Remove cmd_cfunc_ftype
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observer.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint (struct value *);
121
122 static void mention (struct breakpoint *);
123
124 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
125 enum bptype,
126 const struct breakpoint_ops *);
127 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
128 const struct symtab_and_line *);
129
130 /* This function is used in gdbtk sources and thus can not be made
131 static. */
132 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
133 struct symtab_and_line,
134 enum bptype,
135 const struct breakpoint_ops *);
136
137 static struct breakpoint *
138 momentary_breakpoint_from_master (struct breakpoint *orig,
139 enum bptype type,
140 const struct breakpoint_ops *ops,
141 int loc_enabled);
142
143 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
144
145 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
146 CORE_ADDR bpaddr,
147 enum bptype bptype);
148
149 static void describe_other_breakpoints (struct gdbarch *,
150 struct program_space *, CORE_ADDR,
151 struct obj_section *, int);
152
153 static int watchpoint_locations_match (struct bp_location *loc1,
154 struct bp_location *loc2);
155
156 static int breakpoint_location_address_match (struct bp_location *bl,
157 const struct address_space *aspace,
158 CORE_ADDR addr);
159
160 static int breakpoint_location_address_range_overlap (struct bp_location *,
161 const address_space *,
162 CORE_ADDR, int);
163
164 static int remove_breakpoint (struct bp_location *);
165 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
166
167 static enum print_stop_action print_bp_stop_message (bpstat bs);
168
169 static int hw_breakpoint_used_count (void);
170
171 static int hw_watchpoint_use_count (struct breakpoint *);
172
173 static int hw_watchpoint_used_count_others (struct breakpoint *except,
174 enum bptype type,
175 int *other_type_used);
176
177 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
178 int count);
179
180 static void free_bp_location (struct bp_location *loc);
181 static void incref_bp_location (struct bp_location *loc);
182 static void decref_bp_location (struct bp_location **loc);
183
184 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
185
186 /* update_global_location_list's modes of operation wrt to whether to
187 insert locations now. */
188 enum ugll_insert_mode
189 {
190 /* Don't insert any breakpoint locations into the inferior, only
191 remove already-inserted locations that no longer should be
192 inserted. Functions that delete a breakpoint or breakpoints
193 should specify this mode, so that deleting a breakpoint doesn't
194 have the side effect of inserting the locations of other
195 breakpoints that are marked not-inserted, but should_be_inserted
196 returns true on them.
197
198 This behavior is useful is situations close to tear-down -- e.g.,
199 after an exec, while the target still has execution, but
200 breakpoint shadows of the previous executable image should *NOT*
201 be restored to the new image; or before detaching, where the
202 target still has execution and wants to delete breakpoints from
203 GDB's lists, and all breakpoints had already been removed from
204 the inferior. */
205 UGLL_DONT_INSERT,
206
207 /* May insert breakpoints iff breakpoints_should_be_inserted_now
208 claims breakpoints should be inserted now. */
209 UGLL_MAY_INSERT,
210
211 /* Insert locations now, irrespective of
212 breakpoints_should_be_inserted_now. E.g., say all threads are
213 stopped right now, and the user did "continue". We need to
214 insert breakpoints _before_ resuming the target, but
215 UGLL_MAY_INSERT wouldn't insert them, because
216 breakpoints_should_be_inserted_now returns false at that point,
217 as no thread is running yet. */
218 UGLL_INSERT
219 };
220
221 static void update_global_location_list (enum ugll_insert_mode);
222
223 static void update_global_location_list_nothrow (enum ugll_insert_mode);
224
225 static int is_hardware_watchpoint (const struct breakpoint *bpt);
226
227 static void insert_breakpoint_locations (void);
228
229 static void trace_pass_command (const char *, int);
230
231 static void set_tracepoint_count (int num);
232
233 static int is_masked_watchpoint (const struct breakpoint *b);
234
235 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
236
237 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
238 otherwise. */
239
240 static int strace_marker_p (struct breakpoint *b);
241
242 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
243 that are implemented on top of software or hardware breakpoints
244 (user breakpoints, internal and momentary breakpoints, etc.). */
245 static struct breakpoint_ops bkpt_base_breakpoint_ops;
246
247 /* Internal breakpoints class type. */
248 static struct breakpoint_ops internal_breakpoint_ops;
249
250 /* Momentary breakpoints class type. */
251 static struct breakpoint_ops momentary_breakpoint_ops;
252
253 /* The breakpoint_ops structure to be used in regular user created
254 breakpoints. */
255 struct breakpoint_ops bkpt_breakpoint_ops;
256
257 /* Breakpoints set on probes. */
258 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
259
260 /* Dynamic printf class type. */
261 struct breakpoint_ops dprintf_breakpoint_ops;
262
263 /* The style in which to perform a dynamic printf. This is a user
264 option because different output options have different tradeoffs;
265 if GDB does the printing, there is better error handling if there
266 is a problem with any of the arguments, but using an inferior
267 function lets you have special-purpose printers and sending of
268 output to the same place as compiled-in print functions. */
269
270 static const char dprintf_style_gdb[] = "gdb";
271 static const char dprintf_style_call[] = "call";
272 static const char dprintf_style_agent[] = "agent";
273 static const char *const dprintf_style_enums[] = {
274 dprintf_style_gdb,
275 dprintf_style_call,
276 dprintf_style_agent,
277 NULL
278 };
279 static const char *dprintf_style = dprintf_style_gdb;
280
281 /* The function to use for dynamic printf if the preferred style is to
282 call into the inferior. The value is simply a string that is
283 copied into the command, so it can be anything that GDB can
284 evaluate to a callable address, not necessarily a function name. */
285
286 static char *dprintf_function;
287
288 /* The channel to use for dynamic printf if the preferred style is to
289 call into the inferior; if a nonempty string, it will be passed to
290 the call as the first argument, with the format string as the
291 second. As with the dprintf function, this can be anything that
292 GDB knows how to evaluate, so in addition to common choices like
293 "stderr", this could be an app-specific expression like
294 "mystreams[curlogger]". */
295
296 static char *dprintf_channel;
297
298 /* True if dprintf commands should continue to operate even if GDB
299 has disconnected. */
300 static int disconnected_dprintf = 1;
301
302 struct command_line *
303 breakpoint_commands (struct breakpoint *b)
304 {
305 return b->commands ? b->commands.get () : NULL;
306 }
307
308 /* Flag indicating that a command has proceeded the inferior past the
309 current breakpoint. */
310
311 static int breakpoint_proceeded;
312
313 const char *
314 bpdisp_text (enum bpdisp disp)
315 {
316 /* NOTE: the following values are a part of MI protocol and
317 represent values of 'disp' field returned when inferior stops at
318 a breakpoint. */
319 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
320
321 return bpdisps[(int) disp];
322 }
323
324 /* Prototypes for exported functions. */
325 /* If FALSE, gdb will not use hardware support for watchpoints, even
326 if such is available. */
327 static int can_use_hw_watchpoints;
328
329 static void
330 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
331 struct cmd_list_element *c,
332 const char *value)
333 {
334 fprintf_filtered (file,
335 _("Debugger's willingness to use "
336 "watchpoint hardware is %s.\n"),
337 value);
338 }
339
340 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
341 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
342 for unrecognized breakpoint locations.
343 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
344 static enum auto_boolean pending_break_support;
345 static void
346 show_pending_break_support (struct ui_file *file, int from_tty,
347 struct cmd_list_element *c,
348 const char *value)
349 {
350 fprintf_filtered (file,
351 _("Debugger's behavior regarding "
352 "pending breakpoints is %s.\n"),
353 value);
354 }
355
356 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
357 set with "break" but falling in read-only memory.
358 If 0, gdb will warn about such breakpoints, but won't automatically
359 use hardware breakpoints. */
360 static int automatic_hardware_breakpoints;
361 static void
362 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
363 struct cmd_list_element *c,
364 const char *value)
365 {
366 fprintf_filtered (file,
367 _("Automatic usage of hardware breakpoints is %s.\n"),
368 value);
369 }
370
371 /* If on, GDB keeps breakpoints inserted even if the inferior is
372 stopped, and immediately inserts any new breakpoints as soon as
373 they're created. If off (default), GDB keeps breakpoints off of
374 the target as long as possible. That is, it delays inserting
375 breakpoints until the next resume, and removes them again when the
376 target fully stops. This is a bit safer in case GDB crashes while
377 processing user input. */
378 static int always_inserted_mode = 0;
379
380 static void
381 show_always_inserted_mode (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383 {
384 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
385 value);
386 }
387
388 /* See breakpoint.h. */
389
390 int
391 breakpoints_should_be_inserted_now (void)
392 {
393 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
394 {
395 /* If breakpoints are global, they should be inserted even if no
396 thread under gdb's control is running, or even if there are
397 no threads under GDB's control yet. */
398 return 1;
399 }
400 else if (target_has_execution)
401 {
402 struct thread_info *tp;
403
404 if (always_inserted_mode)
405 {
406 /* The user wants breakpoints inserted even if all threads
407 are stopped. */
408 return 1;
409 }
410
411 if (threads_are_executing ())
412 return 1;
413
414 /* Don't remove breakpoints yet if, even though all threads are
415 stopped, we still have events to process. */
416 ALL_NON_EXITED_THREADS (tp)
417 if (tp->resumed
418 && tp->suspend.waitstatus_pending_p)
419 return 1;
420 }
421 return 0;
422 }
423
424 static const char condition_evaluation_both[] = "host or target";
425
426 /* Modes for breakpoint condition evaluation. */
427 static const char condition_evaluation_auto[] = "auto";
428 static const char condition_evaluation_host[] = "host";
429 static const char condition_evaluation_target[] = "target";
430 static const char *const condition_evaluation_enums[] = {
431 condition_evaluation_auto,
432 condition_evaluation_host,
433 condition_evaluation_target,
434 NULL
435 };
436
437 /* Global that holds the current mode for breakpoint condition evaluation. */
438 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
439
440 /* Global that we use to display information to the user (gets its value from
441 condition_evaluation_mode_1. */
442 static const char *condition_evaluation_mode = condition_evaluation_auto;
443
444 /* Translate a condition evaluation mode MODE into either "host"
445 or "target". This is used mostly to translate from "auto" to the
446 real setting that is being used. It returns the translated
447 evaluation mode. */
448
449 static const char *
450 translate_condition_evaluation_mode (const char *mode)
451 {
452 if (mode == condition_evaluation_auto)
453 {
454 if (target_supports_evaluation_of_breakpoint_conditions ())
455 return condition_evaluation_target;
456 else
457 return condition_evaluation_host;
458 }
459 else
460 return mode;
461 }
462
463 /* Discovers what condition_evaluation_auto translates to. */
464
465 static const char *
466 breakpoint_condition_evaluation_mode (void)
467 {
468 return translate_condition_evaluation_mode (condition_evaluation_mode);
469 }
470
471 /* Return true if GDB should evaluate breakpoint conditions or false
472 otherwise. */
473
474 static int
475 gdb_evaluates_breakpoint_condition_p (void)
476 {
477 const char *mode = breakpoint_condition_evaluation_mode ();
478
479 return (mode == condition_evaluation_host);
480 }
481
482 /* Are we executing breakpoint commands? */
483 static int executing_breakpoint_commands;
484
485 /* Are overlay event breakpoints enabled? */
486 static int overlay_events_enabled;
487
488 /* See description in breakpoint.h. */
489 int target_exact_watchpoints = 0;
490
491 /* Walk the following statement or block through all breakpoints.
492 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
493 current breakpoint. */
494
495 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
496
497 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
498 for (B = breakpoint_chain; \
499 B ? (TMP=B->next, 1): 0; \
500 B = TMP)
501
502 /* Similar iterator for the low-level breakpoints. SAFE variant is
503 not provided so update_global_location_list must not be called
504 while executing the block of ALL_BP_LOCATIONS. */
505
506 #define ALL_BP_LOCATIONS(B,BP_TMP) \
507 for (BP_TMP = bp_locations; \
508 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
509 BP_TMP++)
510
511 /* Iterates through locations with address ADDRESS for the currently selected
512 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
513 to where the loop should start from.
514 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
515 appropriate location to start with. */
516
517 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
518 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
519 BP_LOCP_TMP = BP_LOCP_START; \
520 BP_LOCP_START \
521 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
522 && (*BP_LOCP_TMP)->address == ADDRESS); \
523 BP_LOCP_TMP++)
524
525 /* Iterator for tracepoints only. */
526
527 #define ALL_TRACEPOINTS(B) \
528 for (B = breakpoint_chain; B; B = B->next) \
529 if (is_tracepoint (B))
530
531 /* Chains of all breakpoints defined. */
532
533 struct breakpoint *breakpoint_chain;
534
535 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
536
537 static struct bp_location **bp_locations;
538
539 /* Number of elements of BP_LOCATIONS. */
540
541 static unsigned bp_locations_count;
542
543 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
544 ADDRESS for the current elements of BP_LOCATIONS which get a valid
545 result from bp_location_has_shadow. You can use it for roughly
546 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
547 an address you need to read. */
548
549 static CORE_ADDR bp_locations_placed_address_before_address_max;
550
551 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
552 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
553 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
554 You can use it for roughly limiting the subrange of BP_LOCATIONS to
555 scan for shadow bytes for an address you need to read. */
556
557 static CORE_ADDR bp_locations_shadow_len_after_address_max;
558
559 /* The locations that no longer correspond to any breakpoint, unlinked
560 from the bp_locations array, but for which a hit may still be
561 reported by a target. */
562 VEC(bp_location_p) *moribund_locations = NULL;
563
564 /* Number of last breakpoint made. */
565
566 static int breakpoint_count;
567
568 /* The value of `breakpoint_count' before the last command that
569 created breakpoints. If the last (break-like) command created more
570 than one breakpoint, then the difference between BREAKPOINT_COUNT
571 and PREV_BREAKPOINT_COUNT is more than one. */
572 static int prev_breakpoint_count;
573
574 /* Number of last tracepoint made. */
575
576 static int tracepoint_count;
577
578 static struct cmd_list_element *breakpoint_set_cmdlist;
579 static struct cmd_list_element *breakpoint_show_cmdlist;
580 struct cmd_list_element *save_cmdlist;
581
582 /* See declaration at breakpoint.h. */
583
584 struct breakpoint *
585 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
586 void *user_data)
587 {
588 struct breakpoint *b = NULL;
589
590 ALL_BREAKPOINTS (b)
591 {
592 if (func (b, user_data) != 0)
593 break;
594 }
595
596 return b;
597 }
598
599 /* Return whether a breakpoint is an active enabled breakpoint. */
600 static int
601 breakpoint_enabled (struct breakpoint *b)
602 {
603 return (b->enable_state == bp_enabled);
604 }
605
606 /* Set breakpoint count to NUM. */
607
608 static void
609 set_breakpoint_count (int num)
610 {
611 prev_breakpoint_count = breakpoint_count;
612 breakpoint_count = num;
613 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
614 }
615
616 /* Used by `start_rbreak_breakpoints' below, to record the current
617 breakpoint count before "rbreak" creates any breakpoint. */
618 static int rbreak_start_breakpoint_count;
619
620 /* Called at the start an "rbreak" command to record the first
621 breakpoint made. */
622
623 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
624 {
625 rbreak_start_breakpoint_count = breakpoint_count;
626 }
627
628 /* Called at the end of an "rbreak" command to record the last
629 breakpoint made. */
630
631 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
632 {
633 prev_breakpoint_count = rbreak_start_breakpoint_count;
634 }
635
636 /* Used in run_command to zero the hit count when a new run starts. */
637
638 void
639 clear_breakpoint_hit_counts (void)
640 {
641 struct breakpoint *b;
642
643 ALL_BREAKPOINTS (b)
644 b->hit_count = 0;
645 }
646
647 \f
648 /* Return the breakpoint with the specified number, or NULL
649 if the number does not refer to an existing breakpoint. */
650
651 struct breakpoint *
652 get_breakpoint (int num)
653 {
654 struct breakpoint *b;
655
656 ALL_BREAKPOINTS (b)
657 if (b->number == num)
658 return b;
659
660 return NULL;
661 }
662
663 \f
664
665 /* Mark locations as "conditions have changed" in case the target supports
666 evaluating conditions on its side. */
667
668 static void
669 mark_breakpoint_modified (struct breakpoint *b)
670 {
671 struct bp_location *loc;
672
673 /* This is only meaningful if the target is
674 evaluating conditions and if the user has
675 opted for condition evaluation on the target's
676 side. */
677 if (gdb_evaluates_breakpoint_condition_p ()
678 || !target_supports_evaluation_of_breakpoint_conditions ())
679 return;
680
681 if (!is_breakpoint (b))
682 return;
683
684 for (loc = b->loc; loc; loc = loc->next)
685 loc->condition_changed = condition_modified;
686 }
687
688 /* Mark location as "conditions have changed" in case the target supports
689 evaluating conditions on its side. */
690
691 static void
692 mark_breakpoint_location_modified (struct bp_location *loc)
693 {
694 /* This is only meaningful if the target is
695 evaluating conditions and if the user has
696 opted for condition evaluation on the target's
697 side. */
698 if (gdb_evaluates_breakpoint_condition_p ()
699 || !target_supports_evaluation_of_breakpoint_conditions ())
700
701 return;
702
703 if (!is_breakpoint (loc->owner))
704 return;
705
706 loc->condition_changed = condition_modified;
707 }
708
709 /* Sets the condition-evaluation mode using the static global
710 condition_evaluation_mode. */
711
712 static void
713 set_condition_evaluation_mode (char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 const char *old_mode, *new_mode;
717
718 if ((condition_evaluation_mode_1 == condition_evaluation_target)
719 && !target_supports_evaluation_of_breakpoint_conditions ())
720 {
721 condition_evaluation_mode_1 = condition_evaluation_mode;
722 warning (_("Target does not support breakpoint condition evaluation.\n"
723 "Using host evaluation mode instead."));
724 return;
725 }
726
727 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
728 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
729
730 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
731 settings was "auto". */
732 condition_evaluation_mode = condition_evaluation_mode_1;
733
734 /* Only update the mode if the user picked a different one. */
735 if (new_mode != old_mode)
736 {
737 struct bp_location *loc, **loc_tmp;
738 /* If the user switched to a different evaluation mode, we
739 need to synch the changes with the target as follows:
740
741 "host" -> "target": Send all (valid) conditions to the target.
742 "target" -> "host": Remove all the conditions from the target.
743 */
744
745 if (new_mode == condition_evaluation_target)
746 {
747 /* Mark everything modified and synch conditions with the
748 target. */
749 ALL_BP_LOCATIONS (loc, loc_tmp)
750 mark_breakpoint_location_modified (loc);
751 }
752 else
753 {
754 /* Manually mark non-duplicate locations to synch conditions
755 with the target. We do this to remove all the conditions the
756 target knows about. */
757 ALL_BP_LOCATIONS (loc, loc_tmp)
758 if (is_breakpoint (loc->owner) && loc->inserted)
759 loc->needs_update = 1;
760 }
761
762 /* Do the update. */
763 update_global_location_list (UGLL_MAY_INSERT);
764 }
765
766 return;
767 }
768
769 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
770 what "auto" is translating to. */
771
772 static void
773 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
774 struct cmd_list_element *c, const char *value)
775 {
776 if (condition_evaluation_mode == condition_evaluation_auto)
777 fprintf_filtered (file,
778 _("Breakpoint condition evaluation "
779 "mode is %s (currently %s).\n"),
780 value,
781 breakpoint_condition_evaluation_mode ());
782 else
783 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
784 value);
785 }
786
787 /* A comparison function for bp_location AP and BP that is used by
788 bsearch. This comparison function only cares about addresses, unlike
789 the more general bp_locations_compare function. */
790
791 static int
792 bp_locations_compare_addrs (const void *ap, const void *bp)
793 {
794 const struct bp_location *a = *(const struct bp_location **) ap;
795 const struct bp_location *b = *(const struct bp_location **) bp;
796
797 if (a->address == b->address)
798 return 0;
799 else
800 return ((a->address > b->address) - (a->address < b->address));
801 }
802
803 /* Helper function to skip all bp_locations with addresses
804 less than ADDRESS. It returns the first bp_location that
805 is greater than or equal to ADDRESS. If none is found, just
806 return NULL. */
807
808 static struct bp_location **
809 get_first_locp_gte_addr (CORE_ADDR address)
810 {
811 struct bp_location dummy_loc;
812 struct bp_location *dummy_locp = &dummy_loc;
813 struct bp_location **locp_found = NULL;
814
815 /* Initialize the dummy location's address field. */
816 dummy_loc.address = address;
817
818 /* Find a close match to the first location at ADDRESS. */
819 locp_found = ((struct bp_location **)
820 bsearch (&dummy_locp, bp_locations, bp_locations_count,
821 sizeof (struct bp_location **),
822 bp_locations_compare_addrs));
823
824 /* Nothing was found, nothing left to do. */
825 if (locp_found == NULL)
826 return NULL;
827
828 /* We may have found a location that is at ADDRESS but is not the first in the
829 location's list. Go backwards (if possible) and locate the first one. */
830 while ((locp_found - 1) >= bp_locations
831 && (*(locp_found - 1))->address == address)
832 locp_found--;
833
834 return locp_found;
835 }
836
837 void
838 set_breakpoint_condition (struct breakpoint *b, const char *exp,
839 int from_tty)
840 {
841 xfree (b->cond_string);
842 b->cond_string = NULL;
843
844 if (is_watchpoint (b))
845 {
846 struct watchpoint *w = (struct watchpoint *) b;
847
848 w->cond_exp.reset ();
849 }
850 else
851 {
852 struct bp_location *loc;
853
854 for (loc = b->loc; loc; loc = loc->next)
855 {
856 loc->cond.reset ();
857
858 /* No need to free the condition agent expression
859 bytecode (if we have one). We will handle this
860 when we go through update_global_location_list. */
861 }
862 }
863
864 if (*exp == 0)
865 {
866 if (from_tty)
867 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
868 }
869 else
870 {
871 const char *arg = exp;
872
873 /* I don't know if it matters whether this is the string the user
874 typed in or the decompiled expression. */
875 b->cond_string = xstrdup (arg);
876 b->condition_not_parsed = 0;
877
878 if (is_watchpoint (b))
879 {
880 struct watchpoint *w = (struct watchpoint *) b;
881
882 innermost_block = NULL;
883 arg = exp;
884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
885 if (*arg)
886 error (_("Junk at end of expression"));
887 w->cond_exp_valid_block = innermost_block;
888 }
889 else
890 {
891 struct bp_location *loc;
892
893 for (loc = b->loc; loc; loc = loc->next)
894 {
895 arg = exp;
896 loc->cond =
897 parse_exp_1 (&arg, loc->address,
898 block_for_pc (loc->address), 0);
899 if (*arg)
900 error (_("Junk at end of expression"));
901 }
902 }
903 }
904 mark_breakpoint_modified (b);
905
906 observer_notify_breakpoint_modified (b);
907 }
908
909 /* Completion for the "condition" command. */
910
911 static void
912 condition_completer (struct cmd_list_element *cmd,
913 completion_tracker &tracker,
914 const char *text, const char *word)
915 {
916 const char *space;
917
918 text = skip_spaces (text);
919 space = skip_to_space (text);
920 if (*space == '\0')
921 {
922 int len;
923 struct breakpoint *b;
924 VEC (char_ptr) *result = NULL;
925
926 if (text[0] == '$')
927 {
928 /* We don't support completion of history indices. */
929 if (!isdigit (text[1]))
930 complete_internalvar (tracker, &text[1]);
931 return;
932 }
933
934 /* We're completing the breakpoint number. */
935 len = strlen (text);
936
937 ALL_BREAKPOINTS (b)
938 {
939 char number[50];
940
941 xsnprintf (number, sizeof (number), "%d", b->number);
942
943 if (strncmp (number, text, len) == 0)
944 {
945 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
946 tracker.add_completion (std::move (copy));
947 }
948 }
949
950 return;
951 }
952
953 /* We're completing the expression part. */
954 text = skip_spaces (space);
955 expression_completer (cmd, tracker, text, word);
956 }
957
958 /* condition N EXP -- set break condition of breakpoint N to EXP. */
959
960 static void
961 condition_command (const char *arg, int from_tty)
962 {
963 struct breakpoint *b;
964 const char *p;
965 int bnum;
966
967 if (arg == 0)
968 error_no_arg (_("breakpoint number"));
969
970 p = arg;
971 bnum = get_number (&p);
972 if (bnum == 0)
973 error (_("Bad breakpoint argument: '%s'"), arg);
974
975 ALL_BREAKPOINTS (b)
976 if (b->number == bnum)
977 {
978 /* Check if this breakpoint has a "stop" method implemented in an
979 extension language. This method and conditions entered into GDB
980 from the CLI are mutually exclusive. */
981 const struct extension_language_defn *extlang
982 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
983
984 if (extlang != NULL)
985 {
986 error (_("Only one stop condition allowed. There is currently"
987 " a %s stop condition defined for this breakpoint."),
988 ext_lang_capitalized_name (extlang));
989 }
990 set_breakpoint_condition (b, p, from_tty);
991
992 if (is_breakpoint (b))
993 update_global_location_list (UGLL_MAY_INSERT);
994
995 return;
996 }
997
998 error (_("No breakpoint number %d."), bnum);
999 }
1000
1001 /* Check that COMMAND do not contain commands that are suitable
1002 only for tracepoints and not suitable for ordinary breakpoints.
1003 Throw if any such commands is found. */
1004
1005 static void
1006 check_no_tracepoint_commands (struct command_line *commands)
1007 {
1008 struct command_line *c;
1009
1010 for (c = commands; c; c = c->next)
1011 {
1012 int i;
1013
1014 if (c->control_type == while_stepping_control)
1015 error (_("The 'while-stepping' command can "
1016 "only be used for tracepoints"));
1017
1018 for (i = 0; i < c->body_count; ++i)
1019 check_no_tracepoint_commands ((c->body_list)[i]);
1020
1021 /* Not that command parsing removes leading whitespace and comment
1022 lines and also empty lines. So, we only need to check for
1023 command directly. */
1024 if (strstr (c->line, "collect ") == c->line)
1025 error (_("The 'collect' command can only be used for tracepoints"));
1026
1027 if (strstr (c->line, "teval ") == c->line)
1028 error (_("The 'teval' command can only be used for tracepoints"));
1029 }
1030 }
1031
1032 struct longjmp_breakpoint : public breakpoint
1033 {
1034 ~longjmp_breakpoint () override;
1035 };
1036
1037 /* Encapsulate tests for different types of tracepoints. */
1038
1039 static bool
1040 is_tracepoint_type (bptype type)
1041 {
1042 return (type == bp_tracepoint
1043 || type == bp_fast_tracepoint
1044 || type == bp_static_tracepoint);
1045 }
1046
1047 static bool
1048 is_longjmp_type (bptype type)
1049 {
1050 return type == bp_longjmp || type == bp_exception;
1051 }
1052
1053 int
1054 is_tracepoint (const struct breakpoint *b)
1055 {
1056 return is_tracepoint_type (b->type);
1057 }
1058
1059 /* Factory function to create an appropriate instance of breakpoint given
1060 TYPE. */
1061
1062 static std::unique_ptr<breakpoint>
1063 new_breakpoint_from_type (bptype type)
1064 {
1065 breakpoint *b;
1066
1067 if (is_tracepoint_type (type))
1068 b = new tracepoint ();
1069 else if (is_longjmp_type (type))
1070 b = new longjmp_breakpoint ();
1071 else
1072 b = new breakpoint ();
1073
1074 return std::unique_ptr<breakpoint> (b);
1075 }
1076
1077 /* A helper function that validates that COMMANDS are valid for a
1078 breakpoint. This function will throw an exception if a problem is
1079 found. */
1080
1081 static void
1082 validate_commands_for_breakpoint (struct breakpoint *b,
1083 struct command_line *commands)
1084 {
1085 if (is_tracepoint (b))
1086 {
1087 struct tracepoint *t = (struct tracepoint *) b;
1088 struct command_line *c;
1089 struct command_line *while_stepping = 0;
1090
1091 /* Reset the while-stepping step count. The previous commands
1092 might have included a while-stepping action, while the new
1093 ones might not. */
1094 t->step_count = 0;
1095
1096 /* We need to verify that each top-level element of commands is
1097 valid for tracepoints, that there's at most one
1098 while-stepping element, and that the while-stepping's body
1099 has valid tracing commands excluding nested while-stepping.
1100 We also need to validate the tracepoint action line in the
1101 context of the tracepoint --- validate_actionline actually
1102 has side effects, like setting the tracepoint's
1103 while-stepping STEP_COUNT, in addition to checking if the
1104 collect/teval actions parse and make sense in the
1105 tracepoint's context. */
1106 for (c = commands; c; c = c->next)
1107 {
1108 if (c->control_type == while_stepping_control)
1109 {
1110 if (b->type == bp_fast_tracepoint)
1111 error (_("The 'while-stepping' command "
1112 "cannot be used for fast tracepoint"));
1113 else if (b->type == bp_static_tracepoint)
1114 error (_("The 'while-stepping' command "
1115 "cannot be used for static tracepoint"));
1116
1117 if (while_stepping)
1118 error (_("The 'while-stepping' command "
1119 "can be used only once"));
1120 else
1121 while_stepping = c;
1122 }
1123
1124 validate_actionline (c->line, b);
1125 }
1126 if (while_stepping)
1127 {
1128 struct command_line *c2;
1129
1130 gdb_assert (while_stepping->body_count == 1);
1131 c2 = while_stepping->body_list[0];
1132 for (; c2; c2 = c2->next)
1133 {
1134 if (c2->control_type == while_stepping_control)
1135 error (_("The 'while-stepping' command cannot be nested"));
1136 }
1137 }
1138 }
1139 else
1140 {
1141 check_no_tracepoint_commands (commands);
1142 }
1143 }
1144
1145 /* Return a vector of all the static tracepoints set at ADDR. The
1146 caller is responsible for releasing the vector. */
1147
1148 VEC(breakpoint_p) *
1149 static_tracepoints_here (CORE_ADDR addr)
1150 {
1151 struct breakpoint *b;
1152 VEC(breakpoint_p) *found = 0;
1153 struct bp_location *loc;
1154
1155 ALL_BREAKPOINTS (b)
1156 if (b->type == bp_static_tracepoint)
1157 {
1158 for (loc = b->loc; loc; loc = loc->next)
1159 if (loc->address == addr)
1160 VEC_safe_push(breakpoint_p, found, b);
1161 }
1162
1163 return found;
1164 }
1165
1166 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1167 validate that only allowed commands are included. */
1168
1169 void
1170 breakpoint_set_commands (struct breakpoint *b,
1171 command_line_up &&commands)
1172 {
1173 validate_commands_for_breakpoint (b, commands.get ());
1174
1175 b->commands = std::move (commands);
1176 observer_notify_breakpoint_modified (b);
1177 }
1178
1179 /* Set the internal `silent' flag on the breakpoint. Note that this
1180 is not the same as the "silent" that may appear in the breakpoint's
1181 commands. */
1182
1183 void
1184 breakpoint_set_silent (struct breakpoint *b, int silent)
1185 {
1186 int old_silent = b->silent;
1187
1188 b->silent = silent;
1189 if (old_silent != silent)
1190 observer_notify_breakpoint_modified (b);
1191 }
1192
1193 /* Set the thread for this breakpoint. If THREAD is -1, make the
1194 breakpoint work for any thread. */
1195
1196 void
1197 breakpoint_set_thread (struct breakpoint *b, int thread)
1198 {
1199 int old_thread = b->thread;
1200
1201 b->thread = thread;
1202 if (old_thread != thread)
1203 observer_notify_breakpoint_modified (b);
1204 }
1205
1206 /* Set the task for this breakpoint. If TASK is 0, make the
1207 breakpoint work for any task. */
1208
1209 void
1210 breakpoint_set_task (struct breakpoint *b, int task)
1211 {
1212 int old_task = b->task;
1213
1214 b->task = task;
1215 if (old_task != task)
1216 observer_notify_breakpoint_modified (b);
1217 }
1218
1219 void
1220 check_tracepoint_command (char *line, void *closure)
1221 {
1222 struct breakpoint *b = (struct breakpoint *) closure;
1223
1224 validate_actionline (line, b);
1225 }
1226
1227 static void
1228 commands_command_1 (const char *arg, int from_tty,
1229 struct command_line *control)
1230 {
1231 counted_command_line cmd;
1232
1233 std::string new_arg;
1234
1235 if (arg == NULL || !*arg)
1236 {
1237 if (breakpoint_count - prev_breakpoint_count > 1)
1238 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1239 breakpoint_count);
1240 else if (breakpoint_count > 0)
1241 new_arg = string_printf ("%d", breakpoint_count);
1242 arg = new_arg.c_str ();
1243 }
1244
1245 map_breakpoint_numbers
1246 (arg, [&] (breakpoint *b)
1247 {
1248 if (cmd == NULL)
1249 {
1250 if (control != NULL)
1251 cmd = copy_command_lines (control->body_list[0]);
1252 else
1253 {
1254 std::string str
1255 = string_printf (_("Type commands for breakpoint(s) "
1256 "%s, one per line."),
1257 arg);
1258
1259 cmd = read_command_lines (&str[0],
1260 from_tty, 1,
1261 (is_tracepoint (b)
1262 ? check_tracepoint_command : 0),
1263 b);
1264 }
1265 }
1266
1267 /* If a breakpoint was on the list more than once, we don't need to
1268 do anything. */
1269 if (b->commands != cmd)
1270 {
1271 validate_commands_for_breakpoint (b, cmd.get ());
1272 b->commands = cmd;
1273 observer_notify_breakpoint_modified (b);
1274 }
1275 });
1276
1277 if (cmd == NULL)
1278 error (_("No breakpoints specified."));
1279 }
1280
1281 static void
1282 commands_command (const char *arg, int from_tty)
1283 {
1284 commands_command_1 (arg, from_tty, NULL);
1285 }
1286
1287 /* Like commands_command, but instead of reading the commands from
1288 input stream, takes them from an already parsed command structure.
1289
1290 This is used by cli-script.c to DTRT with breakpoint commands
1291 that are part of if and while bodies. */
1292 enum command_control_type
1293 commands_from_control_command (const char *arg, struct command_line *cmd)
1294 {
1295 commands_command_1 (arg, 0, cmd);
1296 return simple_control;
1297 }
1298
1299 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1300
1301 static int
1302 bp_location_has_shadow (struct bp_location *bl)
1303 {
1304 if (bl->loc_type != bp_loc_software_breakpoint)
1305 return 0;
1306 if (!bl->inserted)
1307 return 0;
1308 if (bl->target_info.shadow_len == 0)
1309 /* BL isn't valid, or doesn't shadow memory. */
1310 return 0;
1311 return 1;
1312 }
1313
1314 /* Update BUF, which is LEN bytes read from the target address
1315 MEMADDR, by replacing a memory breakpoint with its shadowed
1316 contents.
1317
1318 If READBUF is not NULL, this buffer must not overlap with the of
1319 the breakpoint location's shadow_contents buffer. Otherwise, a
1320 failed assertion internal error will be raised. */
1321
1322 static void
1323 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1324 const gdb_byte *writebuf_org,
1325 ULONGEST memaddr, LONGEST len,
1326 struct bp_target_info *target_info,
1327 struct gdbarch *gdbarch)
1328 {
1329 /* Now do full processing of the found relevant range of elements. */
1330 CORE_ADDR bp_addr = 0;
1331 int bp_size = 0;
1332 int bptoffset = 0;
1333
1334 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1335 current_program_space->aspace, 0))
1336 {
1337 /* The breakpoint is inserted in a different address space. */
1338 return;
1339 }
1340
1341 /* Addresses and length of the part of the breakpoint that
1342 we need to copy. */
1343 bp_addr = target_info->placed_address;
1344 bp_size = target_info->shadow_len;
1345
1346 if (bp_addr + bp_size <= memaddr)
1347 {
1348 /* The breakpoint is entirely before the chunk of memory we are
1349 reading. */
1350 return;
1351 }
1352
1353 if (bp_addr >= memaddr + len)
1354 {
1355 /* The breakpoint is entirely after the chunk of memory we are
1356 reading. */
1357 return;
1358 }
1359
1360 /* Offset within shadow_contents. */
1361 if (bp_addr < memaddr)
1362 {
1363 /* Only copy the second part of the breakpoint. */
1364 bp_size -= memaddr - bp_addr;
1365 bptoffset = memaddr - bp_addr;
1366 bp_addr = memaddr;
1367 }
1368
1369 if (bp_addr + bp_size > memaddr + len)
1370 {
1371 /* Only copy the first part of the breakpoint. */
1372 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1373 }
1374
1375 if (readbuf != NULL)
1376 {
1377 /* Verify that the readbuf buffer does not overlap with the
1378 shadow_contents buffer. */
1379 gdb_assert (target_info->shadow_contents >= readbuf + len
1380 || readbuf >= (target_info->shadow_contents
1381 + target_info->shadow_len));
1382
1383 /* Update the read buffer with this inserted breakpoint's
1384 shadow. */
1385 memcpy (readbuf + bp_addr - memaddr,
1386 target_info->shadow_contents + bptoffset, bp_size);
1387 }
1388 else
1389 {
1390 const unsigned char *bp;
1391 CORE_ADDR addr = target_info->reqstd_address;
1392 int placed_size;
1393
1394 /* Update the shadow with what we want to write to memory. */
1395 memcpy (target_info->shadow_contents + bptoffset,
1396 writebuf_org + bp_addr - memaddr, bp_size);
1397
1398 /* Determine appropriate breakpoint contents and size for this
1399 address. */
1400 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1401
1402 /* Update the final write buffer with this inserted
1403 breakpoint's INSN. */
1404 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1405 }
1406 }
1407
1408 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1409 by replacing any memory breakpoints with their shadowed contents.
1410
1411 If READBUF is not NULL, this buffer must not overlap with any of
1412 the breakpoint location's shadow_contents buffers. Otherwise,
1413 a failed assertion internal error will be raised.
1414
1415 The range of shadowed area by each bp_location is:
1416 bl->address - bp_locations_placed_address_before_address_max
1417 up to bl->address + bp_locations_shadow_len_after_address_max
1418 The range we were requested to resolve shadows for is:
1419 memaddr ... memaddr + len
1420 Thus the safe cutoff boundaries for performance optimization are
1421 memaddr + len <= (bl->address
1422 - bp_locations_placed_address_before_address_max)
1423 and:
1424 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1425
1426 void
1427 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1428 const gdb_byte *writebuf_org,
1429 ULONGEST memaddr, LONGEST len)
1430 {
1431 /* Left boundary, right boundary and median element of our binary
1432 search. */
1433 unsigned bc_l, bc_r, bc;
1434
1435 /* Find BC_L which is a leftmost element which may affect BUF
1436 content. It is safe to report lower value but a failure to
1437 report higher one. */
1438
1439 bc_l = 0;
1440 bc_r = bp_locations_count;
1441 while (bc_l + 1 < bc_r)
1442 {
1443 struct bp_location *bl;
1444
1445 bc = (bc_l + bc_r) / 2;
1446 bl = bp_locations[bc];
1447
1448 /* Check first BL->ADDRESS will not overflow due to the added
1449 constant. Then advance the left boundary only if we are sure
1450 the BC element can in no way affect the BUF content (MEMADDR
1451 to MEMADDR + LEN range).
1452
1453 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1454 offset so that we cannot miss a breakpoint with its shadow
1455 range tail still reaching MEMADDR. */
1456
1457 if ((bl->address + bp_locations_shadow_len_after_address_max
1458 >= bl->address)
1459 && (bl->address + bp_locations_shadow_len_after_address_max
1460 <= memaddr))
1461 bc_l = bc;
1462 else
1463 bc_r = bc;
1464 }
1465
1466 /* Due to the binary search above, we need to make sure we pick the
1467 first location that's at BC_L's address. E.g., if there are
1468 multiple locations at the same address, BC_L may end up pointing
1469 at a duplicate location, and miss the "master"/"inserted"
1470 location. Say, given locations L1, L2 and L3 at addresses A and
1471 B:
1472
1473 L1@A, L2@A, L3@B, ...
1474
1475 BC_L could end up pointing at location L2, while the "master"
1476 location could be L1. Since the `loc->inserted' flag is only set
1477 on "master" locations, we'd forget to restore the shadow of L1
1478 and L2. */
1479 while (bc_l > 0
1480 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1481 bc_l--;
1482
1483 /* Now do full processing of the found relevant range of elements. */
1484
1485 for (bc = bc_l; bc < bp_locations_count; bc++)
1486 {
1487 struct bp_location *bl = bp_locations[bc];
1488
1489 /* bp_location array has BL->OWNER always non-NULL. */
1490 if (bl->owner->type == bp_none)
1491 warning (_("reading through apparently deleted breakpoint #%d?"),
1492 bl->owner->number);
1493
1494 /* Performance optimization: any further element can no longer affect BUF
1495 content. */
1496
1497 if (bl->address >= bp_locations_placed_address_before_address_max
1498 && memaddr + len <= (bl->address
1499 - bp_locations_placed_address_before_address_max))
1500 break;
1501
1502 if (!bp_location_has_shadow (bl))
1503 continue;
1504
1505 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1506 memaddr, len, &bl->target_info, bl->gdbarch);
1507 }
1508 }
1509
1510 \f
1511
1512 /* Return true if BPT is either a software breakpoint or a hardware
1513 breakpoint. */
1514
1515 int
1516 is_breakpoint (const struct breakpoint *bpt)
1517 {
1518 return (bpt->type == bp_breakpoint
1519 || bpt->type == bp_hardware_breakpoint
1520 || bpt->type == bp_dprintf);
1521 }
1522
1523 /* Return true if BPT is of any hardware watchpoint kind. */
1524
1525 static int
1526 is_hardware_watchpoint (const struct breakpoint *bpt)
1527 {
1528 return (bpt->type == bp_hardware_watchpoint
1529 || bpt->type == bp_read_watchpoint
1530 || bpt->type == bp_access_watchpoint);
1531 }
1532
1533 /* Return true if BPT is of any watchpoint kind, hardware or
1534 software. */
1535
1536 int
1537 is_watchpoint (const struct breakpoint *bpt)
1538 {
1539 return (is_hardware_watchpoint (bpt)
1540 || bpt->type == bp_watchpoint);
1541 }
1542
1543 /* Returns true if the current thread and its running state are safe
1544 to evaluate or update watchpoint B. Watchpoints on local
1545 expressions need to be evaluated in the context of the thread that
1546 was current when the watchpoint was created, and, that thread needs
1547 to be stopped to be able to select the correct frame context.
1548 Watchpoints on global expressions can be evaluated on any thread,
1549 and in any state. It is presently left to the target allowing
1550 memory accesses when threads are running. */
1551
1552 static int
1553 watchpoint_in_thread_scope (struct watchpoint *b)
1554 {
1555 return (b->pspace == current_program_space
1556 && (ptid_equal (b->watchpoint_thread, null_ptid)
1557 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1558 && !is_executing (inferior_ptid))));
1559 }
1560
1561 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1562 associated bp_watchpoint_scope breakpoint. */
1563
1564 static void
1565 watchpoint_del_at_next_stop (struct watchpoint *w)
1566 {
1567 if (w->related_breakpoint != w)
1568 {
1569 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1570 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1571 w->related_breakpoint->disposition = disp_del_at_next_stop;
1572 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1573 w->related_breakpoint = w;
1574 }
1575 w->disposition = disp_del_at_next_stop;
1576 }
1577
1578 /* Extract a bitfield value from value VAL using the bit parameters contained in
1579 watchpoint W. */
1580
1581 static struct value *
1582 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1583 {
1584 struct value *bit_val;
1585
1586 if (val == NULL)
1587 return NULL;
1588
1589 bit_val = allocate_value (value_type (val));
1590
1591 unpack_value_bitfield (bit_val,
1592 w->val_bitpos,
1593 w->val_bitsize,
1594 value_contents_for_printing (val),
1595 value_offset (val),
1596 val);
1597
1598 return bit_val;
1599 }
1600
1601 /* Allocate a dummy location and add it to B, which must be a software
1602 watchpoint. This is required because even if a software watchpoint
1603 is not watching any memory, bpstat_stop_status requires a location
1604 to be able to report stops. */
1605
1606 static void
1607 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1608 struct program_space *pspace)
1609 {
1610 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1611
1612 b->loc = allocate_bp_location (b);
1613 b->loc->pspace = pspace;
1614 b->loc->address = -1;
1615 b->loc->length = -1;
1616 }
1617
1618 /* Returns true if B is a software watchpoint that is not watching any
1619 memory (e.g., "watch $pc"). */
1620
1621 static int
1622 is_no_memory_software_watchpoint (struct breakpoint *b)
1623 {
1624 return (b->type == bp_watchpoint
1625 && b->loc != NULL
1626 && b->loc->next == NULL
1627 && b->loc->address == -1
1628 && b->loc->length == -1);
1629 }
1630
1631 /* Assuming that B is a watchpoint:
1632 - Reparse watchpoint expression, if REPARSE is non-zero
1633 - Evaluate expression and store the result in B->val
1634 - Evaluate the condition if there is one, and store the result
1635 in b->loc->cond.
1636 - Update the list of values that must be watched in B->loc.
1637
1638 If the watchpoint disposition is disp_del_at_next_stop, then do
1639 nothing. If this is local watchpoint that is out of scope, delete
1640 it.
1641
1642 Even with `set breakpoint always-inserted on' the watchpoints are
1643 removed + inserted on each stop here. Normal breakpoints must
1644 never be removed because they might be missed by a running thread
1645 when debugging in non-stop mode. On the other hand, hardware
1646 watchpoints (is_hardware_watchpoint; processed here) are specific
1647 to each LWP since they are stored in each LWP's hardware debug
1648 registers. Therefore, such LWP must be stopped first in order to
1649 be able to modify its hardware watchpoints.
1650
1651 Hardware watchpoints must be reset exactly once after being
1652 presented to the user. It cannot be done sooner, because it would
1653 reset the data used to present the watchpoint hit to the user. And
1654 it must not be done later because it could display the same single
1655 watchpoint hit during multiple GDB stops. Note that the latter is
1656 relevant only to the hardware watchpoint types bp_read_watchpoint
1657 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1658 not user-visible - its hit is suppressed if the memory content has
1659 not changed.
1660
1661 The following constraints influence the location where we can reset
1662 hardware watchpoints:
1663
1664 * target_stopped_by_watchpoint and target_stopped_data_address are
1665 called several times when GDB stops.
1666
1667 [linux]
1668 * Multiple hardware watchpoints can be hit at the same time,
1669 causing GDB to stop. GDB only presents one hardware watchpoint
1670 hit at a time as the reason for stopping, and all the other hits
1671 are presented later, one after the other, each time the user
1672 requests the execution to be resumed. Execution is not resumed
1673 for the threads still having pending hit event stored in
1674 LWP_INFO->STATUS. While the watchpoint is already removed from
1675 the inferior on the first stop the thread hit event is kept being
1676 reported from its cached value by linux_nat_stopped_data_address
1677 until the real thread resume happens after the watchpoint gets
1678 presented and thus its LWP_INFO->STATUS gets reset.
1679
1680 Therefore the hardware watchpoint hit can get safely reset on the
1681 watchpoint removal from inferior. */
1682
1683 static void
1684 update_watchpoint (struct watchpoint *b, int reparse)
1685 {
1686 int within_current_scope;
1687 struct frame_id saved_frame_id;
1688 int frame_saved;
1689
1690 /* If this is a local watchpoint, we only want to check if the
1691 watchpoint frame is in scope if the current thread is the thread
1692 that was used to create the watchpoint. */
1693 if (!watchpoint_in_thread_scope (b))
1694 return;
1695
1696 if (b->disposition == disp_del_at_next_stop)
1697 return;
1698
1699 frame_saved = 0;
1700
1701 /* Determine if the watchpoint is within scope. */
1702 if (b->exp_valid_block == NULL)
1703 within_current_scope = 1;
1704 else
1705 {
1706 struct frame_info *fi = get_current_frame ();
1707 struct gdbarch *frame_arch = get_frame_arch (fi);
1708 CORE_ADDR frame_pc = get_frame_pc (fi);
1709
1710 /* If we're at a point where the stack has been destroyed
1711 (e.g. in a function epilogue), unwinding may not work
1712 properly. Do not attempt to recreate locations at this
1713 point. See similar comments in watchpoint_check. */
1714 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1715 return;
1716
1717 /* Save the current frame's ID so we can restore it after
1718 evaluating the watchpoint expression on its own frame. */
1719 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1720 took a frame parameter, so that we didn't have to change the
1721 selected frame. */
1722 frame_saved = 1;
1723 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1724
1725 fi = frame_find_by_id (b->watchpoint_frame);
1726 within_current_scope = (fi != NULL);
1727 if (within_current_scope)
1728 select_frame (fi);
1729 }
1730
1731 /* We don't free locations. They are stored in the bp_location array
1732 and update_global_location_list will eventually delete them and
1733 remove breakpoints if needed. */
1734 b->loc = NULL;
1735
1736 if (within_current_scope && reparse)
1737 {
1738 const char *s;
1739
1740 b->exp.reset ();
1741 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1742 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1743 /* If the meaning of expression itself changed, the old value is
1744 no longer relevant. We don't want to report a watchpoint hit
1745 to the user when the old value and the new value may actually
1746 be completely different objects. */
1747 value_free (b->val);
1748 b->val = NULL;
1749 b->val_valid = 0;
1750
1751 /* Note that unlike with breakpoints, the watchpoint's condition
1752 expression is stored in the breakpoint object, not in the
1753 locations (re)created below. */
1754 if (b->cond_string != NULL)
1755 {
1756 b->cond_exp.reset ();
1757
1758 s = b->cond_string;
1759 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1760 }
1761 }
1762
1763 /* If we failed to parse the expression, for example because
1764 it refers to a global variable in a not-yet-loaded shared library,
1765 don't try to insert watchpoint. We don't automatically delete
1766 such watchpoint, though, since failure to parse expression
1767 is different from out-of-scope watchpoint. */
1768 if (!target_has_execution)
1769 {
1770 /* Without execution, memory can't change. No use to try and
1771 set watchpoint locations. The watchpoint will be reset when
1772 the target gains execution, through breakpoint_re_set. */
1773 if (!can_use_hw_watchpoints)
1774 {
1775 if (b->ops->works_in_software_mode (b))
1776 b->type = bp_watchpoint;
1777 else
1778 error (_("Can't set read/access watchpoint when "
1779 "hardware watchpoints are disabled."));
1780 }
1781 }
1782 else if (within_current_scope && b->exp)
1783 {
1784 int pc = 0;
1785 struct value *val_chain, *v, *result, *next;
1786 struct program_space *frame_pspace;
1787
1788 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1789
1790 /* Avoid setting b->val if it's already set. The meaning of
1791 b->val is 'the last value' user saw, and we should update
1792 it only if we reported that last value to user. As it
1793 happens, the code that reports it updates b->val directly.
1794 We don't keep track of the memory value for masked
1795 watchpoints. */
1796 if (!b->val_valid && !is_masked_watchpoint (b))
1797 {
1798 if (b->val_bitsize != 0)
1799 {
1800 v = extract_bitfield_from_watchpoint_value (b, v);
1801 if (v != NULL)
1802 release_value (v);
1803 }
1804 b->val = v;
1805 b->val_valid = 1;
1806 }
1807
1808 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1809
1810 /* Look at each value on the value chain. */
1811 for (v = val_chain; v; v = value_next (v))
1812 {
1813 /* If it's a memory location, and GDB actually needed
1814 its contents to evaluate the expression, then we
1815 must watch it. If the first value returned is
1816 still lazy, that means an error occurred reading it;
1817 watch it anyway in case it becomes readable. */
1818 if (VALUE_LVAL (v) == lval_memory
1819 && (v == val_chain || ! value_lazy (v)))
1820 {
1821 struct type *vtype = check_typedef (value_type (v));
1822
1823 /* We only watch structs and arrays if user asked
1824 for it explicitly, never if they just happen to
1825 appear in the middle of some value chain. */
1826 if (v == result
1827 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1828 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1829 {
1830 CORE_ADDR addr;
1831 enum target_hw_bp_type type;
1832 struct bp_location *loc, **tmp;
1833 int bitpos = 0, bitsize = 0;
1834
1835 if (value_bitsize (v) != 0)
1836 {
1837 /* Extract the bit parameters out from the bitfield
1838 sub-expression. */
1839 bitpos = value_bitpos (v);
1840 bitsize = value_bitsize (v);
1841 }
1842 else if (v == result && b->val_bitsize != 0)
1843 {
1844 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1845 lvalue whose bit parameters are saved in the fields
1846 VAL_BITPOS and VAL_BITSIZE. */
1847 bitpos = b->val_bitpos;
1848 bitsize = b->val_bitsize;
1849 }
1850
1851 addr = value_address (v);
1852 if (bitsize != 0)
1853 {
1854 /* Skip the bytes that don't contain the bitfield. */
1855 addr += bitpos / 8;
1856 }
1857
1858 type = hw_write;
1859 if (b->type == bp_read_watchpoint)
1860 type = hw_read;
1861 else if (b->type == bp_access_watchpoint)
1862 type = hw_access;
1863
1864 loc = allocate_bp_location (b);
1865 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1866 ;
1867 *tmp = loc;
1868 loc->gdbarch = get_type_arch (value_type (v));
1869
1870 loc->pspace = frame_pspace;
1871 loc->address = addr;
1872
1873 if (bitsize != 0)
1874 {
1875 /* Just cover the bytes that make up the bitfield. */
1876 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1877 }
1878 else
1879 loc->length = TYPE_LENGTH (value_type (v));
1880
1881 loc->watchpoint_type = type;
1882 }
1883 }
1884 }
1885
1886 /* Change the type of breakpoint between hardware assisted or
1887 an ordinary watchpoint depending on the hardware support
1888 and free hardware slots. REPARSE is set when the inferior
1889 is started. */
1890 if (reparse)
1891 {
1892 int reg_cnt;
1893 enum bp_loc_type loc_type;
1894 struct bp_location *bl;
1895
1896 reg_cnt = can_use_hardware_watchpoint (val_chain);
1897
1898 if (reg_cnt)
1899 {
1900 int i, target_resources_ok, other_type_used;
1901 enum bptype type;
1902
1903 /* Use an exact watchpoint when there's only one memory region to be
1904 watched, and only one debug register is needed to watch it. */
1905 b->exact = target_exact_watchpoints && reg_cnt == 1;
1906
1907 /* We need to determine how many resources are already
1908 used for all other hardware watchpoints plus this one
1909 to see if we still have enough resources to also fit
1910 this watchpoint in as well. */
1911
1912 /* If this is a software watchpoint, we try to turn it
1913 to a hardware one -- count resources as if B was of
1914 hardware watchpoint type. */
1915 type = b->type;
1916 if (type == bp_watchpoint)
1917 type = bp_hardware_watchpoint;
1918
1919 /* This watchpoint may or may not have been placed on
1920 the list yet at this point (it won't be in the list
1921 if we're trying to create it for the first time,
1922 through watch_command), so always account for it
1923 manually. */
1924
1925 /* Count resources used by all watchpoints except B. */
1926 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1927
1928 /* Add in the resources needed for B. */
1929 i += hw_watchpoint_use_count (b);
1930
1931 target_resources_ok
1932 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1933 if (target_resources_ok <= 0)
1934 {
1935 int sw_mode = b->ops->works_in_software_mode (b);
1936
1937 if (target_resources_ok == 0 && !sw_mode)
1938 error (_("Target does not support this type of "
1939 "hardware watchpoint."));
1940 else if (target_resources_ok < 0 && !sw_mode)
1941 error (_("There are not enough available hardware "
1942 "resources for this watchpoint."));
1943
1944 /* Downgrade to software watchpoint. */
1945 b->type = bp_watchpoint;
1946 }
1947 else
1948 {
1949 /* If this was a software watchpoint, we've just
1950 found we have enough resources to turn it to a
1951 hardware watchpoint. Otherwise, this is a
1952 nop. */
1953 b->type = type;
1954 }
1955 }
1956 else if (!b->ops->works_in_software_mode (b))
1957 {
1958 if (!can_use_hw_watchpoints)
1959 error (_("Can't set read/access watchpoint when "
1960 "hardware watchpoints are disabled."));
1961 else
1962 error (_("Expression cannot be implemented with "
1963 "read/access watchpoint."));
1964 }
1965 else
1966 b->type = bp_watchpoint;
1967
1968 loc_type = (b->type == bp_watchpoint? bp_loc_other
1969 : bp_loc_hardware_watchpoint);
1970 for (bl = b->loc; bl; bl = bl->next)
1971 bl->loc_type = loc_type;
1972 }
1973
1974 for (v = val_chain; v; v = next)
1975 {
1976 next = value_next (v);
1977 if (v != b->val)
1978 value_free (v);
1979 }
1980
1981 /* If a software watchpoint is not watching any memory, then the
1982 above left it without any location set up. But,
1983 bpstat_stop_status requires a location to be able to report
1984 stops, so make sure there's at least a dummy one. */
1985 if (b->type == bp_watchpoint && b->loc == NULL)
1986 software_watchpoint_add_no_memory_location (b, frame_pspace);
1987 }
1988 else if (!within_current_scope)
1989 {
1990 printf_filtered (_("\
1991 Watchpoint %d deleted because the program has left the block\n\
1992 in which its expression is valid.\n"),
1993 b->number);
1994 watchpoint_del_at_next_stop (b);
1995 }
1996
1997 /* Restore the selected frame. */
1998 if (frame_saved)
1999 select_frame (frame_find_by_id (saved_frame_id));
2000 }
2001
2002
2003 /* Returns 1 iff breakpoint location should be
2004 inserted in the inferior. We don't differentiate the type of BL's owner
2005 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2006 breakpoint_ops is not defined, because in insert_bp_location,
2007 tracepoint's insert_location will not be called. */
2008 static int
2009 should_be_inserted (struct bp_location *bl)
2010 {
2011 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2012 return 0;
2013
2014 if (bl->owner->disposition == disp_del_at_next_stop)
2015 return 0;
2016
2017 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2018 return 0;
2019
2020 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2021 return 0;
2022
2023 /* This is set for example, when we're attached to the parent of a
2024 vfork, and have detached from the child. The child is running
2025 free, and we expect it to do an exec or exit, at which point the
2026 OS makes the parent schedulable again (and the target reports
2027 that the vfork is done). Until the child is done with the shared
2028 memory region, do not insert breakpoints in the parent, otherwise
2029 the child could still trip on the parent's breakpoints. Since
2030 the parent is blocked anyway, it won't miss any breakpoint. */
2031 if (bl->pspace->breakpoints_not_allowed)
2032 return 0;
2033
2034 /* Don't insert a breakpoint if we're trying to step past its
2035 location, except if the breakpoint is a single-step breakpoint,
2036 and the breakpoint's thread is the thread which is stepping past
2037 a breakpoint. */
2038 if ((bl->loc_type == bp_loc_software_breakpoint
2039 || bl->loc_type == bp_loc_hardware_breakpoint)
2040 && stepping_past_instruction_at (bl->pspace->aspace,
2041 bl->address)
2042 /* The single-step breakpoint may be inserted at the location
2043 we're trying to step if the instruction branches to itself.
2044 However, the instruction won't be executed at all and it may
2045 break the semantics of the instruction, for example, the
2046 instruction is a conditional branch or updates some flags.
2047 We can't fix it unless GDB is able to emulate the instruction
2048 or switch to displaced stepping. */
2049 && !(bl->owner->type == bp_single_step
2050 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2051 {
2052 if (debug_infrun)
2053 {
2054 fprintf_unfiltered (gdb_stdlog,
2055 "infrun: skipping breakpoint: "
2056 "stepping past insn at: %s\n",
2057 paddress (bl->gdbarch, bl->address));
2058 }
2059 return 0;
2060 }
2061
2062 /* Don't insert watchpoints if we're trying to step past the
2063 instruction that triggered one. */
2064 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2065 && stepping_past_nonsteppable_watchpoint ())
2066 {
2067 if (debug_infrun)
2068 {
2069 fprintf_unfiltered (gdb_stdlog,
2070 "infrun: stepping past non-steppable watchpoint. "
2071 "skipping watchpoint at %s:%d\n",
2072 paddress (bl->gdbarch, bl->address),
2073 bl->length);
2074 }
2075 return 0;
2076 }
2077
2078 return 1;
2079 }
2080
2081 /* Same as should_be_inserted but does the check assuming
2082 that the location is not duplicated. */
2083
2084 static int
2085 unduplicated_should_be_inserted (struct bp_location *bl)
2086 {
2087 int result;
2088 const int save_duplicate = bl->duplicate;
2089
2090 bl->duplicate = 0;
2091 result = should_be_inserted (bl);
2092 bl->duplicate = save_duplicate;
2093 return result;
2094 }
2095
2096 /* Parses a conditional described by an expression COND into an
2097 agent expression bytecode suitable for evaluation
2098 by the bytecode interpreter. Return NULL if there was
2099 any error during parsing. */
2100
2101 static agent_expr_up
2102 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2103 {
2104 if (cond == NULL)
2105 return NULL;
2106
2107 agent_expr_up aexpr;
2108
2109 /* We don't want to stop processing, so catch any errors
2110 that may show up. */
2111 TRY
2112 {
2113 aexpr = gen_eval_for_expr (scope, cond);
2114 }
2115
2116 CATCH (ex, RETURN_MASK_ERROR)
2117 {
2118 /* If we got here, it means the condition could not be parsed to a valid
2119 bytecode expression and thus can't be evaluated on the target's side.
2120 It's no use iterating through the conditions. */
2121 }
2122 END_CATCH
2123
2124 /* We have a valid agent expression. */
2125 return aexpr;
2126 }
2127
2128 /* Based on location BL, create a list of breakpoint conditions to be
2129 passed on to the target. If we have duplicated locations with different
2130 conditions, we will add such conditions to the list. The idea is that the
2131 target will evaluate the list of conditions and will only notify GDB when
2132 one of them is true. */
2133
2134 static void
2135 build_target_condition_list (struct bp_location *bl)
2136 {
2137 struct bp_location **locp = NULL, **loc2p;
2138 int null_condition_or_parse_error = 0;
2139 int modified = bl->needs_update;
2140 struct bp_location *loc;
2141
2142 /* Release conditions left over from a previous insert. */
2143 bl->target_info.conditions.clear ();
2144
2145 /* This is only meaningful if the target is
2146 evaluating conditions and if the user has
2147 opted for condition evaluation on the target's
2148 side. */
2149 if (gdb_evaluates_breakpoint_condition_p ()
2150 || !target_supports_evaluation_of_breakpoint_conditions ())
2151 return;
2152
2153 /* Do a first pass to check for locations with no assigned
2154 conditions or conditions that fail to parse to a valid agent expression
2155 bytecode. If any of these happen, then it's no use to send conditions
2156 to the target since this location will always trigger and generate a
2157 response back to GDB. */
2158 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2159 {
2160 loc = (*loc2p);
2161 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2162 {
2163 if (modified)
2164 {
2165 /* Re-parse the conditions since something changed. In that
2166 case we already freed the condition bytecodes (see
2167 force_breakpoint_reinsertion). We just
2168 need to parse the condition to bytecodes again. */
2169 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2170 loc->cond.get ());
2171 }
2172
2173 /* If we have a NULL bytecode expression, it means something
2174 went wrong or we have a null condition expression. */
2175 if (!loc->cond_bytecode)
2176 {
2177 null_condition_or_parse_error = 1;
2178 break;
2179 }
2180 }
2181 }
2182
2183 /* If any of these happened, it means we will have to evaluate the conditions
2184 for the location's address on gdb's side. It is no use keeping bytecodes
2185 for all the other duplicate locations, thus we free all of them here.
2186
2187 This is so we have a finer control over which locations' conditions are
2188 being evaluated by GDB or the remote stub. */
2189 if (null_condition_or_parse_error)
2190 {
2191 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2192 {
2193 loc = (*loc2p);
2194 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2195 {
2196 /* Only go as far as the first NULL bytecode is
2197 located. */
2198 if (!loc->cond_bytecode)
2199 return;
2200
2201 loc->cond_bytecode.reset ();
2202 }
2203 }
2204 }
2205
2206 /* No NULL conditions or failed bytecode generation. Build a condition list
2207 for this location's address. */
2208 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2209 {
2210 loc = (*loc2p);
2211 if (loc->cond
2212 && is_breakpoint (loc->owner)
2213 && loc->pspace->num == bl->pspace->num
2214 && loc->owner->enable_state == bp_enabled
2215 && loc->enabled)
2216 {
2217 /* Add the condition to the vector. This will be used later
2218 to send the conditions to the target. */
2219 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2220 }
2221 }
2222
2223 return;
2224 }
2225
2226 /* Parses a command described by string CMD into an agent expression
2227 bytecode suitable for evaluation by the bytecode interpreter.
2228 Return NULL if there was any error during parsing. */
2229
2230 static agent_expr_up
2231 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2232 {
2233 struct cleanup *old_cleanups = 0;
2234 struct expression **argvec;
2235 const char *cmdrest;
2236 const char *format_start, *format_end;
2237 struct format_piece *fpieces;
2238 int nargs;
2239 struct gdbarch *gdbarch = get_current_arch ();
2240
2241 if (cmd == NULL)
2242 return NULL;
2243
2244 cmdrest = cmd;
2245
2246 if (*cmdrest == ',')
2247 ++cmdrest;
2248 cmdrest = skip_spaces (cmdrest);
2249
2250 if (*cmdrest++ != '"')
2251 error (_("No format string following the location"));
2252
2253 format_start = cmdrest;
2254
2255 fpieces = parse_format_string (&cmdrest);
2256
2257 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2258
2259 format_end = cmdrest;
2260
2261 if (*cmdrest++ != '"')
2262 error (_("Bad format string, non-terminated '\"'."));
2263
2264 cmdrest = skip_spaces (cmdrest);
2265
2266 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2267 error (_("Invalid argument syntax"));
2268
2269 if (*cmdrest == ',')
2270 cmdrest++;
2271 cmdrest = skip_spaces (cmdrest);
2272
2273 /* For each argument, make an expression. */
2274
2275 argvec = (struct expression **) alloca (strlen (cmd)
2276 * sizeof (struct expression *));
2277
2278 nargs = 0;
2279 while (*cmdrest != '\0')
2280 {
2281 const char *cmd1;
2282
2283 cmd1 = cmdrest;
2284 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2285 argvec[nargs++] = expr.release ();
2286 cmdrest = cmd1;
2287 if (*cmdrest == ',')
2288 ++cmdrest;
2289 }
2290
2291 agent_expr_up aexpr;
2292
2293 /* We don't want to stop processing, so catch any errors
2294 that may show up. */
2295 TRY
2296 {
2297 aexpr = gen_printf (scope, gdbarch, 0, 0,
2298 format_start, format_end - format_start,
2299 fpieces, nargs, argvec);
2300 }
2301 CATCH (ex, RETURN_MASK_ERROR)
2302 {
2303 /* If we got here, it means the command could not be parsed to a valid
2304 bytecode expression and thus can't be evaluated on the target's side.
2305 It's no use iterating through the other commands. */
2306 }
2307 END_CATCH
2308
2309 do_cleanups (old_cleanups);
2310
2311 /* We have a valid agent expression, return it. */
2312 return aexpr;
2313 }
2314
2315 /* Based on location BL, create a list of breakpoint commands to be
2316 passed on to the target. If we have duplicated locations with
2317 different commands, we will add any such to the list. */
2318
2319 static void
2320 build_target_command_list (struct bp_location *bl)
2321 {
2322 struct bp_location **locp = NULL, **loc2p;
2323 int null_command_or_parse_error = 0;
2324 int modified = bl->needs_update;
2325 struct bp_location *loc;
2326
2327 /* Clear commands left over from a previous insert. */
2328 bl->target_info.tcommands.clear ();
2329
2330 if (!target_can_run_breakpoint_commands ())
2331 return;
2332
2333 /* For now, limit to agent-style dprintf breakpoints. */
2334 if (dprintf_style != dprintf_style_agent)
2335 return;
2336
2337 /* For now, if we have any duplicate location that isn't a dprintf,
2338 don't install the target-side commands, as that would make the
2339 breakpoint not be reported to the core, and we'd lose
2340 control. */
2341 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2342 {
2343 loc = (*loc2p);
2344 if (is_breakpoint (loc->owner)
2345 && loc->pspace->num == bl->pspace->num
2346 && loc->owner->type != bp_dprintf)
2347 return;
2348 }
2349
2350 /* Do a first pass to check for locations with no assigned
2351 conditions or conditions that fail to parse to a valid agent expression
2352 bytecode. If any of these happen, then it's no use to send conditions
2353 to the target since this location will always trigger and generate a
2354 response back to GDB. */
2355 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2356 {
2357 loc = (*loc2p);
2358 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2359 {
2360 if (modified)
2361 {
2362 /* Re-parse the commands since something changed. In that
2363 case we already freed the command bytecodes (see
2364 force_breakpoint_reinsertion). We just
2365 need to parse the command to bytecodes again. */
2366 loc->cmd_bytecode
2367 = parse_cmd_to_aexpr (bl->address,
2368 loc->owner->extra_string);
2369 }
2370
2371 /* If we have a NULL bytecode expression, it means something
2372 went wrong or we have a null command expression. */
2373 if (!loc->cmd_bytecode)
2374 {
2375 null_command_or_parse_error = 1;
2376 break;
2377 }
2378 }
2379 }
2380
2381 /* If anything failed, then we're not doing target-side commands,
2382 and so clean up. */
2383 if (null_command_or_parse_error)
2384 {
2385 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2386 {
2387 loc = (*loc2p);
2388 if (is_breakpoint (loc->owner)
2389 && loc->pspace->num == bl->pspace->num)
2390 {
2391 /* Only go as far as the first NULL bytecode is
2392 located. */
2393 if (loc->cmd_bytecode == NULL)
2394 return;
2395
2396 loc->cmd_bytecode.reset ();
2397 }
2398 }
2399 }
2400
2401 /* No NULL commands or failed bytecode generation. Build a command list
2402 for this location's address. */
2403 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2404 {
2405 loc = (*loc2p);
2406 if (loc->owner->extra_string
2407 && is_breakpoint (loc->owner)
2408 && loc->pspace->num == bl->pspace->num
2409 && loc->owner->enable_state == bp_enabled
2410 && loc->enabled)
2411 {
2412 /* Add the command to the vector. This will be used later
2413 to send the commands to the target. */
2414 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2415 }
2416 }
2417
2418 bl->target_info.persist = 0;
2419 /* Maybe flag this location as persistent. */
2420 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2421 bl->target_info.persist = 1;
2422 }
2423
2424 /* Return the kind of breakpoint on address *ADDR. Get the kind
2425 of breakpoint according to ADDR except single-step breakpoint.
2426 Get the kind of single-step breakpoint according to the current
2427 registers state. */
2428
2429 static int
2430 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2431 {
2432 if (bl->owner->type == bp_single_step)
2433 {
2434 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2435 struct regcache *regcache;
2436
2437 regcache = get_thread_regcache (thr->ptid);
2438
2439 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2440 regcache, addr);
2441 }
2442 else
2443 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2444 }
2445
2446 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2447 location. Any error messages are printed to TMP_ERROR_STREAM; and
2448 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2449 Returns 0 for success, 1 if the bp_location type is not supported or
2450 -1 for failure.
2451
2452 NOTE drow/2003-09-09: This routine could be broken down to an
2453 object-style method for each breakpoint or catchpoint type. */
2454 static int
2455 insert_bp_location (struct bp_location *bl,
2456 struct ui_file *tmp_error_stream,
2457 int *disabled_breaks,
2458 int *hw_breakpoint_error,
2459 int *hw_bp_error_explained_already)
2460 {
2461 enum errors bp_err = GDB_NO_ERROR;
2462 const char *bp_err_message = NULL;
2463
2464 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2465 return 0;
2466
2467 /* Note we don't initialize bl->target_info, as that wipes out
2468 the breakpoint location's shadow_contents if the breakpoint
2469 is still inserted at that location. This in turn breaks
2470 target_read_memory which depends on these buffers when
2471 a memory read is requested at the breakpoint location:
2472 Once the target_info has been wiped, we fail to see that
2473 we have a breakpoint inserted at that address and thus
2474 read the breakpoint instead of returning the data saved in
2475 the breakpoint location's shadow contents. */
2476 bl->target_info.reqstd_address = bl->address;
2477 bl->target_info.placed_address_space = bl->pspace->aspace;
2478 bl->target_info.length = bl->length;
2479
2480 /* When working with target-side conditions, we must pass all the conditions
2481 for the same breakpoint address down to the target since GDB will not
2482 insert those locations. With a list of breakpoint conditions, the target
2483 can decide when to stop and notify GDB. */
2484
2485 if (is_breakpoint (bl->owner))
2486 {
2487 build_target_condition_list (bl);
2488 build_target_command_list (bl);
2489 /* Reset the modification marker. */
2490 bl->needs_update = 0;
2491 }
2492
2493 if (bl->loc_type == bp_loc_software_breakpoint
2494 || bl->loc_type == bp_loc_hardware_breakpoint)
2495 {
2496 if (bl->owner->type != bp_hardware_breakpoint)
2497 {
2498 /* If the explicitly specified breakpoint type
2499 is not hardware breakpoint, check the memory map to see
2500 if the breakpoint address is in read only memory or not.
2501
2502 Two important cases are:
2503 - location type is not hardware breakpoint, memory
2504 is readonly. We change the type of the location to
2505 hardware breakpoint.
2506 - location type is hardware breakpoint, memory is
2507 read-write. This means we've previously made the
2508 location hardware one, but then the memory map changed,
2509 so we undo.
2510
2511 When breakpoints are removed, remove_breakpoints will use
2512 location types we've just set here, the only possible
2513 problem is that memory map has changed during running
2514 program, but it's not going to work anyway with current
2515 gdb. */
2516 struct mem_region *mr
2517 = lookup_mem_region (bl->target_info.reqstd_address);
2518
2519 if (mr)
2520 {
2521 if (automatic_hardware_breakpoints)
2522 {
2523 enum bp_loc_type new_type;
2524
2525 if (mr->attrib.mode != MEM_RW)
2526 new_type = bp_loc_hardware_breakpoint;
2527 else
2528 new_type = bp_loc_software_breakpoint;
2529
2530 if (new_type != bl->loc_type)
2531 {
2532 static int said = 0;
2533
2534 bl->loc_type = new_type;
2535 if (!said)
2536 {
2537 fprintf_filtered (gdb_stdout,
2538 _("Note: automatically using "
2539 "hardware breakpoints for "
2540 "read-only addresses.\n"));
2541 said = 1;
2542 }
2543 }
2544 }
2545 else if (bl->loc_type == bp_loc_software_breakpoint
2546 && mr->attrib.mode != MEM_RW)
2547 {
2548 fprintf_unfiltered (tmp_error_stream,
2549 _("Cannot insert breakpoint %d.\n"
2550 "Cannot set software breakpoint "
2551 "at read-only address %s\n"),
2552 bl->owner->number,
2553 paddress (bl->gdbarch, bl->address));
2554 return 1;
2555 }
2556 }
2557 }
2558
2559 /* First check to see if we have to handle an overlay. */
2560 if (overlay_debugging == ovly_off
2561 || bl->section == NULL
2562 || !(section_is_overlay (bl->section)))
2563 {
2564 /* No overlay handling: just set the breakpoint. */
2565 TRY
2566 {
2567 int val;
2568
2569 val = bl->owner->ops->insert_location (bl);
2570 if (val)
2571 bp_err = GENERIC_ERROR;
2572 }
2573 CATCH (e, RETURN_MASK_ALL)
2574 {
2575 bp_err = e.error;
2576 bp_err_message = e.message;
2577 }
2578 END_CATCH
2579 }
2580 else
2581 {
2582 /* This breakpoint is in an overlay section.
2583 Shall we set a breakpoint at the LMA? */
2584 if (!overlay_events_enabled)
2585 {
2586 /* Yes -- overlay event support is not active,
2587 so we must try to set a breakpoint at the LMA.
2588 This will not work for a hardware breakpoint. */
2589 if (bl->loc_type == bp_loc_hardware_breakpoint)
2590 warning (_("hardware breakpoint %d not supported in overlay!"),
2591 bl->owner->number);
2592 else
2593 {
2594 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2595 bl->section);
2596 /* Set a software (trap) breakpoint at the LMA. */
2597 bl->overlay_target_info = bl->target_info;
2598 bl->overlay_target_info.reqstd_address = addr;
2599
2600 /* No overlay handling: just set the breakpoint. */
2601 TRY
2602 {
2603 int val;
2604
2605 bl->overlay_target_info.kind
2606 = breakpoint_kind (bl, &addr);
2607 bl->overlay_target_info.placed_address = addr;
2608 val = target_insert_breakpoint (bl->gdbarch,
2609 &bl->overlay_target_info);
2610 if (val)
2611 bp_err = GENERIC_ERROR;
2612 }
2613 CATCH (e, RETURN_MASK_ALL)
2614 {
2615 bp_err = e.error;
2616 bp_err_message = e.message;
2617 }
2618 END_CATCH
2619
2620 if (bp_err != GDB_NO_ERROR)
2621 fprintf_unfiltered (tmp_error_stream,
2622 "Overlay breakpoint %d "
2623 "failed: in ROM?\n",
2624 bl->owner->number);
2625 }
2626 }
2627 /* Shall we set a breakpoint at the VMA? */
2628 if (section_is_mapped (bl->section))
2629 {
2630 /* Yes. This overlay section is mapped into memory. */
2631 TRY
2632 {
2633 int val;
2634
2635 val = bl->owner->ops->insert_location (bl);
2636 if (val)
2637 bp_err = GENERIC_ERROR;
2638 }
2639 CATCH (e, RETURN_MASK_ALL)
2640 {
2641 bp_err = e.error;
2642 bp_err_message = e.message;
2643 }
2644 END_CATCH
2645 }
2646 else
2647 {
2648 /* No. This breakpoint will not be inserted.
2649 No error, but do not mark the bp as 'inserted'. */
2650 return 0;
2651 }
2652 }
2653
2654 if (bp_err != GDB_NO_ERROR)
2655 {
2656 /* Can't set the breakpoint. */
2657
2658 /* In some cases, we might not be able to insert a
2659 breakpoint in a shared library that has already been
2660 removed, but we have not yet processed the shlib unload
2661 event. Unfortunately, some targets that implement
2662 breakpoint insertion themselves can't tell why the
2663 breakpoint insertion failed (e.g., the remote target
2664 doesn't define error codes), so we must treat generic
2665 errors as memory errors. */
2666 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2667 && bl->loc_type == bp_loc_software_breakpoint
2668 && (solib_name_from_address (bl->pspace, bl->address)
2669 || shared_objfile_contains_address_p (bl->pspace,
2670 bl->address)))
2671 {
2672 /* See also: disable_breakpoints_in_shlibs. */
2673 bl->shlib_disabled = 1;
2674 observer_notify_breakpoint_modified (bl->owner);
2675 if (!*disabled_breaks)
2676 {
2677 fprintf_unfiltered (tmp_error_stream,
2678 "Cannot insert breakpoint %d.\n",
2679 bl->owner->number);
2680 fprintf_unfiltered (tmp_error_stream,
2681 "Temporarily disabling shared "
2682 "library breakpoints:\n");
2683 }
2684 *disabled_breaks = 1;
2685 fprintf_unfiltered (tmp_error_stream,
2686 "breakpoint #%d\n", bl->owner->number);
2687 return 0;
2688 }
2689 else
2690 {
2691 if (bl->loc_type == bp_loc_hardware_breakpoint)
2692 {
2693 *hw_breakpoint_error = 1;
2694 *hw_bp_error_explained_already = bp_err_message != NULL;
2695 fprintf_unfiltered (tmp_error_stream,
2696 "Cannot insert hardware breakpoint %d%s",
2697 bl->owner->number, bp_err_message ? ":" : ".\n");
2698 if (bp_err_message != NULL)
2699 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2700 }
2701 else
2702 {
2703 if (bp_err_message == NULL)
2704 {
2705 std::string message
2706 = memory_error_message (TARGET_XFER_E_IO,
2707 bl->gdbarch, bl->address);
2708
2709 fprintf_unfiltered (tmp_error_stream,
2710 "Cannot insert breakpoint %d.\n"
2711 "%s\n",
2712 bl->owner->number, message.c_str ());
2713 }
2714 else
2715 {
2716 fprintf_unfiltered (tmp_error_stream,
2717 "Cannot insert breakpoint %d: %s\n",
2718 bl->owner->number,
2719 bp_err_message);
2720 }
2721 }
2722 return 1;
2723
2724 }
2725 }
2726 else
2727 bl->inserted = 1;
2728
2729 return 0;
2730 }
2731
2732 else if (bl->loc_type == bp_loc_hardware_watchpoint
2733 /* NOTE drow/2003-09-08: This state only exists for removing
2734 watchpoints. It's not clear that it's necessary... */
2735 && bl->owner->disposition != disp_del_at_next_stop)
2736 {
2737 int val;
2738
2739 gdb_assert (bl->owner->ops != NULL
2740 && bl->owner->ops->insert_location != NULL);
2741
2742 val = bl->owner->ops->insert_location (bl);
2743
2744 /* If trying to set a read-watchpoint, and it turns out it's not
2745 supported, try emulating one with an access watchpoint. */
2746 if (val == 1 && bl->watchpoint_type == hw_read)
2747 {
2748 struct bp_location *loc, **loc_temp;
2749
2750 /* But don't try to insert it, if there's already another
2751 hw_access location that would be considered a duplicate
2752 of this one. */
2753 ALL_BP_LOCATIONS (loc, loc_temp)
2754 if (loc != bl
2755 && loc->watchpoint_type == hw_access
2756 && watchpoint_locations_match (bl, loc))
2757 {
2758 bl->duplicate = 1;
2759 bl->inserted = 1;
2760 bl->target_info = loc->target_info;
2761 bl->watchpoint_type = hw_access;
2762 val = 0;
2763 break;
2764 }
2765
2766 if (val == 1)
2767 {
2768 bl->watchpoint_type = hw_access;
2769 val = bl->owner->ops->insert_location (bl);
2770
2771 if (val)
2772 /* Back to the original value. */
2773 bl->watchpoint_type = hw_read;
2774 }
2775 }
2776
2777 bl->inserted = (val == 0);
2778 }
2779
2780 else if (bl->owner->type == bp_catchpoint)
2781 {
2782 int val;
2783
2784 gdb_assert (bl->owner->ops != NULL
2785 && bl->owner->ops->insert_location != NULL);
2786
2787 val = bl->owner->ops->insert_location (bl);
2788 if (val)
2789 {
2790 bl->owner->enable_state = bp_disabled;
2791
2792 if (val == 1)
2793 warning (_("\
2794 Error inserting catchpoint %d: Your system does not support this type\n\
2795 of catchpoint."), bl->owner->number);
2796 else
2797 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2798 }
2799
2800 bl->inserted = (val == 0);
2801
2802 /* We've already printed an error message if there was a problem
2803 inserting this catchpoint, and we've disabled the catchpoint,
2804 so just return success. */
2805 return 0;
2806 }
2807
2808 return 0;
2809 }
2810
2811 /* This function is called when program space PSPACE is about to be
2812 deleted. It takes care of updating breakpoints to not reference
2813 PSPACE anymore. */
2814
2815 void
2816 breakpoint_program_space_exit (struct program_space *pspace)
2817 {
2818 struct breakpoint *b, *b_temp;
2819 struct bp_location *loc, **loc_temp;
2820
2821 /* Remove any breakpoint that was set through this program space. */
2822 ALL_BREAKPOINTS_SAFE (b, b_temp)
2823 {
2824 if (b->pspace == pspace)
2825 delete_breakpoint (b);
2826 }
2827
2828 /* Breakpoints set through other program spaces could have locations
2829 bound to PSPACE as well. Remove those. */
2830 ALL_BP_LOCATIONS (loc, loc_temp)
2831 {
2832 struct bp_location *tmp;
2833
2834 if (loc->pspace == pspace)
2835 {
2836 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2837 if (loc->owner->loc == loc)
2838 loc->owner->loc = loc->next;
2839 else
2840 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2841 if (tmp->next == loc)
2842 {
2843 tmp->next = loc->next;
2844 break;
2845 }
2846 }
2847 }
2848
2849 /* Now update the global location list to permanently delete the
2850 removed locations above. */
2851 update_global_location_list (UGLL_DONT_INSERT);
2852 }
2853
2854 /* Make sure all breakpoints are inserted in inferior.
2855 Throws exception on any error.
2856 A breakpoint that is already inserted won't be inserted
2857 again, so calling this function twice is safe. */
2858 void
2859 insert_breakpoints (void)
2860 {
2861 struct breakpoint *bpt;
2862
2863 ALL_BREAKPOINTS (bpt)
2864 if (is_hardware_watchpoint (bpt))
2865 {
2866 struct watchpoint *w = (struct watchpoint *) bpt;
2867
2868 update_watchpoint (w, 0 /* don't reparse. */);
2869 }
2870
2871 /* Updating watchpoints creates new locations, so update the global
2872 location list. Explicitly tell ugll to insert locations and
2873 ignore breakpoints_always_inserted_mode. */
2874 update_global_location_list (UGLL_INSERT);
2875 }
2876
2877 /* Invoke CALLBACK for each of bp_location. */
2878
2879 void
2880 iterate_over_bp_locations (walk_bp_location_callback callback)
2881 {
2882 struct bp_location *loc, **loc_tmp;
2883
2884 ALL_BP_LOCATIONS (loc, loc_tmp)
2885 {
2886 callback (loc, NULL);
2887 }
2888 }
2889
2890 /* This is used when we need to synch breakpoint conditions between GDB and the
2891 target. It is the case with deleting and disabling of breakpoints when using
2892 always-inserted mode. */
2893
2894 static void
2895 update_inserted_breakpoint_locations (void)
2896 {
2897 struct bp_location *bl, **blp_tmp;
2898 int error_flag = 0;
2899 int val = 0;
2900 int disabled_breaks = 0;
2901 int hw_breakpoint_error = 0;
2902 int hw_bp_details_reported = 0;
2903
2904 string_file tmp_error_stream;
2905
2906 /* Explicitly mark the warning -- this will only be printed if
2907 there was an error. */
2908 tmp_error_stream.puts ("Warning:\n");
2909
2910 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2911
2912 ALL_BP_LOCATIONS (bl, blp_tmp)
2913 {
2914 /* We only want to update software breakpoints and hardware
2915 breakpoints. */
2916 if (!is_breakpoint (bl->owner))
2917 continue;
2918
2919 /* We only want to update locations that are already inserted
2920 and need updating. This is to avoid unwanted insertion during
2921 deletion of breakpoints. */
2922 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2923 continue;
2924
2925 switch_to_program_space_and_thread (bl->pspace);
2926
2927 /* For targets that support global breakpoints, there's no need
2928 to select an inferior to insert breakpoint to. In fact, even
2929 if we aren't attached to any process yet, we should still
2930 insert breakpoints. */
2931 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2932 && ptid_equal (inferior_ptid, null_ptid))
2933 continue;
2934
2935 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2936 &hw_breakpoint_error, &hw_bp_details_reported);
2937 if (val)
2938 error_flag = val;
2939 }
2940
2941 if (error_flag)
2942 {
2943 target_terminal::ours_for_output ();
2944 error_stream (tmp_error_stream);
2945 }
2946 }
2947
2948 /* Used when starting or continuing the program. */
2949
2950 static void
2951 insert_breakpoint_locations (void)
2952 {
2953 struct breakpoint *bpt;
2954 struct bp_location *bl, **blp_tmp;
2955 int error_flag = 0;
2956 int val = 0;
2957 int disabled_breaks = 0;
2958 int hw_breakpoint_error = 0;
2959 int hw_bp_error_explained_already = 0;
2960
2961 string_file tmp_error_stream;
2962
2963 /* Explicitly mark the warning -- this will only be printed if
2964 there was an error. */
2965 tmp_error_stream.puts ("Warning:\n");
2966
2967 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2968
2969 ALL_BP_LOCATIONS (bl, blp_tmp)
2970 {
2971 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2972 continue;
2973
2974 /* There is no point inserting thread-specific breakpoints if
2975 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2976 has BL->OWNER always non-NULL. */
2977 if (bl->owner->thread != -1
2978 && !valid_global_thread_id (bl->owner->thread))
2979 continue;
2980
2981 switch_to_program_space_and_thread (bl->pspace);
2982
2983 /* For targets that support global breakpoints, there's no need
2984 to select an inferior to insert breakpoint to. In fact, even
2985 if we aren't attached to any process yet, we should still
2986 insert breakpoints. */
2987 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2988 && ptid_equal (inferior_ptid, null_ptid))
2989 continue;
2990
2991 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2992 &hw_breakpoint_error, &hw_bp_error_explained_already);
2993 if (val)
2994 error_flag = val;
2995 }
2996
2997 /* If we failed to insert all locations of a watchpoint, remove
2998 them, as half-inserted watchpoint is of limited use. */
2999 ALL_BREAKPOINTS (bpt)
3000 {
3001 int some_failed = 0;
3002 struct bp_location *loc;
3003
3004 if (!is_hardware_watchpoint (bpt))
3005 continue;
3006
3007 if (!breakpoint_enabled (bpt))
3008 continue;
3009
3010 if (bpt->disposition == disp_del_at_next_stop)
3011 continue;
3012
3013 for (loc = bpt->loc; loc; loc = loc->next)
3014 if (!loc->inserted && should_be_inserted (loc))
3015 {
3016 some_failed = 1;
3017 break;
3018 }
3019 if (some_failed)
3020 {
3021 for (loc = bpt->loc; loc; loc = loc->next)
3022 if (loc->inserted)
3023 remove_breakpoint (loc);
3024
3025 hw_breakpoint_error = 1;
3026 tmp_error_stream.printf ("Could not insert "
3027 "hardware watchpoint %d.\n",
3028 bpt->number);
3029 error_flag = -1;
3030 }
3031 }
3032
3033 if (error_flag)
3034 {
3035 /* If a hardware breakpoint or watchpoint was inserted, add a
3036 message about possibly exhausted resources. */
3037 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3038 {
3039 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3040 You may have requested too many hardware breakpoints/watchpoints.\n");
3041 }
3042 target_terminal::ours_for_output ();
3043 error_stream (tmp_error_stream);
3044 }
3045 }
3046
3047 /* Used when the program stops.
3048 Returns zero if successful, or non-zero if there was a problem
3049 removing a breakpoint location. */
3050
3051 int
3052 remove_breakpoints (void)
3053 {
3054 struct bp_location *bl, **blp_tmp;
3055 int val = 0;
3056
3057 ALL_BP_LOCATIONS (bl, blp_tmp)
3058 {
3059 if (bl->inserted && !is_tracepoint (bl->owner))
3060 val |= remove_breakpoint (bl);
3061 }
3062 return val;
3063 }
3064
3065 /* When a thread exits, remove breakpoints that are related to
3066 that thread. */
3067
3068 static void
3069 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3070 {
3071 struct breakpoint *b, *b_tmp;
3072
3073 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3074 {
3075 if (b->thread == tp->global_num && user_breakpoint_p (b))
3076 {
3077 b->disposition = disp_del_at_next_stop;
3078
3079 printf_filtered (_("\
3080 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3081 b->number, print_thread_id (tp));
3082
3083 /* Hide it from the user. */
3084 b->number = 0;
3085 }
3086 }
3087 }
3088
3089 /* Remove breakpoints of process PID. */
3090
3091 int
3092 remove_breakpoints_pid (int pid)
3093 {
3094 struct bp_location *bl, **blp_tmp;
3095 int val;
3096 struct inferior *inf = find_inferior_pid (pid);
3097
3098 ALL_BP_LOCATIONS (bl, blp_tmp)
3099 {
3100 if (bl->pspace != inf->pspace)
3101 continue;
3102
3103 if (bl->inserted && !bl->target_info.persist)
3104 {
3105 val = remove_breakpoint (bl);
3106 if (val != 0)
3107 return val;
3108 }
3109 }
3110 return 0;
3111 }
3112
3113 static int internal_breakpoint_number = -1;
3114
3115 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3116 If INTERNAL is non-zero, the breakpoint number will be populated
3117 from internal_breakpoint_number and that variable decremented.
3118 Otherwise the breakpoint number will be populated from
3119 breakpoint_count and that value incremented. Internal breakpoints
3120 do not set the internal var bpnum. */
3121 static void
3122 set_breakpoint_number (int internal, struct breakpoint *b)
3123 {
3124 if (internal)
3125 b->number = internal_breakpoint_number--;
3126 else
3127 {
3128 set_breakpoint_count (breakpoint_count + 1);
3129 b->number = breakpoint_count;
3130 }
3131 }
3132
3133 static struct breakpoint *
3134 create_internal_breakpoint (struct gdbarch *gdbarch,
3135 CORE_ADDR address, enum bptype type,
3136 const struct breakpoint_ops *ops)
3137 {
3138 symtab_and_line sal;
3139 sal.pc = address;
3140 sal.section = find_pc_overlay (sal.pc);
3141 sal.pspace = current_program_space;
3142
3143 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3144 b->number = internal_breakpoint_number--;
3145 b->disposition = disp_donttouch;
3146
3147 return b;
3148 }
3149
3150 static const char *const longjmp_names[] =
3151 {
3152 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3153 };
3154 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3155
3156 /* Per-objfile data private to breakpoint.c. */
3157 struct breakpoint_objfile_data
3158 {
3159 /* Minimal symbol for "_ovly_debug_event" (if any). */
3160 struct bound_minimal_symbol overlay_msym {};
3161
3162 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3163 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3164
3165 /* True if we have looked for longjmp probes. */
3166 int longjmp_searched = 0;
3167
3168 /* SystemTap probe points for longjmp (if any). These are non-owning
3169 references. */
3170 std::vector<probe *> longjmp_probes;
3171
3172 /* Minimal symbol for "std::terminate()" (if any). */
3173 struct bound_minimal_symbol terminate_msym {};
3174
3175 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3176 struct bound_minimal_symbol exception_msym {};
3177
3178 /* True if we have looked for exception probes. */
3179 int exception_searched = 0;
3180
3181 /* SystemTap probe points for unwinding (if any). These are non-owning
3182 references. */
3183 std::vector<probe *> exception_probes;
3184 };
3185
3186 static const struct objfile_data *breakpoint_objfile_key;
3187
3188 /* Minimal symbol not found sentinel. */
3189 static struct minimal_symbol msym_not_found;
3190
3191 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3192
3193 static int
3194 msym_not_found_p (const struct minimal_symbol *msym)
3195 {
3196 return msym == &msym_not_found;
3197 }
3198
3199 /* Return per-objfile data needed by breakpoint.c.
3200 Allocate the data if necessary. */
3201
3202 static struct breakpoint_objfile_data *
3203 get_breakpoint_objfile_data (struct objfile *objfile)
3204 {
3205 struct breakpoint_objfile_data *bp_objfile_data;
3206
3207 bp_objfile_data = ((struct breakpoint_objfile_data *)
3208 objfile_data (objfile, breakpoint_objfile_key));
3209 if (bp_objfile_data == NULL)
3210 {
3211 bp_objfile_data = new breakpoint_objfile_data ();
3212 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3213 }
3214 return bp_objfile_data;
3215 }
3216
3217 static void
3218 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3219 {
3220 struct breakpoint_objfile_data *bp_objfile_data
3221 = (struct breakpoint_objfile_data *) data;
3222
3223 delete bp_objfile_data;
3224 }
3225
3226 static void
3227 create_overlay_event_breakpoint (void)
3228 {
3229 struct objfile *objfile;
3230 const char *const func_name = "_ovly_debug_event";
3231
3232 ALL_OBJFILES (objfile)
3233 {
3234 struct breakpoint *b;
3235 struct breakpoint_objfile_data *bp_objfile_data;
3236 CORE_ADDR addr;
3237 struct explicit_location explicit_loc;
3238
3239 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3240
3241 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3242 continue;
3243
3244 if (bp_objfile_data->overlay_msym.minsym == NULL)
3245 {
3246 struct bound_minimal_symbol m;
3247
3248 m = lookup_minimal_symbol_text (func_name, objfile);
3249 if (m.minsym == NULL)
3250 {
3251 /* Avoid future lookups in this objfile. */
3252 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3253 continue;
3254 }
3255 bp_objfile_data->overlay_msym = m;
3256 }
3257
3258 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3259 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3260 bp_overlay_event,
3261 &internal_breakpoint_ops);
3262 initialize_explicit_location (&explicit_loc);
3263 explicit_loc.function_name = ASTRDUP (func_name);
3264 b->location = new_explicit_location (&explicit_loc);
3265
3266 if (overlay_debugging == ovly_auto)
3267 {
3268 b->enable_state = bp_enabled;
3269 overlay_events_enabled = 1;
3270 }
3271 else
3272 {
3273 b->enable_state = bp_disabled;
3274 overlay_events_enabled = 0;
3275 }
3276 }
3277 }
3278
3279 static void
3280 create_longjmp_master_breakpoint (void)
3281 {
3282 struct program_space *pspace;
3283
3284 scoped_restore_current_program_space restore_pspace;
3285
3286 ALL_PSPACES (pspace)
3287 {
3288 struct objfile *objfile;
3289
3290 set_current_program_space (pspace);
3291
3292 ALL_OBJFILES (objfile)
3293 {
3294 int i;
3295 struct gdbarch *gdbarch;
3296 struct breakpoint_objfile_data *bp_objfile_data;
3297
3298 gdbarch = get_objfile_arch (objfile);
3299
3300 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3301
3302 if (!bp_objfile_data->longjmp_searched)
3303 {
3304 std::vector<probe *> ret
3305 = find_probes_in_objfile (objfile, "libc", "longjmp");
3306
3307 if (!ret.empty ())
3308 {
3309 /* We are only interested in checking one element. */
3310 probe *p = ret[0];
3311
3312 if (!can_evaluate_probe_arguments (p))
3313 {
3314 /* We cannot use the probe interface here, because it does
3315 not know how to evaluate arguments. */
3316 ret.clear ();
3317 }
3318 }
3319 bp_objfile_data->longjmp_probes = ret;
3320 bp_objfile_data->longjmp_searched = 1;
3321 }
3322
3323 if (!bp_objfile_data->longjmp_probes.empty ())
3324 {
3325 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3326
3327 for (probe *p : bp_objfile_data->longjmp_probes)
3328 {
3329 struct breakpoint *b;
3330
3331 b = create_internal_breakpoint (gdbarch,
3332 get_probe_address (p, objfile),
3333 bp_longjmp_master,
3334 &internal_breakpoint_ops);
3335 b->location = new_probe_location ("-probe-stap libc:longjmp");
3336 b->enable_state = bp_disabled;
3337 }
3338
3339 continue;
3340 }
3341
3342 if (!gdbarch_get_longjmp_target_p (gdbarch))
3343 continue;
3344
3345 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3346 {
3347 struct breakpoint *b;
3348 const char *func_name;
3349 CORE_ADDR addr;
3350 struct explicit_location explicit_loc;
3351
3352 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3353 continue;
3354
3355 func_name = longjmp_names[i];
3356 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3357 {
3358 struct bound_minimal_symbol m;
3359
3360 m = lookup_minimal_symbol_text (func_name, objfile);
3361 if (m.minsym == NULL)
3362 {
3363 /* Prevent future lookups in this objfile. */
3364 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3365 continue;
3366 }
3367 bp_objfile_data->longjmp_msym[i] = m;
3368 }
3369
3370 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3371 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3372 &internal_breakpoint_ops);
3373 initialize_explicit_location (&explicit_loc);
3374 explicit_loc.function_name = ASTRDUP (func_name);
3375 b->location = new_explicit_location (&explicit_loc);
3376 b->enable_state = bp_disabled;
3377 }
3378 }
3379 }
3380 }
3381
3382 /* Create a master std::terminate breakpoint. */
3383 static void
3384 create_std_terminate_master_breakpoint (void)
3385 {
3386 struct program_space *pspace;
3387 const char *const func_name = "std::terminate()";
3388
3389 scoped_restore_current_program_space restore_pspace;
3390
3391 ALL_PSPACES (pspace)
3392 {
3393 struct objfile *objfile;
3394 CORE_ADDR addr;
3395
3396 set_current_program_space (pspace);
3397
3398 ALL_OBJFILES (objfile)
3399 {
3400 struct breakpoint *b;
3401 struct breakpoint_objfile_data *bp_objfile_data;
3402 struct explicit_location explicit_loc;
3403
3404 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3405
3406 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3407 continue;
3408
3409 if (bp_objfile_data->terminate_msym.minsym == NULL)
3410 {
3411 struct bound_minimal_symbol m;
3412
3413 m = lookup_minimal_symbol (func_name, NULL, objfile);
3414 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3415 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3416 {
3417 /* Prevent future lookups in this objfile. */
3418 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3419 continue;
3420 }
3421 bp_objfile_data->terminate_msym = m;
3422 }
3423
3424 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3425 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3426 bp_std_terminate_master,
3427 &internal_breakpoint_ops);
3428 initialize_explicit_location (&explicit_loc);
3429 explicit_loc.function_name = ASTRDUP (func_name);
3430 b->location = new_explicit_location (&explicit_loc);
3431 b->enable_state = bp_disabled;
3432 }
3433 }
3434 }
3435
3436 /* Install a master breakpoint on the unwinder's debug hook. */
3437
3438 static void
3439 create_exception_master_breakpoint (void)
3440 {
3441 struct objfile *objfile;
3442 const char *const func_name = "_Unwind_DebugHook";
3443
3444 ALL_OBJFILES (objfile)
3445 {
3446 struct breakpoint *b;
3447 struct gdbarch *gdbarch;
3448 struct breakpoint_objfile_data *bp_objfile_data;
3449 CORE_ADDR addr;
3450 struct explicit_location explicit_loc;
3451
3452 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3453
3454 /* We prefer the SystemTap probe point if it exists. */
3455 if (!bp_objfile_data->exception_searched)
3456 {
3457 std::vector<probe *> ret
3458 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3459
3460 if (!ret.empty ())
3461 {
3462 /* We are only interested in checking one element. */
3463 probe *p = ret[0];
3464
3465 if (!can_evaluate_probe_arguments (p))
3466 {
3467 /* We cannot use the probe interface here, because it does
3468 not know how to evaluate arguments. */
3469 ret.clear ();
3470 }
3471 }
3472 bp_objfile_data->exception_probes = ret;
3473 bp_objfile_data->exception_searched = 1;
3474 }
3475
3476 if (!bp_objfile_data->exception_probes.empty ())
3477 {
3478 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3479
3480 for (probe *p : bp_objfile_data->exception_probes)
3481 {
3482 struct breakpoint *b;
3483
3484 b = create_internal_breakpoint (gdbarch,
3485 get_probe_address (p, objfile),
3486 bp_exception_master,
3487 &internal_breakpoint_ops);
3488 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3489 b->enable_state = bp_disabled;
3490 }
3491
3492 continue;
3493 }
3494
3495 /* Otherwise, try the hook function. */
3496
3497 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3498 continue;
3499
3500 gdbarch = get_objfile_arch (objfile);
3501
3502 if (bp_objfile_data->exception_msym.minsym == NULL)
3503 {
3504 struct bound_minimal_symbol debug_hook;
3505
3506 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3507 if (debug_hook.minsym == NULL)
3508 {
3509 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3510 continue;
3511 }
3512
3513 bp_objfile_data->exception_msym = debug_hook;
3514 }
3515
3516 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3517 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3518 &current_target);
3519 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3520 &internal_breakpoint_ops);
3521 initialize_explicit_location (&explicit_loc);
3522 explicit_loc.function_name = ASTRDUP (func_name);
3523 b->location = new_explicit_location (&explicit_loc);
3524 b->enable_state = bp_disabled;
3525 }
3526 }
3527
3528 /* Does B have a location spec? */
3529
3530 static int
3531 breakpoint_event_location_empty_p (const struct breakpoint *b)
3532 {
3533 return b->location != NULL && event_location_empty_p (b->location.get ());
3534 }
3535
3536 void
3537 update_breakpoints_after_exec (void)
3538 {
3539 struct breakpoint *b, *b_tmp;
3540 struct bp_location *bploc, **bplocp_tmp;
3541
3542 /* We're about to delete breakpoints from GDB's lists. If the
3543 INSERTED flag is true, GDB will try to lift the breakpoints by
3544 writing the breakpoints' "shadow contents" back into memory. The
3545 "shadow contents" are NOT valid after an exec, so GDB should not
3546 do that. Instead, the target is responsible from marking
3547 breakpoints out as soon as it detects an exec. We don't do that
3548 here instead, because there may be other attempts to delete
3549 breakpoints after detecting an exec and before reaching here. */
3550 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3551 if (bploc->pspace == current_program_space)
3552 gdb_assert (!bploc->inserted);
3553
3554 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3555 {
3556 if (b->pspace != current_program_space)
3557 continue;
3558
3559 /* Solib breakpoints must be explicitly reset after an exec(). */
3560 if (b->type == bp_shlib_event)
3561 {
3562 delete_breakpoint (b);
3563 continue;
3564 }
3565
3566 /* JIT breakpoints must be explicitly reset after an exec(). */
3567 if (b->type == bp_jit_event)
3568 {
3569 delete_breakpoint (b);
3570 continue;
3571 }
3572
3573 /* Thread event breakpoints must be set anew after an exec(),
3574 as must overlay event and longjmp master breakpoints. */
3575 if (b->type == bp_thread_event || b->type == bp_overlay_event
3576 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3577 || b->type == bp_exception_master)
3578 {
3579 delete_breakpoint (b);
3580 continue;
3581 }
3582
3583 /* Step-resume breakpoints are meaningless after an exec(). */
3584 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3585 {
3586 delete_breakpoint (b);
3587 continue;
3588 }
3589
3590 /* Just like single-step breakpoints. */
3591 if (b->type == bp_single_step)
3592 {
3593 delete_breakpoint (b);
3594 continue;
3595 }
3596
3597 /* Longjmp and longjmp-resume breakpoints are also meaningless
3598 after an exec. */
3599 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3600 || b->type == bp_longjmp_call_dummy
3601 || b->type == bp_exception || b->type == bp_exception_resume)
3602 {
3603 delete_breakpoint (b);
3604 continue;
3605 }
3606
3607 if (b->type == bp_catchpoint)
3608 {
3609 /* For now, none of the bp_catchpoint breakpoints need to
3610 do anything at this point. In the future, if some of
3611 the catchpoints need to something, we will need to add
3612 a new method, and call this method from here. */
3613 continue;
3614 }
3615
3616 /* bp_finish is a special case. The only way we ought to be able
3617 to see one of these when an exec() has happened, is if the user
3618 caught a vfork, and then said "finish". Ordinarily a finish just
3619 carries them to the call-site of the current callee, by setting
3620 a temporary bp there and resuming. But in this case, the finish
3621 will carry them entirely through the vfork & exec.
3622
3623 We don't want to allow a bp_finish to remain inserted now. But
3624 we can't safely delete it, 'cause finish_command has a handle to
3625 the bp on a bpstat, and will later want to delete it. There's a
3626 chance (and I've seen it happen) that if we delete the bp_finish
3627 here, that its storage will get reused by the time finish_command
3628 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3629 We really must allow finish_command to delete a bp_finish.
3630
3631 In the absence of a general solution for the "how do we know
3632 it's safe to delete something others may have handles to?"
3633 problem, what we'll do here is just uninsert the bp_finish, and
3634 let finish_command delete it.
3635
3636 (We know the bp_finish is "doomed" in the sense that it's
3637 momentary, and will be deleted as soon as finish_command sees
3638 the inferior stopped. So it doesn't matter that the bp's
3639 address is probably bogus in the new a.out, unlike e.g., the
3640 solib breakpoints.) */
3641
3642 if (b->type == bp_finish)
3643 {
3644 continue;
3645 }
3646
3647 /* Without a symbolic address, we have little hope of the
3648 pre-exec() address meaning the same thing in the post-exec()
3649 a.out. */
3650 if (breakpoint_event_location_empty_p (b))
3651 {
3652 delete_breakpoint (b);
3653 continue;
3654 }
3655 }
3656 }
3657
3658 int
3659 detach_breakpoints (ptid_t ptid)
3660 {
3661 struct bp_location *bl, **blp_tmp;
3662 int val = 0;
3663 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3664 struct inferior *inf = current_inferior ();
3665
3666 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3667 error (_("Cannot detach breakpoints of inferior_ptid"));
3668
3669 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3670 inferior_ptid = ptid;
3671 ALL_BP_LOCATIONS (bl, blp_tmp)
3672 {
3673 if (bl->pspace != inf->pspace)
3674 continue;
3675
3676 /* This function must physically remove breakpoints locations
3677 from the specified ptid, without modifying the breakpoint
3678 package's state. Locations of type bp_loc_other are only
3679 maintained at GDB side. So, there is no need to remove
3680 these bp_loc_other locations. Moreover, removing these
3681 would modify the breakpoint package's state. */
3682 if (bl->loc_type == bp_loc_other)
3683 continue;
3684
3685 if (bl->inserted)
3686 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3687 }
3688
3689 return val;
3690 }
3691
3692 /* Remove the breakpoint location BL from the current address space.
3693 Note that this is used to detach breakpoints from a child fork.
3694 When we get here, the child isn't in the inferior list, and neither
3695 do we have objects to represent its address space --- we should
3696 *not* look at bl->pspace->aspace here. */
3697
3698 static int
3699 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3700 {
3701 int val;
3702
3703 /* BL is never in moribund_locations by our callers. */
3704 gdb_assert (bl->owner != NULL);
3705
3706 /* The type of none suggests that owner is actually deleted.
3707 This should not ever happen. */
3708 gdb_assert (bl->owner->type != bp_none);
3709
3710 if (bl->loc_type == bp_loc_software_breakpoint
3711 || bl->loc_type == bp_loc_hardware_breakpoint)
3712 {
3713 /* "Normal" instruction breakpoint: either the standard
3714 trap-instruction bp (bp_breakpoint), or a
3715 bp_hardware_breakpoint. */
3716
3717 /* First check to see if we have to handle an overlay. */
3718 if (overlay_debugging == ovly_off
3719 || bl->section == NULL
3720 || !(section_is_overlay (bl->section)))
3721 {
3722 /* No overlay handling: just remove the breakpoint. */
3723
3724 /* If we're trying to uninsert a memory breakpoint that we
3725 know is set in a dynamic object that is marked
3726 shlib_disabled, then either the dynamic object was
3727 removed with "remove-symbol-file" or with
3728 "nosharedlibrary". In the former case, we don't know
3729 whether another dynamic object might have loaded over the
3730 breakpoint's address -- the user might well let us know
3731 about it next with add-symbol-file (the whole point of
3732 add-symbol-file is letting the user manually maintain a
3733 list of dynamically loaded objects). If we have the
3734 breakpoint's shadow memory, that is, this is a software
3735 breakpoint managed by GDB, check whether the breakpoint
3736 is still inserted in memory, to avoid overwriting wrong
3737 code with stale saved shadow contents. Note that HW
3738 breakpoints don't have shadow memory, as they're
3739 implemented using a mechanism that is not dependent on
3740 being able to modify the target's memory, and as such
3741 they should always be removed. */
3742 if (bl->shlib_disabled
3743 && bl->target_info.shadow_len != 0
3744 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3745 val = 0;
3746 else
3747 val = bl->owner->ops->remove_location (bl, reason);
3748 }
3749 else
3750 {
3751 /* This breakpoint is in an overlay section.
3752 Did we set a breakpoint at the LMA? */
3753 if (!overlay_events_enabled)
3754 {
3755 /* Yes -- overlay event support is not active, so we
3756 should have set a breakpoint at the LMA. Remove it.
3757 */
3758 /* Ignore any failures: if the LMA is in ROM, we will
3759 have already warned when we failed to insert it. */
3760 if (bl->loc_type == bp_loc_hardware_breakpoint)
3761 target_remove_hw_breakpoint (bl->gdbarch,
3762 &bl->overlay_target_info);
3763 else
3764 target_remove_breakpoint (bl->gdbarch,
3765 &bl->overlay_target_info,
3766 reason);
3767 }
3768 /* Did we set a breakpoint at the VMA?
3769 If so, we will have marked the breakpoint 'inserted'. */
3770 if (bl->inserted)
3771 {
3772 /* Yes -- remove it. Previously we did not bother to
3773 remove the breakpoint if the section had been
3774 unmapped, but let's not rely on that being safe. We
3775 don't know what the overlay manager might do. */
3776
3777 /* However, we should remove *software* breakpoints only
3778 if the section is still mapped, or else we overwrite
3779 wrong code with the saved shadow contents. */
3780 if (bl->loc_type == bp_loc_hardware_breakpoint
3781 || section_is_mapped (bl->section))
3782 val = bl->owner->ops->remove_location (bl, reason);
3783 else
3784 val = 0;
3785 }
3786 else
3787 {
3788 /* No -- not inserted, so no need to remove. No error. */
3789 val = 0;
3790 }
3791 }
3792
3793 /* In some cases, we might not be able to remove a breakpoint in
3794 a shared library that has already been removed, but we have
3795 not yet processed the shlib unload event. Similarly for an
3796 unloaded add-symbol-file object - the user might not yet have
3797 had the chance to remove-symbol-file it. shlib_disabled will
3798 be set if the library/object has already been removed, but
3799 the breakpoint hasn't been uninserted yet, e.g., after
3800 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3801 always-inserted mode. */
3802 if (val
3803 && (bl->loc_type == bp_loc_software_breakpoint
3804 && (bl->shlib_disabled
3805 || solib_name_from_address (bl->pspace, bl->address)
3806 || shared_objfile_contains_address_p (bl->pspace,
3807 bl->address))))
3808 val = 0;
3809
3810 if (val)
3811 return val;
3812 bl->inserted = (reason == DETACH_BREAKPOINT);
3813 }
3814 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3815 {
3816 gdb_assert (bl->owner->ops != NULL
3817 && bl->owner->ops->remove_location != NULL);
3818
3819 bl->inserted = (reason == DETACH_BREAKPOINT);
3820 bl->owner->ops->remove_location (bl, reason);
3821
3822 /* Failure to remove any of the hardware watchpoints comes here. */
3823 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3824 warning (_("Could not remove hardware watchpoint %d."),
3825 bl->owner->number);
3826 }
3827 else if (bl->owner->type == bp_catchpoint
3828 && breakpoint_enabled (bl->owner)
3829 && !bl->duplicate)
3830 {
3831 gdb_assert (bl->owner->ops != NULL
3832 && bl->owner->ops->remove_location != NULL);
3833
3834 val = bl->owner->ops->remove_location (bl, reason);
3835 if (val)
3836 return val;
3837
3838 bl->inserted = (reason == DETACH_BREAKPOINT);
3839 }
3840
3841 return 0;
3842 }
3843
3844 static int
3845 remove_breakpoint (struct bp_location *bl)
3846 {
3847 /* BL is never in moribund_locations by our callers. */
3848 gdb_assert (bl->owner != NULL);
3849
3850 /* The type of none suggests that owner is actually deleted.
3851 This should not ever happen. */
3852 gdb_assert (bl->owner->type != bp_none);
3853
3854 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3855
3856 switch_to_program_space_and_thread (bl->pspace);
3857
3858 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3859 }
3860
3861 /* Clear the "inserted" flag in all breakpoints. */
3862
3863 void
3864 mark_breakpoints_out (void)
3865 {
3866 struct bp_location *bl, **blp_tmp;
3867
3868 ALL_BP_LOCATIONS (bl, blp_tmp)
3869 if (bl->pspace == current_program_space)
3870 bl->inserted = 0;
3871 }
3872
3873 /* Clear the "inserted" flag in all breakpoints and delete any
3874 breakpoints which should go away between runs of the program.
3875
3876 Plus other such housekeeping that has to be done for breakpoints
3877 between runs.
3878
3879 Note: this function gets called at the end of a run (by
3880 generic_mourn_inferior) and when a run begins (by
3881 init_wait_for_inferior). */
3882
3883
3884
3885 void
3886 breakpoint_init_inferior (enum inf_context context)
3887 {
3888 struct breakpoint *b, *b_tmp;
3889 struct bp_location *bl;
3890 int ix;
3891 struct program_space *pspace = current_program_space;
3892
3893 /* If breakpoint locations are shared across processes, then there's
3894 nothing to do. */
3895 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3896 return;
3897
3898 mark_breakpoints_out ();
3899
3900 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3901 {
3902 if (b->loc && b->loc->pspace != pspace)
3903 continue;
3904
3905 switch (b->type)
3906 {
3907 case bp_call_dummy:
3908 case bp_longjmp_call_dummy:
3909
3910 /* If the call dummy breakpoint is at the entry point it will
3911 cause problems when the inferior is rerun, so we better get
3912 rid of it. */
3913
3914 case bp_watchpoint_scope:
3915
3916 /* Also get rid of scope breakpoints. */
3917
3918 case bp_shlib_event:
3919
3920 /* Also remove solib event breakpoints. Their addresses may
3921 have changed since the last time we ran the program.
3922 Actually we may now be debugging against different target;
3923 and so the solib backend that installed this breakpoint may
3924 not be used in by the target. E.g.,
3925
3926 (gdb) file prog-linux
3927 (gdb) run # native linux target
3928 ...
3929 (gdb) kill
3930 (gdb) file prog-win.exe
3931 (gdb) tar rem :9999 # remote Windows gdbserver.
3932 */
3933
3934 case bp_step_resume:
3935
3936 /* Also remove step-resume breakpoints. */
3937
3938 case bp_single_step:
3939
3940 /* Also remove single-step breakpoints. */
3941
3942 delete_breakpoint (b);
3943 break;
3944
3945 case bp_watchpoint:
3946 case bp_hardware_watchpoint:
3947 case bp_read_watchpoint:
3948 case bp_access_watchpoint:
3949 {
3950 struct watchpoint *w = (struct watchpoint *) b;
3951
3952 /* Likewise for watchpoints on local expressions. */
3953 if (w->exp_valid_block != NULL)
3954 delete_breakpoint (b);
3955 else
3956 {
3957 /* Get rid of existing locations, which are no longer
3958 valid. New ones will be created in
3959 update_watchpoint, when the inferior is restarted.
3960 The next update_global_location_list call will
3961 garbage collect them. */
3962 b->loc = NULL;
3963
3964 if (context == inf_starting)
3965 {
3966 /* Reset val field to force reread of starting value in
3967 insert_breakpoints. */
3968 if (w->val)
3969 value_free (w->val);
3970 w->val = NULL;
3971 w->val_valid = 0;
3972 }
3973 }
3974 }
3975 break;
3976 default:
3977 break;
3978 }
3979 }
3980
3981 /* Get rid of the moribund locations. */
3982 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3983 decref_bp_location (&bl);
3984 VEC_free (bp_location_p, moribund_locations);
3985 }
3986
3987 /* These functions concern about actual breakpoints inserted in the
3988 target --- to e.g. check if we need to do decr_pc adjustment or if
3989 we need to hop over the bkpt --- so we check for address space
3990 match, not program space. */
3991
3992 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3993 exists at PC. It returns ordinary_breakpoint_here if it's an
3994 ordinary breakpoint, or permanent_breakpoint_here if it's a
3995 permanent breakpoint.
3996 - When continuing from a location with an ordinary breakpoint, we
3997 actually single step once before calling insert_breakpoints.
3998 - When continuing from a location with a permanent breakpoint, we
3999 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4000 the target, to advance the PC past the breakpoint. */
4001
4002 enum breakpoint_here
4003 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4004 {
4005 struct bp_location *bl, **blp_tmp;
4006 int any_breakpoint_here = 0;
4007
4008 ALL_BP_LOCATIONS (bl, blp_tmp)
4009 {
4010 if (bl->loc_type != bp_loc_software_breakpoint
4011 && bl->loc_type != bp_loc_hardware_breakpoint)
4012 continue;
4013
4014 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4015 if ((breakpoint_enabled (bl->owner)
4016 || bl->permanent)
4017 && breakpoint_location_address_match (bl, aspace, pc))
4018 {
4019 if (overlay_debugging
4020 && section_is_overlay (bl->section)
4021 && !section_is_mapped (bl->section))
4022 continue; /* unmapped overlay -- can't be a match */
4023 else if (bl->permanent)
4024 return permanent_breakpoint_here;
4025 else
4026 any_breakpoint_here = 1;
4027 }
4028 }
4029
4030 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4031 }
4032
4033 /* See breakpoint.h. */
4034
4035 int
4036 breakpoint_in_range_p (const address_space *aspace,
4037 CORE_ADDR addr, ULONGEST len)
4038 {
4039 struct bp_location *bl, **blp_tmp;
4040
4041 ALL_BP_LOCATIONS (bl, blp_tmp)
4042 {
4043 if (bl->loc_type != bp_loc_software_breakpoint
4044 && bl->loc_type != bp_loc_hardware_breakpoint)
4045 continue;
4046
4047 if ((breakpoint_enabled (bl->owner)
4048 || bl->permanent)
4049 && breakpoint_location_address_range_overlap (bl, aspace,
4050 addr, len))
4051 {
4052 if (overlay_debugging
4053 && section_is_overlay (bl->section)
4054 && !section_is_mapped (bl->section))
4055 {
4056 /* Unmapped overlay -- can't be a match. */
4057 continue;
4058 }
4059
4060 return 1;
4061 }
4062 }
4063
4064 return 0;
4065 }
4066
4067 /* Return true if there's a moribund breakpoint at PC. */
4068
4069 int
4070 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4071 {
4072 struct bp_location *loc;
4073 int ix;
4074
4075 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4076 if (breakpoint_location_address_match (loc, aspace, pc))
4077 return 1;
4078
4079 return 0;
4080 }
4081
4082 /* Returns non-zero iff BL is inserted at PC, in address space
4083 ASPACE. */
4084
4085 static int
4086 bp_location_inserted_here_p (struct bp_location *bl,
4087 const address_space *aspace, CORE_ADDR pc)
4088 {
4089 if (bl->inserted
4090 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4091 aspace, pc))
4092 {
4093 if (overlay_debugging
4094 && section_is_overlay (bl->section)
4095 && !section_is_mapped (bl->section))
4096 return 0; /* unmapped overlay -- can't be a match */
4097 else
4098 return 1;
4099 }
4100 return 0;
4101 }
4102
4103 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4104
4105 int
4106 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4107 {
4108 struct bp_location **blp, **blp_tmp = NULL;
4109
4110 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4111 {
4112 struct bp_location *bl = *blp;
4113
4114 if (bl->loc_type != bp_loc_software_breakpoint
4115 && bl->loc_type != bp_loc_hardware_breakpoint)
4116 continue;
4117
4118 if (bp_location_inserted_here_p (bl, aspace, pc))
4119 return 1;
4120 }
4121 return 0;
4122 }
4123
4124 /* This function returns non-zero iff there is a software breakpoint
4125 inserted at PC. */
4126
4127 int
4128 software_breakpoint_inserted_here_p (const address_space *aspace,
4129 CORE_ADDR pc)
4130 {
4131 struct bp_location **blp, **blp_tmp = NULL;
4132
4133 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4134 {
4135 struct bp_location *bl = *blp;
4136
4137 if (bl->loc_type != bp_loc_software_breakpoint)
4138 continue;
4139
4140 if (bp_location_inserted_here_p (bl, aspace, pc))
4141 return 1;
4142 }
4143
4144 return 0;
4145 }
4146
4147 /* See breakpoint.h. */
4148
4149 int
4150 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4151 CORE_ADDR pc)
4152 {
4153 struct bp_location **blp, **blp_tmp = NULL;
4154
4155 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4156 {
4157 struct bp_location *bl = *blp;
4158
4159 if (bl->loc_type != bp_loc_hardware_breakpoint)
4160 continue;
4161
4162 if (bp_location_inserted_here_p (bl, aspace, pc))
4163 return 1;
4164 }
4165
4166 return 0;
4167 }
4168
4169 int
4170 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4171 CORE_ADDR addr, ULONGEST len)
4172 {
4173 struct breakpoint *bpt;
4174
4175 ALL_BREAKPOINTS (bpt)
4176 {
4177 struct bp_location *loc;
4178
4179 if (bpt->type != bp_hardware_watchpoint
4180 && bpt->type != bp_access_watchpoint)
4181 continue;
4182
4183 if (!breakpoint_enabled (bpt))
4184 continue;
4185
4186 for (loc = bpt->loc; loc; loc = loc->next)
4187 if (loc->pspace->aspace == aspace && loc->inserted)
4188 {
4189 CORE_ADDR l, h;
4190
4191 /* Check for intersection. */
4192 l = std::max<CORE_ADDR> (loc->address, addr);
4193 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4194 if (l < h)
4195 return 1;
4196 }
4197 }
4198 return 0;
4199 }
4200 \f
4201
4202 /* bpstat stuff. External routines' interfaces are documented
4203 in breakpoint.h. */
4204
4205 int
4206 is_catchpoint (struct breakpoint *ep)
4207 {
4208 return (ep->type == bp_catchpoint);
4209 }
4210
4211 /* Frees any storage that is part of a bpstat. Does not walk the
4212 'next' chain. */
4213
4214 bpstats::~bpstats ()
4215 {
4216 if (old_val != NULL)
4217 value_free (old_val);
4218 if (bp_location_at != NULL)
4219 decref_bp_location (&bp_location_at);
4220 }
4221
4222 /* Clear a bpstat so that it says we are not at any breakpoint.
4223 Also free any storage that is part of a bpstat. */
4224
4225 void
4226 bpstat_clear (bpstat *bsp)
4227 {
4228 bpstat p;
4229 bpstat q;
4230
4231 if (bsp == 0)
4232 return;
4233 p = *bsp;
4234 while (p != NULL)
4235 {
4236 q = p->next;
4237 delete p;
4238 p = q;
4239 }
4240 *bsp = NULL;
4241 }
4242
4243 bpstats::bpstats (const bpstats &other)
4244 : next (NULL),
4245 bp_location_at (other.bp_location_at),
4246 breakpoint_at (other.breakpoint_at),
4247 commands (other.commands),
4248 old_val (other.old_val),
4249 print (other.print),
4250 stop (other.stop),
4251 print_it (other.print_it)
4252 {
4253 if (old_val != NULL)
4254 {
4255 old_val = value_copy (old_val);
4256 release_value (old_val);
4257 }
4258 incref_bp_location (bp_location_at);
4259 }
4260
4261 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4262 is part of the bpstat is copied as well. */
4263
4264 bpstat
4265 bpstat_copy (bpstat bs)
4266 {
4267 bpstat p = NULL;
4268 bpstat tmp;
4269 bpstat retval = NULL;
4270
4271 if (bs == NULL)
4272 return bs;
4273
4274 for (; bs != NULL; bs = bs->next)
4275 {
4276 tmp = new bpstats (*bs);
4277
4278 if (p == NULL)
4279 /* This is the first thing in the chain. */
4280 retval = tmp;
4281 else
4282 p->next = tmp;
4283 p = tmp;
4284 }
4285 p->next = NULL;
4286 return retval;
4287 }
4288
4289 /* Find the bpstat associated with this breakpoint. */
4290
4291 bpstat
4292 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4293 {
4294 if (bsp == NULL)
4295 return NULL;
4296
4297 for (; bsp != NULL; bsp = bsp->next)
4298 {
4299 if (bsp->breakpoint_at == breakpoint)
4300 return bsp;
4301 }
4302 return NULL;
4303 }
4304
4305 /* See breakpoint.h. */
4306
4307 int
4308 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4309 {
4310 for (; bsp != NULL; bsp = bsp->next)
4311 {
4312 if (bsp->breakpoint_at == NULL)
4313 {
4314 /* A moribund location can never explain a signal other than
4315 GDB_SIGNAL_TRAP. */
4316 if (sig == GDB_SIGNAL_TRAP)
4317 return 1;
4318 }
4319 else
4320 {
4321 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4322 sig))
4323 return 1;
4324 }
4325 }
4326
4327 return 0;
4328 }
4329
4330 /* Put in *NUM the breakpoint number of the first breakpoint we are
4331 stopped at. *BSP upon return is a bpstat which points to the
4332 remaining breakpoints stopped at (but which is not guaranteed to be
4333 good for anything but further calls to bpstat_num).
4334
4335 Return 0 if passed a bpstat which does not indicate any breakpoints.
4336 Return -1 if stopped at a breakpoint that has been deleted since
4337 we set it.
4338 Return 1 otherwise. */
4339
4340 int
4341 bpstat_num (bpstat *bsp, int *num)
4342 {
4343 struct breakpoint *b;
4344
4345 if ((*bsp) == NULL)
4346 return 0; /* No more breakpoint values */
4347
4348 /* We assume we'll never have several bpstats that correspond to a
4349 single breakpoint -- otherwise, this function might return the
4350 same number more than once and this will look ugly. */
4351 b = (*bsp)->breakpoint_at;
4352 *bsp = (*bsp)->next;
4353 if (b == NULL)
4354 return -1; /* breakpoint that's been deleted since */
4355
4356 *num = b->number; /* We have its number */
4357 return 1;
4358 }
4359
4360 /* See breakpoint.h. */
4361
4362 void
4363 bpstat_clear_actions (void)
4364 {
4365 struct thread_info *tp;
4366 bpstat bs;
4367
4368 if (ptid_equal (inferior_ptid, null_ptid))
4369 return;
4370
4371 tp = find_thread_ptid (inferior_ptid);
4372 if (tp == NULL)
4373 return;
4374
4375 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4376 {
4377 bs->commands = NULL;
4378
4379 if (bs->old_val != NULL)
4380 {
4381 value_free (bs->old_val);
4382 bs->old_val = NULL;
4383 }
4384 }
4385 }
4386
4387 /* Called when a command is about to proceed the inferior. */
4388
4389 static void
4390 breakpoint_about_to_proceed (void)
4391 {
4392 if (!ptid_equal (inferior_ptid, null_ptid))
4393 {
4394 struct thread_info *tp = inferior_thread ();
4395
4396 /* Allow inferior function calls in breakpoint commands to not
4397 interrupt the command list. When the call finishes
4398 successfully, the inferior will be standing at the same
4399 breakpoint as if nothing happened. */
4400 if (tp->control.in_infcall)
4401 return;
4402 }
4403
4404 breakpoint_proceeded = 1;
4405 }
4406
4407 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4408 or its equivalent. */
4409
4410 static int
4411 command_line_is_silent (struct command_line *cmd)
4412 {
4413 return cmd && (strcmp ("silent", cmd->line) == 0);
4414 }
4415
4416 /* Execute all the commands associated with all the breakpoints at
4417 this location. Any of these commands could cause the process to
4418 proceed beyond this point, etc. We look out for such changes by
4419 checking the global "breakpoint_proceeded" after each command.
4420
4421 Returns true if a breakpoint command resumed the inferior. In that
4422 case, it is the caller's responsibility to recall it again with the
4423 bpstat of the current thread. */
4424
4425 static int
4426 bpstat_do_actions_1 (bpstat *bsp)
4427 {
4428 bpstat bs;
4429 int again = 0;
4430
4431 /* Avoid endless recursion if a `source' command is contained
4432 in bs->commands. */
4433 if (executing_breakpoint_commands)
4434 return 0;
4435
4436 scoped_restore save_executing
4437 = make_scoped_restore (&executing_breakpoint_commands, 1);
4438
4439 scoped_restore preventer = prevent_dont_repeat ();
4440
4441 /* This pointer will iterate over the list of bpstat's. */
4442 bs = *bsp;
4443
4444 breakpoint_proceeded = 0;
4445 for (; bs != NULL; bs = bs->next)
4446 {
4447 struct command_line *cmd = NULL;
4448
4449 /* Take ownership of the BSP's command tree, if it has one.
4450
4451 The command tree could legitimately contain commands like
4452 'step' and 'next', which call clear_proceed_status, which
4453 frees stop_bpstat's command tree. To make sure this doesn't
4454 free the tree we're executing out from under us, we need to
4455 take ownership of the tree ourselves. Since a given bpstat's
4456 commands are only executed once, we don't need to copy it; we
4457 can clear the pointer in the bpstat, and make sure we free
4458 the tree when we're done. */
4459 counted_command_line ccmd = bs->commands;
4460 bs->commands = NULL;
4461 if (ccmd != NULL)
4462 cmd = ccmd.get ();
4463 if (command_line_is_silent (cmd))
4464 {
4465 /* The action has been already done by bpstat_stop_status. */
4466 cmd = cmd->next;
4467 }
4468
4469 while (cmd != NULL)
4470 {
4471 execute_control_command (cmd);
4472
4473 if (breakpoint_proceeded)
4474 break;
4475 else
4476 cmd = cmd->next;
4477 }
4478
4479 if (breakpoint_proceeded)
4480 {
4481 if (current_ui->async)
4482 /* If we are in async mode, then the target might be still
4483 running, not stopped at any breakpoint, so nothing for
4484 us to do here -- just return to the event loop. */
4485 ;
4486 else
4487 /* In sync mode, when execute_control_command returns
4488 we're already standing on the next breakpoint.
4489 Breakpoint commands for that stop were not run, since
4490 execute_command does not run breakpoint commands --
4491 only command_line_handler does, but that one is not
4492 involved in execution of breakpoint commands. So, we
4493 can now execute breakpoint commands. It should be
4494 noted that making execute_command do bpstat actions is
4495 not an option -- in this case we'll have recursive
4496 invocation of bpstat for each breakpoint with a
4497 command, and can easily blow up GDB stack. Instead, we
4498 return true, which will trigger the caller to recall us
4499 with the new stop_bpstat. */
4500 again = 1;
4501 break;
4502 }
4503 }
4504 return again;
4505 }
4506
4507 void
4508 bpstat_do_actions (void)
4509 {
4510 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4511
4512 /* Do any commands attached to breakpoint we are stopped at. */
4513 while (!ptid_equal (inferior_ptid, null_ptid)
4514 && target_has_execution
4515 && !is_exited (inferior_ptid)
4516 && !is_executing (inferior_ptid))
4517 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4518 and only return when it is stopped at the next breakpoint, we
4519 keep doing breakpoint actions until it returns false to
4520 indicate the inferior was not resumed. */
4521 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4522 break;
4523
4524 discard_cleanups (cleanup_if_error);
4525 }
4526
4527 /* Print out the (old or new) value associated with a watchpoint. */
4528
4529 static void
4530 watchpoint_value_print (struct value *val, struct ui_file *stream)
4531 {
4532 if (val == NULL)
4533 fprintf_unfiltered (stream, _("<unreadable>"));
4534 else
4535 {
4536 struct value_print_options opts;
4537 get_user_print_options (&opts);
4538 value_print (val, stream, &opts);
4539 }
4540 }
4541
4542 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4543 debugging multiple threads. */
4544
4545 void
4546 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4547 {
4548 if (uiout->is_mi_like_p ())
4549 return;
4550
4551 uiout->text ("\n");
4552
4553 if (show_thread_that_caused_stop ())
4554 {
4555 const char *name;
4556 struct thread_info *thr = inferior_thread ();
4557
4558 uiout->text ("Thread ");
4559 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4560
4561 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4562 if (name != NULL)
4563 {
4564 uiout->text (" \"");
4565 uiout->field_fmt ("name", "%s", name);
4566 uiout->text ("\"");
4567 }
4568
4569 uiout->text (" hit ");
4570 }
4571 }
4572
4573 /* Generic routine for printing messages indicating why we
4574 stopped. The behavior of this function depends on the value
4575 'print_it' in the bpstat structure. Under some circumstances we
4576 may decide not to print anything here and delegate the task to
4577 normal_stop(). */
4578
4579 static enum print_stop_action
4580 print_bp_stop_message (bpstat bs)
4581 {
4582 switch (bs->print_it)
4583 {
4584 case print_it_noop:
4585 /* Nothing should be printed for this bpstat entry. */
4586 return PRINT_UNKNOWN;
4587 break;
4588
4589 case print_it_done:
4590 /* We still want to print the frame, but we already printed the
4591 relevant messages. */
4592 return PRINT_SRC_AND_LOC;
4593 break;
4594
4595 case print_it_normal:
4596 {
4597 struct breakpoint *b = bs->breakpoint_at;
4598
4599 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4600 which has since been deleted. */
4601 if (b == NULL)
4602 return PRINT_UNKNOWN;
4603
4604 /* Normal case. Call the breakpoint's print_it method. */
4605 return b->ops->print_it (bs);
4606 }
4607 break;
4608
4609 default:
4610 internal_error (__FILE__, __LINE__,
4611 _("print_bp_stop_message: unrecognized enum value"));
4612 break;
4613 }
4614 }
4615
4616 /* A helper function that prints a shared library stopped event. */
4617
4618 static void
4619 print_solib_event (int is_catchpoint)
4620 {
4621 int any_deleted
4622 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4623 int any_added
4624 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4625
4626 if (!is_catchpoint)
4627 {
4628 if (any_added || any_deleted)
4629 current_uiout->text (_("Stopped due to shared library event:\n"));
4630 else
4631 current_uiout->text (_("Stopped due to shared library event (no "
4632 "libraries added or removed)\n"));
4633 }
4634
4635 if (current_uiout->is_mi_like_p ())
4636 current_uiout->field_string ("reason",
4637 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4638
4639 if (any_deleted)
4640 {
4641 char *name;
4642 int ix;
4643
4644 current_uiout->text (_(" Inferior unloaded "));
4645 ui_out_emit_list list_emitter (current_uiout, "removed");
4646 for (ix = 0;
4647 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4648 ix, name);
4649 ++ix)
4650 {
4651 if (ix > 0)
4652 current_uiout->text (" ");
4653 current_uiout->field_string ("library", name);
4654 current_uiout->text ("\n");
4655 }
4656 }
4657
4658 if (any_added)
4659 {
4660 struct so_list *iter;
4661 int ix;
4662
4663 current_uiout->text (_(" Inferior loaded "));
4664 ui_out_emit_list list_emitter (current_uiout, "added");
4665 for (ix = 0;
4666 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4667 ix, iter);
4668 ++ix)
4669 {
4670 if (ix > 0)
4671 current_uiout->text (" ");
4672 current_uiout->field_string ("library", iter->so_name);
4673 current_uiout->text ("\n");
4674 }
4675 }
4676 }
4677
4678 /* Print a message indicating what happened. This is called from
4679 normal_stop(). The input to this routine is the head of the bpstat
4680 list - a list of the eventpoints that caused this stop. KIND is
4681 the target_waitkind for the stopping event. This
4682 routine calls the generic print routine for printing a message
4683 about reasons for stopping. This will print (for example) the
4684 "Breakpoint n," part of the output. The return value of this
4685 routine is one of:
4686
4687 PRINT_UNKNOWN: Means we printed nothing.
4688 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4689 code to print the location. An example is
4690 "Breakpoint 1, " which should be followed by
4691 the location.
4692 PRINT_SRC_ONLY: Means we printed something, but there is no need
4693 to also print the location part of the message.
4694 An example is the catch/throw messages, which
4695 don't require a location appended to the end.
4696 PRINT_NOTHING: We have done some printing and we don't need any
4697 further info to be printed. */
4698
4699 enum print_stop_action
4700 bpstat_print (bpstat bs, int kind)
4701 {
4702 enum print_stop_action val;
4703
4704 /* Maybe another breakpoint in the chain caused us to stop.
4705 (Currently all watchpoints go on the bpstat whether hit or not.
4706 That probably could (should) be changed, provided care is taken
4707 with respect to bpstat_explains_signal). */
4708 for (; bs; bs = bs->next)
4709 {
4710 val = print_bp_stop_message (bs);
4711 if (val == PRINT_SRC_ONLY
4712 || val == PRINT_SRC_AND_LOC
4713 || val == PRINT_NOTHING)
4714 return val;
4715 }
4716
4717 /* If we had hit a shared library event breakpoint,
4718 print_bp_stop_message would print out this message. If we hit an
4719 OS-level shared library event, do the same thing. */
4720 if (kind == TARGET_WAITKIND_LOADED)
4721 {
4722 print_solib_event (0);
4723 return PRINT_NOTHING;
4724 }
4725
4726 /* We reached the end of the chain, or we got a null BS to start
4727 with and nothing was printed. */
4728 return PRINT_UNKNOWN;
4729 }
4730
4731 /* Evaluate the boolean expression EXP and return the result. */
4732
4733 static bool
4734 breakpoint_cond_eval (expression *exp)
4735 {
4736 struct value *mark = value_mark ();
4737 bool res = value_true (evaluate_expression (exp));
4738
4739 value_free_to_mark (mark);
4740 return res;
4741 }
4742
4743 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4744
4745 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4746 : next (NULL),
4747 bp_location_at (bl),
4748 breakpoint_at (bl->owner),
4749 commands (NULL),
4750 old_val (NULL),
4751 print (0),
4752 stop (0),
4753 print_it (print_it_normal)
4754 {
4755 incref_bp_location (bl);
4756 **bs_link_pointer = this;
4757 *bs_link_pointer = &next;
4758 }
4759
4760 bpstats::bpstats ()
4761 : next (NULL),
4762 bp_location_at (NULL),
4763 breakpoint_at (NULL),
4764 commands (NULL),
4765 old_val (NULL),
4766 print (0),
4767 stop (0),
4768 print_it (print_it_normal)
4769 {
4770 }
4771 \f
4772 /* The target has stopped with waitstatus WS. Check if any hardware
4773 watchpoints have triggered, according to the target. */
4774
4775 int
4776 watchpoints_triggered (struct target_waitstatus *ws)
4777 {
4778 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4779 CORE_ADDR addr;
4780 struct breakpoint *b;
4781
4782 if (!stopped_by_watchpoint)
4783 {
4784 /* We were not stopped by a watchpoint. Mark all watchpoints
4785 as not triggered. */
4786 ALL_BREAKPOINTS (b)
4787 if (is_hardware_watchpoint (b))
4788 {
4789 struct watchpoint *w = (struct watchpoint *) b;
4790
4791 w->watchpoint_triggered = watch_triggered_no;
4792 }
4793
4794 return 0;
4795 }
4796
4797 if (!target_stopped_data_address (&current_target, &addr))
4798 {
4799 /* We were stopped by a watchpoint, but we don't know where.
4800 Mark all watchpoints as unknown. */
4801 ALL_BREAKPOINTS (b)
4802 if (is_hardware_watchpoint (b))
4803 {
4804 struct watchpoint *w = (struct watchpoint *) b;
4805
4806 w->watchpoint_triggered = watch_triggered_unknown;
4807 }
4808
4809 return 1;
4810 }
4811
4812 /* The target could report the data address. Mark watchpoints
4813 affected by this data address as triggered, and all others as not
4814 triggered. */
4815
4816 ALL_BREAKPOINTS (b)
4817 if (is_hardware_watchpoint (b))
4818 {
4819 struct watchpoint *w = (struct watchpoint *) b;
4820 struct bp_location *loc;
4821
4822 w->watchpoint_triggered = watch_triggered_no;
4823 for (loc = b->loc; loc; loc = loc->next)
4824 {
4825 if (is_masked_watchpoint (b))
4826 {
4827 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4828 CORE_ADDR start = loc->address & w->hw_wp_mask;
4829
4830 if (newaddr == start)
4831 {
4832 w->watchpoint_triggered = watch_triggered_yes;
4833 break;
4834 }
4835 }
4836 /* Exact match not required. Within range is sufficient. */
4837 else if (target_watchpoint_addr_within_range (&current_target,
4838 addr, loc->address,
4839 loc->length))
4840 {
4841 w->watchpoint_triggered = watch_triggered_yes;
4842 break;
4843 }
4844 }
4845 }
4846
4847 return 1;
4848 }
4849
4850 /* Possible return values for watchpoint_check. */
4851 enum wp_check_result
4852 {
4853 /* The watchpoint has been deleted. */
4854 WP_DELETED = 1,
4855
4856 /* The value has changed. */
4857 WP_VALUE_CHANGED = 2,
4858
4859 /* The value has not changed. */
4860 WP_VALUE_NOT_CHANGED = 3,
4861
4862 /* Ignore this watchpoint, no matter if the value changed or not. */
4863 WP_IGNORE = 4,
4864 };
4865
4866 #define BP_TEMPFLAG 1
4867 #define BP_HARDWAREFLAG 2
4868
4869 /* Evaluate watchpoint condition expression and check if its value
4870 changed. */
4871
4872 static wp_check_result
4873 watchpoint_check (bpstat bs)
4874 {
4875 struct watchpoint *b;
4876 struct frame_info *fr;
4877 int within_current_scope;
4878
4879 /* BS is built from an existing struct breakpoint. */
4880 gdb_assert (bs->breakpoint_at != NULL);
4881 b = (struct watchpoint *) bs->breakpoint_at;
4882
4883 /* If this is a local watchpoint, we only want to check if the
4884 watchpoint frame is in scope if the current thread is the thread
4885 that was used to create the watchpoint. */
4886 if (!watchpoint_in_thread_scope (b))
4887 return WP_IGNORE;
4888
4889 if (b->exp_valid_block == NULL)
4890 within_current_scope = 1;
4891 else
4892 {
4893 struct frame_info *frame = get_current_frame ();
4894 struct gdbarch *frame_arch = get_frame_arch (frame);
4895 CORE_ADDR frame_pc = get_frame_pc (frame);
4896
4897 /* stack_frame_destroyed_p() returns a non-zero value if we're
4898 still in the function but the stack frame has already been
4899 invalidated. Since we can't rely on the values of local
4900 variables after the stack has been destroyed, we are treating
4901 the watchpoint in that state as `not changed' without further
4902 checking. Don't mark watchpoints as changed if the current
4903 frame is in an epilogue - even if they are in some other
4904 frame, our view of the stack is likely to be wrong and
4905 frame_find_by_id could error out. */
4906 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4907 return WP_IGNORE;
4908
4909 fr = frame_find_by_id (b->watchpoint_frame);
4910 within_current_scope = (fr != NULL);
4911
4912 /* If we've gotten confused in the unwinder, we might have
4913 returned a frame that can't describe this variable. */
4914 if (within_current_scope)
4915 {
4916 struct symbol *function;
4917
4918 function = get_frame_function (fr);
4919 if (function == NULL
4920 || !contained_in (b->exp_valid_block,
4921 SYMBOL_BLOCK_VALUE (function)))
4922 within_current_scope = 0;
4923 }
4924
4925 if (within_current_scope)
4926 /* If we end up stopping, the current frame will get selected
4927 in normal_stop. So this call to select_frame won't affect
4928 the user. */
4929 select_frame (fr);
4930 }
4931
4932 if (within_current_scope)
4933 {
4934 /* We use value_{,free_to_}mark because it could be a *long*
4935 time before we return to the command level and call
4936 free_all_values. We can't call free_all_values because we
4937 might be in the middle of evaluating a function call. */
4938
4939 int pc = 0;
4940 struct value *mark;
4941 struct value *new_val;
4942
4943 if (is_masked_watchpoint (b))
4944 /* Since we don't know the exact trigger address (from
4945 stopped_data_address), just tell the user we've triggered
4946 a mask watchpoint. */
4947 return WP_VALUE_CHANGED;
4948
4949 mark = value_mark ();
4950 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4951
4952 if (b->val_bitsize != 0)
4953 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4954
4955 /* We use value_equal_contents instead of value_equal because
4956 the latter coerces an array to a pointer, thus comparing just
4957 the address of the array instead of its contents. This is
4958 not what we want. */
4959 if ((b->val != NULL) != (new_val != NULL)
4960 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4961 {
4962 if (new_val != NULL)
4963 {
4964 release_value (new_val);
4965 value_free_to_mark (mark);
4966 }
4967 bs->old_val = b->val;
4968 b->val = new_val;
4969 b->val_valid = 1;
4970 return WP_VALUE_CHANGED;
4971 }
4972 else
4973 {
4974 /* Nothing changed. */
4975 value_free_to_mark (mark);
4976 return WP_VALUE_NOT_CHANGED;
4977 }
4978 }
4979 else
4980 {
4981 /* This seems like the only logical thing to do because
4982 if we temporarily ignored the watchpoint, then when
4983 we reenter the block in which it is valid it contains
4984 garbage (in the case of a function, it may have two
4985 garbage values, one before and one after the prologue).
4986 So we can't even detect the first assignment to it and
4987 watch after that (since the garbage may or may not equal
4988 the first value assigned). */
4989 /* We print all the stop information in
4990 breakpoint_ops->print_it, but in this case, by the time we
4991 call breakpoint_ops->print_it this bp will be deleted
4992 already. So we have no choice but print the information
4993 here. */
4994
4995 SWITCH_THRU_ALL_UIS ()
4996 {
4997 struct ui_out *uiout = current_uiout;
4998
4999 if (uiout->is_mi_like_p ())
5000 uiout->field_string
5001 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5002 uiout->text ("\nWatchpoint ");
5003 uiout->field_int ("wpnum", b->number);
5004 uiout->text (" deleted because the program has left the block in\n"
5005 "which its expression is valid.\n");
5006 }
5007
5008 /* Make sure the watchpoint's commands aren't executed. */
5009 b->commands = NULL;
5010 watchpoint_del_at_next_stop (b);
5011
5012 return WP_DELETED;
5013 }
5014 }
5015
5016 /* Return true if it looks like target has stopped due to hitting
5017 breakpoint location BL. This function does not check if we should
5018 stop, only if BL explains the stop. */
5019
5020 static int
5021 bpstat_check_location (const struct bp_location *bl,
5022 const address_space *aspace, CORE_ADDR bp_addr,
5023 const struct target_waitstatus *ws)
5024 {
5025 struct breakpoint *b = bl->owner;
5026
5027 /* BL is from an existing breakpoint. */
5028 gdb_assert (b != NULL);
5029
5030 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5031 }
5032
5033 /* Determine if the watched values have actually changed, and we
5034 should stop. If not, set BS->stop to 0. */
5035
5036 static void
5037 bpstat_check_watchpoint (bpstat bs)
5038 {
5039 const struct bp_location *bl;
5040 struct watchpoint *b;
5041
5042 /* BS is built for existing struct breakpoint. */
5043 bl = bs->bp_location_at;
5044 gdb_assert (bl != NULL);
5045 b = (struct watchpoint *) bs->breakpoint_at;
5046 gdb_assert (b != NULL);
5047
5048 {
5049 int must_check_value = 0;
5050
5051 if (b->type == bp_watchpoint)
5052 /* For a software watchpoint, we must always check the
5053 watched value. */
5054 must_check_value = 1;
5055 else if (b->watchpoint_triggered == watch_triggered_yes)
5056 /* We have a hardware watchpoint (read, write, or access)
5057 and the target earlier reported an address watched by
5058 this watchpoint. */
5059 must_check_value = 1;
5060 else if (b->watchpoint_triggered == watch_triggered_unknown
5061 && b->type == bp_hardware_watchpoint)
5062 /* We were stopped by a hardware watchpoint, but the target could
5063 not report the data address. We must check the watchpoint's
5064 value. Access and read watchpoints are out of luck; without
5065 a data address, we can't figure it out. */
5066 must_check_value = 1;
5067
5068 if (must_check_value)
5069 {
5070 wp_check_result e;
5071
5072 TRY
5073 {
5074 e = watchpoint_check (bs);
5075 }
5076 CATCH (ex, RETURN_MASK_ALL)
5077 {
5078 exception_fprintf (gdb_stderr, ex,
5079 "Error evaluating expression "
5080 "for watchpoint %d\n",
5081 b->number);
5082
5083 SWITCH_THRU_ALL_UIS ()
5084 {
5085 printf_filtered (_("Watchpoint %d deleted.\n"),
5086 b->number);
5087 }
5088 watchpoint_del_at_next_stop (b);
5089 e = WP_DELETED;
5090 }
5091 END_CATCH
5092
5093 switch (e)
5094 {
5095 case WP_DELETED:
5096 /* We've already printed what needs to be printed. */
5097 bs->print_it = print_it_done;
5098 /* Stop. */
5099 break;
5100 case WP_IGNORE:
5101 bs->print_it = print_it_noop;
5102 bs->stop = 0;
5103 break;
5104 case WP_VALUE_CHANGED:
5105 if (b->type == bp_read_watchpoint)
5106 {
5107 /* There are two cases to consider here:
5108
5109 1. We're watching the triggered memory for reads.
5110 In that case, trust the target, and always report
5111 the watchpoint hit to the user. Even though
5112 reads don't cause value changes, the value may
5113 have changed since the last time it was read, and
5114 since we're not trapping writes, we will not see
5115 those, and as such we should ignore our notion of
5116 old value.
5117
5118 2. We're watching the triggered memory for both
5119 reads and writes. There are two ways this may
5120 happen:
5121
5122 2.1. This is a target that can't break on data
5123 reads only, but can break on accesses (reads or
5124 writes), such as e.g., x86. We detect this case
5125 at the time we try to insert read watchpoints.
5126
5127 2.2. Otherwise, the target supports read
5128 watchpoints, but, the user set an access or write
5129 watchpoint watching the same memory as this read
5130 watchpoint.
5131
5132 If we're watching memory writes as well as reads,
5133 ignore watchpoint hits when we find that the
5134 value hasn't changed, as reads don't cause
5135 changes. This still gives false positives when
5136 the program writes the same value to memory as
5137 what there was already in memory (we will confuse
5138 it for a read), but it's much better than
5139 nothing. */
5140
5141 int other_write_watchpoint = 0;
5142
5143 if (bl->watchpoint_type == hw_read)
5144 {
5145 struct breakpoint *other_b;
5146
5147 ALL_BREAKPOINTS (other_b)
5148 if (other_b->type == bp_hardware_watchpoint
5149 || other_b->type == bp_access_watchpoint)
5150 {
5151 struct watchpoint *other_w =
5152 (struct watchpoint *) other_b;
5153
5154 if (other_w->watchpoint_triggered
5155 == watch_triggered_yes)
5156 {
5157 other_write_watchpoint = 1;
5158 break;
5159 }
5160 }
5161 }
5162
5163 if (other_write_watchpoint
5164 || bl->watchpoint_type == hw_access)
5165 {
5166 /* We're watching the same memory for writes,
5167 and the value changed since the last time we
5168 updated it, so this trap must be for a write.
5169 Ignore it. */
5170 bs->print_it = print_it_noop;
5171 bs->stop = 0;
5172 }
5173 }
5174 break;
5175 case WP_VALUE_NOT_CHANGED:
5176 if (b->type == bp_hardware_watchpoint
5177 || b->type == bp_watchpoint)
5178 {
5179 /* Don't stop: write watchpoints shouldn't fire if
5180 the value hasn't changed. */
5181 bs->print_it = print_it_noop;
5182 bs->stop = 0;
5183 }
5184 /* Stop. */
5185 break;
5186 default:
5187 /* Can't happen. */
5188 break;
5189 }
5190 }
5191 else /* must_check_value == 0 */
5192 {
5193 /* This is a case where some watchpoint(s) triggered, but
5194 not at the address of this watchpoint, or else no
5195 watchpoint triggered after all. So don't print
5196 anything for this watchpoint. */
5197 bs->print_it = print_it_noop;
5198 bs->stop = 0;
5199 }
5200 }
5201 }
5202
5203 /* For breakpoints that are currently marked as telling gdb to stop,
5204 check conditions (condition proper, frame, thread and ignore count)
5205 of breakpoint referred to by BS. If we should not stop for this
5206 breakpoint, set BS->stop to 0. */
5207
5208 static void
5209 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5210 {
5211 const struct bp_location *bl;
5212 struct breakpoint *b;
5213 /* Assume stop. */
5214 bool condition_result = true;
5215 struct expression *cond;
5216
5217 gdb_assert (bs->stop);
5218
5219 /* BS is built for existing struct breakpoint. */
5220 bl = bs->bp_location_at;
5221 gdb_assert (bl != NULL);
5222 b = bs->breakpoint_at;
5223 gdb_assert (b != NULL);
5224
5225 /* Even if the target evaluated the condition on its end and notified GDB, we
5226 need to do so again since GDB does not know if we stopped due to a
5227 breakpoint or a single step breakpoint. */
5228
5229 if (frame_id_p (b->frame_id)
5230 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5231 {
5232 bs->stop = 0;
5233 return;
5234 }
5235
5236 /* If this is a thread/task-specific breakpoint, don't waste cpu
5237 evaluating the condition if this isn't the specified
5238 thread/task. */
5239 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5240 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5241
5242 {
5243 bs->stop = 0;
5244 return;
5245 }
5246
5247 /* Evaluate extension language breakpoints that have a "stop" method
5248 implemented. */
5249 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5250
5251 if (is_watchpoint (b))
5252 {
5253 struct watchpoint *w = (struct watchpoint *) b;
5254
5255 cond = w->cond_exp.get ();
5256 }
5257 else
5258 cond = bl->cond.get ();
5259
5260 if (cond && b->disposition != disp_del_at_next_stop)
5261 {
5262 int within_current_scope = 1;
5263 struct watchpoint * w;
5264
5265 /* We use value_mark and value_free_to_mark because it could
5266 be a long time before we return to the command level and
5267 call free_all_values. We can't call free_all_values
5268 because we might be in the middle of evaluating a
5269 function call. */
5270 struct value *mark = value_mark ();
5271
5272 if (is_watchpoint (b))
5273 w = (struct watchpoint *) b;
5274 else
5275 w = NULL;
5276
5277 /* Need to select the frame, with all that implies so that
5278 the conditions will have the right context. Because we
5279 use the frame, we will not see an inlined function's
5280 variables when we arrive at a breakpoint at the start
5281 of the inlined function; the current frame will be the
5282 call site. */
5283 if (w == NULL || w->cond_exp_valid_block == NULL)
5284 select_frame (get_current_frame ());
5285 else
5286 {
5287 struct frame_info *frame;
5288
5289 /* For local watchpoint expressions, which particular
5290 instance of a local is being watched matters, so we
5291 keep track of the frame to evaluate the expression
5292 in. To evaluate the condition however, it doesn't
5293 really matter which instantiation of the function
5294 where the condition makes sense triggers the
5295 watchpoint. This allows an expression like "watch
5296 global if q > 10" set in `func', catch writes to
5297 global on all threads that call `func', or catch
5298 writes on all recursive calls of `func' by a single
5299 thread. We simply always evaluate the condition in
5300 the innermost frame that's executing where it makes
5301 sense to evaluate the condition. It seems
5302 intuitive. */
5303 frame = block_innermost_frame (w->cond_exp_valid_block);
5304 if (frame != NULL)
5305 select_frame (frame);
5306 else
5307 within_current_scope = 0;
5308 }
5309 if (within_current_scope)
5310 {
5311 TRY
5312 {
5313 condition_result = breakpoint_cond_eval (cond);
5314 }
5315 CATCH (ex, RETURN_MASK_ALL)
5316 {
5317 exception_fprintf (gdb_stderr, ex,
5318 "Error in testing breakpoint condition:\n");
5319 }
5320 END_CATCH
5321 }
5322 else
5323 {
5324 warning (_("Watchpoint condition cannot be tested "
5325 "in the current scope"));
5326 /* If we failed to set the right context for this
5327 watchpoint, unconditionally report it. */
5328 }
5329 /* FIXME-someday, should give breakpoint #. */
5330 value_free_to_mark (mark);
5331 }
5332
5333 if (cond && !condition_result)
5334 {
5335 bs->stop = 0;
5336 }
5337 else if (b->ignore_count > 0)
5338 {
5339 b->ignore_count--;
5340 bs->stop = 0;
5341 /* Increase the hit count even though we don't stop. */
5342 ++(b->hit_count);
5343 observer_notify_breakpoint_modified (b);
5344 }
5345 }
5346
5347 /* Returns true if we need to track moribund locations of LOC's type
5348 on the current target. */
5349
5350 static int
5351 need_moribund_for_location_type (struct bp_location *loc)
5352 {
5353 return ((loc->loc_type == bp_loc_software_breakpoint
5354 && !target_supports_stopped_by_sw_breakpoint ())
5355 || (loc->loc_type == bp_loc_hardware_breakpoint
5356 && !target_supports_stopped_by_hw_breakpoint ()));
5357 }
5358
5359
5360 /* Get a bpstat associated with having just stopped at address
5361 BP_ADDR in thread PTID.
5362
5363 Determine whether we stopped at a breakpoint, etc, or whether we
5364 don't understand this stop. Result is a chain of bpstat's such
5365 that:
5366
5367 if we don't understand the stop, the result is a null pointer.
5368
5369 if we understand why we stopped, the result is not null.
5370
5371 Each element of the chain refers to a particular breakpoint or
5372 watchpoint at which we have stopped. (We may have stopped for
5373 several reasons concurrently.)
5374
5375 Each element of the chain has valid next, breakpoint_at,
5376 commands, FIXME??? fields. */
5377
5378 bpstat
5379 bpstat_stop_status (const address_space *aspace,
5380 CORE_ADDR bp_addr, ptid_t ptid,
5381 const struct target_waitstatus *ws)
5382 {
5383 struct breakpoint *b = NULL;
5384 struct bp_location *bl;
5385 struct bp_location *loc;
5386 /* First item of allocated bpstat's. */
5387 bpstat bs_head = NULL, *bs_link = &bs_head;
5388 /* Pointer to the last thing in the chain currently. */
5389 bpstat bs;
5390 int ix;
5391 int need_remove_insert;
5392 int removed_any;
5393
5394 /* First, build the bpstat chain with locations that explain a
5395 target stop, while being careful to not set the target running,
5396 as that may invalidate locations (in particular watchpoint
5397 locations are recreated). Resuming will happen here with
5398 breakpoint conditions or watchpoint expressions that include
5399 inferior function calls. */
5400
5401 ALL_BREAKPOINTS (b)
5402 {
5403 if (!breakpoint_enabled (b))
5404 continue;
5405
5406 for (bl = b->loc; bl != NULL; bl = bl->next)
5407 {
5408 /* For hardware watchpoints, we look only at the first
5409 location. The watchpoint_check function will work on the
5410 entire expression, not the individual locations. For
5411 read watchpoints, the watchpoints_triggered function has
5412 checked all locations already. */
5413 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5414 break;
5415
5416 if (!bl->enabled || bl->shlib_disabled)
5417 continue;
5418
5419 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5420 continue;
5421
5422 /* Come here if it's a watchpoint, or if the break address
5423 matches. */
5424
5425 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5426 explain stop. */
5427
5428 /* Assume we stop. Should we find a watchpoint that is not
5429 actually triggered, or if the condition of the breakpoint
5430 evaluates as false, we'll reset 'stop' to 0. */
5431 bs->stop = 1;
5432 bs->print = 1;
5433
5434 /* If this is a scope breakpoint, mark the associated
5435 watchpoint as triggered so that we will handle the
5436 out-of-scope event. We'll get to the watchpoint next
5437 iteration. */
5438 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5439 {
5440 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5441
5442 w->watchpoint_triggered = watch_triggered_yes;
5443 }
5444 }
5445 }
5446
5447 /* Check if a moribund breakpoint explains the stop. */
5448 if (!target_supports_stopped_by_sw_breakpoint ()
5449 || !target_supports_stopped_by_hw_breakpoint ())
5450 {
5451 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5452 {
5453 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5454 && need_moribund_for_location_type (loc))
5455 {
5456 bs = new bpstats (loc, &bs_link);
5457 /* For hits of moribund locations, we should just proceed. */
5458 bs->stop = 0;
5459 bs->print = 0;
5460 bs->print_it = print_it_noop;
5461 }
5462 }
5463 }
5464
5465 /* A bit of special processing for shlib breakpoints. We need to
5466 process solib loading here, so that the lists of loaded and
5467 unloaded libraries are correct before we handle "catch load" and
5468 "catch unload". */
5469 for (bs = bs_head; bs != NULL; bs = bs->next)
5470 {
5471 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5472 {
5473 handle_solib_event ();
5474 break;
5475 }
5476 }
5477
5478 /* Now go through the locations that caused the target to stop, and
5479 check whether we're interested in reporting this stop to higher
5480 layers, or whether we should resume the target transparently. */
5481
5482 removed_any = 0;
5483
5484 for (bs = bs_head; bs != NULL; bs = bs->next)
5485 {
5486 if (!bs->stop)
5487 continue;
5488
5489 b = bs->breakpoint_at;
5490 b->ops->check_status (bs);
5491 if (bs->stop)
5492 {
5493 bpstat_check_breakpoint_conditions (bs, ptid);
5494
5495 if (bs->stop)
5496 {
5497 ++(b->hit_count);
5498 observer_notify_breakpoint_modified (b);
5499
5500 /* We will stop here. */
5501 if (b->disposition == disp_disable)
5502 {
5503 --(b->enable_count);
5504 if (b->enable_count <= 0)
5505 b->enable_state = bp_disabled;
5506 removed_any = 1;
5507 }
5508 if (b->silent)
5509 bs->print = 0;
5510 bs->commands = b->commands;
5511 if (command_line_is_silent (bs->commands
5512 ? bs->commands.get () : NULL))
5513 bs->print = 0;
5514
5515 b->ops->after_condition_true (bs);
5516 }
5517
5518 }
5519
5520 /* Print nothing for this entry if we don't stop or don't
5521 print. */
5522 if (!bs->stop || !bs->print)
5523 bs->print_it = print_it_noop;
5524 }
5525
5526 /* If we aren't stopping, the value of some hardware watchpoint may
5527 not have changed, but the intermediate memory locations we are
5528 watching may have. Don't bother if we're stopping; this will get
5529 done later. */
5530 need_remove_insert = 0;
5531 if (! bpstat_causes_stop (bs_head))
5532 for (bs = bs_head; bs != NULL; bs = bs->next)
5533 if (!bs->stop
5534 && bs->breakpoint_at
5535 && is_hardware_watchpoint (bs->breakpoint_at))
5536 {
5537 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5538
5539 update_watchpoint (w, 0 /* don't reparse. */);
5540 need_remove_insert = 1;
5541 }
5542
5543 if (need_remove_insert)
5544 update_global_location_list (UGLL_MAY_INSERT);
5545 else if (removed_any)
5546 update_global_location_list (UGLL_DONT_INSERT);
5547
5548 return bs_head;
5549 }
5550
5551 static void
5552 handle_jit_event (void)
5553 {
5554 struct frame_info *frame;
5555 struct gdbarch *gdbarch;
5556
5557 if (debug_infrun)
5558 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5559
5560 /* Switch terminal for any messages produced by
5561 breakpoint_re_set. */
5562 target_terminal::ours_for_output ();
5563
5564 frame = get_current_frame ();
5565 gdbarch = get_frame_arch (frame);
5566
5567 jit_event_handler (gdbarch);
5568
5569 target_terminal::inferior ();
5570 }
5571
5572 /* Prepare WHAT final decision for infrun. */
5573
5574 /* Decide what infrun needs to do with this bpstat. */
5575
5576 struct bpstat_what
5577 bpstat_what (bpstat bs_head)
5578 {
5579 struct bpstat_what retval;
5580 bpstat bs;
5581
5582 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5583 retval.call_dummy = STOP_NONE;
5584 retval.is_longjmp = 0;
5585
5586 for (bs = bs_head; bs != NULL; bs = bs->next)
5587 {
5588 /* Extract this BS's action. After processing each BS, we check
5589 if its action overrides all we've seem so far. */
5590 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5591 enum bptype bptype;
5592
5593 if (bs->breakpoint_at == NULL)
5594 {
5595 /* I suspect this can happen if it was a momentary
5596 breakpoint which has since been deleted. */
5597 bptype = bp_none;
5598 }
5599 else
5600 bptype = bs->breakpoint_at->type;
5601
5602 switch (bptype)
5603 {
5604 case bp_none:
5605 break;
5606 case bp_breakpoint:
5607 case bp_hardware_breakpoint:
5608 case bp_single_step:
5609 case bp_until:
5610 case bp_finish:
5611 case bp_shlib_event:
5612 if (bs->stop)
5613 {
5614 if (bs->print)
5615 this_action = BPSTAT_WHAT_STOP_NOISY;
5616 else
5617 this_action = BPSTAT_WHAT_STOP_SILENT;
5618 }
5619 else
5620 this_action = BPSTAT_WHAT_SINGLE;
5621 break;
5622 case bp_watchpoint:
5623 case bp_hardware_watchpoint:
5624 case bp_read_watchpoint:
5625 case bp_access_watchpoint:
5626 if (bs->stop)
5627 {
5628 if (bs->print)
5629 this_action = BPSTAT_WHAT_STOP_NOISY;
5630 else
5631 this_action = BPSTAT_WHAT_STOP_SILENT;
5632 }
5633 else
5634 {
5635 /* There was a watchpoint, but we're not stopping.
5636 This requires no further action. */
5637 }
5638 break;
5639 case bp_longjmp:
5640 case bp_longjmp_call_dummy:
5641 case bp_exception:
5642 if (bs->stop)
5643 {
5644 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5645 retval.is_longjmp = bptype != bp_exception;
5646 }
5647 else
5648 this_action = BPSTAT_WHAT_SINGLE;
5649 break;
5650 case bp_longjmp_resume:
5651 case bp_exception_resume:
5652 if (bs->stop)
5653 {
5654 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5655 retval.is_longjmp = bptype == bp_longjmp_resume;
5656 }
5657 else
5658 this_action = BPSTAT_WHAT_SINGLE;
5659 break;
5660 case bp_step_resume:
5661 if (bs->stop)
5662 this_action = BPSTAT_WHAT_STEP_RESUME;
5663 else
5664 {
5665 /* It is for the wrong frame. */
5666 this_action = BPSTAT_WHAT_SINGLE;
5667 }
5668 break;
5669 case bp_hp_step_resume:
5670 if (bs->stop)
5671 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5672 else
5673 {
5674 /* It is for the wrong frame. */
5675 this_action = BPSTAT_WHAT_SINGLE;
5676 }
5677 break;
5678 case bp_watchpoint_scope:
5679 case bp_thread_event:
5680 case bp_overlay_event:
5681 case bp_longjmp_master:
5682 case bp_std_terminate_master:
5683 case bp_exception_master:
5684 this_action = BPSTAT_WHAT_SINGLE;
5685 break;
5686 case bp_catchpoint:
5687 if (bs->stop)
5688 {
5689 if (bs->print)
5690 this_action = BPSTAT_WHAT_STOP_NOISY;
5691 else
5692 this_action = BPSTAT_WHAT_STOP_SILENT;
5693 }
5694 else
5695 {
5696 /* There was a catchpoint, but we're not stopping.
5697 This requires no further action. */
5698 }
5699 break;
5700 case bp_jit_event:
5701 this_action = BPSTAT_WHAT_SINGLE;
5702 break;
5703 case bp_call_dummy:
5704 /* Make sure the action is stop (silent or noisy),
5705 so infrun.c pops the dummy frame. */
5706 retval.call_dummy = STOP_STACK_DUMMY;
5707 this_action = BPSTAT_WHAT_STOP_SILENT;
5708 break;
5709 case bp_std_terminate:
5710 /* Make sure the action is stop (silent or noisy),
5711 so infrun.c pops the dummy frame. */
5712 retval.call_dummy = STOP_STD_TERMINATE;
5713 this_action = BPSTAT_WHAT_STOP_SILENT;
5714 break;
5715 case bp_tracepoint:
5716 case bp_fast_tracepoint:
5717 case bp_static_tracepoint:
5718 /* Tracepoint hits should not be reported back to GDB, and
5719 if one got through somehow, it should have been filtered
5720 out already. */
5721 internal_error (__FILE__, __LINE__,
5722 _("bpstat_what: tracepoint encountered"));
5723 break;
5724 case bp_gnu_ifunc_resolver:
5725 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5726 this_action = BPSTAT_WHAT_SINGLE;
5727 break;
5728 case bp_gnu_ifunc_resolver_return:
5729 /* The breakpoint will be removed, execution will restart from the
5730 PC of the former breakpoint. */
5731 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5732 break;
5733
5734 case bp_dprintf:
5735 if (bs->stop)
5736 this_action = BPSTAT_WHAT_STOP_SILENT;
5737 else
5738 this_action = BPSTAT_WHAT_SINGLE;
5739 break;
5740
5741 default:
5742 internal_error (__FILE__, __LINE__,
5743 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5744 }
5745
5746 retval.main_action = std::max (retval.main_action, this_action);
5747 }
5748
5749 return retval;
5750 }
5751
5752 void
5753 bpstat_run_callbacks (bpstat bs_head)
5754 {
5755 bpstat bs;
5756
5757 for (bs = bs_head; bs != NULL; bs = bs->next)
5758 {
5759 struct breakpoint *b = bs->breakpoint_at;
5760
5761 if (b == NULL)
5762 continue;
5763 switch (b->type)
5764 {
5765 case bp_jit_event:
5766 handle_jit_event ();
5767 break;
5768 case bp_gnu_ifunc_resolver:
5769 gnu_ifunc_resolver_stop (b);
5770 break;
5771 case bp_gnu_ifunc_resolver_return:
5772 gnu_ifunc_resolver_return_stop (b);
5773 break;
5774 }
5775 }
5776 }
5777
5778 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5779 without hardware support). This isn't related to a specific bpstat,
5780 just to things like whether watchpoints are set. */
5781
5782 int
5783 bpstat_should_step (void)
5784 {
5785 struct breakpoint *b;
5786
5787 ALL_BREAKPOINTS (b)
5788 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5789 return 1;
5790 return 0;
5791 }
5792
5793 int
5794 bpstat_causes_stop (bpstat bs)
5795 {
5796 for (; bs != NULL; bs = bs->next)
5797 if (bs->stop)
5798 return 1;
5799
5800 return 0;
5801 }
5802
5803 \f
5804
5805 /* Compute a string of spaces suitable to indent the next line
5806 so it starts at the position corresponding to the table column
5807 named COL_NAME in the currently active table of UIOUT. */
5808
5809 static char *
5810 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5811 {
5812 static char wrap_indent[80];
5813 int i, total_width, width, align;
5814 const char *text;
5815
5816 total_width = 0;
5817 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5818 {
5819 if (strcmp (text, col_name) == 0)
5820 {
5821 gdb_assert (total_width < sizeof wrap_indent);
5822 memset (wrap_indent, ' ', total_width);
5823 wrap_indent[total_width] = 0;
5824
5825 return wrap_indent;
5826 }
5827
5828 total_width += width + 1;
5829 }
5830
5831 return NULL;
5832 }
5833
5834 /* Determine if the locations of this breakpoint will have their conditions
5835 evaluated by the target, host or a mix of both. Returns the following:
5836
5837 "host": Host evals condition.
5838 "host or target": Host or Target evals condition.
5839 "target": Target evals condition.
5840 */
5841
5842 static const char *
5843 bp_condition_evaluator (struct breakpoint *b)
5844 {
5845 struct bp_location *bl;
5846 char host_evals = 0;
5847 char target_evals = 0;
5848
5849 if (!b)
5850 return NULL;
5851
5852 if (!is_breakpoint (b))
5853 return NULL;
5854
5855 if (gdb_evaluates_breakpoint_condition_p ()
5856 || !target_supports_evaluation_of_breakpoint_conditions ())
5857 return condition_evaluation_host;
5858
5859 for (bl = b->loc; bl; bl = bl->next)
5860 {
5861 if (bl->cond_bytecode)
5862 target_evals++;
5863 else
5864 host_evals++;
5865 }
5866
5867 if (host_evals && target_evals)
5868 return condition_evaluation_both;
5869 else if (target_evals)
5870 return condition_evaluation_target;
5871 else
5872 return condition_evaluation_host;
5873 }
5874
5875 /* Determine the breakpoint location's condition evaluator. This is
5876 similar to bp_condition_evaluator, but for locations. */
5877
5878 static const char *
5879 bp_location_condition_evaluator (struct bp_location *bl)
5880 {
5881 if (bl && !is_breakpoint (bl->owner))
5882 return NULL;
5883
5884 if (gdb_evaluates_breakpoint_condition_p ()
5885 || !target_supports_evaluation_of_breakpoint_conditions ())
5886 return condition_evaluation_host;
5887
5888 if (bl && bl->cond_bytecode)
5889 return condition_evaluation_target;
5890 else
5891 return condition_evaluation_host;
5892 }
5893
5894 /* Print the LOC location out of the list of B->LOC locations. */
5895
5896 static void
5897 print_breakpoint_location (struct breakpoint *b,
5898 struct bp_location *loc)
5899 {
5900 struct ui_out *uiout = current_uiout;
5901
5902 scoped_restore_current_program_space restore_pspace;
5903
5904 if (loc != NULL && loc->shlib_disabled)
5905 loc = NULL;
5906
5907 if (loc != NULL)
5908 set_current_program_space (loc->pspace);
5909
5910 if (b->display_canonical)
5911 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5912 else if (loc && loc->symtab)
5913 {
5914 const struct symbol *sym = loc->symbol;
5915
5916 if (sym == NULL)
5917 sym = find_pc_sect_function (loc->address, loc->section);
5918
5919 if (sym)
5920 {
5921 uiout->text ("in ");
5922 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5923 uiout->text (" ");
5924 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5925 uiout->text ("at ");
5926 }
5927 uiout->field_string ("file",
5928 symtab_to_filename_for_display (loc->symtab));
5929 uiout->text (":");
5930
5931 if (uiout->is_mi_like_p ())
5932 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5933
5934 uiout->field_int ("line", loc->line_number);
5935 }
5936 else if (loc)
5937 {
5938 string_file stb;
5939
5940 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5941 demangle, "");
5942 uiout->field_stream ("at", stb);
5943 }
5944 else
5945 {
5946 uiout->field_string ("pending",
5947 event_location_to_string (b->location.get ()));
5948 /* If extra_string is available, it could be holding a condition
5949 or dprintf arguments. In either case, make sure it is printed,
5950 too, but only for non-MI streams. */
5951 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5952 {
5953 if (b->type == bp_dprintf)
5954 uiout->text (",");
5955 else
5956 uiout->text (" ");
5957 uiout->text (b->extra_string);
5958 }
5959 }
5960
5961 if (loc && is_breakpoint (b)
5962 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5963 && bp_condition_evaluator (b) == condition_evaluation_both)
5964 {
5965 uiout->text (" (");
5966 uiout->field_string ("evaluated-by",
5967 bp_location_condition_evaluator (loc));
5968 uiout->text (")");
5969 }
5970 }
5971
5972 static const char *
5973 bptype_string (enum bptype type)
5974 {
5975 struct ep_type_description
5976 {
5977 enum bptype type;
5978 const char *description;
5979 };
5980 static struct ep_type_description bptypes[] =
5981 {
5982 {bp_none, "?deleted?"},
5983 {bp_breakpoint, "breakpoint"},
5984 {bp_hardware_breakpoint, "hw breakpoint"},
5985 {bp_single_step, "sw single-step"},
5986 {bp_until, "until"},
5987 {bp_finish, "finish"},
5988 {bp_watchpoint, "watchpoint"},
5989 {bp_hardware_watchpoint, "hw watchpoint"},
5990 {bp_read_watchpoint, "read watchpoint"},
5991 {bp_access_watchpoint, "acc watchpoint"},
5992 {bp_longjmp, "longjmp"},
5993 {bp_longjmp_resume, "longjmp resume"},
5994 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5995 {bp_exception, "exception"},
5996 {bp_exception_resume, "exception resume"},
5997 {bp_step_resume, "step resume"},
5998 {bp_hp_step_resume, "high-priority step resume"},
5999 {bp_watchpoint_scope, "watchpoint scope"},
6000 {bp_call_dummy, "call dummy"},
6001 {bp_std_terminate, "std::terminate"},
6002 {bp_shlib_event, "shlib events"},
6003 {bp_thread_event, "thread events"},
6004 {bp_overlay_event, "overlay events"},
6005 {bp_longjmp_master, "longjmp master"},
6006 {bp_std_terminate_master, "std::terminate master"},
6007 {bp_exception_master, "exception master"},
6008 {bp_catchpoint, "catchpoint"},
6009 {bp_tracepoint, "tracepoint"},
6010 {bp_fast_tracepoint, "fast tracepoint"},
6011 {bp_static_tracepoint, "static tracepoint"},
6012 {bp_dprintf, "dprintf"},
6013 {bp_jit_event, "jit events"},
6014 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6015 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6016 };
6017
6018 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6019 || ((int) type != bptypes[(int) type].type))
6020 internal_error (__FILE__, __LINE__,
6021 _("bptypes table does not describe type #%d."),
6022 (int) type);
6023
6024 return bptypes[(int) type].description;
6025 }
6026
6027 /* For MI, output a field named 'thread-groups' with a list as the value.
6028 For CLI, prefix the list with the string 'inf'. */
6029
6030 static void
6031 output_thread_groups (struct ui_out *uiout,
6032 const char *field_name,
6033 VEC(int) *inf_num,
6034 int mi_only)
6035 {
6036 int is_mi = uiout->is_mi_like_p ();
6037 int inf;
6038 int i;
6039
6040 /* For backward compatibility, don't display inferiors in CLI unless
6041 there are several. Always display them for MI. */
6042 if (!is_mi && mi_only)
6043 return;
6044
6045 ui_out_emit_list list_emitter (uiout, field_name);
6046
6047 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
6048 {
6049 if (is_mi)
6050 {
6051 char mi_group[10];
6052
6053 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
6054 uiout->field_string (NULL, mi_group);
6055 }
6056 else
6057 {
6058 if (i == 0)
6059 uiout->text (" inf ");
6060 else
6061 uiout->text (", ");
6062
6063 uiout->text (plongest (inf));
6064 }
6065 }
6066 }
6067
6068 /* Print B to gdb_stdout. */
6069
6070 static void
6071 print_one_breakpoint_location (struct breakpoint *b,
6072 struct bp_location *loc,
6073 int loc_number,
6074 struct bp_location **last_loc,
6075 int allflag)
6076 {
6077 struct command_line *l;
6078 static char bpenables[] = "nynny";
6079
6080 struct ui_out *uiout = current_uiout;
6081 int header_of_multiple = 0;
6082 int part_of_multiple = (loc != NULL);
6083 struct value_print_options opts;
6084
6085 get_user_print_options (&opts);
6086
6087 gdb_assert (!loc || loc_number != 0);
6088 /* See comment in print_one_breakpoint concerning treatment of
6089 breakpoints with single disabled location. */
6090 if (loc == NULL
6091 && (b->loc != NULL
6092 && (b->loc->next != NULL || !b->loc->enabled)))
6093 header_of_multiple = 1;
6094 if (loc == NULL)
6095 loc = b->loc;
6096
6097 annotate_record ();
6098
6099 /* 1 */
6100 annotate_field (0);
6101 if (part_of_multiple)
6102 {
6103 char *formatted;
6104 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6105 uiout->field_string ("number", formatted);
6106 xfree (formatted);
6107 }
6108 else
6109 {
6110 uiout->field_int ("number", b->number);
6111 }
6112
6113 /* 2 */
6114 annotate_field (1);
6115 if (part_of_multiple)
6116 uiout->field_skip ("type");
6117 else
6118 uiout->field_string ("type", bptype_string (b->type));
6119
6120 /* 3 */
6121 annotate_field (2);
6122 if (part_of_multiple)
6123 uiout->field_skip ("disp");
6124 else
6125 uiout->field_string ("disp", bpdisp_text (b->disposition));
6126
6127
6128 /* 4 */
6129 annotate_field (3);
6130 if (part_of_multiple)
6131 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6132 else
6133 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6134 uiout->spaces (2);
6135
6136
6137 /* 5 and 6 */
6138 if (b->ops != NULL && b->ops->print_one != NULL)
6139 {
6140 /* Although the print_one can possibly print all locations,
6141 calling it here is not likely to get any nice result. So,
6142 make sure there's just one location. */
6143 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6144 b->ops->print_one (b, last_loc);
6145 }
6146 else
6147 switch (b->type)
6148 {
6149 case bp_none:
6150 internal_error (__FILE__, __LINE__,
6151 _("print_one_breakpoint: bp_none encountered\n"));
6152 break;
6153
6154 case bp_watchpoint:
6155 case bp_hardware_watchpoint:
6156 case bp_read_watchpoint:
6157 case bp_access_watchpoint:
6158 {
6159 struct watchpoint *w = (struct watchpoint *) b;
6160
6161 /* Field 4, the address, is omitted (which makes the columns
6162 not line up too nicely with the headers, but the effect
6163 is relatively readable). */
6164 if (opts.addressprint)
6165 uiout->field_skip ("addr");
6166 annotate_field (5);
6167 uiout->field_string ("what", w->exp_string);
6168 }
6169 break;
6170
6171 case bp_breakpoint:
6172 case bp_hardware_breakpoint:
6173 case bp_single_step:
6174 case bp_until:
6175 case bp_finish:
6176 case bp_longjmp:
6177 case bp_longjmp_resume:
6178 case bp_longjmp_call_dummy:
6179 case bp_exception:
6180 case bp_exception_resume:
6181 case bp_step_resume:
6182 case bp_hp_step_resume:
6183 case bp_watchpoint_scope:
6184 case bp_call_dummy:
6185 case bp_std_terminate:
6186 case bp_shlib_event:
6187 case bp_thread_event:
6188 case bp_overlay_event:
6189 case bp_longjmp_master:
6190 case bp_std_terminate_master:
6191 case bp_exception_master:
6192 case bp_tracepoint:
6193 case bp_fast_tracepoint:
6194 case bp_static_tracepoint:
6195 case bp_dprintf:
6196 case bp_jit_event:
6197 case bp_gnu_ifunc_resolver:
6198 case bp_gnu_ifunc_resolver_return:
6199 if (opts.addressprint)
6200 {
6201 annotate_field (4);
6202 if (header_of_multiple)
6203 uiout->field_string ("addr", "<MULTIPLE>");
6204 else if (b->loc == NULL || loc->shlib_disabled)
6205 uiout->field_string ("addr", "<PENDING>");
6206 else
6207 uiout->field_core_addr ("addr",
6208 loc->gdbarch, loc->address);
6209 }
6210 annotate_field (5);
6211 if (!header_of_multiple)
6212 print_breakpoint_location (b, loc);
6213 if (b->loc)
6214 *last_loc = b->loc;
6215 break;
6216 }
6217
6218
6219 if (loc != NULL && !header_of_multiple)
6220 {
6221 struct inferior *inf;
6222 VEC(int) *inf_num = NULL;
6223 int mi_only = 1;
6224
6225 ALL_INFERIORS (inf)
6226 {
6227 if (inf->pspace == loc->pspace)
6228 VEC_safe_push (int, inf_num, inf->num);
6229 }
6230
6231 /* For backward compatibility, don't display inferiors in CLI unless
6232 there are several. Always display for MI. */
6233 if (allflag
6234 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6235 && (number_of_program_spaces () > 1
6236 || number_of_inferiors () > 1)
6237 /* LOC is for existing B, it cannot be in
6238 moribund_locations and thus having NULL OWNER. */
6239 && loc->owner->type != bp_catchpoint))
6240 mi_only = 0;
6241 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6242 VEC_free (int, inf_num);
6243 }
6244
6245 if (!part_of_multiple)
6246 {
6247 if (b->thread != -1)
6248 {
6249 /* FIXME: This seems to be redundant and lost here; see the
6250 "stop only in" line a little further down. */
6251 uiout->text (" thread ");
6252 uiout->field_int ("thread", b->thread);
6253 }
6254 else if (b->task != 0)
6255 {
6256 uiout->text (" task ");
6257 uiout->field_int ("task", b->task);
6258 }
6259 }
6260
6261 uiout->text ("\n");
6262
6263 if (!part_of_multiple)
6264 b->ops->print_one_detail (b, uiout);
6265
6266 if (part_of_multiple && frame_id_p (b->frame_id))
6267 {
6268 annotate_field (6);
6269 uiout->text ("\tstop only in stack frame at ");
6270 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6271 the frame ID. */
6272 uiout->field_core_addr ("frame",
6273 b->gdbarch, b->frame_id.stack_addr);
6274 uiout->text ("\n");
6275 }
6276
6277 if (!part_of_multiple && b->cond_string)
6278 {
6279 annotate_field (7);
6280 if (is_tracepoint (b))
6281 uiout->text ("\ttrace only if ");
6282 else
6283 uiout->text ("\tstop only if ");
6284 uiout->field_string ("cond", b->cond_string);
6285
6286 /* Print whether the target is doing the breakpoint's condition
6287 evaluation. If GDB is doing the evaluation, don't print anything. */
6288 if (is_breakpoint (b)
6289 && breakpoint_condition_evaluation_mode ()
6290 == condition_evaluation_target)
6291 {
6292 uiout->text (" (");
6293 uiout->field_string ("evaluated-by",
6294 bp_condition_evaluator (b));
6295 uiout->text (" evals)");
6296 }
6297 uiout->text ("\n");
6298 }
6299
6300 if (!part_of_multiple && b->thread != -1)
6301 {
6302 /* FIXME should make an annotation for this. */
6303 uiout->text ("\tstop only in thread ");
6304 if (uiout->is_mi_like_p ())
6305 uiout->field_int ("thread", b->thread);
6306 else
6307 {
6308 struct thread_info *thr = find_thread_global_id (b->thread);
6309
6310 uiout->field_string ("thread", print_thread_id (thr));
6311 }
6312 uiout->text ("\n");
6313 }
6314
6315 if (!part_of_multiple)
6316 {
6317 if (b->hit_count)
6318 {
6319 /* FIXME should make an annotation for this. */
6320 if (is_catchpoint (b))
6321 uiout->text ("\tcatchpoint");
6322 else if (is_tracepoint (b))
6323 uiout->text ("\ttracepoint");
6324 else
6325 uiout->text ("\tbreakpoint");
6326 uiout->text (" already hit ");
6327 uiout->field_int ("times", b->hit_count);
6328 if (b->hit_count == 1)
6329 uiout->text (" time\n");
6330 else
6331 uiout->text (" times\n");
6332 }
6333 else
6334 {
6335 /* Output the count also if it is zero, but only if this is mi. */
6336 if (uiout->is_mi_like_p ())
6337 uiout->field_int ("times", b->hit_count);
6338 }
6339 }
6340
6341 if (!part_of_multiple && b->ignore_count)
6342 {
6343 annotate_field (8);
6344 uiout->text ("\tignore next ");
6345 uiout->field_int ("ignore", b->ignore_count);
6346 uiout->text (" hits\n");
6347 }
6348
6349 /* Note that an enable count of 1 corresponds to "enable once"
6350 behavior, which is reported by the combination of enablement and
6351 disposition, so we don't need to mention it here. */
6352 if (!part_of_multiple && b->enable_count > 1)
6353 {
6354 annotate_field (8);
6355 uiout->text ("\tdisable after ");
6356 /* Tweak the wording to clarify that ignore and enable counts
6357 are distinct, and have additive effect. */
6358 if (b->ignore_count)
6359 uiout->text ("additional ");
6360 else
6361 uiout->text ("next ");
6362 uiout->field_int ("enable", b->enable_count);
6363 uiout->text (" hits\n");
6364 }
6365
6366 if (!part_of_multiple && is_tracepoint (b))
6367 {
6368 struct tracepoint *tp = (struct tracepoint *) b;
6369
6370 if (tp->traceframe_usage)
6371 {
6372 uiout->text ("\ttrace buffer usage ");
6373 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6374 uiout->text (" bytes\n");
6375 }
6376 }
6377
6378 l = b->commands ? b->commands.get () : NULL;
6379 if (!part_of_multiple && l)
6380 {
6381 annotate_field (9);
6382 ui_out_emit_tuple tuple_emitter (uiout, "script");
6383 print_command_lines (uiout, l, 4);
6384 }
6385
6386 if (is_tracepoint (b))
6387 {
6388 struct tracepoint *t = (struct tracepoint *) b;
6389
6390 if (!part_of_multiple && t->pass_count)
6391 {
6392 annotate_field (10);
6393 uiout->text ("\tpass count ");
6394 uiout->field_int ("pass", t->pass_count);
6395 uiout->text (" \n");
6396 }
6397
6398 /* Don't display it when tracepoint or tracepoint location is
6399 pending. */
6400 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6401 {
6402 annotate_field (11);
6403
6404 if (uiout->is_mi_like_p ())
6405 uiout->field_string ("installed",
6406 loc->inserted ? "y" : "n");
6407 else
6408 {
6409 if (loc->inserted)
6410 uiout->text ("\t");
6411 else
6412 uiout->text ("\tnot ");
6413 uiout->text ("installed on target\n");
6414 }
6415 }
6416 }
6417
6418 if (uiout->is_mi_like_p () && !part_of_multiple)
6419 {
6420 if (is_watchpoint (b))
6421 {
6422 struct watchpoint *w = (struct watchpoint *) b;
6423
6424 uiout->field_string ("original-location", w->exp_string);
6425 }
6426 else if (b->location != NULL
6427 && event_location_to_string (b->location.get ()) != NULL)
6428 uiout->field_string ("original-location",
6429 event_location_to_string (b->location.get ()));
6430 }
6431 }
6432
6433 static void
6434 print_one_breakpoint (struct breakpoint *b,
6435 struct bp_location **last_loc,
6436 int allflag)
6437 {
6438 struct ui_out *uiout = current_uiout;
6439
6440 {
6441 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6442
6443 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6444 }
6445
6446 /* If this breakpoint has custom print function,
6447 it's already printed. Otherwise, print individual
6448 locations, if any. */
6449 if (b->ops == NULL || b->ops->print_one == NULL)
6450 {
6451 /* If breakpoint has a single location that is disabled, we
6452 print it as if it had several locations, since otherwise it's
6453 hard to represent "breakpoint enabled, location disabled"
6454 situation.
6455
6456 Note that while hardware watchpoints have several locations
6457 internally, that's not a property exposed to user. */
6458 if (b->loc
6459 && !is_hardware_watchpoint (b)
6460 && (b->loc->next || !b->loc->enabled))
6461 {
6462 struct bp_location *loc;
6463 int n = 1;
6464
6465 for (loc = b->loc; loc; loc = loc->next, ++n)
6466 {
6467 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6468 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6469 }
6470 }
6471 }
6472 }
6473
6474 static int
6475 breakpoint_address_bits (struct breakpoint *b)
6476 {
6477 int print_address_bits = 0;
6478 struct bp_location *loc;
6479
6480 /* Software watchpoints that aren't watching memory don't have an
6481 address to print. */
6482 if (is_no_memory_software_watchpoint (b))
6483 return 0;
6484
6485 for (loc = b->loc; loc; loc = loc->next)
6486 {
6487 int addr_bit;
6488
6489 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6490 if (addr_bit > print_address_bits)
6491 print_address_bits = addr_bit;
6492 }
6493
6494 return print_address_bits;
6495 }
6496
6497 /* See breakpoint.h. */
6498
6499 void
6500 print_breakpoint (breakpoint *b)
6501 {
6502 struct bp_location *dummy_loc = NULL;
6503 print_one_breakpoint (b, &dummy_loc, 0);
6504 }
6505
6506 /* Return true if this breakpoint was set by the user, false if it is
6507 internal or momentary. */
6508
6509 int
6510 user_breakpoint_p (struct breakpoint *b)
6511 {
6512 return b->number > 0;
6513 }
6514
6515 /* See breakpoint.h. */
6516
6517 int
6518 pending_breakpoint_p (struct breakpoint *b)
6519 {
6520 return b->loc == NULL;
6521 }
6522
6523 /* Print information on user settable breakpoint (watchpoint, etc)
6524 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6525 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6526 FILTER is non-NULL, call it on each breakpoint and only include the
6527 ones for which it returns non-zero. Return the total number of
6528 breakpoints listed. */
6529
6530 static int
6531 breakpoint_1 (const char *args, int allflag,
6532 int (*filter) (const struct breakpoint *))
6533 {
6534 struct breakpoint *b;
6535 struct bp_location *last_loc = NULL;
6536 int nr_printable_breakpoints;
6537 struct value_print_options opts;
6538 int print_address_bits = 0;
6539 int print_type_col_width = 14;
6540 struct ui_out *uiout = current_uiout;
6541
6542 get_user_print_options (&opts);
6543
6544 /* Compute the number of rows in the table, as well as the size
6545 required for address fields. */
6546 nr_printable_breakpoints = 0;
6547 ALL_BREAKPOINTS (b)
6548 {
6549 /* If we have a filter, only list the breakpoints it accepts. */
6550 if (filter && !filter (b))
6551 continue;
6552
6553 /* If we have an "args" string, it is a list of breakpoints to
6554 accept. Skip the others. */
6555 if (args != NULL && *args != '\0')
6556 {
6557 if (allflag && parse_and_eval_long (args) != b->number)
6558 continue;
6559 if (!allflag && !number_is_in_list (args, b->number))
6560 continue;
6561 }
6562
6563 if (allflag || user_breakpoint_p (b))
6564 {
6565 int addr_bit, type_len;
6566
6567 addr_bit = breakpoint_address_bits (b);
6568 if (addr_bit > print_address_bits)
6569 print_address_bits = addr_bit;
6570
6571 type_len = strlen (bptype_string (b->type));
6572 if (type_len > print_type_col_width)
6573 print_type_col_width = type_len;
6574
6575 nr_printable_breakpoints++;
6576 }
6577 }
6578
6579 {
6580 ui_out_emit_table table_emitter (uiout,
6581 opts.addressprint ? 6 : 5,
6582 nr_printable_breakpoints,
6583 "BreakpointTable");
6584
6585 if (nr_printable_breakpoints > 0)
6586 annotate_breakpoints_headers ();
6587 if (nr_printable_breakpoints > 0)
6588 annotate_field (0);
6589 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6590 if (nr_printable_breakpoints > 0)
6591 annotate_field (1);
6592 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6593 if (nr_printable_breakpoints > 0)
6594 annotate_field (2);
6595 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6596 if (nr_printable_breakpoints > 0)
6597 annotate_field (3);
6598 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6599 if (opts.addressprint)
6600 {
6601 if (nr_printable_breakpoints > 0)
6602 annotate_field (4);
6603 if (print_address_bits <= 32)
6604 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6605 else
6606 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6607 }
6608 if (nr_printable_breakpoints > 0)
6609 annotate_field (5);
6610 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6611 uiout->table_body ();
6612 if (nr_printable_breakpoints > 0)
6613 annotate_breakpoints_table ();
6614
6615 ALL_BREAKPOINTS (b)
6616 {
6617 QUIT;
6618 /* If we have a filter, only list the breakpoints it accepts. */
6619 if (filter && !filter (b))
6620 continue;
6621
6622 /* If we have an "args" string, it is a list of breakpoints to
6623 accept. Skip the others. */
6624
6625 if (args != NULL && *args != '\0')
6626 {
6627 if (allflag) /* maintenance info breakpoint */
6628 {
6629 if (parse_and_eval_long (args) != b->number)
6630 continue;
6631 }
6632 else /* all others */
6633 {
6634 if (!number_is_in_list (args, b->number))
6635 continue;
6636 }
6637 }
6638 /* We only print out user settable breakpoints unless the
6639 allflag is set. */
6640 if (allflag || user_breakpoint_p (b))
6641 print_one_breakpoint (b, &last_loc, allflag);
6642 }
6643 }
6644
6645 if (nr_printable_breakpoints == 0)
6646 {
6647 /* If there's a filter, let the caller decide how to report
6648 empty list. */
6649 if (!filter)
6650 {
6651 if (args == NULL || *args == '\0')
6652 uiout->message ("No breakpoints or watchpoints.\n");
6653 else
6654 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6655 args);
6656 }
6657 }
6658 else
6659 {
6660 if (last_loc && !server_command)
6661 set_next_address (last_loc->gdbarch, last_loc->address);
6662 }
6663
6664 /* FIXME? Should this be moved up so that it is only called when
6665 there have been breakpoints? */
6666 annotate_breakpoints_table_end ();
6667
6668 return nr_printable_breakpoints;
6669 }
6670
6671 /* Display the value of default-collect in a way that is generally
6672 compatible with the breakpoint list. */
6673
6674 static void
6675 default_collect_info (void)
6676 {
6677 struct ui_out *uiout = current_uiout;
6678
6679 /* If it has no value (which is frequently the case), say nothing; a
6680 message like "No default-collect." gets in user's face when it's
6681 not wanted. */
6682 if (!*default_collect)
6683 return;
6684
6685 /* The following phrase lines up nicely with per-tracepoint collect
6686 actions. */
6687 uiout->text ("default collect ");
6688 uiout->field_string ("default-collect", default_collect);
6689 uiout->text (" \n");
6690 }
6691
6692 static void
6693 info_breakpoints_command (const char *args, int from_tty)
6694 {
6695 breakpoint_1 (args, 0, NULL);
6696
6697 default_collect_info ();
6698 }
6699
6700 static void
6701 info_watchpoints_command (const char *args, int from_tty)
6702 {
6703 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6704 struct ui_out *uiout = current_uiout;
6705
6706 if (num_printed == 0)
6707 {
6708 if (args == NULL || *args == '\0')
6709 uiout->message ("No watchpoints.\n");
6710 else
6711 uiout->message ("No watchpoint matching '%s'.\n", args);
6712 }
6713 }
6714
6715 static void
6716 maintenance_info_breakpoints (const char *args, int from_tty)
6717 {
6718 breakpoint_1 (args, 1, NULL);
6719
6720 default_collect_info ();
6721 }
6722
6723 static int
6724 breakpoint_has_pc (struct breakpoint *b,
6725 struct program_space *pspace,
6726 CORE_ADDR pc, struct obj_section *section)
6727 {
6728 struct bp_location *bl = b->loc;
6729
6730 for (; bl; bl = bl->next)
6731 {
6732 if (bl->pspace == pspace
6733 && bl->address == pc
6734 && (!overlay_debugging || bl->section == section))
6735 return 1;
6736 }
6737 return 0;
6738 }
6739
6740 /* Print a message describing any user-breakpoints set at PC. This
6741 concerns with logical breakpoints, so we match program spaces, not
6742 address spaces. */
6743
6744 static void
6745 describe_other_breakpoints (struct gdbarch *gdbarch,
6746 struct program_space *pspace, CORE_ADDR pc,
6747 struct obj_section *section, int thread)
6748 {
6749 int others = 0;
6750 struct breakpoint *b;
6751
6752 ALL_BREAKPOINTS (b)
6753 others += (user_breakpoint_p (b)
6754 && breakpoint_has_pc (b, pspace, pc, section));
6755 if (others > 0)
6756 {
6757 if (others == 1)
6758 printf_filtered (_("Note: breakpoint "));
6759 else /* if (others == ???) */
6760 printf_filtered (_("Note: breakpoints "));
6761 ALL_BREAKPOINTS (b)
6762 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6763 {
6764 others--;
6765 printf_filtered ("%d", b->number);
6766 if (b->thread == -1 && thread != -1)
6767 printf_filtered (" (all threads)");
6768 else if (b->thread != -1)
6769 printf_filtered (" (thread %d)", b->thread);
6770 printf_filtered ("%s%s ",
6771 ((b->enable_state == bp_disabled
6772 || b->enable_state == bp_call_disabled)
6773 ? " (disabled)"
6774 : ""),
6775 (others > 1) ? ","
6776 : ((others == 1) ? " and" : ""));
6777 }
6778 printf_filtered (_("also set at pc "));
6779 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6780 printf_filtered (".\n");
6781 }
6782 }
6783 \f
6784
6785 /* Return true iff it is meaningful to use the address member of
6786 BPT locations. For some breakpoint types, the locations' address members
6787 are irrelevant and it makes no sense to attempt to compare them to other
6788 addresses (or use them for any other purpose either).
6789
6790 More specifically, each of the following breakpoint types will
6791 always have a zero valued location address and we don't want to mark
6792 breakpoints of any of these types to be a duplicate of an actual
6793 breakpoint location at address zero:
6794
6795 bp_watchpoint
6796 bp_catchpoint
6797
6798 */
6799
6800 static int
6801 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6802 {
6803 enum bptype type = bpt->type;
6804
6805 return (type != bp_watchpoint && type != bp_catchpoint);
6806 }
6807
6808 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6809 true if LOC1 and LOC2 represent the same watchpoint location. */
6810
6811 static int
6812 watchpoint_locations_match (struct bp_location *loc1,
6813 struct bp_location *loc2)
6814 {
6815 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6816 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6817
6818 /* Both of them must exist. */
6819 gdb_assert (w1 != NULL);
6820 gdb_assert (w2 != NULL);
6821
6822 /* If the target can evaluate the condition expression in hardware,
6823 then we we need to insert both watchpoints even if they are at
6824 the same place. Otherwise the watchpoint will only trigger when
6825 the condition of whichever watchpoint was inserted evaluates to
6826 true, not giving a chance for GDB to check the condition of the
6827 other watchpoint. */
6828 if ((w1->cond_exp
6829 && target_can_accel_watchpoint_condition (loc1->address,
6830 loc1->length,
6831 loc1->watchpoint_type,
6832 w1->cond_exp.get ()))
6833 || (w2->cond_exp
6834 && target_can_accel_watchpoint_condition (loc2->address,
6835 loc2->length,
6836 loc2->watchpoint_type,
6837 w2->cond_exp.get ())))
6838 return 0;
6839
6840 /* Note that this checks the owner's type, not the location's. In
6841 case the target does not support read watchpoints, but does
6842 support access watchpoints, we'll have bp_read_watchpoint
6843 watchpoints with hw_access locations. Those should be considered
6844 duplicates of hw_read locations. The hw_read locations will
6845 become hw_access locations later. */
6846 return (loc1->owner->type == loc2->owner->type
6847 && loc1->pspace->aspace == loc2->pspace->aspace
6848 && loc1->address == loc2->address
6849 && loc1->length == loc2->length);
6850 }
6851
6852 /* See breakpoint.h. */
6853
6854 int
6855 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6856 const address_space *aspace2, CORE_ADDR addr2)
6857 {
6858 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6859 || aspace1 == aspace2)
6860 && addr1 == addr2);
6861 }
6862
6863 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6864 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6865 matches ASPACE2. On targets that have global breakpoints, the address
6866 space doesn't really matter. */
6867
6868 static int
6869 breakpoint_address_match_range (const address_space *aspace1,
6870 CORE_ADDR addr1,
6871 int len1, const address_space *aspace2,
6872 CORE_ADDR addr2)
6873 {
6874 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6875 || aspace1 == aspace2)
6876 && addr2 >= addr1 && addr2 < addr1 + len1);
6877 }
6878
6879 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6880 a ranged breakpoint. In most targets, a match happens only if ASPACE
6881 matches the breakpoint's address space. On targets that have global
6882 breakpoints, the address space doesn't really matter. */
6883
6884 static int
6885 breakpoint_location_address_match (struct bp_location *bl,
6886 const address_space *aspace,
6887 CORE_ADDR addr)
6888 {
6889 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6890 aspace, addr)
6891 || (bl->length
6892 && breakpoint_address_match_range (bl->pspace->aspace,
6893 bl->address, bl->length,
6894 aspace, addr)));
6895 }
6896
6897 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6898 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6899 match happens only if ASPACE matches the breakpoint's address
6900 space. On targets that have global breakpoints, the address space
6901 doesn't really matter. */
6902
6903 static int
6904 breakpoint_location_address_range_overlap (struct bp_location *bl,
6905 const address_space *aspace,
6906 CORE_ADDR addr, int len)
6907 {
6908 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6909 || bl->pspace->aspace == aspace)
6910 {
6911 int bl_len = bl->length != 0 ? bl->length : 1;
6912
6913 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6914 return 1;
6915 }
6916 return 0;
6917 }
6918
6919 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6920 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6921 true, otherwise returns false. */
6922
6923 static int
6924 tracepoint_locations_match (struct bp_location *loc1,
6925 struct bp_location *loc2)
6926 {
6927 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6928 /* Since tracepoint locations are never duplicated with others', tracepoint
6929 locations at the same address of different tracepoints are regarded as
6930 different locations. */
6931 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6932 else
6933 return 0;
6934 }
6935
6936 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6937 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6938 represent the same location. */
6939
6940 static int
6941 breakpoint_locations_match (struct bp_location *loc1,
6942 struct bp_location *loc2)
6943 {
6944 int hw_point1, hw_point2;
6945
6946 /* Both of them must not be in moribund_locations. */
6947 gdb_assert (loc1->owner != NULL);
6948 gdb_assert (loc2->owner != NULL);
6949
6950 hw_point1 = is_hardware_watchpoint (loc1->owner);
6951 hw_point2 = is_hardware_watchpoint (loc2->owner);
6952
6953 if (hw_point1 != hw_point2)
6954 return 0;
6955 else if (hw_point1)
6956 return watchpoint_locations_match (loc1, loc2);
6957 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6958 return tracepoint_locations_match (loc1, loc2);
6959 else
6960 /* We compare bp_location.length in order to cover ranged breakpoints. */
6961 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6962 loc2->pspace->aspace, loc2->address)
6963 && loc1->length == loc2->length);
6964 }
6965
6966 static void
6967 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6968 int bnum, int have_bnum)
6969 {
6970 /* The longest string possibly returned by hex_string_custom
6971 is 50 chars. These must be at least that big for safety. */
6972 char astr1[64];
6973 char astr2[64];
6974
6975 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6976 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6977 if (have_bnum)
6978 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6979 bnum, astr1, astr2);
6980 else
6981 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6982 }
6983
6984 /* Adjust a breakpoint's address to account for architectural
6985 constraints on breakpoint placement. Return the adjusted address.
6986 Note: Very few targets require this kind of adjustment. For most
6987 targets, this function is simply the identity function. */
6988
6989 static CORE_ADDR
6990 adjust_breakpoint_address (struct gdbarch *gdbarch,
6991 CORE_ADDR bpaddr, enum bptype bptype)
6992 {
6993 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6994 {
6995 /* Very few targets need any kind of breakpoint adjustment. */
6996 return bpaddr;
6997 }
6998 else if (bptype == bp_watchpoint
6999 || bptype == bp_hardware_watchpoint
7000 || bptype == bp_read_watchpoint
7001 || bptype == bp_access_watchpoint
7002 || bptype == bp_catchpoint)
7003 {
7004 /* Watchpoints and the various bp_catch_* eventpoints should not
7005 have their addresses modified. */
7006 return bpaddr;
7007 }
7008 else if (bptype == bp_single_step)
7009 {
7010 /* Single-step breakpoints should not have their addresses
7011 modified. If there's any architectural constrain that
7012 applies to this address, then it should have already been
7013 taken into account when the breakpoint was created in the
7014 first place. If we didn't do this, stepping through e.g.,
7015 Thumb-2 IT blocks would break. */
7016 return bpaddr;
7017 }
7018 else
7019 {
7020 CORE_ADDR adjusted_bpaddr;
7021
7022 /* Some targets have architectural constraints on the placement
7023 of breakpoint instructions. Obtain the adjusted address. */
7024 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7025
7026 /* An adjusted breakpoint address can significantly alter
7027 a user's expectations. Print a warning if an adjustment
7028 is required. */
7029 if (adjusted_bpaddr != bpaddr)
7030 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7031
7032 return adjusted_bpaddr;
7033 }
7034 }
7035
7036 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
7037 {
7038 bp_location *loc = this;
7039
7040 gdb_assert (ops != NULL);
7041
7042 loc->ops = ops;
7043 loc->owner = owner;
7044 loc->cond_bytecode = NULL;
7045 loc->shlib_disabled = 0;
7046 loc->enabled = 1;
7047
7048 switch (owner->type)
7049 {
7050 case bp_breakpoint:
7051 case bp_single_step:
7052 case bp_until:
7053 case bp_finish:
7054 case bp_longjmp:
7055 case bp_longjmp_resume:
7056 case bp_longjmp_call_dummy:
7057 case bp_exception:
7058 case bp_exception_resume:
7059 case bp_step_resume:
7060 case bp_hp_step_resume:
7061 case bp_watchpoint_scope:
7062 case bp_call_dummy:
7063 case bp_std_terminate:
7064 case bp_shlib_event:
7065 case bp_thread_event:
7066 case bp_overlay_event:
7067 case bp_jit_event:
7068 case bp_longjmp_master:
7069 case bp_std_terminate_master:
7070 case bp_exception_master:
7071 case bp_gnu_ifunc_resolver:
7072 case bp_gnu_ifunc_resolver_return:
7073 case bp_dprintf:
7074 loc->loc_type = bp_loc_software_breakpoint;
7075 mark_breakpoint_location_modified (loc);
7076 break;
7077 case bp_hardware_breakpoint:
7078 loc->loc_type = bp_loc_hardware_breakpoint;
7079 mark_breakpoint_location_modified (loc);
7080 break;
7081 case bp_hardware_watchpoint:
7082 case bp_read_watchpoint:
7083 case bp_access_watchpoint:
7084 loc->loc_type = bp_loc_hardware_watchpoint;
7085 break;
7086 case bp_watchpoint:
7087 case bp_catchpoint:
7088 case bp_tracepoint:
7089 case bp_fast_tracepoint:
7090 case bp_static_tracepoint:
7091 loc->loc_type = bp_loc_other;
7092 break;
7093 default:
7094 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7095 }
7096
7097 loc->refc = 1;
7098 }
7099
7100 /* Allocate a struct bp_location. */
7101
7102 static struct bp_location *
7103 allocate_bp_location (struct breakpoint *bpt)
7104 {
7105 return bpt->ops->allocate_location (bpt);
7106 }
7107
7108 static void
7109 free_bp_location (struct bp_location *loc)
7110 {
7111 loc->ops->dtor (loc);
7112 delete loc;
7113 }
7114
7115 /* Increment reference count. */
7116
7117 static void
7118 incref_bp_location (struct bp_location *bl)
7119 {
7120 ++bl->refc;
7121 }
7122
7123 /* Decrement reference count. If the reference count reaches 0,
7124 destroy the bp_location. Sets *BLP to NULL. */
7125
7126 static void
7127 decref_bp_location (struct bp_location **blp)
7128 {
7129 gdb_assert ((*blp)->refc > 0);
7130
7131 if (--(*blp)->refc == 0)
7132 free_bp_location (*blp);
7133 *blp = NULL;
7134 }
7135
7136 /* Add breakpoint B at the end of the global breakpoint chain. */
7137
7138 static breakpoint *
7139 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7140 {
7141 struct breakpoint *b1;
7142 struct breakpoint *result = b.get ();
7143
7144 /* Add this breakpoint to the end of the chain so that a list of
7145 breakpoints will come out in order of increasing numbers. */
7146
7147 b1 = breakpoint_chain;
7148 if (b1 == 0)
7149 breakpoint_chain = b.release ();
7150 else
7151 {
7152 while (b1->next)
7153 b1 = b1->next;
7154 b1->next = b.release ();
7155 }
7156
7157 return result;
7158 }
7159
7160 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7161
7162 static void
7163 init_raw_breakpoint_without_location (struct breakpoint *b,
7164 struct gdbarch *gdbarch,
7165 enum bptype bptype,
7166 const struct breakpoint_ops *ops)
7167 {
7168 gdb_assert (ops != NULL);
7169
7170 b->ops = ops;
7171 b->type = bptype;
7172 b->gdbarch = gdbarch;
7173 b->language = current_language->la_language;
7174 b->input_radix = input_radix;
7175 b->related_breakpoint = b;
7176 }
7177
7178 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7179 that has type BPTYPE and has no locations as yet. */
7180
7181 static struct breakpoint *
7182 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7183 enum bptype bptype,
7184 const struct breakpoint_ops *ops)
7185 {
7186 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7187
7188 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7189 return add_to_breakpoint_chain (std::move (b));
7190 }
7191
7192 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7193 resolutions should be made as the user specified the location explicitly
7194 enough. */
7195
7196 static void
7197 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7198 {
7199 gdb_assert (loc->owner != NULL);
7200
7201 if (loc->owner->type == bp_breakpoint
7202 || loc->owner->type == bp_hardware_breakpoint
7203 || is_tracepoint (loc->owner))
7204 {
7205 int is_gnu_ifunc;
7206 const char *function_name;
7207 CORE_ADDR func_addr;
7208
7209 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7210 &func_addr, NULL, &is_gnu_ifunc);
7211
7212 if (is_gnu_ifunc && !explicit_loc)
7213 {
7214 struct breakpoint *b = loc->owner;
7215
7216 gdb_assert (loc->pspace == current_program_space);
7217 if (gnu_ifunc_resolve_name (function_name,
7218 &loc->requested_address))
7219 {
7220 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7221 loc->address = adjust_breakpoint_address (loc->gdbarch,
7222 loc->requested_address,
7223 b->type);
7224 }
7225 else if (b->type == bp_breakpoint && b->loc == loc
7226 && loc->next == NULL && b->related_breakpoint == b)
7227 {
7228 /* Create only the whole new breakpoint of this type but do not
7229 mess more complicated breakpoints with multiple locations. */
7230 b->type = bp_gnu_ifunc_resolver;
7231 /* Remember the resolver's address for use by the return
7232 breakpoint. */
7233 loc->related_address = func_addr;
7234 }
7235 }
7236
7237 if (function_name)
7238 loc->function_name = xstrdup (function_name);
7239 }
7240 }
7241
7242 /* Attempt to determine architecture of location identified by SAL. */
7243 struct gdbarch *
7244 get_sal_arch (struct symtab_and_line sal)
7245 {
7246 if (sal.section)
7247 return get_objfile_arch (sal.section->objfile);
7248 if (sal.symtab)
7249 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7250
7251 return NULL;
7252 }
7253
7254 /* Low level routine for partially initializing a breakpoint of type
7255 BPTYPE. The newly created breakpoint's address, section, source
7256 file name, and line number are provided by SAL.
7257
7258 It is expected that the caller will complete the initialization of
7259 the newly created breakpoint struct as well as output any status
7260 information regarding the creation of a new breakpoint. */
7261
7262 static void
7263 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7264 struct symtab_and_line sal, enum bptype bptype,
7265 const struct breakpoint_ops *ops)
7266 {
7267 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7268
7269 add_location_to_breakpoint (b, &sal);
7270
7271 if (bptype != bp_catchpoint)
7272 gdb_assert (sal.pspace != NULL);
7273
7274 /* Store the program space that was used to set the breakpoint,
7275 except for ordinary breakpoints, which are independent of the
7276 program space. */
7277 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7278 b->pspace = sal.pspace;
7279 }
7280
7281 /* set_raw_breakpoint is a low level routine for allocating and
7282 partially initializing a breakpoint of type BPTYPE. The newly
7283 created breakpoint's address, section, source file name, and line
7284 number are provided by SAL. The newly created and partially
7285 initialized breakpoint is added to the breakpoint chain and
7286 is also returned as the value of this function.
7287
7288 It is expected that the caller will complete the initialization of
7289 the newly created breakpoint struct as well as output any status
7290 information regarding the creation of a new breakpoint. In
7291 particular, set_raw_breakpoint does NOT set the breakpoint
7292 number! Care should be taken to not allow an error to occur
7293 prior to completing the initialization of the breakpoint. If this
7294 should happen, a bogus breakpoint will be left on the chain. */
7295
7296 struct breakpoint *
7297 set_raw_breakpoint (struct gdbarch *gdbarch,
7298 struct symtab_and_line sal, enum bptype bptype,
7299 const struct breakpoint_ops *ops)
7300 {
7301 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7302
7303 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7304 return add_to_breakpoint_chain (std::move (b));
7305 }
7306
7307 /* Call this routine when stepping and nexting to enable a breakpoint
7308 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7309 initiated the operation. */
7310
7311 void
7312 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7313 {
7314 struct breakpoint *b, *b_tmp;
7315 int thread = tp->global_num;
7316
7317 /* To avoid having to rescan all objfile symbols at every step,
7318 we maintain a list of continually-inserted but always disabled
7319 longjmp "master" breakpoints. Here, we simply create momentary
7320 clones of those and enable them for the requested thread. */
7321 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7322 if (b->pspace == current_program_space
7323 && (b->type == bp_longjmp_master
7324 || b->type == bp_exception_master))
7325 {
7326 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7327 struct breakpoint *clone;
7328
7329 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7330 after their removal. */
7331 clone = momentary_breakpoint_from_master (b, type,
7332 &momentary_breakpoint_ops, 1);
7333 clone->thread = thread;
7334 }
7335
7336 tp->initiating_frame = frame;
7337 }
7338
7339 /* Delete all longjmp breakpoints from THREAD. */
7340 void
7341 delete_longjmp_breakpoint (int thread)
7342 {
7343 struct breakpoint *b, *b_tmp;
7344
7345 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7346 if (b->type == bp_longjmp || b->type == bp_exception)
7347 {
7348 if (b->thread == thread)
7349 delete_breakpoint (b);
7350 }
7351 }
7352
7353 void
7354 delete_longjmp_breakpoint_at_next_stop (int thread)
7355 {
7356 struct breakpoint *b, *b_tmp;
7357
7358 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7359 if (b->type == bp_longjmp || b->type == bp_exception)
7360 {
7361 if (b->thread == thread)
7362 b->disposition = disp_del_at_next_stop;
7363 }
7364 }
7365
7366 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7367 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7368 pointer to any of them. Return NULL if this system cannot place longjmp
7369 breakpoints. */
7370
7371 struct breakpoint *
7372 set_longjmp_breakpoint_for_call_dummy (void)
7373 {
7374 struct breakpoint *b, *retval = NULL;
7375
7376 ALL_BREAKPOINTS (b)
7377 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7378 {
7379 struct breakpoint *new_b;
7380
7381 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7382 &momentary_breakpoint_ops,
7383 1);
7384 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7385
7386 /* Link NEW_B into the chain of RETVAL breakpoints. */
7387
7388 gdb_assert (new_b->related_breakpoint == new_b);
7389 if (retval == NULL)
7390 retval = new_b;
7391 new_b->related_breakpoint = retval;
7392 while (retval->related_breakpoint != new_b->related_breakpoint)
7393 retval = retval->related_breakpoint;
7394 retval->related_breakpoint = new_b;
7395 }
7396
7397 return retval;
7398 }
7399
7400 /* Verify all existing dummy frames and their associated breakpoints for
7401 TP. Remove those which can no longer be found in the current frame
7402 stack.
7403
7404 You should call this function only at places where it is safe to currently
7405 unwind the whole stack. Failed stack unwind would discard live dummy
7406 frames. */
7407
7408 void
7409 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7410 {
7411 struct breakpoint *b, *b_tmp;
7412
7413 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7414 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7415 {
7416 struct breakpoint *dummy_b = b->related_breakpoint;
7417
7418 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7419 dummy_b = dummy_b->related_breakpoint;
7420 if (dummy_b->type != bp_call_dummy
7421 || frame_find_by_id (dummy_b->frame_id) != NULL)
7422 continue;
7423
7424 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7425
7426 while (b->related_breakpoint != b)
7427 {
7428 if (b_tmp == b->related_breakpoint)
7429 b_tmp = b->related_breakpoint->next;
7430 delete_breakpoint (b->related_breakpoint);
7431 }
7432 delete_breakpoint (b);
7433 }
7434 }
7435
7436 void
7437 enable_overlay_breakpoints (void)
7438 {
7439 struct breakpoint *b;
7440
7441 ALL_BREAKPOINTS (b)
7442 if (b->type == bp_overlay_event)
7443 {
7444 b->enable_state = bp_enabled;
7445 update_global_location_list (UGLL_MAY_INSERT);
7446 overlay_events_enabled = 1;
7447 }
7448 }
7449
7450 void
7451 disable_overlay_breakpoints (void)
7452 {
7453 struct breakpoint *b;
7454
7455 ALL_BREAKPOINTS (b)
7456 if (b->type == bp_overlay_event)
7457 {
7458 b->enable_state = bp_disabled;
7459 update_global_location_list (UGLL_DONT_INSERT);
7460 overlay_events_enabled = 0;
7461 }
7462 }
7463
7464 /* Set an active std::terminate breakpoint for each std::terminate
7465 master breakpoint. */
7466 void
7467 set_std_terminate_breakpoint (void)
7468 {
7469 struct breakpoint *b, *b_tmp;
7470
7471 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7472 if (b->pspace == current_program_space
7473 && b->type == bp_std_terminate_master)
7474 {
7475 momentary_breakpoint_from_master (b, bp_std_terminate,
7476 &momentary_breakpoint_ops, 1);
7477 }
7478 }
7479
7480 /* Delete all the std::terminate breakpoints. */
7481 void
7482 delete_std_terminate_breakpoint (void)
7483 {
7484 struct breakpoint *b, *b_tmp;
7485
7486 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7487 if (b->type == bp_std_terminate)
7488 delete_breakpoint (b);
7489 }
7490
7491 struct breakpoint *
7492 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7493 {
7494 struct breakpoint *b;
7495
7496 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7497 &internal_breakpoint_ops);
7498
7499 b->enable_state = bp_enabled;
7500 /* location has to be used or breakpoint_re_set will delete me. */
7501 b->location = new_address_location (b->loc->address, NULL, 0);
7502
7503 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7504
7505 return b;
7506 }
7507
7508 struct lang_and_radix
7509 {
7510 enum language lang;
7511 int radix;
7512 };
7513
7514 /* Create a breakpoint for JIT code registration and unregistration. */
7515
7516 struct breakpoint *
7517 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7518 {
7519 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7520 &internal_breakpoint_ops);
7521 }
7522
7523 /* Remove JIT code registration and unregistration breakpoint(s). */
7524
7525 void
7526 remove_jit_event_breakpoints (void)
7527 {
7528 struct breakpoint *b, *b_tmp;
7529
7530 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7531 if (b->type == bp_jit_event
7532 && b->loc->pspace == current_program_space)
7533 delete_breakpoint (b);
7534 }
7535
7536 void
7537 remove_solib_event_breakpoints (void)
7538 {
7539 struct breakpoint *b, *b_tmp;
7540
7541 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7542 if (b->type == bp_shlib_event
7543 && b->loc->pspace == current_program_space)
7544 delete_breakpoint (b);
7545 }
7546
7547 /* See breakpoint.h. */
7548
7549 void
7550 remove_solib_event_breakpoints_at_next_stop (void)
7551 {
7552 struct breakpoint *b, *b_tmp;
7553
7554 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7555 if (b->type == bp_shlib_event
7556 && b->loc->pspace == current_program_space)
7557 b->disposition = disp_del_at_next_stop;
7558 }
7559
7560 /* Helper for create_solib_event_breakpoint /
7561 create_and_insert_solib_event_breakpoint. Allows specifying which
7562 INSERT_MODE to pass through to update_global_location_list. */
7563
7564 static struct breakpoint *
7565 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7566 enum ugll_insert_mode insert_mode)
7567 {
7568 struct breakpoint *b;
7569
7570 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7571 &internal_breakpoint_ops);
7572 update_global_location_list_nothrow (insert_mode);
7573 return b;
7574 }
7575
7576 struct breakpoint *
7577 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7578 {
7579 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7580 }
7581
7582 /* See breakpoint.h. */
7583
7584 struct breakpoint *
7585 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7586 {
7587 struct breakpoint *b;
7588
7589 /* Explicitly tell update_global_location_list to insert
7590 locations. */
7591 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7592 if (!b->loc->inserted)
7593 {
7594 delete_breakpoint (b);
7595 return NULL;
7596 }
7597 return b;
7598 }
7599
7600 /* Disable any breakpoints that are on code in shared libraries. Only
7601 apply to enabled breakpoints, disabled ones can just stay disabled. */
7602
7603 void
7604 disable_breakpoints_in_shlibs (void)
7605 {
7606 struct bp_location *loc, **locp_tmp;
7607
7608 ALL_BP_LOCATIONS (loc, locp_tmp)
7609 {
7610 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7611 struct breakpoint *b = loc->owner;
7612
7613 /* We apply the check to all breakpoints, including disabled for
7614 those with loc->duplicate set. This is so that when breakpoint
7615 becomes enabled, or the duplicate is removed, gdb will try to
7616 insert all breakpoints. If we don't set shlib_disabled here,
7617 we'll try to insert those breakpoints and fail. */
7618 if (((b->type == bp_breakpoint)
7619 || (b->type == bp_jit_event)
7620 || (b->type == bp_hardware_breakpoint)
7621 || (is_tracepoint (b)))
7622 && loc->pspace == current_program_space
7623 && !loc->shlib_disabled
7624 && solib_name_from_address (loc->pspace, loc->address)
7625 )
7626 {
7627 loc->shlib_disabled = 1;
7628 }
7629 }
7630 }
7631
7632 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7633 notification of unloaded_shlib. Only apply to enabled breakpoints,
7634 disabled ones can just stay disabled. */
7635
7636 static void
7637 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7638 {
7639 struct bp_location *loc, **locp_tmp;
7640 int disabled_shlib_breaks = 0;
7641
7642 ALL_BP_LOCATIONS (loc, locp_tmp)
7643 {
7644 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7645 struct breakpoint *b = loc->owner;
7646
7647 if (solib->pspace == loc->pspace
7648 && !loc->shlib_disabled
7649 && (((b->type == bp_breakpoint
7650 || b->type == bp_jit_event
7651 || b->type == bp_hardware_breakpoint)
7652 && (loc->loc_type == bp_loc_hardware_breakpoint
7653 || loc->loc_type == bp_loc_software_breakpoint))
7654 || is_tracepoint (b))
7655 && solib_contains_address_p (solib, loc->address))
7656 {
7657 loc->shlib_disabled = 1;
7658 /* At this point, we cannot rely on remove_breakpoint
7659 succeeding so we must mark the breakpoint as not inserted
7660 to prevent future errors occurring in remove_breakpoints. */
7661 loc->inserted = 0;
7662
7663 /* This may cause duplicate notifications for the same breakpoint. */
7664 observer_notify_breakpoint_modified (b);
7665
7666 if (!disabled_shlib_breaks)
7667 {
7668 target_terminal::ours_for_output ();
7669 warning (_("Temporarily disabling breakpoints "
7670 "for unloaded shared library \"%s\""),
7671 solib->so_name);
7672 }
7673 disabled_shlib_breaks = 1;
7674 }
7675 }
7676 }
7677
7678 /* Disable any breakpoints and tracepoints in OBJFILE upon
7679 notification of free_objfile. Only apply to enabled breakpoints,
7680 disabled ones can just stay disabled. */
7681
7682 static void
7683 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7684 {
7685 struct breakpoint *b;
7686
7687 if (objfile == NULL)
7688 return;
7689
7690 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7691 managed by the user with add-symbol-file/remove-symbol-file.
7692 Similarly to how breakpoints in shared libraries are handled in
7693 response to "nosharedlibrary", mark breakpoints in such modules
7694 shlib_disabled so they end up uninserted on the next global
7695 location list update. Shared libraries not loaded by the user
7696 aren't handled here -- they're already handled in
7697 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7698 solib_unloaded observer. We skip objfiles that are not
7699 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7700 main objfile). */
7701 if ((objfile->flags & OBJF_SHARED) == 0
7702 || (objfile->flags & OBJF_USERLOADED) == 0)
7703 return;
7704
7705 ALL_BREAKPOINTS (b)
7706 {
7707 struct bp_location *loc;
7708 int bp_modified = 0;
7709
7710 if (!is_breakpoint (b) && !is_tracepoint (b))
7711 continue;
7712
7713 for (loc = b->loc; loc != NULL; loc = loc->next)
7714 {
7715 CORE_ADDR loc_addr = loc->address;
7716
7717 if (loc->loc_type != bp_loc_hardware_breakpoint
7718 && loc->loc_type != bp_loc_software_breakpoint)
7719 continue;
7720
7721 if (loc->shlib_disabled != 0)
7722 continue;
7723
7724 if (objfile->pspace != loc->pspace)
7725 continue;
7726
7727 if (loc->loc_type != bp_loc_hardware_breakpoint
7728 && loc->loc_type != bp_loc_software_breakpoint)
7729 continue;
7730
7731 if (is_addr_in_objfile (loc_addr, objfile))
7732 {
7733 loc->shlib_disabled = 1;
7734 /* At this point, we don't know whether the object was
7735 unmapped from the inferior or not, so leave the
7736 inserted flag alone. We'll handle failure to
7737 uninsert quietly, in case the object was indeed
7738 unmapped. */
7739
7740 mark_breakpoint_location_modified (loc);
7741
7742 bp_modified = 1;
7743 }
7744 }
7745
7746 if (bp_modified)
7747 observer_notify_breakpoint_modified (b);
7748 }
7749 }
7750
7751 /* FORK & VFORK catchpoints. */
7752
7753 /* An instance of this type is used to represent a fork or vfork
7754 catchpoint. A breakpoint is really of this type iff its ops pointer points
7755 to CATCH_FORK_BREAKPOINT_OPS. */
7756
7757 struct fork_catchpoint : public breakpoint
7758 {
7759 /* Process id of a child process whose forking triggered this
7760 catchpoint. This field is only valid immediately after this
7761 catchpoint has triggered. */
7762 ptid_t forked_inferior_pid;
7763 };
7764
7765 /* Implement the "insert" breakpoint_ops method for fork
7766 catchpoints. */
7767
7768 static int
7769 insert_catch_fork (struct bp_location *bl)
7770 {
7771 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7772 }
7773
7774 /* Implement the "remove" breakpoint_ops method for fork
7775 catchpoints. */
7776
7777 static int
7778 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7779 {
7780 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7781 }
7782
7783 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7784 catchpoints. */
7785
7786 static int
7787 breakpoint_hit_catch_fork (const struct bp_location *bl,
7788 const address_space *aspace, CORE_ADDR bp_addr,
7789 const struct target_waitstatus *ws)
7790 {
7791 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7792
7793 if (ws->kind != TARGET_WAITKIND_FORKED)
7794 return 0;
7795
7796 c->forked_inferior_pid = ws->value.related_pid;
7797 return 1;
7798 }
7799
7800 /* Implement the "print_it" breakpoint_ops method for fork
7801 catchpoints. */
7802
7803 static enum print_stop_action
7804 print_it_catch_fork (bpstat bs)
7805 {
7806 struct ui_out *uiout = current_uiout;
7807 struct breakpoint *b = bs->breakpoint_at;
7808 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7809
7810 annotate_catchpoint (b->number);
7811 maybe_print_thread_hit_breakpoint (uiout);
7812 if (b->disposition == disp_del)
7813 uiout->text ("Temporary catchpoint ");
7814 else
7815 uiout->text ("Catchpoint ");
7816 if (uiout->is_mi_like_p ())
7817 {
7818 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7819 uiout->field_string ("disp", bpdisp_text (b->disposition));
7820 }
7821 uiout->field_int ("bkptno", b->number);
7822 uiout->text (" (forked process ");
7823 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7824 uiout->text ("), ");
7825 return PRINT_SRC_AND_LOC;
7826 }
7827
7828 /* Implement the "print_one" breakpoint_ops method for fork
7829 catchpoints. */
7830
7831 static void
7832 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7833 {
7834 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7835 struct value_print_options opts;
7836 struct ui_out *uiout = current_uiout;
7837
7838 get_user_print_options (&opts);
7839
7840 /* Field 4, the address, is omitted (which makes the columns not
7841 line up too nicely with the headers, but the effect is relatively
7842 readable). */
7843 if (opts.addressprint)
7844 uiout->field_skip ("addr");
7845 annotate_field (5);
7846 uiout->text ("fork");
7847 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7848 {
7849 uiout->text (", process ");
7850 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7851 uiout->spaces (1);
7852 }
7853
7854 if (uiout->is_mi_like_p ())
7855 uiout->field_string ("catch-type", "fork");
7856 }
7857
7858 /* Implement the "print_mention" breakpoint_ops method for fork
7859 catchpoints. */
7860
7861 static void
7862 print_mention_catch_fork (struct breakpoint *b)
7863 {
7864 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7865 }
7866
7867 /* Implement the "print_recreate" breakpoint_ops method for fork
7868 catchpoints. */
7869
7870 static void
7871 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7872 {
7873 fprintf_unfiltered (fp, "catch fork");
7874 print_recreate_thread (b, fp);
7875 }
7876
7877 /* The breakpoint_ops structure to be used in fork catchpoints. */
7878
7879 static struct breakpoint_ops catch_fork_breakpoint_ops;
7880
7881 /* Implement the "insert" breakpoint_ops method for vfork
7882 catchpoints. */
7883
7884 static int
7885 insert_catch_vfork (struct bp_location *bl)
7886 {
7887 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7888 }
7889
7890 /* Implement the "remove" breakpoint_ops method for vfork
7891 catchpoints. */
7892
7893 static int
7894 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7895 {
7896 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7897 }
7898
7899 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7900 catchpoints. */
7901
7902 static int
7903 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7904 const address_space *aspace, CORE_ADDR bp_addr,
7905 const struct target_waitstatus *ws)
7906 {
7907 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7908
7909 if (ws->kind != TARGET_WAITKIND_VFORKED)
7910 return 0;
7911
7912 c->forked_inferior_pid = ws->value.related_pid;
7913 return 1;
7914 }
7915
7916 /* Implement the "print_it" breakpoint_ops method for vfork
7917 catchpoints. */
7918
7919 static enum print_stop_action
7920 print_it_catch_vfork (bpstat bs)
7921 {
7922 struct ui_out *uiout = current_uiout;
7923 struct breakpoint *b = bs->breakpoint_at;
7924 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7925
7926 annotate_catchpoint (b->number);
7927 maybe_print_thread_hit_breakpoint (uiout);
7928 if (b->disposition == disp_del)
7929 uiout->text ("Temporary catchpoint ");
7930 else
7931 uiout->text ("Catchpoint ");
7932 if (uiout->is_mi_like_p ())
7933 {
7934 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7935 uiout->field_string ("disp", bpdisp_text (b->disposition));
7936 }
7937 uiout->field_int ("bkptno", b->number);
7938 uiout->text (" (vforked process ");
7939 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7940 uiout->text ("), ");
7941 return PRINT_SRC_AND_LOC;
7942 }
7943
7944 /* Implement the "print_one" breakpoint_ops method for vfork
7945 catchpoints. */
7946
7947 static void
7948 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7949 {
7950 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7951 struct value_print_options opts;
7952 struct ui_out *uiout = current_uiout;
7953
7954 get_user_print_options (&opts);
7955 /* Field 4, the address, is omitted (which makes the columns not
7956 line up too nicely with the headers, but the effect is relatively
7957 readable). */
7958 if (opts.addressprint)
7959 uiout->field_skip ("addr");
7960 annotate_field (5);
7961 uiout->text ("vfork");
7962 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7963 {
7964 uiout->text (", process ");
7965 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7966 uiout->spaces (1);
7967 }
7968
7969 if (uiout->is_mi_like_p ())
7970 uiout->field_string ("catch-type", "vfork");
7971 }
7972
7973 /* Implement the "print_mention" breakpoint_ops method for vfork
7974 catchpoints. */
7975
7976 static void
7977 print_mention_catch_vfork (struct breakpoint *b)
7978 {
7979 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7980 }
7981
7982 /* Implement the "print_recreate" breakpoint_ops method for vfork
7983 catchpoints. */
7984
7985 static void
7986 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7987 {
7988 fprintf_unfiltered (fp, "catch vfork");
7989 print_recreate_thread (b, fp);
7990 }
7991
7992 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7993
7994 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7995
7996 /* An instance of this type is used to represent an solib catchpoint.
7997 A breakpoint is really of this type iff its ops pointer points to
7998 CATCH_SOLIB_BREAKPOINT_OPS. */
7999
8000 struct solib_catchpoint : public breakpoint
8001 {
8002 ~solib_catchpoint () override;
8003
8004 /* True for "catch load", false for "catch unload". */
8005 unsigned char is_load;
8006
8007 /* Regular expression to match, if any. COMPILED is only valid when
8008 REGEX is non-NULL. */
8009 char *regex;
8010 std::unique_ptr<compiled_regex> compiled;
8011 };
8012
8013 solib_catchpoint::~solib_catchpoint ()
8014 {
8015 xfree (this->regex);
8016 }
8017
8018 static int
8019 insert_catch_solib (struct bp_location *ignore)
8020 {
8021 return 0;
8022 }
8023
8024 static int
8025 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
8026 {
8027 return 0;
8028 }
8029
8030 static int
8031 breakpoint_hit_catch_solib (const struct bp_location *bl,
8032 const address_space *aspace,
8033 CORE_ADDR bp_addr,
8034 const struct target_waitstatus *ws)
8035 {
8036 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
8037 struct breakpoint *other;
8038
8039 if (ws->kind == TARGET_WAITKIND_LOADED)
8040 return 1;
8041
8042 ALL_BREAKPOINTS (other)
8043 {
8044 struct bp_location *other_bl;
8045
8046 if (other == bl->owner)
8047 continue;
8048
8049 if (other->type != bp_shlib_event)
8050 continue;
8051
8052 if (self->pspace != NULL && other->pspace != self->pspace)
8053 continue;
8054
8055 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8056 {
8057 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8058 return 1;
8059 }
8060 }
8061
8062 return 0;
8063 }
8064
8065 static void
8066 check_status_catch_solib (struct bpstats *bs)
8067 {
8068 struct solib_catchpoint *self
8069 = (struct solib_catchpoint *) bs->breakpoint_at;
8070 int ix;
8071
8072 if (self->is_load)
8073 {
8074 struct so_list *iter;
8075
8076 for (ix = 0;
8077 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8078 ix, iter);
8079 ++ix)
8080 {
8081 if (!self->regex
8082 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8083 return;
8084 }
8085 }
8086 else
8087 {
8088 char *iter;
8089
8090 for (ix = 0;
8091 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8092 ix, iter);
8093 ++ix)
8094 {
8095 if (!self->regex
8096 || self->compiled->exec (iter, 0, NULL, 0) == 0)
8097 return;
8098 }
8099 }
8100
8101 bs->stop = 0;
8102 bs->print_it = print_it_noop;
8103 }
8104
8105 static enum print_stop_action
8106 print_it_catch_solib (bpstat bs)
8107 {
8108 struct breakpoint *b = bs->breakpoint_at;
8109 struct ui_out *uiout = current_uiout;
8110
8111 annotate_catchpoint (b->number);
8112 maybe_print_thread_hit_breakpoint (uiout);
8113 if (b->disposition == disp_del)
8114 uiout->text ("Temporary catchpoint ");
8115 else
8116 uiout->text ("Catchpoint ");
8117 uiout->field_int ("bkptno", b->number);
8118 uiout->text ("\n");
8119 if (uiout->is_mi_like_p ())
8120 uiout->field_string ("disp", bpdisp_text (b->disposition));
8121 print_solib_event (1);
8122 return PRINT_SRC_AND_LOC;
8123 }
8124
8125 static void
8126 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8127 {
8128 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8129 struct value_print_options opts;
8130 struct ui_out *uiout = current_uiout;
8131 char *msg;
8132
8133 get_user_print_options (&opts);
8134 /* Field 4, the address, is omitted (which makes the columns not
8135 line up too nicely with the headers, but the effect is relatively
8136 readable). */
8137 if (opts.addressprint)
8138 {
8139 annotate_field (4);
8140 uiout->field_skip ("addr");
8141 }
8142
8143 annotate_field (5);
8144 if (self->is_load)
8145 {
8146 if (self->regex)
8147 msg = xstrprintf (_("load of library matching %s"), self->regex);
8148 else
8149 msg = xstrdup (_("load of library"));
8150 }
8151 else
8152 {
8153 if (self->regex)
8154 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8155 else
8156 msg = xstrdup (_("unload of library"));
8157 }
8158 uiout->field_string ("what", msg);
8159 xfree (msg);
8160
8161 if (uiout->is_mi_like_p ())
8162 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8163 }
8164
8165 static void
8166 print_mention_catch_solib (struct breakpoint *b)
8167 {
8168 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8169
8170 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8171 self->is_load ? "load" : "unload");
8172 }
8173
8174 static void
8175 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8176 {
8177 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8178
8179 fprintf_unfiltered (fp, "%s %s",
8180 b->disposition == disp_del ? "tcatch" : "catch",
8181 self->is_load ? "load" : "unload");
8182 if (self->regex)
8183 fprintf_unfiltered (fp, " %s", self->regex);
8184 fprintf_unfiltered (fp, "\n");
8185 }
8186
8187 static struct breakpoint_ops catch_solib_breakpoint_ops;
8188
8189 /* Shared helper function (MI and CLI) for creating and installing
8190 a shared object event catchpoint. If IS_LOAD is non-zero then
8191 the events to be caught are load events, otherwise they are
8192 unload events. If IS_TEMP is non-zero the catchpoint is a
8193 temporary one. If ENABLED is non-zero the catchpoint is
8194 created in an enabled state. */
8195
8196 void
8197 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8198 {
8199 struct gdbarch *gdbarch = get_current_arch ();
8200
8201 if (!arg)
8202 arg = "";
8203 arg = skip_spaces (arg);
8204
8205 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8206
8207 if (*arg != '\0')
8208 {
8209 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8210 _("Invalid regexp")));
8211 c->regex = xstrdup (arg);
8212 }
8213
8214 c->is_load = is_load;
8215 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8216 &catch_solib_breakpoint_ops);
8217
8218 c->enable_state = enabled ? bp_enabled : bp_disabled;
8219
8220 install_breakpoint (0, std::move (c), 1);
8221 }
8222
8223 /* A helper function that does all the work for "catch load" and
8224 "catch unload". */
8225
8226 static void
8227 catch_load_or_unload (char *arg, int from_tty, int is_load,
8228 struct cmd_list_element *command)
8229 {
8230 int tempflag;
8231 const int enabled = 1;
8232
8233 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8234
8235 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8236 }
8237
8238 static void
8239 catch_load_command_1 (char *arg, int from_tty,
8240 struct cmd_list_element *command)
8241 {
8242 catch_load_or_unload (arg, from_tty, 1, command);
8243 }
8244
8245 static void
8246 catch_unload_command_1 (char *arg, int from_tty,
8247 struct cmd_list_element *command)
8248 {
8249 catch_load_or_unload (arg, from_tty, 0, command);
8250 }
8251
8252 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8253 is non-zero, then make the breakpoint temporary. If COND_STRING is
8254 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8255 the breakpoint_ops structure associated to the catchpoint. */
8256
8257 void
8258 init_catchpoint (struct breakpoint *b,
8259 struct gdbarch *gdbarch, int tempflag,
8260 const char *cond_string,
8261 const struct breakpoint_ops *ops)
8262 {
8263 symtab_and_line sal;
8264 sal.pspace = current_program_space;
8265
8266 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8267
8268 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8269 b->disposition = tempflag ? disp_del : disp_donttouch;
8270 }
8271
8272 void
8273 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8274 {
8275 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8276 set_breakpoint_number (internal, b);
8277 if (is_tracepoint (b))
8278 set_tracepoint_count (breakpoint_count);
8279 if (!internal)
8280 mention (b);
8281 observer_notify_breakpoint_created (b);
8282
8283 if (update_gll)
8284 update_global_location_list (UGLL_MAY_INSERT);
8285 }
8286
8287 static void
8288 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8289 int tempflag, const char *cond_string,
8290 const struct breakpoint_ops *ops)
8291 {
8292 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8293
8294 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8295
8296 c->forked_inferior_pid = null_ptid;
8297
8298 install_breakpoint (0, std::move (c), 1);
8299 }
8300
8301 /* Exec catchpoints. */
8302
8303 /* An instance of this type is used to represent an exec catchpoint.
8304 A breakpoint is really of this type iff its ops pointer points to
8305 CATCH_EXEC_BREAKPOINT_OPS. */
8306
8307 struct exec_catchpoint : public breakpoint
8308 {
8309 ~exec_catchpoint () override;
8310
8311 /* Filename of a program whose exec triggered this catchpoint.
8312 This field is only valid immediately after this catchpoint has
8313 triggered. */
8314 char *exec_pathname;
8315 };
8316
8317 /* Exec catchpoint destructor. */
8318
8319 exec_catchpoint::~exec_catchpoint ()
8320 {
8321 xfree (this->exec_pathname);
8322 }
8323
8324 static int
8325 insert_catch_exec (struct bp_location *bl)
8326 {
8327 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8328 }
8329
8330 static int
8331 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8332 {
8333 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8334 }
8335
8336 static int
8337 breakpoint_hit_catch_exec (const struct bp_location *bl,
8338 const address_space *aspace, CORE_ADDR bp_addr,
8339 const struct target_waitstatus *ws)
8340 {
8341 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8342
8343 if (ws->kind != TARGET_WAITKIND_EXECD)
8344 return 0;
8345
8346 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8347 return 1;
8348 }
8349
8350 static enum print_stop_action
8351 print_it_catch_exec (bpstat bs)
8352 {
8353 struct ui_out *uiout = current_uiout;
8354 struct breakpoint *b = bs->breakpoint_at;
8355 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8356
8357 annotate_catchpoint (b->number);
8358 maybe_print_thread_hit_breakpoint (uiout);
8359 if (b->disposition == disp_del)
8360 uiout->text ("Temporary catchpoint ");
8361 else
8362 uiout->text ("Catchpoint ");
8363 if (uiout->is_mi_like_p ())
8364 {
8365 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8366 uiout->field_string ("disp", bpdisp_text (b->disposition));
8367 }
8368 uiout->field_int ("bkptno", b->number);
8369 uiout->text (" (exec'd ");
8370 uiout->field_string ("new-exec", c->exec_pathname);
8371 uiout->text ("), ");
8372
8373 return PRINT_SRC_AND_LOC;
8374 }
8375
8376 static void
8377 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8378 {
8379 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8380 struct value_print_options opts;
8381 struct ui_out *uiout = current_uiout;
8382
8383 get_user_print_options (&opts);
8384
8385 /* Field 4, the address, is omitted (which makes the columns
8386 not line up too nicely with the headers, but the effect
8387 is relatively readable). */
8388 if (opts.addressprint)
8389 uiout->field_skip ("addr");
8390 annotate_field (5);
8391 uiout->text ("exec");
8392 if (c->exec_pathname != NULL)
8393 {
8394 uiout->text (", program \"");
8395 uiout->field_string ("what", c->exec_pathname);
8396 uiout->text ("\" ");
8397 }
8398
8399 if (uiout->is_mi_like_p ())
8400 uiout->field_string ("catch-type", "exec");
8401 }
8402
8403 static void
8404 print_mention_catch_exec (struct breakpoint *b)
8405 {
8406 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8407 }
8408
8409 /* Implement the "print_recreate" breakpoint_ops method for exec
8410 catchpoints. */
8411
8412 static void
8413 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8414 {
8415 fprintf_unfiltered (fp, "catch exec");
8416 print_recreate_thread (b, fp);
8417 }
8418
8419 static struct breakpoint_ops catch_exec_breakpoint_ops;
8420
8421 static int
8422 hw_breakpoint_used_count (void)
8423 {
8424 int i = 0;
8425 struct breakpoint *b;
8426 struct bp_location *bl;
8427
8428 ALL_BREAKPOINTS (b)
8429 {
8430 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8431 for (bl = b->loc; bl; bl = bl->next)
8432 {
8433 /* Special types of hardware breakpoints may use more than
8434 one register. */
8435 i += b->ops->resources_needed (bl);
8436 }
8437 }
8438
8439 return i;
8440 }
8441
8442 /* Returns the resources B would use if it were a hardware
8443 watchpoint. */
8444
8445 static int
8446 hw_watchpoint_use_count (struct breakpoint *b)
8447 {
8448 int i = 0;
8449 struct bp_location *bl;
8450
8451 if (!breakpoint_enabled (b))
8452 return 0;
8453
8454 for (bl = b->loc; bl; bl = bl->next)
8455 {
8456 /* Special types of hardware watchpoints may use more than
8457 one register. */
8458 i += b->ops->resources_needed (bl);
8459 }
8460
8461 return i;
8462 }
8463
8464 /* Returns the sum the used resources of all hardware watchpoints of
8465 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8466 the sum of the used resources of all hardware watchpoints of other
8467 types _not_ TYPE. */
8468
8469 static int
8470 hw_watchpoint_used_count_others (struct breakpoint *except,
8471 enum bptype type, int *other_type_used)
8472 {
8473 int i = 0;
8474 struct breakpoint *b;
8475
8476 *other_type_used = 0;
8477 ALL_BREAKPOINTS (b)
8478 {
8479 if (b == except)
8480 continue;
8481 if (!breakpoint_enabled (b))
8482 continue;
8483
8484 if (b->type == type)
8485 i += hw_watchpoint_use_count (b);
8486 else if (is_hardware_watchpoint (b))
8487 *other_type_used = 1;
8488 }
8489
8490 return i;
8491 }
8492
8493 void
8494 disable_watchpoints_before_interactive_call_start (void)
8495 {
8496 struct breakpoint *b;
8497
8498 ALL_BREAKPOINTS (b)
8499 {
8500 if (is_watchpoint (b) && breakpoint_enabled (b))
8501 {
8502 b->enable_state = bp_call_disabled;
8503 update_global_location_list (UGLL_DONT_INSERT);
8504 }
8505 }
8506 }
8507
8508 void
8509 enable_watchpoints_after_interactive_call_stop (void)
8510 {
8511 struct breakpoint *b;
8512
8513 ALL_BREAKPOINTS (b)
8514 {
8515 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8516 {
8517 b->enable_state = bp_enabled;
8518 update_global_location_list (UGLL_MAY_INSERT);
8519 }
8520 }
8521 }
8522
8523 void
8524 disable_breakpoints_before_startup (void)
8525 {
8526 current_program_space->executing_startup = 1;
8527 update_global_location_list (UGLL_DONT_INSERT);
8528 }
8529
8530 void
8531 enable_breakpoints_after_startup (void)
8532 {
8533 current_program_space->executing_startup = 0;
8534 breakpoint_re_set ();
8535 }
8536
8537 /* Create a new single-step breakpoint for thread THREAD, with no
8538 locations. */
8539
8540 static struct breakpoint *
8541 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8542 {
8543 std::unique_ptr<breakpoint> b (new breakpoint ());
8544
8545 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8546 &momentary_breakpoint_ops);
8547
8548 b->disposition = disp_donttouch;
8549 b->frame_id = null_frame_id;
8550
8551 b->thread = thread;
8552 gdb_assert (b->thread != 0);
8553
8554 return add_to_breakpoint_chain (std::move (b));
8555 }
8556
8557 /* Set a momentary breakpoint of type TYPE at address specified by
8558 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8559 frame. */
8560
8561 breakpoint_up
8562 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8563 struct frame_id frame_id, enum bptype type)
8564 {
8565 struct breakpoint *b;
8566
8567 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8568 tail-called one. */
8569 gdb_assert (!frame_id_artificial_p (frame_id));
8570
8571 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8572 b->enable_state = bp_enabled;
8573 b->disposition = disp_donttouch;
8574 b->frame_id = frame_id;
8575
8576 /* If we're debugging a multi-threaded program, then we want
8577 momentary breakpoints to be active in only a single thread of
8578 control. */
8579 if (in_thread_list (inferior_ptid))
8580 b->thread = ptid_to_global_thread_id (inferior_ptid);
8581
8582 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8583
8584 return breakpoint_up (b);
8585 }
8586
8587 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8588 The new breakpoint will have type TYPE, use OPS as its
8589 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8590
8591 static struct breakpoint *
8592 momentary_breakpoint_from_master (struct breakpoint *orig,
8593 enum bptype type,
8594 const struct breakpoint_ops *ops,
8595 int loc_enabled)
8596 {
8597 struct breakpoint *copy;
8598
8599 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8600 copy->loc = allocate_bp_location (copy);
8601 set_breakpoint_location_function (copy->loc, 1);
8602
8603 copy->loc->gdbarch = orig->loc->gdbarch;
8604 copy->loc->requested_address = orig->loc->requested_address;
8605 copy->loc->address = orig->loc->address;
8606 copy->loc->section = orig->loc->section;
8607 copy->loc->pspace = orig->loc->pspace;
8608 copy->loc->probe = orig->loc->probe;
8609 copy->loc->line_number = orig->loc->line_number;
8610 copy->loc->symtab = orig->loc->symtab;
8611 copy->loc->enabled = loc_enabled;
8612 copy->frame_id = orig->frame_id;
8613 copy->thread = orig->thread;
8614 copy->pspace = orig->pspace;
8615
8616 copy->enable_state = bp_enabled;
8617 copy->disposition = disp_donttouch;
8618 copy->number = internal_breakpoint_number--;
8619
8620 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8621 return copy;
8622 }
8623
8624 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8625 ORIG is NULL. */
8626
8627 struct breakpoint *
8628 clone_momentary_breakpoint (struct breakpoint *orig)
8629 {
8630 /* If there's nothing to clone, then return nothing. */
8631 if (orig == NULL)
8632 return NULL;
8633
8634 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8635 }
8636
8637 breakpoint_up
8638 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8639 enum bptype type)
8640 {
8641 struct symtab_and_line sal;
8642
8643 sal = find_pc_line (pc, 0);
8644 sal.pc = pc;
8645 sal.section = find_pc_overlay (pc);
8646 sal.explicit_pc = 1;
8647
8648 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8649 }
8650 \f
8651
8652 /* Tell the user we have just set a breakpoint B. */
8653
8654 static void
8655 mention (struct breakpoint *b)
8656 {
8657 b->ops->print_mention (b);
8658 if (current_uiout->is_mi_like_p ())
8659 return;
8660 printf_filtered ("\n");
8661 }
8662 \f
8663
8664 static int bp_loc_is_permanent (struct bp_location *loc);
8665
8666 static struct bp_location *
8667 add_location_to_breakpoint (struct breakpoint *b,
8668 const struct symtab_and_line *sal)
8669 {
8670 struct bp_location *loc, **tmp;
8671 CORE_ADDR adjusted_address;
8672 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8673
8674 if (loc_gdbarch == NULL)
8675 loc_gdbarch = b->gdbarch;
8676
8677 /* Adjust the breakpoint's address prior to allocating a location.
8678 Once we call allocate_bp_location(), that mostly uninitialized
8679 location will be placed on the location chain. Adjustment of the
8680 breakpoint may cause target_read_memory() to be called and we do
8681 not want its scan of the location chain to find a breakpoint and
8682 location that's only been partially initialized. */
8683 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8684 sal->pc, b->type);
8685
8686 /* Sort the locations by their ADDRESS. */
8687 loc = allocate_bp_location (b);
8688 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8689 tmp = &((*tmp)->next))
8690 ;
8691 loc->next = *tmp;
8692 *tmp = loc;
8693
8694 loc->requested_address = sal->pc;
8695 loc->address = adjusted_address;
8696 loc->pspace = sal->pspace;
8697 loc->probe.probe = sal->probe;
8698 loc->probe.objfile = sal->objfile;
8699 gdb_assert (loc->pspace != NULL);
8700 loc->section = sal->section;
8701 loc->gdbarch = loc_gdbarch;
8702 loc->line_number = sal->line;
8703 loc->symtab = sal->symtab;
8704 loc->symbol = sal->symbol;
8705
8706 set_breakpoint_location_function (loc,
8707 sal->explicit_pc || sal->explicit_line);
8708
8709 /* While by definition, permanent breakpoints are already present in the
8710 code, we don't mark the location as inserted. Normally one would expect
8711 that GDB could rely on that breakpoint instruction to stop the program,
8712 thus removing the need to insert its own breakpoint, except that executing
8713 the breakpoint instruction can kill the target instead of reporting a
8714 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8715 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8716 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8717 breakpoint be inserted normally results in QEMU knowing about the GDB
8718 breakpoint, and thus trap before the breakpoint instruction is executed.
8719 (If GDB later needs to continue execution past the permanent breakpoint,
8720 it manually increments the PC, thus avoiding executing the breakpoint
8721 instruction.) */
8722 if (bp_loc_is_permanent (loc))
8723 loc->permanent = 1;
8724
8725 return loc;
8726 }
8727 \f
8728
8729 /* See breakpoint.h. */
8730
8731 int
8732 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8733 {
8734 int len;
8735 CORE_ADDR addr;
8736 const gdb_byte *bpoint;
8737 gdb_byte *target_mem;
8738
8739 addr = address;
8740 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8741
8742 /* Software breakpoints unsupported? */
8743 if (bpoint == NULL)
8744 return 0;
8745
8746 target_mem = (gdb_byte *) alloca (len);
8747
8748 /* Enable the automatic memory restoration from breakpoints while
8749 we read the memory. Otherwise we could say about our temporary
8750 breakpoints they are permanent. */
8751 scoped_restore restore_memory
8752 = make_scoped_restore_show_memory_breakpoints (0);
8753
8754 if (target_read_memory (address, target_mem, len) == 0
8755 && memcmp (target_mem, bpoint, len) == 0)
8756 return 1;
8757
8758 return 0;
8759 }
8760
8761 /* Return 1 if LOC is pointing to a permanent breakpoint,
8762 return 0 otherwise. */
8763
8764 static int
8765 bp_loc_is_permanent (struct bp_location *loc)
8766 {
8767 gdb_assert (loc != NULL);
8768
8769 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8770 attempt to read from the addresses the locations of these breakpoint types
8771 point to. program_breakpoint_here_p, below, will attempt to read
8772 memory. */
8773 if (!breakpoint_address_is_meaningful (loc->owner))
8774 return 0;
8775
8776 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8777 switch_to_program_space_and_thread (loc->pspace);
8778 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8779 }
8780
8781 /* Build a command list for the dprintf corresponding to the current
8782 settings of the dprintf style options. */
8783
8784 static void
8785 update_dprintf_command_list (struct breakpoint *b)
8786 {
8787 char *dprintf_args = b->extra_string;
8788 char *printf_line = NULL;
8789
8790 if (!dprintf_args)
8791 return;
8792
8793 dprintf_args = skip_spaces (dprintf_args);
8794
8795 /* Allow a comma, as it may have terminated a location, but don't
8796 insist on it. */
8797 if (*dprintf_args == ',')
8798 ++dprintf_args;
8799 dprintf_args = skip_spaces (dprintf_args);
8800
8801 if (*dprintf_args != '"')
8802 error (_("Bad format string, missing '\"'."));
8803
8804 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8805 printf_line = xstrprintf ("printf %s", dprintf_args);
8806 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8807 {
8808 if (!dprintf_function)
8809 error (_("No function supplied for dprintf call"));
8810
8811 if (dprintf_channel && strlen (dprintf_channel) > 0)
8812 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8813 dprintf_function,
8814 dprintf_channel,
8815 dprintf_args);
8816 else
8817 printf_line = xstrprintf ("call (void) %s (%s)",
8818 dprintf_function,
8819 dprintf_args);
8820 }
8821 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8822 {
8823 if (target_can_run_breakpoint_commands ())
8824 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8825 else
8826 {
8827 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8828 printf_line = xstrprintf ("printf %s", dprintf_args);
8829 }
8830 }
8831 else
8832 internal_error (__FILE__, __LINE__,
8833 _("Invalid dprintf style."));
8834
8835 gdb_assert (printf_line != NULL);
8836 /* Manufacture a printf sequence. */
8837 {
8838 struct command_line *printf_cmd_line = XNEW (struct command_line);
8839
8840 printf_cmd_line->control_type = simple_control;
8841 printf_cmd_line->body_count = 0;
8842 printf_cmd_line->body_list = NULL;
8843 printf_cmd_line->next = NULL;
8844 printf_cmd_line->line = printf_line;
8845
8846 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8847 }
8848 }
8849
8850 /* Update all dprintf commands, making their command lists reflect
8851 current style settings. */
8852
8853 static void
8854 update_dprintf_commands (char *args, int from_tty,
8855 struct cmd_list_element *c)
8856 {
8857 struct breakpoint *b;
8858
8859 ALL_BREAKPOINTS (b)
8860 {
8861 if (b->type == bp_dprintf)
8862 update_dprintf_command_list (b);
8863 }
8864 }
8865
8866 /* Create a breakpoint with SAL as location. Use LOCATION
8867 as a description of the location, and COND_STRING
8868 as condition expression. If LOCATION is NULL then create an
8869 "address location" from the address in the SAL. */
8870
8871 static void
8872 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8873 gdb::array_view<const symtab_and_line> sals,
8874 event_location_up &&location,
8875 gdb::unique_xmalloc_ptr<char> filter,
8876 gdb::unique_xmalloc_ptr<char> cond_string,
8877 gdb::unique_xmalloc_ptr<char> extra_string,
8878 enum bptype type, enum bpdisp disposition,
8879 int thread, int task, int ignore_count,
8880 const struct breakpoint_ops *ops, int from_tty,
8881 int enabled, int internal, unsigned flags,
8882 int display_canonical)
8883 {
8884 int i;
8885
8886 if (type == bp_hardware_breakpoint)
8887 {
8888 int target_resources_ok;
8889
8890 i = hw_breakpoint_used_count ();
8891 target_resources_ok =
8892 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8893 i + 1, 0);
8894 if (target_resources_ok == 0)
8895 error (_("No hardware breakpoint support in the target."));
8896 else if (target_resources_ok < 0)
8897 error (_("Hardware breakpoints used exceeds limit."));
8898 }
8899
8900 gdb_assert (!sals.empty ());
8901
8902 for (const auto &sal : sals)
8903 {
8904 struct bp_location *loc;
8905
8906 if (from_tty)
8907 {
8908 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8909 if (!loc_gdbarch)
8910 loc_gdbarch = gdbarch;
8911
8912 describe_other_breakpoints (loc_gdbarch,
8913 sal.pspace, sal.pc, sal.section, thread);
8914 }
8915
8916 if (&sal == &sals[0])
8917 {
8918 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8919 b->thread = thread;
8920 b->task = task;
8921
8922 b->cond_string = cond_string.release ();
8923 b->extra_string = extra_string.release ();
8924 b->ignore_count = ignore_count;
8925 b->enable_state = enabled ? bp_enabled : bp_disabled;
8926 b->disposition = disposition;
8927
8928 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8929 b->loc->inserted = 1;
8930
8931 if (type == bp_static_tracepoint)
8932 {
8933 struct tracepoint *t = (struct tracepoint *) b;
8934 struct static_tracepoint_marker marker;
8935
8936 if (strace_marker_p (b))
8937 {
8938 /* We already know the marker exists, otherwise, we
8939 wouldn't see a sal for it. */
8940 const char *p
8941 = &event_location_to_string (b->location.get ())[3];
8942 const char *endp;
8943 char *marker_str;
8944
8945 p = skip_spaces (p);
8946
8947 endp = skip_to_space (p);
8948
8949 marker_str = savestring (p, endp - p);
8950 t->static_trace_marker_id = marker_str;
8951
8952 printf_filtered (_("Probed static tracepoint "
8953 "marker \"%s\"\n"),
8954 t->static_trace_marker_id);
8955 }
8956 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8957 {
8958 t->static_trace_marker_id = xstrdup (marker.str_id);
8959 release_static_tracepoint_marker (&marker);
8960
8961 printf_filtered (_("Probed static tracepoint "
8962 "marker \"%s\"\n"),
8963 t->static_trace_marker_id);
8964 }
8965 else
8966 warning (_("Couldn't determine the static "
8967 "tracepoint marker to probe"));
8968 }
8969
8970 loc = b->loc;
8971 }
8972 else
8973 {
8974 loc = add_location_to_breakpoint (b, &sal);
8975 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8976 loc->inserted = 1;
8977 }
8978
8979 if (b->cond_string)
8980 {
8981 const char *arg = b->cond_string;
8982
8983 loc->cond = parse_exp_1 (&arg, loc->address,
8984 block_for_pc (loc->address), 0);
8985 if (*arg)
8986 error (_("Garbage '%s' follows condition"), arg);
8987 }
8988
8989 /* Dynamic printf requires and uses additional arguments on the
8990 command line, otherwise it's an error. */
8991 if (type == bp_dprintf)
8992 {
8993 if (b->extra_string)
8994 update_dprintf_command_list (b);
8995 else
8996 error (_("Format string required"));
8997 }
8998 else if (b->extra_string)
8999 error (_("Garbage '%s' at end of command"), b->extra_string);
9000 }
9001
9002 b->display_canonical = display_canonical;
9003 if (location != NULL)
9004 b->location = std::move (location);
9005 else
9006 b->location = new_address_location (b->loc->address, NULL, 0);
9007 b->filter = filter.release ();
9008 }
9009
9010 static void
9011 create_breakpoint_sal (struct gdbarch *gdbarch,
9012 gdb::array_view<const symtab_and_line> sals,
9013 event_location_up &&location,
9014 gdb::unique_xmalloc_ptr<char> filter,
9015 gdb::unique_xmalloc_ptr<char> cond_string,
9016 gdb::unique_xmalloc_ptr<char> extra_string,
9017 enum bptype type, enum bpdisp disposition,
9018 int thread, int task, int ignore_count,
9019 const struct breakpoint_ops *ops, int from_tty,
9020 int enabled, int internal, unsigned flags,
9021 int display_canonical)
9022 {
9023 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
9024
9025 init_breakpoint_sal (b.get (), gdbarch,
9026 sals, std::move (location),
9027 std::move (filter),
9028 std::move (cond_string),
9029 std::move (extra_string),
9030 type, disposition,
9031 thread, task, ignore_count,
9032 ops, from_tty,
9033 enabled, internal, flags,
9034 display_canonical);
9035
9036 install_breakpoint (internal, std::move (b), 0);
9037 }
9038
9039 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9040 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9041 value. COND_STRING, if not NULL, specified the condition to be
9042 used for all breakpoints. Essentially the only case where
9043 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9044 function. In that case, it's still not possible to specify
9045 separate conditions for different overloaded functions, so
9046 we take just a single condition string.
9047
9048 NOTE: If the function succeeds, the caller is expected to cleanup
9049 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9050 array contents). If the function fails (error() is called), the
9051 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9052 COND and SALS arrays and each of those arrays contents. */
9053
9054 static void
9055 create_breakpoints_sal (struct gdbarch *gdbarch,
9056 struct linespec_result *canonical,
9057 gdb::unique_xmalloc_ptr<char> cond_string,
9058 gdb::unique_xmalloc_ptr<char> extra_string,
9059 enum bptype type, enum bpdisp disposition,
9060 int thread, int task, int ignore_count,
9061 const struct breakpoint_ops *ops, int from_tty,
9062 int enabled, int internal, unsigned flags)
9063 {
9064 if (canonical->pre_expanded)
9065 gdb_assert (canonical->lsals.size () == 1);
9066
9067 for (const auto &lsal : canonical->lsals)
9068 {
9069 /* Note that 'location' can be NULL in the case of a plain
9070 'break', without arguments. */
9071 event_location_up location
9072 = (canonical->location != NULL
9073 ? copy_event_location (canonical->location.get ()) : NULL);
9074 gdb::unique_xmalloc_ptr<char> filter_string
9075 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9076
9077 create_breakpoint_sal (gdbarch, lsal.sals,
9078 std::move (location),
9079 std::move (filter_string),
9080 std::move (cond_string),
9081 std::move (extra_string),
9082 type, disposition,
9083 thread, task, ignore_count, ops,
9084 from_tty, enabled, internal, flags,
9085 canonical->special_display);
9086 }
9087 }
9088
9089 /* Parse LOCATION which is assumed to be a SAL specification possibly
9090 followed by conditionals. On return, SALS contains an array of SAL
9091 addresses found. LOCATION points to the end of the SAL (for
9092 linespec locations).
9093
9094 The array and the line spec strings are allocated on the heap, it is
9095 the caller's responsibility to free them. */
9096
9097 static void
9098 parse_breakpoint_sals (const struct event_location *location,
9099 struct linespec_result *canonical)
9100 {
9101 struct symtab_and_line cursal;
9102
9103 if (event_location_type (location) == LINESPEC_LOCATION)
9104 {
9105 const char *address = get_linespec_location (location);
9106
9107 if (address == NULL)
9108 {
9109 /* The last displayed codepoint, if it's valid, is our default
9110 breakpoint address. */
9111 if (last_displayed_sal_is_valid ())
9112 {
9113 /* Set sal's pspace, pc, symtab, and line to the values
9114 corresponding to the last call to print_frame_info.
9115 Be sure to reinitialize LINE with NOTCURRENT == 0
9116 as the breakpoint line number is inappropriate otherwise.
9117 find_pc_line would adjust PC, re-set it back. */
9118 symtab_and_line sal = get_last_displayed_sal ();
9119 CORE_ADDR pc = sal.pc;
9120
9121 sal = find_pc_line (pc, 0);
9122
9123 /* "break" without arguments is equivalent to "break *PC"
9124 where PC is the last displayed codepoint's address. So
9125 make sure to set sal.explicit_pc to prevent GDB from
9126 trying to expand the list of sals to include all other
9127 instances with the same symtab and line. */
9128 sal.pc = pc;
9129 sal.explicit_pc = 1;
9130
9131 struct linespec_sals lsal;
9132 lsal.sals = {sal};
9133 lsal.canonical = NULL;
9134
9135 canonical->lsals.push_back (std::move (lsal));
9136 return;
9137 }
9138 else
9139 error (_("No default breakpoint address now."));
9140 }
9141 }
9142
9143 /* Force almost all breakpoints to be in terms of the
9144 current_source_symtab (which is decode_line_1's default).
9145 This should produce the results we want almost all of the
9146 time while leaving default_breakpoint_* alone.
9147
9148 ObjC: However, don't match an Objective-C method name which
9149 may have a '+' or '-' succeeded by a '['. */
9150 cursal = get_current_source_symtab_and_line ();
9151 if (last_displayed_sal_is_valid ())
9152 {
9153 const char *address = NULL;
9154
9155 if (event_location_type (location) == LINESPEC_LOCATION)
9156 address = get_linespec_location (location);
9157
9158 if (!cursal.symtab
9159 || (address != NULL
9160 && strchr ("+-", address[0]) != NULL
9161 && address[1] != '['))
9162 {
9163 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9164 get_last_displayed_symtab (),
9165 get_last_displayed_line (),
9166 canonical, NULL, NULL);
9167 return;
9168 }
9169 }
9170
9171 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9172 cursal.symtab, cursal.line, canonical, NULL, NULL);
9173 }
9174
9175
9176 /* Convert each SAL into a real PC. Verify that the PC can be
9177 inserted as a breakpoint. If it can't throw an error. */
9178
9179 static void
9180 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9181 {
9182 for (auto &sal : sals)
9183 resolve_sal_pc (&sal);
9184 }
9185
9186 /* Fast tracepoints may have restrictions on valid locations. For
9187 instance, a fast tracepoint using a jump instead of a trap will
9188 likely have to overwrite more bytes than a trap would, and so can
9189 only be placed where the instruction is longer than the jump, or a
9190 multi-instruction sequence does not have a jump into the middle of
9191 it, etc. */
9192
9193 static void
9194 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9195 gdb::array_view<const symtab_and_line> sals)
9196 {
9197 int rslt;
9198 char *msg;
9199 struct cleanup *old_chain;
9200
9201 for (const auto &sal : sals)
9202 {
9203 struct gdbarch *sarch;
9204
9205 sarch = get_sal_arch (sal);
9206 /* We fall back to GDBARCH if there is no architecture
9207 associated with SAL. */
9208 if (sarch == NULL)
9209 sarch = gdbarch;
9210 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg);
9211 old_chain = make_cleanup (xfree, msg);
9212
9213 if (!rslt)
9214 error (_("May not have a fast tracepoint at %s%s"),
9215 paddress (sarch, sal.pc), (msg ? msg : ""));
9216
9217 do_cleanups (old_chain);
9218 }
9219 }
9220
9221 /* Given TOK, a string specification of condition and thread, as
9222 accepted by the 'break' command, extract the condition
9223 string and thread number and set *COND_STRING and *THREAD.
9224 PC identifies the context at which the condition should be parsed.
9225 If no condition is found, *COND_STRING is set to NULL.
9226 If no thread is found, *THREAD is set to -1. */
9227
9228 static void
9229 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9230 char **cond_string, int *thread, int *task,
9231 char **rest)
9232 {
9233 *cond_string = NULL;
9234 *thread = -1;
9235 *task = 0;
9236 *rest = NULL;
9237
9238 while (tok && *tok)
9239 {
9240 const char *end_tok;
9241 int toklen;
9242 const char *cond_start = NULL;
9243 const char *cond_end = NULL;
9244
9245 tok = skip_spaces (tok);
9246
9247 if ((*tok == '"' || *tok == ',') && rest)
9248 {
9249 *rest = savestring (tok, strlen (tok));
9250 return;
9251 }
9252
9253 end_tok = skip_to_space (tok);
9254
9255 toklen = end_tok - tok;
9256
9257 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9258 {
9259 tok = cond_start = end_tok + 1;
9260 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9261 cond_end = tok;
9262 *cond_string = savestring (cond_start, cond_end - cond_start);
9263 }
9264 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9265 {
9266 const char *tmptok;
9267 struct thread_info *thr;
9268
9269 tok = end_tok + 1;
9270 thr = parse_thread_id (tok, &tmptok);
9271 if (tok == tmptok)
9272 error (_("Junk after thread keyword."));
9273 *thread = thr->global_num;
9274 tok = tmptok;
9275 }
9276 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9277 {
9278 char *tmptok;
9279
9280 tok = end_tok + 1;
9281 *task = strtol (tok, &tmptok, 0);
9282 if (tok == tmptok)
9283 error (_("Junk after task keyword."));
9284 if (!valid_task_id (*task))
9285 error (_("Unknown task %d."), *task);
9286 tok = tmptok;
9287 }
9288 else if (rest)
9289 {
9290 *rest = savestring (tok, strlen (tok));
9291 return;
9292 }
9293 else
9294 error (_("Junk at end of arguments."));
9295 }
9296 }
9297
9298 /* Decode a static tracepoint marker spec. */
9299
9300 static std::vector<symtab_and_line>
9301 decode_static_tracepoint_spec (const char **arg_p)
9302 {
9303 VEC(static_tracepoint_marker_p) *markers = NULL;
9304 const char *p = &(*arg_p)[3];
9305 const char *endp;
9306 int i;
9307
9308 p = skip_spaces (p);
9309
9310 endp = skip_to_space (p);
9311
9312 std::string marker_str (p, endp - p);
9313
9314 markers = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9315 if (VEC_empty(static_tracepoint_marker_p, markers))
9316 error (_("No known static tracepoint marker named %s"),
9317 marker_str.c_str ());
9318
9319 std::vector<symtab_and_line> sals;
9320 sals.reserve (VEC_length(static_tracepoint_marker_p, markers));
9321
9322 for (i = 0; i < VEC_length(static_tracepoint_marker_p, markers); i++)
9323 {
9324 struct static_tracepoint_marker *marker;
9325
9326 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9327
9328 symtab_and_line sal = find_pc_line (marker->address, 0);
9329 sal.pc = marker->address;
9330 sals.push_back (sal);
9331
9332 release_static_tracepoint_marker (marker);
9333 }
9334
9335 *arg_p = endp;
9336 return sals;
9337 }
9338
9339 /* See breakpoint.h. */
9340
9341 int
9342 create_breakpoint (struct gdbarch *gdbarch,
9343 const struct event_location *location,
9344 const char *cond_string,
9345 int thread, const char *extra_string,
9346 int parse_extra,
9347 int tempflag, enum bptype type_wanted,
9348 int ignore_count,
9349 enum auto_boolean pending_break_support,
9350 const struct breakpoint_ops *ops,
9351 int from_tty, int enabled, int internal,
9352 unsigned flags)
9353 {
9354 struct linespec_result canonical;
9355 struct cleanup *bkpt_chain = NULL;
9356 int pending = 0;
9357 int task = 0;
9358 int prev_bkpt_count = breakpoint_count;
9359
9360 gdb_assert (ops != NULL);
9361
9362 /* If extra_string isn't useful, set it to NULL. */
9363 if (extra_string != NULL && *extra_string == '\0')
9364 extra_string = NULL;
9365
9366 TRY
9367 {
9368 ops->create_sals_from_location (location, &canonical, type_wanted);
9369 }
9370 CATCH (e, RETURN_MASK_ERROR)
9371 {
9372 /* If caller is interested in rc value from parse, set
9373 value. */
9374 if (e.error == NOT_FOUND_ERROR)
9375 {
9376 /* If pending breakpoint support is turned off, throw
9377 error. */
9378
9379 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9380 throw_exception (e);
9381
9382 exception_print (gdb_stderr, e);
9383
9384 /* If pending breakpoint support is auto query and the user
9385 selects no, then simply return the error code. */
9386 if (pending_break_support == AUTO_BOOLEAN_AUTO
9387 && !nquery (_("Make %s pending on future shared library load? "),
9388 bptype_string (type_wanted)))
9389 return 0;
9390
9391 /* At this point, either the user was queried about setting
9392 a pending breakpoint and selected yes, or pending
9393 breakpoint behavior is on and thus a pending breakpoint
9394 is defaulted on behalf of the user. */
9395 pending = 1;
9396 }
9397 else
9398 throw_exception (e);
9399 }
9400 END_CATCH
9401
9402 if (!pending && canonical.lsals.empty ())
9403 return 0;
9404
9405 /* ----------------------------- SNIP -----------------------------
9406 Anything added to the cleanup chain beyond this point is assumed
9407 to be part of a breakpoint. If the breakpoint create succeeds
9408 then the memory is not reclaimed. */
9409 bkpt_chain = make_cleanup (null_cleanup, 0);
9410
9411 /* Resolve all line numbers to PC's and verify that the addresses
9412 are ok for the target. */
9413 if (!pending)
9414 {
9415 for (auto &lsal : canonical.lsals)
9416 breakpoint_sals_to_pc (lsal.sals);
9417 }
9418
9419 /* Fast tracepoints may have additional restrictions on location. */
9420 if (!pending && type_wanted == bp_fast_tracepoint)
9421 {
9422 for (const auto &lsal : canonical.lsals)
9423 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9424 }
9425
9426 /* Verify that condition can be parsed, before setting any
9427 breakpoints. Allocate a separate condition expression for each
9428 breakpoint. */
9429 if (!pending)
9430 {
9431 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9432 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9433
9434 if (parse_extra)
9435 {
9436 char *rest;
9437 char *cond;
9438
9439 const linespec_sals &lsal = canonical.lsals[0];
9440
9441 /* Here we only parse 'arg' to separate condition
9442 from thread number, so parsing in context of first
9443 sal is OK. When setting the breakpoint we'll
9444 re-parse it in context of each sal. */
9445
9446 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9447 &cond, &thread, &task, &rest);
9448 cond_string_copy.reset (cond);
9449 extra_string_copy.reset (rest);
9450 }
9451 else
9452 {
9453 if (type_wanted != bp_dprintf
9454 && extra_string != NULL && *extra_string != '\0')
9455 error (_("Garbage '%s' at end of location"), extra_string);
9456
9457 /* Create a private copy of condition string. */
9458 if (cond_string)
9459 cond_string_copy.reset (xstrdup (cond_string));
9460 /* Create a private copy of any extra string. */
9461 if (extra_string)
9462 extra_string_copy.reset (xstrdup (extra_string));
9463 }
9464
9465 ops->create_breakpoints_sal (gdbarch, &canonical,
9466 std::move (cond_string_copy),
9467 std::move (extra_string_copy),
9468 type_wanted,
9469 tempflag ? disp_del : disp_donttouch,
9470 thread, task, ignore_count, ops,
9471 from_tty, enabled, internal, flags);
9472 }
9473 else
9474 {
9475 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9476
9477 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9478 b->location = copy_event_location (location);
9479
9480 if (parse_extra)
9481 b->cond_string = NULL;
9482 else
9483 {
9484 /* Create a private copy of condition string. */
9485 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9486 b->thread = thread;
9487 }
9488
9489 /* Create a private copy of any extra string. */
9490 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9491 b->ignore_count = ignore_count;
9492 b->disposition = tempflag ? disp_del : disp_donttouch;
9493 b->condition_not_parsed = 1;
9494 b->enable_state = enabled ? bp_enabled : bp_disabled;
9495 if ((type_wanted != bp_breakpoint
9496 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9497 b->pspace = current_program_space;
9498
9499 install_breakpoint (internal, std::move (b), 0);
9500 }
9501
9502 if (canonical.lsals.size () > 1)
9503 {
9504 warning (_("Multiple breakpoints were set.\nUse the "
9505 "\"delete\" command to delete unwanted breakpoints."));
9506 prev_breakpoint_count = prev_bkpt_count;
9507 }
9508
9509 /* That's it. Discard the cleanups for data inserted into the
9510 breakpoint. */
9511 discard_cleanups (bkpt_chain);
9512
9513 /* error call may happen here - have BKPT_CHAIN already discarded. */
9514 update_global_location_list (UGLL_MAY_INSERT);
9515
9516 return 1;
9517 }
9518
9519 /* Set a breakpoint.
9520 ARG is a string describing breakpoint address,
9521 condition, and thread.
9522 FLAG specifies if a breakpoint is hardware on,
9523 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9524 and BP_TEMPFLAG. */
9525
9526 static void
9527 break_command_1 (const char *arg, int flag, int from_tty)
9528 {
9529 int tempflag = flag & BP_TEMPFLAG;
9530 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9531 ? bp_hardware_breakpoint
9532 : bp_breakpoint);
9533 struct breakpoint_ops *ops;
9534
9535 event_location_up location = string_to_event_location (&arg, current_language);
9536
9537 /* Matching breakpoints on probes. */
9538 if (location != NULL
9539 && event_location_type (location.get ()) == PROBE_LOCATION)
9540 ops = &bkpt_probe_breakpoint_ops;
9541 else
9542 ops = &bkpt_breakpoint_ops;
9543
9544 create_breakpoint (get_current_arch (),
9545 location.get (),
9546 NULL, 0, arg, 1 /* parse arg */,
9547 tempflag, type_wanted,
9548 0 /* Ignore count */,
9549 pending_break_support,
9550 ops,
9551 from_tty,
9552 1 /* enabled */,
9553 0 /* internal */,
9554 0);
9555 }
9556
9557 /* Helper function for break_command_1 and disassemble_command. */
9558
9559 void
9560 resolve_sal_pc (struct symtab_and_line *sal)
9561 {
9562 CORE_ADDR pc;
9563
9564 if (sal->pc == 0 && sal->symtab != NULL)
9565 {
9566 if (!find_line_pc (sal->symtab, sal->line, &pc))
9567 error (_("No line %d in file \"%s\"."),
9568 sal->line, symtab_to_filename_for_display (sal->symtab));
9569 sal->pc = pc;
9570
9571 /* If this SAL corresponds to a breakpoint inserted using a line
9572 number, then skip the function prologue if necessary. */
9573 if (sal->explicit_line)
9574 skip_prologue_sal (sal);
9575 }
9576
9577 if (sal->section == 0 && sal->symtab != NULL)
9578 {
9579 const struct blockvector *bv;
9580 const struct block *b;
9581 struct symbol *sym;
9582
9583 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9584 SYMTAB_COMPUNIT (sal->symtab));
9585 if (bv != NULL)
9586 {
9587 sym = block_linkage_function (b);
9588 if (sym != NULL)
9589 {
9590 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9591 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9592 sym);
9593 }
9594 else
9595 {
9596 /* It really is worthwhile to have the section, so we'll
9597 just have to look harder. This case can be executed
9598 if we have line numbers but no functions (as can
9599 happen in assembly source). */
9600
9601 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9602 switch_to_program_space_and_thread (sal->pspace);
9603
9604 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9605 if (msym.minsym)
9606 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9607 }
9608 }
9609 }
9610 }
9611
9612 void
9613 break_command (const char *arg, int from_tty)
9614 {
9615 break_command_1 (arg, 0, from_tty);
9616 }
9617
9618 void
9619 tbreak_command (const char *arg, int from_tty)
9620 {
9621 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9622 }
9623
9624 static void
9625 hbreak_command (const char *arg, int from_tty)
9626 {
9627 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9628 }
9629
9630 static void
9631 thbreak_command (const char *arg, int from_tty)
9632 {
9633 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9634 }
9635
9636 static void
9637 stop_command (const char *arg, int from_tty)
9638 {
9639 printf_filtered (_("Specify the type of breakpoint to set.\n\
9640 Usage: stop in <function | address>\n\
9641 stop at <line>\n"));
9642 }
9643
9644 static void
9645 stopin_command (const char *arg, int from_tty)
9646 {
9647 int badInput = 0;
9648
9649 if (arg == (char *) NULL)
9650 badInput = 1;
9651 else if (*arg != '*')
9652 {
9653 const char *argptr = arg;
9654 int hasColon = 0;
9655
9656 /* Look for a ':'. If this is a line number specification, then
9657 say it is bad, otherwise, it should be an address or
9658 function/method name. */
9659 while (*argptr && !hasColon)
9660 {
9661 hasColon = (*argptr == ':');
9662 argptr++;
9663 }
9664
9665 if (hasColon)
9666 badInput = (*argptr != ':'); /* Not a class::method */
9667 else
9668 badInput = isdigit (*arg); /* a simple line number */
9669 }
9670
9671 if (badInput)
9672 printf_filtered (_("Usage: stop in <function | address>\n"));
9673 else
9674 break_command_1 (arg, 0, from_tty);
9675 }
9676
9677 static void
9678 stopat_command (const char *arg, int from_tty)
9679 {
9680 int badInput = 0;
9681
9682 if (arg == (char *) NULL || *arg == '*') /* no line number */
9683 badInput = 1;
9684 else
9685 {
9686 const char *argptr = arg;
9687 int hasColon = 0;
9688
9689 /* Look for a ':'. If there is a '::' then get out, otherwise
9690 it is probably a line number. */
9691 while (*argptr && !hasColon)
9692 {
9693 hasColon = (*argptr == ':');
9694 argptr++;
9695 }
9696
9697 if (hasColon)
9698 badInput = (*argptr == ':'); /* we have class::method */
9699 else
9700 badInput = !isdigit (*arg); /* not a line number */
9701 }
9702
9703 if (badInput)
9704 printf_filtered (_("Usage: stop at <line>\n"));
9705 else
9706 break_command_1 (arg, 0, from_tty);
9707 }
9708
9709 /* The dynamic printf command is mostly like a regular breakpoint, but
9710 with a prewired command list consisting of a single output command,
9711 built from extra arguments supplied on the dprintf command
9712 line. */
9713
9714 static void
9715 dprintf_command (const char *arg, int from_tty)
9716 {
9717 event_location_up location = string_to_event_location (&arg, current_language);
9718
9719 /* If non-NULL, ARG should have been advanced past the location;
9720 the next character must be ','. */
9721 if (arg != NULL)
9722 {
9723 if (arg[0] != ',' || arg[1] == '\0')
9724 error (_("Format string required"));
9725 else
9726 {
9727 /* Skip the comma. */
9728 ++arg;
9729 }
9730 }
9731
9732 create_breakpoint (get_current_arch (),
9733 location.get (),
9734 NULL, 0, arg, 1 /* parse arg */,
9735 0, bp_dprintf,
9736 0 /* Ignore count */,
9737 pending_break_support,
9738 &dprintf_breakpoint_ops,
9739 from_tty,
9740 1 /* enabled */,
9741 0 /* internal */,
9742 0);
9743 }
9744
9745 static void
9746 agent_printf_command (const char *arg, int from_tty)
9747 {
9748 error (_("May only run agent-printf on the target"));
9749 }
9750
9751 /* Implement the "breakpoint_hit" breakpoint_ops method for
9752 ranged breakpoints. */
9753
9754 static int
9755 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9756 const address_space *aspace,
9757 CORE_ADDR bp_addr,
9758 const struct target_waitstatus *ws)
9759 {
9760 if (ws->kind != TARGET_WAITKIND_STOPPED
9761 || ws->value.sig != GDB_SIGNAL_TRAP)
9762 return 0;
9763
9764 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9765 bl->length, aspace, bp_addr);
9766 }
9767
9768 /* Implement the "resources_needed" breakpoint_ops method for
9769 ranged breakpoints. */
9770
9771 static int
9772 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9773 {
9774 return target_ranged_break_num_registers ();
9775 }
9776
9777 /* Implement the "print_it" breakpoint_ops method for
9778 ranged breakpoints. */
9779
9780 static enum print_stop_action
9781 print_it_ranged_breakpoint (bpstat bs)
9782 {
9783 struct breakpoint *b = bs->breakpoint_at;
9784 struct bp_location *bl = b->loc;
9785 struct ui_out *uiout = current_uiout;
9786
9787 gdb_assert (b->type == bp_hardware_breakpoint);
9788
9789 /* Ranged breakpoints have only one location. */
9790 gdb_assert (bl && bl->next == NULL);
9791
9792 annotate_breakpoint (b->number);
9793
9794 maybe_print_thread_hit_breakpoint (uiout);
9795
9796 if (b->disposition == disp_del)
9797 uiout->text ("Temporary ranged breakpoint ");
9798 else
9799 uiout->text ("Ranged breakpoint ");
9800 if (uiout->is_mi_like_p ())
9801 {
9802 uiout->field_string ("reason",
9803 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9804 uiout->field_string ("disp", bpdisp_text (b->disposition));
9805 }
9806 uiout->field_int ("bkptno", b->number);
9807 uiout->text (", ");
9808
9809 return PRINT_SRC_AND_LOC;
9810 }
9811
9812 /* Implement the "print_one" breakpoint_ops method for
9813 ranged breakpoints. */
9814
9815 static void
9816 print_one_ranged_breakpoint (struct breakpoint *b,
9817 struct bp_location **last_loc)
9818 {
9819 struct bp_location *bl = b->loc;
9820 struct value_print_options opts;
9821 struct ui_out *uiout = current_uiout;
9822
9823 /* Ranged breakpoints have only one location. */
9824 gdb_assert (bl && bl->next == NULL);
9825
9826 get_user_print_options (&opts);
9827
9828 if (opts.addressprint)
9829 /* We don't print the address range here, it will be printed later
9830 by print_one_detail_ranged_breakpoint. */
9831 uiout->field_skip ("addr");
9832 annotate_field (5);
9833 print_breakpoint_location (b, bl);
9834 *last_loc = bl;
9835 }
9836
9837 /* Implement the "print_one_detail" breakpoint_ops method for
9838 ranged breakpoints. */
9839
9840 static void
9841 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9842 struct ui_out *uiout)
9843 {
9844 CORE_ADDR address_start, address_end;
9845 struct bp_location *bl = b->loc;
9846 string_file stb;
9847
9848 gdb_assert (bl);
9849
9850 address_start = bl->address;
9851 address_end = address_start + bl->length - 1;
9852
9853 uiout->text ("\taddress range: ");
9854 stb.printf ("[%s, %s]",
9855 print_core_address (bl->gdbarch, address_start),
9856 print_core_address (bl->gdbarch, address_end));
9857 uiout->field_stream ("addr", stb);
9858 uiout->text ("\n");
9859 }
9860
9861 /* Implement the "print_mention" breakpoint_ops method for
9862 ranged breakpoints. */
9863
9864 static void
9865 print_mention_ranged_breakpoint (struct breakpoint *b)
9866 {
9867 struct bp_location *bl = b->loc;
9868 struct ui_out *uiout = current_uiout;
9869
9870 gdb_assert (bl);
9871 gdb_assert (b->type == bp_hardware_breakpoint);
9872
9873 if (uiout->is_mi_like_p ())
9874 return;
9875
9876 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9877 b->number, paddress (bl->gdbarch, bl->address),
9878 paddress (bl->gdbarch, bl->address + bl->length - 1));
9879 }
9880
9881 /* Implement the "print_recreate" breakpoint_ops method for
9882 ranged breakpoints. */
9883
9884 static void
9885 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9886 {
9887 fprintf_unfiltered (fp, "break-range %s, %s",
9888 event_location_to_string (b->location.get ()),
9889 event_location_to_string (b->location_range_end.get ()));
9890 print_recreate_thread (b, fp);
9891 }
9892
9893 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9894
9895 static struct breakpoint_ops ranged_breakpoint_ops;
9896
9897 /* Find the address where the end of the breakpoint range should be
9898 placed, given the SAL of the end of the range. This is so that if
9899 the user provides a line number, the end of the range is set to the
9900 last instruction of the given line. */
9901
9902 static CORE_ADDR
9903 find_breakpoint_range_end (struct symtab_and_line sal)
9904 {
9905 CORE_ADDR end;
9906
9907 /* If the user provided a PC value, use it. Otherwise,
9908 find the address of the end of the given location. */
9909 if (sal.explicit_pc)
9910 end = sal.pc;
9911 else
9912 {
9913 int ret;
9914 CORE_ADDR start;
9915
9916 ret = find_line_pc_range (sal, &start, &end);
9917 if (!ret)
9918 error (_("Could not find location of the end of the range."));
9919
9920 /* find_line_pc_range returns the start of the next line. */
9921 end--;
9922 }
9923
9924 return end;
9925 }
9926
9927 /* Implement the "break-range" CLI command. */
9928
9929 static void
9930 break_range_command (const char *arg, int from_tty)
9931 {
9932 const char *arg_start;
9933 struct linespec_result canonical_start, canonical_end;
9934 int bp_count, can_use_bp, length;
9935 CORE_ADDR end;
9936 struct breakpoint *b;
9937
9938 /* We don't support software ranged breakpoints. */
9939 if (target_ranged_break_num_registers () < 0)
9940 error (_("This target does not support hardware ranged breakpoints."));
9941
9942 bp_count = hw_breakpoint_used_count ();
9943 bp_count += target_ranged_break_num_registers ();
9944 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9945 bp_count, 0);
9946 if (can_use_bp < 0)
9947 error (_("Hardware breakpoints used exceeds limit."));
9948
9949 arg = skip_spaces (arg);
9950 if (arg == NULL || arg[0] == '\0')
9951 error(_("No address range specified."));
9952
9953 arg_start = arg;
9954 event_location_up start_location = string_to_event_location (&arg,
9955 current_language);
9956 parse_breakpoint_sals (start_location.get (), &canonical_start);
9957
9958 if (arg[0] != ',')
9959 error (_("Too few arguments."));
9960 else if (canonical_start.lsals.empty ())
9961 error (_("Could not find location of the beginning of the range."));
9962
9963 const linespec_sals &lsal_start = canonical_start.lsals[0];
9964
9965 if (canonical_start.lsals.size () > 1
9966 || lsal_start.sals.size () != 1)
9967 error (_("Cannot create a ranged breakpoint with multiple locations."));
9968
9969 const symtab_and_line &sal_start = lsal_start.sals[0];
9970 std::string addr_string_start (arg_start, arg - arg_start);
9971
9972 arg++; /* Skip the comma. */
9973 arg = skip_spaces (arg);
9974
9975 /* Parse the end location. */
9976
9977 arg_start = arg;
9978
9979 /* We call decode_line_full directly here instead of using
9980 parse_breakpoint_sals because we need to specify the start location's
9981 symtab and line as the default symtab and line for the end of the
9982 range. This makes it possible to have ranges like "foo.c:27, +14",
9983 where +14 means 14 lines from the start location. */
9984 event_location_up end_location = string_to_event_location (&arg,
9985 current_language);
9986 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9987 sal_start.symtab, sal_start.line,
9988 &canonical_end, NULL, NULL);
9989
9990 if (canonical_end.lsals.empty ())
9991 error (_("Could not find location of the end of the range."));
9992
9993 const linespec_sals &lsal_end = canonical_end.lsals[0];
9994 if (canonical_end.lsals.size () > 1
9995 || lsal_end.sals.size () != 1)
9996 error (_("Cannot create a ranged breakpoint with multiple locations."));
9997
9998 const symtab_and_line &sal_end = lsal_end.sals[0];
9999
10000 end = find_breakpoint_range_end (sal_end);
10001 if (sal_start.pc > end)
10002 error (_("Invalid address range, end precedes start."));
10003
10004 length = end - sal_start.pc + 1;
10005 if (length < 0)
10006 /* Length overflowed. */
10007 error (_("Address range too large."));
10008 else if (length == 1)
10009 {
10010 /* This range is simple enough to be handled by
10011 the `hbreak' command. */
10012 hbreak_command (&addr_string_start[0], 1);
10013
10014 return;
10015 }
10016
10017 /* Now set up the breakpoint. */
10018 b = set_raw_breakpoint (get_current_arch (), sal_start,
10019 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10020 set_breakpoint_count (breakpoint_count + 1);
10021 b->number = breakpoint_count;
10022 b->disposition = disp_donttouch;
10023 b->location = std::move (start_location);
10024 b->location_range_end = std::move (end_location);
10025 b->loc->length = length;
10026
10027 mention (b);
10028 observer_notify_breakpoint_created (b);
10029 update_global_location_list (UGLL_MAY_INSERT);
10030 }
10031
10032 /* Return non-zero if EXP is verified as constant. Returned zero
10033 means EXP is variable. Also the constant detection may fail for
10034 some constant expressions and in such case still falsely return
10035 zero. */
10036
10037 static int
10038 watchpoint_exp_is_const (const struct expression *exp)
10039 {
10040 int i = exp->nelts;
10041
10042 while (i > 0)
10043 {
10044 int oplenp, argsp;
10045
10046 /* We are only interested in the descriptor of each element. */
10047 operator_length (exp, i, &oplenp, &argsp);
10048 i -= oplenp;
10049
10050 switch (exp->elts[i].opcode)
10051 {
10052 case BINOP_ADD:
10053 case BINOP_SUB:
10054 case BINOP_MUL:
10055 case BINOP_DIV:
10056 case BINOP_REM:
10057 case BINOP_MOD:
10058 case BINOP_LSH:
10059 case BINOP_RSH:
10060 case BINOP_LOGICAL_AND:
10061 case BINOP_LOGICAL_OR:
10062 case BINOP_BITWISE_AND:
10063 case BINOP_BITWISE_IOR:
10064 case BINOP_BITWISE_XOR:
10065 case BINOP_EQUAL:
10066 case BINOP_NOTEQUAL:
10067 case BINOP_LESS:
10068 case BINOP_GTR:
10069 case BINOP_LEQ:
10070 case BINOP_GEQ:
10071 case BINOP_REPEAT:
10072 case BINOP_COMMA:
10073 case BINOP_EXP:
10074 case BINOP_MIN:
10075 case BINOP_MAX:
10076 case BINOP_INTDIV:
10077 case BINOP_CONCAT:
10078 case TERNOP_COND:
10079 case TERNOP_SLICE:
10080
10081 case OP_LONG:
10082 case OP_FLOAT:
10083 case OP_LAST:
10084 case OP_COMPLEX:
10085 case OP_STRING:
10086 case OP_ARRAY:
10087 case OP_TYPE:
10088 case OP_TYPEOF:
10089 case OP_DECLTYPE:
10090 case OP_TYPEID:
10091 case OP_NAME:
10092 case OP_OBJC_NSSTRING:
10093
10094 case UNOP_NEG:
10095 case UNOP_LOGICAL_NOT:
10096 case UNOP_COMPLEMENT:
10097 case UNOP_ADDR:
10098 case UNOP_HIGH:
10099 case UNOP_CAST:
10100
10101 case UNOP_CAST_TYPE:
10102 case UNOP_REINTERPRET_CAST:
10103 case UNOP_DYNAMIC_CAST:
10104 /* Unary, binary and ternary operators: We have to check
10105 their operands. If they are constant, then so is the
10106 result of that operation. For instance, if A and B are
10107 determined to be constants, then so is "A + B".
10108
10109 UNOP_IND is one exception to the rule above, because the
10110 value of *ADDR is not necessarily a constant, even when
10111 ADDR is. */
10112 break;
10113
10114 case OP_VAR_VALUE:
10115 /* Check whether the associated symbol is a constant.
10116
10117 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10118 possible that a buggy compiler could mark a variable as
10119 constant even when it is not, and TYPE_CONST would return
10120 true in this case, while SYMBOL_CLASS wouldn't.
10121
10122 We also have to check for function symbols because they
10123 are always constant. */
10124 {
10125 struct symbol *s = exp->elts[i + 2].symbol;
10126
10127 if (SYMBOL_CLASS (s) != LOC_BLOCK
10128 && SYMBOL_CLASS (s) != LOC_CONST
10129 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10130 return 0;
10131 break;
10132 }
10133
10134 /* The default action is to return 0 because we are using
10135 the optimistic approach here: If we don't know something,
10136 then it is not a constant. */
10137 default:
10138 return 0;
10139 }
10140 }
10141
10142 return 1;
10143 }
10144
10145 /* Watchpoint destructor. */
10146
10147 watchpoint::~watchpoint ()
10148 {
10149 xfree (this->exp_string);
10150 xfree (this->exp_string_reparse);
10151 value_free (this->val);
10152 }
10153
10154 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10155
10156 static void
10157 re_set_watchpoint (struct breakpoint *b)
10158 {
10159 struct watchpoint *w = (struct watchpoint *) b;
10160
10161 /* Watchpoint can be either on expression using entirely global
10162 variables, or it can be on local variables.
10163
10164 Watchpoints of the first kind are never auto-deleted, and even
10165 persist across program restarts. Since they can use variables
10166 from shared libraries, we need to reparse expression as libraries
10167 are loaded and unloaded.
10168
10169 Watchpoints on local variables can also change meaning as result
10170 of solib event. For example, if a watchpoint uses both a local
10171 and a global variables in expression, it's a local watchpoint,
10172 but unloading of a shared library will make the expression
10173 invalid. This is not a very common use case, but we still
10174 re-evaluate expression, to avoid surprises to the user.
10175
10176 Note that for local watchpoints, we re-evaluate it only if
10177 watchpoints frame id is still valid. If it's not, it means the
10178 watchpoint is out of scope and will be deleted soon. In fact,
10179 I'm not sure we'll ever be called in this case.
10180
10181 If a local watchpoint's frame id is still valid, then
10182 w->exp_valid_block is likewise valid, and we can safely use it.
10183
10184 Don't do anything about disabled watchpoints, since they will be
10185 reevaluated again when enabled. */
10186 update_watchpoint (w, 1 /* reparse */);
10187 }
10188
10189 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10190
10191 static int
10192 insert_watchpoint (struct bp_location *bl)
10193 {
10194 struct watchpoint *w = (struct watchpoint *) bl->owner;
10195 int length = w->exact ? 1 : bl->length;
10196
10197 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10198 w->cond_exp.get ());
10199 }
10200
10201 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10202
10203 static int
10204 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10205 {
10206 struct watchpoint *w = (struct watchpoint *) bl->owner;
10207 int length = w->exact ? 1 : bl->length;
10208
10209 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10210 w->cond_exp.get ());
10211 }
10212
10213 static int
10214 breakpoint_hit_watchpoint (const struct bp_location *bl,
10215 const address_space *aspace, CORE_ADDR bp_addr,
10216 const struct target_waitstatus *ws)
10217 {
10218 struct breakpoint *b = bl->owner;
10219 struct watchpoint *w = (struct watchpoint *) b;
10220
10221 /* Continuable hardware watchpoints are treated as non-existent if the
10222 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10223 some data address). Otherwise gdb won't stop on a break instruction
10224 in the code (not from a breakpoint) when a hardware watchpoint has
10225 been defined. Also skip watchpoints which we know did not trigger
10226 (did not match the data address). */
10227 if (is_hardware_watchpoint (b)
10228 && w->watchpoint_triggered == watch_triggered_no)
10229 return 0;
10230
10231 return 1;
10232 }
10233
10234 static void
10235 check_status_watchpoint (bpstat bs)
10236 {
10237 gdb_assert (is_watchpoint (bs->breakpoint_at));
10238
10239 bpstat_check_watchpoint (bs);
10240 }
10241
10242 /* Implement the "resources_needed" breakpoint_ops method for
10243 hardware watchpoints. */
10244
10245 static int
10246 resources_needed_watchpoint (const struct bp_location *bl)
10247 {
10248 struct watchpoint *w = (struct watchpoint *) bl->owner;
10249 int length = w->exact? 1 : bl->length;
10250
10251 return target_region_ok_for_hw_watchpoint (bl->address, length);
10252 }
10253
10254 /* Implement the "works_in_software_mode" breakpoint_ops method for
10255 hardware watchpoints. */
10256
10257 static int
10258 works_in_software_mode_watchpoint (const struct breakpoint *b)
10259 {
10260 /* Read and access watchpoints only work with hardware support. */
10261 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10262 }
10263
10264 static enum print_stop_action
10265 print_it_watchpoint (bpstat bs)
10266 {
10267 struct breakpoint *b;
10268 enum print_stop_action result;
10269 struct watchpoint *w;
10270 struct ui_out *uiout = current_uiout;
10271
10272 gdb_assert (bs->bp_location_at != NULL);
10273
10274 b = bs->breakpoint_at;
10275 w = (struct watchpoint *) b;
10276
10277 annotate_watchpoint (b->number);
10278 maybe_print_thread_hit_breakpoint (uiout);
10279
10280 string_file stb;
10281
10282 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10283 switch (b->type)
10284 {
10285 case bp_watchpoint:
10286 case bp_hardware_watchpoint:
10287 if (uiout->is_mi_like_p ())
10288 uiout->field_string
10289 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10290 mention (b);
10291 tuple_emitter.emplace (uiout, "value");
10292 uiout->text ("\nOld value = ");
10293 watchpoint_value_print (bs->old_val, &stb);
10294 uiout->field_stream ("old", stb);
10295 uiout->text ("\nNew value = ");
10296 watchpoint_value_print (w->val, &stb);
10297 uiout->field_stream ("new", stb);
10298 uiout->text ("\n");
10299 /* More than one watchpoint may have been triggered. */
10300 result = PRINT_UNKNOWN;
10301 break;
10302
10303 case bp_read_watchpoint:
10304 if (uiout->is_mi_like_p ())
10305 uiout->field_string
10306 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10307 mention (b);
10308 tuple_emitter.emplace (uiout, "value");
10309 uiout->text ("\nValue = ");
10310 watchpoint_value_print (w->val, &stb);
10311 uiout->field_stream ("value", stb);
10312 uiout->text ("\n");
10313 result = PRINT_UNKNOWN;
10314 break;
10315
10316 case bp_access_watchpoint:
10317 if (bs->old_val != NULL)
10318 {
10319 if (uiout->is_mi_like_p ())
10320 uiout->field_string
10321 ("reason",
10322 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10323 mention (b);
10324 tuple_emitter.emplace (uiout, "value");
10325 uiout->text ("\nOld value = ");
10326 watchpoint_value_print (bs->old_val, &stb);
10327 uiout->field_stream ("old", stb);
10328 uiout->text ("\nNew value = ");
10329 }
10330 else
10331 {
10332 mention (b);
10333 if (uiout->is_mi_like_p ())
10334 uiout->field_string
10335 ("reason",
10336 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10337 tuple_emitter.emplace (uiout, "value");
10338 uiout->text ("\nValue = ");
10339 }
10340 watchpoint_value_print (w->val, &stb);
10341 uiout->field_stream ("new", stb);
10342 uiout->text ("\n");
10343 result = PRINT_UNKNOWN;
10344 break;
10345 default:
10346 result = PRINT_UNKNOWN;
10347 }
10348
10349 return result;
10350 }
10351
10352 /* Implement the "print_mention" breakpoint_ops method for hardware
10353 watchpoints. */
10354
10355 static void
10356 print_mention_watchpoint (struct breakpoint *b)
10357 {
10358 struct watchpoint *w = (struct watchpoint *) b;
10359 struct ui_out *uiout = current_uiout;
10360 const char *tuple_name;
10361
10362 switch (b->type)
10363 {
10364 case bp_watchpoint:
10365 uiout->text ("Watchpoint ");
10366 tuple_name = "wpt";
10367 break;
10368 case bp_hardware_watchpoint:
10369 uiout->text ("Hardware watchpoint ");
10370 tuple_name = "wpt";
10371 break;
10372 case bp_read_watchpoint:
10373 uiout->text ("Hardware read watchpoint ");
10374 tuple_name = "hw-rwpt";
10375 break;
10376 case bp_access_watchpoint:
10377 uiout->text ("Hardware access (read/write) watchpoint ");
10378 tuple_name = "hw-awpt";
10379 break;
10380 default:
10381 internal_error (__FILE__, __LINE__,
10382 _("Invalid hardware watchpoint type."));
10383 }
10384
10385 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10386 uiout->field_int ("number", b->number);
10387 uiout->text (": ");
10388 uiout->field_string ("exp", w->exp_string);
10389 }
10390
10391 /* Implement the "print_recreate" breakpoint_ops method for
10392 watchpoints. */
10393
10394 static void
10395 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10396 {
10397 struct watchpoint *w = (struct watchpoint *) b;
10398
10399 switch (b->type)
10400 {
10401 case bp_watchpoint:
10402 case bp_hardware_watchpoint:
10403 fprintf_unfiltered (fp, "watch");
10404 break;
10405 case bp_read_watchpoint:
10406 fprintf_unfiltered (fp, "rwatch");
10407 break;
10408 case bp_access_watchpoint:
10409 fprintf_unfiltered (fp, "awatch");
10410 break;
10411 default:
10412 internal_error (__FILE__, __LINE__,
10413 _("Invalid watchpoint type."));
10414 }
10415
10416 fprintf_unfiltered (fp, " %s", w->exp_string);
10417 print_recreate_thread (b, fp);
10418 }
10419
10420 /* Implement the "explains_signal" breakpoint_ops method for
10421 watchpoints. */
10422
10423 static int
10424 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10425 {
10426 /* A software watchpoint cannot cause a signal other than
10427 GDB_SIGNAL_TRAP. */
10428 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10429 return 0;
10430
10431 return 1;
10432 }
10433
10434 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10435
10436 static struct breakpoint_ops watchpoint_breakpoint_ops;
10437
10438 /* Implement the "insert" breakpoint_ops method for
10439 masked hardware watchpoints. */
10440
10441 static int
10442 insert_masked_watchpoint (struct bp_location *bl)
10443 {
10444 struct watchpoint *w = (struct watchpoint *) bl->owner;
10445
10446 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10447 bl->watchpoint_type);
10448 }
10449
10450 /* Implement the "remove" breakpoint_ops method for
10451 masked hardware watchpoints. */
10452
10453 static int
10454 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10455 {
10456 struct watchpoint *w = (struct watchpoint *) bl->owner;
10457
10458 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10459 bl->watchpoint_type);
10460 }
10461
10462 /* Implement the "resources_needed" breakpoint_ops method for
10463 masked hardware watchpoints. */
10464
10465 static int
10466 resources_needed_masked_watchpoint (const struct bp_location *bl)
10467 {
10468 struct watchpoint *w = (struct watchpoint *) bl->owner;
10469
10470 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10471 }
10472
10473 /* Implement the "works_in_software_mode" breakpoint_ops method for
10474 masked hardware watchpoints. */
10475
10476 static int
10477 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10478 {
10479 return 0;
10480 }
10481
10482 /* Implement the "print_it" breakpoint_ops method for
10483 masked hardware watchpoints. */
10484
10485 static enum print_stop_action
10486 print_it_masked_watchpoint (bpstat bs)
10487 {
10488 struct breakpoint *b = bs->breakpoint_at;
10489 struct ui_out *uiout = current_uiout;
10490
10491 /* Masked watchpoints have only one location. */
10492 gdb_assert (b->loc && b->loc->next == NULL);
10493
10494 annotate_watchpoint (b->number);
10495 maybe_print_thread_hit_breakpoint (uiout);
10496
10497 switch (b->type)
10498 {
10499 case bp_hardware_watchpoint:
10500 if (uiout->is_mi_like_p ())
10501 uiout->field_string
10502 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10503 break;
10504
10505 case bp_read_watchpoint:
10506 if (uiout->is_mi_like_p ())
10507 uiout->field_string
10508 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10509 break;
10510
10511 case bp_access_watchpoint:
10512 if (uiout->is_mi_like_p ())
10513 uiout->field_string
10514 ("reason",
10515 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10516 break;
10517 default:
10518 internal_error (__FILE__, __LINE__,
10519 _("Invalid hardware watchpoint type."));
10520 }
10521
10522 mention (b);
10523 uiout->text (_("\n\
10524 Check the underlying instruction at PC for the memory\n\
10525 address and value which triggered this watchpoint.\n"));
10526 uiout->text ("\n");
10527
10528 /* More than one watchpoint may have been triggered. */
10529 return PRINT_UNKNOWN;
10530 }
10531
10532 /* Implement the "print_one_detail" breakpoint_ops method for
10533 masked hardware watchpoints. */
10534
10535 static void
10536 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10537 struct ui_out *uiout)
10538 {
10539 struct watchpoint *w = (struct watchpoint *) b;
10540
10541 /* Masked watchpoints have only one location. */
10542 gdb_assert (b->loc && b->loc->next == NULL);
10543
10544 uiout->text ("\tmask ");
10545 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10546 uiout->text ("\n");
10547 }
10548
10549 /* Implement the "print_mention" breakpoint_ops method for
10550 masked hardware watchpoints. */
10551
10552 static void
10553 print_mention_masked_watchpoint (struct breakpoint *b)
10554 {
10555 struct watchpoint *w = (struct watchpoint *) b;
10556 struct ui_out *uiout = current_uiout;
10557 const char *tuple_name;
10558
10559 switch (b->type)
10560 {
10561 case bp_hardware_watchpoint:
10562 uiout->text ("Masked hardware watchpoint ");
10563 tuple_name = "wpt";
10564 break;
10565 case bp_read_watchpoint:
10566 uiout->text ("Masked hardware read watchpoint ");
10567 tuple_name = "hw-rwpt";
10568 break;
10569 case bp_access_watchpoint:
10570 uiout->text ("Masked hardware access (read/write) watchpoint ");
10571 tuple_name = "hw-awpt";
10572 break;
10573 default:
10574 internal_error (__FILE__, __LINE__,
10575 _("Invalid hardware watchpoint type."));
10576 }
10577
10578 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10579 uiout->field_int ("number", b->number);
10580 uiout->text (": ");
10581 uiout->field_string ("exp", w->exp_string);
10582 }
10583
10584 /* Implement the "print_recreate" breakpoint_ops method for
10585 masked hardware watchpoints. */
10586
10587 static void
10588 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10589 {
10590 struct watchpoint *w = (struct watchpoint *) b;
10591 char tmp[40];
10592
10593 switch (b->type)
10594 {
10595 case bp_hardware_watchpoint:
10596 fprintf_unfiltered (fp, "watch");
10597 break;
10598 case bp_read_watchpoint:
10599 fprintf_unfiltered (fp, "rwatch");
10600 break;
10601 case bp_access_watchpoint:
10602 fprintf_unfiltered (fp, "awatch");
10603 break;
10604 default:
10605 internal_error (__FILE__, __LINE__,
10606 _("Invalid hardware watchpoint type."));
10607 }
10608
10609 sprintf_vma (tmp, w->hw_wp_mask);
10610 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10611 print_recreate_thread (b, fp);
10612 }
10613
10614 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10615
10616 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10617
10618 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10619
10620 static int
10621 is_masked_watchpoint (const struct breakpoint *b)
10622 {
10623 return b->ops == &masked_watchpoint_breakpoint_ops;
10624 }
10625
10626 /* accessflag: hw_write: watch write,
10627 hw_read: watch read,
10628 hw_access: watch access (read or write) */
10629 static void
10630 watch_command_1 (const char *arg, int accessflag, int from_tty,
10631 int just_location, int internal)
10632 {
10633 struct breakpoint *scope_breakpoint = NULL;
10634 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10635 struct value *val, *mark, *result;
10636 int saved_bitpos = 0, saved_bitsize = 0;
10637 const char *exp_start = NULL;
10638 const char *exp_end = NULL;
10639 const char *tok, *end_tok;
10640 int toklen = -1;
10641 const char *cond_start = NULL;
10642 const char *cond_end = NULL;
10643 enum bptype bp_type;
10644 int thread = -1;
10645 int pc = 0;
10646 /* Flag to indicate whether we are going to use masks for
10647 the hardware watchpoint. */
10648 int use_mask = 0;
10649 CORE_ADDR mask = 0;
10650
10651 /* Make sure that we actually have parameters to parse. */
10652 if (arg != NULL && arg[0] != '\0')
10653 {
10654 const char *value_start;
10655
10656 exp_end = arg + strlen (arg);
10657
10658 /* Look for "parameter value" pairs at the end
10659 of the arguments string. */
10660 for (tok = exp_end - 1; tok > arg; tok--)
10661 {
10662 /* Skip whitespace at the end of the argument list. */
10663 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10664 tok--;
10665
10666 /* Find the beginning of the last token.
10667 This is the value of the parameter. */
10668 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10669 tok--;
10670 value_start = tok + 1;
10671
10672 /* Skip whitespace. */
10673 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10674 tok--;
10675
10676 end_tok = tok;
10677
10678 /* Find the beginning of the second to last token.
10679 This is the parameter itself. */
10680 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10681 tok--;
10682 tok++;
10683 toklen = end_tok - tok + 1;
10684
10685 if (toklen == 6 && startswith (tok, "thread"))
10686 {
10687 struct thread_info *thr;
10688 /* At this point we've found a "thread" token, which means
10689 the user is trying to set a watchpoint that triggers
10690 only in a specific thread. */
10691 const char *endp;
10692
10693 if (thread != -1)
10694 error(_("You can specify only one thread."));
10695
10696 /* Extract the thread ID from the next token. */
10697 thr = parse_thread_id (value_start, &endp);
10698
10699 /* Check if the user provided a valid thread ID. */
10700 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10701 invalid_thread_id_error (value_start);
10702
10703 thread = thr->global_num;
10704 }
10705 else if (toklen == 4 && startswith (tok, "mask"))
10706 {
10707 /* We've found a "mask" token, which means the user wants to
10708 create a hardware watchpoint that is going to have the mask
10709 facility. */
10710 struct value *mask_value, *mark;
10711
10712 if (use_mask)
10713 error(_("You can specify only one mask."));
10714
10715 use_mask = just_location = 1;
10716
10717 mark = value_mark ();
10718 mask_value = parse_to_comma_and_eval (&value_start);
10719 mask = value_as_address (mask_value);
10720 value_free_to_mark (mark);
10721 }
10722 else
10723 /* We didn't recognize what we found. We should stop here. */
10724 break;
10725
10726 /* Truncate the string and get rid of the "parameter value" pair before
10727 the arguments string is parsed by the parse_exp_1 function. */
10728 exp_end = tok;
10729 }
10730 }
10731 else
10732 exp_end = arg;
10733
10734 /* Parse the rest of the arguments. From here on out, everything
10735 is in terms of a newly allocated string instead of the original
10736 ARG. */
10737 innermost_block = NULL;
10738 std::string expression (arg, exp_end - arg);
10739 exp_start = arg = expression.c_str ();
10740 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10741 exp_end = arg;
10742 /* Remove trailing whitespace from the expression before saving it.
10743 This makes the eventual display of the expression string a bit
10744 prettier. */
10745 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10746 --exp_end;
10747
10748 /* Checking if the expression is not constant. */
10749 if (watchpoint_exp_is_const (exp.get ()))
10750 {
10751 int len;
10752
10753 len = exp_end - exp_start;
10754 while (len > 0 && isspace (exp_start[len - 1]))
10755 len--;
10756 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10757 }
10758
10759 exp_valid_block = innermost_block;
10760 mark = value_mark ();
10761 fetch_subexp_value (exp.get (), &pc, &val, &result, NULL, just_location);
10762
10763 if (val != NULL && just_location)
10764 {
10765 saved_bitpos = value_bitpos (val);
10766 saved_bitsize = value_bitsize (val);
10767 }
10768
10769 if (just_location)
10770 {
10771 int ret;
10772
10773 exp_valid_block = NULL;
10774 val = value_addr (result);
10775 release_value (val);
10776 value_free_to_mark (mark);
10777
10778 if (use_mask)
10779 {
10780 ret = target_masked_watch_num_registers (value_as_address (val),
10781 mask);
10782 if (ret == -1)
10783 error (_("This target does not support masked watchpoints."));
10784 else if (ret == -2)
10785 error (_("Invalid mask or memory region."));
10786 }
10787 }
10788 else if (val != NULL)
10789 release_value (val);
10790
10791 tok = skip_spaces (arg);
10792 end_tok = skip_to_space (tok);
10793
10794 toklen = end_tok - tok;
10795 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10796 {
10797 innermost_block = NULL;
10798 tok = cond_start = end_tok + 1;
10799 parse_exp_1 (&tok, 0, 0, 0);
10800
10801 /* The watchpoint expression may not be local, but the condition
10802 may still be. E.g.: `watch global if local > 0'. */
10803 cond_exp_valid_block = innermost_block;
10804
10805 cond_end = tok;
10806 }
10807 if (*tok)
10808 error (_("Junk at end of command."));
10809
10810 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10811
10812 /* Save this because create_internal_breakpoint below invalidates
10813 'wp_frame'. */
10814 frame_id watchpoint_frame = get_frame_id (wp_frame);
10815
10816 /* If the expression is "local", then set up a "watchpoint scope"
10817 breakpoint at the point where we've left the scope of the watchpoint
10818 expression. Create the scope breakpoint before the watchpoint, so
10819 that we will encounter it first in bpstat_stop_status. */
10820 if (exp_valid_block != NULL && wp_frame != NULL)
10821 {
10822 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10823
10824 if (frame_id_p (caller_frame_id))
10825 {
10826 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10827 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10828
10829 scope_breakpoint
10830 = create_internal_breakpoint (caller_arch, caller_pc,
10831 bp_watchpoint_scope,
10832 &momentary_breakpoint_ops);
10833
10834 /* create_internal_breakpoint could invalidate WP_FRAME. */
10835 wp_frame = NULL;
10836
10837 scope_breakpoint->enable_state = bp_enabled;
10838
10839 /* Automatically delete the breakpoint when it hits. */
10840 scope_breakpoint->disposition = disp_del;
10841
10842 /* Only break in the proper frame (help with recursion). */
10843 scope_breakpoint->frame_id = caller_frame_id;
10844
10845 /* Set the address at which we will stop. */
10846 scope_breakpoint->loc->gdbarch = caller_arch;
10847 scope_breakpoint->loc->requested_address = caller_pc;
10848 scope_breakpoint->loc->address
10849 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10850 scope_breakpoint->loc->requested_address,
10851 scope_breakpoint->type);
10852 }
10853 }
10854
10855 /* Now set up the breakpoint. We create all watchpoints as hardware
10856 watchpoints here even if hardware watchpoints are turned off, a call
10857 to update_watchpoint later in this function will cause the type to
10858 drop back to bp_watchpoint (software watchpoint) if required. */
10859
10860 if (accessflag == hw_read)
10861 bp_type = bp_read_watchpoint;
10862 else if (accessflag == hw_access)
10863 bp_type = bp_access_watchpoint;
10864 else
10865 bp_type = bp_hardware_watchpoint;
10866
10867 std::unique_ptr<watchpoint> w (new watchpoint ());
10868
10869 if (use_mask)
10870 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10871 &masked_watchpoint_breakpoint_ops);
10872 else
10873 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10874 &watchpoint_breakpoint_ops);
10875 w->thread = thread;
10876 w->disposition = disp_donttouch;
10877 w->pspace = current_program_space;
10878 w->exp = std::move (exp);
10879 w->exp_valid_block = exp_valid_block;
10880 w->cond_exp_valid_block = cond_exp_valid_block;
10881 if (just_location)
10882 {
10883 struct type *t = value_type (val);
10884 CORE_ADDR addr = value_as_address (val);
10885
10886 w->exp_string_reparse
10887 = current_language->la_watch_location_expression (t, addr).release ();
10888
10889 w->exp_string = xstrprintf ("-location %.*s",
10890 (int) (exp_end - exp_start), exp_start);
10891 }
10892 else
10893 w->exp_string = savestring (exp_start, exp_end - exp_start);
10894
10895 if (use_mask)
10896 {
10897 w->hw_wp_mask = mask;
10898 }
10899 else
10900 {
10901 w->val = val;
10902 w->val_bitpos = saved_bitpos;
10903 w->val_bitsize = saved_bitsize;
10904 w->val_valid = 1;
10905 }
10906
10907 if (cond_start)
10908 w->cond_string = savestring (cond_start, cond_end - cond_start);
10909 else
10910 w->cond_string = 0;
10911
10912 if (frame_id_p (watchpoint_frame))
10913 {
10914 w->watchpoint_frame = watchpoint_frame;
10915 w->watchpoint_thread = inferior_ptid;
10916 }
10917 else
10918 {
10919 w->watchpoint_frame = null_frame_id;
10920 w->watchpoint_thread = null_ptid;
10921 }
10922
10923 if (scope_breakpoint != NULL)
10924 {
10925 /* The scope breakpoint is related to the watchpoint. We will
10926 need to act on them together. */
10927 w->related_breakpoint = scope_breakpoint;
10928 scope_breakpoint->related_breakpoint = w.get ();
10929 }
10930
10931 if (!just_location)
10932 value_free_to_mark (mark);
10933
10934 /* Finally update the new watchpoint. This creates the locations
10935 that should be inserted. */
10936 update_watchpoint (w.get (), 1);
10937
10938 install_breakpoint (internal, std::move (w), 1);
10939 }
10940
10941 /* Return count of debug registers needed to watch the given expression.
10942 If the watchpoint cannot be handled in hardware return zero. */
10943
10944 static int
10945 can_use_hardware_watchpoint (struct value *v)
10946 {
10947 int found_memory_cnt = 0;
10948 struct value *head = v;
10949
10950 /* Did the user specifically forbid us to use hardware watchpoints? */
10951 if (!can_use_hw_watchpoints)
10952 return 0;
10953
10954 /* Make sure that the value of the expression depends only upon
10955 memory contents, and values computed from them within GDB. If we
10956 find any register references or function calls, we can't use a
10957 hardware watchpoint.
10958
10959 The idea here is that evaluating an expression generates a series
10960 of values, one holding the value of every subexpression. (The
10961 expression a*b+c has five subexpressions: a, b, a*b, c, and
10962 a*b+c.) GDB's values hold almost enough information to establish
10963 the criteria given above --- they identify memory lvalues,
10964 register lvalues, computed values, etcetera. So we can evaluate
10965 the expression, and then scan the chain of values that leaves
10966 behind to decide whether we can detect any possible change to the
10967 expression's final value using only hardware watchpoints.
10968
10969 However, I don't think that the values returned by inferior
10970 function calls are special in any way. So this function may not
10971 notice that an expression involving an inferior function call
10972 can't be watched with hardware watchpoints. FIXME. */
10973 for (; v; v = value_next (v))
10974 {
10975 if (VALUE_LVAL (v) == lval_memory)
10976 {
10977 if (v != head && value_lazy (v))
10978 /* A lazy memory lvalue in the chain is one that GDB never
10979 needed to fetch; we either just used its address (e.g.,
10980 `a' in `a.b') or we never needed it at all (e.g., `a'
10981 in `a,b'). This doesn't apply to HEAD; if that is
10982 lazy then it was not readable, but watch it anyway. */
10983 ;
10984 else
10985 {
10986 /* Ahh, memory we actually used! Check if we can cover
10987 it with hardware watchpoints. */
10988 struct type *vtype = check_typedef (value_type (v));
10989
10990 /* We only watch structs and arrays if user asked for it
10991 explicitly, never if they just happen to appear in a
10992 middle of some value chain. */
10993 if (v == head
10994 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10995 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10996 {
10997 CORE_ADDR vaddr = value_address (v);
10998 int len;
10999 int num_regs;
11000
11001 len = (target_exact_watchpoints
11002 && is_scalar_type_recursive (vtype))?
11003 1 : TYPE_LENGTH (value_type (v));
11004
11005 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11006 if (!num_regs)
11007 return 0;
11008 else
11009 found_memory_cnt += num_regs;
11010 }
11011 }
11012 }
11013 else if (VALUE_LVAL (v) != not_lval
11014 && deprecated_value_modifiable (v) == 0)
11015 return 0; /* These are values from the history (e.g., $1). */
11016 else if (VALUE_LVAL (v) == lval_register)
11017 return 0; /* Cannot watch a register with a HW watchpoint. */
11018 }
11019
11020 /* The expression itself looks suitable for using a hardware
11021 watchpoint, but give the target machine a chance to reject it. */
11022 return found_memory_cnt;
11023 }
11024
11025 void
11026 watch_command_wrapper (const char *arg, int from_tty, int internal)
11027 {
11028 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11029 }
11030
11031 /* A helper function that looks for the "-location" argument and then
11032 calls watch_command_1. */
11033
11034 static void
11035 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
11036 {
11037 int just_location = 0;
11038
11039 if (arg
11040 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11041 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11042 {
11043 arg = skip_spaces (arg);
11044 just_location = 1;
11045 }
11046
11047 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11048 }
11049
11050 static void
11051 watch_command (const char *arg, int from_tty)
11052 {
11053 watch_maybe_just_location (arg, hw_write, from_tty);
11054 }
11055
11056 void
11057 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
11058 {
11059 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11060 }
11061
11062 static void
11063 rwatch_command (const char *arg, int from_tty)
11064 {
11065 watch_maybe_just_location (arg, hw_read, from_tty);
11066 }
11067
11068 void
11069 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11070 {
11071 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11072 }
11073
11074 static void
11075 awatch_command (const char *arg, int from_tty)
11076 {
11077 watch_maybe_just_location (arg, hw_access, from_tty);
11078 }
11079 \f
11080
11081 /* Data for the FSM that manages the until(location)/advance commands
11082 in infcmd.c. Here because it uses the mechanisms of
11083 breakpoints. */
11084
11085 struct until_break_fsm
11086 {
11087 /* The base class. */
11088 struct thread_fsm thread_fsm;
11089
11090 /* The thread that as current when the command was executed. */
11091 int thread;
11092
11093 /* The breakpoint set at the destination location. */
11094 struct breakpoint *location_breakpoint;
11095
11096 /* Breakpoint set at the return address in the caller frame. May be
11097 NULL. */
11098 struct breakpoint *caller_breakpoint;
11099 };
11100
11101 static void until_break_fsm_clean_up (struct thread_fsm *self,
11102 struct thread_info *thread);
11103 static int until_break_fsm_should_stop (struct thread_fsm *self,
11104 struct thread_info *thread);
11105 static enum async_reply_reason
11106 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11107
11108 /* until_break_fsm's vtable. */
11109
11110 static struct thread_fsm_ops until_break_fsm_ops =
11111 {
11112 NULL, /* dtor */
11113 until_break_fsm_clean_up,
11114 until_break_fsm_should_stop,
11115 NULL, /* return_value */
11116 until_break_fsm_async_reply_reason,
11117 };
11118
11119 /* Allocate a new until_break_command_fsm. */
11120
11121 static struct until_break_fsm *
11122 new_until_break_fsm (struct interp *cmd_interp, int thread,
11123 breakpoint_up &&location_breakpoint,
11124 breakpoint_up &&caller_breakpoint)
11125 {
11126 struct until_break_fsm *sm;
11127
11128 sm = XCNEW (struct until_break_fsm);
11129 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11130
11131 sm->thread = thread;
11132 sm->location_breakpoint = location_breakpoint.release ();
11133 sm->caller_breakpoint = caller_breakpoint.release ();
11134
11135 return sm;
11136 }
11137
11138 /* Implementation of the 'should_stop' FSM method for the
11139 until(location)/advance commands. */
11140
11141 static int
11142 until_break_fsm_should_stop (struct thread_fsm *self,
11143 struct thread_info *tp)
11144 {
11145 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11146
11147 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11148 sm->location_breakpoint) != NULL
11149 || (sm->caller_breakpoint != NULL
11150 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11151 sm->caller_breakpoint) != NULL))
11152 thread_fsm_set_finished (self);
11153
11154 return 1;
11155 }
11156
11157 /* Implementation of the 'clean_up' FSM method for the
11158 until(location)/advance commands. */
11159
11160 static void
11161 until_break_fsm_clean_up (struct thread_fsm *self,
11162 struct thread_info *thread)
11163 {
11164 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11165
11166 /* Clean up our temporary breakpoints. */
11167 if (sm->location_breakpoint != NULL)
11168 {
11169 delete_breakpoint (sm->location_breakpoint);
11170 sm->location_breakpoint = NULL;
11171 }
11172 if (sm->caller_breakpoint != NULL)
11173 {
11174 delete_breakpoint (sm->caller_breakpoint);
11175 sm->caller_breakpoint = NULL;
11176 }
11177 delete_longjmp_breakpoint (sm->thread);
11178 }
11179
11180 /* Implementation of the 'async_reply_reason' FSM method for the
11181 until(location)/advance commands. */
11182
11183 static enum async_reply_reason
11184 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11185 {
11186 return EXEC_ASYNC_LOCATION_REACHED;
11187 }
11188
11189 void
11190 until_break_command (const char *arg, int from_tty, int anywhere)
11191 {
11192 struct frame_info *frame;
11193 struct gdbarch *frame_gdbarch;
11194 struct frame_id stack_frame_id;
11195 struct frame_id caller_frame_id;
11196 struct cleanup *old_chain;
11197 int thread;
11198 struct thread_info *tp;
11199 struct until_break_fsm *sm;
11200
11201 clear_proceed_status (0);
11202
11203 /* Set a breakpoint where the user wants it and at return from
11204 this function. */
11205
11206 event_location_up location = string_to_event_location (&arg, current_language);
11207
11208 std::vector<symtab_and_line> sals
11209 = (last_displayed_sal_is_valid ()
11210 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11211 get_last_displayed_symtab (),
11212 get_last_displayed_line ())
11213 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11214 NULL, (struct symtab *) NULL, 0));
11215
11216 if (sals.size () != 1)
11217 error (_("Couldn't get information on specified line."));
11218
11219 symtab_and_line &sal = sals[0];
11220
11221 if (*arg)
11222 error (_("Junk at end of arguments."));
11223
11224 resolve_sal_pc (&sal);
11225
11226 tp = inferior_thread ();
11227 thread = tp->global_num;
11228
11229 old_chain = make_cleanup (null_cleanup, NULL);
11230
11231 /* Note linespec handling above invalidates the frame chain.
11232 Installing a breakpoint also invalidates the frame chain (as it
11233 may need to switch threads), so do any frame handling before
11234 that. */
11235
11236 frame = get_selected_frame (NULL);
11237 frame_gdbarch = get_frame_arch (frame);
11238 stack_frame_id = get_stack_frame_id (frame);
11239 caller_frame_id = frame_unwind_caller_id (frame);
11240
11241 /* Keep within the current frame, or in frames called by the current
11242 one. */
11243
11244 breakpoint_up caller_breakpoint;
11245 if (frame_id_p (caller_frame_id))
11246 {
11247 struct symtab_and_line sal2;
11248 struct gdbarch *caller_gdbarch;
11249
11250 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11251 sal2.pc = frame_unwind_caller_pc (frame);
11252 caller_gdbarch = frame_unwind_caller_arch (frame);
11253 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11254 sal2,
11255 caller_frame_id,
11256 bp_until);
11257
11258 set_longjmp_breakpoint (tp, caller_frame_id);
11259 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11260 }
11261
11262 /* set_momentary_breakpoint could invalidate FRAME. */
11263 frame = NULL;
11264
11265 breakpoint_up location_breakpoint;
11266 if (anywhere)
11267 /* If the user told us to continue until a specified location,
11268 we don't specify a frame at which we need to stop. */
11269 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11270 null_frame_id, bp_until);
11271 else
11272 /* Otherwise, specify the selected frame, because we want to stop
11273 only at the very same frame. */
11274 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11275 stack_frame_id, bp_until);
11276
11277 sm = new_until_break_fsm (command_interp (), tp->global_num,
11278 std::move (location_breakpoint),
11279 std::move (caller_breakpoint));
11280 tp->thread_fsm = &sm->thread_fsm;
11281
11282 discard_cleanups (old_chain);
11283
11284 proceed (-1, GDB_SIGNAL_DEFAULT);
11285 }
11286
11287 /* This function attempts to parse an optional "if <cond>" clause
11288 from the arg string. If one is not found, it returns NULL.
11289
11290 Else, it returns a pointer to the condition string. (It does not
11291 attempt to evaluate the string against a particular block.) And,
11292 it updates arg to point to the first character following the parsed
11293 if clause in the arg string. */
11294
11295 const char *
11296 ep_parse_optional_if_clause (const char **arg)
11297 {
11298 const char *cond_string;
11299
11300 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11301 return NULL;
11302
11303 /* Skip the "if" keyword. */
11304 (*arg) += 2;
11305
11306 /* Skip any extra leading whitespace, and record the start of the
11307 condition string. */
11308 *arg = skip_spaces (*arg);
11309 cond_string = *arg;
11310
11311 /* Assume that the condition occupies the remainder of the arg
11312 string. */
11313 (*arg) += strlen (cond_string);
11314
11315 return cond_string;
11316 }
11317
11318 /* Commands to deal with catching events, such as signals, exceptions,
11319 process start/exit, etc. */
11320
11321 typedef enum
11322 {
11323 catch_fork_temporary, catch_vfork_temporary,
11324 catch_fork_permanent, catch_vfork_permanent
11325 }
11326 catch_fork_kind;
11327
11328 static void
11329 catch_fork_command_1 (char *arg_entry, int from_tty,
11330 struct cmd_list_element *command)
11331 {
11332 const char *arg = arg_entry;
11333 struct gdbarch *gdbarch = get_current_arch ();
11334 const char *cond_string = NULL;
11335 catch_fork_kind fork_kind;
11336 int tempflag;
11337
11338 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11339 tempflag = (fork_kind == catch_fork_temporary
11340 || fork_kind == catch_vfork_temporary);
11341
11342 if (!arg)
11343 arg = "";
11344 arg = skip_spaces (arg);
11345
11346 /* The allowed syntax is:
11347 catch [v]fork
11348 catch [v]fork if <cond>
11349
11350 First, check if there's an if clause. */
11351 cond_string = ep_parse_optional_if_clause (&arg);
11352
11353 if ((*arg != '\0') && !isspace (*arg))
11354 error (_("Junk at end of arguments."));
11355
11356 /* If this target supports it, create a fork or vfork catchpoint
11357 and enable reporting of such events. */
11358 switch (fork_kind)
11359 {
11360 case catch_fork_temporary:
11361 case catch_fork_permanent:
11362 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11363 &catch_fork_breakpoint_ops);
11364 break;
11365 case catch_vfork_temporary:
11366 case catch_vfork_permanent:
11367 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11368 &catch_vfork_breakpoint_ops);
11369 break;
11370 default:
11371 error (_("unsupported or unknown fork kind; cannot catch it"));
11372 break;
11373 }
11374 }
11375
11376 static void
11377 catch_exec_command_1 (char *arg_entry, int from_tty,
11378 struct cmd_list_element *command)
11379 {
11380 const char *arg = arg_entry;
11381 struct gdbarch *gdbarch = get_current_arch ();
11382 int tempflag;
11383 const char *cond_string = NULL;
11384
11385 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11386
11387 if (!arg)
11388 arg = "";
11389 arg = skip_spaces (arg);
11390
11391 /* The allowed syntax is:
11392 catch exec
11393 catch exec if <cond>
11394
11395 First, check if there's an if clause. */
11396 cond_string = ep_parse_optional_if_clause (&arg);
11397
11398 if ((*arg != '\0') && !isspace (*arg))
11399 error (_("Junk at end of arguments."));
11400
11401 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11402 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11403 &catch_exec_breakpoint_ops);
11404 c->exec_pathname = NULL;
11405
11406 install_breakpoint (0, std::move (c), 1);
11407 }
11408
11409 void
11410 init_ada_exception_breakpoint (struct breakpoint *b,
11411 struct gdbarch *gdbarch,
11412 struct symtab_and_line sal,
11413 const char *addr_string,
11414 const struct breakpoint_ops *ops,
11415 int tempflag,
11416 int enabled,
11417 int from_tty)
11418 {
11419 if (from_tty)
11420 {
11421 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11422 if (!loc_gdbarch)
11423 loc_gdbarch = gdbarch;
11424
11425 describe_other_breakpoints (loc_gdbarch,
11426 sal.pspace, sal.pc, sal.section, -1);
11427 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11428 version for exception catchpoints, because two catchpoints
11429 used for different exception names will use the same address.
11430 In this case, a "breakpoint ... also set at..." warning is
11431 unproductive. Besides, the warning phrasing is also a bit
11432 inappropriate, we should use the word catchpoint, and tell
11433 the user what type of catchpoint it is. The above is good
11434 enough for now, though. */
11435 }
11436
11437 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11438
11439 b->enable_state = enabled ? bp_enabled : bp_disabled;
11440 b->disposition = tempflag ? disp_del : disp_donttouch;
11441 b->location = string_to_event_location (&addr_string,
11442 language_def (language_ada));
11443 b->language = language_ada;
11444 }
11445
11446 static void
11447 catch_command (const char *arg, int from_tty)
11448 {
11449 error (_("Catch requires an event name."));
11450 }
11451 \f
11452
11453 static void
11454 tcatch_command (const char *arg, int from_tty)
11455 {
11456 error (_("Catch requires an event name."));
11457 }
11458
11459 /* Compare two breakpoints and return a strcmp-like result. */
11460
11461 static int
11462 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11463 {
11464 uintptr_t ua = (uintptr_t) a;
11465 uintptr_t ub = (uintptr_t) b;
11466
11467 if (a->number < b->number)
11468 return -1;
11469 else if (a->number > b->number)
11470 return 1;
11471
11472 /* Now sort by address, in case we see, e..g, two breakpoints with
11473 the number 0. */
11474 if (ua < ub)
11475 return -1;
11476 return ua > ub ? 1 : 0;
11477 }
11478
11479 /* Delete breakpoints by address or line. */
11480
11481 static void
11482 clear_command (const char *arg, int from_tty)
11483 {
11484 struct breakpoint *b;
11485 int default_match;
11486 int i;
11487
11488 std::vector<symtab_and_line> decoded_sals;
11489 symtab_and_line last_sal;
11490 gdb::array_view<symtab_and_line> sals;
11491 if (arg)
11492 {
11493 decoded_sals
11494 = decode_line_with_current_source (arg,
11495 (DECODE_LINE_FUNFIRSTLINE
11496 | DECODE_LINE_LIST_MODE));
11497 default_match = 0;
11498 sals = decoded_sals;
11499 }
11500 else
11501 {
11502 /* Set sal's line, symtab, pc, and pspace to the values
11503 corresponding to the last call to print_frame_info. If the
11504 codepoint is not valid, this will set all the fields to 0. */
11505 last_sal = get_last_displayed_sal ();
11506 if (last_sal.symtab == 0)
11507 error (_("No source file specified."));
11508
11509 default_match = 1;
11510 sals = last_sal;
11511 }
11512
11513 /* We don't call resolve_sal_pc here. That's not as bad as it
11514 seems, because all existing breakpoints typically have both
11515 file/line and pc set. So, if clear is given file/line, we can
11516 match this to existing breakpoint without obtaining pc at all.
11517
11518 We only support clearing given the address explicitly
11519 present in breakpoint table. Say, we've set breakpoint
11520 at file:line. There were several PC values for that file:line,
11521 due to optimization, all in one block.
11522
11523 We've picked one PC value. If "clear" is issued with another
11524 PC corresponding to the same file:line, the breakpoint won't
11525 be cleared. We probably can still clear the breakpoint, but
11526 since the other PC value is never presented to user, user
11527 can only find it by guessing, and it does not seem important
11528 to support that. */
11529
11530 /* For each line spec given, delete bps which correspond to it. Do
11531 it in two passes, solely to preserve the current behavior that
11532 from_tty is forced true if we delete more than one
11533 breakpoint. */
11534
11535 std::vector<struct breakpoint *> found;
11536 for (const auto &sal : sals)
11537 {
11538 const char *sal_fullname;
11539
11540 /* If exact pc given, clear bpts at that pc.
11541 If line given (pc == 0), clear all bpts on specified line.
11542 If defaulting, clear all bpts on default line
11543 or at default pc.
11544
11545 defaulting sal.pc != 0 tests to do
11546
11547 0 1 pc
11548 1 1 pc _and_ line
11549 0 0 line
11550 1 0 <can't happen> */
11551
11552 sal_fullname = (sal.symtab == NULL
11553 ? NULL : symtab_to_fullname (sal.symtab));
11554
11555 /* Find all matching breakpoints and add them to 'found'. */
11556 ALL_BREAKPOINTS (b)
11557 {
11558 int match = 0;
11559 /* Are we going to delete b? */
11560 if (b->type != bp_none && !is_watchpoint (b))
11561 {
11562 struct bp_location *loc = b->loc;
11563 for (; loc; loc = loc->next)
11564 {
11565 /* If the user specified file:line, don't allow a PC
11566 match. This matches historical gdb behavior. */
11567 int pc_match = (!sal.explicit_line
11568 && sal.pc
11569 && (loc->pspace == sal.pspace)
11570 && (loc->address == sal.pc)
11571 && (!section_is_overlay (loc->section)
11572 || loc->section == sal.section));
11573 int line_match = 0;
11574
11575 if ((default_match || sal.explicit_line)
11576 && loc->symtab != NULL
11577 && sal_fullname != NULL
11578 && sal.pspace == loc->pspace
11579 && loc->line_number == sal.line
11580 && filename_cmp (symtab_to_fullname (loc->symtab),
11581 sal_fullname) == 0)
11582 line_match = 1;
11583
11584 if (pc_match || line_match)
11585 {
11586 match = 1;
11587 break;
11588 }
11589 }
11590 }
11591
11592 if (match)
11593 found.push_back (b);
11594 }
11595 }
11596
11597 /* Now go thru the 'found' chain and delete them. */
11598 if (found.empty ())
11599 {
11600 if (arg)
11601 error (_("No breakpoint at %s."), arg);
11602 else
11603 error (_("No breakpoint at this line."));
11604 }
11605
11606 /* Remove duplicates from the vec. */
11607 std::sort (found.begin (), found.end (),
11608 [] (const breakpoint *a, const breakpoint *b)
11609 {
11610 return compare_breakpoints (a, b) < 0;
11611 });
11612 found.erase (std::unique (found.begin (), found.end (),
11613 [] (const breakpoint *a, const breakpoint *b)
11614 {
11615 return compare_breakpoints (a, b) == 0;
11616 }),
11617 found.end ());
11618
11619 if (found.size () > 1)
11620 from_tty = 1; /* Always report if deleted more than one. */
11621 if (from_tty)
11622 {
11623 if (found.size () == 1)
11624 printf_unfiltered (_("Deleted breakpoint "));
11625 else
11626 printf_unfiltered (_("Deleted breakpoints "));
11627 }
11628
11629 for (breakpoint *iter : found)
11630 {
11631 if (from_tty)
11632 printf_unfiltered ("%d ", iter->number);
11633 delete_breakpoint (iter);
11634 }
11635 if (from_tty)
11636 putchar_unfiltered ('\n');
11637 }
11638 \f
11639 /* Delete breakpoint in BS if they are `delete' breakpoints and
11640 all breakpoints that are marked for deletion, whether hit or not.
11641 This is called after any breakpoint is hit, or after errors. */
11642
11643 void
11644 breakpoint_auto_delete (bpstat bs)
11645 {
11646 struct breakpoint *b, *b_tmp;
11647
11648 for (; bs; bs = bs->next)
11649 if (bs->breakpoint_at
11650 && bs->breakpoint_at->disposition == disp_del
11651 && bs->stop)
11652 delete_breakpoint (bs->breakpoint_at);
11653
11654 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11655 {
11656 if (b->disposition == disp_del_at_next_stop)
11657 delete_breakpoint (b);
11658 }
11659 }
11660
11661 /* A comparison function for bp_location AP and BP being interfaced to
11662 qsort. Sort elements primarily by their ADDRESS (no matter what
11663 does breakpoint_address_is_meaningful say for its OWNER),
11664 secondarily by ordering first permanent elements and
11665 terciarily just ensuring the array is sorted stable way despite
11666 qsort being an unstable algorithm. */
11667
11668 static int
11669 bp_locations_compare (const void *ap, const void *bp)
11670 {
11671 const struct bp_location *a = *(const struct bp_location **) ap;
11672 const struct bp_location *b = *(const struct bp_location **) bp;
11673
11674 if (a->address != b->address)
11675 return (a->address > b->address) - (a->address < b->address);
11676
11677 /* Sort locations at the same address by their pspace number, keeping
11678 locations of the same inferior (in a multi-inferior environment)
11679 grouped. */
11680
11681 if (a->pspace->num != b->pspace->num)
11682 return ((a->pspace->num > b->pspace->num)
11683 - (a->pspace->num < b->pspace->num));
11684
11685 /* Sort permanent breakpoints first. */
11686 if (a->permanent != b->permanent)
11687 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11688
11689 /* Make the internal GDB representation stable across GDB runs
11690 where A and B memory inside GDB can differ. Breakpoint locations of
11691 the same type at the same address can be sorted in arbitrary order. */
11692
11693 if (a->owner->number != b->owner->number)
11694 return ((a->owner->number > b->owner->number)
11695 - (a->owner->number < b->owner->number));
11696
11697 return (a > b) - (a < b);
11698 }
11699
11700 /* Set bp_locations_placed_address_before_address_max and
11701 bp_locations_shadow_len_after_address_max according to the current
11702 content of the bp_locations array. */
11703
11704 static void
11705 bp_locations_target_extensions_update (void)
11706 {
11707 struct bp_location *bl, **blp_tmp;
11708
11709 bp_locations_placed_address_before_address_max = 0;
11710 bp_locations_shadow_len_after_address_max = 0;
11711
11712 ALL_BP_LOCATIONS (bl, blp_tmp)
11713 {
11714 CORE_ADDR start, end, addr;
11715
11716 if (!bp_location_has_shadow (bl))
11717 continue;
11718
11719 start = bl->target_info.placed_address;
11720 end = start + bl->target_info.shadow_len;
11721
11722 gdb_assert (bl->address >= start);
11723 addr = bl->address - start;
11724 if (addr > bp_locations_placed_address_before_address_max)
11725 bp_locations_placed_address_before_address_max = addr;
11726
11727 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11728
11729 gdb_assert (bl->address < end);
11730 addr = end - bl->address;
11731 if (addr > bp_locations_shadow_len_after_address_max)
11732 bp_locations_shadow_len_after_address_max = addr;
11733 }
11734 }
11735
11736 /* Download tracepoint locations if they haven't been. */
11737
11738 static void
11739 download_tracepoint_locations (void)
11740 {
11741 struct breakpoint *b;
11742 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11743
11744 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11745
11746 ALL_TRACEPOINTS (b)
11747 {
11748 struct bp_location *bl;
11749 struct tracepoint *t;
11750 int bp_location_downloaded = 0;
11751
11752 if ((b->type == bp_fast_tracepoint
11753 ? !may_insert_fast_tracepoints
11754 : !may_insert_tracepoints))
11755 continue;
11756
11757 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11758 {
11759 if (target_can_download_tracepoint ())
11760 can_download_tracepoint = TRIBOOL_TRUE;
11761 else
11762 can_download_tracepoint = TRIBOOL_FALSE;
11763 }
11764
11765 if (can_download_tracepoint == TRIBOOL_FALSE)
11766 break;
11767
11768 for (bl = b->loc; bl; bl = bl->next)
11769 {
11770 /* In tracepoint, locations are _never_ duplicated, so
11771 should_be_inserted is equivalent to
11772 unduplicated_should_be_inserted. */
11773 if (!should_be_inserted (bl) || bl->inserted)
11774 continue;
11775
11776 switch_to_program_space_and_thread (bl->pspace);
11777
11778 target_download_tracepoint (bl);
11779
11780 bl->inserted = 1;
11781 bp_location_downloaded = 1;
11782 }
11783 t = (struct tracepoint *) b;
11784 t->number_on_target = b->number;
11785 if (bp_location_downloaded)
11786 observer_notify_breakpoint_modified (b);
11787 }
11788 }
11789
11790 /* Swap the insertion/duplication state between two locations. */
11791
11792 static void
11793 swap_insertion (struct bp_location *left, struct bp_location *right)
11794 {
11795 const int left_inserted = left->inserted;
11796 const int left_duplicate = left->duplicate;
11797 const int left_needs_update = left->needs_update;
11798 const struct bp_target_info left_target_info = left->target_info;
11799
11800 /* Locations of tracepoints can never be duplicated. */
11801 if (is_tracepoint (left->owner))
11802 gdb_assert (!left->duplicate);
11803 if (is_tracepoint (right->owner))
11804 gdb_assert (!right->duplicate);
11805
11806 left->inserted = right->inserted;
11807 left->duplicate = right->duplicate;
11808 left->needs_update = right->needs_update;
11809 left->target_info = right->target_info;
11810 right->inserted = left_inserted;
11811 right->duplicate = left_duplicate;
11812 right->needs_update = left_needs_update;
11813 right->target_info = left_target_info;
11814 }
11815
11816 /* Force the re-insertion of the locations at ADDRESS. This is called
11817 once a new/deleted/modified duplicate location is found and we are evaluating
11818 conditions on the target's side. Such conditions need to be updated on
11819 the target. */
11820
11821 static void
11822 force_breakpoint_reinsertion (struct bp_location *bl)
11823 {
11824 struct bp_location **locp = NULL, **loc2p;
11825 struct bp_location *loc;
11826 CORE_ADDR address = 0;
11827 int pspace_num;
11828
11829 address = bl->address;
11830 pspace_num = bl->pspace->num;
11831
11832 /* This is only meaningful if the target is
11833 evaluating conditions and if the user has
11834 opted for condition evaluation on the target's
11835 side. */
11836 if (gdb_evaluates_breakpoint_condition_p ()
11837 || !target_supports_evaluation_of_breakpoint_conditions ())
11838 return;
11839
11840 /* Flag all breakpoint locations with this address and
11841 the same program space as the location
11842 as "its condition has changed". We need to
11843 update the conditions on the target's side. */
11844 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11845 {
11846 loc = *loc2p;
11847
11848 if (!is_breakpoint (loc->owner)
11849 || pspace_num != loc->pspace->num)
11850 continue;
11851
11852 /* Flag the location appropriately. We use a different state to
11853 let everyone know that we already updated the set of locations
11854 with addr bl->address and program space bl->pspace. This is so
11855 we don't have to keep calling these functions just to mark locations
11856 that have already been marked. */
11857 loc->condition_changed = condition_updated;
11858
11859 /* Free the agent expression bytecode as well. We will compute
11860 it later on. */
11861 loc->cond_bytecode.reset ();
11862 }
11863 }
11864 /* Called whether new breakpoints are created, or existing breakpoints
11865 deleted, to update the global location list and recompute which
11866 locations are duplicate of which.
11867
11868 The INSERT_MODE flag determines whether locations may not, may, or
11869 shall be inserted now. See 'enum ugll_insert_mode' for more
11870 info. */
11871
11872 static void
11873 update_global_location_list (enum ugll_insert_mode insert_mode)
11874 {
11875 struct breakpoint *b;
11876 struct bp_location **locp, *loc;
11877 /* Last breakpoint location address that was marked for update. */
11878 CORE_ADDR last_addr = 0;
11879 /* Last breakpoint location program space that was marked for update. */
11880 int last_pspace_num = -1;
11881
11882 /* Used in the duplicates detection below. When iterating over all
11883 bp_locations, points to the first bp_location of a given address.
11884 Breakpoints and watchpoints of different types are never
11885 duplicates of each other. Keep one pointer for each type of
11886 breakpoint/watchpoint, so we only need to loop over all locations
11887 once. */
11888 struct bp_location *bp_loc_first; /* breakpoint */
11889 struct bp_location *wp_loc_first; /* hardware watchpoint */
11890 struct bp_location *awp_loc_first; /* access watchpoint */
11891 struct bp_location *rwp_loc_first; /* read watchpoint */
11892
11893 /* Saved former bp_locations array which we compare against the newly
11894 built bp_locations from the current state of ALL_BREAKPOINTS. */
11895 struct bp_location **old_locp;
11896 unsigned old_locations_count;
11897 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11898
11899 old_locations_count = bp_locations_count;
11900 bp_locations = NULL;
11901 bp_locations_count = 0;
11902
11903 ALL_BREAKPOINTS (b)
11904 for (loc = b->loc; loc; loc = loc->next)
11905 bp_locations_count++;
11906
11907 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11908 locp = bp_locations;
11909 ALL_BREAKPOINTS (b)
11910 for (loc = b->loc; loc; loc = loc->next)
11911 *locp++ = loc;
11912 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11913 bp_locations_compare);
11914
11915 bp_locations_target_extensions_update ();
11916
11917 /* Identify bp_location instances that are no longer present in the
11918 new list, and therefore should be freed. Note that it's not
11919 necessary that those locations should be removed from inferior --
11920 if there's another location at the same address (previously
11921 marked as duplicate), we don't need to remove/insert the
11922 location.
11923
11924 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11925 and former bp_location array state respectively. */
11926
11927 locp = bp_locations;
11928 for (old_locp = old_locations.get ();
11929 old_locp < old_locations.get () + old_locations_count;
11930 old_locp++)
11931 {
11932 struct bp_location *old_loc = *old_locp;
11933 struct bp_location **loc2p;
11934
11935 /* Tells if 'old_loc' is found among the new locations. If
11936 not, we have to free it. */
11937 int found_object = 0;
11938 /* Tells if the location should remain inserted in the target. */
11939 int keep_in_target = 0;
11940 int removed = 0;
11941
11942 /* Skip LOCP entries which will definitely never be needed.
11943 Stop either at or being the one matching OLD_LOC. */
11944 while (locp < bp_locations + bp_locations_count
11945 && (*locp)->address < old_loc->address)
11946 locp++;
11947
11948 for (loc2p = locp;
11949 (loc2p < bp_locations + bp_locations_count
11950 && (*loc2p)->address == old_loc->address);
11951 loc2p++)
11952 {
11953 /* Check if this is a new/duplicated location or a duplicated
11954 location that had its condition modified. If so, we want to send
11955 its condition to the target if evaluation of conditions is taking
11956 place there. */
11957 if ((*loc2p)->condition_changed == condition_modified
11958 && (last_addr != old_loc->address
11959 || last_pspace_num != old_loc->pspace->num))
11960 {
11961 force_breakpoint_reinsertion (*loc2p);
11962 last_pspace_num = old_loc->pspace->num;
11963 }
11964
11965 if (*loc2p == old_loc)
11966 found_object = 1;
11967 }
11968
11969 /* We have already handled this address, update it so that we don't
11970 have to go through updates again. */
11971 last_addr = old_loc->address;
11972
11973 /* Target-side condition evaluation: Handle deleted locations. */
11974 if (!found_object)
11975 force_breakpoint_reinsertion (old_loc);
11976
11977 /* If this location is no longer present, and inserted, look if
11978 there's maybe a new location at the same address. If so,
11979 mark that one inserted, and don't remove this one. This is
11980 needed so that we don't have a time window where a breakpoint
11981 at certain location is not inserted. */
11982
11983 if (old_loc->inserted)
11984 {
11985 /* If the location is inserted now, we might have to remove
11986 it. */
11987
11988 if (found_object && should_be_inserted (old_loc))
11989 {
11990 /* The location is still present in the location list,
11991 and still should be inserted. Don't do anything. */
11992 keep_in_target = 1;
11993 }
11994 else
11995 {
11996 /* This location still exists, but it won't be kept in the
11997 target since it may have been disabled. We proceed to
11998 remove its target-side condition. */
11999
12000 /* The location is either no longer present, or got
12001 disabled. See if there's another location at the
12002 same address, in which case we don't need to remove
12003 this one from the target. */
12004
12005 /* OLD_LOC comes from existing struct breakpoint. */
12006 if (breakpoint_address_is_meaningful (old_loc->owner))
12007 {
12008 for (loc2p = locp;
12009 (loc2p < bp_locations + bp_locations_count
12010 && (*loc2p)->address == old_loc->address);
12011 loc2p++)
12012 {
12013 struct bp_location *loc2 = *loc2p;
12014
12015 if (breakpoint_locations_match (loc2, old_loc))
12016 {
12017 /* Read watchpoint locations are switched to
12018 access watchpoints, if the former are not
12019 supported, but the latter are. */
12020 if (is_hardware_watchpoint (old_loc->owner))
12021 {
12022 gdb_assert (is_hardware_watchpoint (loc2->owner));
12023 loc2->watchpoint_type = old_loc->watchpoint_type;
12024 }
12025
12026 /* loc2 is a duplicated location. We need to check
12027 if it should be inserted in case it will be
12028 unduplicated. */
12029 if (loc2 != old_loc
12030 && unduplicated_should_be_inserted (loc2))
12031 {
12032 swap_insertion (old_loc, loc2);
12033 keep_in_target = 1;
12034 break;
12035 }
12036 }
12037 }
12038 }
12039 }
12040
12041 if (!keep_in_target)
12042 {
12043 if (remove_breakpoint (old_loc))
12044 {
12045 /* This is just about all we can do. We could keep
12046 this location on the global list, and try to
12047 remove it next time, but there's no particular
12048 reason why we will succeed next time.
12049
12050 Note that at this point, old_loc->owner is still
12051 valid, as delete_breakpoint frees the breakpoint
12052 only after calling us. */
12053 printf_filtered (_("warning: Error removing "
12054 "breakpoint %d\n"),
12055 old_loc->owner->number);
12056 }
12057 removed = 1;
12058 }
12059 }
12060
12061 if (!found_object)
12062 {
12063 if (removed && target_is_non_stop_p ()
12064 && need_moribund_for_location_type (old_loc))
12065 {
12066 /* This location was removed from the target. In
12067 non-stop mode, a race condition is possible where
12068 we've removed a breakpoint, but stop events for that
12069 breakpoint are already queued and will arrive later.
12070 We apply an heuristic to be able to distinguish such
12071 SIGTRAPs from other random SIGTRAPs: we keep this
12072 breakpoint location for a bit, and will retire it
12073 after we see some number of events. The theory here
12074 is that reporting of events should, "on the average",
12075 be fair, so after a while we'll see events from all
12076 threads that have anything of interest, and no longer
12077 need to keep this breakpoint location around. We
12078 don't hold locations forever so to reduce chances of
12079 mistaking a non-breakpoint SIGTRAP for a breakpoint
12080 SIGTRAP.
12081
12082 The heuristic failing can be disastrous on
12083 decr_pc_after_break targets.
12084
12085 On decr_pc_after_break targets, like e.g., x86-linux,
12086 if we fail to recognize a late breakpoint SIGTRAP,
12087 because events_till_retirement has reached 0 too
12088 soon, we'll fail to do the PC adjustment, and report
12089 a random SIGTRAP to the user. When the user resumes
12090 the inferior, it will most likely immediately crash
12091 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12092 corrupted, because of being resumed e.g., in the
12093 middle of a multi-byte instruction, or skipped a
12094 one-byte instruction. This was actually seen happen
12095 on native x86-linux, and should be less rare on
12096 targets that do not support new thread events, like
12097 remote, due to the heuristic depending on
12098 thread_count.
12099
12100 Mistaking a random SIGTRAP for a breakpoint trap
12101 causes similar symptoms (PC adjustment applied when
12102 it shouldn't), but then again, playing with SIGTRAPs
12103 behind the debugger's back is asking for trouble.
12104
12105 Since hardware watchpoint traps are always
12106 distinguishable from other traps, so we don't need to
12107 apply keep hardware watchpoint moribund locations
12108 around. We simply always ignore hardware watchpoint
12109 traps we can no longer explain. */
12110
12111 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12112 old_loc->owner = NULL;
12113
12114 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12115 }
12116 else
12117 {
12118 old_loc->owner = NULL;
12119 decref_bp_location (&old_loc);
12120 }
12121 }
12122 }
12123
12124 /* Rescan breakpoints at the same address and section, marking the
12125 first one as "first" and any others as "duplicates". This is so
12126 that the bpt instruction is only inserted once. If we have a
12127 permanent breakpoint at the same place as BPT, make that one the
12128 official one, and the rest as duplicates. Permanent breakpoints
12129 are sorted first for the same address.
12130
12131 Do the same for hardware watchpoints, but also considering the
12132 watchpoint's type (regular/access/read) and length. */
12133
12134 bp_loc_first = NULL;
12135 wp_loc_first = NULL;
12136 awp_loc_first = NULL;
12137 rwp_loc_first = NULL;
12138 ALL_BP_LOCATIONS (loc, locp)
12139 {
12140 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12141 non-NULL. */
12142 struct bp_location **loc_first_p;
12143 b = loc->owner;
12144
12145 if (!unduplicated_should_be_inserted (loc)
12146 || !breakpoint_address_is_meaningful (b)
12147 /* Don't detect duplicate for tracepoint locations because they are
12148 never duplicated. See the comments in field `duplicate' of
12149 `struct bp_location'. */
12150 || is_tracepoint (b))
12151 {
12152 /* Clear the condition modification flag. */
12153 loc->condition_changed = condition_unchanged;
12154 continue;
12155 }
12156
12157 if (b->type == bp_hardware_watchpoint)
12158 loc_first_p = &wp_loc_first;
12159 else if (b->type == bp_read_watchpoint)
12160 loc_first_p = &rwp_loc_first;
12161 else if (b->type == bp_access_watchpoint)
12162 loc_first_p = &awp_loc_first;
12163 else
12164 loc_first_p = &bp_loc_first;
12165
12166 if (*loc_first_p == NULL
12167 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12168 || !breakpoint_locations_match (loc, *loc_first_p))
12169 {
12170 *loc_first_p = loc;
12171 loc->duplicate = 0;
12172
12173 if (is_breakpoint (loc->owner) && loc->condition_changed)
12174 {
12175 loc->needs_update = 1;
12176 /* Clear the condition modification flag. */
12177 loc->condition_changed = condition_unchanged;
12178 }
12179 continue;
12180 }
12181
12182
12183 /* This and the above ensure the invariant that the first location
12184 is not duplicated, and is the inserted one.
12185 All following are marked as duplicated, and are not inserted. */
12186 if (loc->inserted)
12187 swap_insertion (loc, *loc_first_p);
12188 loc->duplicate = 1;
12189
12190 /* Clear the condition modification flag. */
12191 loc->condition_changed = condition_unchanged;
12192 }
12193
12194 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12195 {
12196 if (insert_mode != UGLL_DONT_INSERT)
12197 insert_breakpoint_locations ();
12198 else
12199 {
12200 /* Even though the caller told us to not insert new
12201 locations, we may still need to update conditions on the
12202 target's side of breakpoints that were already inserted
12203 if the target is evaluating breakpoint conditions. We
12204 only update conditions for locations that are marked
12205 "needs_update". */
12206 update_inserted_breakpoint_locations ();
12207 }
12208 }
12209
12210 if (insert_mode != UGLL_DONT_INSERT)
12211 download_tracepoint_locations ();
12212 }
12213
12214 void
12215 breakpoint_retire_moribund (void)
12216 {
12217 struct bp_location *loc;
12218 int ix;
12219
12220 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12221 if (--(loc->events_till_retirement) == 0)
12222 {
12223 decref_bp_location (&loc);
12224 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12225 --ix;
12226 }
12227 }
12228
12229 static void
12230 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12231 {
12232
12233 TRY
12234 {
12235 update_global_location_list (insert_mode);
12236 }
12237 CATCH (e, RETURN_MASK_ERROR)
12238 {
12239 }
12240 END_CATCH
12241 }
12242
12243 /* Clear BKP from a BPS. */
12244
12245 static void
12246 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12247 {
12248 bpstat bs;
12249
12250 for (bs = bps; bs; bs = bs->next)
12251 if (bs->breakpoint_at == bpt)
12252 {
12253 bs->breakpoint_at = NULL;
12254 bs->old_val = NULL;
12255 /* bs->commands will be freed later. */
12256 }
12257 }
12258
12259 /* Callback for iterate_over_threads. */
12260 static int
12261 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12262 {
12263 struct breakpoint *bpt = (struct breakpoint *) data;
12264
12265 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12266 return 0;
12267 }
12268
12269 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12270 callbacks. */
12271
12272 static void
12273 say_where (struct breakpoint *b)
12274 {
12275 struct value_print_options opts;
12276
12277 get_user_print_options (&opts);
12278
12279 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12280 single string. */
12281 if (b->loc == NULL)
12282 {
12283 /* For pending locations, the output differs slightly based
12284 on b->extra_string. If this is non-NULL, it contains either
12285 a condition or dprintf arguments. */
12286 if (b->extra_string == NULL)
12287 {
12288 printf_filtered (_(" (%s) pending."),
12289 event_location_to_string (b->location.get ()));
12290 }
12291 else if (b->type == bp_dprintf)
12292 {
12293 printf_filtered (_(" (%s,%s) pending."),
12294 event_location_to_string (b->location.get ()),
12295 b->extra_string);
12296 }
12297 else
12298 {
12299 printf_filtered (_(" (%s %s) pending."),
12300 event_location_to_string (b->location.get ()),
12301 b->extra_string);
12302 }
12303 }
12304 else
12305 {
12306 if (opts.addressprint || b->loc->symtab == NULL)
12307 {
12308 printf_filtered (" at ");
12309 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12310 gdb_stdout);
12311 }
12312 if (b->loc->symtab != NULL)
12313 {
12314 /* If there is a single location, we can print the location
12315 more nicely. */
12316 if (b->loc->next == NULL)
12317 printf_filtered (": file %s, line %d.",
12318 symtab_to_filename_for_display (b->loc->symtab),
12319 b->loc->line_number);
12320 else
12321 /* This is not ideal, but each location may have a
12322 different file name, and this at least reflects the
12323 real situation somewhat. */
12324 printf_filtered (": %s.",
12325 event_location_to_string (b->location.get ()));
12326 }
12327
12328 if (b->loc->next)
12329 {
12330 struct bp_location *loc = b->loc;
12331 int n = 0;
12332 for (; loc; loc = loc->next)
12333 ++n;
12334 printf_filtered (" (%d locations)", n);
12335 }
12336 }
12337 }
12338
12339 /* Default bp_location_ops methods. */
12340
12341 static void
12342 bp_location_dtor (struct bp_location *self)
12343 {
12344 xfree (self->function_name);
12345 }
12346
12347 static const struct bp_location_ops bp_location_ops =
12348 {
12349 bp_location_dtor
12350 };
12351
12352 /* Destructor for the breakpoint base class. */
12353
12354 breakpoint::~breakpoint ()
12355 {
12356 xfree (this->cond_string);
12357 xfree (this->extra_string);
12358 xfree (this->filter);
12359 }
12360
12361 static struct bp_location *
12362 base_breakpoint_allocate_location (struct breakpoint *self)
12363 {
12364 return new bp_location (&bp_location_ops, self);
12365 }
12366
12367 static void
12368 base_breakpoint_re_set (struct breakpoint *b)
12369 {
12370 /* Nothing to re-set. */
12371 }
12372
12373 #define internal_error_pure_virtual_called() \
12374 gdb_assert_not_reached ("pure virtual function called")
12375
12376 static int
12377 base_breakpoint_insert_location (struct bp_location *bl)
12378 {
12379 internal_error_pure_virtual_called ();
12380 }
12381
12382 static int
12383 base_breakpoint_remove_location (struct bp_location *bl,
12384 enum remove_bp_reason reason)
12385 {
12386 internal_error_pure_virtual_called ();
12387 }
12388
12389 static int
12390 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12391 const address_space *aspace,
12392 CORE_ADDR bp_addr,
12393 const struct target_waitstatus *ws)
12394 {
12395 internal_error_pure_virtual_called ();
12396 }
12397
12398 static void
12399 base_breakpoint_check_status (bpstat bs)
12400 {
12401 /* Always stop. */
12402 }
12403
12404 /* A "works_in_software_mode" breakpoint_ops method that just internal
12405 errors. */
12406
12407 static int
12408 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12409 {
12410 internal_error_pure_virtual_called ();
12411 }
12412
12413 /* A "resources_needed" breakpoint_ops method that just internal
12414 errors. */
12415
12416 static int
12417 base_breakpoint_resources_needed (const struct bp_location *bl)
12418 {
12419 internal_error_pure_virtual_called ();
12420 }
12421
12422 static enum print_stop_action
12423 base_breakpoint_print_it (bpstat bs)
12424 {
12425 internal_error_pure_virtual_called ();
12426 }
12427
12428 static void
12429 base_breakpoint_print_one_detail (const struct breakpoint *self,
12430 struct ui_out *uiout)
12431 {
12432 /* nothing */
12433 }
12434
12435 static void
12436 base_breakpoint_print_mention (struct breakpoint *b)
12437 {
12438 internal_error_pure_virtual_called ();
12439 }
12440
12441 static void
12442 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12443 {
12444 internal_error_pure_virtual_called ();
12445 }
12446
12447 static void
12448 base_breakpoint_create_sals_from_location
12449 (const struct event_location *location,
12450 struct linespec_result *canonical,
12451 enum bptype type_wanted)
12452 {
12453 internal_error_pure_virtual_called ();
12454 }
12455
12456 static void
12457 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12458 struct linespec_result *c,
12459 gdb::unique_xmalloc_ptr<char> cond_string,
12460 gdb::unique_xmalloc_ptr<char> extra_string,
12461 enum bptype type_wanted,
12462 enum bpdisp disposition,
12463 int thread,
12464 int task, int ignore_count,
12465 const struct breakpoint_ops *o,
12466 int from_tty, int enabled,
12467 int internal, unsigned flags)
12468 {
12469 internal_error_pure_virtual_called ();
12470 }
12471
12472 static std::vector<symtab_and_line>
12473 base_breakpoint_decode_location (struct breakpoint *b,
12474 const struct event_location *location,
12475 struct program_space *search_pspace)
12476 {
12477 internal_error_pure_virtual_called ();
12478 }
12479
12480 /* The default 'explains_signal' method. */
12481
12482 static int
12483 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12484 {
12485 return 1;
12486 }
12487
12488 /* The default "after_condition_true" method. */
12489
12490 static void
12491 base_breakpoint_after_condition_true (struct bpstats *bs)
12492 {
12493 /* Nothing to do. */
12494 }
12495
12496 struct breakpoint_ops base_breakpoint_ops =
12497 {
12498 base_breakpoint_allocate_location,
12499 base_breakpoint_re_set,
12500 base_breakpoint_insert_location,
12501 base_breakpoint_remove_location,
12502 base_breakpoint_breakpoint_hit,
12503 base_breakpoint_check_status,
12504 base_breakpoint_resources_needed,
12505 base_breakpoint_works_in_software_mode,
12506 base_breakpoint_print_it,
12507 NULL,
12508 base_breakpoint_print_one_detail,
12509 base_breakpoint_print_mention,
12510 base_breakpoint_print_recreate,
12511 base_breakpoint_create_sals_from_location,
12512 base_breakpoint_create_breakpoints_sal,
12513 base_breakpoint_decode_location,
12514 base_breakpoint_explains_signal,
12515 base_breakpoint_after_condition_true,
12516 };
12517
12518 /* Default breakpoint_ops methods. */
12519
12520 static void
12521 bkpt_re_set (struct breakpoint *b)
12522 {
12523 /* FIXME: is this still reachable? */
12524 if (breakpoint_event_location_empty_p (b))
12525 {
12526 /* Anything without a location can't be re-set. */
12527 delete_breakpoint (b);
12528 return;
12529 }
12530
12531 breakpoint_re_set_default (b);
12532 }
12533
12534 static int
12535 bkpt_insert_location (struct bp_location *bl)
12536 {
12537 CORE_ADDR addr = bl->target_info.reqstd_address;
12538
12539 bl->target_info.kind = breakpoint_kind (bl, &addr);
12540 bl->target_info.placed_address = addr;
12541
12542 if (bl->loc_type == bp_loc_hardware_breakpoint)
12543 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12544 else
12545 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12546 }
12547
12548 static int
12549 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12550 {
12551 if (bl->loc_type == bp_loc_hardware_breakpoint)
12552 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12553 else
12554 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12555 }
12556
12557 static int
12558 bkpt_breakpoint_hit (const struct bp_location *bl,
12559 const address_space *aspace, CORE_ADDR bp_addr,
12560 const struct target_waitstatus *ws)
12561 {
12562 if (ws->kind != TARGET_WAITKIND_STOPPED
12563 || ws->value.sig != GDB_SIGNAL_TRAP)
12564 return 0;
12565
12566 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12567 aspace, bp_addr))
12568 return 0;
12569
12570 if (overlay_debugging /* unmapped overlay section */
12571 && section_is_overlay (bl->section)
12572 && !section_is_mapped (bl->section))
12573 return 0;
12574
12575 return 1;
12576 }
12577
12578 static int
12579 dprintf_breakpoint_hit (const struct bp_location *bl,
12580 const address_space *aspace, CORE_ADDR bp_addr,
12581 const struct target_waitstatus *ws)
12582 {
12583 if (dprintf_style == dprintf_style_agent
12584 && target_can_run_breakpoint_commands ())
12585 {
12586 /* An agent-style dprintf never causes a stop. If we see a trap
12587 for this address it must be for a breakpoint that happens to
12588 be set at the same address. */
12589 return 0;
12590 }
12591
12592 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12593 }
12594
12595 static int
12596 bkpt_resources_needed (const struct bp_location *bl)
12597 {
12598 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12599
12600 return 1;
12601 }
12602
12603 static enum print_stop_action
12604 bkpt_print_it (bpstat bs)
12605 {
12606 struct breakpoint *b;
12607 const struct bp_location *bl;
12608 int bp_temp;
12609 struct ui_out *uiout = current_uiout;
12610
12611 gdb_assert (bs->bp_location_at != NULL);
12612
12613 bl = bs->bp_location_at;
12614 b = bs->breakpoint_at;
12615
12616 bp_temp = b->disposition == disp_del;
12617 if (bl->address != bl->requested_address)
12618 breakpoint_adjustment_warning (bl->requested_address,
12619 bl->address,
12620 b->number, 1);
12621 annotate_breakpoint (b->number);
12622 maybe_print_thread_hit_breakpoint (uiout);
12623
12624 if (bp_temp)
12625 uiout->text ("Temporary breakpoint ");
12626 else
12627 uiout->text ("Breakpoint ");
12628 if (uiout->is_mi_like_p ())
12629 {
12630 uiout->field_string ("reason",
12631 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12632 uiout->field_string ("disp", bpdisp_text (b->disposition));
12633 }
12634 uiout->field_int ("bkptno", b->number);
12635 uiout->text (", ");
12636
12637 return PRINT_SRC_AND_LOC;
12638 }
12639
12640 static void
12641 bkpt_print_mention (struct breakpoint *b)
12642 {
12643 if (current_uiout->is_mi_like_p ())
12644 return;
12645
12646 switch (b->type)
12647 {
12648 case bp_breakpoint:
12649 case bp_gnu_ifunc_resolver:
12650 if (b->disposition == disp_del)
12651 printf_filtered (_("Temporary breakpoint"));
12652 else
12653 printf_filtered (_("Breakpoint"));
12654 printf_filtered (_(" %d"), b->number);
12655 if (b->type == bp_gnu_ifunc_resolver)
12656 printf_filtered (_(" at gnu-indirect-function resolver"));
12657 break;
12658 case bp_hardware_breakpoint:
12659 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12660 break;
12661 case bp_dprintf:
12662 printf_filtered (_("Dprintf %d"), b->number);
12663 break;
12664 }
12665
12666 say_where (b);
12667 }
12668
12669 static void
12670 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12671 {
12672 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12673 fprintf_unfiltered (fp, "tbreak");
12674 else if (tp->type == bp_breakpoint)
12675 fprintf_unfiltered (fp, "break");
12676 else if (tp->type == bp_hardware_breakpoint
12677 && tp->disposition == disp_del)
12678 fprintf_unfiltered (fp, "thbreak");
12679 else if (tp->type == bp_hardware_breakpoint)
12680 fprintf_unfiltered (fp, "hbreak");
12681 else
12682 internal_error (__FILE__, __LINE__,
12683 _("unhandled breakpoint type %d"), (int) tp->type);
12684
12685 fprintf_unfiltered (fp, " %s",
12686 event_location_to_string (tp->location.get ()));
12687
12688 /* Print out extra_string if this breakpoint is pending. It might
12689 contain, for example, conditions that were set by the user. */
12690 if (tp->loc == NULL && tp->extra_string != NULL)
12691 fprintf_unfiltered (fp, " %s", tp->extra_string);
12692
12693 print_recreate_thread (tp, fp);
12694 }
12695
12696 static void
12697 bkpt_create_sals_from_location (const struct event_location *location,
12698 struct linespec_result *canonical,
12699 enum bptype type_wanted)
12700 {
12701 create_sals_from_location_default (location, canonical, type_wanted);
12702 }
12703
12704 static void
12705 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12706 struct linespec_result *canonical,
12707 gdb::unique_xmalloc_ptr<char> cond_string,
12708 gdb::unique_xmalloc_ptr<char> extra_string,
12709 enum bptype type_wanted,
12710 enum bpdisp disposition,
12711 int thread,
12712 int task, int ignore_count,
12713 const struct breakpoint_ops *ops,
12714 int from_tty, int enabled,
12715 int internal, unsigned flags)
12716 {
12717 create_breakpoints_sal_default (gdbarch, canonical,
12718 std::move (cond_string),
12719 std::move (extra_string),
12720 type_wanted,
12721 disposition, thread, task,
12722 ignore_count, ops, from_tty,
12723 enabled, internal, flags);
12724 }
12725
12726 static std::vector<symtab_and_line>
12727 bkpt_decode_location (struct breakpoint *b,
12728 const struct event_location *location,
12729 struct program_space *search_pspace)
12730 {
12731 return decode_location_default (b, location, search_pspace);
12732 }
12733
12734 /* Virtual table for internal breakpoints. */
12735
12736 static void
12737 internal_bkpt_re_set (struct breakpoint *b)
12738 {
12739 switch (b->type)
12740 {
12741 /* Delete overlay event and longjmp master breakpoints; they
12742 will be reset later by breakpoint_re_set. */
12743 case bp_overlay_event:
12744 case bp_longjmp_master:
12745 case bp_std_terminate_master:
12746 case bp_exception_master:
12747 delete_breakpoint (b);
12748 break;
12749
12750 /* This breakpoint is special, it's set up when the inferior
12751 starts and we really don't want to touch it. */
12752 case bp_shlib_event:
12753
12754 /* Like bp_shlib_event, this breakpoint type is special. Once
12755 it is set up, we do not want to touch it. */
12756 case bp_thread_event:
12757 break;
12758 }
12759 }
12760
12761 static void
12762 internal_bkpt_check_status (bpstat bs)
12763 {
12764 if (bs->breakpoint_at->type == bp_shlib_event)
12765 {
12766 /* If requested, stop when the dynamic linker notifies GDB of
12767 events. This allows the user to get control and place
12768 breakpoints in initializer routines for dynamically loaded
12769 objects (among other things). */
12770 bs->stop = stop_on_solib_events;
12771 bs->print = stop_on_solib_events;
12772 }
12773 else
12774 bs->stop = 0;
12775 }
12776
12777 static enum print_stop_action
12778 internal_bkpt_print_it (bpstat bs)
12779 {
12780 struct breakpoint *b;
12781
12782 b = bs->breakpoint_at;
12783
12784 switch (b->type)
12785 {
12786 case bp_shlib_event:
12787 /* Did we stop because the user set the stop_on_solib_events
12788 variable? (If so, we report this as a generic, "Stopped due
12789 to shlib event" message.) */
12790 print_solib_event (0);
12791 break;
12792
12793 case bp_thread_event:
12794 /* Not sure how we will get here.
12795 GDB should not stop for these breakpoints. */
12796 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12797 break;
12798
12799 case bp_overlay_event:
12800 /* By analogy with the thread event, GDB should not stop for these. */
12801 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12802 break;
12803
12804 case bp_longjmp_master:
12805 /* These should never be enabled. */
12806 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12807 break;
12808
12809 case bp_std_terminate_master:
12810 /* These should never be enabled. */
12811 printf_filtered (_("std::terminate Master Breakpoint: "
12812 "gdb should not stop!\n"));
12813 break;
12814
12815 case bp_exception_master:
12816 /* These should never be enabled. */
12817 printf_filtered (_("Exception Master Breakpoint: "
12818 "gdb should not stop!\n"));
12819 break;
12820 }
12821
12822 return PRINT_NOTHING;
12823 }
12824
12825 static void
12826 internal_bkpt_print_mention (struct breakpoint *b)
12827 {
12828 /* Nothing to mention. These breakpoints are internal. */
12829 }
12830
12831 /* Virtual table for momentary breakpoints */
12832
12833 static void
12834 momentary_bkpt_re_set (struct breakpoint *b)
12835 {
12836 /* Keep temporary breakpoints, which can be encountered when we step
12837 over a dlopen call and solib_add is resetting the breakpoints.
12838 Otherwise these should have been blown away via the cleanup chain
12839 or by breakpoint_init_inferior when we rerun the executable. */
12840 }
12841
12842 static void
12843 momentary_bkpt_check_status (bpstat bs)
12844 {
12845 /* Nothing. The point of these breakpoints is causing a stop. */
12846 }
12847
12848 static enum print_stop_action
12849 momentary_bkpt_print_it (bpstat bs)
12850 {
12851 return PRINT_UNKNOWN;
12852 }
12853
12854 static void
12855 momentary_bkpt_print_mention (struct breakpoint *b)
12856 {
12857 /* Nothing to mention. These breakpoints are internal. */
12858 }
12859
12860 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12861
12862 It gets cleared already on the removal of the first one of such placed
12863 breakpoints. This is OK as they get all removed altogether. */
12864
12865 longjmp_breakpoint::~longjmp_breakpoint ()
12866 {
12867 thread_info *tp = find_thread_global_id (this->thread);
12868
12869 if (tp != NULL)
12870 tp->initiating_frame = null_frame_id;
12871 }
12872
12873 /* Specific methods for probe breakpoints. */
12874
12875 static int
12876 bkpt_probe_insert_location (struct bp_location *bl)
12877 {
12878 int v = bkpt_insert_location (bl);
12879
12880 if (v == 0)
12881 {
12882 /* The insertion was successful, now let's set the probe's semaphore
12883 if needed. */
12884 if (bl->probe.probe->pops->set_semaphore != NULL)
12885 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
12886 bl->probe.objfile,
12887 bl->gdbarch);
12888 }
12889
12890 return v;
12891 }
12892
12893 static int
12894 bkpt_probe_remove_location (struct bp_location *bl,
12895 enum remove_bp_reason reason)
12896 {
12897 /* Let's clear the semaphore before removing the location. */
12898 if (bl->probe.probe->pops->clear_semaphore != NULL)
12899 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
12900 bl->probe.objfile,
12901 bl->gdbarch);
12902
12903 return bkpt_remove_location (bl, reason);
12904 }
12905
12906 static void
12907 bkpt_probe_create_sals_from_location (const struct event_location *location,
12908 struct linespec_result *canonical,
12909 enum bptype type_wanted)
12910 {
12911 struct linespec_sals lsal;
12912
12913 lsal.sals = parse_probes (location, NULL, canonical);
12914 lsal.canonical
12915 = xstrdup (event_location_to_string (canonical->location.get ()));
12916 canonical->lsals.push_back (std::move (lsal));
12917 }
12918
12919 static std::vector<symtab_and_line>
12920 bkpt_probe_decode_location (struct breakpoint *b,
12921 const struct event_location *location,
12922 struct program_space *search_pspace)
12923 {
12924 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12925 if (sals.empty ())
12926 error (_("probe not found"));
12927 return sals;
12928 }
12929
12930 /* The breakpoint_ops structure to be used in tracepoints. */
12931
12932 static void
12933 tracepoint_re_set (struct breakpoint *b)
12934 {
12935 breakpoint_re_set_default (b);
12936 }
12937
12938 static int
12939 tracepoint_breakpoint_hit (const struct bp_location *bl,
12940 const address_space *aspace, CORE_ADDR bp_addr,
12941 const struct target_waitstatus *ws)
12942 {
12943 /* By definition, the inferior does not report stops at
12944 tracepoints. */
12945 return 0;
12946 }
12947
12948 static void
12949 tracepoint_print_one_detail (const struct breakpoint *self,
12950 struct ui_out *uiout)
12951 {
12952 struct tracepoint *tp = (struct tracepoint *) self;
12953 if (tp->static_trace_marker_id)
12954 {
12955 gdb_assert (self->type == bp_static_tracepoint);
12956
12957 uiout->text ("\tmarker id is ");
12958 uiout->field_string ("static-tracepoint-marker-string-id",
12959 tp->static_trace_marker_id);
12960 uiout->text ("\n");
12961 }
12962 }
12963
12964 static void
12965 tracepoint_print_mention (struct breakpoint *b)
12966 {
12967 if (current_uiout->is_mi_like_p ())
12968 return;
12969
12970 switch (b->type)
12971 {
12972 case bp_tracepoint:
12973 printf_filtered (_("Tracepoint"));
12974 printf_filtered (_(" %d"), b->number);
12975 break;
12976 case bp_fast_tracepoint:
12977 printf_filtered (_("Fast tracepoint"));
12978 printf_filtered (_(" %d"), b->number);
12979 break;
12980 case bp_static_tracepoint:
12981 printf_filtered (_("Static tracepoint"));
12982 printf_filtered (_(" %d"), b->number);
12983 break;
12984 default:
12985 internal_error (__FILE__, __LINE__,
12986 _("unhandled tracepoint type %d"), (int) b->type);
12987 }
12988
12989 say_where (b);
12990 }
12991
12992 static void
12993 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12994 {
12995 struct tracepoint *tp = (struct tracepoint *) self;
12996
12997 if (self->type == bp_fast_tracepoint)
12998 fprintf_unfiltered (fp, "ftrace");
12999 else if (self->type == bp_static_tracepoint)
13000 fprintf_unfiltered (fp, "strace");
13001 else if (self->type == bp_tracepoint)
13002 fprintf_unfiltered (fp, "trace");
13003 else
13004 internal_error (__FILE__, __LINE__,
13005 _("unhandled tracepoint type %d"), (int) self->type);
13006
13007 fprintf_unfiltered (fp, " %s",
13008 event_location_to_string (self->location.get ()));
13009 print_recreate_thread (self, fp);
13010
13011 if (tp->pass_count)
13012 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13013 }
13014
13015 static void
13016 tracepoint_create_sals_from_location (const struct event_location *location,
13017 struct linespec_result *canonical,
13018 enum bptype type_wanted)
13019 {
13020 create_sals_from_location_default (location, canonical, type_wanted);
13021 }
13022
13023 static void
13024 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13025 struct linespec_result *canonical,
13026 gdb::unique_xmalloc_ptr<char> cond_string,
13027 gdb::unique_xmalloc_ptr<char> extra_string,
13028 enum bptype type_wanted,
13029 enum bpdisp disposition,
13030 int thread,
13031 int task, int ignore_count,
13032 const struct breakpoint_ops *ops,
13033 int from_tty, int enabled,
13034 int internal, unsigned flags)
13035 {
13036 create_breakpoints_sal_default (gdbarch, canonical,
13037 std::move (cond_string),
13038 std::move (extra_string),
13039 type_wanted,
13040 disposition, thread, task,
13041 ignore_count, ops, from_tty,
13042 enabled, internal, flags);
13043 }
13044
13045 static std::vector<symtab_and_line>
13046 tracepoint_decode_location (struct breakpoint *b,
13047 const struct event_location *location,
13048 struct program_space *search_pspace)
13049 {
13050 return decode_location_default (b, location, search_pspace);
13051 }
13052
13053 struct breakpoint_ops tracepoint_breakpoint_ops;
13054
13055 /* The breakpoint_ops structure to be use on tracepoints placed in a
13056 static probe. */
13057
13058 static void
13059 tracepoint_probe_create_sals_from_location
13060 (const struct event_location *location,
13061 struct linespec_result *canonical,
13062 enum bptype type_wanted)
13063 {
13064 /* We use the same method for breakpoint on probes. */
13065 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
13066 }
13067
13068 static std::vector<symtab_and_line>
13069 tracepoint_probe_decode_location (struct breakpoint *b,
13070 const struct event_location *location,
13071 struct program_space *search_pspace)
13072 {
13073 /* We use the same method for breakpoint on probes. */
13074 return bkpt_probe_decode_location (b, location, search_pspace);
13075 }
13076
13077 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13078
13079 /* Dprintf breakpoint_ops methods. */
13080
13081 static void
13082 dprintf_re_set (struct breakpoint *b)
13083 {
13084 breakpoint_re_set_default (b);
13085
13086 /* extra_string should never be non-NULL for dprintf. */
13087 gdb_assert (b->extra_string != NULL);
13088
13089 /* 1 - connect to target 1, that can run breakpoint commands.
13090 2 - create a dprintf, which resolves fine.
13091 3 - disconnect from target 1
13092 4 - connect to target 2, that can NOT run breakpoint commands.
13093
13094 After steps #3/#4, you'll want the dprintf command list to
13095 be updated, because target 1 and 2 may well return different
13096 answers for target_can_run_breakpoint_commands().
13097 Given absence of finer grained resetting, we get to do
13098 it all the time. */
13099 if (b->extra_string != NULL)
13100 update_dprintf_command_list (b);
13101 }
13102
13103 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13104
13105 static void
13106 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13107 {
13108 fprintf_unfiltered (fp, "dprintf %s,%s",
13109 event_location_to_string (tp->location.get ()),
13110 tp->extra_string);
13111 print_recreate_thread (tp, fp);
13112 }
13113
13114 /* Implement the "after_condition_true" breakpoint_ops method for
13115 dprintf.
13116
13117 dprintf's are implemented with regular commands in their command
13118 list, but we run the commands here instead of before presenting the
13119 stop to the user, as dprintf's don't actually cause a stop. This
13120 also makes it so that the commands of multiple dprintfs at the same
13121 address are all handled. */
13122
13123 static void
13124 dprintf_after_condition_true (struct bpstats *bs)
13125 {
13126 struct bpstats tmp_bs;
13127 struct bpstats *tmp_bs_p = &tmp_bs;
13128
13129 /* dprintf's never cause a stop. This wasn't set in the
13130 check_status hook instead because that would make the dprintf's
13131 condition not be evaluated. */
13132 bs->stop = 0;
13133
13134 /* Run the command list here. Take ownership of it instead of
13135 copying. We never want these commands to run later in
13136 bpstat_do_actions, if a breakpoint that causes a stop happens to
13137 be set at same address as this dprintf, or even if running the
13138 commands here throws. */
13139 tmp_bs.commands = bs->commands;
13140 bs->commands = NULL;
13141
13142 bpstat_do_actions_1 (&tmp_bs_p);
13143
13144 /* 'tmp_bs.commands' will usually be NULL by now, but
13145 bpstat_do_actions_1 may return early without processing the whole
13146 list. */
13147 }
13148
13149 /* The breakpoint_ops structure to be used on static tracepoints with
13150 markers (`-m'). */
13151
13152 static void
13153 strace_marker_create_sals_from_location (const struct event_location *location,
13154 struct linespec_result *canonical,
13155 enum bptype type_wanted)
13156 {
13157 struct linespec_sals lsal;
13158 const char *arg_start, *arg;
13159
13160 arg = arg_start = get_linespec_location (location);
13161 lsal.sals = decode_static_tracepoint_spec (&arg);
13162
13163 std::string str (arg_start, arg - arg_start);
13164 const char *ptr = str.c_str ();
13165 canonical->location = new_linespec_location (&ptr);
13166
13167 lsal.canonical
13168 = xstrdup (event_location_to_string (canonical->location.get ()));
13169 canonical->lsals.push_back (std::move (lsal));
13170 }
13171
13172 static void
13173 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13174 struct linespec_result *canonical,
13175 gdb::unique_xmalloc_ptr<char> cond_string,
13176 gdb::unique_xmalloc_ptr<char> extra_string,
13177 enum bptype type_wanted,
13178 enum bpdisp disposition,
13179 int thread,
13180 int task, int ignore_count,
13181 const struct breakpoint_ops *ops,
13182 int from_tty, int enabled,
13183 int internal, unsigned flags)
13184 {
13185 const linespec_sals &lsal = canonical->lsals[0];
13186
13187 /* If the user is creating a static tracepoint by marker id
13188 (strace -m MARKER_ID), then store the sals index, so that
13189 breakpoint_re_set can try to match up which of the newly
13190 found markers corresponds to this one, and, don't try to
13191 expand multiple locations for each sal, given than SALS
13192 already should contain all sals for MARKER_ID. */
13193
13194 for (size_t i = 0; i < lsal.sals.size (); i++)
13195 {
13196 event_location_up location
13197 = copy_event_location (canonical->location.get ());
13198
13199 std::unique_ptr<tracepoint> tp (new tracepoint ());
13200 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13201 std::move (location), NULL,
13202 std::move (cond_string),
13203 std::move (extra_string),
13204 type_wanted, disposition,
13205 thread, task, ignore_count, ops,
13206 from_tty, enabled, internal, flags,
13207 canonical->special_display);
13208 /* Given that its possible to have multiple markers with
13209 the same string id, if the user is creating a static
13210 tracepoint by marker id ("strace -m MARKER_ID"), then
13211 store the sals index, so that breakpoint_re_set can
13212 try to match up which of the newly found markers
13213 corresponds to this one */
13214 tp->static_trace_marker_id_idx = i;
13215
13216 install_breakpoint (internal, std::move (tp), 0);
13217 }
13218 }
13219
13220 static std::vector<symtab_and_line>
13221 strace_marker_decode_location (struct breakpoint *b,
13222 const struct event_location *location,
13223 struct program_space *search_pspace)
13224 {
13225 struct tracepoint *tp = (struct tracepoint *) b;
13226 const char *s = get_linespec_location (location);
13227
13228 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13229 if (sals.size () > tp->static_trace_marker_id_idx)
13230 {
13231 sals[0] = sals[tp->static_trace_marker_id_idx];
13232 sals.resize (1);
13233 return sals;
13234 }
13235 else
13236 error (_("marker %s not found"), tp->static_trace_marker_id);
13237 }
13238
13239 static struct breakpoint_ops strace_marker_breakpoint_ops;
13240
13241 static int
13242 strace_marker_p (struct breakpoint *b)
13243 {
13244 return b->ops == &strace_marker_breakpoint_ops;
13245 }
13246
13247 /* Delete a breakpoint and clean up all traces of it in the data
13248 structures. */
13249
13250 void
13251 delete_breakpoint (struct breakpoint *bpt)
13252 {
13253 struct breakpoint *b;
13254
13255 gdb_assert (bpt != NULL);
13256
13257 /* Has this bp already been deleted? This can happen because
13258 multiple lists can hold pointers to bp's. bpstat lists are
13259 especial culprits.
13260
13261 One example of this happening is a watchpoint's scope bp. When
13262 the scope bp triggers, we notice that the watchpoint is out of
13263 scope, and delete it. We also delete its scope bp. But the
13264 scope bp is marked "auto-deleting", and is already on a bpstat.
13265 That bpstat is then checked for auto-deleting bp's, which are
13266 deleted.
13267
13268 A real solution to this problem might involve reference counts in
13269 bp's, and/or giving them pointers back to their referencing
13270 bpstat's, and teaching delete_breakpoint to only free a bp's
13271 storage when no more references were extent. A cheaper bandaid
13272 was chosen. */
13273 if (bpt->type == bp_none)
13274 return;
13275
13276 /* At least avoid this stale reference until the reference counting
13277 of breakpoints gets resolved. */
13278 if (bpt->related_breakpoint != bpt)
13279 {
13280 struct breakpoint *related;
13281 struct watchpoint *w;
13282
13283 if (bpt->type == bp_watchpoint_scope)
13284 w = (struct watchpoint *) bpt->related_breakpoint;
13285 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13286 w = (struct watchpoint *) bpt;
13287 else
13288 w = NULL;
13289 if (w != NULL)
13290 watchpoint_del_at_next_stop (w);
13291
13292 /* Unlink bpt from the bpt->related_breakpoint ring. */
13293 for (related = bpt; related->related_breakpoint != bpt;
13294 related = related->related_breakpoint);
13295 related->related_breakpoint = bpt->related_breakpoint;
13296 bpt->related_breakpoint = bpt;
13297 }
13298
13299 /* watch_command_1 creates a watchpoint but only sets its number if
13300 update_watchpoint succeeds in creating its bp_locations. If there's
13301 a problem in that process, we'll be asked to delete the half-created
13302 watchpoint. In that case, don't announce the deletion. */
13303 if (bpt->number)
13304 observer_notify_breakpoint_deleted (bpt);
13305
13306 if (breakpoint_chain == bpt)
13307 breakpoint_chain = bpt->next;
13308
13309 ALL_BREAKPOINTS (b)
13310 if (b->next == bpt)
13311 {
13312 b->next = bpt->next;
13313 break;
13314 }
13315
13316 /* Be sure no bpstat's are pointing at the breakpoint after it's
13317 been freed. */
13318 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13319 in all threads for now. Note that we cannot just remove bpstats
13320 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13321 commands are associated with the bpstat; if we remove it here,
13322 then the later call to bpstat_do_actions (&stop_bpstat); in
13323 event-top.c won't do anything, and temporary breakpoints with
13324 commands won't work. */
13325
13326 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13327
13328 /* Now that breakpoint is removed from breakpoint list, update the
13329 global location list. This will remove locations that used to
13330 belong to this breakpoint. Do this before freeing the breakpoint
13331 itself, since remove_breakpoint looks at location's owner. It
13332 might be better design to have location completely
13333 self-contained, but it's not the case now. */
13334 update_global_location_list (UGLL_DONT_INSERT);
13335
13336 /* On the chance that someone will soon try again to delete this
13337 same bp, we mark it as deleted before freeing its storage. */
13338 bpt->type = bp_none;
13339 delete bpt;
13340 }
13341
13342 /* Iterator function to call a user-provided callback function once
13343 for each of B and its related breakpoints. */
13344
13345 static void
13346 iterate_over_related_breakpoints (struct breakpoint *b,
13347 gdb::function_view<void (breakpoint *)> function)
13348 {
13349 struct breakpoint *related;
13350
13351 related = b;
13352 do
13353 {
13354 struct breakpoint *next;
13355
13356 /* FUNCTION may delete RELATED. */
13357 next = related->related_breakpoint;
13358
13359 if (next == related)
13360 {
13361 /* RELATED is the last ring entry. */
13362 function (related);
13363
13364 /* FUNCTION may have deleted it, so we'd never reach back to
13365 B. There's nothing left to do anyway, so just break
13366 out. */
13367 break;
13368 }
13369 else
13370 function (related);
13371
13372 related = next;
13373 }
13374 while (related != b);
13375 }
13376
13377 static void
13378 delete_command (const char *arg, int from_tty)
13379 {
13380 struct breakpoint *b, *b_tmp;
13381
13382 dont_repeat ();
13383
13384 if (arg == 0)
13385 {
13386 int breaks_to_delete = 0;
13387
13388 /* Delete all breakpoints if no argument. Do not delete
13389 internal breakpoints, these have to be deleted with an
13390 explicit breakpoint number argument. */
13391 ALL_BREAKPOINTS (b)
13392 if (user_breakpoint_p (b))
13393 {
13394 breaks_to_delete = 1;
13395 break;
13396 }
13397
13398 /* Ask user only if there are some breakpoints to delete. */
13399 if (!from_tty
13400 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13401 {
13402 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13403 if (user_breakpoint_p (b))
13404 delete_breakpoint (b);
13405 }
13406 }
13407 else
13408 map_breakpoint_numbers
13409 (arg, [&] (breakpoint *b)
13410 {
13411 iterate_over_related_breakpoints (b, delete_breakpoint);
13412 });
13413 }
13414
13415 /* Return true if all locations of B bound to PSPACE are pending. If
13416 PSPACE is NULL, all locations of all program spaces are
13417 considered. */
13418
13419 static int
13420 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13421 {
13422 struct bp_location *loc;
13423
13424 for (loc = b->loc; loc != NULL; loc = loc->next)
13425 if ((pspace == NULL
13426 || loc->pspace == pspace)
13427 && !loc->shlib_disabled
13428 && !loc->pspace->executing_startup)
13429 return 0;
13430 return 1;
13431 }
13432
13433 /* Subroutine of update_breakpoint_locations to simplify it.
13434 Return non-zero if multiple fns in list LOC have the same name.
13435 Null names are ignored. */
13436
13437 static int
13438 ambiguous_names_p (struct bp_location *loc)
13439 {
13440 struct bp_location *l;
13441 htab_t htab = htab_create_alloc (13, htab_hash_string,
13442 (int (*) (const void *,
13443 const void *)) streq,
13444 NULL, xcalloc, xfree);
13445
13446 for (l = loc; l != NULL; l = l->next)
13447 {
13448 const char **slot;
13449 const char *name = l->function_name;
13450
13451 /* Allow for some names to be NULL, ignore them. */
13452 if (name == NULL)
13453 continue;
13454
13455 slot = (const char **) htab_find_slot (htab, (const void *) name,
13456 INSERT);
13457 /* NOTE: We can assume slot != NULL here because xcalloc never
13458 returns NULL. */
13459 if (*slot != NULL)
13460 {
13461 htab_delete (htab);
13462 return 1;
13463 }
13464 *slot = name;
13465 }
13466
13467 htab_delete (htab);
13468 return 0;
13469 }
13470
13471 /* When symbols change, it probably means the sources changed as well,
13472 and it might mean the static tracepoint markers are no longer at
13473 the same address or line numbers they used to be at last we
13474 checked. Losing your static tracepoints whenever you rebuild is
13475 undesirable. This function tries to resync/rematch gdb static
13476 tracepoints with the markers on the target, for static tracepoints
13477 that have not been set by marker id. Static tracepoint that have
13478 been set by marker id are reset by marker id in breakpoint_re_set.
13479 The heuristic is:
13480
13481 1) For a tracepoint set at a specific address, look for a marker at
13482 the old PC. If one is found there, assume to be the same marker.
13483 If the name / string id of the marker found is different from the
13484 previous known name, assume that means the user renamed the marker
13485 in the sources, and output a warning.
13486
13487 2) For a tracepoint set at a given line number, look for a marker
13488 at the new address of the old line number. If one is found there,
13489 assume to be the same marker. If the name / string id of the
13490 marker found is different from the previous known name, assume that
13491 means the user renamed the marker in the sources, and output a
13492 warning.
13493
13494 3) If a marker is no longer found at the same address or line, it
13495 may mean the marker no longer exists. But it may also just mean
13496 the code changed a bit. Maybe the user added a few lines of code
13497 that made the marker move up or down (in line number terms). Ask
13498 the target for info about the marker with the string id as we knew
13499 it. If found, update line number and address in the matching
13500 static tracepoint. This will get confused if there's more than one
13501 marker with the same ID (possible in UST, although unadvised
13502 precisely because it confuses tools). */
13503
13504 static struct symtab_and_line
13505 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13506 {
13507 struct tracepoint *tp = (struct tracepoint *) b;
13508 struct static_tracepoint_marker marker;
13509 CORE_ADDR pc;
13510
13511 pc = sal.pc;
13512 if (sal.line)
13513 find_line_pc (sal.symtab, sal.line, &pc);
13514
13515 if (target_static_tracepoint_marker_at (pc, &marker))
13516 {
13517 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13518 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13519 b->number,
13520 tp->static_trace_marker_id, marker.str_id);
13521
13522 xfree (tp->static_trace_marker_id);
13523 tp->static_trace_marker_id = xstrdup (marker.str_id);
13524 release_static_tracepoint_marker (&marker);
13525
13526 return sal;
13527 }
13528
13529 /* Old marker wasn't found on target at lineno. Try looking it up
13530 by string ID. */
13531 if (!sal.explicit_pc
13532 && sal.line != 0
13533 && sal.symtab != NULL
13534 && tp->static_trace_marker_id != NULL)
13535 {
13536 VEC(static_tracepoint_marker_p) *markers;
13537
13538 markers
13539 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13540
13541 if (!VEC_empty(static_tracepoint_marker_p, markers))
13542 {
13543 struct symbol *sym;
13544 struct static_tracepoint_marker *tpmarker;
13545 struct ui_out *uiout = current_uiout;
13546 struct explicit_location explicit_loc;
13547
13548 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13549
13550 xfree (tp->static_trace_marker_id);
13551 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13552
13553 warning (_("marker for static tracepoint %d (%s) not "
13554 "found at previous line number"),
13555 b->number, tp->static_trace_marker_id);
13556
13557 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13558 sym = find_pc_sect_function (tpmarker->address, NULL);
13559 uiout->text ("Now in ");
13560 if (sym)
13561 {
13562 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13563 uiout->text (" at ");
13564 }
13565 uiout->field_string ("file",
13566 symtab_to_filename_for_display (sal2.symtab));
13567 uiout->text (":");
13568
13569 if (uiout->is_mi_like_p ())
13570 {
13571 const char *fullname = symtab_to_fullname (sal2.symtab);
13572
13573 uiout->field_string ("fullname", fullname);
13574 }
13575
13576 uiout->field_int ("line", sal2.line);
13577 uiout->text ("\n");
13578
13579 b->loc->line_number = sal2.line;
13580 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13581
13582 b->location.reset (NULL);
13583 initialize_explicit_location (&explicit_loc);
13584 explicit_loc.source_filename
13585 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13586 explicit_loc.line_offset.offset = b->loc->line_number;
13587 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13588 b->location = new_explicit_location (&explicit_loc);
13589
13590 /* Might be nice to check if function changed, and warn if
13591 so. */
13592
13593 release_static_tracepoint_marker (tpmarker);
13594 }
13595 }
13596 return sal;
13597 }
13598
13599 /* Returns 1 iff locations A and B are sufficiently same that
13600 we don't need to report breakpoint as changed. */
13601
13602 static int
13603 locations_are_equal (struct bp_location *a, struct bp_location *b)
13604 {
13605 while (a && b)
13606 {
13607 if (a->address != b->address)
13608 return 0;
13609
13610 if (a->shlib_disabled != b->shlib_disabled)
13611 return 0;
13612
13613 if (a->enabled != b->enabled)
13614 return 0;
13615
13616 a = a->next;
13617 b = b->next;
13618 }
13619
13620 if ((a == NULL) != (b == NULL))
13621 return 0;
13622
13623 return 1;
13624 }
13625
13626 /* Split all locations of B that are bound to PSPACE out of B's
13627 location list to a separate list and return that list's head. If
13628 PSPACE is NULL, hoist out all locations of B. */
13629
13630 static struct bp_location *
13631 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13632 {
13633 struct bp_location head;
13634 struct bp_location *i = b->loc;
13635 struct bp_location **i_link = &b->loc;
13636 struct bp_location *hoisted = &head;
13637
13638 if (pspace == NULL)
13639 {
13640 i = b->loc;
13641 b->loc = NULL;
13642 return i;
13643 }
13644
13645 head.next = NULL;
13646
13647 while (i != NULL)
13648 {
13649 if (i->pspace == pspace)
13650 {
13651 *i_link = i->next;
13652 i->next = NULL;
13653 hoisted->next = i;
13654 hoisted = i;
13655 }
13656 else
13657 i_link = &i->next;
13658 i = *i_link;
13659 }
13660
13661 return head.next;
13662 }
13663
13664 /* Create new breakpoint locations for B (a hardware or software
13665 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13666 zero, then B is a ranged breakpoint. Only recreates locations for
13667 FILTER_PSPACE. Locations of other program spaces are left
13668 untouched. */
13669
13670 void
13671 update_breakpoint_locations (struct breakpoint *b,
13672 struct program_space *filter_pspace,
13673 gdb::array_view<const symtab_and_line> sals,
13674 gdb::array_view<const symtab_and_line> sals_end)
13675 {
13676 int i;
13677 struct bp_location *existing_locations;
13678
13679 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13680 {
13681 /* Ranged breakpoints have only one start location and one end
13682 location. */
13683 b->enable_state = bp_disabled;
13684 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13685 "multiple locations found\n"),
13686 b->number);
13687 return;
13688 }
13689
13690 /* If there's no new locations, and all existing locations are
13691 pending, don't do anything. This optimizes the common case where
13692 all locations are in the same shared library, that was unloaded.
13693 We'd like to retain the location, so that when the library is
13694 loaded again, we don't loose the enabled/disabled status of the
13695 individual locations. */
13696 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13697 return;
13698
13699 existing_locations = hoist_existing_locations (b, filter_pspace);
13700
13701 for (const auto &sal : sals)
13702 {
13703 struct bp_location *new_loc;
13704
13705 switch_to_program_space_and_thread (sal.pspace);
13706
13707 new_loc = add_location_to_breakpoint (b, &sal);
13708
13709 /* Reparse conditions, they might contain references to the
13710 old symtab. */
13711 if (b->cond_string != NULL)
13712 {
13713 const char *s;
13714
13715 s = b->cond_string;
13716 TRY
13717 {
13718 new_loc->cond = parse_exp_1 (&s, sal.pc,
13719 block_for_pc (sal.pc),
13720 0);
13721 }
13722 CATCH (e, RETURN_MASK_ERROR)
13723 {
13724 warning (_("failed to reevaluate condition "
13725 "for breakpoint %d: %s"),
13726 b->number, e.message);
13727 new_loc->enabled = 0;
13728 }
13729 END_CATCH
13730 }
13731
13732 if (!sals_end.empty ())
13733 {
13734 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13735
13736 new_loc->length = end - sals[0].pc + 1;
13737 }
13738 }
13739
13740 /* If possible, carry over 'disable' status from existing
13741 breakpoints. */
13742 {
13743 struct bp_location *e = existing_locations;
13744 /* If there are multiple breakpoints with the same function name,
13745 e.g. for inline functions, comparing function names won't work.
13746 Instead compare pc addresses; this is just a heuristic as things
13747 may have moved, but in practice it gives the correct answer
13748 often enough until a better solution is found. */
13749 int have_ambiguous_names = ambiguous_names_p (b->loc);
13750
13751 for (; e; e = e->next)
13752 {
13753 if (!e->enabled && e->function_name)
13754 {
13755 struct bp_location *l = b->loc;
13756 if (have_ambiguous_names)
13757 {
13758 for (; l; l = l->next)
13759 if (breakpoint_locations_match (e, l))
13760 {
13761 l->enabled = 0;
13762 break;
13763 }
13764 }
13765 else
13766 {
13767 for (; l; l = l->next)
13768 if (l->function_name
13769 && strcmp (e->function_name, l->function_name) == 0)
13770 {
13771 l->enabled = 0;
13772 break;
13773 }
13774 }
13775 }
13776 }
13777 }
13778
13779 if (!locations_are_equal (existing_locations, b->loc))
13780 observer_notify_breakpoint_modified (b);
13781 }
13782
13783 /* Find the SaL locations corresponding to the given LOCATION.
13784 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13785
13786 static std::vector<symtab_and_line>
13787 location_to_sals (struct breakpoint *b, struct event_location *location,
13788 struct program_space *search_pspace, int *found)
13789 {
13790 struct gdb_exception exception = exception_none;
13791
13792 gdb_assert (b->ops != NULL);
13793
13794 std::vector<symtab_and_line> sals;
13795
13796 TRY
13797 {
13798 sals = b->ops->decode_location (b, location, search_pspace);
13799 }
13800 CATCH (e, RETURN_MASK_ERROR)
13801 {
13802 int not_found_and_ok = 0;
13803
13804 exception = e;
13805
13806 /* For pending breakpoints, it's expected that parsing will
13807 fail until the right shared library is loaded. User has
13808 already told to create pending breakpoints and don't need
13809 extra messages. If breakpoint is in bp_shlib_disabled
13810 state, then user already saw the message about that
13811 breakpoint being disabled, and don't want to see more
13812 errors. */
13813 if (e.error == NOT_FOUND_ERROR
13814 && (b->condition_not_parsed
13815 || (b->loc != NULL
13816 && search_pspace != NULL
13817 && b->loc->pspace != search_pspace)
13818 || (b->loc && b->loc->shlib_disabled)
13819 || (b->loc && b->loc->pspace->executing_startup)
13820 || b->enable_state == bp_disabled))
13821 not_found_and_ok = 1;
13822
13823 if (!not_found_and_ok)
13824 {
13825 /* We surely don't want to warn about the same breakpoint
13826 10 times. One solution, implemented here, is disable
13827 the breakpoint on error. Another solution would be to
13828 have separate 'warning emitted' flag. Since this
13829 happens only when a binary has changed, I don't know
13830 which approach is better. */
13831 b->enable_state = bp_disabled;
13832 throw_exception (e);
13833 }
13834 }
13835 END_CATCH
13836
13837 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13838 {
13839 for (auto &sal : sals)
13840 resolve_sal_pc (&sal);
13841 if (b->condition_not_parsed && b->extra_string != NULL)
13842 {
13843 char *cond_string, *extra_string;
13844 int thread, task;
13845
13846 find_condition_and_thread (b->extra_string, sals[0].pc,
13847 &cond_string, &thread, &task,
13848 &extra_string);
13849 gdb_assert (b->cond_string == NULL);
13850 if (cond_string)
13851 b->cond_string = cond_string;
13852 b->thread = thread;
13853 b->task = task;
13854 if (extra_string)
13855 {
13856 xfree (b->extra_string);
13857 b->extra_string = extra_string;
13858 }
13859 b->condition_not_parsed = 0;
13860 }
13861
13862 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13863 sals[0] = update_static_tracepoint (b, sals[0]);
13864
13865 *found = 1;
13866 }
13867 else
13868 *found = 0;
13869
13870 return sals;
13871 }
13872
13873 /* The default re_set method, for typical hardware or software
13874 breakpoints. Reevaluate the breakpoint and recreate its
13875 locations. */
13876
13877 static void
13878 breakpoint_re_set_default (struct breakpoint *b)
13879 {
13880 struct program_space *filter_pspace = current_program_space;
13881 std::vector<symtab_and_line> expanded, expanded_end;
13882
13883 int found;
13884 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13885 filter_pspace, &found);
13886 if (found)
13887 expanded = std::move (sals);
13888
13889 if (b->location_range_end != NULL)
13890 {
13891 std::vector<symtab_and_line> sals_end
13892 = location_to_sals (b, b->location_range_end.get (),
13893 filter_pspace, &found);
13894 if (found)
13895 expanded_end = std::move (sals_end);
13896 }
13897
13898 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13899 }
13900
13901 /* Default method for creating SALs from an address string. It basically
13902 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13903
13904 static void
13905 create_sals_from_location_default (const struct event_location *location,
13906 struct linespec_result *canonical,
13907 enum bptype type_wanted)
13908 {
13909 parse_breakpoint_sals (location, canonical);
13910 }
13911
13912 /* Call create_breakpoints_sal for the given arguments. This is the default
13913 function for the `create_breakpoints_sal' method of
13914 breakpoint_ops. */
13915
13916 static void
13917 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13918 struct linespec_result *canonical,
13919 gdb::unique_xmalloc_ptr<char> cond_string,
13920 gdb::unique_xmalloc_ptr<char> extra_string,
13921 enum bptype type_wanted,
13922 enum bpdisp disposition,
13923 int thread,
13924 int task, int ignore_count,
13925 const struct breakpoint_ops *ops,
13926 int from_tty, int enabled,
13927 int internal, unsigned flags)
13928 {
13929 create_breakpoints_sal (gdbarch, canonical,
13930 std::move (cond_string),
13931 std::move (extra_string),
13932 type_wanted, disposition,
13933 thread, task, ignore_count, ops, from_tty,
13934 enabled, internal, flags);
13935 }
13936
13937 /* Decode the line represented by S by calling decode_line_full. This is the
13938 default function for the `decode_location' method of breakpoint_ops. */
13939
13940 static std::vector<symtab_and_line>
13941 decode_location_default (struct breakpoint *b,
13942 const struct event_location *location,
13943 struct program_space *search_pspace)
13944 {
13945 struct linespec_result canonical;
13946
13947 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13948 (struct symtab *) NULL, 0,
13949 &canonical, multiple_symbols_all,
13950 b->filter);
13951
13952 /* We should get 0 or 1 resulting SALs. */
13953 gdb_assert (canonical.lsals.size () < 2);
13954
13955 if (!canonical.lsals.empty ())
13956 {
13957 const linespec_sals &lsal = canonical.lsals[0];
13958 return std::move (lsal.sals);
13959 }
13960 return {};
13961 }
13962
13963 /* Reset a breakpoint. */
13964
13965 static void
13966 breakpoint_re_set_one (breakpoint *b)
13967 {
13968 input_radix = b->input_radix;
13969 set_language (b->language);
13970
13971 b->ops->re_set (b);
13972 }
13973
13974 /* Re-set breakpoint locations for the current program space.
13975 Locations bound to other program spaces are left untouched. */
13976
13977 void
13978 breakpoint_re_set (void)
13979 {
13980 struct breakpoint *b, *b_tmp;
13981
13982 {
13983 scoped_restore_current_language save_language;
13984 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13985 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13986
13987 /* Note: we must not try to insert locations until after all
13988 breakpoints have been re-set. Otherwise, e.g., when re-setting
13989 breakpoint 1, we'd insert the locations of breakpoint 2, which
13990 hadn't been re-set yet, and thus may have stale locations. */
13991
13992 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13993 {
13994 TRY
13995 {
13996 breakpoint_re_set_one (b);
13997 }
13998 CATCH (ex, RETURN_MASK_ALL)
13999 {
14000 exception_fprintf (gdb_stderr, ex,
14001 "Error in re-setting breakpoint %d: ",
14002 b->number);
14003 }
14004 END_CATCH
14005 }
14006
14007 jit_breakpoint_re_set ();
14008 }
14009
14010 create_overlay_event_breakpoint ();
14011 create_longjmp_master_breakpoint ();
14012 create_std_terminate_master_breakpoint ();
14013 create_exception_master_breakpoint ();
14014
14015 /* Now we can insert. */
14016 update_global_location_list (UGLL_MAY_INSERT);
14017 }
14018 \f
14019 /* Reset the thread number of this breakpoint:
14020
14021 - If the breakpoint is for all threads, leave it as-is.
14022 - Else, reset it to the current thread for inferior_ptid. */
14023 void
14024 breakpoint_re_set_thread (struct breakpoint *b)
14025 {
14026 if (b->thread != -1)
14027 {
14028 if (in_thread_list (inferior_ptid))
14029 b->thread = ptid_to_global_thread_id (inferior_ptid);
14030
14031 /* We're being called after following a fork. The new fork is
14032 selected as current, and unless this was a vfork will have a
14033 different program space from the original thread. Reset that
14034 as well. */
14035 b->loc->pspace = current_program_space;
14036 }
14037 }
14038
14039 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14040 If from_tty is nonzero, it prints a message to that effect,
14041 which ends with a period (no newline). */
14042
14043 void
14044 set_ignore_count (int bptnum, int count, int from_tty)
14045 {
14046 struct breakpoint *b;
14047
14048 if (count < 0)
14049 count = 0;
14050
14051 ALL_BREAKPOINTS (b)
14052 if (b->number == bptnum)
14053 {
14054 if (is_tracepoint (b))
14055 {
14056 if (from_tty && count != 0)
14057 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14058 bptnum);
14059 return;
14060 }
14061
14062 b->ignore_count = count;
14063 if (from_tty)
14064 {
14065 if (count == 0)
14066 printf_filtered (_("Will stop next time "
14067 "breakpoint %d is reached."),
14068 bptnum);
14069 else if (count == 1)
14070 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14071 bptnum);
14072 else
14073 printf_filtered (_("Will ignore next %d "
14074 "crossings of breakpoint %d."),
14075 count, bptnum);
14076 }
14077 observer_notify_breakpoint_modified (b);
14078 return;
14079 }
14080
14081 error (_("No breakpoint number %d."), bptnum);
14082 }
14083
14084 /* Command to set ignore-count of breakpoint N to COUNT. */
14085
14086 static void
14087 ignore_command (const char *args, int from_tty)
14088 {
14089 const char *p = args;
14090 int num;
14091
14092 if (p == 0)
14093 error_no_arg (_("a breakpoint number"));
14094
14095 num = get_number (&p);
14096 if (num == 0)
14097 error (_("bad breakpoint number: '%s'"), args);
14098 if (*p == 0)
14099 error (_("Second argument (specified ignore-count) is missing."));
14100
14101 set_ignore_count (num,
14102 longest_to_int (value_as_long (parse_and_eval (p))),
14103 from_tty);
14104 if (from_tty)
14105 printf_filtered ("\n");
14106 }
14107 \f
14108
14109 /* Call FUNCTION on each of the breakpoints with numbers in the range
14110 defined by BP_NUM_RANGE (an inclusive range). */
14111
14112 static void
14113 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14114 gdb::function_view<void (breakpoint *)> function)
14115 {
14116 if (bp_num_range.first == 0)
14117 {
14118 warning (_("bad breakpoint number at or near '%d'"),
14119 bp_num_range.first);
14120 }
14121 else
14122 {
14123 struct breakpoint *b, *tmp;
14124
14125 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14126 {
14127 bool match = false;
14128
14129 ALL_BREAKPOINTS_SAFE (b, tmp)
14130 if (b->number == i)
14131 {
14132 match = true;
14133 function (b);
14134 break;
14135 }
14136 if (!match)
14137 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14138 }
14139 }
14140 }
14141
14142 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14143 ARGS. */
14144
14145 static void
14146 map_breakpoint_numbers (const char *args,
14147 gdb::function_view<void (breakpoint *)> function)
14148 {
14149 if (args == NULL || *args == '\0')
14150 error_no_arg (_("one or more breakpoint numbers"));
14151
14152 number_or_range_parser parser (args);
14153
14154 while (!parser.finished ())
14155 {
14156 int num = parser.get_number ();
14157 map_breakpoint_number_range (std::make_pair (num, num), function);
14158 }
14159 }
14160
14161 /* Return the breakpoint location structure corresponding to the
14162 BP_NUM and LOC_NUM values. */
14163
14164 static struct bp_location *
14165 find_location_by_number (int bp_num, int loc_num)
14166 {
14167 struct breakpoint *b;
14168
14169 ALL_BREAKPOINTS (b)
14170 if (b->number == bp_num)
14171 {
14172 break;
14173 }
14174
14175 if (!b || b->number != bp_num)
14176 error (_("Bad breakpoint number '%d'"), bp_num);
14177
14178 if (loc_num == 0)
14179 error (_("Bad breakpoint location number '%d'"), loc_num);
14180
14181 int n = 0;
14182 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14183 if (++n == loc_num)
14184 return loc;
14185
14186 error (_("Bad breakpoint location number '%d'"), loc_num);
14187 }
14188
14189 /* Modes of operation for extract_bp_num. */
14190 enum class extract_bp_kind
14191 {
14192 /* Extracting a breakpoint number. */
14193 bp,
14194
14195 /* Extracting a location number. */
14196 loc,
14197 };
14198
14199 /* Extract a breakpoint or location number (as determined by KIND)
14200 from the string starting at START. TRAILER is a character which
14201 can be found after the number. If you don't want a trailer, use
14202 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14203 string. This always returns a positive integer. */
14204
14205 static int
14206 extract_bp_num (extract_bp_kind kind, const char *start,
14207 int trailer, const char **end_out = NULL)
14208 {
14209 const char *end = start;
14210 int num = get_number_trailer (&end, trailer);
14211 if (num < 0)
14212 error (kind == extract_bp_kind::bp
14213 ? _("Negative breakpoint number '%.*s'")
14214 : _("Negative breakpoint location number '%.*s'"),
14215 int (end - start), start);
14216 if (num == 0)
14217 error (kind == extract_bp_kind::bp
14218 ? _("Bad breakpoint number '%.*s'")
14219 : _("Bad breakpoint location number '%.*s'"),
14220 int (end - start), start);
14221
14222 if (end_out != NULL)
14223 *end_out = end;
14224 return num;
14225 }
14226
14227 /* Extract a breakpoint or location range (as determined by KIND) in
14228 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14229 representing the (inclusive) range. The returned pair's elements
14230 are always positive integers. */
14231
14232 static std::pair<int, int>
14233 extract_bp_or_bp_range (extract_bp_kind kind,
14234 const std::string &arg,
14235 std::string::size_type arg_offset)
14236 {
14237 std::pair<int, int> range;
14238 const char *bp_loc = &arg[arg_offset];
14239 std::string::size_type dash = arg.find ('-', arg_offset);
14240 if (dash != std::string::npos)
14241 {
14242 /* bp_loc is a range (x-z). */
14243 if (arg.length () == dash + 1)
14244 error (kind == extract_bp_kind::bp
14245 ? _("Bad breakpoint number at or near: '%s'")
14246 : _("Bad breakpoint location number at or near: '%s'"),
14247 bp_loc);
14248
14249 const char *end;
14250 const char *start_first = bp_loc;
14251 const char *start_second = &arg[dash + 1];
14252 range.first = extract_bp_num (kind, start_first, '-');
14253 range.second = extract_bp_num (kind, start_second, '\0', &end);
14254
14255 if (range.first > range.second)
14256 error (kind == extract_bp_kind::bp
14257 ? _("Inverted breakpoint range at '%.*s'")
14258 : _("Inverted breakpoint location range at '%.*s'"),
14259 int (end - start_first), start_first);
14260 }
14261 else
14262 {
14263 /* bp_loc is a single value. */
14264 range.first = extract_bp_num (kind, bp_loc, '\0');
14265 range.second = range.first;
14266 }
14267 return range;
14268 }
14269
14270 /* Extract the breakpoint/location range specified by ARG. Returns
14271 the breakpoint range in BP_NUM_RANGE, and the location range in
14272 BP_LOC_RANGE.
14273
14274 ARG may be in any of the following forms:
14275
14276 x where 'x' is a breakpoint number.
14277 x-y where 'x' and 'y' specify a breakpoint numbers range.
14278 x.y where 'x' is a breakpoint number and 'y' a location number.
14279 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14280 location number range.
14281 */
14282
14283 static void
14284 extract_bp_number_and_location (const std::string &arg,
14285 std::pair<int, int> &bp_num_range,
14286 std::pair<int, int> &bp_loc_range)
14287 {
14288 std::string::size_type dot = arg.find ('.');
14289
14290 if (dot != std::string::npos)
14291 {
14292 /* Handle 'x.y' and 'x.y-z' cases. */
14293
14294 if (arg.length () == dot + 1 || dot == 0)
14295 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14296
14297 bp_num_range.first
14298 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14299 bp_num_range.second = bp_num_range.first;
14300
14301 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14302 arg, dot + 1);
14303 }
14304 else
14305 {
14306 /* Handle x and x-y cases. */
14307
14308 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14309 bp_loc_range.first = 0;
14310 bp_loc_range.second = 0;
14311 }
14312 }
14313
14314 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14315 specifies whether to enable or disable. */
14316
14317 static void
14318 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14319 {
14320 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14321 if (loc != NULL)
14322 {
14323 if (loc->enabled != enable)
14324 {
14325 loc->enabled = enable;
14326 mark_breakpoint_location_modified (loc);
14327 }
14328 if (target_supports_enable_disable_tracepoint ()
14329 && current_trace_status ()->running && loc->owner
14330 && is_tracepoint (loc->owner))
14331 target_disable_tracepoint (loc);
14332 }
14333 update_global_location_list (UGLL_DONT_INSERT);
14334 }
14335
14336 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14337 number of the breakpoint, and BP_LOC_RANGE specifies the
14338 (inclusive) range of location numbers of that breakpoint to
14339 enable/disable. ENABLE specifies whether to enable or disable the
14340 location. */
14341
14342 static void
14343 enable_disable_breakpoint_location_range (int bp_num,
14344 std::pair<int, int> &bp_loc_range,
14345 bool enable)
14346 {
14347 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14348 enable_disable_bp_num_loc (bp_num, i, enable);
14349 }
14350
14351 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14352 If from_tty is nonzero, it prints a message to that effect,
14353 which ends with a period (no newline). */
14354
14355 void
14356 disable_breakpoint (struct breakpoint *bpt)
14357 {
14358 /* Never disable a watchpoint scope breakpoint; we want to
14359 hit them when we leave scope so we can delete both the
14360 watchpoint and its scope breakpoint at that time. */
14361 if (bpt->type == bp_watchpoint_scope)
14362 return;
14363
14364 bpt->enable_state = bp_disabled;
14365
14366 /* Mark breakpoint locations modified. */
14367 mark_breakpoint_modified (bpt);
14368
14369 if (target_supports_enable_disable_tracepoint ()
14370 && current_trace_status ()->running && is_tracepoint (bpt))
14371 {
14372 struct bp_location *location;
14373
14374 for (location = bpt->loc; location; location = location->next)
14375 target_disable_tracepoint (location);
14376 }
14377
14378 update_global_location_list (UGLL_DONT_INSERT);
14379
14380 observer_notify_breakpoint_modified (bpt);
14381 }
14382
14383 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14384 specified in ARGS. ARGS may be in any of the formats handled by
14385 extract_bp_number_and_location. ENABLE specifies whether to enable
14386 or disable the breakpoints/locations. */
14387
14388 static void
14389 enable_disable_command (const char *args, int from_tty, bool enable)
14390 {
14391 if (args == 0)
14392 {
14393 struct breakpoint *bpt;
14394
14395 ALL_BREAKPOINTS (bpt)
14396 if (user_breakpoint_p (bpt))
14397 {
14398 if (enable)
14399 enable_breakpoint (bpt);
14400 else
14401 disable_breakpoint (bpt);
14402 }
14403 }
14404 else
14405 {
14406 std::string num = extract_arg (&args);
14407
14408 while (!num.empty ())
14409 {
14410 std::pair<int, int> bp_num_range, bp_loc_range;
14411
14412 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14413
14414 if (bp_loc_range.first == bp_loc_range.second
14415 && bp_loc_range.first == 0)
14416 {
14417 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14418 map_breakpoint_number_range (bp_num_range,
14419 enable
14420 ? enable_breakpoint
14421 : disable_breakpoint);
14422 }
14423 else
14424 {
14425 /* Handle breakpoint ids with formats 'x.y' or
14426 'x.y-z'. */
14427 enable_disable_breakpoint_location_range
14428 (bp_num_range.first, bp_loc_range, enable);
14429 }
14430 num = extract_arg (&args);
14431 }
14432 }
14433 }
14434
14435 /* The disable command disables the specified breakpoints/locations
14436 (or all defined breakpoints) so they're no longer effective in
14437 stopping the inferior. ARGS may be in any of the forms defined in
14438 extract_bp_number_and_location. */
14439
14440 static void
14441 disable_command (const char *args, int from_tty)
14442 {
14443 enable_disable_command (args, from_tty, false);
14444 }
14445
14446 static void
14447 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14448 int count)
14449 {
14450 int target_resources_ok;
14451
14452 if (bpt->type == bp_hardware_breakpoint)
14453 {
14454 int i;
14455 i = hw_breakpoint_used_count ();
14456 target_resources_ok =
14457 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14458 i + 1, 0);
14459 if (target_resources_ok == 0)
14460 error (_("No hardware breakpoint support in the target."));
14461 else if (target_resources_ok < 0)
14462 error (_("Hardware breakpoints used exceeds limit."));
14463 }
14464
14465 if (is_watchpoint (bpt))
14466 {
14467 /* Initialize it just to avoid a GCC false warning. */
14468 enum enable_state orig_enable_state = bp_disabled;
14469
14470 TRY
14471 {
14472 struct watchpoint *w = (struct watchpoint *) bpt;
14473
14474 orig_enable_state = bpt->enable_state;
14475 bpt->enable_state = bp_enabled;
14476 update_watchpoint (w, 1 /* reparse */);
14477 }
14478 CATCH (e, RETURN_MASK_ALL)
14479 {
14480 bpt->enable_state = orig_enable_state;
14481 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14482 bpt->number);
14483 return;
14484 }
14485 END_CATCH
14486 }
14487
14488 bpt->enable_state = bp_enabled;
14489
14490 /* Mark breakpoint locations modified. */
14491 mark_breakpoint_modified (bpt);
14492
14493 if (target_supports_enable_disable_tracepoint ()
14494 && current_trace_status ()->running && is_tracepoint (bpt))
14495 {
14496 struct bp_location *location;
14497
14498 for (location = bpt->loc; location; location = location->next)
14499 target_enable_tracepoint (location);
14500 }
14501
14502 bpt->disposition = disposition;
14503 bpt->enable_count = count;
14504 update_global_location_list (UGLL_MAY_INSERT);
14505
14506 observer_notify_breakpoint_modified (bpt);
14507 }
14508
14509
14510 void
14511 enable_breakpoint (struct breakpoint *bpt)
14512 {
14513 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14514 }
14515
14516 /* The enable command enables the specified breakpoints/locations (or
14517 all defined breakpoints) so they once again become (or continue to
14518 be) effective in stopping the inferior. ARGS may be in any of the
14519 forms defined in extract_bp_number_and_location. */
14520
14521 static void
14522 enable_command (const char *args, int from_tty)
14523 {
14524 enable_disable_command (args, from_tty, true);
14525 }
14526
14527 static void
14528 enable_once_command (const char *args, int from_tty)
14529 {
14530 map_breakpoint_numbers
14531 (args, [&] (breakpoint *b)
14532 {
14533 iterate_over_related_breakpoints
14534 (b, [&] (breakpoint *bpt)
14535 {
14536 enable_breakpoint_disp (bpt, disp_disable, 1);
14537 });
14538 });
14539 }
14540
14541 static void
14542 enable_count_command (const char *args, int from_tty)
14543 {
14544 int count;
14545
14546 if (args == NULL)
14547 error_no_arg (_("hit count"));
14548
14549 count = get_number (&args);
14550
14551 map_breakpoint_numbers
14552 (args, [&] (breakpoint *b)
14553 {
14554 iterate_over_related_breakpoints
14555 (b, [&] (breakpoint *bpt)
14556 {
14557 enable_breakpoint_disp (bpt, disp_disable, count);
14558 });
14559 });
14560 }
14561
14562 static void
14563 enable_delete_command (const char *args, int from_tty)
14564 {
14565 map_breakpoint_numbers
14566 (args, [&] (breakpoint *b)
14567 {
14568 iterate_over_related_breakpoints
14569 (b, [&] (breakpoint *bpt)
14570 {
14571 enable_breakpoint_disp (bpt, disp_del, 1);
14572 });
14573 });
14574 }
14575 \f
14576 static void
14577 set_breakpoint_cmd (const char *args, int from_tty)
14578 {
14579 }
14580
14581 static void
14582 show_breakpoint_cmd (const char *args, int from_tty)
14583 {
14584 }
14585
14586 /* Invalidate last known value of any hardware watchpoint if
14587 the memory which that value represents has been written to by
14588 GDB itself. */
14589
14590 static void
14591 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14592 CORE_ADDR addr, ssize_t len,
14593 const bfd_byte *data)
14594 {
14595 struct breakpoint *bp;
14596
14597 ALL_BREAKPOINTS (bp)
14598 if (bp->enable_state == bp_enabled
14599 && bp->type == bp_hardware_watchpoint)
14600 {
14601 struct watchpoint *wp = (struct watchpoint *) bp;
14602
14603 if (wp->val_valid && wp->val)
14604 {
14605 struct bp_location *loc;
14606
14607 for (loc = bp->loc; loc != NULL; loc = loc->next)
14608 if (loc->loc_type == bp_loc_hardware_watchpoint
14609 && loc->address + loc->length > addr
14610 && addr + len > loc->address)
14611 {
14612 value_free (wp->val);
14613 wp->val = NULL;
14614 wp->val_valid = 0;
14615 }
14616 }
14617 }
14618 }
14619
14620 /* Create and insert a breakpoint for software single step. */
14621
14622 void
14623 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14624 const address_space *aspace,
14625 CORE_ADDR next_pc)
14626 {
14627 struct thread_info *tp = inferior_thread ();
14628 struct symtab_and_line sal;
14629 CORE_ADDR pc = next_pc;
14630
14631 if (tp->control.single_step_breakpoints == NULL)
14632 {
14633 tp->control.single_step_breakpoints
14634 = new_single_step_breakpoint (tp->global_num, gdbarch);
14635 }
14636
14637 sal = find_pc_line (pc, 0);
14638 sal.pc = pc;
14639 sal.section = find_pc_overlay (pc);
14640 sal.explicit_pc = 1;
14641 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14642
14643 update_global_location_list (UGLL_INSERT);
14644 }
14645
14646 /* Insert single step breakpoints according to the current state. */
14647
14648 int
14649 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14650 {
14651 struct regcache *regcache = get_current_regcache ();
14652 std::vector<CORE_ADDR> next_pcs;
14653
14654 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14655
14656 if (!next_pcs.empty ())
14657 {
14658 struct frame_info *frame = get_current_frame ();
14659 const address_space *aspace = get_frame_address_space (frame);
14660
14661 for (CORE_ADDR pc : next_pcs)
14662 insert_single_step_breakpoint (gdbarch, aspace, pc);
14663
14664 return 1;
14665 }
14666 else
14667 return 0;
14668 }
14669
14670 /* See breakpoint.h. */
14671
14672 int
14673 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14674 const address_space *aspace,
14675 CORE_ADDR pc)
14676 {
14677 struct bp_location *loc;
14678
14679 for (loc = bp->loc; loc != NULL; loc = loc->next)
14680 if (loc->inserted
14681 && breakpoint_location_address_match (loc, aspace, pc))
14682 return 1;
14683
14684 return 0;
14685 }
14686
14687 /* Check whether a software single-step breakpoint is inserted at
14688 PC. */
14689
14690 int
14691 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14692 CORE_ADDR pc)
14693 {
14694 struct breakpoint *bpt;
14695
14696 ALL_BREAKPOINTS (bpt)
14697 {
14698 if (bpt->type == bp_single_step
14699 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14700 return 1;
14701 }
14702 return 0;
14703 }
14704
14705 /* Tracepoint-specific operations. */
14706
14707 /* Set tracepoint count to NUM. */
14708 static void
14709 set_tracepoint_count (int num)
14710 {
14711 tracepoint_count = num;
14712 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14713 }
14714
14715 static void
14716 trace_command (const char *arg, int from_tty)
14717 {
14718 struct breakpoint_ops *ops;
14719
14720 event_location_up location = string_to_event_location (&arg,
14721 current_language);
14722 if (location != NULL
14723 && event_location_type (location.get ()) == PROBE_LOCATION)
14724 ops = &tracepoint_probe_breakpoint_ops;
14725 else
14726 ops = &tracepoint_breakpoint_ops;
14727
14728 create_breakpoint (get_current_arch (),
14729 location.get (),
14730 NULL, 0, arg, 1 /* parse arg */,
14731 0 /* tempflag */,
14732 bp_tracepoint /* type_wanted */,
14733 0 /* Ignore count */,
14734 pending_break_support,
14735 ops,
14736 from_tty,
14737 1 /* enabled */,
14738 0 /* internal */, 0);
14739 }
14740
14741 static void
14742 ftrace_command (const char *arg, int from_tty)
14743 {
14744 event_location_up location = string_to_event_location (&arg,
14745 current_language);
14746 create_breakpoint (get_current_arch (),
14747 location.get (),
14748 NULL, 0, arg, 1 /* parse arg */,
14749 0 /* tempflag */,
14750 bp_fast_tracepoint /* type_wanted */,
14751 0 /* Ignore count */,
14752 pending_break_support,
14753 &tracepoint_breakpoint_ops,
14754 from_tty,
14755 1 /* enabled */,
14756 0 /* internal */, 0);
14757 }
14758
14759 /* strace command implementation. Creates a static tracepoint. */
14760
14761 static void
14762 strace_command (const char *arg, int from_tty)
14763 {
14764 struct breakpoint_ops *ops;
14765 event_location_up location;
14766
14767 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14768 or with a normal static tracepoint. */
14769 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14770 {
14771 ops = &strace_marker_breakpoint_ops;
14772 location = new_linespec_location (&arg);
14773 }
14774 else
14775 {
14776 ops = &tracepoint_breakpoint_ops;
14777 location = string_to_event_location (&arg, current_language);
14778 }
14779
14780 create_breakpoint (get_current_arch (),
14781 location.get (),
14782 NULL, 0, arg, 1 /* parse arg */,
14783 0 /* tempflag */,
14784 bp_static_tracepoint /* type_wanted */,
14785 0 /* Ignore count */,
14786 pending_break_support,
14787 ops,
14788 from_tty,
14789 1 /* enabled */,
14790 0 /* internal */, 0);
14791 }
14792
14793 /* Set up a fake reader function that gets command lines from a linked
14794 list that was acquired during tracepoint uploading. */
14795
14796 static struct uploaded_tp *this_utp;
14797 static int next_cmd;
14798
14799 static char *
14800 read_uploaded_action (void)
14801 {
14802 char *rslt;
14803
14804 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
14805
14806 next_cmd++;
14807
14808 return rslt;
14809 }
14810
14811 /* Given information about a tracepoint as recorded on a target (which
14812 can be either a live system or a trace file), attempt to create an
14813 equivalent GDB tracepoint. This is not a reliable process, since
14814 the target does not necessarily have all the information used when
14815 the tracepoint was originally defined. */
14816
14817 struct tracepoint *
14818 create_tracepoint_from_upload (struct uploaded_tp *utp)
14819 {
14820 const char *addr_str;
14821 char small_buf[100];
14822 struct tracepoint *tp;
14823
14824 if (utp->at_string)
14825 addr_str = utp->at_string;
14826 else
14827 {
14828 /* In the absence of a source location, fall back to raw
14829 address. Since there is no way to confirm that the address
14830 means the same thing as when the trace was started, warn the
14831 user. */
14832 warning (_("Uploaded tracepoint %d has no "
14833 "source location, using raw address"),
14834 utp->number);
14835 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14836 addr_str = small_buf;
14837 }
14838
14839 /* There's not much we can do with a sequence of bytecodes. */
14840 if (utp->cond && !utp->cond_string)
14841 warning (_("Uploaded tracepoint %d condition "
14842 "has no source form, ignoring it"),
14843 utp->number);
14844
14845 event_location_up location = string_to_event_location (&addr_str,
14846 current_language);
14847 if (!create_breakpoint (get_current_arch (),
14848 location.get (),
14849 utp->cond_string, -1, addr_str,
14850 0 /* parse cond/thread */,
14851 0 /* tempflag */,
14852 utp->type /* type_wanted */,
14853 0 /* Ignore count */,
14854 pending_break_support,
14855 &tracepoint_breakpoint_ops,
14856 0 /* from_tty */,
14857 utp->enabled /* enabled */,
14858 0 /* internal */,
14859 CREATE_BREAKPOINT_FLAGS_INSERTED))
14860 return NULL;
14861
14862 /* Get the tracepoint we just created. */
14863 tp = get_tracepoint (tracepoint_count);
14864 gdb_assert (tp != NULL);
14865
14866 if (utp->pass > 0)
14867 {
14868 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14869 tp->number);
14870
14871 trace_pass_command (small_buf, 0);
14872 }
14873
14874 /* If we have uploaded versions of the original commands, set up a
14875 special-purpose "reader" function and call the usual command line
14876 reader, then pass the result to the breakpoint command-setting
14877 function. */
14878 if (!VEC_empty (char_ptr, utp->cmd_strings))
14879 {
14880 command_line_up cmd_list;
14881
14882 this_utp = utp;
14883 next_cmd = 0;
14884
14885 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14886
14887 breakpoint_set_commands (tp, std::move (cmd_list));
14888 }
14889 else if (!VEC_empty (char_ptr, utp->actions)
14890 || !VEC_empty (char_ptr, utp->step_actions))
14891 warning (_("Uploaded tracepoint %d actions "
14892 "have no source form, ignoring them"),
14893 utp->number);
14894
14895 /* Copy any status information that might be available. */
14896 tp->hit_count = utp->hit_count;
14897 tp->traceframe_usage = utp->traceframe_usage;
14898
14899 return tp;
14900 }
14901
14902 /* Print information on tracepoint number TPNUM_EXP, or all if
14903 omitted. */
14904
14905 static void
14906 info_tracepoints_command (const char *args, int from_tty)
14907 {
14908 struct ui_out *uiout = current_uiout;
14909 int num_printed;
14910
14911 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14912
14913 if (num_printed == 0)
14914 {
14915 if (args == NULL || *args == '\0')
14916 uiout->message ("No tracepoints.\n");
14917 else
14918 uiout->message ("No tracepoint matching '%s'.\n", args);
14919 }
14920
14921 default_collect_info ();
14922 }
14923
14924 /* The 'enable trace' command enables tracepoints.
14925 Not supported by all targets. */
14926 static void
14927 enable_trace_command (const char *args, int from_tty)
14928 {
14929 enable_command (args, from_tty);
14930 }
14931
14932 /* The 'disable trace' command disables tracepoints.
14933 Not supported by all targets. */
14934 static void
14935 disable_trace_command (const char *args, int from_tty)
14936 {
14937 disable_command (args, from_tty);
14938 }
14939
14940 /* Remove a tracepoint (or all if no argument). */
14941 static void
14942 delete_trace_command (const char *arg, int from_tty)
14943 {
14944 struct breakpoint *b, *b_tmp;
14945
14946 dont_repeat ();
14947
14948 if (arg == 0)
14949 {
14950 int breaks_to_delete = 0;
14951
14952 /* Delete all breakpoints if no argument.
14953 Do not delete internal or call-dummy breakpoints, these
14954 have to be deleted with an explicit breakpoint number
14955 argument. */
14956 ALL_TRACEPOINTS (b)
14957 if (is_tracepoint (b) && user_breakpoint_p (b))
14958 {
14959 breaks_to_delete = 1;
14960 break;
14961 }
14962
14963 /* Ask user only if there are some breakpoints to delete. */
14964 if (!from_tty
14965 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14966 {
14967 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14968 if (is_tracepoint (b) && user_breakpoint_p (b))
14969 delete_breakpoint (b);
14970 }
14971 }
14972 else
14973 map_breakpoint_numbers
14974 (arg, [&] (breakpoint *b)
14975 {
14976 iterate_over_related_breakpoints (b, delete_breakpoint);
14977 });
14978 }
14979
14980 /* Helper function for trace_pass_command. */
14981
14982 static void
14983 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14984 {
14985 tp->pass_count = count;
14986 observer_notify_breakpoint_modified (tp);
14987 if (from_tty)
14988 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14989 tp->number, count);
14990 }
14991
14992 /* Set passcount for tracepoint.
14993
14994 First command argument is passcount, second is tracepoint number.
14995 If tracepoint number omitted, apply to most recently defined.
14996 Also accepts special argument "all". */
14997
14998 static void
14999 trace_pass_command (const char *args, int from_tty)
15000 {
15001 struct tracepoint *t1;
15002 ULONGEST count;
15003
15004 if (args == 0 || *args == 0)
15005 error (_("passcount command requires an "
15006 "argument (count + optional TP num)"));
15007
15008 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
15009
15010 args = skip_spaces (args);
15011 if (*args && strncasecmp (args, "all", 3) == 0)
15012 {
15013 struct breakpoint *b;
15014
15015 args += 3; /* Skip special argument "all". */
15016 if (*args)
15017 error (_("Junk at end of arguments."));
15018
15019 ALL_TRACEPOINTS (b)
15020 {
15021 t1 = (struct tracepoint *) b;
15022 trace_pass_set_count (t1, count, from_tty);
15023 }
15024 }
15025 else if (*args == '\0')
15026 {
15027 t1 = get_tracepoint_by_number (&args, NULL);
15028 if (t1)
15029 trace_pass_set_count (t1, count, from_tty);
15030 }
15031 else
15032 {
15033 number_or_range_parser parser (args);
15034 while (!parser.finished ())
15035 {
15036 t1 = get_tracepoint_by_number (&args, &parser);
15037 if (t1)
15038 trace_pass_set_count (t1, count, from_tty);
15039 }
15040 }
15041 }
15042
15043 struct tracepoint *
15044 get_tracepoint (int num)
15045 {
15046 struct breakpoint *t;
15047
15048 ALL_TRACEPOINTS (t)
15049 if (t->number == num)
15050 return (struct tracepoint *) t;
15051
15052 return NULL;
15053 }
15054
15055 /* Find the tracepoint with the given target-side number (which may be
15056 different from the tracepoint number after disconnecting and
15057 reconnecting). */
15058
15059 struct tracepoint *
15060 get_tracepoint_by_number_on_target (int num)
15061 {
15062 struct breakpoint *b;
15063
15064 ALL_TRACEPOINTS (b)
15065 {
15066 struct tracepoint *t = (struct tracepoint *) b;
15067
15068 if (t->number_on_target == num)
15069 return t;
15070 }
15071
15072 return NULL;
15073 }
15074
15075 /* Utility: parse a tracepoint number and look it up in the list.
15076 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15077 If the argument is missing, the most recent tracepoint
15078 (tracepoint_count) is returned. */
15079
15080 struct tracepoint *
15081 get_tracepoint_by_number (const char **arg,
15082 number_or_range_parser *parser)
15083 {
15084 struct breakpoint *t;
15085 int tpnum;
15086 const char *instring = arg == NULL ? NULL : *arg;
15087
15088 if (parser != NULL)
15089 {
15090 gdb_assert (!parser->finished ());
15091 tpnum = parser->get_number ();
15092 }
15093 else if (arg == NULL || *arg == NULL || ! **arg)
15094 tpnum = tracepoint_count;
15095 else
15096 tpnum = get_number (arg);
15097
15098 if (tpnum <= 0)
15099 {
15100 if (instring && *instring)
15101 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15102 instring);
15103 else
15104 printf_filtered (_("No previous tracepoint\n"));
15105 return NULL;
15106 }
15107
15108 ALL_TRACEPOINTS (t)
15109 if (t->number == tpnum)
15110 {
15111 return (struct tracepoint *) t;
15112 }
15113
15114 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15115 return NULL;
15116 }
15117
15118 void
15119 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15120 {
15121 if (b->thread != -1)
15122 fprintf_unfiltered (fp, " thread %d", b->thread);
15123
15124 if (b->task != 0)
15125 fprintf_unfiltered (fp, " task %d", b->task);
15126
15127 fprintf_unfiltered (fp, "\n");
15128 }
15129
15130 /* Save information on user settable breakpoints (watchpoints, etc) to
15131 a new script file named FILENAME. If FILTER is non-NULL, call it
15132 on each breakpoint and only include the ones for which it returns
15133 non-zero. */
15134
15135 static void
15136 save_breakpoints (const char *filename, int from_tty,
15137 int (*filter) (const struct breakpoint *))
15138 {
15139 struct breakpoint *tp;
15140 int any = 0;
15141 int extra_trace_bits = 0;
15142
15143 if (filename == 0 || *filename == 0)
15144 error (_("Argument required (file name in which to save)"));
15145
15146 /* See if we have anything to save. */
15147 ALL_BREAKPOINTS (tp)
15148 {
15149 /* Skip internal and momentary breakpoints. */
15150 if (!user_breakpoint_p (tp))
15151 continue;
15152
15153 /* If we have a filter, only save the breakpoints it accepts. */
15154 if (filter && !filter (tp))
15155 continue;
15156
15157 any = 1;
15158
15159 if (is_tracepoint (tp))
15160 {
15161 extra_trace_bits = 1;
15162
15163 /* We can stop searching. */
15164 break;
15165 }
15166 }
15167
15168 if (!any)
15169 {
15170 warning (_("Nothing to save."));
15171 return;
15172 }
15173
15174 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15175
15176 stdio_file fp;
15177
15178 if (!fp.open (expanded_filename.get (), "w"))
15179 error (_("Unable to open file '%s' for saving (%s)"),
15180 expanded_filename.get (), safe_strerror (errno));
15181
15182 if (extra_trace_bits)
15183 save_trace_state_variables (&fp);
15184
15185 ALL_BREAKPOINTS (tp)
15186 {
15187 /* Skip internal and momentary breakpoints. */
15188 if (!user_breakpoint_p (tp))
15189 continue;
15190
15191 /* If we have a filter, only save the breakpoints it accepts. */
15192 if (filter && !filter (tp))
15193 continue;
15194
15195 tp->ops->print_recreate (tp, &fp);
15196
15197 /* Note, we can't rely on tp->number for anything, as we can't
15198 assume the recreated breakpoint numbers will match. Use $bpnum
15199 instead. */
15200
15201 if (tp->cond_string)
15202 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15203
15204 if (tp->ignore_count)
15205 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15206
15207 if (tp->type != bp_dprintf && tp->commands)
15208 {
15209 fp.puts (" commands\n");
15210
15211 current_uiout->redirect (&fp);
15212 TRY
15213 {
15214 print_command_lines (current_uiout, tp->commands.get (), 2);
15215 }
15216 CATCH (ex, RETURN_MASK_ALL)
15217 {
15218 current_uiout->redirect (NULL);
15219 throw_exception (ex);
15220 }
15221 END_CATCH
15222
15223 current_uiout->redirect (NULL);
15224 fp.puts (" end\n");
15225 }
15226
15227 if (tp->enable_state == bp_disabled)
15228 fp.puts ("disable $bpnum\n");
15229
15230 /* If this is a multi-location breakpoint, check if the locations
15231 should be individually disabled. Watchpoint locations are
15232 special, and not user visible. */
15233 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15234 {
15235 struct bp_location *loc;
15236 int n = 1;
15237
15238 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15239 if (!loc->enabled)
15240 fp.printf ("disable $bpnum.%d\n", n);
15241 }
15242 }
15243
15244 if (extra_trace_bits && *default_collect)
15245 fp.printf ("set default-collect %s\n", default_collect);
15246
15247 if (from_tty)
15248 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15249 }
15250
15251 /* The `save breakpoints' command. */
15252
15253 static void
15254 save_breakpoints_command (const char *args, int from_tty)
15255 {
15256 save_breakpoints (args, from_tty, NULL);
15257 }
15258
15259 /* The `save tracepoints' command. */
15260
15261 static void
15262 save_tracepoints_command (const char *args, int from_tty)
15263 {
15264 save_breakpoints (args, from_tty, is_tracepoint);
15265 }
15266
15267 /* Create a vector of all tracepoints. */
15268
15269 VEC(breakpoint_p) *
15270 all_tracepoints (void)
15271 {
15272 VEC(breakpoint_p) *tp_vec = 0;
15273 struct breakpoint *tp;
15274
15275 ALL_TRACEPOINTS (tp)
15276 {
15277 VEC_safe_push (breakpoint_p, tp_vec, tp);
15278 }
15279
15280 return tp_vec;
15281 }
15282
15283 \f
15284 /* This help string is used to consolidate all the help string for specifying
15285 locations used by several commands. */
15286
15287 #define LOCATION_HELP_STRING \
15288 "Linespecs are colon-separated lists of location parameters, such as\n\
15289 source filename, function name, label name, and line number.\n\
15290 Example: To specify the start of a label named \"the_top\" in the\n\
15291 function \"fact\" in the file \"factorial.c\", use\n\
15292 \"factorial.c:fact:the_top\".\n\
15293 \n\
15294 Address locations begin with \"*\" and specify an exact address in the\n\
15295 program. Example: To specify the fourth byte past the start function\n\
15296 \"main\", use \"*main + 4\".\n\
15297 \n\
15298 Explicit locations are similar to linespecs but use an option/argument\n\
15299 syntax to specify location parameters.\n\
15300 Example: To specify the start of the label named \"the_top\" in the\n\
15301 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15302 -function fact -label the_top\".\n"
15303
15304 /* This help string is used for the break, hbreak, tbreak and thbreak
15305 commands. It is defined as a macro to prevent duplication.
15306 COMMAND should be a string constant containing the name of the
15307 command. */
15308
15309 #define BREAK_ARGS_HELP(command) \
15310 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15311 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15312 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15313 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15314 `-probe-dtrace' (for a DTrace probe).\n\
15315 LOCATION may be a linespec, address, or explicit location as described\n\
15316 below.\n\
15317 \n\
15318 With no LOCATION, uses current execution address of the selected\n\
15319 stack frame. This is useful for breaking on return to a stack frame.\n\
15320 \n\
15321 THREADNUM is the number from \"info threads\".\n\
15322 CONDITION is a boolean expression.\n\
15323 \n" LOCATION_HELP_STRING "\n\
15324 Multiple breakpoints at one place are permitted, and useful if their\n\
15325 conditions are different.\n\
15326 \n\
15327 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15328
15329 /* List of subcommands for "catch". */
15330 static struct cmd_list_element *catch_cmdlist;
15331
15332 /* List of subcommands for "tcatch". */
15333 static struct cmd_list_element *tcatch_cmdlist;
15334
15335 void
15336 add_catch_command (const char *name, const char *docstring,
15337 cmd_sfunc_ftype *sfunc,
15338 completer_ftype *completer,
15339 void *user_data_catch,
15340 void *user_data_tcatch)
15341 {
15342 struct cmd_list_element *command;
15343
15344 command = add_cmd (name, class_breakpoint, docstring,
15345 &catch_cmdlist);
15346 set_cmd_sfunc (command, sfunc);
15347 set_cmd_context (command, user_data_catch);
15348 set_cmd_completer (command, completer);
15349
15350 command = add_cmd (name, class_breakpoint, docstring,
15351 &tcatch_cmdlist);
15352 set_cmd_sfunc (command, sfunc);
15353 set_cmd_context (command, user_data_tcatch);
15354 set_cmd_completer (command, completer);
15355 }
15356
15357 static void
15358 save_command (const char *arg, int from_tty)
15359 {
15360 printf_unfiltered (_("\"save\" must be followed by "
15361 "the name of a save subcommand.\n"));
15362 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15363 }
15364
15365 struct breakpoint *
15366 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15367 void *data)
15368 {
15369 struct breakpoint *b, *b_tmp;
15370
15371 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15372 {
15373 if ((*callback) (b, data))
15374 return b;
15375 }
15376
15377 return NULL;
15378 }
15379
15380 /* Zero if any of the breakpoint's locations could be a location where
15381 functions have been inlined, nonzero otherwise. */
15382
15383 static int
15384 is_non_inline_function (struct breakpoint *b)
15385 {
15386 /* The shared library event breakpoint is set on the address of a
15387 non-inline function. */
15388 if (b->type == bp_shlib_event)
15389 return 1;
15390
15391 return 0;
15392 }
15393
15394 /* Nonzero if the specified PC cannot be a location where functions
15395 have been inlined. */
15396
15397 int
15398 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15399 const struct target_waitstatus *ws)
15400 {
15401 struct breakpoint *b;
15402 struct bp_location *bl;
15403
15404 ALL_BREAKPOINTS (b)
15405 {
15406 if (!is_non_inline_function (b))
15407 continue;
15408
15409 for (bl = b->loc; bl != NULL; bl = bl->next)
15410 {
15411 if (!bl->shlib_disabled
15412 && bpstat_check_location (bl, aspace, pc, ws))
15413 return 1;
15414 }
15415 }
15416
15417 return 0;
15418 }
15419
15420 /* Remove any references to OBJFILE which is going to be freed. */
15421
15422 void
15423 breakpoint_free_objfile (struct objfile *objfile)
15424 {
15425 struct bp_location **locp, *loc;
15426
15427 ALL_BP_LOCATIONS (loc, locp)
15428 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15429 loc->symtab = NULL;
15430 }
15431
15432 void
15433 initialize_breakpoint_ops (void)
15434 {
15435 static int initialized = 0;
15436
15437 struct breakpoint_ops *ops;
15438
15439 if (initialized)
15440 return;
15441 initialized = 1;
15442
15443 /* The breakpoint_ops structure to be inherit by all kinds of
15444 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15445 internal and momentary breakpoints, etc.). */
15446 ops = &bkpt_base_breakpoint_ops;
15447 *ops = base_breakpoint_ops;
15448 ops->re_set = bkpt_re_set;
15449 ops->insert_location = bkpt_insert_location;
15450 ops->remove_location = bkpt_remove_location;
15451 ops->breakpoint_hit = bkpt_breakpoint_hit;
15452 ops->create_sals_from_location = bkpt_create_sals_from_location;
15453 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15454 ops->decode_location = bkpt_decode_location;
15455
15456 /* The breakpoint_ops structure to be used in regular breakpoints. */
15457 ops = &bkpt_breakpoint_ops;
15458 *ops = bkpt_base_breakpoint_ops;
15459 ops->re_set = bkpt_re_set;
15460 ops->resources_needed = bkpt_resources_needed;
15461 ops->print_it = bkpt_print_it;
15462 ops->print_mention = bkpt_print_mention;
15463 ops->print_recreate = bkpt_print_recreate;
15464
15465 /* Ranged breakpoints. */
15466 ops = &ranged_breakpoint_ops;
15467 *ops = bkpt_breakpoint_ops;
15468 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15469 ops->resources_needed = resources_needed_ranged_breakpoint;
15470 ops->print_it = print_it_ranged_breakpoint;
15471 ops->print_one = print_one_ranged_breakpoint;
15472 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15473 ops->print_mention = print_mention_ranged_breakpoint;
15474 ops->print_recreate = print_recreate_ranged_breakpoint;
15475
15476 /* Internal breakpoints. */
15477 ops = &internal_breakpoint_ops;
15478 *ops = bkpt_base_breakpoint_ops;
15479 ops->re_set = internal_bkpt_re_set;
15480 ops->check_status = internal_bkpt_check_status;
15481 ops->print_it = internal_bkpt_print_it;
15482 ops->print_mention = internal_bkpt_print_mention;
15483
15484 /* Momentary breakpoints. */
15485 ops = &momentary_breakpoint_ops;
15486 *ops = bkpt_base_breakpoint_ops;
15487 ops->re_set = momentary_bkpt_re_set;
15488 ops->check_status = momentary_bkpt_check_status;
15489 ops->print_it = momentary_bkpt_print_it;
15490 ops->print_mention = momentary_bkpt_print_mention;
15491
15492 /* Probe breakpoints. */
15493 ops = &bkpt_probe_breakpoint_ops;
15494 *ops = bkpt_breakpoint_ops;
15495 ops->insert_location = bkpt_probe_insert_location;
15496 ops->remove_location = bkpt_probe_remove_location;
15497 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15498 ops->decode_location = bkpt_probe_decode_location;
15499
15500 /* Watchpoints. */
15501 ops = &watchpoint_breakpoint_ops;
15502 *ops = base_breakpoint_ops;
15503 ops->re_set = re_set_watchpoint;
15504 ops->insert_location = insert_watchpoint;
15505 ops->remove_location = remove_watchpoint;
15506 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15507 ops->check_status = check_status_watchpoint;
15508 ops->resources_needed = resources_needed_watchpoint;
15509 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15510 ops->print_it = print_it_watchpoint;
15511 ops->print_mention = print_mention_watchpoint;
15512 ops->print_recreate = print_recreate_watchpoint;
15513 ops->explains_signal = explains_signal_watchpoint;
15514
15515 /* Masked watchpoints. */
15516 ops = &masked_watchpoint_breakpoint_ops;
15517 *ops = watchpoint_breakpoint_ops;
15518 ops->insert_location = insert_masked_watchpoint;
15519 ops->remove_location = remove_masked_watchpoint;
15520 ops->resources_needed = resources_needed_masked_watchpoint;
15521 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15522 ops->print_it = print_it_masked_watchpoint;
15523 ops->print_one_detail = print_one_detail_masked_watchpoint;
15524 ops->print_mention = print_mention_masked_watchpoint;
15525 ops->print_recreate = print_recreate_masked_watchpoint;
15526
15527 /* Tracepoints. */
15528 ops = &tracepoint_breakpoint_ops;
15529 *ops = base_breakpoint_ops;
15530 ops->re_set = tracepoint_re_set;
15531 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15532 ops->print_one_detail = tracepoint_print_one_detail;
15533 ops->print_mention = tracepoint_print_mention;
15534 ops->print_recreate = tracepoint_print_recreate;
15535 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15536 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15537 ops->decode_location = tracepoint_decode_location;
15538
15539 /* Probe tracepoints. */
15540 ops = &tracepoint_probe_breakpoint_ops;
15541 *ops = tracepoint_breakpoint_ops;
15542 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15543 ops->decode_location = tracepoint_probe_decode_location;
15544
15545 /* Static tracepoints with marker (`-m'). */
15546 ops = &strace_marker_breakpoint_ops;
15547 *ops = tracepoint_breakpoint_ops;
15548 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15549 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15550 ops->decode_location = strace_marker_decode_location;
15551
15552 /* Fork catchpoints. */
15553 ops = &catch_fork_breakpoint_ops;
15554 *ops = base_breakpoint_ops;
15555 ops->insert_location = insert_catch_fork;
15556 ops->remove_location = remove_catch_fork;
15557 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15558 ops->print_it = print_it_catch_fork;
15559 ops->print_one = print_one_catch_fork;
15560 ops->print_mention = print_mention_catch_fork;
15561 ops->print_recreate = print_recreate_catch_fork;
15562
15563 /* Vfork catchpoints. */
15564 ops = &catch_vfork_breakpoint_ops;
15565 *ops = base_breakpoint_ops;
15566 ops->insert_location = insert_catch_vfork;
15567 ops->remove_location = remove_catch_vfork;
15568 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15569 ops->print_it = print_it_catch_vfork;
15570 ops->print_one = print_one_catch_vfork;
15571 ops->print_mention = print_mention_catch_vfork;
15572 ops->print_recreate = print_recreate_catch_vfork;
15573
15574 /* Exec catchpoints. */
15575 ops = &catch_exec_breakpoint_ops;
15576 *ops = base_breakpoint_ops;
15577 ops->insert_location = insert_catch_exec;
15578 ops->remove_location = remove_catch_exec;
15579 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15580 ops->print_it = print_it_catch_exec;
15581 ops->print_one = print_one_catch_exec;
15582 ops->print_mention = print_mention_catch_exec;
15583 ops->print_recreate = print_recreate_catch_exec;
15584
15585 /* Solib-related catchpoints. */
15586 ops = &catch_solib_breakpoint_ops;
15587 *ops = base_breakpoint_ops;
15588 ops->insert_location = insert_catch_solib;
15589 ops->remove_location = remove_catch_solib;
15590 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15591 ops->check_status = check_status_catch_solib;
15592 ops->print_it = print_it_catch_solib;
15593 ops->print_one = print_one_catch_solib;
15594 ops->print_mention = print_mention_catch_solib;
15595 ops->print_recreate = print_recreate_catch_solib;
15596
15597 ops = &dprintf_breakpoint_ops;
15598 *ops = bkpt_base_breakpoint_ops;
15599 ops->re_set = dprintf_re_set;
15600 ops->resources_needed = bkpt_resources_needed;
15601 ops->print_it = bkpt_print_it;
15602 ops->print_mention = bkpt_print_mention;
15603 ops->print_recreate = dprintf_print_recreate;
15604 ops->after_condition_true = dprintf_after_condition_true;
15605 ops->breakpoint_hit = dprintf_breakpoint_hit;
15606 }
15607
15608 /* Chain containing all defined "enable breakpoint" subcommands. */
15609
15610 static struct cmd_list_element *enablebreaklist = NULL;
15611
15612 void
15613 _initialize_breakpoint (void)
15614 {
15615 struct cmd_list_element *c;
15616
15617 initialize_breakpoint_ops ();
15618
15619 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15620 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
15621 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15622
15623 breakpoint_objfile_key
15624 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15625
15626 breakpoint_chain = 0;
15627 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15628 before a breakpoint is set. */
15629 breakpoint_count = 0;
15630
15631 tracepoint_count = 0;
15632
15633 add_com ("ignore", class_breakpoint, ignore_command, _("\
15634 Set ignore-count of breakpoint number N to COUNT.\n\
15635 Usage is `ignore N COUNT'."));
15636
15637 add_com ("commands", class_breakpoint, commands_command, _("\
15638 Set commands to be executed when the given breakpoints are hit.\n\
15639 Give a space-separated breakpoint list as argument after \"commands\".\n\
15640 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15641 (e.g. `5-7').\n\
15642 With no argument, the targeted breakpoint is the last one set.\n\
15643 The commands themselves follow starting on the next line.\n\
15644 Type a line containing \"end\" to indicate the end of them.\n\
15645 Give \"silent\" as the first line to make the breakpoint silent;\n\
15646 then no output is printed when it is hit, except what the commands print."));
15647
15648 c = add_com ("condition", class_breakpoint, condition_command, _("\
15649 Specify breakpoint number N to break only if COND is true.\n\
15650 Usage is `condition N COND', where N is an integer and COND is an\n\
15651 expression to be evaluated whenever breakpoint N is reached."));
15652 set_cmd_completer (c, condition_completer);
15653
15654 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15655 Set a temporary breakpoint.\n\
15656 Like \"break\" except the breakpoint is only temporary,\n\
15657 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15658 by using \"enable delete\" on the breakpoint number.\n\
15659 \n"
15660 BREAK_ARGS_HELP ("tbreak")));
15661 set_cmd_completer (c, location_completer);
15662
15663 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15664 Set a hardware assisted breakpoint.\n\
15665 Like \"break\" except the breakpoint requires hardware support,\n\
15666 some target hardware may not have this support.\n\
15667 \n"
15668 BREAK_ARGS_HELP ("hbreak")));
15669 set_cmd_completer (c, location_completer);
15670
15671 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15672 Set a temporary hardware assisted breakpoint.\n\
15673 Like \"hbreak\" except the breakpoint is only temporary,\n\
15674 so it will be deleted when hit.\n\
15675 \n"
15676 BREAK_ARGS_HELP ("thbreak")));
15677 set_cmd_completer (c, location_completer);
15678
15679 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15680 Enable some breakpoints.\n\
15681 Give breakpoint numbers (separated by spaces) as arguments.\n\
15682 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15683 This is used to cancel the effect of the \"disable\" command.\n\
15684 With a subcommand you can enable temporarily."),
15685 &enablelist, "enable ", 1, &cmdlist);
15686
15687 add_com_alias ("en", "enable", class_breakpoint, 1);
15688
15689 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15690 Enable some breakpoints.\n\
15691 Give breakpoint numbers (separated by spaces) as arguments.\n\
15692 This is used to cancel the effect of the \"disable\" command.\n\
15693 May be abbreviated to simply \"enable\".\n"),
15694 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15695
15696 add_cmd ("once", no_class, enable_once_command, _("\
15697 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15698 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15699 &enablebreaklist);
15700
15701 add_cmd ("delete", no_class, enable_delete_command, _("\
15702 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15703 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15704 &enablebreaklist);
15705
15706 add_cmd ("count", no_class, enable_count_command, _("\
15707 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15708 If a breakpoint is hit while enabled in this fashion,\n\
15709 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15710 &enablebreaklist);
15711
15712 add_cmd ("delete", no_class, enable_delete_command, _("\
15713 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15714 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15715 &enablelist);
15716
15717 add_cmd ("once", no_class, enable_once_command, _("\
15718 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15719 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15720 &enablelist);
15721
15722 add_cmd ("count", no_class, enable_count_command, _("\
15723 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15724 If a breakpoint is hit while enabled in this fashion,\n\
15725 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15726 &enablelist);
15727
15728 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15729 Disable some breakpoints.\n\
15730 Arguments are breakpoint numbers with spaces in between.\n\
15731 To disable all breakpoints, give no argument.\n\
15732 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15733 &disablelist, "disable ", 1, &cmdlist);
15734 add_com_alias ("dis", "disable", class_breakpoint, 1);
15735 add_com_alias ("disa", "disable", class_breakpoint, 1);
15736
15737 add_cmd ("breakpoints", class_alias, disable_command, _("\
15738 Disable some breakpoints.\n\
15739 Arguments are breakpoint numbers with spaces in between.\n\
15740 To disable all breakpoints, give no argument.\n\
15741 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15742 This command may be abbreviated \"disable\"."),
15743 &disablelist);
15744
15745 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15746 Delete some breakpoints or auto-display expressions.\n\
15747 Arguments are breakpoint numbers with spaces in between.\n\
15748 To delete all breakpoints, give no argument.\n\
15749 \n\
15750 Also a prefix command for deletion of other GDB objects.\n\
15751 The \"unset\" command is also an alias for \"delete\"."),
15752 &deletelist, "delete ", 1, &cmdlist);
15753 add_com_alias ("d", "delete", class_breakpoint, 1);
15754 add_com_alias ("del", "delete", class_breakpoint, 1);
15755
15756 add_cmd ("breakpoints", class_alias, delete_command, _("\
15757 Delete some breakpoints or auto-display expressions.\n\
15758 Arguments are breakpoint numbers with spaces in between.\n\
15759 To delete all breakpoints, give no argument.\n\
15760 This command may be abbreviated \"delete\"."),
15761 &deletelist);
15762
15763 add_com ("clear", class_breakpoint, clear_command, _("\
15764 Clear breakpoint at specified location.\n\
15765 Argument may be a linespec, explicit, or address location as described below.\n\
15766 \n\
15767 With no argument, clears all breakpoints in the line that the selected frame\n\
15768 is executing in.\n"
15769 "\n" LOCATION_HELP_STRING "\n\
15770 See also the \"delete\" command which clears breakpoints by number."));
15771 add_com_alias ("cl", "clear", class_breakpoint, 1);
15772
15773 c = add_com ("break", class_breakpoint, break_command, _("\
15774 Set breakpoint at specified location.\n"
15775 BREAK_ARGS_HELP ("break")));
15776 set_cmd_completer (c, location_completer);
15777
15778 add_com_alias ("b", "break", class_run, 1);
15779 add_com_alias ("br", "break", class_run, 1);
15780 add_com_alias ("bre", "break", class_run, 1);
15781 add_com_alias ("brea", "break", class_run, 1);
15782
15783 if (dbx_commands)
15784 {
15785 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15786 Break in function/address or break at a line in the current file."),
15787 &stoplist, "stop ", 1, &cmdlist);
15788 add_cmd ("in", class_breakpoint, stopin_command,
15789 _("Break in function or address."), &stoplist);
15790 add_cmd ("at", class_breakpoint, stopat_command,
15791 _("Break at a line in the current file."), &stoplist);
15792 add_com ("status", class_info, info_breakpoints_command, _("\
15793 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15794 The \"Type\" column indicates one of:\n\
15795 \tbreakpoint - normal breakpoint\n\
15796 \twatchpoint - watchpoint\n\
15797 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15798 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15799 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15800 address and file/line number respectively.\n\
15801 \n\
15802 Convenience variable \"$_\" and default examine address for \"x\"\n\
15803 are set to the address of the last breakpoint listed unless the command\n\
15804 is prefixed with \"server \".\n\n\
15805 Convenience variable \"$bpnum\" contains the number of the last\n\
15806 breakpoint set."));
15807 }
15808
15809 add_info ("breakpoints", info_breakpoints_command, _("\
15810 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15811 The \"Type\" column indicates one of:\n\
15812 \tbreakpoint - normal breakpoint\n\
15813 \twatchpoint - watchpoint\n\
15814 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15815 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15816 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15817 address and file/line number respectively.\n\
15818 \n\
15819 Convenience variable \"$_\" and default examine address for \"x\"\n\
15820 are set to the address of the last breakpoint listed unless the command\n\
15821 is prefixed with \"server \".\n\n\
15822 Convenience variable \"$bpnum\" contains the number of the last\n\
15823 breakpoint set."));
15824
15825 add_info_alias ("b", "breakpoints", 1);
15826
15827 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15828 Status of all breakpoints, or breakpoint number NUMBER.\n\
15829 The \"Type\" column indicates one of:\n\
15830 \tbreakpoint - normal breakpoint\n\
15831 \twatchpoint - watchpoint\n\
15832 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15833 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15834 \tuntil - internal breakpoint used by the \"until\" command\n\
15835 \tfinish - internal breakpoint used by the \"finish\" command\n\
15836 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15837 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15838 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15839 address and file/line number respectively.\n\
15840 \n\
15841 Convenience variable \"$_\" and default examine address for \"x\"\n\
15842 are set to the address of the last breakpoint listed unless the command\n\
15843 is prefixed with \"server \".\n\n\
15844 Convenience variable \"$bpnum\" contains the number of the last\n\
15845 breakpoint set."),
15846 &maintenanceinfolist);
15847
15848 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15849 Set catchpoints to catch events."),
15850 &catch_cmdlist, "catch ",
15851 0/*allow-unknown*/, &cmdlist);
15852
15853 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15854 Set temporary catchpoints to catch events."),
15855 &tcatch_cmdlist, "tcatch ",
15856 0/*allow-unknown*/, &cmdlist);
15857
15858 add_catch_command ("fork", _("Catch calls to fork."),
15859 catch_fork_command_1,
15860 NULL,
15861 (void *) (uintptr_t) catch_fork_permanent,
15862 (void *) (uintptr_t) catch_fork_temporary);
15863 add_catch_command ("vfork", _("Catch calls to vfork."),
15864 catch_fork_command_1,
15865 NULL,
15866 (void *) (uintptr_t) catch_vfork_permanent,
15867 (void *) (uintptr_t) catch_vfork_temporary);
15868 add_catch_command ("exec", _("Catch calls to exec."),
15869 catch_exec_command_1,
15870 NULL,
15871 CATCH_PERMANENT,
15872 CATCH_TEMPORARY);
15873 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15874 Usage: catch load [REGEX]\n\
15875 If REGEX is given, only stop for libraries matching the regular expression."),
15876 catch_load_command_1,
15877 NULL,
15878 CATCH_PERMANENT,
15879 CATCH_TEMPORARY);
15880 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15881 Usage: catch unload [REGEX]\n\
15882 If REGEX is given, only stop for libraries matching the regular expression."),
15883 catch_unload_command_1,
15884 NULL,
15885 CATCH_PERMANENT,
15886 CATCH_TEMPORARY);
15887
15888 c = add_com ("watch", class_breakpoint, watch_command, _("\
15889 Set a watchpoint for an expression.\n\
15890 Usage: watch [-l|-location] EXPRESSION\n\
15891 A watchpoint stops execution of your program whenever the value of\n\
15892 an expression changes.\n\
15893 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15894 the memory to which it refers."));
15895 set_cmd_completer (c, expression_completer);
15896
15897 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15898 Set a read watchpoint for an expression.\n\
15899 Usage: rwatch [-l|-location] EXPRESSION\n\
15900 A watchpoint stops execution of your program whenever the value of\n\
15901 an expression is read.\n\
15902 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15903 the memory to which it refers."));
15904 set_cmd_completer (c, expression_completer);
15905
15906 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15907 Set a watchpoint for an expression.\n\
15908 Usage: awatch [-l|-location] EXPRESSION\n\
15909 A watchpoint stops execution of your program whenever the value of\n\
15910 an expression is either read or written.\n\
15911 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15912 the memory to which it refers."));
15913 set_cmd_completer (c, expression_completer);
15914
15915 add_info ("watchpoints", info_watchpoints_command, _("\
15916 Status of specified watchpoints (all watchpoints if no argument)."));
15917
15918 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15919 respond to changes - contrary to the description. */
15920 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15921 &can_use_hw_watchpoints, _("\
15922 Set debugger's willingness to use watchpoint hardware."), _("\
15923 Show debugger's willingness to use watchpoint hardware."), _("\
15924 If zero, gdb will not use hardware for new watchpoints, even if\n\
15925 such is available. (However, any hardware watchpoints that were\n\
15926 created before setting this to nonzero, will continue to use watchpoint\n\
15927 hardware.)"),
15928 NULL,
15929 show_can_use_hw_watchpoints,
15930 &setlist, &showlist);
15931
15932 can_use_hw_watchpoints = 1;
15933
15934 /* Tracepoint manipulation commands. */
15935
15936 c = add_com ("trace", class_breakpoint, trace_command, _("\
15937 Set a tracepoint at specified location.\n\
15938 \n"
15939 BREAK_ARGS_HELP ("trace") "\n\
15940 Do \"help tracepoints\" for info on other tracepoint commands."));
15941 set_cmd_completer (c, location_completer);
15942
15943 add_com_alias ("tp", "trace", class_alias, 0);
15944 add_com_alias ("tr", "trace", class_alias, 1);
15945 add_com_alias ("tra", "trace", class_alias, 1);
15946 add_com_alias ("trac", "trace", class_alias, 1);
15947
15948 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15949 Set a fast tracepoint at specified location.\n\
15950 \n"
15951 BREAK_ARGS_HELP ("ftrace") "\n\
15952 Do \"help tracepoints\" for info on other tracepoint commands."));
15953 set_cmd_completer (c, location_completer);
15954
15955 c = add_com ("strace", class_breakpoint, strace_command, _("\
15956 Set a static tracepoint at location or marker.\n\
15957 \n\
15958 strace [LOCATION] [if CONDITION]\n\
15959 LOCATION may be a linespec, explicit, or address location (described below) \n\
15960 or -m MARKER_ID.\n\n\
15961 If a marker id is specified, probe the marker with that name. With\n\
15962 no LOCATION, uses current execution address of the selected stack frame.\n\
15963 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15964 This collects arbitrary user data passed in the probe point call to the\n\
15965 tracing library. You can inspect it when analyzing the trace buffer,\n\
15966 by printing the $_sdata variable like any other convenience variable.\n\
15967 \n\
15968 CONDITION is a boolean expression.\n\
15969 \n" LOCATION_HELP_STRING "\n\
15970 Multiple tracepoints at one place are permitted, and useful if their\n\
15971 conditions are different.\n\
15972 \n\
15973 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15974 Do \"help tracepoints\" for info on other tracepoint commands."));
15975 set_cmd_completer (c, location_completer);
15976
15977 add_info ("tracepoints", info_tracepoints_command, _("\
15978 Status of specified tracepoints (all tracepoints if no argument).\n\
15979 Convenience variable \"$tpnum\" contains the number of the\n\
15980 last tracepoint set."));
15981
15982 add_info_alias ("tp", "tracepoints", 1);
15983
15984 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15985 Delete specified tracepoints.\n\
15986 Arguments are tracepoint numbers, separated by spaces.\n\
15987 No argument means delete all tracepoints."),
15988 &deletelist);
15989 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15990
15991 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15992 Disable specified tracepoints.\n\
15993 Arguments are tracepoint numbers, separated by spaces.\n\
15994 No argument means disable all tracepoints."),
15995 &disablelist);
15996 deprecate_cmd (c, "disable");
15997
15998 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15999 Enable specified tracepoints.\n\
16000 Arguments are tracepoint numbers, separated by spaces.\n\
16001 No argument means enable all tracepoints."),
16002 &enablelist);
16003 deprecate_cmd (c, "enable");
16004
16005 add_com ("passcount", class_trace, trace_pass_command, _("\
16006 Set the passcount for a tracepoint.\n\
16007 The trace will end when the tracepoint has been passed 'count' times.\n\
16008 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16009 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16010
16011 add_prefix_cmd ("save", class_breakpoint, save_command,
16012 _("Save breakpoint definitions as a script."),
16013 &save_cmdlist, "save ",
16014 0/*allow-unknown*/, &cmdlist);
16015
16016 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16017 Save current breakpoint definitions as a script.\n\
16018 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16019 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16020 session to restore them."),
16021 &save_cmdlist);
16022 set_cmd_completer (c, filename_completer);
16023
16024 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16025 Save current tracepoint definitions as a script.\n\
16026 Use the 'source' command in another debug session to restore them."),
16027 &save_cmdlist);
16028 set_cmd_completer (c, filename_completer);
16029
16030 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16031 deprecate_cmd (c, "save tracepoints");
16032
16033 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16034 Breakpoint specific settings\n\
16035 Configure various breakpoint-specific variables such as\n\
16036 pending breakpoint behavior"),
16037 &breakpoint_set_cmdlist, "set breakpoint ",
16038 0/*allow-unknown*/, &setlist);
16039 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16040 Breakpoint specific settings\n\
16041 Configure various breakpoint-specific variables such as\n\
16042 pending breakpoint behavior"),
16043 &breakpoint_show_cmdlist, "show breakpoint ",
16044 0/*allow-unknown*/, &showlist);
16045
16046 add_setshow_auto_boolean_cmd ("pending", no_class,
16047 &pending_break_support, _("\
16048 Set debugger's behavior regarding pending breakpoints."), _("\
16049 Show debugger's behavior regarding pending breakpoints."), _("\
16050 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16051 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16052 an error. If auto, an unrecognized breakpoint location results in a\n\
16053 user-query to see if a pending breakpoint should be created."),
16054 NULL,
16055 show_pending_break_support,
16056 &breakpoint_set_cmdlist,
16057 &breakpoint_show_cmdlist);
16058
16059 pending_break_support = AUTO_BOOLEAN_AUTO;
16060
16061 add_setshow_boolean_cmd ("auto-hw", no_class,
16062 &automatic_hardware_breakpoints, _("\
16063 Set automatic usage of hardware breakpoints."), _("\
16064 Show automatic usage of hardware breakpoints."), _("\
16065 If set, the debugger will automatically use hardware breakpoints for\n\
16066 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16067 a warning will be emitted for such breakpoints."),
16068 NULL,
16069 show_automatic_hardware_breakpoints,
16070 &breakpoint_set_cmdlist,
16071 &breakpoint_show_cmdlist);
16072
16073 add_setshow_boolean_cmd ("always-inserted", class_support,
16074 &always_inserted_mode, _("\
16075 Set mode for inserting breakpoints."), _("\
16076 Show mode for inserting breakpoints."), _("\
16077 When this mode is on, breakpoints are inserted immediately as soon as\n\
16078 they're created, kept inserted even when execution stops, and removed\n\
16079 only when the user deletes them. When this mode is off (the default),\n\
16080 breakpoints are inserted only when execution continues, and removed\n\
16081 when execution stops."),
16082 NULL,
16083 &show_always_inserted_mode,
16084 &breakpoint_set_cmdlist,
16085 &breakpoint_show_cmdlist);
16086
16087 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16088 condition_evaluation_enums,
16089 &condition_evaluation_mode_1, _("\
16090 Set mode of breakpoint condition evaluation."), _("\
16091 Show mode of breakpoint condition evaluation."), _("\
16092 When this is set to \"host\", breakpoint conditions will be\n\
16093 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16094 breakpoint conditions will be downloaded to the target (if the target\n\
16095 supports such feature) and conditions will be evaluated on the target's side.\n\
16096 If this is set to \"auto\" (default), this will be automatically set to\n\
16097 \"target\" if it supports condition evaluation, otherwise it will\n\
16098 be set to \"gdb\""),
16099 &set_condition_evaluation_mode,
16100 &show_condition_evaluation_mode,
16101 &breakpoint_set_cmdlist,
16102 &breakpoint_show_cmdlist);
16103
16104 add_com ("break-range", class_breakpoint, break_range_command, _("\
16105 Set a breakpoint for an address range.\n\
16106 break-range START-LOCATION, END-LOCATION\n\
16107 where START-LOCATION and END-LOCATION can be one of the following:\n\
16108 LINENUM, for that line in the current file,\n\
16109 FILE:LINENUM, for that line in that file,\n\
16110 +OFFSET, for that number of lines after the current line\n\
16111 or the start of the range\n\
16112 FUNCTION, for the first line in that function,\n\
16113 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16114 *ADDRESS, for the instruction at that address.\n\
16115 \n\
16116 The breakpoint will stop execution of the inferior whenever it executes\n\
16117 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16118 range (including START-LOCATION and END-LOCATION)."));
16119
16120 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16121 Set a dynamic printf at specified location.\n\
16122 dprintf location,format string,arg1,arg2,...\n\
16123 location may be a linespec, explicit, or address location.\n"
16124 "\n" LOCATION_HELP_STRING));
16125 set_cmd_completer (c, location_completer);
16126
16127 add_setshow_enum_cmd ("dprintf-style", class_support,
16128 dprintf_style_enums, &dprintf_style, _("\
16129 Set the style of usage for dynamic printf."), _("\
16130 Show the style of usage for dynamic printf."), _("\
16131 This setting chooses how GDB will do a dynamic printf.\n\
16132 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16133 console, as with the \"printf\" command.\n\
16134 If the value is \"call\", the print is done by calling a function in your\n\
16135 program; by default printf(), but you can choose a different function or\n\
16136 output stream by setting dprintf-function and dprintf-channel."),
16137 update_dprintf_commands, NULL,
16138 &setlist, &showlist);
16139
16140 dprintf_function = xstrdup ("printf");
16141 add_setshow_string_cmd ("dprintf-function", class_support,
16142 &dprintf_function, _("\
16143 Set the function to use for dynamic printf"), _("\
16144 Show the function to use for dynamic printf"), NULL,
16145 update_dprintf_commands, NULL,
16146 &setlist, &showlist);
16147
16148 dprintf_channel = xstrdup ("");
16149 add_setshow_string_cmd ("dprintf-channel", class_support,
16150 &dprintf_channel, _("\
16151 Set the channel to use for dynamic printf"), _("\
16152 Show the channel to use for dynamic printf"), NULL,
16153 update_dprintf_commands, NULL,
16154 &setlist, &showlist);
16155
16156 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16157 &disconnected_dprintf, _("\
16158 Set whether dprintf continues after GDB disconnects."), _("\
16159 Show whether dprintf continues after GDB disconnects."), _("\
16160 Use this to let dprintf commands continue to hit and produce output\n\
16161 even if GDB disconnects or detaches from the target."),
16162 NULL,
16163 NULL,
16164 &setlist, &showlist);
16165
16166 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16167 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16168 (target agent only) This is useful for formatted output in user-defined commands."));
16169
16170 automatic_hardware_breakpoints = 1;
16171
16172 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16173 observer_attach_thread_exit (remove_threaded_breakpoints);
16174 }