 * target_stopped_by_watchpoint and target_stopped_data_address are
1688 called several times when GDB stops.
1689
1690 [linux]
1691 * Multiple hardware watchpoints can be hit at the same time,
1692 causing GDB to stop. GDB only presents one hardware watchpoint
1693 hit at a time as the reason for stopping, and all the other hits
1694 are presented later, one after the other, each time the user
1695 requests the execution to be resumed. Execution is not resumed
1696 for the threads still having pending hit event stored in
1697 LWP_INFO->STATUS. While the watchpoint is already removed from
1698 the inferior on the first stop the thread hit event is kept being
1699 reported from its cached value by linux_nat_stopped_data_address
1700 until the real thread resume happens after the watchpoint gets
1701 presented and thus its LWP_INFO->STATUS gets reset.
1702
1703 Therefore the hardware watchpoint hit can get safely reset on the
1704 watchpoint removal from inferior. */
1705
1706 static void
1707 update_watchpoint (struct watchpoint *b, int reparse)
1708 {
1709 int within_current_scope;
1710 struct frame_id saved_frame_id;
1711 int frame_saved;
1712
1713 /* If this is a local watchpoint, we only want to check if the
1714 watchpoint frame is in scope if the current thread is the thread
1715 that was used to create the watchpoint. */
1716 if (!watchpoint_in_thread_scope (b))
1717 return;
1718
1719 if (b->base.disposition == disp_del_at_next_stop)
1720 return;
1721
1722 frame_saved = 0;
1723
1724 /* Determine if the watchpoint is within scope. */
1725 if (b->exp_valid_block == NULL)
1726 within_current_scope = 1;
1727 else
1728 {
1729 struct frame_info *fi = get_current_frame ();
1730 struct gdbarch *frame_arch = get_frame_arch (fi);
1731 CORE_ADDR frame_pc = get_frame_pc (fi);
1732
1733 /* If we're in a function epilogue, unwinding may not work
1734 properly, so do not attempt to recreate locations at this
1735 point. See similar comments in watchpoint_check. */
1736 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1737 return;
1738
1739 /* Save the current frame's ID so we can restore it after
1740 evaluating the watchpoint expression on its own frame. */
1741 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1742 took a frame parameter, so that we didn't have to change the
1743 selected frame. */
1744 frame_saved = 1;
1745 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1746
1747 fi = frame_find_by_id (b->watchpoint_frame);
1748 within_current_scope = (fi != NULL);
1749 if (within_current_scope)
1750 select_frame (fi);
1751 }
1752
1753 /* We don't free locations. They are stored in the bp_location array
1754 and update_global_location_list will eventually delete them and
1755 remove breakpoints if needed. */
1756 b->base.loc = NULL;
1757
1758 if (within_current_scope && reparse)
1759 {
1760 const char *s;
1761
1762 if (b->exp)
1763 {
1764 xfree (b->exp);
1765 b->exp = NULL;
1766 }
1767 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1768 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1769 /* If the meaning of expression itself changed, the old value is
1770 no longer relevant. We don't want to report a watchpoint hit
1771 to the user when the old value and the new value may actually
1772 be completely different objects. */
1773 value_free (b->val);
1774 b->val = NULL;
1775 b->val_valid = 0;
1776
1777 /* Note that unlike with breakpoints, the watchpoint's condition
1778 expression is stored in the breakpoint object, not in the
1779 locations (re)created below. */
1780 if (b->base.cond_string != NULL)
1781 {
1782 if (b->cond_exp != NULL)
1783 {
1784 xfree (b->cond_exp);
1785 b->cond_exp = NULL;
1786 }
1787
1788 s = b->base.cond_string;
1789 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1790 }
1791 }
1792
1793 /* If we failed to parse the expression, for example because
1794 it refers to a global variable in a not-yet-loaded shared library,
1795 don't try to insert watchpoint. We don't automatically delete
1796 such watchpoint, though, since failure to parse expression
1797 is different from out-of-scope watchpoint. */
1798 if ( !target_has_execution)
1799 {
1800 /* Without execution, memory can't change. No use to try and
1801 set watchpoint locations. The watchpoint will be reset when
1802 the target gains execution, through breakpoint_re_set. */
1803 }
1804 else if (within_current_scope && b->exp)
1805 {
1806 int pc = 0;
1807 struct value *val_chain, *v, *result, *next;
1808 struct program_space *frame_pspace;
1809
1810 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1811
1812 /* Avoid setting b->val if it's already set. The meaning of
1813 b->val is 'the last value' user saw, and we should update
1814 it only if we reported that last value to user. As it
1815 happens, the code that reports it updates b->val directly.
1816 We don't keep track of the memory value for masked
1817 watchpoints. */
1818 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1819 {
1820 b->val = v;
1821 b->val_valid = 1;
1822 }
1823
1824 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1825
1826 /* Look at each value on the value chain. */
1827 for (v = val_chain; v; v = value_next (v))
1828 {
1829 /* If it's a memory location, and GDB actually needed
1830 its contents to evaluate the expression, then we
1831 must watch it. If the first value returned is
1832 still lazy, that means an error occurred reading it;
1833 watch it anyway in case it becomes readable. */
1834 if (VALUE_LVAL (v) == lval_memory
1835 && (v == val_chain || ! value_lazy (v)))
1836 {
1837 struct type *vtype = check_typedef (value_type (v));
1838
1839 /* We only watch structs and arrays if user asked
1840 for it explicitly, never if they just happen to
1841 appear in the middle of some value chain. */
1842 if (v == result
1843 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1844 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1845 {
1846 CORE_ADDR addr;
1847 int type;
1848 struct bp_location *loc, **tmp;
1849
1850 addr = value_address (v);
1851 type = hw_write;
1852 if (b->base.type == bp_read_watchpoint)
1853 type = hw_read;
1854 else if (b->base.type == bp_access_watchpoint)
1855 type = hw_access;
1856
1857 loc = allocate_bp_location (&b->base);
1858 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1859 ;
1860 *tmp = loc;
1861 loc->gdbarch = get_type_arch (value_type (v));
1862
1863 loc->pspace = frame_pspace;
1864 loc->address = addr;
1865 loc->length = TYPE_LENGTH (value_type (v));
1866 loc->watchpoint_type = type;
1867 }
1868 }
1869 }
1870
1871 /* Change the type of breakpoint between hardware assisted or
1872 an ordinary watchpoint depending on the hardware support
1873 and free hardware slots. REPARSE is set when the inferior
1874 is started. */
1875 if (reparse)
1876 {
1877 int reg_cnt;
1878 enum bp_loc_type loc_type;
1879 struct bp_location *bl;
1880
1881 reg_cnt = can_use_hardware_watchpoint (val_chain);
1882
1883 if (reg_cnt)
1884 {
1885 int i, target_resources_ok, other_type_used;
1886 enum bptype type;
1887
1888 /* Use an exact watchpoint when there's only one memory region to be
1889 watched, and only one debug register is needed to watch it. */
1890 b->exact = target_exact_watchpoints && reg_cnt == 1;
1891
1892 /* We need to determine how many resources are already
1893 used for all other hardware watchpoints plus this one
1894 to see if we still have enough resources to also fit
1895 this watchpoint in as well. */
1896
1897 /* If this is a software watchpoint, we try to turn it
1898 to a hardware one -- count resources as if B was of
1899 hardware watchpoint type. */
1900 type = b->base.type;
1901 if (type == bp_watchpoint)
1902 type = bp_hardware_watchpoint;
1903
1904 /* This watchpoint may or may not have been placed on
1905 the list yet at this point (it won't be in the list
1906 if we're trying to create it for the first time,
1907 through watch_command), so always account for it
1908 manually. */
1909
1910 /* Count resources used by all watchpoints except B. */
1911 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1912
1913 /* Add in the resources needed for B. */
1914 i += hw_watchpoint_use_count (&b->base);
1915
1916 target_resources_ok
1917 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1918 if (target_resources_ok <= 0)
1919 {
1920 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1921
1922 if (target_resources_ok == 0 && !sw_mode)
1923 error (_("Target does not support this type of "
1924 "hardware watchpoint."));
1925 else if (target_resources_ok < 0 && !sw_mode)
1926 error (_("There are not enough available hardware "
1927 "resources for this watchpoint."));
1928
1929 /* Downgrade to software watchpoint. */
1930 b->base.type = bp_watchpoint;
1931 }
1932 else
1933 {
1934 /* If this was a software watchpoint, we've just
1935 found we have enough resources to turn it to a
1936 hardware watchpoint. Otherwise, this is a
1937 nop. */
1938 b->base.type = type;
1939 }
1940 }
1941 else if (!b->base.ops->works_in_software_mode (&b->base))
1942 error (_("Expression cannot be implemented with "
1943 "read/access watchpoint."));
1944 else
1945 b->base.type = bp_watchpoint;
1946
1947 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1948 : bp_loc_hardware_watchpoint);
1949 for (bl = b->base.loc; bl; bl = bl->next)
1950 bl->loc_type = loc_type;
1951 }
1952
1953 for (v = val_chain; v; v = next)
1954 {
1955 next = value_next (v);
1956 if (v != b->val)
1957 value_free (v);
1958 }
1959
1960 /* If a software watchpoint is not watching any memory, then the
1961 above left it without any location set up. But,
1962 bpstat_stop_status requires a location to be able to report
1963 stops, so make sure there's at least a dummy one. */
1964 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1965 {
1966 struct breakpoint *base = &b->base;
1967 base->loc = allocate_bp_location (base);
1968 base->loc->pspace = frame_pspace;
1969 base->loc->address = -1;
1970 base->loc->length = -1;
1971 base->loc->watchpoint_type = -1;
1972 }
1973 }
1974 else if (!within_current_scope)
1975 {
1976 printf_filtered (_("\
1977 Watchpoint %d deleted because the program has left the block\n\
1978 in which its expression is valid.\n"),
1979 b->base.number);
1980 watchpoint_del_at_next_stop (b);
1981 }
1982
1983 /* Restore the selected frame. */
1984 if (frame_saved)
1985 select_frame (frame_find_by_id (saved_frame_id));
1986 }
1987
1988
1989 /* Returns 1 iff breakpoint location should be
1990 inserted in the inferior. We don't differentiate the type of BL's owner
1991 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1992 breakpoint_ops is not defined, because in insert_bp_location,
1993 tracepoint's insert_location will not be called. */
1994 static int
1995 should_be_inserted (struct bp_location *bl)
1996 {
1997 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1998 return 0;
1999
2000 if (bl->owner->disposition == disp_del_at_next_stop)
2001 return 0;
2002
2003 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2004 return 0;
2005
2006 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2007 return 0;
2008
2009 /* This is set for example, when we're attached to the parent of a
2010 vfork, and have detached from the child. The child is running
2011 free, and we expect it to do an exec or exit, at which point the
2012 OS makes the parent schedulable again (and the target reports
2013 that the vfork is done). Until the child is done with the shared
2014 memory region, do not insert breakpoints in the parent, otherwise
2015 the child could still trip on the parent's breakpoints. Since
2016 the parent is blocked anyway, it won't miss any breakpoint. */
2017 if (bl->pspace->breakpoints_not_allowed)
2018 return 0;
2019
2020 return 1;
2021 }
2022
2023 /* Same as should_be_inserted but does the check assuming
2024 that the location is not duplicated. */
2025
2026 static int
2027 unduplicated_should_be_inserted (struct bp_location *bl)
2028 {
2029 int result;
2030 const int save_duplicate = bl->duplicate;
2031
2032 bl->duplicate = 0;
2033 result = should_be_inserted (bl);
2034 bl->duplicate = save_duplicate;
2035 return result;
2036 }
2037
2038 /* Parses a conditional described by an expression COND into an
2039 agent expression bytecode suitable for evaluation
2040 by the bytecode interpreter. Return NULL if there was
2041 any error during parsing. */
2042
2043 static struct agent_expr *
2044 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2045 {
2046 struct agent_expr *aexpr = NULL;
2047 volatile struct gdb_exception ex;
2048
2049 if (!cond)
2050 return NULL;
2051
2052 /* We don't want to stop processing, so catch any errors
2053 that may show up. */
2054 TRY_CATCH (ex, RETURN_MASK_ERROR)
2055 {
2056 aexpr = gen_eval_for_expr (scope, cond);
2057 }
2058
2059 if (ex.reason < 0)
2060 {
2061 /* If we got here, it means the condition could not be parsed to a valid
2062 bytecode expression and thus can't be evaluated on the target's side.
2063 It's no use iterating through the conditions. */
2064 return NULL;
2065 }
2066
2067 /* We have a valid agent expression. */
2068 return aexpr;
2069 }
2070
2071 /* Based on location BL, create a list of breakpoint conditions to be
2072 passed on to the target. If we have duplicated locations with different
2073 conditions, we will add such conditions to the list. The idea is that the
2074 target will evaluate the list of conditions and will only notify GDB when
2075 one of them is true. */
2076
2077 static void
2078 build_target_condition_list (struct bp_location *bl)
2079 {
2080 struct bp_location **locp = NULL, **loc2p;
2081 int null_condition_or_parse_error = 0;
2082 int modified = bl->needs_update;
2083 struct bp_location *loc;
2084
2085 /* This is only meaningful if the target is
2086 evaluating conditions and if the user has
2087 opted for condition evaluation on the target's
2088 side. */
2089 if (gdb_evaluates_breakpoint_condition_p ()
2090 || !target_supports_evaluation_of_breakpoint_conditions ())
2091 return;
2092
2093 /* Do a first pass to check for locations with no assigned
2094 conditions or conditions that fail to parse to a valid agent expression
2095 bytecode. If any of these happen, then it's no use to send conditions
2096 to the target since this location will always trigger and generate a
2097 response back to GDB. */
2098 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2099 {
2100 loc = (*loc2p);
2101 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2102 {
2103 if (modified)
2104 {
2105 struct agent_expr *aexpr;
2106
2107 /* Re-parse the conditions since something changed. In that
2108 case we already freed the condition bytecodes (see
2109 force_breakpoint_reinsertion). We just
2110 need to parse the condition to bytecodes again. */
2111 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2112 loc->cond_bytecode = aexpr;
2113
2114 /* Check if we managed to parse the conditional expression
2115 correctly. If not, we will not send this condition
2116 to the target. */
2117 if (aexpr)
2118 continue;
2119 }
2120
2121 /* If we have a NULL bytecode expression, it means something
2122 went wrong or we have a null condition expression. */
2123 if (!loc->cond_bytecode)
2124 {
2125 null_condition_or_parse_error = 1;
2126 break;
2127 }
2128 }
2129 }
2130
2131 /* If any of these happened, it means we will have to evaluate the conditions
2132 for the location's address on gdb's side. It is no use keeping bytecodes
2133 for all the other duplicate locations, thus we free all of them here.
2134
2135 This is so we have a finer control over which locations' conditions are
2136 being evaluated by GDB or the remote stub. */
2137 if (null_condition_or_parse_error)
2138 {
2139 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2140 {
2141 loc = (*loc2p);
2142 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2143 {
2144 /* Only go as far as the first NULL bytecode is
2145 located. */
2146 if (!loc->cond_bytecode)
2147 return;
2148
2149 free_agent_expr (loc->cond_bytecode);
2150 loc->cond_bytecode = NULL;
2151 }
2152 }
2153 }
2154
2155 /* No NULL conditions or failed bytecode generation. Build a condition list
2156 for this location's address. */
2157 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2158 {
2159 loc = (*loc2p);
2160 if (loc->cond
2161 && is_breakpoint (loc->owner)
2162 && loc->pspace->num == bl->pspace->num
2163 && loc->owner->enable_state == bp_enabled
2164 && loc->enabled)
2165 /* Add the condition to the vector. This will be used later to send the
2166 conditions to the target. */
2167 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2168 loc->cond_bytecode);
2169 }
2170
2171 return;
2172 }
2173
2174 /* Parses a command described by string CMD into an agent expression
2175 bytecode suitable for evaluation by the bytecode interpreter.
2176 Return NULL if there was any error during parsing. */
2177
2178 static struct agent_expr *
2179 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2180 {
2181 struct cleanup *old_cleanups = 0;
2182 struct expression *expr, **argvec;
2183 struct agent_expr *aexpr = NULL;
2184 volatile struct gdb_exception ex;
2185 const char *cmdrest;
2186 const char *format_start, *format_end;
2187 struct format_piece *fpieces;
2188 int nargs;
2189 struct gdbarch *gdbarch = get_current_arch ();
2190
2191 if (!cmd)
2192 return NULL;
2193
2194 cmdrest = cmd;
2195
2196 if (*cmdrest == ',')
2197 ++cmdrest;
2198 cmdrest = skip_spaces_const (cmdrest);
2199
2200 if (*cmdrest++ != '"')
2201 error (_("No format string following the location"));
2202
2203 format_start = cmdrest;
2204
2205 fpieces = parse_format_string (&cmdrest);
2206
2207 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2208
2209 format_end = cmdrest;
2210
2211 if (*cmdrest++ != '"')
2212 error (_("Bad format string, non-terminated '\"'."));
2213
2214 cmdrest = skip_spaces_const (cmdrest);
2215
2216 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2217 error (_("Invalid argument syntax"));
2218
2219 if (*cmdrest == ',')
2220 cmdrest++;
2221 cmdrest = skip_spaces_const (cmdrest);
2222
2223 /* For each argument, make an expression. */
2224
2225 argvec = (struct expression **) alloca (strlen (cmd)
2226 * sizeof (struct expression *));
2227
2228 nargs = 0;
2229 while (*cmdrest != '\0')
2230 {
2231 const char *cmd1;
2232
2233 cmd1 = cmdrest;
2234 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2235 argvec[nargs++] = expr;
2236 cmdrest = cmd1;
2237 if (*cmdrest == ',')
2238 ++cmdrest;
2239 }
2240
2241 /* We don't want to stop processing, so catch any errors
2242 that may show up. */
2243 TRY_CATCH (ex, RETURN_MASK_ERROR)
2244 {
2245 aexpr = gen_printf (scope, gdbarch, 0, 0,
2246 format_start, format_end - format_start,
2247 fpieces, nargs, argvec);
2248 }
2249
2250 do_cleanups (old_cleanups);
2251
2252 if (ex.reason < 0)
2253 {
2254 /* If we got here, it means the command could not be parsed to a valid
2255 bytecode expression and thus can't be evaluated on the target's side.
2256 It's no use iterating through the other commands. */
2257 return NULL;
2258 }
2259
2260 /* We have a valid agent expression, return it. */
2261 return aexpr;
2262 }
2263
2264 /* Based on location BL, create a list of breakpoint commands to be
2265 passed on to the target. If we have duplicated locations with
2266 different commands, we will add any such to the list. */
2267
2268 static void
2269 build_target_command_list (struct bp_location *bl)
2270 {
2271 struct bp_location **locp = NULL, **loc2p;
2272 int null_command_or_parse_error = 0;
2273 int modified = bl->needs_update;
2274 struct bp_location *loc;
2275
2276 /* For now, limit to agent-style dprintf breakpoints. */
2277 if (bl->owner->type != bp_dprintf
2278 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2279 return;
2280
2281 if (!target_can_run_breakpoint_commands ())
2282 return;
2283
2284 /* Do a first pass to check for locations with no assigned
2285 conditions or conditions that fail to parse to a valid agent expression
2286 bytecode. If any of these happen, then it's no use to send conditions
2287 to the target since this location will always trigger and generate a
2288 response back to GDB. */
2289 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2290 {
2291 loc = (*loc2p);
2292 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2293 {
2294 if (modified)
2295 {
2296 struct agent_expr *aexpr;
2297
2298 /* Re-parse the commands since something changed. In that
2299 case we already freed the command bytecodes (see
2300 force_breakpoint_reinsertion). We just
2301 need to parse the command to bytecodes again. */
2302 aexpr = parse_cmd_to_aexpr (bl->address,
2303 loc->owner->extra_string);
2304 loc->cmd_bytecode = aexpr;
2305
2306 if (!aexpr)
2307 continue;
2308 }
2309
2310 /* If we have a NULL bytecode expression, it means something
2311 went wrong or we have a null command expression. */
2312 if (!loc->cmd_bytecode)
2313 {
2314 null_command_or_parse_error = 1;
2315 break;
2316 }
2317 }
2318 }
2319
2320 /* If anything failed, then we're not doing target-side commands,
2321 and so clean up. */
2322 if (null_command_or_parse_error)
2323 {
2324 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2325 {
2326 loc = (*loc2p);
2327 if (is_breakpoint (loc->owner)
2328 && loc->pspace->num == bl->pspace->num)
2329 {
2330 /* Only go as far as the first NULL bytecode is
2331 located. */
2332 if (loc->cmd_bytecode == NULL)
2333 return;
2334
2335 free_agent_expr (loc->cmd_bytecode);
2336 loc->cmd_bytecode = NULL;
2337 }
2338 }
2339 }
2340
2341 /* No NULL commands or failed bytecode generation. Build a command list
2342 for this location's address. */
2343 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2344 {
2345 loc = (*loc2p);
2346 if (loc->owner->extra_string
2347 && is_breakpoint (loc->owner)
2348 && loc->pspace->num == bl->pspace->num
2349 && loc->owner->enable_state == bp_enabled
2350 && loc->enabled)
2351 /* Add the command to the vector. This will be used later
2352 to send the commands to the target. */
2353 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2354 loc->cmd_bytecode);
2355 }
2356
2357 bl->target_info.persist = 0;
2358 /* Maybe flag this location as persistent. */
2359 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2360 bl->target_info.persist = 1;
2361 }
2362
2363 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2364 location. Any error messages are printed to TMP_ERROR_STREAM; and
2365 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2366 Returns 0 for success, 1 if the bp_location type is not supported or
2367 -1 for failure.
2368
2369 NOTE drow/2003-09-09: This routine could be broken down to an
2370 object-style method for each breakpoint or catchpoint type. */
2371 static int
2372 insert_bp_location (struct bp_location *bl,
2373 struct ui_file *tmp_error_stream,
2374 int *disabled_breaks,
2375 int *hw_breakpoint_error,
2376 int *hw_bp_error_explained_already)
2377 {
2378 int val = 0;
2379 char *hw_bp_err_string = NULL;
2380 struct gdb_exception e;
2381
2382 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2383 return 0;
2384
2385 /* Note we don't initialize bl->target_info, as that wipes out
2386 the breakpoint location's shadow_contents if the breakpoint
2387 is still inserted at that location. This in turn breaks
2388 target_read_memory which depends on these buffers when
2389 a memory read is requested at the breakpoint location:
2390 Once the target_info has been wiped, we fail to see that
2391 we have a breakpoint inserted at that address and thus
2392 read the breakpoint instead of returning the data saved in
2393 the breakpoint location's shadow contents. */
2394 bl->target_info.placed_address = bl->address;
2395 bl->target_info.placed_address_space = bl->pspace->aspace;
2396 bl->target_info.length = bl->length;
2397
2398 /* When working with target-side conditions, we must pass all the conditions
2399 for the same breakpoint address down to the target since GDB will not
2400 insert those locations. With a list of breakpoint conditions, the target
2401 can decide when to stop and notify GDB. */
2402
2403 if (is_breakpoint (bl->owner))
2404 {
2405 build_target_condition_list (bl);
2406 build_target_command_list (bl);
2407 /* Reset the modification marker. */
2408 bl->needs_update = 0;
2409 }
2410
2411 if (bl->loc_type == bp_loc_software_breakpoint
2412 || bl->loc_type == bp_loc_hardware_breakpoint)
2413 {
2414 if (bl->owner->type != bp_hardware_breakpoint)
2415 {
2416 /* If the explicitly specified breakpoint type
2417 is not hardware breakpoint, check the memory map to see
2418 if the breakpoint address is in read only memory or not.
2419
2420 Two important cases are:
2421 - location type is not hardware breakpoint, memory
2422 is readonly. We change the type of the location to
2423 hardware breakpoint.
2424 - location type is hardware breakpoint, memory is
2425 read-write. This means we've previously made the
2426 location hardware one, but then the memory map changed,
2427 so we undo.
2428
2429 When breakpoints are removed, remove_breakpoints will use
2430 location types we've just set here, the only possible
2431 problem is that memory map has changed during running
2432 program, but it's not going to work anyway with current
2433 gdb. */
2434 struct mem_region *mr
2435 = lookup_mem_region (bl->target_info.placed_address);
2436
2437 if (mr)
2438 {
2439 if (automatic_hardware_breakpoints)
2440 {
2441 enum bp_loc_type new_type;
2442
2443 if (mr->attrib.mode != MEM_RW)
2444 new_type = bp_loc_hardware_breakpoint;
2445 else
2446 new_type = bp_loc_software_breakpoint;
2447
2448 if (new_type != bl->loc_type)
2449 {
2450 static int said = 0;
2451
2452 bl->loc_type = new_type;
2453 if (!said)
2454 {
2455 fprintf_filtered (gdb_stdout,
2456 _("Note: automatically using "
2457 "hardware breakpoints for "
2458 "read-only addresses.\n"));
2459 said = 1;
2460 }
2461 }
2462 }
2463 else if (bl->loc_type == bp_loc_software_breakpoint
2464 && mr->attrib.mode != MEM_RW)
2465 warning (_("cannot set software breakpoint "
2466 "at readonly address %s"),
2467 paddress (bl->gdbarch, bl->address));
2468 }
2469 }
2470
2471 /* First check to see if we have to handle an overlay. */
2472 if (overlay_debugging == ovly_off
2473 || bl->section == NULL
2474 || !(section_is_overlay (bl->section)))
2475 {
2476 /* No overlay handling: just set the breakpoint. */
2477 TRY_CATCH (e, RETURN_MASK_ALL)
2478 {
2479 val = bl->owner->ops->insert_location (bl);
2480 }
2481 if (e.reason < 0)
2482 {
2483 val = 1;
2484 hw_bp_err_string = (char *) e.message;
2485 }
2486 }
2487 else
2488 {
2489 /* This breakpoint is in an overlay section.
2490 Shall we set a breakpoint at the LMA? */
2491 if (!overlay_events_enabled)
2492 {
2493 /* Yes -- overlay event support is not active,
2494 so we must try to set a breakpoint at the LMA.
2495 This will not work for a hardware breakpoint. */
2496 if (bl->loc_type == bp_loc_hardware_breakpoint)
2497 warning (_("hardware breakpoint %d not supported in overlay!"),
2498 bl->owner->number);
2499 else
2500 {
2501 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2502 bl->section);
2503 /* Set a software (trap) breakpoint at the LMA. */
2504 bl->overlay_target_info = bl->target_info;
2505 bl->overlay_target_info.placed_address = addr;
2506 val = target_insert_breakpoint (bl->gdbarch,
2507 &bl->overlay_target_info);
2508 if (val != 0)
2509 fprintf_unfiltered (tmp_error_stream,
2510 "Overlay breakpoint %d "
2511 "failed: in ROM?\n",
2512 bl->owner->number);
2513 }
2514 }
2515 /* Shall we set a breakpoint at the VMA? */
2516 if (section_is_mapped (bl->section))
2517 {
2518 /* Yes. This overlay section is mapped into memory. */
2519 TRY_CATCH (e, RETURN_MASK_ALL)
2520 {
2521 val = bl->owner->ops->insert_location (bl);
2522 }
2523 if (e.reason < 0)
2524 {
2525 val = 1;
2526 hw_bp_err_string = (char *) e.message;
2527 }
2528 }
2529 else
2530 {
2531 /* No. This breakpoint will not be inserted.
2532 No error, but do not mark the bp as 'inserted'. */
2533 return 0;
2534 }
2535 }
2536
2537 if (val)
2538 {
2539 /* Can't set the breakpoint. */
2540 if (solib_name_from_address (bl->pspace, bl->address))
2541 {
2542 /* See also: disable_breakpoints_in_shlibs. */
2543 val = 0;
2544 bl->shlib_disabled = 1;
2545 observer_notify_breakpoint_modified (bl->owner);
2546 if (!*disabled_breaks)
2547 {
2548 fprintf_unfiltered (tmp_error_stream,
2549 "Cannot insert breakpoint %d.\n",
2550 bl->owner->number);
2551 fprintf_unfiltered (tmp_error_stream,
2552 "Temporarily disabling shared "
2553 "library breakpoints:\n");
2554 }
2555 *disabled_breaks = 1;
2556 fprintf_unfiltered (tmp_error_stream,
2557 "breakpoint #%d\n", bl->owner->number);
2558 }
2559 else
2560 {
2561 if (bl->loc_type == bp_loc_hardware_breakpoint)
2562 {
2563 *hw_breakpoint_error = 1;
2564 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2565 fprintf_unfiltered (tmp_error_stream,
2566 "Cannot insert hardware breakpoint %d%s",
2567 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2568 if (hw_bp_err_string)
2569 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2570 }
2571 else
2572 {
2573 char *message = memory_error_message (TARGET_XFER_E_IO,
2574 bl->gdbarch, bl->address);
2575 struct cleanup *old_chain = make_cleanup (xfree, message);
2576
2577 fprintf_unfiltered (tmp_error_stream,
2578 "Cannot insert breakpoint %d.\n"
2579 "%s\n",
2580 bl->owner->number, message);
2581
2582 do_cleanups (old_chain);
2583 }
2584
2585 }
2586 }
2587 else
2588 bl->inserted = 1;
2589
2590 return val;
2591 }
2592
2593 else if (bl->loc_type == bp_loc_hardware_watchpoint
2594 /* NOTE drow/2003-09-08: This state only exists for removing
2595 watchpoints. It's not clear that it's necessary... */
2596 && bl->owner->disposition != disp_del_at_next_stop)
2597 {
2598 gdb_assert (bl->owner->ops != NULL
2599 && bl->owner->ops->insert_location != NULL);
2600
2601 val = bl->owner->ops->insert_location (bl);
2602
2603 /* If trying to set a read-watchpoint, and it turns out it's not
2604 supported, try emulating one with an access watchpoint. */
2605 if (val == 1 && bl->watchpoint_type == hw_read)
2606 {
2607 struct bp_location *loc, **loc_temp;
2608
2609 /* But don't try to insert it, if there's already another
2610 hw_access location that would be considered a duplicate
2611 of this one. */
2612 ALL_BP_LOCATIONS (loc, loc_temp)
2613 if (loc != bl
2614 && loc->watchpoint_type == hw_access
2615 && watchpoint_locations_match (bl, loc))
2616 {
2617 bl->duplicate = 1;
2618 bl->inserted = 1;
2619 bl->target_info = loc->target_info;
2620 bl->watchpoint_type = hw_access;
2621 val = 0;
2622 break;
2623 }
2624
2625 if (val == 1)
2626 {
2627 bl->watchpoint_type = hw_access;
2628 val = bl->owner->ops->insert_location (bl);
2629
2630 if (val)
2631 /* Back to the original value. */
2632 bl->watchpoint_type = hw_read;
2633 }
2634 }
2635
2636 bl->inserted = (val == 0);
2637 }
2638
2639 else if (bl->owner->type == bp_catchpoint)
2640 {
2641 gdb_assert (bl->owner->ops != NULL
2642 && bl->owner->ops->insert_location != NULL);
2643
2644 val = bl->owner->ops->insert_location (bl);
2645 if (val)
2646 {
2647 bl->owner->enable_state = bp_disabled;
2648
2649 if (val == 1)
2650 warning (_("\
2651 Error inserting catchpoint %d: Your system does not support this type\n\
2652 of catchpoint."), bl->owner->number);
2653 else
2654 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2655 }
2656
2657 bl->inserted = (val == 0);
2658
2659 /* We've already printed an error message if there was a problem
2660 inserting this catchpoint, and we've disabled the catchpoint,
2661 so just return success. */
2662 return 0;
2663 }
2664
2665 return 0;
2666 }
2667
2668 /* This function is called when program space PSPACE is about to be
2669 deleted. It takes care of updating breakpoints to not reference
2670 PSPACE anymore. */
2671
2672 void
2673 breakpoint_program_space_exit (struct program_space *pspace)
2674 {
2675 struct breakpoint *b, *b_temp;
2676 struct bp_location *loc, **loc_temp;
2677
2678 /* Remove any breakpoint that was set through this program space. */
2679 ALL_BREAKPOINTS_SAFE (b, b_temp)
2680 {
2681 if (b->pspace == pspace)
2682 delete_breakpoint (b);
2683 }
2684
2685 /* Breakpoints set through other program spaces could have locations
2686 bound to PSPACE as well. Remove those. */
2687 ALL_BP_LOCATIONS (loc, loc_temp)
2688 {
2689 struct bp_location *tmp;
2690
2691 if (loc->pspace == pspace)
2692 {
2693 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2694 if (loc->owner->loc == loc)
2695 loc->owner->loc = loc->next;
2696 else
2697 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2698 if (tmp->next == loc)
2699 {
2700 tmp->next = loc->next;
2701 break;
2702 }
2703 }
2704 }
2705
2706 /* Now update the global location list to permanently delete the
2707 removed locations above. */
2708 update_global_location_list (0);
2709 }
2710
2711 /* Make sure all breakpoints are inserted in inferior.
2712 Throws exception on any error.
2713 A breakpoint that is already inserted won't be inserted
2714 again, so calling this function twice is safe. */
2715 void
2716 insert_breakpoints (void)
2717 {
2718 struct breakpoint *bpt;
2719
2720 ALL_BREAKPOINTS (bpt)
2721 if (is_hardware_watchpoint (bpt))
2722 {
2723 struct watchpoint *w = (struct watchpoint *) bpt;
2724
2725 update_watchpoint (w, 0 /* don't reparse. */);
2726 }
2727
2728 update_global_location_list (1);
2729
2730 /* update_global_location_list does not insert breakpoints when
2731 always_inserted_mode is not enabled. Explicitly insert them
2732 now. */
2733 if (!breakpoints_always_inserted_mode ())
2734 insert_breakpoint_locations ();
2735 }
2736
2737 /* Invoke CALLBACK for each of bp_location. */
2738
2739 void
2740 iterate_over_bp_locations (walk_bp_location_callback callback)
2741 {
2742 struct bp_location *loc, **loc_tmp;
2743
2744 ALL_BP_LOCATIONS (loc, loc_tmp)
2745 {
2746 callback (loc, NULL);
2747 }
2748 }
2749
2750 /* This is used when we need to synch breakpoint conditions between GDB and the
2751 target. It is the case with deleting and disabling of breakpoints when using
2752 always-inserted mode. */
2753
2754 static void
2755 update_inserted_breakpoint_locations (void)
2756 {
2757 struct bp_location *bl, **blp_tmp;
2758 int error_flag = 0;
2759 int val = 0;
2760 int disabled_breaks = 0;
2761 int hw_breakpoint_error = 0;
2762 int hw_bp_details_reported = 0;
2763
2764 struct ui_file *tmp_error_stream = mem_fileopen ();
2765 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2766
2767 /* Explicitly mark the warning -- this will only be printed if
2768 there was an error. */
2769 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2770
2771 save_current_space_and_thread ();
2772
2773 ALL_BP_LOCATIONS (bl, blp_tmp)
2774 {
2775 /* We only want to update software breakpoints and hardware
2776 breakpoints. */
2777 if (!is_breakpoint (bl->owner))
2778 continue;
2779
2780 /* We only want to update locations that are already inserted
2781 and need updating. This is to avoid unwanted insertion during
2782 deletion of breakpoints. */
2783 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2784 continue;
2785
2786 switch_to_program_space_and_thread (bl->pspace);
2787
2788 /* For targets that support global breakpoints, there's no need
2789 to select an inferior to insert breakpoint to. In fact, even
2790 if we aren't attached to any process yet, we should still
2791 insert breakpoints. */
2792 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2793 && ptid_equal (inferior_ptid, null_ptid))
2794 continue;
2795
2796 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2797 &hw_breakpoint_error, &hw_bp_details_reported);
2798 if (val)
2799 error_flag = val;
2800 }
2801
2802 if (error_flag)
2803 {
2804 target_terminal_ours_for_output ();
2805 error_stream (tmp_error_stream);
2806 }
2807
2808 do_cleanups (cleanups);
2809 }
2810
2811 /* Used when starting or continuing the program. */
2812
2813 static void
2814 insert_breakpoint_locations (void)
2815 {
2816 struct breakpoint *bpt;
2817 struct bp_location *bl, **blp_tmp;
2818 int error_flag = 0;
2819 int val = 0;
2820 int disabled_breaks = 0;
2821 int hw_breakpoint_error = 0;
2822 int hw_bp_error_explained_already = 0;
2823
2824 struct ui_file *tmp_error_stream = mem_fileopen ();
2825 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2826
2827 /* Explicitly mark the warning -- this will only be printed if
2828 there was an error. */
2829 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2830
2831 save_current_space_and_thread ();
2832
2833 ALL_BP_LOCATIONS (bl, blp_tmp)
2834 {
2835 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2836 continue;
2837
2838 /* There is no point inserting thread-specific breakpoints if
2839 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2840 has BL->OWNER always non-NULL. */
2841 if (bl->owner->thread != -1
2842 && !valid_thread_id (bl->owner->thread))
2843 continue;
2844
2845 switch_to_program_space_and_thread (bl->pspace);
2846
2847 /* For targets that support global breakpoints, there's no need
2848 to select an inferior to insert breakpoint to. In fact, even
2849 if we aren't attached to any process yet, we should still
2850 insert breakpoints. */
2851 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2852 && ptid_equal (inferior_ptid, null_ptid))
2853 continue;
2854
2855 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2856 &hw_breakpoint_error, &hw_bp_error_explained_already);
2857 if (val)
2858 error_flag = val;
2859 }
2860
2861 /* If we failed to insert all locations of a watchpoint, remove
2862 them, as half-inserted watchpoint is of limited use. */
2863 ALL_BREAKPOINTS (bpt)
2864 {
2865 int some_failed = 0;
2866 struct bp_location *loc;
2867
2868 if (!is_hardware_watchpoint (bpt))
2869 continue;
2870
2871 if (!breakpoint_enabled (bpt))
2872 continue;
2873
2874 if (bpt->disposition == disp_del_at_next_stop)
2875 continue;
2876
2877 for (loc = bpt->loc; loc; loc = loc->next)
2878 if (!loc->inserted && should_be_inserted (loc))
2879 {
2880 some_failed = 1;
2881 break;
2882 }
2883 if (some_failed)
2884 {
2885 for (loc = bpt->loc; loc; loc = loc->next)
2886 if (loc->inserted)
2887 remove_breakpoint (loc, mark_uninserted);
2888
2889 hw_breakpoint_error = 1;
2890 fprintf_unfiltered (tmp_error_stream,
2891 "Could not insert hardware watchpoint %d.\n",
2892 bpt->number);
2893 error_flag = -1;
2894 }
2895 }
2896
2897 if (error_flag)
2898 {
2899 /* If a hardware breakpoint or watchpoint was inserted, add a
2900 message about possibly exhausted resources. */
2901 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2902 {
2903 fprintf_unfiltered (tmp_error_stream,
2904 "Could not insert hardware breakpoints:\n\
2905 You may have requested too many hardware breakpoints/watchpoints.\n");
2906 }
2907 target_terminal_ours_for_output ();
2908 error_stream (tmp_error_stream);
2909 }
2910
2911 do_cleanups (cleanups);
2912 }
2913
2914 /* Used when the program stops.
2915 Returns zero if successful, or non-zero if there was a problem
2916 removing a breakpoint location. */
2917
2918 int
2919 remove_breakpoints (void)
2920 {
2921 struct bp_location *bl, **blp_tmp;
2922 int val = 0;
2923
2924 ALL_BP_LOCATIONS (bl, blp_tmp)
2925 {
2926 if (bl->inserted && !is_tracepoint (bl->owner))
2927 val |= remove_breakpoint (bl, mark_uninserted);
2928 }
2929 return val;
2930 }
2931
2932 /* When a thread exits, remove breakpoints that are related to
2933 that thread. */
2934
2935 static void
2936 remove_threaded_breakpoints (struct thread_info *tp, int silent)
2937 {
2938 struct breakpoint *b, *b_tmp;
2939
2940 ALL_BREAKPOINTS_SAFE (b, b_tmp)
2941 {
2942 if (b->thread == tp->num && user_breakpoint_p (b))
2943 {
2944 b->disposition = disp_del_at_next_stop;
2945
2946 printf_filtered (_("\
2947 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
2948 b->number, tp->num);
2949
2950 /* Hide it from the user. */
2951 b->number = 0;
2952 }
2953 }
2954 }
2955
2956 /* Remove breakpoints of process PID. */
2957
2958 int
2959 remove_breakpoints_pid (int pid)
2960 {
2961 struct bp_location *bl, **blp_tmp;
2962 int val;
2963 struct inferior *inf = find_inferior_pid (pid);
2964
2965 ALL_BP_LOCATIONS (bl, blp_tmp)
2966 {
2967 if (bl->pspace != inf->pspace)
2968 continue;
2969
2970 if (bl->owner->type == bp_dprintf)
2971 continue;
2972
2973 if (bl->inserted)
2974 {
2975 val = remove_breakpoint (bl, mark_uninserted);
2976 if (val != 0)
2977 return val;
2978 }
2979 }
2980 return 0;
2981 }
2982
2983 int
2984 reattach_breakpoints (int pid)
2985 {
2986 struct cleanup *old_chain;
2987 struct bp_location *bl, **blp_tmp;
2988 int val;
2989 struct ui_file *tmp_error_stream;
2990 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2991 struct inferior *inf;
2992 struct thread_info *tp;
2993
2994 tp = any_live_thread_of_process (pid);
2995 if (tp == NULL)
2996 return 1;
2997
2998 inf = find_inferior_pid (pid);
2999 old_chain = save_inferior_ptid ();
3000
3001 inferior_ptid = tp->ptid;
3002
3003 tmp_error_stream = mem_fileopen ();
3004 make_cleanup_ui_file_delete (tmp_error_stream);
3005
3006 ALL_BP_LOCATIONS (bl, blp_tmp)
3007 {
3008 if (bl->pspace != inf->pspace)
3009 continue;
3010
3011 if (bl->inserted)
3012 {
3013 bl->inserted = 0;
3014 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3015 if (val != 0)
3016 {
3017 do_cleanups (old_chain);
3018 return val;
3019 }
3020 }
3021 }
3022 do_cleanups (old_chain);
3023 return 0;
3024 }
3025
3026 static int internal_breakpoint_number = -1;
3027
3028 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3029 If INTERNAL is non-zero, the breakpoint number will be populated
3030 from internal_breakpoint_number and that variable decremented.
3031 Otherwise the breakpoint number will be populated from
3032 breakpoint_count and that value incremented. Internal breakpoints
3033 do not set the internal var bpnum. */
3034 static void
3035 set_breakpoint_number (int internal, struct breakpoint *b)
3036 {
3037 if (internal)
3038 b->number = internal_breakpoint_number--;
3039 else
3040 {
3041 set_breakpoint_count (breakpoint_count + 1);
3042 b->number = breakpoint_count;
3043 }
3044 }
3045
3046 static struct breakpoint *
3047 create_internal_breakpoint (struct gdbarch *gdbarch,
3048 CORE_ADDR address, enum bptype type,
3049 const struct breakpoint_ops *ops)
3050 {
3051 struct symtab_and_line sal;
3052 struct breakpoint *b;
3053
3054 init_sal (&sal); /* Initialize to zeroes. */
3055
3056 sal.pc = address;
3057 sal.section = find_pc_overlay (sal.pc);
3058 sal.pspace = current_program_space;
3059
3060 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3061 b->number = internal_breakpoint_number--;
3062 b->disposition = disp_donttouch;
3063
3064 return b;
3065 }
3066
3067 static const char *const longjmp_names[] =
3068 {
3069 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3070 };
3071 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3072
3073 /* Per-objfile data private to breakpoint.c. */
3074 struct breakpoint_objfile_data
3075 {
3076 /* Minimal symbol for "_ovly_debug_event" (if any). */
3077 struct minimal_symbol *overlay_msym;
3078
3079 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3080 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3081
3082 /* True if we have looked for longjmp probes. */
3083 int longjmp_searched;
3084
3085 /* SystemTap probe points for longjmp (if any). */
3086 VEC (probe_p) *longjmp_probes;
3087
3088 /* Minimal symbol for "std::terminate()" (if any). */
3089 struct minimal_symbol *terminate_msym;
3090
3091 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3092 struct minimal_symbol *exception_msym;
3093
3094 /* True if we have looked for exception probes. */
3095 int exception_searched;
3096
3097 /* SystemTap probe points for unwinding (if any). */
3098 VEC (probe_p) *exception_probes;
3099 };
3100
3101 static const struct objfile_data *breakpoint_objfile_key;
3102
3103 /* Minimal symbol not found sentinel. */
3104 static struct minimal_symbol msym_not_found;
3105
3106 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3107
3108 static int
3109 msym_not_found_p (const struct minimal_symbol *msym)
3110 {
3111 return msym == &msym_not_found;
3112 }
3113
3114 /* Return per-objfile data needed by breakpoint.c.
3115 Allocate the data if necessary. */
3116
3117 static struct breakpoint_objfile_data *
3118 get_breakpoint_objfile_data (struct objfile *objfile)
3119 {
3120 struct breakpoint_objfile_data *bp_objfile_data;
3121
3122 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3123 if (bp_objfile_data == NULL)
3124 {
3125 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3126 sizeof (*bp_objfile_data));
3127
3128 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3129 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3130 }
3131 return bp_objfile_data;
3132 }
3133
3134 static void
3135 free_breakpoint_probes (struct objfile *obj, void *data)
3136 {
3137 struct breakpoint_objfile_data *bp_objfile_data = data;
3138
3139 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3140 VEC_free (probe_p, bp_objfile_data->exception_probes);
3141 }
3142
3143 static void
3144 create_overlay_event_breakpoint (void)
3145 {
3146 struct objfile *objfile;
3147 const char *const func_name = "_ovly_debug_event";
3148
3149 ALL_OBJFILES (objfile)
3150 {
3151 struct breakpoint *b;
3152 struct breakpoint_objfile_data *bp_objfile_data;
3153 CORE_ADDR addr;
3154
3155 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3156
3157 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3158 continue;
3159
3160 if (bp_objfile_data->overlay_msym == NULL)
3161 {
3162 struct minimal_symbol *m;
3163
3164 m = lookup_minimal_symbol_text (func_name, objfile);
3165 if (m == NULL)
3166 {
3167 /* Avoid future lookups in this objfile. */
3168 bp_objfile_data->overlay_msym = &msym_not_found;
3169 continue;
3170 }
3171 bp_objfile_data->overlay_msym = m;
3172 }
3173
3174 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3175 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3176 bp_overlay_event,
3177 &internal_breakpoint_ops);
3178 b->addr_string = xstrdup (func_name);
3179
3180 if (overlay_debugging == ovly_auto)
3181 {
3182 b->enable_state = bp_enabled;
3183 overlay_events_enabled = 1;
3184 }
3185 else
3186 {
3187 b->enable_state = bp_disabled;
3188 overlay_events_enabled = 0;
3189 }
3190 }
3191 update_global_location_list (1);
3192 }
3193
3194 static void
3195 create_longjmp_master_breakpoint (void)
3196 {
3197 struct program_space *pspace;
3198 struct cleanup *old_chain;
3199
3200 old_chain = save_current_program_space ();
3201
3202 ALL_PSPACES (pspace)
3203 {
3204 struct objfile *objfile;
3205
3206 set_current_program_space (pspace);
3207
3208 ALL_OBJFILES (objfile)
3209 {
3210 int i;
3211 struct gdbarch *gdbarch;
3212 struct breakpoint_objfile_data *bp_objfile_data;
3213
3214 gdbarch = get_objfile_arch (objfile);
3215 if (!gdbarch_get_longjmp_target_p (gdbarch))
3216 continue;
3217
3218 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3219
3220 if (!bp_objfile_data->longjmp_searched)
3221 {
3222 VEC (probe_p) *ret;
3223
3224 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3225 if (ret != NULL)
3226 {
3227 /* We are only interested in checking one element. */
3228 struct probe *p = VEC_index (probe_p, ret, 0);
3229
3230 if (!can_evaluate_probe_arguments (p))
3231 {
3232 /* We cannot use the probe interface here, because it does
3233 not know how to evaluate arguments. */
3234 VEC_free (probe_p, ret);
3235 ret = NULL;
3236 }
3237 }
3238 bp_objfile_data->longjmp_probes = ret;
3239 bp_objfile_data->longjmp_searched = 1;
3240 }
3241
3242 if (bp_objfile_data->longjmp_probes != NULL)
3243 {
3244 int i;
3245 struct probe *probe;
3246 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3247
3248 for (i = 0;
3249 VEC_iterate (probe_p,
3250 bp_objfile_data->longjmp_probes,
3251 i, probe);
3252 ++i)
3253 {
3254 struct breakpoint *b;
3255
3256 b = create_internal_breakpoint (gdbarch, probe->address,
3257 bp_longjmp_master,
3258 &internal_breakpoint_ops);
3259 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3260 b->enable_state = bp_disabled;
3261 }
3262
3263 continue;
3264 }
3265
3266 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3267 {
3268 struct breakpoint *b;
3269 const char *func_name;
3270 CORE_ADDR addr;
3271
3272 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3273 continue;
3274
3275 func_name = longjmp_names[i];
3276 if (bp_objfile_data->longjmp_msym[i] == NULL)
3277 {
3278 struct minimal_symbol *m;
3279
3280 m = lookup_minimal_symbol_text (func_name, objfile);
3281 if (m == NULL)
3282 {
3283 /* Prevent future lookups in this objfile. */
3284 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3285 continue;
3286 }
3287 bp_objfile_data->longjmp_msym[i] = m;
3288 }
3289
3290 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3291 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3292 &internal_breakpoint_ops);
3293 b->addr_string = xstrdup (func_name);
3294 b->enable_state = bp_disabled;
3295 }
3296 }
3297 }
3298 update_global_location_list (1);
3299
3300 do_cleanups (old_chain);
3301 }
3302
3303 /* Create a master std::terminate breakpoint. */
3304 static void
3305 create_std_terminate_master_breakpoint (void)
3306 {
3307 struct program_space *pspace;
3308 struct cleanup *old_chain;
3309 const char *const func_name = "std::terminate()";
3310
3311 old_chain = save_current_program_space ();
3312
3313 ALL_PSPACES (pspace)
3314 {
3315 struct objfile *objfile;
3316 CORE_ADDR addr;
3317
3318 set_current_program_space (pspace);
3319
3320 ALL_OBJFILES (objfile)
3321 {
3322 struct breakpoint *b;
3323 struct breakpoint_objfile_data *bp_objfile_data;
3324
3325 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3326
3327 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3328 continue;
3329
3330 if (bp_objfile_data->terminate_msym == NULL)
3331 {
3332 struct minimal_symbol *m;
3333
3334 m = lookup_minimal_symbol (func_name, NULL, objfile);
3335 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3336 && MSYMBOL_TYPE (m) != mst_file_text))
3337 {
3338 /* Prevent future lookups in this objfile. */
3339 bp_objfile_data->terminate_msym = &msym_not_found;
3340 continue;
3341 }
3342 bp_objfile_data->terminate_msym = m;
3343 }
3344
3345 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3346 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3347 bp_std_terminate_master,
3348 &internal_breakpoint_ops);
3349 b->addr_string = xstrdup (func_name);
3350 b->enable_state = bp_disabled;
3351 }
3352 }
3353
3354 update_global_location_list (1);
3355
3356 do_cleanups (old_chain);
3357 }
3358
3359 /* Install a master breakpoint on the unwinder's debug hook. */
3360
3361 static void
3362 create_exception_master_breakpoint (void)
3363 {
3364 struct objfile *objfile;
3365 const char *const func_name = "_Unwind_DebugHook";
3366
3367 ALL_OBJFILES (objfile)
3368 {
3369 struct breakpoint *b;
3370 struct gdbarch *gdbarch;
3371 struct breakpoint_objfile_data *bp_objfile_data;
3372 CORE_ADDR addr;
3373
3374 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3375
3376 /* We prefer the SystemTap probe point if it exists. */
3377 if (!bp_objfile_data->exception_searched)
3378 {
3379 VEC (probe_p) *ret;
3380
3381 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3382
3383 if (ret != NULL)
3384 {
3385 /* We are only interested in checking one element. */
3386 struct probe *p = VEC_index (probe_p, ret, 0);
3387
3388 if (!can_evaluate_probe_arguments (p))
3389 {
3390 /* We cannot use the probe interface here, because it does
3391 not know how to evaluate arguments. */
3392 VEC_free (probe_p, ret);
3393 ret = NULL;
3394 }
3395 }
3396 bp_objfile_data->exception_probes = ret;
3397 bp_objfile_data->exception_searched = 1;
3398 }
3399
3400 if (bp_objfile_data->exception_probes != NULL)
3401 {
3402 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3403 int i;
3404 struct probe *probe;
3405
3406 for (i = 0;
3407 VEC_iterate (probe_p,
3408 bp_objfile_data->exception_probes,
3409 i, probe);
3410 ++i)
3411 {
3412 struct breakpoint *b;
3413
3414 b = create_internal_breakpoint (gdbarch, probe->address,
3415 bp_exception_master,
3416 &internal_breakpoint_ops);
3417 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3418 b->enable_state = bp_disabled;
3419 }
3420
3421 continue;
3422 }
3423
3424 /* Otherwise, try the hook function. */
3425
3426 if (msym_not_found_p (bp_objfile_data->exception_msym))
3427 continue;
3428
3429 gdbarch = get_objfile_arch (objfile);
3430
3431 if (bp_objfile_data->exception_msym == NULL)
3432 {
3433 struct minimal_symbol *debug_hook;
3434
3435 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3436 if (debug_hook == NULL)
3437 {
3438 bp_objfile_data->exception_msym = &msym_not_found;
3439 continue;
3440 }
3441
3442 bp_objfile_data->exception_msym = debug_hook;
3443 }
3444
3445 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3446 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3447 &current_target);
3448 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3449 &internal_breakpoint_ops);
3450 b->addr_string = xstrdup (func_name);
3451 b->enable_state = bp_disabled;
3452 }
3453
3454 update_global_location_list (1);
3455 }
3456
3457 void
3458 update_breakpoints_after_exec (void)
3459 {
3460 struct breakpoint *b, *b_tmp;
3461 struct bp_location *bploc, **bplocp_tmp;
3462
3463 /* We're about to delete breakpoints from GDB's lists. If the
3464 INSERTED flag is true, GDB will try to lift the breakpoints by
3465 writing the breakpoints' "shadow contents" back into memory. The
3466 "shadow contents" are NOT valid after an exec, so GDB should not
3467 do that. Instead, the target is responsible from marking
3468 breakpoints out as soon as it detects an exec. We don't do that
3469 here instead, because there may be other attempts to delete
3470 breakpoints after detecting an exec and before reaching here. */
3471 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3472 if (bploc->pspace == current_program_space)
3473 gdb_assert (!bploc->inserted);
3474
3475 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3476 {
3477 if (b->pspace != current_program_space)
3478 continue;
3479
3480 /* Solib breakpoints must be explicitly reset after an exec(). */
3481 if (b->type == bp_shlib_event)
3482 {
3483 delete_breakpoint (b);
3484 continue;
3485 }
3486
3487 /* JIT breakpoints must be explicitly reset after an exec(). */
3488 if (b->type == bp_jit_event)
3489 {
3490 delete_breakpoint (b);
3491 continue;
3492 }
3493
3494 /* Thread event breakpoints must be set anew after an exec(),
3495 as must overlay event and longjmp master breakpoints. */
3496 if (b->type == bp_thread_event || b->type == bp_overlay_event
3497 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3498 || b->type == bp_exception_master)
3499 {
3500 delete_breakpoint (b);
3501 continue;
3502 }
3503
3504 /* Step-resume breakpoints are meaningless after an exec(). */
3505 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3506 {
3507 delete_breakpoint (b);
3508 continue;
3509 }
3510
3511 /* Longjmp and longjmp-resume breakpoints are also meaningless
3512 after an exec. */
3513 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3514 || b->type == bp_longjmp_call_dummy
3515 || b->type == bp_exception || b->type == bp_exception_resume)
3516 {
3517 delete_breakpoint (b);
3518 continue;
3519 }
3520
3521 if (b->type == bp_catchpoint)
3522 {
3523 /* For now, none of the bp_catchpoint breakpoints need to
3524 do anything at this point. In the future, if some of
3525 the catchpoints need to something, we will need to add
3526 a new method, and call this method from here. */
3527 continue;
3528 }
3529
3530 /* bp_finish is a special case. The only way we ought to be able
3531 to see one of these when an exec() has happened, is if the user
3532 caught a vfork, and then said "finish". Ordinarily a finish just
3533 carries them to the call-site of the current callee, by setting
3534 a temporary bp there and resuming. But in this case, the finish
3535 will carry them entirely through the vfork & exec.
3536
3537 We don't want to allow a bp_finish to remain inserted now. But
3538 we can't safely delete it, 'cause finish_command has a handle to
3539 the bp on a bpstat, and will later want to delete it. There's a
3540 chance (and I've seen it happen) that if we delete the bp_finish
3541 here, that its storage will get reused by the time finish_command
3542 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3543 We really must allow finish_command to delete a bp_finish.
3544
3545 In the absence of a general solution for the "how do we know
3546 it's safe to delete something others may have handles to?"
3547 problem, what we'll do here is just uninsert the bp_finish, and
3548 let finish_command delete it.
3549
3550 (We know the bp_finish is "doomed" in the sense that it's
3551 momentary, and will be deleted as soon as finish_command sees
3552 the inferior stopped. So it doesn't matter that the bp's
3553 address is probably bogus in the new a.out, unlike e.g., the
3554 solib breakpoints.) */
3555
3556 if (b->type == bp_finish)
3557 {
3558 continue;
3559 }
3560
3561 /* Without a symbolic address, we have little hope of the
3562 pre-exec() address meaning the same thing in the post-exec()
3563 a.out. */
3564 if (b->addr_string == NULL)
3565 {
3566 delete_breakpoint (b);
3567 continue;
3568 }
3569 }
3570 /* FIXME what about longjmp breakpoints? Re-create them here? */
3571 create_overlay_event_breakpoint ();
3572 create_longjmp_master_breakpoint ();
3573 create_std_terminate_master_breakpoint ();
3574 create_exception_master_breakpoint ();
3575 }
3576
3577 int
3578 detach_breakpoints (ptid_t ptid)
3579 {
3580 struct bp_location *bl, **blp_tmp;
3581 int val = 0;
3582 struct cleanup *old_chain = save_inferior_ptid ();
3583 struct inferior *inf = current_inferior ();
3584
3585 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3586 error (_("Cannot detach breakpoints of inferior_ptid"));
3587
3588 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3589 inferior_ptid = ptid;
3590 ALL_BP_LOCATIONS (bl, blp_tmp)
3591 {
3592 if (bl->pspace != inf->pspace)
3593 continue;
3594
3595 /* This function must physically remove breakpoints locations
3596 from the specified ptid, without modifying the breakpoint
3597 package's state. Locations of type bp_loc_other are only
3598 maintained at GDB side. So, there is no need to remove
3599 these bp_loc_other locations. Moreover, removing these
3600 would modify the breakpoint package's state. */
3601 if (bl->loc_type == bp_loc_other)
3602 continue;
3603
3604 if (bl->inserted)
3605 val |= remove_breakpoint_1 (bl, mark_inserted);
3606 }
3607
3608 /* Detach single-step breakpoints as well. */
3609 detach_single_step_breakpoints ();
3610
3611 do_cleanups (old_chain);
3612 return val;
3613 }
3614
3615 /* Remove the breakpoint location BL from the current address space.
3616 Note that this is used to detach breakpoints from a child fork.
3617 When we get here, the child isn't in the inferior list, and neither
3618 do we have objects to represent its address space --- we should
3619 *not* look at bl->pspace->aspace here. */
3620
3621 static int
3622 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3623 {
3624 int val;
3625
3626 /* BL is never in moribund_locations by our callers. */
3627 gdb_assert (bl->owner != NULL);
3628
3629 if (bl->owner->enable_state == bp_permanent)
3630 /* Permanent breakpoints cannot be inserted or removed. */
3631 return 0;
3632
3633 /* The type of none suggests that owner is actually deleted.
3634 This should not ever happen. */
3635 gdb_assert (bl->owner->type != bp_none);
3636
3637 if (bl->loc_type == bp_loc_software_breakpoint
3638 || bl->loc_type == bp_loc_hardware_breakpoint)
3639 {
3640 /* "Normal" instruction breakpoint: either the standard
3641 trap-instruction bp (bp_breakpoint), or a
3642 bp_hardware_breakpoint. */
3643
3644 /* First check to see if we have to handle an overlay. */
3645 if (overlay_debugging == ovly_off
3646 || bl->section == NULL
3647 || !(section_is_overlay (bl->section)))
3648 {
3649 /* No overlay handling: just remove the breakpoint. */
3650 val = bl->owner->ops->remove_location (bl);
3651 }
3652 else
3653 {
3654 /* This breakpoint is in an overlay section.
3655 Did we set a breakpoint at the LMA? */
3656 if (!overlay_events_enabled)
3657 {
3658 /* Yes -- overlay event support is not active, so we
3659 should have set a breakpoint at the LMA. Remove it.
3660 */
3661 /* Ignore any failures: if the LMA is in ROM, we will
3662 have already warned when we failed to insert it. */
3663 if (bl->loc_type == bp_loc_hardware_breakpoint)
3664 target_remove_hw_breakpoint (bl->gdbarch,
3665 &bl->overlay_target_info);
3666 else
3667 target_remove_breakpoint (bl->gdbarch,
3668 &bl->overlay_target_info);
3669 }
3670 /* Did we set a breakpoint at the VMA?
3671 If so, we will have marked the breakpoint 'inserted'. */
3672 if (bl->inserted)
3673 {
3674 /* Yes -- remove it. Previously we did not bother to
3675 remove the breakpoint if the section had been
3676 unmapped, but let's not rely on that being safe. We
3677 don't know what the overlay manager might do. */
3678
3679 /* However, we should remove *software* breakpoints only
3680 if the section is still mapped, or else we overwrite
3681 wrong code with the saved shadow contents. */
3682 if (bl->loc_type == bp_loc_hardware_breakpoint
3683 || section_is_mapped (bl->section))
3684 val = bl->owner->ops->remove_location (bl);
3685 else
3686 val = 0;
3687 }
3688 else
3689 {
3690 /* No -- not inserted, so no need to remove. No error. */
3691 val = 0;
3692 }
3693 }
3694
3695 /* In some cases, we might not be able to remove a breakpoint
3696 in a shared library that has already been removed, but we
3697 have not yet processed the shlib unload event. */
3698 if (val && solib_name_from_address (bl->pspace, bl->address))
3699 val = 0;
3700
3701 if (val)
3702 return val;
3703 bl->inserted = (is == mark_inserted);
3704 }
3705 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3706 {
3707 gdb_assert (bl->owner->ops != NULL
3708 && bl->owner->ops->remove_location != NULL);
3709
3710 bl->inserted = (is == mark_inserted);
3711 bl->owner->ops->remove_location (bl);
3712
3713 /* Failure to remove any of the hardware watchpoints comes here. */
3714 if ((is == mark_uninserted) && (bl->inserted))
3715 warning (_("Could not remove hardware watchpoint %d."),
3716 bl->owner->number);
3717 }
3718 else if (bl->owner->type == bp_catchpoint
3719 && breakpoint_enabled (bl->owner)
3720 && !bl->duplicate)
3721 {
3722 gdb_assert (bl->owner->ops != NULL
3723 && bl->owner->ops->remove_location != NULL);
3724
3725 val = bl->owner->ops->remove_location (bl);
3726 if (val)
3727 return val;
3728
3729 bl->inserted = (is == mark_inserted);
3730 }
3731
3732 return 0;
3733 }
3734
3735 static int
3736 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3737 {
3738 int ret;
3739 struct cleanup *old_chain;
3740
3741 /* BL is never in moribund_locations by our callers. */
3742 gdb_assert (bl->owner != NULL);
3743
3744 if (bl->owner->enable_state == bp_permanent)
3745 /* Permanent breakpoints cannot be inserted or removed. */
3746 return 0;
3747
3748 /* The type of none suggests that owner is actually deleted.
3749 This should not ever happen. */
3750 gdb_assert (bl->owner->type != bp_none);
3751
3752 old_chain = save_current_space_and_thread ();
3753
3754 switch_to_program_space_and_thread (bl->pspace);
3755
3756 ret = remove_breakpoint_1 (bl, is);
3757
3758 do_cleanups (old_chain);
3759 return ret;
3760 }
3761
3762 /* Clear the "inserted" flag in all breakpoints. */
3763
3764 void
3765 mark_breakpoints_out (void)
3766 {
3767 struct bp_location *bl, **blp_tmp;
3768
3769 ALL_BP_LOCATIONS (bl, blp_tmp)
3770 if (bl->pspace == current_program_space)
3771 bl->inserted = 0;
3772 }
3773
3774 /* Clear the "inserted" flag in all breakpoints and delete any
3775 breakpoints which should go away between runs of the program.
3776
3777 Plus other such housekeeping that has to be done for breakpoints
3778 between runs.
3779
3780 Note: this function gets called at the end of a run (by
3781 generic_mourn_inferior) and when a run begins (by
3782 init_wait_for_inferior). */
3783
3784
3785
3786 void
3787 breakpoint_init_inferior (enum inf_context context)
3788 {
3789 struct breakpoint *b, *b_tmp;
3790 struct bp_location *bl, **blp_tmp;
3791 int ix;
3792 struct program_space *pspace = current_program_space;
3793
3794 /* If breakpoint locations are shared across processes, then there's
3795 nothing to do. */
3796 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3797 return;
3798
3799 ALL_BP_LOCATIONS (bl, blp_tmp)
3800 {
3801 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3802 if (bl->pspace == pspace
3803 && bl->owner->enable_state != bp_permanent)
3804 bl->inserted = 0;
3805 }
3806
3807 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3808 {
3809 if (b->loc && b->loc->pspace != pspace)
3810 continue;
3811
3812 switch (b->type)
3813 {
3814 case bp_call_dummy:
3815 case bp_longjmp_call_dummy:
3816
3817 /* If the call dummy breakpoint is at the entry point it will
3818 cause problems when the inferior is rerun, so we better get
3819 rid of it. */
3820
3821 case bp_watchpoint_scope:
3822
3823 /* Also get rid of scope breakpoints. */
3824
3825 case bp_shlib_event:
3826
3827 /* Also remove solib event breakpoints. Their addresses may
3828 have changed since the last time we ran the program.
3829 Actually we may now be debugging against different target;
3830 and so the solib backend that installed this breakpoint may
3831 not be used in by the target. E.g.,
3832
3833 (gdb) file prog-linux
3834 (gdb) run # native linux target
3835 ...
3836 (gdb) kill
3837 (gdb) file prog-win.exe
3838 (gdb) tar rem :9999 # remote Windows gdbserver.
3839 */
3840
3841 case bp_step_resume:
3842
3843 /* Also remove step-resume breakpoints. */
3844
3845 delete_breakpoint (b);
3846 break;
3847
3848 case bp_watchpoint:
3849 case bp_hardware_watchpoint:
3850 case bp_read_watchpoint:
3851 case bp_access_watchpoint:
3852 {
3853 struct watchpoint *w = (struct watchpoint *) b;
3854
3855 /* Likewise for watchpoints on local expressions. */
3856 if (w->exp_valid_block != NULL)
3857 delete_breakpoint (b);
3858 else if (context == inf_starting)
3859 {
3860 /* Reset val field to force reread of starting value in
3861 insert_breakpoints. */
3862 if (w->val)
3863 value_free (w->val);
3864 w->val = NULL;
3865 w->val_valid = 0;
3866 }
3867 }
3868 break;
3869 default:
3870 break;
3871 }
3872 }
3873
3874 /* Get rid of the moribund locations. */
3875 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3876 decref_bp_location (&bl);
3877 VEC_free (bp_location_p, moribund_locations);
3878 }
3879
3880 /* These functions concern about actual breakpoints inserted in the
3881 target --- to e.g. check if we need to do decr_pc adjustment or if
3882 we need to hop over the bkpt --- so we check for address space
3883 match, not program space. */
3884
3885 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3886 exists at PC. It returns ordinary_breakpoint_here if it's an
3887 ordinary breakpoint, or permanent_breakpoint_here if it's a
3888 permanent breakpoint.
3889 - When continuing from a location with an ordinary breakpoint, we
3890 actually single step once before calling insert_breakpoints.
3891 - When continuing from a location with a permanent breakpoint, we
3892 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3893 the target, to advance the PC past the breakpoint. */
3894
3895 enum breakpoint_here
3896 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3897 {
3898 struct bp_location *bl, **blp_tmp;
3899 int any_breakpoint_here = 0;
3900
3901 ALL_BP_LOCATIONS (bl, blp_tmp)
3902 {
3903 if (bl->loc_type != bp_loc_software_breakpoint
3904 && bl->loc_type != bp_loc_hardware_breakpoint)
3905 continue;
3906
3907 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3908 if ((breakpoint_enabled (bl->owner)
3909 || bl->owner->enable_state == bp_permanent)
3910 && breakpoint_location_address_match (bl, aspace, pc))
3911 {
3912 if (overlay_debugging
3913 && section_is_overlay (bl->section)
3914 && !section_is_mapped (bl->section))
3915 continue; /* unmapped overlay -- can't be a match */
3916 else if (bl->owner->enable_state == bp_permanent)
3917 return permanent_breakpoint_here;
3918 else
3919 any_breakpoint_here = 1;
3920 }
3921 }
3922
3923 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3924 }
3925
3926 /* Return true if there's a moribund breakpoint at PC. */
3927
3928 int
3929 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3930 {
3931 struct bp_location *loc;
3932 int ix;
3933
3934 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3935 if (breakpoint_location_address_match (loc, aspace, pc))
3936 return 1;
3937
3938 return 0;
3939 }
3940
3941 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3942 inserted using regular breakpoint_chain / bp_location array
3943 mechanism. This does not check for single-step breakpoints, which
3944 are inserted and removed using direct target manipulation. */
3945
3946 int
3947 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3948 CORE_ADDR pc)
3949 {
3950 struct bp_location *bl, **blp_tmp;
3951
3952 ALL_BP_LOCATIONS (bl, blp_tmp)
3953 {
3954 if (bl->loc_type != bp_loc_software_breakpoint
3955 && bl->loc_type != bp_loc_hardware_breakpoint)
3956 continue;
3957
3958 if (bl->inserted
3959 && breakpoint_location_address_match (bl, aspace, pc))
3960 {
3961 if (overlay_debugging
3962 && section_is_overlay (bl->section)
3963 && !section_is_mapped (bl->section))
3964 continue; /* unmapped overlay -- can't be a match */
3965 else
3966 return 1;
3967 }
3968 }
3969 return 0;
3970 }
3971
3972 /* Returns non-zero iff there's either regular breakpoint
3973 or a single step breakpoint inserted at PC. */
3974
3975 int
3976 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3977 {
3978 if (regular_breakpoint_inserted_here_p (aspace, pc))
3979 return 1;
3980
3981 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3982 return 1;
3983
3984 return 0;
3985 }
3986
3987 /* This function returns non-zero iff there is a software breakpoint
3988 inserted at PC. */
3989
3990 int
3991 software_breakpoint_inserted_here_p (struct address_space *aspace,
3992 CORE_ADDR pc)
3993 {
3994 struct bp_location *bl, **blp_tmp;
3995
3996 ALL_BP_LOCATIONS (bl, blp_tmp)
3997 {
3998 if (bl->loc_type != bp_loc_software_breakpoint)
3999 continue;
4000
4001 if (bl->inserted
4002 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4003 aspace, pc))
4004 {
4005 if (overlay_debugging
4006 && section_is_overlay (bl->section)
4007 && !section_is_mapped (bl->section))
4008 continue; /* unmapped overlay -- can't be a match */
4009 else
4010 return 1;
4011 }
4012 }
4013
4014 /* Also check for software single-step breakpoints. */
4015 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4016 return 1;
4017
4018 return 0;
4019 }
4020
4021 int
4022 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4023 CORE_ADDR addr, ULONGEST len)
4024 {
4025 struct breakpoint *bpt;
4026
4027 ALL_BREAKPOINTS (bpt)
4028 {
4029 struct bp_location *loc;
4030
4031 if (bpt->type != bp_hardware_watchpoint
4032 && bpt->type != bp_access_watchpoint)
4033 continue;
4034
4035 if (!breakpoint_enabled (bpt))
4036 continue;
4037
4038 for (loc = bpt->loc; loc; loc = loc->next)
4039 if (loc->pspace->aspace == aspace && loc->inserted)
4040 {
4041 CORE_ADDR l, h;
4042
4043 /* Check for intersection. */
4044 l = max (loc->address, addr);
4045 h = min (loc->address + loc->length, addr + len);
4046 if (l < h)
4047 return 1;
4048 }
4049 }
4050 return 0;
4051 }
4052
4053 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4054 PC is valid for process/thread PTID. */
4055
4056 int
4057 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4058 ptid_t ptid)
4059 {
4060 struct bp_location *bl, **blp_tmp;
4061 /* The thread and task IDs associated to PTID, computed lazily. */
4062 int thread = -1;
4063 int task = 0;
4064
4065 ALL_BP_LOCATIONS (bl, blp_tmp)
4066 {
4067 if (bl->loc_type != bp_loc_software_breakpoint
4068 && bl->loc_type != bp_loc_hardware_breakpoint)
4069 continue;
4070
4071 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4072 if (!breakpoint_enabled (bl->owner)
4073 && bl->owner->enable_state != bp_permanent)
4074 continue;
4075
4076 if (!breakpoint_location_address_match (bl, aspace, pc))
4077 continue;
4078
4079 if (bl->owner->thread != -1)
4080 {
4081 /* This is a thread-specific breakpoint. Check that ptid
4082 matches that thread. If thread hasn't been computed yet,
4083 it is now time to do so. */
4084 if (thread == -1)
4085 thread = pid_to_thread_id (ptid);
4086 if (bl->owner->thread != thread)
4087 continue;
4088 }
4089
4090 if (bl->owner->task != 0)
4091 {
4092 /* This is a task-specific breakpoint. Check that ptid
4093 matches that task. If task hasn't been computed yet,
4094 it is now time to do so. */
4095 if (task == 0)
4096 task = ada_get_task_number (ptid);
4097 if (bl->owner->task != task)
4098 continue;
4099 }
4100
4101 if (overlay_debugging
4102 && section_is_overlay (bl->section)
4103 && !section_is_mapped (bl->section))
4104 continue; /* unmapped overlay -- can't be a match */
4105
4106 return 1;
4107 }
4108
4109 return 0;
4110 }
4111 \f
4112
4113 /* bpstat stuff. External routines' interfaces are documented
4114 in breakpoint.h. */
4115
4116 int
4117 is_catchpoint (struct breakpoint *ep)
4118 {
4119 return (ep->type == bp_catchpoint);
4120 }
4121
4122 /* Frees any storage that is part of a bpstat. Does not walk the
4123 'next' chain. */
4124
4125 static void
4126 bpstat_free (bpstat bs)
4127 {
4128 if (bs->old_val != NULL)
4129 value_free (bs->old_val);
4130 decref_counted_command_line (&bs->commands);
4131 decref_bp_location (&bs->bp_location_at);
4132 xfree (bs);
4133 }
4134
4135 /* Clear a bpstat so that it says we are not at any breakpoint.
4136 Also free any storage that is part of a bpstat. */
4137
4138 void
4139 bpstat_clear (bpstat *bsp)
4140 {
4141 bpstat p;
4142 bpstat q;
4143
4144 if (bsp == 0)
4145 return;
4146 p = *bsp;
4147 while (p != NULL)
4148 {
4149 q = p->next;
4150 bpstat_free (p);
4151 p = q;
4152 }
4153 *bsp = NULL;
4154 }
4155
4156 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4157 is part of the bpstat is copied as well. */
4158
4159 bpstat
4160 bpstat_copy (bpstat bs)
4161 {
4162 bpstat p = NULL;
4163 bpstat tmp;
4164 bpstat retval = NULL;
4165
4166 if (bs == NULL)
4167 return bs;
4168
4169 for (; bs != NULL; bs = bs->next)
4170 {
4171 tmp = (bpstat) xmalloc (sizeof (*tmp));
4172 memcpy (tmp, bs, sizeof (*tmp));
4173 incref_counted_command_line (tmp->commands);
4174 incref_bp_location (tmp->bp_location_at);
4175 if (bs->old_val != NULL)
4176 {
4177 tmp->old_val = value_copy (bs->old_val);
4178 release_value (tmp->old_val);
4179 }
4180
4181 if (p == NULL)
4182 /* This is the first thing in the chain. */
4183 retval = tmp;
4184 else
4185 p->next = tmp;
4186 p = tmp;
4187 }
4188 p->next = NULL;
4189 return retval;
4190 }
4191
4192 /* Find the bpstat associated with this breakpoint. */
4193
4194 bpstat
4195 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4196 {
4197 if (bsp == NULL)
4198 return NULL;
4199
4200 for (; bsp != NULL; bsp = bsp->next)
4201 {
4202 if (bsp->breakpoint_at == breakpoint)
4203 return bsp;
4204 }
4205 return NULL;
4206 }
4207
4208 /* See breakpoint.h. */
4209
4210 enum bpstat_signal_value
4211 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4212 {
4213 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4214
4215 for (; bsp != NULL; bsp = bsp->next)
4216 {
4217 /* Ensure that, if we ever entered this loop, then we at least
4218 return BPSTAT_SIGNAL_HIDE. */
4219 enum bpstat_signal_value newval;
4220
4221 if (bsp->breakpoint_at == NULL)
4222 {
4223 /* A moribund location can never explain a signal other than
4224 GDB_SIGNAL_TRAP. */
4225 if (sig == GDB_SIGNAL_TRAP)
4226 newval = BPSTAT_SIGNAL_HIDE;
4227 else
4228 newval = BPSTAT_SIGNAL_NO;
4229 }
4230 else
4231 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4232 sig);
4233
4234 if (newval > result)
4235 result = newval;
4236 }
4237
4238 return result;
4239 }
4240
4241 /* Put in *NUM the breakpoint number of the first breakpoint we are
4242 stopped at. *BSP upon return is a bpstat which points to the
4243 remaining breakpoints stopped at (but which is not guaranteed to be
4244 good for anything but further calls to bpstat_num).
4245
4246 Return 0 if passed a bpstat which does not indicate any breakpoints.
4247 Return -1 if stopped at a breakpoint that has been deleted since
4248 we set it.
4249 Return 1 otherwise. */
4250
4251 int
4252 bpstat_num (bpstat *bsp, int *num)
4253 {
4254 struct breakpoint *b;
4255
4256 if ((*bsp) == NULL)
4257 return 0; /* No more breakpoint values */
4258
4259 /* We assume we'll never have several bpstats that correspond to a
4260 single breakpoint -- otherwise, this function might return the
4261 same number more than once and this will look ugly. */
4262 b = (*bsp)->breakpoint_at;
4263 *bsp = (*bsp)->next;
4264 if (b == NULL)
4265 return -1; /* breakpoint that's been deleted since */
4266
4267 *num = b->number; /* We have its number */
4268 return 1;
4269 }
4270
4271 /* See breakpoint.h. */
4272
4273 void
4274 bpstat_clear_actions (void)
4275 {
4276 struct thread_info *tp;
4277 bpstat bs;
4278
4279 if (ptid_equal (inferior_ptid, null_ptid))
4280 return;
4281
4282 tp = find_thread_ptid (inferior_ptid);
4283 if (tp == NULL)
4284 return;
4285
4286 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4287 {
4288 decref_counted_command_line (&bs->commands);
4289
4290 if (bs->old_val != NULL)
4291 {
4292 value_free (bs->old_val);
4293 bs->old_val = NULL;
4294 }
4295 }
4296 }
4297
4298 /* Called when a command is about to proceed the inferior. */
4299
4300 static void
4301 breakpoint_about_to_proceed (void)
4302 {
4303 if (!ptid_equal (inferior_ptid, null_ptid))
4304 {
4305 struct thread_info *tp = inferior_thread ();
4306
4307 /* Allow inferior function calls in breakpoint commands to not
4308 interrupt the command list. When the call finishes
4309 successfully, the inferior will be standing at the same
4310 breakpoint as if nothing happened. */
4311 if (tp->control.in_infcall)
4312 return;
4313 }
4314
4315 breakpoint_proceeded = 1;
4316 }
4317
4318 /* Stub for cleaning up our state if we error-out of a breakpoint
4319 command. */
4320 static void
4321 cleanup_executing_breakpoints (void *ignore)
4322 {
4323 executing_breakpoint_commands = 0;
4324 }
4325
4326 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4327 or its equivalent. */
4328
4329 static int
4330 command_line_is_silent (struct command_line *cmd)
4331 {
4332 return cmd && (strcmp ("silent", cmd->line) == 0
4333 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4334 }
4335
4336 /* Execute all the commands associated with all the breakpoints at
4337 this location. Any of these commands could cause the process to
4338 proceed beyond this point, etc. We look out for such changes by
4339 checking the global "breakpoint_proceeded" after each command.
4340
4341 Returns true if a breakpoint command resumed the inferior. In that
4342 case, it is the caller's responsibility to recall it again with the
4343 bpstat of the current thread. */
4344
4345 static int
4346 bpstat_do_actions_1 (bpstat *bsp)
4347 {
4348 bpstat bs;
4349 struct cleanup *old_chain;
4350 int again = 0;
4351
4352 /* Avoid endless recursion if a `source' command is contained
4353 in bs->commands. */
4354 if (executing_breakpoint_commands)
4355 return 0;
4356
4357 executing_breakpoint_commands = 1;
4358 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4359
4360 prevent_dont_repeat ();
4361
4362 /* This pointer will iterate over the list of bpstat's. */
4363 bs = *bsp;
4364
4365 breakpoint_proceeded = 0;
4366 for (; bs != NULL; bs = bs->next)
4367 {
4368 struct counted_command_line *ccmd;
4369 struct command_line *cmd;
4370 struct cleanup *this_cmd_tree_chain;
4371
4372 /* Take ownership of the BSP's command tree, if it has one.
4373
4374 The command tree could legitimately contain commands like
4375 'step' and 'next', which call clear_proceed_status, which
4376 frees stop_bpstat's command tree. To make sure this doesn't
4377 free the tree we're executing out from under us, we need to
4378 take ownership of the tree ourselves. Since a given bpstat's
4379 commands are only executed once, we don't need to copy it; we
4380 can clear the pointer in the bpstat, and make sure we free
4381 the tree when we're done. */
4382 ccmd = bs->commands;
4383 bs->commands = NULL;
4384 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4385 cmd = ccmd ? ccmd->commands : NULL;
4386 if (command_line_is_silent (cmd))
4387 {
4388 /* The action has been already done by bpstat_stop_status. */
4389 cmd = cmd->next;
4390 }
4391
4392 while (cmd != NULL)
4393 {
4394 execute_control_command (cmd);
4395
4396 if (breakpoint_proceeded)
4397 break;
4398 else
4399 cmd = cmd->next;
4400 }
4401
4402 /* We can free this command tree now. */
4403 do_cleanups (this_cmd_tree_chain);
4404
4405 if (breakpoint_proceeded)
4406 {
4407 if (target_can_async_p ())
4408 /* If we are in async mode, then the target might be still
4409 running, not stopped at any breakpoint, so nothing for
4410 us to do here -- just return to the event loop. */
4411 ;
4412 else
4413 /* In sync mode, when execute_control_command returns
4414 we're already standing on the next breakpoint.
4415 Breakpoint commands for that stop were not run, since
4416 execute_command does not run breakpoint commands --
4417 only command_line_handler does, but that one is not
4418 involved in execution of breakpoint commands. So, we
4419 can now execute breakpoint commands. It should be
4420 noted that making execute_command do bpstat actions is
4421 not an option -- in this case we'll have recursive
4422 invocation of bpstat for each breakpoint with a
4423 command, and can easily blow up GDB stack. Instead, we
4424 return true, which will trigger the caller to recall us
4425 with the new stop_bpstat. */
4426 again = 1;
4427 break;
4428 }
4429 }
4430 do_cleanups (old_chain);
4431 return again;
4432 }
4433
4434 void
4435 bpstat_do_actions (void)
4436 {
4437 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4438
4439 /* Do any commands attached to breakpoint we are stopped at. */
4440 while (!ptid_equal (inferior_ptid, null_ptid)
4441 && target_has_execution
4442 && !is_exited (inferior_ptid)
4443 && !is_executing (inferior_ptid))
4444 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4445 and only return when it is stopped at the next breakpoint, we
4446 keep doing breakpoint actions until it returns false to
4447 indicate the inferior was not resumed. */
4448 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4449 break;
4450
4451 discard_cleanups (cleanup_if_error);
4452 }
4453
4454 /* Print out the (old or new) value associated with a watchpoint. */
4455
4456 static void
4457 watchpoint_value_print (struct value *val, struct ui_file *stream)
4458 {
4459 if (val == NULL)
4460 fprintf_unfiltered (stream, _("<unreadable>"));
4461 else
4462 {
4463 struct value_print_options opts;
4464 get_user_print_options (&opts);
4465 value_print (val, stream, &opts);
4466 }
4467 }
4468
4469 /* Generic routine for printing messages indicating why we
4470 stopped. The behavior of this function depends on the value
4471 'print_it' in the bpstat structure. Under some circumstances we
4472 may decide not to print anything here and delegate the task to
4473 normal_stop(). */
4474
4475 static enum print_stop_action
4476 print_bp_stop_message (bpstat bs)
4477 {
4478 switch (bs->print_it)
4479 {
4480 case print_it_noop:
4481 /* Nothing should be printed for this bpstat entry. */
4482 return PRINT_UNKNOWN;
4483 break;
4484
4485 case print_it_done:
4486 /* We still want to print the frame, but we already printed the
4487 relevant messages. */
4488 return PRINT_SRC_AND_LOC;
4489 break;
4490
4491 case print_it_normal:
4492 {
4493 struct breakpoint *b = bs->breakpoint_at;
4494
4495 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4496 which has since been deleted. */
4497 if (b == NULL)
4498 return PRINT_UNKNOWN;
4499
4500 /* Normal case. Call the breakpoint's print_it method. */
4501 return b->ops->print_it (bs);
4502 }
4503 break;
4504
4505 default:
4506 internal_error (__FILE__, __LINE__,
4507 _("print_bp_stop_message: unrecognized enum value"));
4508 break;
4509 }
4510 }
4511
4512 /* A helper function that prints a shared library stopped event. */
4513
4514 static void
4515 print_solib_event (int is_catchpoint)
4516 {
4517 int any_deleted
4518 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4519 int any_added
4520 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4521
4522 if (!is_catchpoint)
4523 {
4524 if (any_added || any_deleted)
4525 ui_out_text (current_uiout,
4526 _("Stopped due to shared library event:\n"));
4527 else
4528 ui_out_text (current_uiout,
4529 _("Stopped due to shared library event (no "
4530 "libraries added or removed)\n"));
4531 }
4532
4533 if (ui_out_is_mi_like_p (current_uiout))
4534 ui_out_field_string (current_uiout, "reason",
4535 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4536
4537 if (any_deleted)
4538 {
4539 struct cleanup *cleanup;
4540 char *name;
4541 int ix;
4542
4543 ui_out_text (current_uiout, _(" Inferior unloaded "));
4544 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4545 "removed");
4546 for (ix = 0;
4547 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4548 ix, name);
4549 ++ix)
4550 {
4551 if (ix > 0)
4552 ui_out_text (current_uiout, " ");
4553 ui_out_field_string (current_uiout, "library", name);
4554 ui_out_text (current_uiout, "\n");
4555 }
4556
4557 do_cleanups (cleanup);
4558 }
4559
4560 if (any_added)
4561 {
4562 struct so_list *iter;
4563 int ix;
4564 struct cleanup *cleanup;
4565
4566 ui_out_text (current_uiout, _(" Inferior loaded "));
4567 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4568 "added");
4569 for (ix = 0;
4570 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4571 ix, iter);
4572 ++ix)
4573 {
4574 if (ix > 0)
4575 ui_out_text (current_uiout, " ");
4576 ui_out_field_string (current_uiout, "library", iter->so_name);
4577 ui_out_text (current_uiout, "\n");
4578 }
4579
4580 do_cleanups (cleanup);
4581 }
4582 }
4583
4584 /* Print a message indicating what happened. This is called from
4585 normal_stop(). The input to this routine is the head of the bpstat
4586 list - a list of the eventpoints that caused this stop. KIND is
4587 the target_waitkind for the stopping event. This
4588 routine calls the generic print routine for printing a message
4589 about reasons for stopping. This will print (for example) the
4590 "Breakpoint n," part of the output. The return value of this
4591 routine is one of:
4592
4593 PRINT_UNKNOWN: Means we printed nothing.
4594 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4595 code to print the location. An example is
4596 "Breakpoint 1, " which should be followed by
4597 the location.
4598 PRINT_SRC_ONLY: Means we printed something, but there is no need
4599 to also print the location part of the message.
4600 An example is the catch/throw messages, which
4601 don't require a location appended to the end.
4602 PRINT_NOTHING: We have done some printing and we don't need any
4603 further info to be printed. */
4604
4605 enum print_stop_action
4606 bpstat_print (bpstat bs, int kind)
4607 {
4608 int val;
4609
4610 /* Maybe another breakpoint in the chain caused us to stop.
4611 (Currently all watchpoints go on the bpstat whether hit or not.
4612 That probably could (should) be changed, provided care is taken
4613 with respect to bpstat_explains_signal). */
4614 for (; bs; bs = bs->next)
4615 {
4616 val = print_bp_stop_message (bs);
4617 if (val == PRINT_SRC_ONLY
4618 || val == PRINT_SRC_AND_LOC
4619 || val == PRINT_NOTHING)
4620 return val;
4621 }
4622
4623 /* If we had hit a shared library event breakpoint,
4624 print_bp_stop_message would print out this message. If we hit an
4625 OS-level shared library event, do the same thing. */
4626 if (kind == TARGET_WAITKIND_LOADED)
4627 {
4628 print_solib_event (0);
4629 return PRINT_NOTHING;
4630 }
4631
4632 /* We reached the end of the chain, or we got a null BS to start
4633 with and nothing was printed. */
4634 return PRINT_UNKNOWN;
4635 }
4636
4637 /* Evaluate the expression EXP and return 1 if value is zero. This is
4638 used inside a catch_errors to evaluate the breakpoint condition.
4639 The argument is a "struct expression *" that has been cast to a
4640 "char *" to make it pass through catch_errors. */
4641
4642 static int
4643 breakpoint_cond_eval (void *exp)
4644 {
4645 struct value *mark = value_mark ();
4646 int i = !value_true (evaluate_expression ((struct expression *) exp));
4647
4648 value_free_to_mark (mark);
4649 return i;
4650 }
4651
4652 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4653
4654 static bpstat
4655 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4656 {
4657 bpstat bs;
4658
4659 bs = (bpstat) xmalloc (sizeof (*bs));
4660 bs->next = NULL;
4661 **bs_link_pointer = bs;
4662 *bs_link_pointer = &bs->next;
4663 bs->breakpoint_at = bl->owner;
4664 bs->bp_location_at = bl;
4665 incref_bp_location (bl);
4666 /* If the condition is false, etc., don't do the commands. */
4667 bs->commands = NULL;
4668 bs->old_val = NULL;
4669 bs->print_it = print_it_normal;
4670 return bs;
4671 }
4672 \f
4673 /* The target has stopped with waitstatus WS. Check if any hardware
4674 watchpoints have triggered, according to the target. */
4675
4676 int
4677 watchpoints_triggered (struct target_waitstatus *ws)
4678 {
4679 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4680 CORE_ADDR addr;
4681 struct breakpoint *b;
4682
4683 if (!stopped_by_watchpoint)
4684 {
4685 /* We were not stopped by a watchpoint. Mark all watchpoints
4686 as not triggered. */
4687 ALL_BREAKPOINTS (b)
4688 if (is_hardware_watchpoint (b))
4689 {
4690 struct watchpoint *w = (struct watchpoint *) b;
4691
4692 w->watchpoint_triggered = watch_triggered_no;
4693 }
4694
4695 return 0;
4696 }
4697
4698 if (!target_stopped_data_address (&current_target, &addr))
4699 {
4700 /* We were stopped by a watchpoint, but we don't know where.
4701 Mark all watchpoints as unknown. */
4702 ALL_BREAKPOINTS (b)
4703 if (is_hardware_watchpoint (b))
4704 {
4705 struct watchpoint *w = (struct watchpoint *) b;
4706
4707 w->watchpoint_triggered = watch_triggered_unknown;
4708 }
4709
4710 return stopped_by_watchpoint;
4711 }
4712
4713 /* The target could report the data address. Mark watchpoints
4714 affected by this data address as triggered, and all others as not
4715 triggered. */
4716
4717 ALL_BREAKPOINTS (b)
4718 if (is_hardware_watchpoint (b))
4719 {
4720 struct watchpoint *w = (struct watchpoint *) b;
4721 struct bp_location *loc;
4722
4723 w->watchpoint_triggered = watch_triggered_no;
4724 for (loc = b->loc; loc; loc = loc->next)
4725 {
4726 if (is_masked_watchpoint (b))
4727 {
4728 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4729 CORE_ADDR start = loc->address & w->hw_wp_mask;
4730
4731 if (newaddr == start)
4732 {
4733 w->watchpoint_triggered = watch_triggered_yes;
4734 break;
4735 }
4736 }
4737 /* Exact match not required. Within range is sufficient. */
4738 else if (target_watchpoint_addr_within_range (&current_target,
4739 addr, loc->address,
4740 loc->length))
4741 {
4742 w->watchpoint_triggered = watch_triggered_yes;
4743 break;
4744 }
4745 }
4746 }
4747
4748 return 1;
4749 }
4750
4751 /* Possible return values for watchpoint_check (this can't be an enum
4752 because of check_errors). */
4753 /* The watchpoint has been deleted. */
4754 #define WP_DELETED 1
4755 /* The value has changed. */
4756 #define WP_VALUE_CHANGED 2
4757 /* The value has not changed. */
4758 #define WP_VALUE_NOT_CHANGED 3
4759 /* Ignore this watchpoint, no matter if the value changed or not. */
4760 #define WP_IGNORE 4
4761
4762 #define BP_TEMPFLAG 1
4763 #define BP_HARDWAREFLAG 2
4764
4765 /* Evaluate watchpoint condition expression and check if its value
4766 changed.
4767
4768 P should be a pointer to struct bpstat, but is defined as a void *
4769 in order for this function to be usable with catch_errors. */
4770
4771 static int
4772 watchpoint_check (void *p)
4773 {
4774 bpstat bs = (bpstat) p;
4775 struct watchpoint *b;
4776 struct frame_info *fr;
4777 int within_current_scope;
4778
4779 /* BS is built from an existing struct breakpoint. */
4780 gdb_assert (bs->breakpoint_at != NULL);
4781 b = (struct watchpoint *) bs->breakpoint_at;
4782
4783 /* If this is a local watchpoint, we only want to check if the
4784 watchpoint frame is in scope if the current thread is the thread
4785 that was used to create the watchpoint. */
4786 if (!watchpoint_in_thread_scope (b))
4787 return WP_IGNORE;
4788
4789 if (b->exp_valid_block == NULL)
4790 within_current_scope = 1;
4791 else
4792 {
4793 struct frame_info *frame = get_current_frame ();
4794 struct gdbarch *frame_arch = get_frame_arch (frame);
4795 CORE_ADDR frame_pc = get_frame_pc (frame);
4796
4797 /* in_function_epilogue_p() returns a non-zero value if we're
4798 still in the function but the stack frame has already been
4799 invalidated. Since we can't rely on the values of local
4800 variables after the stack has been destroyed, we are treating
4801 the watchpoint in that state as `not changed' without further
4802 checking. Don't mark watchpoints as changed if the current
4803 frame is in an epilogue - even if they are in some other
4804 frame, our view of the stack is likely to be wrong and
4805 frame_find_by_id could error out. */
4806 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4807 return WP_IGNORE;
4808
4809 fr = frame_find_by_id (b->watchpoint_frame);
4810 within_current_scope = (fr != NULL);
4811
4812 /* If we've gotten confused in the unwinder, we might have
4813 returned a frame that can't describe this variable. */
4814 if (within_current_scope)
4815 {
4816 struct symbol *function;
4817
4818 function = get_frame_function (fr);
4819 if (function == NULL
4820 || !contained_in (b->exp_valid_block,
4821 SYMBOL_BLOCK_VALUE (function)))
4822 within_current_scope = 0;
4823 }
4824
4825 if (within_current_scope)
4826 /* If we end up stopping, the current frame will get selected
4827 in normal_stop. So this call to select_frame won't affect
4828 the user. */
4829 select_frame (fr);
4830 }
4831
4832 if (within_current_scope)
4833 {
4834 /* We use value_{,free_to_}mark because it could be a *long*
4835 time before we return to the command level and call
4836 free_all_values. We can't call free_all_values because we
4837 might be in the middle of evaluating a function call. */
4838
4839 int pc = 0;
4840 struct value *mark;
4841 struct value *new_val;
4842
4843 if (is_masked_watchpoint (&b->base))
4844 /* Since we don't know the exact trigger address (from
4845 stopped_data_address), just tell the user we've triggered
4846 a mask watchpoint. */
4847 return WP_VALUE_CHANGED;
4848
4849 mark = value_mark ();
4850 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4851
4852 /* We use value_equal_contents instead of value_equal because
4853 the latter coerces an array to a pointer, thus comparing just
4854 the address of the array instead of its contents. This is
4855 not what we want. */
4856 if ((b->val != NULL) != (new_val != NULL)
4857 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4858 {
4859 if (new_val != NULL)
4860 {
4861 release_value (new_val);
4862 value_free_to_mark (mark);
4863 }
4864 bs->old_val = b->val;
4865 b->val = new_val;
4866 b->val_valid = 1;
4867 return WP_VALUE_CHANGED;
4868 }
4869 else
4870 {
4871 /* Nothing changed. */
4872 value_free_to_mark (mark);
4873 return WP_VALUE_NOT_CHANGED;
4874 }
4875 }
4876 else
4877 {
4878 struct ui_out *uiout = current_uiout;
4879
4880 /* This seems like the only logical thing to do because
4881 if we temporarily ignored the watchpoint, then when
4882 we reenter the block in which it is valid it contains
4883 garbage (in the case of a function, it may have two
4884 garbage values, one before and one after the prologue).
4885 So we can't even detect the first assignment to it and
4886 watch after that (since the garbage may or may not equal
4887 the first value assigned). */
4888 /* We print all the stop information in
4889 breakpoint_ops->print_it, but in this case, by the time we
4890 call breakpoint_ops->print_it this bp will be deleted
4891 already. So we have no choice but print the information
4892 here. */
4893 if (ui_out_is_mi_like_p (uiout))
4894 ui_out_field_string
4895 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4896 ui_out_text (uiout, "\nWatchpoint ");
4897 ui_out_field_int (uiout, "wpnum", b->base.number);
4898 ui_out_text (uiout,
4899 " deleted because the program has left the block in\n\
4900 which its expression is valid.\n");
4901
4902 /* Make sure the watchpoint's commands aren't executed. */
4903 decref_counted_command_line (&b->base.commands);
4904 watchpoint_del_at_next_stop (b);
4905
4906 return WP_DELETED;
4907 }
4908 }
4909
4910 /* Return true if it looks like target has stopped due to hitting
4911 breakpoint location BL. This function does not check if we should
4912 stop, only if BL explains the stop. */
4913
4914 static int
4915 bpstat_check_location (const struct bp_location *bl,
4916 struct address_space *aspace, CORE_ADDR bp_addr,
4917 const struct target_waitstatus *ws)
4918 {
4919 struct breakpoint *b = bl->owner;
4920
4921 /* BL is from an existing breakpoint. */
4922 gdb_assert (b != NULL);
4923
4924 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4925 }
4926
4927 /* Determine if the watched values have actually changed, and we
4928 should stop. If not, set BS->stop to 0. */
4929
4930 static void
4931 bpstat_check_watchpoint (bpstat bs)
4932 {
4933 const struct bp_location *bl;
4934 struct watchpoint *b;
4935
4936 /* BS is built for existing struct breakpoint. */
4937 bl = bs->bp_location_at;
4938 gdb_assert (bl != NULL);
4939 b = (struct watchpoint *) bs->breakpoint_at;
4940 gdb_assert (b != NULL);
4941
4942 {
4943 int must_check_value = 0;
4944
4945 if (b->base.type == bp_watchpoint)
4946 /* For a software watchpoint, we must always check the
4947 watched value. */
4948 must_check_value = 1;
4949 else if (b->watchpoint_triggered == watch_triggered_yes)
4950 /* We have a hardware watchpoint (read, write, or access)
4951 and the target earlier reported an address watched by
4952 this watchpoint. */
4953 must_check_value = 1;
4954 else if (b->watchpoint_triggered == watch_triggered_unknown
4955 && b->base.type == bp_hardware_watchpoint)
4956 /* We were stopped by a hardware watchpoint, but the target could
4957 not report the data address. We must check the watchpoint's
4958 value. Access and read watchpoints are out of luck; without
4959 a data address, we can't figure it out. */
4960 must_check_value = 1;
4961
4962 if (must_check_value)
4963 {
4964 char *message
4965 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4966 b->base.number);
4967 struct cleanup *cleanups = make_cleanup (xfree, message);
4968 int e = catch_errors (watchpoint_check, bs, message,
4969 RETURN_MASK_ALL);
4970 do_cleanups (cleanups);
4971 switch (e)
4972 {
4973 case WP_DELETED:
4974 /* We've already printed what needs to be printed. */
4975 bs->print_it = print_it_done;
4976 /* Stop. */
4977 break;
4978 case WP_IGNORE:
4979 bs->print_it = print_it_noop;
4980 bs->stop = 0;
4981 break;
4982 case WP_VALUE_CHANGED:
4983 if (b->base.type == bp_read_watchpoint)
4984 {
4985 /* There are two cases to consider here:
4986
4987 1. We're watching the triggered memory for reads.
4988 In that case, trust the target, and always report
4989 the watchpoint hit to the user. Even though
4990 reads don't cause value changes, the value may
4991 have changed since the last time it was read, and
4992 since we're not trapping writes, we will not see
4993 those, and as such we should ignore our notion of
4994 old value.
4995
4996 2. We're watching the triggered memory for both
4997 reads and writes. There are two ways this may
4998 happen:
4999
5000 2.1. This is a target that can't break on data
5001 reads only, but can break on accesses (reads or
5002 writes), such as e.g., x86. We detect this case
5003 at the time we try to insert read watchpoints.
5004
5005 2.2. Otherwise, the target supports read
5006 watchpoints, but, the user set an access or write
5007 watchpoint watching the same memory as this read
5008 watchpoint.
5009
5010 If we're watching memory writes as well as reads,
5011 ignore watchpoint hits when we find that the
5012 value hasn't changed, as reads don't cause
5013 changes. This still gives false positives when
5014 the program writes the same value to memory as
5015 what there was already in memory (we will confuse
5016 it for a read), but it's much better than
5017 nothing. */
5018
5019 int other_write_watchpoint = 0;
5020
5021 if (bl->watchpoint_type == hw_read)
5022 {
5023 struct breakpoint *other_b;
5024
5025 ALL_BREAKPOINTS (other_b)
5026 if (other_b->type == bp_hardware_watchpoint
5027 || other_b->type == bp_access_watchpoint)
5028 {
5029 struct watchpoint *other_w =
5030 (struct watchpoint *) other_b;
5031
5032 if (other_w->watchpoint_triggered
5033 == watch_triggered_yes)
5034 {
5035 other_write_watchpoint = 1;
5036 break;
5037 }
5038 }
5039 }
5040
5041 if (other_write_watchpoint
5042 || bl->watchpoint_type == hw_access)
5043 {
5044 /* We're watching the same memory for writes,
5045 and the value changed since the last time we
5046 updated it, so this trap must be for a write.
5047 Ignore it. */
5048 bs->print_it = print_it_noop;
5049 bs->stop = 0;
5050 }
5051 }
5052 break;
5053 case WP_VALUE_NOT_CHANGED:
5054 if (b->base.type == bp_hardware_watchpoint
5055 || b->base.type == bp_watchpoint)
5056 {
5057 /* Don't stop: write watchpoints shouldn't fire if
5058 the value hasn't changed. */
5059 bs->print_it = print_it_noop;
5060 bs->stop = 0;
5061 }
5062 /* Stop. */
5063 break;
5064 default:
5065 /* Can't happen. */
5066 case 0:
5067 /* Error from catch_errors. */
5068 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5069 watchpoint_del_at_next_stop (b);
5070 /* We've already printed what needs to be printed. */
5071 bs->print_it = print_it_done;
5072 break;
5073 }
5074 }
5075 else /* must_check_value == 0 */
5076 {
5077 /* This is a case where some watchpoint(s) triggered, but
5078 not at the address of this watchpoint, or else no
5079 watchpoint triggered after all. So don't print
5080 anything for this watchpoint. */
5081 bs->print_it = print_it_noop;
5082 bs->stop = 0;
5083 }
5084 }
5085 }
5086
5087
5088 /* Check conditions (condition proper, frame, thread and ignore count)
5089 of breakpoint referred to by BS. If we should not stop for this
5090 breakpoint, set BS->stop to 0. */
5091
5092 static void
5093 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5094 {
5095 int thread_id = pid_to_thread_id (ptid);
5096 const struct bp_location *bl;
5097 struct breakpoint *b;
5098
5099 /* BS is built for existing struct breakpoint. */
5100 bl = bs->bp_location_at;
5101 gdb_assert (bl != NULL);
5102 b = bs->breakpoint_at;
5103 gdb_assert (b != NULL);
5104
5105 /* Even if the target evaluated the condition on its end and notified GDB, we
5106 need to do so again since GDB does not know if we stopped due to a
5107 breakpoint or a single step breakpoint. */
5108
5109 if (frame_id_p (b->frame_id)
5110 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5111 bs->stop = 0;
5112 else if (bs->stop)
5113 {
5114 int value_is_zero = 0;
5115 struct expression *cond;
5116
5117 /* Evaluate Python breakpoints that have a "stop"
5118 method implemented. */
5119 if (b->py_bp_object)
5120 bs->stop = gdbpy_should_stop (b->py_bp_object);
5121
5122 if (is_watchpoint (b))
5123 {
5124 struct watchpoint *w = (struct watchpoint *) b;
5125
5126 cond = w->cond_exp;
5127 }
5128 else
5129 cond = bl->cond;
5130
5131 if (cond && b->disposition != disp_del_at_next_stop)
5132 {
5133 int within_current_scope = 1;
5134 struct watchpoint * w;
5135
5136 /* We use value_mark and value_free_to_mark because it could
5137 be a long time before we return to the command level and
5138 call free_all_values. We can't call free_all_values
5139 because we might be in the middle of evaluating a
5140 function call. */
5141 struct value *mark = value_mark ();
5142
5143 if (is_watchpoint (b))
5144 w = (struct watchpoint *) b;
5145 else
5146 w = NULL;
5147
5148 /* Need to select the frame, with all that implies so that
5149 the conditions will have the right context. Because we
5150 use the frame, we will not see an inlined function's
5151 variables when we arrive at a breakpoint at the start
5152 of the inlined function; the current frame will be the
5153 call site. */
5154 if (w == NULL || w->cond_exp_valid_block == NULL)
5155 select_frame (get_current_frame ());
5156 else
5157 {
5158 struct frame_info *frame;
5159
5160 /* For local watchpoint expressions, which particular
5161 instance of a local is being watched matters, so we
5162 keep track of the frame to evaluate the expression
5163 in. To evaluate the condition however, it doesn't
5164 really matter which instantiation of the function
5165 where the condition makes sense triggers the
5166 watchpoint. This allows an expression like "watch
5167 global if q > 10" set in `func', catch writes to
5168 global on all threads that call `func', or catch
5169 writes on all recursive calls of `func' by a single
5170 thread. We simply always evaluate the condition in
5171 the innermost frame that's executing where it makes
5172 sense to evaluate the condition. It seems
5173 intuitive. */
5174 frame = block_innermost_frame (w->cond_exp_valid_block);
5175 if (frame != NULL)
5176 select_frame (frame);
5177 else
5178 within_current_scope = 0;
5179 }
5180 if (within_current_scope)
5181 value_is_zero
5182 = catch_errors (breakpoint_cond_eval, cond,
5183 "Error in testing breakpoint condition:\n",
5184 RETURN_MASK_ALL);
5185 else
5186 {
5187 warning (_("Watchpoint condition cannot be tested "
5188 "in the current scope"));
5189 /* If we failed to set the right context for this
5190 watchpoint, unconditionally report it. */
5191 value_is_zero = 0;
5192 }
5193 /* FIXME-someday, should give breakpoint #. */
5194 value_free_to_mark (mark);
5195 }
5196
5197 if (cond && value_is_zero)
5198 {
5199 bs->stop = 0;
5200 }
5201 else if (b->thread != -1 && b->thread != thread_id)
5202 {
5203 bs->stop = 0;
5204 }
5205 else if (b->ignore_count > 0)
5206 {
5207 b->ignore_count--;
5208 bs->stop = 0;
5209 /* Increase the hit count even though we don't stop. */
5210 ++(b->hit_count);
5211 observer_notify_breakpoint_modified (b);
5212 }
5213 }
5214 }
5215
5216
5217 /* Get a bpstat associated with having just stopped at address
5218 BP_ADDR in thread PTID.
5219
5220 Determine whether we stopped at a breakpoint, etc, or whether we
5221 don't understand this stop. Result is a chain of bpstat's such
5222 that:
5223
5224 if we don't understand the stop, the result is a null pointer.
5225
5226 if we understand why we stopped, the result is not null.
5227
5228 Each element of the chain refers to a particular breakpoint or
5229 watchpoint at which we have stopped. (We may have stopped for
5230 several reasons concurrently.)
5231
5232 Each element of the chain has valid next, breakpoint_at,
5233 commands, FIXME??? fields. */
5234
5235 bpstat
5236 bpstat_stop_status (struct address_space *aspace,
5237 CORE_ADDR bp_addr, ptid_t ptid,
5238 const struct target_waitstatus *ws)
5239 {
5240 struct breakpoint *b = NULL;
5241 struct bp_location *bl;
5242 struct bp_location *loc;
5243 /* First item of allocated bpstat's. */
5244 bpstat bs_head = NULL, *bs_link = &bs_head;
5245 /* Pointer to the last thing in the chain currently. */
5246 bpstat bs;
5247 int ix;
5248 int need_remove_insert;
5249 int removed_any;
5250
5251 /* First, build the bpstat chain with locations that explain a
5252 target stop, while being careful to not set the target running,
5253 as that may invalidate locations (in particular watchpoint
5254 locations are recreated). Resuming will happen here with
5255 breakpoint conditions or watchpoint expressions that include
5256 inferior function calls. */
5257
5258 ALL_BREAKPOINTS (b)
5259 {
5260 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5261 continue;
5262
5263 for (bl = b->loc; bl != NULL; bl = bl->next)
5264 {
5265 /* For hardware watchpoints, we look only at the first
5266 location. The watchpoint_check function will work on the
5267 entire expression, not the individual locations. For
5268 read watchpoints, the watchpoints_triggered function has
5269 checked all locations already. */
5270 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5271 break;
5272
5273 if (!bl->enabled || bl->shlib_disabled)
5274 continue;
5275
5276 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5277 continue;
5278
5279 /* Come here if it's a watchpoint, or if the break address
5280 matches. */
5281
5282 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5283 explain stop. */
5284
5285 /* Assume we stop. Should we find a watchpoint that is not
5286 actually triggered, or if the condition of the breakpoint
5287 evaluates as false, we'll reset 'stop' to 0. */
5288 bs->stop = 1;
5289 bs->print = 1;
5290
5291 /* If this is a scope breakpoint, mark the associated
5292 watchpoint as triggered so that we will handle the
5293 out-of-scope event. We'll get to the watchpoint next
5294 iteration. */
5295 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5296 {
5297 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5298
5299 w->watchpoint_triggered = watch_triggered_yes;
5300 }
5301 }
5302 }
5303
5304 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5305 {
5306 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5307 {
5308 bs = bpstat_alloc (loc, &bs_link);
5309 /* For hits of moribund locations, we should just proceed. */
5310 bs->stop = 0;
5311 bs->print = 0;
5312 bs->print_it = print_it_noop;
5313 }
5314 }
5315
5316 /* A bit of special processing for shlib breakpoints. We need to
5317 process solib loading here, so that the lists of loaded and
5318 unloaded libraries are correct before we handle "catch load" and
5319 "catch unload". */
5320 for (bs = bs_head; bs != NULL; bs = bs->next)
5321 {
5322 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5323 {
5324 handle_solib_event ();
5325 break;
5326 }
5327 }
5328
5329 /* Now go through the locations that caused the target to stop, and
5330 check whether we're interested in reporting this stop to higher
5331 layers, or whether we should resume the target transparently. */
5332
5333 removed_any = 0;
5334
5335 for (bs = bs_head; bs != NULL; bs = bs->next)
5336 {
5337 if (!bs->stop)
5338 continue;
5339
5340 b = bs->breakpoint_at;
5341 b->ops->check_status (bs);
5342 if (bs->stop)
5343 {
5344 bpstat_check_breakpoint_conditions (bs, ptid);
5345
5346 if (bs->stop)
5347 {
5348 ++(b->hit_count);
5349 observer_notify_breakpoint_modified (b);
5350
5351 /* We will stop here. */
5352 if (b->disposition == disp_disable)
5353 {
5354 --(b->enable_count);
5355 if (b->enable_count <= 0
5356 && b->enable_state != bp_permanent)
5357 b->enable_state = bp_disabled;
5358 removed_any = 1;
5359 }
5360 if (b->silent)
5361 bs->print = 0;
5362 bs->commands = b->commands;
5363 incref_counted_command_line (bs->commands);
5364 if (command_line_is_silent (bs->commands
5365 ? bs->commands->commands : NULL))
5366 bs->print = 0;
5367
5368 b->ops->after_condition_true (bs);
5369 }
5370
5371 }
5372
5373 /* Print nothing for this entry if we don't stop or don't
5374 print. */
5375 if (!bs->stop || !bs->print)
5376 bs->print_it = print_it_noop;
5377 }
5378
5379 /* If we aren't stopping, the value of some hardware watchpoint may
5380 not have changed, but the intermediate memory locations we are
5381 watching may have. Don't bother if we're stopping; this will get
5382 done later. */
5383 need_remove_insert = 0;
5384 if (! bpstat_causes_stop (bs_head))
5385 for (bs = bs_head; bs != NULL; bs = bs->next)
5386 if (!bs->stop
5387 && bs->breakpoint_at
5388 && is_hardware_watchpoint (bs->breakpoint_at))
5389 {
5390 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5391
5392 update_watchpoint (w, 0 /* don't reparse. */);
5393 need_remove_insert = 1;
5394 }
5395
5396 if (need_remove_insert)
5397 update_global_location_list (1);
5398 else if (removed_any)
5399 update_global_location_list (0);
5400
5401 return bs_head;
5402 }
5403
5404 static void
5405 handle_jit_event (void)
5406 {
5407 struct frame_info *frame;
5408 struct gdbarch *gdbarch;
5409
5410 /* Switch terminal for any messages produced by
5411 breakpoint_re_set. */
5412 target_terminal_ours_for_output ();
5413
5414 frame = get_current_frame ();
5415 gdbarch = get_frame_arch (frame);
5416
5417 jit_event_handler (gdbarch);
5418
5419 target_terminal_inferior ();
5420 }
5421
5422 /* Prepare WHAT final decision for infrun. */
5423
5424 /* Decide what infrun needs to do with this bpstat. */
5425
5426 struct bpstat_what
5427 bpstat_what (bpstat bs_head)
5428 {
5429 struct bpstat_what retval;
5430 int jit_event = 0;
5431 bpstat bs;
5432
5433 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5434 retval.call_dummy = STOP_NONE;
5435 retval.is_longjmp = 0;
5436
5437 for (bs = bs_head; bs != NULL; bs = bs->next)
5438 {
5439 /* Extract this BS's action. After processing each BS, we check
5440 if its action overrides all we've seem so far. */
5441 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5442 enum bptype bptype;
5443
5444 if (bs->breakpoint_at == NULL)
5445 {
5446 /* I suspect this can happen if it was a momentary
5447 breakpoint which has since been deleted. */
5448 bptype = bp_none;
5449 }
5450 else
5451 bptype = bs->breakpoint_at->type;
5452
5453 switch (bptype)
5454 {
5455 case bp_none:
5456 break;
5457 case bp_breakpoint:
5458 case bp_hardware_breakpoint:
5459 case bp_until:
5460 case bp_finish:
5461 case bp_shlib_event:
5462 if (bs->stop)
5463 {
5464 if (bs->print)
5465 this_action = BPSTAT_WHAT_STOP_NOISY;
5466 else
5467 this_action = BPSTAT_WHAT_STOP_SILENT;
5468 }
5469 else
5470 this_action = BPSTAT_WHAT_SINGLE;
5471 break;
5472 case bp_watchpoint:
5473 case bp_hardware_watchpoint:
5474 case bp_read_watchpoint:
5475 case bp_access_watchpoint:
5476 if (bs->stop)
5477 {
5478 if (bs->print)
5479 this_action = BPSTAT_WHAT_STOP_NOISY;
5480 else
5481 this_action = BPSTAT_WHAT_STOP_SILENT;
5482 }
5483 else
5484 {
5485 /* There was a watchpoint, but we're not stopping.
5486 This requires no further action. */
5487 }
5488 break;
5489 case bp_longjmp:
5490 case bp_longjmp_call_dummy:
5491 case bp_exception:
5492 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5493 retval.is_longjmp = bptype != bp_exception;
5494 break;
5495 case bp_longjmp_resume:
5496 case bp_exception_resume:
5497 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5498 retval.is_longjmp = bptype == bp_longjmp_resume;
5499 break;
5500 case bp_step_resume:
5501 if (bs->stop)
5502 this_action = BPSTAT_WHAT_STEP_RESUME;
5503 else
5504 {
5505 /* It is for the wrong frame. */
5506 this_action = BPSTAT_WHAT_SINGLE;
5507 }
5508 break;
5509 case bp_hp_step_resume:
5510 if (bs->stop)
5511 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5512 else
5513 {
5514 /* It is for the wrong frame. */
5515 this_action = BPSTAT_WHAT_SINGLE;
5516 }
5517 break;
5518 case bp_watchpoint_scope:
5519 case bp_thread_event:
5520 case bp_overlay_event:
5521 case bp_longjmp_master:
5522 case bp_std_terminate_master:
5523 case bp_exception_master:
5524 this_action = BPSTAT_WHAT_SINGLE;
5525 break;
5526 case bp_catchpoint:
5527 if (bs->stop)
5528 {
5529 if (bs->print)
5530 this_action = BPSTAT_WHAT_STOP_NOISY;
5531 else
5532 this_action = BPSTAT_WHAT_STOP_SILENT;
5533 }
5534 else
5535 {
5536 /* There was a catchpoint, but we're not stopping.
5537 This requires no further action. */
5538 }
5539 break;
5540 case bp_jit_event:
5541 jit_event = 1;
5542 this_action = BPSTAT_WHAT_SINGLE;
5543 break;
5544 case bp_call_dummy:
5545 /* Make sure the action is stop (silent or noisy),
5546 so infrun.c pops the dummy frame. */
5547 retval.call_dummy = STOP_STACK_DUMMY;
5548 this_action = BPSTAT_WHAT_STOP_SILENT;
5549 break;
5550 case bp_std_terminate:
5551 /* Make sure the action is stop (silent or noisy),
5552 so infrun.c pops the dummy frame. */
5553 retval.call_dummy = STOP_STD_TERMINATE;
5554 this_action = BPSTAT_WHAT_STOP_SILENT;
5555 break;
5556 case bp_tracepoint:
5557 case bp_fast_tracepoint:
5558 case bp_static_tracepoint:
5559 /* Tracepoint hits should not be reported back to GDB, and
5560 if one got through somehow, it should have been filtered
5561 out already. */
5562 internal_error (__FILE__, __LINE__,
5563 _("bpstat_what: tracepoint encountered"));
5564 break;
5565 case bp_gnu_ifunc_resolver:
5566 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5567 this_action = BPSTAT_WHAT_SINGLE;
5568 break;
5569 case bp_gnu_ifunc_resolver_return:
5570 /* The breakpoint will be removed, execution will restart from the
5571 PC of the former breakpoint. */
5572 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5573 break;
5574
5575 case bp_dprintf:
5576 if (bs->stop)
5577 this_action = BPSTAT_WHAT_STOP_SILENT;
5578 else
5579 this_action = BPSTAT_WHAT_SINGLE;
5580 break;
5581
5582 default:
5583 internal_error (__FILE__, __LINE__,
5584 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5585 }
5586
5587 retval.main_action = max (retval.main_action, this_action);
5588 }
5589
5590 /* These operations may affect the bs->breakpoint_at state so they are
5591 delayed after MAIN_ACTION is decided above. */
5592
5593 if (jit_event)
5594 {
5595 if (debug_infrun)
5596 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5597
5598 handle_jit_event ();
5599 }
5600
5601 for (bs = bs_head; bs != NULL; bs = bs->next)
5602 {
5603 struct breakpoint *b = bs->breakpoint_at;
5604
5605 if (b == NULL)
5606 continue;
5607 switch (b->type)
5608 {
5609 case bp_gnu_ifunc_resolver:
5610 gnu_ifunc_resolver_stop (b);
5611 break;
5612 case bp_gnu_ifunc_resolver_return:
5613 gnu_ifunc_resolver_return_stop (b);
5614 break;
5615 }
5616 }
5617
5618 return retval;
5619 }
5620
5621 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5622 without hardware support). This isn't related to a specific bpstat,
5623 just to things like whether watchpoints are set. */
5624
5625 int
5626 bpstat_should_step (void)
5627 {
5628 struct breakpoint *b;
5629
5630 ALL_BREAKPOINTS (b)
5631 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5632 return 1;
5633 return 0;
5634 }
5635
5636 int
5637 bpstat_causes_stop (bpstat bs)
5638 {
5639 for (; bs != NULL; bs = bs->next)
5640 if (bs->stop)
5641 return 1;
5642
5643 return 0;
5644 }
5645
5646 \f
5647
5648 /* Compute a string of spaces suitable to indent the next line
5649 so it starts at the position corresponding to the table column
5650 named COL_NAME in the currently active table of UIOUT. */
5651
5652 static char *
5653 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5654 {
5655 static char wrap_indent[80];
5656 int i, total_width, width, align;
5657 char *text;
5658
5659 total_width = 0;
5660 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5661 {
5662 if (strcmp (text, col_name) == 0)
5663 {
5664 gdb_assert (total_width < sizeof wrap_indent);
5665 memset (wrap_indent, ' ', total_width);
5666 wrap_indent[total_width] = 0;
5667
5668 return wrap_indent;
5669 }
5670
5671 total_width += width + 1;
5672 }
5673
5674 return NULL;
5675 }
5676
5677 /* Determine if the locations of this breakpoint will have their conditions
5678 evaluated by the target, host or a mix of both. Returns the following:
5679
5680 "host": Host evals condition.
5681 "host or target": Host or Target evals condition.
5682 "target": Target evals condition.
5683 */
5684
5685 static const char *
5686 bp_condition_evaluator (struct breakpoint *b)
5687 {
5688 struct bp_location *bl;
5689 char host_evals = 0;
5690 char target_evals = 0;
5691
5692 if (!b)
5693 return NULL;
5694
5695 if (!is_breakpoint (b))
5696 return NULL;
5697
5698 if (gdb_evaluates_breakpoint_condition_p ()
5699 || !target_supports_evaluation_of_breakpoint_conditions ())
5700 return condition_evaluation_host;
5701
5702 for (bl = b->loc; bl; bl = bl->next)
5703 {
5704 if (bl->cond_bytecode)
5705 target_evals++;
5706 else
5707 host_evals++;
5708 }
5709
5710 if (host_evals && target_evals)
5711 return condition_evaluation_both;
5712 else if (target_evals)
5713 return condition_evaluation_target;
5714 else
5715 return condition_evaluation_host;
5716 }
5717
5718 /* Determine the breakpoint location's condition evaluator. This is
5719 similar to bp_condition_evaluator, but for locations. */
5720
5721 static const char *
5722 bp_location_condition_evaluator (struct bp_location *bl)
5723 {
5724 if (bl && !is_breakpoint (bl->owner))
5725 return NULL;
5726
5727 if (gdb_evaluates_breakpoint_condition_p ()
5728 || !target_supports_evaluation_of_breakpoint_conditions ())
5729 return condition_evaluation_host;
5730
5731 if (bl && bl->cond_bytecode)
5732 return condition_evaluation_target;
5733 else
5734 return condition_evaluation_host;
5735 }
5736
5737 /* Print the LOC location out of the list of B->LOC locations. */
5738
5739 static void
5740 print_breakpoint_location (struct breakpoint *b,
5741 struct bp_location *loc)
5742 {
5743 struct ui_out *uiout = current_uiout;
5744 struct cleanup *old_chain = save_current_program_space ();
5745
5746 if (loc != NULL && loc->shlib_disabled)
5747 loc = NULL;
5748
5749 if (loc != NULL)
5750 set_current_program_space (loc->pspace);
5751
5752 if (b->display_canonical)
5753 ui_out_field_string (uiout, "what", b->addr_string);
5754 else if (loc && loc->symtab)
5755 {
5756 struct symbol *sym
5757 = find_pc_sect_function (loc->address, loc->section);
5758 if (sym)
5759 {
5760 ui_out_text (uiout, "in ");
5761 ui_out_field_string (uiout, "func",
5762 SYMBOL_PRINT_NAME (sym));
5763 ui_out_text (uiout, " ");
5764 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5765 ui_out_text (uiout, "at ");
5766 }
5767 ui_out_field_string (uiout, "file",
5768 symtab_to_filename_for_display (loc->symtab));
5769 ui_out_text (uiout, ":");
5770
5771 if (ui_out_is_mi_like_p (uiout))
5772 ui_out_field_string (uiout, "fullname",
5773 symtab_to_fullname (loc->symtab));
5774
5775 ui_out_field_int (uiout, "line", loc->line_number);
5776 }
5777 else if (loc)
5778 {
5779 struct ui_file *stb = mem_fileopen ();
5780 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5781
5782 print_address_symbolic (loc->gdbarch, loc->address, stb,
5783 demangle, "");
5784 ui_out_field_stream (uiout, "at", stb);
5785
5786 do_cleanups (stb_chain);
5787 }
5788 else
5789 ui_out_field_string (uiout, "pending", b->addr_string);
5790
5791 if (loc && is_breakpoint (b)
5792 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5793 && bp_condition_evaluator (b) == condition_evaluation_both)
5794 {
5795 ui_out_text (uiout, " (");
5796 ui_out_field_string (uiout, "evaluated-by",
5797 bp_location_condition_evaluator (loc));
5798 ui_out_text (uiout, ")");
5799 }
5800
5801 do_cleanups (old_chain);
5802 }
5803
5804 static const char *
5805 bptype_string (enum bptype type)
5806 {
5807 struct ep_type_description
5808 {
5809 enum bptype type;
5810 char *description;
5811 };
5812 static struct ep_type_description bptypes[] =
5813 {
5814 {bp_none, "?deleted?"},
5815 {bp_breakpoint, "breakpoint"},
5816 {bp_hardware_breakpoint, "hw breakpoint"},
5817 {bp_until, "until"},
5818 {bp_finish, "finish"},
5819 {bp_watchpoint, "watchpoint"},
5820 {bp_hardware_watchpoint, "hw watchpoint"},
5821 {bp_read_watchpoint, "read watchpoint"},
5822 {bp_access_watchpoint, "acc watchpoint"},
5823 {bp_longjmp, "longjmp"},
5824 {bp_longjmp_resume, "longjmp resume"},
5825 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5826 {bp_exception, "exception"},
5827 {bp_exception_resume, "exception resume"},
5828 {bp_step_resume, "step resume"},
5829 {bp_hp_step_resume, "high-priority step resume"},
5830 {bp_watchpoint_scope, "watchpoint scope"},
5831 {bp_call_dummy, "call dummy"},
5832 {bp_std_terminate, "std::terminate"},
5833 {bp_shlib_event, "shlib events"},
5834 {bp_thread_event, "thread events"},
5835 {bp_overlay_event, "overlay events"},
5836 {bp_longjmp_master, "longjmp master"},
5837 {bp_std_terminate_master, "std::terminate master"},
5838 {bp_exception_master, "exception master"},
5839 {bp_catchpoint, "catchpoint"},
5840 {bp_tracepoint, "tracepoint"},
5841 {bp_fast_tracepoint, "fast tracepoint"},
5842 {bp_static_tracepoint, "static tracepoint"},
5843 {bp_dprintf, "dprintf"},
5844 {bp_jit_event, "jit events"},
5845 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5846 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5847 };
5848
5849 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5850 || ((int) type != bptypes[(int) type].type))
5851 internal_error (__FILE__, __LINE__,
5852 _("bptypes table does not describe type #%d."),
5853 (int) type);
5854
5855 return bptypes[(int) type].description;
5856 }
5857
5858 /* For MI, output a field named 'thread-groups' with a list as the value.
5859 For CLI, prefix the list with the string 'inf'. */
5860
5861 static void
5862 output_thread_groups (struct ui_out *uiout,
5863 const char *field_name,
5864 VEC(int) *inf_num,
5865 int mi_only)
5866 {
5867 struct cleanup *back_to;
5868 int is_mi = ui_out_is_mi_like_p (uiout);
5869 int inf;
5870 int i;
5871
5872 /* For backward compatibility, don't display inferiors in CLI unless
5873 there are several. Always display them for MI. */
5874 if (!is_mi && mi_only)
5875 return;
5876
5877 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5878
5879 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5880 {
5881 if (is_mi)
5882 {
5883 char mi_group[10];
5884
5885 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5886 ui_out_field_string (uiout, NULL, mi_group);
5887 }
5888 else
5889 {
5890 if (i == 0)
5891 ui_out_text (uiout, " inf ");
5892 else
5893 ui_out_text (uiout, ", ");
5894
5895 ui_out_text (uiout, plongest (inf));
5896 }
5897 }
5898
5899 do_cleanups (back_to);
5900 }
5901
5902 /* Print B to gdb_stdout. */
5903
5904 static void
5905 print_one_breakpoint_location (struct breakpoint *b,
5906 struct bp_location *loc,
5907 int loc_number,
5908 struct bp_location **last_loc,
5909 int allflag)
5910 {
5911 struct command_line *l;
5912 static char bpenables[] = "nynny";
5913
5914 struct ui_out *uiout = current_uiout;
5915 int header_of_multiple = 0;
5916 int part_of_multiple = (loc != NULL);
5917 struct value_print_options opts;
5918
5919 get_user_print_options (&opts);
5920
5921 gdb_assert (!loc || loc_number != 0);
5922 /* See comment in print_one_breakpoint concerning treatment of
5923 breakpoints with single disabled location. */
5924 if (loc == NULL
5925 && (b->loc != NULL
5926 && (b->loc->next != NULL || !b->loc->enabled)))
5927 header_of_multiple = 1;
5928 if (loc == NULL)
5929 loc = b->loc;
5930
5931 annotate_record ();
5932
5933 /* 1 */
5934 annotate_field (0);
5935 if (part_of_multiple)
5936 {
5937 char *formatted;
5938 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5939 ui_out_field_string (uiout, "number", formatted);
5940 xfree (formatted);
5941 }
5942 else
5943 {
5944 ui_out_field_int (uiout, "number", b->number);
5945 }
5946
5947 /* 2 */
5948 annotate_field (1);
5949 if (part_of_multiple)
5950 ui_out_field_skip (uiout, "type");
5951 else
5952 ui_out_field_string (uiout, "type", bptype_string (b->type));
5953
5954 /* 3 */
5955 annotate_field (2);
5956 if (part_of_multiple)
5957 ui_out_field_skip (uiout, "disp");
5958 else
5959 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5960
5961
5962 /* 4 */
5963 annotate_field (3);
5964 if (part_of_multiple)
5965 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5966 else
5967 ui_out_field_fmt (uiout, "enabled", "%c",
5968 bpenables[(int) b->enable_state]);
5969 ui_out_spaces (uiout, 2);
5970
5971
5972 /* 5 and 6 */
5973 if (b->ops != NULL && b->ops->print_one != NULL)
5974 {
5975 /* Although the print_one can possibly print all locations,
5976 calling it here is not likely to get any nice result. So,
5977 make sure there's just one location. */
5978 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5979 b->ops->print_one (b, last_loc);
5980 }
5981 else
5982 switch (b->type)
5983 {
5984 case bp_none:
5985 internal_error (__FILE__, __LINE__,
5986 _("print_one_breakpoint: bp_none encountered\n"));
5987 break;
5988
5989 case bp_watchpoint:
5990 case bp_hardware_watchpoint:
5991 case bp_read_watchpoint:
5992 case bp_access_watchpoint:
5993 {
5994 struct watchpoint *w = (struct watchpoint *) b;
5995
5996 /* Field 4, the address, is omitted (which makes the columns
5997 not line up too nicely with the headers, but the effect
5998 is relatively readable). */
5999 if (opts.addressprint)
6000 ui_out_field_skip (uiout, "addr");
6001 annotate_field (5);
6002 ui_out_field_string (uiout, "what", w->exp_string);
6003 }
6004 break;
6005
6006 case bp_breakpoint:
6007 case bp_hardware_breakpoint:
6008 case bp_until:
6009 case bp_finish:
6010 case bp_longjmp:
6011 case bp_longjmp_resume:
6012 case bp_longjmp_call_dummy:
6013 case bp_exception:
6014 case bp_exception_resume:
6015 case bp_step_resume:
6016 case bp_hp_step_resume:
6017 case bp_watchpoint_scope:
6018 case bp_call_dummy:
6019 case bp_std_terminate:
6020 case bp_shlib_event:
6021 case bp_thread_event:
6022 case bp_overlay_event:
6023 case bp_longjmp_master:
6024 case bp_std_terminate_master:
6025 case bp_exception_master:
6026 case bp_tracepoint:
6027 case bp_fast_tracepoint:
6028 case bp_static_tracepoint:
6029 case bp_dprintf:
6030 case bp_jit_event:
6031 case bp_gnu_ifunc_resolver:
6032 case bp_gnu_ifunc_resolver_return:
6033 if (opts.addressprint)
6034 {
6035 annotate_field (4);
6036 if (header_of_multiple)
6037 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6038 else if (b->loc == NULL || loc->shlib_disabled)
6039 ui_out_field_string (uiout, "addr", "<PENDING>");
6040 else
6041 ui_out_field_core_addr (uiout, "addr",
6042 loc->gdbarch, loc->address);
6043 }
6044 annotate_field (5);
6045 if (!header_of_multiple)
6046 print_breakpoint_location (b, loc);
6047 if (b->loc)
6048 *last_loc = b->loc;
6049 break;
6050 }
6051
6052
6053 if (loc != NULL && !header_of_multiple)
6054 {
6055 struct inferior *inf;
6056 VEC(int) *inf_num = NULL;
6057 int mi_only = 1;
6058
6059 ALL_INFERIORS (inf)
6060 {
6061 if (inf->pspace == loc->pspace)
6062 VEC_safe_push (int, inf_num, inf->num);
6063 }
6064
6065 /* For backward compatibility, don't display inferiors in CLI unless
6066 there are several. Always display for MI. */
6067 if (allflag
6068 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6069 && (number_of_program_spaces () > 1
6070 || number_of_inferiors () > 1)
6071 /* LOC is for existing B, it cannot be in
6072 moribund_locations and thus having NULL OWNER. */
6073 && loc->owner->type != bp_catchpoint))
6074 mi_only = 0;
6075 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6076 VEC_free (int, inf_num);
6077 }
6078
6079 if (!part_of_multiple)
6080 {
6081 if (b->thread != -1)
6082 {
6083 /* FIXME: This seems to be redundant and lost here; see the
6084 "stop only in" line a little further down. */
6085 ui_out_text (uiout, " thread ");
6086 ui_out_field_int (uiout, "thread", b->thread);
6087 }
6088 else if (b->task != 0)
6089 {
6090 ui_out_text (uiout, " task ");
6091 ui_out_field_int (uiout, "task", b->task);
6092 }
6093 }
6094
6095 ui_out_text (uiout, "\n");
6096
6097 if (!part_of_multiple)
6098 b->ops->print_one_detail (b, uiout);
6099
6100 if (part_of_multiple && frame_id_p (b->frame_id))
6101 {
6102 annotate_field (6);
6103 ui_out_text (uiout, "\tstop only in stack frame at ");
6104 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6105 the frame ID. */
6106 ui_out_field_core_addr (uiout, "frame",
6107 b->gdbarch, b->frame_id.stack_addr);
6108 ui_out_text (uiout, "\n");
6109 }
6110
6111 if (!part_of_multiple && b->cond_string)
6112 {
6113 annotate_field (7);
6114 if (is_tracepoint (b))
6115 ui_out_text (uiout, "\ttrace only if ");
6116 else
6117 ui_out_text (uiout, "\tstop only if ");
6118 ui_out_field_string (uiout, "cond", b->cond_string);
6119
6120 /* Print whether the target is doing the breakpoint's condition
6121 evaluation. If GDB is doing the evaluation, don't print anything. */
6122 if (is_breakpoint (b)
6123 && breakpoint_condition_evaluation_mode ()
6124 == condition_evaluation_target)
6125 {
6126 ui_out_text (uiout, " (");
6127 ui_out_field_string (uiout, "evaluated-by",
6128 bp_condition_evaluator (b));
6129 ui_out_text (uiout, " evals)");
6130 }
6131 ui_out_text (uiout, "\n");
6132 }
6133
6134 if (!part_of_multiple && b->thread != -1)
6135 {
6136 /* FIXME should make an annotation for this. */
6137 ui_out_text (uiout, "\tstop only in thread ");
6138 ui_out_field_int (uiout, "thread", b->thread);
6139 ui_out_text (uiout, "\n");
6140 }
6141
6142 if (!part_of_multiple)
6143 {
6144 if (b->hit_count)
6145 {
6146 /* FIXME should make an annotation for this. */
6147 if (is_catchpoint (b))
6148 ui_out_text (uiout, "\tcatchpoint");
6149 else if (is_tracepoint (b))
6150 ui_out_text (uiout, "\ttracepoint");
6151 else
6152 ui_out_text (uiout, "\tbreakpoint");
6153 ui_out_text (uiout, " already hit ");
6154 ui_out_field_int (uiout, "times", b->hit_count);
6155 if (b->hit_count == 1)
6156 ui_out_text (uiout, " time\n");
6157 else
6158 ui_out_text (uiout, " times\n");
6159 }
6160 else
6161 {
6162 /* Output the count also if it is zero, but only if this is mi. */
6163 if (ui_out_is_mi_like_p (uiout))
6164 ui_out_field_int (uiout, "times", b->hit_count);
6165 }
6166 }
6167
6168 if (!part_of_multiple && b->ignore_count)
6169 {
6170 annotate_field (8);
6171 ui_out_text (uiout, "\tignore next ");
6172 ui_out_field_int (uiout, "ignore", b->ignore_count);
6173 ui_out_text (uiout, " hits\n");
6174 }
6175
6176 /* Note that an enable count of 1 corresponds to "enable once"
6177 behavior, which is reported by the combination of enablement and
6178 disposition, so we don't need to mention it here. */
6179 if (!part_of_multiple && b->enable_count > 1)
6180 {
6181 annotate_field (8);
6182 ui_out_text (uiout, "\tdisable after ");
6183 /* Tweak the wording to clarify that ignore and enable counts
6184 are distinct, and have additive effect. */
6185 if (b->ignore_count)
6186 ui_out_text (uiout, "additional ");
6187 else
6188 ui_out_text (uiout, "next ");
6189 ui_out_field_int (uiout, "enable", b->enable_count);
6190 ui_out_text (uiout, " hits\n");
6191 }
6192
6193 if (!part_of_multiple && is_tracepoint (b))
6194 {
6195 struct tracepoint *tp = (struct tracepoint *) b;
6196
6197 if (tp->traceframe_usage)
6198 {
6199 ui_out_text (uiout, "\ttrace buffer usage ");
6200 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6201 ui_out_text (uiout, " bytes\n");
6202 }
6203 }
6204
6205 l = b->commands ? b->commands->commands : NULL;
6206 if (!part_of_multiple && l)
6207 {
6208 struct cleanup *script_chain;
6209
6210 annotate_field (9);
6211 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6212 print_command_lines (uiout, l, 4);
6213 do_cleanups (script_chain);
6214 }
6215
6216 if (is_tracepoint (b))
6217 {
6218 struct tracepoint *t = (struct tracepoint *) b;
6219
6220 if (!part_of_multiple && t->pass_count)
6221 {
6222 annotate_field (10);
6223 ui_out_text (uiout, "\tpass count ");
6224 ui_out_field_int (uiout, "pass", t->pass_count);
6225 ui_out_text (uiout, " \n");
6226 }
6227
6228 /* Don't display it when tracepoint or tracepoint location is
6229 pending. */
6230 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6231 {
6232 annotate_field (11);
6233
6234 if (ui_out_is_mi_like_p (uiout))
6235 ui_out_field_string (uiout, "installed",
6236 loc->inserted ? "y" : "n");
6237 else
6238 {
6239 if (loc->inserted)
6240 ui_out_text (uiout, "\t");
6241 else
6242 ui_out_text (uiout, "\tnot ");
6243 ui_out_text (uiout, "installed on target\n");
6244 }
6245 }
6246 }
6247
6248 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6249 {
6250 if (is_watchpoint (b))
6251 {
6252 struct watchpoint *w = (struct watchpoint *) b;
6253
6254 ui_out_field_string (uiout, "original-location", w->exp_string);
6255 }
6256 else if (b->addr_string)
6257 ui_out_field_string (uiout, "original-location", b->addr_string);
6258 }
6259 }
6260
6261 static void
6262 print_one_breakpoint (struct breakpoint *b,
6263 struct bp_location **last_loc,
6264 int allflag)
6265 {
6266 struct cleanup *bkpt_chain;
6267 struct ui_out *uiout = current_uiout;
6268
6269 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6270
6271 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6272 do_cleanups (bkpt_chain);
6273
6274 /* If this breakpoint has custom print function,
6275 it's already printed. Otherwise, print individual
6276 locations, if any. */
6277 if (b->ops == NULL || b->ops->print_one == NULL)
6278 {
6279 /* If breakpoint has a single location that is disabled, we
6280 print it as if it had several locations, since otherwise it's
6281 hard to represent "breakpoint enabled, location disabled"
6282 situation.
6283
6284 Note that while hardware watchpoints have several locations
6285 internally, that's not a property exposed to user. */
6286 if (b->loc
6287 && !is_hardware_watchpoint (b)
6288 && (b->loc->next || !b->loc->enabled))
6289 {
6290 struct bp_location *loc;
6291 int n = 1;
6292
6293 for (loc = b->loc; loc; loc = loc->next, ++n)
6294 {
6295 struct cleanup *inner2 =
6296 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6297 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6298 do_cleanups (inner2);
6299 }
6300 }
6301 }
6302 }
6303
6304 static int
6305 breakpoint_address_bits (struct breakpoint *b)
6306 {
6307 int print_address_bits = 0;
6308 struct bp_location *loc;
6309
6310 for (loc = b->loc; loc; loc = loc->next)
6311 {
6312 int addr_bit;
6313
6314 /* Software watchpoints that aren't watching memory don't have
6315 an address to print. */
6316 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6317 continue;
6318
6319 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6320 if (addr_bit > print_address_bits)
6321 print_address_bits = addr_bit;
6322 }
6323
6324 return print_address_bits;
6325 }
6326
6327 struct captured_breakpoint_query_args
6328 {
6329 int bnum;
6330 };
6331
6332 static int
6333 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6334 {
6335 struct captured_breakpoint_query_args *args = data;
6336 struct breakpoint *b;
6337 struct bp_location *dummy_loc = NULL;
6338
6339 ALL_BREAKPOINTS (b)
6340 {
6341 if (args->bnum == b->number)
6342 {
6343 print_one_breakpoint (b, &dummy_loc, 0);
6344 return GDB_RC_OK;
6345 }
6346 }
6347 return GDB_RC_NONE;
6348 }
6349
6350 enum gdb_rc
6351 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6352 char **error_message)
6353 {
6354 struct captured_breakpoint_query_args args;
6355
6356 args.bnum = bnum;
6357 /* For the moment we don't trust print_one_breakpoint() to not throw
6358 an error. */
6359 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6360 error_message, RETURN_MASK_ALL) < 0)
6361 return GDB_RC_FAIL;
6362 else
6363 return GDB_RC_OK;
6364 }
6365
6366 /* Return true if this breakpoint was set by the user, false if it is
6367 internal or momentary. */
6368
6369 int
6370 user_breakpoint_p (struct breakpoint *b)
6371 {
6372 return b->number > 0;
6373 }
6374
6375 /* Print information on user settable breakpoint (watchpoint, etc)
6376 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6377 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6378 FILTER is non-NULL, call it on each breakpoint and only include the
6379 ones for which it returns non-zero. Return the total number of
6380 breakpoints listed. */
6381
6382 static int
6383 breakpoint_1 (char *args, int allflag,
6384 int (*filter) (const struct breakpoint *))
6385 {
6386 struct breakpoint *b;
6387 struct bp_location *last_loc = NULL;
6388 int nr_printable_breakpoints;
6389 struct cleanup *bkpttbl_chain;
6390 struct value_print_options opts;
6391 int print_address_bits = 0;
6392 int print_type_col_width = 14;
6393 struct ui_out *uiout = current_uiout;
6394
6395 get_user_print_options (&opts);
6396
6397 /* Compute the number of rows in the table, as well as the size
6398 required for address fields. */
6399 nr_printable_breakpoints = 0;
6400 ALL_BREAKPOINTS (b)
6401 {
6402 /* If we have a filter, only list the breakpoints it accepts. */
6403 if (filter && !filter (b))
6404 continue;
6405
6406 /* If we have an "args" string, it is a list of breakpoints to
6407 accept. Skip the others. */
6408 if (args != NULL && *args != '\0')
6409 {
6410 if (allflag && parse_and_eval_long (args) != b->number)
6411 continue;
6412 if (!allflag && !number_is_in_list (args, b->number))
6413 continue;
6414 }
6415
6416 if (allflag || user_breakpoint_p (b))
6417 {
6418 int addr_bit, type_len;
6419
6420 addr_bit = breakpoint_address_bits (b);
6421 if (addr_bit > print_address_bits)
6422 print_address_bits = addr_bit;
6423
6424 type_len = strlen (bptype_string (b->type));
6425 if (type_len > print_type_col_width)
6426 print_type_col_width = type_len;
6427
6428 nr_printable_breakpoints++;
6429 }
6430 }
6431
6432 if (opts.addressprint)
6433 bkpttbl_chain
6434 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6435 nr_printable_breakpoints,
6436 "BreakpointTable");
6437 else
6438 bkpttbl_chain
6439 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6440 nr_printable_breakpoints,
6441 "BreakpointTable");
6442
6443 if (nr_printable_breakpoints > 0)
6444 annotate_breakpoints_headers ();
6445 if (nr_printable_breakpoints > 0)
6446 annotate_field (0);
6447 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6448 if (nr_printable_breakpoints > 0)
6449 annotate_field (1);
6450 ui_out_table_header (uiout, print_type_col_width, ui_left,
6451 "type", "Type"); /* 2 */
6452 if (nr_printable_breakpoints > 0)
6453 annotate_field (2);
6454 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6455 if (nr_printable_breakpoints > 0)
6456 annotate_field (3);
6457 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6458 if (opts.addressprint)
6459 {
6460 if (nr_printable_breakpoints > 0)
6461 annotate_field (4);
6462 if (print_address_bits <= 32)
6463 ui_out_table_header (uiout, 10, ui_left,
6464 "addr", "Address"); /* 5 */
6465 else
6466 ui_out_table_header (uiout, 18, ui_left,
6467 "addr", "Address"); /* 5 */
6468 }
6469 if (nr_printable_breakpoints > 0)
6470 annotate_field (5);
6471 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6472 ui_out_table_body (uiout);
6473 if (nr_printable_breakpoints > 0)
6474 annotate_breakpoints_table ();
6475
6476 ALL_BREAKPOINTS (b)
6477 {
6478 QUIT;
6479 /* If we have a filter, only list the breakpoints it accepts. */
6480 if (filter && !filter (b))
6481 continue;
6482
6483 /* If we have an "args" string, it is a list of breakpoints to
6484 accept. Skip the others. */
6485
6486 if (args != NULL && *args != '\0')
6487 {
6488 if (allflag) /* maintenance info breakpoint */
6489 {
6490 if (parse_and_eval_long (args) != b->number)
6491 continue;
6492 }
6493 else /* all others */
6494 {
6495 if (!number_is_in_list (args, b->number))
6496 continue;
6497 }
6498 }
6499 /* We only print out user settable breakpoints unless the
6500 allflag is set. */
6501 if (allflag || user_breakpoint_p (b))
6502 print_one_breakpoint (b, &last_loc, allflag);
6503 }
6504
6505 do_cleanups (bkpttbl_chain);
6506
6507 if (nr_printable_breakpoints == 0)
6508 {
6509 /* If there's a filter, let the caller decide how to report
6510 empty list. */
6511 if (!filter)
6512 {
6513 if (args == NULL || *args == '\0')
6514 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6515 else
6516 ui_out_message (uiout, 0,
6517 "No breakpoint or watchpoint matching '%s'.\n",
6518 args);
6519 }
6520 }
6521 else
6522 {
6523 if (last_loc && !server_command)
6524 set_next_address (last_loc->gdbarch, last_loc->address);
6525 }
6526
6527 /* FIXME? Should this be moved up so that it is only called when
6528 there have been breakpoints? */
6529 annotate_breakpoints_table_end ();
6530
6531 return nr_printable_breakpoints;
6532 }
6533
6534 /* Display the value of default-collect in a way that is generally
6535 compatible with the breakpoint list. */
6536
6537 static void
6538 default_collect_info (void)
6539 {
6540 struct ui_out *uiout = current_uiout;
6541
6542 /* If it has no value (which is frequently the case), say nothing; a
6543 message like "No default-collect." gets in user's face when it's
6544 not wanted. */
6545 if (!*default_collect)
6546 return;
6547
6548 /* The following phrase lines up nicely with per-tracepoint collect
6549 actions. */
6550 ui_out_text (uiout, "default collect ");
6551 ui_out_field_string (uiout, "default-collect", default_collect);
6552 ui_out_text (uiout, " \n");
6553 }
6554
6555 static void
6556 breakpoints_info (char *args, int from_tty)
6557 {
6558 breakpoint_1 (args, 0, NULL);
6559
6560 default_collect_info ();
6561 }
6562
6563 static void
6564 watchpoints_info (char *args, int from_tty)
6565 {
6566 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6567 struct ui_out *uiout = current_uiout;
6568
6569 if (num_printed == 0)
6570 {
6571 if (args == NULL || *args == '\0')
6572 ui_out_message (uiout, 0, "No watchpoints.\n");
6573 else
6574 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6575 }
6576 }
6577
6578 static void
6579 maintenance_info_breakpoints (char *args, int from_tty)
6580 {
6581 breakpoint_1 (args, 1, NULL);
6582
6583 default_collect_info ();
6584 }
6585
6586 static int
6587 breakpoint_has_pc (struct breakpoint *b,
6588 struct program_space *pspace,
6589 CORE_ADDR pc, struct obj_section *section)
6590 {
6591 struct bp_location *bl = b->loc;
6592
6593 for (; bl; bl = bl->next)
6594 {
6595 if (bl->pspace == pspace
6596 && bl->address == pc
6597 && (!overlay_debugging || bl->section == section))
6598 return 1;
6599 }
6600 return 0;
6601 }
6602
6603 /* Print a message describing any user-breakpoints set at PC. This
6604 concerns with logical breakpoints, so we match program spaces, not
6605 address spaces. */
6606
6607 static void
6608 describe_other_breakpoints (struct gdbarch *gdbarch,
6609 struct program_space *pspace, CORE_ADDR pc,
6610 struct obj_section *section, int thread)
6611 {
6612 int others = 0;
6613 struct breakpoint *b;
6614
6615 ALL_BREAKPOINTS (b)
6616 others += (user_breakpoint_p (b)
6617 && breakpoint_has_pc (b, pspace, pc, section));
6618 if (others > 0)
6619 {
6620 if (others == 1)
6621 printf_filtered (_("Note: breakpoint "));
6622 else /* if (others == ???) */
6623 printf_filtered (_("Note: breakpoints "));
6624 ALL_BREAKPOINTS (b)
6625 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6626 {
6627 others--;
6628 printf_filtered ("%d", b->number);
6629 if (b->thread == -1 && thread != -1)
6630 printf_filtered (" (all threads)");
6631 else if (b->thread != -1)
6632 printf_filtered (" (thread %d)", b->thread);
6633 printf_filtered ("%s%s ",
6634 ((b->enable_state == bp_disabled
6635 || b->enable_state == bp_call_disabled)
6636 ? " (disabled)"
6637 : b->enable_state == bp_permanent
6638 ? " (permanent)"
6639 : ""),
6640 (others > 1) ? ","
6641 : ((others == 1) ? " and" : ""));
6642 }
6643 printf_filtered (_("also set at pc "));
6644 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6645 printf_filtered (".\n");
6646 }
6647 }
6648 \f
6649
6650 /* Return true iff it is meaningful to use the address member of
6651 BPT. For some breakpoint types, the address member is irrelevant
6652 and it makes no sense to attempt to compare it to other addresses
6653 (or use it for any other purpose either).
6654
6655 More specifically, each of the following breakpoint types will
6656 always have a zero valued address and we don't want to mark
6657 breakpoints of any of these types to be a duplicate of an actual
6658 breakpoint at address zero:
6659
6660 bp_watchpoint
6661 bp_catchpoint
6662
6663 */
6664
6665 static int
6666 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6667 {
6668 enum bptype type = bpt->type;
6669
6670 return (type != bp_watchpoint && type != bp_catchpoint);
6671 }
6672
6673 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6674 true if LOC1 and LOC2 represent the same watchpoint location. */
6675
6676 static int
6677 watchpoint_locations_match (struct bp_location *loc1,
6678 struct bp_location *loc2)
6679 {
6680 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6681 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6682
6683 /* Both of them must exist. */
6684 gdb_assert (w1 != NULL);
6685 gdb_assert (w2 != NULL);
6686
6687 /* If the target can evaluate the condition expression in hardware,
6688 then we we need to insert both watchpoints even if they are at
6689 the same place. Otherwise the watchpoint will only trigger when
6690 the condition of whichever watchpoint was inserted evaluates to
6691 true, not giving a chance for GDB to check the condition of the
6692 other watchpoint. */
6693 if ((w1->cond_exp
6694 && target_can_accel_watchpoint_condition (loc1->address,
6695 loc1->length,
6696 loc1->watchpoint_type,
6697 w1->cond_exp))
6698 || (w2->cond_exp
6699 && target_can_accel_watchpoint_condition (loc2->address,
6700 loc2->length,
6701 loc2->watchpoint_type,
6702 w2->cond_exp)))
6703 return 0;
6704
6705 /* Note that this checks the owner's type, not the location's. In
6706 case the target does not support read watchpoints, but does
6707 support access watchpoints, we'll have bp_read_watchpoint
6708 watchpoints with hw_access locations. Those should be considered
6709 duplicates of hw_read locations. The hw_read locations will
6710 become hw_access locations later. */
6711 return (loc1->owner->type == loc2->owner->type
6712 && loc1->pspace->aspace == loc2->pspace->aspace
6713 && loc1->address == loc2->address
6714 && loc1->length == loc2->length);
6715 }
6716
6717 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6718 same breakpoint location. In most targets, this can only be true
6719 if ASPACE1 matches ASPACE2. On targets that have global
6720 breakpoints, the address space doesn't really matter. */
6721
6722 static int
6723 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6724 struct address_space *aspace2, CORE_ADDR addr2)
6725 {
6726 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6727 || aspace1 == aspace2)
6728 && addr1 == addr2);
6729 }
6730
6731 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6732 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6733 matches ASPACE2. On targets that have global breakpoints, the address
6734 space doesn't really matter. */
6735
6736 static int
6737 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6738 int len1, struct address_space *aspace2,
6739 CORE_ADDR addr2)
6740 {
6741 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6742 || aspace1 == aspace2)
6743 && addr2 >= addr1 && addr2 < addr1 + len1);
6744 }
6745
6746 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6747 a ranged breakpoint. In most targets, a match happens only if ASPACE
6748 matches the breakpoint's address space. On targets that have global
6749 breakpoints, the address space doesn't really matter. */
6750
6751 static int
6752 breakpoint_location_address_match (struct bp_location *bl,
6753 struct address_space *aspace,
6754 CORE_ADDR addr)
6755 {
6756 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6757 aspace, addr)
6758 || (bl->length
6759 && breakpoint_address_match_range (bl->pspace->aspace,
6760 bl->address, bl->length,
6761 aspace, addr)));
6762 }
6763
6764 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6765 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6766 true, otherwise returns false. */
6767
6768 static int
6769 tracepoint_locations_match (struct bp_location *loc1,
6770 struct bp_location *loc2)
6771 {
6772 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6773 /* Since tracepoint locations are never duplicated with others', tracepoint
6774 locations at the same address of different tracepoints are regarded as
6775 different locations. */
6776 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6777 else
6778 return 0;
6779 }
6780
6781 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6782 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6783 represent the same location. */
6784
6785 static int
6786 breakpoint_locations_match (struct bp_location *loc1,
6787 struct bp_location *loc2)
6788 {
6789 int hw_point1, hw_point2;
6790
6791 /* Both of them must not be in moribund_locations. */
6792 gdb_assert (loc1->owner != NULL);
6793 gdb_assert (loc2->owner != NULL);
6794
6795 hw_point1 = is_hardware_watchpoint (loc1->owner);
6796 hw_point2 = is_hardware_watchpoint (loc2->owner);
6797
6798 if (hw_point1 != hw_point2)
6799 return 0;
6800 else if (hw_point1)
6801 return watchpoint_locations_match (loc1, loc2);
6802 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6803 return tracepoint_locations_match (loc1, loc2);
6804 else
6805 /* We compare bp_location.length in order to cover ranged breakpoints. */
6806 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6807 loc2->pspace->aspace, loc2->address)
6808 && loc1->length == loc2->length);
6809 }
6810
6811 static void
6812 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6813 int bnum, int have_bnum)
6814 {
6815 /* The longest string possibly returned by hex_string_custom
6816 is 50 chars. These must be at least that big for safety. */
6817 char astr1[64];
6818 char astr2[64];
6819
6820 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6821 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6822 if (have_bnum)
6823 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6824 bnum, astr1, astr2);
6825 else
6826 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6827 }
6828
6829 /* Adjust a breakpoint's address to account for architectural
6830 constraints on breakpoint placement. Return the adjusted address.
6831 Note: Very few targets require this kind of adjustment. For most
6832 targets, this function is simply the identity function. */
6833
6834 static CORE_ADDR
6835 adjust_breakpoint_address (struct gdbarch *gdbarch,
6836 CORE_ADDR bpaddr, enum bptype bptype)
6837 {
6838 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6839 {
6840 /* Very few targets need any kind of breakpoint adjustment. */
6841 return bpaddr;
6842 }
6843 else if (bptype == bp_watchpoint
6844 || bptype == bp_hardware_watchpoint
6845 || bptype == bp_read_watchpoint
6846 || bptype == bp_access_watchpoint
6847 || bptype == bp_catchpoint)
6848 {
6849 /* Watchpoints and the various bp_catch_* eventpoints should not
6850 have their addresses modified. */
6851 return bpaddr;
6852 }
6853 else
6854 {
6855 CORE_ADDR adjusted_bpaddr;
6856
6857 /* Some targets have architectural constraints on the placement
6858 of breakpoint instructions. Obtain the adjusted address. */
6859 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6860
6861 /* An adjusted breakpoint address can significantly alter
6862 a user's expectations. Print a warning if an adjustment
6863 is required. */
6864 if (adjusted_bpaddr != bpaddr)
6865 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6866
6867 return adjusted_bpaddr;
6868 }
6869 }
6870
6871 void
6872 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6873 struct breakpoint *owner)
6874 {
6875 memset (loc, 0, sizeof (*loc));
6876
6877 gdb_assert (ops != NULL);
6878
6879 loc->ops = ops;
6880 loc->owner = owner;
6881 loc->cond = NULL;
6882 loc->cond_bytecode = NULL;
6883 loc->shlib_disabled = 0;
6884 loc->enabled = 1;
6885
6886 switch (owner->type)
6887 {
6888 case bp_breakpoint:
6889 case bp_until:
6890 case bp_finish:
6891 case bp_longjmp:
6892 case bp_longjmp_resume:
6893 case bp_longjmp_call_dummy:
6894 case bp_exception:
6895 case bp_exception_resume:
6896 case bp_step_resume:
6897 case bp_hp_step_resume:
6898 case bp_watchpoint_scope:
6899 case bp_call_dummy:
6900 case bp_std_terminate:
6901 case bp_shlib_event:
6902 case bp_thread_event:
6903 case bp_overlay_event:
6904 case bp_jit_event:
6905 case bp_longjmp_master:
6906 case bp_std_terminate_master:
6907 case bp_exception_master:
6908 case bp_gnu_ifunc_resolver:
6909 case bp_gnu_ifunc_resolver_return:
6910 case bp_dprintf:
6911 loc->loc_type = bp_loc_software_breakpoint;
6912 mark_breakpoint_location_modified (loc);
6913 break;
6914 case bp_hardware_breakpoint:
6915 loc->loc_type = bp_loc_hardware_breakpoint;
6916 mark_breakpoint_location_modified (loc);
6917 break;
6918 case bp_hardware_watchpoint:
6919 case bp_read_watchpoint:
6920 case bp_access_watchpoint:
6921 loc->loc_type = bp_loc_hardware_watchpoint;
6922 break;
6923 case bp_watchpoint:
6924 case bp_catchpoint:
6925 case bp_tracepoint:
6926 case bp_fast_tracepoint:
6927 case bp_static_tracepoint:
6928 loc->loc_type = bp_loc_other;
6929 break;
6930 default:
6931 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6932 }
6933
6934 loc->refc = 1;
6935 }
6936
6937 /* Allocate a struct bp_location. */
6938
6939 static struct bp_location *
6940 allocate_bp_location (struct breakpoint *bpt)
6941 {
6942 return bpt->ops->allocate_location (bpt);
6943 }
6944
6945 static void
6946 free_bp_location (struct bp_location *loc)
6947 {
6948 loc->ops->dtor (loc);
6949 xfree (loc);
6950 }
6951
6952 /* Increment reference count. */
6953
6954 static void
6955 incref_bp_location (struct bp_location *bl)
6956 {
6957 ++bl->refc;
6958 }
6959
6960 /* Decrement reference count. If the reference count reaches 0,
6961 destroy the bp_location. Sets *BLP to NULL. */
6962
6963 static void
6964 decref_bp_location (struct bp_location **blp)
6965 {
6966 gdb_assert ((*blp)->refc > 0);
6967
6968 if (--(*blp)->refc == 0)
6969 free_bp_location (*blp);
6970 *blp = NULL;
6971 }
6972
6973 /* Add breakpoint B at the end of the global breakpoint chain. */
6974
6975 static void
6976 add_to_breakpoint_chain (struct breakpoint *b)
6977 {
6978 struct breakpoint *b1;
6979
6980 /* Add this breakpoint to the end of the chain so that a list of
6981 breakpoints will come out in order of increasing numbers. */
6982
6983 b1 = breakpoint_chain;
6984 if (b1 == 0)
6985 breakpoint_chain = b;
6986 else
6987 {
6988 while (b1->next)
6989 b1 = b1->next;
6990 b1->next = b;
6991 }
6992 }
6993
6994 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6995
6996 static void
6997 init_raw_breakpoint_without_location (struct breakpoint *b,
6998 struct gdbarch *gdbarch,
6999 enum bptype bptype,
7000 const struct breakpoint_ops *ops)
7001 {
7002 memset (b, 0, sizeof (*b));
7003
7004 gdb_assert (ops != NULL);
7005
7006 b->ops = ops;
7007 b->type = bptype;
7008 b->gdbarch = gdbarch;
7009 b->language = current_language->la_language;
7010 b->input_radix = input_radix;
7011 b->thread = -1;
7012 b->enable_state = bp_enabled;
7013 b->next = 0;
7014 b->silent = 0;
7015 b->ignore_count = 0;
7016 b->commands = NULL;
7017 b->frame_id = null_frame_id;
7018 b->condition_not_parsed = 0;
7019 b->py_bp_object = NULL;
7020 b->related_breakpoint = b;
7021 }
7022
7023 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7024 that has type BPTYPE and has no locations as yet. */
7025
7026 static struct breakpoint *
7027 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7028 enum bptype bptype,
7029 const struct breakpoint_ops *ops)
7030 {
7031 struct breakpoint *b = XNEW (struct breakpoint);
7032
7033 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7034 add_to_breakpoint_chain (b);
7035 return b;
7036 }
7037
7038 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7039 resolutions should be made as the user specified the location explicitly
7040 enough. */
7041
7042 static void
7043 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7044 {
7045 gdb_assert (loc->owner != NULL);
7046
7047 if (loc->owner->type == bp_breakpoint
7048 || loc->owner->type == bp_hardware_breakpoint
7049 || is_tracepoint (loc->owner))
7050 {
7051 int is_gnu_ifunc;
7052 const char *function_name;
7053 CORE_ADDR func_addr;
7054
7055 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7056 &func_addr, NULL, &is_gnu_ifunc);
7057
7058 if (is_gnu_ifunc && !explicit_loc)
7059 {
7060 struct breakpoint *b = loc->owner;
7061
7062 gdb_assert (loc->pspace == current_program_space);
7063 if (gnu_ifunc_resolve_name (function_name,
7064 &loc->requested_address))
7065 {
7066 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7067 loc->address = adjust_breakpoint_address (loc->gdbarch,
7068 loc->requested_address,
7069 b->type);
7070 }
7071 else if (b->type == bp_breakpoint && b->loc == loc
7072 && loc->next == NULL && b->related_breakpoint == b)
7073 {
7074 /* Create only the whole new breakpoint of this type but do not
7075 mess more complicated breakpoints with multiple locations. */
7076 b->type = bp_gnu_ifunc_resolver;
7077 /* Remember the resolver's address for use by the return
7078 breakpoint. */
7079 loc->related_address = func_addr;
7080 }
7081 }
7082
7083 if (function_name)
7084 loc->function_name = xstrdup (function_name);
7085 }
7086 }
7087
7088 /* Attempt to determine architecture of location identified by SAL. */
7089 struct gdbarch *
7090 get_sal_arch (struct symtab_and_line sal)
7091 {
7092 if (sal.section)
7093 return get_objfile_arch (sal.section->objfile);
7094 if (sal.symtab)
7095 return get_objfile_arch (sal.symtab->objfile);
7096
7097 return NULL;
7098 }
7099
7100 /* Low level routine for partially initializing a breakpoint of type
7101 BPTYPE. The newly created breakpoint's address, section, source
7102 file name, and line number are provided by SAL.
7103
7104 It is expected that the caller will complete the initialization of
7105 the newly created breakpoint struct as well as output any status
7106 information regarding the creation of a new breakpoint. */
7107
7108 static void
7109 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7110 struct symtab_and_line sal, enum bptype bptype,
7111 const struct breakpoint_ops *ops)
7112 {
7113 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7114
7115 add_location_to_breakpoint (b, &sal);
7116
7117 if (bptype != bp_catchpoint)
7118 gdb_assert (sal.pspace != NULL);
7119
7120 /* Store the program space that was used to set the breakpoint,
7121 except for ordinary breakpoints, which are independent of the
7122 program space. */
7123 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7124 b->pspace = sal.pspace;
7125 }
7126
7127 /* set_raw_breakpoint is a low level routine for allocating and
7128 partially initializing a breakpoint of type BPTYPE. The newly
7129 created breakpoint's address, section, source file name, and line
7130 number are provided by SAL. The newly created and partially
7131 initialized breakpoint is added to the breakpoint chain and
7132 is also returned as the value of this function.
7133
7134 It is expected that the caller will complete the initialization of
7135 the newly created breakpoint struct as well as output any status
7136 information regarding the creation of a new breakpoint. In
7137 particular, set_raw_breakpoint does NOT set the breakpoint
7138 number! Care should be taken to not allow an error to occur
7139 prior to completing the initialization of the breakpoint. If this
7140 should happen, a bogus breakpoint will be left on the chain. */
7141
7142 struct breakpoint *
7143 set_raw_breakpoint (struct gdbarch *gdbarch,
7144 struct symtab_and_line sal, enum bptype bptype,
7145 const struct breakpoint_ops *ops)
7146 {
7147 struct breakpoint *b = XNEW (struct breakpoint);
7148
7149 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7150 add_to_breakpoint_chain (b);
7151 return b;
7152 }
7153
7154
7155 /* Note that the breakpoint object B describes a permanent breakpoint
7156 instruction, hard-wired into the inferior's code. */
7157 void
7158 make_breakpoint_permanent (struct breakpoint *b)
7159 {
7160 struct bp_location *bl;
7161
7162 b->enable_state = bp_permanent;
7163
7164 /* By definition, permanent breakpoints are already present in the
7165 code. Mark all locations as inserted. For now,
7166 make_breakpoint_permanent is called in just one place, so it's
7167 hard to say if it's reasonable to have permanent breakpoint with
7168 multiple locations or not, but it's easy to implement. */
7169 for (bl = b->loc; bl; bl = bl->next)
7170 bl->inserted = 1;
7171 }
7172
7173 /* Call this routine when stepping and nexting to enable a breakpoint
7174 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7175 initiated the operation. */
7176
7177 void
7178 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7179 {
7180 struct breakpoint *b, *b_tmp;
7181 int thread = tp->num;
7182
7183 /* To avoid having to rescan all objfile symbols at every step,
7184 we maintain a list of continually-inserted but always disabled
7185 longjmp "master" breakpoints. Here, we simply create momentary
7186 clones of those and enable them for the requested thread. */
7187 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7188 if (b->pspace == current_program_space
7189 && (b->type == bp_longjmp_master
7190 || b->type == bp_exception_master))
7191 {
7192 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7193 struct breakpoint *clone;
7194
7195 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7196 after their removal. */
7197 clone = momentary_breakpoint_from_master (b, type,
7198 &longjmp_breakpoint_ops);
7199 clone->thread = thread;
7200 }
7201
7202 tp->initiating_frame = frame;
7203 }
7204
7205 /* Delete all longjmp breakpoints from THREAD. */
7206 void
7207 delete_longjmp_breakpoint (int thread)
7208 {
7209 struct breakpoint *b, *b_tmp;
7210
7211 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7212 if (b->type == bp_longjmp || b->type == bp_exception)
7213 {
7214 if (b->thread == thread)
7215 delete_breakpoint (b);
7216 }
7217 }
7218
7219 void
7220 delete_longjmp_breakpoint_at_next_stop (int thread)
7221 {
7222 struct breakpoint *b, *b_tmp;
7223
7224 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7225 if (b->type == bp_longjmp || b->type == bp_exception)
7226 {
7227 if (b->thread == thread)
7228 b->disposition = disp_del_at_next_stop;
7229 }
7230 }
7231
7232 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7233 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7234 pointer to any of them. Return NULL if this system cannot place longjmp
7235 breakpoints. */
7236
7237 struct breakpoint *
7238 set_longjmp_breakpoint_for_call_dummy (void)
7239 {
7240 struct breakpoint *b, *retval = NULL;
7241
7242 ALL_BREAKPOINTS (b)
7243 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7244 {
7245 struct breakpoint *new_b;
7246
7247 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7248 &momentary_breakpoint_ops);
7249 new_b->thread = pid_to_thread_id (inferior_ptid);
7250
7251 /* Link NEW_B into the chain of RETVAL breakpoints. */
7252
7253 gdb_assert (new_b->related_breakpoint == new_b);
7254 if (retval == NULL)
7255 retval = new_b;
7256 new_b->related_breakpoint = retval;
7257 while (retval->related_breakpoint != new_b->related_breakpoint)
7258 retval = retval->related_breakpoint;
7259 retval->related_breakpoint = new_b;
7260 }
7261
7262 return retval;
7263 }
7264
7265 /* Verify all existing dummy frames and their associated breakpoints for
7266 THREAD. Remove those which can no longer be found in the current frame
7267 stack.
7268
7269 You should call this function only at places where it is safe to currently
7270 unwind the whole stack. Failed stack unwind would discard live dummy
7271 frames. */
7272
7273 void
7274 check_longjmp_breakpoint_for_call_dummy (int thread)
7275 {
7276 struct breakpoint *b, *b_tmp;
7277
7278 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7279 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7280 {
7281 struct breakpoint *dummy_b = b->related_breakpoint;
7282
7283 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7284 dummy_b = dummy_b->related_breakpoint;
7285 if (dummy_b->type != bp_call_dummy
7286 || frame_find_by_id (dummy_b->frame_id) != NULL)
7287 continue;
7288
7289 dummy_frame_discard (dummy_b->frame_id);
7290
7291 while (b->related_breakpoint != b)
7292 {
7293 if (b_tmp == b->related_breakpoint)
7294 b_tmp = b->related_breakpoint->next;
7295 delete_breakpoint (b->related_breakpoint);
7296 }
7297 delete_breakpoint (b);
7298 }
7299 }
7300
7301 void
7302 enable_overlay_breakpoints (void)
7303 {
7304 struct breakpoint *b;
7305
7306 ALL_BREAKPOINTS (b)
7307 if (b->type == bp_overlay_event)
7308 {
7309 b->enable_state = bp_enabled;
7310 update_global_location_list (1);
7311 overlay_events_enabled = 1;
7312 }
7313 }
7314
7315 void
7316 disable_overlay_breakpoints (void)
7317 {
7318 struct breakpoint *b;
7319
7320 ALL_BREAKPOINTS (b)
7321 if (b->type == bp_overlay_event)
7322 {
7323 b->enable_state = bp_disabled;
7324 update_global_location_list (0);
7325 overlay_events_enabled = 0;
7326 }
7327 }
7328
7329 /* Set an active std::terminate breakpoint for each std::terminate
7330 master breakpoint. */
7331 void
7332 set_std_terminate_breakpoint (void)
7333 {
7334 struct breakpoint *b, *b_tmp;
7335
7336 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7337 if (b->pspace == current_program_space
7338 && b->type == bp_std_terminate_master)
7339 {
7340 momentary_breakpoint_from_master (b, bp_std_terminate,
7341 &momentary_breakpoint_ops);
7342 }
7343 }
7344
7345 /* Delete all the std::terminate breakpoints. */
7346 void
7347 delete_std_terminate_breakpoint (void)
7348 {
7349 struct breakpoint *b, *b_tmp;
7350
7351 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7352 if (b->type == bp_std_terminate)
7353 delete_breakpoint (b);
7354 }
7355
7356 struct breakpoint *
7357 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7358 {
7359 struct breakpoint *b;
7360
7361 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7362 &internal_breakpoint_ops);
7363
7364 b->enable_state = bp_enabled;
7365 /* addr_string has to be used or breakpoint_re_set will delete me. */
7366 b->addr_string
7367 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7368
7369 update_global_location_list_nothrow (1);
7370
7371 return b;
7372 }
7373
7374 void
7375 remove_thread_event_breakpoints (void)
7376 {
7377 struct breakpoint *b, *b_tmp;
7378
7379 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7380 if (b->type == bp_thread_event
7381 && b->loc->pspace == current_program_space)
7382 delete_breakpoint (b);
7383 }
7384
7385 struct lang_and_radix
7386 {
7387 enum language lang;
7388 int radix;
7389 };
7390
7391 /* Create a breakpoint for JIT code registration and unregistration. */
7392
7393 struct breakpoint *
7394 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7395 {
7396 struct breakpoint *b;
7397
7398 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7399 &internal_breakpoint_ops);
7400 update_global_location_list_nothrow (1);
7401 return b;
7402 }
7403
7404 /* Remove JIT code registration and unregistration breakpoint(s). */
7405
7406 void
7407 remove_jit_event_breakpoints (void)
7408 {
7409 struct breakpoint *b, *b_tmp;
7410
7411 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7412 if (b->type == bp_jit_event
7413 && b->loc->pspace == current_program_space)
7414 delete_breakpoint (b);
7415 }
7416
7417 void
7418 remove_solib_event_breakpoints (void)
7419 {
7420 struct breakpoint *b, *b_tmp;
7421
7422 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7423 if (b->type == bp_shlib_event
7424 && b->loc->pspace == current_program_space)
7425 delete_breakpoint (b);
7426 }
7427
7428 struct breakpoint *
7429 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7430 {
7431 struct breakpoint *b;
7432
7433 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7434 &internal_breakpoint_ops);
7435 update_global_location_list_nothrow (1);
7436 return b;
7437 }
7438
7439 /* Disable any breakpoints that are on code in shared libraries. Only
7440 apply to enabled breakpoints, disabled ones can just stay disabled. */
7441
7442 void
7443 disable_breakpoints_in_shlibs (void)
7444 {
7445 struct bp_location *loc, **locp_tmp;
7446
7447 ALL_BP_LOCATIONS (loc, locp_tmp)
7448 {
7449 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7450 struct breakpoint *b = loc->owner;
7451
7452 /* We apply the check to all breakpoints, including disabled for
7453 those with loc->duplicate set. This is so that when breakpoint
7454 becomes enabled, or the duplicate is removed, gdb will try to
7455 insert all breakpoints. If we don't set shlib_disabled here,
7456 we'll try to insert those breakpoints and fail. */
7457 if (((b->type == bp_breakpoint)
7458 || (b->type == bp_jit_event)
7459 || (b->type == bp_hardware_breakpoint)
7460 || (is_tracepoint (b)))
7461 && loc->pspace == current_program_space
7462 && !loc->shlib_disabled
7463 && solib_name_from_address (loc->pspace, loc->address)
7464 )
7465 {
7466 loc->shlib_disabled = 1;
7467 }
7468 }
7469 }
7470
7471 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7472 library. Only apply to enabled breakpoints, disabled ones can just stay
7473 disabled. */
7474
7475 static void
7476 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7477 {
7478 struct bp_location *loc, **locp_tmp;
7479 int disabled_shlib_breaks = 0;
7480
7481 /* SunOS a.out shared libraries are always mapped, so do not
7482 disable breakpoints; they will only be reported as unloaded
7483 through clear_solib when GDB discards its shared library
7484 list. See clear_solib for more information. */
7485 if (exec_bfd != NULL
7486 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7487 return;
7488
7489 ALL_BP_LOCATIONS (loc, locp_tmp)
7490 {
7491 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7492 struct breakpoint *b = loc->owner;
7493
7494 if (solib->pspace == loc->pspace
7495 && !loc->shlib_disabled
7496 && (((b->type == bp_breakpoint
7497 || b->type == bp_jit_event
7498 || b->type == bp_hardware_breakpoint)
7499 && (loc->loc_type == bp_loc_hardware_breakpoint
7500 || loc->loc_type == bp_loc_software_breakpoint))
7501 || is_tracepoint (b))
7502 && solib_contains_address_p (solib, loc->address))
7503 {
7504 loc->shlib_disabled = 1;
7505 /* At this point, we cannot rely on remove_breakpoint
7506 succeeding so we must mark the breakpoint as not inserted
7507 to prevent future errors occurring in remove_breakpoints. */
7508 loc->inserted = 0;
7509
7510 /* This may cause duplicate notifications for the same breakpoint. */
7511 observer_notify_breakpoint_modified (b);
7512
7513 if (!disabled_shlib_breaks)
7514 {
7515 target_terminal_ours_for_output ();
7516 warning (_("Temporarily disabling breakpoints "
7517 "for unloaded shared library \"%s\""),
7518 solib->so_name);
7519 }
7520 disabled_shlib_breaks = 1;
7521 }
7522 }
7523 }
7524
7525 /* FORK & VFORK catchpoints. */
7526
7527 /* An instance of this type is used to represent a fork or vfork
7528 catchpoint. It includes a "struct breakpoint" as a kind of base
7529 class; users downcast to "struct breakpoint *" when needed. A
7530 breakpoint is really of this type iff its ops pointer points to
7531 CATCH_FORK_BREAKPOINT_OPS. */
7532
7533 struct fork_catchpoint
7534 {
7535 /* The base class. */
7536 struct breakpoint base;
7537
7538 /* Process id of a child process whose forking triggered this
7539 catchpoint. This field is only valid immediately after this
7540 catchpoint has triggered. */
7541 ptid_t forked_inferior_pid;
7542 };
7543
7544 /* Implement the "insert" breakpoint_ops method for fork
7545 catchpoints. */
7546
7547 static int
7548 insert_catch_fork (struct bp_location *bl)
7549 {
7550 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7551 }
7552
7553 /* Implement the "remove" breakpoint_ops method for fork
7554 catchpoints. */
7555
7556 static int
7557 remove_catch_fork (struct bp_location *bl)
7558 {
7559 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7560 }
7561
7562 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7563 catchpoints. */
7564
7565 static int
7566 breakpoint_hit_catch_fork (const struct bp_location *bl,
7567 struct address_space *aspace, CORE_ADDR bp_addr,
7568 const struct target_waitstatus *ws)
7569 {
7570 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7571
7572 if (ws->kind != TARGET_WAITKIND_FORKED)
7573 return 0;
7574
7575 c->forked_inferior_pid = ws->value.related_pid;
7576 return 1;
7577 }
7578
7579 /* Implement the "print_it" breakpoint_ops method for fork
7580 catchpoints. */
7581
7582 static enum print_stop_action
7583 print_it_catch_fork (bpstat bs)
7584 {
7585 struct ui_out *uiout = current_uiout;
7586 struct breakpoint *b = bs->breakpoint_at;
7587 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7588
7589 annotate_catchpoint (b->number);
7590 if (b->disposition == disp_del)
7591 ui_out_text (uiout, "\nTemporary catchpoint ");
7592 else
7593 ui_out_text (uiout, "\nCatchpoint ");
7594 if (ui_out_is_mi_like_p (uiout))
7595 {
7596 ui_out_field_string (uiout, "reason",
7597 async_reason_lookup (EXEC_ASYNC_FORK));
7598 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7599 }
7600 ui_out_field_int (uiout, "bkptno", b->number);
7601 ui_out_text (uiout, " (forked process ");
7602 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7603 ui_out_text (uiout, "), ");
7604 return PRINT_SRC_AND_LOC;
7605 }
7606
7607 /* Implement the "print_one" breakpoint_ops method for fork
7608 catchpoints. */
7609
7610 static void
7611 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7612 {
7613 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7614 struct value_print_options opts;
7615 struct ui_out *uiout = current_uiout;
7616
7617 get_user_print_options (&opts);
7618
7619 /* Field 4, the address, is omitted (which makes the columns not
7620 line up too nicely with the headers, but the effect is relatively
7621 readable). */
7622 if (opts.addressprint)
7623 ui_out_field_skip (uiout, "addr");
7624 annotate_field (5);
7625 ui_out_text (uiout, "fork");
7626 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7627 {
7628 ui_out_text (uiout, ", process ");
7629 ui_out_field_int (uiout, "what",
7630 ptid_get_pid (c->forked_inferior_pid));
7631 ui_out_spaces (uiout, 1);
7632 }
7633
7634 if (ui_out_is_mi_like_p (uiout))
7635 ui_out_field_string (uiout, "catch-type", "fork");
7636 }
7637
7638 /* Implement the "print_mention" breakpoint_ops method for fork
7639 catchpoints. */
7640
7641 static void
7642 print_mention_catch_fork (struct breakpoint *b)
7643 {
7644 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7645 }
7646
7647 /* Implement the "print_recreate" breakpoint_ops method for fork
7648 catchpoints. */
7649
7650 static void
7651 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7652 {
7653 fprintf_unfiltered (fp, "catch fork");
7654 print_recreate_thread (b, fp);
7655 }
7656
7657 /* The breakpoint_ops structure to be used in fork catchpoints. */
7658
7659 static struct breakpoint_ops catch_fork_breakpoint_ops;
7660
7661 /* Implement the "insert" breakpoint_ops method for vfork
7662 catchpoints. */
7663
7664 static int
7665 insert_catch_vfork (struct bp_location *bl)
7666 {
7667 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7668 }
7669
7670 /* Implement the "remove" breakpoint_ops method for vfork
7671 catchpoints. */
7672
7673 static int
7674 remove_catch_vfork (struct bp_location *bl)
7675 {
7676 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7677 }
7678
7679 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7680 catchpoints. */
7681
7682 static int
7683 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7684 struct address_space *aspace, CORE_ADDR bp_addr,
7685 const struct target_waitstatus *ws)
7686 {
7687 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7688
7689 if (ws->kind != TARGET_WAITKIND_VFORKED)
7690 return 0;
7691
7692 c->forked_inferior_pid = ws->value.related_pid;
7693 return 1;
7694 }
7695
7696 /* Implement the "print_it" breakpoint_ops method for vfork
7697 catchpoints. */
7698
7699 static enum print_stop_action
7700 print_it_catch_vfork (bpstat bs)
7701 {
7702 struct ui_out *uiout = current_uiout;
7703 struct breakpoint *b = bs->breakpoint_at;
7704 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7705
7706 annotate_catchpoint (b->number);
7707 if (b->disposition == disp_del)
7708 ui_out_text (uiout, "\nTemporary catchpoint ");
7709 else
7710 ui_out_text (uiout, "\nCatchpoint ");
7711 if (ui_out_is_mi_like_p (uiout))
7712 {
7713 ui_out_field_string (uiout, "reason",
7714 async_reason_lookup (EXEC_ASYNC_VFORK));
7715 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7716 }
7717 ui_out_field_int (uiout, "bkptno", b->number);
7718 ui_out_text (uiout, " (vforked process ");
7719 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7720 ui_out_text (uiout, "), ");
7721 return PRINT_SRC_AND_LOC;
7722 }
7723
7724 /* Implement the "print_one" breakpoint_ops method for vfork
7725 catchpoints. */
7726
7727 static void
7728 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7729 {
7730 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7731 struct value_print_options opts;
7732 struct ui_out *uiout = current_uiout;
7733
7734 get_user_print_options (&opts);
7735 /* Field 4, the address, is omitted (which makes the columns not
7736 line up too nicely with the headers, but the effect is relatively
7737 readable). */
7738 if (opts.addressprint)
7739 ui_out_field_skip (uiout, "addr");
7740 annotate_field (5);
7741 ui_out_text (uiout, "vfork");
7742 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7743 {
7744 ui_out_text (uiout, ", process ");
7745 ui_out_field_int (uiout, "what",
7746 ptid_get_pid (c->forked_inferior_pid));
7747 ui_out_spaces (uiout, 1);
7748 }
7749
7750 if (ui_out_is_mi_like_p (uiout))
7751 ui_out_field_string (uiout, "catch-type", "vfork");
7752 }
7753
7754 /* Implement the "print_mention" breakpoint_ops method for vfork
7755 catchpoints. */
7756
7757 static void
7758 print_mention_catch_vfork (struct breakpoint *b)
7759 {
7760 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7761 }
7762
7763 /* Implement the "print_recreate" breakpoint_ops method for vfork
7764 catchpoints. */
7765
7766 static void
7767 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7768 {
7769 fprintf_unfiltered (fp, "catch vfork");
7770 print_recreate_thread (b, fp);
7771 }
7772
7773 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7774
7775 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7776
7777 /* An instance of this type is used to represent an solib catchpoint.
7778 It includes a "struct breakpoint" as a kind of base class; users
7779 downcast to "struct breakpoint *" when needed. A breakpoint is
7780 really of this type iff its ops pointer points to
7781 CATCH_SOLIB_BREAKPOINT_OPS. */
7782
7783 struct solib_catchpoint
7784 {
7785 /* The base class. */
7786 struct breakpoint base;
7787
7788 /* True for "catch load", false for "catch unload". */
7789 unsigned char is_load;
7790
7791 /* Regular expression to match, if any. COMPILED is only valid when
7792 REGEX is non-NULL. */
7793 char *regex;
7794 regex_t compiled;
7795 };
7796
7797 static void
7798 dtor_catch_solib (struct breakpoint *b)
7799 {
7800 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7801
7802 if (self->regex)
7803 regfree (&self->compiled);
7804 xfree (self->regex);
7805
7806 base_breakpoint_ops.dtor (b);
7807 }
7808
7809 static int
7810 insert_catch_solib (struct bp_location *ignore)
7811 {
7812 return 0;
7813 }
7814
7815 static int
7816 remove_catch_solib (struct bp_location *ignore)
7817 {
7818 return 0;
7819 }
7820
7821 static int
7822 breakpoint_hit_catch_solib (const struct bp_location *bl,
7823 struct address_space *aspace,
7824 CORE_ADDR bp_addr,
7825 const struct target_waitstatus *ws)
7826 {
7827 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7828 struct breakpoint *other;
7829
7830 if (ws->kind == TARGET_WAITKIND_LOADED)
7831 return 1;
7832
7833 ALL_BREAKPOINTS (other)
7834 {
7835 struct bp_location *other_bl;
7836
7837 if (other == bl->owner)
7838 continue;
7839
7840 if (other->type != bp_shlib_event)
7841 continue;
7842
7843 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7844 continue;
7845
7846 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7847 {
7848 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7849 return 1;
7850 }
7851 }
7852
7853 return 0;
7854 }
7855
7856 static void
7857 check_status_catch_solib (struct bpstats *bs)
7858 {
7859 struct solib_catchpoint *self
7860 = (struct solib_catchpoint *) bs->breakpoint_at;
7861 int ix;
7862
7863 if (self->is_load)
7864 {
7865 struct so_list *iter;
7866
7867 for (ix = 0;
7868 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7869 ix, iter);
7870 ++ix)
7871 {
7872 if (!self->regex
7873 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7874 return;
7875 }
7876 }
7877 else
7878 {
7879 char *iter;
7880
7881 for (ix = 0;
7882 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7883 ix, iter);
7884 ++ix)
7885 {
7886 if (!self->regex
7887 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7888 return;
7889 }
7890 }
7891
7892 bs->stop = 0;
7893 bs->print_it = print_it_noop;
7894 }
7895
7896 static enum print_stop_action
7897 print_it_catch_solib (bpstat bs)
7898 {
7899 struct breakpoint *b = bs->breakpoint_at;
7900 struct ui_out *uiout = current_uiout;
7901
7902 annotate_catchpoint (b->number);
7903 if (b->disposition == disp_del)
7904 ui_out_text (uiout, "\nTemporary catchpoint ");
7905 else
7906 ui_out_text (uiout, "\nCatchpoint ");
7907 ui_out_field_int (uiout, "bkptno", b->number);
7908 ui_out_text (uiout, "\n");
7909 if (ui_out_is_mi_like_p (uiout))
7910 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7911 print_solib_event (1);
7912 return PRINT_SRC_AND_LOC;
7913 }
7914
7915 static void
7916 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7917 {
7918 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7919 struct value_print_options opts;
7920 struct ui_out *uiout = current_uiout;
7921 char *msg;
7922
7923 get_user_print_options (&opts);
7924 /* Field 4, the address, is omitted (which makes the columns not
7925 line up too nicely with the headers, but the effect is relatively
7926 readable). */
7927 if (opts.addressprint)
7928 {
7929 annotate_field (4);
7930 ui_out_field_skip (uiout, "addr");
7931 }
7932
7933 annotate_field (5);
7934 if (self->is_load)
7935 {
7936 if (self->regex)
7937 msg = xstrprintf (_("load of library matching %s"), self->regex);
7938 else
7939 msg = xstrdup (_("load of library"));
7940 }
7941 else
7942 {
7943 if (self->regex)
7944 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7945 else
7946 msg = xstrdup (_("unload of library"));
7947 }
7948 ui_out_field_string (uiout, "what", msg);
7949 xfree (msg);
7950
7951 if (ui_out_is_mi_like_p (uiout))
7952 ui_out_field_string (uiout, "catch-type",
7953 self->is_load ? "load" : "unload");
7954 }
7955
7956 static void
7957 print_mention_catch_solib (struct breakpoint *b)
7958 {
7959 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7960
7961 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7962 self->is_load ? "load" : "unload");
7963 }
7964
7965 static void
7966 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7967 {
7968 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7969
7970 fprintf_unfiltered (fp, "%s %s",
7971 b->disposition == disp_del ? "tcatch" : "catch",
7972 self->is_load ? "load" : "unload");
7973 if (self->regex)
7974 fprintf_unfiltered (fp, " %s", self->regex);
7975 fprintf_unfiltered (fp, "\n");
7976 }
7977
7978 static struct breakpoint_ops catch_solib_breakpoint_ops;
7979
7980 /* Shared helper function (MI and CLI) for creating and installing
7981 a shared object event catchpoint. If IS_LOAD is non-zero then
7982 the events to be caught are load events, otherwise they are
7983 unload events. If IS_TEMP is non-zero the catchpoint is a
7984 temporary one. If ENABLED is non-zero the catchpoint is
7985 created in an enabled state. */
7986
7987 void
7988 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7989 {
7990 struct solib_catchpoint *c;
7991 struct gdbarch *gdbarch = get_current_arch ();
7992 struct cleanup *cleanup;
7993
7994 if (!arg)
7995 arg = "";
7996 arg = skip_spaces (arg);
7997
7998 c = XCNEW (struct solib_catchpoint);
7999 cleanup = make_cleanup (xfree, c);
8000
8001 if (*arg != '\0')
8002 {
8003 int errcode;
8004
8005 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8006 if (errcode != 0)
8007 {
8008 char *err = get_regcomp_error (errcode, &c->compiled);
8009
8010 make_cleanup (xfree, err);
8011 error (_("Invalid regexp (%s): %s"), err, arg);
8012 }
8013 c->regex = xstrdup (arg);
8014 }
8015
8016 c->is_load = is_load;
8017 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8018 &catch_solib_breakpoint_ops);
8019
8020 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8021
8022 discard_cleanups (cleanup);
8023 install_breakpoint (0, &c->base, 1);
8024 }
8025
8026 /* A helper function that does all the work for "catch load" and
8027 "catch unload". */
8028
8029 static void
8030 catch_load_or_unload (char *arg, int from_tty, int is_load,
8031 struct cmd_list_element *command)
8032 {
8033 int tempflag;
8034 const int enabled = 1;
8035
8036 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8037
8038 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8039 }
8040
8041 static void
8042 catch_load_command_1 (char *arg, int from_tty,
8043 struct cmd_list_element *command)
8044 {
8045 catch_load_or_unload (arg, from_tty, 1, command);
8046 }
8047
8048 static void
8049 catch_unload_command_1 (char *arg, int from_tty,
8050 struct cmd_list_element *command)
8051 {
8052 catch_load_or_unload (arg, from_tty, 0, command);
8053 }
8054
8055 /* An instance of this type is used to represent a syscall catchpoint.
8056 It includes a "struct breakpoint" as a kind of base class; users
8057 downcast to "struct breakpoint *" when needed. A breakpoint is
8058 really of this type iff its ops pointer points to
8059 CATCH_SYSCALL_BREAKPOINT_OPS. */
8060
8061 struct syscall_catchpoint
8062 {
8063 /* The base class. */
8064 struct breakpoint base;
8065
8066 /* Syscall numbers used for the 'catch syscall' feature. If no
8067 syscall has been specified for filtering, its value is NULL.
8068 Otherwise, it holds a list of all syscalls to be caught. The
8069 list elements are allocated with xmalloc. */
8070 VEC(int) *syscalls_to_be_caught;
8071 };
8072
8073 /* Implement the "dtor" breakpoint_ops method for syscall
8074 catchpoints. */
8075
8076 static void
8077 dtor_catch_syscall (struct breakpoint *b)
8078 {
8079 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8080
8081 VEC_free (int, c->syscalls_to_be_caught);
8082
8083 base_breakpoint_ops.dtor (b);
8084 }
8085
8086 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8087
8088 struct catch_syscall_inferior_data
8089 {
8090 /* We keep a count of the number of times the user has requested a
8091 particular syscall to be tracked, and pass this information to the
8092 target. This lets capable targets implement filtering directly. */
8093
8094 /* Number of times that "any" syscall is requested. */
8095 int any_syscall_count;
8096
8097 /* Count of each system call. */
8098 VEC(int) *syscalls_counts;
8099
8100 /* This counts all syscall catch requests, so we can readily determine
8101 if any catching is necessary. */
8102 int total_syscalls_count;
8103 };
8104
8105 static struct catch_syscall_inferior_data*
8106 get_catch_syscall_inferior_data (struct inferior *inf)
8107 {
8108 struct catch_syscall_inferior_data *inf_data;
8109
8110 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8111 if (inf_data == NULL)
8112 {
8113 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8114 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8115 }
8116
8117 return inf_data;
8118 }
8119
8120 static void
8121 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8122 {
8123 xfree (arg);
8124 }
8125
8126
8127 /* Implement the "insert" breakpoint_ops method for syscall
8128 catchpoints. */
8129
8130 static int
8131 insert_catch_syscall (struct bp_location *bl)
8132 {
8133 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8134 struct inferior *inf = current_inferior ();
8135 struct catch_syscall_inferior_data *inf_data
8136 = get_catch_syscall_inferior_data (inf);
8137
8138 ++inf_data->total_syscalls_count;
8139 if (!c->syscalls_to_be_caught)
8140 ++inf_data->any_syscall_count;
8141 else
8142 {
8143 int i, iter;
8144
8145 for (i = 0;
8146 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8147 i++)
8148 {
8149 int elem;
8150
8151 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8152 {
8153 int old_size = VEC_length (int, inf_data->syscalls_counts);
8154 uintptr_t vec_addr_offset
8155 = old_size * ((uintptr_t) sizeof (int));
8156 uintptr_t vec_addr;
8157 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8158 vec_addr = ((uintptr_t) VEC_address (int,
8159 inf_data->syscalls_counts)
8160 + vec_addr_offset);
8161 memset ((void *) vec_addr, 0,
8162 (iter + 1 - old_size) * sizeof (int));
8163 }
8164 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8165 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8166 }
8167 }
8168
8169 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8170 inf_data->total_syscalls_count != 0,
8171 inf_data->any_syscall_count,
8172 VEC_length (int,
8173 inf_data->syscalls_counts),
8174 VEC_address (int,
8175 inf_data->syscalls_counts));
8176 }
8177
8178 /* Implement the "remove" breakpoint_ops method for syscall
8179 catchpoints. */
8180
8181 static int
8182 remove_catch_syscall (struct bp_location *bl)
8183 {
8184 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8185 struct inferior *inf = current_inferior ();
8186 struct catch_syscall_inferior_data *inf_data
8187 = get_catch_syscall_inferior_data (inf);
8188
8189 --inf_data->total_syscalls_count;
8190 if (!c->syscalls_to_be_caught)
8191 --inf_data->any_syscall_count;
8192 else
8193 {
8194 int i, iter;
8195
8196 for (i = 0;
8197 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8198 i++)
8199 {
8200 int elem;
8201 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8202 /* Shouldn't happen. */
8203 continue;
8204 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8205 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8206 }
8207 }
8208
8209 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8210 inf_data->total_syscalls_count != 0,
8211 inf_data->any_syscall_count,
8212 VEC_length (int,
8213 inf_data->syscalls_counts),
8214 VEC_address (int,
8215 inf_data->syscalls_counts));
8216 }
8217
8218 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8219 catchpoints. */
8220
8221 static int
8222 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8223 struct address_space *aspace, CORE_ADDR bp_addr,
8224 const struct target_waitstatus *ws)
8225 {
8226 /* We must check if we are catching specific syscalls in this
8227 breakpoint. If we are, then we must guarantee that the called
8228 syscall is the same syscall we are catching. */
8229 int syscall_number = 0;
8230 const struct syscall_catchpoint *c
8231 = (const struct syscall_catchpoint *) bl->owner;
8232
8233 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8234 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8235 return 0;
8236
8237 syscall_number = ws->value.syscall_number;
8238
8239 /* Now, checking if the syscall is the same. */
8240 if (c->syscalls_to_be_caught)
8241 {
8242 int i, iter;
8243
8244 for (i = 0;
8245 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8246 i++)
8247 if (syscall_number == iter)
8248 break;
8249 /* Not the same. */
8250 if (!iter)
8251 return 0;
8252 }
8253
8254 return 1;
8255 }
8256
8257 /* Implement the "print_it" breakpoint_ops method for syscall
8258 catchpoints. */
8259
8260 static enum print_stop_action
8261 print_it_catch_syscall (bpstat bs)
8262 {
8263 struct ui_out *uiout = current_uiout;
8264 struct breakpoint *b = bs->breakpoint_at;
8265 /* These are needed because we want to know in which state a
8266 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8267 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8268 must print "called syscall" or "returned from syscall". */
8269 ptid_t ptid;
8270 struct target_waitstatus last;
8271 struct syscall s;
8272
8273 get_last_target_status (&ptid, &last);
8274
8275 get_syscall_by_number (last.value.syscall_number, &s);
8276
8277 annotate_catchpoint (b->number);
8278
8279 if (b->disposition == disp_del)
8280 ui_out_text (uiout, "\nTemporary catchpoint ");
8281 else
8282 ui_out_text (uiout, "\nCatchpoint ");
8283 if (ui_out_is_mi_like_p (uiout))
8284 {
8285 ui_out_field_string (uiout, "reason",
8286 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8287 ? EXEC_ASYNC_SYSCALL_ENTRY
8288 : EXEC_ASYNC_SYSCALL_RETURN));
8289 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8290 }
8291 ui_out_field_int (uiout, "bkptno", b->number);
8292
8293 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8294 ui_out_text (uiout, " (call to syscall ");
8295 else
8296 ui_out_text (uiout, " (returned from syscall ");
8297
8298 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8299 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8300 if (s.name != NULL)
8301 ui_out_field_string (uiout, "syscall-name", s.name);
8302
8303 ui_out_text (uiout, "), ");
8304
8305 return PRINT_SRC_AND_LOC;
8306 }
8307
8308 /* Implement the "print_one" breakpoint_ops method for syscall
8309 catchpoints. */
8310
8311 static void
8312 print_one_catch_syscall (struct breakpoint *b,
8313 struct bp_location **last_loc)
8314 {
8315 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8316 struct value_print_options opts;
8317 struct ui_out *uiout = current_uiout;
8318
8319 get_user_print_options (&opts);
8320 /* Field 4, the address, is omitted (which makes the columns not
8321 line up too nicely with the headers, but the effect is relatively
8322 readable). */
8323 if (opts.addressprint)
8324 ui_out_field_skip (uiout, "addr");
8325 annotate_field (5);
8326
8327 if (c->syscalls_to_be_caught
8328 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8329 ui_out_text (uiout, "syscalls \"");
8330 else
8331 ui_out_text (uiout, "syscall \"");
8332
8333 if (c->syscalls_to_be_caught)
8334 {
8335 int i, iter;
8336 char *text = xstrprintf ("%s", "");
8337
8338 for (i = 0;
8339 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8340 i++)
8341 {
8342 char *x = text;
8343 struct syscall s;
8344 get_syscall_by_number (iter, &s);
8345
8346 if (s.name != NULL)
8347 text = xstrprintf ("%s%s, ", text, s.name);
8348 else
8349 text = xstrprintf ("%s%d, ", text, iter);
8350
8351 /* We have to xfree the last 'text' (now stored at 'x')
8352 because xstrprintf dynamically allocates new space for it
8353 on every call. */
8354 xfree (x);
8355 }
8356 /* Remove the last comma. */
8357 text[strlen (text) - 2] = '\0';
8358 ui_out_field_string (uiout, "what", text);
8359 }
8360 else
8361 ui_out_field_string (uiout, "what", "<any syscall>");
8362 ui_out_text (uiout, "\" ");
8363
8364 if (ui_out_is_mi_like_p (uiout))
8365 ui_out_field_string (uiout, "catch-type", "syscall");
8366 }
8367
8368 /* Implement the "print_mention" breakpoint_ops method for syscall
8369 catchpoints. */
8370
8371 static void
8372 print_mention_catch_syscall (struct breakpoint *b)
8373 {
8374 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8375
8376 if (c->syscalls_to_be_caught)
8377 {
8378 int i, iter;
8379
8380 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8381 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8382 else
8383 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8384
8385 for (i = 0;
8386 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8387 i++)
8388 {
8389 struct syscall s;
8390 get_syscall_by_number (iter, &s);
8391
8392 if (s.name)
8393 printf_filtered (" '%s' [%d]", s.name, s.number);
8394 else
8395 printf_filtered (" %d", s.number);
8396 }
8397 printf_filtered (")");
8398 }
8399 else
8400 printf_filtered (_("Catchpoint %d (any syscall)"),
8401 b->number);
8402 }
8403
8404 /* Implement the "print_recreate" breakpoint_ops method for syscall
8405 catchpoints. */
8406
8407 static void
8408 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8409 {
8410 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8411
8412 fprintf_unfiltered (fp, "catch syscall");
8413
8414 if (c->syscalls_to_be_caught)
8415 {
8416 int i, iter;
8417
8418 for (i = 0;
8419 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8420 i++)
8421 {
8422 struct syscall s;
8423
8424 get_syscall_by_number (iter, &s);
8425 if (s.name)
8426 fprintf_unfiltered (fp, " %s", s.name);
8427 else
8428 fprintf_unfiltered (fp, " %d", s.number);
8429 }
8430 }
8431 print_recreate_thread (b, fp);
8432 }
8433
8434 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8435
8436 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8437
8438 /* Returns non-zero if 'b' is a syscall catchpoint. */
8439
8440 static int
8441 syscall_catchpoint_p (struct breakpoint *b)
8442 {
8443 return (b->ops == &catch_syscall_breakpoint_ops);
8444 }
8445
8446 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8447 is non-zero, then make the breakpoint temporary. If COND_STRING is
8448 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8449 the breakpoint_ops structure associated to the catchpoint. */
8450
8451 void
8452 init_catchpoint (struct breakpoint *b,
8453 struct gdbarch *gdbarch, int tempflag,
8454 char *cond_string,
8455 const struct breakpoint_ops *ops)
8456 {
8457 struct symtab_and_line sal;
8458
8459 init_sal (&sal);
8460 sal.pspace = current_program_space;
8461
8462 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8463
8464 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8465 b->disposition = tempflag ? disp_del : disp_donttouch;
8466 }
8467
8468 void
8469 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8470 {
8471 add_to_breakpoint_chain (b);
8472 set_breakpoint_number (internal, b);
8473 if (is_tracepoint (b))
8474 set_tracepoint_count (breakpoint_count);
8475 if (!internal)
8476 mention (b);
8477 observer_notify_breakpoint_created (b);
8478
8479 if (update_gll)
8480 update_global_location_list (1);
8481 }
8482
8483 static void
8484 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8485 int tempflag, char *cond_string,
8486 const struct breakpoint_ops *ops)
8487 {
8488 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8489
8490 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8491
8492 c->forked_inferior_pid = null_ptid;
8493
8494 install_breakpoint (0, &c->base, 1);
8495 }
8496
8497 /* Exec catchpoints. */
8498
8499 /* An instance of this type is used to represent an exec catchpoint.
8500 It includes a "struct breakpoint" as a kind of base class; users
8501 downcast to "struct breakpoint *" when needed. A breakpoint is
8502 really of this type iff its ops pointer points to
8503 CATCH_EXEC_BREAKPOINT_OPS. */
8504
8505 struct exec_catchpoint
8506 {
8507 /* The base class. */
8508 struct breakpoint base;
8509
8510 /* Filename of a program whose exec triggered this catchpoint.
8511 This field is only valid immediately after this catchpoint has
8512 triggered. */
8513 char *exec_pathname;
8514 };
8515
8516 /* Implement the "dtor" breakpoint_ops method for exec
8517 catchpoints. */
8518
8519 static void
8520 dtor_catch_exec (struct breakpoint *b)
8521 {
8522 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8523
8524 xfree (c->exec_pathname);
8525
8526 base_breakpoint_ops.dtor (b);
8527 }
8528
8529 static int
8530 insert_catch_exec (struct bp_location *bl)
8531 {
8532 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8533 }
8534
8535 static int
8536 remove_catch_exec (struct bp_location *bl)
8537 {
8538 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8539 }
8540
8541 static int
8542 breakpoint_hit_catch_exec (const struct bp_location *bl,
8543 struct address_space *aspace, CORE_ADDR bp_addr,
8544 const struct target_waitstatus *ws)
8545 {
8546 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8547
8548 if (ws->kind != TARGET_WAITKIND_EXECD)
8549 return 0;
8550
8551 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8552 return 1;
8553 }
8554
8555 static enum print_stop_action
8556 print_it_catch_exec (bpstat bs)
8557 {
8558 struct ui_out *uiout = current_uiout;
8559 struct breakpoint *b = bs->breakpoint_at;
8560 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8561
8562 annotate_catchpoint (b->number);
8563 if (b->disposition == disp_del)
8564 ui_out_text (uiout, "\nTemporary catchpoint ");
8565 else
8566 ui_out_text (uiout, "\nCatchpoint ");
8567 if (ui_out_is_mi_like_p (uiout))
8568 {
8569 ui_out_field_string (uiout, "reason",
8570 async_reason_lookup (EXEC_ASYNC_EXEC));
8571 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8572 }
8573 ui_out_field_int (uiout, "bkptno", b->number);
8574 ui_out_text (uiout, " (exec'd ");
8575 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8576 ui_out_text (uiout, "), ");
8577
8578 return PRINT_SRC_AND_LOC;
8579 }
8580
8581 static void
8582 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8583 {
8584 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8585 struct value_print_options opts;
8586 struct ui_out *uiout = current_uiout;
8587
8588 get_user_print_options (&opts);
8589
8590 /* Field 4, the address, is omitted (which makes the columns
8591 not line up too nicely with the headers, but the effect
8592 is relatively readable). */
8593 if (opts.addressprint)
8594 ui_out_field_skip (uiout, "addr");
8595 annotate_field (5);
8596 ui_out_text (uiout, "exec");
8597 if (c->exec_pathname != NULL)
8598 {
8599 ui_out_text (uiout, ", program \"");
8600 ui_out_field_string (uiout, "what", c->exec_pathname);
8601 ui_out_text (uiout, "\" ");
8602 }
8603
8604 if (ui_out_is_mi_like_p (uiout))
8605 ui_out_field_string (uiout, "catch-type", "exec");
8606 }
8607
8608 static void
8609 print_mention_catch_exec (struct breakpoint *b)
8610 {
8611 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8612 }
8613
8614 /* Implement the "print_recreate" breakpoint_ops method for exec
8615 catchpoints. */
8616
8617 static void
8618 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8619 {
8620 fprintf_unfiltered (fp, "catch exec");
8621 print_recreate_thread (b, fp);
8622 }
8623
8624 static struct breakpoint_ops catch_exec_breakpoint_ops;
8625
8626 static void
8627 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8628 const struct breakpoint_ops *ops)
8629 {
8630 struct syscall_catchpoint *c;
8631 struct gdbarch *gdbarch = get_current_arch ();
8632
8633 c = XNEW (struct syscall_catchpoint);
8634 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8635 c->syscalls_to_be_caught = filter;
8636
8637 install_breakpoint (0, &c->base, 1);
8638 }
8639
8640 static int
8641 hw_breakpoint_used_count (void)
8642 {
8643 int i = 0;
8644 struct breakpoint *b;
8645 struct bp_location *bl;
8646
8647 ALL_BREAKPOINTS (b)
8648 {
8649 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8650 for (bl = b->loc; bl; bl = bl->next)
8651 {
8652 /* Special types of hardware breakpoints may use more than
8653 one register. */
8654 i += b->ops->resources_needed (bl);
8655 }
8656 }
8657
8658 return i;
8659 }
8660
8661 /* Returns the resources B would use if it were a hardware
8662 watchpoint. */
8663
8664 static int
8665 hw_watchpoint_use_count (struct breakpoint *b)
8666 {
8667 int i = 0;
8668 struct bp_location *bl;
8669
8670 if (!breakpoint_enabled (b))
8671 return 0;
8672
8673 for (bl = b->loc; bl; bl = bl->next)
8674 {
8675 /* Special types of hardware watchpoints may use more than
8676 one register. */
8677 i += b->ops->resources_needed (bl);
8678 }
8679
8680 return i;
8681 }
8682
8683 /* Returns the sum the used resources of all hardware watchpoints of
8684 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8685 the sum of the used resources of all hardware watchpoints of other
8686 types _not_ TYPE. */
8687
8688 static int
8689 hw_watchpoint_used_count_others (struct breakpoint *except,
8690 enum bptype type, int *other_type_used)
8691 {
8692 int i = 0;
8693 struct breakpoint *b;
8694
8695 *other_type_used = 0;
8696 ALL_BREAKPOINTS (b)
8697 {
8698 if (b == except)
8699 continue;
8700 if (!breakpoint_enabled (b))
8701 continue;
8702
8703 if (b->type == type)
8704 i += hw_watchpoint_use_count (b);
8705 else if (is_hardware_watchpoint (b))
8706 *other_type_used = 1;
8707 }
8708
8709 return i;
8710 }
8711
8712 void
8713 disable_watchpoints_before_interactive_call_start (void)
8714 {
8715 struct breakpoint *b;
8716
8717 ALL_BREAKPOINTS (b)
8718 {
8719 if (is_watchpoint (b) && breakpoint_enabled (b))
8720 {
8721 b->enable_state = bp_call_disabled;
8722 update_global_location_list (0);
8723 }
8724 }
8725 }
8726
8727 void
8728 enable_watchpoints_after_interactive_call_stop (void)
8729 {
8730 struct breakpoint *b;
8731
8732 ALL_BREAKPOINTS (b)
8733 {
8734 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8735 {
8736 b->enable_state = bp_enabled;
8737 update_global_location_list (1);
8738 }
8739 }
8740 }
8741
8742 void
8743 disable_breakpoints_before_startup (void)
8744 {
8745 current_program_space->executing_startup = 1;
8746 update_global_location_list (0);
8747 }
8748
8749 void
8750 enable_breakpoints_after_startup (void)
8751 {
8752 current_program_space->executing_startup = 0;
8753 breakpoint_re_set ();
8754 }
8755
8756
8757 /* Set a breakpoint that will evaporate an end of command
8758 at address specified by SAL.
8759 Restrict it to frame FRAME if FRAME is nonzero. */
8760
8761 struct breakpoint *
8762 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8763 struct frame_id frame_id, enum bptype type)
8764 {
8765 struct breakpoint *b;
8766
8767 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8768 tail-called one. */
8769 gdb_assert (!frame_id_artificial_p (frame_id));
8770
8771 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8772 b->enable_state = bp_enabled;
8773 b->disposition = disp_donttouch;
8774 b->frame_id = frame_id;
8775
8776 /* If we're debugging a multi-threaded program, then we want
8777 momentary breakpoints to be active in only a single thread of
8778 control. */
8779 if (in_thread_list (inferior_ptid))
8780 b->thread = pid_to_thread_id (inferior_ptid);
8781
8782 update_global_location_list_nothrow (1);
8783
8784 return b;
8785 }
8786
8787 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8788 The new breakpoint will have type TYPE, and use OPS as it
8789 breakpoint_ops. */
8790
8791 static struct breakpoint *
8792 momentary_breakpoint_from_master (struct breakpoint *orig,
8793 enum bptype type,
8794 const struct breakpoint_ops *ops)
8795 {
8796 struct breakpoint *copy;
8797
8798 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8799 copy->loc = allocate_bp_location (copy);
8800 set_breakpoint_location_function (copy->loc, 1);
8801
8802 copy->loc->gdbarch = orig->loc->gdbarch;
8803 copy->loc->requested_address = orig->loc->requested_address;
8804 copy->loc->address = orig->loc->address;
8805 copy->loc->section = orig->loc->section;
8806 copy->loc->pspace = orig->loc->pspace;
8807 copy->loc->probe = orig->loc->probe;
8808 copy->loc->line_number = orig->loc->line_number;
8809 copy->loc->symtab = orig->loc->symtab;
8810 copy->frame_id = orig->frame_id;
8811 copy->thread = orig->thread;
8812 copy->pspace = orig->pspace;
8813
8814 copy->enable_state = bp_enabled;
8815 copy->disposition = disp_donttouch;
8816 copy->number = internal_breakpoint_number--;
8817
8818 update_global_location_list_nothrow (0);
8819 return copy;
8820 }
8821
8822 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8823 ORIG is NULL. */
8824
8825 struct breakpoint *
8826 clone_momentary_breakpoint (struct breakpoint *orig)
8827 {
8828 /* If there's nothing to clone, then return nothing. */
8829 if (orig == NULL)
8830 return NULL;
8831
8832 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8833 }
8834
8835 struct breakpoint *
8836 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8837 enum bptype type)
8838 {
8839 struct symtab_and_line sal;
8840
8841 sal = find_pc_line (pc, 0);
8842 sal.pc = pc;
8843 sal.section = find_pc_overlay (pc);
8844 sal.explicit_pc = 1;
8845
8846 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8847 }
8848 \f
8849
8850 /* Tell the user we have just set a breakpoint B. */
8851
8852 static void
8853 mention (struct breakpoint *b)
8854 {
8855 b->ops->print_mention (b);
8856 if (ui_out_is_mi_like_p (current_uiout))
8857 return;
8858 printf_filtered ("\n");
8859 }
8860 \f
8861
8862 static struct bp_location *
8863 add_location_to_breakpoint (struct breakpoint *b,
8864 const struct symtab_and_line *sal)
8865 {
8866 struct bp_location *loc, **tmp;
8867 CORE_ADDR adjusted_address;
8868 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8869
8870 if (loc_gdbarch == NULL)
8871 loc_gdbarch = b->gdbarch;
8872
8873 /* Adjust the breakpoint's address prior to allocating a location.
8874 Once we call allocate_bp_location(), that mostly uninitialized
8875 location will be placed on the location chain. Adjustment of the
8876 breakpoint may cause target_read_memory() to be called and we do
8877 not want its scan of the location chain to find a breakpoint and
8878 location that's only been partially initialized. */
8879 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8880 sal->pc, b->type);
8881
8882 /* Sort the locations by their ADDRESS. */
8883 loc = allocate_bp_location (b);
8884 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8885 tmp = &((*tmp)->next))
8886 ;
8887 loc->next = *tmp;
8888 *tmp = loc;
8889
8890 loc->requested_address = sal->pc;
8891 loc->address = adjusted_address;
8892 loc->pspace = sal->pspace;
8893 loc->probe = sal->probe;
8894 gdb_assert (loc->pspace != NULL);
8895 loc->section = sal->section;
8896 loc->gdbarch = loc_gdbarch;
8897 loc->line_number = sal->line;
8898 loc->symtab = sal->symtab;
8899
8900 set_breakpoint_location_function (loc,
8901 sal->explicit_pc || sal->explicit_line);
8902 return loc;
8903 }
8904 \f
8905
8906 /* Return 1 if LOC is pointing to a permanent breakpoint,
8907 return 0 otherwise. */
8908
8909 static int
8910 bp_loc_is_permanent (struct bp_location *loc)
8911 {
8912 int len;
8913 CORE_ADDR addr;
8914 const gdb_byte *bpoint;
8915 gdb_byte *target_mem;
8916 struct cleanup *cleanup;
8917 int retval = 0;
8918
8919 gdb_assert (loc != NULL);
8920
8921 addr = loc->address;
8922 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8923
8924 /* Software breakpoints unsupported? */
8925 if (bpoint == NULL)
8926 return 0;
8927
8928 target_mem = alloca (len);
8929
8930 /* Enable the automatic memory restoration from breakpoints while
8931 we read the memory. Otherwise we could say about our temporary
8932 breakpoints they are permanent. */
8933 cleanup = save_current_space_and_thread ();
8934
8935 switch_to_program_space_and_thread (loc->pspace);
8936 make_show_memory_breakpoints_cleanup (0);
8937
8938 if (target_read_memory (loc->address, target_mem, len) == 0
8939 && memcmp (target_mem, bpoint, len) == 0)
8940 retval = 1;
8941
8942 do_cleanups (cleanup);
8943
8944 return retval;
8945 }
8946
8947 /* Build a command list for the dprintf corresponding to the current
8948 settings of the dprintf style options. */
8949
8950 static void
8951 update_dprintf_command_list (struct breakpoint *b)
8952 {
8953 char *dprintf_args = b->extra_string;
8954 char *printf_line = NULL;
8955
8956 if (!dprintf_args)
8957 return;
8958
8959 dprintf_args = skip_spaces (dprintf_args);
8960
8961 /* Allow a comma, as it may have terminated a location, but don't
8962 insist on it. */
8963 if (*dprintf_args == ',')
8964 ++dprintf_args;
8965 dprintf_args = skip_spaces (dprintf_args);
8966
8967 if (*dprintf_args != '"')
8968 error (_("Bad format string, missing '\"'."));
8969
8970 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8971 printf_line = xstrprintf ("printf %s", dprintf_args);
8972 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8973 {
8974 if (!dprintf_function)
8975 error (_("No function supplied for dprintf call"));
8976
8977 if (dprintf_channel && strlen (dprintf_channel) > 0)
8978 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8979 dprintf_function,
8980 dprintf_channel,
8981 dprintf_args);
8982 else
8983 printf_line = xstrprintf ("call (void) %s (%s)",
8984 dprintf_function,
8985 dprintf_args);
8986 }
8987 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8988 {
8989 if (target_can_run_breakpoint_commands ())
8990 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8991 else
8992 {
8993 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8994 printf_line = xstrprintf ("printf %s", dprintf_args);
8995 }
8996 }
8997 else
8998 internal_error (__FILE__, __LINE__,
8999 _("Invalid dprintf style."));
9000
9001 gdb_assert (printf_line != NULL);
9002 /* Manufacture a printf sequence. */
9003 {
9004 struct command_line *printf_cmd_line
9005 = xmalloc (sizeof (struct command_line));
9006
9007 printf_cmd_line = xmalloc (sizeof (struct command_line));
9008 printf_cmd_line->control_type = simple_control;
9009 printf_cmd_line->body_count = 0;
9010 printf_cmd_line->body_list = NULL;
9011 printf_cmd_line->next = NULL;
9012 printf_cmd_line->line = printf_line;
9013
9014 breakpoint_set_commands (b, printf_cmd_line);
9015 }
9016 }
9017
9018 /* Update all dprintf commands, making their command lists reflect
9019 current style settings. */
9020
9021 static void
9022 update_dprintf_commands (char *args, int from_tty,
9023 struct cmd_list_element *c)
9024 {
9025 struct breakpoint *b;
9026
9027 ALL_BREAKPOINTS (b)
9028 {
9029 if (b->type == bp_dprintf)
9030 update_dprintf_command_list (b);
9031 }
9032 }
9033
9034 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9035 as textual description of the location, and COND_STRING
9036 as condition expression. */
9037
9038 static void
9039 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9040 struct symtabs_and_lines sals, char *addr_string,
9041 char *filter, char *cond_string,
9042 char *extra_string,
9043 enum bptype type, enum bpdisp disposition,
9044 int thread, int task, int ignore_count,
9045 const struct breakpoint_ops *ops, int from_tty,
9046 int enabled, int internal, unsigned flags,
9047 int display_canonical)
9048 {
9049 int i;
9050
9051 if (type == bp_hardware_breakpoint)
9052 {
9053 int target_resources_ok;
9054
9055 i = hw_breakpoint_used_count ();
9056 target_resources_ok =
9057 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9058 i + 1, 0);
9059 if (target_resources_ok == 0)
9060 error (_("No hardware breakpoint support in the target."));
9061 else if (target_resources_ok < 0)
9062 error (_("Hardware breakpoints used exceeds limit."));
9063 }
9064
9065 gdb_assert (sals.nelts > 0);
9066
9067 for (i = 0; i < sals.nelts; ++i)
9068 {
9069 struct symtab_and_line sal = sals.sals[i];
9070 struct bp_location *loc;
9071
9072 if (from_tty)
9073 {
9074 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9075 if (!loc_gdbarch)
9076 loc_gdbarch = gdbarch;
9077
9078 describe_other_breakpoints (loc_gdbarch,
9079 sal.pspace, sal.pc, sal.section, thread);
9080 }
9081
9082 if (i == 0)
9083 {
9084 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9085 b->thread = thread;
9086 b->task = task;
9087
9088 b->cond_string = cond_string;
9089 b->extra_string = extra_string;
9090 b->ignore_count = ignore_count;
9091 b->enable_state = enabled ? bp_enabled : bp_disabled;
9092 b->disposition = disposition;
9093
9094 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9095 b->loc->inserted = 1;
9096
9097 if (type == bp_static_tracepoint)
9098 {
9099 struct tracepoint *t = (struct tracepoint *) b;
9100 struct static_tracepoint_marker marker;
9101
9102 if (strace_marker_p (b))
9103 {
9104 /* We already know the marker exists, otherwise, we
9105 wouldn't see a sal for it. */
9106 char *p = &addr_string[3];
9107 char *endp;
9108 char *marker_str;
9109
9110 p = skip_spaces (p);
9111
9112 endp = skip_to_space (p);
9113
9114 marker_str = savestring (p, endp - p);
9115 t->static_trace_marker_id = marker_str;
9116
9117 printf_filtered (_("Probed static tracepoint "
9118 "marker \"%s\"\n"),
9119 t->static_trace_marker_id);
9120 }
9121 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9122 {
9123 t->static_trace_marker_id = xstrdup (marker.str_id);
9124 release_static_tracepoint_marker (&marker);
9125
9126 printf_filtered (_("Probed static tracepoint "
9127 "marker \"%s\"\n"),
9128 t->static_trace_marker_id);
9129 }
9130 else
9131 warning (_("Couldn't determine the static "
9132 "tracepoint marker to probe"));
9133 }
9134
9135 loc = b->loc;
9136 }
9137 else
9138 {
9139 loc = add_location_to_breakpoint (b, &sal);
9140 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9141 loc->inserted = 1;
9142 }
9143
9144 if (bp_loc_is_permanent (loc))
9145 make_breakpoint_permanent (b);
9146
9147 if (b->cond_string)
9148 {
9149 const char *arg = b->cond_string;
9150
9151 loc->cond = parse_exp_1 (&arg, loc->address,
9152 block_for_pc (loc->address), 0);
9153 if (*arg)
9154 error (_("Garbage '%s' follows condition"), arg);
9155 }
9156
9157 /* Dynamic printf requires and uses additional arguments on the
9158 command line, otherwise it's an error. */
9159 if (type == bp_dprintf)
9160 {
9161 if (b->extra_string)
9162 update_dprintf_command_list (b);
9163 else
9164 error (_("Format string required"));
9165 }
9166 else if (b->extra_string)
9167 error (_("Garbage '%s' at end of command"), b->extra_string);
9168 }
9169
9170 b->display_canonical = display_canonical;
9171 if (addr_string)
9172 b->addr_string = addr_string;
9173 else
9174 /* addr_string has to be used or breakpoint_re_set will delete
9175 me. */
9176 b->addr_string
9177 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9178 b->filter = filter;
9179 }
9180
9181 static void
9182 create_breakpoint_sal (struct gdbarch *gdbarch,
9183 struct symtabs_and_lines sals, char *addr_string,
9184 char *filter, char *cond_string,
9185 char *extra_string,
9186 enum bptype type, enum bpdisp disposition,
9187 int thread, int task, int ignore_count,
9188 const struct breakpoint_ops *ops, int from_tty,
9189 int enabled, int internal, unsigned flags,
9190 int display_canonical)
9191 {
9192 struct breakpoint *b;
9193 struct cleanup *old_chain;
9194
9195 if (is_tracepoint_type (type))
9196 {
9197 struct tracepoint *t;
9198
9199 t = XCNEW (struct tracepoint);
9200 b = &t->base;
9201 }
9202 else
9203 b = XNEW (struct breakpoint);
9204
9205 old_chain = make_cleanup (xfree, b);
9206
9207 init_breakpoint_sal (b, gdbarch,
9208 sals, addr_string,
9209 filter, cond_string, extra_string,
9210 type, disposition,
9211 thread, task, ignore_count,
9212 ops, from_tty,
9213 enabled, internal, flags,
9214 display_canonical);
9215 discard_cleanups (old_chain);
9216
9217 install_breakpoint (internal, b, 0);
9218 }
9219
9220 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9221 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9222 value. COND_STRING, if not NULL, specified the condition to be
9223 used for all breakpoints. Essentially the only case where
9224 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9225 function. In that case, it's still not possible to specify
9226 separate conditions for different overloaded functions, so
9227 we take just a single condition string.
9228
9229 NOTE: If the function succeeds, the caller is expected to cleanup
9230 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9231 array contents). If the function fails (error() is called), the
9232 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9233 COND and SALS arrays and each of those arrays contents. */
9234
9235 static void
9236 create_breakpoints_sal (struct gdbarch *gdbarch,
9237 struct linespec_result *canonical,
9238 char *cond_string, char *extra_string,
9239 enum bptype type, enum bpdisp disposition,
9240 int thread, int task, int ignore_count,
9241 const struct breakpoint_ops *ops, int from_tty,
9242 int enabled, int internal, unsigned flags)
9243 {
9244 int i;
9245 struct linespec_sals *lsal;
9246
9247 if (canonical->pre_expanded)
9248 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9249
9250 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9251 {
9252 /* Note that 'addr_string' can be NULL in the case of a plain
9253 'break', without arguments. */
9254 char *addr_string = (canonical->addr_string
9255 ? xstrdup (canonical->addr_string)
9256 : NULL);
9257 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9258 struct cleanup *inner = make_cleanup (xfree, addr_string);
9259
9260 make_cleanup (xfree, filter_string);
9261 create_breakpoint_sal (gdbarch, lsal->sals,
9262 addr_string,
9263 filter_string,
9264 cond_string, extra_string,
9265 type, disposition,
9266 thread, task, ignore_count, ops,
9267 from_tty, enabled, internal, flags,
9268 canonical->special_display);
9269 discard_cleanups (inner);
9270 }
9271 }
9272
9273 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9274 followed by conditionals. On return, SALS contains an array of SAL
9275 addresses found. ADDR_STRING contains a vector of (canonical)
9276 address strings. ADDRESS points to the end of the SAL.
9277
9278 The array and the line spec strings are allocated on the heap, it is
9279 the caller's responsibility to free them. */
9280
9281 static void
9282 parse_breakpoint_sals (char **address,
9283 struct linespec_result *canonical)
9284 {
9285 /* If no arg given, or if first arg is 'if ', use the default
9286 breakpoint. */
9287 if ((*address) == NULL
9288 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9289 {
9290 /* The last displayed codepoint, if it's valid, is our default breakpoint
9291 address. */
9292 if (last_displayed_sal_is_valid ())
9293 {
9294 struct linespec_sals lsal;
9295 struct symtab_and_line sal;
9296 CORE_ADDR pc;
9297
9298 init_sal (&sal); /* Initialize to zeroes. */
9299 lsal.sals.sals = (struct symtab_and_line *)
9300 xmalloc (sizeof (struct symtab_and_line));
9301
9302 /* Set sal's pspace, pc, symtab, and line to the values
9303 corresponding to the last call to print_frame_info.
9304 Be sure to reinitialize LINE with NOTCURRENT == 0
9305 as the breakpoint line number is inappropriate otherwise.
9306 find_pc_line would adjust PC, re-set it back. */
9307 get_last_displayed_sal (&sal);
9308 pc = sal.pc;
9309 sal = find_pc_line (pc, 0);
9310
9311 /* "break" without arguments is equivalent to "break *PC"
9312 where PC is the last displayed codepoint's address. So
9313 make sure to set sal.explicit_pc to prevent GDB from
9314 trying to expand the list of sals to include all other
9315 instances with the same symtab and line. */
9316 sal.pc = pc;
9317 sal.explicit_pc = 1;
9318
9319 lsal.sals.sals[0] = sal;
9320 lsal.sals.nelts = 1;
9321 lsal.canonical = NULL;
9322
9323 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9324 }
9325 else
9326 error (_("No default breakpoint address now."));
9327 }
9328 else
9329 {
9330 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9331
9332 /* Force almost all breakpoints to be in terms of the
9333 current_source_symtab (which is decode_line_1's default).
9334 This should produce the results we want almost all of the
9335 time while leaving default_breakpoint_* alone.
9336
9337 ObjC: However, don't match an Objective-C method name which
9338 may have a '+' or '-' succeeded by a '['. */
9339 if (last_displayed_sal_is_valid ()
9340 && (!cursal.symtab
9341 || ((strchr ("+-", (*address)[0]) != NULL)
9342 && ((*address)[1] != '['))))
9343 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9344 get_last_displayed_symtab (),
9345 get_last_displayed_line (),
9346 canonical, NULL, NULL);
9347 else
9348 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9349 cursal.symtab, cursal.line, canonical, NULL, NULL);
9350 }
9351 }
9352
9353
9354 /* Convert each SAL into a real PC. Verify that the PC can be
9355 inserted as a breakpoint. If it can't throw an error. */
9356
9357 static void
9358 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9359 {
9360 int i;
9361
9362 for (i = 0; i < sals->nelts; i++)
9363 resolve_sal_pc (&sals->sals[i]);
9364 }
9365
9366 /* Fast tracepoints may have restrictions on valid locations. For
9367 instance, a fast tracepoint using a jump instead of a trap will
9368 likely have to overwrite more bytes than a trap would, and so can
9369 only be placed where the instruction is longer than the jump, or a
9370 multi-instruction sequence does not have a jump into the middle of
9371 it, etc. */
9372
9373 static void
9374 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9375 struct symtabs_and_lines *sals)
9376 {
9377 int i, rslt;
9378 struct symtab_and_line *sal;
9379 char *msg;
9380 struct cleanup *old_chain;
9381
9382 for (i = 0; i < sals->nelts; i++)
9383 {
9384 struct gdbarch *sarch;
9385
9386 sal = &sals->sals[i];
9387
9388 sarch = get_sal_arch (*sal);
9389 /* We fall back to GDBARCH if there is no architecture
9390 associated with SAL. */
9391 if (sarch == NULL)
9392 sarch = gdbarch;
9393 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9394 NULL, &msg);
9395 old_chain = make_cleanup (xfree, msg);
9396
9397 if (!rslt)
9398 error (_("May not have a fast tracepoint at 0x%s%s"),
9399 paddress (sarch, sal->pc), (msg ? msg : ""));
9400
9401 do_cleanups (old_chain);
9402 }
9403 }
9404
9405 /* Issue an invalid thread ID error. */
9406
9407 static void ATTRIBUTE_NORETURN
9408 invalid_thread_id_error (int id)
9409 {
9410 error (_("Unknown thread %d."), id);
9411 }
9412
9413 /* Given TOK, a string specification of condition and thread, as
9414 accepted by the 'break' command, extract the condition
9415 string and thread number and set *COND_STRING and *THREAD.
9416 PC identifies the context at which the condition should be parsed.
9417 If no condition is found, *COND_STRING is set to NULL.
9418 If no thread is found, *THREAD is set to -1. */
9419
9420 static void
9421 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9422 char **cond_string, int *thread, int *task,
9423 char **rest)
9424 {
9425 *cond_string = NULL;
9426 *thread = -1;
9427 *task = 0;
9428 *rest = NULL;
9429
9430 while (tok && *tok)
9431 {
9432 const char *end_tok;
9433 int toklen;
9434 const char *cond_start = NULL;
9435 const char *cond_end = NULL;
9436
9437 tok = skip_spaces_const (tok);
9438
9439 if ((*tok == '"' || *tok == ',') && rest)
9440 {
9441 *rest = savestring (tok, strlen (tok));
9442 return;
9443 }
9444
9445 end_tok = skip_to_space_const (tok);
9446
9447 toklen = end_tok - tok;
9448
9449 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9450 {
9451 struct expression *expr;
9452
9453 tok = cond_start = end_tok + 1;
9454 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9455 xfree (expr);
9456 cond_end = tok;
9457 *cond_string = savestring (cond_start, cond_end - cond_start);
9458 }
9459 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9460 {
9461 char *tmptok;
9462
9463 tok = end_tok + 1;
9464 *thread = strtol (tok, &tmptok, 0);
9465 if (tok == tmptok)
9466 error (_("Junk after thread keyword."));
9467 if (!valid_thread_id (*thread))
9468 invalid_thread_id_error (*thread);
9469 tok = tmptok;
9470 }
9471 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9472 {
9473 char *tmptok;
9474
9475 tok = end_tok + 1;
9476 *task = strtol (tok, &tmptok, 0);
9477 if (tok == tmptok)
9478 error (_("Junk after task keyword."));
9479 if (!valid_task_id (*task))
9480 error (_("Unknown task %d."), *task);
9481 tok = tmptok;
9482 }
9483 else if (rest)
9484 {
9485 *rest = savestring (tok, strlen (tok));
9486 return;
9487 }
9488 else
9489 error (_("Junk at end of arguments."));
9490 }
9491 }
9492
9493 /* Decode a static tracepoint marker spec. */
9494
9495 static struct symtabs_and_lines
9496 decode_static_tracepoint_spec (char **arg_p)
9497 {
9498 VEC(static_tracepoint_marker_p) *markers = NULL;
9499 struct symtabs_and_lines sals;
9500 struct cleanup *old_chain;
9501 char *p = &(*arg_p)[3];
9502 char *endp;
9503 char *marker_str;
9504 int i;
9505
9506 p = skip_spaces (p);
9507
9508 endp = skip_to_space (p);
9509
9510 marker_str = savestring (p, endp - p);
9511 old_chain = make_cleanup (xfree, marker_str);
9512
9513 markers = target_static_tracepoint_markers_by_strid (marker_str);
9514 if (VEC_empty(static_tracepoint_marker_p, markers))
9515 error (_("No known static tracepoint marker named %s"), marker_str);
9516
9517 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9518 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9519
9520 for (i = 0; i < sals.nelts; i++)
9521 {
9522 struct static_tracepoint_marker *marker;
9523
9524 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9525
9526 init_sal (&sals.sals[i]);
9527
9528 sals.sals[i] = find_pc_line (marker->address, 0);
9529 sals.sals[i].pc = marker->address;
9530
9531 release_static_tracepoint_marker (marker);
9532 }
9533
9534 do_cleanups (old_chain);
9535
9536 *arg_p = endp;
9537 return sals;
9538 }
9539
9540 /* Set a breakpoint. This function is shared between CLI and MI
9541 functions for setting a breakpoint. This function has two major
9542 modes of operations, selected by the PARSE_ARG parameter. If
9543 non-zero, the function will parse ARG, extracting location,
9544 condition, thread and extra string. Otherwise, ARG is just the
9545 breakpoint's location, with condition, thread, and extra string
9546 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9547 If INTERNAL is non-zero, the breakpoint number will be allocated
9548 from the internal breakpoint count. Returns true if any breakpoint
9549 was created; false otherwise. */
9550
9551 int
9552 create_breakpoint (struct gdbarch *gdbarch,
9553 char *arg, char *cond_string,
9554 int thread, char *extra_string,
9555 int parse_arg,
9556 int tempflag, enum bptype type_wanted,
9557 int ignore_count,
9558 enum auto_boolean pending_break_support,
9559 const struct breakpoint_ops *ops,
9560 int from_tty, int enabled, int internal,
9561 unsigned flags)
9562 {
9563 volatile struct gdb_exception e;
9564 char *copy_arg = NULL;
9565 char *addr_start = arg;
9566 struct linespec_result canonical;
9567 struct cleanup *old_chain;
9568 struct cleanup *bkpt_chain = NULL;
9569 int pending = 0;
9570 int task = 0;
9571 int prev_bkpt_count = breakpoint_count;
9572
9573 gdb_assert (ops != NULL);
9574
9575 init_linespec_result (&canonical);
9576
9577 TRY_CATCH (e, RETURN_MASK_ALL)
9578 {
9579 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9580 addr_start, &copy_arg);
9581 }
9582
9583 /* If caller is interested in rc value from parse, set value. */
9584 switch (e.reason)
9585 {
9586 case GDB_NO_ERROR:
9587 if (VEC_empty (linespec_sals, canonical.sals))
9588 return 0;
9589 break;
9590 case RETURN_ERROR:
9591 switch (e.error)
9592 {
9593 case NOT_FOUND_ERROR:
9594
9595 /* If pending breakpoint support is turned off, throw
9596 error. */
9597
9598 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9599 throw_exception (e);
9600
9601 exception_print (gdb_stderr, e);
9602
9603 /* If pending breakpoint support is auto query and the user
9604 selects no, then simply return the error code. */
9605 if (pending_break_support == AUTO_BOOLEAN_AUTO
9606 && !nquery (_("Make %s pending on future shared library load? "),
9607 bptype_string (type_wanted)))
9608 return 0;
9609
9610 /* At this point, either the user was queried about setting
9611 a pending breakpoint and selected yes, or pending
9612 breakpoint behavior is on and thus a pending breakpoint
9613 is defaulted on behalf of the user. */
9614 {
9615 struct linespec_sals lsal;
9616
9617 copy_arg = xstrdup (addr_start);
9618 lsal.canonical = xstrdup (copy_arg);
9619 lsal.sals.nelts = 1;
9620 lsal.sals.sals = XNEW (struct symtab_and_line);
9621 init_sal (&lsal.sals.sals[0]);
9622 pending = 1;
9623 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9624 }
9625 break;
9626 default:
9627 throw_exception (e);
9628 }
9629 break;
9630 default:
9631 throw_exception (e);
9632 }
9633
9634 /* Create a chain of things that always need to be cleaned up. */
9635 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9636
9637 /* ----------------------------- SNIP -----------------------------
9638 Anything added to the cleanup chain beyond this point is assumed
9639 to be part of a breakpoint. If the breakpoint create succeeds
9640 then the memory is not reclaimed. */
9641 bkpt_chain = make_cleanup (null_cleanup, 0);
9642
9643 /* Resolve all line numbers to PC's and verify that the addresses
9644 are ok for the target. */
9645 if (!pending)
9646 {
9647 int ix;
9648 struct linespec_sals *iter;
9649
9650 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9651 breakpoint_sals_to_pc (&iter->sals);
9652 }
9653
9654 /* Fast tracepoints may have additional restrictions on location. */
9655 if (!pending && type_wanted == bp_fast_tracepoint)
9656 {
9657 int ix;
9658 struct linespec_sals *iter;
9659
9660 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9661 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9662 }
9663
9664 /* Verify that condition can be parsed, before setting any
9665 breakpoints. Allocate a separate condition expression for each
9666 breakpoint. */
9667 if (!pending)
9668 {
9669 if (parse_arg)
9670 {
9671 char *rest;
9672 struct linespec_sals *lsal;
9673
9674 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9675
9676 /* Here we only parse 'arg' to separate condition
9677 from thread number, so parsing in context of first
9678 sal is OK. When setting the breakpoint we'll
9679 re-parse it in context of each sal. */
9680
9681 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9682 &thread, &task, &rest);
9683 if (cond_string)
9684 make_cleanup (xfree, cond_string);
9685 if (rest)
9686 make_cleanup (xfree, rest);
9687 if (rest)
9688 extra_string = rest;
9689 }
9690 else
9691 {
9692 if (*arg != '\0')
9693 error (_("Garbage '%s' at end of location"), arg);
9694
9695 /* Create a private copy of condition string. */
9696 if (cond_string)
9697 {
9698 cond_string = xstrdup (cond_string);
9699 make_cleanup (xfree, cond_string);
9700 }
9701 /* Create a private copy of any extra string. */
9702 if (extra_string)
9703 {
9704 extra_string = xstrdup (extra_string);
9705 make_cleanup (xfree, extra_string);
9706 }
9707 }
9708
9709 ops->create_breakpoints_sal (gdbarch, &canonical,
9710 cond_string, extra_string, type_wanted,
9711 tempflag ? disp_del : disp_donttouch,
9712 thread, task, ignore_count, ops,
9713 from_tty, enabled, internal, flags);
9714 }
9715 else
9716 {
9717 struct breakpoint *b;
9718
9719 make_cleanup (xfree, copy_arg);
9720
9721 if (is_tracepoint_type (type_wanted))
9722 {
9723 struct tracepoint *t;
9724
9725 t = XCNEW (struct tracepoint);
9726 b = &t->base;
9727 }
9728 else
9729 b = XNEW (struct breakpoint);
9730
9731 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9732
9733 b->addr_string = copy_arg;
9734 if (parse_arg)
9735 b->cond_string = NULL;
9736 else
9737 {
9738 /* Create a private copy of condition string. */
9739 if (cond_string)
9740 {
9741 cond_string = xstrdup (cond_string);
9742 make_cleanup (xfree, cond_string);
9743 }
9744 b->cond_string = cond_string;
9745 }
9746 b->extra_string = NULL;
9747 b->ignore_count = ignore_count;
9748 b->disposition = tempflag ? disp_del : disp_donttouch;
9749 b->condition_not_parsed = 1;
9750 b->enable_state = enabled ? bp_enabled : bp_disabled;
9751 if ((type_wanted != bp_breakpoint
9752 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9753 b->pspace = current_program_space;
9754
9755 install_breakpoint (internal, b, 0);
9756 }
9757
9758 if (VEC_length (linespec_sals, canonical.sals) > 1)
9759 {
9760 warning (_("Multiple breakpoints were set.\nUse the "
9761 "\"delete\" command to delete unwanted breakpoints."));
9762 prev_breakpoint_count = prev_bkpt_count;
9763 }
9764
9765 /* That's it. Discard the cleanups for data inserted into the
9766 breakpoint. */
9767 discard_cleanups (bkpt_chain);
9768 /* But cleanup everything else. */
9769 do_cleanups (old_chain);
9770
9771 /* error call may happen here - have BKPT_CHAIN already discarded. */
9772 update_global_location_list (1);
9773
9774 return 1;
9775 }
9776
9777 /* Set a breakpoint.
9778 ARG is a string describing breakpoint address,
9779 condition, and thread.
9780 FLAG specifies if a breakpoint is hardware on,
9781 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9782 and BP_TEMPFLAG. */
9783
9784 static void
9785 break_command_1 (char *arg, int flag, int from_tty)
9786 {
9787 int tempflag = flag & BP_TEMPFLAG;
9788 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9789 ? bp_hardware_breakpoint
9790 : bp_breakpoint);
9791 struct breakpoint_ops *ops;
9792 const char *arg_cp = arg;
9793
9794 /* Matching breakpoints on probes. */
9795 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9796 ops = &bkpt_probe_breakpoint_ops;
9797 else
9798 ops = &bkpt_breakpoint_ops;
9799
9800 create_breakpoint (get_current_arch (),
9801 arg,
9802 NULL, 0, NULL, 1 /* parse arg */,
9803 tempflag, type_wanted,
9804 0 /* Ignore count */,
9805 pending_break_support,
9806 ops,
9807 from_tty,
9808 1 /* enabled */,
9809 0 /* internal */,
9810 0);
9811 }
9812
9813 /* Helper function for break_command_1 and disassemble_command. */
9814
9815 void
9816 resolve_sal_pc (struct symtab_and_line *sal)
9817 {
9818 CORE_ADDR pc;
9819
9820 if (sal->pc == 0 && sal->symtab != NULL)
9821 {
9822 if (!find_line_pc (sal->symtab, sal->line, &pc))
9823 error (_("No line %d in file \"%s\"."),
9824 sal->line, symtab_to_filename_for_display (sal->symtab));
9825 sal->pc = pc;
9826
9827 /* If this SAL corresponds to a breakpoint inserted using a line
9828 number, then skip the function prologue if necessary. */
9829 if (sal->explicit_line)
9830 skip_prologue_sal (sal);
9831 }
9832
9833 if (sal->section == 0 && sal->symtab != NULL)
9834 {
9835 struct blockvector *bv;
9836 struct block *b;
9837 struct symbol *sym;
9838
9839 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9840 if (bv != NULL)
9841 {
9842 sym = block_linkage_function (b);
9843 if (sym != NULL)
9844 {
9845 fixup_symbol_section (sym, sal->symtab->objfile);
9846 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9847 }
9848 else
9849 {
9850 /* It really is worthwhile to have the section, so we'll
9851 just have to look harder. This case can be executed
9852 if we have line numbers but no functions (as can
9853 happen in assembly source). */
9854
9855 struct bound_minimal_symbol msym;
9856 struct cleanup *old_chain = save_current_space_and_thread ();
9857
9858 switch_to_program_space_and_thread (sal->pspace);
9859
9860 msym = lookup_minimal_symbol_by_pc (sal->pc);
9861 if (msym.minsym)
9862 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9863
9864 do_cleanups (old_chain);
9865 }
9866 }
9867 }
9868 }
9869
9870 void
9871 break_command (char *arg, int from_tty)
9872 {
9873 break_command_1 (arg, 0, from_tty);
9874 }
9875
9876 void
9877 tbreak_command (char *arg, int from_tty)
9878 {
9879 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9880 }
9881
9882 static void
9883 hbreak_command (char *arg, int from_tty)
9884 {
9885 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9886 }
9887
9888 static void
9889 thbreak_command (char *arg, int from_tty)
9890 {
9891 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9892 }
9893
9894 static void
9895 stop_command (char *arg, int from_tty)
9896 {
9897 printf_filtered (_("Specify the type of breakpoint to set.\n\
9898 Usage: stop in <function | address>\n\
9899 stop at <line>\n"));
9900 }
9901
9902 static void
9903 stopin_command (char *arg, int from_tty)
9904 {
9905 int badInput = 0;
9906
9907 if (arg == (char *) NULL)
9908 badInput = 1;
9909 else if (*arg != '*')
9910 {
9911 char *argptr = arg;
9912 int hasColon = 0;
9913
9914 /* Look for a ':'. If this is a line number specification, then
9915 say it is bad, otherwise, it should be an address or
9916 function/method name. */
9917 while (*argptr && !hasColon)
9918 {
9919 hasColon = (*argptr == ':');
9920 argptr++;
9921 }
9922
9923 if (hasColon)
9924 badInput = (*argptr != ':'); /* Not a class::method */
9925 else
9926 badInput = isdigit (*arg); /* a simple line number */
9927 }
9928
9929 if (badInput)
9930 printf_filtered (_("Usage: stop in <function | address>\n"));
9931 else
9932 break_command_1 (arg, 0, from_tty);
9933 }
9934
9935 static void
9936 stopat_command (char *arg, int from_tty)
9937 {
9938 int badInput = 0;
9939
9940 if (arg == (char *) NULL || *arg == '*') /* no line number */
9941 badInput = 1;
9942 else
9943 {
9944 char *argptr = arg;
9945 int hasColon = 0;
9946
9947 /* Look for a ':'. If there is a '::' then get out, otherwise
9948 it is probably a line number. */
9949 while (*argptr && !hasColon)
9950 {
9951 hasColon = (*argptr == ':');
9952 argptr++;
9953 }
9954
9955 if (hasColon)
9956 badInput = (*argptr == ':'); /* we have class::method */
9957 else
9958 badInput = !isdigit (*arg); /* not a line number */
9959 }
9960
9961 if (badInput)
9962 printf_filtered (_("Usage: stop at <line>\n"));
9963 else
9964 break_command_1 (arg, 0, from_tty);
9965 }
9966
9967 /* The dynamic printf command is mostly like a regular breakpoint, but
9968 with a prewired command list consisting of a single output command,
9969 built from extra arguments supplied on the dprintf command
9970 line. */
9971
9972 static void
9973 dprintf_command (char *arg, int from_tty)
9974 {
9975 create_breakpoint (get_current_arch (),
9976 arg,
9977 NULL, 0, NULL, 1 /* parse arg */,
9978 0, bp_dprintf,
9979 0 /* Ignore count */,
9980 pending_break_support,
9981 &dprintf_breakpoint_ops,
9982 from_tty,
9983 1 /* enabled */,
9984 0 /* internal */,
9985 0);
9986 }
9987
9988 static void
9989 agent_printf_command (char *arg, int from_tty)
9990 {
9991 error (_("May only run agent-printf on the target"));
9992 }
9993
9994 /* Implement the "breakpoint_hit" breakpoint_ops method for
9995 ranged breakpoints. */
9996
9997 static int
9998 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9999 struct address_space *aspace,
10000 CORE_ADDR bp_addr,
10001 const struct target_waitstatus *ws)
10002 {
10003 if (ws->kind != TARGET_WAITKIND_STOPPED
10004 || ws->value.sig != GDB_SIGNAL_TRAP)
10005 return 0;
10006
10007 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10008 bl->length, aspace, bp_addr);
10009 }
10010
10011 /* Implement the "resources_needed" breakpoint_ops method for
10012 ranged breakpoints. */
10013
10014 static int
10015 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10016 {
10017 return target_ranged_break_num_registers ();
10018 }
10019
10020 /* Implement the "print_it" breakpoint_ops method for
10021 ranged breakpoints. */
10022
10023 static enum print_stop_action
10024 print_it_ranged_breakpoint (bpstat bs)
10025 {
10026 struct breakpoint *b = bs->breakpoint_at;
10027 struct bp_location *bl = b->loc;
10028 struct ui_out *uiout = current_uiout;
10029
10030 gdb_assert (b->type == bp_hardware_breakpoint);
10031
10032 /* Ranged breakpoints have only one location. */
10033 gdb_assert (bl && bl->next == NULL);
10034
10035 annotate_breakpoint (b->number);
10036 if (b->disposition == disp_del)
10037 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10038 else
10039 ui_out_text (uiout, "\nRanged breakpoint ");
10040 if (ui_out_is_mi_like_p (uiout))
10041 {
10042 ui_out_field_string (uiout, "reason",
10043 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10044 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10045 }
10046 ui_out_field_int (uiout, "bkptno", b->number);
10047 ui_out_text (uiout, ", ");
10048
10049 return PRINT_SRC_AND_LOC;
10050 }
10051
10052 /* Implement the "print_one" breakpoint_ops method for
10053 ranged breakpoints. */
10054
10055 static void
10056 print_one_ranged_breakpoint (struct breakpoint *b,
10057 struct bp_location **last_loc)
10058 {
10059 struct bp_location *bl = b->loc;
10060 struct value_print_options opts;
10061 struct ui_out *uiout = current_uiout;
10062
10063 /* Ranged breakpoints have only one location. */
10064 gdb_assert (bl && bl->next == NULL);
10065
10066 get_user_print_options (&opts);
10067
10068 if (opts.addressprint)
10069 /* We don't print the address range here, it will be printed later
10070 by print_one_detail_ranged_breakpoint. */
10071 ui_out_field_skip (uiout, "addr");
10072 annotate_field (5);
10073 print_breakpoint_location (b, bl);
10074 *last_loc = bl;
10075 }
10076
10077 /* Implement the "print_one_detail" breakpoint_ops method for
10078 ranged breakpoints. */
10079
10080 static void
10081 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10082 struct ui_out *uiout)
10083 {
10084 CORE_ADDR address_start, address_end;
10085 struct bp_location *bl = b->loc;
10086 struct ui_file *stb = mem_fileopen ();
10087 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10088
10089 gdb_assert (bl);
10090
10091 address_start = bl->address;
10092 address_end = address_start + bl->length - 1;
10093
10094 ui_out_text (uiout, "\taddress range: ");
10095 fprintf_unfiltered (stb, "[%s, %s]",
10096 print_core_address (bl->gdbarch, address_start),
10097 print_core_address (bl->gdbarch, address_end));
10098 ui_out_field_stream (uiout, "addr", stb);
10099 ui_out_text (uiout, "\n");
10100
10101 do_cleanups (cleanup);
10102 }
10103
10104 /* Implement the "print_mention" breakpoint_ops method for
10105 ranged breakpoints. */
10106
10107 static void
10108 print_mention_ranged_breakpoint (struct breakpoint *b)
10109 {
10110 struct bp_location *bl = b->loc;
10111 struct ui_out *uiout = current_uiout;
10112
10113 gdb_assert (bl);
10114 gdb_assert (b->type == bp_hardware_breakpoint);
10115
10116 if (ui_out_is_mi_like_p (uiout))
10117 return;
10118
10119 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10120 b->number, paddress (bl->gdbarch, bl->address),
10121 paddress (bl->gdbarch, bl->address + bl->length - 1));
10122 }
10123
10124 /* Implement the "print_recreate" breakpoint_ops method for
10125 ranged breakpoints. */
10126
10127 static void
10128 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10129 {
10130 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10131 b->addr_string_range_end);
10132 print_recreate_thread (b, fp);
10133 }
10134
10135 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10136
10137 static struct breakpoint_ops ranged_breakpoint_ops;
10138
10139 /* Find the address where the end of the breakpoint range should be
10140 placed, given the SAL of the end of the range. This is so that if
10141 the user provides a line number, the end of the range is set to the
10142 last instruction of the given line. */
10143
10144 static CORE_ADDR
10145 find_breakpoint_range_end (struct symtab_and_line sal)
10146 {
10147 CORE_ADDR end;
10148
10149 /* If the user provided a PC value, use it. Otherwise,
10150 find the address of the end of the given location. */
10151 if (sal.explicit_pc)
10152 end = sal.pc;
10153 else
10154 {
10155 int ret;
10156 CORE_ADDR start;
10157
10158 ret = find_line_pc_range (sal, &start, &end);
10159 if (!ret)
10160 error (_("Could not find location of the end of the range."));
10161
10162 /* find_line_pc_range returns the start of the next line. */
10163 end--;
10164 }
10165
10166 return end;
10167 }
10168
10169 /* Implement the "break-range" CLI command. */
10170
10171 static void
10172 break_range_command (char *arg, int from_tty)
10173 {
10174 char *arg_start, *addr_string_start, *addr_string_end;
10175 struct linespec_result canonical_start, canonical_end;
10176 int bp_count, can_use_bp, length;
10177 CORE_ADDR end;
10178 struct breakpoint *b;
10179 struct symtab_and_line sal_start, sal_end;
10180 struct cleanup *cleanup_bkpt;
10181 struct linespec_sals *lsal_start, *lsal_end;
10182
10183 /* We don't support software ranged breakpoints. */
10184 if (target_ranged_break_num_registers () < 0)
10185 error (_("This target does not support hardware ranged breakpoints."));
10186
10187 bp_count = hw_breakpoint_used_count ();
10188 bp_count += target_ranged_break_num_registers ();
10189 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10190 bp_count, 0);
10191 if (can_use_bp < 0)
10192 error (_("Hardware breakpoints used exceeds limit."));
10193
10194 arg = skip_spaces (arg);
10195 if (arg == NULL || arg[0] == '\0')
10196 error(_("No address range specified."));
10197
10198 init_linespec_result (&canonical_start);
10199
10200 arg_start = arg;
10201 parse_breakpoint_sals (&arg, &canonical_start);
10202
10203 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10204
10205 if (arg[0] != ',')
10206 error (_("Too few arguments."));
10207 else if (VEC_empty (linespec_sals, canonical_start.sals))
10208 error (_("Could not find location of the beginning of the range."));
10209
10210 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10211
10212 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10213 || lsal_start->sals.nelts != 1)
10214 error (_("Cannot create a ranged breakpoint with multiple locations."));
10215
10216 sal_start = lsal_start->sals.sals[0];
10217 addr_string_start = savestring (arg_start, arg - arg_start);
10218 make_cleanup (xfree, addr_string_start);
10219
10220 arg++; /* Skip the comma. */
10221 arg = skip_spaces (arg);
10222
10223 /* Parse the end location. */
10224
10225 init_linespec_result (&canonical_end);
10226 arg_start = arg;
10227
10228 /* We call decode_line_full directly here instead of using
10229 parse_breakpoint_sals because we need to specify the start location's
10230 symtab and line as the default symtab and line for the end of the
10231 range. This makes it possible to have ranges like "foo.c:27, +14",
10232 where +14 means 14 lines from the start location. */
10233 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10234 sal_start.symtab, sal_start.line,
10235 &canonical_end, NULL, NULL);
10236
10237 make_cleanup_destroy_linespec_result (&canonical_end);
10238
10239 if (VEC_empty (linespec_sals, canonical_end.sals))
10240 error (_("Could not find location of the end of the range."));
10241
10242 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10243 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10244 || lsal_end->sals.nelts != 1)
10245 error (_("Cannot create a ranged breakpoint with multiple locations."));
10246
10247 sal_end = lsal_end->sals.sals[0];
10248 addr_string_end = savestring (arg_start, arg - arg_start);
10249 make_cleanup (xfree, addr_string_end);
10250
10251 end = find_breakpoint_range_end (sal_end);
10252 if (sal_start.pc > end)
10253 error (_("Invalid address range, end precedes start."));
10254
10255 length = end - sal_start.pc + 1;
10256 if (length < 0)
10257 /* Length overflowed. */
10258 error (_("Address range too large."));
10259 else if (length == 1)
10260 {
10261 /* This range is simple enough to be handled by
10262 the `hbreak' command. */
10263 hbreak_command (addr_string_start, 1);
10264
10265 do_cleanups (cleanup_bkpt);
10266
10267 return;
10268 }
10269
10270 /* Now set up the breakpoint. */
10271 b = set_raw_breakpoint (get_current_arch (), sal_start,
10272 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10273 set_breakpoint_count (breakpoint_count + 1);
10274 b->number = breakpoint_count;
10275 b->disposition = disp_donttouch;
10276 b->addr_string = xstrdup (addr_string_start);
10277 b->addr_string_range_end = xstrdup (addr_string_end);
10278 b->loc->length = length;
10279
10280 do_cleanups (cleanup_bkpt);
10281
10282 mention (b);
10283 observer_notify_breakpoint_created (b);
10284 update_global_location_list (1);
10285 }
10286
10287 /* Return non-zero if EXP is verified as constant. Returned zero
10288 means EXP is variable. Also the constant detection may fail for
10289 some constant expressions and in such case still falsely return
10290 zero. */
10291
10292 static int
10293 watchpoint_exp_is_const (const struct expression *exp)
10294 {
10295 int i = exp->nelts;
10296
10297 while (i > 0)
10298 {
10299 int oplenp, argsp;
10300
10301 /* We are only interested in the descriptor of each element. */
10302 operator_length (exp, i, &oplenp, &argsp);
10303 i -= oplenp;
10304
10305 switch (exp->elts[i].opcode)
10306 {
10307 case BINOP_ADD:
10308 case BINOP_SUB:
10309 case BINOP_MUL:
10310 case BINOP_DIV:
10311 case BINOP_REM:
10312 case BINOP_MOD:
10313 case BINOP_LSH:
10314 case BINOP_RSH:
10315 case BINOP_LOGICAL_AND:
10316 case BINOP_LOGICAL_OR:
10317 case BINOP_BITWISE_AND:
10318 case BINOP_BITWISE_IOR:
10319 case BINOP_BITWISE_XOR:
10320 case BINOP_EQUAL:
10321 case BINOP_NOTEQUAL:
10322 case BINOP_LESS:
10323 case BINOP_GTR:
10324 case BINOP_LEQ:
10325 case BINOP_GEQ:
10326 case BINOP_REPEAT:
10327 case BINOP_COMMA:
10328 case BINOP_EXP:
10329 case BINOP_MIN:
10330 case BINOP_MAX:
10331 case BINOP_INTDIV:
10332 case BINOP_CONCAT:
10333 case BINOP_IN:
10334 case BINOP_RANGE:
10335 case TERNOP_COND:
10336 case TERNOP_SLICE:
10337
10338 case OP_LONG:
10339 case OP_DOUBLE:
10340 case OP_DECFLOAT:
10341 case OP_LAST:
10342 case OP_COMPLEX:
10343 case OP_STRING:
10344 case OP_ARRAY:
10345 case OP_TYPE:
10346 case OP_TYPEOF:
10347 case OP_DECLTYPE:
10348 case OP_TYPEID:
10349 case OP_NAME:
10350 case OP_OBJC_NSSTRING:
10351
10352 case UNOP_NEG:
10353 case UNOP_LOGICAL_NOT:
10354 case UNOP_COMPLEMENT:
10355 case UNOP_ADDR:
10356 case UNOP_HIGH:
10357 case UNOP_CAST:
10358
10359 case UNOP_CAST_TYPE:
10360 case UNOP_REINTERPRET_CAST:
10361 case UNOP_DYNAMIC_CAST:
10362 /* Unary, binary and ternary operators: We have to check
10363 their operands. If they are constant, then so is the
10364 result of that operation. For instance, if A and B are
10365 determined to be constants, then so is "A + B".
10366
10367 UNOP_IND is one exception to the rule above, because the
10368 value of *ADDR is not necessarily a constant, even when
10369 ADDR is. */
10370 break;
10371
10372 case OP_VAR_VALUE:
10373 /* Check whether the associated symbol is a constant.
10374
10375 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10376 possible that a buggy compiler could mark a variable as
10377 constant even when it is not, and TYPE_CONST would return
10378 true in this case, while SYMBOL_CLASS wouldn't.
10379
10380 We also have to check for function symbols because they
10381 are always constant. */
10382 {
10383 struct symbol *s = exp->elts[i + 2].symbol;
10384
10385 if (SYMBOL_CLASS (s) != LOC_BLOCK
10386 && SYMBOL_CLASS (s) != LOC_CONST
10387 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10388 return 0;
10389 break;
10390 }
10391
10392 /* The default action is to return 0 because we are using
10393 the optimistic approach here: If we don't know something,
10394 then it is not a constant. */
10395 default:
10396 return 0;
10397 }
10398 }
10399
10400 return 1;
10401 }
10402
10403 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10404
10405 static void
10406 dtor_watchpoint (struct breakpoint *self)
10407 {
10408 struct watchpoint *w = (struct watchpoint *) self;
10409
10410 xfree (w->cond_exp);
10411 xfree (w->exp);
10412 xfree (w->exp_string);
10413 xfree (w->exp_string_reparse);
10414 value_free (w->val);
10415
10416 base_breakpoint_ops.dtor (self);
10417 }
10418
10419 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10420
10421 static void
10422 re_set_watchpoint (struct breakpoint *b)
10423 {
10424 struct watchpoint *w = (struct watchpoint *) b;
10425
10426 /* Watchpoint can be either on expression using entirely global
10427 variables, or it can be on local variables.
10428
10429 Watchpoints of the first kind are never auto-deleted, and even
10430 persist across program restarts. Since they can use variables
10431 from shared libraries, we need to reparse expression as libraries
10432 are loaded and unloaded.
10433
10434 Watchpoints on local variables can also change meaning as result
10435 of solib event. For example, if a watchpoint uses both a local
10436 and a global variables in expression, it's a local watchpoint,
10437 but unloading of a shared library will make the expression
10438 invalid. This is not a very common use case, but we still
10439 re-evaluate expression, to avoid surprises to the user.
10440
10441 Note that for local watchpoints, we re-evaluate it only if
10442 watchpoints frame id is still valid. If it's not, it means the
10443 watchpoint is out of scope and will be deleted soon. In fact,
10444 I'm not sure we'll ever be called in this case.
10445
10446 If a local watchpoint's frame id is still valid, then
10447 w->exp_valid_block is likewise valid, and we can safely use it.
10448
10449 Don't do anything about disabled watchpoints, since they will be
10450 reevaluated again when enabled. */
10451 update_watchpoint (w, 1 /* reparse */);
10452 }
10453
10454 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10455
10456 static int
10457 insert_watchpoint (struct bp_location *bl)
10458 {
10459 struct watchpoint *w = (struct watchpoint *) bl->owner;
10460 int length = w->exact ? 1 : bl->length;
10461
10462 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10463 w->cond_exp);
10464 }
10465
10466 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10467
10468 static int
10469 remove_watchpoint (struct bp_location *bl)
10470 {
10471 struct watchpoint *w = (struct watchpoint *) bl->owner;
10472 int length = w->exact ? 1 : bl->length;
10473
10474 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10475 w->cond_exp);
10476 }
10477
10478 static int
10479 breakpoint_hit_watchpoint (const struct bp_location *bl,
10480 struct address_space *aspace, CORE_ADDR bp_addr,
10481 const struct target_waitstatus *ws)
10482 {
10483 struct breakpoint *b = bl->owner;
10484 struct watchpoint *w = (struct watchpoint *) b;
10485
10486 /* Continuable hardware watchpoints are treated as non-existent if the
10487 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10488 some data address). Otherwise gdb won't stop on a break instruction
10489 in the code (not from a breakpoint) when a hardware watchpoint has
10490 been defined. Also skip watchpoints which we know did not trigger
10491 (did not match the data address). */
10492 if (is_hardware_watchpoint (b)
10493 && w->watchpoint_triggered == watch_triggered_no)
10494 return 0;
10495
10496 return 1;
10497 }
10498
10499 static void
10500 check_status_watchpoint (bpstat bs)
10501 {
10502 gdb_assert (is_watchpoint (bs->breakpoint_at));
10503
10504 bpstat_check_watchpoint (bs);
10505 }
10506
10507 /* Implement the "resources_needed" breakpoint_ops method for
10508 hardware watchpoints. */
10509
10510 static int
10511 resources_needed_watchpoint (const struct bp_location *bl)
10512 {
10513 struct watchpoint *w = (struct watchpoint *) bl->owner;
10514 int length = w->exact? 1 : bl->length;
10515
10516 return target_region_ok_for_hw_watchpoint (bl->address, length);
10517 }
10518
10519 /* Implement the "works_in_software_mode" breakpoint_ops method for
10520 hardware watchpoints. */
10521
10522 static int
10523 works_in_software_mode_watchpoint (const struct breakpoint *b)
10524 {
10525 /* Read and access watchpoints only work with hardware support. */
10526 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10527 }
10528
10529 static enum print_stop_action
10530 print_it_watchpoint (bpstat bs)
10531 {
10532 struct cleanup *old_chain;
10533 struct breakpoint *b;
10534 struct ui_file *stb;
10535 enum print_stop_action result;
10536 struct watchpoint *w;
10537 struct ui_out *uiout = current_uiout;
10538
10539 gdb_assert (bs->bp_location_at != NULL);
10540
10541 b = bs->breakpoint_at;
10542 w = (struct watchpoint *) b;
10543
10544 stb = mem_fileopen ();
10545 old_chain = make_cleanup_ui_file_delete (stb);
10546
10547 switch (b->type)
10548 {
10549 case bp_watchpoint:
10550 case bp_hardware_watchpoint:
10551 annotate_watchpoint (b->number);
10552 if (ui_out_is_mi_like_p (uiout))
10553 ui_out_field_string
10554 (uiout, "reason",
10555 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10556 mention (b);
10557 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10558 ui_out_text (uiout, "\nOld value = ");
10559 watchpoint_value_print (bs->old_val, stb);
10560 ui_out_field_stream (uiout, "old", stb);
10561 ui_out_text (uiout, "\nNew value = ");
10562 watchpoint_value_print (w->val, stb);
10563 ui_out_field_stream (uiout, "new", stb);
10564 ui_out_text (uiout, "\n");
10565 /* More than one watchpoint may have been triggered. */
10566 result = PRINT_UNKNOWN;
10567 break;
10568
10569 case bp_read_watchpoint:
10570 if (ui_out_is_mi_like_p (uiout))
10571 ui_out_field_string
10572 (uiout, "reason",
10573 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10574 mention (b);
10575 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10576 ui_out_text (uiout, "\nValue = ");
10577 watchpoint_value_print (w->val, stb);
10578 ui_out_field_stream (uiout, "value", stb);
10579 ui_out_text (uiout, "\n");
10580 result = PRINT_UNKNOWN;
10581 break;
10582
10583 case bp_access_watchpoint:
10584 if (bs->old_val != NULL)
10585 {
10586 annotate_watchpoint (b->number);
10587 if (ui_out_is_mi_like_p (uiout))
10588 ui_out_field_string
10589 (uiout, "reason",
10590 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10591 mention (b);
10592 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10593 ui_out_text (uiout, "\nOld value = ");
10594 watchpoint_value_print (bs->old_val, stb);
10595 ui_out_field_stream (uiout, "old", stb);
10596 ui_out_text (uiout, "\nNew value = ");
10597 }
10598 else
10599 {
10600 mention (b);
10601 if (ui_out_is_mi_like_p (uiout))
10602 ui_out_field_string
10603 (uiout, "reason",
10604 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10605 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10606 ui_out_text (uiout, "\nValue = ");
10607 }
10608 watchpoint_value_print (w->val, stb);
10609 ui_out_field_stream (uiout, "new", stb);
10610 ui_out_text (uiout, "\n");
10611 result = PRINT_UNKNOWN;
10612 break;
10613 default:
10614 result = PRINT_UNKNOWN;
10615 }
10616
10617 do_cleanups (old_chain);
10618 return result;
10619 }
10620
10621 /* Implement the "print_mention" breakpoint_ops method for hardware
10622 watchpoints. */
10623
10624 static void
10625 print_mention_watchpoint (struct breakpoint *b)
10626 {
10627 struct cleanup *ui_out_chain;
10628 struct watchpoint *w = (struct watchpoint *) b;
10629 struct ui_out *uiout = current_uiout;
10630
10631 switch (b->type)
10632 {
10633 case bp_watchpoint:
10634 ui_out_text (uiout, "Watchpoint ");
10635 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10636 break;
10637 case bp_hardware_watchpoint:
10638 ui_out_text (uiout, "Hardware watchpoint ");
10639 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10640 break;
10641 case bp_read_watchpoint:
10642 ui_out_text (uiout, "Hardware read watchpoint ");
10643 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10644 break;
10645 case bp_access_watchpoint:
10646 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10647 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10648 break;
10649 default:
10650 internal_error (__FILE__, __LINE__,
10651 _("Invalid hardware watchpoint type."));
10652 }
10653
10654 ui_out_field_int (uiout, "number", b->number);
10655 ui_out_text (uiout, ": ");
10656 ui_out_field_string (uiout, "exp", w->exp_string);
10657 do_cleanups (ui_out_chain);
10658 }
10659
10660 /* Implement the "print_recreate" breakpoint_ops method for
10661 watchpoints. */
10662
10663 static void
10664 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10665 {
10666 struct watchpoint *w = (struct watchpoint *) b;
10667
10668 switch (b->type)
10669 {
10670 case bp_watchpoint:
10671 case bp_hardware_watchpoint:
10672 fprintf_unfiltered (fp, "watch");
10673 break;
10674 case bp_read_watchpoint:
10675 fprintf_unfiltered (fp, "rwatch");
10676 break;
10677 case bp_access_watchpoint:
10678 fprintf_unfiltered (fp, "awatch");
10679 break;
10680 default:
10681 internal_error (__FILE__, __LINE__,
10682 _("Invalid watchpoint type."));
10683 }
10684
10685 fprintf_unfiltered (fp, " %s", w->exp_string);
10686 print_recreate_thread (b, fp);
10687 }
10688
10689 /* Implement the "explains_signal" breakpoint_ops method for
10690 watchpoints. */
10691
10692 static enum bpstat_signal_value
10693 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10694 {
10695 /* A software watchpoint cannot cause a signal other than
10696 GDB_SIGNAL_TRAP. */
10697 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10698 return BPSTAT_SIGNAL_NO;
10699
10700 return BPSTAT_SIGNAL_HIDE;
10701 }
10702
10703 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10704
10705 static struct breakpoint_ops watchpoint_breakpoint_ops;
10706
10707 /* Implement the "insert" breakpoint_ops method for
10708 masked hardware watchpoints. */
10709
10710 static int
10711 insert_masked_watchpoint (struct bp_location *bl)
10712 {
10713 struct watchpoint *w = (struct watchpoint *) bl->owner;
10714
10715 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10716 bl->watchpoint_type);
10717 }
10718
10719 /* Implement the "remove" breakpoint_ops method for
10720 masked hardware watchpoints. */
10721
10722 static int
10723 remove_masked_watchpoint (struct bp_location *bl)
10724 {
10725 struct watchpoint *w = (struct watchpoint *) bl->owner;
10726
10727 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10728 bl->watchpoint_type);
10729 }
10730
10731 /* Implement the "resources_needed" breakpoint_ops method for
10732 masked hardware watchpoints. */
10733
10734 static int
10735 resources_needed_masked_watchpoint (const struct bp_location *bl)
10736 {
10737 struct watchpoint *w = (struct watchpoint *) bl->owner;
10738
10739 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10740 }
10741
10742 /* Implement the "works_in_software_mode" breakpoint_ops method for
10743 masked hardware watchpoints. */
10744
10745 static int
10746 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10747 {
10748 return 0;
10749 }
10750
10751 /* Implement the "print_it" breakpoint_ops method for
10752 masked hardware watchpoints. */
10753
10754 static enum print_stop_action
10755 print_it_masked_watchpoint (bpstat bs)
10756 {
10757 struct breakpoint *b = bs->breakpoint_at;
10758 struct ui_out *uiout = current_uiout;
10759
10760 /* Masked watchpoints have only one location. */
10761 gdb_assert (b->loc && b->loc->next == NULL);
10762
10763 switch (b->type)
10764 {
10765 case bp_hardware_watchpoint:
10766 annotate_watchpoint (b->number);
10767 if (ui_out_is_mi_like_p (uiout))
10768 ui_out_field_string
10769 (uiout, "reason",
10770 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10771 break;
10772
10773 case bp_read_watchpoint:
10774 if (ui_out_is_mi_like_p (uiout))
10775 ui_out_field_string
10776 (uiout, "reason",
10777 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10778 break;
10779
10780 case bp_access_watchpoint:
10781 if (ui_out_is_mi_like_p (uiout))
10782 ui_out_field_string
10783 (uiout, "reason",
10784 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10785 break;
10786 default:
10787 internal_error (__FILE__, __LINE__,
10788 _("Invalid hardware watchpoint type."));
10789 }
10790
10791 mention (b);
10792 ui_out_text (uiout, _("\n\
10793 Check the underlying instruction at PC for the memory\n\
10794 address and value which triggered this watchpoint.\n"));
10795 ui_out_text (uiout, "\n");
10796
10797 /* More than one watchpoint may have been triggered. */
10798 return PRINT_UNKNOWN;
10799 }
10800
10801 /* Implement the "print_one_detail" breakpoint_ops method for
10802 masked hardware watchpoints. */
10803
10804 static void
10805 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10806 struct ui_out *uiout)
10807 {
10808 struct watchpoint *w = (struct watchpoint *) b;
10809
10810 /* Masked watchpoints have only one location. */
10811 gdb_assert (b->loc && b->loc->next == NULL);
10812
10813 ui_out_text (uiout, "\tmask ");
10814 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10815 ui_out_text (uiout, "\n");
10816 }
10817
10818 /* Implement the "print_mention" breakpoint_ops method for
10819 masked hardware watchpoints. */
10820
10821 static void
10822 print_mention_masked_watchpoint (struct breakpoint *b)
10823 {
10824 struct watchpoint *w = (struct watchpoint *) b;
10825 struct ui_out *uiout = current_uiout;
10826 struct cleanup *ui_out_chain;
10827
10828 switch (b->type)
10829 {
10830 case bp_hardware_watchpoint:
10831 ui_out_text (uiout, "Masked hardware watchpoint ");
10832 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10833 break;
10834 case bp_read_watchpoint:
10835 ui_out_text (uiout, "Masked hardware read watchpoint ");
10836 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10837 break;
10838 case bp_access_watchpoint:
10839 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10840 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10841 break;
10842 default:
10843 internal_error (__FILE__, __LINE__,
10844 _("Invalid hardware watchpoint type."));
10845 }
10846
10847 ui_out_field_int (uiout, "number", b->number);
10848 ui_out_text (uiout, ": ");
10849 ui_out_field_string (uiout, "exp", w->exp_string);
10850 do_cleanups (ui_out_chain);
10851 }
10852
10853 /* Implement the "print_recreate" breakpoint_ops method for
10854 masked hardware watchpoints. */
10855
10856 static void
10857 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10858 {
10859 struct watchpoint *w = (struct watchpoint *) b;
10860 char tmp[40];
10861
10862 switch (b->type)
10863 {
10864 case bp_hardware_watchpoint:
10865 fprintf_unfiltered (fp, "watch");
10866 break;
10867 case bp_read_watchpoint:
10868 fprintf_unfiltered (fp, "rwatch");
10869 break;
10870 case bp_access_watchpoint:
10871 fprintf_unfiltered (fp, "awatch");
10872 break;
10873 default:
10874 internal_error (__FILE__, __LINE__,
10875 _("Invalid hardware watchpoint type."));
10876 }
10877
10878 sprintf_vma (tmp, w->hw_wp_mask);
10879 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10880 print_recreate_thread (b, fp);
10881 }
10882
10883 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10884
10885 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10886
10887 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10888
10889 static int
10890 is_masked_watchpoint (const struct breakpoint *b)
10891 {
10892 return b->ops == &masked_watchpoint_breakpoint_ops;
10893 }
10894
10895 /* accessflag: hw_write: watch write,
10896 hw_read: watch read,
10897 hw_access: watch access (read or write) */
10898 static void
10899 watch_command_1 (const char *arg, int accessflag, int from_tty,
10900 int just_location, int internal)
10901 {
10902 volatile struct gdb_exception e;
10903 struct breakpoint *b, *scope_breakpoint = NULL;
10904 struct expression *exp;
10905 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10906 struct value *val, *mark, *result;
10907 struct frame_info *frame;
10908 const char *exp_start = NULL;
10909 const char *exp_end = NULL;
10910 const char *tok, *end_tok;
10911 int toklen = -1;
10912 const char *cond_start = NULL;
10913 const char *cond_end = NULL;
10914 enum bptype bp_type;
10915 int thread = -1;
10916 int pc = 0;
10917 /* Flag to indicate whether we are going to use masks for
10918 the hardware watchpoint. */
10919 int use_mask = 0;
10920 CORE_ADDR mask = 0;
10921 struct watchpoint *w;
10922 char *expression;
10923 struct cleanup *back_to;
10924
10925 /* Make sure that we actually have parameters to parse. */
10926 if (arg != NULL && arg[0] != '\0')
10927 {
10928 const char *value_start;
10929
10930 exp_end = arg + strlen (arg);
10931
10932 /* Look for "parameter value" pairs at the end
10933 of the arguments string. */
10934 for (tok = exp_end - 1; tok > arg; tok--)
10935 {
10936 /* Skip whitespace at the end of the argument list. */
10937 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10938 tok--;
10939
10940 /* Find the beginning of the last token.
10941 This is the value of the parameter. */
10942 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10943 tok--;
10944 value_start = tok + 1;
10945
10946 /* Skip whitespace. */
10947 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10948 tok--;
10949
10950 end_tok = tok;
10951
10952 /* Find the beginning of the second to last token.
10953 This is the parameter itself. */
10954 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10955 tok--;
10956 tok++;
10957 toklen = end_tok - tok + 1;
10958
10959 if (toklen == 6 && !strncmp (tok, "thread", 6))
10960 {
10961 /* At this point we've found a "thread" token, which means
10962 the user is trying to set a watchpoint that triggers
10963 only in a specific thread. */
10964 char *endp;
10965
10966 if (thread != -1)
10967 error(_("You can specify only one thread."));
10968
10969 /* Extract the thread ID from the next token. */
10970 thread = strtol (value_start, &endp, 0);
10971
10972 /* Check if the user provided a valid numeric value for the
10973 thread ID. */
10974 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10975 error (_("Invalid thread ID specification %s."), value_start);
10976
10977 /* Check if the thread actually exists. */
10978 if (!valid_thread_id (thread))
10979 invalid_thread_id_error (thread);
10980 }
10981 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10982 {
10983 /* We've found a "mask" token, which means the user wants to
10984 create a hardware watchpoint that is going to have the mask
10985 facility. */
10986 struct value *mask_value, *mark;
10987
10988 if (use_mask)
10989 error(_("You can specify only one mask."));
10990
10991 use_mask = just_location = 1;
10992
10993 mark = value_mark ();
10994 mask_value = parse_to_comma_and_eval (&value_start);
10995 mask = value_as_address (mask_value);
10996 value_free_to_mark (mark);
10997 }
10998 else
10999 /* We didn't recognize what we found. We should stop here. */
11000 break;
11001
11002 /* Truncate the string and get rid of the "parameter value" pair before
11003 the arguments string is parsed by the parse_exp_1 function. */
11004 exp_end = tok;
11005 }
11006 }
11007 else
11008 exp_end = arg;
11009
11010 /* Parse the rest of the arguments. From here on out, everything
11011 is in terms of a newly allocated string instead of the original
11012 ARG. */
11013 innermost_block = NULL;
11014 expression = savestring (arg, exp_end - arg);
11015 back_to = make_cleanup (xfree, expression);
11016 exp_start = arg = expression;
11017 exp = parse_exp_1 (&arg, 0, 0, 0);
11018 exp_end = arg;
11019 /* Remove trailing whitespace from the expression before saving it.
11020 This makes the eventual display of the expression string a bit
11021 prettier. */
11022 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11023 --exp_end;
11024
11025 /* Checking if the expression is not constant. */
11026 if (watchpoint_exp_is_const (exp))
11027 {
11028 int len;
11029
11030 len = exp_end - exp_start;
11031 while (len > 0 && isspace (exp_start[len - 1]))
11032 len--;
11033 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11034 }
11035
11036 exp_valid_block = innermost_block;
11037 mark = value_mark ();
11038 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11039
11040 if (just_location)
11041 {
11042 int ret;
11043
11044 exp_valid_block = NULL;
11045 val = value_addr (result);
11046 release_value (val);
11047 value_free_to_mark (mark);
11048
11049 if (use_mask)
11050 {
11051 ret = target_masked_watch_num_registers (value_as_address (val),
11052 mask);
11053 if (ret == -1)
11054 error (_("This target does not support masked watchpoints."));
11055 else if (ret == -2)
11056 error (_("Invalid mask or memory region."));
11057 }
11058 }
11059 else if (val != NULL)
11060 release_value (val);
11061
11062 tok = skip_spaces_const (arg);
11063 end_tok = skip_to_space_const (tok);
11064
11065 toklen = end_tok - tok;
11066 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11067 {
11068 struct expression *cond;
11069
11070 innermost_block = NULL;
11071 tok = cond_start = end_tok + 1;
11072 cond = parse_exp_1 (&tok, 0, 0, 0);
11073
11074 /* The watchpoint expression may not be local, but the condition
11075 may still be. E.g.: `watch global if local > 0'. */
11076 cond_exp_valid_block = innermost_block;
11077
11078 xfree (cond);
11079 cond_end = tok;
11080 }
11081 if (*tok)
11082 error (_("Junk at end of command."));
11083
11084 if (accessflag == hw_read)
11085 bp_type = bp_read_watchpoint;
11086 else if (accessflag == hw_access)
11087 bp_type = bp_access_watchpoint;
11088 else
11089 bp_type = bp_hardware_watchpoint;
11090
11091 frame = block_innermost_frame (exp_valid_block);
11092
11093 /* If the expression is "local", then set up a "watchpoint scope"
11094 breakpoint at the point where we've left the scope of the watchpoint
11095 expression. Create the scope breakpoint before the watchpoint, so
11096 that we will encounter it first in bpstat_stop_status. */
11097 if (exp_valid_block && frame)
11098 {
11099 if (frame_id_p (frame_unwind_caller_id (frame)))
11100 {
11101 scope_breakpoint
11102 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11103 frame_unwind_caller_pc (frame),
11104 bp_watchpoint_scope,
11105 &momentary_breakpoint_ops);
11106
11107 scope_breakpoint->enable_state = bp_enabled;
11108
11109 /* Automatically delete the breakpoint when it hits. */
11110 scope_breakpoint->disposition = disp_del;
11111
11112 /* Only break in the proper frame (help with recursion). */
11113 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11114
11115 /* Set the address at which we will stop. */
11116 scope_breakpoint->loc->gdbarch
11117 = frame_unwind_caller_arch (frame);
11118 scope_breakpoint->loc->requested_address
11119 = frame_unwind_caller_pc (frame);
11120 scope_breakpoint->loc->address
11121 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11122 scope_breakpoint->loc->requested_address,
11123 scope_breakpoint->type);
11124 }
11125 }
11126
11127 /* Now set up the breakpoint. */
11128
11129 w = XCNEW (struct watchpoint);
11130 b = &w->base;
11131 if (use_mask)
11132 init_raw_breakpoint_without_location (b, NULL, bp_type,
11133 &masked_watchpoint_breakpoint_ops);
11134 else
11135 init_raw_breakpoint_without_location (b, NULL, bp_type,
11136 &watchpoint_breakpoint_ops);
11137 b->thread = thread;
11138 b->disposition = disp_donttouch;
11139 b->pspace = current_program_space;
11140 w->exp = exp;
11141 w->exp_valid_block = exp_valid_block;
11142 w->cond_exp_valid_block = cond_exp_valid_block;
11143 if (just_location)
11144 {
11145 struct type *t = value_type (val);
11146 CORE_ADDR addr = value_as_address (val);
11147 char *name;
11148
11149 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11150 name = type_to_string (t);
11151
11152 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11153 core_addr_to_string (addr));
11154 xfree (name);
11155
11156 w->exp_string = xstrprintf ("-location %.*s",
11157 (int) (exp_end - exp_start), exp_start);
11158
11159 /* The above expression is in C. */
11160 b->language = language_c;
11161 }
11162 else
11163 w->exp_string = savestring (exp_start, exp_end - exp_start);
11164
11165 if (use_mask)
11166 {
11167 w->hw_wp_mask = mask;
11168 }
11169 else
11170 {
11171 w->val = val;
11172 w->val_valid = 1;
11173 }
11174
11175 if (cond_start)
11176 b->cond_string = savestring (cond_start, cond_end - cond_start);
11177 else
11178 b->cond_string = 0;
11179
11180 if (frame)
11181 {
11182 w->watchpoint_frame = get_frame_id (frame);
11183 w->watchpoint_thread = inferior_ptid;
11184 }
11185 else
11186 {
11187 w->watchpoint_frame = null_frame_id;
11188 w->watchpoint_thread = null_ptid;
11189 }
11190
11191 if (scope_breakpoint != NULL)
11192 {
11193 /* The scope breakpoint is related to the watchpoint. We will
11194 need to act on them together. */
11195 b->related_breakpoint = scope_breakpoint;
11196 scope_breakpoint->related_breakpoint = b;
11197 }
11198
11199 if (!just_location)
11200 value_free_to_mark (mark);
11201
11202 TRY_CATCH (e, RETURN_MASK_ALL)
11203 {
11204 /* Finally update the new watchpoint. This creates the locations
11205 that should be inserted. */
11206 update_watchpoint (w, 1);
11207 }
11208 if (e.reason < 0)
11209 {
11210 delete_breakpoint (b);
11211 throw_exception (e);
11212 }
11213
11214 install_breakpoint (internal, b, 1);
11215 do_cleanups (back_to);
11216 }
11217
11218 /* Return count of debug registers needed to watch the given expression.
11219 If the watchpoint cannot be handled in hardware return zero. */
11220
11221 static int
11222 can_use_hardware_watchpoint (struct value *v)
11223 {
11224 int found_memory_cnt = 0;
11225 struct value *head = v;
11226
11227 /* Did the user specifically forbid us to use hardware watchpoints? */
11228 if (!can_use_hw_watchpoints)
11229 return 0;
11230
11231 /* Make sure that the value of the expression depends only upon
11232 memory contents, and values computed from them within GDB. If we
11233 find any register references or function calls, we can't use a
11234 hardware watchpoint.
11235
11236 The idea here is that evaluating an expression generates a series
11237 of values, one holding the value of every subexpression. (The
11238 expression a*b+c has five subexpressions: a, b, a*b, c, and
11239 a*b+c.) GDB's values hold almost enough information to establish
11240 the criteria given above --- they identify memory lvalues,
11241 register lvalues, computed values, etcetera. So we can evaluate
11242 the expression, and then scan the chain of values that leaves
11243 behind to decide whether we can detect any possible change to the
11244 expression's final value using only hardware watchpoints.
11245
11246 However, I don't think that the values returned by inferior
11247 function calls are special in any way. So this function may not
11248 notice that an expression involving an inferior function call
11249 can't be watched with hardware watchpoints. FIXME. */
11250 for (; v; v = value_next (v))
11251 {
11252 if (VALUE_LVAL (v) == lval_memory)
11253 {
11254 if (v != head && value_lazy (v))
11255 /* A lazy memory lvalue in the chain is one that GDB never
11256 needed to fetch; we either just used its address (e.g.,
11257 `a' in `a.b') or we never needed it at all (e.g., `a'
11258 in `a,b'). This doesn't apply to HEAD; if that is
11259 lazy then it was not readable, but watch it anyway. */
11260 ;
11261 else
11262 {
11263 /* Ahh, memory we actually used! Check if we can cover
11264 it with hardware watchpoints. */
11265 struct type *vtype = check_typedef (value_type (v));
11266
11267 /* We only watch structs and arrays if user asked for it
11268 explicitly, never if they just happen to appear in a
11269 middle of some value chain. */
11270 if (v == head
11271 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11272 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11273 {
11274 CORE_ADDR vaddr = value_address (v);
11275 int len;
11276 int num_regs;
11277
11278 len = (target_exact_watchpoints
11279 && is_scalar_type_recursive (vtype))?
11280 1 : TYPE_LENGTH (value_type (v));
11281
11282 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11283 if (!num_regs)
11284 return 0;
11285 else
11286 found_memory_cnt += num_regs;
11287 }
11288 }
11289 }
11290 else if (VALUE_LVAL (v) != not_lval
11291 && deprecated_value_modifiable (v) == 0)
11292 return 0; /* These are values from the history (e.g., $1). */
11293 else if (VALUE_LVAL (v) == lval_register)
11294 return 0; /* Cannot watch a register with a HW watchpoint. */
11295 }
11296
11297 /* The expression itself looks suitable for using a hardware
11298 watchpoint, but give the target machine a chance to reject it. */
11299 return found_memory_cnt;
11300 }
11301
11302 void
11303 watch_command_wrapper (char *arg, int from_tty, int internal)
11304 {
11305 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11306 }
11307
11308 /* A helper function that looks for the "-location" argument and then
11309 calls watch_command_1. */
11310
11311 static void
11312 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11313 {
11314 int just_location = 0;
11315
11316 if (arg
11317 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11318 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11319 {
11320 arg = skip_spaces (arg);
11321 just_location = 1;
11322 }
11323
11324 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11325 }
11326
11327 static void
11328 watch_command (char *arg, int from_tty)
11329 {
11330 watch_maybe_just_location (arg, hw_write, from_tty);
11331 }
11332
11333 void
11334 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11335 {
11336 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11337 }
11338
11339 static void
11340 rwatch_command (char *arg, int from_tty)
11341 {
11342 watch_maybe_just_location (arg, hw_read, from_tty);
11343 }
11344
11345 void
11346 awatch_command_wrapper (char *arg, int from_tty, int internal)
11347 {
11348 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11349 }
11350
11351 static void
11352 awatch_command (char *arg, int from_tty)
11353 {
11354 watch_maybe_just_location (arg, hw_access, from_tty);
11355 }
11356 \f
11357
11358 /* Helper routines for the until_command routine in infcmd.c. Here
11359 because it uses the mechanisms of breakpoints. */
11360
11361 struct until_break_command_continuation_args
11362 {
11363 struct breakpoint *breakpoint;
11364 struct breakpoint *breakpoint2;
11365 int thread_num;
11366 };
11367
11368 /* This function is called by fetch_inferior_event via the
11369 cmd_continuation pointer, to complete the until command. It takes
11370 care of cleaning up the temporary breakpoints set up by the until
11371 command. */
11372 static void
11373 until_break_command_continuation (void *arg, int err)
11374 {
11375 struct until_break_command_continuation_args *a = arg;
11376
11377 delete_breakpoint (a->breakpoint);
11378 if (a->breakpoint2)
11379 delete_breakpoint (a->breakpoint2);
11380 delete_longjmp_breakpoint (a->thread_num);
11381 }
11382
11383 void
11384 until_break_command (char *arg, int from_tty, int anywhere)
11385 {
11386 struct symtabs_and_lines sals;
11387 struct symtab_and_line sal;
11388 struct frame_info *frame;
11389 struct gdbarch *frame_gdbarch;
11390 struct frame_id stack_frame_id;
11391 struct frame_id caller_frame_id;
11392 struct breakpoint *breakpoint;
11393 struct breakpoint *breakpoint2 = NULL;
11394 struct cleanup *old_chain;
11395 int thread;
11396 struct thread_info *tp;
11397
11398 clear_proceed_status ();
11399
11400 /* Set a breakpoint where the user wants it and at return from
11401 this function. */
11402
11403 if (last_displayed_sal_is_valid ())
11404 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11405 get_last_displayed_symtab (),
11406 get_last_displayed_line ());
11407 else
11408 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11409 (struct symtab *) NULL, 0);
11410
11411 if (sals.nelts != 1)
11412 error (_("Couldn't get information on specified line."));
11413
11414 sal = sals.sals[0];
11415 xfree (sals.sals); /* malloc'd, so freed. */
11416
11417 if (*arg)
11418 error (_("Junk at end of arguments."));
11419
11420 resolve_sal_pc (&sal);
11421
11422 tp = inferior_thread ();
11423 thread = tp->num;
11424
11425 old_chain = make_cleanup (null_cleanup, NULL);
11426
11427 /* Note linespec handling above invalidates the frame chain.
11428 Installing a breakpoint also invalidates the frame chain (as it
11429 may need to switch threads), so do any frame handling before
11430 that. */
11431
11432 frame = get_selected_frame (NULL);
11433 frame_gdbarch = get_frame_arch (frame);
11434 stack_frame_id = get_stack_frame_id (frame);
11435 caller_frame_id = frame_unwind_caller_id (frame);
11436
11437 /* Keep within the current frame, or in frames called by the current
11438 one. */
11439
11440 if (frame_id_p (caller_frame_id))
11441 {
11442 struct symtab_and_line sal2;
11443
11444 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11445 sal2.pc = frame_unwind_caller_pc (frame);
11446 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11447 sal2,
11448 caller_frame_id,
11449 bp_until);
11450 make_cleanup_delete_breakpoint (breakpoint2);
11451
11452 set_longjmp_breakpoint (tp, caller_frame_id);
11453 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11454 }
11455
11456 /* set_momentary_breakpoint could invalidate FRAME. */
11457 frame = NULL;
11458
11459 if (anywhere)
11460 /* If the user told us to continue until a specified location,
11461 we don't specify a frame at which we need to stop. */
11462 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11463 null_frame_id, bp_until);
11464 else
11465 /* Otherwise, specify the selected frame, because we want to stop
11466 only at the very same frame. */
11467 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11468 stack_frame_id, bp_until);
11469 make_cleanup_delete_breakpoint (breakpoint);
11470
11471 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11472
11473 /* If we are running asynchronously, and proceed call above has
11474 actually managed to start the target, arrange for breakpoints to
11475 be deleted when the target stops. Otherwise, we're already
11476 stopped and delete breakpoints via cleanup chain. */
11477
11478 if (target_can_async_p () && is_running (inferior_ptid))
11479 {
11480 struct until_break_command_continuation_args *args;
11481 args = xmalloc (sizeof (*args));
11482
11483 args->breakpoint = breakpoint;
11484 args->breakpoint2 = breakpoint2;
11485 args->thread_num = thread;
11486
11487 discard_cleanups (old_chain);
11488 add_continuation (inferior_thread (),
11489 until_break_command_continuation, args,
11490 xfree);
11491 }
11492 else
11493 do_cleanups (old_chain);
11494 }
11495
11496 /* This function attempts to parse an optional "if <cond>" clause
11497 from the arg string. If one is not found, it returns NULL.
11498
11499 Else, it returns a pointer to the condition string. (It does not
11500 attempt to evaluate the string against a particular block.) And,
11501 it updates arg to point to the first character following the parsed
11502 if clause in the arg string. */
11503
11504 char *
11505 ep_parse_optional_if_clause (char **arg)
11506 {
11507 char *cond_string;
11508
11509 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11510 return NULL;
11511
11512 /* Skip the "if" keyword. */
11513 (*arg) += 2;
11514
11515 /* Skip any extra leading whitespace, and record the start of the
11516 condition string. */
11517 *arg = skip_spaces (*arg);
11518 cond_string = *arg;
11519
11520 /* Assume that the condition occupies the remainder of the arg
11521 string. */
11522 (*arg) += strlen (cond_string);
11523
11524 return cond_string;
11525 }
11526
11527 /* Commands to deal with catching events, such as signals, exceptions,
11528 process start/exit, etc. */
11529
11530 typedef enum
11531 {
11532 catch_fork_temporary, catch_vfork_temporary,
11533 catch_fork_permanent, catch_vfork_permanent
11534 }
11535 catch_fork_kind;
11536
11537 static void
11538 catch_fork_command_1 (char *arg, int from_tty,
11539 struct cmd_list_element *command)
11540 {
11541 struct gdbarch *gdbarch = get_current_arch ();
11542 char *cond_string = NULL;
11543 catch_fork_kind fork_kind;
11544 int tempflag;
11545
11546 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11547 tempflag = (fork_kind == catch_fork_temporary
11548 || fork_kind == catch_vfork_temporary);
11549
11550 if (!arg)
11551 arg = "";
11552 arg = skip_spaces (arg);
11553
11554 /* The allowed syntax is:
11555 catch [v]fork
11556 catch [v]fork if <cond>
11557
11558 First, check if there's an if clause. */
11559 cond_string = ep_parse_optional_if_clause (&arg);
11560
11561 if ((*arg != '\0') && !isspace (*arg))
11562 error (_("Junk at end of arguments."));
11563
11564 /* If this target supports it, create a fork or vfork catchpoint
11565 and enable reporting of such events. */
11566 switch (fork_kind)
11567 {
11568 case catch_fork_temporary:
11569 case catch_fork_permanent:
11570 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11571 &catch_fork_breakpoint_ops);
11572 break;
11573 case catch_vfork_temporary:
11574 case catch_vfork_permanent:
11575 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11576 &catch_vfork_breakpoint_ops);
11577 break;
11578 default:
11579 error (_("unsupported or unknown fork kind; cannot catch it"));
11580 break;
11581 }
11582 }
11583
11584 static void
11585 catch_exec_command_1 (char *arg, int from_tty,
11586 struct cmd_list_element *command)
11587 {
11588 struct exec_catchpoint *c;
11589 struct gdbarch *gdbarch = get_current_arch ();
11590 int tempflag;
11591 char *cond_string = NULL;
11592
11593 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11594
11595 if (!arg)
11596 arg = "";
11597 arg = skip_spaces (arg);
11598
11599 /* The allowed syntax is:
11600 catch exec
11601 catch exec if <cond>
11602
11603 First, check if there's an if clause. */
11604 cond_string = ep_parse_optional_if_clause (&arg);
11605
11606 if ((*arg != '\0') && !isspace (*arg))
11607 error (_("Junk at end of arguments."));
11608
11609 c = XNEW (struct exec_catchpoint);
11610 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11611 &catch_exec_breakpoint_ops);
11612 c->exec_pathname = NULL;
11613
11614 install_breakpoint (0, &c->base, 1);
11615 }
11616
11617 void
11618 init_ada_exception_breakpoint (struct breakpoint *b,
11619 struct gdbarch *gdbarch,
11620 struct symtab_and_line sal,
11621 char *addr_string,
11622 const struct breakpoint_ops *ops,
11623 int tempflag,
11624 int enabled,
11625 int from_tty)
11626 {
11627 if (from_tty)
11628 {
11629 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11630 if (!loc_gdbarch)
11631 loc_gdbarch = gdbarch;
11632
11633 describe_other_breakpoints (loc_gdbarch,
11634 sal.pspace, sal.pc, sal.section, -1);
11635 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11636 version for exception catchpoints, because two catchpoints
11637 used for different exception names will use the same address.
11638 In this case, a "breakpoint ... also set at..." warning is
11639 unproductive. Besides, the warning phrasing is also a bit
11640 inappropriate, we should use the word catchpoint, and tell
11641 the user what type of catchpoint it is. The above is good
11642 enough for now, though. */
11643 }
11644
11645 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11646
11647 b->enable_state = enabled ? bp_enabled : bp_disabled;
11648 b->disposition = tempflag ? disp_del : disp_donttouch;
11649 b->addr_string = addr_string;
11650 b->language = language_ada;
11651 }
11652
11653 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11654 filter list, or NULL if no filtering is required. */
11655 static VEC(int) *
11656 catch_syscall_split_args (char *arg)
11657 {
11658 VEC(int) *result = NULL;
11659 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11660
11661 while (*arg != '\0')
11662 {
11663 int i, syscall_number;
11664 char *endptr;
11665 char cur_name[128];
11666 struct syscall s;
11667
11668 /* Skip whitespace. */
11669 arg = skip_spaces (arg);
11670
11671 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11672 cur_name[i] = arg[i];
11673 cur_name[i] = '\0';
11674 arg += i;
11675
11676 /* Check if the user provided a syscall name or a number. */
11677 syscall_number = (int) strtol (cur_name, &endptr, 0);
11678 if (*endptr == '\0')
11679 get_syscall_by_number (syscall_number, &s);
11680 else
11681 {
11682 /* We have a name. Let's check if it's valid and convert it
11683 to a number. */
11684 get_syscall_by_name (cur_name, &s);
11685
11686 if (s.number == UNKNOWN_SYSCALL)
11687 /* Here we have to issue an error instead of a warning,
11688 because GDB cannot do anything useful if there's no
11689 syscall number to be caught. */
11690 error (_("Unknown syscall name '%s'."), cur_name);
11691 }
11692
11693 /* Ok, it's valid. */
11694 VEC_safe_push (int, result, s.number);
11695 }
11696
11697 discard_cleanups (cleanup);
11698 return result;
11699 }
11700
11701 /* Implement the "catch syscall" command. */
11702
11703 static void
11704 catch_syscall_command_1 (char *arg, int from_tty,
11705 struct cmd_list_element *command)
11706 {
11707 int tempflag;
11708 VEC(int) *filter;
11709 struct syscall s;
11710 struct gdbarch *gdbarch = get_current_arch ();
11711
11712 /* Checking if the feature if supported. */
11713 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11714 error (_("The feature 'catch syscall' is not supported on \
11715 this architecture yet."));
11716
11717 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11718
11719 arg = skip_spaces (arg);
11720
11721 /* We need to do this first "dummy" translation in order
11722 to get the syscall XML file loaded or, most important,
11723 to display a warning to the user if there's no XML file
11724 for his/her architecture. */
11725 get_syscall_by_number (0, &s);
11726
11727 /* The allowed syntax is:
11728 catch syscall
11729 catch syscall <name | number> [<name | number> ... <name | number>]
11730
11731 Let's check if there's a syscall name. */
11732
11733 if (arg != NULL)
11734 filter = catch_syscall_split_args (arg);
11735 else
11736 filter = NULL;
11737
11738 create_syscall_event_catchpoint (tempflag, filter,
11739 &catch_syscall_breakpoint_ops);
11740 }
11741
11742 static void
11743 catch_command (char *arg, int from_tty)
11744 {
11745 error (_("Catch requires an event name."));
11746 }
11747 \f
11748
11749 static void
11750 tcatch_command (char *arg, int from_tty)
11751 {
11752 error (_("Catch requires an event name."));
11753 }
11754
11755 /* A qsort comparison function that sorts breakpoints in order. */
11756
11757 static int
11758 compare_breakpoints (const void *a, const void *b)
11759 {
11760 const breakpoint_p *ba = a;
11761 uintptr_t ua = (uintptr_t) *ba;
11762 const breakpoint_p *bb = b;
11763 uintptr_t ub = (uintptr_t) *bb;
11764
11765 if ((*ba)->number < (*bb)->number)
11766 return -1;
11767 else if ((*ba)->number > (*bb)->number)
11768 return 1;
11769
11770 /* Now sort by address, in case we see, e..g, two breakpoints with
11771 the number 0. */
11772 if (ua < ub)
11773 return -1;
11774 return ua > ub ? 1 : 0;
11775 }
11776
11777 /* Delete breakpoints by address or line. */
11778
11779 static void
11780 clear_command (char *arg, int from_tty)
11781 {
11782 struct breakpoint *b, *prev;
11783 VEC(breakpoint_p) *found = 0;
11784 int ix;
11785 int default_match;
11786 struct symtabs_and_lines sals;
11787 struct symtab_and_line sal;
11788 int i;
11789 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11790
11791 if (arg)
11792 {
11793 sals = decode_line_with_current_source (arg,
11794 (DECODE_LINE_FUNFIRSTLINE
11795 | DECODE_LINE_LIST_MODE));
11796 make_cleanup (xfree, sals.sals);
11797 default_match = 0;
11798 }
11799 else
11800 {
11801 sals.sals = (struct symtab_and_line *)
11802 xmalloc (sizeof (struct symtab_and_line));
11803 make_cleanup (xfree, sals.sals);
11804 init_sal (&sal); /* Initialize to zeroes. */
11805
11806 /* Set sal's line, symtab, pc, and pspace to the values
11807 corresponding to the last call to print_frame_info. If the
11808 codepoint is not valid, this will set all the fields to 0. */
11809 get_last_displayed_sal (&sal);
11810 if (sal.symtab == 0)
11811 error (_("No source file specified."));
11812
11813 sals.sals[0] = sal;
11814 sals.nelts = 1;
11815
11816 default_match = 1;
11817 }
11818
11819 /* We don't call resolve_sal_pc here. That's not as bad as it
11820 seems, because all existing breakpoints typically have both
11821 file/line and pc set. So, if clear is given file/line, we can
11822 match this to existing breakpoint without obtaining pc at all.
11823
11824 We only support clearing given the address explicitly
11825 present in breakpoint table. Say, we've set breakpoint
11826 at file:line. There were several PC values for that file:line,
11827 due to optimization, all in one block.
11828
11829 We've picked one PC value. If "clear" is issued with another
11830 PC corresponding to the same file:line, the breakpoint won't
11831 be cleared. We probably can still clear the breakpoint, but
11832 since the other PC value is never presented to user, user
11833 can only find it by guessing, and it does not seem important
11834 to support that. */
11835
11836 /* For each line spec given, delete bps which correspond to it. Do
11837 it in two passes, solely to preserve the current behavior that
11838 from_tty is forced true if we delete more than one
11839 breakpoint. */
11840
11841 found = NULL;
11842 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11843 for (i = 0; i < sals.nelts; i++)
11844 {
11845 const char *sal_fullname;
11846
11847 /* If exact pc given, clear bpts at that pc.
11848 If line given (pc == 0), clear all bpts on specified line.
11849 If defaulting, clear all bpts on default line
11850 or at default pc.
11851
11852 defaulting sal.pc != 0 tests to do
11853
11854 0 1 pc
11855 1 1 pc _and_ line
11856 0 0 line
11857 1 0 <can't happen> */
11858
11859 sal = sals.sals[i];
11860 sal_fullname = (sal.symtab == NULL
11861 ? NULL : symtab_to_fullname (sal.symtab));
11862
11863 /* Find all matching breakpoints and add them to 'found'. */
11864 ALL_BREAKPOINTS (b)
11865 {
11866 int match = 0;
11867 /* Are we going to delete b? */
11868 if (b->type != bp_none && !is_watchpoint (b))
11869 {
11870 struct bp_location *loc = b->loc;
11871 for (; loc; loc = loc->next)
11872 {
11873 /* If the user specified file:line, don't allow a PC
11874 match. This matches historical gdb behavior. */
11875 int pc_match = (!sal.explicit_line
11876 && sal.pc
11877 && (loc->pspace == sal.pspace)
11878 && (loc->address == sal.pc)
11879 && (!section_is_overlay (loc->section)
11880 || loc->section == sal.section));
11881 int line_match = 0;
11882
11883 if ((default_match || sal.explicit_line)
11884 && loc->symtab != NULL
11885 && sal_fullname != NULL
11886 && sal.pspace == loc->pspace
11887 && loc->line_number == sal.line
11888 && filename_cmp (symtab_to_fullname (loc->symtab),
11889 sal_fullname) == 0)
11890 line_match = 1;
11891
11892 if (pc_match || line_match)
11893 {
11894 match = 1;
11895 break;
11896 }
11897 }
11898 }
11899
11900 if (match)
11901 VEC_safe_push(breakpoint_p, found, b);
11902 }
11903 }
11904
11905 /* Now go thru the 'found' chain and delete them. */
11906 if (VEC_empty(breakpoint_p, found))
11907 {
11908 if (arg)
11909 error (_("No breakpoint at %s."), arg);
11910 else
11911 error (_("No breakpoint at this line."));
11912 }
11913
11914 /* Remove duplicates from the vec. */
11915 qsort (VEC_address (breakpoint_p, found),
11916 VEC_length (breakpoint_p, found),
11917 sizeof (breakpoint_p),
11918 compare_breakpoints);
11919 prev = VEC_index (breakpoint_p, found, 0);
11920 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11921 {
11922 if (b == prev)
11923 {
11924 VEC_ordered_remove (breakpoint_p, found, ix);
11925 --ix;
11926 }
11927 }
11928
11929 if (VEC_length(breakpoint_p, found) > 1)
11930 from_tty = 1; /* Always report if deleted more than one. */
11931 if (from_tty)
11932 {
11933 if (VEC_length(breakpoint_p, found) == 1)
11934 printf_unfiltered (_("Deleted breakpoint "));
11935 else
11936 printf_unfiltered (_("Deleted breakpoints "));
11937 }
11938
11939 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11940 {
11941 if (from_tty)
11942 printf_unfiltered ("%d ", b->number);
11943 delete_breakpoint (b);
11944 }
11945 if (from_tty)
11946 putchar_unfiltered ('\n');
11947
11948 do_cleanups (cleanups);
11949 }
11950 \f
11951 /* Delete breakpoint in BS if they are `delete' breakpoints and
11952 all breakpoints that are marked for deletion, whether hit or not.
11953 This is called after any breakpoint is hit, or after errors. */
11954
11955 void
11956 breakpoint_auto_delete (bpstat bs)
11957 {
11958 struct breakpoint *b, *b_tmp;
11959
11960 for (; bs; bs = bs->next)
11961 if (bs->breakpoint_at
11962 && bs->breakpoint_at->disposition == disp_del
11963 && bs->stop)
11964 delete_breakpoint (bs->breakpoint_at);
11965
11966 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11967 {
11968 if (b->disposition == disp_del_at_next_stop)
11969 delete_breakpoint (b);
11970 }
11971 }
11972
11973 /* A comparison function for bp_location AP and BP being interfaced to
11974 qsort. Sort elements primarily by their ADDRESS (no matter what
11975 does breakpoint_address_is_meaningful say for its OWNER),
11976 secondarily by ordering first bp_permanent OWNERed elements and
11977 terciarily just ensuring the array is sorted stable way despite
11978 qsort being an unstable algorithm. */
11979
11980 static int
11981 bp_location_compare (const void *ap, const void *bp)
11982 {
11983 struct bp_location *a = *(void **) ap;
11984 struct bp_location *b = *(void **) bp;
11985 /* A and B come from existing breakpoints having non-NULL OWNER. */
11986 int a_perm = a->owner->enable_state == bp_permanent;
11987 int b_perm = b->owner->enable_state == bp_permanent;
11988
11989 if (a->address != b->address)
11990 return (a->address > b->address) - (a->address < b->address);
11991
11992 /* Sort locations at the same address by their pspace number, keeping
11993 locations of the same inferior (in a multi-inferior environment)
11994 grouped. */
11995
11996 if (a->pspace->num != b->pspace->num)
11997 return ((a->pspace->num > b->pspace->num)
11998 - (a->pspace->num < b->pspace->num));
11999
12000 /* Sort permanent breakpoints first. */
12001 if (a_perm != b_perm)
12002 return (a_perm < b_perm) - (a_perm > b_perm);
12003
12004 /* Make the internal GDB representation stable across GDB runs
12005 where A and B memory inside GDB can differ. Breakpoint locations of
12006 the same type at the same address can be sorted in arbitrary order. */
12007
12008 if (a->owner->number != b->owner->number)
12009 return ((a->owner->number > b->owner->number)
12010 - (a->owner->number < b->owner->number));
12011
12012 return (a > b) - (a < b);
12013 }
12014
12015 /* Set bp_location_placed_address_before_address_max and
12016 bp_location_shadow_len_after_address_max according to the current
12017 content of the bp_location array. */
12018
12019 static void
12020 bp_location_target_extensions_update (void)
12021 {
12022 struct bp_location *bl, **blp_tmp;
12023
12024 bp_location_placed_address_before_address_max = 0;
12025 bp_location_shadow_len_after_address_max = 0;
12026
12027 ALL_BP_LOCATIONS (bl, blp_tmp)
12028 {
12029 CORE_ADDR start, end, addr;
12030
12031 if (!bp_location_has_shadow (bl))
12032 continue;
12033
12034 start = bl->target_info.placed_address;
12035 end = start + bl->target_info.shadow_len;
12036
12037 gdb_assert (bl->address >= start);
12038 addr = bl->address - start;
12039 if (addr > bp_location_placed_address_before_address_max)
12040 bp_location_placed_address_before_address_max = addr;
12041
12042 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12043
12044 gdb_assert (bl->address < end);
12045 addr = end - bl->address;
12046 if (addr > bp_location_shadow_len_after_address_max)
12047 bp_location_shadow_len_after_address_max = addr;
12048 }
12049 }
12050
12051 /* Download tracepoint locations if they haven't been. */
12052
12053 static void
12054 download_tracepoint_locations (void)
12055 {
12056 struct breakpoint *b;
12057 struct cleanup *old_chain;
12058
12059 if (!target_can_download_tracepoint ())
12060 return;
12061
12062 old_chain = save_current_space_and_thread ();
12063
12064 ALL_TRACEPOINTS (b)
12065 {
12066 struct bp_location *bl;
12067 struct tracepoint *t;
12068 int bp_location_downloaded = 0;
12069
12070 if ((b->type == bp_fast_tracepoint
12071 ? !may_insert_fast_tracepoints
12072 : !may_insert_tracepoints))
12073 continue;
12074
12075 for (bl = b->loc; bl; bl = bl->next)
12076 {
12077 /* In tracepoint, locations are _never_ duplicated, so
12078 should_be_inserted is equivalent to
12079 unduplicated_should_be_inserted. */
12080 if (!should_be_inserted (bl) || bl->inserted)
12081 continue;
12082
12083 switch_to_program_space_and_thread (bl->pspace);
12084
12085 target_download_tracepoint (bl);
12086
12087 bl->inserted = 1;
12088 bp_location_downloaded = 1;
12089 }
12090 t = (struct tracepoint *) b;
12091 t->number_on_target = b->number;
12092 if (bp_location_downloaded)
12093 observer_notify_breakpoint_modified (b);
12094 }
12095
12096 do_cleanups (old_chain);
12097 }
12098
12099 /* Swap the insertion/duplication state between two locations. */
12100
12101 static void
12102 swap_insertion (struct bp_location *left, struct bp_location *right)
12103 {
12104 const int left_inserted = left->inserted;
12105 const int left_duplicate = left->duplicate;
12106 const int left_needs_update = left->needs_update;
12107 const struct bp_target_info left_target_info = left->target_info;
12108
12109 /* Locations of tracepoints can never be duplicated. */
12110 if (is_tracepoint (left->owner))
12111 gdb_assert (!left->duplicate);
12112 if (is_tracepoint (right->owner))
12113 gdb_assert (!right->duplicate);
12114
12115 left->inserted = right->inserted;
12116 left->duplicate = right->duplicate;
12117 left->needs_update = right->needs_update;
12118 left->target_info = right->target_info;
12119 right->inserted = left_inserted;
12120 right->duplicate = left_duplicate;
12121 right->needs_update = left_needs_update;
12122 right->target_info = left_target_info;
12123 }
12124
12125 /* Force the re-insertion of the locations at ADDRESS. This is called
12126 once a new/deleted/modified duplicate location is found and we are evaluating
12127 conditions on the target's side. Such conditions need to be updated on
12128 the target. */
12129
12130 static void
12131 force_breakpoint_reinsertion (struct bp_location *bl)
12132 {
12133 struct bp_location **locp = NULL, **loc2p;
12134 struct bp_location *loc;
12135 CORE_ADDR address = 0;
12136 int pspace_num;
12137
12138 address = bl->address;
12139 pspace_num = bl->pspace->num;
12140
12141 /* This is only meaningful if the target is
12142 evaluating conditions and if the user has
12143 opted for condition evaluation on the target's
12144 side. */
12145 if (gdb_evaluates_breakpoint_condition_p ()
12146 || !target_supports_evaluation_of_breakpoint_conditions ())
12147 return;
12148
12149 /* Flag all breakpoint locations with this address and
12150 the same program space as the location
12151 as "its condition has changed". We need to
12152 update the conditions on the target's side. */
12153 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12154 {
12155 loc = *loc2p;
12156
12157 if (!is_breakpoint (loc->owner)
12158 || pspace_num != loc->pspace->num)
12159 continue;
12160
12161 /* Flag the location appropriately. We use a different state to
12162 let everyone know that we already updated the set of locations
12163 with addr bl->address and program space bl->pspace. This is so
12164 we don't have to keep calling these functions just to mark locations
12165 that have already been marked. */
12166 loc->condition_changed = condition_updated;
12167
12168 /* Free the agent expression bytecode as well. We will compute
12169 it later on. */
12170 if (loc->cond_bytecode)
12171 {
12172 free_agent_expr (loc->cond_bytecode);
12173 loc->cond_bytecode = NULL;
12174 }
12175 }
12176 }
12177
12178 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12179 into the inferior, only remove already-inserted locations that no
12180 longer should be inserted. Functions that delete a breakpoint or
12181 breakpoints should pass false, so that deleting a breakpoint
12182 doesn't have the side effect of inserting the locations of other
12183 breakpoints that are marked not-inserted, but should_be_inserted
12184 returns true on them.
12185
12186 This behaviour is useful is situations close to tear-down -- e.g.,
12187 after an exec, while the target still has execution, but breakpoint
12188 shadows of the previous executable image should *NOT* be restored
12189 to the new image; or before detaching, where the target still has
12190 execution and wants to delete breakpoints from GDB's lists, and all
12191 breakpoints had already been removed from the inferior. */
12192
12193 static void
12194 update_global_location_list (int should_insert)
12195 {
12196 struct breakpoint *b;
12197 struct bp_location **locp, *loc;
12198 struct cleanup *cleanups;
12199 /* Last breakpoint location address that was marked for update. */
12200 CORE_ADDR last_addr = 0;
12201 /* Last breakpoint location program space that was marked for update. */
12202 int last_pspace_num = -1;
12203
12204 /* Used in the duplicates detection below. When iterating over all
12205 bp_locations, points to the first bp_location of a given address.
12206 Breakpoints and watchpoints of different types are never
12207 duplicates of each other. Keep one pointer for each type of
12208 breakpoint/watchpoint, so we only need to loop over all locations
12209 once. */
12210 struct bp_location *bp_loc_first; /* breakpoint */
12211 struct bp_location *wp_loc_first; /* hardware watchpoint */
12212 struct bp_location *awp_loc_first; /* access watchpoint */
12213 struct bp_location *rwp_loc_first; /* read watchpoint */
12214
12215 /* Saved former bp_location array which we compare against the newly
12216 built bp_location from the current state of ALL_BREAKPOINTS. */
12217 struct bp_location **old_location, **old_locp;
12218 unsigned old_location_count;
12219
12220 old_location = bp_location;
12221 old_location_count = bp_location_count;
12222 bp_location = NULL;
12223 bp_location_count = 0;
12224 cleanups = make_cleanup (xfree, old_location);
12225
12226 ALL_BREAKPOINTS (b)
12227 for (loc = b->loc; loc; loc = loc->next)
12228 bp_location_count++;
12229
12230 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12231 locp = bp_location;
12232 ALL_BREAKPOINTS (b)
12233 for (loc = b->loc; loc; loc = loc->next)
12234 *locp++ = loc;
12235 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12236 bp_location_compare);
12237
12238 bp_location_target_extensions_update ();
12239
12240 /* Identify bp_location instances that are no longer present in the
12241 new list, and therefore should be freed. Note that it's not
12242 necessary that those locations should be removed from inferior --
12243 if there's another location at the same address (previously
12244 marked as duplicate), we don't need to remove/insert the
12245 location.
12246
12247 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12248 and former bp_location array state respectively. */
12249
12250 locp = bp_location;
12251 for (old_locp = old_location; old_locp < old_location + old_location_count;
12252 old_locp++)
12253 {
12254 struct bp_location *old_loc = *old_locp;
12255 struct bp_location **loc2p;
12256
12257 /* Tells if 'old_loc' is found among the new locations. If
12258 not, we have to free it. */
12259 int found_object = 0;
12260 /* Tells if the location should remain inserted in the target. */
12261 int keep_in_target = 0;
12262 int removed = 0;
12263
12264 /* Skip LOCP entries which will definitely never be needed.
12265 Stop either at or being the one matching OLD_LOC. */
12266 while (locp < bp_location + bp_location_count
12267 && (*locp)->address < old_loc->address)
12268 locp++;
12269
12270 for (loc2p = locp;
12271 (loc2p < bp_location + bp_location_count
12272 && (*loc2p)->address == old_loc->address);
12273 loc2p++)
12274 {
12275 /* Check if this is a new/duplicated location or a duplicated
12276 location that had its condition modified. If so, we want to send
12277 its condition to the target if evaluation of conditions is taking
12278 place there. */
12279 if ((*loc2p)->condition_changed == condition_modified
12280 && (last_addr != old_loc->address
12281 || last_pspace_num != old_loc->pspace->num))
12282 {
12283 force_breakpoint_reinsertion (*loc2p);
12284 last_pspace_num = old_loc->pspace->num;
12285 }
12286
12287 if (*loc2p == old_loc)
12288 found_object = 1;
12289 }
12290
12291 /* We have already handled this address, update it so that we don't
12292 have to go through updates again. */
12293 last_addr = old_loc->address;
12294
12295 /* Target-side condition evaluation: Handle deleted locations. */
12296 if (!found_object)
12297 force_breakpoint_reinsertion (old_loc);
12298
12299 /* If this location is no longer present, and inserted, look if
12300 there's maybe a new location at the same address. If so,
12301 mark that one inserted, and don't remove this one. This is
12302 needed so that we don't have a time window where a breakpoint
12303 at certain location is not inserted. */
12304
12305 if (old_loc->inserted)
12306 {
12307 /* If the location is inserted now, we might have to remove
12308 it. */
12309
12310 if (found_object && should_be_inserted (old_loc))
12311 {
12312 /* The location is still present in the location list,
12313 and still should be inserted. Don't do anything. */
12314 keep_in_target = 1;
12315 }
12316 else
12317 {
12318 /* This location still exists, but it won't be kept in the
12319 target since it may have been disabled. We proceed to
12320 remove its target-side condition. */
12321
12322 /* The location is either no longer present, or got
12323 disabled. See if there's another location at the
12324 same address, in which case we don't need to remove
12325 this one from the target. */
12326
12327 /* OLD_LOC comes from existing struct breakpoint. */
12328 if (breakpoint_address_is_meaningful (old_loc->owner))
12329 {
12330 for (loc2p = locp;
12331 (loc2p < bp_location + bp_location_count
12332 && (*loc2p)->address == old_loc->address);
12333 loc2p++)
12334 {
12335 struct bp_location *loc2 = *loc2p;
12336
12337 if (breakpoint_locations_match (loc2, old_loc))
12338 {
12339 /* Read watchpoint locations are switched to
12340 access watchpoints, if the former are not
12341 supported, but the latter are. */
12342 if (is_hardware_watchpoint (old_loc->owner))
12343 {
12344 gdb_assert (is_hardware_watchpoint (loc2->owner));
12345 loc2->watchpoint_type = old_loc->watchpoint_type;
12346 }
12347
12348 /* loc2 is a duplicated location. We need to check
12349 if it should be inserted in case it will be
12350 unduplicated. */
12351 if (loc2 != old_loc
12352 && unduplicated_should_be_inserted (loc2))
12353 {
12354 swap_insertion (old_loc, loc2);
12355 keep_in_target = 1;
12356 break;
12357 }
12358 }
12359 }
12360 }
12361 }
12362
12363 if (!keep_in_target)
12364 {
12365 if (remove_breakpoint (old_loc, mark_uninserted))
12366 {
12367 /* This is just about all we can do. We could keep
12368 this location on the global list, and try to
12369 remove it next time, but there's no particular
12370 reason why we will succeed next time.
12371
12372 Note that at this point, old_loc->owner is still
12373 valid, as delete_breakpoint frees the breakpoint
12374 only after calling us. */
12375 printf_filtered (_("warning: Error removing "
12376 "breakpoint %d\n"),
12377 old_loc->owner->number);
12378 }
12379 removed = 1;
12380 }
12381 }
12382
12383 if (!found_object)
12384 {
12385 if (removed && non_stop
12386 && breakpoint_address_is_meaningful (old_loc->owner)
12387 && !is_hardware_watchpoint (old_loc->owner))
12388 {
12389 /* This location was removed from the target. In
12390 non-stop mode, a race condition is possible where
12391 we've removed a breakpoint, but stop events for that
12392 breakpoint are already queued and will arrive later.
12393 We apply an heuristic to be able to distinguish such
12394 SIGTRAPs from other random SIGTRAPs: we keep this
12395 breakpoint location for a bit, and will retire it
12396 after we see some number of events. The theory here
12397 is that reporting of events should, "on the average",
12398 be fair, so after a while we'll see events from all
12399 threads that have anything of interest, and no longer
12400 need to keep this breakpoint location around. We
12401 don't hold locations forever so to reduce chances of
12402 mistaking a non-breakpoint SIGTRAP for a breakpoint
12403 SIGTRAP.
12404
12405 The heuristic failing can be disastrous on
12406 decr_pc_after_break targets.
12407
12408 On decr_pc_after_break targets, like e.g., x86-linux,
12409 if we fail to recognize a late breakpoint SIGTRAP,
12410 because events_till_retirement has reached 0 too
12411 soon, we'll fail to do the PC adjustment, and report
12412 a random SIGTRAP to the user. When the user resumes
12413 the inferior, it will most likely immediately crash
12414 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12415 corrupted, because of being resumed e.g., in the
12416 middle of a multi-byte instruction, or skipped a
12417 one-byte instruction. This was actually seen happen
12418 on native x86-linux, and should be less rare on
12419 targets that do not support new thread events, like
12420 remote, due to the heuristic depending on
12421 thread_count.
12422
12423 Mistaking a random SIGTRAP for a breakpoint trap
12424 causes similar symptoms (PC adjustment applied when
12425 it shouldn't), but then again, playing with SIGTRAPs
12426 behind the debugger's back is asking for trouble.
12427
12428 Since hardware watchpoint traps are always
12429 distinguishable from other traps, so we don't need to
12430 apply keep hardware watchpoint moribund locations
12431 around. We simply always ignore hardware watchpoint
12432 traps we can no longer explain. */
12433
12434 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12435 old_loc->owner = NULL;
12436
12437 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12438 }
12439 else
12440 {
12441 old_loc->owner = NULL;
12442 decref_bp_location (&old_loc);
12443 }
12444 }
12445 }
12446
12447 /* Rescan breakpoints at the same address and section, marking the
12448 first one as "first" and any others as "duplicates". This is so
12449 that the bpt instruction is only inserted once. If we have a
12450 permanent breakpoint at the same place as BPT, make that one the
12451 official one, and the rest as duplicates. Permanent breakpoints
12452 are sorted first for the same address.
12453
12454 Do the same for hardware watchpoints, but also considering the
12455 watchpoint's type (regular/access/read) and length. */
12456
12457 bp_loc_first = NULL;
12458 wp_loc_first = NULL;
12459 awp_loc_first = NULL;
12460 rwp_loc_first = NULL;
12461 ALL_BP_LOCATIONS (loc, locp)
12462 {
12463 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12464 non-NULL. */
12465 struct bp_location **loc_first_p;
12466 b = loc->owner;
12467
12468 if (!unduplicated_should_be_inserted (loc)
12469 || !breakpoint_address_is_meaningful (b)
12470 /* Don't detect duplicate for tracepoint locations because they are
12471 never duplicated. See the comments in field `duplicate' of
12472 `struct bp_location'. */
12473 || is_tracepoint (b))
12474 {
12475 /* Clear the condition modification flag. */
12476 loc->condition_changed = condition_unchanged;
12477 continue;
12478 }
12479
12480 /* Permanent breakpoint should always be inserted. */
12481 if (b->enable_state == bp_permanent && ! loc->inserted)
12482 internal_error (__FILE__, __LINE__,
12483 _("allegedly permanent breakpoint is not "
12484 "actually inserted"));
12485
12486 if (b->type == bp_hardware_watchpoint)
12487 loc_first_p = &wp_loc_first;
12488 else if (b->type == bp_read_watchpoint)
12489 loc_first_p = &rwp_loc_first;
12490 else if (b->type == bp_access_watchpoint)
12491 loc_first_p = &awp_loc_first;
12492 else
12493 loc_first_p = &bp_loc_first;
12494
12495 if (*loc_first_p == NULL
12496 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12497 || !breakpoint_locations_match (loc, *loc_first_p))
12498 {
12499 *loc_first_p = loc;
12500 loc->duplicate = 0;
12501
12502 if (is_breakpoint (loc->owner) && loc->condition_changed)
12503 {
12504 loc->needs_update = 1;
12505 /* Clear the condition modification flag. */
12506 loc->condition_changed = condition_unchanged;
12507 }
12508 continue;
12509 }
12510
12511
12512 /* This and the above ensure the invariant that the first location
12513 is not duplicated, and is the inserted one.
12514 All following are marked as duplicated, and are not inserted. */
12515 if (loc->inserted)
12516 swap_insertion (loc, *loc_first_p);
12517 loc->duplicate = 1;
12518
12519 /* Clear the condition modification flag. */
12520 loc->condition_changed = condition_unchanged;
12521
12522 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12523 && b->enable_state != bp_permanent)
12524 internal_error (__FILE__, __LINE__,
12525 _("another breakpoint was inserted on top of "
12526 "a permanent breakpoint"));
12527 }
12528
12529 if (breakpoints_always_inserted_mode ()
12530 && (have_live_inferiors ()
12531 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12532 {
12533 if (should_insert)
12534 insert_breakpoint_locations ();
12535 else
12536 {
12537 /* Though should_insert is false, we may need to update conditions
12538 on the target's side if it is evaluating such conditions. We
12539 only update conditions for locations that are marked
12540 "needs_update". */
12541 update_inserted_breakpoint_locations ();
12542 }
12543 }
12544
12545 if (should_insert)
12546 download_tracepoint_locations ();
12547
12548 do_cleanups (cleanups);
12549 }
12550
12551 void
12552 breakpoint_retire_moribund (void)
12553 {
12554 struct bp_location *loc;
12555 int ix;
12556
12557 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12558 if (--(loc->events_till_retirement) == 0)
12559 {
12560 decref_bp_location (&loc);
12561 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12562 --ix;
12563 }
12564 }
12565
12566 static void
12567 update_global_location_list_nothrow (int inserting)
12568 {
12569 volatile struct gdb_exception e;
12570
12571 TRY_CATCH (e, RETURN_MASK_ERROR)
12572 update_global_location_list (inserting);
12573 }
12574
12575 /* Clear BKP from a BPS. */
12576
12577 static void
12578 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12579 {
12580 bpstat bs;
12581
12582 for (bs = bps; bs; bs = bs->next)
12583 if (bs->breakpoint_at == bpt)
12584 {
12585 bs->breakpoint_at = NULL;
12586 bs->old_val = NULL;
12587 /* bs->commands will be freed later. */
12588 }
12589 }
12590
12591 /* Callback for iterate_over_threads. */
12592 static int
12593 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12594 {
12595 struct breakpoint *bpt = data;
12596
12597 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12598 return 0;
12599 }
12600
12601 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12602 callbacks. */
12603
12604 static void
12605 say_where (struct breakpoint *b)
12606 {
12607 struct value_print_options opts;
12608
12609 get_user_print_options (&opts);
12610
12611 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12612 single string. */
12613 if (b->loc == NULL)
12614 {
12615 printf_filtered (_(" (%s) pending."), b->addr_string);
12616 }
12617 else
12618 {
12619 if (opts.addressprint || b->loc->symtab == NULL)
12620 {
12621 printf_filtered (" at ");
12622 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12623 gdb_stdout);
12624 }
12625 if (b->loc->symtab != NULL)
12626 {
12627 /* If there is a single location, we can print the location
12628 more nicely. */
12629 if (b->loc->next == NULL)
12630 printf_filtered (": file %s, line %d.",
12631 symtab_to_filename_for_display (b->loc->symtab),
12632 b->loc->line_number);
12633 else
12634 /* This is not ideal, but each location may have a
12635 different file name, and this at least reflects the
12636 real situation somewhat. */
12637 printf_filtered (": %s.", b->addr_string);
12638 }
12639
12640 if (b->loc->next)
12641 {
12642 struct bp_location *loc = b->loc;
12643 int n = 0;
12644 for (; loc; loc = loc->next)
12645 ++n;
12646 printf_filtered (" (%d locations)", n);
12647 }
12648 }
12649 }
12650
12651 /* Default bp_location_ops methods. */
12652
12653 static void
12654 bp_location_dtor (struct bp_location *self)
12655 {
12656 xfree (self->cond);
12657 if (self->cond_bytecode)
12658 free_agent_expr (self->cond_bytecode);
12659 xfree (self->function_name);
12660 }
12661
12662 static const struct bp_location_ops bp_location_ops =
12663 {
12664 bp_location_dtor
12665 };
12666
12667 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12668 inherit from. */
12669
12670 static void
12671 base_breakpoint_dtor (struct breakpoint *self)
12672 {
12673 decref_counted_command_line (&self->commands);
12674 xfree (self->cond_string);
12675 xfree (self->extra_string);
12676 xfree (self->addr_string);
12677 xfree (self->filter);
12678 xfree (self->addr_string_range_end);
12679 }
12680
12681 static struct bp_location *
12682 base_breakpoint_allocate_location (struct breakpoint *self)
12683 {
12684 struct bp_location *loc;
12685
12686 loc = XNEW (struct bp_location);
12687 init_bp_location (loc, &bp_location_ops, self);
12688 return loc;
12689 }
12690
12691 static void
12692 base_breakpoint_re_set (struct breakpoint *b)
12693 {
12694 /* Nothing to re-set. */
12695 }
12696
12697 #define internal_error_pure_virtual_called() \
12698 gdb_assert_not_reached ("pure virtual function called")
12699
12700 static int
12701 base_breakpoint_insert_location (struct bp_location *bl)
12702 {
12703 internal_error_pure_virtual_called ();
12704 }
12705
12706 static int
12707 base_breakpoint_remove_location (struct bp_location *bl)
12708 {
12709 internal_error_pure_virtual_called ();
12710 }
12711
12712 static int
12713 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12714 struct address_space *aspace,
12715 CORE_ADDR bp_addr,
12716 const struct target_waitstatus *ws)
12717 {
12718 internal_error_pure_virtual_called ();
12719 }
12720
12721 static void
12722 base_breakpoint_check_status (bpstat bs)
12723 {
12724 /* Always stop. */
12725 }
12726
12727 /* A "works_in_software_mode" breakpoint_ops method that just internal
12728 errors. */
12729
12730 static int
12731 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12732 {
12733 internal_error_pure_virtual_called ();
12734 }
12735
12736 /* A "resources_needed" breakpoint_ops method that just internal
12737 errors. */
12738
12739 static int
12740 base_breakpoint_resources_needed (const struct bp_location *bl)
12741 {
12742 internal_error_pure_virtual_called ();
12743 }
12744
12745 static enum print_stop_action
12746 base_breakpoint_print_it (bpstat bs)
12747 {
12748 internal_error_pure_virtual_called ();
12749 }
12750
12751 static void
12752 base_breakpoint_print_one_detail (const struct breakpoint *self,
12753 struct ui_out *uiout)
12754 {
12755 /* nothing */
12756 }
12757
12758 static void
12759 base_breakpoint_print_mention (struct breakpoint *b)
12760 {
12761 internal_error_pure_virtual_called ();
12762 }
12763
12764 static void
12765 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12766 {
12767 internal_error_pure_virtual_called ();
12768 }
12769
12770 static void
12771 base_breakpoint_create_sals_from_address (char **arg,
12772 struct linespec_result *canonical,
12773 enum bptype type_wanted,
12774 char *addr_start,
12775 char **copy_arg)
12776 {
12777 internal_error_pure_virtual_called ();
12778 }
12779
12780 static void
12781 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12782 struct linespec_result *c,
12783 char *cond_string,
12784 char *extra_string,
12785 enum bptype type_wanted,
12786 enum bpdisp disposition,
12787 int thread,
12788 int task, int ignore_count,
12789 const struct breakpoint_ops *o,
12790 int from_tty, int enabled,
12791 int internal, unsigned flags)
12792 {
12793 internal_error_pure_virtual_called ();
12794 }
12795
12796 static void
12797 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12798 struct symtabs_and_lines *sals)
12799 {
12800 internal_error_pure_virtual_called ();
12801 }
12802
12803 /* The default 'explains_signal' method. */
12804
12805 static enum bpstat_signal_value
12806 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12807 {
12808 return BPSTAT_SIGNAL_HIDE;
12809 }
12810
12811 /* The default "after_condition_true" method. */
12812
12813 static void
12814 base_breakpoint_after_condition_true (struct bpstats *bs)
12815 {
12816 /* Nothing to do. */
12817 }
12818
12819 struct breakpoint_ops base_breakpoint_ops =
12820 {
12821 base_breakpoint_dtor,
12822 base_breakpoint_allocate_location,
12823 base_breakpoint_re_set,
12824 base_breakpoint_insert_location,
12825 base_breakpoint_remove_location,
12826 base_breakpoint_breakpoint_hit,
12827 base_breakpoint_check_status,
12828 base_breakpoint_resources_needed,
12829 base_breakpoint_works_in_software_mode,
12830 base_breakpoint_print_it,
12831 NULL,
12832 base_breakpoint_print_one_detail,
12833 base_breakpoint_print_mention,
12834 base_breakpoint_print_recreate,
12835 base_breakpoint_create_sals_from_address,
12836 base_breakpoint_create_breakpoints_sal,
12837 base_breakpoint_decode_linespec,
12838 base_breakpoint_explains_signal,
12839 base_breakpoint_after_condition_true,
12840 };
12841
12842 /* Default breakpoint_ops methods. */
12843
12844 static void
12845 bkpt_re_set (struct breakpoint *b)
12846 {
12847 /* FIXME: is this still reachable? */
12848 if (b->addr_string == NULL)
12849 {
12850 /* Anything without a string can't be re-set. */
12851 delete_breakpoint (b);
12852 return;
12853 }
12854
12855 breakpoint_re_set_default (b);
12856 }
12857
12858 static int
12859 bkpt_insert_location (struct bp_location *bl)
12860 {
12861 if (bl->loc_type == bp_loc_hardware_breakpoint)
12862 return target_insert_hw_breakpoint (bl->gdbarch,
12863 &bl->target_info);
12864 else
12865 return target_insert_breakpoint (bl->gdbarch,
12866 &bl->target_info);
12867 }
12868
12869 static int
12870 bkpt_remove_location (struct bp_location *bl)
12871 {
12872 if (bl->loc_type == bp_loc_hardware_breakpoint)
12873 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12874 else
12875 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12876 }
12877
12878 static int
12879 bkpt_breakpoint_hit (const struct bp_location *bl,
12880 struct address_space *aspace, CORE_ADDR bp_addr,
12881 const struct target_waitstatus *ws)
12882 {
12883 if (ws->kind != TARGET_WAITKIND_STOPPED
12884 || ws->value.sig != GDB_SIGNAL_TRAP)
12885 return 0;
12886
12887 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12888 aspace, bp_addr))
12889 return 0;
12890
12891 if (overlay_debugging /* unmapped overlay section */
12892 && section_is_overlay (bl->section)
12893 && !section_is_mapped (bl->section))
12894 return 0;
12895
12896 return 1;
12897 }
12898
12899 static int
12900 bkpt_resources_needed (const struct bp_location *bl)
12901 {
12902 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12903
12904 return 1;
12905 }
12906
12907 static enum print_stop_action
12908 bkpt_print_it (bpstat bs)
12909 {
12910 struct breakpoint *b;
12911 const struct bp_location *bl;
12912 int bp_temp;
12913 struct ui_out *uiout = current_uiout;
12914
12915 gdb_assert (bs->bp_location_at != NULL);
12916
12917 bl = bs->bp_location_at;
12918 b = bs->breakpoint_at;
12919
12920 bp_temp = b->disposition == disp_del;
12921 if (bl->address != bl->requested_address)
12922 breakpoint_adjustment_warning (bl->requested_address,
12923 bl->address,
12924 b->number, 1);
12925 annotate_breakpoint (b->number);
12926 if (bp_temp)
12927 ui_out_text (uiout, "\nTemporary breakpoint ");
12928 else
12929 ui_out_text (uiout, "\nBreakpoint ");
12930 if (ui_out_is_mi_like_p (uiout))
12931 {
12932 ui_out_field_string (uiout, "reason",
12933 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12934 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12935 }
12936 ui_out_field_int (uiout, "bkptno", b->number);
12937 ui_out_text (uiout, ", ");
12938
12939 return PRINT_SRC_AND_LOC;
12940 }
12941
12942 static void
12943 bkpt_print_mention (struct breakpoint *b)
12944 {
12945 if (ui_out_is_mi_like_p (current_uiout))
12946 return;
12947
12948 switch (b->type)
12949 {
12950 case bp_breakpoint:
12951 case bp_gnu_ifunc_resolver:
12952 if (b->disposition == disp_del)
12953 printf_filtered (_("Temporary breakpoint"));
12954 else
12955 printf_filtered (_("Breakpoint"));
12956 printf_filtered (_(" %d"), b->number);
12957 if (b->type == bp_gnu_ifunc_resolver)
12958 printf_filtered (_(" at gnu-indirect-function resolver"));
12959 break;
12960 case bp_hardware_breakpoint:
12961 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12962 break;
12963 case bp_dprintf:
12964 printf_filtered (_("Dprintf %d"), b->number);
12965 break;
12966 }
12967
12968 say_where (b);
12969 }
12970
12971 static void
12972 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12973 {
12974 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12975 fprintf_unfiltered (fp, "tbreak");
12976 else if (tp->type == bp_breakpoint)
12977 fprintf_unfiltered (fp, "break");
12978 else if (tp->type == bp_hardware_breakpoint
12979 && tp->disposition == disp_del)
12980 fprintf_unfiltered (fp, "thbreak");
12981 else if (tp->type == bp_hardware_breakpoint)
12982 fprintf_unfiltered (fp, "hbreak");
12983 else
12984 internal_error (__FILE__, __LINE__,
12985 _("unhandled breakpoint type %d"), (int) tp->type);
12986
12987 fprintf_unfiltered (fp, " %s", tp->addr_string);
12988 print_recreate_thread (tp, fp);
12989 }
12990
12991 static void
12992 bkpt_create_sals_from_address (char **arg,
12993 struct linespec_result *canonical,
12994 enum bptype type_wanted,
12995 char *addr_start, char **copy_arg)
12996 {
12997 create_sals_from_address_default (arg, canonical, type_wanted,
12998 addr_start, copy_arg);
12999 }
13000
13001 static void
13002 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13003 struct linespec_result *canonical,
13004 char *cond_string,
13005 char *extra_string,
13006 enum bptype type_wanted,
13007 enum bpdisp disposition,
13008 int thread,
13009 int task, int ignore_count,
13010 const struct breakpoint_ops *ops,
13011 int from_tty, int enabled,
13012 int internal, unsigned flags)
13013 {
13014 create_breakpoints_sal_default (gdbarch, canonical,
13015 cond_string, extra_string,
13016 type_wanted,
13017 disposition, thread, task,
13018 ignore_count, ops, from_tty,
13019 enabled, internal, flags);
13020 }
13021
13022 static void
13023 bkpt_decode_linespec (struct breakpoint *b, char **s,
13024 struct symtabs_and_lines *sals)
13025 {
13026 decode_linespec_default (b, s, sals);
13027 }
13028
13029 /* Virtual table for internal breakpoints. */
13030
13031 static void
13032 internal_bkpt_re_set (struct breakpoint *b)
13033 {
13034 switch (b->type)
13035 {
13036 /* Delete overlay event and longjmp master breakpoints; they
13037 will be reset later by breakpoint_re_set. */
13038 case bp_overlay_event:
13039 case bp_longjmp_master:
13040 case bp_std_terminate_master:
13041 case bp_exception_master:
13042 delete_breakpoint (b);
13043 break;
13044
13045 /* This breakpoint is special, it's set up when the inferior
13046 starts and we really don't want to touch it. */
13047 case bp_shlib_event:
13048
13049 /* Like bp_shlib_event, this breakpoint type is special. Once
13050 it is set up, we do not want to touch it. */
13051 case bp_thread_event:
13052 break;
13053 }
13054 }
13055
13056 static void
13057 internal_bkpt_check_status (bpstat bs)
13058 {
13059 if (bs->breakpoint_at->type == bp_shlib_event)
13060 {
13061 /* If requested, stop when the dynamic linker notifies GDB of
13062 events. This allows the user to get control and place
13063 breakpoints in initializer routines for dynamically loaded
13064 objects (among other things). */
13065 bs->stop = stop_on_solib_events;
13066 bs->print = stop_on_solib_events;
13067 }
13068 else
13069 bs->stop = 0;
13070 }
13071
13072 static enum print_stop_action
13073 internal_bkpt_print_it (bpstat bs)
13074 {
13075 struct breakpoint *b;
13076
13077 b = bs->breakpoint_at;
13078
13079 switch (b->type)
13080 {
13081 case bp_shlib_event:
13082 /* Did we stop because the user set the stop_on_solib_events
13083 variable? (If so, we report this as a generic, "Stopped due
13084 to shlib event" message.) */
13085 print_solib_event (0);
13086 break;
13087
13088 case bp_thread_event:
13089 /* Not sure how we will get here.
13090 GDB should not stop for these breakpoints. */
13091 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13092 break;
13093
13094 case bp_overlay_event:
13095 /* By analogy with the thread event, GDB should not stop for these. */
13096 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13097 break;
13098
13099 case bp_longjmp_master:
13100 /* These should never be enabled. */
13101 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13102 break;
13103
13104 case bp_std_terminate_master:
13105 /* These should never be enabled. */
13106 printf_filtered (_("std::terminate Master Breakpoint: "
13107 "gdb should not stop!\n"));
13108 break;
13109
13110 case bp_exception_master:
13111 /* These should never be enabled. */
13112 printf_filtered (_("Exception Master Breakpoint: "
13113 "gdb should not stop!\n"));
13114 break;
13115 }
13116
13117 return PRINT_NOTHING;
13118 }
13119
13120 static void
13121 internal_bkpt_print_mention (struct breakpoint *b)
13122 {
13123 /* Nothing to mention. These breakpoints are internal. */
13124 }
13125
13126 /* Virtual table for momentary breakpoints */
13127
13128 static void
13129 momentary_bkpt_re_set (struct breakpoint *b)
13130 {
13131 /* Keep temporary breakpoints, which can be encountered when we step
13132 over a dlopen call and solib_add is resetting the breakpoints.
13133 Otherwise these should have been blown away via the cleanup chain
13134 or by breakpoint_init_inferior when we rerun the executable. */
13135 }
13136
13137 static void
13138 momentary_bkpt_check_status (bpstat bs)
13139 {
13140 /* Nothing. The point of these breakpoints is causing a stop. */
13141 }
13142
13143 static enum print_stop_action
13144 momentary_bkpt_print_it (bpstat bs)
13145 {
13146 struct ui_out *uiout = current_uiout;
13147
13148 if (ui_out_is_mi_like_p (uiout))
13149 {
13150 struct breakpoint *b = bs->breakpoint_at;
13151
13152 switch (b->type)
13153 {
13154 case bp_finish:
13155 ui_out_field_string
13156 (uiout, "reason",
13157 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13158 break;
13159
13160 case bp_until:
13161 ui_out_field_string
13162 (uiout, "reason",
13163 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13164 break;
13165 }
13166 }
13167
13168 return PRINT_UNKNOWN;
13169 }
13170
13171 static void
13172 momentary_bkpt_print_mention (struct breakpoint *b)
13173 {
13174 /* Nothing to mention. These breakpoints are internal. */
13175 }
13176
13177 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13178
13179 It gets cleared already on the removal of the first one of such placed
13180 breakpoints. This is OK as they get all removed altogether. */
13181
13182 static void
13183 longjmp_bkpt_dtor (struct breakpoint *self)
13184 {
13185 struct thread_info *tp = find_thread_id (self->thread);
13186
13187 if (tp)
13188 tp->initiating_frame = null_frame_id;
13189
13190 momentary_breakpoint_ops.dtor (self);
13191 }
13192
13193 /* Specific methods for probe breakpoints. */
13194
13195 static int
13196 bkpt_probe_insert_location (struct bp_location *bl)
13197 {
13198 int v = bkpt_insert_location (bl);
13199
13200 if (v == 0)
13201 {
13202 /* The insertion was successful, now let's set the probe's semaphore
13203 if needed. */
13204 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13205 }
13206
13207 return v;
13208 }
13209
13210 static int
13211 bkpt_probe_remove_location (struct bp_location *bl)
13212 {
13213 /* Let's clear the semaphore before removing the location. */
13214 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13215
13216 return bkpt_remove_location (bl);
13217 }
13218
13219 static void
13220 bkpt_probe_create_sals_from_address (char **arg,
13221 struct linespec_result *canonical,
13222 enum bptype type_wanted,
13223 char *addr_start, char **copy_arg)
13224 {
13225 struct linespec_sals lsal;
13226
13227 lsal.sals = parse_probes (arg, canonical);
13228
13229 *copy_arg = xstrdup (canonical->addr_string);
13230 lsal.canonical = xstrdup (*copy_arg);
13231
13232 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13233 }
13234
13235 static void
13236 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13237 struct symtabs_and_lines *sals)
13238 {
13239 *sals = parse_probes (s, NULL);
13240 if (!sals->sals)
13241 error (_("probe not found"));
13242 }
13243
13244 /* The breakpoint_ops structure to be used in tracepoints. */
13245
13246 static void
13247 tracepoint_re_set (struct breakpoint *b)
13248 {
13249 breakpoint_re_set_default (b);
13250 }
13251
13252 static int
13253 tracepoint_breakpoint_hit (const struct bp_location *bl,
13254 struct address_space *aspace, CORE_ADDR bp_addr,
13255 const struct target_waitstatus *ws)
13256 {
13257 /* By definition, the inferior does not report stops at
13258 tracepoints. */
13259 return 0;
13260 }
13261
13262 static void
13263 tracepoint_print_one_detail (const struct breakpoint *self,
13264 struct ui_out *uiout)
13265 {
13266 struct tracepoint *tp = (struct tracepoint *) self;
13267 if (tp->static_trace_marker_id)
13268 {
13269 gdb_assert (self->type == bp_static_tracepoint);
13270
13271 ui_out_text (uiout, "\tmarker id is ");
13272 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13273 tp->static_trace_marker_id);
13274 ui_out_text (uiout, "\n");
13275 }
13276 }
13277
13278 static void
13279 tracepoint_print_mention (struct breakpoint *b)
13280 {
13281 if (ui_out_is_mi_like_p (current_uiout))
13282 return;
13283
13284 switch (b->type)
13285 {
13286 case bp_tracepoint:
13287 printf_filtered (_("Tracepoint"));
13288 printf_filtered (_(" %d"), b->number);
13289 break;
13290 case bp_fast_tracepoint:
13291 printf_filtered (_("Fast tracepoint"));
13292 printf_filtered (_(" %d"), b->number);
13293 break;
13294 case bp_static_tracepoint:
13295 printf_filtered (_("Static tracepoint"));
13296 printf_filtered (_(" %d"), b->number);
13297 break;
13298 default:
13299 internal_error (__FILE__, __LINE__,
13300 _("unhandled tracepoint type %d"), (int) b->type);
13301 }
13302
13303 say_where (b);
13304 }
13305
13306 static void
13307 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13308 {
13309 struct tracepoint *tp = (struct tracepoint *) self;
13310
13311 if (self->type == bp_fast_tracepoint)
13312 fprintf_unfiltered (fp, "ftrace");
13313 if (self->type == bp_static_tracepoint)
13314 fprintf_unfiltered (fp, "strace");
13315 else if (self->type == bp_tracepoint)
13316 fprintf_unfiltered (fp, "trace");
13317 else
13318 internal_error (__FILE__, __LINE__,
13319 _("unhandled tracepoint type %d"), (int) self->type);
13320
13321 fprintf_unfiltered (fp, " %s", self->addr_string);
13322 print_recreate_thread (self, fp);
13323
13324 if (tp->pass_count)
13325 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13326 }
13327
13328 static void
13329 tracepoint_create_sals_from_address (char **arg,
13330 struct linespec_result *canonical,
13331 enum bptype type_wanted,
13332 char *addr_start, char **copy_arg)
13333 {
13334 create_sals_from_address_default (arg, canonical, type_wanted,
13335 addr_start, copy_arg);
13336 }
13337
13338 static void
13339 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13340 struct linespec_result *canonical,
13341 char *cond_string,
13342 char *extra_string,
13343 enum bptype type_wanted,
13344 enum bpdisp disposition,
13345 int thread,
13346 int task, int ignore_count,
13347 const struct breakpoint_ops *ops,
13348 int from_tty, int enabled,
13349 int internal, unsigned flags)
13350 {
13351 create_breakpoints_sal_default (gdbarch, canonical,
13352 cond_string, extra_string,
13353 type_wanted,
13354 disposition, thread, task,
13355 ignore_count, ops, from_tty,
13356 enabled, internal, flags);
13357 }
13358
13359 static void
13360 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13361 struct symtabs_and_lines *sals)
13362 {
13363 decode_linespec_default (b, s, sals);
13364 }
13365
13366 struct breakpoint_ops tracepoint_breakpoint_ops;
13367
13368 /* The breakpoint_ops structure to be use on tracepoints placed in a
13369 static probe. */
13370
13371 static void
13372 tracepoint_probe_create_sals_from_address (char **arg,
13373 struct linespec_result *canonical,
13374 enum bptype type_wanted,
13375 char *addr_start, char **copy_arg)
13376 {
13377 /* We use the same method for breakpoint on probes. */
13378 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13379 addr_start, copy_arg);
13380 }
13381
13382 static void
13383 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13384 struct symtabs_and_lines *sals)
13385 {
13386 /* We use the same method for breakpoint on probes. */
13387 bkpt_probe_decode_linespec (b, s, sals);
13388 }
13389
13390 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13391
13392 /* Dprintf breakpoint_ops methods. */
13393
13394 static void
13395 dprintf_re_set (struct breakpoint *b)
13396 {
13397 breakpoint_re_set_default (b);
13398
13399 /* This breakpoint could have been pending, and be resolved now, and
13400 if so, we should now have the extra string. If we don't, the
13401 dprintf was malformed when created, but we couldn't tell because
13402 we can't extract the extra string until the location is
13403 resolved. */
13404 if (b->loc != NULL && b->extra_string == NULL)
13405 error (_("Format string required"));
13406
13407 /* 1 - connect to target 1, that can run breakpoint commands.
13408 2 - create a dprintf, which resolves fine.
13409 3 - disconnect from target 1
13410 4 - connect to target 2, that can NOT run breakpoint commands.
13411
13412 After steps #3/#4, you'll want the dprintf command list to
13413 be updated, because target 1 and 2 may well return different
13414 answers for target_can_run_breakpoint_commands().
13415 Given absence of finer grained resetting, we get to do
13416 it all the time. */
13417 if (b->extra_string != NULL)
13418 update_dprintf_command_list (b);
13419 }
13420
13421 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13422
13423 static void
13424 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13425 {
13426 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13427 tp->extra_string);
13428 print_recreate_thread (tp, fp);
13429 }
13430
13431 /* Implement the "after_condition_true" breakpoint_ops method for
13432 dprintf.
13433
13434 dprintf's are implemented with regular commands in their command
13435 list, but we run the commands here instead of before presenting the
13436 stop to the user, as dprintf's don't actually cause a stop. This
13437 also makes it so that the commands of multiple dprintfs at the same
13438 address are all handled. */
13439
13440 static void
13441 dprintf_after_condition_true (struct bpstats *bs)
13442 {
13443 struct cleanup *old_chain;
13444 struct bpstats tmp_bs = { NULL };
13445 struct bpstats *tmp_bs_p = &tmp_bs;
13446
13447 /* dprintf's never cause a stop. This wasn't set in the
13448 check_status hook instead because that would make the dprintf's
13449 condition not be evaluated. */
13450 bs->stop = 0;
13451
13452 /* Run the command list here. Take ownership of it instead of
13453 copying. We never want these commands to run later in
13454 bpstat_do_actions, if a breakpoint that causes a stop happens to
13455 be set at same address as this dprintf, or even if running the
13456 commands here throws. */
13457 tmp_bs.commands = bs->commands;
13458 bs->commands = NULL;
13459 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13460
13461 bpstat_do_actions_1 (&tmp_bs_p);
13462
13463 /* 'tmp_bs.commands' will usually be NULL by now, but
13464 bpstat_do_actions_1 may return early without processing the whole
13465 list. */
13466 do_cleanups (old_chain);
13467 }
13468
13469 /* The breakpoint_ops structure to be used on static tracepoints with
13470 markers (`-m'). */
13471
13472 static void
13473 strace_marker_create_sals_from_address (char **arg,
13474 struct linespec_result *canonical,
13475 enum bptype type_wanted,
13476 char *addr_start, char **copy_arg)
13477 {
13478 struct linespec_sals lsal;
13479
13480 lsal.sals = decode_static_tracepoint_spec (arg);
13481
13482 *copy_arg = savestring (addr_start, *arg - addr_start);
13483
13484 canonical->addr_string = xstrdup (*copy_arg);
13485 lsal.canonical = xstrdup (*copy_arg);
13486 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13487 }
13488
13489 static void
13490 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13491 struct linespec_result *canonical,
13492 char *cond_string,
13493 char *extra_string,
13494 enum bptype type_wanted,
13495 enum bpdisp disposition,
13496 int thread,
13497 int task, int ignore_count,
13498 const struct breakpoint_ops *ops,
13499 int from_tty, int enabled,
13500 int internal, unsigned flags)
13501 {
13502 int i;
13503 struct linespec_sals *lsal = VEC_index (linespec_sals,
13504 canonical->sals, 0);
13505
13506 /* If the user is creating a static tracepoint by marker id
13507 (strace -m MARKER_ID), then store the sals index, so that
13508 breakpoint_re_set can try to match up which of the newly
13509 found markers corresponds to this one, and, don't try to
13510 expand multiple locations for each sal, given than SALS
13511 already should contain all sals for MARKER_ID. */
13512
13513 for (i = 0; i < lsal->sals.nelts; ++i)
13514 {
13515 struct symtabs_and_lines expanded;
13516 struct tracepoint *tp;
13517 struct cleanup *old_chain;
13518 char *addr_string;
13519
13520 expanded.nelts = 1;
13521 expanded.sals = &lsal->sals.sals[i];
13522
13523 addr_string = xstrdup (canonical->addr_string);
13524 old_chain = make_cleanup (xfree, addr_string);
13525
13526 tp = XCNEW (struct tracepoint);
13527 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13528 addr_string, NULL,
13529 cond_string, extra_string,
13530 type_wanted, disposition,
13531 thread, task, ignore_count, ops,
13532 from_tty, enabled, internal, flags,
13533 canonical->special_display);
13534 /* Given that its possible to have multiple markers with
13535 the same string id, if the user is creating a static
13536 tracepoint by marker id ("strace -m MARKER_ID"), then
13537 store the sals index, so that breakpoint_re_set can
13538 try to match up which of the newly found markers
13539 corresponds to this one */
13540 tp->static_trace_marker_id_idx = i;
13541
13542 install_breakpoint (internal, &tp->base, 0);
13543
13544 discard_cleanups (old_chain);
13545 }
13546 }
13547
13548 static void
13549 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13550 struct symtabs_and_lines *sals)
13551 {
13552 struct tracepoint *tp = (struct tracepoint *) b;
13553
13554 *sals = decode_static_tracepoint_spec (s);
13555 if (sals->nelts > tp->static_trace_marker_id_idx)
13556 {
13557 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13558 sals->nelts = 1;
13559 }
13560 else
13561 error (_("marker %s not found"), tp->static_trace_marker_id);
13562 }
13563
13564 static struct breakpoint_ops strace_marker_breakpoint_ops;
13565
13566 static int
13567 strace_marker_p (struct breakpoint *b)
13568 {
13569 return b->ops == &strace_marker_breakpoint_ops;
13570 }
13571
13572 /* Delete a breakpoint and clean up all traces of it in the data
13573 structures. */
13574
13575 void
13576 delete_breakpoint (struct breakpoint *bpt)
13577 {
13578 struct breakpoint *b;
13579
13580 gdb_assert (bpt != NULL);
13581
13582 /* Has this bp already been deleted? This can happen because
13583 multiple lists can hold pointers to bp's. bpstat lists are
13584 especial culprits.
13585
13586 One example of this happening is a watchpoint's scope bp. When
13587 the scope bp triggers, we notice that the watchpoint is out of
13588 scope, and delete it. We also delete its scope bp. But the
13589 scope bp is marked "auto-deleting", and is already on a bpstat.
13590 That bpstat is then checked for auto-deleting bp's, which are
13591 deleted.
13592
13593 A real solution to this problem might involve reference counts in
13594 bp's, and/or giving them pointers back to their referencing
13595 bpstat's, and teaching delete_breakpoint to only free a bp's
13596 storage when no more references were extent. A cheaper bandaid
13597 was chosen. */
13598 if (bpt->type == bp_none)
13599 return;
13600
13601 /* At least avoid this stale reference until the reference counting
13602 of breakpoints gets resolved. */
13603 if (bpt->related_breakpoint != bpt)
13604 {
13605 struct breakpoint *related;
13606 struct watchpoint *w;
13607
13608 if (bpt->type == bp_watchpoint_scope)
13609 w = (struct watchpoint *) bpt->related_breakpoint;
13610 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13611 w = (struct watchpoint *) bpt;
13612 else
13613 w = NULL;
13614 if (w != NULL)
13615 watchpoint_del_at_next_stop (w);
13616
13617 /* Unlink bpt from the bpt->related_breakpoint ring. */
13618 for (related = bpt; related->related_breakpoint != bpt;
13619 related = related->related_breakpoint);
13620 related->related_breakpoint = bpt->related_breakpoint;
13621 bpt->related_breakpoint = bpt;
13622 }
13623
13624 /* watch_command_1 creates a watchpoint but only sets its number if
13625 update_watchpoint succeeds in creating its bp_locations. If there's
13626 a problem in that process, we'll be asked to delete the half-created
13627 watchpoint. In that case, don't announce the deletion. */
13628 if (bpt->number)
13629 observer_notify_breakpoint_deleted (bpt);
13630
13631 if (breakpoint_chain == bpt)
13632 breakpoint_chain = bpt->next;
13633
13634 ALL_BREAKPOINTS (b)
13635 if (b->next == bpt)
13636 {
13637 b->next = bpt->next;
13638 break;
13639 }
13640
13641 /* Be sure no bpstat's are pointing at the breakpoint after it's
13642 been freed. */
13643 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13644 in all threads for now. Note that we cannot just remove bpstats
13645 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13646 commands are associated with the bpstat; if we remove it here,
13647 then the later call to bpstat_do_actions (&stop_bpstat); in
13648 event-top.c won't do anything, and temporary breakpoints with
13649 commands won't work. */
13650
13651 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13652
13653 /* Now that breakpoint is removed from breakpoint list, update the
13654 global location list. This will remove locations that used to
13655 belong to this breakpoint. Do this before freeing the breakpoint
13656 itself, since remove_breakpoint looks at location's owner. It
13657 might be better design to have location completely
13658 self-contained, but it's not the case now. */
13659 update_global_location_list (0);
13660
13661 bpt->ops->dtor (bpt);
13662 /* On the chance that someone will soon try again to delete this
13663 same bp, we mark it as deleted before freeing its storage. */
13664 bpt->type = bp_none;
13665 xfree (bpt);
13666 }
13667
13668 static void
13669 do_delete_breakpoint_cleanup (void *b)
13670 {
13671 delete_breakpoint (b);
13672 }
13673
13674 struct cleanup *
13675 make_cleanup_delete_breakpoint (struct breakpoint *b)
13676 {
13677 return make_cleanup (do_delete_breakpoint_cleanup, b);
13678 }
13679
13680 /* Iterator function to call a user-provided callback function once
13681 for each of B and its related breakpoints. */
13682
13683 static void
13684 iterate_over_related_breakpoints (struct breakpoint *b,
13685 void (*function) (struct breakpoint *,
13686 void *),
13687 void *data)
13688 {
13689 struct breakpoint *related;
13690
13691 related = b;
13692 do
13693 {
13694 struct breakpoint *next;
13695
13696 /* FUNCTION may delete RELATED. */
13697 next = related->related_breakpoint;
13698
13699 if (next == related)
13700 {
13701 /* RELATED is the last ring entry. */
13702 function (related, data);
13703
13704 /* FUNCTION may have deleted it, so we'd never reach back to
13705 B. There's nothing left to do anyway, so just break
13706 out. */
13707 break;
13708 }
13709 else
13710 function (related, data);
13711
13712 related = next;
13713 }
13714 while (related != b);
13715 }
13716
13717 static void
13718 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13719 {
13720 delete_breakpoint (b);
13721 }
13722
13723 /* A callback for map_breakpoint_numbers that calls
13724 delete_breakpoint. */
13725
13726 static void
13727 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13728 {
13729 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13730 }
13731
13732 void
13733 delete_command (char *arg, int from_tty)
13734 {
13735 struct breakpoint *b, *b_tmp;
13736
13737 dont_repeat ();
13738
13739 if (arg == 0)
13740 {
13741 int breaks_to_delete = 0;
13742
13743 /* Delete all breakpoints if no argument. Do not delete
13744 internal breakpoints, these have to be deleted with an
13745 explicit breakpoint number argument. */
13746 ALL_BREAKPOINTS (b)
13747 if (user_breakpoint_p (b))
13748 {
13749 breaks_to_delete = 1;
13750 break;
13751 }
13752
13753 /* Ask user only if there are some breakpoints to delete. */
13754 if (!from_tty
13755 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13756 {
13757 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13758 if (user_breakpoint_p (b))
13759 delete_breakpoint (b);
13760 }
13761 }
13762 else
13763 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13764 }
13765
13766 static int
13767 all_locations_are_pending (struct bp_location *loc)
13768 {
13769 for (; loc; loc = loc->next)
13770 if (!loc->shlib_disabled
13771 && !loc->pspace->executing_startup)
13772 return 0;
13773 return 1;
13774 }
13775
13776 /* Subroutine of update_breakpoint_locations to simplify it.
13777 Return non-zero if multiple fns in list LOC have the same name.
13778 Null names are ignored. */
13779
13780 static int
13781 ambiguous_names_p (struct bp_location *loc)
13782 {
13783 struct bp_location *l;
13784 htab_t htab = htab_create_alloc (13, htab_hash_string,
13785 (int (*) (const void *,
13786 const void *)) streq,
13787 NULL, xcalloc, xfree);
13788
13789 for (l = loc; l != NULL; l = l->next)
13790 {
13791 const char **slot;
13792 const char *name = l->function_name;
13793
13794 /* Allow for some names to be NULL, ignore them. */
13795 if (name == NULL)
13796 continue;
13797
13798 slot = (const char **) htab_find_slot (htab, (const void *) name,
13799 INSERT);
13800 /* NOTE: We can assume slot != NULL here because xcalloc never
13801 returns NULL. */
13802 if (*slot != NULL)
13803 {
13804 htab_delete (htab);
13805 return 1;
13806 }
13807 *slot = name;
13808 }
13809
13810 htab_delete (htab);
13811 return 0;
13812 }
13813
13814 /* When symbols change, it probably means the sources changed as well,
13815 and it might mean the static tracepoint markers are no longer at
13816 the same address or line numbers they used to be at last we
13817 checked. Losing your static tracepoints whenever you rebuild is
13818 undesirable. This function tries to resync/rematch gdb static
13819 tracepoints with the markers on the target, for static tracepoints
13820 that have not been set by marker id. Static tracepoint that have
13821 been set by marker id are reset by marker id in breakpoint_re_set.
13822 The heuristic is:
13823
13824 1) For a tracepoint set at a specific address, look for a marker at
13825 the old PC. If one is found there, assume to be the same marker.
13826 If the name / string id of the marker found is different from the
13827 previous known name, assume that means the user renamed the marker
13828 in the sources, and output a warning.
13829
13830 2) For a tracepoint set at a given line number, look for a marker
13831 at the new address of the old line number. If one is found there,
13832 assume to be the same marker. If the name / string id of the
13833 marker found is different from the previous known name, assume that
13834 means the user renamed the marker in the sources, and output a
13835 warning.
13836
13837 3) If a marker is no longer found at the same address or line, it
13838 may mean the marker no longer exists. But it may also just mean
13839 the code changed a bit. Maybe the user added a few lines of code
13840 that made the marker move up or down (in line number terms). Ask
13841 the target for info about the marker with the string id as we knew
13842 it. If found, update line number and address in the matching
13843 static tracepoint. This will get confused if there's more than one
13844 marker with the same ID (possible in UST, although unadvised
13845 precisely because it confuses tools). */
13846
13847 static struct symtab_and_line
13848 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13849 {
13850 struct tracepoint *tp = (struct tracepoint *) b;
13851 struct static_tracepoint_marker marker;
13852 CORE_ADDR pc;
13853
13854 pc = sal.pc;
13855 if (sal.line)
13856 find_line_pc (sal.symtab, sal.line, &pc);
13857
13858 if (target_static_tracepoint_marker_at (pc, &marker))
13859 {
13860 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13861 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13862 b->number,
13863 tp->static_trace_marker_id, marker.str_id);
13864
13865 xfree (tp->static_trace_marker_id);
13866 tp->static_trace_marker_id = xstrdup (marker.str_id);
13867 release_static_tracepoint_marker (&marker);
13868
13869 return sal;
13870 }
13871
13872 /* Old marker wasn't found on target at lineno. Try looking it up
13873 by string ID. */
13874 if (!sal.explicit_pc
13875 && sal.line != 0
13876 && sal.symtab != NULL
13877 && tp->static_trace_marker_id != NULL)
13878 {
13879 VEC(static_tracepoint_marker_p) *markers;
13880
13881 markers
13882 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13883
13884 if (!VEC_empty(static_tracepoint_marker_p, markers))
13885 {
13886 struct symtab_and_line sal2;
13887 struct symbol *sym;
13888 struct static_tracepoint_marker *tpmarker;
13889 struct ui_out *uiout = current_uiout;
13890
13891 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13892
13893 xfree (tp->static_trace_marker_id);
13894 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13895
13896 warning (_("marker for static tracepoint %d (%s) not "
13897 "found at previous line number"),
13898 b->number, tp->static_trace_marker_id);
13899
13900 init_sal (&sal2);
13901
13902 sal2.pc = tpmarker->address;
13903
13904 sal2 = find_pc_line (tpmarker->address, 0);
13905 sym = find_pc_sect_function (tpmarker->address, NULL);
13906 ui_out_text (uiout, "Now in ");
13907 if (sym)
13908 {
13909 ui_out_field_string (uiout, "func",
13910 SYMBOL_PRINT_NAME (sym));
13911 ui_out_text (uiout, " at ");
13912 }
13913 ui_out_field_string (uiout, "file",
13914 symtab_to_filename_for_display (sal2.symtab));
13915 ui_out_text (uiout, ":");
13916
13917 if (ui_out_is_mi_like_p (uiout))
13918 {
13919 const char *fullname = symtab_to_fullname (sal2.symtab);
13920
13921 ui_out_field_string (uiout, "fullname", fullname);
13922 }
13923
13924 ui_out_field_int (uiout, "line", sal2.line);
13925 ui_out_text (uiout, "\n");
13926
13927 b->loc->line_number = sal2.line;
13928 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13929
13930 xfree (b->addr_string);
13931 b->addr_string = xstrprintf ("%s:%d",
13932 symtab_to_filename_for_display (sal2.symtab),
13933 b->loc->line_number);
13934
13935 /* Might be nice to check if function changed, and warn if
13936 so. */
13937
13938 release_static_tracepoint_marker (tpmarker);
13939 }
13940 }
13941 return sal;
13942 }
13943
13944 /* Returns 1 iff locations A and B are sufficiently same that
13945 we don't need to report breakpoint as changed. */
13946
13947 static int
13948 locations_are_equal (struct bp_location *a, struct bp_location *b)
13949 {
13950 while (a && b)
13951 {
13952 if (a->address != b->address)
13953 return 0;
13954
13955 if (a->shlib_disabled != b->shlib_disabled)
13956 return 0;
13957
13958 if (a->enabled != b->enabled)
13959 return 0;
13960
13961 a = a->next;
13962 b = b->next;
13963 }
13964
13965 if ((a == NULL) != (b == NULL))
13966 return 0;
13967
13968 return 1;
13969 }
13970
13971 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13972 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13973 a ranged breakpoint. */
13974
13975 void
13976 update_breakpoint_locations (struct breakpoint *b,
13977 struct symtabs_and_lines sals,
13978 struct symtabs_and_lines sals_end)
13979 {
13980 int i;
13981 struct bp_location *existing_locations = b->loc;
13982
13983 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13984 {
13985 /* Ranged breakpoints have only one start location and one end
13986 location. */
13987 b->enable_state = bp_disabled;
13988 update_global_location_list (1);
13989 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13990 "multiple locations found\n"),
13991 b->number);
13992 return;
13993 }
13994
13995 /* If there's no new locations, and all existing locations are
13996 pending, don't do anything. This optimizes the common case where
13997 all locations are in the same shared library, that was unloaded.
13998 We'd like to retain the location, so that when the library is
13999 loaded again, we don't loose the enabled/disabled status of the
14000 individual locations. */
14001 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14002 return;
14003
14004 b->loc = NULL;
14005
14006 for (i = 0; i < sals.nelts; ++i)
14007 {
14008 struct bp_location *new_loc;
14009
14010 switch_to_program_space_and_thread (sals.sals[i].pspace);
14011
14012 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14013
14014 /* Reparse conditions, they might contain references to the
14015 old symtab. */
14016 if (b->cond_string != NULL)
14017 {
14018 const char *s;
14019 volatile struct gdb_exception e;
14020
14021 s = b->cond_string;
14022 TRY_CATCH (e, RETURN_MASK_ERROR)
14023 {
14024 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14025 block_for_pc (sals.sals[i].pc),
14026 0);
14027 }
14028 if (e.reason < 0)
14029 {
14030 warning (_("failed to reevaluate condition "
14031 "for breakpoint %d: %s"),
14032 b->number, e.message);
14033 new_loc->enabled = 0;
14034 }
14035 }
14036
14037 if (sals_end.nelts)
14038 {
14039 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14040
14041 new_loc->length = end - sals.sals[0].pc + 1;
14042 }
14043 }
14044
14045 /* Update locations of permanent breakpoints. */
14046 if (b->enable_state == bp_permanent)
14047 make_breakpoint_permanent (b);
14048
14049 /* If possible, carry over 'disable' status from existing
14050 breakpoints. */
14051 {
14052 struct bp_location *e = existing_locations;
14053 /* If there are multiple breakpoints with the same function name,
14054 e.g. for inline functions, comparing function names won't work.
14055 Instead compare pc addresses; this is just a heuristic as things
14056 may have moved, but in practice it gives the correct answer
14057 often enough until a better solution is found. */
14058 int have_ambiguous_names = ambiguous_names_p (b->loc);
14059
14060 for (; e; e = e->next)
14061 {
14062 if (!e->enabled && e->function_name)
14063 {
14064 struct bp_location *l = b->loc;
14065 if (have_ambiguous_names)
14066 {
14067 for (; l; l = l->next)
14068 if (breakpoint_locations_match (e, l))
14069 {
14070 l->enabled = 0;
14071 break;
14072 }
14073 }
14074 else
14075 {
14076 for (; l; l = l->next)
14077 if (l->function_name
14078 && strcmp (e->function_name, l->function_name) == 0)
14079 {
14080 l->enabled = 0;
14081 break;
14082 }
14083 }
14084 }
14085 }
14086 }
14087
14088 if (!locations_are_equal (existing_locations, b->loc))
14089 observer_notify_breakpoint_modified (b);
14090
14091 update_global_location_list (1);
14092 }
14093
14094 /* Find the SaL locations corresponding to the given ADDR_STRING.
14095 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14096
14097 static struct symtabs_and_lines
14098 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14099 {
14100 char *s;
14101 struct symtabs_and_lines sals = {0};
14102 volatile struct gdb_exception e;
14103
14104 gdb_assert (b->ops != NULL);
14105 s = addr_string;
14106
14107 TRY_CATCH (e, RETURN_MASK_ERROR)
14108 {
14109 b->ops->decode_linespec (b, &s, &sals);
14110 }
14111 if (e.reason < 0)
14112 {
14113 int not_found_and_ok = 0;
14114 /* For pending breakpoints, it's expected that parsing will
14115 fail until the right shared library is loaded. User has
14116 already told to create pending breakpoints and don't need
14117 extra messages. If breakpoint is in bp_shlib_disabled
14118 state, then user already saw the message about that
14119 breakpoint being disabled, and don't want to see more
14120 errors. */
14121 if (e.error == NOT_FOUND_ERROR
14122 && (b->condition_not_parsed
14123 || (b->loc && b->loc->shlib_disabled)
14124 || (b->loc && b->loc->pspace->executing_startup)
14125 || b->enable_state == bp_disabled))
14126 not_found_and_ok = 1;
14127
14128 if (!not_found_and_ok)
14129 {
14130 /* We surely don't want to warn about the same breakpoint
14131 10 times. One solution, implemented here, is disable
14132 the breakpoint on error. Another solution would be to
14133 have separate 'warning emitted' flag. Since this
14134 happens only when a binary has changed, I don't know
14135 which approach is better. */
14136 b->enable_state = bp_disabled;
14137 throw_exception (e);
14138 }
14139 }
14140
14141 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14142 {
14143 int i;
14144
14145 for (i = 0; i < sals.nelts; ++i)
14146 resolve_sal_pc (&sals.sals[i]);
14147 if (b->condition_not_parsed && s && s[0])
14148 {
14149 char *cond_string, *extra_string;
14150 int thread, task;
14151
14152 find_condition_and_thread (s, sals.sals[0].pc,
14153 &cond_string, &thread, &task,
14154 &extra_string);
14155 if (cond_string)
14156 b->cond_string = cond_string;
14157 b->thread = thread;
14158 b->task = task;
14159 if (extra_string)
14160 b->extra_string = extra_string;
14161 b->condition_not_parsed = 0;
14162 }
14163
14164 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14165 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14166
14167 *found = 1;
14168 }
14169 else
14170 *found = 0;
14171
14172 return sals;
14173 }
14174
14175 /* The default re_set method, for typical hardware or software
14176 breakpoints. Reevaluate the breakpoint and recreate its
14177 locations. */
14178
14179 static void
14180 breakpoint_re_set_default (struct breakpoint *b)
14181 {
14182 int found;
14183 struct symtabs_and_lines sals, sals_end;
14184 struct symtabs_and_lines expanded = {0};
14185 struct symtabs_and_lines expanded_end = {0};
14186
14187 sals = addr_string_to_sals (b, b->addr_string, &found);
14188 if (found)
14189 {
14190 make_cleanup (xfree, sals.sals);
14191 expanded = sals;
14192 }
14193
14194 if (b->addr_string_range_end)
14195 {
14196 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14197 if (found)
14198 {
14199 make_cleanup (xfree, sals_end.sals);
14200 expanded_end = sals_end;
14201 }
14202 }
14203
14204 update_breakpoint_locations (b, expanded, expanded_end);
14205 }
14206
14207 /* Default method for creating SALs from an address string. It basically
14208 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14209
14210 static void
14211 create_sals_from_address_default (char **arg,
14212 struct linespec_result *canonical,
14213 enum bptype type_wanted,
14214 char *addr_start, char **copy_arg)
14215 {
14216 parse_breakpoint_sals (arg, canonical);
14217 }
14218
14219 /* Call create_breakpoints_sal for the given arguments. This is the default
14220 function for the `create_breakpoints_sal' method of
14221 breakpoint_ops. */
14222
14223 static void
14224 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14225 struct linespec_result *canonical,
14226 char *cond_string,
14227 char *extra_string,
14228 enum bptype type_wanted,
14229 enum bpdisp disposition,
14230 int thread,
14231 int task, int ignore_count,
14232 const struct breakpoint_ops *ops,
14233 int from_tty, int enabled,
14234 int internal, unsigned flags)
14235 {
14236 create_breakpoints_sal (gdbarch, canonical, cond_string,
14237 extra_string,
14238 type_wanted, disposition,
14239 thread, task, ignore_count, ops, from_tty,
14240 enabled, internal, flags);
14241 }
14242
14243 /* Decode the line represented by S by calling decode_line_full. This is the
14244 default function for the `decode_linespec' method of breakpoint_ops. */
14245
14246 static void
14247 decode_linespec_default (struct breakpoint *b, char **s,
14248 struct symtabs_and_lines *sals)
14249 {
14250 struct linespec_result canonical;
14251
14252 init_linespec_result (&canonical);
14253 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14254 (struct symtab *) NULL, 0,
14255 &canonical, multiple_symbols_all,
14256 b->filter);
14257
14258 /* We should get 0 or 1 resulting SALs. */
14259 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14260
14261 if (VEC_length (linespec_sals, canonical.sals) > 0)
14262 {
14263 struct linespec_sals *lsal;
14264
14265 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14266 *sals = lsal->sals;
14267 /* Arrange it so the destructor does not free the
14268 contents. */
14269 lsal->sals.sals = NULL;
14270 }
14271
14272 destroy_linespec_result (&canonical);
14273 }
14274
14275 /* Prepare the global context for a re-set of breakpoint B. */
14276
14277 static struct cleanup *
14278 prepare_re_set_context (struct breakpoint *b)
14279 {
14280 struct cleanup *cleanups;
14281
14282 input_radix = b->input_radix;
14283 cleanups = save_current_space_and_thread ();
14284 if (b->pspace != NULL)
14285 switch_to_program_space_and_thread (b->pspace);
14286 set_language (b->language);
14287
14288 return cleanups;
14289 }
14290
14291 /* Reset a breakpoint given it's struct breakpoint * BINT.
14292 The value we return ends up being the return value from catch_errors.
14293 Unused in this case. */
14294
14295 static int
14296 breakpoint_re_set_one (void *bint)
14297 {
14298 /* Get past catch_errs. */
14299 struct breakpoint *b = (struct breakpoint *) bint;
14300 struct cleanup *cleanups;
14301
14302 cleanups = prepare_re_set_context (b);
14303 b->ops->re_set (b);
14304 do_cleanups (cleanups);
14305 return 0;
14306 }
14307
14308 /* Re-set all breakpoints after symbols have been re-loaded. */
14309 void
14310 breakpoint_re_set (void)
14311 {
14312 struct breakpoint *b, *b_tmp;
14313 enum language save_language;
14314 int save_input_radix;
14315 struct cleanup *old_chain;
14316
14317 save_language = current_language->la_language;
14318 save_input_radix = input_radix;
14319 old_chain = save_current_program_space ();
14320
14321 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14322 {
14323 /* Format possible error msg. */
14324 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14325 b->number);
14326 struct cleanup *cleanups = make_cleanup (xfree, message);
14327 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14328 do_cleanups (cleanups);
14329 }
14330 set_language (save_language);
14331 input_radix = save_input_radix;
14332
14333 jit_breakpoint_re_set ();
14334
14335 do_cleanups (old_chain);
14336
14337 create_overlay_event_breakpoint ();
14338 create_longjmp_master_breakpoint ();
14339 create_std_terminate_master_breakpoint ();
14340 create_exception_master_breakpoint ();
14341 }
14342 \f
14343 /* Reset the thread number of this breakpoint:
14344
14345 - If the breakpoint is for all threads, leave it as-is.
14346 - Else, reset it to the current thread for inferior_ptid. */
14347 void
14348 breakpoint_re_set_thread (struct breakpoint *b)
14349 {
14350 if (b->thread != -1)
14351 {
14352 if (in_thread_list (inferior_ptid))
14353 b->thread = pid_to_thread_id (inferior_ptid);
14354
14355 /* We're being called after following a fork. The new fork is
14356 selected as current, and unless this was a vfork will have a
14357 different program space from the original thread. Reset that
14358 as well. */
14359 b->loc->pspace = current_program_space;
14360 }
14361 }
14362
14363 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14364 If from_tty is nonzero, it prints a message to that effect,
14365 which ends with a period (no newline). */
14366
14367 void
14368 set_ignore_count (int bptnum, int count, int from_tty)
14369 {
14370 struct breakpoint *b;
14371
14372 if (count < 0)
14373 count = 0;
14374
14375 ALL_BREAKPOINTS (b)
14376 if (b->number == bptnum)
14377 {
14378 if (is_tracepoint (b))
14379 {
14380 if (from_tty && count != 0)
14381 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14382 bptnum);
14383 return;
14384 }
14385
14386 b->ignore_count = count;
14387 if (from_tty)
14388 {
14389 if (count == 0)
14390 printf_filtered (_("Will stop next time "
14391 "breakpoint %d is reached."),
14392 bptnum);
14393 else if (count == 1)
14394 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14395 bptnum);
14396 else
14397 printf_filtered (_("Will ignore next %d "
14398 "crossings of breakpoint %d."),
14399 count, bptnum);
14400 }
14401 observer_notify_breakpoint_modified (b);
14402 return;
14403 }
14404
14405 error (_("No breakpoint number %d."), bptnum);
14406 }
14407
14408 /* Command to set ignore-count of breakpoint N to COUNT. */
14409
14410 static void
14411 ignore_command (char *args, int from_tty)
14412 {
14413 char *p = args;
14414 int num;
14415
14416 if (p == 0)
14417 error_no_arg (_("a breakpoint number"));
14418
14419 num = get_number (&p);
14420 if (num == 0)
14421 error (_("bad breakpoint number: '%s'"), args);
14422 if (*p == 0)
14423 error (_("Second argument (specified ignore-count) is missing."));
14424
14425 set_ignore_count (num,
14426 longest_to_int (value_as_long (parse_and_eval (p))),
14427 from_tty);
14428 if (from_tty)
14429 printf_filtered ("\n");
14430 }
14431 \f
14432 /* Call FUNCTION on each of the breakpoints
14433 whose numbers are given in ARGS. */
14434
14435 static void
14436 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14437 void *),
14438 void *data)
14439 {
14440 int num;
14441 struct breakpoint *b, *tmp;
14442 int match;
14443 struct get_number_or_range_state state;
14444
14445 if (args == 0)
14446 error_no_arg (_("one or more breakpoint numbers"));
14447
14448 init_number_or_range (&state, args);
14449
14450 while (!state.finished)
14451 {
14452 char *p = state.string;
14453
14454 match = 0;
14455
14456 num = get_number_or_range (&state);
14457 if (num == 0)
14458 {
14459 warning (_("bad breakpoint number at or near '%s'"), p);
14460 }
14461 else
14462 {
14463 ALL_BREAKPOINTS_SAFE (b, tmp)
14464 if (b->number == num)
14465 {
14466 match = 1;
14467 function (b, data);
14468 break;
14469 }
14470 if (match == 0)
14471 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14472 }
14473 }
14474 }
14475
14476 static struct bp_location *
14477 find_location_by_number (char *number)
14478 {
14479 char *dot = strchr (number, '.');
14480 char *p1;
14481 int bp_num;
14482 int loc_num;
14483 struct breakpoint *b;
14484 struct bp_location *loc;
14485
14486 *dot = '\0';
14487
14488 p1 = number;
14489 bp_num = get_number (&p1);
14490 if (bp_num == 0)
14491 error (_("Bad breakpoint number '%s'"), number);
14492
14493 ALL_BREAKPOINTS (b)
14494 if (b->number == bp_num)
14495 {
14496 break;
14497 }
14498
14499 if (!b || b->number != bp_num)
14500 error (_("Bad breakpoint number '%s'"), number);
14501
14502 p1 = dot+1;
14503 loc_num = get_number (&p1);
14504 if (loc_num == 0)
14505 error (_("Bad breakpoint location number '%s'"), number);
14506
14507 --loc_num;
14508 loc = b->loc;
14509 for (;loc_num && loc; --loc_num, loc = loc->next)
14510 ;
14511 if (!loc)
14512 error (_("Bad breakpoint location number '%s'"), dot+1);
14513
14514 return loc;
14515 }
14516
14517
14518 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14519 If from_tty is nonzero, it prints a message to that effect,
14520 which ends with a period (no newline). */
14521
14522 void
14523 disable_breakpoint (struct breakpoint *bpt)
14524 {
14525 /* Never disable a watchpoint scope breakpoint; we want to
14526 hit them when we leave scope so we can delete both the
14527 watchpoint and its scope breakpoint at that time. */
14528 if (bpt->type == bp_watchpoint_scope)
14529 return;
14530
14531 /* You can't disable permanent breakpoints. */
14532 if (bpt->enable_state == bp_permanent)
14533 return;
14534
14535 bpt->enable_state = bp_disabled;
14536
14537 /* Mark breakpoint locations modified. */
14538 mark_breakpoint_modified (bpt);
14539
14540 if (target_supports_enable_disable_tracepoint ()
14541 && current_trace_status ()->running && is_tracepoint (bpt))
14542 {
14543 struct bp_location *location;
14544
14545 for (location = bpt->loc; location; location = location->next)
14546 target_disable_tracepoint (location);
14547 }
14548
14549 update_global_location_list (0);
14550
14551 observer_notify_breakpoint_modified (bpt);
14552 }
14553
14554 /* A callback for iterate_over_related_breakpoints. */
14555
14556 static void
14557 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14558 {
14559 disable_breakpoint (b);
14560 }
14561
14562 /* A callback for map_breakpoint_numbers that calls
14563 disable_breakpoint. */
14564
14565 static void
14566 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14567 {
14568 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14569 }
14570
14571 static void
14572 disable_command (char *args, int from_tty)
14573 {
14574 if (args == 0)
14575 {
14576 struct breakpoint *bpt;
14577
14578 ALL_BREAKPOINTS (bpt)
14579 if (user_breakpoint_p (bpt))
14580 disable_breakpoint (bpt);
14581 }
14582 else
14583 {
14584 char *num = extract_arg (&args);
14585
14586 while (num)
14587 {
14588 if (strchr (num, '.'))
14589 {
14590 struct bp_location *loc = find_location_by_number (num);
14591
14592 if (loc)
14593 {
14594 if (loc->enabled)
14595 {
14596 loc->enabled = 0;
14597 mark_breakpoint_location_modified (loc);
14598 }
14599 if (target_supports_enable_disable_tracepoint ()
14600 && current_trace_status ()->running && loc->owner
14601 && is_tracepoint (loc->owner))
14602 target_disable_tracepoint (loc);
14603 }
14604 update_global_location_list (0);
14605 }
14606 else
14607 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14608 num = extract_arg (&args);
14609 }
14610 }
14611 }
14612
14613 static void
14614 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14615 int count)
14616 {
14617 int target_resources_ok;
14618
14619 if (bpt->type == bp_hardware_breakpoint)
14620 {
14621 int i;
14622 i = hw_breakpoint_used_count ();
14623 target_resources_ok =
14624 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14625 i + 1, 0);
14626 if (target_resources_ok == 0)
14627 error (_("No hardware breakpoint support in the target."));
14628 else if (target_resources_ok < 0)
14629 error (_("Hardware breakpoints used exceeds limit."));
14630 }
14631
14632 if (is_watchpoint (bpt))
14633 {
14634 /* Initialize it just to avoid a GCC false warning. */
14635 enum enable_state orig_enable_state = 0;
14636 volatile struct gdb_exception e;
14637
14638 TRY_CATCH (e, RETURN_MASK_ALL)
14639 {
14640 struct watchpoint *w = (struct watchpoint *) bpt;
14641
14642 orig_enable_state = bpt->enable_state;
14643 bpt->enable_state = bp_enabled;
14644 update_watchpoint (w, 1 /* reparse */);
14645 }
14646 if (e.reason < 0)
14647 {
14648 bpt->enable_state = orig_enable_state;
14649 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14650 bpt->number);
14651 return;
14652 }
14653 }
14654
14655 if (bpt->enable_state != bp_permanent)
14656 bpt->enable_state = bp_enabled;
14657
14658 bpt->enable_state = bp_enabled;
14659
14660 /* Mark breakpoint locations modified. */
14661 mark_breakpoint_modified (bpt);
14662
14663 if (target_supports_enable_disable_tracepoint ()
14664 && current_trace_status ()->running && is_tracepoint (bpt))
14665 {
14666 struct bp_location *location;
14667
14668 for (location = bpt->loc; location; location = location->next)
14669 target_enable_tracepoint (location);
14670 }
14671
14672 bpt->disposition = disposition;
14673 bpt->enable_count = count;
14674 update_global_location_list (1);
14675
14676 observer_notify_breakpoint_modified (bpt);
14677 }
14678
14679
14680 void
14681 enable_breakpoint (struct breakpoint *bpt)
14682 {
14683 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14684 }
14685
14686 static void
14687 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14688 {
14689 enable_breakpoint (bpt);
14690 }
14691
14692 /* A callback for map_breakpoint_numbers that calls
14693 enable_breakpoint. */
14694
14695 static void
14696 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14697 {
14698 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14699 }
14700
14701 /* The enable command enables the specified breakpoints (or all defined
14702 breakpoints) so they once again become (or continue to be) effective
14703 in stopping the inferior. */
14704
14705 static void
14706 enable_command (char *args, int from_tty)
14707 {
14708 if (args == 0)
14709 {
14710 struct breakpoint *bpt;
14711
14712 ALL_BREAKPOINTS (bpt)
14713 if (user_breakpoint_p (bpt))
14714 enable_breakpoint (bpt);
14715 }
14716 else
14717 {
14718 char *num = extract_arg (&args);
14719
14720 while (num)
14721 {
14722 if (strchr (num, '.'))
14723 {
14724 struct bp_location *loc = find_location_by_number (num);
14725
14726 if (loc)
14727 {
14728 if (!loc->enabled)
14729 {
14730 loc->enabled = 1;
14731 mark_breakpoint_location_modified (loc);
14732 }
14733 if (target_supports_enable_disable_tracepoint ()
14734 && current_trace_status ()->running && loc->owner
14735 && is_tracepoint (loc->owner))
14736 target_enable_tracepoint (loc);
14737 }
14738 update_global_location_list (1);
14739 }
14740 else
14741 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14742 num = extract_arg (&args);
14743 }
14744 }
14745 }
14746
14747 /* This struct packages up disposition data for application to multiple
14748 breakpoints. */
14749
14750 struct disp_data
14751 {
14752 enum bpdisp disp;
14753 int count;
14754 };
14755
14756 static void
14757 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14758 {
14759 struct disp_data disp_data = *(struct disp_data *) arg;
14760
14761 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14762 }
14763
14764 static void
14765 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14766 {
14767 struct disp_data disp = { disp_disable, 1 };
14768
14769 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14770 }
14771
14772 static void
14773 enable_once_command (char *args, int from_tty)
14774 {
14775 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14776 }
14777
14778 static void
14779 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14780 {
14781 struct disp_data disp = { disp_disable, *(int *) countptr };
14782
14783 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14784 }
14785
14786 static void
14787 enable_count_command (char *args, int from_tty)
14788 {
14789 int count = get_number (&args);
14790
14791 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14792 }
14793
14794 static void
14795 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14796 {
14797 struct disp_data disp = { disp_del, 1 };
14798
14799 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14800 }
14801
14802 static void
14803 enable_delete_command (char *args, int from_tty)
14804 {
14805 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14806 }
14807 \f
14808 static void
14809 set_breakpoint_cmd (char *args, int from_tty)
14810 {
14811 }
14812
14813 static void
14814 show_breakpoint_cmd (char *args, int from_tty)
14815 {
14816 }
14817
14818 /* Invalidate last known value of any hardware watchpoint if
14819 the memory which that value represents has been written to by
14820 GDB itself. */
14821
14822 static void
14823 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14824 CORE_ADDR addr, ssize_t len,
14825 const bfd_byte *data)
14826 {
14827 struct breakpoint *bp;
14828
14829 ALL_BREAKPOINTS (bp)
14830 if (bp->enable_state == bp_enabled
14831 && bp->type == bp_hardware_watchpoint)
14832 {
14833 struct watchpoint *wp = (struct watchpoint *) bp;
14834
14835 if (wp->val_valid && wp->val)
14836 {
14837 struct bp_location *loc;
14838
14839 for (loc = bp->loc; loc != NULL; loc = loc->next)
14840 if (loc->loc_type == bp_loc_hardware_watchpoint
14841 && loc->address + loc->length > addr
14842 && addr + len > loc->address)
14843 {
14844 value_free (wp->val);
14845 wp->val = NULL;
14846 wp->val_valid = 0;
14847 }
14848 }
14849 }
14850 }
14851
14852 /* Create and insert a raw software breakpoint at PC. Return an
14853 identifier, which should be used to remove the breakpoint later.
14854 In general, places which call this should be using something on the
14855 breakpoint chain instead; this function should be eliminated
14856 someday. */
14857
14858 void *
14859 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14860 struct address_space *aspace, CORE_ADDR pc)
14861 {
14862 struct bp_target_info *bp_tgt;
14863
14864 bp_tgt = XZALLOC (struct bp_target_info);
14865
14866 bp_tgt->placed_address_space = aspace;
14867 bp_tgt->placed_address = pc;
14868
14869 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14870 {
14871 /* Could not insert the breakpoint. */
14872 xfree (bp_tgt);
14873 return NULL;
14874 }
14875
14876 return bp_tgt;
14877 }
14878
14879 /* Remove a breakpoint BP inserted by
14880 deprecated_insert_raw_breakpoint. */
14881
14882 int
14883 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14884 {
14885 struct bp_target_info *bp_tgt = bp;
14886 int ret;
14887
14888 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14889 xfree (bp_tgt);
14890
14891 return ret;
14892 }
14893
14894 /* One (or perhaps two) breakpoints used for software single
14895 stepping. */
14896
14897 static void *single_step_breakpoints[2];
14898 static struct gdbarch *single_step_gdbarch[2];
14899
14900 /* Create and insert a breakpoint for software single step. */
14901
14902 void
14903 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14904 struct address_space *aspace,
14905 CORE_ADDR next_pc)
14906 {
14907 void **bpt_p;
14908
14909 if (single_step_breakpoints[0] == NULL)
14910 {
14911 bpt_p = &single_step_breakpoints[0];
14912 single_step_gdbarch[0] = gdbarch;
14913 }
14914 else
14915 {
14916 gdb_assert (single_step_breakpoints[1] == NULL);
14917 bpt_p = &single_step_breakpoints[1];
14918 single_step_gdbarch[1] = gdbarch;
14919 }
14920
14921 /* NOTE drow/2006-04-11: A future improvement to this function would
14922 be to only create the breakpoints once, and actually put them on
14923 the breakpoint chain. That would let us use set_raw_breakpoint.
14924 We could adjust the addresses each time they were needed. Doing
14925 this requires corresponding changes elsewhere where single step
14926 breakpoints are handled, however. So, for now, we use this. */
14927
14928 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14929 if (*bpt_p == NULL)
14930 error (_("Could not insert single-step breakpoint at %s"),
14931 paddress (gdbarch, next_pc));
14932 }
14933
14934 /* Check if the breakpoints used for software single stepping
14935 were inserted or not. */
14936
14937 int
14938 single_step_breakpoints_inserted (void)
14939 {
14940 return (single_step_breakpoints[0] != NULL
14941 || single_step_breakpoints[1] != NULL);
14942 }
14943
14944 /* Remove and delete any breakpoints used for software single step. */
14945
14946 void
14947 remove_single_step_breakpoints (void)
14948 {
14949 gdb_assert (single_step_breakpoints[0] != NULL);
14950
14951 /* See insert_single_step_breakpoint for more about this deprecated
14952 call. */
14953 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14954 single_step_breakpoints[0]);
14955 single_step_gdbarch[0] = NULL;
14956 single_step_breakpoints[0] = NULL;
14957
14958 if (single_step_breakpoints[1] != NULL)
14959 {
14960 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14961 single_step_breakpoints[1]);
14962 single_step_gdbarch[1] = NULL;
14963 single_step_breakpoints[1] = NULL;
14964 }
14965 }
14966
14967 /* Delete software single step breakpoints without removing them from
14968 the inferior. This is intended to be used if the inferior's address
14969 space where they were inserted is already gone, e.g. after exit or
14970 exec. */
14971
14972 void
14973 cancel_single_step_breakpoints (void)
14974 {
14975 int i;
14976
14977 for (i = 0; i < 2; i++)
14978 if (single_step_breakpoints[i])
14979 {
14980 xfree (single_step_breakpoints[i]);
14981 single_step_breakpoints[i] = NULL;
14982 single_step_gdbarch[i] = NULL;
14983 }
14984 }
14985
14986 /* Detach software single-step breakpoints from INFERIOR_PTID without
14987 removing them. */
14988
14989 static void
14990 detach_single_step_breakpoints (void)
14991 {
14992 int i;
14993
14994 for (i = 0; i < 2; i++)
14995 if (single_step_breakpoints[i])
14996 target_remove_breakpoint (single_step_gdbarch[i],
14997 single_step_breakpoints[i]);
14998 }
14999
15000 /* Check whether a software single-step breakpoint is inserted at
15001 PC. */
15002
15003 static int
15004 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15005 CORE_ADDR pc)
15006 {
15007 int i;
15008
15009 for (i = 0; i < 2; i++)
15010 {
15011 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15012 if (bp_tgt
15013 && breakpoint_address_match (bp_tgt->placed_address_space,
15014 bp_tgt->placed_address,
15015 aspace, pc))
15016 return 1;
15017 }
15018
15019 return 0;
15020 }
15021
15022 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15023 non-zero otherwise. */
15024 static int
15025 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15026 {
15027 if (syscall_catchpoint_p (bp)
15028 && bp->enable_state != bp_disabled
15029 && bp->enable_state != bp_call_disabled)
15030 return 1;
15031 else
15032 return 0;
15033 }
15034
15035 int
15036 catch_syscall_enabled (void)
15037 {
15038 struct catch_syscall_inferior_data *inf_data
15039 = get_catch_syscall_inferior_data (current_inferior ());
15040
15041 return inf_data->total_syscalls_count != 0;
15042 }
15043
15044 int
15045 catching_syscall_number (int syscall_number)
15046 {
15047 struct breakpoint *bp;
15048
15049 ALL_BREAKPOINTS (bp)
15050 if (is_syscall_catchpoint_enabled (bp))
15051 {
15052 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15053
15054 if (c->syscalls_to_be_caught)
15055 {
15056 int i, iter;
15057 for (i = 0;
15058 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15059 i++)
15060 if (syscall_number == iter)
15061 return 1;
15062 }
15063 else
15064 return 1;
15065 }
15066
15067 return 0;
15068 }
15069
15070 /* Complete syscall names. Used by "catch syscall". */
15071 static VEC (char_ptr) *
15072 catch_syscall_completer (struct cmd_list_element *cmd,
15073 const char *text, const char *word)
15074 {
15075 const char **list = get_syscall_names ();
15076 VEC (char_ptr) *retlist
15077 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15078
15079 xfree (list);
15080 return retlist;
15081 }
15082
15083 /* Tracepoint-specific operations. */
15084
15085 /* Set tracepoint count to NUM. */
15086 static void
15087 set_tracepoint_count (int num)
15088 {
15089 tracepoint_count = num;
15090 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15091 }
15092
15093 static void
15094 trace_command (char *arg, int from_tty)
15095 {
15096 struct breakpoint_ops *ops;
15097 const char *arg_cp = arg;
15098
15099 if (arg && probe_linespec_to_ops (&arg_cp))
15100 ops = &tracepoint_probe_breakpoint_ops;
15101 else
15102 ops = &tracepoint_breakpoint_ops;
15103
15104 create_breakpoint (get_current_arch (),
15105 arg,
15106 NULL, 0, NULL, 1 /* parse arg */,
15107 0 /* tempflag */,
15108 bp_tracepoint /* type_wanted */,
15109 0 /* Ignore count */,
15110 pending_break_support,
15111 ops,
15112 from_tty,
15113 1 /* enabled */,
15114 0 /* internal */, 0);
15115 }
15116
15117 static void
15118 ftrace_command (char *arg, int from_tty)
15119 {
15120 create_breakpoint (get_current_arch (),
15121 arg,
15122 NULL, 0, NULL, 1 /* parse arg */,
15123 0 /* tempflag */,
15124 bp_fast_tracepoint /* type_wanted */,
15125 0 /* Ignore count */,
15126 pending_break_support,
15127 &tracepoint_breakpoint_ops,
15128 from_tty,
15129 1 /* enabled */,
15130 0 /* internal */, 0);
15131 }
15132
15133 /* strace command implementation. Creates a static tracepoint. */
15134
15135 static void
15136 strace_command (char *arg, int from_tty)
15137 {
15138 struct breakpoint_ops *ops;
15139
15140 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15141 or with a normal static tracepoint. */
15142 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15143 ops = &strace_marker_breakpoint_ops;
15144 else
15145 ops = &tracepoint_breakpoint_ops;
15146
15147 create_breakpoint (get_current_arch (),
15148 arg,
15149 NULL, 0, NULL, 1 /* parse arg */,
15150 0 /* tempflag */,
15151 bp_static_tracepoint /* type_wanted */,
15152 0 /* Ignore count */,
15153 pending_break_support,
15154 ops,
15155 from_tty,
15156 1 /* enabled */,
15157 0 /* internal */, 0);
15158 }
15159
15160 /* Set up a fake reader function that gets command lines from a linked
15161 list that was acquired during tracepoint uploading. */
15162
15163 static struct uploaded_tp *this_utp;
15164 static int next_cmd;
15165
15166 static char *
15167 read_uploaded_action (void)
15168 {
15169 char *rslt;
15170
15171 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15172
15173 next_cmd++;
15174
15175 return rslt;
15176 }
15177
15178 /* Given information about a tracepoint as recorded on a target (which
15179 can be either a live system or a trace file), attempt to create an
15180 equivalent GDB tracepoint. This is not a reliable process, since
15181 the target does not necessarily have all the information used when
15182 the tracepoint was originally defined. */
15183
15184 struct tracepoint *
15185 create_tracepoint_from_upload (struct uploaded_tp *utp)
15186 {
15187 char *addr_str, small_buf[100];
15188 struct tracepoint *tp;
15189
15190 if (utp->at_string)
15191 addr_str = utp->at_string;
15192 else
15193 {
15194 /* In the absence of a source location, fall back to raw
15195 address. Since there is no way to confirm that the address
15196 means the same thing as when the trace was started, warn the
15197 user. */
15198 warning (_("Uploaded tracepoint %d has no "
15199 "source location, using raw address"),
15200 utp->number);
15201 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15202 addr_str = small_buf;
15203 }
15204
15205 /* There's not much we can do with a sequence of bytecodes. */
15206 if (utp->cond && !utp->cond_string)
15207 warning (_("Uploaded tracepoint %d condition "
15208 "has no source form, ignoring it"),
15209 utp->number);
15210
15211 if (!create_breakpoint (get_current_arch (),
15212 addr_str,
15213 utp->cond_string, -1, NULL,
15214 0 /* parse cond/thread */,
15215 0 /* tempflag */,
15216 utp->type /* type_wanted */,
15217 0 /* Ignore count */,
15218 pending_break_support,
15219 &tracepoint_breakpoint_ops,
15220 0 /* from_tty */,
15221 utp->enabled /* enabled */,
15222 0 /* internal */,
15223 CREATE_BREAKPOINT_FLAGS_INSERTED))
15224 return NULL;
15225
15226 /* Get the tracepoint we just created. */
15227 tp = get_tracepoint (tracepoint_count);
15228 gdb_assert (tp != NULL);
15229
15230 if (utp->pass > 0)
15231 {
15232 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15233 tp->base.number);
15234
15235 trace_pass_command (small_buf, 0);
15236 }
15237
15238 /* If we have uploaded versions of the original commands, set up a
15239 special-purpose "reader" function and call the usual command line
15240 reader, then pass the result to the breakpoint command-setting
15241 function. */
15242 if (!VEC_empty (char_ptr, utp->cmd_strings))
15243 {
15244 struct command_line *cmd_list;
15245
15246 this_utp = utp;
15247 next_cmd = 0;
15248
15249 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15250
15251 breakpoint_set_commands (&tp->base, cmd_list);
15252 }
15253 else if (!VEC_empty (char_ptr, utp->actions)
15254 || !VEC_empty (char_ptr, utp->step_actions))
15255 warning (_("Uploaded tracepoint %d actions "
15256 "have no source form, ignoring them"),
15257 utp->number);
15258
15259 /* Copy any status information that might be available. */
15260 tp->base.hit_count = utp->hit_count;
15261 tp->traceframe_usage = utp->traceframe_usage;
15262
15263 return tp;
15264 }
15265
15266 /* Print information on tracepoint number TPNUM_EXP, or all if
15267 omitted. */
15268
15269 static void
15270 tracepoints_info (char *args, int from_tty)
15271 {
15272 struct ui_out *uiout = current_uiout;
15273 int num_printed;
15274
15275 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15276
15277 if (num_printed == 0)
15278 {
15279 if (args == NULL || *args == '\0')
15280 ui_out_message (uiout, 0, "No tracepoints.\n");
15281 else
15282 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15283 }
15284
15285 default_collect_info ();
15286 }
15287
15288 /* The 'enable trace' command enables tracepoints.
15289 Not supported by all targets. */
15290 static void
15291 enable_trace_command (char *args, int from_tty)
15292 {
15293 enable_command (args, from_tty);
15294 }
15295
15296 /* The 'disable trace' command disables tracepoints.
15297 Not supported by all targets. */
15298 static void
15299 disable_trace_command (char *args, int from_tty)
15300 {
15301 disable_command (args, from_tty);
15302 }
15303
15304 /* Remove a tracepoint (or all if no argument). */
15305 static void
15306 delete_trace_command (char *arg, int from_tty)
15307 {
15308 struct breakpoint *b, *b_tmp;
15309
15310 dont_repeat ();
15311
15312 if (arg == 0)
15313 {
15314 int breaks_to_delete = 0;
15315
15316 /* Delete all breakpoints if no argument.
15317 Do not delete internal or call-dummy breakpoints, these
15318 have to be deleted with an explicit breakpoint number
15319 argument. */
15320 ALL_TRACEPOINTS (b)
15321 if (is_tracepoint (b) && user_breakpoint_p (b))
15322 {
15323 breaks_to_delete = 1;
15324 break;
15325 }
15326
15327 /* Ask user only if there are some breakpoints to delete. */
15328 if (!from_tty
15329 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15330 {
15331 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15332 if (is_tracepoint (b) && user_breakpoint_p (b))
15333 delete_breakpoint (b);
15334 }
15335 }
15336 else
15337 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15338 }
15339
15340 /* Helper function for trace_pass_command. */
15341
15342 static void
15343 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15344 {
15345 tp->pass_count = count;
15346 observer_notify_breakpoint_modified (&tp->base);
15347 if (from_tty)
15348 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15349 tp->base.number, count);
15350 }
15351
15352 /* Set passcount for tracepoint.
15353
15354 First command argument is passcount, second is tracepoint number.
15355 If tracepoint number omitted, apply to most recently defined.
15356 Also accepts special argument "all". */
15357
15358 static void
15359 trace_pass_command (char *args, int from_tty)
15360 {
15361 struct tracepoint *t1;
15362 unsigned int count;
15363
15364 if (args == 0 || *args == 0)
15365 error (_("passcount command requires an "
15366 "argument (count + optional TP num)"));
15367
15368 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15369
15370 args = skip_spaces (args);
15371 if (*args && strncasecmp (args, "all", 3) == 0)
15372 {
15373 struct breakpoint *b;
15374
15375 args += 3; /* Skip special argument "all". */
15376 if (*args)
15377 error (_("Junk at end of arguments."));
15378
15379 ALL_TRACEPOINTS (b)
15380 {
15381 t1 = (struct tracepoint *) b;
15382 trace_pass_set_count (t1, count, from_tty);
15383 }
15384 }
15385 else if (*args == '\0')
15386 {
15387 t1 = get_tracepoint_by_number (&args, NULL, 1);
15388 if (t1)
15389 trace_pass_set_count (t1, count, from_tty);
15390 }
15391 else
15392 {
15393 struct get_number_or_range_state state;
15394
15395 init_number_or_range (&state, args);
15396 while (!state.finished)
15397 {
15398 t1 = get_tracepoint_by_number (&args, &state, 1);
15399 if (t1)
15400 trace_pass_set_count (t1, count, from_tty);
15401 }
15402 }
15403 }
15404
15405 struct tracepoint *
15406 get_tracepoint (int num)
15407 {
15408 struct breakpoint *t;
15409
15410 ALL_TRACEPOINTS (t)
15411 if (t->number == num)
15412 return (struct tracepoint *) t;
15413
15414 return NULL;
15415 }
15416
15417 /* Find the tracepoint with the given target-side number (which may be
15418 different from the tracepoint number after disconnecting and
15419 reconnecting). */
15420
15421 struct tracepoint *
15422 get_tracepoint_by_number_on_target (int num)
15423 {
15424 struct breakpoint *b;
15425
15426 ALL_TRACEPOINTS (b)
15427 {
15428 struct tracepoint *t = (struct tracepoint *) b;
15429
15430 if (t->number_on_target == num)
15431 return t;
15432 }
15433
15434 return NULL;
15435 }
15436
15437 /* Utility: parse a tracepoint number and look it up in the list.
15438 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15439 If OPTIONAL_P is true, then if the argument is missing, the most
15440 recent tracepoint (tracepoint_count) is returned. */
15441 struct tracepoint *
15442 get_tracepoint_by_number (char **arg,
15443 struct get_number_or_range_state *state,
15444 int optional_p)
15445 {
15446 struct breakpoint *t;
15447 int tpnum;
15448 char *instring = arg == NULL ? NULL : *arg;
15449
15450 if (state)
15451 {
15452 gdb_assert (!state->finished);
15453 tpnum = get_number_or_range (state);
15454 }
15455 else if (arg == NULL || *arg == NULL || ! **arg)
15456 {
15457 if (optional_p)
15458 tpnum = tracepoint_count;
15459 else
15460 error_no_arg (_("tracepoint number"));
15461 }
15462 else
15463 tpnum = get_number (arg);
15464
15465 if (tpnum <= 0)
15466 {
15467 if (instring && *instring)
15468 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15469 instring);
15470 else
15471 printf_filtered (_("Tracepoint argument missing "
15472 "and no previous tracepoint\n"));
15473 return NULL;
15474 }
15475
15476 ALL_TRACEPOINTS (t)
15477 if (t->number == tpnum)
15478 {
15479 return (struct tracepoint *) t;
15480 }
15481
15482 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15483 return NULL;
15484 }
15485
15486 void
15487 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15488 {
15489 if (b->thread != -1)
15490 fprintf_unfiltered (fp, " thread %d", b->thread);
15491
15492 if (b->task != 0)
15493 fprintf_unfiltered (fp, " task %d", b->task);
15494
15495 fprintf_unfiltered (fp, "\n");
15496 }
15497
15498 /* Save information on user settable breakpoints (watchpoints, etc) to
15499 a new script file named FILENAME. If FILTER is non-NULL, call it
15500 on each breakpoint and only include the ones for which it returns
15501 non-zero. */
15502
15503 static void
15504 save_breakpoints (char *filename, int from_tty,
15505 int (*filter) (const struct breakpoint *))
15506 {
15507 struct breakpoint *tp;
15508 int any = 0;
15509 struct cleanup *cleanup;
15510 struct ui_file *fp;
15511 int extra_trace_bits = 0;
15512
15513 if (filename == 0 || *filename == 0)
15514 error (_("Argument required (file name in which to save)"));
15515
15516 /* See if we have anything to save. */
15517 ALL_BREAKPOINTS (tp)
15518 {
15519 /* Skip internal and momentary breakpoints. */
15520 if (!user_breakpoint_p (tp))
15521 continue;
15522
15523 /* If we have a filter, only save the breakpoints it accepts. */
15524 if (filter && !filter (tp))
15525 continue;
15526
15527 any = 1;
15528
15529 if (is_tracepoint (tp))
15530 {
15531 extra_trace_bits = 1;
15532
15533 /* We can stop searching. */
15534 break;
15535 }
15536 }
15537
15538 if (!any)
15539 {
15540 warning (_("Nothing to save."));
15541 return;
15542 }
15543
15544 filename = tilde_expand (filename);
15545 cleanup = make_cleanup (xfree, filename);
15546 fp = gdb_fopen (filename, "w");
15547 if (!fp)
15548 error (_("Unable to open file '%s' for saving (%s)"),
15549 filename, safe_strerror (errno));
15550 make_cleanup_ui_file_delete (fp);
15551
15552 if (extra_trace_bits)
15553 save_trace_state_variables (fp);
15554
15555 ALL_BREAKPOINTS (tp)
15556 {
15557 /* Skip internal and momentary breakpoints. */
15558 if (!user_breakpoint_p (tp))
15559 continue;
15560
15561 /* If we have a filter, only save the breakpoints it accepts. */
15562 if (filter && !filter (tp))
15563 continue;
15564
15565 tp->ops->print_recreate (tp, fp);
15566
15567 /* Note, we can't rely on tp->number for anything, as we can't
15568 assume the recreated breakpoint numbers will match. Use $bpnum
15569 instead. */
15570
15571 if (tp->cond_string)
15572 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15573
15574 if (tp->ignore_count)
15575 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15576
15577 if (tp->type != bp_dprintf && tp->commands)
15578 {
15579 volatile struct gdb_exception ex;
15580
15581 fprintf_unfiltered (fp, " commands\n");
15582
15583 ui_out_redirect (current_uiout, fp);
15584 TRY_CATCH (ex, RETURN_MASK_ALL)
15585 {
15586 print_command_lines (current_uiout, tp->commands->commands, 2);
15587 }
15588 ui_out_redirect (current_uiout, NULL);
15589
15590 if (ex.reason < 0)
15591 throw_exception (ex);
15592
15593 fprintf_unfiltered (fp, " end\n");
15594 }
15595
15596 if (tp->enable_state == bp_disabled)
15597 fprintf_unfiltered (fp, "disable\n");
15598
15599 /* If this is a multi-location breakpoint, check if the locations
15600 should be individually disabled. Watchpoint locations are
15601 special, and not user visible. */
15602 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15603 {
15604 struct bp_location *loc;
15605 int n = 1;
15606
15607 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15608 if (!loc->enabled)
15609 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15610 }
15611 }
15612
15613 if (extra_trace_bits && *default_collect)
15614 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15615
15616 if (from_tty)
15617 printf_filtered (_("Saved to file '%s'.\n"), filename);
15618 do_cleanups (cleanup);
15619 }
15620
15621 /* The `save breakpoints' command. */
15622
15623 static void
15624 save_breakpoints_command (char *args, int from_tty)
15625 {
15626 save_breakpoints (args, from_tty, NULL);
15627 }
15628
15629 /* The `save tracepoints' command. */
15630
15631 static void
15632 save_tracepoints_command (char *args, int from_tty)
15633 {
15634 save_breakpoints (args, from_tty, is_tracepoint);
15635 }
15636
15637 /* Create a vector of all tracepoints. */
15638
15639 VEC(breakpoint_p) *
15640 all_tracepoints (void)
15641 {
15642 VEC(breakpoint_p) *tp_vec = 0;
15643 struct breakpoint *tp;
15644
15645 ALL_TRACEPOINTS (tp)
15646 {
15647 VEC_safe_push (breakpoint_p, tp_vec, tp);
15648 }
15649
15650 return tp_vec;
15651 }
15652
15653 \f
15654 /* This help string is used for the break, hbreak, tbreak and thbreak
15655 commands. It is defined as a macro to prevent duplication.
15656 COMMAND should be a string constant containing the name of the
15657 command. */
15658 #define BREAK_ARGS_HELP(command) \
15659 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15660 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15661 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15662 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15663 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15664 If a line number is specified, break at start of code for that line.\n\
15665 If a function is specified, break at start of code for that function.\n\
15666 If an address is specified, break at that exact address.\n\
15667 With no LOCATION, uses current execution address of the selected\n\
15668 stack frame. This is useful for breaking on return to a stack frame.\n\
15669 \n\
15670 THREADNUM is the number from \"info threads\".\n\
15671 CONDITION is a boolean expression.\n\
15672 \n\
15673 Multiple breakpoints at one place are permitted, and useful if their\n\
15674 conditions are different.\n\
15675 \n\
15676 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15677
15678 /* List of subcommands for "catch". */
15679 static struct cmd_list_element *catch_cmdlist;
15680
15681 /* List of subcommands for "tcatch". */
15682 static struct cmd_list_element *tcatch_cmdlist;
15683
15684 void
15685 add_catch_command (char *name, char *docstring,
15686 void (*sfunc) (char *args, int from_tty,
15687 struct cmd_list_element *command),
15688 completer_ftype *completer,
15689 void *user_data_catch,
15690 void *user_data_tcatch)
15691 {
15692 struct cmd_list_element *command;
15693
15694 command = add_cmd (name, class_breakpoint, NULL, docstring,
15695 &catch_cmdlist);
15696 set_cmd_sfunc (command, sfunc);
15697 set_cmd_context (command, user_data_catch);
15698 set_cmd_completer (command, completer);
15699
15700 command = add_cmd (name, class_breakpoint, NULL, docstring,
15701 &tcatch_cmdlist);
15702 set_cmd_sfunc (command, sfunc);
15703 set_cmd_context (command, user_data_tcatch);
15704 set_cmd_completer (command, completer);
15705 }
15706
15707 static void
15708 clear_syscall_counts (struct inferior *inf)
15709 {
15710 struct catch_syscall_inferior_data *inf_data
15711 = get_catch_syscall_inferior_data (inf);
15712
15713 inf_data->total_syscalls_count = 0;
15714 inf_data->any_syscall_count = 0;
15715 VEC_free (int, inf_data->syscalls_counts);
15716 }
15717
15718 static void
15719 save_command (char *arg, int from_tty)
15720 {
15721 printf_unfiltered (_("\"save\" must be followed by "
15722 "the name of a save subcommand.\n"));
15723 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15724 }
15725
15726 struct breakpoint *
15727 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15728 void *data)
15729 {
15730 struct breakpoint *b, *b_tmp;
15731
15732 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15733 {
15734 if ((*callback) (b, data))
15735 return b;
15736 }
15737
15738 return NULL;
15739 }
15740
15741 /* Zero if any of the breakpoint's locations could be a location where
15742 functions have been inlined, nonzero otherwise. */
15743
15744 static int
15745 is_non_inline_function (struct breakpoint *b)
15746 {
15747 /* The shared library event breakpoint is set on the address of a
15748 non-inline function. */
15749 if (b->type == bp_shlib_event)
15750 return 1;
15751
15752 return 0;
15753 }
15754
15755 /* Nonzero if the specified PC cannot be a location where functions
15756 have been inlined. */
15757
15758 int
15759 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15760 const struct target_waitstatus *ws)
15761 {
15762 struct breakpoint *b;
15763 struct bp_location *bl;
15764
15765 ALL_BREAKPOINTS (b)
15766 {
15767 if (!is_non_inline_function (b))
15768 continue;
15769
15770 for (bl = b->loc; bl != NULL; bl = bl->next)
15771 {
15772 if (!bl->shlib_disabled
15773 && bpstat_check_location (bl, aspace, pc, ws))
15774 return 1;
15775 }
15776 }
15777
15778 return 0;
15779 }
15780
15781 /* Remove any references to OBJFILE which is going to be freed. */
15782
15783 void
15784 breakpoint_free_objfile (struct objfile *objfile)
15785 {
15786 struct bp_location **locp, *loc;
15787
15788 ALL_BP_LOCATIONS (loc, locp)
15789 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15790 loc->symtab = NULL;
15791 }
15792
15793 void
15794 initialize_breakpoint_ops (void)
15795 {
15796 static int initialized = 0;
15797
15798 struct breakpoint_ops *ops;
15799
15800 if (initialized)
15801 return;
15802 initialized = 1;
15803
15804 /* The breakpoint_ops structure to be inherit by all kinds of
15805 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15806 internal and momentary breakpoints, etc.). */
15807 ops = &bkpt_base_breakpoint_ops;
15808 *ops = base_breakpoint_ops;
15809 ops->re_set = bkpt_re_set;
15810 ops->insert_location = bkpt_insert_location;
15811 ops->remove_location = bkpt_remove_location;
15812 ops->breakpoint_hit = bkpt_breakpoint_hit;
15813 ops->create_sals_from_address = bkpt_create_sals_from_address;
15814 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15815 ops->decode_linespec = bkpt_decode_linespec;
15816
15817 /* The breakpoint_ops structure to be used in regular breakpoints. */
15818 ops = &bkpt_breakpoint_ops;
15819 *ops = bkpt_base_breakpoint_ops;
15820 ops->re_set = bkpt_re_set;
15821 ops->resources_needed = bkpt_resources_needed;
15822 ops->print_it = bkpt_print_it;
15823 ops->print_mention = bkpt_print_mention;
15824 ops->print_recreate = bkpt_print_recreate;
15825
15826 /* Ranged breakpoints. */
15827 ops = &ranged_breakpoint_ops;
15828 *ops = bkpt_breakpoint_ops;
15829 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15830 ops->resources_needed = resources_needed_ranged_breakpoint;
15831 ops->print_it = print_it_ranged_breakpoint;
15832 ops->print_one = print_one_ranged_breakpoint;
15833 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15834 ops->print_mention = print_mention_ranged_breakpoint;
15835 ops->print_recreate = print_recreate_ranged_breakpoint;
15836
15837 /* Internal breakpoints. */
15838 ops = &internal_breakpoint_ops;
15839 *ops = bkpt_base_breakpoint_ops;
15840 ops->re_set = internal_bkpt_re_set;
15841 ops->check_status = internal_bkpt_check_status;
15842 ops->print_it = internal_bkpt_print_it;
15843 ops->print_mention = internal_bkpt_print_mention;
15844
15845 /* Momentary breakpoints. */
15846 ops = &momentary_breakpoint_ops;
15847 *ops = bkpt_base_breakpoint_ops;
15848 ops->re_set = momentary_bkpt_re_set;
15849 ops->check_status = momentary_bkpt_check_status;
15850 ops->print_it = momentary_bkpt_print_it;
15851 ops->print_mention = momentary_bkpt_print_mention;
15852
15853 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15854 ops = &longjmp_breakpoint_ops;
15855 *ops = momentary_breakpoint_ops;
15856 ops->dtor = longjmp_bkpt_dtor;
15857
15858 /* Probe breakpoints. */
15859 ops = &bkpt_probe_breakpoint_ops;
15860 *ops = bkpt_breakpoint_ops;
15861 ops->insert_location = bkpt_probe_insert_location;
15862 ops->remove_location = bkpt_probe_remove_location;
15863 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15864 ops->decode_linespec = bkpt_probe_decode_linespec;
15865
15866 /* Watchpoints. */
15867 ops = &watchpoint_breakpoint_ops;
15868 *ops = base_breakpoint_ops;
15869 ops->dtor = dtor_watchpoint;
15870 ops->re_set = re_set_watchpoint;
15871 ops->insert_location = insert_watchpoint;
15872 ops->remove_location = remove_watchpoint;
15873 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15874 ops->check_status = check_status_watchpoint;
15875 ops->resources_needed = resources_needed_watchpoint;
15876 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15877 ops->print_it = print_it_watchpoint;
15878 ops->print_mention = print_mention_watchpoint;
15879 ops->print_recreate = print_recreate_watchpoint;
15880 ops->explains_signal = explains_signal_watchpoint;
15881
15882 /* Masked watchpoints. */
15883 ops = &masked_watchpoint_breakpoint_ops;
15884 *ops = watchpoint_breakpoint_ops;
15885 ops->insert_location = insert_masked_watchpoint;
15886 ops->remove_location = remove_masked_watchpoint;
15887 ops->resources_needed = resources_needed_masked_watchpoint;
15888 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15889 ops->print_it = print_it_masked_watchpoint;
15890 ops->print_one_detail = print_one_detail_masked_watchpoint;
15891 ops->print_mention = print_mention_masked_watchpoint;
15892 ops->print_recreate = print_recreate_masked_watchpoint;
15893
15894 /* Tracepoints. */
15895 ops = &tracepoint_breakpoint_ops;
15896 *ops = base_breakpoint_ops;
15897 ops->re_set = tracepoint_re_set;
15898 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15899 ops->print_one_detail = tracepoint_print_one_detail;
15900 ops->print_mention = tracepoint_print_mention;
15901 ops->print_recreate = tracepoint_print_recreate;
15902 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15903 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15904 ops->decode_linespec = tracepoint_decode_linespec;
15905
15906 /* Probe tracepoints. */
15907 ops = &tracepoint_probe_breakpoint_ops;
15908 *ops = tracepoint_breakpoint_ops;
15909 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15910 ops->decode_linespec = tracepoint_probe_decode_linespec;
15911
15912 /* Static tracepoints with marker (`-m'). */
15913 ops = &strace_marker_breakpoint_ops;
15914 *ops = tracepoint_breakpoint_ops;
15915 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15916 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15917 ops->decode_linespec = strace_marker_decode_linespec;
15918
15919 /* Fork catchpoints. */
15920 ops = &catch_fork_breakpoint_ops;
15921 *ops = base_breakpoint_ops;
15922 ops->insert_location = insert_catch_fork;
15923 ops->remove_location = remove_catch_fork;
15924 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15925 ops->print_it = print_it_catch_fork;
15926 ops->print_one = print_one_catch_fork;
15927 ops->print_mention = print_mention_catch_fork;
15928 ops->print_recreate = print_recreate_catch_fork;
15929
15930 /* Vfork catchpoints. */
15931 ops = &catch_vfork_breakpoint_ops;
15932 *ops = base_breakpoint_ops;
15933 ops->insert_location = insert_catch_vfork;
15934 ops->remove_location = remove_catch_vfork;
15935 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15936 ops->print_it = print_it_catch_vfork;
15937 ops->print_one = print_one_catch_vfork;
15938 ops->print_mention = print_mention_catch_vfork;
15939 ops->print_recreate = print_recreate_catch_vfork;
15940
15941 /* Exec catchpoints. */
15942 ops = &catch_exec_breakpoint_ops;
15943 *ops = base_breakpoint_ops;
15944 ops->dtor = dtor_catch_exec;
15945 ops->insert_location = insert_catch_exec;
15946 ops->remove_location = remove_catch_exec;
15947 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15948 ops->print_it = print_it_catch_exec;
15949 ops->print_one = print_one_catch_exec;
15950 ops->print_mention = print_mention_catch_exec;
15951 ops->print_recreate = print_recreate_catch_exec;
15952
15953 /* Syscall catchpoints. */
15954 ops = &catch_syscall_breakpoint_ops;
15955 *ops = base_breakpoint_ops;
15956 ops->dtor = dtor_catch_syscall;
15957 ops->insert_location = insert_catch_syscall;
15958 ops->remove_location = remove_catch_syscall;
15959 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15960 ops->print_it = print_it_catch_syscall;
15961 ops->print_one = print_one_catch_syscall;
15962 ops->print_mention = print_mention_catch_syscall;
15963 ops->print_recreate = print_recreate_catch_syscall;
15964
15965 /* Solib-related catchpoints. */
15966 ops = &catch_solib_breakpoint_ops;
15967 *ops = base_breakpoint_ops;
15968 ops->dtor = dtor_catch_solib;
15969 ops->insert_location = insert_catch_solib;
15970 ops->remove_location = remove_catch_solib;
15971 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15972 ops->check_status = check_status_catch_solib;
15973 ops->print_it = print_it_catch_solib;
15974 ops->print_one = print_one_catch_solib;
15975 ops->print_mention = print_mention_catch_solib;
15976 ops->print_recreate = print_recreate_catch_solib;
15977
15978 ops = &dprintf_breakpoint_ops;
15979 *ops = bkpt_base_breakpoint_ops;
15980 ops->re_set = dprintf_re_set;
15981 ops->resources_needed = bkpt_resources_needed;
15982 ops->print_it = bkpt_print_it;
15983 ops->print_mention = bkpt_print_mention;
15984 ops->print_recreate = dprintf_print_recreate;
15985 ops->after_condition_true = dprintf_after_condition_true;
15986 }
15987
15988 /* Chain containing all defined "enable breakpoint" subcommands. */
15989
15990 static struct cmd_list_element *enablebreaklist = NULL;
15991
15992 void
15993 _initialize_breakpoint (void)
15994 {
15995 struct cmd_list_element *c;
15996
15997 initialize_breakpoint_ops ();
15998
15999 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16000 observer_attach_inferior_exit (clear_syscall_counts);
16001 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16002
16003 breakpoint_objfile_key
16004 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16005
16006 catch_syscall_inferior_data
16007 = register_inferior_data_with_cleanup (NULL,
16008 catch_syscall_inferior_data_cleanup);
16009
16010 breakpoint_chain = 0;
16011 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16012 before a breakpoint is set. */
16013 breakpoint_count = 0;
16014
16015 tracepoint_count = 0;
16016
16017 add_com ("ignore", class_breakpoint, ignore_command, _("\
16018 Set ignore-count of breakpoint number N to COUNT.\n\
16019 Usage is `ignore N COUNT'."));
16020 if (xdb_commands)
16021 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16022
16023 add_com ("commands", class_breakpoint, commands_command, _("\
16024 Set commands to be executed when a breakpoint is hit.\n\
16025 Give breakpoint number as argument after \"commands\".\n\
16026 With no argument, the targeted breakpoint is the last one set.\n\
16027 The commands themselves follow starting on the next line.\n\
16028 Type a line containing \"end\" to indicate the end of them.\n\
16029 Give \"silent\" as the first line to make the breakpoint silent;\n\
16030 then no output is printed when it is hit, except what the commands print."));
16031
16032 c = add_com ("condition", class_breakpoint, condition_command, _("\
16033 Specify breakpoint number N to break only if COND is true.\n\
16034 Usage is `condition N COND', where N is an integer and COND is an\n\
16035 expression to be evaluated whenever breakpoint N is reached."));
16036 set_cmd_completer (c, condition_completer);
16037
16038 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16039 Set a temporary breakpoint.\n\
16040 Like \"break\" except the breakpoint is only temporary,\n\
16041 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16042 by using \"enable delete\" on the breakpoint number.\n\
16043 \n"
16044 BREAK_ARGS_HELP ("tbreak")));
16045 set_cmd_completer (c, location_completer);
16046
16047 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16048 Set a hardware assisted breakpoint.\n\
16049 Like \"break\" except the breakpoint requires hardware support,\n\
16050 some target hardware may not have this support.\n\
16051 \n"
16052 BREAK_ARGS_HELP ("hbreak")));
16053 set_cmd_completer (c, location_completer);
16054
16055 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16056 Set a temporary hardware assisted breakpoint.\n\
16057 Like \"hbreak\" except the breakpoint is only temporary,\n\
16058 so it will be deleted when hit.\n\
16059 \n"
16060 BREAK_ARGS_HELP ("thbreak")));
16061 set_cmd_completer (c, location_completer);
16062
16063 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16064 Enable some breakpoints.\n\
16065 Give breakpoint numbers (separated by spaces) as arguments.\n\
16066 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16067 This is used to cancel the effect of the \"disable\" command.\n\
16068 With a subcommand you can enable temporarily."),
16069 &enablelist, "enable ", 1, &cmdlist);
16070 if (xdb_commands)
16071 add_com ("ab", class_breakpoint, enable_command, _("\
16072 Enable some breakpoints.\n\
16073 Give breakpoint numbers (separated by spaces) as arguments.\n\
16074 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16075 This is used to cancel the effect of the \"disable\" command.\n\
16076 With a subcommand you can enable temporarily."));
16077
16078 add_com_alias ("en", "enable", class_breakpoint, 1);
16079
16080 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16081 Enable some breakpoints.\n\
16082 Give breakpoint numbers (separated by spaces) as arguments.\n\
16083 This is used to cancel the effect of the \"disable\" command.\n\
16084 May be abbreviated to simply \"enable\".\n"),
16085 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16086
16087 add_cmd ("once", no_class, enable_once_command, _("\
16088 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16089 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16090 &enablebreaklist);
16091
16092 add_cmd ("delete", no_class, enable_delete_command, _("\
16093 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16094 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16095 &enablebreaklist);
16096
16097 add_cmd ("count", no_class, enable_count_command, _("\
16098 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16099 If a breakpoint is hit while enabled in this fashion,\n\
16100 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16101 &enablebreaklist);
16102
16103 add_cmd ("delete", no_class, enable_delete_command, _("\
16104 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16105 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16106 &enablelist);
16107
16108 add_cmd ("once", no_class, enable_once_command, _("\
16109 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16110 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16111 &enablelist);
16112
16113 add_cmd ("count", no_class, enable_count_command, _("\
16114 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16115 If a breakpoint is hit while enabled in this fashion,\n\
16116 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16117 &enablelist);
16118
16119 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16120 Disable some breakpoints.\n\
16121 Arguments are breakpoint numbers with spaces in between.\n\
16122 To disable all breakpoints, give no argument.\n\
16123 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16124 &disablelist, "disable ", 1, &cmdlist);
16125 add_com_alias ("dis", "disable", class_breakpoint, 1);
16126 add_com_alias ("disa", "disable", class_breakpoint, 1);
16127 if (xdb_commands)
16128 add_com ("sb", class_breakpoint, disable_command, _("\
16129 Disable some breakpoints.\n\
16130 Arguments are breakpoint numbers with spaces in between.\n\
16131 To disable all breakpoints, give no argument.\n\
16132 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16133
16134 add_cmd ("breakpoints", class_alias, disable_command, _("\
16135 Disable some breakpoints.\n\
16136 Arguments are breakpoint numbers with spaces in between.\n\
16137 To disable all breakpoints, give no argument.\n\
16138 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16139 This command may be abbreviated \"disable\"."),
16140 &disablelist);
16141
16142 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16143 Delete some breakpoints or auto-display expressions.\n\
16144 Arguments are breakpoint numbers with spaces in between.\n\
16145 To delete all breakpoints, give no argument.\n\
16146 \n\
16147 Also a prefix command for deletion of other GDB objects.\n\
16148 The \"unset\" command is also an alias for \"delete\"."),
16149 &deletelist, "delete ", 1, &cmdlist);
16150 add_com_alias ("d", "delete", class_breakpoint, 1);
16151 add_com_alias ("del", "delete", class_breakpoint, 1);
16152 if (xdb_commands)
16153 add_com ("db", class_breakpoint, delete_command, _("\
16154 Delete some breakpoints.\n\
16155 Arguments are breakpoint numbers with spaces in between.\n\
16156 To delete all breakpoints, give no argument.\n"));
16157
16158 add_cmd ("breakpoints", class_alias, delete_command, _("\
16159 Delete some breakpoints or auto-display expressions.\n\
16160 Arguments are breakpoint numbers with spaces in between.\n\
16161 To delete all breakpoints, give no argument.\n\
16162 This command may be abbreviated \"delete\"."),
16163 &deletelist);
16164
16165 add_com ("clear", class_breakpoint, clear_command, _("\
16166 Clear breakpoint at specified line or function.\n\
16167 Argument may be line number, function name, or \"*\" and an address.\n\
16168 If line number is specified, all breakpoints in that line are cleared.\n\
16169 If function is specified, breakpoints at beginning of function are cleared.\n\
16170 If an address is specified, breakpoints at that address are cleared.\n\
16171 \n\
16172 With no argument, clears all breakpoints in the line that the selected frame\n\
16173 is executing in.\n\
16174 \n\
16175 See also the \"delete\" command which clears breakpoints by number."));
16176 add_com_alias ("cl", "clear", class_breakpoint, 1);
16177
16178 c = add_com ("break", class_breakpoint, break_command, _("\
16179 Set breakpoint at specified line or function.\n"
16180 BREAK_ARGS_HELP ("break")));
16181 set_cmd_completer (c, location_completer);
16182
16183 add_com_alias ("b", "break", class_run, 1);
16184 add_com_alias ("br", "break", class_run, 1);
16185 add_com_alias ("bre", "break", class_run, 1);
16186 add_com_alias ("brea", "break", class_run, 1);
16187
16188 if (xdb_commands)
16189 add_com_alias ("ba", "break", class_breakpoint, 1);
16190
16191 if (dbx_commands)
16192 {
16193 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16194 Break in function/address or break at a line in the current file."),
16195 &stoplist, "stop ", 1, &cmdlist);
16196 add_cmd ("in", class_breakpoint, stopin_command,
16197 _("Break in function or address."), &stoplist);
16198 add_cmd ("at", class_breakpoint, stopat_command,
16199 _("Break at a line in the current file."), &stoplist);
16200 add_com ("status", class_info, breakpoints_info, _("\
16201 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16202 The \"Type\" column indicates one of:\n\
16203 \tbreakpoint - normal breakpoint\n\
16204 \twatchpoint - watchpoint\n\
16205 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16206 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16207 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16208 address and file/line number respectively.\n\
16209 \n\
16210 Convenience variable \"$_\" and default examine address for \"x\"\n\
16211 are set to the address of the last breakpoint listed unless the command\n\
16212 is prefixed with \"server \".\n\n\
16213 Convenience variable \"$bpnum\" contains the number of the last\n\
16214 breakpoint set."));
16215 }
16216
16217 add_info ("breakpoints", breakpoints_info, _("\
16218 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16219 The \"Type\" column indicates one of:\n\
16220 \tbreakpoint - normal breakpoint\n\
16221 \twatchpoint - watchpoint\n\
16222 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16223 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16224 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16225 address and file/line number respectively.\n\
16226 \n\
16227 Convenience variable \"$_\" and default examine address for \"x\"\n\
16228 are set to the address of the last breakpoint listed unless the command\n\
16229 is prefixed with \"server \".\n\n\
16230 Convenience variable \"$bpnum\" contains the number of the last\n\
16231 breakpoint set."));
16232
16233 add_info_alias ("b", "breakpoints", 1);
16234
16235 if (xdb_commands)
16236 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16237 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16238 The \"Type\" column indicates one of:\n\
16239 \tbreakpoint - normal breakpoint\n\
16240 \twatchpoint - watchpoint\n\
16241 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16242 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16243 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16244 address and file/line number respectively.\n\
16245 \n\
16246 Convenience variable \"$_\" and default examine address for \"x\"\n\
16247 are set to the address of the last breakpoint listed unless the command\n\
16248 is prefixed with \"server \".\n\n\
16249 Convenience variable \"$bpnum\" contains the number of the last\n\
16250 breakpoint set."));
16251
16252 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16253 Status of all breakpoints, or breakpoint number NUMBER.\n\
16254 The \"Type\" column indicates one of:\n\
16255 \tbreakpoint - normal breakpoint\n\
16256 \twatchpoint - watchpoint\n\
16257 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16258 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16259 \tuntil - internal breakpoint used by the \"until\" command\n\
16260 \tfinish - internal breakpoint used by the \"finish\" command\n\
16261 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16262 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16263 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16264 address and file/line number respectively.\n\
16265 \n\
16266 Convenience variable \"$_\" and default examine address for \"x\"\n\
16267 are set to the address of the last breakpoint listed unless the command\n\
16268 is prefixed with \"server \".\n\n\
16269 Convenience variable \"$bpnum\" contains the number of the last\n\
16270 breakpoint set."),
16271 &maintenanceinfolist);
16272
16273 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16274 Set catchpoints to catch events."),
16275 &catch_cmdlist, "catch ",
16276 0/*allow-unknown*/, &cmdlist);
16277
16278 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16279 Set temporary catchpoints to catch events."),
16280 &tcatch_cmdlist, "tcatch ",
16281 0/*allow-unknown*/, &cmdlist);
16282
16283 add_catch_command ("fork", _("Catch calls to fork."),
16284 catch_fork_command_1,
16285 NULL,
16286 (void *) (uintptr_t) catch_fork_permanent,
16287 (void *) (uintptr_t) catch_fork_temporary);
16288 add_catch_command ("vfork", _("Catch calls to vfork."),
16289 catch_fork_command_1,
16290 NULL,
16291 (void *) (uintptr_t) catch_vfork_permanent,
16292 (void *) (uintptr_t) catch_vfork_temporary);
16293 add_catch_command ("exec", _("Catch calls to exec."),
16294 catch_exec_command_1,
16295 NULL,
16296 CATCH_PERMANENT,
16297 CATCH_TEMPORARY);
16298 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16299 Usage: catch load [REGEX]\n\
16300 If REGEX is given, only stop for libraries matching the regular expression."),
16301 catch_load_command_1,
16302 NULL,
16303 CATCH_PERMANENT,
16304 CATCH_TEMPORARY);
16305 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16306 Usage: catch unload [REGEX]\n\
16307 If REGEX is given, only stop for libraries matching the regular expression."),
16308 catch_unload_command_1,
16309 NULL,
16310 CATCH_PERMANENT,
16311 CATCH_TEMPORARY);
16312 add_catch_command ("syscall", _("\
16313 Catch system calls by their names and/or numbers.\n\
16314 Arguments say which system calls to catch. If no arguments\n\
16315 are given, every system call will be caught.\n\
16316 Arguments, if given, should be one or more system call names\n\
16317 (if your system supports that), or system call numbers."),
16318 catch_syscall_command_1,
16319 catch_syscall_completer,
16320 CATCH_PERMANENT,
16321 CATCH_TEMPORARY);
16322
16323 c = add_com ("watch", class_breakpoint, watch_command, _("\
16324 Set a watchpoint for an expression.\n\
16325 Usage: watch [-l|-location] EXPRESSION\n\
16326 A watchpoint stops execution of your program whenever the value of\n\
16327 an expression changes.\n\
16328 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16329 the memory to which it refers."));
16330 set_cmd_completer (c, expression_completer);
16331
16332 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16333 Set a read watchpoint for an expression.\n\
16334 Usage: rwatch [-l|-location] EXPRESSION\n\
16335 A watchpoint stops execution of your program whenever the value of\n\
16336 an expression is read.\n\
16337 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16338 the memory to which it refers."));
16339 set_cmd_completer (c, expression_completer);
16340
16341 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16342 Set a watchpoint for an expression.\n\
16343 Usage: awatch [-l|-location] EXPRESSION\n\
16344 A watchpoint stops execution of your program whenever the value of\n\
16345 an expression is either read or written.\n\
16346 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16347 the memory to which it refers."));
16348 set_cmd_completer (c, expression_completer);
16349
16350 add_info ("watchpoints", watchpoints_info, _("\
16351 Status of specified watchpoints (all watchpoints if no argument)."));
16352
16353 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16354 respond to changes - contrary to the description. */
16355 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16356 &can_use_hw_watchpoints, _("\
16357 Set debugger's willingness to use watchpoint hardware."), _("\
16358 Show debugger's willingness to use watchpoint hardware."), _("\
16359 If zero, gdb will not use hardware for new watchpoints, even if\n\
16360 such is available. (However, any hardware watchpoints that were\n\
16361 created before setting this to nonzero, will continue to use watchpoint\n\
16362 hardware.)"),
16363 NULL,
16364 show_can_use_hw_watchpoints,
16365 &setlist, &showlist);
16366
16367 can_use_hw_watchpoints = 1;
16368
16369 /* Tracepoint manipulation commands. */
16370
16371 c = add_com ("trace", class_breakpoint, trace_command, _("\
16372 Set a tracepoint at specified line or function.\n\
16373 \n"
16374 BREAK_ARGS_HELP ("trace") "\n\
16375 Do \"help tracepoints\" for info on other tracepoint commands."));
16376 set_cmd_completer (c, location_completer);
16377
16378 add_com_alias ("tp", "trace", class_alias, 0);
16379 add_com_alias ("tr", "trace", class_alias, 1);
16380 add_com_alias ("tra", "trace", class_alias, 1);
16381 add_com_alias ("trac", "trace", class_alias, 1);
16382
16383 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16384 Set a fast tracepoint at specified line or function.\n\
16385 \n"
16386 BREAK_ARGS_HELP ("ftrace") "\n\
16387 Do \"help tracepoints\" for info on other tracepoint commands."));
16388 set_cmd_completer (c, location_completer);
16389
16390 c = add_com ("strace", class_breakpoint, strace_command, _("\
16391 Set a static tracepoint at specified line, function or marker.\n\
16392 \n\
16393 strace [LOCATION] [if CONDITION]\n\
16394 LOCATION may be a line number, function name, \"*\" and an address,\n\
16395 or -m MARKER_ID.\n\
16396 If a line number is specified, probe the marker at start of code\n\
16397 for that line. If a function is specified, probe the marker at start\n\
16398 of code for that function. If an address is specified, probe the marker\n\
16399 at that exact address. If a marker id is specified, probe the marker\n\
16400 with that name. With no LOCATION, uses current execution address of\n\
16401 the selected stack frame.\n\
16402 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16403 This collects arbitrary user data passed in the probe point call to the\n\
16404 tracing library. You can inspect it when analyzing the trace buffer,\n\
16405 by printing the $_sdata variable like any other convenience variable.\n\
16406 \n\
16407 CONDITION is a boolean expression.\n\
16408 \n\
16409 Multiple tracepoints at one place are permitted, and useful if their\n\
16410 conditions are different.\n\
16411 \n\
16412 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16413 Do \"help tracepoints\" for info on other tracepoint commands."));
16414 set_cmd_completer (c, location_completer);
16415
16416 add_info ("tracepoints", tracepoints_info, _("\
16417 Status of specified tracepoints (all tracepoints if no argument).\n\
16418 Convenience variable \"$tpnum\" contains the number of the\n\
16419 last tracepoint set."));
16420
16421 add_info_alias ("tp", "tracepoints", 1);
16422
16423 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16424 Delete specified tracepoints.\n\
16425 Arguments are tracepoint numbers, separated by spaces.\n\
16426 No argument means delete all tracepoints."),
16427 &deletelist);
16428 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16429
16430 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16431 Disable specified tracepoints.\n\
16432 Arguments are tracepoint numbers, separated by spaces.\n\
16433 No argument means disable all tracepoints."),
16434 &disablelist);
16435 deprecate_cmd (c, "disable");
16436
16437 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16438 Enable specified tracepoints.\n\
16439 Arguments are tracepoint numbers, separated by spaces.\n\
16440 No argument means enable all tracepoints."),
16441 &enablelist);
16442 deprecate_cmd (c, "enable");
16443
16444 add_com ("passcount", class_trace, trace_pass_command, _("\
16445 Set the passcount for a tracepoint.\n\
16446 The trace will end when the tracepoint has been passed 'count' times.\n\
16447 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16448 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16449
16450 add_prefix_cmd ("save", class_breakpoint, save_command,
16451 _("Save breakpoint definitions as a script."),
16452 &save_cmdlist, "save ",
16453 0/*allow-unknown*/, &cmdlist);
16454
16455 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16456 Save current breakpoint definitions as a script.\n\
16457 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16458 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16459 session to restore them."),
16460 &save_cmdlist);
16461 set_cmd_completer (c, filename_completer);
16462
16463 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16464 Save current tracepoint definitions as a script.\n\
16465 Use the 'source' command in another debug session to restore them."),
16466 &save_cmdlist);
16467 set_cmd_completer (c, filename_completer);
16468
16469 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16470 deprecate_cmd (c, "save tracepoints");
16471
16472 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16473 Breakpoint specific settings\n\
16474 Configure various breakpoint-specific variables such as\n\
16475 pending breakpoint behavior"),
16476 &breakpoint_set_cmdlist, "set breakpoint ",
16477 0/*allow-unknown*/, &setlist);
16478 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16479 Breakpoint specific settings\n\
16480 Configure various breakpoint-specific variables such as\n\
16481 pending breakpoint behavior"),
16482 &breakpoint_show_cmdlist, "show breakpoint ",
16483 0/*allow-unknown*/, &showlist);
16484
16485 add_setshow_auto_boolean_cmd ("pending", no_class,
16486 &pending_break_support, _("\
16487 Set debugger's behavior regarding pending breakpoints."), _("\
16488 Show debugger's behavior regarding pending breakpoints."), _("\
16489 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16490 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16491 an error. If auto, an unrecognized breakpoint location results in a\n\
16492 user-query to see if a pending breakpoint should be created."),
16493 NULL,
16494 show_pending_break_support,
16495 &breakpoint_set_cmdlist,
16496 &breakpoint_show_cmdlist);
16497
16498 pending_break_support = AUTO_BOOLEAN_AUTO;
16499
16500 add_setshow_boolean_cmd ("auto-hw", no_class,
16501 &automatic_hardware_breakpoints, _("\
16502 Set automatic usage of hardware breakpoints."), _("\
16503 Show automatic usage of hardware breakpoints."), _("\
16504 If set, the debugger will automatically use hardware breakpoints for\n\
16505 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16506 a warning will be emitted for such breakpoints."),
16507 NULL,
16508 show_automatic_hardware_breakpoints,
16509 &breakpoint_set_cmdlist,
16510 &breakpoint_show_cmdlist);
16511
16512 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16513 &always_inserted_mode, _("\
16514 Set mode for inserting breakpoints."), _("\
16515 Show mode for inserting breakpoints."), _("\
16516 When this mode is off, breakpoints are inserted in inferior when it is\n\
16517 resumed, and removed when execution stops. When this mode is on,\n\
16518 breakpoints are inserted immediately and removed only when the user\n\
16519 deletes the breakpoint. When this mode is auto (which is the default),\n\
16520 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16521 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16522 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16523 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16524 NULL,
16525 &show_always_inserted_mode,
16526 &breakpoint_set_cmdlist,
16527 &breakpoint_show_cmdlist);
16528
16529 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16530 condition_evaluation_enums,
16531 &condition_evaluation_mode_1, _("\
16532 Set mode of breakpoint condition evaluation."), _("\
16533 Show mode of breakpoint condition evaluation."), _("\
16534 When this is set to \"host\", breakpoint conditions will be\n\
16535 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16536 breakpoint conditions will be downloaded to the target (if the target\n\
16537 supports such feature) and conditions will be evaluated on the target's side.\n\
16538 If this is set to \"auto\" (default), this will be automatically set to\n\
16539 \"target\" if it supports condition evaluation, otherwise it will\n\
16540 be set to \"gdb\""),
16541 &set_condition_evaluation_mode,
16542 &show_condition_evaluation_mode,
16543 &breakpoint_set_cmdlist,
16544 &breakpoint_show_cmdlist);
16545
16546 add_com ("break-range", class_breakpoint, break_range_command, _("\
16547 Set a breakpoint for an address range.\n\
16548 break-range START-LOCATION, END-LOCATION\n\
16549 where START-LOCATION and END-LOCATION can be one of the following:\n\
16550 LINENUM, for that line in the current file,\n\
16551 FILE:LINENUM, for that line in that file,\n\
16552 +OFFSET, for that number of lines after the current line\n\
16553 or the start of the range\n\
16554 FUNCTION, for the first line in that function,\n\
16555 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16556 *ADDRESS, for the instruction at that address.\n\
16557 \n\
16558 The breakpoint will stop execution of the inferior whenever it executes\n\
16559 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16560 range (including START-LOCATION and END-LOCATION)."));
16561
16562 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16563 Set a dynamic printf at specified line or function.\n\
16564 dprintf location,format string,arg1,arg2,...\n\
16565 location may be a line number, function name, or \"*\" and an address.\n\
16566 If a line number is specified, break at start of code for that line.\n\
16567 If a function is specified, break at start of code for that function."));
16568 set_cmd_completer (c, location_completer);
16569
16570 add_setshow_enum_cmd ("dprintf-style", class_support,
16571 dprintf_style_enums, &dprintf_style, _("\
16572 Set the style of usage for dynamic printf."), _("\
16573 Show the style of usage for dynamic printf."), _("\
16574 This setting chooses how GDB will do a dynamic printf.\n\
16575 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16576 console, as with the \"printf\" command.\n\
16577 If the value is \"call\", the print is done by calling a function in your\n\
16578 program; by default printf(), but you can choose a different function or\n\
16579 output stream by setting dprintf-function and dprintf-channel."),
16580 update_dprintf_commands, NULL,
16581 &setlist, &showlist);
16582
16583 dprintf_function = xstrdup ("printf");
16584 add_setshow_string_cmd ("dprintf-function", class_support,
16585 &dprintf_function, _("\
16586 Set the function to use for dynamic printf"), _("\
16587 Show the function to use for dynamic printf"), NULL,
16588 update_dprintf_commands, NULL,
16589 &setlist, &showlist);
16590
16591 dprintf_channel = xstrdup ("");
16592 add_setshow_string_cmd ("dprintf-channel", class_support,
16593 &dprintf_channel, _("\
16594 Set the channel to use for dynamic printf"), _("\
16595 Show the channel to use for dynamic printf"), NULL,
16596 update_dprintf_commands, NULL,
16597 &setlist, &showlist);
16598
16599 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16600 &disconnected_dprintf, _("\
16601 Set whether dprintf continues after GDB disconnects."), _("\
16602 Show whether dprintf continues after GDB disconnects."), _("\
16603 Use this to let dprintf commands continue to hit and produce output\n\
16604 even if GDB disconnects or detaches from the target."),
16605 NULL,
16606 NULL,
16607 &setlist, &showlist);
16608
16609 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16610 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16611 (target agent only) This is useful for formatted output in user-defined commands."));
16612
16613 automatic_hardware_breakpoints = 1;
16614
16615 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16616 observer_attach_thread_exit (remove_threaded_breakpoints);
16617 }