gdb: remove SYMTAB_OBJFILE macro
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdbsupport/gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "stack.h"
63 #include "ax-gdb.h"
64 #include "dummy-frame.h"
65 #include "interps.h"
66 #include "gdbsupport/format.h"
67 #include "thread-fsm.h"
68 #include "tid-parse.h"
69 #include "cli/cli-style.h"
70 #include "cli/cli-decode.h"
71
72 /* readline include files */
73 #include "readline/tilde.h"
74
75 /* readline defines this. */
76 #undef savestring
77
78 #include "mi/mi-common.h"
79 #include "extension.h"
80 #include <algorithm>
81 #include "progspace-and-thread.h"
82 #include "gdbsupport/array-view.h"
83 #include "gdbsupport/gdb_optional.h"
84
85 /* Prototypes for local functions. */
86
87 static void map_breakpoint_numbers (const char *,
88 gdb::function_view<void (breakpoint *)>);
89
90 static void breakpoint_re_set_default (struct breakpoint *);
91
92 static void
93 create_sals_from_location_default (struct event_location *location,
94 struct linespec_result *canonical,
95 enum bptype type_wanted);
96
97 static void create_breakpoints_sal_default (struct gdbarch *,
98 struct linespec_result *,
99 gdb::unique_xmalloc_ptr<char>,
100 gdb::unique_xmalloc_ptr<char>,
101 enum bptype,
102 enum bpdisp, int, int,
103 int,
104 const struct breakpoint_ops *,
105 int, int, int, unsigned);
106
107 static std::vector<symtab_and_line> decode_location_default
108 (struct breakpoint *b, struct event_location *location,
109 struct program_space *search_pspace);
110
111 static int can_use_hardware_watchpoint
112 (const std::vector<value_ref_ptr> &vals);
113
114 static void mention (struct breakpoint *);
115
116 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
117 enum bptype,
118 const struct breakpoint_ops *);
119 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
120 const struct symtab_and_line *);
121
122 /* This function is used in gdbtk sources and thus can not be made
123 static. */
124 static struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
125 struct symtab_and_line,
126 enum bptype,
127 const struct breakpoint_ops *);
128
129 static struct breakpoint *
130 momentary_breakpoint_from_master (struct breakpoint *orig,
131 enum bptype type,
132 const struct breakpoint_ops *ops,
133 int loc_enabled);
134
135 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
136
137 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
138 CORE_ADDR bpaddr,
139 enum bptype bptype);
140
141 static void describe_other_breakpoints (struct gdbarch *,
142 struct program_space *, CORE_ADDR,
143 struct obj_section *, int);
144
145 static int watchpoint_locations_match (struct bp_location *loc1,
146 struct bp_location *loc2);
147
148 static int breakpoint_locations_match (struct bp_location *loc1,
149 struct bp_location *loc2,
150 bool sw_hw_bps_match = false);
151
152 static int breakpoint_location_address_match (struct bp_location *bl,
153 const struct address_space *aspace,
154 CORE_ADDR addr);
155
156 static int breakpoint_location_address_range_overlap (struct bp_location *,
157 const address_space *,
158 CORE_ADDR, int);
159
160 static int remove_breakpoint (struct bp_location *);
161 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
162
163 static enum print_stop_action print_bp_stop_message (bpstat *bs);
164
165 static int hw_breakpoint_used_count (void);
166
167 static int hw_watchpoint_use_count (struct breakpoint *);
168
169 static int hw_watchpoint_used_count_others (struct breakpoint *except,
170 enum bptype type,
171 int *other_type_used);
172
173 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
174 int count);
175
176 static void decref_bp_location (struct bp_location **loc);
177
178 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
179
180 /* update_global_location_list's modes of operation wrt to whether to
181 insert locations now. */
182 enum ugll_insert_mode
183 {
184 /* Don't insert any breakpoint locations into the inferior, only
185 remove already-inserted locations that no longer should be
186 inserted. Functions that delete a breakpoint or breakpoints
187 should specify this mode, so that deleting a breakpoint doesn't
188 have the side effect of inserting the locations of other
189 breakpoints that are marked not-inserted, but should_be_inserted
190 returns true on them.
191
192 This behavior is useful is situations close to tear-down -- e.g.,
193 after an exec, while the target still has execution, but
194 breakpoint shadows of the previous executable image should *NOT*
195 be restored to the new image; or before detaching, where the
196 target still has execution and wants to delete breakpoints from
197 GDB's lists, and all breakpoints had already been removed from
198 the inferior. */
199 UGLL_DONT_INSERT,
200
201 /* May insert breakpoints iff breakpoints_should_be_inserted_now
202 claims breakpoints should be inserted now. */
203 UGLL_MAY_INSERT,
204
205 /* Insert locations now, irrespective of
206 breakpoints_should_be_inserted_now. E.g., say all threads are
207 stopped right now, and the user did "continue". We need to
208 insert breakpoints _before_ resuming the target, but
209 UGLL_MAY_INSERT wouldn't insert them, because
210 breakpoints_should_be_inserted_now returns false at that point,
211 as no thread is running yet. */
212 UGLL_INSERT
213 };
214
215 static void update_global_location_list (enum ugll_insert_mode);
216
217 static void update_global_location_list_nothrow (enum ugll_insert_mode);
218
219 static void insert_breakpoint_locations (void);
220
221 static void trace_pass_command (const char *, int);
222
223 static void set_tracepoint_count (int num);
224
225 static bool is_masked_watchpoint (const struct breakpoint *b);
226
227 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
228 otherwise. */
229
230 static int strace_marker_p (struct breakpoint *b);
231
232 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
233 that are implemented on top of software or hardware breakpoints
234 (user breakpoints, internal and momentary breakpoints, etc.). */
235 static struct breakpoint_ops bkpt_base_breakpoint_ops;
236
237 /* Internal breakpoints class type. */
238 static struct breakpoint_ops internal_breakpoint_ops;
239
240 /* Momentary breakpoints class type. */
241 static struct breakpoint_ops momentary_breakpoint_ops;
242
243 /* The breakpoint_ops structure to be used in regular user created
244 breakpoints. */
245 struct breakpoint_ops bkpt_breakpoint_ops;
246
247 /* Breakpoints set on probes. */
248 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
249
250 /* Tracepoints set on probes. */
251 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
252
253 /* Dynamic printf class type. */
254 struct breakpoint_ops dprintf_breakpoint_ops;
255
256 /* The style in which to perform a dynamic printf. This is a user
257 option because different output options have different tradeoffs;
258 if GDB does the printing, there is better error handling if there
259 is a problem with any of the arguments, but using an inferior
260 function lets you have special-purpose printers and sending of
261 output to the same place as compiled-in print functions. */
262
263 static const char dprintf_style_gdb[] = "gdb";
264 static const char dprintf_style_call[] = "call";
265 static const char dprintf_style_agent[] = "agent";
266 static const char *const dprintf_style_enums[] = {
267 dprintf_style_gdb,
268 dprintf_style_call,
269 dprintf_style_agent,
270 NULL
271 };
272 static const char *dprintf_style = dprintf_style_gdb;
273
274 /* The function to use for dynamic printf if the preferred style is to
275 call into the inferior. The value is simply a string that is
276 copied into the command, so it can be anything that GDB can
277 evaluate to a callable address, not necessarily a function name. */
278
279 static std::string dprintf_function = "printf";
280
281 /* The channel to use for dynamic printf if the preferred style is to
282 call into the inferior; if a nonempty string, it will be passed to
283 the call as the first argument, with the format string as the
284 second. As with the dprintf function, this can be anything that
285 GDB knows how to evaluate, so in addition to common choices like
286 "stderr", this could be an app-specific expression like
287 "mystreams[curlogger]". */
288
289 static std::string dprintf_channel;
290
291 /* True if dprintf commands should continue to operate even if GDB
292 has disconnected. */
293 static bool disconnected_dprintf = true;
294
295 struct command_line *
296 breakpoint_commands (struct breakpoint *b)
297 {
298 return b->commands ? b->commands.get () : NULL;
299 }
300
301 /* Flag indicating that a command has proceeded the inferior past the
302 current breakpoint. */
303
304 static bool breakpoint_proceeded;
305
306 const char *
307 bpdisp_text (enum bpdisp disp)
308 {
309 /* NOTE: the following values are a part of MI protocol and
310 represent values of 'disp' field returned when inferior stops at
311 a breakpoint. */
312 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
313
314 return bpdisps[(int) disp];
315 }
316
317 /* Prototypes for exported functions. */
318 /* If FALSE, gdb will not use hardware support for watchpoints, even
319 if such is available. */
320 static int can_use_hw_watchpoints;
321
322 static void
323 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
324 struct cmd_list_element *c,
325 const char *value)
326 {
327 fprintf_filtered (file,
328 _("Debugger's willingness to use "
329 "watchpoint hardware is %s.\n"),
330 value);
331 }
332
333 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
334 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
335 for unrecognized breakpoint locations.
336 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
337 static enum auto_boolean pending_break_support;
338 static void
339 show_pending_break_support (struct ui_file *file, int from_tty,
340 struct cmd_list_element *c,
341 const char *value)
342 {
343 fprintf_filtered (file,
344 _("Debugger's behavior regarding "
345 "pending breakpoints is %s.\n"),
346 value);
347 }
348
349 /* If true, gdb will automatically use hardware breakpoints for breakpoints
350 set with "break" but falling in read-only memory.
351 If false, gdb will warn about such breakpoints, but won't automatically
352 use hardware breakpoints. */
353 static bool automatic_hardware_breakpoints;
354 static void
355 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
356 struct cmd_list_element *c,
357 const char *value)
358 {
359 fprintf_filtered (file,
360 _("Automatic usage of hardware breakpoints is %s.\n"),
361 value);
362 }
363
364 /* If on, GDB keeps breakpoints inserted even if the inferior is
365 stopped, and immediately inserts any new breakpoints as soon as
366 they're created. If off (default), GDB keeps breakpoints off of
367 the target as long as possible. That is, it delays inserting
368 breakpoints until the next resume, and removes them again when the
369 target fully stops. This is a bit safer in case GDB crashes while
370 processing user input. */
371 static bool always_inserted_mode = false;
372
373 static void
374 show_always_inserted_mode (struct ui_file *file, int from_tty,
375 struct cmd_list_element *c, const char *value)
376 {
377 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
378 value);
379 }
380
381 /* See breakpoint.h. */
382
383 int
384 breakpoints_should_be_inserted_now (void)
385 {
386 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
387 {
388 /* If breakpoints are global, they should be inserted even if no
389 thread under gdb's control is running, or even if there are
390 no threads under GDB's control yet. */
391 return 1;
392 }
393 else
394 {
395 if (always_inserted_mode)
396 {
397 /* The user wants breakpoints inserted even if all threads
398 are stopped. */
399 return 1;
400 }
401
402 for (inferior *inf : all_inferiors ())
403 if (inf->has_execution ()
404 && threads_are_executing (inf->process_target ()))
405 return 1;
406
407 /* Don't remove breakpoints yet if, even though all threads are
408 stopped, we still have events to process. */
409 for (thread_info *tp : all_non_exited_threads ())
410 if (tp->resumed () && tp->has_pending_waitstatus ())
411 return 1;
412 }
413 return 0;
414 }
415
416 static const char condition_evaluation_both[] = "host or target";
417
418 /* Modes for breakpoint condition evaluation. */
419 static const char condition_evaluation_auto[] = "auto";
420 static const char condition_evaluation_host[] = "host";
421 static const char condition_evaluation_target[] = "target";
422 static const char *const condition_evaluation_enums[] = {
423 condition_evaluation_auto,
424 condition_evaluation_host,
425 condition_evaluation_target,
426 NULL
427 };
428
429 /* Global that holds the current mode for breakpoint condition evaluation. */
430 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
431
432 /* Global that we use to display information to the user (gets its value from
433 condition_evaluation_mode_1. */
434 static const char *condition_evaluation_mode = condition_evaluation_auto;
435
436 /* Translate a condition evaluation mode MODE into either "host"
437 or "target". This is used mostly to translate from "auto" to the
438 real setting that is being used. It returns the translated
439 evaluation mode. */
440
441 static const char *
442 translate_condition_evaluation_mode (const char *mode)
443 {
444 if (mode == condition_evaluation_auto)
445 {
446 if (target_supports_evaluation_of_breakpoint_conditions ())
447 return condition_evaluation_target;
448 else
449 return condition_evaluation_host;
450 }
451 else
452 return mode;
453 }
454
455 /* Discovers what condition_evaluation_auto translates to. */
456
457 static const char *
458 breakpoint_condition_evaluation_mode (void)
459 {
460 return translate_condition_evaluation_mode (condition_evaluation_mode);
461 }
462
463 /* Return true if GDB should evaluate breakpoint conditions or false
464 otherwise. */
465
466 static int
467 gdb_evaluates_breakpoint_condition_p (void)
468 {
469 const char *mode = breakpoint_condition_evaluation_mode ();
470
471 return (mode == condition_evaluation_host);
472 }
473
474 /* Are we executing breakpoint commands? */
475 static int executing_breakpoint_commands;
476
477 /* Are overlay event breakpoints enabled? */
478 static int overlay_events_enabled;
479
480 /* See description in breakpoint.h. */
481 bool target_exact_watchpoints = false;
482
483 /* Walk the following statement or block through all breakpoints.
484 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
485 current breakpoint. */
486
487 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
488 for (B = breakpoint_chain; \
489 B ? (TMP=B->next, 1): 0; \
490 B = TMP)
491
492 /* Chains of all breakpoints defined. */
493
494 static struct breakpoint *breakpoint_chain;
495
496 /* See breakpoint.h. */
497
498 breakpoint_range
499 all_breakpoints ()
500 {
501 return breakpoint_range (breakpoint_chain);
502 }
503
504 /* See breakpoint.h. */
505
506 breakpoint_safe_range
507 all_breakpoints_safe ()
508 {
509 return breakpoint_safe_range (all_breakpoints ());
510 }
511
512 /* See breakpoint.h. */
513
514 tracepoint_range
515 all_tracepoints ()
516 {
517 return tracepoint_range (breakpoint_chain);
518 }
519
520 /* Array is sorted by bp_location_is_less_than - primarily by the ADDRESS. */
521
522 static std::vector<bp_location *> bp_locations;
523
524 /* See breakpoint.h. */
525
526 const std::vector<bp_location *> &
527 all_bp_locations ()
528 {
529 return bp_locations;
530 }
531
532 /* Range to iterate over breakpoint locations at a given address. */
533
534 struct bp_locations_at_addr_range
535 {
536 using iterator = std::vector<bp_location *>::iterator;
537
538 bp_locations_at_addr_range (CORE_ADDR addr)
539 {
540 struct compare
541 {
542 bool operator() (const bp_location *loc, CORE_ADDR addr_) const
543 { return loc->address < addr_; }
544
545 bool operator() (CORE_ADDR addr_, const bp_location *loc) const
546 { return addr_ < loc->address; }
547 };
548
549 auto it_pair = std::equal_range (bp_locations.begin (), bp_locations.end (),
550 addr, compare ());
551
552 m_begin = it_pair.first;
553 m_end = it_pair.second;
554 }
555
556 iterator begin () const
557 { return m_begin; }
558
559 iterator end () const
560 { return m_end; }
561
562 private:
563 iterator m_begin;
564 iterator m_end;
565 };
566
567 /* Return a range to iterate over all breakpoint locations exactly at address
568 ADDR.
569
570 If it's needed to iterate multiple times on the same range, it's possible
571 to save the range in a local variable and use it multiple times:
572
573 auto range = all_bp_locations_at_addr (addr);
574
575 for (bp_location *loc : range)
576 // use loc
577
578 for (bp_location *loc : range)
579 // use loc
580
581 This saves a bit of time, as it avoids re-doing the binary searches to find
582 the range's boundaries. Just remember not to change the bp_locations vector
583 in the mean time, as it could make the range's iterators stale. */
584
585 static bp_locations_at_addr_range
586 all_bp_locations_at_addr (CORE_ADDR addr)
587 {
588 return bp_locations_at_addr_range (addr);
589 }
590
591 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
592 ADDRESS for the current elements of BP_LOCATIONS which get a valid
593 result from bp_location_has_shadow. You can use it for roughly
594 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
595 an address you need to read. */
596
597 static CORE_ADDR bp_locations_placed_address_before_address_max;
598
599 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
600 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
601 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
602 You can use it for roughly limiting the subrange of BP_LOCATIONS to
603 scan for shadow bytes for an address you need to read. */
604
605 static CORE_ADDR bp_locations_shadow_len_after_address_max;
606
607 /* The locations that no longer correspond to any breakpoint, unlinked
608 from the bp_locations array, but for which a hit may still be
609 reported by a target. */
610 static std::vector<bp_location *> moribund_locations;
611
612 /* Number of last breakpoint made. */
613
614 static int breakpoint_count;
615
616 /* The value of `breakpoint_count' before the last command that
617 created breakpoints. If the last (break-like) command created more
618 than one breakpoint, then the difference between BREAKPOINT_COUNT
619 and PREV_BREAKPOINT_COUNT is more than one. */
620 static int prev_breakpoint_count;
621
622 /* Number of last tracepoint made. */
623
624 static int tracepoint_count;
625
626 static struct cmd_list_element *breakpoint_set_cmdlist;
627 static struct cmd_list_element *breakpoint_show_cmdlist;
628 struct cmd_list_element *save_cmdlist;
629
630 /* Return whether a breakpoint is an active enabled breakpoint. */
631 static int
632 breakpoint_enabled (struct breakpoint *b)
633 {
634 return (b->enable_state == bp_enabled);
635 }
636
637 /* Set breakpoint count to NUM. */
638
639 static void
640 set_breakpoint_count (int num)
641 {
642 prev_breakpoint_count = breakpoint_count;
643 breakpoint_count = num;
644 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
645 }
646
647 /* Used by `start_rbreak_breakpoints' below, to record the current
648 breakpoint count before "rbreak" creates any breakpoint. */
649 static int rbreak_start_breakpoint_count;
650
651 /* Called at the start an "rbreak" command to record the first
652 breakpoint made. */
653
654 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
655 {
656 rbreak_start_breakpoint_count = breakpoint_count;
657 }
658
659 /* Called at the end of an "rbreak" command to record the last
660 breakpoint made. */
661
662 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
663 {
664 prev_breakpoint_count = rbreak_start_breakpoint_count;
665 }
666
667 /* Used in run_command to zero the hit count when a new run starts. */
668
669 void
670 clear_breakpoint_hit_counts (void)
671 {
672 for (breakpoint *b : all_breakpoints ())
673 b->hit_count = 0;
674 }
675
676 \f
677 /* Return the breakpoint with the specified number, or NULL
678 if the number does not refer to an existing breakpoint. */
679
680 struct breakpoint *
681 get_breakpoint (int num)
682 {
683 for (breakpoint *b : all_breakpoints ())
684 if (b->number == num)
685 return b;
686
687 return nullptr;
688 }
689
690 \f
691
692 /* Mark locations as "conditions have changed" in case the target supports
693 evaluating conditions on its side. */
694
695 static void
696 mark_breakpoint_modified (struct breakpoint *b)
697 {
698 /* This is only meaningful if the target is
699 evaluating conditions and if the user has
700 opted for condition evaluation on the target's
701 side. */
702 if (gdb_evaluates_breakpoint_condition_p ()
703 || !target_supports_evaluation_of_breakpoint_conditions ())
704 return;
705
706 if (!is_breakpoint (b))
707 return;
708
709 for (bp_location *loc : b->locations ())
710 loc->condition_changed = condition_modified;
711 }
712
713 /* Mark location as "conditions have changed" in case the target supports
714 evaluating conditions on its side. */
715
716 static void
717 mark_breakpoint_location_modified (struct bp_location *loc)
718 {
719 /* This is only meaningful if the target is
720 evaluating conditions and if the user has
721 opted for condition evaluation on the target's
722 side. */
723 if (gdb_evaluates_breakpoint_condition_p ()
724 || !target_supports_evaluation_of_breakpoint_conditions ())
725
726 return;
727
728 if (!is_breakpoint (loc->owner))
729 return;
730
731 loc->condition_changed = condition_modified;
732 }
733
734 /* Sets the condition-evaluation mode using the static global
735 condition_evaluation_mode. */
736
737 static void
738 set_condition_evaluation_mode (const char *args, int from_tty,
739 struct cmd_list_element *c)
740 {
741 const char *old_mode, *new_mode;
742
743 if ((condition_evaluation_mode_1 == condition_evaluation_target)
744 && !target_supports_evaluation_of_breakpoint_conditions ())
745 {
746 condition_evaluation_mode_1 = condition_evaluation_mode;
747 warning (_("Target does not support breakpoint condition evaluation.\n"
748 "Using host evaluation mode instead."));
749 return;
750 }
751
752 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
753 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
754
755 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
756 settings was "auto". */
757 condition_evaluation_mode = condition_evaluation_mode_1;
758
759 /* Only update the mode if the user picked a different one. */
760 if (new_mode != old_mode)
761 {
762 /* If the user switched to a different evaluation mode, we
763 need to synch the changes with the target as follows:
764
765 "host" -> "target": Send all (valid) conditions to the target.
766 "target" -> "host": Remove all the conditions from the target.
767 */
768
769 if (new_mode == condition_evaluation_target)
770 {
771 /* Mark everything modified and synch conditions with the
772 target. */
773 for (bp_location *loc : all_bp_locations ())
774 mark_breakpoint_location_modified (loc);
775 }
776 else
777 {
778 /* Manually mark non-duplicate locations to synch conditions
779 with the target. We do this to remove all the conditions the
780 target knows about. */
781 for (bp_location *loc : all_bp_locations ())
782 if (is_breakpoint (loc->owner) && loc->inserted)
783 loc->needs_update = 1;
784 }
785
786 /* Do the update. */
787 update_global_location_list (UGLL_MAY_INSERT);
788 }
789
790 return;
791 }
792
793 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
794 what "auto" is translating to. */
795
796 static void
797 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
798 struct cmd_list_element *c, const char *value)
799 {
800 if (condition_evaluation_mode == condition_evaluation_auto)
801 fprintf_filtered (file,
802 _("Breakpoint condition evaluation "
803 "mode is %s (currently %s).\n"),
804 value,
805 breakpoint_condition_evaluation_mode ());
806 else
807 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
808 value);
809 }
810
811 /* Parse COND_STRING in the context of LOC and set as the condition
812 expression of LOC. BP_NUM is the number of LOC's owner, LOC_NUM is
813 the number of LOC within its owner. In case of parsing error, mark
814 LOC as DISABLED_BY_COND. In case of success, unset DISABLED_BY_COND. */
815
816 static void
817 set_breakpoint_location_condition (const char *cond_string, bp_location *loc,
818 int bp_num, int loc_num)
819 {
820 bool has_junk = false;
821 try
822 {
823 expression_up new_exp = parse_exp_1 (&cond_string, loc->address,
824 block_for_pc (loc->address), 0);
825 if (*cond_string != 0)
826 has_junk = true;
827 else
828 {
829 loc->cond = std::move (new_exp);
830 if (loc->disabled_by_cond && loc->enabled)
831 printf_filtered (_("Breakpoint %d's condition is now valid at "
832 "location %d, enabling.\n"),
833 bp_num, loc_num);
834
835 loc->disabled_by_cond = false;
836 }
837 }
838 catch (const gdb_exception_error &e)
839 {
840 if (loc->enabled)
841 {
842 /* Warn if a user-enabled location is now becoming disabled-by-cond.
843 BP_NUM is 0 if the breakpoint is being defined for the first
844 time using the "break ... if ..." command, and non-zero if
845 already defined. */
846 if (bp_num != 0)
847 warning (_("failed to validate condition at location %d.%d, "
848 "disabling:\n %s"), bp_num, loc_num, e.what ());
849 else
850 warning (_("failed to validate condition at location %d, "
851 "disabling:\n %s"), loc_num, e.what ());
852 }
853
854 loc->disabled_by_cond = true;
855 }
856
857 if (has_junk)
858 error (_("Garbage '%s' follows condition"), cond_string);
859 }
860
861 void
862 set_breakpoint_condition (struct breakpoint *b, const char *exp,
863 int from_tty, bool force)
864 {
865 if (*exp == 0)
866 {
867 b->cond_string.reset ();
868
869 if (is_watchpoint (b))
870 static_cast<watchpoint *> (b)->cond_exp.reset ();
871 else
872 {
873 int loc_num = 1;
874 for (bp_location *loc : b->locations ())
875 {
876 loc->cond.reset ();
877 if (loc->disabled_by_cond && loc->enabled)
878 printf_filtered (_("Breakpoint %d's condition is now valid at "
879 "location %d, enabling.\n"),
880 b->number, loc_num);
881 loc->disabled_by_cond = false;
882 loc_num++;
883
884 /* No need to free the condition agent expression
885 bytecode (if we have one). We will handle this
886 when we go through update_global_location_list. */
887 }
888 }
889
890 if (from_tty)
891 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
892 }
893 else
894 {
895 if (is_watchpoint (b))
896 {
897 innermost_block_tracker tracker;
898 const char *arg = exp;
899 expression_up new_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
900 if (*arg != 0)
901 error (_("Junk at end of expression"));
902 watchpoint *w = static_cast<watchpoint *> (b);
903 w->cond_exp = std::move (new_exp);
904 w->cond_exp_valid_block = tracker.block ();
905 }
906 else
907 {
908 /* Parse and set condition expressions. We make two passes.
909 In the first, we parse the condition string to see if it
910 is valid in at least one location. If so, the condition
911 would be accepted. So we go ahead and set the locations'
912 conditions. In case no valid case is found, we throw
913 the error and the condition string will be rejected.
914 This two-pass approach is taken to avoid setting the
915 state of locations in case of a reject. */
916 for (bp_location *loc : b->locations ())
917 {
918 try
919 {
920 const char *arg = exp;
921 parse_exp_1 (&arg, loc->address,
922 block_for_pc (loc->address), 0);
923 if (*arg != 0)
924 error (_("Junk at end of expression"));
925 break;
926 }
927 catch (const gdb_exception_error &e)
928 {
929 /* Condition string is invalid. If this happens to
930 be the last loc, abandon (if not forced) or continue
931 (if forced). */
932 if (loc->next == nullptr && !force)
933 throw;
934 }
935 }
936
937 /* If we reach here, the condition is valid at some locations. */
938 int loc_num = 1;
939 for (bp_location *loc : b->locations ())
940 {
941 set_breakpoint_location_condition (exp, loc, b->number, loc_num);
942 loc_num++;
943 }
944 }
945
946 /* We know that the new condition parsed successfully. The
947 condition string of the breakpoint can be safely updated. */
948 b->cond_string = make_unique_xstrdup (exp);
949 b->condition_not_parsed = 0;
950 }
951 mark_breakpoint_modified (b);
952
953 gdb::observers::breakpoint_modified.notify (b);
954 }
955
956 /* See breakpoint.h. */
957
958 void
959 set_breakpoint_condition (int bpnum, const char *exp, int from_tty,
960 bool force)
961 {
962 for (breakpoint *b : all_breakpoints ())
963 if (b->number == bpnum)
964 {
965 /* Check if this breakpoint has a "stop" method implemented in an
966 extension language. This method and conditions entered into GDB
967 from the CLI are mutually exclusive. */
968 const struct extension_language_defn *extlang
969 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
970
971 if (extlang != NULL)
972 {
973 error (_("Only one stop condition allowed. There is currently"
974 " a %s stop condition defined for this breakpoint."),
975 ext_lang_capitalized_name (extlang));
976 }
977 set_breakpoint_condition (b, exp, from_tty, force);
978
979 if (is_breakpoint (b))
980 update_global_location_list (UGLL_MAY_INSERT);
981
982 return;
983 }
984
985 error (_("No breakpoint number %d."), bpnum);
986 }
987
988 /* The options for the "condition" command. */
989
990 struct condition_command_opts
991 {
992 /* For "-force". */
993 bool force_condition = false;
994 };
995
996 static const gdb::option::option_def condition_command_option_defs[] = {
997
998 gdb::option::flag_option_def<condition_command_opts> {
999 "force",
1000 [] (condition_command_opts *opts) { return &opts->force_condition; },
1001 N_("Set the condition even if it is invalid for all current locations."),
1002 },
1003
1004 };
1005
1006 /* Create an option_def_group for the "condition" options, with
1007 CC_OPTS as context. */
1008
1009 static inline gdb::option::option_def_group
1010 make_condition_command_options_def_group (condition_command_opts *cc_opts)
1011 {
1012 return {{condition_command_option_defs}, cc_opts};
1013 }
1014
1015 /* Completion for the "condition" command. */
1016
1017 static void
1018 condition_completer (struct cmd_list_element *cmd,
1019 completion_tracker &tracker,
1020 const char *text, const char * /*word*/)
1021 {
1022 bool has_no_arguments = (*text == '\0');
1023 condition_command_opts cc_opts;
1024 const auto group = make_condition_command_options_def_group (&cc_opts);
1025 if (gdb::option::complete_options
1026 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group))
1027 return;
1028
1029 text = skip_spaces (text);
1030 const char *space = skip_to_space (text);
1031 if (*space == '\0')
1032 {
1033 int len;
1034
1035 if (text[0] == '$')
1036 {
1037 tracker.advance_custom_word_point_by (1);
1038 /* We don't support completion of history indices. */
1039 if (!isdigit (text[1]))
1040 complete_internalvar (tracker, &text[1]);
1041 return;
1042 }
1043
1044 /* Suggest the "-force" flag if no arguments are given. If
1045 arguments were passed, they either already include the flag,
1046 or we are beyond the point of suggesting it because it's
1047 positionally the first argument. */
1048 if (has_no_arguments)
1049 gdb::option::complete_on_all_options (tracker, group);
1050
1051 /* We're completing the breakpoint number. */
1052 len = strlen (text);
1053
1054 for (breakpoint *b : all_breakpoints ())
1055 {
1056 char number[50];
1057
1058 xsnprintf (number, sizeof (number), "%d", b->number);
1059
1060 if (strncmp (number, text, len) == 0)
1061 tracker.add_completion (make_unique_xstrdup (number));
1062 }
1063
1064 return;
1065 }
1066
1067 /* We're completing the expression part. Skip the breakpoint num. */
1068 const char *exp_start = skip_spaces (space);
1069 tracker.advance_custom_word_point_by (exp_start - text);
1070 text = exp_start;
1071 const char *word = advance_to_expression_complete_word_point (tracker, text);
1072 expression_completer (cmd, tracker, text, word);
1073 }
1074
1075 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1076
1077 static void
1078 condition_command (const char *arg, int from_tty)
1079 {
1080 const char *p;
1081 int bnum;
1082
1083 if (arg == 0)
1084 error_no_arg (_("breakpoint number"));
1085
1086 p = arg;
1087
1088 /* Check if the "-force" flag was passed. */
1089 condition_command_opts cc_opts;
1090 const auto group = make_condition_command_options_def_group (&cc_opts);
1091 gdb::option::process_options
1092 (&p, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
1093
1094 bnum = get_number (&p);
1095 if (bnum == 0)
1096 error (_("Bad breakpoint argument: '%s'"), arg);
1097
1098 set_breakpoint_condition (bnum, p, from_tty, cc_opts.force_condition);
1099 }
1100
1101 /* Check that COMMAND do not contain commands that are suitable
1102 only for tracepoints and not suitable for ordinary breakpoints.
1103 Throw if any such commands is found. */
1104
1105 static void
1106 check_no_tracepoint_commands (struct command_line *commands)
1107 {
1108 struct command_line *c;
1109
1110 for (c = commands; c; c = c->next)
1111 {
1112 if (c->control_type == while_stepping_control)
1113 error (_("The 'while-stepping' command can "
1114 "only be used for tracepoints"));
1115
1116 check_no_tracepoint_commands (c->body_list_0.get ());
1117 check_no_tracepoint_commands (c->body_list_1.get ());
1118
1119 /* Not that command parsing removes leading whitespace and comment
1120 lines and also empty lines. So, we only need to check for
1121 command directly. */
1122 if (strstr (c->line, "collect ") == c->line)
1123 error (_("The 'collect' command can only be used for tracepoints"));
1124
1125 if (strstr (c->line, "teval ") == c->line)
1126 error (_("The 'teval' command can only be used for tracepoints"));
1127 }
1128 }
1129
1130 struct longjmp_breakpoint : public breakpoint
1131 {
1132 ~longjmp_breakpoint () override;
1133 };
1134
1135 /* Encapsulate tests for different types of tracepoints. */
1136
1137 static bool
1138 is_tracepoint_type (bptype type)
1139 {
1140 return (type == bp_tracepoint
1141 || type == bp_fast_tracepoint
1142 || type == bp_static_tracepoint);
1143 }
1144
1145 static bool
1146 is_longjmp_type (bptype type)
1147 {
1148 return type == bp_longjmp || type == bp_exception;
1149 }
1150
1151 /* See breakpoint.h. */
1152
1153 bool
1154 is_tracepoint (const struct breakpoint *b)
1155 {
1156 return is_tracepoint_type (b->type);
1157 }
1158
1159 /* Factory function to create an appropriate instance of breakpoint given
1160 TYPE. */
1161
1162 static std::unique_ptr<breakpoint>
1163 new_breakpoint_from_type (bptype type)
1164 {
1165 breakpoint *b;
1166
1167 if (is_tracepoint_type (type))
1168 b = new tracepoint ();
1169 else if (is_longjmp_type (type))
1170 b = new longjmp_breakpoint ();
1171 else
1172 b = new breakpoint ();
1173
1174 return std::unique_ptr<breakpoint> (b);
1175 }
1176
1177 /* A helper function that validates that COMMANDS are valid for a
1178 breakpoint. This function will throw an exception if a problem is
1179 found. */
1180
1181 static void
1182 validate_commands_for_breakpoint (struct breakpoint *b,
1183 struct command_line *commands)
1184 {
1185 if (is_tracepoint (b))
1186 {
1187 struct tracepoint *t = (struct tracepoint *) b;
1188 struct command_line *c;
1189 struct command_line *while_stepping = 0;
1190
1191 /* Reset the while-stepping step count. The previous commands
1192 might have included a while-stepping action, while the new
1193 ones might not. */
1194 t->step_count = 0;
1195
1196 /* We need to verify that each top-level element of commands is
1197 valid for tracepoints, that there's at most one
1198 while-stepping element, and that the while-stepping's body
1199 has valid tracing commands excluding nested while-stepping.
1200 We also need to validate the tracepoint action line in the
1201 context of the tracepoint --- validate_actionline actually
1202 has side effects, like setting the tracepoint's
1203 while-stepping STEP_COUNT, in addition to checking if the
1204 collect/teval actions parse and make sense in the
1205 tracepoint's context. */
1206 for (c = commands; c; c = c->next)
1207 {
1208 if (c->control_type == while_stepping_control)
1209 {
1210 if (b->type == bp_fast_tracepoint)
1211 error (_("The 'while-stepping' command "
1212 "cannot be used for fast tracepoint"));
1213 else if (b->type == bp_static_tracepoint)
1214 error (_("The 'while-stepping' command "
1215 "cannot be used for static tracepoint"));
1216
1217 if (while_stepping)
1218 error (_("The 'while-stepping' command "
1219 "can be used only once"));
1220 else
1221 while_stepping = c;
1222 }
1223
1224 validate_actionline (c->line, b);
1225 }
1226 if (while_stepping)
1227 {
1228 struct command_line *c2;
1229
1230 gdb_assert (while_stepping->body_list_1 == nullptr);
1231 c2 = while_stepping->body_list_0.get ();
1232 for (; c2; c2 = c2->next)
1233 {
1234 if (c2->control_type == while_stepping_control)
1235 error (_("The 'while-stepping' command cannot be nested"));
1236 }
1237 }
1238 }
1239 else
1240 {
1241 check_no_tracepoint_commands (commands);
1242 }
1243 }
1244
1245 /* Return a vector of all the static tracepoints set at ADDR. The
1246 caller is responsible for releasing the vector. */
1247
1248 std::vector<breakpoint *>
1249 static_tracepoints_here (CORE_ADDR addr)
1250 {
1251 std::vector<breakpoint *> found;
1252
1253 for (breakpoint *b : all_breakpoints ())
1254 if (b->type == bp_static_tracepoint)
1255 {
1256 for (bp_location *loc : b->locations ())
1257 if (loc->address == addr)
1258 found.push_back (b);
1259 }
1260
1261 return found;
1262 }
1263
1264 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1265 validate that only allowed commands are included. */
1266
1267 void
1268 breakpoint_set_commands (struct breakpoint *b,
1269 counted_command_line &&commands)
1270 {
1271 validate_commands_for_breakpoint (b, commands.get ());
1272
1273 b->commands = std::move (commands);
1274 gdb::observers::breakpoint_modified.notify (b);
1275 }
1276
1277 /* Set the internal `silent' flag on the breakpoint. Note that this
1278 is not the same as the "silent" that may appear in the breakpoint's
1279 commands. */
1280
1281 void
1282 breakpoint_set_silent (struct breakpoint *b, int silent)
1283 {
1284 int old_silent = b->silent;
1285
1286 b->silent = silent;
1287 if (old_silent != silent)
1288 gdb::observers::breakpoint_modified.notify (b);
1289 }
1290
1291 /* Set the thread for this breakpoint. If THREAD is -1, make the
1292 breakpoint work for any thread. */
1293
1294 void
1295 breakpoint_set_thread (struct breakpoint *b, int thread)
1296 {
1297 int old_thread = b->thread;
1298
1299 b->thread = thread;
1300 if (old_thread != thread)
1301 gdb::observers::breakpoint_modified.notify (b);
1302 }
1303
1304 /* Set the task for this breakpoint. If TASK is 0, make the
1305 breakpoint work for any task. */
1306
1307 void
1308 breakpoint_set_task (struct breakpoint *b, int task)
1309 {
1310 int old_task = b->task;
1311
1312 b->task = task;
1313 if (old_task != task)
1314 gdb::observers::breakpoint_modified.notify (b);
1315 }
1316
1317 static void
1318 commands_command_1 (const char *arg, int from_tty,
1319 struct command_line *control)
1320 {
1321 counted_command_line cmd;
1322 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1323 NULL after the call to read_command_lines if the user provides an empty
1324 list of command by just typing "end". */
1325 bool cmd_read = false;
1326
1327 std::string new_arg;
1328
1329 if (arg == NULL || !*arg)
1330 {
1331 /* Argument not explicitly given. Synthesize it. */
1332 if (breakpoint_count - prev_breakpoint_count > 1)
1333 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1334 breakpoint_count);
1335 else if (breakpoint_count > 0)
1336 new_arg = string_printf ("%d", breakpoint_count);
1337 }
1338 else
1339 {
1340 /* Create a copy of ARG. This is needed because the "commands"
1341 command may be coming from a script. In that case, the read
1342 line buffer is going to be overwritten in the lambda of
1343 'map_breakpoint_numbers' below when reading the next line
1344 before we are are done parsing the breakpoint numbers. */
1345 new_arg = arg;
1346 }
1347 arg = new_arg.c_str ();
1348
1349 map_breakpoint_numbers
1350 (arg, [&] (breakpoint *b)
1351 {
1352 if (!cmd_read)
1353 {
1354 gdb_assert (cmd == NULL);
1355 if (control != NULL)
1356 cmd = control->body_list_0;
1357 else
1358 {
1359 std::string str
1360 = string_printf (_("Type commands for breakpoint(s) "
1361 "%s, one per line."),
1362 arg);
1363
1364 auto do_validate = [=] (const char *line)
1365 {
1366 validate_actionline (line, b);
1367 };
1368 gdb::function_view<void (const char *)> validator;
1369 if (is_tracepoint (b))
1370 validator = do_validate;
1371
1372 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1373 }
1374 cmd_read = true;
1375 }
1376
1377 /* If a breakpoint was on the list more than once, we don't need to
1378 do anything. */
1379 if (b->commands != cmd)
1380 {
1381 validate_commands_for_breakpoint (b, cmd.get ());
1382 b->commands = cmd;
1383 gdb::observers::breakpoint_modified.notify (b);
1384 }
1385 });
1386 }
1387
1388 static void
1389 commands_command (const char *arg, int from_tty)
1390 {
1391 commands_command_1 (arg, from_tty, NULL);
1392 }
1393
1394 /* Like commands_command, but instead of reading the commands from
1395 input stream, takes them from an already parsed command structure.
1396
1397 This is used by cli-script.c to DTRT with breakpoint commands
1398 that are part of if and while bodies. */
1399 enum command_control_type
1400 commands_from_control_command (const char *arg, struct command_line *cmd)
1401 {
1402 commands_command_1 (arg, 0, cmd);
1403 return simple_control;
1404 }
1405
1406 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1407
1408 static int
1409 bp_location_has_shadow (struct bp_location *bl)
1410 {
1411 if (bl->loc_type != bp_loc_software_breakpoint)
1412 return 0;
1413 if (!bl->inserted)
1414 return 0;
1415 if (bl->target_info.shadow_len == 0)
1416 /* BL isn't valid, or doesn't shadow memory. */
1417 return 0;
1418 return 1;
1419 }
1420
1421 /* Update BUF, which is LEN bytes read from the target address
1422 MEMADDR, by replacing a memory breakpoint with its shadowed
1423 contents.
1424
1425 If READBUF is not NULL, this buffer must not overlap with the of
1426 the breakpoint location's shadow_contents buffer. Otherwise, a
1427 failed assertion internal error will be raised. */
1428
1429 static void
1430 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1431 const gdb_byte *writebuf_org,
1432 ULONGEST memaddr, LONGEST len,
1433 struct bp_target_info *target_info,
1434 struct gdbarch *gdbarch)
1435 {
1436 /* Now do full processing of the found relevant range of elements. */
1437 CORE_ADDR bp_addr = 0;
1438 int bp_size = 0;
1439 int bptoffset = 0;
1440
1441 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1442 current_program_space->aspace, 0))
1443 {
1444 /* The breakpoint is inserted in a different address space. */
1445 return;
1446 }
1447
1448 /* Addresses and length of the part of the breakpoint that
1449 we need to copy. */
1450 bp_addr = target_info->placed_address;
1451 bp_size = target_info->shadow_len;
1452
1453 if (bp_addr + bp_size <= memaddr)
1454 {
1455 /* The breakpoint is entirely before the chunk of memory we are
1456 reading. */
1457 return;
1458 }
1459
1460 if (bp_addr >= memaddr + len)
1461 {
1462 /* The breakpoint is entirely after the chunk of memory we are
1463 reading. */
1464 return;
1465 }
1466
1467 /* Offset within shadow_contents. */
1468 if (bp_addr < memaddr)
1469 {
1470 /* Only copy the second part of the breakpoint. */
1471 bp_size -= memaddr - bp_addr;
1472 bptoffset = memaddr - bp_addr;
1473 bp_addr = memaddr;
1474 }
1475
1476 if (bp_addr + bp_size > memaddr + len)
1477 {
1478 /* Only copy the first part of the breakpoint. */
1479 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1480 }
1481
1482 if (readbuf != NULL)
1483 {
1484 /* Verify that the readbuf buffer does not overlap with the
1485 shadow_contents buffer. */
1486 gdb_assert (target_info->shadow_contents >= readbuf + len
1487 || readbuf >= (target_info->shadow_contents
1488 + target_info->shadow_len));
1489
1490 /* Update the read buffer with this inserted breakpoint's
1491 shadow. */
1492 memcpy (readbuf + bp_addr - memaddr,
1493 target_info->shadow_contents + bptoffset, bp_size);
1494 }
1495 else
1496 {
1497 const unsigned char *bp;
1498 CORE_ADDR addr = target_info->reqstd_address;
1499 int placed_size;
1500
1501 /* Update the shadow with what we want to write to memory. */
1502 memcpy (target_info->shadow_contents + bptoffset,
1503 writebuf_org + bp_addr - memaddr, bp_size);
1504
1505 /* Determine appropriate breakpoint contents and size for this
1506 address. */
1507 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1508
1509 /* Update the final write buffer with this inserted
1510 breakpoint's INSN. */
1511 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1512 }
1513 }
1514
1515 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1516 by replacing any memory breakpoints with their shadowed contents.
1517
1518 If READBUF is not NULL, this buffer must not overlap with any of
1519 the breakpoint location's shadow_contents buffers. Otherwise,
1520 a failed assertion internal error will be raised.
1521
1522 The range of shadowed area by each bp_location is:
1523 bl->address - bp_locations_placed_address_before_address_max
1524 up to bl->address + bp_locations_shadow_len_after_address_max
1525 The range we were requested to resolve shadows for is:
1526 memaddr ... memaddr + len
1527 Thus the safe cutoff boundaries for performance optimization are
1528 memaddr + len <= (bl->address
1529 - bp_locations_placed_address_before_address_max)
1530 and:
1531 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1532
1533 void
1534 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1535 const gdb_byte *writebuf_org,
1536 ULONGEST memaddr, LONGEST len)
1537 {
1538 /* Left boundary, right boundary and median element of our binary
1539 search. */
1540 unsigned bc_l, bc_r, bc;
1541
1542 /* Find BC_L which is a leftmost element which may affect BUF
1543 content. It is safe to report lower value but a failure to
1544 report higher one. */
1545
1546 bc_l = 0;
1547 bc_r = bp_locations.size ();
1548 while (bc_l + 1 < bc_r)
1549 {
1550 struct bp_location *bl;
1551
1552 bc = (bc_l + bc_r) / 2;
1553 bl = bp_locations[bc];
1554
1555 /* Check first BL->ADDRESS will not overflow due to the added
1556 constant. Then advance the left boundary only if we are sure
1557 the BC element can in no way affect the BUF content (MEMADDR
1558 to MEMADDR + LEN range).
1559
1560 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1561 offset so that we cannot miss a breakpoint with its shadow
1562 range tail still reaching MEMADDR. */
1563
1564 if ((bl->address + bp_locations_shadow_len_after_address_max
1565 >= bl->address)
1566 && (bl->address + bp_locations_shadow_len_after_address_max
1567 <= memaddr))
1568 bc_l = bc;
1569 else
1570 bc_r = bc;
1571 }
1572
1573 /* Due to the binary search above, we need to make sure we pick the
1574 first location that's at BC_L's address. E.g., if there are
1575 multiple locations at the same address, BC_L may end up pointing
1576 at a duplicate location, and miss the "master"/"inserted"
1577 location. Say, given locations L1, L2 and L3 at addresses A and
1578 B:
1579
1580 L1@A, L2@A, L3@B, ...
1581
1582 BC_L could end up pointing at location L2, while the "master"
1583 location could be L1. Since the `loc->inserted' flag is only set
1584 on "master" locations, we'd forget to restore the shadow of L1
1585 and L2. */
1586 while (bc_l > 0
1587 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1588 bc_l--;
1589
1590 /* Now do full processing of the found relevant range of elements. */
1591
1592 for (bc = bc_l; bc < bp_locations.size (); bc++)
1593 {
1594 struct bp_location *bl = bp_locations[bc];
1595
1596 /* bp_location array has BL->OWNER always non-NULL. */
1597 if (bl->owner->type == bp_none)
1598 warning (_("reading through apparently deleted breakpoint #%d?"),
1599 bl->owner->number);
1600
1601 /* Performance optimization: any further element can no longer affect BUF
1602 content. */
1603
1604 if (bl->address >= bp_locations_placed_address_before_address_max
1605 && (memaddr + len
1606 <= (bl->address
1607 - bp_locations_placed_address_before_address_max)))
1608 break;
1609
1610 if (!bp_location_has_shadow (bl))
1611 continue;
1612
1613 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1614 memaddr, len, &bl->target_info, bl->gdbarch);
1615 }
1616 }
1617
1618 /* See breakpoint.h. */
1619
1620 bool
1621 is_breakpoint (const struct breakpoint *bpt)
1622 {
1623 return (bpt->type == bp_breakpoint
1624 || bpt->type == bp_hardware_breakpoint
1625 || bpt->type == bp_dprintf);
1626 }
1627
1628 /* Return true if BPT is of any hardware watchpoint kind. */
1629
1630 static bool
1631 is_hardware_watchpoint (const struct breakpoint *bpt)
1632 {
1633 return (bpt->type == bp_hardware_watchpoint
1634 || bpt->type == bp_read_watchpoint
1635 || bpt->type == bp_access_watchpoint);
1636 }
1637
1638 /* See breakpoint.h. */
1639
1640 bool
1641 is_watchpoint (const struct breakpoint *bpt)
1642 {
1643 return (is_hardware_watchpoint (bpt)
1644 || bpt->type == bp_watchpoint);
1645 }
1646
1647 /* Returns true if the current thread and its running state are safe
1648 to evaluate or update watchpoint B. Watchpoints on local
1649 expressions need to be evaluated in the context of the thread that
1650 was current when the watchpoint was created, and, that thread needs
1651 to be stopped to be able to select the correct frame context.
1652 Watchpoints on global expressions can be evaluated on any thread,
1653 and in any state. It is presently left to the target allowing
1654 memory accesses when threads are running. */
1655
1656 static int
1657 watchpoint_in_thread_scope (struct watchpoint *b)
1658 {
1659 return (b->pspace == current_program_space
1660 && (b->watchpoint_thread == null_ptid
1661 || (inferior_ptid == b->watchpoint_thread
1662 && !inferior_thread ()->executing ())));
1663 }
1664
1665 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1666 associated bp_watchpoint_scope breakpoint. */
1667
1668 static void
1669 watchpoint_del_at_next_stop (struct watchpoint *w)
1670 {
1671 if (w->related_breakpoint != w)
1672 {
1673 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1674 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1675 w->related_breakpoint->disposition = disp_del_at_next_stop;
1676 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1677 w->related_breakpoint = w;
1678 }
1679 w->disposition = disp_del_at_next_stop;
1680 }
1681
1682 /* Extract a bitfield value from value VAL using the bit parameters contained in
1683 watchpoint W. */
1684
1685 static struct value *
1686 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1687 {
1688 struct value *bit_val;
1689
1690 if (val == NULL)
1691 return NULL;
1692
1693 bit_val = allocate_value (value_type (val));
1694
1695 unpack_value_bitfield (bit_val,
1696 w->val_bitpos,
1697 w->val_bitsize,
1698 value_contents_for_printing (val).data (),
1699 value_offset (val),
1700 val);
1701
1702 return bit_val;
1703 }
1704
1705 /* Allocate a dummy location and add it to B, which must be a software
1706 watchpoint. This is required because even if a software watchpoint
1707 is not watching any memory, bpstat_stop_status requires a location
1708 to be able to report stops. */
1709
1710 static void
1711 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1712 struct program_space *pspace)
1713 {
1714 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1715
1716 b->loc = allocate_bp_location (b);
1717 b->loc->pspace = pspace;
1718 b->loc->address = -1;
1719 b->loc->length = -1;
1720 }
1721
1722 /* Returns true if B is a software watchpoint that is not watching any
1723 memory (e.g., "watch $pc"). */
1724
1725 static bool
1726 is_no_memory_software_watchpoint (struct breakpoint *b)
1727 {
1728 return (b->type == bp_watchpoint
1729 && b->loc != NULL
1730 && b->loc->next == NULL
1731 && b->loc->address == -1
1732 && b->loc->length == -1);
1733 }
1734
1735 /* Assuming that B is a watchpoint:
1736 - Reparse watchpoint expression, if REPARSE is non-zero
1737 - Evaluate expression and store the result in B->val
1738 - Evaluate the condition if there is one, and store the result
1739 in b->loc->cond.
1740 - Update the list of values that must be watched in B->loc.
1741
1742 If the watchpoint disposition is disp_del_at_next_stop, then do
1743 nothing. If this is local watchpoint that is out of scope, delete
1744 it.
1745
1746 Even with `set breakpoint always-inserted on' the watchpoints are
1747 removed + inserted on each stop here. Normal breakpoints must
1748 never be removed because they might be missed by a running thread
1749 when debugging in non-stop mode. On the other hand, hardware
1750 watchpoints (is_hardware_watchpoint; processed here) are specific
1751 to each LWP since they are stored in each LWP's hardware debug
1752 registers. Therefore, such LWP must be stopped first in order to
1753 be able to modify its hardware watchpoints.
1754
1755 Hardware watchpoints must be reset exactly once after being
1756 presented to the user. It cannot be done sooner, because it would
1757 reset the data used to present the watchpoint hit to the user. And
1758 it must not be done later because it could display the same single
1759 watchpoint hit during multiple GDB stops. Note that the latter is
1760 relevant only to the hardware watchpoint types bp_read_watchpoint
1761 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1762 not user-visible - its hit is suppressed if the memory content has
1763 not changed.
1764
1765 The following constraints influence the location where we can reset
1766 hardware watchpoints:
1767
1768 * target_stopped_by_watchpoint and target_stopped_data_address are
1769 called several times when GDB stops.
1770
1771 [linux]
1772 * Multiple hardware watchpoints can be hit at the same time,
1773 causing GDB to stop. GDB only presents one hardware watchpoint
1774 hit at a time as the reason for stopping, and all the other hits
1775 are presented later, one after the other, each time the user
1776 requests the execution to be resumed. Execution is not resumed
1777 for the threads still having pending hit event stored in
1778 LWP_INFO->STATUS. While the watchpoint is already removed from
1779 the inferior on the first stop the thread hit event is kept being
1780 reported from its cached value by linux_nat_stopped_data_address
1781 until the real thread resume happens after the watchpoint gets
1782 presented and thus its LWP_INFO->STATUS gets reset.
1783
1784 Therefore the hardware watchpoint hit can get safely reset on the
1785 watchpoint removal from inferior. */
1786
1787 static void
1788 update_watchpoint (struct watchpoint *b, int reparse)
1789 {
1790 int within_current_scope;
1791 struct frame_id saved_frame_id;
1792 int frame_saved;
1793
1794 /* If this is a local watchpoint, we only want to check if the
1795 watchpoint frame is in scope if the current thread is the thread
1796 that was used to create the watchpoint. */
1797 if (!watchpoint_in_thread_scope (b))
1798 return;
1799
1800 if (b->disposition == disp_del_at_next_stop)
1801 return;
1802
1803 frame_saved = 0;
1804
1805 /* Determine if the watchpoint is within scope. */
1806 if (b->exp_valid_block == NULL)
1807 within_current_scope = 1;
1808 else
1809 {
1810 struct frame_info *fi = get_current_frame ();
1811 struct gdbarch *frame_arch = get_frame_arch (fi);
1812 CORE_ADDR frame_pc = get_frame_pc (fi);
1813
1814 /* If we're at a point where the stack has been destroyed
1815 (e.g. in a function epilogue), unwinding may not work
1816 properly. Do not attempt to recreate locations at this
1817 point. See similar comments in watchpoint_check. */
1818 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1819 return;
1820
1821 /* Save the current frame's ID so we can restore it after
1822 evaluating the watchpoint expression on its own frame. */
1823 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1824 took a frame parameter, so that we didn't have to change the
1825 selected frame. */
1826 frame_saved = 1;
1827 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1828
1829 fi = frame_find_by_id (b->watchpoint_frame);
1830 within_current_scope = (fi != NULL);
1831 if (within_current_scope)
1832 select_frame (fi);
1833 }
1834
1835 /* We don't free locations. They are stored in the bp_location array
1836 and update_global_location_list will eventually delete them and
1837 remove breakpoints if needed. */
1838 b->loc = NULL;
1839
1840 if (within_current_scope && reparse)
1841 {
1842 const char *s;
1843
1844 b->exp.reset ();
1845 s = (b->exp_string_reparse
1846 ? b->exp_string_reparse.get ()
1847 : b->exp_string.get ());
1848 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1849 /* If the meaning of expression itself changed, the old value is
1850 no longer relevant. We don't want to report a watchpoint hit
1851 to the user when the old value and the new value may actually
1852 be completely different objects. */
1853 b->val = NULL;
1854 b->val_valid = false;
1855
1856 /* Note that unlike with breakpoints, the watchpoint's condition
1857 expression is stored in the breakpoint object, not in the
1858 locations (re)created below. */
1859 if (b->cond_string != NULL)
1860 {
1861 b->cond_exp.reset ();
1862
1863 s = b->cond_string.get ();
1864 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1865 }
1866 }
1867
1868 /* If we failed to parse the expression, for example because
1869 it refers to a global variable in a not-yet-loaded shared library,
1870 don't try to insert watchpoint. We don't automatically delete
1871 such watchpoint, though, since failure to parse expression
1872 is different from out-of-scope watchpoint. */
1873 if (!target_has_execution ())
1874 {
1875 /* Without execution, memory can't change. No use to try and
1876 set watchpoint locations. The watchpoint will be reset when
1877 the target gains execution, through breakpoint_re_set. */
1878 if (!can_use_hw_watchpoints)
1879 {
1880 if (b->ops->works_in_software_mode (b))
1881 b->type = bp_watchpoint;
1882 else
1883 error (_("Can't set read/access watchpoint when "
1884 "hardware watchpoints are disabled."));
1885 }
1886 }
1887 else if (within_current_scope && b->exp)
1888 {
1889 std::vector<value_ref_ptr> val_chain;
1890 struct value *v, *result;
1891 struct program_space *frame_pspace;
1892
1893 fetch_subexp_value (b->exp.get (), b->exp->op.get (), &v, &result,
1894 &val_chain, false);
1895
1896 /* Avoid setting b->val if it's already set. The meaning of
1897 b->val is 'the last value' user saw, and we should update
1898 it only if we reported that last value to user. As it
1899 happens, the code that reports it updates b->val directly.
1900 We don't keep track of the memory value for masked
1901 watchpoints. */
1902 if (!b->val_valid && !is_masked_watchpoint (b))
1903 {
1904 if (b->val_bitsize != 0)
1905 v = extract_bitfield_from_watchpoint_value (b, v);
1906 b->val = release_value (v);
1907 b->val_valid = true;
1908 }
1909
1910 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1911
1912 /* Look at each value on the value chain. */
1913 gdb_assert (!val_chain.empty ());
1914 for (const value_ref_ptr &iter : val_chain)
1915 {
1916 v = iter.get ();
1917
1918 /* If it's a memory location, and GDB actually needed
1919 its contents to evaluate the expression, then we
1920 must watch it. If the first value returned is
1921 still lazy, that means an error occurred reading it;
1922 watch it anyway in case it becomes readable. */
1923 if (VALUE_LVAL (v) == lval_memory
1924 && (v == val_chain[0] || ! value_lazy (v)))
1925 {
1926 struct type *vtype = check_typedef (value_type (v));
1927
1928 /* We only watch structs and arrays if user asked
1929 for it explicitly, never if they just happen to
1930 appear in the middle of some value chain. */
1931 if (v == result
1932 || (vtype->code () != TYPE_CODE_STRUCT
1933 && vtype->code () != TYPE_CODE_ARRAY))
1934 {
1935 CORE_ADDR addr;
1936 enum target_hw_bp_type type;
1937 struct bp_location *loc, **tmp;
1938 int bitpos = 0, bitsize = 0;
1939
1940 if (value_bitsize (v) != 0)
1941 {
1942 /* Extract the bit parameters out from the bitfield
1943 sub-expression. */
1944 bitpos = value_bitpos (v);
1945 bitsize = value_bitsize (v);
1946 }
1947 else if (v == result && b->val_bitsize != 0)
1948 {
1949 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1950 lvalue whose bit parameters are saved in the fields
1951 VAL_BITPOS and VAL_BITSIZE. */
1952 bitpos = b->val_bitpos;
1953 bitsize = b->val_bitsize;
1954 }
1955
1956 addr = value_address (v);
1957 if (bitsize != 0)
1958 {
1959 /* Skip the bytes that don't contain the bitfield. */
1960 addr += bitpos / 8;
1961 }
1962
1963 type = hw_write;
1964 if (b->type == bp_read_watchpoint)
1965 type = hw_read;
1966 else if (b->type == bp_access_watchpoint)
1967 type = hw_access;
1968
1969 loc = allocate_bp_location (b);
1970 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1971 ;
1972 *tmp = loc;
1973 loc->gdbarch = value_type (v)->arch ();
1974
1975 loc->pspace = frame_pspace;
1976 loc->address = address_significant (loc->gdbarch, addr);
1977
1978 if (bitsize != 0)
1979 {
1980 /* Just cover the bytes that make up the bitfield. */
1981 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1982 }
1983 else
1984 loc->length = TYPE_LENGTH (value_type (v));
1985
1986 loc->watchpoint_type = type;
1987 }
1988 }
1989 }
1990
1991 /* Change the type of breakpoint between hardware assisted or
1992 an ordinary watchpoint depending on the hardware support
1993 and free hardware slots. REPARSE is set when the inferior
1994 is started. */
1995 if (reparse)
1996 {
1997 int reg_cnt;
1998 enum bp_loc_type loc_type;
1999
2000 reg_cnt = can_use_hardware_watchpoint (val_chain);
2001
2002 if (reg_cnt)
2003 {
2004 int i, target_resources_ok, other_type_used;
2005 enum bptype type;
2006
2007 /* Use an exact watchpoint when there's only one memory region to be
2008 watched, and only one debug register is needed to watch it. */
2009 b->exact = target_exact_watchpoints && reg_cnt == 1;
2010
2011 /* We need to determine how many resources are already
2012 used for all other hardware watchpoints plus this one
2013 to see if we still have enough resources to also fit
2014 this watchpoint in as well. */
2015
2016 /* If this is a software watchpoint, we try to turn it
2017 to a hardware one -- count resources as if B was of
2018 hardware watchpoint type. */
2019 type = b->type;
2020 if (type == bp_watchpoint)
2021 type = bp_hardware_watchpoint;
2022
2023 /* This watchpoint may or may not have been placed on
2024 the list yet at this point (it won't be in the list
2025 if we're trying to create it for the first time,
2026 through watch_command), so always account for it
2027 manually. */
2028
2029 /* Count resources used by all watchpoints except B. */
2030 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
2031
2032 /* Add in the resources needed for B. */
2033 i += hw_watchpoint_use_count (b);
2034
2035 target_resources_ok
2036 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2037 if (target_resources_ok <= 0)
2038 {
2039 int sw_mode = b->ops->works_in_software_mode (b);
2040
2041 if (target_resources_ok == 0 && !sw_mode)
2042 error (_("Target does not support this type of "
2043 "hardware watchpoint."));
2044 else if (target_resources_ok < 0 && !sw_mode)
2045 error (_("There are not enough available hardware "
2046 "resources for this watchpoint."));
2047
2048 /* Downgrade to software watchpoint. */
2049 b->type = bp_watchpoint;
2050 }
2051 else
2052 {
2053 /* If this was a software watchpoint, we've just
2054 found we have enough resources to turn it to a
2055 hardware watchpoint. Otherwise, this is a
2056 nop. */
2057 b->type = type;
2058 }
2059 }
2060 else if (!b->ops->works_in_software_mode (b))
2061 {
2062 if (!can_use_hw_watchpoints)
2063 error (_("Can't set read/access watchpoint when "
2064 "hardware watchpoints are disabled."));
2065 else
2066 error (_("Expression cannot be implemented with "
2067 "read/access watchpoint."));
2068 }
2069 else
2070 b->type = bp_watchpoint;
2071
2072 loc_type = (b->type == bp_watchpoint? bp_loc_other
2073 : bp_loc_hardware_watchpoint);
2074 for (bp_location *bl : b->locations ())
2075 bl->loc_type = loc_type;
2076 }
2077
2078 /* If a software watchpoint is not watching any memory, then the
2079 above left it without any location set up. But,
2080 bpstat_stop_status requires a location to be able to report
2081 stops, so make sure there's at least a dummy one. */
2082 if (b->type == bp_watchpoint && b->loc == NULL)
2083 software_watchpoint_add_no_memory_location (b, frame_pspace);
2084 }
2085 else if (!within_current_scope)
2086 {
2087 printf_filtered (_("\
2088 Watchpoint %d deleted because the program has left the block\n\
2089 in which its expression is valid.\n"),
2090 b->number);
2091 watchpoint_del_at_next_stop (b);
2092 }
2093
2094 /* Restore the selected frame. */
2095 if (frame_saved)
2096 select_frame (frame_find_by_id (saved_frame_id));
2097 }
2098
2099
2100 /* Returns 1 iff breakpoint location should be
2101 inserted in the inferior. We don't differentiate the type of BL's owner
2102 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2103 breakpoint_ops is not defined, because in insert_bp_location,
2104 tracepoint's insert_location will not be called. */
2105 static int
2106 should_be_inserted (struct bp_location *bl)
2107 {
2108 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2109 return 0;
2110
2111 if (bl->owner->disposition == disp_del_at_next_stop)
2112 return 0;
2113
2114 if (!bl->enabled || bl->disabled_by_cond
2115 || bl->shlib_disabled || bl->duplicate)
2116 return 0;
2117
2118 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2119 return 0;
2120
2121 /* This is set for example, when we're attached to the parent of a
2122 vfork, and have detached from the child. The child is running
2123 free, and we expect it to do an exec or exit, at which point the
2124 OS makes the parent schedulable again (and the target reports
2125 that the vfork is done). Until the child is done with the shared
2126 memory region, do not insert breakpoints in the parent, otherwise
2127 the child could still trip on the parent's breakpoints. Since
2128 the parent is blocked anyway, it won't miss any breakpoint. */
2129 if (bl->pspace->breakpoints_not_allowed)
2130 return 0;
2131
2132 /* Don't insert a breakpoint if we're trying to step past its
2133 location, except if the breakpoint is a single-step breakpoint,
2134 and the breakpoint's thread is the thread which is stepping past
2135 a breakpoint. */
2136 if ((bl->loc_type == bp_loc_software_breakpoint
2137 || bl->loc_type == bp_loc_hardware_breakpoint)
2138 && stepping_past_instruction_at (bl->pspace->aspace,
2139 bl->address)
2140 /* The single-step breakpoint may be inserted at the location
2141 we're trying to step if the instruction branches to itself.
2142 However, the instruction won't be executed at all and it may
2143 break the semantics of the instruction, for example, the
2144 instruction is a conditional branch or updates some flags.
2145 We can't fix it unless GDB is able to emulate the instruction
2146 or switch to displaced stepping. */
2147 && !(bl->owner->type == bp_single_step
2148 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2149 {
2150 infrun_debug_printf ("skipping breakpoint: stepping past insn at: %s",
2151 paddress (bl->gdbarch, bl->address));
2152 return 0;
2153 }
2154
2155 /* Don't insert watchpoints if we're trying to step past the
2156 instruction that triggered one. */
2157 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2158 && stepping_past_nonsteppable_watchpoint ())
2159 {
2160 infrun_debug_printf ("stepping past non-steppable watchpoint. "
2161 "skipping watchpoint at %s:%d",
2162 paddress (bl->gdbarch, bl->address), bl->length);
2163 return 0;
2164 }
2165
2166 return 1;
2167 }
2168
2169 /* Same as should_be_inserted but does the check assuming
2170 that the location is not duplicated. */
2171
2172 static int
2173 unduplicated_should_be_inserted (struct bp_location *bl)
2174 {
2175 int result;
2176 const int save_duplicate = bl->duplicate;
2177
2178 bl->duplicate = 0;
2179 result = should_be_inserted (bl);
2180 bl->duplicate = save_duplicate;
2181 return result;
2182 }
2183
2184 /* Parses a conditional described by an expression COND into an
2185 agent expression bytecode suitable for evaluation
2186 by the bytecode interpreter. Return NULL if there was
2187 any error during parsing. */
2188
2189 static agent_expr_up
2190 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2191 {
2192 if (cond == NULL)
2193 return NULL;
2194
2195 agent_expr_up aexpr;
2196
2197 /* We don't want to stop processing, so catch any errors
2198 that may show up. */
2199 try
2200 {
2201 aexpr = gen_eval_for_expr (scope, cond);
2202 }
2203
2204 catch (const gdb_exception_error &ex)
2205 {
2206 /* If we got here, it means the condition could not be parsed to a valid
2207 bytecode expression and thus can't be evaluated on the target's side.
2208 It's no use iterating through the conditions. */
2209 }
2210
2211 /* We have a valid agent expression. */
2212 return aexpr;
2213 }
2214
2215 /* Based on location BL, create a list of breakpoint conditions to be
2216 passed on to the target. If we have duplicated locations with different
2217 conditions, we will add such conditions to the list. The idea is that the
2218 target will evaluate the list of conditions and will only notify GDB when
2219 one of them is true. */
2220
2221 static void
2222 build_target_condition_list (struct bp_location *bl)
2223 {
2224 int null_condition_or_parse_error = 0;
2225 int modified = bl->needs_update;
2226
2227 /* Release conditions left over from a previous insert. */
2228 bl->target_info.conditions.clear ();
2229
2230 /* This is only meaningful if the target is
2231 evaluating conditions and if the user has
2232 opted for condition evaluation on the target's
2233 side. */
2234 if (gdb_evaluates_breakpoint_condition_p ()
2235 || !target_supports_evaluation_of_breakpoint_conditions ())
2236 return;
2237
2238 auto loc_range = all_bp_locations_at_addr (bl->address);
2239
2240 /* Do a first pass to check for locations with no assigned
2241 conditions or conditions that fail to parse to a valid agent
2242 expression bytecode. If any of these happen, then it's no use to
2243 send conditions to the target since this location will always
2244 trigger and generate a response back to GDB. Note we consider
2245 all locations at the same address irrespective of type, i.e.,
2246 even if the locations aren't considered duplicates (e.g.,
2247 software breakpoint and hardware breakpoint at the same
2248 address). */
2249 for (bp_location *loc : loc_range)
2250 {
2251 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2252 {
2253 if (modified)
2254 {
2255 /* Re-parse the conditions since something changed. In that
2256 case we already freed the condition bytecodes (see
2257 force_breakpoint_reinsertion). We just
2258 need to parse the condition to bytecodes again. */
2259 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2260 loc->cond.get ());
2261 }
2262
2263 /* If we have a NULL bytecode expression, it means something
2264 went wrong or we have a null condition expression. */
2265 if (!loc->cond_bytecode)
2266 {
2267 null_condition_or_parse_error = 1;
2268 break;
2269 }
2270 }
2271 }
2272
2273 /* If any of these happened, it means we will have to evaluate the conditions
2274 for the location's address on gdb's side. It is no use keeping bytecodes
2275 for all the other duplicate locations, thus we free all of them here.
2276
2277 This is so we have a finer control over which locations' conditions are
2278 being evaluated by GDB or the remote stub. */
2279 if (null_condition_or_parse_error)
2280 {
2281 for (bp_location *loc : loc_range)
2282 {
2283 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2284 {
2285 /* Only go as far as the first NULL bytecode is
2286 located. */
2287 if (!loc->cond_bytecode)
2288 return;
2289
2290 loc->cond_bytecode.reset ();
2291 }
2292 }
2293 }
2294
2295 /* No NULL conditions or failed bytecode generation. Build a
2296 condition list for this location's address. If we have software
2297 and hardware locations at the same address, they aren't
2298 considered duplicates, but we still marge all the conditions
2299 anyway, as it's simpler, and doesn't really make a practical
2300 difference. */
2301 for (bp_location *loc : loc_range)
2302 if (loc->cond
2303 && is_breakpoint (loc->owner)
2304 && loc->pspace->num == bl->pspace->num
2305 && loc->owner->enable_state == bp_enabled
2306 && loc->enabled
2307 && !loc->disabled_by_cond)
2308 {
2309 /* Add the condition to the vector. This will be used later
2310 to send the conditions to the target. */
2311 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2312 }
2313
2314 return;
2315 }
2316
2317 /* Parses a command described by string CMD into an agent expression
2318 bytecode suitable for evaluation by the bytecode interpreter.
2319 Return NULL if there was any error during parsing. */
2320
2321 static agent_expr_up
2322 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2323 {
2324 const char *cmdrest;
2325 const char *format_start, *format_end;
2326 struct gdbarch *gdbarch = get_current_arch ();
2327
2328 if (cmd == NULL)
2329 return NULL;
2330
2331 cmdrest = cmd;
2332
2333 if (*cmdrest == ',')
2334 ++cmdrest;
2335 cmdrest = skip_spaces (cmdrest);
2336
2337 if (*cmdrest++ != '"')
2338 error (_("No format string following the location"));
2339
2340 format_start = cmdrest;
2341
2342 format_pieces fpieces (&cmdrest);
2343
2344 format_end = cmdrest;
2345
2346 if (*cmdrest++ != '"')
2347 error (_("Bad format string, non-terminated '\"'."));
2348
2349 cmdrest = skip_spaces (cmdrest);
2350
2351 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2352 error (_("Invalid argument syntax"));
2353
2354 if (*cmdrest == ',')
2355 cmdrest++;
2356 cmdrest = skip_spaces (cmdrest);
2357
2358 /* For each argument, make an expression. */
2359
2360 std::vector<struct expression *> argvec;
2361 while (*cmdrest != '\0')
2362 {
2363 const char *cmd1;
2364
2365 cmd1 = cmdrest;
2366 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2367 argvec.push_back (expr.release ());
2368 cmdrest = cmd1;
2369 if (*cmdrest == ',')
2370 ++cmdrest;
2371 }
2372
2373 agent_expr_up aexpr;
2374
2375 /* We don't want to stop processing, so catch any errors
2376 that may show up. */
2377 try
2378 {
2379 aexpr = gen_printf (scope, gdbarch, 0, 0,
2380 format_start, format_end - format_start,
2381 argvec.size (), argvec.data ());
2382 }
2383 catch (const gdb_exception_error &ex)
2384 {
2385 /* If we got here, it means the command could not be parsed to a valid
2386 bytecode expression and thus can't be evaluated on the target's side.
2387 It's no use iterating through the other commands. */
2388 }
2389
2390 /* We have a valid agent expression, return it. */
2391 return aexpr;
2392 }
2393
2394 /* Based on location BL, create a list of breakpoint commands to be
2395 passed on to the target. If we have duplicated locations with
2396 different commands, we will add any such to the list. */
2397
2398 static void
2399 build_target_command_list (struct bp_location *bl)
2400 {
2401 int null_command_or_parse_error = 0;
2402 int modified = bl->needs_update;
2403
2404 /* Clear commands left over from a previous insert. */
2405 bl->target_info.tcommands.clear ();
2406
2407 if (!target_can_run_breakpoint_commands ())
2408 return;
2409
2410 /* For now, limit to agent-style dprintf breakpoints. */
2411 if (dprintf_style != dprintf_style_agent)
2412 return;
2413
2414 auto loc_range = all_bp_locations_at_addr (bl->address);
2415
2416 /* For now, if we have any location at the same address that isn't a
2417 dprintf, don't install the target-side commands, as that would
2418 make the breakpoint not be reported to the core, and we'd lose
2419 control. */
2420 for (bp_location *loc : loc_range)
2421 if (is_breakpoint (loc->owner)
2422 && loc->pspace->num == bl->pspace->num
2423 && loc->owner->type != bp_dprintf)
2424 return;
2425
2426 /* Do a first pass to check for locations with no assigned
2427 conditions or conditions that fail to parse to a valid agent expression
2428 bytecode. If any of these happen, then it's no use to send conditions
2429 to the target since this location will always trigger and generate a
2430 response back to GDB. */
2431 for (bp_location *loc : loc_range)
2432 {
2433 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2434 {
2435 if (modified)
2436 {
2437 /* Re-parse the commands since something changed. In that
2438 case we already freed the command bytecodes (see
2439 force_breakpoint_reinsertion). We just
2440 need to parse the command to bytecodes again. */
2441 loc->cmd_bytecode
2442 = parse_cmd_to_aexpr (bl->address,
2443 loc->owner->extra_string.get ());
2444 }
2445
2446 /* If we have a NULL bytecode expression, it means something
2447 went wrong or we have a null command expression. */
2448 if (!loc->cmd_bytecode)
2449 {
2450 null_command_or_parse_error = 1;
2451 break;
2452 }
2453 }
2454 }
2455
2456 /* If anything failed, then we're not doing target-side commands,
2457 and so clean up. */
2458 if (null_command_or_parse_error)
2459 {
2460 for (bp_location *loc : loc_range)
2461 if (is_breakpoint (loc->owner)
2462 && loc->pspace->num == bl->pspace->num)
2463 {
2464 /* Only go as far as the first NULL bytecode is
2465 located. */
2466 if (loc->cmd_bytecode == NULL)
2467 return;
2468
2469 loc->cmd_bytecode.reset ();
2470 }
2471 }
2472
2473 /* No NULL commands or failed bytecode generation. Build a command
2474 list for all duplicate locations at this location's address.
2475 Note that here we must care for whether the breakpoint location
2476 types are considered duplicates, otherwise, say, if we have a
2477 software and hardware location at the same address, the target
2478 could end up running the commands twice. For the moment, we only
2479 support targets-side commands with dprintf, but it doesn't hurt
2480 to be pedantically correct in case that changes. */
2481 for (bp_location *loc : loc_range)
2482 if (breakpoint_locations_match (bl, loc)
2483 && loc->owner->extra_string
2484 && is_breakpoint (loc->owner)
2485 && loc->pspace->num == bl->pspace->num
2486 && loc->owner->enable_state == bp_enabled
2487 && loc->enabled
2488 && !loc->disabled_by_cond)
2489 {
2490 /* Add the command to the vector. This will be used later
2491 to send the commands to the target. */
2492 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2493 }
2494
2495 bl->target_info.persist = 0;
2496 /* Maybe flag this location as persistent. */
2497 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2498 bl->target_info.persist = 1;
2499 }
2500
2501 /* Return the kind of breakpoint on address *ADDR. Get the kind
2502 of breakpoint according to ADDR except single-step breakpoint.
2503 Get the kind of single-step breakpoint according to the current
2504 registers state. */
2505
2506 static int
2507 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2508 {
2509 if (bl->owner->type == bp_single_step)
2510 {
2511 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2512 struct regcache *regcache;
2513
2514 regcache = get_thread_regcache (thr);
2515
2516 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2517 regcache, addr);
2518 }
2519 else
2520 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2521 }
2522
2523 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2524 location. Any error messages are printed to TMP_ERROR_STREAM; and
2525 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2526 Returns 0 for success, 1 if the bp_location type is not supported or
2527 -1 for failure.
2528
2529 NOTE drow/2003-09-09: This routine could be broken down to an
2530 object-style method for each breakpoint or catchpoint type. */
2531 static int
2532 insert_bp_location (struct bp_location *bl,
2533 struct ui_file *tmp_error_stream,
2534 int *disabled_breaks,
2535 int *hw_breakpoint_error,
2536 int *hw_bp_error_explained_already)
2537 {
2538 gdb_exception bp_excpt;
2539
2540 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2541 return 0;
2542
2543 /* Note we don't initialize bl->target_info, as that wipes out
2544 the breakpoint location's shadow_contents if the breakpoint
2545 is still inserted at that location. This in turn breaks
2546 target_read_memory which depends on these buffers when
2547 a memory read is requested at the breakpoint location:
2548 Once the target_info has been wiped, we fail to see that
2549 we have a breakpoint inserted at that address and thus
2550 read the breakpoint instead of returning the data saved in
2551 the breakpoint location's shadow contents. */
2552 bl->target_info.reqstd_address = bl->address;
2553 bl->target_info.placed_address_space = bl->pspace->aspace;
2554 bl->target_info.length = bl->length;
2555
2556 /* When working with target-side conditions, we must pass all the conditions
2557 for the same breakpoint address down to the target since GDB will not
2558 insert those locations. With a list of breakpoint conditions, the target
2559 can decide when to stop and notify GDB. */
2560
2561 if (is_breakpoint (bl->owner))
2562 {
2563 build_target_condition_list (bl);
2564 build_target_command_list (bl);
2565 /* Reset the modification marker. */
2566 bl->needs_update = 0;
2567 }
2568
2569 /* If "set breakpoint auto-hw" is "on" and a software breakpoint was
2570 set at a read-only address, then a breakpoint location will have
2571 been changed to hardware breakpoint before we get here. If it is
2572 "off" however, error out before actually trying to insert the
2573 breakpoint, with a nicer error message. */
2574 if (bl->loc_type == bp_loc_software_breakpoint
2575 && !automatic_hardware_breakpoints)
2576 {
2577 mem_region *mr = lookup_mem_region (bl->address);
2578
2579 if (mr != nullptr && mr->attrib.mode != MEM_RW)
2580 {
2581 fprintf_unfiltered (tmp_error_stream,
2582 _("Cannot insert breakpoint %d.\n"
2583 "Cannot set software breakpoint "
2584 "at read-only address %s\n"),
2585 bl->owner->number,
2586 paddress (bl->gdbarch, bl->address));
2587 return 1;
2588 }
2589 }
2590
2591 if (bl->loc_type == bp_loc_software_breakpoint
2592 || bl->loc_type == bp_loc_hardware_breakpoint)
2593 {
2594 /* First check to see if we have to handle an overlay. */
2595 if (overlay_debugging == ovly_off
2596 || bl->section == NULL
2597 || !(section_is_overlay (bl->section)))
2598 {
2599 /* No overlay handling: just set the breakpoint. */
2600 try
2601 {
2602 int val;
2603
2604 val = bl->owner->ops->insert_location (bl);
2605 if (val)
2606 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2607 }
2608 catch (gdb_exception &e)
2609 {
2610 bp_excpt = std::move (e);
2611 }
2612 }
2613 else
2614 {
2615 /* This breakpoint is in an overlay section.
2616 Shall we set a breakpoint at the LMA? */
2617 if (!overlay_events_enabled)
2618 {
2619 /* Yes -- overlay event support is not active,
2620 so we must try to set a breakpoint at the LMA.
2621 This will not work for a hardware breakpoint. */
2622 if (bl->loc_type == bp_loc_hardware_breakpoint)
2623 warning (_("hardware breakpoint %d not supported in overlay!"),
2624 bl->owner->number);
2625 else
2626 {
2627 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2628 bl->section);
2629 /* Set a software (trap) breakpoint at the LMA. */
2630 bl->overlay_target_info = bl->target_info;
2631 bl->overlay_target_info.reqstd_address = addr;
2632
2633 /* No overlay handling: just set the breakpoint. */
2634 try
2635 {
2636 int val;
2637
2638 bl->overlay_target_info.kind
2639 = breakpoint_kind (bl, &addr);
2640 bl->overlay_target_info.placed_address = addr;
2641 val = target_insert_breakpoint (bl->gdbarch,
2642 &bl->overlay_target_info);
2643 if (val)
2644 bp_excpt
2645 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2646 }
2647 catch (gdb_exception &e)
2648 {
2649 bp_excpt = std::move (e);
2650 }
2651
2652 if (bp_excpt.reason != 0)
2653 fprintf_unfiltered (tmp_error_stream,
2654 "Overlay breakpoint %d "
2655 "failed: in ROM?\n",
2656 bl->owner->number);
2657 }
2658 }
2659 /* Shall we set a breakpoint at the VMA? */
2660 if (section_is_mapped (bl->section))
2661 {
2662 /* Yes. This overlay section is mapped into memory. */
2663 try
2664 {
2665 int val;
2666
2667 val = bl->owner->ops->insert_location (bl);
2668 if (val)
2669 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2670 }
2671 catch (gdb_exception &e)
2672 {
2673 bp_excpt = std::move (e);
2674 }
2675 }
2676 else
2677 {
2678 /* No. This breakpoint will not be inserted.
2679 No error, but do not mark the bp as 'inserted'. */
2680 return 0;
2681 }
2682 }
2683
2684 if (bp_excpt.reason != 0)
2685 {
2686 /* Can't set the breakpoint. */
2687
2688 /* If the target has closed then it will have deleted any
2689 breakpoints inserted within the target inferior, as a result
2690 any further attempts to interact with the breakpoint objects
2691 is not possible. Just rethrow the error. */
2692 if (bp_excpt.error == TARGET_CLOSE_ERROR)
2693 throw bp_excpt;
2694 gdb_assert (bl->owner != nullptr);
2695
2696 /* In some cases, we might not be able to insert a
2697 breakpoint in a shared library that has already been
2698 removed, but we have not yet processed the shlib unload
2699 event. Unfortunately, some targets that implement
2700 breakpoint insertion themselves can't tell why the
2701 breakpoint insertion failed (e.g., the remote target
2702 doesn't define error codes), so we must treat generic
2703 errors as memory errors. */
2704 if (bp_excpt.reason == RETURN_ERROR
2705 && (bp_excpt.error == GENERIC_ERROR
2706 || bp_excpt.error == MEMORY_ERROR)
2707 && bl->loc_type == bp_loc_software_breakpoint
2708 && (solib_name_from_address (bl->pspace, bl->address)
2709 || shared_objfile_contains_address_p (bl->pspace,
2710 bl->address)))
2711 {
2712 /* See also: disable_breakpoints_in_shlibs. */
2713 bl->shlib_disabled = 1;
2714 gdb::observers::breakpoint_modified.notify (bl->owner);
2715 if (!*disabled_breaks)
2716 {
2717 fprintf_unfiltered (tmp_error_stream,
2718 "Cannot insert breakpoint %d.\n",
2719 bl->owner->number);
2720 fprintf_unfiltered (tmp_error_stream,
2721 "Temporarily disabling shared "
2722 "library breakpoints:\n");
2723 }
2724 *disabled_breaks = 1;
2725 fprintf_unfiltered (tmp_error_stream,
2726 "breakpoint #%d\n", bl->owner->number);
2727 return 0;
2728 }
2729 else
2730 {
2731 if (bl->loc_type == bp_loc_hardware_breakpoint)
2732 {
2733 *hw_breakpoint_error = 1;
2734 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2735 fprintf_unfiltered (tmp_error_stream,
2736 "Cannot insert hardware breakpoint %d%s",
2737 bl->owner->number,
2738 bp_excpt.message ? ":" : ".\n");
2739 if (bp_excpt.message != NULL)
2740 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2741 bp_excpt.what ());
2742 }
2743 else
2744 {
2745 if (bp_excpt.message == NULL)
2746 {
2747 std::string message
2748 = memory_error_message (TARGET_XFER_E_IO,
2749 bl->gdbarch, bl->address);
2750
2751 fprintf_unfiltered (tmp_error_stream,
2752 "Cannot insert breakpoint %d.\n"
2753 "%s\n",
2754 bl->owner->number, message.c_str ());
2755 }
2756 else
2757 {
2758 fprintf_unfiltered (tmp_error_stream,
2759 "Cannot insert breakpoint %d: %s\n",
2760 bl->owner->number,
2761 bp_excpt.what ());
2762 }
2763 }
2764 return 1;
2765
2766 }
2767 }
2768 else
2769 bl->inserted = 1;
2770
2771 return 0;
2772 }
2773
2774 else if (bl->loc_type == bp_loc_hardware_watchpoint
2775 /* NOTE drow/2003-09-08: This state only exists for removing
2776 watchpoints. It's not clear that it's necessary... */
2777 && bl->owner->disposition != disp_del_at_next_stop)
2778 {
2779 int val;
2780
2781 gdb_assert (bl->owner->ops != NULL
2782 && bl->owner->ops->insert_location != NULL);
2783
2784 val = bl->owner->ops->insert_location (bl);
2785
2786 /* If trying to set a read-watchpoint, and it turns out it's not
2787 supported, try emulating one with an access watchpoint. */
2788 if (val == 1 && bl->watchpoint_type == hw_read)
2789 {
2790 /* But don't try to insert it, if there's already another
2791 hw_access location that would be considered a duplicate
2792 of this one. */
2793 for (bp_location *loc : all_bp_locations ())
2794 if (loc != bl
2795 && loc->watchpoint_type == hw_access
2796 && watchpoint_locations_match (bl, loc))
2797 {
2798 bl->duplicate = 1;
2799 bl->inserted = 1;
2800 bl->target_info = loc->target_info;
2801 bl->watchpoint_type = hw_access;
2802 val = 0;
2803 break;
2804 }
2805
2806 if (val == 1)
2807 {
2808 bl->watchpoint_type = hw_access;
2809 val = bl->owner->ops->insert_location (bl);
2810
2811 if (val)
2812 /* Back to the original value. */
2813 bl->watchpoint_type = hw_read;
2814 }
2815 }
2816
2817 bl->inserted = (val == 0);
2818 }
2819
2820 else if (bl->owner->type == bp_catchpoint)
2821 {
2822 int val;
2823
2824 gdb_assert (bl->owner->ops != NULL
2825 && bl->owner->ops->insert_location != NULL);
2826
2827 val = bl->owner->ops->insert_location (bl);
2828 if (val)
2829 {
2830 bl->owner->enable_state = bp_disabled;
2831
2832 if (val == 1)
2833 warning (_("\
2834 Error inserting catchpoint %d: Your system does not support this type\n\
2835 of catchpoint."), bl->owner->number);
2836 else
2837 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2838 }
2839
2840 bl->inserted = (val == 0);
2841
2842 /* We've already printed an error message if there was a problem
2843 inserting this catchpoint, and we've disabled the catchpoint,
2844 so just return success. */
2845 return 0;
2846 }
2847
2848 return 0;
2849 }
2850
2851 /* This function is called when program space PSPACE is about to be
2852 deleted. It takes care of updating breakpoints to not reference
2853 PSPACE anymore. */
2854
2855 void
2856 breakpoint_program_space_exit (struct program_space *pspace)
2857 {
2858 /* Remove any breakpoint that was set through this program space. */
2859 for (breakpoint *b : all_breakpoints_safe ())
2860 if (b->pspace == pspace)
2861 delete_breakpoint (b);
2862
2863 /* Breakpoints set through other program spaces could have locations
2864 bound to PSPACE as well. Remove those. */
2865 for (bp_location *loc : all_bp_locations ())
2866 {
2867 struct bp_location *tmp;
2868
2869 if (loc->pspace == pspace)
2870 {
2871 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2872 if (loc->owner->loc == loc)
2873 loc->owner->loc = loc->next;
2874 else
2875 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2876 if (tmp->next == loc)
2877 {
2878 tmp->next = loc->next;
2879 break;
2880 }
2881 }
2882 }
2883
2884 /* Now update the global location list to permanently delete the
2885 removed locations above. */
2886 update_global_location_list (UGLL_DONT_INSERT);
2887 }
2888
2889 /* Make sure all breakpoints are inserted in inferior.
2890 Throws exception on any error.
2891 A breakpoint that is already inserted won't be inserted
2892 again, so calling this function twice is safe. */
2893 void
2894 insert_breakpoints (void)
2895 {
2896 for (breakpoint *bpt : all_breakpoints ())
2897 if (is_hardware_watchpoint (bpt))
2898 {
2899 struct watchpoint *w = (struct watchpoint *) bpt;
2900
2901 update_watchpoint (w, 0 /* don't reparse. */);
2902 }
2903
2904 /* Updating watchpoints creates new locations, so update the global
2905 location list. Explicitly tell ugll to insert locations and
2906 ignore breakpoints_always_inserted_mode. Also,
2907 update_global_location_list tries to "upgrade" software
2908 breakpoints to hardware breakpoints to handle "set breakpoint
2909 auto-hw", so we need to call it even if we don't have new
2910 locations. */
2911 update_global_location_list (UGLL_INSERT);
2912 }
2913
2914 /* This is used when we need to synch breakpoint conditions between GDB and the
2915 target. It is the case with deleting and disabling of breakpoints when using
2916 always-inserted mode. */
2917
2918 static void
2919 update_inserted_breakpoint_locations (void)
2920 {
2921 int error_flag = 0;
2922 int val = 0;
2923 int disabled_breaks = 0;
2924 int hw_breakpoint_error = 0;
2925 int hw_bp_details_reported = 0;
2926
2927 string_file tmp_error_stream;
2928
2929 /* Explicitly mark the warning -- this will only be printed if
2930 there was an error. */
2931 tmp_error_stream.puts ("Warning:\n");
2932
2933 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2934
2935 for (bp_location *bl : all_bp_locations ())
2936 {
2937 /* We only want to update software breakpoints and hardware
2938 breakpoints. */
2939 if (!is_breakpoint (bl->owner))
2940 continue;
2941
2942 /* We only want to update locations that are already inserted
2943 and need updating. This is to avoid unwanted insertion during
2944 deletion of breakpoints. */
2945 if (!bl->inserted || !bl->needs_update)
2946 continue;
2947
2948 switch_to_program_space_and_thread (bl->pspace);
2949
2950 /* For targets that support global breakpoints, there's no need
2951 to select an inferior to insert breakpoint to. In fact, even
2952 if we aren't attached to any process yet, we should still
2953 insert breakpoints. */
2954 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2955 && (inferior_ptid == null_ptid || !target_has_execution ()))
2956 continue;
2957
2958 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2959 &hw_breakpoint_error, &hw_bp_details_reported);
2960 if (val)
2961 error_flag = val;
2962 }
2963
2964 if (error_flag)
2965 {
2966 target_terminal::ours_for_output ();
2967 error_stream (tmp_error_stream);
2968 }
2969 }
2970
2971 /* Used when starting or continuing the program. */
2972
2973 static void
2974 insert_breakpoint_locations (void)
2975 {
2976 int error_flag = 0;
2977 int val = 0;
2978 int disabled_breaks = 0;
2979 int hw_breakpoint_error = 0;
2980 int hw_bp_error_explained_already = 0;
2981
2982 string_file tmp_error_stream;
2983
2984 /* Explicitly mark the warning -- this will only be printed if
2985 there was an error. */
2986 tmp_error_stream.puts ("Warning:\n");
2987
2988 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2989
2990 for (bp_location *bl : all_bp_locations ())
2991 {
2992 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2993 continue;
2994
2995 /* There is no point inserting thread-specific breakpoints if
2996 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2997 has BL->OWNER always non-NULL. */
2998 if (bl->owner->thread != -1
2999 && !valid_global_thread_id (bl->owner->thread))
3000 continue;
3001
3002 switch_to_program_space_and_thread (bl->pspace);
3003
3004 /* For targets that support global breakpoints, there's no need
3005 to select an inferior to insert breakpoint to. In fact, even
3006 if we aren't attached to any process yet, we should still
3007 insert breakpoints. */
3008 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3009 && (inferior_ptid == null_ptid || !target_has_execution ()))
3010 continue;
3011
3012 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3013 &hw_breakpoint_error, &hw_bp_error_explained_already);
3014 if (val)
3015 error_flag = val;
3016 }
3017
3018 /* If we failed to insert all locations of a watchpoint, remove
3019 them, as half-inserted watchpoint is of limited use. */
3020 for (breakpoint *bpt : all_breakpoints ())
3021 {
3022 int some_failed = 0;
3023
3024 if (!is_hardware_watchpoint (bpt))
3025 continue;
3026
3027 if (!breakpoint_enabled (bpt))
3028 continue;
3029
3030 if (bpt->disposition == disp_del_at_next_stop)
3031 continue;
3032
3033 for (bp_location *loc : bpt->locations ())
3034 if (!loc->inserted && should_be_inserted (loc))
3035 {
3036 some_failed = 1;
3037 break;
3038 }
3039
3040 if (some_failed)
3041 {
3042 for (bp_location *loc : bpt->locations ())
3043 if (loc->inserted)
3044 remove_breakpoint (loc);
3045
3046 hw_breakpoint_error = 1;
3047 tmp_error_stream.printf ("Could not insert "
3048 "hardware watchpoint %d.\n",
3049 bpt->number);
3050 error_flag = -1;
3051 }
3052 }
3053
3054 if (error_flag)
3055 {
3056 /* If a hardware breakpoint or watchpoint was inserted, add a
3057 message about possibly exhausted resources. */
3058 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3059 {
3060 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3061 You may have requested too many hardware breakpoints/watchpoints.\n");
3062 }
3063 target_terminal::ours_for_output ();
3064 error_stream (tmp_error_stream);
3065 }
3066 }
3067
3068 /* Used when the program stops.
3069 Returns zero if successful, or non-zero if there was a problem
3070 removing a breakpoint location. */
3071
3072 int
3073 remove_breakpoints (void)
3074 {
3075 int val = 0;
3076
3077 for (bp_location *bl : all_bp_locations ())
3078 if (bl->inserted && !is_tracepoint (bl->owner))
3079 val |= remove_breakpoint (bl);
3080
3081 return val;
3082 }
3083
3084 /* When a thread exits, remove breakpoints that are related to
3085 that thread. */
3086
3087 static void
3088 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3089 {
3090 for (breakpoint *b : all_breakpoints_safe ())
3091 {
3092 if (b->thread == tp->global_num && user_breakpoint_p (b))
3093 {
3094 b->disposition = disp_del_at_next_stop;
3095
3096 printf_filtered (_("\
3097 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3098 b->number, print_thread_id (tp));
3099
3100 /* Hide it from the user. */
3101 b->number = 0;
3102 }
3103 }
3104 }
3105
3106 /* See breakpoint.h. */
3107
3108 void
3109 remove_breakpoints_inf (inferior *inf)
3110 {
3111 int val;
3112
3113 for (bp_location *bl : all_bp_locations ())
3114 {
3115 if (bl->pspace != inf->pspace)
3116 continue;
3117
3118 if (bl->inserted && !bl->target_info.persist)
3119 {
3120 val = remove_breakpoint (bl);
3121 if (val != 0)
3122 return;
3123 }
3124 }
3125 }
3126
3127 static int internal_breakpoint_number = -1;
3128
3129 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3130 If INTERNAL is non-zero, the breakpoint number will be populated
3131 from internal_breakpoint_number and that variable decremented.
3132 Otherwise the breakpoint number will be populated from
3133 breakpoint_count and that value incremented. Internal breakpoints
3134 do not set the internal var bpnum. */
3135 static void
3136 set_breakpoint_number (int internal, struct breakpoint *b)
3137 {
3138 if (internal)
3139 b->number = internal_breakpoint_number--;
3140 else
3141 {
3142 set_breakpoint_count (breakpoint_count + 1);
3143 b->number = breakpoint_count;
3144 }
3145 }
3146
3147 static struct breakpoint *
3148 create_internal_breakpoint (struct gdbarch *gdbarch,
3149 CORE_ADDR address, enum bptype type,
3150 const struct breakpoint_ops *ops)
3151 {
3152 symtab_and_line sal;
3153 sal.pc = address;
3154 sal.section = find_pc_overlay (sal.pc);
3155 sal.pspace = current_program_space;
3156
3157 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3158 b->number = internal_breakpoint_number--;
3159 b->disposition = disp_donttouch;
3160
3161 return b;
3162 }
3163
3164 static const char *const longjmp_names[] =
3165 {
3166 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3167 };
3168 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3169
3170 /* Per-objfile data private to breakpoint.c. */
3171 struct breakpoint_objfile_data
3172 {
3173 /* Minimal symbol for "_ovly_debug_event" (if any). */
3174 struct bound_minimal_symbol overlay_msym {};
3175
3176 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3177 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3178
3179 /* True if we have looked for longjmp probes. */
3180 int longjmp_searched = 0;
3181
3182 /* SystemTap probe points for longjmp (if any). These are non-owning
3183 references. */
3184 std::vector<probe *> longjmp_probes;
3185
3186 /* Minimal symbol for "std::terminate()" (if any). */
3187 struct bound_minimal_symbol terminate_msym {};
3188
3189 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3190 struct bound_minimal_symbol exception_msym {};
3191
3192 /* True if we have looked for exception probes. */
3193 int exception_searched = 0;
3194
3195 /* SystemTap probe points for unwinding (if any). These are non-owning
3196 references. */
3197 std::vector<probe *> exception_probes;
3198 };
3199
3200 static const struct objfile_key<breakpoint_objfile_data>
3201 breakpoint_objfile_key;
3202
3203 /* Minimal symbol not found sentinel. */
3204 static struct minimal_symbol msym_not_found;
3205
3206 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3207
3208 static int
3209 msym_not_found_p (const struct minimal_symbol *msym)
3210 {
3211 return msym == &msym_not_found;
3212 }
3213
3214 /* Return per-objfile data needed by breakpoint.c.
3215 Allocate the data if necessary. */
3216
3217 static struct breakpoint_objfile_data *
3218 get_breakpoint_objfile_data (struct objfile *objfile)
3219 {
3220 struct breakpoint_objfile_data *bp_objfile_data;
3221
3222 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3223 if (bp_objfile_data == NULL)
3224 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3225 return bp_objfile_data;
3226 }
3227
3228 static void
3229 create_overlay_event_breakpoint (void)
3230 {
3231 const char *const func_name = "_ovly_debug_event";
3232
3233 for (objfile *objfile : current_program_space->objfiles ())
3234 {
3235 struct breakpoint *b;
3236 struct breakpoint_objfile_data *bp_objfile_data;
3237 CORE_ADDR addr;
3238 struct explicit_location explicit_loc;
3239
3240 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3241
3242 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3243 continue;
3244
3245 if (bp_objfile_data->overlay_msym.minsym == NULL)
3246 {
3247 struct bound_minimal_symbol m;
3248
3249 m = lookup_minimal_symbol_text (func_name, objfile);
3250 if (m.minsym == NULL)
3251 {
3252 /* Avoid future lookups in this objfile. */
3253 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3254 continue;
3255 }
3256 bp_objfile_data->overlay_msym = m;
3257 }
3258
3259 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3260 b = create_internal_breakpoint (objfile->arch (), addr,
3261 bp_overlay_event,
3262 &internal_breakpoint_ops);
3263 initialize_explicit_location (&explicit_loc);
3264 explicit_loc.function_name = ASTRDUP (func_name);
3265 b->location = new_explicit_location (&explicit_loc);
3266
3267 if (overlay_debugging == ovly_auto)
3268 {
3269 b->enable_state = bp_enabled;
3270 overlay_events_enabled = 1;
3271 }
3272 else
3273 {
3274 b->enable_state = bp_disabled;
3275 overlay_events_enabled = 0;
3276 }
3277 }
3278 }
3279
3280 /* Install a master longjmp breakpoint for OBJFILE using a probe. Return
3281 true if a breakpoint was installed. */
3282
3283 static bool
3284 create_longjmp_master_breakpoint_probe (objfile *objfile)
3285 {
3286 struct gdbarch *gdbarch = objfile->arch ();
3287 struct breakpoint_objfile_data *bp_objfile_data
3288 = get_breakpoint_objfile_data (objfile);
3289
3290 if (!bp_objfile_data->longjmp_searched)
3291 {
3292 std::vector<probe *> ret
3293 = find_probes_in_objfile (objfile, "libc", "longjmp");
3294
3295 if (!ret.empty ())
3296 {
3297 /* We are only interested in checking one element. */
3298 probe *p = ret[0];
3299
3300 if (!p->can_evaluate_arguments ())
3301 {
3302 /* We cannot use the probe interface here,
3303 because it does not know how to evaluate
3304 arguments. */
3305 ret.clear ();
3306 }
3307 }
3308 bp_objfile_data->longjmp_probes = ret;
3309 bp_objfile_data->longjmp_searched = 1;
3310 }
3311
3312 if (bp_objfile_data->longjmp_probes.empty ())
3313 return false;
3314
3315 for (probe *p : bp_objfile_data->longjmp_probes)
3316 {
3317 struct breakpoint *b;
3318
3319 b = create_internal_breakpoint (gdbarch,
3320 p->get_relocated_address (objfile),
3321 bp_longjmp_master,
3322 &internal_breakpoint_ops);
3323 b->location = new_probe_location ("-probe-stap libc:longjmp");
3324 b->enable_state = bp_disabled;
3325 }
3326
3327 return true;
3328 }
3329
3330 /* Install master longjmp breakpoints for OBJFILE using longjmp_names.
3331 Return true if at least one breakpoint was installed. */
3332
3333 static bool
3334 create_longjmp_master_breakpoint_names (objfile *objfile)
3335 {
3336 struct gdbarch *gdbarch = objfile->arch ();
3337 if (!gdbarch_get_longjmp_target_p (gdbarch))
3338 return false;
3339
3340 struct breakpoint_objfile_data *bp_objfile_data
3341 = get_breakpoint_objfile_data (objfile);
3342 unsigned int installed_bp = 0;
3343
3344 for (int i = 0; i < NUM_LONGJMP_NAMES; i++)
3345 {
3346 struct breakpoint *b;
3347 const char *func_name;
3348 CORE_ADDR addr;
3349 struct explicit_location explicit_loc;
3350
3351 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3352 continue;
3353
3354 func_name = longjmp_names[i];
3355 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3356 {
3357 struct bound_minimal_symbol m;
3358
3359 m = lookup_minimal_symbol_text (func_name, objfile);
3360 if (m.minsym == NULL)
3361 {
3362 /* Prevent future lookups in this objfile. */
3363 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3364 continue;
3365 }
3366 bp_objfile_data->longjmp_msym[i] = m;
3367 }
3368
3369 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3370 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3371 &internal_breakpoint_ops);
3372 initialize_explicit_location (&explicit_loc);
3373 explicit_loc.function_name = ASTRDUP (func_name);
3374 b->location = new_explicit_location (&explicit_loc);
3375 b->enable_state = bp_disabled;
3376 installed_bp++;
3377 }
3378
3379 return installed_bp > 0;
3380 }
3381
3382 /* Create a master longjmp breakpoint. */
3383
3384 static void
3385 create_longjmp_master_breakpoint (void)
3386 {
3387 scoped_restore_current_program_space restore_pspace;
3388
3389 for (struct program_space *pspace : program_spaces)
3390 {
3391 set_current_program_space (pspace);
3392
3393 for (objfile *obj : current_program_space->objfiles ())
3394 {
3395 /* Skip separate debug object, it's handled in the loop below. */
3396 if (obj->separate_debug_objfile_backlink != nullptr)
3397 continue;
3398
3399 /* Try a probe kind breakpoint on main objfile. */
3400 if (create_longjmp_master_breakpoint_probe (obj))
3401 continue;
3402
3403 /* Try longjmp_names kind breakpoints on main and separate_debug
3404 objfiles. */
3405 for (objfile *debug_objfile : obj->separate_debug_objfiles ())
3406 if (create_longjmp_master_breakpoint_names (debug_objfile))
3407 break;
3408 }
3409 }
3410 }
3411
3412 /* Create a master std::terminate breakpoint. */
3413 static void
3414 create_std_terminate_master_breakpoint (void)
3415 {
3416 const char *const func_name = "std::terminate()";
3417
3418 scoped_restore_current_program_space restore_pspace;
3419
3420 for (struct program_space *pspace : program_spaces)
3421 {
3422 CORE_ADDR addr;
3423
3424 set_current_program_space (pspace);
3425
3426 for (objfile *objfile : current_program_space->objfiles ())
3427 {
3428 struct breakpoint *b;
3429 struct breakpoint_objfile_data *bp_objfile_data;
3430 struct explicit_location explicit_loc;
3431
3432 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3433
3434 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3435 continue;
3436
3437 if (bp_objfile_data->terminate_msym.minsym == NULL)
3438 {
3439 struct bound_minimal_symbol m;
3440
3441 m = lookup_minimal_symbol (func_name, NULL, objfile);
3442 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3443 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3444 {
3445 /* Prevent future lookups in this objfile. */
3446 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3447 continue;
3448 }
3449 bp_objfile_data->terminate_msym = m;
3450 }
3451
3452 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3453 b = create_internal_breakpoint (objfile->arch (), addr,
3454 bp_std_terminate_master,
3455 &internal_breakpoint_ops);
3456 initialize_explicit_location (&explicit_loc);
3457 explicit_loc.function_name = ASTRDUP (func_name);
3458 b->location = new_explicit_location (&explicit_loc);
3459 b->enable_state = bp_disabled;
3460 }
3461 }
3462 }
3463
3464 /* Install a master breakpoint on the unwinder's debug hook for OBJFILE using a
3465 probe. Return true if a breakpoint was installed. */
3466
3467 static bool
3468 create_exception_master_breakpoint_probe (objfile *objfile)
3469 {
3470 struct breakpoint *b;
3471 struct gdbarch *gdbarch;
3472 struct breakpoint_objfile_data *bp_objfile_data;
3473
3474 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3475
3476 /* We prefer the SystemTap probe point if it exists. */
3477 if (!bp_objfile_data->exception_searched)
3478 {
3479 std::vector<probe *> ret
3480 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3481
3482 if (!ret.empty ())
3483 {
3484 /* We are only interested in checking one element. */
3485 probe *p = ret[0];
3486
3487 if (!p->can_evaluate_arguments ())
3488 {
3489 /* We cannot use the probe interface here, because it does
3490 not know how to evaluate arguments. */
3491 ret.clear ();
3492 }
3493 }
3494 bp_objfile_data->exception_probes = ret;
3495 bp_objfile_data->exception_searched = 1;
3496 }
3497
3498 if (bp_objfile_data->exception_probes.empty ())
3499 return false;
3500
3501 gdbarch = objfile->arch ();
3502
3503 for (probe *p : bp_objfile_data->exception_probes)
3504 {
3505 b = create_internal_breakpoint (gdbarch,
3506 p->get_relocated_address (objfile),
3507 bp_exception_master,
3508 &internal_breakpoint_ops);
3509 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3510 b->enable_state = bp_disabled;
3511 }
3512
3513 return true;
3514 }
3515
3516 /* Install a master breakpoint on the unwinder's debug hook for OBJFILE using
3517 _Unwind_DebugHook. Return true if a breakpoint was installed. */
3518
3519 static bool
3520 create_exception_master_breakpoint_hook (objfile *objfile)
3521 {
3522 const char *const func_name = "_Unwind_DebugHook";
3523 struct breakpoint *b;
3524 struct gdbarch *gdbarch;
3525 struct breakpoint_objfile_data *bp_objfile_data;
3526 CORE_ADDR addr;
3527 struct explicit_location explicit_loc;
3528
3529 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3530
3531 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3532 return false;
3533
3534 gdbarch = objfile->arch ();
3535
3536 if (bp_objfile_data->exception_msym.minsym == NULL)
3537 {
3538 struct bound_minimal_symbol debug_hook;
3539
3540 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3541 if (debug_hook.minsym == NULL)
3542 {
3543 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3544 return false;
3545 }
3546
3547 bp_objfile_data->exception_msym = debug_hook;
3548 }
3549
3550 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3551 addr = gdbarch_convert_from_func_ptr_addr
3552 (gdbarch, addr, current_inferior ()->top_target ());
3553 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3554 &internal_breakpoint_ops);
3555 initialize_explicit_location (&explicit_loc);
3556 explicit_loc.function_name = ASTRDUP (func_name);
3557 b->location = new_explicit_location (&explicit_loc);
3558 b->enable_state = bp_disabled;
3559
3560 return true;
3561 }
3562
3563 /* Install a master breakpoint on the unwinder's debug hook. */
3564
3565 static void
3566 create_exception_master_breakpoint (void)
3567 {
3568 for (objfile *obj : current_program_space->objfiles ())
3569 {
3570 /* Skip separate debug object. */
3571 if (obj->separate_debug_objfile_backlink)
3572 continue;
3573
3574 /* Try a probe kind breakpoint. */
3575 if (create_exception_master_breakpoint_probe (obj))
3576 continue;
3577
3578 /* Iterate over main and separate debug objects and try an
3579 _Unwind_DebugHook kind breakpoint. */
3580 for (objfile *debug_objfile : obj->separate_debug_objfiles ())
3581 if (create_exception_master_breakpoint_hook (debug_objfile))
3582 break;
3583 }
3584 }
3585
3586 /* Does B have a location spec? */
3587
3588 static int
3589 breakpoint_event_location_empty_p (const struct breakpoint *b)
3590 {
3591 return b->location != NULL && event_location_empty_p (b->location.get ());
3592 }
3593
3594 void
3595 update_breakpoints_after_exec (void)
3596 {
3597 /* We're about to delete breakpoints from GDB's lists. If the
3598 INSERTED flag is true, GDB will try to lift the breakpoints by
3599 writing the breakpoints' "shadow contents" back into memory. The
3600 "shadow contents" are NOT valid after an exec, so GDB should not
3601 do that. Instead, the target is responsible from marking
3602 breakpoints out as soon as it detects an exec. We don't do that
3603 here instead, because there may be other attempts to delete
3604 breakpoints after detecting an exec and before reaching here. */
3605 for (bp_location *bploc : all_bp_locations ())
3606 if (bploc->pspace == current_program_space)
3607 gdb_assert (!bploc->inserted);
3608
3609 for (breakpoint *b : all_breakpoints_safe ())
3610 {
3611 if (b->pspace != current_program_space)
3612 continue;
3613
3614 /* Solib breakpoints must be explicitly reset after an exec(). */
3615 if (b->type == bp_shlib_event)
3616 {
3617 delete_breakpoint (b);
3618 continue;
3619 }
3620
3621 /* JIT breakpoints must be explicitly reset after an exec(). */
3622 if (b->type == bp_jit_event)
3623 {
3624 delete_breakpoint (b);
3625 continue;
3626 }
3627
3628 /* Thread event breakpoints must be set anew after an exec(),
3629 as must overlay event and longjmp master breakpoints. */
3630 if (b->type == bp_thread_event || b->type == bp_overlay_event
3631 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3632 || b->type == bp_exception_master)
3633 {
3634 delete_breakpoint (b);
3635 continue;
3636 }
3637
3638 /* Step-resume breakpoints are meaningless after an exec(). */
3639 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3640 {
3641 delete_breakpoint (b);
3642 continue;
3643 }
3644
3645 /* Just like single-step breakpoints. */
3646 if (b->type == bp_single_step)
3647 {
3648 delete_breakpoint (b);
3649 continue;
3650 }
3651
3652 /* Longjmp and longjmp-resume breakpoints are also meaningless
3653 after an exec. */
3654 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3655 || b->type == bp_longjmp_call_dummy
3656 || b->type == bp_exception || b->type == bp_exception_resume)
3657 {
3658 delete_breakpoint (b);
3659 continue;
3660 }
3661
3662 if (b->type == bp_catchpoint)
3663 {
3664 /* For now, none of the bp_catchpoint breakpoints need to
3665 do anything at this point. In the future, if some of
3666 the catchpoints need to something, we will need to add
3667 a new method, and call this method from here. */
3668 continue;
3669 }
3670
3671 /* bp_finish is a special case. The only way we ought to be able
3672 to see one of these when an exec() has happened, is if the user
3673 caught a vfork, and then said "finish". Ordinarily a finish just
3674 carries them to the call-site of the current callee, by setting
3675 a temporary bp there and resuming. But in this case, the finish
3676 will carry them entirely through the vfork & exec.
3677
3678 We don't want to allow a bp_finish to remain inserted now. But
3679 we can't safely delete it, 'cause finish_command has a handle to
3680 the bp on a bpstat, and will later want to delete it. There's a
3681 chance (and I've seen it happen) that if we delete the bp_finish
3682 here, that its storage will get reused by the time finish_command
3683 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3684 We really must allow finish_command to delete a bp_finish.
3685
3686 In the absence of a general solution for the "how do we know
3687 it's safe to delete something others may have handles to?"
3688 problem, what we'll do here is just uninsert the bp_finish, and
3689 let finish_command delete it.
3690
3691 (We know the bp_finish is "doomed" in the sense that it's
3692 momentary, and will be deleted as soon as finish_command sees
3693 the inferior stopped. So it doesn't matter that the bp's
3694 address is probably bogus in the new a.out, unlike e.g., the
3695 solib breakpoints.) */
3696
3697 if (b->type == bp_finish)
3698 {
3699 continue;
3700 }
3701
3702 /* Without a symbolic address, we have little hope of the
3703 pre-exec() address meaning the same thing in the post-exec()
3704 a.out. */
3705 if (breakpoint_event_location_empty_p (b))
3706 {
3707 delete_breakpoint (b);
3708 continue;
3709 }
3710 }
3711 }
3712
3713 int
3714 detach_breakpoints (ptid_t ptid)
3715 {
3716 int val = 0;
3717 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3718 struct inferior *inf = current_inferior ();
3719
3720 if (ptid.pid () == inferior_ptid.pid ())
3721 error (_("Cannot detach breakpoints of inferior_ptid"));
3722
3723 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3724 inferior_ptid = ptid;
3725 for (bp_location *bl : all_bp_locations ())
3726 {
3727 if (bl->pspace != inf->pspace)
3728 continue;
3729
3730 /* This function must physically remove breakpoints locations
3731 from the specified ptid, without modifying the breakpoint
3732 package's state. Locations of type bp_loc_other are only
3733 maintained at GDB side. So, there is no need to remove
3734 these bp_loc_other locations. Moreover, removing these
3735 would modify the breakpoint package's state. */
3736 if (bl->loc_type == bp_loc_other)
3737 continue;
3738
3739 if (bl->inserted)
3740 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3741 }
3742
3743 return val;
3744 }
3745
3746 /* Remove the breakpoint location BL from the current address space.
3747 Note that this is used to detach breakpoints from a child fork.
3748 When we get here, the child isn't in the inferior list, and neither
3749 do we have objects to represent its address space --- we should
3750 *not* look at bl->pspace->aspace here. */
3751
3752 static int
3753 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3754 {
3755 int val;
3756
3757 /* BL is never in moribund_locations by our callers. */
3758 gdb_assert (bl->owner != NULL);
3759
3760 /* The type of none suggests that owner is actually deleted.
3761 This should not ever happen. */
3762 gdb_assert (bl->owner->type != bp_none);
3763
3764 if (bl->loc_type == bp_loc_software_breakpoint
3765 || bl->loc_type == bp_loc_hardware_breakpoint)
3766 {
3767 /* "Normal" instruction breakpoint: either the standard
3768 trap-instruction bp (bp_breakpoint), or a
3769 bp_hardware_breakpoint. */
3770
3771 /* First check to see if we have to handle an overlay. */
3772 if (overlay_debugging == ovly_off
3773 || bl->section == NULL
3774 || !(section_is_overlay (bl->section)))
3775 {
3776 /* No overlay handling: just remove the breakpoint. */
3777
3778 /* If we're trying to uninsert a memory breakpoint that we
3779 know is set in a dynamic object that is marked
3780 shlib_disabled, then either the dynamic object was
3781 removed with "remove-symbol-file" or with
3782 "nosharedlibrary". In the former case, we don't know
3783 whether another dynamic object might have loaded over the
3784 breakpoint's address -- the user might well let us know
3785 about it next with add-symbol-file (the whole point of
3786 add-symbol-file is letting the user manually maintain a
3787 list of dynamically loaded objects). If we have the
3788 breakpoint's shadow memory, that is, this is a software
3789 breakpoint managed by GDB, check whether the breakpoint
3790 is still inserted in memory, to avoid overwriting wrong
3791 code with stale saved shadow contents. Note that HW
3792 breakpoints don't have shadow memory, as they're
3793 implemented using a mechanism that is not dependent on
3794 being able to modify the target's memory, and as such
3795 they should always be removed. */
3796 if (bl->shlib_disabled
3797 && bl->target_info.shadow_len != 0
3798 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3799 val = 0;
3800 else
3801 val = bl->owner->ops->remove_location (bl, reason);
3802 }
3803 else
3804 {
3805 /* This breakpoint is in an overlay section.
3806 Did we set a breakpoint at the LMA? */
3807 if (!overlay_events_enabled)
3808 {
3809 /* Yes -- overlay event support is not active, so we
3810 should have set a breakpoint at the LMA. Remove it.
3811 */
3812 /* Ignore any failures: if the LMA is in ROM, we will
3813 have already warned when we failed to insert it. */
3814 if (bl->loc_type == bp_loc_hardware_breakpoint)
3815 target_remove_hw_breakpoint (bl->gdbarch,
3816 &bl->overlay_target_info);
3817 else
3818 target_remove_breakpoint (bl->gdbarch,
3819 &bl->overlay_target_info,
3820 reason);
3821 }
3822 /* Did we set a breakpoint at the VMA?
3823 If so, we will have marked the breakpoint 'inserted'. */
3824 if (bl->inserted)
3825 {
3826 /* Yes -- remove it. Previously we did not bother to
3827 remove the breakpoint if the section had been
3828 unmapped, but let's not rely on that being safe. We
3829 don't know what the overlay manager might do. */
3830
3831 /* However, we should remove *software* breakpoints only
3832 if the section is still mapped, or else we overwrite
3833 wrong code with the saved shadow contents. */
3834 if (bl->loc_type == bp_loc_hardware_breakpoint
3835 || section_is_mapped (bl->section))
3836 val = bl->owner->ops->remove_location (bl, reason);
3837 else
3838 val = 0;
3839 }
3840 else
3841 {
3842 /* No -- not inserted, so no need to remove. No error. */
3843 val = 0;
3844 }
3845 }
3846
3847 /* In some cases, we might not be able to remove a breakpoint in
3848 a shared library that has already been removed, but we have
3849 not yet processed the shlib unload event. Similarly for an
3850 unloaded add-symbol-file object - the user might not yet have
3851 had the chance to remove-symbol-file it. shlib_disabled will
3852 be set if the library/object has already been removed, but
3853 the breakpoint hasn't been uninserted yet, e.g., after
3854 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3855 always-inserted mode. */
3856 if (val
3857 && (bl->loc_type == bp_loc_software_breakpoint
3858 && (bl->shlib_disabled
3859 || solib_name_from_address (bl->pspace, bl->address)
3860 || shared_objfile_contains_address_p (bl->pspace,
3861 bl->address))))
3862 val = 0;
3863
3864 if (val)
3865 return val;
3866 bl->inserted = (reason == DETACH_BREAKPOINT);
3867 }
3868 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3869 {
3870 gdb_assert (bl->owner->ops != NULL
3871 && bl->owner->ops->remove_location != NULL);
3872
3873 bl->inserted = (reason == DETACH_BREAKPOINT);
3874 bl->owner->ops->remove_location (bl, reason);
3875
3876 /* Failure to remove any of the hardware watchpoints comes here. */
3877 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3878 warning (_("Could not remove hardware watchpoint %d."),
3879 bl->owner->number);
3880 }
3881 else if (bl->owner->type == bp_catchpoint
3882 && breakpoint_enabled (bl->owner)
3883 && !bl->duplicate)
3884 {
3885 gdb_assert (bl->owner->ops != NULL
3886 && bl->owner->ops->remove_location != NULL);
3887
3888 val = bl->owner->ops->remove_location (bl, reason);
3889 if (val)
3890 return val;
3891
3892 bl->inserted = (reason == DETACH_BREAKPOINT);
3893 }
3894
3895 return 0;
3896 }
3897
3898 static int
3899 remove_breakpoint (struct bp_location *bl)
3900 {
3901 /* BL is never in moribund_locations by our callers. */
3902 gdb_assert (bl->owner != NULL);
3903
3904 /* The type of none suggests that owner is actually deleted.
3905 This should not ever happen. */
3906 gdb_assert (bl->owner->type != bp_none);
3907
3908 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3909
3910 switch_to_program_space_and_thread (bl->pspace);
3911
3912 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3913 }
3914
3915 /* Clear the "inserted" flag in all breakpoints. */
3916
3917 void
3918 mark_breakpoints_out (void)
3919 {
3920 for (bp_location *bl : all_bp_locations ())
3921 if (bl->pspace == current_program_space)
3922 bl->inserted = 0;
3923 }
3924
3925 /* Clear the "inserted" flag in all breakpoints and delete any
3926 breakpoints which should go away between runs of the program.
3927
3928 Plus other such housekeeping that has to be done for breakpoints
3929 between runs.
3930
3931 Note: this function gets called at the end of a run (by
3932 generic_mourn_inferior) and when a run begins (by
3933 init_wait_for_inferior). */
3934
3935
3936
3937 void
3938 breakpoint_init_inferior (enum inf_context context)
3939 {
3940 struct program_space *pspace = current_program_space;
3941
3942 /* If breakpoint locations are shared across processes, then there's
3943 nothing to do. */
3944 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3945 return;
3946
3947 mark_breakpoints_out ();
3948
3949 for (breakpoint *b : all_breakpoints_safe ())
3950 {
3951 if (b->loc && b->loc->pspace != pspace)
3952 continue;
3953
3954 switch (b->type)
3955 {
3956 case bp_call_dummy:
3957 case bp_longjmp_call_dummy:
3958
3959 /* If the call dummy breakpoint is at the entry point it will
3960 cause problems when the inferior is rerun, so we better get
3961 rid of it. */
3962
3963 case bp_watchpoint_scope:
3964
3965 /* Also get rid of scope breakpoints. */
3966
3967 case bp_shlib_event:
3968
3969 /* Also remove solib event breakpoints. Their addresses may
3970 have changed since the last time we ran the program.
3971 Actually we may now be debugging against different target;
3972 and so the solib backend that installed this breakpoint may
3973 not be used in by the target. E.g.,
3974
3975 (gdb) file prog-linux
3976 (gdb) run # native linux target
3977 ...
3978 (gdb) kill
3979 (gdb) file prog-win.exe
3980 (gdb) tar rem :9999 # remote Windows gdbserver.
3981 */
3982
3983 case bp_step_resume:
3984
3985 /* Also remove step-resume breakpoints. */
3986
3987 case bp_single_step:
3988
3989 /* Also remove single-step breakpoints. */
3990
3991 delete_breakpoint (b);
3992 break;
3993
3994 case bp_watchpoint:
3995 case bp_hardware_watchpoint:
3996 case bp_read_watchpoint:
3997 case bp_access_watchpoint:
3998 {
3999 struct watchpoint *w = (struct watchpoint *) b;
4000
4001 /* Likewise for watchpoints on local expressions. */
4002 if (w->exp_valid_block != NULL)
4003 delete_breakpoint (b);
4004 else
4005 {
4006 /* Get rid of existing locations, which are no longer
4007 valid. New ones will be created in
4008 update_watchpoint, when the inferior is restarted.
4009 The next update_global_location_list call will
4010 garbage collect them. */
4011 b->loc = NULL;
4012
4013 if (context == inf_starting)
4014 {
4015 /* Reset val field to force reread of starting value in
4016 insert_breakpoints. */
4017 w->val.reset (nullptr);
4018 w->val_valid = false;
4019 }
4020 }
4021 }
4022 break;
4023 default:
4024 break;
4025 }
4026 }
4027
4028 /* Get rid of the moribund locations. */
4029 for (bp_location *bl : moribund_locations)
4030 decref_bp_location (&bl);
4031 moribund_locations.clear ();
4032 }
4033
4034 /* These functions concern about actual breakpoints inserted in the
4035 target --- to e.g. check if we need to do decr_pc adjustment or if
4036 we need to hop over the bkpt --- so we check for address space
4037 match, not program space. */
4038
4039 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4040 exists at PC. It returns ordinary_breakpoint_here if it's an
4041 ordinary breakpoint, or permanent_breakpoint_here if it's a
4042 permanent breakpoint.
4043 - When continuing from a location with an ordinary breakpoint, we
4044 actually single step once before calling insert_breakpoints.
4045 - When continuing from a location with a permanent breakpoint, we
4046 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4047 the target, to advance the PC past the breakpoint. */
4048
4049 enum breakpoint_here
4050 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4051 {
4052 int any_breakpoint_here = 0;
4053
4054 for (bp_location *bl : all_bp_locations ())
4055 {
4056 if (bl->loc_type != bp_loc_software_breakpoint
4057 && bl->loc_type != bp_loc_hardware_breakpoint)
4058 continue;
4059
4060 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4061 if ((breakpoint_enabled (bl->owner)
4062 || bl->permanent)
4063 && breakpoint_location_address_match (bl, aspace, pc))
4064 {
4065 if (overlay_debugging
4066 && section_is_overlay (bl->section)
4067 && !section_is_mapped (bl->section))
4068 continue; /* unmapped overlay -- can't be a match */
4069 else if (bl->permanent)
4070 return permanent_breakpoint_here;
4071 else
4072 any_breakpoint_here = 1;
4073 }
4074 }
4075
4076 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4077 }
4078
4079 /* See breakpoint.h. */
4080
4081 int
4082 breakpoint_in_range_p (const address_space *aspace,
4083 CORE_ADDR addr, ULONGEST len)
4084 {
4085 for (bp_location *bl : all_bp_locations ())
4086 {
4087 if (bl->loc_type != bp_loc_software_breakpoint
4088 && bl->loc_type != bp_loc_hardware_breakpoint)
4089 continue;
4090
4091 if ((breakpoint_enabled (bl->owner)
4092 || bl->permanent)
4093 && breakpoint_location_address_range_overlap (bl, aspace,
4094 addr, len))
4095 {
4096 if (overlay_debugging
4097 && section_is_overlay (bl->section)
4098 && !section_is_mapped (bl->section))
4099 {
4100 /* Unmapped overlay -- can't be a match. */
4101 continue;
4102 }
4103
4104 return 1;
4105 }
4106 }
4107
4108 return 0;
4109 }
4110
4111 /* Return true if there's a moribund breakpoint at PC. */
4112
4113 int
4114 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4115 {
4116 for (bp_location *loc : moribund_locations)
4117 if (breakpoint_location_address_match (loc, aspace, pc))
4118 return 1;
4119
4120 return 0;
4121 }
4122
4123 /* Returns non-zero iff BL is inserted at PC, in address space
4124 ASPACE. */
4125
4126 static int
4127 bp_location_inserted_here_p (struct bp_location *bl,
4128 const address_space *aspace, CORE_ADDR pc)
4129 {
4130 if (bl->inserted
4131 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4132 aspace, pc))
4133 {
4134 if (overlay_debugging
4135 && section_is_overlay (bl->section)
4136 && !section_is_mapped (bl->section))
4137 return 0; /* unmapped overlay -- can't be a match */
4138 else
4139 return 1;
4140 }
4141 return 0;
4142 }
4143
4144 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4145
4146 int
4147 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4148 {
4149 for (bp_location *bl : all_bp_locations_at_addr (pc))
4150 {
4151 if (bl->loc_type != bp_loc_software_breakpoint
4152 && bl->loc_type != bp_loc_hardware_breakpoint)
4153 continue;
4154
4155 if (bp_location_inserted_here_p (bl, aspace, pc))
4156 return 1;
4157 }
4158 return 0;
4159 }
4160
4161 /* This function returns non-zero iff there is a software breakpoint
4162 inserted at PC. */
4163
4164 int
4165 software_breakpoint_inserted_here_p (const address_space *aspace,
4166 CORE_ADDR pc)
4167 {
4168 for (bp_location *bl : all_bp_locations_at_addr (pc))
4169 {
4170 if (bl->loc_type != bp_loc_software_breakpoint)
4171 continue;
4172
4173 if (bp_location_inserted_here_p (bl, aspace, pc))
4174 return 1;
4175 }
4176
4177 return 0;
4178 }
4179
4180 /* See breakpoint.h. */
4181
4182 int
4183 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4184 CORE_ADDR pc)
4185 {
4186 for (bp_location *bl : all_bp_locations_at_addr (pc))
4187 {
4188 if (bl->loc_type != bp_loc_hardware_breakpoint)
4189 continue;
4190
4191 if (bp_location_inserted_here_p (bl, aspace, pc))
4192 return 1;
4193 }
4194
4195 return 0;
4196 }
4197
4198 int
4199 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4200 CORE_ADDR addr, ULONGEST len)
4201 {
4202 for (breakpoint *bpt : all_breakpoints ())
4203 {
4204 if (bpt->type != bp_hardware_watchpoint
4205 && bpt->type != bp_access_watchpoint)
4206 continue;
4207
4208 if (!breakpoint_enabled (bpt))
4209 continue;
4210
4211 for (bp_location *loc : bpt->locations ())
4212 if (loc->pspace->aspace == aspace && loc->inserted)
4213 {
4214 CORE_ADDR l, h;
4215
4216 /* Check for intersection. */
4217 l = std::max<CORE_ADDR> (loc->address, addr);
4218 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4219 if (l < h)
4220 return 1;
4221 }
4222 }
4223 return 0;
4224 }
4225
4226 /* See breakpoint.h. */
4227
4228 bool
4229 is_catchpoint (struct breakpoint *b)
4230 {
4231 return (b->type == bp_catchpoint);
4232 }
4233
4234 /* Clear a bpstat so that it says we are not at any breakpoint.
4235 Also free any storage that is part of a bpstat. */
4236
4237 void
4238 bpstat_clear (bpstat **bsp)
4239 {
4240 bpstat *p;
4241 bpstat *q;
4242
4243 if (bsp == 0)
4244 return;
4245 p = *bsp;
4246 while (p != NULL)
4247 {
4248 q = p->next;
4249 delete p;
4250 p = q;
4251 }
4252 *bsp = NULL;
4253 }
4254
4255 bpstat::bpstat (const bpstat &other)
4256 : next (NULL),
4257 bp_location_at (other.bp_location_at),
4258 breakpoint_at (other.breakpoint_at),
4259 commands (other.commands),
4260 print (other.print),
4261 stop (other.stop),
4262 print_it (other.print_it)
4263 {
4264 if (other.old_val != NULL)
4265 old_val = release_value (value_copy (other.old_val.get ()));
4266 }
4267
4268 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4269 is part of the bpstat is copied as well. */
4270
4271 bpstat *
4272 bpstat_copy (bpstat *bs)
4273 {
4274 bpstat *p = nullptr;
4275 bpstat *tmp;
4276 bpstat *retval = nullptr;
4277
4278 if (bs == NULL)
4279 return bs;
4280
4281 for (; bs != NULL; bs = bs->next)
4282 {
4283 tmp = new bpstat (*bs);
4284
4285 if (p == NULL)
4286 /* This is the first thing in the chain. */
4287 retval = tmp;
4288 else
4289 p->next = tmp;
4290 p = tmp;
4291 }
4292 p->next = NULL;
4293 return retval;
4294 }
4295
4296 /* Find the bpstat associated with this breakpoint. */
4297
4298 bpstat *
4299 bpstat_find_breakpoint (bpstat *bsp, struct breakpoint *breakpoint)
4300 {
4301 if (bsp == NULL)
4302 return NULL;
4303
4304 for (; bsp != NULL; bsp = bsp->next)
4305 {
4306 if (bsp->breakpoint_at == breakpoint)
4307 return bsp;
4308 }
4309 return NULL;
4310 }
4311
4312 /* See breakpoint.h. */
4313
4314 bool
4315 bpstat_explains_signal (bpstat *bsp, enum gdb_signal sig)
4316 {
4317 for (; bsp != NULL; bsp = bsp->next)
4318 {
4319 if (bsp->breakpoint_at == NULL)
4320 {
4321 /* A moribund location can never explain a signal other than
4322 GDB_SIGNAL_TRAP. */
4323 if (sig == GDB_SIGNAL_TRAP)
4324 return true;
4325 }
4326 else
4327 {
4328 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4329 sig))
4330 return true;
4331 }
4332 }
4333
4334 return false;
4335 }
4336
4337 /* Put in *NUM the breakpoint number of the first breakpoint we are
4338 stopped at. *BSP upon return is a bpstat which points to the
4339 remaining breakpoints stopped at (but which is not guaranteed to be
4340 good for anything but further calls to bpstat_num).
4341
4342 Return 0 if passed a bpstat which does not indicate any breakpoints.
4343 Return -1 if stopped at a breakpoint that has been deleted since
4344 we set it.
4345 Return 1 otherwise. */
4346
4347 int
4348 bpstat_num (bpstat **bsp, int *num)
4349 {
4350 struct breakpoint *b;
4351
4352 if ((*bsp) == NULL)
4353 return 0; /* No more breakpoint values */
4354
4355 /* We assume we'll never have several bpstats that correspond to a
4356 single breakpoint -- otherwise, this function might return the
4357 same number more than once and this will look ugly. */
4358 b = (*bsp)->breakpoint_at;
4359 *bsp = (*bsp)->next;
4360 if (b == NULL)
4361 return -1; /* breakpoint that's been deleted since */
4362
4363 *num = b->number; /* We have its number */
4364 return 1;
4365 }
4366
4367 /* See breakpoint.h. */
4368
4369 void
4370 bpstat_clear_actions (void)
4371 {
4372 bpstat *bs;
4373
4374 if (inferior_ptid == null_ptid)
4375 return;
4376
4377 thread_info *tp = inferior_thread ();
4378 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4379 {
4380 bs->commands = NULL;
4381 bs->old_val.reset (nullptr);
4382 }
4383 }
4384
4385 /* Called when a command is about to proceed the inferior. */
4386
4387 static void
4388 breakpoint_about_to_proceed (void)
4389 {
4390 if (inferior_ptid != null_ptid)
4391 {
4392 struct thread_info *tp = inferior_thread ();
4393
4394 /* Allow inferior function calls in breakpoint commands to not
4395 interrupt the command list. When the call finishes
4396 successfully, the inferior will be standing at the same
4397 breakpoint as if nothing happened. */
4398 if (tp->control.in_infcall)
4399 return;
4400 }
4401
4402 breakpoint_proceeded = 1;
4403 }
4404
4405 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4406 or its equivalent. */
4407
4408 static int
4409 command_line_is_silent (struct command_line *cmd)
4410 {
4411 return cmd && (strcmp ("silent", cmd->line) == 0);
4412 }
4413
4414 /* Execute all the commands associated with all the breakpoints at
4415 this location. Any of these commands could cause the process to
4416 proceed beyond this point, etc. We look out for such changes by
4417 checking the global "breakpoint_proceeded" after each command.
4418
4419 Returns true if a breakpoint command resumed the inferior. In that
4420 case, it is the caller's responsibility to recall it again with the
4421 bpstat of the current thread. */
4422
4423 static int
4424 bpstat_do_actions_1 (bpstat **bsp)
4425 {
4426 bpstat *bs;
4427 int again = 0;
4428
4429 /* Avoid endless recursion if a `source' command is contained
4430 in bs->commands. */
4431 if (executing_breakpoint_commands)
4432 return 0;
4433
4434 scoped_restore save_executing
4435 = make_scoped_restore (&executing_breakpoint_commands, 1);
4436
4437 scoped_restore preventer = prevent_dont_repeat ();
4438
4439 /* This pointer will iterate over the list of bpstat's. */
4440 bs = *bsp;
4441
4442 breakpoint_proceeded = 0;
4443 for (; bs != NULL; bs = bs->next)
4444 {
4445 struct command_line *cmd = NULL;
4446
4447 /* Take ownership of the BSP's command tree, if it has one.
4448
4449 The command tree could legitimately contain commands like
4450 'step' and 'next', which call clear_proceed_status, which
4451 frees stop_bpstat's command tree. To make sure this doesn't
4452 free the tree we're executing out from under us, we need to
4453 take ownership of the tree ourselves. Since a given bpstat's
4454 commands are only executed once, we don't need to copy it; we
4455 can clear the pointer in the bpstat, and make sure we free
4456 the tree when we're done. */
4457 counted_command_line ccmd = bs->commands;
4458 bs->commands = NULL;
4459 if (ccmd != NULL)
4460 cmd = ccmd.get ();
4461 if (command_line_is_silent (cmd))
4462 {
4463 /* The action has been already done by bpstat_stop_status. */
4464 cmd = cmd->next;
4465 }
4466
4467 while (cmd != NULL)
4468 {
4469 execute_control_command (cmd);
4470
4471 if (breakpoint_proceeded)
4472 break;
4473 else
4474 cmd = cmd->next;
4475 }
4476
4477 if (breakpoint_proceeded)
4478 {
4479 if (current_ui->async)
4480 /* If we are in async mode, then the target might be still
4481 running, not stopped at any breakpoint, so nothing for
4482 us to do here -- just return to the event loop. */
4483 ;
4484 else
4485 /* In sync mode, when execute_control_command returns
4486 we're already standing on the next breakpoint.
4487 Breakpoint commands for that stop were not run, since
4488 execute_command does not run breakpoint commands --
4489 only command_line_handler does, but that one is not
4490 involved in execution of breakpoint commands. So, we
4491 can now execute breakpoint commands. It should be
4492 noted that making execute_command do bpstat actions is
4493 not an option -- in this case we'll have recursive
4494 invocation of bpstat for each breakpoint with a
4495 command, and can easily blow up GDB stack. Instead, we
4496 return true, which will trigger the caller to recall us
4497 with the new stop_bpstat. */
4498 again = 1;
4499 break;
4500 }
4501 }
4502 return again;
4503 }
4504
4505 /* Helper for bpstat_do_actions. Get the current thread, if there's
4506 one, is alive and has execution. Return NULL otherwise. */
4507
4508 static thread_info *
4509 get_bpstat_thread ()
4510 {
4511 if (inferior_ptid == null_ptid || !target_has_execution ())
4512 return NULL;
4513
4514 thread_info *tp = inferior_thread ();
4515 if (tp->state == THREAD_EXITED || tp->executing ())
4516 return NULL;
4517 return tp;
4518 }
4519
4520 void
4521 bpstat_do_actions (void)
4522 {
4523 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4524 thread_info *tp;
4525
4526 /* Do any commands attached to breakpoint we are stopped at. */
4527 while ((tp = get_bpstat_thread ()) != NULL)
4528 {
4529 /* Since in sync mode, bpstat_do_actions may resume the
4530 inferior, and only return when it is stopped at the next
4531 breakpoint, we keep doing breakpoint actions until it returns
4532 false to indicate the inferior was not resumed. */
4533 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4534 break;
4535 }
4536
4537 cleanup_if_error.release ();
4538 }
4539
4540 /* Print out the (old or new) value associated with a watchpoint. */
4541
4542 static void
4543 watchpoint_value_print (struct value *val, struct ui_file *stream)
4544 {
4545 if (val == NULL)
4546 fprintf_styled (stream, metadata_style.style (), _("<unreadable>"));
4547 else
4548 {
4549 struct value_print_options opts;
4550 get_user_print_options (&opts);
4551 value_print (val, stream, &opts);
4552 }
4553 }
4554
4555 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4556 debugging multiple threads. */
4557
4558 void
4559 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4560 {
4561 if (uiout->is_mi_like_p ())
4562 return;
4563
4564 uiout->text ("\n");
4565
4566 if (show_thread_that_caused_stop ())
4567 {
4568 struct thread_info *thr = inferior_thread ();
4569
4570 uiout->text ("Thread ");
4571 uiout->field_string ("thread-id", print_thread_id (thr));
4572
4573 const char *name = thread_name (thr);
4574 if (name != NULL)
4575 {
4576 uiout->text (" \"");
4577 uiout->field_string ("name", name);
4578 uiout->text ("\"");
4579 }
4580
4581 uiout->text (" hit ");
4582 }
4583 }
4584
4585 /* Generic routine for printing messages indicating why we
4586 stopped. The behavior of this function depends on the value
4587 'print_it' in the bpstat structure. Under some circumstances we
4588 may decide not to print anything here and delegate the task to
4589 normal_stop(). */
4590
4591 static enum print_stop_action
4592 print_bp_stop_message (bpstat *bs)
4593 {
4594 switch (bs->print_it)
4595 {
4596 case print_it_noop:
4597 /* Nothing should be printed for this bpstat entry. */
4598 return PRINT_UNKNOWN;
4599 break;
4600
4601 case print_it_done:
4602 /* We still want to print the frame, but we already printed the
4603 relevant messages. */
4604 return PRINT_SRC_AND_LOC;
4605 break;
4606
4607 case print_it_normal:
4608 {
4609 struct breakpoint *b = bs->breakpoint_at;
4610
4611 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4612 which has since been deleted. */
4613 if (b == NULL)
4614 return PRINT_UNKNOWN;
4615
4616 /* Normal case. Call the breakpoint's print_it method. */
4617 return b->ops->print_it (bs);
4618 }
4619 break;
4620
4621 default:
4622 internal_error (__FILE__, __LINE__,
4623 _("print_bp_stop_message: unrecognized enum value"));
4624 break;
4625 }
4626 }
4627
4628 /* A helper function that prints a shared library stopped event. */
4629
4630 static void
4631 print_solib_event (int is_catchpoint)
4632 {
4633 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4634 bool any_added = !current_program_space->added_solibs.empty ();
4635
4636 if (!is_catchpoint)
4637 {
4638 if (any_added || any_deleted)
4639 current_uiout->text (_("Stopped due to shared library event:\n"));
4640 else
4641 current_uiout->text (_("Stopped due to shared library event (no "
4642 "libraries added or removed)\n"));
4643 }
4644
4645 if (current_uiout->is_mi_like_p ())
4646 current_uiout->field_string ("reason",
4647 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4648
4649 if (any_deleted)
4650 {
4651 current_uiout->text (_(" Inferior unloaded "));
4652 ui_out_emit_list list_emitter (current_uiout, "removed");
4653 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4654 {
4655 const std::string &name = current_program_space->deleted_solibs[ix];
4656
4657 if (ix > 0)
4658 current_uiout->text (" ");
4659 current_uiout->field_string ("library", name);
4660 current_uiout->text ("\n");
4661 }
4662 }
4663
4664 if (any_added)
4665 {
4666 current_uiout->text (_(" Inferior loaded "));
4667 ui_out_emit_list list_emitter (current_uiout, "added");
4668 bool first = true;
4669 for (so_list *iter : current_program_space->added_solibs)
4670 {
4671 if (!first)
4672 current_uiout->text (" ");
4673 first = false;
4674 current_uiout->field_string ("library", iter->so_name);
4675 current_uiout->text ("\n");
4676 }
4677 }
4678 }
4679
4680 /* Print a message indicating what happened. This is called from
4681 normal_stop(). The input to this routine is the head of the bpstat
4682 list - a list of the eventpoints that caused this stop. KIND is
4683 the target_waitkind for the stopping event. This
4684 routine calls the generic print routine for printing a message
4685 about reasons for stopping. This will print (for example) the
4686 "Breakpoint n," part of the output. The return value of this
4687 routine is one of:
4688
4689 PRINT_UNKNOWN: Means we printed nothing.
4690 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4691 code to print the location. An example is
4692 "Breakpoint 1, " which should be followed by
4693 the location.
4694 PRINT_SRC_ONLY: Means we printed something, but there is no need
4695 to also print the location part of the message.
4696 An example is the catch/throw messages, which
4697 don't require a location appended to the end.
4698 PRINT_NOTHING: We have done some printing and we don't need any
4699 further info to be printed. */
4700
4701 enum print_stop_action
4702 bpstat_print (bpstat *bs, int kind)
4703 {
4704 enum print_stop_action val;
4705
4706 /* Maybe another breakpoint in the chain caused us to stop.
4707 (Currently all watchpoints go on the bpstat whether hit or not.
4708 That probably could (should) be changed, provided care is taken
4709 with respect to bpstat_explains_signal). */
4710 for (; bs; bs = bs->next)
4711 {
4712 val = print_bp_stop_message (bs);
4713 if (val == PRINT_SRC_ONLY
4714 || val == PRINT_SRC_AND_LOC
4715 || val == PRINT_NOTHING)
4716 return val;
4717 }
4718
4719 /* If we had hit a shared library event breakpoint,
4720 print_bp_stop_message would print out this message. If we hit an
4721 OS-level shared library event, do the same thing. */
4722 if (kind == TARGET_WAITKIND_LOADED)
4723 {
4724 print_solib_event (0);
4725 return PRINT_NOTHING;
4726 }
4727
4728 /* We reached the end of the chain, or we got a null BS to start
4729 with and nothing was printed. */
4730 return PRINT_UNKNOWN;
4731 }
4732
4733 /* Evaluate the boolean expression EXP and return the result. */
4734
4735 static bool
4736 breakpoint_cond_eval (expression *exp)
4737 {
4738 struct value *mark = value_mark ();
4739 bool res = value_true (evaluate_expression (exp));
4740
4741 value_free_to_mark (mark);
4742 return res;
4743 }
4744
4745 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4746
4747 bpstat::bpstat (struct bp_location *bl, bpstat ***bs_link_pointer)
4748 : next (NULL),
4749 bp_location_at (bp_location_ref_ptr::new_reference (bl)),
4750 breakpoint_at (bl->owner),
4751 commands (NULL),
4752 print (0),
4753 stop (0),
4754 print_it (print_it_normal)
4755 {
4756 **bs_link_pointer = this;
4757 *bs_link_pointer = &next;
4758 }
4759
4760 bpstat::bpstat ()
4761 : next (NULL),
4762 breakpoint_at (NULL),
4763 commands (NULL),
4764 print (0),
4765 stop (0),
4766 print_it (print_it_normal)
4767 {
4768 }
4769 \f
4770 /* The target has stopped with waitstatus WS. Check if any hardware
4771 watchpoints have triggered, according to the target. */
4772
4773 int
4774 watchpoints_triggered (const target_waitstatus &ws)
4775 {
4776 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
4777 CORE_ADDR addr;
4778
4779 if (!stopped_by_watchpoint)
4780 {
4781 /* We were not stopped by a watchpoint. Mark all watchpoints
4782 as not triggered. */
4783 for (breakpoint *b : all_breakpoints ())
4784 if (is_hardware_watchpoint (b))
4785 {
4786 struct watchpoint *w = (struct watchpoint *) b;
4787
4788 w->watchpoint_triggered = watch_triggered_no;
4789 }
4790
4791 return 0;
4792 }
4793
4794 if (!target_stopped_data_address (current_inferior ()->top_target (), &addr))
4795 {
4796 /* We were stopped by a watchpoint, but we don't know where.
4797 Mark all watchpoints as unknown. */
4798 for (breakpoint *b : all_breakpoints ())
4799 if (is_hardware_watchpoint (b))
4800 {
4801 struct watchpoint *w = (struct watchpoint *) b;
4802
4803 w->watchpoint_triggered = watch_triggered_unknown;
4804 }
4805
4806 return 1;
4807 }
4808
4809 /* The target could report the data address. Mark watchpoints
4810 affected by this data address as triggered, and all others as not
4811 triggered. */
4812
4813 for (breakpoint *b : all_breakpoints ())
4814 if (is_hardware_watchpoint (b))
4815 {
4816 struct watchpoint *w = (struct watchpoint *) b;
4817
4818 w->watchpoint_triggered = watch_triggered_no;
4819 for (bp_location *loc : b->locations ())
4820 {
4821 if (is_masked_watchpoint (b))
4822 {
4823 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4824 CORE_ADDR start = loc->address & w->hw_wp_mask;
4825
4826 if (newaddr == start)
4827 {
4828 w->watchpoint_triggered = watch_triggered_yes;
4829 break;
4830 }
4831 }
4832 /* Exact match not required. Within range is sufficient. */
4833 else if (target_watchpoint_addr_within_range
4834 (current_inferior ()->top_target (), addr, loc->address,
4835 loc->length))
4836 {
4837 w->watchpoint_triggered = watch_triggered_yes;
4838 break;
4839 }
4840 }
4841 }
4842
4843 return 1;
4844 }
4845
4846 /* Possible return values for watchpoint_check. */
4847 enum wp_check_result
4848 {
4849 /* The watchpoint has been deleted. */
4850 WP_DELETED = 1,
4851
4852 /* The value has changed. */
4853 WP_VALUE_CHANGED = 2,
4854
4855 /* The value has not changed. */
4856 WP_VALUE_NOT_CHANGED = 3,
4857
4858 /* Ignore this watchpoint, no matter if the value changed or not. */
4859 WP_IGNORE = 4,
4860 };
4861
4862 #define BP_TEMPFLAG 1
4863 #define BP_HARDWAREFLAG 2
4864
4865 /* Evaluate watchpoint condition expression and check if its value
4866 changed. */
4867
4868 static wp_check_result
4869 watchpoint_check (bpstat *bs)
4870 {
4871 struct watchpoint *b;
4872 struct frame_info *fr;
4873 int within_current_scope;
4874
4875 /* BS is built from an existing struct breakpoint. */
4876 gdb_assert (bs->breakpoint_at != NULL);
4877 b = (struct watchpoint *) bs->breakpoint_at;
4878
4879 /* If this is a local watchpoint, we only want to check if the
4880 watchpoint frame is in scope if the current thread is the thread
4881 that was used to create the watchpoint. */
4882 if (!watchpoint_in_thread_scope (b))
4883 return WP_IGNORE;
4884
4885 if (b->exp_valid_block == NULL)
4886 within_current_scope = 1;
4887 else
4888 {
4889 struct frame_info *frame = get_current_frame ();
4890 struct gdbarch *frame_arch = get_frame_arch (frame);
4891 CORE_ADDR frame_pc = get_frame_pc (frame);
4892
4893 /* stack_frame_destroyed_p() returns a non-zero value if we're
4894 still in the function but the stack frame has already been
4895 invalidated. Since we can't rely on the values of local
4896 variables after the stack has been destroyed, we are treating
4897 the watchpoint in that state as `not changed' without further
4898 checking. Don't mark watchpoints as changed if the current
4899 frame is in an epilogue - even if they are in some other
4900 frame, our view of the stack is likely to be wrong and
4901 frame_find_by_id could error out. */
4902 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4903 return WP_IGNORE;
4904
4905 fr = frame_find_by_id (b->watchpoint_frame);
4906 within_current_scope = (fr != NULL);
4907
4908 /* If we've gotten confused in the unwinder, we might have
4909 returned a frame that can't describe this variable. */
4910 if (within_current_scope)
4911 {
4912 struct symbol *function;
4913
4914 function = get_frame_function (fr);
4915 if (function == NULL
4916 || !contained_in (b->exp_valid_block,
4917 SYMBOL_BLOCK_VALUE (function)))
4918 within_current_scope = 0;
4919 }
4920
4921 if (within_current_scope)
4922 /* If we end up stopping, the current frame will get selected
4923 in normal_stop. So this call to select_frame won't affect
4924 the user. */
4925 select_frame (fr);
4926 }
4927
4928 if (within_current_scope)
4929 {
4930 /* We use value_{,free_to_}mark because it could be a *long*
4931 time before we return to the command level and call
4932 free_all_values. We can't call free_all_values because we
4933 might be in the middle of evaluating a function call. */
4934
4935 struct value *mark;
4936 struct value *new_val;
4937
4938 if (is_masked_watchpoint (b))
4939 /* Since we don't know the exact trigger address (from
4940 stopped_data_address), just tell the user we've triggered
4941 a mask watchpoint. */
4942 return WP_VALUE_CHANGED;
4943
4944 mark = value_mark ();
4945 fetch_subexp_value (b->exp.get (), b->exp->op.get (), &new_val,
4946 NULL, NULL, false);
4947
4948 if (b->val_bitsize != 0)
4949 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4950
4951 /* We use value_equal_contents instead of value_equal because
4952 the latter coerces an array to a pointer, thus comparing just
4953 the address of the array instead of its contents. This is
4954 not what we want. */
4955 if ((b->val != NULL) != (new_val != NULL)
4956 || (b->val != NULL && !value_equal_contents (b->val.get (),
4957 new_val)))
4958 {
4959 bs->old_val = b->val;
4960 b->val = release_value (new_val);
4961 b->val_valid = true;
4962 if (new_val != NULL)
4963 value_free_to_mark (mark);
4964 return WP_VALUE_CHANGED;
4965 }
4966 else
4967 {
4968 /* Nothing changed. */
4969 value_free_to_mark (mark);
4970 return WP_VALUE_NOT_CHANGED;
4971 }
4972 }
4973 else
4974 {
4975 /* This seems like the only logical thing to do because
4976 if we temporarily ignored the watchpoint, then when
4977 we reenter the block in which it is valid it contains
4978 garbage (in the case of a function, it may have two
4979 garbage values, one before and one after the prologue).
4980 So we can't even detect the first assignment to it and
4981 watch after that (since the garbage may or may not equal
4982 the first value assigned). */
4983 /* We print all the stop information in
4984 breakpoint_ops->print_it, but in this case, by the time we
4985 call breakpoint_ops->print_it this bp will be deleted
4986 already. So we have no choice but print the information
4987 here. */
4988
4989 SWITCH_THRU_ALL_UIS ()
4990 {
4991 struct ui_out *uiout = current_uiout;
4992
4993 if (uiout->is_mi_like_p ())
4994 uiout->field_string
4995 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4996 uiout->message ("\nWatchpoint %pF deleted because the program has "
4997 "left the block in\n"
4998 "which its expression is valid.\n",
4999 signed_field ("wpnum", b->number));
5000 }
5001
5002 /* Make sure the watchpoint's commands aren't executed. */
5003 b->commands = NULL;
5004 watchpoint_del_at_next_stop (b);
5005
5006 return WP_DELETED;
5007 }
5008 }
5009
5010 /* Return true if it looks like target has stopped due to hitting
5011 breakpoint location BL. This function does not check if we should
5012 stop, only if BL explains the stop. */
5013
5014 static int
5015 bpstat_check_location (const struct bp_location *bl,
5016 const address_space *aspace, CORE_ADDR bp_addr,
5017 const target_waitstatus &ws)
5018 {
5019 struct breakpoint *b = bl->owner;
5020
5021 /* BL is from an existing breakpoint. */
5022 gdb_assert (b != NULL);
5023
5024 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
5025 }
5026
5027 /* Determine if the watched values have actually changed, and we
5028 should stop. If not, set BS->stop to 0. */
5029
5030 static void
5031 bpstat_check_watchpoint (bpstat *bs)
5032 {
5033 const struct bp_location *bl;
5034 struct watchpoint *b;
5035
5036 /* BS is built for existing struct breakpoint. */
5037 bl = bs->bp_location_at.get ();
5038 gdb_assert (bl != NULL);
5039 b = (struct watchpoint *) bs->breakpoint_at;
5040 gdb_assert (b != NULL);
5041
5042 {
5043 int must_check_value = 0;
5044
5045 if (b->type == bp_watchpoint)
5046 /* For a software watchpoint, we must always check the
5047 watched value. */
5048 must_check_value = 1;
5049 else if (b->watchpoint_triggered == watch_triggered_yes)
5050 /* We have a hardware watchpoint (read, write, or access)
5051 and the target earlier reported an address watched by
5052 this watchpoint. */
5053 must_check_value = 1;
5054 else if (b->watchpoint_triggered == watch_triggered_unknown
5055 && b->type == bp_hardware_watchpoint)
5056 /* We were stopped by a hardware watchpoint, but the target could
5057 not report the data address. We must check the watchpoint's
5058 value. Access and read watchpoints are out of luck; without
5059 a data address, we can't figure it out. */
5060 must_check_value = 1;
5061
5062 if (must_check_value)
5063 {
5064 wp_check_result e;
5065
5066 try
5067 {
5068 e = watchpoint_check (bs);
5069 }
5070 catch (const gdb_exception &ex)
5071 {
5072 exception_fprintf (gdb_stderr, ex,
5073 "Error evaluating expression "
5074 "for watchpoint %d\n",
5075 b->number);
5076
5077 SWITCH_THRU_ALL_UIS ()
5078 {
5079 printf_filtered (_("Watchpoint %d deleted.\n"),
5080 b->number);
5081 }
5082 watchpoint_del_at_next_stop (b);
5083 e = WP_DELETED;
5084 }
5085
5086 switch (e)
5087 {
5088 case WP_DELETED:
5089 /* We've already printed what needs to be printed. */
5090 bs->print_it = print_it_done;
5091 /* Stop. */
5092 break;
5093 case WP_IGNORE:
5094 bs->print_it = print_it_noop;
5095 bs->stop = 0;
5096 break;
5097 case WP_VALUE_CHANGED:
5098 if (b->type == bp_read_watchpoint)
5099 {
5100 /* There are two cases to consider here:
5101
5102 1. We're watching the triggered memory for reads.
5103 In that case, trust the target, and always report
5104 the watchpoint hit to the user. Even though
5105 reads don't cause value changes, the value may
5106 have changed since the last time it was read, and
5107 since we're not trapping writes, we will not see
5108 those, and as such we should ignore our notion of
5109 old value.
5110
5111 2. We're watching the triggered memory for both
5112 reads and writes. There are two ways this may
5113 happen:
5114
5115 2.1. This is a target that can't break on data
5116 reads only, but can break on accesses (reads or
5117 writes), such as e.g., x86. We detect this case
5118 at the time we try to insert read watchpoints.
5119
5120 2.2. Otherwise, the target supports read
5121 watchpoints, but, the user set an access or write
5122 watchpoint watching the same memory as this read
5123 watchpoint.
5124
5125 If we're watching memory writes as well as reads,
5126 ignore watchpoint hits when we find that the
5127 value hasn't changed, as reads don't cause
5128 changes. This still gives false positives when
5129 the program writes the same value to memory as
5130 what there was already in memory (we will confuse
5131 it for a read), but it's much better than
5132 nothing. */
5133
5134 int other_write_watchpoint = 0;
5135
5136 if (bl->watchpoint_type == hw_read)
5137 {
5138 for (breakpoint *other_b : all_breakpoints ())
5139 if (other_b->type == bp_hardware_watchpoint
5140 || other_b->type == bp_access_watchpoint)
5141 {
5142 struct watchpoint *other_w =
5143 (struct watchpoint *) other_b;
5144
5145 if (other_w->watchpoint_triggered
5146 == watch_triggered_yes)
5147 {
5148 other_write_watchpoint = 1;
5149 break;
5150 }
5151 }
5152 }
5153
5154 if (other_write_watchpoint
5155 || bl->watchpoint_type == hw_access)
5156 {
5157 /* We're watching the same memory for writes,
5158 and the value changed since the last time we
5159 updated it, so this trap must be for a write.
5160 Ignore it. */
5161 bs->print_it = print_it_noop;
5162 bs->stop = 0;
5163 }
5164 }
5165 break;
5166 case WP_VALUE_NOT_CHANGED:
5167 if (b->type == bp_hardware_watchpoint
5168 || b->type == bp_watchpoint)
5169 {
5170 /* Don't stop: write watchpoints shouldn't fire if
5171 the value hasn't changed. */
5172 bs->print_it = print_it_noop;
5173 bs->stop = 0;
5174 }
5175 /* Stop. */
5176 break;
5177 default:
5178 /* Can't happen. */
5179 break;
5180 }
5181 }
5182 else /* must_check_value == 0 */
5183 {
5184 /* This is a case where some watchpoint(s) triggered, but
5185 not at the address of this watchpoint, or else no
5186 watchpoint triggered after all. So don't print
5187 anything for this watchpoint. */
5188 bs->print_it = print_it_noop;
5189 bs->stop = 0;
5190 }
5191 }
5192 }
5193
5194 /* For breakpoints that are currently marked as telling gdb to stop,
5195 check conditions (condition proper, frame, thread and ignore count)
5196 of breakpoint referred to by BS. If we should not stop for this
5197 breakpoint, set BS->stop to 0. */
5198
5199 static void
5200 bpstat_check_breakpoint_conditions (bpstat *bs, thread_info *thread)
5201 {
5202 const struct bp_location *bl;
5203 struct breakpoint *b;
5204 /* Assume stop. */
5205 bool condition_result = true;
5206 struct expression *cond;
5207
5208 gdb_assert (bs->stop);
5209
5210 /* BS is built for existing struct breakpoint. */
5211 bl = bs->bp_location_at.get ();
5212 gdb_assert (bl != NULL);
5213 b = bs->breakpoint_at;
5214 gdb_assert (b != NULL);
5215
5216 /* Even if the target evaluated the condition on its end and notified GDB, we
5217 need to do so again since GDB does not know if we stopped due to a
5218 breakpoint or a single step breakpoint. */
5219
5220 if (frame_id_p (b->frame_id)
5221 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5222 {
5223 bs->stop = 0;
5224 return;
5225 }
5226
5227 /* If this is a thread/task-specific breakpoint, don't waste cpu
5228 evaluating the condition if this isn't the specified
5229 thread/task. */
5230 if ((b->thread != -1 && b->thread != thread->global_num)
5231 || (b->task != 0 && b->task != ada_get_task_number (thread)))
5232 {
5233 bs->stop = 0;
5234 return;
5235 }
5236
5237 /* Evaluate extension language breakpoints that have a "stop" method
5238 implemented. */
5239 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5240
5241 if (is_watchpoint (b))
5242 {
5243 struct watchpoint *w = (struct watchpoint *) b;
5244
5245 cond = w->cond_exp.get ();
5246 }
5247 else
5248 cond = bl->cond.get ();
5249
5250 if (cond && b->disposition != disp_del_at_next_stop)
5251 {
5252 int within_current_scope = 1;
5253 struct watchpoint * w;
5254
5255 /* We use value_mark and value_free_to_mark because it could
5256 be a long time before we return to the command level and
5257 call free_all_values. We can't call free_all_values
5258 because we might be in the middle of evaluating a
5259 function call. */
5260 struct value *mark = value_mark ();
5261
5262 if (is_watchpoint (b))
5263 w = (struct watchpoint *) b;
5264 else
5265 w = NULL;
5266
5267 /* Need to select the frame, with all that implies so that
5268 the conditions will have the right context. Because we
5269 use the frame, we will not see an inlined function's
5270 variables when we arrive at a breakpoint at the start
5271 of the inlined function; the current frame will be the
5272 call site. */
5273 if (w == NULL || w->cond_exp_valid_block == NULL)
5274 select_frame (get_current_frame ());
5275 else
5276 {
5277 struct frame_info *frame;
5278
5279 /* For local watchpoint expressions, which particular
5280 instance of a local is being watched matters, so we
5281 keep track of the frame to evaluate the expression
5282 in. To evaluate the condition however, it doesn't
5283 really matter which instantiation of the function
5284 where the condition makes sense triggers the
5285 watchpoint. This allows an expression like "watch
5286 global if q > 10" set in `func', catch writes to
5287 global on all threads that call `func', or catch
5288 writes on all recursive calls of `func' by a single
5289 thread. We simply always evaluate the condition in
5290 the innermost frame that's executing where it makes
5291 sense to evaluate the condition. It seems
5292 intuitive. */
5293 frame = block_innermost_frame (w->cond_exp_valid_block);
5294 if (frame != NULL)
5295 select_frame (frame);
5296 else
5297 within_current_scope = 0;
5298 }
5299 if (within_current_scope)
5300 {
5301 try
5302 {
5303 condition_result = breakpoint_cond_eval (cond);
5304 }
5305 catch (const gdb_exception &ex)
5306 {
5307 exception_fprintf (gdb_stderr, ex,
5308 "Error in testing breakpoint condition:\n");
5309 }
5310 }
5311 else
5312 {
5313 warning (_("Watchpoint condition cannot be tested "
5314 "in the current scope"));
5315 /* If we failed to set the right context for this
5316 watchpoint, unconditionally report it. */
5317 }
5318 /* FIXME-someday, should give breakpoint #. */
5319 value_free_to_mark (mark);
5320 }
5321
5322 if (cond && !condition_result)
5323 {
5324 bs->stop = 0;
5325 }
5326 else if (b->ignore_count > 0)
5327 {
5328 b->ignore_count--;
5329 bs->stop = 0;
5330 /* Increase the hit count even though we don't stop. */
5331 ++(b->hit_count);
5332 gdb::observers::breakpoint_modified.notify (b);
5333 }
5334 }
5335
5336 /* Returns true if we need to track moribund locations of LOC's type
5337 on the current target. */
5338
5339 static int
5340 need_moribund_for_location_type (struct bp_location *loc)
5341 {
5342 return ((loc->loc_type == bp_loc_software_breakpoint
5343 && !target_supports_stopped_by_sw_breakpoint ())
5344 || (loc->loc_type == bp_loc_hardware_breakpoint
5345 && !target_supports_stopped_by_hw_breakpoint ()));
5346 }
5347
5348 /* See breakpoint.h. */
5349
5350 bpstat *
5351 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5352 const target_waitstatus &ws)
5353 {
5354 bpstat *bs_head = nullptr, **bs_link = &bs_head;
5355
5356 for (breakpoint *b : all_breakpoints ())
5357 {
5358 if (!breakpoint_enabled (b))
5359 continue;
5360
5361 for (bp_location *bl : b->locations ())
5362 {
5363 /* For hardware watchpoints, we look only at the first
5364 location. The watchpoint_check function will work on the
5365 entire expression, not the individual locations. For
5366 read watchpoints, the watchpoints_triggered function has
5367 checked all locations already. */
5368 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5369 break;
5370
5371 if (!bl->enabled || bl->disabled_by_cond || bl->shlib_disabled)
5372 continue;
5373
5374 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5375 continue;
5376
5377 /* Come here if it's a watchpoint, or if the break address
5378 matches. */
5379
5380 bpstat *bs = new bpstat (bl, &bs_link); /* Alloc a bpstat to
5381 explain stop. */
5382
5383 /* Assume we stop. Should we find a watchpoint that is not
5384 actually triggered, or if the condition of the breakpoint
5385 evaluates as false, we'll reset 'stop' to 0. */
5386 bs->stop = 1;
5387 bs->print = 1;
5388
5389 /* If this is a scope breakpoint, mark the associated
5390 watchpoint as triggered so that we will handle the
5391 out-of-scope event. We'll get to the watchpoint next
5392 iteration. */
5393 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5394 {
5395 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5396
5397 w->watchpoint_triggered = watch_triggered_yes;
5398 }
5399 }
5400 }
5401
5402 /* Check if a moribund breakpoint explains the stop. */
5403 if (!target_supports_stopped_by_sw_breakpoint ()
5404 || !target_supports_stopped_by_hw_breakpoint ())
5405 {
5406 for (bp_location *loc : moribund_locations)
5407 {
5408 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5409 && need_moribund_for_location_type (loc))
5410 {
5411 bpstat *bs = new bpstat (loc, &bs_link);
5412 /* For hits of moribund locations, we should just proceed. */
5413 bs->stop = 0;
5414 bs->print = 0;
5415 bs->print_it = print_it_noop;
5416 }
5417 }
5418 }
5419
5420 return bs_head;
5421 }
5422
5423 /* See breakpoint.h. */
5424
5425 bpstat *
5426 bpstat_stop_status (const address_space *aspace,
5427 CORE_ADDR bp_addr, thread_info *thread,
5428 const target_waitstatus &ws,
5429 bpstat *stop_chain)
5430 {
5431 struct breakpoint *b = NULL;
5432 /* First item of allocated bpstat's. */
5433 bpstat *bs_head = stop_chain;
5434 bpstat *bs;
5435 int need_remove_insert;
5436 int removed_any;
5437
5438 /* First, build the bpstat chain with locations that explain a
5439 target stop, while being careful to not set the target running,
5440 as that may invalidate locations (in particular watchpoint
5441 locations are recreated). Resuming will happen here with
5442 breakpoint conditions or watchpoint expressions that include
5443 inferior function calls. */
5444 if (bs_head == NULL)
5445 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5446
5447 /* A bit of special processing for shlib breakpoints. We need to
5448 process solib loading here, so that the lists of loaded and
5449 unloaded libraries are correct before we handle "catch load" and
5450 "catch unload". */
5451 for (bs = bs_head; bs != NULL; bs = bs->next)
5452 {
5453 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5454 {
5455 handle_solib_event ();
5456 break;
5457 }
5458 }
5459
5460 /* Now go through the locations that caused the target to stop, and
5461 check whether we're interested in reporting this stop to higher
5462 layers, or whether we should resume the target transparently. */
5463
5464 removed_any = 0;
5465
5466 for (bs = bs_head; bs != NULL; bs = bs->next)
5467 {
5468 if (!bs->stop)
5469 continue;
5470
5471 b = bs->breakpoint_at;
5472 b->ops->check_status (bs);
5473 if (bs->stop)
5474 {
5475 bpstat_check_breakpoint_conditions (bs, thread);
5476
5477 if (bs->stop)
5478 {
5479 ++(b->hit_count);
5480
5481 /* We will stop here. */
5482 if (b->disposition == disp_disable)
5483 {
5484 --(b->enable_count);
5485 if (b->enable_count <= 0)
5486 b->enable_state = bp_disabled;
5487 removed_any = 1;
5488 }
5489 gdb::observers::breakpoint_modified.notify (b);
5490 if (b->silent)
5491 bs->print = 0;
5492 bs->commands = b->commands;
5493 if (command_line_is_silent (bs->commands
5494 ? bs->commands.get () : NULL))
5495 bs->print = 0;
5496
5497 b->ops->after_condition_true (bs);
5498 }
5499
5500 }
5501
5502 /* Print nothing for this entry if we don't stop or don't
5503 print. */
5504 if (!bs->stop || !bs->print)
5505 bs->print_it = print_it_noop;
5506 }
5507
5508 /* If we aren't stopping, the value of some hardware watchpoint may
5509 not have changed, but the intermediate memory locations we are
5510 watching may have. Don't bother if we're stopping; this will get
5511 done later. */
5512 need_remove_insert = 0;
5513 if (! bpstat_causes_stop (bs_head))
5514 for (bs = bs_head; bs != NULL; bs = bs->next)
5515 if (!bs->stop
5516 && bs->breakpoint_at
5517 && is_hardware_watchpoint (bs->breakpoint_at))
5518 {
5519 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5520
5521 update_watchpoint (w, 0 /* don't reparse. */);
5522 need_remove_insert = 1;
5523 }
5524
5525 if (need_remove_insert)
5526 update_global_location_list (UGLL_MAY_INSERT);
5527 else if (removed_any)
5528 update_global_location_list (UGLL_DONT_INSERT);
5529
5530 return bs_head;
5531 }
5532
5533 static void
5534 handle_jit_event (CORE_ADDR address)
5535 {
5536 struct gdbarch *gdbarch;
5537
5538 infrun_debug_printf ("handling bp_jit_event");
5539
5540 /* Switch terminal for any messages produced by
5541 breakpoint_re_set. */
5542 target_terminal::ours_for_output ();
5543
5544 gdbarch = get_frame_arch (get_current_frame ());
5545 /* This event is caused by a breakpoint set in `jit_breakpoint_re_set`,
5546 thus it is expected that its objectfile can be found through
5547 minimal symbol lookup. If it doesn't work (and assert fails), it
5548 most likely means that `jit_breakpoint_re_set` was changes and this
5549 function needs to be updated too. */
5550 bound_minimal_symbol jit_bp_sym = lookup_minimal_symbol_by_pc (address);
5551 gdb_assert (jit_bp_sym.objfile != nullptr);
5552 jit_event_handler (gdbarch, jit_bp_sym.objfile);
5553
5554 target_terminal::inferior ();
5555 }
5556
5557 /* Prepare WHAT final decision for infrun. */
5558
5559 /* Decide what infrun needs to do with this bpstat. */
5560
5561 struct bpstat_what
5562 bpstat_what (bpstat *bs_head)
5563 {
5564 struct bpstat_what retval;
5565 bpstat *bs;
5566
5567 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5568 retval.call_dummy = STOP_NONE;
5569 retval.is_longjmp = false;
5570
5571 for (bs = bs_head; bs != NULL; bs = bs->next)
5572 {
5573 /* Extract this BS's action. After processing each BS, we check
5574 if its action overrides all we've seem so far. */
5575 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5576 enum bptype bptype;
5577
5578 if (bs->breakpoint_at == NULL)
5579 {
5580 /* I suspect this can happen if it was a momentary
5581 breakpoint which has since been deleted. */
5582 bptype = bp_none;
5583 }
5584 else
5585 bptype = bs->breakpoint_at->type;
5586
5587 switch (bptype)
5588 {
5589 case bp_none:
5590 break;
5591 case bp_breakpoint:
5592 case bp_hardware_breakpoint:
5593 case bp_single_step:
5594 case bp_until:
5595 case bp_finish:
5596 case bp_shlib_event:
5597 if (bs->stop)
5598 {
5599 if (bs->print)
5600 this_action = BPSTAT_WHAT_STOP_NOISY;
5601 else
5602 this_action = BPSTAT_WHAT_STOP_SILENT;
5603 }
5604 else
5605 this_action = BPSTAT_WHAT_SINGLE;
5606 break;
5607 case bp_watchpoint:
5608 case bp_hardware_watchpoint:
5609 case bp_read_watchpoint:
5610 case bp_access_watchpoint:
5611 if (bs->stop)
5612 {
5613 if (bs->print)
5614 this_action = BPSTAT_WHAT_STOP_NOISY;
5615 else
5616 this_action = BPSTAT_WHAT_STOP_SILENT;
5617 }
5618 else
5619 {
5620 /* There was a watchpoint, but we're not stopping.
5621 This requires no further action. */
5622 }
5623 break;
5624 case bp_longjmp:
5625 case bp_longjmp_call_dummy:
5626 case bp_exception:
5627 if (bs->stop)
5628 {
5629 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5630 retval.is_longjmp = bptype != bp_exception;
5631 }
5632 else
5633 this_action = BPSTAT_WHAT_SINGLE;
5634 break;
5635 case bp_longjmp_resume:
5636 case bp_exception_resume:
5637 if (bs->stop)
5638 {
5639 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5640 retval.is_longjmp = bptype == bp_longjmp_resume;
5641 }
5642 else
5643 this_action = BPSTAT_WHAT_SINGLE;
5644 break;
5645 case bp_step_resume:
5646 if (bs->stop)
5647 this_action = BPSTAT_WHAT_STEP_RESUME;
5648 else
5649 {
5650 /* It is for the wrong frame. */
5651 this_action = BPSTAT_WHAT_SINGLE;
5652 }
5653 break;
5654 case bp_hp_step_resume:
5655 if (bs->stop)
5656 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5657 else
5658 {
5659 /* It is for the wrong frame. */
5660 this_action = BPSTAT_WHAT_SINGLE;
5661 }
5662 break;
5663 case bp_watchpoint_scope:
5664 case bp_thread_event:
5665 case bp_overlay_event:
5666 case bp_longjmp_master:
5667 case bp_std_terminate_master:
5668 case bp_exception_master:
5669 this_action = BPSTAT_WHAT_SINGLE;
5670 break;
5671 case bp_catchpoint:
5672 if (bs->stop)
5673 {
5674 if (bs->print)
5675 this_action = BPSTAT_WHAT_STOP_NOISY;
5676 else
5677 this_action = BPSTAT_WHAT_STOP_SILENT;
5678 }
5679 else
5680 {
5681 /* Some catchpoints are implemented with breakpoints.
5682 For those, we need to step over the breakpoint. */
5683 if (bs->bp_location_at->loc_type != bp_loc_other)
5684 this_action = BPSTAT_WHAT_SINGLE;
5685 }
5686 break;
5687 case bp_jit_event:
5688 this_action = BPSTAT_WHAT_SINGLE;
5689 break;
5690 case bp_call_dummy:
5691 /* Make sure the action is stop (silent or noisy),
5692 so infrun.c pops the dummy frame. */
5693 retval.call_dummy = STOP_STACK_DUMMY;
5694 this_action = BPSTAT_WHAT_STOP_SILENT;
5695 break;
5696 case bp_std_terminate:
5697 /* Make sure the action is stop (silent or noisy),
5698 so infrun.c pops the dummy frame. */
5699 retval.call_dummy = STOP_STD_TERMINATE;
5700 this_action = BPSTAT_WHAT_STOP_SILENT;
5701 break;
5702 case bp_tracepoint:
5703 case bp_fast_tracepoint:
5704 case bp_static_tracepoint:
5705 /* Tracepoint hits should not be reported back to GDB, and
5706 if one got through somehow, it should have been filtered
5707 out already. */
5708 internal_error (__FILE__, __LINE__,
5709 _("bpstat_what: tracepoint encountered"));
5710 break;
5711 case bp_gnu_ifunc_resolver:
5712 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5713 this_action = BPSTAT_WHAT_SINGLE;
5714 break;
5715 case bp_gnu_ifunc_resolver_return:
5716 /* The breakpoint will be removed, execution will restart from the
5717 PC of the former breakpoint. */
5718 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5719 break;
5720
5721 case bp_dprintf:
5722 if (bs->stop)
5723 this_action = BPSTAT_WHAT_STOP_SILENT;
5724 else
5725 this_action = BPSTAT_WHAT_SINGLE;
5726 break;
5727
5728 default:
5729 internal_error (__FILE__, __LINE__,
5730 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5731 }
5732
5733 retval.main_action = std::max (retval.main_action, this_action);
5734 }
5735
5736 return retval;
5737 }
5738
5739 void
5740 bpstat_run_callbacks (bpstat *bs_head)
5741 {
5742 bpstat *bs;
5743
5744 for (bs = bs_head; bs != NULL; bs = bs->next)
5745 {
5746 struct breakpoint *b = bs->breakpoint_at;
5747
5748 if (b == NULL)
5749 continue;
5750 switch (b->type)
5751 {
5752 case bp_jit_event:
5753 handle_jit_event (bs->bp_location_at->address);
5754 break;
5755 case bp_gnu_ifunc_resolver:
5756 gnu_ifunc_resolver_stop (b);
5757 break;
5758 case bp_gnu_ifunc_resolver_return:
5759 gnu_ifunc_resolver_return_stop (b);
5760 break;
5761 }
5762 }
5763 }
5764
5765 /* See breakpoint.h. */
5766
5767 bool
5768 bpstat_should_step ()
5769 {
5770 for (breakpoint *b : all_breakpoints ())
5771 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5772 return true;
5773
5774 return false;
5775 }
5776
5777 /* See breakpoint.h. */
5778
5779 bool
5780 bpstat_causes_stop (bpstat *bs)
5781 {
5782 for (; bs != NULL; bs = bs->next)
5783 if (bs->stop)
5784 return true;
5785
5786 return false;
5787 }
5788
5789 \f
5790
5791 /* Compute a number of spaces suitable to indent the next line
5792 so it starts at the position corresponding to the table column
5793 named COL_NAME in the currently active table of UIOUT. */
5794
5795 static int
5796 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5797 {
5798 int i, total_width, width, align;
5799 const char *text;
5800
5801 total_width = 0;
5802 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5803 {
5804 if (strcmp (text, col_name) == 0)
5805 return total_width;
5806
5807 total_width += width + 1;
5808 }
5809
5810 return 0;
5811 }
5812
5813 /* Determine if the locations of this breakpoint will have their conditions
5814 evaluated by the target, host or a mix of both. Returns the following:
5815
5816 "host": Host evals condition.
5817 "host or target": Host or Target evals condition.
5818 "target": Target evals condition.
5819 */
5820
5821 static const char *
5822 bp_condition_evaluator (struct breakpoint *b)
5823 {
5824 char host_evals = 0;
5825 char target_evals = 0;
5826
5827 if (!b)
5828 return NULL;
5829
5830 if (!is_breakpoint (b))
5831 return NULL;
5832
5833 if (gdb_evaluates_breakpoint_condition_p ()
5834 || !target_supports_evaluation_of_breakpoint_conditions ())
5835 return condition_evaluation_host;
5836
5837 for (bp_location *bl : b->locations ())
5838 {
5839 if (bl->cond_bytecode)
5840 target_evals++;
5841 else
5842 host_evals++;
5843 }
5844
5845 if (host_evals && target_evals)
5846 return condition_evaluation_both;
5847 else if (target_evals)
5848 return condition_evaluation_target;
5849 else
5850 return condition_evaluation_host;
5851 }
5852
5853 /* Determine the breakpoint location's condition evaluator. This is
5854 similar to bp_condition_evaluator, but for locations. */
5855
5856 static const char *
5857 bp_location_condition_evaluator (struct bp_location *bl)
5858 {
5859 if (bl && !is_breakpoint (bl->owner))
5860 return NULL;
5861
5862 if (gdb_evaluates_breakpoint_condition_p ()
5863 || !target_supports_evaluation_of_breakpoint_conditions ())
5864 return condition_evaluation_host;
5865
5866 if (bl && bl->cond_bytecode)
5867 return condition_evaluation_target;
5868 else
5869 return condition_evaluation_host;
5870 }
5871
5872 /* Print the LOC location out of the list of B->LOC locations. */
5873
5874 static void
5875 print_breakpoint_location (struct breakpoint *b,
5876 struct bp_location *loc)
5877 {
5878 struct ui_out *uiout = current_uiout;
5879
5880 scoped_restore_current_program_space restore_pspace;
5881
5882 if (loc != NULL && loc->shlib_disabled)
5883 loc = NULL;
5884
5885 if (loc != NULL)
5886 set_current_program_space (loc->pspace);
5887
5888 if (b->display_canonical)
5889 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5890 else if (loc && loc->symtab)
5891 {
5892 const struct symbol *sym = loc->symbol;
5893
5894 if (sym)
5895 {
5896 uiout->text ("in ");
5897 uiout->field_string ("func", sym->print_name (),
5898 function_name_style.style ());
5899 uiout->text (" ");
5900 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5901 uiout->text ("at ");
5902 }
5903 uiout->field_string ("file",
5904 symtab_to_filename_for_display (loc->symtab),
5905 file_name_style.style ());
5906 uiout->text (":");
5907
5908 if (uiout->is_mi_like_p ())
5909 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5910
5911 uiout->field_signed ("line", loc->line_number);
5912 }
5913 else if (loc)
5914 {
5915 string_file stb;
5916
5917 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5918 demangle, "");
5919 uiout->field_stream ("at", stb);
5920 }
5921 else
5922 {
5923 uiout->field_string ("pending",
5924 event_location_to_string (b->location.get ()));
5925 /* If extra_string is available, it could be holding a condition
5926 or dprintf arguments. In either case, make sure it is printed,
5927 too, but only for non-MI streams. */
5928 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5929 {
5930 if (b->type == bp_dprintf)
5931 uiout->text (",");
5932 else
5933 uiout->text (" ");
5934 uiout->text (b->extra_string.get ());
5935 }
5936 }
5937
5938 if (loc && is_breakpoint (b)
5939 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5940 && bp_condition_evaluator (b) == condition_evaluation_both)
5941 {
5942 uiout->text (" (");
5943 uiout->field_string ("evaluated-by",
5944 bp_location_condition_evaluator (loc));
5945 uiout->text (")");
5946 }
5947 }
5948
5949 static const char *
5950 bptype_string (enum bptype type)
5951 {
5952 struct ep_type_description
5953 {
5954 enum bptype type;
5955 const char *description;
5956 };
5957 static struct ep_type_description bptypes[] =
5958 {
5959 {bp_none, "?deleted?"},
5960 {bp_breakpoint, "breakpoint"},
5961 {bp_hardware_breakpoint, "hw breakpoint"},
5962 {bp_single_step, "sw single-step"},
5963 {bp_until, "until"},
5964 {bp_finish, "finish"},
5965 {bp_watchpoint, "watchpoint"},
5966 {bp_hardware_watchpoint, "hw watchpoint"},
5967 {bp_read_watchpoint, "read watchpoint"},
5968 {bp_access_watchpoint, "acc watchpoint"},
5969 {bp_longjmp, "longjmp"},
5970 {bp_longjmp_resume, "longjmp resume"},
5971 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5972 {bp_exception, "exception"},
5973 {bp_exception_resume, "exception resume"},
5974 {bp_step_resume, "step resume"},
5975 {bp_hp_step_resume, "high-priority step resume"},
5976 {bp_watchpoint_scope, "watchpoint scope"},
5977 {bp_call_dummy, "call dummy"},
5978 {bp_std_terminate, "std::terminate"},
5979 {bp_shlib_event, "shlib events"},
5980 {bp_thread_event, "thread events"},
5981 {bp_overlay_event, "overlay events"},
5982 {bp_longjmp_master, "longjmp master"},
5983 {bp_std_terminate_master, "std::terminate master"},
5984 {bp_exception_master, "exception master"},
5985 {bp_catchpoint, "catchpoint"},
5986 {bp_tracepoint, "tracepoint"},
5987 {bp_fast_tracepoint, "fast tracepoint"},
5988 {bp_static_tracepoint, "static tracepoint"},
5989 {bp_dprintf, "dprintf"},
5990 {bp_jit_event, "jit events"},
5991 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5992 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5993 };
5994
5995 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5996 || ((int) type != bptypes[(int) type].type))
5997 internal_error (__FILE__, __LINE__,
5998 _("bptypes table does not describe type #%d."),
5999 (int) type);
6000
6001 return bptypes[(int) type].description;
6002 }
6003
6004 /* For MI, output a field named 'thread-groups' with a list as the value.
6005 For CLI, prefix the list with the string 'inf'. */
6006
6007 static void
6008 output_thread_groups (struct ui_out *uiout,
6009 const char *field_name,
6010 const std::vector<int> &inf_nums,
6011 int mi_only)
6012 {
6013 int is_mi = uiout->is_mi_like_p ();
6014
6015 /* For backward compatibility, don't display inferiors in CLI unless
6016 there are several. Always display them for MI. */
6017 if (!is_mi && mi_only)
6018 return;
6019
6020 ui_out_emit_list list_emitter (uiout, field_name);
6021
6022 for (size_t i = 0; i < inf_nums.size (); i++)
6023 {
6024 if (is_mi)
6025 {
6026 char mi_group[10];
6027
6028 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6029 uiout->field_string (NULL, mi_group);
6030 }
6031 else
6032 {
6033 if (i == 0)
6034 uiout->text (" inf ");
6035 else
6036 uiout->text (", ");
6037
6038 uiout->text (plongest (inf_nums[i]));
6039 }
6040 }
6041 }
6042
6043 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
6044 instead of going via breakpoint_ops::print_one. This makes "maint
6045 info breakpoints" show the software breakpoint locations of
6046 catchpoints, which are considered internal implementation
6047 detail. */
6048
6049 static void
6050 print_one_breakpoint_location (struct breakpoint *b,
6051 struct bp_location *loc,
6052 int loc_number,
6053 struct bp_location **last_loc,
6054 int allflag, bool raw_loc)
6055 {
6056 struct command_line *l;
6057 static char bpenables[] = "nynny";
6058
6059 struct ui_out *uiout = current_uiout;
6060 int header_of_multiple = 0;
6061 int part_of_multiple = (loc != NULL);
6062 struct value_print_options opts;
6063
6064 get_user_print_options (&opts);
6065
6066 gdb_assert (!loc || loc_number != 0);
6067 /* See comment in print_one_breakpoint concerning treatment of
6068 breakpoints with single disabled location. */
6069 if (loc == NULL
6070 && (b->loc != NULL
6071 && (b->loc->next != NULL
6072 || !b->loc->enabled || b->loc->disabled_by_cond)))
6073 header_of_multiple = 1;
6074 if (loc == NULL)
6075 loc = b->loc;
6076
6077 annotate_record ();
6078
6079 /* 1 */
6080 annotate_field (0);
6081 if (part_of_multiple)
6082 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6083 else
6084 uiout->field_signed ("number", b->number);
6085
6086 /* 2 */
6087 annotate_field (1);
6088 if (part_of_multiple)
6089 uiout->field_skip ("type");
6090 else
6091 uiout->field_string ("type", bptype_string (b->type));
6092
6093 /* 3 */
6094 annotate_field (2);
6095 if (part_of_multiple)
6096 uiout->field_skip ("disp");
6097 else
6098 uiout->field_string ("disp", bpdisp_text (b->disposition));
6099
6100 /* 4 */
6101 annotate_field (3);
6102 /* For locations that are disabled because of an invalid condition,
6103 display "N*" on CLI, where "*" refers to a footnote below the
6104 table. For MI, simply display a "N" without a footnote. */
6105 const char *N = (uiout->is_mi_like_p ()) ? "N" : "N*";
6106 if (part_of_multiple)
6107 uiout->field_string ("enabled", (loc->disabled_by_cond ? N
6108 : (loc->enabled ? "y" : "n")));
6109 else
6110 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6111
6112 /* 5 and 6 */
6113 if (!raw_loc && b->ops != NULL && b->ops->print_one != NULL)
6114 b->ops->print_one (b, last_loc);
6115 else
6116 {
6117 if (is_watchpoint (b))
6118 {
6119 struct watchpoint *w = (struct watchpoint *) b;
6120
6121 /* Field 4, the address, is omitted (which makes the columns
6122 not line up too nicely with the headers, but the effect
6123 is relatively readable). */
6124 if (opts.addressprint)
6125 uiout->field_skip ("addr");
6126 annotate_field (5);
6127 uiout->field_string ("what", w->exp_string.get ());
6128 }
6129 else if (!is_catchpoint (b) || is_exception_catchpoint (b)
6130 || is_ada_exception_catchpoint (b))
6131 {
6132 if (opts.addressprint)
6133 {
6134 annotate_field (4);
6135 if (header_of_multiple)
6136 uiout->field_string ("addr", "<MULTIPLE>",
6137 metadata_style.style ());
6138 else if (b->loc == NULL || loc->shlib_disabled)
6139 uiout->field_string ("addr", "<PENDING>",
6140 metadata_style.style ());
6141 else
6142 uiout->field_core_addr ("addr",
6143 loc->gdbarch, loc->address);
6144 }
6145 annotate_field (5);
6146 if (!header_of_multiple)
6147 print_breakpoint_location (b, loc);
6148 if (b->loc)
6149 *last_loc = b->loc;
6150 }
6151 }
6152
6153 if (loc != NULL && !header_of_multiple)
6154 {
6155 std::vector<int> inf_nums;
6156 int mi_only = 1;
6157
6158 for (inferior *inf : all_inferiors ())
6159 {
6160 if (inf->pspace == loc->pspace)
6161 inf_nums.push_back (inf->num);
6162 }
6163
6164 /* For backward compatibility, don't display inferiors in CLI unless
6165 there are several. Always display for MI. */
6166 if (allflag
6167 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6168 && (program_spaces.size () > 1
6169 || number_of_inferiors () > 1)
6170 /* LOC is for existing B, it cannot be in
6171 moribund_locations and thus having NULL OWNER. */
6172 && loc->owner->type != bp_catchpoint))
6173 mi_only = 0;
6174 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6175 }
6176
6177 if (!part_of_multiple)
6178 {
6179 if (b->thread != -1)
6180 {
6181 /* FIXME: This seems to be redundant and lost here; see the
6182 "stop only in" line a little further down. */
6183 uiout->text (" thread ");
6184 uiout->field_signed ("thread", b->thread);
6185 }
6186 else if (b->task != 0)
6187 {
6188 uiout->text (" task ");
6189 uiout->field_signed ("task", b->task);
6190 }
6191 }
6192
6193 uiout->text ("\n");
6194
6195 if (!part_of_multiple)
6196 b->ops->print_one_detail (b, uiout);
6197
6198 if (part_of_multiple && frame_id_p (b->frame_id))
6199 {
6200 annotate_field (6);
6201 uiout->text ("\tstop only in stack frame at ");
6202 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6203 the frame ID. */
6204 uiout->field_core_addr ("frame",
6205 b->gdbarch, b->frame_id.stack_addr);
6206 uiout->text ("\n");
6207 }
6208
6209 if (!part_of_multiple && b->cond_string)
6210 {
6211 annotate_field (7);
6212 if (is_tracepoint (b))
6213 uiout->text ("\ttrace only if ");
6214 else
6215 uiout->text ("\tstop only if ");
6216 uiout->field_string ("cond", b->cond_string.get ());
6217
6218 /* Print whether the target is doing the breakpoint's condition
6219 evaluation. If GDB is doing the evaluation, don't print anything. */
6220 if (is_breakpoint (b)
6221 && breakpoint_condition_evaluation_mode ()
6222 == condition_evaluation_target)
6223 {
6224 uiout->message (" (%pF evals)",
6225 string_field ("evaluated-by",
6226 bp_condition_evaluator (b)));
6227 }
6228 uiout->text ("\n");
6229 }
6230
6231 if (!part_of_multiple && b->thread != -1)
6232 {
6233 /* FIXME should make an annotation for this. */
6234 uiout->text ("\tstop only in thread ");
6235 if (uiout->is_mi_like_p ())
6236 uiout->field_signed ("thread", b->thread);
6237 else
6238 {
6239 struct thread_info *thr = find_thread_global_id (b->thread);
6240
6241 uiout->field_string ("thread", print_thread_id (thr));
6242 }
6243 uiout->text ("\n");
6244 }
6245
6246 if (!part_of_multiple)
6247 {
6248 if (b->hit_count)
6249 {
6250 /* FIXME should make an annotation for this. */
6251 if (is_catchpoint (b))
6252 uiout->text ("\tcatchpoint");
6253 else if (is_tracepoint (b))
6254 uiout->text ("\ttracepoint");
6255 else
6256 uiout->text ("\tbreakpoint");
6257 uiout->text (" already hit ");
6258 uiout->field_signed ("times", b->hit_count);
6259 if (b->hit_count == 1)
6260 uiout->text (" time\n");
6261 else
6262 uiout->text (" times\n");
6263 }
6264 else
6265 {
6266 /* Output the count also if it is zero, but only if this is mi. */
6267 if (uiout->is_mi_like_p ())
6268 uiout->field_signed ("times", b->hit_count);
6269 }
6270 }
6271
6272 if (!part_of_multiple && b->ignore_count)
6273 {
6274 annotate_field (8);
6275 uiout->message ("\tignore next %pF hits\n",
6276 signed_field ("ignore", b->ignore_count));
6277 }
6278
6279 /* Note that an enable count of 1 corresponds to "enable once"
6280 behavior, which is reported by the combination of enablement and
6281 disposition, so we don't need to mention it here. */
6282 if (!part_of_multiple && b->enable_count > 1)
6283 {
6284 annotate_field (8);
6285 uiout->text ("\tdisable after ");
6286 /* Tweak the wording to clarify that ignore and enable counts
6287 are distinct, and have additive effect. */
6288 if (b->ignore_count)
6289 uiout->text ("additional ");
6290 else
6291 uiout->text ("next ");
6292 uiout->field_signed ("enable", b->enable_count);
6293 uiout->text (" hits\n");
6294 }
6295
6296 if (!part_of_multiple && is_tracepoint (b))
6297 {
6298 struct tracepoint *tp = (struct tracepoint *) b;
6299
6300 if (tp->traceframe_usage)
6301 {
6302 uiout->text ("\ttrace buffer usage ");
6303 uiout->field_signed ("traceframe-usage", tp->traceframe_usage);
6304 uiout->text (" bytes\n");
6305 }
6306 }
6307
6308 l = b->commands ? b->commands.get () : NULL;
6309 if (!part_of_multiple && l)
6310 {
6311 annotate_field (9);
6312 ui_out_emit_tuple tuple_emitter (uiout, "script");
6313 print_command_lines (uiout, l, 4);
6314 }
6315
6316 if (is_tracepoint (b))
6317 {
6318 struct tracepoint *t = (struct tracepoint *) b;
6319
6320 if (!part_of_multiple && t->pass_count)
6321 {
6322 annotate_field (10);
6323 uiout->text ("\tpass count ");
6324 uiout->field_signed ("pass", t->pass_count);
6325 uiout->text (" \n");
6326 }
6327
6328 /* Don't display it when tracepoint or tracepoint location is
6329 pending. */
6330 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6331 {
6332 annotate_field (11);
6333
6334 if (uiout->is_mi_like_p ())
6335 uiout->field_string ("installed",
6336 loc->inserted ? "y" : "n");
6337 else
6338 {
6339 if (loc->inserted)
6340 uiout->text ("\t");
6341 else
6342 uiout->text ("\tnot ");
6343 uiout->text ("installed on target\n");
6344 }
6345 }
6346 }
6347
6348 if (uiout->is_mi_like_p () && !part_of_multiple)
6349 {
6350 if (is_watchpoint (b))
6351 {
6352 struct watchpoint *w = (struct watchpoint *) b;
6353
6354 uiout->field_string ("original-location", w->exp_string.get ());
6355 }
6356 else if (b->location != NULL
6357 && event_location_to_string (b->location.get ()) != NULL)
6358 uiout->field_string ("original-location",
6359 event_location_to_string (b->location.get ()));
6360 }
6361 }
6362
6363 /* See breakpoint.h. */
6364
6365 bool fix_multi_location_breakpoint_output_globally = false;
6366
6367 static void
6368 print_one_breakpoint (struct breakpoint *b,
6369 struct bp_location **last_loc,
6370 int allflag)
6371 {
6372 struct ui_out *uiout = current_uiout;
6373 bool use_fixed_output
6374 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6375 || fix_multi_location_breakpoint_output_globally);
6376
6377 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6378 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag, false);
6379
6380 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6381 are outside. */
6382 if (!use_fixed_output)
6383 bkpt_tuple_emitter.reset ();
6384
6385 /* If this breakpoint has custom print function,
6386 it's already printed. Otherwise, print individual
6387 locations, if any. */
6388 if (b->ops == NULL
6389 || b->ops->print_one == NULL
6390 || allflag)
6391 {
6392 /* If breakpoint has a single location that is disabled, we
6393 print it as if it had several locations, since otherwise it's
6394 hard to represent "breakpoint enabled, location disabled"
6395 situation.
6396
6397 Note that while hardware watchpoints have several locations
6398 internally, that's not a property exposed to users.
6399
6400 Likewise, while catchpoints may be implemented with
6401 breakpoints (e.g., catch throw), that's not a property
6402 exposed to users. We do however display the internal
6403 breakpoint locations with "maint info breakpoints". */
6404 if (!is_hardware_watchpoint (b)
6405 && (!is_catchpoint (b) || is_exception_catchpoint (b)
6406 || is_ada_exception_catchpoint (b))
6407 && (allflag
6408 || (b->loc && (b->loc->next
6409 || !b->loc->enabled
6410 || b->loc->disabled_by_cond))))
6411 {
6412 gdb::optional<ui_out_emit_list> locations_list;
6413
6414 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6415 MI record. For later versions, place breakpoint locations in a
6416 list. */
6417 if (uiout->is_mi_like_p () && use_fixed_output)
6418 locations_list.emplace (uiout, "locations");
6419
6420 int n = 1;
6421 for (bp_location *loc : b->locations ())
6422 {
6423 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6424 print_one_breakpoint_location (b, loc, n, last_loc,
6425 allflag, allflag);
6426 n++;
6427 }
6428 }
6429 }
6430 }
6431
6432 static int
6433 breakpoint_address_bits (struct breakpoint *b)
6434 {
6435 int print_address_bits = 0;
6436
6437 /* Software watchpoints that aren't watching memory don't have an
6438 address to print. */
6439 if (is_no_memory_software_watchpoint (b))
6440 return 0;
6441
6442 for (bp_location *loc : b->locations ())
6443 {
6444 int addr_bit;
6445
6446 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6447 if (addr_bit > print_address_bits)
6448 print_address_bits = addr_bit;
6449 }
6450
6451 return print_address_bits;
6452 }
6453
6454 /* See breakpoint.h. */
6455
6456 void
6457 print_breakpoint (breakpoint *b)
6458 {
6459 struct bp_location *dummy_loc = NULL;
6460 print_one_breakpoint (b, &dummy_loc, 0);
6461 }
6462
6463 /* Return true if this breakpoint was set by the user, false if it is
6464 internal or momentary. */
6465
6466 int
6467 user_breakpoint_p (struct breakpoint *b)
6468 {
6469 return b->number > 0;
6470 }
6471
6472 /* See breakpoint.h. */
6473
6474 int
6475 pending_breakpoint_p (struct breakpoint *b)
6476 {
6477 return b->loc == NULL;
6478 }
6479
6480 /* Print information on breakpoints (including watchpoints and tracepoints).
6481
6482 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as
6483 understood by number_or_range_parser. Only breakpoints included in this
6484 list are then printed.
6485
6486 If SHOW_INTERNAL is true, print internal breakpoints.
6487
6488 If FILTER is non-NULL, call it on each breakpoint and only include the
6489 ones for which it returns true.
6490
6491 Return the total number of breakpoints listed. */
6492
6493 static int
6494 breakpoint_1 (const char *bp_num_list, bool show_internal,
6495 bool (*filter) (const struct breakpoint *))
6496 {
6497 struct bp_location *last_loc = NULL;
6498 int nr_printable_breakpoints;
6499 struct value_print_options opts;
6500 int print_address_bits = 0;
6501 int print_type_col_width = 14;
6502 struct ui_out *uiout = current_uiout;
6503 bool has_disabled_by_cond_location = false;
6504
6505 get_user_print_options (&opts);
6506
6507 /* Compute the number of rows in the table, as well as the size
6508 required for address fields. */
6509 nr_printable_breakpoints = 0;
6510 for (breakpoint *b : all_breakpoints ())
6511 {
6512 /* If we have a filter, only list the breakpoints it accepts. */
6513 if (filter && !filter (b))
6514 continue;
6515
6516 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6517 accept. Skip the others. */
6518 if (bp_num_list != NULL && *bp_num_list != '\0')
6519 {
6520 if (show_internal && parse_and_eval_long (bp_num_list) != b->number)
6521 continue;
6522 if (!show_internal && !number_is_in_list (bp_num_list, b->number))
6523 continue;
6524 }
6525
6526 if (show_internal || user_breakpoint_p (b))
6527 {
6528 int addr_bit, type_len;
6529
6530 addr_bit = breakpoint_address_bits (b);
6531 if (addr_bit > print_address_bits)
6532 print_address_bits = addr_bit;
6533
6534 type_len = strlen (bptype_string (b->type));
6535 if (type_len > print_type_col_width)
6536 print_type_col_width = type_len;
6537
6538 nr_printable_breakpoints++;
6539 }
6540 }
6541
6542 {
6543 ui_out_emit_table table_emitter (uiout,
6544 opts.addressprint ? 6 : 5,
6545 nr_printable_breakpoints,
6546 "BreakpointTable");
6547
6548 if (nr_printable_breakpoints > 0)
6549 annotate_breakpoints_headers ();
6550 if (nr_printable_breakpoints > 0)
6551 annotate_field (0);
6552 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6553 if (nr_printable_breakpoints > 0)
6554 annotate_field (1);
6555 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6556 if (nr_printable_breakpoints > 0)
6557 annotate_field (2);
6558 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6559 if (nr_printable_breakpoints > 0)
6560 annotate_field (3);
6561 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6562 if (opts.addressprint)
6563 {
6564 if (nr_printable_breakpoints > 0)
6565 annotate_field (4);
6566 if (print_address_bits <= 32)
6567 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6568 else
6569 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6570 }
6571 if (nr_printable_breakpoints > 0)
6572 annotate_field (5);
6573 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6574 uiout->table_body ();
6575 if (nr_printable_breakpoints > 0)
6576 annotate_breakpoints_table ();
6577
6578 for (breakpoint *b : all_breakpoints ())
6579 {
6580 QUIT;
6581 /* If we have a filter, only list the breakpoints it accepts. */
6582 if (filter && !filter (b))
6583 continue;
6584
6585 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6586 accept. Skip the others. */
6587
6588 if (bp_num_list != NULL && *bp_num_list != '\0')
6589 {
6590 if (show_internal) /* maintenance info breakpoint */
6591 {
6592 if (parse_and_eval_long (bp_num_list) != b->number)
6593 continue;
6594 }
6595 else /* all others */
6596 {
6597 if (!number_is_in_list (bp_num_list, b->number))
6598 continue;
6599 }
6600 }
6601 /* We only print out user settable breakpoints unless the
6602 show_internal is set. */
6603 if (show_internal || user_breakpoint_p (b))
6604 {
6605 print_one_breakpoint (b, &last_loc, show_internal);
6606 for (bp_location *loc : b->locations ())
6607 if (loc->disabled_by_cond)
6608 has_disabled_by_cond_location = true;
6609 }
6610 }
6611 }
6612
6613 if (nr_printable_breakpoints == 0)
6614 {
6615 /* If there's a filter, let the caller decide how to report
6616 empty list. */
6617 if (!filter)
6618 {
6619 if (bp_num_list == NULL || *bp_num_list == '\0')
6620 uiout->message ("No breakpoints or watchpoints.\n");
6621 else
6622 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6623 bp_num_list);
6624 }
6625 }
6626 else
6627 {
6628 if (last_loc && !server_command)
6629 set_next_address (last_loc->gdbarch, last_loc->address);
6630
6631 if (has_disabled_by_cond_location && !uiout->is_mi_like_p ())
6632 uiout->message (_("(*): Breakpoint condition is invalid at this "
6633 "location.\n"));
6634 }
6635
6636 /* FIXME? Should this be moved up so that it is only called when
6637 there have been breakpoints? */
6638 annotate_breakpoints_table_end ();
6639
6640 return nr_printable_breakpoints;
6641 }
6642
6643 /* Display the value of default-collect in a way that is generally
6644 compatible with the breakpoint list. */
6645
6646 static void
6647 default_collect_info (void)
6648 {
6649 struct ui_out *uiout = current_uiout;
6650
6651 /* If it has no value (which is frequently the case), say nothing; a
6652 message like "No default-collect." gets in user's face when it's
6653 not wanted. */
6654 if (default_collect.empty ())
6655 return;
6656
6657 /* The following phrase lines up nicely with per-tracepoint collect
6658 actions. */
6659 uiout->text ("default collect ");
6660 uiout->field_string ("default-collect", default_collect);
6661 uiout->text (" \n");
6662 }
6663
6664 static void
6665 info_breakpoints_command (const char *args, int from_tty)
6666 {
6667 breakpoint_1 (args, false, NULL);
6668
6669 default_collect_info ();
6670 }
6671
6672 static void
6673 info_watchpoints_command (const char *args, int from_tty)
6674 {
6675 int num_printed = breakpoint_1 (args, false, is_watchpoint);
6676 struct ui_out *uiout = current_uiout;
6677
6678 if (num_printed == 0)
6679 {
6680 if (args == NULL || *args == '\0')
6681 uiout->message ("No watchpoints.\n");
6682 else
6683 uiout->message ("No watchpoint matching '%s'.\n", args);
6684 }
6685 }
6686
6687 static void
6688 maintenance_info_breakpoints (const char *args, int from_tty)
6689 {
6690 breakpoint_1 (args, true, NULL);
6691
6692 default_collect_info ();
6693 }
6694
6695 static int
6696 breakpoint_has_pc (struct breakpoint *b,
6697 struct program_space *pspace,
6698 CORE_ADDR pc, struct obj_section *section)
6699 {
6700 for (bp_location *bl : b->locations ())
6701 {
6702 if (bl->pspace == pspace
6703 && bl->address == pc
6704 && (!overlay_debugging || bl->section == section))
6705 return 1;
6706 }
6707 return 0;
6708 }
6709
6710 /* Print a message describing any user-breakpoints set at PC. This
6711 concerns with logical breakpoints, so we match program spaces, not
6712 address spaces. */
6713
6714 static void
6715 describe_other_breakpoints (struct gdbarch *gdbarch,
6716 struct program_space *pspace, CORE_ADDR pc,
6717 struct obj_section *section, int thread)
6718 {
6719 int others = 0;
6720
6721 for (breakpoint *b : all_breakpoints ())
6722 others += (user_breakpoint_p (b)
6723 && breakpoint_has_pc (b, pspace, pc, section));
6724
6725 if (others > 0)
6726 {
6727 if (others == 1)
6728 printf_filtered (_("Note: breakpoint "));
6729 else /* if (others == ???) */
6730 printf_filtered (_("Note: breakpoints "));
6731 for (breakpoint *b : all_breakpoints ())
6732 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6733 {
6734 others--;
6735 printf_filtered ("%d", b->number);
6736 if (b->thread == -1 && thread != -1)
6737 printf_filtered (" (all threads)");
6738 else if (b->thread != -1)
6739 printf_filtered (" (thread %d)", b->thread);
6740 printf_filtered ("%s%s ",
6741 ((b->enable_state == bp_disabled
6742 || b->enable_state == bp_call_disabled)
6743 ? " (disabled)"
6744 : ""),
6745 (others > 1) ? ","
6746 : ((others == 1) ? " and" : ""));
6747 }
6748 current_uiout->message (_("also set at pc %ps.\n"),
6749 styled_string (address_style.style (),
6750 paddress (gdbarch, pc)));
6751 }
6752 }
6753 \f
6754
6755 /* Return true iff it is meaningful to use the address member of LOC.
6756 For some breakpoint types, the locations' address members are
6757 irrelevant and it makes no sense to attempt to compare them to
6758 other addresses (or use them for any other purpose either).
6759
6760 More specifically, software watchpoints and catchpoints that are
6761 not backed by breakpoints always have a zero valued location
6762 address and we don't want to mark breakpoints of any of these types
6763 to be a duplicate of an actual breakpoint location at address
6764 zero. */
6765
6766 static bool
6767 bl_address_is_meaningful (bp_location *loc)
6768 {
6769 return loc->loc_type != bp_loc_other;
6770 }
6771
6772 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6773 true if LOC1 and LOC2 represent the same watchpoint location. */
6774
6775 static int
6776 watchpoint_locations_match (struct bp_location *loc1,
6777 struct bp_location *loc2)
6778 {
6779 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6780 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6781
6782 /* Both of them must exist. */
6783 gdb_assert (w1 != NULL);
6784 gdb_assert (w2 != NULL);
6785
6786 /* If the target can evaluate the condition expression in hardware,
6787 then we we need to insert both watchpoints even if they are at
6788 the same place. Otherwise the watchpoint will only trigger when
6789 the condition of whichever watchpoint was inserted evaluates to
6790 true, not giving a chance for GDB to check the condition of the
6791 other watchpoint. */
6792 if ((w1->cond_exp
6793 && target_can_accel_watchpoint_condition (loc1->address,
6794 loc1->length,
6795 loc1->watchpoint_type,
6796 w1->cond_exp.get ()))
6797 || (w2->cond_exp
6798 && target_can_accel_watchpoint_condition (loc2->address,
6799 loc2->length,
6800 loc2->watchpoint_type,
6801 w2->cond_exp.get ())))
6802 return 0;
6803
6804 /* Note that this checks the owner's type, not the location's. In
6805 case the target does not support read watchpoints, but does
6806 support access watchpoints, we'll have bp_read_watchpoint
6807 watchpoints with hw_access locations. Those should be considered
6808 duplicates of hw_read locations. The hw_read locations will
6809 become hw_access locations later. */
6810 return (loc1->owner->type == loc2->owner->type
6811 && loc1->pspace->aspace == loc2->pspace->aspace
6812 && loc1->address == loc2->address
6813 && loc1->length == loc2->length);
6814 }
6815
6816 /* See breakpoint.h. */
6817
6818 int
6819 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6820 const address_space *aspace2, CORE_ADDR addr2)
6821 {
6822 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6823 || aspace1 == aspace2)
6824 && addr1 == addr2);
6825 }
6826
6827 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6828 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6829 matches ASPACE2. On targets that have global breakpoints, the address
6830 space doesn't really matter. */
6831
6832 static int
6833 breakpoint_address_match_range (const address_space *aspace1,
6834 CORE_ADDR addr1,
6835 int len1, const address_space *aspace2,
6836 CORE_ADDR addr2)
6837 {
6838 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6839 || aspace1 == aspace2)
6840 && addr2 >= addr1 && addr2 < addr1 + len1);
6841 }
6842
6843 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6844 a ranged breakpoint. In most targets, a match happens only if ASPACE
6845 matches the breakpoint's address space. On targets that have global
6846 breakpoints, the address space doesn't really matter. */
6847
6848 static int
6849 breakpoint_location_address_match (struct bp_location *bl,
6850 const address_space *aspace,
6851 CORE_ADDR addr)
6852 {
6853 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6854 aspace, addr)
6855 || (bl->length
6856 && breakpoint_address_match_range (bl->pspace->aspace,
6857 bl->address, bl->length,
6858 aspace, addr)));
6859 }
6860
6861 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6862 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6863 match happens only if ASPACE matches the breakpoint's address
6864 space. On targets that have global breakpoints, the address space
6865 doesn't really matter. */
6866
6867 static int
6868 breakpoint_location_address_range_overlap (struct bp_location *bl,
6869 const address_space *aspace,
6870 CORE_ADDR addr, int len)
6871 {
6872 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6873 || bl->pspace->aspace == aspace)
6874 {
6875 int bl_len = bl->length != 0 ? bl->length : 1;
6876
6877 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6878 return 1;
6879 }
6880 return 0;
6881 }
6882
6883 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6884 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6885 true, otherwise returns false. */
6886
6887 static int
6888 tracepoint_locations_match (struct bp_location *loc1,
6889 struct bp_location *loc2)
6890 {
6891 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6892 /* Since tracepoint locations are never duplicated with others', tracepoint
6893 locations at the same address of different tracepoints are regarded as
6894 different locations. */
6895 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6896 else
6897 return 0;
6898 }
6899
6900 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6901 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
6902 the same location. If SW_HW_BPS_MATCH is true, then software
6903 breakpoint locations and hardware breakpoint locations match,
6904 otherwise they don't. */
6905
6906 static int
6907 breakpoint_locations_match (struct bp_location *loc1,
6908 struct bp_location *loc2,
6909 bool sw_hw_bps_match)
6910 {
6911 int hw_point1, hw_point2;
6912
6913 /* Both of them must not be in moribund_locations. */
6914 gdb_assert (loc1->owner != NULL);
6915 gdb_assert (loc2->owner != NULL);
6916
6917 hw_point1 = is_hardware_watchpoint (loc1->owner);
6918 hw_point2 = is_hardware_watchpoint (loc2->owner);
6919
6920 if (hw_point1 != hw_point2)
6921 return 0;
6922 else if (hw_point1)
6923 return watchpoint_locations_match (loc1, loc2);
6924 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6925 return tracepoint_locations_match (loc1, loc2);
6926 else
6927 /* We compare bp_location.length in order to cover ranged
6928 breakpoints. Keep this in sync with
6929 bp_location_is_less_than. */
6930 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6931 loc2->pspace->aspace, loc2->address)
6932 && (loc1->loc_type == loc2->loc_type || sw_hw_bps_match)
6933 && loc1->length == loc2->length);
6934 }
6935
6936 static void
6937 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6938 int bnum, int have_bnum)
6939 {
6940 /* The longest string possibly returned by hex_string_custom
6941 is 50 chars. These must be at least that big for safety. */
6942 char astr1[64];
6943 char astr2[64];
6944
6945 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6946 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6947 if (have_bnum)
6948 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6949 bnum, astr1, astr2);
6950 else
6951 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6952 }
6953
6954 /* Adjust a breakpoint's address to account for architectural
6955 constraints on breakpoint placement. Return the adjusted address.
6956 Note: Very few targets require this kind of adjustment. For most
6957 targets, this function is simply the identity function. */
6958
6959 static CORE_ADDR
6960 adjust_breakpoint_address (struct gdbarch *gdbarch,
6961 CORE_ADDR bpaddr, enum bptype bptype)
6962 {
6963 if (bptype == bp_watchpoint
6964 || bptype == bp_hardware_watchpoint
6965 || bptype == bp_read_watchpoint
6966 || bptype == bp_access_watchpoint
6967 || bptype == bp_catchpoint)
6968 {
6969 /* Watchpoints and the various bp_catch_* eventpoints should not
6970 have their addresses modified. */
6971 return bpaddr;
6972 }
6973 else if (bptype == bp_single_step)
6974 {
6975 /* Single-step breakpoints should not have their addresses
6976 modified. If there's any architectural constrain that
6977 applies to this address, then it should have already been
6978 taken into account when the breakpoint was created in the
6979 first place. If we didn't do this, stepping through e.g.,
6980 Thumb-2 IT blocks would break. */
6981 return bpaddr;
6982 }
6983 else
6984 {
6985 CORE_ADDR adjusted_bpaddr = bpaddr;
6986
6987 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6988 {
6989 /* Some targets have architectural constraints on the placement
6990 of breakpoint instructions. Obtain the adjusted address. */
6991 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6992 }
6993
6994 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6995
6996 /* An adjusted breakpoint address can significantly alter
6997 a user's expectations. Print a warning if an adjustment
6998 is required. */
6999 if (adjusted_bpaddr != bpaddr)
7000 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
7001
7002 return adjusted_bpaddr;
7003 }
7004 }
7005
7006 static bp_loc_type
7007 bp_location_from_bp_type (bptype type)
7008 {
7009 switch (type)
7010 {
7011 case bp_breakpoint:
7012 case bp_single_step:
7013 case bp_until:
7014 case bp_finish:
7015 case bp_longjmp:
7016 case bp_longjmp_resume:
7017 case bp_longjmp_call_dummy:
7018 case bp_exception:
7019 case bp_exception_resume:
7020 case bp_step_resume:
7021 case bp_hp_step_resume:
7022 case bp_watchpoint_scope:
7023 case bp_call_dummy:
7024 case bp_std_terminate:
7025 case bp_shlib_event:
7026 case bp_thread_event:
7027 case bp_overlay_event:
7028 case bp_jit_event:
7029 case bp_longjmp_master:
7030 case bp_std_terminate_master:
7031 case bp_exception_master:
7032 case bp_gnu_ifunc_resolver:
7033 case bp_gnu_ifunc_resolver_return:
7034 case bp_dprintf:
7035 return bp_loc_software_breakpoint;
7036 case bp_hardware_breakpoint:
7037 return bp_loc_hardware_breakpoint;
7038 case bp_hardware_watchpoint:
7039 case bp_read_watchpoint:
7040 case bp_access_watchpoint:
7041 return bp_loc_hardware_watchpoint;
7042 case bp_watchpoint:
7043 case bp_catchpoint:
7044 case bp_tracepoint:
7045 case bp_fast_tracepoint:
7046 case bp_static_tracepoint:
7047 return bp_loc_other;
7048 default:
7049 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7050 }
7051 }
7052
7053 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
7054 {
7055 this->owner = owner;
7056 this->cond_bytecode = NULL;
7057 this->shlib_disabled = 0;
7058 this->enabled = 1;
7059 this->disabled_by_cond = false;
7060
7061 this->loc_type = type;
7062
7063 if (this->loc_type == bp_loc_software_breakpoint
7064 || this->loc_type == bp_loc_hardware_breakpoint)
7065 mark_breakpoint_location_modified (this);
7066
7067 incref ();
7068 }
7069
7070 bp_location::bp_location (breakpoint *owner)
7071 : bp_location::bp_location (owner,
7072 bp_location_from_bp_type (owner->type))
7073 {
7074 }
7075
7076 /* Allocate a struct bp_location. */
7077
7078 static struct bp_location *
7079 allocate_bp_location (struct breakpoint *bpt)
7080 {
7081 return bpt->ops->allocate_location (bpt);
7082 }
7083
7084 /* Decrement reference count. If the reference count reaches 0,
7085 destroy the bp_location. Sets *BLP to NULL. */
7086
7087 static void
7088 decref_bp_location (struct bp_location **blp)
7089 {
7090 bp_location_ref_policy::decref (*blp);
7091 *blp = NULL;
7092 }
7093
7094 /* Add breakpoint B at the end of the global breakpoint chain. */
7095
7096 static breakpoint *
7097 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7098 {
7099 struct breakpoint *b1;
7100 struct breakpoint *result = b.get ();
7101
7102 /* Add this breakpoint to the end of the chain so that a list of
7103 breakpoints will come out in order of increasing numbers. */
7104
7105 b1 = breakpoint_chain;
7106 if (b1 == 0)
7107 breakpoint_chain = b.release ();
7108 else
7109 {
7110 while (b1->next)
7111 b1 = b1->next;
7112 b1->next = b.release ();
7113 }
7114
7115 return result;
7116 }
7117
7118 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7119
7120 static void
7121 init_raw_breakpoint_without_location (struct breakpoint *b,
7122 struct gdbarch *gdbarch,
7123 enum bptype bptype,
7124 const struct breakpoint_ops *ops)
7125 {
7126 gdb_assert (ops != NULL);
7127
7128 b->ops = ops;
7129 b->type = bptype;
7130 b->gdbarch = gdbarch;
7131 b->language = current_language->la_language;
7132 b->input_radix = input_radix;
7133 b->related_breakpoint = b;
7134 }
7135
7136 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7137 that has type BPTYPE and has no locations as yet. */
7138
7139 static struct breakpoint *
7140 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7141 enum bptype bptype,
7142 const struct breakpoint_ops *ops)
7143 {
7144 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7145
7146 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7147 return add_to_breakpoint_chain (std::move (b));
7148 }
7149
7150 /* Initialize loc->function_name. */
7151
7152 static void
7153 set_breakpoint_location_function (struct bp_location *loc)
7154 {
7155 gdb_assert (loc->owner != NULL);
7156
7157 if (loc->owner->type == bp_breakpoint
7158 || loc->owner->type == bp_hardware_breakpoint
7159 || is_tracepoint (loc->owner))
7160 {
7161 const char *function_name;
7162
7163 if (loc->msymbol != NULL
7164 && (MSYMBOL_TYPE (loc->msymbol) == mst_text_gnu_ifunc
7165 || MSYMBOL_TYPE (loc->msymbol) == mst_data_gnu_ifunc))
7166 {
7167 struct breakpoint *b = loc->owner;
7168
7169 function_name = loc->msymbol->linkage_name ();
7170
7171 if (b->type == bp_breakpoint && b->loc == loc
7172 && loc->next == NULL && b->related_breakpoint == b)
7173 {
7174 /* Create only the whole new breakpoint of this type but do not
7175 mess more complicated breakpoints with multiple locations. */
7176 b->type = bp_gnu_ifunc_resolver;
7177 /* Remember the resolver's address for use by the return
7178 breakpoint. */
7179 loc->related_address = loc->address;
7180 }
7181 }
7182 else
7183 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7184
7185 if (function_name)
7186 loc->function_name = make_unique_xstrdup (function_name);
7187 }
7188 }
7189
7190 /* Attempt to determine architecture of location identified by SAL. */
7191 struct gdbarch *
7192 get_sal_arch (struct symtab_and_line sal)
7193 {
7194 if (sal.section)
7195 return sal.section->objfile->arch ();
7196 if (sal.symtab)
7197 return sal.symtab->objfile ()->arch ();
7198
7199 return NULL;
7200 }
7201
7202 /* Low level routine for partially initializing a breakpoint of type
7203 BPTYPE. The newly created breakpoint's address, section, source
7204 file name, and line number are provided by SAL.
7205
7206 It is expected that the caller will complete the initialization of
7207 the newly created breakpoint struct as well as output any status
7208 information regarding the creation of a new breakpoint. */
7209
7210 static void
7211 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7212 struct symtab_and_line sal, enum bptype bptype,
7213 const struct breakpoint_ops *ops)
7214 {
7215 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7216
7217 add_location_to_breakpoint (b, &sal);
7218
7219 if (bptype != bp_catchpoint)
7220 gdb_assert (sal.pspace != NULL);
7221
7222 /* Store the program space that was used to set the breakpoint,
7223 except for ordinary breakpoints, which are independent of the
7224 program space. */
7225 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7226 b->pspace = sal.pspace;
7227 }
7228
7229 /* set_raw_breakpoint is a low level routine for allocating and
7230 partially initializing a breakpoint of type BPTYPE. The newly
7231 created breakpoint's address, section, source file name, and line
7232 number are provided by SAL. The newly created and partially
7233 initialized breakpoint is added to the breakpoint chain and
7234 is also returned as the value of this function.
7235
7236 It is expected that the caller will complete the initialization of
7237 the newly created breakpoint struct as well as output any status
7238 information regarding the creation of a new breakpoint. In
7239 particular, set_raw_breakpoint does NOT set the breakpoint
7240 number! Care should be taken to not allow an error to occur
7241 prior to completing the initialization of the breakpoint. If this
7242 should happen, a bogus breakpoint will be left on the chain. */
7243
7244 static struct breakpoint *
7245 set_raw_breakpoint (struct gdbarch *gdbarch,
7246 struct symtab_and_line sal, enum bptype bptype,
7247 const struct breakpoint_ops *ops)
7248 {
7249 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7250
7251 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7252 return add_to_breakpoint_chain (std::move (b));
7253 }
7254
7255 /* Call this routine when stepping and nexting to enable a breakpoint
7256 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7257 initiated the operation. */
7258
7259 void
7260 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7261 {
7262 int thread = tp->global_num;
7263
7264 /* To avoid having to rescan all objfile symbols at every step,
7265 we maintain a list of continually-inserted but always disabled
7266 longjmp "master" breakpoints. Here, we simply create momentary
7267 clones of those and enable them for the requested thread. */
7268 for (breakpoint *b : all_breakpoints_safe ())
7269 if (b->pspace == current_program_space
7270 && (b->type == bp_longjmp_master
7271 || b->type == bp_exception_master))
7272 {
7273 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7274 struct breakpoint *clone;
7275
7276 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7277 after their removal. */
7278 clone = momentary_breakpoint_from_master (b, type,
7279 &momentary_breakpoint_ops, 1);
7280 clone->thread = thread;
7281 }
7282
7283 tp->initiating_frame = frame;
7284 }
7285
7286 /* Delete all longjmp breakpoints from THREAD. */
7287 void
7288 delete_longjmp_breakpoint (int thread)
7289 {
7290 for (breakpoint *b : all_breakpoints_safe ())
7291 if (b->type == bp_longjmp || b->type == bp_exception)
7292 {
7293 if (b->thread == thread)
7294 delete_breakpoint (b);
7295 }
7296 }
7297
7298 void
7299 delete_longjmp_breakpoint_at_next_stop (int thread)
7300 {
7301 for (breakpoint *b : all_breakpoints_safe ())
7302 if (b->type == bp_longjmp || b->type == bp_exception)
7303 {
7304 if (b->thread == thread)
7305 b->disposition = disp_del_at_next_stop;
7306 }
7307 }
7308
7309 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7310 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7311 pointer to any of them. Return NULL if this system cannot place longjmp
7312 breakpoints. */
7313
7314 struct breakpoint *
7315 set_longjmp_breakpoint_for_call_dummy (void)
7316 {
7317 breakpoint *retval = nullptr;
7318
7319 for (breakpoint *b : all_breakpoints ())
7320 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7321 {
7322 struct breakpoint *new_b;
7323
7324 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7325 &momentary_breakpoint_ops,
7326 1);
7327 new_b->thread = inferior_thread ()->global_num;
7328
7329 /* Link NEW_B into the chain of RETVAL breakpoints. */
7330
7331 gdb_assert (new_b->related_breakpoint == new_b);
7332 if (retval == NULL)
7333 retval = new_b;
7334 new_b->related_breakpoint = retval;
7335 while (retval->related_breakpoint != new_b->related_breakpoint)
7336 retval = retval->related_breakpoint;
7337 retval->related_breakpoint = new_b;
7338 }
7339
7340 return retval;
7341 }
7342
7343 /* Verify all existing dummy frames and their associated breakpoints for
7344 TP. Remove those which can no longer be found in the current frame
7345 stack.
7346
7347 If the unwind fails then there is not sufficient information to discard
7348 dummy frames. In this case, elide the clean up and the dummy frames will
7349 be cleaned up next time this function is called from a location where
7350 unwinding is possible. */
7351
7352 void
7353 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7354 {
7355 struct breakpoint *b, *b_tmp;
7356
7357 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7358 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7359 {
7360 struct breakpoint *dummy_b = b->related_breakpoint;
7361
7362 /* Find the bp_call_dummy breakpoint in the list of breakpoints
7363 chained off b->related_breakpoint. */
7364 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7365 dummy_b = dummy_b->related_breakpoint;
7366
7367 /* If there was no bp_call_dummy breakpoint then there's nothing
7368 more to do. Or, if the dummy frame associated with the
7369 bp_call_dummy is still on the stack then we need to leave this
7370 bp_call_dummy in place. */
7371 if (dummy_b->type != bp_call_dummy
7372 || frame_find_by_id (dummy_b->frame_id) != NULL)
7373 continue;
7374
7375 /* We didn't find the dummy frame on the stack, this could be
7376 because we have longjmp'd to a stack frame that is previous to
7377 the dummy frame, or it could be because the stack unwind is
7378 broken at some point between the longjmp frame and the dummy
7379 frame.
7380
7381 Next we figure out why the stack unwind stopped. If it looks
7382 like the unwind is complete then we assume the dummy frame has
7383 been jumped over, however, if the unwind stopped for an
7384 unexpected reason then we assume the stack unwind is currently
7385 broken, and that we will (eventually) return to the dummy
7386 frame.
7387
7388 It might be tempting to consider using frame_id_inner here, but
7389 that is not safe. There is no guarantee that the stack frames
7390 we are looking at here are even on the same stack as the
7391 original dummy frame, hence frame_id_inner can't be used. See
7392 the comments on frame_id_inner for more details. */
7393 bool unwind_finished_unexpectedly = false;
7394 for (struct frame_info *fi = get_current_frame (); fi != nullptr; )
7395 {
7396 struct frame_info *prev = get_prev_frame (fi);
7397 if (prev == nullptr)
7398 {
7399 /* FI is the last stack frame. Why did this frame not
7400 unwind further? */
7401 auto stop_reason = get_frame_unwind_stop_reason (fi);
7402 if (stop_reason != UNWIND_NO_REASON
7403 && stop_reason != UNWIND_OUTERMOST)
7404 unwind_finished_unexpectedly = true;
7405 }
7406 fi = prev;
7407 }
7408 if (unwind_finished_unexpectedly)
7409 continue;
7410
7411 dummy_frame_discard (dummy_b->frame_id, tp);
7412
7413 while (b->related_breakpoint != b)
7414 {
7415 if (b_tmp == b->related_breakpoint)
7416 b_tmp = b->related_breakpoint->next;
7417 delete_breakpoint (b->related_breakpoint);
7418 }
7419 delete_breakpoint (b);
7420 }
7421 }
7422
7423 void
7424 enable_overlay_breakpoints (void)
7425 {
7426 for (breakpoint *b : all_breakpoints ())
7427 if (b->type == bp_overlay_event)
7428 {
7429 b->enable_state = bp_enabled;
7430 update_global_location_list (UGLL_MAY_INSERT);
7431 overlay_events_enabled = 1;
7432 }
7433 }
7434
7435 void
7436 disable_overlay_breakpoints (void)
7437 {
7438 for (breakpoint *b : all_breakpoints ())
7439 if (b->type == bp_overlay_event)
7440 {
7441 b->enable_state = bp_disabled;
7442 update_global_location_list (UGLL_DONT_INSERT);
7443 overlay_events_enabled = 0;
7444 }
7445 }
7446
7447 /* Set an active std::terminate breakpoint for each std::terminate
7448 master breakpoint. */
7449 void
7450 set_std_terminate_breakpoint (void)
7451 {
7452 for (breakpoint *b : all_breakpoints_safe ())
7453 if (b->pspace == current_program_space
7454 && b->type == bp_std_terminate_master)
7455 {
7456 momentary_breakpoint_from_master (b, bp_std_terminate,
7457 &momentary_breakpoint_ops, 1);
7458 }
7459 }
7460
7461 /* Delete all the std::terminate breakpoints. */
7462 void
7463 delete_std_terminate_breakpoint (void)
7464 {
7465 for (breakpoint *b : all_breakpoints_safe ())
7466 if (b->type == bp_std_terminate)
7467 delete_breakpoint (b);
7468 }
7469
7470 struct breakpoint *
7471 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7472 {
7473 struct breakpoint *b;
7474
7475 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7476 &internal_breakpoint_ops);
7477
7478 b->enable_state = bp_enabled;
7479 /* location has to be used or breakpoint_re_set will delete me. */
7480 b->location = new_address_location (b->loc->address, NULL, 0);
7481
7482 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7483
7484 return b;
7485 }
7486
7487 struct lang_and_radix
7488 {
7489 enum language lang;
7490 int radix;
7491 };
7492
7493 /* Create a breakpoint for JIT code registration and unregistration. */
7494
7495 struct breakpoint *
7496 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7497 {
7498 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7499 &internal_breakpoint_ops);
7500 }
7501
7502 /* Remove JIT code registration and unregistration breakpoint(s). */
7503
7504 void
7505 remove_jit_event_breakpoints (void)
7506 {
7507 for (breakpoint *b : all_breakpoints_safe ())
7508 if (b->type == bp_jit_event
7509 && b->loc->pspace == current_program_space)
7510 delete_breakpoint (b);
7511 }
7512
7513 void
7514 remove_solib_event_breakpoints (void)
7515 {
7516 for (breakpoint *b : all_breakpoints_safe ())
7517 if (b->type == bp_shlib_event
7518 && b->loc->pspace == current_program_space)
7519 delete_breakpoint (b);
7520 }
7521
7522 /* See breakpoint.h. */
7523
7524 void
7525 remove_solib_event_breakpoints_at_next_stop (void)
7526 {
7527 for (breakpoint *b : all_breakpoints_safe ())
7528 if (b->type == bp_shlib_event
7529 && b->loc->pspace == current_program_space)
7530 b->disposition = disp_del_at_next_stop;
7531 }
7532
7533 /* Helper for create_solib_event_breakpoint /
7534 create_and_insert_solib_event_breakpoint. Allows specifying which
7535 INSERT_MODE to pass through to update_global_location_list. */
7536
7537 static struct breakpoint *
7538 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7539 enum ugll_insert_mode insert_mode)
7540 {
7541 struct breakpoint *b;
7542
7543 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7544 &internal_breakpoint_ops);
7545 update_global_location_list_nothrow (insert_mode);
7546 return b;
7547 }
7548
7549 struct breakpoint *
7550 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7551 {
7552 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7553 }
7554
7555 /* See breakpoint.h. */
7556
7557 struct breakpoint *
7558 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7559 {
7560 struct breakpoint *b;
7561
7562 /* Explicitly tell update_global_location_list to insert
7563 locations. */
7564 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7565 if (!b->loc->inserted)
7566 {
7567 delete_breakpoint (b);
7568 return NULL;
7569 }
7570 return b;
7571 }
7572
7573 /* Disable any breakpoints that are on code in shared libraries. Only
7574 apply to enabled breakpoints, disabled ones can just stay disabled. */
7575
7576 void
7577 disable_breakpoints_in_shlibs (void)
7578 {
7579 for (bp_location *loc : all_bp_locations ())
7580 {
7581 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7582 struct breakpoint *b = loc->owner;
7583
7584 /* We apply the check to all breakpoints, including disabled for
7585 those with loc->duplicate set. This is so that when breakpoint
7586 becomes enabled, or the duplicate is removed, gdb will try to
7587 insert all breakpoints. If we don't set shlib_disabled here,
7588 we'll try to insert those breakpoints and fail. */
7589 if (((b->type == bp_breakpoint)
7590 || (b->type == bp_jit_event)
7591 || (b->type == bp_hardware_breakpoint)
7592 || (is_tracepoint (b)))
7593 && loc->pspace == current_program_space
7594 && !loc->shlib_disabled
7595 && solib_name_from_address (loc->pspace, loc->address)
7596 )
7597 {
7598 loc->shlib_disabled = 1;
7599 }
7600 }
7601 }
7602
7603 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7604 notification of unloaded_shlib. Only apply to enabled breakpoints,
7605 disabled ones can just stay disabled. */
7606
7607 static void
7608 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7609 {
7610 int disabled_shlib_breaks = 0;
7611
7612 for (bp_location *loc : all_bp_locations ())
7613 {
7614 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7615 struct breakpoint *b = loc->owner;
7616
7617 if (solib->pspace == loc->pspace
7618 && !loc->shlib_disabled
7619 && (((b->type == bp_breakpoint
7620 || b->type == bp_jit_event
7621 || b->type == bp_hardware_breakpoint)
7622 && (loc->loc_type == bp_loc_hardware_breakpoint
7623 || loc->loc_type == bp_loc_software_breakpoint))
7624 || is_tracepoint (b))
7625 && solib_contains_address_p (solib, loc->address))
7626 {
7627 loc->shlib_disabled = 1;
7628 /* At this point, we cannot rely on remove_breakpoint
7629 succeeding so we must mark the breakpoint as not inserted
7630 to prevent future errors occurring in remove_breakpoints. */
7631 loc->inserted = 0;
7632
7633 /* This may cause duplicate notifications for the same breakpoint. */
7634 gdb::observers::breakpoint_modified.notify (b);
7635
7636 if (!disabled_shlib_breaks)
7637 {
7638 target_terminal::ours_for_output ();
7639 warning (_("Temporarily disabling breakpoints "
7640 "for unloaded shared library \"%s\""),
7641 solib->so_name);
7642 }
7643 disabled_shlib_breaks = 1;
7644 }
7645 }
7646 }
7647
7648 /* Disable any breakpoints and tracepoints in OBJFILE upon
7649 notification of free_objfile. Only apply to enabled breakpoints,
7650 disabled ones can just stay disabled. */
7651
7652 static void
7653 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7654 {
7655 if (objfile == NULL)
7656 return;
7657
7658 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7659 managed by the user with add-symbol-file/remove-symbol-file.
7660 Similarly to how breakpoints in shared libraries are handled in
7661 response to "nosharedlibrary", mark breakpoints in such modules
7662 shlib_disabled so they end up uninserted on the next global
7663 location list update. Shared libraries not loaded by the user
7664 aren't handled here -- they're already handled in
7665 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7666 solib_unloaded observer. We skip objfiles that are not
7667 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7668 main objfile). */
7669 if ((objfile->flags & OBJF_SHARED) == 0
7670 || (objfile->flags & OBJF_USERLOADED) == 0)
7671 return;
7672
7673 for (breakpoint *b : all_breakpoints ())
7674 {
7675 int bp_modified = 0;
7676
7677 if (!is_breakpoint (b) && !is_tracepoint (b))
7678 continue;
7679
7680 for (bp_location *loc : b->locations ())
7681 {
7682 CORE_ADDR loc_addr = loc->address;
7683
7684 if (loc->loc_type != bp_loc_hardware_breakpoint
7685 && loc->loc_type != bp_loc_software_breakpoint)
7686 continue;
7687
7688 if (loc->shlib_disabled != 0)
7689 continue;
7690
7691 if (objfile->pspace != loc->pspace)
7692 continue;
7693
7694 if (loc->loc_type != bp_loc_hardware_breakpoint
7695 && loc->loc_type != bp_loc_software_breakpoint)
7696 continue;
7697
7698 if (is_addr_in_objfile (loc_addr, objfile))
7699 {
7700 loc->shlib_disabled = 1;
7701 /* At this point, we don't know whether the object was
7702 unmapped from the inferior or not, so leave the
7703 inserted flag alone. We'll handle failure to
7704 uninsert quietly, in case the object was indeed
7705 unmapped. */
7706
7707 mark_breakpoint_location_modified (loc);
7708
7709 bp_modified = 1;
7710 }
7711 }
7712
7713 if (bp_modified)
7714 gdb::observers::breakpoint_modified.notify (b);
7715 }
7716 }
7717
7718 /* An instance of this type is used to represent an solib catchpoint.
7719 A breakpoint is really of this type iff its ops pointer points to
7720 CATCH_SOLIB_BREAKPOINT_OPS. */
7721
7722 struct solib_catchpoint : public breakpoint
7723 {
7724 /* True for "catch load", false for "catch unload". */
7725 bool is_load;
7726
7727 /* Regular expression to match, if any. COMPILED is only valid when
7728 REGEX is non-NULL. */
7729 gdb::unique_xmalloc_ptr<char> regex;
7730 std::unique_ptr<compiled_regex> compiled;
7731 };
7732
7733 static int
7734 insert_catch_solib (struct bp_location *ignore)
7735 {
7736 return 0;
7737 }
7738
7739 static int
7740 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7741 {
7742 return 0;
7743 }
7744
7745 static int
7746 breakpoint_hit_catch_solib (const struct bp_location *bl,
7747 const address_space *aspace,
7748 CORE_ADDR bp_addr,
7749 const target_waitstatus &ws)
7750 {
7751 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7752
7753 if (ws.kind () == TARGET_WAITKIND_LOADED)
7754 return 1;
7755
7756 for (breakpoint *other : all_breakpoints ())
7757 {
7758 if (other == bl->owner)
7759 continue;
7760
7761 if (other->type != bp_shlib_event)
7762 continue;
7763
7764 if (self->pspace != NULL && other->pspace != self->pspace)
7765 continue;
7766
7767 for (bp_location *other_bl : other->locations ())
7768 {
7769 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7770 return 1;
7771 }
7772 }
7773
7774 return 0;
7775 }
7776
7777 static void
7778 check_status_catch_solib (struct bpstat *bs)
7779 {
7780 struct solib_catchpoint *self
7781 = (struct solib_catchpoint *) bs->breakpoint_at;
7782
7783 if (self->is_load)
7784 {
7785 for (so_list *iter : current_program_space->added_solibs)
7786 {
7787 if (!self->regex
7788 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
7789 return;
7790 }
7791 }
7792 else
7793 {
7794 for (const std::string &iter : current_program_space->deleted_solibs)
7795 {
7796 if (!self->regex
7797 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
7798 return;
7799 }
7800 }
7801
7802 bs->stop = 0;
7803 bs->print_it = print_it_noop;
7804 }
7805
7806 static enum print_stop_action
7807 print_it_catch_solib (bpstat *bs)
7808 {
7809 struct breakpoint *b = bs->breakpoint_at;
7810 struct ui_out *uiout = current_uiout;
7811
7812 annotate_catchpoint (b->number);
7813 maybe_print_thread_hit_breakpoint (uiout);
7814 if (b->disposition == disp_del)
7815 uiout->text ("Temporary catchpoint ");
7816 else
7817 uiout->text ("Catchpoint ");
7818 uiout->field_signed ("bkptno", b->number);
7819 uiout->text ("\n");
7820 if (uiout->is_mi_like_p ())
7821 uiout->field_string ("disp", bpdisp_text (b->disposition));
7822 print_solib_event (1);
7823 return PRINT_SRC_AND_LOC;
7824 }
7825
7826 static void
7827 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7828 {
7829 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7830 struct value_print_options opts;
7831 struct ui_out *uiout = current_uiout;
7832
7833 get_user_print_options (&opts);
7834 /* Field 4, the address, is omitted (which makes the columns not
7835 line up too nicely with the headers, but the effect is relatively
7836 readable). */
7837 if (opts.addressprint)
7838 {
7839 annotate_field (4);
7840 uiout->field_skip ("addr");
7841 }
7842
7843 std::string msg;
7844 annotate_field (5);
7845 if (self->is_load)
7846 {
7847 if (self->regex)
7848 msg = string_printf (_("load of library matching %s"),
7849 self->regex.get ());
7850 else
7851 msg = _("load of library");
7852 }
7853 else
7854 {
7855 if (self->regex)
7856 msg = string_printf (_("unload of library matching %s"),
7857 self->regex.get ());
7858 else
7859 msg = _("unload of library");
7860 }
7861 uiout->field_string ("what", msg);
7862
7863 if (uiout->is_mi_like_p ())
7864 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
7865 }
7866
7867 static void
7868 print_mention_catch_solib (struct breakpoint *b)
7869 {
7870 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7871
7872 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7873 self->is_load ? "load" : "unload");
7874 }
7875
7876 static void
7877 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7878 {
7879 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7880
7881 fprintf_unfiltered (fp, "%s %s",
7882 b->disposition == disp_del ? "tcatch" : "catch",
7883 self->is_load ? "load" : "unload");
7884 if (self->regex)
7885 fprintf_unfiltered (fp, " %s", self->regex.get ());
7886 fprintf_unfiltered (fp, "\n");
7887 }
7888
7889 static struct breakpoint_ops catch_solib_breakpoint_ops;
7890
7891 /* See breakpoint.h. */
7892
7893 void
7894 add_solib_catchpoint (const char *arg, bool is_load, bool is_temp, bool enabled)
7895 {
7896 struct gdbarch *gdbarch = get_current_arch ();
7897
7898 if (!arg)
7899 arg = "";
7900 arg = skip_spaces (arg);
7901
7902 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
7903
7904 if (*arg != '\0')
7905 {
7906 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
7907 _("Invalid regexp")));
7908 c->regex = make_unique_xstrdup (arg);
7909 }
7910
7911 c->is_load = is_load;
7912 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
7913 &catch_solib_breakpoint_ops);
7914
7915 c->enable_state = enabled ? bp_enabled : bp_disabled;
7916
7917 install_breakpoint (0, std::move (c), 1);
7918 }
7919
7920 /* A helper function that does all the work for "catch load" and
7921 "catch unload". */
7922
7923 static void
7924 catch_load_or_unload (const char *arg, int from_tty, int is_load,
7925 struct cmd_list_element *command)
7926 {
7927 const int enabled = 1;
7928 bool temp = command->context () == CATCH_TEMPORARY;
7929
7930 add_solib_catchpoint (arg, is_load, temp, enabled);
7931 }
7932
7933 static void
7934 catch_load_command_1 (const char *arg, int from_tty,
7935 struct cmd_list_element *command)
7936 {
7937 catch_load_or_unload (arg, from_tty, 1, command);
7938 }
7939
7940 static void
7941 catch_unload_command_1 (const char *arg, int from_tty,
7942 struct cmd_list_element *command)
7943 {
7944 catch_load_or_unload (arg, from_tty, 0, command);
7945 }
7946
7947 /* See breakpoint.h. */
7948
7949 void
7950 init_catchpoint (struct breakpoint *b,
7951 struct gdbarch *gdbarch, bool temp,
7952 const char *cond_string,
7953 const struct breakpoint_ops *ops)
7954 {
7955 symtab_and_line sal;
7956 sal.pspace = current_program_space;
7957
7958 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
7959
7960 if (cond_string == nullptr)
7961 b->cond_string.reset ();
7962 else
7963 b->cond_string = make_unique_xstrdup (cond_string);
7964 b->disposition = temp ? disp_del : disp_donttouch;
7965 }
7966
7967 void
7968 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
7969 {
7970 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
7971 set_breakpoint_number (internal, b);
7972 if (is_tracepoint (b))
7973 set_tracepoint_count (breakpoint_count);
7974 if (!internal)
7975 mention (b);
7976 gdb::observers::breakpoint_created.notify (b);
7977
7978 if (update_gll)
7979 update_global_location_list (UGLL_MAY_INSERT);
7980 }
7981
7982 static int
7983 hw_breakpoint_used_count (void)
7984 {
7985 int i = 0;
7986
7987 for (breakpoint *b : all_breakpoints ())
7988 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
7989 for (bp_location *bl : b->locations ())
7990 {
7991 /* Special types of hardware breakpoints may use more than
7992 one register. */
7993 i += b->ops->resources_needed (bl);
7994 }
7995
7996 return i;
7997 }
7998
7999 /* Returns the resources B would use if it were a hardware
8000 watchpoint. */
8001
8002 static int
8003 hw_watchpoint_use_count (struct breakpoint *b)
8004 {
8005 int i = 0;
8006
8007 if (!breakpoint_enabled (b))
8008 return 0;
8009
8010 for (bp_location *bl : b->locations ())
8011 {
8012 /* Special types of hardware watchpoints may use more than
8013 one register. */
8014 i += b->ops->resources_needed (bl);
8015 }
8016
8017 return i;
8018 }
8019
8020 /* Returns the sum the used resources of all hardware watchpoints of
8021 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8022 the sum of the used resources of all hardware watchpoints of other
8023 types _not_ TYPE. */
8024
8025 static int
8026 hw_watchpoint_used_count_others (struct breakpoint *except,
8027 enum bptype type, int *other_type_used)
8028 {
8029 int i = 0;
8030
8031 *other_type_used = 0;
8032 for (breakpoint *b : all_breakpoints ())
8033 {
8034 if (b == except)
8035 continue;
8036 if (!breakpoint_enabled (b))
8037 continue;
8038
8039 if (b->type == type)
8040 i += hw_watchpoint_use_count (b);
8041 else if (is_hardware_watchpoint (b))
8042 *other_type_used = 1;
8043 }
8044
8045 return i;
8046 }
8047
8048 void
8049 disable_watchpoints_before_interactive_call_start (void)
8050 {
8051 for (breakpoint *b : all_breakpoints ())
8052 if (is_watchpoint (b) && breakpoint_enabled (b))
8053 {
8054 b->enable_state = bp_call_disabled;
8055 update_global_location_list (UGLL_DONT_INSERT);
8056 }
8057 }
8058
8059 void
8060 enable_watchpoints_after_interactive_call_stop (void)
8061 {
8062 for (breakpoint *b : all_breakpoints ())
8063 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8064 {
8065 b->enable_state = bp_enabled;
8066 update_global_location_list (UGLL_MAY_INSERT);
8067 }
8068 }
8069
8070 void
8071 disable_breakpoints_before_startup (void)
8072 {
8073 current_program_space->executing_startup = 1;
8074 update_global_location_list (UGLL_DONT_INSERT);
8075 }
8076
8077 void
8078 enable_breakpoints_after_startup (void)
8079 {
8080 current_program_space->executing_startup = 0;
8081 breakpoint_re_set ();
8082 }
8083
8084 /* Create a new single-step breakpoint for thread THREAD, with no
8085 locations. */
8086
8087 static struct breakpoint *
8088 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8089 {
8090 std::unique_ptr<breakpoint> b (new breakpoint ());
8091
8092 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8093 &momentary_breakpoint_ops);
8094
8095 b->disposition = disp_donttouch;
8096 b->frame_id = null_frame_id;
8097
8098 b->thread = thread;
8099 gdb_assert (b->thread != 0);
8100
8101 return add_to_breakpoint_chain (std::move (b));
8102 }
8103
8104 /* Set a momentary breakpoint of type TYPE at address specified by
8105 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8106 frame. */
8107
8108 breakpoint_up
8109 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8110 struct frame_id frame_id, enum bptype type)
8111 {
8112 struct breakpoint *b;
8113
8114 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8115 tail-called one. */
8116 gdb_assert (!frame_id_artificial_p (frame_id));
8117
8118 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8119 b->enable_state = bp_enabled;
8120 b->disposition = disp_donttouch;
8121 b->frame_id = frame_id;
8122
8123 b->thread = inferior_thread ()->global_num;
8124
8125 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8126
8127 return breakpoint_up (b);
8128 }
8129
8130 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8131 The new breakpoint will have type TYPE, use OPS as its
8132 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8133
8134 static struct breakpoint *
8135 momentary_breakpoint_from_master (struct breakpoint *orig,
8136 enum bptype type,
8137 const struct breakpoint_ops *ops,
8138 int loc_enabled)
8139 {
8140 struct breakpoint *copy;
8141
8142 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8143 copy->loc = allocate_bp_location (copy);
8144 set_breakpoint_location_function (copy->loc);
8145
8146 copy->loc->gdbarch = orig->loc->gdbarch;
8147 copy->loc->requested_address = orig->loc->requested_address;
8148 copy->loc->address = orig->loc->address;
8149 copy->loc->section = orig->loc->section;
8150 copy->loc->pspace = orig->loc->pspace;
8151 copy->loc->probe = orig->loc->probe;
8152 copy->loc->line_number = orig->loc->line_number;
8153 copy->loc->symtab = orig->loc->symtab;
8154 copy->loc->enabled = loc_enabled;
8155 copy->frame_id = orig->frame_id;
8156 copy->thread = orig->thread;
8157 copy->pspace = orig->pspace;
8158
8159 copy->enable_state = bp_enabled;
8160 copy->disposition = disp_donttouch;
8161 copy->number = internal_breakpoint_number--;
8162
8163 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8164 return copy;
8165 }
8166
8167 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8168 ORIG is NULL. */
8169
8170 struct breakpoint *
8171 clone_momentary_breakpoint (struct breakpoint *orig)
8172 {
8173 /* If there's nothing to clone, then return nothing. */
8174 if (orig == NULL)
8175 return NULL;
8176
8177 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8178 }
8179
8180 breakpoint_up
8181 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8182 enum bptype type)
8183 {
8184 struct symtab_and_line sal;
8185
8186 sal = find_pc_line (pc, 0);
8187 sal.pc = pc;
8188 sal.section = find_pc_overlay (pc);
8189 sal.explicit_pc = 1;
8190
8191 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8192 }
8193 \f
8194
8195 /* Tell the user we have just set a breakpoint B. */
8196
8197 static void
8198 mention (struct breakpoint *b)
8199 {
8200 b->ops->print_mention (b);
8201 current_uiout->text ("\n");
8202 }
8203 \f
8204
8205 static bool bp_loc_is_permanent (struct bp_location *loc);
8206
8207 /* Handle "set breakpoint auto-hw on".
8208
8209 If the explicitly specified breakpoint type is not hardware
8210 breakpoint, check the memory map to see whether the breakpoint
8211 address is in read-only memory.
8212
8213 - location type is not hardware breakpoint, memory is read-only.
8214 We change the type of the location to hardware breakpoint.
8215
8216 - location type is hardware breakpoint, memory is read-write. This
8217 means we've previously made the location hardware one, but then the
8218 memory map changed, so we undo.
8219 */
8220
8221 static void
8222 handle_automatic_hardware_breakpoints (bp_location *bl)
8223 {
8224 if (automatic_hardware_breakpoints
8225 && bl->owner->type != bp_hardware_breakpoint
8226 && (bl->loc_type == bp_loc_software_breakpoint
8227 || bl->loc_type == bp_loc_hardware_breakpoint))
8228 {
8229 /* When breakpoints are removed, remove_breakpoints will use
8230 location types we've just set here, the only possible problem
8231 is that memory map has changed during running program, but
8232 it's not going to work anyway with current gdb. */
8233 mem_region *mr = lookup_mem_region (bl->address);
8234
8235 if (mr != nullptr)
8236 {
8237 enum bp_loc_type new_type;
8238
8239 if (mr->attrib.mode != MEM_RW)
8240 new_type = bp_loc_hardware_breakpoint;
8241 else
8242 new_type = bp_loc_software_breakpoint;
8243
8244 if (new_type != bl->loc_type)
8245 {
8246 static bool said = false;
8247
8248 bl->loc_type = new_type;
8249 if (!said)
8250 {
8251 printf_filtered (_("Note: automatically using "
8252 "hardware breakpoints for "
8253 "read-only addresses.\n"));
8254 said = true;
8255 }
8256 }
8257 }
8258 }
8259 }
8260
8261 static struct bp_location *
8262 add_location_to_breakpoint (struct breakpoint *b,
8263 const struct symtab_and_line *sal)
8264 {
8265 struct bp_location *loc, **tmp;
8266 CORE_ADDR adjusted_address;
8267 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8268
8269 if (loc_gdbarch == NULL)
8270 loc_gdbarch = b->gdbarch;
8271
8272 /* Adjust the breakpoint's address prior to allocating a location.
8273 Once we call allocate_bp_location(), that mostly uninitialized
8274 location will be placed on the location chain. Adjustment of the
8275 breakpoint may cause target_read_memory() to be called and we do
8276 not want its scan of the location chain to find a breakpoint and
8277 location that's only been partially initialized. */
8278 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8279 sal->pc, b->type);
8280
8281 /* Sort the locations by their ADDRESS. */
8282 loc = allocate_bp_location (b);
8283 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8284 tmp = &((*tmp)->next))
8285 ;
8286 loc->next = *tmp;
8287 *tmp = loc;
8288
8289 loc->requested_address = sal->pc;
8290 loc->address = adjusted_address;
8291 loc->pspace = sal->pspace;
8292 loc->probe.prob = sal->prob;
8293 loc->probe.objfile = sal->objfile;
8294 gdb_assert (loc->pspace != NULL);
8295 loc->section = sal->section;
8296 loc->gdbarch = loc_gdbarch;
8297 loc->line_number = sal->line;
8298 loc->symtab = sal->symtab;
8299 loc->symbol = sal->symbol;
8300 loc->msymbol = sal->msymbol;
8301 loc->objfile = sal->objfile;
8302
8303 set_breakpoint_location_function (loc);
8304
8305 /* While by definition, permanent breakpoints are already present in the
8306 code, we don't mark the location as inserted. Normally one would expect
8307 that GDB could rely on that breakpoint instruction to stop the program,
8308 thus removing the need to insert its own breakpoint, except that executing
8309 the breakpoint instruction can kill the target instead of reporting a
8310 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8311 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8312 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8313 breakpoint be inserted normally results in QEMU knowing about the GDB
8314 breakpoint, and thus trap before the breakpoint instruction is executed.
8315 (If GDB later needs to continue execution past the permanent breakpoint,
8316 it manually increments the PC, thus avoiding executing the breakpoint
8317 instruction.) */
8318 if (bp_loc_is_permanent (loc))
8319 loc->permanent = 1;
8320
8321 return loc;
8322 }
8323 \f
8324
8325 /* Return true if LOC is pointing to a permanent breakpoint,
8326 return false otherwise. */
8327
8328 static bool
8329 bp_loc_is_permanent (struct bp_location *loc)
8330 {
8331 gdb_assert (loc != NULL);
8332
8333 /* If we have a non-breakpoint-backed catchpoint or a software
8334 watchpoint, just return 0. We should not attempt to read from
8335 the addresses the locations of these breakpoint types point to.
8336 gdbarch_program_breakpoint_here_p, below, will attempt to read
8337 memory. */
8338 if (!bl_address_is_meaningful (loc))
8339 return false;
8340
8341 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8342 switch_to_program_space_and_thread (loc->pspace);
8343 return gdbarch_program_breakpoint_here_p (loc->gdbarch, loc->address);
8344 }
8345
8346 /* Build a command list for the dprintf corresponding to the current
8347 settings of the dprintf style options. */
8348
8349 static void
8350 update_dprintf_command_list (struct breakpoint *b)
8351 {
8352 const char *dprintf_args = b->extra_string.get ();
8353 gdb::unique_xmalloc_ptr<char> printf_line = nullptr;
8354
8355 if (!dprintf_args)
8356 return;
8357
8358 dprintf_args = skip_spaces (dprintf_args);
8359
8360 /* Allow a comma, as it may have terminated a location, but don't
8361 insist on it. */
8362 if (*dprintf_args == ',')
8363 ++dprintf_args;
8364 dprintf_args = skip_spaces (dprintf_args);
8365
8366 if (*dprintf_args != '"')
8367 error (_("Bad format string, missing '\"'."));
8368
8369 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8370 printf_line = xstrprintf ("printf %s", dprintf_args);
8371 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8372 {
8373 if (dprintf_function.empty ())
8374 error (_("No function supplied for dprintf call"));
8375
8376 if (!dprintf_channel.empty ())
8377 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8378 dprintf_function.c_str (),
8379 dprintf_channel.c_str (),
8380 dprintf_args);
8381 else
8382 printf_line = xstrprintf ("call (void) %s (%s)",
8383 dprintf_function.c_str (),
8384 dprintf_args);
8385 }
8386 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8387 {
8388 if (target_can_run_breakpoint_commands ())
8389 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8390 else
8391 {
8392 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8393 printf_line = xstrprintf ("printf %s", dprintf_args);
8394 }
8395 }
8396 else
8397 internal_error (__FILE__, __LINE__,
8398 _("Invalid dprintf style."));
8399
8400 gdb_assert (printf_line != NULL);
8401
8402 /* Manufacture a printf sequence. */
8403 struct command_line *printf_cmd_line
8404 = new struct command_line (simple_control, printf_line.release ());
8405 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8406 command_lines_deleter ()));
8407 }
8408
8409 /* Update all dprintf commands, making their command lists reflect
8410 current style settings. */
8411
8412 static void
8413 update_dprintf_commands (const char *args, int from_tty,
8414 struct cmd_list_element *c)
8415 {
8416 for (breakpoint *b : all_breakpoints ())
8417 if (b->type == bp_dprintf)
8418 update_dprintf_command_list (b);
8419 }
8420
8421 /* Create a breakpoint with SAL as location. Use LOCATION
8422 as a description of the location, and COND_STRING
8423 as condition expression. If LOCATION is NULL then create an
8424 "address location" from the address in the SAL. */
8425
8426 static void
8427 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8428 gdb::array_view<const symtab_and_line> sals,
8429 event_location_up &&location,
8430 gdb::unique_xmalloc_ptr<char> filter,
8431 gdb::unique_xmalloc_ptr<char> cond_string,
8432 gdb::unique_xmalloc_ptr<char> extra_string,
8433 enum bptype type, enum bpdisp disposition,
8434 int thread, int task, int ignore_count,
8435 const struct breakpoint_ops *ops, int from_tty,
8436 int enabled, int internal, unsigned flags,
8437 int display_canonical)
8438 {
8439 int i;
8440
8441 if (type == bp_hardware_breakpoint)
8442 {
8443 int target_resources_ok;
8444
8445 i = hw_breakpoint_used_count ();
8446 target_resources_ok =
8447 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8448 i + 1, 0);
8449 if (target_resources_ok == 0)
8450 error (_("No hardware breakpoint support in the target."));
8451 else if (target_resources_ok < 0)
8452 error (_("Hardware breakpoints used exceeds limit."));
8453 }
8454
8455 gdb_assert (!sals.empty ());
8456
8457 for (const auto &sal : sals)
8458 {
8459 struct bp_location *loc;
8460
8461 if (from_tty)
8462 {
8463 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8464 if (!loc_gdbarch)
8465 loc_gdbarch = gdbarch;
8466
8467 describe_other_breakpoints (loc_gdbarch,
8468 sal.pspace, sal.pc, sal.section, thread);
8469 }
8470
8471 if (&sal == &sals[0])
8472 {
8473 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8474 b->thread = thread;
8475 b->task = task;
8476
8477 b->cond_string = std::move (cond_string);
8478 b->extra_string = std::move (extra_string);
8479 b->ignore_count = ignore_count;
8480 b->enable_state = enabled ? bp_enabled : bp_disabled;
8481 b->disposition = disposition;
8482
8483 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8484 b->loc->inserted = 1;
8485
8486 if (type == bp_static_tracepoint)
8487 {
8488 struct tracepoint *t = (struct tracepoint *) b;
8489 struct static_tracepoint_marker marker;
8490
8491 if (strace_marker_p (b))
8492 {
8493 /* We already know the marker exists, otherwise, we
8494 wouldn't see a sal for it. */
8495 const char *p
8496 = &event_location_to_string (b->location.get ())[3];
8497 const char *endp;
8498
8499 p = skip_spaces (p);
8500
8501 endp = skip_to_space (p);
8502
8503 t->static_trace_marker_id.assign (p, endp - p);
8504
8505 printf_filtered (_("Probed static tracepoint "
8506 "marker \"%s\"\n"),
8507 t->static_trace_marker_id.c_str ());
8508 }
8509 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8510 {
8511 t->static_trace_marker_id = std::move (marker.str_id);
8512
8513 printf_filtered (_("Probed static tracepoint "
8514 "marker \"%s\"\n"),
8515 t->static_trace_marker_id.c_str ());
8516 }
8517 else
8518 warning (_("Couldn't determine the static "
8519 "tracepoint marker to probe"));
8520 }
8521
8522 loc = b->loc;
8523 }
8524 else
8525 {
8526 loc = add_location_to_breakpoint (b, &sal);
8527 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8528 loc->inserted = 1;
8529 }
8530
8531 /* Do not set breakpoint locations conditions yet. As locations
8532 are inserted, they get sorted based on their addresses. Let
8533 the list stabilize to have reliable location numbers. */
8534
8535 /* Dynamic printf requires and uses additional arguments on the
8536 command line, otherwise it's an error. */
8537 if (type == bp_dprintf)
8538 {
8539 if (b->extra_string)
8540 update_dprintf_command_list (b);
8541 else
8542 error (_("Format string required"));
8543 }
8544 else if (b->extra_string)
8545 error (_("Garbage '%s' at end of command"), b->extra_string.get ());
8546 }
8547
8548
8549 /* The order of the locations is now stable. Set the location
8550 condition using the location's number. */
8551 int loc_num = 1;
8552 for (bp_location *loc : b->locations ())
8553 {
8554 if (b->cond_string != nullptr)
8555 set_breakpoint_location_condition (b->cond_string.get (), loc,
8556 b->number, loc_num);
8557
8558 ++loc_num;
8559 }
8560
8561 b->display_canonical = display_canonical;
8562 if (location != NULL)
8563 b->location = std::move (location);
8564 else
8565 b->location = new_address_location (b->loc->address, NULL, 0);
8566 b->filter = std::move (filter);
8567 }
8568
8569 static void
8570 create_breakpoint_sal (struct gdbarch *gdbarch,
8571 gdb::array_view<const symtab_and_line> sals,
8572 event_location_up &&location,
8573 gdb::unique_xmalloc_ptr<char> filter,
8574 gdb::unique_xmalloc_ptr<char> cond_string,
8575 gdb::unique_xmalloc_ptr<char> extra_string,
8576 enum bptype type, enum bpdisp disposition,
8577 int thread, int task, int ignore_count,
8578 const struct breakpoint_ops *ops, int from_tty,
8579 int enabled, int internal, unsigned flags,
8580 int display_canonical)
8581 {
8582 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8583
8584 init_breakpoint_sal (b.get (), gdbarch,
8585 sals, std::move (location),
8586 std::move (filter),
8587 std::move (cond_string),
8588 std::move (extra_string),
8589 type, disposition,
8590 thread, task, ignore_count,
8591 ops, from_tty,
8592 enabled, internal, flags,
8593 display_canonical);
8594
8595 install_breakpoint (internal, std::move (b), 0);
8596 }
8597
8598 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8599 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8600 value. COND_STRING, if not NULL, specified the condition to be
8601 used for all breakpoints. Essentially the only case where
8602 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8603 function. In that case, it's still not possible to specify
8604 separate conditions for different overloaded functions, so
8605 we take just a single condition string.
8606
8607 NOTE: If the function succeeds, the caller is expected to cleanup
8608 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8609 array contents). If the function fails (error() is called), the
8610 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8611 COND and SALS arrays and each of those arrays contents. */
8612
8613 static void
8614 create_breakpoints_sal (struct gdbarch *gdbarch,
8615 struct linespec_result *canonical,
8616 gdb::unique_xmalloc_ptr<char> cond_string,
8617 gdb::unique_xmalloc_ptr<char> extra_string,
8618 enum bptype type, enum bpdisp disposition,
8619 int thread, int task, int ignore_count,
8620 const struct breakpoint_ops *ops, int from_tty,
8621 int enabled, int internal, unsigned flags)
8622 {
8623 if (canonical->pre_expanded)
8624 gdb_assert (canonical->lsals.size () == 1);
8625
8626 for (const auto &lsal : canonical->lsals)
8627 {
8628 /* Note that 'location' can be NULL in the case of a plain
8629 'break', without arguments. */
8630 event_location_up location
8631 = (canonical->location != NULL
8632 ? copy_event_location (canonical->location.get ()) : NULL);
8633 gdb::unique_xmalloc_ptr<char> filter_string
8634 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8635
8636 create_breakpoint_sal (gdbarch, lsal.sals,
8637 std::move (location),
8638 std::move (filter_string),
8639 std::move (cond_string),
8640 std::move (extra_string),
8641 type, disposition,
8642 thread, task, ignore_count, ops,
8643 from_tty, enabled, internal, flags,
8644 canonical->special_display);
8645 }
8646 }
8647
8648 /* Parse LOCATION which is assumed to be a SAL specification possibly
8649 followed by conditionals. On return, SALS contains an array of SAL
8650 addresses found. LOCATION points to the end of the SAL (for
8651 linespec locations).
8652
8653 The array and the line spec strings are allocated on the heap, it is
8654 the caller's responsibility to free them. */
8655
8656 static void
8657 parse_breakpoint_sals (struct event_location *location,
8658 struct linespec_result *canonical)
8659 {
8660 struct symtab_and_line cursal;
8661
8662 if (event_location_type (location) == LINESPEC_LOCATION)
8663 {
8664 const char *spec = get_linespec_location (location)->spec_string;
8665
8666 if (spec == NULL)
8667 {
8668 /* The last displayed codepoint, if it's valid, is our default
8669 breakpoint address. */
8670 if (last_displayed_sal_is_valid ())
8671 {
8672 /* Set sal's pspace, pc, symtab, and line to the values
8673 corresponding to the last call to print_frame_info.
8674 Be sure to reinitialize LINE with NOTCURRENT == 0
8675 as the breakpoint line number is inappropriate otherwise.
8676 find_pc_line would adjust PC, re-set it back. */
8677 symtab_and_line sal = get_last_displayed_sal ();
8678 CORE_ADDR pc = sal.pc;
8679
8680 sal = find_pc_line (pc, 0);
8681
8682 /* "break" without arguments is equivalent to "break *PC"
8683 where PC is the last displayed codepoint's address. So
8684 make sure to set sal.explicit_pc to prevent GDB from
8685 trying to expand the list of sals to include all other
8686 instances with the same symtab and line. */
8687 sal.pc = pc;
8688 sal.explicit_pc = 1;
8689
8690 struct linespec_sals lsal;
8691 lsal.sals = {sal};
8692 lsal.canonical = NULL;
8693
8694 canonical->lsals.push_back (std::move (lsal));
8695 return;
8696 }
8697 else
8698 error (_("No default breakpoint address now."));
8699 }
8700 }
8701
8702 /* Force almost all breakpoints to be in terms of the
8703 current_source_symtab (which is decode_line_1's default).
8704 This should produce the results we want almost all of the
8705 time while leaving default_breakpoint_* alone.
8706
8707 ObjC: However, don't match an Objective-C method name which
8708 may have a '+' or '-' succeeded by a '['. */
8709 cursal = get_current_source_symtab_and_line ();
8710 if (last_displayed_sal_is_valid ())
8711 {
8712 const char *spec = NULL;
8713
8714 if (event_location_type (location) == LINESPEC_LOCATION)
8715 spec = get_linespec_location (location)->spec_string;
8716
8717 if (!cursal.symtab
8718 || (spec != NULL
8719 && strchr ("+-", spec[0]) != NULL
8720 && spec[1] != '['))
8721 {
8722 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
8723 get_last_displayed_symtab (),
8724 get_last_displayed_line (),
8725 canonical, NULL, NULL);
8726 return;
8727 }
8728 }
8729
8730 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
8731 cursal.symtab, cursal.line, canonical, NULL, NULL);
8732 }
8733
8734
8735 /* Convert each SAL into a real PC. Verify that the PC can be
8736 inserted as a breakpoint. If it can't throw an error. */
8737
8738 static void
8739 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
8740 {
8741 for (auto &sal : sals)
8742 resolve_sal_pc (&sal);
8743 }
8744
8745 /* Fast tracepoints may have restrictions on valid locations. For
8746 instance, a fast tracepoint using a jump instead of a trap will
8747 likely have to overwrite more bytes than a trap would, and so can
8748 only be placed where the instruction is longer than the jump, or a
8749 multi-instruction sequence does not have a jump into the middle of
8750 it, etc. */
8751
8752 static void
8753 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
8754 gdb::array_view<const symtab_and_line> sals)
8755 {
8756 for (const auto &sal : sals)
8757 {
8758 struct gdbarch *sarch;
8759
8760 sarch = get_sal_arch (sal);
8761 /* We fall back to GDBARCH if there is no architecture
8762 associated with SAL. */
8763 if (sarch == NULL)
8764 sarch = gdbarch;
8765 std::string msg;
8766 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
8767 error (_("May not have a fast tracepoint at %s%s"),
8768 paddress (sarch, sal.pc), msg.c_str ());
8769 }
8770 }
8771
8772 /* Given TOK, a string specification of condition and thread, as
8773 accepted by the 'break' command, extract the condition
8774 string and thread number and set *COND_STRING and *THREAD.
8775 PC identifies the context at which the condition should be parsed.
8776 If no condition is found, *COND_STRING is set to NULL.
8777 If no thread is found, *THREAD is set to -1. */
8778
8779 static void
8780 find_condition_and_thread (const char *tok, CORE_ADDR pc,
8781 gdb::unique_xmalloc_ptr<char> *cond_string,
8782 int *thread, int *task,
8783 gdb::unique_xmalloc_ptr<char> *rest)
8784 {
8785 cond_string->reset ();
8786 *thread = -1;
8787 *task = 0;
8788 rest->reset ();
8789 bool force = false;
8790
8791 while (tok && *tok)
8792 {
8793 const char *end_tok;
8794 int toklen;
8795 const char *cond_start = NULL;
8796 const char *cond_end = NULL;
8797
8798 tok = skip_spaces (tok);
8799
8800 if ((*tok == '"' || *tok == ',') && rest)
8801 {
8802 rest->reset (savestring (tok, strlen (tok)));
8803 return;
8804 }
8805
8806 end_tok = skip_to_space (tok);
8807
8808 toklen = end_tok - tok;
8809
8810 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
8811 {
8812 tok = cond_start = end_tok + 1;
8813 try
8814 {
8815 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
8816 }
8817 catch (const gdb_exception_error &)
8818 {
8819 if (!force)
8820 throw;
8821 else
8822 tok = tok + strlen (tok);
8823 }
8824 cond_end = tok;
8825 cond_string->reset (savestring (cond_start, cond_end - cond_start));
8826 }
8827 else if (toklen >= 1 && strncmp (tok, "-force-condition", toklen) == 0)
8828 {
8829 tok = tok + toklen;
8830 force = true;
8831 }
8832 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
8833 {
8834 const char *tmptok;
8835 struct thread_info *thr;
8836
8837 tok = end_tok + 1;
8838 thr = parse_thread_id (tok, &tmptok);
8839 if (tok == tmptok)
8840 error (_("Junk after thread keyword."));
8841 *thread = thr->global_num;
8842 tok = tmptok;
8843 }
8844 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
8845 {
8846 char *tmptok;
8847
8848 tok = end_tok + 1;
8849 *task = strtol (tok, &tmptok, 0);
8850 if (tok == tmptok)
8851 error (_("Junk after task keyword."));
8852 if (!valid_task_id (*task))
8853 error (_("Unknown task %d."), *task);
8854 tok = tmptok;
8855 }
8856 else if (rest)
8857 {
8858 rest->reset (savestring (tok, strlen (tok)));
8859 return;
8860 }
8861 else
8862 error (_("Junk at end of arguments."));
8863 }
8864 }
8865
8866 /* Call 'find_condition_and_thread' for each sal in SALS until a parse
8867 succeeds. The parsed values are written to COND_STRING, THREAD,
8868 TASK, and REST. See the comment of 'find_condition_and_thread'
8869 for the description of these parameters and INPUT. */
8870
8871 static void
8872 find_condition_and_thread_for_sals (const std::vector<symtab_and_line> &sals,
8873 const char *input,
8874 gdb::unique_xmalloc_ptr<char> *cond_string,
8875 int *thread, int *task,
8876 gdb::unique_xmalloc_ptr<char> *rest)
8877 {
8878 int num_failures = 0;
8879 for (auto &sal : sals)
8880 {
8881 gdb::unique_xmalloc_ptr<char> cond;
8882 int thread_id = 0;
8883 int task_id = 0;
8884 gdb::unique_xmalloc_ptr<char> remaining;
8885
8886 /* Here we want to parse 'arg' to separate condition from thread
8887 number. But because parsing happens in a context and the
8888 contexts of sals might be different, try each until there is
8889 success. Finding one successful parse is sufficient for our
8890 goal. When setting the breakpoint we'll re-parse the
8891 condition in the context of each sal. */
8892 try
8893 {
8894 find_condition_and_thread (input, sal.pc, &cond, &thread_id,
8895 &task_id, &remaining);
8896 *cond_string = std::move (cond);
8897 *thread = thread_id;
8898 *task = task_id;
8899 *rest = std::move (remaining);
8900 break;
8901 }
8902 catch (const gdb_exception_error &e)
8903 {
8904 num_failures++;
8905 /* If no sal remains, do not continue. */
8906 if (num_failures == sals.size ())
8907 throw;
8908 }
8909 }
8910 }
8911
8912 /* Decode a static tracepoint marker spec. */
8913
8914 static std::vector<symtab_and_line>
8915 decode_static_tracepoint_spec (const char **arg_p)
8916 {
8917 const char *p = &(*arg_p)[3];
8918 const char *endp;
8919
8920 p = skip_spaces (p);
8921
8922 endp = skip_to_space (p);
8923
8924 std::string marker_str (p, endp - p);
8925
8926 std::vector<static_tracepoint_marker> markers
8927 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
8928 if (markers.empty ())
8929 error (_("No known static tracepoint marker named %s"),
8930 marker_str.c_str ());
8931
8932 std::vector<symtab_and_line> sals;
8933 sals.reserve (markers.size ());
8934
8935 for (const static_tracepoint_marker &marker : markers)
8936 {
8937 symtab_and_line sal = find_pc_line (marker.address, 0);
8938 sal.pc = marker.address;
8939 sals.push_back (sal);
8940 }
8941
8942 *arg_p = endp;
8943 return sals;
8944 }
8945
8946 /* Returns the breakpoint ops appropriate for use with with LOCATION_TYPE and
8947 according to IS_TRACEPOINT. */
8948
8949 static const struct breakpoint_ops *
8950 breakpoint_ops_for_event_location_type (enum event_location_type location_type,
8951 bool is_tracepoint)
8952 {
8953 if (is_tracepoint)
8954 {
8955 if (location_type == PROBE_LOCATION)
8956 return &tracepoint_probe_breakpoint_ops;
8957 else
8958 return &tracepoint_breakpoint_ops;
8959 }
8960 else
8961 {
8962 if (location_type == PROBE_LOCATION)
8963 return &bkpt_probe_breakpoint_ops;
8964 else
8965 return &bkpt_breakpoint_ops;
8966 }
8967 }
8968
8969 /* See breakpoint.h. */
8970
8971 const struct breakpoint_ops *
8972 breakpoint_ops_for_event_location (const struct event_location *location,
8973 bool is_tracepoint)
8974 {
8975 if (location != nullptr)
8976 return breakpoint_ops_for_event_location_type
8977 (event_location_type (location), is_tracepoint);
8978 return is_tracepoint ? &tracepoint_breakpoint_ops : &bkpt_breakpoint_ops;
8979 }
8980
8981 /* See breakpoint.h. */
8982
8983 int
8984 create_breakpoint (struct gdbarch *gdbarch,
8985 struct event_location *location,
8986 const char *cond_string,
8987 int thread, const char *extra_string,
8988 bool force_condition, int parse_extra,
8989 int tempflag, enum bptype type_wanted,
8990 int ignore_count,
8991 enum auto_boolean pending_break_support,
8992 const struct breakpoint_ops *ops,
8993 int from_tty, int enabled, int internal,
8994 unsigned flags)
8995 {
8996 struct linespec_result canonical;
8997 int pending = 0;
8998 int task = 0;
8999 int prev_bkpt_count = breakpoint_count;
9000
9001 gdb_assert (ops != NULL);
9002
9003 /* If extra_string isn't useful, set it to NULL. */
9004 if (extra_string != NULL && *extra_string == '\0')
9005 extra_string = NULL;
9006
9007 try
9008 {
9009 ops->create_sals_from_location (location, &canonical, type_wanted);
9010 }
9011 catch (const gdb_exception_error &e)
9012 {
9013 /* If caller is interested in rc value from parse, set
9014 value. */
9015 if (e.error == NOT_FOUND_ERROR)
9016 {
9017 /* If pending breakpoint support is turned off, throw
9018 error. */
9019
9020 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9021 throw;
9022
9023 exception_print (gdb_stderr, e);
9024
9025 /* If pending breakpoint support is auto query and the user
9026 selects no, then simply return the error code. */
9027 if (pending_break_support == AUTO_BOOLEAN_AUTO
9028 && !nquery (_("Make %s pending on future shared library load? "),
9029 bptype_string (type_wanted)))
9030 return 0;
9031
9032 /* At this point, either the user was queried about setting
9033 a pending breakpoint and selected yes, or pending
9034 breakpoint behavior is on and thus a pending breakpoint
9035 is defaulted on behalf of the user. */
9036 pending = 1;
9037 }
9038 else
9039 throw;
9040 }
9041
9042 if (!pending && canonical.lsals.empty ())
9043 return 0;
9044
9045 /* Resolve all line numbers to PC's and verify that the addresses
9046 are ok for the target. */
9047 if (!pending)
9048 {
9049 for (auto &lsal : canonical.lsals)
9050 breakpoint_sals_to_pc (lsal.sals);
9051 }
9052
9053 /* Fast tracepoints may have additional restrictions on location. */
9054 if (!pending && type_wanted == bp_fast_tracepoint)
9055 {
9056 for (const auto &lsal : canonical.lsals)
9057 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9058 }
9059
9060 /* Verify that condition can be parsed, before setting any
9061 breakpoints. Allocate a separate condition expression for each
9062 breakpoint. */
9063 if (!pending)
9064 {
9065 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9066 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9067
9068 if (parse_extra)
9069 {
9070 gdb::unique_xmalloc_ptr<char> rest;
9071 gdb::unique_xmalloc_ptr<char> cond;
9072
9073 const linespec_sals &lsal = canonical.lsals[0];
9074
9075 find_condition_and_thread_for_sals (lsal.sals, extra_string,
9076 &cond, &thread, &task, &rest);
9077 cond_string_copy = std::move (cond);
9078 extra_string_copy = std::move (rest);
9079 }
9080 else
9081 {
9082 if (type_wanted != bp_dprintf
9083 && extra_string != NULL && *extra_string != '\0')
9084 error (_("Garbage '%s' at end of location"), extra_string);
9085
9086 /* Check the validity of the condition. We should error out
9087 if the condition is invalid at all of the locations and
9088 if it is not forced. In the PARSE_EXTRA case above, this
9089 check is done when parsing the EXTRA_STRING. */
9090 if (cond_string != nullptr && !force_condition)
9091 {
9092 int num_failures = 0;
9093 const linespec_sals &lsal = canonical.lsals[0];
9094 for (const auto &sal : lsal.sals)
9095 {
9096 const char *cond = cond_string;
9097 try
9098 {
9099 parse_exp_1 (&cond, sal.pc, block_for_pc (sal.pc), 0);
9100 /* One success is sufficient to keep going. */
9101 break;
9102 }
9103 catch (const gdb_exception_error &)
9104 {
9105 num_failures++;
9106 /* If this is the last sal, error out. */
9107 if (num_failures == lsal.sals.size ())
9108 throw;
9109 }
9110 }
9111 }
9112
9113 /* Create a private copy of condition string. */
9114 if (cond_string)
9115 cond_string_copy.reset (xstrdup (cond_string));
9116 /* Create a private copy of any extra string. */
9117 if (extra_string)
9118 extra_string_copy.reset (xstrdup (extra_string));
9119 }
9120
9121 ops->create_breakpoints_sal (gdbarch, &canonical,
9122 std::move (cond_string_copy),
9123 std::move (extra_string_copy),
9124 type_wanted,
9125 tempflag ? disp_del : disp_donttouch,
9126 thread, task, ignore_count, ops,
9127 from_tty, enabled, internal, flags);
9128 }
9129 else
9130 {
9131 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9132
9133 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9134 b->location = copy_event_location (location);
9135
9136 if (parse_extra)
9137 b->cond_string = NULL;
9138 else
9139 {
9140 /* Create a private copy of condition string. */
9141 b->cond_string.reset (cond_string != NULL
9142 ? xstrdup (cond_string)
9143 : NULL);
9144 b->thread = thread;
9145 }
9146
9147 /* Create a private copy of any extra string. */
9148 b->extra_string.reset (extra_string != NULL
9149 ? xstrdup (extra_string)
9150 : NULL);
9151 b->ignore_count = ignore_count;
9152 b->disposition = tempflag ? disp_del : disp_donttouch;
9153 b->condition_not_parsed = 1;
9154 b->enable_state = enabled ? bp_enabled : bp_disabled;
9155 if ((type_wanted != bp_breakpoint
9156 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9157 b->pspace = current_program_space;
9158
9159 install_breakpoint (internal, std::move (b), 0);
9160 }
9161
9162 if (canonical.lsals.size () > 1)
9163 {
9164 warning (_("Multiple breakpoints were set.\nUse the "
9165 "\"delete\" command to delete unwanted breakpoints."));
9166 prev_breakpoint_count = prev_bkpt_count;
9167 }
9168
9169 update_global_location_list (UGLL_MAY_INSERT);
9170
9171 return 1;
9172 }
9173
9174 /* Set a breakpoint.
9175 ARG is a string describing breakpoint address,
9176 condition, and thread.
9177 FLAG specifies if a breakpoint is hardware on,
9178 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9179 and BP_TEMPFLAG. */
9180
9181 static void
9182 break_command_1 (const char *arg, int flag, int from_tty)
9183 {
9184 int tempflag = flag & BP_TEMPFLAG;
9185 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9186 ? bp_hardware_breakpoint
9187 : bp_breakpoint);
9188
9189 event_location_up location = string_to_event_location (&arg, current_language);
9190 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
9191 (location.get (), false /* is_tracepoint */);
9192
9193 create_breakpoint (get_current_arch (),
9194 location.get (),
9195 NULL, 0, arg, false, 1 /* parse arg */,
9196 tempflag, type_wanted,
9197 0 /* Ignore count */,
9198 pending_break_support,
9199 ops,
9200 from_tty,
9201 1 /* enabled */,
9202 0 /* internal */,
9203 0);
9204 }
9205
9206 /* Helper function for break_command_1 and disassemble_command. */
9207
9208 void
9209 resolve_sal_pc (struct symtab_and_line *sal)
9210 {
9211 CORE_ADDR pc;
9212
9213 if (sal->pc == 0 && sal->symtab != NULL)
9214 {
9215 if (!find_line_pc (sal->symtab, sal->line, &pc))
9216 error (_("No line %d in file \"%s\"."),
9217 sal->line, symtab_to_filename_for_display (sal->symtab));
9218 sal->pc = pc;
9219
9220 /* If this SAL corresponds to a breakpoint inserted using a line
9221 number, then skip the function prologue if necessary. */
9222 if (sal->explicit_line)
9223 skip_prologue_sal (sal);
9224 }
9225
9226 if (sal->section == 0 && sal->symtab != NULL)
9227 {
9228 const struct blockvector *bv;
9229 const struct block *b;
9230 struct symbol *sym;
9231
9232 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9233 sal->symtab->compunit ());
9234 if (bv != NULL)
9235 {
9236 sym = block_linkage_function (b);
9237 if (sym != NULL)
9238 {
9239 fixup_symbol_section (sym, sal->symtab->objfile ());
9240 sal->section = sym->obj_section (sal->symtab->objfile ());
9241 }
9242 else
9243 {
9244 /* It really is worthwhile to have the section, so we'll
9245 just have to look harder. This case can be executed
9246 if we have line numbers but no functions (as can
9247 happen in assembly source). */
9248
9249 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9250 switch_to_program_space_and_thread (sal->pspace);
9251
9252 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9253 if (msym.minsym)
9254 sal->section = msym.obj_section ();
9255 }
9256 }
9257 }
9258 }
9259
9260 void
9261 break_command (const char *arg, int from_tty)
9262 {
9263 break_command_1 (arg, 0, from_tty);
9264 }
9265
9266 void
9267 tbreak_command (const char *arg, int from_tty)
9268 {
9269 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9270 }
9271
9272 static void
9273 hbreak_command (const char *arg, int from_tty)
9274 {
9275 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9276 }
9277
9278 static void
9279 thbreak_command (const char *arg, int from_tty)
9280 {
9281 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9282 }
9283
9284 static void
9285 stop_command (const char *arg, int from_tty)
9286 {
9287 printf_filtered (_("Specify the type of breakpoint to set.\n\
9288 Usage: stop in <function | address>\n\
9289 stop at <line>\n"));
9290 }
9291
9292 static void
9293 stopin_command (const char *arg, int from_tty)
9294 {
9295 int badInput = 0;
9296
9297 if (arg == NULL)
9298 badInput = 1;
9299 else if (*arg != '*')
9300 {
9301 const char *argptr = arg;
9302 int hasColon = 0;
9303
9304 /* Look for a ':'. If this is a line number specification, then
9305 say it is bad, otherwise, it should be an address or
9306 function/method name. */
9307 while (*argptr && !hasColon)
9308 {
9309 hasColon = (*argptr == ':');
9310 argptr++;
9311 }
9312
9313 if (hasColon)
9314 badInput = (*argptr != ':'); /* Not a class::method */
9315 else
9316 badInput = isdigit (*arg); /* a simple line number */
9317 }
9318
9319 if (badInput)
9320 printf_filtered (_("Usage: stop in <function | address>\n"));
9321 else
9322 break_command_1 (arg, 0, from_tty);
9323 }
9324
9325 static void
9326 stopat_command (const char *arg, int from_tty)
9327 {
9328 int badInput = 0;
9329
9330 if (arg == NULL || *arg == '*') /* no line number */
9331 badInput = 1;
9332 else
9333 {
9334 const char *argptr = arg;
9335 int hasColon = 0;
9336
9337 /* Look for a ':'. If there is a '::' then get out, otherwise
9338 it is probably a line number. */
9339 while (*argptr && !hasColon)
9340 {
9341 hasColon = (*argptr == ':');
9342 argptr++;
9343 }
9344
9345 if (hasColon)
9346 badInput = (*argptr == ':'); /* we have class::method */
9347 else
9348 badInput = !isdigit (*arg); /* not a line number */
9349 }
9350
9351 if (badInput)
9352 printf_filtered (_("Usage: stop at LINE\n"));
9353 else
9354 break_command_1 (arg, 0, from_tty);
9355 }
9356
9357 /* The dynamic printf command is mostly like a regular breakpoint, but
9358 with a prewired command list consisting of a single output command,
9359 built from extra arguments supplied on the dprintf command
9360 line. */
9361
9362 static void
9363 dprintf_command (const char *arg, int from_tty)
9364 {
9365 event_location_up location = string_to_event_location (&arg, current_language);
9366
9367 /* If non-NULL, ARG should have been advanced past the location;
9368 the next character must be ','. */
9369 if (arg != NULL)
9370 {
9371 if (arg[0] != ',' || arg[1] == '\0')
9372 error (_("Format string required"));
9373 else
9374 {
9375 /* Skip the comma. */
9376 ++arg;
9377 }
9378 }
9379
9380 create_breakpoint (get_current_arch (),
9381 location.get (),
9382 NULL, 0, arg, false, 1 /* parse arg */,
9383 0, bp_dprintf,
9384 0 /* Ignore count */,
9385 pending_break_support,
9386 &dprintf_breakpoint_ops,
9387 from_tty,
9388 1 /* enabled */,
9389 0 /* internal */,
9390 0);
9391 }
9392
9393 static void
9394 agent_printf_command (const char *arg, int from_tty)
9395 {
9396 error (_("May only run agent-printf on the target"));
9397 }
9398
9399 /* Implement the "breakpoint_hit" breakpoint_ops method for
9400 ranged breakpoints. */
9401
9402 static int
9403 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9404 const address_space *aspace,
9405 CORE_ADDR bp_addr,
9406 const target_waitstatus &ws)
9407 {
9408 if (ws.kind () != TARGET_WAITKIND_STOPPED
9409 || ws.sig () != GDB_SIGNAL_TRAP)
9410 return 0;
9411
9412 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9413 bl->length, aspace, bp_addr);
9414 }
9415
9416 /* Implement the "resources_needed" breakpoint_ops method for
9417 ranged breakpoints. */
9418
9419 static int
9420 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9421 {
9422 return target_ranged_break_num_registers ();
9423 }
9424
9425 /* Implement the "print_it" breakpoint_ops method for
9426 ranged breakpoints. */
9427
9428 static enum print_stop_action
9429 print_it_ranged_breakpoint (bpstat *bs)
9430 {
9431 struct breakpoint *b = bs->breakpoint_at;
9432 struct bp_location *bl = b->loc;
9433 struct ui_out *uiout = current_uiout;
9434
9435 gdb_assert (b->type == bp_hardware_breakpoint);
9436
9437 /* Ranged breakpoints have only one location. */
9438 gdb_assert (bl && bl->next == NULL);
9439
9440 annotate_breakpoint (b->number);
9441
9442 maybe_print_thread_hit_breakpoint (uiout);
9443
9444 if (b->disposition == disp_del)
9445 uiout->text ("Temporary ranged breakpoint ");
9446 else
9447 uiout->text ("Ranged breakpoint ");
9448 if (uiout->is_mi_like_p ())
9449 {
9450 uiout->field_string ("reason",
9451 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9452 uiout->field_string ("disp", bpdisp_text (b->disposition));
9453 }
9454 uiout->field_signed ("bkptno", b->number);
9455 uiout->text (", ");
9456
9457 return PRINT_SRC_AND_LOC;
9458 }
9459
9460 /* Implement the "print_one" breakpoint_ops method for
9461 ranged breakpoints. */
9462
9463 static void
9464 print_one_ranged_breakpoint (struct breakpoint *b,
9465 struct bp_location **last_loc)
9466 {
9467 struct bp_location *bl = b->loc;
9468 struct value_print_options opts;
9469 struct ui_out *uiout = current_uiout;
9470
9471 /* Ranged breakpoints have only one location. */
9472 gdb_assert (bl && bl->next == NULL);
9473
9474 get_user_print_options (&opts);
9475
9476 if (opts.addressprint)
9477 /* We don't print the address range here, it will be printed later
9478 by print_one_detail_ranged_breakpoint. */
9479 uiout->field_skip ("addr");
9480 annotate_field (5);
9481 print_breakpoint_location (b, bl);
9482 *last_loc = bl;
9483 }
9484
9485 /* Implement the "print_one_detail" breakpoint_ops method for
9486 ranged breakpoints. */
9487
9488 static void
9489 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9490 struct ui_out *uiout)
9491 {
9492 CORE_ADDR address_start, address_end;
9493 struct bp_location *bl = b->loc;
9494 string_file stb;
9495
9496 gdb_assert (bl);
9497
9498 address_start = bl->address;
9499 address_end = address_start + bl->length - 1;
9500
9501 uiout->text ("\taddress range: ");
9502 stb.printf ("[%s, %s]",
9503 print_core_address (bl->gdbarch, address_start),
9504 print_core_address (bl->gdbarch, address_end));
9505 uiout->field_stream ("addr", stb);
9506 uiout->text ("\n");
9507 }
9508
9509 /* Implement the "print_mention" breakpoint_ops method for
9510 ranged breakpoints. */
9511
9512 static void
9513 print_mention_ranged_breakpoint (struct breakpoint *b)
9514 {
9515 struct bp_location *bl = b->loc;
9516 struct ui_out *uiout = current_uiout;
9517
9518 gdb_assert (bl);
9519 gdb_assert (b->type == bp_hardware_breakpoint);
9520
9521 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9522 b->number, paddress (bl->gdbarch, bl->address),
9523 paddress (bl->gdbarch, bl->address + bl->length - 1));
9524 }
9525
9526 /* Implement the "print_recreate" breakpoint_ops method for
9527 ranged breakpoints. */
9528
9529 static void
9530 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9531 {
9532 fprintf_unfiltered (fp, "break-range %s, %s",
9533 event_location_to_string (b->location.get ()),
9534 event_location_to_string (b->location_range_end.get ()));
9535 print_recreate_thread (b, fp);
9536 }
9537
9538 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9539
9540 static struct breakpoint_ops ranged_breakpoint_ops;
9541
9542 /* Find the address where the end of the breakpoint range should be
9543 placed, given the SAL of the end of the range. This is so that if
9544 the user provides a line number, the end of the range is set to the
9545 last instruction of the given line. */
9546
9547 static CORE_ADDR
9548 find_breakpoint_range_end (struct symtab_and_line sal)
9549 {
9550 CORE_ADDR end;
9551
9552 /* If the user provided a PC value, use it. Otherwise,
9553 find the address of the end of the given location. */
9554 if (sal.explicit_pc)
9555 end = sal.pc;
9556 else
9557 {
9558 int ret;
9559 CORE_ADDR start;
9560
9561 ret = find_line_pc_range (sal, &start, &end);
9562 if (!ret)
9563 error (_("Could not find location of the end of the range."));
9564
9565 /* find_line_pc_range returns the start of the next line. */
9566 end--;
9567 }
9568
9569 return end;
9570 }
9571
9572 /* Implement the "break-range" CLI command. */
9573
9574 static void
9575 break_range_command (const char *arg, int from_tty)
9576 {
9577 const char *arg_start;
9578 struct linespec_result canonical_start, canonical_end;
9579 int bp_count, can_use_bp, length;
9580 CORE_ADDR end;
9581 struct breakpoint *b;
9582
9583 /* We don't support software ranged breakpoints. */
9584 if (target_ranged_break_num_registers () < 0)
9585 error (_("This target does not support hardware ranged breakpoints."));
9586
9587 bp_count = hw_breakpoint_used_count ();
9588 bp_count += target_ranged_break_num_registers ();
9589 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9590 bp_count, 0);
9591 if (can_use_bp < 0)
9592 error (_("Hardware breakpoints used exceeds limit."));
9593
9594 arg = skip_spaces (arg);
9595 if (arg == NULL || arg[0] == '\0')
9596 error(_("No address range specified."));
9597
9598 arg_start = arg;
9599 event_location_up start_location = string_to_event_location (&arg,
9600 current_language);
9601 parse_breakpoint_sals (start_location.get (), &canonical_start);
9602
9603 if (arg[0] != ',')
9604 error (_("Too few arguments."));
9605 else if (canonical_start.lsals.empty ())
9606 error (_("Could not find location of the beginning of the range."));
9607
9608 const linespec_sals &lsal_start = canonical_start.lsals[0];
9609
9610 if (canonical_start.lsals.size () > 1
9611 || lsal_start.sals.size () != 1)
9612 error (_("Cannot create a ranged breakpoint with multiple locations."));
9613
9614 const symtab_and_line &sal_start = lsal_start.sals[0];
9615 std::string addr_string_start (arg_start, arg - arg_start);
9616
9617 arg++; /* Skip the comma. */
9618 arg = skip_spaces (arg);
9619
9620 /* Parse the end location. */
9621
9622 arg_start = arg;
9623
9624 /* We call decode_line_full directly here instead of using
9625 parse_breakpoint_sals because we need to specify the start location's
9626 symtab and line as the default symtab and line for the end of the
9627 range. This makes it possible to have ranges like "foo.c:27, +14",
9628 where +14 means 14 lines from the start location. */
9629 event_location_up end_location = string_to_event_location (&arg,
9630 current_language);
9631 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9632 sal_start.symtab, sal_start.line,
9633 &canonical_end, NULL, NULL);
9634
9635 if (canonical_end.lsals.empty ())
9636 error (_("Could not find location of the end of the range."));
9637
9638 const linespec_sals &lsal_end = canonical_end.lsals[0];
9639 if (canonical_end.lsals.size () > 1
9640 || lsal_end.sals.size () != 1)
9641 error (_("Cannot create a ranged breakpoint with multiple locations."));
9642
9643 const symtab_and_line &sal_end = lsal_end.sals[0];
9644
9645 end = find_breakpoint_range_end (sal_end);
9646 if (sal_start.pc > end)
9647 error (_("Invalid address range, end precedes start."));
9648
9649 length = end - sal_start.pc + 1;
9650 if (length < 0)
9651 /* Length overflowed. */
9652 error (_("Address range too large."));
9653 else if (length == 1)
9654 {
9655 /* This range is simple enough to be handled by
9656 the `hbreak' command. */
9657 hbreak_command (&addr_string_start[0], 1);
9658
9659 return;
9660 }
9661
9662 /* Now set up the breakpoint. */
9663 b = set_raw_breakpoint (get_current_arch (), sal_start,
9664 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9665 set_breakpoint_count (breakpoint_count + 1);
9666 b->number = breakpoint_count;
9667 b->disposition = disp_donttouch;
9668 b->location = std::move (start_location);
9669 b->location_range_end = std::move (end_location);
9670 b->loc->length = length;
9671
9672 mention (b);
9673 gdb::observers::breakpoint_created.notify (b);
9674 update_global_location_list (UGLL_MAY_INSERT);
9675 }
9676
9677 /* Return non-zero if EXP is verified as constant. Returned zero
9678 means EXP is variable. Also the constant detection may fail for
9679 some constant expressions and in such case still falsely return
9680 zero. */
9681
9682 static bool
9683 watchpoint_exp_is_const (const struct expression *exp)
9684 {
9685 return exp->op->constant_p ();
9686 }
9687
9688 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
9689
9690 static void
9691 re_set_watchpoint (struct breakpoint *b)
9692 {
9693 struct watchpoint *w = (struct watchpoint *) b;
9694
9695 /* Watchpoint can be either on expression using entirely global
9696 variables, or it can be on local variables.
9697
9698 Watchpoints of the first kind are never auto-deleted, and even
9699 persist across program restarts. Since they can use variables
9700 from shared libraries, we need to reparse expression as libraries
9701 are loaded and unloaded.
9702
9703 Watchpoints on local variables can also change meaning as result
9704 of solib event. For example, if a watchpoint uses both a local
9705 and a global variables in expression, it's a local watchpoint,
9706 but unloading of a shared library will make the expression
9707 invalid. This is not a very common use case, but we still
9708 re-evaluate expression, to avoid surprises to the user.
9709
9710 Note that for local watchpoints, we re-evaluate it only if
9711 watchpoints frame id is still valid. If it's not, it means the
9712 watchpoint is out of scope and will be deleted soon. In fact,
9713 I'm not sure we'll ever be called in this case.
9714
9715 If a local watchpoint's frame id is still valid, then
9716 w->exp_valid_block is likewise valid, and we can safely use it.
9717
9718 Don't do anything about disabled watchpoints, since they will be
9719 reevaluated again when enabled. */
9720 update_watchpoint (w, 1 /* reparse */);
9721 }
9722
9723 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
9724
9725 static int
9726 insert_watchpoint (struct bp_location *bl)
9727 {
9728 struct watchpoint *w = (struct watchpoint *) bl->owner;
9729 int length = w->exact ? 1 : bl->length;
9730
9731 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
9732 w->cond_exp.get ());
9733 }
9734
9735 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
9736
9737 static int
9738 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
9739 {
9740 struct watchpoint *w = (struct watchpoint *) bl->owner;
9741 int length = w->exact ? 1 : bl->length;
9742
9743 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
9744 w->cond_exp.get ());
9745 }
9746
9747 static int
9748 breakpoint_hit_watchpoint (const struct bp_location *bl,
9749 const address_space *aspace, CORE_ADDR bp_addr,
9750 const target_waitstatus &ws)
9751 {
9752 struct breakpoint *b = bl->owner;
9753 struct watchpoint *w = (struct watchpoint *) b;
9754
9755 /* Continuable hardware watchpoints are treated as non-existent if the
9756 reason we stopped wasn't a hardware watchpoint (we didn't stop on
9757 some data address). Otherwise gdb won't stop on a break instruction
9758 in the code (not from a breakpoint) when a hardware watchpoint has
9759 been defined. Also skip watchpoints which we know did not trigger
9760 (did not match the data address). */
9761 if (is_hardware_watchpoint (b)
9762 && w->watchpoint_triggered == watch_triggered_no)
9763 return 0;
9764
9765 return 1;
9766 }
9767
9768 static void
9769 check_status_watchpoint (bpstat *bs)
9770 {
9771 gdb_assert (is_watchpoint (bs->breakpoint_at));
9772
9773 bpstat_check_watchpoint (bs);
9774 }
9775
9776 /* Implement the "resources_needed" breakpoint_ops method for
9777 hardware watchpoints. */
9778
9779 static int
9780 resources_needed_watchpoint (const struct bp_location *bl)
9781 {
9782 struct watchpoint *w = (struct watchpoint *) bl->owner;
9783 int length = w->exact? 1 : bl->length;
9784
9785 return target_region_ok_for_hw_watchpoint (bl->address, length);
9786 }
9787
9788 /* Implement the "works_in_software_mode" breakpoint_ops method for
9789 hardware watchpoints. */
9790
9791 static int
9792 works_in_software_mode_watchpoint (const struct breakpoint *b)
9793 {
9794 /* Read and access watchpoints only work with hardware support. */
9795 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
9796 }
9797
9798 static enum print_stop_action
9799 print_it_watchpoint (bpstat *bs)
9800 {
9801 struct breakpoint *b;
9802 enum print_stop_action result;
9803 struct watchpoint *w;
9804 struct ui_out *uiout = current_uiout;
9805
9806 gdb_assert (bs->bp_location_at != NULL);
9807
9808 b = bs->breakpoint_at;
9809 w = (struct watchpoint *) b;
9810
9811 annotate_watchpoint (b->number);
9812 maybe_print_thread_hit_breakpoint (uiout);
9813
9814 string_file stb;
9815
9816 gdb::optional<ui_out_emit_tuple> tuple_emitter;
9817 switch (b->type)
9818 {
9819 case bp_watchpoint:
9820 case bp_hardware_watchpoint:
9821 if (uiout->is_mi_like_p ())
9822 uiout->field_string
9823 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
9824 mention (b);
9825 tuple_emitter.emplace (uiout, "value");
9826 uiout->text ("\nOld value = ");
9827 watchpoint_value_print (bs->old_val.get (), &stb);
9828 uiout->field_stream ("old", stb);
9829 uiout->text ("\nNew value = ");
9830 watchpoint_value_print (w->val.get (), &stb);
9831 uiout->field_stream ("new", stb);
9832 uiout->text ("\n");
9833 /* More than one watchpoint may have been triggered. */
9834 result = PRINT_UNKNOWN;
9835 break;
9836
9837 case bp_read_watchpoint:
9838 if (uiout->is_mi_like_p ())
9839 uiout->field_string
9840 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
9841 mention (b);
9842 tuple_emitter.emplace (uiout, "value");
9843 uiout->text ("\nValue = ");
9844 watchpoint_value_print (w->val.get (), &stb);
9845 uiout->field_stream ("value", stb);
9846 uiout->text ("\n");
9847 result = PRINT_UNKNOWN;
9848 break;
9849
9850 case bp_access_watchpoint:
9851 if (bs->old_val != NULL)
9852 {
9853 if (uiout->is_mi_like_p ())
9854 uiout->field_string
9855 ("reason",
9856 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
9857 mention (b);
9858 tuple_emitter.emplace (uiout, "value");
9859 uiout->text ("\nOld value = ");
9860 watchpoint_value_print (bs->old_val.get (), &stb);
9861 uiout->field_stream ("old", stb);
9862 uiout->text ("\nNew value = ");
9863 }
9864 else
9865 {
9866 mention (b);
9867 if (uiout->is_mi_like_p ())
9868 uiout->field_string
9869 ("reason",
9870 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
9871 tuple_emitter.emplace (uiout, "value");
9872 uiout->text ("\nValue = ");
9873 }
9874 watchpoint_value_print (w->val.get (), &stb);
9875 uiout->field_stream ("new", stb);
9876 uiout->text ("\n");
9877 result = PRINT_UNKNOWN;
9878 break;
9879 default:
9880 result = PRINT_UNKNOWN;
9881 }
9882
9883 return result;
9884 }
9885
9886 /* Implement the "print_mention" breakpoint_ops method for hardware
9887 watchpoints. */
9888
9889 static void
9890 print_mention_watchpoint (struct breakpoint *b)
9891 {
9892 struct watchpoint *w = (struct watchpoint *) b;
9893 struct ui_out *uiout = current_uiout;
9894 const char *tuple_name;
9895
9896 switch (b->type)
9897 {
9898 case bp_watchpoint:
9899 uiout->text ("Watchpoint ");
9900 tuple_name = "wpt";
9901 break;
9902 case bp_hardware_watchpoint:
9903 uiout->text ("Hardware watchpoint ");
9904 tuple_name = "wpt";
9905 break;
9906 case bp_read_watchpoint:
9907 uiout->text ("Hardware read watchpoint ");
9908 tuple_name = "hw-rwpt";
9909 break;
9910 case bp_access_watchpoint:
9911 uiout->text ("Hardware access (read/write) watchpoint ");
9912 tuple_name = "hw-awpt";
9913 break;
9914 default:
9915 internal_error (__FILE__, __LINE__,
9916 _("Invalid hardware watchpoint type."));
9917 }
9918
9919 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
9920 uiout->field_signed ("number", b->number);
9921 uiout->text (": ");
9922 uiout->field_string ("exp", w->exp_string.get ());
9923 }
9924
9925 /* Implement the "print_recreate" breakpoint_ops method for
9926 watchpoints. */
9927
9928 static void
9929 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
9930 {
9931 struct watchpoint *w = (struct watchpoint *) b;
9932
9933 switch (b->type)
9934 {
9935 case bp_watchpoint:
9936 case bp_hardware_watchpoint:
9937 fprintf_unfiltered (fp, "watch");
9938 break;
9939 case bp_read_watchpoint:
9940 fprintf_unfiltered (fp, "rwatch");
9941 break;
9942 case bp_access_watchpoint:
9943 fprintf_unfiltered (fp, "awatch");
9944 break;
9945 default:
9946 internal_error (__FILE__, __LINE__,
9947 _("Invalid watchpoint type."));
9948 }
9949
9950 fprintf_unfiltered (fp, " %s", w->exp_string.get ());
9951 print_recreate_thread (b, fp);
9952 }
9953
9954 /* Implement the "explains_signal" breakpoint_ops method for
9955 watchpoints. */
9956
9957 static int
9958 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
9959 {
9960 /* A software watchpoint cannot cause a signal other than
9961 GDB_SIGNAL_TRAP. */
9962 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
9963 return 0;
9964
9965 return 1;
9966 }
9967
9968 /* The breakpoint_ops structure to be used in hardware watchpoints. */
9969
9970 static struct breakpoint_ops watchpoint_breakpoint_ops;
9971
9972 /* Implement the "insert" breakpoint_ops method for
9973 masked hardware watchpoints. */
9974
9975 static int
9976 insert_masked_watchpoint (struct bp_location *bl)
9977 {
9978 struct watchpoint *w = (struct watchpoint *) bl->owner;
9979
9980 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
9981 bl->watchpoint_type);
9982 }
9983
9984 /* Implement the "remove" breakpoint_ops method for
9985 masked hardware watchpoints. */
9986
9987 static int
9988 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
9989 {
9990 struct watchpoint *w = (struct watchpoint *) bl->owner;
9991
9992 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
9993 bl->watchpoint_type);
9994 }
9995
9996 /* Implement the "resources_needed" breakpoint_ops method for
9997 masked hardware watchpoints. */
9998
9999 static int
10000 resources_needed_masked_watchpoint (const struct bp_location *bl)
10001 {
10002 struct watchpoint *w = (struct watchpoint *) bl->owner;
10003
10004 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10005 }
10006
10007 /* Implement the "works_in_software_mode" breakpoint_ops method for
10008 masked hardware watchpoints. */
10009
10010 static int
10011 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10012 {
10013 return 0;
10014 }
10015
10016 /* Implement the "print_it" breakpoint_ops method for
10017 masked hardware watchpoints. */
10018
10019 static enum print_stop_action
10020 print_it_masked_watchpoint (bpstat *bs)
10021 {
10022 struct breakpoint *b = bs->breakpoint_at;
10023 struct ui_out *uiout = current_uiout;
10024
10025 /* Masked watchpoints have only one location. */
10026 gdb_assert (b->loc && b->loc->next == NULL);
10027
10028 annotate_watchpoint (b->number);
10029 maybe_print_thread_hit_breakpoint (uiout);
10030
10031 switch (b->type)
10032 {
10033 case bp_hardware_watchpoint:
10034 if (uiout->is_mi_like_p ())
10035 uiout->field_string
10036 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10037 break;
10038
10039 case bp_read_watchpoint:
10040 if (uiout->is_mi_like_p ())
10041 uiout->field_string
10042 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10043 break;
10044
10045 case bp_access_watchpoint:
10046 if (uiout->is_mi_like_p ())
10047 uiout->field_string
10048 ("reason",
10049 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10050 break;
10051 default:
10052 internal_error (__FILE__, __LINE__,
10053 _("Invalid hardware watchpoint type."));
10054 }
10055
10056 mention (b);
10057 uiout->text (_("\n\
10058 Check the underlying instruction at PC for the memory\n\
10059 address and value which triggered this watchpoint.\n"));
10060 uiout->text ("\n");
10061
10062 /* More than one watchpoint may have been triggered. */
10063 return PRINT_UNKNOWN;
10064 }
10065
10066 /* Implement the "print_one_detail" breakpoint_ops method for
10067 masked hardware watchpoints. */
10068
10069 static void
10070 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10071 struct ui_out *uiout)
10072 {
10073 struct watchpoint *w = (struct watchpoint *) b;
10074
10075 /* Masked watchpoints have only one location. */
10076 gdb_assert (b->loc && b->loc->next == NULL);
10077
10078 uiout->text ("\tmask ");
10079 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10080 uiout->text ("\n");
10081 }
10082
10083 /* Implement the "print_mention" breakpoint_ops method for
10084 masked hardware watchpoints. */
10085
10086 static void
10087 print_mention_masked_watchpoint (struct breakpoint *b)
10088 {
10089 struct watchpoint *w = (struct watchpoint *) b;
10090 struct ui_out *uiout = current_uiout;
10091 const char *tuple_name;
10092
10093 switch (b->type)
10094 {
10095 case bp_hardware_watchpoint:
10096 uiout->text ("Masked hardware watchpoint ");
10097 tuple_name = "wpt";
10098 break;
10099 case bp_read_watchpoint:
10100 uiout->text ("Masked hardware read watchpoint ");
10101 tuple_name = "hw-rwpt";
10102 break;
10103 case bp_access_watchpoint:
10104 uiout->text ("Masked hardware access (read/write) watchpoint ");
10105 tuple_name = "hw-awpt";
10106 break;
10107 default:
10108 internal_error (__FILE__, __LINE__,
10109 _("Invalid hardware watchpoint type."));
10110 }
10111
10112 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10113 uiout->field_signed ("number", b->number);
10114 uiout->text (": ");
10115 uiout->field_string ("exp", w->exp_string.get ());
10116 }
10117
10118 /* Implement the "print_recreate" breakpoint_ops method for
10119 masked hardware watchpoints. */
10120
10121 static void
10122 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10123 {
10124 struct watchpoint *w = (struct watchpoint *) b;
10125
10126 switch (b->type)
10127 {
10128 case bp_hardware_watchpoint:
10129 fprintf_unfiltered (fp, "watch");
10130 break;
10131 case bp_read_watchpoint:
10132 fprintf_unfiltered (fp, "rwatch");
10133 break;
10134 case bp_access_watchpoint:
10135 fprintf_unfiltered (fp, "awatch");
10136 break;
10137 default:
10138 internal_error (__FILE__, __LINE__,
10139 _("Invalid hardware watchpoint type."));
10140 }
10141
10142 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string.get (),
10143 phex (w->hw_wp_mask, sizeof (CORE_ADDR)));
10144 print_recreate_thread (b, fp);
10145 }
10146
10147 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10148
10149 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10150
10151 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10152
10153 static bool
10154 is_masked_watchpoint (const struct breakpoint *b)
10155 {
10156 return b->ops == &masked_watchpoint_breakpoint_ops;
10157 }
10158
10159 /* accessflag: hw_write: watch write,
10160 hw_read: watch read,
10161 hw_access: watch access (read or write) */
10162 static void
10163 watch_command_1 (const char *arg, int accessflag, int from_tty,
10164 bool just_location, bool internal)
10165 {
10166 struct breakpoint *scope_breakpoint = NULL;
10167 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10168 struct value *result;
10169 int saved_bitpos = 0, saved_bitsize = 0;
10170 const char *exp_start = NULL;
10171 const char *exp_end = NULL;
10172 const char *tok, *end_tok;
10173 int toklen = -1;
10174 const char *cond_start = NULL;
10175 const char *cond_end = NULL;
10176 enum bptype bp_type;
10177 int thread = -1;
10178 /* Flag to indicate whether we are going to use masks for
10179 the hardware watchpoint. */
10180 bool use_mask = false;
10181 CORE_ADDR mask = 0;
10182 int task = 0;
10183
10184 /* Make sure that we actually have parameters to parse. */
10185 if (arg != NULL && arg[0] != '\0')
10186 {
10187 const char *value_start;
10188
10189 exp_end = arg + strlen (arg);
10190
10191 /* Look for "parameter value" pairs at the end
10192 of the arguments string. */
10193 for (tok = exp_end - 1; tok > arg; tok--)
10194 {
10195 /* Skip whitespace at the end of the argument list. */
10196 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10197 tok--;
10198
10199 /* Find the beginning of the last token.
10200 This is the value of the parameter. */
10201 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10202 tok--;
10203 value_start = tok + 1;
10204
10205 /* Skip whitespace. */
10206 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10207 tok--;
10208
10209 end_tok = tok;
10210
10211 /* Find the beginning of the second to last token.
10212 This is the parameter itself. */
10213 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10214 tok--;
10215 tok++;
10216 toklen = end_tok - tok + 1;
10217
10218 if (toklen == 6 && startswith (tok, "thread"))
10219 {
10220 struct thread_info *thr;
10221 /* At this point we've found a "thread" token, which means
10222 the user is trying to set a watchpoint that triggers
10223 only in a specific thread. */
10224 const char *endp;
10225
10226 if (thread != -1)
10227 error(_("You can specify only one thread."));
10228
10229 /* Extract the thread ID from the next token. */
10230 thr = parse_thread_id (value_start, &endp);
10231
10232 /* Check if the user provided a valid thread ID. */
10233 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10234 invalid_thread_id_error (value_start);
10235
10236 thread = thr->global_num;
10237 }
10238 else if (toklen == 4 && startswith (tok, "task"))
10239 {
10240 char *tmp;
10241
10242 task = strtol (value_start, &tmp, 0);
10243 if (tmp == value_start)
10244 error (_("Junk after task keyword."));
10245 if (!valid_task_id (task))
10246 error (_("Unknown task %d."), task);
10247 }
10248 else if (toklen == 4 && startswith (tok, "mask"))
10249 {
10250 /* We've found a "mask" token, which means the user wants to
10251 create a hardware watchpoint that is going to have the mask
10252 facility. */
10253 struct value *mask_value, *mark;
10254
10255 if (use_mask)
10256 error(_("You can specify only one mask."));
10257
10258 use_mask = just_location = true;
10259
10260 mark = value_mark ();
10261 mask_value = parse_to_comma_and_eval (&value_start);
10262 mask = value_as_address (mask_value);
10263 value_free_to_mark (mark);
10264 }
10265 else
10266 /* We didn't recognize what we found. We should stop here. */
10267 break;
10268
10269 /* Truncate the string and get rid of the "parameter value" pair before
10270 the arguments string is parsed by the parse_exp_1 function. */
10271 exp_end = tok;
10272 }
10273 }
10274 else
10275 exp_end = arg;
10276
10277 /* Parse the rest of the arguments. From here on out, everything
10278 is in terms of a newly allocated string instead of the original
10279 ARG. */
10280 std::string expression (arg, exp_end - arg);
10281 exp_start = arg = expression.c_str ();
10282 innermost_block_tracker tracker;
10283 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10284 exp_end = arg;
10285 /* Remove trailing whitespace from the expression before saving it.
10286 This makes the eventual display of the expression string a bit
10287 prettier. */
10288 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10289 --exp_end;
10290
10291 /* Checking if the expression is not constant. */
10292 if (watchpoint_exp_is_const (exp.get ()))
10293 {
10294 int len;
10295
10296 len = exp_end - exp_start;
10297 while (len > 0 && isspace (exp_start[len - 1]))
10298 len--;
10299 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10300 }
10301
10302 exp_valid_block = tracker.block ();
10303 struct value *mark = value_mark ();
10304 struct value *val_as_value = nullptr;
10305 fetch_subexp_value (exp.get (), exp->op.get (), &val_as_value, &result, NULL,
10306 just_location);
10307
10308 if (val_as_value != NULL && just_location)
10309 {
10310 saved_bitpos = value_bitpos (val_as_value);
10311 saved_bitsize = value_bitsize (val_as_value);
10312 }
10313
10314 value_ref_ptr val;
10315 if (just_location)
10316 {
10317 int ret;
10318
10319 exp_valid_block = NULL;
10320 val = release_value (value_addr (result));
10321 value_free_to_mark (mark);
10322
10323 if (use_mask)
10324 {
10325 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10326 mask);
10327 if (ret == -1)
10328 error (_("This target does not support masked watchpoints."));
10329 else if (ret == -2)
10330 error (_("Invalid mask or memory region."));
10331 }
10332 }
10333 else if (val_as_value != NULL)
10334 val = release_value (val_as_value);
10335
10336 tok = skip_spaces (arg);
10337 end_tok = skip_to_space (tok);
10338
10339 toklen = end_tok - tok;
10340 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10341 {
10342 tok = cond_start = end_tok + 1;
10343 innermost_block_tracker if_tracker;
10344 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10345
10346 /* The watchpoint expression may not be local, but the condition
10347 may still be. E.g.: `watch global if local > 0'. */
10348 cond_exp_valid_block = if_tracker.block ();
10349
10350 cond_end = tok;
10351 }
10352 if (*tok)
10353 error (_("Junk at end of command."));
10354
10355 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10356
10357 /* Save this because create_internal_breakpoint below invalidates
10358 'wp_frame'. */
10359 frame_id watchpoint_frame = get_frame_id (wp_frame);
10360
10361 /* If the expression is "local", then set up a "watchpoint scope"
10362 breakpoint at the point where we've left the scope of the watchpoint
10363 expression. Create the scope breakpoint before the watchpoint, so
10364 that we will encounter it first in bpstat_stop_status. */
10365 if (exp_valid_block != NULL && wp_frame != NULL)
10366 {
10367 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10368
10369 if (frame_id_p (caller_frame_id))
10370 {
10371 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10372 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10373
10374 scope_breakpoint
10375 = create_internal_breakpoint (caller_arch, caller_pc,
10376 bp_watchpoint_scope,
10377 &momentary_breakpoint_ops);
10378
10379 /* create_internal_breakpoint could invalidate WP_FRAME. */
10380 wp_frame = NULL;
10381
10382 scope_breakpoint->enable_state = bp_enabled;
10383
10384 /* Automatically delete the breakpoint when it hits. */
10385 scope_breakpoint->disposition = disp_del;
10386
10387 /* Only break in the proper frame (help with recursion). */
10388 scope_breakpoint->frame_id = caller_frame_id;
10389
10390 /* Set the address at which we will stop. */
10391 scope_breakpoint->loc->gdbarch = caller_arch;
10392 scope_breakpoint->loc->requested_address = caller_pc;
10393 scope_breakpoint->loc->address
10394 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10395 scope_breakpoint->loc->requested_address,
10396 scope_breakpoint->type);
10397 }
10398 }
10399
10400 /* Now set up the breakpoint. We create all watchpoints as hardware
10401 watchpoints here even if hardware watchpoints are turned off, a call
10402 to update_watchpoint later in this function will cause the type to
10403 drop back to bp_watchpoint (software watchpoint) if required. */
10404
10405 if (accessflag == hw_read)
10406 bp_type = bp_read_watchpoint;
10407 else if (accessflag == hw_access)
10408 bp_type = bp_access_watchpoint;
10409 else
10410 bp_type = bp_hardware_watchpoint;
10411
10412 std::unique_ptr<watchpoint> w (new watchpoint ());
10413
10414 if (use_mask)
10415 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10416 &masked_watchpoint_breakpoint_ops);
10417 else
10418 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10419 &watchpoint_breakpoint_ops);
10420 w->thread = thread;
10421 w->task = task;
10422 w->disposition = disp_donttouch;
10423 w->pspace = current_program_space;
10424 w->exp = std::move (exp);
10425 w->exp_valid_block = exp_valid_block;
10426 w->cond_exp_valid_block = cond_exp_valid_block;
10427 if (just_location)
10428 {
10429 struct type *t = value_type (val.get ());
10430 CORE_ADDR addr = value_as_address (val.get ());
10431
10432 w->exp_string_reparse
10433 = current_language->watch_location_expression (t, addr);
10434
10435 w->exp_string = xstrprintf ("-location %.*s",
10436 (int) (exp_end - exp_start), exp_start);
10437 }
10438 else
10439 w->exp_string.reset (savestring (exp_start, exp_end - exp_start));
10440
10441 if (use_mask)
10442 {
10443 w->hw_wp_mask = mask;
10444 }
10445 else
10446 {
10447 w->val = val;
10448 w->val_bitpos = saved_bitpos;
10449 w->val_bitsize = saved_bitsize;
10450 w->val_valid = true;
10451 }
10452
10453 if (cond_start)
10454 w->cond_string.reset (savestring (cond_start, cond_end - cond_start));
10455 else
10456 w->cond_string = 0;
10457
10458 if (frame_id_p (watchpoint_frame))
10459 {
10460 w->watchpoint_frame = watchpoint_frame;
10461 w->watchpoint_thread = inferior_ptid;
10462 }
10463 else
10464 {
10465 w->watchpoint_frame = null_frame_id;
10466 w->watchpoint_thread = null_ptid;
10467 }
10468
10469 if (scope_breakpoint != NULL)
10470 {
10471 /* The scope breakpoint is related to the watchpoint. We will
10472 need to act on them together. */
10473 w->related_breakpoint = scope_breakpoint;
10474 scope_breakpoint->related_breakpoint = w.get ();
10475 }
10476
10477 if (!just_location)
10478 value_free_to_mark (mark);
10479
10480 /* Finally update the new watchpoint. This creates the locations
10481 that should be inserted. */
10482 update_watchpoint (w.get (), 1);
10483
10484 install_breakpoint (internal, std::move (w), 1);
10485 }
10486
10487 /* Return count of debug registers needed to watch the given expression.
10488 If the watchpoint cannot be handled in hardware return zero. */
10489
10490 static int
10491 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10492 {
10493 int found_memory_cnt = 0;
10494
10495 /* Did the user specifically forbid us to use hardware watchpoints? */
10496 if (!can_use_hw_watchpoints)
10497 return 0;
10498
10499 gdb_assert (!vals.empty ());
10500 struct value *head = vals[0].get ();
10501
10502 /* Make sure that the value of the expression depends only upon
10503 memory contents, and values computed from them within GDB. If we
10504 find any register references or function calls, we can't use a
10505 hardware watchpoint.
10506
10507 The idea here is that evaluating an expression generates a series
10508 of values, one holding the value of every subexpression. (The
10509 expression a*b+c has five subexpressions: a, b, a*b, c, and
10510 a*b+c.) GDB's values hold almost enough information to establish
10511 the criteria given above --- they identify memory lvalues,
10512 register lvalues, computed values, etcetera. So we can evaluate
10513 the expression, and then scan the chain of values that leaves
10514 behind to decide whether we can detect any possible change to the
10515 expression's final value using only hardware watchpoints.
10516
10517 However, I don't think that the values returned by inferior
10518 function calls are special in any way. So this function may not
10519 notice that an expression involving an inferior function call
10520 can't be watched with hardware watchpoints. FIXME. */
10521 for (const value_ref_ptr &iter : vals)
10522 {
10523 struct value *v = iter.get ();
10524
10525 if (VALUE_LVAL (v) == lval_memory)
10526 {
10527 if (v != head && value_lazy (v))
10528 /* A lazy memory lvalue in the chain is one that GDB never
10529 needed to fetch; we either just used its address (e.g.,
10530 `a' in `a.b') or we never needed it at all (e.g., `a'
10531 in `a,b'). This doesn't apply to HEAD; if that is
10532 lazy then it was not readable, but watch it anyway. */
10533 ;
10534 else
10535 {
10536 /* Ahh, memory we actually used! Check if we can cover
10537 it with hardware watchpoints. */
10538 struct type *vtype = check_typedef (value_type (v));
10539
10540 /* We only watch structs and arrays if user asked for it
10541 explicitly, never if they just happen to appear in a
10542 middle of some value chain. */
10543 if (v == head
10544 || (vtype->code () != TYPE_CODE_STRUCT
10545 && vtype->code () != TYPE_CODE_ARRAY))
10546 {
10547 CORE_ADDR vaddr = value_address (v);
10548 int len;
10549 int num_regs;
10550
10551 len = (target_exact_watchpoints
10552 && is_scalar_type_recursive (vtype))?
10553 1 : TYPE_LENGTH (value_type (v));
10554
10555 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10556 if (!num_regs)
10557 return 0;
10558 else
10559 found_memory_cnt += num_regs;
10560 }
10561 }
10562 }
10563 else if (VALUE_LVAL (v) != not_lval
10564 && deprecated_value_modifiable (v) == 0)
10565 return 0; /* These are values from the history (e.g., $1). */
10566 else if (VALUE_LVAL (v) == lval_register)
10567 return 0; /* Cannot watch a register with a HW watchpoint. */
10568 }
10569
10570 /* The expression itself looks suitable for using a hardware
10571 watchpoint, but give the target machine a chance to reject it. */
10572 return found_memory_cnt;
10573 }
10574
10575 void
10576 watch_command_wrapper (const char *arg, int from_tty, bool internal)
10577 {
10578 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10579 }
10580
10581 /* Options for the watch, awatch, and rwatch commands. */
10582
10583 struct watch_options
10584 {
10585 /* For -location. */
10586 bool location = false;
10587 };
10588
10589 /* Definitions of options for the "watch", "awatch", and "rwatch" commands.
10590
10591 Historically GDB always accepted both '-location' and '-l' flags for
10592 these commands (both flags being synonyms). When converting to the
10593 newer option scheme only '-location' is added here. That's fine (for
10594 backward compatibility) as any non-ambiguous prefix of a flag will be
10595 accepted, so '-l', '-loc', are now all accepted.
10596
10597 What this means is that, if in the future, we add any new flag here
10598 that starts with '-l' then this will break backward compatibility, so
10599 please, don't do that! */
10600
10601 static const gdb::option::option_def watch_option_defs[] = {
10602 gdb::option::flag_option_def<watch_options> {
10603 "location",
10604 [] (watch_options *opt) { return &opt->location; },
10605 N_("\
10606 This evaluates EXPRESSION and watches the memory to which is refers.\n\
10607 -l can be used as a short form of -location."),
10608 },
10609 };
10610
10611 /* Returns the option group used by 'watch', 'awatch', and 'rwatch'
10612 commands. */
10613
10614 static gdb::option::option_def_group
10615 make_watch_options_def_group (watch_options *opts)
10616 {
10617 return {{watch_option_defs}, opts};
10618 }
10619
10620 /* A helper function that looks for the "-location" argument and then
10621 calls watch_command_1. */
10622
10623 static void
10624 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10625 {
10626 watch_options opts;
10627 auto grp = make_watch_options_def_group (&opts);
10628 gdb::option::process_options
10629 (&arg, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
10630 if (arg != nullptr && *arg == '\0')
10631 arg = nullptr;
10632
10633 watch_command_1 (arg, accessflag, from_tty, opts.location, false);
10634 }
10635
10636 /* Command completion for 'watch', 'awatch', and 'rwatch' commands. */
10637 static void
10638 watch_command_completer (struct cmd_list_element *ignore,
10639 completion_tracker &tracker,
10640 const char *text, const char * /*word*/)
10641 {
10642 const auto group = make_watch_options_def_group (nullptr);
10643 if (gdb::option::complete_options
10644 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
10645 return;
10646
10647 const char *word = advance_to_expression_complete_word_point (tracker, text);
10648 expression_completer (ignore, tracker, text, word);
10649 }
10650
10651 static void
10652 watch_command (const char *arg, int from_tty)
10653 {
10654 watch_maybe_just_location (arg, hw_write, from_tty);
10655 }
10656
10657 void
10658 rwatch_command_wrapper (const char *arg, int from_tty, bool internal)
10659 {
10660 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10661 }
10662
10663 static void
10664 rwatch_command (const char *arg, int from_tty)
10665 {
10666 watch_maybe_just_location (arg, hw_read, from_tty);
10667 }
10668
10669 void
10670 awatch_command_wrapper (const char *arg, int from_tty, bool internal)
10671 {
10672 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10673 }
10674
10675 static void
10676 awatch_command (const char *arg, int from_tty)
10677 {
10678 watch_maybe_just_location (arg, hw_access, from_tty);
10679 }
10680 \f
10681
10682 /* Data for the FSM that manages the until(location)/advance commands
10683 in infcmd.c. Here because it uses the mechanisms of
10684 breakpoints. */
10685
10686 struct until_break_fsm : public thread_fsm
10687 {
10688 /* The thread that was current when the command was executed. */
10689 int thread;
10690
10691 /* The breakpoint set at the return address in the caller frame,
10692 plus breakpoints at all the destination locations. */
10693 std::vector<breakpoint_up> breakpoints;
10694
10695 until_break_fsm (struct interp *cmd_interp, int thread,
10696 std::vector<breakpoint_up> &&breakpoints)
10697 : thread_fsm (cmd_interp),
10698 thread (thread),
10699 breakpoints (std::move (breakpoints))
10700 {
10701 }
10702
10703 void clean_up (struct thread_info *thread) override;
10704 bool should_stop (struct thread_info *thread) override;
10705 enum async_reply_reason do_async_reply_reason () override;
10706 };
10707
10708 /* Implementation of the 'should_stop' FSM method for the
10709 until(location)/advance commands. */
10710
10711 bool
10712 until_break_fsm::should_stop (struct thread_info *tp)
10713 {
10714 for (const breakpoint_up &bp : breakpoints)
10715 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10716 bp.get ()) != NULL)
10717 {
10718 set_finished ();
10719 break;
10720 }
10721
10722 return true;
10723 }
10724
10725 /* Implementation of the 'clean_up' FSM method for the
10726 until(location)/advance commands. */
10727
10728 void
10729 until_break_fsm::clean_up (struct thread_info *)
10730 {
10731 /* Clean up our temporary breakpoints. */
10732 breakpoints.clear ();
10733 delete_longjmp_breakpoint (thread);
10734 }
10735
10736 /* Implementation of the 'async_reply_reason' FSM method for the
10737 until(location)/advance commands. */
10738
10739 enum async_reply_reason
10740 until_break_fsm::do_async_reply_reason ()
10741 {
10742 return EXEC_ASYNC_LOCATION_REACHED;
10743 }
10744
10745 void
10746 until_break_command (const char *arg, int from_tty, int anywhere)
10747 {
10748 struct frame_info *frame;
10749 struct gdbarch *frame_gdbarch;
10750 struct frame_id stack_frame_id;
10751 struct frame_id caller_frame_id;
10752 int thread;
10753 struct thread_info *tp;
10754
10755 clear_proceed_status (0);
10756
10757 /* Set a breakpoint where the user wants it and at return from
10758 this function. */
10759
10760 event_location_up location = string_to_event_location (&arg, current_language);
10761
10762 std::vector<symtab_and_line> sals
10763 = (last_displayed_sal_is_valid ()
10764 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10765 get_last_displayed_symtab (),
10766 get_last_displayed_line ())
10767 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
10768 NULL, NULL, 0));
10769
10770 if (sals.empty ())
10771 error (_("Couldn't get information on specified line."));
10772
10773 if (*arg)
10774 error (_("Junk at end of arguments."));
10775
10776 tp = inferior_thread ();
10777 thread = tp->global_num;
10778
10779 /* Note linespec handling above invalidates the frame chain.
10780 Installing a breakpoint also invalidates the frame chain (as it
10781 may need to switch threads), so do any frame handling before
10782 that. */
10783
10784 frame = get_selected_frame (NULL);
10785 frame_gdbarch = get_frame_arch (frame);
10786 stack_frame_id = get_stack_frame_id (frame);
10787 caller_frame_id = frame_unwind_caller_id (frame);
10788
10789 /* Keep within the current frame, or in frames called by the current
10790 one. */
10791
10792 std::vector<breakpoint_up> breakpoints;
10793
10794 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
10795
10796 if (frame_id_p (caller_frame_id))
10797 {
10798 struct symtab_and_line sal2;
10799 struct gdbarch *caller_gdbarch;
10800
10801 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
10802 sal2.pc = frame_unwind_caller_pc (frame);
10803 caller_gdbarch = frame_unwind_caller_arch (frame);
10804
10805 breakpoint_up caller_breakpoint
10806 = set_momentary_breakpoint (caller_gdbarch, sal2,
10807 caller_frame_id, bp_until);
10808 breakpoints.emplace_back (std::move (caller_breakpoint));
10809
10810 set_longjmp_breakpoint (tp, caller_frame_id);
10811 lj_deleter.emplace (thread);
10812 }
10813
10814 /* set_momentary_breakpoint could invalidate FRAME. */
10815 frame = NULL;
10816
10817 /* If the user told us to continue until a specified location, we
10818 don't specify a frame at which we need to stop. Otherwise,
10819 specify the selected frame, because we want to stop only at the
10820 very same frame. */
10821 frame_id stop_frame_id = anywhere ? null_frame_id : stack_frame_id;
10822
10823 for (symtab_and_line &sal : sals)
10824 {
10825 resolve_sal_pc (&sal);
10826
10827 breakpoint_up location_breakpoint
10828 = set_momentary_breakpoint (frame_gdbarch, sal,
10829 stop_frame_id, bp_until);
10830 breakpoints.emplace_back (std::move (location_breakpoint));
10831 }
10832
10833 tp->thread_fsm = new until_break_fsm (command_interp (), tp->global_num,
10834 std::move (breakpoints));
10835
10836 if (lj_deleter)
10837 lj_deleter->release ();
10838
10839 proceed (-1, GDB_SIGNAL_DEFAULT);
10840 }
10841
10842 void
10843 init_ada_exception_breakpoint (struct breakpoint *b,
10844 struct gdbarch *gdbarch,
10845 struct symtab_and_line sal,
10846 const char *addr_string,
10847 const struct breakpoint_ops *ops,
10848 int tempflag,
10849 int enabled,
10850 int from_tty)
10851 {
10852 if (from_tty)
10853 {
10854 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
10855 if (!loc_gdbarch)
10856 loc_gdbarch = gdbarch;
10857
10858 describe_other_breakpoints (loc_gdbarch,
10859 sal.pspace, sal.pc, sal.section, -1);
10860 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
10861 version for exception catchpoints, because two catchpoints
10862 used for different exception names will use the same address.
10863 In this case, a "breakpoint ... also set at..." warning is
10864 unproductive. Besides, the warning phrasing is also a bit
10865 inappropriate, we should use the word catchpoint, and tell
10866 the user what type of catchpoint it is. The above is good
10867 enough for now, though. */
10868 }
10869
10870 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
10871
10872 b->enable_state = enabled ? bp_enabled : bp_disabled;
10873 b->disposition = tempflag ? disp_del : disp_donttouch;
10874 b->location = string_to_event_location (&addr_string,
10875 language_def (language_ada));
10876 b->language = language_ada;
10877 }
10878
10879 \f
10880
10881 /* Compare two breakpoints and return a strcmp-like result. */
10882
10883 static int
10884 compare_breakpoints (const breakpoint *a, const breakpoint *b)
10885 {
10886 uintptr_t ua = (uintptr_t) a;
10887 uintptr_t ub = (uintptr_t) b;
10888
10889 if (a->number < b->number)
10890 return -1;
10891 else if (a->number > b->number)
10892 return 1;
10893
10894 /* Now sort by address, in case we see, e..g, two breakpoints with
10895 the number 0. */
10896 if (ua < ub)
10897 return -1;
10898 return ua > ub ? 1 : 0;
10899 }
10900
10901 /* Delete breakpoints by address or line. */
10902
10903 static void
10904 clear_command (const char *arg, int from_tty)
10905 {
10906 int default_match;
10907
10908 std::vector<symtab_and_line> decoded_sals;
10909 symtab_and_line last_sal;
10910 gdb::array_view<symtab_and_line> sals;
10911 if (arg)
10912 {
10913 decoded_sals
10914 = decode_line_with_current_source (arg,
10915 (DECODE_LINE_FUNFIRSTLINE
10916 | DECODE_LINE_LIST_MODE));
10917 default_match = 0;
10918 sals = decoded_sals;
10919 }
10920 else
10921 {
10922 /* Set sal's line, symtab, pc, and pspace to the values
10923 corresponding to the last call to print_frame_info. If the
10924 codepoint is not valid, this will set all the fields to 0. */
10925 last_sal = get_last_displayed_sal ();
10926 if (last_sal.symtab == 0)
10927 error (_("No source file specified."));
10928
10929 default_match = 1;
10930 sals = last_sal;
10931 }
10932
10933 /* We don't call resolve_sal_pc here. That's not as bad as it
10934 seems, because all existing breakpoints typically have both
10935 file/line and pc set. So, if clear is given file/line, we can
10936 match this to existing breakpoint without obtaining pc at all.
10937
10938 We only support clearing given the address explicitly
10939 present in breakpoint table. Say, we've set breakpoint
10940 at file:line. There were several PC values for that file:line,
10941 due to optimization, all in one block.
10942
10943 We've picked one PC value. If "clear" is issued with another
10944 PC corresponding to the same file:line, the breakpoint won't
10945 be cleared. We probably can still clear the breakpoint, but
10946 since the other PC value is never presented to user, user
10947 can only find it by guessing, and it does not seem important
10948 to support that. */
10949
10950 /* For each line spec given, delete bps which correspond to it. Do
10951 it in two passes, solely to preserve the current behavior that
10952 from_tty is forced true if we delete more than one
10953 breakpoint. */
10954
10955 std::vector<struct breakpoint *> found;
10956 for (const auto &sal : sals)
10957 {
10958 const char *sal_fullname;
10959
10960 /* If exact pc given, clear bpts at that pc.
10961 If line given (pc == 0), clear all bpts on specified line.
10962 If defaulting, clear all bpts on default line
10963 or at default pc.
10964
10965 defaulting sal.pc != 0 tests to do
10966
10967 0 1 pc
10968 1 1 pc _and_ line
10969 0 0 line
10970 1 0 <can't happen> */
10971
10972 sal_fullname = (sal.symtab == NULL
10973 ? NULL : symtab_to_fullname (sal.symtab));
10974
10975 /* Find all matching breakpoints and add them to 'found'. */
10976 for (breakpoint *b : all_breakpoints ())
10977 {
10978 int match = 0;
10979 /* Are we going to delete b? */
10980 if (b->type != bp_none && !is_watchpoint (b))
10981 {
10982 for (bp_location *loc : b->locations ())
10983 {
10984 /* If the user specified file:line, don't allow a PC
10985 match. This matches historical gdb behavior. */
10986 int pc_match = (!sal.explicit_line
10987 && sal.pc
10988 && (loc->pspace == sal.pspace)
10989 && (loc->address == sal.pc)
10990 && (!section_is_overlay (loc->section)
10991 || loc->section == sal.section));
10992 int line_match = 0;
10993
10994 if ((default_match || sal.explicit_line)
10995 && loc->symtab != NULL
10996 && sal_fullname != NULL
10997 && sal.pspace == loc->pspace
10998 && loc->line_number == sal.line
10999 && filename_cmp (symtab_to_fullname (loc->symtab),
11000 sal_fullname) == 0)
11001 line_match = 1;
11002
11003 if (pc_match || line_match)
11004 {
11005 match = 1;
11006 break;
11007 }
11008 }
11009 }
11010
11011 if (match)
11012 found.push_back (b);
11013 }
11014 }
11015
11016 /* Now go thru the 'found' chain and delete them. */
11017 if (found.empty ())
11018 {
11019 if (arg)
11020 error (_("No breakpoint at %s."), arg);
11021 else
11022 error (_("No breakpoint at this line."));
11023 }
11024
11025 /* Remove duplicates from the vec. */
11026 std::sort (found.begin (), found.end (),
11027 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11028 {
11029 return compare_breakpoints (bp_a, bp_b) < 0;
11030 });
11031 found.erase (std::unique (found.begin (), found.end (),
11032 [] (const breakpoint *bp_a, const breakpoint *bp_b)
11033 {
11034 return compare_breakpoints (bp_a, bp_b) == 0;
11035 }),
11036 found.end ());
11037
11038 if (found.size () > 1)
11039 from_tty = 1; /* Always report if deleted more than one. */
11040 if (from_tty)
11041 {
11042 if (found.size () == 1)
11043 printf_filtered (_("Deleted breakpoint "));
11044 else
11045 printf_filtered (_("Deleted breakpoints "));
11046 }
11047
11048 for (breakpoint *iter : found)
11049 {
11050 if (from_tty)
11051 printf_filtered ("%d ", iter->number);
11052 delete_breakpoint (iter);
11053 }
11054 if (from_tty)
11055 putchar_filtered ('\n');
11056 }
11057 \f
11058 /* Delete breakpoint in BS if they are `delete' breakpoints and
11059 all breakpoints that are marked for deletion, whether hit or not.
11060 This is called after any breakpoint is hit, or after errors. */
11061
11062 void
11063 breakpoint_auto_delete (bpstat *bs)
11064 {
11065 for (; bs; bs = bs->next)
11066 if (bs->breakpoint_at
11067 && bs->breakpoint_at->disposition == disp_del
11068 && bs->stop)
11069 delete_breakpoint (bs->breakpoint_at);
11070
11071 for (breakpoint *b : all_breakpoints_safe ())
11072 if (b->disposition == disp_del_at_next_stop)
11073 delete_breakpoint (b);
11074 }
11075
11076 /* A comparison function for bp_location AP and BP being interfaced to
11077 std::sort. Sort elements primarily by their ADDRESS (no matter what
11078 bl_address_is_meaningful says), secondarily by ordering first
11079 permanent elements and terciarily just ensuring the array is sorted
11080 stable way despite std::sort being an unstable algorithm. */
11081
11082 static int
11083 bp_location_is_less_than (const bp_location *a, const bp_location *b)
11084 {
11085 if (a->address != b->address)
11086 return a->address < b->address;
11087
11088 /* Sort locations at the same address by their pspace number, keeping
11089 locations of the same inferior (in a multi-inferior environment)
11090 grouped. */
11091
11092 if (a->pspace->num != b->pspace->num)
11093 return a->pspace->num < b->pspace->num;
11094
11095 /* Sort permanent breakpoints first. */
11096 if (a->permanent != b->permanent)
11097 return a->permanent > b->permanent;
11098
11099 /* Sort by type in order to make duplicate determination easier.
11100 See update_global_location_list. This is kept in sync with
11101 breakpoint_locations_match. */
11102 if (a->loc_type < b->loc_type)
11103 return true;
11104
11105 /* Likewise, for range-breakpoints, sort by length. */
11106 if (a->loc_type == bp_loc_hardware_breakpoint
11107 && b->loc_type == bp_loc_hardware_breakpoint
11108 && a->length < b->length)
11109 return true;
11110
11111 /* Make the internal GDB representation stable across GDB runs
11112 where A and B memory inside GDB can differ. Breakpoint locations of
11113 the same type at the same address can be sorted in arbitrary order. */
11114
11115 if (a->owner->number != b->owner->number)
11116 return a->owner->number < b->owner->number;
11117
11118 return a < b;
11119 }
11120
11121 /* Set bp_locations_placed_address_before_address_max and
11122 bp_locations_shadow_len_after_address_max according to the current
11123 content of the bp_locations array. */
11124
11125 static void
11126 bp_locations_target_extensions_update (void)
11127 {
11128 bp_locations_placed_address_before_address_max = 0;
11129 bp_locations_shadow_len_after_address_max = 0;
11130
11131 for (bp_location *bl : all_bp_locations ())
11132 {
11133 CORE_ADDR start, end, addr;
11134
11135 if (!bp_location_has_shadow (bl))
11136 continue;
11137
11138 start = bl->target_info.placed_address;
11139 end = start + bl->target_info.shadow_len;
11140
11141 gdb_assert (bl->address >= start);
11142 addr = bl->address - start;
11143 if (addr > bp_locations_placed_address_before_address_max)
11144 bp_locations_placed_address_before_address_max = addr;
11145
11146 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11147
11148 gdb_assert (bl->address < end);
11149 addr = end - bl->address;
11150 if (addr > bp_locations_shadow_len_after_address_max)
11151 bp_locations_shadow_len_after_address_max = addr;
11152 }
11153 }
11154
11155 /* Download tracepoint locations if they haven't been. */
11156
11157 static void
11158 download_tracepoint_locations (void)
11159 {
11160 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11161
11162 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11163
11164 for (breakpoint *b : all_tracepoints ())
11165 {
11166 struct tracepoint *t;
11167 int bp_location_downloaded = 0;
11168
11169 if ((b->type == bp_fast_tracepoint
11170 ? !may_insert_fast_tracepoints
11171 : !may_insert_tracepoints))
11172 continue;
11173
11174 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11175 {
11176 if (target_can_download_tracepoint ())
11177 can_download_tracepoint = TRIBOOL_TRUE;
11178 else
11179 can_download_tracepoint = TRIBOOL_FALSE;
11180 }
11181
11182 if (can_download_tracepoint == TRIBOOL_FALSE)
11183 break;
11184
11185 for (bp_location *bl : b->locations ())
11186 {
11187 /* In tracepoint, locations are _never_ duplicated, so
11188 should_be_inserted is equivalent to
11189 unduplicated_should_be_inserted. */
11190 if (!should_be_inserted (bl) || bl->inserted)
11191 continue;
11192
11193 switch_to_program_space_and_thread (bl->pspace);
11194
11195 target_download_tracepoint (bl);
11196
11197 bl->inserted = 1;
11198 bp_location_downloaded = 1;
11199 }
11200 t = (struct tracepoint *) b;
11201 t->number_on_target = b->number;
11202 if (bp_location_downloaded)
11203 gdb::observers::breakpoint_modified.notify (b);
11204 }
11205 }
11206
11207 /* Swap the insertion/duplication state between two locations. */
11208
11209 static void
11210 swap_insertion (struct bp_location *left, struct bp_location *right)
11211 {
11212 const int left_inserted = left->inserted;
11213 const int left_duplicate = left->duplicate;
11214 const int left_needs_update = left->needs_update;
11215 const struct bp_target_info left_target_info = left->target_info;
11216
11217 /* Locations of tracepoints can never be duplicated. */
11218 if (is_tracepoint (left->owner))
11219 gdb_assert (!left->duplicate);
11220 if (is_tracepoint (right->owner))
11221 gdb_assert (!right->duplicate);
11222
11223 left->inserted = right->inserted;
11224 left->duplicate = right->duplicate;
11225 left->needs_update = right->needs_update;
11226 left->target_info = right->target_info;
11227 right->inserted = left_inserted;
11228 right->duplicate = left_duplicate;
11229 right->needs_update = left_needs_update;
11230 right->target_info = left_target_info;
11231 }
11232
11233 /* Force the re-insertion of the locations at ADDRESS. This is called
11234 once a new/deleted/modified duplicate location is found and we are evaluating
11235 conditions on the target's side. Such conditions need to be updated on
11236 the target. */
11237
11238 static void
11239 force_breakpoint_reinsertion (struct bp_location *bl)
11240 {
11241 CORE_ADDR address = 0;
11242 int pspace_num;
11243
11244 address = bl->address;
11245 pspace_num = bl->pspace->num;
11246
11247 /* This is only meaningful if the target is
11248 evaluating conditions and if the user has
11249 opted for condition evaluation on the target's
11250 side. */
11251 if (gdb_evaluates_breakpoint_condition_p ()
11252 || !target_supports_evaluation_of_breakpoint_conditions ())
11253 return;
11254
11255 /* Flag all breakpoint locations with this address and
11256 the same program space as the location
11257 as "its condition has changed". We need to
11258 update the conditions on the target's side. */
11259 for (bp_location *loc : all_bp_locations_at_addr (address))
11260 {
11261 if (!is_breakpoint (loc->owner)
11262 || pspace_num != loc->pspace->num)
11263 continue;
11264
11265 /* Flag the location appropriately. We use a different state to
11266 let everyone know that we already updated the set of locations
11267 with addr bl->address and program space bl->pspace. This is so
11268 we don't have to keep calling these functions just to mark locations
11269 that have already been marked. */
11270 loc->condition_changed = condition_updated;
11271
11272 /* Free the agent expression bytecode as well. We will compute
11273 it later on. */
11274 loc->cond_bytecode.reset ();
11275 }
11276 }
11277
11278 /* Called whether new breakpoints are created, or existing breakpoints
11279 deleted, to update the global location list and recompute which
11280 locations are duplicate of which.
11281
11282 The INSERT_MODE flag determines whether locations may not, may, or
11283 shall be inserted now. See 'enum ugll_insert_mode' for more
11284 info. */
11285
11286 static void
11287 update_global_location_list (enum ugll_insert_mode insert_mode)
11288 {
11289 /* Last breakpoint location address that was marked for update. */
11290 CORE_ADDR last_addr = 0;
11291 /* Last breakpoint location program space that was marked for update. */
11292 int last_pspace_num = -1;
11293
11294 /* Used in the duplicates detection below. When iterating over all
11295 bp_locations, points to the first bp_location of a given address.
11296 Breakpoints and watchpoints of different types are never
11297 duplicates of each other. Keep one pointer for each type of
11298 breakpoint/watchpoint, so we only need to loop over all locations
11299 once. */
11300 struct bp_location *bp_loc_first; /* breakpoint */
11301 struct bp_location *wp_loc_first; /* hardware watchpoint */
11302 struct bp_location *awp_loc_first; /* access watchpoint */
11303 struct bp_location *rwp_loc_first; /* read watchpoint */
11304
11305 /* Saved former bp_locations array which we compare against the newly
11306 built bp_locations from the current state of ALL_BREAKPOINTS. */
11307 std::vector<bp_location *> old_locations = std::move (bp_locations);
11308 bp_locations.clear ();
11309
11310 for (breakpoint *b : all_breakpoints ())
11311 for (bp_location *loc : b->locations ())
11312 bp_locations.push_back (loc);
11313
11314 /* See if we need to "upgrade" a software breakpoint to a hardware
11315 breakpoint. Do this before deciding whether locations are
11316 duplicates. Also do this before sorting because sorting order
11317 depends on location type. */
11318 for (bp_location *loc : bp_locations)
11319 if (!loc->inserted && should_be_inserted (loc))
11320 handle_automatic_hardware_breakpoints (loc);
11321
11322 std::sort (bp_locations.begin (), bp_locations.end (),
11323 bp_location_is_less_than);
11324
11325 bp_locations_target_extensions_update ();
11326
11327 /* Identify bp_location instances that are no longer present in the
11328 new list, and therefore should be freed. Note that it's not
11329 necessary that those locations should be removed from inferior --
11330 if there's another location at the same address (previously
11331 marked as duplicate), we don't need to remove/insert the
11332 location.
11333
11334 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11335 and former bp_location array state respectively. */
11336
11337 size_t loc_i = 0;
11338 for (bp_location *old_loc : old_locations)
11339 {
11340 /* Tells if 'old_loc' is found among the new locations. If
11341 not, we have to free it. */
11342 int found_object = 0;
11343 /* Tells if the location should remain inserted in the target. */
11344 int keep_in_target = 0;
11345 int removed = 0;
11346
11347 /* Skip LOCP entries which will definitely never be needed.
11348 Stop either at or being the one matching OLD_LOC. */
11349 while (loc_i < bp_locations.size ()
11350 && bp_locations[loc_i]->address < old_loc->address)
11351 loc_i++;
11352
11353 for (size_t loc2_i = loc_i;
11354 (loc2_i < bp_locations.size ()
11355 && bp_locations[loc2_i]->address == old_loc->address);
11356 loc2_i++)
11357 {
11358 /* Check if this is a new/duplicated location or a duplicated
11359 location that had its condition modified. If so, we want to send
11360 its condition to the target if evaluation of conditions is taking
11361 place there. */
11362 if (bp_locations[loc2_i]->condition_changed == condition_modified
11363 && (last_addr != old_loc->address
11364 || last_pspace_num != old_loc->pspace->num))
11365 {
11366 force_breakpoint_reinsertion (bp_locations[loc2_i]);
11367 last_pspace_num = old_loc->pspace->num;
11368 }
11369
11370 if (bp_locations[loc2_i] == old_loc)
11371 found_object = 1;
11372 }
11373
11374 /* We have already handled this address, update it so that we don't
11375 have to go through updates again. */
11376 last_addr = old_loc->address;
11377
11378 /* Target-side condition evaluation: Handle deleted locations. */
11379 if (!found_object)
11380 force_breakpoint_reinsertion (old_loc);
11381
11382 /* If this location is no longer present, and inserted, look if
11383 there's maybe a new location at the same address. If so,
11384 mark that one inserted, and don't remove this one. This is
11385 needed so that we don't have a time window where a breakpoint
11386 at certain location is not inserted. */
11387
11388 if (old_loc->inserted)
11389 {
11390 /* If the location is inserted now, we might have to remove
11391 it. */
11392
11393 if (found_object && should_be_inserted (old_loc))
11394 {
11395 /* The location is still present in the location list,
11396 and still should be inserted. Don't do anything. */
11397 keep_in_target = 1;
11398 }
11399 else
11400 {
11401 /* This location still exists, but it won't be kept in the
11402 target since it may have been disabled. We proceed to
11403 remove its target-side condition. */
11404
11405 /* The location is either no longer present, or got
11406 disabled. See if there's another location at the
11407 same address, in which case we don't need to remove
11408 this one from the target. */
11409
11410 /* OLD_LOC comes from existing struct breakpoint. */
11411 if (bl_address_is_meaningful (old_loc))
11412 {
11413 for (size_t loc2_i = loc_i;
11414 (loc2_i < bp_locations.size ()
11415 && bp_locations[loc2_i]->address == old_loc->address);
11416 loc2_i++)
11417 {
11418 bp_location *loc2 = bp_locations[loc2_i];
11419
11420 if (loc2 == old_loc)
11421 continue;
11422
11423 if (breakpoint_locations_match (loc2, old_loc))
11424 {
11425 /* Read watchpoint locations are switched to
11426 access watchpoints, if the former are not
11427 supported, but the latter are. */
11428 if (is_hardware_watchpoint (old_loc->owner))
11429 {
11430 gdb_assert (is_hardware_watchpoint (loc2->owner));
11431 loc2->watchpoint_type = old_loc->watchpoint_type;
11432 }
11433
11434 /* loc2 is a duplicated location. We need to check
11435 if it should be inserted in case it will be
11436 unduplicated. */
11437 if (unduplicated_should_be_inserted (loc2))
11438 {
11439 swap_insertion (old_loc, loc2);
11440 keep_in_target = 1;
11441 break;
11442 }
11443 }
11444 }
11445 }
11446 }
11447
11448 if (!keep_in_target)
11449 {
11450 if (remove_breakpoint (old_loc))
11451 {
11452 /* This is just about all we can do. We could keep
11453 this location on the global list, and try to
11454 remove it next time, but there's no particular
11455 reason why we will succeed next time.
11456
11457 Note that at this point, old_loc->owner is still
11458 valid, as delete_breakpoint frees the breakpoint
11459 only after calling us. */
11460 printf_filtered (_("warning: Error removing "
11461 "breakpoint %d\n"),
11462 old_loc->owner->number);
11463 }
11464 removed = 1;
11465 }
11466 }
11467
11468 if (!found_object)
11469 {
11470 if (removed && target_is_non_stop_p ()
11471 && need_moribund_for_location_type (old_loc))
11472 {
11473 /* This location was removed from the target. In
11474 non-stop mode, a race condition is possible where
11475 we've removed a breakpoint, but stop events for that
11476 breakpoint are already queued and will arrive later.
11477 We apply an heuristic to be able to distinguish such
11478 SIGTRAPs from other random SIGTRAPs: we keep this
11479 breakpoint location for a bit, and will retire it
11480 after we see some number of events. The theory here
11481 is that reporting of events should, "on the average",
11482 be fair, so after a while we'll see events from all
11483 threads that have anything of interest, and no longer
11484 need to keep this breakpoint location around. We
11485 don't hold locations forever so to reduce chances of
11486 mistaking a non-breakpoint SIGTRAP for a breakpoint
11487 SIGTRAP.
11488
11489 The heuristic failing can be disastrous on
11490 decr_pc_after_break targets.
11491
11492 On decr_pc_after_break targets, like e.g., x86-linux,
11493 if we fail to recognize a late breakpoint SIGTRAP,
11494 because events_till_retirement has reached 0 too
11495 soon, we'll fail to do the PC adjustment, and report
11496 a random SIGTRAP to the user. When the user resumes
11497 the inferior, it will most likely immediately crash
11498 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11499 corrupted, because of being resumed e.g., in the
11500 middle of a multi-byte instruction, or skipped a
11501 one-byte instruction. This was actually seen happen
11502 on native x86-linux, and should be less rare on
11503 targets that do not support new thread events, like
11504 remote, due to the heuristic depending on
11505 thread_count.
11506
11507 Mistaking a random SIGTRAP for a breakpoint trap
11508 causes similar symptoms (PC adjustment applied when
11509 it shouldn't), but then again, playing with SIGTRAPs
11510 behind the debugger's back is asking for trouble.
11511
11512 Since hardware watchpoint traps are always
11513 distinguishable from other traps, so we don't need to
11514 apply keep hardware watchpoint moribund locations
11515 around. We simply always ignore hardware watchpoint
11516 traps we can no longer explain. */
11517
11518 process_stratum_target *proc_target = nullptr;
11519 for (inferior *inf : all_inferiors ())
11520 if (inf->pspace == old_loc->pspace)
11521 {
11522 proc_target = inf->process_target ();
11523 break;
11524 }
11525 if (proc_target != nullptr)
11526 old_loc->events_till_retirement
11527 = 3 * (thread_count (proc_target) + 1);
11528 else
11529 old_loc->events_till_retirement = 1;
11530 old_loc->owner = NULL;
11531
11532 moribund_locations.push_back (old_loc);
11533 }
11534 else
11535 {
11536 old_loc->owner = NULL;
11537 decref_bp_location (&old_loc);
11538 }
11539 }
11540 }
11541
11542 /* Rescan breakpoints at the same address and section, marking the
11543 first one as "first" and any others as "duplicates". This is so
11544 that the bpt instruction is only inserted once. If we have a
11545 permanent breakpoint at the same place as BPT, make that one the
11546 official one, and the rest as duplicates. Permanent breakpoints
11547 are sorted first for the same address.
11548
11549 Do the same for hardware watchpoints, but also considering the
11550 watchpoint's type (regular/access/read) and length. */
11551
11552 bp_loc_first = NULL;
11553 wp_loc_first = NULL;
11554 awp_loc_first = NULL;
11555 rwp_loc_first = NULL;
11556
11557 for (bp_location *loc : all_bp_locations ())
11558 {
11559 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11560 non-NULL. */
11561 struct bp_location **loc_first_p;
11562 breakpoint *b = loc->owner;
11563
11564 if (!unduplicated_should_be_inserted (loc)
11565 || !bl_address_is_meaningful (loc)
11566 /* Don't detect duplicate for tracepoint locations because they are
11567 never duplicated. See the comments in field `duplicate' of
11568 `struct bp_location'. */
11569 || is_tracepoint (b))
11570 {
11571 /* Clear the condition modification flag. */
11572 loc->condition_changed = condition_unchanged;
11573 continue;
11574 }
11575
11576 if (b->type == bp_hardware_watchpoint)
11577 loc_first_p = &wp_loc_first;
11578 else if (b->type == bp_read_watchpoint)
11579 loc_first_p = &rwp_loc_first;
11580 else if (b->type == bp_access_watchpoint)
11581 loc_first_p = &awp_loc_first;
11582 else
11583 loc_first_p = &bp_loc_first;
11584
11585 if (*loc_first_p == NULL
11586 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11587 || !breakpoint_locations_match (loc, *loc_first_p))
11588 {
11589 *loc_first_p = loc;
11590 loc->duplicate = 0;
11591
11592 if (is_breakpoint (loc->owner) && loc->condition_changed)
11593 {
11594 loc->needs_update = 1;
11595 /* Clear the condition modification flag. */
11596 loc->condition_changed = condition_unchanged;
11597 }
11598 continue;
11599 }
11600
11601
11602 /* This and the above ensure the invariant that the first location
11603 is not duplicated, and is the inserted one.
11604 All following are marked as duplicated, and are not inserted. */
11605 if (loc->inserted)
11606 swap_insertion (loc, *loc_first_p);
11607 loc->duplicate = 1;
11608
11609 /* Clear the condition modification flag. */
11610 loc->condition_changed = condition_unchanged;
11611 }
11612
11613 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
11614 {
11615 if (insert_mode != UGLL_DONT_INSERT)
11616 insert_breakpoint_locations ();
11617 else
11618 {
11619 /* Even though the caller told us to not insert new
11620 locations, we may still need to update conditions on the
11621 target's side of breakpoints that were already inserted
11622 if the target is evaluating breakpoint conditions. We
11623 only update conditions for locations that are marked
11624 "needs_update". */
11625 update_inserted_breakpoint_locations ();
11626 }
11627 }
11628
11629 if (insert_mode != UGLL_DONT_INSERT)
11630 download_tracepoint_locations ();
11631 }
11632
11633 void
11634 breakpoint_retire_moribund (void)
11635 {
11636 for (int ix = 0; ix < moribund_locations.size (); ++ix)
11637 {
11638 struct bp_location *loc = moribund_locations[ix];
11639 if (--(loc->events_till_retirement) == 0)
11640 {
11641 decref_bp_location (&loc);
11642 unordered_remove (moribund_locations, ix);
11643 --ix;
11644 }
11645 }
11646 }
11647
11648 static void
11649 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
11650 {
11651
11652 try
11653 {
11654 update_global_location_list (insert_mode);
11655 }
11656 catch (const gdb_exception_error &e)
11657 {
11658 }
11659 }
11660
11661 /* Clear BKP from a BPS. */
11662
11663 static void
11664 bpstat_remove_bp_location (bpstat *bps, struct breakpoint *bpt)
11665 {
11666 bpstat *bs;
11667
11668 for (bs = bps; bs; bs = bs->next)
11669 if (bs->breakpoint_at == bpt)
11670 {
11671 bs->breakpoint_at = NULL;
11672 bs->old_val = NULL;
11673 /* bs->commands will be freed later. */
11674 }
11675 }
11676
11677 /* Callback for iterate_over_threads. */
11678 static int
11679 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
11680 {
11681 struct breakpoint *bpt = (struct breakpoint *) data;
11682
11683 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
11684 return 0;
11685 }
11686
11687 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
11688 callbacks. */
11689
11690 static void
11691 say_where (struct breakpoint *b)
11692 {
11693 struct value_print_options opts;
11694
11695 get_user_print_options (&opts);
11696
11697 /* i18n: cagney/2005-02-11: Below needs to be merged into a
11698 single string. */
11699 if (b->loc == NULL)
11700 {
11701 /* For pending locations, the output differs slightly based
11702 on b->extra_string. If this is non-NULL, it contains either
11703 a condition or dprintf arguments. */
11704 if (b->extra_string == NULL)
11705 {
11706 printf_filtered (_(" (%s) pending."),
11707 event_location_to_string (b->location.get ()));
11708 }
11709 else if (b->type == bp_dprintf)
11710 {
11711 printf_filtered (_(" (%s,%s) pending."),
11712 event_location_to_string (b->location.get ()),
11713 b->extra_string.get ());
11714 }
11715 else
11716 {
11717 printf_filtered (_(" (%s %s) pending."),
11718 event_location_to_string (b->location.get ()),
11719 b->extra_string.get ());
11720 }
11721 }
11722 else
11723 {
11724 if (opts.addressprint || b->loc->symtab == NULL)
11725 printf_filtered (" at %ps",
11726 styled_string (address_style.style (),
11727 paddress (b->loc->gdbarch,
11728 b->loc->address)));
11729 if (b->loc->symtab != NULL)
11730 {
11731 /* If there is a single location, we can print the location
11732 more nicely. */
11733 if (b->loc->next == NULL)
11734 {
11735 const char *filename
11736 = symtab_to_filename_for_display (b->loc->symtab);
11737 printf_filtered (": file %ps, line %d.",
11738 styled_string (file_name_style.style (),
11739 filename),
11740 b->loc->line_number);
11741 }
11742 else
11743 /* This is not ideal, but each location may have a
11744 different file name, and this at least reflects the
11745 real situation somewhat. */
11746 printf_filtered (": %s.",
11747 event_location_to_string (b->location.get ()));
11748 }
11749
11750 if (b->loc->next)
11751 {
11752 struct bp_location *loc = b->loc;
11753 int n = 0;
11754 for (; loc; loc = loc->next)
11755 ++n;
11756 printf_filtered (" (%d locations)", n);
11757 }
11758 }
11759 }
11760
11761 /* See breakpoint.h. */
11762
11763 bp_location_range breakpoint::locations ()
11764 {
11765 return bp_location_range (this->loc);
11766 }
11767
11768 static struct bp_location *
11769 base_breakpoint_allocate_location (struct breakpoint *self)
11770 {
11771 return new bp_location (self);
11772 }
11773
11774 static void
11775 base_breakpoint_re_set (struct breakpoint *b)
11776 {
11777 /* Nothing to re-set. */
11778 }
11779
11780 #define internal_error_pure_virtual_called() \
11781 gdb_assert_not_reached ("pure virtual function called")
11782
11783 static int
11784 base_breakpoint_insert_location (struct bp_location *bl)
11785 {
11786 internal_error_pure_virtual_called ();
11787 }
11788
11789 static int
11790 base_breakpoint_remove_location (struct bp_location *bl,
11791 enum remove_bp_reason reason)
11792 {
11793 internal_error_pure_virtual_called ();
11794 }
11795
11796 static int
11797 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
11798 const address_space *aspace,
11799 CORE_ADDR bp_addr,
11800 const target_waitstatus &ws)
11801 {
11802 internal_error_pure_virtual_called ();
11803 }
11804
11805 static void
11806 base_breakpoint_check_status (bpstat *bs)
11807 {
11808 /* Always stop. */
11809 }
11810
11811 /* A "works_in_software_mode" breakpoint_ops method that just internal
11812 errors. */
11813
11814 static int
11815 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
11816 {
11817 internal_error_pure_virtual_called ();
11818 }
11819
11820 /* A "resources_needed" breakpoint_ops method that just internal
11821 errors. */
11822
11823 static int
11824 base_breakpoint_resources_needed (const struct bp_location *bl)
11825 {
11826 internal_error_pure_virtual_called ();
11827 }
11828
11829 static enum print_stop_action
11830 base_breakpoint_print_it (bpstat *bs)
11831 {
11832 internal_error_pure_virtual_called ();
11833 }
11834
11835 static void
11836 base_breakpoint_print_one_detail (const struct breakpoint *self,
11837 struct ui_out *uiout)
11838 {
11839 /* nothing */
11840 }
11841
11842 static void
11843 base_breakpoint_print_mention (struct breakpoint *b)
11844 {
11845 internal_error_pure_virtual_called ();
11846 }
11847
11848 static void
11849 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
11850 {
11851 internal_error_pure_virtual_called ();
11852 }
11853
11854 static void
11855 base_breakpoint_create_sals_from_location
11856 (struct event_location *location,
11857 struct linespec_result *canonical,
11858 enum bptype type_wanted)
11859 {
11860 internal_error_pure_virtual_called ();
11861 }
11862
11863 static void
11864 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
11865 struct linespec_result *c,
11866 gdb::unique_xmalloc_ptr<char> cond_string,
11867 gdb::unique_xmalloc_ptr<char> extra_string,
11868 enum bptype type_wanted,
11869 enum bpdisp disposition,
11870 int thread,
11871 int task, int ignore_count,
11872 const struct breakpoint_ops *o,
11873 int from_tty, int enabled,
11874 int internal, unsigned flags)
11875 {
11876 internal_error_pure_virtual_called ();
11877 }
11878
11879 static std::vector<symtab_and_line>
11880 base_breakpoint_decode_location (struct breakpoint *b,
11881 struct event_location *location,
11882 struct program_space *search_pspace)
11883 {
11884 internal_error_pure_virtual_called ();
11885 }
11886
11887 /* The default 'explains_signal' method. */
11888
11889 static int
11890 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
11891 {
11892 return 1;
11893 }
11894
11895 /* The default "after_condition_true" method. */
11896
11897 static void
11898 base_breakpoint_after_condition_true (struct bpstat *bs)
11899 {
11900 /* Nothing to do. */
11901 }
11902
11903 struct breakpoint_ops base_breakpoint_ops =
11904 {
11905 base_breakpoint_allocate_location,
11906 base_breakpoint_re_set,
11907 base_breakpoint_insert_location,
11908 base_breakpoint_remove_location,
11909 base_breakpoint_breakpoint_hit,
11910 base_breakpoint_check_status,
11911 base_breakpoint_resources_needed,
11912 base_breakpoint_works_in_software_mode,
11913 base_breakpoint_print_it,
11914 NULL,
11915 base_breakpoint_print_one_detail,
11916 base_breakpoint_print_mention,
11917 base_breakpoint_print_recreate,
11918 base_breakpoint_create_sals_from_location,
11919 base_breakpoint_create_breakpoints_sal,
11920 base_breakpoint_decode_location,
11921 base_breakpoint_explains_signal,
11922 base_breakpoint_after_condition_true,
11923 };
11924
11925 /* Default breakpoint_ops methods. */
11926
11927 static void
11928 bkpt_re_set (struct breakpoint *b)
11929 {
11930 /* FIXME: is this still reachable? */
11931 if (breakpoint_event_location_empty_p (b))
11932 {
11933 /* Anything without a location can't be re-set. */
11934 delete_breakpoint (b);
11935 return;
11936 }
11937
11938 breakpoint_re_set_default (b);
11939 }
11940
11941 static int
11942 bkpt_insert_location (struct bp_location *bl)
11943 {
11944 CORE_ADDR addr = bl->target_info.reqstd_address;
11945
11946 bl->target_info.kind = breakpoint_kind (bl, &addr);
11947 bl->target_info.placed_address = addr;
11948
11949 if (bl->loc_type == bp_loc_hardware_breakpoint)
11950 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
11951 else
11952 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
11953 }
11954
11955 static int
11956 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
11957 {
11958 if (bl->loc_type == bp_loc_hardware_breakpoint)
11959 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
11960 else
11961 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
11962 }
11963
11964 static int
11965 bkpt_breakpoint_hit (const struct bp_location *bl,
11966 const address_space *aspace, CORE_ADDR bp_addr,
11967 const target_waitstatus &ws)
11968 {
11969 if (ws.kind () != TARGET_WAITKIND_STOPPED
11970 || ws.sig () != GDB_SIGNAL_TRAP)
11971 return 0;
11972
11973 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
11974 aspace, bp_addr))
11975 return 0;
11976
11977 if (overlay_debugging /* unmapped overlay section */
11978 && section_is_overlay (bl->section)
11979 && !section_is_mapped (bl->section))
11980 return 0;
11981
11982 return 1;
11983 }
11984
11985 static int
11986 dprintf_breakpoint_hit (const struct bp_location *bl,
11987 const address_space *aspace, CORE_ADDR bp_addr,
11988 const target_waitstatus &ws)
11989 {
11990 if (dprintf_style == dprintf_style_agent
11991 && target_can_run_breakpoint_commands ())
11992 {
11993 /* An agent-style dprintf never causes a stop. If we see a trap
11994 for this address it must be for a breakpoint that happens to
11995 be set at the same address. */
11996 return 0;
11997 }
11998
11999 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12000 }
12001
12002 static int
12003 bkpt_resources_needed (const struct bp_location *bl)
12004 {
12005 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12006
12007 return 1;
12008 }
12009
12010 static enum print_stop_action
12011 bkpt_print_it (bpstat *bs)
12012 {
12013 struct breakpoint *b;
12014 const struct bp_location *bl;
12015 int bp_temp;
12016 struct ui_out *uiout = current_uiout;
12017
12018 gdb_assert (bs->bp_location_at != NULL);
12019
12020 bl = bs->bp_location_at.get ();
12021 b = bs->breakpoint_at;
12022
12023 bp_temp = b->disposition == disp_del;
12024 if (bl->address != bl->requested_address)
12025 breakpoint_adjustment_warning (bl->requested_address,
12026 bl->address,
12027 b->number, 1);
12028 annotate_breakpoint (b->number);
12029 maybe_print_thread_hit_breakpoint (uiout);
12030
12031 if (uiout->is_mi_like_p ())
12032 {
12033 uiout->field_string ("reason",
12034 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12035 uiout->field_string ("disp", bpdisp_text (b->disposition));
12036 }
12037 if (bp_temp)
12038 uiout->message ("Temporary breakpoint %pF, ",
12039 signed_field ("bkptno", b->number));
12040 else
12041 uiout->message ("Breakpoint %pF, ",
12042 signed_field ("bkptno", b->number));
12043
12044 return PRINT_SRC_AND_LOC;
12045 }
12046
12047 static void
12048 bkpt_print_mention (struct breakpoint *b)
12049 {
12050 if (current_uiout->is_mi_like_p ())
12051 return;
12052
12053 switch (b->type)
12054 {
12055 case bp_breakpoint:
12056 case bp_gnu_ifunc_resolver:
12057 if (b->disposition == disp_del)
12058 printf_filtered (_("Temporary breakpoint"));
12059 else
12060 printf_filtered (_("Breakpoint"));
12061 printf_filtered (_(" %d"), b->number);
12062 if (b->type == bp_gnu_ifunc_resolver)
12063 printf_filtered (_(" at gnu-indirect-function resolver"));
12064 break;
12065 case bp_hardware_breakpoint:
12066 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12067 break;
12068 case bp_dprintf:
12069 printf_filtered (_("Dprintf %d"), b->number);
12070 break;
12071 }
12072
12073 say_where (b);
12074 }
12075
12076 static void
12077 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12078 {
12079 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12080 fprintf_unfiltered (fp, "tbreak");
12081 else if (tp->type == bp_breakpoint)
12082 fprintf_unfiltered (fp, "break");
12083 else if (tp->type == bp_hardware_breakpoint
12084 && tp->disposition == disp_del)
12085 fprintf_unfiltered (fp, "thbreak");
12086 else if (tp->type == bp_hardware_breakpoint)
12087 fprintf_unfiltered (fp, "hbreak");
12088 else
12089 internal_error (__FILE__, __LINE__,
12090 _("unhandled breakpoint type %d"), (int) tp->type);
12091
12092 fprintf_unfiltered (fp, " %s",
12093 event_location_to_string (tp->location.get ()));
12094
12095 /* Print out extra_string if this breakpoint is pending. It might
12096 contain, for example, conditions that were set by the user. */
12097 if (tp->loc == NULL && tp->extra_string != NULL)
12098 fprintf_unfiltered (fp, " %s", tp->extra_string.get ());
12099
12100 print_recreate_thread (tp, fp);
12101 }
12102
12103 static void
12104 bkpt_create_sals_from_location (struct event_location *location,
12105 struct linespec_result *canonical,
12106 enum bptype type_wanted)
12107 {
12108 create_sals_from_location_default (location, canonical, type_wanted);
12109 }
12110
12111 static void
12112 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12113 struct linespec_result *canonical,
12114 gdb::unique_xmalloc_ptr<char> cond_string,
12115 gdb::unique_xmalloc_ptr<char> extra_string,
12116 enum bptype type_wanted,
12117 enum bpdisp disposition,
12118 int thread,
12119 int task, int ignore_count,
12120 const struct breakpoint_ops *ops,
12121 int from_tty, int enabled,
12122 int internal, unsigned flags)
12123 {
12124 create_breakpoints_sal_default (gdbarch, canonical,
12125 std::move (cond_string),
12126 std::move (extra_string),
12127 type_wanted,
12128 disposition, thread, task,
12129 ignore_count, ops, from_tty,
12130 enabled, internal, flags);
12131 }
12132
12133 static std::vector<symtab_and_line>
12134 bkpt_decode_location (struct breakpoint *b,
12135 struct event_location *location,
12136 struct program_space *search_pspace)
12137 {
12138 return decode_location_default (b, location, search_pspace);
12139 }
12140
12141 /* Virtual table for internal breakpoints. */
12142
12143 static void
12144 internal_bkpt_re_set (struct breakpoint *b)
12145 {
12146 switch (b->type)
12147 {
12148 /* Delete overlay event and longjmp master breakpoints; they
12149 will be reset later by breakpoint_re_set. */
12150 case bp_overlay_event:
12151 case bp_longjmp_master:
12152 case bp_std_terminate_master:
12153 case bp_exception_master:
12154 delete_breakpoint (b);
12155 break;
12156
12157 /* This breakpoint is special, it's set up when the inferior
12158 starts and we really don't want to touch it. */
12159 case bp_shlib_event:
12160
12161 /* Like bp_shlib_event, this breakpoint type is special. Once
12162 it is set up, we do not want to touch it. */
12163 case bp_thread_event:
12164 break;
12165 }
12166 }
12167
12168 static void
12169 internal_bkpt_check_status (bpstat *bs)
12170 {
12171 if (bs->breakpoint_at->type == bp_shlib_event)
12172 {
12173 /* If requested, stop when the dynamic linker notifies GDB of
12174 events. This allows the user to get control and place
12175 breakpoints in initializer routines for dynamically loaded
12176 objects (among other things). */
12177 bs->stop = stop_on_solib_events;
12178 bs->print = stop_on_solib_events;
12179 }
12180 else
12181 bs->stop = 0;
12182 }
12183
12184 static enum print_stop_action
12185 internal_bkpt_print_it (bpstat *bs)
12186 {
12187 struct breakpoint *b;
12188
12189 b = bs->breakpoint_at;
12190
12191 switch (b->type)
12192 {
12193 case bp_shlib_event:
12194 /* Did we stop because the user set the stop_on_solib_events
12195 variable? (If so, we report this as a generic, "Stopped due
12196 to shlib event" message.) */
12197 print_solib_event (0);
12198 break;
12199
12200 case bp_thread_event:
12201 /* Not sure how we will get here.
12202 GDB should not stop for these breakpoints. */
12203 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12204 break;
12205
12206 case bp_overlay_event:
12207 /* By analogy with the thread event, GDB should not stop for these. */
12208 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12209 break;
12210
12211 case bp_longjmp_master:
12212 /* These should never be enabled. */
12213 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12214 break;
12215
12216 case bp_std_terminate_master:
12217 /* These should never be enabled. */
12218 printf_filtered (_("std::terminate Master Breakpoint: "
12219 "gdb should not stop!\n"));
12220 break;
12221
12222 case bp_exception_master:
12223 /* These should never be enabled. */
12224 printf_filtered (_("Exception Master Breakpoint: "
12225 "gdb should not stop!\n"));
12226 break;
12227 }
12228
12229 return PRINT_NOTHING;
12230 }
12231
12232 static void
12233 internal_bkpt_print_mention (struct breakpoint *b)
12234 {
12235 /* Nothing to mention. These breakpoints are internal. */
12236 }
12237
12238 /* Virtual table for momentary breakpoints */
12239
12240 static void
12241 momentary_bkpt_re_set (struct breakpoint *b)
12242 {
12243 /* Keep temporary breakpoints, which can be encountered when we step
12244 over a dlopen call and solib_add is resetting the breakpoints.
12245 Otherwise these should have been blown away via the cleanup chain
12246 or by breakpoint_init_inferior when we rerun the executable. */
12247 }
12248
12249 static void
12250 momentary_bkpt_check_status (bpstat *bs)
12251 {
12252 /* Nothing. The point of these breakpoints is causing a stop. */
12253 }
12254
12255 static enum print_stop_action
12256 momentary_bkpt_print_it (bpstat *bs)
12257 {
12258 return PRINT_UNKNOWN;
12259 }
12260
12261 static void
12262 momentary_bkpt_print_mention (struct breakpoint *b)
12263 {
12264 /* Nothing to mention. These breakpoints are internal. */
12265 }
12266
12267 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12268
12269 It gets cleared already on the removal of the first one of such placed
12270 breakpoints. This is OK as they get all removed altogether. */
12271
12272 longjmp_breakpoint::~longjmp_breakpoint ()
12273 {
12274 thread_info *tp = find_thread_global_id (this->thread);
12275
12276 if (tp != NULL)
12277 tp->initiating_frame = null_frame_id;
12278 }
12279
12280 /* Specific methods for probe breakpoints. */
12281
12282 static int
12283 bkpt_probe_insert_location (struct bp_location *bl)
12284 {
12285 int v = bkpt_insert_location (bl);
12286
12287 if (v == 0)
12288 {
12289 /* The insertion was successful, now let's set the probe's semaphore
12290 if needed. */
12291 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12292 }
12293
12294 return v;
12295 }
12296
12297 static int
12298 bkpt_probe_remove_location (struct bp_location *bl,
12299 enum remove_bp_reason reason)
12300 {
12301 /* Let's clear the semaphore before removing the location. */
12302 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12303
12304 return bkpt_remove_location (bl, reason);
12305 }
12306
12307 static void
12308 bkpt_probe_create_sals_from_location (struct event_location *location,
12309 struct linespec_result *canonical,
12310 enum bptype type_wanted)
12311 {
12312 struct linespec_sals lsal;
12313
12314 lsal.sals = parse_probes (location, NULL, canonical);
12315 lsal.canonical
12316 = xstrdup (event_location_to_string (canonical->location.get ()));
12317 canonical->lsals.push_back (std::move (lsal));
12318 }
12319
12320 static std::vector<symtab_and_line>
12321 bkpt_probe_decode_location (struct breakpoint *b,
12322 struct event_location *location,
12323 struct program_space *search_pspace)
12324 {
12325 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12326 if (sals.empty ())
12327 error (_("probe not found"));
12328 return sals;
12329 }
12330
12331 /* The breakpoint_ops structure to be used in tracepoints. */
12332
12333 static void
12334 tracepoint_re_set (struct breakpoint *b)
12335 {
12336 breakpoint_re_set_default (b);
12337 }
12338
12339 static int
12340 tracepoint_breakpoint_hit (const struct bp_location *bl,
12341 const address_space *aspace, CORE_ADDR bp_addr,
12342 const target_waitstatus &ws)
12343 {
12344 /* By definition, the inferior does not report stops at
12345 tracepoints. */
12346 return 0;
12347 }
12348
12349 static void
12350 tracepoint_print_one_detail (const struct breakpoint *self,
12351 struct ui_out *uiout)
12352 {
12353 struct tracepoint *tp = (struct tracepoint *) self;
12354 if (!tp->static_trace_marker_id.empty ())
12355 {
12356 gdb_assert (self->type == bp_static_tracepoint);
12357
12358 uiout->message ("\tmarker id is %pF\n",
12359 string_field ("static-tracepoint-marker-string-id",
12360 tp->static_trace_marker_id.c_str ()));
12361 }
12362 }
12363
12364 static void
12365 tracepoint_print_mention (struct breakpoint *b)
12366 {
12367 if (current_uiout->is_mi_like_p ())
12368 return;
12369
12370 switch (b->type)
12371 {
12372 case bp_tracepoint:
12373 printf_filtered (_("Tracepoint"));
12374 printf_filtered (_(" %d"), b->number);
12375 break;
12376 case bp_fast_tracepoint:
12377 printf_filtered (_("Fast tracepoint"));
12378 printf_filtered (_(" %d"), b->number);
12379 break;
12380 case bp_static_tracepoint:
12381 printf_filtered (_("Static tracepoint"));
12382 printf_filtered (_(" %d"), b->number);
12383 break;
12384 default:
12385 internal_error (__FILE__, __LINE__,
12386 _("unhandled tracepoint type %d"), (int) b->type);
12387 }
12388
12389 say_where (b);
12390 }
12391
12392 static void
12393 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12394 {
12395 struct tracepoint *tp = (struct tracepoint *) self;
12396
12397 if (self->type == bp_fast_tracepoint)
12398 fprintf_unfiltered (fp, "ftrace");
12399 else if (self->type == bp_static_tracepoint)
12400 fprintf_unfiltered (fp, "strace");
12401 else if (self->type == bp_tracepoint)
12402 fprintf_unfiltered (fp, "trace");
12403 else
12404 internal_error (__FILE__, __LINE__,
12405 _("unhandled tracepoint type %d"), (int) self->type);
12406
12407 fprintf_unfiltered (fp, " %s",
12408 event_location_to_string (self->location.get ()));
12409 print_recreate_thread (self, fp);
12410
12411 if (tp->pass_count)
12412 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12413 }
12414
12415 static void
12416 tracepoint_create_sals_from_location (struct event_location *location,
12417 struct linespec_result *canonical,
12418 enum bptype type_wanted)
12419 {
12420 create_sals_from_location_default (location, canonical, type_wanted);
12421 }
12422
12423 static void
12424 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12425 struct linespec_result *canonical,
12426 gdb::unique_xmalloc_ptr<char> cond_string,
12427 gdb::unique_xmalloc_ptr<char> extra_string,
12428 enum bptype type_wanted,
12429 enum bpdisp disposition,
12430 int thread,
12431 int task, int ignore_count,
12432 const struct breakpoint_ops *ops,
12433 int from_tty, int enabled,
12434 int internal, unsigned flags)
12435 {
12436 create_breakpoints_sal_default (gdbarch, canonical,
12437 std::move (cond_string),
12438 std::move (extra_string),
12439 type_wanted,
12440 disposition, thread, task,
12441 ignore_count, ops, from_tty,
12442 enabled, internal, flags);
12443 }
12444
12445 static std::vector<symtab_and_line>
12446 tracepoint_decode_location (struct breakpoint *b,
12447 struct event_location *location,
12448 struct program_space *search_pspace)
12449 {
12450 return decode_location_default (b, location, search_pspace);
12451 }
12452
12453 struct breakpoint_ops tracepoint_breakpoint_ops;
12454
12455 /* Virtual table for tracepoints on static probes. */
12456
12457 static void
12458 tracepoint_probe_create_sals_from_location
12459 (struct event_location *location,
12460 struct linespec_result *canonical,
12461 enum bptype type_wanted)
12462 {
12463 /* We use the same method for breakpoint on probes. */
12464 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12465 }
12466
12467 static std::vector<symtab_and_line>
12468 tracepoint_probe_decode_location (struct breakpoint *b,
12469 struct event_location *location,
12470 struct program_space *search_pspace)
12471 {
12472 /* We use the same method for breakpoint on probes. */
12473 return bkpt_probe_decode_location (b, location, search_pspace);
12474 }
12475
12476 /* Dprintf breakpoint_ops methods. */
12477
12478 static void
12479 dprintf_re_set (struct breakpoint *b)
12480 {
12481 breakpoint_re_set_default (b);
12482
12483 /* extra_string should never be non-NULL for dprintf. */
12484 gdb_assert (b->extra_string != NULL);
12485
12486 /* 1 - connect to target 1, that can run breakpoint commands.
12487 2 - create a dprintf, which resolves fine.
12488 3 - disconnect from target 1
12489 4 - connect to target 2, that can NOT run breakpoint commands.
12490
12491 After steps #3/#4, you'll want the dprintf command list to
12492 be updated, because target 1 and 2 may well return different
12493 answers for target_can_run_breakpoint_commands().
12494 Given absence of finer grained resetting, we get to do
12495 it all the time. */
12496 if (b->extra_string != NULL)
12497 update_dprintf_command_list (b);
12498 }
12499
12500 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
12501
12502 static void
12503 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12504 {
12505 fprintf_unfiltered (fp, "dprintf %s,%s",
12506 event_location_to_string (tp->location.get ()),
12507 tp->extra_string.get ());
12508 print_recreate_thread (tp, fp);
12509 }
12510
12511 /* Implement the "after_condition_true" breakpoint_ops method for
12512 dprintf.
12513
12514 dprintf's are implemented with regular commands in their command
12515 list, but we run the commands here instead of before presenting the
12516 stop to the user, as dprintf's don't actually cause a stop. This
12517 also makes it so that the commands of multiple dprintfs at the same
12518 address are all handled. */
12519
12520 static void
12521 dprintf_after_condition_true (struct bpstat *bs)
12522 {
12523 /* dprintf's never cause a stop. This wasn't set in the
12524 check_status hook instead because that would make the dprintf's
12525 condition not be evaluated. */
12526 bs->stop = 0;
12527
12528 /* Run the command list here. Take ownership of it instead of
12529 copying. We never want these commands to run later in
12530 bpstat_do_actions, if a breakpoint that causes a stop happens to
12531 be set at same address as this dprintf, or even if running the
12532 commands here throws. */
12533 counted_command_line cmds = std::move (bs->commands);
12534 gdb_assert (cmds != nullptr);
12535 execute_control_commands (cmds.get (), 0);
12536 }
12537
12538 /* The breakpoint_ops structure to be used on static tracepoints with
12539 markers (`-m'). */
12540
12541 static void
12542 strace_marker_create_sals_from_location (struct event_location *location,
12543 struct linespec_result *canonical,
12544 enum bptype type_wanted)
12545 {
12546 struct linespec_sals lsal;
12547 const char *arg_start, *arg;
12548
12549 arg = arg_start = get_linespec_location (location)->spec_string;
12550 lsal.sals = decode_static_tracepoint_spec (&arg);
12551
12552 std::string str (arg_start, arg - arg_start);
12553 const char *ptr = str.c_str ();
12554 canonical->location
12555 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
12556
12557 lsal.canonical
12558 = xstrdup (event_location_to_string (canonical->location.get ()));
12559 canonical->lsals.push_back (std::move (lsal));
12560 }
12561
12562 static void
12563 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12564 struct linespec_result *canonical,
12565 gdb::unique_xmalloc_ptr<char> cond_string,
12566 gdb::unique_xmalloc_ptr<char> extra_string,
12567 enum bptype type_wanted,
12568 enum bpdisp disposition,
12569 int thread,
12570 int task, int ignore_count,
12571 const struct breakpoint_ops *ops,
12572 int from_tty, int enabled,
12573 int internal, unsigned flags)
12574 {
12575 const linespec_sals &lsal = canonical->lsals[0];
12576
12577 /* If the user is creating a static tracepoint by marker id
12578 (strace -m MARKER_ID), then store the sals index, so that
12579 breakpoint_re_set can try to match up which of the newly
12580 found markers corresponds to this one, and, don't try to
12581 expand multiple locations for each sal, given than SALS
12582 already should contain all sals for MARKER_ID. */
12583
12584 for (size_t i = 0; i < lsal.sals.size (); i++)
12585 {
12586 event_location_up location
12587 = copy_event_location (canonical->location.get ());
12588
12589 std::unique_ptr<tracepoint> tp (new tracepoint ());
12590 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
12591 std::move (location), NULL,
12592 std::move (cond_string),
12593 std::move (extra_string),
12594 type_wanted, disposition,
12595 thread, task, ignore_count, ops,
12596 from_tty, enabled, internal, flags,
12597 canonical->special_display);
12598 /* Given that its possible to have multiple markers with
12599 the same string id, if the user is creating a static
12600 tracepoint by marker id ("strace -m MARKER_ID"), then
12601 store the sals index, so that breakpoint_re_set can
12602 try to match up which of the newly found markers
12603 corresponds to this one */
12604 tp->static_trace_marker_id_idx = i;
12605
12606 install_breakpoint (internal, std::move (tp), 0);
12607 }
12608 }
12609
12610 static std::vector<symtab_and_line>
12611 strace_marker_decode_location (struct breakpoint *b,
12612 struct event_location *location,
12613 struct program_space *search_pspace)
12614 {
12615 struct tracepoint *tp = (struct tracepoint *) b;
12616 const char *s = get_linespec_location (location)->spec_string;
12617
12618 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
12619 if (sals.size () > tp->static_trace_marker_id_idx)
12620 {
12621 sals[0] = sals[tp->static_trace_marker_id_idx];
12622 sals.resize (1);
12623 return sals;
12624 }
12625 else
12626 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
12627 }
12628
12629 static struct breakpoint_ops strace_marker_breakpoint_ops;
12630
12631 static int
12632 strace_marker_p (struct breakpoint *b)
12633 {
12634 return b->ops == &strace_marker_breakpoint_ops;
12635 }
12636
12637 /* Delete a breakpoint and clean up all traces of it in the data
12638 structures. */
12639
12640 void
12641 delete_breakpoint (struct breakpoint *bpt)
12642 {
12643 gdb_assert (bpt != NULL);
12644
12645 /* Has this bp already been deleted? This can happen because
12646 multiple lists can hold pointers to bp's. bpstat lists are
12647 especial culprits.
12648
12649 One example of this happening is a watchpoint's scope bp. When
12650 the scope bp triggers, we notice that the watchpoint is out of
12651 scope, and delete it. We also delete its scope bp. But the
12652 scope bp is marked "auto-deleting", and is already on a bpstat.
12653 That bpstat is then checked for auto-deleting bp's, which are
12654 deleted.
12655
12656 A real solution to this problem might involve reference counts in
12657 bp's, and/or giving them pointers back to their referencing
12658 bpstat's, and teaching delete_breakpoint to only free a bp's
12659 storage when no more references were extent. A cheaper bandaid
12660 was chosen. */
12661 if (bpt->type == bp_none)
12662 return;
12663
12664 /* At least avoid this stale reference until the reference counting
12665 of breakpoints gets resolved. */
12666 if (bpt->related_breakpoint != bpt)
12667 {
12668 struct breakpoint *related;
12669 struct watchpoint *w;
12670
12671 if (bpt->type == bp_watchpoint_scope)
12672 w = (struct watchpoint *) bpt->related_breakpoint;
12673 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
12674 w = (struct watchpoint *) bpt;
12675 else
12676 w = NULL;
12677 if (w != NULL)
12678 watchpoint_del_at_next_stop (w);
12679
12680 /* Unlink bpt from the bpt->related_breakpoint ring. */
12681 for (related = bpt; related->related_breakpoint != bpt;
12682 related = related->related_breakpoint);
12683 related->related_breakpoint = bpt->related_breakpoint;
12684 bpt->related_breakpoint = bpt;
12685 }
12686
12687 /* watch_command_1 creates a watchpoint but only sets its number if
12688 update_watchpoint succeeds in creating its bp_locations. If there's
12689 a problem in that process, we'll be asked to delete the half-created
12690 watchpoint. In that case, don't announce the deletion. */
12691 if (bpt->number)
12692 gdb::observers::breakpoint_deleted.notify (bpt);
12693
12694 if (breakpoint_chain == bpt)
12695 breakpoint_chain = bpt->next;
12696
12697 for (breakpoint *b : all_breakpoints ())
12698 if (b->next == bpt)
12699 {
12700 b->next = bpt->next;
12701 break;
12702 }
12703
12704 /* Be sure no bpstat's are pointing at the breakpoint after it's
12705 been freed. */
12706 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
12707 in all threads for now. Note that we cannot just remove bpstats
12708 pointing at bpt from the stop_bpstat list entirely, as breakpoint
12709 commands are associated with the bpstat; if we remove it here,
12710 then the later call to bpstat_do_actions (&stop_bpstat); in
12711 event-top.c won't do anything, and temporary breakpoints with
12712 commands won't work. */
12713
12714 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
12715
12716 /* Now that breakpoint is removed from breakpoint list, update the
12717 global location list. This will remove locations that used to
12718 belong to this breakpoint. Do this before freeing the breakpoint
12719 itself, since remove_breakpoint looks at location's owner. It
12720 might be better design to have location completely
12721 self-contained, but it's not the case now. */
12722 update_global_location_list (UGLL_DONT_INSERT);
12723
12724 /* On the chance that someone will soon try again to delete this
12725 same bp, we mark it as deleted before freeing its storage. */
12726 bpt->type = bp_none;
12727 delete bpt;
12728 }
12729
12730 /* Iterator function to call a user-provided callback function once
12731 for each of B and its related breakpoints. */
12732
12733 static void
12734 iterate_over_related_breakpoints (struct breakpoint *b,
12735 gdb::function_view<void (breakpoint *)> function)
12736 {
12737 struct breakpoint *related;
12738
12739 related = b;
12740 do
12741 {
12742 struct breakpoint *next;
12743
12744 /* FUNCTION may delete RELATED. */
12745 next = related->related_breakpoint;
12746
12747 if (next == related)
12748 {
12749 /* RELATED is the last ring entry. */
12750 function (related);
12751
12752 /* FUNCTION may have deleted it, so we'd never reach back to
12753 B. There's nothing left to do anyway, so just break
12754 out. */
12755 break;
12756 }
12757 else
12758 function (related);
12759
12760 related = next;
12761 }
12762 while (related != b);
12763 }
12764
12765 static void
12766 delete_command (const char *arg, int from_tty)
12767 {
12768 dont_repeat ();
12769
12770 if (arg == 0)
12771 {
12772 int breaks_to_delete = 0;
12773
12774 /* Delete all breakpoints if no argument. Do not delete
12775 internal breakpoints, these have to be deleted with an
12776 explicit breakpoint number argument. */
12777 for (breakpoint *b : all_breakpoints ())
12778 if (user_breakpoint_p (b))
12779 {
12780 breaks_to_delete = 1;
12781 break;
12782 }
12783
12784 /* Ask user only if there are some breakpoints to delete. */
12785 if (!from_tty
12786 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
12787 for (breakpoint *b : all_breakpoints_safe ())
12788 if (user_breakpoint_p (b))
12789 delete_breakpoint (b);
12790 }
12791 else
12792 map_breakpoint_numbers
12793 (arg, [&] (breakpoint *br)
12794 {
12795 iterate_over_related_breakpoints (br, delete_breakpoint);
12796 });
12797 }
12798
12799 /* Return true if all locations of B bound to PSPACE are pending. If
12800 PSPACE is NULL, all locations of all program spaces are
12801 considered. */
12802
12803 static int
12804 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
12805 {
12806 for (bp_location *loc : b->locations ())
12807 if ((pspace == NULL
12808 || loc->pspace == pspace)
12809 && !loc->shlib_disabled
12810 && !loc->pspace->executing_startup)
12811 return 0;
12812 return 1;
12813 }
12814
12815 /* Subroutine of update_breakpoint_locations to simplify it.
12816 Return non-zero if multiple fns in list LOC have the same name.
12817 Null names are ignored. */
12818
12819 static int
12820 ambiguous_names_p (struct bp_location *loc)
12821 {
12822 struct bp_location *l;
12823 htab_up htab (htab_create_alloc (13, htab_hash_string, htab_eq_string, NULL,
12824 xcalloc, xfree));
12825
12826 for (l = loc; l != NULL; l = l->next)
12827 {
12828 const char **slot;
12829 const char *name = l->function_name.get ();
12830
12831 /* Allow for some names to be NULL, ignore them. */
12832 if (name == NULL)
12833 continue;
12834
12835 slot = (const char **) htab_find_slot (htab.get (), (const void *) name,
12836 INSERT);
12837 /* NOTE: We can assume slot != NULL here because xcalloc never
12838 returns NULL. */
12839 if (*slot != NULL)
12840 return 1;
12841 *slot = name;
12842 }
12843
12844 return 0;
12845 }
12846
12847 /* When symbols change, it probably means the sources changed as well,
12848 and it might mean the static tracepoint markers are no longer at
12849 the same address or line numbers they used to be at last we
12850 checked. Losing your static tracepoints whenever you rebuild is
12851 undesirable. This function tries to resync/rematch gdb static
12852 tracepoints with the markers on the target, for static tracepoints
12853 that have not been set by marker id. Static tracepoint that have
12854 been set by marker id are reset by marker id in breakpoint_re_set.
12855 The heuristic is:
12856
12857 1) For a tracepoint set at a specific address, look for a marker at
12858 the old PC. If one is found there, assume to be the same marker.
12859 If the name / string id of the marker found is different from the
12860 previous known name, assume that means the user renamed the marker
12861 in the sources, and output a warning.
12862
12863 2) For a tracepoint set at a given line number, look for a marker
12864 at the new address of the old line number. If one is found there,
12865 assume to be the same marker. If the name / string id of the
12866 marker found is different from the previous known name, assume that
12867 means the user renamed the marker in the sources, and output a
12868 warning.
12869
12870 3) If a marker is no longer found at the same address or line, it
12871 may mean the marker no longer exists. But it may also just mean
12872 the code changed a bit. Maybe the user added a few lines of code
12873 that made the marker move up or down (in line number terms). Ask
12874 the target for info about the marker with the string id as we knew
12875 it. If found, update line number and address in the matching
12876 static tracepoint. This will get confused if there's more than one
12877 marker with the same ID (possible in UST, although unadvised
12878 precisely because it confuses tools). */
12879
12880 static struct symtab_and_line
12881 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
12882 {
12883 struct tracepoint *tp = (struct tracepoint *) b;
12884 struct static_tracepoint_marker marker;
12885 CORE_ADDR pc;
12886
12887 pc = sal.pc;
12888 if (sal.line)
12889 find_line_pc (sal.symtab, sal.line, &pc);
12890
12891 if (target_static_tracepoint_marker_at (pc, &marker))
12892 {
12893 if (tp->static_trace_marker_id != marker.str_id)
12894 warning (_("static tracepoint %d changed probed marker from %s to %s"),
12895 b->number, tp->static_trace_marker_id.c_str (),
12896 marker.str_id.c_str ());
12897
12898 tp->static_trace_marker_id = std::move (marker.str_id);
12899
12900 return sal;
12901 }
12902
12903 /* Old marker wasn't found on target at lineno. Try looking it up
12904 by string ID. */
12905 if (!sal.explicit_pc
12906 && sal.line != 0
12907 && sal.symtab != NULL
12908 && !tp->static_trace_marker_id.empty ())
12909 {
12910 std::vector<static_tracepoint_marker> markers
12911 = target_static_tracepoint_markers_by_strid
12912 (tp->static_trace_marker_id.c_str ());
12913
12914 if (!markers.empty ())
12915 {
12916 struct symbol *sym;
12917 struct static_tracepoint_marker *tpmarker;
12918 struct ui_out *uiout = current_uiout;
12919 struct explicit_location explicit_loc;
12920
12921 tpmarker = &markers[0];
12922
12923 tp->static_trace_marker_id = std::move (tpmarker->str_id);
12924
12925 warning (_("marker for static tracepoint %d (%s) not "
12926 "found at previous line number"),
12927 b->number, tp->static_trace_marker_id.c_str ());
12928
12929 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
12930 sym = find_pc_sect_function (tpmarker->address, NULL);
12931 uiout->text ("Now in ");
12932 if (sym)
12933 {
12934 uiout->field_string ("func", sym->print_name (),
12935 function_name_style.style ());
12936 uiout->text (" at ");
12937 }
12938 uiout->field_string ("file",
12939 symtab_to_filename_for_display (sal2.symtab),
12940 file_name_style.style ());
12941 uiout->text (":");
12942
12943 if (uiout->is_mi_like_p ())
12944 {
12945 const char *fullname = symtab_to_fullname (sal2.symtab);
12946
12947 uiout->field_string ("fullname", fullname);
12948 }
12949
12950 uiout->field_signed ("line", sal2.line);
12951 uiout->text ("\n");
12952
12953 b->loc->line_number = sal2.line;
12954 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
12955
12956 b->location.reset (NULL);
12957 initialize_explicit_location (&explicit_loc);
12958 explicit_loc.source_filename
12959 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
12960 explicit_loc.line_offset.offset = b->loc->line_number;
12961 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
12962 b->location = new_explicit_location (&explicit_loc);
12963
12964 /* Might be nice to check if function changed, and warn if
12965 so. */
12966 }
12967 }
12968 return sal;
12969 }
12970
12971 /* Returns 1 iff locations A and B are sufficiently same that
12972 we don't need to report breakpoint as changed. */
12973
12974 static int
12975 locations_are_equal (struct bp_location *a, struct bp_location *b)
12976 {
12977 while (a && b)
12978 {
12979 if (a->address != b->address)
12980 return 0;
12981
12982 if (a->shlib_disabled != b->shlib_disabled)
12983 return 0;
12984
12985 if (a->enabled != b->enabled)
12986 return 0;
12987
12988 if (a->disabled_by_cond != b->disabled_by_cond)
12989 return 0;
12990
12991 a = a->next;
12992 b = b->next;
12993 }
12994
12995 if ((a == NULL) != (b == NULL))
12996 return 0;
12997
12998 return 1;
12999 }
13000
13001 /* Split all locations of B that are bound to PSPACE out of B's
13002 location list to a separate list and return that list's head. If
13003 PSPACE is NULL, hoist out all locations of B. */
13004
13005 static struct bp_location *
13006 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13007 {
13008 struct bp_location head;
13009 struct bp_location *i = b->loc;
13010 struct bp_location **i_link = &b->loc;
13011 struct bp_location *hoisted = &head;
13012
13013 if (pspace == NULL)
13014 {
13015 i = b->loc;
13016 b->loc = NULL;
13017 return i;
13018 }
13019
13020 head.next = NULL;
13021
13022 while (i != NULL)
13023 {
13024 if (i->pspace == pspace)
13025 {
13026 *i_link = i->next;
13027 i->next = NULL;
13028 hoisted->next = i;
13029 hoisted = i;
13030 }
13031 else
13032 i_link = &i->next;
13033 i = *i_link;
13034 }
13035
13036 return head.next;
13037 }
13038
13039 /* Create new breakpoint locations for B (a hardware or software
13040 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13041 zero, then B is a ranged breakpoint. Only recreates locations for
13042 FILTER_PSPACE. Locations of other program spaces are left
13043 untouched. */
13044
13045 void
13046 update_breakpoint_locations (struct breakpoint *b,
13047 struct program_space *filter_pspace,
13048 gdb::array_view<const symtab_and_line> sals,
13049 gdb::array_view<const symtab_and_line> sals_end)
13050 {
13051 struct bp_location *existing_locations;
13052
13053 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13054 {
13055 /* Ranged breakpoints have only one start location and one end
13056 location. */
13057 b->enable_state = bp_disabled;
13058 fprintf_unfiltered (gdb_stderr,
13059 _("Could not reset ranged breakpoint %d: "
13060 "multiple locations found\n"),
13061 b->number);
13062 return;
13063 }
13064
13065 /* If there's no new locations, and all existing locations are
13066 pending, don't do anything. This optimizes the common case where
13067 all locations are in the same shared library, that was unloaded.
13068 We'd like to retain the location, so that when the library is
13069 loaded again, we don't loose the enabled/disabled status of the
13070 individual locations. */
13071 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13072 return;
13073
13074 existing_locations = hoist_existing_locations (b, filter_pspace);
13075
13076 for (const auto &sal : sals)
13077 {
13078 struct bp_location *new_loc;
13079
13080 switch_to_program_space_and_thread (sal.pspace);
13081
13082 new_loc = add_location_to_breakpoint (b, &sal);
13083
13084 /* Reparse conditions, they might contain references to the
13085 old symtab. */
13086 if (b->cond_string != NULL)
13087 {
13088 const char *s;
13089
13090 s = b->cond_string.get ();
13091 try
13092 {
13093 new_loc->cond = parse_exp_1 (&s, sal.pc,
13094 block_for_pc (sal.pc),
13095 0);
13096 }
13097 catch (const gdb_exception_error &e)
13098 {
13099 new_loc->disabled_by_cond = true;
13100 }
13101 }
13102
13103 if (!sals_end.empty ())
13104 {
13105 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13106
13107 new_loc->length = end - sals[0].pc + 1;
13108 }
13109 }
13110
13111 /* If possible, carry over 'disable' status from existing
13112 breakpoints. */
13113 {
13114 struct bp_location *e = existing_locations;
13115 /* If there are multiple breakpoints with the same function name,
13116 e.g. for inline functions, comparing function names won't work.
13117 Instead compare pc addresses; this is just a heuristic as things
13118 may have moved, but in practice it gives the correct answer
13119 often enough until a better solution is found. */
13120 int have_ambiguous_names = ambiguous_names_p (b->loc);
13121
13122 for (; e; e = e->next)
13123 {
13124 if ((!e->enabled || e->disabled_by_cond) && e->function_name)
13125 {
13126 if (have_ambiguous_names)
13127 {
13128 for (bp_location *l : b->locations ())
13129 {
13130 /* Ignore software vs hardware location type at
13131 this point, because with "set breakpoint
13132 auto-hw", after a re-set, locations that were
13133 hardware can end up as software, or vice versa.
13134 As mentioned above, this is an heuristic and in
13135 practice should give the correct answer often
13136 enough. */
13137 if (breakpoint_locations_match (e, l, true))
13138 {
13139 l->enabled = e->enabled;
13140 l->disabled_by_cond = e->disabled_by_cond;
13141 break;
13142 }
13143 }
13144 }
13145 else
13146 {
13147 for (bp_location *l : b->locations ())
13148 if (l->function_name
13149 && strcmp (e->function_name.get (),
13150 l->function_name.get ()) == 0)
13151 {
13152 l->enabled = e->enabled;
13153 l->disabled_by_cond = e->disabled_by_cond;
13154 break;
13155 }
13156 }
13157 }
13158 }
13159 }
13160
13161 if (!locations_are_equal (existing_locations, b->loc))
13162 gdb::observers::breakpoint_modified.notify (b);
13163 }
13164
13165 /* Find the SaL locations corresponding to the given LOCATION.
13166 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13167
13168 static std::vector<symtab_and_line>
13169 location_to_sals (struct breakpoint *b, struct event_location *location,
13170 struct program_space *search_pspace, int *found)
13171 {
13172 struct gdb_exception exception;
13173
13174 gdb_assert (b->ops != NULL);
13175
13176 std::vector<symtab_and_line> sals;
13177
13178 try
13179 {
13180 sals = b->ops->decode_location (b, location, search_pspace);
13181 }
13182 catch (gdb_exception_error &e)
13183 {
13184 int not_found_and_ok = 0;
13185
13186 /* For pending breakpoints, it's expected that parsing will
13187 fail until the right shared library is loaded. User has
13188 already told to create pending breakpoints and don't need
13189 extra messages. If breakpoint is in bp_shlib_disabled
13190 state, then user already saw the message about that
13191 breakpoint being disabled, and don't want to see more
13192 errors. */
13193 if (e.error == NOT_FOUND_ERROR
13194 && (b->condition_not_parsed
13195 || (b->loc != NULL
13196 && search_pspace != NULL
13197 && b->loc->pspace != search_pspace)
13198 || (b->loc && b->loc->shlib_disabled)
13199 || (b->loc && b->loc->pspace->executing_startup)
13200 || b->enable_state == bp_disabled))
13201 not_found_and_ok = 1;
13202
13203 if (!not_found_and_ok)
13204 {
13205 /* We surely don't want to warn about the same breakpoint
13206 10 times. One solution, implemented here, is disable
13207 the breakpoint on error. Another solution would be to
13208 have separate 'warning emitted' flag. Since this
13209 happens only when a binary has changed, I don't know
13210 which approach is better. */
13211 b->enable_state = bp_disabled;
13212 throw;
13213 }
13214
13215 exception = std::move (e);
13216 }
13217
13218 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13219 {
13220 for (auto &sal : sals)
13221 resolve_sal_pc (&sal);
13222 if (b->condition_not_parsed && b->extra_string != NULL)
13223 {
13224 gdb::unique_xmalloc_ptr<char> cond_string, extra_string;
13225 int thread, task;
13226
13227 find_condition_and_thread_for_sals (sals, b->extra_string.get (),
13228 &cond_string, &thread,
13229 &task, &extra_string);
13230 gdb_assert (b->cond_string == NULL);
13231 if (cond_string)
13232 b->cond_string = std::move (cond_string);
13233 b->thread = thread;
13234 b->task = task;
13235 if (extra_string)
13236 b->extra_string = std::move (extra_string);
13237 b->condition_not_parsed = 0;
13238 }
13239
13240 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13241 sals[0] = update_static_tracepoint (b, sals[0]);
13242
13243 *found = 1;
13244 }
13245 else
13246 *found = 0;
13247
13248 return sals;
13249 }
13250
13251 /* The default re_set method, for typical hardware or software
13252 breakpoints. Reevaluate the breakpoint and recreate its
13253 locations. */
13254
13255 static void
13256 breakpoint_re_set_default (struct breakpoint *b)
13257 {
13258 struct program_space *filter_pspace = current_program_space;
13259 std::vector<symtab_and_line> expanded, expanded_end;
13260
13261 int found;
13262 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13263 filter_pspace, &found);
13264 if (found)
13265 expanded = std::move (sals);
13266
13267 if (b->location_range_end != NULL)
13268 {
13269 std::vector<symtab_and_line> sals_end
13270 = location_to_sals (b, b->location_range_end.get (),
13271 filter_pspace, &found);
13272 if (found)
13273 expanded_end = std::move (sals_end);
13274 }
13275
13276 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13277 }
13278
13279 /* Default method for creating SALs from an address string. It basically
13280 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13281
13282 static void
13283 create_sals_from_location_default (struct event_location *location,
13284 struct linespec_result *canonical,
13285 enum bptype type_wanted)
13286 {
13287 parse_breakpoint_sals (location, canonical);
13288 }
13289
13290 /* Call create_breakpoints_sal for the given arguments. This is the default
13291 function for the `create_breakpoints_sal' method of
13292 breakpoint_ops. */
13293
13294 static void
13295 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13296 struct linespec_result *canonical,
13297 gdb::unique_xmalloc_ptr<char> cond_string,
13298 gdb::unique_xmalloc_ptr<char> extra_string,
13299 enum bptype type_wanted,
13300 enum bpdisp disposition,
13301 int thread,
13302 int task, int ignore_count,
13303 const struct breakpoint_ops *ops,
13304 int from_tty, int enabled,
13305 int internal, unsigned flags)
13306 {
13307 create_breakpoints_sal (gdbarch, canonical,
13308 std::move (cond_string),
13309 std::move (extra_string),
13310 type_wanted, disposition,
13311 thread, task, ignore_count, ops, from_tty,
13312 enabled, internal, flags);
13313 }
13314
13315 /* Decode the line represented by S by calling decode_line_full. This is the
13316 default function for the `decode_location' method of breakpoint_ops. */
13317
13318 static std::vector<symtab_and_line>
13319 decode_location_default (struct breakpoint *b,
13320 struct event_location *location,
13321 struct program_space *search_pspace)
13322 {
13323 struct linespec_result canonical;
13324
13325 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13326 NULL, 0, &canonical, multiple_symbols_all,
13327 b->filter.get ());
13328
13329 /* We should get 0 or 1 resulting SALs. */
13330 gdb_assert (canonical.lsals.size () < 2);
13331
13332 if (!canonical.lsals.empty ())
13333 {
13334 const linespec_sals &lsal = canonical.lsals[0];
13335 return std::move (lsal.sals);
13336 }
13337 return {};
13338 }
13339
13340 /* Reset a breakpoint. */
13341
13342 static void
13343 breakpoint_re_set_one (breakpoint *b)
13344 {
13345 input_radix = b->input_radix;
13346 set_language (b->language);
13347
13348 b->ops->re_set (b);
13349 }
13350
13351 /* Re-set breakpoint locations for the current program space.
13352 Locations bound to other program spaces are left untouched. */
13353
13354 void
13355 breakpoint_re_set (void)
13356 {
13357 {
13358 scoped_restore_current_language save_language;
13359 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13360 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13361
13362 /* breakpoint_re_set_one sets the current_language to the language
13363 of the breakpoint it is resetting (see prepare_re_set_context)
13364 before re-evaluating the breakpoint's location. This change can
13365 unfortunately get undone by accident if the language_mode is set
13366 to auto, and we either switch frames, or more likely in this context,
13367 we select the current frame.
13368
13369 We prevent this by temporarily turning the language_mode to
13370 language_mode_manual. We restore it once all breakpoints
13371 have been reset. */
13372 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
13373 language_mode = language_mode_manual;
13374
13375 /* Note: we must not try to insert locations until after all
13376 breakpoints have been re-set. Otherwise, e.g., when re-setting
13377 breakpoint 1, we'd insert the locations of breakpoint 2, which
13378 hadn't been re-set yet, and thus may have stale locations. */
13379
13380 for (breakpoint *b : all_breakpoints_safe ())
13381 {
13382 try
13383 {
13384 breakpoint_re_set_one (b);
13385 }
13386 catch (const gdb_exception &ex)
13387 {
13388 exception_fprintf (gdb_stderr, ex,
13389 "Error in re-setting breakpoint %d: ",
13390 b->number);
13391 }
13392 }
13393
13394 jit_breakpoint_re_set ();
13395 }
13396
13397 create_overlay_event_breakpoint ();
13398 create_longjmp_master_breakpoint ();
13399 create_std_terminate_master_breakpoint ();
13400 create_exception_master_breakpoint ();
13401
13402 /* Now we can insert. */
13403 update_global_location_list (UGLL_MAY_INSERT);
13404 }
13405 \f
13406 /* Reset the thread number of this breakpoint:
13407
13408 - If the breakpoint is for all threads, leave it as-is.
13409 - Else, reset it to the current thread for inferior_ptid. */
13410 void
13411 breakpoint_re_set_thread (struct breakpoint *b)
13412 {
13413 if (b->thread != -1)
13414 {
13415 b->thread = inferior_thread ()->global_num;
13416
13417 /* We're being called after following a fork. The new fork is
13418 selected as current, and unless this was a vfork will have a
13419 different program space from the original thread. Reset that
13420 as well. */
13421 b->loc->pspace = current_program_space;
13422 }
13423 }
13424
13425 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13426 If from_tty is nonzero, it prints a message to that effect,
13427 which ends with a period (no newline). */
13428
13429 void
13430 set_ignore_count (int bptnum, int count, int from_tty)
13431 {
13432 if (count < 0)
13433 count = 0;
13434
13435 for (breakpoint *b : all_breakpoints ())
13436 if (b->number == bptnum)
13437 {
13438 if (is_tracepoint (b))
13439 {
13440 if (from_tty && count != 0)
13441 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13442 bptnum);
13443 return;
13444 }
13445
13446 b->ignore_count = count;
13447 if (from_tty)
13448 {
13449 if (count == 0)
13450 printf_filtered (_("Will stop next time "
13451 "breakpoint %d is reached."),
13452 bptnum);
13453 else if (count == 1)
13454 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13455 bptnum);
13456 else
13457 printf_filtered (_("Will ignore next %d "
13458 "crossings of breakpoint %d."),
13459 count, bptnum);
13460 }
13461 gdb::observers::breakpoint_modified.notify (b);
13462 return;
13463 }
13464
13465 error (_("No breakpoint number %d."), bptnum);
13466 }
13467
13468 /* Command to set ignore-count of breakpoint N to COUNT. */
13469
13470 static void
13471 ignore_command (const char *args, int from_tty)
13472 {
13473 const char *p = args;
13474 int num;
13475
13476 if (p == 0)
13477 error_no_arg (_("a breakpoint number"));
13478
13479 num = get_number (&p);
13480 if (num == 0)
13481 error (_("bad breakpoint number: '%s'"), args);
13482 if (*p == 0)
13483 error (_("Second argument (specified ignore-count) is missing."));
13484
13485 set_ignore_count (num,
13486 longest_to_int (value_as_long (parse_and_eval (p))),
13487 from_tty);
13488 if (from_tty)
13489 printf_filtered ("\n");
13490 }
13491 \f
13492
13493 /* Call FUNCTION on each of the breakpoints with numbers in the range
13494 defined by BP_NUM_RANGE (an inclusive range). */
13495
13496 static void
13497 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13498 gdb::function_view<void (breakpoint *)> function)
13499 {
13500 if (bp_num_range.first == 0)
13501 {
13502 warning (_("bad breakpoint number at or near '%d'"),
13503 bp_num_range.first);
13504 }
13505 else
13506 {
13507 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13508 {
13509 bool match = false;
13510
13511 for (breakpoint *b : all_breakpoints_safe ())
13512 if (b->number == i)
13513 {
13514 match = true;
13515 function (b);
13516 break;
13517 }
13518 if (!match)
13519 printf_filtered (_("No breakpoint number %d.\n"), i);
13520 }
13521 }
13522 }
13523
13524 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13525 ARGS. */
13526
13527 static void
13528 map_breakpoint_numbers (const char *args,
13529 gdb::function_view<void (breakpoint *)> function)
13530 {
13531 if (args == NULL || *args == '\0')
13532 error_no_arg (_("one or more breakpoint numbers"));
13533
13534 number_or_range_parser parser (args);
13535
13536 while (!parser.finished ())
13537 {
13538 int num = parser.get_number ();
13539 map_breakpoint_number_range (std::make_pair (num, num), function);
13540 }
13541 }
13542
13543 /* Return the breakpoint location structure corresponding to the
13544 BP_NUM and LOC_NUM values. */
13545
13546 static struct bp_location *
13547 find_location_by_number (int bp_num, int loc_num)
13548 {
13549 breakpoint *b = get_breakpoint (bp_num);
13550
13551 if (!b || b->number != bp_num)
13552 error (_("Bad breakpoint number '%d'"), bp_num);
13553
13554 if (loc_num == 0)
13555 error (_("Bad breakpoint location number '%d'"), loc_num);
13556
13557 int n = 0;
13558 for (bp_location *loc : b->locations ())
13559 if (++n == loc_num)
13560 return loc;
13561
13562 error (_("Bad breakpoint location number '%d'"), loc_num);
13563 }
13564
13565 /* Modes of operation for extract_bp_num. */
13566 enum class extract_bp_kind
13567 {
13568 /* Extracting a breakpoint number. */
13569 bp,
13570
13571 /* Extracting a location number. */
13572 loc,
13573 };
13574
13575 /* Extract a breakpoint or location number (as determined by KIND)
13576 from the string starting at START. TRAILER is a character which
13577 can be found after the number. If you don't want a trailer, use
13578 '\0'. If END_OUT is not NULL, it is set to point after the parsed
13579 string. This always returns a positive integer. */
13580
13581 static int
13582 extract_bp_num (extract_bp_kind kind, const char *start,
13583 int trailer, const char **end_out = NULL)
13584 {
13585 const char *end = start;
13586 int num = get_number_trailer (&end, trailer);
13587 if (num < 0)
13588 error (kind == extract_bp_kind::bp
13589 ? _("Negative breakpoint number '%.*s'")
13590 : _("Negative breakpoint location number '%.*s'"),
13591 int (end - start), start);
13592 if (num == 0)
13593 error (kind == extract_bp_kind::bp
13594 ? _("Bad breakpoint number '%.*s'")
13595 : _("Bad breakpoint location number '%.*s'"),
13596 int (end - start), start);
13597
13598 if (end_out != NULL)
13599 *end_out = end;
13600 return num;
13601 }
13602
13603 /* Extract a breakpoint or location range (as determined by KIND) in
13604 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
13605 representing the (inclusive) range. The returned pair's elements
13606 are always positive integers. */
13607
13608 static std::pair<int, int>
13609 extract_bp_or_bp_range (extract_bp_kind kind,
13610 const std::string &arg,
13611 std::string::size_type arg_offset)
13612 {
13613 std::pair<int, int> range;
13614 const char *bp_loc = &arg[arg_offset];
13615 std::string::size_type dash = arg.find ('-', arg_offset);
13616 if (dash != std::string::npos)
13617 {
13618 /* bp_loc is a range (x-z). */
13619 if (arg.length () == dash + 1)
13620 error (kind == extract_bp_kind::bp
13621 ? _("Bad breakpoint number at or near: '%s'")
13622 : _("Bad breakpoint location number at or near: '%s'"),
13623 bp_loc);
13624
13625 const char *end;
13626 const char *start_first = bp_loc;
13627 const char *start_second = &arg[dash + 1];
13628 range.first = extract_bp_num (kind, start_first, '-');
13629 range.second = extract_bp_num (kind, start_second, '\0', &end);
13630
13631 if (range.first > range.second)
13632 error (kind == extract_bp_kind::bp
13633 ? _("Inverted breakpoint range at '%.*s'")
13634 : _("Inverted breakpoint location range at '%.*s'"),
13635 int (end - start_first), start_first);
13636 }
13637 else
13638 {
13639 /* bp_loc is a single value. */
13640 range.first = extract_bp_num (kind, bp_loc, '\0');
13641 range.second = range.first;
13642 }
13643 return range;
13644 }
13645
13646 /* Extract the breakpoint/location range specified by ARG. Returns
13647 the breakpoint range in BP_NUM_RANGE, and the location range in
13648 BP_LOC_RANGE.
13649
13650 ARG may be in any of the following forms:
13651
13652 x where 'x' is a breakpoint number.
13653 x-y where 'x' and 'y' specify a breakpoint numbers range.
13654 x.y where 'x' is a breakpoint number and 'y' a location number.
13655 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
13656 location number range.
13657 */
13658
13659 static void
13660 extract_bp_number_and_location (const std::string &arg,
13661 std::pair<int, int> &bp_num_range,
13662 std::pair<int, int> &bp_loc_range)
13663 {
13664 std::string::size_type dot = arg.find ('.');
13665
13666 if (dot != std::string::npos)
13667 {
13668 /* Handle 'x.y' and 'x.y-z' cases. */
13669
13670 if (arg.length () == dot + 1 || dot == 0)
13671 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
13672
13673 bp_num_range.first
13674 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
13675 bp_num_range.second = bp_num_range.first;
13676
13677 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
13678 arg, dot + 1);
13679 }
13680 else
13681 {
13682 /* Handle x and x-y cases. */
13683
13684 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
13685 bp_loc_range.first = 0;
13686 bp_loc_range.second = 0;
13687 }
13688 }
13689
13690 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
13691 specifies whether to enable or disable. */
13692
13693 static void
13694 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
13695 {
13696 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
13697 if (loc != NULL)
13698 {
13699 if (loc->disabled_by_cond && enable)
13700 error (_("Breakpoint %d's condition is invalid at location %d, "
13701 "cannot enable."), bp_num, loc_num);
13702
13703 if (loc->enabled != enable)
13704 {
13705 loc->enabled = enable;
13706 mark_breakpoint_location_modified (loc);
13707 }
13708 if (target_supports_enable_disable_tracepoint ()
13709 && current_trace_status ()->running && loc->owner
13710 && is_tracepoint (loc->owner))
13711 target_disable_tracepoint (loc);
13712 }
13713 update_global_location_list (UGLL_DONT_INSERT);
13714
13715 gdb::observers::breakpoint_modified.notify (loc->owner);
13716 }
13717
13718 /* Enable or disable a range of breakpoint locations. BP_NUM is the
13719 number of the breakpoint, and BP_LOC_RANGE specifies the
13720 (inclusive) range of location numbers of that breakpoint to
13721 enable/disable. ENABLE specifies whether to enable or disable the
13722 location. */
13723
13724 static void
13725 enable_disable_breakpoint_location_range (int bp_num,
13726 std::pair<int, int> &bp_loc_range,
13727 bool enable)
13728 {
13729 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
13730 enable_disable_bp_num_loc (bp_num, i, enable);
13731 }
13732
13733 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13734 If from_tty is nonzero, it prints a message to that effect,
13735 which ends with a period (no newline). */
13736
13737 void
13738 disable_breakpoint (struct breakpoint *bpt)
13739 {
13740 /* Never disable a watchpoint scope breakpoint; we want to
13741 hit them when we leave scope so we can delete both the
13742 watchpoint and its scope breakpoint at that time. */
13743 if (bpt->type == bp_watchpoint_scope)
13744 return;
13745
13746 bpt->enable_state = bp_disabled;
13747
13748 /* Mark breakpoint locations modified. */
13749 mark_breakpoint_modified (bpt);
13750
13751 if (target_supports_enable_disable_tracepoint ()
13752 && current_trace_status ()->running && is_tracepoint (bpt))
13753 {
13754 for (bp_location *location : bpt->locations ())
13755 target_disable_tracepoint (location);
13756 }
13757
13758 update_global_location_list (UGLL_DONT_INSERT);
13759
13760 gdb::observers::breakpoint_modified.notify (bpt);
13761 }
13762
13763 /* Enable or disable the breakpoint(s) or breakpoint location(s)
13764 specified in ARGS. ARGS may be in any of the formats handled by
13765 extract_bp_number_and_location. ENABLE specifies whether to enable
13766 or disable the breakpoints/locations. */
13767
13768 static void
13769 enable_disable_command (const char *args, int from_tty, bool enable)
13770 {
13771 if (args == 0)
13772 {
13773 for (breakpoint *bpt : all_breakpoints ())
13774 if (user_breakpoint_p (bpt))
13775 {
13776 if (enable)
13777 enable_breakpoint (bpt);
13778 else
13779 disable_breakpoint (bpt);
13780 }
13781 }
13782 else
13783 {
13784 std::string num = extract_arg (&args);
13785
13786 while (!num.empty ())
13787 {
13788 std::pair<int, int> bp_num_range, bp_loc_range;
13789
13790 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
13791
13792 if (bp_loc_range.first == bp_loc_range.second
13793 && bp_loc_range.first == 0)
13794 {
13795 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
13796 map_breakpoint_number_range (bp_num_range,
13797 enable
13798 ? enable_breakpoint
13799 : disable_breakpoint);
13800 }
13801 else
13802 {
13803 /* Handle breakpoint ids with formats 'x.y' or
13804 'x.y-z'. */
13805 enable_disable_breakpoint_location_range
13806 (bp_num_range.first, bp_loc_range, enable);
13807 }
13808 num = extract_arg (&args);
13809 }
13810 }
13811 }
13812
13813 /* The disable command disables the specified breakpoints/locations
13814 (or all defined breakpoints) so they're no longer effective in
13815 stopping the inferior. ARGS may be in any of the forms defined in
13816 extract_bp_number_and_location. */
13817
13818 static void
13819 disable_command (const char *args, int from_tty)
13820 {
13821 enable_disable_command (args, from_tty, false);
13822 }
13823
13824 static void
13825 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
13826 int count)
13827 {
13828 int target_resources_ok;
13829
13830 if (bpt->type == bp_hardware_breakpoint)
13831 {
13832 int i;
13833 i = hw_breakpoint_used_count ();
13834 target_resources_ok =
13835 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
13836 i + 1, 0);
13837 if (target_resources_ok == 0)
13838 error (_("No hardware breakpoint support in the target."));
13839 else if (target_resources_ok < 0)
13840 error (_("Hardware breakpoints used exceeds limit."));
13841 }
13842
13843 if (is_watchpoint (bpt))
13844 {
13845 /* Initialize it just to avoid a GCC false warning. */
13846 enum enable_state orig_enable_state = bp_disabled;
13847
13848 try
13849 {
13850 struct watchpoint *w = (struct watchpoint *) bpt;
13851
13852 orig_enable_state = bpt->enable_state;
13853 bpt->enable_state = bp_enabled;
13854 update_watchpoint (w, 1 /* reparse */);
13855 }
13856 catch (const gdb_exception &e)
13857 {
13858 bpt->enable_state = orig_enable_state;
13859 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
13860 bpt->number);
13861 return;
13862 }
13863 }
13864
13865 bpt->enable_state = bp_enabled;
13866
13867 /* Mark breakpoint locations modified. */
13868 mark_breakpoint_modified (bpt);
13869
13870 if (target_supports_enable_disable_tracepoint ()
13871 && current_trace_status ()->running && is_tracepoint (bpt))
13872 {
13873 for (bp_location *location : bpt->locations ())
13874 target_enable_tracepoint (location);
13875 }
13876
13877 bpt->disposition = disposition;
13878 bpt->enable_count = count;
13879 update_global_location_list (UGLL_MAY_INSERT);
13880
13881 gdb::observers::breakpoint_modified.notify (bpt);
13882 }
13883
13884
13885 void
13886 enable_breakpoint (struct breakpoint *bpt)
13887 {
13888 enable_breakpoint_disp (bpt, bpt->disposition, 0);
13889 }
13890
13891 /* The enable command enables the specified breakpoints/locations (or
13892 all defined breakpoints) so they once again become (or continue to
13893 be) effective in stopping the inferior. ARGS may be in any of the
13894 forms defined in extract_bp_number_and_location. */
13895
13896 static void
13897 enable_command (const char *args, int from_tty)
13898 {
13899 enable_disable_command (args, from_tty, true);
13900 }
13901
13902 static void
13903 enable_once_command (const char *args, int from_tty)
13904 {
13905 map_breakpoint_numbers
13906 (args, [&] (breakpoint *b)
13907 {
13908 iterate_over_related_breakpoints
13909 (b, [&] (breakpoint *bpt)
13910 {
13911 enable_breakpoint_disp (bpt, disp_disable, 1);
13912 });
13913 });
13914 }
13915
13916 static void
13917 enable_count_command (const char *args, int from_tty)
13918 {
13919 int count;
13920
13921 if (args == NULL)
13922 error_no_arg (_("hit count"));
13923
13924 count = get_number (&args);
13925
13926 map_breakpoint_numbers
13927 (args, [&] (breakpoint *b)
13928 {
13929 iterate_over_related_breakpoints
13930 (b, [&] (breakpoint *bpt)
13931 {
13932 enable_breakpoint_disp (bpt, disp_disable, count);
13933 });
13934 });
13935 }
13936
13937 static void
13938 enable_delete_command (const char *args, int from_tty)
13939 {
13940 map_breakpoint_numbers
13941 (args, [&] (breakpoint *b)
13942 {
13943 iterate_over_related_breakpoints
13944 (b, [&] (breakpoint *bpt)
13945 {
13946 enable_breakpoint_disp (bpt, disp_del, 1);
13947 });
13948 });
13949 }
13950 \f
13951 /* Invalidate last known value of any hardware watchpoint if
13952 the memory which that value represents has been written to by
13953 GDB itself. */
13954
13955 static void
13956 invalidate_bp_value_on_memory_change (struct inferior *inferior,
13957 CORE_ADDR addr, ssize_t len,
13958 const bfd_byte *data)
13959 {
13960 for (breakpoint *bp : all_breakpoints ())
13961 if (bp->enable_state == bp_enabled
13962 && bp->type == bp_hardware_watchpoint)
13963 {
13964 struct watchpoint *wp = (struct watchpoint *) bp;
13965
13966 if (wp->val_valid && wp->val != nullptr)
13967 {
13968 for (bp_location *loc : bp->locations ())
13969 if (loc->loc_type == bp_loc_hardware_watchpoint
13970 && loc->address + loc->length > addr
13971 && addr + len > loc->address)
13972 {
13973 wp->val = NULL;
13974 wp->val_valid = false;
13975 }
13976 }
13977 }
13978 }
13979
13980 /* Create and insert a breakpoint for software single step. */
13981
13982 void
13983 insert_single_step_breakpoint (struct gdbarch *gdbarch,
13984 const address_space *aspace,
13985 CORE_ADDR next_pc)
13986 {
13987 struct thread_info *tp = inferior_thread ();
13988 struct symtab_and_line sal;
13989 CORE_ADDR pc = next_pc;
13990
13991 if (tp->control.single_step_breakpoints == NULL)
13992 {
13993 tp->control.single_step_breakpoints
13994 = new_single_step_breakpoint (tp->global_num, gdbarch);
13995 }
13996
13997 sal = find_pc_line (pc, 0);
13998 sal.pc = pc;
13999 sal.section = find_pc_overlay (pc);
14000 sal.explicit_pc = 1;
14001 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14002
14003 update_global_location_list (UGLL_INSERT);
14004 }
14005
14006 /* Insert single step breakpoints according to the current state. */
14007
14008 int
14009 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14010 {
14011 struct regcache *regcache = get_current_regcache ();
14012 std::vector<CORE_ADDR> next_pcs;
14013
14014 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14015
14016 if (!next_pcs.empty ())
14017 {
14018 struct frame_info *frame = get_current_frame ();
14019 const address_space *aspace = get_frame_address_space (frame);
14020
14021 for (CORE_ADDR pc : next_pcs)
14022 insert_single_step_breakpoint (gdbarch, aspace, pc);
14023
14024 return 1;
14025 }
14026 else
14027 return 0;
14028 }
14029
14030 /* See breakpoint.h. */
14031
14032 int
14033 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14034 const address_space *aspace,
14035 CORE_ADDR pc)
14036 {
14037 for (bp_location *loc : bp->locations ())
14038 if (loc->inserted
14039 && breakpoint_location_address_match (loc, aspace, pc))
14040 return 1;
14041
14042 return 0;
14043 }
14044
14045 /* Check whether a software single-step breakpoint is inserted at
14046 PC. */
14047
14048 int
14049 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14050 CORE_ADDR pc)
14051 {
14052 for (breakpoint *bpt : all_breakpoints ())
14053 {
14054 if (bpt->type == bp_single_step
14055 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14056 return 1;
14057 }
14058 return 0;
14059 }
14060
14061 /* Tracepoint-specific operations. */
14062
14063 /* Set tracepoint count to NUM. */
14064 static void
14065 set_tracepoint_count (int num)
14066 {
14067 tracepoint_count = num;
14068 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14069 }
14070
14071 static void
14072 trace_command (const char *arg, int from_tty)
14073 {
14074 event_location_up location = string_to_event_location (&arg,
14075 current_language);
14076 const struct breakpoint_ops *ops = breakpoint_ops_for_event_location
14077 (location.get (), true /* is_tracepoint */);
14078
14079 create_breakpoint (get_current_arch (),
14080 location.get (),
14081 NULL, 0, arg, false, 1 /* parse arg */,
14082 0 /* tempflag */,
14083 bp_tracepoint /* type_wanted */,
14084 0 /* Ignore count */,
14085 pending_break_support,
14086 ops,
14087 from_tty,
14088 1 /* enabled */,
14089 0 /* internal */, 0);
14090 }
14091
14092 static void
14093 ftrace_command (const char *arg, int from_tty)
14094 {
14095 event_location_up location = string_to_event_location (&arg,
14096 current_language);
14097 create_breakpoint (get_current_arch (),
14098 location.get (),
14099 NULL, 0, arg, false, 1 /* parse arg */,
14100 0 /* tempflag */,
14101 bp_fast_tracepoint /* type_wanted */,
14102 0 /* Ignore count */,
14103 pending_break_support,
14104 &tracepoint_breakpoint_ops,
14105 from_tty,
14106 1 /* enabled */,
14107 0 /* internal */, 0);
14108 }
14109
14110 /* strace command implementation. Creates a static tracepoint. */
14111
14112 static void
14113 strace_command (const char *arg, int from_tty)
14114 {
14115 struct breakpoint_ops *ops;
14116 event_location_up location;
14117
14118 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14119 or with a normal static tracepoint. */
14120 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14121 {
14122 ops = &strace_marker_breakpoint_ops;
14123 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14124 }
14125 else
14126 {
14127 ops = &tracepoint_breakpoint_ops;
14128 location = string_to_event_location (&arg, current_language);
14129 }
14130
14131 create_breakpoint (get_current_arch (),
14132 location.get (),
14133 NULL, 0, arg, false, 1 /* parse arg */,
14134 0 /* tempflag */,
14135 bp_static_tracepoint /* type_wanted */,
14136 0 /* Ignore count */,
14137 pending_break_support,
14138 ops,
14139 from_tty,
14140 1 /* enabled */,
14141 0 /* internal */, 0);
14142 }
14143
14144 /* Set up a fake reader function that gets command lines from a linked
14145 list that was acquired during tracepoint uploading. */
14146
14147 static struct uploaded_tp *this_utp;
14148 static int next_cmd;
14149
14150 static char *
14151 read_uploaded_action (void)
14152 {
14153 char *rslt = nullptr;
14154
14155 if (next_cmd < this_utp->cmd_strings.size ())
14156 {
14157 rslt = this_utp->cmd_strings[next_cmd].get ();
14158 next_cmd++;
14159 }
14160
14161 return rslt;
14162 }
14163
14164 /* Given information about a tracepoint as recorded on a target (which
14165 can be either a live system or a trace file), attempt to create an
14166 equivalent GDB tracepoint. This is not a reliable process, since
14167 the target does not necessarily have all the information used when
14168 the tracepoint was originally defined. */
14169
14170 struct tracepoint *
14171 create_tracepoint_from_upload (struct uploaded_tp *utp)
14172 {
14173 const char *addr_str;
14174 char small_buf[100];
14175 struct tracepoint *tp;
14176
14177 if (utp->at_string)
14178 addr_str = utp->at_string.get ();
14179 else
14180 {
14181 /* In the absence of a source location, fall back to raw
14182 address. Since there is no way to confirm that the address
14183 means the same thing as when the trace was started, warn the
14184 user. */
14185 warning (_("Uploaded tracepoint %d has no "
14186 "source location, using raw address"),
14187 utp->number);
14188 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14189 addr_str = small_buf;
14190 }
14191
14192 /* There's not much we can do with a sequence of bytecodes. */
14193 if (utp->cond && !utp->cond_string)
14194 warning (_("Uploaded tracepoint %d condition "
14195 "has no source form, ignoring it"),
14196 utp->number);
14197
14198 event_location_up location = string_to_event_location (&addr_str,
14199 current_language);
14200 if (!create_breakpoint (get_current_arch (),
14201 location.get (),
14202 utp->cond_string.get (), -1, addr_str,
14203 false /* force_condition */,
14204 0 /* parse cond/thread */,
14205 0 /* tempflag */,
14206 utp->type /* type_wanted */,
14207 0 /* Ignore count */,
14208 pending_break_support,
14209 &tracepoint_breakpoint_ops,
14210 0 /* from_tty */,
14211 utp->enabled /* enabled */,
14212 0 /* internal */,
14213 CREATE_BREAKPOINT_FLAGS_INSERTED))
14214 return NULL;
14215
14216 /* Get the tracepoint we just created. */
14217 tp = get_tracepoint (tracepoint_count);
14218 gdb_assert (tp != NULL);
14219
14220 if (utp->pass > 0)
14221 {
14222 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14223 tp->number);
14224
14225 trace_pass_command (small_buf, 0);
14226 }
14227
14228 /* If we have uploaded versions of the original commands, set up a
14229 special-purpose "reader" function and call the usual command line
14230 reader, then pass the result to the breakpoint command-setting
14231 function. */
14232 if (!utp->cmd_strings.empty ())
14233 {
14234 counted_command_line cmd_list;
14235
14236 this_utp = utp;
14237 next_cmd = 0;
14238
14239 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
14240
14241 breakpoint_set_commands (tp, std::move (cmd_list));
14242 }
14243 else if (!utp->actions.empty ()
14244 || !utp->step_actions.empty ())
14245 warning (_("Uploaded tracepoint %d actions "
14246 "have no source form, ignoring them"),
14247 utp->number);
14248
14249 /* Copy any status information that might be available. */
14250 tp->hit_count = utp->hit_count;
14251 tp->traceframe_usage = utp->traceframe_usage;
14252
14253 return tp;
14254 }
14255
14256 /* Print information on tracepoint number TPNUM_EXP, or all if
14257 omitted. */
14258
14259 static void
14260 info_tracepoints_command (const char *args, int from_tty)
14261 {
14262 struct ui_out *uiout = current_uiout;
14263 int num_printed;
14264
14265 num_printed = breakpoint_1 (args, false, is_tracepoint);
14266
14267 if (num_printed == 0)
14268 {
14269 if (args == NULL || *args == '\0')
14270 uiout->message ("No tracepoints.\n");
14271 else
14272 uiout->message ("No tracepoint matching '%s'.\n", args);
14273 }
14274
14275 default_collect_info ();
14276 }
14277
14278 /* The 'enable trace' command enables tracepoints.
14279 Not supported by all targets. */
14280 static void
14281 enable_trace_command (const char *args, int from_tty)
14282 {
14283 enable_command (args, from_tty);
14284 }
14285
14286 /* The 'disable trace' command disables tracepoints.
14287 Not supported by all targets. */
14288 static void
14289 disable_trace_command (const char *args, int from_tty)
14290 {
14291 disable_command (args, from_tty);
14292 }
14293
14294 /* Remove a tracepoint (or all if no argument). */
14295 static void
14296 delete_trace_command (const char *arg, int from_tty)
14297 {
14298 dont_repeat ();
14299
14300 if (arg == 0)
14301 {
14302 int breaks_to_delete = 0;
14303
14304 /* Delete all breakpoints if no argument.
14305 Do not delete internal or call-dummy breakpoints, these
14306 have to be deleted with an explicit breakpoint number
14307 argument. */
14308 for (breakpoint *tp : all_tracepoints ())
14309 if (is_tracepoint (tp) && user_breakpoint_p (tp))
14310 {
14311 breaks_to_delete = 1;
14312 break;
14313 }
14314
14315 /* Ask user only if there are some breakpoints to delete. */
14316 if (!from_tty
14317 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14318 {
14319 for (breakpoint *b : all_breakpoints_safe ())
14320 if (is_tracepoint (b) && user_breakpoint_p (b))
14321 delete_breakpoint (b);
14322 }
14323 }
14324 else
14325 map_breakpoint_numbers
14326 (arg, [&] (breakpoint *br)
14327 {
14328 iterate_over_related_breakpoints (br, delete_breakpoint);
14329 });
14330 }
14331
14332 /* Helper function for trace_pass_command. */
14333
14334 static void
14335 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14336 {
14337 tp->pass_count = count;
14338 gdb::observers::breakpoint_modified.notify (tp);
14339 if (from_tty)
14340 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14341 tp->number, count);
14342 }
14343
14344 /* Set passcount for tracepoint.
14345
14346 First command argument is passcount, second is tracepoint number.
14347 If tracepoint number omitted, apply to most recently defined.
14348 Also accepts special argument "all". */
14349
14350 static void
14351 trace_pass_command (const char *args, int from_tty)
14352 {
14353 struct tracepoint *t1;
14354 ULONGEST count;
14355
14356 if (args == 0 || *args == 0)
14357 error (_("passcount command requires an "
14358 "argument (count + optional TP num)"));
14359
14360 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14361
14362 args = skip_spaces (args);
14363 if (*args && strncasecmp (args, "all", 3) == 0)
14364 {
14365 args += 3; /* Skip special argument "all". */
14366 if (*args)
14367 error (_("Junk at end of arguments."));
14368
14369 for (breakpoint *b : all_tracepoints ())
14370 {
14371 t1 = (struct tracepoint *) b;
14372 trace_pass_set_count (t1, count, from_tty);
14373 }
14374 }
14375 else if (*args == '\0')
14376 {
14377 t1 = get_tracepoint_by_number (&args, NULL);
14378 if (t1)
14379 trace_pass_set_count (t1, count, from_tty);
14380 }
14381 else
14382 {
14383 number_or_range_parser parser (args);
14384 while (!parser.finished ())
14385 {
14386 t1 = get_tracepoint_by_number (&args, &parser);
14387 if (t1)
14388 trace_pass_set_count (t1, count, from_tty);
14389 }
14390 }
14391 }
14392
14393 struct tracepoint *
14394 get_tracepoint (int num)
14395 {
14396 for (breakpoint *t : all_tracepoints ())
14397 if (t->number == num)
14398 return (struct tracepoint *) t;
14399
14400 return NULL;
14401 }
14402
14403 /* Find the tracepoint with the given target-side number (which may be
14404 different from the tracepoint number after disconnecting and
14405 reconnecting). */
14406
14407 struct tracepoint *
14408 get_tracepoint_by_number_on_target (int num)
14409 {
14410 for (breakpoint *b : all_tracepoints ())
14411 {
14412 struct tracepoint *t = (struct tracepoint *) b;
14413
14414 if (t->number_on_target == num)
14415 return t;
14416 }
14417
14418 return NULL;
14419 }
14420
14421 /* Utility: parse a tracepoint number and look it up in the list.
14422 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14423 If the argument is missing, the most recent tracepoint
14424 (tracepoint_count) is returned. */
14425
14426 struct tracepoint *
14427 get_tracepoint_by_number (const char **arg,
14428 number_or_range_parser *parser)
14429 {
14430 int tpnum;
14431 const char *instring = arg == NULL ? NULL : *arg;
14432
14433 if (parser != NULL)
14434 {
14435 gdb_assert (!parser->finished ());
14436 tpnum = parser->get_number ();
14437 }
14438 else if (arg == NULL || *arg == NULL || ! **arg)
14439 tpnum = tracepoint_count;
14440 else
14441 tpnum = get_number (arg);
14442
14443 if (tpnum <= 0)
14444 {
14445 if (instring && *instring)
14446 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
14447 instring);
14448 else
14449 printf_filtered (_("No previous tracepoint\n"));
14450 return NULL;
14451 }
14452
14453 for (breakpoint *t : all_tracepoints ())
14454 if (t->number == tpnum)
14455 return (struct tracepoint *) t;
14456
14457 printf_filtered ("No tracepoint number %d.\n", tpnum);
14458 return NULL;
14459 }
14460
14461 void
14462 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
14463 {
14464 if (b->thread != -1)
14465 fprintf_unfiltered (fp, " thread %d", b->thread);
14466
14467 if (b->task != 0)
14468 fprintf_unfiltered (fp, " task %d", b->task);
14469
14470 fprintf_unfiltered (fp, "\n");
14471 }
14472
14473 /* Save information on user settable breakpoints (watchpoints, etc) to
14474 a new script file named FILENAME. If FILTER is non-NULL, call it
14475 on each breakpoint and only include the ones for which it returns
14476 true. */
14477
14478 static void
14479 save_breakpoints (const char *filename, int from_tty,
14480 bool (*filter) (const struct breakpoint *))
14481 {
14482 int any = 0;
14483 int extra_trace_bits = 0;
14484
14485 if (filename == 0 || *filename == 0)
14486 error (_("Argument required (file name in which to save)"));
14487
14488 /* See if we have anything to save. */
14489 for (breakpoint *tp : all_breakpoints ())
14490 {
14491 /* Skip internal and momentary breakpoints. */
14492 if (!user_breakpoint_p (tp))
14493 continue;
14494
14495 /* If we have a filter, only save the breakpoints it accepts. */
14496 if (filter && !filter (tp))
14497 continue;
14498
14499 any = 1;
14500
14501 if (is_tracepoint (tp))
14502 {
14503 extra_trace_bits = 1;
14504
14505 /* We can stop searching. */
14506 break;
14507 }
14508 }
14509
14510 if (!any)
14511 {
14512 warning (_("Nothing to save."));
14513 return;
14514 }
14515
14516 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14517
14518 stdio_file fp;
14519
14520 if (!fp.open (expanded_filename.get (), "w"))
14521 error (_("Unable to open file '%s' for saving (%s)"),
14522 expanded_filename.get (), safe_strerror (errno));
14523
14524 if (extra_trace_bits)
14525 save_trace_state_variables (&fp);
14526
14527 for (breakpoint *tp : all_breakpoints ())
14528 {
14529 /* Skip internal and momentary breakpoints. */
14530 if (!user_breakpoint_p (tp))
14531 continue;
14532
14533 /* If we have a filter, only save the breakpoints it accepts. */
14534 if (filter && !filter (tp))
14535 continue;
14536
14537 tp->ops->print_recreate (tp, &fp);
14538
14539 /* Note, we can't rely on tp->number for anything, as we can't
14540 assume the recreated breakpoint numbers will match. Use $bpnum
14541 instead. */
14542
14543 if (tp->cond_string)
14544 fp.printf (" condition $bpnum %s\n", tp->cond_string.get ());
14545
14546 if (tp->ignore_count)
14547 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
14548
14549 if (tp->type != bp_dprintf && tp->commands)
14550 {
14551 fp.puts (" commands\n");
14552
14553 current_uiout->redirect (&fp);
14554 try
14555 {
14556 print_command_lines (current_uiout, tp->commands.get (), 2);
14557 }
14558 catch (const gdb_exception &ex)
14559 {
14560 current_uiout->redirect (NULL);
14561 throw;
14562 }
14563
14564 current_uiout->redirect (NULL);
14565 fp.puts (" end\n");
14566 }
14567
14568 if (tp->enable_state == bp_disabled)
14569 fp.puts ("disable $bpnum\n");
14570
14571 /* If this is a multi-location breakpoint, check if the locations
14572 should be individually disabled. Watchpoint locations are
14573 special, and not user visible. */
14574 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
14575 {
14576 int n = 1;
14577
14578 for (bp_location *loc : tp->locations ())
14579 {
14580 if (!loc->enabled)
14581 fp.printf ("disable $bpnum.%d\n", n);
14582
14583 n++;
14584 }
14585 }
14586 }
14587
14588 if (extra_trace_bits && !default_collect.empty ())
14589 fp.printf ("set default-collect %s\n", default_collect.c_str ());
14590
14591 if (from_tty)
14592 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
14593 }
14594
14595 /* The `save breakpoints' command. */
14596
14597 static void
14598 save_breakpoints_command (const char *args, int from_tty)
14599 {
14600 save_breakpoints (args, from_tty, NULL);
14601 }
14602
14603 /* The `save tracepoints' command. */
14604
14605 static void
14606 save_tracepoints_command (const char *args, int from_tty)
14607 {
14608 save_breakpoints (args, from_tty, is_tracepoint);
14609 }
14610
14611 \f
14612 /* This help string is used to consolidate all the help string for specifying
14613 locations used by several commands. */
14614
14615 #define LOCATION_HELP_STRING \
14616 "Linespecs are colon-separated lists of location parameters, such as\n\
14617 source filename, function name, label name, and line number.\n\
14618 Example: To specify the start of a label named \"the_top\" in the\n\
14619 function \"fact\" in the file \"factorial.c\", use\n\
14620 \"factorial.c:fact:the_top\".\n\
14621 \n\
14622 Address locations begin with \"*\" and specify an exact address in the\n\
14623 program. Example: To specify the fourth byte past the start function\n\
14624 \"main\", use \"*main + 4\".\n\
14625 \n\
14626 Explicit locations are similar to linespecs but use an option/argument\n\
14627 syntax to specify location parameters.\n\
14628 Example: To specify the start of the label named \"the_top\" in the\n\
14629 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
14630 -function fact -label the_top\".\n\
14631 \n\
14632 By default, a specified function is matched against the program's\n\
14633 functions in all scopes. For C++, this means in all namespaces and\n\
14634 classes. For Ada, this means in all packages. E.g., in C++,\n\
14635 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
14636 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
14637 specified name as a complete fully-qualified name instead."
14638
14639 /* This help string is used for the break, hbreak, tbreak and thbreak
14640 commands. It is defined as a macro to prevent duplication.
14641 COMMAND should be a string constant containing the name of the
14642 command. */
14643
14644 #define BREAK_ARGS_HELP(command) \
14645 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM]\n\
14646 \t[-force-condition] [if CONDITION]\n\
14647 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
14648 probe point. Accepted values are `-probe' (for a generic, automatically\n\
14649 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
14650 `-probe-dtrace' (for a DTrace probe).\n\
14651 LOCATION may be a linespec, address, or explicit location as described\n\
14652 below.\n\
14653 \n\
14654 With no LOCATION, uses current execution address of the selected\n\
14655 stack frame. This is useful for breaking on return to a stack frame.\n\
14656 \n\
14657 THREADNUM is the number from \"info threads\".\n\
14658 CONDITION is a boolean expression.\n\
14659 \n\
14660 With the \"-force-condition\" flag, the condition is defined even when\n\
14661 it is invalid for all current locations.\n\
14662 \n" LOCATION_HELP_STRING "\n\n\
14663 Multiple breakpoints at one place are permitted, and useful if their\n\
14664 conditions are different.\n\
14665 \n\
14666 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
14667
14668 /* List of subcommands for "catch". */
14669 static struct cmd_list_element *catch_cmdlist;
14670
14671 /* List of subcommands for "tcatch". */
14672 static struct cmd_list_element *tcatch_cmdlist;
14673
14674 void
14675 add_catch_command (const char *name, const char *docstring,
14676 cmd_func_ftype *func,
14677 completer_ftype *completer,
14678 void *user_data_catch,
14679 void *user_data_tcatch)
14680 {
14681 struct cmd_list_element *command;
14682
14683 command = add_cmd (name, class_breakpoint, docstring,
14684 &catch_cmdlist);
14685 command->func = func;
14686 command->set_context (user_data_catch);
14687 set_cmd_completer (command, completer);
14688
14689 command = add_cmd (name, class_breakpoint, docstring,
14690 &tcatch_cmdlist);
14691 command->func = func;
14692 command->set_context (user_data_tcatch);
14693 set_cmd_completer (command, completer);
14694 }
14695
14696 /* Zero if any of the breakpoint's locations could be a location where
14697 functions have been inlined, nonzero otherwise. */
14698
14699 static int
14700 is_non_inline_function (struct breakpoint *b)
14701 {
14702 /* The shared library event breakpoint is set on the address of a
14703 non-inline function. */
14704 if (b->type == bp_shlib_event)
14705 return 1;
14706
14707 return 0;
14708 }
14709
14710 /* Nonzero if the specified PC cannot be a location where functions
14711 have been inlined. */
14712
14713 int
14714 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
14715 const target_waitstatus &ws)
14716 {
14717 for (breakpoint *b : all_breakpoints ())
14718 {
14719 if (!is_non_inline_function (b))
14720 continue;
14721
14722 for (bp_location *bl : b->locations ())
14723 {
14724 if (!bl->shlib_disabled
14725 && bpstat_check_location (bl, aspace, pc, ws))
14726 return 1;
14727 }
14728 }
14729
14730 return 0;
14731 }
14732
14733 /* Remove any references to OBJFILE which is going to be freed. */
14734
14735 void
14736 breakpoint_free_objfile (struct objfile *objfile)
14737 {
14738 for (bp_location *loc : all_bp_locations ())
14739 if (loc->symtab != NULL && loc->symtab->objfile () == objfile)
14740 loc->symtab = NULL;
14741 }
14742
14743 void
14744 initialize_breakpoint_ops (void)
14745 {
14746 static int initialized = 0;
14747
14748 struct breakpoint_ops *ops;
14749
14750 if (initialized)
14751 return;
14752 initialized = 1;
14753
14754 /* The breakpoint_ops structure to be inherit by all kinds of
14755 breakpoints (real breakpoints, i.e., user "break" breakpoints,
14756 internal and momentary breakpoints, etc.). */
14757 ops = &bkpt_base_breakpoint_ops;
14758 *ops = base_breakpoint_ops;
14759 ops->re_set = bkpt_re_set;
14760 ops->insert_location = bkpt_insert_location;
14761 ops->remove_location = bkpt_remove_location;
14762 ops->breakpoint_hit = bkpt_breakpoint_hit;
14763 ops->create_sals_from_location = bkpt_create_sals_from_location;
14764 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
14765 ops->decode_location = bkpt_decode_location;
14766
14767 /* The breakpoint_ops structure to be used in regular breakpoints. */
14768 ops = &bkpt_breakpoint_ops;
14769 *ops = bkpt_base_breakpoint_ops;
14770 ops->re_set = bkpt_re_set;
14771 ops->resources_needed = bkpt_resources_needed;
14772 ops->print_it = bkpt_print_it;
14773 ops->print_mention = bkpt_print_mention;
14774 ops->print_recreate = bkpt_print_recreate;
14775
14776 /* Ranged breakpoints. */
14777 ops = &ranged_breakpoint_ops;
14778 *ops = bkpt_breakpoint_ops;
14779 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
14780 ops->resources_needed = resources_needed_ranged_breakpoint;
14781 ops->print_it = print_it_ranged_breakpoint;
14782 ops->print_one = print_one_ranged_breakpoint;
14783 ops->print_one_detail = print_one_detail_ranged_breakpoint;
14784 ops->print_mention = print_mention_ranged_breakpoint;
14785 ops->print_recreate = print_recreate_ranged_breakpoint;
14786
14787 /* Internal breakpoints. */
14788 ops = &internal_breakpoint_ops;
14789 *ops = bkpt_base_breakpoint_ops;
14790 ops->re_set = internal_bkpt_re_set;
14791 ops->check_status = internal_bkpt_check_status;
14792 ops->print_it = internal_bkpt_print_it;
14793 ops->print_mention = internal_bkpt_print_mention;
14794
14795 /* Momentary breakpoints. */
14796 ops = &momentary_breakpoint_ops;
14797 *ops = bkpt_base_breakpoint_ops;
14798 ops->re_set = momentary_bkpt_re_set;
14799 ops->check_status = momentary_bkpt_check_status;
14800 ops->print_it = momentary_bkpt_print_it;
14801 ops->print_mention = momentary_bkpt_print_mention;
14802
14803 /* Probe breakpoints. */
14804 ops = &bkpt_probe_breakpoint_ops;
14805 *ops = bkpt_breakpoint_ops;
14806 ops->insert_location = bkpt_probe_insert_location;
14807 ops->remove_location = bkpt_probe_remove_location;
14808 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
14809 ops->decode_location = bkpt_probe_decode_location;
14810
14811 /* Watchpoints. */
14812 ops = &watchpoint_breakpoint_ops;
14813 *ops = base_breakpoint_ops;
14814 ops->re_set = re_set_watchpoint;
14815 ops->insert_location = insert_watchpoint;
14816 ops->remove_location = remove_watchpoint;
14817 ops->breakpoint_hit = breakpoint_hit_watchpoint;
14818 ops->check_status = check_status_watchpoint;
14819 ops->resources_needed = resources_needed_watchpoint;
14820 ops->works_in_software_mode = works_in_software_mode_watchpoint;
14821 ops->print_it = print_it_watchpoint;
14822 ops->print_mention = print_mention_watchpoint;
14823 ops->print_recreate = print_recreate_watchpoint;
14824 ops->explains_signal = explains_signal_watchpoint;
14825
14826 /* Masked watchpoints. */
14827 ops = &masked_watchpoint_breakpoint_ops;
14828 *ops = watchpoint_breakpoint_ops;
14829 ops->insert_location = insert_masked_watchpoint;
14830 ops->remove_location = remove_masked_watchpoint;
14831 ops->resources_needed = resources_needed_masked_watchpoint;
14832 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
14833 ops->print_it = print_it_masked_watchpoint;
14834 ops->print_one_detail = print_one_detail_masked_watchpoint;
14835 ops->print_mention = print_mention_masked_watchpoint;
14836 ops->print_recreate = print_recreate_masked_watchpoint;
14837
14838 /* Tracepoints. */
14839 ops = &tracepoint_breakpoint_ops;
14840 *ops = base_breakpoint_ops;
14841 ops->re_set = tracepoint_re_set;
14842 ops->breakpoint_hit = tracepoint_breakpoint_hit;
14843 ops->print_one_detail = tracepoint_print_one_detail;
14844 ops->print_mention = tracepoint_print_mention;
14845 ops->print_recreate = tracepoint_print_recreate;
14846 ops->create_sals_from_location = tracepoint_create_sals_from_location;
14847 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
14848 ops->decode_location = tracepoint_decode_location;
14849
14850 /* Probe tracepoints. */
14851 ops = &tracepoint_probe_breakpoint_ops;
14852 *ops = tracepoint_breakpoint_ops;
14853 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
14854 ops->decode_location = tracepoint_probe_decode_location;
14855
14856 /* Static tracepoints with marker (`-m'). */
14857 ops = &strace_marker_breakpoint_ops;
14858 *ops = tracepoint_breakpoint_ops;
14859 ops->create_sals_from_location = strace_marker_create_sals_from_location;
14860 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
14861 ops->decode_location = strace_marker_decode_location;
14862
14863 /* Solib-related catchpoints. */
14864 ops = &catch_solib_breakpoint_ops;
14865 *ops = base_breakpoint_ops;
14866 ops->insert_location = insert_catch_solib;
14867 ops->remove_location = remove_catch_solib;
14868 ops->breakpoint_hit = breakpoint_hit_catch_solib;
14869 ops->check_status = check_status_catch_solib;
14870 ops->print_it = print_it_catch_solib;
14871 ops->print_one = print_one_catch_solib;
14872 ops->print_mention = print_mention_catch_solib;
14873 ops->print_recreate = print_recreate_catch_solib;
14874
14875 ops = &dprintf_breakpoint_ops;
14876 *ops = bkpt_base_breakpoint_ops;
14877 ops->re_set = dprintf_re_set;
14878 ops->resources_needed = bkpt_resources_needed;
14879 ops->print_it = bkpt_print_it;
14880 ops->print_mention = bkpt_print_mention;
14881 ops->print_recreate = dprintf_print_recreate;
14882 ops->after_condition_true = dprintf_after_condition_true;
14883 ops->breakpoint_hit = dprintf_breakpoint_hit;
14884 }
14885
14886 /* Chain containing all defined "enable breakpoint" subcommands. */
14887
14888 static struct cmd_list_element *enablebreaklist = NULL;
14889
14890 /* See breakpoint.h. */
14891
14892 cmd_list_element *commands_cmd_element = nullptr;
14893
14894 void _initialize_breakpoint ();
14895 void
14896 _initialize_breakpoint ()
14897 {
14898 struct cmd_list_element *c;
14899
14900 initialize_breakpoint_ops ();
14901
14902 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib,
14903 "breakpoint");
14904 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile,
14905 "breakpoint");
14906 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change,
14907 "breakpoint");
14908
14909 breakpoint_chain = 0;
14910 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
14911 before a breakpoint is set. */
14912 breakpoint_count = 0;
14913
14914 tracepoint_count = 0;
14915
14916 add_com ("ignore", class_breakpoint, ignore_command, _("\
14917 Set ignore-count of breakpoint number N to COUNT.\n\
14918 Usage is `ignore N COUNT'."));
14919
14920 commands_cmd_element = add_com ("commands", class_breakpoint,
14921 commands_command, _("\
14922 Set commands to be executed when the given breakpoints are hit.\n\
14923 Give a space-separated breakpoint list as argument after \"commands\".\n\
14924 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
14925 (e.g. `5-7').\n\
14926 With no argument, the targeted breakpoint is the last one set.\n\
14927 The commands themselves follow starting on the next line.\n\
14928 Type a line containing \"end\" to indicate the end of them.\n\
14929 Give \"silent\" as the first line to make the breakpoint silent;\n\
14930 then no output is printed when it is hit, except what the commands print."));
14931
14932 const auto cc_opts = make_condition_command_options_def_group (nullptr);
14933 static std::string condition_command_help
14934 = gdb::option::build_help (_("\
14935 Specify breakpoint number N to break only if COND is true.\n\
14936 Usage is `condition [OPTION] N COND', where N is an integer and COND\n\
14937 is an expression to be evaluated whenever breakpoint N is reached.\n\
14938 \n\
14939 Options:\n\
14940 %OPTIONS%"), cc_opts);
14941
14942 c = add_com ("condition", class_breakpoint, condition_command,
14943 condition_command_help.c_str ());
14944 set_cmd_completer_handle_brkchars (c, condition_completer);
14945
14946 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
14947 Set a temporary breakpoint.\n\
14948 Like \"break\" except the breakpoint is only temporary,\n\
14949 so it will be deleted when hit. Equivalent to \"break\" followed\n\
14950 by using \"enable delete\" on the breakpoint number.\n\
14951 \n"
14952 BREAK_ARGS_HELP ("tbreak")));
14953 set_cmd_completer (c, location_completer);
14954
14955 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
14956 Set a hardware assisted breakpoint.\n\
14957 Like \"break\" except the breakpoint requires hardware support,\n\
14958 some target hardware may not have this support.\n\
14959 \n"
14960 BREAK_ARGS_HELP ("hbreak")));
14961 set_cmd_completer (c, location_completer);
14962
14963 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
14964 Set a temporary hardware assisted breakpoint.\n\
14965 Like \"hbreak\" except the breakpoint is only temporary,\n\
14966 so it will be deleted when hit.\n\
14967 \n"
14968 BREAK_ARGS_HELP ("thbreak")));
14969 set_cmd_completer (c, location_completer);
14970
14971 cmd_list_element *enable_cmd
14972 = add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
14973 Enable all or some breakpoints.\n\
14974 Usage: enable [BREAKPOINTNUM]...\n\
14975 Give breakpoint numbers (separated by spaces) as arguments.\n\
14976 With no subcommand, breakpoints are enabled until you command otherwise.\n\
14977 This is used to cancel the effect of the \"disable\" command.\n\
14978 With a subcommand you can enable temporarily."),
14979 &enablelist, 1, &cmdlist);
14980
14981 add_com_alias ("en", enable_cmd, class_breakpoint, 1);
14982
14983 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
14984 Enable all or some breakpoints.\n\
14985 Usage: enable breakpoints [BREAKPOINTNUM]...\n\
14986 Give breakpoint numbers (separated by spaces) as arguments.\n\
14987 This is used to cancel the effect of the \"disable\" command.\n\
14988 May be abbreviated to simply \"enable\"."),
14989 &enablebreaklist, 1, &enablelist);
14990
14991 add_cmd ("once", no_class, enable_once_command, _("\
14992 Enable some breakpoints for one hit.\n\
14993 Usage: enable breakpoints once BREAKPOINTNUM...\n\
14994 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
14995 &enablebreaklist);
14996
14997 add_cmd ("delete", no_class, enable_delete_command, _("\
14998 Enable some breakpoints and delete when hit.\n\
14999 Usage: enable breakpoints delete BREAKPOINTNUM...\n\
15000 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15001 &enablebreaklist);
15002
15003 add_cmd ("count", no_class, enable_count_command, _("\
15004 Enable some breakpoints for COUNT hits.\n\
15005 Usage: enable breakpoints count COUNT BREAKPOINTNUM...\n\
15006 If a breakpoint is hit while enabled in this fashion,\n\
15007 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15008 &enablebreaklist);
15009
15010 add_cmd ("delete", no_class, enable_delete_command, _("\
15011 Enable some breakpoints and delete when hit.\n\
15012 Usage: enable delete BREAKPOINTNUM...\n\
15013 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15014 &enablelist);
15015
15016 add_cmd ("once", no_class, enable_once_command, _("\
15017 Enable some breakpoints for one hit.\n\
15018 Usage: enable once BREAKPOINTNUM...\n\
15019 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15020 &enablelist);
15021
15022 add_cmd ("count", no_class, enable_count_command, _("\
15023 Enable some breakpoints for COUNT hits.\n\
15024 Usage: enable count COUNT BREAKPOINTNUM...\n\
15025 If a breakpoint is hit while enabled in this fashion,\n\
15026 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15027 &enablelist);
15028
15029 cmd_list_element *disable_cmd
15030 = add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15031 Disable all or some breakpoints.\n\
15032 Usage: disable [BREAKPOINTNUM]...\n\
15033 Arguments are breakpoint numbers with spaces in between.\n\
15034 To disable all breakpoints, give no argument.\n\
15035 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15036 &disablelist, 1, &cmdlist);
15037 add_com_alias ("dis", disable_cmd, class_breakpoint, 1);
15038 add_com_alias ("disa", disable_cmd, class_breakpoint, 1);
15039
15040 add_cmd ("breakpoints", class_breakpoint, disable_command, _("\
15041 Disable all or some breakpoints.\n\
15042 Usage: disable breakpoints [BREAKPOINTNUM]...\n\
15043 Arguments are breakpoint numbers with spaces in between.\n\
15044 To disable all breakpoints, give no argument.\n\
15045 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15046 This command may be abbreviated \"disable\"."),
15047 &disablelist);
15048
15049 cmd_list_element *delete_cmd
15050 = add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15051 Delete all or some breakpoints.\n\
15052 Usage: delete [BREAKPOINTNUM]...\n\
15053 Arguments are breakpoint numbers with spaces in between.\n\
15054 To delete all breakpoints, give no argument.\n\
15055 \n\
15056 Also a prefix command for deletion of other GDB objects."),
15057 &deletelist, 1, &cmdlist);
15058 add_com_alias ("d", delete_cmd, class_breakpoint, 1);
15059 add_com_alias ("del", delete_cmd, class_breakpoint, 1);
15060
15061 add_cmd ("breakpoints", class_breakpoint, delete_command, _("\
15062 Delete all or some breakpoints or auto-display expressions.\n\
15063 Usage: delete breakpoints [BREAKPOINTNUM]...\n\
15064 Arguments are breakpoint numbers with spaces in between.\n\
15065 To delete all breakpoints, give no argument.\n\
15066 This command may be abbreviated \"delete\"."),
15067 &deletelist);
15068
15069 cmd_list_element *clear_cmd
15070 = add_com ("clear", class_breakpoint, clear_command, _("\
15071 Clear breakpoint at specified location.\n\
15072 Argument may be a linespec, explicit, or address location as described below.\n\
15073 \n\
15074 With no argument, clears all breakpoints in the line that the selected frame\n\
15075 is executing in.\n"
15076 "\n" LOCATION_HELP_STRING "\n\n\
15077 See also the \"delete\" command which clears breakpoints by number."));
15078 add_com_alias ("cl", clear_cmd, class_breakpoint, 1);
15079
15080 cmd_list_element *break_cmd
15081 = add_com ("break", class_breakpoint, break_command, _("\
15082 Set breakpoint at specified location.\n"
15083 BREAK_ARGS_HELP ("break")));
15084 set_cmd_completer (break_cmd, location_completer);
15085
15086 add_com_alias ("b", break_cmd, class_run, 1);
15087 add_com_alias ("br", break_cmd, class_run, 1);
15088 add_com_alias ("bre", break_cmd, class_run, 1);
15089 add_com_alias ("brea", break_cmd, class_run, 1);
15090
15091 if (dbx_commands)
15092 {
15093 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15094 Break in function/address or break at a line in the current file."),
15095 &stoplist, 1, &cmdlist);
15096 add_cmd ("in", class_breakpoint, stopin_command,
15097 _("Break in function or address."), &stoplist);
15098 add_cmd ("at", class_breakpoint, stopat_command,
15099 _("Break at a line in the current file."), &stoplist);
15100 add_com ("status", class_info, info_breakpoints_command, _("\
15101 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15102 The \"Type\" column indicates one of:\n\
15103 \tbreakpoint - normal breakpoint\n\
15104 \twatchpoint - watchpoint\n\
15105 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15106 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15107 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15108 address and file/line number respectively.\n\
15109 \n\
15110 Convenience variable \"$_\" and default examine address for \"x\"\n\
15111 are set to the address of the last breakpoint listed unless the command\n\
15112 is prefixed with \"server \".\n\n\
15113 Convenience variable \"$bpnum\" contains the number of the last\n\
15114 breakpoint set."));
15115 }
15116
15117 cmd_list_element *info_breakpoints_cmd
15118 = add_info ("breakpoints", info_breakpoints_command, _("\
15119 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15120 The \"Type\" column indicates one of:\n\
15121 \tbreakpoint - normal breakpoint\n\
15122 \twatchpoint - watchpoint\n\
15123 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15124 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15125 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15126 address and file/line number respectively.\n\
15127 \n\
15128 Convenience variable \"$_\" and default examine address for \"x\"\n\
15129 are set to the address of the last breakpoint listed unless the command\n\
15130 is prefixed with \"server \".\n\n\
15131 Convenience variable \"$bpnum\" contains the number of the last\n\
15132 breakpoint set."));
15133
15134 add_info_alias ("b", info_breakpoints_cmd, 1);
15135
15136 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15137 Status of all breakpoints, or breakpoint number NUMBER.\n\
15138 The \"Type\" column indicates one of:\n\
15139 \tbreakpoint - normal breakpoint\n\
15140 \twatchpoint - watchpoint\n\
15141 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15142 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15143 \tuntil - internal breakpoint used by the \"until\" command\n\
15144 \tfinish - internal breakpoint used by the \"finish\" command\n\
15145 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15146 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15147 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15148 address and file/line number respectively.\n\
15149 \n\
15150 Convenience variable \"$_\" and default examine address for \"x\"\n\
15151 are set to the address of the last breakpoint listed unless the command\n\
15152 is prefixed with \"server \".\n\n\
15153 Convenience variable \"$bpnum\" contains the number of the last\n\
15154 breakpoint set."),
15155 &maintenanceinfolist);
15156
15157 add_basic_prefix_cmd ("catch", class_breakpoint, _("\
15158 Set catchpoints to catch events."),
15159 &catch_cmdlist,
15160 0/*allow-unknown*/, &cmdlist);
15161
15162 add_basic_prefix_cmd ("tcatch", class_breakpoint, _("\
15163 Set temporary catchpoints to catch events."),
15164 &tcatch_cmdlist,
15165 0/*allow-unknown*/, &cmdlist);
15166
15167 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15168 Usage: catch load [REGEX]\n\
15169 If REGEX is given, only stop for libraries matching the regular expression."),
15170 catch_load_command_1,
15171 NULL,
15172 CATCH_PERMANENT,
15173 CATCH_TEMPORARY);
15174 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15175 Usage: catch unload [REGEX]\n\
15176 If REGEX is given, only stop for libraries matching the regular expression."),
15177 catch_unload_command_1,
15178 NULL,
15179 CATCH_PERMANENT,
15180 CATCH_TEMPORARY);
15181
15182 const auto opts = make_watch_options_def_group (nullptr);
15183
15184 static const std::string watch_help = gdb::option::build_help (_("\
15185 Set a watchpoint for EXPRESSION.\n\
15186 Usage: watch [-location] EXPRESSION\n\
15187 \n\
15188 Options:\n\
15189 %OPTIONS%\n\
15190 \n\
15191 A watchpoint stops execution of your program whenever the value of\n\
15192 an expression changes."), opts);
15193 c = add_com ("watch", class_breakpoint, watch_command,
15194 watch_help.c_str ());
15195 set_cmd_completer_handle_brkchars (c, watch_command_completer);
15196
15197 static const std::string rwatch_help = gdb::option::build_help (_("\
15198 Set a read watchpoint for EXPRESSION.\n\
15199 Usage: rwatch [-location] EXPRESSION\n\
15200 \n\
15201 Options:\n\
15202 %OPTIONS%\n\
15203 \n\
15204 A read watchpoint stops execution of your program whenever the value of\n\
15205 an expression is read."), opts);
15206 c = add_com ("rwatch", class_breakpoint, rwatch_command,
15207 rwatch_help.c_str ());
15208 set_cmd_completer_handle_brkchars (c, watch_command_completer);
15209
15210 static const std::string awatch_help = gdb::option::build_help (_("\
15211 Set an access watchpoint for EXPRESSION.\n\
15212 Usage: awatch [-location] EXPRESSION\n\
15213 \n\
15214 Options:\n\
15215 %OPTIONS%\n\
15216 \n\
15217 An access watchpoint stops execution of your program whenever the value\n\
15218 of an expression is either read or written."), opts);
15219 c = add_com ("awatch", class_breakpoint, awatch_command,
15220 awatch_help.c_str ());
15221 set_cmd_completer_handle_brkchars (c, watch_command_completer);
15222
15223 add_info ("watchpoints", info_watchpoints_command, _("\
15224 Status of specified watchpoints (all watchpoints if no argument)."));
15225
15226 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15227 respond to changes - contrary to the description. */
15228 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15229 &can_use_hw_watchpoints, _("\
15230 Set debugger's willingness to use watchpoint hardware."), _("\
15231 Show debugger's willingness to use watchpoint hardware."), _("\
15232 If zero, gdb will not use hardware for new watchpoints, even if\n\
15233 such is available. (However, any hardware watchpoints that were\n\
15234 created before setting this to nonzero, will continue to use watchpoint\n\
15235 hardware.)"),
15236 NULL,
15237 show_can_use_hw_watchpoints,
15238 &setlist, &showlist);
15239
15240 can_use_hw_watchpoints = 1;
15241
15242 /* Tracepoint manipulation commands. */
15243
15244 cmd_list_element *trace_cmd
15245 = add_com ("trace", class_breakpoint, trace_command, _("\
15246 Set a tracepoint at specified location.\n\
15247 \n"
15248 BREAK_ARGS_HELP ("trace") "\n\
15249 Do \"help tracepoints\" for info on other tracepoint commands."));
15250 set_cmd_completer (trace_cmd, location_completer);
15251
15252 add_com_alias ("tp", trace_cmd, class_breakpoint, 0);
15253 add_com_alias ("tr", trace_cmd, class_breakpoint, 1);
15254 add_com_alias ("tra", trace_cmd, class_breakpoint, 1);
15255 add_com_alias ("trac", trace_cmd, class_breakpoint, 1);
15256
15257 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15258 Set a fast tracepoint at specified location.\n\
15259 \n"
15260 BREAK_ARGS_HELP ("ftrace") "\n\
15261 Do \"help tracepoints\" for info on other tracepoint commands."));
15262 set_cmd_completer (c, location_completer);
15263
15264 c = add_com ("strace", class_breakpoint, strace_command, _("\
15265 Set a static tracepoint at location or marker.\n\
15266 \n\
15267 strace [LOCATION] [if CONDITION]\n\
15268 LOCATION may be a linespec, explicit, or address location (described below) \n\
15269 or -m MARKER_ID.\n\n\
15270 If a marker id is specified, probe the marker with that name. With\n\
15271 no LOCATION, uses current execution address of the selected stack frame.\n\
15272 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15273 This collects arbitrary user data passed in the probe point call to the\n\
15274 tracing library. You can inspect it when analyzing the trace buffer,\n\
15275 by printing the $_sdata variable like any other convenience variable.\n\
15276 \n\
15277 CONDITION is a boolean expression.\n\
15278 \n" LOCATION_HELP_STRING "\n\n\
15279 Multiple tracepoints at one place are permitted, and useful if their\n\
15280 conditions are different.\n\
15281 \n\
15282 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15283 Do \"help tracepoints\" for info on other tracepoint commands."));
15284 set_cmd_completer (c, location_completer);
15285
15286 cmd_list_element *info_tracepoints_cmd
15287 = add_info ("tracepoints", info_tracepoints_command, _("\
15288 Status of specified tracepoints (all tracepoints if no argument).\n\
15289 Convenience variable \"$tpnum\" contains the number of the\n\
15290 last tracepoint set."));
15291
15292 add_info_alias ("tp", info_tracepoints_cmd, 1);
15293
15294 cmd_list_element *delete_tracepoints_cmd
15295 = add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15296 Delete specified tracepoints.\n\
15297 Arguments are tracepoint numbers, separated by spaces.\n\
15298 No argument means delete all tracepoints."),
15299 &deletelist);
15300 add_alias_cmd ("tr", delete_tracepoints_cmd, class_trace, 1, &deletelist);
15301
15302 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15303 Disable specified tracepoints.\n\
15304 Arguments are tracepoint numbers, separated by spaces.\n\
15305 No argument means disable all tracepoints."),
15306 &disablelist);
15307 deprecate_cmd (c, "disable");
15308
15309 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15310 Enable specified tracepoints.\n\
15311 Arguments are tracepoint numbers, separated by spaces.\n\
15312 No argument means enable all tracepoints."),
15313 &enablelist);
15314 deprecate_cmd (c, "enable");
15315
15316 add_com ("passcount", class_trace, trace_pass_command, _("\
15317 Set the passcount for a tracepoint.\n\
15318 The trace will end when the tracepoint has been passed 'count' times.\n\
15319 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15320 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15321
15322 add_basic_prefix_cmd ("save", class_breakpoint,
15323 _("Save breakpoint definitions as a script."),
15324 &save_cmdlist,
15325 0/*allow-unknown*/, &cmdlist);
15326
15327 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15328 Save current breakpoint definitions as a script.\n\
15329 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15330 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15331 session to restore them."),
15332 &save_cmdlist);
15333 set_cmd_completer (c, filename_completer);
15334
15335 cmd_list_element *save_tracepoints_cmd
15336 = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15337 Save current tracepoint definitions as a script.\n\
15338 Use the 'source' command in another debug session to restore them."),
15339 &save_cmdlist);
15340 set_cmd_completer (save_tracepoints_cmd, filename_completer);
15341
15342 c = add_com_alias ("save-tracepoints", save_tracepoints_cmd, class_trace, 0);
15343 deprecate_cmd (c, "save tracepoints");
15344
15345 add_setshow_prefix_cmd ("breakpoint", class_maintenance,
15346 _("\
15347 Breakpoint specific settings.\n\
15348 Configure various breakpoint-specific variables such as\n\
15349 pending breakpoint behavior."),
15350 _("\
15351 Breakpoint specific settings.\n\
15352 Configure various breakpoint-specific variables such as\n\
15353 pending breakpoint behavior."),
15354 &breakpoint_set_cmdlist, &breakpoint_show_cmdlist,
15355 &setlist, &showlist);
15356
15357 add_setshow_auto_boolean_cmd ("pending", no_class,
15358 &pending_break_support, _("\
15359 Set debugger's behavior regarding pending breakpoints."), _("\
15360 Show debugger's behavior regarding pending breakpoints."), _("\
15361 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15362 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15363 an error. If auto, an unrecognized breakpoint location results in a\n\
15364 user-query to see if a pending breakpoint should be created."),
15365 NULL,
15366 show_pending_break_support,
15367 &breakpoint_set_cmdlist,
15368 &breakpoint_show_cmdlist);
15369
15370 pending_break_support = AUTO_BOOLEAN_AUTO;
15371
15372 add_setshow_boolean_cmd ("auto-hw", no_class,
15373 &automatic_hardware_breakpoints, _("\
15374 Set automatic usage of hardware breakpoints."), _("\
15375 Show automatic usage of hardware breakpoints."), _("\
15376 If set, the debugger will automatically use hardware breakpoints for\n\
15377 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15378 a warning will be emitted for such breakpoints."),
15379 NULL,
15380 show_automatic_hardware_breakpoints,
15381 &breakpoint_set_cmdlist,
15382 &breakpoint_show_cmdlist);
15383
15384 add_setshow_boolean_cmd ("always-inserted", class_support,
15385 &always_inserted_mode, _("\
15386 Set mode for inserting breakpoints."), _("\
15387 Show mode for inserting breakpoints."), _("\
15388 When this mode is on, breakpoints are inserted immediately as soon as\n\
15389 they're created, kept inserted even when execution stops, and removed\n\
15390 only when the user deletes them. When this mode is off (the default),\n\
15391 breakpoints are inserted only when execution continues, and removed\n\
15392 when execution stops."),
15393 NULL,
15394 &show_always_inserted_mode,
15395 &breakpoint_set_cmdlist,
15396 &breakpoint_show_cmdlist);
15397
15398 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
15399 condition_evaluation_enums,
15400 &condition_evaluation_mode_1, _("\
15401 Set mode of breakpoint condition evaluation."), _("\
15402 Show mode of breakpoint condition evaluation."), _("\
15403 When this is set to \"host\", breakpoint conditions will be\n\
15404 evaluated on the host's side by GDB. When it is set to \"target\",\n\
15405 breakpoint conditions will be downloaded to the target (if the target\n\
15406 supports such feature) and conditions will be evaluated on the target's side.\n\
15407 If this is set to \"auto\" (default), this will be automatically set to\n\
15408 \"target\" if it supports condition evaluation, otherwise it will\n\
15409 be set to \"host\"."),
15410 &set_condition_evaluation_mode,
15411 &show_condition_evaluation_mode,
15412 &breakpoint_set_cmdlist,
15413 &breakpoint_show_cmdlist);
15414
15415 add_com ("break-range", class_breakpoint, break_range_command, _("\
15416 Set a breakpoint for an address range.\n\
15417 break-range START-LOCATION, END-LOCATION\n\
15418 where START-LOCATION and END-LOCATION can be one of the following:\n\
15419 LINENUM, for that line in the current file,\n\
15420 FILE:LINENUM, for that line in that file,\n\
15421 +OFFSET, for that number of lines after the current line\n\
15422 or the start of the range\n\
15423 FUNCTION, for the first line in that function,\n\
15424 FILE:FUNCTION, to distinguish among like-named static functions.\n\
15425 *ADDRESS, for the instruction at that address.\n\
15426 \n\
15427 The breakpoint will stop execution of the inferior whenever it executes\n\
15428 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
15429 range (including START-LOCATION and END-LOCATION)."));
15430
15431 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
15432 Set a dynamic printf at specified location.\n\
15433 dprintf location,format string,arg1,arg2,...\n\
15434 location may be a linespec, explicit, or address location.\n"
15435 "\n" LOCATION_HELP_STRING));
15436 set_cmd_completer (c, location_completer);
15437
15438 add_setshow_enum_cmd ("dprintf-style", class_support,
15439 dprintf_style_enums, &dprintf_style, _("\
15440 Set the style of usage for dynamic printf."), _("\
15441 Show the style of usage for dynamic printf."), _("\
15442 This setting chooses how GDB will do a dynamic printf.\n\
15443 If the value is \"gdb\", then the printing is done by GDB to its own\n\
15444 console, as with the \"printf\" command.\n\
15445 If the value is \"call\", the print is done by calling a function in your\n\
15446 program; by default printf(), but you can choose a different function or\n\
15447 output stream by setting dprintf-function and dprintf-channel."),
15448 update_dprintf_commands, NULL,
15449 &setlist, &showlist);
15450
15451 add_setshow_string_cmd ("dprintf-function", class_support,
15452 &dprintf_function, _("\
15453 Set the function to use for dynamic printf."), _("\
15454 Show the function to use for dynamic printf."), NULL,
15455 update_dprintf_commands, NULL,
15456 &setlist, &showlist);
15457
15458 add_setshow_string_cmd ("dprintf-channel", class_support,
15459 &dprintf_channel, _("\
15460 Set the channel to use for dynamic printf."), _("\
15461 Show the channel to use for dynamic printf."), NULL,
15462 update_dprintf_commands, NULL,
15463 &setlist, &showlist);
15464
15465 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
15466 &disconnected_dprintf, _("\
15467 Set whether dprintf continues after GDB disconnects."), _("\
15468 Show whether dprintf continues after GDB disconnects."), _("\
15469 Use this to let dprintf commands continue to hit and produce output\n\
15470 even if GDB disconnects or detaches from the target."),
15471 NULL,
15472 NULL,
15473 &setlist, &showlist);
15474
15475 add_com ("agent-printf", class_vars, agent_printf_command, _("\
15476 Target agent only formatted printing, like the C \"printf\" function.\n\
15477 Usage: agent-printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
15478 This supports most C printf format specifications, like %s, %d, etc.\n\
15479 This is useful for formatted output in user-defined commands."));
15480
15481 automatic_hardware_breakpoints = true;
15482
15483 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed,
15484 "breakpoint");
15485 gdb::observers::thread_exit.attach (remove_threaded_breakpoints,
15486 "breakpoint");
15487 }