[gdb/breakpoint] Handle setting breakpoint on label without address
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "stack.h"
63 #include "ax-gdb.h"
64 #include "dummy-frame.h"
65 #include "interps.h"
66 #include "gdbsupport/format.h"
67 #include "thread-fsm.h"
68 #include "tid-parse.h"
69 #include "cli/cli-style.h"
70
71 /* readline include files */
72 #include "readline/tilde.h"
73
74 /* readline defines this. */
75 #undef savestring
76
77 #include "mi/mi-common.h"
78 #include "extension.h"
79 #include <algorithm>
80 #include "progspace-and-thread.h"
81 #include "gdbsupport/array-view.h"
82 #include "gdbsupport/gdb_optional.h"
83
84 /* Prototypes for local functions. */
85
86 static void map_breakpoint_numbers (const char *,
87 gdb::function_view<void (breakpoint *)>);
88
89 static void breakpoint_re_set_default (struct breakpoint *);
90
91 static void
92 create_sals_from_location_default (struct event_location *location,
93 struct linespec_result *canonical,
94 enum bptype type_wanted);
95
96 static void create_breakpoints_sal_default (struct gdbarch *,
97 struct linespec_result *,
98 gdb::unique_xmalloc_ptr<char>,
99 gdb::unique_xmalloc_ptr<char>,
100 enum bptype,
101 enum bpdisp, int, int,
102 int,
103 const struct breakpoint_ops *,
104 int, int, int, unsigned);
105
106 static std::vector<symtab_and_line> decode_location_default
107 (struct breakpoint *b, struct event_location *location,
108 struct program_space *search_pspace);
109
110 static int can_use_hardware_watchpoint
111 (const std::vector<value_ref_ptr> &vals);
112
113 static void mention (struct breakpoint *);
114
115 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
116 enum bptype,
117 const struct breakpoint_ops *);
118 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
119 const struct symtab_and_line *);
120
121 /* This function is used in gdbtk sources and thus can not be made
122 static. */
123 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
124 struct symtab_and_line,
125 enum bptype,
126 const struct breakpoint_ops *);
127
128 static struct breakpoint *
129 momentary_breakpoint_from_master (struct breakpoint *orig,
130 enum bptype type,
131 const struct breakpoint_ops *ops,
132 int loc_enabled);
133
134 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
135
136 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
137 CORE_ADDR bpaddr,
138 enum bptype bptype);
139
140 static void describe_other_breakpoints (struct gdbarch *,
141 struct program_space *, CORE_ADDR,
142 struct obj_section *, int);
143
144 static int watchpoint_locations_match (struct bp_location *loc1,
145 struct bp_location *loc2);
146
147 static int breakpoint_locations_match (struct bp_location *loc1,
148 struct bp_location *loc2,
149 bool sw_hw_bps_match = false);
150
151 static int breakpoint_location_address_match (struct bp_location *bl,
152 const struct address_space *aspace,
153 CORE_ADDR addr);
154
155 static int breakpoint_location_address_range_overlap (struct bp_location *,
156 const address_space *,
157 CORE_ADDR, int);
158
159 static int remove_breakpoint (struct bp_location *);
160 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
161
162 static enum print_stop_action print_bp_stop_message (bpstat bs);
163
164 static int hw_breakpoint_used_count (void);
165
166 static int hw_watchpoint_use_count (struct breakpoint *);
167
168 static int hw_watchpoint_used_count_others (struct breakpoint *except,
169 enum bptype type,
170 int *other_type_used);
171
172 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
173 int count);
174
175 static void free_bp_location (struct bp_location *loc);
176 static void incref_bp_location (struct bp_location *loc);
177 static void decref_bp_location (struct bp_location **loc);
178
179 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
180
181 /* update_global_location_list's modes of operation wrt to whether to
182 insert locations now. */
183 enum ugll_insert_mode
184 {
185 /* Don't insert any breakpoint locations into the inferior, only
186 remove already-inserted locations that no longer should be
187 inserted. Functions that delete a breakpoint or breakpoints
188 should specify this mode, so that deleting a breakpoint doesn't
189 have the side effect of inserting the locations of other
190 breakpoints that are marked not-inserted, but should_be_inserted
191 returns true on them.
192
193 This behavior is useful is situations close to tear-down -- e.g.,
194 after an exec, while the target still has execution, but
195 breakpoint shadows of the previous executable image should *NOT*
196 be restored to the new image; or before detaching, where the
197 target still has execution and wants to delete breakpoints from
198 GDB's lists, and all breakpoints had already been removed from
199 the inferior. */
200 UGLL_DONT_INSERT,
201
202 /* May insert breakpoints iff breakpoints_should_be_inserted_now
203 claims breakpoints should be inserted now. */
204 UGLL_MAY_INSERT,
205
206 /* Insert locations now, irrespective of
207 breakpoints_should_be_inserted_now. E.g., say all threads are
208 stopped right now, and the user did "continue". We need to
209 insert breakpoints _before_ resuming the target, but
210 UGLL_MAY_INSERT wouldn't insert them, because
211 breakpoints_should_be_inserted_now returns false at that point,
212 as no thread is running yet. */
213 UGLL_INSERT
214 };
215
216 static void update_global_location_list (enum ugll_insert_mode);
217
218 static void update_global_location_list_nothrow (enum ugll_insert_mode);
219
220 static void insert_breakpoint_locations (void);
221
222 static void trace_pass_command (const char *, int);
223
224 static void set_tracepoint_count (int num);
225
226 static bool is_masked_watchpoint (const struct breakpoint *b);
227
228 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
229
230 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
231 otherwise. */
232
233 static int strace_marker_p (struct breakpoint *b);
234
235 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
236 that are implemented on top of software or hardware breakpoints
237 (user breakpoints, internal and momentary breakpoints, etc.). */
238 static struct breakpoint_ops bkpt_base_breakpoint_ops;
239
240 /* Internal breakpoints class type. */
241 static struct breakpoint_ops internal_breakpoint_ops;
242
243 /* Momentary breakpoints class type. */
244 static struct breakpoint_ops momentary_breakpoint_ops;
245
246 /* The breakpoint_ops structure to be used in regular user created
247 breakpoints. */
248 struct breakpoint_ops bkpt_breakpoint_ops;
249
250 /* Breakpoints set on probes. */
251 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
252
253 /* Tracepoints set on probes. */
254 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
255
256 /* Dynamic printf class type. */
257 struct breakpoint_ops dprintf_breakpoint_ops;
258
259 /* The style in which to perform a dynamic printf. This is a user
260 option because different output options have different tradeoffs;
261 if GDB does the printing, there is better error handling if there
262 is a problem with any of the arguments, but using an inferior
263 function lets you have special-purpose printers and sending of
264 output to the same place as compiled-in print functions. */
265
266 static const char dprintf_style_gdb[] = "gdb";
267 static const char dprintf_style_call[] = "call";
268 static const char dprintf_style_agent[] = "agent";
269 static const char *const dprintf_style_enums[] = {
270 dprintf_style_gdb,
271 dprintf_style_call,
272 dprintf_style_agent,
273 NULL
274 };
275 static const char *dprintf_style = dprintf_style_gdb;
276
277 /* The function to use for dynamic printf if the preferred style is to
278 call into the inferior. The value is simply a string that is
279 copied into the command, so it can be anything that GDB can
280 evaluate to a callable address, not necessarily a function name. */
281
282 static char *dprintf_function;
283
284 /* The channel to use for dynamic printf if the preferred style is to
285 call into the inferior; if a nonempty string, it will be passed to
286 the call as the first argument, with the format string as the
287 second. As with the dprintf function, this can be anything that
288 GDB knows how to evaluate, so in addition to common choices like
289 "stderr", this could be an app-specific expression like
290 "mystreams[curlogger]". */
291
292 static char *dprintf_channel;
293
294 /* True if dprintf commands should continue to operate even if GDB
295 has disconnected. */
296 static bool disconnected_dprintf = true;
297
298 struct command_line *
299 breakpoint_commands (struct breakpoint *b)
300 {
301 return b->commands ? b->commands.get () : NULL;
302 }
303
304 /* Flag indicating that a command has proceeded the inferior past the
305 current breakpoint. */
306
307 static bool breakpoint_proceeded;
308
309 const char *
310 bpdisp_text (enum bpdisp disp)
311 {
312 /* NOTE: the following values are a part of MI protocol and
313 represent values of 'disp' field returned when inferior stops at
314 a breakpoint. */
315 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
316
317 return bpdisps[(int) disp];
318 }
319
320 /* Prototypes for exported functions. */
321 /* If FALSE, gdb will not use hardware support for watchpoints, even
322 if such is available. */
323 static int can_use_hw_watchpoints;
324
325 static void
326 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
327 struct cmd_list_element *c,
328 const char *value)
329 {
330 fprintf_filtered (file,
331 _("Debugger's willingness to use "
332 "watchpoint hardware is %s.\n"),
333 value);
334 }
335
336 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
337 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
338 for unrecognized breakpoint locations.
339 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
340 static enum auto_boolean pending_break_support;
341 static void
342 show_pending_break_support (struct ui_file *file, int from_tty,
343 struct cmd_list_element *c,
344 const char *value)
345 {
346 fprintf_filtered (file,
347 _("Debugger's behavior regarding "
348 "pending breakpoints is %s.\n"),
349 value);
350 }
351
352 /* If true, gdb will automatically use hardware breakpoints for breakpoints
353 set with "break" but falling in read-only memory.
354 If false, gdb will warn about such breakpoints, but won't automatically
355 use hardware breakpoints. */
356 static bool automatic_hardware_breakpoints;
357 static void
358 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
359 struct cmd_list_element *c,
360 const char *value)
361 {
362 fprintf_filtered (file,
363 _("Automatic usage of hardware breakpoints is %s.\n"),
364 value);
365 }
366
367 /* If on, GDB keeps breakpoints inserted even if the inferior is
368 stopped, and immediately inserts any new breakpoints as soon as
369 they're created. If off (default), GDB keeps breakpoints off of
370 the target as long as possible. That is, it delays inserting
371 breakpoints until the next resume, and removes them again when the
372 target fully stops. This is a bit safer in case GDB crashes while
373 processing user input. */
374 static bool always_inserted_mode = false;
375
376 static void
377 show_always_inserted_mode (struct ui_file *file, int from_tty,
378 struct cmd_list_element *c, const char *value)
379 {
380 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
381 value);
382 }
383
384 /* See breakpoint.h. */
385
386 int
387 breakpoints_should_be_inserted_now (void)
388 {
389 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
390 {
391 /* If breakpoints are global, they should be inserted even if no
392 thread under gdb's control is running, or even if there are
393 no threads under GDB's control yet. */
394 return 1;
395 }
396 else
397 {
398 if (always_inserted_mode)
399 {
400 /* The user wants breakpoints inserted even if all threads
401 are stopped. */
402 return 1;
403 }
404
405 for (inferior *inf : all_inferiors ())
406 if (inf->has_execution ()
407 && threads_are_executing (inf->process_target ()))
408 return 1;
409
410 /* Don't remove breakpoints yet if, even though all threads are
411 stopped, we still have events to process. */
412 for (thread_info *tp : all_non_exited_threads ())
413 if (tp->resumed
414 && tp->suspend.waitstatus_pending_p)
415 return 1;
416 }
417 return 0;
418 }
419
420 static const char condition_evaluation_both[] = "host or target";
421
422 /* Modes for breakpoint condition evaluation. */
423 static const char condition_evaluation_auto[] = "auto";
424 static const char condition_evaluation_host[] = "host";
425 static const char condition_evaluation_target[] = "target";
426 static const char *const condition_evaluation_enums[] = {
427 condition_evaluation_auto,
428 condition_evaluation_host,
429 condition_evaluation_target,
430 NULL
431 };
432
433 /* Global that holds the current mode for breakpoint condition evaluation. */
434 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
435
436 /* Global that we use to display information to the user (gets its value from
437 condition_evaluation_mode_1. */
438 static const char *condition_evaluation_mode = condition_evaluation_auto;
439
440 /* Translate a condition evaluation mode MODE into either "host"
441 or "target". This is used mostly to translate from "auto" to the
442 real setting that is being used. It returns the translated
443 evaluation mode. */
444
445 static const char *
446 translate_condition_evaluation_mode (const char *mode)
447 {
448 if (mode == condition_evaluation_auto)
449 {
450 if (target_supports_evaluation_of_breakpoint_conditions ())
451 return condition_evaluation_target;
452 else
453 return condition_evaluation_host;
454 }
455 else
456 return mode;
457 }
458
459 /* Discovers what condition_evaluation_auto translates to. */
460
461 static const char *
462 breakpoint_condition_evaluation_mode (void)
463 {
464 return translate_condition_evaluation_mode (condition_evaluation_mode);
465 }
466
467 /* Return true if GDB should evaluate breakpoint conditions or false
468 otherwise. */
469
470 static int
471 gdb_evaluates_breakpoint_condition_p (void)
472 {
473 const char *mode = breakpoint_condition_evaluation_mode ();
474
475 return (mode == condition_evaluation_host);
476 }
477
478 /* Are we executing breakpoint commands? */
479 static int executing_breakpoint_commands;
480
481 /* Are overlay event breakpoints enabled? */
482 static int overlay_events_enabled;
483
484 /* See description in breakpoint.h. */
485 bool target_exact_watchpoints = false;
486
487 /* Walk the following statement or block through all breakpoints.
488 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
489 current breakpoint. */
490
491 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
492
493 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
494 for (B = breakpoint_chain; \
495 B ? (TMP=B->next, 1): 0; \
496 B = TMP)
497
498 /* Similar iterator for the low-level breakpoints. SAFE variant is
499 not provided so update_global_location_list must not be called
500 while executing the block of ALL_BP_LOCATIONS. */
501
502 #define ALL_BP_LOCATIONS(B,BP_TMP) \
503 for (BP_TMP = bp_locations; \
504 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
505 BP_TMP++)
506
507 /* Iterates through locations with address ADDRESS for the currently selected
508 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
509 to where the loop should start from.
510 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
511 appropriate location to start with. */
512
513 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
514 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
515 BP_LOCP_TMP = BP_LOCP_START; \
516 BP_LOCP_START \
517 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
518 && (*BP_LOCP_TMP)->address == ADDRESS); \
519 BP_LOCP_TMP++)
520
521 /* Iterator for tracepoints only. */
522
523 #define ALL_TRACEPOINTS(B) \
524 for (B = breakpoint_chain; B; B = B->next) \
525 if (is_tracepoint (B))
526
527 /* Chains of all breakpoints defined. */
528
529 static struct breakpoint *breakpoint_chain;
530
531 /* Array is sorted by bp_location_is_less_than - primarily by the ADDRESS. */
532
533 static struct bp_location **bp_locations;
534
535 /* Number of elements of BP_LOCATIONS. */
536
537 static unsigned bp_locations_count;
538
539 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
540 ADDRESS for the current elements of BP_LOCATIONS which get a valid
541 result from bp_location_has_shadow. You can use it for roughly
542 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
543 an address you need to read. */
544
545 static CORE_ADDR bp_locations_placed_address_before_address_max;
546
547 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
548 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
549 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
550 You can use it for roughly limiting the subrange of BP_LOCATIONS to
551 scan for shadow bytes for an address you need to read. */
552
553 static CORE_ADDR bp_locations_shadow_len_after_address_max;
554
555 /* The locations that no longer correspond to any breakpoint, unlinked
556 from the bp_locations array, but for which a hit may still be
557 reported by a target. */
558 static std::vector<bp_location *> moribund_locations;
559
560 /* Number of last breakpoint made. */
561
562 static int breakpoint_count;
563
564 /* The value of `breakpoint_count' before the last command that
565 created breakpoints. If the last (break-like) command created more
566 than one breakpoint, then the difference between BREAKPOINT_COUNT
567 and PREV_BREAKPOINT_COUNT is more than one. */
568 static int prev_breakpoint_count;
569
570 /* Number of last tracepoint made. */
571
572 static int tracepoint_count;
573
574 static struct cmd_list_element *breakpoint_set_cmdlist;
575 static struct cmd_list_element *breakpoint_show_cmdlist;
576 struct cmd_list_element *save_cmdlist;
577
578 /* See declaration at breakpoint.h. */
579
580 struct breakpoint *
581 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
582 void *user_data)
583 {
584 struct breakpoint *b = NULL;
585
586 ALL_BREAKPOINTS (b)
587 {
588 if (func (b, user_data) != 0)
589 break;
590 }
591
592 return b;
593 }
594
595 /* Return whether a breakpoint is an active enabled breakpoint. */
596 static int
597 breakpoint_enabled (struct breakpoint *b)
598 {
599 return (b->enable_state == bp_enabled);
600 }
601
602 /* Set breakpoint count to NUM. */
603
604 static void
605 set_breakpoint_count (int num)
606 {
607 prev_breakpoint_count = breakpoint_count;
608 breakpoint_count = num;
609 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
610 }
611
612 /* Used by `start_rbreak_breakpoints' below, to record the current
613 breakpoint count before "rbreak" creates any breakpoint. */
614 static int rbreak_start_breakpoint_count;
615
616 /* Called at the start an "rbreak" command to record the first
617 breakpoint made. */
618
619 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
620 {
621 rbreak_start_breakpoint_count = breakpoint_count;
622 }
623
624 /* Called at the end of an "rbreak" command to record the last
625 breakpoint made. */
626
627 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
628 {
629 prev_breakpoint_count = rbreak_start_breakpoint_count;
630 }
631
632 /* Used in run_command to zero the hit count when a new run starts. */
633
634 void
635 clear_breakpoint_hit_counts (void)
636 {
637 struct breakpoint *b;
638
639 ALL_BREAKPOINTS (b)
640 b->hit_count = 0;
641 }
642
643 \f
644 /* Return the breakpoint with the specified number, or NULL
645 if the number does not refer to an existing breakpoint. */
646
647 struct breakpoint *
648 get_breakpoint (int num)
649 {
650 struct breakpoint *b;
651
652 ALL_BREAKPOINTS (b)
653 if (b->number == num)
654 return b;
655
656 return NULL;
657 }
658
659 \f
660
661 /* Mark locations as "conditions have changed" in case the target supports
662 evaluating conditions on its side. */
663
664 static void
665 mark_breakpoint_modified (struct breakpoint *b)
666 {
667 struct bp_location *loc;
668
669 /* This is only meaningful if the target is
670 evaluating conditions and if the user has
671 opted for condition evaluation on the target's
672 side. */
673 if (gdb_evaluates_breakpoint_condition_p ()
674 || !target_supports_evaluation_of_breakpoint_conditions ())
675 return;
676
677 if (!is_breakpoint (b))
678 return;
679
680 for (loc = b->loc; loc; loc = loc->next)
681 loc->condition_changed = condition_modified;
682 }
683
684 /* Mark location as "conditions have changed" in case the target supports
685 evaluating conditions on its side. */
686
687 static void
688 mark_breakpoint_location_modified (struct bp_location *loc)
689 {
690 /* This is only meaningful if the target is
691 evaluating conditions and if the user has
692 opted for condition evaluation on the target's
693 side. */
694 if (gdb_evaluates_breakpoint_condition_p ()
695 || !target_supports_evaluation_of_breakpoint_conditions ())
696
697 return;
698
699 if (!is_breakpoint (loc->owner))
700 return;
701
702 loc->condition_changed = condition_modified;
703 }
704
705 /* Sets the condition-evaluation mode using the static global
706 condition_evaluation_mode. */
707
708 static void
709 set_condition_evaluation_mode (const char *args, int from_tty,
710 struct cmd_list_element *c)
711 {
712 const char *old_mode, *new_mode;
713
714 if ((condition_evaluation_mode_1 == condition_evaluation_target)
715 && !target_supports_evaluation_of_breakpoint_conditions ())
716 {
717 condition_evaluation_mode_1 = condition_evaluation_mode;
718 warning (_("Target does not support breakpoint condition evaluation.\n"
719 "Using host evaluation mode instead."));
720 return;
721 }
722
723 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
724 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
725
726 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
727 settings was "auto". */
728 condition_evaluation_mode = condition_evaluation_mode_1;
729
730 /* Only update the mode if the user picked a different one. */
731 if (new_mode != old_mode)
732 {
733 struct bp_location *loc, **loc_tmp;
734 /* If the user switched to a different evaluation mode, we
735 need to synch the changes with the target as follows:
736
737 "host" -> "target": Send all (valid) conditions to the target.
738 "target" -> "host": Remove all the conditions from the target.
739 */
740
741 if (new_mode == condition_evaluation_target)
742 {
743 /* Mark everything modified and synch conditions with the
744 target. */
745 ALL_BP_LOCATIONS (loc, loc_tmp)
746 mark_breakpoint_location_modified (loc);
747 }
748 else
749 {
750 /* Manually mark non-duplicate locations to synch conditions
751 with the target. We do this to remove all the conditions the
752 target knows about. */
753 ALL_BP_LOCATIONS (loc, loc_tmp)
754 if (is_breakpoint (loc->owner) && loc->inserted)
755 loc->needs_update = 1;
756 }
757
758 /* Do the update. */
759 update_global_location_list (UGLL_MAY_INSERT);
760 }
761
762 return;
763 }
764
765 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
766 what "auto" is translating to. */
767
768 static void
769 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
770 struct cmd_list_element *c, const char *value)
771 {
772 if (condition_evaluation_mode == condition_evaluation_auto)
773 fprintf_filtered (file,
774 _("Breakpoint condition evaluation "
775 "mode is %s (currently %s).\n"),
776 value,
777 breakpoint_condition_evaluation_mode ());
778 else
779 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
780 value);
781 }
782
783 /* A comparison function for bp_location AP and BP that is used by
784 bsearch. This comparison function only cares about addresses, unlike
785 the more general bp_location_is_less_than function. */
786
787 static int
788 bp_locations_compare_addrs (const void *ap, const void *bp)
789 {
790 const struct bp_location *a = *(const struct bp_location **) ap;
791 const struct bp_location *b = *(const struct bp_location **) bp;
792
793 if (a->address == b->address)
794 return 0;
795 else
796 return ((a->address > b->address) - (a->address < b->address));
797 }
798
799 /* Helper function to skip all bp_locations with addresses
800 less than ADDRESS. It returns the first bp_location that
801 is greater than or equal to ADDRESS. If none is found, just
802 return NULL. */
803
804 static struct bp_location **
805 get_first_locp_gte_addr (CORE_ADDR address)
806 {
807 struct bp_location dummy_loc;
808 struct bp_location *dummy_locp = &dummy_loc;
809 struct bp_location **locp_found = NULL;
810
811 /* Initialize the dummy location's address field. */
812 dummy_loc.address = address;
813
814 /* Find a close match to the first location at ADDRESS. */
815 locp_found = ((struct bp_location **)
816 bsearch (&dummy_locp, bp_locations, bp_locations_count,
817 sizeof (struct bp_location **),
818 bp_locations_compare_addrs));
819
820 /* Nothing was found, nothing left to do. */
821 if (locp_found == NULL)
822 return NULL;
823
824 /* We may have found a location that is at ADDRESS but is not the first in the
825 location's list. Go backwards (if possible) and locate the first one. */
826 while ((locp_found - 1) >= bp_locations
827 && (*(locp_found - 1))->address == address)
828 locp_found--;
829
830 return locp_found;
831 }
832
833 void
834 set_breakpoint_condition (struct breakpoint *b, const char *exp,
835 int from_tty)
836 {
837 if (*exp == 0)
838 {
839 xfree (b->cond_string);
840 b->cond_string = nullptr;
841
842 if (is_watchpoint (b))
843 static_cast<watchpoint *> (b)->cond_exp.reset ();
844 else
845 {
846 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
847 {
848 loc->cond.reset ();
849
850 /* No need to free the condition agent expression
851 bytecode (if we have one). We will handle this
852 when we go through update_global_location_list. */
853 }
854 }
855
856 if (from_tty)
857 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
858 }
859 else
860 {
861 if (is_watchpoint (b))
862 {
863 innermost_block_tracker tracker;
864 const char *arg = exp;
865 expression_up new_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
866 if (*arg != 0)
867 error (_("Junk at end of expression"));
868 watchpoint *w = static_cast<watchpoint *> (b);
869 w->cond_exp = std::move (new_exp);
870 w->cond_exp_valid_block = tracker.block ();
871 }
872 else
873 {
874 /* Parse and set condition expressions. We make two passes.
875 In the first, we parse the condition string to see if it
876 is valid in all locations. If so, the condition would be
877 accepted. So we go ahead and set the locations'
878 conditions. In case a failing case is found, we throw
879 the error and the condition string will be rejected.
880 This two-pass approach is taken to avoid setting the
881 state of locations in case of a reject. */
882 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
883 {
884 const char *arg = exp;
885 parse_exp_1 (&arg, loc->address,
886 block_for_pc (loc->address), 0);
887 if (*arg != 0)
888 error (_("Junk at end of expression"));
889 }
890
891 /* If we reach here, the condition is valid at all locations. */
892 for (bp_location *loc = b->loc; loc != nullptr; loc = loc->next)
893 {
894 const char *arg = exp;
895 loc->cond =
896 parse_exp_1 (&arg, loc->address,
897 block_for_pc (loc->address), 0);
898 }
899 }
900
901 /* We know that the new condition parsed successfully. The
902 condition string of the breakpoint can be safely updated. */
903 xfree (b->cond_string);
904 b->cond_string = xstrdup (exp);
905 b->condition_not_parsed = 0;
906 }
907 mark_breakpoint_modified (b);
908
909 gdb::observers::breakpoint_modified.notify (b);
910 }
911
912 /* Completion for the "condition" command. */
913
914 static void
915 condition_completer (struct cmd_list_element *cmd,
916 completion_tracker &tracker,
917 const char *text, const char *word)
918 {
919 const char *space;
920
921 text = skip_spaces (text);
922 space = skip_to_space (text);
923 if (*space == '\0')
924 {
925 int len;
926 struct breakpoint *b;
927
928 if (text[0] == '$')
929 {
930 /* We don't support completion of history indices. */
931 if (!isdigit (text[1]))
932 complete_internalvar (tracker, &text[1]);
933 return;
934 }
935
936 /* We're completing the breakpoint number. */
937 len = strlen (text);
938
939 ALL_BREAKPOINTS (b)
940 {
941 char number[50];
942
943 xsnprintf (number, sizeof (number), "%d", b->number);
944
945 if (strncmp (number, text, len) == 0)
946 tracker.add_completion (make_unique_xstrdup (number));
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 if (c->control_type == while_stepping_control)
1012 error (_("The 'while-stepping' command can "
1013 "only be used for tracepoints"));
1014
1015 check_no_tracepoint_commands (c->body_list_0.get ());
1016 check_no_tracepoint_commands (c->body_list_1.get ());
1017
1018 /* Not that command parsing removes leading whitespace and comment
1019 lines and also empty lines. So, we only need to check for
1020 command directly. */
1021 if (strstr (c->line, "collect ") == c->line)
1022 error (_("The 'collect' command can only be used for tracepoints"));
1023
1024 if (strstr (c->line, "teval ") == c->line)
1025 error (_("The 'teval' command can only be used for tracepoints"));
1026 }
1027 }
1028
1029 struct longjmp_breakpoint : public breakpoint
1030 {
1031 ~longjmp_breakpoint () override;
1032 };
1033
1034 /* Encapsulate tests for different types of tracepoints. */
1035
1036 static bool
1037 is_tracepoint_type (bptype type)
1038 {
1039 return (type == bp_tracepoint
1040 || type == bp_fast_tracepoint
1041 || type == bp_static_tracepoint);
1042 }
1043
1044 static bool
1045 is_longjmp_type (bptype type)
1046 {
1047 return type == bp_longjmp || type == bp_exception;
1048 }
1049
1050 /* See breakpoint.h. */
1051
1052 bool
1053 is_tracepoint (const struct breakpoint *b)
1054 {
1055 return is_tracepoint_type (b->type);
1056 }
1057
1058 /* Factory function to create an appropriate instance of breakpoint given
1059 TYPE. */
1060
1061 static std::unique_ptr<breakpoint>
1062 new_breakpoint_from_type (bptype type)
1063 {
1064 breakpoint *b;
1065
1066 if (is_tracepoint_type (type))
1067 b = new tracepoint ();
1068 else if (is_longjmp_type (type))
1069 b = new longjmp_breakpoint ();
1070 else
1071 b = new breakpoint ();
1072
1073 return std::unique_ptr<breakpoint> (b);
1074 }
1075
1076 /* A helper function that validates that COMMANDS are valid for a
1077 breakpoint. This function will throw an exception if a problem is
1078 found. */
1079
1080 static void
1081 validate_commands_for_breakpoint (struct breakpoint *b,
1082 struct command_line *commands)
1083 {
1084 if (is_tracepoint (b))
1085 {
1086 struct tracepoint *t = (struct tracepoint *) b;
1087 struct command_line *c;
1088 struct command_line *while_stepping = 0;
1089
1090 /* Reset the while-stepping step count. The previous commands
1091 might have included a while-stepping action, while the new
1092 ones might not. */
1093 t->step_count = 0;
1094
1095 /* We need to verify that each top-level element of commands is
1096 valid for tracepoints, that there's at most one
1097 while-stepping element, and that the while-stepping's body
1098 has valid tracing commands excluding nested while-stepping.
1099 We also need to validate the tracepoint action line in the
1100 context of the tracepoint --- validate_actionline actually
1101 has side effects, like setting the tracepoint's
1102 while-stepping STEP_COUNT, in addition to checking if the
1103 collect/teval actions parse and make sense in the
1104 tracepoint's context. */
1105 for (c = commands; c; c = c->next)
1106 {
1107 if (c->control_type == while_stepping_control)
1108 {
1109 if (b->type == bp_fast_tracepoint)
1110 error (_("The 'while-stepping' command "
1111 "cannot be used for fast tracepoint"));
1112 else if (b->type == bp_static_tracepoint)
1113 error (_("The 'while-stepping' command "
1114 "cannot be used for static tracepoint"));
1115
1116 if (while_stepping)
1117 error (_("The 'while-stepping' command "
1118 "can be used only once"));
1119 else
1120 while_stepping = c;
1121 }
1122
1123 validate_actionline (c->line, b);
1124 }
1125 if (while_stepping)
1126 {
1127 struct command_line *c2;
1128
1129 gdb_assert (while_stepping->body_list_1 == nullptr);
1130 c2 = while_stepping->body_list_0.get ();
1131 for (; c2; c2 = c2->next)
1132 {
1133 if (c2->control_type == while_stepping_control)
1134 error (_("The 'while-stepping' command cannot be nested"));
1135 }
1136 }
1137 }
1138 else
1139 {
1140 check_no_tracepoint_commands (commands);
1141 }
1142 }
1143
1144 /* Return a vector of all the static tracepoints set at ADDR. The
1145 caller is responsible for releasing the vector. */
1146
1147 std::vector<breakpoint *>
1148 static_tracepoints_here (CORE_ADDR addr)
1149 {
1150 struct breakpoint *b;
1151 std::vector<breakpoint *> found;
1152 struct bp_location *loc;
1153
1154 ALL_BREAKPOINTS (b)
1155 if (b->type == bp_static_tracepoint)
1156 {
1157 for (loc = b->loc; loc; loc = loc->next)
1158 if (loc->address == addr)
1159 found.push_back (b);
1160 }
1161
1162 return found;
1163 }
1164
1165 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1166 validate that only allowed commands are included. */
1167
1168 void
1169 breakpoint_set_commands (struct breakpoint *b,
1170 counted_command_line &&commands)
1171 {
1172 validate_commands_for_breakpoint (b, commands.get ());
1173
1174 b->commands = std::move (commands);
1175 gdb::observers::breakpoint_modified.notify (b);
1176 }
1177
1178 /* Set the internal `silent' flag on the breakpoint. Note that this
1179 is not the same as the "silent" that may appear in the breakpoint's
1180 commands. */
1181
1182 void
1183 breakpoint_set_silent (struct breakpoint *b, int silent)
1184 {
1185 int old_silent = b->silent;
1186
1187 b->silent = silent;
1188 if (old_silent != silent)
1189 gdb::observers::breakpoint_modified.notify (b);
1190 }
1191
1192 /* Set the thread for this breakpoint. If THREAD is -1, make the
1193 breakpoint work for any thread. */
1194
1195 void
1196 breakpoint_set_thread (struct breakpoint *b, int thread)
1197 {
1198 int old_thread = b->thread;
1199
1200 b->thread = thread;
1201 if (old_thread != thread)
1202 gdb::observers::breakpoint_modified.notify (b);
1203 }
1204
1205 /* Set the task for this breakpoint. If TASK is 0, make the
1206 breakpoint work for any task. */
1207
1208 void
1209 breakpoint_set_task (struct breakpoint *b, int task)
1210 {
1211 int old_task = b->task;
1212
1213 b->task = task;
1214 if (old_task != task)
1215 gdb::observers::breakpoint_modified.notify (b);
1216 }
1217
1218 static void
1219 commands_command_1 (const char *arg, int from_tty,
1220 struct command_line *control)
1221 {
1222 counted_command_line cmd;
1223 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1224 NULL after the call to read_command_lines if the user provides an empty
1225 list of command by just typing "end". */
1226 bool cmd_read = false;
1227
1228 std::string new_arg;
1229
1230 if (arg == NULL || !*arg)
1231 {
1232 if (breakpoint_count - prev_breakpoint_count > 1)
1233 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1234 breakpoint_count);
1235 else if (breakpoint_count > 0)
1236 new_arg = string_printf ("%d", breakpoint_count);
1237 arg = new_arg.c_str ();
1238 }
1239
1240 map_breakpoint_numbers
1241 (arg, [&] (breakpoint *b)
1242 {
1243 if (!cmd_read)
1244 {
1245 gdb_assert (cmd == NULL);
1246 if (control != NULL)
1247 cmd = control->body_list_0;
1248 else
1249 {
1250 std::string str
1251 = string_printf (_("Type commands for breakpoint(s) "
1252 "%s, one per line."),
1253 arg);
1254
1255 auto do_validate = [=] (const char *line)
1256 {
1257 validate_actionline (line, b);
1258 };
1259 gdb::function_view<void (const char *)> validator;
1260 if (is_tracepoint (b))
1261 validator = do_validate;
1262
1263 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1264 }
1265 cmd_read = true;
1266 }
1267
1268 /* If a breakpoint was on the list more than once, we don't need to
1269 do anything. */
1270 if (b->commands != cmd)
1271 {
1272 validate_commands_for_breakpoint (b, cmd.get ());
1273 b->commands = cmd;
1274 gdb::observers::breakpoint_modified.notify (b);
1275 }
1276 });
1277 }
1278
1279 static void
1280 commands_command (const char *arg, int from_tty)
1281 {
1282 commands_command_1 (arg, from_tty, NULL);
1283 }
1284
1285 /* Like commands_command, but instead of reading the commands from
1286 input stream, takes them from an already parsed command structure.
1287
1288 This is used by cli-script.c to DTRT with breakpoint commands
1289 that are part of if and while bodies. */
1290 enum command_control_type
1291 commands_from_control_command (const char *arg, struct command_line *cmd)
1292 {
1293 commands_command_1 (arg, 0, cmd);
1294 return simple_control;
1295 }
1296
1297 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1298
1299 static int
1300 bp_location_has_shadow (struct bp_location *bl)
1301 {
1302 if (bl->loc_type != bp_loc_software_breakpoint)
1303 return 0;
1304 if (!bl->inserted)
1305 return 0;
1306 if (bl->target_info.shadow_len == 0)
1307 /* BL isn't valid, or doesn't shadow memory. */
1308 return 0;
1309 return 1;
1310 }
1311
1312 /* Update BUF, which is LEN bytes read from the target address
1313 MEMADDR, by replacing a memory breakpoint with its shadowed
1314 contents.
1315
1316 If READBUF is not NULL, this buffer must not overlap with the of
1317 the breakpoint location's shadow_contents buffer. Otherwise, a
1318 failed assertion internal error will be raised. */
1319
1320 static void
1321 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1322 const gdb_byte *writebuf_org,
1323 ULONGEST memaddr, LONGEST len,
1324 struct bp_target_info *target_info,
1325 struct gdbarch *gdbarch)
1326 {
1327 /* Now do full processing of the found relevant range of elements. */
1328 CORE_ADDR bp_addr = 0;
1329 int bp_size = 0;
1330 int bptoffset = 0;
1331
1332 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1333 current_program_space->aspace, 0))
1334 {
1335 /* The breakpoint is inserted in a different address space. */
1336 return;
1337 }
1338
1339 /* Addresses and length of the part of the breakpoint that
1340 we need to copy. */
1341 bp_addr = target_info->placed_address;
1342 bp_size = target_info->shadow_len;
1343
1344 if (bp_addr + bp_size <= memaddr)
1345 {
1346 /* The breakpoint is entirely before the chunk of memory we are
1347 reading. */
1348 return;
1349 }
1350
1351 if (bp_addr >= memaddr + len)
1352 {
1353 /* The breakpoint is entirely after the chunk of memory we are
1354 reading. */
1355 return;
1356 }
1357
1358 /* Offset within shadow_contents. */
1359 if (bp_addr < memaddr)
1360 {
1361 /* Only copy the second part of the breakpoint. */
1362 bp_size -= memaddr - bp_addr;
1363 bptoffset = memaddr - bp_addr;
1364 bp_addr = memaddr;
1365 }
1366
1367 if (bp_addr + bp_size > memaddr + len)
1368 {
1369 /* Only copy the first part of the breakpoint. */
1370 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1371 }
1372
1373 if (readbuf != NULL)
1374 {
1375 /* Verify that the readbuf buffer does not overlap with the
1376 shadow_contents buffer. */
1377 gdb_assert (target_info->shadow_contents >= readbuf + len
1378 || readbuf >= (target_info->shadow_contents
1379 + target_info->shadow_len));
1380
1381 /* Update the read buffer with this inserted breakpoint's
1382 shadow. */
1383 memcpy (readbuf + bp_addr - memaddr,
1384 target_info->shadow_contents + bptoffset, bp_size);
1385 }
1386 else
1387 {
1388 const unsigned char *bp;
1389 CORE_ADDR addr = target_info->reqstd_address;
1390 int placed_size;
1391
1392 /* Update the shadow with what we want to write to memory. */
1393 memcpy (target_info->shadow_contents + bptoffset,
1394 writebuf_org + bp_addr - memaddr, bp_size);
1395
1396 /* Determine appropriate breakpoint contents and size for this
1397 address. */
1398 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1399
1400 /* Update the final write buffer with this inserted
1401 breakpoint's INSN. */
1402 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1403 }
1404 }
1405
1406 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1407 by replacing any memory breakpoints with their shadowed contents.
1408
1409 If READBUF is not NULL, this buffer must not overlap with any of
1410 the breakpoint location's shadow_contents buffers. Otherwise,
1411 a failed assertion internal error will be raised.
1412
1413 The range of shadowed area by each bp_location is:
1414 bl->address - bp_locations_placed_address_before_address_max
1415 up to bl->address + bp_locations_shadow_len_after_address_max
1416 The range we were requested to resolve shadows for is:
1417 memaddr ... memaddr + len
1418 Thus the safe cutoff boundaries for performance optimization are
1419 memaddr + len <= (bl->address
1420 - bp_locations_placed_address_before_address_max)
1421 and:
1422 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1423
1424 void
1425 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1426 const gdb_byte *writebuf_org,
1427 ULONGEST memaddr, LONGEST len)
1428 {
1429 /* Left boundary, right boundary and median element of our binary
1430 search. */
1431 unsigned bc_l, bc_r, bc;
1432
1433 /* Find BC_L which is a leftmost element which may affect BUF
1434 content. It is safe to report lower value but a failure to
1435 report higher one. */
1436
1437 bc_l = 0;
1438 bc_r = bp_locations_count;
1439 while (bc_l + 1 < bc_r)
1440 {
1441 struct bp_location *bl;
1442
1443 bc = (bc_l + bc_r) / 2;
1444 bl = bp_locations[bc];
1445
1446 /* Check first BL->ADDRESS will not overflow due to the added
1447 constant. Then advance the left boundary only if we are sure
1448 the BC element can in no way affect the BUF content (MEMADDR
1449 to MEMADDR + LEN range).
1450
1451 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1452 offset so that we cannot miss a breakpoint with its shadow
1453 range tail still reaching MEMADDR. */
1454
1455 if ((bl->address + bp_locations_shadow_len_after_address_max
1456 >= bl->address)
1457 && (bl->address + bp_locations_shadow_len_after_address_max
1458 <= memaddr))
1459 bc_l = bc;
1460 else
1461 bc_r = bc;
1462 }
1463
1464 /* Due to the binary search above, we need to make sure we pick the
1465 first location that's at BC_L's address. E.g., if there are
1466 multiple locations at the same address, BC_L may end up pointing
1467 at a duplicate location, and miss the "master"/"inserted"
1468 location. Say, given locations L1, L2 and L3 at addresses A and
1469 B:
1470
1471 L1@A, L2@A, L3@B, ...
1472
1473 BC_L could end up pointing at location L2, while the "master"
1474 location could be L1. Since the `loc->inserted' flag is only set
1475 on "master" locations, we'd forget to restore the shadow of L1
1476 and L2. */
1477 while (bc_l > 0
1478 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1479 bc_l--;
1480
1481 /* Now do full processing of the found relevant range of elements. */
1482
1483 for (bc = bc_l; bc < bp_locations_count; bc++)
1484 {
1485 struct bp_location *bl = bp_locations[bc];
1486
1487 /* bp_location array has BL->OWNER always non-NULL. */
1488 if (bl->owner->type == bp_none)
1489 warning (_("reading through apparently deleted breakpoint #%d?"),
1490 bl->owner->number);
1491
1492 /* Performance optimization: any further element can no longer affect BUF
1493 content. */
1494
1495 if (bl->address >= bp_locations_placed_address_before_address_max
1496 && memaddr + len <= (bl->address
1497 - bp_locations_placed_address_before_address_max))
1498 break;
1499
1500 if (!bp_location_has_shadow (bl))
1501 continue;
1502
1503 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1504 memaddr, len, &bl->target_info, bl->gdbarch);
1505 }
1506 }
1507
1508 /* See breakpoint.h. */
1509
1510 bool
1511 is_breakpoint (const struct breakpoint *bpt)
1512 {
1513 return (bpt->type == bp_breakpoint
1514 || bpt->type == bp_hardware_breakpoint
1515 || bpt->type == bp_dprintf);
1516 }
1517
1518 /* Return true if BPT is of any hardware watchpoint kind. */
1519
1520 static bool
1521 is_hardware_watchpoint (const struct breakpoint *bpt)
1522 {
1523 return (bpt->type == bp_hardware_watchpoint
1524 || bpt->type == bp_read_watchpoint
1525 || bpt->type == bp_access_watchpoint);
1526 }
1527
1528 /* See breakpoint.h. */
1529
1530 bool
1531 is_watchpoint (const struct breakpoint *bpt)
1532 {
1533 return (is_hardware_watchpoint (bpt)
1534 || bpt->type == bp_watchpoint);
1535 }
1536
1537 /* Returns true if the current thread and its running state are safe
1538 to evaluate or update watchpoint B. Watchpoints on local
1539 expressions need to be evaluated in the context of the thread that
1540 was current when the watchpoint was created, and, that thread needs
1541 to be stopped to be able to select the correct frame context.
1542 Watchpoints on global expressions can be evaluated on any thread,
1543 and in any state. It is presently left to the target allowing
1544 memory accesses when threads are running. */
1545
1546 static int
1547 watchpoint_in_thread_scope (struct watchpoint *b)
1548 {
1549 return (b->pspace == current_program_space
1550 && (b->watchpoint_thread == null_ptid
1551 || (inferior_ptid == b->watchpoint_thread
1552 && !inferior_thread ()->executing)));
1553 }
1554
1555 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1556 associated bp_watchpoint_scope breakpoint. */
1557
1558 static void
1559 watchpoint_del_at_next_stop (struct watchpoint *w)
1560 {
1561 if (w->related_breakpoint != w)
1562 {
1563 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1564 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1565 w->related_breakpoint->disposition = disp_del_at_next_stop;
1566 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1567 w->related_breakpoint = w;
1568 }
1569 w->disposition = disp_del_at_next_stop;
1570 }
1571
1572 /* Extract a bitfield value from value VAL using the bit parameters contained in
1573 watchpoint W. */
1574
1575 static struct value *
1576 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1577 {
1578 struct value *bit_val;
1579
1580 if (val == NULL)
1581 return NULL;
1582
1583 bit_val = allocate_value (value_type (val));
1584
1585 unpack_value_bitfield (bit_val,
1586 w->val_bitpos,
1587 w->val_bitsize,
1588 value_contents_for_printing (val),
1589 value_offset (val),
1590 val);
1591
1592 return bit_val;
1593 }
1594
1595 /* Allocate a dummy location and add it to B, which must be a software
1596 watchpoint. This is required because even if a software watchpoint
1597 is not watching any memory, bpstat_stop_status requires a location
1598 to be able to report stops. */
1599
1600 static void
1601 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1602 struct program_space *pspace)
1603 {
1604 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1605
1606 b->loc = allocate_bp_location (b);
1607 b->loc->pspace = pspace;
1608 b->loc->address = -1;
1609 b->loc->length = -1;
1610 }
1611
1612 /* Returns true if B is a software watchpoint that is not watching any
1613 memory (e.g., "watch $pc"). */
1614
1615 static bool
1616 is_no_memory_software_watchpoint (struct breakpoint *b)
1617 {
1618 return (b->type == bp_watchpoint
1619 && b->loc != NULL
1620 && b->loc->next == NULL
1621 && b->loc->address == -1
1622 && b->loc->length == -1);
1623 }
1624
1625 /* Assuming that B is a watchpoint:
1626 - Reparse watchpoint expression, if REPARSE is non-zero
1627 - Evaluate expression and store the result in B->val
1628 - Evaluate the condition if there is one, and store the result
1629 in b->loc->cond.
1630 - Update the list of values that must be watched in B->loc.
1631
1632 If the watchpoint disposition is disp_del_at_next_stop, then do
1633 nothing. If this is local watchpoint that is out of scope, delete
1634 it.
1635
1636 Even with `set breakpoint always-inserted on' the watchpoints are
1637 removed + inserted on each stop here. Normal breakpoints must
1638 never be removed because they might be missed by a running thread
1639 when debugging in non-stop mode. On the other hand, hardware
1640 watchpoints (is_hardware_watchpoint; processed here) are specific
1641 to each LWP since they are stored in each LWP's hardware debug
1642 registers. Therefore, such LWP must be stopped first in order to
1643 be able to modify its hardware watchpoints.
1644
1645 Hardware watchpoints must be reset exactly once after being
1646 presented to the user. It cannot be done sooner, because it would
1647 reset the data used to present the watchpoint hit to the user. And
1648 it must not be done later because it could display the same single
1649 watchpoint hit during multiple GDB stops. Note that the latter is
1650 relevant only to the hardware watchpoint types bp_read_watchpoint
1651 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1652 not user-visible - its hit is suppressed if the memory content has
1653 not changed.
1654
1655 The following constraints influence the location where we can reset
1656 hardware watchpoints:
1657
1658 * target_stopped_by_watchpoint and target_stopped_data_address are
1659 called several times when GDB stops.
1660
1661 [linux]
1662 * Multiple hardware watchpoints can be hit at the same time,
1663 causing GDB to stop. GDB only presents one hardware watchpoint
1664 hit at a time as the reason for stopping, and all the other hits
1665 are presented later, one after the other, each time the user
1666 requests the execution to be resumed. Execution is not resumed
1667 for the threads still having pending hit event stored in
1668 LWP_INFO->STATUS. While the watchpoint is already removed from
1669 the inferior on the first stop the thread hit event is kept being
1670 reported from its cached value by linux_nat_stopped_data_address
1671 until the real thread resume happens after the watchpoint gets
1672 presented and thus its LWP_INFO->STATUS gets reset.
1673
1674 Therefore the hardware watchpoint hit can get safely reset on the
1675 watchpoint removal from inferior. */
1676
1677 static void
1678 update_watchpoint (struct watchpoint *b, int reparse)
1679 {
1680 int within_current_scope;
1681 struct frame_id saved_frame_id;
1682 int frame_saved;
1683
1684 /* If this is a local watchpoint, we only want to check if the
1685 watchpoint frame is in scope if the current thread is the thread
1686 that was used to create the watchpoint. */
1687 if (!watchpoint_in_thread_scope (b))
1688 return;
1689
1690 if (b->disposition == disp_del_at_next_stop)
1691 return;
1692
1693 frame_saved = 0;
1694
1695 /* Determine if the watchpoint is within scope. */
1696 if (b->exp_valid_block == NULL)
1697 within_current_scope = 1;
1698 else
1699 {
1700 struct frame_info *fi = get_current_frame ();
1701 struct gdbarch *frame_arch = get_frame_arch (fi);
1702 CORE_ADDR frame_pc = get_frame_pc (fi);
1703
1704 /* If we're at a point where the stack has been destroyed
1705 (e.g. in a function epilogue), unwinding may not work
1706 properly. Do not attempt to recreate locations at this
1707 point. See similar comments in watchpoint_check. */
1708 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1709 return;
1710
1711 /* Save the current frame's ID so we can restore it after
1712 evaluating the watchpoint expression on its own frame. */
1713 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1714 took a frame parameter, so that we didn't have to change the
1715 selected frame. */
1716 frame_saved = 1;
1717 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1718
1719 fi = frame_find_by_id (b->watchpoint_frame);
1720 within_current_scope = (fi != NULL);
1721 if (within_current_scope)
1722 select_frame (fi);
1723 }
1724
1725 /* We don't free locations. They are stored in the bp_location array
1726 and update_global_location_list will eventually delete them and
1727 remove breakpoints if needed. */
1728 b->loc = NULL;
1729
1730 if (within_current_scope && reparse)
1731 {
1732 const char *s;
1733
1734 b->exp.reset ();
1735 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1736 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1737 /* If the meaning of expression itself changed, the old value is
1738 no longer relevant. We don't want to report a watchpoint hit
1739 to the user when the old value and the new value may actually
1740 be completely different objects. */
1741 b->val = NULL;
1742 b->val_valid = false;
1743
1744 /* Note that unlike with breakpoints, the watchpoint's condition
1745 expression is stored in the breakpoint object, not in the
1746 locations (re)created below. */
1747 if (b->cond_string != NULL)
1748 {
1749 b->cond_exp.reset ();
1750
1751 s = b->cond_string;
1752 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1753 }
1754 }
1755
1756 /* If we failed to parse the expression, for example because
1757 it refers to a global variable in a not-yet-loaded shared library,
1758 don't try to insert watchpoint. We don't automatically delete
1759 such watchpoint, though, since failure to parse expression
1760 is different from out-of-scope watchpoint. */
1761 if (!target_has_execution)
1762 {
1763 /* Without execution, memory can't change. No use to try and
1764 set watchpoint locations. The watchpoint will be reset when
1765 the target gains execution, through breakpoint_re_set. */
1766 if (!can_use_hw_watchpoints)
1767 {
1768 if (b->ops->works_in_software_mode (b))
1769 b->type = bp_watchpoint;
1770 else
1771 error (_("Can't set read/access watchpoint when "
1772 "hardware watchpoints are disabled."));
1773 }
1774 }
1775 else if (within_current_scope && b->exp)
1776 {
1777 int pc = 0;
1778 std::vector<value_ref_ptr> val_chain;
1779 struct value *v, *result;
1780 struct program_space *frame_pspace;
1781
1782 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1783
1784 /* Avoid setting b->val if it's already set. The meaning of
1785 b->val is 'the last value' user saw, and we should update
1786 it only if we reported that last value to user. As it
1787 happens, the code that reports it updates b->val directly.
1788 We don't keep track of the memory value for masked
1789 watchpoints. */
1790 if (!b->val_valid && !is_masked_watchpoint (b))
1791 {
1792 if (b->val_bitsize != 0)
1793 v = extract_bitfield_from_watchpoint_value (b, v);
1794 b->val = release_value (v);
1795 b->val_valid = true;
1796 }
1797
1798 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1799
1800 /* Look at each value on the value chain. */
1801 gdb_assert (!val_chain.empty ());
1802 for (const value_ref_ptr &iter : val_chain)
1803 {
1804 v = iter.get ();
1805
1806 /* If it's a memory location, and GDB actually needed
1807 its contents to evaluate the expression, then we
1808 must watch it. If the first value returned is
1809 still lazy, that means an error occurred reading it;
1810 watch it anyway in case it becomes readable. */
1811 if (VALUE_LVAL (v) == lval_memory
1812 && (v == val_chain[0] || ! value_lazy (v)))
1813 {
1814 struct type *vtype = check_typedef (value_type (v));
1815
1816 /* We only watch structs and arrays if user asked
1817 for it explicitly, never if they just happen to
1818 appear in the middle of some value chain. */
1819 if (v == result
1820 || (vtype->code () != TYPE_CODE_STRUCT
1821 && vtype->code () != TYPE_CODE_ARRAY))
1822 {
1823 CORE_ADDR addr;
1824 enum target_hw_bp_type type;
1825 struct bp_location *loc, **tmp;
1826 int bitpos = 0, bitsize = 0;
1827
1828 if (value_bitsize (v) != 0)
1829 {
1830 /* Extract the bit parameters out from the bitfield
1831 sub-expression. */
1832 bitpos = value_bitpos (v);
1833 bitsize = value_bitsize (v);
1834 }
1835 else if (v == result && b->val_bitsize != 0)
1836 {
1837 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1838 lvalue whose bit parameters are saved in the fields
1839 VAL_BITPOS and VAL_BITSIZE. */
1840 bitpos = b->val_bitpos;
1841 bitsize = b->val_bitsize;
1842 }
1843
1844 addr = value_address (v);
1845 if (bitsize != 0)
1846 {
1847 /* Skip the bytes that don't contain the bitfield. */
1848 addr += bitpos / 8;
1849 }
1850
1851 type = hw_write;
1852 if (b->type == bp_read_watchpoint)
1853 type = hw_read;
1854 else if (b->type == bp_access_watchpoint)
1855 type = hw_access;
1856
1857 loc = allocate_bp_location (b);
1858 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1859 ;
1860 *tmp = loc;
1861 loc->gdbarch = get_type_arch (value_type (v));
1862
1863 loc->pspace = frame_pspace;
1864 loc->address = address_significant (loc->gdbarch, addr);
1865
1866 if (bitsize != 0)
1867 {
1868 /* Just cover the bytes that make up the bitfield. */
1869 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1870 }
1871 else
1872 loc->length = TYPE_LENGTH (value_type (v));
1873
1874 loc->watchpoint_type = type;
1875 }
1876 }
1877 }
1878
1879 /* Change the type of breakpoint between hardware assisted or
1880 an ordinary watchpoint depending on the hardware support
1881 and free hardware slots. REPARSE is set when the inferior
1882 is started. */
1883 if (reparse)
1884 {
1885 int reg_cnt;
1886 enum bp_loc_type loc_type;
1887 struct bp_location *bl;
1888
1889 reg_cnt = can_use_hardware_watchpoint (val_chain);
1890
1891 if (reg_cnt)
1892 {
1893 int i, target_resources_ok, other_type_used;
1894 enum bptype type;
1895
1896 /* Use an exact watchpoint when there's only one memory region to be
1897 watched, and only one debug register is needed to watch it. */
1898 b->exact = target_exact_watchpoints && reg_cnt == 1;
1899
1900 /* We need to determine how many resources are already
1901 used for all other hardware watchpoints plus this one
1902 to see if we still have enough resources to also fit
1903 this watchpoint in as well. */
1904
1905 /* If this is a software watchpoint, we try to turn it
1906 to a hardware one -- count resources as if B was of
1907 hardware watchpoint type. */
1908 type = b->type;
1909 if (type == bp_watchpoint)
1910 type = bp_hardware_watchpoint;
1911
1912 /* This watchpoint may or may not have been placed on
1913 the list yet at this point (it won't be in the list
1914 if we're trying to create it for the first time,
1915 through watch_command), so always account for it
1916 manually. */
1917
1918 /* Count resources used by all watchpoints except B. */
1919 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1920
1921 /* Add in the resources needed for B. */
1922 i += hw_watchpoint_use_count (b);
1923
1924 target_resources_ok
1925 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1926 if (target_resources_ok <= 0)
1927 {
1928 int sw_mode = b->ops->works_in_software_mode (b);
1929
1930 if (target_resources_ok == 0 && !sw_mode)
1931 error (_("Target does not support this type of "
1932 "hardware watchpoint."));
1933 else if (target_resources_ok < 0 && !sw_mode)
1934 error (_("There are not enough available hardware "
1935 "resources for this watchpoint."));
1936
1937 /* Downgrade to software watchpoint. */
1938 b->type = bp_watchpoint;
1939 }
1940 else
1941 {
1942 /* If this was a software watchpoint, we've just
1943 found we have enough resources to turn it to a
1944 hardware watchpoint. Otherwise, this is a
1945 nop. */
1946 b->type = type;
1947 }
1948 }
1949 else if (!b->ops->works_in_software_mode (b))
1950 {
1951 if (!can_use_hw_watchpoints)
1952 error (_("Can't set read/access watchpoint when "
1953 "hardware watchpoints are disabled."));
1954 else
1955 error (_("Expression cannot be implemented with "
1956 "read/access watchpoint."));
1957 }
1958 else
1959 b->type = bp_watchpoint;
1960
1961 loc_type = (b->type == bp_watchpoint? bp_loc_other
1962 : bp_loc_hardware_watchpoint);
1963 for (bl = b->loc; bl; bl = bl->next)
1964 bl->loc_type = loc_type;
1965 }
1966
1967 /* If a software watchpoint is not watching any memory, then the
1968 above left it without any location set up. But,
1969 bpstat_stop_status requires a location to be able to report
1970 stops, so make sure there's at least a dummy one. */
1971 if (b->type == bp_watchpoint && b->loc == NULL)
1972 software_watchpoint_add_no_memory_location (b, frame_pspace);
1973 }
1974 else if (!within_current_scope)
1975 {
1976 printf_filtered (_("\
1977 Watchpoint %d deleted because the program has left the block\n\
1978 in which its expression is valid.\n"),
1979 b->number);
1980 watchpoint_del_at_next_stop (b);
1981 }
1982
1983 /* Restore the selected frame. */
1984 if (frame_saved)
1985 select_frame (frame_find_by_id (saved_frame_id));
1986 }
1987
1988
1989 /* Returns 1 iff breakpoint location should be
1990 inserted in the inferior. We don't differentiate the type of BL's owner
1991 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1992 breakpoint_ops is not defined, because in insert_bp_location,
1993 tracepoint's insert_location will not be called. */
1994 static int
1995 should_be_inserted (struct bp_location *bl)
1996 {
1997 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1998 return 0;
1999
2000 if (bl->owner->disposition == disp_del_at_next_stop)
2001 return 0;
2002
2003 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2004 return 0;
2005
2006 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2007 return 0;
2008
2009 /* This is set for example, when we're attached to the parent of a
2010 vfork, and have detached from the child. The child is running
2011 free, and we expect it to do an exec or exit, at which point the
2012 OS makes the parent schedulable again (and the target reports
2013 that the vfork is done). Until the child is done with the shared
2014 memory region, do not insert breakpoints in the parent, otherwise
2015 the child could still trip on the parent's breakpoints. Since
2016 the parent is blocked anyway, it won't miss any breakpoint. */
2017 if (bl->pspace->breakpoints_not_allowed)
2018 return 0;
2019
2020 /* Don't insert a breakpoint if we're trying to step past its
2021 location, except if the breakpoint is a single-step breakpoint,
2022 and the breakpoint's thread is the thread which is stepping past
2023 a breakpoint. */
2024 if ((bl->loc_type == bp_loc_software_breakpoint
2025 || bl->loc_type == bp_loc_hardware_breakpoint)
2026 && stepping_past_instruction_at (bl->pspace->aspace,
2027 bl->address)
2028 /* The single-step breakpoint may be inserted at the location
2029 we're trying to step if the instruction branches to itself.
2030 However, the instruction won't be executed at all and it may
2031 break the semantics of the instruction, for example, the
2032 instruction is a conditional branch or updates some flags.
2033 We can't fix it unless GDB is able to emulate the instruction
2034 or switch to displaced stepping. */
2035 && !(bl->owner->type == bp_single_step
2036 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2037 {
2038 infrun_debug_printf ("skipping breakpoint: stepping past insn at: %s",
2039 paddress (bl->gdbarch, bl->address));
2040 return 0;
2041 }
2042
2043 /* Don't insert watchpoints if we're trying to step past the
2044 instruction that triggered one. */
2045 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2046 && stepping_past_nonsteppable_watchpoint ())
2047 {
2048 infrun_debug_printf ("stepping past non-steppable watchpoint. "
2049 "skipping watchpoint at %s:%d\n",
2050 paddress (bl->gdbarch, bl->address), bl->length);
2051 return 0;
2052 }
2053
2054 return 1;
2055 }
2056
2057 /* Same as should_be_inserted but does the check assuming
2058 that the location is not duplicated. */
2059
2060 static int
2061 unduplicated_should_be_inserted (struct bp_location *bl)
2062 {
2063 int result;
2064 const int save_duplicate = bl->duplicate;
2065
2066 bl->duplicate = 0;
2067 result = should_be_inserted (bl);
2068 bl->duplicate = save_duplicate;
2069 return result;
2070 }
2071
2072 /* Parses a conditional described by an expression COND into an
2073 agent expression bytecode suitable for evaluation
2074 by the bytecode interpreter. Return NULL if there was
2075 any error during parsing. */
2076
2077 static agent_expr_up
2078 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2079 {
2080 if (cond == NULL)
2081 return NULL;
2082
2083 agent_expr_up aexpr;
2084
2085 /* We don't want to stop processing, so catch any errors
2086 that may show up. */
2087 try
2088 {
2089 aexpr = gen_eval_for_expr (scope, cond);
2090 }
2091
2092 catch (const gdb_exception_error &ex)
2093 {
2094 /* If we got here, it means the condition could not be parsed to a valid
2095 bytecode expression and thus can't be evaluated on the target's side.
2096 It's no use iterating through the conditions. */
2097 }
2098
2099 /* We have a valid agent expression. */
2100 return aexpr;
2101 }
2102
2103 /* Based on location BL, create a list of breakpoint conditions to be
2104 passed on to the target. If we have duplicated locations with different
2105 conditions, we will add such conditions to the list. The idea is that the
2106 target will evaluate the list of conditions and will only notify GDB when
2107 one of them is true. */
2108
2109 static void
2110 build_target_condition_list (struct bp_location *bl)
2111 {
2112 struct bp_location **locp = NULL, **loc2p;
2113 int null_condition_or_parse_error = 0;
2114 int modified = bl->needs_update;
2115 struct bp_location *loc;
2116
2117 /* Release conditions left over from a previous insert. */
2118 bl->target_info.conditions.clear ();
2119
2120 /* This is only meaningful if the target is
2121 evaluating conditions and if the user has
2122 opted for condition evaluation on the target's
2123 side. */
2124 if (gdb_evaluates_breakpoint_condition_p ()
2125 || !target_supports_evaluation_of_breakpoint_conditions ())
2126 return;
2127
2128 /* Do a first pass to check for locations with no assigned
2129 conditions or conditions that fail to parse to a valid agent
2130 expression bytecode. If any of these happen, then it's no use to
2131 send conditions to the target since this location will always
2132 trigger and generate a response back to GDB. Note we consider
2133 all locations at the same address irrespective of type, i.e.,
2134 even if the locations aren't considered duplicates (e.g.,
2135 software breakpoint and hardware breakpoint at the same
2136 address). */
2137 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2138 {
2139 loc = (*loc2p);
2140 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2141 {
2142 if (modified)
2143 {
2144 /* Re-parse the conditions since something changed. In that
2145 case we already freed the condition bytecodes (see
2146 force_breakpoint_reinsertion). We just
2147 need to parse the condition to bytecodes again. */
2148 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2149 loc->cond.get ());
2150 }
2151
2152 /* If we have a NULL bytecode expression, it means something
2153 went wrong or we have a null condition expression. */
2154 if (!loc->cond_bytecode)
2155 {
2156 null_condition_or_parse_error = 1;
2157 break;
2158 }
2159 }
2160 }
2161
2162 /* If any of these happened, it means we will have to evaluate the conditions
2163 for the location's address on gdb's side. It is no use keeping bytecodes
2164 for all the other duplicate locations, thus we free all of them here.
2165
2166 This is so we have a finer control over which locations' conditions are
2167 being evaluated by GDB or the remote stub. */
2168 if (null_condition_or_parse_error)
2169 {
2170 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2171 {
2172 loc = (*loc2p);
2173 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2174 {
2175 /* Only go as far as the first NULL bytecode is
2176 located. */
2177 if (!loc->cond_bytecode)
2178 return;
2179
2180 loc->cond_bytecode.reset ();
2181 }
2182 }
2183 }
2184
2185 /* No NULL conditions or failed bytecode generation. Build a
2186 condition list for this location's address. If we have software
2187 and hardware locations at the same address, they aren't
2188 considered duplicates, but we still marge all the conditions
2189 anyway, as it's simpler, and doesn't really make a practical
2190 difference. */
2191 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2192 {
2193 loc = (*loc2p);
2194 if (loc->cond
2195 && is_breakpoint (loc->owner)
2196 && loc->pspace->num == bl->pspace->num
2197 && loc->owner->enable_state == bp_enabled
2198 && loc->enabled)
2199 {
2200 /* Add the condition to the vector. This will be used later
2201 to send the conditions to the target. */
2202 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2203 }
2204 }
2205
2206 return;
2207 }
2208
2209 /* Parses a command described by string CMD into an agent expression
2210 bytecode suitable for evaluation by the bytecode interpreter.
2211 Return NULL if there was any error during parsing. */
2212
2213 static agent_expr_up
2214 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2215 {
2216 const char *cmdrest;
2217 const char *format_start, *format_end;
2218 struct gdbarch *gdbarch = get_current_arch ();
2219
2220 if (cmd == NULL)
2221 return NULL;
2222
2223 cmdrest = cmd;
2224
2225 if (*cmdrest == ',')
2226 ++cmdrest;
2227 cmdrest = skip_spaces (cmdrest);
2228
2229 if (*cmdrest++ != '"')
2230 error (_("No format string following the location"));
2231
2232 format_start = cmdrest;
2233
2234 format_pieces fpieces (&cmdrest);
2235
2236 format_end = cmdrest;
2237
2238 if (*cmdrest++ != '"')
2239 error (_("Bad format string, non-terminated '\"'."));
2240
2241 cmdrest = skip_spaces (cmdrest);
2242
2243 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2244 error (_("Invalid argument syntax"));
2245
2246 if (*cmdrest == ',')
2247 cmdrest++;
2248 cmdrest = skip_spaces (cmdrest);
2249
2250 /* For each argument, make an expression. */
2251
2252 std::vector<struct expression *> argvec;
2253 while (*cmdrest != '\0')
2254 {
2255 const char *cmd1;
2256
2257 cmd1 = cmdrest;
2258 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2259 argvec.push_back (expr.release ());
2260 cmdrest = cmd1;
2261 if (*cmdrest == ',')
2262 ++cmdrest;
2263 }
2264
2265 agent_expr_up aexpr;
2266
2267 /* We don't want to stop processing, so catch any errors
2268 that may show up. */
2269 try
2270 {
2271 aexpr = gen_printf (scope, gdbarch, 0, 0,
2272 format_start, format_end - format_start,
2273 argvec.size (), argvec.data ());
2274 }
2275 catch (const gdb_exception_error &ex)
2276 {
2277 /* If we got here, it means the command could not be parsed to a valid
2278 bytecode expression and thus can't be evaluated on the target's side.
2279 It's no use iterating through the other commands. */
2280 }
2281
2282 /* We have a valid agent expression, return it. */
2283 return aexpr;
2284 }
2285
2286 /* Based on location BL, create a list of breakpoint commands to be
2287 passed on to the target. If we have duplicated locations with
2288 different commands, we will add any such to the list. */
2289
2290 static void
2291 build_target_command_list (struct bp_location *bl)
2292 {
2293 struct bp_location **locp = NULL, **loc2p;
2294 int null_command_or_parse_error = 0;
2295 int modified = bl->needs_update;
2296 struct bp_location *loc;
2297
2298 /* Clear commands left over from a previous insert. */
2299 bl->target_info.tcommands.clear ();
2300
2301 if (!target_can_run_breakpoint_commands ())
2302 return;
2303
2304 /* For now, limit to agent-style dprintf breakpoints. */
2305 if (dprintf_style != dprintf_style_agent)
2306 return;
2307
2308 /* For now, if we have any location at the same address that isn't a
2309 dprintf, don't install the target-side commands, as that would
2310 make the breakpoint not be reported to the core, and we'd lose
2311 control. */
2312 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2313 {
2314 loc = (*loc2p);
2315 if (is_breakpoint (loc->owner)
2316 && loc->pspace->num == bl->pspace->num
2317 && loc->owner->type != bp_dprintf)
2318 return;
2319 }
2320
2321 /* Do a first pass to check for locations with no assigned
2322 conditions or conditions that fail to parse to a valid agent expression
2323 bytecode. If any of these happen, then it's no use to send conditions
2324 to the target since this location will always trigger and generate a
2325 response back to GDB. */
2326 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2327 {
2328 loc = (*loc2p);
2329 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2330 {
2331 if (modified)
2332 {
2333 /* Re-parse the commands since something changed. In that
2334 case we already freed the command bytecodes (see
2335 force_breakpoint_reinsertion). We just
2336 need to parse the command to bytecodes again. */
2337 loc->cmd_bytecode
2338 = parse_cmd_to_aexpr (bl->address,
2339 loc->owner->extra_string);
2340 }
2341
2342 /* If we have a NULL bytecode expression, it means something
2343 went wrong or we have a null command expression. */
2344 if (!loc->cmd_bytecode)
2345 {
2346 null_command_or_parse_error = 1;
2347 break;
2348 }
2349 }
2350 }
2351
2352 /* If anything failed, then we're not doing target-side commands,
2353 and so clean up. */
2354 if (null_command_or_parse_error)
2355 {
2356 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2357 {
2358 loc = (*loc2p);
2359 if (is_breakpoint (loc->owner)
2360 && loc->pspace->num == bl->pspace->num)
2361 {
2362 /* Only go as far as the first NULL bytecode is
2363 located. */
2364 if (loc->cmd_bytecode == NULL)
2365 return;
2366
2367 loc->cmd_bytecode.reset ();
2368 }
2369 }
2370 }
2371
2372 /* No NULL commands or failed bytecode generation. Build a command
2373 list for all duplicate locations at this location's address.
2374 Note that here we must care for whether the breakpoint location
2375 types are considered duplicates, otherwise, say, if we have a
2376 software and hardware location at the same address, the target
2377 could end up running the commands twice. For the moment, we only
2378 support targets-side commands with dprintf, but it doesn't hurt
2379 to be pedantically correct in case that changes. */
2380 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2381 {
2382 loc = (*loc2p);
2383 if (breakpoint_locations_match (bl, loc)
2384 && loc->owner->extra_string
2385 && is_breakpoint (loc->owner)
2386 && loc->pspace->num == bl->pspace->num
2387 && loc->owner->enable_state == bp_enabled
2388 && loc->enabled)
2389 {
2390 /* Add the command to the vector. This will be used later
2391 to send the commands to the target. */
2392 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2393 }
2394 }
2395
2396 bl->target_info.persist = 0;
2397 /* Maybe flag this location as persistent. */
2398 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2399 bl->target_info.persist = 1;
2400 }
2401
2402 /* Return the kind of breakpoint on address *ADDR. Get the kind
2403 of breakpoint according to ADDR except single-step breakpoint.
2404 Get the kind of single-step breakpoint according to the current
2405 registers state. */
2406
2407 static int
2408 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2409 {
2410 if (bl->owner->type == bp_single_step)
2411 {
2412 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2413 struct regcache *regcache;
2414
2415 regcache = get_thread_regcache (thr);
2416
2417 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2418 regcache, addr);
2419 }
2420 else
2421 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2422 }
2423
2424 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2425 location. Any error messages are printed to TMP_ERROR_STREAM; and
2426 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2427 Returns 0 for success, 1 if the bp_location type is not supported or
2428 -1 for failure.
2429
2430 NOTE drow/2003-09-09: This routine could be broken down to an
2431 object-style method for each breakpoint or catchpoint type. */
2432 static int
2433 insert_bp_location (struct bp_location *bl,
2434 struct ui_file *tmp_error_stream,
2435 int *disabled_breaks,
2436 int *hw_breakpoint_error,
2437 int *hw_bp_error_explained_already)
2438 {
2439 gdb_exception bp_excpt;
2440
2441 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2442 return 0;
2443
2444 /* Note we don't initialize bl->target_info, as that wipes out
2445 the breakpoint location's shadow_contents if the breakpoint
2446 is still inserted at that location. This in turn breaks
2447 target_read_memory which depends on these buffers when
2448 a memory read is requested at the breakpoint location:
2449 Once the target_info has been wiped, we fail to see that
2450 we have a breakpoint inserted at that address and thus
2451 read the breakpoint instead of returning the data saved in
2452 the breakpoint location's shadow contents. */
2453 bl->target_info.reqstd_address = bl->address;
2454 bl->target_info.placed_address_space = bl->pspace->aspace;
2455 bl->target_info.length = bl->length;
2456
2457 /* When working with target-side conditions, we must pass all the conditions
2458 for the same breakpoint address down to the target since GDB will not
2459 insert those locations. With a list of breakpoint conditions, the target
2460 can decide when to stop and notify GDB. */
2461
2462 if (is_breakpoint (bl->owner))
2463 {
2464 build_target_condition_list (bl);
2465 build_target_command_list (bl);
2466 /* Reset the modification marker. */
2467 bl->needs_update = 0;
2468 }
2469
2470 /* If "set breakpoint auto-hw" is "on" and a software breakpoint was
2471 set at a read-only address, then a breakpoint location will have
2472 been changed to hardware breakpoint before we get here. If it is
2473 "off" however, error out before actually trying to insert the
2474 breakpoint, with a nicer error message. */
2475 if (bl->loc_type == bp_loc_software_breakpoint
2476 && !automatic_hardware_breakpoints)
2477 {
2478 mem_region *mr = lookup_mem_region (bl->address);
2479
2480 if (mr != nullptr && mr->attrib.mode != MEM_RW)
2481 {
2482 fprintf_unfiltered (tmp_error_stream,
2483 _("Cannot insert breakpoint %d.\n"
2484 "Cannot set software breakpoint "
2485 "at read-only address %s\n"),
2486 bl->owner->number,
2487 paddress (bl->gdbarch, bl->address));
2488 return 1;
2489 }
2490 }
2491
2492 if (bl->loc_type == bp_loc_software_breakpoint
2493 || bl->loc_type == bp_loc_hardware_breakpoint)
2494 {
2495 /* First check to see if we have to handle an overlay. */
2496 if (overlay_debugging == ovly_off
2497 || bl->section == NULL
2498 || !(section_is_overlay (bl->section)))
2499 {
2500 /* No overlay handling: just set the breakpoint. */
2501 try
2502 {
2503 int val;
2504
2505 val = bl->owner->ops->insert_location (bl);
2506 if (val)
2507 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2508 }
2509 catch (gdb_exception &e)
2510 {
2511 bp_excpt = std::move (e);
2512 }
2513 }
2514 else
2515 {
2516 /* This breakpoint is in an overlay section.
2517 Shall we set a breakpoint at the LMA? */
2518 if (!overlay_events_enabled)
2519 {
2520 /* Yes -- overlay event support is not active,
2521 so we must try to set a breakpoint at the LMA.
2522 This will not work for a hardware breakpoint. */
2523 if (bl->loc_type == bp_loc_hardware_breakpoint)
2524 warning (_("hardware breakpoint %d not supported in overlay!"),
2525 bl->owner->number);
2526 else
2527 {
2528 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2529 bl->section);
2530 /* Set a software (trap) breakpoint at the LMA. */
2531 bl->overlay_target_info = bl->target_info;
2532 bl->overlay_target_info.reqstd_address = addr;
2533
2534 /* No overlay handling: just set the breakpoint. */
2535 try
2536 {
2537 int val;
2538
2539 bl->overlay_target_info.kind
2540 = breakpoint_kind (bl, &addr);
2541 bl->overlay_target_info.placed_address = addr;
2542 val = target_insert_breakpoint (bl->gdbarch,
2543 &bl->overlay_target_info);
2544 if (val)
2545 bp_excpt
2546 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2547 }
2548 catch (gdb_exception &e)
2549 {
2550 bp_excpt = std::move (e);
2551 }
2552
2553 if (bp_excpt.reason != 0)
2554 fprintf_unfiltered (tmp_error_stream,
2555 "Overlay breakpoint %d "
2556 "failed: in ROM?\n",
2557 bl->owner->number);
2558 }
2559 }
2560 /* Shall we set a breakpoint at the VMA? */
2561 if (section_is_mapped (bl->section))
2562 {
2563 /* Yes. This overlay section is mapped into memory. */
2564 try
2565 {
2566 int val;
2567
2568 val = bl->owner->ops->insert_location (bl);
2569 if (val)
2570 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2571 }
2572 catch (gdb_exception &e)
2573 {
2574 bp_excpt = std::move (e);
2575 }
2576 }
2577 else
2578 {
2579 /* No. This breakpoint will not be inserted.
2580 No error, but do not mark the bp as 'inserted'. */
2581 return 0;
2582 }
2583 }
2584
2585 if (bp_excpt.reason != 0)
2586 {
2587 /* Can't set the breakpoint. */
2588
2589 /* In some cases, we might not be able to insert a
2590 breakpoint in a shared library that has already been
2591 removed, but we have not yet processed the shlib unload
2592 event. Unfortunately, some targets that implement
2593 breakpoint insertion themselves can't tell why the
2594 breakpoint insertion failed (e.g., the remote target
2595 doesn't define error codes), so we must treat generic
2596 errors as memory errors. */
2597 if (bp_excpt.reason == RETURN_ERROR
2598 && (bp_excpt.error == GENERIC_ERROR
2599 || bp_excpt.error == MEMORY_ERROR)
2600 && bl->loc_type == bp_loc_software_breakpoint
2601 && (solib_name_from_address (bl->pspace, bl->address)
2602 || shared_objfile_contains_address_p (bl->pspace,
2603 bl->address)))
2604 {
2605 /* See also: disable_breakpoints_in_shlibs. */
2606 bl->shlib_disabled = 1;
2607 gdb::observers::breakpoint_modified.notify (bl->owner);
2608 if (!*disabled_breaks)
2609 {
2610 fprintf_unfiltered (tmp_error_stream,
2611 "Cannot insert breakpoint %d.\n",
2612 bl->owner->number);
2613 fprintf_unfiltered (tmp_error_stream,
2614 "Temporarily disabling shared "
2615 "library breakpoints:\n");
2616 }
2617 *disabled_breaks = 1;
2618 fprintf_unfiltered (tmp_error_stream,
2619 "breakpoint #%d\n", bl->owner->number);
2620 return 0;
2621 }
2622 else
2623 {
2624 if (bl->loc_type == bp_loc_hardware_breakpoint)
2625 {
2626 *hw_breakpoint_error = 1;
2627 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2628 fprintf_unfiltered (tmp_error_stream,
2629 "Cannot insert hardware breakpoint %d%s",
2630 bl->owner->number,
2631 bp_excpt.message ? ":" : ".\n");
2632 if (bp_excpt.message != NULL)
2633 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2634 bp_excpt.what ());
2635 }
2636 else
2637 {
2638 if (bp_excpt.message == NULL)
2639 {
2640 std::string message
2641 = memory_error_message (TARGET_XFER_E_IO,
2642 bl->gdbarch, bl->address);
2643
2644 fprintf_unfiltered (tmp_error_stream,
2645 "Cannot insert breakpoint %d.\n"
2646 "%s\n",
2647 bl->owner->number, message.c_str ());
2648 }
2649 else
2650 {
2651 fprintf_unfiltered (tmp_error_stream,
2652 "Cannot insert breakpoint %d: %s\n",
2653 bl->owner->number,
2654 bp_excpt.what ());
2655 }
2656 }
2657 return 1;
2658
2659 }
2660 }
2661 else
2662 bl->inserted = 1;
2663
2664 return 0;
2665 }
2666
2667 else if (bl->loc_type == bp_loc_hardware_watchpoint
2668 /* NOTE drow/2003-09-08: This state only exists for removing
2669 watchpoints. It's not clear that it's necessary... */
2670 && bl->owner->disposition != disp_del_at_next_stop)
2671 {
2672 int val;
2673
2674 gdb_assert (bl->owner->ops != NULL
2675 && bl->owner->ops->insert_location != NULL);
2676
2677 val = bl->owner->ops->insert_location (bl);
2678
2679 /* If trying to set a read-watchpoint, and it turns out it's not
2680 supported, try emulating one with an access watchpoint. */
2681 if (val == 1 && bl->watchpoint_type == hw_read)
2682 {
2683 struct bp_location *loc, **loc_temp;
2684
2685 /* But don't try to insert it, if there's already another
2686 hw_access location that would be considered a duplicate
2687 of this one. */
2688 ALL_BP_LOCATIONS (loc, loc_temp)
2689 if (loc != bl
2690 && loc->watchpoint_type == hw_access
2691 && watchpoint_locations_match (bl, loc))
2692 {
2693 bl->duplicate = 1;
2694 bl->inserted = 1;
2695 bl->target_info = loc->target_info;
2696 bl->watchpoint_type = hw_access;
2697 val = 0;
2698 break;
2699 }
2700
2701 if (val == 1)
2702 {
2703 bl->watchpoint_type = hw_access;
2704 val = bl->owner->ops->insert_location (bl);
2705
2706 if (val)
2707 /* Back to the original value. */
2708 bl->watchpoint_type = hw_read;
2709 }
2710 }
2711
2712 bl->inserted = (val == 0);
2713 }
2714
2715 else if (bl->owner->type == bp_catchpoint)
2716 {
2717 int val;
2718
2719 gdb_assert (bl->owner->ops != NULL
2720 && bl->owner->ops->insert_location != NULL);
2721
2722 val = bl->owner->ops->insert_location (bl);
2723 if (val)
2724 {
2725 bl->owner->enable_state = bp_disabled;
2726
2727 if (val == 1)
2728 warning (_("\
2729 Error inserting catchpoint %d: Your system does not support this type\n\
2730 of catchpoint."), bl->owner->number);
2731 else
2732 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2733 }
2734
2735 bl->inserted = (val == 0);
2736
2737 /* We've already printed an error message if there was a problem
2738 inserting this catchpoint, and we've disabled the catchpoint,
2739 so just return success. */
2740 return 0;
2741 }
2742
2743 return 0;
2744 }
2745
2746 /* This function is called when program space PSPACE is about to be
2747 deleted. It takes care of updating breakpoints to not reference
2748 PSPACE anymore. */
2749
2750 void
2751 breakpoint_program_space_exit (struct program_space *pspace)
2752 {
2753 struct breakpoint *b, *b_temp;
2754 struct bp_location *loc, **loc_temp;
2755
2756 /* Remove any breakpoint that was set through this program space. */
2757 ALL_BREAKPOINTS_SAFE (b, b_temp)
2758 {
2759 if (b->pspace == pspace)
2760 delete_breakpoint (b);
2761 }
2762
2763 /* Breakpoints set through other program spaces could have locations
2764 bound to PSPACE as well. Remove those. */
2765 ALL_BP_LOCATIONS (loc, loc_temp)
2766 {
2767 struct bp_location *tmp;
2768
2769 if (loc->pspace == pspace)
2770 {
2771 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2772 if (loc->owner->loc == loc)
2773 loc->owner->loc = loc->next;
2774 else
2775 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2776 if (tmp->next == loc)
2777 {
2778 tmp->next = loc->next;
2779 break;
2780 }
2781 }
2782 }
2783
2784 /* Now update the global location list to permanently delete the
2785 removed locations above. */
2786 update_global_location_list (UGLL_DONT_INSERT);
2787 }
2788
2789 /* Make sure all breakpoints are inserted in inferior.
2790 Throws exception on any error.
2791 A breakpoint that is already inserted won't be inserted
2792 again, so calling this function twice is safe. */
2793 void
2794 insert_breakpoints (void)
2795 {
2796 struct breakpoint *bpt;
2797
2798 ALL_BREAKPOINTS (bpt)
2799 if (is_hardware_watchpoint (bpt))
2800 {
2801 struct watchpoint *w = (struct watchpoint *) bpt;
2802
2803 update_watchpoint (w, 0 /* don't reparse. */);
2804 }
2805
2806 /* Updating watchpoints creates new locations, so update the global
2807 location list. Explicitly tell ugll to insert locations and
2808 ignore breakpoints_always_inserted_mode. Also,
2809 update_global_location_list tries to "upgrade" software
2810 breakpoints to hardware breakpoints to handle "set breakpoint
2811 auto-hw", so we need to call it even if we don't have new
2812 locations. */
2813 update_global_location_list (UGLL_INSERT);
2814 }
2815
2816 /* Invoke CALLBACK for each of bp_location. */
2817
2818 void
2819 iterate_over_bp_locations (walk_bp_location_callback callback)
2820 {
2821 struct bp_location *loc, **loc_tmp;
2822
2823 ALL_BP_LOCATIONS (loc, loc_tmp)
2824 {
2825 callback (loc, NULL);
2826 }
2827 }
2828
2829 /* This is used when we need to synch breakpoint conditions between GDB and the
2830 target. It is the case with deleting and disabling of breakpoints when using
2831 always-inserted mode. */
2832
2833 static void
2834 update_inserted_breakpoint_locations (void)
2835 {
2836 struct bp_location *bl, **blp_tmp;
2837 int error_flag = 0;
2838 int val = 0;
2839 int disabled_breaks = 0;
2840 int hw_breakpoint_error = 0;
2841 int hw_bp_details_reported = 0;
2842
2843 string_file tmp_error_stream;
2844
2845 /* Explicitly mark the warning -- this will only be printed if
2846 there was an error. */
2847 tmp_error_stream.puts ("Warning:\n");
2848
2849 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2850
2851 ALL_BP_LOCATIONS (bl, blp_tmp)
2852 {
2853 /* We only want to update software breakpoints and hardware
2854 breakpoints. */
2855 if (!is_breakpoint (bl->owner))
2856 continue;
2857
2858 /* We only want to update locations that are already inserted
2859 and need updating. This is to avoid unwanted insertion during
2860 deletion of breakpoints. */
2861 if (!bl->inserted || !bl->needs_update)
2862 continue;
2863
2864 switch_to_program_space_and_thread (bl->pspace);
2865
2866 /* For targets that support global breakpoints, there's no need
2867 to select an inferior to insert breakpoint to. In fact, even
2868 if we aren't attached to any process yet, we should still
2869 insert breakpoints. */
2870 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2871 && (inferior_ptid == null_ptid || !target_has_execution))
2872 continue;
2873
2874 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2875 &hw_breakpoint_error, &hw_bp_details_reported);
2876 if (val)
2877 error_flag = val;
2878 }
2879
2880 if (error_flag)
2881 {
2882 target_terminal::ours_for_output ();
2883 error_stream (tmp_error_stream);
2884 }
2885 }
2886
2887 /* Used when starting or continuing the program. */
2888
2889 static void
2890 insert_breakpoint_locations (void)
2891 {
2892 struct breakpoint *bpt;
2893 struct bp_location *bl, **blp_tmp;
2894 int error_flag = 0;
2895 int val = 0;
2896 int disabled_breaks = 0;
2897 int hw_breakpoint_error = 0;
2898 int hw_bp_error_explained_already = 0;
2899
2900 string_file tmp_error_stream;
2901
2902 /* Explicitly mark the warning -- this will only be printed if
2903 there was an error. */
2904 tmp_error_stream.puts ("Warning:\n");
2905
2906 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2907
2908 ALL_BP_LOCATIONS (bl, blp_tmp)
2909 {
2910 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2911 continue;
2912
2913 /* There is no point inserting thread-specific breakpoints if
2914 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2915 has BL->OWNER always non-NULL. */
2916 if (bl->owner->thread != -1
2917 && !valid_global_thread_id (bl->owner->thread))
2918 continue;
2919
2920 switch_to_program_space_and_thread (bl->pspace);
2921
2922 /* For targets that support global breakpoints, there's no need
2923 to select an inferior to insert breakpoint to. In fact, even
2924 if we aren't attached to any process yet, we should still
2925 insert breakpoints. */
2926 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2927 && (inferior_ptid == null_ptid || !target_has_execution))
2928 continue;
2929
2930 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2931 &hw_breakpoint_error, &hw_bp_error_explained_already);
2932 if (val)
2933 error_flag = val;
2934 }
2935
2936 /* If we failed to insert all locations of a watchpoint, remove
2937 them, as half-inserted watchpoint is of limited use. */
2938 ALL_BREAKPOINTS (bpt)
2939 {
2940 int some_failed = 0;
2941 struct bp_location *loc;
2942
2943 if (!is_hardware_watchpoint (bpt))
2944 continue;
2945
2946 if (!breakpoint_enabled (bpt))
2947 continue;
2948
2949 if (bpt->disposition == disp_del_at_next_stop)
2950 continue;
2951
2952 for (loc = bpt->loc; loc; loc = loc->next)
2953 if (!loc->inserted && should_be_inserted (loc))
2954 {
2955 some_failed = 1;
2956 break;
2957 }
2958 if (some_failed)
2959 {
2960 for (loc = bpt->loc; loc; loc = loc->next)
2961 if (loc->inserted)
2962 remove_breakpoint (loc);
2963
2964 hw_breakpoint_error = 1;
2965 tmp_error_stream.printf ("Could not insert "
2966 "hardware watchpoint %d.\n",
2967 bpt->number);
2968 error_flag = -1;
2969 }
2970 }
2971
2972 if (error_flag)
2973 {
2974 /* If a hardware breakpoint or watchpoint was inserted, add a
2975 message about possibly exhausted resources. */
2976 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2977 {
2978 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
2979 You may have requested too many hardware breakpoints/watchpoints.\n");
2980 }
2981 target_terminal::ours_for_output ();
2982 error_stream (tmp_error_stream);
2983 }
2984 }
2985
2986 /* Used when the program stops.
2987 Returns zero if successful, or non-zero if there was a problem
2988 removing a breakpoint location. */
2989
2990 int
2991 remove_breakpoints (void)
2992 {
2993 struct bp_location *bl, **blp_tmp;
2994 int val = 0;
2995
2996 ALL_BP_LOCATIONS (bl, blp_tmp)
2997 {
2998 if (bl->inserted && !is_tracepoint (bl->owner))
2999 val |= remove_breakpoint (bl);
3000 }
3001 return val;
3002 }
3003
3004 /* When a thread exits, remove breakpoints that are related to
3005 that thread. */
3006
3007 static void
3008 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3009 {
3010 struct breakpoint *b, *b_tmp;
3011
3012 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3013 {
3014 if (b->thread == tp->global_num && user_breakpoint_p (b))
3015 {
3016 b->disposition = disp_del_at_next_stop;
3017
3018 printf_filtered (_("\
3019 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3020 b->number, print_thread_id (tp));
3021
3022 /* Hide it from the user. */
3023 b->number = 0;
3024 }
3025 }
3026 }
3027
3028 /* See breakpoint.h. */
3029
3030 void
3031 remove_breakpoints_inf (inferior *inf)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val;
3035
3036 ALL_BP_LOCATIONS (bl, blp_tmp)
3037 {
3038 if (bl->pspace != inf->pspace)
3039 continue;
3040
3041 if (bl->inserted && !bl->target_info.persist)
3042 {
3043 val = remove_breakpoint (bl);
3044 if (val != 0)
3045 return;
3046 }
3047 }
3048 }
3049
3050 static int internal_breakpoint_number = -1;
3051
3052 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3053 If INTERNAL is non-zero, the breakpoint number will be populated
3054 from internal_breakpoint_number and that variable decremented.
3055 Otherwise the breakpoint number will be populated from
3056 breakpoint_count and that value incremented. Internal breakpoints
3057 do not set the internal var bpnum. */
3058 static void
3059 set_breakpoint_number (int internal, struct breakpoint *b)
3060 {
3061 if (internal)
3062 b->number = internal_breakpoint_number--;
3063 else
3064 {
3065 set_breakpoint_count (breakpoint_count + 1);
3066 b->number = breakpoint_count;
3067 }
3068 }
3069
3070 static struct breakpoint *
3071 create_internal_breakpoint (struct gdbarch *gdbarch,
3072 CORE_ADDR address, enum bptype type,
3073 const struct breakpoint_ops *ops)
3074 {
3075 symtab_and_line sal;
3076 sal.pc = address;
3077 sal.section = find_pc_overlay (sal.pc);
3078 sal.pspace = current_program_space;
3079
3080 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3081 b->number = internal_breakpoint_number--;
3082 b->disposition = disp_donttouch;
3083
3084 return b;
3085 }
3086
3087 static const char *const longjmp_names[] =
3088 {
3089 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3090 };
3091 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3092
3093 /* Per-objfile data private to breakpoint.c. */
3094 struct breakpoint_objfile_data
3095 {
3096 /* Minimal symbol for "_ovly_debug_event" (if any). */
3097 struct bound_minimal_symbol overlay_msym {};
3098
3099 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3100 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3101
3102 /* True if we have looked for longjmp probes. */
3103 int longjmp_searched = 0;
3104
3105 /* SystemTap probe points for longjmp (if any). These are non-owning
3106 references. */
3107 std::vector<probe *> longjmp_probes;
3108
3109 /* Minimal symbol for "std::terminate()" (if any). */
3110 struct bound_minimal_symbol terminate_msym {};
3111
3112 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3113 struct bound_minimal_symbol exception_msym {};
3114
3115 /* True if we have looked for exception probes. */
3116 int exception_searched = 0;
3117
3118 /* SystemTap probe points for unwinding (if any). These are non-owning
3119 references. */
3120 std::vector<probe *> exception_probes;
3121 };
3122
3123 static const struct objfile_key<breakpoint_objfile_data>
3124 breakpoint_objfile_key;
3125
3126 /* Minimal symbol not found sentinel. */
3127 static struct minimal_symbol msym_not_found;
3128
3129 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3130
3131 static int
3132 msym_not_found_p (const struct minimal_symbol *msym)
3133 {
3134 return msym == &msym_not_found;
3135 }
3136
3137 /* Return per-objfile data needed by breakpoint.c.
3138 Allocate the data if necessary. */
3139
3140 static struct breakpoint_objfile_data *
3141 get_breakpoint_objfile_data (struct objfile *objfile)
3142 {
3143 struct breakpoint_objfile_data *bp_objfile_data;
3144
3145 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3146 if (bp_objfile_data == NULL)
3147 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3148 return bp_objfile_data;
3149 }
3150
3151 static void
3152 create_overlay_event_breakpoint (void)
3153 {
3154 const char *const func_name = "_ovly_debug_event";
3155
3156 for (objfile *objfile : current_program_space->objfiles ())
3157 {
3158 struct breakpoint *b;
3159 struct breakpoint_objfile_data *bp_objfile_data;
3160 CORE_ADDR addr;
3161 struct explicit_location explicit_loc;
3162
3163 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3164
3165 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3166 continue;
3167
3168 if (bp_objfile_data->overlay_msym.minsym == NULL)
3169 {
3170 struct bound_minimal_symbol m;
3171
3172 m = lookup_minimal_symbol_text (func_name, objfile);
3173 if (m.minsym == NULL)
3174 {
3175 /* Avoid future lookups in this objfile. */
3176 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3177 continue;
3178 }
3179 bp_objfile_data->overlay_msym = m;
3180 }
3181
3182 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3183 b = create_internal_breakpoint (objfile->arch (), addr,
3184 bp_overlay_event,
3185 &internal_breakpoint_ops);
3186 initialize_explicit_location (&explicit_loc);
3187 explicit_loc.function_name = ASTRDUP (func_name);
3188 b->location = new_explicit_location (&explicit_loc);
3189
3190 if (overlay_debugging == ovly_auto)
3191 {
3192 b->enable_state = bp_enabled;
3193 overlay_events_enabled = 1;
3194 }
3195 else
3196 {
3197 b->enable_state = bp_disabled;
3198 overlay_events_enabled = 0;
3199 }
3200 }
3201 }
3202
3203 static void
3204 create_longjmp_master_breakpoint (void)
3205 {
3206 scoped_restore_current_program_space restore_pspace;
3207
3208 for (struct program_space *pspace : program_spaces)
3209 {
3210 set_current_program_space (pspace);
3211
3212 for (objfile *objfile : current_program_space->objfiles ())
3213 {
3214 int i;
3215 struct gdbarch *gdbarch;
3216 struct breakpoint_objfile_data *bp_objfile_data;
3217
3218 gdbarch = objfile->arch ();
3219
3220 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3221
3222 if (!bp_objfile_data->longjmp_searched)
3223 {
3224 std::vector<probe *> ret
3225 = find_probes_in_objfile (objfile, "libc", "longjmp");
3226
3227 if (!ret.empty ())
3228 {
3229 /* We are only interested in checking one element. */
3230 probe *p = ret[0];
3231
3232 if (!p->can_evaluate_arguments ())
3233 {
3234 /* We cannot use the probe interface here,
3235 because it does not know how to evaluate
3236 arguments. */
3237 ret.clear ();
3238 }
3239 }
3240 bp_objfile_data->longjmp_probes = ret;
3241 bp_objfile_data->longjmp_searched = 1;
3242 }
3243
3244 if (!bp_objfile_data->longjmp_probes.empty ())
3245 {
3246 for (probe *p : bp_objfile_data->longjmp_probes)
3247 {
3248 struct breakpoint *b;
3249
3250 b = create_internal_breakpoint (gdbarch,
3251 p->get_relocated_address (objfile),
3252 bp_longjmp_master,
3253 &internal_breakpoint_ops);
3254 b->location = new_probe_location ("-probe-stap libc:longjmp");
3255 b->enable_state = bp_disabled;
3256 }
3257
3258 continue;
3259 }
3260
3261 if (!gdbarch_get_longjmp_target_p (gdbarch))
3262 continue;
3263
3264 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3265 {
3266 struct breakpoint *b;
3267 const char *func_name;
3268 CORE_ADDR addr;
3269 struct explicit_location explicit_loc;
3270
3271 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3272 continue;
3273
3274 func_name = longjmp_names[i];
3275 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3276 {
3277 struct bound_minimal_symbol m;
3278
3279 m = lookup_minimal_symbol_text (func_name, objfile);
3280 if (m.minsym == NULL)
3281 {
3282 /* Prevent future lookups in this objfile. */
3283 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3284 continue;
3285 }
3286 bp_objfile_data->longjmp_msym[i] = m;
3287 }
3288
3289 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3290 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3291 &internal_breakpoint_ops);
3292 initialize_explicit_location (&explicit_loc);
3293 explicit_loc.function_name = ASTRDUP (func_name);
3294 b->location = new_explicit_location (&explicit_loc);
3295 b->enable_state = bp_disabled;
3296 }
3297 }
3298 }
3299 }
3300
3301 /* Create a master std::terminate breakpoint. */
3302 static void
3303 create_std_terminate_master_breakpoint (void)
3304 {
3305 const char *const func_name = "std::terminate()";
3306
3307 scoped_restore_current_program_space restore_pspace;
3308
3309 for (struct program_space *pspace : program_spaces)
3310 {
3311 CORE_ADDR addr;
3312
3313 set_current_program_space (pspace);
3314
3315 for (objfile *objfile : current_program_space->objfiles ())
3316 {
3317 struct breakpoint *b;
3318 struct breakpoint_objfile_data *bp_objfile_data;
3319 struct explicit_location explicit_loc;
3320
3321 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3322
3323 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3324 continue;
3325
3326 if (bp_objfile_data->terminate_msym.minsym == NULL)
3327 {
3328 struct bound_minimal_symbol m;
3329
3330 m = lookup_minimal_symbol (func_name, NULL, objfile);
3331 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3332 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3333 {
3334 /* Prevent future lookups in this objfile. */
3335 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3336 continue;
3337 }
3338 bp_objfile_data->terminate_msym = m;
3339 }
3340
3341 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3342 b = create_internal_breakpoint (objfile->arch (), addr,
3343 bp_std_terminate_master,
3344 &internal_breakpoint_ops);
3345 initialize_explicit_location (&explicit_loc);
3346 explicit_loc.function_name = ASTRDUP (func_name);
3347 b->location = new_explicit_location (&explicit_loc);
3348 b->enable_state = bp_disabled;
3349 }
3350 }
3351 }
3352
3353 /* Install a master breakpoint on the unwinder's debug hook. */
3354
3355 static void
3356 create_exception_master_breakpoint (void)
3357 {
3358 const char *const func_name = "_Unwind_DebugHook";
3359
3360 for (objfile *objfile : current_program_space->objfiles ())
3361 {
3362 struct breakpoint *b;
3363 struct gdbarch *gdbarch;
3364 struct breakpoint_objfile_data *bp_objfile_data;
3365 CORE_ADDR addr;
3366 struct explicit_location explicit_loc;
3367
3368 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3369
3370 /* We prefer the SystemTap probe point if it exists. */
3371 if (!bp_objfile_data->exception_searched)
3372 {
3373 std::vector<probe *> ret
3374 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3375
3376 if (!ret.empty ())
3377 {
3378 /* We are only interested in checking one element. */
3379 probe *p = ret[0];
3380
3381 if (!p->can_evaluate_arguments ())
3382 {
3383 /* We cannot use the probe interface here, because it does
3384 not know how to evaluate arguments. */
3385 ret.clear ();
3386 }
3387 }
3388 bp_objfile_data->exception_probes = ret;
3389 bp_objfile_data->exception_searched = 1;
3390 }
3391
3392 if (!bp_objfile_data->exception_probes.empty ())
3393 {
3394 gdbarch = objfile->arch ();
3395
3396 for (probe *p : bp_objfile_data->exception_probes)
3397 {
3398 b = create_internal_breakpoint (gdbarch,
3399 p->get_relocated_address (objfile),
3400 bp_exception_master,
3401 &internal_breakpoint_ops);
3402 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3403 b->enable_state = bp_disabled;
3404 }
3405
3406 continue;
3407 }
3408
3409 /* Otherwise, try the hook function. */
3410
3411 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3412 continue;
3413
3414 gdbarch = objfile->arch ();
3415
3416 if (bp_objfile_data->exception_msym.minsym == NULL)
3417 {
3418 struct bound_minimal_symbol debug_hook;
3419
3420 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3421 if (debug_hook.minsym == NULL)
3422 {
3423 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3424 continue;
3425 }
3426
3427 bp_objfile_data->exception_msym = debug_hook;
3428 }
3429
3430 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3431 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3432 current_top_target ());
3433 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3434 &internal_breakpoint_ops);
3435 initialize_explicit_location (&explicit_loc);
3436 explicit_loc.function_name = ASTRDUP (func_name);
3437 b->location = new_explicit_location (&explicit_loc);
3438 b->enable_state = bp_disabled;
3439 }
3440 }
3441
3442 /* Does B have a location spec? */
3443
3444 static int
3445 breakpoint_event_location_empty_p (const struct breakpoint *b)
3446 {
3447 return b->location != NULL && event_location_empty_p (b->location.get ());
3448 }
3449
3450 void
3451 update_breakpoints_after_exec (void)
3452 {
3453 struct breakpoint *b, *b_tmp;
3454 struct bp_location *bploc, **bplocp_tmp;
3455
3456 /* We're about to delete breakpoints from GDB's lists. If the
3457 INSERTED flag is true, GDB will try to lift the breakpoints by
3458 writing the breakpoints' "shadow contents" back into memory. The
3459 "shadow contents" are NOT valid after an exec, so GDB should not
3460 do that. Instead, the target is responsible from marking
3461 breakpoints out as soon as it detects an exec. We don't do that
3462 here instead, because there may be other attempts to delete
3463 breakpoints after detecting an exec and before reaching here. */
3464 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3465 if (bploc->pspace == current_program_space)
3466 gdb_assert (!bploc->inserted);
3467
3468 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3469 {
3470 if (b->pspace != current_program_space)
3471 continue;
3472
3473 /* Solib breakpoints must be explicitly reset after an exec(). */
3474 if (b->type == bp_shlib_event)
3475 {
3476 delete_breakpoint (b);
3477 continue;
3478 }
3479
3480 /* JIT breakpoints must be explicitly reset after an exec(). */
3481 if (b->type == bp_jit_event)
3482 {
3483 delete_breakpoint (b);
3484 continue;
3485 }
3486
3487 /* Thread event breakpoints must be set anew after an exec(),
3488 as must overlay event and longjmp master breakpoints. */
3489 if (b->type == bp_thread_event || b->type == bp_overlay_event
3490 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3491 || b->type == bp_exception_master)
3492 {
3493 delete_breakpoint (b);
3494 continue;
3495 }
3496
3497 /* Step-resume breakpoints are meaningless after an exec(). */
3498 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3499 {
3500 delete_breakpoint (b);
3501 continue;
3502 }
3503
3504 /* Just like single-step breakpoints. */
3505 if (b->type == bp_single_step)
3506 {
3507 delete_breakpoint (b);
3508 continue;
3509 }
3510
3511 /* Longjmp and longjmp-resume breakpoints are also meaningless
3512 after an exec. */
3513 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3514 || b->type == bp_longjmp_call_dummy
3515 || b->type == bp_exception || b->type == bp_exception_resume)
3516 {
3517 delete_breakpoint (b);
3518 continue;
3519 }
3520
3521 if (b->type == bp_catchpoint)
3522 {
3523 /* For now, none of the bp_catchpoint breakpoints need to
3524 do anything at this point. In the future, if some of
3525 the catchpoints need to something, we will need to add
3526 a new method, and call this method from here. */
3527 continue;
3528 }
3529
3530 /* bp_finish is a special case. The only way we ought to be able
3531 to see one of these when an exec() has happened, is if the user
3532 caught a vfork, and then said "finish". Ordinarily a finish just
3533 carries them to the call-site of the current callee, by setting
3534 a temporary bp there and resuming. But in this case, the finish
3535 will carry them entirely through the vfork & exec.
3536
3537 We don't want to allow a bp_finish to remain inserted now. But
3538 we can't safely delete it, 'cause finish_command has a handle to
3539 the bp on a bpstat, and will later want to delete it. There's a
3540 chance (and I've seen it happen) that if we delete the bp_finish
3541 here, that its storage will get reused by the time finish_command
3542 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3543 We really must allow finish_command to delete a bp_finish.
3544
3545 In the absence of a general solution for the "how do we know
3546 it's safe to delete something others may have handles to?"
3547 problem, what we'll do here is just uninsert the bp_finish, and
3548 let finish_command delete it.
3549
3550 (We know the bp_finish is "doomed" in the sense that it's
3551 momentary, and will be deleted as soon as finish_command sees
3552 the inferior stopped. So it doesn't matter that the bp's
3553 address is probably bogus in the new a.out, unlike e.g., the
3554 solib breakpoints.) */
3555
3556 if (b->type == bp_finish)
3557 {
3558 continue;
3559 }
3560
3561 /* Without a symbolic address, we have little hope of the
3562 pre-exec() address meaning the same thing in the post-exec()
3563 a.out. */
3564 if (breakpoint_event_location_empty_p (b))
3565 {
3566 delete_breakpoint (b);
3567 continue;
3568 }
3569 }
3570 }
3571
3572 int
3573 detach_breakpoints (ptid_t ptid)
3574 {
3575 struct bp_location *bl, **blp_tmp;
3576 int val = 0;
3577 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3578 struct inferior *inf = current_inferior ();
3579
3580 if (ptid.pid () == inferior_ptid.pid ())
3581 error (_("Cannot detach breakpoints of inferior_ptid"));
3582
3583 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3584 inferior_ptid = ptid;
3585 ALL_BP_LOCATIONS (bl, blp_tmp)
3586 {
3587 if (bl->pspace != inf->pspace)
3588 continue;
3589
3590 /* This function must physically remove breakpoints locations
3591 from the specified ptid, without modifying the breakpoint
3592 package's state. Locations of type bp_loc_other are only
3593 maintained at GDB side. So, there is no need to remove
3594 these bp_loc_other locations. Moreover, removing these
3595 would modify the breakpoint package's state. */
3596 if (bl->loc_type == bp_loc_other)
3597 continue;
3598
3599 if (bl->inserted)
3600 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3601 }
3602
3603 return val;
3604 }
3605
3606 /* Remove the breakpoint location BL from the current address space.
3607 Note that this is used to detach breakpoints from a child fork.
3608 When we get here, the child isn't in the inferior list, and neither
3609 do we have objects to represent its address space --- we should
3610 *not* look at bl->pspace->aspace here. */
3611
3612 static int
3613 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3614 {
3615 int val;
3616
3617 /* BL is never in moribund_locations by our callers. */
3618 gdb_assert (bl->owner != NULL);
3619
3620 /* The type of none suggests that owner is actually deleted.
3621 This should not ever happen. */
3622 gdb_assert (bl->owner->type != bp_none);
3623
3624 if (bl->loc_type == bp_loc_software_breakpoint
3625 || bl->loc_type == bp_loc_hardware_breakpoint)
3626 {
3627 /* "Normal" instruction breakpoint: either the standard
3628 trap-instruction bp (bp_breakpoint), or a
3629 bp_hardware_breakpoint. */
3630
3631 /* First check to see if we have to handle an overlay. */
3632 if (overlay_debugging == ovly_off
3633 || bl->section == NULL
3634 || !(section_is_overlay (bl->section)))
3635 {
3636 /* No overlay handling: just remove the breakpoint. */
3637
3638 /* If we're trying to uninsert a memory breakpoint that we
3639 know is set in a dynamic object that is marked
3640 shlib_disabled, then either the dynamic object was
3641 removed with "remove-symbol-file" or with
3642 "nosharedlibrary". In the former case, we don't know
3643 whether another dynamic object might have loaded over the
3644 breakpoint's address -- the user might well let us know
3645 about it next with add-symbol-file (the whole point of
3646 add-symbol-file is letting the user manually maintain a
3647 list of dynamically loaded objects). If we have the
3648 breakpoint's shadow memory, that is, this is a software
3649 breakpoint managed by GDB, check whether the breakpoint
3650 is still inserted in memory, to avoid overwriting wrong
3651 code with stale saved shadow contents. Note that HW
3652 breakpoints don't have shadow memory, as they're
3653 implemented using a mechanism that is not dependent on
3654 being able to modify the target's memory, and as such
3655 they should always be removed. */
3656 if (bl->shlib_disabled
3657 && bl->target_info.shadow_len != 0
3658 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3659 val = 0;
3660 else
3661 val = bl->owner->ops->remove_location (bl, reason);
3662 }
3663 else
3664 {
3665 /* This breakpoint is in an overlay section.
3666 Did we set a breakpoint at the LMA? */
3667 if (!overlay_events_enabled)
3668 {
3669 /* Yes -- overlay event support is not active, so we
3670 should have set a breakpoint at the LMA. Remove it.
3671 */
3672 /* Ignore any failures: if the LMA is in ROM, we will
3673 have already warned when we failed to insert it. */
3674 if (bl->loc_type == bp_loc_hardware_breakpoint)
3675 target_remove_hw_breakpoint (bl->gdbarch,
3676 &bl->overlay_target_info);
3677 else
3678 target_remove_breakpoint (bl->gdbarch,
3679 &bl->overlay_target_info,
3680 reason);
3681 }
3682 /* Did we set a breakpoint at the VMA?
3683 If so, we will have marked the breakpoint 'inserted'. */
3684 if (bl->inserted)
3685 {
3686 /* Yes -- remove it. Previously we did not bother to
3687 remove the breakpoint if the section had been
3688 unmapped, but let's not rely on that being safe. We
3689 don't know what the overlay manager might do. */
3690
3691 /* However, we should remove *software* breakpoints only
3692 if the section is still mapped, or else we overwrite
3693 wrong code with the saved shadow contents. */
3694 if (bl->loc_type == bp_loc_hardware_breakpoint
3695 || section_is_mapped (bl->section))
3696 val = bl->owner->ops->remove_location (bl, reason);
3697 else
3698 val = 0;
3699 }
3700 else
3701 {
3702 /* No -- not inserted, so no need to remove. No error. */
3703 val = 0;
3704 }
3705 }
3706
3707 /* In some cases, we might not be able to remove a breakpoint in
3708 a shared library that has already been removed, but we have
3709 not yet processed the shlib unload event. Similarly for an
3710 unloaded add-symbol-file object - the user might not yet have
3711 had the chance to remove-symbol-file it. shlib_disabled will
3712 be set if the library/object has already been removed, but
3713 the breakpoint hasn't been uninserted yet, e.g., after
3714 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3715 always-inserted mode. */
3716 if (val
3717 && (bl->loc_type == bp_loc_software_breakpoint
3718 && (bl->shlib_disabled
3719 || solib_name_from_address (bl->pspace, bl->address)
3720 || shared_objfile_contains_address_p (bl->pspace,
3721 bl->address))))
3722 val = 0;
3723
3724 if (val)
3725 return val;
3726 bl->inserted = (reason == DETACH_BREAKPOINT);
3727 }
3728 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3729 {
3730 gdb_assert (bl->owner->ops != NULL
3731 && bl->owner->ops->remove_location != NULL);
3732
3733 bl->inserted = (reason == DETACH_BREAKPOINT);
3734 bl->owner->ops->remove_location (bl, reason);
3735
3736 /* Failure to remove any of the hardware watchpoints comes here. */
3737 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3738 warning (_("Could not remove hardware watchpoint %d."),
3739 bl->owner->number);
3740 }
3741 else if (bl->owner->type == bp_catchpoint
3742 && breakpoint_enabled (bl->owner)
3743 && !bl->duplicate)
3744 {
3745 gdb_assert (bl->owner->ops != NULL
3746 && bl->owner->ops->remove_location != NULL);
3747
3748 val = bl->owner->ops->remove_location (bl, reason);
3749 if (val)
3750 return val;
3751
3752 bl->inserted = (reason == DETACH_BREAKPOINT);
3753 }
3754
3755 return 0;
3756 }
3757
3758 static int
3759 remove_breakpoint (struct bp_location *bl)
3760 {
3761 /* BL is never in moribund_locations by our callers. */
3762 gdb_assert (bl->owner != NULL);
3763
3764 /* The type of none suggests that owner is actually deleted.
3765 This should not ever happen. */
3766 gdb_assert (bl->owner->type != bp_none);
3767
3768 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3769
3770 switch_to_program_space_and_thread (bl->pspace);
3771
3772 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3773 }
3774
3775 /* Clear the "inserted" flag in all breakpoints. */
3776
3777 void
3778 mark_breakpoints_out (void)
3779 {
3780 struct bp_location *bl, **blp_tmp;
3781
3782 ALL_BP_LOCATIONS (bl, blp_tmp)
3783 if (bl->pspace == current_program_space)
3784 bl->inserted = 0;
3785 }
3786
3787 /* Clear the "inserted" flag in all breakpoints and delete any
3788 breakpoints which should go away between runs of the program.
3789
3790 Plus other such housekeeping that has to be done for breakpoints
3791 between runs.
3792
3793 Note: this function gets called at the end of a run (by
3794 generic_mourn_inferior) and when a run begins (by
3795 init_wait_for_inferior). */
3796
3797
3798
3799 void
3800 breakpoint_init_inferior (enum inf_context context)
3801 {
3802 struct breakpoint *b, *b_tmp;
3803 struct program_space *pspace = current_program_space;
3804
3805 /* If breakpoint locations are shared across processes, then there's
3806 nothing to do. */
3807 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3808 return;
3809
3810 mark_breakpoints_out ();
3811
3812 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3813 {
3814 if (b->loc && b->loc->pspace != pspace)
3815 continue;
3816
3817 switch (b->type)
3818 {
3819 case bp_call_dummy:
3820 case bp_longjmp_call_dummy:
3821
3822 /* If the call dummy breakpoint is at the entry point it will
3823 cause problems when the inferior is rerun, so we better get
3824 rid of it. */
3825
3826 case bp_watchpoint_scope:
3827
3828 /* Also get rid of scope breakpoints. */
3829
3830 case bp_shlib_event:
3831
3832 /* Also remove solib event breakpoints. Their addresses may
3833 have changed since the last time we ran the program.
3834 Actually we may now be debugging against different target;
3835 and so the solib backend that installed this breakpoint may
3836 not be used in by the target. E.g.,
3837
3838 (gdb) file prog-linux
3839 (gdb) run # native linux target
3840 ...
3841 (gdb) kill
3842 (gdb) file prog-win.exe
3843 (gdb) tar rem :9999 # remote Windows gdbserver.
3844 */
3845
3846 case bp_step_resume:
3847
3848 /* Also remove step-resume breakpoints. */
3849
3850 case bp_single_step:
3851
3852 /* Also remove single-step breakpoints. */
3853
3854 delete_breakpoint (b);
3855 break;
3856
3857 case bp_watchpoint:
3858 case bp_hardware_watchpoint:
3859 case bp_read_watchpoint:
3860 case bp_access_watchpoint:
3861 {
3862 struct watchpoint *w = (struct watchpoint *) b;
3863
3864 /* Likewise for watchpoints on local expressions. */
3865 if (w->exp_valid_block != NULL)
3866 delete_breakpoint (b);
3867 else
3868 {
3869 /* Get rid of existing locations, which are no longer
3870 valid. New ones will be created in
3871 update_watchpoint, when the inferior is restarted.
3872 The next update_global_location_list call will
3873 garbage collect them. */
3874 b->loc = NULL;
3875
3876 if (context == inf_starting)
3877 {
3878 /* Reset val field to force reread of starting value in
3879 insert_breakpoints. */
3880 w->val.reset (nullptr);
3881 w->val_valid = false;
3882 }
3883 }
3884 }
3885 break;
3886 default:
3887 break;
3888 }
3889 }
3890
3891 /* Get rid of the moribund locations. */
3892 for (bp_location *bl : moribund_locations)
3893 decref_bp_location (&bl);
3894 moribund_locations.clear ();
3895 }
3896
3897 /* These functions concern about actual breakpoints inserted in the
3898 target --- to e.g. check if we need to do decr_pc adjustment or if
3899 we need to hop over the bkpt --- so we check for address space
3900 match, not program space. */
3901
3902 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3903 exists at PC. It returns ordinary_breakpoint_here if it's an
3904 ordinary breakpoint, or permanent_breakpoint_here if it's a
3905 permanent breakpoint.
3906 - When continuing from a location with an ordinary breakpoint, we
3907 actually single step once before calling insert_breakpoints.
3908 - When continuing from a location with a permanent breakpoint, we
3909 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3910 the target, to advance the PC past the breakpoint. */
3911
3912 enum breakpoint_here
3913 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3914 {
3915 struct bp_location *bl, **blp_tmp;
3916 int any_breakpoint_here = 0;
3917
3918 ALL_BP_LOCATIONS (bl, blp_tmp)
3919 {
3920 if (bl->loc_type != bp_loc_software_breakpoint
3921 && bl->loc_type != bp_loc_hardware_breakpoint)
3922 continue;
3923
3924 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3925 if ((breakpoint_enabled (bl->owner)
3926 || bl->permanent)
3927 && breakpoint_location_address_match (bl, aspace, pc))
3928 {
3929 if (overlay_debugging
3930 && section_is_overlay (bl->section)
3931 && !section_is_mapped (bl->section))
3932 continue; /* unmapped overlay -- can't be a match */
3933 else if (bl->permanent)
3934 return permanent_breakpoint_here;
3935 else
3936 any_breakpoint_here = 1;
3937 }
3938 }
3939
3940 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
3941 }
3942
3943 /* See breakpoint.h. */
3944
3945 int
3946 breakpoint_in_range_p (const address_space *aspace,
3947 CORE_ADDR addr, ULONGEST len)
3948 {
3949 struct bp_location *bl, **blp_tmp;
3950
3951 ALL_BP_LOCATIONS (bl, blp_tmp)
3952 {
3953 if (bl->loc_type != bp_loc_software_breakpoint
3954 && bl->loc_type != bp_loc_hardware_breakpoint)
3955 continue;
3956
3957 if ((breakpoint_enabled (bl->owner)
3958 || bl->permanent)
3959 && breakpoint_location_address_range_overlap (bl, aspace,
3960 addr, len))
3961 {
3962 if (overlay_debugging
3963 && section_is_overlay (bl->section)
3964 && !section_is_mapped (bl->section))
3965 {
3966 /* Unmapped overlay -- can't be a match. */
3967 continue;
3968 }
3969
3970 return 1;
3971 }
3972 }
3973
3974 return 0;
3975 }
3976
3977 /* Return true if there's a moribund breakpoint at PC. */
3978
3979 int
3980 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3981 {
3982 for (bp_location *loc : moribund_locations)
3983 if (breakpoint_location_address_match (loc, aspace, pc))
3984 return 1;
3985
3986 return 0;
3987 }
3988
3989 /* Returns non-zero iff BL is inserted at PC, in address space
3990 ASPACE. */
3991
3992 static int
3993 bp_location_inserted_here_p (struct bp_location *bl,
3994 const address_space *aspace, CORE_ADDR pc)
3995 {
3996 if (bl->inserted
3997 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3998 aspace, pc))
3999 {
4000 if (overlay_debugging
4001 && section_is_overlay (bl->section)
4002 && !section_is_mapped (bl->section))
4003 return 0; /* unmapped overlay -- can't be a match */
4004 else
4005 return 1;
4006 }
4007 return 0;
4008 }
4009
4010 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4011
4012 int
4013 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4014 {
4015 struct bp_location **blp, **blp_tmp = NULL;
4016
4017 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4018 {
4019 struct bp_location *bl = *blp;
4020
4021 if (bl->loc_type != bp_loc_software_breakpoint
4022 && bl->loc_type != bp_loc_hardware_breakpoint)
4023 continue;
4024
4025 if (bp_location_inserted_here_p (bl, aspace, pc))
4026 return 1;
4027 }
4028 return 0;
4029 }
4030
4031 /* This function returns non-zero iff there is a software breakpoint
4032 inserted at PC. */
4033
4034 int
4035 software_breakpoint_inserted_here_p (const address_space *aspace,
4036 CORE_ADDR pc)
4037 {
4038 struct bp_location **blp, **blp_tmp = NULL;
4039
4040 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4041 {
4042 struct bp_location *bl = *blp;
4043
4044 if (bl->loc_type != bp_loc_software_breakpoint)
4045 continue;
4046
4047 if (bp_location_inserted_here_p (bl, aspace, pc))
4048 return 1;
4049 }
4050
4051 return 0;
4052 }
4053
4054 /* See breakpoint.h. */
4055
4056 int
4057 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4058 CORE_ADDR pc)
4059 {
4060 struct bp_location **blp, **blp_tmp = NULL;
4061
4062 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4063 {
4064 struct bp_location *bl = *blp;
4065
4066 if (bl->loc_type != bp_loc_hardware_breakpoint)
4067 continue;
4068
4069 if (bp_location_inserted_here_p (bl, aspace, pc))
4070 return 1;
4071 }
4072
4073 return 0;
4074 }
4075
4076 int
4077 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4078 CORE_ADDR addr, ULONGEST len)
4079 {
4080 struct breakpoint *bpt;
4081
4082 ALL_BREAKPOINTS (bpt)
4083 {
4084 struct bp_location *loc;
4085
4086 if (bpt->type != bp_hardware_watchpoint
4087 && bpt->type != bp_access_watchpoint)
4088 continue;
4089
4090 if (!breakpoint_enabled (bpt))
4091 continue;
4092
4093 for (loc = bpt->loc; loc; loc = loc->next)
4094 if (loc->pspace->aspace == aspace && loc->inserted)
4095 {
4096 CORE_ADDR l, h;
4097
4098 /* Check for intersection. */
4099 l = std::max<CORE_ADDR> (loc->address, addr);
4100 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4101 if (l < h)
4102 return 1;
4103 }
4104 }
4105 return 0;
4106 }
4107
4108 /* See breakpoint.h. */
4109
4110 bool
4111 is_catchpoint (struct breakpoint *b)
4112 {
4113 return (b->type == bp_catchpoint);
4114 }
4115
4116 /* Frees any storage that is part of a bpstat. Does not walk the
4117 'next' chain. */
4118
4119 bpstats::~bpstats ()
4120 {
4121 if (bp_location_at != NULL)
4122 decref_bp_location (&bp_location_at);
4123 }
4124
4125 /* Clear a bpstat so that it says we are not at any breakpoint.
4126 Also free any storage that is part of a bpstat. */
4127
4128 void
4129 bpstat_clear (bpstat *bsp)
4130 {
4131 bpstat p;
4132 bpstat q;
4133
4134 if (bsp == 0)
4135 return;
4136 p = *bsp;
4137 while (p != NULL)
4138 {
4139 q = p->next;
4140 delete p;
4141 p = q;
4142 }
4143 *bsp = NULL;
4144 }
4145
4146 bpstats::bpstats (const bpstats &other)
4147 : next (NULL),
4148 bp_location_at (other.bp_location_at),
4149 breakpoint_at (other.breakpoint_at),
4150 commands (other.commands),
4151 print (other.print),
4152 stop (other.stop),
4153 print_it (other.print_it)
4154 {
4155 if (other.old_val != NULL)
4156 old_val = release_value (value_copy (other.old_val.get ()));
4157 incref_bp_location (bp_location_at);
4158 }
4159
4160 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4161 is part of the bpstat is copied as well. */
4162
4163 bpstat
4164 bpstat_copy (bpstat bs)
4165 {
4166 bpstat p = NULL;
4167 bpstat tmp;
4168 bpstat retval = NULL;
4169
4170 if (bs == NULL)
4171 return bs;
4172
4173 for (; bs != NULL; bs = bs->next)
4174 {
4175 tmp = new bpstats (*bs);
4176
4177 if (p == NULL)
4178 /* This is the first thing in the chain. */
4179 retval = tmp;
4180 else
4181 p->next = tmp;
4182 p = tmp;
4183 }
4184 p->next = NULL;
4185 return retval;
4186 }
4187
4188 /* Find the bpstat associated with this breakpoint. */
4189
4190 bpstat
4191 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4192 {
4193 if (bsp == NULL)
4194 return NULL;
4195
4196 for (; bsp != NULL; bsp = bsp->next)
4197 {
4198 if (bsp->breakpoint_at == breakpoint)
4199 return bsp;
4200 }
4201 return NULL;
4202 }
4203
4204 /* See breakpoint.h. */
4205
4206 bool
4207 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4208 {
4209 for (; bsp != NULL; bsp = bsp->next)
4210 {
4211 if (bsp->breakpoint_at == NULL)
4212 {
4213 /* A moribund location can never explain a signal other than
4214 GDB_SIGNAL_TRAP. */
4215 if (sig == GDB_SIGNAL_TRAP)
4216 return true;
4217 }
4218 else
4219 {
4220 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4221 sig))
4222 return true;
4223 }
4224 }
4225
4226 return false;
4227 }
4228
4229 /* Put in *NUM the breakpoint number of the first breakpoint we are
4230 stopped at. *BSP upon return is a bpstat which points to the
4231 remaining breakpoints stopped at (but which is not guaranteed to be
4232 good for anything but further calls to bpstat_num).
4233
4234 Return 0 if passed a bpstat which does not indicate any breakpoints.
4235 Return -1 if stopped at a breakpoint that has been deleted since
4236 we set it.
4237 Return 1 otherwise. */
4238
4239 int
4240 bpstat_num (bpstat *bsp, int *num)
4241 {
4242 struct breakpoint *b;
4243
4244 if ((*bsp) == NULL)
4245 return 0; /* No more breakpoint values */
4246
4247 /* We assume we'll never have several bpstats that correspond to a
4248 single breakpoint -- otherwise, this function might return the
4249 same number more than once and this will look ugly. */
4250 b = (*bsp)->breakpoint_at;
4251 *bsp = (*bsp)->next;
4252 if (b == NULL)
4253 return -1; /* breakpoint that's been deleted since */
4254
4255 *num = b->number; /* We have its number */
4256 return 1;
4257 }
4258
4259 /* See breakpoint.h. */
4260
4261 void
4262 bpstat_clear_actions (void)
4263 {
4264 bpstat bs;
4265
4266 if (inferior_ptid == null_ptid)
4267 return;
4268
4269 thread_info *tp = inferior_thread ();
4270 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4271 {
4272 bs->commands = NULL;
4273 bs->old_val.reset (nullptr);
4274 }
4275 }
4276
4277 /* Called when a command is about to proceed the inferior. */
4278
4279 static void
4280 breakpoint_about_to_proceed (void)
4281 {
4282 if (inferior_ptid != null_ptid)
4283 {
4284 struct thread_info *tp = inferior_thread ();
4285
4286 /* Allow inferior function calls in breakpoint commands to not
4287 interrupt the command list. When the call finishes
4288 successfully, the inferior will be standing at the same
4289 breakpoint as if nothing happened. */
4290 if (tp->control.in_infcall)
4291 return;
4292 }
4293
4294 breakpoint_proceeded = 1;
4295 }
4296
4297 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4298 or its equivalent. */
4299
4300 static int
4301 command_line_is_silent (struct command_line *cmd)
4302 {
4303 return cmd && (strcmp ("silent", cmd->line) == 0);
4304 }
4305
4306 /* Execute all the commands associated with all the breakpoints at
4307 this location. Any of these commands could cause the process to
4308 proceed beyond this point, etc. We look out for such changes by
4309 checking the global "breakpoint_proceeded" after each command.
4310
4311 Returns true if a breakpoint command resumed the inferior. In that
4312 case, it is the caller's responsibility to recall it again with the
4313 bpstat of the current thread. */
4314
4315 static int
4316 bpstat_do_actions_1 (bpstat *bsp)
4317 {
4318 bpstat bs;
4319 int again = 0;
4320
4321 /* Avoid endless recursion if a `source' command is contained
4322 in bs->commands. */
4323 if (executing_breakpoint_commands)
4324 return 0;
4325
4326 scoped_restore save_executing
4327 = make_scoped_restore (&executing_breakpoint_commands, 1);
4328
4329 scoped_restore preventer = prevent_dont_repeat ();
4330
4331 /* This pointer will iterate over the list of bpstat's. */
4332 bs = *bsp;
4333
4334 breakpoint_proceeded = 0;
4335 for (; bs != NULL; bs = bs->next)
4336 {
4337 struct command_line *cmd = NULL;
4338
4339 /* Take ownership of the BSP's command tree, if it has one.
4340
4341 The command tree could legitimately contain commands like
4342 'step' and 'next', which call clear_proceed_status, which
4343 frees stop_bpstat's command tree. To make sure this doesn't
4344 free the tree we're executing out from under us, we need to
4345 take ownership of the tree ourselves. Since a given bpstat's
4346 commands are only executed once, we don't need to copy it; we
4347 can clear the pointer in the bpstat, and make sure we free
4348 the tree when we're done. */
4349 counted_command_line ccmd = bs->commands;
4350 bs->commands = NULL;
4351 if (ccmd != NULL)
4352 cmd = ccmd.get ();
4353 if (command_line_is_silent (cmd))
4354 {
4355 /* The action has been already done by bpstat_stop_status. */
4356 cmd = cmd->next;
4357 }
4358
4359 while (cmd != NULL)
4360 {
4361 execute_control_command (cmd);
4362
4363 if (breakpoint_proceeded)
4364 break;
4365 else
4366 cmd = cmd->next;
4367 }
4368
4369 if (breakpoint_proceeded)
4370 {
4371 if (current_ui->async)
4372 /* If we are in async mode, then the target might be still
4373 running, not stopped at any breakpoint, so nothing for
4374 us to do here -- just return to the event loop. */
4375 ;
4376 else
4377 /* In sync mode, when execute_control_command returns
4378 we're already standing on the next breakpoint.
4379 Breakpoint commands for that stop were not run, since
4380 execute_command does not run breakpoint commands --
4381 only command_line_handler does, but that one is not
4382 involved in execution of breakpoint commands. So, we
4383 can now execute breakpoint commands. It should be
4384 noted that making execute_command do bpstat actions is
4385 not an option -- in this case we'll have recursive
4386 invocation of bpstat for each breakpoint with a
4387 command, and can easily blow up GDB stack. Instead, we
4388 return true, which will trigger the caller to recall us
4389 with the new stop_bpstat. */
4390 again = 1;
4391 break;
4392 }
4393 }
4394 return again;
4395 }
4396
4397 /* Helper for bpstat_do_actions. Get the current thread, if there's
4398 one, is alive and has execution. Return NULL otherwise. */
4399
4400 static thread_info *
4401 get_bpstat_thread ()
4402 {
4403 if (inferior_ptid == null_ptid || !target_has_execution)
4404 return NULL;
4405
4406 thread_info *tp = inferior_thread ();
4407 if (tp->state == THREAD_EXITED || tp->executing)
4408 return NULL;
4409 return tp;
4410 }
4411
4412 void
4413 bpstat_do_actions (void)
4414 {
4415 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4416 thread_info *tp;
4417
4418 /* Do any commands attached to breakpoint we are stopped at. */
4419 while ((tp = get_bpstat_thread ()) != NULL)
4420 {
4421 /* Since in sync mode, bpstat_do_actions may resume the
4422 inferior, and only return when it is stopped at the next
4423 breakpoint, we keep doing breakpoint actions until it returns
4424 false to indicate the inferior was not resumed. */
4425 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4426 break;
4427 }
4428
4429 cleanup_if_error.release ();
4430 }
4431
4432 /* Print out the (old or new) value associated with a watchpoint. */
4433
4434 static void
4435 watchpoint_value_print (struct value *val, struct ui_file *stream)
4436 {
4437 if (val == NULL)
4438 fprintf_styled (stream, metadata_style.style (), _("<unreadable>"));
4439 else
4440 {
4441 struct value_print_options opts;
4442 get_user_print_options (&opts);
4443 value_print (val, stream, &opts);
4444 }
4445 }
4446
4447 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4448 debugging multiple threads. */
4449
4450 void
4451 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4452 {
4453 if (uiout->is_mi_like_p ())
4454 return;
4455
4456 uiout->text ("\n");
4457
4458 if (show_thread_that_caused_stop ())
4459 {
4460 const char *name;
4461 struct thread_info *thr = inferior_thread ();
4462
4463 uiout->text ("Thread ");
4464 uiout->field_string ("thread-id", print_thread_id (thr));
4465
4466 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4467 if (name != NULL)
4468 {
4469 uiout->text (" \"");
4470 uiout->field_string ("name", name);
4471 uiout->text ("\"");
4472 }
4473
4474 uiout->text (" hit ");
4475 }
4476 }
4477
4478 /* Generic routine for printing messages indicating why we
4479 stopped. The behavior of this function depends on the value
4480 'print_it' in the bpstat structure. Under some circumstances we
4481 may decide not to print anything here and delegate the task to
4482 normal_stop(). */
4483
4484 static enum print_stop_action
4485 print_bp_stop_message (bpstat bs)
4486 {
4487 switch (bs->print_it)
4488 {
4489 case print_it_noop:
4490 /* Nothing should be printed for this bpstat entry. */
4491 return PRINT_UNKNOWN;
4492 break;
4493
4494 case print_it_done:
4495 /* We still want to print the frame, but we already printed the
4496 relevant messages. */
4497 return PRINT_SRC_AND_LOC;
4498 break;
4499
4500 case print_it_normal:
4501 {
4502 struct breakpoint *b = bs->breakpoint_at;
4503
4504 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4505 which has since been deleted. */
4506 if (b == NULL)
4507 return PRINT_UNKNOWN;
4508
4509 /* Normal case. Call the breakpoint's print_it method. */
4510 return b->ops->print_it (bs);
4511 }
4512 break;
4513
4514 default:
4515 internal_error (__FILE__, __LINE__,
4516 _("print_bp_stop_message: unrecognized enum value"));
4517 break;
4518 }
4519 }
4520
4521 /* A helper function that prints a shared library stopped event. */
4522
4523 static void
4524 print_solib_event (int is_catchpoint)
4525 {
4526 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4527 bool any_added = !current_program_space->added_solibs.empty ();
4528
4529 if (!is_catchpoint)
4530 {
4531 if (any_added || any_deleted)
4532 current_uiout->text (_("Stopped due to shared library event:\n"));
4533 else
4534 current_uiout->text (_("Stopped due to shared library event (no "
4535 "libraries added or removed)\n"));
4536 }
4537
4538 if (current_uiout->is_mi_like_p ())
4539 current_uiout->field_string ("reason",
4540 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4541
4542 if (any_deleted)
4543 {
4544 current_uiout->text (_(" Inferior unloaded "));
4545 ui_out_emit_list list_emitter (current_uiout, "removed");
4546 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4547 {
4548 const std::string &name = current_program_space->deleted_solibs[ix];
4549
4550 if (ix > 0)
4551 current_uiout->text (" ");
4552 current_uiout->field_string ("library", name);
4553 current_uiout->text ("\n");
4554 }
4555 }
4556
4557 if (any_added)
4558 {
4559 current_uiout->text (_(" Inferior loaded "));
4560 ui_out_emit_list list_emitter (current_uiout, "added");
4561 bool first = true;
4562 for (so_list *iter : current_program_space->added_solibs)
4563 {
4564 if (!first)
4565 current_uiout->text (" ");
4566 first = false;
4567 current_uiout->field_string ("library", iter->so_name);
4568 current_uiout->text ("\n");
4569 }
4570 }
4571 }
4572
4573 /* Print a message indicating what happened. This is called from
4574 normal_stop(). The input to this routine is the head of the bpstat
4575 list - a list of the eventpoints that caused this stop. KIND is
4576 the target_waitkind for the stopping event. This
4577 routine calls the generic print routine for printing a message
4578 about reasons for stopping. This will print (for example) the
4579 "Breakpoint n," part of the output. The return value of this
4580 routine is one of:
4581
4582 PRINT_UNKNOWN: Means we printed nothing.
4583 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4584 code to print the location. An example is
4585 "Breakpoint 1, " which should be followed by
4586 the location.
4587 PRINT_SRC_ONLY: Means we printed something, but there is no need
4588 to also print the location part of the message.
4589 An example is the catch/throw messages, which
4590 don't require a location appended to the end.
4591 PRINT_NOTHING: We have done some printing and we don't need any
4592 further info to be printed. */
4593
4594 enum print_stop_action
4595 bpstat_print (bpstat bs, int kind)
4596 {
4597 enum print_stop_action val;
4598
4599 /* Maybe another breakpoint in the chain caused us to stop.
4600 (Currently all watchpoints go on the bpstat whether hit or not.
4601 That probably could (should) be changed, provided care is taken
4602 with respect to bpstat_explains_signal). */
4603 for (; bs; bs = bs->next)
4604 {
4605 val = print_bp_stop_message (bs);
4606 if (val == PRINT_SRC_ONLY
4607 || val == PRINT_SRC_AND_LOC
4608 || val == PRINT_NOTHING)
4609 return val;
4610 }
4611
4612 /* If we had hit a shared library event breakpoint,
4613 print_bp_stop_message would print out this message. If we hit an
4614 OS-level shared library event, do the same thing. */
4615 if (kind == TARGET_WAITKIND_LOADED)
4616 {
4617 print_solib_event (0);
4618 return PRINT_NOTHING;
4619 }
4620
4621 /* We reached the end of the chain, or we got a null BS to start
4622 with and nothing was printed. */
4623 return PRINT_UNKNOWN;
4624 }
4625
4626 /* Evaluate the boolean expression EXP and return the result. */
4627
4628 static bool
4629 breakpoint_cond_eval (expression *exp)
4630 {
4631 struct value *mark = value_mark ();
4632 bool res = value_true (evaluate_expression (exp));
4633
4634 value_free_to_mark (mark);
4635 return res;
4636 }
4637
4638 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4639
4640 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4641 : next (NULL),
4642 bp_location_at (bl),
4643 breakpoint_at (bl->owner),
4644 commands (NULL),
4645 print (0),
4646 stop (0),
4647 print_it (print_it_normal)
4648 {
4649 incref_bp_location (bl);
4650 **bs_link_pointer = this;
4651 *bs_link_pointer = &next;
4652 }
4653
4654 bpstats::bpstats ()
4655 : next (NULL),
4656 bp_location_at (NULL),
4657 breakpoint_at (NULL),
4658 commands (NULL),
4659 print (0),
4660 stop (0),
4661 print_it (print_it_normal)
4662 {
4663 }
4664 \f
4665 /* The target has stopped with waitstatus WS. Check if any hardware
4666 watchpoints have triggered, according to the target. */
4667
4668 int
4669 watchpoints_triggered (struct target_waitstatus *ws)
4670 {
4671 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4672 CORE_ADDR addr;
4673 struct breakpoint *b;
4674
4675 if (!stopped_by_watchpoint)
4676 {
4677 /* We were not stopped by a watchpoint. Mark all watchpoints
4678 as not triggered. */
4679 ALL_BREAKPOINTS (b)
4680 if (is_hardware_watchpoint (b))
4681 {
4682 struct watchpoint *w = (struct watchpoint *) b;
4683
4684 w->watchpoint_triggered = watch_triggered_no;
4685 }
4686
4687 return 0;
4688 }
4689
4690 if (!target_stopped_data_address (current_top_target (), &addr))
4691 {
4692 /* We were stopped by a watchpoint, but we don't know where.
4693 Mark all watchpoints as unknown. */
4694 ALL_BREAKPOINTS (b)
4695 if (is_hardware_watchpoint (b))
4696 {
4697 struct watchpoint *w = (struct watchpoint *) b;
4698
4699 w->watchpoint_triggered = watch_triggered_unknown;
4700 }
4701
4702 return 1;
4703 }
4704
4705 /* The target could report the data address. Mark watchpoints
4706 affected by this data address as triggered, and all others as not
4707 triggered. */
4708
4709 ALL_BREAKPOINTS (b)
4710 if (is_hardware_watchpoint (b))
4711 {
4712 struct watchpoint *w = (struct watchpoint *) b;
4713 struct bp_location *loc;
4714
4715 w->watchpoint_triggered = watch_triggered_no;
4716 for (loc = b->loc; loc; loc = loc->next)
4717 {
4718 if (is_masked_watchpoint (b))
4719 {
4720 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4721 CORE_ADDR start = loc->address & w->hw_wp_mask;
4722
4723 if (newaddr == start)
4724 {
4725 w->watchpoint_triggered = watch_triggered_yes;
4726 break;
4727 }
4728 }
4729 /* Exact match not required. Within range is sufficient. */
4730 else if (target_watchpoint_addr_within_range (current_top_target (),
4731 addr, loc->address,
4732 loc->length))
4733 {
4734 w->watchpoint_triggered = watch_triggered_yes;
4735 break;
4736 }
4737 }
4738 }
4739
4740 return 1;
4741 }
4742
4743 /* Possible return values for watchpoint_check. */
4744 enum wp_check_result
4745 {
4746 /* The watchpoint has been deleted. */
4747 WP_DELETED = 1,
4748
4749 /* The value has changed. */
4750 WP_VALUE_CHANGED = 2,
4751
4752 /* The value has not changed. */
4753 WP_VALUE_NOT_CHANGED = 3,
4754
4755 /* Ignore this watchpoint, no matter if the value changed or not. */
4756 WP_IGNORE = 4,
4757 };
4758
4759 #define BP_TEMPFLAG 1
4760 #define BP_HARDWAREFLAG 2
4761
4762 /* Evaluate watchpoint condition expression and check if its value
4763 changed. */
4764
4765 static wp_check_result
4766 watchpoint_check (bpstat bs)
4767 {
4768 struct watchpoint *b;
4769 struct frame_info *fr;
4770 int within_current_scope;
4771
4772 /* BS is built from an existing struct breakpoint. */
4773 gdb_assert (bs->breakpoint_at != NULL);
4774 b = (struct watchpoint *) bs->breakpoint_at;
4775
4776 /* If this is a local watchpoint, we only want to check if the
4777 watchpoint frame is in scope if the current thread is the thread
4778 that was used to create the watchpoint. */
4779 if (!watchpoint_in_thread_scope (b))
4780 return WP_IGNORE;
4781
4782 if (b->exp_valid_block == NULL)
4783 within_current_scope = 1;
4784 else
4785 {
4786 struct frame_info *frame = get_current_frame ();
4787 struct gdbarch *frame_arch = get_frame_arch (frame);
4788 CORE_ADDR frame_pc = get_frame_pc (frame);
4789
4790 /* stack_frame_destroyed_p() returns a non-zero value if we're
4791 still in the function but the stack frame has already been
4792 invalidated. Since we can't rely on the values of local
4793 variables after the stack has been destroyed, we are treating
4794 the watchpoint in that state as `not changed' without further
4795 checking. Don't mark watchpoints as changed if the current
4796 frame is in an epilogue - even if they are in some other
4797 frame, our view of the stack is likely to be wrong and
4798 frame_find_by_id could error out. */
4799 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4800 return WP_IGNORE;
4801
4802 fr = frame_find_by_id (b->watchpoint_frame);
4803 within_current_scope = (fr != NULL);
4804
4805 /* If we've gotten confused in the unwinder, we might have
4806 returned a frame that can't describe this variable. */
4807 if (within_current_scope)
4808 {
4809 struct symbol *function;
4810
4811 function = get_frame_function (fr);
4812 if (function == NULL
4813 || !contained_in (b->exp_valid_block,
4814 SYMBOL_BLOCK_VALUE (function)))
4815 within_current_scope = 0;
4816 }
4817
4818 if (within_current_scope)
4819 /* If we end up stopping, the current frame will get selected
4820 in normal_stop. So this call to select_frame won't affect
4821 the user. */
4822 select_frame (fr);
4823 }
4824
4825 if (within_current_scope)
4826 {
4827 /* We use value_{,free_to_}mark because it could be a *long*
4828 time before we return to the command level and call
4829 free_all_values. We can't call free_all_values because we
4830 might be in the middle of evaluating a function call. */
4831
4832 int pc = 0;
4833 struct value *mark;
4834 struct value *new_val;
4835
4836 if (is_masked_watchpoint (b))
4837 /* Since we don't know the exact trigger address (from
4838 stopped_data_address), just tell the user we've triggered
4839 a mask watchpoint. */
4840 return WP_VALUE_CHANGED;
4841
4842 mark = value_mark ();
4843 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4844
4845 if (b->val_bitsize != 0)
4846 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4847
4848 /* We use value_equal_contents instead of value_equal because
4849 the latter coerces an array to a pointer, thus comparing just
4850 the address of the array instead of its contents. This is
4851 not what we want. */
4852 if ((b->val != NULL) != (new_val != NULL)
4853 || (b->val != NULL && !value_equal_contents (b->val.get (),
4854 new_val)))
4855 {
4856 bs->old_val = b->val;
4857 b->val = release_value (new_val);
4858 b->val_valid = true;
4859 if (new_val != NULL)
4860 value_free_to_mark (mark);
4861 return WP_VALUE_CHANGED;
4862 }
4863 else
4864 {
4865 /* Nothing changed. */
4866 value_free_to_mark (mark);
4867 return WP_VALUE_NOT_CHANGED;
4868 }
4869 }
4870 else
4871 {
4872 /* This seems like the only logical thing to do because
4873 if we temporarily ignored the watchpoint, then when
4874 we reenter the block in which it is valid it contains
4875 garbage (in the case of a function, it may have two
4876 garbage values, one before and one after the prologue).
4877 So we can't even detect the first assignment to it and
4878 watch after that (since the garbage may or may not equal
4879 the first value assigned). */
4880 /* We print all the stop information in
4881 breakpoint_ops->print_it, but in this case, by the time we
4882 call breakpoint_ops->print_it this bp will be deleted
4883 already. So we have no choice but print the information
4884 here. */
4885
4886 SWITCH_THRU_ALL_UIS ()
4887 {
4888 struct ui_out *uiout = current_uiout;
4889
4890 if (uiout->is_mi_like_p ())
4891 uiout->field_string
4892 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4893 uiout->message ("\nWatchpoint %pF deleted because the program has "
4894 "left the block in\n"
4895 "which its expression is valid.\n",
4896 signed_field ("wpnum", b->number));
4897 }
4898
4899 /* Make sure the watchpoint's commands aren't executed. */
4900 b->commands = NULL;
4901 watchpoint_del_at_next_stop (b);
4902
4903 return WP_DELETED;
4904 }
4905 }
4906
4907 /* Return true if it looks like target has stopped due to hitting
4908 breakpoint location BL. This function does not check if we should
4909 stop, only if BL explains the stop. */
4910
4911 static int
4912 bpstat_check_location (const struct bp_location *bl,
4913 const address_space *aspace, CORE_ADDR bp_addr,
4914 const struct target_waitstatus *ws)
4915 {
4916 struct breakpoint *b = bl->owner;
4917
4918 /* BL is from an existing breakpoint. */
4919 gdb_assert (b != NULL);
4920
4921 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4922 }
4923
4924 /* Determine if the watched values have actually changed, and we
4925 should stop. If not, set BS->stop to 0. */
4926
4927 static void
4928 bpstat_check_watchpoint (bpstat bs)
4929 {
4930 const struct bp_location *bl;
4931 struct watchpoint *b;
4932
4933 /* BS is built for existing struct breakpoint. */
4934 bl = bs->bp_location_at;
4935 gdb_assert (bl != NULL);
4936 b = (struct watchpoint *) bs->breakpoint_at;
4937 gdb_assert (b != NULL);
4938
4939 {
4940 int must_check_value = 0;
4941
4942 if (b->type == bp_watchpoint)
4943 /* For a software watchpoint, we must always check the
4944 watched value. */
4945 must_check_value = 1;
4946 else if (b->watchpoint_triggered == watch_triggered_yes)
4947 /* We have a hardware watchpoint (read, write, or access)
4948 and the target earlier reported an address watched by
4949 this watchpoint. */
4950 must_check_value = 1;
4951 else if (b->watchpoint_triggered == watch_triggered_unknown
4952 && b->type == bp_hardware_watchpoint)
4953 /* We were stopped by a hardware watchpoint, but the target could
4954 not report the data address. We must check the watchpoint's
4955 value. Access and read watchpoints are out of luck; without
4956 a data address, we can't figure it out. */
4957 must_check_value = 1;
4958
4959 if (must_check_value)
4960 {
4961 wp_check_result e;
4962
4963 try
4964 {
4965 e = watchpoint_check (bs);
4966 }
4967 catch (const gdb_exception &ex)
4968 {
4969 exception_fprintf (gdb_stderr, ex,
4970 "Error evaluating expression "
4971 "for watchpoint %d\n",
4972 b->number);
4973
4974 SWITCH_THRU_ALL_UIS ()
4975 {
4976 printf_filtered (_("Watchpoint %d deleted.\n"),
4977 b->number);
4978 }
4979 watchpoint_del_at_next_stop (b);
4980 e = WP_DELETED;
4981 }
4982
4983 switch (e)
4984 {
4985 case WP_DELETED:
4986 /* We've already printed what needs to be printed. */
4987 bs->print_it = print_it_done;
4988 /* Stop. */
4989 break;
4990 case WP_IGNORE:
4991 bs->print_it = print_it_noop;
4992 bs->stop = 0;
4993 break;
4994 case WP_VALUE_CHANGED:
4995 if (b->type == bp_read_watchpoint)
4996 {
4997 /* There are two cases to consider here:
4998
4999 1. We're watching the triggered memory for reads.
5000 In that case, trust the target, and always report
5001 the watchpoint hit to the user. Even though
5002 reads don't cause value changes, the value may
5003 have changed since the last time it was read, and
5004 since we're not trapping writes, we will not see
5005 those, and as such we should ignore our notion of
5006 old value.
5007
5008 2. We're watching the triggered memory for both
5009 reads and writes. There are two ways this may
5010 happen:
5011
5012 2.1. This is a target that can't break on data
5013 reads only, but can break on accesses (reads or
5014 writes), such as e.g., x86. We detect this case
5015 at the time we try to insert read watchpoints.
5016
5017 2.2. Otherwise, the target supports read
5018 watchpoints, but, the user set an access or write
5019 watchpoint watching the same memory as this read
5020 watchpoint.
5021
5022 If we're watching memory writes as well as reads,
5023 ignore watchpoint hits when we find that the
5024 value hasn't changed, as reads don't cause
5025 changes. This still gives false positives when
5026 the program writes the same value to memory as
5027 what there was already in memory (we will confuse
5028 it for a read), but it's much better than
5029 nothing. */
5030
5031 int other_write_watchpoint = 0;
5032
5033 if (bl->watchpoint_type == hw_read)
5034 {
5035 struct breakpoint *other_b;
5036
5037 ALL_BREAKPOINTS (other_b)
5038 if (other_b->type == bp_hardware_watchpoint
5039 || other_b->type == bp_access_watchpoint)
5040 {
5041 struct watchpoint *other_w =
5042 (struct watchpoint *) other_b;
5043
5044 if (other_w->watchpoint_triggered
5045 == watch_triggered_yes)
5046 {
5047 other_write_watchpoint = 1;
5048 break;
5049 }
5050 }
5051 }
5052
5053 if (other_write_watchpoint
5054 || bl->watchpoint_type == hw_access)
5055 {
5056 /* We're watching the same memory for writes,
5057 and the value changed since the last time we
5058 updated it, so this trap must be for a write.
5059 Ignore it. */
5060 bs->print_it = print_it_noop;
5061 bs->stop = 0;
5062 }
5063 }
5064 break;
5065 case WP_VALUE_NOT_CHANGED:
5066 if (b->type == bp_hardware_watchpoint
5067 || b->type == bp_watchpoint)
5068 {
5069 /* Don't stop: write watchpoints shouldn't fire if
5070 the value hasn't changed. */
5071 bs->print_it = print_it_noop;
5072 bs->stop = 0;
5073 }
5074 /* Stop. */
5075 break;
5076 default:
5077 /* Can't happen. */
5078 break;
5079 }
5080 }
5081 else /* must_check_value == 0 */
5082 {
5083 /* This is a case where some watchpoint(s) triggered, but
5084 not at the address of this watchpoint, or else no
5085 watchpoint triggered after all. So don't print
5086 anything for this watchpoint. */
5087 bs->print_it = print_it_noop;
5088 bs->stop = 0;
5089 }
5090 }
5091 }
5092
5093 /* For breakpoints that are currently marked as telling gdb to stop,
5094 check conditions (condition proper, frame, thread and ignore count)
5095 of breakpoint referred to by BS. If we should not stop for this
5096 breakpoint, set BS->stop to 0. */
5097
5098 static void
5099 bpstat_check_breakpoint_conditions (bpstat bs, thread_info *thread)
5100 {
5101 const struct bp_location *bl;
5102 struct breakpoint *b;
5103 /* Assume stop. */
5104 bool condition_result = true;
5105 struct expression *cond;
5106
5107 gdb_assert (bs->stop);
5108
5109 /* BS is built for existing struct breakpoint. */
5110 bl = bs->bp_location_at;
5111 gdb_assert (bl != NULL);
5112 b = bs->breakpoint_at;
5113 gdb_assert (b != NULL);
5114
5115 /* Even if the target evaluated the condition on its end and notified GDB, we
5116 need to do so again since GDB does not know if we stopped due to a
5117 breakpoint or a single step breakpoint. */
5118
5119 if (frame_id_p (b->frame_id)
5120 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5121 {
5122 bs->stop = 0;
5123 return;
5124 }
5125
5126 /* If this is a thread/task-specific breakpoint, don't waste cpu
5127 evaluating the condition if this isn't the specified
5128 thread/task. */
5129 if ((b->thread != -1 && b->thread != thread->global_num)
5130 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5131 {
5132 bs->stop = 0;
5133 return;
5134 }
5135
5136 /* Evaluate extension language breakpoints that have a "stop" method
5137 implemented. */
5138 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5139
5140 if (is_watchpoint (b))
5141 {
5142 struct watchpoint *w = (struct watchpoint *) b;
5143
5144 cond = w->cond_exp.get ();
5145 }
5146 else
5147 cond = bl->cond.get ();
5148
5149 if (cond && b->disposition != disp_del_at_next_stop)
5150 {
5151 int within_current_scope = 1;
5152 struct watchpoint * w;
5153
5154 /* We use value_mark and value_free_to_mark because it could
5155 be a long time before we return to the command level and
5156 call free_all_values. We can't call free_all_values
5157 because we might be in the middle of evaluating a
5158 function call. */
5159 struct value *mark = value_mark ();
5160
5161 if (is_watchpoint (b))
5162 w = (struct watchpoint *) b;
5163 else
5164 w = NULL;
5165
5166 /* Need to select the frame, with all that implies so that
5167 the conditions will have the right context. Because we
5168 use the frame, we will not see an inlined function's
5169 variables when we arrive at a breakpoint at the start
5170 of the inlined function; the current frame will be the
5171 call site. */
5172 if (w == NULL || w->cond_exp_valid_block == NULL)
5173 select_frame (get_current_frame ());
5174 else
5175 {
5176 struct frame_info *frame;
5177
5178 /* For local watchpoint expressions, which particular
5179 instance of a local is being watched matters, so we
5180 keep track of the frame to evaluate the expression
5181 in. To evaluate the condition however, it doesn't
5182 really matter which instantiation of the function
5183 where the condition makes sense triggers the
5184 watchpoint. This allows an expression like "watch
5185 global if q > 10" set in `func', catch writes to
5186 global on all threads that call `func', or catch
5187 writes on all recursive calls of `func' by a single
5188 thread. We simply always evaluate the condition in
5189 the innermost frame that's executing where it makes
5190 sense to evaluate the condition. It seems
5191 intuitive. */
5192 frame = block_innermost_frame (w->cond_exp_valid_block);
5193 if (frame != NULL)
5194 select_frame (frame);
5195 else
5196 within_current_scope = 0;
5197 }
5198 if (within_current_scope)
5199 {
5200 try
5201 {
5202 condition_result = breakpoint_cond_eval (cond);
5203 }
5204 catch (const gdb_exception &ex)
5205 {
5206 exception_fprintf (gdb_stderr, ex,
5207 "Error in testing breakpoint condition:\n");
5208 }
5209 }
5210 else
5211 {
5212 warning (_("Watchpoint condition cannot be tested "
5213 "in the current scope"));
5214 /* If we failed to set the right context for this
5215 watchpoint, unconditionally report it. */
5216 }
5217 /* FIXME-someday, should give breakpoint #. */
5218 value_free_to_mark (mark);
5219 }
5220
5221 if (cond && !condition_result)
5222 {
5223 bs->stop = 0;
5224 }
5225 else if (b->ignore_count > 0)
5226 {
5227 b->ignore_count--;
5228 bs->stop = 0;
5229 /* Increase the hit count even though we don't stop. */
5230 ++(b->hit_count);
5231 gdb::observers::breakpoint_modified.notify (b);
5232 }
5233 }
5234
5235 /* Returns true if we need to track moribund locations of LOC's type
5236 on the current target. */
5237
5238 static int
5239 need_moribund_for_location_type (struct bp_location *loc)
5240 {
5241 return ((loc->loc_type == bp_loc_software_breakpoint
5242 && !target_supports_stopped_by_sw_breakpoint ())
5243 || (loc->loc_type == bp_loc_hardware_breakpoint
5244 && !target_supports_stopped_by_hw_breakpoint ()));
5245 }
5246
5247 /* See breakpoint.h. */
5248
5249 bpstat
5250 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5251 const struct target_waitstatus *ws)
5252 {
5253 struct breakpoint *b;
5254 bpstat bs_head = NULL, *bs_link = &bs_head;
5255
5256 ALL_BREAKPOINTS (b)
5257 {
5258 if (!breakpoint_enabled (b))
5259 continue;
5260
5261 for (bp_location *bl = b->loc; bl != NULL; bl = bl->next)
5262 {
5263 /* For hardware watchpoints, we look only at the first
5264 location. The watchpoint_check function will work on the
5265 entire expression, not the individual locations. For
5266 read watchpoints, the watchpoints_triggered function has
5267 checked all locations already. */
5268 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5269 break;
5270
5271 if (!bl->enabled || bl->shlib_disabled)
5272 continue;
5273
5274 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5275 continue;
5276
5277 /* Come here if it's a watchpoint, or if the break address
5278 matches. */
5279
5280 bpstat bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5281 explain stop. */
5282
5283 /* Assume we stop. Should we find a watchpoint that is not
5284 actually triggered, or if the condition of the breakpoint
5285 evaluates as false, we'll reset 'stop' to 0. */
5286 bs->stop = 1;
5287 bs->print = 1;
5288
5289 /* If this is a scope breakpoint, mark the associated
5290 watchpoint as triggered so that we will handle the
5291 out-of-scope event. We'll get to the watchpoint next
5292 iteration. */
5293 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5294 {
5295 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5296
5297 w->watchpoint_triggered = watch_triggered_yes;
5298 }
5299 }
5300 }
5301
5302 /* Check if a moribund breakpoint explains the stop. */
5303 if (!target_supports_stopped_by_sw_breakpoint ()
5304 || !target_supports_stopped_by_hw_breakpoint ())
5305 {
5306 for (bp_location *loc : moribund_locations)
5307 {
5308 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5309 && need_moribund_for_location_type (loc))
5310 {
5311 bpstat bs = new bpstats (loc, &bs_link);
5312 /* For hits of moribund locations, we should just proceed. */
5313 bs->stop = 0;
5314 bs->print = 0;
5315 bs->print_it = print_it_noop;
5316 }
5317 }
5318 }
5319
5320 return bs_head;
5321 }
5322
5323 /* See breakpoint.h. */
5324
5325 bpstat
5326 bpstat_stop_status (const address_space *aspace,
5327 CORE_ADDR bp_addr, thread_info *thread,
5328 const struct target_waitstatus *ws,
5329 bpstat stop_chain)
5330 {
5331 struct breakpoint *b = NULL;
5332 /* First item of allocated bpstat's. */
5333 bpstat bs_head = stop_chain;
5334 bpstat bs;
5335 int need_remove_insert;
5336 int removed_any;
5337
5338 /* First, build the bpstat chain with locations that explain a
5339 target stop, while being careful to not set the target running,
5340 as that may invalidate locations (in particular watchpoint
5341 locations are recreated). Resuming will happen here with
5342 breakpoint conditions or watchpoint expressions that include
5343 inferior function calls. */
5344 if (bs_head == NULL)
5345 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5346
5347 /* A bit of special processing for shlib breakpoints. We need to
5348 process solib loading here, so that the lists of loaded and
5349 unloaded libraries are correct before we handle "catch load" and
5350 "catch unload". */
5351 for (bs = bs_head; bs != NULL; bs = bs->next)
5352 {
5353 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5354 {
5355 handle_solib_event ();
5356 break;
5357 }
5358 }
5359
5360 /* Now go through the locations that caused the target to stop, and
5361 check whether we're interested in reporting this stop to higher
5362 layers, or whether we should resume the target transparently. */
5363
5364 removed_any = 0;
5365
5366 for (bs = bs_head; bs != NULL; bs = bs->next)
5367 {
5368 if (!bs->stop)
5369 continue;
5370
5371 b = bs->breakpoint_at;
5372 b->ops->check_status (bs);
5373 if (bs->stop)
5374 {
5375 bpstat_check_breakpoint_conditions (bs, thread);
5376
5377 if (bs->stop)
5378 {
5379 ++(b->hit_count);
5380 gdb::observers::breakpoint_modified.notify (b);
5381
5382 /* We will stop here. */
5383 if (b->disposition == disp_disable)
5384 {
5385 --(b->enable_count);
5386 if (b->enable_count <= 0)
5387 b->enable_state = bp_disabled;
5388 removed_any = 1;
5389 }
5390 if (b->silent)
5391 bs->print = 0;
5392 bs->commands = b->commands;
5393 if (command_line_is_silent (bs->commands
5394 ? bs->commands.get () : NULL))
5395 bs->print = 0;
5396
5397 b->ops->after_condition_true (bs);
5398 }
5399
5400 }
5401
5402 /* Print nothing for this entry if we don't stop or don't
5403 print. */
5404 if (!bs->stop || !bs->print)
5405 bs->print_it = print_it_noop;
5406 }
5407
5408 /* If we aren't stopping, the value of some hardware watchpoint may
5409 not have changed, but the intermediate memory locations we are
5410 watching may have. Don't bother if we're stopping; this will get
5411 done later. */
5412 need_remove_insert = 0;
5413 if (! bpstat_causes_stop (bs_head))
5414 for (bs = bs_head; bs != NULL; bs = bs->next)
5415 if (!bs->stop
5416 && bs->breakpoint_at
5417 && is_hardware_watchpoint (bs->breakpoint_at))
5418 {
5419 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5420
5421 update_watchpoint (w, 0 /* don't reparse. */);
5422 need_remove_insert = 1;
5423 }
5424
5425 if (need_remove_insert)
5426 update_global_location_list (UGLL_MAY_INSERT);
5427 else if (removed_any)
5428 update_global_location_list (UGLL_DONT_INSERT);
5429
5430 return bs_head;
5431 }
5432
5433 static void
5434 handle_jit_event (void)
5435 {
5436 struct frame_info *frame;
5437 struct gdbarch *gdbarch;
5438
5439 infrun_debug_printf ("handling bp_jit_event");
5440
5441 /* Switch terminal for any messages produced by
5442 breakpoint_re_set. */
5443 target_terminal::ours_for_output ();
5444
5445 frame = get_current_frame ();
5446 gdbarch = get_frame_arch (frame);
5447 objfile *jiter = symbol_objfile (get_frame_function (frame));
5448
5449 jit_event_handler (gdbarch, jiter);
5450
5451 target_terminal::inferior ();
5452 }
5453
5454 /* Prepare WHAT final decision for infrun. */
5455
5456 /* Decide what infrun needs to do with this bpstat. */
5457
5458 struct bpstat_what
5459 bpstat_what (bpstat bs_head)
5460 {
5461 struct bpstat_what retval;
5462 bpstat bs;
5463
5464 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5465 retval.call_dummy = STOP_NONE;
5466 retval.is_longjmp = false;
5467
5468 for (bs = bs_head; bs != NULL; bs = bs->next)
5469 {
5470 /* Extract this BS's action. After processing each BS, we check
5471 if its action overrides all we've seem so far. */
5472 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5473 enum bptype bptype;
5474
5475 if (bs->breakpoint_at == NULL)
5476 {
5477 /* I suspect this can happen if it was a momentary
5478 breakpoint which has since been deleted. */
5479 bptype = bp_none;
5480 }
5481 else
5482 bptype = bs->breakpoint_at->type;
5483
5484 switch (bptype)
5485 {
5486 case bp_none:
5487 break;
5488 case bp_breakpoint:
5489 case bp_hardware_breakpoint:
5490 case bp_single_step:
5491 case bp_until:
5492 case bp_finish:
5493 case bp_shlib_event:
5494 if (bs->stop)
5495 {
5496 if (bs->print)
5497 this_action = BPSTAT_WHAT_STOP_NOISY;
5498 else
5499 this_action = BPSTAT_WHAT_STOP_SILENT;
5500 }
5501 else
5502 this_action = BPSTAT_WHAT_SINGLE;
5503 break;
5504 case bp_watchpoint:
5505 case bp_hardware_watchpoint:
5506 case bp_read_watchpoint:
5507 case bp_access_watchpoint:
5508 if (bs->stop)
5509 {
5510 if (bs->print)
5511 this_action = BPSTAT_WHAT_STOP_NOISY;
5512 else
5513 this_action = BPSTAT_WHAT_STOP_SILENT;
5514 }
5515 else
5516 {
5517 /* There was a watchpoint, but we're not stopping.
5518 This requires no further action. */
5519 }
5520 break;
5521 case bp_longjmp:
5522 case bp_longjmp_call_dummy:
5523 case bp_exception:
5524 if (bs->stop)
5525 {
5526 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5527 retval.is_longjmp = bptype != bp_exception;
5528 }
5529 else
5530 this_action = BPSTAT_WHAT_SINGLE;
5531 break;
5532 case bp_longjmp_resume:
5533 case bp_exception_resume:
5534 if (bs->stop)
5535 {
5536 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5537 retval.is_longjmp = bptype == bp_longjmp_resume;
5538 }
5539 else
5540 this_action = BPSTAT_WHAT_SINGLE;
5541 break;
5542 case bp_step_resume:
5543 if (bs->stop)
5544 this_action = BPSTAT_WHAT_STEP_RESUME;
5545 else
5546 {
5547 /* It is for the wrong frame. */
5548 this_action = BPSTAT_WHAT_SINGLE;
5549 }
5550 break;
5551 case bp_hp_step_resume:
5552 if (bs->stop)
5553 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5554 else
5555 {
5556 /* It is for the wrong frame. */
5557 this_action = BPSTAT_WHAT_SINGLE;
5558 }
5559 break;
5560 case bp_watchpoint_scope:
5561 case bp_thread_event:
5562 case bp_overlay_event:
5563 case bp_longjmp_master:
5564 case bp_std_terminate_master:
5565 case bp_exception_master:
5566 this_action = BPSTAT_WHAT_SINGLE;
5567 break;
5568 case bp_catchpoint:
5569 if (bs->stop)
5570 {
5571 if (bs->print)
5572 this_action = BPSTAT_WHAT_STOP_NOISY;
5573 else
5574 this_action = BPSTAT_WHAT_STOP_SILENT;
5575 }
5576 else
5577 {
5578 /* Some catchpoints are implemented with breakpoints.
5579 For those, we need to step over the breakpoint. */
5580 if (bs->bp_location_at->loc_type != bp_loc_other)
5581 this_action = BPSTAT_WHAT_SINGLE;
5582 }
5583 break;
5584 case bp_jit_event:
5585 this_action = BPSTAT_WHAT_SINGLE;
5586 break;
5587 case bp_call_dummy:
5588 /* Make sure the action is stop (silent or noisy),
5589 so infrun.c pops the dummy frame. */
5590 retval.call_dummy = STOP_STACK_DUMMY;
5591 this_action = BPSTAT_WHAT_STOP_SILENT;
5592 break;
5593 case bp_std_terminate:
5594 /* Make sure the action is stop (silent or noisy),
5595 so infrun.c pops the dummy frame. */
5596 retval.call_dummy = STOP_STD_TERMINATE;
5597 this_action = BPSTAT_WHAT_STOP_SILENT;
5598 break;
5599 case bp_tracepoint:
5600 case bp_fast_tracepoint:
5601 case bp_static_tracepoint:
5602 /* Tracepoint hits should not be reported back to GDB, and
5603 if one got through somehow, it should have been filtered
5604 out already. */
5605 internal_error (__FILE__, __LINE__,
5606 _("bpstat_what: tracepoint encountered"));
5607 break;
5608 case bp_gnu_ifunc_resolver:
5609 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5610 this_action = BPSTAT_WHAT_SINGLE;
5611 break;
5612 case bp_gnu_ifunc_resolver_return:
5613 /* The breakpoint will be removed, execution will restart from the
5614 PC of the former breakpoint. */
5615 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5616 break;
5617
5618 case bp_dprintf:
5619 if (bs->stop)
5620 this_action = BPSTAT_WHAT_STOP_SILENT;
5621 else
5622 this_action = BPSTAT_WHAT_SINGLE;
5623 break;
5624
5625 default:
5626 internal_error (__FILE__, __LINE__,
5627 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5628 }
5629
5630 retval.main_action = std::max (retval.main_action, this_action);
5631 }
5632
5633 return retval;
5634 }
5635
5636 void
5637 bpstat_run_callbacks (bpstat bs_head)
5638 {
5639 bpstat bs;
5640
5641 for (bs = bs_head; bs != NULL; bs = bs->next)
5642 {
5643 struct breakpoint *b = bs->breakpoint_at;
5644
5645 if (b == NULL)
5646 continue;
5647 switch (b->type)
5648 {
5649 case bp_jit_event:
5650 handle_jit_event ();
5651 break;
5652 case bp_gnu_ifunc_resolver:
5653 gnu_ifunc_resolver_stop (b);
5654 break;
5655 case bp_gnu_ifunc_resolver_return:
5656 gnu_ifunc_resolver_return_stop (b);
5657 break;
5658 }
5659 }
5660 }
5661
5662 /* See breakpoint.h. */
5663
5664 bool
5665 bpstat_should_step ()
5666 {
5667 struct breakpoint *b;
5668
5669 ALL_BREAKPOINTS (b)
5670 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5671 return true;
5672 return false;
5673 }
5674
5675 /* See breakpoint.h. */
5676
5677 bool
5678 bpstat_causes_stop (bpstat bs)
5679 {
5680 for (; bs != NULL; bs = bs->next)
5681 if (bs->stop)
5682 return true;
5683
5684 return false;
5685 }
5686
5687 \f
5688
5689 /* Compute a string of spaces suitable to indent the next line
5690 so it starts at the position corresponding to the table column
5691 named COL_NAME in the currently active table of UIOUT. */
5692
5693 static char *
5694 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5695 {
5696 static char wrap_indent[80];
5697 int i, total_width, width, align;
5698 const char *text;
5699
5700 total_width = 0;
5701 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5702 {
5703 if (strcmp (text, col_name) == 0)
5704 {
5705 gdb_assert (total_width < sizeof wrap_indent);
5706 memset (wrap_indent, ' ', total_width);
5707 wrap_indent[total_width] = 0;
5708
5709 return wrap_indent;
5710 }
5711
5712 total_width += width + 1;
5713 }
5714
5715 return NULL;
5716 }
5717
5718 /* Determine if the locations of this breakpoint will have their conditions
5719 evaluated by the target, host or a mix of both. Returns the following:
5720
5721 "host": Host evals condition.
5722 "host or target": Host or Target evals condition.
5723 "target": Target evals condition.
5724 */
5725
5726 static const char *
5727 bp_condition_evaluator (struct breakpoint *b)
5728 {
5729 struct bp_location *bl;
5730 char host_evals = 0;
5731 char target_evals = 0;
5732
5733 if (!b)
5734 return NULL;
5735
5736 if (!is_breakpoint (b))
5737 return NULL;
5738
5739 if (gdb_evaluates_breakpoint_condition_p ()
5740 || !target_supports_evaluation_of_breakpoint_conditions ())
5741 return condition_evaluation_host;
5742
5743 for (bl = b->loc; bl; bl = bl->next)
5744 {
5745 if (bl->cond_bytecode)
5746 target_evals++;
5747 else
5748 host_evals++;
5749 }
5750
5751 if (host_evals && target_evals)
5752 return condition_evaluation_both;
5753 else if (target_evals)
5754 return condition_evaluation_target;
5755 else
5756 return condition_evaluation_host;
5757 }
5758
5759 /* Determine the breakpoint location's condition evaluator. This is
5760 similar to bp_condition_evaluator, but for locations. */
5761
5762 static const char *
5763 bp_location_condition_evaluator (struct bp_location *bl)
5764 {
5765 if (bl && !is_breakpoint (bl->owner))
5766 return NULL;
5767
5768 if (gdb_evaluates_breakpoint_condition_p ()
5769 || !target_supports_evaluation_of_breakpoint_conditions ())
5770 return condition_evaluation_host;
5771
5772 if (bl && bl->cond_bytecode)
5773 return condition_evaluation_target;
5774 else
5775 return condition_evaluation_host;
5776 }
5777
5778 /* Print the LOC location out of the list of B->LOC locations. */
5779
5780 static void
5781 print_breakpoint_location (struct breakpoint *b,
5782 struct bp_location *loc)
5783 {
5784 struct ui_out *uiout = current_uiout;
5785
5786 scoped_restore_current_program_space restore_pspace;
5787
5788 if (loc != NULL && loc->shlib_disabled)
5789 loc = NULL;
5790
5791 if (loc != NULL)
5792 set_current_program_space (loc->pspace);
5793
5794 if (b->display_canonical)
5795 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5796 else if (loc && loc->symtab)
5797 {
5798 const struct symbol *sym = loc->symbol;
5799
5800 if (sym)
5801 {
5802 uiout->text ("in ");
5803 uiout->field_string ("func", sym->print_name (),
5804 function_name_style.style ());
5805 uiout->text (" ");
5806 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5807 uiout->text ("at ");
5808 }
5809 uiout->field_string ("file",
5810 symtab_to_filename_for_display (loc->symtab),
5811 file_name_style.style ());
5812 uiout->text (":");
5813
5814 if (uiout->is_mi_like_p ())
5815 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5816
5817 uiout->field_signed ("line", loc->line_number);
5818 }
5819 else if (loc)
5820 {
5821 string_file stb;
5822
5823 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5824 demangle, "");
5825 uiout->field_stream ("at", stb);
5826 }
5827 else
5828 {
5829 uiout->field_string ("pending",
5830 event_location_to_string (b->location.get ()));
5831 /* If extra_string is available, it could be holding a condition
5832 or dprintf arguments. In either case, make sure it is printed,
5833 too, but only for non-MI streams. */
5834 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5835 {
5836 if (b->type == bp_dprintf)
5837 uiout->text (",");
5838 else
5839 uiout->text (" ");
5840 uiout->text (b->extra_string);
5841 }
5842 }
5843
5844 if (loc && is_breakpoint (b)
5845 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5846 && bp_condition_evaluator (b) == condition_evaluation_both)
5847 {
5848 uiout->text (" (");
5849 uiout->field_string ("evaluated-by",
5850 bp_location_condition_evaluator (loc));
5851 uiout->text (")");
5852 }
5853 }
5854
5855 static const char *
5856 bptype_string (enum bptype type)
5857 {
5858 struct ep_type_description
5859 {
5860 enum bptype type;
5861 const char *description;
5862 };
5863 static struct ep_type_description bptypes[] =
5864 {
5865 {bp_none, "?deleted?"},
5866 {bp_breakpoint, "breakpoint"},
5867 {bp_hardware_breakpoint, "hw breakpoint"},
5868 {bp_single_step, "sw single-step"},
5869 {bp_until, "until"},
5870 {bp_finish, "finish"},
5871 {bp_watchpoint, "watchpoint"},
5872 {bp_hardware_watchpoint, "hw watchpoint"},
5873 {bp_read_watchpoint, "read watchpoint"},
5874 {bp_access_watchpoint, "acc watchpoint"},
5875 {bp_longjmp, "longjmp"},
5876 {bp_longjmp_resume, "longjmp resume"},
5877 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5878 {bp_exception, "exception"},
5879 {bp_exception_resume, "exception resume"},
5880 {bp_step_resume, "step resume"},
5881 {bp_hp_step_resume, "high-priority step resume"},
5882 {bp_watchpoint_scope, "watchpoint scope"},
5883 {bp_call_dummy, "call dummy"},
5884 {bp_std_terminate, "std::terminate"},
5885 {bp_shlib_event, "shlib events"},
5886 {bp_thread_event, "thread events"},
5887 {bp_overlay_event, "overlay events"},
5888 {bp_longjmp_master, "longjmp master"},
5889 {bp_std_terminate_master, "std::terminate master"},
5890 {bp_exception_master, "exception master"},
5891 {bp_catchpoint, "catchpoint"},
5892 {bp_tracepoint, "tracepoint"},
5893 {bp_fast_tracepoint, "fast tracepoint"},
5894 {bp_static_tracepoint, "static tracepoint"},
5895 {bp_dprintf, "dprintf"},
5896 {bp_jit_event, "jit events"},
5897 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5898 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5899 };
5900
5901 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5902 || ((int) type != bptypes[(int) type].type))
5903 internal_error (__FILE__, __LINE__,
5904 _("bptypes table does not describe type #%d."),
5905 (int) type);
5906
5907 return bptypes[(int) type].description;
5908 }
5909
5910 /* For MI, output a field named 'thread-groups' with a list as the value.
5911 For CLI, prefix the list with the string 'inf'. */
5912
5913 static void
5914 output_thread_groups (struct ui_out *uiout,
5915 const char *field_name,
5916 const std::vector<int> &inf_nums,
5917 int mi_only)
5918 {
5919 int is_mi = uiout->is_mi_like_p ();
5920
5921 /* For backward compatibility, don't display inferiors in CLI unless
5922 there are several. Always display them for MI. */
5923 if (!is_mi && mi_only)
5924 return;
5925
5926 ui_out_emit_list list_emitter (uiout, field_name);
5927
5928 for (size_t i = 0; i < inf_nums.size (); i++)
5929 {
5930 if (is_mi)
5931 {
5932 char mi_group[10];
5933
5934 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
5935 uiout->field_string (NULL, mi_group);
5936 }
5937 else
5938 {
5939 if (i == 0)
5940 uiout->text (" inf ");
5941 else
5942 uiout->text (", ");
5943
5944 uiout->text (plongest (inf_nums[i]));
5945 }
5946 }
5947 }
5948
5949 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
5950 instead of going via breakpoint_ops::print_one. This makes "maint
5951 info breakpoints" show the software breakpoint locations of
5952 catchpoints, which are considered internal implementation
5953 detail. */
5954
5955 static void
5956 print_one_breakpoint_location (struct breakpoint *b,
5957 struct bp_location *loc,
5958 int loc_number,
5959 struct bp_location **last_loc,
5960 int allflag, bool raw_loc)
5961 {
5962 struct command_line *l;
5963 static char bpenables[] = "nynny";
5964
5965 struct ui_out *uiout = current_uiout;
5966 int header_of_multiple = 0;
5967 int part_of_multiple = (loc != NULL);
5968 struct value_print_options opts;
5969
5970 get_user_print_options (&opts);
5971
5972 gdb_assert (!loc || loc_number != 0);
5973 /* See comment in print_one_breakpoint concerning treatment of
5974 breakpoints with single disabled location. */
5975 if (loc == NULL
5976 && (b->loc != NULL
5977 && (b->loc->next != NULL || !b->loc->enabled)))
5978 header_of_multiple = 1;
5979 if (loc == NULL)
5980 loc = b->loc;
5981
5982 annotate_record ();
5983
5984 /* 1 */
5985 annotate_field (0);
5986 if (part_of_multiple)
5987 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
5988 else
5989 uiout->field_signed ("number", b->number);
5990
5991 /* 2 */
5992 annotate_field (1);
5993 if (part_of_multiple)
5994 uiout->field_skip ("type");
5995 else
5996 uiout->field_string ("type", bptype_string (b->type));
5997
5998 /* 3 */
5999 annotate_field (2);
6000 if (part_of_multiple)
6001 uiout->field_skip ("disp");
6002 else
6003 uiout->field_string ("disp", bpdisp_text (b->disposition));
6004
6005 /* 4 */
6006 annotate_field (3);
6007 if (part_of_multiple)
6008 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6009 else
6010 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6011
6012 /* 5 and 6 */
6013 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL)
6014 b->ops->print_one (b, last_loc);
6015 else
6016 {
6017 if (is_watchpoint (b))
6018 {
6019 struct watchpoint *w = (struct watchpoint *) b;
6020
6021 /* Field 4, the address, is omitted (which makes the columns
6022 not line up too nicely with the headers, but the effect
6023 is relatively readable). */
6024 if (opts.addressprint)
6025 uiout->field_skip ("addr");
6026 annotate_field (5);
6027 uiout->field_string ("what", w->exp_string);
6028 }
6029 else if (!is_catchpoint (b) || is_exception_catchpoint (b)
6030 || is_ada_exception_catchpoint (b))
6031 {
6032 if (opts.addressprint)
6033 {
6034 annotate_field (4);
6035 if (header_of_multiple)
6036 uiout->field_string ("addr", "<MULTIPLE>",
6037 metadata_style.style ());
6038 else if (b->loc == NULL || loc->shlib_disabled)
6039 uiout->field_string ("addr", "<PENDING>",
6040 metadata_style.style ());
6041 else
6042 uiout->field_core_addr ("addr",
6043 loc->gdbarch, loc->address);
6044 }
6045 annotate_field (5);
6046 if (!header_of_multiple)
6047 print_breakpoint_location (b, loc);
6048 if (b->loc)
6049 *last_loc = b->loc;
6050 }
6051 }
6052
6053 if (loc != NULL && !header_of_multiple)
6054 {
6055 std::vector<int> inf_nums;
6056 int mi_only = 1;
6057
6058 for (inferior *inf : all_inferiors ())
6059 {
6060 if (inf->pspace == loc->pspace)
6061 inf_nums.push_back (inf->num);
6062 }
6063
6064 /* For backward compatibility, don't display inferiors in CLI unless
6065 there are several. Always display for MI. */
6066 if (allflag
6067 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6068 && (program_spaces.size () > 1
6069 || number_of_inferiors () > 1)
6070 /* LOC is for existing B, it cannot be in
6071 moribund_locations and thus having NULL OWNER. */
6072 && loc->owner->type != bp_catchpoint))
6073 mi_only = 0;
6074 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6075 }
6076
6077 if (!part_of_multiple)
6078 {
6079 if (b->thread != -1)
6080 {
6081 /* FIXME: This seems to be redundant and lost here; see the
6082 "stop only in" line a little further down. */
6083 uiout->text (" thread ");
6084 uiout->field_signed ("thread", b->thread);
6085 }
6086 else if (b->task != 0)
6087 {
6088 uiout->text (" task ");
6089 uiout->field_signed ("task", b->task);
6090 }
6091 }
6092
6093 uiout->text ("\n");
6094
6095 if (!part_of_multiple)
6096 b->ops->print_one_detail (b, uiout);
6097
6098 if (part_of_multiple && frame_id_p (b->frame_id))
6099 {
6100 annotate_field (6);
6101 uiout->text ("\tstop only in stack frame at ");
6102 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6103 the frame ID. */
6104 uiout->field_core_addr ("frame",
6105 b->gdbarch, b->frame_id.stack_addr);
6106 uiout->text ("\n");
6107 }
6108
6109 if (!part_of_multiple && b->cond_string)
6110 {
6111 annotate_field (7);
6112 if (is_tracepoint (b))
6113 uiout->text ("\ttrace only if ");
6114 else
6115 uiout->text ("\tstop only if ");
6116 uiout->field_string ("cond", b->cond_string);
6117
6118 /* Print whether the target is doing the breakpoint's condition
6119 evaluation. If GDB is doing the evaluation, don't print anything. */
6120 if (is_breakpoint (b)
6121 && breakpoint_condition_evaluation_mode ()
6122 == condition_evaluation_target)
6123 {
6124 uiout->message (" (%pF evals)",
6125 string_field ("evaluated-by",
6126 bp_condition_evaluator (b)));
6127 }
6128 uiout->text ("\n");
6129 }
6130
6131 if (!part_of_multiple && b->thread != -1)
6132 {
6133 /* FIXME should make an annotation for this. */
6134 uiout->text ("\tstop only in thread ");
6135 if (uiout->is_mi_like_p ())
6136 uiout->field_signed ("thread", b->thread);
6137 else
6138 {
6139 struct thread_info *thr = find_thread_global_id (b->thread);
6140
6141 uiout->field_string ("thread", print_thread_id (thr));
6142 }
6143 uiout->text ("\n");
6144 }
6145
6146 if (!part_of_multiple)
6147 {
6148 if (b->hit_count)
6149 {
6150 /* FIXME should make an annotation for this. */
6151 if (is_catchpoint (b))
6152 uiout->text ("\tcatchpoint");
6153 else if (is_tracepoint (b))
6154 uiout->text ("\ttracepoint");
6155 else
6156 uiout->text ("\tbreakpoint");
6157 uiout->text (" already hit ");
6158 uiout->field_signed ("times", b->hit_count);
6159 if (b->hit_count == 1)
6160 uiout->text (" time\n");
6161 else
6162 uiout->text (" times\n");
6163 }
6164 else
6165 {
6166 /* Output the count also if it is zero, but only if this is mi. */
6167 if (uiout->is_mi_like_p ())
6168 uiout->field_signed ("times", b->hit_count);
6169 }
6170 }
6171
6172 if (!part_of_multiple && b->ignore_count)
6173 {
6174 annotate_field (8);
6175 uiout->message ("\tignore next %pF hits\n",
6176 signed_field ("ignore", b->ignore_count));
6177 }
6178
6179 /* Note that an enable count of 1 corresponds to "enable once"
6180 behavior, which is reported by the combination of enablement and
6181 disposition, so we don't need to mention it here. */
6182 if (!part_of_multiple && b->enable_count > 1)
6183 {
6184 annotate_field (8);
6185 uiout->text ("\tdisable after ");
6186 /* Tweak the wording to clarify that ignore and enable counts
6187 are distinct, and have additive effect. */
6188 if (b->ignore_count)
6189 uiout->text ("additional ");
6190 else
6191 uiout->text ("next ");
6192 uiout->field_signed ("enable", b->enable_count);
6193 uiout->text (" hits\n");
6194 }
6195
6196 if (!part_of_multiple && is_tracepoint (b))
6197 {
6198 struct tracepoint *tp = (struct tracepoint *) b;
6199
6200 if (tp->traceframe_usage)
6201 {
6202 uiout->text ("\ttrace buffer usage ");
6203 uiout->field_signed ("traceframe-usage", tp->traceframe_usage);
6204 uiout->text (" bytes\n");
6205 }
6206 }
6207
6208 l = b->commands ? b->commands.get () : NULL;
6209 if (!part_of_multiple && l)
6210 {
6211 annotate_field (9);
6212 ui_out_emit_tuple tuple_emitter (uiout, "script");
6213 print_command_lines (uiout, l, 4);
6214 }
6215
6216 if (is_tracepoint (b))
6217 {
6218 struct tracepoint *t = (struct tracepoint *) b;
6219
6220 if (!part_of_multiple && t->pass_count)
6221 {
6222 annotate_field (10);
6223 uiout->text ("\tpass count ");
6224 uiout->field_signed ("pass", t->pass_count);
6225 uiout->text (" \n");
6226 }
6227
6228 /* Don't display it when tracepoint or tracepoint location is
6229 pending. */
6230 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6231 {
6232 annotate_field (11);
6233
6234 if (uiout->is_mi_like_p ())
6235 uiout->field_string ("installed",
6236 loc->inserted ? "y" : "n");
6237 else
6238 {
6239 if (loc->inserted)
6240 uiout->text ("\t");
6241 else
6242 uiout->text ("\tnot ");
6243 uiout->text ("installed on target\n");
6244 }
6245 }
6246 }
6247
6248 if (uiout->is_mi_like_p () && !part_of_multiple)
6249 {
6250 if (is_watchpoint (b))
6251 {
6252 struct watchpoint *w = (struct watchpoint *) b;
6253
6254 uiout->field_string ("original-location", w->exp_string);
6255 }
6256 else if (b->location != NULL
6257 && event_location_to_string (b->location.get ()) != NULL)
6258 uiout->field_string ("original-location",
6259 event_location_to_string (b->location.get ()));
6260 }
6261 }
6262
6263 /* See breakpoint.h. */
6264
6265 bool fix_multi_location_breakpoint_output_globally = false;
6266
6267 static void
6268 print_one_breakpoint (struct breakpoint *b,
6269 struct bp_location **last_loc,
6270 int allflag)
6271 {
6272 struct ui_out *uiout = current_uiout;
6273 bool use_fixed_output
6274 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6275 || fix_multi_location_breakpoint_output_globally);
6276
6277 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6278 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false);
6279
6280 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6281 are outside. */
6282 if (!use_fixed_output)
6283 bkpt_tuple_emitter.reset ();
6284
6285 /* If this breakpoint has custom print function,
6286 it's already printed. Otherwise, print individual
6287 locations, if any. */
6288 if (b->ops == NULL
6289 || b->ops->print_one == NULL
6290 || allflag)
6291 {
6292 /* If breakpoint has a single location that is disabled, we
6293 print it as if it had several locations, since otherwise it's
6294 hard to represent "breakpoint enabled, location disabled"
6295 situation.
6296
6297 Note that while hardware watchpoints have several locations
6298 internally, that's not a property exposed to users.
6299
6300 Likewise, while catchpoints may be implemented with
6301 breakpoints (e.g., catch throw), that's not a property
6302 exposed to users. We do however display the internal
6303 breakpoint locations with "maint info breakpoints". */
6304 if (!is_hardware_watchpoint (b)
6305 && (!is_catchpoint (b) || is_exception_catchpoint (b)
6306 || is_ada_exception_catchpoint (b))
6307 && (allflag
6308 || (b->loc && (b->loc->next || !b->loc->enabled))))
6309 {
6310 gdb::optional<ui_out_emit_list> locations_list;
6311
6312 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6313 MI record. For later versions, place breakpoint locations in a
6314 list. */
6315 if (uiout->is_mi_like_p () && use_fixed_output)
6316 locations_list.emplace (uiout, "locations");
6317
6318 int n = 1;
6319 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next, ++n)
6320 {
6321 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6322 print_one_breakpoint_location (b, loc, n, last_loc,
6323 allflag, allflag);
6324 }
6325 }
6326 }
6327 }
6328
6329 static int
6330 breakpoint_address_bits (struct breakpoint *b)
6331 {
6332 int print_address_bits = 0;
6333 struct bp_location *loc;
6334
6335 /* Software watchpoints that aren't watching memory don't have an
6336 address to print. */
6337 if (is_no_memory_software_watchpoint (b))
6338 return 0;
6339
6340 for (loc = b->loc; loc; loc = loc->next)
6341 {
6342 int addr_bit;
6343
6344 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6345 if (addr_bit > print_address_bits)
6346 print_address_bits = addr_bit;
6347 }
6348
6349 return print_address_bits;
6350 }
6351
6352 /* See breakpoint.h. */
6353
6354 void
6355 print_breakpoint (breakpoint *b)
6356 {
6357 struct bp_location *dummy_loc = NULL;
6358 print_one_breakpoint (b, &dummy_loc, 0);
6359 }
6360
6361 /* Return true if this breakpoint was set by the user, false if it is
6362 internal or momentary. */
6363
6364 int
6365 user_breakpoint_p (struct breakpoint *b)
6366 {
6367 return b->number > 0;
6368 }
6369
6370 /* See breakpoint.h. */
6371
6372 int
6373 pending_breakpoint_p (struct breakpoint *b)
6374 {
6375 return b->loc == NULL;
6376 }
6377
6378 /* Print information on breakpoints (including watchpoints and tracepoints).
6379
6380 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as
6381 understood by number_or_range_parser. Only breakpoints included in this
6382 list are then printed.
6383
6384 If SHOW_INTERNAL is true, print internal breakpoints.
6385
6386 If FILTER is non-NULL, call it on each breakpoint and only include the
6387 ones for which it returns true.
6388
6389 Return the total number of breakpoints listed. */
6390
6391 static int
6392 breakpoint_1 (const char *bp_num_list, bool show_internal,
6393 bool (*filter) (const struct breakpoint *))
6394 {
6395 struct breakpoint *b;
6396 struct bp_location *last_loc = NULL;
6397 int nr_printable_breakpoints;
6398 struct value_print_options opts;
6399 int print_address_bits = 0;
6400 int print_type_col_width = 14;
6401 struct ui_out *uiout = current_uiout;
6402
6403 get_user_print_options (&opts);
6404
6405 /* Compute the number of rows in the table, as well as the size
6406 required for address fields. */
6407 nr_printable_breakpoints = 0;
6408 ALL_BREAKPOINTS (b)
6409 {
6410 /* If we have a filter, only list the breakpoints it accepts. */
6411 if (filter && !filter (b))
6412 continue;
6413
6414 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6415 accept. Skip the others. */
6416 if (bp_num_list != NULL && *bp_num_list != '\0')
6417 {
6418 if (show_internal && parse_and_eval_long (bp_num_list) != b->number)
6419 continue;
6420 if (!show_internal && !number_is_in_list (bp_num_list, b->number))
6421 continue;
6422 }
6423
6424 if (show_internal || user_breakpoint_p (b))
6425 {
6426 int addr_bit, type_len;
6427
6428 addr_bit = breakpoint_address_bits (b);
6429 if (addr_bit > print_address_bits)
6430 print_address_bits = addr_bit;
6431
6432 type_len = strlen (bptype_string (b->type));
6433 if (type_len > print_type_col_width)
6434 print_type_col_width = type_len;
6435
6436 nr_printable_breakpoints++;
6437 }
6438 }
6439
6440 {
6441 ui_out_emit_table table_emitter (uiout,
6442 opts.addressprint ? 6 : 5,
6443 nr_printable_breakpoints,
6444 "BreakpointTable");
6445
6446 if (nr_printable_breakpoints > 0)
6447 annotate_breakpoints_headers ();
6448 if (nr_printable_breakpoints > 0)
6449 annotate_field (0);
6450 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6451 if (nr_printable_breakpoints > 0)
6452 annotate_field (1);
6453 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6454 if (nr_printable_breakpoints > 0)
6455 annotate_field (2);
6456 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6457 if (nr_printable_breakpoints > 0)
6458 annotate_field (3);
6459 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6460 if (opts.addressprint)
6461 {
6462 if (nr_printable_breakpoints > 0)
6463 annotate_field (4);
6464 if (print_address_bits <= 32)
6465 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6466 else
6467 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6468 }
6469 if (nr_printable_breakpoints > 0)
6470 annotate_field (5);
6471 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6472 uiout->table_body ();
6473 if (nr_printable_breakpoints > 0)
6474 annotate_breakpoints_table ();
6475
6476 ALL_BREAKPOINTS (b)
6477 {
6478 QUIT;
6479 /* If we have a filter, only list the breakpoints it accepts. */
6480 if (filter && !filter (b))
6481 continue;
6482
6483 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6484 accept. Skip the others. */
6485
6486 if (bp_num_list != NULL && *bp_num_list != '\0')
6487 {
6488 if (show_internal) /* maintenance info breakpoint */
6489 {
6490 if (parse_and_eval_long (bp_num_list) != b->number)
6491 continue;
6492 }
6493 else /* all others */
6494 {
6495 if (!number_is_in_list (bp_num_list, b->number))
6496 continue;
6497 }
6498 }
6499 /* We only print out user settable breakpoints unless the
6500 show_internal is set. */
6501 if (show_internal || user_breakpoint_p (b))
6502 print_one_breakpoint (b, &last_loc, show_internal);
6503 }
6504 }
6505
6506 if (nr_printable_breakpoints == 0)
6507 {
6508 /* If there's a filter, let the caller decide how to report
6509 empty list. */
6510 if (!filter)
6511 {
6512 if (bp_num_list == NULL || *bp_num_list == '\0')
6513 uiout->message ("No breakpoints or watchpoints.\n");
6514 else
6515 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6516 bp_num_list);
6517 }
6518 }
6519 else
6520 {
6521 if (last_loc && !server_command)
6522 set_next_address (last_loc->gdbarch, last_loc->address);
6523 }
6524
6525 /* FIXME? Should this be moved up so that it is only called when
6526 there have been breakpoints? */
6527 annotate_breakpoints_table_end ();
6528
6529 return nr_printable_breakpoints;
6530 }
6531
6532 /* Display the value of default-collect in a way that is generally
6533 compatible with the breakpoint list. */
6534
6535 static void
6536 default_collect_info (void)
6537 {
6538 struct ui_out *uiout = current_uiout;
6539
6540 /* If it has no value (which is frequently the case), say nothing; a
6541 message like "No default-collect." gets in user's face when it's
6542 not wanted. */
6543 if (!*default_collect)
6544 return;
6545
6546 /* The following phrase lines up nicely with per-tracepoint collect
6547 actions. */
6548 uiout->text ("default collect ");
6549 uiout->field_string ("default-collect", default_collect);
6550 uiout->text (" \n");
6551 }
6552
6553 static void
6554 info_breakpoints_command (const char *args, int from_tty)
6555 {
6556 breakpoint_1 (args, false, NULL);
6557
6558 default_collect_info ();
6559 }
6560
6561 static void
6562 info_watchpoints_command (const char *args, int from_tty)
6563 {
6564 int num_printed = breakpoint_1 (args, false, is_watchpoint);
6565 struct ui_out *uiout = current_uiout;
6566
6567 if (num_printed == 0)
6568 {
6569 if (args == NULL || *args == '\0')
6570 uiout->message ("No watchpoints.\n");
6571 else
6572 uiout->message ("No watchpoint matching '%s'.\n", args);
6573 }
6574 }
6575
6576 static void
6577 maintenance_info_breakpoints (const char *args, int from_tty)
6578 {
6579 breakpoint_1 (args, true, NULL);
6580
6581 default_collect_info ();
6582 }
6583
6584 static int
6585 breakpoint_has_pc (struct breakpoint *b,
6586 struct program_space *pspace,
6587 CORE_ADDR pc, struct obj_section *section)
6588 {
6589 struct bp_location *bl = b->loc;
6590
6591 for (; bl; bl = bl->next)
6592 {
6593 if (bl->pspace == pspace
6594 && bl->address == pc
6595 && (!overlay_debugging || bl->section == section))
6596 return 1;
6597 }
6598 return 0;
6599 }
6600
6601 /* Print a message describing any user-breakpoints set at PC. This
6602 concerns with logical breakpoints, so we match program spaces, not
6603 address spaces. */
6604
6605 static void
6606 describe_other_breakpoints (struct gdbarch *gdbarch,
6607 struct program_space *pspace, CORE_ADDR pc,
6608 struct obj_section *section, int thread)
6609 {
6610 int others = 0;
6611 struct breakpoint *b;
6612
6613 ALL_BREAKPOINTS (b)
6614 others += (user_breakpoint_p (b)
6615 && breakpoint_has_pc (b, pspace, pc, section));
6616 if (others > 0)
6617 {
6618 if (others == 1)
6619 printf_filtered (_("Note: breakpoint "));
6620 else /* if (others == ???) */
6621 printf_filtered (_("Note: breakpoints "));
6622 ALL_BREAKPOINTS (b)
6623 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6624 {
6625 others--;
6626 printf_filtered ("%d", b->number);
6627 if (b->thread == -1 && thread != -1)
6628 printf_filtered (" (all threads)");
6629 else if (b->thread != -1)
6630 printf_filtered (" (thread %d)", b->thread);
6631 printf_filtered ("%s%s ",
6632 ((b->enable_state == bp_disabled
6633 || b->enable_state == bp_call_disabled)
6634 ? " (disabled)"
6635 : ""),
6636 (others > 1) ? ","
6637 : ((others == 1) ? " and" : ""));
6638 }
6639 current_uiout->message (_("also set at pc %ps.\n"),
6640 styled_string (address_style.style (),
6641 paddress (gdbarch, pc)));
6642 }
6643 }
6644 \f
6645
6646 /* Return true iff it is meaningful to use the address member of LOC.
6647 For some breakpoint types, the locations' address members are
6648 irrelevant and it makes no sense to attempt to compare them to
6649 other addresses (or use them for any other purpose either).
6650
6651 More specifically, software watchpoints and catchpoints that are
6652 not backed by breakpoints always have a zero valued location
6653 address and we don't want to mark breakpoints of any of these types
6654 to be a duplicate of an actual breakpoint location at address
6655 zero. */
6656
6657 static bool
6658 bl_address_is_meaningful (bp_location *loc)
6659 {
6660 return loc->loc_type != bp_loc_other;
6661 }
6662
6663 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6664 true if LOC1 and LOC2 represent the same watchpoint location. */
6665
6666 static int
6667 watchpoint_locations_match (struct bp_location *loc1,
6668 struct bp_location *loc2)
6669 {
6670 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6671 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6672
6673 /* Both of them must exist. */
6674 gdb_assert (w1 != NULL);
6675 gdb_assert (w2 != NULL);
6676
6677 /* If the target can evaluate the condition expression in hardware,
6678 then we we need to insert both watchpoints even if they are at
6679 the same place. Otherwise the watchpoint will only trigger when
6680 the condition of whichever watchpoint was inserted evaluates to
6681 true, not giving a chance for GDB to check the condition of the
6682 other watchpoint. */
6683 if ((w1->cond_exp
6684 && target_can_accel_watchpoint_condition (loc1->address,
6685 loc1->length,
6686 loc1->watchpoint_type,
6687 w1->cond_exp.get ()))
6688 || (w2->cond_exp
6689 && target_can_accel_watchpoint_condition (loc2->address,
6690 loc2->length,
6691 loc2->watchpoint_type,
6692 w2->cond_exp.get ())))
6693 return 0;
6694
6695 /* Note that this checks the owner's type, not the location's. In
6696 case the target does not support read watchpoints, but does
6697 support access watchpoints, we'll have bp_read_watchpoint
6698 watchpoints with hw_access locations. Those should be considered
6699 duplicates of hw_read locations. The hw_read locations will
6700 become hw_access locations later. */
6701 return (loc1->owner->type == loc2->owner->type
6702 && loc1->pspace->aspace == loc2->pspace->aspace
6703 && loc1->address == loc2->address
6704 && loc1->length == loc2->length);
6705 }
6706
6707 /* See breakpoint.h. */
6708
6709 int
6710 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6711 const address_space *aspace2, CORE_ADDR addr2)
6712 {
6713 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6714 || aspace1 == aspace2)
6715 && addr1 == addr2);
6716 }
6717
6718 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6719 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6720 matches ASPACE2. On targets that have global breakpoints, the address
6721 space doesn't really matter. */
6722
6723 static int
6724 breakpoint_address_match_range (const address_space *aspace1,
6725 CORE_ADDR addr1,
6726 int len1, const address_space *aspace2,
6727 CORE_ADDR addr2)
6728 {
6729 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6730 || aspace1 == aspace2)
6731 && addr2 >= addr1 && addr2 < addr1 + len1);
6732 }
6733
6734 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6735 a ranged breakpoint. In most targets, a match happens only if ASPACE
6736 matches the breakpoint's address space. On targets that have global
6737 breakpoints, the address space doesn't really matter. */
6738
6739 static int
6740 breakpoint_location_address_match (struct bp_location *bl,
6741 const address_space *aspace,
6742 CORE_ADDR addr)
6743 {
6744 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6745 aspace, addr)
6746 || (bl->length
6747 && breakpoint_address_match_range (bl->pspace->aspace,
6748 bl->address, bl->length,
6749 aspace, addr)));
6750 }
6751
6752 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6753 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6754 match happens only if ASPACE matches the breakpoint's address
6755 space. On targets that have global breakpoints, the address space
6756 doesn't really matter. */
6757
6758 static int
6759 breakpoint_location_address_range_overlap (struct bp_location *bl,
6760 const address_space *aspace,
6761 CORE_ADDR addr, int len)
6762 {
6763 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6764 || bl->pspace->aspace == aspace)
6765 {
6766 int bl_len = bl->length != 0 ? bl->length : 1;
6767
6768 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6769 return 1;
6770 }
6771 return 0;
6772 }
6773
6774 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6775 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6776 true, otherwise returns false. */
6777
6778 static int
6779 tracepoint_locations_match (struct bp_location *loc1,
6780 struct bp_location *loc2)
6781 {
6782 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6783 /* Since tracepoint locations are never duplicated with others', tracepoint
6784 locations at the same address of different tracepoints are regarded as
6785 different locations. */
6786 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6787 else
6788 return 0;
6789 }
6790
6791 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6792 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6793 the same location. If SW_HW_BPS_MATCH is true, then software
6794 breakpoint locations and hardware breakpoint locations match,
6795 otherwise they don't. */
6796
6797 static int
6798 breakpoint_locations_match (struct bp_location *loc1,
6799 struct bp_location *loc2,
6800 bool sw_hw_bps_match)
6801 {
6802 int hw_point1, hw_point2;
6803
6804 /* Both of them must not be in moribund_locations. */
6805 gdb_assert (loc1->owner != NULL);
6806 gdb_assert (loc2->owner != NULL);
6807
6808 hw_point1 = is_hardware_watchpoint (loc1->owner);
6809 hw_point2 = is_hardware_watchpoint (loc2->owner);
6810
6811 if (hw_point1 != hw_point2)
6812 return 0;
6813 else if (hw_point1)
6814 return watchpoint_locations_match (loc1, loc2);
6815 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6816 return tracepoint_locations_match (loc1, loc2);
6817 else
6818 /* We compare bp_location.length in order to cover ranged
6819 breakpoints. Keep this in sync with
6820 bp_location_is_less_than. */
6821 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6822 loc2->pspace->aspace, loc2->address)
6823 && (loc1->loc_type == loc2->loc_type || sw_hw_bps_match)
6824 && loc1->length == loc2->length);
6825 }
6826
6827 static void
6828 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6829 int bnum, int have_bnum)
6830 {
6831 /* The longest string possibly returned by hex_string_custom
6832 is 50 chars. These must be at least that big for safety. */
6833 char astr1[64];
6834 char astr2[64];
6835
6836 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6837 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6838 if (have_bnum)
6839 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6840 bnum, astr1, astr2);
6841 else
6842 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6843 }
6844
6845 /* Adjust a breakpoint's address to account for architectural
6846 constraints on breakpoint placement. Return the adjusted address.
6847 Note: Very few targets require this kind of adjustment. For most
6848 targets, this function is simply the identity function. */
6849
6850 static CORE_ADDR
6851 adjust_breakpoint_address (struct gdbarch *gdbarch,
6852 CORE_ADDR bpaddr, enum bptype bptype)
6853 {
6854 if (bptype == bp_watchpoint
6855 || bptype == bp_hardware_watchpoint
6856 || bptype == bp_read_watchpoint
6857 || bptype == bp_access_watchpoint
6858 || bptype == bp_catchpoint)
6859 {
6860 /* Watchpoints and the various bp_catch_* eventpoints should not
6861 have their addresses modified. */
6862 return bpaddr;
6863 }
6864 else if (bptype == bp_single_step)
6865 {
6866 /* Single-step breakpoints should not have their addresses
6867 modified. If there's any architectural constrain that
6868 applies to this address, then it should have already been
6869 taken into account when the breakpoint was created in the
6870 first place. If we didn't do this, stepping through e.g.,
6871 Thumb-2 IT blocks would break. */
6872 return bpaddr;
6873 }
6874 else
6875 {
6876 CORE_ADDR adjusted_bpaddr = bpaddr;
6877
6878 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6879 {
6880 /* Some targets have architectural constraints on the placement
6881 of breakpoint instructions. Obtain the adjusted address. */
6882 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6883 }
6884
6885 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6886
6887 /* An adjusted breakpoint address can significantly alter
6888 a user's expectations. Print a warning if an adjustment
6889 is required. */
6890 if (adjusted_bpaddr != bpaddr)
6891 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6892
6893 return adjusted_bpaddr;
6894 }
6895 }
6896
6897 static bp_loc_type
6898 bp_location_from_bp_type (bptype type)
6899 {
6900 switch (type)
6901 {
6902 case bp_breakpoint:
6903 case bp_single_step:
6904 case bp_until:
6905 case bp_finish:
6906 case bp_longjmp:
6907 case bp_longjmp_resume:
6908 case bp_longjmp_call_dummy:
6909 case bp_exception:
6910 case bp_exception_resume:
6911 case bp_step_resume:
6912 case bp_hp_step_resume:
6913 case bp_watchpoint_scope:
6914 case bp_call_dummy:
6915 case bp_std_terminate:
6916 case bp_shlib_event:
6917 case bp_thread_event:
6918 case bp_overlay_event:
6919 case bp_jit_event:
6920 case bp_longjmp_master:
6921 case bp_std_terminate_master:
6922 case bp_exception_master:
6923 case bp_gnu_ifunc_resolver:
6924 case bp_gnu_ifunc_resolver_return:
6925 case bp_dprintf:
6926 return bp_loc_software_breakpoint;
6927 case bp_hardware_breakpoint:
6928 return bp_loc_hardware_breakpoint;
6929 case bp_hardware_watchpoint:
6930 case bp_read_watchpoint:
6931 case bp_access_watchpoint:
6932 return bp_loc_hardware_watchpoint;
6933 case bp_watchpoint:
6934 case bp_catchpoint:
6935 case bp_tracepoint:
6936 case bp_fast_tracepoint:
6937 case bp_static_tracepoint:
6938 return bp_loc_other;
6939 default:
6940 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6941 }
6942 }
6943
6944 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
6945 {
6946 this->owner = owner;
6947 this->cond_bytecode = NULL;
6948 this->shlib_disabled = 0;
6949 this->enabled = 1;
6950
6951 this->loc_type = type;
6952
6953 if (this->loc_type == bp_loc_software_breakpoint
6954 || this->loc_type == bp_loc_hardware_breakpoint)
6955 mark_breakpoint_location_modified (this);
6956
6957 this->refc = 1;
6958 }
6959
6960 bp_location::bp_location (breakpoint *owner)
6961 : bp_location::bp_location (owner,
6962 bp_location_from_bp_type (owner->type))
6963 {
6964 }
6965
6966 /* Allocate a struct bp_location. */
6967
6968 static struct bp_location *
6969 allocate_bp_location (struct breakpoint *bpt)
6970 {
6971 return bpt->ops->allocate_location (bpt);
6972 }
6973
6974 static void
6975 free_bp_location (struct bp_location *loc)
6976 {
6977 delete loc;
6978 }
6979
6980 /* Increment reference count. */
6981
6982 static void
6983 incref_bp_location (struct bp_location *bl)
6984 {
6985 ++bl->refc;
6986 }
6987
6988 /* Decrement reference count. If the reference count reaches 0,
6989 destroy the bp_location. Sets *BLP to NULL. */
6990
6991 static void
6992 decref_bp_location (struct bp_location **blp)
6993 {
6994 gdb_assert ((*blp)->refc > 0);
6995
6996 if (--(*blp)->refc == 0)
6997 free_bp_location (*blp);
6998 *blp = NULL;
6999 }
7000
7001 /* Add breakpoint B at the end of the global breakpoint chain. */
7002
7003 static breakpoint *
7004 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7005 {
7006 struct breakpoint *b1;
7007 struct breakpoint *result = b.get ();
7008
7009 /* Add this breakpoint to the end of the chain so that a list of
7010 breakpoints will come out in order of increasing numbers. */
7011
7012 b1 = breakpoint_chain;
7013 if (b1 == 0)
7014 breakpoint_chain = b.release ();
7015 else
7016 {
7017 while (b1->next)
7018 b1 = b1->next;
7019 b1->next = b.release ();
7020 }
7021
7022 return result;
7023 }
7024
7025 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7026
7027 static void
7028 init_raw_breakpoint_without_location (struct breakpoint *b,
7029 struct gdbarch *gdbarch,
7030 enum bptype bptype,
7031 const struct breakpoint_ops *ops)
7032 {
7033 gdb_assert (ops != NULL);
7034
7035 b->ops = ops;
7036 b->type = bptype;
7037 b->gdbarch = gdbarch;
7038 b->language = current_language->la_language;
7039 b->input_radix = input_radix;
7040 b->related_breakpoint = b;
7041 }
7042
7043 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7044 that has type BPTYPE and has no locations as yet. */
7045
7046 static struct breakpoint *
7047 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7048 enum bptype bptype,
7049 const struct breakpoint_ops *ops)
7050 {
7051 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7052
7053 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7054 return add_to_breakpoint_chain (std::move (b));
7055 }
7056
7057 /* Initialize loc->function_name. */
7058
7059 static void
7060 set_breakpoint_location_function (struct bp_location *loc)
7061 {
7062 gdb_assert (loc->owner != NULL);
7063
7064 if (loc->owner->type == bp_breakpoint
7065 || loc->owner->type == bp_hardware_breakpoint
7066 || is_tracepoint (loc->owner))
7067 {
7068 const char *function_name;
7069
7070 if (loc->msymbol != NULL
7071 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7072 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7073 {
7074 struct breakpoint *b = loc->owner;
7075
7076 function_name = loc->msymbol->linkage_name ();
7077
7078 if (b->type == bp_breakpoint && b->loc == loc
7079 && loc->next == NULL && b->related_breakpoint == b)
7080 {
7081 /* Create only the whole new breakpoint of this type but do not
7082 mess more complicated breakpoints with multiple locations. */
7083 b->type = bp_gnu_ifunc_resolver;
7084 /* Remember the resolver's address for use by the return
7085 breakpoint. */
7086 loc->related_address = loc->address;
7087 }
7088 }
7089 else
7090 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7091
7092 if (function_name)
7093 loc->function_name = xstrdup (function_name);
7094 }
7095 }
7096
7097 /* Attempt to determine architecture of location identified by SAL. */
7098 struct gdbarch *
7099 get_sal_arch (struct symtab_and_line sal)
7100 {
7101 if (sal.section)
7102 return sal.section->objfile->arch ();
7103 if (sal.symtab)
7104 return SYMTAB_OBJFILE (sal.symtab)->arch ();
7105
7106 return NULL;
7107 }
7108
7109 /* Low level routine for partially initializing a breakpoint of type
7110 BPTYPE. The newly created breakpoint's address, section, source
7111 file name, and line number are provided by SAL.
7112
7113 It is expected that the caller will complete the initialization of
7114 the newly created breakpoint struct as well as output any status
7115 information regarding the creation of a new breakpoint. */
7116
7117 static void
7118 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7119 struct symtab_and_line sal, enum bptype bptype,
7120 const struct breakpoint_ops *ops)
7121 {
7122 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7123
7124 add_location_to_breakpoint (b, &sal);
7125
7126 if (bptype != bp_catchpoint)
7127 gdb_assert (sal.pspace != NULL);
7128
7129 /* Store the program space that was used to set the breakpoint,
7130 except for ordinary breakpoints, which are independent of the
7131 program space. */
7132 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7133 b->pspace = sal.pspace;
7134 }
7135
7136 /* set_raw_breakpoint is a low level routine for allocating and
7137 partially initializing a breakpoint of type BPTYPE. The newly
7138 created breakpoint's address, section, source file name, and line
7139 number are provided by SAL. The newly created and partially
7140 initialized breakpoint is added to the breakpoint chain and
7141 is also returned as the value of this function.
7142
7143 It is expected that the caller will complete the initialization of
7144 the newly created breakpoint struct as well as output any status
7145 information regarding the creation of a new breakpoint. In
7146 particular, set_raw_breakpoint does NOT set the breakpoint
7147 number! Care should be taken to not allow an error to occur
7148 prior to completing the initialization of the breakpoint. If this
7149 should happen, a bogus breakpoint will be left on the chain. */
7150
7151 struct breakpoint *
7152 set_raw_breakpoint (struct gdbarch *gdbarch,
7153 struct symtab_and_line sal, enum bptype bptype,
7154 const struct breakpoint_ops *ops)
7155 {
7156 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7157
7158 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7159 return add_to_breakpoint_chain (std::move (b));
7160 }
7161
7162 /* Call this routine when stepping and nexting to enable a breakpoint
7163 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7164 initiated the operation. */
7165
7166 void
7167 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7168 {
7169 struct breakpoint *b, *b_tmp;
7170 int thread = tp->global_num;
7171
7172 /* To avoid having to rescan all objfile symbols at every step,
7173 we maintain a list of continually-inserted but always disabled
7174 longjmp "master" breakpoints. Here, we simply create momentary
7175 clones of those and enable them for the requested thread. */
7176 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7177 if (b->pspace == current_program_space
7178 && (b->type == bp_longjmp_master
7179 || b->type == bp_exception_master))
7180 {
7181 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7182 struct breakpoint *clone;
7183
7184 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7185 after their removal. */
7186 clone = momentary_breakpoint_from_master (b, type,
7187 &momentary_breakpoint_ops, 1);
7188 clone->thread = thread;
7189 }
7190
7191 tp->initiating_frame = frame;
7192 }
7193
7194 /* Delete all longjmp breakpoints from THREAD. */
7195 void
7196 delete_longjmp_breakpoint (int thread)
7197 {
7198 struct breakpoint *b, *b_tmp;
7199
7200 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7201 if (b->type == bp_longjmp || b->type == bp_exception)
7202 {
7203 if (b->thread == thread)
7204 delete_breakpoint (b);
7205 }
7206 }
7207
7208 void
7209 delete_longjmp_breakpoint_at_next_stop (int thread)
7210 {
7211 struct breakpoint *b, *b_tmp;
7212
7213 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7214 if (b->type == bp_longjmp || b->type == bp_exception)
7215 {
7216 if (b->thread == thread)
7217 b->disposition = disp_del_at_next_stop;
7218 }
7219 }
7220
7221 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7222 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7223 pointer to any of them. Return NULL if this system cannot place longjmp
7224 breakpoints. */
7225
7226 struct breakpoint *
7227 set_longjmp_breakpoint_for_call_dummy (void)
7228 {
7229 struct breakpoint *b, *retval = NULL;
7230
7231 ALL_BREAKPOINTS (b)
7232 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7233 {
7234 struct breakpoint *new_b;
7235
7236 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7237 &momentary_breakpoint_ops,
7238 1);
7239 new_b->thread = inferior_thread ()->global_num;
7240
7241 /* Link NEW_B into the chain of RETVAL breakpoints. */
7242
7243 gdb_assert (new_b->related_breakpoint == new_b);
7244 if (retval == NULL)
7245 retval = new_b;
7246 new_b->related_breakpoint = retval;
7247 while (retval->related_breakpoint != new_b->related_breakpoint)
7248 retval = retval->related_breakpoint;
7249 retval->related_breakpoint = new_b;
7250 }
7251
7252 return retval;
7253 }
7254
7255 /* Verify all existing dummy frames and their associated breakpoints for
7256 TP. Remove those which can no longer be found in the current frame
7257 stack.
7258
7259 You should call this function only at places where it is safe to currently
7260 unwind the whole stack. Failed stack unwind would discard live dummy
7261 frames. */
7262
7263 void
7264 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7265 {
7266 struct breakpoint *b, *b_tmp;
7267
7268 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7269 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7270 {
7271 struct breakpoint *dummy_b = b->related_breakpoint;
7272
7273 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7274 dummy_b = dummy_b->related_breakpoint;
7275 if (dummy_b->type != bp_call_dummy
7276 || frame_find_by_id (dummy_b->frame_id) != NULL)
7277 continue;
7278
7279 dummy_frame_discard (dummy_b->frame_id, tp);
7280
7281 while (b->related_breakpoint != b)
7282 {
7283 if (b_tmp == b->related_breakpoint)
7284 b_tmp = b->related_breakpoint->next;
7285 delete_breakpoint (b->related_breakpoint);
7286 }
7287 delete_breakpoint (b);
7288 }
7289 }
7290
7291 void
7292 enable_overlay_breakpoints (void)
7293 {
7294 struct breakpoint *b;
7295
7296 ALL_BREAKPOINTS (b)
7297 if (b->type == bp_overlay_event)
7298 {
7299 b->enable_state = bp_enabled;
7300 update_global_location_list (UGLL_MAY_INSERT);
7301 overlay_events_enabled = 1;
7302 }
7303 }
7304
7305 void
7306 disable_overlay_breakpoints (void)
7307 {
7308 struct breakpoint *b;
7309
7310 ALL_BREAKPOINTS (b)
7311 if (b->type == bp_overlay_event)
7312 {
7313 b->enable_state = bp_disabled;
7314 update_global_location_list (UGLL_DONT_INSERT);
7315 overlay_events_enabled = 0;
7316 }
7317 }
7318
7319 /* Set an active std::terminate breakpoint for each std::terminate
7320 master breakpoint. */
7321 void
7322 set_std_terminate_breakpoint (void)
7323 {
7324 struct breakpoint *b, *b_tmp;
7325
7326 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7327 if (b->pspace == current_program_space
7328 && b->type == bp_std_terminate_master)
7329 {
7330 momentary_breakpoint_from_master (b, bp_std_terminate,
7331 &momentary_breakpoint_ops, 1);
7332 }
7333 }
7334
7335 /* Delete all the std::terminate breakpoints. */
7336 void
7337 delete_std_terminate_breakpoint (void)
7338 {
7339 struct breakpoint *b, *b_tmp;
7340
7341 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7342 if (b->type == bp_std_terminate)
7343 delete_breakpoint (b);
7344 }
7345
7346 struct breakpoint *
7347 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7348 {
7349 struct breakpoint *b;
7350
7351 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7352 &internal_breakpoint_ops);
7353
7354 b->enable_state = bp_enabled;
7355 /* location has to be used or breakpoint_re_set will delete me. */
7356 b->location = new_address_location (b->loc->address, NULL, 0);
7357
7358 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7359
7360 return b;
7361 }
7362
7363 struct lang_and_radix
7364 {
7365 enum language lang;
7366 int radix;
7367 };
7368
7369 /* Create a breakpoint for JIT code registration and unregistration. */
7370
7371 struct breakpoint *
7372 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7373 {
7374 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7375 &internal_breakpoint_ops);
7376 }
7377
7378 /* Remove JIT code registration and unregistration breakpoint(s). */
7379
7380 void
7381 remove_jit_event_breakpoints (void)
7382 {
7383 struct breakpoint *b, *b_tmp;
7384
7385 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7386 if (b->type == bp_jit_event
7387 && b->loc->pspace == current_program_space)
7388 delete_breakpoint (b);
7389 }
7390
7391 void
7392 remove_solib_event_breakpoints (void)
7393 {
7394 struct breakpoint *b, *b_tmp;
7395
7396 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7397 if (b->type == bp_shlib_event
7398 && b->loc->pspace == current_program_space)
7399 delete_breakpoint (b);
7400 }
7401
7402 /* See breakpoint.h. */
7403
7404 void
7405 remove_solib_event_breakpoints_at_next_stop (void)
7406 {
7407 struct breakpoint *b, *b_tmp;
7408
7409 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7410 if (b->type == bp_shlib_event
7411 && b->loc->pspace == current_program_space)
7412 b->disposition = disp_del_at_next_stop;
7413 }
7414
7415 /* Helper for create_solib_event_breakpoint /
7416 create_and_insert_solib_event_breakpoint. Allows specifying which
7417 INSERT_MODE to pass through to update_global_location_list. */
7418
7419 static struct breakpoint *
7420 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7421 enum ugll_insert_mode insert_mode)
7422 {
7423 struct breakpoint *b;
7424
7425 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7426 &internal_breakpoint_ops);
7427 update_global_location_list_nothrow (insert_mode);
7428 return b;
7429 }
7430
7431 struct breakpoint *
7432 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7433 {
7434 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7435 }
7436
7437 /* See breakpoint.h. */
7438
7439 struct breakpoint *
7440 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7441 {
7442 struct breakpoint *b;
7443
7444 /* Explicitly tell update_global_location_list to insert
7445 locations. */
7446 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7447 if (!b->loc->inserted)
7448 {
7449 delete_breakpoint (b);
7450 return NULL;
7451 }
7452 return b;
7453 }
7454
7455 /* Disable any breakpoints that are on code in shared libraries. Only
7456 apply to enabled breakpoints, disabled ones can just stay disabled. */
7457
7458 void
7459 disable_breakpoints_in_shlibs (void)
7460 {
7461 struct bp_location *loc, **locp_tmp;
7462
7463 ALL_BP_LOCATIONS (loc, locp_tmp)
7464 {
7465 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7466 struct breakpoint *b = loc->owner;
7467
7468 /* We apply the check to all breakpoints, including disabled for
7469 those with loc->duplicate set. This is so that when breakpoint
7470 becomes enabled, or the duplicate is removed, gdb will try to
7471 insert all breakpoints. If we don't set shlib_disabled here,
7472 we'll try to insert those breakpoints and fail. */
7473 if (((b->type == bp_breakpoint)
7474 || (b->type == bp_jit_event)
7475 || (b->type == bp_hardware_breakpoint)
7476 || (is_tracepoint (b)))
7477 && loc->pspace == current_program_space
7478 && !loc->shlib_disabled
7479 && solib_name_from_address (loc->pspace, loc->address)
7480 )
7481 {
7482 loc->shlib_disabled = 1;
7483 }
7484 }
7485 }
7486
7487 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7488 notification of unloaded_shlib. Only apply to enabled breakpoints,
7489 disabled ones can just stay disabled. */
7490
7491 static void
7492 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7493 {
7494 struct bp_location *loc, **locp_tmp;
7495 int disabled_shlib_breaks = 0;
7496
7497 ALL_BP_LOCATIONS (loc, locp_tmp)
7498 {
7499 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7500 struct breakpoint *b = loc->owner;
7501
7502 if (solib->pspace == loc->pspace
7503 && !loc->shlib_disabled
7504 && (((b->type == bp_breakpoint
7505 || b->type == bp_jit_event
7506 || b->type == bp_hardware_breakpoint)
7507 && (loc->loc_type == bp_loc_hardware_breakpoint
7508 || loc->loc_type == bp_loc_software_breakpoint))
7509 || is_tracepoint (b))
7510 && solib_contains_address_p (solib, loc->address))
7511 {
7512 loc->shlib_disabled = 1;
7513 /* At this point, we cannot rely on remove_breakpoint
7514 succeeding so we must mark the breakpoint as not inserted
7515 to prevent future errors occurring in remove_breakpoints. */
7516 loc->inserted = 0;
7517
7518 /* This may cause duplicate notifications for the same breakpoint. */
7519 gdb::observers::breakpoint_modified.notify (b);
7520
7521 if (!disabled_shlib_breaks)
7522 {
7523 target_terminal::ours_for_output ();
7524 warning (_("Temporarily disabling breakpoints "
7525 "for unloaded shared library \"%s\""),
7526 solib->so_name);
7527 }
7528 disabled_shlib_breaks = 1;
7529 }
7530 }
7531 }
7532
7533 /* Disable any breakpoints and tracepoints in OBJFILE upon
7534 notification of free_objfile. Only apply to enabled breakpoints,
7535 disabled ones can just stay disabled. */
7536
7537 static void
7538 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7539 {
7540 struct breakpoint *b;
7541
7542 if (objfile == NULL)
7543 return;
7544
7545 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7546 managed by the user with add-symbol-file/remove-symbol-file.
7547 Similarly to how breakpoints in shared libraries are handled in
7548 response to "nosharedlibrary", mark breakpoints in such modules
7549 shlib_disabled so they end up uninserted on the next global
7550 location list update. Shared libraries not loaded by the user
7551 aren't handled here -- they're already handled in
7552 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7553 solib_unloaded observer. We skip objfiles that are not
7554 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7555 main objfile). */
7556 if ((objfile->flags & OBJF_SHARED) == 0
7557 || (objfile->flags & OBJF_USERLOADED) == 0)
7558 return;
7559
7560 ALL_BREAKPOINTS (b)
7561 {
7562 struct bp_location *loc;
7563 int bp_modified = 0;
7564
7565 if (!is_breakpoint (b) && !is_tracepoint (b))
7566 continue;
7567
7568 for (loc = b->loc; loc != NULL; loc = loc->next)
7569 {
7570 CORE_ADDR loc_addr = loc->address;
7571
7572 if (loc->loc_type != bp_loc_hardware_breakpoint
7573 && loc->loc_type != bp_loc_software_breakpoint)
7574 continue;
7575
7576 if (loc->shlib_disabled != 0)
7577 continue;
7578
7579 if (objfile->pspace != loc->pspace)
7580 continue;
7581
7582 if (loc->loc_type != bp_loc_hardware_breakpoint
7583 && loc->loc_type != bp_loc_software_breakpoint)
7584 continue;
7585
7586 if (is_addr_in_objfile (loc_addr, objfile))
7587 {
7588 loc->shlib_disabled = 1;
7589 /* At this point, we don't know whether the object was
7590 unmapped from the inferior or not, so leave the
7591 inserted flag alone. We'll handle failure to
7592 uninsert quietly, in case the object was indeed
7593 unmapped. */
7594
7595 mark_breakpoint_location_modified (loc);
7596
7597 bp_modified = 1;
7598 }
7599 }
7600
7601 if (bp_modified)
7602 gdb::observers::breakpoint_modified.notify (b);
7603 }
7604 }
7605
7606 /* FORK & VFORK catchpoints. */
7607
7608 /* An instance of this type is used to represent a fork or vfork
7609 catchpoint. A breakpoint is really of this type iff its ops pointer points
7610 to CATCH_FORK_BREAKPOINT_OPS. */
7611
7612 struct fork_catchpoint : public breakpoint
7613 {
7614 /* Process id of a child process whose forking triggered this
7615 catchpoint. This field is only valid immediately after this
7616 catchpoint has triggered. */
7617 ptid_t forked_inferior_pid;
7618 };
7619
7620 /* Implement the "insert" breakpoint_ops method for fork
7621 catchpoints. */
7622
7623 static int
7624 insert_catch_fork (struct bp_location *bl)
7625 {
7626 return target_insert_fork_catchpoint (inferior_ptid.pid ());
7627 }
7628
7629 /* Implement the "remove" breakpoint_ops method for fork
7630 catchpoints. */
7631
7632 static int
7633 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7634 {
7635 return target_remove_fork_catchpoint (inferior_ptid.pid ());
7636 }
7637
7638 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7639 catchpoints. */
7640
7641 static int
7642 breakpoint_hit_catch_fork (const struct bp_location *bl,
7643 const address_space *aspace, CORE_ADDR bp_addr,
7644 const struct target_waitstatus *ws)
7645 {
7646 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7647
7648 if (ws->kind != TARGET_WAITKIND_FORKED)
7649 return 0;
7650
7651 c->forked_inferior_pid = ws->value.related_pid;
7652 return 1;
7653 }
7654
7655 /* Implement the "print_it" breakpoint_ops method for fork
7656 catchpoints. */
7657
7658 static enum print_stop_action
7659 print_it_catch_fork (bpstat bs)
7660 {
7661 struct ui_out *uiout = current_uiout;
7662 struct breakpoint *b = bs->breakpoint_at;
7663 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7664
7665 annotate_catchpoint (b->number);
7666 maybe_print_thread_hit_breakpoint (uiout);
7667 if (b->disposition == disp_del)
7668 uiout->text ("Temporary catchpoint ");
7669 else
7670 uiout->text ("Catchpoint ");
7671 if (uiout->is_mi_like_p ())
7672 {
7673 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7674 uiout->field_string ("disp", bpdisp_text (b->disposition));
7675 }
7676 uiout->field_signed ("bkptno", b->number);
7677 uiout->text (" (forked process ");
7678 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7679 uiout->text ("), ");
7680 return PRINT_SRC_AND_LOC;
7681 }
7682
7683 /* Implement the "print_one" breakpoint_ops method for fork
7684 catchpoints. */
7685
7686 static void
7687 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7688 {
7689 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7690 struct value_print_options opts;
7691 struct ui_out *uiout = current_uiout;
7692
7693 get_user_print_options (&opts);
7694
7695 /* Field 4, the address, is omitted (which makes the columns not
7696 line up too nicely with the headers, but the effect is relatively
7697 readable). */
7698 if (opts.addressprint)
7699 uiout->field_skip ("addr");
7700 annotate_field (5);
7701 uiout->text ("fork");
7702 if (c->forked_inferior_pid != null_ptid)
7703 {
7704 uiout->text (", process ");
7705 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7706 uiout->spaces (1);
7707 }
7708
7709 if (uiout->is_mi_like_p ())
7710 uiout->field_string ("catch-type", "fork");
7711 }
7712
7713 /* Implement the "print_mention" breakpoint_ops method for fork
7714 catchpoints. */
7715
7716 static void
7717 print_mention_catch_fork (struct breakpoint *b)
7718 {
7719 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7720 }
7721
7722 /* Implement the "print_recreate" breakpoint_ops method for fork
7723 catchpoints. */
7724
7725 static void
7726 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7727 {
7728 fprintf_unfiltered (fp, "catch fork");
7729 print_recreate_thread (b, fp);
7730 }
7731
7732 /* The breakpoint_ops structure to be used in fork catchpoints. */
7733
7734 static struct breakpoint_ops catch_fork_breakpoint_ops;
7735
7736 /* Implement the "insert" breakpoint_ops method for vfork
7737 catchpoints. */
7738
7739 static int
7740 insert_catch_vfork (struct bp_location *bl)
7741 {
7742 return target_insert_vfork_catchpoint (inferior_ptid.pid ());
7743 }
7744
7745 /* Implement the "remove" breakpoint_ops method for vfork
7746 catchpoints. */
7747
7748 static int
7749 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7750 {
7751 return target_remove_vfork_catchpoint (inferior_ptid.pid ());
7752 }
7753
7754 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7755 catchpoints. */
7756
7757 static int
7758 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7759 const address_space *aspace, CORE_ADDR bp_addr,
7760 const struct target_waitstatus *ws)
7761 {
7762 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7763
7764 if (ws->kind != TARGET_WAITKIND_VFORKED)
7765 return 0;
7766
7767 c->forked_inferior_pid = ws->value.related_pid;
7768 return 1;
7769 }
7770
7771 /* Implement the "print_it" breakpoint_ops method for vfork
7772 catchpoints. */
7773
7774 static enum print_stop_action
7775 print_it_catch_vfork (bpstat bs)
7776 {
7777 struct ui_out *uiout = current_uiout;
7778 struct breakpoint *b = bs->breakpoint_at;
7779 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7780
7781 annotate_catchpoint (b->number);
7782 maybe_print_thread_hit_breakpoint (uiout);
7783 if (b->disposition == disp_del)
7784 uiout->text ("Temporary catchpoint ");
7785 else
7786 uiout->text ("Catchpoint ");
7787 if (uiout->is_mi_like_p ())
7788 {
7789 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7790 uiout->field_string ("disp", bpdisp_text (b->disposition));
7791 }
7792 uiout->field_signed ("bkptno", b->number);
7793 uiout->text (" (vforked process ");
7794 uiout->field_signed ("newpid", c->forked_inferior_pid.pid ());
7795 uiout->text ("), ");
7796 return PRINT_SRC_AND_LOC;
7797 }
7798
7799 /* Implement the "print_one" breakpoint_ops method for vfork
7800 catchpoints. */
7801
7802 static void
7803 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7804 {
7805 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7806 struct value_print_options opts;
7807 struct ui_out *uiout = current_uiout;
7808
7809 get_user_print_options (&opts);
7810 /* Field 4, the address, is omitted (which makes the columns not
7811 line up too nicely with the headers, but the effect is relatively
7812 readable). */
7813 if (opts.addressprint)
7814 uiout->field_skip ("addr");
7815 annotate_field (5);
7816 uiout->text ("vfork");
7817 if (c->forked_inferior_pid != null_ptid)
7818 {
7819 uiout->text (", process ");
7820 uiout->field_signed ("what", c->forked_inferior_pid.pid ());
7821 uiout->spaces (1);
7822 }
7823
7824 if (uiout->is_mi_like_p ())
7825 uiout->field_string ("catch-type", "vfork");
7826 }
7827
7828 /* Implement the "print_mention" breakpoint_ops method for vfork
7829 catchpoints. */
7830
7831 static void
7832 print_mention_catch_vfork (struct breakpoint *b)
7833 {
7834 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7835 }
7836
7837 /* Implement the "print_recreate" breakpoint_ops method for vfork
7838 catchpoints. */
7839
7840 static void
7841 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7842 {
7843 fprintf_unfiltered (fp, "catch vfork");
7844 print_recreate_thread (b, fp);
7845 }
7846
7847 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7848
7849 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7850
7851 /* An instance of this type is used to represent an solib catchpoint.
7852 A breakpoint is really of this type iff its ops pointer points to
7853 CATCH_SOLIB_BREAKPOINT_OPS. */
7854
7855 struct solib_catchpoint : public breakpoint
7856 {
7857 ~solib_catchpoint () override;
7858
7859 /* True for "catch load", false for "catch unload". */
7860 unsigned char is_load;
7861
7862 /* Regular expression to match, if any. COMPILED is only valid when
7863 REGEX is non-NULL. */
7864 char *regex;
7865 std::unique_ptr<compiled_regex> compiled;
7866 };
7867
7868 solib_catchpoint::~solib_catchpoint ()
7869 {
7870 xfree (this->regex);
7871 }
7872
7873 static int
7874 insert_catch_solib (struct bp_location *ignore)
7875 {
7876 return 0;
7877 }
7878
7879 static int
7880 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7881 {
7882 return 0;
7883 }
7884
7885 static int
7886 breakpoint_hit_catch_solib (const struct bp_location *bl,
7887 const address_space *aspace,
7888 CORE_ADDR bp_addr,
7889 const struct target_waitstatus *ws)
7890 {
7891 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7892 struct breakpoint *other;
7893
7894 if (ws->kind == TARGET_WAITKIND_LOADED)
7895 return 1;
7896
7897 ALL_BREAKPOINTS (other)
7898 {
7899 struct bp_location *other_bl;
7900
7901 if (other == bl->owner)
7902 continue;
7903
7904 if (other->type != bp_shlib_event)
7905 continue;
7906
7907 if (self->pspace != NULL && other->pspace != self->pspace)
7908 continue;
7909
7910 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7911 {
7912 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7913 return 1;
7914 }
7915 }
7916
7917 return 0;
7918 }
7919
7920 static void
7921 check_status_catch_solib (struct bpstats *bs)
7922 {
7923 struct solib_catchpoint *self
7924 = (struct solib_catchpoint *) bs->breakpoint_at;
7925
7926 if (self->is_load)
7927 {
7928 for (so_list *iter : current_program_space->added_solibs)
7929 {
7930 if (!self->regex
7931 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7932 return;
7933 }
7934 }
7935 else
7936 {
7937 for (const std::string &iter : current_program_space->deleted_solibs)
7938 {
7939 if (!self->regex
7940 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7941 return;
7942 }
7943 }
7944
7945 bs->stop = 0;
7946 bs->print_it = print_it_noop;
7947 }
7948
7949 static enum print_stop_action
7950 print_it_catch_solib (bpstat bs)
7951 {
7952 struct breakpoint *b = bs->breakpoint_at;
7953 struct ui_out *uiout = current_uiout;
7954
7955 annotate_catchpoint (b->number);
7956 maybe_print_thread_hit_breakpoint (uiout);
7957 if (b->disposition == disp_del)
7958 uiout->text ("Temporary catchpoint ");
7959 else
7960 uiout->text ("Catchpoint ");
7961 uiout->field_signed ("bkptno", b->number);
7962 uiout->text ("\n");
7963 if (uiout->is_mi_like_p ())
7964 uiout->field_string ("disp", bpdisp_text (b->disposition));
7965 print_solib_event (1);
7966 return PRINT_SRC_AND_LOC;
7967 }
7968
7969 static void
7970 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7971 {
7972 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7973 struct value_print_options opts;
7974 struct ui_out *uiout = current_uiout;
7975
7976 get_user_print_options (&opts);
7977 /* Field 4, the address, is omitted (which makes the columns not
7978 line up too nicely with the headers, but the effect is relatively
7979 readable). */
7980 if (opts.addressprint)
7981 {
7982 annotate_field (4);
7983 uiout->field_skip ("addr");
7984 }
7985
7986 std::string msg;
7987 annotate_field (5);
7988 if (self->is_load)
7989 {
7990 if (self->regex)
7991 msg = string_printf (_("load of library matching %s"), self->regex);
7992 else
7993 msg = _("load of library");
7994 }
7995 else
7996 {
7997 if (self->regex)
7998 msg = string_printf (_("unload of library matching %s"), self->regex);
7999 else
8000 msg = _("unload of library");
8001 }
8002 uiout->field_string ("what", msg);
8003
8004 if (uiout->is_mi_like_p ())
8005 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8006 }
8007
8008 static void
8009 print_mention_catch_solib (struct breakpoint *b)
8010 {
8011 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8012
8013 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8014 self->is_load ? "load" : "unload");
8015 }
8016
8017 static void
8018 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8019 {
8020 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8021
8022 fprintf_unfiltered (fp, "%s %s",
8023 b->disposition == disp_del ? "tcatch" : "catch",
8024 self->is_load ? "load" : "unload");
8025 if (self->regex)
8026 fprintf_unfiltered (fp, " %s", self->regex);
8027 fprintf_unfiltered (fp, "\n");
8028 }
8029
8030 static struct breakpoint_ops catch_solib_breakpoint_ops;
8031
8032 /* Shared helper function (MI and CLI) for creating and installing
8033 a shared object event catchpoint. If IS_LOAD is non-zero then
8034 the events to be caught are load events, otherwise they are
8035 unload events. If IS_TEMP is non-zero the catchpoint is a
8036 temporary one. If ENABLED is non-zero the catchpoint is
8037 created in an enabled state. */
8038
8039 void
8040 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8041 {
8042 struct gdbarch *gdbarch = get_current_arch ();
8043
8044 if (!arg)
8045 arg = "";
8046 arg = skip_spaces (arg);
8047
8048 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8049
8050 if (*arg != '\0')
8051 {
8052 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8053 _("Invalid regexp")));
8054 c->regex = xstrdup (arg);
8055 }
8056
8057 c->is_load = is_load;
8058 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8059 &catch_solib_breakpoint_ops);
8060
8061 c->enable_state = enabled ? bp_enabled : bp_disabled;
8062
8063 install_breakpoint (0, std::move (c), 1);
8064 }
8065
8066 /* A helper function that does all the work for "catch load" and
8067 "catch unload". */
8068
8069 static void
8070 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8071 struct cmd_list_element *command)
8072 {
8073 int tempflag;
8074 const int enabled = 1;
8075
8076 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8077
8078 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8079 }
8080
8081 static void
8082 catch_load_command_1 (const char *arg, int from_tty,
8083 struct cmd_list_element *command)
8084 {
8085 catch_load_or_unload (arg, from_tty, 1, command);
8086 }
8087
8088 static void
8089 catch_unload_command_1 (const char *arg, int from_tty,
8090 struct cmd_list_element *command)
8091 {
8092 catch_load_or_unload (arg, from_tty, 0, command);
8093 }
8094
8095 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8096 is non-zero, then make the breakpoint temporary. If COND_STRING is
8097 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8098 the breakpoint_ops structure associated to the catchpoint. */
8099
8100 void
8101 init_catchpoint (struct breakpoint *b,
8102 struct gdbarch *gdbarch, int tempflag,
8103 const char *cond_string,
8104 const struct breakpoint_ops *ops)
8105 {
8106 symtab_and_line sal;
8107 sal.pspace = current_program_space;
8108
8109 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8110
8111 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8112 b->disposition = tempflag ? disp_del : disp_donttouch;
8113 }
8114
8115 void
8116 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8117 {
8118 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8119 set_breakpoint_number (internal, b);
8120 if (is_tracepoint (b))
8121 set_tracepoint_count (breakpoint_count);
8122 if (!internal)
8123 mention (b);
8124 gdb::observers::breakpoint_created.notify (b);
8125
8126 if (update_gll)
8127 update_global_location_list (UGLL_MAY_INSERT);
8128 }
8129
8130 static void
8131 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8132 int tempflag, const char *cond_string,
8133 const struct breakpoint_ops *ops)
8134 {
8135 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8136
8137 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8138
8139 c->forked_inferior_pid = null_ptid;
8140
8141 install_breakpoint (0, std::move (c), 1);
8142 }
8143
8144 /* Exec catchpoints. */
8145
8146 /* An instance of this type is used to represent an exec catchpoint.
8147 A breakpoint is really of this type iff its ops pointer points to
8148 CATCH_EXEC_BREAKPOINT_OPS. */
8149
8150 struct exec_catchpoint : public breakpoint
8151 {
8152 ~exec_catchpoint () override;
8153
8154 /* Filename of a program whose exec triggered this catchpoint.
8155 This field is only valid immediately after this catchpoint has
8156 triggered. */
8157 char *exec_pathname;
8158 };
8159
8160 /* Exec catchpoint destructor. */
8161
8162 exec_catchpoint::~exec_catchpoint ()
8163 {
8164 xfree (this->exec_pathname);
8165 }
8166
8167 static int
8168 insert_catch_exec (struct bp_location *bl)
8169 {
8170 return target_insert_exec_catchpoint (inferior_ptid.pid ());
8171 }
8172
8173 static int
8174 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8175 {
8176 return target_remove_exec_catchpoint (inferior_ptid.pid ());
8177 }
8178
8179 static int
8180 breakpoint_hit_catch_exec (const struct bp_location *bl,
8181 const address_space *aspace, CORE_ADDR bp_addr,
8182 const struct target_waitstatus *ws)
8183 {
8184 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8185
8186 if (ws->kind != TARGET_WAITKIND_EXECD)
8187 return 0;
8188
8189 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8190 return 1;
8191 }
8192
8193 static enum print_stop_action
8194 print_it_catch_exec (bpstat bs)
8195 {
8196 struct ui_out *uiout = current_uiout;
8197 struct breakpoint *b = bs->breakpoint_at;
8198 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8199
8200 annotate_catchpoint (b->number);
8201 maybe_print_thread_hit_breakpoint (uiout);
8202 if (b->disposition == disp_del)
8203 uiout->text ("Temporary catchpoint ");
8204 else
8205 uiout->text ("Catchpoint ");
8206 if (uiout->is_mi_like_p ())
8207 {
8208 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8209 uiout->field_string ("disp", bpdisp_text (b->disposition));
8210 }
8211 uiout->field_signed ("bkptno", b->number);
8212 uiout->text (" (exec'd ");
8213 uiout->field_string ("new-exec", c->exec_pathname);
8214 uiout->text ("), ");
8215
8216 return PRINT_SRC_AND_LOC;
8217 }
8218
8219 static void
8220 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8221 {
8222 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8223 struct value_print_options opts;
8224 struct ui_out *uiout = current_uiout;
8225
8226 get_user_print_options (&opts);
8227
8228 /* Field 4, the address, is omitted (which makes the columns
8229 not line up too nicely with the headers, but the effect
8230 is relatively readable). */
8231 if (opts.addressprint)
8232 uiout->field_skip ("addr");
8233 annotate_field (5);
8234 uiout->text ("exec");
8235 if (c->exec_pathname != NULL)
8236 {
8237 uiout->text (", program \"");
8238 uiout->field_string ("what", c->exec_pathname);
8239 uiout->text ("\" ");
8240 }
8241
8242 if (uiout->is_mi_like_p ())
8243 uiout->field_string ("catch-type", "exec");
8244 }
8245
8246 static void
8247 print_mention_catch_exec (struct breakpoint *b)
8248 {
8249 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8250 }
8251
8252 /* Implement the "print_recreate" breakpoint_ops method for exec
8253 catchpoints. */
8254
8255 static void
8256 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8257 {
8258 fprintf_unfiltered (fp, "catch exec");
8259 print_recreate_thread (b, fp);
8260 }
8261
8262 static struct breakpoint_ops catch_exec_breakpoint_ops;
8263
8264 static int
8265 hw_breakpoint_used_count (void)
8266 {
8267 int i = 0;
8268 struct breakpoint *b;
8269 struct bp_location *bl;
8270
8271 ALL_BREAKPOINTS (b)
8272 {
8273 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8274 for (bl = b->loc; bl; bl = bl->next)
8275 {
8276 /* Special types of hardware breakpoints may use more than
8277 one register. */
8278 i += b->ops->resources_needed (bl);
8279 }
8280 }
8281
8282 return i;
8283 }
8284
8285 /* Returns the resources B would use if it were a hardware
8286 watchpoint. */
8287
8288 static int
8289 hw_watchpoint_use_count (struct breakpoint *b)
8290 {
8291 int i = 0;
8292 struct bp_location *bl;
8293
8294 if (!breakpoint_enabled (b))
8295 return 0;
8296
8297 for (bl = b->loc; bl; bl = bl->next)
8298 {
8299 /* Special types of hardware watchpoints may use more than
8300 one register. */
8301 i += b->ops->resources_needed (bl);
8302 }
8303
8304 return i;
8305 }
8306
8307 /* Returns the sum the used resources of all hardware watchpoints of
8308 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8309 the sum of the used resources of all hardware watchpoints of other
8310 types _not_ TYPE. */
8311
8312 static int
8313 hw_watchpoint_used_count_others (struct breakpoint *except,
8314 enum bptype type, int *other_type_used)
8315 {
8316 int i = 0;
8317 struct breakpoint *b;
8318
8319 *other_type_used = 0;
8320 ALL_BREAKPOINTS (b)
8321 {
8322 if (b == except)
8323 continue;
8324 if (!breakpoint_enabled (b))
8325 continue;
8326
8327 if (b->type == type)
8328 i += hw_watchpoint_use_count (b);
8329 else if (is_hardware_watchpoint (b))
8330 *other_type_used = 1;
8331 }
8332
8333 return i;
8334 }
8335
8336 void
8337 disable_watchpoints_before_interactive_call_start (void)
8338 {
8339 struct breakpoint *b;
8340
8341 ALL_BREAKPOINTS (b)
8342 {
8343 if (is_watchpoint (b) && breakpoint_enabled (b))
8344 {
8345 b->enable_state = bp_call_disabled;
8346 update_global_location_list (UGLL_DONT_INSERT);
8347 }
8348 }
8349 }
8350
8351 void
8352 enable_watchpoints_after_interactive_call_stop (void)
8353 {
8354 struct breakpoint *b;
8355
8356 ALL_BREAKPOINTS (b)
8357 {
8358 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8359 {
8360 b->enable_state = bp_enabled;
8361 update_global_location_list (UGLL_MAY_INSERT);
8362 }
8363 }
8364 }
8365
8366 void
8367 disable_breakpoints_before_startup (void)
8368 {
8369 current_program_space->executing_startup = 1;
8370 update_global_location_list (UGLL_DONT_INSERT);
8371 }
8372
8373 void
8374 enable_breakpoints_after_startup (void)
8375 {
8376 current_program_space->executing_startup = 0;
8377 breakpoint_re_set ();
8378 }
8379
8380 /* Create a new single-step breakpoint for thread THREAD, with no
8381 locations. */
8382
8383 static struct breakpoint *
8384 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8385 {
8386 std::unique_ptr<breakpoint> b (new breakpoint ());
8387
8388 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8389 &momentary_breakpoint_ops);
8390
8391 b->disposition = disp_donttouch;
8392 b->frame_id = null_frame_id;
8393
8394 b->thread = thread;
8395 gdb_assert (b->thread != 0);
8396
8397 return add_to_breakpoint_chain (std::move (b));
8398 }
8399
8400 /* Set a momentary breakpoint of type TYPE at address specified by
8401 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8402 frame. */
8403
8404 breakpoint_up
8405 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8406 struct frame_id frame_id, enum bptype type)
8407 {
8408 struct breakpoint *b;
8409
8410 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8411 tail-called one. */
8412 gdb_assert (!frame_id_artificial_p (frame_id));
8413
8414 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8415 b->enable_state = bp_enabled;
8416 b->disposition = disp_donttouch;
8417 b->frame_id = frame_id;
8418
8419 b->thread = inferior_thread ()->global_num;
8420
8421 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8422
8423 return breakpoint_up (b);
8424 }
8425
8426 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8427 The new breakpoint will have type TYPE, use OPS as its
8428 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8429
8430 static struct breakpoint *
8431 momentary_breakpoint_from_master (struct breakpoint *orig,
8432 enum bptype type,
8433 const struct breakpoint_ops *ops,
8434 int loc_enabled)
8435 {
8436 struct breakpoint *copy;
8437
8438 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8439 copy->loc = allocate_bp_location (copy);
8440 set_breakpoint_location_function (copy->loc);
8441
8442 copy->loc->gdbarch = orig->loc->gdbarch;
8443 copy->loc->requested_address = orig->loc->requested_address;
8444 copy->loc->address = orig->loc->address;
8445 copy->loc->section = orig->loc->section;
8446 copy->loc->pspace = orig->loc->pspace;
8447 copy->loc->probe = orig->loc->probe;
8448 copy->loc->line_number = orig->loc->line_number;
8449 copy->loc->symtab = orig->loc->symtab;
8450 copy->loc->enabled = loc_enabled;
8451 copy->frame_id = orig->frame_id;
8452 copy->thread = orig->thread;
8453 copy->pspace = orig->pspace;
8454
8455 copy->enable_state = bp_enabled;
8456 copy->disposition = disp_donttouch;
8457 copy->number = internal_breakpoint_number--;
8458
8459 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8460 return copy;
8461 }
8462
8463 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8464 ORIG is NULL. */
8465
8466 struct breakpoint *
8467 clone_momentary_breakpoint (struct breakpoint *orig)
8468 {
8469 /* If there's nothing to clone, then return nothing. */
8470 if (orig == NULL)
8471 return NULL;
8472
8473 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8474 }
8475
8476 breakpoint_up
8477 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8478 enum bptype type)
8479 {
8480 struct symtab_and_line sal;
8481
8482 sal = find_pc_line (pc, 0);
8483 sal.pc = pc;
8484 sal.section = find_pc_overlay (pc);
8485 sal.explicit_pc = 1;
8486
8487 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8488 }
8489 \f
8490
8491 /* Tell the user we have just set a breakpoint B. */
8492
8493 static void
8494 mention (struct breakpoint *b)
8495 {
8496 b->ops->print_mention (b);
8497 current_uiout->text ("\n");
8498 }
8499 \f
8500
8501 static bool bp_loc_is_permanent (struct bp_location *loc);
8502
8503 /* Handle "set breakpoint auto-hw on".
8504
8505 If the explicitly specified breakpoint type is not hardware
8506 breakpoint, check the memory map to see whether the breakpoint
8507 address is in read-only memory.
8508
8509 - location type is not hardware breakpoint, memory is read-only.
8510 We change the type of the location to hardware breakpoint.
8511
8512 - location type is hardware breakpoint, memory is read-write. This
8513 means we've previously made the location hardware one, but then the
8514 memory map changed, so we undo.
8515 */
8516
8517 static void
8518 handle_automatic_hardware_breakpoints (bp_location *bl)
8519 {
8520 if (automatic_hardware_breakpoints
8521 && bl->owner->type != bp_hardware_breakpoint
8522 && (bl->loc_type == bp_loc_software_breakpoint
8523 || bl->loc_type == bp_loc_hardware_breakpoint))
8524 {
8525 /* When breakpoints are removed, remove_breakpoints will use
8526 location types we've just set here, the only possible problem
8527 is that memory map has changed during running program, but
8528 it's not going to work anyway with current gdb. */
8529 mem_region *mr = lookup_mem_region (bl->address);
8530
8531 if (mr != nullptr)
8532 {
8533 enum bp_loc_type new_type;
8534
8535 if (mr->attrib.mode != MEM_RW)
8536 new_type = bp_loc_hardware_breakpoint;
8537 else
8538 new_type = bp_loc_software_breakpoint;
8539
8540 if (new_type != bl->loc_type)
8541 {
8542 static bool said = false;
8543
8544 bl->loc_type = new_type;
8545 if (!said)
8546 {
8547 fprintf_filtered (gdb_stdout,
8548 _("Note: automatically using "
8549 "hardware breakpoints for "
8550 "read-only addresses.\n"));
8551 said = true;
8552 }
8553 }
8554 }
8555 }
8556 }
8557
8558 static struct bp_location *
8559 add_location_to_breakpoint (struct breakpoint *b,
8560 const struct symtab_and_line *sal)
8561 {
8562 struct bp_location *loc, **tmp;
8563 CORE_ADDR adjusted_address;
8564 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8565
8566 if (loc_gdbarch == NULL)
8567 loc_gdbarch = b->gdbarch;
8568
8569 /* Adjust the breakpoint's address prior to allocating a location.
8570 Once we call allocate_bp_location(), that mostly uninitialized
8571 location will be placed on the location chain. Adjustment of the
8572 breakpoint may cause target_read_memory() to be called and we do
8573 not want its scan of the location chain to find a breakpoint and
8574 location that's only been partially initialized. */
8575 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8576 sal->pc, b->type);
8577
8578 /* Sort the locations by their ADDRESS. */
8579 loc = allocate_bp_location (b);
8580 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8581 tmp = &((*tmp)->next))
8582 ;
8583 loc->next = *tmp;
8584 *tmp = loc;
8585
8586 loc->requested_address = sal->pc;
8587 loc->address = adjusted_address;
8588 loc->pspace = sal->pspace;
8589 loc->probe.prob = sal->prob;
8590 loc->probe.objfile = sal->objfile;
8591 gdb_assert (loc->pspace != NULL);
8592 loc->section = sal->section;
8593 loc->gdbarch = loc_gdbarch;
8594 loc->line_number = sal->line;
8595 loc->symtab = sal->symtab;
8596 loc->symbol = sal->symbol;
8597 loc->msymbol = sal->msymbol;
8598 loc->objfile = sal->objfile;
8599
8600 set_breakpoint_location_function (loc);
8601
8602 /* While by definition, permanent breakpoints are already present in the
8603 code, we don't mark the location as inserted. Normally one would expect
8604 that GDB could rely on that breakpoint instruction to stop the program,
8605 thus removing the need to insert its own breakpoint, except that executing
8606 the breakpoint instruction can kill the target instead of reporting a
8607 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8608 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8609 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8610 breakpoint be inserted normally results in QEMU knowing about the GDB
8611 breakpoint, and thus trap before the breakpoint instruction is executed.
8612 (If GDB later needs to continue execution past the permanent breakpoint,
8613 it manually increments the PC, thus avoiding executing the breakpoint
8614 instruction.) */
8615 if (bp_loc_is_permanent (loc))
8616 loc->permanent = 1;
8617
8618 return loc;
8619 }
8620 \f
8621
8622 /* Return true if LOC is pointing to a permanent breakpoint,
8623 return false otherwise. */
8624
8625 static bool
8626 bp_loc_is_permanent (struct bp_location *loc)
8627 {
8628 gdb_assert (loc != NULL);
8629
8630 /* If we have a non-breakpoint-backed catchpoint or a software
8631 watchpoint, just return 0. We should not attempt to read from
8632 the addresses the locations of these breakpoint types point to.
8633 gdbarch_program_breakpoint_here_p, below, will attempt to read
8634 memory. */
8635 if (!bl_address_is_meaningful (loc))
8636 return false;
8637
8638 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8639 switch_to_program_space_and_thread (loc->pspace);
8640 return gdbarch_program_breakpoint_here_p (loc->gdbarch, loc->address);
8641 }
8642
8643 /* Build a command list for the dprintf corresponding to the current
8644 settings of the dprintf style options. */
8645
8646 static void
8647 update_dprintf_command_list (struct breakpoint *b)
8648 {
8649 char *dprintf_args = b->extra_string;
8650 char *printf_line = NULL;
8651
8652 if (!dprintf_args)
8653 return;
8654
8655 dprintf_args = skip_spaces (dprintf_args);
8656
8657 /* Allow a comma, as it may have terminated a location, but don't
8658 insist on it. */
8659 if (*dprintf_args == ',')
8660 ++dprintf_args;
8661 dprintf_args = skip_spaces (dprintf_args);
8662
8663 if (*dprintf_args != '"')
8664 error (_("Bad format string, missing '\"'."));
8665
8666 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8667 printf_line = xstrprintf ("printf %s", dprintf_args);
8668 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8669 {
8670 if (!dprintf_function)
8671 error (_("No function supplied for dprintf call"));
8672
8673 if (dprintf_channel && strlen (dprintf_channel) > 0)
8674 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8675 dprintf_function,
8676 dprintf_channel,
8677 dprintf_args);
8678 else
8679 printf_line = xstrprintf ("call (void) %s (%s)",
8680 dprintf_function,
8681 dprintf_args);
8682 }
8683 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8684 {
8685 if (target_can_run_breakpoint_commands ())
8686 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8687 else
8688 {
8689 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8690 printf_line = xstrprintf ("printf %s", dprintf_args);
8691 }
8692 }
8693 else
8694 internal_error (__FILE__, __LINE__,
8695 _("Invalid dprintf style."));
8696
8697 gdb_assert (printf_line != NULL);
8698
8699 /* Manufacture a printf sequence. */
8700 struct command_line *printf_cmd_line
8701 = new struct command_line (simple_control, printf_line);
8702 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8703 command_lines_deleter ()));
8704 }
8705
8706 /* Update all dprintf commands, making their command lists reflect
8707 current style settings. */
8708
8709 static void
8710 update_dprintf_commands (const char *args, int from_tty,
8711 struct cmd_list_element *c)
8712 {
8713 struct breakpoint *b;
8714
8715 ALL_BREAKPOINTS (b)
8716 {
8717 if (b->type == bp_dprintf)
8718 update_dprintf_command_list (b);
8719 }
8720 }
8721
8722 /* Create a breakpoint with SAL as location. Use LOCATION
8723 as a description of the location, and COND_STRING
8724 as condition expression. If LOCATION is NULL then create an
8725 "address location" from the address in the SAL. */
8726
8727 static void
8728 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8729 gdb::array_view<const symtab_and_line> sals,
8730 event_location_up &&location,
8731 gdb::unique_xmalloc_ptr<char> filter,
8732 gdb::unique_xmalloc_ptr<char> cond_string,
8733 gdb::unique_xmalloc_ptr<char> extra_string,
8734 enum bptype type, enum bpdisp disposition,
8735 int thread, int task, int ignore_count,
8736 const struct breakpoint_ops *ops, int from_tty,
8737 int enabled, int internal, unsigned flags,
8738 int display_canonical)
8739 {
8740 int i;
8741
8742 if (type == bp_hardware_breakpoint)
8743 {
8744 int target_resources_ok;
8745
8746 i = hw_breakpoint_used_count ();
8747 target_resources_ok =
8748 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8749 i + 1, 0);
8750 if (target_resources_ok == 0)
8751 error (_("No hardware breakpoint support in the target."));
8752 else if (target_resources_ok < 0)
8753 error (_("Hardware breakpoints used exceeds limit."));
8754 }
8755
8756 gdb_assert (!sals.empty ());
8757
8758 for (const auto &sal : sals)
8759 {
8760 struct bp_location *loc;
8761
8762 if (from_tty)
8763 {
8764 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8765 if (!loc_gdbarch)
8766 loc_gdbarch = gdbarch;
8767
8768 describe_other_breakpoints (loc_gdbarch,
8769 sal.pspace, sal.pc, sal.section, thread);
8770 }
8771
8772 if (&sal == &sals[0])
8773 {
8774 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8775 b->thread = thread;
8776 b->task = task;
8777
8778 b->cond_string = cond_string.release ();
8779 b->extra_string = extra_string.release ();
8780 b->ignore_count = ignore_count;
8781 b->enable_state = enabled ? bp_enabled : bp_disabled;
8782 b->disposition = disposition;
8783
8784 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8785 b->loc->inserted = 1;
8786
8787 if (type == bp_static_tracepoint)
8788 {
8789 struct tracepoint *t = (struct tracepoint *) b;
8790 struct static_tracepoint_marker marker;
8791
8792 if (strace_marker_p (b))
8793 {
8794 /* We already know the marker exists, otherwise, we
8795 wouldn't see a sal for it. */
8796 const char *p
8797 = &event_location_to_string (b->location.get ())[3];
8798 const char *endp;
8799
8800 p = skip_spaces (p);
8801
8802 endp = skip_to_space (p);
8803
8804 t->static_trace_marker_id.assign (p, endp - p);
8805
8806 printf_filtered (_("Probed static tracepoint "
8807 "marker \"%s\"\n"),
8808 t->static_trace_marker_id.c_str ());
8809 }
8810 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8811 {
8812 t->static_trace_marker_id = std::move (marker.str_id);
8813
8814 printf_filtered (_("Probed static tracepoint "
8815 "marker \"%s\"\n"),
8816 t->static_trace_marker_id.c_str ());
8817 }
8818 else
8819 warning (_("Couldn't determine the static "
8820 "tracepoint marker to probe"));
8821 }
8822
8823 loc = b->loc;
8824 }
8825 else
8826 {
8827 loc = add_location_to_breakpoint (b, &sal);
8828 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8829 loc->inserted = 1;
8830 }
8831
8832 if (b->cond_string)
8833 {
8834 const char *arg = b->cond_string;
8835
8836 loc->cond = parse_exp_1 (&arg, loc->address,
8837 block_for_pc (loc->address), 0);
8838 if (*arg)
8839 error (_("Garbage '%s' follows condition"), arg);
8840 }
8841
8842 /* Dynamic printf requires and uses additional arguments on the
8843 command line, otherwise it's an error. */
8844 if (type == bp_dprintf)
8845 {
8846 if (b->extra_string)
8847 update_dprintf_command_list (b);
8848 else
8849 error (_("Format string required"));
8850 }
8851 else if (b->extra_string)
8852 error (_("Garbage '%s' at end of command"), b->extra_string);
8853 }
8854
8855 b->display_canonical = display_canonical;
8856 if (location != NULL)
8857 b->location = std::move (location);
8858 else
8859 b->location = new_address_location (b->loc->address, NULL, 0);
8860 b->filter = std::move (filter);
8861 }
8862
8863 static void
8864 create_breakpoint_sal (struct gdbarch *gdbarch,
8865 gdb::array_view<const symtab_and_line> sals,
8866 event_location_up &&location,
8867 gdb::unique_xmalloc_ptr<char> filter,
8868 gdb::unique_xmalloc_ptr<char> cond_string,
8869 gdb::unique_xmalloc_ptr<char> extra_string,
8870 enum bptype type, enum bpdisp disposition,
8871 int thread, int task, int ignore_count,
8872 const struct breakpoint_ops *ops, int from_tty,
8873 int enabled, int internal, unsigned flags,
8874 int display_canonical)
8875 {
8876 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8877
8878 init_breakpoint_sal (b.get (), gdbarch,
8879 sals, std::move (location),
8880 std::move (filter),
8881 std::move (cond_string),
8882 std::move (extra_string),
8883 type, disposition,
8884 thread, task, ignore_count,
8885 ops, from_tty,
8886 enabled, internal, flags,
8887 display_canonical);
8888
8889 install_breakpoint (internal, std::move (b), 0);
8890 }
8891
8892 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8893 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8894 value. COND_STRING, if not NULL, specified the condition to be
8895 used for all breakpoints. Essentially the only case where
8896 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8897 function. In that case, it's still not possible to specify
8898 separate conditions for different overloaded functions, so
8899 we take just a single condition string.
8900
8901 NOTE: If the function succeeds, the caller is expected to cleanup
8902 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8903 array contents). If the function fails (error() is called), the
8904 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8905 COND and SALS arrays and each of those arrays contents. */
8906
8907 static void
8908 create_breakpoints_sal (struct gdbarch *gdbarch,
8909 struct linespec_result *canonical,
8910 gdb::unique_xmalloc_ptr<char> cond_string,
8911 gdb::unique_xmalloc_ptr<char> extra_string,
8912 enum bptype type, enum bpdisp disposition,
8913 int thread, int task, int ignore_count,
8914 const struct breakpoint_ops *ops, int from_tty,
8915 int enabled, int internal, unsigned flags)
8916 {
8917 if (canonical->pre_expanded)
8918 gdb_assert (canonical->lsals.size () == 1);
8919
8920 for (const auto &lsal : canonical->lsals)
8921 {
8922 /* Note that 'location' can be NULL in the case of a plain
8923 'break', without arguments. */
8924 event_location_up location
8925 = (canonical->location != NULL
8926 ? copy_event_location (canonical->location.get ()) : NULL);
8927 gdb::unique_xmalloc_ptr<char> filter_string
8928 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8929
8930 create_breakpoint_sal (gdbarch, lsal.sals,
8931 std::move (location),
8932 std::move (filter_string),
8933 std::move (cond_string),
8934 std::move (extra_string),
8935 type, disposition,
8936 thread, task, ignore_count, ops,
8937 from_tty, enabled, internal, flags,
8938 canonical->special_display);
8939 }
8940 }
8941
8942 /* Parse LOCATION which is assumed to be a SAL specification possibly
8943 followed by conditionals. On return, SALS contains an array of SAL
8944 addresses found. LOCATION points to the end of the SAL (for
8945 linespec locations).
8946
8947 The array and the line spec strings are allocated on the heap, it is
8948 the caller's responsibility to free them. */
8949
8950 static void
8951 parse_breakpoint_sals (struct event_location *location,
8952 struct linespec_result *canonical)
8953 {
8954 struct symtab_and_line cursal;
8955
8956 if (event_location_type (location) == LINESPEC_LOCATION)
8957 {
8958 const char *spec = get_linespec_location (location)->spec_string;
8959
8960 if (spec == NULL)
8961 {
8962 /* The last displayed codepoint, if it's valid, is our default
8963 breakpoint address. */
8964 if (last_displayed_sal_is_valid ())
8965 {
8966 /* Set sal's pspace, pc, symtab, and line to the values
8967 corresponding to the last call to print_frame_info.
8968 Be sure to reinitialize LINE with NOTCURRENT == 0
8969 as the breakpoint line number is inappropriate otherwise.
8970 find_pc_line would adjust PC, re-set it back. */
8971 symtab_and_line sal = get_last_displayed_sal ();
8972 CORE_ADDR pc = sal.pc;
8973
8974 sal = find_pc_line (pc, 0);
8975
8976 /* "break" without arguments is equivalent to "break *PC"
8977 where PC is the last displayed codepoint's address. So
8978 make sure to set sal.explicit_pc to prevent GDB from
8979 trying to expand the list of sals to include all other
8980 instances with the same symtab and line. */
8981 sal.pc = pc;
8982 sal.explicit_pc = 1;
8983
8984 struct linespec_sals lsal;
8985 lsal.sals = {sal};
8986 lsal.canonical = NULL;
8987
8988 canonical->lsals.push_back (std::move (lsal));
8989 return;
8990 }
8991 else
8992 error (_("No default breakpoint address now."));
8993 }
8994 }
8995
8996 /* Force almost all breakpoints to be in terms of the
8997 current_source_symtab (which is decode_line_1's default).
8998 This should produce the results we want almost all of the
8999 time while leaving default_breakpoint_* alone.
9000
9001 ObjC: However, don't match an Objective-C method name which
9002 may have a '+' or '-' succeeded by a '['. */
9003 cursal = get_current_source_symtab_and_line ();
9004 if (last_displayed_sal_is_valid ())
9005 {
9006 const char *spec = NULL;
9007
9008 if (event_location_type (location) == LINESPEC_LOCATION)
9009 spec = get_linespec_location (location)->spec_string;
9010
9011 if (!cursal.symtab
9012 || (spec != NULL
9013 && strchr ("+-", spec[0]) != NULL
9014 && spec[1] != '['))
9015 {
9016 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9017 get_last_displayed_symtab (),
9018 get_last_displayed_line (),
9019 canonical, NULL, NULL);
9020 return;
9021 }
9022 }
9023
9024 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9025 cursal.symtab, cursal.line, canonical, NULL, NULL);
9026 }
9027
9028
9029 /* Convert each SAL into a real PC. Verify that the PC can be
9030 inserted as a breakpoint. If it can't throw an error. */
9031
9032 static void
9033 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9034 {
9035 for (auto &sal : sals)
9036 resolve_sal_pc (&sal);
9037 }
9038
9039 /* Fast tracepoints may have restrictions on valid locations. For
9040 instance, a fast tracepoint using a jump instead of a trap will
9041 likely have to overwrite more bytes than a trap would, and so can
9042 only be placed where the instruction is longer than the jump, or a
9043 multi-instruction sequence does not have a jump into the middle of
9044 it, etc. */
9045
9046 static void
9047 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9048 gdb::array_view<const symtab_and_line> sals)
9049 {
9050 for (const auto &sal : sals)
9051 {
9052 struct gdbarch *sarch;
9053
9054 sarch = get_sal_arch (sal);
9055 /* We fall back to GDBARCH if there is no architecture
9056 associated with SAL. */
9057 if (sarch == NULL)
9058 sarch = gdbarch;
9059 std::string msg;
9060 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9061 error (_("May not have a fast tracepoint at %s%s"),
9062 paddress (sarch, sal.pc), msg.c_str ());
9063 }
9064 }
9065
9066 /* Given TOK, a string specification of condition and thread, as
9067 accepted by the 'break' command, extract the condition
9068 string and thread number and set *COND_STRING and *THREAD.
9069 PC identifies the context at which the condition should be parsed.
9070 If no condition is found, *COND_STRING is set to NULL.
9071 If no thread is found, *THREAD is set to -1. */
9072
9073 static void
9074 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9075 char **cond_string, int *thread, int *task,
9076 char **rest)
9077 {
9078 *cond_string = NULL;
9079 *thread = -1;
9080 *task = 0;
9081 *rest = NULL;
9082
9083 while (tok && *tok)
9084 {
9085 const char *end_tok;
9086 int toklen;
9087 const char *cond_start = NULL;
9088 const char *cond_end = NULL;
9089
9090 tok = skip_spaces (tok);
9091
9092 if ((*tok == '"' || *tok == ',') && rest)
9093 {
9094 *rest = savestring (tok, strlen (tok));
9095 return;
9096 }
9097
9098 end_tok = skip_to_space (tok);
9099
9100 toklen = end_tok - tok;
9101
9102 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9103 {
9104 tok = cond_start = end_tok + 1;
9105 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9106 cond_end = tok;
9107 *cond_string = savestring (cond_start, cond_end - cond_start);
9108 }
9109 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9110 {
9111 const char *tmptok;
9112 struct thread_info *thr;
9113
9114 tok = end_tok + 1;
9115 thr = parse_thread_id (tok, &tmptok);
9116 if (tok == tmptok)
9117 error (_("Junk after thread keyword."));
9118 *thread = thr->global_num;
9119 tok = tmptok;
9120 }
9121 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9122 {
9123 char *tmptok;
9124
9125 tok = end_tok + 1;
9126 *task = strtol (tok, &tmptok, 0);
9127 if (tok == tmptok)
9128 error (_("Junk after task keyword."));
9129 if (!valid_task_id (*task))
9130 error (_("Unknown task %d."), *task);
9131 tok = tmptok;
9132 }
9133 else if (rest)
9134 {
9135 *rest = savestring (tok, strlen (tok));
9136 return;
9137 }
9138 else
9139 error (_("Junk at end of arguments."));
9140 }
9141 }
9142
9143 /* Decode a static tracepoint marker spec. */
9144
9145 static std::vector<symtab_and_line>
9146 decode_static_tracepoint_spec (const char **arg_p)
9147 {
9148 const char *p = &(*arg_p)[3];
9149 const char *endp;
9150
9151 p = skip_spaces (p);
9152
9153 endp = skip_to_space (p);
9154
9155 std::string marker_str (p, endp - p);
9156
9157 std::vector<static_tracepoint_marker> markers
9158 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9159 if (markers.empty ())
9160 error (_("No known static tracepoint marker named %s"),
9161 marker_str.c_str ());
9162
9163 std::vector<symtab_and_line> sals;
9164 sals.reserve (markers.size ());
9165
9166 for (const static_tracepoint_marker &marker : markers)
9167 {
9168 symtab_and_line sal = find_pc_line (marker.address, 0);
9169 sal.pc = marker.address;
9170 sals.push_back (sal);
9171 }
9172
9173 *arg_p = endp;
9174 return sals;
9175 }
9176
9177 /* Returns the breakpoint ops appropriate for use with with LOCATION_TYPE and
9178 according to IS_TRACEPOINT. */
9179
9180 static const struct breakpoint_ops *
9181 breakpoint_ops_for_event_location_type (enum event_location_type location_type,
9182 bool is_tracepoint)
9183 {
9184 if (is_tracepoint)
9185 {
9186 if (location_type == PROBE_LOCATION)
9187 return &tracepoint_probe_breakpoint_ops;
9188 else
9189 return &tracepoint_breakpoint_ops;
9190 }
9191 else
9192 {
9193 if (location_type == PROBE_LOCATION)
9194 return &bkpt_probe_breakpoint_ops;
9195 else
9196 return &bkpt_breakpoint_ops;
9197 }
9198 }
9199
9200 /* See breakpoint.h. */
9201
9202 const struct breakpoint_ops *
9203 breakpoint_ops_for_event_location (const struct event_location *location,
9204 bool is_tracepoint)
9205 {
9206 if (location != nullptr)
9207 return breakpoint_ops_for_event_location_type
9208 (event_location_type (location), is_tracepoint);
9209 return is_tracepoint ? &tracepoint_breakpoint_ops : &bkpt_breakpoint_ops;
9210 }
9211
9212 /* See breakpoint.h. */
9213
9214 int
9215 create_breakpoint (struct gdbarch *gdbarch,
9216 struct event_location *location,
9217 const char *cond_string,
9218 int thread, const char *extra_string,
9219 int parse_extra,
9220 int tempflag, enum bptype type_wanted,
9221 int ignore_count,
9222 enum auto_boolean pending_break_support,
9223 const struct breakpoint_ops *ops,
9224 int from_tty, int enabled, int internal,
9225 unsigned flags)
9226 {
9227 struct linespec_result canonical;
9228 int pending = 0;
9229 int task = 0;
9230 int prev_bkpt_count = breakpoint_count;
9231
9232 gdb_assert (ops != NULL);
9233
9234 /* If extra_string isn't useful, set it to NULL. */
9235 if (extra_string != NULL && *extra_string == '\0')
9236 extra_string = NULL;
9237
9238 try
9239 {
9240 ops->create_sals_from_location (location, &canonical, type_wanted);
9241 }
9242 catch (const gdb_exception_error &e)
9243 {
9244 /* If caller is interested in rc value from parse, set
9245 value. */
9246 if (e.error == NOT_FOUND_ERROR)
9247 {
9248 /* If pending breakpoint support is turned off, throw
9249 error. */
9250
9251 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9252 throw;
9253
9254 exception_print (gdb_stderr, e);
9255
9256 /* If pending breakpoint support is auto query and the user
9257 selects no, then simply return the error code. */
9258 if (pending_break_support == AUTO_BOOLEAN_AUTO
9259 && !nquery (_("Make %s pending on future shared library load? "),
9260 bptype_string (type_wanted)))
9261 return 0;
9262
9263 /* At this point, either the user was queried about setting
9264 a pending breakpoint and selected yes, or pending
9265 breakpoint behavior is on and thus a pending breakpoint
9266 is defaulted on behalf of the user. */
9267 pending = 1;
9268 }
9269 else
9270 throw;
9271 }
9272
9273 if (!pending && canonical.lsals.empty ())
9274 return 0;
9275
9276 /* Resolve all line numbers to PC's and verify that the addresses
9277 are ok for the target. */
9278 if (!pending)
9279 {
9280 for (auto &lsal : canonical.lsals)
9281 breakpoint_sals_to_pc (lsal.sals);
9282 }
9283
9284 /* Fast tracepoints may have additional restrictions on location. */
9285 if (!pending && type_wanted == bp_fast_tracepoint)
9286 {
9287 for (const auto &lsal : canonical.lsals)
9288 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9289 }
9290
9291 /* Verify that condition can be parsed, before setting any
9292 breakpoints. Allocate a separate condition expression for each
9293 breakpoint. */
9294 if (!pending)
9295 {
9296 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9297 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9298
9299 if (parse_extra)
9300 {
9301 char *rest;
9302 char *cond;
9303
9304 const linespec_sals &lsal = canonical.lsals[0];
9305
9306 /* Here we only parse 'arg' to separate condition
9307 from thread number, so parsing in context of first
9308 sal is OK. When setting the breakpoint we'll
9309 re-parse it in context of each sal. */
9310
9311 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9312 &cond, &thread, &task, &rest);
9313 cond_string_copy.reset (cond);
9314 extra_string_copy.reset (rest);
9315 }
9316 else
9317 {
9318 if (type_wanted != bp_dprintf
9319 && extra_string != NULL && *extra_string != '\0')
9320 error (_("Garbage '%s' at end of location"), extra_string);
9321
9322 /* Create a private copy of condition string. */
9323 if (cond_string)
9324 cond_string_copy.reset (xstrdup (cond_string));
9325 /* Create a private copy of any extra string. */
9326 if (extra_string)
9327 extra_string_copy.reset (xstrdup (extra_string));
9328 }
9329
9330 ops->create_breakpoints_sal (gdbarch, &canonical,
9331 std::move (cond_string_copy),
9332 std::move (extra_string_copy),
9333 type_wanted,
9334 tempflag ? disp_del : disp_donttouch,
9335 thread, task, ignore_count, ops,
9336 from_tty, enabled, internal, flags);
9337 }
9338 else
9339 {
9340 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9341
9342 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9343 b->location = copy_event_location (location);
9344
9345 if (parse_extra)
9346 b->cond_string = NULL;
9347 else
9348 {
9349 /* Create a private copy of condition string. */
9350 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9351 b->thread = thread;
9352 }
9353
9354 /* Create a private copy of any extra string. */
9355 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9356 b->ignore_count = ignore_count;
9357 b->disposition = tempflag ? disp_del : disp_donttouch;
9358 b->condition_not_parsed = 1;
9359 b->enable_state = enabled ? bp_enabled : bp_disabled;
9360 if ((type_wanted != bp_breakpoint
9361 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9362 b->pspace = current_program_space;
9363
9364 install_breakpoint (internal, std::move (b), 0);
9365 }
9366
9367 if (canonical.lsals.size () > 1)
9368 {
9369 warning (_("Multiple breakpoints were set.\nUse the "
9370 "\"delete\" command to delete unwanted breakpoints."));
9371 prev_breakpoint_count = prev_bkpt_count;
9372 }
9373
9374 update_global_location_list (UGLL_MAY_INSERT);
9375
9376 return 1;
9377 }
9378
9379 /* Set a breakpoint.
9380 ARG is a string describing breakpoint address,
9381 condition, and thread.
9382 FLAG specifies if a breakpoint is hardware on,
9383 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9384 and BP_TEMPFLAG. */
9385
9386 static void
9387 break_command_1 (const char *arg, int flag, int from_tty)
9388 {
9389 int tempflag = flag & BP_TEMPFLAG;
9390 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9391 ? bp_hardware_breakpoint
9392 : bp_breakpoint);
9393
9394 event_location_up location = string_to_event_location (&arg, current_language);
9395 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
9396 (location.get (), false /* is_tracepoint */);
9397
9398 create_breakpoint (get_current_arch (),
9399 location.get (),
9400 NULL, 0, arg, 1 /* parse arg */,
9401 tempflag, type_wanted,
9402 0 /* Ignore count */,
9403 pending_break_support,
9404 ops,
9405 from_tty,
9406 1 /* enabled */,
9407 0 /* internal */,
9408 0);
9409 }
9410
9411 /* Helper function for break_command_1 and disassemble_command. */
9412
9413 void
9414 resolve_sal_pc (struct symtab_and_line *sal)
9415 {
9416 CORE_ADDR pc;
9417
9418 if (sal->pc == 0 && sal->symtab != NULL)
9419 {
9420 if (!find_line_pc (sal->symtab, sal->line, &pc))
9421 error (_("No line %d in file \"%s\"."),
9422 sal->line, symtab_to_filename_for_display (sal->symtab));
9423 sal->pc = pc;
9424
9425 /* If this SAL corresponds to a breakpoint inserted using a line
9426 number, then skip the function prologue if necessary. */
9427 if (sal->explicit_line)
9428 skip_prologue_sal (sal);
9429 }
9430
9431 if (sal->section == 0 && sal->symtab != NULL)
9432 {
9433 const struct blockvector *bv;
9434 const struct block *b;
9435 struct symbol *sym;
9436
9437 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9438 SYMTAB_COMPUNIT (sal->symtab));
9439 if (bv != NULL)
9440 {
9441 sym = block_linkage_function (b);
9442 if (sym != NULL)
9443 {
9444 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9445 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9446 sym);
9447 }
9448 else
9449 {
9450 /* It really is worthwhile to have the section, so we'll
9451 just have to look harder. This case can be executed
9452 if we have line numbers but no functions (as can
9453 happen in assembly source). */
9454
9455 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9456 switch_to_program_space_and_thread (sal->pspace);
9457
9458 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9459 if (msym.minsym)
9460 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9461 }
9462 }
9463 }
9464 }
9465
9466 void
9467 break_command (const char *arg, int from_tty)
9468 {
9469 break_command_1 (arg, 0, from_tty);
9470 }
9471
9472 void
9473 tbreak_command (const char *arg, int from_tty)
9474 {
9475 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9476 }
9477
9478 static void
9479 hbreak_command (const char *arg, int from_tty)
9480 {
9481 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9482 }
9483
9484 static void
9485 thbreak_command (const char *arg, int from_tty)
9486 {
9487 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9488 }
9489
9490 static void
9491 stop_command (const char *arg, int from_tty)
9492 {
9493 printf_filtered (_("Specify the type of breakpoint to set.\n\
9494 Usage: stop in <function | address>\n\
9495 stop at <line>\n"));
9496 }
9497
9498 static void
9499 stopin_command (const char *arg, int from_tty)
9500 {
9501 int badInput = 0;
9502
9503 if (arg == NULL)
9504 badInput = 1;
9505 else if (*arg != '*')
9506 {
9507 const char *argptr = arg;
9508 int hasColon = 0;
9509
9510 /* Look for a ':'. If this is a line number specification, then
9511 say it is bad, otherwise, it should be an address or
9512 function/method name. */
9513 while (*argptr && !hasColon)
9514 {
9515 hasColon = (*argptr == ':');
9516 argptr++;
9517 }
9518
9519 if (hasColon)
9520 badInput = (*argptr != ':'); /* Not a class::method */
9521 else
9522 badInput = isdigit (*arg); /* a simple line number */
9523 }
9524
9525 if (badInput)
9526 printf_filtered (_("Usage: stop in <function | address>\n"));
9527 else
9528 break_command_1 (arg, 0, from_tty);
9529 }
9530
9531 static void
9532 stopat_command (const char *arg, int from_tty)
9533 {
9534 int badInput = 0;
9535
9536 if (arg == NULL || *arg == '*') /* no line number */
9537 badInput = 1;
9538 else
9539 {
9540 const char *argptr = arg;
9541 int hasColon = 0;
9542
9543 /* Look for a ':'. If there is a '::' then get out, otherwise
9544 it is probably a line number. */
9545 while (*argptr && !hasColon)
9546 {
9547 hasColon = (*argptr == ':');
9548 argptr++;
9549 }
9550
9551 if (hasColon)
9552 badInput = (*argptr == ':'); /* we have class::method */
9553 else
9554 badInput = !isdigit (*arg); /* not a line number */
9555 }
9556
9557 if (badInput)
9558 printf_filtered (_("Usage: stop at LINE\n"));
9559 else
9560 break_command_1 (arg, 0, from_tty);
9561 }
9562
9563 /* The dynamic printf command is mostly like a regular breakpoint, but
9564 with a prewired command list consisting of a single output command,
9565 built from extra arguments supplied on the dprintf command
9566 line. */
9567
9568 static void
9569 dprintf_command (const char *arg, int from_tty)
9570 {
9571 event_location_up location = string_to_event_location (&arg, current_language);
9572
9573 /* If non-NULL, ARG should have been advanced past the location;
9574 the next character must be ','. */
9575 if (arg != NULL)
9576 {
9577 if (arg[0] != ',' || arg[1] == '\0')
9578 error (_("Format string required"));
9579 else
9580 {
9581 /* Skip the comma. */
9582 ++arg;
9583 }
9584 }
9585
9586 create_breakpoint (get_current_arch (),
9587 location.get (),
9588 NULL, 0, arg, 1 /* parse arg */,
9589 0, bp_dprintf,
9590 0 /* Ignore count */,
9591 pending_break_support,
9592 &dprintf_breakpoint_ops,
9593 from_tty,
9594 1 /* enabled */,
9595 0 /* internal */,
9596 0);
9597 }
9598
9599 static void
9600 agent_printf_command (const char *arg, int from_tty)
9601 {
9602 error (_("May only run agent-printf on the target"));
9603 }
9604
9605 /* Implement the "breakpoint_hit" breakpoint_ops method for
9606 ranged breakpoints. */
9607
9608 static int
9609 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9610 const address_space *aspace,
9611 CORE_ADDR bp_addr,
9612 const struct target_waitstatus *ws)
9613 {
9614 if (ws->kind != TARGET_WAITKIND_STOPPED
9615 || ws->value.sig != GDB_SIGNAL_TRAP)
9616 return 0;
9617
9618 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9619 bl->length, aspace, bp_addr);
9620 }
9621
9622 /* Implement the "resources_needed" breakpoint_ops method for
9623 ranged breakpoints. */
9624
9625 static int
9626 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9627 {
9628 return target_ranged_break_num_registers ();
9629 }
9630
9631 /* Implement the "print_it" breakpoint_ops method for
9632 ranged breakpoints. */
9633
9634 static enum print_stop_action
9635 print_it_ranged_breakpoint (bpstat bs)
9636 {
9637 struct breakpoint *b = bs->breakpoint_at;
9638 struct bp_location *bl = b->loc;
9639 struct ui_out *uiout = current_uiout;
9640
9641 gdb_assert (b->type == bp_hardware_breakpoint);
9642
9643 /* Ranged breakpoints have only one location. */
9644 gdb_assert (bl && bl->next == NULL);
9645
9646 annotate_breakpoint (b->number);
9647
9648 maybe_print_thread_hit_breakpoint (uiout);
9649
9650 if (b->disposition == disp_del)
9651 uiout->text ("Temporary ranged breakpoint ");
9652 else
9653 uiout->text ("Ranged breakpoint ");
9654 if (uiout->is_mi_like_p ())
9655 {
9656 uiout->field_string ("reason",
9657 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9658 uiout->field_string ("disp", bpdisp_text (b->disposition));
9659 }
9660 uiout->field_signed ("bkptno", b->number);
9661 uiout->text (", ");
9662
9663 return PRINT_SRC_AND_LOC;
9664 }
9665
9666 /* Implement the "print_one" breakpoint_ops method for
9667 ranged breakpoints. */
9668
9669 static void
9670 print_one_ranged_breakpoint (struct breakpoint *b,
9671 struct bp_location **last_loc)
9672 {
9673 struct bp_location *bl = b->loc;
9674 struct value_print_options opts;
9675 struct ui_out *uiout = current_uiout;
9676
9677 /* Ranged breakpoints have only one location. */
9678 gdb_assert (bl && bl->next == NULL);
9679
9680 get_user_print_options (&opts);
9681
9682 if (opts.addressprint)
9683 /* We don't print the address range here, it will be printed later
9684 by print_one_detail_ranged_breakpoint. */
9685 uiout->field_skip ("addr");
9686 annotate_field (5);
9687 print_breakpoint_location (b, bl);
9688 *last_loc = bl;
9689 }
9690
9691 /* Implement the "print_one_detail" breakpoint_ops method for
9692 ranged breakpoints. */
9693
9694 static void
9695 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9696 struct ui_out *uiout)
9697 {
9698 CORE_ADDR address_start, address_end;
9699 struct bp_location *bl = b->loc;
9700 string_file stb;
9701
9702 gdb_assert (bl);
9703
9704 address_start = bl->address;
9705 address_end = address_start + bl->length - 1;
9706
9707 uiout->text ("\taddress range: ");
9708 stb.printf ("[%s, %s]",
9709 print_core_address (bl->gdbarch, address_start),
9710 print_core_address (bl->gdbarch, address_end));
9711 uiout->field_stream ("addr", stb);
9712 uiout->text ("\n");
9713 }
9714
9715 /* Implement the "print_mention" breakpoint_ops method for
9716 ranged breakpoints. */
9717
9718 static void
9719 print_mention_ranged_breakpoint (struct breakpoint *b)
9720 {
9721 struct bp_location *bl = b->loc;
9722 struct ui_out *uiout = current_uiout;
9723
9724 gdb_assert (bl);
9725 gdb_assert (b->type == bp_hardware_breakpoint);
9726
9727 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9728 b->number, paddress (bl->gdbarch, bl->address),
9729 paddress (bl->gdbarch, bl->address + bl->length - 1));
9730 }
9731
9732 /* Implement the "print_recreate" breakpoint_ops method for
9733 ranged breakpoints. */
9734
9735 static void
9736 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9737 {
9738 fprintf_unfiltered (fp, "break-range %s, %s",
9739 event_location_to_string (b->location.get ()),
9740 event_location_to_string (b->location_range_end.get ()));
9741 print_recreate_thread (b, fp);
9742 }
9743
9744 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9745
9746 static struct breakpoint_ops ranged_breakpoint_ops;
9747
9748 /* Find the address where the end of the breakpoint range should be
9749 placed, given the SAL of the end of the range. This is so that if
9750 the user provides a line number, the end of the range is set to the
9751 last instruction of the given line. */
9752
9753 static CORE_ADDR
9754 find_breakpoint_range_end (struct symtab_and_line sal)
9755 {
9756 CORE_ADDR end;
9757
9758 /* If the user provided a PC value, use it. Otherwise,
9759 find the address of the end of the given location. */
9760 if (sal.explicit_pc)
9761 end = sal.pc;
9762 else
9763 {
9764 int ret;
9765 CORE_ADDR start;
9766
9767 ret = find_line_pc_range (sal, &start, &end);
9768 if (!ret)
9769 error (_("Could not find location of the end of the range."));
9770
9771 /* find_line_pc_range returns the start of the next line. */
9772 end--;
9773 }
9774
9775 return end;
9776 }
9777
9778 /* Implement the "break-range" CLI command. */
9779
9780 static void
9781 break_range_command (const char *arg, int from_tty)
9782 {
9783 const char *arg_start;
9784 struct linespec_result canonical_start, canonical_end;
9785 int bp_count, can_use_bp, length;
9786 CORE_ADDR end;
9787 struct breakpoint *b;
9788
9789 /* We don't support software ranged breakpoints. */
9790 if (target_ranged_break_num_registers () < 0)
9791 error (_("This target does not support hardware ranged breakpoints."));
9792
9793 bp_count = hw_breakpoint_used_count ();
9794 bp_count += target_ranged_break_num_registers ();
9795 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9796 bp_count, 0);
9797 if (can_use_bp < 0)
9798 error (_("Hardware breakpoints used exceeds limit."));
9799
9800 arg = skip_spaces (arg);
9801 if (arg == NULL || arg[0] == '\0')
9802 error(_("No address range specified."));
9803
9804 arg_start = arg;
9805 event_location_up start_location = string_to_event_location (&arg,
9806 current_language);
9807 parse_breakpoint_sals (start_location.get (), &canonical_start);
9808
9809 if (arg[0] != ',')
9810 error (_("Too few arguments."));
9811 else if (canonical_start.lsals.empty ())
9812 error (_("Could not find location of the beginning of the range."));
9813
9814 const linespec_sals &lsal_start = canonical_start.lsals[0];
9815
9816 if (canonical_start.lsals.size () > 1
9817 || lsal_start.sals.size () != 1)
9818 error (_("Cannot create a ranged breakpoint with multiple locations."));
9819
9820 const symtab_and_line &sal_start = lsal_start.sals[0];
9821 std::string addr_string_start (arg_start, arg - arg_start);
9822
9823 arg++; /* Skip the comma. */
9824 arg = skip_spaces (arg);
9825
9826 /* Parse the end location. */
9827
9828 arg_start = arg;
9829
9830 /* We call decode_line_full directly here instead of using
9831 parse_breakpoint_sals because we need to specify the start location's
9832 symtab and line as the default symtab and line for the end of the
9833 range. This makes it possible to have ranges like "foo.c:27, +14",
9834 where +14 means 14 lines from the start location. */
9835 event_location_up end_location = string_to_event_location (&arg,
9836 current_language);
9837 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9838 sal_start.symtab, sal_start.line,
9839 &canonical_end, NULL, NULL);
9840
9841 if (canonical_end.lsals.empty ())
9842 error (_("Could not find location of the end of the range."));
9843
9844 const linespec_sals &lsal_end = canonical_end.lsals[0];
9845 if (canonical_end.lsals.size () > 1
9846 || lsal_end.sals.size () != 1)
9847 error (_("Cannot create a ranged breakpoint with multiple locations."));
9848
9849 const symtab_and_line &sal_end = lsal_end.sals[0];
9850
9851 end = find_breakpoint_range_end (sal_end);
9852 if (sal_start.pc > end)
9853 error (_("Invalid address range, end precedes start."));
9854
9855 length = end - sal_start.pc + 1;
9856 if (length < 0)
9857 /* Length overflowed. */
9858 error (_("Address range too large."));
9859 else if (length == 1)
9860 {
9861 /* This range is simple enough to be handled by
9862 the `hbreak' command. */
9863 hbreak_command (&addr_string_start[0], 1);
9864
9865 return;
9866 }
9867
9868 /* Now set up the breakpoint. */
9869 b = set_raw_breakpoint (get_current_arch (), sal_start,
9870 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9871 set_breakpoint_count (breakpoint_count + 1);
9872 b->number = breakpoint_count;
9873 b->disposition = disp_donttouch;
9874 b->location = std::move (start_location);
9875 b->location_range_end = std::move (end_location);
9876 b->loc->length = length;
9877
9878 mention (b);
9879 gdb::observers::breakpoint_created.notify (b);
9880 update_global_location_list (UGLL_MAY_INSERT);
9881 }
9882
9883 /* Return non-zero if EXP is verified as constant. Returned zero
9884 means EXP is variable. Also the constant detection may fail for
9885 some constant expressions and in such case still falsely return
9886 zero. */
9887
9888 static int
9889 watchpoint_exp_is_const (const struct expression *exp)
9890 {
9891 int i = exp->nelts;
9892
9893 while (i > 0)
9894 {
9895 int oplenp, argsp;
9896
9897 /* We are only interested in the descriptor of each element. */
9898 operator_length (exp, i, &oplenp, &argsp);
9899 i -= oplenp;
9900
9901 switch (exp->elts[i].opcode)
9902 {
9903 case BINOP_ADD:
9904 case BINOP_SUB:
9905 case BINOP_MUL:
9906 case BINOP_DIV:
9907 case BINOP_REM:
9908 case BINOP_MOD:
9909 case BINOP_LSH:
9910 case BINOP_RSH:
9911 case BINOP_LOGICAL_AND:
9912 case BINOP_LOGICAL_OR:
9913 case BINOP_BITWISE_AND:
9914 case BINOP_BITWISE_IOR:
9915 case BINOP_BITWISE_XOR:
9916 case BINOP_EQUAL:
9917 case BINOP_NOTEQUAL:
9918 case BINOP_LESS:
9919 case BINOP_GTR:
9920 case BINOP_LEQ:
9921 case BINOP_GEQ:
9922 case BINOP_REPEAT:
9923 case BINOP_COMMA:
9924 case BINOP_EXP:
9925 case BINOP_MIN:
9926 case BINOP_MAX:
9927 case BINOP_INTDIV:
9928 case BINOP_CONCAT:
9929 case TERNOP_COND:
9930 case TERNOP_SLICE:
9931
9932 case OP_LONG:
9933 case OP_FLOAT:
9934 case OP_LAST:
9935 case OP_COMPLEX:
9936 case OP_STRING:
9937 case OP_ARRAY:
9938 case OP_TYPE:
9939 case OP_TYPEOF:
9940 case OP_DECLTYPE:
9941 case OP_TYPEID:
9942 case OP_NAME:
9943 case OP_OBJC_NSSTRING:
9944
9945 case UNOP_NEG:
9946 case UNOP_LOGICAL_NOT:
9947 case UNOP_COMPLEMENT:
9948 case UNOP_ADDR:
9949 case UNOP_HIGH:
9950 case UNOP_CAST:
9951
9952 case UNOP_CAST_TYPE:
9953 case UNOP_REINTERPRET_CAST:
9954 case UNOP_DYNAMIC_CAST:
9955 /* Unary, binary and ternary operators: We have to check
9956 their operands. If they are constant, then so is the
9957 result of that operation. For instance, if A and B are
9958 determined to be constants, then so is "A + B".
9959
9960 UNOP_IND is one exception to the rule above, because the
9961 value of *ADDR is not necessarily a constant, even when
9962 ADDR is. */
9963 break;
9964
9965 case OP_VAR_VALUE:
9966 /* Check whether the associated symbol is a constant.
9967
9968 We use SYMBOL_CLASS rather than TYPE_CONST because it's
9969 possible that a buggy compiler could mark a variable as
9970 constant even when it is not, and TYPE_CONST would return
9971 true in this case, while SYMBOL_CLASS wouldn't.
9972
9973 We also have to check for function symbols because they
9974 are always constant. */
9975 {
9976 struct symbol *s = exp->elts[i + 2].symbol;
9977
9978 if (SYMBOL_CLASS (s) != LOC_BLOCK
9979 && SYMBOL_CLASS (s) != LOC_CONST
9980 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
9981 return 0;
9982 break;
9983 }
9984
9985 /* The default action is to return 0 because we are using
9986 the optimistic approach here: If we don't know something,
9987 then it is not a constant. */
9988 default:
9989 return 0;
9990 }
9991 }
9992
9993 return 1;
9994 }
9995
9996 /* Watchpoint destructor. */
9997
9998 watchpoint::~watchpoint ()
9999 {
10000 xfree (this->exp_string);
10001 xfree (this->exp_string_reparse);
10002 }
10003
10004 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10005
10006 static void
10007 re_set_watchpoint (struct breakpoint *b)
10008 {
10009 struct watchpoint *w = (struct watchpoint *) b;
10010
10011 /* Watchpoint can be either on expression using entirely global
10012 variables, or it can be on local variables.
10013
10014 Watchpoints of the first kind are never auto-deleted, and even
10015 persist across program restarts. Since they can use variables
10016 from shared libraries, we need to reparse expression as libraries
10017 are loaded and unloaded.
10018
10019 Watchpoints on local variables can also change meaning as result
10020 of solib event. For example, if a watchpoint uses both a local
10021 and a global variables in expression, it's a local watchpoint,
10022 but unloading of a shared library will make the expression
10023 invalid. This is not a very common use case, but we still
10024 re-evaluate expression, to avoid surprises to the user.
10025
10026 Note that for local watchpoints, we re-evaluate it only if
10027 watchpoints frame id is still valid. If it's not, it means the
10028 watchpoint is out of scope and will be deleted soon. In fact,
10029 I'm not sure we'll ever be called in this case.
10030
10031 If a local watchpoint's frame id is still valid, then
10032 w->exp_valid_block is likewise valid, and we can safely use it.
10033
10034 Don't do anything about disabled watchpoints, since they will be
10035 reevaluated again when enabled. */
10036 update_watchpoint (w, 1 /* reparse */);
10037 }
10038
10039 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10040
10041 static int
10042 insert_watchpoint (struct bp_location *bl)
10043 {
10044 struct watchpoint *w = (struct watchpoint *) bl->owner;
10045 int length = w->exact ? 1 : bl->length;
10046
10047 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10048 w->cond_exp.get ());
10049 }
10050
10051 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10052
10053 static int
10054 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10055 {
10056 struct watchpoint *w = (struct watchpoint *) bl->owner;
10057 int length = w->exact ? 1 : bl->length;
10058
10059 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10060 w->cond_exp.get ());
10061 }
10062
10063 static int
10064 breakpoint_hit_watchpoint (const struct bp_location *bl,
10065 const address_space *aspace, CORE_ADDR bp_addr,
10066 const struct target_waitstatus *ws)
10067 {
10068 struct breakpoint *b = bl->owner;
10069 struct watchpoint *w = (struct watchpoint *) b;
10070
10071 /* Continuable hardware watchpoints are treated as non-existent if the
10072 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10073 some data address). Otherwise gdb won't stop on a break instruction
10074 in the code (not from a breakpoint) when a hardware watchpoint has
10075 been defined. Also skip watchpoints which we know did not trigger
10076 (did not match the data address). */
10077 if (is_hardware_watchpoint (b)
10078 && w->watchpoint_triggered == watch_triggered_no)
10079 return 0;
10080
10081 return 1;
10082 }
10083
10084 static void
10085 check_status_watchpoint (bpstat bs)
10086 {
10087 gdb_assert (is_watchpoint (bs->breakpoint_at));
10088
10089 bpstat_check_watchpoint (bs);
10090 }
10091
10092 /* Implement the "resources_needed" breakpoint_ops method for
10093 hardware watchpoints. */
10094
10095 static int
10096 resources_needed_watchpoint (const struct bp_location *bl)
10097 {
10098 struct watchpoint *w = (struct watchpoint *) bl->owner;
10099 int length = w->exact? 1 : bl->length;
10100
10101 return target_region_ok_for_hw_watchpoint (bl->address, length);
10102 }
10103
10104 /* Implement the "works_in_software_mode" breakpoint_ops method for
10105 hardware watchpoints. */
10106
10107 static int
10108 works_in_software_mode_watchpoint (const struct breakpoint *b)
10109 {
10110 /* Read and access watchpoints only work with hardware support. */
10111 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10112 }
10113
10114 static enum print_stop_action
10115 print_it_watchpoint (bpstat bs)
10116 {
10117 struct breakpoint *b;
10118 enum print_stop_action result;
10119 struct watchpoint *w;
10120 struct ui_out *uiout = current_uiout;
10121
10122 gdb_assert (bs->bp_location_at != NULL);
10123
10124 b = bs->breakpoint_at;
10125 w = (struct watchpoint *) b;
10126
10127 annotate_watchpoint (b->number);
10128 maybe_print_thread_hit_breakpoint (uiout);
10129
10130 string_file stb;
10131
10132 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10133 switch (b->type)
10134 {
10135 case bp_watchpoint:
10136 case bp_hardware_watchpoint:
10137 if (uiout->is_mi_like_p ())
10138 uiout->field_string
10139 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10140 mention (b);
10141 tuple_emitter.emplace (uiout, "value");
10142 uiout->text ("\nOld value = ");
10143 watchpoint_value_print (bs->old_val.get (), &stb);
10144 uiout->field_stream ("old", stb);
10145 uiout->text ("\nNew value = ");
10146 watchpoint_value_print (w->val.get (), &stb);
10147 uiout->field_stream ("new", stb);
10148 uiout->text ("\n");
10149 /* More than one watchpoint may have been triggered. */
10150 result = PRINT_UNKNOWN;
10151 break;
10152
10153 case bp_read_watchpoint:
10154 if (uiout->is_mi_like_p ())
10155 uiout->field_string
10156 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10157 mention (b);
10158 tuple_emitter.emplace (uiout, "value");
10159 uiout->text ("\nValue = ");
10160 watchpoint_value_print (w->val.get (), &stb);
10161 uiout->field_stream ("value", stb);
10162 uiout->text ("\n");
10163 result = PRINT_UNKNOWN;
10164 break;
10165
10166 case bp_access_watchpoint:
10167 if (bs->old_val != NULL)
10168 {
10169 if (uiout->is_mi_like_p ())
10170 uiout->field_string
10171 ("reason",
10172 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10173 mention (b);
10174 tuple_emitter.emplace (uiout, "value");
10175 uiout->text ("\nOld value = ");
10176 watchpoint_value_print (bs->old_val.get (), &stb);
10177 uiout->field_stream ("old", stb);
10178 uiout->text ("\nNew value = ");
10179 }
10180 else
10181 {
10182 mention (b);
10183 if (uiout->is_mi_like_p ())
10184 uiout->field_string
10185 ("reason",
10186 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10187 tuple_emitter.emplace (uiout, "value");
10188 uiout->text ("\nValue = ");
10189 }
10190 watchpoint_value_print (w->val.get (), &stb);
10191 uiout->field_stream ("new", stb);
10192 uiout->text ("\n");
10193 result = PRINT_UNKNOWN;
10194 break;
10195 default:
10196 result = PRINT_UNKNOWN;
10197 }
10198
10199 return result;
10200 }
10201
10202 /* Implement the "print_mention" breakpoint_ops method for hardware
10203 watchpoints. */
10204
10205 static void
10206 print_mention_watchpoint (struct breakpoint *b)
10207 {
10208 struct watchpoint *w = (struct watchpoint *) b;
10209 struct ui_out *uiout = current_uiout;
10210 const char *tuple_name;
10211
10212 switch (b->type)
10213 {
10214 case bp_watchpoint:
10215 uiout->text ("Watchpoint ");
10216 tuple_name = "wpt";
10217 break;
10218 case bp_hardware_watchpoint:
10219 uiout->text ("Hardware watchpoint ");
10220 tuple_name = "wpt";
10221 break;
10222 case bp_read_watchpoint:
10223 uiout->text ("Hardware read watchpoint ");
10224 tuple_name = "hw-rwpt";
10225 break;
10226 case bp_access_watchpoint:
10227 uiout->text ("Hardware access (read/write) watchpoint ");
10228 tuple_name = "hw-awpt";
10229 break;
10230 default:
10231 internal_error (__FILE__, __LINE__,
10232 _("Invalid hardware watchpoint type."));
10233 }
10234
10235 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10236 uiout->field_signed ("number", b->number);
10237 uiout->text (": ");
10238 uiout->field_string ("exp", w->exp_string);
10239 }
10240
10241 /* Implement the "print_recreate" breakpoint_ops method for
10242 watchpoints. */
10243
10244 static void
10245 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10246 {
10247 struct watchpoint *w = (struct watchpoint *) b;
10248
10249 switch (b->type)
10250 {
10251 case bp_watchpoint:
10252 case bp_hardware_watchpoint:
10253 fprintf_unfiltered (fp, "watch");
10254 break;
10255 case bp_read_watchpoint:
10256 fprintf_unfiltered (fp, "rwatch");
10257 break;
10258 case bp_access_watchpoint:
10259 fprintf_unfiltered (fp, "awatch");
10260 break;
10261 default:
10262 internal_error (__FILE__, __LINE__,
10263 _("Invalid watchpoint type."));
10264 }
10265
10266 fprintf_unfiltered (fp, " %s", w->exp_string);
10267 print_recreate_thread (b, fp);
10268 }
10269
10270 /* Implement the "explains_signal" breakpoint_ops method for
10271 watchpoints. */
10272
10273 static int
10274 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10275 {
10276 /* A software watchpoint cannot cause a signal other than
10277 GDB_SIGNAL_TRAP. */
10278 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10279 return 0;
10280
10281 return 1;
10282 }
10283
10284 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10285
10286 static struct breakpoint_ops watchpoint_breakpoint_ops;
10287
10288 /* Implement the "insert" breakpoint_ops method for
10289 masked hardware watchpoints. */
10290
10291 static int
10292 insert_masked_watchpoint (struct bp_location *bl)
10293 {
10294 struct watchpoint *w = (struct watchpoint *) bl->owner;
10295
10296 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10297 bl->watchpoint_type);
10298 }
10299
10300 /* Implement the "remove" breakpoint_ops method for
10301 masked hardware watchpoints. */
10302
10303 static int
10304 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10305 {
10306 struct watchpoint *w = (struct watchpoint *) bl->owner;
10307
10308 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10309 bl->watchpoint_type);
10310 }
10311
10312 /* Implement the "resources_needed" breakpoint_ops method for
10313 masked hardware watchpoints. */
10314
10315 static int
10316 resources_needed_masked_watchpoint (const struct bp_location *bl)
10317 {
10318 struct watchpoint *w = (struct watchpoint *) bl->owner;
10319
10320 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10321 }
10322
10323 /* Implement the "works_in_software_mode" breakpoint_ops method for
10324 masked hardware watchpoints. */
10325
10326 static int
10327 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10328 {
10329 return 0;
10330 }
10331
10332 /* Implement the "print_it" breakpoint_ops method for
10333 masked hardware watchpoints. */
10334
10335 static enum print_stop_action
10336 print_it_masked_watchpoint (bpstat bs)
10337 {
10338 struct breakpoint *b = bs->breakpoint_at;
10339 struct ui_out *uiout = current_uiout;
10340
10341 /* Masked watchpoints have only one location. */
10342 gdb_assert (b->loc && b->loc->next == NULL);
10343
10344 annotate_watchpoint (b->number);
10345 maybe_print_thread_hit_breakpoint (uiout);
10346
10347 switch (b->type)
10348 {
10349 case bp_hardware_watchpoint:
10350 if (uiout->is_mi_like_p ())
10351 uiout->field_string
10352 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10353 break;
10354
10355 case bp_read_watchpoint:
10356 if (uiout->is_mi_like_p ())
10357 uiout->field_string
10358 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10359 break;
10360
10361 case bp_access_watchpoint:
10362 if (uiout->is_mi_like_p ())
10363 uiout->field_string
10364 ("reason",
10365 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10366 break;
10367 default:
10368 internal_error (__FILE__, __LINE__,
10369 _("Invalid hardware watchpoint type."));
10370 }
10371
10372 mention (b);
10373 uiout->text (_("\n\
10374 Check the underlying instruction at PC for the memory\n\
10375 address and value which triggered this watchpoint.\n"));
10376 uiout->text ("\n");
10377
10378 /* More than one watchpoint may have been triggered. */
10379 return PRINT_UNKNOWN;
10380 }
10381
10382 /* Implement the "print_one_detail" breakpoint_ops method for
10383 masked hardware watchpoints. */
10384
10385 static void
10386 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10387 struct ui_out *uiout)
10388 {
10389 struct watchpoint *w = (struct watchpoint *) b;
10390
10391 /* Masked watchpoints have only one location. */
10392 gdb_assert (b->loc && b->loc->next == NULL);
10393
10394 uiout->text ("\tmask ");
10395 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10396 uiout->text ("\n");
10397 }
10398
10399 /* Implement the "print_mention" breakpoint_ops method for
10400 masked hardware watchpoints. */
10401
10402 static void
10403 print_mention_masked_watchpoint (struct breakpoint *b)
10404 {
10405 struct watchpoint *w = (struct watchpoint *) b;
10406 struct ui_out *uiout = current_uiout;
10407 const char *tuple_name;
10408
10409 switch (b->type)
10410 {
10411 case bp_hardware_watchpoint:
10412 uiout->text ("Masked hardware watchpoint ");
10413 tuple_name = "wpt";
10414 break;
10415 case bp_read_watchpoint:
10416 uiout->text ("Masked hardware read watchpoint ");
10417 tuple_name = "hw-rwpt";
10418 break;
10419 case bp_access_watchpoint:
10420 uiout->text ("Masked hardware access (read/write) watchpoint ");
10421 tuple_name = "hw-awpt";
10422 break;
10423 default:
10424 internal_error (__FILE__, __LINE__,
10425 _("Invalid hardware watchpoint type."));
10426 }
10427
10428 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10429 uiout->field_signed ("number", b->number);
10430 uiout->text (": ");
10431 uiout->field_string ("exp", w->exp_string);
10432 }
10433
10434 /* Implement the "print_recreate" breakpoint_ops method for
10435 masked hardware watchpoints. */
10436
10437 static void
10438 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10439 {
10440 struct watchpoint *w = (struct watchpoint *) b;
10441
10442 switch (b->type)
10443 {
10444 case bp_hardware_watchpoint:
10445 fprintf_unfiltered (fp, "watch");
10446 break;
10447 case bp_read_watchpoint:
10448 fprintf_unfiltered (fp, "rwatch");
10449 break;
10450 case bp_access_watchpoint:
10451 fprintf_unfiltered (fp, "awatch");
10452 break;
10453 default:
10454 internal_error (__FILE__, __LINE__,
10455 _("Invalid hardware watchpoint type."));
10456 }
10457
10458 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string,
10459 phex (w->hw_wp_mask, sizeof (CORE_ADDR)));
10460 print_recreate_thread (b, fp);
10461 }
10462
10463 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10464
10465 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10466
10467 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10468
10469 static bool
10470 is_masked_watchpoint (const struct breakpoint *b)
10471 {
10472 return b->ops == &masked_watchpoint_breakpoint_ops;
10473 }
10474
10475 /* accessflag: hw_write: watch write,
10476 hw_read: watch read,
10477 hw_access: watch access (read or write) */
10478 static void
10479 watch_command_1 (const char *arg, int accessflag, int from_tty,
10480 int just_location, int internal)
10481 {
10482 struct breakpoint *scope_breakpoint = NULL;
10483 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10484 struct value *result;
10485 int saved_bitpos = 0, saved_bitsize = 0;
10486 const char *exp_start = NULL;
10487 const char *exp_end = NULL;
10488 const char *tok, *end_tok;
10489 int toklen = -1;
10490 const char *cond_start = NULL;
10491 const char *cond_end = NULL;
10492 enum bptype bp_type;
10493 int thread = -1;
10494 int pc = 0;
10495 /* Flag to indicate whether we are going to use masks for
10496 the hardware watchpoint. */
10497 int use_mask = 0;
10498 CORE_ADDR mask = 0;
10499
10500 /* Make sure that we actually have parameters to parse. */
10501 if (arg != NULL && arg[0] != '\0')
10502 {
10503 const char *value_start;
10504
10505 exp_end = arg + strlen (arg);
10506
10507 /* Look for "parameter value" pairs at the end
10508 of the arguments string. */
10509 for (tok = exp_end - 1; tok > arg; tok--)
10510 {
10511 /* Skip whitespace at the end of the argument list. */
10512 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10513 tok--;
10514
10515 /* Find the beginning of the last token.
10516 This is the value of the parameter. */
10517 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10518 tok--;
10519 value_start = tok + 1;
10520
10521 /* Skip whitespace. */
10522 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10523 tok--;
10524
10525 end_tok = tok;
10526
10527 /* Find the beginning of the second to last token.
10528 This is the parameter itself. */
10529 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10530 tok--;
10531 tok++;
10532 toklen = end_tok - tok + 1;
10533
10534 if (toklen == 6 && startswith (tok, "thread"))
10535 {
10536 struct thread_info *thr;
10537 /* At this point we've found a "thread" token, which means
10538 the user is trying to set a watchpoint that triggers
10539 only in a specific thread. */
10540 const char *endp;
10541
10542 if (thread != -1)
10543 error(_("You can specify only one thread."));
10544
10545 /* Extract the thread ID from the next token. */
10546 thr = parse_thread_id (value_start, &endp);
10547
10548 /* Check if the user provided a valid thread ID. */
10549 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10550 invalid_thread_id_error (value_start);
10551
10552 thread = thr->global_num;
10553 }
10554 else if (toklen == 4 && startswith (tok, "mask"))
10555 {
10556 /* We've found a "mask" token, which means the user wants to
10557 create a hardware watchpoint that is going to have the mask
10558 facility. */
10559 struct value *mask_value, *mark;
10560
10561 if (use_mask)
10562 error(_("You can specify only one mask."));
10563
10564 use_mask = just_location = 1;
10565
10566 mark = value_mark ();
10567 mask_value = parse_to_comma_and_eval (&value_start);
10568 mask = value_as_address (mask_value);
10569 value_free_to_mark (mark);
10570 }
10571 else
10572 /* We didn't recognize what we found. We should stop here. */
10573 break;
10574
10575 /* Truncate the string and get rid of the "parameter value" pair before
10576 the arguments string is parsed by the parse_exp_1 function. */
10577 exp_end = tok;
10578 }
10579 }
10580 else
10581 exp_end = arg;
10582
10583 /* Parse the rest of the arguments. From here on out, everything
10584 is in terms of a newly allocated string instead of the original
10585 ARG. */
10586 std::string expression (arg, exp_end - arg);
10587 exp_start = arg = expression.c_str ();
10588 innermost_block_tracker tracker;
10589 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10590 exp_end = arg;
10591 /* Remove trailing whitespace from the expression before saving it.
10592 This makes the eventual display of the expression string a bit
10593 prettier. */
10594 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10595 --exp_end;
10596
10597 /* Checking if the expression is not constant. */
10598 if (watchpoint_exp_is_const (exp.get ()))
10599 {
10600 int len;
10601
10602 len = exp_end - exp_start;
10603 while (len > 0 && isspace (exp_start[len - 1]))
10604 len--;
10605 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10606 }
10607
10608 exp_valid_block = tracker.block ();
10609 struct value *mark = value_mark ();
10610 struct value *val_as_value = nullptr;
10611 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10612 just_location);
10613
10614 if (val_as_value != NULL && just_location)
10615 {
10616 saved_bitpos = value_bitpos (val_as_value);
10617 saved_bitsize = value_bitsize (val_as_value);
10618 }
10619
10620 value_ref_ptr val;
10621 if (just_location)
10622 {
10623 int ret;
10624
10625 exp_valid_block = NULL;
10626 val = release_value (value_addr (result));
10627 value_free_to_mark (mark);
10628
10629 if (use_mask)
10630 {
10631 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10632 mask);
10633 if (ret == -1)
10634 error (_("This target does not support masked watchpoints."));
10635 else if (ret == -2)
10636 error (_("Invalid mask or memory region."));
10637 }
10638 }
10639 else if (val_as_value != NULL)
10640 val = release_value (val_as_value);
10641
10642 tok = skip_spaces (arg);
10643 end_tok = skip_to_space (tok);
10644
10645 toklen = end_tok - tok;
10646 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10647 {
10648 tok = cond_start = end_tok + 1;
10649 innermost_block_tracker if_tracker;
10650 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10651
10652 /* The watchpoint expression may not be local, but the condition
10653 may still be. E.g.: `watch global if local > 0'. */
10654 cond_exp_valid_block = if_tracker.block ();
10655
10656 cond_end = tok;
10657 }
10658 if (*tok)
10659 error (_("Junk at end of command."));
10660
10661 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10662
10663 /* Save this because create_internal_breakpoint below invalidates
10664 'wp_frame'. */
10665 frame_id watchpoint_frame = get_frame_id (wp_frame);
10666
10667 /* If the expression is "local", then set up a "watchpoint scope"
10668 breakpoint at the point where we've left the scope of the watchpoint
10669 expression. Create the scope breakpoint before the watchpoint, so
10670 that we will encounter it first in bpstat_stop_status. */
10671 if (exp_valid_block != NULL && wp_frame != NULL)
10672 {
10673 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10674
10675 if (frame_id_p (caller_frame_id))
10676 {
10677 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10678 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10679
10680 scope_breakpoint
10681 = create_internal_breakpoint (caller_arch, caller_pc,
10682 bp_watchpoint_scope,
10683 &momentary_breakpoint_ops);
10684
10685 /* create_internal_breakpoint could invalidate WP_FRAME. */
10686 wp_frame = NULL;
10687
10688 scope_breakpoint->enable_state = bp_enabled;
10689
10690 /* Automatically delete the breakpoint when it hits. */
10691 scope_breakpoint->disposition = disp_del;
10692
10693 /* Only break in the proper frame (help with recursion). */
10694 scope_breakpoint->frame_id = caller_frame_id;
10695
10696 /* Set the address at which we will stop. */
10697 scope_breakpoint->loc->gdbarch = caller_arch;
10698 scope_breakpoint->loc->requested_address = caller_pc;
10699 scope_breakpoint->loc->address
10700 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10701 scope_breakpoint->loc->requested_address,
10702 scope_breakpoint->type);
10703 }
10704 }
10705
10706 /* Now set up the breakpoint. We create all watchpoints as hardware
10707 watchpoints here even if hardware watchpoints are turned off, a call
10708 to update_watchpoint later in this function will cause the type to
10709 drop back to bp_watchpoint (software watchpoint) if required. */
10710
10711 if (accessflag == hw_read)
10712 bp_type = bp_read_watchpoint;
10713 else if (accessflag == hw_access)
10714 bp_type = bp_access_watchpoint;
10715 else
10716 bp_type = bp_hardware_watchpoint;
10717
10718 std::unique_ptr<watchpoint> w (new watchpoint ());
10719
10720 if (use_mask)
10721 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10722 &masked_watchpoint_breakpoint_ops);
10723 else
10724 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10725 &watchpoint_breakpoint_ops);
10726 w->thread = thread;
10727 w->disposition = disp_donttouch;
10728 w->pspace = current_program_space;
10729 w->exp = std::move (exp);
10730 w->exp_valid_block = exp_valid_block;
10731 w->cond_exp_valid_block = cond_exp_valid_block;
10732 if (just_location)
10733 {
10734 struct type *t = value_type (val.get ());
10735 CORE_ADDR addr = value_as_address (val.get ());
10736
10737 w->exp_string_reparse
10738 = current_language->watch_location_expression (t, addr).release ();
10739
10740 w->exp_string = xstrprintf ("-location %.*s",
10741 (int) (exp_end - exp_start), exp_start);
10742 }
10743 else
10744 w->exp_string = savestring (exp_start, exp_end - exp_start);
10745
10746 if (use_mask)
10747 {
10748 w->hw_wp_mask = mask;
10749 }
10750 else
10751 {
10752 w->val = val;
10753 w->val_bitpos = saved_bitpos;
10754 w->val_bitsize = saved_bitsize;
10755 w->val_valid = true;
10756 }
10757
10758 if (cond_start)
10759 w->cond_string = savestring (cond_start, cond_end - cond_start);
10760 else
10761 w->cond_string = 0;
10762
10763 if (frame_id_p (watchpoint_frame))
10764 {
10765 w->watchpoint_frame = watchpoint_frame;
10766 w->watchpoint_thread = inferior_ptid;
10767 }
10768 else
10769 {
10770 w->watchpoint_frame = null_frame_id;
10771 w->watchpoint_thread = null_ptid;
10772 }
10773
10774 if (scope_breakpoint != NULL)
10775 {
10776 /* The scope breakpoint is related to the watchpoint. We will
10777 need to act on them together. */
10778 w->related_breakpoint = scope_breakpoint;
10779 scope_breakpoint->related_breakpoint = w.get ();
10780 }
10781
10782 if (!just_location)
10783 value_free_to_mark (mark);
10784
10785 /* Finally update the new watchpoint. This creates the locations
10786 that should be inserted. */
10787 update_watchpoint (w.get (), 1);
10788
10789 install_breakpoint (internal, std::move (w), 1);
10790 }
10791
10792 /* Return count of debug registers needed to watch the given expression.
10793 If the watchpoint cannot be handled in hardware return zero. */
10794
10795 static int
10796 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10797 {
10798 int found_memory_cnt = 0;
10799
10800 /* Did the user specifically forbid us to use hardware watchpoints? */
10801 if (!can_use_hw_watchpoints)
10802 return 0;
10803
10804 gdb_assert (!vals.empty ());
10805 struct value *head = vals[0].get ();
10806
10807 /* Make sure that the value of the expression depends only upon
10808 memory contents, and values computed from them within GDB. If we
10809 find any register references or function calls, we can't use a
10810 hardware watchpoint.
10811
10812 The idea here is that evaluating an expression generates a series
10813 of values, one holding the value of every subexpression. (The
10814 expression a*b+c has five subexpressions: a, b, a*b, c, and
10815 a*b+c.) GDB's values hold almost enough information to establish
10816 the criteria given above --- they identify memory lvalues,
10817 register lvalues, computed values, etcetera. So we can evaluate
10818 the expression, and then scan the chain of values that leaves
10819 behind to decide whether we can detect any possible change to the
10820 expression's final value using only hardware watchpoints.
10821
10822 However, I don't think that the values returned by inferior
10823 function calls are special in any way. So this function may not
10824 notice that an expression involving an inferior function call
10825 can't be watched with hardware watchpoints. FIXME. */
10826 for (const value_ref_ptr &iter : vals)
10827 {
10828 struct value *v = iter.get ();
10829
10830 if (VALUE_LVAL (v) == lval_memory)
10831 {
10832 if (v != head && value_lazy (v))
10833 /* A lazy memory lvalue in the chain is one that GDB never
10834 needed to fetch; we either just used its address (e.g.,
10835 `a' in `a.b') or we never needed it at all (e.g., `a'
10836 in `a,b'). This doesn't apply to HEAD; if that is
10837 lazy then it was not readable, but watch it anyway. */
10838 ;
10839 else
10840 {
10841 /* Ahh, memory we actually used! Check if we can cover
10842 it with hardware watchpoints. */
10843 struct type *vtype = check_typedef (value_type (v));
10844
10845 /* We only watch structs and arrays if user asked for it
10846 explicitly, never if they just happen to appear in a
10847 middle of some value chain. */
10848 if (v == head
10849 || (vtype->code () != TYPE_CODE_STRUCT
10850 && vtype->code () != TYPE_CODE_ARRAY))
10851 {
10852 CORE_ADDR vaddr = value_address (v);
10853 int len;
10854 int num_regs;
10855
10856 len = (target_exact_watchpoints
10857 && is_scalar_type_recursive (vtype))?
10858 1 : TYPE_LENGTH (value_type (v));
10859
10860 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10861 if (!num_regs)
10862 return 0;
10863 else
10864 found_memory_cnt += num_regs;
10865 }
10866 }
10867 }
10868 else if (VALUE_LVAL (v) != not_lval
10869 && deprecated_value_modifiable (v) == 0)
10870 return 0; /* These are values from the history (e.g., $1). */
10871 else if (VALUE_LVAL (v) == lval_register)
10872 return 0; /* Cannot watch a register with a HW watchpoint. */
10873 }
10874
10875 /* The expression itself looks suitable for using a hardware
10876 watchpoint, but give the target machine a chance to reject it. */
10877 return found_memory_cnt;
10878 }
10879
10880 void
10881 watch_command_wrapper (const char *arg, int from_tty, int internal)
10882 {
10883 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10884 }
10885
10886 /* A helper function that looks for the "-location" argument and then
10887 calls watch_command_1. */
10888
10889 static void
10890 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10891 {
10892 int just_location = 0;
10893
10894 if (arg
10895 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10896 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10897 just_location = 1;
10898
10899 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10900 }
10901
10902 static void
10903 watch_command (const char *arg, int from_tty)
10904 {
10905 watch_maybe_just_location (arg, hw_write, from_tty);
10906 }
10907
10908 void
10909 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10910 {
10911 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10912 }
10913
10914 static void
10915 rwatch_command (const char *arg, int from_tty)
10916 {
10917 watch_maybe_just_location (arg, hw_read, from_tty);
10918 }
10919
10920 void
10921 awatch_command_wrapper (const char *arg, int from_tty, int internal)
10922 {
10923 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10924 }
10925
10926 static void
10927 awatch_command (const char *arg, int from_tty)
10928 {
10929 watch_maybe_just_location (arg, hw_access, from_tty);
10930 }
10931 \f
10932
10933 /* Data for the FSM that manages the until(location)/advance commands
10934 in infcmd.c. Here because it uses the mechanisms of
10935 breakpoints. */
10936
10937 struct until_break_fsm : public thread_fsm
10938 {
10939 /* The thread that was current when the command was executed. */
10940 int thread;
10941
10942 /* The breakpoint set at the return address in the caller frame,
10943 plus breakpoints at all the destination locations. */
10944 std::vector<breakpoint_up> breakpoints;
10945
10946 until_break_fsm (struct interp *cmd_interp, int thread,
10947 std::vector<breakpoint_up> &&breakpoints)
10948 : thread_fsm (cmd_interp),
10949 thread (thread),
10950 breakpoints (std::move (breakpoints))
10951 {
10952 }
10953
10954 void clean_up (struct thread_info *thread) override;
10955 bool should_stop (struct thread_info *thread) override;
10956 enum async_reply_reason do_async_reply_reason () override;
10957 };
10958
10959 /* Implementation of the 'should_stop' FSM method for the
10960 until(location)/advance commands. */
10961
10962 bool
10963 until_break_fsm::should_stop (struct thread_info *tp)
10964 {
10965 for (const breakpoint_up &bp : breakpoints)
10966 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10967 bp.get ()) != NULL)
10968 {
10969 set_finished ();
10970 break;
10971 }
10972
10973 return true;
10974 }
10975
10976 /* Implementation of the 'clean_up' FSM method for the
10977 until(location)/advance commands. */
10978
10979 void
10980 until_break_fsm::clean_up (struct thread_info *)
10981 {
10982 /* Clean up our temporary breakpoints. */
10983 breakpoints.clear ();
10984 delete_longjmp_breakpoint (thread);
10985 }
10986
10987 /* Implementation of the 'async_reply_reason' FSM method for the
10988 until(location)/advance commands. */
10989
10990 enum async_reply_reason
10991 until_break_fsm::do_async_reply_reason ()
10992 {
10993 return EXEC_ASYNC_LOCATION_REACHED;
10994 }
10995
10996 void
10997 until_break_command (const char *arg, int from_tty, int anywhere)
10998 {
10999 struct frame_info *frame;
11000 struct gdbarch *frame_gdbarch;
11001 struct frame_id stack_frame_id;
11002 struct frame_id caller_frame_id;
11003 int thread;
11004 struct thread_info *tp;
11005
11006 clear_proceed_status (0);
11007
11008 /* Set a breakpoint where the user wants it and at return from
11009 this function. */
11010
11011 event_location_up location = string_to_event_location (&arg, current_language);
11012
11013 std::vector<symtab_and_line> sals
11014 = (last_displayed_sal_is_valid ()
11015 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11016 get_last_displayed_symtab (),
11017 get_last_displayed_line ())
11018 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11019 NULL, NULL, 0));
11020
11021 if (sals.empty ())
11022 error (_("Couldn't get information on specified line."));
11023
11024 if (*arg)
11025 error (_("Junk at end of arguments."));
11026
11027 tp = inferior_thread ();
11028 thread = tp->global_num;
11029
11030 /* Note linespec handling above invalidates the frame chain.
11031 Installing a breakpoint also invalidates the frame chain (as it
11032 may need to switch threads), so do any frame handling before
11033 that. */
11034
11035 frame = get_selected_frame (NULL);
11036 frame_gdbarch = get_frame_arch (frame);
11037 stack_frame_id = get_stack_frame_id (frame);
11038 caller_frame_id = frame_unwind_caller_id (frame);
11039
11040 /* Keep within the current frame, or in frames called by the current
11041 one. */
11042
11043 std::vector<breakpoint_up> breakpoints;
11044
11045 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
11046
11047 if (frame_id_p (caller_frame_id))
11048 {
11049 struct symtab_and_line sal2;
11050 struct gdbarch *caller_gdbarch;
11051
11052 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11053 sal2.pc = frame_unwind_caller_pc (frame);
11054 caller_gdbarch = frame_unwind_caller_arch (frame);
11055
11056 breakpoint_up caller_breakpoint
11057 = set_momentary_breakpoint (caller_gdbarch, sal2,
11058 caller_frame_id, bp_until);
11059 breakpoints.emplace_back (std::move (caller_breakpoint));
11060
11061 set_longjmp_breakpoint (tp, caller_frame_id);
11062 lj_deleter.emplace (thread);
11063 }
11064
11065 /* set_momentary_breakpoint could invalidate FRAME. */
11066 frame = NULL;
11067
11068 /* If the user told us to continue until a specified location, we
11069 don't specify a frame at which we need to stop. Otherwise,
11070 specify the selected frame, because we want to stop only at the
11071 very same frame. */
11072 frame_id stop_frame_id = anywhere ? null_frame_id : stack_frame_id;
11073
11074 for (symtab_and_line &sal : sals)
11075 {
11076 resolve_sal_pc (&sal);
11077
11078 breakpoint_up location_breakpoint
11079 = set_momentary_breakpoint (frame_gdbarch, sal,
11080 stop_frame_id, bp_until);
11081 breakpoints.emplace_back (std::move (location_breakpoint));
11082 }
11083
11084 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
11085 std::move (breakpoints));
11086
11087 if (lj_deleter)
11088 lj_deleter->release ();
11089
11090 proceed (-1, GDB_SIGNAL_DEFAULT);
11091 }
11092
11093 /* This function attempts to parse an optional "if <cond>" clause
11094 from the arg string. If one is not found, it returns NULL.
11095
11096 Else, it returns a pointer to the condition string. (It does not
11097 attempt to evaluate the string against a particular block.) And,
11098 it updates arg to point to the first character following the parsed
11099 if clause in the arg string. */
11100
11101 const char *
11102 ep_parse_optional_if_clause (const char **arg)
11103 {
11104 const char *cond_string;
11105
11106 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11107 return NULL;
11108
11109 /* Skip the "if" keyword. */
11110 (*arg) += 2;
11111
11112 /* Skip any extra leading whitespace, and record the start of the
11113 condition string. */
11114 *arg = skip_spaces (*arg);
11115 cond_string = *arg;
11116
11117 /* Assume that the condition occupies the remainder of the arg
11118 string. */
11119 (*arg) += strlen (cond_string);
11120
11121 return cond_string;
11122 }
11123
11124 /* Commands to deal with catching events, such as signals, exceptions,
11125 process start/exit, etc. */
11126
11127 typedef enum
11128 {
11129 catch_fork_temporary, catch_vfork_temporary,
11130 catch_fork_permanent, catch_vfork_permanent
11131 }
11132 catch_fork_kind;
11133
11134 static void
11135 catch_fork_command_1 (const char *arg, int from_tty,
11136 struct cmd_list_element *command)
11137 {
11138 struct gdbarch *gdbarch = get_current_arch ();
11139 const char *cond_string = NULL;
11140 catch_fork_kind fork_kind;
11141 int tempflag;
11142
11143 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11144 tempflag = (fork_kind == catch_fork_temporary
11145 || fork_kind == catch_vfork_temporary);
11146
11147 if (!arg)
11148 arg = "";
11149 arg = skip_spaces (arg);
11150
11151 /* The allowed syntax is:
11152 catch [v]fork
11153 catch [v]fork if <cond>
11154
11155 First, check if there's an if clause. */
11156 cond_string = ep_parse_optional_if_clause (&arg);
11157
11158 if ((*arg != '\0') && !isspace (*arg))
11159 error (_("Junk at end of arguments."));
11160
11161 /* If this target supports it, create a fork or vfork catchpoint
11162 and enable reporting of such events. */
11163 switch (fork_kind)
11164 {
11165 case catch_fork_temporary:
11166 case catch_fork_permanent:
11167 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11168 &catch_fork_breakpoint_ops);
11169 break;
11170 case catch_vfork_temporary:
11171 case catch_vfork_permanent:
11172 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11173 &catch_vfork_breakpoint_ops);
11174 break;
11175 default:
11176 error (_("unsupported or unknown fork kind; cannot catch it"));
11177 break;
11178 }
11179 }
11180
11181 static void
11182 catch_exec_command_1 (const char *arg, int from_tty,
11183 struct cmd_list_element *command)
11184 {
11185 struct gdbarch *gdbarch = get_current_arch ();
11186 int tempflag;
11187 const char *cond_string = NULL;
11188
11189 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11190
11191 if (!arg)
11192 arg = "";
11193 arg = skip_spaces (arg);
11194
11195 /* The allowed syntax is:
11196 catch exec
11197 catch exec if <cond>
11198
11199 First, check if there's an if clause. */
11200 cond_string = ep_parse_optional_if_clause (&arg);
11201
11202 if ((*arg != '\0') && !isspace (*arg))
11203 error (_("Junk at end of arguments."));
11204
11205 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11206 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11207 &catch_exec_breakpoint_ops);
11208 c->exec_pathname = NULL;
11209
11210 install_breakpoint (0, std::move (c), 1);
11211 }
11212
11213 void
11214 init_ada_exception_breakpoint (struct breakpoint *b,
11215 struct gdbarch *gdbarch,
11216 struct symtab_and_line sal,
11217 const char *addr_string,
11218 const struct breakpoint_ops *ops,
11219 int tempflag,
11220 int enabled,
11221 int from_tty)
11222 {
11223 if (from_tty)
11224 {
11225 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11226 if (!loc_gdbarch)
11227 loc_gdbarch = gdbarch;
11228
11229 describe_other_breakpoints (loc_gdbarch,
11230 sal.pspace, sal.pc, sal.section, -1);
11231 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11232 version for exception catchpoints, because two catchpoints
11233 used for different exception names will use the same address.
11234 In this case, a "breakpoint ... also set at..." warning is
11235 unproductive. Besides, the warning phrasing is also a bit
11236 inappropriate, we should use the word catchpoint, and tell
11237 the user what type of catchpoint it is. The above is good
11238 enough for now, though. */
11239 }
11240
11241 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
11242
11243 b->enable_state = enabled ? bp_enabled : bp_disabled;
11244 b->disposition = tempflag ? disp_del : disp_donttouch;
11245 b->location = string_to_event_location (&addr_string,
11246 language_def (language_ada));
11247 b->language = language_ada;
11248 }
11249
11250 \f
11251
11252 /* Compare two breakpoints and return a strcmp-like result. */
11253
11254 static int
11255 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11256 {
11257 uintptr_t ua = (uintptr_t) a;
11258 uintptr_t ub = (uintptr_t) b;
11259
11260 if (a->number < b->number)
11261 return -1;
11262 else if (a->number > b->number)
11263 return 1;
11264
11265 /* Now sort by address, in case we see, e..g, two breakpoints with
11266 the number 0. */
11267 if (ua < ub)
11268 return -1;
11269 return ua > ub ? 1 : 0;
11270 }
11271
11272 /* Delete breakpoints by address or line. */
11273
11274 static void
11275 clear_command (const char *arg, int from_tty)
11276 {
11277 struct breakpoint *b;
11278 int default_match;
11279
11280 std::vector<symtab_and_line> decoded_sals;
11281 symtab_and_line last_sal;
11282 gdb::array_view<symtab_and_line> sals;
11283 if (arg)
11284 {
11285 decoded_sals
11286 = decode_line_with_current_source (arg,
11287 (DECODE_LINE_FUNFIRSTLINE
11288 | DECODE_LINE_LIST_MODE));
11289 default_match = 0;
11290 sals = decoded_sals;
11291 }
11292 else
11293 {
11294 /* Set sal's line, symtab, pc, and pspace to the values
11295 corresponding to the last call to print_frame_info. If the
11296 codepoint is not valid, this will set all the fields to 0. */
11297 last_sal = get_last_displayed_sal ();
11298 if (last_sal.symtab == 0)
11299 error (_("No source file specified."));
11300
11301 default_match = 1;
11302 sals = last_sal;
11303 }
11304
11305 /* We don't call resolve_sal_pc here. That's not as bad as it
11306 seems, because all existing breakpoints typically have both
11307 file/line and pc set. So, if clear is given file/line, we can
11308 match this to existing breakpoint without obtaining pc at all.
11309
11310 We only support clearing given the address explicitly
11311 present in breakpoint table. Say, we've set breakpoint
11312 at file:line. There were several PC values for that file:line,
11313 due to optimization, all in one block.
11314
11315 We've picked one PC value. If "clear" is issued with another
11316 PC corresponding to the same file:line, the breakpoint won't
11317 be cleared. We probably can still clear the breakpoint, but
11318 since the other PC value is never presented to user, user
11319 can only find it by guessing, and it does not seem important
11320 to support that. */
11321
11322 /* For each line spec given, delete bps which correspond to it. Do
11323 it in two passes, solely to preserve the current behavior that
11324 from_tty is forced true if we delete more than one
11325 breakpoint. */
11326
11327 std::vector<struct breakpoint *> found;
11328 for (const auto &sal : sals)
11329 {
11330 const char *sal_fullname;
11331
11332 /* If exact pc given, clear bpts at that pc.
11333 If line given (pc == 0), clear all bpts on specified line.
11334 If defaulting, clear all bpts on default line
11335 or at default pc.
11336
11337 defaulting sal.pc != 0 tests to do
11338
11339 0 1 pc
11340 1 1 pc _and_ line
11341 0 0 line
11342 1 0 <can't happen> */
11343
11344 sal_fullname = (sal.symtab == NULL
11345 ? NULL : symtab_to_fullname (sal.symtab));
11346
11347 /* Find all matching breakpoints and add them to 'found'. */
11348 ALL_BREAKPOINTS (b)
11349 {
11350 int match = 0;
11351 /* Are we going to delete b? */
11352 if (b->type != bp_none && !is_watchpoint (b))
11353 {
11354 struct bp_location *loc = b->loc;
11355 for (; loc; loc = loc->next)
11356 {
11357 /* If the user specified file:line, don't allow a PC
11358 match. This matches historical gdb behavior. */
11359 int pc_match = (!sal.explicit_line
11360 && sal.pc
11361 && (loc->pspace == sal.pspace)
11362 && (loc->address == sal.pc)
11363 && (!section_is_overlay (loc->section)
11364 || loc->section == sal.section));
11365 int line_match = 0;
11366
11367 if ((default_match || sal.explicit_line)
11368 && loc->symtab != NULL
11369 && sal_fullname != NULL
11370 && sal.pspace == loc->pspace
11371 && loc->line_number == sal.line
11372 && filename_cmp (symtab_to_fullname (loc->symtab),
11373 sal_fullname) == 0)
11374 line_match = 1;
11375
11376 if (pc_match || line_match)
11377 {
11378 match = 1;
11379 break;
11380 }
11381 }
11382 }
11383
11384 if (match)
11385 found.push_back (b);
11386 }
11387 }
11388
11389 /* Now go thru the 'found' chain and delete them. */
11390 if (found.empty ())
11391 {
11392 if (arg)
11393 error (_("No breakpoint at %s."), arg);
11394 else
11395 error (_("No breakpoint at this line."));
11396 }
11397
11398 /* Remove duplicates from the vec. */
11399 std::sort (found.begin (), found.end (),
11400 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11401 {
11402 return compare_breakpoints (bp_a, bp_b) < 0;
11403 });
11404 found.erase (std::unique (found.begin (), found.end (),
11405 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11406 {
11407 return compare_breakpoints (bp_a, bp_b) == 0;
11408 }),
11409 found.end ());
11410
11411 if (found.size () > 1)
11412 from_tty = 1; /* Always report if deleted more than one. */
11413 if (from_tty)
11414 {
11415 if (found.size () == 1)
11416 printf_unfiltered (_("Deleted breakpoint "));
11417 else
11418 printf_unfiltered (_("Deleted breakpoints "));
11419 }
11420
11421 for (breakpoint *iter : found)
11422 {
11423 if (from_tty)
11424 printf_unfiltered ("%d ", iter->number);
11425 delete_breakpoint (iter);
11426 }
11427 if (from_tty)
11428 putchar_unfiltered ('\n');
11429 }
11430 \f
11431 /* Delete breakpoint in BS if they are `delete' breakpoints and
11432 all breakpoints that are marked for deletion, whether hit or not.
11433 This is called after any breakpoint is hit, or after errors. */
11434
11435 void
11436 breakpoint_auto_delete (bpstat bs)
11437 {
11438 struct breakpoint *b, *b_tmp;
11439
11440 for (; bs; bs = bs->next)
11441 if (bs->breakpoint_at
11442 && bs->breakpoint_at->disposition == disp_del
11443 && bs->stop)
11444 delete_breakpoint (bs->breakpoint_at);
11445
11446 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11447 {
11448 if (b->disposition == disp_del_at_next_stop)
11449 delete_breakpoint (b);
11450 }
11451 }
11452
11453 /* A comparison function for bp_location AP and BP being interfaced to
11454 std::sort. Sort elements primarily by their ADDRESS (no matter what
11455 bl_address_is_meaningful says), secondarily by ordering first
11456 permanent elements and terciarily just ensuring the array is sorted
11457 stable way despite std::sort being an unstable algorithm. */
11458
11459 static int
11460 bp_location_is_less_than (const bp_location *a, const bp_location *b)
11461 {
11462 if (a->address != b->address)
11463 return a->address < b->address;
11464
11465 /* Sort locations at the same address by their pspace number, keeping
11466 locations of the same inferior (in a multi-inferior environment)
11467 grouped. */
11468
11469 if (a->pspace->num != b->pspace->num)
11470 return a->pspace->num < b->pspace->num;
11471
11472 /* Sort permanent breakpoints first. */
11473 if (a->permanent != b->permanent)
11474 return a->permanent > b->permanent;
11475
11476 /* Sort by type in order to make duplicate determination easier.
11477 See update_global_location_list. This is kept in sync with
11478 breakpoint_locations_match. */
11479 if (a->loc_type < b->loc_type)
11480 return true;
11481
11482 /* Likewise, for range-breakpoints, sort by length. */
11483 if (a->loc_type == bp_loc_hardware_breakpoint
11484 && b->loc_type == bp_loc_hardware_breakpoint
11485 && a->length < b->length)
11486 return true;
11487
11488 /* Make the internal GDB representation stable across GDB runs
11489 where A and B memory inside GDB can differ. Breakpoint locations of
11490 the same type at the same address can be sorted in arbitrary order. */
11491
11492 if (a->owner->number != b->owner->number)
11493 return a->owner->number < b->owner->number;
11494
11495 return a < b;
11496 }
11497
11498 /* Set bp_locations_placed_address_before_address_max and
11499 bp_locations_shadow_len_after_address_max according to the current
11500 content of the bp_locations array. */
11501
11502 static void
11503 bp_locations_target_extensions_update (void)
11504 {
11505 struct bp_location *bl, **blp_tmp;
11506
11507 bp_locations_placed_address_before_address_max = 0;
11508 bp_locations_shadow_len_after_address_max = 0;
11509
11510 ALL_BP_LOCATIONS (bl, blp_tmp)
11511 {
11512 CORE_ADDR start, end, addr;
11513
11514 if (!bp_location_has_shadow (bl))
11515 continue;
11516
11517 start = bl->target_info.placed_address;
11518 end = start + bl->target_info.shadow_len;
11519
11520 gdb_assert (bl->address >= start);
11521 addr = bl->address - start;
11522 if (addr > bp_locations_placed_address_before_address_max)
11523 bp_locations_placed_address_before_address_max = addr;
11524
11525 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11526
11527 gdb_assert (bl->address < end);
11528 addr = end - bl->address;
11529 if (addr > bp_locations_shadow_len_after_address_max)
11530 bp_locations_shadow_len_after_address_max = addr;
11531 }
11532 }
11533
11534 /* Download tracepoint locations if they haven't been. */
11535
11536 static void
11537 download_tracepoint_locations (void)
11538 {
11539 struct breakpoint *b;
11540 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11541
11542 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11543
11544 ALL_TRACEPOINTS (b)
11545 {
11546 struct bp_location *bl;
11547 struct tracepoint *t;
11548 int bp_location_downloaded = 0;
11549
11550 if ((b->type == bp_fast_tracepoint
11551 ? !may_insert_fast_tracepoints
11552 : !may_insert_tracepoints))
11553 continue;
11554
11555 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11556 {
11557 if (target_can_download_tracepoint ())
11558 can_download_tracepoint = TRIBOOL_TRUE;
11559 else
11560 can_download_tracepoint = TRIBOOL_FALSE;
11561 }
11562
11563 if (can_download_tracepoint == TRIBOOL_FALSE)
11564 break;
11565
11566 for (bl = b->loc; bl; bl = bl->next)
11567 {
11568 /* In tracepoint, locations are _never_ duplicated, so
11569 should_be_inserted is equivalent to
11570 unduplicated_should_be_inserted. */
11571 if (!should_be_inserted (bl) || bl->inserted)
11572 continue;
11573
11574 switch_to_program_space_and_thread (bl->pspace);
11575
11576 target_download_tracepoint (bl);
11577
11578 bl->inserted = 1;
11579 bp_location_downloaded = 1;
11580 }
11581 t = (struct tracepoint *) b;
11582 t->number_on_target = b->number;
11583 if (bp_location_downloaded)
11584 gdb::observers::breakpoint_modified.notify (b);
11585 }
11586 }
11587
11588 /* Swap the insertion/duplication state between two locations. */
11589
11590 static void
11591 swap_insertion (struct bp_location *left, struct bp_location *right)
11592 {
11593 const int left_inserted = left->inserted;
11594 const int left_duplicate = left->duplicate;
11595 const int left_needs_update = left->needs_update;
11596 const struct bp_target_info left_target_info = left->target_info;
11597
11598 /* Locations of tracepoints can never be duplicated. */
11599 if (is_tracepoint (left->owner))
11600 gdb_assert (!left->duplicate);
11601 if (is_tracepoint (right->owner))
11602 gdb_assert (!right->duplicate);
11603
11604 left->inserted = right->inserted;
11605 left->duplicate = right->duplicate;
11606 left->needs_update = right->needs_update;
11607 left->target_info = right->target_info;
11608 right->inserted = left_inserted;
11609 right->duplicate = left_duplicate;
11610 right->needs_update = left_needs_update;
11611 right->target_info = left_target_info;
11612 }
11613
11614 /* Force the re-insertion of the locations at ADDRESS. This is called
11615 once a new/deleted/modified duplicate location is found and we are evaluating
11616 conditions on the target's side. Such conditions need to be updated on
11617 the target. */
11618
11619 static void
11620 force_breakpoint_reinsertion (struct bp_location *bl)
11621 {
11622 struct bp_location **locp = NULL, **loc2p;
11623 struct bp_location *loc;
11624 CORE_ADDR address = 0;
11625 int pspace_num;
11626
11627 address = bl->address;
11628 pspace_num = bl->pspace->num;
11629
11630 /* This is only meaningful if the target is
11631 evaluating conditions and if the user has
11632 opted for condition evaluation on the target's
11633 side. */
11634 if (gdb_evaluates_breakpoint_condition_p ()
11635 || !target_supports_evaluation_of_breakpoint_conditions ())
11636 return;
11637
11638 /* Flag all breakpoint locations with this address and
11639 the same program space as the location
11640 as "its condition has changed". We need to
11641 update the conditions on the target's side. */
11642 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11643 {
11644 loc = *loc2p;
11645
11646 if (!is_breakpoint (loc->owner)
11647 || pspace_num != loc->pspace->num)
11648 continue;
11649
11650 /* Flag the location appropriately. We use a different state to
11651 let everyone know that we already updated the set of locations
11652 with addr bl->address and program space bl->pspace. This is so
11653 we don't have to keep calling these functions just to mark locations
11654 that have already been marked. */
11655 loc->condition_changed = condition_updated;
11656
11657 /* Free the agent expression bytecode as well. We will compute
11658 it later on. */
11659 loc->cond_bytecode.reset ();
11660 }
11661 }
11662
11663 /* Called whether new breakpoints are created, or existing breakpoints
11664 deleted, to update the global location list and recompute which
11665 locations are duplicate of which.
11666
11667 The INSERT_MODE flag determines whether locations may not, may, or
11668 shall be inserted now. See 'enum ugll_insert_mode' for more
11669 info. */
11670
11671 static void
11672 update_global_location_list (enum ugll_insert_mode insert_mode)
11673 {
11674 struct breakpoint *b;
11675 struct bp_location **locp, *loc;
11676 /* Last breakpoint location address that was marked for update. */
11677 CORE_ADDR last_addr = 0;
11678 /* Last breakpoint location program space that was marked for update. */
11679 int last_pspace_num = -1;
11680
11681 /* Used in the duplicates detection below. When iterating over all
11682 bp_locations, points to the first bp_location of a given address.
11683 Breakpoints and watchpoints of different types are never
11684 duplicates of each other. Keep one pointer for each type of
11685 breakpoint/watchpoint, so we only need to loop over all locations
11686 once. */
11687 struct bp_location *bp_loc_first; /* breakpoint */
11688 struct bp_location *wp_loc_first; /* hardware watchpoint */
11689 struct bp_location *awp_loc_first; /* access watchpoint */
11690 struct bp_location *rwp_loc_first; /* read watchpoint */
11691
11692 /* Saved former bp_locations array which we compare against the newly
11693 built bp_locations from the current state of ALL_BREAKPOINTS. */
11694 struct bp_location **old_locp;
11695 unsigned old_locations_count;
11696 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11697
11698 old_locations_count = bp_locations_count;
11699 bp_locations = NULL;
11700 bp_locations_count = 0;
11701
11702 ALL_BREAKPOINTS (b)
11703 for (loc = b->loc; loc; loc = loc->next)
11704 bp_locations_count++;
11705
11706 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11707 locp = bp_locations;
11708 ALL_BREAKPOINTS (b)
11709 for (loc = b->loc; loc; loc = loc->next)
11710 *locp++ = loc;
11711
11712 /* See if we need to "upgrade" a software breakpoint to a hardware
11713 breakpoint. Do this before deciding whether locations are
11714 duplicates. Also do this before sorting because sorting order
11715 depends on location type. */
11716 for (locp = bp_locations;
11717 locp < bp_locations + bp_locations_count;
11718 locp++)
11719 {
11720 loc = *locp;
11721 if (!loc->inserted && should_be_inserted (loc))
11722 handle_automatic_hardware_breakpoints (loc);
11723 }
11724
11725 std::sort (bp_locations, bp_locations + bp_locations_count,
11726 bp_location_is_less_than);
11727
11728 bp_locations_target_extensions_update ();
11729
11730 /* Identify bp_location instances that are no longer present in the
11731 new list, and therefore should be freed. Note that it's not
11732 necessary that those locations should be removed from inferior --
11733 if there's another location at the same address (previously
11734 marked as duplicate), we don't need to remove/insert the
11735 location.
11736
11737 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11738 and former bp_location array state respectively. */
11739
11740 locp = bp_locations;
11741 for (old_locp = old_locations.get ();
11742 old_locp < old_locations.get () + old_locations_count;
11743 old_locp++)
11744 {
11745 struct bp_location *old_loc = *old_locp;
11746 struct bp_location **loc2p;
11747
11748 /* Tells if 'old_loc' is found among the new locations. If
11749 not, we have to free it. */
11750 int found_object = 0;
11751 /* Tells if the location should remain inserted in the target. */
11752 int keep_in_target = 0;
11753 int removed = 0;
11754
11755 /* Skip LOCP entries which will definitely never be needed.
11756 Stop either at or being the one matching OLD_LOC. */
11757 while (locp < bp_locations + bp_locations_count
11758 && (*locp)->address < old_loc->address)
11759 locp++;
11760
11761 for (loc2p = locp;
11762 (loc2p < bp_locations + bp_locations_count
11763 && (*loc2p)->address == old_loc->address);
11764 loc2p++)
11765 {
11766 /* Check if this is a new/duplicated location or a duplicated
11767 location that had its condition modified. If so, we want to send
11768 its condition to the target if evaluation of conditions is taking
11769 place there. */
11770 if ((*loc2p)->condition_changed == condition_modified
11771 && (last_addr != old_loc->address
11772 || last_pspace_num != old_loc->pspace->num))
11773 {
11774 force_breakpoint_reinsertion (*loc2p);
11775 last_pspace_num = old_loc->pspace->num;
11776 }
11777
11778 if (*loc2p == old_loc)
11779 found_object = 1;
11780 }
11781
11782 /* We have already handled this address, update it so that we don't
11783 have to go through updates again. */
11784 last_addr = old_loc->address;
11785
11786 /* Target-side condition evaluation: Handle deleted locations. */
11787 if (!found_object)
11788 force_breakpoint_reinsertion (old_loc);
11789
11790 /* If this location is no longer present, and inserted, look if
11791 there's maybe a new location at the same address. If so,
11792 mark that one inserted, and don't remove this one. This is
11793 needed so that we don't have a time window where a breakpoint
11794 at certain location is not inserted. */
11795
11796 if (old_loc->inserted)
11797 {
11798 /* If the location is inserted now, we might have to remove
11799 it. */
11800
11801 if (found_object && should_be_inserted (old_loc))
11802 {
11803 /* The location is still present in the location list,
11804 and still should be inserted. Don't do anything. */
11805 keep_in_target = 1;
11806 }
11807 else
11808 {
11809 /* This location still exists, but it won't be kept in the
11810 target since it may have been disabled. We proceed to
11811 remove its target-side condition. */
11812
11813 /* The location is either no longer present, or got
11814 disabled. See if there's another location at the
11815 same address, in which case we don't need to remove
11816 this one from the target. */
11817
11818 /* OLD_LOC comes from existing struct breakpoint. */
11819 if (bl_address_is_meaningful (old_loc))
11820 {
11821 for (loc2p = locp;
11822 (loc2p < bp_locations + bp_locations_count
11823 && (*loc2p)->address == old_loc->address);
11824 loc2p++)
11825 {
11826 struct bp_location *loc2 = *loc2p;
11827
11828 if (loc2 == old_loc)
11829 continue;
11830
11831 if (breakpoint_locations_match (loc2, old_loc))
11832 {
11833 /* Read watchpoint locations are switched to
11834 access watchpoints, if the former are not
11835 supported, but the latter are. */
11836 if (is_hardware_watchpoint (old_loc->owner))
11837 {
11838 gdb_assert (is_hardware_watchpoint (loc2->owner));
11839 loc2->watchpoint_type = old_loc->watchpoint_type;
11840 }
11841
11842 /* loc2 is a duplicated location. We need to check
11843 if it should be inserted in case it will be
11844 unduplicated. */
11845 if (unduplicated_should_be_inserted (loc2))
11846 {
11847 swap_insertion (old_loc, loc2);
11848 keep_in_target = 1;
11849 break;
11850 }
11851 }
11852 }
11853 }
11854 }
11855
11856 if (!keep_in_target)
11857 {
11858 if (remove_breakpoint (old_loc))
11859 {
11860 /* This is just about all we can do. We could keep
11861 this location on the global list, and try to
11862 remove it next time, but there's no particular
11863 reason why we will succeed next time.
11864
11865 Note that at this point, old_loc->owner is still
11866 valid, as delete_breakpoint frees the breakpoint
11867 only after calling us. */
11868 printf_filtered (_("warning: Error removing "
11869 "breakpoint %d\n"),
11870 old_loc->owner->number);
11871 }
11872 removed = 1;
11873 }
11874 }
11875
11876 if (!found_object)
11877 {
11878 if (removed && target_is_non_stop_p ()
11879 && need_moribund_for_location_type (old_loc))
11880 {
11881 /* This location was removed from the target. In
11882 non-stop mode, a race condition is possible where
11883 we've removed a breakpoint, but stop events for that
11884 breakpoint are already queued and will arrive later.
11885 We apply an heuristic to be able to distinguish such
11886 SIGTRAPs from other random SIGTRAPs: we keep this
11887 breakpoint location for a bit, and will retire it
11888 after we see some number of events. The theory here
11889 is that reporting of events should, "on the average",
11890 be fair, so after a while we'll see events from all
11891 threads that have anything of interest, and no longer
11892 need to keep this breakpoint location around. We
11893 don't hold locations forever so to reduce chances of
11894 mistaking a non-breakpoint SIGTRAP for a breakpoint
11895 SIGTRAP.
11896
11897 The heuristic failing can be disastrous on
11898 decr_pc_after_break targets.
11899
11900 On decr_pc_after_break targets, like e.g., x86-linux,
11901 if we fail to recognize a late breakpoint SIGTRAP,
11902 because events_till_retirement has reached 0 too
11903 soon, we'll fail to do the PC adjustment, and report
11904 a random SIGTRAP to the user. When the user resumes
11905 the inferior, it will most likely immediately crash
11906 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11907 corrupted, because of being resumed e.g., in the
11908 middle of a multi-byte instruction, or skipped a
11909 one-byte instruction. This was actually seen happen
11910 on native x86-linux, and should be less rare on
11911 targets that do not support new thread events, like
11912 remote, due to the heuristic depending on
11913 thread_count.
11914
11915 Mistaking a random SIGTRAP for a breakpoint trap
11916 causes similar symptoms (PC adjustment applied when
11917 it shouldn't), but then again, playing with SIGTRAPs
11918 behind the debugger's back is asking for trouble.
11919
11920 Since hardware watchpoint traps are always
11921 distinguishable from other traps, so we don't need to
11922 apply keep hardware watchpoint moribund locations
11923 around. We simply always ignore hardware watchpoint
11924 traps we can no longer explain. */
11925
11926 process_stratum_target *proc_target = nullptr;
11927 for (inferior *inf : all_inferiors ())
11928 if (inf->pspace == old_loc->pspace)
11929 {
11930 proc_target = inf->process_target ();
11931 break;
11932 }
11933 if (proc_target != nullptr)
11934 old_loc->events_till_retirement
11935 = 3 * (thread_count (proc_target) + 1);
11936 else
11937 old_loc->events_till_retirement = 1;
11938 old_loc->owner = NULL;
11939
11940 moribund_locations.push_back (old_loc);
11941 }
11942 else
11943 {
11944 old_loc->owner = NULL;
11945 decref_bp_location (&old_loc);
11946 }
11947 }
11948 }
11949
11950 /* Rescan breakpoints at the same address and section, marking the
11951 first one as "first" and any others as "duplicates". This is so
11952 that the bpt instruction is only inserted once. If we have a
11953 permanent breakpoint at the same place as BPT, make that one the
11954 official one, and the rest as duplicates. Permanent breakpoints
11955 are sorted first for the same address.
11956
11957 Do the same for hardware watchpoints, but also considering the
11958 watchpoint's type (regular/access/read) and length. */
11959
11960 bp_loc_first = NULL;
11961 wp_loc_first = NULL;
11962 awp_loc_first = NULL;
11963 rwp_loc_first = NULL;
11964 ALL_BP_LOCATIONS (loc, locp)
11965 {
11966 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11967 non-NULL. */
11968 struct bp_location **loc_first_p;
11969 b = loc->owner;
11970
11971 if (!unduplicated_should_be_inserted (loc)
11972 || !bl_address_is_meaningful (loc)
11973 /* Don't detect duplicate for tracepoint locations because they are
11974 never duplicated. See the comments in field `duplicate' of
11975 `struct bp_location'. */
11976 || is_tracepoint (b))
11977 {
11978 /* Clear the condition modification flag. */
11979 loc->condition_changed = condition_unchanged;
11980 continue;
11981 }
11982
11983 if (b->type == bp_hardware_watchpoint)
11984 loc_first_p = &wp_loc_first;
11985 else if (b->type == bp_read_watchpoint)
11986 loc_first_p = &rwp_loc_first;
11987 else if (b->type == bp_access_watchpoint)
11988 loc_first_p = &awp_loc_first;
11989 else
11990 loc_first_p = &bp_loc_first;
11991
11992 if (*loc_first_p == NULL
11993 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11994 || !breakpoint_locations_match (loc, *loc_first_p))
11995 {
11996 *loc_first_p = loc;
11997 loc->duplicate = 0;
11998
11999 if (is_breakpoint (loc->owner) && loc->condition_changed)
12000 {
12001 loc->needs_update = 1;
12002 /* Clear the condition modification flag. */
12003 loc->condition_changed = condition_unchanged;
12004 }
12005 continue;
12006 }
12007
12008
12009 /* This and the above ensure the invariant that the first location
12010 is not duplicated, and is the inserted one.
12011 All following are marked as duplicated, and are not inserted. */
12012 if (loc->inserted)
12013 swap_insertion (loc, *loc_first_p);
12014 loc->duplicate = 1;
12015
12016 /* Clear the condition modification flag. */
12017 loc->condition_changed = condition_unchanged;
12018 }
12019
12020 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12021 {
12022 if (insert_mode != UGLL_DONT_INSERT)
12023 insert_breakpoint_locations ();
12024 else
12025 {
12026 /* Even though the caller told us to not insert new
12027 locations, we may still need to update conditions on the
12028 target's side of breakpoints that were already inserted
12029 if the target is evaluating breakpoint conditions. We
12030 only update conditions for locations that are marked
12031 "needs_update". */
12032 update_inserted_breakpoint_locations ();
12033 }
12034 }
12035
12036 if (insert_mode != UGLL_DONT_INSERT)
12037 download_tracepoint_locations ();
12038 }
12039
12040 void
12041 breakpoint_retire_moribund (void)
12042 {
12043 for (int ix = 0; ix < moribund_locations.size (); ++ix)
12044 {
12045 struct bp_location *loc = moribund_locations[ix];
12046 if (--(loc->events_till_retirement) == 0)
12047 {
12048 decref_bp_location (&loc);
12049 unordered_remove (moribund_locations, ix);
12050 --ix;
12051 }
12052 }
12053 }
12054
12055 static void
12056 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12057 {
12058
12059 try
12060 {
12061 update_global_location_list (insert_mode);
12062 }
12063 catch (const gdb_exception_error &e)
12064 {
12065 }
12066 }
12067
12068 /* Clear BKP from a BPS. */
12069
12070 static void
12071 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12072 {
12073 bpstat bs;
12074
12075 for (bs = bps; bs; bs = bs->next)
12076 if (bs->breakpoint_at == bpt)
12077 {
12078 bs->breakpoint_at = NULL;
12079 bs->old_val = NULL;
12080 /* bs->commands will be freed later. */
12081 }
12082 }
12083
12084 /* Callback for iterate_over_threads. */
12085 static int
12086 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12087 {
12088 struct breakpoint *bpt = (struct breakpoint *) data;
12089
12090 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12091 return 0;
12092 }
12093
12094 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12095 callbacks. */
12096
12097 static void
12098 say_where (struct breakpoint *b)
12099 {
12100 struct value_print_options opts;
12101
12102 get_user_print_options (&opts);
12103
12104 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12105 single string. */
12106 if (b->loc == NULL)
12107 {
12108 /* For pending locations, the output differs slightly based
12109 on b->extra_string. If this is non-NULL, it contains either
12110 a condition or dprintf arguments. */
12111 if (b->extra_string == NULL)
12112 {
12113 printf_filtered (_(" (%s) pending."),
12114 event_location_to_string (b->location.get ()));
12115 }
12116 else if (b->type == bp_dprintf)
12117 {
12118 printf_filtered (_(" (%s,%s) pending."),
12119 event_location_to_string (b->location.get ()),
12120 b->extra_string);
12121 }
12122 else
12123 {
12124 printf_filtered (_(" (%s %s) pending."),
12125 event_location_to_string (b->location.get ()),
12126 b->extra_string);
12127 }
12128 }
12129 else
12130 {
12131 if (opts.addressprint || b->loc->symtab == NULL)
12132 printf_filtered (" at %ps",
12133 styled_string (address_style.style (),
12134 paddress (b->loc->gdbarch,
12135 b->loc->address)));
12136 if (b->loc->symtab != NULL)
12137 {
12138 /* If there is a single location, we can print the location
12139 more nicely. */
12140 if (b->loc->next == NULL)
12141 {
12142 const char *filename
12143 = symtab_to_filename_for_display (b->loc->symtab);
12144 printf_filtered (": file %ps, line %d.",
12145 styled_string (file_name_style.style (),
12146 filename),
12147 b->loc->line_number);
12148 }
12149 else
12150 /* This is not ideal, but each location may have a
12151 different file name, and this at least reflects the
12152 real situation somewhat. */
12153 printf_filtered (": %s.",
12154 event_location_to_string (b->location.get ()));
12155 }
12156
12157 if (b->loc->next)
12158 {
12159 struct bp_location *loc = b->loc;
12160 int n = 0;
12161 for (; loc; loc = loc->next)
12162 ++n;
12163 printf_filtered (" (%d locations)", n);
12164 }
12165 }
12166 }
12167
12168 bp_location::~bp_location ()
12169 {
12170 xfree (function_name);
12171 }
12172
12173 /* Destructor for the breakpoint base class. */
12174
12175 breakpoint::~breakpoint ()
12176 {
12177 xfree (this->cond_string);
12178 xfree (this->extra_string);
12179 }
12180
12181 static struct bp_location *
12182 base_breakpoint_allocate_location (struct breakpoint *self)
12183 {
12184 return new bp_location (self);
12185 }
12186
12187 static void
12188 base_breakpoint_re_set (struct breakpoint *b)
12189 {
12190 /* Nothing to re-set. */
12191 }
12192
12193 #define internal_error_pure_virtual_called() \
12194 gdb_assert_not_reached ("pure virtual function called")
12195
12196 static int
12197 base_breakpoint_insert_location (struct bp_location *bl)
12198 {
12199 internal_error_pure_virtual_called ();
12200 }
12201
12202 static int
12203 base_breakpoint_remove_location (struct bp_location *bl,
12204 enum remove_bp_reason reason)
12205 {
12206 internal_error_pure_virtual_called ();
12207 }
12208
12209 static int
12210 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12211 const address_space *aspace,
12212 CORE_ADDR bp_addr,
12213 const struct target_waitstatus *ws)
12214 {
12215 internal_error_pure_virtual_called ();
12216 }
12217
12218 static void
12219 base_breakpoint_check_status (bpstat bs)
12220 {
12221 /* Always stop. */
12222 }
12223
12224 /* A "works_in_software_mode" breakpoint_ops method that just internal
12225 errors. */
12226
12227 static int
12228 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12229 {
12230 internal_error_pure_virtual_called ();
12231 }
12232
12233 /* A "resources_needed" breakpoint_ops method that just internal
12234 errors. */
12235
12236 static int
12237 base_breakpoint_resources_needed (const struct bp_location *bl)
12238 {
12239 internal_error_pure_virtual_called ();
12240 }
12241
12242 static enum print_stop_action
12243 base_breakpoint_print_it (bpstat bs)
12244 {
12245 internal_error_pure_virtual_called ();
12246 }
12247
12248 static void
12249 base_breakpoint_print_one_detail (const struct breakpoint *self,
12250 struct ui_out *uiout)
12251 {
12252 /* nothing */
12253 }
12254
12255 static void
12256 base_breakpoint_print_mention (struct breakpoint *b)
12257 {
12258 internal_error_pure_virtual_called ();
12259 }
12260
12261 static void
12262 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12263 {
12264 internal_error_pure_virtual_called ();
12265 }
12266
12267 static void
12268 base_breakpoint_create_sals_from_location
12269 (struct event_location *location,
12270 struct linespec_result *canonical,
12271 enum bptype type_wanted)
12272 {
12273 internal_error_pure_virtual_called ();
12274 }
12275
12276 static void
12277 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12278 struct linespec_result *c,
12279 gdb::unique_xmalloc_ptr<char> cond_string,
12280 gdb::unique_xmalloc_ptr<char> extra_string,
12281 enum bptype type_wanted,
12282 enum bpdisp disposition,
12283 int thread,
12284 int task, int ignore_count,
12285 const struct breakpoint_ops *o,
12286 int from_tty, int enabled,
12287 int internal, unsigned flags)
12288 {
12289 internal_error_pure_virtual_called ();
12290 }
12291
12292 static std::vector<symtab_and_line>
12293 base_breakpoint_decode_location (struct breakpoint *b,
12294 struct event_location *location,
12295 struct program_space *search_pspace)
12296 {
12297 internal_error_pure_virtual_called ();
12298 }
12299
12300 /* The default 'explains_signal' method. */
12301
12302 static int
12303 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12304 {
12305 return 1;
12306 }
12307
12308 /* The default "after_condition_true" method. */
12309
12310 static void
12311 base_breakpoint_after_condition_true (struct bpstats *bs)
12312 {
12313 /* Nothing to do. */
12314 }
12315
12316 struct breakpoint_ops base_breakpoint_ops =
12317 {
12318 base_breakpoint_allocate_location,
12319 base_breakpoint_re_set,
12320 base_breakpoint_insert_location,
12321 base_breakpoint_remove_location,
12322 base_breakpoint_breakpoint_hit,
12323 base_breakpoint_check_status,
12324 base_breakpoint_resources_needed,
12325 base_breakpoint_works_in_software_mode,
12326 base_breakpoint_print_it,
12327 NULL,
12328 base_breakpoint_print_one_detail,
12329 base_breakpoint_print_mention,
12330 base_breakpoint_print_recreate,
12331 base_breakpoint_create_sals_from_location,
12332 base_breakpoint_create_breakpoints_sal,
12333 base_breakpoint_decode_location,
12334 base_breakpoint_explains_signal,
12335 base_breakpoint_after_condition_true,
12336 };
12337
12338 /* Default breakpoint_ops methods. */
12339
12340 static void
12341 bkpt_re_set (struct breakpoint *b)
12342 {
12343 /* FIXME: is this still reachable? */
12344 if (breakpoint_event_location_empty_p (b))
12345 {
12346 /* Anything without a location can't be re-set. */
12347 delete_breakpoint (b);
12348 return;
12349 }
12350
12351 breakpoint_re_set_default (b);
12352 }
12353
12354 static int
12355 bkpt_insert_location (struct bp_location *bl)
12356 {
12357 CORE_ADDR addr = bl->target_info.reqstd_address;
12358
12359 bl->target_info.kind = breakpoint_kind (bl, &addr);
12360 bl->target_info.placed_address = addr;
12361
12362 if (bl->loc_type == bp_loc_hardware_breakpoint)
12363 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12364 else
12365 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12366 }
12367
12368 static int
12369 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12370 {
12371 if (bl->loc_type == bp_loc_hardware_breakpoint)
12372 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12373 else
12374 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12375 }
12376
12377 static int
12378 bkpt_breakpoint_hit (const struct bp_location *bl,
12379 const address_space *aspace, CORE_ADDR bp_addr,
12380 const struct target_waitstatus *ws)
12381 {
12382 if (ws->kind != TARGET_WAITKIND_STOPPED
12383 || ws->value.sig != GDB_SIGNAL_TRAP)
12384 return 0;
12385
12386 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12387 aspace, bp_addr))
12388 return 0;
12389
12390 if (overlay_debugging /* unmapped overlay section */
12391 && section_is_overlay (bl->section)
12392 && !section_is_mapped (bl->section))
12393 return 0;
12394
12395 return 1;
12396 }
12397
12398 static int
12399 dprintf_breakpoint_hit (const struct bp_location *bl,
12400 const address_space *aspace, CORE_ADDR bp_addr,
12401 const struct target_waitstatus *ws)
12402 {
12403 if (dprintf_style == dprintf_style_agent
12404 && target_can_run_breakpoint_commands ())
12405 {
12406 /* An agent-style dprintf never causes a stop. If we see a trap
12407 for this address it must be for a breakpoint that happens to
12408 be set at the same address. */
12409 return 0;
12410 }
12411
12412 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12413 }
12414
12415 static int
12416 bkpt_resources_needed (const struct bp_location *bl)
12417 {
12418 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12419
12420 return 1;
12421 }
12422
12423 static enum print_stop_action
12424 bkpt_print_it (bpstat bs)
12425 {
12426 struct breakpoint *b;
12427 const struct bp_location *bl;
12428 int bp_temp;
12429 struct ui_out *uiout = current_uiout;
12430
12431 gdb_assert (bs->bp_location_at != NULL);
12432
12433 bl = bs->bp_location_at;
12434 b = bs->breakpoint_at;
12435
12436 bp_temp = b->disposition == disp_del;
12437 if (bl->address != bl->requested_address)
12438 breakpoint_adjustment_warning (bl->requested_address,
12439 bl->address,
12440 b->number, 1);
12441 annotate_breakpoint (b->number);
12442 maybe_print_thread_hit_breakpoint (uiout);
12443
12444 if (uiout->is_mi_like_p ())
12445 {
12446 uiout->field_string ("reason",
12447 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12448 uiout->field_string ("disp", bpdisp_text (b->disposition));
12449 }
12450 if (bp_temp)
12451 uiout->message ("Temporary breakpoint %pF, ",
12452 signed_field ("bkptno", b->number));
12453 else
12454 uiout->message ("Breakpoint %pF, ",
12455 signed_field ("bkptno", b->number));
12456
12457 return PRINT_SRC_AND_LOC;
12458 }
12459
12460 static void
12461 bkpt_print_mention (struct breakpoint *b)
12462 {
12463 if (current_uiout->is_mi_like_p ())
12464 return;
12465
12466 switch (b->type)
12467 {
12468 case bp_breakpoint:
12469 case bp_gnu_ifunc_resolver:
12470 if (b->disposition == disp_del)
12471 printf_filtered (_("Temporary breakpoint"));
12472 else
12473 printf_filtered (_("Breakpoint"));
12474 printf_filtered (_(" %d"), b->number);
12475 if (b->type == bp_gnu_ifunc_resolver)
12476 printf_filtered (_(" at gnu-indirect-function resolver"));
12477 break;
12478 case bp_hardware_breakpoint:
12479 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12480 break;
12481 case bp_dprintf:
12482 printf_filtered (_("Dprintf %d"), b->number);
12483 break;
12484 }
12485
12486 say_where (b);
12487 }
12488
12489 static void
12490 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12491 {
12492 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12493 fprintf_unfiltered (fp, "tbreak");
12494 else if (tp->type == bp_breakpoint)
12495 fprintf_unfiltered (fp, "break");
12496 else if (tp->type == bp_hardware_breakpoint
12497 && tp->disposition == disp_del)
12498 fprintf_unfiltered (fp, "thbreak");
12499 else if (tp->type == bp_hardware_breakpoint)
12500 fprintf_unfiltered (fp, "hbreak");
12501 else
12502 internal_error (__FILE__, __LINE__,
12503 _("unhandled breakpoint type %d"), (int) tp->type);
12504
12505 fprintf_unfiltered (fp, " %s",
12506 event_location_to_string (tp->location.get ()));
12507
12508 /* Print out extra_string if this breakpoint is pending. It might
12509 contain, for example, conditions that were set by the user. */
12510 if (tp->loc == NULL && tp->extra_string != NULL)
12511 fprintf_unfiltered (fp, " %s", tp->extra_string);
12512
12513 print_recreate_thread (tp, fp);
12514 }
12515
12516 static void
12517 bkpt_create_sals_from_location (struct event_location *location,
12518 struct linespec_result *canonical,
12519 enum bptype type_wanted)
12520 {
12521 create_sals_from_location_default (location, canonical, type_wanted);
12522 }
12523
12524 static void
12525 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12526 struct linespec_result *canonical,
12527 gdb::unique_xmalloc_ptr<char> cond_string,
12528 gdb::unique_xmalloc_ptr<char> extra_string,
12529 enum bptype type_wanted,
12530 enum bpdisp disposition,
12531 int thread,
12532 int task, int ignore_count,
12533 const struct breakpoint_ops *ops,
12534 int from_tty, int enabled,
12535 int internal, unsigned flags)
12536 {
12537 create_breakpoints_sal_default (gdbarch, canonical,
12538 std::move (cond_string),
12539 std::move (extra_string),
12540 type_wanted,
12541 disposition, thread, task,
12542 ignore_count, ops, from_tty,
12543 enabled, internal, flags);
12544 }
12545
12546 static std::vector<symtab_and_line>
12547 bkpt_decode_location (struct breakpoint *b,
12548 struct event_location *location,
12549 struct program_space *search_pspace)
12550 {
12551 return decode_location_default (b, location, search_pspace);
12552 }
12553
12554 /* Virtual table for internal breakpoints. */
12555
12556 static void
12557 internal_bkpt_re_set (struct breakpoint *b)
12558 {
12559 switch (b->type)
12560 {
12561 /* Delete overlay event and longjmp master breakpoints; they
12562 will be reset later by breakpoint_re_set. */
12563 case bp_overlay_event:
12564 case bp_longjmp_master:
12565 case bp_std_terminate_master:
12566 case bp_exception_master:
12567 delete_breakpoint (b);
12568 break;
12569
12570 /* This breakpoint is special, it's set up when the inferior
12571 starts and we really don't want to touch it. */
12572 case bp_shlib_event:
12573
12574 /* Like bp_shlib_event, this breakpoint type is special. Once
12575 it is set up, we do not want to touch it. */
12576 case bp_thread_event:
12577 break;
12578 }
12579 }
12580
12581 static void
12582 internal_bkpt_check_status (bpstat bs)
12583 {
12584 if (bs->breakpoint_at->type == bp_shlib_event)
12585 {
12586 /* If requested, stop when the dynamic linker notifies GDB of
12587 events. This allows the user to get control and place
12588 breakpoints in initializer routines for dynamically loaded
12589 objects (among other things). */
12590 bs->stop = stop_on_solib_events;
12591 bs->print = stop_on_solib_events;
12592 }
12593 else
12594 bs->stop = 0;
12595 }
12596
12597 static enum print_stop_action
12598 internal_bkpt_print_it (bpstat bs)
12599 {
12600 struct breakpoint *b;
12601
12602 b = bs->breakpoint_at;
12603
12604 switch (b->type)
12605 {
12606 case bp_shlib_event:
12607 /* Did we stop because the user set the stop_on_solib_events
12608 variable? (If so, we report this as a generic, "Stopped due
12609 to shlib event" message.) */
12610 print_solib_event (0);
12611 break;
12612
12613 case bp_thread_event:
12614 /* Not sure how we will get here.
12615 GDB should not stop for these breakpoints. */
12616 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12617 break;
12618
12619 case bp_overlay_event:
12620 /* By analogy with the thread event, GDB should not stop for these. */
12621 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12622 break;
12623
12624 case bp_longjmp_master:
12625 /* These should never be enabled. */
12626 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12627 break;
12628
12629 case bp_std_terminate_master:
12630 /* These should never be enabled. */
12631 printf_filtered (_("std::terminate Master Breakpoint: "
12632 "gdb should not stop!\n"));
12633 break;
12634
12635 case bp_exception_master:
12636 /* These should never be enabled. */
12637 printf_filtered (_("Exception Master Breakpoint: "
12638 "gdb should not stop!\n"));
12639 break;
12640 }
12641
12642 return PRINT_NOTHING;
12643 }
12644
12645 static void
12646 internal_bkpt_print_mention (struct breakpoint *b)
12647 {
12648 /* Nothing to mention. These breakpoints are internal. */
12649 }
12650
12651 /* Virtual table for momentary breakpoints */
12652
12653 static void
12654 momentary_bkpt_re_set (struct breakpoint *b)
12655 {
12656 /* Keep temporary breakpoints, which can be encountered when we step
12657 over a dlopen call and solib_add is resetting the breakpoints.
12658 Otherwise these should have been blown away via the cleanup chain
12659 or by breakpoint_init_inferior when we rerun the executable. */
12660 }
12661
12662 static void
12663 momentary_bkpt_check_status (bpstat bs)
12664 {
12665 /* Nothing. The point of these breakpoints is causing a stop. */
12666 }
12667
12668 static enum print_stop_action
12669 momentary_bkpt_print_it (bpstat bs)
12670 {
12671 return PRINT_UNKNOWN;
12672 }
12673
12674 static void
12675 momentary_bkpt_print_mention (struct breakpoint *b)
12676 {
12677 /* Nothing to mention. These breakpoints are internal. */
12678 }
12679
12680 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12681
12682 It gets cleared already on the removal of the first one of such placed
12683 breakpoints. This is OK as they get all removed altogether. */
12684
12685 longjmp_breakpoint::~longjmp_breakpoint ()
12686 {
12687 thread_info *tp = find_thread_global_id (this->thread);
12688
12689 if (tp != NULL)
12690 tp->initiating_frame = null_frame_id;
12691 }
12692
12693 /* Specific methods for probe breakpoints. */
12694
12695 static int
12696 bkpt_probe_insert_location (struct bp_location *bl)
12697 {
12698 int v = bkpt_insert_location (bl);
12699
12700 if (v == 0)
12701 {
12702 /* The insertion was successful, now let's set the probe's semaphore
12703 if needed. */
12704 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12705 }
12706
12707 return v;
12708 }
12709
12710 static int
12711 bkpt_probe_remove_location (struct bp_location *bl,
12712 enum remove_bp_reason reason)
12713 {
12714 /* Let's clear the semaphore before removing the location. */
12715 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12716
12717 return bkpt_remove_location (bl, reason);
12718 }
12719
12720 static void
12721 bkpt_probe_create_sals_from_location (struct event_location *location,
12722 struct linespec_result *canonical,
12723 enum bptype type_wanted)
12724 {
12725 struct linespec_sals lsal;
12726
12727 lsal.sals = parse_probes (location, NULL, canonical);
12728 lsal.canonical
12729 = xstrdup (event_location_to_string (canonical->location.get ()));
12730 canonical->lsals.push_back (std::move (lsal));
12731 }
12732
12733 static std::vector<symtab_and_line>
12734 bkpt_probe_decode_location (struct breakpoint *b,
12735 struct event_location *location,
12736 struct program_space *search_pspace)
12737 {
12738 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12739 if (sals.empty ())
12740 error (_("probe not found"));
12741 return sals;
12742 }
12743
12744 /* The breakpoint_ops structure to be used in tracepoints. */
12745
12746 static void
12747 tracepoint_re_set (struct breakpoint *b)
12748 {
12749 breakpoint_re_set_default (b);
12750 }
12751
12752 static int
12753 tracepoint_breakpoint_hit (const struct bp_location *bl,
12754 const address_space *aspace, CORE_ADDR bp_addr,
12755 const struct target_waitstatus *ws)
12756 {
12757 /* By definition, the inferior does not report stops at
12758 tracepoints. */
12759 return 0;
12760 }
12761
12762 static void
12763 tracepoint_print_one_detail (const struct breakpoint *self,
12764 struct ui_out *uiout)
12765 {
12766 struct tracepoint *tp = (struct tracepoint *) self;
12767 if (!tp->static_trace_marker_id.empty ())
12768 {
12769 gdb_assert (self->type == bp_static_tracepoint);
12770
12771 uiout->message ("\tmarker id is %pF\n",
12772 string_field ("static-tracepoint-marker-string-id",
12773 tp->static_trace_marker_id.c_str ()));
12774 }
12775 }
12776
12777 static void
12778 tracepoint_print_mention (struct breakpoint *b)
12779 {
12780 if (current_uiout->is_mi_like_p ())
12781 return;
12782
12783 switch (b->type)
12784 {
12785 case bp_tracepoint:
12786 printf_filtered (_("Tracepoint"));
12787 printf_filtered (_(" %d"), b->number);
12788 break;
12789 case bp_fast_tracepoint:
12790 printf_filtered (_("Fast tracepoint"));
12791 printf_filtered (_(" %d"), b->number);
12792 break;
12793 case bp_static_tracepoint:
12794 printf_filtered (_("Static tracepoint"));
12795 printf_filtered (_(" %d"), b->number);
12796 break;
12797 default:
12798 internal_error (__FILE__, __LINE__,
12799 _("unhandled tracepoint type %d"), (int) b->type);
12800 }
12801
12802 say_where (b);
12803 }
12804
12805 static void
12806 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12807 {
12808 struct tracepoint *tp = (struct tracepoint *) self;
12809
12810 if (self->type == bp_fast_tracepoint)
12811 fprintf_unfiltered (fp, "ftrace");
12812 else if (self->type == bp_static_tracepoint)
12813 fprintf_unfiltered (fp, "strace");
12814 else if (self->type == bp_tracepoint)
12815 fprintf_unfiltered (fp, "trace");
12816 else
12817 internal_error (__FILE__, __LINE__,
12818 _("unhandled tracepoint type %d"), (int) self->type);
12819
12820 fprintf_unfiltered (fp, " %s",
12821 event_location_to_string (self->location.get ()));
12822 print_recreate_thread (self, fp);
12823
12824 if (tp->pass_count)
12825 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12826 }
12827
12828 static void
12829 tracepoint_create_sals_from_location (struct event_location *location,
12830 struct linespec_result *canonical,
12831 enum bptype type_wanted)
12832 {
12833 create_sals_from_location_default (location, canonical, type_wanted);
12834 }
12835
12836 static void
12837 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12838 struct linespec_result *canonical,
12839 gdb::unique_xmalloc_ptr<char> cond_string,
12840 gdb::unique_xmalloc_ptr<char> extra_string,
12841 enum bptype type_wanted,
12842 enum bpdisp disposition,
12843 int thread,
12844 int task, int ignore_count,
12845 const struct breakpoint_ops *ops,
12846 int from_tty, int enabled,
12847 int internal, unsigned flags)
12848 {
12849 create_breakpoints_sal_default (gdbarch, canonical,
12850 std::move (cond_string),
12851 std::move (extra_string),
12852 type_wanted,
12853 disposition, thread, task,
12854 ignore_count, ops, from_tty,
12855 enabled, internal, flags);
12856 }
12857
12858 static std::vector<symtab_and_line>
12859 tracepoint_decode_location (struct breakpoint *b,
12860 struct event_location *location,
12861 struct program_space *search_pspace)
12862 {
12863 return decode_location_default (b, location, search_pspace);
12864 }
12865
12866 struct breakpoint_ops tracepoint_breakpoint_ops;
12867
12868 /* Virtual table for tracepoints on static probes. */
12869
12870 static void
12871 tracepoint_probe_create_sals_from_location
12872 (struct event_location *location,
12873 struct linespec_result *canonical,
12874 enum bptype type_wanted)
12875 {
12876 /* We use the same method for breakpoint on probes. */
12877 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12878 }
12879
12880 static std::vector<symtab_and_line>
12881 tracepoint_probe_decode_location (struct breakpoint *b,
12882 struct event_location *location,
12883 struct program_space *search_pspace)
12884 {
12885 /* We use the same method for breakpoint on probes. */
12886 return bkpt_probe_decode_location (b, location, search_pspace);
12887 }
12888
12889 /* Dprintf breakpoint_ops methods. */
12890
12891 static void
12892 dprintf_re_set (struct breakpoint *b)
12893 {
12894 breakpoint_re_set_default (b);
12895
12896 /* extra_string should never be non-NULL for dprintf. */
12897 gdb_assert (b->extra_string != NULL);
12898
12899 /* 1 - connect to target 1, that can run breakpoint commands.
12900 2 - create a dprintf, which resolves fine.
12901 3 - disconnect from target 1
12902 4 - connect to target 2, that can NOT run breakpoint commands.
12903
12904 After steps #3/#4, you'll want the dprintf command list to
12905 be updated, because target 1 and 2 may well return different
12906 answers for target_can_run_breakpoint_commands().
12907 Given absence of finer grained resetting, we get to do
12908 it all the time. */
12909 if (b->extra_string != NULL)
12910 update_dprintf_command_list (b);
12911 }
12912
12913 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12914
12915 static void
12916 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12917 {
12918 fprintf_unfiltered (fp, "dprintf %s,%s",
12919 event_location_to_string (tp->location.get ()),
12920 tp->extra_string);
12921 print_recreate_thread (tp, fp);
12922 }
12923
12924 /* Implement the "after_condition_true" breakpoint_ops method for
12925 dprintf.
12926
12927 dprintf's are implemented with regular commands in their command
12928 list, but we run the commands here instead of before presenting the
12929 stop to the user, as dprintf's don't actually cause a stop. This
12930 also makes it so that the commands of multiple dprintfs at the same
12931 address are all handled. */
12932
12933 static void
12934 dprintf_after_condition_true (struct bpstats *bs)
12935 {
12936 struct bpstats tmp_bs;
12937 struct bpstats *tmp_bs_p = &tmp_bs;
12938
12939 /* dprintf's never cause a stop. This wasn't set in the
12940 check_status hook instead because that would make the dprintf's
12941 condition not be evaluated. */
12942 bs->stop = 0;
12943
12944 /* Run the command list here. Take ownership of it instead of
12945 copying. We never want these commands to run later in
12946 bpstat_do_actions, if a breakpoint that causes a stop happens to
12947 be set at same address as this dprintf, or even if running the
12948 commands here throws. */
12949 tmp_bs.commands = bs->commands;
12950 bs->commands = NULL;
12951
12952 bpstat_do_actions_1 (&tmp_bs_p);
12953
12954 /* 'tmp_bs.commands' will usually be NULL by now, but
12955 bpstat_do_actions_1 may return early without processing the whole
12956 list. */
12957 }
12958
12959 /* The breakpoint_ops structure to be used on static tracepoints with
12960 markers (`-m'). */
12961
12962 static void
12963 strace_marker_create_sals_from_location (struct event_location *location,
12964 struct linespec_result *canonical,
12965 enum bptype type_wanted)
12966 {
12967 struct linespec_sals lsal;
12968 const char *arg_start, *arg;
12969
12970 arg = arg_start = get_linespec_location (location)->spec_string;
12971 lsal.sals = decode_static_tracepoint_spec (&arg);
12972
12973 std::string str (arg_start, arg - arg_start);
12974 const char *ptr = str.c_str ();
12975 canonical->location
12976 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12977
12978 lsal.canonical
12979 = xstrdup (event_location_to_string (canonical->location.get ()));
12980 canonical->lsals.push_back (std::move (lsal));
12981 }
12982
12983 static void
12984 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12985 struct linespec_result *canonical,
12986 gdb::unique_xmalloc_ptr<char> cond_string,
12987 gdb::unique_xmalloc_ptr<char> extra_string,
12988 enum bptype type_wanted,
12989 enum bpdisp disposition,
12990 int thread,
12991 int task, int ignore_count,
12992 const struct breakpoint_ops *ops,
12993 int from_tty, int enabled,
12994 int internal, unsigned flags)
12995 {
12996 const linespec_sals &lsal = canonical->lsals[0];
12997
12998 /* If the user is creating a static tracepoint by marker id
12999 (strace -m MARKER_ID), then store the sals index, so that
13000 breakpoint_re_set can try to match up which of the newly
13001 found markers corresponds to this one, and, don't try to
13002 expand multiple locations for each sal, given than SALS
13003 already should contain all sals for MARKER_ID. */
13004
13005 for (size_t i = 0; i < lsal.sals.size (); i++)
13006 {
13007 event_location_up location
13008 = copy_event_location (canonical->location.get ());
13009
13010 std::unique_ptr<tracepoint> tp (new tracepoint ());
13011 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13012 std::move (location), NULL,
13013 std::move (cond_string),
13014 std::move (extra_string),
13015 type_wanted, disposition,
13016 thread, task, ignore_count, ops,
13017 from_tty, enabled, internal, flags,
13018 canonical->special_display);
13019 /* Given that its possible to have multiple markers with
13020 the same string id, if the user is creating a static
13021 tracepoint by marker id ("strace -m MARKER_ID"), then
13022 store the sals index, so that breakpoint_re_set can
13023 try to match up which of the newly found markers
13024 corresponds to this one */
13025 tp->static_trace_marker_id_idx = i;
13026
13027 install_breakpoint (internal, std::move (tp), 0);
13028 }
13029 }
13030
13031 static std::vector<symtab_and_line>
13032 strace_marker_decode_location (struct breakpoint *b,
13033 struct event_location *location,
13034 struct program_space *search_pspace)
13035 {
13036 struct tracepoint *tp = (struct tracepoint *) b;
13037 const char *s = get_linespec_location (location)->spec_string;
13038
13039 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13040 if (sals.size () > tp->static_trace_marker_id_idx)
13041 {
13042 sals[0] = sals[tp->static_trace_marker_id_idx];
13043 sals.resize (1);
13044 return sals;
13045 }
13046 else
13047 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13048 }
13049
13050 static struct breakpoint_ops strace_marker_breakpoint_ops;
13051
13052 static int
13053 strace_marker_p (struct breakpoint *b)
13054 {
13055 return b->ops == &strace_marker_breakpoint_ops;
13056 }
13057
13058 /* Delete a breakpoint and clean up all traces of it in the data
13059 structures. */
13060
13061 void
13062 delete_breakpoint (struct breakpoint *bpt)
13063 {
13064 struct breakpoint *b;
13065
13066 gdb_assert (bpt != NULL);
13067
13068 /* Has this bp already been deleted? This can happen because
13069 multiple lists can hold pointers to bp's. bpstat lists are
13070 especial culprits.
13071
13072 One example of this happening is a watchpoint's scope bp. When
13073 the scope bp triggers, we notice that the watchpoint is out of
13074 scope, and delete it. We also delete its scope bp. But the
13075 scope bp is marked "auto-deleting", and is already on a bpstat.
13076 That bpstat is then checked for auto-deleting bp's, which are
13077 deleted.
13078
13079 A real solution to this problem might involve reference counts in
13080 bp's, and/or giving them pointers back to their referencing
13081 bpstat's, and teaching delete_breakpoint to only free a bp's
13082 storage when no more references were extent. A cheaper bandaid
13083 was chosen. */
13084 if (bpt->type == bp_none)
13085 return;
13086
13087 /* At least avoid this stale reference until the reference counting
13088 of breakpoints gets resolved. */
13089 if (bpt->related_breakpoint != bpt)
13090 {
13091 struct breakpoint *related;
13092 struct watchpoint *w;
13093
13094 if (bpt->type == bp_watchpoint_scope)
13095 w = (struct watchpoint *) bpt->related_breakpoint;
13096 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13097 w = (struct watchpoint *) bpt;
13098 else
13099 w = NULL;
13100 if (w != NULL)
13101 watchpoint_del_at_next_stop (w);
13102
13103 /* Unlink bpt from the bpt->related_breakpoint ring. */
13104 for (related = bpt; related->related_breakpoint != bpt;
13105 related = related->related_breakpoint);
13106 related->related_breakpoint = bpt->related_breakpoint;
13107 bpt->related_breakpoint = bpt;
13108 }
13109
13110 /* watch_command_1 creates a watchpoint but only sets its number if
13111 update_watchpoint succeeds in creating its bp_locations. If there's
13112 a problem in that process, we'll be asked to delete the half-created
13113 watchpoint. In that case, don't announce the deletion. */
13114 if (bpt->number)
13115 gdb::observers::breakpoint_deleted.notify (bpt);
13116
13117 if (breakpoint_chain == bpt)
13118 breakpoint_chain = bpt->next;
13119
13120 ALL_BREAKPOINTS (b)
13121 if (b->next == bpt)
13122 {
13123 b->next = bpt->next;
13124 break;
13125 }
13126
13127 /* Be sure no bpstat's are pointing at the breakpoint after it's
13128 been freed. */
13129 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13130 in all threads for now. Note that we cannot just remove bpstats
13131 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13132 commands are associated with the bpstat; if we remove it here,
13133 then the later call to bpstat_do_actions (&stop_bpstat); in
13134 event-top.c won't do anything, and temporary breakpoints with
13135 commands won't work. */
13136
13137 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13138
13139 /* Now that breakpoint is removed from breakpoint list, update the
13140 global location list. This will remove locations that used to
13141 belong to this breakpoint. Do this before freeing the breakpoint
13142 itself, since remove_breakpoint looks at location's owner. It
13143 might be better design to have location completely
13144 self-contained, but it's not the case now. */
13145 update_global_location_list (UGLL_DONT_INSERT);
13146
13147 /* On the chance that someone will soon try again to delete this
13148 same bp, we mark it as deleted before freeing its storage. */
13149 bpt->type = bp_none;
13150 delete bpt;
13151 }
13152
13153 /* Iterator function to call a user-provided callback function once
13154 for each of B and its related breakpoints. */
13155
13156 static void
13157 iterate_over_related_breakpoints (struct breakpoint *b,
13158 gdb::function_view<void (breakpoint *)> function)
13159 {
13160 struct breakpoint *related;
13161
13162 related = b;
13163 do
13164 {
13165 struct breakpoint *next;
13166
13167 /* FUNCTION may delete RELATED. */
13168 next = related->related_breakpoint;
13169
13170 if (next == related)
13171 {
13172 /* RELATED is the last ring entry. */
13173 function (related);
13174
13175 /* FUNCTION may have deleted it, so we'd never reach back to
13176 B. There's nothing left to do anyway, so just break
13177 out. */
13178 break;
13179 }
13180 else
13181 function (related);
13182
13183 related = next;
13184 }
13185 while (related != b);
13186 }
13187
13188 static void
13189 delete_command (const char *arg, int from_tty)
13190 {
13191 struct breakpoint *b, *b_tmp;
13192
13193 dont_repeat ();
13194
13195 if (arg == 0)
13196 {
13197 int breaks_to_delete = 0;
13198
13199 /* Delete all breakpoints if no argument. Do not delete
13200 internal breakpoints, these have to be deleted with an
13201 explicit breakpoint number argument. */
13202 ALL_BREAKPOINTS (b)
13203 if (user_breakpoint_p (b))
13204 {
13205 breaks_to_delete = 1;
13206 break;
13207 }
13208
13209 /* Ask user only if there are some breakpoints to delete. */
13210 if (!from_tty
13211 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13212 {
13213 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13214 if (user_breakpoint_p (b))
13215 delete_breakpoint (b);
13216 }
13217 }
13218 else
13219 map_breakpoint_numbers
13220 (arg, [&] (breakpoint *br)
13221 {
13222 iterate_over_related_breakpoints (br, delete_breakpoint);
13223 });
13224 }
13225
13226 /* Return true if all locations of B bound to PSPACE are pending. If
13227 PSPACE is NULL, all locations of all program spaces are
13228 considered. */
13229
13230 static int
13231 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13232 {
13233 struct bp_location *loc;
13234
13235 for (loc = b->loc; loc != NULL; loc = loc->next)
13236 if ((pspace == NULL
13237 || loc->pspace == pspace)
13238 && !loc->shlib_disabled
13239 && !loc->pspace->executing_startup)
13240 return 0;
13241 return 1;
13242 }
13243
13244 /* Subroutine of update_breakpoint_locations to simplify it.
13245 Return non-zero if multiple fns in list LOC have the same name.
13246 Null names are ignored. */
13247
13248 static int
13249 ambiguous_names_p (struct bp_location *loc)
13250 {
13251 struct bp_location *l;
13252 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13253 xcalloc, xfree);
13254
13255 for (l = loc; l != NULL; l = l->next)
13256 {
13257 const char **slot;
13258 const char *name = l->function_name;
13259
13260 /* Allow for some names to be NULL, ignore them. */
13261 if (name == NULL)
13262 continue;
13263
13264 slot = (const char **) htab_find_slot (htab, (const void *) name,
13265 INSERT);
13266 /* NOTE: We can assume slot != NULL here because xcalloc never
13267 returns NULL. */
13268 if (*slot != NULL)
13269 {
13270 htab_delete (htab);
13271 return 1;
13272 }
13273 *slot = name;
13274 }
13275
13276 htab_delete (htab);
13277 return 0;
13278 }
13279
13280 /* When symbols change, it probably means the sources changed as well,
13281 and it might mean the static tracepoint markers are no longer at
13282 the same address or line numbers they used to be at last we
13283 checked. Losing your static tracepoints whenever you rebuild is
13284 undesirable. This function tries to resync/rematch gdb static
13285 tracepoints with the markers on the target, for static tracepoints
13286 that have not been set by marker id. Static tracepoint that have
13287 been set by marker id are reset by marker id in breakpoint_re_set.
13288 The heuristic is:
13289
13290 1) For a tracepoint set at a specific address, look for a marker at
13291 the old PC. If one is found there, assume to be the same marker.
13292 If the name / string id of the marker found is different from the
13293 previous known name, assume that means the user renamed the marker
13294 in the sources, and output a warning.
13295
13296 2) For a tracepoint set at a given line number, look for a marker
13297 at the new address of the old line number. If one is found there,
13298 assume to be the same marker. If the name / string id of the
13299 marker found is different from the previous known name, assume that
13300 means the user renamed the marker in the sources, and output a
13301 warning.
13302
13303 3) If a marker is no longer found at the same address or line, it
13304 may mean the marker no longer exists. But it may also just mean
13305 the code changed a bit. Maybe the user added a few lines of code
13306 that made the marker move up or down (in line number terms). Ask
13307 the target for info about the marker with the string id as we knew
13308 it. If found, update line number and address in the matching
13309 static tracepoint. This will get confused if there's more than one
13310 marker with the same ID (possible in UST, although unadvised
13311 precisely because it confuses tools). */
13312
13313 static struct symtab_and_line
13314 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13315 {
13316 struct tracepoint *tp = (struct tracepoint *) b;
13317 struct static_tracepoint_marker marker;
13318 CORE_ADDR pc;
13319
13320 pc = sal.pc;
13321 if (sal.line)
13322 find_line_pc (sal.symtab, sal.line, &pc);
13323
13324 if (target_static_tracepoint_marker_at (pc, &marker))
13325 {
13326 if (tp->static_trace_marker_id != marker.str_id)
13327 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13328 b->number, tp->static_trace_marker_id.c_str (),
13329 marker.str_id.c_str ());
13330
13331 tp->static_trace_marker_id = std::move (marker.str_id);
13332
13333 return sal;
13334 }
13335
13336 /* Old marker wasn't found on target at lineno. Try looking it up
13337 by string ID. */
13338 if (!sal.explicit_pc
13339 && sal.line != 0
13340 && sal.symtab != NULL
13341 && !tp->static_trace_marker_id.empty ())
13342 {
13343 std::vector<static_tracepoint_marker> markers
13344 = target_static_tracepoint_markers_by_strid
13345 (tp->static_trace_marker_id.c_str ());
13346
13347 if (!markers.empty ())
13348 {
13349 struct symbol *sym;
13350 struct static_tracepoint_marker *tpmarker;
13351 struct ui_out *uiout = current_uiout;
13352 struct explicit_location explicit_loc;
13353
13354 tpmarker = &markers[0];
13355
13356 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13357
13358 warning (_("marker for static tracepoint %d (%s) not "
13359 "found at previous line number"),
13360 b->number, tp->static_trace_marker_id.c_str ());
13361
13362 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13363 sym = find_pc_sect_function (tpmarker->address, NULL);
13364 uiout->text ("Now in ");
13365 if (sym)
13366 {
13367 uiout->field_string ("func", sym->print_name (),
13368 function_name_style.style ());
13369 uiout->text (" at ");
13370 }
13371 uiout->field_string ("file",
13372 symtab_to_filename_for_display (sal2.symtab),
13373 file_name_style.style ());
13374 uiout->text (":");
13375
13376 if (uiout->is_mi_like_p ())
13377 {
13378 const char *fullname = symtab_to_fullname (sal2.symtab);
13379
13380 uiout->field_string ("fullname", fullname);
13381 }
13382
13383 uiout->field_signed ("line", sal2.line);
13384 uiout->text ("\n");
13385
13386 b->loc->line_number = sal2.line;
13387 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13388
13389 b->location.reset (NULL);
13390 initialize_explicit_location (&explicit_loc);
13391 explicit_loc.source_filename
13392 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13393 explicit_loc.line_offset.offset = b->loc->line_number;
13394 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13395 b->location = new_explicit_location (&explicit_loc);
13396
13397 /* Might be nice to check if function changed, and warn if
13398 so. */
13399 }
13400 }
13401 return sal;
13402 }
13403
13404 /* Returns 1 iff locations A and B are sufficiently same that
13405 we don't need to report breakpoint as changed. */
13406
13407 static int
13408 locations_are_equal (struct bp_location *a, struct bp_location *b)
13409 {
13410 while (a && b)
13411 {
13412 if (a->address != b->address)
13413 return 0;
13414
13415 if (a->shlib_disabled != b->shlib_disabled)
13416 return 0;
13417
13418 if (a->enabled != b->enabled)
13419 return 0;
13420
13421 a = a->next;
13422 b = b->next;
13423 }
13424
13425 if ((a == NULL) != (b == NULL))
13426 return 0;
13427
13428 return 1;
13429 }
13430
13431 /* Split all locations of B that are bound to PSPACE out of B's
13432 location list to a separate list and return that list's head. If
13433 PSPACE is NULL, hoist out all locations of B. */
13434
13435 static struct bp_location *
13436 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13437 {
13438 struct bp_location head;
13439 struct bp_location *i = b->loc;
13440 struct bp_location **i_link = &b->loc;
13441 struct bp_location *hoisted = &head;
13442
13443 if (pspace == NULL)
13444 {
13445 i = b->loc;
13446 b->loc = NULL;
13447 return i;
13448 }
13449
13450 head.next = NULL;
13451
13452 while (i != NULL)
13453 {
13454 if (i->pspace == pspace)
13455 {
13456 *i_link = i->next;
13457 i->next = NULL;
13458 hoisted->next = i;
13459 hoisted = i;
13460 }
13461 else
13462 i_link = &i->next;
13463 i = *i_link;
13464 }
13465
13466 return head.next;
13467 }
13468
13469 /* Create new breakpoint locations for B (a hardware or software
13470 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13471 zero, then B is a ranged breakpoint. Only recreates locations for
13472 FILTER_PSPACE. Locations of other program spaces are left
13473 untouched. */
13474
13475 void
13476 update_breakpoint_locations (struct breakpoint *b,
13477 struct program_space *filter_pspace,
13478 gdb::array_view<const symtab_and_line> sals,
13479 gdb::array_view<const symtab_and_line> sals_end)
13480 {
13481 struct bp_location *existing_locations;
13482
13483 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13484 {
13485 /* Ranged breakpoints have only one start location and one end
13486 location. */
13487 b->enable_state = bp_disabled;
13488 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13489 "multiple locations found\n"),
13490 b->number);
13491 return;
13492 }
13493
13494 /* If there's no new locations, and all existing locations are
13495 pending, don't do anything. This optimizes the common case where
13496 all locations are in the same shared library, that was unloaded.
13497 We'd like to retain the location, so that when the library is
13498 loaded again, we don't loose the enabled/disabled status of the
13499 individual locations. */
13500 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13501 return;
13502
13503 existing_locations = hoist_existing_locations (b, filter_pspace);
13504
13505 for (const auto &sal : sals)
13506 {
13507 struct bp_location *new_loc;
13508
13509 switch_to_program_space_and_thread (sal.pspace);
13510
13511 new_loc = add_location_to_breakpoint (b, &sal);
13512
13513 /* Reparse conditions, they might contain references to the
13514 old symtab. */
13515 if (b->cond_string != NULL)
13516 {
13517 const char *s;
13518
13519 s = b->cond_string;
13520 try
13521 {
13522 new_loc->cond = parse_exp_1 (&s, sal.pc,
13523 block_for_pc (sal.pc),
13524 0);
13525 }
13526 catch (const gdb_exception_error &e)
13527 {
13528 warning (_("failed to reevaluate condition "
13529 "for breakpoint %d: %s"),
13530 b->number, e.what ());
13531 new_loc->enabled = 0;
13532 }
13533 }
13534
13535 if (!sals_end.empty ())
13536 {
13537 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13538
13539 new_loc->length = end - sals[0].pc + 1;
13540 }
13541 }
13542
13543 /* If possible, carry over 'disable' status from existing
13544 breakpoints. */
13545 {
13546 struct bp_location *e = existing_locations;
13547 /* If there are multiple breakpoints with the same function name,
13548 e.g. for inline functions, comparing function names won't work.
13549 Instead compare pc addresses; this is just a heuristic as things
13550 may have moved, but in practice it gives the correct answer
13551 often enough until a better solution is found. */
13552 int have_ambiguous_names = ambiguous_names_p (b->loc);
13553
13554 for (; e; e = e->next)
13555 {
13556 if (!e->enabled && e->function_name)
13557 {
13558 struct bp_location *l = b->loc;
13559 if (have_ambiguous_names)
13560 {
13561 for (; l; l = l->next)
13562 {
13563 /* Ignore software vs hardware location type at
13564 this point, because with "set breakpoint
13565 auto-hw", after a re-set, locations that were
13566 hardware can end up as software, or vice versa.
13567 As mentioned above, this is an heuristic and in
13568 practice should give the correct answer often
13569 enough. */
13570 if (breakpoint_locations_match (e, l, true))
13571 {
13572 l->enabled = 0;
13573 break;
13574 }
13575 }
13576 }
13577 else
13578 {
13579 for (; l; l = l->next)
13580 if (l->function_name
13581 && strcmp (e->function_name, l->function_name) == 0)
13582 {
13583 l->enabled = 0;
13584 break;
13585 }
13586 }
13587 }
13588 }
13589 }
13590
13591 if (!locations_are_equal (existing_locations, b->loc))
13592 gdb::observers::breakpoint_modified.notify (b);
13593 }
13594
13595 /* Find the SaL locations corresponding to the given LOCATION.
13596 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13597
13598 static std::vector<symtab_and_line>
13599 location_to_sals (struct breakpoint *b, struct event_location *location,
13600 struct program_space *search_pspace, int *found)
13601 {
13602 struct gdb_exception exception;
13603
13604 gdb_assert (b->ops != NULL);
13605
13606 std::vector<symtab_and_line> sals;
13607
13608 try
13609 {
13610 sals = b->ops->decode_location (b, location, search_pspace);
13611 }
13612 catch (gdb_exception_error &e)
13613 {
13614 int not_found_and_ok = 0;
13615
13616 /* For pending breakpoints, it's expected that parsing will
13617 fail until the right shared library is loaded. User has
13618 already told to create pending breakpoints and don't need
13619 extra messages. If breakpoint is in bp_shlib_disabled
13620 state, then user already saw the message about that
13621 breakpoint being disabled, and don't want to see more
13622 errors. */
13623 if (e.error == NOT_FOUND_ERROR
13624 && (b->condition_not_parsed
13625 || (b->loc != NULL
13626 && search_pspace != NULL
13627 && b->loc->pspace != search_pspace)
13628 || (b->loc && b->loc->shlib_disabled)
13629 || (b->loc && b->loc->pspace->executing_startup)
13630 || b->enable_state == bp_disabled))
13631 not_found_and_ok = 1;
13632
13633 if (!not_found_and_ok)
13634 {
13635 /* We surely don't want to warn about the same breakpoint
13636 10 times. One solution, implemented here, is disable
13637 the breakpoint on error. Another solution would be to
13638 have separate 'warning emitted' flag. Since this
13639 happens only when a binary has changed, I don't know
13640 which approach is better. */
13641 b->enable_state = bp_disabled;
13642 throw;
13643 }
13644
13645 exception = std::move (e);
13646 }
13647
13648 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13649 {
13650 for (auto &sal : sals)
13651 resolve_sal_pc (&sal);
13652 if (b->condition_not_parsed && b->extra_string != NULL)
13653 {
13654 char *cond_string, *extra_string;
13655 int thread, task;
13656
13657 find_condition_and_thread (b->extra_string, sals[0].pc,
13658 &cond_string, &thread, &task,
13659 &extra_string);
13660 gdb_assert (b->cond_string == NULL);
13661 if (cond_string)
13662 b->cond_string = cond_string;
13663 b->thread = thread;
13664 b->task = task;
13665 if (extra_string)
13666 {
13667 xfree (b->extra_string);
13668 b->extra_string = extra_string;
13669 }
13670 b->condition_not_parsed = 0;
13671 }
13672
13673 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13674 sals[0] = update_static_tracepoint (b, sals[0]);
13675
13676 *found = 1;
13677 }
13678 else
13679 *found = 0;
13680
13681 return sals;
13682 }
13683
13684 /* The default re_set method, for typical hardware or software
13685 breakpoints. Reevaluate the breakpoint and recreate its
13686 locations. */
13687
13688 static void
13689 breakpoint_re_set_default (struct breakpoint *b)
13690 {
13691 struct program_space *filter_pspace = current_program_space;
13692 std::vector<symtab_and_line> expanded, expanded_end;
13693
13694 int found;
13695 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13696 filter_pspace, &found);
13697 if (found)
13698 expanded = std::move (sals);
13699
13700 if (b->location_range_end != NULL)
13701 {
13702 std::vector<symtab_and_line> sals_end
13703 = location_to_sals (b, b->location_range_end.get (),
13704 filter_pspace, &found);
13705 if (found)
13706 expanded_end = std::move (sals_end);
13707 }
13708
13709 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13710 }
13711
13712 /* Default method for creating SALs from an address string. It basically
13713 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13714
13715 static void
13716 create_sals_from_location_default (struct event_location *location,
13717 struct linespec_result *canonical,
13718 enum bptype type_wanted)
13719 {
13720 parse_breakpoint_sals (location, canonical);
13721 }
13722
13723 /* Call create_breakpoints_sal for the given arguments. This is the default
13724 function for the `create_breakpoints_sal' method of
13725 breakpoint_ops. */
13726
13727 static void
13728 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13729 struct linespec_result *canonical,
13730 gdb::unique_xmalloc_ptr<char> cond_string,
13731 gdb::unique_xmalloc_ptr<char> extra_string,
13732 enum bptype type_wanted,
13733 enum bpdisp disposition,
13734 int thread,
13735 int task, int ignore_count,
13736 const struct breakpoint_ops *ops,
13737 int from_tty, int enabled,
13738 int internal, unsigned flags)
13739 {
13740 create_breakpoints_sal (gdbarch, canonical,
13741 std::move (cond_string),
13742 std::move (extra_string),
13743 type_wanted, disposition,
13744 thread, task, ignore_count, ops, from_tty,
13745 enabled, internal, flags);
13746 }
13747
13748 /* Decode the line represented by S by calling decode_line_full. This is the
13749 default function for the `decode_location' method of breakpoint_ops. */
13750
13751 static std::vector<symtab_and_line>
13752 decode_location_default (struct breakpoint *b,
13753 struct event_location *location,
13754 struct program_space *search_pspace)
13755 {
13756 struct linespec_result canonical;
13757
13758 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13759 NULL, 0, &canonical, multiple_symbols_all,
13760 b->filter.get ());
13761
13762 /* We should get 0 or 1 resulting SALs. */
13763 gdb_assert (canonical.lsals.size () < 2);
13764
13765 if (!canonical.lsals.empty ())
13766 {
13767 const linespec_sals &lsal = canonical.lsals[0];
13768 return std::move (lsal.sals);
13769 }
13770 return {};
13771 }
13772
13773 /* Reset a breakpoint. */
13774
13775 static void
13776 breakpoint_re_set_one (breakpoint *b)
13777 {
13778 input_radix = b->input_radix;
13779 set_language (b->language);
13780
13781 b->ops->re_set (b);
13782 }
13783
13784 /* Re-set breakpoint locations for the current program space.
13785 Locations bound to other program spaces are left untouched. */
13786
13787 void
13788 breakpoint_re_set (void)
13789 {
13790 struct breakpoint *b, *b_tmp;
13791
13792 {
13793 scoped_restore_current_language save_language;
13794 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13795 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13796
13797 /* breakpoint_re_set_one sets the current_language to the language
13798 of the breakpoint it is resetting (see prepare_re_set_context)
13799 before re-evaluating the breakpoint's location. This change can
13800 unfortunately get undone by accident if the language_mode is set
13801 to auto, and we either switch frames, or more likely in this context,
13802 we select the current frame.
13803
13804 We prevent this by temporarily turning the language_mode to
13805 language_mode_manual. We restore it once all breakpoints
13806 have been reset. */
13807 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13808 language_mode = language_mode_manual;
13809
13810 /* Note: we must not try to insert locations until after all
13811 breakpoints have been re-set. Otherwise, e.g., when re-setting
13812 breakpoint 1, we'd insert the locations of breakpoint 2, which
13813 hadn't been re-set yet, and thus may have stale locations. */
13814
13815 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13816 {
13817 try
13818 {
13819 breakpoint_re_set_one (b);
13820 }
13821 catch (const gdb_exception &ex)
13822 {
13823 exception_fprintf (gdb_stderr, ex,
13824 "Error in re-setting breakpoint %d: ",
13825 b->number);
13826 }
13827 }
13828
13829 jit_breakpoint_re_set ();
13830 }
13831
13832 create_overlay_event_breakpoint ();
13833 create_longjmp_master_breakpoint ();
13834 create_std_terminate_master_breakpoint ();
13835 create_exception_master_breakpoint ();
13836
13837 /* Now we can insert. */
13838 update_global_location_list (UGLL_MAY_INSERT);
13839 }
13840 \f
13841 /* Reset the thread number of this breakpoint:
13842
13843 - If the breakpoint is for all threads, leave it as-is.
13844 - Else, reset it to the current thread for inferior_ptid. */
13845 void
13846 breakpoint_re_set_thread (struct breakpoint *b)
13847 {
13848 if (b->thread != -1)
13849 {
13850 b->thread = inferior_thread ()->global_num;
13851
13852 /* We're being called after following a fork. The new fork is
13853 selected as current, and unless this was a vfork will have a
13854 different program space from the original thread. Reset that
13855 as well. */
13856 b->loc->pspace = current_program_space;
13857 }
13858 }
13859
13860 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13861 If from_tty is nonzero, it prints a message to that effect,
13862 which ends with a period (no newline). */
13863
13864 void
13865 set_ignore_count (int bptnum, int count, int from_tty)
13866 {
13867 struct breakpoint *b;
13868
13869 if (count < 0)
13870 count = 0;
13871
13872 ALL_BREAKPOINTS (b)
13873 if (b->number == bptnum)
13874 {
13875 if (is_tracepoint (b))
13876 {
13877 if (from_tty && count != 0)
13878 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13879 bptnum);
13880 return;
13881 }
13882
13883 b->ignore_count = count;
13884 if (from_tty)
13885 {
13886 if (count == 0)
13887 printf_filtered (_("Will stop next time "
13888 "breakpoint %d is reached."),
13889 bptnum);
13890 else if (count == 1)
13891 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13892 bptnum);
13893 else
13894 printf_filtered (_("Will ignore next %d "
13895 "crossings of breakpoint %d."),
13896 count, bptnum);
13897 }
13898 gdb::observers::breakpoint_modified.notify (b);
13899 return;
13900 }
13901
13902 error (_("No breakpoint number %d."), bptnum);
13903 }
13904
13905 /* Command to set ignore-count of breakpoint N to COUNT. */
13906
13907 static void
13908 ignore_command (const char *args, int from_tty)
13909 {
13910 const char *p = args;
13911 int num;
13912
13913 if (p == 0)
13914 error_no_arg (_("a breakpoint number"));
13915
13916 num = get_number (&p);
13917 if (num == 0)
13918 error (_("bad breakpoint number: '%s'"), args);
13919 if (*p == 0)
13920 error (_("Second argument (specified ignore-count) is missing."));
13921
13922 set_ignore_count (num,
13923 longest_to_int (value_as_long (parse_and_eval (p))),
13924 from_tty);
13925 if (from_tty)
13926 printf_filtered ("\n");
13927 }
13928 \f
13929
13930 /* Call FUNCTION on each of the breakpoints with numbers in the range
13931 defined by BP_NUM_RANGE (an inclusive range). */
13932
13933 static void
13934 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13935 gdb::function_view<void (breakpoint *)> function)
13936 {
13937 if (bp_num_range.first == 0)
13938 {
13939 warning (_("bad breakpoint number at or near '%d'"),
13940 bp_num_range.first);
13941 }
13942 else
13943 {
13944 struct breakpoint *b, *tmp;
13945
13946 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13947 {
13948 bool match = false;
13949
13950 ALL_BREAKPOINTS_SAFE (b, tmp)
13951 if (b->number == i)
13952 {
13953 match = true;
13954 function (b);
13955 break;
13956 }
13957 if (!match)
13958 printf_unfiltered (_("No breakpoint number %d.\n"), i);
13959 }
13960 }
13961 }
13962
13963 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13964 ARGS. */
13965
13966 static void
13967 map_breakpoint_numbers (const char *args,
13968 gdb::function_view<void (breakpoint *)> function)
13969 {
13970 if (args == NULL || *args == '\0')
13971 error_no_arg (_("one or more breakpoint numbers"));
13972
13973 number_or_range_parser parser (args);
13974
13975 while (!parser.finished ())
13976 {
13977 int num = parser.get_number ();
13978 map_breakpoint_number_range (std::make_pair (num, num), function);
13979 }
13980 }
13981
13982 /* Return the breakpoint location structure corresponding to the
13983 BP_NUM and LOC_NUM values. */
13984
13985 static struct bp_location *
13986 find_location_by_number (int bp_num, int loc_num)
13987 {
13988 struct breakpoint *b;
13989
13990 ALL_BREAKPOINTS (b)
13991 if (b->number == bp_num)
13992 {
13993 break;
13994 }
13995
13996 if (!b || b->number != bp_num)
13997 error (_("Bad breakpoint number '%d'"), bp_num);
13998
13999 if (loc_num == 0)
14000 error (_("Bad breakpoint location number '%d'"), loc_num);
14001
14002 int n = 0;
14003 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14004 if (++n == loc_num)
14005 return loc;
14006
14007 error (_("Bad breakpoint location number '%d'"), loc_num);
14008 }
14009
14010 /* Modes of operation for extract_bp_num. */
14011 enum class extract_bp_kind
14012 {
14013 /* Extracting a breakpoint number. */
14014 bp,
14015
14016 /* Extracting a location number. */
14017 loc,
14018 };
14019
14020 /* Extract a breakpoint or location number (as determined by KIND)
14021 from the string starting at START. TRAILER is a character which
14022 can be found after the number. If you don't want a trailer, use
14023 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14024 string. This always returns a positive integer. */
14025
14026 static int
14027 extract_bp_num (extract_bp_kind kind, const char *start,
14028 int trailer, const char **end_out = NULL)
14029 {
14030 const char *end = start;
14031 int num = get_number_trailer (&end, trailer);
14032 if (num < 0)
14033 error (kind == extract_bp_kind::bp
14034 ? _("Negative breakpoint number '%.*s'")
14035 : _("Negative breakpoint location number '%.*s'"),
14036 int (end - start), start);
14037 if (num == 0)
14038 error (kind == extract_bp_kind::bp
14039 ? _("Bad breakpoint number '%.*s'")
14040 : _("Bad breakpoint location number '%.*s'"),
14041 int (end - start), start);
14042
14043 if (end_out != NULL)
14044 *end_out = end;
14045 return num;
14046 }
14047
14048 /* Extract a breakpoint or location range (as determined by KIND) in
14049 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14050 representing the (inclusive) range. The returned pair's elements
14051 are always positive integers. */
14052
14053 static std::pair<int, int>
14054 extract_bp_or_bp_range (extract_bp_kind kind,
14055 const std::string &arg,
14056 std::string::size_type arg_offset)
14057 {
14058 std::pair<int, int> range;
14059 const char *bp_loc = &arg[arg_offset];
14060 std::string::size_type dash = arg.find ('-', arg_offset);
14061 if (dash != std::string::npos)
14062 {
14063 /* bp_loc is a range (x-z). */
14064 if (arg.length () == dash + 1)
14065 error (kind == extract_bp_kind::bp
14066 ? _("Bad breakpoint number at or near: '%s'")
14067 : _("Bad breakpoint location number at or near: '%s'"),
14068 bp_loc);
14069
14070 const char *end;
14071 const char *start_first = bp_loc;
14072 const char *start_second = &arg[dash + 1];
14073 range.first = extract_bp_num (kind, start_first, '-');
14074 range.second = extract_bp_num (kind, start_second, '\0', &end);
14075
14076 if (range.first > range.second)
14077 error (kind == extract_bp_kind::bp
14078 ? _("Inverted breakpoint range at '%.*s'")
14079 : _("Inverted breakpoint location range at '%.*s'"),
14080 int (end - start_first), start_first);
14081 }
14082 else
14083 {
14084 /* bp_loc is a single value. */
14085 range.first = extract_bp_num (kind, bp_loc, '\0');
14086 range.second = range.first;
14087 }
14088 return range;
14089 }
14090
14091 /* Extract the breakpoint/location range specified by ARG. Returns
14092 the breakpoint range in BP_NUM_RANGE, and the location range in
14093 BP_LOC_RANGE.
14094
14095 ARG may be in any of the following forms:
14096
14097 x where 'x' is a breakpoint number.
14098 x-y where 'x' and 'y' specify a breakpoint numbers range.
14099 x.y where 'x' is a breakpoint number and 'y' a location number.
14100 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14101 location number range.
14102 */
14103
14104 static void
14105 extract_bp_number_and_location (const std::string &arg,
14106 std::pair<int, int> &bp_num_range,
14107 std::pair<int, int> &bp_loc_range)
14108 {
14109 std::string::size_type dot = arg.find ('.');
14110
14111 if (dot != std::string::npos)
14112 {
14113 /* Handle 'x.y' and 'x.y-z' cases. */
14114
14115 if (arg.length () == dot + 1 || dot == 0)
14116 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14117
14118 bp_num_range.first
14119 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14120 bp_num_range.second = bp_num_range.first;
14121
14122 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14123 arg, dot + 1);
14124 }
14125 else
14126 {
14127 /* Handle x and x-y cases. */
14128
14129 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14130 bp_loc_range.first = 0;
14131 bp_loc_range.second = 0;
14132 }
14133 }
14134
14135 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14136 specifies whether to enable or disable. */
14137
14138 static void
14139 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14140 {
14141 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14142 if (loc != NULL)
14143 {
14144 if (loc->enabled != enable)
14145 {
14146 loc->enabled = enable;
14147 mark_breakpoint_location_modified (loc);
14148 }
14149 if (target_supports_enable_disable_tracepoint ()
14150 && current_trace_status ()->running && loc->owner
14151 && is_tracepoint (loc->owner))
14152 target_disable_tracepoint (loc);
14153 }
14154 update_global_location_list (UGLL_DONT_INSERT);
14155
14156 gdb::observers::breakpoint_modified.notify (loc->owner);
14157 }
14158
14159 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14160 number of the breakpoint, and BP_LOC_RANGE specifies the
14161 (inclusive) range of location numbers of that breakpoint to
14162 enable/disable. ENABLE specifies whether to enable or disable the
14163 location. */
14164
14165 static void
14166 enable_disable_breakpoint_location_range (int bp_num,
14167 std::pair<int, int> &bp_loc_range,
14168 bool enable)
14169 {
14170 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14171 enable_disable_bp_num_loc (bp_num, i, enable);
14172 }
14173
14174 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14175 If from_tty is nonzero, it prints a message to that effect,
14176 which ends with a period (no newline). */
14177
14178 void
14179 disable_breakpoint (struct breakpoint *bpt)
14180 {
14181 /* Never disable a watchpoint scope breakpoint; we want to
14182 hit them when we leave scope so we can delete both the
14183 watchpoint and its scope breakpoint at that time. */
14184 if (bpt->type == bp_watchpoint_scope)
14185 return;
14186
14187 bpt->enable_state = bp_disabled;
14188
14189 /* Mark breakpoint locations modified. */
14190 mark_breakpoint_modified (bpt);
14191
14192 if (target_supports_enable_disable_tracepoint ()
14193 && current_trace_status ()->running && is_tracepoint (bpt))
14194 {
14195 struct bp_location *location;
14196
14197 for (location = bpt->loc; location; location = location->next)
14198 target_disable_tracepoint (location);
14199 }
14200
14201 update_global_location_list (UGLL_DONT_INSERT);
14202
14203 gdb::observers::breakpoint_modified.notify (bpt);
14204 }
14205
14206 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14207 specified in ARGS. ARGS may be in any of the formats handled by
14208 extract_bp_number_and_location. ENABLE specifies whether to enable
14209 or disable the breakpoints/locations. */
14210
14211 static void
14212 enable_disable_command (const char *args, int from_tty, bool enable)
14213 {
14214 if (args == 0)
14215 {
14216 struct breakpoint *bpt;
14217
14218 ALL_BREAKPOINTS (bpt)
14219 if (user_breakpoint_p (bpt))
14220 {
14221 if (enable)
14222 enable_breakpoint (bpt);
14223 else
14224 disable_breakpoint (bpt);
14225 }
14226 }
14227 else
14228 {
14229 std::string num = extract_arg (&args);
14230
14231 while (!num.empty ())
14232 {
14233 std::pair<int, int> bp_num_range, bp_loc_range;
14234
14235 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14236
14237 if (bp_loc_range.first == bp_loc_range.second
14238 && bp_loc_range.first == 0)
14239 {
14240 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14241 map_breakpoint_number_range (bp_num_range,
14242 enable
14243 ? enable_breakpoint
14244 : disable_breakpoint);
14245 }
14246 else
14247 {
14248 /* Handle breakpoint ids with formats 'x.y' or
14249 'x.y-z'. */
14250 enable_disable_breakpoint_location_range
14251 (bp_num_range.first, bp_loc_range, enable);
14252 }
14253 num = extract_arg (&args);
14254 }
14255 }
14256 }
14257
14258 /* The disable command disables the specified breakpoints/locations
14259 (or all defined breakpoints) so they're no longer effective in
14260 stopping the inferior. ARGS may be in any of the forms defined in
14261 extract_bp_number_and_location. */
14262
14263 static void
14264 disable_command (const char *args, int from_tty)
14265 {
14266 enable_disable_command (args, from_tty, false);
14267 }
14268
14269 static void
14270 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14271 int count)
14272 {
14273 int target_resources_ok;
14274
14275 if (bpt->type == bp_hardware_breakpoint)
14276 {
14277 int i;
14278 i = hw_breakpoint_used_count ();
14279 target_resources_ok =
14280 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14281 i + 1, 0);
14282 if (target_resources_ok == 0)
14283 error (_("No hardware breakpoint support in the target."));
14284 else if (target_resources_ok < 0)
14285 error (_("Hardware breakpoints used exceeds limit."));
14286 }
14287
14288 if (is_watchpoint (bpt))
14289 {
14290 /* Initialize it just to avoid a GCC false warning. */
14291 enum enable_state orig_enable_state = bp_disabled;
14292
14293 try
14294 {
14295 struct watchpoint *w = (struct watchpoint *) bpt;
14296
14297 orig_enable_state = bpt->enable_state;
14298 bpt->enable_state = bp_enabled;
14299 update_watchpoint (w, 1 /* reparse */);
14300 }
14301 catch (const gdb_exception &e)
14302 {
14303 bpt->enable_state = orig_enable_state;
14304 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14305 bpt->number);
14306 return;
14307 }
14308 }
14309
14310 bpt->enable_state = bp_enabled;
14311
14312 /* Mark breakpoint locations modified. */
14313 mark_breakpoint_modified (bpt);
14314
14315 if (target_supports_enable_disable_tracepoint ()
14316 && current_trace_status ()->running && is_tracepoint (bpt))
14317 {
14318 struct bp_location *location;
14319
14320 for (location = bpt->loc; location; location = location->next)
14321 target_enable_tracepoint (location);
14322 }
14323
14324 bpt->disposition = disposition;
14325 bpt->enable_count = count;
14326 update_global_location_list (UGLL_MAY_INSERT);
14327
14328 gdb::observers::breakpoint_modified.notify (bpt);
14329 }
14330
14331
14332 void
14333 enable_breakpoint (struct breakpoint *bpt)
14334 {
14335 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14336 }
14337
14338 /* The enable command enables the specified breakpoints/locations (or
14339 all defined breakpoints) so they once again become (or continue to
14340 be) effective in stopping the inferior. ARGS may be in any of the
14341 forms defined in extract_bp_number_and_location. */
14342
14343 static void
14344 enable_command (const char *args, int from_tty)
14345 {
14346 enable_disable_command (args, from_tty, true);
14347 }
14348
14349 static void
14350 enable_once_command (const char *args, int from_tty)
14351 {
14352 map_breakpoint_numbers
14353 (args, [&] (breakpoint *b)
14354 {
14355 iterate_over_related_breakpoints
14356 (b, [&] (breakpoint *bpt)
14357 {
14358 enable_breakpoint_disp (bpt, disp_disable, 1);
14359 });
14360 });
14361 }
14362
14363 static void
14364 enable_count_command (const char *args, int from_tty)
14365 {
14366 int count;
14367
14368 if (args == NULL)
14369 error_no_arg (_("hit count"));
14370
14371 count = get_number (&args);
14372
14373 map_breakpoint_numbers
14374 (args, [&] (breakpoint *b)
14375 {
14376 iterate_over_related_breakpoints
14377 (b, [&] (breakpoint *bpt)
14378 {
14379 enable_breakpoint_disp (bpt, disp_disable, count);
14380 });
14381 });
14382 }
14383
14384 static void
14385 enable_delete_command (const char *args, int from_tty)
14386 {
14387 map_breakpoint_numbers
14388 (args, [&] (breakpoint *b)
14389 {
14390 iterate_over_related_breakpoints
14391 (b, [&] (breakpoint *bpt)
14392 {
14393 enable_breakpoint_disp (bpt, disp_del, 1);
14394 });
14395 });
14396 }
14397 \f
14398 /* Invalidate last known value of any hardware watchpoint if
14399 the memory which that value represents has been written to by
14400 GDB itself. */
14401
14402 static void
14403 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14404 CORE_ADDR addr, ssize_t len,
14405 const bfd_byte *data)
14406 {
14407 struct breakpoint *bp;
14408
14409 ALL_BREAKPOINTS (bp)
14410 if (bp->enable_state == bp_enabled
14411 && bp->type == bp_hardware_watchpoint)
14412 {
14413 struct watchpoint *wp = (struct watchpoint *) bp;
14414
14415 if (wp->val_valid && wp->val != nullptr)
14416 {
14417 struct bp_location *loc;
14418
14419 for (loc = bp->loc; loc != NULL; loc = loc->next)
14420 if (loc->loc_type == bp_loc_hardware_watchpoint
14421 && loc->address + loc->length > addr
14422 && addr + len > loc->address)
14423 {
14424 wp->val = NULL;
14425 wp->val_valid = false;
14426 }
14427 }
14428 }
14429 }
14430
14431 /* Create and insert a breakpoint for software single step. */
14432
14433 void
14434 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14435 const address_space *aspace,
14436 CORE_ADDR next_pc)
14437 {
14438 struct thread_info *tp = inferior_thread ();
14439 struct symtab_and_line sal;
14440 CORE_ADDR pc = next_pc;
14441
14442 if (tp->control.single_step_breakpoints == NULL)
14443 {
14444 tp->control.single_step_breakpoints
14445 = new_single_step_breakpoint (tp->global_num, gdbarch);
14446 }
14447
14448 sal = find_pc_line (pc, 0);
14449 sal.pc = pc;
14450 sal.section = find_pc_overlay (pc);
14451 sal.explicit_pc = 1;
14452 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14453
14454 update_global_location_list (UGLL_INSERT);
14455 }
14456
14457 /* Insert single step breakpoints according to the current state. */
14458
14459 int
14460 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14461 {
14462 struct regcache *regcache = get_current_regcache ();
14463 std::vector<CORE_ADDR> next_pcs;
14464
14465 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14466
14467 if (!next_pcs.empty ())
14468 {
14469 struct frame_info *frame = get_current_frame ();
14470 const address_space *aspace = get_frame_address_space (frame);
14471
14472 for (CORE_ADDR pc : next_pcs)
14473 insert_single_step_breakpoint (gdbarch, aspace, pc);
14474
14475 return 1;
14476 }
14477 else
14478 return 0;
14479 }
14480
14481 /* See breakpoint.h. */
14482
14483 int
14484 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14485 const address_space *aspace,
14486 CORE_ADDR pc)
14487 {
14488 struct bp_location *loc;
14489
14490 for (loc = bp->loc; loc != NULL; loc = loc->next)
14491 if (loc->inserted
14492 && breakpoint_location_address_match (loc, aspace, pc))
14493 return 1;
14494
14495 return 0;
14496 }
14497
14498 /* Check whether a software single-step breakpoint is inserted at
14499 PC. */
14500
14501 int
14502 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14503 CORE_ADDR pc)
14504 {
14505 struct breakpoint *bpt;
14506
14507 ALL_BREAKPOINTS (bpt)
14508 {
14509 if (bpt->type == bp_single_step
14510 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14511 return 1;
14512 }
14513 return 0;
14514 }
14515
14516 /* Tracepoint-specific operations. */
14517
14518 /* Set tracepoint count to NUM. */
14519 static void
14520 set_tracepoint_count (int num)
14521 {
14522 tracepoint_count = num;
14523 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14524 }
14525
14526 static void
14527 trace_command (const char *arg, int from_tty)
14528 {
14529 event_location_up location = string_to_event_location (&arg,
14530 current_language);
14531 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
14532 (location.get (), true /* is_tracepoint */);
14533
14534 create_breakpoint (get_current_arch (),
14535 location.get (),
14536 NULL, 0, arg, 1 /* parse arg */,
14537 0 /* tempflag */,
14538 bp_tracepoint /* type_wanted */,
14539 0 /* Ignore count */,
14540 pending_break_support,
14541 ops,
14542 from_tty,
14543 1 /* enabled */,
14544 0 /* internal */, 0);
14545 }
14546
14547 static void
14548 ftrace_command (const char *arg, int from_tty)
14549 {
14550 event_location_up location = string_to_event_location (&arg,
14551 current_language);
14552 create_breakpoint (get_current_arch (),
14553 location.get (),
14554 NULL, 0, arg, 1 /* parse arg */,
14555 0 /* tempflag */,
14556 bp_fast_tracepoint /* type_wanted */,
14557 0 /* Ignore count */,
14558 pending_break_support,
14559 &tracepoint_breakpoint_ops,
14560 from_tty,
14561 1 /* enabled */,
14562 0 /* internal */, 0);
14563 }
14564
14565 /* strace command implementation. Creates a static tracepoint. */
14566
14567 static void
14568 strace_command (const char *arg, int from_tty)
14569 {
14570 struct breakpoint_ops *ops;
14571 event_location_up location;
14572
14573 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14574 or with a normal static tracepoint. */
14575 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14576 {
14577 ops = &strace_marker_breakpoint_ops;
14578 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14579 }
14580 else
14581 {
14582 ops = &tracepoint_breakpoint_ops;
14583 location = string_to_event_location (&arg, current_language);
14584 }
14585
14586 create_breakpoint (get_current_arch (),
14587 location.get (),
14588 NULL, 0, arg, 1 /* parse arg */,
14589 0 /* tempflag */,
14590 bp_static_tracepoint /* type_wanted */,
14591 0 /* Ignore count */,
14592 pending_break_support,
14593 ops,
14594 from_tty,
14595 1 /* enabled */,
14596 0 /* internal */, 0);
14597 }
14598
14599 /* Set up a fake reader function that gets command lines from a linked
14600 list that was acquired during tracepoint uploading. */
14601
14602 static struct uploaded_tp *this_utp;
14603 static int next_cmd;
14604
14605 static char *
14606 read_uploaded_action (void)
14607 {
14608 char *rslt = nullptr;
14609
14610 if (next_cmd < this_utp->cmd_strings.size ())
14611 {
14612 rslt = this_utp->cmd_strings[next_cmd].get ();
14613 next_cmd++;
14614 }
14615
14616 return rslt;
14617 }
14618
14619 /* Given information about a tracepoint as recorded on a target (which
14620 can be either a live system or a trace file), attempt to create an
14621 equivalent GDB tracepoint. This is not a reliable process, since
14622 the target does not necessarily have all the information used when
14623 the tracepoint was originally defined. */
14624
14625 struct tracepoint *
14626 create_tracepoint_from_upload (struct uploaded_tp *utp)
14627 {
14628 const char *addr_str;
14629 char small_buf[100];
14630 struct tracepoint *tp;
14631
14632 if (utp->at_string)
14633 addr_str = utp->at_string.get ();
14634 else
14635 {
14636 /* In the absence of a source location, fall back to raw
14637 address. Since there is no way to confirm that the address
14638 means the same thing as when the trace was started, warn the
14639 user. */
14640 warning (_("Uploaded tracepoint %d has no "
14641 "source location, using raw address"),
14642 utp->number);
14643 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14644 addr_str = small_buf;
14645 }
14646
14647 /* There's not much we can do with a sequence of bytecodes. */
14648 if (utp->cond && !utp->cond_string)
14649 warning (_("Uploaded tracepoint %d condition "
14650 "has no source form, ignoring it"),
14651 utp->number);
14652
14653 event_location_up location = string_to_event_location (&addr_str,
14654 current_language);
14655 if (!create_breakpoint (get_current_arch (),
14656 location.get (),
14657 utp->cond_string.get (), -1, addr_str,
14658 0 /* parse cond/thread */,
14659 0 /* tempflag */,
14660 utp->type /* type_wanted */,
14661 0 /* Ignore count */,
14662 pending_break_support,
14663 &tracepoint_breakpoint_ops,
14664 0 /* from_tty */,
14665 utp->enabled /* enabled */,
14666 0 /* internal */,
14667 CREATE_BREAKPOINT_FLAGS_INSERTED))
14668 return NULL;
14669
14670 /* Get the tracepoint we just created. */
14671 tp = get_tracepoint (tracepoint_count);
14672 gdb_assert (tp != NULL);
14673
14674 if (utp->pass > 0)
14675 {
14676 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14677 tp->number);
14678
14679 trace_pass_command (small_buf, 0);
14680 }
14681
14682 /* If we have uploaded versions of the original commands, set up a
14683 special-purpose "reader" function and call the usual command line
14684 reader, then pass the result to the breakpoint command-setting
14685 function. */
14686 if (!utp->cmd_strings.empty ())
14687 {
14688 counted_command_line cmd_list;
14689
14690 this_utp = utp;
14691 next_cmd = 0;
14692
14693 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14694
14695 breakpoint_set_commands (tp, std::move (cmd_list));
14696 }
14697 else if (!utp->actions.empty ()
14698 || !utp->step_actions.empty ())
14699 warning (_("Uploaded tracepoint %d actions "
14700 "have no source form, ignoring them"),
14701 utp->number);
14702
14703 /* Copy any status information that might be available. */
14704 tp->hit_count = utp->hit_count;
14705 tp->traceframe_usage = utp->traceframe_usage;
14706
14707 return tp;
14708 }
14709
14710 /* Print information on tracepoint number TPNUM_EXP, or all if
14711 omitted. */
14712
14713 static void
14714 info_tracepoints_command (const char *args, int from_tty)
14715 {
14716 struct ui_out *uiout = current_uiout;
14717 int num_printed;
14718
14719 num_printed = breakpoint_1 (args, false, is_tracepoint);
14720
14721 if (num_printed == 0)
14722 {
14723 if (args == NULL || *args == '\0')
14724 uiout->message ("No tracepoints.\n");
14725 else
14726 uiout->message ("No tracepoint matching '%s'.\n", args);
14727 }
14728
14729 default_collect_info ();
14730 }
14731
14732 /* The 'enable trace' command enables tracepoints.
14733 Not supported by all targets. */
14734 static void
14735 enable_trace_command (const char *args, int from_tty)
14736 {
14737 enable_command (args, from_tty);
14738 }
14739
14740 /* The 'disable trace' command disables tracepoints.
14741 Not supported by all targets. */
14742 static void
14743 disable_trace_command (const char *args, int from_tty)
14744 {
14745 disable_command (args, from_tty);
14746 }
14747
14748 /* Remove a tracepoint (or all if no argument). */
14749 static void
14750 delete_trace_command (const char *arg, int from_tty)
14751 {
14752 struct breakpoint *b, *b_tmp;
14753
14754 dont_repeat ();
14755
14756 if (arg == 0)
14757 {
14758 int breaks_to_delete = 0;
14759
14760 /* Delete all breakpoints if no argument.
14761 Do not delete internal or call-dummy breakpoints, these
14762 have to be deleted with an explicit breakpoint number
14763 argument. */
14764 ALL_TRACEPOINTS (b)
14765 if (is_tracepoint (b) && user_breakpoint_p (b))
14766 {
14767 breaks_to_delete = 1;
14768 break;
14769 }
14770
14771 /* Ask user only if there are some breakpoints to delete. */
14772 if (!from_tty
14773 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14774 {
14775 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14776 if (is_tracepoint (b) && user_breakpoint_p (b))
14777 delete_breakpoint (b);
14778 }
14779 }
14780 else
14781 map_breakpoint_numbers
14782 (arg, [&] (breakpoint *br)
14783 {
14784 iterate_over_related_breakpoints (br, delete_breakpoint);
14785 });
14786 }
14787
14788 /* Helper function for trace_pass_command. */
14789
14790 static void
14791 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14792 {
14793 tp->pass_count = count;
14794 gdb::observers::breakpoint_modified.notify (tp);
14795 if (from_tty)
14796 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14797 tp->number, count);
14798 }
14799
14800 /* Set passcount for tracepoint.
14801
14802 First command argument is passcount, second is tracepoint number.
14803 If tracepoint number omitted, apply to most recently defined.
14804 Also accepts special argument "all". */
14805
14806 static void
14807 trace_pass_command (const char *args, int from_tty)
14808 {
14809 struct tracepoint *t1;
14810 ULONGEST count;
14811
14812 if (args == 0 || *args == 0)
14813 error (_("passcount command requires an "
14814 "argument (count + optional TP num)"));
14815
14816 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14817
14818 args = skip_spaces (args);
14819 if (*args && strncasecmp (args, "all", 3) == 0)
14820 {
14821 struct breakpoint *b;
14822
14823 args += 3; /* Skip special argument "all". */
14824 if (*args)
14825 error (_("Junk at end of arguments."));
14826
14827 ALL_TRACEPOINTS (b)
14828 {
14829 t1 = (struct tracepoint *) b;
14830 trace_pass_set_count (t1, count, from_tty);
14831 }
14832 }
14833 else if (*args == '\0')
14834 {
14835 t1 = get_tracepoint_by_number (&args, NULL);
14836 if (t1)
14837 trace_pass_set_count (t1, count, from_tty);
14838 }
14839 else
14840 {
14841 number_or_range_parser parser (args);
14842 while (!parser.finished ())
14843 {
14844 t1 = get_tracepoint_by_number (&args, &parser);
14845 if (t1)
14846 trace_pass_set_count (t1, count, from_tty);
14847 }
14848 }
14849 }
14850
14851 struct tracepoint *
14852 get_tracepoint (int num)
14853 {
14854 struct breakpoint *t;
14855
14856 ALL_TRACEPOINTS (t)
14857 if (t->number == num)
14858 return (struct tracepoint *) t;
14859
14860 return NULL;
14861 }
14862
14863 /* Find the tracepoint with the given target-side number (which may be
14864 different from the tracepoint number after disconnecting and
14865 reconnecting). */
14866
14867 struct tracepoint *
14868 get_tracepoint_by_number_on_target (int num)
14869 {
14870 struct breakpoint *b;
14871
14872 ALL_TRACEPOINTS (b)
14873 {
14874 struct tracepoint *t = (struct tracepoint *) b;
14875
14876 if (t->number_on_target == num)
14877 return t;
14878 }
14879
14880 return NULL;
14881 }
14882
14883 /* Utility: parse a tracepoint number and look it up in the list.
14884 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14885 If the argument is missing, the most recent tracepoint
14886 (tracepoint_count) is returned. */
14887
14888 struct tracepoint *
14889 get_tracepoint_by_number (const char **arg,
14890 number_or_range_parser *parser)
14891 {
14892 struct breakpoint *t;
14893 int tpnum;
14894 const char *instring = arg == NULL ? NULL : *arg;
14895
14896 if (parser != NULL)
14897 {
14898 gdb_assert (!parser->finished ());
14899 tpnum = parser->get_number ();
14900 }
14901 else if (arg == NULL || *arg == NULL || ! **arg)
14902 tpnum = tracepoint_count;
14903 else
14904 tpnum = get_number (arg);
14905
14906 if (tpnum <= 0)
14907 {
14908 if (instring && *instring)
14909 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14910 instring);
14911 else
14912 printf_filtered (_("No previous tracepoint\n"));
14913 return NULL;
14914 }
14915
14916 ALL_TRACEPOINTS (t)
14917 if (t->number == tpnum)
14918 {
14919 return (struct tracepoint *) t;
14920 }
14921
14922 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
14923 return NULL;
14924 }
14925
14926 void
14927 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14928 {
14929 if (b->thread != -1)
14930 fprintf_unfiltered (fp, " thread %d", b->thread);
14931
14932 if (b->task != 0)
14933 fprintf_unfiltered (fp, " task %d", b->task);
14934
14935 fprintf_unfiltered (fp, "\n");
14936 }
14937
14938 /* Save information on user settable breakpoints (watchpoints, etc) to
14939 a new script file named FILENAME. If FILTER is non-NULL, call it
14940 on each breakpoint and only include the ones for which it returns
14941 true. */
14942
14943 static void
14944 save_breakpoints (const char *filename, int from_tty,
14945 bool (*filter) (const struct breakpoint *))
14946 {
14947 struct breakpoint *tp;
14948 int any = 0;
14949 int extra_trace_bits = 0;
14950
14951 if (filename == 0 || *filename == 0)
14952 error (_("Argument required (file name in which to save)"));
14953
14954 /* See if we have anything to save. */
14955 ALL_BREAKPOINTS (tp)
14956 {
14957 /* Skip internal and momentary breakpoints. */
14958 if (!user_breakpoint_p (tp))
14959 continue;
14960
14961 /* If we have a filter, only save the breakpoints it accepts. */
14962 if (filter && !filter (tp))
14963 continue;
14964
14965 any = 1;
14966
14967 if (is_tracepoint (tp))
14968 {
14969 extra_trace_bits = 1;
14970
14971 /* We can stop searching. */
14972 break;
14973 }
14974 }
14975
14976 if (!any)
14977 {
14978 warning (_("Nothing to save."));
14979 return;
14980 }
14981
14982 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14983
14984 stdio_file fp;
14985
14986 if (!fp.open (expanded_filename.get (), "w"))
14987 error (_("Unable to open file '%s' for saving (%s)"),
14988 expanded_filename.get (), safe_strerror (errno));
14989
14990 if (extra_trace_bits)
14991 save_trace_state_variables (&fp);
14992
14993 ALL_BREAKPOINTS (tp)
14994 {
14995 /* Skip internal and momentary breakpoints. */
14996 if (!user_breakpoint_p (tp))
14997 continue;
14998
14999 /* If we have a filter, only save the breakpoints it accepts. */
15000 if (filter && !filter (tp))
15001 continue;
15002
15003 tp->ops->print_recreate (tp, &fp);
15004
15005 /* Note, we can't rely on tp->number for anything, as we can't
15006 assume the recreated breakpoint numbers will match. Use $bpnum
15007 instead. */
15008
15009 if (tp->cond_string)
15010 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15011
15012 if (tp->ignore_count)
15013 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15014
15015 if (tp->type != bp_dprintf && tp->commands)
15016 {
15017 fp.puts (" commands\n");
15018
15019 current_uiout->redirect (&fp);
15020 try
15021 {
15022 print_command_lines (current_uiout, tp->commands.get (), 2);
15023 }
15024 catch (const gdb_exception &ex)
15025 {
15026 current_uiout->redirect (NULL);
15027 throw;
15028 }
15029
15030 current_uiout->redirect (NULL);
15031 fp.puts (" end\n");
15032 }
15033
15034 if (tp->enable_state == bp_disabled)
15035 fp.puts ("disable $bpnum\n");
15036
15037 /* If this is a multi-location breakpoint, check if the locations
15038 should be individually disabled. Watchpoint locations are
15039 special, and not user visible. */
15040 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15041 {
15042 struct bp_location *loc;
15043 int n = 1;
15044
15045 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15046 if (!loc->enabled)
15047 fp.printf ("disable $bpnum.%d\n", n);
15048 }
15049 }
15050
15051 if (extra_trace_bits && *default_collect)
15052 fp.printf ("set default-collect %s\n", default_collect);
15053
15054 if (from_tty)
15055 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15056 }
15057
15058 /* The `save breakpoints' command. */
15059
15060 static void
15061 save_breakpoints_command (const char *args, int from_tty)
15062 {
15063 save_breakpoints (args, from_tty, NULL);
15064 }
15065
15066 /* The `save tracepoints' command. */
15067
15068 static void
15069 save_tracepoints_command (const char *args, int from_tty)
15070 {
15071 save_breakpoints (args, from_tty, is_tracepoint);
15072 }
15073
15074 /* Create a vector of all tracepoints. */
15075
15076 std::vector<breakpoint *>
15077 all_tracepoints (void)
15078 {
15079 std::vector<breakpoint *> tp_vec;
15080 struct breakpoint *tp;
15081
15082 ALL_TRACEPOINTS (tp)
15083 {
15084 tp_vec.push_back (tp);
15085 }
15086
15087 return tp_vec;
15088 }
15089
15090 \f
15091 /* This help string is used to consolidate all the help string for specifying
15092 locations used by several commands. */
15093
15094 #define LOCATION_HELP_STRING \
15095 "Linespecs are colon-separated lists of location parameters, such as\n\
15096 source filename, function name, label name, and line number.\n\
15097 Example: To specify the start of a label named \"the_top\" in the\n\
15098 function \"fact\" in the file \"factorial.c\", use\n\
15099 \"factorial.c:fact:the_top\".\n\
15100 \n\
15101 Address locations begin with \"*\" and specify an exact address in the\n\
15102 program. Example: To specify the fourth byte past the start function\n\
15103 \"main\", use \"*main + 4\".\n\
15104 \n\
15105 Explicit locations are similar to linespecs but use an option/argument\n\
15106 syntax to specify location parameters.\n\
15107 Example: To specify the start of the label named \"the_top\" in the\n\
15108 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15109 -function fact -label the_top\".\n\
15110 \n\
15111 By default, a specified function is matched against the program's\n\
15112 functions in all scopes. For C++, this means in all namespaces and\n\
15113 classes. For Ada, this means in all packages. E.g., in C++,\n\
15114 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15115 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15116 specified name as a complete fully-qualified name instead."
15117
15118 /* This help string is used for the break, hbreak, tbreak and thbreak
15119 commands. It is defined as a macro to prevent duplication.
15120 COMMAND should be a string constant containing the name of the
15121 command. */
15122
15123 #define BREAK_ARGS_HELP(command) \
15124 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15125 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15126 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15127 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15128 `-probe-dtrace' (for a DTrace probe).\n\
15129 LOCATION may be a linespec, address, or explicit location as described\n\
15130 below.\n\
15131 \n\
15132 With no LOCATION, uses current execution address of the selected\n\
15133 stack frame. This is useful for breaking on return to a stack frame.\n\
15134 \n\
15135 THREADNUM is the number from \"info threads\".\n\
15136 CONDITION is a boolean expression.\n\
15137 \n" LOCATION_HELP_STRING "\n\n\
15138 Multiple breakpoints at one place are permitted, and useful if their\n\
15139 conditions are different.\n\
15140 \n\
15141 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15142
15143 /* List of subcommands for "catch". */
15144 static struct cmd_list_element *catch_cmdlist;
15145
15146 /* List of subcommands for "tcatch". */
15147 static struct cmd_list_element *tcatch_cmdlist;
15148
15149 void
15150 add_catch_command (const char *name, const char *docstring,
15151 cmd_const_sfunc_ftype *sfunc,
15152 completer_ftype *completer,
15153 void *user_data_catch,
15154 void *user_data_tcatch)
15155 {
15156 struct cmd_list_element *command;
15157
15158 command = add_cmd (name, class_breakpoint, docstring,
15159 &catch_cmdlist);
15160 set_cmd_sfunc (command, sfunc);
15161 set_cmd_context (command, user_data_catch);
15162 set_cmd_completer (command, completer);
15163
15164 command = add_cmd (name, class_breakpoint, docstring,
15165 &tcatch_cmdlist);
15166 set_cmd_sfunc (command, sfunc);
15167 set_cmd_context (command, user_data_tcatch);
15168 set_cmd_completer (command, completer);
15169 }
15170
15171 struct breakpoint *
15172 iterate_over_breakpoints (gdb::function_view<bool (breakpoint *)> callback)
15173 {
15174 struct breakpoint *b, *b_tmp;
15175
15176 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15177 {
15178 if (callback (b))
15179 return b;
15180 }
15181
15182 return NULL;
15183 }
15184
15185 /* Zero if any of the breakpoint's locations could be a location where
15186 functions have been inlined, nonzero otherwise. */
15187
15188 static int
15189 is_non_inline_function (struct breakpoint *b)
15190 {
15191 /* The shared library event breakpoint is set on the address of a
15192 non-inline function. */
15193 if (b->type == bp_shlib_event)
15194 return 1;
15195
15196 return 0;
15197 }
15198
15199 /* Nonzero if the specified PC cannot be a location where functions
15200 have been inlined. */
15201
15202 int
15203 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15204 const struct target_waitstatus *ws)
15205 {
15206 struct breakpoint *b;
15207 struct bp_location *bl;
15208
15209 ALL_BREAKPOINTS (b)
15210 {
15211 if (!is_non_inline_function (b))
15212 continue;
15213
15214 for (bl = b->loc; bl != NULL; bl = bl->next)
15215 {
15216 if (!bl->shlib_disabled
15217 && bpstat_check_location (bl, aspace, pc, ws))
15218 return 1;
15219 }
15220 }
15221
15222 return 0;
15223 }
15224
15225 /* Remove any references to OBJFILE which is going to be freed. */
15226
15227 void
15228 breakpoint_free_objfile (struct objfile *objfile)
15229 {
15230 struct bp_location **locp, *loc;
15231
15232 ALL_BP_LOCATIONS (loc, locp)
15233 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15234 loc->symtab = NULL;
15235 }
15236
15237 void
15238 initialize_breakpoint_ops (void)
15239 {
15240 static int initialized = 0;
15241
15242 struct breakpoint_ops *ops;
15243
15244 if (initialized)
15245 return;
15246 initialized = 1;
15247
15248 /* The breakpoint_ops structure to be inherit by all kinds of
15249 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15250 internal and momentary breakpoints, etc.). */
15251 ops = &bkpt_base_breakpoint_ops;
15252 *ops = base_breakpoint_ops;
15253 ops->re_set = bkpt_re_set;
15254 ops->insert_location = bkpt_insert_location;
15255 ops->remove_location = bkpt_remove_location;
15256 ops->breakpoint_hit = bkpt_breakpoint_hit;
15257 ops->create_sals_from_location = bkpt_create_sals_from_location;
15258 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15259 ops->decode_location = bkpt_decode_location;
15260
15261 /* The breakpoint_ops structure to be used in regular breakpoints. */
15262 ops = &bkpt_breakpoint_ops;
15263 *ops = bkpt_base_breakpoint_ops;
15264 ops->re_set = bkpt_re_set;
15265 ops->resources_needed = bkpt_resources_needed;
15266 ops->print_it = bkpt_print_it;
15267 ops->print_mention = bkpt_print_mention;
15268 ops->print_recreate = bkpt_print_recreate;
15269
15270 /* Ranged breakpoints. */
15271 ops = &ranged_breakpoint_ops;
15272 *ops = bkpt_breakpoint_ops;
15273 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15274 ops->resources_needed = resources_needed_ranged_breakpoint;
15275 ops->print_it = print_it_ranged_breakpoint;
15276 ops->print_one = print_one_ranged_breakpoint;
15277 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15278 ops->print_mention = print_mention_ranged_breakpoint;
15279 ops->print_recreate = print_recreate_ranged_breakpoint;
15280
15281 /* Internal breakpoints. */
15282 ops = &internal_breakpoint_ops;
15283 *ops = bkpt_base_breakpoint_ops;
15284 ops->re_set = internal_bkpt_re_set;
15285 ops->check_status = internal_bkpt_check_status;
15286 ops->print_it = internal_bkpt_print_it;
15287 ops->print_mention = internal_bkpt_print_mention;
15288
15289 /* Momentary breakpoints. */
15290 ops = &momentary_breakpoint_ops;
15291 *ops = bkpt_base_breakpoint_ops;
15292 ops->re_set = momentary_bkpt_re_set;
15293 ops->check_status = momentary_bkpt_check_status;
15294 ops->print_it = momentary_bkpt_print_it;
15295 ops->print_mention = momentary_bkpt_print_mention;
15296
15297 /* Probe breakpoints. */
15298 ops = &bkpt_probe_breakpoint_ops;
15299 *ops = bkpt_breakpoint_ops;
15300 ops->insert_location = bkpt_probe_insert_location;
15301 ops->remove_location = bkpt_probe_remove_location;
15302 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15303 ops->decode_location = bkpt_probe_decode_location;
15304
15305 /* Watchpoints. */
15306 ops = &watchpoint_breakpoint_ops;
15307 *ops = base_breakpoint_ops;
15308 ops->re_set = re_set_watchpoint;
15309 ops->insert_location = insert_watchpoint;
15310 ops->remove_location = remove_watchpoint;
15311 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15312 ops->check_status = check_status_watchpoint;
15313 ops->resources_needed = resources_needed_watchpoint;
15314 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15315 ops->print_it = print_it_watchpoint;
15316 ops->print_mention = print_mention_watchpoint;
15317 ops->print_recreate = print_recreate_watchpoint;
15318 ops->explains_signal = explains_signal_watchpoint;
15319
15320 /* Masked watchpoints. */
15321 ops = &masked_watchpoint_breakpoint_ops;
15322 *ops = watchpoint_breakpoint_ops;
15323 ops->insert_location = insert_masked_watchpoint;
15324 ops->remove_location = remove_masked_watchpoint;
15325 ops->resources_needed = resources_needed_masked_watchpoint;
15326 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15327 ops->print_it = print_it_masked_watchpoint;
15328 ops->print_one_detail = print_one_detail_masked_watchpoint;
15329 ops->print_mention = print_mention_masked_watchpoint;
15330 ops->print_recreate = print_recreate_masked_watchpoint;
15331
15332 /* Tracepoints. */
15333 ops = &tracepoint_breakpoint_ops;
15334 *ops = base_breakpoint_ops;
15335 ops->re_set = tracepoint_re_set;
15336 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15337 ops->print_one_detail = tracepoint_print_one_detail;
15338 ops->print_mention = tracepoint_print_mention;
15339 ops->print_recreate = tracepoint_print_recreate;
15340 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15341 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15342 ops->decode_location = tracepoint_decode_location;
15343
15344 /* Probe tracepoints. */
15345 ops = &tracepoint_probe_breakpoint_ops;
15346 *ops = tracepoint_breakpoint_ops;
15347 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15348 ops->decode_location = tracepoint_probe_decode_location;
15349
15350 /* Static tracepoints with marker (`-m'). */
15351 ops = &strace_marker_breakpoint_ops;
15352 *ops = tracepoint_breakpoint_ops;
15353 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15354 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15355 ops->decode_location = strace_marker_decode_location;
15356
15357 /* Fork catchpoints. */
15358 ops = &catch_fork_breakpoint_ops;
15359 *ops = base_breakpoint_ops;
15360 ops->insert_location = insert_catch_fork;
15361 ops->remove_location = remove_catch_fork;
15362 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15363 ops->print_it = print_it_catch_fork;
15364 ops->print_one = print_one_catch_fork;
15365 ops->print_mention = print_mention_catch_fork;
15366 ops->print_recreate = print_recreate_catch_fork;
15367
15368 /* Vfork catchpoints. */
15369 ops = &catch_vfork_breakpoint_ops;
15370 *ops = base_breakpoint_ops;
15371 ops->insert_location = insert_catch_vfork;
15372 ops->remove_location = remove_catch_vfork;
15373 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15374 ops->print_it = print_it_catch_vfork;
15375 ops->print_one = print_one_catch_vfork;
15376 ops->print_mention = print_mention_catch_vfork;
15377 ops->print_recreate = print_recreate_catch_vfork;
15378
15379 /* Exec catchpoints. */
15380 ops = &catch_exec_breakpoint_ops;
15381 *ops = base_breakpoint_ops;
15382 ops->insert_location = insert_catch_exec;
15383 ops->remove_location = remove_catch_exec;
15384 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15385 ops->print_it = print_it_catch_exec;
15386 ops->print_one = print_one_catch_exec;
15387 ops->print_mention = print_mention_catch_exec;
15388 ops->print_recreate = print_recreate_catch_exec;
15389
15390 /* Solib-related catchpoints. */
15391 ops = &catch_solib_breakpoint_ops;
15392 *ops = base_breakpoint_ops;
15393 ops->insert_location = insert_catch_solib;
15394 ops->remove_location = remove_catch_solib;
15395 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15396 ops->check_status = check_status_catch_solib;
15397 ops->print_it = print_it_catch_solib;
15398 ops->print_one = print_one_catch_solib;
15399 ops->print_mention = print_mention_catch_solib;
15400 ops->print_recreate = print_recreate_catch_solib;
15401
15402 ops = &dprintf_breakpoint_ops;
15403 *ops = bkpt_base_breakpoint_ops;
15404 ops->re_set = dprintf_re_set;
15405 ops->resources_needed = bkpt_resources_needed;
15406 ops->print_it = bkpt_print_it;
15407 ops->print_mention = bkpt_print_mention;
15408 ops->print_recreate = dprintf_print_recreate;
15409 ops->after_condition_true = dprintf_after_condition_true;
15410 ops->breakpoint_hit = dprintf_breakpoint_hit;
15411 }
15412
15413 /* Chain containing all defined "enable breakpoint" subcommands. */
15414
15415 static struct cmd_list_element *enablebreaklist = NULL;
15416
15417 /* See breakpoint.h. */
15418
15419 cmd_list_element *commands_cmd_element = nullptr;
15420
15421 void _initialize_breakpoint ();
15422 void
15423 _initialize_breakpoint ()
15424 {
15425 struct cmd_list_element *c;
15426
15427 initialize_breakpoint_ops ();
15428
15429 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15430 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15431 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15432
15433 breakpoint_chain = 0;
15434 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15435 before a breakpoint is set. */
15436 breakpoint_count = 0;
15437
15438 tracepoint_count = 0;
15439
15440 add_com ("ignore", class_breakpoint, ignore_command, _("\
15441 Set ignore-count of breakpoint number N to COUNT.\n\
15442 Usage is `ignore N COUNT'."));
15443
15444 commands_cmd_element = add_com ("commands", class_breakpoint,
15445 commands_command, _("\
15446 Set commands to be executed when the given breakpoints are hit.\n\
15447 Give a space-separated breakpoint list as argument after \"commands\".\n\
15448 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15449 (e.g. `5-7').\n\
15450 With no argument, the targeted breakpoint is the last one set.\n\
15451 The commands themselves follow starting on the next line.\n\
15452 Type a line containing \"end\" to indicate the end of them.\n\
15453 Give \"silent\" as the first line to make the breakpoint silent;\n\
15454 then no output is printed when it is hit, except what the commands print."));
15455
15456 c = add_com ("condition", class_breakpoint, condition_command, _("\
15457 Specify breakpoint number N to break only if COND is true.\n\
15458 Usage is `condition N COND', where N is an integer and COND is an\n\
15459 expression to be evaluated whenever breakpoint N is reached."));
15460 set_cmd_completer (c, condition_completer);
15461
15462 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15463 Set a temporary breakpoint.\n\
15464 Like \"break\" except the breakpoint is only temporary,\n\
15465 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15466 by using \"enable delete\" on the breakpoint number.\n\
15467 \n"
15468 BREAK_ARGS_HELP ("tbreak")));
15469 set_cmd_completer (c, location_completer);
15470
15471 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15472 Set a hardware assisted breakpoint.\n\
15473 Like \"break\" except the breakpoint requires hardware support,\n\
15474 some target hardware may not have this support.\n\
15475 \n"
15476 BREAK_ARGS_HELP ("hbreak")));
15477 set_cmd_completer (c, location_completer);
15478
15479 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15480 Set a temporary hardware assisted breakpoint.\n\
15481 Like \"hbreak\" except the breakpoint is only temporary,\n\
15482 so it will be deleted when hit.\n\
15483 \n"
15484 BREAK_ARGS_HELP ("thbreak")));
15485 set_cmd_completer (c, location_completer);
15486
15487 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15488 Enable all or some breakpoints.\n\
15489 Usage: enable [BREAKPOINTNUM]...\n\
15490 Give breakpoint numbers (separated by spaces) as arguments.\n\
15491 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15492 This is used to cancel the effect of the \"disable\" command.\n\
15493 With a subcommand you can enable temporarily."),
15494 &enablelist, "enable ", 1, &cmdlist);
15495
15496 add_com_alias ("en", "enable", class_breakpoint, 1);
15497
15498 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15499 Enable all or some breakpoints.\n\
15500 Usage: enable breakpoints [BREAKPOINTNUM]...\n\
15501 Give breakpoint numbers (separated by spaces) as arguments.\n\
15502 This is used to cancel the effect of the \"disable\" command.\n\
15503 May be abbreviated to simply \"enable\"."),
15504 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15505
15506 add_cmd ("once", no_class, enable_once_command, _("\
15507 Enable some breakpoints for one hit.\n\
15508 Usage: enable breakpoints once BREAKPOINTNUM...\n\
15509 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15510 &enablebreaklist);
15511
15512 add_cmd ("delete", no_class, enable_delete_command, _("\
15513 Enable some breakpoints and delete when hit.\n\
15514 Usage: enable breakpoints delete BREAKPOINTNUM...\n\
15515 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15516 &enablebreaklist);
15517
15518 add_cmd ("count", no_class, enable_count_command, _("\
15519 Enable some breakpoints for COUNT hits.\n\
15520 Usage: enable breakpoints count COUNT BREAKPOINTNUM...\n\
15521 If a breakpoint is hit while enabled in this fashion,\n\
15522 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15523 &enablebreaklist);
15524
15525 add_cmd ("delete", no_class, enable_delete_command, _("\
15526 Enable some breakpoints and delete when hit.\n\
15527 Usage: enable delete BREAKPOINTNUM...\n\
15528 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15529 &enablelist);
15530
15531 add_cmd ("once", no_class, enable_once_command, _("\
15532 Enable some breakpoints for one hit.\n\
15533 Usage: enable once BREAKPOINTNUM...\n\
15534 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15535 &enablelist);
15536
15537 add_cmd ("count", no_class, enable_count_command, _("\
15538 Enable some breakpoints for COUNT hits.\n\
15539 Usage: enable count COUNT BREAKPOINTNUM...\n\
15540 If a breakpoint is hit while enabled in this fashion,\n\
15541 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15542 &enablelist);
15543
15544 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15545 Disable all or some breakpoints.\n\
15546 Usage: disable [BREAKPOINTNUM]...\n\
15547 Arguments are breakpoint numbers with spaces in between.\n\
15548 To disable all breakpoints, give no argument.\n\
15549 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15550 &disablelist, "disable ", 1, &cmdlist);
15551 add_com_alias ("dis", "disable", class_breakpoint, 1);
15552 add_com_alias ("disa", "disable", class_breakpoint, 1);
15553
15554 add_cmd ("breakpoints", class_breakpoint, disable_command, _("\
15555 Disable all or some breakpoints.\n\
15556 Usage: disable breakpoints [BREAKPOINTNUM]...\n\
15557 Arguments are breakpoint numbers with spaces in between.\n\
15558 To disable all breakpoints, give no argument.\n\
15559 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15560 This command may be abbreviated \"disable\"."),
15561 &disablelist);
15562
15563 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15564 Delete all or some breakpoints.\n\
15565 Usage: delete [BREAKPOINTNUM]...\n\
15566 Arguments are breakpoint numbers with spaces in between.\n\
15567 To delete all breakpoints, give no argument.\n\
15568 \n\
15569 Also a prefix command for deletion of other GDB objects."),
15570 &deletelist, "delete ", 1, &cmdlist);
15571 add_com_alias ("d", "delete", class_breakpoint, 1);
15572 add_com_alias ("del", "delete", class_breakpoint, 1);
15573
15574 add_cmd ("breakpoints", class_breakpoint, delete_command, _("\
15575 Delete all or some breakpoints or auto-display expressions.\n\
15576 Usage: delete breakpoints [BREAKPOINTNUM]...\n\
15577 Arguments are breakpoint numbers with spaces in between.\n\
15578 To delete all breakpoints, give no argument.\n\
15579 This command may be abbreviated \"delete\"."),
15580 &deletelist);
15581
15582 add_com ("clear", class_breakpoint, clear_command, _("\
15583 Clear breakpoint at specified location.\n\
15584 Argument may be a linespec, explicit, or address location as described below.\n\
15585 \n\
15586 With no argument, clears all breakpoints in the line that the selected frame\n\
15587 is executing in.\n"
15588 "\n" LOCATION_HELP_STRING "\n\n\
15589 See also the \"delete\" command which clears breakpoints by number."));
15590 add_com_alias ("cl", "clear", class_breakpoint, 1);
15591
15592 c = add_com ("break", class_breakpoint, break_command, _("\
15593 Set breakpoint at specified location.\n"
15594 BREAK_ARGS_HELP ("break")));
15595 set_cmd_completer (c, location_completer);
15596
15597 add_com_alias ("b", "break", class_run, 1);
15598 add_com_alias ("br", "break", class_run, 1);
15599 add_com_alias ("bre", "break", class_run, 1);
15600 add_com_alias ("brea", "break", class_run, 1);
15601
15602 if (dbx_commands)
15603 {
15604 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15605 Break in function/address or break at a line in the current file."),
15606 &stoplist, "stop ", 1, &cmdlist);
15607 add_cmd ("in", class_breakpoint, stopin_command,
15608 _("Break in function or address."), &stoplist);
15609 add_cmd ("at", class_breakpoint, stopat_command,
15610 _("Break at a line in the current file."), &stoplist);
15611 add_com ("status", class_info, info_breakpoints_command, _("\
15612 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15613 The \"Type\" column indicates one of:\n\
15614 \tbreakpoint - normal breakpoint\n\
15615 \twatchpoint - watchpoint\n\
15616 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15617 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15618 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15619 address and file/line number respectively.\n\
15620 \n\
15621 Convenience variable \"$_\" and default examine address for \"x\"\n\
15622 are set to the address of the last breakpoint listed unless the command\n\
15623 is prefixed with \"server \".\n\n\
15624 Convenience variable \"$bpnum\" contains the number of the last\n\
15625 breakpoint set."));
15626 }
15627
15628 add_info ("breakpoints", info_breakpoints_command, _("\
15629 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15630 The \"Type\" column indicates one of:\n\
15631 \tbreakpoint - normal breakpoint\n\
15632 \twatchpoint - watchpoint\n\
15633 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15634 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15635 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15636 address and file/line number respectively.\n\
15637 \n\
15638 Convenience variable \"$_\" and default examine address for \"x\"\n\
15639 are set to the address of the last breakpoint listed unless the command\n\
15640 is prefixed with \"server \".\n\n\
15641 Convenience variable \"$bpnum\" contains the number of the last\n\
15642 breakpoint set."));
15643
15644 add_info_alias ("b", "breakpoints", 1);
15645
15646 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15647 Status of all breakpoints, or breakpoint number NUMBER.\n\
15648 The \"Type\" column indicates one of:\n\
15649 \tbreakpoint - normal breakpoint\n\
15650 \twatchpoint - watchpoint\n\
15651 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15652 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15653 \tuntil - internal breakpoint used by the \"until\" command\n\
15654 \tfinish - internal breakpoint used by the \"finish\" command\n\
15655 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15656 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15657 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15658 address and file/line number respectively.\n\
15659 \n\
15660 Convenience variable \"$_\" and default examine address for \"x\"\n\
15661 are set to the address of the last breakpoint listed unless the command\n\
15662 is prefixed with \"server \".\n\n\
15663 Convenience variable \"$bpnum\" contains the number of the last\n\
15664 breakpoint set."),
15665 &maintenanceinfolist);
15666
15667 add_basic_prefix_cmd ("catch", class_breakpoint, _("\
15668 Set catchpoints to catch events."),
15669 &catch_cmdlist, "catch ",
15670 0/*allow-unknown*/, &cmdlist);
15671
15672 add_basic_prefix_cmd ("tcatch", class_breakpoint, _("\
15673 Set temporary catchpoints to catch events."),
15674 &tcatch_cmdlist, "tcatch ",
15675 0/*allow-unknown*/, &cmdlist);
15676
15677 add_catch_command ("fork", _("Catch calls to fork."),
15678 catch_fork_command_1,
15679 NULL,
15680 (void *) (uintptr_t) catch_fork_permanent,
15681 (void *) (uintptr_t) catch_fork_temporary);
15682 add_catch_command ("vfork", _("Catch calls to vfork."),
15683 catch_fork_command_1,
15684 NULL,
15685 (void *) (uintptr_t) catch_vfork_permanent,
15686 (void *) (uintptr_t) catch_vfork_temporary);
15687 add_catch_command ("exec", _("Catch calls to exec."),
15688 catch_exec_command_1,
15689 NULL,
15690 CATCH_PERMANENT,
15691 CATCH_TEMPORARY);
15692 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15693 Usage: catch load [REGEX]\n\
15694 If REGEX is given, only stop for libraries matching the regular expression."),
15695 catch_load_command_1,
15696 NULL,
15697 CATCH_PERMANENT,
15698 CATCH_TEMPORARY);
15699 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15700 Usage: catch unload [REGEX]\n\
15701 If REGEX is given, only stop for libraries matching the regular expression."),
15702 catch_unload_command_1,
15703 NULL,
15704 CATCH_PERMANENT,
15705 CATCH_TEMPORARY);
15706
15707 c = add_com ("watch", class_breakpoint, watch_command, _("\
15708 Set a watchpoint for an expression.\n\
15709 Usage: watch [-l|-location] EXPRESSION\n\
15710 A watchpoint stops execution of your program whenever the value of\n\
15711 an expression changes.\n\
15712 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15713 the memory to which it refers."));
15714 set_cmd_completer (c, expression_completer);
15715
15716 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15717 Set a read watchpoint for an expression.\n\
15718 Usage: rwatch [-l|-location] EXPRESSION\n\
15719 A watchpoint stops execution of your program whenever the value of\n\
15720 an expression is read.\n\
15721 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15722 the memory to which it refers."));
15723 set_cmd_completer (c, expression_completer);
15724
15725 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15726 Set a watchpoint for an expression.\n\
15727 Usage: awatch [-l|-location] EXPRESSION\n\
15728 A watchpoint stops execution of your program whenever the value of\n\
15729 an expression is either read or written.\n\
15730 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15731 the memory to which it refers."));
15732 set_cmd_completer (c, expression_completer);
15733
15734 add_info ("watchpoints", info_watchpoints_command, _("\
15735 Status of specified watchpoints (all watchpoints if no argument)."));
15736
15737 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15738 respond to changes - contrary to the description. */
15739 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15740 &can_use_hw_watchpoints, _("\
15741 Set debugger's willingness to use watchpoint hardware."), _("\
15742 Show debugger's willingness to use watchpoint hardware."), _("\
15743 If zero, gdb will not use hardware for new watchpoints, even if\n\
15744 such is available. (However, any hardware watchpoints that were\n\
15745 created before setting this to nonzero, will continue to use watchpoint\n\
15746 hardware.)"),
15747 NULL,
15748 show_can_use_hw_watchpoints,
15749 &setlist, &showlist);
15750
15751 can_use_hw_watchpoints = 1;
15752
15753 /* Tracepoint manipulation commands. */
15754
15755 c = add_com ("trace", class_breakpoint, trace_command, _("\
15756 Set a tracepoint at specified location.\n\
15757 \n"
15758 BREAK_ARGS_HELP ("trace") "\n\
15759 Do \"help tracepoints\" for info on other tracepoint commands."));
15760 set_cmd_completer (c, location_completer);
15761
15762 add_com_alias ("tp", "trace", class_breakpoint, 0);
15763 add_com_alias ("tr", "trace", class_breakpoint, 1);
15764 add_com_alias ("tra", "trace", class_breakpoint, 1);
15765 add_com_alias ("trac", "trace", class_breakpoint, 1);
15766
15767 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15768 Set a fast tracepoint at specified location.\n\
15769 \n"
15770 BREAK_ARGS_HELP ("ftrace") "\n\
15771 Do \"help tracepoints\" for info on other tracepoint commands."));
15772 set_cmd_completer (c, location_completer);
15773
15774 c = add_com ("strace", class_breakpoint, strace_command, _("\
15775 Set a static tracepoint at location or marker.\n\
15776 \n\
15777 strace [LOCATION] [if CONDITION]\n\
15778 LOCATION may be a linespec, explicit, or address location (described below) \n\
15779 or -m MARKER_ID.\n\n\
15780 If a marker id is specified, probe the marker with that name. With\n\
15781 no LOCATION, uses current execution address of the selected stack frame.\n\
15782 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15783 This collects arbitrary user data passed in the probe point call to the\n\
15784 tracing library. You can inspect it when analyzing the trace buffer,\n\
15785 by printing the $_sdata variable like any other convenience variable.\n\
15786 \n\
15787 CONDITION is a boolean expression.\n\
15788 \n" LOCATION_HELP_STRING "\n\n\
15789 Multiple tracepoints at one place are permitted, and useful if their\n\
15790 conditions are different.\n\
15791 \n\
15792 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15793 Do \"help tracepoints\" for info on other tracepoint commands."));
15794 set_cmd_completer (c, location_completer);
15795
15796 add_info ("tracepoints", info_tracepoints_command, _("\
15797 Status of specified tracepoints (all tracepoints if no argument).\n\
15798 Convenience variable \"$tpnum\" contains the number of the\n\
15799 last tracepoint set."));
15800
15801 add_info_alias ("tp", "tracepoints", 1);
15802
15803 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15804 Delete specified tracepoints.\n\
15805 Arguments are tracepoint numbers, separated by spaces.\n\
15806 No argument means delete all tracepoints."),
15807 &deletelist);
15808 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15809
15810 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15811 Disable specified tracepoints.\n\
15812 Arguments are tracepoint numbers, separated by spaces.\n\
15813 No argument means disable all tracepoints."),
15814 &disablelist);
15815 deprecate_cmd (c, "disable");
15816
15817 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15818 Enable specified tracepoints.\n\
15819 Arguments are tracepoint numbers, separated by spaces.\n\
15820 No argument means enable all tracepoints."),
15821 &enablelist);
15822 deprecate_cmd (c, "enable");
15823
15824 add_com ("passcount", class_trace, trace_pass_command, _("\
15825 Set the passcount for a tracepoint.\n\
15826 The trace will end when the tracepoint has been passed 'count' times.\n\
15827 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15828 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15829
15830 add_basic_prefix_cmd ("save", class_breakpoint,
15831 _("Save breakpoint definitions as a script."),
15832 &save_cmdlist, "save ",
15833 0/*allow-unknown*/, &cmdlist);
15834
15835 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15836 Save current breakpoint definitions as a script.\n\
15837 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15838 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15839 session to restore them."),
15840 &save_cmdlist);
15841 set_cmd_completer (c, filename_completer);
15842
15843 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15844 Save current tracepoint definitions as a script.\n\
15845 Use the 'source' command in another debug session to restore them."),
15846 &save_cmdlist);
15847 set_cmd_completer (c, filename_completer);
15848
15849 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15850 deprecate_cmd (c, "save tracepoints");
15851
15852 add_basic_prefix_cmd ("breakpoint", class_maintenance, _("\
15853 Breakpoint specific settings.\n\
15854 Configure various breakpoint-specific variables such as\n\
15855 pending breakpoint behavior."),
15856 &breakpoint_set_cmdlist, "set breakpoint ",
15857 0/*allow-unknown*/, &setlist);
15858 add_show_prefix_cmd ("breakpoint", class_maintenance, _("\
15859 Breakpoint specific settings.\n\
15860 Configure various breakpoint-specific variables such as\n\
15861 pending breakpoint behavior."),
15862 &breakpoint_show_cmdlist, "show breakpoint ",
15863 0/*allow-unknown*/, &showlist);
15864
15865 add_setshow_auto_boolean_cmd ("pending", no_class,
15866 &pending_break_support, _("\
15867 Set debugger's behavior regarding pending breakpoints."), _("\
15868 Show debugger's behavior regarding pending breakpoints."), _("\
15869 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15870 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15871 an error. If auto, an unrecognized breakpoint location results in a\n\
15872 user-query to see if a pending breakpoint should be created."),
15873 NULL,
15874 show_pending_break_support,
15875 &breakpoint_set_cmdlist,
15876 &breakpoint_show_cmdlist);
15877
15878 pending_break_support = AUTO_BOOLEAN_AUTO;
15879
15880 add_setshow_boolean_cmd ("auto-hw", no_class,
15881 &automatic_hardware_breakpoints, _("\
15882 Set automatic usage of hardware breakpoints."), _("\
15883 Show automatic usage of hardware breakpoints."), _("\
15884 If set, the debugger will automatically use hardware breakpoints for\n\
15885 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15886 a warning will be emitted for such breakpoints."),
15887 NULL,
15888 show_automatic_hardware_breakpoints,
15889 &breakpoint_set_cmdlist,
15890 &breakpoint_show_cmdlist);
15891
15892 add_setshow_boolean_cmd ("always-inserted", class_support,
15893 &always_inserted_mode, _("\
15894 Set mode for inserting breakpoints."), _("\
15895 Show mode for inserting breakpoints."), _("\
15896 When this mode is on, breakpoints are inserted immediately as soon as\n\
15897 they're created, kept inserted even when execution stops, and removed\n\
15898 only when the user deletes them. When this mode is off (the default),\n\
15899 breakpoints are inserted only when execution continues, and removed\n\
15900 when execution stops."),
15901 NULL,
15902 &show_always_inserted_mode,
15903 &breakpoint_set_cmdlist,
15904 &breakpoint_show_cmdlist);
15905
15906 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15907 condition_evaluation_enums,
15908 &condition_evaluation_mode_1, _("\
15909 Set mode of breakpoint condition evaluation."), _("\
15910 Show mode of breakpoint condition evaluation."), _("\
15911 When this is set to \"host\", breakpoint conditions will be\n\
15912 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15913 breakpoint conditions will be downloaded to the target (if the target\n\
15914 supports such feature) and conditions will be evaluated on the target's side.\n\
15915 If this is set to \"auto\" (default), this will be automatically set to\n\
15916 \"target\" if it supports condition evaluation, otherwise it will\n\
15917 be set to \"gdb\""),
15918 &set_condition_evaluation_mode,
15919 &show_condition_evaluation_mode,
15920 &breakpoint_set_cmdlist,
15921 &breakpoint_show_cmdlist);
15922
15923 add_com ("break-range", class_breakpoint, break_range_command, _("\
15924 Set a breakpoint for an address range.\n\
15925 break-range START-LOCATION, END-LOCATION\n\
15926 where START-LOCATION and END-LOCATION can be one of the following:\n\
15927 LINENUM, for that line in the current file,\n\
15928 FILE:LINENUM, for that line in that file,\n\
15929 +OFFSET, for that number of lines after the current line\n\
15930 or the start of the range\n\
15931 FUNCTION, for the first line in that function,\n\
15932 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15933 *ADDRESS, for the instruction at that address.\n\
15934 \n\
15935 The breakpoint will stop execution of the inferior whenever it executes\n\
15936 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15937 range (including START-LOCATION and END-LOCATION)."));
15938
15939 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15940 Set a dynamic printf at specified location.\n\
15941 dprintf location,format string,arg1,arg2,...\n\
15942 location may be a linespec, explicit, or address location.\n"
15943 "\n" LOCATION_HELP_STRING));
15944 set_cmd_completer (c, location_completer);
15945
15946 add_setshow_enum_cmd ("dprintf-style", class_support,
15947 dprintf_style_enums, &dprintf_style, _("\
15948 Set the style of usage for dynamic printf."), _("\
15949 Show the style of usage for dynamic printf."), _("\
15950 This setting chooses how GDB will do a dynamic printf.\n\
15951 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15952 console, as with the \"printf\" command.\n\
15953 If the value is \"call\", the print is done by calling a function in your\n\
15954 program; by default printf(), but you can choose a different function or\n\
15955 output stream by setting dprintf-function and dprintf-channel."),
15956 update_dprintf_commands, NULL,
15957 &setlist, &showlist);
15958
15959 dprintf_function = xstrdup ("printf");
15960 add_setshow_string_cmd ("dprintf-function", class_support,
15961 &dprintf_function, _("\
15962 Set the function to use for dynamic printf."), _("\
15963 Show the function to use for dynamic printf."), NULL,
15964 update_dprintf_commands, NULL,
15965 &setlist, &showlist);
15966
15967 dprintf_channel = xstrdup ("");
15968 add_setshow_string_cmd ("dprintf-channel", class_support,
15969 &dprintf_channel, _("\
15970 Set the channel to use for dynamic printf."), _("\
15971 Show the channel to use for dynamic printf."), NULL,
15972 update_dprintf_commands, NULL,
15973 &setlist, &showlist);
15974
15975 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15976 &disconnected_dprintf, _("\
15977 Set whether dprintf continues after GDB disconnects."), _("\
15978 Show whether dprintf continues after GDB disconnects."), _("\
15979 Use this to let dprintf commands continue to hit and produce output\n\
15980 even if GDB disconnects or detaches from the target."),
15981 NULL,
15982 NULL,
15983 &setlist, &showlist);
15984
15985 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15986 Target agent only formatted printing, like the C \"printf\" function.\n\
15987 Usage: agent-printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
15988 This supports most C printf format specifications, like %s, %d, etc.\n\
15989 This is useful for formatted output in user-defined commands."));
15990
15991 automatic_hardware_breakpoints = true;
15992
15993 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
15994 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
15995 }