change probes to be program-space-independent
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include <string.h>
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "ax-gdb.h"
70 #include "dummy-frame.h"
71
72 #include "format.h"
73
74 /* readline include files */
75 #include "readline/readline.h"
76 #include "readline/history.h"
77
78 /* readline defines this. */
79 #undef savestring
80
81 #include "mi/mi-common.h"
82 #include "extension.h"
83
84 /* Enums for exception-handling support. */
85 enum exception_event_kind
86 {
87 EX_EVENT_THROW,
88 EX_EVENT_RETHROW,
89 EX_EVENT_CATCH
90 };
91
92 /* Prototypes for local functions. */
93
94 static void enable_delete_command (char *, int);
95
96 static void enable_once_command (char *, int);
97
98 static void enable_count_command (char *, int);
99
100 static void disable_command (char *, int);
101
102 static void enable_command (char *, int);
103
104 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
105 void *),
106 void *);
107
108 static void ignore_command (char *, int);
109
110 static int breakpoint_re_set_one (void *);
111
112 static void breakpoint_re_set_default (struct breakpoint *);
113
114 static void create_sals_from_address_default (char **,
115 struct linespec_result *,
116 enum bptype, char *,
117 char **);
118
119 static void create_breakpoints_sal_default (struct gdbarch *,
120 struct linespec_result *,
121 char *, char *, enum bptype,
122 enum bpdisp, int, int,
123 int,
124 const struct breakpoint_ops *,
125 int, int, int, unsigned);
126
127 static void decode_linespec_default (struct breakpoint *, char **,
128 struct symtabs_and_lines *);
129
130 static void clear_command (char *, int);
131
132 static void catch_command (char *, int);
133
134 static int can_use_hardware_watchpoint (struct value *);
135
136 static void break_command_1 (char *, int, int);
137
138 static void mention (struct breakpoint *);
139
140 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
141 enum bptype,
142 const struct breakpoint_ops *);
143 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
144 const struct symtab_and_line *);
145
146 /* This function is used in gdbtk sources and thus can not be made
147 static. */
148 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
149 struct symtab_and_line,
150 enum bptype,
151 const struct breakpoint_ops *);
152
153 static struct breakpoint *
154 momentary_breakpoint_from_master (struct breakpoint *orig,
155 enum bptype type,
156 const struct breakpoint_ops *ops);
157
158 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
159
160 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
161 CORE_ADDR bpaddr,
162 enum bptype bptype);
163
164 static void describe_other_breakpoints (struct gdbarch *,
165 struct program_space *, CORE_ADDR,
166 struct obj_section *, int);
167
168 static int breakpoint_address_match (struct address_space *aspace1,
169 CORE_ADDR addr1,
170 struct address_space *aspace2,
171 CORE_ADDR addr2);
172
173 static int watchpoint_locations_match (struct bp_location *loc1,
174 struct bp_location *loc2);
175
176 static int breakpoint_location_address_match (struct bp_location *bl,
177 struct address_space *aspace,
178 CORE_ADDR addr);
179
180 static void breakpoints_info (char *, int);
181
182 static void watchpoints_info (char *, int);
183
184 static int breakpoint_1 (char *, int,
185 int (*) (const struct breakpoint *));
186
187 static int breakpoint_cond_eval (void *);
188
189 static void cleanup_executing_breakpoints (void *);
190
191 static void commands_command (char *, int);
192
193 static void condition_command (char *, int);
194
195 typedef enum
196 {
197 mark_inserted,
198 mark_uninserted
199 }
200 insertion_state_t;
201
202 static int remove_breakpoint (struct bp_location *, insertion_state_t);
203 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
204
205 static enum print_stop_action print_bp_stop_message (bpstat bs);
206
207 static int watchpoint_check (void *);
208
209 static void maintenance_info_breakpoints (char *, int);
210
211 static int hw_breakpoint_used_count (void);
212
213 static int hw_watchpoint_use_count (struct breakpoint *);
214
215 static int hw_watchpoint_used_count_others (struct breakpoint *except,
216 enum bptype type,
217 int *other_type_used);
218
219 static void hbreak_command (char *, int);
220
221 static void thbreak_command (char *, int);
222
223 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
224 int count);
225
226 static void stop_command (char *arg, int from_tty);
227
228 static void stopin_command (char *arg, int from_tty);
229
230 static void stopat_command (char *arg, int from_tty);
231
232 static void tcatch_command (char *arg, int from_tty);
233
234 static void detach_single_step_breakpoints (void);
235
236 static int single_step_breakpoint_inserted_here_p (struct address_space *,
237 CORE_ADDR pc);
238
239 static void free_bp_location (struct bp_location *loc);
240 static void incref_bp_location (struct bp_location *loc);
241 static void decref_bp_location (struct bp_location **loc);
242
243 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
244
245 static void update_global_location_list (int);
246
247 static void update_global_location_list_nothrow (int);
248
249 static int is_hardware_watchpoint (const struct breakpoint *bpt);
250
251 static void insert_breakpoint_locations (void);
252
253 static int syscall_catchpoint_p (struct breakpoint *b);
254
255 static void tracepoints_info (char *, int);
256
257 static void delete_trace_command (char *, int);
258
259 static void enable_trace_command (char *, int);
260
261 static void disable_trace_command (char *, int);
262
263 static void trace_pass_command (char *, int);
264
265 static void set_tracepoint_count (int num);
266
267 static int is_masked_watchpoint (const struct breakpoint *b);
268
269 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
270
271 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
272 otherwise. */
273
274 static int strace_marker_p (struct breakpoint *b);
275
276 /* The abstract base class all breakpoint_ops structures inherit
277 from. */
278 struct breakpoint_ops base_breakpoint_ops;
279
280 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
281 that are implemented on top of software or hardware breakpoints
282 (user breakpoints, internal and momentary breakpoints, etc.). */
283 static struct breakpoint_ops bkpt_base_breakpoint_ops;
284
285 /* Internal breakpoints class type. */
286 static struct breakpoint_ops internal_breakpoint_ops;
287
288 /* Momentary breakpoints class type. */
289 static struct breakpoint_ops momentary_breakpoint_ops;
290
291 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
292 static struct breakpoint_ops longjmp_breakpoint_ops;
293
294 /* The breakpoint_ops structure to be used in regular user created
295 breakpoints. */
296 struct breakpoint_ops bkpt_breakpoint_ops;
297
298 /* Breakpoints set on probes. */
299 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
300
301 /* Dynamic printf class type. */
302 struct breakpoint_ops dprintf_breakpoint_ops;
303
304 /* The style in which to perform a dynamic printf. This is a user
305 option because different output options have different tradeoffs;
306 if GDB does the printing, there is better error handling if there
307 is a problem with any of the arguments, but using an inferior
308 function lets you have special-purpose printers and sending of
309 output to the same place as compiled-in print functions. */
310
311 static const char dprintf_style_gdb[] = "gdb";
312 static const char dprintf_style_call[] = "call";
313 static const char dprintf_style_agent[] = "agent";
314 static const char *const dprintf_style_enums[] = {
315 dprintf_style_gdb,
316 dprintf_style_call,
317 dprintf_style_agent,
318 NULL
319 };
320 static const char *dprintf_style = dprintf_style_gdb;
321
322 /* The function to use for dynamic printf if the preferred style is to
323 call into the inferior. The value is simply a string that is
324 copied into the command, so it can be anything that GDB can
325 evaluate to a callable address, not necessarily a function name. */
326
327 static char *dprintf_function = "";
328
329 /* The channel to use for dynamic printf if the preferred style is to
330 call into the inferior; if a nonempty string, it will be passed to
331 the call as the first argument, with the format string as the
332 second. As with the dprintf function, this can be anything that
333 GDB knows how to evaluate, so in addition to common choices like
334 "stderr", this could be an app-specific expression like
335 "mystreams[curlogger]". */
336
337 static char *dprintf_channel = "";
338
339 /* True if dprintf commands should continue to operate even if GDB
340 has disconnected. */
341 static int disconnected_dprintf = 1;
342
343 /* A reference-counted struct command_line. This lets multiple
344 breakpoints share a single command list. */
345 struct counted_command_line
346 {
347 /* The reference count. */
348 int refc;
349
350 /* The command list. */
351 struct command_line *commands;
352 };
353
354 struct command_line *
355 breakpoint_commands (struct breakpoint *b)
356 {
357 return b->commands ? b->commands->commands : NULL;
358 }
359
360 /* Flag indicating that a command has proceeded the inferior past the
361 current breakpoint. */
362
363 static int breakpoint_proceeded;
364
365 const char *
366 bpdisp_text (enum bpdisp disp)
367 {
368 /* NOTE: the following values are a part of MI protocol and
369 represent values of 'disp' field returned when inferior stops at
370 a breakpoint. */
371 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
372
373 return bpdisps[(int) disp];
374 }
375
376 /* Prototypes for exported functions. */
377 /* If FALSE, gdb will not use hardware support for watchpoints, even
378 if such is available. */
379 static int can_use_hw_watchpoints;
380
381 static void
382 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
383 struct cmd_list_element *c,
384 const char *value)
385 {
386 fprintf_filtered (file,
387 _("Debugger's willingness to use "
388 "watchpoint hardware is %s.\n"),
389 value);
390 }
391
392 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
393 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
394 for unrecognized breakpoint locations.
395 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
396 static enum auto_boolean pending_break_support;
397 static void
398 show_pending_break_support (struct ui_file *file, int from_tty,
399 struct cmd_list_element *c,
400 const char *value)
401 {
402 fprintf_filtered (file,
403 _("Debugger's behavior regarding "
404 "pending breakpoints is %s.\n"),
405 value);
406 }
407
408 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
409 set with "break" but falling in read-only memory.
410 If 0, gdb will warn about such breakpoints, but won't automatically
411 use hardware breakpoints. */
412 static int automatic_hardware_breakpoints;
413 static void
414 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
415 struct cmd_list_element *c,
416 const char *value)
417 {
418 fprintf_filtered (file,
419 _("Automatic usage of hardware breakpoints is %s.\n"),
420 value);
421 }
422
423 /* If on, gdb will keep breakpoints inserted even as inferior is
424 stopped, and immediately insert any new breakpoints. If off, gdb
425 will insert breakpoints into inferior only when resuming it, and
426 will remove breakpoints upon stop. If auto, GDB will behave as ON
427 if in non-stop mode, and as OFF if all-stop mode.*/
428
429 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
430
431 static void
432 show_always_inserted_mode (struct ui_file *file, int from_tty,
433 struct cmd_list_element *c, const char *value)
434 {
435 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
436 fprintf_filtered (file,
437 _("Always inserted breakpoint "
438 "mode is %s (currently %s).\n"),
439 value,
440 breakpoints_always_inserted_mode () ? "on" : "off");
441 else
442 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
443 value);
444 }
445
446 int
447 breakpoints_always_inserted_mode (void)
448 {
449 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
450 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
451 }
452
453 static const char condition_evaluation_both[] = "host or target";
454
455 /* Modes for breakpoint condition evaluation. */
456 static const char condition_evaluation_auto[] = "auto";
457 static const char condition_evaluation_host[] = "host";
458 static const char condition_evaluation_target[] = "target";
459 static const char *const condition_evaluation_enums[] = {
460 condition_evaluation_auto,
461 condition_evaluation_host,
462 condition_evaluation_target,
463 NULL
464 };
465
466 /* Global that holds the current mode for breakpoint condition evaluation. */
467 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
468
469 /* Global that we use to display information to the user (gets its value from
470 condition_evaluation_mode_1. */
471 static const char *condition_evaluation_mode = condition_evaluation_auto;
472
473 /* Translate a condition evaluation mode MODE into either "host"
474 or "target". This is used mostly to translate from "auto" to the
475 real setting that is being used. It returns the translated
476 evaluation mode. */
477
478 static const char *
479 translate_condition_evaluation_mode (const char *mode)
480 {
481 if (mode == condition_evaluation_auto)
482 {
483 if (target_supports_evaluation_of_breakpoint_conditions ())
484 return condition_evaluation_target;
485 else
486 return condition_evaluation_host;
487 }
488 else
489 return mode;
490 }
491
492 /* Discovers what condition_evaluation_auto translates to. */
493
494 static const char *
495 breakpoint_condition_evaluation_mode (void)
496 {
497 return translate_condition_evaluation_mode (condition_evaluation_mode);
498 }
499
500 /* Return true if GDB should evaluate breakpoint conditions or false
501 otherwise. */
502
503 static int
504 gdb_evaluates_breakpoint_condition_p (void)
505 {
506 const char *mode = breakpoint_condition_evaluation_mode ();
507
508 return (mode == condition_evaluation_host);
509 }
510
511 void _initialize_breakpoint (void);
512
513 /* Are we executing breakpoint commands? */
514 static int executing_breakpoint_commands;
515
516 /* Are overlay event breakpoints enabled? */
517 static int overlay_events_enabled;
518
519 /* See description in breakpoint.h. */
520 int target_exact_watchpoints = 0;
521
522 /* Walk the following statement or block through all breakpoints.
523 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
524 current breakpoint. */
525
526 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
527
528 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
529 for (B = breakpoint_chain; \
530 B ? (TMP=B->next, 1): 0; \
531 B = TMP)
532
533 /* Similar iterator for the low-level breakpoints. SAFE variant is
534 not provided so update_global_location_list must not be called
535 while executing the block of ALL_BP_LOCATIONS. */
536
537 #define ALL_BP_LOCATIONS(B,BP_TMP) \
538 for (BP_TMP = bp_location; \
539 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
540 BP_TMP++)
541
542 /* Iterates through locations with address ADDRESS for the currently selected
543 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
544 to where the loop should start from.
545 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
546 appropriate location to start with. */
547
548 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
549 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
550 BP_LOCP_TMP = BP_LOCP_START; \
551 BP_LOCP_START \
552 && (BP_LOCP_TMP < bp_location + bp_location_count \
553 && (*BP_LOCP_TMP)->address == ADDRESS); \
554 BP_LOCP_TMP++)
555
556 /* Iterator for tracepoints only. */
557
558 #define ALL_TRACEPOINTS(B) \
559 for (B = breakpoint_chain; B; B = B->next) \
560 if (is_tracepoint (B))
561
562 /* Chains of all breakpoints defined. */
563
564 struct breakpoint *breakpoint_chain;
565
566 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
567
568 static struct bp_location **bp_location;
569
570 /* Number of elements of BP_LOCATION. */
571
572 static unsigned bp_location_count;
573
574 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
575 ADDRESS for the current elements of BP_LOCATION which get a valid
576 result from bp_location_has_shadow. You can use it for roughly
577 limiting the subrange of BP_LOCATION to scan for shadow bytes for
578 an address you need to read. */
579
580 static CORE_ADDR bp_location_placed_address_before_address_max;
581
582 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
583 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
584 BP_LOCATION which get a valid result from bp_location_has_shadow.
585 You can use it for roughly limiting the subrange of BP_LOCATION to
586 scan for shadow bytes for an address you need to read. */
587
588 static CORE_ADDR bp_location_shadow_len_after_address_max;
589
590 /* The locations that no longer correspond to any breakpoint, unlinked
591 from bp_location array, but for which a hit may still be reported
592 by a target. */
593 VEC(bp_location_p) *moribund_locations = NULL;
594
595 /* Number of last breakpoint made. */
596
597 static int breakpoint_count;
598
599 /* The value of `breakpoint_count' before the last command that
600 created breakpoints. If the last (break-like) command created more
601 than one breakpoint, then the difference between BREAKPOINT_COUNT
602 and PREV_BREAKPOINT_COUNT is more than one. */
603 static int prev_breakpoint_count;
604
605 /* Number of last tracepoint made. */
606
607 static int tracepoint_count;
608
609 static struct cmd_list_element *breakpoint_set_cmdlist;
610 static struct cmd_list_element *breakpoint_show_cmdlist;
611 struct cmd_list_element *save_cmdlist;
612
613 /* Return whether a breakpoint is an active enabled breakpoint. */
614 static int
615 breakpoint_enabled (struct breakpoint *b)
616 {
617 return (b->enable_state == bp_enabled);
618 }
619
620 /* Set breakpoint count to NUM. */
621
622 static void
623 set_breakpoint_count (int num)
624 {
625 prev_breakpoint_count = breakpoint_count;
626 breakpoint_count = num;
627 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
628 }
629
630 /* Used by `start_rbreak_breakpoints' below, to record the current
631 breakpoint count before "rbreak" creates any breakpoint. */
632 static int rbreak_start_breakpoint_count;
633
634 /* Called at the start an "rbreak" command to record the first
635 breakpoint made. */
636
637 void
638 start_rbreak_breakpoints (void)
639 {
640 rbreak_start_breakpoint_count = breakpoint_count;
641 }
642
643 /* Called at the end of an "rbreak" command to record the last
644 breakpoint made. */
645
646 void
647 end_rbreak_breakpoints (void)
648 {
649 prev_breakpoint_count = rbreak_start_breakpoint_count;
650 }
651
652 /* Used in run_command to zero the hit count when a new run starts. */
653
654 void
655 clear_breakpoint_hit_counts (void)
656 {
657 struct breakpoint *b;
658
659 ALL_BREAKPOINTS (b)
660 b->hit_count = 0;
661 }
662
663 /* Allocate a new counted_command_line with reference count of 1.
664 The new structure owns COMMANDS. */
665
666 static struct counted_command_line *
667 alloc_counted_command_line (struct command_line *commands)
668 {
669 struct counted_command_line *result
670 = xmalloc (sizeof (struct counted_command_line));
671
672 result->refc = 1;
673 result->commands = commands;
674 return result;
675 }
676
677 /* Increment reference count. This does nothing if CMD is NULL. */
678
679 static void
680 incref_counted_command_line (struct counted_command_line *cmd)
681 {
682 if (cmd)
683 ++cmd->refc;
684 }
685
686 /* Decrement reference count. If the reference count reaches 0,
687 destroy the counted_command_line. Sets *CMDP to NULL. This does
688 nothing if *CMDP is NULL. */
689
690 static void
691 decref_counted_command_line (struct counted_command_line **cmdp)
692 {
693 if (*cmdp)
694 {
695 if (--(*cmdp)->refc == 0)
696 {
697 free_command_lines (&(*cmdp)->commands);
698 xfree (*cmdp);
699 }
700 *cmdp = NULL;
701 }
702 }
703
704 /* A cleanup function that calls decref_counted_command_line. */
705
706 static void
707 do_cleanup_counted_command_line (void *arg)
708 {
709 decref_counted_command_line (arg);
710 }
711
712 /* Create a cleanup that calls decref_counted_command_line on the
713 argument. */
714
715 static struct cleanup *
716 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
717 {
718 return make_cleanup (do_cleanup_counted_command_line, cmdp);
719 }
720
721 \f
722 /* Return the breakpoint with the specified number, or NULL
723 if the number does not refer to an existing breakpoint. */
724
725 struct breakpoint *
726 get_breakpoint (int num)
727 {
728 struct breakpoint *b;
729
730 ALL_BREAKPOINTS (b)
731 if (b->number == num)
732 return b;
733
734 return NULL;
735 }
736
737 \f
738
739 /* Mark locations as "conditions have changed" in case the target supports
740 evaluating conditions on its side. */
741
742 static void
743 mark_breakpoint_modified (struct breakpoint *b)
744 {
745 struct bp_location *loc;
746
747 /* This is only meaningful if the target is
748 evaluating conditions and if the user has
749 opted for condition evaluation on the target's
750 side. */
751 if (gdb_evaluates_breakpoint_condition_p ()
752 || !target_supports_evaluation_of_breakpoint_conditions ())
753 return;
754
755 if (!is_breakpoint (b))
756 return;
757
758 for (loc = b->loc; loc; loc = loc->next)
759 loc->condition_changed = condition_modified;
760 }
761
762 /* Mark location as "conditions have changed" in case the target supports
763 evaluating conditions on its side. */
764
765 static void
766 mark_breakpoint_location_modified (struct bp_location *loc)
767 {
768 /* This is only meaningful if the target is
769 evaluating conditions and if the user has
770 opted for condition evaluation on the target's
771 side. */
772 if (gdb_evaluates_breakpoint_condition_p ()
773 || !target_supports_evaluation_of_breakpoint_conditions ())
774
775 return;
776
777 if (!is_breakpoint (loc->owner))
778 return;
779
780 loc->condition_changed = condition_modified;
781 }
782
783 /* Sets the condition-evaluation mode using the static global
784 condition_evaluation_mode. */
785
786 static void
787 set_condition_evaluation_mode (char *args, int from_tty,
788 struct cmd_list_element *c)
789 {
790 const char *old_mode, *new_mode;
791
792 if ((condition_evaluation_mode_1 == condition_evaluation_target)
793 && !target_supports_evaluation_of_breakpoint_conditions ())
794 {
795 condition_evaluation_mode_1 = condition_evaluation_mode;
796 warning (_("Target does not support breakpoint condition evaluation.\n"
797 "Using host evaluation mode instead."));
798 return;
799 }
800
801 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
802 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
803
804 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
805 settings was "auto". */
806 condition_evaluation_mode = condition_evaluation_mode_1;
807
808 /* Only update the mode if the user picked a different one. */
809 if (new_mode != old_mode)
810 {
811 struct bp_location *loc, **loc_tmp;
812 /* If the user switched to a different evaluation mode, we
813 need to synch the changes with the target as follows:
814
815 "host" -> "target": Send all (valid) conditions to the target.
816 "target" -> "host": Remove all the conditions from the target.
817 */
818
819 if (new_mode == condition_evaluation_target)
820 {
821 /* Mark everything modified and synch conditions with the
822 target. */
823 ALL_BP_LOCATIONS (loc, loc_tmp)
824 mark_breakpoint_location_modified (loc);
825 }
826 else
827 {
828 /* Manually mark non-duplicate locations to synch conditions
829 with the target. We do this to remove all the conditions the
830 target knows about. */
831 ALL_BP_LOCATIONS (loc, loc_tmp)
832 if (is_breakpoint (loc->owner) && loc->inserted)
833 loc->needs_update = 1;
834 }
835
836 /* Do the update. */
837 update_global_location_list (1);
838 }
839
840 return;
841 }
842
843 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
844 what "auto" is translating to. */
845
846 static void
847 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
848 struct cmd_list_element *c, const char *value)
849 {
850 if (condition_evaluation_mode == condition_evaluation_auto)
851 fprintf_filtered (file,
852 _("Breakpoint condition evaluation "
853 "mode is %s (currently %s).\n"),
854 value,
855 breakpoint_condition_evaluation_mode ());
856 else
857 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
858 value);
859 }
860
861 /* A comparison function for bp_location AP and BP that is used by
862 bsearch. This comparison function only cares about addresses, unlike
863 the more general bp_location_compare function. */
864
865 static int
866 bp_location_compare_addrs (const void *ap, const void *bp)
867 {
868 struct bp_location *a = *(void **) ap;
869 struct bp_location *b = *(void **) bp;
870
871 if (a->address == b->address)
872 return 0;
873 else
874 return ((a->address > b->address) - (a->address < b->address));
875 }
876
877 /* Helper function to skip all bp_locations with addresses
878 less than ADDRESS. It returns the first bp_location that
879 is greater than or equal to ADDRESS. If none is found, just
880 return NULL. */
881
882 static struct bp_location **
883 get_first_locp_gte_addr (CORE_ADDR address)
884 {
885 struct bp_location dummy_loc;
886 struct bp_location *dummy_locp = &dummy_loc;
887 struct bp_location **locp_found = NULL;
888
889 /* Initialize the dummy location's address field. */
890 memset (&dummy_loc, 0, sizeof (struct bp_location));
891 dummy_loc.address = address;
892
893 /* Find a close match to the first location at ADDRESS. */
894 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
895 sizeof (struct bp_location **),
896 bp_location_compare_addrs);
897
898 /* Nothing was found, nothing left to do. */
899 if (locp_found == NULL)
900 return NULL;
901
902 /* We may have found a location that is at ADDRESS but is not the first in the
903 location's list. Go backwards (if possible) and locate the first one. */
904 while ((locp_found - 1) >= bp_location
905 && (*(locp_found - 1))->address == address)
906 locp_found--;
907
908 return locp_found;
909 }
910
911 void
912 set_breakpoint_condition (struct breakpoint *b, char *exp,
913 int from_tty)
914 {
915 xfree (b->cond_string);
916 b->cond_string = NULL;
917
918 if (is_watchpoint (b))
919 {
920 struct watchpoint *w = (struct watchpoint *) b;
921
922 xfree (w->cond_exp);
923 w->cond_exp = NULL;
924 }
925 else
926 {
927 struct bp_location *loc;
928
929 for (loc = b->loc; loc; loc = loc->next)
930 {
931 xfree (loc->cond);
932 loc->cond = NULL;
933
934 /* No need to free the condition agent expression
935 bytecode (if we have one). We will handle this
936 when we go through update_global_location_list. */
937 }
938 }
939
940 if (*exp == 0)
941 {
942 if (from_tty)
943 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
944 }
945 else
946 {
947 const char *arg = exp;
948
949 /* I don't know if it matters whether this is the string the user
950 typed in or the decompiled expression. */
951 b->cond_string = xstrdup (arg);
952 b->condition_not_parsed = 0;
953
954 if (is_watchpoint (b))
955 {
956 struct watchpoint *w = (struct watchpoint *) b;
957
958 innermost_block = NULL;
959 arg = exp;
960 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
961 if (*arg)
962 error (_("Junk at end of expression"));
963 w->cond_exp_valid_block = innermost_block;
964 }
965 else
966 {
967 struct bp_location *loc;
968
969 for (loc = b->loc; loc; loc = loc->next)
970 {
971 arg = exp;
972 loc->cond =
973 parse_exp_1 (&arg, loc->address,
974 block_for_pc (loc->address), 0);
975 if (*arg)
976 error (_("Junk at end of expression"));
977 }
978 }
979 }
980 mark_breakpoint_modified (b);
981
982 observer_notify_breakpoint_modified (b);
983 }
984
985 /* Completion for the "condition" command. */
986
987 static VEC (char_ptr) *
988 condition_completer (struct cmd_list_element *cmd,
989 const char *text, const char *word)
990 {
991 const char *space;
992
993 text = skip_spaces_const (text);
994 space = skip_to_space_const (text);
995 if (*space == '\0')
996 {
997 int len;
998 struct breakpoint *b;
999 VEC (char_ptr) *result = NULL;
1000
1001 if (text[0] == '$')
1002 {
1003 /* We don't support completion of history indices. */
1004 if (isdigit (text[1]))
1005 return NULL;
1006 return complete_internalvar (&text[1]);
1007 }
1008
1009 /* We're completing the breakpoint number. */
1010 len = strlen (text);
1011
1012 ALL_BREAKPOINTS (b)
1013 {
1014 char number[50];
1015
1016 xsnprintf (number, sizeof (number), "%d", b->number);
1017
1018 if (strncmp (number, text, len) == 0)
1019 VEC_safe_push (char_ptr, result, xstrdup (number));
1020 }
1021
1022 return result;
1023 }
1024
1025 /* We're completing the expression part. */
1026 text = skip_spaces_const (space);
1027 return expression_completer (cmd, text, word);
1028 }
1029
1030 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1031
1032 static void
1033 condition_command (char *arg, int from_tty)
1034 {
1035 struct breakpoint *b;
1036 char *p;
1037 int bnum;
1038
1039 if (arg == 0)
1040 error_no_arg (_("breakpoint number"));
1041
1042 p = arg;
1043 bnum = get_number (&p);
1044 if (bnum == 0)
1045 error (_("Bad breakpoint argument: '%s'"), arg);
1046
1047 ALL_BREAKPOINTS (b)
1048 if (b->number == bnum)
1049 {
1050 /* Check if this breakpoint has a "stop" method implemented in an
1051 extension language. This method and conditions entered into GDB
1052 from the CLI are mutually exclusive. */
1053 const struct extension_language_defn *extlang
1054 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1055
1056 if (extlang != NULL)
1057 {
1058 error (_("Only one stop condition allowed. There is currently"
1059 " a %s stop condition defined for this breakpoint."),
1060 ext_lang_capitalized_name (extlang));
1061 }
1062 set_breakpoint_condition (b, p, from_tty);
1063
1064 if (is_breakpoint (b))
1065 update_global_location_list (1);
1066
1067 return;
1068 }
1069
1070 error (_("No breakpoint number %d."), bnum);
1071 }
1072
1073 /* Check that COMMAND do not contain commands that are suitable
1074 only for tracepoints and not suitable for ordinary breakpoints.
1075 Throw if any such commands is found. */
1076
1077 static void
1078 check_no_tracepoint_commands (struct command_line *commands)
1079 {
1080 struct command_line *c;
1081
1082 for (c = commands; c; c = c->next)
1083 {
1084 int i;
1085
1086 if (c->control_type == while_stepping_control)
1087 error (_("The 'while-stepping' command can "
1088 "only be used for tracepoints"));
1089
1090 for (i = 0; i < c->body_count; ++i)
1091 check_no_tracepoint_commands ((c->body_list)[i]);
1092
1093 /* Not that command parsing removes leading whitespace and comment
1094 lines and also empty lines. So, we only need to check for
1095 command directly. */
1096 if (strstr (c->line, "collect ") == c->line)
1097 error (_("The 'collect' command can only be used for tracepoints"));
1098
1099 if (strstr (c->line, "teval ") == c->line)
1100 error (_("The 'teval' command can only be used for tracepoints"));
1101 }
1102 }
1103
1104 /* Encapsulate tests for different types of tracepoints. */
1105
1106 static int
1107 is_tracepoint_type (enum bptype type)
1108 {
1109 return (type == bp_tracepoint
1110 || type == bp_fast_tracepoint
1111 || type == bp_static_tracepoint);
1112 }
1113
1114 int
1115 is_tracepoint (const struct breakpoint *b)
1116 {
1117 return is_tracepoint_type (b->type);
1118 }
1119
1120 /* A helper function that validates that COMMANDS are valid for a
1121 breakpoint. This function will throw an exception if a problem is
1122 found. */
1123
1124 static void
1125 validate_commands_for_breakpoint (struct breakpoint *b,
1126 struct command_line *commands)
1127 {
1128 if (is_tracepoint (b))
1129 {
1130 struct tracepoint *t = (struct tracepoint *) b;
1131 struct command_line *c;
1132 struct command_line *while_stepping = 0;
1133
1134 /* Reset the while-stepping step count. The previous commands
1135 might have included a while-stepping action, while the new
1136 ones might not. */
1137 t->step_count = 0;
1138
1139 /* We need to verify that each top-level element of commands is
1140 valid for tracepoints, that there's at most one
1141 while-stepping element, and that the while-stepping's body
1142 has valid tracing commands excluding nested while-stepping.
1143 We also need to validate the tracepoint action line in the
1144 context of the tracepoint --- validate_actionline actually
1145 has side effects, like setting the tracepoint's
1146 while-stepping STEP_COUNT, in addition to checking if the
1147 collect/teval actions parse and make sense in the
1148 tracepoint's context. */
1149 for (c = commands; c; c = c->next)
1150 {
1151 if (c->control_type == while_stepping_control)
1152 {
1153 if (b->type == bp_fast_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for fast tracepoint"));
1156 else if (b->type == bp_static_tracepoint)
1157 error (_("The 'while-stepping' command "
1158 "cannot be used for static tracepoint"));
1159
1160 if (while_stepping)
1161 error (_("The 'while-stepping' command "
1162 "can be used only once"));
1163 else
1164 while_stepping = c;
1165 }
1166
1167 validate_actionline (c->line, b);
1168 }
1169 if (while_stepping)
1170 {
1171 struct command_line *c2;
1172
1173 gdb_assert (while_stepping->body_count == 1);
1174 c2 = while_stepping->body_list[0];
1175 for (; c2; c2 = c2->next)
1176 {
1177 if (c2->control_type == while_stepping_control)
1178 error (_("The 'while-stepping' command cannot be nested"));
1179 }
1180 }
1181 }
1182 else
1183 {
1184 check_no_tracepoint_commands (commands);
1185 }
1186 }
1187
1188 /* Return a vector of all the static tracepoints set at ADDR. The
1189 caller is responsible for releasing the vector. */
1190
1191 VEC(breakpoint_p) *
1192 static_tracepoints_here (CORE_ADDR addr)
1193 {
1194 struct breakpoint *b;
1195 VEC(breakpoint_p) *found = 0;
1196 struct bp_location *loc;
1197
1198 ALL_BREAKPOINTS (b)
1199 if (b->type == bp_static_tracepoint)
1200 {
1201 for (loc = b->loc; loc; loc = loc->next)
1202 if (loc->address == addr)
1203 VEC_safe_push(breakpoint_p, found, b);
1204 }
1205
1206 return found;
1207 }
1208
1209 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1210 validate that only allowed commands are included. */
1211
1212 void
1213 breakpoint_set_commands (struct breakpoint *b,
1214 struct command_line *commands)
1215 {
1216 validate_commands_for_breakpoint (b, commands);
1217
1218 decref_counted_command_line (&b->commands);
1219 b->commands = alloc_counted_command_line (commands);
1220 observer_notify_breakpoint_modified (b);
1221 }
1222
1223 /* Set the internal `silent' flag on the breakpoint. Note that this
1224 is not the same as the "silent" that may appear in the breakpoint's
1225 commands. */
1226
1227 void
1228 breakpoint_set_silent (struct breakpoint *b, int silent)
1229 {
1230 int old_silent = b->silent;
1231
1232 b->silent = silent;
1233 if (old_silent != silent)
1234 observer_notify_breakpoint_modified (b);
1235 }
1236
1237 /* Set the thread for this breakpoint. If THREAD is -1, make the
1238 breakpoint work for any thread. */
1239
1240 void
1241 breakpoint_set_thread (struct breakpoint *b, int thread)
1242 {
1243 int old_thread = b->thread;
1244
1245 b->thread = thread;
1246 if (old_thread != thread)
1247 observer_notify_breakpoint_modified (b);
1248 }
1249
1250 /* Set the task for this breakpoint. If TASK is 0, make the
1251 breakpoint work for any task. */
1252
1253 void
1254 breakpoint_set_task (struct breakpoint *b, int task)
1255 {
1256 int old_task = b->task;
1257
1258 b->task = task;
1259 if (old_task != task)
1260 observer_notify_breakpoint_modified (b);
1261 }
1262
1263 void
1264 check_tracepoint_command (char *line, void *closure)
1265 {
1266 struct breakpoint *b = closure;
1267
1268 validate_actionline (line, b);
1269 }
1270
1271 /* A structure used to pass information through
1272 map_breakpoint_numbers. */
1273
1274 struct commands_info
1275 {
1276 /* True if the command was typed at a tty. */
1277 int from_tty;
1278
1279 /* The breakpoint range spec. */
1280 char *arg;
1281
1282 /* Non-NULL if the body of the commands are being read from this
1283 already-parsed command. */
1284 struct command_line *control;
1285
1286 /* The command lines read from the user, or NULL if they have not
1287 yet been read. */
1288 struct counted_command_line *cmd;
1289 };
1290
1291 /* A callback for map_breakpoint_numbers that sets the commands for
1292 commands_command. */
1293
1294 static void
1295 do_map_commands_command (struct breakpoint *b, void *data)
1296 {
1297 struct commands_info *info = data;
1298
1299 if (info->cmd == NULL)
1300 {
1301 struct command_line *l;
1302
1303 if (info->control != NULL)
1304 l = copy_command_lines (info->control->body_list[0]);
1305 else
1306 {
1307 struct cleanup *old_chain;
1308 char *str;
1309
1310 str = xstrprintf (_("Type commands for breakpoint(s) "
1311 "%s, one per line."),
1312 info->arg);
1313
1314 old_chain = make_cleanup (xfree, str);
1315
1316 l = read_command_lines (str,
1317 info->from_tty, 1,
1318 (is_tracepoint (b)
1319 ? check_tracepoint_command : 0),
1320 b);
1321
1322 do_cleanups (old_chain);
1323 }
1324
1325 info->cmd = alloc_counted_command_line (l);
1326 }
1327
1328 /* If a breakpoint was on the list more than once, we don't need to
1329 do anything. */
1330 if (b->commands != info->cmd)
1331 {
1332 validate_commands_for_breakpoint (b, info->cmd->commands);
1333 incref_counted_command_line (info->cmd);
1334 decref_counted_command_line (&b->commands);
1335 b->commands = info->cmd;
1336 observer_notify_breakpoint_modified (b);
1337 }
1338 }
1339
1340 static void
1341 commands_command_1 (char *arg, int from_tty,
1342 struct command_line *control)
1343 {
1344 struct cleanup *cleanups;
1345 struct commands_info info;
1346
1347 info.from_tty = from_tty;
1348 info.control = control;
1349 info.cmd = NULL;
1350 /* If we read command lines from the user, then `info' will hold an
1351 extra reference to the commands that we must clean up. */
1352 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1353
1354 if (arg == NULL || !*arg)
1355 {
1356 if (breakpoint_count - prev_breakpoint_count > 1)
1357 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1358 breakpoint_count);
1359 else if (breakpoint_count > 0)
1360 arg = xstrprintf ("%d", breakpoint_count);
1361 else
1362 {
1363 /* So that we don't try to free the incoming non-NULL
1364 argument in the cleanup below. Mapping breakpoint
1365 numbers will fail in this case. */
1366 arg = NULL;
1367 }
1368 }
1369 else
1370 /* The command loop has some static state, so we need to preserve
1371 our argument. */
1372 arg = xstrdup (arg);
1373
1374 if (arg != NULL)
1375 make_cleanup (xfree, arg);
1376
1377 info.arg = arg;
1378
1379 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1380
1381 if (info.cmd == NULL)
1382 error (_("No breakpoints specified."));
1383
1384 do_cleanups (cleanups);
1385 }
1386
1387 static void
1388 commands_command (char *arg, int from_tty)
1389 {
1390 commands_command_1 (arg, from_tty, NULL);
1391 }
1392
1393 /* Like commands_command, but instead of reading the commands from
1394 input stream, takes them from an already parsed command structure.
1395
1396 This is used by cli-script.c to DTRT with breakpoint commands
1397 that are part of if and while bodies. */
1398 enum command_control_type
1399 commands_from_control_command (char *arg, struct command_line *cmd)
1400 {
1401 commands_command_1 (arg, 0, cmd);
1402 return simple_control;
1403 }
1404
1405 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1406
1407 static int
1408 bp_location_has_shadow (struct bp_location *bl)
1409 {
1410 if (bl->loc_type != bp_loc_software_breakpoint)
1411 return 0;
1412 if (!bl->inserted)
1413 return 0;
1414 if (bl->target_info.shadow_len == 0)
1415 /* BL isn't valid, or doesn't shadow memory. */
1416 return 0;
1417 return 1;
1418 }
1419
1420 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1421 by replacing any memory breakpoints with their shadowed contents.
1422
1423 If READBUF is not NULL, this buffer must not overlap with any of
1424 the breakpoint location's shadow_contents buffers. Otherwise,
1425 a failed assertion internal error will be raised.
1426
1427 The range of shadowed area by each bp_location is:
1428 bl->address - bp_location_placed_address_before_address_max
1429 up to bl->address + bp_location_shadow_len_after_address_max
1430 The range we were requested to resolve shadows for is:
1431 memaddr ... memaddr + len
1432 Thus the safe cutoff boundaries for performance optimization are
1433 memaddr + len <= (bl->address
1434 - bp_location_placed_address_before_address_max)
1435 and:
1436 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1437
1438 void
1439 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1440 const gdb_byte *writebuf_org,
1441 ULONGEST memaddr, LONGEST len)
1442 {
1443 /* Left boundary, right boundary and median element of our binary
1444 search. */
1445 unsigned bc_l, bc_r, bc;
1446
1447 /* Find BC_L which is a leftmost element which may affect BUF
1448 content. It is safe to report lower value but a failure to
1449 report higher one. */
1450
1451 bc_l = 0;
1452 bc_r = bp_location_count;
1453 while (bc_l + 1 < bc_r)
1454 {
1455 struct bp_location *bl;
1456
1457 bc = (bc_l + bc_r) / 2;
1458 bl = bp_location[bc];
1459
1460 /* Check first BL->ADDRESS will not overflow due to the added
1461 constant. Then advance the left boundary only if we are sure
1462 the BC element can in no way affect the BUF content (MEMADDR
1463 to MEMADDR + LEN range).
1464
1465 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1466 offset so that we cannot miss a breakpoint with its shadow
1467 range tail still reaching MEMADDR. */
1468
1469 if ((bl->address + bp_location_shadow_len_after_address_max
1470 >= bl->address)
1471 && (bl->address + bp_location_shadow_len_after_address_max
1472 <= memaddr))
1473 bc_l = bc;
1474 else
1475 bc_r = bc;
1476 }
1477
1478 /* Due to the binary search above, we need to make sure we pick the
1479 first location that's at BC_L's address. E.g., if there are
1480 multiple locations at the same address, BC_L may end up pointing
1481 at a duplicate location, and miss the "master"/"inserted"
1482 location. Say, given locations L1, L2 and L3 at addresses A and
1483 B:
1484
1485 L1@A, L2@A, L3@B, ...
1486
1487 BC_L could end up pointing at location L2, while the "master"
1488 location could be L1. Since the `loc->inserted' flag is only set
1489 on "master" locations, we'd forget to restore the shadow of L1
1490 and L2. */
1491 while (bc_l > 0
1492 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1493 bc_l--;
1494
1495 /* Now do full processing of the found relevant range of elements. */
1496
1497 for (bc = bc_l; bc < bp_location_count; bc++)
1498 {
1499 struct bp_location *bl = bp_location[bc];
1500 CORE_ADDR bp_addr = 0;
1501 int bp_size = 0;
1502 int bptoffset = 0;
1503
1504 /* bp_location array has BL->OWNER always non-NULL. */
1505 if (bl->owner->type == bp_none)
1506 warning (_("reading through apparently deleted breakpoint #%d?"),
1507 bl->owner->number);
1508
1509 /* Performance optimization: any further element can no longer affect BUF
1510 content. */
1511
1512 if (bl->address >= bp_location_placed_address_before_address_max
1513 && memaddr + len <= (bl->address
1514 - bp_location_placed_address_before_address_max))
1515 break;
1516
1517 if (!bp_location_has_shadow (bl))
1518 continue;
1519 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1520 current_program_space->aspace, 0))
1521 continue;
1522
1523 /* Addresses and length of the part of the breakpoint that
1524 we need to copy. */
1525 bp_addr = bl->target_info.placed_address;
1526 bp_size = bl->target_info.shadow_len;
1527
1528 if (bp_addr + bp_size <= memaddr)
1529 /* The breakpoint is entirely before the chunk of memory we
1530 are reading. */
1531 continue;
1532
1533 if (bp_addr >= memaddr + len)
1534 /* The breakpoint is entirely after the chunk of memory we are
1535 reading. */
1536 continue;
1537
1538 /* Offset within shadow_contents. */
1539 if (bp_addr < memaddr)
1540 {
1541 /* Only copy the second part of the breakpoint. */
1542 bp_size -= memaddr - bp_addr;
1543 bptoffset = memaddr - bp_addr;
1544 bp_addr = memaddr;
1545 }
1546
1547 if (bp_addr + bp_size > memaddr + len)
1548 {
1549 /* Only copy the first part of the breakpoint. */
1550 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1551 }
1552
1553 if (readbuf != NULL)
1554 {
1555 /* Verify that the readbuf buffer does not overlap with
1556 the shadow_contents buffer. */
1557 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1558 || readbuf >= (bl->target_info.shadow_contents
1559 + bl->target_info.shadow_len));
1560
1561 /* Update the read buffer with this inserted breakpoint's
1562 shadow. */
1563 memcpy (readbuf + bp_addr - memaddr,
1564 bl->target_info.shadow_contents + bptoffset, bp_size);
1565 }
1566 else
1567 {
1568 struct gdbarch *gdbarch = bl->gdbarch;
1569 const unsigned char *bp;
1570 CORE_ADDR placed_address = bl->target_info.placed_address;
1571 int placed_size = bl->target_info.placed_size;
1572
1573 /* Update the shadow with what we want to write to memory. */
1574 memcpy (bl->target_info.shadow_contents + bptoffset,
1575 writebuf_org + bp_addr - memaddr, bp_size);
1576
1577 /* Determine appropriate breakpoint contents and size for this
1578 address. */
1579 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1580
1581 /* Update the final write buffer with this inserted
1582 breakpoint's INSN. */
1583 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1584 }
1585 }
1586 }
1587 \f
1588
1589 /* Return true if BPT is either a software breakpoint or a hardware
1590 breakpoint. */
1591
1592 int
1593 is_breakpoint (const struct breakpoint *bpt)
1594 {
1595 return (bpt->type == bp_breakpoint
1596 || bpt->type == bp_hardware_breakpoint
1597 || bpt->type == bp_dprintf);
1598 }
1599
1600 /* Return true if BPT is of any hardware watchpoint kind. */
1601
1602 static int
1603 is_hardware_watchpoint (const struct breakpoint *bpt)
1604 {
1605 return (bpt->type == bp_hardware_watchpoint
1606 || bpt->type == bp_read_watchpoint
1607 || bpt->type == bp_access_watchpoint);
1608 }
1609
1610 /* Return true if BPT is of any watchpoint kind, hardware or
1611 software. */
1612
1613 int
1614 is_watchpoint (const struct breakpoint *bpt)
1615 {
1616 return (is_hardware_watchpoint (bpt)
1617 || bpt->type == bp_watchpoint);
1618 }
1619
1620 /* Returns true if the current thread and its running state are safe
1621 to evaluate or update watchpoint B. Watchpoints on local
1622 expressions need to be evaluated in the context of the thread that
1623 was current when the watchpoint was created, and, that thread needs
1624 to be stopped to be able to select the correct frame context.
1625 Watchpoints on global expressions can be evaluated on any thread,
1626 and in any state. It is presently left to the target allowing
1627 memory accesses when threads are running. */
1628
1629 static int
1630 watchpoint_in_thread_scope (struct watchpoint *b)
1631 {
1632 return (b->base.pspace == current_program_space
1633 && (ptid_equal (b->watchpoint_thread, null_ptid)
1634 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1635 && !is_executing (inferior_ptid))));
1636 }
1637
1638 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1639 associated bp_watchpoint_scope breakpoint. */
1640
1641 static void
1642 watchpoint_del_at_next_stop (struct watchpoint *w)
1643 {
1644 struct breakpoint *b = &w->base;
1645
1646 if (b->related_breakpoint != b)
1647 {
1648 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1649 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1650 b->related_breakpoint->disposition = disp_del_at_next_stop;
1651 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1652 b->related_breakpoint = b;
1653 }
1654 b->disposition = disp_del_at_next_stop;
1655 }
1656
1657 /* Assuming that B is a watchpoint:
1658 - Reparse watchpoint expression, if REPARSE is non-zero
1659 - Evaluate expression and store the result in B->val
1660 - Evaluate the condition if there is one, and store the result
1661 in b->loc->cond.
1662 - Update the list of values that must be watched in B->loc.
1663
1664 If the watchpoint disposition is disp_del_at_next_stop, then do
1665 nothing. If this is local watchpoint that is out of scope, delete
1666 it.
1667
1668 Even with `set breakpoint always-inserted on' the watchpoints are
1669 removed + inserted on each stop here. Normal breakpoints must
1670 never be removed because they might be missed by a running thread
1671 when debugging in non-stop mode. On the other hand, hardware
1672 watchpoints (is_hardware_watchpoint; processed here) are specific
1673 to each LWP since they are stored in each LWP's hardware debug
1674 registers. Therefore, such LWP must be stopped first in order to
1675 be able to modify its hardware watchpoints.
1676
1677 Hardware watchpoints must be reset exactly once after being
1678 presented to the user. It cannot be done sooner, because it would
1679 reset the data used to present the watchpoint hit to the user. And
1680 it must not be done later because it could display the same single
1681 watchpoint hit during multiple GDB stops. Note that the latter is
1682 relevant only to the hardware watchpoint types bp_read_watchpoint
1683 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1684 not user-visible - its hit is suppressed if the memory content has
1685 not changed.
1686
1687 The following constraints influence the location where we can reset
1688 hardware watchpoints:
1689
1690 * target_stopped_by_watchpoint and target_stopped_data_address are
1691 called several times when GDB stops.
1692
1693 [linux]
1694 * Multiple hardware watchpoints can be hit at the same time,
1695 causing GDB to stop. GDB only presents one hardware watchpoint
1696 hit at a time as the reason for stopping, and all the other hits
1697 are presented later, one after the other, each time the user
1698 requests the execution to be resumed. Execution is not resumed
1699 for the threads still having pending hit event stored in
1700 LWP_INFO->STATUS. While the watchpoint is already removed from
1701 the inferior on the first stop the thread hit event is kept being
1702 reported from its cached value by linux_nat_stopped_data_address
1703 until the real thread resume happens after the watchpoint gets
1704 presented and thus its LWP_INFO->STATUS gets reset.
1705
1706 Therefore the hardware watchpoint hit can get safely reset on the
1707 watchpoint removal from inferior. */
1708
1709 static void
1710 update_watchpoint (struct watchpoint *b, int reparse)
1711 {
1712 int within_current_scope;
1713 struct frame_id saved_frame_id;
1714 int frame_saved;
1715
1716 /* If this is a local watchpoint, we only want to check if the
1717 watchpoint frame is in scope if the current thread is the thread
1718 that was used to create the watchpoint. */
1719 if (!watchpoint_in_thread_scope (b))
1720 return;
1721
1722 if (b->base.disposition == disp_del_at_next_stop)
1723 return;
1724
1725 frame_saved = 0;
1726
1727 /* Determine if the watchpoint is within scope. */
1728 if (b->exp_valid_block == NULL)
1729 within_current_scope = 1;
1730 else
1731 {
1732 struct frame_info *fi = get_current_frame ();
1733 struct gdbarch *frame_arch = get_frame_arch (fi);
1734 CORE_ADDR frame_pc = get_frame_pc (fi);
1735
1736 /* If we're in a function epilogue, unwinding may not work
1737 properly, so do not attempt to recreate locations at this
1738 point. See similar comments in watchpoint_check. */
1739 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1740 return;
1741
1742 /* Save the current frame's ID so we can restore it after
1743 evaluating the watchpoint expression on its own frame. */
1744 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1745 took a frame parameter, so that we didn't have to change the
1746 selected frame. */
1747 frame_saved = 1;
1748 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1749
1750 fi = frame_find_by_id (b->watchpoint_frame);
1751 within_current_scope = (fi != NULL);
1752 if (within_current_scope)
1753 select_frame (fi);
1754 }
1755
1756 /* We don't free locations. They are stored in the bp_location array
1757 and update_global_location_list will eventually delete them and
1758 remove breakpoints if needed. */
1759 b->base.loc = NULL;
1760
1761 if (within_current_scope && reparse)
1762 {
1763 const char *s;
1764
1765 if (b->exp)
1766 {
1767 xfree (b->exp);
1768 b->exp = NULL;
1769 }
1770 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1771 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1772 /* If the meaning of expression itself changed, the old value is
1773 no longer relevant. We don't want to report a watchpoint hit
1774 to the user when the old value and the new value may actually
1775 be completely different objects. */
1776 value_free (b->val);
1777 b->val = NULL;
1778 b->val_valid = 0;
1779
1780 /* Note that unlike with breakpoints, the watchpoint's condition
1781 expression is stored in the breakpoint object, not in the
1782 locations (re)created below. */
1783 if (b->base.cond_string != NULL)
1784 {
1785 if (b->cond_exp != NULL)
1786 {
1787 xfree (b->cond_exp);
1788 b->cond_exp = NULL;
1789 }
1790
1791 s = b->base.cond_string;
1792 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1793 }
1794 }
1795
1796 /* If we failed to parse the expression, for example because
1797 it refers to a global variable in a not-yet-loaded shared library,
1798 don't try to insert watchpoint. We don't automatically delete
1799 such watchpoint, though, since failure to parse expression
1800 is different from out-of-scope watchpoint. */
1801 if (!target_has_execution)
1802 {
1803 /* Without execution, memory can't change. No use to try and
1804 set watchpoint locations. The watchpoint will be reset when
1805 the target gains execution, through breakpoint_re_set. */
1806 if (!can_use_hw_watchpoints)
1807 {
1808 if (b->base.ops->works_in_software_mode (&b->base))
1809 b->base.type = bp_watchpoint;
1810 else
1811 error (_("Can't set read/access watchpoint when "
1812 "hardware watchpoints are disabled."));
1813 }
1814 }
1815 else if (within_current_scope && b->exp)
1816 {
1817 int pc = 0;
1818 struct value *val_chain, *v, *result, *next;
1819 struct program_space *frame_pspace;
1820
1821 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain, 0);
1822
1823 /* Avoid setting b->val if it's already set. The meaning of
1824 b->val is 'the last value' user saw, and we should update
1825 it only if we reported that last value to user. As it
1826 happens, the code that reports it updates b->val directly.
1827 We don't keep track of the memory value for masked
1828 watchpoints. */
1829 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1830 {
1831 b->val = v;
1832 b->val_valid = 1;
1833 }
1834
1835 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1836
1837 /* Look at each value on the value chain. */
1838 for (v = val_chain; v; v = value_next (v))
1839 {
1840 /* If it's a memory location, and GDB actually needed
1841 its contents to evaluate the expression, then we
1842 must watch it. If the first value returned is
1843 still lazy, that means an error occurred reading it;
1844 watch it anyway in case it becomes readable. */
1845 if (VALUE_LVAL (v) == lval_memory
1846 && (v == val_chain || ! value_lazy (v)))
1847 {
1848 struct type *vtype = check_typedef (value_type (v));
1849
1850 /* We only watch structs and arrays if user asked
1851 for it explicitly, never if they just happen to
1852 appear in the middle of some value chain. */
1853 if (v == result
1854 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1855 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1856 {
1857 CORE_ADDR addr;
1858 int type;
1859 struct bp_location *loc, **tmp;
1860
1861 addr = value_address (v);
1862 type = hw_write;
1863 if (b->base.type == bp_read_watchpoint)
1864 type = hw_read;
1865 else if (b->base.type == bp_access_watchpoint)
1866 type = hw_access;
1867
1868 loc = allocate_bp_location (&b->base);
1869 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1870 ;
1871 *tmp = loc;
1872 loc->gdbarch = get_type_arch (value_type (v));
1873
1874 loc->pspace = frame_pspace;
1875 loc->address = addr;
1876 loc->length = TYPE_LENGTH (value_type (v));
1877 loc->watchpoint_type = type;
1878 }
1879 }
1880 }
1881
1882 /* Change the type of breakpoint between hardware assisted or
1883 an ordinary watchpoint depending on the hardware support
1884 and free hardware slots. REPARSE is set when the inferior
1885 is started. */
1886 if (reparse)
1887 {
1888 int reg_cnt;
1889 enum bp_loc_type loc_type;
1890 struct bp_location *bl;
1891
1892 reg_cnt = can_use_hardware_watchpoint (val_chain);
1893
1894 if (reg_cnt)
1895 {
1896 int i, target_resources_ok, other_type_used;
1897 enum bptype type;
1898
1899 /* Use an exact watchpoint when there's only one memory region to be
1900 watched, and only one debug register is needed to watch it. */
1901 b->exact = target_exact_watchpoints && reg_cnt == 1;
1902
1903 /* We need to determine how many resources are already
1904 used for all other hardware watchpoints plus this one
1905 to see if we still have enough resources to also fit
1906 this watchpoint in as well. */
1907
1908 /* If this is a software watchpoint, we try to turn it
1909 to a hardware one -- count resources as if B was of
1910 hardware watchpoint type. */
1911 type = b->base.type;
1912 if (type == bp_watchpoint)
1913 type = bp_hardware_watchpoint;
1914
1915 /* This watchpoint may or may not have been placed on
1916 the list yet at this point (it won't be in the list
1917 if we're trying to create it for the first time,
1918 through watch_command), so always account for it
1919 manually. */
1920
1921 /* Count resources used by all watchpoints except B. */
1922 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1923
1924 /* Add in the resources needed for B. */
1925 i += hw_watchpoint_use_count (&b->base);
1926
1927 target_resources_ok
1928 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1929 if (target_resources_ok <= 0)
1930 {
1931 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1932
1933 if (target_resources_ok == 0 && !sw_mode)
1934 error (_("Target does not support this type of "
1935 "hardware watchpoint."));
1936 else if (target_resources_ok < 0 && !sw_mode)
1937 error (_("There are not enough available hardware "
1938 "resources for this watchpoint."));
1939
1940 /* Downgrade to software watchpoint. */
1941 b->base.type = bp_watchpoint;
1942 }
1943 else
1944 {
1945 /* If this was a software watchpoint, we've just
1946 found we have enough resources to turn it to a
1947 hardware watchpoint. Otherwise, this is a
1948 nop. */
1949 b->base.type = type;
1950 }
1951 }
1952 else if (!b->base.ops->works_in_software_mode (&b->base))
1953 {
1954 if (!can_use_hw_watchpoints)
1955 error (_("Can't set read/access watchpoint when "
1956 "hardware watchpoints are disabled."));
1957 else
1958 error (_("Expression cannot be implemented with "
1959 "read/access watchpoint."));
1960 }
1961 else
1962 b->base.type = bp_watchpoint;
1963
1964 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1965 : bp_loc_hardware_watchpoint);
1966 for (bl = b->base.loc; bl; bl = bl->next)
1967 bl->loc_type = loc_type;
1968 }
1969
1970 for (v = val_chain; v; v = next)
1971 {
1972 next = value_next (v);
1973 if (v != b->val)
1974 value_free (v);
1975 }
1976
1977 /* If a software watchpoint is not watching any memory, then the
1978 above left it without any location set up. But,
1979 bpstat_stop_status requires a location to be able to report
1980 stops, so make sure there's at least a dummy one. */
1981 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1982 {
1983 struct breakpoint *base = &b->base;
1984 base->loc = allocate_bp_location (base);
1985 base->loc->pspace = frame_pspace;
1986 base->loc->address = -1;
1987 base->loc->length = -1;
1988 base->loc->watchpoint_type = -1;
1989 }
1990 }
1991 else if (!within_current_scope)
1992 {
1993 printf_filtered (_("\
1994 Watchpoint %d deleted because the program has left the block\n\
1995 in which its expression is valid.\n"),
1996 b->base.number);
1997 watchpoint_del_at_next_stop (b);
1998 }
1999
2000 /* Restore the selected frame. */
2001 if (frame_saved)
2002 select_frame (frame_find_by_id (saved_frame_id));
2003 }
2004
2005
2006 /* Returns 1 iff breakpoint location should be
2007 inserted in the inferior. We don't differentiate the type of BL's owner
2008 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2009 breakpoint_ops is not defined, because in insert_bp_location,
2010 tracepoint's insert_location will not be called. */
2011 static int
2012 should_be_inserted (struct bp_location *bl)
2013 {
2014 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2015 return 0;
2016
2017 if (bl->owner->disposition == disp_del_at_next_stop)
2018 return 0;
2019
2020 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2021 return 0;
2022
2023 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2024 return 0;
2025
2026 /* This is set for example, when we're attached to the parent of a
2027 vfork, and have detached from the child. The child is running
2028 free, and we expect it to do an exec or exit, at which point the
2029 OS makes the parent schedulable again (and the target reports
2030 that the vfork is done). Until the child is done with the shared
2031 memory region, do not insert breakpoints in the parent, otherwise
2032 the child could still trip on the parent's breakpoints. Since
2033 the parent is blocked anyway, it won't miss any breakpoint. */
2034 if (bl->pspace->breakpoints_not_allowed)
2035 return 0;
2036
2037 return 1;
2038 }
2039
2040 /* Same as should_be_inserted but does the check assuming
2041 that the location is not duplicated. */
2042
2043 static int
2044 unduplicated_should_be_inserted (struct bp_location *bl)
2045 {
2046 int result;
2047 const int save_duplicate = bl->duplicate;
2048
2049 bl->duplicate = 0;
2050 result = should_be_inserted (bl);
2051 bl->duplicate = save_duplicate;
2052 return result;
2053 }
2054
2055 /* Parses a conditional described by an expression COND into an
2056 agent expression bytecode suitable for evaluation
2057 by the bytecode interpreter. Return NULL if there was
2058 any error during parsing. */
2059
2060 static struct agent_expr *
2061 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2062 {
2063 struct agent_expr *aexpr = NULL;
2064 volatile struct gdb_exception ex;
2065
2066 if (!cond)
2067 return NULL;
2068
2069 /* We don't want to stop processing, so catch any errors
2070 that may show up. */
2071 TRY_CATCH (ex, RETURN_MASK_ERROR)
2072 {
2073 aexpr = gen_eval_for_expr (scope, cond);
2074 }
2075
2076 if (ex.reason < 0)
2077 {
2078 /* If we got here, it means the condition could not be parsed to a valid
2079 bytecode expression and thus can't be evaluated on the target's side.
2080 It's no use iterating through the conditions. */
2081 return NULL;
2082 }
2083
2084 /* We have a valid agent expression. */
2085 return aexpr;
2086 }
2087
2088 /* Based on location BL, create a list of breakpoint conditions to be
2089 passed on to the target. If we have duplicated locations with different
2090 conditions, we will add such conditions to the list. The idea is that the
2091 target will evaluate the list of conditions and will only notify GDB when
2092 one of them is true. */
2093
2094 static void
2095 build_target_condition_list (struct bp_location *bl)
2096 {
2097 struct bp_location **locp = NULL, **loc2p;
2098 int null_condition_or_parse_error = 0;
2099 int modified = bl->needs_update;
2100 struct bp_location *loc;
2101
2102 /* Release conditions left over from a previous insert. */
2103 VEC_free (agent_expr_p, bl->target_info.conditions);
2104
2105 /* This is only meaningful if the target is
2106 evaluating conditions and if the user has
2107 opted for condition evaluation on the target's
2108 side. */
2109 if (gdb_evaluates_breakpoint_condition_p ()
2110 || !target_supports_evaluation_of_breakpoint_conditions ())
2111 return;
2112
2113 /* Do a first pass to check for locations with no assigned
2114 conditions or conditions that fail to parse to a valid agent expression
2115 bytecode. If any of these happen, then it's no use to send conditions
2116 to the target since this location will always trigger and generate a
2117 response back to GDB. */
2118 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2119 {
2120 loc = (*loc2p);
2121 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2122 {
2123 if (modified)
2124 {
2125 struct agent_expr *aexpr;
2126
2127 /* Re-parse the conditions since something changed. In that
2128 case we already freed the condition bytecodes (see
2129 force_breakpoint_reinsertion). We just
2130 need to parse the condition to bytecodes again. */
2131 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2132 loc->cond_bytecode = aexpr;
2133
2134 /* Check if we managed to parse the conditional expression
2135 correctly. If not, we will not send this condition
2136 to the target. */
2137 if (aexpr)
2138 continue;
2139 }
2140
2141 /* If we have a NULL bytecode expression, it means something
2142 went wrong or we have a null condition expression. */
2143 if (!loc->cond_bytecode)
2144 {
2145 null_condition_or_parse_error = 1;
2146 break;
2147 }
2148 }
2149 }
2150
2151 /* If any of these happened, it means we will have to evaluate the conditions
2152 for the location's address on gdb's side. It is no use keeping bytecodes
2153 for all the other duplicate locations, thus we free all of them here.
2154
2155 This is so we have a finer control over which locations' conditions are
2156 being evaluated by GDB or the remote stub. */
2157 if (null_condition_or_parse_error)
2158 {
2159 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2160 {
2161 loc = (*loc2p);
2162 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2163 {
2164 /* Only go as far as the first NULL bytecode is
2165 located. */
2166 if (!loc->cond_bytecode)
2167 return;
2168
2169 free_agent_expr (loc->cond_bytecode);
2170 loc->cond_bytecode = NULL;
2171 }
2172 }
2173 }
2174
2175 /* No NULL conditions or failed bytecode generation. Build a condition list
2176 for this location's address. */
2177 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2178 {
2179 loc = (*loc2p);
2180 if (loc->cond
2181 && is_breakpoint (loc->owner)
2182 && loc->pspace->num == bl->pspace->num
2183 && loc->owner->enable_state == bp_enabled
2184 && loc->enabled)
2185 /* Add the condition to the vector. This will be used later to send the
2186 conditions to the target. */
2187 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2188 loc->cond_bytecode);
2189 }
2190
2191 return;
2192 }
2193
2194 /* Parses a command described by string CMD into an agent expression
2195 bytecode suitable for evaluation by the bytecode interpreter.
2196 Return NULL if there was any error during parsing. */
2197
2198 static struct agent_expr *
2199 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2200 {
2201 struct cleanup *old_cleanups = 0;
2202 struct expression *expr, **argvec;
2203 struct agent_expr *aexpr = NULL;
2204 volatile struct gdb_exception ex;
2205 const char *cmdrest;
2206 const char *format_start, *format_end;
2207 struct format_piece *fpieces;
2208 int nargs;
2209 struct gdbarch *gdbarch = get_current_arch ();
2210
2211 if (!cmd)
2212 return NULL;
2213
2214 cmdrest = cmd;
2215
2216 if (*cmdrest == ',')
2217 ++cmdrest;
2218 cmdrest = skip_spaces_const (cmdrest);
2219
2220 if (*cmdrest++ != '"')
2221 error (_("No format string following the location"));
2222
2223 format_start = cmdrest;
2224
2225 fpieces = parse_format_string (&cmdrest);
2226
2227 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2228
2229 format_end = cmdrest;
2230
2231 if (*cmdrest++ != '"')
2232 error (_("Bad format string, non-terminated '\"'."));
2233
2234 cmdrest = skip_spaces_const (cmdrest);
2235
2236 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2237 error (_("Invalid argument syntax"));
2238
2239 if (*cmdrest == ',')
2240 cmdrest++;
2241 cmdrest = skip_spaces_const (cmdrest);
2242
2243 /* For each argument, make an expression. */
2244
2245 argvec = (struct expression **) alloca (strlen (cmd)
2246 * sizeof (struct expression *));
2247
2248 nargs = 0;
2249 while (*cmdrest != '\0')
2250 {
2251 const char *cmd1;
2252
2253 cmd1 = cmdrest;
2254 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2255 argvec[nargs++] = expr;
2256 cmdrest = cmd1;
2257 if (*cmdrest == ',')
2258 ++cmdrest;
2259 }
2260
2261 /* We don't want to stop processing, so catch any errors
2262 that may show up. */
2263 TRY_CATCH (ex, RETURN_MASK_ERROR)
2264 {
2265 aexpr = gen_printf (scope, gdbarch, 0, 0,
2266 format_start, format_end - format_start,
2267 fpieces, nargs, argvec);
2268 }
2269
2270 do_cleanups (old_cleanups);
2271
2272 if (ex.reason < 0)
2273 {
2274 /* If we got here, it means the command could not be parsed to a valid
2275 bytecode expression and thus can't be evaluated on the target's side.
2276 It's no use iterating through the other commands. */
2277 return NULL;
2278 }
2279
2280 /* We have a valid agent expression, return it. */
2281 return aexpr;
2282 }
2283
2284 /* Based on location BL, create a list of breakpoint commands to be
2285 passed on to the target. If we have duplicated locations with
2286 different commands, we will add any such to the list. */
2287
2288 static void
2289 build_target_command_list (struct bp_location *bl)
2290 {
2291 struct bp_location **locp = NULL, **loc2p;
2292 int null_command_or_parse_error = 0;
2293 int modified = bl->needs_update;
2294 struct bp_location *loc;
2295
2296 /* Release commands left over from a previous insert. */
2297 VEC_free (agent_expr_p, bl->target_info.tcommands);
2298
2299 /* For now, limit to agent-style dprintf breakpoints. */
2300 if (bl->owner->type != bp_dprintf
2301 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2302 return;
2303
2304 if (!target_can_run_breakpoint_commands ())
2305 return;
2306
2307 /* Do a first pass to check for locations with no assigned
2308 conditions or conditions that fail to parse to a valid agent expression
2309 bytecode. If any of these happen, then it's no use to send conditions
2310 to the target since this location will always trigger and generate a
2311 response back to GDB. */
2312 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2313 {
2314 loc = (*loc2p);
2315 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2316 {
2317 if (modified)
2318 {
2319 struct agent_expr *aexpr;
2320
2321 /* Re-parse the commands since something changed. In that
2322 case we already freed the command bytecodes (see
2323 force_breakpoint_reinsertion). We just
2324 need to parse the command to bytecodes again. */
2325 aexpr = parse_cmd_to_aexpr (bl->address,
2326 loc->owner->extra_string);
2327 loc->cmd_bytecode = aexpr;
2328
2329 if (!aexpr)
2330 continue;
2331 }
2332
2333 /* If we have a NULL bytecode expression, it means something
2334 went wrong or we have a null command expression. */
2335 if (!loc->cmd_bytecode)
2336 {
2337 null_command_or_parse_error = 1;
2338 break;
2339 }
2340 }
2341 }
2342
2343 /* If anything failed, then we're not doing target-side commands,
2344 and so clean up. */
2345 if (null_command_or_parse_error)
2346 {
2347 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2348 {
2349 loc = (*loc2p);
2350 if (is_breakpoint (loc->owner)
2351 && loc->pspace->num == bl->pspace->num)
2352 {
2353 /* Only go as far as the first NULL bytecode is
2354 located. */
2355 if (loc->cmd_bytecode == NULL)
2356 return;
2357
2358 free_agent_expr (loc->cmd_bytecode);
2359 loc->cmd_bytecode = NULL;
2360 }
2361 }
2362 }
2363
2364 /* No NULL commands or failed bytecode generation. Build a command list
2365 for this location's address. */
2366 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2367 {
2368 loc = (*loc2p);
2369 if (loc->owner->extra_string
2370 && is_breakpoint (loc->owner)
2371 && loc->pspace->num == bl->pspace->num
2372 && loc->owner->enable_state == bp_enabled
2373 && loc->enabled)
2374 /* Add the command to the vector. This will be used later
2375 to send the commands to the target. */
2376 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2377 loc->cmd_bytecode);
2378 }
2379
2380 bl->target_info.persist = 0;
2381 /* Maybe flag this location as persistent. */
2382 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2383 bl->target_info.persist = 1;
2384 }
2385
2386 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2387 location. Any error messages are printed to TMP_ERROR_STREAM; and
2388 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2389 Returns 0 for success, 1 if the bp_location type is not supported or
2390 -1 for failure.
2391
2392 NOTE drow/2003-09-09: This routine could be broken down to an
2393 object-style method for each breakpoint or catchpoint type. */
2394 static int
2395 insert_bp_location (struct bp_location *bl,
2396 struct ui_file *tmp_error_stream,
2397 int *disabled_breaks,
2398 int *hw_breakpoint_error,
2399 int *hw_bp_error_explained_already)
2400 {
2401 enum errors bp_err = GDB_NO_ERROR;
2402 const char *bp_err_message = NULL;
2403 volatile struct gdb_exception e;
2404
2405 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2406 return 0;
2407
2408 /* Note we don't initialize bl->target_info, as that wipes out
2409 the breakpoint location's shadow_contents if the breakpoint
2410 is still inserted at that location. This in turn breaks
2411 target_read_memory which depends on these buffers when
2412 a memory read is requested at the breakpoint location:
2413 Once the target_info has been wiped, we fail to see that
2414 we have a breakpoint inserted at that address and thus
2415 read the breakpoint instead of returning the data saved in
2416 the breakpoint location's shadow contents. */
2417 bl->target_info.placed_address = bl->address;
2418 bl->target_info.placed_address_space = bl->pspace->aspace;
2419 bl->target_info.length = bl->length;
2420
2421 /* When working with target-side conditions, we must pass all the conditions
2422 for the same breakpoint address down to the target since GDB will not
2423 insert those locations. With a list of breakpoint conditions, the target
2424 can decide when to stop and notify GDB. */
2425
2426 if (is_breakpoint (bl->owner))
2427 {
2428 build_target_condition_list (bl);
2429 build_target_command_list (bl);
2430 /* Reset the modification marker. */
2431 bl->needs_update = 0;
2432 }
2433
2434 if (bl->loc_type == bp_loc_software_breakpoint
2435 || bl->loc_type == bp_loc_hardware_breakpoint)
2436 {
2437 if (bl->owner->type != bp_hardware_breakpoint)
2438 {
2439 /* If the explicitly specified breakpoint type
2440 is not hardware breakpoint, check the memory map to see
2441 if the breakpoint address is in read only memory or not.
2442
2443 Two important cases are:
2444 - location type is not hardware breakpoint, memory
2445 is readonly. We change the type of the location to
2446 hardware breakpoint.
2447 - location type is hardware breakpoint, memory is
2448 read-write. This means we've previously made the
2449 location hardware one, but then the memory map changed,
2450 so we undo.
2451
2452 When breakpoints are removed, remove_breakpoints will use
2453 location types we've just set here, the only possible
2454 problem is that memory map has changed during running
2455 program, but it's not going to work anyway with current
2456 gdb. */
2457 struct mem_region *mr
2458 = lookup_mem_region (bl->target_info.placed_address);
2459
2460 if (mr)
2461 {
2462 if (automatic_hardware_breakpoints)
2463 {
2464 enum bp_loc_type new_type;
2465
2466 if (mr->attrib.mode != MEM_RW)
2467 new_type = bp_loc_hardware_breakpoint;
2468 else
2469 new_type = bp_loc_software_breakpoint;
2470
2471 if (new_type != bl->loc_type)
2472 {
2473 static int said = 0;
2474
2475 bl->loc_type = new_type;
2476 if (!said)
2477 {
2478 fprintf_filtered (gdb_stdout,
2479 _("Note: automatically using "
2480 "hardware breakpoints for "
2481 "read-only addresses.\n"));
2482 said = 1;
2483 }
2484 }
2485 }
2486 else if (bl->loc_type == bp_loc_software_breakpoint
2487 && mr->attrib.mode != MEM_RW)
2488 warning (_("cannot set software breakpoint "
2489 "at readonly address %s"),
2490 paddress (bl->gdbarch, bl->address));
2491 }
2492 }
2493
2494 /* First check to see if we have to handle an overlay. */
2495 if (overlay_debugging == ovly_off
2496 || bl->section == NULL
2497 || !(section_is_overlay (bl->section)))
2498 {
2499 /* No overlay handling: just set the breakpoint. */
2500 TRY_CATCH (e, RETURN_MASK_ALL)
2501 {
2502 int val;
2503
2504 val = bl->owner->ops->insert_location (bl);
2505 if (val)
2506 bp_err = GENERIC_ERROR;
2507 }
2508 if (e.reason < 0)
2509 {
2510 bp_err = e.error;
2511 bp_err_message = e.message;
2512 }
2513 }
2514 else
2515 {
2516 /* This breakpoint is in an overlay section.
2517 Shall we set a breakpoint at the LMA? */
2518 if (!overlay_events_enabled)
2519 {
2520 /* Yes -- overlay event support is not active,
2521 so we must try to set a breakpoint at the LMA.
2522 This will not work for a hardware breakpoint. */
2523 if (bl->loc_type == bp_loc_hardware_breakpoint)
2524 warning (_("hardware breakpoint %d not supported in overlay!"),
2525 bl->owner->number);
2526 else
2527 {
2528 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2529 bl->section);
2530 /* Set a software (trap) breakpoint at the LMA. */
2531 bl->overlay_target_info = bl->target_info;
2532 bl->overlay_target_info.placed_address = addr;
2533
2534 /* No overlay handling: just set the breakpoint. */
2535 TRY_CATCH (e, RETURN_MASK_ALL)
2536 {
2537 int val;
2538
2539 val = target_insert_breakpoint (bl->gdbarch,
2540 &bl->overlay_target_info);
2541 if (val)
2542 bp_err = GENERIC_ERROR;
2543 }
2544 if (e.reason < 0)
2545 {
2546 bp_err = e.error;
2547 bp_err_message = e.message;
2548 }
2549
2550 if (bp_err != GDB_NO_ERROR)
2551 fprintf_unfiltered (tmp_error_stream,
2552 "Overlay breakpoint %d "
2553 "failed: in ROM?\n",
2554 bl->owner->number);
2555 }
2556 }
2557 /* Shall we set a breakpoint at the VMA? */
2558 if (section_is_mapped (bl->section))
2559 {
2560 /* Yes. This overlay section is mapped into memory. */
2561 TRY_CATCH (e, RETURN_MASK_ALL)
2562 {
2563 int val;
2564
2565 val = bl->owner->ops->insert_location (bl);
2566 if (val)
2567 bp_err = GENERIC_ERROR;
2568 }
2569 if (e.reason < 0)
2570 {
2571 bp_err = e.error;
2572 bp_err_message = e.message;
2573 }
2574 }
2575 else
2576 {
2577 /* No. This breakpoint will not be inserted.
2578 No error, but do not mark the bp as 'inserted'. */
2579 return 0;
2580 }
2581 }
2582
2583 if (bp_err != GDB_NO_ERROR)
2584 {
2585 /* Can't set the breakpoint. */
2586
2587 /* In some cases, we might not be able to insert a
2588 breakpoint in a shared library that has already been
2589 removed, but we have not yet processed the shlib unload
2590 event. Unfortunately, some targets that implement
2591 breakpoint insertion themselves (necessary if this is a
2592 HW breakpoint, but SW breakpoints likewise) can't tell
2593 why the breakpoint insertion failed (e.g., the remote
2594 target doesn't define error codes), so we must treat
2595 generic errors as memory errors. */
2596 if ((bp_err == GENERIC_ERROR || bp_err == MEMORY_ERROR)
2597 && solib_name_from_address (bl->pspace, bl->address))
2598 {
2599 /* See also: disable_breakpoints_in_shlibs. */
2600 bl->shlib_disabled = 1;
2601 observer_notify_breakpoint_modified (bl->owner);
2602 if (!*disabled_breaks)
2603 {
2604 fprintf_unfiltered (tmp_error_stream,
2605 "Cannot insert breakpoint %d.\n",
2606 bl->owner->number);
2607 fprintf_unfiltered (tmp_error_stream,
2608 "Temporarily disabling shared "
2609 "library breakpoints:\n");
2610 }
2611 *disabled_breaks = 1;
2612 fprintf_unfiltered (tmp_error_stream,
2613 "breakpoint #%d\n", bl->owner->number);
2614 return 0;
2615 }
2616 else
2617 {
2618 if (bl->loc_type == bp_loc_hardware_breakpoint)
2619 {
2620 *hw_breakpoint_error = 1;
2621 *hw_bp_error_explained_already = bp_err_message != NULL;
2622 fprintf_unfiltered (tmp_error_stream,
2623 "Cannot insert hardware breakpoint %d%s",
2624 bl->owner->number, bp_err_message ? ":" : ".\n");
2625 if (bp_err_message != NULL)
2626 fprintf_unfiltered (tmp_error_stream, "%s.\n", bp_err_message);
2627 }
2628 else
2629 {
2630 if (bp_err_message == NULL)
2631 {
2632 char *message
2633 = memory_error_message (TARGET_XFER_E_IO,
2634 bl->gdbarch, bl->address);
2635 struct cleanup *old_chain = make_cleanup (xfree, message);
2636
2637 fprintf_unfiltered (tmp_error_stream,
2638 "Cannot insert breakpoint %d.\n"
2639 "%s\n",
2640 bl->owner->number, message);
2641 do_cleanups (old_chain);
2642 }
2643 else
2644 {
2645 fprintf_unfiltered (tmp_error_stream,
2646 "Cannot insert breakpoint %d: %s\n",
2647 bl->owner->number,
2648 bp_err_message);
2649 }
2650 }
2651 return 1;
2652
2653 }
2654 }
2655 else
2656 bl->inserted = 1;
2657
2658 return 0;
2659 }
2660
2661 else if (bl->loc_type == bp_loc_hardware_watchpoint
2662 /* NOTE drow/2003-09-08: This state only exists for removing
2663 watchpoints. It's not clear that it's necessary... */
2664 && bl->owner->disposition != disp_del_at_next_stop)
2665 {
2666 int val;
2667
2668 gdb_assert (bl->owner->ops != NULL
2669 && bl->owner->ops->insert_location != NULL);
2670
2671 val = bl->owner->ops->insert_location (bl);
2672
2673 /* If trying to set a read-watchpoint, and it turns out it's not
2674 supported, try emulating one with an access watchpoint. */
2675 if (val == 1 && bl->watchpoint_type == hw_read)
2676 {
2677 struct bp_location *loc, **loc_temp;
2678
2679 /* But don't try to insert it, if there's already another
2680 hw_access location that would be considered a duplicate
2681 of this one. */
2682 ALL_BP_LOCATIONS (loc, loc_temp)
2683 if (loc != bl
2684 && loc->watchpoint_type == hw_access
2685 && watchpoint_locations_match (bl, loc))
2686 {
2687 bl->duplicate = 1;
2688 bl->inserted = 1;
2689 bl->target_info = loc->target_info;
2690 bl->watchpoint_type = hw_access;
2691 val = 0;
2692 break;
2693 }
2694
2695 if (val == 1)
2696 {
2697 bl->watchpoint_type = hw_access;
2698 val = bl->owner->ops->insert_location (bl);
2699
2700 if (val)
2701 /* Back to the original value. */
2702 bl->watchpoint_type = hw_read;
2703 }
2704 }
2705
2706 bl->inserted = (val == 0);
2707 }
2708
2709 else if (bl->owner->type == bp_catchpoint)
2710 {
2711 int val;
2712
2713 gdb_assert (bl->owner->ops != NULL
2714 && bl->owner->ops->insert_location != NULL);
2715
2716 val = bl->owner->ops->insert_location (bl);
2717 if (val)
2718 {
2719 bl->owner->enable_state = bp_disabled;
2720
2721 if (val == 1)
2722 warning (_("\
2723 Error inserting catchpoint %d: Your system does not support this type\n\
2724 of catchpoint."), bl->owner->number);
2725 else
2726 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2727 }
2728
2729 bl->inserted = (val == 0);
2730
2731 /* We've already printed an error message if there was a problem
2732 inserting this catchpoint, and we've disabled the catchpoint,
2733 so just return success. */
2734 return 0;
2735 }
2736
2737 return 0;
2738 }
2739
2740 /* This function is called when program space PSPACE is about to be
2741 deleted. It takes care of updating breakpoints to not reference
2742 PSPACE anymore. */
2743
2744 void
2745 breakpoint_program_space_exit (struct program_space *pspace)
2746 {
2747 struct breakpoint *b, *b_temp;
2748 struct bp_location *loc, **loc_temp;
2749
2750 /* Remove any breakpoint that was set through this program space. */
2751 ALL_BREAKPOINTS_SAFE (b, b_temp)
2752 {
2753 if (b->pspace == pspace)
2754 delete_breakpoint (b);
2755 }
2756
2757 /* Breakpoints set through other program spaces could have locations
2758 bound to PSPACE as well. Remove those. */
2759 ALL_BP_LOCATIONS (loc, loc_temp)
2760 {
2761 struct bp_location *tmp;
2762
2763 if (loc->pspace == pspace)
2764 {
2765 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2766 if (loc->owner->loc == loc)
2767 loc->owner->loc = loc->next;
2768 else
2769 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2770 if (tmp->next == loc)
2771 {
2772 tmp->next = loc->next;
2773 break;
2774 }
2775 }
2776 }
2777
2778 /* Now update the global location list to permanently delete the
2779 removed locations above. */
2780 update_global_location_list (0);
2781 }
2782
2783 /* Make sure all breakpoints are inserted in inferior.
2784 Throws exception on any error.
2785 A breakpoint that is already inserted won't be inserted
2786 again, so calling this function twice is safe. */
2787 void
2788 insert_breakpoints (void)
2789 {
2790 struct breakpoint *bpt;
2791
2792 ALL_BREAKPOINTS (bpt)
2793 if (is_hardware_watchpoint (bpt))
2794 {
2795 struct watchpoint *w = (struct watchpoint *) bpt;
2796
2797 update_watchpoint (w, 0 /* don't reparse. */);
2798 }
2799
2800 update_global_location_list (1);
2801
2802 /* update_global_location_list does not insert breakpoints when
2803 always_inserted_mode is not enabled. Explicitly insert them
2804 now. */
2805 if (!breakpoints_always_inserted_mode ())
2806 insert_breakpoint_locations ();
2807 }
2808
2809 /* Invoke CALLBACK for each of bp_location. */
2810
2811 void
2812 iterate_over_bp_locations (walk_bp_location_callback callback)
2813 {
2814 struct bp_location *loc, **loc_tmp;
2815
2816 ALL_BP_LOCATIONS (loc, loc_tmp)
2817 {
2818 callback (loc, NULL);
2819 }
2820 }
2821
2822 /* This is used when we need to synch breakpoint conditions between GDB and the
2823 target. It is the case with deleting and disabling of breakpoints when using
2824 always-inserted mode. */
2825
2826 static void
2827 update_inserted_breakpoint_locations (void)
2828 {
2829 struct bp_location *bl, **blp_tmp;
2830 int error_flag = 0;
2831 int val = 0;
2832 int disabled_breaks = 0;
2833 int hw_breakpoint_error = 0;
2834 int hw_bp_details_reported = 0;
2835
2836 struct ui_file *tmp_error_stream = mem_fileopen ();
2837 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2838
2839 /* Explicitly mark the warning -- this will only be printed if
2840 there was an error. */
2841 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2842
2843 save_current_space_and_thread ();
2844
2845 ALL_BP_LOCATIONS (bl, blp_tmp)
2846 {
2847 /* We only want to update software breakpoints and hardware
2848 breakpoints. */
2849 if (!is_breakpoint (bl->owner))
2850 continue;
2851
2852 /* We only want to update locations that are already inserted
2853 and need updating. This is to avoid unwanted insertion during
2854 deletion of breakpoints. */
2855 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2856 continue;
2857
2858 switch_to_program_space_and_thread (bl->pspace);
2859
2860 /* For targets that support global breakpoints, there's no need
2861 to select an inferior to insert breakpoint to. In fact, even
2862 if we aren't attached to any process yet, we should still
2863 insert breakpoints. */
2864 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2865 && ptid_equal (inferior_ptid, null_ptid))
2866 continue;
2867
2868 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2869 &hw_breakpoint_error, &hw_bp_details_reported);
2870 if (val)
2871 error_flag = val;
2872 }
2873
2874 if (error_flag)
2875 {
2876 target_terminal_ours_for_output ();
2877 error_stream (tmp_error_stream);
2878 }
2879
2880 do_cleanups (cleanups);
2881 }
2882
2883 /* Used when starting or continuing the program. */
2884
2885 static void
2886 insert_breakpoint_locations (void)
2887 {
2888 struct breakpoint *bpt;
2889 struct bp_location *bl, **blp_tmp;
2890 int error_flag = 0;
2891 int val = 0;
2892 int disabled_breaks = 0;
2893 int hw_breakpoint_error = 0;
2894 int hw_bp_error_explained_already = 0;
2895
2896 struct ui_file *tmp_error_stream = mem_fileopen ();
2897 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2898
2899 /* Explicitly mark the warning -- this will only be printed if
2900 there was an error. */
2901 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2902
2903 save_current_space_and_thread ();
2904
2905 ALL_BP_LOCATIONS (bl, blp_tmp)
2906 {
2907 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2908 continue;
2909
2910 /* There is no point inserting thread-specific breakpoints if
2911 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2912 has BL->OWNER always non-NULL. */
2913 if (bl->owner->thread != -1
2914 && !valid_thread_id (bl->owner->thread))
2915 continue;
2916
2917 switch_to_program_space_and_thread (bl->pspace);
2918
2919 /* For targets that support global breakpoints, there's no need
2920 to select an inferior to insert breakpoint to. In fact, even
2921 if we aren't attached to any process yet, we should still
2922 insert breakpoints. */
2923 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2924 && ptid_equal (inferior_ptid, null_ptid))
2925 continue;
2926
2927 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2928 &hw_breakpoint_error, &hw_bp_error_explained_already);
2929 if (val)
2930 error_flag = val;
2931 }
2932
2933 /* If we failed to insert all locations of a watchpoint, remove
2934 them, as half-inserted watchpoint is of limited use. */
2935 ALL_BREAKPOINTS (bpt)
2936 {
2937 int some_failed = 0;
2938 struct bp_location *loc;
2939
2940 if (!is_hardware_watchpoint (bpt))
2941 continue;
2942
2943 if (!breakpoint_enabled (bpt))
2944 continue;
2945
2946 if (bpt->disposition == disp_del_at_next_stop)
2947 continue;
2948
2949 for (loc = bpt->loc; loc; loc = loc->next)
2950 if (!loc->inserted && should_be_inserted (loc))
2951 {
2952 some_failed = 1;
2953 break;
2954 }
2955 if (some_failed)
2956 {
2957 for (loc = bpt->loc; loc; loc = loc->next)
2958 if (loc->inserted)
2959 remove_breakpoint (loc, mark_uninserted);
2960
2961 hw_breakpoint_error = 1;
2962 fprintf_unfiltered (tmp_error_stream,
2963 "Could not insert hardware watchpoint %d.\n",
2964 bpt->number);
2965 error_flag = -1;
2966 }
2967 }
2968
2969 if (error_flag)
2970 {
2971 /* If a hardware breakpoint or watchpoint was inserted, add a
2972 message about possibly exhausted resources. */
2973 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2974 {
2975 fprintf_unfiltered (tmp_error_stream,
2976 "Could not insert hardware breakpoints:\n\
2977 You may have requested too many hardware breakpoints/watchpoints.\n");
2978 }
2979 target_terminal_ours_for_output ();
2980 error_stream (tmp_error_stream);
2981 }
2982
2983 do_cleanups (cleanups);
2984 }
2985
2986 /* Used when the program stops.
2987 Returns zero if successful, or non-zero if there was a problem
2988 removing a breakpoint location. */
2989
2990 int
2991 remove_breakpoints (void)
2992 {
2993 struct bp_location *bl, **blp_tmp;
2994 int val = 0;
2995
2996 ALL_BP_LOCATIONS (bl, blp_tmp)
2997 {
2998 if (bl->inserted && !is_tracepoint (bl->owner))
2999 val |= remove_breakpoint (bl, mark_uninserted);
3000 }
3001 return val;
3002 }
3003
3004 /* When a thread exits, remove breakpoints that are related to
3005 that thread. */
3006
3007 static void
3008 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3009 {
3010 struct breakpoint *b, *b_tmp;
3011
3012 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3013 {
3014 if (b->thread == tp->num && user_breakpoint_p (b))
3015 {
3016 b->disposition = disp_del_at_next_stop;
3017
3018 printf_filtered (_("\
3019 Thread-specific breakpoint %d deleted - thread %d no longer in the thread list.\n"),
3020 b->number, tp->num);
3021
3022 /* Hide it from the user. */
3023 b->number = 0;
3024 }
3025 }
3026 }
3027
3028 /* Remove breakpoints of process PID. */
3029
3030 int
3031 remove_breakpoints_pid (int pid)
3032 {
3033 struct bp_location *bl, **blp_tmp;
3034 int val;
3035 struct inferior *inf = find_inferior_pid (pid);
3036
3037 ALL_BP_LOCATIONS (bl, blp_tmp)
3038 {
3039 if (bl->pspace != inf->pspace)
3040 continue;
3041
3042 if (bl->owner->type == bp_dprintf)
3043 continue;
3044
3045 if (bl->inserted)
3046 {
3047 val = remove_breakpoint (bl, mark_uninserted);
3048 if (val != 0)
3049 return val;
3050 }
3051 }
3052 return 0;
3053 }
3054
3055 int
3056 reattach_breakpoints (int pid)
3057 {
3058 struct cleanup *old_chain;
3059 struct bp_location *bl, **blp_tmp;
3060 int val;
3061 struct ui_file *tmp_error_stream;
3062 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
3063 struct inferior *inf;
3064 struct thread_info *tp;
3065
3066 tp = any_live_thread_of_process (pid);
3067 if (tp == NULL)
3068 return 1;
3069
3070 inf = find_inferior_pid (pid);
3071 old_chain = save_inferior_ptid ();
3072
3073 inferior_ptid = tp->ptid;
3074
3075 tmp_error_stream = mem_fileopen ();
3076 make_cleanup_ui_file_delete (tmp_error_stream);
3077
3078 ALL_BP_LOCATIONS (bl, blp_tmp)
3079 {
3080 if (bl->pspace != inf->pspace)
3081 continue;
3082
3083 if (bl->inserted)
3084 {
3085 bl->inserted = 0;
3086 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
3087 if (val != 0)
3088 {
3089 do_cleanups (old_chain);
3090 return val;
3091 }
3092 }
3093 }
3094 do_cleanups (old_chain);
3095 return 0;
3096 }
3097
3098 static int internal_breakpoint_number = -1;
3099
3100 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3101 If INTERNAL is non-zero, the breakpoint number will be populated
3102 from internal_breakpoint_number and that variable decremented.
3103 Otherwise the breakpoint number will be populated from
3104 breakpoint_count and that value incremented. Internal breakpoints
3105 do not set the internal var bpnum. */
3106 static void
3107 set_breakpoint_number (int internal, struct breakpoint *b)
3108 {
3109 if (internal)
3110 b->number = internal_breakpoint_number--;
3111 else
3112 {
3113 set_breakpoint_count (breakpoint_count + 1);
3114 b->number = breakpoint_count;
3115 }
3116 }
3117
3118 static struct breakpoint *
3119 create_internal_breakpoint (struct gdbarch *gdbarch,
3120 CORE_ADDR address, enum bptype type,
3121 const struct breakpoint_ops *ops)
3122 {
3123 struct symtab_and_line sal;
3124 struct breakpoint *b;
3125
3126 init_sal (&sal); /* Initialize to zeroes. */
3127
3128 sal.pc = address;
3129 sal.section = find_pc_overlay (sal.pc);
3130 sal.pspace = current_program_space;
3131
3132 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3133 b->number = internal_breakpoint_number--;
3134 b->disposition = disp_donttouch;
3135
3136 return b;
3137 }
3138
3139 static const char *const longjmp_names[] =
3140 {
3141 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3142 };
3143 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3144
3145 /* Per-objfile data private to breakpoint.c. */
3146 struct breakpoint_objfile_data
3147 {
3148 /* Minimal symbol for "_ovly_debug_event" (if any). */
3149 struct bound_minimal_symbol overlay_msym;
3150
3151 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3152 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3153
3154 /* True if we have looked for longjmp probes. */
3155 int longjmp_searched;
3156
3157 /* SystemTap probe points for longjmp (if any). */
3158 VEC (probe_p) *longjmp_probes;
3159
3160 /* Minimal symbol for "std::terminate()" (if any). */
3161 struct bound_minimal_symbol terminate_msym;
3162
3163 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3164 struct bound_minimal_symbol exception_msym;
3165
3166 /* True if we have looked for exception probes. */
3167 int exception_searched;
3168
3169 /* SystemTap probe points for unwinding (if any). */
3170 VEC (probe_p) *exception_probes;
3171 };
3172
3173 static const struct objfile_data *breakpoint_objfile_key;
3174
3175 /* Minimal symbol not found sentinel. */
3176 static struct minimal_symbol msym_not_found;
3177
3178 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3179
3180 static int
3181 msym_not_found_p (const struct minimal_symbol *msym)
3182 {
3183 return msym == &msym_not_found;
3184 }
3185
3186 /* Return per-objfile data needed by breakpoint.c.
3187 Allocate the data if necessary. */
3188
3189 static struct breakpoint_objfile_data *
3190 get_breakpoint_objfile_data (struct objfile *objfile)
3191 {
3192 struct breakpoint_objfile_data *bp_objfile_data;
3193
3194 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3195 if (bp_objfile_data == NULL)
3196 {
3197 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3198 sizeof (*bp_objfile_data));
3199
3200 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3201 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3202 }
3203 return bp_objfile_data;
3204 }
3205
3206 static void
3207 free_breakpoint_probes (struct objfile *obj, void *data)
3208 {
3209 struct breakpoint_objfile_data *bp_objfile_data = data;
3210
3211 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3212 VEC_free (probe_p, bp_objfile_data->exception_probes);
3213 }
3214
3215 static void
3216 create_overlay_event_breakpoint (void)
3217 {
3218 struct objfile *objfile;
3219 const char *const func_name = "_ovly_debug_event";
3220
3221 ALL_OBJFILES (objfile)
3222 {
3223 struct breakpoint *b;
3224 struct breakpoint_objfile_data *bp_objfile_data;
3225 CORE_ADDR addr;
3226
3227 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3228
3229 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3230 continue;
3231
3232 if (bp_objfile_data->overlay_msym.minsym == NULL)
3233 {
3234 struct bound_minimal_symbol m;
3235
3236 m = lookup_minimal_symbol_text (func_name, objfile);
3237 if (m.minsym == NULL)
3238 {
3239 /* Avoid future lookups in this objfile. */
3240 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3241 continue;
3242 }
3243 bp_objfile_data->overlay_msym = m;
3244 }
3245
3246 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3247 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3248 bp_overlay_event,
3249 &internal_breakpoint_ops);
3250 b->addr_string = xstrdup (func_name);
3251
3252 if (overlay_debugging == ovly_auto)
3253 {
3254 b->enable_state = bp_enabled;
3255 overlay_events_enabled = 1;
3256 }
3257 else
3258 {
3259 b->enable_state = bp_disabled;
3260 overlay_events_enabled = 0;
3261 }
3262 }
3263 update_global_location_list (1);
3264 }
3265
3266 static void
3267 create_longjmp_master_breakpoint (void)
3268 {
3269 struct program_space *pspace;
3270 struct cleanup *old_chain;
3271
3272 old_chain = save_current_program_space ();
3273
3274 ALL_PSPACES (pspace)
3275 {
3276 struct objfile *objfile;
3277
3278 set_current_program_space (pspace);
3279
3280 ALL_OBJFILES (objfile)
3281 {
3282 int i;
3283 struct gdbarch *gdbarch;
3284 struct breakpoint_objfile_data *bp_objfile_data;
3285
3286 gdbarch = get_objfile_arch (objfile);
3287
3288 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3289
3290 if (!bp_objfile_data->longjmp_searched)
3291 {
3292 VEC (probe_p) *ret;
3293
3294 ret = find_probes_in_objfile (objfile, "libc", "longjmp");
3295 if (ret != NULL)
3296 {
3297 /* We are only interested in checking one element. */
3298 struct probe *p = VEC_index (probe_p, ret, 0);
3299
3300 if (!can_evaluate_probe_arguments (p))
3301 {
3302 /* We cannot use the probe interface here, because it does
3303 not know how to evaluate arguments. */
3304 VEC_free (probe_p, ret);
3305 ret = NULL;
3306 }
3307 }
3308 bp_objfile_data->longjmp_probes = ret;
3309 bp_objfile_data->longjmp_searched = 1;
3310 }
3311
3312 if (bp_objfile_data->longjmp_probes != NULL)
3313 {
3314 int i;
3315 struct probe *probe;
3316 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3317
3318 for (i = 0;
3319 VEC_iterate (probe_p,
3320 bp_objfile_data->longjmp_probes,
3321 i, probe);
3322 ++i)
3323 {
3324 struct breakpoint *b;
3325
3326 b = create_internal_breakpoint (gdbarch,
3327 get_probe_address (probe,
3328 objfile),
3329 bp_longjmp_master,
3330 &internal_breakpoint_ops);
3331 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3332 b->enable_state = bp_disabled;
3333 }
3334
3335 continue;
3336 }
3337
3338 if (!gdbarch_get_longjmp_target_p (gdbarch))
3339 continue;
3340
3341 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3342 {
3343 struct breakpoint *b;
3344 const char *func_name;
3345 CORE_ADDR addr;
3346
3347 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3348 continue;
3349
3350 func_name = longjmp_names[i];
3351 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3352 {
3353 struct bound_minimal_symbol m;
3354
3355 m = lookup_minimal_symbol_text (func_name, objfile);
3356 if (m.minsym == NULL)
3357 {
3358 /* Prevent future lookups in this objfile. */
3359 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3360 continue;
3361 }
3362 bp_objfile_data->longjmp_msym[i] = m;
3363 }
3364
3365 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3366 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3367 &internal_breakpoint_ops);
3368 b->addr_string = xstrdup (func_name);
3369 b->enable_state = bp_disabled;
3370 }
3371 }
3372 }
3373 update_global_location_list (1);
3374
3375 do_cleanups (old_chain);
3376 }
3377
3378 /* Create a master std::terminate breakpoint. */
3379 static void
3380 create_std_terminate_master_breakpoint (void)
3381 {
3382 struct program_space *pspace;
3383 struct cleanup *old_chain;
3384 const char *const func_name = "std::terminate()";
3385
3386 old_chain = save_current_program_space ();
3387
3388 ALL_PSPACES (pspace)
3389 {
3390 struct objfile *objfile;
3391 CORE_ADDR addr;
3392
3393 set_current_program_space (pspace);
3394
3395 ALL_OBJFILES (objfile)
3396 {
3397 struct breakpoint *b;
3398 struct breakpoint_objfile_data *bp_objfile_data;
3399
3400 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3401
3402 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3403 continue;
3404
3405 if (bp_objfile_data->terminate_msym.minsym == NULL)
3406 {
3407 struct bound_minimal_symbol m;
3408
3409 m = lookup_minimal_symbol (func_name, NULL, objfile);
3410 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3411 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3412 {
3413 /* Prevent future lookups in this objfile. */
3414 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3415 continue;
3416 }
3417 bp_objfile_data->terminate_msym = m;
3418 }
3419
3420 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3421 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3422 bp_std_terminate_master,
3423 &internal_breakpoint_ops);
3424 b->addr_string = xstrdup (func_name);
3425 b->enable_state = bp_disabled;
3426 }
3427 }
3428
3429 update_global_location_list (1);
3430
3431 do_cleanups (old_chain);
3432 }
3433
3434 /* Install a master breakpoint on the unwinder's debug hook. */
3435
3436 static void
3437 create_exception_master_breakpoint (void)
3438 {
3439 struct objfile *objfile;
3440 const char *const func_name = "_Unwind_DebugHook";
3441
3442 ALL_OBJFILES (objfile)
3443 {
3444 struct breakpoint *b;
3445 struct gdbarch *gdbarch;
3446 struct breakpoint_objfile_data *bp_objfile_data;
3447 CORE_ADDR addr;
3448
3449 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3450
3451 /* We prefer the SystemTap probe point if it exists. */
3452 if (!bp_objfile_data->exception_searched)
3453 {
3454 VEC (probe_p) *ret;
3455
3456 ret = find_probes_in_objfile (objfile, "libgcc", "unwind");
3457
3458 if (ret != NULL)
3459 {
3460 /* We are only interested in checking one element. */
3461 struct probe *p = VEC_index (probe_p, ret, 0);
3462
3463 if (!can_evaluate_probe_arguments (p))
3464 {
3465 /* We cannot use the probe interface here, because it does
3466 not know how to evaluate arguments. */
3467 VEC_free (probe_p, ret);
3468 ret = NULL;
3469 }
3470 }
3471 bp_objfile_data->exception_probes = ret;
3472 bp_objfile_data->exception_searched = 1;
3473 }
3474
3475 if (bp_objfile_data->exception_probes != NULL)
3476 {
3477 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3478 int i;
3479 struct probe *probe;
3480
3481 for (i = 0;
3482 VEC_iterate (probe_p,
3483 bp_objfile_data->exception_probes,
3484 i, probe);
3485 ++i)
3486 {
3487 struct breakpoint *b;
3488
3489 b = create_internal_breakpoint (gdbarch,
3490 get_probe_address (probe,
3491 objfile),
3492 bp_exception_master,
3493 &internal_breakpoint_ops);
3494 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3495 b->enable_state = bp_disabled;
3496 }
3497
3498 continue;
3499 }
3500
3501 /* Otherwise, try the hook function. */
3502
3503 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3504 continue;
3505
3506 gdbarch = get_objfile_arch (objfile);
3507
3508 if (bp_objfile_data->exception_msym.minsym == NULL)
3509 {
3510 struct bound_minimal_symbol debug_hook;
3511
3512 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3513 if (debug_hook.minsym == NULL)
3514 {
3515 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3516 continue;
3517 }
3518
3519 bp_objfile_data->exception_msym = debug_hook;
3520 }
3521
3522 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3523 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3524 &current_target);
3525 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3526 &internal_breakpoint_ops);
3527 b->addr_string = xstrdup (func_name);
3528 b->enable_state = bp_disabled;
3529 }
3530
3531 update_global_location_list (1);
3532 }
3533
3534 void
3535 update_breakpoints_after_exec (void)
3536 {
3537 struct breakpoint *b, *b_tmp;
3538 struct bp_location *bploc, **bplocp_tmp;
3539
3540 /* We're about to delete breakpoints from GDB's lists. If the
3541 INSERTED flag is true, GDB will try to lift the breakpoints by
3542 writing the breakpoints' "shadow contents" back into memory. The
3543 "shadow contents" are NOT valid after an exec, so GDB should not
3544 do that. Instead, the target is responsible from marking
3545 breakpoints out as soon as it detects an exec. We don't do that
3546 here instead, because there may be other attempts to delete
3547 breakpoints after detecting an exec and before reaching here. */
3548 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3549 if (bploc->pspace == current_program_space)
3550 gdb_assert (!bploc->inserted);
3551
3552 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3553 {
3554 if (b->pspace != current_program_space)
3555 continue;
3556
3557 /* Solib breakpoints must be explicitly reset after an exec(). */
3558 if (b->type == bp_shlib_event)
3559 {
3560 delete_breakpoint (b);
3561 continue;
3562 }
3563
3564 /* JIT breakpoints must be explicitly reset after an exec(). */
3565 if (b->type == bp_jit_event)
3566 {
3567 delete_breakpoint (b);
3568 continue;
3569 }
3570
3571 /* Thread event breakpoints must be set anew after an exec(),
3572 as must overlay event and longjmp master breakpoints. */
3573 if (b->type == bp_thread_event || b->type == bp_overlay_event
3574 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3575 || b->type == bp_exception_master)
3576 {
3577 delete_breakpoint (b);
3578 continue;
3579 }
3580
3581 /* Step-resume breakpoints are meaningless after an exec(). */
3582 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3583 {
3584 delete_breakpoint (b);
3585 continue;
3586 }
3587
3588 /* Longjmp and longjmp-resume breakpoints are also meaningless
3589 after an exec. */
3590 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3591 || b->type == bp_longjmp_call_dummy
3592 || b->type == bp_exception || b->type == bp_exception_resume)
3593 {
3594 delete_breakpoint (b);
3595 continue;
3596 }
3597
3598 if (b->type == bp_catchpoint)
3599 {
3600 /* For now, none of the bp_catchpoint breakpoints need to
3601 do anything at this point. In the future, if some of
3602 the catchpoints need to something, we will need to add
3603 a new method, and call this method from here. */
3604 continue;
3605 }
3606
3607 /* bp_finish is a special case. The only way we ought to be able
3608 to see one of these when an exec() has happened, is if the user
3609 caught a vfork, and then said "finish". Ordinarily a finish just
3610 carries them to the call-site of the current callee, by setting
3611 a temporary bp there and resuming. But in this case, the finish
3612 will carry them entirely through the vfork & exec.
3613
3614 We don't want to allow a bp_finish to remain inserted now. But
3615 we can't safely delete it, 'cause finish_command has a handle to
3616 the bp on a bpstat, and will later want to delete it. There's a
3617 chance (and I've seen it happen) that if we delete the bp_finish
3618 here, that its storage will get reused by the time finish_command
3619 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3620 We really must allow finish_command to delete a bp_finish.
3621
3622 In the absence of a general solution for the "how do we know
3623 it's safe to delete something others may have handles to?"
3624 problem, what we'll do here is just uninsert the bp_finish, and
3625 let finish_command delete it.
3626
3627 (We know the bp_finish is "doomed" in the sense that it's
3628 momentary, and will be deleted as soon as finish_command sees
3629 the inferior stopped. So it doesn't matter that the bp's
3630 address is probably bogus in the new a.out, unlike e.g., the
3631 solib breakpoints.) */
3632
3633 if (b->type == bp_finish)
3634 {
3635 continue;
3636 }
3637
3638 /* Without a symbolic address, we have little hope of the
3639 pre-exec() address meaning the same thing in the post-exec()
3640 a.out. */
3641 if (b->addr_string == NULL)
3642 {
3643 delete_breakpoint (b);
3644 continue;
3645 }
3646 }
3647 /* FIXME what about longjmp breakpoints? Re-create them here? */
3648 create_overlay_event_breakpoint ();
3649 create_longjmp_master_breakpoint ();
3650 create_std_terminate_master_breakpoint ();
3651 create_exception_master_breakpoint ();
3652 }
3653
3654 int
3655 detach_breakpoints (ptid_t ptid)
3656 {
3657 struct bp_location *bl, **blp_tmp;
3658 int val = 0;
3659 struct cleanup *old_chain = save_inferior_ptid ();
3660 struct inferior *inf = current_inferior ();
3661
3662 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3663 error (_("Cannot detach breakpoints of inferior_ptid"));
3664
3665 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3666 inferior_ptid = ptid;
3667 ALL_BP_LOCATIONS (bl, blp_tmp)
3668 {
3669 if (bl->pspace != inf->pspace)
3670 continue;
3671
3672 /* This function must physically remove breakpoints locations
3673 from the specified ptid, without modifying the breakpoint
3674 package's state. Locations of type bp_loc_other are only
3675 maintained at GDB side. So, there is no need to remove
3676 these bp_loc_other locations. Moreover, removing these
3677 would modify the breakpoint package's state. */
3678 if (bl->loc_type == bp_loc_other)
3679 continue;
3680
3681 if (bl->inserted)
3682 val |= remove_breakpoint_1 (bl, mark_inserted);
3683 }
3684
3685 /* Detach single-step breakpoints as well. */
3686 detach_single_step_breakpoints ();
3687
3688 do_cleanups (old_chain);
3689 return val;
3690 }
3691
3692 /* Remove the breakpoint location BL from the current address space.
3693 Note that this is used to detach breakpoints from a child fork.
3694 When we get here, the child isn't in the inferior list, and neither
3695 do we have objects to represent its address space --- we should
3696 *not* look at bl->pspace->aspace here. */
3697
3698 static int
3699 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3700 {
3701 int val;
3702
3703 /* BL is never in moribund_locations by our callers. */
3704 gdb_assert (bl->owner != NULL);
3705
3706 if (bl->owner->enable_state == bp_permanent)
3707 /* Permanent breakpoints cannot be inserted or removed. */
3708 return 0;
3709
3710 /* The type of none suggests that owner is actually deleted.
3711 This should not ever happen. */
3712 gdb_assert (bl->owner->type != bp_none);
3713
3714 if (bl->loc_type == bp_loc_software_breakpoint
3715 || bl->loc_type == bp_loc_hardware_breakpoint)
3716 {
3717 /* "Normal" instruction breakpoint: either the standard
3718 trap-instruction bp (bp_breakpoint), or a
3719 bp_hardware_breakpoint. */
3720
3721 /* First check to see if we have to handle an overlay. */
3722 if (overlay_debugging == ovly_off
3723 || bl->section == NULL
3724 || !(section_is_overlay (bl->section)))
3725 {
3726 /* No overlay handling: just remove the breakpoint. */
3727 val = bl->owner->ops->remove_location (bl);
3728 }
3729 else
3730 {
3731 /* This breakpoint is in an overlay section.
3732 Did we set a breakpoint at the LMA? */
3733 if (!overlay_events_enabled)
3734 {
3735 /* Yes -- overlay event support is not active, so we
3736 should have set a breakpoint at the LMA. Remove it.
3737 */
3738 /* Ignore any failures: if the LMA is in ROM, we will
3739 have already warned when we failed to insert it. */
3740 if (bl->loc_type == bp_loc_hardware_breakpoint)
3741 target_remove_hw_breakpoint (bl->gdbarch,
3742 &bl->overlay_target_info);
3743 else
3744 target_remove_breakpoint (bl->gdbarch,
3745 &bl->overlay_target_info);
3746 }
3747 /* Did we set a breakpoint at the VMA?
3748 If so, we will have marked the breakpoint 'inserted'. */
3749 if (bl->inserted)
3750 {
3751 /* Yes -- remove it. Previously we did not bother to
3752 remove the breakpoint if the section had been
3753 unmapped, but let's not rely on that being safe. We
3754 don't know what the overlay manager might do. */
3755
3756 /* However, we should remove *software* breakpoints only
3757 if the section is still mapped, or else we overwrite
3758 wrong code with the saved shadow contents. */
3759 if (bl->loc_type == bp_loc_hardware_breakpoint
3760 || section_is_mapped (bl->section))
3761 val = bl->owner->ops->remove_location (bl);
3762 else
3763 val = 0;
3764 }
3765 else
3766 {
3767 /* No -- not inserted, so no need to remove. No error. */
3768 val = 0;
3769 }
3770 }
3771
3772 /* In some cases, we might not be able to remove a breakpoint
3773 in a shared library that has already been removed, but we
3774 have not yet processed the shlib unload event. */
3775 if (val && solib_name_from_address (bl->pspace, bl->address))
3776 val = 0;
3777
3778 if (val)
3779 return val;
3780 bl->inserted = (is == mark_inserted);
3781 }
3782 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3783 {
3784 gdb_assert (bl->owner->ops != NULL
3785 && bl->owner->ops->remove_location != NULL);
3786
3787 bl->inserted = (is == mark_inserted);
3788 bl->owner->ops->remove_location (bl);
3789
3790 /* Failure to remove any of the hardware watchpoints comes here. */
3791 if ((is == mark_uninserted) && (bl->inserted))
3792 warning (_("Could not remove hardware watchpoint %d."),
3793 bl->owner->number);
3794 }
3795 else if (bl->owner->type == bp_catchpoint
3796 && breakpoint_enabled (bl->owner)
3797 && !bl->duplicate)
3798 {
3799 gdb_assert (bl->owner->ops != NULL
3800 && bl->owner->ops->remove_location != NULL);
3801
3802 val = bl->owner->ops->remove_location (bl);
3803 if (val)
3804 return val;
3805
3806 bl->inserted = (is == mark_inserted);
3807 }
3808
3809 return 0;
3810 }
3811
3812 static int
3813 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3814 {
3815 int ret;
3816 struct cleanup *old_chain;
3817
3818 /* BL is never in moribund_locations by our callers. */
3819 gdb_assert (bl->owner != NULL);
3820
3821 if (bl->owner->enable_state == bp_permanent)
3822 /* Permanent breakpoints cannot be inserted or removed. */
3823 return 0;
3824
3825 /* The type of none suggests that owner is actually deleted.
3826 This should not ever happen. */
3827 gdb_assert (bl->owner->type != bp_none);
3828
3829 old_chain = save_current_space_and_thread ();
3830
3831 switch_to_program_space_and_thread (bl->pspace);
3832
3833 ret = remove_breakpoint_1 (bl, is);
3834
3835 do_cleanups (old_chain);
3836 return ret;
3837 }
3838
3839 /* Clear the "inserted" flag in all breakpoints. */
3840
3841 void
3842 mark_breakpoints_out (void)
3843 {
3844 struct bp_location *bl, **blp_tmp;
3845
3846 ALL_BP_LOCATIONS (bl, blp_tmp)
3847 if (bl->pspace == current_program_space)
3848 bl->inserted = 0;
3849 }
3850
3851 /* Clear the "inserted" flag in all breakpoints and delete any
3852 breakpoints which should go away between runs of the program.
3853
3854 Plus other such housekeeping that has to be done for breakpoints
3855 between runs.
3856
3857 Note: this function gets called at the end of a run (by
3858 generic_mourn_inferior) and when a run begins (by
3859 init_wait_for_inferior). */
3860
3861
3862
3863 void
3864 breakpoint_init_inferior (enum inf_context context)
3865 {
3866 struct breakpoint *b, *b_tmp;
3867 struct bp_location *bl, **blp_tmp;
3868 int ix;
3869 struct program_space *pspace = current_program_space;
3870
3871 /* If breakpoint locations are shared across processes, then there's
3872 nothing to do. */
3873 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3874 return;
3875
3876 ALL_BP_LOCATIONS (bl, blp_tmp)
3877 {
3878 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3879 if (bl->pspace == pspace
3880 && bl->owner->enable_state != bp_permanent)
3881 bl->inserted = 0;
3882 }
3883
3884 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3885 {
3886 if (b->loc && b->loc->pspace != pspace)
3887 continue;
3888
3889 switch (b->type)
3890 {
3891 case bp_call_dummy:
3892 case bp_longjmp_call_dummy:
3893
3894 /* If the call dummy breakpoint is at the entry point it will
3895 cause problems when the inferior is rerun, so we better get
3896 rid of it. */
3897
3898 case bp_watchpoint_scope:
3899
3900 /* Also get rid of scope breakpoints. */
3901
3902 case bp_shlib_event:
3903
3904 /* Also remove solib event breakpoints. Their addresses may
3905 have changed since the last time we ran the program.
3906 Actually we may now be debugging against different target;
3907 and so the solib backend that installed this breakpoint may
3908 not be used in by the target. E.g.,
3909
3910 (gdb) file prog-linux
3911 (gdb) run # native linux target
3912 ...
3913 (gdb) kill
3914 (gdb) file prog-win.exe
3915 (gdb) tar rem :9999 # remote Windows gdbserver.
3916 */
3917
3918 case bp_step_resume:
3919
3920 /* Also remove step-resume breakpoints. */
3921
3922 delete_breakpoint (b);
3923 break;
3924
3925 case bp_watchpoint:
3926 case bp_hardware_watchpoint:
3927 case bp_read_watchpoint:
3928 case bp_access_watchpoint:
3929 {
3930 struct watchpoint *w = (struct watchpoint *) b;
3931
3932 /* Likewise for watchpoints on local expressions. */
3933 if (w->exp_valid_block != NULL)
3934 delete_breakpoint (b);
3935 else if (context == inf_starting)
3936 {
3937 /* Reset val field to force reread of starting value in
3938 insert_breakpoints. */
3939 if (w->val)
3940 value_free (w->val);
3941 w->val = NULL;
3942 w->val_valid = 0;
3943 }
3944 }
3945 break;
3946 default:
3947 break;
3948 }
3949 }
3950
3951 /* Get rid of the moribund locations. */
3952 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3953 decref_bp_location (&bl);
3954 VEC_free (bp_location_p, moribund_locations);
3955 }
3956
3957 /* These functions concern about actual breakpoints inserted in the
3958 target --- to e.g. check if we need to do decr_pc adjustment or if
3959 we need to hop over the bkpt --- so we check for address space
3960 match, not program space. */
3961
3962 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3963 exists at PC. It returns ordinary_breakpoint_here if it's an
3964 ordinary breakpoint, or permanent_breakpoint_here if it's a
3965 permanent breakpoint.
3966 - When continuing from a location with an ordinary breakpoint, we
3967 actually single step once before calling insert_breakpoints.
3968 - When continuing from a location with a permanent breakpoint, we
3969 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3970 the target, to advance the PC past the breakpoint. */
3971
3972 enum breakpoint_here
3973 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3974 {
3975 struct bp_location *bl, **blp_tmp;
3976 int any_breakpoint_here = 0;
3977
3978 ALL_BP_LOCATIONS (bl, blp_tmp)
3979 {
3980 if (bl->loc_type != bp_loc_software_breakpoint
3981 && bl->loc_type != bp_loc_hardware_breakpoint)
3982 continue;
3983
3984 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3985 if ((breakpoint_enabled (bl->owner)
3986 || bl->owner->enable_state == bp_permanent)
3987 && breakpoint_location_address_match (bl, aspace, pc))
3988 {
3989 if (overlay_debugging
3990 && section_is_overlay (bl->section)
3991 && !section_is_mapped (bl->section))
3992 continue; /* unmapped overlay -- can't be a match */
3993 else if (bl->owner->enable_state == bp_permanent)
3994 return permanent_breakpoint_here;
3995 else
3996 any_breakpoint_here = 1;
3997 }
3998 }
3999
4000 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
4001 }
4002
4003 /* Return true if there's a moribund breakpoint at PC. */
4004
4005 int
4006 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
4007 {
4008 struct bp_location *loc;
4009 int ix;
4010
4011 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4012 if (breakpoint_location_address_match (loc, aspace, pc))
4013 return 1;
4014
4015 return 0;
4016 }
4017
4018 /* Returns non-zero if there's a breakpoint inserted at PC, which is
4019 inserted using regular breakpoint_chain / bp_location array
4020 mechanism. This does not check for single-step breakpoints, which
4021 are inserted and removed using direct target manipulation. */
4022
4023 int
4024 regular_breakpoint_inserted_here_p (struct address_space *aspace,
4025 CORE_ADDR pc)
4026 {
4027 struct bp_location *bl, **blp_tmp;
4028
4029 ALL_BP_LOCATIONS (bl, blp_tmp)
4030 {
4031 if (bl->loc_type != bp_loc_software_breakpoint
4032 && bl->loc_type != bp_loc_hardware_breakpoint)
4033 continue;
4034
4035 if (bl->inserted
4036 && breakpoint_location_address_match (bl, aspace, pc))
4037 {
4038 if (overlay_debugging
4039 && section_is_overlay (bl->section)
4040 && !section_is_mapped (bl->section))
4041 continue; /* unmapped overlay -- can't be a match */
4042 else
4043 return 1;
4044 }
4045 }
4046 return 0;
4047 }
4048
4049 /* Returns non-zero iff there's either regular breakpoint
4050 or a single step breakpoint inserted at PC. */
4051
4052 int
4053 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
4054 {
4055 if (regular_breakpoint_inserted_here_p (aspace, pc))
4056 return 1;
4057
4058 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4059 return 1;
4060
4061 return 0;
4062 }
4063
4064 /* This function returns non-zero iff there is a software breakpoint
4065 inserted at PC. */
4066
4067 int
4068 software_breakpoint_inserted_here_p (struct address_space *aspace,
4069 CORE_ADDR pc)
4070 {
4071 struct bp_location *bl, **blp_tmp;
4072
4073 ALL_BP_LOCATIONS (bl, blp_tmp)
4074 {
4075 if (bl->loc_type != bp_loc_software_breakpoint)
4076 continue;
4077
4078 if (bl->inserted
4079 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4080 aspace, pc))
4081 {
4082 if (overlay_debugging
4083 && section_is_overlay (bl->section)
4084 && !section_is_mapped (bl->section))
4085 continue; /* unmapped overlay -- can't be a match */
4086 else
4087 return 1;
4088 }
4089 }
4090
4091 /* Also check for software single-step breakpoints. */
4092 if (single_step_breakpoint_inserted_here_p (aspace, pc))
4093 return 1;
4094
4095 return 0;
4096 }
4097
4098 int
4099 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
4100 CORE_ADDR addr, ULONGEST len)
4101 {
4102 struct breakpoint *bpt;
4103
4104 ALL_BREAKPOINTS (bpt)
4105 {
4106 struct bp_location *loc;
4107
4108 if (bpt->type != bp_hardware_watchpoint
4109 && bpt->type != bp_access_watchpoint)
4110 continue;
4111
4112 if (!breakpoint_enabled (bpt))
4113 continue;
4114
4115 for (loc = bpt->loc; loc; loc = loc->next)
4116 if (loc->pspace->aspace == aspace && loc->inserted)
4117 {
4118 CORE_ADDR l, h;
4119
4120 /* Check for intersection. */
4121 l = max (loc->address, addr);
4122 h = min (loc->address + loc->length, addr + len);
4123 if (l < h)
4124 return 1;
4125 }
4126 }
4127 return 0;
4128 }
4129
4130 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
4131 PC is valid for process/thread PTID. */
4132
4133 int
4134 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4135 ptid_t ptid)
4136 {
4137 struct bp_location *bl, **blp_tmp;
4138 /* The thread and task IDs associated to PTID, computed lazily. */
4139 int thread = -1;
4140 int task = 0;
4141
4142 ALL_BP_LOCATIONS (bl, blp_tmp)
4143 {
4144 if (bl->loc_type != bp_loc_software_breakpoint
4145 && bl->loc_type != bp_loc_hardware_breakpoint)
4146 continue;
4147
4148 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4149 if (!breakpoint_enabled (bl->owner)
4150 && bl->owner->enable_state != bp_permanent)
4151 continue;
4152
4153 if (!breakpoint_location_address_match (bl, aspace, pc))
4154 continue;
4155
4156 if (bl->owner->thread != -1)
4157 {
4158 /* This is a thread-specific breakpoint. Check that ptid
4159 matches that thread. If thread hasn't been computed yet,
4160 it is now time to do so. */
4161 if (thread == -1)
4162 thread = pid_to_thread_id (ptid);
4163 if (bl->owner->thread != thread)
4164 continue;
4165 }
4166
4167 if (bl->owner->task != 0)
4168 {
4169 /* This is a task-specific breakpoint. Check that ptid
4170 matches that task. If task hasn't been computed yet,
4171 it is now time to do so. */
4172 if (task == 0)
4173 task = ada_get_task_number (ptid);
4174 if (bl->owner->task != task)
4175 continue;
4176 }
4177
4178 if (overlay_debugging
4179 && section_is_overlay (bl->section)
4180 && !section_is_mapped (bl->section))
4181 continue; /* unmapped overlay -- can't be a match */
4182
4183 return 1;
4184 }
4185
4186 return 0;
4187 }
4188 \f
4189
4190 /* bpstat stuff. External routines' interfaces are documented
4191 in breakpoint.h. */
4192
4193 int
4194 is_catchpoint (struct breakpoint *ep)
4195 {
4196 return (ep->type == bp_catchpoint);
4197 }
4198
4199 /* Frees any storage that is part of a bpstat. Does not walk the
4200 'next' chain. */
4201
4202 static void
4203 bpstat_free (bpstat bs)
4204 {
4205 if (bs->old_val != NULL)
4206 value_free (bs->old_val);
4207 decref_counted_command_line (&bs->commands);
4208 decref_bp_location (&bs->bp_location_at);
4209 xfree (bs);
4210 }
4211
4212 /* Clear a bpstat so that it says we are not at any breakpoint.
4213 Also free any storage that is part of a bpstat. */
4214
4215 void
4216 bpstat_clear (bpstat *bsp)
4217 {
4218 bpstat p;
4219 bpstat q;
4220
4221 if (bsp == 0)
4222 return;
4223 p = *bsp;
4224 while (p != NULL)
4225 {
4226 q = p->next;
4227 bpstat_free (p);
4228 p = q;
4229 }
4230 *bsp = NULL;
4231 }
4232
4233 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4234 is part of the bpstat is copied as well. */
4235
4236 bpstat
4237 bpstat_copy (bpstat bs)
4238 {
4239 bpstat p = NULL;
4240 bpstat tmp;
4241 bpstat retval = NULL;
4242
4243 if (bs == NULL)
4244 return bs;
4245
4246 for (; bs != NULL; bs = bs->next)
4247 {
4248 tmp = (bpstat) xmalloc (sizeof (*tmp));
4249 memcpy (tmp, bs, sizeof (*tmp));
4250 incref_counted_command_line (tmp->commands);
4251 incref_bp_location (tmp->bp_location_at);
4252 if (bs->old_val != NULL)
4253 {
4254 tmp->old_val = value_copy (bs->old_val);
4255 release_value (tmp->old_val);
4256 }
4257
4258 if (p == NULL)
4259 /* This is the first thing in the chain. */
4260 retval = tmp;
4261 else
4262 p->next = tmp;
4263 p = tmp;
4264 }
4265 p->next = NULL;
4266 return retval;
4267 }
4268
4269 /* Find the bpstat associated with this breakpoint. */
4270
4271 bpstat
4272 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4273 {
4274 if (bsp == NULL)
4275 return NULL;
4276
4277 for (; bsp != NULL; bsp = bsp->next)
4278 {
4279 if (bsp->breakpoint_at == breakpoint)
4280 return bsp;
4281 }
4282 return NULL;
4283 }
4284
4285 /* See breakpoint.h. */
4286
4287 int
4288 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4289 {
4290 for (; bsp != NULL; bsp = bsp->next)
4291 {
4292 if (bsp->breakpoint_at == NULL)
4293 {
4294 /* A moribund location can never explain a signal other than
4295 GDB_SIGNAL_TRAP. */
4296 if (sig == GDB_SIGNAL_TRAP)
4297 return 1;
4298 }
4299 else
4300 {
4301 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4302 sig))
4303 return 1;
4304 }
4305 }
4306
4307 return 0;
4308 }
4309
4310 /* Put in *NUM the breakpoint number of the first breakpoint we are
4311 stopped at. *BSP upon return is a bpstat which points to the
4312 remaining breakpoints stopped at (but which is not guaranteed to be
4313 good for anything but further calls to bpstat_num).
4314
4315 Return 0 if passed a bpstat which does not indicate any breakpoints.
4316 Return -1 if stopped at a breakpoint that has been deleted since
4317 we set it.
4318 Return 1 otherwise. */
4319
4320 int
4321 bpstat_num (bpstat *bsp, int *num)
4322 {
4323 struct breakpoint *b;
4324
4325 if ((*bsp) == NULL)
4326 return 0; /* No more breakpoint values */
4327
4328 /* We assume we'll never have several bpstats that correspond to a
4329 single breakpoint -- otherwise, this function might return the
4330 same number more than once and this will look ugly. */
4331 b = (*bsp)->breakpoint_at;
4332 *bsp = (*bsp)->next;
4333 if (b == NULL)
4334 return -1; /* breakpoint that's been deleted since */
4335
4336 *num = b->number; /* We have its number */
4337 return 1;
4338 }
4339
4340 /* See breakpoint.h. */
4341
4342 void
4343 bpstat_clear_actions (void)
4344 {
4345 struct thread_info *tp;
4346 bpstat bs;
4347
4348 if (ptid_equal (inferior_ptid, null_ptid))
4349 return;
4350
4351 tp = find_thread_ptid (inferior_ptid);
4352 if (tp == NULL)
4353 return;
4354
4355 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4356 {
4357 decref_counted_command_line (&bs->commands);
4358
4359 if (bs->old_val != NULL)
4360 {
4361 value_free (bs->old_val);
4362 bs->old_val = NULL;
4363 }
4364 }
4365 }
4366
4367 /* Called when a command is about to proceed the inferior. */
4368
4369 static void
4370 breakpoint_about_to_proceed (void)
4371 {
4372 if (!ptid_equal (inferior_ptid, null_ptid))
4373 {
4374 struct thread_info *tp = inferior_thread ();
4375
4376 /* Allow inferior function calls in breakpoint commands to not
4377 interrupt the command list. When the call finishes
4378 successfully, the inferior will be standing at the same
4379 breakpoint as if nothing happened. */
4380 if (tp->control.in_infcall)
4381 return;
4382 }
4383
4384 breakpoint_proceeded = 1;
4385 }
4386
4387 /* Stub for cleaning up our state if we error-out of a breakpoint
4388 command. */
4389 static void
4390 cleanup_executing_breakpoints (void *ignore)
4391 {
4392 executing_breakpoint_commands = 0;
4393 }
4394
4395 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4396 or its equivalent. */
4397
4398 static int
4399 command_line_is_silent (struct command_line *cmd)
4400 {
4401 return cmd && (strcmp ("silent", cmd->line) == 0
4402 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4403 }
4404
4405 /* Execute all the commands associated with all the breakpoints at
4406 this location. Any of these commands could cause the process to
4407 proceed beyond this point, etc. We look out for such changes by
4408 checking the global "breakpoint_proceeded" after each command.
4409
4410 Returns true if a breakpoint command resumed the inferior. In that
4411 case, it is the caller's responsibility to recall it again with the
4412 bpstat of the current thread. */
4413
4414 static int
4415 bpstat_do_actions_1 (bpstat *bsp)
4416 {
4417 bpstat bs;
4418 struct cleanup *old_chain;
4419 int again = 0;
4420
4421 /* Avoid endless recursion if a `source' command is contained
4422 in bs->commands. */
4423 if (executing_breakpoint_commands)
4424 return 0;
4425
4426 executing_breakpoint_commands = 1;
4427 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4428
4429 prevent_dont_repeat ();
4430
4431 /* This pointer will iterate over the list of bpstat's. */
4432 bs = *bsp;
4433
4434 breakpoint_proceeded = 0;
4435 for (; bs != NULL; bs = bs->next)
4436 {
4437 struct counted_command_line *ccmd;
4438 struct command_line *cmd;
4439 struct cleanup *this_cmd_tree_chain;
4440
4441 /* Take ownership of the BSP's command tree, if it has one.
4442
4443 The command tree could legitimately contain commands like
4444 'step' and 'next', which call clear_proceed_status, which
4445 frees stop_bpstat's command tree. To make sure this doesn't
4446 free the tree we're executing out from under us, we need to
4447 take ownership of the tree ourselves. Since a given bpstat's
4448 commands are only executed once, we don't need to copy it; we
4449 can clear the pointer in the bpstat, and make sure we free
4450 the tree when we're done. */
4451 ccmd = bs->commands;
4452 bs->commands = NULL;
4453 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4454 cmd = ccmd ? ccmd->commands : NULL;
4455 if (command_line_is_silent (cmd))
4456 {
4457 /* The action has been already done by bpstat_stop_status. */
4458 cmd = cmd->next;
4459 }
4460
4461 while (cmd != NULL)
4462 {
4463 execute_control_command (cmd);
4464
4465 if (breakpoint_proceeded)
4466 break;
4467 else
4468 cmd = cmd->next;
4469 }
4470
4471 /* We can free this command tree now. */
4472 do_cleanups (this_cmd_tree_chain);
4473
4474 if (breakpoint_proceeded)
4475 {
4476 if (target_can_async_p ())
4477 /* If we are in async mode, then the target might be still
4478 running, not stopped at any breakpoint, so nothing for
4479 us to do here -- just return to the event loop. */
4480 ;
4481 else
4482 /* In sync mode, when execute_control_command returns
4483 we're already standing on the next breakpoint.
4484 Breakpoint commands for that stop were not run, since
4485 execute_command does not run breakpoint commands --
4486 only command_line_handler does, but that one is not
4487 involved in execution of breakpoint commands. So, we
4488 can now execute breakpoint commands. It should be
4489 noted that making execute_command do bpstat actions is
4490 not an option -- in this case we'll have recursive
4491 invocation of bpstat for each breakpoint with a
4492 command, and can easily blow up GDB stack. Instead, we
4493 return true, which will trigger the caller to recall us
4494 with the new stop_bpstat. */
4495 again = 1;
4496 break;
4497 }
4498 }
4499 do_cleanups (old_chain);
4500 return again;
4501 }
4502
4503 void
4504 bpstat_do_actions (void)
4505 {
4506 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4507
4508 /* Do any commands attached to breakpoint we are stopped at. */
4509 while (!ptid_equal (inferior_ptid, null_ptid)
4510 && target_has_execution
4511 && !is_exited (inferior_ptid)
4512 && !is_executing (inferior_ptid))
4513 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4514 and only return when it is stopped at the next breakpoint, we
4515 keep doing breakpoint actions until it returns false to
4516 indicate the inferior was not resumed. */
4517 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4518 break;
4519
4520 discard_cleanups (cleanup_if_error);
4521 }
4522
4523 /* Print out the (old or new) value associated with a watchpoint. */
4524
4525 static void
4526 watchpoint_value_print (struct value *val, struct ui_file *stream)
4527 {
4528 if (val == NULL)
4529 fprintf_unfiltered (stream, _("<unreadable>"));
4530 else
4531 {
4532 struct value_print_options opts;
4533 get_user_print_options (&opts);
4534 value_print (val, stream, &opts);
4535 }
4536 }
4537
4538 /* Generic routine for printing messages indicating why we
4539 stopped. The behavior of this function depends on the value
4540 'print_it' in the bpstat structure. Under some circumstances we
4541 may decide not to print anything here and delegate the task to
4542 normal_stop(). */
4543
4544 static enum print_stop_action
4545 print_bp_stop_message (bpstat bs)
4546 {
4547 switch (bs->print_it)
4548 {
4549 case print_it_noop:
4550 /* Nothing should be printed for this bpstat entry. */
4551 return PRINT_UNKNOWN;
4552 break;
4553
4554 case print_it_done:
4555 /* We still want to print the frame, but we already printed the
4556 relevant messages. */
4557 return PRINT_SRC_AND_LOC;
4558 break;
4559
4560 case print_it_normal:
4561 {
4562 struct breakpoint *b = bs->breakpoint_at;
4563
4564 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4565 which has since been deleted. */
4566 if (b == NULL)
4567 return PRINT_UNKNOWN;
4568
4569 /* Normal case. Call the breakpoint's print_it method. */
4570 return b->ops->print_it (bs);
4571 }
4572 break;
4573
4574 default:
4575 internal_error (__FILE__, __LINE__,
4576 _("print_bp_stop_message: unrecognized enum value"));
4577 break;
4578 }
4579 }
4580
4581 /* A helper function that prints a shared library stopped event. */
4582
4583 static void
4584 print_solib_event (int is_catchpoint)
4585 {
4586 int any_deleted
4587 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4588 int any_added
4589 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4590
4591 if (!is_catchpoint)
4592 {
4593 if (any_added || any_deleted)
4594 ui_out_text (current_uiout,
4595 _("Stopped due to shared library event:\n"));
4596 else
4597 ui_out_text (current_uiout,
4598 _("Stopped due to shared library event (no "
4599 "libraries added or removed)\n"));
4600 }
4601
4602 if (ui_out_is_mi_like_p (current_uiout))
4603 ui_out_field_string (current_uiout, "reason",
4604 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4605
4606 if (any_deleted)
4607 {
4608 struct cleanup *cleanup;
4609 char *name;
4610 int ix;
4611
4612 ui_out_text (current_uiout, _(" Inferior unloaded "));
4613 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4614 "removed");
4615 for (ix = 0;
4616 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4617 ix, name);
4618 ++ix)
4619 {
4620 if (ix > 0)
4621 ui_out_text (current_uiout, " ");
4622 ui_out_field_string (current_uiout, "library", name);
4623 ui_out_text (current_uiout, "\n");
4624 }
4625
4626 do_cleanups (cleanup);
4627 }
4628
4629 if (any_added)
4630 {
4631 struct so_list *iter;
4632 int ix;
4633 struct cleanup *cleanup;
4634
4635 ui_out_text (current_uiout, _(" Inferior loaded "));
4636 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4637 "added");
4638 for (ix = 0;
4639 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4640 ix, iter);
4641 ++ix)
4642 {
4643 if (ix > 0)
4644 ui_out_text (current_uiout, " ");
4645 ui_out_field_string (current_uiout, "library", iter->so_name);
4646 ui_out_text (current_uiout, "\n");
4647 }
4648
4649 do_cleanups (cleanup);
4650 }
4651 }
4652
4653 /* Print a message indicating what happened. This is called from
4654 normal_stop(). The input to this routine is the head of the bpstat
4655 list - a list of the eventpoints that caused this stop. KIND is
4656 the target_waitkind for the stopping event. This
4657 routine calls the generic print routine for printing a message
4658 about reasons for stopping. This will print (for example) the
4659 "Breakpoint n," part of the output. The return value of this
4660 routine is one of:
4661
4662 PRINT_UNKNOWN: Means we printed nothing.
4663 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4664 code to print the location. An example is
4665 "Breakpoint 1, " which should be followed by
4666 the location.
4667 PRINT_SRC_ONLY: Means we printed something, but there is no need
4668 to also print the location part of the message.
4669 An example is the catch/throw messages, which
4670 don't require a location appended to the end.
4671 PRINT_NOTHING: We have done some printing and we don't need any
4672 further info to be printed. */
4673
4674 enum print_stop_action
4675 bpstat_print (bpstat bs, int kind)
4676 {
4677 int val;
4678
4679 /* Maybe another breakpoint in the chain caused us to stop.
4680 (Currently all watchpoints go on the bpstat whether hit or not.
4681 That probably could (should) be changed, provided care is taken
4682 with respect to bpstat_explains_signal). */
4683 for (; bs; bs = bs->next)
4684 {
4685 val = print_bp_stop_message (bs);
4686 if (val == PRINT_SRC_ONLY
4687 || val == PRINT_SRC_AND_LOC
4688 || val == PRINT_NOTHING)
4689 return val;
4690 }
4691
4692 /* If we had hit a shared library event breakpoint,
4693 print_bp_stop_message would print out this message. If we hit an
4694 OS-level shared library event, do the same thing. */
4695 if (kind == TARGET_WAITKIND_LOADED)
4696 {
4697 print_solib_event (0);
4698 return PRINT_NOTHING;
4699 }
4700
4701 /* We reached the end of the chain, or we got a null BS to start
4702 with and nothing was printed. */
4703 return PRINT_UNKNOWN;
4704 }
4705
4706 /* Evaluate the expression EXP and return 1 if value is zero.
4707 This returns the inverse of the condition because it is called
4708 from catch_errors which returns 0 if an exception happened, and if an
4709 exception happens we want execution to stop.
4710 The argument is a "struct expression *" that has been cast to a
4711 "void *" to make it pass through catch_errors. */
4712
4713 static int
4714 breakpoint_cond_eval (void *exp)
4715 {
4716 struct value *mark = value_mark ();
4717 int i = !value_true (evaluate_expression ((struct expression *) exp));
4718
4719 value_free_to_mark (mark);
4720 return i;
4721 }
4722
4723 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4724
4725 static bpstat
4726 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4727 {
4728 bpstat bs;
4729
4730 bs = (bpstat) xmalloc (sizeof (*bs));
4731 bs->next = NULL;
4732 **bs_link_pointer = bs;
4733 *bs_link_pointer = &bs->next;
4734 bs->breakpoint_at = bl->owner;
4735 bs->bp_location_at = bl;
4736 incref_bp_location (bl);
4737 /* If the condition is false, etc., don't do the commands. */
4738 bs->commands = NULL;
4739 bs->old_val = NULL;
4740 bs->print_it = print_it_normal;
4741 return bs;
4742 }
4743 \f
4744 /* The target has stopped with waitstatus WS. Check if any hardware
4745 watchpoints have triggered, according to the target. */
4746
4747 int
4748 watchpoints_triggered (struct target_waitstatus *ws)
4749 {
4750 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4751 CORE_ADDR addr;
4752 struct breakpoint *b;
4753
4754 if (!stopped_by_watchpoint)
4755 {
4756 /* We were not stopped by a watchpoint. Mark all watchpoints
4757 as not triggered. */
4758 ALL_BREAKPOINTS (b)
4759 if (is_hardware_watchpoint (b))
4760 {
4761 struct watchpoint *w = (struct watchpoint *) b;
4762
4763 w->watchpoint_triggered = watch_triggered_no;
4764 }
4765
4766 return 0;
4767 }
4768
4769 if (!target_stopped_data_address (&current_target, &addr))
4770 {
4771 /* We were stopped by a watchpoint, but we don't know where.
4772 Mark all watchpoints as unknown. */
4773 ALL_BREAKPOINTS (b)
4774 if (is_hardware_watchpoint (b))
4775 {
4776 struct watchpoint *w = (struct watchpoint *) b;
4777
4778 w->watchpoint_triggered = watch_triggered_unknown;
4779 }
4780
4781 return 1;
4782 }
4783
4784 /* The target could report the data address. Mark watchpoints
4785 affected by this data address as triggered, and all others as not
4786 triggered. */
4787
4788 ALL_BREAKPOINTS (b)
4789 if (is_hardware_watchpoint (b))
4790 {
4791 struct watchpoint *w = (struct watchpoint *) b;
4792 struct bp_location *loc;
4793
4794 w->watchpoint_triggered = watch_triggered_no;
4795 for (loc = b->loc; loc; loc = loc->next)
4796 {
4797 if (is_masked_watchpoint (b))
4798 {
4799 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4800 CORE_ADDR start = loc->address & w->hw_wp_mask;
4801
4802 if (newaddr == start)
4803 {
4804 w->watchpoint_triggered = watch_triggered_yes;
4805 break;
4806 }
4807 }
4808 /* Exact match not required. Within range is sufficient. */
4809 else if (target_watchpoint_addr_within_range (&current_target,
4810 addr, loc->address,
4811 loc->length))
4812 {
4813 w->watchpoint_triggered = watch_triggered_yes;
4814 break;
4815 }
4816 }
4817 }
4818
4819 return 1;
4820 }
4821
4822 /* Possible return values for watchpoint_check (this can't be an enum
4823 because of check_errors). */
4824 /* The watchpoint has been deleted. */
4825 #define WP_DELETED 1
4826 /* The value has changed. */
4827 #define WP_VALUE_CHANGED 2
4828 /* The value has not changed. */
4829 #define WP_VALUE_NOT_CHANGED 3
4830 /* Ignore this watchpoint, no matter if the value changed or not. */
4831 #define WP_IGNORE 4
4832
4833 #define BP_TEMPFLAG 1
4834 #define BP_HARDWAREFLAG 2
4835
4836 /* Evaluate watchpoint condition expression and check if its value
4837 changed.
4838
4839 P should be a pointer to struct bpstat, but is defined as a void *
4840 in order for this function to be usable with catch_errors. */
4841
4842 static int
4843 watchpoint_check (void *p)
4844 {
4845 bpstat bs = (bpstat) p;
4846 struct watchpoint *b;
4847 struct frame_info *fr;
4848 int within_current_scope;
4849
4850 /* BS is built from an existing struct breakpoint. */
4851 gdb_assert (bs->breakpoint_at != NULL);
4852 b = (struct watchpoint *) bs->breakpoint_at;
4853
4854 /* If this is a local watchpoint, we only want to check if the
4855 watchpoint frame is in scope if the current thread is the thread
4856 that was used to create the watchpoint. */
4857 if (!watchpoint_in_thread_scope (b))
4858 return WP_IGNORE;
4859
4860 if (b->exp_valid_block == NULL)
4861 within_current_scope = 1;
4862 else
4863 {
4864 struct frame_info *frame = get_current_frame ();
4865 struct gdbarch *frame_arch = get_frame_arch (frame);
4866 CORE_ADDR frame_pc = get_frame_pc (frame);
4867
4868 /* in_function_epilogue_p() returns a non-zero value if we're
4869 still in the function but the stack frame has already been
4870 invalidated. Since we can't rely on the values of local
4871 variables after the stack has been destroyed, we are treating
4872 the watchpoint in that state as `not changed' without further
4873 checking. Don't mark watchpoints as changed if the current
4874 frame is in an epilogue - even if they are in some other
4875 frame, our view of the stack is likely to be wrong and
4876 frame_find_by_id could error out. */
4877 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4878 return WP_IGNORE;
4879
4880 fr = frame_find_by_id (b->watchpoint_frame);
4881 within_current_scope = (fr != NULL);
4882
4883 /* If we've gotten confused in the unwinder, we might have
4884 returned a frame that can't describe this variable. */
4885 if (within_current_scope)
4886 {
4887 struct symbol *function;
4888
4889 function = get_frame_function (fr);
4890 if (function == NULL
4891 || !contained_in (b->exp_valid_block,
4892 SYMBOL_BLOCK_VALUE (function)))
4893 within_current_scope = 0;
4894 }
4895
4896 if (within_current_scope)
4897 /* If we end up stopping, the current frame will get selected
4898 in normal_stop. So this call to select_frame won't affect
4899 the user. */
4900 select_frame (fr);
4901 }
4902
4903 if (within_current_scope)
4904 {
4905 /* We use value_{,free_to_}mark because it could be a *long*
4906 time before we return to the command level and call
4907 free_all_values. We can't call free_all_values because we
4908 might be in the middle of evaluating a function call. */
4909
4910 int pc = 0;
4911 struct value *mark;
4912 struct value *new_val;
4913
4914 if (is_masked_watchpoint (&b->base))
4915 /* Since we don't know the exact trigger address (from
4916 stopped_data_address), just tell the user we've triggered
4917 a mask watchpoint. */
4918 return WP_VALUE_CHANGED;
4919
4920 mark = value_mark ();
4921 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL, 0);
4922
4923 /* We use value_equal_contents instead of value_equal because
4924 the latter coerces an array to a pointer, thus comparing just
4925 the address of the array instead of its contents. This is
4926 not what we want. */
4927 if ((b->val != NULL) != (new_val != NULL)
4928 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4929 {
4930 if (new_val != NULL)
4931 {
4932 release_value (new_val);
4933 value_free_to_mark (mark);
4934 }
4935 bs->old_val = b->val;
4936 b->val = new_val;
4937 b->val_valid = 1;
4938 return WP_VALUE_CHANGED;
4939 }
4940 else
4941 {
4942 /* Nothing changed. */
4943 value_free_to_mark (mark);
4944 return WP_VALUE_NOT_CHANGED;
4945 }
4946 }
4947 else
4948 {
4949 struct ui_out *uiout = current_uiout;
4950
4951 /* This seems like the only logical thing to do because
4952 if we temporarily ignored the watchpoint, then when
4953 we reenter the block in which it is valid it contains
4954 garbage (in the case of a function, it may have two
4955 garbage values, one before and one after the prologue).
4956 So we can't even detect the first assignment to it and
4957 watch after that (since the garbage may or may not equal
4958 the first value assigned). */
4959 /* We print all the stop information in
4960 breakpoint_ops->print_it, but in this case, by the time we
4961 call breakpoint_ops->print_it this bp will be deleted
4962 already. So we have no choice but print the information
4963 here. */
4964 if (ui_out_is_mi_like_p (uiout))
4965 ui_out_field_string
4966 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4967 ui_out_text (uiout, "\nWatchpoint ");
4968 ui_out_field_int (uiout, "wpnum", b->base.number);
4969 ui_out_text (uiout,
4970 " deleted because the program has left the block in\n\
4971 which its expression is valid.\n");
4972
4973 /* Make sure the watchpoint's commands aren't executed. */
4974 decref_counted_command_line (&b->base.commands);
4975 watchpoint_del_at_next_stop (b);
4976
4977 return WP_DELETED;
4978 }
4979 }
4980
4981 /* Return true if it looks like target has stopped due to hitting
4982 breakpoint location BL. This function does not check if we should
4983 stop, only if BL explains the stop. */
4984
4985 static int
4986 bpstat_check_location (const struct bp_location *bl,
4987 struct address_space *aspace, CORE_ADDR bp_addr,
4988 const struct target_waitstatus *ws)
4989 {
4990 struct breakpoint *b = bl->owner;
4991
4992 /* BL is from an existing breakpoint. */
4993 gdb_assert (b != NULL);
4994
4995 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4996 }
4997
4998 /* Determine if the watched values have actually changed, and we
4999 should stop. If not, set BS->stop to 0. */
5000
5001 static void
5002 bpstat_check_watchpoint (bpstat bs)
5003 {
5004 const struct bp_location *bl;
5005 struct watchpoint *b;
5006
5007 /* BS is built for existing struct breakpoint. */
5008 bl = bs->bp_location_at;
5009 gdb_assert (bl != NULL);
5010 b = (struct watchpoint *) bs->breakpoint_at;
5011 gdb_assert (b != NULL);
5012
5013 {
5014 int must_check_value = 0;
5015
5016 if (b->base.type == bp_watchpoint)
5017 /* For a software watchpoint, we must always check the
5018 watched value. */
5019 must_check_value = 1;
5020 else if (b->watchpoint_triggered == watch_triggered_yes)
5021 /* We have a hardware watchpoint (read, write, or access)
5022 and the target earlier reported an address watched by
5023 this watchpoint. */
5024 must_check_value = 1;
5025 else if (b->watchpoint_triggered == watch_triggered_unknown
5026 && b->base.type == bp_hardware_watchpoint)
5027 /* We were stopped by a hardware watchpoint, but the target could
5028 not report the data address. We must check the watchpoint's
5029 value. Access and read watchpoints are out of luck; without
5030 a data address, we can't figure it out. */
5031 must_check_value = 1;
5032
5033 if (must_check_value)
5034 {
5035 char *message
5036 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
5037 b->base.number);
5038 struct cleanup *cleanups = make_cleanup (xfree, message);
5039 int e = catch_errors (watchpoint_check, bs, message,
5040 RETURN_MASK_ALL);
5041 do_cleanups (cleanups);
5042 switch (e)
5043 {
5044 case WP_DELETED:
5045 /* We've already printed what needs to be printed. */
5046 bs->print_it = print_it_done;
5047 /* Stop. */
5048 break;
5049 case WP_IGNORE:
5050 bs->print_it = print_it_noop;
5051 bs->stop = 0;
5052 break;
5053 case WP_VALUE_CHANGED:
5054 if (b->base.type == bp_read_watchpoint)
5055 {
5056 /* There are two cases to consider here:
5057
5058 1. We're watching the triggered memory for reads.
5059 In that case, trust the target, and always report
5060 the watchpoint hit to the user. Even though
5061 reads don't cause value changes, the value may
5062 have changed since the last time it was read, and
5063 since we're not trapping writes, we will not see
5064 those, and as such we should ignore our notion of
5065 old value.
5066
5067 2. We're watching the triggered memory for both
5068 reads and writes. There are two ways this may
5069 happen:
5070
5071 2.1. This is a target that can't break on data
5072 reads only, but can break on accesses (reads or
5073 writes), such as e.g., x86. We detect this case
5074 at the time we try to insert read watchpoints.
5075
5076 2.2. Otherwise, the target supports read
5077 watchpoints, but, the user set an access or write
5078 watchpoint watching the same memory as this read
5079 watchpoint.
5080
5081 If we're watching memory writes as well as reads,
5082 ignore watchpoint hits when we find that the
5083 value hasn't changed, as reads don't cause
5084 changes. This still gives false positives when
5085 the program writes the same value to memory as
5086 what there was already in memory (we will confuse
5087 it for a read), but it's much better than
5088 nothing. */
5089
5090 int other_write_watchpoint = 0;
5091
5092 if (bl->watchpoint_type == hw_read)
5093 {
5094 struct breakpoint *other_b;
5095
5096 ALL_BREAKPOINTS (other_b)
5097 if (other_b->type == bp_hardware_watchpoint
5098 || other_b->type == bp_access_watchpoint)
5099 {
5100 struct watchpoint *other_w =
5101 (struct watchpoint *) other_b;
5102
5103 if (other_w->watchpoint_triggered
5104 == watch_triggered_yes)
5105 {
5106 other_write_watchpoint = 1;
5107 break;
5108 }
5109 }
5110 }
5111
5112 if (other_write_watchpoint
5113 || bl->watchpoint_type == hw_access)
5114 {
5115 /* We're watching the same memory for writes,
5116 and the value changed since the last time we
5117 updated it, so this trap must be for a write.
5118 Ignore it. */
5119 bs->print_it = print_it_noop;
5120 bs->stop = 0;
5121 }
5122 }
5123 break;
5124 case WP_VALUE_NOT_CHANGED:
5125 if (b->base.type == bp_hardware_watchpoint
5126 || b->base.type == bp_watchpoint)
5127 {
5128 /* Don't stop: write watchpoints shouldn't fire if
5129 the value hasn't changed. */
5130 bs->print_it = print_it_noop;
5131 bs->stop = 0;
5132 }
5133 /* Stop. */
5134 break;
5135 default:
5136 /* Can't happen. */
5137 case 0:
5138 /* Error from catch_errors. */
5139 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5140 watchpoint_del_at_next_stop (b);
5141 /* We've already printed what needs to be printed. */
5142 bs->print_it = print_it_done;
5143 break;
5144 }
5145 }
5146 else /* must_check_value == 0 */
5147 {
5148 /* This is a case where some watchpoint(s) triggered, but
5149 not at the address of this watchpoint, or else no
5150 watchpoint triggered after all. So don't print
5151 anything for this watchpoint. */
5152 bs->print_it = print_it_noop;
5153 bs->stop = 0;
5154 }
5155 }
5156 }
5157
5158 /* For breakpoints that are currently marked as telling gdb to stop,
5159 check conditions (condition proper, frame, thread and ignore count)
5160 of breakpoint referred to by BS. If we should not stop for this
5161 breakpoint, set BS->stop to 0. */
5162
5163 static void
5164 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5165 {
5166 const struct bp_location *bl;
5167 struct breakpoint *b;
5168 int value_is_zero = 0;
5169 struct expression *cond;
5170
5171 gdb_assert (bs->stop);
5172
5173 /* BS is built for existing struct breakpoint. */
5174 bl = bs->bp_location_at;
5175 gdb_assert (bl != NULL);
5176 b = bs->breakpoint_at;
5177 gdb_assert (b != NULL);
5178
5179 /* Even if the target evaluated the condition on its end and notified GDB, we
5180 need to do so again since GDB does not know if we stopped due to a
5181 breakpoint or a single step breakpoint. */
5182
5183 if (frame_id_p (b->frame_id)
5184 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5185 {
5186 bs->stop = 0;
5187 return;
5188 }
5189
5190 /* If this is a thread/task-specific breakpoint, don't waste cpu
5191 evaluating the condition if this isn't the specified
5192 thread/task. */
5193 if ((b->thread != -1 && b->thread != pid_to_thread_id (ptid))
5194 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5195
5196 {
5197 bs->stop = 0;
5198 return;
5199 }
5200
5201 /* Evaluate extension language breakpoints that have a "stop" method
5202 implemented. */
5203 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5204
5205 if (is_watchpoint (b))
5206 {
5207 struct watchpoint *w = (struct watchpoint *) b;
5208
5209 cond = w->cond_exp;
5210 }
5211 else
5212 cond = bl->cond;
5213
5214 if (cond && b->disposition != disp_del_at_next_stop)
5215 {
5216 int within_current_scope = 1;
5217 struct watchpoint * w;
5218
5219 /* We use value_mark and value_free_to_mark because it could
5220 be a long time before we return to the command level and
5221 call free_all_values. We can't call free_all_values
5222 because we might be in the middle of evaluating a
5223 function call. */
5224 struct value *mark = value_mark ();
5225
5226 if (is_watchpoint (b))
5227 w = (struct watchpoint *) b;
5228 else
5229 w = NULL;
5230
5231 /* Need to select the frame, with all that implies so that
5232 the conditions will have the right context. Because we
5233 use the frame, we will not see an inlined function's
5234 variables when we arrive at a breakpoint at the start
5235 of the inlined function; the current frame will be the
5236 call site. */
5237 if (w == NULL || w->cond_exp_valid_block == NULL)
5238 select_frame (get_current_frame ());
5239 else
5240 {
5241 struct frame_info *frame;
5242
5243 /* For local watchpoint expressions, which particular
5244 instance of a local is being watched matters, so we
5245 keep track of the frame to evaluate the expression
5246 in. To evaluate the condition however, it doesn't
5247 really matter which instantiation of the function
5248 where the condition makes sense triggers the
5249 watchpoint. This allows an expression like "watch
5250 global if q > 10" set in `func', catch writes to
5251 global on all threads that call `func', or catch
5252 writes on all recursive calls of `func' by a single
5253 thread. We simply always evaluate the condition in
5254 the innermost frame that's executing where it makes
5255 sense to evaluate the condition. It seems
5256 intuitive. */
5257 frame = block_innermost_frame (w->cond_exp_valid_block);
5258 if (frame != NULL)
5259 select_frame (frame);
5260 else
5261 within_current_scope = 0;
5262 }
5263 if (within_current_scope)
5264 value_is_zero
5265 = catch_errors (breakpoint_cond_eval, cond,
5266 "Error in testing breakpoint condition:\n",
5267 RETURN_MASK_ALL);
5268 else
5269 {
5270 warning (_("Watchpoint condition cannot be tested "
5271 "in the current scope"));
5272 /* If we failed to set the right context for this
5273 watchpoint, unconditionally report it. */
5274 value_is_zero = 0;
5275 }
5276 /* FIXME-someday, should give breakpoint #. */
5277 value_free_to_mark (mark);
5278 }
5279
5280 if (cond && value_is_zero)
5281 {
5282 bs->stop = 0;
5283 }
5284 else if (b->ignore_count > 0)
5285 {
5286 b->ignore_count--;
5287 bs->stop = 0;
5288 /* Increase the hit count even though we don't stop. */
5289 ++(b->hit_count);
5290 observer_notify_breakpoint_modified (b);
5291 }
5292 }
5293
5294
5295 /* Get a bpstat associated with having just stopped at address
5296 BP_ADDR in thread PTID.
5297
5298 Determine whether we stopped at a breakpoint, etc, or whether we
5299 don't understand this stop. Result is a chain of bpstat's such
5300 that:
5301
5302 if we don't understand the stop, the result is a null pointer.
5303
5304 if we understand why we stopped, the result is not null.
5305
5306 Each element of the chain refers to a particular breakpoint or
5307 watchpoint at which we have stopped. (We may have stopped for
5308 several reasons concurrently.)
5309
5310 Each element of the chain has valid next, breakpoint_at,
5311 commands, FIXME??? fields. */
5312
5313 bpstat
5314 bpstat_stop_status (struct address_space *aspace,
5315 CORE_ADDR bp_addr, ptid_t ptid,
5316 const struct target_waitstatus *ws)
5317 {
5318 struct breakpoint *b = NULL;
5319 struct bp_location *bl;
5320 struct bp_location *loc;
5321 /* First item of allocated bpstat's. */
5322 bpstat bs_head = NULL, *bs_link = &bs_head;
5323 /* Pointer to the last thing in the chain currently. */
5324 bpstat bs;
5325 int ix;
5326 int need_remove_insert;
5327 int removed_any;
5328
5329 /* First, build the bpstat chain with locations that explain a
5330 target stop, while being careful to not set the target running,
5331 as that may invalidate locations (in particular watchpoint
5332 locations are recreated). Resuming will happen here with
5333 breakpoint conditions or watchpoint expressions that include
5334 inferior function calls. */
5335
5336 ALL_BREAKPOINTS (b)
5337 {
5338 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5339 continue;
5340
5341 for (bl = b->loc; bl != NULL; bl = bl->next)
5342 {
5343 /* For hardware watchpoints, we look only at the first
5344 location. The watchpoint_check function will work on the
5345 entire expression, not the individual locations. For
5346 read watchpoints, the watchpoints_triggered function has
5347 checked all locations already. */
5348 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5349 break;
5350
5351 if (!bl->enabled || bl->shlib_disabled)
5352 continue;
5353
5354 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5355 continue;
5356
5357 /* Come here if it's a watchpoint, or if the break address
5358 matches. */
5359
5360 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5361 explain stop. */
5362
5363 /* Assume we stop. Should we find a watchpoint that is not
5364 actually triggered, or if the condition of the breakpoint
5365 evaluates as false, we'll reset 'stop' to 0. */
5366 bs->stop = 1;
5367 bs->print = 1;
5368
5369 /* If this is a scope breakpoint, mark the associated
5370 watchpoint as triggered so that we will handle the
5371 out-of-scope event. We'll get to the watchpoint next
5372 iteration. */
5373 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5374 {
5375 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5376
5377 w->watchpoint_triggered = watch_triggered_yes;
5378 }
5379 }
5380 }
5381
5382 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5383 {
5384 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5385 {
5386 bs = bpstat_alloc (loc, &bs_link);
5387 /* For hits of moribund locations, we should just proceed. */
5388 bs->stop = 0;
5389 bs->print = 0;
5390 bs->print_it = print_it_noop;
5391 }
5392 }
5393
5394 /* A bit of special processing for shlib breakpoints. We need to
5395 process solib loading here, so that the lists of loaded and
5396 unloaded libraries are correct before we handle "catch load" and
5397 "catch unload". */
5398 for (bs = bs_head; bs != NULL; bs = bs->next)
5399 {
5400 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5401 {
5402 handle_solib_event ();
5403 break;
5404 }
5405 }
5406
5407 /* Now go through the locations that caused the target to stop, and
5408 check whether we're interested in reporting this stop to higher
5409 layers, or whether we should resume the target transparently. */
5410
5411 removed_any = 0;
5412
5413 for (bs = bs_head; bs != NULL; bs = bs->next)
5414 {
5415 if (!bs->stop)
5416 continue;
5417
5418 b = bs->breakpoint_at;
5419 b->ops->check_status (bs);
5420 if (bs->stop)
5421 {
5422 bpstat_check_breakpoint_conditions (bs, ptid);
5423
5424 if (bs->stop)
5425 {
5426 ++(b->hit_count);
5427 observer_notify_breakpoint_modified (b);
5428
5429 /* We will stop here. */
5430 if (b->disposition == disp_disable)
5431 {
5432 --(b->enable_count);
5433 if (b->enable_count <= 0
5434 && b->enable_state != bp_permanent)
5435 b->enable_state = bp_disabled;
5436 removed_any = 1;
5437 }
5438 if (b->silent)
5439 bs->print = 0;
5440 bs->commands = b->commands;
5441 incref_counted_command_line (bs->commands);
5442 if (command_line_is_silent (bs->commands
5443 ? bs->commands->commands : NULL))
5444 bs->print = 0;
5445
5446 b->ops->after_condition_true (bs);
5447 }
5448
5449 }
5450
5451 /* Print nothing for this entry if we don't stop or don't
5452 print. */
5453 if (!bs->stop || !bs->print)
5454 bs->print_it = print_it_noop;
5455 }
5456
5457 /* If we aren't stopping, the value of some hardware watchpoint may
5458 not have changed, but the intermediate memory locations we are
5459 watching may have. Don't bother if we're stopping; this will get
5460 done later. */
5461 need_remove_insert = 0;
5462 if (! bpstat_causes_stop (bs_head))
5463 for (bs = bs_head; bs != NULL; bs = bs->next)
5464 if (!bs->stop
5465 && bs->breakpoint_at
5466 && is_hardware_watchpoint (bs->breakpoint_at))
5467 {
5468 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5469
5470 update_watchpoint (w, 0 /* don't reparse. */);
5471 need_remove_insert = 1;
5472 }
5473
5474 if (need_remove_insert)
5475 update_global_location_list (1);
5476 else if (removed_any)
5477 update_global_location_list (0);
5478
5479 return bs_head;
5480 }
5481
5482 static void
5483 handle_jit_event (void)
5484 {
5485 struct frame_info *frame;
5486 struct gdbarch *gdbarch;
5487
5488 /* Switch terminal for any messages produced by
5489 breakpoint_re_set. */
5490 target_terminal_ours_for_output ();
5491
5492 frame = get_current_frame ();
5493 gdbarch = get_frame_arch (frame);
5494
5495 jit_event_handler (gdbarch);
5496
5497 target_terminal_inferior ();
5498 }
5499
5500 /* Prepare WHAT final decision for infrun. */
5501
5502 /* Decide what infrun needs to do with this bpstat. */
5503
5504 struct bpstat_what
5505 bpstat_what (bpstat bs_head)
5506 {
5507 struct bpstat_what retval;
5508 int jit_event = 0;
5509 bpstat bs;
5510
5511 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5512 retval.call_dummy = STOP_NONE;
5513 retval.is_longjmp = 0;
5514
5515 for (bs = bs_head; bs != NULL; bs = bs->next)
5516 {
5517 /* Extract this BS's action. After processing each BS, we check
5518 if its action overrides all we've seem so far. */
5519 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5520 enum bptype bptype;
5521
5522 if (bs->breakpoint_at == NULL)
5523 {
5524 /* I suspect this can happen if it was a momentary
5525 breakpoint which has since been deleted. */
5526 bptype = bp_none;
5527 }
5528 else
5529 bptype = bs->breakpoint_at->type;
5530
5531 switch (bptype)
5532 {
5533 case bp_none:
5534 break;
5535 case bp_breakpoint:
5536 case bp_hardware_breakpoint:
5537 case bp_until:
5538 case bp_finish:
5539 case bp_shlib_event:
5540 if (bs->stop)
5541 {
5542 if (bs->print)
5543 this_action = BPSTAT_WHAT_STOP_NOISY;
5544 else
5545 this_action = BPSTAT_WHAT_STOP_SILENT;
5546 }
5547 else
5548 this_action = BPSTAT_WHAT_SINGLE;
5549 break;
5550 case bp_watchpoint:
5551 case bp_hardware_watchpoint:
5552 case bp_read_watchpoint:
5553 case bp_access_watchpoint:
5554 if (bs->stop)
5555 {
5556 if (bs->print)
5557 this_action = BPSTAT_WHAT_STOP_NOISY;
5558 else
5559 this_action = BPSTAT_WHAT_STOP_SILENT;
5560 }
5561 else
5562 {
5563 /* There was a watchpoint, but we're not stopping.
5564 This requires no further action. */
5565 }
5566 break;
5567 case bp_longjmp:
5568 case bp_longjmp_call_dummy:
5569 case bp_exception:
5570 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5571 retval.is_longjmp = bptype != bp_exception;
5572 break;
5573 case bp_longjmp_resume:
5574 case bp_exception_resume:
5575 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5576 retval.is_longjmp = bptype == bp_longjmp_resume;
5577 break;
5578 case bp_step_resume:
5579 if (bs->stop)
5580 this_action = BPSTAT_WHAT_STEP_RESUME;
5581 else
5582 {
5583 /* It is for the wrong frame. */
5584 this_action = BPSTAT_WHAT_SINGLE;
5585 }
5586 break;
5587 case bp_hp_step_resume:
5588 if (bs->stop)
5589 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5590 else
5591 {
5592 /* It is for the wrong frame. */
5593 this_action = BPSTAT_WHAT_SINGLE;
5594 }
5595 break;
5596 case bp_watchpoint_scope:
5597 case bp_thread_event:
5598 case bp_overlay_event:
5599 case bp_longjmp_master:
5600 case bp_std_terminate_master:
5601 case bp_exception_master:
5602 this_action = BPSTAT_WHAT_SINGLE;
5603 break;
5604 case bp_catchpoint:
5605 if (bs->stop)
5606 {
5607 if (bs->print)
5608 this_action = BPSTAT_WHAT_STOP_NOISY;
5609 else
5610 this_action = BPSTAT_WHAT_STOP_SILENT;
5611 }
5612 else
5613 {
5614 /* There was a catchpoint, but we're not stopping.
5615 This requires no further action. */
5616 }
5617 break;
5618 case bp_jit_event:
5619 jit_event = 1;
5620 this_action = BPSTAT_WHAT_SINGLE;
5621 break;
5622 case bp_call_dummy:
5623 /* Make sure the action is stop (silent or noisy),
5624 so infrun.c pops the dummy frame. */
5625 retval.call_dummy = STOP_STACK_DUMMY;
5626 this_action = BPSTAT_WHAT_STOP_SILENT;
5627 break;
5628 case bp_std_terminate:
5629 /* Make sure the action is stop (silent or noisy),
5630 so infrun.c pops the dummy frame. */
5631 retval.call_dummy = STOP_STD_TERMINATE;
5632 this_action = BPSTAT_WHAT_STOP_SILENT;
5633 break;
5634 case bp_tracepoint:
5635 case bp_fast_tracepoint:
5636 case bp_static_tracepoint:
5637 /* Tracepoint hits should not be reported back to GDB, and
5638 if one got through somehow, it should have been filtered
5639 out already. */
5640 internal_error (__FILE__, __LINE__,
5641 _("bpstat_what: tracepoint encountered"));
5642 break;
5643 case bp_gnu_ifunc_resolver:
5644 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5645 this_action = BPSTAT_WHAT_SINGLE;
5646 break;
5647 case bp_gnu_ifunc_resolver_return:
5648 /* The breakpoint will be removed, execution will restart from the
5649 PC of the former breakpoint. */
5650 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5651 break;
5652
5653 case bp_dprintf:
5654 if (bs->stop)
5655 this_action = BPSTAT_WHAT_STOP_SILENT;
5656 else
5657 this_action = BPSTAT_WHAT_SINGLE;
5658 break;
5659
5660 default:
5661 internal_error (__FILE__, __LINE__,
5662 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5663 }
5664
5665 retval.main_action = max (retval.main_action, this_action);
5666 }
5667
5668 /* These operations may affect the bs->breakpoint_at state so they are
5669 delayed after MAIN_ACTION is decided above. */
5670
5671 if (jit_event)
5672 {
5673 if (debug_infrun)
5674 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5675
5676 handle_jit_event ();
5677 }
5678
5679 for (bs = bs_head; bs != NULL; bs = bs->next)
5680 {
5681 struct breakpoint *b = bs->breakpoint_at;
5682
5683 if (b == NULL)
5684 continue;
5685 switch (b->type)
5686 {
5687 case bp_gnu_ifunc_resolver:
5688 gnu_ifunc_resolver_stop (b);
5689 break;
5690 case bp_gnu_ifunc_resolver_return:
5691 gnu_ifunc_resolver_return_stop (b);
5692 break;
5693 }
5694 }
5695
5696 return retval;
5697 }
5698
5699 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5700 without hardware support). This isn't related to a specific bpstat,
5701 just to things like whether watchpoints are set. */
5702
5703 int
5704 bpstat_should_step (void)
5705 {
5706 struct breakpoint *b;
5707
5708 ALL_BREAKPOINTS (b)
5709 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5710 return 1;
5711 return 0;
5712 }
5713
5714 int
5715 bpstat_causes_stop (bpstat bs)
5716 {
5717 for (; bs != NULL; bs = bs->next)
5718 if (bs->stop)
5719 return 1;
5720
5721 return 0;
5722 }
5723
5724 \f
5725
5726 /* Compute a string of spaces suitable to indent the next line
5727 so it starts at the position corresponding to the table column
5728 named COL_NAME in the currently active table of UIOUT. */
5729
5730 static char *
5731 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5732 {
5733 static char wrap_indent[80];
5734 int i, total_width, width, align;
5735 char *text;
5736
5737 total_width = 0;
5738 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5739 {
5740 if (strcmp (text, col_name) == 0)
5741 {
5742 gdb_assert (total_width < sizeof wrap_indent);
5743 memset (wrap_indent, ' ', total_width);
5744 wrap_indent[total_width] = 0;
5745
5746 return wrap_indent;
5747 }
5748
5749 total_width += width + 1;
5750 }
5751
5752 return NULL;
5753 }
5754
5755 /* Determine if the locations of this breakpoint will have their conditions
5756 evaluated by the target, host or a mix of both. Returns the following:
5757
5758 "host": Host evals condition.
5759 "host or target": Host or Target evals condition.
5760 "target": Target evals condition.
5761 */
5762
5763 static const char *
5764 bp_condition_evaluator (struct breakpoint *b)
5765 {
5766 struct bp_location *bl;
5767 char host_evals = 0;
5768 char target_evals = 0;
5769
5770 if (!b)
5771 return NULL;
5772
5773 if (!is_breakpoint (b))
5774 return NULL;
5775
5776 if (gdb_evaluates_breakpoint_condition_p ()
5777 || !target_supports_evaluation_of_breakpoint_conditions ())
5778 return condition_evaluation_host;
5779
5780 for (bl = b->loc; bl; bl = bl->next)
5781 {
5782 if (bl->cond_bytecode)
5783 target_evals++;
5784 else
5785 host_evals++;
5786 }
5787
5788 if (host_evals && target_evals)
5789 return condition_evaluation_both;
5790 else if (target_evals)
5791 return condition_evaluation_target;
5792 else
5793 return condition_evaluation_host;
5794 }
5795
5796 /* Determine the breakpoint location's condition evaluator. This is
5797 similar to bp_condition_evaluator, but for locations. */
5798
5799 static const char *
5800 bp_location_condition_evaluator (struct bp_location *bl)
5801 {
5802 if (bl && !is_breakpoint (bl->owner))
5803 return NULL;
5804
5805 if (gdb_evaluates_breakpoint_condition_p ()
5806 || !target_supports_evaluation_of_breakpoint_conditions ())
5807 return condition_evaluation_host;
5808
5809 if (bl && bl->cond_bytecode)
5810 return condition_evaluation_target;
5811 else
5812 return condition_evaluation_host;
5813 }
5814
5815 /* Print the LOC location out of the list of B->LOC locations. */
5816
5817 static void
5818 print_breakpoint_location (struct breakpoint *b,
5819 struct bp_location *loc)
5820 {
5821 struct ui_out *uiout = current_uiout;
5822 struct cleanup *old_chain = save_current_program_space ();
5823
5824 if (loc != NULL && loc->shlib_disabled)
5825 loc = NULL;
5826
5827 if (loc != NULL)
5828 set_current_program_space (loc->pspace);
5829
5830 if (b->display_canonical)
5831 ui_out_field_string (uiout, "what", b->addr_string);
5832 else if (loc && loc->symtab)
5833 {
5834 struct symbol *sym
5835 = find_pc_sect_function (loc->address, loc->section);
5836 if (sym)
5837 {
5838 ui_out_text (uiout, "in ");
5839 ui_out_field_string (uiout, "func",
5840 SYMBOL_PRINT_NAME (sym));
5841 ui_out_text (uiout, " ");
5842 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5843 ui_out_text (uiout, "at ");
5844 }
5845 ui_out_field_string (uiout, "file",
5846 symtab_to_filename_for_display (loc->symtab));
5847 ui_out_text (uiout, ":");
5848
5849 if (ui_out_is_mi_like_p (uiout))
5850 ui_out_field_string (uiout, "fullname",
5851 symtab_to_fullname (loc->symtab));
5852
5853 ui_out_field_int (uiout, "line", loc->line_number);
5854 }
5855 else if (loc)
5856 {
5857 struct ui_file *stb = mem_fileopen ();
5858 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5859
5860 print_address_symbolic (loc->gdbarch, loc->address, stb,
5861 demangle, "");
5862 ui_out_field_stream (uiout, "at", stb);
5863
5864 do_cleanups (stb_chain);
5865 }
5866 else
5867 ui_out_field_string (uiout, "pending", b->addr_string);
5868
5869 if (loc && is_breakpoint (b)
5870 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5871 && bp_condition_evaluator (b) == condition_evaluation_both)
5872 {
5873 ui_out_text (uiout, " (");
5874 ui_out_field_string (uiout, "evaluated-by",
5875 bp_location_condition_evaluator (loc));
5876 ui_out_text (uiout, ")");
5877 }
5878
5879 do_cleanups (old_chain);
5880 }
5881
5882 static const char *
5883 bptype_string (enum bptype type)
5884 {
5885 struct ep_type_description
5886 {
5887 enum bptype type;
5888 char *description;
5889 };
5890 static struct ep_type_description bptypes[] =
5891 {
5892 {bp_none, "?deleted?"},
5893 {bp_breakpoint, "breakpoint"},
5894 {bp_hardware_breakpoint, "hw breakpoint"},
5895 {bp_until, "until"},
5896 {bp_finish, "finish"},
5897 {bp_watchpoint, "watchpoint"},
5898 {bp_hardware_watchpoint, "hw watchpoint"},
5899 {bp_read_watchpoint, "read watchpoint"},
5900 {bp_access_watchpoint, "acc watchpoint"},
5901 {bp_longjmp, "longjmp"},
5902 {bp_longjmp_resume, "longjmp resume"},
5903 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5904 {bp_exception, "exception"},
5905 {bp_exception_resume, "exception resume"},
5906 {bp_step_resume, "step resume"},
5907 {bp_hp_step_resume, "high-priority step resume"},
5908 {bp_watchpoint_scope, "watchpoint scope"},
5909 {bp_call_dummy, "call dummy"},
5910 {bp_std_terminate, "std::terminate"},
5911 {bp_shlib_event, "shlib events"},
5912 {bp_thread_event, "thread events"},
5913 {bp_overlay_event, "overlay events"},
5914 {bp_longjmp_master, "longjmp master"},
5915 {bp_std_terminate_master, "std::terminate master"},
5916 {bp_exception_master, "exception master"},
5917 {bp_catchpoint, "catchpoint"},
5918 {bp_tracepoint, "tracepoint"},
5919 {bp_fast_tracepoint, "fast tracepoint"},
5920 {bp_static_tracepoint, "static tracepoint"},
5921 {bp_dprintf, "dprintf"},
5922 {bp_jit_event, "jit events"},
5923 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5924 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5925 };
5926
5927 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5928 || ((int) type != bptypes[(int) type].type))
5929 internal_error (__FILE__, __LINE__,
5930 _("bptypes table does not describe type #%d."),
5931 (int) type);
5932
5933 return bptypes[(int) type].description;
5934 }
5935
5936 /* For MI, output a field named 'thread-groups' with a list as the value.
5937 For CLI, prefix the list with the string 'inf'. */
5938
5939 static void
5940 output_thread_groups (struct ui_out *uiout,
5941 const char *field_name,
5942 VEC(int) *inf_num,
5943 int mi_only)
5944 {
5945 struct cleanup *back_to;
5946 int is_mi = ui_out_is_mi_like_p (uiout);
5947 int inf;
5948 int i;
5949
5950 /* For backward compatibility, don't display inferiors in CLI unless
5951 there are several. Always display them for MI. */
5952 if (!is_mi && mi_only)
5953 return;
5954
5955 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5956
5957 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5958 {
5959 if (is_mi)
5960 {
5961 char mi_group[10];
5962
5963 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5964 ui_out_field_string (uiout, NULL, mi_group);
5965 }
5966 else
5967 {
5968 if (i == 0)
5969 ui_out_text (uiout, " inf ");
5970 else
5971 ui_out_text (uiout, ", ");
5972
5973 ui_out_text (uiout, plongest (inf));
5974 }
5975 }
5976
5977 do_cleanups (back_to);
5978 }
5979
5980 /* Print B to gdb_stdout. */
5981
5982 static void
5983 print_one_breakpoint_location (struct breakpoint *b,
5984 struct bp_location *loc,
5985 int loc_number,
5986 struct bp_location **last_loc,
5987 int allflag)
5988 {
5989 struct command_line *l;
5990 static char bpenables[] = "nynny";
5991
5992 struct ui_out *uiout = current_uiout;
5993 int header_of_multiple = 0;
5994 int part_of_multiple = (loc != NULL);
5995 struct value_print_options opts;
5996
5997 get_user_print_options (&opts);
5998
5999 gdb_assert (!loc || loc_number != 0);
6000 /* See comment in print_one_breakpoint concerning treatment of
6001 breakpoints with single disabled location. */
6002 if (loc == NULL
6003 && (b->loc != NULL
6004 && (b->loc->next != NULL || !b->loc->enabled)))
6005 header_of_multiple = 1;
6006 if (loc == NULL)
6007 loc = b->loc;
6008
6009 annotate_record ();
6010
6011 /* 1 */
6012 annotate_field (0);
6013 if (part_of_multiple)
6014 {
6015 char *formatted;
6016 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6017 ui_out_field_string (uiout, "number", formatted);
6018 xfree (formatted);
6019 }
6020 else
6021 {
6022 ui_out_field_int (uiout, "number", b->number);
6023 }
6024
6025 /* 2 */
6026 annotate_field (1);
6027 if (part_of_multiple)
6028 ui_out_field_skip (uiout, "type");
6029 else
6030 ui_out_field_string (uiout, "type", bptype_string (b->type));
6031
6032 /* 3 */
6033 annotate_field (2);
6034 if (part_of_multiple)
6035 ui_out_field_skip (uiout, "disp");
6036 else
6037 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
6038
6039
6040 /* 4 */
6041 annotate_field (3);
6042 if (part_of_multiple)
6043 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
6044 else
6045 ui_out_field_fmt (uiout, "enabled", "%c",
6046 bpenables[(int) b->enable_state]);
6047 ui_out_spaces (uiout, 2);
6048
6049
6050 /* 5 and 6 */
6051 if (b->ops != NULL && b->ops->print_one != NULL)
6052 {
6053 /* Although the print_one can possibly print all locations,
6054 calling it here is not likely to get any nice result. So,
6055 make sure there's just one location. */
6056 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6057 b->ops->print_one (b, last_loc);
6058 }
6059 else
6060 switch (b->type)
6061 {
6062 case bp_none:
6063 internal_error (__FILE__, __LINE__,
6064 _("print_one_breakpoint: bp_none encountered\n"));
6065 break;
6066
6067 case bp_watchpoint:
6068 case bp_hardware_watchpoint:
6069 case bp_read_watchpoint:
6070 case bp_access_watchpoint:
6071 {
6072 struct watchpoint *w = (struct watchpoint *) b;
6073
6074 /* Field 4, the address, is omitted (which makes the columns
6075 not line up too nicely with the headers, but the effect
6076 is relatively readable). */
6077 if (opts.addressprint)
6078 ui_out_field_skip (uiout, "addr");
6079 annotate_field (5);
6080 ui_out_field_string (uiout, "what", w->exp_string);
6081 }
6082 break;
6083
6084 case bp_breakpoint:
6085 case bp_hardware_breakpoint:
6086 case bp_until:
6087 case bp_finish:
6088 case bp_longjmp:
6089 case bp_longjmp_resume:
6090 case bp_longjmp_call_dummy:
6091 case bp_exception:
6092 case bp_exception_resume:
6093 case bp_step_resume:
6094 case bp_hp_step_resume:
6095 case bp_watchpoint_scope:
6096 case bp_call_dummy:
6097 case bp_std_terminate:
6098 case bp_shlib_event:
6099 case bp_thread_event:
6100 case bp_overlay_event:
6101 case bp_longjmp_master:
6102 case bp_std_terminate_master:
6103 case bp_exception_master:
6104 case bp_tracepoint:
6105 case bp_fast_tracepoint:
6106 case bp_static_tracepoint:
6107 case bp_dprintf:
6108 case bp_jit_event:
6109 case bp_gnu_ifunc_resolver:
6110 case bp_gnu_ifunc_resolver_return:
6111 if (opts.addressprint)
6112 {
6113 annotate_field (4);
6114 if (header_of_multiple)
6115 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
6116 else if (b->loc == NULL || loc->shlib_disabled)
6117 ui_out_field_string (uiout, "addr", "<PENDING>");
6118 else
6119 ui_out_field_core_addr (uiout, "addr",
6120 loc->gdbarch, loc->address);
6121 }
6122 annotate_field (5);
6123 if (!header_of_multiple)
6124 print_breakpoint_location (b, loc);
6125 if (b->loc)
6126 *last_loc = b->loc;
6127 break;
6128 }
6129
6130
6131 if (loc != NULL && !header_of_multiple)
6132 {
6133 struct inferior *inf;
6134 VEC(int) *inf_num = NULL;
6135 int mi_only = 1;
6136
6137 ALL_INFERIORS (inf)
6138 {
6139 if (inf->pspace == loc->pspace)
6140 VEC_safe_push (int, inf_num, inf->num);
6141 }
6142
6143 /* For backward compatibility, don't display inferiors in CLI unless
6144 there are several. Always display for MI. */
6145 if (allflag
6146 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6147 && (number_of_program_spaces () > 1
6148 || number_of_inferiors () > 1)
6149 /* LOC is for existing B, it cannot be in
6150 moribund_locations and thus having NULL OWNER. */
6151 && loc->owner->type != bp_catchpoint))
6152 mi_only = 0;
6153 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6154 VEC_free (int, inf_num);
6155 }
6156
6157 if (!part_of_multiple)
6158 {
6159 if (b->thread != -1)
6160 {
6161 /* FIXME: This seems to be redundant and lost here; see the
6162 "stop only in" line a little further down. */
6163 ui_out_text (uiout, " thread ");
6164 ui_out_field_int (uiout, "thread", b->thread);
6165 }
6166 else if (b->task != 0)
6167 {
6168 ui_out_text (uiout, " task ");
6169 ui_out_field_int (uiout, "task", b->task);
6170 }
6171 }
6172
6173 ui_out_text (uiout, "\n");
6174
6175 if (!part_of_multiple)
6176 b->ops->print_one_detail (b, uiout);
6177
6178 if (part_of_multiple && frame_id_p (b->frame_id))
6179 {
6180 annotate_field (6);
6181 ui_out_text (uiout, "\tstop only in stack frame at ");
6182 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6183 the frame ID. */
6184 ui_out_field_core_addr (uiout, "frame",
6185 b->gdbarch, b->frame_id.stack_addr);
6186 ui_out_text (uiout, "\n");
6187 }
6188
6189 if (!part_of_multiple && b->cond_string)
6190 {
6191 annotate_field (7);
6192 if (is_tracepoint (b))
6193 ui_out_text (uiout, "\ttrace only if ");
6194 else
6195 ui_out_text (uiout, "\tstop only if ");
6196 ui_out_field_string (uiout, "cond", b->cond_string);
6197
6198 /* Print whether the target is doing the breakpoint's condition
6199 evaluation. If GDB is doing the evaluation, don't print anything. */
6200 if (is_breakpoint (b)
6201 && breakpoint_condition_evaluation_mode ()
6202 == condition_evaluation_target)
6203 {
6204 ui_out_text (uiout, " (");
6205 ui_out_field_string (uiout, "evaluated-by",
6206 bp_condition_evaluator (b));
6207 ui_out_text (uiout, " evals)");
6208 }
6209 ui_out_text (uiout, "\n");
6210 }
6211
6212 if (!part_of_multiple && b->thread != -1)
6213 {
6214 /* FIXME should make an annotation for this. */
6215 ui_out_text (uiout, "\tstop only in thread ");
6216 ui_out_field_int (uiout, "thread", b->thread);
6217 ui_out_text (uiout, "\n");
6218 }
6219
6220 if (!part_of_multiple)
6221 {
6222 if (b->hit_count)
6223 {
6224 /* FIXME should make an annotation for this. */
6225 if (is_catchpoint (b))
6226 ui_out_text (uiout, "\tcatchpoint");
6227 else if (is_tracepoint (b))
6228 ui_out_text (uiout, "\ttracepoint");
6229 else
6230 ui_out_text (uiout, "\tbreakpoint");
6231 ui_out_text (uiout, " already hit ");
6232 ui_out_field_int (uiout, "times", b->hit_count);
6233 if (b->hit_count == 1)
6234 ui_out_text (uiout, " time\n");
6235 else
6236 ui_out_text (uiout, " times\n");
6237 }
6238 else
6239 {
6240 /* Output the count also if it is zero, but only if this is mi. */
6241 if (ui_out_is_mi_like_p (uiout))
6242 ui_out_field_int (uiout, "times", b->hit_count);
6243 }
6244 }
6245
6246 if (!part_of_multiple && b->ignore_count)
6247 {
6248 annotate_field (8);
6249 ui_out_text (uiout, "\tignore next ");
6250 ui_out_field_int (uiout, "ignore", b->ignore_count);
6251 ui_out_text (uiout, " hits\n");
6252 }
6253
6254 /* Note that an enable count of 1 corresponds to "enable once"
6255 behavior, which is reported by the combination of enablement and
6256 disposition, so we don't need to mention it here. */
6257 if (!part_of_multiple && b->enable_count > 1)
6258 {
6259 annotate_field (8);
6260 ui_out_text (uiout, "\tdisable after ");
6261 /* Tweak the wording to clarify that ignore and enable counts
6262 are distinct, and have additive effect. */
6263 if (b->ignore_count)
6264 ui_out_text (uiout, "additional ");
6265 else
6266 ui_out_text (uiout, "next ");
6267 ui_out_field_int (uiout, "enable", b->enable_count);
6268 ui_out_text (uiout, " hits\n");
6269 }
6270
6271 if (!part_of_multiple && is_tracepoint (b))
6272 {
6273 struct tracepoint *tp = (struct tracepoint *) b;
6274
6275 if (tp->traceframe_usage)
6276 {
6277 ui_out_text (uiout, "\ttrace buffer usage ");
6278 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6279 ui_out_text (uiout, " bytes\n");
6280 }
6281 }
6282
6283 l = b->commands ? b->commands->commands : NULL;
6284 if (!part_of_multiple && l)
6285 {
6286 struct cleanup *script_chain;
6287
6288 annotate_field (9);
6289 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6290 print_command_lines (uiout, l, 4);
6291 do_cleanups (script_chain);
6292 }
6293
6294 if (is_tracepoint (b))
6295 {
6296 struct tracepoint *t = (struct tracepoint *) b;
6297
6298 if (!part_of_multiple && t->pass_count)
6299 {
6300 annotate_field (10);
6301 ui_out_text (uiout, "\tpass count ");
6302 ui_out_field_int (uiout, "pass", t->pass_count);
6303 ui_out_text (uiout, " \n");
6304 }
6305
6306 /* Don't display it when tracepoint or tracepoint location is
6307 pending. */
6308 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6309 {
6310 annotate_field (11);
6311
6312 if (ui_out_is_mi_like_p (uiout))
6313 ui_out_field_string (uiout, "installed",
6314 loc->inserted ? "y" : "n");
6315 else
6316 {
6317 if (loc->inserted)
6318 ui_out_text (uiout, "\t");
6319 else
6320 ui_out_text (uiout, "\tnot ");
6321 ui_out_text (uiout, "installed on target\n");
6322 }
6323 }
6324 }
6325
6326 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6327 {
6328 if (is_watchpoint (b))
6329 {
6330 struct watchpoint *w = (struct watchpoint *) b;
6331
6332 ui_out_field_string (uiout, "original-location", w->exp_string);
6333 }
6334 else if (b->addr_string)
6335 ui_out_field_string (uiout, "original-location", b->addr_string);
6336 }
6337 }
6338
6339 static void
6340 print_one_breakpoint (struct breakpoint *b,
6341 struct bp_location **last_loc,
6342 int allflag)
6343 {
6344 struct cleanup *bkpt_chain;
6345 struct ui_out *uiout = current_uiout;
6346
6347 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6348
6349 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6350 do_cleanups (bkpt_chain);
6351
6352 /* If this breakpoint has custom print function,
6353 it's already printed. Otherwise, print individual
6354 locations, if any. */
6355 if (b->ops == NULL || b->ops->print_one == NULL)
6356 {
6357 /* If breakpoint has a single location that is disabled, we
6358 print it as if it had several locations, since otherwise it's
6359 hard to represent "breakpoint enabled, location disabled"
6360 situation.
6361
6362 Note that while hardware watchpoints have several locations
6363 internally, that's not a property exposed to user. */
6364 if (b->loc
6365 && !is_hardware_watchpoint (b)
6366 && (b->loc->next || !b->loc->enabled))
6367 {
6368 struct bp_location *loc;
6369 int n = 1;
6370
6371 for (loc = b->loc; loc; loc = loc->next, ++n)
6372 {
6373 struct cleanup *inner2 =
6374 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6375 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6376 do_cleanups (inner2);
6377 }
6378 }
6379 }
6380 }
6381
6382 static int
6383 breakpoint_address_bits (struct breakpoint *b)
6384 {
6385 int print_address_bits = 0;
6386 struct bp_location *loc;
6387
6388 for (loc = b->loc; loc; loc = loc->next)
6389 {
6390 int addr_bit;
6391
6392 /* Software watchpoints that aren't watching memory don't have
6393 an address to print. */
6394 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6395 continue;
6396
6397 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6398 if (addr_bit > print_address_bits)
6399 print_address_bits = addr_bit;
6400 }
6401
6402 return print_address_bits;
6403 }
6404
6405 struct captured_breakpoint_query_args
6406 {
6407 int bnum;
6408 };
6409
6410 static int
6411 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6412 {
6413 struct captured_breakpoint_query_args *args = data;
6414 struct breakpoint *b;
6415 struct bp_location *dummy_loc = NULL;
6416
6417 ALL_BREAKPOINTS (b)
6418 {
6419 if (args->bnum == b->number)
6420 {
6421 print_one_breakpoint (b, &dummy_loc, 0);
6422 return GDB_RC_OK;
6423 }
6424 }
6425 return GDB_RC_NONE;
6426 }
6427
6428 enum gdb_rc
6429 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6430 char **error_message)
6431 {
6432 struct captured_breakpoint_query_args args;
6433
6434 args.bnum = bnum;
6435 /* For the moment we don't trust print_one_breakpoint() to not throw
6436 an error. */
6437 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6438 error_message, RETURN_MASK_ALL) < 0)
6439 return GDB_RC_FAIL;
6440 else
6441 return GDB_RC_OK;
6442 }
6443
6444 /* Return true if this breakpoint was set by the user, false if it is
6445 internal or momentary. */
6446
6447 int
6448 user_breakpoint_p (struct breakpoint *b)
6449 {
6450 return b->number > 0;
6451 }
6452
6453 /* Print information on user settable breakpoint (watchpoint, etc)
6454 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6455 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6456 FILTER is non-NULL, call it on each breakpoint and only include the
6457 ones for which it returns non-zero. Return the total number of
6458 breakpoints listed. */
6459
6460 static int
6461 breakpoint_1 (char *args, int allflag,
6462 int (*filter) (const struct breakpoint *))
6463 {
6464 struct breakpoint *b;
6465 struct bp_location *last_loc = NULL;
6466 int nr_printable_breakpoints;
6467 struct cleanup *bkpttbl_chain;
6468 struct value_print_options opts;
6469 int print_address_bits = 0;
6470 int print_type_col_width = 14;
6471 struct ui_out *uiout = current_uiout;
6472
6473 get_user_print_options (&opts);
6474
6475 /* Compute the number of rows in the table, as well as the size
6476 required for address fields. */
6477 nr_printable_breakpoints = 0;
6478 ALL_BREAKPOINTS (b)
6479 {
6480 /* If we have a filter, only list the breakpoints it accepts. */
6481 if (filter && !filter (b))
6482 continue;
6483
6484 /* If we have an "args" string, it is a list of breakpoints to
6485 accept. Skip the others. */
6486 if (args != NULL && *args != '\0')
6487 {
6488 if (allflag && parse_and_eval_long (args) != b->number)
6489 continue;
6490 if (!allflag && !number_is_in_list (args, b->number))
6491 continue;
6492 }
6493
6494 if (allflag || user_breakpoint_p (b))
6495 {
6496 int addr_bit, type_len;
6497
6498 addr_bit = breakpoint_address_bits (b);
6499 if (addr_bit > print_address_bits)
6500 print_address_bits = addr_bit;
6501
6502 type_len = strlen (bptype_string (b->type));
6503 if (type_len > print_type_col_width)
6504 print_type_col_width = type_len;
6505
6506 nr_printable_breakpoints++;
6507 }
6508 }
6509
6510 if (opts.addressprint)
6511 bkpttbl_chain
6512 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6513 nr_printable_breakpoints,
6514 "BreakpointTable");
6515 else
6516 bkpttbl_chain
6517 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6518 nr_printable_breakpoints,
6519 "BreakpointTable");
6520
6521 if (nr_printable_breakpoints > 0)
6522 annotate_breakpoints_headers ();
6523 if (nr_printable_breakpoints > 0)
6524 annotate_field (0);
6525 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6526 if (nr_printable_breakpoints > 0)
6527 annotate_field (1);
6528 ui_out_table_header (uiout, print_type_col_width, ui_left,
6529 "type", "Type"); /* 2 */
6530 if (nr_printable_breakpoints > 0)
6531 annotate_field (2);
6532 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6533 if (nr_printable_breakpoints > 0)
6534 annotate_field (3);
6535 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6536 if (opts.addressprint)
6537 {
6538 if (nr_printable_breakpoints > 0)
6539 annotate_field (4);
6540 if (print_address_bits <= 32)
6541 ui_out_table_header (uiout, 10, ui_left,
6542 "addr", "Address"); /* 5 */
6543 else
6544 ui_out_table_header (uiout, 18, ui_left,
6545 "addr", "Address"); /* 5 */
6546 }
6547 if (nr_printable_breakpoints > 0)
6548 annotate_field (5);
6549 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6550 ui_out_table_body (uiout);
6551 if (nr_printable_breakpoints > 0)
6552 annotate_breakpoints_table ();
6553
6554 ALL_BREAKPOINTS (b)
6555 {
6556 QUIT;
6557 /* If we have a filter, only list the breakpoints it accepts. */
6558 if (filter && !filter (b))
6559 continue;
6560
6561 /* If we have an "args" string, it is a list of breakpoints to
6562 accept. Skip the others. */
6563
6564 if (args != NULL && *args != '\0')
6565 {
6566 if (allflag) /* maintenance info breakpoint */
6567 {
6568 if (parse_and_eval_long (args) != b->number)
6569 continue;
6570 }
6571 else /* all others */
6572 {
6573 if (!number_is_in_list (args, b->number))
6574 continue;
6575 }
6576 }
6577 /* We only print out user settable breakpoints unless the
6578 allflag is set. */
6579 if (allflag || user_breakpoint_p (b))
6580 print_one_breakpoint (b, &last_loc, allflag);
6581 }
6582
6583 do_cleanups (bkpttbl_chain);
6584
6585 if (nr_printable_breakpoints == 0)
6586 {
6587 /* If there's a filter, let the caller decide how to report
6588 empty list. */
6589 if (!filter)
6590 {
6591 if (args == NULL || *args == '\0')
6592 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6593 else
6594 ui_out_message (uiout, 0,
6595 "No breakpoint or watchpoint matching '%s'.\n",
6596 args);
6597 }
6598 }
6599 else
6600 {
6601 if (last_loc && !server_command)
6602 set_next_address (last_loc->gdbarch, last_loc->address);
6603 }
6604
6605 /* FIXME? Should this be moved up so that it is only called when
6606 there have been breakpoints? */
6607 annotate_breakpoints_table_end ();
6608
6609 return nr_printable_breakpoints;
6610 }
6611
6612 /* Display the value of default-collect in a way that is generally
6613 compatible with the breakpoint list. */
6614
6615 static void
6616 default_collect_info (void)
6617 {
6618 struct ui_out *uiout = current_uiout;
6619
6620 /* If it has no value (which is frequently the case), say nothing; a
6621 message like "No default-collect." gets in user's face when it's
6622 not wanted. */
6623 if (!*default_collect)
6624 return;
6625
6626 /* The following phrase lines up nicely with per-tracepoint collect
6627 actions. */
6628 ui_out_text (uiout, "default collect ");
6629 ui_out_field_string (uiout, "default-collect", default_collect);
6630 ui_out_text (uiout, " \n");
6631 }
6632
6633 static void
6634 breakpoints_info (char *args, int from_tty)
6635 {
6636 breakpoint_1 (args, 0, NULL);
6637
6638 default_collect_info ();
6639 }
6640
6641 static void
6642 watchpoints_info (char *args, int from_tty)
6643 {
6644 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6645 struct ui_out *uiout = current_uiout;
6646
6647 if (num_printed == 0)
6648 {
6649 if (args == NULL || *args == '\0')
6650 ui_out_message (uiout, 0, "No watchpoints.\n");
6651 else
6652 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6653 }
6654 }
6655
6656 static void
6657 maintenance_info_breakpoints (char *args, int from_tty)
6658 {
6659 breakpoint_1 (args, 1, NULL);
6660
6661 default_collect_info ();
6662 }
6663
6664 static int
6665 breakpoint_has_pc (struct breakpoint *b,
6666 struct program_space *pspace,
6667 CORE_ADDR pc, struct obj_section *section)
6668 {
6669 struct bp_location *bl = b->loc;
6670
6671 for (; bl; bl = bl->next)
6672 {
6673 if (bl->pspace == pspace
6674 && bl->address == pc
6675 && (!overlay_debugging || bl->section == section))
6676 return 1;
6677 }
6678 return 0;
6679 }
6680
6681 /* Print a message describing any user-breakpoints set at PC. This
6682 concerns with logical breakpoints, so we match program spaces, not
6683 address spaces. */
6684
6685 static void
6686 describe_other_breakpoints (struct gdbarch *gdbarch,
6687 struct program_space *pspace, CORE_ADDR pc,
6688 struct obj_section *section, int thread)
6689 {
6690 int others = 0;
6691 struct breakpoint *b;
6692
6693 ALL_BREAKPOINTS (b)
6694 others += (user_breakpoint_p (b)
6695 && breakpoint_has_pc (b, pspace, pc, section));
6696 if (others > 0)
6697 {
6698 if (others == 1)
6699 printf_filtered (_("Note: breakpoint "));
6700 else /* if (others == ???) */
6701 printf_filtered (_("Note: breakpoints "));
6702 ALL_BREAKPOINTS (b)
6703 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6704 {
6705 others--;
6706 printf_filtered ("%d", b->number);
6707 if (b->thread == -1 && thread != -1)
6708 printf_filtered (" (all threads)");
6709 else if (b->thread != -1)
6710 printf_filtered (" (thread %d)", b->thread);
6711 printf_filtered ("%s%s ",
6712 ((b->enable_state == bp_disabled
6713 || b->enable_state == bp_call_disabled)
6714 ? " (disabled)"
6715 : b->enable_state == bp_permanent
6716 ? " (permanent)"
6717 : ""),
6718 (others > 1) ? ","
6719 : ((others == 1) ? " and" : ""));
6720 }
6721 printf_filtered (_("also set at pc "));
6722 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6723 printf_filtered (".\n");
6724 }
6725 }
6726 \f
6727
6728 /* Return true iff it is meaningful to use the address member of
6729 BPT. For some breakpoint types, the address member is irrelevant
6730 and it makes no sense to attempt to compare it to other addresses
6731 (or use it for any other purpose either).
6732
6733 More specifically, each of the following breakpoint types will
6734 always have a zero valued address and we don't want to mark
6735 breakpoints of any of these types to be a duplicate of an actual
6736 breakpoint at address zero:
6737
6738 bp_watchpoint
6739 bp_catchpoint
6740
6741 */
6742
6743 static int
6744 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6745 {
6746 enum bptype type = bpt->type;
6747
6748 return (type != bp_watchpoint && type != bp_catchpoint);
6749 }
6750
6751 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6752 true if LOC1 and LOC2 represent the same watchpoint location. */
6753
6754 static int
6755 watchpoint_locations_match (struct bp_location *loc1,
6756 struct bp_location *loc2)
6757 {
6758 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6759 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6760
6761 /* Both of them must exist. */
6762 gdb_assert (w1 != NULL);
6763 gdb_assert (w2 != NULL);
6764
6765 /* If the target can evaluate the condition expression in hardware,
6766 then we we need to insert both watchpoints even if they are at
6767 the same place. Otherwise the watchpoint will only trigger when
6768 the condition of whichever watchpoint was inserted evaluates to
6769 true, not giving a chance for GDB to check the condition of the
6770 other watchpoint. */
6771 if ((w1->cond_exp
6772 && target_can_accel_watchpoint_condition (loc1->address,
6773 loc1->length,
6774 loc1->watchpoint_type,
6775 w1->cond_exp))
6776 || (w2->cond_exp
6777 && target_can_accel_watchpoint_condition (loc2->address,
6778 loc2->length,
6779 loc2->watchpoint_type,
6780 w2->cond_exp)))
6781 return 0;
6782
6783 /* Note that this checks the owner's type, not the location's. In
6784 case the target does not support read watchpoints, but does
6785 support access watchpoints, we'll have bp_read_watchpoint
6786 watchpoints with hw_access locations. Those should be considered
6787 duplicates of hw_read locations. The hw_read locations will
6788 become hw_access locations later. */
6789 return (loc1->owner->type == loc2->owner->type
6790 && loc1->pspace->aspace == loc2->pspace->aspace
6791 && loc1->address == loc2->address
6792 && loc1->length == loc2->length);
6793 }
6794
6795 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6796 same breakpoint location. In most targets, this can only be true
6797 if ASPACE1 matches ASPACE2. On targets that have global
6798 breakpoints, the address space doesn't really matter. */
6799
6800 static int
6801 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6802 struct address_space *aspace2, CORE_ADDR addr2)
6803 {
6804 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6805 || aspace1 == aspace2)
6806 && addr1 == addr2);
6807 }
6808
6809 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6810 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6811 matches ASPACE2. On targets that have global breakpoints, the address
6812 space doesn't really matter. */
6813
6814 static int
6815 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6816 int len1, struct address_space *aspace2,
6817 CORE_ADDR addr2)
6818 {
6819 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6820 || aspace1 == aspace2)
6821 && addr2 >= addr1 && addr2 < addr1 + len1);
6822 }
6823
6824 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6825 a ranged breakpoint. In most targets, a match happens only if ASPACE
6826 matches the breakpoint's address space. On targets that have global
6827 breakpoints, the address space doesn't really matter. */
6828
6829 static int
6830 breakpoint_location_address_match (struct bp_location *bl,
6831 struct address_space *aspace,
6832 CORE_ADDR addr)
6833 {
6834 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6835 aspace, addr)
6836 || (bl->length
6837 && breakpoint_address_match_range (bl->pspace->aspace,
6838 bl->address, bl->length,
6839 aspace, addr)));
6840 }
6841
6842 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6843 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6844 true, otherwise returns false. */
6845
6846 static int
6847 tracepoint_locations_match (struct bp_location *loc1,
6848 struct bp_location *loc2)
6849 {
6850 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6851 /* Since tracepoint locations are never duplicated with others', tracepoint
6852 locations at the same address of different tracepoints are regarded as
6853 different locations. */
6854 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6855 else
6856 return 0;
6857 }
6858
6859 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6860 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6861 represent the same location. */
6862
6863 static int
6864 breakpoint_locations_match (struct bp_location *loc1,
6865 struct bp_location *loc2)
6866 {
6867 int hw_point1, hw_point2;
6868
6869 /* Both of them must not be in moribund_locations. */
6870 gdb_assert (loc1->owner != NULL);
6871 gdb_assert (loc2->owner != NULL);
6872
6873 hw_point1 = is_hardware_watchpoint (loc1->owner);
6874 hw_point2 = is_hardware_watchpoint (loc2->owner);
6875
6876 if (hw_point1 != hw_point2)
6877 return 0;
6878 else if (hw_point1)
6879 return watchpoint_locations_match (loc1, loc2);
6880 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6881 return tracepoint_locations_match (loc1, loc2);
6882 else
6883 /* We compare bp_location.length in order to cover ranged breakpoints. */
6884 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6885 loc2->pspace->aspace, loc2->address)
6886 && loc1->length == loc2->length);
6887 }
6888
6889 static void
6890 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6891 int bnum, int have_bnum)
6892 {
6893 /* The longest string possibly returned by hex_string_custom
6894 is 50 chars. These must be at least that big for safety. */
6895 char astr1[64];
6896 char astr2[64];
6897
6898 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6899 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6900 if (have_bnum)
6901 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6902 bnum, astr1, astr2);
6903 else
6904 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6905 }
6906
6907 /* Adjust a breakpoint's address to account for architectural
6908 constraints on breakpoint placement. Return the adjusted address.
6909 Note: Very few targets require this kind of adjustment. For most
6910 targets, this function is simply the identity function. */
6911
6912 static CORE_ADDR
6913 adjust_breakpoint_address (struct gdbarch *gdbarch,
6914 CORE_ADDR bpaddr, enum bptype bptype)
6915 {
6916 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6917 {
6918 /* Very few targets need any kind of breakpoint adjustment. */
6919 return bpaddr;
6920 }
6921 else if (bptype == bp_watchpoint
6922 || bptype == bp_hardware_watchpoint
6923 || bptype == bp_read_watchpoint
6924 || bptype == bp_access_watchpoint
6925 || bptype == bp_catchpoint)
6926 {
6927 /* Watchpoints and the various bp_catch_* eventpoints should not
6928 have their addresses modified. */
6929 return bpaddr;
6930 }
6931 else
6932 {
6933 CORE_ADDR adjusted_bpaddr;
6934
6935 /* Some targets have architectural constraints on the placement
6936 of breakpoint instructions. Obtain the adjusted address. */
6937 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6938
6939 /* An adjusted breakpoint address can significantly alter
6940 a user's expectations. Print a warning if an adjustment
6941 is required. */
6942 if (adjusted_bpaddr != bpaddr)
6943 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6944
6945 return adjusted_bpaddr;
6946 }
6947 }
6948
6949 void
6950 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6951 struct breakpoint *owner)
6952 {
6953 memset (loc, 0, sizeof (*loc));
6954
6955 gdb_assert (ops != NULL);
6956
6957 loc->ops = ops;
6958 loc->owner = owner;
6959 loc->cond = NULL;
6960 loc->cond_bytecode = NULL;
6961 loc->shlib_disabled = 0;
6962 loc->enabled = 1;
6963
6964 switch (owner->type)
6965 {
6966 case bp_breakpoint:
6967 case bp_until:
6968 case bp_finish:
6969 case bp_longjmp:
6970 case bp_longjmp_resume:
6971 case bp_longjmp_call_dummy:
6972 case bp_exception:
6973 case bp_exception_resume:
6974 case bp_step_resume:
6975 case bp_hp_step_resume:
6976 case bp_watchpoint_scope:
6977 case bp_call_dummy:
6978 case bp_std_terminate:
6979 case bp_shlib_event:
6980 case bp_thread_event:
6981 case bp_overlay_event:
6982 case bp_jit_event:
6983 case bp_longjmp_master:
6984 case bp_std_terminate_master:
6985 case bp_exception_master:
6986 case bp_gnu_ifunc_resolver:
6987 case bp_gnu_ifunc_resolver_return:
6988 case bp_dprintf:
6989 loc->loc_type = bp_loc_software_breakpoint;
6990 mark_breakpoint_location_modified (loc);
6991 break;
6992 case bp_hardware_breakpoint:
6993 loc->loc_type = bp_loc_hardware_breakpoint;
6994 mark_breakpoint_location_modified (loc);
6995 break;
6996 case bp_hardware_watchpoint:
6997 case bp_read_watchpoint:
6998 case bp_access_watchpoint:
6999 loc->loc_type = bp_loc_hardware_watchpoint;
7000 break;
7001 case bp_watchpoint:
7002 case bp_catchpoint:
7003 case bp_tracepoint:
7004 case bp_fast_tracepoint:
7005 case bp_static_tracepoint:
7006 loc->loc_type = bp_loc_other;
7007 break;
7008 default:
7009 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7010 }
7011
7012 loc->refc = 1;
7013 }
7014
7015 /* Allocate a struct bp_location. */
7016
7017 static struct bp_location *
7018 allocate_bp_location (struct breakpoint *bpt)
7019 {
7020 return bpt->ops->allocate_location (bpt);
7021 }
7022
7023 static void
7024 free_bp_location (struct bp_location *loc)
7025 {
7026 loc->ops->dtor (loc);
7027 xfree (loc);
7028 }
7029
7030 /* Increment reference count. */
7031
7032 static void
7033 incref_bp_location (struct bp_location *bl)
7034 {
7035 ++bl->refc;
7036 }
7037
7038 /* Decrement reference count. If the reference count reaches 0,
7039 destroy the bp_location. Sets *BLP to NULL. */
7040
7041 static void
7042 decref_bp_location (struct bp_location **blp)
7043 {
7044 gdb_assert ((*blp)->refc > 0);
7045
7046 if (--(*blp)->refc == 0)
7047 free_bp_location (*blp);
7048 *blp = NULL;
7049 }
7050
7051 /* Add breakpoint B at the end of the global breakpoint chain. */
7052
7053 static void
7054 add_to_breakpoint_chain (struct breakpoint *b)
7055 {
7056 struct breakpoint *b1;
7057
7058 /* Add this breakpoint to the end of the chain so that a list of
7059 breakpoints will come out in order of increasing numbers. */
7060
7061 b1 = breakpoint_chain;
7062 if (b1 == 0)
7063 breakpoint_chain = b;
7064 else
7065 {
7066 while (b1->next)
7067 b1 = b1->next;
7068 b1->next = b;
7069 }
7070 }
7071
7072 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7073
7074 static void
7075 init_raw_breakpoint_without_location (struct breakpoint *b,
7076 struct gdbarch *gdbarch,
7077 enum bptype bptype,
7078 const struct breakpoint_ops *ops)
7079 {
7080 memset (b, 0, sizeof (*b));
7081
7082 gdb_assert (ops != NULL);
7083
7084 b->ops = ops;
7085 b->type = bptype;
7086 b->gdbarch = gdbarch;
7087 b->language = current_language->la_language;
7088 b->input_radix = input_radix;
7089 b->thread = -1;
7090 b->enable_state = bp_enabled;
7091 b->next = 0;
7092 b->silent = 0;
7093 b->ignore_count = 0;
7094 b->commands = NULL;
7095 b->frame_id = null_frame_id;
7096 b->condition_not_parsed = 0;
7097 b->py_bp_object = NULL;
7098 b->related_breakpoint = b;
7099 }
7100
7101 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7102 that has type BPTYPE and has no locations as yet. */
7103
7104 static struct breakpoint *
7105 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7106 enum bptype bptype,
7107 const struct breakpoint_ops *ops)
7108 {
7109 struct breakpoint *b = XNEW (struct breakpoint);
7110
7111 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7112 add_to_breakpoint_chain (b);
7113 return b;
7114 }
7115
7116 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7117 resolutions should be made as the user specified the location explicitly
7118 enough. */
7119
7120 static void
7121 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7122 {
7123 gdb_assert (loc->owner != NULL);
7124
7125 if (loc->owner->type == bp_breakpoint
7126 || loc->owner->type == bp_hardware_breakpoint
7127 || is_tracepoint (loc->owner))
7128 {
7129 int is_gnu_ifunc;
7130 const char *function_name;
7131 CORE_ADDR func_addr;
7132
7133 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7134 &func_addr, NULL, &is_gnu_ifunc);
7135
7136 if (is_gnu_ifunc && !explicit_loc)
7137 {
7138 struct breakpoint *b = loc->owner;
7139
7140 gdb_assert (loc->pspace == current_program_space);
7141 if (gnu_ifunc_resolve_name (function_name,
7142 &loc->requested_address))
7143 {
7144 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7145 loc->address = adjust_breakpoint_address (loc->gdbarch,
7146 loc->requested_address,
7147 b->type);
7148 }
7149 else if (b->type == bp_breakpoint && b->loc == loc
7150 && loc->next == NULL && b->related_breakpoint == b)
7151 {
7152 /* Create only the whole new breakpoint of this type but do not
7153 mess more complicated breakpoints with multiple locations. */
7154 b->type = bp_gnu_ifunc_resolver;
7155 /* Remember the resolver's address for use by the return
7156 breakpoint. */
7157 loc->related_address = func_addr;
7158 }
7159 }
7160
7161 if (function_name)
7162 loc->function_name = xstrdup (function_name);
7163 }
7164 }
7165
7166 /* Attempt to determine architecture of location identified by SAL. */
7167 struct gdbarch *
7168 get_sal_arch (struct symtab_and_line sal)
7169 {
7170 if (sal.section)
7171 return get_objfile_arch (sal.section->objfile);
7172 if (sal.symtab)
7173 return get_objfile_arch (sal.symtab->objfile);
7174
7175 return NULL;
7176 }
7177
7178 /* Low level routine for partially initializing a breakpoint of type
7179 BPTYPE. The newly created breakpoint's address, section, source
7180 file name, and line number are provided by SAL.
7181
7182 It is expected that the caller will complete the initialization of
7183 the newly created breakpoint struct as well as output any status
7184 information regarding the creation of a new breakpoint. */
7185
7186 static void
7187 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7188 struct symtab_and_line sal, enum bptype bptype,
7189 const struct breakpoint_ops *ops)
7190 {
7191 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7192
7193 add_location_to_breakpoint (b, &sal);
7194
7195 if (bptype != bp_catchpoint)
7196 gdb_assert (sal.pspace != NULL);
7197
7198 /* Store the program space that was used to set the breakpoint,
7199 except for ordinary breakpoints, which are independent of the
7200 program space. */
7201 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7202 b->pspace = sal.pspace;
7203 }
7204
7205 /* set_raw_breakpoint is a low level routine for allocating and
7206 partially initializing a breakpoint of type BPTYPE. The newly
7207 created breakpoint's address, section, source file name, and line
7208 number are provided by SAL. The newly created and partially
7209 initialized breakpoint is added to the breakpoint chain and
7210 is also returned as the value of this function.
7211
7212 It is expected that the caller will complete the initialization of
7213 the newly created breakpoint struct as well as output any status
7214 information regarding the creation of a new breakpoint. In
7215 particular, set_raw_breakpoint does NOT set the breakpoint
7216 number! Care should be taken to not allow an error to occur
7217 prior to completing the initialization of the breakpoint. If this
7218 should happen, a bogus breakpoint will be left on the chain. */
7219
7220 struct breakpoint *
7221 set_raw_breakpoint (struct gdbarch *gdbarch,
7222 struct symtab_and_line sal, enum bptype bptype,
7223 const struct breakpoint_ops *ops)
7224 {
7225 struct breakpoint *b = XNEW (struct breakpoint);
7226
7227 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7228 add_to_breakpoint_chain (b);
7229 return b;
7230 }
7231
7232
7233 /* Note that the breakpoint object B describes a permanent breakpoint
7234 instruction, hard-wired into the inferior's code. */
7235 void
7236 make_breakpoint_permanent (struct breakpoint *b)
7237 {
7238 struct bp_location *bl;
7239
7240 b->enable_state = bp_permanent;
7241
7242 /* By definition, permanent breakpoints are already present in the
7243 code. Mark all locations as inserted. For now,
7244 make_breakpoint_permanent is called in just one place, so it's
7245 hard to say if it's reasonable to have permanent breakpoint with
7246 multiple locations or not, but it's easy to implement. */
7247 for (bl = b->loc; bl; bl = bl->next)
7248 bl->inserted = 1;
7249 }
7250
7251 /* Call this routine when stepping and nexting to enable a breakpoint
7252 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7253 initiated the operation. */
7254
7255 void
7256 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7257 {
7258 struct breakpoint *b, *b_tmp;
7259 int thread = tp->num;
7260
7261 /* To avoid having to rescan all objfile symbols at every step,
7262 we maintain a list of continually-inserted but always disabled
7263 longjmp "master" breakpoints. Here, we simply create momentary
7264 clones of those and enable them for the requested thread. */
7265 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7266 if (b->pspace == current_program_space
7267 && (b->type == bp_longjmp_master
7268 || b->type == bp_exception_master))
7269 {
7270 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7271 struct breakpoint *clone;
7272
7273 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7274 after their removal. */
7275 clone = momentary_breakpoint_from_master (b, type,
7276 &longjmp_breakpoint_ops);
7277 clone->thread = thread;
7278 }
7279
7280 tp->initiating_frame = frame;
7281 }
7282
7283 /* Delete all longjmp breakpoints from THREAD. */
7284 void
7285 delete_longjmp_breakpoint (int thread)
7286 {
7287 struct breakpoint *b, *b_tmp;
7288
7289 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7290 if (b->type == bp_longjmp || b->type == bp_exception)
7291 {
7292 if (b->thread == thread)
7293 delete_breakpoint (b);
7294 }
7295 }
7296
7297 void
7298 delete_longjmp_breakpoint_at_next_stop (int thread)
7299 {
7300 struct breakpoint *b, *b_tmp;
7301
7302 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7303 if (b->type == bp_longjmp || b->type == bp_exception)
7304 {
7305 if (b->thread == thread)
7306 b->disposition = disp_del_at_next_stop;
7307 }
7308 }
7309
7310 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7311 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7312 pointer to any of them. Return NULL if this system cannot place longjmp
7313 breakpoints. */
7314
7315 struct breakpoint *
7316 set_longjmp_breakpoint_for_call_dummy (void)
7317 {
7318 struct breakpoint *b, *retval = NULL;
7319
7320 ALL_BREAKPOINTS (b)
7321 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7322 {
7323 struct breakpoint *new_b;
7324
7325 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7326 &momentary_breakpoint_ops);
7327 new_b->thread = pid_to_thread_id (inferior_ptid);
7328
7329 /* Link NEW_B into the chain of RETVAL breakpoints. */
7330
7331 gdb_assert (new_b->related_breakpoint == new_b);
7332 if (retval == NULL)
7333 retval = new_b;
7334 new_b->related_breakpoint = retval;
7335 while (retval->related_breakpoint != new_b->related_breakpoint)
7336 retval = retval->related_breakpoint;
7337 retval->related_breakpoint = new_b;
7338 }
7339
7340 return retval;
7341 }
7342
7343 /* Verify all existing dummy frames and their associated breakpoints for
7344 THREAD. Remove those which can no longer be found in the current frame
7345 stack.
7346
7347 You should call this function only at places where it is safe to currently
7348 unwind the whole stack. Failed stack unwind would discard live dummy
7349 frames. */
7350
7351 void
7352 check_longjmp_breakpoint_for_call_dummy (int thread)
7353 {
7354 struct breakpoint *b, *b_tmp;
7355
7356 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7357 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7358 {
7359 struct breakpoint *dummy_b = b->related_breakpoint;
7360
7361 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7362 dummy_b = dummy_b->related_breakpoint;
7363 if (dummy_b->type != bp_call_dummy
7364 || frame_find_by_id (dummy_b->frame_id) != NULL)
7365 continue;
7366
7367 dummy_frame_discard (dummy_b->frame_id);
7368
7369 while (b->related_breakpoint != b)
7370 {
7371 if (b_tmp == b->related_breakpoint)
7372 b_tmp = b->related_breakpoint->next;
7373 delete_breakpoint (b->related_breakpoint);
7374 }
7375 delete_breakpoint (b);
7376 }
7377 }
7378
7379 void
7380 enable_overlay_breakpoints (void)
7381 {
7382 struct breakpoint *b;
7383
7384 ALL_BREAKPOINTS (b)
7385 if (b->type == bp_overlay_event)
7386 {
7387 b->enable_state = bp_enabled;
7388 update_global_location_list (1);
7389 overlay_events_enabled = 1;
7390 }
7391 }
7392
7393 void
7394 disable_overlay_breakpoints (void)
7395 {
7396 struct breakpoint *b;
7397
7398 ALL_BREAKPOINTS (b)
7399 if (b->type == bp_overlay_event)
7400 {
7401 b->enable_state = bp_disabled;
7402 update_global_location_list (0);
7403 overlay_events_enabled = 0;
7404 }
7405 }
7406
7407 /* Set an active std::terminate breakpoint for each std::terminate
7408 master breakpoint. */
7409 void
7410 set_std_terminate_breakpoint (void)
7411 {
7412 struct breakpoint *b, *b_tmp;
7413
7414 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7415 if (b->pspace == current_program_space
7416 && b->type == bp_std_terminate_master)
7417 {
7418 momentary_breakpoint_from_master (b, bp_std_terminate,
7419 &momentary_breakpoint_ops);
7420 }
7421 }
7422
7423 /* Delete all the std::terminate breakpoints. */
7424 void
7425 delete_std_terminate_breakpoint (void)
7426 {
7427 struct breakpoint *b, *b_tmp;
7428
7429 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7430 if (b->type == bp_std_terminate)
7431 delete_breakpoint (b);
7432 }
7433
7434 struct breakpoint *
7435 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7436 {
7437 struct breakpoint *b;
7438
7439 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7440 &internal_breakpoint_ops);
7441
7442 b->enable_state = bp_enabled;
7443 /* addr_string has to be used or breakpoint_re_set will delete me. */
7444 b->addr_string
7445 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7446
7447 update_global_location_list_nothrow (1);
7448
7449 return b;
7450 }
7451
7452 void
7453 remove_thread_event_breakpoints (void)
7454 {
7455 struct breakpoint *b, *b_tmp;
7456
7457 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7458 if (b->type == bp_thread_event
7459 && b->loc->pspace == current_program_space)
7460 delete_breakpoint (b);
7461 }
7462
7463 struct lang_and_radix
7464 {
7465 enum language lang;
7466 int radix;
7467 };
7468
7469 /* Create a breakpoint for JIT code registration and unregistration. */
7470
7471 struct breakpoint *
7472 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7473 {
7474 struct breakpoint *b;
7475
7476 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7477 &internal_breakpoint_ops);
7478 update_global_location_list_nothrow (1);
7479 return b;
7480 }
7481
7482 /* Remove JIT code registration and unregistration breakpoint(s). */
7483
7484 void
7485 remove_jit_event_breakpoints (void)
7486 {
7487 struct breakpoint *b, *b_tmp;
7488
7489 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7490 if (b->type == bp_jit_event
7491 && b->loc->pspace == current_program_space)
7492 delete_breakpoint (b);
7493 }
7494
7495 void
7496 remove_solib_event_breakpoints (void)
7497 {
7498 struct breakpoint *b, *b_tmp;
7499
7500 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7501 if (b->type == bp_shlib_event
7502 && b->loc->pspace == current_program_space)
7503 delete_breakpoint (b);
7504 }
7505
7506 struct breakpoint *
7507 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7508 {
7509 struct breakpoint *b;
7510
7511 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7512 &internal_breakpoint_ops);
7513 update_global_location_list_nothrow (1);
7514 return b;
7515 }
7516
7517 /* Disable any breakpoints that are on code in shared libraries. Only
7518 apply to enabled breakpoints, disabled ones can just stay disabled. */
7519
7520 void
7521 disable_breakpoints_in_shlibs (void)
7522 {
7523 struct bp_location *loc, **locp_tmp;
7524
7525 ALL_BP_LOCATIONS (loc, locp_tmp)
7526 {
7527 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7528 struct breakpoint *b = loc->owner;
7529
7530 /* We apply the check to all breakpoints, including disabled for
7531 those with loc->duplicate set. This is so that when breakpoint
7532 becomes enabled, or the duplicate is removed, gdb will try to
7533 insert all breakpoints. If we don't set shlib_disabled here,
7534 we'll try to insert those breakpoints and fail. */
7535 if (((b->type == bp_breakpoint)
7536 || (b->type == bp_jit_event)
7537 || (b->type == bp_hardware_breakpoint)
7538 || (is_tracepoint (b)))
7539 && loc->pspace == current_program_space
7540 && !loc->shlib_disabled
7541 && solib_name_from_address (loc->pspace, loc->address)
7542 )
7543 {
7544 loc->shlib_disabled = 1;
7545 }
7546 }
7547 }
7548
7549 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7550 notification of unloaded_shlib. Only apply to enabled breakpoints,
7551 disabled ones can just stay disabled. */
7552
7553 static void
7554 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7555 {
7556 struct bp_location *loc, **locp_tmp;
7557 int disabled_shlib_breaks = 0;
7558
7559 /* SunOS a.out shared libraries are always mapped, so do not
7560 disable breakpoints; they will only be reported as unloaded
7561 through clear_solib when GDB discards its shared library
7562 list. See clear_solib for more information. */
7563 if (exec_bfd != NULL
7564 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7565 return;
7566
7567 ALL_BP_LOCATIONS (loc, locp_tmp)
7568 {
7569 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7570 struct breakpoint *b = loc->owner;
7571
7572 if (solib->pspace == loc->pspace
7573 && !loc->shlib_disabled
7574 && (((b->type == bp_breakpoint
7575 || b->type == bp_jit_event
7576 || b->type == bp_hardware_breakpoint)
7577 && (loc->loc_type == bp_loc_hardware_breakpoint
7578 || loc->loc_type == bp_loc_software_breakpoint))
7579 || is_tracepoint (b))
7580 && solib_contains_address_p (solib, loc->address))
7581 {
7582 loc->shlib_disabled = 1;
7583 /* At this point, we cannot rely on remove_breakpoint
7584 succeeding so we must mark the breakpoint as not inserted
7585 to prevent future errors occurring in remove_breakpoints. */
7586 loc->inserted = 0;
7587
7588 /* This may cause duplicate notifications for the same breakpoint. */
7589 observer_notify_breakpoint_modified (b);
7590
7591 if (!disabled_shlib_breaks)
7592 {
7593 target_terminal_ours_for_output ();
7594 warning (_("Temporarily disabling breakpoints "
7595 "for unloaded shared library \"%s\""),
7596 solib->so_name);
7597 }
7598 disabled_shlib_breaks = 1;
7599 }
7600 }
7601 }
7602
7603 /* Disable any breakpoints and tracepoints in OBJFILE upon
7604 notification of free_objfile. Only apply to enabled breakpoints,
7605 disabled ones can just stay disabled. */
7606
7607 static void
7608 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7609 {
7610 struct breakpoint *b;
7611
7612 if (objfile == NULL)
7613 return;
7614
7615 /* If the file is a shared library not loaded by the user then
7616 solib_unloaded was notified and disable_breakpoints_in_unloaded_shlib
7617 was called. In that case there is no need to take action again. */
7618 if ((objfile->flags & OBJF_SHARED) && !(objfile->flags & OBJF_USERLOADED))
7619 return;
7620
7621 ALL_BREAKPOINTS (b)
7622 {
7623 struct bp_location *loc;
7624 int bp_modified = 0;
7625
7626 if (!is_breakpoint (b) && !is_tracepoint (b))
7627 continue;
7628
7629 for (loc = b->loc; loc != NULL; loc = loc->next)
7630 {
7631 CORE_ADDR loc_addr = loc->address;
7632
7633 if (loc->loc_type != bp_loc_hardware_breakpoint
7634 && loc->loc_type != bp_loc_software_breakpoint)
7635 continue;
7636
7637 if (loc->shlib_disabled != 0)
7638 continue;
7639
7640 if (objfile->pspace != loc->pspace)
7641 continue;
7642
7643 if (loc->loc_type != bp_loc_hardware_breakpoint
7644 && loc->loc_type != bp_loc_software_breakpoint)
7645 continue;
7646
7647 if (is_addr_in_objfile (loc_addr, objfile))
7648 {
7649 loc->shlib_disabled = 1;
7650 loc->inserted = 0;
7651
7652 mark_breakpoint_location_modified (loc);
7653
7654 bp_modified = 1;
7655 }
7656 }
7657
7658 if (bp_modified)
7659 observer_notify_breakpoint_modified (b);
7660 }
7661 }
7662
7663 /* FORK & VFORK catchpoints. */
7664
7665 /* An instance of this type is used to represent a fork or vfork
7666 catchpoint. It includes a "struct breakpoint" as a kind of base
7667 class; users downcast to "struct breakpoint *" when needed. A
7668 breakpoint is really of this type iff its ops pointer points to
7669 CATCH_FORK_BREAKPOINT_OPS. */
7670
7671 struct fork_catchpoint
7672 {
7673 /* The base class. */
7674 struct breakpoint base;
7675
7676 /* Process id of a child process whose forking triggered this
7677 catchpoint. This field is only valid immediately after this
7678 catchpoint has triggered. */
7679 ptid_t forked_inferior_pid;
7680 };
7681
7682 /* Implement the "insert" breakpoint_ops method for fork
7683 catchpoints. */
7684
7685 static int
7686 insert_catch_fork (struct bp_location *bl)
7687 {
7688 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7689 }
7690
7691 /* Implement the "remove" breakpoint_ops method for fork
7692 catchpoints. */
7693
7694 static int
7695 remove_catch_fork (struct bp_location *bl)
7696 {
7697 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7698 }
7699
7700 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7701 catchpoints. */
7702
7703 static int
7704 breakpoint_hit_catch_fork (const struct bp_location *bl,
7705 struct address_space *aspace, CORE_ADDR bp_addr,
7706 const struct target_waitstatus *ws)
7707 {
7708 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7709
7710 if (ws->kind != TARGET_WAITKIND_FORKED)
7711 return 0;
7712
7713 c->forked_inferior_pid = ws->value.related_pid;
7714 return 1;
7715 }
7716
7717 /* Implement the "print_it" breakpoint_ops method for fork
7718 catchpoints. */
7719
7720 static enum print_stop_action
7721 print_it_catch_fork (bpstat bs)
7722 {
7723 struct ui_out *uiout = current_uiout;
7724 struct breakpoint *b = bs->breakpoint_at;
7725 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7726
7727 annotate_catchpoint (b->number);
7728 if (b->disposition == disp_del)
7729 ui_out_text (uiout, "\nTemporary catchpoint ");
7730 else
7731 ui_out_text (uiout, "\nCatchpoint ");
7732 if (ui_out_is_mi_like_p (uiout))
7733 {
7734 ui_out_field_string (uiout, "reason",
7735 async_reason_lookup (EXEC_ASYNC_FORK));
7736 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7737 }
7738 ui_out_field_int (uiout, "bkptno", b->number);
7739 ui_out_text (uiout, " (forked process ");
7740 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7741 ui_out_text (uiout, "), ");
7742 return PRINT_SRC_AND_LOC;
7743 }
7744
7745 /* Implement the "print_one" breakpoint_ops method for fork
7746 catchpoints. */
7747
7748 static void
7749 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7750 {
7751 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7752 struct value_print_options opts;
7753 struct ui_out *uiout = current_uiout;
7754
7755 get_user_print_options (&opts);
7756
7757 /* Field 4, the address, is omitted (which makes the columns not
7758 line up too nicely with the headers, but the effect is relatively
7759 readable). */
7760 if (opts.addressprint)
7761 ui_out_field_skip (uiout, "addr");
7762 annotate_field (5);
7763 ui_out_text (uiout, "fork");
7764 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7765 {
7766 ui_out_text (uiout, ", process ");
7767 ui_out_field_int (uiout, "what",
7768 ptid_get_pid (c->forked_inferior_pid));
7769 ui_out_spaces (uiout, 1);
7770 }
7771
7772 if (ui_out_is_mi_like_p (uiout))
7773 ui_out_field_string (uiout, "catch-type", "fork");
7774 }
7775
7776 /* Implement the "print_mention" breakpoint_ops method for fork
7777 catchpoints. */
7778
7779 static void
7780 print_mention_catch_fork (struct breakpoint *b)
7781 {
7782 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7783 }
7784
7785 /* Implement the "print_recreate" breakpoint_ops method for fork
7786 catchpoints. */
7787
7788 static void
7789 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7790 {
7791 fprintf_unfiltered (fp, "catch fork");
7792 print_recreate_thread (b, fp);
7793 }
7794
7795 /* The breakpoint_ops structure to be used in fork catchpoints. */
7796
7797 static struct breakpoint_ops catch_fork_breakpoint_ops;
7798
7799 /* Implement the "insert" breakpoint_ops method for vfork
7800 catchpoints. */
7801
7802 static int
7803 insert_catch_vfork (struct bp_location *bl)
7804 {
7805 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7806 }
7807
7808 /* Implement the "remove" breakpoint_ops method for vfork
7809 catchpoints. */
7810
7811 static int
7812 remove_catch_vfork (struct bp_location *bl)
7813 {
7814 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7815 }
7816
7817 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7818 catchpoints. */
7819
7820 static int
7821 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7822 struct address_space *aspace, CORE_ADDR bp_addr,
7823 const struct target_waitstatus *ws)
7824 {
7825 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7826
7827 if (ws->kind != TARGET_WAITKIND_VFORKED)
7828 return 0;
7829
7830 c->forked_inferior_pid = ws->value.related_pid;
7831 return 1;
7832 }
7833
7834 /* Implement the "print_it" breakpoint_ops method for vfork
7835 catchpoints. */
7836
7837 static enum print_stop_action
7838 print_it_catch_vfork (bpstat bs)
7839 {
7840 struct ui_out *uiout = current_uiout;
7841 struct breakpoint *b = bs->breakpoint_at;
7842 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7843
7844 annotate_catchpoint (b->number);
7845 if (b->disposition == disp_del)
7846 ui_out_text (uiout, "\nTemporary catchpoint ");
7847 else
7848 ui_out_text (uiout, "\nCatchpoint ");
7849 if (ui_out_is_mi_like_p (uiout))
7850 {
7851 ui_out_field_string (uiout, "reason",
7852 async_reason_lookup (EXEC_ASYNC_VFORK));
7853 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7854 }
7855 ui_out_field_int (uiout, "bkptno", b->number);
7856 ui_out_text (uiout, " (vforked process ");
7857 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7858 ui_out_text (uiout, "), ");
7859 return PRINT_SRC_AND_LOC;
7860 }
7861
7862 /* Implement the "print_one" breakpoint_ops method for vfork
7863 catchpoints. */
7864
7865 static void
7866 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7867 {
7868 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7869 struct value_print_options opts;
7870 struct ui_out *uiout = current_uiout;
7871
7872 get_user_print_options (&opts);
7873 /* Field 4, the address, is omitted (which makes the columns not
7874 line up too nicely with the headers, but the effect is relatively
7875 readable). */
7876 if (opts.addressprint)
7877 ui_out_field_skip (uiout, "addr");
7878 annotate_field (5);
7879 ui_out_text (uiout, "vfork");
7880 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7881 {
7882 ui_out_text (uiout, ", process ");
7883 ui_out_field_int (uiout, "what",
7884 ptid_get_pid (c->forked_inferior_pid));
7885 ui_out_spaces (uiout, 1);
7886 }
7887
7888 if (ui_out_is_mi_like_p (uiout))
7889 ui_out_field_string (uiout, "catch-type", "vfork");
7890 }
7891
7892 /* Implement the "print_mention" breakpoint_ops method for vfork
7893 catchpoints. */
7894
7895 static void
7896 print_mention_catch_vfork (struct breakpoint *b)
7897 {
7898 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7899 }
7900
7901 /* Implement the "print_recreate" breakpoint_ops method for vfork
7902 catchpoints. */
7903
7904 static void
7905 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7906 {
7907 fprintf_unfiltered (fp, "catch vfork");
7908 print_recreate_thread (b, fp);
7909 }
7910
7911 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7912
7913 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7914
7915 /* An instance of this type is used to represent an solib catchpoint.
7916 It includes a "struct breakpoint" as a kind of base class; users
7917 downcast to "struct breakpoint *" when needed. A breakpoint is
7918 really of this type iff its ops pointer points to
7919 CATCH_SOLIB_BREAKPOINT_OPS. */
7920
7921 struct solib_catchpoint
7922 {
7923 /* The base class. */
7924 struct breakpoint base;
7925
7926 /* True for "catch load", false for "catch unload". */
7927 unsigned char is_load;
7928
7929 /* Regular expression to match, if any. COMPILED is only valid when
7930 REGEX is non-NULL. */
7931 char *regex;
7932 regex_t compiled;
7933 };
7934
7935 static void
7936 dtor_catch_solib (struct breakpoint *b)
7937 {
7938 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7939
7940 if (self->regex)
7941 regfree (&self->compiled);
7942 xfree (self->regex);
7943
7944 base_breakpoint_ops.dtor (b);
7945 }
7946
7947 static int
7948 insert_catch_solib (struct bp_location *ignore)
7949 {
7950 return 0;
7951 }
7952
7953 static int
7954 remove_catch_solib (struct bp_location *ignore)
7955 {
7956 return 0;
7957 }
7958
7959 static int
7960 breakpoint_hit_catch_solib (const struct bp_location *bl,
7961 struct address_space *aspace,
7962 CORE_ADDR bp_addr,
7963 const struct target_waitstatus *ws)
7964 {
7965 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7966 struct breakpoint *other;
7967
7968 if (ws->kind == TARGET_WAITKIND_LOADED)
7969 return 1;
7970
7971 ALL_BREAKPOINTS (other)
7972 {
7973 struct bp_location *other_bl;
7974
7975 if (other == bl->owner)
7976 continue;
7977
7978 if (other->type != bp_shlib_event)
7979 continue;
7980
7981 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7982 continue;
7983
7984 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7985 {
7986 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7987 return 1;
7988 }
7989 }
7990
7991 return 0;
7992 }
7993
7994 static void
7995 check_status_catch_solib (struct bpstats *bs)
7996 {
7997 struct solib_catchpoint *self
7998 = (struct solib_catchpoint *) bs->breakpoint_at;
7999 int ix;
8000
8001 if (self->is_load)
8002 {
8003 struct so_list *iter;
8004
8005 for (ix = 0;
8006 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8007 ix, iter);
8008 ++ix)
8009 {
8010 if (!self->regex
8011 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
8012 return;
8013 }
8014 }
8015 else
8016 {
8017 char *iter;
8018
8019 for (ix = 0;
8020 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
8021 ix, iter);
8022 ++ix)
8023 {
8024 if (!self->regex
8025 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
8026 return;
8027 }
8028 }
8029
8030 bs->stop = 0;
8031 bs->print_it = print_it_noop;
8032 }
8033
8034 static enum print_stop_action
8035 print_it_catch_solib (bpstat bs)
8036 {
8037 struct breakpoint *b = bs->breakpoint_at;
8038 struct ui_out *uiout = current_uiout;
8039
8040 annotate_catchpoint (b->number);
8041 if (b->disposition == disp_del)
8042 ui_out_text (uiout, "\nTemporary catchpoint ");
8043 else
8044 ui_out_text (uiout, "\nCatchpoint ");
8045 ui_out_field_int (uiout, "bkptno", b->number);
8046 ui_out_text (uiout, "\n");
8047 if (ui_out_is_mi_like_p (uiout))
8048 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8049 print_solib_event (1);
8050 return PRINT_SRC_AND_LOC;
8051 }
8052
8053 static void
8054 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8055 {
8056 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8057 struct value_print_options opts;
8058 struct ui_out *uiout = current_uiout;
8059 char *msg;
8060
8061 get_user_print_options (&opts);
8062 /* Field 4, the address, is omitted (which makes the columns not
8063 line up too nicely with the headers, but the effect is relatively
8064 readable). */
8065 if (opts.addressprint)
8066 {
8067 annotate_field (4);
8068 ui_out_field_skip (uiout, "addr");
8069 }
8070
8071 annotate_field (5);
8072 if (self->is_load)
8073 {
8074 if (self->regex)
8075 msg = xstrprintf (_("load of library matching %s"), self->regex);
8076 else
8077 msg = xstrdup (_("load of library"));
8078 }
8079 else
8080 {
8081 if (self->regex)
8082 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8083 else
8084 msg = xstrdup (_("unload of library"));
8085 }
8086 ui_out_field_string (uiout, "what", msg);
8087 xfree (msg);
8088
8089 if (ui_out_is_mi_like_p (uiout))
8090 ui_out_field_string (uiout, "catch-type",
8091 self->is_load ? "load" : "unload");
8092 }
8093
8094 static void
8095 print_mention_catch_solib (struct breakpoint *b)
8096 {
8097 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8098
8099 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8100 self->is_load ? "load" : "unload");
8101 }
8102
8103 static void
8104 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8105 {
8106 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8107
8108 fprintf_unfiltered (fp, "%s %s",
8109 b->disposition == disp_del ? "tcatch" : "catch",
8110 self->is_load ? "load" : "unload");
8111 if (self->regex)
8112 fprintf_unfiltered (fp, " %s", self->regex);
8113 fprintf_unfiltered (fp, "\n");
8114 }
8115
8116 static struct breakpoint_ops catch_solib_breakpoint_ops;
8117
8118 /* Shared helper function (MI and CLI) for creating and installing
8119 a shared object event catchpoint. If IS_LOAD is non-zero then
8120 the events to be caught are load events, otherwise they are
8121 unload events. If IS_TEMP is non-zero the catchpoint is a
8122 temporary one. If ENABLED is non-zero the catchpoint is
8123 created in an enabled state. */
8124
8125 void
8126 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
8127 {
8128 struct solib_catchpoint *c;
8129 struct gdbarch *gdbarch = get_current_arch ();
8130 struct cleanup *cleanup;
8131
8132 if (!arg)
8133 arg = "";
8134 arg = skip_spaces (arg);
8135
8136 c = XCNEW (struct solib_catchpoint);
8137 cleanup = make_cleanup (xfree, c);
8138
8139 if (*arg != '\0')
8140 {
8141 int errcode;
8142
8143 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
8144 if (errcode != 0)
8145 {
8146 char *err = get_regcomp_error (errcode, &c->compiled);
8147
8148 make_cleanup (xfree, err);
8149 error (_("Invalid regexp (%s): %s"), err, arg);
8150 }
8151 c->regex = xstrdup (arg);
8152 }
8153
8154 c->is_load = is_load;
8155 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
8156 &catch_solib_breakpoint_ops);
8157
8158 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
8159
8160 discard_cleanups (cleanup);
8161 install_breakpoint (0, &c->base, 1);
8162 }
8163
8164 /* A helper function that does all the work for "catch load" and
8165 "catch unload". */
8166
8167 static void
8168 catch_load_or_unload (char *arg, int from_tty, int is_load,
8169 struct cmd_list_element *command)
8170 {
8171 int tempflag;
8172 const int enabled = 1;
8173
8174 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8175
8176 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8177 }
8178
8179 static void
8180 catch_load_command_1 (char *arg, int from_tty,
8181 struct cmd_list_element *command)
8182 {
8183 catch_load_or_unload (arg, from_tty, 1, command);
8184 }
8185
8186 static void
8187 catch_unload_command_1 (char *arg, int from_tty,
8188 struct cmd_list_element *command)
8189 {
8190 catch_load_or_unload (arg, from_tty, 0, command);
8191 }
8192
8193 /* An instance of this type is used to represent a syscall catchpoint.
8194 It includes a "struct breakpoint" as a kind of base class; users
8195 downcast to "struct breakpoint *" when needed. A breakpoint is
8196 really of this type iff its ops pointer points to
8197 CATCH_SYSCALL_BREAKPOINT_OPS. */
8198
8199 struct syscall_catchpoint
8200 {
8201 /* The base class. */
8202 struct breakpoint base;
8203
8204 /* Syscall numbers used for the 'catch syscall' feature. If no
8205 syscall has been specified for filtering, its value is NULL.
8206 Otherwise, it holds a list of all syscalls to be caught. The
8207 list elements are allocated with xmalloc. */
8208 VEC(int) *syscalls_to_be_caught;
8209 };
8210
8211 /* Implement the "dtor" breakpoint_ops method for syscall
8212 catchpoints. */
8213
8214 static void
8215 dtor_catch_syscall (struct breakpoint *b)
8216 {
8217 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8218
8219 VEC_free (int, c->syscalls_to_be_caught);
8220
8221 base_breakpoint_ops.dtor (b);
8222 }
8223
8224 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8225
8226 struct catch_syscall_inferior_data
8227 {
8228 /* We keep a count of the number of times the user has requested a
8229 particular syscall to be tracked, and pass this information to the
8230 target. This lets capable targets implement filtering directly. */
8231
8232 /* Number of times that "any" syscall is requested. */
8233 int any_syscall_count;
8234
8235 /* Count of each system call. */
8236 VEC(int) *syscalls_counts;
8237
8238 /* This counts all syscall catch requests, so we can readily determine
8239 if any catching is necessary. */
8240 int total_syscalls_count;
8241 };
8242
8243 static struct catch_syscall_inferior_data*
8244 get_catch_syscall_inferior_data (struct inferior *inf)
8245 {
8246 struct catch_syscall_inferior_data *inf_data;
8247
8248 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8249 if (inf_data == NULL)
8250 {
8251 inf_data = XCNEW (struct catch_syscall_inferior_data);
8252 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8253 }
8254
8255 return inf_data;
8256 }
8257
8258 static void
8259 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8260 {
8261 xfree (arg);
8262 }
8263
8264
8265 /* Implement the "insert" breakpoint_ops method for syscall
8266 catchpoints. */
8267
8268 static int
8269 insert_catch_syscall (struct bp_location *bl)
8270 {
8271 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8272 struct inferior *inf = current_inferior ();
8273 struct catch_syscall_inferior_data *inf_data
8274 = get_catch_syscall_inferior_data (inf);
8275
8276 ++inf_data->total_syscalls_count;
8277 if (!c->syscalls_to_be_caught)
8278 ++inf_data->any_syscall_count;
8279 else
8280 {
8281 int i, iter;
8282
8283 for (i = 0;
8284 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8285 i++)
8286 {
8287 int elem;
8288
8289 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8290 {
8291 int old_size = VEC_length (int, inf_data->syscalls_counts);
8292 uintptr_t vec_addr_offset
8293 = old_size * ((uintptr_t) sizeof (int));
8294 uintptr_t vec_addr;
8295 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8296 vec_addr = ((uintptr_t) VEC_address (int,
8297 inf_data->syscalls_counts)
8298 + vec_addr_offset);
8299 memset ((void *) vec_addr, 0,
8300 (iter + 1 - old_size) * sizeof (int));
8301 }
8302 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8303 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8304 }
8305 }
8306
8307 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8308 inf_data->total_syscalls_count != 0,
8309 inf_data->any_syscall_count,
8310 VEC_length (int,
8311 inf_data->syscalls_counts),
8312 VEC_address (int,
8313 inf_data->syscalls_counts));
8314 }
8315
8316 /* Implement the "remove" breakpoint_ops method for syscall
8317 catchpoints. */
8318
8319 static int
8320 remove_catch_syscall (struct bp_location *bl)
8321 {
8322 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8323 struct inferior *inf = current_inferior ();
8324 struct catch_syscall_inferior_data *inf_data
8325 = get_catch_syscall_inferior_data (inf);
8326
8327 --inf_data->total_syscalls_count;
8328 if (!c->syscalls_to_be_caught)
8329 --inf_data->any_syscall_count;
8330 else
8331 {
8332 int i, iter;
8333
8334 for (i = 0;
8335 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8336 i++)
8337 {
8338 int elem;
8339 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8340 /* Shouldn't happen. */
8341 continue;
8342 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8343 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8344 }
8345 }
8346
8347 return target_set_syscall_catchpoint (ptid_get_pid (inferior_ptid),
8348 inf_data->total_syscalls_count != 0,
8349 inf_data->any_syscall_count,
8350 VEC_length (int,
8351 inf_data->syscalls_counts),
8352 VEC_address (int,
8353 inf_data->syscalls_counts));
8354 }
8355
8356 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8357 catchpoints. */
8358
8359 static int
8360 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8361 struct address_space *aspace, CORE_ADDR bp_addr,
8362 const struct target_waitstatus *ws)
8363 {
8364 /* We must check if we are catching specific syscalls in this
8365 breakpoint. If we are, then we must guarantee that the called
8366 syscall is the same syscall we are catching. */
8367 int syscall_number = 0;
8368 const struct syscall_catchpoint *c
8369 = (const struct syscall_catchpoint *) bl->owner;
8370
8371 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8372 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8373 return 0;
8374
8375 syscall_number = ws->value.syscall_number;
8376
8377 /* Now, checking if the syscall is the same. */
8378 if (c->syscalls_to_be_caught)
8379 {
8380 int i, iter;
8381
8382 for (i = 0;
8383 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8384 i++)
8385 if (syscall_number == iter)
8386 return 1;
8387
8388 return 0;
8389 }
8390
8391 return 1;
8392 }
8393
8394 /* Implement the "print_it" breakpoint_ops method for syscall
8395 catchpoints. */
8396
8397 static enum print_stop_action
8398 print_it_catch_syscall (bpstat bs)
8399 {
8400 struct ui_out *uiout = current_uiout;
8401 struct breakpoint *b = bs->breakpoint_at;
8402 /* These are needed because we want to know in which state a
8403 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8404 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8405 must print "called syscall" or "returned from syscall". */
8406 ptid_t ptid;
8407 struct target_waitstatus last;
8408 struct syscall s;
8409
8410 get_last_target_status (&ptid, &last);
8411
8412 get_syscall_by_number (last.value.syscall_number, &s);
8413
8414 annotate_catchpoint (b->number);
8415
8416 if (b->disposition == disp_del)
8417 ui_out_text (uiout, "\nTemporary catchpoint ");
8418 else
8419 ui_out_text (uiout, "\nCatchpoint ");
8420 if (ui_out_is_mi_like_p (uiout))
8421 {
8422 ui_out_field_string (uiout, "reason",
8423 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8424 ? EXEC_ASYNC_SYSCALL_ENTRY
8425 : EXEC_ASYNC_SYSCALL_RETURN));
8426 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8427 }
8428 ui_out_field_int (uiout, "bkptno", b->number);
8429
8430 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8431 ui_out_text (uiout, " (call to syscall ");
8432 else
8433 ui_out_text (uiout, " (returned from syscall ");
8434
8435 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8436 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8437 if (s.name != NULL)
8438 ui_out_field_string (uiout, "syscall-name", s.name);
8439
8440 ui_out_text (uiout, "), ");
8441
8442 return PRINT_SRC_AND_LOC;
8443 }
8444
8445 /* Implement the "print_one" breakpoint_ops method for syscall
8446 catchpoints. */
8447
8448 static void
8449 print_one_catch_syscall (struct breakpoint *b,
8450 struct bp_location **last_loc)
8451 {
8452 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8453 struct value_print_options opts;
8454 struct ui_out *uiout = current_uiout;
8455
8456 get_user_print_options (&opts);
8457 /* Field 4, the address, is omitted (which makes the columns not
8458 line up too nicely with the headers, but the effect is relatively
8459 readable). */
8460 if (opts.addressprint)
8461 ui_out_field_skip (uiout, "addr");
8462 annotate_field (5);
8463
8464 if (c->syscalls_to_be_caught
8465 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8466 ui_out_text (uiout, "syscalls \"");
8467 else
8468 ui_out_text (uiout, "syscall \"");
8469
8470 if (c->syscalls_to_be_caught)
8471 {
8472 int i, iter;
8473 char *text = xstrprintf ("%s", "");
8474
8475 for (i = 0;
8476 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8477 i++)
8478 {
8479 char *x = text;
8480 struct syscall s;
8481 get_syscall_by_number (iter, &s);
8482
8483 if (s.name != NULL)
8484 text = xstrprintf ("%s%s, ", text, s.name);
8485 else
8486 text = xstrprintf ("%s%d, ", text, iter);
8487
8488 /* We have to xfree the last 'text' (now stored at 'x')
8489 because xstrprintf dynamically allocates new space for it
8490 on every call. */
8491 xfree (x);
8492 }
8493 /* Remove the last comma. */
8494 text[strlen (text) - 2] = '\0';
8495 ui_out_field_string (uiout, "what", text);
8496 }
8497 else
8498 ui_out_field_string (uiout, "what", "<any syscall>");
8499 ui_out_text (uiout, "\" ");
8500
8501 if (ui_out_is_mi_like_p (uiout))
8502 ui_out_field_string (uiout, "catch-type", "syscall");
8503 }
8504
8505 /* Implement the "print_mention" breakpoint_ops method for syscall
8506 catchpoints. */
8507
8508 static void
8509 print_mention_catch_syscall (struct breakpoint *b)
8510 {
8511 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8512
8513 if (c->syscalls_to_be_caught)
8514 {
8515 int i, iter;
8516
8517 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8518 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8519 else
8520 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8521
8522 for (i = 0;
8523 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8524 i++)
8525 {
8526 struct syscall s;
8527 get_syscall_by_number (iter, &s);
8528
8529 if (s.name)
8530 printf_filtered (" '%s' [%d]", s.name, s.number);
8531 else
8532 printf_filtered (" %d", s.number);
8533 }
8534 printf_filtered (")");
8535 }
8536 else
8537 printf_filtered (_("Catchpoint %d (any syscall)"),
8538 b->number);
8539 }
8540
8541 /* Implement the "print_recreate" breakpoint_ops method for syscall
8542 catchpoints. */
8543
8544 static void
8545 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8546 {
8547 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8548
8549 fprintf_unfiltered (fp, "catch syscall");
8550
8551 if (c->syscalls_to_be_caught)
8552 {
8553 int i, iter;
8554
8555 for (i = 0;
8556 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8557 i++)
8558 {
8559 struct syscall s;
8560
8561 get_syscall_by_number (iter, &s);
8562 if (s.name)
8563 fprintf_unfiltered (fp, " %s", s.name);
8564 else
8565 fprintf_unfiltered (fp, " %d", s.number);
8566 }
8567 }
8568 print_recreate_thread (b, fp);
8569 }
8570
8571 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8572
8573 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8574
8575 /* Returns non-zero if 'b' is a syscall catchpoint. */
8576
8577 static int
8578 syscall_catchpoint_p (struct breakpoint *b)
8579 {
8580 return (b->ops == &catch_syscall_breakpoint_ops);
8581 }
8582
8583 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8584 is non-zero, then make the breakpoint temporary. If COND_STRING is
8585 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8586 the breakpoint_ops structure associated to the catchpoint. */
8587
8588 void
8589 init_catchpoint (struct breakpoint *b,
8590 struct gdbarch *gdbarch, int tempflag,
8591 char *cond_string,
8592 const struct breakpoint_ops *ops)
8593 {
8594 struct symtab_and_line sal;
8595
8596 init_sal (&sal);
8597 sal.pspace = current_program_space;
8598
8599 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8600
8601 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8602 b->disposition = tempflag ? disp_del : disp_donttouch;
8603 }
8604
8605 void
8606 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8607 {
8608 add_to_breakpoint_chain (b);
8609 set_breakpoint_number (internal, b);
8610 if (is_tracepoint (b))
8611 set_tracepoint_count (breakpoint_count);
8612 if (!internal)
8613 mention (b);
8614 observer_notify_breakpoint_created (b);
8615
8616 if (update_gll)
8617 update_global_location_list (1);
8618 }
8619
8620 static void
8621 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8622 int tempflag, char *cond_string,
8623 const struct breakpoint_ops *ops)
8624 {
8625 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8626
8627 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8628
8629 c->forked_inferior_pid = null_ptid;
8630
8631 install_breakpoint (0, &c->base, 1);
8632 }
8633
8634 /* Exec catchpoints. */
8635
8636 /* An instance of this type is used to represent an exec catchpoint.
8637 It includes a "struct breakpoint" as a kind of base class; users
8638 downcast to "struct breakpoint *" when needed. A breakpoint is
8639 really of this type iff its ops pointer points to
8640 CATCH_EXEC_BREAKPOINT_OPS. */
8641
8642 struct exec_catchpoint
8643 {
8644 /* The base class. */
8645 struct breakpoint base;
8646
8647 /* Filename of a program whose exec triggered this catchpoint.
8648 This field is only valid immediately after this catchpoint has
8649 triggered. */
8650 char *exec_pathname;
8651 };
8652
8653 /* Implement the "dtor" breakpoint_ops method for exec
8654 catchpoints. */
8655
8656 static void
8657 dtor_catch_exec (struct breakpoint *b)
8658 {
8659 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8660
8661 xfree (c->exec_pathname);
8662
8663 base_breakpoint_ops.dtor (b);
8664 }
8665
8666 static int
8667 insert_catch_exec (struct bp_location *bl)
8668 {
8669 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8670 }
8671
8672 static int
8673 remove_catch_exec (struct bp_location *bl)
8674 {
8675 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8676 }
8677
8678 static int
8679 breakpoint_hit_catch_exec (const struct bp_location *bl,
8680 struct address_space *aspace, CORE_ADDR bp_addr,
8681 const struct target_waitstatus *ws)
8682 {
8683 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8684
8685 if (ws->kind != TARGET_WAITKIND_EXECD)
8686 return 0;
8687
8688 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8689 return 1;
8690 }
8691
8692 static enum print_stop_action
8693 print_it_catch_exec (bpstat bs)
8694 {
8695 struct ui_out *uiout = current_uiout;
8696 struct breakpoint *b = bs->breakpoint_at;
8697 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8698
8699 annotate_catchpoint (b->number);
8700 if (b->disposition == disp_del)
8701 ui_out_text (uiout, "\nTemporary catchpoint ");
8702 else
8703 ui_out_text (uiout, "\nCatchpoint ");
8704 if (ui_out_is_mi_like_p (uiout))
8705 {
8706 ui_out_field_string (uiout, "reason",
8707 async_reason_lookup (EXEC_ASYNC_EXEC));
8708 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8709 }
8710 ui_out_field_int (uiout, "bkptno", b->number);
8711 ui_out_text (uiout, " (exec'd ");
8712 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8713 ui_out_text (uiout, "), ");
8714
8715 return PRINT_SRC_AND_LOC;
8716 }
8717
8718 static void
8719 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8720 {
8721 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8722 struct value_print_options opts;
8723 struct ui_out *uiout = current_uiout;
8724
8725 get_user_print_options (&opts);
8726
8727 /* Field 4, the address, is omitted (which makes the columns
8728 not line up too nicely with the headers, but the effect
8729 is relatively readable). */
8730 if (opts.addressprint)
8731 ui_out_field_skip (uiout, "addr");
8732 annotate_field (5);
8733 ui_out_text (uiout, "exec");
8734 if (c->exec_pathname != NULL)
8735 {
8736 ui_out_text (uiout, ", program \"");
8737 ui_out_field_string (uiout, "what", c->exec_pathname);
8738 ui_out_text (uiout, "\" ");
8739 }
8740
8741 if (ui_out_is_mi_like_p (uiout))
8742 ui_out_field_string (uiout, "catch-type", "exec");
8743 }
8744
8745 static void
8746 print_mention_catch_exec (struct breakpoint *b)
8747 {
8748 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8749 }
8750
8751 /* Implement the "print_recreate" breakpoint_ops method for exec
8752 catchpoints. */
8753
8754 static void
8755 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8756 {
8757 fprintf_unfiltered (fp, "catch exec");
8758 print_recreate_thread (b, fp);
8759 }
8760
8761 static struct breakpoint_ops catch_exec_breakpoint_ops;
8762
8763 static void
8764 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8765 const struct breakpoint_ops *ops)
8766 {
8767 struct syscall_catchpoint *c;
8768 struct gdbarch *gdbarch = get_current_arch ();
8769
8770 c = XNEW (struct syscall_catchpoint);
8771 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8772 c->syscalls_to_be_caught = filter;
8773
8774 install_breakpoint (0, &c->base, 1);
8775 }
8776
8777 static int
8778 hw_breakpoint_used_count (void)
8779 {
8780 int i = 0;
8781 struct breakpoint *b;
8782 struct bp_location *bl;
8783
8784 ALL_BREAKPOINTS (b)
8785 {
8786 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8787 for (bl = b->loc; bl; bl = bl->next)
8788 {
8789 /* Special types of hardware breakpoints may use more than
8790 one register. */
8791 i += b->ops->resources_needed (bl);
8792 }
8793 }
8794
8795 return i;
8796 }
8797
8798 /* Returns the resources B would use if it were a hardware
8799 watchpoint. */
8800
8801 static int
8802 hw_watchpoint_use_count (struct breakpoint *b)
8803 {
8804 int i = 0;
8805 struct bp_location *bl;
8806
8807 if (!breakpoint_enabled (b))
8808 return 0;
8809
8810 for (bl = b->loc; bl; bl = bl->next)
8811 {
8812 /* Special types of hardware watchpoints may use more than
8813 one register. */
8814 i += b->ops->resources_needed (bl);
8815 }
8816
8817 return i;
8818 }
8819
8820 /* Returns the sum the used resources of all hardware watchpoints of
8821 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8822 the sum of the used resources of all hardware watchpoints of other
8823 types _not_ TYPE. */
8824
8825 static int
8826 hw_watchpoint_used_count_others (struct breakpoint *except,
8827 enum bptype type, int *other_type_used)
8828 {
8829 int i = 0;
8830 struct breakpoint *b;
8831
8832 *other_type_used = 0;
8833 ALL_BREAKPOINTS (b)
8834 {
8835 if (b == except)
8836 continue;
8837 if (!breakpoint_enabled (b))
8838 continue;
8839
8840 if (b->type == type)
8841 i += hw_watchpoint_use_count (b);
8842 else if (is_hardware_watchpoint (b))
8843 *other_type_used = 1;
8844 }
8845
8846 return i;
8847 }
8848
8849 void
8850 disable_watchpoints_before_interactive_call_start (void)
8851 {
8852 struct breakpoint *b;
8853
8854 ALL_BREAKPOINTS (b)
8855 {
8856 if (is_watchpoint (b) && breakpoint_enabled (b))
8857 {
8858 b->enable_state = bp_call_disabled;
8859 update_global_location_list (0);
8860 }
8861 }
8862 }
8863
8864 void
8865 enable_watchpoints_after_interactive_call_stop (void)
8866 {
8867 struct breakpoint *b;
8868
8869 ALL_BREAKPOINTS (b)
8870 {
8871 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8872 {
8873 b->enable_state = bp_enabled;
8874 update_global_location_list (1);
8875 }
8876 }
8877 }
8878
8879 void
8880 disable_breakpoints_before_startup (void)
8881 {
8882 current_program_space->executing_startup = 1;
8883 update_global_location_list (0);
8884 }
8885
8886 void
8887 enable_breakpoints_after_startup (void)
8888 {
8889 current_program_space->executing_startup = 0;
8890 breakpoint_re_set ();
8891 }
8892
8893
8894 /* Set a breakpoint that will evaporate an end of command
8895 at address specified by SAL.
8896 Restrict it to frame FRAME if FRAME is nonzero. */
8897
8898 struct breakpoint *
8899 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8900 struct frame_id frame_id, enum bptype type)
8901 {
8902 struct breakpoint *b;
8903
8904 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8905 tail-called one. */
8906 gdb_assert (!frame_id_artificial_p (frame_id));
8907
8908 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8909 b->enable_state = bp_enabled;
8910 b->disposition = disp_donttouch;
8911 b->frame_id = frame_id;
8912
8913 /* If we're debugging a multi-threaded program, then we want
8914 momentary breakpoints to be active in only a single thread of
8915 control. */
8916 if (in_thread_list (inferior_ptid))
8917 b->thread = pid_to_thread_id (inferior_ptid);
8918
8919 update_global_location_list_nothrow (1);
8920
8921 return b;
8922 }
8923
8924 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8925 The new breakpoint will have type TYPE, and use OPS as it
8926 breakpoint_ops. */
8927
8928 static struct breakpoint *
8929 momentary_breakpoint_from_master (struct breakpoint *orig,
8930 enum bptype type,
8931 const struct breakpoint_ops *ops)
8932 {
8933 struct breakpoint *copy;
8934
8935 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8936 copy->loc = allocate_bp_location (copy);
8937 set_breakpoint_location_function (copy->loc, 1);
8938
8939 copy->loc->gdbarch = orig->loc->gdbarch;
8940 copy->loc->requested_address = orig->loc->requested_address;
8941 copy->loc->address = orig->loc->address;
8942 copy->loc->section = orig->loc->section;
8943 copy->loc->pspace = orig->loc->pspace;
8944 copy->loc->probe = orig->loc->probe;
8945 copy->loc->line_number = orig->loc->line_number;
8946 copy->loc->symtab = orig->loc->symtab;
8947 copy->frame_id = orig->frame_id;
8948 copy->thread = orig->thread;
8949 copy->pspace = orig->pspace;
8950
8951 copy->enable_state = bp_enabled;
8952 copy->disposition = disp_donttouch;
8953 copy->number = internal_breakpoint_number--;
8954
8955 update_global_location_list_nothrow (0);
8956 return copy;
8957 }
8958
8959 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8960 ORIG is NULL. */
8961
8962 struct breakpoint *
8963 clone_momentary_breakpoint (struct breakpoint *orig)
8964 {
8965 /* If there's nothing to clone, then return nothing. */
8966 if (orig == NULL)
8967 return NULL;
8968
8969 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8970 }
8971
8972 struct breakpoint *
8973 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8974 enum bptype type)
8975 {
8976 struct symtab_and_line sal;
8977
8978 sal = find_pc_line (pc, 0);
8979 sal.pc = pc;
8980 sal.section = find_pc_overlay (pc);
8981 sal.explicit_pc = 1;
8982
8983 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8984 }
8985 \f
8986
8987 /* Tell the user we have just set a breakpoint B. */
8988
8989 static void
8990 mention (struct breakpoint *b)
8991 {
8992 b->ops->print_mention (b);
8993 if (ui_out_is_mi_like_p (current_uiout))
8994 return;
8995 printf_filtered ("\n");
8996 }
8997 \f
8998
8999 static struct bp_location *
9000 add_location_to_breakpoint (struct breakpoint *b,
9001 const struct symtab_and_line *sal)
9002 {
9003 struct bp_location *loc, **tmp;
9004 CORE_ADDR adjusted_address;
9005 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
9006
9007 if (loc_gdbarch == NULL)
9008 loc_gdbarch = b->gdbarch;
9009
9010 /* Adjust the breakpoint's address prior to allocating a location.
9011 Once we call allocate_bp_location(), that mostly uninitialized
9012 location will be placed on the location chain. Adjustment of the
9013 breakpoint may cause target_read_memory() to be called and we do
9014 not want its scan of the location chain to find a breakpoint and
9015 location that's only been partially initialized. */
9016 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
9017 sal->pc, b->type);
9018
9019 /* Sort the locations by their ADDRESS. */
9020 loc = allocate_bp_location (b);
9021 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
9022 tmp = &((*tmp)->next))
9023 ;
9024 loc->next = *tmp;
9025 *tmp = loc;
9026
9027 loc->requested_address = sal->pc;
9028 loc->address = adjusted_address;
9029 loc->pspace = sal->pspace;
9030 loc->probe.probe = sal->probe;
9031 loc->probe.objfile = sal->objfile;
9032 gdb_assert (loc->pspace != NULL);
9033 loc->section = sal->section;
9034 loc->gdbarch = loc_gdbarch;
9035 loc->line_number = sal->line;
9036 loc->symtab = sal->symtab;
9037
9038 set_breakpoint_location_function (loc,
9039 sal->explicit_pc || sal->explicit_line);
9040 return loc;
9041 }
9042 \f
9043
9044 /* Return 1 if LOC is pointing to a permanent breakpoint,
9045 return 0 otherwise. */
9046
9047 static int
9048 bp_loc_is_permanent (struct bp_location *loc)
9049 {
9050 int len;
9051 CORE_ADDR addr;
9052 const gdb_byte *bpoint;
9053 gdb_byte *target_mem;
9054 struct cleanup *cleanup;
9055 int retval = 0;
9056
9057 gdb_assert (loc != NULL);
9058
9059 addr = loc->address;
9060 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
9061
9062 /* Software breakpoints unsupported? */
9063 if (bpoint == NULL)
9064 return 0;
9065
9066 target_mem = alloca (len);
9067
9068 /* Enable the automatic memory restoration from breakpoints while
9069 we read the memory. Otherwise we could say about our temporary
9070 breakpoints they are permanent. */
9071 cleanup = save_current_space_and_thread ();
9072
9073 switch_to_program_space_and_thread (loc->pspace);
9074 make_show_memory_breakpoints_cleanup (0);
9075
9076 if (target_read_memory (loc->address, target_mem, len) == 0
9077 && memcmp (target_mem, bpoint, len) == 0)
9078 retval = 1;
9079
9080 do_cleanups (cleanup);
9081
9082 return retval;
9083 }
9084
9085 /* Build a command list for the dprintf corresponding to the current
9086 settings of the dprintf style options. */
9087
9088 static void
9089 update_dprintf_command_list (struct breakpoint *b)
9090 {
9091 char *dprintf_args = b->extra_string;
9092 char *printf_line = NULL;
9093
9094 if (!dprintf_args)
9095 return;
9096
9097 dprintf_args = skip_spaces (dprintf_args);
9098
9099 /* Allow a comma, as it may have terminated a location, but don't
9100 insist on it. */
9101 if (*dprintf_args == ',')
9102 ++dprintf_args;
9103 dprintf_args = skip_spaces (dprintf_args);
9104
9105 if (*dprintf_args != '"')
9106 error (_("Bad format string, missing '\"'."));
9107
9108 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
9109 printf_line = xstrprintf ("printf %s", dprintf_args);
9110 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
9111 {
9112 if (!dprintf_function)
9113 error (_("No function supplied for dprintf call"));
9114
9115 if (dprintf_channel && strlen (dprintf_channel) > 0)
9116 printf_line = xstrprintf ("call (void) %s (%s,%s)",
9117 dprintf_function,
9118 dprintf_channel,
9119 dprintf_args);
9120 else
9121 printf_line = xstrprintf ("call (void) %s (%s)",
9122 dprintf_function,
9123 dprintf_args);
9124 }
9125 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
9126 {
9127 if (target_can_run_breakpoint_commands ())
9128 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
9129 else
9130 {
9131 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
9132 printf_line = xstrprintf ("printf %s", dprintf_args);
9133 }
9134 }
9135 else
9136 internal_error (__FILE__, __LINE__,
9137 _("Invalid dprintf style."));
9138
9139 gdb_assert (printf_line != NULL);
9140 /* Manufacture a printf sequence. */
9141 {
9142 struct command_line *printf_cmd_line
9143 = xmalloc (sizeof (struct command_line));
9144
9145 printf_cmd_line = xmalloc (sizeof (struct command_line));
9146 printf_cmd_line->control_type = simple_control;
9147 printf_cmd_line->body_count = 0;
9148 printf_cmd_line->body_list = NULL;
9149 printf_cmd_line->next = NULL;
9150 printf_cmd_line->line = printf_line;
9151
9152 breakpoint_set_commands (b, printf_cmd_line);
9153 }
9154 }
9155
9156 /* Update all dprintf commands, making their command lists reflect
9157 current style settings. */
9158
9159 static void
9160 update_dprintf_commands (char *args, int from_tty,
9161 struct cmd_list_element *c)
9162 {
9163 struct breakpoint *b;
9164
9165 ALL_BREAKPOINTS (b)
9166 {
9167 if (b->type == bp_dprintf)
9168 update_dprintf_command_list (b);
9169 }
9170 }
9171
9172 /* Create a breakpoint with SAL as location. Use ADDR_STRING
9173 as textual description of the location, and COND_STRING
9174 as condition expression. */
9175
9176 static void
9177 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
9178 struct symtabs_and_lines sals, char *addr_string,
9179 char *filter, char *cond_string,
9180 char *extra_string,
9181 enum bptype type, enum bpdisp disposition,
9182 int thread, int task, int ignore_count,
9183 const struct breakpoint_ops *ops, int from_tty,
9184 int enabled, int internal, unsigned flags,
9185 int display_canonical)
9186 {
9187 int i;
9188
9189 if (type == bp_hardware_breakpoint)
9190 {
9191 int target_resources_ok;
9192
9193 i = hw_breakpoint_used_count ();
9194 target_resources_ok =
9195 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9196 i + 1, 0);
9197 if (target_resources_ok == 0)
9198 error (_("No hardware breakpoint support in the target."));
9199 else if (target_resources_ok < 0)
9200 error (_("Hardware breakpoints used exceeds limit."));
9201 }
9202
9203 gdb_assert (sals.nelts > 0);
9204
9205 for (i = 0; i < sals.nelts; ++i)
9206 {
9207 struct symtab_and_line sal = sals.sals[i];
9208 struct bp_location *loc;
9209
9210 if (from_tty)
9211 {
9212 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9213 if (!loc_gdbarch)
9214 loc_gdbarch = gdbarch;
9215
9216 describe_other_breakpoints (loc_gdbarch,
9217 sal.pspace, sal.pc, sal.section, thread);
9218 }
9219
9220 if (i == 0)
9221 {
9222 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9223 b->thread = thread;
9224 b->task = task;
9225
9226 b->cond_string = cond_string;
9227 b->extra_string = extra_string;
9228 b->ignore_count = ignore_count;
9229 b->enable_state = enabled ? bp_enabled : bp_disabled;
9230 b->disposition = disposition;
9231
9232 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9233 b->loc->inserted = 1;
9234
9235 if (type == bp_static_tracepoint)
9236 {
9237 struct tracepoint *t = (struct tracepoint *) b;
9238 struct static_tracepoint_marker marker;
9239
9240 if (strace_marker_p (b))
9241 {
9242 /* We already know the marker exists, otherwise, we
9243 wouldn't see a sal for it. */
9244 char *p = &addr_string[3];
9245 char *endp;
9246 char *marker_str;
9247
9248 p = skip_spaces (p);
9249
9250 endp = skip_to_space (p);
9251
9252 marker_str = savestring (p, endp - p);
9253 t->static_trace_marker_id = marker_str;
9254
9255 printf_filtered (_("Probed static tracepoint "
9256 "marker \"%s\"\n"),
9257 t->static_trace_marker_id);
9258 }
9259 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9260 {
9261 t->static_trace_marker_id = xstrdup (marker.str_id);
9262 release_static_tracepoint_marker (&marker);
9263
9264 printf_filtered (_("Probed static tracepoint "
9265 "marker \"%s\"\n"),
9266 t->static_trace_marker_id);
9267 }
9268 else
9269 warning (_("Couldn't determine the static "
9270 "tracepoint marker to probe"));
9271 }
9272
9273 loc = b->loc;
9274 }
9275 else
9276 {
9277 loc = add_location_to_breakpoint (b, &sal);
9278 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9279 loc->inserted = 1;
9280 }
9281
9282 if (bp_loc_is_permanent (loc))
9283 make_breakpoint_permanent (b);
9284
9285 if (b->cond_string)
9286 {
9287 const char *arg = b->cond_string;
9288
9289 loc->cond = parse_exp_1 (&arg, loc->address,
9290 block_for_pc (loc->address), 0);
9291 if (*arg)
9292 error (_("Garbage '%s' follows condition"), arg);
9293 }
9294
9295 /* Dynamic printf requires and uses additional arguments on the
9296 command line, otherwise it's an error. */
9297 if (type == bp_dprintf)
9298 {
9299 if (b->extra_string)
9300 update_dprintf_command_list (b);
9301 else
9302 error (_("Format string required"));
9303 }
9304 else if (b->extra_string)
9305 error (_("Garbage '%s' at end of command"), b->extra_string);
9306 }
9307
9308 b->display_canonical = display_canonical;
9309 if (addr_string)
9310 b->addr_string = addr_string;
9311 else
9312 /* addr_string has to be used or breakpoint_re_set will delete
9313 me. */
9314 b->addr_string
9315 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9316 b->filter = filter;
9317 }
9318
9319 static void
9320 create_breakpoint_sal (struct gdbarch *gdbarch,
9321 struct symtabs_and_lines sals, char *addr_string,
9322 char *filter, char *cond_string,
9323 char *extra_string,
9324 enum bptype type, enum bpdisp disposition,
9325 int thread, int task, int ignore_count,
9326 const struct breakpoint_ops *ops, int from_tty,
9327 int enabled, int internal, unsigned flags,
9328 int display_canonical)
9329 {
9330 struct breakpoint *b;
9331 struct cleanup *old_chain;
9332
9333 if (is_tracepoint_type (type))
9334 {
9335 struct tracepoint *t;
9336
9337 t = XCNEW (struct tracepoint);
9338 b = &t->base;
9339 }
9340 else
9341 b = XNEW (struct breakpoint);
9342
9343 old_chain = make_cleanup (xfree, b);
9344
9345 init_breakpoint_sal (b, gdbarch,
9346 sals, addr_string,
9347 filter, cond_string, extra_string,
9348 type, disposition,
9349 thread, task, ignore_count,
9350 ops, from_tty,
9351 enabled, internal, flags,
9352 display_canonical);
9353 discard_cleanups (old_chain);
9354
9355 install_breakpoint (internal, b, 0);
9356 }
9357
9358 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9359 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9360 value. COND_STRING, if not NULL, specified the condition to be
9361 used for all breakpoints. Essentially the only case where
9362 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9363 function. In that case, it's still not possible to specify
9364 separate conditions for different overloaded functions, so
9365 we take just a single condition string.
9366
9367 NOTE: If the function succeeds, the caller is expected to cleanup
9368 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9369 array contents). If the function fails (error() is called), the
9370 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9371 COND and SALS arrays and each of those arrays contents. */
9372
9373 static void
9374 create_breakpoints_sal (struct gdbarch *gdbarch,
9375 struct linespec_result *canonical,
9376 char *cond_string, char *extra_string,
9377 enum bptype type, enum bpdisp disposition,
9378 int thread, int task, int ignore_count,
9379 const struct breakpoint_ops *ops, int from_tty,
9380 int enabled, int internal, unsigned flags)
9381 {
9382 int i;
9383 struct linespec_sals *lsal;
9384
9385 if (canonical->pre_expanded)
9386 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9387
9388 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9389 {
9390 /* Note that 'addr_string' can be NULL in the case of a plain
9391 'break', without arguments. */
9392 char *addr_string = (canonical->addr_string
9393 ? xstrdup (canonical->addr_string)
9394 : NULL);
9395 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9396 struct cleanup *inner = make_cleanup (xfree, addr_string);
9397
9398 make_cleanup (xfree, filter_string);
9399 create_breakpoint_sal (gdbarch, lsal->sals,
9400 addr_string,
9401 filter_string,
9402 cond_string, extra_string,
9403 type, disposition,
9404 thread, task, ignore_count, ops,
9405 from_tty, enabled, internal, flags,
9406 canonical->special_display);
9407 discard_cleanups (inner);
9408 }
9409 }
9410
9411 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9412 followed by conditionals. On return, SALS contains an array of SAL
9413 addresses found. ADDR_STRING contains a vector of (canonical)
9414 address strings. ADDRESS points to the end of the SAL.
9415
9416 The array and the line spec strings are allocated on the heap, it is
9417 the caller's responsibility to free them. */
9418
9419 static void
9420 parse_breakpoint_sals (char **address,
9421 struct linespec_result *canonical)
9422 {
9423 /* If no arg given, or if first arg is 'if ', use the default
9424 breakpoint. */
9425 if ((*address) == NULL
9426 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9427 {
9428 /* The last displayed codepoint, if it's valid, is our default breakpoint
9429 address. */
9430 if (last_displayed_sal_is_valid ())
9431 {
9432 struct linespec_sals lsal;
9433 struct symtab_and_line sal;
9434 CORE_ADDR pc;
9435
9436 init_sal (&sal); /* Initialize to zeroes. */
9437 lsal.sals.sals = (struct symtab_and_line *)
9438 xmalloc (sizeof (struct symtab_and_line));
9439
9440 /* Set sal's pspace, pc, symtab, and line to the values
9441 corresponding to the last call to print_frame_info.
9442 Be sure to reinitialize LINE with NOTCURRENT == 0
9443 as the breakpoint line number is inappropriate otherwise.
9444 find_pc_line would adjust PC, re-set it back. */
9445 get_last_displayed_sal (&sal);
9446 pc = sal.pc;
9447 sal = find_pc_line (pc, 0);
9448
9449 /* "break" without arguments is equivalent to "break *PC"
9450 where PC is the last displayed codepoint's address. So
9451 make sure to set sal.explicit_pc to prevent GDB from
9452 trying to expand the list of sals to include all other
9453 instances with the same symtab and line. */
9454 sal.pc = pc;
9455 sal.explicit_pc = 1;
9456
9457 lsal.sals.sals[0] = sal;
9458 lsal.sals.nelts = 1;
9459 lsal.canonical = NULL;
9460
9461 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9462 }
9463 else
9464 error (_("No default breakpoint address now."));
9465 }
9466 else
9467 {
9468 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9469
9470 /* Force almost all breakpoints to be in terms of the
9471 current_source_symtab (which is decode_line_1's default).
9472 This should produce the results we want almost all of the
9473 time while leaving default_breakpoint_* alone.
9474
9475 ObjC: However, don't match an Objective-C method name which
9476 may have a '+' or '-' succeeded by a '['. */
9477 if (last_displayed_sal_is_valid ()
9478 && (!cursal.symtab
9479 || ((strchr ("+-", (*address)[0]) != NULL)
9480 && ((*address)[1] != '['))))
9481 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9482 get_last_displayed_symtab (),
9483 get_last_displayed_line (),
9484 canonical, NULL, NULL);
9485 else
9486 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9487 cursal.symtab, cursal.line, canonical, NULL, NULL);
9488 }
9489 }
9490
9491
9492 /* Convert each SAL into a real PC. Verify that the PC can be
9493 inserted as a breakpoint. If it can't throw an error. */
9494
9495 static void
9496 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9497 {
9498 int i;
9499
9500 for (i = 0; i < sals->nelts; i++)
9501 resolve_sal_pc (&sals->sals[i]);
9502 }
9503
9504 /* Fast tracepoints may have restrictions on valid locations. For
9505 instance, a fast tracepoint using a jump instead of a trap will
9506 likely have to overwrite more bytes than a trap would, and so can
9507 only be placed where the instruction is longer than the jump, or a
9508 multi-instruction sequence does not have a jump into the middle of
9509 it, etc. */
9510
9511 static void
9512 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9513 struct symtabs_and_lines *sals)
9514 {
9515 int i, rslt;
9516 struct symtab_and_line *sal;
9517 char *msg;
9518 struct cleanup *old_chain;
9519
9520 for (i = 0; i < sals->nelts; i++)
9521 {
9522 struct gdbarch *sarch;
9523
9524 sal = &sals->sals[i];
9525
9526 sarch = get_sal_arch (*sal);
9527 /* We fall back to GDBARCH if there is no architecture
9528 associated with SAL. */
9529 if (sarch == NULL)
9530 sarch = gdbarch;
9531 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9532 NULL, &msg);
9533 old_chain = make_cleanup (xfree, msg);
9534
9535 if (!rslt)
9536 error (_("May not have a fast tracepoint at 0x%s%s"),
9537 paddress (sarch, sal->pc), (msg ? msg : ""));
9538
9539 do_cleanups (old_chain);
9540 }
9541 }
9542
9543 /* Issue an invalid thread ID error. */
9544
9545 static void ATTRIBUTE_NORETURN
9546 invalid_thread_id_error (int id)
9547 {
9548 error (_("Unknown thread %d."), id);
9549 }
9550
9551 /* Given TOK, a string specification of condition and thread, as
9552 accepted by the 'break' command, extract the condition
9553 string and thread number and set *COND_STRING and *THREAD.
9554 PC identifies the context at which the condition should be parsed.
9555 If no condition is found, *COND_STRING is set to NULL.
9556 If no thread is found, *THREAD is set to -1. */
9557
9558 static void
9559 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9560 char **cond_string, int *thread, int *task,
9561 char **rest)
9562 {
9563 *cond_string = NULL;
9564 *thread = -1;
9565 *task = 0;
9566 *rest = NULL;
9567
9568 while (tok && *tok)
9569 {
9570 const char *end_tok;
9571 int toklen;
9572 const char *cond_start = NULL;
9573 const char *cond_end = NULL;
9574
9575 tok = skip_spaces_const (tok);
9576
9577 if ((*tok == '"' || *tok == ',') && rest)
9578 {
9579 *rest = savestring (tok, strlen (tok));
9580 return;
9581 }
9582
9583 end_tok = skip_to_space_const (tok);
9584
9585 toklen = end_tok - tok;
9586
9587 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9588 {
9589 struct expression *expr;
9590
9591 tok = cond_start = end_tok + 1;
9592 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9593 xfree (expr);
9594 cond_end = tok;
9595 *cond_string = savestring (cond_start, cond_end - cond_start);
9596 }
9597 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9598 {
9599 char *tmptok;
9600
9601 tok = end_tok + 1;
9602 *thread = strtol (tok, &tmptok, 0);
9603 if (tok == tmptok)
9604 error (_("Junk after thread keyword."));
9605 if (!valid_thread_id (*thread))
9606 invalid_thread_id_error (*thread);
9607 tok = tmptok;
9608 }
9609 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9610 {
9611 char *tmptok;
9612
9613 tok = end_tok + 1;
9614 *task = strtol (tok, &tmptok, 0);
9615 if (tok == tmptok)
9616 error (_("Junk after task keyword."));
9617 if (!valid_task_id (*task))
9618 error (_("Unknown task %d."), *task);
9619 tok = tmptok;
9620 }
9621 else if (rest)
9622 {
9623 *rest = savestring (tok, strlen (tok));
9624 return;
9625 }
9626 else
9627 error (_("Junk at end of arguments."));
9628 }
9629 }
9630
9631 /* Decode a static tracepoint marker spec. */
9632
9633 static struct symtabs_and_lines
9634 decode_static_tracepoint_spec (char **arg_p)
9635 {
9636 VEC(static_tracepoint_marker_p) *markers = NULL;
9637 struct symtabs_and_lines sals;
9638 struct cleanup *old_chain;
9639 char *p = &(*arg_p)[3];
9640 char *endp;
9641 char *marker_str;
9642 int i;
9643
9644 p = skip_spaces (p);
9645
9646 endp = skip_to_space (p);
9647
9648 marker_str = savestring (p, endp - p);
9649 old_chain = make_cleanup (xfree, marker_str);
9650
9651 markers = target_static_tracepoint_markers_by_strid (marker_str);
9652 if (VEC_empty(static_tracepoint_marker_p, markers))
9653 error (_("No known static tracepoint marker named %s"), marker_str);
9654
9655 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9656 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9657
9658 for (i = 0; i < sals.nelts; i++)
9659 {
9660 struct static_tracepoint_marker *marker;
9661
9662 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9663
9664 init_sal (&sals.sals[i]);
9665
9666 sals.sals[i] = find_pc_line (marker->address, 0);
9667 sals.sals[i].pc = marker->address;
9668
9669 release_static_tracepoint_marker (marker);
9670 }
9671
9672 do_cleanups (old_chain);
9673
9674 *arg_p = endp;
9675 return sals;
9676 }
9677
9678 /* Set a breakpoint. This function is shared between CLI and MI
9679 functions for setting a breakpoint. This function has two major
9680 modes of operations, selected by the PARSE_ARG parameter. If
9681 non-zero, the function will parse ARG, extracting location,
9682 condition, thread and extra string. Otherwise, ARG is just the
9683 breakpoint's location, with condition, thread, and extra string
9684 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9685 If INTERNAL is non-zero, the breakpoint number will be allocated
9686 from the internal breakpoint count. Returns true if any breakpoint
9687 was created; false otherwise. */
9688
9689 int
9690 create_breakpoint (struct gdbarch *gdbarch,
9691 char *arg, char *cond_string,
9692 int thread, char *extra_string,
9693 int parse_arg,
9694 int tempflag, enum bptype type_wanted,
9695 int ignore_count,
9696 enum auto_boolean pending_break_support,
9697 const struct breakpoint_ops *ops,
9698 int from_tty, int enabled, int internal,
9699 unsigned flags)
9700 {
9701 volatile struct gdb_exception e;
9702 char *copy_arg = NULL;
9703 char *addr_start = arg;
9704 struct linespec_result canonical;
9705 struct cleanup *old_chain;
9706 struct cleanup *bkpt_chain = NULL;
9707 int pending = 0;
9708 int task = 0;
9709 int prev_bkpt_count = breakpoint_count;
9710
9711 gdb_assert (ops != NULL);
9712
9713 init_linespec_result (&canonical);
9714
9715 TRY_CATCH (e, RETURN_MASK_ALL)
9716 {
9717 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9718 addr_start, &copy_arg);
9719 }
9720
9721 /* If caller is interested in rc value from parse, set value. */
9722 switch (e.reason)
9723 {
9724 case GDB_NO_ERROR:
9725 if (VEC_empty (linespec_sals, canonical.sals))
9726 return 0;
9727 break;
9728 case RETURN_ERROR:
9729 switch (e.error)
9730 {
9731 case NOT_FOUND_ERROR:
9732
9733 /* If pending breakpoint support is turned off, throw
9734 error. */
9735
9736 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9737 throw_exception (e);
9738
9739 exception_print (gdb_stderr, e);
9740
9741 /* If pending breakpoint support is auto query and the user
9742 selects no, then simply return the error code. */
9743 if (pending_break_support == AUTO_BOOLEAN_AUTO
9744 && !nquery (_("Make %s pending on future shared library load? "),
9745 bptype_string (type_wanted)))
9746 return 0;
9747
9748 /* At this point, either the user was queried about setting
9749 a pending breakpoint and selected yes, or pending
9750 breakpoint behavior is on and thus a pending breakpoint
9751 is defaulted on behalf of the user. */
9752 {
9753 struct linespec_sals lsal;
9754
9755 copy_arg = xstrdup (addr_start);
9756 lsal.canonical = xstrdup (copy_arg);
9757 lsal.sals.nelts = 1;
9758 lsal.sals.sals = XNEW (struct symtab_and_line);
9759 init_sal (&lsal.sals.sals[0]);
9760 pending = 1;
9761 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9762 }
9763 break;
9764 default:
9765 throw_exception (e);
9766 }
9767 break;
9768 default:
9769 throw_exception (e);
9770 }
9771
9772 /* Create a chain of things that always need to be cleaned up. */
9773 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9774
9775 /* ----------------------------- SNIP -----------------------------
9776 Anything added to the cleanup chain beyond this point is assumed
9777 to be part of a breakpoint. If the breakpoint create succeeds
9778 then the memory is not reclaimed. */
9779 bkpt_chain = make_cleanup (null_cleanup, 0);
9780
9781 /* Resolve all line numbers to PC's and verify that the addresses
9782 are ok for the target. */
9783 if (!pending)
9784 {
9785 int ix;
9786 struct linespec_sals *iter;
9787
9788 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9789 breakpoint_sals_to_pc (&iter->sals);
9790 }
9791
9792 /* Fast tracepoints may have additional restrictions on location. */
9793 if (!pending && type_wanted == bp_fast_tracepoint)
9794 {
9795 int ix;
9796 struct linespec_sals *iter;
9797
9798 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9799 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9800 }
9801
9802 /* Verify that condition can be parsed, before setting any
9803 breakpoints. Allocate a separate condition expression for each
9804 breakpoint. */
9805 if (!pending)
9806 {
9807 if (parse_arg)
9808 {
9809 char *rest;
9810 struct linespec_sals *lsal;
9811
9812 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9813
9814 /* Here we only parse 'arg' to separate condition
9815 from thread number, so parsing in context of first
9816 sal is OK. When setting the breakpoint we'll
9817 re-parse it in context of each sal. */
9818
9819 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9820 &thread, &task, &rest);
9821 if (cond_string)
9822 make_cleanup (xfree, cond_string);
9823 if (rest)
9824 make_cleanup (xfree, rest);
9825 if (rest)
9826 extra_string = rest;
9827 }
9828 else
9829 {
9830 if (*arg != '\0')
9831 error (_("Garbage '%s' at end of location"), arg);
9832
9833 /* Create a private copy of condition string. */
9834 if (cond_string)
9835 {
9836 cond_string = xstrdup (cond_string);
9837 make_cleanup (xfree, cond_string);
9838 }
9839 /* Create a private copy of any extra string. */
9840 if (extra_string)
9841 {
9842 extra_string = xstrdup (extra_string);
9843 make_cleanup (xfree, extra_string);
9844 }
9845 }
9846
9847 ops->create_breakpoints_sal (gdbarch, &canonical,
9848 cond_string, extra_string, type_wanted,
9849 tempflag ? disp_del : disp_donttouch,
9850 thread, task, ignore_count, ops,
9851 from_tty, enabled, internal, flags);
9852 }
9853 else
9854 {
9855 struct breakpoint *b;
9856
9857 make_cleanup (xfree, copy_arg);
9858
9859 if (is_tracepoint_type (type_wanted))
9860 {
9861 struct tracepoint *t;
9862
9863 t = XCNEW (struct tracepoint);
9864 b = &t->base;
9865 }
9866 else
9867 b = XNEW (struct breakpoint);
9868
9869 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9870
9871 b->addr_string = copy_arg;
9872 if (parse_arg)
9873 b->cond_string = NULL;
9874 else
9875 {
9876 /* Create a private copy of condition string. */
9877 if (cond_string)
9878 {
9879 cond_string = xstrdup (cond_string);
9880 make_cleanup (xfree, cond_string);
9881 }
9882 b->cond_string = cond_string;
9883 }
9884 b->extra_string = NULL;
9885 b->ignore_count = ignore_count;
9886 b->disposition = tempflag ? disp_del : disp_donttouch;
9887 b->condition_not_parsed = 1;
9888 b->enable_state = enabled ? bp_enabled : bp_disabled;
9889 if ((type_wanted != bp_breakpoint
9890 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9891 b->pspace = current_program_space;
9892
9893 install_breakpoint (internal, b, 0);
9894 }
9895
9896 if (VEC_length (linespec_sals, canonical.sals) > 1)
9897 {
9898 warning (_("Multiple breakpoints were set.\nUse the "
9899 "\"delete\" command to delete unwanted breakpoints."));
9900 prev_breakpoint_count = prev_bkpt_count;
9901 }
9902
9903 /* That's it. Discard the cleanups for data inserted into the
9904 breakpoint. */
9905 discard_cleanups (bkpt_chain);
9906 /* But cleanup everything else. */
9907 do_cleanups (old_chain);
9908
9909 /* error call may happen here - have BKPT_CHAIN already discarded. */
9910 update_global_location_list (1);
9911
9912 return 1;
9913 }
9914
9915 /* Set a breakpoint.
9916 ARG is a string describing breakpoint address,
9917 condition, and thread.
9918 FLAG specifies if a breakpoint is hardware on,
9919 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9920 and BP_TEMPFLAG. */
9921
9922 static void
9923 break_command_1 (char *arg, int flag, int from_tty)
9924 {
9925 int tempflag = flag & BP_TEMPFLAG;
9926 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9927 ? bp_hardware_breakpoint
9928 : bp_breakpoint);
9929 struct breakpoint_ops *ops;
9930 const char *arg_cp = arg;
9931
9932 /* Matching breakpoints on probes. */
9933 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9934 ops = &bkpt_probe_breakpoint_ops;
9935 else
9936 ops = &bkpt_breakpoint_ops;
9937
9938 create_breakpoint (get_current_arch (),
9939 arg,
9940 NULL, 0, NULL, 1 /* parse arg */,
9941 tempflag, type_wanted,
9942 0 /* Ignore count */,
9943 pending_break_support,
9944 ops,
9945 from_tty,
9946 1 /* enabled */,
9947 0 /* internal */,
9948 0);
9949 }
9950
9951 /* Helper function for break_command_1 and disassemble_command. */
9952
9953 void
9954 resolve_sal_pc (struct symtab_and_line *sal)
9955 {
9956 CORE_ADDR pc;
9957
9958 if (sal->pc == 0 && sal->symtab != NULL)
9959 {
9960 if (!find_line_pc (sal->symtab, sal->line, &pc))
9961 error (_("No line %d in file \"%s\"."),
9962 sal->line, symtab_to_filename_for_display (sal->symtab));
9963 sal->pc = pc;
9964
9965 /* If this SAL corresponds to a breakpoint inserted using a line
9966 number, then skip the function prologue if necessary. */
9967 if (sal->explicit_line)
9968 skip_prologue_sal (sal);
9969 }
9970
9971 if (sal->section == 0 && sal->symtab != NULL)
9972 {
9973 struct blockvector *bv;
9974 struct block *b;
9975 struct symbol *sym;
9976
9977 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9978 if (bv != NULL)
9979 {
9980 sym = block_linkage_function (b);
9981 if (sym != NULL)
9982 {
9983 fixup_symbol_section (sym, sal->symtab->objfile);
9984 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9985 }
9986 else
9987 {
9988 /* It really is worthwhile to have the section, so we'll
9989 just have to look harder. This case can be executed
9990 if we have line numbers but no functions (as can
9991 happen in assembly source). */
9992
9993 struct bound_minimal_symbol msym;
9994 struct cleanup *old_chain = save_current_space_and_thread ();
9995
9996 switch_to_program_space_and_thread (sal->pspace);
9997
9998 msym = lookup_minimal_symbol_by_pc (sal->pc);
9999 if (msym.minsym)
10000 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
10001
10002 do_cleanups (old_chain);
10003 }
10004 }
10005 }
10006 }
10007
10008 void
10009 break_command (char *arg, int from_tty)
10010 {
10011 break_command_1 (arg, 0, from_tty);
10012 }
10013
10014 void
10015 tbreak_command (char *arg, int from_tty)
10016 {
10017 break_command_1 (arg, BP_TEMPFLAG, from_tty);
10018 }
10019
10020 static void
10021 hbreak_command (char *arg, int from_tty)
10022 {
10023 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
10024 }
10025
10026 static void
10027 thbreak_command (char *arg, int from_tty)
10028 {
10029 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
10030 }
10031
10032 static void
10033 stop_command (char *arg, int from_tty)
10034 {
10035 printf_filtered (_("Specify the type of breakpoint to set.\n\
10036 Usage: stop in <function | address>\n\
10037 stop at <line>\n"));
10038 }
10039
10040 static void
10041 stopin_command (char *arg, int from_tty)
10042 {
10043 int badInput = 0;
10044
10045 if (arg == (char *) NULL)
10046 badInput = 1;
10047 else if (*arg != '*')
10048 {
10049 char *argptr = arg;
10050 int hasColon = 0;
10051
10052 /* Look for a ':'. If this is a line number specification, then
10053 say it is bad, otherwise, it should be an address or
10054 function/method name. */
10055 while (*argptr && !hasColon)
10056 {
10057 hasColon = (*argptr == ':');
10058 argptr++;
10059 }
10060
10061 if (hasColon)
10062 badInput = (*argptr != ':'); /* Not a class::method */
10063 else
10064 badInput = isdigit (*arg); /* a simple line number */
10065 }
10066
10067 if (badInput)
10068 printf_filtered (_("Usage: stop in <function | address>\n"));
10069 else
10070 break_command_1 (arg, 0, from_tty);
10071 }
10072
10073 static void
10074 stopat_command (char *arg, int from_tty)
10075 {
10076 int badInput = 0;
10077
10078 if (arg == (char *) NULL || *arg == '*') /* no line number */
10079 badInput = 1;
10080 else
10081 {
10082 char *argptr = arg;
10083 int hasColon = 0;
10084
10085 /* Look for a ':'. If there is a '::' then get out, otherwise
10086 it is probably a line number. */
10087 while (*argptr && !hasColon)
10088 {
10089 hasColon = (*argptr == ':');
10090 argptr++;
10091 }
10092
10093 if (hasColon)
10094 badInput = (*argptr == ':'); /* we have class::method */
10095 else
10096 badInput = !isdigit (*arg); /* not a line number */
10097 }
10098
10099 if (badInput)
10100 printf_filtered (_("Usage: stop at <line>\n"));
10101 else
10102 break_command_1 (arg, 0, from_tty);
10103 }
10104
10105 /* The dynamic printf command is mostly like a regular breakpoint, but
10106 with a prewired command list consisting of a single output command,
10107 built from extra arguments supplied on the dprintf command
10108 line. */
10109
10110 static void
10111 dprintf_command (char *arg, int from_tty)
10112 {
10113 create_breakpoint (get_current_arch (),
10114 arg,
10115 NULL, 0, NULL, 1 /* parse arg */,
10116 0, bp_dprintf,
10117 0 /* Ignore count */,
10118 pending_break_support,
10119 &dprintf_breakpoint_ops,
10120 from_tty,
10121 1 /* enabled */,
10122 0 /* internal */,
10123 0);
10124 }
10125
10126 static void
10127 agent_printf_command (char *arg, int from_tty)
10128 {
10129 error (_("May only run agent-printf on the target"));
10130 }
10131
10132 /* Implement the "breakpoint_hit" breakpoint_ops method for
10133 ranged breakpoints. */
10134
10135 static int
10136 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
10137 struct address_space *aspace,
10138 CORE_ADDR bp_addr,
10139 const struct target_waitstatus *ws)
10140 {
10141 if (ws->kind != TARGET_WAITKIND_STOPPED
10142 || ws->value.sig != GDB_SIGNAL_TRAP)
10143 return 0;
10144
10145 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
10146 bl->length, aspace, bp_addr);
10147 }
10148
10149 /* Implement the "resources_needed" breakpoint_ops method for
10150 ranged breakpoints. */
10151
10152 static int
10153 resources_needed_ranged_breakpoint (const struct bp_location *bl)
10154 {
10155 return target_ranged_break_num_registers ();
10156 }
10157
10158 /* Implement the "print_it" breakpoint_ops method for
10159 ranged breakpoints. */
10160
10161 static enum print_stop_action
10162 print_it_ranged_breakpoint (bpstat bs)
10163 {
10164 struct breakpoint *b = bs->breakpoint_at;
10165 struct bp_location *bl = b->loc;
10166 struct ui_out *uiout = current_uiout;
10167
10168 gdb_assert (b->type == bp_hardware_breakpoint);
10169
10170 /* Ranged breakpoints have only one location. */
10171 gdb_assert (bl && bl->next == NULL);
10172
10173 annotate_breakpoint (b->number);
10174 if (b->disposition == disp_del)
10175 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
10176 else
10177 ui_out_text (uiout, "\nRanged breakpoint ");
10178 if (ui_out_is_mi_like_p (uiout))
10179 {
10180 ui_out_field_string (uiout, "reason",
10181 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
10182 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
10183 }
10184 ui_out_field_int (uiout, "bkptno", b->number);
10185 ui_out_text (uiout, ", ");
10186
10187 return PRINT_SRC_AND_LOC;
10188 }
10189
10190 /* Implement the "print_one" breakpoint_ops method for
10191 ranged breakpoints. */
10192
10193 static void
10194 print_one_ranged_breakpoint (struct breakpoint *b,
10195 struct bp_location **last_loc)
10196 {
10197 struct bp_location *bl = b->loc;
10198 struct value_print_options opts;
10199 struct ui_out *uiout = current_uiout;
10200
10201 /* Ranged breakpoints have only one location. */
10202 gdb_assert (bl && bl->next == NULL);
10203
10204 get_user_print_options (&opts);
10205
10206 if (opts.addressprint)
10207 /* We don't print the address range here, it will be printed later
10208 by print_one_detail_ranged_breakpoint. */
10209 ui_out_field_skip (uiout, "addr");
10210 annotate_field (5);
10211 print_breakpoint_location (b, bl);
10212 *last_loc = bl;
10213 }
10214
10215 /* Implement the "print_one_detail" breakpoint_ops method for
10216 ranged breakpoints. */
10217
10218 static void
10219 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10220 struct ui_out *uiout)
10221 {
10222 CORE_ADDR address_start, address_end;
10223 struct bp_location *bl = b->loc;
10224 struct ui_file *stb = mem_fileopen ();
10225 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10226
10227 gdb_assert (bl);
10228
10229 address_start = bl->address;
10230 address_end = address_start + bl->length - 1;
10231
10232 ui_out_text (uiout, "\taddress range: ");
10233 fprintf_unfiltered (stb, "[%s, %s]",
10234 print_core_address (bl->gdbarch, address_start),
10235 print_core_address (bl->gdbarch, address_end));
10236 ui_out_field_stream (uiout, "addr", stb);
10237 ui_out_text (uiout, "\n");
10238
10239 do_cleanups (cleanup);
10240 }
10241
10242 /* Implement the "print_mention" breakpoint_ops method for
10243 ranged breakpoints. */
10244
10245 static void
10246 print_mention_ranged_breakpoint (struct breakpoint *b)
10247 {
10248 struct bp_location *bl = b->loc;
10249 struct ui_out *uiout = current_uiout;
10250
10251 gdb_assert (bl);
10252 gdb_assert (b->type == bp_hardware_breakpoint);
10253
10254 if (ui_out_is_mi_like_p (uiout))
10255 return;
10256
10257 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10258 b->number, paddress (bl->gdbarch, bl->address),
10259 paddress (bl->gdbarch, bl->address + bl->length - 1));
10260 }
10261
10262 /* Implement the "print_recreate" breakpoint_ops method for
10263 ranged breakpoints. */
10264
10265 static void
10266 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10267 {
10268 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10269 b->addr_string_range_end);
10270 print_recreate_thread (b, fp);
10271 }
10272
10273 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10274
10275 static struct breakpoint_ops ranged_breakpoint_ops;
10276
10277 /* Find the address where the end of the breakpoint range should be
10278 placed, given the SAL of the end of the range. This is so that if
10279 the user provides a line number, the end of the range is set to the
10280 last instruction of the given line. */
10281
10282 static CORE_ADDR
10283 find_breakpoint_range_end (struct symtab_and_line sal)
10284 {
10285 CORE_ADDR end;
10286
10287 /* If the user provided a PC value, use it. Otherwise,
10288 find the address of the end of the given location. */
10289 if (sal.explicit_pc)
10290 end = sal.pc;
10291 else
10292 {
10293 int ret;
10294 CORE_ADDR start;
10295
10296 ret = find_line_pc_range (sal, &start, &end);
10297 if (!ret)
10298 error (_("Could not find location of the end of the range."));
10299
10300 /* find_line_pc_range returns the start of the next line. */
10301 end--;
10302 }
10303
10304 return end;
10305 }
10306
10307 /* Implement the "break-range" CLI command. */
10308
10309 static void
10310 break_range_command (char *arg, int from_tty)
10311 {
10312 char *arg_start, *addr_string_start, *addr_string_end;
10313 struct linespec_result canonical_start, canonical_end;
10314 int bp_count, can_use_bp, length;
10315 CORE_ADDR end;
10316 struct breakpoint *b;
10317 struct symtab_and_line sal_start, sal_end;
10318 struct cleanup *cleanup_bkpt;
10319 struct linespec_sals *lsal_start, *lsal_end;
10320
10321 /* We don't support software ranged breakpoints. */
10322 if (target_ranged_break_num_registers () < 0)
10323 error (_("This target does not support hardware ranged breakpoints."));
10324
10325 bp_count = hw_breakpoint_used_count ();
10326 bp_count += target_ranged_break_num_registers ();
10327 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10328 bp_count, 0);
10329 if (can_use_bp < 0)
10330 error (_("Hardware breakpoints used exceeds limit."));
10331
10332 arg = skip_spaces (arg);
10333 if (arg == NULL || arg[0] == '\0')
10334 error(_("No address range specified."));
10335
10336 init_linespec_result (&canonical_start);
10337
10338 arg_start = arg;
10339 parse_breakpoint_sals (&arg, &canonical_start);
10340
10341 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10342
10343 if (arg[0] != ',')
10344 error (_("Too few arguments."));
10345 else if (VEC_empty (linespec_sals, canonical_start.sals))
10346 error (_("Could not find location of the beginning of the range."));
10347
10348 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10349
10350 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10351 || lsal_start->sals.nelts != 1)
10352 error (_("Cannot create a ranged breakpoint with multiple locations."));
10353
10354 sal_start = lsal_start->sals.sals[0];
10355 addr_string_start = savestring (arg_start, arg - arg_start);
10356 make_cleanup (xfree, addr_string_start);
10357
10358 arg++; /* Skip the comma. */
10359 arg = skip_spaces (arg);
10360
10361 /* Parse the end location. */
10362
10363 init_linespec_result (&canonical_end);
10364 arg_start = arg;
10365
10366 /* We call decode_line_full directly here instead of using
10367 parse_breakpoint_sals because we need to specify the start location's
10368 symtab and line as the default symtab and line for the end of the
10369 range. This makes it possible to have ranges like "foo.c:27, +14",
10370 where +14 means 14 lines from the start location. */
10371 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10372 sal_start.symtab, sal_start.line,
10373 &canonical_end, NULL, NULL);
10374
10375 make_cleanup_destroy_linespec_result (&canonical_end);
10376
10377 if (VEC_empty (linespec_sals, canonical_end.sals))
10378 error (_("Could not find location of the end of the range."));
10379
10380 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10381 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10382 || lsal_end->sals.nelts != 1)
10383 error (_("Cannot create a ranged breakpoint with multiple locations."));
10384
10385 sal_end = lsal_end->sals.sals[0];
10386 addr_string_end = savestring (arg_start, arg - arg_start);
10387 make_cleanup (xfree, addr_string_end);
10388
10389 end = find_breakpoint_range_end (sal_end);
10390 if (sal_start.pc > end)
10391 error (_("Invalid address range, end precedes start."));
10392
10393 length = end - sal_start.pc + 1;
10394 if (length < 0)
10395 /* Length overflowed. */
10396 error (_("Address range too large."));
10397 else if (length == 1)
10398 {
10399 /* This range is simple enough to be handled by
10400 the `hbreak' command. */
10401 hbreak_command (addr_string_start, 1);
10402
10403 do_cleanups (cleanup_bkpt);
10404
10405 return;
10406 }
10407
10408 /* Now set up the breakpoint. */
10409 b = set_raw_breakpoint (get_current_arch (), sal_start,
10410 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10411 set_breakpoint_count (breakpoint_count + 1);
10412 b->number = breakpoint_count;
10413 b->disposition = disp_donttouch;
10414 b->addr_string = xstrdup (addr_string_start);
10415 b->addr_string_range_end = xstrdup (addr_string_end);
10416 b->loc->length = length;
10417
10418 do_cleanups (cleanup_bkpt);
10419
10420 mention (b);
10421 observer_notify_breakpoint_created (b);
10422 update_global_location_list (1);
10423 }
10424
10425 /* Return non-zero if EXP is verified as constant. Returned zero
10426 means EXP is variable. Also the constant detection may fail for
10427 some constant expressions and in such case still falsely return
10428 zero. */
10429
10430 static int
10431 watchpoint_exp_is_const (const struct expression *exp)
10432 {
10433 int i = exp->nelts;
10434
10435 while (i > 0)
10436 {
10437 int oplenp, argsp;
10438
10439 /* We are only interested in the descriptor of each element. */
10440 operator_length (exp, i, &oplenp, &argsp);
10441 i -= oplenp;
10442
10443 switch (exp->elts[i].opcode)
10444 {
10445 case BINOP_ADD:
10446 case BINOP_SUB:
10447 case BINOP_MUL:
10448 case BINOP_DIV:
10449 case BINOP_REM:
10450 case BINOP_MOD:
10451 case BINOP_LSH:
10452 case BINOP_RSH:
10453 case BINOP_LOGICAL_AND:
10454 case BINOP_LOGICAL_OR:
10455 case BINOP_BITWISE_AND:
10456 case BINOP_BITWISE_IOR:
10457 case BINOP_BITWISE_XOR:
10458 case BINOP_EQUAL:
10459 case BINOP_NOTEQUAL:
10460 case BINOP_LESS:
10461 case BINOP_GTR:
10462 case BINOP_LEQ:
10463 case BINOP_GEQ:
10464 case BINOP_REPEAT:
10465 case BINOP_COMMA:
10466 case BINOP_EXP:
10467 case BINOP_MIN:
10468 case BINOP_MAX:
10469 case BINOP_INTDIV:
10470 case BINOP_CONCAT:
10471 case BINOP_IN:
10472 case BINOP_RANGE:
10473 case TERNOP_COND:
10474 case TERNOP_SLICE:
10475
10476 case OP_LONG:
10477 case OP_DOUBLE:
10478 case OP_DECFLOAT:
10479 case OP_LAST:
10480 case OP_COMPLEX:
10481 case OP_STRING:
10482 case OP_ARRAY:
10483 case OP_TYPE:
10484 case OP_TYPEOF:
10485 case OP_DECLTYPE:
10486 case OP_TYPEID:
10487 case OP_NAME:
10488 case OP_OBJC_NSSTRING:
10489
10490 case UNOP_NEG:
10491 case UNOP_LOGICAL_NOT:
10492 case UNOP_COMPLEMENT:
10493 case UNOP_ADDR:
10494 case UNOP_HIGH:
10495 case UNOP_CAST:
10496
10497 case UNOP_CAST_TYPE:
10498 case UNOP_REINTERPRET_CAST:
10499 case UNOP_DYNAMIC_CAST:
10500 /* Unary, binary and ternary operators: We have to check
10501 their operands. If they are constant, then so is the
10502 result of that operation. For instance, if A and B are
10503 determined to be constants, then so is "A + B".
10504
10505 UNOP_IND is one exception to the rule above, because the
10506 value of *ADDR is not necessarily a constant, even when
10507 ADDR is. */
10508 break;
10509
10510 case OP_VAR_VALUE:
10511 /* Check whether the associated symbol is a constant.
10512
10513 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10514 possible that a buggy compiler could mark a variable as
10515 constant even when it is not, and TYPE_CONST would return
10516 true in this case, while SYMBOL_CLASS wouldn't.
10517
10518 We also have to check for function symbols because they
10519 are always constant. */
10520 {
10521 struct symbol *s = exp->elts[i + 2].symbol;
10522
10523 if (SYMBOL_CLASS (s) != LOC_BLOCK
10524 && SYMBOL_CLASS (s) != LOC_CONST
10525 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10526 return 0;
10527 break;
10528 }
10529
10530 /* The default action is to return 0 because we are using
10531 the optimistic approach here: If we don't know something,
10532 then it is not a constant. */
10533 default:
10534 return 0;
10535 }
10536 }
10537
10538 return 1;
10539 }
10540
10541 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10542
10543 static void
10544 dtor_watchpoint (struct breakpoint *self)
10545 {
10546 struct watchpoint *w = (struct watchpoint *) self;
10547
10548 xfree (w->cond_exp);
10549 xfree (w->exp);
10550 xfree (w->exp_string);
10551 xfree (w->exp_string_reparse);
10552 value_free (w->val);
10553
10554 base_breakpoint_ops.dtor (self);
10555 }
10556
10557 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10558
10559 static void
10560 re_set_watchpoint (struct breakpoint *b)
10561 {
10562 struct watchpoint *w = (struct watchpoint *) b;
10563
10564 /* Watchpoint can be either on expression using entirely global
10565 variables, or it can be on local variables.
10566
10567 Watchpoints of the first kind are never auto-deleted, and even
10568 persist across program restarts. Since they can use variables
10569 from shared libraries, we need to reparse expression as libraries
10570 are loaded and unloaded.
10571
10572 Watchpoints on local variables can also change meaning as result
10573 of solib event. For example, if a watchpoint uses both a local
10574 and a global variables in expression, it's a local watchpoint,
10575 but unloading of a shared library will make the expression
10576 invalid. This is not a very common use case, but we still
10577 re-evaluate expression, to avoid surprises to the user.
10578
10579 Note that for local watchpoints, we re-evaluate it only if
10580 watchpoints frame id is still valid. If it's not, it means the
10581 watchpoint is out of scope and will be deleted soon. In fact,
10582 I'm not sure we'll ever be called in this case.
10583
10584 If a local watchpoint's frame id is still valid, then
10585 w->exp_valid_block is likewise valid, and we can safely use it.
10586
10587 Don't do anything about disabled watchpoints, since they will be
10588 reevaluated again when enabled. */
10589 update_watchpoint (w, 1 /* reparse */);
10590 }
10591
10592 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10593
10594 static int
10595 insert_watchpoint (struct bp_location *bl)
10596 {
10597 struct watchpoint *w = (struct watchpoint *) bl->owner;
10598 int length = w->exact ? 1 : bl->length;
10599
10600 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10601 w->cond_exp);
10602 }
10603
10604 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10605
10606 static int
10607 remove_watchpoint (struct bp_location *bl)
10608 {
10609 struct watchpoint *w = (struct watchpoint *) bl->owner;
10610 int length = w->exact ? 1 : bl->length;
10611
10612 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10613 w->cond_exp);
10614 }
10615
10616 static int
10617 breakpoint_hit_watchpoint (const struct bp_location *bl,
10618 struct address_space *aspace, CORE_ADDR bp_addr,
10619 const struct target_waitstatus *ws)
10620 {
10621 struct breakpoint *b = bl->owner;
10622 struct watchpoint *w = (struct watchpoint *) b;
10623
10624 /* Continuable hardware watchpoints are treated as non-existent if the
10625 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10626 some data address). Otherwise gdb won't stop on a break instruction
10627 in the code (not from a breakpoint) when a hardware watchpoint has
10628 been defined. Also skip watchpoints which we know did not trigger
10629 (did not match the data address). */
10630 if (is_hardware_watchpoint (b)
10631 && w->watchpoint_triggered == watch_triggered_no)
10632 return 0;
10633
10634 return 1;
10635 }
10636
10637 static void
10638 check_status_watchpoint (bpstat bs)
10639 {
10640 gdb_assert (is_watchpoint (bs->breakpoint_at));
10641
10642 bpstat_check_watchpoint (bs);
10643 }
10644
10645 /* Implement the "resources_needed" breakpoint_ops method for
10646 hardware watchpoints. */
10647
10648 static int
10649 resources_needed_watchpoint (const struct bp_location *bl)
10650 {
10651 struct watchpoint *w = (struct watchpoint *) bl->owner;
10652 int length = w->exact? 1 : bl->length;
10653
10654 return target_region_ok_for_hw_watchpoint (bl->address, length);
10655 }
10656
10657 /* Implement the "works_in_software_mode" breakpoint_ops method for
10658 hardware watchpoints. */
10659
10660 static int
10661 works_in_software_mode_watchpoint (const struct breakpoint *b)
10662 {
10663 /* Read and access watchpoints only work with hardware support. */
10664 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10665 }
10666
10667 static enum print_stop_action
10668 print_it_watchpoint (bpstat bs)
10669 {
10670 struct cleanup *old_chain;
10671 struct breakpoint *b;
10672 struct ui_file *stb;
10673 enum print_stop_action result;
10674 struct watchpoint *w;
10675 struct ui_out *uiout = current_uiout;
10676
10677 gdb_assert (bs->bp_location_at != NULL);
10678
10679 b = bs->breakpoint_at;
10680 w = (struct watchpoint *) b;
10681
10682 stb = mem_fileopen ();
10683 old_chain = make_cleanup_ui_file_delete (stb);
10684
10685 switch (b->type)
10686 {
10687 case bp_watchpoint:
10688 case bp_hardware_watchpoint:
10689 annotate_watchpoint (b->number);
10690 if (ui_out_is_mi_like_p (uiout))
10691 ui_out_field_string
10692 (uiout, "reason",
10693 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10694 mention (b);
10695 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10696 ui_out_text (uiout, "\nOld value = ");
10697 watchpoint_value_print (bs->old_val, stb);
10698 ui_out_field_stream (uiout, "old", stb);
10699 ui_out_text (uiout, "\nNew value = ");
10700 watchpoint_value_print (w->val, stb);
10701 ui_out_field_stream (uiout, "new", stb);
10702 ui_out_text (uiout, "\n");
10703 /* More than one watchpoint may have been triggered. */
10704 result = PRINT_UNKNOWN;
10705 break;
10706
10707 case bp_read_watchpoint:
10708 if (ui_out_is_mi_like_p (uiout))
10709 ui_out_field_string
10710 (uiout, "reason",
10711 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10712 mention (b);
10713 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10714 ui_out_text (uiout, "\nValue = ");
10715 watchpoint_value_print (w->val, stb);
10716 ui_out_field_stream (uiout, "value", stb);
10717 ui_out_text (uiout, "\n");
10718 result = PRINT_UNKNOWN;
10719 break;
10720
10721 case bp_access_watchpoint:
10722 if (bs->old_val != NULL)
10723 {
10724 annotate_watchpoint (b->number);
10725 if (ui_out_is_mi_like_p (uiout))
10726 ui_out_field_string
10727 (uiout, "reason",
10728 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10729 mention (b);
10730 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10731 ui_out_text (uiout, "\nOld value = ");
10732 watchpoint_value_print (bs->old_val, stb);
10733 ui_out_field_stream (uiout, "old", stb);
10734 ui_out_text (uiout, "\nNew value = ");
10735 }
10736 else
10737 {
10738 mention (b);
10739 if (ui_out_is_mi_like_p (uiout))
10740 ui_out_field_string
10741 (uiout, "reason",
10742 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10743 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10744 ui_out_text (uiout, "\nValue = ");
10745 }
10746 watchpoint_value_print (w->val, stb);
10747 ui_out_field_stream (uiout, "new", stb);
10748 ui_out_text (uiout, "\n");
10749 result = PRINT_UNKNOWN;
10750 break;
10751 default:
10752 result = PRINT_UNKNOWN;
10753 }
10754
10755 do_cleanups (old_chain);
10756 return result;
10757 }
10758
10759 /* Implement the "print_mention" breakpoint_ops method for hardware
10760 watchpoints. */
10761
10762 static void
10763 print_mention_watchpoint (struct breakpoint *b)
10764 {
10765 struct cleanup *ui_out_chain;
10766 struct watchpoint *w = (struct watchpoint *) b;
10767 struct ui_out *uiout = current_uiout;
10768
10769 switch (b->type)
10770 {
10771 case bp_watchpoint:
10772 ui_out_text (uiout, "Watchpoint ");
10773 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10774 break;
10775 case bp_hardware_watchpoint:
10776 ui_out_text (uiout, "Hardware watchpoint ");
10777 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10778 break;
10779 case bp_read_watchpoint:
10780 ui_out_text (uiout, "Hardware read watchpoint ");
10781 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10782 break;
10783 case bp_access_watchpoint:
10784 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10785 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10786 break;
10787 default:
10788 internal_error (__FILE__, __LINE__,
10789 _("Invalid hardware watchpoint type."));
10790 }
10791
10792 ui_out_field_int (uiout, "number", b->number);
10793 ui_out_text (uiout, ": ");
10794 ui_out_field_string (uiout, "exp", w->exp_string);
10795 do_cleanups (ui_out_chain);
10796 }
10797
10798 /* Implement the "print_recreate" breakpoint_ops method for
10799 watchpoints. */
10800
10801 static void
10802 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10803 {
10804 struct watchpoint *w = (struct watchpoint *) b;
10805
10806 switch (b->type)
10807 {
10808 case bp_watchpoint:
10809 case bp_hardware_watchpoint:
10810 fprintf_unfiltered (fp, "watch");
10811 break;
10812 case bp_read_watchpoint:
10813 fprintf_unfiltered (fp, "rwatch");
10814 break;
10815 case bp_access_watchpoint:
10816 fprintf_unfiltered (fp, "awatch");
10817 break;
10818 default:
10819 internal_error (__FILE__, __LINE__,
10820 _("Invalid watchpoint type."));
10821 }
10822
10823 fprintf_unfiltered (fp, " %s", w->exp_string);
10824 print_recreate_thread (b, fp);
10825 }
10826
10827 /* Implement the "explains_signal" breakpoint_ops method for
10828 watchpoints. */
10829
10830 static int
10831 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10832 {
10833 /* A software watchpoint cannot cause a signal other than
10834 GDB_SIGNAL_TRAP. */
10835 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10836 return 0;
10837
10838 return 1;
10839 }
10840
10841 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10842
10843 static struct breakpoint_ops watchpoint_breakpoint_ops;
10844
10845 /* Implement the "insert" breakpoint_ops method for
10846 masked hardware watchpoints. */
10847
10848 static int
10849 insert_masked_watchpoint (struct bp_location *bl)
10850 {
10851 struct watchpoint *w = (struct watchpoint *) bl->owner;
10852
10853 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10854 bl->watchpoint_type);
10855 }
10856
10857 /* Implement the "remove" breakpoint_ops method for
10858 masked hardware watchpoints. */
10859
10860 static int
10861 remove_masked_watchpoint (struct bp_location *bl)
10862 {
10863 struct watchpoint *w = (struct watchpoint *) bl->owner;
10864
10865 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10866 bl->watchpoint_type);
10867 }
10868
10869 /* Implement the "resources_needed" breakpoint_ops method for
10870 masked hardware watchpoints. */
10871
10872 static int
10873 resources_needed_masked_watchpoint (const struct bp_location *bl)
10874 {
10875 struct watchpoint *w = (struct watchpoint *) bl->owner;
10876
10877 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10878 }
10879
10880 /* Implement the "works_in_software_mode" breakpoint_ops method for
10881 masked hardware watchpoints. */
10882
10883 static int
10884 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10885 {
10886 return 0;
10887 }
10888
10889 /* Implement the "print_it" breakpoint_ops method for
10890 masked hardware watchpoints. */
10891
10892 static enum print_stop_action
10893 print_it_masked_watchpoint (bpstat bs)
10894 {
10895 struct breakpoint *b = bs->breakpoint_at;
10896 struct ui_out *uiout = current_uiout;
10897
10898 /* Masked watchpoints have only one location. */
10899 gdb_assert (b->loc && b->loc->next == NULL);
10900
10901 switch (b->type)
10902 {
10903 case bp_hardware_watchpoint:
10904 annotate_watchpoint (b->number);
10905 if (ui_out_is_mi_like_p (uiout))
10906 ui_out_field_string
10907 (uiout, "reason",
10908 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10909 break;
10910
10911 case bp_read_watchpoint:
10912 if (ui_out_is_mi_like_p (uiout))
10913 ui_out_field_string
10914 (uiout, "reason",
10915 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10916 break;
10917
10918 case bp_access_watchpoint:
10919 if (ui_out_is_mi_like_p (uiout))
10920 ui_out_field_string
10921 (uiout, "reason",
10922 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10923 break;
10924 default:
10925 internal_error (__FILE__, __LINE__,
10926 _("Invalid hardware watchpoint type."));
10927 }
10928
10929 mention (b);
10930 ui_out_text (uiout, _("\n\
10931 Check the underlying instruction at PC for the memory\n\
10932 address and value which triggered this watchpoint.\n"));
10933 ui_out_text (uiout, "\n");
10934
10935 /* More than one watchpoint may have been triggered. */
10936 return PRINT_UNKNOWN;
10937 }
10938
10939 /* Implement the "print_one_detail" breakpoint_ops method for
10940 masked hardware watchpoints. */
10941
10942 static void
10943 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10944 struct ui_out *uiout)
10945 {
10946 struct watchpoint *w = (struct watchpoint *) b;
10947
10948 /* Masked watchpoints have only one location. */
10949 gdb_assert (b->loc && b->loc->next == NULL);
10950
10951 ui_out_text (uiout, "\tmask ");
10952 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10953 ui_out_text (uiout, "\n");
10954 }
10955
10956 /* Implement the "print_mention" breakpoint_ops method for
10957 masked hardware watchpoints. */
10958
10959 static void
10960 print_mention_masked_watchpoint (struct breakpoint *b)
10961 {
10962 struct watchpoint *w = (struct watchpoint *) b;
10963 struct ui_out *uiout = current_uiout;
10964 struct cleanup *ui_out_chain;
10965
10966 switch (b->type)
10967 {
10968 case bp_hardware_watchpoint:
10969 ui_out_text (uiout, "Masked hardware watchpoint ");
10970 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10971 break;
10972 case bp_read_watchpoint:
10973 ui_out_text (uiout, "Masked hardware read watchpoint ");
10974 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10975 break;
10976 case bp_access_watchpoint:
10977 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10978 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10979 break;
10980 default:
10981 internal_error (__FILE__, __LINE__,
10982 _("Invalid hardware watchpoint type."));
10983 }
10984
10985 ui_out_field_int (uiout, "number", b->number);
10986 ui_out_text (uiout, ": ");
10987 ui_out_field_string (uiout, "exp", w->exp_string);
10988 do_cleanups (ui_out_chain);
10989 }
10990
10991 /* Implement the "print_recreate" breakpoint_ops method for
10992 masked hardware watchpoints. */
10993
10994 static void
10995 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10996 {
10997 struct watchpoint *w = (struct watchpoint *) b;
10998 char tmp[40];
10999
11000 switch (b->type)
11001 {
11002 case bp_hardware_watchpoint:
11003 fprintf_unfiltered (fp, "watch");
11004 break;
11005 case bp_read_watchpoint:
11006 fprintf_unfiltered (fp, "rwatch");
11007 break;
11008 case bp_access_watchpoint:
11009 fprintf_unfiltered (fp, "awatch");
11010 break;
11011 default:
11012 internal_error (__FILE__, __LINE__,
11013 _("Invalid hardware watchpoint type."));
11014 }
11015
11016 sprintf_vma (tmp, w->hw_wp_mask);
11017 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
11018 print_recreate_thread (b, fp);
11019 }
11020
11021 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
11022
11023 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
11024
11025 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
11026
11027 static int
11028 is_masked_watchpoint (const struct breakpoint *b)
11029 {
11030 return b->ops == &masked_watchpoint_breakpoint_ops;
11031 }
11032
11033 /* accessflag: hw_write: watch write,
11034 hw_read: watch read,
11035 hw_access: watch access (read or write) */
11036 static void
11037 watch_command_1 (const char *arg, int accessflag, int from_tty,
11038 int just_location, int internal)
11039 {
11040 volatile struct gdb_exception e;
11041 struct breakpoint *b, *scope_breakpoint = NULL;
11042 struct expression *exp;
11043 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
11044 struct value *val, *mark, *result;
11045 struct frame_info *frame;
11046 const char *exp_start = NULL;
11047 const char *exp_end = NULL;
11048 const char *tok, *end_tok;
11049 int toklen = -1;
11050 const char *cond_start = NULL;
11051 const char *cond_end = NULL;
11052 enum bptype bp_type;
11053 int thread = -1;
11054 int pc = 0;
11055 /* Flag to indicate whether we are going to use masks for
11056 the hardware watchpoint. */
11057 int use_mask = 0;
11058 CORE_ADDR mask = 0;
11059 struct watchpoint *w;
11060 char *expression;
11061 struct cleanup *back_to;
11062
11063 /* Make sure that we actually have parameters to parse. */
11064 if (arg != NULL && arg[0] != '\0')
11065 {
11066 const char *value_start;
11067
11068 exp_end = arg + strlen (arg);
11069
11070 /* Look for "parameter value" pairs at the end
11071 of the arguments string. */
11072 for (tok = exp_end - 1; tok > arg; tok--)
11073 {
11074 /* Skip whitespace at the end of the argument list. */
11075 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11076 tok--;
11077
11078 /* Find the beginning of the last token.
11079 This is the value of the parameter. */
11080 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11081 tok--;
11082 value_start = tok + 1;
11083
11084 /* Skip whitespace. */
11085 while (tok > arg && (*tok == ' ' || *tok == '\t'))
11086 tok--;
11087
11088 end_tok = tok;
11089
11090 /* Find the beginning of the second to last token.
11091 This is the parameter itself. */
11092 while (tok > arg && (*tok != ' ' && *tok != '\t'))
11093 tok--;
11094 tok++;
11095 toklen = end_tok - tok + 1;
11096
11097 if (toklen == 6 && !strncmp (tok, "thread", 6))
11098 {
11099 /* At this point we've found a "thread" token, which means
11100 the user is trying to set a watchpoint that triggers
11101 only in a specific thread. */
11102 char *endp;
11103
11104 if (thread != -1)
11105 error(_("You can specify only one thread."));
11106
11107 /* Extract the thread ID from the next token. */
11108 thread = strtol (value_start, &endp, 0);
11109
11110 /* Check if the user provided a valid numeric value for the
11111 thread ID. */
11112 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
11113 error (_("Invalid thread ID specification %s."), value_start);
11114
11115 /* Check if the thread actually exists. */
11116 if (!valid_thread_id (thread))
11117 invalid_thread_id_error (thread);
11118 }
11119 else if (toklen == 4 && !strncmp (tok, "mask", 4))
11120 {
11121 /* We've found a "mask" token, which means the user wants to
11122 create a hardware watchpoint that is going to have the mask
11123 facility. */
11124 struct value *mask_value, *mark;
11125
11126 if (use_mask)
11127 error(_("You can specify only one mask."));
11128
11129 use_mask = just_location = 1;
11130
11131 mark = value_mark ();
11132 mask_value = parse_to_comma_and_eval (&value_start);
11133 mask = value_as_address (mask_value);
11134 value_free_to_mark (mark);
11135 }
11136 else
11137 /* We didn't recognize what we found. We should stop here. */
11138 break;
11139
11140 /* Truncate the string and get rid of the "parameter value" pair before
11141 the arguments string is parsed by the parse_exp_1 function. */
11142 exp_end = tok;
11143 }
11144 }
11145 else
11146 exp_end = arg;
11147
11148 /* Parse the rest of the arguments. From here on out, everything
11149 is in terms of a newly allocated string instead of the original
11150 ARG. */
11151 innermost_block = NULL;
11152 expression = savestring (arg, exp_end - arg);
11153 back_to = make_cleanup (xfree, expression);
11154 exp_start = arg = expression;
11155 exp = parse_exp_1 (&arg, 0, 0, 0);
11156 exp_end = arg;
11157 /* Remove trailing whitespace from the expression before saving it.
11158 This makes the eventual display of the expression string a bit
11159 prettier. */
11160 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
11161 --exp_end;
11162
11163 /* Checking if the expression is not constant. */
11164 if (watchpoint_exp_is_const (exp))
11165 {
11166 int len;
11167
11168 len = exp_end - exp_start;
11169 while (len > 0 && isspace (exp_start[len - 1]))
11170 len--;
11171 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
11172 }
11173
11174 exp_valid_block = innermost_block;
11175 mark = value_mark ();
11176 fetch_subexp_value (exp, &pc, &val, &result, NULL, just_location);
11177
11178 if (just_location)
11179 {
11180 int ret;
11181
11182 exp_valid_block = NULL;
11183 val = value_addr (result);
11184 release_value (val);
11185 value_free_to_mark (mark);
11186
11187 if (use_mask)
11188 {
11189 ret = target_masked_watch_num_registers (value_as_address (val),
11190 mask);
11191 if (ret == -1)
11192 error (_("This target does not support masked watchpoints."));
11193 else if (ret == -2)
11194 error (_("Invalid mask or memory region."));
11195 }
11196 }
11197 else if (val != NULL)
11198 release_value (val);
11199
11200 tok = skip_spaces_const (arg);
11201 end_tok = skip_to_space_const (tok);
11202
11203 toklen = end_tok - tok;
11204 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11205 {
11206 struct expression *cond;
11207
11208 innermost_block = NULL;
11209 tok = cond_start = end_tok + 1;
11210 cond = parse_exp_1 (&tok, 0, 0, 0);
11211
11212 /* The watchpoint expression may not be local, but the condition
11213 may still be. E.g.: `watch global if local > 0'. */
11214 cond_exp_valid_block = innermost_block;
11215
11216 xfree (cond);
11217 cond_end = tok;
11218 }
11219 if (*tok)
11220 error (_("Junk at end of command."));
11221
11222 frame = block_innermost_frame (exp_valid_block);
11223
11224 /* If the expression is "local", then set up a "watchpoint scope"
11225 breakpoint at the point where we've left the scope of the watchpoint
11226 expression. Create the scope breakpoint before the watchpoint, so
11227 that we will encounter it first in bpstat_stop_status. */
11228 if (exp_valid_block && frame)
11229 {
11230 if (frame_id_p (frame_unwind_caller_id (frame)))
11231 {
11232 scope_breakpoint
11233 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11234 frame_unwind_caller_pc (frame),
11235 bp_watchpoint_scope,
11236 &momentary_breakpoint_ops);
11237
11238 scope_breakpoint->enable_state = bp_enabled;
11239
11240 /* Automatically delete the breakpoint when it hits. */
11241 scope_breakpoint->disposition = disp_del;
11242
11243 /* Only break in the proper frame (help with recursion). */
11244 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11245
11246 /* Set the address at which we will stop. */
11247 scope_breakpoint->loc->gdbarch
11248 = frame_unwind_caller_arch (frame);
11249 scope_breakpoint->loc->requested_address
11250 = frame_unwind_caller_pc (frame);
11251 scope_breakpoint->loc->address
11252 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11253 scope_breakpoint->loc->requested_address,
11254 scope_breakpoint->type);
11255 }
11256 }
11257
11258 /* Now set up the breakpoint. We create all watchpoints as hardware
11259 watchpoints here even if hardware watchpoints are turned off, a call
11260 to update_watchpoint later in this function will cause the type to
11261 drop back to bp_watchpoint (software watchpoint) if required. */
11262
11263 if (accessflag == hw_read)
11264 bp_type = bp_read_watchpoint;
11265 else if (accessflag == hw_access)
11266 bp_type = bp_access_watchpoint;
11267 else
11268 bp_type = bp_hardware_watchpoint;
11269
11270 w = XCNEW (struct watchpoint);
11271 b = &w->base;
11272 if (use_mask)
11273 init_raw_breakpoint_without_location (b, NULL, bp_type,
11274 &masked_watchpoint_breakpoint_ops);
11275 else
11276 init_raw_breakpoint_without_location (b, NULL, bp_type,
11277 &watchpoint_breakpoint_ops);
11278 b->thread = thread;
11279 b->disposition = disp_donttouch;
11280 b->pspace = current_program_space;
11281 w->exp = exp;
11282 w->exp_valid_block = exp_valid_block;
11283 w->cond_exp_valid_block = cond_exp_valid_block;
11284 if (just_location)
11285 {
11286 struct type *t = value_type (val);
11287 CORE_ADDR addr = value_as_address (val);
11288 char *name;
11289
11290 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11291 name = type_to_string (t);
11292
11293 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11294 core_addr_to_string (addr));
11295 xfree (name);
11296
11297 w->exp_string = xstrprintf ("-location %.*s",
11298 (int) (exp_end - exp_start), exp_start);
11299
11300 /* The above expression is in C. */
11301 b->language = language_c;
11302 }
11303 else
11304 w->exp_string = savestring (exp_start, exp_end - exp_start);
11305
11306 if (use_mask)
11307 {
11308 w->hw_wp_mask = mask;
11309 }
11310 else
11311 {
11312 w->val = val;
11313 w->val_valid = 1;
11314 }
11315
11316 if (cond_start)
11317 b->cond_string = savestring (cond_start, cond_end - cond_start);
11318 else
11319 b->cond_string = 0;
11320
11321 if (frame)
11322 {
11323 w->watchpoint_frame = get_frame_id (frame);
11324 w->watchpoint_thread = inferior_ptid;
11325 }
11326 else
11327 {
11328 w->watchpoint_frame = null_frame_id;
11329 w->watchpoint_thread = null_ptid;
11330 }
11331
11332 if (scope_breakpoint != NULL)
11333 {
11334 /* The scope breakpoint is related to the watchpoint. We will
11335 need to act on them together. */
11336 b->related_breakpoint = scope_breakpoint;
11337 scope_breakpoint->related_breakpoint = b;
11338 }
11339
11340 if (!just_location)
11341 value_free_to_mark (mark);
11342
11343 TRY_CATCH (e, RETURN_MASK_ALL)
11344 {
11345 /* Finally update the new watchpoint. This creates the locations
11346 that should be inserted. */
11347 update_watchpoint (w, 1);
11348 }
11349 if (e.reason < 0)
11350 {
11351 delete_breakpoint (b);
11352 throw_exception (e);
11353 }
11354
11355 install_breakpoint (internal, b, 1);
11356 do_cleanups (back_to);
11357 }
11358
11359 /* Return count of debug registers needed to watch the given expression.
11360 If the watchpoint cannot be handled in hardware return zero. */
11361
11362 static int
11363 can_use_hardware_watchpoint (struct value *v)
11364 {
11365 int found_memory_cnt = 0;
11366 struct value *head = v;
11367
11368 /* Did the user specifically forbid us to use hardware watchpoints? */
11369 if (!can_use_hw_watchpoints)
11370 return 0;
11371
11372 /* Make sure that the value of the expression depends only upon
11373 memory contents, and values computed from them within GDB. If we
11374 find any register references or function calls, we can't use a
11375 hardware watchpoint.
11376
11377 The idea here is that evaluating an expression generates a series
11378 of values, one holding the value of every subexpression. (The
11379 expression a*b+c has five subexpressions: a, b, a*b, c, and
11380 a*b+c.) GDB's values hold almost enough information to establish
11381 the criteria given above --- they identify memory lvalues,
11382 register lvalues, computed values, etcetera. So we can evaluate
11383 the expression, and then scan the chain of values that leaves
11384 behind to decide whether we can detect any possible change to the
11385 expression's final value using only hardware watchpoints.
11386
11387 However, I don't think that the values returned by inferior
11388 function calls are special in any way. So this function may not
11389 notice that an expression involving an inferior function call
11390 can't be watched with hardware watchpoints. FIXME. */
11391 for (; v; v = value_next (v))
11392 {
11393 if (VALUE_LVAL (v) == lval_memory)
11394 {
11395 if (v != head && value_lazy (v))
11396 /* A lazy memory lvalue in the chain is one that GDB never
11397 needed to fetch; we either just used its address (e.g.,
11398 `a' in `a.b') or we never needed it at all (e.g., `a'
11399 in `a,b'). This doesn't apply to HEAD; if that is
11400 lazy then it was not readable, but watch it anyway. */
11401 ;
11402 else
11403 {
11404 /* Ahh, memory we actually used! Check if we can cover
11405 it with hardware watchpoints. */
11406 struct type *vtype = check_typedef (value_type (v));
11407
11408 /* We only watch structs and arrays if user asked for it
11409 explicitly, never if they just happen to appear in a
11410 middle of some value chain. */
11411 if (v == head
11412 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11413 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11414 {
11415 CORE_ADDR vaddr = value_address (v);
11416 int len;
11417 int num_regs;
11418
11419 len = (target_exact_watchpoints
11420 && is_scalar_type_recursive (vtype))?
11421 1 : TYPE_LENGTH (value_type (v));
11422
11423 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11424 if (!num_regs)
11425 return 0;
11426 else
11427 found_memory_cnt += num_regs;
11428 }
11429 }
11430 }
11431 else if (VALUE_LVAL (v) != not_lval
11432 && deprecated_value_modifiable (v) == 0)
11433 return 0; /* These are values from the history (e.g., $1). */
11434 else if (VALUE_LVAL (v) == lval_register)
11435 return 0; /* Cannot watch a register with a HW watchpoint. */
11436 }
11437
11438 /* The expression itself looks suitable for using a hardware
11439 watchpoint, but give the target machine a chance to reject it. */
11440 return found_memory_cnt;
11441 }
11442
11443 void
11444 watch_command_wrapper (char *arg, int from_tty, int internal)
11445 {
11446 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11447 }
11448
11449 /* A helper function that looks for the "-location" argument and then
11450 calls watch_command_1. */
11451
11452 static void
11453 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11454 {
11455 int just_location = 0;
11456
11457 if (arg
11458 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11459 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11460 {
11461 arg = skip_spaces (arg);
11462 just_location = 1;
11463 }
11464
11465 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11466 }
11467
11468 static void
11469 watch_command (char *arg, int from_tty)
11470 {
11471 watch_maybe_just_location (arg, hw_write, from_tty);
11472 }
11473
11474 void
11475 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11476 {
11477 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11478 }
11479
11480 static void
11481 rwatch_command (char *arg, int from_tty)
11482 {
11483 watch_maybe_just_location (arg, hw_read, from_tty);
11484 }
11485
11486 void
11487 awatch_command_wrapper (char *arg, int from_tty, int internal)
11488 {
11489 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11490 }
11491
11492 static void
11493 awatch_command (char *arg, int from_tty)
11494 {
11495 watch_maybe_just_location (arg, hw_access, from_tty);
11496 }
11497 \f
11498
11499 /* Helper routines for the until_command routine in infcmd.c. Here
11500 because it uses the mechanisms of breakpoints. */
11501
11502 struct until_break_command_continuation_args
11503 {
11504 struct breakpoint *breakpoint;
11505 struct breakpoint *breakpoint2;
11506 int thread_num;
11507 };
11508
11509 /* This function is called by fetch_inferior_event via the
11510 cmd_continuation pointer, to complete the until command. It takes
11511 care of cleaning up the temporary breakpoints set up by the until
11512 command. */
11513 static void
11514 until_break_command_continuation (void *arg, int err)
11515 {
11516 struct until_break_command_continuation_args *a = arg;
11517
11518 delete_breakpoint (a->breakpoint);
11519 if (a->breakpoint2)
11520 delete_breakpoint (a->breakpoint2);
11521 delete_longjmp_breakpoint (a->thread_num);
11522 }
11523
11524 void
11525 until_break_command (char *arg, int from_tty, int anywhere)
11526 {
11527 struct symtabs_and_lines sals;
11528 struct symtab_and_line sal;
11529 struct frame_info *frame;
11530 struct gdbarch *frame_gdbarch;
11531 struct frame_id stack_frame_id;
11532 struct frame_id caller_frame_id;
11533 struct breakpoint *breakpoint;
11534 struct breakpoint *breakpoint2 = NULL;
11535 struct cleanup *old_chain;
11536 int thread;
11537 struct thread_info *tp;
11538
11539 clear_proceed_status ();
11540
11541 /* Set a breakpoint where the user wants it and at return from
11542 this function. */
11543
11544 if (last_displayed_sal_is_valid ())
11545 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11546 get_last_displayed_symtab (),
11547 get_last_displayed_line ());
11548 else
11549 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11550 (struct symtab *) NULL, 0);
11551
11552 if (sals.nelts != 1)
11553 error (_("Couldn't get information on specified line."));
11554
11555 sal = sals.sals[0];
11556 xfree (sals.sals); /* malloc'd, so freed. */
11557
11558 if (*arg)
11559 error (_("Junk at end of arguments."));
11560
11561 resolve_sal_pc (&sal);
11562
11563 tp = inferior_thread ();
11564 thread = tp->num;
11565
11566 old_chain = make_cleanup (null_cleanup, NULL);
11567
11568 /* Note linespec handling above invalidates the frame chain.
11569 Installing a breakpoint also invalidates the frame chain (as it
11570 may need to switch threads), so do any frame handling before
11571 that. */
11572
11573 frame = get_selected_frame (NULL);
11574 frame_gdbarch = get_frame_arch (frame);
11575 stack_frame_id = get_stack_frame_id (frame);
11576 caller_frame_id = frame_unwind_caller_id (frame);
11577
11578 /* Keep within the current frame, or in frames called by the current
11579 one. */
11580
11581 if (frame_id_p (caller_frame_id))
11582 {
11583 struct symtab_and_line sal2;
11584
11585 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11586 sal2.pc = frame_unwind_caller_pc (frame);
11587 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11588 sal2,
11589 caller_frame_id,
11590 bp_until);
11591 make_cleanup_delete_breakpoint (breakpoint2);
11592
11593 set_longjmp_breakpoint (tp, caller_frame_id);
11594 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11595 }
11596
11597 /* set_momentary_breakpoint could invalidate FRAME. */
11598 frame = NULL;
11599
11600 if (anywhere)
11601 /* If the user told us to continue until a specified location,
11602 we don't specify a frame at which we need to stop. */
11603 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11604 null_frame_id, bp_until);
11605 else
11606 /* Otherwise, specify the selected frame, because we want to stop
11607 only at the very same frame. */
11608 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11609 stack_frame_id, bp_until);
11610 make_cleanup_delete_breakpoint (breakpoint);
11611
11612 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11613
11614 /* If we are running asynchronously, and proceed call above has
11615 actually managed to start the target, arrange for breakpoints to
11616 be deleted when the target stops. Otherwise, we're already
11617 stopped and delete breakpoints via cleanup chain. */
11618
11619 if (target_can_async_p () && is_running (inferior_ptid))
11620 {
11621 struct until_break_command_continuation_args *args;
11622 args = xmalloc (sizeof (*args));
11623
11624 args->breakpoint = breakpoint;
11625 args->breakpoint2 = breakpoint2;
11626 args->thread_num = thread;
11627
11628 discard_cleanups (old_chain);
11629 add_continuation (inferior_thread (),
11630 until_break_command_continuation, args,
11631 xfree);
11632 }
11633 else
11634 do_cleanups (old_chain);
11635 }
11636
11637 /* This function attempts to parse an optional "if <cond>" clause
11638 from the arg string. If one is not found, it returns NULL.
11639
11640 Else, it returns a pointer to the condition string. (It does not
11641 attempt to evaluate the string against a particular block.) And,
11642 it updates arg to point to the first character following the parsed
11643 if clause in the arg string. */
11644
11645 char *
11646 ep_parse_optional_if_clause (char **arg)
11647 {
11648 char *cond_string;
11649
11650 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11651 return NULL;
11652
11653 /* Skip the "if" keyword. */
11654 (*arg) += 2;
11655
11656 /* Skip any extra leading whitespace, and record the start of the
11657 condition string. */
11658 *arg = skip_spaces (*arg);
11659 cond_string = *arg;
11660
11661 /* Assume that the condition occupies the remainder of the arg
11662 string. */
11663 (*arg) += strlen (cond_string);
11664
11665 return cond_string;
11666 }
11667
11668 /* Commands to deal with catching events, such as signals, exceptions,
11669 process start/exit, etc. */
11670
11671 typedef enum
11672 {
11673 catch_fork_temporary, catch_vfork_temporary,
11674 catch_fork_permanent, catch_vfork_permanent
11675 }
11676 catch_fork_kind;
11677
11678 static void
11679 catch_fork_command_1 (char *arg, int from_tty,
11680 struct cmd_list_element *command)
11681 {
11682 struct gdbarch *gdbarch = get_current_arch ();
11683 char *cond_string = NULL;
11684 catch_fork_kind fork_kind;
11685 int tempflag;
11686
11687 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11688 tempflag = (fork_kind == catch_fork_temporary
11689 || fork_kind == catch_vfork_temporary);
11690
11691 if (!arg)
11692 arg = "";
11693 arg = skip_spaces (arg);
11694
11695 /* The allowed syntax is:
11696 catch [v]fork
11697 catch [v]fork if <cond>
11698
11699 First, check if there's an if clause. */
11700 cond_string = ep_parse_optional_if_clause (&arg);
11701
11702 if ((*arg != '\0') && !isspace (*arg))
11703 error (_("Junk at end of arguments."));
11704
11705 /* If this target supports it, create a fork or vfork catchpoint
11706 and enable reporting of such events. */
11707 switch (fork_kind)
11708 {
11709 case catch_fork_temporary:
11710 case catch_fork_permanent:
11711 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11712 &catch_fork_breakpoint_ops);
11713 break;
11714 case catch_vfork_temporary:
11715 case catch_vfork_permanent:
11716 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11717 &catch_vfork_breakpoint_ops);
11718 break;
11719 default:
11720 error (_("unsupported or unknown fork kind; cannot catch it"));
11721 break;
11722 }
11723 }
11724
11725 static void
11726 catch_exec_command_1 (char *arg, int from_tty,
11727 struct cmd_list_element *command)
11728 {
11729 struct exec_catchpoint *c;
11730 struct gdbarch *gdbarch = get_current_arch ();
11731 int tempflag;
11732 char *cond_string = NULL;
11733
11734 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11735
11736 if (!arg)
11737 arg = "";
11738 arg = skip_spaces (arg);
11739
11740 /* The allowed syntax is:
11741 catch exec
11742 catch exec if <cond>
11743
11744 First, check if there's an if clause. */
11745 cond_string = ep_parse_optional_if_clause (&arg);
11746
11747 if ((*arg != '\0') && !isspace (*arg))
11748 error (_("Junk at end of arguments."));
11749
11750 c = XNEW (struct exec_catchpoint);
11751 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11752 &catch_exec_breakpoint_ops);
11753 c->exec_pathname = NULL;
11754
11755 install_breakpoint (0, &c->base, 1);
11756 }
11757
11758 void
11759 init_ada_exception_breakpoint (struct breakpoint *b,
11760 struct gdbarch *gdbarch,
11761 struct symtab_and_line sal,
11762 char *addr_string,
11763 const struct breakpoint_ops *ops,
11764 int tempflag,
11765 int enabled,
11766 int from_tty)
11767 {
11768 if (from_tty)
11769 {
11770 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11771 if (!loc_gdbarch)
11772 loc_gdbarch = gdbarch;
11773
11774 describe_other_breakpoints (loc_gdbarch,
11775 sal.pspace, sal.pc, sal.section, -1);
11776 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11777 version for exception catchpoints, because two catchpoints
11778 used for different exception names will use the same address.
11779 In this case, a "breakpoint ... also set at..." warning is
11780 unproductive. Besides, the warning phrasing is also a bit
11781 inappropriate, we should use the word catchpoint, and tell
11782 the user what type of catchpoint it is. The above is good
11783 enough for now, though. */
11784 }
11785
11786 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11787
11788 b->enable_state = enabled ? bp_enabled : bp_disabled;
11789 b->disposition = tempflag ? disp_del : disp_donttouch;
11790 b->addr_string = addr_string;
11791 b->language = language_ada;
11792 }
11793
11794 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11795 filter list, or NULL if no filtering is required. */
11796 static VEC(int) *
11797 catch_syscall_split_args (char *arg)
11798 {
11799 VEC(int) *result = NULL;
11800 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11801
11802 while (*arg != '\0')
11803 {
11804 int i, syscall_number;
11805 char *endptr;
11806 char cur_name[128];
11807 struct syscall s;
11808
11809 /* Skip whitespace. */
11810 arg = skip_spaces (arg);
11811
11812 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11813 cur_name[i] = arg[i];
11814 cur_name[i] = '\0';
11815 arg += i;
11816
11817 /* Check if the user provided a syscall name or a number. */
11818 syscall_number = (int) strtol (cur_name, &endptr, 0);
11819 if (*endptr == '\0')
11820 get_syscall_by_number (syscall_number, &s);
11821 else
11822 {
11823 /* We have a name. Let's check if it's valid and convert it
11824 to a number. */
11825 get_syscall_by_name (cur_name, &s);
11826
11827 if (s.number == UNKNOWN_SYSCALL)
11828 /* Here we have to issue an error instead of a warning,
11829 because GDB cannot do anything useful if there's no
11830 syscall number to be caught. */
11831 error (_("Unknown syscall name '%s'."), cur_name);
11832 }
11833
11834 /* Ok, it's valid. */
11835 VEC_safe_push (int, result, s.number);
11836 }
11837
11838 discard_cleanups (cleanup);
11839 return result;
11840 }
11841
11842 /* Implement the "catch syscall" command. */
11843
11844 static void
11845 catch_syscall_command_1 (char *arg, int from_tty,
11846 struct cmd_list_element *command)
11847 {
11848 int tempflag;
11849 VEC(int) *filter;
11850 struct syscall s;
11851 struct gdbarch *gdbarch = get_current_arch ();
11852
11853 /* Checking if the feature if supported. */
11854 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11855 error (_("The feature 'catch syscall' is not supported on \
11856 this architecture yet."));
11857
11858 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11859
11860 arg = skip_spaces (arg);
11861
11862 /* We need to do this first "dummy" translation in order
11863 to get the syscall XML file loaded or, most important,
11864 to display a warning to the user if there's no XML file
11865 for his/her architecture. */
11866 get_syscall_by_number (0, &s);
11867
11868 /* The allowed syntax is:
11869 catch syscall
11870 catch syscall <name | number> [<name | number> ... <name | number>]
11871
11872 Let's check if there's a syscall name. */
11873
11874 if (arg != NULL)
11875 filter = catch_syscall_split_args (arg);
11876 else
11877 filter = NULL;
11878
11879 create_syscall_event_catchpoint (tempflag, filter,
11880 &catch_syscall_breakpoint_ops);
11881 }
11882
11883 static void
11884 catch_command (char *arg, int from_tty)
11885 {
11886 error (_("Catch requires an event name."));
11887 }
11888 \f
11889
11890 static void
11891 tcatch_command (char *arg, int from_tty)
11892 {
11893 error (_("Catch requires an event name."));
11894 }
11895
11896 /* A qsort comparison function that sorts breakpoints in order. */
11897
11898 static int
11899 compare_breakpoints (const void *a, const void *b)
11900 {
11901 const breakpoint_p *ba = a;
11902 uintptr_t ua = (uintptr_t) *ba;
11903 const breakpoint_p *bb = b;
11904 uintptr_t ub = (uintptr_t) *bb;
11905
11906 if ((*ba)->number < (*bb)->number)
11907 return -1;
11908 else if ((*ba)->number > (*bb)->number)
11909 return 1;
11910
11911 /* Now sort by address, in case we see, e..g, two breakpoints with
11912 the number 0. */
11913 if (ua < ub)
11914 return -1;
11915 return ua > ub ? 1 : 0;
11916 }
11917
11918 /* Delete breakpoints by address or line. */
11919
11920 static void
11921 clear_command (char *arg, int from_tty)
11922 {
11923 struct breakpoint *b, *prev;
11924 VEC(breakpoint_p) *found = 0;
11925 int ix;
11926 int default_match;
11927 struct symtabs_and_lines sals;
11928 struct symtab_and_line sal;
11929 int i;
11930 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11931
11932 if (arg)
11933 {
11934 sals = decode_line_with_current_source (arg,
11935 (DECODE_LINE_FUNFIRSTLINE
11936 | DECODE_LINE_LIST_MODE));
11937 make_cleanup (xfree, sals.sals);
11938 default_match = 0;
11939 }
11940 else
11941 {
11942 sals.sals = (struct symtab_and_line *)
11943 xmalloc (sizeof (struct symtab_and_line));
11944 make_cleanup (xfree, sals.sals);
11945 init_sal (&sal); /* Initialize to zeroes. */
11946
11947 /* Set sal's line, symtab, pc, and pspace to the values
11948 corresponding to the last call to print_frame_info. If the
11949 codepoint is not valid, this will set all the fields to 0. */
11950 get_last_displayed_sal (&sal);
11951 if (sal.symtab == 0)
11952 error (_("No source file specified."));
11953
11954 sals.sals[0] = sal;
11955 sals.nelts = 1;
11956
11957 default_match = 1;
11958 }
11959
11960 /* We don't call resolve_sal_pc here. That's not as bad as it
11961 seems, because all existing breakpoints typically have both
11962 file/line and pc set. So, if clear is given file/line, we can
11963 match this to existing breakpoint without obtaining pc at all.
11964
11965 We only support clearing given the address explicitly
11966 present in breakpoint table. Say, we've set breakpoint
11967 at file:line. There were several PC values for that file:line,
11968 due to optimization, all in one block.
11969
11970 We've picked one PC value. If "clear" is issued with another
11971 PC corresponding to the same file:line, the breakpoint won't
11972 be cleared. We probably can still clear the breakpoint, but
11973 since the other PC value is never presented to user, user
11974 can only find it by guessing, and it does not seem important
11975 to support that. */
11976
11977 /* For each line spec given, delete bps which correspond to it. Do
11978 it in two passes, solely to preserve the current behavior that
11979 from_tty is forced true if we delete more than one
11980 breakpoint. */
11981
11982 found = NULL;
11983 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11984 for (i = 0; i < sals.nelts; i++)
11985 {
11986 const char *sal_fullname;
11987
11988 /* If exact pc given, clear bpts at that pc.
11989 If line given (pc == 0), clear all bpts on specified line.
11990 If defaulting, clear all bpts on default line
11991 or at default pc.
11992
11993 defaulting sal.pc != 0 tests to do
11994
11995 0 1 pc
11996 1 1 pc _and_ line
11997 0 0 line
11998 1 0 <can't happen> */
11999
12000 sal = sals.sals[i];
12001 sal_fullname = (sal.symtab == NULL
12002 ? NULL : symtab_to_fullname (sal.symtab));
12003
12004 /* Find all matching breakpoints and add them to 'found'. */
12005 ALL_BREAKPOINTS (b)
12006 {
12007 int match = 0;
12008 /* Are we going to delete b? */
12009 if (b->type != bp_none && !is_watchpoint (b))
12010 {
12011 struct bp_location *loc = b->loc;
12012 for (; loc; loc = loc->next)
12013 {
12014 /* If the user specified file:line, don't allow a PC
12015 match. This matches historical gdb behavior. */
12016 int pc_match = (!sal.explicit_line
12017 && sal.pc
12018 && (loc->pspace == sal.pspace)
12019 && (loc->address == sal.pc)
12020 && (!section_is_overlay (loc->section)
12021 || loc->section == sal.section));
12022 int line_match = 0;
12023
12024 if ((default_match || sal.explicit_line)
12025 && loc->symtab != NULL
12026 && sal_fullname != NULL
12027 && sal.pspace == loc->pspace
12028 && loc->line_number == sal.line
12029 && filename_cmp (symtab_to_fullname (loc->symtab),
12030 sal_fullname) == 0)
12031 line_match = 1;
12032
12033 if (pc_match || line_match)
12034 {
12035 match = 1;
12036 break;
12037 }
12038 }
12039 }
12040
12041 if (match)
12042 VEC_safe_push(breakpoint_p, found, b);
12043 }
12044 }
12045
12046 /* Now go thru the 'found' chain and delete them. */
12047 if (VEC_empty(breakpoint_p, found))
12048 {
12049 if (arg)
12050 error (_("No breakpoint at %s."), arg);
12051 else
12052 error (_("No breakpoint at this line."));
12053 }
12054
12055 /* Remove duplicates from the vec. */
12056 qsort (VEC_address (breakpoint_p, found),
12057 VEC_length (breakpoint_p, found),
12058 sizeof (breakpoint_p),
12059 compare_breakpoints);
12060 prev = VEC_index (breakpoint_p, found, 0);
12061 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
12062 {
12063 if (b == prev)
12064 {
12065 VEC_ordered_remove (breakpoint_p, found, ix);
12066 --ix;
12067 }
12068 }
12069
12070 if (VEC_length(breakpoint_p, found) > 1)
12071 from_tty = 1; /* Always report if deleted more than one. */
12072 if (from_tty)
12073 {
12074 if (VEC_length(breakpoint_p, found) == 1)
12075 printf_unfiltered (_("Deleted breakpoint "));
12076 else
12077 printf_unfiltered (_("Deleted breakpoints "));
12078 }
12079
12080 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
12081 {
12082 if (from_tty)
12083 printf_unfiltered ("%d ", b->number);
12084 delete_breakpoint (b);
12085 }
12086 if (from_tty)
12087 putchar_unfiltered ('\n');
12088
12089 do_cleanups (cleanups);
12090 }
12091 \f
12092 /* Delete breakpoint in BS if they are `delete' breakpoints and
12093 all breakpoints that are marked for deletion, whether hit or not.
12094 This is called after any breakpoint is hit, or after errors. */
12095
12096 void
12097 breakpoint_auto_delete (bpstat bs)
12098 {
12099 struct breakpoint *b, *b_tmp;
12100
12101 for (; bs; bs = bs->next)
12102 if (bs->breakpoint_at
12103 && bs->breakpoint_at->disposition == disp_del
12104 && bs->stop)
12105 delete_breakpoint (bs->breakpoint_at);
12106
12107 ALL_BREAKPOINTS_SAFE (b, b_tmp)
12108 {
12109 if (b->disposition == disp_del_at_next_stop)
12110 delete_breakpoint (b);
12111 }
12112 }
12113
12114 /* A comparison function for bp_location AP and BP being interfaced to
12115 qsort. Sort elements primarily by their ADDRESS (no matter what
12116 does breakpoint_address_is_meaningful say for its OWNER),
12117 secondarily by ordering first bp_permanent OWNERed elements and
12118 terciarily just ensuring the array is sorted stable way despite
12119 qsort being an unstable algorithm. */
12120
12121 static int
12122 bp_location_compare (const void *ap, const void *bp)
12123 {
12124 struct bp_location *a = *(void **) ap;
12125 struct bp_location *b = *(void **) bp;
12126 /* A and B come from existing breakpoints having non-NULL OWNER. */
12127 int a_perm = a->owner->enable_state == bp_permanent;
12128 int b_perm = b->owner->enable_state == bp_permanent;
12129
12130 if (a->address != b->address)
12131 return (a->address > b->address) - (a->address < b->address);
12132
12133 /* Sort locations at the same address by their pspace number, keeping
12134 locations of the same inferior (in a multi-inferior environment)
12135 grouped. */
12136
12137 if (a->pspace->num != b->pspace->num)
12138 return ((a->pspace->num > b->pspace->num)
12139 - (a->pspace->num < b->pspace->num));
12140
12141 /* Sort permanent breakpoints first. */
12142 if (a_perm != b_perm)
12143 return (a_perm < b_perm) - (a_perm > b_perm);
12144
12145 /* Make the internal GDB representation stable across GDB runs
12146 where A and B memory inside GDB can differ. Breakpoint locations of
12147 the same type at the same address can be sorted in arbitrary order. */
12148
12149 if (a->owner->number != b->owner->number)
12150 return ((a->owner->number > b->owner->number)
12151 - (a->owner->number < b->owner->number));
12152
12153 return (a > b) - (a < b);
12154 }
12155
12156 /* Set bp_location_placed_address_before_address_max and
12157 bp_location_shadow_len_after_address_max according to the current
12158 content of the bp_location array. */
12159
12160 static void
12161 bp_location_target_extensions_update (void)
12162 {
12163 struct bp_location *bl, **blp_tmp;
12164
12165 bp_location_placed_address_before_address_max = 0;
12166 bp_location_shadow_len_after_address_max = 0;
12167
12168 ALL_BP_LOCATIONS (bl, blp_tmp)
12169 {
12170 CORE_ADDR start, end, addr;
12171
12172 if (!bp_location_has_shadow (bl))
12173 continue;
12174
12175 start = bl->target_info.placed_address;
12176 end = start + bl->target_info.shadow_len;
12177
12178 gdb_assert (bl->address >= start);
12179 addr = bl->address - start;
12180 if (addr > bp_location_placed_address_before_address_max)
12181 bp_location_placed_address_before_address_max = addr;
12182
12183 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
12184
12185 gdb_assert (bl->address < end);
12186 addr = end - bl->address;
12187 if (addr > bp_location_shadow_len_after_address_max)
12188 bp_location_shadow_len_after_address_max = addr;
12189 }
12190 }
12191
12192 /* Download tracepoint locations if they haven't been. */
12193
12194 static void
12195 download_tracepoint_locations (void)
12196 {
12197 struct breakpoint *b;
12198 struct cleanup *old_chain;
12199
12200 if (!target_can_download_tracepoint ())
12201 return;
12202
12203 old_chain = save_current_space_and_thread ();
12204
12205 ALL_TRACEPOINTS (b)
12206 {
12207 struct bp_location *bl;
12208 struct tracepoint *t;
12209 int bp_location_downloaded = 0;
12210
12211 if ((b->type == bp_fast_tracepoint
12212 ? !may_insert_fast_tracepoints
12213 : !may_insert_tracepoints))
12214 continue;
12215
12216 for (bl = b->loc; bl; bl = bl->next)
12217 {
12218 /* In tracepoint, locations are _never_ duplicated, so
12219 should_be_inserted is equivalent to
12220 unduplicated_should_be_inserted. */
12221 if (!should_be_inserted (bl) || bl->inserted)
12222 continue;
12223
12224 switch_to_program_space_and_thread (bl->pspace);
12225
12226 target_download_tracepoint (bl);
12227
12228 bl->inserted = 1;
12229 bp_location_downloaded = 1;
12230 }
12231 t = (struct tracepoint *) b;
12232 t->number_on_target = b->number;
12233 if (bp_location_downloaded)
12234 observer_notify_breakpoint_modified (b);
12235 }
12236
12237 do_cleanups (old_chain);
12238 }
12239
12240 /* Swap the insertion/duplication state between two locations. */
12241
12242 static void
12243 swap_insertion (struct bp_location *left, struct bp_location *right)
12244 {
12245 const int left_inserted = left->inserted;
12246 const int left_duplicate = left->duplicate;
12247 const int left_needs_update = left->needs_update;
12248 const struct bp_target_info left_target_info = left->target_info;
12249
12250 /* Locations of tracepoints can never be duplicated. */
12251 if (is_tracepoint (left->owner))
12252 gdb_assert (!left->duplicate);
12253 if (is_tracepoint (right->owner))
12254 gdb_assert (!right->duplicate);
12255
12256 left->inserted = right->inserted;
12257 left->duplicate = right->duplicate;
12258 left->needs_update = right->needs_update;
12259 left->target_info = right->target_info;
12260 right->inserted = left_inserted;
12261 right->duplicate = left_duplicate;
12262 right->needs_update = left_needs_update;
12263 right->target_info = left_target_info;
12264 }
12265
12266 /* Force the re-insertion of the locations at ADDRESS. This is called
12267 once a new/deleted/modified duplicate location is found and we are evaluating
12268 conditions on the target's side. Such conditions need to be updated on
12269 the target. */
12270
12271 static void
12272 force_breakpoint_reinsertion (struct bp_location *bl)
12273 {
12274 struct bp_location **locp = NULL, **loc2p;
12275 struct bp_location *loc;
12276 CORE_ADDR address = 0;
12277 int pspace_num;
12278
12279 address = bl->address;
12280 pspace_num = bl->pspace->num;
12281
12282 /* This is only meaningful if the target is
12283 evaluating conditions and if the user has
12284 opted for condition evaluation on the target's
12285 side. */
12286 if (gdb_evaluates_breakpoint_condition_p ()
12287 || !target_supports_evaluation_of_breakpoint_conditions ())
12288 return;
12289
12290 /* Flag all breakpoint locations with this address and
12291 the same program space as the location
12292 as "its condition has changed". We need to
12293 update the conditions on the target's side. */
12294 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12295 {
12296 loc = *loc2p;
12297
12298 if (!is_breakpoint (loc->owner)
12299 || pspace_num != loc->pspace->num)
12300 continue;
12301
12302 /* Flag the location appropriately. We use a different state to
12303 let everyone know that we already updated the set of locations
12304 with addr bl->address and program space bl->pspace. This is so
12305 we don't have to keep calling these functions just to mark locations
12306 that have already been marked. */
12307 loc->condition_changed = condition_updated;
12308
12309 /* Free the agent expression bytecode as well. We will compute
12310 it later on. */
12311 if (loc->cond_bytecode)
12312 {
12313 free_agent_expr (loc->cond_bytecode);
12314 loc->cond_bytecode = NULL;
12315 }
12316 }
12317 }
12318
12319 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12320 into the inferior, only remove already-inserted locations that no
12321 longer should be inserted. Functions that delete a breakpoint or
12322 breakpoints should pass false, so that deleting a breakpoint
12323 doesn't have the side effect of inserting the locations of other
12324 breakpoints that are marked not-inserted, but should_be_inserted
12325 returns true on them.
12326
12327 This behaviour is useful is situations close to tear-down -- e.g.,
12328 after an exec, while the target still has execution, but breakpoint
12329 shadows of the previous executable image should *NOT* be restored
12330 to the new image; or before detaching, where the target still has
12331 execution and wants to delete breakpoints from GDB's lists, and all
12332 breakpoints had already been removed from the inferior. */
12333
12334 static void
12335 update_global_location_list (int should_insert)
12336 {
12337 struct breakpoint *b;
12338 struct bp_location **locp, *loc;
12339 struct cleanup *cleanups;
12340 /* Last breakpoint location address that was marked for update. */
12341 CORE_ADDR last_addr = 0;
12342 /* Last breakpoint location program space that was marked for update. */
12343 int last_pspace_num = -1;
12344
12345 /* Used in the duplicates detection below. When iterating over all
12346 bp_locations, points to the first bp_location of a given address.
12347 Breakpoints and watchpoints of different types are never
12348 duplicates of each other. Keep one pointer for each type of
12349 breakpoint/watchpoint, so we only need to loop over all locations
12350 once. */
12351 struct bp_location *bp_loc_first; /* breakpoint */
12352 struct bp_location *wp_loc_first; /* hardware watchpoint */
12353 struct bp_location *awp_loc_first; /* access watchpoint */
12354 struct bp_location *rwp_loc_first; /* read watchpoint */
12355
12356 /* Saved former bp_location array which we compare against the newly
12357 built bp_location from the current state of ALL_BREAKPOINTS. */
12358 struct bp_location **old_location, **old_locp;
12359 unsigned old_location_count;
12360
12361 old_location = bp_location;
12362 old_location_count = bp_location_count;
12363 bp_location = NULL;
12364 bp_location_count = 0;
12365 cleanups = make_cleanup (xfree, old_location);
12366
12367 ALL_BREAKPOINTS (b)
12368 for (loc = b->loc; loc; loc = loc->next)
12369 bp_location_count++;
12370
12371 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12372 locp = bp_location;
12373 ALL_BREAKPOINTS (b)
12374 for (loc = b->loc; loc; loc = loc->next)
12375 *locp++ = loc;
12376 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12377 bp_location_compare);
12378
12379 bp_location_target_extensions_update ();
12380
12381 /* Identify bp_location instances that are no longer present in the
12382 new list, and therefore should be freed. Note that it's not
12383 necessary that those locations should be removed from inferior --
12384 if there's another location at the same address (previously
12385 marked as duplicate), we don't need to remove/insert the
12386 location.
12387
12388 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12389 and former bp_location array state respectively. */
12390
12391 locp = bp_location;
12392 for (old_locp = old_location; old_locp < old_location + old_location_count;
12393 old_locp++)
12394 {
12395 struct bp_location *old_loc = *old_locp;
12396 struct bp_location **loc2p;
12397
12398 /* Tells if 'old_loc' is found among the new locations. If
12399 not, we have to free it. */
12400 int found_object = 0;
12401 /* Tells if the location should remain inserted in the target. */
12402 int keep_in_target = 0;
12403 int removed = 0;
12404
12405 /* Skip LOCP entries which will definitely never be needed.
12406 Stop either at or being the one matching OLD_LOC. */
12407 while (locp < bp_location + bp_location_count
12408 && (*locp)->address < old_loc->address)
12409 locp++;
12410
12411 for (loc2p = locp;
12412 (loc2p < bp_location + bp_location_count
12413 && (*loc2p)->address == old_loc->address);
12414 loc2p++)
12415 {
12416 /* Check if this is a new/duplicated location or a duplicated
12417 location that had its condition modified. If so, we want to send
12418 its condition to the target if evaluation of conditions is taking
12419 place there. */
12420 if ((*loc2p)->condition_changed == condition_modified
12421 && (last_addr != old_loc->address
12422 || last_pspace_num != old_loc->pspace->num))
12423 {
12424 force_breakpoint_reinsertion (*loc2p);
12425 last_pspace_num = old_loc->pspace->num;
12426 }
12427
12428 if (*loc2p == old_loc)
12429 found_object = 1;
12430 }
12431
12432 /* We have already handled this address, update it so that we don't
12433 have to go through updates again. */
12434 last_addr = old_loc->address;
12435
12436 /* Target-side condition evaluation: Handle deleted locations. */
12437 if (!found_object)
12438 force_breakpoint_reinsertion (old_loc);
12439
12440 /* If this location is no longer present, and inserted, look if
12441 there's maybe a new location at the same address. If so,
12442 mark that one inserted, and don't remove this one. This is
12443 needed so that we don't have a time window where a breakpoint
12444 at certain location is not inserted. */
12445
12446 if (old_loc->inserted)
12447 {
12448 /* If the location is inserted now, we might have to remove
12449 it. */
12450
12451 if (found_object && should_be_inserted (old_loc))
12452 {
12453 /* The location is still present in the location list,
12454 and still should be inserted. Don't do anything. */
12455 keep_in_target = 1;
12456 }
12457 else
12458 {
12459 /* This location still exists, but it won't be kept in the
12460 target since it may have been disabled. We proceed to
12461 remove its target-side condition. */
12462
12463 /* The location is either no longer present, or got
12464 disabled. See if there's another location at the
12465 same address, in which case we don't need to remove
12466 this one from the target. */
12467
12468 /* OLD_LOC comes from existing struct breakpoint. */
12469 if (breakpoint_address_is_meaningful (old_loc->owner))
12470 {
12471 for (loc2p = locp;
12472 (loc2p < bp_location + bp_location_count
12473 && (*loc2p)->address == old_loc->address);
12474 loc2p++)
12475 {
12476 struct bp_location *loc2 = *loc2p;
12477
12478 if (breakpoint_locations_match (loc2, old_loc))
12479 {
12480 /* Read watchpoint locations are switched to
12481 access watchpoints, if the former are not
12482 supported, but the latter are. */
12483 if (is_hardware_watchpoint (old_loc->owner))
12484 {
12485 gdb_assert (is_hardware_watchpoint (loc2->owner));
12486 loc2->watchpoint_type = old_loc->watchpoint_type;
12487 }
12488
12489 /* loc2 is a duplicated location. We need to check
12490 if it should be inserted in case it will be
12491 unduplicated. */
12492 if (loc2 != old_loc
12493 && unduplicated_should_be_inserted (loc2))
12494 {
12495 swap_insertion (old_loc, loc2);
12496 keep_in_target = 1;
12497 break;
12498 }
12499 }
12500 }
12501 }
12502 }
12503
12504 if (!keep_in_target)
12505 {
12506 if (remove_breakpoint (old_loc, mark_uninserted))
12507 {
12508 /* This is just about all we can do. We could keep
12509 this location on the global list, and try to
12510 remove it next time, but there's no particular
12511 reason why we will succeed next time.
12512
12513 Note that at this point, old_loc->owner is still
12514 valid, as delete_breakpoint frees the breakpoint
12515 only after calling us. */
12516 printf_filtered (_("warning: Error removing "
12517 "breakpoint %d\n"),
12518 old_loc->owner->number);
12519 }
12520 removed = 1;
12521 }
12522 }
12523
12524 if (!found_object)
12525 {
12526 if (removed && non_stop
12527 && breakpoint_address_is_meaningful (old_loc->owner)
12528 && !is_hardware_watchpoint (old_loc->owner))
12529 {
12530 /* This location was removed from the target. In
12531 non-stop mode, a race condition is possible where
12532 we've removed a breakpoint, but stop events for that
12533 breakpoint are already queued and will arrive later.
12534 We apply an heuristic to be able to distinguish such
12535 SIGTRAPs from other random SIGTRAPs: we keep this
12536 breakpoint location for a bit, and will retire it
12537 after we see some number of events. The theory here
12538 is that reporting of events should, "on the average",
12539 be fair, so after a while we'll see events from all
12540 threads that have anything of interest, and no longer
12541 need to keep this breakpoint location around. We
12542 don't hold locations forever so to reduce chances of
12543 mistaking a non-breakpoint SIGTRAP for a breakpoint
12544 SIGTRAP.
12545
12546 The heuristic failing can be disastrous on
12547 decr_pc_after_break targets.
12548
12549 On decr_pc_after_break targets, like e.g., x86-linux,
12550 if we fail to recognize a late breakpoint SIGTRAP,
12551 because events_till_retirement has reached 0 too
12552 soon, we'll fail to do the PC adjustment, and report
12553 a random SIGTRAP to the user. When the user resumes
12554 the inferior, it will most likely immediately crash
12555 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12556 corrupted, because of being resumed e.g., in the
12557 middle of a multi-byte instruction, or skipped a
12558 one-byte instruction. This was actually seen happen
12559 on native x86-linux, and should be less rare on
12560 targets that do not support new thread events, like
12561 remote, due to the heuristic depending on
12562 thread_count.
12563
12564 Mistaking a random SIGTRAP for a breakpoint trap
12565 causes similar symptoms (PC adjustment applied when
12566 it shouldn't), but then again, playing with SIGTRAPs
12567 behind the debugger's back is asking for trouble.
12568
12569 Since hardware watchpoint traps are always
12570 distinguishable from other traps, so we don't need to
12571 apply keep hardware watchpoint moribund locations
12572 around. We simply always ignore hardware watchpoint
12573 traps we can no longer explain. */
12574
12575 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12576 old_loc->owner = NULL;
12577
12578 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12579 }
12580 else
12581 {
12582 old_loc->owner = NULL;
12583 decref_bp_location (&old_loc);
12584 }
12585 }
12586 }
12587
12588 /* Rescan breakpoints at the same address and section, marking the
12589 first one as "first" and any others as "duplicates". This is so
12590 that the bpt instruction is only inserted once. If we have a
12591 permanent breakpoint at the same place as BPT, make that one the
12592 official one, and the rest as duplicates. Permanent breakpoints
12593 are sorted first for the same address.
12594
12595 Do the same for hardware watchpoints, but also considering the
12596 watchpoint's type (regular/access/read) and length. */
12597
12598 bp_loc_first = NULL;
12599 wp_loc_first = NULL;
12600 awp_loc_first = NULL;
12601 rwp_loc_first = NULL;
12602 ALL_BP_LOCATIONS (loc, locp)
12603 {
12604 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12605 non-NULL. */
12606 struct bp_location **loc_first_p;
12607 b = loc->owner;
12608
12609 if (!unduplicated_should_be_inserted (loc)
12610 || !breakpoint_address_is_meaningful (b)
12611 /* Don't detect duplicate for tracepoint locations because they are
12612 never duplicated. See the comments in field `duplicate' of
12613 `struct bp_location'. */
12614 || is_tracepoint (b))
12615 {
12616 /* Clear the condition modification flag. */
12617 loc->condition_changed = condition_unchanged;
12618 continue;
12619 }
12620
12621 /* Permanent breakpoint should always be inserted. */
12622 if (b->enable_state == bp_permanent && ! loc->inserted)
12623 internal_error (__FILE__, __LINE__,
12624 _("allegedly permanent breakpoint is not "
12625 "actually inserted"));
12626
12627 if (b->type == bp_hardware_watchpoint)
12628 loc_first_p = &wp_loc_first;
12629 else if (b->type == bp_read_watchpoint)
12630 loc_first_p = &rwp_loc_first;
12631 else if (b->type == bp_access_watchpoint)
12632 loc_first_p = &awp_loc_first;
12633 else
12634 loc_first_p = &bp_loc_first;
12635
12636 if (*loc_first_p == NULL
12637 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12638 || !breakpoint_locations_match (loc, *loc_first_p))
12639 {
12640 *loc_first_p = loc;
12641 loc->duplicate = 0;
12642
12643 if (is_breakpoint (loc->owner) && loc->condition_changed)
12644 {
12645 loc->needs_update = 1;
12646 /* Clear the condition modification flag. */
12647 loc->condition_changed = condition_unchanged;
12648 }
12649 continue;
12650 }
12651
12652
12653 /* This and the above ensure the invariant that the first location
12654 is not duplicated, and is the inserted one.
12655 All following are marked as duplicated, and are not inserted. */
12656 if (loc->inserted)
12657 swap_insertion (loc, *loc_first_p);
12658 loc->duplicate = 1;
12659
12660 /* Clear the condition modification flag. */
12661 loc->condition_changed = condition_unchanged;
12662
12663 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12664 && b->enable_state != bp_permanent)
12665 internal_error (__FILE__, __LINE__,
12666 _("another breakpoint was inserted on top of "
12667 "a permanent breakpoint"));
12668 }
12669
12670 if (breakpoints_always_inserted_mode ()
12671 && (have_live_inferiors ()
12672 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12673 {
12674 if (should_insert)
12675 insert_breakpoint_locations ();
12676 else
12677 {
12678 /* Though should_insert is false, we may need to update conditions
12679 on the target's side if it is evaluating such conditions. We
12680 only update conditions for locations that are marked
12681 "needs_update". */
12682 update_inserted_breakpoint_locations ();
12683 }
12684 }
12685
12686 if (should_insert)
12687 download_tracepoint_locations ();
12688
12689 do_cleanups (cleanups);
12690 }
12691
12692 void
12693 breakpoint_retire_moribund (void)
12694 {
12695 struct bp_location *loc;
12696 int ix;
12697
12698 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12699 if (--(loc->events_till_retirement) == 0)
12700 {
12701 decref_bp_location (&loc);
12702 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12703 --ix;
12704 }
12705 }
12706
12707 static void
12708 update_global_location_list_nothrow (int inserting)
12709 {
12710 volatile struct gdb_exception e;
12711
12712 TRY_CATCH (e, RETURN_MASK_ERROR)
12713 update_global_location_list (inserting);
12714 }
12715
12716 /* Clear BKP from a BPS. */
12717
12718 static void
12719 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12720 {
12721 bpstat bs;
12722
12723 for (bs = bps; bs; bs = bs->next)
12724 if (bs->breakpoint_at == bpt)
12725 {
12726 bs->breakpoint_at = NULL;
12727 bs->old_val = NULL;
12728 /* bs->commands will be freed later. */
12729 }
12730 }
12731
12732 /* Callback for iterate_over_threads. */
12733 static int
12734 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12735 {
12736 struct breakpoint *bpt = data;
12737
12738 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12739 return 0;
12740 }
12741
12742 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12743 callbacks. */
12744
12745 static void
12746 say_where (struct breakpoint *b)
12747 {
12748 struct value_print_options opts;
12749
12750 get_user_print_options (&opts);
12751
12752 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12753 single string. */
12754 if (b->loc == NULL)
12755 {
12756 printf_filtered (_(" (%s) pending."), b->addr_string);
12757 }
12758 else
12759 {
12760 if (opts.addressprint || b->loc->symtab == NULL)
12761 {
12762 printf_filtered (" at ");
12763 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12764 gdb_stdout);
12765 }
12766 if (b->loc->symtab != NULL)
12767 {
12768 /* If there is a single location, we can print the location
12769 more nicely. */
12770 if (b->loc->next == NULL)
12771 printf_filtered (": file %s, line %d.",
12772 symtab_to_filename_for_display (b->loc->symtab),
12773 b->loc->line_number);
12774 else
12775 /* This is not ideal, but each location may have a
12776 different file name, and this at least reflects the
12777 real situation somewhat. */
12778 printf_filtered (": %s.", b->addr_string);
12779 }
12780
12781 if (b->loc->next)
12782 {
12783 struct bp_location *loc = b->loc;
12784 int n = 0;
12785 for (; loc; loc = loc->next)
12786 ++n;
12787 printf_filtered (" (%d locations)", n);
12788 }
12789 }
12790 }
12791
12792 /* Default bp_location_ops methods. */
12793
12794 static void
12795 bp_location_dtor (struct bp_location *self)
12796 {
12797 xfree (self->cond);
12798 if (self->cond_bytecode)
12799 free_agent_expr (self->cond_bytecode);
12800 xfree (self->function_name);
12801
12802 VEC_free (agent_expr_p, self->target_info.conditions);
12803 VEC_free (agent_expr_p, self->target_info.tcommands);
12804 }
12805
12806 static const struct bp_location_ops bp_location_ops =
12807 {
12808 bp_location_dtor
12809 };
12810
12811 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12812 inherit from. */
12813
12814 static void
12815 base_breakpoint_dtor (struct breakpoint *self)
12816 {
12817 decref_counted_command_line (&self->commands);
12818 xfree (self->cond_string);
12819 xfree (self->extra_string);
12820 xfree (self->addr_string);
12821 xfree (self->filter);
12822 xfree (self->addr_string_range_end);
12823 }
12824
12825 static struct bp_location *
12826 base_breakpoint_allocate_location (struct breakpoint *self)
12827 {
12828 struct bp_location *loc;
12829
12830 loc = XNEW (struct bp_location);
12831 init_bp_location (loc, &bp_location_ops, self);
12832 return loc;
12833 }
12834
12835 static void
12836 base_breakpoint_re_set (struct breakpoint *b)
12837 {
12838 /* Nothing to re-set. */
12839 }
12840
12841 #define internal_error_pure_virtual_called() \
12842 gdb_assert_not_reached ("pure virtual function called")
12843
12844 static int
12845 base_breakpoint_insert_location (struct bp_location *bl)
12846 {
12847 internal_error_pure_virtual_called ();
12848 }
12849
12850 static int
12851 base_breakpoint_remove_location (struct bp_location *bl)
12852 {
12853 internal_error_pure_virtual_called ();
12854 }
12855
12856 static int
12857 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12858 struct address_space *aspace,
12859 CORE_ADDR bp_addr,
12860 const struct target_waitstatus *ws)
12861 {
12862 internal_error_pure_virtual_called ();
12863 }
12864
12865 static void
12866 base_breakpoint_check_status (bpstat bs)
12867 {
12868 /* Always stop. */
12869 }
12870
12871 /* A "works_in_software_mode" breakpoint_ops method that just internal
12872 errors. */
12873
12874 static int
12875 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12876 {
12877 internal_error_pure_virtual_called ();
12878 }
12879
12880 /* A "resources_needed" breakpoint_ops method that just internal
12881 errors. */
12882
12883 static int
12884 base_breakpoint_resources_needed (const struct bp_location *bl)
12885 {
12886 internal_error_pure_virtual_called ();
12887 }
12888
12889 static enum print_stop_action
12890 base_breakpoint_print_it (bpstat bs)
12891 {
12892 internal_error_pure_virtual_called ();
12893 }
12894
12895 static void
12896 base_breakpoint_print_one_detail (const struct breakpoint *self,
12897 struct ui_out *uiout)
12898 {
12899 /* nothing */
12900 }
12901
12902 static void
12903 base_breakpoint_print_mention (struct breakpoint *b)
12904 {
12905 internal_error_pure_virtual_called ();
12906 }
12907
12908 static void
12909 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12910 {
12911 internal_error_pure_virtual_called ();
12912 }
12913
12914 static void
12915 base_breakpoint_create_sals_from_address (char **arg,
12916 struct linespec_result *canonical,
12917 enum bptype type_wanted,
12918 char *addr_start,
12919 char **copy_arg)
12920 {
12921 internal_error_pure_virtual_called ();
12922 }
12923
12924 static void
12925 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12926 struct linespec_result *c,
12927 char *cond_string,
12928 char *extra_string,
12929 enum bptype type_wanted,
12930 enum bpdisp disposition,
12931 int thread,
12932 int task, int ignore_count,
12933 const struct breakpoint_ops *o,
12934 int from_tty, int enabled,
12935 int internal, unsigned flags)
12936 {
12937 internal_error_pure_virtual_called ();
12938 }
12939
12940 static void
12941 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12942 struct symtabs_and_lines *sals)
12943 {
12944 internal_error_pure_virtual_called ();
12945 }
12946
12947 /* The default 'explains_signal' method. */
12948
12949 static int
12950 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12951 {
12952 return 1;
12953 }
12954
12955 /* The default "after_condition_true" method. */
12956
12957 static void
12958 base_breakpoint_after_condition_true (struct bpstats *bs)
12959 {
12960 /* Nothing to do. */
12961 }
12962
12963 struct breakpoint_ops base_breakpoint_ops =
12964 {
12965 base_breakpoint_dtor,
12966 base_breakpoint_allocate_location,
12967 base_breakpoint_re_set,
12968 base_breakpoint_insert_location,
12969 base_breakpoint_remove_location,
12970 base_breakpoint_breakpoint_hit,
12971 base_breakpoint_check_status,
12972 base_breakpoint_resources_needed,
12973 base_breakpoint_works_in_software_mode,
12974 base_breakpoint_print_it,
12975 NULL,
12976 base_breakpoint_print_one_detail,
12977 base_breakpoint_print_mention,
12978 base_breakpoint_print_recreate,
12979 base_breakpoint_create_sals_from_address,
12980 base_breakpoint_create_breakpoints_sal,
12981 base_breakpoint_decode_linespec,
12982 base_breakpoint_explains_signal,
12983 base_breakpoint_after_condition_true,
12984 };
12985
12986 /* Default breakpoint_ops methods. */
12987
12988 static void
12989 bkpt_re_set (struct breakpoint *b)
12990 {
12991 /* FIXME: is this still reachable? */
12992 if (b->addr_string == NULL)
12993 {
12994 /* Anything without a string can't be re-set. */
12995 delete_breakpoint (b);
12996 return;
12997 }
12998
12999 breakpoint_re_set_default (b);
13000 }
13001
13002 static int
13003 bkpt_insert_location (struct bp_location *bl)
13004 {
13005 if (bl->loc_type == bp_loc_hardware_breakpoint)
13006 return target_insert_hw_breakpoint (bl->gdbarch,
13007 &bl->target_info);
13008 else
13009 return target_insert_breakpoint (bl->gdbarch,
13010 &bl->target_info);
13011 }
13012
13013 static int
13014 bkpt_remove_location (struct bp_location *bl)
13015 {
13016 if (bl->loc_type == bp_loc_hardware_breakpoint)
13017 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
13018 else
13019 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
13020 }
13021
13022 static int
13023 bkpt_breakpoint_hit (const struct bp_location *bl,
13024 struct address_space *aspace, CORE_ADDR bp_addr,
13025 const struct target_waitstatus *ws)
13026 {
13027 if (ws->kind != TARGET_WAITKIND_STOPPED
13028 || ws->value.sig != GDB_SIGNAL_TRAP)
13029 return 0;
13030
13031 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
13032 aspace, bp_addr))
13033 return 0;
13034
13035 if (overlay_debugging /* unmapped overlay section */
13036 && section_is_overlay (bl->section)
13037 && !section_is_mapped (bl->section))
13038 return 0;
13039
13040 return 1;
13041 }
13042
13043 static int
13044 bkpt_resources_needed (const struct bp_location *bl)
13045 {
13046 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
13047
13048 return 1;
13049 }
13050
13051 static enum print_stop_action
13052 bkpt_print_it (bpstat bs)
13053 {
13054 struct breakpoint *b;
13055 const struct bp_location *bl;
13056 int bp_temp;
13057 struct ui_out *uiout = current_uiout;
13058
13059 gdb_assert (bs->bp_location_at != NULL);
13060
13061 bl = bs->bp_location_at;
13062 b = bs->breakpoint_at;
13063
13064 bp_temp = b->disposition == disp_del;
13065 if (bl->address != bl->requested_address)
13066 breakpoint_adjustment_warning (bl->requested_address,
13067 bl->address,
13068 b->number, 1);
13069 annotate_breakpoint (b->number);
13070 if (bp_temp)
13071 ui_out_text (uiout, "\nTemporary breakpoint ");
13072 else
13073 ui_out_text (uiout, "\nBreakpoint ");
13074 if (ui_out_is_mi_like_p (uiout))
13075 {
13076 ui_out_field_string (uiout, "reason",
13077 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
13078 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
13079 }
13080 ui_out_field_int (uiout, "bkptno", b->number);
13081 ui_out_text (uiout, ", ");
13082
13083 return PRINT_SRC_AND_LOC;
13084 }
13085
13086 static void
13087 bkpt_print_mention (struct breakpoint *b)
13088 {
13089 if (ui_out_is_mi_like_p (current_uiout))
13090 return;
13091
13092 switch (b->type)
13093 {
13094 case bp_breakpoint:
13095 case bp_gnu_ifunc_resolver:
13096 if (b->disposition == disp_del)
13097 printf_filtered (_("Temporary breakpoint"));
13098 else
13099 printf_filtered (_("Breakpoint"));
13100 printf_filtered (_(" %d"), b->number);
13101 if (b->type == bp_gnu_ifunc_resolver)
13102 printf_filtered (_(" at gnu-indirect-function resolver"));
13103 break;
13104 case bp_hardware_breakpoint:
13105 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
13106 break;
13107 case bp_dprintf:
13108 printf_filtered (_("Dprintf %d"), b->number);
13109 break;
13110 }
13111
13112 say_where (b);
13113 }
13114
13115 static void
13116 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13117 {
13118 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
13119 fprintf_unfiltered (fp, "tbreak");
13120 else if (tp->type == bp_breakpoint)
13121 fprintf_unfiltered (fp, "break");
13122 else if (tp->type == bp_hardware_breakpoint
13123 && tp->disposition == disp_del)
13124 fprintf_unfiltered (fp, "thbreak");
13125 else if (tp->type == bp_hardware_breakpoint)
13126 fprintf_unfiltered (fp, "hbreak");
13127 else
13128 internal_error (__FILE__, __LINE__,
13129 _("unhandled breakpoint type %d"), (int) tp->type);
13130
13131 fprintf_unfiltered (fp, " %s", tp->addr_string);
13132 print_recreate_thread (tp, fp);
13133 }
13134
13135 static void
13136 bkpt_create_sals_from_address (char **arg,
13137 struct linespec_result *canonical,
13138 enum bptype type_wanted,
13139 char *addr_start, char **copy_arg)
13140 {
13141 create_sals_from_address_default (arg, canonical, type_wanted,
13142 addr_start, copy_arg);
13143 }
13144
13145 static void
13146 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
13147 struct linespec_result *canonical,
13148 char *cond_string,
13149 char *extra_string,
13150 enum bptype type_wanted,
13151 enum bpdisp disposition,
13152 int thread,
13153 int task, int ignore_count,
13154 const struct breakpoint_ops *ops,
13155 int from_tty, int enabled,
13156 int internal, unsigned flags)
13157 {
13158 create_breakpoints_sal_default (gdbarch, canonical,
13159 cond_string, extra_string,
13160 type_wanted,
13161 disposition, thread, task,
13162 ignore_count, ops, from_tty,
13163 enabled, internal, flags);
13164 }
13165
13166 static void
13167 bkpt_decode_linespec (struct breakpoint *b, char **s,
13168 struct symtabs_and_lines *sals)
13169 {
13170 decode_linespec_default (b, s, sals);
13171 }
13172
13173 /* Virtual table for internal breakpoints. */
13174
13175 static void
13176 internal_bkpt_re_set (struct breakpoint *b)
13177 {
13178 switch (b->type)
13179 {
13180 /* Delete overlay event and longjmp master breakpoints; they
13181 will be reset later by breakpoint_re_set. */
13182 case bp_overlay_event:
13183 case bp_longjmp_master:
13184 case bp_std_terminate_master:
13185 case bp_exception_master:
13186 delete_breakpoint (b);
13187 break;
13188
13189 /* This breakpoint is special, it's set up when the inferior
13190 starts and we really don't want to touch it. */
13191 case bp_shlib_event:
13192
13193 /* Like bp_shlib_event, this breakpoint type is special. Once
13194 it is set up, we do not want to touch it. */
13195 case bp_thread_event:
13196 break;
13197 }
13198 }
13199
13200 static void
13201 internal_bkpt_check_status (bpstat bs)
13202 {
13203 if (bs->breakpoint_at->type == bp_shlib_event)
13204 {
13205 /* If requested, stop when the dynamic linker notifies GDB of
13206 events. This allows the user to get control and place
13207 breakpoints in initializer routines for dynamically loaded
13208 objects (among other things). */
13209 bs->stop = stop_on_solib_events;
13210 bs->print = stop_on_solib_events;
13211 }
13212 else
13213 bs->stop = 0;
13214 }
13215
13216 static enum print_stop_action
13217 internal_bkpt_print_it (bpstat bs)
13218 {
13219 struct breakpoint *b;
13220
13221 b = bs->breakpoint_at;
13222
13223 switch (b->type)
13224 {
13225 case bp_shlib_event:
13226 /* Did we stop because the user set the stop_on_solib_events
13227 variable? (If so, we report this as a generic, "Stopped due
13228 to shlib event" message.) */
13229 print_solib_event (0);
13230 break;
13231
13232 case bp_thread_event:
13233 /* Not sure how we will get here.
13234 GDB should not stop for these breakpoints. */
13235 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13236 break;
13237
13238 case bp_overlay_event:
13239 /* By analogy with the thread event, GDB should not stop for these. */
13240 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13241 break;
13242
13243 case bp_longjmp_master:
13244 /* These should never be enabled. */
13245 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13246 break;
13247
13248 case bp_std_terminate_master:
13249 /* These should never be enabled. */
13250 printf_filtered (_("std::terminate Master Breakpoint: "
13251 "gdb should not stop!\n"));
13252 break;
13253
13254 case bp_exception_master:
13255 /* These should never be enabled. */
13256 printf_filtered (_("Exception Master Breakpoint: "
13257 "gdb should not stop!\n"));
13258 break;
13259 }
13260
13261 return PRINT_NOTHING;
13262 }
13263
13264 static void
13265 internal_bkpt_print_mention (struct breakpoint *b)
13266 {
13267 /* Nothing to mention. These breakpoints are internal. */
13268 }
13269
13270 /* Virtual table for momentary breakpoints */
13271
13272 static void
13273 momentary_bkpt_re_set (struct breakpoint *b)
13274 {
13275 /* Keep temporary breakpoints, which can be encountered when we step
13276 over a dlopen call and solib_add is resetting the breakpoints.
13277 Otherwise these should have been blown away via the cleanup chain
13278 or by breakpoint_init_inferior when we rerun the executable. */
13279 }
13280
13281 static void
13282 momentary_bkpt_check_status (bpstat bs)
13283 {
13284 /* Nothing. The point of these breakpoints is causing a stop. */
13285 }
13286
13287 static enum print_stop_action
13288 momentary_bkpt_print_it (bpstat bs)
13289 {
13290 struct ui_out *uiout = current_uiout;
13291
13292 if (ui_out_is_mi_like_p (uiout))
13293 {
13294 struct breakpoint *b = bs->breakpoint_at;
13295
13296 switch (b->type)
13297 {
13298 case bp_finish:
13299 ui_out_field_string
13300 (uiout, "reason",
13301 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13302 break;
13303
13304 case bp_until:
13305 ui_out_field_string
13306 (uiout, "reason",
13307 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13308 break;
13309 }
13310 }
13311
13312 return PRINT_UNKNOWN;
13313 }
13314
13315 static void
13316 momentary_bkpt_print_mention (struct breakpoint *b)
13317 {
13318 /* Nothing to mention. These breakpoints are internal. */
13319 }
13320
13321 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13322
13323 It gets cleared already on the removal of the first one of such placed
13324 breakpoints. This is OK as they get all removed altogether. */
13325
13326 static void
13327 longjmp_bkpt_dtor (struct breakpoint *self)
13328 {
13329 struct thread_info *tp = find_thread_id (self->thread);
13330
13331 if (tp)
13332 tp->initiating_frame = null_frame_id;
13333
13334 momentary_breakpoint_ops.dtor (self);
13335 }
13336
13337 /* Specific methods for probe breakpoints. */
13338
13339 static int
13340 bkpt_probe_insert_location (struct bp_location *bl)
13341 {
13342 int v = bkpt_insert_location (bl);
13343
13344 if (v == 0)
13345 {
13346 /* The insertion was successful, now let's set the probe's semaphore
13347 if needed. */
13348 bl->probe.probe->pops->set_semaphore (bl->probe.probe,
13349 bl->probe.objfile,
13350 bl->gdbarch);
13351 }
13352
13353 return v;
13354 }
13355
13356 static int
13357 bkpt_probe_remove_location (struct bp_location *bl)
13358 {
13359 /* Let's clear the semaphore before removing the location. */
13360 bl->probe.probe->pops->clear_semaphore (bl->probe.probe,
13361 bl->probe.objfile,
13362 bl->gdbarch);
13363
13364 return bkpt_remove_location (bl);
13365 }
13366
13367 static void
13368 bkpt_probe_create_sals_from_address (char **arg,
13369 struct linespec_result *canonical,
13370 enum bptype type_wanted,
13371 char *addr_start, char **copy_arg)
13372 {
13373 struct linespec_sals lsal;
13374
13375 lsal.sals = parse_probes (arg, canonical);
13376
13377 *copy_arg = xstrdup (canonical->addr_string);
13378 lsal.canonical = xstrdup (*copy_arg);
13379
13380 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13381 }
13382
13383 static void
13384 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13385 struct symtabs_and_lines *sals)
13386 {
13387 *sals = parse_probes (s, NULL);
13388 if (!sals->sals)
13389 error (_("probe not found"));
13390 }
13391
13392 /* The breakpoint_ops structure to be used in tracepoints. */
13393
13394 static void
13395 tracepoint_re_set (struct breakpoint *b)
13396 {
13397 breakpoint_re_set_default (b);
13398 }
13399
13400 static int
13401 tracepoint_breakpoint_hit (const struct bp_location *bl,
13402 struct address_space *aspace, CORE_ADDR bp_addr,
13403 const struct target_waitstatus *ws)
13404 {
13405 /* By definition, the inferior does not report stops at
13406 tracepoints. */
13407 return 0;
13408 }
13409
13410 static void
13411 tracepoint_print_one_detail (const struct breakpoint *self,
13412 struct ui_out *uiout)
13413 {
13414 struct tracepoint *tp = (struct tracepoint *) self;
13415 if (tp->static_trace_marker_id)
13416 {
13417 gdb_assert (self->type == bp_static_tracepoint);
13418
13419 ui_out_text (uiout, "\tmarker id is ");
13420 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13421 tp->static_trace_marker_id);
13422 ui_out_text (uiout, "\n");
13423 }
13424 }
13425
13426 static void
13427 tracepoint_print_mention (struct breakpoint *b)
13428 {
13429 if (ui_out_is_mi_like_p (current_uiout))
13430 return;
13431
13432 switch (b->type)
13433 {
13434 case bp_tracepoint:
13435 printf_filtered (_("Tracepoint"));
13436 printf_filtered (_(" %d"), b->number);
13437 break;
13438 case bp_fast_tracepoint:
13439 printf_filtered (_("Fast tracepoint"));
13440 printf_filtered (_(" %d"), b->number);
13441 break;
13442 case bp_static_tracepoint:
13443 printf_filtered (_("Static tracepoint"));
13444 printf_filtered (_(" %d"), b->number);
13445 break;
13446 default:
13447 internal_error (__FILE__, __LINE__,
13448 _("unhandled tracepoint type %d"), (int) b->type);
13449 }
13450
13451 say_where (b);
13452 }
13453
13454 static void
13455 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13456 {
13457 struct tracepoint *tp = (struct tracepoint *) self;
13458
13459 if (self->type == bp_fast_tracepoint)
13460 fprintf_unfiltered (fp, "ftrace");
13461 if (self->type == bp_static_tracepoint)
13462 fprintf_unfiltered (fp, "strace");
13463 else if (self->type == bp_tracepoint)
13464 fprintf_unfiltered (fp, "trace");
13465 else
13466 internal_error (__FILE__, __LINE__,
13467 _("unhandled tracepoint type %d"), (int) self->type);
13468
13469 fprintf_unfiltered (fp, " %s", self->addr_string);
13470 print_recreate_thread (self, fp);
13471
13472 if (tp->pass_count)
13473 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13474 }
13475
13476 static void
13477 tracepoint_create_sals_from_address (char **arg,
13478 struct linespec_result *canonical,
13479 enum bptype type_wanted,
13480 char *addr_start, char **copy_arg)
13481 {
13482 create_sals_from_address_default (arg, canonical, type_wanted,
13483 addr_start, copy_arg);
13484 }
13485
13486 static void
13487 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13488 struct linespec_result *canonical,
13489 char *cond_string,
13490 char *extra_string,
13491 enum bptype type_wanted,
13492 enum bpdisp disposition,
13493 int thread,
13494 int task, int ignore_count,
13495 const struct breakpoint_ops *ops,
13496 int from_tty, int enabled,
13497 int internal, unsigned flags)
13498 {
13499 create_breakpoints_sal_default (gdbarch, canonical,
13500 cond_string, extra_string,
13501 type_wanted,
13502 disposition, thread, task,
13503 ignore_count, ops, from_tty,
13504 enabled, internal, flags);
13505 }
13506
13507 static void
13508 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13509 struct symtabs_and_lines *sals)
13510 {
13511 decode_linespec_default (b, s, sals);
13512 }
13513
13514 struct breakpoint_ops tracepoint_breakpoint_ops;
13515
13516 /* The breakpoint_ops structure to be use on tracepoints placed in a
13517 static probe. */
13518
13519 static void
13520 tracepoint_probe_create_sals_from_address (char **arg,
13521 struct linespec_result *canonical,
13522 enum bptype type_wanted,
13523 char *addr_start, char **copy_arg)
13524 {
13525 /* We use the same method for breakpoint on probes. */
13526 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13527 addr_start, copy_arg);
13528 }
13529
13530 static void
13531 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13532 struct symtabs_and_lines *sals)
13533 {
13534 /* We use the same method for breakpoint on probes. */
13535 bkpt_probe_decode_linespec (b, s, sals);
13536 }
13537
13538 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13539
13540 /* Dprintf breakpoint_ops methods. */
13541
13542 static void
13543 dprintf_re_set (struct breakpoint *b)
13544 {
13545 breakpoint_re_set_default (b);
13546
13547 /* This breakpoint could have been pending, and be resolved now, and
13548 if so, we should now have the extra string. If we don't, the
13549 dprintf was malformed when created, but we couldn't tell because
13550 we can't extract the extra string until the location is
13551 resolved. */
13552 if (b->loc != NULL && b->extra_string == NULL)
13553 error (_("Format string required"));
13554
13555 /* 1 - connect to target 1, that can run breakpoint commands.
13556 2 - create a dprintf, which resolves fine.
13557 3 - disconnect from target 1
13558 4 - connect to target 2, that can NOT run breakpoint commands.
13559
13560 After steps #3/#4, you'll want the dprintf command list to
13561 be updated, because target 1 and 2 may well return different
13562 answers for target_can_run_breakpoint_commands().
13563 Given absence of finer grained resetting, we get to do
13564 it all the time. */
13565 if (b->extra_string != NULL)
13566 update_dprintf_command_list (b);
13567 }
13568
13569 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13570
13571 static void
13572 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13573 {
13574 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13575 tp->extra_string);
13576 print_recreate_thread (tp, fp);
13577 }
13578
13579 /* Implement the "after_condition_true" breakpoint_ops method for
13580 dprintf.
13581
13582 dprintf's are implemented with regular commands in their command
13583 list, but we run the commands here instead of before presenting the
13584 stop to the user, as dprintf's don't actually cause a stop. This
13585 also makes it so that the commands of multiple dprintfs at the same
13586 address are all handled. */
13587
13588 static void
13589 dprintf_after_condition_true (struct bpstats *bs)
13590 {
13591 struct cleanup *old_chain;
13592 struct bpstats tmp_bs = { NULL };
13593 struct bpstats *tmp_bs_p = &tmp_bs;
13594
13595 /* dprintf's never cause a stop. This wasn't set in the
13596 check_status hook instead because that would make the dprintf's
13597 condition not be evaluated. */
13598 bs->stop = 0;
13599
13600 /* Run the command list here. Take ownership of it instead of
13601 copying. We never want these commands to run later in
13602 bpstat_do_actions, if a breakpoint that causes a stop happens to
13603 be set at same address as this dprintf, or even if running the
13604 commands here throws. */
13605 tmp_bs.commands = bs->commands;
13606 bs->commands = NULL;
13607 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13608
13609 bpstat_do_actions_1 (&tmp_bs_p);
13610
13611 /* 'tmp_bs.commands' will usually be NULL by now, but
13612 bpstat_do_actions_1 may return early without processing the whole
13613 list. */
13614 do_cleanups (old_chain);
13615 }
13616
13617 /* The breakpoint_ops structure to be used on static tracepoints with
13618 markers (`-m'). */
13619
13620 static void
13621 strace_marker_create_sals_from_address (char **arg,
13622 struct linespec_result *canonical,
13623 enum bptype type_wanted,
13624 char *addr_start, char **copy_arg)
13625 {
13626 struct linespec_sals lsal;
13627
13628 lsal.sals = decode_static_tracepoint_spec (arg);
13629
13630 *copy_arg = savestring (addr_start, *arg - addr_start);
13631
13632 canonical->addr_string = xstrdup (*copy_arg);
13633 lsal.canonical = xstrdup (*copy_arg);
13634 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13635 }
13636
13637 static void
13638 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13639 struct linespec_result *canonical,
13640 char *cond_string,
13641 char *extra_string,
13642 enum bptype type_wanted,
13643 enum bpdisp disposition,
13644 int thread,
13645 int task, int ignore_count,
13646 const struct breakpoint_ops *ops,
13647 int from_tty, int enabled,
13648 int internal, unsigned flags)
13649 {
13650 int i;
13651 struct linespec_sals *lsal = VEC_index (linespec_sals,
13652 canonical->sals, 0);
13653
13654 /* If the user is creating a static tracepoint by marker id
13655 (strace -m MARKER_ID), then store the sals index, so that
13656 breakpoint_re_set can try to match up which of the newly
13657 found markers corresponds to this one, and, don't try to
13658 expand multiple locations for each sal, given than SALS
13659 already should contain all sals for MARKER_ID. */
13660
13661 for (i = 0; i < lsal->sals.nelts; ++i)
13662 {
13663 struct symtabs_and_lines expanded;
13664 struct tracepoint *tp;
13665 struct cleanup *old_chain;
13666 char *addr_string;
13667
13668 expanded.nelts = 1;
13669 expanded.sals = &lsal->sals.sals[i];
13670
13671 addr_string = xstrdup (canonical->addr_string);
13672 old_chain = make_cleanup (xfree, addr_string);
13673
13674 tp = XCNEW (struct tracepoint);
13675 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13676 addr_string, NULL,
13677 cond_string, extra_string,
13678 type_wanted, disposition,
13679 thread, task, ignore_count, ops,
13680 from_tty, enabled, internal, flags,
13681 canonical->special_display);
13682 /* Given that its possible to have multiple markers with
13683 the same string id, if the user is creating a static
13684 tracepoint by marker id ("strace -m MARKER_ID"), then
13685 store the sals index, so that breakpoint_re_set can
13686 try to match up which of the newly found markers
13687 corresponds to this one */
13688 tp->static_trace_marker_id_idx = i;
13689
13690 install_breakpoint (internal, &tp->base, 0);
13691
13692 discard_cleanups (old_chain);
13693 }
13694 }
13695
13696 static void
13697 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13698 struct symtabs_and_lines *sals)
13699 {
13700 struct tracepoint *tp = (struct tracepoint *) b;
13701
13702 *sals = decode_static_tracepoint_spec (s);
13703 if (sals->nelts > tp->static_trace_marker_id_idx)
13704 {
13705 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13706 sals->nelts = 1;
13707 }
13708 else
13709 error (_("marker %s not found"), tp->static_trace_marker_id);
13710 }
13711
13712 static struct breakpoint_ops strace_marker_breakpoint_ops;
13713
13714 static int
13715 strace_marker_p (struct breakpoint *b)
13716 {
13717 return b->ops == &strace_marker_breakpoint_ops;
13718 }
13719
13720 /* Delete a breakpoint and clean up all traces of it in the data
13721 structures. */
13722
13723 void
13724 delete_breakpoint (struct breakpoint *bpt)
13725 {
13726 struct breakpoint *b;
13727
13728 gdb_assert (bpt != NULL);
13729
13730 /* Has this bp already been deleted? This can happen because
13731 multiple lists can hold pointers to bp's. bpstat lists are
13732 especial culprits.
13733
13734 One example of this happening is a watchpoint's scope bp. When
13735 the scope bp triggers, we notice that the watchpoint is out of
13736 scope, and delete it. We also delete its scope bp. But the
13737 scope bp is marked "auto-deleting", and is already on a bpstat.
13738 That bpstat is then checked for auto-deleting bp's, which are
13739 deleted.
13740
13741 A real solution to this problem might involve reference counts in
13742 bp's, and/or giving them pointers back to their referencing
13743 bpstat's, and teaching delete_breakpoint to only free a bp's
13744 storage when no more references were extent. A cheaper bandaid
13745 was chosen. */
13746 if (bpt->type == bp_none)
13747 return;
13748
13749 /* At least avoid this stale reference until the reference counting
13750 of breakpoints gets resolved. */
13751 if (bpt->related_breakpoint != bpt)
13752 {
13753 struct breakpoint *related;
13754 struct watchpoint *w;
13755
13756 if (bpt->type == bp_watchpoint_scope)
13757 w = (struct watchpoint *) bpt->related_breakpoint;
13758 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13759 w = (struct watchpoint *) bpt;
13760 else
13761 w = NULL;
13762 if (w != NULL)
13763 watchpoint_del_at_next_stop (w);
13764
13765 /* Unlink bpt from the bpt->related_breakpoint ring. */
13766 for (related = bpt; related->related_breakpoint != bpt;
13767 related = related->related_breakpoint);
13768 related->related_breakpoint = bpt->related_breakpoint;
13769 bpt->related_breakpoint = bpt;
13770 }
13771
13772 /* watch_command_1 creates a watchpoint but only sets its number if
13773 update_watchpoint succeeds in creating its bp_locations. If there's
13774 a problem in that process, we'll be asked to delete the half-created
13775 watchpoint. In that case, don't announce the deletion. */
13776 if (bpt->number)
13777 observer_notify_breakpoint_deleted (bpt);
13778
13779 if (breakpoint_chain == bpt)
13780 breakpoint_chain = bpt->next;
13781
13782 ALL_BREAKPOINTS (b)
13783 if (b->next == bpt)
13784 {
13785 b->next = bpt->next;
13786 break;
13787 }
13788
13789 /* Be sure no bpstat's are pointing at the breakpoint after it's
13790 been freed. */
13791 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13792 in all threads for now. Note that we cannot just remove bpstats
13793 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13794 commands are associated with the bpstat; if we remove it here,
13795 then the later call to bpstat_do_actions (&stop_bpstat); in
13796 event-top.c won't do anything, and temporary breakpoints with
13797 commands won't work. */
13798
13799 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13800
13801 /* Now that breakpoint is removed from breakpoint list, update the
13802 global location list. This will remove locations that used to
13803 belong to this breakpoint. Do this before freeing the breakpoint
13804 itself, since remove_breakpoint looks at location's owner. It
13805 might be better design to have location completely
13806 self-contained, but it's not the case now. */
13807 update_global_location_list (0);
13808
13809 bpt->ops->dtor (bpt);
13810 /* On the chance that someone will soon try again to delete this
13811 same bp, we mark it as deleted before freeing its storage. */
13812 bpt->type = bp_none;
13813 xfree (bpt);
13814 }
13815
13816 static void
13817 do_delete_breakpoint_cleanup (void *b)
13818 {
13819 delete_breakpoint (b);
13820 }
13821
13822 struct cleanup *
13823 make_cleanup_delete_breakpoint (struct breakpoint *b)
13824 {
13825 return make_cleanup (do_delete_breakpoint_cleanup, b);
13826 }
13827
13828 /* Iterator function to call a user-provided callback function once
13829 for each of B and its related breakpoints. */
13830
13831 static void
13832 iterate_over_related_breakpoints (struct breakpoint *b,
13833 void (*function) (struct breakpoint *,
13834 void *),
13835 void *data)
13836 {
13837 struct breakpoint *related;
13838
13839 related = b;
13840 do
13841 {
13842 struct breakpoint *next;
13843
13844 /* FUNCTION may delete RELATED. */
13845 next = related->related_breakpoint;
13846
13847 if (next == related)
13848 {
13849 /* RELATED is the last ring entry. */
13850 function (related, data);
13851
13852 /* FUNCTION may have deleted it, so we'd never reach back to
13853 B. There's nothing left to do anyway, so just break
13854 out. */
13855 break;
13856 }
13857 else
13858 function (related, data);
13859
13860 related = next;
13861 }
13862 while (related != b);
13863 }
13864
13865 static void
13866 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13867 {
13868 delete_breakpoint (b);
13869 }
13870
13871 /* A callback for map_breakpoint_numbers that calls
13872 delete_breakpoint. */
13873
13874 static void
13875 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13876 {
13877 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13878 }
13879
13880 void
13881 delete_command (char *arg, int from_tty)
13882 {
13883 struct breakpoint *b, *b_tmp;
13884
13885 dont_repeat ();
13886
13887 if (arg == 0)
13888 {
13889 int breaks_to_delete = 0;
13890
13891 /* Delete all breakpoints if no argument. Do not delete
13892 internal breakpoints, these have to be deleted with an
13893 explicit breakpoint number argument. */
13894 ALL_BREAKPOINTS (b)
13895 if (user_breakpoint_p (b))
13896 {
13897 breaks_to_delete = 1;
13898 break;
13899 }
13900
13901 /* Ask user only if there are some breakpoints to delete. */
13902 if (!from_tty
13903 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13904 {
13905 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13906 if (user_breakpoint_p (b))
13907 delete_breakpoint (b);
13908 }
13909 }
13910 else
13911 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13912 }
13913
13914 static int
13915 all_locations_are_pending (struct bp_location *loc)
13916 {
13917 for (; loc; loc = loc->next)
13918 if (!loc->shlib_disabled
13919 && !loc->pspace->executing_startup)
13920 return 0;
13921 return 1;
13922 }
13923
13924 /* Subroutine of update_breakpoint_locations to simplify it.
13925 Return non-zero if multiple fns in list LOC have the same name.
13926 Null names are ignored. */
13927
13928 static int
13929 ambiguous_names_p (struct bp_location *loc)
13930 {
13931 struct bp_location *l;
13932 htab_t htab = htab_create_alloc (13, htab_hash_string,
13933 (int (*) (const void *,
13934 const void *)) streq,
13935 NULL, xcalloc, xfree);
13936
13937 for (l = loc; l != NULL; l = l->next)
13938 {
13939 const char **slot;
13940 const char *name = l->function_name;
13941
13942 /* Allow for some names to be NULL, ignore them. */
13943 if (name == NULL)
13944 continue;
13945
13946 slot = (const char **) htab_find_slot (htab, (const void *) name,
13947 INSERT);
13948 /* NOTE: We can assume slot != NULL here because xcalloc never
13949 returns NULL. */
13950 if (*slot != NULL)
13951 {
13952 htab_delete (htab);
13953 return 1;
13954 }
13955 *slot = name;
13956 }
13957
13958 htab_delete (htab);
13959 return 0;
13960 }
13961
13962 /* When symbols change, it probably means the sources changed as well,
13963 and it might mean the static tracepoint markers are no longer at
13964 the same address or line numbers they used to be at last we
13965 checked. Losing your static tracepoints whenever you rebuild is
13966 undesirable. This function tries to resync/rematch gdb static
13967 tracepoints with the markers on the target, for static tracepoints
13968 that have not been set by marker id. Static tracepoint that have
13969 been set by marker id are reset by marker id in breakpoint_re_set.
13970 The heuristic is:
13971
13972 1) For a tracepoint set at a specific address, look for a marker at
13973 the old PC. If one is found there, assume to be the same marker.
13974 If the name / string id of the marker found is different from the
13975 previous known name, assume that means the user renamed the marker
13976 in the sources, and output a warning.
13977
13978 2) For a tracepoint set at a given line number, look for a marker
13979 at the new address of the old line number. If one is found there,
13980 assume to be the same marker. If the name / string id of the
13981 marker found is different from the previous known name, assume that
13982 means the user renamed the marker in the sources, and output a
13983 warning.
13984
13985 3) If a marker is no longer found at the same address or line, it
13986 may mean the marker no longer exists. But it may also just mean
13987 the code changed a bit. Maybe the user added a few lines of code
13988 that made the marker move up or down (in line number terms). Ask
13989 the target for info about the marker with the string id as we knew
13990 it. If found, update line number and address in the matching
13991 static tracepoint. This will get confused if there's more than one
13992 marker with the same ID (possible in UST, although unadvised
13993 precisely because it confuses tools). */
13994
13995 static struct symtab_and_line
13996 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13997 {
13998 struct tracepoint *tp = (struct tracepoint *) b;
13999 struct static_tracepoint_marker marker;
14000 CORE_ADDR pc;
14001
14002 pc = sal.pc;
14003 if (sal.line)
14004 find_line_pc (sal.symtab, sal.line, &pc);
14005
14006 if (target_static_tracepoint_marker_at (pc, &marker))
14007 {
14008 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
14009 warning (_("static tracepoint %d changed probed marker from %s to %s"),
14010 b->number,
14011 tp->static_trace_marker_id, marker.str_id);
14012
14013 xfree (tp->static_trace_marker_id);
14014 tp->static_trace_marker_id = xstrdup (marker.str_id);
14015 release_static_tracepoint_marker (&marker);
14016
14017 return sal;
14018 }
14019
14020 /* Old marker wasn't found on target at lineno. Try looking it up
14021 by string ID. */
14022 if (!sal.explicit_pc
14023 && sal.line != 0
14024 && sal.symtab != NULL
14025 && tp->static_trace_marker_id != NULL)
14026 {
14027 VEC(static_tracepoint_marker_p) *markers;
14028
14029 markers
14030 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
14031
14032 if (!VEC_empty(static_tracepoint_marker_p, markers))
14033 {
14034 struct symtab_and_line sal2;
14035 struct symbol *sym;
14036 struct static_tracepoint_marker *tpmarker;
14037 struct ui_out *uiout = current_uiout;
14038
14039 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
14040
14041 xfree (tp->static_trace_marker_id);
14042 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
14043
14044 warning (_("marker for static tracepoint %d (%s) not "
14045 "found at previous line number"),
14046 b->number, tp->static_trace_marker_id);
14047
14048 init_sal (&sal2);
14049
14050 sal2.pc = tpmarker->address;
14051
14052 sal2 = find_pc_line (tpmarker->address, 0);
14053 sym = find_pc_sect_function (tpmarker->address, NULL);
14054 ui_out_text (uiout, "Now in ");
14055 if (sym)
14056 {
14057 ui_out_field_string (uiout, "func",
14058 SYMBOL_PRINT_NAME (sym));
14059 ui_out_text (uiout, " at ");
14060 }
14061 ui_out_field_string (uiout, "file",
14062 symtab_to_filename_for_display (sal2.symtab));
14063 ui_out_text (uiout, ":");
14064
14065 if (ui_out_is_mi_like_p (uiout))
14066 {
14067 const char *fullname = symtab_to_fullname (sal2.symtab);
14068
14069 ui_out_field_string (uiout, "fullname", fullname);
14070 }
14071
14072 ui_out_field_int (uiout, "line", sal2.line);
14073 ui_out_text (uiout, "\n");
14074
14075 b->loc->line_number = sal2.line;
14076 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
14077
14078 xfree (b->addr_string);
14079 b->addr_string = xstrprintf ("%s:%d",
14080 symtab_to_filename_for_display (sal2.symtab),
14081 b->loc->line_number);
14082
14083 /* Might be nice to check if function changed, and warn if
14084 so. */
14085
14086 release_static_tracepoint_marker (tpmarker);
14087 }
14088 }
14089 return sal;
14090 }
14091
14092 /* Returns 1 iff locations A and B are sufficiently same that
14093 we don't need to report breakpoint as changed. */
14094
14095 static int
14096 locations_are_equal (struct bp_location *a, struct bp_location *b)
14097 {
14098 while (a && b)
14099 {
14100 if (a->address != b->address)
14101 return 0;
14102
14103 if (a->shlib_disabled != b->shlib_disabled)
14104 return 0;
14105
14106 if (a->enabled != b->enabled)
14107 return 0;
14108
14109 a = a->next;
14110 b = b->next;
14111 }
14112
14113 if ((a == NULL) != (b == NULL))
14114 return 0;
14115
14116 return 1;
14117 }
14118
14119 /* Create new breakpoint locations for B (a hardware or software breakpoint)
14120 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
14121 a ranged breakpoint. */
14122
14123 void
14124 update_breakpoint_locations (struct breakpoint *b,
14125 struct symtabs_and_lines sals,
14126 struct symtabs_and_lines sals_end)
14127 {
14128 int i;
14129 struct bp_location *existing_locations = b->loc;
14130
14131 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
14132 {
14133 /* Ranged breakpoints have only one start location and one end
14134 location. */
14135 b->enable_state = bp_disabled;
14136 update_global_location_list (1);
14137 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
14138 "multiple locations found\n"),
14139 b->number);
14140 return;
14141 }
14142
14143 /* If there's no new locations, and all existing locations are
14144 pending, don't do anything. This optimizes the common case where
14145 all locations are in the same shared library, that was unloaded.
14146 We'd like to retain the location, so that when the library is
14147 loaded again, we don't loose the enabled/disabled status of the
14148 individual locations. */
14149 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
14150 return;
14151
14152 b->loc = NULL;
14153
14154 for (i = 0; i < sals.nelts; ++i)
14155 {
14156 struct bp_location *new_loc;
14157
14158 switch_to_program_space_and_thread (sals.sals[i].pspace);
14159
14160 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
14161
14162 /* Reparse conditions, they might contain references to the
14163 old symtab. */
14164 if (b->cond_string != NULL)
14165 {
14166 const char *s;
14167 volatile struct gdb_exception e;
14168
14169 s = b->cond_string;
14170 TRY_CATCH (e, RETURN_MASK_ERROR)
14171 {
14172 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
14173 block_for_pc (sals.sals[i].pc),
14174 0);
14175 }
14176 if (e.reason < 0)
14177 {
14178 warning (_("failed to reevaluate condition "
14179 "for breakpoint %d: %s"),
14180 b->number, e.message);
14181 new_loc->enabled = 0;
14182 }
14183 }
14184
14185 if (sals_end.nelts)
14186 {
14187 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
14188
14189 new_loc->length = end - sals.sals[0].pc + 1;
14190 }
14191 }
14192
14193 /* Update locations of permanent breakpoints. */
14194 if (b->enable_state == bp_permanent)
14195 make_breakpoint_permanent (b);
14196
14197 /* If possible, carry over 'disable' status from existing
14198 breakpoints. */
14199 {
14200 struct bp_location *e = existing_locations;
14201 /* If there are multiple breakpoints with the same function name,
14202 e.g. for inline functions, comparing function names won't work.
14203 Instead compare pc addresses; this is just a heuristic as things
14204 may have moved, but in practice it gives the correct answer
14205 often enough until a better solution is found. */
14206 int have_ambiguous_names = ambiguous_names_p (b->loc);
14207
14208 for (; e; e = e->next)
14209 {
14210 if (!e->enabled && e->function_name)
14211 {
14212 struct bp_location *l = b->loc;
14213 if (have_ambiguous_names)
14214 {
14215 for (; l; l = l->next)
14216 if (breakpoint_locations_match (e, l))
14217 {
14218 l->enabled = 0;
14219 break;
14220 }
14221 }
14222 else
14223 {
14224 for (; l; l = l->next)
14225 if (l->function_name
14226 && strcmp (e->function_name, l->function_name) == 0)
14227 {
14228 l->enabled = 0;
14229 break;
14230 }
14231 }
14232 }
14233 }
14234 }
14235
14236 if (!locations_are_equal (existing_locations, b->loc))
14237 observer_notify_breakpoint_modified (b);
14238
14239 update_global_location_list (1);
14240 }
14241
14242 /* Find the SaL locations corresponding to the given ADDR_STRING.
14243 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14244
14245 static struct symtabs_and_lines
14246 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14247 {
14248 char *s;
14249 struct symtabs_and_lines sals = {0};
14250 volatile struct gdb_exception e;
14251
14252 gdb_assert (b->ops != NULL);
14253 s = addr_string;
14254
14255 TRY_CATCH (e, RETURN_MASK_ERROR)
14256 {
14257 b->ops->decode_linespec (b, &s, &sals);
14258 }
14259 if (e.reason < 0)
14260 {
14261 int not_found_and_ok = 0;
14262 /* For pending breakpoints, it's expected that parsing will
14263 fail until the right shared library is loaded. User has
14264 already told to create pending breakpoints and don't need
14265 extra messages. If breakpoint is in bp_shlib_disabled
14266 state, then user already saw the message about that
14267 breakpoint being disabled, and don't want to see more
14268 errors. */
14269 if (e.error == NOT_FOUND_ERROR
14270 && (b->condition_not_parsed
14271 || (b->loc && b->loc->shlib_disabled)
14272 || (b->loc && b->loc->pspace->executing_startup)
14273 || b->enable_state == bp_disabled))
14274 not_found_and_ok = 1;
14275
14276 if (!not_found_and_ok)
14277 {
14278 /* We surely don't want to warn about the same breakpoint
14279 10 times. One solution, implemented here, is disable
14280 the breakpoint on error. Another solution would be to
14281 have separate 'warning emitted' flag. Since this
14282 happens only when a binary has changed, I don't know
14283 which approach is better. */
14284 b->enable_state = bp_disabled;
14285 throw_exception (e);
14286 }
14287 }
14288
14289 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14290 {
14291 int i;
14292
14293 for (i = 0; i < sals.nelts; ++i)
14294 resolve_sal_pc (&sals.sals[i]);
14295 if (b->condition_not_parsed && s && s[0])
14296 {
14297 char *cond_string, *extra_string;
14298 int thread, task;
14299
14300 find_condition_and_thread (s, sals.sals[0].pc,
14301 &cond_string, &thread, &task,
14302 &extra_string);
14303 if (cond_string)
14304 b->cond_string = cond_string;
14305 b->thread = thread;
14306 b->task = task;
14307 if (extra_string)
14308 b->extra_string = extra_string;
14309 b->condition_not_parsed = 0;
14310 }
14311
14312 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14313 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14314
14315 *found = 1;
14316 }
14317 else
14318 *found = 0;
14319
14320 return sals;
14321 }
14322
14323 /* The default re_set method, for typical hardware or software
14324 breakpoints. Reevaluate the breakpoint and recreate its
14325 locations. */
14326
14327 static void
14328 breakpoint_re_set_default (struct breakpoint *b)
14329 {
14330 int found;
14331 struct symtabs_and_lines sals, sals_end;
14332 struct symtabs_and_lines expanded = {0};
14333 struct symtabs_and_lines expanded_end = {0};
14334
14335 sals = addr_string_to_sals (b, b->addr_string, &found);
14336 if (found)
14337 {
14338 make_cleanup (xfree, sals.sals);
14339 expanded = sals;
14340 }
14341
14342 if (b->addr_string_range_end)
14343 {
14344 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14345 if (found)
14346 {
14347 make_cleanup (xfree, sals_end.sals);
14348 expanded_end = sals_end;
14349 }
14350 }
14351
14352 update_breakpoint_locations (b, expanded, expanded_end);
14353 }
14354
14355 /* Default method for creating SALs from an address string. It basically
14356 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14357
14358 static void
14359 create_sals_from_address_default (char **arg,
14360 struct linespec_result *canonical,
14361 enum bptype type_wanted,
14362 char *addr_start, char **copy_arg)
14363 {
14364 parse_breakpoint_sals (arg, canonical);
14365 }
14366
14367 /* Call create_breakpoints_sal for the given arguments. This is the default
14368 function for the `create_breakpoints_sal' method of
14369 breakpoint_ops. */
14370
14371 static void
14372 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14373 struct linespec_result *canonical,
14374 char *cond_string,
14375 char *extra_string,
14376 enum bptype type_wanted,
14377 enum bpdisp disposition,
14378 int thread,
14379 int task, int ignore_count,
14380 const struct breakpoint_ops *ops,
14381 int from_tty, int enabled,
14382 int internal, unsigned flags)
14383 {
14384 create_breakpoints_sal (gdbarch, canonical, cond_string,
14385 extra_string,
14386 type_wanted, disposition,
14387 thread, task, ignore_count, ops, from_tty,
14388 enabled, internal, flags);
14389 }
14390
14391 /* Decode the line represented by S by calling decode_line_full. This is the
14392 default function for the `decode_linespec' method of breakpoint_ops. */
14393
14394 static void
14395 decode_linespec_default (struct breakpoint *b, char **s,
14396 struct symtabs_and_lines *sals)
14397 {
14398 struct linespec_result canonical;
14399
14400 init_linespec_result (&canonical);
14401 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14402 (struct symtab *) NULL, 0,
14403 &canonical, multiple_symbols_all,
14404 b->filter);
14405
14406 /* We should get 0 or 1 resulting SALs. */
14407 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14408
14409 if (VEC_length (linespec_sals, canonical.sals) > 0)
14410 {
14411 struct linespec_sals *lsal;
14412
14413 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14414 *sals = lsal->sals;
14415 /* Arrange it so the destructor does not free the
14416 contents. */
14417 lsal->sals.sals = NULL;
14418 }
14419
14420 destroy_linespec_result (&canonical);
14421 }
14422
14423 /* Prepare the global context for a re-set of breakpoint B. */
14424
14425 static struct cleanup *
14426 prepare_re_set_context (struct breakpoint *b)
14427 {
14428 struct cleanup *cleanups;
14429
14430 input_radix = b->input_radix;
14431 cleanups = save_current_space_and_thread ();
14432 if (b->pspace != NULL)
14433 switch_to_program_space_and_thread (b->pspace);
14434 set_language (b->language);
14435
14436 return cleanups;
14437 }
14438
14439 /* Reset a breakpoint given it's struct breakpoint * BINT.
14440 The value we return ends up being the return value from catch_errors.
14441 Unused in this case. */
14442
14443 static int
14444 breakpoint_re_set_one (void *bint)
14445 {
14446 /* Get past catch_errs. */
14447 struct breakpoint *b = (struct breakpoint *) bint;
14448 struct cleanup *cleanups;
14449
14450 cleanups = prepare_re_set_context (b);
14451 b->ops->re_set (b);
14452 do_cleanups (cleanups);
14453 return 0;
14454 }
14455
14456 /* Re-set all breakpoints after symbols have been re-loaded. */
14457 void
14458 breakpoint_re_set (void)
14459 {
14460 struct breakpoint *b, *b_tmp;
14461 enum language save_language;
14462 int save_input_radix;
14463 struct cleanup *old_chain;
14464
14465 save_language = current_language->la_language;
14466 save_input_radix = input_radix;
14467 old_chain = save_current_program_space ();
14468
14469 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14470 {
14471 /* Format possible error msg. */
14472 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14473 b->number);
14474 struct cleanup *cleanups = make_cleanup (xfree, message);
14475 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14476 do_cleanups (cleanups);
14477 }
14478 set_language (save_language);
14479 input_radix = save_input_radix;
14480
14481 jit_breakpoint_re_set ();
14482
14483 do_cleanups (old_chain);
14484
14485 create_overlay_event_breakpoint ();
14486 create_longjmp_master_breakpoint ();
14487 create_std_terminate_master_breakpoint ();
14488 create_exception_master_breakpoint ();
14489 }
14490 \f
14491 /* Reset the thread number of this breakpoint:
14492
14493 - If the breakpoint is for all threads, leave it as-is.
14494 - Else, reset it to the current thread for inferior_ptid. */
14495 void
14496 breakpoint_re_set_thread (struct breakpoint *b)
14497 {
14498 if (b->thread != -1)
14499 {
14500 if (in_thread_list (inferior_ptid))
14501 b->thread = pid_to_thread_id (inferior_ptid);
14502
14503 /* We're being called after following a fork. The new fork is
14504 selected as current, and unless this was a vfork will have a
14505 different program space from the original thread. Reset that
14506 as well. */
14507 b->loc->pspace = current_program_space;
14508 }
14509 }
14510
14511 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14512 If from_tty is nonzero, it prints a message to that effect,
14513 which ends with a period (no newline). */
14514
14515 void
14516 set_ignore_count (int bptnum, int count, int from_tty)
14517 {
14518 struct breakpoint *b;
14519
14520 if (count < 0)
14521 count = 0;
14522
14523 ALL_BREAKPOINTS (b)
14524 if (b->number == bptnum)
14525 {
14526 if (is_tracepoint (b))
14527 {
14528 if (from_tty && count != 0)
14529 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14530 bptnum);
14531 return;
14532 }
14533
14534 b->ignore_count = count;
14535 if (from_tty)
14536 {
14537 if (count == 0)
14538 printf_filtered (_("Will stop next time "
14539 "breakpoint %d is reached."),
14540 bptnum);
14541 else if (count == 1)
14542 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14543 bptnum);
14544 else
14545 printf_filtered (_("Will ignore next %d "
14546 "crossings of breakpoint %d."),
14547 count, bptnum);
14548 }
14549 observer_notify_breakpoint_modified (b);
14550 return;
14551 }
14552
14553 error (_("No breakpoint number %d."), bptnum);
14554 }
14555
14556 /* Command to set ignore-count of breakpoint N to COUNT. */
14557
14558 static void
14559 ignore_command (char *args, int from_tty)
14560 {
14561 char *p = args;
14562 int num;
14563
14564 if (p == 0)
14565 error_no_arg (_("a breakpoint number"));
14566
14567 num = get_number (&p);
14568 if (num == 0)
14569 error (_("bad breakpoint number: '%s'"), args);
14570 if (*p == 0)
14571 error (_("Second argument (specified ignore-count) is missing."));
14572
14573 set_ignore_count (num,
14574 longest_to_int (value_as_long (parse_and_eval (p))),
14575 from_tty);
14576 if (from_tty)
14577 printf_filtered ("\n");
14578 }
14579 \f
14580 /* Call FUNCTION on each of the breakpoints
14581 whose numbers are given in ARGS. */
14582
14583 static void
14584 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14585 void *),
14586 void *data)
14587 {
14588 int num;
14589 struct breakpoint *b, *tmp;
14590 int match;
14591 struct get_number_or_range_state state;
14592
14593 if (args == 0)
14594 error_no_arg (_("one or more breakpoint numbers"));
14595
14596 init_number_or_range (&state, args);
14597
14598 while (!state.finished)
14599 {
14600 char *p = state.string;
14601
14602 match = 0;
14603
14604 num = get_number_or_range (&state);
14605 if (num == 0)
14606 {
14607 warning (_("bad breakpoint number at or near '%s'"), p);
14608 }
14609 else
14610 {
14611 ALL_BREAKPOINTS_SAFE (b, tmp)
14612 if (b->number == num)
14613 {
14614 match = 1;
14615 function (b, data);
14616 break;
14617 }
14618 if (match == 0)
14619 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14620 }
14621 }
14622 }
14623
14624 static struct bp_location *
14625 find_location_by_number (char *number)
14626 {
14627 char *dot = strchr (number, '.');
14628 char *p1;
14629 int bp_num;
14630 int loc_num;
14631 struct breakpoint *b;
14632 struct bp_location *loc;
14633
14634 *dot = '\0';
14635
14636 p1 = number;
14637 bp_num = get_number (&p1);
14638 if (bp_num == 0)
14639 error (_("Bad breakpoint number '%s'"), number);
14640
14641 ALL_BREAKPOINTS (b)
14642 if (b->number == bp_num)
14643 {
14644 break;
14645 }
14646
14647 if (!b || b->number != bp_num)
14648 error (_("Bad breakpoint number '%s'"), number);
14649
14650 p1 = dot+1;
14651 loc_num = get_number (&p1);
14652 if (loc_num == 0)
14653 error (_("Bad breakpoint location number '%s'"), number);
14654
14655 --loc_num;
14656 loc = b->loc;
14657 for (;loc_num && loc; --loc_num, loc = loc->next)
14658 ;
14659 if (!loc)
14660 error (_("Bad breakpoint location number '%s'"), dot+1);
14661
14662 return loc;
14663 }
14664
14665
14666 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14667 If from_tty is nonzero, it prints a message to that effect,
14668 which ends with a period (no newline). */
14669
14670 void
14671 disable_breakpoint (struct breakpoint *bpt)
14672 {
14673 /* Never disable a watchpoint scope breakpoint; we want to
14674 hit them when we leave scope so we can delete both the
14675 watchpoint and its scope breakpoint at that time. */
14676 if (bpt->type == bp_watchpoint_scope)
14677 return;
14678
14679 /* You can't disable permanent breakpoints. */
14680 if (bpt->enable_state == bp_permanent)
14681 return;
14682
14683 bpt->enable_state = bp_disabled;
14684
14685 /* Mark breakpoint locations modified. */
14686 mark_breakpoint_modified (bpt);
14687
14688 if (target_supports_enable_disable_tracepoint ()
14689 && current_trace_status ()->running && is_tracepoint (bpt))
14690 {
14691 struct bp_location *location;
14692
14693 for (location = bpt->loc; location; location = location->next)
14694 target_disable_tracepoint (location);
14695 }
14696
14697 update_global_location_list (0);
14698
14699 observer_notify_breakpoint_modified (bpt);
14700 }
14701
14702 /* A callback for iterate_over_related_breakpoints. */
14703
14704 static void
14705 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14706 {
14707 disable_breakpoint (b);
14708 }
14709
14710 /* A callback for map_breakpoint_numbers that calls
14711 disable_breakpoint. */
14712
14713 static void
14714 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14715 {
14716 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14717 }
14718
14719 static void
14720 disable_command (char *args, int from_tty)
14721 {
14722 if (args == 0)
14723 {
14724 struct breakpoint *bpt;
14725
14726 ALL_BREAKPOINTS (bpt)
14727 if (user_breakpoint_p (bpt))
14728 disable_breakpoint (bpt);
14729 }
14730 else
14731 {
14732 char *num = extract_arg (&args);
14733
14734 while (num)
14735 {
14736 if (strchr (num, '.'))
14737 {
14738 struct bp_location *loc = find_location_by_number (num);
14739
14740 if (loc)
14741 {
14742 if (loc->enabled)
14743 {
14744 loc->enabled = 0;
14745 mark_breakpoint_location_modified (loc);
14746 }
14747 if (target_supports_enable_disable_tracepoint ()
14748 && current_trace_status ()->running && loc->owner
14749 && is_tracepoint (loc->owner))
14750 target_disable_tracepoint (loc);
14751 }
14752 update_global_location_list (0);
14753 }
14754 else
14755 map_breakpoint_numbers (num, do_map_disable_breakpoint, NULL);
14756 num = extract_arg (&args);
14757 }
14758 }
14759 }
14760
14761 static void
14762 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14763 int count)
14764 {
14765 int target_resources_ok;
14766
14767 if (bpt->type == bp_hardware_breakpoint)
14768 {
14769 int i;
14770 i = hw_breakpoint_used_count ();
14771 target_resources_ok =
14772 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14773 i + 1, 0);
14774 if (target_resources_ok == 0)
14775 error (_("No hardware breakpoint support in the target."));
14776 else if (target_resources_ok < 0)
14777 error (_("Hardware breakpoints used exceeds limit."));
14778 }
14779
14780 if (is_watchpoint (bpt))
14781 {
14782 /* Initialize it just to avoid a GCC false warning. */
14783 enum enable_state orig_enable_state = 0;
14784 volatile struct gdb_exception e;
14785
14786 TRY_CATCH (e, RETURN_MASK_ALL)
14787 {
14788 struct watchpoint *w = (struct watchpoint *) bpt;
14789
14790 orig_enable_state = bpt->enable_state;
14791 bpt->enable_state = bp_enabled;
14792 update_watchpoint (w, 1 /* reparse */);
14793 }
14794 if (e.reason < 0)
14795 {
14796 bpt->enable_state = orig_enable_state;
14797 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14798 bpt->number);
14799 return;
14800 }
14801 }
14802
14803 if (bpt->enable_state != bp_permanent)
14804 bpt->enable_state = bp_enabled;
14805
14806 bpt->enable_state = bp_enabled;
14807
14808 /* Mark breakpoint locations modified. */
14809 mark_breakpoint_modified (bpt);
14810
14811 if (target_supports_enable_disable_tracepoint ()
14812 && current_trace_status ()->running && is_tracepoint (bpt))
14813 {
14814 struct bp_location *location;
14815
14816 for (location = bpt->loc; location; location = location->next)
14817 target_enable_tracepoint (location);
14818 }
14819
14820 bpt->disposition = disposition;
14821 bpt->enable_count = count;
14822 update_global_location_list (1);
14823
14824 observer_notify_breakpoint_modified (bpt);
14825 }
14826
14827
14828 void
14829 enable_breakpoint (struct breakpoint *bpt)
14830 {
14831 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14832 }
14833
14834 static void
14835 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14836 {
14837 enable_breakpoint (bpt);
14838 }
14839
14840 /* A callback for map_breakpoint_numbers that calls
14841 enable_breakpoint. */
14842
14843 static void
14844 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14845 {
14846 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14847 }
14848
14849 /* The enable command enables the specified breakpoints (or all defined
14850 breakpoints) so they once again become (or continue to be) effective
14851 in stopping the inferior. */
14852
14853 static void
14854 enable_command (char *args, int from_tty)
14855 {
14856 if (args == 0)
14857 {
14858 struct breakpoint *bpt;
14859
14860 ALL_BREAKPOINTS (bpt)
14861 if (user_breakpoint_p (bpt))
14862 enable_breakpoint (bpt);
14863 }
14864 else
14865 {
14866 char *num = extract_arg (&args);
14867
14868 while (num)
14869 {
14870 if (strchr (num, '.'))
14871 {
14872 struct bp_location *loc = find_location_by_number (num);
14873
14874 if (loc)
14875 {
14876 if (!loc->enabled)
14877 {
14878 loc->enabled = 1;
14879 mark_breakpoint_location_modified (loc);
14880 }
14881 if (target_supports_enable_disable_tracepoint ()
14882 && current_trace_status ()->running && loc->owner
14883 && is_tracepoint (loc->owner))
14884 target_enable_tracepoint (loc);
14885 }
14886 update_global_location_list (1);
14887 }
14888 else
14889 map_breakpoint_numbers (num, do_map_enable_breakpoint, NULL);
14890 num = extract_arg (&args);
14891 }
14892 }
14893 }
14894
14895 /* This struct packages up disposition data for application to multiple
14896 breakpoints. */
14897
14898 struct disp_data
14899 {
14900 enum bpdisp disp;
14901 int count;
14902 };
14903
14904 static void
14905 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14906 {
14907 struct disp_data disp_data = *(struct disp_data *) arg;
14908
14909 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14910 }
14911
14912 static void
14913 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14914 {
14915 struct disp_data disp = { disp_disable, 1 };
14916
14917 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14918 }
14919
14920 static void
14921 enable_once_command (char *args, int from_tty)
14922 {
14923 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14924 }
14925
14926 static void
14927 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14928 {
14929 struct disp_data disp = { disp_disable, *(int *) countptr };
14930
14931 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14932 }
14933
14934 static void
14935 enable_count_command (char *args, int from_tty)
14936 {
14937 int count = get_number (&args);
14938
14939 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14940 }
14941
14942 static void
14943 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14944 {
14945 struct disp_data disp = { disp_del, 1 };
14946
14947 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14948 }
14949
14950 static void
14951 enable_delete_command (char *args, int from_tty)
14952 {
14953 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14954 }
14955 \f
14956 static void
14957 set_breakpoint_cmd (char *args, int from_tty)
14958 {
14959 }
14960
14961 static void
14962 show_breakpoint_cmd (char *args, int from_tty)
14963 {
14964 }
14965
14966 /* Invalidate last known value of any hardware watchpoint if
14967 the memory which that value represents has been written to by
14968 GDB itself. */
14969
14970 static void
14971 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14972 CORE_ADDR addr, ssize_t len,
14973 const bfd_byte *data)
14974 {
14975 struct breakpoint *bp;
14976
14977 ALL_BREAKPOINTS (bp)
14978 if (bp->enable_state == bp_enabled
14979 && bp->type == bp_hardware_watchpoint)
14980 {
14981 struct watchpoint *wp = (struct watchpoint *) bp;
14982
14983 if (wp->val_valid && wp->val)
14984 {
14985 struct bp_location *loc;
14986
14987 for (loc = bp->loc; loc != NULL; loc = loc->next)
14988 if (loc->loc_type == bp_loc_hardware_watchpoint
14989 && loc->address + loc->length > addr
14990 && addr + len > loc->address)
14991 {
14992 value_free (wp->val);
14993 wp->val = NULL;
14994 wp->val_valid = 0;
14995 }
14996 }
14997 }
14998 }
14999
15000 /* Create and insert a raw software breakpoint at PC. Return an
15001 identifier, which should be used to remove the breakpoint later.
15002 In general, places which call this should be using something on the
15003 breakpoint chain instead; this function should be eliminated
15004 someday. */
15005
15006 void *
15007 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
15008 struct address_space *aspace, CORE_ADDR pc)
15009 {
15010 struct bp_target_info *bp_tgt;
15011
15012 bp_tgt = XCNEW (struct bp_target_info);
15013
15014 bp_tgt->placed_address_space = aspace;
15015 bp_tgt->placed_address = pc;
15016
15017 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
15018 {
15019 /* Could not insert the breakpoint. */
15020 xfree (bp_tgt);
15021 return NULL;
15022 }
15023
15024 return bp_tgt;
15025 }
15026
15027 /* Remove a breakpoint BP inserted by
15028 deprecated_insert_raw_breakpoint. */
15029
15030 int
15031 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
15032 {
15033 struct bp_target_info *bp_tgt = bp;
15034 int ret;
15035
15036 ret = target_remove_breakpoint (gdbarch, bp_tgt);
15037 xfree (bp_tgt);
15038
15039 return ret;
15040 }
15041
15042 /* One (or perhaps two) breakpoints used for software single
15043 stepping. */
15044
15045 static void *single_step_breakpoints[2];
15046 static struct gdbarch *single_step_gdbarch[2];
15047
15048 /* Create and insert a breakpoint for software single step. */
15049
15050 void
15051 insert_single_step_breakpoint (struct gdbarch *gdbarch,
15052 struct address_space *aspace,
15053 CORE_ADDR next_pc)
15054 {
15055 void **bpt_p;
15056
15057 if (single_step_breakpoints[0] == NULL)
15058 {
15059 bpt_p = &single_step_breakpoints[0];
15060 single_step_gdbarch[0] = gdbarch;
15061 }
15062 else
15063 {
15064 gdb_assert (single_step_breakpoints[1] == NULL);
15065 bpt_p = &single_step_breakpoints[1];
15066 single_step_gdbarch[1] = gdbarch;
15067 }
15068
15069 /* NOTE drow/2006-04-11: A future improvement to this function would
15070 be to only create the breakpoints once, and actually put them on
15071 the breakpoint chain. That would let us use set_raw_breakpoint.
15072 We could adjust the addresses each time they were needed. Doing
15073 this requires corresponding changes elsewhere where single step
15074 breakpoints are handled, however. So, for now, we use this. */
15075
15076 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
15077 if (*bpt_p == NULL)
15078 error (_("Could not insert single-step breakpoint at %s"),
15079 paddress (gdbarch, next_pc));
15080 }
15081
15082 /* Check if the breakpoints used for software single stepping
15083 were inserted or not. */
15084
15085 int
15086 single_step_breakpoints_inserted (void)
15087 {
15088 return (single_step_breakpoints[0] != NULL
15089 || single_step_breakpoints[1] != NULL);
15090 }
15091
15092 /* Remove and delete any breakpoints used for software single step. */
15093
15094 void
15095 remove_single_step_breakpoints (void)
15096 {
15097 gdb_assert (single_step_breakpoints[0] != NULL);
15098
15099 /* See insert_single_step_breakpoint for more about this deprecated
15100 call. */
15101 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
15102 single_step_breakpoints[0]);
15103 single_step_gdbarch[0] = NULL;
15104 single_step_breakpoints[0] = NULL;
15105
15106 if (single_step_breakpoints[1] != NULL)
15107 {
15108 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
15109 single_step_breakpoints[1]);
15110 single_step_gdbarch[1] = NULL;
15111 single_step_breakpoints[1] = NULL;
15112 }
15113 }
15114
15115 /* Delete software single step breakpoints without removing them from
15116 the inferior. This is intended to be used if the inferior's address
15117 space where they were inserted is already gone, e.g. after exit or
15118 exec. */
15119
15120 void
15121 cancel_single_step_breakpoints (void)
15122 {
15123 int i;
15124
15125 for (i = 0; i < 2; i++)
15126 if (single_step_breakpoints[i])
15127 {
15128 xfree (single_step_breakpoints[i]);
15129 single_step_breakpoints[i] = NULL;
15130 single_step_gdbarch[i] = NULL;
15131 }
15132 }
15133
15134 /* Detach software single-step breakpoints from INFERIOR_PTID without
15135 removing them. */
15136
15137 static void
15138 detach_single_step_breakpoints (void)
15139 {
15140 int i;
15141
15142 for (i = 0; i < 2; i++)
15143 if (single_step_breakpoints[i])
15144 target_remove_breakpoint (single_step_gdbarch[i],
15145 single_step_breakpoints[i]);
15146 }
15147
15148 /* Check whether a software single-step breakpoint is inserted at
15149 PC. */
15150
15151 static int
15152 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
15153 CORE_ADDR pc)
15154 {
15155 int i;
15156
15157 for (i = 0; i < 2; i++)
15158 {
15159 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
15160 if (bp_tgt
15161 && breakpoint_address_match (bp_tgt->placed_address_space,
15162 bp_tgt->placed_address,
15163 aspace, pc))
15164 return 1;
15165 }
15166
15167 return 0;
15168 }
15169
15170 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
15171 non-zero otherwise. */
15172 static int
15173 is_syscall_catchpoint_enabled (struct breakpoint *bp)
15174 {
15175 if (syscall_catchpoint_p (bp)
15176 && bp->enable_state != bp_disabled
15177 && bp->enable_state != bp_call_disabled)
15178 return 1;
15179 else
15180 return 0;
15181 }
15182
15183 int
15184 catch_syscall_enabled (void)
15185 {
15186 struct catch_syscall_inferior_data *inf_data
15187 = get_catch_syscall_inferior_data (current_inferior ());
15188
15189 return inf_data->total_syscalls_count != 0;
15190 }
15191
15192 int
15193 catching_syscall_number (int syscall_number)
15194 {
15195 struct breakpoint *bp;
15196
15197 ALL_BREAKPOINTS (bp)
15198 if (is_syscall_catchpoint_enabled (bp))
15199 {
15200 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
15201
15202 if (c->syscalls_to_be_caught)
15203 {
15204 int i, iter;
15205 for (i = 0;
15206 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
15207 i++)
15208 if (syscall_number == iter)
15209 return 1;
15210 }
15211 else
15212 return 1;
15213 }
15214
15215 return 0;
15216 }
15217
15218 /* Complete syscall names. Used by "catch syscall". */
15219 static VEC (char_ptr) *
15220 catch_syscall_completer (struct cmd_list_element *cmd,
15221 const char *text, const char *word)
15222 {
15223 const char **list = get_syscall_names ();
15224 VEC (char_ptr) *retlist
15225 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15226
15227 xfree (list);
15228 return retlist;
15229 }
15230
15231 /* Tracepoint-specific operations. */
15232
15233 /* Set tracepoint count to NUM. */
15234 static void
15235 set_tracepoint_count (int num)
15236 {
15237 tracepoint_count = num;
15238 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15239 }
15240
15241 static void
15242 trace_command (char *arg, int from_tty)
15243 {
15244 struct breakpoint_ops *ops;
15245 const char *arg_cp = arg;
15246
15247 if (arg && probe_linespec_to_ops (&arg_cp))
15248 ops = &tracepoint_probe_breakpoint_ops;
15249 else
15250 ops = &tracepoint_breakpoint_ops;
15251
15252 create_breakpoint (get_current_arch (),
15253 arg,
15254 NULL, 0, NULL, 1 /* parse arg */,
15255 0 /* tempflag */,
15256 bp_tracepoint /* type_wanted */,
15257 0 /* Ignore count */,
15258 pending_break_support,
15259 ops,
15260 from_tty,
15261 1 /* enabled */,
15262 0 /* internal */, 0);
15263 }
15264
15265 static void
15266 ftrace_command (char *arg, int from_tty)
15267 {
15268 create_breakpoint (get_current_arch (),
15269 arg,
15270 NULL, 0, NULL, 1 /* parse arg */,
15271 0 /* tempflag */,
15272 bp_fast_tracepoint /* type_wanted */,
15273 0 /* Ignore count */,
15274 pending_break_support,
15275 &tracepoint_breakpoint_ops,
15276 from_tty,
15277 1 /* enabled */,
15278 0 /* internal */, 0);
15279 }
15280
15281 /* strace command implementation. Creates a static tracepoint. */
15282
15283 static void
15284 strace_command (char *arg, int from_tty)
15285 {
15286 struct breakpoint_ops *ops;
15287
15288 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15289 or with a normal static tracepoint. */
15290 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15291 ops = &strace_marker_breakpoint_ops;
15292 else
15293 ops = &tracepoint_breakpoint_ops;
15294
15295 create_breakpoint (get_current_arch (),
15296 arg,
15297 NULL, 0, NULL, 1 /* parse arg */,
15298 0 /* tempflag */,
15299 bp_static_tracepoint /* type_wanted */,
15300 0 /* Ignore count */,
15301 pending_break_support,
15302 ops,
15303 from_tty,
15304 1 /* enabled */,
15305 0 /* internal */, 0);
15306 }
15307
15308 /* Set up a fake reader function that gets command lines from a linked
15309 list that was acquired during tracepoint uploading. */
15310
15311 static struct uploaded_tp *this_utp;
15312 static int next_cmd;
15313
15314 static char *
15315 read_uploaded_action (void)
15316 {
15317 char *rslt;
15318
15319 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15320
15321 next_cmd++;
15322
15323 return rslt;
15324 }
15325
15326 /* Given information about a tracepoint as recorded on a target (which
15327 can be either a live system or a trace file), attempt to create an
15328 equivalent GDB tracepoint. This is not a reliable process, since
15329 the target does not necessarily have all the information used when
15330 the tracepoint was originally defined. */
15331
15332 struct tracepoint *
15333 create_tracepoint_from_upload (struct uploaded_tp *utp)
15334 {
15335 char *addr_str, small_buf[100];
15336 struct tracepoint *tp;
15337
15338 if (utp->at_string)
15339 addr_str = utp->at_string;
15340 else
15341 {
15342 /* In the absence of a source location, fall back to raw
15343 address. Since there is no way to confirm that the address
15344 means the same thing as when the trace was started, warn the
15345 user. */
15346 warning (_("Uploaded tracepoint %d has no "
15347 "source location, using raw address"),
15348 utp->number);
15349 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15350 addr_str = small_buf;
15351 }
15352
15353 /* There's not much we can do with a sequence of bytecodes. */
15354 if (utp->cond && !utp->cond_string)
15355 warning (_("Uploaded tracepoint %d condition "
15356 "has no source form, ignoring it"),
15357 utp->number);
15358
15359 if (!create_breakpoint (get_current_arch (),
15360 addr_str,
15361 utp->cond_string, -1, NULL,
15362 0 /* parse cond/thread */,
15363 0 /* tempflag */,
15364 utp->type /* type_wanted */,
15365 0 /* Ignore count */,
15366 pending_break_support,
15367 &tracepoint_breakpoint_ops,
15368 0 /* from_tty */,
15369 utp->enabled /* enabled */,
15370 0 /* internal */,
15371 CREATE_BREAKPOINT_FLAGS_INSERTED))
15372 return NULL;
15373
15374 /* Get the tracepoint we just created. */
15375 tp = get_tracepoint (tracepoint_count);
15376 gdb_assert (tp != NULL);
15377
15378 if (utp->pass > 0)
15379 {
15380 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15381 tp->base.number);
15382
15383 trace_pass_command (small_buf, 0);
15384 }
15385
15386 /* If we have uploaded versions of the original commands, set up a
15387 special-purpose "reader" function and call the usual command line
15388 reader, then pass the result to the breakpoint command-setting
15389 function. */
15390 if (!VEC_empty (char_ptr, utp->cmd_strings))
15391 {
15392 struct command_line *cmd_list;
15393
15394 this_utp = utp;
15395 next_cmd = 0;
15396
15397 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15398
15399 breakpoint_set_commands (&tp->base, cmd_list);
15400 }
15401 else if (!VEC_empty (char_ptr, utp->actions)
15402 || !VEC_empty (char_ptr, utp->step_actions))
15403 warning (_("Uploaded tracepoint %d actions "
15404 "have no source form, ignoring them"),
15405 utp->number);
15406
15407 /* Copy any status information that might be available. */
15408 tp->base.hit_count = utp->hit_count;
15409 tp->traceframe_usage = utp->traceframe_usage;
15410
15411 return tp;
15412 }
15413
15414 /* Print information on tracepoint number TPNUM_EXP, or all if
15415 omitted. */
15416
15417 static void
15418 tracepoints_info (char *args, int from_tty)
15419 {
15420 struct ui_out *uiout = current_uiout;
15421 int num_printed;
15422
15423 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15424
15425 if (num_printed == 0)
15426 {
15427 if (args == NULL || *args == '\0')
15428 ui_out_message (uiout, 0, "No tracepoints.\n");
15429 else
15430 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15431 }
15432
15433 default_collect_info ();
15434 }
15435
15436 /* The 'enable trace' command enables tracepoints.
15437 Not supported by all targets. */
15438 static void
15439 enable_trace_command (char *args, int from_tty)
15440 {
15441 enable_command (args, from_tty);
15442 }
15443
15444 /* The 'disable trace' command disables tracepoints.
15445 Not supported by all targets. */
15446 static void
15447 disable_trace_command (char *args, int from_tty)
15448 {
15449 disable_command (args, from_tty);
15450 }
15451
15452 /* Remove a tracepoint (or all if no argument). */
15453 static void
15454 delete_trace_command (char *arg, int from_tty)
15455 {
15456 struct breakpoint *b, *b_tmp;
15457
15458 dont_repeat ();
15459
15460 if (arg == 0)
15461 {
15462 int breaks_to_delete = 0;
15463
15464 /* Delete all breakpoints if no argument.
15465 Do not delete internal or call-dummy breakpoints, these
15466 have to be deleted with an explicit breakpoint number
15467 argument. */
15468 ALL_TRACEPOINTS (b)
15469 if (is_tracepoint (b) && user_breakpoint_p (b))
15470 {
15471 breaks_to_delete = 1;
15472 break;
15473 }
15474
15475 /* Ask user only if there are some breakpoints to delete. */
15476 if (!from_tty
15477 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15478 {
15479 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15480 if (is_tracepoint (b) && user_breakpoint_p (b))
15481 delete_breakpoint (b);
15482 }
15483 }
15484 else
15485 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15486 }
15487
15488 /* Helper function for trace_pass_command. */
15489
15490 static void
15491 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15492 {
15493 tp->pass_count = count;
15494 observer_notify_breakpoint_modified (&tp->base);
15495 if (from_tty)
15496 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15497 tp->base.number, count);
15498 }
15499
15500 /* Set passcount for tracepoint.
15501
15502 First command argument is passcount, second is tracepoint number.
15503 If tracepoint number omitted, apply to most recently defined.
15504 Also accepts special argument "all". */
15505
15506 static void
15507 trace_pass_command (char *args, int from_tty)
15508 {
15509 struct tracepoint *t1;
15510 unsigned int count;
15511
15512 if (args == 0 || *args == 0)
15513 error (_("passcount command requires an "
15514 "argument (count + optional TP num)"));
15515
15516 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15517
15518 args = skip_spaces (args);
15519 if (*args && strncasecmp (args, "all", 3) == 0)
15520 {
15521 struct breakpoint *b;
15522
15523 args += 3; /* Skip special argument "all". */
15524 if (*args)
15525 error (_("Junk at end of arguments."));
15526
15527 ALL_TRACEPOINTS (b)
15528 {
15529 t1 = (struct tracepoint *) b;
15530 trace_pass_set_count (t1, count, from_tty);
15531 }
15532 }
15533 else if (*args == '\0')
15534 {
15535 t1 = get_tracepoint_by_number (&args, NULL, 1);
15536 if (t1)
15537 trace_pass_set_count (t1, count, from_tty);
15538 }
15539 else
15540 {
15541 struct get_number_or_range_state state;
15542
15543 init_number_or_range (&state, args);
15544 while (!state.finished)
15545 {
15546 t1 = get_tracepoint_by_number (&args, &state, 1);
15547 if (t1)
15548 trace_pass_set_count (t1, count, from_tty);
15549 }
15550 }
15551 }
15552
15553 struct tracepoint *
15554 get_tracepoint (int num)
15555 {
15556 struct breakpoint *t;
15557
15558 ALL_TRACEPOINTS (t)
15559 if (t->number == num)
15560 return (struct tracepoint *) t;
15561
15562 return NULL;
15563 }
15564
15565 /* Find the tracepoint with the given target-side number (which may be
15566 different from the tracepoint number after disconnecting and
15567 reconnecting). */
15568
15569 struct tracepoint *
15570 get_tracepoint_by_number_on_target (int num)
15571 {
15572 struct breakpoint *b;
15573
15574 ALL_TRACEPOINTS (b)
15575 {
15576 struct tracepoint *t = (struct tracepoint *) b;
15577
15578 if (t->number_on_target == num)
15579 return t;
15580 }
15581
15582 return NULL;
15583 }
15584
15585 /* Utility: parse a tracepoint number and look it up in the list.
15586 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15587 If OPTIONAL_P is true, then if the argument is missing, the most
15588 recent tracepoint (tracepoint_count) is returned. */
15589 struct tracepoint *
15590 get_tracepoint_by_number (char **arg,
15591 struct get_number_or_range_state *state,
15592 int optional_p)
15593 {
15594 struct breakpoint *t;
15595 int tpnum;
15596 char *instring = arg == NULL ? NULL : *arg;
15597
15598 if (state)
15599 {
15600 gdb_assert (!state->finished);
15601 tpnum = get_number_or_range (state);
15602 }
15603 else if (arg == NULL || *arg == NULL || ! **arg)
15604 {
15605 if (optional_p)
15606 tpnum = tracepoint_count;
15607 else
15608 error_no_arg (_("tracepoint number"));
15609 }
15610 else
15611 tpnum = get_number (arg);
15612
15613 if (tpnum <= 0)
15614 {
15615 if (instring && *instring)
15616 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15617 instring);
15618 else
15619 printf_filtered (_("Tracepoint argument missing "
15620 "and no previous tracepoint\n"));
15621 return NULL;
15622 }
15623
15624 ALL_TRACEPOINTS (t)
15625 if (t->number == tpnum)
15626 {
15627 return (struct tracepoint *) t;
15628 }
15629
15630 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15631 return NULL;
15632 }
15633
15634 void
15635 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15636 {
15637 if (b->thread != -1)
15638 fprintf_unfiltered (fp, " thread %d", b->thread);
15639
15640 if (b->task != 0)
15641 fprintf_unfiltered (fp, " task %d", b->task);
15642
15643 fprintf_unfiltered (fp, "\n");
15644 }
15645
15646 /* Save information on user settable breakpoints (watchpoints, etc) to
15647 a new script file named FILENAME. If FILTER is non-NULL, call it
15648 on each breakpoint and only include the ones for which it returns
15649 non-zero. */
15650
15651 static void
15652 save_breakpoints (char *filename, int from_tty,
15653 int (*filter) (const struct breakpoint *))
15654 {
15655 struct breakpoint *tp;
15656 int any = 0;
15657 struct cleanup *cleanup;
15658 struct ui_file *fp;
15659 int extra_trace_bits = 0;
15660
15661 if (filename == 0 || *filename == 0)
15662 error (_("Argument required (file name in which to save)"));
15663
15664 /* See if we have anything to save. */
15665 ALL_BREAKPOINTS (tp)
15666 {
15667 /* Skip internal and momentary breakpoints. */
15668 if (!user_breakpoint_p (tp))
15669 continue;
15670
15671 /* If we have a filter, only save the breakpoints it accepts. */
15672 if (filter && !filter (tp))
15673 continue;
15674
15675 any = 1;
15676
15677 if (is_tracepoint (tp))
15678 {
15679 extra_trace_bits = 1;
15680
15681 /* We can stop searching. */
15682 break;
15683 }
15684 }
15685
15686 if (!any)
15687 {
15688 warning (_("Nothing to save."));
15689 return;
15690 }
15691
15692 filename = tilde_expand (filename);
15693 cleanup = make_cleanup (xfree, filename);
15694 fp = gdb_fopen (filename, "w");
15695 if (!fp)
15696 error (_("Unable to open file '%s' for saving (%s)"),
15697 filename, safe_strerror (errno));
15698 make_cleanup_ui_file_delete (fp);
15699
15700 if (extra_trace_bits)
15701 save_trace_state_variables (fp);
15702
15703 ALL_BREAKPOINTS (tp)
15704 {
15705 /* Skip internal and momentary breakpoints. */
15706 if (!user_breakpoint_p (tp))
15707 continue;
15708
15709 /* If we have a filter, only save the breakpoints it accepts. */
15710 if (filter && !filter (tp))
15711 continue;
15712
15713 tp->ops->print_recreate (tp, fp);
15714
15715 /* Note, we can't rely on tp->number for anything, as we can't
15716 assume the recreated breakpoint numbers will match. Use $bpnum
15717 instead. */
15718
15719 if (tp->cond_string)
15720 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15721
15722 if (tp->ignore_count)
15723 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15724
15725 if (tp->type != bp_dprintf && tp->commands)
15726 {
15727 volatile struct gdb_exception ex;
15728
15729 fprintf_unfiltered (fp, " commands\n");
15730
15731 ui_out_redirect (current_uiout, fp);
15732 TRY_CATCH (ex, RETURN_MASK_ALL)
15733 {
15734 print_command_lines (current_uiout, tp->commands->commands, 2);
15735 }
15736 ui_out_redirect (current_uiout, NULL);
15737
15738 if (ex.reason < 0)
15739 throw_exception (ex);
15740
15741 fprintf_unfiltered (fp, " end\n");
15742 }
15743
15744 if (tp->enable_state == bp_disabled)
15745 fprintf_unfiltered (fp, "disable\n");
15746
15747 /* If this is a multi-location breakpoint, check if the locations
15748 should be individually disabled. Watchpoint locations are
15749 special, and not user visible. */
15750 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15751 {
15752 struct bp_location *loc;
15753 int n = 1;
15754
15755 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15756 if (!loc->enabled)
15757 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15758 }
15759 }
15760
15761 if (extra_trace_bits && *default_collect)
15762 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15763
15764 if (from_tty)
15765 printf_filtered (_("Saved to file '%s'.\n"), filename);
15766 do_cleanups (cleanup);
15767 }
15768
15769 /* The `save breakpoints' command. */
15770
15771 static void
15772 save_breakpoints_command (char *args, int from_tty)
15773 {
15774 save_breakpoints (args, from_tty, NULL);
15775 }
15776
15777 /* The `save tracepoints' command. */
15778
15779 static void
15780 save_tracepoints_command (char *args, int from_tty)
15781 {
15782 save_breakpoints (args, from_tty, is_tracepoint);
15783 }
15784
15785 /* Create a vector of all tracepoints. */
15786
15787 VEC(breakpoint_p) *
15788 all_tracepoints (void)
15789 {
15790 VEC(breakpoint_p) *tp_vec = 0;
15791 struct breakpoint *tp;
15792
15793 ALL_TRACEPOINTS (tp)
15794 {
15795 VEC_safe_push (breakpoint_p, tp_vec, tp);
15796 }
15797
15798 return tp_vec;
15799 }
15800
15801 \f
15802 /* This help string is used for the break, hbreak, tbreak and thbreak
15803 commands. It is defined as a macro to prevent duplication.
15804 COMMAND should be a string constant containing the name of the
15805 command. */
15806 #define BREAK_ARGS_HELP(command) \
15807 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15808 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15809 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15810 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15811 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15812 If a line number is specified, break at start of code for that line.\n\
15813 If a function is specified, break at start of code for that function.\n\
15814 If an address is specified, break at that exact address.\n\
15815 With no LOCATION, uses current execution address of the selected\n\
15816 stack frame. This is useful for breaking on return to a stack frame.\n\
15817 \n\
15818 THREADNUM is the number from \"info threads\".\n\
15819 CONDITION is a boolean expression.\n\
15820 \n\
15821 Multiple breakpoints at one place are permitted, and useful if their\n\
15822 conditions are different.\n\
15823 \n\
15824 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15825
15826 /* List of subcommands for "catch". */
15827 static struct cmd_list_element *catch_cmdlist;
15828
15829 /* List of subcommands for "tcatch". */
15830 static struct cmd_list_element *tcatch_cmdlist;
15831
15832 void
15833 add_catch_command (char *name, char *docstring,
15834 void (*sfunc) (char *args, int from_tty,
15835 struct cmd_list_element *command),
15836 completer_ftype *completer,
15837 void *user_data_catch,
15838 void *user_data_tcatch)
15839 {
15840 struct cmd_list_element *command;
15841
15842 command = add_cmd (name, class_breakpoint, NULL, docstring,
15843 &catch_cmdlist);
15844 set_cmd_sfunc (command, sfunc);
15845 set_cmd_context (command, user_data_catch);
15846 set_cmd_completer (command, completer);
15847
15848 command = add_cmd (name, class_breakpoint, NULL, docstring,
15849 &tcatch_cmdlist);
15850 set_cmd_sfunc (command, sfunc);
15851 set_cmd_context (command, user_data_tcatch);
15852 set_cmd_completer (command, completer);
15853 }
15854
15855 static void
15856 clear_syscall_counts (struct inferior *inf)
15857 {
15858 struct catch_syscall_inferior_data *inf_data
15859 = get_catch_syscall_inferior_data (inf);
15860
15861 inf_data->total_syscalls_count = 0;
15862 inf_data->any_syscall_count = 0;
15863 VEC_free (int, inf_data->syscalls_counts);
15864 }
15865
15866 static void
15867 save_command (char *arg, int from_tty)
15868 {
15869 printf_unfiltered (_("\"save\" must be followed by "
15870 "the name of a save subcommand.\n"));
15871 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15872 }
15873
15874 struct breakpoint *
15875 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15876 void *data)
15877 {
15878 struct breakpoint *b, *b_tmp;
15879
15880 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15881 {
15882 if ((*callback) (b, data))
15883 return b;
15884 }
15885
15886 return NULL;
15887 }
15888
15889 /* Zero if any of the breakpoint's locations could be a location where
15890 functions have been inlined, nonzero otherwise. */
15891
15892 static int
15893 is_non_inline_function (struct breakpoint *b)
15894 {
15895 /* The shared library event breakpoint is set on the address of a
15896 non-inline function. */
15897 if (b->type == bp_shlib_event)
15898 return 1;
15899
15900 return 0;
15901 }
15902
15903 /* Nonzero if the specified PC cannot be a location where functions
15904 have been inlined. */
15905
15906 int
15907 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15908 const struct target_waitstatus *ws)
15909 {
15910 struct breakpoint *b;
15911 struct bp_location *bl;
15912
15913 ALL_BREAKPOINTS (b)
15914 {
15915 if (!is_non_inline_function (b))
15916 continue;
15917
15918 for (bl = b->loc; bl != NULL; bl = bl->next)
15919 {
15920 if (!bl->shlib_disabled
15921 && bpstat_check_location (bl, aspace, pc, ws))
15922 return 1;
15923 }
15924 }
15925
15926 return 0;
15927 }
15928
15929 /* Remove any references to OBJFILE which is going to be freed. */
15930
15931 void
15932 breakpoint_free_objfile (struct objfile *objfile)
15933 {
15934 struct bp_location **locp, *loc;
15935
15936 ALL_BP_LOCATIONS (loc, locp)
15937 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15938 loc->symtab = NULL;
15939 }
15940
15941 void
15942 initialize_breakpoint_ops (void)
15943 {
15944 static int initialized = 0;
15945
15946 struct breakpoint_ops *ops;
15947
15948 if (initialized)
15949 return;
15950 initialized = 1;
15951
15952 /* The breakpoint_ops structure to be inherit by all kinds of
15953 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15954 internal and momentary breakpoints, etc.). */
15955 ops = &bkpt_base_breakpoint_ops;
15956 *ops = base_breakpoint_ops;
15957 ops->re_set = bkpt_re_set;
15958 ops->insert_location = bkpt_insert_location;
15959 ops->remove_location = bkpt_remove_location;
15960 ops->breakpoint_hit = bkpt_breakpoint_hit;
15961 ops->create_sals_from_address = bkpt_create_sals_from_address;
15962 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15963 ops->decode_linespec = bkpt_decode_linespec;
15964
15965 /* The breakpoint_ops structure to be used in regular breakpoints. */
15966 ops = &bkpt_breakpoint_ops;
15967 *ops = bkpt_base_breakpoint_ops;
15968 ops->re_set = bkpt_re_set;
15969 ops->resources_needed = bkpt_resources_needed;
15970 ops->print_it = bkpt_print_it;
15971 ops->print_mention = bkpt_print_mention;
15972 ops->print_recreate = bkpt_print_recreate;
15973
15974 /* Ranged breakpoints. */
15975 ops = &ranged_breakpoint_ops;
15976 *ops = bkpt_breakpoint_ops;
15977 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15978 ops->resources_needed = resources_needed_ranged_breakpoint;
15979 ops->print_it = print_it_ranged_breakpoint;
15980 ops->print_one = print_one_ranged_breakpoint;
15981 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15982 ops->print_mention = print_mention_ranged_breakpoint;
15983 ops->print_recreate = print_recreate_ranged_breakpoint;
15984
15985 /* Internal breakpoints. */
15986 ops = &internal_breakpoint_ops;
15987 *ops = bkpt_base_breakpoint_ops;
15988 ops->re_set = internal_bkpt_re_set;
15989 ops->check_status = internal_bkpt_check_status;
15990 ops->print_it = internal_bkpt_print_it;
15991 ops->print_mention = internal_bkpt_print_mention;
15992
15993 /* Momentary breakpoints. */
15994 ops = &momentary_breakpoint_ops;
15995 *ops = bkpt_base_breakpoint_ops;
15996 ops->re_set = momentary_bkpt_re_set;
15997 ops->check_status = momentary_bkpt_check_status;
15998 ops->print_it = momentary_bkpt_print_it;
15999 ops->print_mention = momentary_bkpt_print_mention;
16000
16001 /* Momentary breakpoints for bp_longjmp and bp_exception. */
16002 ops = &longjmp_breakpoint_ops;
16003 *ops = momentary_breakpoint_ops;
16004 ops->dtor = longjmp_bkpt_dtor;
16005
16006 /* Probe breakpoints. */
16007 ops = &bkpt_probe_breakpoint_ops;
16008 *ops = bkpt_breakpoint_ops;
16009 ops->insert_location = bkpt_probe_insert_location;
16010 ops->remove_location = bkpt_probe_remove_location;
16011 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
16012 ops->decode_linespec = bkpt_probe_decode_linespec;
16013
16014 /* Watchpoints. */
16015 ops = &watchpoint_breakpoint_ops;
16016 *ops = base_breakpoint_ops;
16017 ops->dtor = dtor_watchpoint;
16018 ops->re_set = re_set_watchpoint;
16019 ops->insert_location = insert_watchpoint;
16020 ops->remove_location = remove_watchpoint;
16021 ops->breakpoint_hit = breakpoint_hit_watchpoint;
16022 ops->check_status = check_status_watchpoint;
16023 ops->resources_needed = resources_needed_watchpoint;
16024 ops->works_in_software_mode = works_in_software_mode_watchpoint;
16025 ops->print_it = print_it_watchpoint;
16026 ops->print_mention = print_mention_watchpoint;
16027 ops->print_recreate = print_recreate_watchpoint;
16028 ops->explains_signal = explains_signal_watchpoint;
16029
16030 /* Masked watchpoints. */
16031 ops = &masked_watchpoint_breakpoint_ops;
16032 *ops = watchpoint_breakpoint_ops;
16033 ops->insert_location = insert_masked_watchpoint;
16034 ops->remove_location = remove_masked_watchpoint;
16035 ops->resources_needed = resources_needed_masked_watchpoint;
16036 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
16037 ops->print_it = print_it_masked_watchpoint;
16038 ops->print_one_detail = print_one_detail_masked_watchpoint;
16039 ops->print_mention = print_mention_masked_watchpoint;
16040 ops->print_recreate = print_recreate_masked_watchpoint;
16041
16042 /* Tracepoints. */
16043 ops = &tracepoint_breakpoint_ops;
16044 *ops = base_breakpoint_ops;
16045 ops->re_set = tracepoint_re_set;
16046 ops->breakpoint_hit = tracepoint_breakpoint_hit;
16047 ops->print_one_detail = tracepoint_print_one_detail;
16048 ops->print_mention = tracepoint_print_mention;
16049 ops->print_recreate = tracepoint_print_recreate;
16050 ops->create_sals_from_address = tracepoint_create_sals_from_address;
16051 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
16052 ops->decode_linespec = tracepoint_decode_linespec;
16053
16054 /* Probe tracepoints. */
16055 ops = &tracepoint_probe_breakpoint_ops;
16056 *ops = tracepoint_breakpoint_ops;
16057 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
16058 ops->decode_linespec = tracepoint_probe_decode_linespec;
16059
16060 /* Static tracepoints with marker (`-m'). */
16061 ops = &strace_marker_breakpoint_ops;
16062 *ops = tracepoint_breakpoint_ops;
16063 ops->create_sals_from_address = strace_marker_create_sals_from_address;
16064 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
16065 ops->decode_linespec = strace_marker_decode_linespec;
16066
16067 /* Fork catchpoints. */
16068 ops = &catch_fork_breakpoint_ops;
16069 *ops = base_breakpoint_ops;
16070 ops->insert_location = insert_catch_fork;
16071 ops->remove_location = remove_catch_fork;
16072 ops->breakpoint_hit = breakpoint_hit_catch_fork;
16073 ops->print_it = print_it_catch_fork;
16074 ops->print_one = print_one_catch_fork;
16075 ops->print_mention = print_mention_catch_fork;
16076 ops->print_recreate = print_recreate_catch_fork;
16077
16078 /* Vfork catchpoints. */
16079 ops = &catch_vfork_breakpoint_ops;
16080 *ops = base_breakpoint_ops;
16081 ops->insert_location = insert_catch_vfork;
16082 ops->remove_location = remove_catch_vfork;
16083 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
16084 ops->print_it = print_it_catch_vfork;
16085 ops->print_one = print_one_catch_vfork;
16086 ops->print_mention = print_mention_catch_vfork;
16087 ops->print_recreate = print_recreate_catch_vfork;
16088
16089 /* Exec catchpoints. */
16090 ops = &catch_exec_breakpoint_ops;
16091 *ops = base_breakpoint_ops;
16092 ops->dtor = dtor_catch_exec;
16093 ops->insert_location = insert_catch_exec;
16094 ops->remove_location = remove_catch_exec;
16095 ops->breakpoint_hit = breakpoint_hit_catch_exec;
16096 ops->print_it = print_it_catch_exec;
16097 ops->print_one = print_one_catch_exec;
16098 ops->print_mention = print_mention_catch_exec;
16099 ops->print_recreate = print_recreate_catch_exec;
16100
16101 /* Syscall catchpoints. */
16102 ops = &catch_syscall_breakpoint_ops;
16103 *ops = base_breakpoint_ops;
16104 ops->dtor = dtor_catch_syscall;
16105 ops->insert_location = insert_catch_syscall;
16106 ops->remove_location = remove_catch_syscall;
16107 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
16108 ops->print_it = print_it_catch_syscall;
16109 ops->print_one = print_one_catch_syscall;
16110 ops->print_mention = print_mention_catch_syscall;
16111 ops->print_recreate = print_recreate_catch_syscall;
16112
16113 /* Solib-related catchpoints. */
16114 ops = &catch_solib_breakpoint_ops;
16115 *ops = base_breakpoint_ops;
16116 ops->dtor = dtor_catch_solib;
16117 ops->insert_location = insert_catch_solib;
16118 ops->remove_location = remove_catch_solib;
16119 ops->breakpoint_hit = breakpoint_hit_catch_solib;
16120 ops->check_status = check_status_catch_solib;
16121 ops->print_it = print_it_catch_solib;
16122 ops->print_one = print_one_catch_solib;
16123 ops->print_mention = print_mention_catch_solib;
16124 ops->print_recreate = print_recreate_catch_solib;
16125
16126 ops = &dprintf_breakpoint_ops;
16127 *ops = bkpt_base_breakpoint_ops;
16128 ops->re_set = dprintf_re_set;
16129 ops->resources_needed = bkpt_resources_needed;
16130 ops->print_it = bkpt_print_it;
16131 ops->print_mention = bkpt_print_mention;
16132 ops->print_recreate = dprintf_print_recreate;
16133 ops->after_condition_true = dprintf_after_condition_true;
16134 }
16135
16136 /* Chain containing all defined "enable breakpoint" subcommands. */
16137
16138 static struct cmd_list_element *enablebreaklist = NULL;
16139
16140 void
16141 _initialize_breakpoint (void)
16142 {
16143 struct cmd_list_element *c;
16144
16145 initialize_breakpoint_ops ();
16146
16147 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
16148 observer_attach_free_objfile (disable_breakpoints_in_freed_objfile);
16149 observer_attach_inferior_exit (clear_syscall_counts);
16150 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
16151
16152 breakpoint_objfile_key
16153 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
16154
16155 catch_syscall_inferior_data
16156 = register_inferior_data_with_cleanup (NULL,
16157 catch_syscall_inferior_data_cleanup);
16158
16159 breakpoint_chain = 0;
16160 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
16161 before a breakpoint is set. */
16162 breakpoint_count = 0;
16163
16164 tracepoint_count = 0;
16165
16166 add_com ("ignore", class_breakpoint, ignore_command, _("\
16167 Set ignore-count of breakpoint number N to COUNT.\n\
16168 Usage is `ignore N COUNT'."));
16169 if (xdb_commands)
16170 add_com_alias ("bc", "ignore", class_breakpoint, 1);
16171
16172 add_com ("commands", class_breakpoint, commands_command, _("\
16173 Set commands to be executed when a breakpoint is hit.\n\
16174 Give breakpoint number as argument after \"commands\".\n\
16175 With no argument, the targeted breakpoint is the last one set.\n\
16176 The commands themselves follow starting on the next line.\n\
16177 Type a line containing \"end\" to indicate the end of them.\n\
16178 Give \"silent\" as the first line to make the breakpoint silent;\n\
16179 then no output is printed when it is hit, except what the commands print."));
16180
16181 c = add_com ("condition", class_breakpoint, condition_command, _("\
16182 Specify breakpoint number N to break only if COND is true.\n\
16183 Usage is `condition N COND', where N is an integer and COND is an\n\
16184 expression to be evaluated whenever breakpoint N is reached."));
16185 set_cmd_completer (c, condition_completer);
16186
16187 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
16188 Set a temporary breakpoint.\n\
16189 Like \"break\" except the breakpoint is only temporary,\n\
16190 so it will be deleted when hit. Equivalent to \"break\" followed\n\
16191 by using \"enable delete\" on the breakpoint number.\n\
16192 \n"
16193 BREAK_ARGS_HELP ("tbreak")));
16194 set_cmd_completer (c, location_completer);
16195
16196 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
16197 Set a hardware assisted breakpoint.\n\
16198 Like \"break\" except the breakpoint requires hardware support,\n\
16199 some target hardware may not have this support.\n\
16200 \n"
16201 BREAK_ARGS_HELP ("hbreak")));
16202 set_cmd_completer (c, location_completer);
16203
16204 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
16205 Set a temporary hardware assisted breakpoint.\n\
16206 Like \"hbreak\" except the breakpoint is only temporary,\n\
16207 so it will be deleted when hit.\n\
16208 \n"
16209 BREAK_ARGS_HELP ("thbreak")));
16210 set_cmd_completer (c, location_completer);
16211
16212 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
16213 Enable some breakpoints.\n\
16214 Give breakpoint numbers (separated by spaces) as arguments.\n\
16215 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16216 This is used to cancel the effect of the \"disable\" command.\n\
16217 With a subcommand you can enable temporarily."),
16218 &enablelist, "enable ", 1, &cmdlist);
16219 if (xdb_commands)
16220 add_com ("ab", class_breakpoint, enable_command, _("\
16221 Enable some breakpoints.\n\
16222 Give breakpoint numbers (separated by spaces) as arguments.\n\
16223 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16224 This is used to cancel the effect of the \"disable\" command.\n\
16225 With a subcommand you can enable temporarily."));
16226
16227 add_com_alias ("en", "enable", class_breakpoint, 1);
16228
16229 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16230 Enable some breakpoints.\n\
16231 Give breakpoint numbers (separated by spaces) as arguments.\n\
16232 This is used to cancel the effect of the \"disable\" command.\n\
16233 May be abbreviated to simply \"enable\".\n"),
16234 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16235
16236 add_cmd ("once", no_class, enable_once_command, _("\
16237 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16238 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16239 &enablebreaklist);
16240
16241 add_cmd ("delete", no_class, enable_delete_command, _("\
16242 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16243 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16244 &enablebreaklist);
16245
16246 add_cmd ("count", no_class, enable_count_command, _("\
16247 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16248 If a breakpoint is hit while enabled in this fashion,\n\
16249 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16250 &enablebreaklist);
16251
16252 add_cmd ("delete", no_class, enable_delete_command, _("\
16253 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16254 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16255 &enablelist);
16256
16257 add_cmd ("once", no_class, enable_once_command, _("\
16258 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16259 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16260 &enablelist);
16261
16262 add_cmd ("count", no_class, enable_count_command, _("\
16263 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16264 If a breakpoint is hit while enabled in this fashion,\n\
16265 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16266 &enablelist);
16267
16268 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16269 Disable some breakpoints.\n\
16270 Arguments are breakpoint numbers with spaces in between.\n\
16271 To disable all breakpoints, give no argument.\n\
16272 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16273 &disablelist, "disable ", 1, &cmdlist);
16274 add_com_alias ("dis", "disable", class_breakpoint, 1);
16275 add_com_alias ("disa", "disable", class_breakpoint, 1);
16276 if (xdb_commands)
16277 add_com ("sb", class_breakpoint, disable_command, _("\
16278 Disable some breakpoints.\n\
16279 Arguments are breakpoint numbers with spaces in between.\n\
16280 To disable all breakpoints, give no argument.\n\
16281 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16282
16283 add_cmd ("breakpoints", class_alias, disable_command, _("\
16284 Disable some breakpoints.\n\
16285 Arguments are breakpoint numbers with spaces in between.\n\
16286 To disable all breakpoints, give no argument.\n\
16287 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16288 This command may be abbreviated \"disable\"."),
16289 &disablelist);
16290
16291 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16292 Delete some breakpoints or auto-display expressions.\n\
16293 Arguments are breakpoint numbers with spaces in between.\n\
16294 To delete all breakpoints, give no argument.\n\
16295 \n\
16296 Also a prefix command for deletion of other GDB objects.\n\
16297 The \"unset\" command is also an alias for \"delete\"."),
16298 &deletelist, "delete ", 1, &cmdlist);
16299 add_com_alias ("d", "delete", class_breakpoint, 1);
16300 add_com_alias ("del", "delete", class_breakpoint, 1);
16301 if (xdb_commands)
16302 add_com ("db", class_breakpoint, delete_command, _("\
16303 Delete some breakpoints.\n\
16304 Arguments are breakpoint numbers with spaces in between.\n\
16305 To delete all breakpoints, give no argument.\n"));
16306
16307 add_cmd ("breakpoints", class_alias, delete_command, _("\
16308 Delete some breakpoints or auto-display expressions.\n\
16309 Arguments are breakpoint numbers with spaces in between.\n\
16310 To delete all breakpoints, give no argument.\n\
16311 This command may be abbreviated \"delete\"."),
16312 &deletelist);
16313
16314 add_com ("clear", class_breakpoint, clear_command, _("\
16315 Clear breakpoint at specified line or function.\n\
16316 Argument may be line number, function name, or \"*\" and an address.\n\
16317 If line number is specified, all breakpoints in that line are cleared.\n\
16318 If function is specified, breakpoints at beginning of function are cleared.\n\
16319 If an address is specified, breakpoints at that address are cleared.\n\
16320 \n\
16321 With no argument, clears all breakpoints in the line that the selected frame\n\
16322 is executing in.\n\
16323 \n\
16324 See also the \"delete\" command which clears breakpoints by number."));
16325 add_com_alias ("cl", "clear", class_breakpoint, 1);
16326
16327 c = add_com ("break", class_breakpoint, break_command, _("\
16328 Set breakpoint at specified line or function.\n"
16329 BREAK_ARGS_HELP ("break")));
16330 set_cmd_completer (c, location_completer);
16331
16332 add_com_alias ("b", "break", class_run, 1);
16333 add_com_alias ("br", "break", class_run, 1);
16334 add_com_alias ("bre", "break", class_run, 1);
16335 add_com_alias ("brea", "break", class_run, 1);
16336
16337 if (xdb_commands)
16338 add_com_alias ("ba", "break", class_breakpoint, 1);
16339
16340 if (dbx_commands)
16341 {
16342 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16343 Break in function/address or break at a line in the current file."),
16344 &stoplist, "stop ", 1, &cmdlist);
16345 add_cmd ("in", class_breakpoint, stopin_command,
16346 _("Break in function or address."), &stoplist);
16347 add_cmd ("at", class_breakpoint, stopat_command,
16348 _("Break at a line in the current file."), &stoplist);
16349 add_com ("status", class_info, breakpoints_info, _("\
16350 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16351 The \"Type\" column indicates one of:\n\
16352 \tbreakpoint - normal breakpoint\n\
16353 \twatchpoint - watchpoint\n\
16354 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16355 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16356 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16357 address and file/line number respectively.\n\
16358 \n\
16359 Convenience variable \"$_\" and default examine address for \"x\"\n\
16360 are set to the address of the last breakpoint listed unless the command\n\
16361 is prefixed with \"server \".\n\n\
16362 Convenience variable \"$bpnum\" contains the number of the last\n\
16363 breakpoint set."));
16364 }
16365
16366 add_info ("breakpoints", breakpoints_info, _("\
16367 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16368 The \"Type\" column indicates one of:\n\
16369 \tbreakpoint - normal breakpoint\n\
16370 \twatchpoint - watchpoint\n\
16371 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16372 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16373 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16374 address and file/line number respectively.\n\
16375 \n\
16376 Convenience variable \"$_\" and default examine address for \"x\"\n\
16377 are set to the address of the last breakpoint listed unless the command\n\
16378 is prefixed with \"server \".\n\n\
16379 Convenience variable \"$bpnum\" contains the number of the last\n\
16380 breakpoint set."));
16381
16382 add_info_alias ("b", "breakpoints", 1);
16383
16384 if (xdb_commands)
16385 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16386 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16387 The \"Type\" column indicates one of:\n\
16388 \tbreakpoint - normal breakpoint\n\
16389 \twatchpoint - watchpoint\n\
16390 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16391 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16392 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16393 address and file/line number respectively.\n\
16394 \n\
16395 Convenience variable \"$_\" and default examine address for \"x\"\n\
16396 are set to the address of the last breakpoint listed unless the command\n\
16397 is prefixed with \"server \".\n\n\
16398 Convenience variable \"$bpnum\" contains the number of the last\n\
16399 breakpoint set."));
16400
16401 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16402 Status of all breakpoints, or breakpoint number NUMBER.\n\
16403 The \"Type\" column indicates one of:\n\
16404 \tbreakpoint - normal breakpoint\n\
16405 \twatchpoint - watchpoint\n\
16406 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16407 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16408 \tuntil - internal breakpoint used by the \"until\" command\n\
16409 \tfinish - internal breakpoint used by the \"finish\" command\n\
16410 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16411 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16412 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16413 address and file/line number respectively.\n\
16414 \n\
16415 Convenience variable \"$_\" and default examine address for \"x\"\n\
16416 are set to the address of the last breakpoint listed unless the command\n\
16417 is prefixed with \"server \".\n\n\
16418 Convenience variable \"$bpnum\" contains the number of the last\n\
16419 breakpoint set."),
16420 &maintenanceinfolist);
16421
16422 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16423 Set catchpoints to catch events."),
16424 &catch_cmdlist, "catch ",
16425 0/*allow-unknown*/, &cmdlist);
16426
16427 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16428 Set temporary catchpoints to catch events."),
16429 &tcatch_cmdlist, "tcatch ",
16430 0/*allow-unknown*/, &cmdlist);
16431
16432 add_catch_command ("fork", _("Catch calls to fork."),
16433 catch_fork_command_1,
16434 NULL,
16435 (void *) (uintptr_t) catch_fork_permanent,
16436 (void *) (uintptr_t) catch_fork_temporary);
16437 add_catch_command ("vfork", _("Catch calls to vfork."),
16438 catch_fork_command_1,
16439 NULL,
16440 (void *) (uintptr_t) catch_vfork_permanent,
16441 (void *) (uintptr_t) catch_vfork_temporary);
16442 add_catch_command ("exec", _("Catch calls to exec."),
16443 catch_exec_command_1,
16444 NULL,
16445 CATCH_PERMANENT,
16446 CATCH_TEMPORARY);
16447 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16448 Usage: catch load [REGEX]\n\
16449 If REGEX is given, only stop for libraries matching the regular expression."),
16450 catch_load_command_1,
16451 NULL,
16452 CATCH_PERMANENT,
16453 CATCH_TEMPORARY);
16454 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16455 Usage: catch unload [REGEX]\n\
16456 If REGEX is given, only stop for libraries matching the regular expression."),
16457 catch_unload_command_1,
16458 NULL,
16459 CATCH_PERMANENT,
16460 CATCH_TEMPORARY);
16461 add_catch_command ("syscall", _("\
16462 Catch system calls by their names and/or numbers.\n\
16463 Arguments say which system calls to catch. If no arguments\n\
16464 are given, every system call will be caught.\n\
16465 Arguments, if given, should be one or more system call names\n\
16466 (if your system supports that), or system call numbers."),
16467 catch_syscall_command_1,
16468 catch_syscall_completer,
16469 CATCH_PERMANENT,
16470 CATCH_TEMPORARY);
16471
16472 c = add_com ("watch", class_breakpoint, watch_command, _("\
16473 Set a watchpoint for an expression.\n\
16474 Usage: watch [-l|-location] EXPRESSION\n\
16475 A watchpoint stops execution of your program whenever the value of\n\
16476 an expression changes.\n\
16477 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16478 the memory to which it refers."));
16479 set_cmd_completer (c, expression_completer);
16480
16481 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16482 Set a read watchpoint for an expression.\n\
16483 Usage: rwatch [-l|-location] EXPRESSION\n\
16484 A watchpoint stops execution of your program whenever the value of\n\
16485 an expression is read.\n\
16486 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16487 the memory to which it refers."));
16488 set_cmd_completer (c, expression_completer);
16489
16490 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16491 Set a watchpoint for an expression.\n\
16492 Usage: awatch [-l|-location] EXPRESSION\n\
16493 A watchpoint stops execution of your program whenever the value of\n\
16494 an expression is either read or written.\n\
16495 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16496 the memory to which it refers."));
16497 set_cmd_completer (c, expression_completer);
16498
16499 add_info ("watchpoints", watchpoints_info, _("\
16500 Status of specified watchpoints (all watchpoints if no argument)."));
16501
16502 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16503 respond to changes - contrary to the description. */
16504 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16505 &can_use_hw_watchpoints, _("\
16506 Set debugger's willingness to use watchpoint hardware."), _("\
16507 Show debugger's willingness to use watchpoint hardware."), _("\
16508 If zero, gdb will not use hardware for new watchpoints, even if\n\
16509 such is available. (However, any hardware watchpoints that were\n\
16510 created before setting this to nonzero, will continue to use watchpoint\n\
16511 hardware.)"),
16512 NULL,
16513 show_can_use_hw_watchpoints,
16514 &setlist, &showlist);
16515
16516 can_use_hw_watchpoints = 1;
16517
16518 /* Tracepoint manipulation commands. */
16519
16520 c = add_com ("trace", class_breakpoint, trace_command, _("\
16521 Set a tracepoint at specified line or function.\n\
16522 \n"
16523 BREAK_ARGS_HELP ("trace") "\n\
16524 Do \"help tracepoints\" for info on other tracepoint commands."));
16525 set_cmd_completer (c, location_completer);
16526
16527 add_com_alias ("tp", "trace", class_alias, 0);
16528 add_com_alias ("tr", "trace", class_alias, 1);
16529 add_com_alias ("tra", "trace", class_alias, 1);
16530 add_com_alias ("trac", "trace", class_alias, 1);
16531
16532 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16533 Set a fast tracepoint at specified line or function.\n\
16534 \n"
16535 BREAK_ARGS_HELP ("ftrace") "\n\
16536 Do \"help tracepoints\" for info on other tracepoint commands."));
16537 set_cmd_completer (c, location_completer);
16538
16539 c = add_com ("strace", class_breakpoint, strace_command, _("\
16540 Set a static tracepoint at specified line, function or marker.\n\
16541 \n\
16542 strace [LOCATION] [if CONDITION]\n\
16543 LOCATION may be a line number, function name, \"*\" and an address,\n\
16544 or -m MARKER_ID.\n\
16545 If a line number is specified, probe the marker at start of code\n\
16546 for that line. If a function is specified, probe the marker at start\n\
16547 of code for that function. If an address is specified, probe the marker\n\
16548 at that exact address. If a marker id is specified, probe the marker\n\
16549 with that name. With no LOCATION, uses current execution address of\n\
16550 the selected stack frame.\n\
16551 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16552 This collects arbitrary user data passed in the probe point call to the\n\
16553 tracing library. You can inspect it when analyzing the trace buffer,\n\
16554 by printing the $_sdata variable like any other convenience variable.\n\
16555 \n\
16556 CONDITION is a boolean expression.\n\
16557 \n\
16558 Multiple tracepoints at one place are permitted, and useful if their\n\
16559 conditions are different.\n\
16560 \n\
16561 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16562 Do \"help tracepoints\" for info on other tracepoint commands."));
16563 set_cmd_completer (c, location_completer);
16564
16565 add_info ("tracepoints", tracepoints_info, _("\
16566 Status of specified tracepoints (all tracepoints if no argument).\n\
16567 Convenience variable \"$tpnum\" contains the number of the\n\
16568 last tracepoint set."));
16569
16570 add_info_alias ("tp", "tracepoints", 1);
16571
16572 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16573 Delete specified tracepoints.\n\
16574 Arguments are tracepoint numbers, separated by spaces.\n\
16575 No argument means delete all tracepoints."),
16576 &deletelist);
16577 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16578
16579 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16580 Disable specified tracepoints.\n\
16581 Arguments are tracepoint numbers, separated by spaces.\n\
16582 No argument means disable all tracepoints."),
16583 &disablelist);
16584 deprecate_cmd (c, "disable");
16585
16586 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16587 Enable specified tracepoints.\n\
16588 Arguments are tracepoint numbers, separated by spaces.\n\
16589 No argument means enable all tracepoints."),
16590 &enablelist);
16591 deprecate_cmd (c, "enable");
16592
16593 add_com ("passcount", class_trace, trace_pass_command, _("\
16594 Set the passcount for a tracepoint.\n\
16595 The trace will end when the tracepoint has been passed 'count' times.\n\
16596 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16597 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16598
16599 add_prefix_cmd ("save", class_breakpoint, save_command,
16600 _("Save breakpoint definitions as a script."),
16601 &save_cmdlist, "save ",
16602 0/*allow-unknown*/, &cmdlist);
16603
16604 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16605 Save current breakpoint definitions as a script.\n\
16606 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16607 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16608 session to restore them."),
16609 &save_cmdlist);
16610 set_cmd_completer (c, filename_completer);
16611
16612 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16613 Save current tracepoint definitions as a script.\n\
16614 Use the 'source' command in another debug session to restore them."),
16615 &save_cmdlist);
16616 set_cmd_completer (c, filename_completer);
16617
16618 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16619 deprecate_cmd (c, "save tracepoints");
16620
16621 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16622 Breakpoint specific settings\n\
16623 Configure various breakpoint-specific variables such as\n\
16624 pending breakpoint behavior"),
16625 &breakpoint_set_cmdlist, "set breakpoint ",
16626 0/*allow-unknown*/, &setlist);
16627 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16628 Breakpoint specific settings\n\
16629 Configure various breakpoint-specific variables such as\n\
16630 pending breakpoint behavior"),
16631 &breakpoint_show_cmdlist, "show breakpoint ",
16632 0/*allow-unknown*/, &showlist);
16633
16634 add_setshow_auto_boolean_cmd ("pending", no_class,
16635 &pending_break_support, _("\
16636 Set debugger's behavior regarding pending breakpoints."), _("\
16637 Show debugger's behavior regarding pending breakpoints."), _("\
16638 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16639 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16640 an error. If auto, an unrecognized breakpoint location results in a\n\
16641 user-query to see if a pending breakpoint should be created."),
16642 NULL,
16643 show_pending_break_support,
16644 &breakpoint_set_cmdlist,
16645 &breakpoint_show_cmdlist);
16646
16647 pending_break_support = AUTO_BOOLEAN_AUTO;
16648
16649 add_setshow_boolean_cmd ("auto-hw", no_class,
16650 &automatic_hardware_breakpoints, _("\
16651 Set automatic usage of hardware breakpoints."), _("\
16652 Show automatic usage of hardware breakpoints."), _("\
16653 If set, the debugger will automatically use hardware breakpoints for\n\
16654 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16655 a warning will be emitted for such breakpoints."),
16656 NULL,
16657 show_automatic_hardware_breakpoints,
16658 &breakpoint_set_cmdlist,
16659 &breakpoint_show_cmdlist);
16660
16661 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16662 &always_inserted_mode, _("\
16663 Set mode for inserting breakpoints."), _("\
16664 Show mode for inserting breakpoints."), _("\
16665 When this mode is off, breakpoints are inserted in inferior when it is\n\
16666 resumed, and removed when execution stops. When this mode is on,\n\
16667 breakpoints are inserted immediately and removed only when the user\n\
16668 deletes the breakpoint. When this mode is auto (which is the default),\n\
16669 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16670 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16671 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16672 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16673 NULL,
16674 &show_always_inserted_mode,
16675 &breakpoint_set_cmdlist,
16676 &breakpoint_show_cmdlist);
16677
16678 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16679 condition_evaluation_enums,
16680 &condition_evaluation_mode_1, _("\
16681 Set mode of breakpoint condition evaluation."), _("\
16682 Show mode of breakpoint condition evaluation."), _("\
16683 When this is set to \"host\", breakpoint conditions will be\n\
16684 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16685 breakpoint conditions will be downloaded to the target (if the target\n\
16686 supports such feature) and conditions will be evaluated on the target's side.\n\
16687 If this is set to \"auto\" (default), this will be automatically set to\n\
16688 \"target\" if it supports condition evaluation, otherwise it will\n\
16689 be set to \"gdb\""),
16690 &set_condition_evaluation_mode,
16691 &show_condition_evaluation_mode,
16692 &breakpoint_set_cmdlist,
16693 &breakpoint_show_cmdlist);
16694
16695 add_com ("break-range", class_breakpoint, break_range_command, _("\
16696 Set a breakpoint for an address range.\n\
16697 break-range START-LOCATION, END-LOCATION\n\
16698 where START-LOCATION and END-LOCATION can be one of the following:\n\
16699 LINENUM, for that line in the current file,\n\
16700 FILE:LINENUM, for that line in that file,\n\
16701 +OFFSET, for that number of lines after the current line\n\
16702 or the start of the range\n\
16703 FUNCTION, for the first line in that function,\n\
16704 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16705 *ADDRESS, for the instruction at that address.\n\
16706 \n\
16707 The breakpoint will stop execution of the inferior whenever it executes\n\
16708 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16709 range (including START-LOCATION and END-LOCATION)."));
16710
16711 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16712 Set a dynamic printf at specified line or function.\n\
16713 dprintf location,format string,arg1,arg2,...\n\
16714 location may be a line number, function name, or \"*\" and an address.\n\
16715 If a line number is specified, break at start of code for that line.\n\
16716 If a function is specified, break at start of code for that function."));
16717 set_cmd_completer (c, location_completer);
16718
16719 add_setshow_enum_cmd ("dprintf-style", class_support,
16720 dprintf_style_enums, &dprintf_style, _("\
16721 Set the style of usage for dynamic printf."), _("\
16722 Show the style of usage for dynamic printf."), _("\
16723 This setting chooses how GDB will do a dynamic printf.\n\
16724 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16725 console, as with the \"printf\" command.\n\
16726 If the value is \"call\", the print is done by calling a function in your\n\
16727 program; by default printf(), but you can choose a different function or\n\
16728 output stream by setting dprintf-function and dprintf-channel."),
16729 update_dprintf_commands, NULL,
16730 &setlist, &showlist);
16731
16732 dprintf_function = xstrdup ("printf");
16733 add_setshow_string_cmd ("dprintf-function", class_support,
16734 &dprintf_function, _("\
16735 Set the function to use for dynamic printf"), _("\
16736 Show the function to use for dynamic printf"), NULL,
16737 update_dprintf_commands, NULL,
16738 &setlist, &showlist);
16739
16740 dprintf_channel = xstrdup ("");
16741 add_setshow_string_cmd ("dprintf-channel", class_support,
16742 &dprintf_channel, _("\
16743 Set the channel to use for dynamic printf"), _("\
16744 Show the channel to use for dynamic printf"), NULL,
16745 update_dprintf_commands, NULL,
16746 &setlist, &showlist);
16747
16748 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16749 &disconnected_dprintf, _("\
16750 Set whether dprintf continues after GDB disconnects."), _("\
16751 Show whether dprintf continues after GDB disconnects."), _("\
16752 Use this to let dprintf commands continue to hit and produce output\n\
16753 even if GDB disconnects or detaches from the target."),
16754 NULL,
16755 NULL,
16756 &setlist, &showlist);
16757
16758 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16759 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16760 (target agent only) This is useful for formatted output in user-defined commands."));
16761
16762 automatic_hardware_breakpoints = 1;
16763
16764 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16765 observer_attach_thread_exit (remove_threaded_breakpoints);
16766 }