Remove deprecated_lval_hack
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdbsupport/gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "stack.h"
63 #include "ax-gdb.h"
64 #include "dummy-frame.h"
65 #include "interps.h"
66 #include "gdbsupport/format.h"
67 #include "thread-fsm.h"
68 #include "tid-parse.h"
69 #include "cli/cli-style.h"
70 #include "cli/cli-decode.h"
71
72 /* readline include files */
73 #include "readline/tilde.h"
74
75 /* readline defines this. */
76 #undef savestring
77
78 #include "mi/mi-common.h"
79 #include "extension.h"
80 #include <algorithm>
81 #include "progspace-and-thread.h"
82 #include "gdbsupport/array-view.h"
83 #include "gdbsupport/gdb_optional.h"
84
85 /* Prototypes for local functions. */
86
87 static void map_breakpoint_numbers (const char *,
88 gdb::function_view<void (breakpoint *)>);
89
90 static void
91 create_sals_from_location_spec_default (location_spec *locspec,
92 linespec_result *canonical);
93
94 static void create_breakpoints_sal (struct gdbarch *,
95 struct linespec_result *,
96 gdb::unique_xmalloc_ptr<char>,
97 gdb::unique_xmalloc_ptr<char>,
98 enum bptype,
99 enum bpdisp, int, int,
100 int,
101 int, int, int, unsigned);
102
103 static int can_use_hardware_watchpoint
104 (const std::vector<value_ref_ptr> &vals);
105
106 static void mention (const breakpoint *);
107
108 static breakpoint *add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b);
109
110 static breakpoint *add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b);
111
112 static struct breakpoint *
113 momentary_breakpoint_from_master (struct breakpoint *orig,
114 enum bptype type,
115 int loc_enabled, int thread);
116
117 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, bool);
118
119 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
120 CORE_ADDR bpaddr,
121 enum bptype bptype,
122 struct program_space *pspace);
123
124 static bool watchpoint_locations_match (const struct bp_location *loc1,
125 const struct bp_location *loc2);
126
127 static bool breakpoint_locations_match (const struct bp_location *loc1,
128 const struct bp_location *loc2,
129 bool sw_hw_bps_match = false);
130
131 static bool breakpoint_location_address_match (struct bp_location *bl,
132 const struct address_space *aspace,
133 CORE_ADDR addr);
134
135 static bool breakpoint_location_address_range_overlap (struct bp_location *,
136 const address_space *,
137 CORE_ADDR, int);
138
139 static int remove_breakpoint (struct bp_location *);
140 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
141
142 static enum print_stop_action print_bp_stop_message (bpstat *bs);
143
144 static int hw_breakpoint_used_count (void);
145
146 static int hw_watchpoint_use_count (struct breakpoint *);
147
148 static int hw_watchpoint_used_count_others (struct breakpoint *except,
149 enum bptype type,
150 int *other_type_used);
151
152 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
153 int count);
154
155 static void decref_bp_location (struct bp_location **loc);
156
157 static std::vector<symtab_and_line> bkpt_probe_decode_location_spec
158 (struct breakpoint *b,
159 location_spec *locspec,
160 struct program_space *search_pspace);
161
162 static bool bl_address_is_meaningful (bp_location *loc);
163
164 static int find_loc_num_by_location (const bp_location *loc);
165
166 /* update_global_location_list's modes of operation wrt to whether to
167 insert locations now. */
168 enum ugll_insert_mode
169 {
170 /* Don't insert any breakpoint locations into the inferior, only
171 remove already-inserted locations that no longer should be
172 inserted. Functions that delete a breakpoint or breakpoints
173 should specify this mode, so that deleting a breakpoint doesn't
174 have the side effect of inserting the locations of other
175 breakpoints that are marked not-inserted, but should_be_inserted
176 returns true on them.
177
178 This behavior is useful is situations close to tear-down -- e.g.,
179 after an exec, while the target still has execution, but
180 breakpoint shadows of the previous executable image should *NOT*
181 be restored to the new image; or before detaching, where the
182 target still has execution and wants to delete breakpoints from
183 GDB's lists, and all breakpoints had already been removed from
184 the inferior. */
185 UGLL_DONT_INSERT,
186
187 /* May insert breakpoints iff breakpoints_should_be_inserted_now
188 claims breakpoints should be inserted now. */
189 UGLL_MAY_INSERT,
190
191 /* Insert locations now, irrespective of
192 breakpoints_should_be_inserted_now. E.g., say all threads are
193 stopped right now, and the user did "continue". We need to
194 insert breakpoints _before_ resuming the target, but
195 UGLL_MAY_INSERT wouldn't insert them, because
196 breakpoints_should_be_inserted_now returns false at that point,
197 as no thread is running yet. */
198 UGLL_INSERT
199 };
200
201 static void update_global_location_list (enum ugll_insert_mode);
202
203 static void update_global_location_list_nothrow (enum ugll_insert_mode);
204
205 static void insert_breakpoint_locations (void);
206
207 static void trace_pass_command (const char *, int);
208
209 static void set_tracepoint_count (int num);
210
211 static bool is_masked_watchpoint (const struct breakpoint *b);
212
213 /* Return true if B refers to a static tracepoint set by marker ("-m"),
214 zero otherwise. */
215
216 static bool strace_marker_p (struct breakpoint *b);
217
218 static void bkpt_probe_create_sals_from_location_spec
219 (location_spec *locspec,
220 struct linespec_result *canonical);
221 static void tracepoint_probe_create_sals_from_location_spec
222 (location_spec *locspec,
223 struct linespec_result *canonical);
224
225 const struct breakpoint_ops code_breakpoint_ops =
226 {
227 create_sals_from_location_spec_default,
228 create_breakpoints_sal,
229 };
230
231 /* Breakpoints set on probes. */
232 static const struct breakpoint_ops bkpt_probe_breakpoint_ops =
233 {
234 bkpt_probe_create_sals_from_location_spec,
235 create_breakpoints_sal,
236 };
237
238 /* Tracepoints set on probes. */
239 static const struct breakpoint_ops tracepoint_probe_breakpoint_ops =
240 {
241 tracepoint_probe_create_sals_from_location_spec,
242 create_breakpoints_sal,
243 };
244
245 /* Implementation of abstract dtors. These must exist to satisfy the
246 linker. */
247
248 breakpoint::~breakpoint ()
249 {
250 }
251
252 code_breakpoint::~code_breakpoint ()
253 {
254 }
255
256 catchpoint::~catchpoint ()
257 {
258 }
259
260 /* The structure to be used in regular breakpoints. */
261 struct ordinary_breakpoint : public code_breakpoint
262 {
263 using code_breakpoint::code_breakpoint;
264
265 int resources_needed (const struct bp_location *) override;
266 enum print_stop_action print_it (const bpstat *bs) const override;
267 void print_mention () const override;
268 void print_recreate (struct ui_file *fp) const override;
269 };
270
271 /* Internal breakpoints. These typically have a lifetime the same as
272 the program, and they end up installed on the breakpoint chain with
273 a negative breakpoint number. They're visible in "maint info
274 breakpoints", but not "info breakpoints". */
275 struct internal_breakpoint : public code_breakpoint
276 {
277 internal_breakpoint (struct gdbarch *gdbarch,
278 enum bptype type, CORE_ADDR address)
279 : code_breakpoint (gdbarch, type)
280 {
281 symtab_and_line sal;
282 sal.pc = address;
283 sal.section = find_pc_overlay (sal.pc);
284 sal.pspace = current_program_space;
285 add_location (sal);
286
287 pspace = current_program_space;
288 disposition = disp_donttouch;
289 }
290
291 void re_set () override;
292 void check_status (struct bpstat *bs) override;
293 enum print_stop_action print_it (const bpstat *bs) const override;
294 void print_mention () const override;
295 };
296
297 /* Momentary breakpoints. These typically have a lifetime of some run
298 control command only, are always thread-specific, and have 0 for
299 breakpoint number. I.e., there can be many momentary breakpoints
300 on the breakpoint chain and they all same the same number (zero).
301 They're visible in "maint info breakpoints", but not "info
302 breakpoints". */
303 struct momentary_breakpoint : public code_breakpoint
304 {
305 momentary_breakpoint (struct gdbarch *gdbarch_, enum bptype bptype,
306 program_space *pspace_,
307 const struct frame_id &frame_id_,
308 int thread_)
309 : code_breakpoint (gdbarch_, bptype)
310 {
311 /* If FRAME_ID is valid, it should be a real frame, not an inlined
312 or tail-called one. */
313 gdb_assert (!frame_id_artificial_p (frame_id));
314
315 /* Momentary breakpoints are always thread-specific. */
316 gdb_assert (thread_ > 0);
317
318 pspace = pspace_;
319 enable_state = bp_enabled;
320 disposition = disp_donttouch;
321 frame_id = frame_id_;
322 thread = thread_;
323 }
324
325 void re_set () override;
326 void check_status (struct bpstat *bs) override;
327 enum print_stop_action print_it (const bpstat *bs) const override;
328 void print_mention () const override;
329 };
330
331 /* DPrintf breakpoints. */
332 struct dprintf_breakpoint : public ordinary_breakpoint
333 {
334 using ordinary_breakpoint::ordinary_breakpoint;
335
336 void re_set () override;
337 int breakpoint_hit (const struct bp_location *bl,
338 const address_space *aspace,
339 CORE_ADDR bp_addr,
340 const target_waitstatus &ws) override;
341 void print_recreate (struct ui_file *fp) const override;
342 void after_condition_true (struct bpstat *bs) override;
343 };
344
345 /* Ranged breakpoints. */
346 struct ranged_breakpoint : public ordinary_breakpoint
347 {
348 explicit ranged_breakpoint (struct gdbarch *gdbarch,
349 const symtab_and_line &sal_start,
350 int length,
351 location_spec_up start_locspec,
352 location_spec_up end_locspec)
353 : ordinary_breakpoint (gdbarch, bp_hardware_breakpoint)
354 {
355 bp_location *bl = add_location (sal_start);
356 bl->length = length;
357
358 disposition = disp_donttouch;
359
360 locspec = std::move (start_locspec);
361 locspec_range_end = std::move (end_locspec);
362 }
363
364 int breakpoint_hit (const struct bp_location *bl,
365 const address_space *aspace,
366 CORE_ADDR bp_addr,
367 const target_waitstatus &ws) override;
368 int resources_needed (const struct bp_location *) override;
369 enum print_stop_action print_it (const bpstat *bs) const override;
370 bool print_one (bp_location **) const override;
371 void print_one_detail (struct ui_out *) const override;
372 void print_mention () const override;
373 void print_recreate (struct ui_file *fp) const override;
374 };
375
376 /* Static tracepoints with marker (`-m'). */
377 struct static_marker_tracepoint : public tracepoint
378 {
379 using tracepoint::tracepoint;
380
381 std::vector<symtab_and_line> decode_location_spec
382 (struct location_spec *locspec,
383 struct program_space *search_pspace) override;
384 };
385
386 /* The style in which to perform a dynamic printf. This is a user
387 option because different output options have different tradeoffs;
388 if GDB does the printing, there is better error handling if there
389 is a problem with any of the arguments, but using an inferior
390 function lets you have special-purpose printers and sending of
391 output to the same place as compiled-in print functions. */
392
393 static const char dprintf_style_gdb[] = "gdb";
394 static const char dprintf_style_call[] = "call";
395 static const char dprintf_style_agent[] = "agent";
396 static const char *const dprintf_style_enums[] = {
397 dprintf_style_gdb,
398 dprintf_style_call,
399 dprintf_style_agent,
400 NULL
401 };
402 static const char *dprintf_style = dprintf_style_gdb;
403
404 /* The function to use for dynamic printf if the preferred style is to
405 call into the inferior. The value is simply a string that is
406 copied into the command, so it can be anything that GDB can
407 evaluate to a callable address, not necessarily a function name. */
408
409 static std::string dprintf_function = "printf";
410
411 /* The channel to use for dynamic printf if the preferred style is to
412 call into the inferior; if a nonempty string, it will be passed to
413 the call as the first argument, with the format string as the
414 second. As with the dprintf function, this can be anything that
415 GDB knows how to evaluate, so in addition to common choices like
416 "stderr", this could be an app-specific expression like
417 "mystreams[curlogger]". */
418
419 static std::string dprintf_channel;
420
421 /* True if dprintf commands should continue to operate even if GDB
422 has disconnected. */
423 static bool disconnected_dprintf = true;
424
425 struct command_line *
426 breakpoint_commands (struct breakpoint *b)
427 {
428 return b->commands ? b->commands.get () : NULL;
429 }
430
431 /* Flag indicating that a command has proceeded the inferior past the
432 current breakpoint. */
433
434 static bool breakpoint_proceeded;
435
436 const char *
437 bpdisp_text (enum bpdisp disp)
438 {
439 /* NOTE: the following values are a part of MI protocol and
440 represent values of 'disp' field returned when inferior stops at
441 a breakpoint. */
442 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
443
444 return bpdisps[(int) disp];
445 }
446
447 /* Prototypes for exported functions. */
448 /* If FALSE, gdb will not use hardware support for watchpoints, even
449 if such is available. */
450 static int can_use_hw_watchpoints;
451
452 static void
453 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
454 struct cmd_list_element *c,
455 const char *value)
456 {
457 gdb_printf (file,
458 _("Debugger's willingness to use "
459 "watchpoint hardware is %s.\n"),
460 value);
461 }
462
463 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
464 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
465 for unrecognized breakpoint locations.
466 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
467 static enum auto_boolean pending_break_support;
468 static void
469 show_pending_break_support (struct ui_file *file, int from_tty,
470 struct cmd_list_element *c,
471 const char *value)
472 {
473 gdb_printf (file,
474 _("Debugger's behavior regarding "
475 "pending breakpoints is %s.\n"),
476 value);
477 }
478
479 /* If true, gdb will automatically use hardware breakpoints for breakpoints
480 set with "break" but falling in read-only memory.
481 If false, gdb will warn about such breakpoints, but won't automatically
482 use hardware breakpoints. */
483 static bool automatic_hardware_breakpoints;
484 static void
485 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
486 struct cmd_list_element *c,
487 const char *value)
488 {
489 gdb_printf (file,
490 _("Automatic usage of hardware breakpoints is %s.\n"),
491 value);
492 }
493
494 /* If on, GDB keeps breakpoints inserted even if the inferior is
495 stopped, and immediately inserts any new breakpoints as soon as
496 they're created. If off (default), GDB keeps breakpoints off of
497 the target as long as possible. That is, it delays inserting
498 breakpoints until the next resume, and removes them again when the
499 target fully stops. This is a bit safer in case GDB crashes while
500 processing user input. */
501 static bool always_inserted_mode = false;
502
503 static void
504 show_always_inserted_mode (struct ui_file *file, int from_tty,
505 struct cmd_list_element *c, const char *value)
506 {
507 gdb_printf (file, _("Always inserted breakpoint mode is %s.\n"),
508 value);
509 }
510
511 /* See breakpoint.h. */
512
513 int
514 breakpoints_should_be_inserted_now (void)
515 {
516 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
517 {
518 /* If breakpoints are global, they should be inserted even if no
519 thread under gdb's control is running, or even if there are
520 no threads under GDB's control yet. */
521 return 1;
522 }
523 else
524 {
525 if (always_inserted_mode)
526 {
527 /* The user wants breakpoints inserted even if all threads
528 are stopped. */
529 return 1;
530 }
531
532 for (inferior *inf : all_inferiors ())
533 if (inf->has_execution ()
534 && threads_are_executing (inf->process_target ()))
535 return 1;
536
537 /* Don't remove breakpoints yet if, even though all threads are
538 stopped, we still have events to process. */
539 for (thread_info *tp : all_non_exited_threads ())
540 if (tp->resumed () && tp->has_pending_waitstatus ())
541 return 1;
542 }
543 return 0;
544 }
545
546 static const char condition_evaluation_both[] = "host or target";
547
548 /* Modes for breakpoint condition evaluation. */
549 static const char condition_evaluation_auto[] = "auto";
550 static const char condition_evaluation_host[] = "host";
551 static const char condition_evaluation_target[] = "target";
552 static const char *const condition_evaluation_enums[] = {
553 condition_evaluation_auto,
554 condition_evaluation_host,
555 condition_evaluation_target,
556 NULL
557 };
558
559 /* Global that holds the current mode for breakpoint condition evaluation. */
560 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
561
562 /* Global that we use to display information to the user (gets its value from
563 condition_evaluation_mode_1. */
564 static const char *condition_evaluation_mode = condition_evaluation_auto;
565
566 /* Translate a condition evaluation mode MODE into either "host"
567 or "target". This is used mostly to translate from "auto" to the
568 real setting that is being used. It returns the translated
569 evaluation mode. */
570
571 static const char *
572 translate_condition_evaluation_mode (const char *mode)
573 {
574 if (mode == condition_evaluation_auto)
575 {
576 if (target_supports_evaluation_of_breakpoint_conditions ())
577 return condition_evaluation_target;
578 else
579 return condition_evaluation_host;
580 }
581 else
582 return mode;
583 }
584
585 /* Discovers what condition_evaluation_auto translates to. */
586
587 static const char *
588 breakpoint_condition_evaluation_mode (void)
589 {
590 return translate_condition_evaluation_mode (condition_evaluation_mode);
591 }
592
593 /* Return true if GDB should evaluate breakpoint conditions or false
594 otherwise. */
595
596 static bool
597 gdb_evaluates_breakpoint_condition_p (void)
598 {
599 const char *mode = breakpoint_condition_evaluation_mode ();
600
601 return (mode == condition_evaluation_host);
602 }
603
604 /* Are we executing breakpoint commands? */
605 static int executing_breakpoint_commands;
606
607 /* Are overlay event breakpoints enabled? */
608 static int overlay_events_enabled;
609
610 /* See description in breakpoint.h. */
611 bool target_exact_watchpoints = false;
612
613 /* Walk the following statement or block through all breakpoints.
614 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
615 current breakpoint. */
616
617 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
618 for (B = breakpoint_chain; \
619 B ? (TMP=B->next, 1): 0; \
620 B = TMP)
621
622 /* Chains of all breakpoints defined. */
623
624 static struct breakpoint *breakpoint_chain;
625
626 /* See breakpoint.h. */
627
628 breakpoint_range
629 all_breakpoints ()
630 {
631 return breakpoint_range (breakpoint_chain);
632 }
633
634 /* See breakpoint.h. */
635
636 breakpoint_safe_range
637 all_breakpoints_safe ()
638 {
639 return breakpoint_safe_range (all_breakpoints ());
640 }
641
642 /* See breakpoint.h. */
643
644 tracepoint_range
645 all_tracepoints ()
646 {
647 return tracepoint_range (breakpoint_chain);
648 }
649
650 /* Array is sorted by bp_location_is_less_than - primarily by the ADDRESS. */
651
652 static std::vector<bp_location *> bp_locations;
653
654 /* See breakpoint.h. */
655
656 const std::vector<bp_location *> &
657 all_bp_locations ()
658 {
659 return bp_locations;
660 }
661
662 /* Range to iterate over breakpoint locations at a given address. */
663
664 struct bp_locations_at_addr_range
665 {
666 using iterator = std::vector<bp_location *>::iterator;
667
668 bp_locations_at_addr_range (CORE_ADDR addr)
669 {
670 struct compare
671 {
672 bool operator() (const bp_location *loc, CORE_ADDR addr_) const
673 { return loc->address < addr_; }
674
675 bool operator() (CORE_ADDR addr_, const bp_location *loc) const
676 { return addr_ < loc->address; }
677 };
678
679 auto it_pair = std::equal_range (bp_locations.begin (), bp_locations.end (),
680 addr, compare ());
681
682 m_begin = it_pair.first;
683 m_end = it_pair.second;
684 }
685
686 iterator begin () const
687 { return m_begin; }
688
689 iterator end () const
690 { return m_end; }
691
692 private:
693 iterator m_begin;
694 iterator m_end;
695 };
696
697 /* Return a range to iterate over all breakpoint locations exactly at address
698 ADDR.
699
700 If it's needed to iterate multiple times on the same range, it's possible
701 to save the range in a local variable and use it multiple times:
702
703 auto range = all_bp_locations_at_addr (addr);
704
705 for (bp_location *loc : range)
706 // use loc
707
708 for (bp_location *loc : range)
709 // use loc
710
711 This saves a bit of time, as it avoids re-doing the binary searches to find
712 the range's boundaries. Just remember not to change the bp_locations vector
713 in the mean time, as it could make the range's iterators stale. */
714
715 static bp_locations_at_addr_range
716 all_bp_locations_at_addr (CORE_ADDR addr)
717 {
718 return bp_locations_at_addr_range (addr);
719 }
720
721 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
722 ADDRESS for the current elements of BP_LOCATIONS which get a valid
723 result from bp_location_has_shadow. You can use it for roughly
724 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
725 an address you need to read. */
726
727 static CORE_ADDR bp_locations_placed_address_before_address_max;
728
729 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
730 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
731 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
732 You can use it for roughly limiting the subrange of BP_LOCATIONS to
733 scan for shadow bytes for an address you need to read. */
734
735 static CORE_ADDR bp_locations_shadow_len_after_address_max;
736
737 /* The locations that no longer correspond to any breakpoint, unlinked
738 from the bp_locations array, but for which a hit may still be
739 reported by a target. */
740 static std::vector<bp_location *> moribund_locations;
741
742 /* Number of last breakpoint made. */
743
744 static int breakpoint_count;
745
746 /* The value of `breakpoint_count' before the last command that
747 created breakpoints. If the last (break-like) command created more
748 than one breakpoint, then the difference between BREAKPOINT_COUNT
749 and PREV_BREAKPOINT_COUNT is more than one. */
750 static int prev_breakpoint_count;
751
752 /* Number of last tracepoint made. */
753
754 static int tracepoint_count;
755
756 static struct cmd_list_element *breakpoint_set_cmdlist;
757 static struct cmd_list_element *breakpoint_show_cmdlist;
758 struct cmd_list_element *save_cmdlist;
759
760 /* Return whether a breakpoint is an active enabled breakpoint. */
761 static bool
762 breakpoint_enabled (struct breakpoint *b)
763 {
764 return (b->enable_state == bp_enabled);
765 }
766
767 /* Set breakpoint count to NUM. */
768
769 static void
770 set_breakpoint_count (int num)
771 {
772 prev_breakpoint_count = breakpoint_count;
773 breakpoint_count = num;
774 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
775 }
776
777 /* Used by `start_rbreak_breakpoints' below, to record the current
778 breakpoint count before "rbreak" creates any breakpoint. */
779 static int rbreak_start_breakpoint_count;
780
781 /* Called at the start an "rbreak" command to record the first
782 breakpoint made. */
783
784 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
785 {
786 rbreak_start_breakpoint_count = breakpoint_count;
787 }
788
789 /* Called at the end of an "rbreak" command to record the last
790 breakpoint made. */
791
792 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
793 {
794 prev_breakpoint_count = rbreak_start_breakpoint_count;
795 }
796
797 /* Used in run_command to zero the hit count when a new run starts. */
798
799 void
800 clear_breakpoint_hit_counts (void)
801 {
802 for (breakpoint *b : all_breakpoints ())
803 b->hit_count = 0;
804 }
805
806 \f
807 /* Return the breakpoint with the specified number, or NULL
808 if the number does not refer to an existing breakpoint. */
809
810 struct breakpoint *
811 get_breakpoint (int num)
812 {
813 for (breakpoint *b : all_breakpoints ())
814 if (b->number == num)
815 return b;
816
817 return nullptr;
818 }
819
820 /* Return TRUE if NUM refer to an existing breakpoint that has
821 multiple code locations. */
822
823 static bool
824 has_multiple_locations (int num)
825 {
826 for (breakpoint *b : all_breakpoints ())
827 if (b->number == num)
828 return b->loc != nullptr && b->loc->next != nullptr;
829
830 return false;
831 }
832
833 \f
834
835 /* Mark locations as "conditions have changed" in case the target supports
836 evaluating conditions on its side. */
837
838 static void
839 mark_breakpoint_modified (struct breakpoint *b)
840 {
841 /* This is only meaningful if the target is
842 evaluating conditions and if the user has
843 opted for condition evaluation on the target's
844 side. */
845 if (gdb_evaluates_breakpoint_condition_p ()
846 || !target_supports_evaluation_of_breakpoint_conditions ())
847 return;
848
849 if (!is_breakpoint (b))
850 return;
851
852 for (bp_location *loc : b->locations ())
853 loc->condition_changed = condition_modified;
854 }
855
856 /* Mark location as "conditions have changed" in case the target supports
857 evaluating conditions on its side. */
858
859 static void
860 mark_breakpoint_location_modified (struct bp_location *loc)
861 {
862 /* This is only meaningful if the target is
863 evaluating conditions and if the user has
864 opted for condition evaluation on the target's
865 side. */
866 if (gdb_evaluates_breakpoint_condition_p ()
867 || !target_supports_evaluation_of_breakpoint_conditions ())
868
869 return;
870
871 if (!is_breakpoint (loc->owner))
872 return;
873
874 loc->condition_changed = condition_modified;
875 }
876
877 /* Sets the condition-evaluation mode using the static global
878 condition_evaluation_mode. */
879
880 static void
881 set_condition_evaluation_mode (const char *args, int from_tty,
882 struct cmd_list_element *c)
883 {
884 const char *old_mode, *new_mode;
885
886 if ((condition_evaluation_mode_1 == condition_evaluation_target)
887 && !target_supports_evaluation_of_breakpoint_conditions ())
888 {
889 condition_evaluation_mode_1 = condition_evaluation_mode;
890 warning (_("Target does not support breakpoint condition evaluation.\n"
891 "Using host evaluation mode instead."));
892 return;
893 }
894
895 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
896 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
897
898 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
899 settings was "auto". */
900 condition_evaluation_mode = condition_evaluation_mode_1;
901
902 /* Only update the mode if the user picked a different one. */
903 if (new_mode != old_mode)
904 {
905 /* If the user switched to a different evaluation mode, we
906 need to synch the changes with the target as follows:
907
908 "host" -> "target": Send all (valid) conditions to the target.
909 "target" -> "host": Remove all the conditions from the target.
910 */
911
912 if (new_mode == condition_evaluation_target)
913 {
914 /* Mark everything modified and synch conditions with the
915 target. */
916 for (bp_location *loc : all_bp_locations ())
917 mark_breakpoint_location_modified (loc);
918 }
919 else
920 {
921 /* Manually mark non-duplicate locations to synch conditions
922 with the target. We do this to remove all the conditions the
923 target knows about. */
924 for (bp_location *loc : all_bp_locations ())
925 if (is_breakpoint (loc->owner) && loc->inserted)
926 loc->needs_update = 1;
927 }
928
929 /* Do the update. */
930 update_global_location_list (UGLL_MAY_INSERT);
931 }
932
933 return;
934 }
935
936 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
937 what "auto" is translating to. */
938
939 static void
940 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
941 struct cmd_list_element *c, const char *value)
942 {
943 if (condition_evaluation_mode == condition_evaluation_auto)
944 gdb_printf (file,
945 _("Breakpoint condition evaluation "
946 "mode is %s (currently %s).\n"),
947 value,
948 breakpoint_condition_evaluation_mode ());
949 else
950 gdb_printf (file, _("Breakpoint condition evaluation mode is %s.\n"),
951 value);
952 }
953
954 /* Parse COND_STRING in the context of LOC and set as the condition
955 expression of LOC. BP_NUM is the number of LOC's owner, LOC_NUM is
956 the number of LOC within its owner. In case of parsing error, mark
957 LOC as DISABLED_BY_COND. In case of success, unset DISABLED_BY_COND. */
958
959 static void
960 set_breakpoint_location_condition (const char *cond_string, bp_location *loc,
961 int bp_num, int loc_num)
962 {
963 bool has_junk = false;
964 try
965 {
966 expression_up new_exp = parse_exp_1 (&cond_string, loc->address,
967 block_for_pc (loc->address), 0);
968 if (*cond_string != 0)
969 has_junk = true;
970 else
971 {
972 loc->cond = std::move (new_exp);
973 if (loc->disabled_by_cond && loc->enabled)
974 gdb_printf (_("Breakpoint %d's condition is now valid at "
975 "location %d, enabling.\n"),
976 bp_num, loc_num);
977
978 loc->disabled_by_cond = false;
979 }
980 }
981 catch (const gdb_exception_error &e)
982 {
983 if (loc->enabled)
984 {
985 /* Warn if a user-enabled location is now becoming disabled-by-cond.
986 BP_NUM is 0 if the breakpoint is being defined for the first
987 time using the "break ... if ..." command, and non-zero if
988 already defined. */
989 if (bp_num != 0)
990 warning (_("failed to validate condition at location %d.%d, "
991 "disabling:\n %s"), bp_num, loc_num, e.what ());
992 else
993 warning (_("failed to validate condition at location %d, "
994 "disabling:\n %s"), loc_num, e.what ());
995 }
996
997 loc->disabled_by_cond = true;
998 }
999
1000 if (has_junk)
1001 error (_("Garbage '%s' follows condition"), cond_string);
1002 }
1003
1004 void
1005 set_breakpoint_condition (struct breakpoint *b, const char *exp,
1006 int from_tty, bool force)
1007 {
1008 if (*exp == 0)
1009 {
1010 b->cond_string.reset ();
1011
1012 if (is_watchpoint (b))
1013 gdb::checked_static_cast<watchpoint *> (b)->cond_exp.reset ();
1014 else
1015 {
1016 int loc_num = 1;
1017 for (bp_location *loc : b->locations ())
1018 {
1019 loc->cond.reset ();
1020 if (loc->disabled_by_cond && loc->enabled)
1021 gdb_printf (_("Breakpoint %d's condition is now valid at "
1022 "location %d, enabling.\n"),
1023 b->number, loc_num);
1024 loc->disabled_by_cond = false;
1025 loc_num++;
1026
1027 /* No need to free the condition agent expression
1028 bytecode (if we have one). We will handle this
1029 when we go through update_global_location_list. */
1030 }
1031 }
1032
1033 if (from_tty)
1034 gdb_printf (_("Breakpoint %d now unconditional.\n"), b->number);
1035 }
1036 else
1037 {
1038 if (is_watchpoint (b))
1039 {
1040 innermost_block_tracker tracker;
1041 const char *arg = exp;
1042 expression_up new_exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
1043 if (*arg != 0)
1044 error (_("Junk at end of expression"));
1045 watchpoint *w = gdb::checked_static_cast<watchpoint *> (b);
1046 w->cond_exp = std::move (new_exp);
1047 w->cond_exp_valid_block = tracker.block ();
1048 }
1049 else
1050 {
1051 /* Parse and set condition expressions. We make two passes.
1052 In the first, we parse the condition string to see if it
1053 is valid in at least one location. If so, the condition
1054 would be accepted. So we go ahead and set the locations'
1055 conditions. In case no valid case is found, we throw
1056 the error and the condition string will be rejected.
1057 This two-pass approach is taken to avoid setting the
1058 state of locations in case of a reject. */
1059 for (bp_location *loc : b->locations ())
1060 {
1061 try
1062 {
1063 const char *arg = exp;
1064 parse_exp_1 (&arg, loc->address,
1065 block_for_pc (loc->address), 0);
1066 if (*arg != 0)
1067 error (_("Junk at end of expression"));
1068 break;
1069 }
1070 catch (const gdb_exception_error &e)
1071 {
1072 /* Condition string is invalid. If this happens to
1073 be the last loc, abandon (if not forced) or continue
1074 (if forced). */
1075 if (loc->next == nullptr && !force)
1076 throw;
1077 }
1078 }
1079
1080 /* If we reach here, the condition is valid at some locations. */
1081 int loc_num = 1;
1082 for (bp_location *loc : b->locations ())
1083 {
1084 set_breakpoint_location_condition (exp, loc, b->number, loc_num);
1085 loc_num++;
1086 }
1087 }
1088
1089 /* We know that the new condition parsed successfully. The
1090 condition string of the breakpoint can be safely updated. */
1091 b->cond_string = make_unique_xstrdup (exp);
1092 b->condition_not_parsed = 0;
1093 }
1094 mark_breakpoint_modified (b);
1095
1096 gdb::observers::breakpoint_modified.notify (b);
1097 }
1098
1099 /* See breakpoint.h. */
1100
1101 void
1102 set_breakpoint_condition (int bpnum, const char *exp, int from_tty,
1103 bool force)
1104 {
1105 for (breakpoint *b : all_breakpoints ())
1106 if (b->number == bpnum)
1107 {
1108 /* Check if this breakpoint has a "stop" method implemented in an
1109 extension language. This method and conditions entered into GDB
1110 from the CLI are mutually exclusive. */
1111 const struct extension_language_defn *extlang
1112 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
1113
1114 if (extlang != NULL)
1115 {
1116 error (_("Only one stop condition allowed. There is currently"
1117 " a %s stop condition defined for this breakpoint."),
1118 ext_lang_capitalized_name (extlang));
1119 }
1120 set_breakpoint_condition (b, exp, from_tty, force);
1121
1122 if (is_breakpoint (b))
1123 update_global_location_list (UGLL_MAY_INSERT);
1124
1125 return;
1126 }
1127
1128 error (_("No breakpoint number %d."), bpnum);
1129 }
1130
1131 /* The options for the "condition" command. */
1132
1133 struct condition_command_opts
1134 {
1135 /* For "-force". */
1136 bool force_condition = false;
1137 };
1138
1139 static const gdb::option::option_def condition_command_option_defs[] = {
1140
1141 gdb::option::flag_option_def<condition_command_opts> {
1142 "force",
1143 [] (condition_command_opts *opts) { return &opts->force_condition; },
1144 N_("Set the condition even if it is invalid for all current locations."),
1145 },
1146
1147 };
1148
1149 /* Create an option_def_group for the "condition" options, with
1150 CC_OPTS as context. */
1151
1152 static inline gdb::option::option_def_group
1153 make_condition_command_options_def_group (condition_command_opts *cc_opts)
1154 {
1155 return {{condition_command_option_defs}, cc_opts};
1156 }
1157
1158 /* Completion for the "condition" command. */
1159
1160 static void
1161 condition_completer (struct cmd_list_element *cmd,
1162 completion_tracker &tracker,
1163 const char *text, const char * /*word*/)
1164 {
1165 bool has_no_arguments = (*text == '\0');
1166 condition_command_opts cc_opts;
1167 const auto group = make_condition_command_options_def_group (&cc_opts);
1168 if (gdb::option::complete_options
1169 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group))
1170 return;
1171
1172 text = skip_spaces (text);
1173 const char *space = skip_to_space (text);
1174 if (*space == '\0')
1175 {
1176 int len;
1177
1178 if (text[0] == '$')
1179 {
1180 tracker.advance_custom_word_point_by (1);
1181 /* We don't support completion of history indices. */
1182 if (!isdigit (text[1]))
1183 complete_internalvar (tracker, &text[1]);
1184 return;
1185 }
1186
1187 /* Suggest the "-force" flag if no arguments are given. If
1188 arguments were passed, they either already include the flag,
1189 or we are beyond the point of suggesting it because it's
1190 positionally the first argument. */
1191 if (has_no_arguments)
1192 gdb::option::complete_on_all_options (tracker, group);
1193
1194 /* We're completing the breakpoint number. */
1195 len = strlen (text);
1196
1197 for (breakpoint *b : all_breakpoints ())
1198 {
1199 char number[50];
1200
1201 xsnprintf (number, sizeof (number), "%d", b->number);
1202
1203 if (strncmp (number, text, len) == 0)
1204 tracker.add_completion (make_unique_xstrdup (number));
1205 }
1206
1207 return;
1208 }
1209
1210 /* We're completing the expression part. Skip the breakpoint num. */
1211 const char *exp_start = skip_spaces (space);
1212 tracker.advance_custom_word_point_by (exp_start - text);
1213 text = exp_start;
1214 const char *word = advance_to_expression_complete_word_point (tracker, text);
1215 expression_completer (cmd, tracker, text, word);
1216 }
1217
1218 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1219
1220 static void
1221 condition_command (const char *arg, int from_tty)
1222 {
1223 const char *p;
1224 int bnum;
1225
1226 if (arg == 0)
1227 error_no_arg (_("breakpoint number"));
1228
1229 p = arg;
1230
1231 /* Check if the "-force" flag was passed. */
1232 condition_command_opts cc_opts;
1233 const auto group = make_condition_command_options_def_group (&cc_opts);
1234 gdb::option::process_options
1235 (&p, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
1236
1237 bnum = get_number (&p);
1238 if (bnum == 0)
1239 error (_("Bad breakpoint argument: '%s'"), arg);
1240
1241 set_breakpoint_condition (bnum, p, from_tty, cc_opts.force_condition);
1242 }
1243
1244 /* Check that COMMAND do not contain commands that are suitable
1245 only for tracepoints and not suitable for ordinary breakpoints.
1246 Throw if any such commands is found. */
1247
1248 static void
1249 check_no_tracepoint_commands (struct command_line *commands)
1250 {
1251 struct command_line *c;
1252
1253 for (c = commands; c; c = c->next)
1254 {
1255 if (c->control_type == while_stepping_control)
1256 error (_("The 'while-stepping' command can "
1257 "only be used for tracepoints"));
1258
1259 check_no_tracepoint_commands (c->body_list_0.get ());
1260 check_no_tracepoint_commands (c->body_list_1.get ());
1261
1262 /* Not that command parsing removes leading whitespace and comment
1263 lines and also empty lines. So, we only need to check for
1264 command directly. */
1265 if (strstr (c->line, "collect ") == c->line)
1266 error (_("The 'collect' command can only be used for tracepoints"));
1267
1268 if (strstr (c->line, "teval ") == c->line)
1269 error (_("The 'teval' command can only be used for tracepoints"));
1270 }
1271 }
1272
1273 struct longjmp_breakpoint : public momentary_breakpoint
1274 {
1275 using momentary_breakpoint::momentary_breakpoint;
1276
1277 ~longjmp_breakpoint () override;
1278 };
1279
1280 /* Encapsulate tests for different types of tracepoints. */
1281
1282 static bool
1283 is_tracepoint_type (bptype type)
1284 {
1285 return (type == bp_tracepoint
1286 || type == bp_fast_tracepoint
1287 || type == bp_static_tracepoint
1288 || type == bp_static_marker_tracepoint);
1289 }
1290
1291 /* See breakpoint.h. */
1292
1293 bool
1294 is_tracepoint (const struct breakpoint *b)
1295 {
1296 return is_tracepoint_type (b->type);
1297 }
1298
1299 /* Factory function to create an appropriate instance of breakpoint given
1300 TYPE. */
1301
1302 template<typename... Arg>
1303 static std::unique_ptr<code_breakpoint>
1304 new_breakpoint_from_type (struct gdbarch *gdbarch, bptype type,
1305 Arg&&... args)
1306 {
1307 code_breakpoint *b;
1308
1309 switch (type)
1310 {
1311 case bp_breakpoint:
1312 case bp_hardware_breakpoint:
1313 b = new ordinary_breakpoint (gdbarch, type,
1314 std::forward<Arg> (args)...);
1315 break;
1316
1317 case bp_fast_tracepoint:
1318 case bp_static_tracepoint:
1319 case bp_tracepoint:
1320 b = new tracepoint (gdbarch, type,
1321 std::forward<Arg> (args)...);
1322 break;
1323
1324 case bp_static_marker_tracepoint:
1325 b = new static_marker_tracepoint (gdbarch, type,
1326 std::forward<Arg> (args)...);
1327 break;
1328
1329 case bp_dprintf:
1330 b = new dprintf_breakpoint (gdbarch, type,
1331 std::forward<Arg> (args)...);
1332 break;
1333
1334 default:
1335 gdb_assert_not_reached ("invalid type");
1336 }
1337
1338 return std::unique_ptr<code_breakpoint> (b);
1339 }
1340
1341 /* A helper function that validates that COMMANDS are valid for a
1342 breakpoint. This function will throw an exception if a problem is
1343 found. */
1344
1345 static void
1346 validate_commands_for_breakpoint (struct breakpoint *b,
1347 struct command_line *commands)
1348 {
1349 if (is_tracepoint (b))
1350 {
1351 struct tracepoint *t = (struct tracepoint *) b;
1352 struct command_line *c;
1353 struct command_line *while_stepping = 0;
1354
1355 /* Reset the while-stepping step count. The previous commands
1356 might have included a while-stepping action, while the new
1357 ones might not. */
1358 t->step_count = 0;
1359
1360 /* We need to verify that each top-level element of commands is
1361 valid for tracepoints, that there's at most one
1362 while-stepping element, and that the while-stepping's body
1363 has valid tracing commands excluding nested while-stepping.
1364 We also need to validate the tracepoint action line in the
1365 context of the tracepoint --- validate_actionline actually
1366 has side effects, like setting the tracepoint's
1367 while-stepping STEP_COUNT, in addition to checking if the
1368 collect/teval actions parse and make sense in the
1369 tracepoint's context. */
1370 for (c = commands; c; c = c->next)
1371 {
1372 if (c->control_type == while_stepping_control)
1373 {
1374 if (b->type == bp_fast_tracepoint)
1375 error (_("The 'while-stepping' command "
1376 "cannot be used for fast tracepoint"));
1377 else if (b->type == bp_static_tracepoint
1378 || b->type == bp_static_marker_tracepoint)
1379 error (_("The 'while-stepping' command "
1380 "cannot be used for static tracepoint"));
1381
1382 if (while_stepping)
1383 error (_("The 'while-stepping' command "
1384 "can be used only once"));
1385 else
1386 while_stepping = c;
1387 }
1388
1389 validate_actionline (c->line, b);
1390 }
1391 if (while_stepping)
1392 {
1393 struct command_line *c2;
1394
1395 gdb_assert (while_stepping->body_list_1 == nullptr);
1396 c2 = while_stepping->body_list_0.get ();
1397 for (; c2; c2 = c2->next)
1398 {
1399 if (c2->control_type == while_stepping_control)
1400 error (_("The 'while-stepping' command cannot be nested"));
1401 }
1402 }
1403 }
1404 else
1405 {
1406 check_no_tracepoint_commands (commands);
1407 }
1408 }
1409
1410 /* Return a vector of all the static tracepoints set at ADDR. The
1411 caller is responsible for releasing the vector. */
1412
1413 std::vector<breakpoint *>
1414 static_tracepoints_here (CORE_ADDR addr)
1415 {
1416 std::vector<breakpoint *> found;
1417
1418 for (breakpoint *b : all_breakpoints ())
1419 if (b->type == bp_static_tracepoint
1420 || b->type == bp_static_marker_tracepoint)
1421 {
1422 for (bp_location *loc : b->locations ())
1423 if (loc->address == addr)
1424 found.push_back (b);
1425 }
1426
1427 return found;
1428 }
1429
1430 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1431 validate that only allowed commands are included. */
1432
1433 void
1434 breakpoint_set_commands (struct breakpoint *b,
1435 counted_command_line &&commands)
1436 {
1437 validate_commands_for_breakpoint (b, commands.get ());
1438
1439 b->commands = std::move (commands);
1440 gdb::observers::breakpoint_modified.notify (b);
1441 }
1442
1443 /* Set the internal `silent' flag on the breakpoint. Note that this
1444 is not the same as the "silent" that may appear in the breakpoint's
1445 commands. */
1446
1447 void
1448 breakpoint_set_silent (struct breakpoint *b, int silent)
1449 {
1450 int old_silent = b->silent;
1451
1452 b->silent = silent;
1453 if (old_silent != silent)
1454 gdb::observers::breakpoint_modified.notify (b);
1455 }
1456
1457 /* See breakpoint.h. */
1458
1459 void
1460 breakpoint_set_thread (struct breakpoint *b, int thread)
1461 {
1462 /* It is invalid to set the thread field to anything other than -1 (which
1463 means no thread restriction) if a task restriction is already in
1464 place. */
1465 gdb_assert (thread == -1 || b->task == -1);
1466
1467 int old_thread = b->thread;
1468
1469 b->thread = thread;
1470 if (old_thread != thread)
1471 gdb::observers::breakpoint_modified.notify (b);
1472 }
1473
1474 /* See breakpoint.h. */
1475
1476 void
1477 breakpoint_set_task (struct breakpoint *b, int task)
1478 {
1479 /* It is invalid to set the task field to anything other than -1 (which
1480 means no task restriction) if a thread restriction is already in
1481 place. */
1482 gdb_assert (task == -1 || b->thread == -1);
1483
1484 int old_task = b->task;
1485
1486 b->task = task;
1487 if (old_task != task)
1488 gdb::observers::breakpoint_modified.notify (b);
1489 }
1490
1491 static void
1492 commands_command_1 (const char *arg, int from_tty,
1493 struct command_line *control)
1494 {
1495 counted_command_line cmd;
1496 /* cmd_read will be true once we have read cmd. Note that cmd might still be
1497 NULL after the call to read_command_lines if the user provides an empty
1498 list of command by just typing "end". */
1499 bool cmd_read = false;
1500
1501 std::string new_arg;
1502
1503 if (arg == NULL || !*arg)
1504 {
1505 /* Argument not explicitly given. Synthesize it. */
1506 if (breakpoint_count - prev_breakpoint_count > 1)
1507 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1508 breakpoint_count);
1509 else if (breakpoint_count > 0)
1510 new_arg = string_printf ("%d", breakpoint_count);
1511 }
1512 else
1513 {
1514 /* Create a copy of ARG. This is needed because the "commands"
1515 command may be coming from a script. In that case, the read
1516 line buffer is going to be overwritten in the lambda of
1517 'map_breakpoint_numbers' below when reading the next line
1518 before we are are done parsing the breakpoint numbers. */
1519 new_arg = arg;
1520 }
1521 arg = new_arg.c_str ();
1522
1523 map_breakpoint_numbers
1524 (arg, [&] (breakpoint *b)
1525 {
1526 if (!cmd_read)
1527 {
1528 gdb_assert (cmd == NULL);
1529 if (control != NULL)
1530 cmd = control->body_list_0;
1531 else
1532 {
1533 std::string str
1534 = string_printf (_("Type commands for breakpoint(s) "
1535 "%s, one per line."),
1536 arg);
1537
1538 auto do_validate = [=] (const char *line)
1539 {
1540 validate_actionline (line, b);
1541 };
1542 gdb::function_view<void (const char *)> validator;
1543 if (is_tracepoint (b))
1544 validator = do_validate;
1545
1546 cmd = read_command_lines (str.c_str (), from_tty, 1, validator);
1547 }
1548 cmd_read = true;
1549 }
1550
1551 /* If a breakpoint was on the list more than once, we don't need to
1552 do anything. */
1553 if (b->commands != cmd)
1554 {
1555 validate_commands_for_breakpoint (b, cmd.get ());
1556 b->commands = cmd;
1557 gdb::observers::breakpoint_modified.notify (b);
1558 }
1559 });
1560 }
1561
1562 static void
1563 commands_command (const char *arg, int from_tty)
1564 {
1565 commands_command_1 (arg, from_tty, NULL);
1566 }
1567
1568 /* Like commands_command, but instead of reading the commands from
1569 input stream, takes them from an already parsed command structure.
1570
1571 This is used by cli-script.c to DTRT with breakpoint commands
1572 that are part of if and while bodies. */
1573 enum command_control_type
1574 commands_from_control_command (const char *arg, struct command_line *cmd)
1575 {
1576 commands_command_1 (arg, 0, cmd);
1577 return simple_control;
1578 }
1579
1580 /* Return true if BL->TARGET_INFO contains valid information. */
1581
1582 static bool
1583 bp_location_has_shadow (struct bp_location *bl)
1584 {
1585 if (bl->loc_type != bp_loc_software_breakpoint)
1586 return false;
1587 if (!bl->inserted)
1588 return false;
1589 if (bl->target_info.shadow_len == 0)
1590 /* BL isn't valid, or doesn't shadow memory. */
1591 return false;
1592 return true;
1593 }
1594
1595 /* Update BUF, which is LEN bytes read from the target address
1596 MEMADDR, by replacing a memory breakpoint with its shadowed
1597 contents.
1598
1599 If READBUF is not NULL, this buffer must not overlap with the of
1600 the breakpoint location's shadow_contents buffer. Otherwise, a
1601 failed assertion internal error will be raised. */
1602
1603 static void
1604 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1605 const gdb_byte *writebuf_org,
1606 ULONGEST memaddr, LONGEST len,
1607 struct bp_target_info *target_info,
1608 struct gdbarch *gdbarch)
1609 {
1610 /* Now do full processing of the found relevant range of elements. */
1611 CORE_ADDR bp_addr = 0;
1612 int bp_size = 0;
1613 int bptoffset = 0;
1614
1615 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1616 current_program_space->aspace, 0))
1617 {
1618 /* The breakpoint is inserted in a different address space. */
1619 return;
1620 }
1621
1622 /* Addresses and length of the part of the breakpoint that
1623 we need to copy. */
1624 bp_addr = target_info->placed_address;
1625 bp_size = target_info->shadow_len;
1626
1627 if (bp_addr + bp_size <= memaddr)
1628 {
1629 /* The breakpoint is entirely before the chunk of memory we are
1630 reading. */
1631 return;
1632 }
1633
1634 if (bp_addr >= memaddr + len)
1635 {
1636 /* The breakpoint is entirely after the chunk of memory we are
1637 reading. */
1638 return;
1639 }
1640
1641 /* Offset within shadow_contents. */
1642 if (bp_addr < memaddr)
1643 {
1644 /* Only copy the second part of the breakpoint. */
1645 bp_size -= memaddr - bp_addr;
1646 bptoffset = memaddr - bp_addr;
1647 bp_addr = memaddr;
1648 }
1649
1650 if (bp_addr + bp_size > memaddr + len)
1651 {
1652 /* Only copy the first part of the breakpoint. */
1653 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1654 }
1655
1656 if (readbuf != NULL)
1657 {
1658 /* Verify that the readbuf buffer does not overlap with the
1659 shadow_contents buffer. */
1660 gdb_assert (target_info->shadow_contents >= readbuf + len
1661 || readbuf >= (target_info->shadow_contents
1662 + target_info->shadow_len));
1663
1664 /* Update the read buffer with this inserted breakpoint's
1665 shadow. */
1666 memcpy (readbuf + bp_addr - memaddr,
1667 target_info->shadow_contents + bptoffset, bp_size);
1668 }
1669 else
1670 {
1671 const unsigned char *bp;
1672 CORE_ADDR addr = target_info->reqstd_address;
1673 int placed_size;
1674
1675 /* Update the shadow with what we want to write to memory. */
1676 memcpy (target_info->shadow_contents + bptoffset,
1677 writebuf_org + bp_addr - memaddr, bp_size);
1678
1679 /* Determine appropriate breakpoint contents and size for this
1680 address. */
1681 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1682
1683 /* Update the final write buffer with this inserted
1684 breakpoint's INSN. */
1685 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1686 }
1687 }
1688
1689 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1690 by replacing any memory breakpoints with their shadowed contents.
1691
1692 If READBUF is not NULL, this buffer must not overlap with any of
1693 the breakpoint location's shadow_contents buffers. Otherwise,
1694 a failed assertion internal error will be raised.
1695
1696 The range of shadowed area by each bp_location is:
1697 bl->address - bp_locations_placed_address_before_address_max
1698 up to bl->address + bp_locations_shadow_len_after_address_max
1699 The range we were requested to resolve shadows for is:
1700 memaddr ... memaddr + len
1701 Thus the safe cutoff boundaries for performance optimization are
1702 memaddr + len <= (bl->address
1703 - bp_locations_placed_address_before_address_max)
1704 and:
1705 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1706
1707 void
1708 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1709 const gdb_byte *writebuf_org,
1710 ULONGEST memaddr, LONGEST len)
1711 {
1712 /* Left boundary, right boundary and median element of our binary
1713 search. */
1714 unsigned bc_l, bc_r, bc;
1715
1716 /* Find BC_L which is a leftmost element which may affect BUF
1717 content. It is safe to report lower value but a failure to
1718 report higher one. */
1719
1720 bc_l = 0;
1721 bc_r = bp_locations.size ();
1722 while (bc_l + 1 < bc_r)
1723 {
1724 struct bp_location *bl;
1725
1726 bc = (bc_l + bc_r) / 2;
1727 bl = bp_locations[bc];
1728
1729 /* Check first BL->ADDRESS will not overflow due to the added
1730 constant. Then advance the left boundary only if we are sure
1731 the BC element can in no way affect the BUF content (MEMADDR
1732 to MEMADDR + LEN range).
1733
1734 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1735 offset so that we cannot miss a breakpoint with its shadow
1736 range tail still reaching MEMADDR. */
1737
1738 if ((bl->address + bp_locations_shadow_len_after_address_max
1739 >= bl->address)
1740 && (bl->address + bp_locations_shadow_len_after_address_max
1741 <= memaddr))
1742 bc_l = bc;
1743 else
1744 bc_r = bc;
1745 }
1746
1747 /* Due to the binary search above, we need to make sure we pick the
1748 first location that's at BC_L's address. E.g., if there are
1749 multiple locations at the same address, BC_L may end up pointing
1750 at a duplicate location, and miss the "master"/"inserted"
1751 location. Say, given locations L1, L2 and L3 at addresses A and
1752 B:
1753
1754 L1@A, L2@A, L3@B, ...
1755
1756 BC_L could end up pointing at location L2, while the "master"
1757 location could be L1. Since the `loc->inserted' flag is only set
1758 on "master" locations, we'd forget to restore the shadow of L1
1759 and L2. */
1760 while (bc_l > 0
1761 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1762 bc_l--;
1763
1764 /* Now do full processing of the found relevant range of elements. */
1765
1766 for (bc = bc_l; bc < bp_locations.size (); bc++)
1767 {
1768 struct bp_location *bl = bp_locations[bc];
1769
1770 /* bp_location array has BL->OWNER always non-NULL. */
1771 if (bl->owner->type == bp_none)
1772 warning (_("reading through apparently deleted breakpoint #%d?"),
1773 bl->owner->number);
1774
1775 /* Performance optimization: any further element can no longer affect BUF
1776 content. */
1777
1778 if (bl->address >= bp_locations_placed_address_before_address_max
1779 && (memaddr + len
1780 <= (bl->address
1781 - bp_locations_placed_address_before_address_max)))
1782 break;
1783
1784 if (!bp_location_has_shadow (bl))
1785 continue;
1786
1787 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1788 memaddr, len, &bl->target_info, bl->gdbarch);
1789 }
1790 }
1791
1792 /* See breakpoint.h. */
1793
1794 bool
1795 is_breakpoint (const struct breakpoint *bpt)
1796 {
1797 return (bpt->type == bp_breakpoint
1798 || bpt->type == bp_hardware_breakpoint
1799 || bpt->type == bp_dprintf);
1800 }
1801
1802 /* Return true if BPT is of any hardware watchpoint kind. */
1803
1804 static bool
1805 is_hardware_watchpoint (const struct breakpoint *bpt)
1806 {
1807 return (bpt->type == bp_hardware_watchpoint
1808 || bpt->type == bp_read_watchpoint
1809 || bpt->type == bp_access_watchpoint);
1810 }
1811
1812 /* See breakpoint.h. */
1813
1814 bool
1815 is_watchpoint (const struct breakpoint *bpt)
1816 {
1817 return (is_hardware_watchpoint (bpt)
1818 || bpt->type == bp_watchpoint);
1819 }
1820
1821 /* Returns true if the current thread and its running state are safe
1822 to evaluate or update watchpoint B. Watchpoints on local
1823 expressions need to be evaluated in the context of the thread that
1824 was current when the watchpoint was created, and, that thread needs
1825 to be stopped to be able to select the correct frame context.
1826 Watchpoints on global expressions can be evaluated on any thread,
1827 and in any state. It is presently left to the target allowing
1828 memory accesses when threads are running. */
1829
1830 static bool
1831 watchpoint_in_thread_scope (struct watchpoint *b)
1832 {
1833 return (b->pspace == current_program_space
1834 && (b->watchpoint_thread == null_ptid
1835 || (inferior_ptid == b->watchpoint_thread
1836 && !inferior_thread ()->executing ())));
1837 }
1838
1839 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1840 associated bp_watchpoint_scope breakpoint. */
1841
1842 static void
1843 watchpoint_del_at_next_stop (struct watchpoint *w)
1844 {
1845 if (w->related_breakpoint != w)
1846 {
1847 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1848 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1849 w->related_breakpoint->disposition = disp_del_at_next_stop;
1850 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1851 w->related_breakpoint = w;
1852 }
1853 w->disposition = disp_del_at_next_stop;
1854 }
1855
1856 /* Extract a bitfield value from value VAL using the bit parameters contained in
1857 watchpoint W. */
1858
1859 static struct value *
1860 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1861 {
1862 struct value *bit_val;
1863
1864 if (val == NULL)
1865 return NULL;
1866
1867 bit_val = value::allocate (val->type ());
1868
1869 val->unpack_bitfield (bit_val,
1870 w->val_bitpos,
1871 w->val_bitsize,
1872 val->contents_for_printing ().data (),
1873 val->offset ());
1874
1875 return bit_val;
1876 }
1877
1878 /* Allocate a dummy location and add it to B. This is required
1879 because bpstat_stop_status requires a location to be able to report
1880 stops. */
1881
1882 static void
1883 add_dummy_location (struct breakpoint *b,
1884 struct program_space *pspace)
1885 {
1886 gdb_assert (b->loc == NULL);
1887
1888 b->loc = new bp_location (b, bp_loc_other);
1889 b->loc->pspace = pspace;
1890 }
1891
1892 /* Assuming that B is a watchpoint:
1893 - Reparse watchpoint expression, if REPARSE is true
1894 - Evaluate expression and store the result in B->val
1895 - Evaluate the condition if there is one, and store the result
1896 in b->loc->cond.
1897 - Update the list of values that must be watched in B->loc.
1898
1899 If the watchpoint disposition is disp_del_at_next_stop, then do
1900 nothing. If this is local watchpoint that is out of scope, delete
1901 it.
1902
1903 Even with `set breakpoint always-inserted on' the watchpoints are
1904 removed + inserted on each stop here. Normal breakpoints must
1905 never be removed because they might be missed by a running thread
1906 when debugging in non-stop mode. On the other hand, hardware
1907 watchpoints (is_hardware_watchpoint; processed here) are specific
1908 to each LWP since they are stored in each LWP's hardware debug
1909 registers. Therefore, such LWP must be stopped first in order to
1910 be able to modify its hardware watchpoints.
1911
1912 Hardware watchpoints must be reset exactly once after being
1913 presented to the user. It cannot be done sooner, because it would
1914 reset the data used to present the watchpoint hit to the user. And
1915 it must not be done later because it could display the same single
1916 watchpoint hit during multiple GDB stops. Note that the latter is
1917 relevant only to the hardware watchpoint types bp_read_watchpoint
1918 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1919 not user-visible - its hit is suppressed if the memory content has
1920 not changed.
1921
1922 The following constraints influence the location where we can reset
1923 hardware watchpoints:
1924
1925 * target_stopped_by_watchpoint and target_stopped_data_address are
1926 called several times when GDB stops.
1927
1928 [linux]
1929 * Multiple hardware watchpoints can be hit at the same time,
1930 causing GDB to stop. GDB only presents one hardware watchpoint
1931 hit at a time as the reason for stopping, and all the other hits
1932 are presented later, one after the other, each time the user
1933 requests the execution to be resumed. Execution is not resumed
1934 for the threads still having pending hit event stored in
1935 LWP_INFO->STATUS. While the watchpoint is already removed from
1936 the inferior on the first stop the thread hit event is kept being
1937 reported from its cached value by linux_nat_stopped_data_address
1938 until the real thread resume happens after the watchpoint gets
1939 presented and thus its LWP_INFO->STATUS gets reset.
1940
1941 Therefore the hardware watchpoint hit can get safely reset on the
1942 watchpoint removal from inferior. */
1943
1944 static void
1945 update_watchpoint (struct watchpoint *b, bool reparse)
1946 {
1947 bool within_current_scope;
1948
1949 /* If this is a local watchpoint, we only want to check if the
1950 watchpoint frame is in scope if the current thread is the thread
1951 that was used to create the watchpoint. */
1952 if (!watchpoint_in_thread_scope (b))
1953 return;
1954
1955 if (b->disposition == disp_del_at_next_stop)
1956 return;
1957
1958 gdb::optional<scoped_restore_selected_frame> restore_frame;
1959
1960 /* Determine if the watchpoint is within scope. */
1961 if (b->exp_valid_block == NULL)
1962 within_current_scope = true;
1963 else
1964 {
1965 frame_info_ptr fi = get_current_frame ();
1966 struct gdbarch *frame_arch = get_frame_arch (fi);
1967 CORE_ADDR frame_pc = get_frame_pc (fi);
1968
1969 /* If we're at a point where the stack has been destroyed
1970 (e.g. in a function epilogue), unwinding may not work
1971 properly. Do not attempt to recreate locations at this
1972 point. See similar comments in watchpoint_check. */
1973 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1974 return;
1975
1976 /* Save the current frame's ID so we can restore it after
1977 evaluating the watchpoint expression on its own frame. */
1978 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1979 took a frame parameter, so that we didn't have to change the
1980 selected frame. */
1981 restore_frame.emplace ();
1982
1983 fi = frame_find_by_id (b->watchpoint_frame);
1984 within_current_scope = (fi != NULL);
1985 if (within_current_scope)
1986 select_frame (fi);
1987 }
1988
1989 /* We don't free locations. They are stored in the bp_location array
1990 and update_global_location_list will eventually delete them and
1991 remove breakpoints if needed. */
1992 b->loc = NULL;
1993
1994 if (within_current_scope && reparse)
1995 {
1996 const char *s;
1997
1998 b->exp.reset ();
1999 s = (b->exp_string_reparse
2000 ? b->exp_string_reparse.get ()
2001 : b->exp_string.get ());
2002 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
2003 /* If the meaning of expression itself changed, the old value is
2004 no longer relevant. We don't want to report a watchpoint hit
2005 to the user when the old value and the new value may actually
2006 be completely different objects. */
2007 b->val = NULL;
2008 b->val_valid = false;
2009
2010 /* Note that unlike with breakpoints, the watchpoint's condition
2011 expression is stored in the breakpoint object, not in the
2012 locations (re)created below. */
2013 if (b->cond_string != NULL)
2014 {
2015 b->cond_exp.reset ();
2016
2017 s = b->cond_string.get ();
2018 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
2019 }
2020 }
2021
2022 /* If we failed to parse the expression, for example because
2023 it refers to a global variable in a not-yet-loaded shared library,
2024 don't try to insert watchpoint. We don't automatically delete
2025 such watchpoint, though, since failure to parse expression
2026 is different from out-of-scope watchpoint. */
2027 if (!target_has_execution ())
2028 {
2029 /* Without execution, memory can't change. No use to try and
2030 set watchpoint locations. The watchpoint will be reset when
2031 the target gains execution, through breakpoint_re_set. */
2032 if (!can_use_hw_watchpoints)
2033 {
2034 if (b->works_in_software_mode ())
2035 b->type = bp_watchpoint;
2036 else
2037 error (_("Can't set read/access watchpoint when "
2038 "hardware watchpoints are disabled."));
2039 }
2040 }
2041 else if (within_current_scope && b->exp)
2042 {
2043 std::vector<value_ref_ptr> val_chain;
2044 struct value *v, *result;
2045 struct program_space *frame_pspace;
2046
2047 fetch_subexp_value (b->exp.get (), b->exp->op.get (), &v, &result,
2048 &val_chain, false);
2049
2050 /* Avoid setting b->val if it's already set. The meaning of
2051 b->val is 'the last value' user saw, and we should update
2052 it only if we reported that last value to user. As it
2053 happens, the code that reports it updates b->val directly.
2054 We don't keep track of the memory value for masked
2055 watchpoints. */
2056 if (!b->val_valid && !is_masked_watchpoint (b))
2057 {
2058 if (b->val_bitsize != 0)
2059 v = extract_bitfield_from_watchpoint_value (b, v);
2060 b->val = release_value (v);
2061 b->val_valid = true;
2062 }
2063
2064 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
2065
2066 /* Look at each value on the value chain. */
2067 gdb_assert (!val_chain.empty ());
2068 for (const value_ref_ptr &iter : val_chain)
2069 {
2070 v = iter.get ();
2071
2072 /* If it's a memory location, and GDB actually needed
2073 its contents to evaluate the expression, then we
2074 must watch it. If the first value returned is
2075 still lazy, that means an error occurred reading it;
2076 watch it anyway in case it becomes readable. */
2077 if (v->lval () == lval_memory
2078 && (v == val_chain[0] || ! v->lazy ()))
2079 {
2080 struct type *vtype = check_typedef (v->type ());
2081
2082 /* We only watch structs and arrays if user asked
2083 for it explicitly, never if they just happen to
2084 appear in the middle of some value chain. */
2085 if (v == result
2086 || (vtype->code () != TYPE_CODE_STRUCT
2087 && vtype->code () != TYPE_CODE_ARRAY))
2088 {
2089 CORE_ADDR addr;
2090 enum target_hw_bp_type type;
2091 struct bp_location *loc, **tmp;
2092 int bitpos = 0, bitsize = 0;
2093
2094 if (v->bitsize () != 0)
2095 {
2096 /* Extract the bit parameters out from the bitfield
2097 sub-expression. */
2098 bitpos = v->bitpos ();
2099 bitsize = v->bitsize ();
2100 }
2101 else if (v == result && b->val_bitsize != 0)
2102 {
2103 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
2104 lvalue whose bit parameters are saved in the fields
2105 VAL_BITPOS and VAL_BITSIZE. */
2106 bitpos = b->val_bitpos;
2107 bitsize = b->val_bitsize;
2108 }
2109
2110 addr = v->address ();
2111 if (bitsize != 0)
2112 {
2113 /* Skip the bytes that don't contain the bitfield. */
2114 addr += bitpos / 8;
2115 }
2116
2117 type = hw_write;
2118 if (b->type == bp_read_watchpoint)
2119 type = hw_read;
2120 else if (b->type == bp_access_watchpoint)
2121 type = hw_access;
2122
2123 loc = b->allocate_location ();
2124 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
2125 ;
2126 *tmp = loc;
2127 loc->gdbarch = v->type ()->arch ();
2128
2129 loc->pspace = frame_pspace;
2130 loc->address
2131 = gdbarch_remove_non_address_bits (loc->gdbarch, addr);
2132
2133 if (bitsize != 0)
2134 {
2135 /* Just cover the bytes that make up the bitfield. */
2136 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
2137 }
2138 else
2139 loc->length = v->type ()->length ();
2140
2141 loc->watchpoint_type = type;
2142 }
2143 }
2144 }
2145
2146 /* Change the type of breakpoint between hardware assisted or
2147 an ordinary watchpoint depending on the hardware support and
2148 free hardware slots. Recheck the number of free hardware slots
2149 as the value chain may have changed. */
2150 {
2151 int reg_cnt;
2152 enum bp_loc_type loc_type;
2153
2154 reg_cnt = can_use_hardware_watchpoint (val_chain);
2155
2156 if (reg_cnt)
2157 {
2158 int i, target_resources_ok, other_type_used;
2159 enum bptype type;
2160
2161 /* Use an exact watchpoint when there's only one memory region to be
2162 watched, and only one debug register is needed to watch it. */
2163 b->exact = target_exact_watchpoints && reg_cnt == 1;
2164
2165 /* We need to determine how many resources are already
2166 used for all other hardware watchpoints plus this one
2167 to see if we still have enough resources to also fit
2168 this watchpoint in as well. */
2169
2170 /* If this is a software watchpoint, we try to turn it
2171 to a hardware one -- count resources as if B was of
2172 hardware watchpoint type. */
2173 type = b->type;
2174 if (type == bp_watchpoint)
2175 type = bp_hardware_watchpoint;
2176
2177 /* This watchpoint may or may not have been placed on
2178 the list yet at this point (it won't be in the list
2179 if we're trying to create it for the first time,
2180 through watch_command), so always account for it
2181 manually. */
2182
2183 /* Count resources used by all watchpoints except B. */
2184 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
2185
2186 /* Add in the resources needed for B. */
2187 i += hw_watchpoint_use_count (b);
2188
2189 target_resources_ok
2190 = target_can_use_hardware_watchpoint (type, i, other_type_used);
2191 if (target_resources_ok <= 0)
2192 {
2193 bool sw_mode = b->works_in_software_mode ();
2194
2195 if (target_resources_ok == 0 && !sw_mode)
2196 error (_("Target does not support this type of "
2197 "hardware watchpoint."));
2198 else if (target_resources_ok < 0 && !sw_mode)
2199 error (_("There are not enough available hardware "
2200 "resources for this watchpoint."));
2201
2202 /* Downgrade to software watchpoint. */
2203 b->type = bp_watchpoint;
2204 }
2205 else
2206 {
2207 /* If this was a software watchpoint, we've just
2208 found we have enough resources to turn it to a
2209 hardware watchpoint. Otherwise, this is a
2210 nop. */
2211 b->type = type;
2212 }
2213 }
2214 else if (!b->works_in_software_mode ())
2215 {
2216 if (!can_use_hw_watchpoints)
2217 error (_("Can't set read/access watchpoint when "
2218 "hardware watchpoints are disabled."));
2219 else
2220 error (_("Expression cannot be implemented with "
2221 "read/access watchpoint."));
2222 }
2223 else
2224 b->type = bp_watchpoint;
2225
2226 loc_type = (b->type == bp_watchpoint? bp_loc_software_watchpoint
2227 : bp_loc_hardware_watchpoint);
2228 for (bp_location *bl : b->locations ())
2229 bl->loc_type = loc_type;
2230 }
2231
2232 /* If a software watchpoint is not watching any memory, then the
2233 above left it without any location set up. But,
2234 bpstat_stop_status requires a location to be able to report
2235 stops, so make sure there's at least a dummy one. */
2236 if (b->type == bp_watchpoint && b->loc == NULL)
2237 add_dummy_location (b, frame_pspace);
2238 }
2239 else if (!within_current_scope)
2240 {
2241 gdb_printf (_("\
2242 Watchpoint %d deleted because the program has left the block\n\
2243 in which its expression is valid.\n"),
2244 b->number);
2245 watchpoint_del_at_next_stop (b);
2246 }
2247 }
2248
2249 /* Returns true iff breakpoint location should be
2250 inserted in the inferior. We don't differentiate the type of BL's owner
2251 (breakpoint vs. tracepoint), although insert_location in tracepoint's
2252 breakpoint_ops is not defined, because in insert_bp_location,
2253 tracepoint's insert_location will not be called. */
2254
2255 static bool
2256 should_be_inserted (struct bp_location *bl)
2257 {
2258 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2259 return false;
2260
2261 if (bl->owner->disposition == disp_del_at_next_stop)
2262 return false;
2263
2264 if (!bl->enabled || bl->disabled_by_cond
2265 || bl->shlib_disabled || bl->duplicate)
2266 return false;
2267
2268 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2269 return false;
2270
2271 /* This is set for example, when we're attached to the parent of a
2272 vfork, and have detached from the child. The child is running
2273 free, and we expect it to do an exec or exit, at which point the
2274 OS makes the parent schedulable again (and the target reports
2275 that the vfork is done). Until the child is done with the shared
2276 memory region, do not insert breakpoints in the parent, otherwise
2277 the child could still trip on the parent's breakpoints. Since
2278 the parent is blocked anyway, it won't miss any breakpoint. */
2279 if (bl->pspace->breakpoints_not_allowed)
2280 return false;
2281
2282 /* Don't insert a breakpoint if we're trying to step past its
2283 location, except if the breakpoint is a single-step breakpoint,
2284 and the breakpoint's thread is the thread which is stepping past
2285 a breakpoint. */
2286 if ((bl->loc_type == bp_loc_software_breakpoint
2287 || bl->loc_type == bp_loc_hardware_breakpoint)
2288 && stepping_past_instruction_at (bl->pspace->aspace,
2289 bl->address)
2290 /* The single-step breakpoint may be inserted at the location
2291 we're trying to step if the instruction branches to itself.
2292 However, the instruction won't be executed at all and it may
2293 break the semantics of the instruction, for example, the
2294 instruction is a conditional branch or updates some flags.
2295 We can't fix it unless GDB is able to emulate the instruction
2296 or switch to displaced stepping. */
2297 && !(bl->owner->type == bp_single_step
2298 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2299 {
2300 infrun_debug_printf ("skipping breakpoint: stepping past insn at: %s",
2301 paddress (bl->gdbarch, bl->address));
2302 return false;
2303 }
2304
2305 /* Don't insert watchpoints if we're trying to step past the
2306 instruction that triggered one. */
2307 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2308 && stepping_past_nonsteppable_watchpoint ())
2309 {
2310 infrun_debug_printf ("stepping past non-steppable watchpoint. "
2311 "skipping watchpoint at %s:%d",
2312 paddress (bl->gdbarch, bl->address), bl->length);
2313 return false;
2314 }
2315
2316 return true;
2317 }
2318
2319 /* Same as should_be_inserted but does the check assuming
2320 that the location is not duplicated. */
2321
2322 static bool
2323 unduplicated_should_be_inserted (struct bp_location *bl)
2324 {
2325 scoped_restore restore_bl_duplicate
2326 = make_scoped_restore (&bl->duplicate, 0);
2327
2328 return should_be_inserted (bl);
2329 }
2330
2331 /* Parses a conditional described by an expression COND into an
2332 agent expression bytecode suitable for evaluation
2333 by the bytecode interpreter. Return NULL if there was
2334 any error during parsing. */
2335
2336 static agent_expr_up
2337 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2338 {
2339 if (cond == NULL)
2340 return NULL;
2341
2342 agent_expr_up aexpr;
2343
2344 /* We don't want to stop processing, so catch any errors
2345 that may show up. */
2346 try
2347 {
2348 aexpr = gen_eval_for_expr (scope, cond);
2349 }
2350
2351 catch (const gdb_exception_error &ex)
2352 {
2353 /* If we got here, it means the condition could not be parsed to a valid
2354 bytecode expression and thus can't be evaluated on the target's side.
2355 It's no use iterating through the conditions. */
2356 }
2357
2358 /* We have a valid agent expression. */
2359 return aexpr;
2360 }
2361
2362 /* Based on location BL, create a list of breakpoint conditions to be
2363 passed on to the target. If we have duplicated locations with different
2364 conditions, we will add such conditions to the list. The idea is that the
2365 target will evaluate the list of conditions and will only notify GDB when
2366 one of them is true. */
2367
2368 static void
2369 build_target_condition_list (struct bp_location *bl)
2370 {
2371 bool null_condition_or_parse_error = false;
2372 int modified = bl->needs_update;
2373
2374 /* Release conditions left over from a previous insert. */
2375 bl->target_info.conditions.clear ();
2376
2377 /* This is only meaningful if the target is
2378 evaluating conditions and if the user has
2379 opted for condition evaluation on the target's
2380 side. */
2381 if (gdb_evaluates_breakpoint_condition_p ()
2382 || !target_supports_evaluation_of_breakpoint_conditions ())
2383 return;
2384
2385 auto loc_range = all_bp_locations_at_addr (bl->address);
2386
2387 /* Do a first pass to check for locations with no assigned
2388 conditions or conditions that fail to parse to a valid agent
2389 expression bytecode. If any of these happen, then it's no use to
2390 send conditions to the target since this location will always
2391 trigger and generate a response back to GDB. Note we consider
2392 all locations at the same address irrespective of type, i.e.,
2393 even if the locations aren't considered duplicates (e.g.,
2394 software breakpoint and hardware breakpoint at the same
2395 address). */
2396 for (bp_location *loc : loc_range)
2397 {
2398 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2399 {
2400 if (modified)
2401 {
2402 /* Re-parse the conditions since something changed. In that
2403 case we already freed the condition bytecodes (see
2404 force_breakpoint_reinsertion). We just
2405 need to parse the condition to bytecodes again. */
2406 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2407 loc->cond.get ());
2408 }
2409
2410 /* If we have a NULL bytecode expression, it means something
2411 went wrong or we have a null condition expression. */
2412 if (!loc->cond_bytecode)
2413 {
2414 null_condition_or_parse_error = true;
2415 break;
2416 }
2417 }
2418 }
2419
2420 /* If any of these happened, it means we will have to evaluate the conditions
2421 for the location's address on gdb's side. It is no use keeping bytecodes
2422 for all the other duplicate locations, thus we free all of them here.
2423
2424 This is so we have a finer control over which locations' conditions are
2425 being evaluated by GDB or the remote stub. */
2426 if (null_condition_or_parse_error)
2427 {
2428 for (bp_location *loc : loc_range)
2429 {
2430 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2431 {
2432 /* Only go as far as the first NULL bytecode is
2433 located. */
2434 if (!loc->cond_bytecode)
2435 return;
2436
2437 loc->cond_bytecode.reset ();
2438 }
2439 }
2440 }
2441
2442 /* No NULL conditions or failed bytecode generation. Build a
2443 condition list for this location's address. If we have software
2444 and hardware locations at the same address, they aren't
2445 considered duplicates, but we still marge all the conditions
2446 anyway, as it's simpler, and doesn't really make a practical
2447 difference. */
2448 for (bp_location *loc : loc_range)
2449 if (loc->cond
2450 && is_breakpoint (loc->owner)
2451 && loc->pspace->num == bl->pspace->num
2452 && loc->owner->enable_state == bp_enabled
2453 && loc->enabled
2454 && !loc->disabled_by_cond)
2455 {
2456 /* Add the condition to the vector. This will be used later
2457 to send the conditions to the target. */
2458 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2459 }
2460
2461 return;
2462 }
2463
2464 /* Parses a command described by string CMD into an agent expression
2465 bytecode suitable for evaluation by the bytecode interpreter.
2466 Return NULL if there was any error during parsing. */
2467
2468 static agent_expr_up
2469 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2470 {
2471 const char *cmdrest;
2472 const char *format_start, *format_end;
2473 struct gdbarch *gdbarch = get_current_arch ();
2474
2475 if (cmd == NULL)
2476 return NULL;
2477
2478 cmdrest = cmd;
2479
2480 if (*cmdrest == ',')
2481 ++cmdrest;
2482 cmdrest = skip_spaces (cmdrest);
2483
2484 if (*cmdrest++ != '"')
2485 error (_("No format string following the location"));
2486
2487 format_start = cmdrest;
2488
2489 format_pieces fpieces (&cmdrest);
2490
2491 format_end = cmdrest;
2492
2493 if (*cmdrest++ != '"')
2494 error (_("Bad format string, non-terminated '\"'."));
2495
2496 cmdrest = skip_spaces (cmdrest);
2497
2498 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2499 error (_("Invalid argument syntax"));
2500
2501 if (*cmdrest == ',')
2502 cmdrest++;
2503 cmdrest = skip_spaces (cmdrest);
2504
2505 /* For each argument, make an expression. */
2506
2507 std::vector<struct expression *> argvec;
2508 while (*cmdrest != '\0')
2509 {
2510 const char *cmd1;
2511
2512 cmd1 = cmdrest;
2513 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2514 argvec.push_back (expr.release ());
2515 cmdrest = cmd1;
2516 if (*cmdrest == ',')
2517 ++cmdrest;
2518 }
2519
2520 agent_expr_up aexpr;
2521
2522 /* We don't want to stop processing, so catch any errors
2523 that may show up. */
2524 try
2525 {
2526 aexpr = gen_printf (scope, gdbarch, 0, 0,
2527 format_start, format_end - format_start,
2528 argvec.size (), argvec.data ());
2529 }
2530 catch (const gdb_exception_error &ex)
2531 {
2532 /* If we got here, it means the command could not be parsed to a valid
2533 bytecode expression and thus can't be evaluated on the target's side.
2534 It's no use iterating through the other commands. */
2535 }
2536
2537 /* We have a valid agent expression, return it. */
2538 return aexpr;
2539 }
2540
2541 /* Based on location BL, create a list of breakpoint commands to be
2542 passed on to the target. If we have duplicated locations with
2543 different commands, we will add any such to the list. */
2544
2545 static void
2546 build_target_command_list (struct bp_location *bl)
2547 {
2548 bool null_command_or_parse_error = false;
2549 int modified = bl->needs_update;
2550
2551 /* Clear commands left over from a previous insert. */
2552 bl->target_info.tcommands.clear ();
2553
2554 if (!target_can_run_breakpoint_commands ())
2555 return;
2556
2557 /* For now, limit to agent-style dprintf breakpoints. */
2558 if (dprintf_style != dprintf_style_agent)
2559 return;
2560
2561 auto loc_range = all_bp_locations_at_addr (bl->address);
2562
2563 /* For now, if we have any location at the same address that isn't a
2564 dprintf, don't install the target-side commands, as that would
2565 make the breakpoint not be reported to the core, and we'd lose
2566 control. */
2567 for (bp_location *loc : loc_range)
2568 if (is_breakpoint (loc->owner)
2569 && loc->pspace->num == bl->pspace->num
2570 && loc->owner->type != bp_dprintf)
2571 return;
2572
2573 /* Do a first pass to check for locations with no assigned
2574 conditions or conditions that fail to parse to a valid agent expression
2575 bytecode. If any of these happen, then it's no use to send conditions
2576 to the target since this location will always trigger and generate a
2577 response back to GDB. */
2578 for (bp_location *loc : loc_range)
2579 {
2580 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2581 {
2582 if (modified)
2583 {
2584 /* Re-parse the commands since something changed. In that
2585 case we already freed the command bytecodes (see
2586 force_breakpoint_reinsertion). We just
2587 need to parse the command to bytecodes again. */
2588 loc->cmd_bytecode
2589 = parse_cmd_to_aexpr (bl->address,
2590 loc->owner->extra_string.get ());
2591 }
2592
2593 /* If we have a NULL bytecode expression, it means something
2594 went wrong or we have a null command expression. */
2595 if (!loc->cmd_bytecode)
2596 {
2597 null_command_or_parse_error = true;
2598 break;
2599 }
2600 }
2601 }
2602
2603 /* If anything failed, then we're not doing target-side commands,
2604 and so clean up. */
2605 if (null_command_or_parse_error)
2606 {
2607 for (bp_location *loc : loc_range)
2608 if (is_breakpoint (loc->owner)
2609 && loc->pspace->num == bl->pspace->num)
2610 {
2611 /* Only go as far as the first NULL bytecode is
2612 located. */
2613 if (loc->cmd_bytecode == NULL)
2614 return;
2615
2616 loc->cmd_bytecode.reset ();
2617 }
2618 }
2619
2620 /* No NULL commands or failed bytecode generation. Build a command
2621 list for all duplicate locations at this location's address.
2622 Note that here we must care for whether the breakpoint location
2623 types are considered duplicates, otherwise, say, if we have a
2624 software and hardware location at the same address, the target
2625 could end up running the commands twice. For the moment, we only
2626 support targets-side commands with dprintf, but it doesn't hurt
2627 to be pedantically correct in case that changes. */
2628 for (bp_location *loc : loc_range)
2629 if (breakpoint_locations_match (bl, loc)
2630 && loc->owner->extra_string
2631 && is_breakpoint (loc->owner)
2632 && loc->pspace->num == bl->pspace->num
2633 && loc->owner->enable_state == bp_enabled
2634 && loc->enabled
2635 && !loc->disabled_by_cond)
2636 {
2637 /* Add the command to the vector. This will be used later
2638 to send the commands to the target. */
2639 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2640 }
2641
2642 bl->target_info.persist = 0;
2643 /* Maybe flag this location as persistent. */
2644 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2645 bl->target_info.persist = 1;
2646 }
2647
2648 /* Return the kind of breakpoint on address *ADDR. Get the kind
2649 of breakpoint according to ADDR except single-step breakpoint.
2650 Get the kind of single-step breakpoint according to the current
2651 registers state. */
2652
2653 static int
2654 breakpoint_kind (const struct bp_location *bl, CORE_ADDR *addr)
2655 {
2656 if (bl->owner->type == bp_single_step)
2657 {
2658 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2659 struct regcache *regcache;
2660
2661 regcache = get_thread_regcache (thr);
2662
2663 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2664 regcache, addr);
2665 }
2666 else
2667 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2668 }
2669
2670 /* Rethrow the currently handled exception, if it's a TARGET_CLOSE_ERROR.
2671 E is either the currently handled exception, or a copy, or a sliced copy,
2672 so we can't rethrow that one, but we can use it to inspect the properties
2673 of the currently handled exception. */
2674
2675 static void
2676 rethrow_on_target_close_error (const gdb_exception &e)
2677 {
2678 if (e.reason == 0)
2679 return;
2680 /* Can't set the breakpoint. */
2681
2682 if (e.error != TARGET_CLOSE_ERROR)
2683 return;
2684
2685 /* If the target has closed then it will have deleted any breakpoints
2686 inserted within the target inferior, as a result any further attempts
2687 to interact with the breakpoint objects is not possible. Just rethrow
2688 the error. Don't use e to rethrow, to prevent object slicing of the
2689 exception. */
2690 throw;
2691 }
2692
2693 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2694 location. Any error messages are printed to TMP_ERROR_STREAM; and
2695 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2696 Returns 0 for success, 1 if the bp_location type is not supported or
2697 -1 for failure.
2698
2699 NOTE drow/2003-09-09: This routine could be broken down to an
2700 object-style method for each breakpoint or catchpoint type. */
2701 static int
2702 insert_bp_location (struct bp_location *bl,
2703 struct ui_file *tmp_error_stream,
2704 int *disabled_breaks,
2705 int *hw_breakpoint_error,
2706 int *hw_bp_error_explained_already)
2707 {
2708 gdb_exception bp_excpt;
2709
2710 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2711 return 0;
2712
2713 /* Note we don't initialize bl->target_info, as that wipes out
2714 the breakpoint location's shadow_contents if the breakpoint
2715 is still inserted at that location. This in turn breaks
2716 target_read_memory which depends on these buffers when
2717 a memory read is requested at the breakpoint location:
2718 Once the target_info has been wiped, we fail to see that
2719 we have a breakpoint inserted at that address and thus
2720 read the breakpoint instead of returning the data saved in
2721 the breakpoint location's shadow contents. */
2722 bl->target_info.reqstd_address = bl->address;
2723 bl->target_info.placed_address_space = bl->pspace->aspace;
2724 bl->target_info.length = bl->length;
2725
2726 /* When working with target-side conditions, we must pass all the conditions
2727 for the same breakpoint address down to the target since GDB will not
2728 insert those locations. With a list of breakpoint conditions, the target
2729 can decide when to stop and notify GDB. */
2730
2731 if (is_breakpoint (bl->owner))
2732 {
2733 build_target_condition_list (bl);
2734 build_target_command_list (bl);
2735 /* Reset the modification marker. */
2736 bl->needs_update = 0;
2737 }
2738
2739 /* If "set breakpoint auto-hw" is "on" and a software breakpoint was
2740 set at a read-only address, then a breakpoint location will have
2741 been changed to hardware breakpoint before we get here. If it is
2742 "off" however, error out before actually trying to insert the
2743 breakpoint, with a nicer error message. */
2744 if (bl->loc_type == bp_loc_software_breakpoint
2745 && !automatic_hardware_breakpoints)
2746 {
2747 mem_region *mr = lookup_mem_region (bl->address);
2748
2749 if (mr != nullptr && mr->attrib.mode != MEM_RW)
2750 {
2751 gdb_printf (tmp_error_stream,
2752 _("Cannot insert breakpoint %d.\n"
2753 "Cannot set software breakpoint "
2754 "at read-only address %s\n"),
2755 bl->owner->number,
2756 paddress (bl->gdbarch, bl->address));
2757 return 1;
2758 }
2759 }
2760
2761 if (bl->loc_type == bp_loc_software_breakpoint
2762 || bl->loc_type == bp_loc_hardware_breakpoint)
2763 {
2764 /* First check to see if we have to handle an overlay. */
2765 if (overlay_debugging == ovly_off
2766 || bl->section == NULL
2767 || !(section_is_overlay (bl->section)))
2768 {
2769 /* No overlay handling: just set the breakpoint. */
2770 try
2771 {
2772 int val;
2773
2774 val = bl->owner->insert_location (bl);
2775 if (val)
2776 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2777 }
2778 catch (gdb_exception &e)
2779 {
2780 rethrow_on_target_close_error (e);
2781 bp_excpt = std::move (e);
2782 }
2783 }
2784 else
2785 {
2786 /* This breakpoint is in an overlay section.
2787 Shall we set a breakpoint at the LMA? */
2788 if (!overlay_events_enabled)
2789 {
2790 /* Yes -- overlay event support is not active,
2791 so we must try to set a breakpoint at the LMA.
2792 This will not work for a hardware breakpoint. */
2793 if (bl->loc_type == bp_loc_hardware_breakpoint)
2794 warning (_("hardware breakpoint %d not supported in overlay!"),
2795 bl->owner->number);
2796 else
2797 {
2798 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2799 bl->section);
2800 /* Set a software (trap) breakpoint at the LMA. */
2801 bl->overlay_target_info = bl->target_info;
2802 bl->overlay_target_info.reqstd_address = addr;
2803
2804 /* No overlay handling: just set the breakpoint. */
2805 try
2806 {
2807 int val;
2808
2809 bl->overlay_target_info.kind
2810 = breakpoint_kind (bl, &addr);
2811 bl->overlay_target_info.placed_address = addr;
2812 val = target_insert_breakpoint (bl->gdbarch,
2813 &bl->overlay_target_info);
2814 if (val)
2815 bp_excpt
2816 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2817 }
2818 catch (gdb_exception &e)
2819 {
2820 rethrow_on_target_close_error (e);
2821 bp_excpt = std::move (e);
2822 }
2823
2824 if (bp_excpt.reason != 0)
2825 gdb_printf (tmp_error_stream,
2826 "Overlay breakpoint %d "
2827 "failed: in ROM?\n",
2828 bl->owner->number);
2829 }
2830 }
2831 /* Shall we set a breakpoint at the VMA? */
2832 if (section_is_mapped (bl->section))
2833 {
2834 /* Yes. This overlay section is mapped into memory. */
2835 try
2836 {
2837 int val;
2838
2839 val = bl->owner->insert_location (bl);
2840 if (val)
2841 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2842 }
2843 catch (gdb_exception &e)
2844 {
2845 rethrow_on_target_close_error (e);
2846 bp_excpt = std::move (e);
2847 }
2848 }
2849 else
2850 {
2851 /* No. This breakpoint will not be inserted.
2852 No error, but do not mark the bp as 'inserted'. */
2853 return 0;
2854 }
2855 }
2856
2857 if (bp_excpt.reason != 0)
2858 {
2859 /* Can't set the breakpoint. */
2860 gdb_assert (bl->owner != nullptr);
2861
2862 /* In some cases, we might not be able to insert a
2863 breakpoint in a shared library that has already been
2864 removed, but we have not yet processed the shlib unload
2865 event. Unfortunately, some targets that implement
2866 breakpoint insertion themselves can't tell why the
2867 breakpoint insertion failed (e.g., the remote target
2868 doesn't define error codes), so we must treat generic
2869 errors as memory errors. */
2870 if (bp_excpt.reason == RETURN_ERROR
2871 && (bp_excpt.error == GENERIC_ERROR
2872 || bp_excpt.error == MEMORY_ERROR)
2873 && bl->loc_type == bp_loc_software_breakpoint
2874 && (solib_name_from_address (bl->pspace, bl->address)
2875 || shared_objfile_contains_address_p (bl->pspace,
2876 bl->address)))
2877 {
2878 /* See also: disable_breakpoints_in_shlibs. */
2879 bl->shlib_disabled = 1;
2880 gdb::observers::breakpoint_modified.notify (bl->owner);
2881 if (!*disabled_breaks)
2882 {
2883 gdb_printf (tmp_error_stream,
2884 "Cannot insert breakpoint %d.\n",
2885 bl->owner->number);
2886 gdb_printf (tmp_error_stream,
2887 "Temporarily disabling shared "
2888 "library breakpoints:\n");
2889 }
2890 *disabled_breaks = 1;
2891 gdb_printf (tmp_error_stream,
2892 "breakpoint #%d\n", bl->owner->number);
2893 return 0;
2894 }
2895 else
2896 {
2897 if (bl->loc_type == bp_loc_hardware_breakpoint)
2898 {
2899 *hw_breakpoint_error = 1;
2900 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2901 gdb_printf (tmp_error_stream,
2902 "Cannot insert hardware breakpoint %d%s",
2903 bl->owner->number,
2904 bp_excpt.message ? ":" : ".\n");
2905 if (bp_excpt.message != NULL)
2906 gdb_printf (tmp_error_stream, "%s.\n",
2907 bp_excpt.what ());
2908 }
2909 else
2910 {
2911 if (bp_excpt.message == NULL)
2912 {
2913 std::string message
2914 = memory_error_message (TARGET_XFER_E_IO,
2915 bl->gdbarch, bl->address);
2916
2917 gdb_printf (tmp_error_stream,
2918 "Cannot insert breakpoint %d.\n"
2919 "%s\n",
2920 bl->owner->number, message.c_str ());
2921 }
2922 else
2923 {
2924 gdb_printf (tmp_error_stream,
2925 "Cannot insert breakpoint %d: %s\n",
2926 bl->owner->number,
2927 bp_excpt.what ());
2928 }
2929 }
2930 return 1;
2931
2932 }
2933 }
2934 else
2935 bl->inserted = 1;
2936
2937 return 0;
2938 }
2939
2940 else if (bl->loc_type == bp_loc_hardware_watchpoint
2941 /* NOTE drow/2003-09-08: This state only exists for removing
2942 watchpoints. It's not clear that it's necessary... */
2943 && bl->owner->disposition != disp_del_at_next_stop)
2944 {
2945 int val;
2946
2947 val = bl->owner->insert_location (bl);
2948
2949 /* If trying to set a read-watchpoint, and it turns out it's not
2950 supported, try emulating one with an access watchpoint. */
2951 if (val == 1 && bl->watchpoint_type == hw_read)
2952 {
2953 /* But don't try to insert it, if there's already another
2954 hw_access location that would be considered a duplicate
2955 of this one. */
2956 for (bp_location *loc : all_bp_locations ())
2957 if (loc != bl
2958 && loc->watchpoint_type == hw_access
2959 && watchpoint_locations_match (bl, loc))
2960 {
2961 bl->duplicate = 1;
2962 bl->inserted = 1;
2963 bl->target_info = loc->target_info;
2964 bl->watchpoint_type = hw_access;
2965 val = 0;
2966 break;
2967 }
2968
2969 if (val == 1)
2970 {
2971 bl->watchpoint_type = hw_access;
2972 val = bl->owner->insert_location (bl);
2973
2974 if (val)
2975 /* Back to the original value. */
2976 bl->watchpoint_type = hw_read;
2977 }
2978 }
2979
2980 bl->inserted = (val == 0);
2981 }
2982
2983 else if (bl->owner->type == bp_catchpoint)
2984 {
2985 int val;
2986
2987 val = bl->owner->insert_location (bl);
2988 if (val)
2989 {
2990 bl->owner->enable_state = bp_disabled;
2991
2992 if (val == 1)
2993 warning (_("\
2994 Error inserting catchpoint %d: Your system does not support this type\n\
2995 of catchpoint."), bl->owner->number);
2996 else
2997 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2998 }
2999
3000 bl->inserted = (val == 0);
3001
3002 /* We've already printed an error message if there was a problem
3003 inserting this catchpoint, and we've disabled the catchpoint,
3004 so just return success. */
3005 return 0;
3006 }
3007
3008 return 0;
3009 }
3010
3011 /* This function is called when program space PSPACE is about to be
3012 deleted. It takes care of updating breakpoints to not reference
3013 PSPACE anymore. */
3014
3015 void
3016 breakpoint_program_space_exit (struct program_space *pspace)
3017 {
3018 /* Remove any breakpoint that was set through this program space. */
3019 for (breakpoint *b : all_breakpoints_safe ())
3020 if (b->pspace == pspace)
3021 delete_breakpoint (b);
3022
3023 /* Breakpoints set through other program spaces could have locations
3024 bound to PSPACE as well. Remove those. */
3025 for (bp_location *loc : all_bp_locations ())
3026 {
3027 struct bp_location *tmp;
3028
3029 if (loc->pspace == pspace)
3030 {
3031 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
3032 if (loc->owner->loc == loc)
3033 loc->owner->loc = loc->next;
3034 else
3035 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
3036 if (tmp->next == loc)
3037 {
3038 tmp->next = loc->next;
3039 break;
3040 }
3041 }
3042 }
3043
3044 /* Now update the global location list to permanently delete the
3045 removed locations above. */
3046 update_global_location_list (UGLL_DONT_INSERT);
3047 }
3048
3049 /* Make sure all breakpoints are inserted in inferior.
3050 Throws exception on any error.
3051 A breakpoint that is already inserted won't be inserted
3052 again, so calling this function twice is safe. */
3053 void
3054 insert_breakpoints (void)
3055 {
3056 for (breakpoint *bpt : all_breakpoints ())
3057 if (is_hardware_watchpoint (bpt))
3058 {
3059 struct watchpoint *w = (struct watchpoint *) bpt;
3060
3061 update_watchpoint (w, false /* don't reparse. */);
3062 }
3063
3064 /* Updating watchpoints creates new locations, so update the global
3065 location list. Explicitly tell ugll to insert locations and
3066 ignore breakpoints_always_inserted_mode. Also,
3067 update_global_location_list tries to "upgrade" software
3068 breakpoints to hardware breakpoints to handle "set breakpoint
3069 auto-hw", so we need to call it even if we don't have new
3070 locations. */
3071 update_global_location_list (UGLL_INSERT);
3072 }
3073
3074 /* This is used when we need to synch breakpoint conditions between GDB and the
3075 target. It is the case with deleting and disabling of breakpoints when using
3076 always-inserted mode. */
3077
3078 static void
3079 update_inserted_breakpoint_locations (void)
3080 {
3081 int error_flag = 0;
3082 int val = 0;
3083 int disabled_breaks = 0;
3084 int hw_breakpoint_error = 0;
3085 int hw_bp_details_reported = 0;
3086
3087 string_file tmp_error_stream;
3088
3089 /* Explicitly mark the warning -- this will only be printed if
3090 there was an error. */
3091 tmp_error_stream.puts ("Warning:\n");
3092
3093 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3094
3095 for (bp_location *bl : all_bp_locations ())
3096 {
3097 /* We only want to update software breakpoints and hardware
3098 breakpoints. */
3099 if (!is_breakpoint (bl->owner))
3100 continue;
3101
3102 /* We only want to update locations that are already inserted
3103 and need updating. This is to avoid unwanted insertion during
3104 deletion of breakpoints. */
3105 if (!bl->inserted || !bl->needs_update)
3106 continue;
3107
3108 switch_to_program_space_and_thread (bl->pspace);
3109
3110 /* For targets that support global breakpoints, there's no need
3111 to select an inferior to insert breakpoint to. In fact, even
3112 if we aren't attached to any process yet, we should still
3113 insert breakpoints. */
3114 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3115 && (inferior_ptid == null_ptid || !target_has_execution ()))
3116 continue;
3117
3118 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3119 &hw_breakpoint_error, &hw_bp_details_reported);
3120 if (val)
3121 error_flag = val;
3122 }
3123
3124 if (error_flag)
3125 {
3126 target_terminal::ours_for_output ();
3127 error_stream (tmp_error_stream);
3128 }
3129 }
3130
3131 /* Used when starting or continuing the program. */
3132
3133 static void
3134 insert_breakpoint_locations (void)
3135 {
3136 int error_flag = 0;
3137 int val = 0;
3138 int disabled_breaks = 0;
3139 int hw_breakpoint_error = 0;
3140 int hw_bp_error_explained_already = 0;
3141
3142 string_file tmp_error_stream;
3143
3144 /* Explicitly mark the warning -- this will only be printed if
3145 there was an error. */
3146 tmp_error_stream.puts ("Warning:\n");
3147
3148 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3149
3150 for (bp_location *bl : all_bp_locations ())
3151 {
3152 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
3153 continue;
3154
3155 /* There is no point inserting thread-specific breakpoints if
3156 the thread no longer exists. ALL_BP_LOCATIONS bp_location
3157 has BL->OWNER always non-NULL. */
3158 if (bl->owner->thread != -1
3159 && !valid_global_thread_id (bl->owner->thread))
3160 continue;
3161
3162 switch_to_program_space_and_thread (bl->pspace);
3163
3164 /* For targets that support global breakpoints, there's no need
3165 to select an inferior to insert breakpoint to. In fact, even
3166 if we aren't attached to any process yet, we should still
3167 insert breakpoints. */
3168 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
3169 && (inferior_ptid == null_ptid || !target_has_execution ()))
3170 continue;
3171
3172 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
3173 &hw_breakpoint_error, &hw_bp_error_explained_already);
3174 if (val)
3175 error_flag = val;
3176 }
3177
3178 /* If we failed to insert all locations of a watchpoint, remove
3179 them, as half-inserted watchpoint is of limited use. */
3180 for (breakpoint *bpt : all_breakpoints ())
3181 {
3182 bool some_failed = false;
3183
3184 if (!is_hardware_watchpoint (bpt))
3185 continue;
3186
3187 if (!breakpoint_enabled (bpt))
3188 continue;
3189
3190 if (bpt->disposition == disp_del_at_next_stop)
3191 continue;
3192
3193 for (bp_location *loc : bpt->locations ())
3194 if (!loc->inserted && should_be_inserted (loc))
3195 {
3196 some_failed = true;
3197 break;
3198 }
3199
3200 if (some_failed)
3201 {
3202 for (bp_location *loc : bpt->locations ())
3203 if (loc->inserted)
3204 remove_breakpoint (loc);
3205
3206 hw_breakpoint_error = 1;
3207 tmp_error_stream.printf ("Could not insert "
3208 "hardware watchpoint %d.\n",
3209 bpt->number);
3210 error_flag = -1;
3211 }
3212 }
3213
3214 if (error_flag)
3215 {
3216 /* If a hardware breakpoint or watchpoint was inserted, add a
3217 message about possibly exhausted resources. */
3218 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3219 {
3220 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3221 You may have requested too many hardware breakpoints/watchpoints.\n");
3222 }
3223 target_terminal::ours_for_output ();
3224 error_stream (tmp_error_stream);
3225 }
3226 }
3227
3228 /* Used when the program stops.
3229 Returns zero if successful, or non-zero if there was a problem
3230 removing a breakpoint location. */
3231
3232 int
3233 remove_breakpoints (void)
3234 {
3235 int val = 0;
3236
3237 for (bp_location *bl : all_bp_locations ())
3238 if (bl->inserted && !is_tracepoint (bl->owner))
3239 val |= remove_breakpoint (bl);
3240
3241 return val;
3242 }
3243
3244 /* When a thread exits, remove breakpoints that are related to
3245 that thread. */
3246
3247 static void
3248 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3249 {
3250 for (breakpoint *b : all_breakpoints_safe ())
3251 {
3252 if (b->thread == tp->global_num && user_breakpoint_p (b))
3253 {
3254 b->disposition = disp_del_at_next_stop;
3255
3256 gdb_printf (_("\
3257 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3258 b->number, print_thread_id (tp));
3259
3260 /* Hide it from the user. */
3261 b->number = 0;
3262 }
3263 }
3264 }
3265
3266 /* See breakpoint.h. */
3267
3268 void
3269 remove_breakpoints_inf (inferior *inf)
3270 {
3271 int val;
3272
3273 for (bp_location *bl : all_bp_locations ())
3274 {
3275 if (bl->pspace != inf->pspace)
3276 continue;
3277
3278 if (bl->inserted && !bl->target_info.persist)
3279 {
3280 val = remove_breakpoint (bl);
3281 if (val != 0)
3282 return;
3283 }
3284 }
3285 }
3286
3287 static int internal_breakpoint_number = -1;
3288
3289 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3290 If INTERNAL is non-zero, the breakpoint number will be populated
3291 from internal_breakpoint_number and that variable decremented.
3292 Otherwise the breakpoint number will be populated from
3293 breakpoint_count and that value incremented. Internal breakpoints
3294 do not set the internal var bpnum. */
3295 static void
3296 set_breakpoint_number (int internal, struct breakpoint *b)
3297 {
3298 if (internal)
3299 b->number = internal_breakpoint_number--;
3300 else
3301 {
3302 set_breakpoint_count (breakpoint_count + 1);
3303 b->number = breakpoint_count;
3304 }
3305 }
3306
3307 /* Create a TYPE breakpoint on ADDRESS from an object file with GDBARCH. */
3308
3309 static struct breakpoint *
3310 create_internal_breakpoint (struct gdbarch *gdbarch,
3311 CORE_ADDR address, enum bptype type)
3312 {
3313 std::unique_ptr<internal_breakpoint> b
3314 (new internal_breakpoint (gdbarch, type, address));
3315
3316 b->number = internal_breakpoint_number--;
3317
3318 return add_to_breakpoint_chain (std::move (b));
3319 }
3320
3321 /* Create a TYPE breakpoint on minimal symbol MSYM from an object file with
3322 GDBARCH. */
3323
3324 static struct breakpoint *
3325 create_internal_breakpoint (struct gdbarch *gdbarch,
3326 struct bound_minimal_symbol &msym, enum bptype type)
3327 {
3328 CORE_ADDR address;
3329
3330 address = msym.value_address ();
3331
3332 address = gdbarch_convert_from_func_ptr_addr
3333 (gdbarch, address, current_inferior ()->top_target ());
3334
3335 /* Note that we're not using gdbarch_addr_bits_remove here, because that's
3336 related to addresses in $pc. We're getting the address from the
3337 minimal symbol table. */
3338
3339 /* Is gdbarch_deprecated_function_start_offset needed here? Or is that dealt
3340 with elsewhere? Needs testing on vax. */
3341
3342 if (gdbarch_skip_entrypoint_p (gdbarch))
3343 address = gdbarch_skip_entrypoint (gdbarch, address);
3344
3345 return create_internal_breakpoint (gdbarch, address, type);
3346 }
3347
3348 static const char *const longjmp_names[] =
3349 {
3350 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3351 };
3352 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3353
3354 /* Per-objfile data private to breakpoint.c. */
3355 struct breakpoint_objfile_data
3356 {
3357 /* Minimal symbol for "_ovly_debug_event" (if any). */
3358 struct bound_minimal_symbol overlay_msym;
3359
3360 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3361 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES];
3362
3363 /* True if we have looked for longjmp probes. */
3364 int longjmp_searched = 0;
3365
3366 /* SystemTap probe points for longjmp (if any). These are non-owning
3367 references. */
3368 std::vector<probe *> longjmp_probes;
3369
3370 /* Minimal symbol for "std::terminate()" (if any). */
3371 struct bound_minimal_symbol terminate_msym;
3372
3373 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3374 struct bound_minimal_symbol exception_msym;
3375
3376 /* True if we have looked for exception probes. */
3377 int exception_searched = 0;
3378
3379 /* SystemTap probe points for unwinding (if any). These are non-owning
3380 references. */
3381 std::vector<probe *> exception_probes;
3382 };
3383
3384 static const registry<objfile>::key<breakpoint_objfile_data>
3385 breakpoint_objfile_key;
3386
3387 /* Minimal symbol not found sentinel. */
3388 static struct minimal_symbol msym_not_found;
3389
3390 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3391
3392 static bool
3393 msym_not_found_p (const struct minimal_symbol *msym)
3394 {
3395 return msym == &msym_not_found;
3396 }
3397
3398 /* Return per-objfile data needed by breakpoint.c.
3399 Allocate the data if necessary. */
3400
3401 static struct breakpoint_objfile_data *
3402 get_breakpoint_objfile_data (struct objfile *objfile)
3403 {
3404 struct breakpoint_objfile_data *bp_objfile_data;
3405
3406 bp_objfile_data = breakpoint_objfile_key.get (objfile);
3407 if (bp_objfile_data == NULL)
3408 bp_objfile_data = breakpoint_objfile_key.emplace (objfile);
3409 return bp_objfile_data;
3410 }
3411
3412 static void
3413 create_overlay_event_breakpoint (void)
3414 {
3415 const char *const func_name = "_ovly_debug_event";
3416
3417 for (objfile *objfile : current_program_space->objfiles ())
3418 {
3419 struct breakpoint *b;
3420 struct breakpoint_objfile_data *bp_objfile_data;
3421 CORE_ADDR addr;
3422
3423 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3424
3425 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3426 continue;
3427
3428 if (bp_objfile_data->overlay_msym.minsym == NULL)
3429 {
3430 struct bound_minimal_symbol m;
3431
3432 m = lookup_minimal_symbol_text (func_name, objfile);
3433 if (m.minsym == NULL)
3434 {
3435 /* Avoid future lookups in this objfile. */
3436 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3437 continue;
3438 }
3439 bp_objfile_data->overlay_msym = m;
3440 }
3441
3442 addr = bp_objfile_data->overlay_msym.value_address ();
3443 b = create_internal_breakpoint (objfile->arch (), addr,
3444 bp_overlay_event);
3445 b->locspec = new_explicit_location_spec_function (func_name);
3446
3447 if (overlay_debugging == ovly_auto)
3448 {
3449 b->enable_state = bp_enabled;
3450 overlay_events_enabled = 1;
3451 }
3452 else
3453 {
3454 b->enable_state = bp_disabled;
3455 overlay_events_enabled = 0;
3456 }
3457 }
3458 }
3459
3460 /* Install a master longjmp breakpoint for OBJFILE using a probe. Return
3461 true if a breakpoint was installed. */
3462
3463 static bool
3464 create_longjmp_master_breakpoint_probe (objfile *objfile)
3465 {
3466 struct gdbarch *gdbarch = objfile->arch ();
3467 struct breakpoint_objfile_data *bp_objfile_data
3468 = get_breakpoint_objfile_data (objfile);
3469
3470 if (!bp_objfile_data->longjmp_searched)
3471 {
3472 std::vector<probe *> ret
3473 = find_probes_in_objfile (objfile, "libc", "longjmp");
3474
3475 if (!ret.empty ())
3476 {
3477 /* We are only interested in checking one element. */
3478 probe *p = ret[0];
3479
3480 if (!p->can_evaluate_arguments ())
3481 {
3482 /* We cannot use the probe interface here,
3483 because it does not know how to evaluate
3484 arguments. */
3485 ret.clear ();
3486 }
3487 }
3488 bp_objfile_data->longjmp_probes = ret;
3489 bp_objfile_data->longjmp_searched = 1;
3490 }
3491
3492 if (bp_objfile_data->longjmp_probes.empty ())
3493 return false;
3494
3495 for (probe *p : bp_objfile_data->longjmp_probes)
3496 {
3497 struct breakpoint *b;
3498
3499 b = create_internal_breakpoint (gdbarch,
3500 p->get_relocated_address (objfile),
3501 bp_longjmp_master);
3502 b->locspec = new_probe_location_spec ("-probe-stap libc:longjmp");
3503 b->enable_state = bp_disabled;
3504 }
3505
3506 return true;
3507 }
3508
3509 /* Install master longjmp breakpoints for OBJFILE using longjmp_names.
3510 Return true if at least one breakpoint was installed. */
3511
3512 static bool
3513 create_longjmp_master_breakpoint_names (objfile *objfile)
3514 {
3515 struct gdbarch *gdbarch = objfile->arch ();
3516 if (!gdbarch_get_longjmp_target_p (gdbarch))
3517 return false;
3518
3519 struct breakpoint_objfile_data *bp_objfile_data
3520 = get_breakpoint_objfile_data (objfile);
3521 unsigned int installed_bp = 0;
3522
3523 for (int i = 0; i < NUM_LONGJMP_NAMES; i++)
3524 {
3525 struct breakpoint *b;
3526 const char *func_name;
3527 CORE_ADDR addr;
3528
3529 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3530 continue;
3531
3532 func_name = longjmp_names[i];
3533 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3534 {
3535 struct bound_minimal_symbol m;
3536
3537 m = lookup_minimal_symbol_text (func_name, objfile);
3538 if (m.minsym == NULL)
3539 {
3540 /* Prevent future lookups in this objfile. */
3541 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3542 continue;
3543 }
3544 bp_objfile_data->longjmp_msym[i] = m;
3545 }
3546
3547 addr = bp_objfile_data->longjmp_msym[i].value_address ();
3548 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master);
3549 b->locspec = new_explicit_location_spec_function (func_name);
3550 b->enable_state = bp_disabled;
3551 installed_bp++;
3552 }
3553
3554 return installed_bp > 0;
3555 }
3556
3557 /* Create a master longjmp breakpoint. */
3558
3559 static void
3560 create_longjmp_master_breakpoint (void)
3561 {
3562 scoped_restore_current_program_space restore_pspace;
3563
3564 for (struct program_space *pspace : program_spaces)
3565 {
3566 set_current_program_space (pspace);
3567
3568 for (objfile *obj : current_program_space->objfiles ())
3569 {
3570 /* Skip separate debug object, it's handled in the loop below. */
3571 if (obj->separate_debug_objfile_backlink != nullptr)
3572 continue;
3573
3574 /* Try a probe kind breakpoint on main objfile. */
3575 if (create_longjmp_master_breakpoint_probe (obj))
3576 continue;
3577
3578 /* Try longjmp_names kind breakpoints on main and separate_debug
3579 objfiles. */
3580 for (objfile *debug_objfile : obj->separate_debug_objfiles ())
3581 if (create_longjmp_master_breakpoint_names (debug_objfile))
3582 break;
3583 }
3584 }
3585 }
3586
3587 /* Create a master std::terminate breakpoint. */
3588 static void
3589 create_std_terminate_master_breakpoint (void)
3590 {
3591 const char *const func_name = "std::terminate()";
3592
3593 scoped_restore_current_program_space restore_pspace;
3594
3595 for (struct program_space *pspace : program_spaces)
3596 {
3597 set_current_program_space (pspace);
3598
3599 for (objfile *objfile : current_program_space->objfiles ())
3600 {
3601 struct breakpoint *b;
3602 struct breakpoint_objfile_data *bp_objfile_data;
3603
3604 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3605
3606 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3607 continue;
3608
3609 if (bp_objfile_data->terminate_msym.minsym == NULL)
3610 {
3611 struct bound_minimal_symbol m;
3612
3613 m = lookup_minimal_symbol (func_name, NULL, objfile);
3614 if (m.minsym == NULL || (m.minsym->type () != mst_text
3615 && m.minsym->type () != mst_file_text))
3616 {
3617 /* Prevent future lookups in this objfile. */
3618 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3619 continue;
3620 }
3621 bp_objfile_data->terminate_msym = m;
3622 }
3623
3624 b = create_internal_breakpoint (objfile->arch (),
3625 bp_objfile_data->terminate_msym,
3626 bp_std_terminate_master);
3627 b->locspec = new_explicit_location_spec_function (func_name);
3628 b->enable_state = bp_disabled;
3629 }
3630 }
3631 }
3632
3633 /* Install a master breakpoint on the unwinder's debug hook for OBJFILE using a
3634 probe. Return true if a breakpoint was installed. */
3635
3636 static bool
3637 create_exception_master_breakpoint_probe (objfile *objfile)
3638 {
3639 struct breakpoint *b;
3640 struct gdbarch *gdbarch;
3641 struct breakpoint_objfile_data *bp_objfile_data;
3642
3643 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3644
3645 /* We prefer the SystemTap probe point if it exists. */
3646 if (!bp_objfile_data->exception_searched)
3647 {
3648 std::vector<probe *> ret
3649 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3650
3651 if (!ret.empty ())
3652 {
3653 /* We are only interested in checking one element. */
3654 probe *p = ret[0];
3655
3656 if (!p->can_evaluate_arguments ())
3657 {
3658 /* We cannot use the probe interface here, because it does
3659 not know how to evaluate arguments. */
3660 ret.clear ();
3661 }
3662 }
3663 bp_objfile_data->exception_probes = ret;
3664 bp_objfile_data->exception_searched = 1;
3665 }
3666
3667 if (bp_objfile_data->exception_probes.empty ())
3668 return false;
3669
3670 gdbarch = objfile->arch ();
3671
3672 for (probe *p : bp_objfile_data->exception_probes)
3673 {
3674 b = create_internal_breakpoint (gdbarch,
3675 p->get_relocated_address (objfile),
3676 bp_exception_master);
3677 b->locspec = new_probe_location_spec ("-probe-stap libgcc:unwind");
3678 b->enable_state = bp_disabled;
3679 }
3680
3681 return true;
3682 }
3683
3684 /* Install a master breakpoint on the unwinder's debug hook for OBJFILE using
3685 _Unwind_DebugHook. Return true if a breakpoint was installed. */
3686
3687 static bool
3688 create_exception_master_breakpoint_hook (objfile *objfile)
3689 {
3690 const char *const func_name = "_Unwind_DebugHook";
3691 struct breakpoint *b;
3692 struct gdbarch *gdbarch;
3693 struct breakpoint_objfile_data *bp_objfile_data;
3694
3695 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3696
3697 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3698 return false;
3699
3700 gdbarch = objfile->arch ();
3701
3702 if (bp_objfile_data->exception_msym.minsym == NULL)
3703 {
3704 struct bound_minimal_symbol debug_hook;
3705
3706 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3707 if (debug_hook.minsym == NULL)
3708 {
3709 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3710 return false;
3711 }
3712
3713 bp_objfile_data->exception_msym = debug_hook;
3714 }
3715
3716 b = create_internal_breakpoint (gdbarch, bp_objfile_data->exception_msym,
3717 bp_exception_master);
3718 b->locspec = new_explicit_location_spec_function (func_name);
3719 b->enable_state = bp_disabled;
3720
3721 return true;
3722 }
3723
3724 /* Install a master breakpoint on the unwinder's debug hook. */
3725
3726 static void
3727 create_exception_master_breakpoint (void)
3728 {
3729 for (objfile *obj : current_program_space->objfiles ())
3730 {
3731 /* Skip separate debug object. */
3732 if (obj->separate_debug_objfile_backlink)
3733 continue;
3734
3735 /* Try a probe kind breakpoint. */
3736 if (create_exception_master_breakpoint_probe (obj))
3737 continue;
3738
3739 /* Iterate over main and separate debug objects and try an
3740 _Unwind_DebugHook kind breakpoint. */
3741 for (objfile *debug_objfile : obj->separate_debug_objfiles ())
3742 if (create_exception_master_breakpoint_hook (debug_objfile))
3743 break;
3744 }
3745 }
3746
3747 /* Does B have a location spec? */
3748
3749 static bool
3750 breakpoint_location_spec_empty_p (const struct breakpoint *b)
3751 {
3752 return (b->locspec != nullptr && b->locspec->empty_p ());
3753 }
3754
3755 void
3756 update_breakpoints_after_exec (void)
3757 {
3758 /* We're about to delete breakpoints from GDB's lists. If the
3759 INSERTED flag is true, GDB will try to lift the breakpoints by
3760 writing the breakpoints' "shadow contents" back into memory. The
3761 "shadow contents" are NOT valid after an exec, so GDB should not
3762 do that. Instead, the target is responsible from marking
3763 breakpoints out as soon as it detects an exec. We don't do that
3764 here instead, because there may be other attempts to delete
3765 breakpoints after detecting an exec and before reaching here. */
3766 for (bp_location *bploc : all_bp_locations ())
3767 if (bploc->pspace == current_program_space)
3768 gdb_assert (!bploc->inserted);
3769
3770 for (breakpoint *b : all_breakpoints_safe ())
3771 {
3772 if (b->pspace != current_program_space)
3773 continue;
3774
3775 /* Solib breakpoints must be explicitly reset after an exec(). */
3776 if (b->type == bp_shlib_event)
3777 {
3778 delete_breakpoint (b);
3779 continue;
3780 }
3781
3782 /* JIT breakpoints must be explicitly reset after an exec(). */
3783 if (b->type == bp_jit_event)
3784 {
3785 delete_breakpoint (b);
3786 continue;
3787 }
3788
3789 /* Thread event breakpoints must be set anew after an exec(),
3790 as must overlay event and longjmp master breakpoints. */
3791 if (b->type == bp_thread_event || b->type == bp_overlay_event
3792 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3793 || b->type == bp_exception_master)
3794 {
3795 delete_breakpoint (b);
3796 continue;
3797 }
3798
3799 /* Step-resume breakpoints are meaningless after an exec(). */
3800 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3801 {
3802 delete_breakpoint (b);
3803 continue;
3804 }
3805
3806 /* Just like single-step breakpoints. */
3807 if (b->type == bp_single_step)
3808 {
3809 delete_breakpoint (b);
3810 continue;
3811 }
3812
3813 /* Longjmp and longjmp-resume breakpoints are also meaningless
3814 after an exec. */
3815 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3816 || b->type == bp_longjmp_call_dummy
3817 || b->type == bp_exception || b->type == bp_exception_resume)
3818 {
3819 delete_breakpoint (b);
3820 continue;
3821 }
3822
3823 if (b->type == bp_catchpoint)
3824 {
3825 /* For now, none of the bp_catchpoint breakpoints need to
3826 do anything at this point. In the future, if some of
3827 the catchpoints need to something, we will need to add
3828 a new method, and call this method from here. */
3829 continue;
3830 }
3831
3832 /* bp_finish is a special case. The only way we ought to be able
3833 to see one of these when an exec() has happened, is if the user
3834 caught a vfork, and then said "finish". Ordinarily a finish just
3835 carries them to the call-site of the current callee, by setting
3836 a temporary bp there and resuming. But in this case, the finish
3837 will carry them entirely through the vfork & exec.
3838
3839 We don't want to allow a bp_finish to remain inserted now. But
3840 we can't safely delete it, 'cause finish_command has a handle to
3841 the bp on a bpstat, and will later want to delete it. There's a
3842 chance (and I've seen it happen) that if we delete the bp_finish
3843 here, that its storage will get reused by the time finish_command
3844 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3845 We really must allow finish_command to delete a bp_finish.
3846
3847 In the absence of a general solution for the "how do we know
3848 it's safe to delete something others may have handles to?"
3849 problem, what we'll do here is just uninsert the bp_finish, and
3850 let finish_command delete it.
3851
3852 (We know the bp_finish is "doomed" in the sense that it's
3853 momentary, and will be deleted as soon as finish_command sees
3854 the inferior stopped. So it doesn't matter that the bp's
3855 address is probably bogus in the new a.out, unlike e.g., the
3856 solib breakpoints.) */
3857
3858 if (b->type == bp_finish)
3859 {
3860 continue;
3861 }
3862
3863 /* Without a symbolic address, we have little hope of the
3864 pre-exec() address meaning the same thing in the post-exec()
3865 a.out. */
3866 if (breakpoint_location_spec_empty_p (b))
3867 {
3868 delete_breakpoint (b);
3869 continue;
3870 }
3871 }
3872 }
3873
3874 int
3875 detach_breakpoints (ptid_t ptid)
3876 {
3877 int val = 0;
3878 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3879 struct inferior *inf = current_inferior ();
3880
3881 if (ptid.pid () == inferior_ptid.pid ())
3882 error (_("Cannot detach breakpoints of inferior_ptid"));
3883
3884 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3885 inferior_ptid = ptid;
3886 for (bp_location *bl : all_bp_locations ())
3887 {
3888 if (bl->pspace != inf->pspace)
3889 continue;
3890
3891 /* This function must physically remove breakpoints locations
3892 from the specified ptid, without modifying the breakpoint
3893 package's state. Locations of type bp_loc_other and
3894 bp_loc_software_watchpoint are only maintained at GDB side,
3895 so there is no need to remove them. Moreover, removing these
3896 would modify the breakpoint package's state. */
3897 if (bl->loc_type == bp_loc_other
3898 || bl->loc_type == bp_loc_software_watchpoint)
3899 continue;
3900
3901 if (bl->inserted)
3902 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3903 }
3904
3905 return val;
3906 }
3907
3908 /* Remove the breakpoint location BL from the current address space.
3909 Note that this is used to detach breakpoints from a child fork.
3910 When we get here, the child isn't in the inferior list, and neither
3911 do we have objects to represent its address space --- we should
3912 *not* look at bl->pspace->aspace here. */
3913
3914 static int
3915 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3916 {
3917 int val;
3918
3919 /* BL is never in moribund_locations by our callers. */
3920 gdb_assert (bl->owner != NULL);
3921
3922 /* The type of none suggests that owner is actually deleted.
3923 This should not ever happen. */
3924 gdb_assert (bl->owner->type != bp_none);
3925
3926 if (bl->loc_type == bp_loc_software_breakpoint
3927 || bl->loc_type == bp_loc_hardware_breakpoint)
3928 {
3929 /* "Normal" instruction breakpoint: either the standard
3930 trap-instruction bp (bp_breakpoint), or a
3931 bp_hardware_breakpoint. */
3932
3933 /* First check to see if we have to handle an overlay. */
3934 if (overlay_debugging == ovly_off
3935 || bl->section == NULL
3936 || !(section_is_overlay (bl->section)))
3937 {
3938 /* No overlay handling: just remove the breakpoint. */
3939
3940 /* If we're trying to uninsert a memory breakpoint that we
3941 know is set in a dynamic object that is marked
3942 shlib_disabled, then either the dynamic object was
3943 removed with "remove-symbol-file" or with
3944 "nosharedlibrary". In the former case, we don't know
3945 whether another dynamic object might have loaded over the
3946 breakpoint's address -- the user might well let us know
3947 about it next with add-symbol-file (the whole point of
3948 add-symbol-file is letting the user manually maintain a
3949 list of dynamically loaded objects). If we have the
3950 breakpoint's shadow memory, that is, this is a software
3951 breakpoint managed by GDB, check whether the breakpoint
3952 is still inserted in memory, to avoid overwriting wrong
3953 code with stale saved shadow contents. Note that HW
3954 breakpoints don't have shadow memory, as they're
3955 implemented using a mechanism that is not dependent on
3956 being able to modify the target's memory, and as such
3957 they should always be removed. */
3958 if (bl->shlib_disabled
3959 && bl->target_info.shadow_len != 0
3960 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3961 val = 0;
3962 else
3963 val = bl->owner->remove_location (bl, reason);
3964 }
3965 else
3966 {
3967 /* This breakpoint is in an overlay section.
3968 Did we set a breakpoint at the LMA? */
3969 if (!overlay_events_enabled)
3970 {
3971 /* Yes -- overlay event support is not active, so we
3972 should have set a breakpoint at the LMA. Remove it.
3973 */
3974 /* Ignore any failures: if the LMA is in ROM, we will
3975 have already warned when we failed to insert it. */
3976 if (bl->loc_type == bp_loc_hardware_breakpoint)
3977 target_remove_hw_breakpoint (bl->gdbarch,
3978 &bl->overlay_target_info);
3979 else
3980 target_remove_breakpoint (bl->gdbarch,
3981 &bl->overlay_target_info,
3982 reason);
3983 }
3984 /* Did we set a breakpoint at the VMA?
3985 If so, we will have marked the breakpoint 'inserted'. */
3986 if (bl->inserted)
3987 {
3988 /* Yes -- remove it. Previously we did not bother to
3989 remove the breakpoint if the section had been
3990 unmapped, but let's not rely on that being safe. We
3991 don't know what the overlay manager might do. */
3992
3993 /* However, we should remove *software* breakpoints only
3994 if the section is still mapped, or else we overwrite
3995 wrong code with the saved shadow contents. */
3996 if (bl->loc_type == bp_loc_hardware_breakpoint
3997 || section_is_mapped (bl->section))
3998 val = bl->owner->remove_location (bl, reason);
3999 else
4000 val = 0;
4001 }
4002 else
4003 {
4004 /* No -- not inserted, so no need to remove. No error. */
4005 val = 0;
4006 }
4007 }
4008
4009 /* In some cases, we might not be able to remove a breakpoint in
4010 a shared library that has already been removed, but we have
4011 not yet processed the shlib unload event. Similarly for an
4012 unloaded add-symbol-file object - the user might not yet have
4013 had the chance to remove-symbol-file it. shlib_disabled will
4014 be set if the library/object has already been removed, but
4015 the breakpoint hasn't been uninserted yet, e.g., after
4016 "nosharedlibrary" or "remove-symbol-file" with breakpoints
4017 always-inserted mode. */
4018 if (val
4019 && (bl->loc_type == bp_loc_software_breakpoint
4020 && (bl->shlib_disabled
4021 || solib_name_from_address (bl->pspace, bl->address)
4022 || shared_objfile_contains_address_p (bl->pspace,
4023 bl->address))))
4024 val = 0;
4025
4026 if (val)
4027 return val;
4028 bl->inserted = (reason == DETACH_BREAKPOINT);
4029 }
4030 else if (bl->loc_type == bp_loc_hardware_watchpoint)
4031 {
4032 bl->inserted = (reason == DETACH_BREAKPOINT);
4033 bl->owner->remove_location (bl, reason);
4034
4035 /* Failure to remove any of the hardware watchpoints comes here. */
4036 if (reason == REMOVE_BREAKPOINT && bl->inserted)
4037 warning (_("Could not remove hardware watchpoint %d."),
4038 bl->owner->number);
4039 }
4040 else if (bl->owner->type == bp_catchpoint
4041 && breakpoint_enabled (bl->owner)
4042 && !bl->duplicate)
4043 {
4044 val = bl->owner->remove_location (bl, reason);
4045 if (val)
4046 return val;
4047
4048 bl->inserted = (reason == DETACH_BREAKPOINT);
4049 }
4050
4051 return 0;
4052 }
4053
4054 static int
4055 remove_breakpoint (struct bp_location *bl)
4056 {
4057 /* BL is never in moribund_locations by our callers. */
4058 gdb_assert (bl->owner != NULL);
4059
4060 /* The type of none suggests that owner is actually deleted.
4061 This should not ever happen. */
4062 gdb_assert (bl->owner->type != bp_none);
4063
4064 scoped_restore_current_pspace_and_thread restore_pspace_thread;
4065
4066 switch_to_program_space_and_thread (bl->pspace);
4067
4068 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
4069 }
4070
4071 /* Clear the "inserted" flag in all breakpoints. */
4072
4073 void
4074 mark_breakpoints_out (void)
4075 {
4076 for (bp_location *bl : all_bp_locations ())
4077 if (bl->pspace == current_program_space)
4078 bl->inserted = 0;
4079 }
4080
4081 /* Clear the "inserted" flag in all breakpoints and delete any
4082 breakpoints which should go away between runs of the program.
4083
4084 Plus other such housekeeping that has to be done for breakpoints
4085 between runs.
4086
4087 Note: this function gets called at the end of a run (by
4088 generic_mourn_inferior) and when a run begins (by
4089 init_wait_for_inferior). */
4090
4091
4092
4093 void
4094 breakpoint_init_inferior (enum inf_context context)
4095 {
4096 struct program_space *pspace = current_program_space;
4097
4098 /* If breakpoint locations are shared across processes, then there's
4099 nothing to do. */
4100 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
4101 return;
4102
4103 mark_breakpoints_out ();
4104
4105 for (breakpoint *b : all_breakpoints_safe ())
4106 {
4107 if (b->loc && b->loc->pspace != pspace)
4108 continue;
4109
4110 switch (b->type)
4111 {
4112 case bp_call_dummy:
4113 case bp_longjmp_call_dummy:
4114
4115 /* If the call dummy breakpoint is at the entry point it will
4116 cause problems when the inferior is rerun, so we better get
4117 rid of it. */
4118
4119 case bp_watchpoint_scope:
4120
4121 /* Also get rid of scope breakpoints. */
4122
4123 case bp_shlib_event:
4124
4125 /* Also remove solib event breakpoints. Their addresses may
4126 have changed since the last time we ran the program.
4127 Actually we may now be debugging against different target;
4128 and so the solib backend that installed this breakpoint may
4129 not be used in by the target. E.g.,
4130
4131 (gdb) file prog-linux
4132 (gdb) run # native linux target
4133 ...
4134 (gdb) kill
4135 (gdb) file prog-win.exe
4136 (gdb) tar rem :9999 # remote Windows gdbserver.
4137 */
4138
4139 case bp_step_resume:
4140
4141 /* Also remove step-resume breakpoints. */
4142
4143 case bp_single_step:
4144
4145 /* Also remove single-step breakpoints. */
4146
4147 delete_breakpoint (b);
4148 break;
4149
4150 case bp_watchpoint:
4151 case bp_hardware_watchpoint:
4152 case bp_read_watchpoint:
4153 case bp_access_watchpoint:
4154 {
4155 struct watchpoint *w = (struct watchpoint *) b;
4156
4157 /* Likewise for watchpoints on local expressions. */
4158 if (w->exp_valid_block != NULL)
4159 delete_breakpoint (b);
4160 else
4161 {
4162 /* Get rid of existing locations, which are no longer
4163 valid. New ones will be created in
4164 update_watchpoint, when the inferior is restarted.
4165 The next update_global_location_list call will
4166 garbage collect them. */
4167 b->loc = NULL;
4168
4169 if (context == inf_starting)
4170 {
4171 /* Reset val field to force reread of starting value in
4172 insert_breakpoints. */
4173 w->val.reset (nullptr);
4174 w->val_valid = false;
4175 }
4176 }
4177 }
4178 break;
4179 default:
4180 break;
4181 }
4182 }
4183
4184 /* Get rid of the moribund locations. */
4185 for (bp_location *bl : moribund_locations)
4186 decref_bp_location (&bl);
4187 moribund_locations.clear ();
4188 }
4189
4190 /* These functions concern about actual breakpoints inserted in the
4191 target --- to e.g. check if we need to do decr_pc adjustment or if
4192 we need to hop over the bkpt --- so we check for address space
4193 match, not program space. */
4194
4195 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
4196 exists at PC. It returns ordinary_breakpoint_here if it's an
4197 ordinary breakpoint, or permanent_breakpoint_here if it's a
4198 permanent breakpoint.
4199 - When continuing from a location with an ordinary breakpoint, we
4200 actually single step once before calling insert_breakpoints.
4201 - When continuing from a location with a permanent breakpoint, we
4202 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
4203 the target, to advance the PC past the breakpoint. */
4204
4205 enum breakpoint_here
4206 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4207 {
4208 bool any_breakpoint_here = false;
4209
4210 for (bp_location *bl : all_bp_locations ())
4211 {
4212 if (bl->loc_type != bp_loc_software_breakpoint
4213 && bl->loc_type != bp_loc_hardware_breakpoint)
4214 continue;
4215
4216 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
4217 if ((breakpoint_enabled (bl->owner)
4218 || bl->permanent)
4219 && breakpoint_location_address_match (bl, aspace, pc))
4220 {
4221 if (overlay_debugging
4222 && section_is_overlay (bl->section)
4223 && !section_is_mapped (bl->section))
4224 continue; /* unmapped overlay -- can't be a match */
4225 else if (bl->permanent)
4226 return permanent_breakpoint_here;
4227 else
4228 any_breakpoint_here = true;
4229 }
4230 }
4231
4232 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4233 }
4234
4235 /* See breakpoint.h. */
4236
4237 int
4238 breakpoint_in_range_p (const address_space *aspace,
4239 CORE_ADDR addr, ULONGEST len)
4240 {
4241 for (bp_location *bl : all_bp_locations ())
4242 {
4243 if (bl->loc_type != bp_loc_software_breakpoint
4244 && bl->loc_type != bp_loc_hardware_breakpoint)
4245 continue;
4246
4247 if ((breakpoint_enabled (bl->owner)
4248 || bl->permanent)
4249 && breakpoint_location_address_range_overlap (bl, aspace,
4250 addr, len))
4251 {
4252 if (overlay_debugging
4253 && section_is_overlay (bl->section)
4254 && !section_is_mapped (bl->section))
4255 {
4256 /* Unmapped overlay -- can't be a match. */
4257 continue;
4258 }
4259
4260 return 1;
4261 }
4262 }
4263
4264 return 0;
4265 }
4266
4267 /* Return true if there's a moribund breakpoint at PC. */
4268
4269 int
4270 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4271 {
4272 for (bp_location *loc : moribund_locations)
4273 if (breakpoint_location_address_match (loc, aspace, pc))
4274 return 1;
4275
4276 return 0;
4277 }
4278
4279 /* Returns true iff BL is inserted at PC, in address space ASPACE. */
4280
4281 static bool
4282 bp_location_inserted_here_p (const struct bp_location *bl,
4283 const address_space *aspace, CORE_ADDR pc)
4284 {
4285 if (bl->inserted
4286 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4287 aspace, pc))
4288 {
4289 /* An unmapped overlay can't be a match. */
4290 return !(overlay_debugging
4291 && section_is_overlay (bl->section)
4292 && !section_is_mapped (bl->section));
4293 }
4294 return false;
4295 }
4296
4297 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4298
4299 int
4300 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4301 {
4302 for (bp_location *bl : all_bp_locations_at_addr (pc))
4303 {
4304 if (bl->loc_type != bp_loc_software_breakpoint
4305 && bl->loc_type != bp_loc_hardware_breakpoint)
4306 continue;
4307
4308 if (bp_location_inserted_here_p (bl, aspace, pc))
4309 return 1;
4310 }
4311 return 0;
4312 }
4313
4314 /* This function returns non-zero iff there is a software breakpoint
4315 inserted at PC. */
4316
4317 int
4318 software_breakpoint_inserted_here_p (const address_space *aspace,
4319 CORE_ADDR pc)
4320 {
4321 for (bp_location *bl : all_bp_locations_at_addr (pc))
4322 {
4323 if (bl->loc_type != bp_loc_software_breakpoint)
4324 continue;
4325
4326 if (bp_location_inserted_here_p (bl, aspace, pc))
4327 return 1;
4328 }
4329
4330 return 0;
4331 }
4332
4333 /* See breakpoint.h. */
4334
4335 int
4336 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4337 CORE_ADDR pc)
4338 {
4339 for (bp_location *bl : all_bp_locations_at_addr (pc))
4340 {
4341 if (bl->loc_type != bp_loc_hardware_breakpoint)
4342 continue;
4343
4344 if (bp_location_inserted_here_p (bl, aspace, pc))
4345 return 1;
4346 }
4347
4348 return 0;
4349 }
4350
4351 int
4352 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4353 CORE_ADDR addr, ULONGEST len)
4354 {
4355 for (breakpoint *bpt : all_breakpoints ())
4356 {
4357 if (bpt->type != bp_hardware_watchpoint
4358 && bpt->type != bp_access_watchpoint)
4359 continue;
4360
4361 if (!breakpoint_enabled (bpt))
4362 continue;
4363
4364 for (bp_location *loc : bpt->locations ())
4365 if (loc->pspace->aspace == aspace && loc->inserted)
4366 {
4367 CORE_ADDR l, h;
4368
4369 /* Check for intersection. */
4370 l = std::max<CORE_ADDR> (loc->address, addr);
4371 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4372 if (l < h)
4373 return 1;
4374 }
4375 }
4376 return 0;
4377 }
4378
4379 /* See breakpoint.h. */
4380
4381 bool
4382 is_catchpoint (struct breakpoint *b)
4383 {
4384 return (b->type == bp_catchpoint);
4385 }
4386
4387 /* Clear a bpstat so that it says we are not at any breakpoint.
4388 Also free any storage that is part of a bpstat. */
4389
4390 void
4391 bpstat_clear (bpstat **bsp)
4392 {
4393 bpstat *p;
4394 bpstat *q;
4395
4396 if (bsp == 0)
4397 return;
4398 p = *bsp;
4399 while (p != NULL)
4400 {
4401 q = p->next;
4402 delete p;
4403 p = q;
4404 }
4405 *bsp = NULL;
4406 }
4407
4408 bpstat::bpstat (const bpstat &other)
4409 : next (NULL),
4410 bp_location_at (other.bp_location_at),
4411 breakpoint_at (other.breakpoint_at),
4412 commands (other.commands),
4413 print (other.print),
4414 stop (other.stop),
4415 print_it (other.print_it)
4416 {
4417 if (other.old_val != NULL)
4418 old_val = release_value (other.old_val.get ()->copy ());
4419 }
4420
4421 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4422 is part of the bpstat is copied as well. */
4423
4424 bpstat *
4425 bpstat_copy (bpstat *bs)
4426 {
4427 bpstat *p = nullptr;
4428 bpstat *tmp;
4429 bpstat *retval = nullptr;
4430
4431 if (bs == NULL)
4432 return bs;
4433
4434 for (; bs != NULL; bs = bs->next)
4435 {
4436 tmp = new bpstat (*bs);
4437
4438 if (p == NULL)
4439 /* This is the first thing in the chain. */
4440 retval = tmp;
4441 else
4442 p->next = tmp;
4443 p = tmp;
4444 }
4445 p->next = NULL;
4446 return retval;
4447 }
4448
4449 /* Find the bpstat associated with this breakpoint. */
4450
4451 bpstat *
4452 bpstat_find_breakpoint (bpstat *bsp, struct breakpoint *breakpoint)
4453 {
4454 if (bsp == NULL)
4455 return NULL;
4456
4457 for (; bsp != NULL; bsp = bsp->next)
4458 {
4459 if (bsp->breakpoint_at == breakpoint)
4460 return bsp;
4461 }
4462 return NULL;
4463 }
4464
4465 /* See breakpoint.h. */
4466
4467 bool
4468 bpstat_explains_signal (bpstat *bsp, enum gdb_signal sig)
4469 {
4470 for (; bsp != NULL; bsp = bsp->next)
4471 {
4472 if (bsp->breakpoint_at == NULL)
4473 {
4474 /* A moribund location can never explain a signal other than
4475 GDB_SIGNAL_TRAP. */
4476 if (sig == GDB_SIGNAL_TRAP)
4477 return true;
4478 }
4479 else
4480 {
4481 if (bsp->breakpoint_at->explains_signal (sig))
4482 return true;
4483 }
4484 }
4485
4486 return false;
4487 }
4488
4489 /* See breakpoint.h. */
4490
4491 int
4492 bpstat_num (bpstat **bsp, int *num)
4493 {
4494 struct breakpoint *b;
4495
4496 if ((*bsp) == NULL)
4497 return 0; /* No more breakpoint values */
4498
4499 /* We assume we'll never have several bpstats that correspond to a
4500 single breakpoint -- otherwise, this function might return the
4501 same number more than once and this will look ugly. */
4502 b = (*bsp)->breakpoint_at;
4503 *bsp = (*bsp)->next;
4504 if (b == NULL)
4505 return -1; /* breakpoint that's been deleted since */
4506
4507 *num = b->number; /* We have its number */
4508 return 1;
4509 }
4510
4511 /* See breakpoint.h */
4512
4513 int
4514 bpstat_locno (const bpstat *bs)
4515 {
4516 const struct breakpoint *b = bs->breakpoint_at;
4517 const struct bp_location *bl = bs->bp_location_at.get ();
4518
4519 int locno = 0;
4520
4521 if (b != nullptr && b->loc != nullptr && b->loc->next != nullptr)
4522 {
4523 const bp_location *bl_i;
4524
4525 for (bl_i = b->loc;
4526 bl_i != bl && bl_i->next != nullptr;
4527 bl_i = bl_i->next)
4528 locno++;
4529
4530 if (bl_i == bl)
4531 locno++;
4532 else
4533 {
4534 warning (_("location number not found for breakpoint %d address %s."),
4535 b->number, paddress (bl->gdbarch, bl->address));
4536 locno = 0;
4537 }
4538 }
4539
4540 return locno;
4541 }
4542
4543 /* See breakpoint.h. */
4544
4545 void
4546 print_num_locno (const bpstat *bs, struct ui_out *uiout)
4547 {
4548 struct breakpoint *b = bs->breakpoint_at;
4549
4550 if (b == nullptr)
4551 uiout->text (_("deleted breakpoint"));
4552 else
4553 {
4554 uiout->field_signed ("bkptno", b->number);
4555
4556 int locno = bpstat_locno (bs);
4557 if (locno != 0)
4558 uiout->message (".%pF", signed_field ("locno", locno));
4559 }
4560 }
4561
4562 /* See breakpoint.h. */
4563
4564 void
4565 bpstat_clear_actions (void)
4566 {
4567 bpstat *bs;
4568
4569 if (inferior_ptid == null_ptid)
4570 return;
4571
4572 thread_info *tp = inferior_thread ();
4573 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4574 {
4575 bs->commands = NULL;
4576 bs->old_val.reset (nullptr);
4577 }
4578 }
4579
4580 /* Called when a command is about to proceed the inferior. */
4581
4582 static void
4583 breakpoint_about_to_proceed (void)
4584 {
4585 if (inferior_ptid != null_ptid)
4586 {
4587 struct thread_info *tp = inferior_thread ();
4588
4589 /* Allow inferior function calls in breakpoint commands to not
4590 interrupt the command list. When the call finishes
4591 successfully, the inferior will be standing at the same
4592 breakpoint as if nothing happened. */
4593 if (tp->control.in_infcall)
4594 return;
4595 }
4596
4597 breakpoint_proceeded = 1;
4598 }
4599
4600 /* Return true iff CMD as the first line of a command sequence is `silent'
4601 or its equivalent. */
4602
4603 static bool
4604 command_line_is_silent (struct command_line *cmd)
4605 {
4606 return cmd && (strcmp ("silent", cmd->line) == 0);
4607 }
4608
4609 /* Sets the $_hit_bpnum and $_hit_locno to bpnum and locno.
4610 A locno 0 is changed to 1 to e.g. let the user do
4611 (gdb) disable $_hit_bpnum.$_hit_locno
4612 for a single location breakpoint. */
4613
4614 static void
4615 set_hit_convenience_vars (int bpnum, int locno)
4616 {
4617 set_internalvar_integer (lookup_internalvar ("_hit_bpnum"), bpnum);
4618 set_internalvar_integer (lookup_internalvar ("_hit_locno"),
4619 (locno > 0 ? locno : 1));
4620 }
4621
4622 /* Execute all the commands associated with all the breakpoints at
4623 this location. Any of these commands could cause the process to
4624 proceed beyond this point, etc. We look out for such changes by
4625 checking the global "breakpoint_proceeded" after each command.
4626
4627 Returns true if a breakpoint command resumed the inferior. In that
4628 case, it is the caller's responsibility to recall it again with the
4629 bpstat of the current thread. */
4630
4631 static bool
4632 bpstat_do_actions_1 (bpstat **bsp)
4633 {
4634 bpstat *bs;
4635 bool again = false;
4636
4637 /* Avoid endless recursion if a `source' command is contained
4638 in bs->commands. */
4639 if (executing_breakpoint_commands)
4640 return false;
4641
4642 scoped_restore save_executing
4643 = make_scoped_restore (&executing_breakpoint_commands, 1);
4644
4645 scoped_restore preventer = prevent_dont_repeat ();
4646
4647 /* This pointer will iterate over the list of bpstat's. */
4648 bs = *bsp;
4649
4650 /* The $_hit_* convenience variables are set before running the
4651 commands of BS. In case we have several bs, after the loop,
4652 we set again the variables to the first printed bpnum and locno.
4653 For multiple breakpoints, this ensures the variables are set to the
4654 breakpoint printed for the user. */
4655 int printed_hit_bpnum = -1;
4656 int printed_hit_locno = -1;
4657
4658 breakpoint_proceeded = 0;
4659 for (; bs != NULL; bs = bs->next)
4660 {
4661 struct command_line *cmd = NULL;
4662
4663 /* Set the _hit_* convenience variables before running BS's commands. */
4664 {
4665 const struct breakpoint *b = bs->breakpoint_at;
4666 if (b != nullptr)
4667 {
4668 int locno = bpstat_locno (bs);
4669
4670 set_hit_convenience_vars (b->number, locno);
4671 if (printed_hit_locno == -1 && bs->print)
4672 {
4673 printed_hit_bpnum = b->number;
4674 printed_hit_locno = locno;
4675 }
4676 }
4677 }
4678
4679 /* Take ownership of the BSP's command tree, if it has one.
4680
4681 The command tree could legitimately contain commands like
4682 'step' and 'next', which call clear_proceed_status, which
4683 frees the bpstat BS and its command tree. To make sure this doesn't
4684 free the tree we're executing out from under us, we need to
4685 take ownership of the tree ourselves. Since a given bpstat's
4686 commands are only executed once, we don't need to copy it; we
4687 can clear the pointer in the bpstat, and make sure we free
4688 the tree when we're done. */
4689 counted_command_line ccmd = bs->commands;
4690 bs->commands = NULL;
4691 if (ccmd != NULL)
4692 cmd = ccmd.get ();
4693 if (command_line_is_silent (cmd))
4694 {
4695 /* The action has been already done by bpstat_stop_status. */
4696 cmd = cmd->next;
4697 }
4698
4699 while (cmd != NULL)
4700 {
4701 execute_control_command (cmd);
4702 /* After execute_control_command, if breakpoint_proceeded is true,
4703 BS has been freed and cannot be accessed anymore. */
4704
4705 if (breakpoint_proceeded)
4706 break;
4707 else
4708 cmd = cmd->next;
4709 }
4710
4711 if (breakpoint_proceeded)
4712 {
4713 if (current_ui->async)
4714 /* If we are in async mode, then the target might be still
4715 running, not stopped at any breakpoint, so nothing for
4716 us to do here -- just return to the event loop. */
4717 ;
4718 else
4719 /* In sync mode, when execute_control_command returns
4720 we're already standing on the next breakpoint.
4721 Breakpoint commands for that stop were not run, since
4722 execute_command does not run breakpoint commands --
4723 only command_line_handler does, but that one is not
4724 involved in execution of breakpoint commands. So, we
4725 can now execute breakpoint commands. It should be
4726 noted that making execute_command do bpstat actions is
4727 not an option -- in this case we'll have recursive
4728 invocation of bpstat for each breakpoint with a
4729 command, and can easily blow up GDB stack. Instead, we
4730 return true, which will trigger the caller to recall us
4731 with the new stop_bpstat. */
4732 again = true;
4733 break;
4734 }
4735 }
4736
4737 /* Now that we have executed the commands of all bs, set the _hit_*
4738 convenience variables to the printed values. */
4739 if (printed_hit_locno != -1)
4740 set_hit_convenience_vars (printed_hit_bpnum, printed_hit_locno);
4741
4742 return again;
4743 }
4744
4745 /* Helper for bpstat_do_actions. Get the current thread, if there's
4746 one, is alive and has execution. Return NULL otherwise. */
4747
4748 static thread_info *
4749 get_bpstat_thread ()
4750 {
4751 if (inferior_ptid == null_ptid || !target_has_execution ())
4752 return NULL;
4753
4754 thread_info *tp = inferior_thread ();
4755 if (tp->state == THREAD_EXITED || tp->executing ())
4756 return NULL;
4757 return tp;
4758 }
4759
4760 void
4761 bpstat_do_actions (void)
4762 {
4763 auto cleanup_if_error = make_scope_exit (bpstat_clear_actions);
4764 thread_info *tp;
4765
4766 /* Do any commands attached to breakpoint we are stopped at. */
4767 while ((tp = get_bpstat_thread ()) != NULL)
4768 {
4769 /* Since in sync mode, bpstat_do_actions may resume the
4770 inferior, and only return when it is stopped at the next
4771 breakpoint, we keep doing breakpoint actions until it returns
4772 false to indicate the inferior was not resumed. */
4773 if (!bpstat_do_actions_1 (&tp->control.stop_bpstat))
4774 break;
4775 }
4776
4777 cleanup_if_error.release ();
4778 }
4779
4780 /* Print out the (old or new) value associated with a watchpoint. */
4781
4782 static void
4783 watchpoint_value_print (struct value *val, struct ui_file *stream)
4784 {
4785 if (val == NULL)
4786 fprintf_styled (stream, metadata_style.style (), _("<unreadable>"));
4787 else
4788 {
4789 struct value_print_options opts;
4790 get_user_print_options (&opts);
4791 value_print (val, stream, &opts);
4792 }
4793 }
4794
4795 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4796 debugging multiple threads. */
4797
4798 void
4799 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4800 {
4801 if (uiout->is_mi_like_p ())
4802 return;
4803
4804 uiout->text ("\n");
4805
4806 if (show_thread_that_caused_stop ())
4807 {
4808 struct thread_info *thr = inferior_thread ();
4809
4810 uiout->text ("Thread ");
4811 uiout->field_string ("thread-id", print_thread_id (thr));
4812
4813 const char *name = thread_name (thr);
4814 if (name != NULL)
4815 {
4816 uiout->text (" \"");
4817 uiout->field_string ("name", name);
4818 uiout->text ("\"");
4819 }
4820
4821 uiout->text (" hit ");
4822 }
4823 }
4824
4825 /* Generic routine for printing messages indicating why we
4826 stopped. The behavior of this function depends on the value
4827 'print_it' in the bpstat structure. Under some circumstances we
4828 may decide not to print anything here and delegate the task to
4829 normal_stop(). */
4830
4831 static enum print_stop_action
4832 print_bp_stop_message (bpstat *bs)
4833 {
4834 switch (bs->print_it)
4835 {
4836 case print_it_noop:
4837 /* Nothing should be printed for this bpstat entry. */
4838 return PRINT_UNKNOWN;
4839 break;
4840
4841 case print_it_done:
4842 /* We still want to print the frame, but we already printed the
4843 relevant messages. */
4844 return PRINT_SRC_AND_LOC;
4845 break;
4846
4847 case print_it_normal:
4848 {
4849 struct breakpoint *b = bs->breakpoint_at;
4850
4851 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4852 which has since been deleted. */
4853 if (b == NULL)
4854 return PRINT_UNKNOWN;
4855
4856 /* Normal case. Call the breakpoint's print_it method. */
4857 return b->print_it (bs);
4858 }
4859 break;
4860
4861 default:
4862 internal_error (_("print_bp_stop_message: unrecognized enum value"));
4863 break;
4864 }
4865 }
4866
4867 /* See breakpoint.h. */
4868
4869 void
4870 print_solib_event (bool is_catchpoint)
4871 {
4872 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4873 bool any_added = !current_program_space->added_solibs.empty ();
4874
4875 if (!is_catchpoint)
4876 {
4877 if (any_added || any_deleted)
4878 current_uiout->text (_("Stopped due to shared library event:\n"));
4879 else
4880 current_uiout->text (_("Stopped due to shared library event (no "
4881 "libraries added or removed)\n"));
4882 }
4883
4884 if (current_uiout->is_mi_like_p ())
4885 current_uiout->field_string ("reason",
4886 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4887
4888 if (any_deleted)
4889 {
4890 current_uiout->text (_(" Inferior unloaded "));
4891 ui_out_emit_list list_emitter (current_uiout, "removed");
4892 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4893 {
4894 const std::string &name = current_program_space->deleted_solibs[ix];
4895
4896 if (ix > 0)
4897 current_uiout->text (" ");
4898 current_uiout->field_string ("library", name);
4899 current_uiout->text ("\n");
4900 }
4901 }
4902
4903 if (any_added)
4904 {
4905 current_uiout->text (_(" Inferior loaded "));
4906 ui_out_emit_list list_emitter (current_uiout, "added");
4907 bool first = true;
4908 for (so_list *iter : current_program_space->added_solibs)
4909 {
4910 if (!first)
4911 current_uiout->text (" ");
4912 first = false;
4913 current_uiout->field_string ("library", iter->so_name);
4914 current_uiout->text ("\n");
4915 }
4916 }
4917 }
4918
4919 /* Print a message indicating what happened. This is called from
4920 normal_stop(). The input to this routine is the head of the bpstat
4921 list - a list of the eventpoints that caused this stop. KIND is
4922 the target_waitkind for the stopping event. This
4923 routine calls the generic print routine for printing a message
4924 about reasons for stopping. This will print (for example) the
4925 "Breakpoint n," part of the output. The return value of this
4926 routine is one of:
4927
4928 PRINT_UNKNOWN: Means we printed nothing.
4929 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4930 code to print the location. An example is
4931 "Breakpoint 1, " which should be followed by
4932 the location.
4933 PRINT_SRC_ONLY: Means we printed something, but there is no need
4934 to also print the location part of the message.
4935 An example is the catch/throw messages, which
4936 don't require a location appended to the end.
4937 PRINT_NOTHING: We have done some printing and we don't need any
4938 further info to be printed. */
4939
4940 enum print_stop_action
4941 bpstat_print (bpstat *bs, target_waitkind kind)
4942 {
4943 enum print_stop_action val;
4944
4945 /* Maybe another breakpoint in the chain caused us to stop.
4946 (Currently all watchpoints go on the bpstat whether hit or not.
4947 That probably could (should) be changed, provided care is taken
4948 with respect to bpstat_explains_signal). */
4949 for (; bs; bs = bs->next)
4950 {
4951 val = print_bp_stop_message (bs);
4952 if (val == PRINT_SRC_ONLY
4953 || val == PRINT_SRC_AND_LOC
4954 || val == PRINT_NOTHING)
4955 return val;
4956 }
4957
4958 /* If we had hit a shared library event breakpoint,
4959 print_bp_stop_message would print out this message. If we hit an
4960 OS-level shared library event, do the same thing. */
4961 if (kind == TARGET_WAITKIND_LOADED)
4962 {
4963 print_solib_event (false);
4964 return PRINT_NOTHING;
4965 }
4966
4967 /* We reached the end of the chain, or we got a null BS to start
4968 with and nothing was printed. */
4969 return PRINT_UNKNOWN;
4970 }
4971
4972 /* Evaluate the boolean expression EXP and return the result. */
4973
4974 static bool
4975 breakpoint_cond_eval (expression *exp)
4976 {
4977 scoped_value_mark mark;
4978 return value_true (evaluate_expression (exp));
4979 }
4980
4981 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4982
4983 bpstat::bpstat (struct bp_location *bl, bpstat ***bs_link_pointer)
4984 : next (NULL),
4985 bp_location_at (bp_location_ref_ptr::new_reference (bl)),
4986 breakpoint_at (bl->owner),
4987 commands (NULL),
4988 print (0),
4989 stop (0),
4990 print_it (print_it_normal)
4991 {
4992 **bs_link_pointer = this;
4993 *bs_link_pointer = &next;
4994 }
4995
4996 bpstat::bpstat ()
4997 : next (NULL),
4998 breakpoint_at (NULL),
4999 commands (NULL),
5000 print (0),
5001 stop (0),
5002 print_it (print_it_normal)
5003 {
5004 }
5005 \f
5006 /* The target has stopped with waitstatus WS. Check if any hardware
5007 watchpoints have triggered, according to the target. */
5008
5009 int
5010 watchpoints_triggered (const target_waitstatus &ws)
5011 {
5012 bool stopped_by_watchpoint = target_stopped_by_watchpoint ();
5013 CORE_ADDR addr;
5014
5015 if (!stopped_by_watchpoint)
5016 {
5017 /* We were not stopped by a watchpoint. Mark all watchpoints
5018 as not triggered. */
5019 for (breakpoint *b : all_breakpoints ())
5020 if (is_hardware_watchpoint (b))
5021 {
5022 struct watchpoint *w = (struct watchpoint *) b;
5023
5024 w->watchpoint_triggered = watch_triggered_no;
5025 }
5026
5027 return 0;
5028 }
5029
5030 if (!target_stopped_data_address (current_inferior ()->top_target (), &addr))
5031 {
5032 /* We were stopped by a watchpoint, but we don't know where.
5033 Mark all watchpoints as unknown. */
5034 for (breakpoint *b : all_breakpoints ())
5035 if (is_hardware_watchpoint (b))
5036 {
5037 struct watchpoint *w = (struct watchpoint *) b;
5038
5039 w->watchpoint_triggered = watch_triggered_unknown;
5040 }
5041
5042 return 1;
5043 }
5044
5045 /* The target could report the data address. Mark watchpoints
5046 affected by this data address as triggered, and all others as not
5047 triggered. */
5048
5049 for (breakpoint *b : all_breakpoints ())
5050 if (is_hardware_watchpoint (b))
5051 {
5052 struct watchpoint *w = (struct watchpoint *) b;
5053
5054 w->watchpoint_triggered = watch_triggered_no;
5055 for (bp_location *loc : b->locations ())
5056 {
5057 if (is_masked_watchpoint (b))
5058 {
5059 CORE_ADDR newaddr = addr & w->hw_wp_mask;
5060 CORE_ADDR start = loc->address & w->hw_wp_mask;
5061
5062 if (newaddr == start)
5063 {
5064 w->watchpoint_triggered = watch_triggered_yes;
5065 break;
5066 }
5067 }
5068 /* Exact match not required. Within range is sufficient. */
5069 else if (target_watchpoint_addr_within_range
5070 (current_inferior ()->top_target (), addr, loc->address,
5071 loc->length))
5072 {
5073 w->watchpoint_triggered = watch_triggered_yes;
5074 break;
5075 }
5076 }
5077 }
5078
5079 return 1;
5080 }
5081
5082 /* Possible return values for watchpoint_check. */
5083 enum wp_check_result
5084 {
5085 /* The watchpoint has been deleted. */
5086 WP_DELETED = 1,
5087
5088 /* The value has changed. */
5089 WP_VALUE_CHANGED = 2,
5090
5091 /* The value has not changed. */
5092 WP_VALUE_NOT_CHANGED = 3,
5093
5094 /* Ignore this watchpoint, no matter if the value changed or not. */
5095 WP_IGNORE = 4,
5096 };
5097
5098 #define BP_TEMPFLAG 1
5099 #define BP_HARDWAREFLAG 2
5100
5101 /* Evaluate watchpoint condition expression and check if its value
5102 changed. */
5103
5104 static wp_check_result
5105 watchpoint_check (bpstat *bs)
5106 {
5107 struct watchpoint *b;
5108 frame_info_ptr fr;
5109 bool within_current_scope;
5110
5111 /* BS is built from an existing struct breakpoint. */
5112 gdb_assert (bs->breakpoint_at != NULL);
5113 b = (struct watchpoint *) bs->breakpoint_at;
5114
5115 /* If this is a local watchpoint, we only want to check if the
5116 watchpoint frame is in scope if the current thread is the thread
5117 that was used to create the watchpoint. */
5118 if (!watchpoint_in_thread_scope (b))
5119 return WP_IGNORE;
5120
5121 if (b->exp_valid_block == NULL)
5122 within_current_scope = true;
5123 else
5124 {
5125 frame_info_ptr frame = get_current_frame ();
5126 struct gdbarch *frame_arch = get_frame_arch (frame);
5127 CORE_ADDR frame_pc = get_frame_pc (frame);
5128
5129 /* stack_frame_destroyed_p() returns a non-zero value if we're
5130 still in the function but the stack frame has already been
5131 invalidated. Since we can't rely on the values of local
5132 variables after the stack has been destroyed, we are treating
5133 the watchpoint in that state as `not changed' without further
5134 checking. Don't mark watchpoints as changed if the current
5135 frame is in an epilogue - even if they are in some other
5136 frame, our view of the stack is likely to be wrong and
5137 frame_find_by_id could error out. */
5138 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
5139 return WP_IGNORE;
5140
5141 fr = frame_find_by_id (b->watchpoint_frame);
5142 within_current_scope = (fr != NULL);
5143
5144 /* If we've gotten confused in the unwinder, we might have
5145 returned a frame that can't describe this variable. */
5146 if (within_current_scope)
5147 {
5148 struct symbol *function;
5149
5150 function = get_frame_function (fr);
5151 if (function == NULL
5152 || !contained_in (b->exp_valid_block, function->value_block ()))
5153 within_current_scope = false;
5154 }
5155
5156 if (within_current_scope)
5157 /* If we end up stopping, the current frame will get selected
5158 in normal_stop. So this call to select_frame won't affect
5159 the user. */
5160 select_frame (fr);
5161 }
5162
5163 if (within_current_scope)
5164 {
5165 /* We use value_{,free_to_}mark because it could be a *long*
5166 time before we return to the command level and call
5167 free_all_values. We can't call free_all_values because we
5168 might be in the middle of evaluating a function call. */
5169
5170 struct value *mark;
5171 struct value *new_val;
5172
5173 if (is_masked_watchpoint (b))
5174 /* Since we don't know the exact trigger address (from
5175 stopped_data_address), just tell the user we've triggered
5176 a mask watchpoint. */
5177 return WP_VALUE_CHANGED;
5178
5179 mark = value_mark ();
5180 fetch_subexp_value (b->exp.get (), b->exp->op.get (), &new_val,
5181 NULL, NULL, false);
5182
5183 if (b->val_bitsize != 0)
5184 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
5185
5186 /* We use value_equal_contents instead of value_equal because
5187 the latter coerces an array to a pointer, thus comparing just
5188 the address of the array instead of its contents. This is
5189 not what we want. */
5190 if ((b->val != NULL) != (new_val != NULL)
5191 || (b->val != NULL && !value_equal_contents (b->val.get (),
5192 new_val)))
5193 {
5194 bs->old_val = b->val;
5195 b->val = release_value (new_val);
5196 b->val_valid = true;
5197 if (new_val != NULL)
5198 value_free_to_mark (mark);
5199 return WP_VALUE_CHANGED;
5200 }
5201 else
5202 {
5203 /* Nothing changed. */
5204 value_free_to_mark (mark);
5205 return WP_VALUE_NOT_CHANGED;
5206 }
5207 }
5208 else
5209 {
5210 /* This seems like the only logical thing to do because
5211 if we temporarily ignored the watchpoint, then when
5212 we reenter the block in which it is valid it contains
5213 garbage (in the case of a function, it may have two
5214 garbage values, one before and one after the prologue).
5215 So we can't even detect the first assignment to it and
5216 watch after that (since the garbage may or may not equal
5217 the first value assigned). */
5218 /* We print all the stop information in
5219 breakpointprint_it, but in this case, by the time we
5220 call breakpoint->print_it this bp will be deleted
5221 already. So we have no choice but print the information
5222 here. */
5223
5224 SWITCH_THRU_ALL_UIS ()
5225 {
5226 struct ui_out *uiout = current_uiout;
5227
5228 if (uiout->is_mi_like_p ())
5229 uiout->field_string
5230 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
5231 uiout->message ("\nWatchpoint %pF deleted because the program has "
5232 "left the block in\n"
5233 "which its expression is valid.\n",
5234 signed_field ("wpnum", b->number));
5235 }
5236
5237 /* Make sure the watchpoint's commands aren't executed. */
5238 b->commands = NULL;
5239 watchpoint_del_at_next_stop (b);
5240
5241 return WP_DELETED;
5242 }
5243 }
5244
5245 /* Return true if it looks like target has stopped due to hitting
5246 breakpoint location BL. This function does not check if we should
5247 stop, only if BL explains the stop. */
5248
5249 static bool
5250 bpstat_check_location (const struct bp_location *bl,
5251 const address_space *aspace, CORE_ADDR bp_addr,
5252 const target_waitstatus &ws)
5253 {
5254 struct breakpoint *b = bl->owner;
5255
5256 /* BL is from an existing breakpoint. */
5257 gdb_assert (b != NULL);
5258
5259 return b->breakpoint_hit (bl, aspace, bp_addr, ws);
5260 }
5261
5262 /* Determine if the watched values have actually changed, and we
5263 should stop. If not, set BS->stop to false. */
5264
5265 static void
5266 bpstat_check_watchpoint (bpstat *bs)
5267 {
5268 const struct bp_location *bl;
5269 struct watchpoint *b;
5270
5271 /* BS is built for existing struct breakpoint. */
5272 bl = bs->bp_location_at.get ();
5273 gdb_assert (bl != NULL);
5274 b = (struct watchpoint *) bs->breakpoint_at;
5275 gdb_assert (b != NULL);
5276
5277 {
5278 bool must_check_value = false;
5279
5280 if (b->type == bp_watchpoint)
5281 /* For a software watchpoint, we must always check the
5282 watched value. */
5283 must_check_value = true;
5284 else if (b->watchpoint_triggered == watch_triggered_yes)
5285 /* We have a hardware watchpoint (read, write, or access)
5286 and the target earlier reported an address watched by
5287 this watchpoint. */
5288 must_check_value = true;
5289 else if (b->watchpoint_triggered == watch_triggered_unknown
5290 && b->type == bp_hardware_watchpoint)
5291 /* We were stopped by a hardware watchpoint, but the target could
5292 not report the data address. We must check the watchpoint's
5293 value. Access and read watchpoints are out of luck; without
5294 a data address, we can't figure it out. */
5295 must_check_value = true;
5296
5297 if (must_check_value)
5298 {
5299 wp_check_result e;
5300
5301 try
5302 {
5303 e = watchpoint_check (bs);
5304 }
5305 catch (const gdb_exception &ex)
5306 {
5307 exception_fprintf (gdb_stderr, ex,
5308 "Error evaluating expression "
5309 "for watchpoint %d\n",
5310 b->number);
5311
5312 SWITCH_THRU_ALL_UIS ()
5313 {
5314 gdb_printf (_("Watchpoint %d deleted.\n"),
5315 b->number);
5316 }
5317 watchpoint_del_at_next_stop (b);
5318 e = WP_DELETED;
5319 }
5320
5321 switch (e)
5322 {
5323 case WP_DELETED:
5324 /* We've already printed what needs to be printed. */
5325 bs->print_it = print_it_done;
5326 /* Stop. */
5327 break;
5328 case WP_IGNORE:
5329 bs->print_it = print_it_noop;
5330 bs->stop = false;
5331 break;
5332 case WP_VALUE_CHANGED:
5333 if (b->type == bp_read_watchpoint)
5334 {
5335 /* There are two cases to consider here:
5336
5337 1. We're watching the triggered memory for reads.
5338 In that case, trust the target, and always report
5339 the watchpoint hit to the user. Even though
5340 reads don't cause value changes, the value may
5341 have changed since the last time it was read, and
5342 since we're not trapping writes, we will not see
5343 those, and as such we should ignore our notion of
5344 old value.
5345
5346 2. We're watching the triggered memory for both
5347 reads and writes. There are two ways this may
5348 happen:
5349
5350 2.1. This is a target that can't break on data
5351 reads only, but can break on accesses (reads or
5352 writes), such as e.g., x86. We detect this case
5353 at the time we try to insert read watchpoints.
5354
5355 2.2. Otherwise, the target supports read
5356 watchpoints, but, the user set an access or write
5357 watchpoint watching the same memory as this read
5358 watchpoint.
5359
5360 If we're watching memory writes as well as reads,
5361 ignore watchpoint hits when we find that the
5362 value hasn't changed, as reads don't cause
5363 changes. This still gives false positives when
5364 the program writes the same value to memory as
5365 what there was already in memory (we will confuse
5366 it for a read), but it's much better than
5367 nothing. */
5368
5369 int other_write_watchpoint = 0;
5370
5371 if (bl->watchpoint_type == hw_read)
5372 {
5373 for (breakpoint *other_b : all_breakpoints ())
5374 if (other_b->type == bp_hardware_watchpoint
5375 || other_b->type == bp_access_watchpoint)
5376 {
5377 struct watchpoint *other_w =
5378 (struct watchpoint *) other_b;
5379
5380 if (other_w->watchpoint_triggered
5381 == watch_triggered_yes)
5382 {
5383 other_write_watchpoint = 1;
5384 break;
5385 }
5386 }
5387 }
5388
5389 if (other_write_watchpoint
5390 || bl->watchpoint_type == hw_access)
5391 {
5392 /* We're watching the same memory for writes,
5393 and the value changed since the last time we
5394 updated it, so this trap must be for a write.
5395 Ignore it. */
5396 bs->print_it = print_it_noop;
5397 bs->stop = false;
5398 }
5399 }
5400 break;
5401 case WP_VALUE_NOT_CHANGED:
5402 if (b->type == bp_hardware_watchpoint
5403 || b->type == bp_watchpoint)
5404 {
5405 /* Don't stop: write watchpoints shouldn't fire if
5406 the value hasn't changed. */
5407 bs->print_it = print_it_noop;
5408 bs->stop = false;
5409 }
5410 /* Stop. */
5411 break;
5412 default:
5413 /* Can't happen. */
5414 break;
5415 }
5416 }
5417 else /* !must_check_value */
5418 {
5419 /* This is a case where some watchpoint(s) triggered, but
5420 not at the address of this watchpoint, or else no
5421 watchpoint triggered after all. So don't print
5422 anything for this watchpoint. */
5423 bs->print_it = print_it_noop;
5424 bs->stop = false;
5425 }
5426 }
5427 }
5428
5429 /* For breakpoints that are currently marked as telling gdb to stop,
5430 check conditions (condition proper, frame, thread and ignore count)
5431 of breakpoint referred to by BS. If we should not stop for this
5432 breakpoint, set BS->stop to 0. */
5433
5434 static void
5435 bpstat_check_breakpoint_conditions (bpstat *bs, thread_info *thread)
5436 {
5437 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
5438
5439 const struct bp_location *bl;
5440 struct breakpoint *b;
5441 /* Assume stop. */
5442 bool condition_result = true;
5443 struct expression *cond;
5444
5445 gdb_assert (bs->stop);
5446
5447 /* BS is built for existing struct breakpoint. */
5448 bl = bs->bp_location_at.get ();
5449 gdb_assert (bl != NULL);
5450 b = bs->breakpoint_at;
5451 gdb_assert (b != NULL);
5452
5453 infrun_debug_printf ("thread = %s, breakpoint %d.%d",
5454 thread->ptid.to_string ().c_str (),
5455 b->number, find_loc_num_by_location (bl));
5456
5457 /* Even if the target evaluated the condition on its end and notified GDB, we
5458 need to do so again since GDB does not know if we stopped due to a
5459 breakpoint or a single step breakpoint. */
5460
5461 if (frame_id_p (b->frame_id)
5462 && b->frame_id != get_stack_frame_id (get_current_frame ()))
5463 {
5464 infrun_debug_printf ("incorrect frame %s not %s, not stopping",
5465 get_stack_frame_id (get_current_frame ()).to_string ().c_str (),
5466 b->frame_id.to_string ().c_str ());
5467 bs->stop = false;
5468 return;
5469 }
5470
5471 /* If this is a thread/task-specific breakpoint, don't waste cpu
5472 evaluating the condition if this isn't the specified
5473 thread/task. */
5474 if ((b->thread != -1 && b->thread != thread->global_num)
5475 || (b->task != -1 && b->task != ada_get_task_number (thread)))
5476 {
5477 infrun_debug_printf ("incorrect thread or task, not stopping");
5478 bs->stop = false;
5479 return;
5480 }
5481
5482 /* Evaluate extension language breakpoints that have a "stop" method
5483 implemented. */
5484 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5485
5486 if (is_watchpoint (b))
5487 {
5488 struct watchpoint *w = (struct watchpoint *) b;
5489
5490 cond = w->cond_exp.get ();
5491 }
5492 else
5493 cond = bl->cond.get ();
5494
5495 if (cond != nullptr && b->disposition != disp_del_at_next_stop)
5496 {
5497 bool within_current_scope = true;
5498 struct watchpoint * w;
5499
5500 /* We use scoped_value_mark because it could be a long time
5501 before we return to the command level and call
5502 free_all_values. We can't call free_all_values because we
5503 might be in the middle of evaluating a function call. */
5504 scoped_value_mark mark;
5505
5506 if (is_watchpoint (b))
5507 w = (struct watchpoint *) b;
5508 else
5509 w = NULL;
5510
5511 /* Need to select the frame, with all that implies so that
5512 the conditions will have the right context. Because we
5513 use the frame, we will not see an inlined function's
5514 variables when we arrive at a breakpoint at the start
5515 of the inlined function; the current frame will be the
5516 call site. */
5517 if (w == NULL || w->cond_exp_valid_block == NULL)
5518 select_frame (get_current_frame ());
5519 else
5520 {
5521 frame_info_ptr frame;
5522
5523 /* For local watchpoint expressions, which particular
5524 instance of a local is being watched matters, so we
5525 keep track of the frame to evaluate the expression
5526 in. To evaluate the condition however, it doesn't
5527 really matter which instantiation of the function
5528 where the condition makes sense triggers the
5529 watchpoint. This allows an expression like "watch
5530 global if q > 10" set in `func', catch writes to
5531 global on all threads that call `func', or catch
5532 writes on all recursive calls of `func' by a single
5533 thread. We simply always evaluate the condition in
5534 the innermost frame that's executing where it makes
5535 sense to evaluate the condition. It seems
5536 intuitive. */
5537 frame = block_innermost_frame (w->cond_exp_valid_block);
5538 if (frame != NULL)
5539 select_frame (frame);
5540 else
5541 within_current_scope = false;
5542 }
5543 if (within_current_scope)
5544 {
5545 try
5546 {
5547 condition_result = breakpoint_cond_eval (cond);
5548 }
5549 catch (const gdb_exception &ex)
5550 {
5551 exception_fprintf (gdb_stderr, ex,
5552 "Error in testing breakpoint condition:\n");
5553 }
5554 }
5555 else
5556 {
5557 warning (_("Watchpoint condition cannot be tested "
5558 "in the current scope"));
5559 /* If we failed to set the right context for this
5560 watchpoint, unconditionally report it. */
5561 }
5562 /* FIXME-someday, should give breakpoint #. */
5563 }
5564
5565 if (cond != nullptr && !condition_result)
5566 {
5567 infrun_debug_printf ("condition_result = false, not stopping");
5568 bs->stop = false;
5569 return;
5570 }
5571 else if (b->ignore_count > 0)
5572 {
5573 infrun_debug_printf ("ignore count %d, not stopping",
5574 b->ignore_count);
5575 b->ignore_count--;
5576 bs->stop = false;
5577 /* Increase the hit count even though we don't stop. */
5578 ++(b->hit_count);
5579 gdb::observers::breakpoint_modified.notify (b);
5580 return;
5581 }
5582
5583 if (bs->stop)
5584 infrun_debug_printf ("stopping at this breakpoint");
5585 else
5586 infrun_debug_printf ("not stopping at this breakpoint");
5587 }
5588
5589 /* Returns true if we need to track moribund locations of LOC's type
5590 on the current target. */
5591
5592 static bool
5593 need_moribund_for_location_type (const struct bp_location *loc)
5594 {
5595 return ((loc->loc_type == bp_loc_software_breakpoint
5596 && !target_supports_stopped_by_sw_breakpoint ())
5597 || (loc->loc_type == bp_loc_hardware_breakpoint
5598 && !target_supports_stopped_by_hw_breakpoint ()));
5599 }
5600
5601 /* See breakpoint.h. */
5602
5603 bpstat *
5604 build_bpstat_chain (const address_space *aspace, CORE_ADDR bp_addr,
5605 const target_waitstatus &ws)
5606 {
5607 bpstat *bs_head = nullptr, **bs_link = &bs_head;
5608
5609 for (breakpoint *b : all_breakpoints ())
5610 {
5611 if (!breakpoint_enabled (b))
5612 continue;
5613
5614 for (bp_location *bl : b->locations ())
5615 {
5616 /* For hardware watchpoints, we look only at the first
5617 location. The watchpoint_check function will work on the
5618 entire expression, not the individual locations. For
5619 read watchpoints, the watchpoints_triggered function has
5620 checked all locations already. */
5621 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5622 break;
5623
5624 if (!bl->enabled || bl->disabled_by_cond || bl->shlib_disabled)
5625 continue;
5626
5627 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5628 continue;
5629
5630 /* Come here if it's a watchpoint, or if the break address
5631 matches. */
5632
5633 bpstat *bs = new bpstat (bl, &bs_link); /* Alloc a bpstat to
5634 explain stop. */
5635
5636 /* Assume we stop. Should we find a watchpoint that is not
5637 actually triggered, or if the condition of the breakpoint
5638 evaluates as false, we'll reset 'stop' to 0. */
5639 bs->stop = true;
5640 bs->print = true;
5641
5642 /* If this is a scope breakpoint, mark the associated
5643 watchpoint as triggered so that we will handle the
5644 out-of-scope event. We'll get to the watchpoint next
5645 iteration. */
5646 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5647 {
5648 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5649
5650 w->watchpoint_triggered = watch_triggered_yes;
5651 }
5652 }
5653 }
5654
5655 /* Check if a moribund breakpoint explains the stop. */
5656 if (!target_supports_stopped_by_sw_breakpoint ()
5657 || !target_supports_stopped_by_hw_breakpoint ())
5658 {
5659 for (bp_location *loc : moribund_locations)
5660 {
5661 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5662 && need_moribund_for_location_type (loc))
5663 {
5664 bpstat *bs = new bpstat (loc, &bs_link);
5665 /* For hits of moribund locations, we should just proceed. */
5666 bs->stop = false;
5667 bs->print = false;
5668 bs->print_it = print_it_noop;
5669 }
5670 }
5671 }
5672
5673 return bs_head;
5674 }
5675
5676 /* See breakpoint.h. */
5677
5678 bpstat *
5679 bpstat_stop_status (const address_space *aspace,
5680 CORE_ADDR bp_addr, thread_info *thread,
5681 const target_waitstatus &ws,
5682 bpstat *stop_chain)
5683 {
5684 struct breakpoint *b = NULL;
5685 /* First item of allocated bpstat's. */
5686 bpstat *bs_head = stop_chain;
5687 bpstat *bs;
5688 int need_remove_insert;
5689 int removed_any;
5690
5691 /* First, build the bpstat chain with locations that explain a
5692 target stop, while being careful to not set the target running,
5693 as that may invalidate locations (in particular watchpoint
5694 locations are recreated). Resuming will happen here with
5695 breakpoint conditions or watchpoint expressions that include
5696 inferior function calls. */
5697 if (bs_head == NULL)
5698 bs_head = build_bpstat_chain (aspace, bp_addr, ws);
5699
5700 /* A bit of special processing for shlib breakpoints. We need to
5701 process solib loading here, so that the lists of loaded and
5702 unloaded libraries are correct before we handle "catch load" and
5703 "catch unload". */
5704 for (bs = bs_head; bs != NULL; bs = bs->next)
5705 {
5706 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5707 {
5708 handle_solib_event ();
5709 break;
5710 }
5711 }
5712
5713 /* Now go through the locations that caused the target to stop, and
5714 check whether we're interested in reporting this stop to higher
5715 layers, or whether we should resume the target transparently. */
5716
5717 removed_any = 0;
5718
5719 for (bs = bs_head; bs != NULL; bs = bs->next)
5720 {
5721 if (!bs->stop)
5722 continue;
5723
5724 b = bs->breakpoint_at;
5725 b->check_status (bs);
5726 if (bs->stop)
5727 {
5728 bpstat_check_breakpoint_conditions (bs, thread);
5729
5730 if (bs->stop)
5731 {
5732 ++(b->hit_count);
5733
5734 /* We will stop here. */
5735 if (b->disposition == disp_disable)
5736 {
5737 --(b->enable_count);
5738 if (b->enable_count <= 0)
5739 b->enable_state = bp_disabled;
5740 removed_any = 1;
5741 }
5742 gdb::observers::breakpoint_modified.notify (b);
5743 if (b->silent)
5744 bs->print = false;
5745 bs->commands = b->commands;
5746 if (command_line_is_silent (bs->commands
5747 ? bs->commands.get () : NULL))
5748 bs->print = false;
5749
5750 b->after_condition_true (bs);
5751 }
5752
5753 }
5754
5755 /* Print nothing for this entry if we don't stop or don't
5756 print. */
5757 if (!bs->stop || !bs->print)
5758 bs->print_it = print_it_noop;
5759 }
5760
5761 /* If we aren't stopping, the value of some hardware watchpoint may
5762 not have changed, but the intermediate memory locations we are
5763 watching may have. Don't bother if we're stopping; this will get
5764 done later. */
5765 need_remove_insert = 0;
5766 if (! bpstat_causes_stop (bs_head))
5767 for (bs = bs_head; bs != NULL; bs = bs->next)
5768 if (!bs->stop
5769 && bs->breakpoint_at
5770 && is_hardware_watchpoint (bs->breakpoint_at))
5771 {
5772 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5773
5774 update_watchpoint (w, false /* don't reparse. */);
5775 need_remove_insert = 1;
5776 }
5777
5778 if (need_remove_insert)
5779 update_global_location_list (UGLL_MAY_INSERT);
5780 else if (removed_any)
5781 update_global_location_list (UGLL_DONT_INSERT);
5782
5783 return bs_head;
5784 }
5785
5786 /* See breakpoint.h. */
5787
5788 bpstat *
5789 bpstat_stop_status_nowatch (const address_space *aspace, CORE_ADDR bp_addr,
5790 thread_info *thread, const target_waitstatus &ws)
5791 {
5792 gdb_assert (!target_stopped_by_watchpoint ());
5793
5794 /* Clear all watchpoints' 'watchpoint_triggered' value from a
5795 previous stop to avoid confusing bpstat_stop_status. */
5796 watchpoints_triggered (ws);
5797
5798 return bpstat_stop_status (aspace, bp_addr, thread, ws);
5799 }
5800
5801 static void
5802 handle_jit_event (CORE_ADDR address)
5803 {
5804 struct gdbarch *gdbarch;
5805
5806 infrun_debug_printf ("handling bp_jit_event");
5807
5808 /* Switch terminal for any messages produced by
5809 breakpoint_re_set. */
5810 target_terminal::ours_for_output ();
5811
5812 gdbarch = get_frame_arch (get_current_frame ());
5813 /* This event is caused by a breakpoint set in `jit_breakpoint_re_set`,
5814 thus it is expected that its objectfile can be found through
5815 minimal symbol lookup. If it doesn't work (and assert fails), it
5816 most likely means that `jit_breakpoint_re_set` was changes and this
5817 function needs to be updated too. */
5818 bound_minimal_symbol jit_bp_sym = lookup_minimal_symbol_by_pc (address);
5819 gdb_assert (jit_bp_sym.objfile != nullptr);
5820 objfile *objfile = jit_bp_sym.objfile;
5821 if (objfile->separate_debug_objfile_backlink)
5822 objfile = objfile->separate_debug_objfile_backlink;
5823 jit_event_handler (gdbarch, objfile);
5824
5825 target_terminal::inferior ();
5826 }
5827
5828 /* Prepare WHAT final decision for infrun. */
5829
5830 /* Decide what infrun needs to do with this bpstat. */
5831
5832 struct bpstat_what
5833 bpstat_what (bpstat *bs_head)
5834 {
5835 struct bpstat_what retval;
5836 bpstat *bs;
5837
5838 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5839 retval.call_dummy = STOP_NONE;
5840 retval.is_longjmp = false;
5841
5842 for (bs = bs_head; bs != NULL; bs = bs->next)
5843 {
5844 /* Extract this BS's action. After processing each BS, we check
5845 if its action overrides all we've seem so far. */
5846 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5847 enum bptype bptype;
5848
5849 if (bs->breakpoint_at == NULL)
5850 {
5851 /* I suspect this can happen if it was a momentary
5852 breakpoint which has since been deleted. */
5853 bptype = bp_none;
5854 }
5855 else
5856 bptype = bs->breakpoint_at->type;
5857
5858 switch (bptype)
5859 {
5860 case bp_none:
5861 break;
5862 case bp_breakpoint:
5863 case bp_hardware_breakpoint:
5864 case bp_single_step:
5865 case bp_until:
5866 case bp_finish:
5867 case bp_shlib_event:
5868 if (bs->stop)
5869 {
5870 if (bs->print)
5871 this_action = BPSTAT_WHAT_STOP_NOISY;
5872 else
5873 this_action = BPSTAT_WHAT_STOP_SILENT;
5874 }
5875 else
5876 this_action = BPSTAT_WHAT_SINGLE;
5877 break;
5878 case bp_watchpoint:
5879 case bp_hardware_watchpoint:
5880 case bp_read_watchpoint:
5881 case bp_access_watchpoint:
5882 if (bs->stop)
5883 {
5884 if (bs->print)
5885 this_action = BPSTAT_WHAT_STOP_NOISY;
5886 else
5887 this_action = BPSTAT_WHAT_STOP_SILENT;
5888 }
5889 else
5890 {
5891 /* There was a watchpoint, but we're not stopping.
5892 This requires no further action. */
5893 }
5894 break;
5895 case bp_longjmp:
5896 case bp_longjmp_call_dummy:
5897 case bp_exception:
5898 if (bs->stop)
5899 {
5900 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5901 retval.is_longjmp = bptype != bp_exception;
5902 }
5903 else
5904 this_action = BPSTAT_WHAT_SINGLE;
5905 break;
5906 case bp_longjmp_resume:
5907 case bp_exception_resume:
5908 if (bs->stop)
5909 {
5910 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5911 retval.is_longjmp = bptype == bp_longjmp_resume;
5912 }
5913 else
5914 this_action = BPSTAT_WHAT_SINGLE;
5915 break;
5916 case bp_step_resume:
5917 if (bs->stop)
5918 this_action = BPSTAT_WHAT_STEP_RESUME;
5919 else
5920 {
5921 /* It is for the wrong frame. */
5922 this_action = BPSTAT_WHAT_SINGLE;
5923 }
5924 break;
5925 case bp_hp_step_resume:
5926 if (bs->stop)
5927 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5928 else
5929 {
5930 /* It is for the wrong frame. */
5931 this_action = BPSTAT_WHAT_SINGLE;
5932 }
5933 break;
5934 case bp_watchpoint_scope:
5935 case bp_thread_event:
5936 case bp_overlay_event:
5937 case bp_longjmp_master:
5938 case bp_std_terminate_master:
5939 case bp_exception_master:
5940 this_action = BPSTAT_WHAT_SINGLE;
5941 break;
5942 case bp_catchpoint:
5943 if (bs->stop)
5944 {
5945 if (bs->print)
5946 this_action = BPSTAT_WHAT_STOP_NOISY;
5947 else
5948 this_action = BPSTAT_WHAT_STOP_SILENT;
5949 }
5950 else
5951 {
5952 /* Some catchpoints are implemented with breakpoints.
5953 For those, we need to step over the breakpoint. */
5954 if (bs->bp_location_at->loc_type == bp_loc_software_breakpoint
5955 || bs->bp_location_at->loc_type == bp_loc_hardware_breakpoint)
5956 this_action = BPSTAT_WHAT_SINGLE;
5957 }
5958 break;
5959 case bp_jit_event:
5960 this_action = BPSTAT_WHAT_SINGLE;
5961 break;
5962 case bp_call_dummy:
5963 /* Make sure the action is stop (silent or noisy),
5964 so infrun.c pops the dummy frame. */
5965 retval.call_dummy = STOP_STACK_DUMMY;
5966 this_action = BPSTAT_WHAT_STOP_SILENT;
5967 break;
5968 case bp_std_terminate:
5969 /* Make sure the action is stop (silent or noisy),
5970 so infrun.c pops the dummy frame. */
5971 retval.call_dummy = STOP_STD_TERMINATE;
5972 this_action = BPSTAT_WHAT_STOP_SILENT;
5973 break;
5974 case bp_tracepoint:
5975 case bp_fast_tracepoint:
5976 case bp_static_tracepoint:
5977 case bp_static_marker_tracepoint:
5978 /* Tracepoint hits should not be reported back to GDB, and
5979 if one got through somehow, it should have been filtered
5980 out already. */
5981 internal_error (_("bpstat_what: tracepoint encountered"));
5982 break;
5983 case bp_gnu_ifunc_resolver:
5984 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5985 this_action = BPSTAT_WHAT_SINGLE;
5986 break;
5987 case bp_gnu_ifunc_resolver_return:
5988 /* The breakpoint will be removed, execution will restart from the
5989 PC of the former breakpoint. */
5990 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5991 break;
5992
5993 case bp_dprintf:
5994 if (bs->stop)
5995 this_action = BPSTAT_WHAT_STOP_SILENT;
5996 else
5997 this_action = BPSTAT_WHAT_SINGLE;
5998 break;
5999
6000 default:
6001 internal_error (_("bpstat_what: unhandled bptype %d"), (int) bptype);
6002 }
6003
6004 retval.main_action = std::max (retval.main_action, this_action);
6005 }
6006
6007 return retval;
6008 }
6009
6010 void
6011 bpstat_run_callbacks (bpstat *bs_head)
6012 {
6013 bpstat *bs;
6014
6015 for (bs = bs_head; bs != NULL; bs = bs->next)
6016 {
6017 struct breakpoint *b = bs->breakpoint_at;
6018
6019 if (b == NULL)
6020 continue;
6021 switch (b->type)
6022 {
6023 case bp_jit_event:
6024 handle_jit_event (bs->bp_location_at->address);
6025 break;
6026 case bp_gnu_ifunc_resolver:
6027 gnu_ifunc_resolver_stop ((code_breakpoint *) b);
6028 break;
6029 case bp_gnu_ifunc_resolver_return:
6030 gnu_ifunc_resolver_return_stop ((code_breakpoint *) b);
6031 break;
6032 }
6033 }
6034 }
6035
6036 /* See breakpoint.h. */
6037
6038 bool
6039 bpstat_should_step ()
6040 {
6041 for (breakpoint *b : all_breakpoints ())
6042 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
6043 return true;
6044
6045 return false;
6046 }
6047
6048 /* See breakpoint.h. */
6049
6050 bool
6051 bpstat_causes_stop (bpstat *bs)
6052 {
6053 for (; bs != NULL; bs = bs->next)
6054 if (bs->stop)
6055 return true;
6056
6057 return false;
6058 }
6059
6060 \f
6061
6062 /* Compute a number of spaces suitable to indent the next line
6063 so it starts at the position corresponding to the table column
6064 named COL_NAME in the currently active table of UIOUT. */
6065
6066 static int
6067 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
6068 {
6069 int i, total_width, width, align;
6070 const char *text;
6071
6072 total_width = 0;
6073 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
6074 {
6075 if (strcmp (text, col_name) == 0)
6076 return total_width;
6077
6078 total_width += width + 1;
6079 }
6080
6081 return 0;
6082 }
6083
6084 /* Determine if the locations of this breakpoint will have their conditions
6085 evaluated by the target, host or a mix of both. Returns the following:
6086
6087 "host": Host evals condition.
6088 "host or target": Host or Target evals condition.
6089 "target": Target evals condition.
6090 */
6091
6092 static const char *
6093 bp_condition_evaluator (const breakpoint *b)
6094 {
6095 char host_evals = 0;
6096 char target_evals = 0;
6097
6098 if (!b)
6099 return NULL;
6100
6101 if (!is_breakpoint (b))
6102 return NULL;
6103
6104 if (gdb_evaluates_breakpoint_condition_p ()
6105 || !target_supports_evaluation_of_breakpoint_conditions ())
6106 return condition_evaluation_host;
6107
6108 for (bp_location *bl : b->locations ())
6109 {
6110 if (bl->cond_bytecode)
6111 target_evals++;
6112 else
6113 host_evals++;
6114 }
6115
6116 if (host_evals && target_evals)
6117 return condition_evaluation_both;
6118 else if (target_evals)
6119 return condition_evaluation_target;
6120 else
6121 return condition_evaluation_host;
6122 }
6123
6124 /* Determine the breakpoint location's condition evaluator. This is
6125 similar to bp_condition_evaluator, but for locations. */
6126
6127 static const char *
6128 bp_location_condition_evaluator (const struct bp_location *bl)
6129 {
6130 if (bl && !is_breakpoint (bl->owner))
6131 return NULL;
6132
6133 if (gdb_evaluates_breakpoint_condition_p ()
6134 || !target_supports_evaluation_of_breakpoint_conditions ())
6135 return condition_evaluation_host;
6136
6137 if (bl && bl->cond_bytecode)
6138 return condition_evaluation_target;
6139 else
6140 return condition_evaluation_host;
6141 }
6142
6143 /* Print the LOC location out of the list of B->LOC locations. */
6144
6145 static void
6146 print_breakpoint_location (const breakpoint *b,
6147 struct bp_location *loc)
6148 {
6149 struct ui_out *uiout = current_uiout;
6150
6151 scoped_restore_current_program_space restore_pspace;
6152
6153 if (loc != NULL && loc->shlib_disabled)
6154 loc = NULL;
6155
6156 if (loc != NULL)
6157 set_current_program_space (loc->pspace);
6158
6159 if (b->display_canonical)
6160 uiout->field_string ("what", b->locspec->to_string ());
6161 else if (loc && loc->symtab)
6162 {
6163 const struct symbol *sym = loc->symbol;
6164
6165 if (sym)
6166 {
6167 uiout->text ("in ");
6168 uiout->field_string ("func", sym->print_name (),
6169 function_name_style.style ());
6170 uiout->text (" ");
6171 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
6172 uiout->text ("at ");
6173 }
6174 uiout->field_string ("file",
6175 symtab_to_filename_for_display (loc->symtab),
6176 file_name_style.style ());
6177 uiout->text (":");
6178
6179 if (uiout->is_mi_like_p ())
6180 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
6181
6182 uiout->field_signed ("line", loc->line_number);
6183 }
6184 else if (loc)
6185 {
6186 string_file stb;
6187
6188 print_address_symbolic (loc->gdbarch, loc->address, &stb,
6189 demangle, "");
6190 uiout->field_stream ("at", stb);
6191 }
6192 else
6193 {
6194 uiout->field_string ("pending", b->locspec->to_string ());
6195 /* If extra_string is available, it could be holding a condition
6196 or dprintf arguments. In either case, make sure it is printed,
6197 too, but only for non-MI streams. */
6198 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
6199 {
6200 if (b->type == bp_dprintf)
6201 uiout->text (",");
6202 else
6203 uiout->text (" ");
6204 uiout->text (b->extra_string.get ());
6205 }
6206 }
6207
6208 if (loc && is_breakpoint (b)
6209 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
6210 && bp_condition_evaluator (b) == condition_evaluation_both)
6211 {
6212 uiout->text (" (");
6213 uiout->field_string ("evaluated-by",
6214 bp_location_condition_evaluator (loc));
6215 uiout->text (")");
6216 }
6217 }
6218
6219 static const char *
6220 bptype_string (enum bptype type)
6221 {
6222 struct ep_type_description
6223 {
6224 enum bptype type;
6225 const char *description;
6226 };
6227 static struct ep_type_description bptypes[] =
6228 {
6229 {bp_none, "?deleted?"},
6230 {bp_breakpoint, "breakpoint"},
6231 {bp_hardware_breakpoint, "hw breakpoint"},
6232 {bp_single_step, "sw single-step"},
6233 {bp_until, "until"},
6234 {bp_finish, "finish"},
6235 {bp_watchpoint, "watchpoint"},
6236 {bp_hardware_watchpoint, "hw watchpoint"},
6237 {bp_read_watchpoint, "read watchpoint"},
6238 {bp_access_watchpoint, "acc watchpoint"},
6239 {bp_longjmp, "longjmp"},
6240 {bp_longjmp_resume, "longjmp resume"},
6241 {bp_longjmp_call_dummy, "longjmp for call dummy"},
6242 {bp_exception, "exception"},
6243 {bp_exception_resume, "exception resume"},
6244 {bp_step_resume, "step resume"},
6245 {bp_hp_step_resume, "high-priority step resume"},
6246 {bp_watchpoint_scope, "watchpoint scope"},
6247 {bp_call_dummy, "call dummy"},
6248 {bp_std_terminate, "std::terminate"},
6249 {bp_shlib_event, "shlib events"},
6250 {bp_thread_event, "thread events"},
6251 {bp_overlay_event, "overlay events"},
6252 {bp_longjmp_master, "longjmp master"},
6253 {bp_std_terminate_master, "std::terminate master"},
6254 {bp_exception_master, "exception master"},
6255 {bp_catchpoint, "catchpoint"},
6256 {bp_tracepoint, "tracepoint"},
6257 {bp_fast_tracepoint, "fast tracepoint"},
6258 {bp_static_tracepoint, "static tracepoint"},
6259 {bp_static_marker_tracepoint, "static marker tracepoint"},
6260 {bp_dprintf, "dprintf"},
6261 {bp_jit_event, "jit events"},
6262 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
6263 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
6264 };
6265
6266 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
6267 || ((int) type != bptypes[(int) type].type))
6268 internal_error (_("bptypes table does not describe type #%d."),
6269 (int) type);
6270
6271 return bptypes[(int) type].description;
6272 }
6273
6274 /* For MI, output a field named 'thread-groups' with a list as the value.
6275 For CLI, prefix the list with the string 'inf'. */
6276
6277 static void
6278 output_thread_groups (struct ui_out *uiout,
6279 const char *field_name,
6280 const std::vector<int> &inf_nums,
6281 int mi_only)
6282 {
6283 int is_mi = uiout->is_mi_like_p ();
6284
6285 /* For backward compatibility, don't display inferiors in CLI unless
6286 there are several. Always display them for MI. */
6287 if (!is_mi && mi_only)
6288 return;
6289
6290 ui_out_emit_list list_emitter (uiout, field_name);
6291
6292 for (size_t i = 0; i < inf_nums.size (); i++)
6293 {
6294 if (is_mi)
6295 {
6296 char mi_group[10];
6297
6298 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6299 uiout->field_string (NULL, mi_group);
6300 }
6301 else
6302 {
6303 if (i == 0)
6304 uiout->text (" inf ");
6305 else
6306 uiout->text (", ");
6307
6308 uiout->text (plongest (inf_nums[i]));
6309 }
6310 }
6311 }
6312
6313 /* See breakpoint.h. */
6314
6315 bool fix_breakpoint_script_output_globally = false;
6316
6317 /* Print B to gdb_stdout. If RAW_LOC, print raw breakpoint locations
6318 instead of going via breakpoint_ops::print_one. This makes "maint
6319 info breakpoints" show the software breakpoint locations of
6320 catchpoints, which are considered internal implementation
6321 detail. Returns true if RAW_LOC is false and if the breakpoint's
6322 print_one method did something; false otherwise. */
6323
6324 static bool
6325 print_one_breakpoint_location (struct breakpoint *b,
6326 struct bp_location *loc,
6327 int loc_number,
6328 struct bp_location **last_loc,
6329 int allflag, bool raw_loc)
6330 {
6331 struct command_line *l;
6332 static char bpenables[] = "nynny";
6333
6334 struct ui_out *uiout = current_uiout;
6335 bool header_of_multiple = false;
6336 bool part_of_multiple = (loc != NULL);
6337 struct value_print_options opts;
6338
6339 get_user_print_options (&opts);
6340
6341 gdb_assert (!loc || loc_number != 0);
6342 /* See comment in print_one_breakpoint concerning treatment of
6343 breakpoints with single disabled location. */
6344 if (loc == NULL
6345 && (b->loc != NULL
6346 && (b->loc->next != NULL
6347 || !b->loc->enabled || b->loc->disabled_by_cond)))
6348 header_of_multiple = true;
6349 if (loc == NULL)
6350 loc = b->loc;
6351
6352 annotate_record ();
6353
6354 /* 1 */
6355 annotate_field (0);
6356 if (part_of_multiple)
6357 uiout->field_fmt ("number", "%d.%d", b->number, loc_number);
6358 else
6359 uiout->field_signed ("number", b->number);
6360
6361 /* 2 */
6362 annotate_field (1);
6363 if (part_of_multiple)
6364 uiout->field_skip ("type");
6365 else
6366 uiout->field_string ("type", bptype_string (b->type));
6367
6368 /* 3 */
6369 annotate_field (2);
6370 if (part_of_multiple)
6371 uiout->field_skip ("disp");
6372 else
6373 uiout->field_string ("disp", bpdisp_text (b->disposition));
6374
6375 /* 4 */
6376 annotate_field (3);
6377 if (part_of_multiple)
6378 {
6379 /* For locations that are disabled because of an invalid
6380 condition, display "N*" on the CLI, where "*" refers to a
6381 footnote below the table. For MI, simply display a "N"
6382 without a footnote. On the CLI, for enabled locations whose
6383 breakpoint is disabled, display "y-". */
6384 auto get_enable_state = [uiout, loc] () -> const char *
6385 {
6386 if (uiout->is_mi_like_p ())
6387 {
6388 if (loc->disabled_by_cond)
6389 return "N";
6390 else if (!loc->enabled)
6391 return "n";
6392 else
6393 return "y";
6394 }
6395 else
6396 {
6397 if (loc->disabled_by_cond)
6398 return "N*";
6399 else if (!loc->enabled)
6400 return "n";
6401 else if (!breakpoint_enabled (loc->owner))
6402 return "y-";
6403 else
6404 return "y";
6405 }
6406 };
6407 uiout->field_string ("enabled", get_enable_state ());
6408 }
6409 else
6410 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6411
6412 /* 5 and 6 */
6413 bool result = false;
6414 if (!raw_loc && b->print_one (last_loc))
6415 result = true;
6416 else
6417 {
6418 if (is_watchpoint (b))
6419 {
6420 struct watchpoint *w = (struct watchpoint *) b;
6421
6422 /* Field 4, the address, is omitted (which makes the columns
6423 not line up too nicely with the headers, but the effect
6424 is relatively readable). */
6425 if (opts.addressprint)
6426 uiout->field_skip ("addr");
6427 annotate_field (5);
6428 uiout->field_string ("what", w->exp_string.get ());
6429 }
6430 else if (!is_catchpoint (b) || is_exception_catchpoint (b)
6431 || is_ada_exception_catchpoint (b))
6432 {
6433 if (opts.addressprint)
6434 {
6435 annotate_field (4);
6436 if (header_of_multiple)
6437 uiout->field_string ("addr", "<MULTIPLE>",
6438 metadata_style.style ());
6439 else if (b->loc == NULL || loc->shlib_disabled)
6440 uiout->field_string ("addr", "<PENDING>",
6441 metadata_style.style ());
6442 else
6443 uiout->field_core_addr ("addr",
6444 loc->gdbarch, loc->address);
6445 }
6446 annotate_field (5);
6447 if (!header_of_multiple)
6448 print_breakpoint_location (b, loc);
6449 if (b->loc)
6450 *last_loc = b->loc;
6451 }
6452 }
6453
6454 if (loc != NULL && !header_of_multiple)
6455 {
6456 std::vector<int> inf_nums;
6457 int mi_only = 1;
6458
6459 for (inferior *inf : all_inferiors ())
6460 {
6461 if (inf->pspace == loc->pspace)
6462 inf_nums.push_back (inf->num);
6463 }
6464
6465 /* For backward compatibility, don't display inferiors in CLI unless
6466 there are several. Always display for MI. */
6467 if (allflag
6468 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6469 && (program_spaces.size () > 1
6470 || number_of_inferiors () > 1)
6471 /* LOC is for existing B, it cannot be in
6472 moribund_locations and thus having NULL OWNER. */
6473 && loc->owner->type != bp_catchpoint))
6474 mi_only = 0;
6475 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6476 }
6477
6478 /* In the MI output, each location of a thread or task specific
6479 breakpoint includes the relevant thread or task ID. This is done for
6480 backwards compatibility reasons.
6481
6482 For the CLI output, the thread/task information is printed on a
6483 separate line, see the 'stop only in thread' and 'stop only in task'
6484 output below. */
6485 if (!header_of_multiple && uiout->is_mi_like_p ())
6486 {
6487 if (b->thread != -1)
6488 uiout->field_signed ("thread", b->thread);
6489 else if (b->task != -1)
6490 uiout->field_signed ("task", b->task);
6491 }
6492
6493 uiout->text ("\n");
6494
6495 if (!part_of_multiple)
6496 b->print_one_detail (uiout);
6497
6498 if (part_of_multiple && frame_id_p (b->frame_id))
6499 {
6500 annotate_field (6);
6501 uiout->text ("\tstop only in stack frame at ");
6502 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6503 the frame ID. */
6504 uiout->field_core_addr ("frame",
6505 b->gdbarch, b->frame_id.stack_addr);
6506 uiout->text ("\n");
6507 }
6508
6509 if (!part_of_multiple && b->cond_string)
6510 {
6511 annotate_field (7);
6512 if (is_tracepoint (b))
6513 uiout->text ("\ttrace only if ");
6514 else
6515 uiout->text ("\tstop only if ");
6516 uiout->field_string ("cond", b->cond_string.get ());
6517
6518 /* Print whether the target is doing the breakpoint's condition
6519 evaluation. If GDB is doing the evaluation, don't print anything. */
6520 if (is_breakpoint (b)
6521 && breakpoint_condition_evaluation_mode ()
6522 == condition_evaluation_target)
6523 {
6524 uiout->message (" (%pF evals)",
6525 string_field ("evaluated-by",
6526 bp_condition_evaluator (b)));
6527 }
6528 uiout->text ("\n");
6529 }
6530
6531 if (!part_of_multiple && b->thread != -1)
6532 {
6533 /* FIXME should make an annotation for this. */
6534 uiout->text ("\tstop only in thread ");
6535 if (uiout->is_mi_like_p ())
6536 uiout->field_signed ("thread", b->thread);
6537 else
6538 {
6539 struct thread_info *thr = find_thread_global_id (b->thread);
6540
6541 uiout->field_string ("thread", print_thread_id (thr));
6542 }
6543 uiout->text ("\n");
6544 }
6545
6546 if (!part_of_multiple && b->task != -1)
6547 {
6548 uiout->text ("\tstop only in task ");
6549 uiout->field_signed ("task", b->task);
6550 uiout->text ("\n");
6551 }
6552
6553 if (!part_of_multiple)
6554 {
6555 if (b->hit_count)
6556 {
6557 /* FIXME should make an annotation for this. */
6558 if (is_catchpoint (b))
6559 uiout->text ("\tcatchpoint");
6560 else if (is_tracepoint (b))
6561 uiout->text ("\ttracepoint");
6562 else
6563 uiout->text ("\tbreakpoint");
6564 uiout->text (" already hit ");
6565 uiout->field_signed ("times", b->hit_count);
6566 if (b->hit_count == 1)
6567 uiout->text (" time\n");
6568 else
6569 uiout->text (" times\n");
6570 }
6571 else
6572 {
6573 /* Output the count also if it is zero, but only if this is mi. */
6574 if (uiout->is_mi_like_p ())
6575 uiout->field_signed ("times", b->hit_count);
6576 }
6577 }
6578
6579 if (!part_of_multiple && b->ignore_count)
6580 {
6581 annotate_field (8);
6582 uiout->message ("\tignore next %pF hits\n",
6583 signed_field ("ignore", b->ignore_count));
6584 }
6585
6586 /* Note that an enable count of 1 corresponds to "enable once"
6587 behavior, which is reported by the combination of enablement and
6588 disposition, so we don't need to mention it here. */
6589 if (!part_of_multiple && b->enable_count > 1)
6590 {
6591 annotate_field (8);
6592 uiout->text ("\tdisable after ");
6593 /* Tweak the wording to clarify that ignore and enable counts
6594 are distinct, and have additive effect. */
6595 if (b->ignore_count)
6596 uiout->text ("additional ");
6597 else
6598 uiout->text ("next ");
6599 uiout->field_signed ("enable", b->enable_count);
6600 uiout->text (" hits\n");
6601 }
6602
6603 if (!part_of_multiple && is_tracepoint (b))
6604 {
6605 struct tracepoint *tp = (struct tracepoint *) b;
6606
6607 if (tp->traceframe_usage)
6608 {
6609 uiout->text ("\ttrace buffer usage ");
6610 uiout->field_signed ("traceframe-usage", tp->traceframe_usage);
6611 uiout->text (" bytes\n");
6612 }
6613 }
6614
6615 l = b->commands ? b->commands.get () : NULL;
6616 if (!part_of_multiple && l)
6617 {
6618 annotate_field (9);
6619
6620 bool use_fixed_output =
6621 (uiout->test_flags (fix_breakpoint_script_output)
6622 || fix_breakpoint_script_output_globally);
6623
6624 gdb::optional<ui_out_emit_tuple> tuple_emitter;
6625 gdb::optional<ui_out_emit_list> list_emitter;
6626
6627 if (use_fixed_output)
6628 list_emitter.emplace (uiout, "script");
6629 else
6630 tuple_emitter.emplace (uiout, "script");
6631
6632 print_command_lines (uiout, l, 4);
6633 }
6634
6635 if (is_tracepoint (b))
6636 {
6637 struct tracepoint *t = (struct tracepoint *) b;
6638
6639 if (!part_of_multiple && t->pass_count)
6640 {
6641 annotate_field (10);
6642 uiout->text ("\tpass count ");
6643 uiout->field_signed ("pass", t->pass_count);
6644 uiout->text (" \n");
6645 }
6646
6647 /* Don't display it when tracepoint or tracepoint location is
6648 pending. */
6649 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6650 {
6651 annotate_field (11);
6652
6653 if (uiout->is_mi_like_p ())
6654 uiout->field_string ("installed",
6655 loc->inserted ? "y" : "n");
6656 else
6657 {
6658 if (loc->inserted)
6659 uiout->text ("\t");
6660 else
6661 uiout->text ("\tnot ");
6662 uiout->text ("installed on target\n");
6663 }
6664 }
6665 }
6666
6667 if (uiout->is_mi_like_p () && !part_of_multiple)
6668 {
6669 if (is_watchpoint (b))
6670 {
6671 struct watchpoint *w = (struct watchpoint *) b;
6672
6673 uiout->field_string ("original-location", w->exp_string.get ());
6674 }
6675 else if (b->locspec != nullptr)
6676 {
6677 const char *str = b->locspec->to_string ();
6678 if (str != nullptr)
6679 uiout->field_string ("original-location", str);
6680 }
6681 }
6682
6683 return result;
6684 }
6685
6686 /* See breakpoint.h. */
6687
6688 bool fix_multi_location_breakpoint_output_globally = false;
6689
6690 static void
6691 print_one_breakpoint (struct breakpoint *b,
6692 struct bp_location **last_loc,
6693 int allflag)
6694 {
6695 struct ui_out *uiout = current_uiout;
6696 bool use_fixed_output
6697 = (uiout->test_flags (fix_multi_location_breakpoint_output)
6698 || fix_multi_location_breakpoint_output_globally);
6699
6700 gdb::optional<ui_out_emit_tuple> bkpt_tuple_emitter (gdb::in_place, uiout, "bkpt");
6701 bool printed = print_one_breakpoint_location (b, NULL, 0, last_loc,
6702 allflag, false);
6703
6704 /* The mi2 broken format: the main breakpoint tuple ends here, the locations
6705 are outside. */
6706 if (!use_fixed_output)
6707 bkpt_tuple_emitter.reset ();
6708
6709 /* If this breakpoint has custom print function,
6710 it's already printed. Otherwise, print individual
6711 locations, if any. */
6712 if (!printed || allflag)
6713 {
6714 /* If breakpoint has a single location that is disabled, we
6715 print it as if it had several locations, since otherwise it's
6716 hard to represent "breakpoint enabled, location disabled"
6717 situation.
6718
6719 Note that while hardware watchpoints have several locations
6720 internally, that's not a property exposed to users.
6721
6722 Likewise, while catchpoints may be implemented with
6723 breakpoints (e.g., catch throw), that's not a property
6724 exposed to users. We do however display the internal
6725 breakpoint locations with "maint info breakpoints". */
6726 if (!is_hardware_watchpoint (b)
6727 && (!is_catchpoint (b) || is_exception_catchpoint (b)
6728 || is_ada_exception_catchpoint (b))
6729 && (allflag
6730 || (b->loc && (b->loc->next
6731 || !b->loc->enabled
6732 || b->loc->disabled_by_cond))))
6733 {
6734 gdb::optional<ui_out_emit_list> locations_list;
6735
6736 /* For MI version <= 2, keep the behavior where GDB outputs an invalid
6737 MI record. For later versions, place breakpoint locations in a
6738 list. */
6739 if (uiout->is_mi_like_p () && use_fixed_output)
6740 locations_list.emplace (uiout, "locations");
6741
6742 int n = 1;
6743 for (bp_location *loc : b->locations ())
6744 {
6745 ui_out_emit_tuple loc_tuple_emitter (uiout, NULL);
6746 print_one_breakpoint_location (b, loc, n, last_loc,
6747 allflag, allflag);
6748 n++;
6749 }
6750 }
6751 }
6752 }
6753
6754 static int
6755 breakpoint_address_bits (struct breakpoint *b)
6756 {
6757 int print_address_bits = 0;
6758
6759 for (bp_location *loc : b->locations ())
6760 {
6761 if (!bl_address_is_meaningful (loc))
6762 continue;
6763
6764 int addr_bit = gdbarch_addr_bit (loc->gdbarch);
6765 if (addr_bit > print_address_bits)
6766 print_address_bits = addr_bit;
6767 }
6768
6769 return print_address_bits;
6770 }
6771
6772 /* See breakpoint.h. */
6773
6774 void
6775 print_breakpoint (breakpoint *b)
6776 {
6777 struct bp_location *dummy_loc = NULL;
6778 print_one_breakpoint (b, &dummy_loc, 0);
6779 }
6780
6781 /* Return true if this breakpoint was set by the user, false if it is
6782 internal or momentary. */
6783
6784 int
6785 user_breakpoint_p (struct breakpoint *b)
6786 {
6787 return b->number > 0;
6788 }
6789
6790 /* See breakpoint.h. */
6791
6792 int
6793 pending_breakpoint_p (struct breakpoint *b)
6794 {
6795 return b->loc == NULL;
6796 }
6797
6798 /* Print information on breakpoints (including watchpoints and tracepoints).
6799
6800 If non-NULL, BP_NUM_LIST is a list of numbers and number ranges as
6801 understood by number_or_range_parser. Only breakpoints included in this
6802 list are then printed.
6803
6804 If SHOW_INTERNAL is true, print internal breakpoints.
6805
6806 If FILTER is non-NULL, call it on each breakpoint and only include the
6807 ones for which it returns true.
6808
6809 Return the total number of breakpoints listed. */
6810
6811 static int
6812 breakpoint_1 (const char *bp_num_list, bool show_internal,
6813 bool (*filter) (const struct breakpoint *))
6814 {
6815 struct bp_location *last_loc = NULL;
6816 int nr_printable_breakpoints;
6817 struct value_print_options opts;
6818 int print_address_bits = 0;
6819 int print_type_col_width = 14;
6820 struct ui_out *uiout = current_uiout;
6821 bool has_disabled_by_cond_location = false;
6822
6823 get_user_print_options (&opts);
6824
6825 /* Compute the number of rows in the table, as well as the size
6826 required for address fields. */
6827 nr_printable_breakpoints = 0;
6828 for (breakpoint *b : all_breakpoints ())
6829 {
6830 /* If we have a filter, only list the breakpoints it accepts. */
6831 if (filter && !filter (b))
6832 continue;
6833
6834 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6835 accept. Skip the others. */
6836 if (bp_num_list != NULL && *bp_num_list != '\0')
6837 {
6838 if (show_internal && parse_and_eval_long (bp_num_list) != b->number)
6839 continue;
6840 if (!show_internal && !number_is_in_list (bp_num_list, b->number))
6841 continue;
6842 }
6843
6844 if (show_internal || user_breakpoint_p (b))
6845 {
6846 int addr_bit, type_len;
6847
6848 addr_bit = breakpoint_address_bits (b);
6849 if (addr_bit > print_address_bits)
6850 print_address_bits = addr_bit;
6851
6852 type_len = strlen (bptype_string (b->type));
6853 if (type_len > print_type_col_width)
6854 print_type_col_width = type_len;
6855
6856 nr_printable_breakpoints++;
6857 }
6858 }
6859
6860 {
6861 ui_out_emit_table table_emitter (uiout,
6862 opts.addressprint ? 6 : 5,
6863 nr_printable_breakpoints,
6864 "BreakpointTable");
6865
6866 if (nr_printable_breakpoints > 0)
6867 annotate_breakpoints_headers ();
6868 if (nr_printable_breakpoints > 0)
6869 annotate_field (0);
6870 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6871 if (nr_printable_breakpoints > 0)
6872 annotate_field (1);
6873 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6874 if (nr_printable_breakpoints > 0)
6875 annotate_field (2);
6876 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6877 if (nr_printable_breakpoints > 0)
6878 annotate_field (3);
6879 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6880 if (opts.addressprint)
6881 {
6882 if (nr_printable_breakpoints > 0)
6883 annotate_field (4);
6884 if (print_address_bits <= 32)
6885 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6886 else
6887 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6888 }
6889 if (nr_printable_breakpoints > 0)
6890 annotate_field (5);
6891 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6892 uiout->table_body ();
6893 if (nr_printable_breakpoints > 0)
6894 annotate_breakpoints_table ();
6895
6896 for (breakpoint *b : all_breakpoints ())
6897 {
6898 QUIT;
6899 /* If we have a filter, only list the breakpoints it accepts. */
6900 if (filter && !filter (b))
6901 continue;
6902
6903 /* If we have a BP_NUM_LIST string, it is a list of breakpoints to
6904 accept. Skip the others. */
6905
6906 if (bp_num_list != NULL && *bp_num_list != '\0')
6907 {
6908 if (show_internal) /* maintenance info breakpoint */
6909 {
6910 if (parse_and_eval_long (bp_num_list) != b->number)
6911 continue;
6912 }
6913 else /* all others */
6914 {
6915 if (!number_is_in_list (bp_num_list, b->number))
6916 continue;
6917 }
6918 }
6919 /* We only print out user settable breakpoints unless the
6920 show_internal is set. */
6921 if (show_internal || user_breakpoint_p (b))
6922 {
6923 print_one_breakpoint (b, &last_loc, show_internal);
6924 for (bp_location *loc : b->locations ())
6925 if (loc->disabled_by_cond)
6926 has_disabled_by_cond_location = true;
6927 }
6928 }
6929 }
6930
6931 if (nr_printable_breakpoints == 0)
6932 {
6933 /* If there's a filter, let the caller decide how to report
6934 empty list. */
6935 if (!filter)
6936 {
6937 if (bp_num_list == NULL || *bp_num_list == '\0')
6938 uiout->message ("No breakpoints or watchpoints.\n");
6939 else
6940 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6941 bp_num_list);
6942 }
6943 }
6944 else
6945 {
6946 if (last_loc && !server_command)
6947 set_next_address (last_loc->gdbarch, last_loc->address);
6948
6949 if (has_disabled_by_cond_location && !uiout->is_mi_like_p ())
6950 uiout->message (_("(*): Breakpoint condition is invalid at this "
6951 "location.\n"));
6952 }
6953
6954 /* FIXME? Should this be moved up so that it is only called when
6955 there have been breakpoints? */
6956 annotate_breakpoints_table_end ();
6957
6958 return nr_printable_breakpoints;
6959 }
6960
6961 /* Display the value of default-collect in a way that is generally
6962 compatible with the breakpoint list. */
6963
6964 static void
6965 default_collect_info (void)
6966 {
6967 struct ui_out *uiout = current_uiout;
6968
6969 /* If it has no value (which is frequently the case), say nothing; a
6970 message like "No default-collect." gets in user's face when it's
6971 not wanted. */
6972 if (default_collect.empty ())
6973 return;
6974
6975 /* The following phrase lines up nicely with per-tracepoint collect
6976 actions. */
6977 uiout->text ("default collect ");
6978 uiout->field_string ("default-collect", default_collect);
6979 uiout->text (" \n");
6980 }
6981
6982 static void
6983 info_breakpoints_command (const char *args, int from_tty)
6984 {
6985 breakpoint_1 (args, false, NULL);
6986
6987 default_collect_info ();
6988 }
6989
6990 static void
6991 info_watchpoints_command (const char *args, int from_tty)
6992 {
6993 int num_printed = breakpoint_1 (args, false, is_watchpoint);
6994 struct ui_out *uiout = current_uiout;
6995
6996 if (num_printed == 0)
6997 {
6998 if (args == NULL || *args == '\0')
6999 uiout->message ("No watchpoints.\n");
7000 else
7001 uiout->message ("No watchpoint matching '%s'.\n", args);
7002 }
7003 }
7004
7005 static void
7006 maintenance_info_breakpoints (const char *args, int from_tty)
7007 {
7008 breakpoint_1 (args, true, NULL);
7009
7010 default_collect_info ();
7011 }
7012
7013 static bool
7014 breakpoint_has_pc (struct breakpoint *b,
7015 struct program_space *pspace,
7016 CORE_ADDR pc, struct obj_section *section)
7017 {
7018 for (bp_location *bl : b->locations ())
7019 {
7020 if (bl->pspace == pspace
7021 && bl->address == pc
7022 && (!overlay_debugging || bl->section == section))
7023 return true;
7024 }
7025 return false;
7026 }
7027
7028 /* See breakpoint.h. */
7029
7030 void
7031 describe_other_breakpoints (struct gdbarch *gdbarch,
7032 struct program_space *pspace, CORE_ADDR pc,
7033 struct obj_section *section, int thread)
7034 {
7035 int others = 0;
7036
7037 for (breakpoint *b : all_breakpoints ())
7038 others += (user_breakpoint_p (b)
7039 && breakpoint_has_pc (b, pspace, pc, section));
7040
7041 if (others > 0)
7042 {
7043 if (others == 1)
7044 gdb_printf (_("Note: breakpoint "));
7045 else /* if (others == ???) */
7046 gdb_printf (_("Note: breakpoints "));
7047 for (breakpoint *b : all_breakpoints ())
7048 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
7049 {
7050 others--;
7051 gdb_printf ("%d", b->number);
7052 if (b->thread == -1 && thread != -1)
7053 gdb_printf (" (all threads)");
7054 else if (b->thread != -1)
7055 {
7056 struct thread_info *thr = find_thread_global_id (b->thread);
7057 gdb_printf (" (thread %s)", print_thread_id (thr));
7058 }
7059 else if (b->task != -1)
7060 gdb_printf (" (task %d)", b->task);
7061 gdb_printf ("%s%s ",
7062 ((b->enable_state == bp_disabled
7063 || b->enable_state == bp_call_disabled)
7064 ? " (disabled)"
7065 : ""),
7066 (others > 1) ? ","
7067 : ((others == 1) ? " and" : ""));
7068 }
7069 current_uiout->message (_("also set at pc %ps.\n"),
7070 styled_string (address_style.style (),
7071 paddress (gdbarch, pc)));
7072 }
7073 }
7074 \f
7075
7076 /* Return true iff it is meaningful to use the address member of LOC.
7077 For some breakpoint types, the locations' address members are
7078 irrelevant and it makes no sense to attempt to compare them to
7079 other addresses (or use them for any other purpose either).
7080
7081 More specifically, software watchpoints and catchpoints that are
7082 not backed by breakpoints always have a zero valued location
7083 address and we don't want to mark breakpoints of any of these types
7084 to be a duplicate of an actual breakpoint location at address
7085 zero. */
7086
7087 static bool
7088 bl_address_is_meaningful (bp_location *loc)
7089 {
7090 return loc->loc_type != bp_loc_other;
7091 }
7092
7093 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
7094 true if LOC1 and LOC2 represent the same watchpoint location. */
7095
7096 static bool
7097 watchpoint_locations_match (const struct bp_location *loc1,
7098 const struct bp_location *loc2)
7099 {
7100 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
7101 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
7102
7103 /* Both of them must exist. */
7104 gdb_assert (w1 != NULL);
7105 gdb_assert (w2 != NULL);
7106
7107 /* If the target can evaluate the condition expression in hardware,
7108 then we we need to insert both watchpoints even if they are at
7109 the same place. Otherwise the watchpoint will only trigger when
7110 the condition of whichever watchpoint was inserted evaluates to
7111 true, not giving a chance for GDB to check the condition of the
7112 other watchpoint. */
7113 if ((w1->cond_exp
7114 && target_can_accel_watchpoint_condition (loc1->address,
7115 loc1->length,
7116 loc1->watchpoint_type,
7117 w1->cond_exp.get ()))
7118 || (w2->cond_exp
7119 && target_can_accel_watchpoint_condition (loc2->address,
7120 loc2->length,
7121 loc2->watchpoint_type,
7122 w2->cond_exp.get ())))
7123 return false;
7124
7125 /* Note that this checks the owner's type, not the location's. In
7126 case the target does not support read watchpoints, but does
7127 support access watchpoints, we'll have bp_read_watchpoint
7128 watchpoints with hw_access locations. Those should be considered
7129 duplicates of hw_read locations. The hw_read locations will
7130 become hw_access locations later. */
7131 return (loc1->owner->type == loc2->owner->type
7132 && loc1->pspace->aspace == loc2->pspace->aspace
7133 && loc1->address == loc2->address
7134 && loc1->length == loc2->length);
7135 }
7136
7137 /* See breakpoint.h. */
7138
7139 int
7140 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
7141 const address_space *aspace2, CORE_ADDR addr2)
7142 {
7143 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7144 || aspace1 == aspace2)
7145 && addr1 == addr2);
7146 }
7147
7148 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
7149 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
7150 matches ASPACE2. On targets that have global breakpoints, the address
7151 space doesn't really matter. */
7152
7153 static bool
7154 breakpoint_address_match_range (const address_space *aspace1,
7155 CORE_ADDR addr1,
7156 int len1, const address_space *aspace2,
7157 CORE_ADDR addr2)
7158 {
7159 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
7160 || aspace1 == aspace2)
7161 && addr2 >= addr1 && addr2 < addr1 + len1);
7162 }
7163
7164 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
7165 a ranged breakpoint. In most targets, a match happens only if ASPACE
7166 matches the breakpoint's address space. On targets that have global
7167 breakpoints, the address space doesn't really matter. */
7168
7169 static bool
7170 breakpoint_location_address_match (struct bp_location *bl,
7171 const address_space *aspace,
7172 CORE_ADDR addr)
7173 {
7174 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
7175 aspace, addr)
7176 || (bl->length
7177 && breakpoint_address_match_range (bl->pspace->aspace,
7178 bl->address, bl->length,
7179 aspace, addr)));
7180 }
7181
7182 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
7183 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
7184 match happens only if ASPACE matches the breakpoint's address
7185 space. On targets that have global breakpoints, the address space
7186 doesn't really matter. */
7187
7188 static bool
7189 breakpoint_location_address_range_overlap (struct bp_location *bl,
7190 const address_space *aspace,
7191 CORE_ADDR addr, int len)
7192 {
7193 if (gdbarch_has_global_breakpoints (target_gdbarch ())
7194 || bl->pspace->aspace == aspace)
7195 {
7196 int bl_len = bl->length != 0 ? bl->length : 1;
7197
7198 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
7199 return 1;
7200 }
7201 return 0;
7202 }
7203
7204 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
7205 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
7206 true, otherwise returns false. */
7207
7208 static bool
7209 tracepoint_locations_match (const struct bp_location *loc1,
7210 const struct bp_location *loc2)
7211 {
7212 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
7213 /* Since tracepoint locations are never duplicated with others', tracepoint
7214 locations at the same address of different tracepoints are regarded as
7215 different locations. */
7216 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
7217 else
7218 return false;
7219 }
7220
7221 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
7222 (bl_address_is_meaningful), returns true if LOC1 and LOC2 represent
7223 the same location. If SW_HW_BPS_MATCH is true, then software
7224 breakpoint locations and hardware breakpoint locations match,
7225 otherwise they don't. */
7226
7227 static bool
7228 breakpoint_locations_match (const struct bp_location *loc1,
7229 const struct bp_location *loc2,
7230 bool sw_hw_bps_match)
7231 {
7232 int hw_point1, hw_point2;
7233
7234 /* Both of them must not be in moribund_locations. */
7235 gdb_assert (loc1->owner != NULL);
7236 gdb_assert (loc2->owner != NULL);
7237
7238 hw_point1 = is_hardware_watchpoint (loc1->owner);
7239 hw_point2 = is_hardware_watchpoint (loc2->owner);
7240
7241 if (hw_point1 != hw_point2)
7242 return false;
7243 else if (hw_point1)
7244 return watchpoint_locations_match (loc1, loc2);
7245 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
7246 return tracepoint_locations_match (loc1, loc2);
7247 else
7248 /* We compare bp_location.length in order to cover ranged
7249 breakpoints. Keep this in sync with
7250 bp_location_is_less_than. */
7251 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
7252 loc2->pspace->aspace, loc2->address)
7253 && (loc1->loc_type == loc2->loc_type || sw_hw_bps_match)
7254 && loc1->length == loc2->length);
7255 }
7256
7257 static void
7258 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
7259 int bnum, bool have_bnum)
7260 {
7261 /* The longest string possibly returned by hex_string_custom
7262 is 50 chars. These must be at least that big for safety. */
7263 char astr1[64];
7264 char astr2[64];
7265
7266 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
7267 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
7268 if (have_bnum)
7269 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
7270 bnum, astr1, astr2);
7271 else
7272 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
7273 }
7274
7275 /* Adjust a breakpoint's address to account for architectural
7276 constraints on breakpoint placement. Return the adjusted address.
7277 Note: Very few targets require this kind of adjustment. For most
7278 targets, this function is simply the identity function. */
7279
7280 static CORE_ADDR
7281 adjust_breakpoint_address (struct gdbarch *gdbarch,
7282 CORE_ADDR bpaddr, enum bptype bptype,
7283 struct program_space *pspace)
7284 {
7285 gdb_assert (pspace != nullptr);
7286
7287 if (bptype == bp_watchpoint
7288 || bptype == bp_hardware_watchpoint
7289 || bptype == bp_read_watchpoint
7290 || bptype == bp_access_watchpoint
7291 || bptype == bp_catchpoint)
7292 {
7293 /* Watchpoints and the various bp_catch_* eventpoints should not
7294 have their addresses modified. */
7295 return bpaddr;
7296 }
7297 else if (bptype == bp_single_step)
7298 {
7299 /* Single-step breakpoints should not have their addresses
7300 modified. If there's any architectural constrain that
7301 applies to this address, then it should have already been
7302 taken into account when the breakpoint was created in the
7303 first place. If we didn't do this, stepping through e.g.,
7304 Thumb-2 IT blocks would break. */
7305 return bpaddr;
7306 }
7307 else
7308 {
7309 CORE_ADDR adjusted_bpaddr = bpaddr;
7310
7311 /* Some targets have architectural constraints on the placement
7312 of breakpoint instructions. Obtain the adjusted address. */
7313 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7314 {
7315 /* Targets that implement this adjustment function will likely
7316 inspect either the symbol table, target memory at BPADDR, or
7317 even state registers, so ensure a suitable thread (and its
7318 associated program space) are currently selected. */
7319 scoped_restore_current_pspace_and_thread restore_pspace_thread;
7320 switch_to_program_space_and_thread (pspace);
7321 adjusted_bpaddr
7322 = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
7323 }
7324
7325 adjusted_bpaddr
7326 = gdbarch_remove_non_address_bits (gdbarch, adjusted_bpaddr);
7327
7328 /* An adjusted breakpoint address can significantly alter
7329 a user's expectations. Print a warning if an adjustment
7330 is required. */
7331 if (adjusted_bpaddr != bpaddr)
7332 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, false);
7333
7334 return adjusted_bpaddr;
7335 }
7336 }
7337
7338 static bp_loc_type
7339 bp_location_from_bp_type (bptype type)
7340 {
7341 switch (type)
7342 {
7343 case bp_breakpoint:
7344 case bp_single_step:
7345 case bp_until:
7346 case bp_finish:
7347 case bp_longjmp:
7348 case bp_longjmp_resume:
7349 case bp_longjmp_call_dummy:
7350 case bp_exception:
7351 case bp_exception_resume:
7352 case bp_step_resume:
7353 case bp_hp_step_resume:
7354 case bp_watchpoint_scope:
7355 case bp_call_dummy:
7356 case bp_std_terminate:
7357 case bp_shlib_event:
7358 case bp_thread_event:
7359 case bp_overlay_event:
7360 case bp_jit_event:
7361 case bp_longjmp_master:
7362 case bp_std_terminate_master:
7363 case bp_exception_master:
7364 case bp_gnu_ifunc_resolver:
7365 case bp_gnu_ifunc_resolver_return:
7366 case bp_dprintf:
7367 return bp_loc_software_breakpoint;
7368 case bp_hardware_breakpoint:
7369 return bp_loc_hardware_breakpoint;
7370 case bp_hardware_watchpoint:
7371 case bp_read_watchpoint:
7372 case bp_access_watchpoint:
7373 return bp_loc_hardware_watchpoint;
7374 case bp_watchpoint:
7375 return bp_loc_software_watchpoint;
7376 case bp_catchpoint:
7377 case bp_tracepoint:
7378 case bp_fast_tracepoint:
7379 case bp_static_tracepoint:
7380 case bp_static_marker_tracepoint:
7381 return bp_loc_other;
7382 default:
7383 internal_error (_("unknown breakpoint type"));
7384 }
7385 }
7386
7387 bp_location::bp_location (breakpoint *owner, bp_loc_type type)
7388 {
7389 this->owner = owner;
7390 this->cond_bytecode = NULL;
7391 this->shlib_disabled = 0;
7392 this->enabled = 1;
7393 this->disabled_by_cond = false;
7394
7395 this->loc_type = type;
7396
7397 if (this->loc_type == bp_loc_software_breakpoint
7398 || this->loc_type == bp_loc_hardware_breakpoint)
7399 mark_breakpoint_location_modified (this);
7400
7401 incref ();
7402 }
7403
7404 bp_location::bp_location (breakpoint *owner)
7405 : bp_location::bp_location (owner,
7406 bp_location_from_bp_type (owner->type))
7407 {
7408 }
7409
7410 /* Decrement reference count. If the reference count reaches 0,
7411 destroy the bp_location. Sets *BLP to NULL. */
7412
7413 static void
7414 decref_bp_location (struct bp_location **blp)
7415 {
7416 bp_location_ref_policy::decref (*blp);
7417 *blp = NULL;
7418 }
7419
7420 /* Add breakpoint B at the end of the global breakpoint chain. */
7421
7422 static breakpoint *
7423 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7424 {
7425 struct breakpoint *b1;
7426 struct breakpoint *result = b.get ();
7427
7428 /* Add this breakpoint to the end of the chain so that a list of
7429 breakpoints will come out in order of increasing numbers. */
7430
7431 b1 = breakpoint_chain;
7432 if (b1 == 0)
7433 breakpoint_chain = b.release ();
7434 else
7435 {
7436 while (b1->next)
7437 b1 = b1->next;
7438 b1->next = b.release ();
7439 }
7440
7441 return result;
7442 }
7443
7444 /* Initialize loc->function_name. */
7445
7446 static void
7447 set_breakpoint_location_function (struct bp_location *loc)
7448 {
7449 gdb_assert (loc->owner != NULL);
7450
7451 if (loc->owner->type == bp_breakpoint
7452 || loc->owner->type == bp_hardware_breakpoint
7453 || is_tracepoint (loc->owner))
7454 {
7455 const char *function_name;
7456
7457 if (loc->msymbol != NULL
7458 && (loc->msymbol->type () == mst_text_gnu_ifunc
7459 || loc->msymbol->type () == mst_data_gnu_ifunc))
7460 {
7461 struct breakpoint *b = loc->owner;
7462
7463 function_name = loc->msymbol->linkage_name ();
7464
7465 if (b->type == bp_breakpoint && b->loc == loc
7466 && loc->next == NULL && b->related_breakpoint == b)
7467 {
7468 /* Create only the whole new breakpoint of this type but do not
7469 mess more complicated breakpoints with multiple locations. */
7470 b->type = bp_gnu_ifunc_resolver;
7471 /* Remember the resolver's address for use by the return
7472 breakpoint. */
7473 loc->related_address = loc->address;
7474 }
7475 }
7476 else
7477 find_pc_partial_function (loc->address, &function_name, NULL, NULL);
7478
7479 if (function_name)
7480 loc->function_name = make_unique_xstrdup (function_name);
7481 }
7482 }
7483
7484 /* Attempt to determine architecture of location identified by SAL. */
7485 struct gdbarch *
7486 get_sal_arch (struct symtab_and_line sal)
7487 {
7488 if (sal.section)
7489 return sal.section->objfile->arch ();
7490 if (sal.symtab)
7491 return sal.symtab->compunit ()->objfile ()->arch ();
7492
7493 return NULL;
7494 }
7495
7496 /* Call this routine when stepping and nexting to enable a breakpoint
7497 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7498 initiated the operation. */
7499
7500 void
7501 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7502 {
7503 int thread = tp->global_num;
7504
7505 /* To avoid having to rescan all objfile symbols at every step,
7506 we maintain a list of continually-inserted but always disabled
7507 longjmp "master" breakpoints. Here, we simply create momentary
7508 clones of those and enable them for the requested thread. */
7509 for (breakpoint *b : all_breakpoints_safe ())
7510 if (b->pspace == current_program_space
7511 && (b->type == bp_longjmp_master
7512 || b->type == bp_exception_master))
7513 {
7514 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7515 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7516 after their removal. */
7517 momentary_breakpoint_from_master (b, type, 1, thread);
7518 }
7519
7520 tp->initiating_frame = frame;
7521 }
7522
7523 /* Delete all longjmp breakpoints from THREAD. */
7524 void
7525 delete_longjmp_breakpoint (int thread)
7526 {
7527 for (breakpoint *b : all_breakpoints_safe ())
7528 if (b->type == bp_longjmp || b->type == bp_exception)
7529 {
7530 if (b->thread == thread)
7531 delete_breakpoint (b);
7532 }
7533 }
7534
7535 void
7536 delete_longjmp_breakpoint_at_next_stop (int thread)
7537 {
7538 for (breakpoint *b : all_breakpoints_safe ())
7539 if (b->type == bp_longjmp || b->type == bp_exception)
7540 {
7541 if (b->thread == thread)
7542 b->disposition = disp_del_at_next_stop;
7543 }
7544 }
7545
7546 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7547 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7548 pointer to any of them. Return NULL if this system cannot place longjmp
7549 breakpoints. */
7550
7551 struct breakpoint *
7552 set_longjmp_breakpoint_for_call_dummy (void)
7553 {
7554 breakpoint *retval = nullptr;
7555
7556 for (breakpoint *b : all_breakpoints ())
7557 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7558 {
7559 int thread = inferior_thread ()->global_num;
7560 breakpoint *new_b
7561 = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7562 1, thread);
7563
7564 /* Link NEW_B into the chain of RETVAL breakpoints. */
7565
7566 gdb_assert (new_b->related_breakpoint == new_b);
7567 if (retval == NULL)
7568 retval = new_b;
7569 new_b->related_breakpoint = retval;
7570 while (retval->related_breakpoint != new_b->related_breakpoint)
7571 retval = retval->related_breakpoint;
7572 retval->related_breakpoint = new_b;
7573 }
7574
7575 return retval;
7576 }
7577
7578 /* Verify all existing dummy frames and their associated breakpoints for
7579 TP. Remove those which can no longer be found in the current frame
7580 stack.
7581
7582 If the unwind fails then there is not sufficient information to discard
7583 dummy frames. In this case, elide the clean up and the dummy frames will
7584 be cleaned up next time this function is called from a location where
7585 unwinding is possible. */
7586
7587 void
7588 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7589 {
7590 struct breakpoint *b, *b_tmp;
7591
7592 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7593 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7594 {
7595 struct breakpoint *dummy_b = b->related_breakpoint;
7596
7597 /* Find the bp_call_dummy breakpoint in the list of breakpoints
7598 chained off b->related_breakpoint. */
7599 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7600 dummy_b = dummy_b->related_breakpoint;
7601
7602 /* If there was no bp_call_dummy breakpoint then there's nothing
7603 more to do. Or, if the dummy frame associated with the
7604 bp_call_dummy is still on the stack then we need to leave this
7605 bp_call_dummy in place. */
7606 if (dummy_b->type != bp_call_dummy
7607 || frame_find_by_id (dummy_b->frame_id) != NULL)
7608 continue;
7609
7610 /* We didn't find the dummy frame on the stack, this could be
7611 because we have longjmp'd to a stack frame that is previous to
7612 the dummy frame, or it could be because the stack unwind is
7613 broken at some point between the longjmp frame and the dummy
7614 frame.
7615
7616 Next we figure out why the stack unwind stopped. If it looks
7617 like the unwind is complete then we assume the dummy frame has
7618 been jumped over, however, if the unwind stopped for an
7619 unexpected reason then we assume the stack unwind is currently
7620 broken, and that we will (eventually) return to the dummy
7621 frame.
7622
7623 It might be tempting to consider using frame_id_inner here, but
7624 that is not safe. There is no guarantee that the stack frames
7625 we are looking at here are even on the same stack as the
7626 original dummy frame, hence frame_id_inner can't be used. See
7627 the comments on frame_id_inner for more details. */
7628 bool unwind_finished_unexpectedly = false;
7629 for (frame_info_ptr fi = get_current_frame (); fi != nullptr; )
7630 {
7631 frame_info_ptr prev = get_prev_frame (fi);
7632 if (prev == nullptr)
7633 {
7634 /* FI is the last stack frame. Why did this frame not
7635 unwind further? */
7636 auto stop_reason = get_frame_unwind_stop_reason (fi);
7637 if (stop_reason != UNWIND_NO_REASON
7638 && stop_reason != UNWIND_OUTERMOST)
7639 unwind_finished_unexpectedly = true;
7640 }
7641 fi = prev;
7642 }
7643 if (unwind_finished_unexpectedly)
7644 continue;
7645
7646 dummy_frame_discard (dummy_b->frame_id, tp);
7647
7648 while (b->related_breakpoint != b)
7649 {
7650 if (b_tmp == b->related_breakpoint)
7651 b_tmp = b->related_breakpoint->next;
7652 delete_breakpoint (b->related_breakpoint);
7653 }
7654 delete_breakpoint (b);
7655 }
7656 }
7657
7658 void
7659 enable_overlay_breakpoints (void)
7660 {
7661 for (breakpoint *b : all_breakpoints ())
7662 if (b->type == bp_overlay_event)
7663 {
7664 b->enable_state = bp_enabled;
7665 update_global_location_list (UGLL_MAY_INSERT);
7666 overlay_events_enabled = 1;
7667 }
7668 }
7669
7670 void
7671 disable_overlay_breakpoints (void)
7672 {
7673 for (breakpoint *b : all_breakpoints ())
7674 if (b->type == bp_overlay_event)
7675 {
7676 b->enable_state = bp_disabled;
7677 update_global_location_list (UGLL_DONT_INSERT);
7678 overlay_events_enabled = 0;
7679 }
7680 }
7681
7682 /* Set an active std::terminate breakpoint for each std::terminate
7683 master breakpoint. */
7684 void
7685 set_std_terminate_breakpoint (void)
7686 {
7687 for (breakpoint *b : all_breakpoints_safe ())
7688 if (b->pspace == current_program_space
7689 && b->type == bp_std_terminate_master)
7690 {
7691 momentary_breakpoint_from_master (b, bp_std_terminate, 1,
7692 inferior_thread ()->global_num);
7693 }
7694 }
7695
7696 /* Delete all the std::terminate breakpoints. */
7697 void
7698 delete_std_terminate_breakpoint (void)
7699 {
7700 for (breakpoint *b : all_breakpoints_safe ())
7701 if (b->type == bp_std_terminate)
7702 delete_breakpoint (b);
7703 }
7704
7705 struct breakpoint *
7706 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7707 {
7708 struct breakpoint *b;
7709
7710 b = create_internal_breakpoint (gdbarch, address, bp_thread_event);
7711
7712 b->enable_state = bp_enabled;
7713 /* locspec has to be used or breakpoint_re_set will delete me. */
7714 b->locspec = new_address_location_spec (b->loc->address, NULL, 0);
7715
7716 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7717
7718 return b;
7719 }
7720
7721 struct lang_and_radix
7722 {
7723 enum language lang;
7724 int radix;
7725 };
7726
7727 /* Create a breakpoint for JIT code registration and unregistration. */
7728
7729 struct breakpoint *
7730 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7731 {
7732 return create_internal_breakpoint (gdbarch, address, bp_jit_event);
7733 }
7734
7735 /* Remove JIT code registration and unregistration breakpoint(s). */
7736
7737 void
7738 remove_jit_event_breakpoints (void)
7739 {
7740 for (breakpoint *b : all_breakpoints_safe ())
7741 if (b->type == bp_jit_event
7742 && b->loc->pspace == current_program_space)
7743 delete_breakpoint (b);
7744 }
7745
7746 void
7747 remove_solib_event_breakpoints (void)
7748 {
7749 for (breakpoint *b : all_breakpoints_safe ())
7750 if (b->type == bp_shlib_event
7751 && b->loc->pspace == current_program_space)
7752 delete_breakpoint (b);
7753 }
7754
7755 /* See breakpoint.h. */
7756
7757 void
7758 remove_solib_event_breakpoints_at_next_stop (void)
7759 {
7760 for (breakpoint *b : all_breakpoints_safe ())
7761 if (b->type == bp_shlib_event
7762 && b->loc->pspace == current_program_space)
7763 b->disposition = disp_del_at_next_stop;
7764 }
7765
7766 /* Helper for create_solib_event_breakpoint /
7767 create_and_insert_solib_event_breakpoint. Allows specifying which
7768 INSERT_MODE to pass through to update_global_location_list. */
7769
7770 static struct breakpoint *
7771 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7772 enum ugll_insert_mode insert_mode)
7773 {
7774 struct breakpoint *b;
7775
7776 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event);
7777 update_global_location_list_nothrow (insert_mode);
7778 return b;
7779 }
7780
7781 struct breakpoint *
7782 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7783 {
7784 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7785 }
7786
7787 /* See breakpoint.h. */
7788
7789 struct breakpoint *
7790 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7791 {
7792 struct breakpoint *b;
7793
7794 /* Explicitly tell update_global_location_list to insert
7795 locations. */
7796 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7797 if (!b->loc->inserted)
7798 {
7799 delete_breakpoint (b);
7800 return NULL;
7801 }
7802 return b;
7803 }
7804
7805 /* Disable any breakpoints that are on code in shared libraries. Only
7806 apply to enabled breakpoints, disabled ones can just stay disabled. */
7807
7808 void
7809 disable_breakpoints_in_shlibs (void)
7810 {
7811 for (bp_location *loc : all_bp_locations ())
7812 {
7813 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7814 struct breakpoint *b = loc->owner;
7815
7816 /* We apply the check to all breakpoints, including disabled for
7817 those with loc->duplicate set. This is so that when breakpoint
7818 becomes enabled, or the duplicate is removed, gdb will try to
7819 insert all breakpoints. If we don't set shlib_disabled here,
7820 we'll try to insert those breakpoints and fail. */
7821 if (((b->type == bp_breakpoint)
7822 || (b->type == bp_jit_event)
7823 || (b->type == bp_hardware_breakpoint)
7824 || (is_tracepoint (b)))
7825 && loc->pspace == current_program_space
7826 && !loc->shlib_disabled
7827 && solib_name_from_address (loc->pspace, loc->address)
7828 )
7829 {
7830 loc->shlib_disabled = 1;
7831 }
7832 }
7833 }
7834
7835 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7836 notification of unloaded_shlib. Only apply to enabled breakpoints,
7837 disabled ones can just stay disabled. */
7838
7839 static void
7840 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7841 {
7842 bool disabled_shlib_breaks = false;
7843
7844 for (bp_location *loc : all_bp_locations ())
7845 {
7846 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7847 struct breakpoint *b = loc->owner;
7848
7849 if (solib->pspace == loc->pspace
7850 && !loc->shlib_disabled
7851 && (((b->type == bp_breakpoint
7852 || b->type == bp_jit_event
7853 || b->type == bp_hardware_breakpoint)
7854 && (loc->loc_type == bp_loc_hardware_breakpoint
7855 || loc->loc_type == bp_loc_software_breakpoint))
7856 || is_tracepoint (b))
7857 && solib_contains_address_p (solib, loc->address))
7858 {
7859 loc->shlib_disabled = 1;
7860 /* At this point, we cannot rely on remove_breakpoint
7861 succeeding so we must mark the breakpoint as not inserted
7862 to prevent future errors occurring in remove_breakpoints. */
7863 loc->inserted = 0;
7864
7865 /* This may cause duplicate notifications for the same breakpoint. */
7866 gdb::observers::breakpoint_modified.notify (b);
7867
7868 if (!disabled_shlib_breaks)
7869 {
7870 target_terminal::ours_for_output ();
7871 warning (_("Temporarily disabling breakpoints "
7872 "for unloaded shared library \"%s\""),
7873 solib->so_name);
7874 }
7875 disabled_shlib_breaks = true;
7876 }
7877 }
7878 }
7879
7880 /* Disable any breakpoints and tracepoints in OBJFILE upon
7881 notification of free_objfile. Only apply to enabled breakpoints,
7882 disabled ones can just stay disabled. */
7883
7884 static void
7885 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7886 {
7887 if (objfile == NULL)
7888 return;
7889
7890 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7891 managed by the user with add-symbol-file/remove-symbol-file.
7892 Similarly to how breakpoints in shared libraries are handled in
7893 response to "nosharedlibrary", mark breakpoints in such modules
7894 shlib_disabled so they end up uninserted on the next global
7895 location list update. Shared libraries not loaded by the user
7896 aren't handled here -- they're already handled in
7897 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7898 solib_unloaded observer. We skip objfiles that are not
7899 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7900 main objfile). */
7901 if ((objfile->flags & OBJF_SHARED) == 0
7902 || (objfile->flags & OBJF_USERLOADED) == 0)
7903 return;
7904
7905 for (breakpoint *b : all_breakpoints ())
7906 {
7907 bool bp_modified = false;
7908
7909 if (!is_breakpoint (b) && !is_tracepoint (b))
7910 continue;
7911
7912 for (bp_location *loc : b->locations ())
7913 {
7914 CORE_ADDR loc_addr = loc->address;
7915
7916 if (loc->loc_type != bp_loc_hardware_breakpoint
7917 && loc->loc_type != bp_loc_software_breakpoint)
7918 continue;
7919
7920 if (loc->shlib_disabled != 0)
7921 continue;
7922
7923 if (objfile->pspace != loc->pspace)
7924 continue;
7925
7926 if (loc->loc_type != bp_loc_hardware_breakpoint
7927 && loc->loc_type != bp_loc_software_breakpoint)
7928 continue;
7929
7930 if (is_addr_in_objfile (loc_addr, objfile))
7931 {
7932 loc->shlib_disabled = 1;
7933 /* At this point, we don't know whether the object was
7934 unmapped from the inferior or not, so leave the
7935 inserted flag alone. We'll handle failure to
7936 uninsert quietly, in case the object was indeed
7937 unmapped. */
7938
7939 mark_breakpoint_location_modified (loc);
7940
7941 bp_modified = true;
7942 }
7943 }
7944
7945 if (bp_modified)
7946 gdb::observers::breakpoint_modified.notify (b);
7947 }
7948 }
7949
7950 /* See breakpoint.h. */
7951
7952 breakpoint::breakpoint (struct gdbarch *gdbarch_, enum bptype bptype,
7953 bool temp, const char *cond_string_)
7954 : type (bptype),
7955 disposition (temp ? disp_del : disp_donttouch),
7956 gdbarch (gdbarch_),
7957 language (current_language->la_language),
7958 input_radix (::input_radix),
7959 cond_string (cond_string_ != nullptr
7960 ? make_unique_xstrdup (cond_string_)
7961 : nullptr),
7962 related_breakpoint (this)
7963 {
7964 }
7965
7966 /* See breakpoint.h. */
7967
7968 catchpoint::catchpoint (struct gdbarch *gdbarch, bool temp,
7969 const char *cond_string)
7970 : breakpoint (gdbarch, bp_catchpoint, temp, cond_string)
7971 {
7972 add_dummy_location (this, current_program_space);
7973
7974 pspace = current_program_space;
7975 }
7976
7977 breakpoint *
7978 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
7979 {
7980 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
7981 set_breakpoint_number (internal, b);
7982 if (is_tracepoint (b))
7983 set_tracepoint_count (breakpoint_count);
7984 if (!internal)
7985 mention (b);
7986 gdb::observers::breakpoint_created.notify (b);
7987
7988 if (update_gll)
7989 update_global_location_list (UGLL_MAY_INSERT);
7990
7991 return b;
7992 }
7993
7994 static int
7995 hw_breakpoint_used_count (void)
7996 {
7997 int i = 0;
7998
7999 for (breakpoint *b : all_breakpoints ())
8000 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8001 for (bp_location *bl : b->locations ())
8002 {
8003 /* Special types of hardware breakpoints may use more than
8004 one register. */
8005 i += b->resources_needed (bl);
8006 }
8007
8008 return i;
8009 }
8010
8011 /* Returns the resources B would use if it were a hardware
8012 watchpoint. */
8013
8014 static int
8015 hw_watchpoint_use_count (struct breakpoint *b)
8016 {
8017 int i = 0;
8018
8019 if (!breakpoint_enabled (b))
8020 return 0;
8021
8022 for (bp_location *bl : b->locations ())
8023 {
8024 /* Special types of hardware watchpoints may use more than
8025 one register. */
8026 i += b->resources_needed (bl);
8027 }
8028
8029 return i;
8030 }
8031
8032 /* Returns the sum the used resources of all hardware watchpoints of
8033 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8034 the sum of the used resources of all hardware watchpoints of other
8035 types _not_ TYPE. */
8036
8037 static int
8038 hw_watchpoint_used_count_others (struct breakpoint *except,
8039 enum bptype type, int *other_type_used)
8040 {
8041 int i = 0;
8042
8043 *other_type_used = 0;
8044 for (breakpoint *b : all_breakpoints ())
8045 {
8046 if (b == except)
8047 continue;
8048 if (!breakpoint_enabled (b))
8049 continue;
8050
8051 if (b->type == type)
8052 i += hw_watchpoint_use_count (b);
8053 else if (is_hardware_watchpoint (b))
8054 *other_type_used = 1;
8055 }
8056
8057 return i;
8058 }
8059
8060 void
8061 disable_watchpoints_before_interactive_call_start (void)
8062 {
8063 for (breakpoint *b : all_breakpoints ())
8064 if (is_watchpoint (b) && breakpoint_enabled (b))
8065 {
8066 b->enable_state = bp_call_disabled;
8067 update_global_location_list (UGLL_DONT_INSERT);
8068 }
8069 }
8070
8071 void
8072 enable_watchpoints_after_interactive_call_stop (void)
8073 {
8074 for (breakpoint *b : all_breakpoints ())
8075 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8076 {
8077 b->enable_state = bp_enabled;
8078 update_global_location_list (UGLL_MAY_INSERT);
8079 }
8080 }
8081
8082 void
8083 disable_breakpoints_before_startup (void)
8084 {
8085 current_program_space->executing_startup = 1;
8086 update_global_location_list (UGLL_DONT_INSERT);
8087 }
8088
8089 void
8090 enable_breakpoints_after_startup (void)
8091 {
8092 current_program_space->executing_startup = 0;
8093 breakpoint_re_set ();
8094 }
8095
8096 /* Allocate a new momentary breakpoint. */
8097
8098 template<typename... Arg>
8099 static momentary_breakpoint *
8100 new_momentary_breakpoint (struct gdbarch *gdbarch, enum bptype type,
8101 Arg&&... args)
8102 {
8103 if (type == bp_longjmp || type == bp_exception)
8104 return new longjmp_breakpoint (gdbarch, type,
8105 std::forward<Arg> (args)...);
8106 else
8107 return new momentary_breakpoint (gdbarch, type,
8108 std::forward<Arg> (args)...);
8109 }
8110
8111 /* Set a momentary breakpoint of type TYPE at address specified by
8112 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8113 frame. */
8114
8115 breakpoint_up
8116 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8117 struct frame_id frame_id, enum bptype type)
8118 {
8119 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8120 tail-called one. */
8121 gdb_assert (!frame_id_artificial_p (frame_id));
8122
8123 std::unique_ptr<momentary_breakpoint> b
8124 (new_momentary_breakpoint (gdbarch, type, sal.pspace, frame_id,
8125 inferior_thread ()->global_num));
8126
8127 b->add_location (sal);
8128
8129 breakpoint_up bp (add_to_breakpoint_chain (std::move (b)));
8130
8131 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8132
8133 return bp;
8134 }
8135
8136 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8137 The new breakpoint will have type TYPE, use OPS as its
8138 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8139
8140 static struct breakpoint *
8141 momentary_breakpoint_from_master (struct breakpoint *orig,
8142 enum bptype type,
8143 int loc_enabled,
8144 int thread)
8145 {
8146 std::unique_ptr<breakpoint> copy
8147 (new_momentary_breakpoint (orig->gdbarch, type, orig->pspace,
8148 orig->frame_id, thread));
8149 copy->loc = copy->allocate_location ();
8150 set_breakpoint_location_function (copy->loc);
8151
8152 copy->loc->gdbarch = orig->loc->gdbarch;
8153 copy->loc->requested_address = orig->loc->requested_address;
8154 copy->loc->address = orig->loc->address;
8155 copy->loc->section = orig->loc->section;
8156 copy->loc->pspace = orig->loc->pspace;
8157 copy->loc->probe = orig->loc->probe;
8158 copy->loc->line_number = orig->loc->line_number;
8159 copy->loc->symtab = orig->loc->symtab;
8160 copy->loc->enabled = loc_enabled;
8161
8162 breakpoint *b = add_to_breakpoint_chain (std::move (copy));
8163 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8164 return b;
8165 }
8166
8167 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8168 ORIG is NULL. */
8169
8170 struct breakpoint *
8171 clone_momentary_breakpoint (struct breakpoint *orig)
8172 {
8173 /* If there's nothing to clone, then return nothing. */
8174 if (orig == NULL)
8175 return NULL;
8176
8177 return momentary_breakpoint_from_master (orig, orig->type, 0,
8178 orig->thread);
8179 }
8180
8181 breakpoint_up
8182 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8183 enum bptype type)
8184 {
8185 struct symtab_and_line sal;
8186
8187 sal = find_pc_line (pc, 0);
8188 sal.pc = pc;
8189 sal.section = find_pc_overlay (pc);
8190 sal.explicit_pc = 1;
8191
8192 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8193 }
8194 \f
8195
8196 /* Tell the user we have just set a breakpoint B. */
8197
8198 static void
8199 mention (const breakpoint *b)
8200 {
8201 b->print_mention ();
8202 current_uiout->text ("\n");
8203 }
8204 \f
8205
8206 static bool bp_loc_is_permanent (struct bp_location *loc);
8207
8208 /* Handle "set breakpoint auto-hw on".
8209
8210 If the explicitly specified breakpoint type is not hardware
8211 breakpoint, check the memory map to see whether the breakpoint
8212 address is in read-only memory.
8213
8214 - location type is not hardware breakpoint, memory is read-only.
8215 We change the type of the location to hardware breakpoint.
8216
8217 - location type is hardware breakpoint, memory is read-write. This
8218 means we've previously made the location hardware one, but then the
8219 memory map changed, so we undo.
8220 */
8221
8222 static void
8223 handle_automatic_hardware_breakpoints (bp_location *bl)
8224 {
8225 if (automatic_hardware_breakpoints
8226 && bl->owner->type != bp_hardware_breakpoint
8227 && (bl->loc_type == bp_loc_software_breakpoint
8228 || bl->loc_type == bp_loc_hardware_breakpoint))
8229 {
8230 /* When breakpoints are removed, remove_breakpoints will use
8231 location types we've just set here, the only possible problem
8232 is that memory map has changed during running program, but
8233 it's not going to work anyway with current gdb. */
8234 mem_region *mr = lookup_mem_region (bl->address);
8235
8236 if (mr != nullptr)
8237 {
8238 enum bp_loc_type new_type;
8239
8240 if (mr->attrib.mode != MEM_RW)
8241 new_type = bp_loc_hardware_breakpoint;
8242 else
8243 new_type = bp_loc_software_breakpoint;
8244
8245 if (new_type != bl->loc_type)
8246 {
8247 static bool said = false;
8248
8249 bl->loc_type = new_type;
8250 if (!said)
8251 {
8252 gdb_printf (_("Note: automatically using "
8253 "hardware breakpoints for "
8254 "read-only addresses.\n"));
8255 said = true;
8256 }
8257 }
8258 }
8259 }
8260 }
8261
8262 bp_location *
8263 code_breakpoint::add_location (const symtab_and_line &sal)
8264 {
8265 struct bp_location *new_loc, **tmp;
8266 CORE_ADDR adjusted_address;
8267 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8268
8269 if (loc_gdbarch == NULL)
8270 loc_gdbarch = gdbarch;
8271
8272 /* Adjust the breakpoint's address prior to allocating a location.
8273 Once we call allocate_location(), that mostly uninitialized
8274 location will be placed on the location chain. Adjustment of the
8275 breakpoint may cause target_read_memory() to be called and we do
8276 not want its scan of the location chain to find a breakpoint and
8277 location that's only been partially initialized. */
8278 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8279 sal.pc, type,
8280 sal.pspace);
8281
8282 /* Sort the locations by their ADDRESS. */
8283 new_loc = allocate_location ();
8284 for (tmp = &(loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8285 tmp = &((*tmp)->next))
8286 ;
8287 new_loc->next = *tmp;
8288 *tmp = new_loc;
8289
8290 new_loc->requested_address = sal.pc;
8291 new_loc->address = adjusted_address;
8292 new_loc->pspace = sal.pspace;
8293 new_loc->probe.prob = sal.prob;
8294 new_loc->probe.objfile = sal.objfile;
8295 gdb_assert (new_loc->pspace != NULL);
8296 new_loc->section = sal.section;
8297 new_loc->gdbarch = loc_gdbarch;
8298 new_loc->line_number = sal.line;
8299 new_loc->symtab = sal.symtab;
8300 new_loc->symbol = sal.symbol;
8301 new_loc->msymbol = sal.msymbol;
8302 new_loc->objfile = sal.objfile;
8303
8304 set_breakpoint_location_function (new_loc);
8305
8306 /* While by definition, permanent breakpoints are already present in the
8307 code, we don't mark the location as inserted. Normally one would expect
8308 that GDB could rely on that breakpoint instruction to stop the program,
8309 thus removing the need to insert its own breakpoint, except that executing
8310 the breakpoint instruction can kill the target instead of reporting a
8311 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8312 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8313 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8314 breakpoint be inserted normally results in QEMU knowing about the GDB
8315 breakpoint, and thus trap before the breakpoint instruction is executed.
8316 (If GDB later needs to continue execution past the permanent breakpoint,
8317 it manually increments the PC, thus avoiding executing the breakpoint
8318 instruction.) */
8319 if (bp_loc_is_permanent (new_loc))
8320 new_loc->permanent = 1;
8321
8322 return new_loc;
8323 }
8324 \f
8325
8326 /* Return true if LOC is pointing to a permanent breakpoint,
8327 return false otherwise. */
8328
8329 static bool
8330 bp_loc_is_permanent (struct bp_location *loc)
8331 {
8332 gdb_assert (loc != NULL);
8333
8334 /* If we have a non-breakpoint-backed catchpoint or a software
8335 watchpoint, just return 0. We should not attempt to read from
8336 the addresses the locations of these breakpoint types point to.
8337 gdbarch_program_breakpoint_here_p, below, will attempt to read
8338 memory. */
8339 if (!bl_address_is_meaningful (loc))
8340 return false;
8341
8342 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8343 switch_to_program_space_and_thread (loc->pspace);
8344 return gdbarch_program_breakpoint_here_p (loc->gdbarch, loc->address);
8345 }
8346
8347 /* Build a command list for the dprintf corresponding to the current
8348 settings of the dprintf style options. */
8349
8350 static void
8351 update_dprintf_command_list (struct breakpoint *b)
8352 {
8353 const char *dprintf_args = b->extra_string.get ();
8354 gdb::unique_xmalloc_ptr<char> printf_line = nullptr;
8355
8356 if (!dprintf_args)
8357 return;
8358
8359 dprintf_args = skip_spaces (dprintf_args);
8360
8361 /* Allow a comma, as it may have terminated a location, but don't
8362 insist on it. */
8363 if (*dprintf_args == ',')
8364 ++dprintf_args;
8365 dprintf_args = skip_spaces (dprintf_args);
8366
8367 if (*dprintf_args != '"')
8368 error (_("Bad format string, missing '\"'."));
8369
8370 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8371 printf_line = xstrprintf ("printf %s", dprintf_args);
8372 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8373 {
8374 if (dprintf_function.empty ())
8375 error (_("No function supplied for dprintf call"));
8376
8377 if (!dprintf_channel.empty ())
8378 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8379 dprintf_function.c_str (),
8380 dprintf_channel.c_str (),
8381 dprintf_args);
8382 else
8383 printf_line = xstrprintf ("call (void) %s (%s)",
8384 dprintf_function.c_str (),
8385 dprintf_args);
8386 }
8387 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8388 {
8389 if (target_can_run_breakpoint_commands ())
8390 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8391 else
8392 {
8393 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8394 printf_line = xstrprintf ("printf %s", dprintf_args);
8395 }
8396 }
8397 else
8398 internal_error (_("Invalid dprintf style."));
8399
8400 gdb_assert (printf_line != NULL);
8401
8402 /* Manufacture a printf sequence. */
8403 struct command_line *printf_cmd_line
8404 = new struct command_line (simple_control, printf_line.release ());
8405 breakpoint_set_commands (b, counted_command_line (printf_cmd_line,
8406 command_lines_deleter ()));
8407 }
8408
8409 /* Update all dprintf commands, making their command lists reflect
8410 current style settings. */
8411
8412 static void
8413 update_dprintf_commands (const char *args, int from_tty,
8414 struct cmd_list_element *c)
8415 {
8416 for (breakpoint *b : all_breakpoints ())
8417 if (b->type == bp_dprintf)
8418 update_dprintf_command_list (b);
8419 }
8420
8421 code_breakpoint::code_breakpoint (struct gdbarch *gdbarch_,
8422 enum bptype type_,
8423 gdb::array_view<const symtab_and_line> sals,
8424 location_spec_up &&locspec_,
8425 gdb::unique_xmalloc_ptr<char> filter_,
8426 gdb::unique_xmalloc_ptr<char> cond_string_,
8427 gdb::unique_xmalloc_ptr<char> extra_string_,
8428 enum bpdisp disposition_,
8429 int thread_, int task_, int ignore_count_,
8430 int from_tty,
8431 int enabled_, unsigned flags,
8432 int display_canonical_)
8433 : breakpoint (gdbarch_, type_)
8434 {
8435 int i;
8436
8437 if (type == bp_hardware_breakpoint)
8438 {
8439 int target_resources_ok;
8440
8441 i = hw_breakpoint_used_count ();
8442 target_resources_ok =
8443 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8444 i + 1, 0);
8445 if (target_resources_ok == 0)
8446 error (_("No hardware breakpoint support in the target."));
8447 else if (target_resources_ok < 0)
8448 error (_("Hardware breakpoints used exceeds limit."));
8449 }
8450
8451 gdb_assert (!sals.empty ());
8452
8453 /* At most one of thread or task can be set on any breakpoint. */
8454 gdb_assert (thread == -1 || task == -1);
8455 thread = thread_;
8456 task = task_;
8457
8458 cond_string = std::move (cond_string_);
8459 extra_string = std::move (extra_string_);
8460 ignore_count = ignore_count_;
8461 enable_state = enabled_ ? bp_enabled : bp_disabled;
8462 disposition = disposition_;
8463
8464 if (type == bp_static_tracepoint
8465 || type == bp_static_marker_tracepoint)
8466 {
8467 auto *t = gdb::checked_static_cast<struct tracepoint *> (this);
8468 struct static_tracepoint_marker marker;
8469
8470 if (strace_marker_p (this))
8471 {
8472 /* We already know the marker exists, otherwise, we wouldn't
8473 see a sal for it. */
8474 const char *p = &locspec_->to_string ()[3];
8475 const char *endp;
8476
8477 p = skip_spaces (p);
8478
8479 endp = skip_to_space (p);
8480
8481 t->static_trace_marker_id.assign (p, endp - p);
8482
8483 gdb_printf (_("Probed static tracepoint marker \"%s\"\n"),
8484 t->static_trace_marker_id.c_str ());
8485 }
8486 else if (target_static_tracepoint_marker_at (sals[0].pc, &marker))
8487 {
8488 t->static_trace_marker_id = std::move (marker.str_id);
8489
8490 gdb_printf (_("Probed static tracepoint marker \"%s\"\n"),
8491 t->static_trace_marker_id.c_str ());
8492 }
8493 else
8494 warning (_("Couldn't determine the static tracepoint marker to probe"));
8495 }
8496
8497 for (const auto &sal : sals)
8498 {
8499 if (from_tty)
8500 {
8501 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8502 if (loc_gdbarch == nullptr)
8503 loc_gdbarch = gdbarch;
8504
8505 describe_other_breakpoints (loc_gdbarch,
8506 sal.pspace, sal.pc, sal.section, thread);
8507 }
8508
8509 bp_location *new_loc = add_location (sal);
8510 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8511 new_loc->inserted = 1;
8512
8513 /* Do not set breakpoint locations conditions yet. As locations
8514 are inserted, they get sorted based on their addresses. Let
8515 the list stabilize to have reliable location numbers. */
8516
8517 /* Dynamic printf requires and uses additional arguments on the
8518 command line, otherwise it's an error. */
8519 if (type == bp_dprintf)
8520 {
8521 if (extra_string != nullptr)
8522 update_dprintf_command_list (this);
8523 else
8524 error (_("Format string required"));
8525 }
8526 else if (extra_string != nullptr)
8527 error (_("Garbage '%s' at end of command"), extra_string.get ());
8528 }
8529
8530 /* The order of the locations is now stable. Set the location
8531 condition using the location's number. */
8532 int loc_num = 1;
8533 for (bp_location *bl : locations ())
8534 {
8535 if (cond_string != nullptr)
8536 set_breakpoint_location_condition (cond_string.get (), bl,
8537 number, loc_num);
8538
8539 ++loc_num;
8540 }
8541
8542 display_canonical = display_canonical_;
8543 if (locspec_ != nullptr)
8544 locspec = std::move (locspec_);
8545 else
8546 locspec = new_address_location_spec (this->loc->address, NULL, 0);
8547 filter = std::move (filter_);
8548 }
8549
8550 static void
8551 create_breakpoint_sal (struct gdbarch *gdbarch,
8552 gdb::array_view<const symtab_and_line> sals,
8553 location_spec_up &&locspec,
8554 gdb::unique_xmalloc_ptr<char> filter,
8555 gdb::unique_xmalloc_ptr<char> cond_string,
8556 gdb::unique_xmalloc_ptr<char> extra_string,
8557 enum bptype type, enum bpdisp disposition,
8558 int thread, int task, int ignore_count,
8559 int from_tty,
8560 int enabled, int internal, unsigned flags,
8561 int display_canonical)
8562 {
8563 std::unique_ptr<code_breakpoint> b
8564 = new_breakpoint_from_type (gdbarch,
8565 type,
8566 sals,
8567 std::move (locspec),
8568 std::move (filter),
8569 std::move (cond_string),
8570 std::move (extra_string),
8571 disposition,
8572 thread, task, ignore_count,
8573 from_tty,
8574 enabled, flags,
8575 display_canonical);
8576
8577 install_breakpoint (internal, std::move (b), 0);
8578 }
8579
8580 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8581 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8582 value. COND_STRING, if not NULL, specified the condition to be
8583 used for all breakpoints. Essentially the only case where
8584 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8585 function. In that case, it's still not possible to specify
8586 separate conditions for different overloaded functions, so
8587 we take just a single condition string.
8588
8589 NOTE: If the function succeeds, the caller is expected to cleanup
8590 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8591 array contents). If the function fails (error() is called), the
8592 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8593 COND and SALS arrays and each of those arrays contents. */
8594
8595 static void
8596 create_breakpoints_sal (struct gdbarch *gdbarch,
8597 struct linespec_result *canonical,
8598 gdb::unique_xmalloc_ptr<char> cond_string,
8599 gdb::unique_xmalloc_ptr<char> extra_string,
8600 enum bptype type, enum bpdisp disposition,
8601 int thread, int task, int ignore_count,
8602 int from_tty,
8603 int enabled, int internal, unsigned flags)
8604 {
8605 if (canonical->pre_expanded)
8606 gdb_assert (canonical->lsals.size () == 1);
8607
8608 for (const auto &lsal : canonical->lsals)
8609 {
8610 /* Note that 'location' can be NULL in the case of a plain
8611 'break', without arguments. */
8612 location_spec_up locspec
8613 = (canonical->locspec != nullptr
8614 ? canonical->locspec->clone ()
8615 : nullptr);
8616 gdb::unique_xmalloc_ptr<char> filter_string
8617 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
8618
8619 create_breakpoint_sal (gdbarch, lsal.sals,
8620 std::move (locspec),
8621 std::move (filter_string),
8622 std::move (cond_string),
8623 std::move (extra_string),
8624 type, disposition,
8625 thread, task, ignore_count,
8626 from_tty, enabled, internal, flags,
8627 canonical->special_display);
8628 }
8629 }
8630
8631 /* Parse LOCSPEC which is assumed to be a SAL specification possibly
8632 followed by conditionals. On return, SALS contains an array of SAL
8633 addresses found. LOCSPEC points to the end of the SAL (for
8634 linespec locspecs).
8635
8636 The array and the line spec strings are allocated on the heap, it is
8637 the caller's responsibility to free them. */
8638
8639 static void
8640 parse_breakpoint_sals (location_spec *locspec,
8641 struct linespec_result *canonical)
8642 {
8643 struct symtab_and_line cursal;
8644
8645 if (locspec->type () == LINESPEC_LOCATION_SPEC)
8646 {
8647 const char *spec = as_linespec_location_spec (locspec)->spec_string;
8648
8649 if (spec == NULL)
8650 {
8651 /* The last displayed codepoint, if it's valid, is our default
8652 breakpoint address. */
8653 if (last_displayed_sal_is_valid ())
8654 {
8655 /* Set sal's pspace, pc, symtab, and line to the values
8656 corresponding to the last call to print_frame_info.
8657 Be sure to reinitialize LINE with NOTCURRENT == 0
8658 as the breakpoint line number is inappropriate otherwise.
8659 find_pc_line would adjust PC, re-set it back. */
8660 symtab_and_line sal = get_last_displayed_sal ();
8661 CORE_ADDR pc = sal.pc;
8662
8663 sal = find_pc_line (pc, 0);
8664
8665 /* "break" without arguments is equivalent to "break *PC"
8666 where PC is the last displayed codepoint's address. So
8667 make sure to set sal.explicit_pc to prevent GDB from
8668 trying to expand the list of sals to include all other
8669 instances with the same symtab and line. */
8670 sal.pc = pc;
8671 sal.explicit_pc = 1;
8672
8673 struct linespec_sals lsal;
8674 lsal.sals = {sal};
8675 lsal.canonical = NULL;
8676
8677 canonical->lsals.push_back (std::move (lsal));
8678 return;
8679 }
8680 else
8681 error (_("No default breakpoint address now."));
8682 }
8683 }
8684
8685 /* Force almost all breakpoints to be in terms of the
8686 current_source_symtab (which is decode_line_1's default).
8687 This should produce the results we want almost all of the
8688 time while leaving default_breakpoint_* alone.
8689
8690 ObjC: However, don't match an Objective-C method name which
8691 may have a '+' or '-' succeeded by a '['. */
8692 cursal = get_current_source_symtab_and_line ();
8693 if (last_displayed_sal_is_valid ())
8694 {
8695 const char *spec = NULL;
8696
8697 if (locspec->type () == LINESPEC_LOCATION_SPEC)
8698 spec = as_linespec_location_spec (locspec)->spec_string;
8699
8700 if (!cursal.symtab
8701 || (spec != NULL
8702 && strchr ("+-", spec[0]) != NULL
8703 && spec[1] != '['))
8704 {
8705 decode_line_full (locspec, DECODE_LINE_FUNFIRSTLINE, NULL,
8706 get_last_displayed_symtab (),
8707 get_last_displayed_line (),
8708 canonical, NULL, NULL);
8709 return;
8710 }
8711 }
8712
8713 decode_line_full (locspec, DECODE_LINE_FUNFIRSTLINE, NULL,
8714 cursal.symtab, cursal.line, canonical, NULL, NULL);
8715 }
8716
8717
8718 /* Convert each SAL into a real PC. Verify that the PC can be
8719 inserted as a breakpoint. If it can't throw an error. */
8720
8721 static void
8722 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
8723 {
8724 for (auto &sal : sals)
8725 resolve_sal_pc (&sal);
8726 }
8727
8728 /* Fast tracepoints may have restrictions on valid locations. For
8729 instance, a fast tracepoint using a jump instead of a trap will
8730 likely have to overwrite more bytes than a trap would, and so can
8731 only be placed where the instruction is longer than the jump, or a
8732 multi-instruction sequence does not have a jump into the middle of
8733 it, etc. */
8734
8735 static void
8736 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
8737 gdb::array_view<const symtab_and_line> sals)
8738 {
8739 for (const auto &sal : sals)
8740 {
8741 struct gdbarch *sarch;
8742
8743 sarch = get_sal_arch (sal);
8744 /* We fall back to GDBARCH if there is no architecture
8745 associated with SAL. */
8746 if (sarch == NULL)
8747 sarch = gdbarch;
8748 std::string msg;
8749 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
8750 error (_("May not have a fast tracepoint at %s%s"),
8751 paddress (sarch, sal.pc), msg.c_str ());
8752 }
8753 }
8754
8755 /* Given TOK, a string specification of condition and thread, as
8756 accepted by the 'break' command, extract the condition
8757 string and thread number and set *COND_STRING and *THREAD.
8758 PC identifies the context at which the condition should be parsed.
8759 If no condition is found, *COND_STRING is set to NULL.
8760 If no thread is found, *THREAD is set to -1. */
8761
8762 static void
8763 find_condition_and_thread (const char *tok, CORE_ADDR pc,
8764 gdb::unique_xmalloc_ptr<char> *cond_string,
8765 int *thread, int *task,
8766 gdb::unique_xmalloc_ptr<char> *rest)
8767 {
8768 cond_string->reset ();
8769 *thread = -1;
8770 *task = -1;
8771 rest->reset ();
8772 bool force = false;
8773
8774 while (tok && *tok)
8775 {
8776 const char *end_tok;
8777 int toklen;
8778 const char *cond_start = NULL;
8779 const char *cond_end = NULL;
8780
8781 tok = skip_spaces (tok);
8782
8783 if ((*tok == '"' || *tok == ',') && rest)
8784 {
8785 rest->reset (savestring (tok, strlen (tok)));
8786 return;
8787 }
8788
8789 end_tok = skip_to_space (tok);
8790
8791 toklen = end_tok - tok;
8792
8793 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
8794 {
8795 tok = cond_start = end_tok + 1;
8796 try
8797 {
8798 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
8799 }
8800 catch (const gdb_exception_error &)
8801 {
8802 if (!force)
8803 throw;
8804 else
8805 tok = tok + strlen (tok);
8806 }
8807 cond_end = tok;
8808 cond_string->reset (savestring (cond_start, cond_end - cond_start));
8809 }
8810 else if (toklen >= 1 && strncmp (tok, "-force-condition", toklen) == 0)
8811 {
8812 tok = tok + toklen;
8813 force = true;
8814 }
8815 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
8816 {
8817 const char *tmptok;
8818 struct thread_info *thr;
8819
8820 if (*thread != -1)
8821 error(_("You can specify only one thread."));
8822
8823 if (*task != -1)
8824 error (_("You can specify only one of thread or task."));
8825
8826 tok = end_tok + 1;
8827 thr = parse_thread_id (tok, &tmptok);
8828 if (tok == tmptok)
8829 error (_("Junk after thread keyword."));
8830 *thread = thr->global_num;
8831 tok = tmptok;
8832 }
8833 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
8834 {
8835 char *tmptok;
8836
8837 if (*task != -1)
8838 error(_("You can specify only one task."));
8839
8840 if (*thread != -1)
8841 error (_("You can specify only one of thread or task."));
8842
8843 tok = end_tok + 1;
8844 *task = strtol (tok, &tmptok, 0);
8845 if (tok == tmptok)
8846 error (_("Junk after task keyword."));
8847 if (!valid_task_id (*task))
8848 error (_("Unknown task %d."), *task);
8849 tok = tmptok;
8850 }
8851 else if (rest)
8852 {
8853 rest->reset (savestring (tok, strlen (tok)));
8854 return;
8855 }
8856 else
8857 error (_("Junk at end of arguments."));
8858 }
8859 }
8860
8861 /* Call 'find_condition_and_thread' for each sal in SALS until a parse
8862 succeeds. The parsed values are written to COND_STRING, THREAD,
8863 TASK, and REST. See the comment of 'find_condition_and_thread'
8864 for the description of these parameters and INPUT. */
8865
8866 static void
8867 find_condition_and_thread_for_sals (const std::vector<symtab_and_line> &sals,
8868 const char *input,
8869 gdb::unique_xmalloc_ptr<char> *cond_string,
8870 int *thread, int *task,
8871 gdb::unique_xmalloc_ptr<char> *rest)
8872 {
8873 int num_failures = 0;
8874 for (auto &sal : sals)
8875 {
8876 gdb::unique_xmalloc_ptr<char> cond;
8877 int thread_id = -1;
8878 int task_id = -1;
8879 gdb::unique_xmalloc_ptr<char> remaining;
8880
8881 /* Here we want to parse 'arg' to separate condition from thread
8882 number. But because parsing happens in a context and the
8883 contexts of sals might be different, try each until there is
8884 success. Finding one successful parse is sufficient for our
8885 goal. When setting the breakpoint we'll re-parse the
8886 condition in the context of each sal. */
8887 try
8888 {
8889 find_condition_and_thread (input, sal.pc, &cond, &thread_id,
8890 &task_id, &remaining);
8891 *cond_string = std::move (cond);
8892 /* At most one of thread or task can be set. */
8893 gdb_assert (thread_id == -1 || task_id == -1);
8894 *thread = thread_id;
8895 *task = task_id;
8896 *rest = std::move (remaining);
8897 break;
8898 }
8899 catch (const gdb_exception_error &e)
8900 {
8901 num_failures++;
8902 /* If no sal remains, do not continue. */
8903 if (num_failures == sals.size ())
8904 throw;
8905 }
8906 }
8907 }
8908
8909 /* Decode a static tracepoint marker spec. */
8910
8911 static std::vector<symtab_and_line>
8912 decode_static_tracepoint_spec (const char **arg_p)
8913 {
8914 const char *p = &(*arg_p)[3];
8915 const char *endp;
8916
8917 p = skip_spaces (p);
8918
8919 endp = skip_to_space (p);
8920
8921 std::string marker_str (p, endp - p);
8922
8923 std::vector<static_tracepoint_marker> markers
8924 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
8925 if (markers.empty ())
8926 error (_("No known static tracepoint marker named %s"),
8927 marker_str.c_str ());
8928
8929 std::vector<symtab_and_line> sals;
8930 sals.reserve (markers.size ());
8931
8932 for (const static_tracepoint_marker &marker : markers)
8933 {
8934 symtab_and_line sal = find_pc_line (marker.address, 0);
8935 sal.pc = marker.address;
8936 sals.push_back (sal);
8937 }
8938
8939 *arg_p = endp;
8940 return sals;
8941 }
8942
8943 /* Returns the breakpoint ops appropriate for use with with LOCATION_TYPE and
8944 according to IS_TRACEPOINT. */
8945
8946 static const struct breakpoint_ops *
8947 breakpoint_ops_for_location_spec_type (enum location_spec_type locspec_type,
8948 bool is_tracepoint)
8949 {
8950 if (is_tracepoint)
8951 {
8952 if (locspec_type == PROBE_LOCATION_SPEC)
8953 return &tracepoint_probe_breakpoint_ops;
8954 else
8955 return &code_breakpoint_ops;
8956 }
8957 else
8958 {
8959 if (locspec_type == PROBE_LOCATION_SPEC)
8960 return &bkpt_probe_breakpoint_ops;
8961 else
8962 return &code_breakpoint_ops;
8963 }
8964 }
8965
8966 /* See breakpoint.h. */
8967
8968 const struct breakpoint_ops *
8969 breakpoint_ops_for_location_spec (const location_spec *locspec,
8970 bool is_tracepoint)
8971 {
8972 if (locspec != nullptr)
8973 return (breakpoint_ops_for_location_spec_type
8974 (locspec->type (), is_tracepoint));
8975 return &code_breakpoint_ops;
8976 }
8977
8978 /* See breakpoint.h. */
8979
8980 int
8981 create_breakpoint (struct gdbarch *gdbarch,
8982 location_spec *locspec,
8983 const char *cond_string,
8984 int thread, const char *extra_string,
8985 bool force_condition, int parse_extra,
8986 int tempflag, enum bptype type_wanted,
8987 int ignore_count,
8988 enum auto_boolean pending_break_support,
8989 const struct breakpoint_ops *ops,
8990 int from_tty, int enabled, int internal,
8991 unsigned flags)
8992 {
8993 struct linespec_result canonical;
8994 bool pending = false;
8995 int task = -1;
8996 int prev_bkpt_count = breakpoint_count;
8997
8998 gdb_assert (ops != NULL);
8999
9000 /* If extra_string isn't useful, set it to NULL. */
9001 if (extra_string != NULL && *extra_string == '\0')
9002 extra_string = NULL;
9003
9004 try
9005 {
9006 ops->create_sals_from_location_spec (locspec, &canonical);
9007 }
9008 catch (const gdb_exception_error &e)
9009 {
9010 /* If caller is interested in rc value from parse, set
9011 value. */
9012 if (e.error == NOT_FOUND_ERROR)
9013 {
9014 /* If pending breakpoint support is turned off, throw
9015 error. */
9016
9017 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9018 throw;
9019
9020 exception_print (gdb_stderr, e);
9021
9022 /* If pending breakpoint support is auto query and the user
9023 selects no, then simply return the error code. */
9024 if (pending_break_support == AUTO_BOOLEAN_AUTO
9025 && !nquery (_("Make %s pending on future shared library load? "),
9026 bptype_string (type_wanted)))
9027 return 0;
9028
9029 /* At this point, either the user was queried about setting
9030 a pending breakpoint and selected yes, or pending
9031 breakpoint behavior is on and thus a pending breakpoint
9032 is defaulted on behalf of the user. */
9033 pending = true;
9034 }
9035 else
9036 throw;
9037 }
9038
9039 if (!pending && canonical.lsals.empty ())
9040 return 0;
9041
9042 /* Resolve all line numbers to PC's and verify that the addresses
9043 are ok for the target. */
9044 if (!pending)
9045 {
9046 for (auto &lsal : canonical.lsals)
9047 breakpoint_sals_to_pc (lsal.sals);
9048 }
9049
9050 /* Fast tracepoints may have additional restrictions on location. */
9051 if (!pending && type_wanted == bp_fast_tracepoint)
9052 {
9053 for (const auto &lsal : canonical.lsals)
9054 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9055 }
9056
9057 /* Verify that condition can be parsed, before setting any
9058 breakpoints. Allocate a separate condition expression for each
9059 breakpoint. */
9060 if (!pending)
9061 {
9062 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9063 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9064
9065 if (parse_extra)
9066 {
9067 gdb::unique_xmalloc_ptr<char> rest;
9068 gdb::unique_xmalloc_ptr<char> cond;
9069
9070 const linespec_sals &lsal = canonical.lsals[0];
9071
9072 find_condition_and_thread_for_sals (lsal.sals, extra_string,
9073 &cond, &thread, &task, &rest);
9074 cond_string_copy = std::move (cond);
9075 extra_string_copy = std::move (rest);
9076 }
9077 else
9078 {
9079 if (type_wanted != bp_dprintf
9080 && extra_string != NULL && *extra_string != '\0')
9081 error (_("Garbage '%s' at end of location"), extra_string);
9082
9083 /* Check the validity of the condition. We should error out
9084 if the condition is invalid at all of the locations and
9085 if it is not forced. In the PARSE_EXTRA case above, this
9086 check is done when parsing the EXTRA_STRING. */
9087 if (cond_string != nullptr && !force_condition)
9088 {
9089 int num_failures = 0;
9090 const linespec_sals &lsal = canonical.lsals[0];
9091 for (const auto &sal : lsal.sals)
9092 {
9093 const char *cond = cond_string;
9094 try
9095 {
9096 parse_exp_1 (&cond, sal.pc, block_for_pc (sal.pc), 0);
9097 /* One success is sufficient to keep going. */
9098 break;
9099 }
9100 catch (const gdb_exception_error &)
9101 {
9102 num_failures++;
9103 /* If this is the last sal, error out. */
9104 if (num_failures == lsal.sals.size ())
9105 throw;
9106 }
9107 }
9108 }
9109
9110 /* Create a private copy of condition string. */
9111 if (cond_string)
9112 cond_string_copy.reset (xstrdup (cond_string));
9113 /* Create a private copy of any extra string. */
9114 if (extra_string)
9115 extra_string_copy.reset (xstrdup (extra_string));
9116 }
9117
9118 ops->create_breakpoints_sal (gdbarch, &canonical,
9119 std::move (cond_string_copy),
9120 std::move (extra_string_copy),
9121 type_wanted,
9122 tempflag ? disp_del : disp_donttouch,
9123 thread, task, ignore_count,
9124 from_tty, enabled, internal, flags);
9125 }
9126 else
9127 {
9128 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (gdbarch,
9129 type_wanted);
9130 b->locspec = locspec->clone ();
9131
9132 if (parse_extra)
9133 b->cond_string = NULL;
9134 else
9135 {
9136 /* Create a private copy of condition string. */
9137 b->cond_string.reset (cond_string != NULL
9138 ? xstrdup (cond_string)
9139 : NULL);
9140 b->thread = thread;
9141 }
9142
9143 /* Create a private copy of any extra string. */
9144 b->extra_string.reset (extra_string != NULL
9145 ? xstrdup (extra_string)
9146 : NULL);
9147 b->ignore_count = ignore_count;
9148 b->disposition = tempflag ? disp_del : disp_donttouch;
9149 b->condition_not_parsed = 1;
9150 b->enable_state = enabled ? bp_enabled : bp_disabled;
9151 if ((type_wanted != bp_breakpoint
9152 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9153 b->pspace = current_program_space;
9154
9155 install_breakpoint (internal, std::move (b), 0);
9156 }
9157
9158 if (canonical.lsals.size () > 1)
9159 {
9160 warning (_("Multiple breakpoints were set.\nUse the "
9161 "\"delete\" command to delete unwanted breakpoints."));
9162 prev_breakpoint_count = prev_bkpt_count;
9163 }
9164
9165 update_global_location_list (UGLL_MAY_INSERT);
9166
9167 return 1;
9168 }
9169
9170 /* Set a breakpoint.
9171 ARG is a string describing breakpoint address,
9172 condition, and thread.
9173 FLAG specifies if a breakpoint is hardware on,
9174 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9175 and BP_TEMPFLAG. */
9176
9177 static void
9178 break_command_1 (const char *arg, int flag, int from_tty)
9179 {
9180 int tempflag = flag & BP_TEMPFLAG;
9181 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9182 ? bp_hardware_breakpoint
9183 : bp_breakpoint);
9184
9185 location_spec_up locspec = string_to_location_spec (&arg, current_language);
9186 const struct breakpoint_ops *ops
9187 = breakpoint_ops_for_location_spec (locspec.get (),
9188 false /* is_tracepoint */);
9189
9190 create_breakpoint (get_current_arch (),
9191 locspec.get (),
9192 NULL, 0, arg, false, 1 /* parse arg */,
9193 tempflag, type_wanted,
9194 0 /* Ignore count */,
9195 pending_break_support,
9196 ops,
9197 from_tty,
9198 1 /* enabled */,
9199 0 /* internal */,
9200 0);
9201 }
9202
9203 /* Helper function for break_command_1 and disassemble_command. */
9204
9205 void
9206 resolve_sal_pc (struct symtab_and_line *sal)
9207 {
9208 CORE_ADDR pc;
9209
9210 if (sal->pc == 0 && sal->symtab != NULL)
9211 {
9212 if (!find_line_pc (sal->symtab, sal->line, &pc))
9213 error (_("No line %d in file \"%s\"."),
9214 sal->line, symtab_to_filename_for_display (sal->symtab));
9215 sal->pc = pc;
9216
9217 /* If this SAL corresponds to a breakpoint inserted using a line
9218 number, then skip the function prologue if necessary. */
9219 if (sal->explicit_line)
9220 skip_prologue_sal (sal);
9221 }
9222
9223 if (sal->section == 0 && sal->symtab != NULL)
9224 {
9225 const struct blockvector *bv;
9226 const struct block *b;
9227 struct symbol *sym;
9228
9229 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9230 sal->symtab->compunit ());
9231 if (bv != NULL)
9232 {
9233 sym = block_linkage_function (b);
9234 if (sym != NULL)
9235 sal->section
9236 = sym->obj_section (sal->symtab->compunit ()->objfile ());
9237 else
9238 {
9239 /* It really is worthwhile to have the section, so we'll
9240 just have to look harder. This case can be executed
9241 if we have line numbers but no functions (as can
9242 happen in assembly source). */
9243
9244 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9245 switch_to_program_space_and_thread (sal->pspace);
9246
9247 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9248 if (msym.minsym)
9249 sal->section = msym.obj_section ();
9250 }
9251 }
9252 }
9253 }
9254
9255 void
9256 break_command (const char *arg, int from_tty)
9257 {
9258 break_command_1 (arg, 0, from_tty);
9259 }
9260
9261 void
9262 tbreak_command (const char *arg, int from_tty)
9263 {
9264 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9265 }
9266
9267 static void
9268 hbreak_command (const char *arg, int from_tty)
9269 {
9270 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9271 }
9272
9273 static void
9274 thbreak_command (const char *arg, int from_tty)
9275 {
9276 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9277 }
9278
9279 /* The dynamic printf command is mostly like a regular breakpoint, but
9280 with a prewired command list consisting of a single output command,
9281 built from extra arguments supplied on the dprintf command
9282 line. */
9283
9284 static void
9285 dprintf_command (const char *arg, int from_tty)
9286 {
9287 location_spec_up locspec = string_to_location_spec (&arg, current_language);
9288
9289 /* If non-NULL, ARG should have been advanced past the location;
9290 the next character must be ','. */
9291 if (arg != NULL)
9292 {
9293 if (arg[0] != ',' || arg[1] == '\0')
9294 error (_("Format string required"));
9295 else
9296 {
9297 /* Skip the comma. */
9298 ++arg;
9299 }
9300 }
9301
9302 create_breakpoint (get_current_arch (),
9303 locspec.get (),
9304 NULL, 0, arg, false, 1 /* parse arg */,
9305 0, bp_dprintf,
9306 0 /* Ignore count */,
9307 pending_break_support,
9308 &code_breakpoint_ops,
9309 from_tty,
9310 1 /* enabled */,
9311 0 /* internal */,
9312 0);
9313 }
9314
9315 static void
9316 agent_printf_command (const char *arg, int from_tty)
9317 {
9318 error (_("May only run agent-printf on the target"));
9319 }
9320
9321 /* Implement the "breakpoint_hit" method for ranged breakpoints. */
9322
9323 int
9324 ranged_breakpoint::breakpoint_hit (const struct bp_location *bl,
9325 const address_space *aspace,
9326 CORE_ADDR bp_addr,
9327 const target_waitstatus &ws)
9328 {
9329 if (ws.kind () != TARGET_WAITKIND_STOPPED
9330 || ws.sig () != GDB_SIGNAL_TRAP)
9331 return 0;
9332
9333 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9334 bl->length, aspace, bp_addr);
9335 }
9336
9337 /* Implement the "resources_needed" method for ranged breakpoints. */
9338
9339 int
9340 ranged_breakpoint::resources_needed (const struct bp_location *bl)
9341 {
9342 return target_ranged_break_num_registers ();
9343 }
9344
9345 /* Implement the "print_it" method for ranged breakpoints. */
9346
9347 enum print_stop_action
9348 ranged_breakpoint::print_it (const bpstat *bs) const
9349 {
9350 struct bp_location *bl = loc;
9351 struct ui_out *uiout = current_uiout;
9352
9353 gdb_assert (type == bp_hardware_breakpoint);
9354
9355 /* Ranged breakpoints have only one location. */
9356 gdb_assert (bl && bl->next == NULL);
9357
9358 annotate_breakpoint (number);
9359
9360 maybe_print_thread_hit_breakpoint (uiout);
9361
9362 if (disposition == disp_del)
9363 uiout->text ("Temporary ranged breakpoint ");
9364 else
9365 uiout->text ("Ranged breakpoint ");
9366 if (uiout->is_mi_like_p ())
9367 {
9368 uiout->field_string ("reason",
9369 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9370 uiout->field_string ("disp", bpdisp_text (disposition));
9371 }
9372 print_num_locno (bs, uiout);
9373 uiout->text (", ");
9374
9375 return PRINT_SRC_AND_LOC;
9376 }
9377
9378 /* Implement the "print_one" method for ranged breakpoints. */
9379
9380 bool
9381 ranged_breakpoint::print_one (bp_location **last_loc) const
9382 {
9383 struct bp_location *bl = loc;
9384 struct value_print_options opts;
9385 struct ui_out *uiout = current_uiout;
9386
9387 /* Ranged breakpoints have only one location. */
9388 gdb_assert (bl && bl->next == NULL);
9389
9390 get_user_print_options (&opts);
9391
9392 if (opts.addressprint)
9393 /* We don't print the address range here, it will be printed later
9394 by ranged_breakpoint::print_one_detail. */
9395 uiout->field_skip ("addr");
9396 annotate_field (5);
9397 print_breakpoint_location (this, bl);
9398 *last_loc = bl;
9399
9400 return true;
9401 }
9402
9403 /* Implement the "print_one_detail" method for ranged breakpoints. */
9404
9405 void
9406 ranged_breakpoint::print_one_detail (struct ui_out *uiout) const
9407 {
9408 CORE_ADDR address_start, address_end;
9409 struct bp_location *bl = loc;
9410 string_file stb;
9411
9412 gdb_assert (bl);
9413
9414 address_start = bl->address;
9415 address_end = address_start + bl->length - 1;
9416
9417 uiout->text ("\taddress range: ");
9418 stb.printf ("[%s, %s]",
9419 print_core_address (bl->gdbarch, address_start),
9420 print_core_address (bl->gdbarch, address_end));
9421 uiout->field_stream ("addr", stb);
9422 uiout->text ("\n");
9423 }
9424
9425 /* Implement the "print_mention" method for ranged breakpoints. */
9426
9427 void
9428 ranged_breakpoint::print_mention () const
9429 {
9430 struct bp_location *bl = loc;
9431 struct ui_out *uiout = current_uiout;
9432
9433 gdb_assert (bl);
9434 gdb_assert (type == bp_hardware_breakpoint);
9435
9436 uiout->message (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9437 number, paddress (bl->gdbarch, bl->address),
9438 paddress (bl->gdbarch, bl->address + bl->length - 1));
9439 }
9440
9441 /* Implement the "print_recreate" method for ranged breakpoints. */
9442
9443 void
9444 ranged_breakpoint::print_recreate (struct ui_file *fp) const
9445 {
9446 gdb_printf (fp, "break-range %s, %s",
9447 locspec->to_string (),
9448 locspec_range_end->to_string ());
9449 print_recreate_thread (fp);
9450 }
9451
9452 /* Find the address where the end of the breakpoint range should be
9453 placed, given the SAL of the end of the range. This is so that if
9454 the user provides a line number, the end of the range is set to the
9455 last instruction of the given line. */
9456
9457 static CORE_ADDR
9458 find_breakpoint_range_end (struct symtab_and_line sal)
9459 {
9460 CORE_ADDR end;
9461
9462 /* If the user provided a PC value, use it. Otherwise,
9463 find the address of the end of the given location. */
9464 if (sal.explicit_pc)
9465 end = sal.pc;
9466 else
9467 {
9468 int ret;
9469 CORE_ADDR start;
9470
9471 ret = find_line_pc_range (sal, &start, &end);
9472 if (!ret)
9473 error (_("Could not find location of the end of the range."));
9474
9475 /* find_line_pc_range returns the start of the next line. */
9476 end--;
9477 }
9478
9479 return end;
9480 }
9481
9482 /* Implement the "break-range" CLI command. */
9483
9484 static void
9485 break_range_command (const char *arg, int from_tty)
9486 {
9487 const char *arg_start;
9488 struct linespec_result canonical_start, canonical_end;
9489 int bp_count, can_use_bp, length;
9490 CORE_ADDR end;
9491
9492 /* We don't support software ranged breakpoints. */
9493 if (target_ranged_break_num_registers () < 0)
9494 error (_("This target does not support hardware ranged breakpoints."));
9495
9496 bp_count = hw_breakpoint_used_count ();
9497 bp_count += target_ranged_break_num_registers ();
9498 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9499 bp_count, 0);
9500 if (can_use_bp < 0)
9501 error (_("Hardware breakpoints used exceeds limit."));
9502
9503 arg = skip_spaces (arg);
9504 if (arg == NULL || arg[0] == '\0')
9505 error(_("No address range specified."));
9506
9507 arg_start = arg;
9508 location_spec_up start_locspec
9509 = string_to_location_spec (&arg, current_language);
9510 parse_breakpoint_sals (start_locspec.get (), &canonical_start);
9511
9512 if (arg[0] != ',')
9513 error (_("Too few arguments."));
9514 else if (canonical_start.lsals.empty ())
9515 error (_("Could not find location of the beginning of the range."));
9516
9517 const linespec_sals &lsal_start = canonical_start.lsals[0];
9518
9519 if (canonical_start.lsals.size () > 1
9520 || lsal_start.sals.size () != 1)
9521 error (_("Cannot create a ranged breakpoint with multiple locations."));
9522
9523 const symtab_and_line &sal_start = lsal_start.sals[0];
9524 std::string addr_string_start (arg_start, arg - arg_start);
9525
9526 arg++; /* Skip the comma. */
9527 arg = skip_spaces (arg);
9528
9529 /* Parse the end location specification. */
9530
9531 arg_start = arg;
9532
9533 /* We call decode_line_full directly here instead of using
9534 parse_breakpoint_sals because we need to specify the start
9535 location spec's symtab and line as the default symtab and line
9536 for the end of the range. This makes it possible to have ranges
9537 like "foo.c:27, +14", where +14 means 14 lines from the start
9538 location spec. */
9539 location_spec_up end_locspec
9540 = string_to_location_spec (&arg, current_language);
9541 decode_line_full (end_locspec.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9542 sal_start.symtab, sal_start.line,
9543 &canonical_end, NULL, NULL);
9544
9545 if (canonical_end.lsals.empty ())
9546 error (_("Could not find location of the end of the range."));
9547
9548 const linespec_sals &lsal_end = canonical_end.lsals[0];
9549 if (canonical_end.lsals.size () > 1
9550 || lsal_end.sals.size () != 1)
9551 error (_("Cannot create a ranged breakpoint with multiple locations."));
9552
9553 const symtab_and_line &sal_end = lsal_end.sals[0];
9554
9555 end = find_breakpoint_range_end (sal_end);
9556 if (sal_start.pc > end)
9557 error (_("Invalid address range, end precedes start."));
9558
9559 length = end - sal_start.pc + 1;
9560 if (length < 0)
9561 /* Length overflowed. */
9562 error (_("Address range too large."));
9563 else if (length == 1)
9564 {
9565 /* This range is simple enough to be handled by
9566 the `hbreak' command. */
9567 hbreak_command (&addr_string_start[0], 1);
9568
9569 return;
9570 }
9571
9572 /* Now set up the breakpoint and install it. */
9573
9574 std::unique_ptr<breakpoint> br
9575 (new ranged_breakpoint (get_current_arch (),
9576 sal_start, length,
9577 std::move (start_locspec),
9578 std::move (end_locspec)));
9579
9580 install_breakpoint (false, std::move (br), true);
9581 }
9582
9583 /* Return non-zero if EXP is verified as constant. Returned zero
9584 means EXP is variable. Also the constant detection may fail for
9585 some constant expressions and in such case still falsely return
9586 zero. */
9587
9588 static bool
9589 watchpoint_exp_is_const (const struct expression *exp)
9590 {
9591 return exp->op->constant_p ();
9592 }
9593
9594 /* Implement the "re_set" method for watchpoints. */
9595
9596 void
9597 watchpoint::re_set ()
9598 {
9599 /* Watchpoint can be either on expression using entirely global
9600 variables, or it can be on local variables.
9601
9602 Watchpoints of the first kind are never auto-deleted, and even
9603 persist across program restarts. Since they can use variables
9604 from shared libraries, we need to reparse expression as libraries
9605 are loaded and unloaded.
9606
9607 Watchpoints on local variables can also change meaning as result
9608 of solib event. For example, if a watchpoint uses both a local
9609 and a global variables in expression, it's a local watchpoint,
9610 but unloading of a shared library will make the expression
9611 invalid. This is not a very common use case, but we still
9612 re-evaluate expression, to avoid surprises to the user.
9613
9614 Note that for local watchpoints, we re-evaluate it only if
9615 watchpoints frame id is still valid. If it's not, it means the
9616 watchpoint is out of scope and will be deleted soon. In fact,
9617 I'm not sure we'll ever be called in this case.
9618
9619 If a local watchpoint's frame id is still valid, then
9620 exp_valid_block is likewise valid, and we can safely use it.
9621
9622 Don't do anything about disabled watchpoints, since they will be
9623 reevaluated again when enabled. */
9624 update_watchpoint (this, true /* reparse */);
9625 }
9626
9627 /* Implement the "insert" method for hardware watchpoints. */
9628
9629 int
9630 watchpoint::insert_location (struct bp_location *bl)
9631 {
9632 int length = exact ? 1 : bl->length;
9633
9634 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
9635 cond_exp.get ());
9636 }
9637
9638 /* Implement the "remove" method for hardware watchpoints. */
9639
9640 int
9641 watchpoint::remove_location (struct bp_location *bl,
9642 enum remove_bp_reason reason)
9643 {
9644 int length = exact ? 1 : bl->length;
9645
9646 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
9647 cond_exp.get ());
9648 }
9649
9650 int
9651 watchpoint::breakpoint_hit (const struct bp_location *bl,
9652 const address_space *aspace, CORE_ADDR bp_addr,
9653 const target_waitstatus &ws)
9654 {
9655 struct breakpoint *b = bl->owner;
9656
9657 /* Continuable hardware watchpoints are treated as non-existent if the
9658 reason we stopped wasn't a hardware watchpoint (we didn't stop on
9659 some data address). Otherwise gdb won't stop on a break instruction
9660 in the code (not from a breakpoint) when a hardware watchpoint has
9661 been defined. Also skip watchpoints which we know did not trigger
9662 (did not match the data address). */
9663 if (is_hardware_watchpoint (b)
9664 && watchpoint_triggered == watch_triggered_no)
9665 return 0;
9666
9667 return 1;
9668 }
9669
9670 void
9671 watchpoint::check_status (bpstat *bs)
9672 {
9673 gdb_assert (is_watchpoint (bs->breakpoint_at));
9674
9675 bpstat_check_watchpoint (bs);
9676 }
9677
9678 /* Implement the "resources_needed" method for hardware
9679 watchpoints. */
9680
9681 int
9682 watchpoint::resources_needed (const struct bp_location *bl)
9683 {
9684 int length = exact? 1 : bl->length;
9685
9686 return target_region_ok_for_hw_watchpoint (bl->address, length);
9687 }
9688
9689 /* Implement the "works_in_software_mode" method for hardware
9690 watchpoints. */
9691
9692 bool
9693 watchpoint::works_in_software_mode () const
9694 {
9695 /* Read and access watchpoints only work with hardware support. */
9696 return type == bp_watchpoint || type == bp_hardware_watchpoint;
9697 }
9698
9699 enum print_stop_action
9700 watchpoint::print_it (const bpstat *bs) const
9701 {
9702 struct breakpoint *b;
9703 enum print_stop_action result;
9704 struct ui_out *uiout = current_uiout;
9705
9706 gdb_assert (bs->bp_location_at != NULL);
9707
9708 b = bs->breakpoint_at;
9709
9710 annotate_watchpoint (b->number);
9711 maybe_print_thread_hit_breakpoint (uiout);
9712
9713 string_file stb;
9714
9715 gdb::optional<ui_out_emit_tuple> tuple_emitter;
9716 switch (b->type)
9717 {
9718 case bp_watchpoint:
9719 case bp_hardware_watchpoint:
9720 if (uiout->is_mi_like_p ())
9721 uiout->field_string
9722 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
9723 mention (b);
9724 tuple_emitter.emplace (uiout, "value");
9725 uiout->text ("\nOld value = ");
9726 watchpoint_value_print (bs->old_val.get (), &stb);
9727 uiout->field_stream ("old", stb);
9728 uiout->text ("\nNew value = ");
9729 watchpoint_value_print (val.get (), &stb);
9730 uiout->field_stream ("new", stb);
9731 uiout->text ("\n");
9732 /* More than one watchpoint may have been triggered. */
9733 result = PRINT_UNKNOWN;
9734 break;
9735
9736 case bp_read_watchpoint:
9737 if (uiout->is_mi_like_p ())
9738 uiout->field_string
9739 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
9740 mention (b);
9741 tuple_emitter.emplace (uiout, "value");
9742 uiout->text ("\nValue = ");
9743 watchpoint_value_print (val.get (), &stb);
9744 uiout->field_stream ("value", stb);
9745 uiout->text ("\n");
9746 result = PRINT_UNKNOWN;
9747 break;
9748
9749 case bp_access_watchpoint:
9750 if (bs->old_val != NULL)
9751 {
9752 if (uiout->is_mi_like_p ())
9753 uiout->field_string
9754 ("reason",
9755 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
9756 mention (b);
9757 tuple_emitter.emplace (uiout, "value");
9758 uiout->text ("\nOld value = ");
9759 watchpoint_value_print (bs->old_val.get (), &stb);
9760 uiout->field_stream ("old", stb);
9761 uiout->text ("\nNew value = ");
9762 }
9763 else
9764 {
9765 mention (b);
9766 if (uiout->is_mi_like_p ())
9767 uiout->field_string
9768 ("reason",
9769 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
9770 tuple_emitter.emplace (uiout, "value");
9771 uiout->text ("\nValue = ");
9772 }
9773 watchpoint_value_print (val.get (), &stb);
9774 uiout->field_stream ("new", stb);
9775 uiout->text ("\n");
9776 result = PRINT_UNKNOWN;
9777 break;
9778 default:
9779 result = PRINT_UNKNOWN;
9780 }
9781
9782 return result;
9783 }
9784
9785 /* Implement the "print_mention" method for hardware watchpoints. */
9786
9787 void
9788 watchpoint::print_mention () const
9789 {
9790 struct ui_out *uiout = current_uiout;
9791 const char *tuple_name;
9792
9793 switch (type)
9794 {
9795 case bp_watchpoint:
9796 uiout->text ("Watchpoint ");
9797 tuple_name = "wpt";
9798 break;
9799 case bp_hardware_watchpoint:
9800 uiout->text ("Hardware watchpoint ");
9801 tuple_name = "wpt";
9802 break;
9803 case bp_read_watchpoint:
9804 uiout->text ("Hardware read watchpoint ");
9805 tuple_name = "hw-rwpt";
9806 break;
9807 case bp_access_watchpoint:
9808 uiout->text ("Hardware access (read/write) watchpoint ");
9809 tuple_name = "hw-awpt";
9810 break;
9811 default:
9812 internal_error (_("Invalid hardware watchpoint type."));
9813 }
9814
9815 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
9816 uiout->field_signed ("number", number);
9817 uiout->text (": ");
9818 uiout->field_string ("exp", exp_string.get ());
9819 }
9820
9821 /* Implement the "print_recreate" method for watchpoints. */
9822
9823 void
9824 watchpoint::print_recreate (struct ui_file *fp) const
9825 {
9826 switch (type)
9827 {
9828 case bp_watchpoint:
9829 case bp_hardware_watchpoint:
9830 gdb_printf (fp, "watch");
9831 break;
9832 case bp_read_watchpoint:
9833 gdb_printf (fp, "rwatch");
9834 break;
9835 case bp_access_watchpoint:
9836 gdb_printf (fp, "awatch");
9837 break;
9838 default:
9839 internal_error (_("Invalid watchpoint type."));
9840 }
9841
9842 gdb_printf (fp, " %s", exp_string.get ());
9843 print_recreate_thread (fp);
9844 }
9845
9846 /* Implement the "explains_signal" method for watchpoints. */
9847
9848 bool
9849 watchpoint::explains_signal (enum gdb_signal sig)
9850 {
9851 /* A software watchpoint cannot cause a signal other than
9852 GDB_SIGNAL_TRAP. */
9853 if (type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
9854 return false;
9855
9856 return true;
9857 }
9858
9859 struct masked_watchpoint : public watchpoint
9860 {
9861 using watchpoint::watchpoint;
9862
9863 int insert_location (struct bp_location *) override;
9864 int remove_location (struct bp_location *,
9865 enum remove_bp_reason reason) override;
9866 int resources_needed (const struct bp_location *) override;
9867 bool works_in_software_mode () const override;
9868 enum print_stop_action print_it (const bpstat *bs) const override;
9869 void print_one_detail (struct ui_out *) const override;
9870 void print_mention () const override;
9871 void print_recreate (struct ui_file *fp) const override;
9872 };
9873
9874 /* Implement the "insert" method for masked hardware watchpoints. */
9875
9876 int
9877 masked_watchpoint::insert_location (struct bp_location *bl)
9878 {
9879 return target_insert_mask_watchpoint (bl->address, hw_wp_mask,
9880 bl->watchpoint_type);
9881 }
9882
9883 /* Implement the "remove" method for masked hardware watchpoints. */
9884
9885 int
9886 masked_watchpoint::remove_location (struct bp_location *bl,
9887 enum remove_bp_reason reason)
9888 {
9889 return target_remove_mask_watchpoint (bl->address, hw_wp_mask,
9890 bl->watchpoint_type);
9891 }
9892
9893 /* Implement the "resources_needed" method for masked hardware
9894 watchpoints. */
9895
9896 int
9897 masked_watchpoint::resources_needed (const struct bp_location *bl)
9898 {
9899 return target_masked_watch_num_registers (bl->address, hw_wp_mask);
9900 }
9901
9902 /* Implement the "works_in_software_mode" method for masked hardware
9903 watchpoints. */
9904
9905 bool
9906 masked_watchpoint::works_in_software_mode () const
9907 {
9908 return false;
9909 }
9910
9911 /* Implement the "print_it" method for masked hardware
9912 watchpoints. */
9913
9914 enum print_stop_action
9915 masked_watchpoint::print_it (const bpstat *bs) const
9916 {
9917 struct breakpoint *b = bs->breakpoint_at;
9918 struct ui_out *uiout = current_uiout;
9919
9920 /* Masked watchpoints have only one location. */
9921 gdb_assert (b->loc && b->loc->next == NULL);
9922
9923 annotate_watchpoint (b->number);
9924 maybe_print_thread_hit_breakpoint (uiout);
9925
9926 switch (b->type)
9927 {
9928 case bp_hardware_watchpoint:
9929 if (uiout->is_mi_like_p ())
9930 uiout->field_string
9931 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
9932 break;
9933
9934 case bp_read_watchpoint:
9935 if (uiout->is_mi_like_p ())
9936 uiout->field_string
9937 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
9938 break;
9939
9940 case bp_access_watchpoint:
9941 if (uiout->is_mi_like_p ())
9942 uiout->field_string
9943 ("reason",
9944 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
9945 break;
9946 default:
9947 internal_error (_("Invalid hardware watchpoint type."));
9948 }
9949
9950 mention (b);
9951 uiout->text (_("\n\
9952 Check the underlying instruction at PC for the memory\n\
9953 address and value which triggered this watchpoint.\n"));
9954 uiout->text ("\n");
9955
9956 /* More than one watchpoint may have been triggered. */
9957 return PRINT_UNKNOWN;
9958 }
9959
9960 /* Implement the "print_one_detail" method for masked hardware
9961 watchpoints. */
9962
9963 void
9964 masked_watchpoint::print_one_detail (struct ui_out *uiout) const
9965 {
9966 /* Masked watchpoints have only one location. */
9967 gdb_assert (loc && loc->next == NULL);
9968
9969 uiout->text ("\tmask ");
9970 uiout->field_core_addr ("mask", loc->gdbarch, hw_wp_mask);
9971 uiout->text ("\n");
9972 }
9973
9974 /* Implement the "print_mention" method for masked hardware
9975 watchpoints. */
9976
9977 void
9978 masked_watchpoint::print_mention () const
9979 {
9980 struct ui_out *uiout = current_uiout;
9981 const char *tuple_name;
9982
9983 switch (type)
9984 {
9985 case bp_hardware_watchpoint:
9986 uiout->text ("Masked hardware watchpoint ");
9987 tuple_name = "wpt";
9988 break;
9989 case bp_read_watchpoint:
9990 uiout->text ("Masked hardware read watchpoint ");
9991 tuple_name = "hw-rwpt";
9992 break;
9993 case bp_access_watchpoint:
9994 uiout->text ("Masked hardware access (read/write) watchpoint ");
9995 tuple_name = "hw-awpt";
9996 break;
9997 default:
9998 internal_error (_("Invalid hardware watchpoint type."));
9999 }
10000
10001 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10002 uiout->field_signed ("number", number);
10003 uiout->text (": ");
10004 uiout->field_string ("exp", exp_string.get ());
10005 }
10006
10007 /* Implement the "print_recreate" method for masked hardware
10008 watchpoints. */
10009
10010 void
10011 masked_watchpoint::print_recreate (struct ui_file *fp) const
10012 {
10013 switch (type)
10014 {
10015 case bp_hardware_watchpoint:
10016 gdb_printf (fp, "watch");
10017 break;
10018 case bp_read_watchpoint:
10019 gdb_printf (fp, "rwatch");
10020 break;
10021 case bp_access_watchpoint:
10022 gdb_printf (fp, "awatch");
10023 break;
10024 default:
10025 internal_error (_("Invalid hardware watchpoint type."));
10026 }
10027
10028 gdb_printf (fp, " %s mask 0x%s", exp_string.get (),
10029 phex (hw_wp_mask, sizeof (CORE_ADDR)));
10030 print_recreate_thread (fp);
10031 }
10032
10033 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10034
10035 static bool
10036 is_masked_watchpoint (const struct breakpoint *b)
10037 {
10038 return dynamic_cast<const masked_watchpoint *> (b) != nullptr;
10039 }
10040
10041 /* accessflag: hw_write: watch write,
10042 hw_read: watch read,
10043 hw_access: watch access (read or write) */
10044 static void
10045 watch_command_1 (const char *arg, int accessflag, int from_tty,
10046 bool just_location, bool internal)
10047 {
10048 struct breakpoint *scope_breakpoint = NULL;
10049 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10050 struct value *result;
10051 int saved_bitpos = 0, saved_bitsize = 0;
10052 const char *exp_start = NULL;
10053 const char *exp_end = NULL;
10054 const char *tok, *end_tok;
10055 int toklen = -1;
10056 const char *cond_start = NULL;
10057 const char *cond_end = NULL;
10058 enum bptype bp_type;
10059 int thread = -1;
10060 /* Flag to indicate whether we are going to use masks for
10061 the hardware watchpoint. */
10062 bool use_mask = false;
10063 CORE_ADDR mask = 0;
10064 int task = -1;
10065
10066 /* Make sure that we actually have parameters to parse. */
10067 if (arg != NULL && arg[0] != '\0')
10068 {
10069 const char *value_start;
10070
10071 exp_end = arg + strlen (arg);
10072
10073 /* Look for "parameter value" pairs at the end
10074 of the arguments string. */
10075 for (tok = exp_end - 1; tok > arg; tok--)
10076 {
10077 /* Skip whitespace at the end of the argument list. */
10078 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10079 tok--;
10080
10081 /* Find the beginning of the last token.
10082 This is the value of the parameter. */
10083 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10084 tok--;
10085 value_start = tok + 1;
10086
10087 /* Skip whitespace. */
10088 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10089 tok--;
10090
10091 end_tok = tok;
10092
10093 /* Find the beginning of the second to last token.
10094 This is the parameter itself. */
10095 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10096 tok--;
10097 tok++;
10098 toklen = end_tok - tok + 1;
10099
10100 if (toklen == 6 && startswith (tok, "thread"))
10101 {
10102 struct thread_info *thr;
10103 /* At this point we've found a "thread" token, which means
10104 the user is trying to set a watchpoint that triggers
10105 only in a specific thread. */
10106 const char *endp;
10107
10108 if (thread != -1)
10109 error(_("You can specify only one thread."));
10110
10111 if (task != -1)
10112 error (_("You can specify only one of thread or task."));
10113
10114 /* Extract the thread ID from the next token. */
10115 thr = parse_thread_id (value_start, &endp);
10116
10117 /* Check if the user provided a valid thread ID. */
10118 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10119 invalid_thread_id_error (value_start);
10120
10121 thread = thr->global_num;
10122 }
10123 else if (toklen == 4 && startswith (tok, "task"))
10124 {
10125 char *tmp;
10126
10127 if (task != -1)
10128 error(_("You can specify only one task."));
10129
10130 if (thread != -1)
10131 error (_("You can specify only one of thread or task."));
10132
10133 task = strtol (value_start, &tmp, 0);
10134 if (tmp == value_start)
10135 error (_("Junk after task keyword."));
10136 if (!valid_task_id (task))
10137 error (_("Unknown task %d."), task);
10138 }
10139 else if (toklen == 4 && startswith (tok, "mask"))
10140 {
10141 /* We've found a "mask" token, which means the user wants to
10142 create a hardware watchpoint that is going to have the mask
10143 facility. */
10144 struct value *mask_value;
10145
10146 if (use_mask)
10147 error(_("You can specify only one mask."));
10148
10149 use_mask = just_location = true;
10150
10151 scoped_value_mark mark;
10152 mask_value = parse_to_comma_and_eval (&value_start);
10153 mask = value_as_address (mask_value);
10154 }
10155 else
10156 /* We didn't recognize what we found. We should stop here. */
10157 break;
10158
10159 /* Truncate the string and get rid of the "parameter value" pair before
10160 the arguments string is parsed by the parse_exp_1 function. */
10161 exp_end = tok;
10162 }
10163 }
10164 else
10165 exp_end = arg;
10166
10167 /* Parse the rest of the arguments. From here on out, everything
10168 is in terms of a newly allocated string instead of the original
10169 ARG. */
10170 std::string expression (arg, exp_end - arg);
10171 exp_start = arg = expression.c_str ();
10172 innermost_block_tracker tracker;
10173 expression_up exp = parse_exp_1 (&arg, 0, 0, 0, &tracker);
10174 exp_end = arg;
10175 /* Remove trailing whitespace from the expression before saving it.
10176 This makes the eventual display of the expression string a bit
10177 prettier. */
10178 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10179 --exp_end;
10180
10181 /* Checking if the expression is not constant. */
10182 if (watchpoint_exp_is_const (exp.get ()))
10183 {
10184 int len;
10185
10186 len = exp_end - exp_start;
10187 while (len > 0 && isspace (exp_start[len - 1]))
10188 len--;
10189 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10190 }
10191
10192 exp_valid_block = tracker.block ();
10193 struct value *mark = value_mark ();
10194 struct value *val_as_value = nullptr;
10195 fetch_subexp_value (exp.get (), exp->op.get (), &val_as_value, &result, NULL,
10196 just_location);
10197
10198 if (val_as_value != NULL && just_location)
10199 {
10200 saved_bitpos = val_as_value->bitpos ();
10201 saved_bitsize = val_as_value->bitsize ();
10202 }
10203
10204 value_ref_ptr val;
10205 if (just_location)
10206 {
10207 int ret;
10208
10209 exp_valid_block = NULL;
10210 val = release_value (value_addr (result));
10211 value_free_to_mark (mark);
10212
10213 if (use_mask)
10214 {
10215 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10216 mask);
10217 if (ret == -1)
10218 error (_("This target does not support masked watchpoints."));
10219 else if (ret == -2)
10220 error (_("Invalid mask or memory region."));
10221 }
10222 }
10223 else if (val_as_value != NULL)
10224 val = release_value (val_as_value);
10225
10226 tok = skip_spaces (arg);
10227 end_tok = skip_to_space (tok);
10228
10229 toklen = end_tok - tok;
10230 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10231 {
10232 tok = cond_start = end_tok + 1;
10233 innermost_block_tracker if_tracker;
10234 parse_exp_1 (&tok, 0, 0, 0, &if_tracker);
10235
10236 /* The watchpoint expression may not be local, but the condition
10237 may still be. E.g.: `watch global if local > 0'. */
10238 cond_exp_valid_block = if_tracker.block ();
10239
10240 cond_end = tok;
10241 }
10242 if (*tok)
10243 error (_("Junk at end of command."));
10244
10245 frame_info_ptr wp_frame = block_innermost_frame (exp_valid_block);
10246
10247 /* Save this because create_internal_breakpoint below invalidates
10248 'wp_frame'. */
10249 frame_id watchpoint_frame = get_frame_id (wp_frame);
10250
10251 /* If the expression is "local", then set up a "watchpoint scope"
10252 breakpoint at the point where we've left the scope of the watchpoint
10253 expression. Create the scope breakpoint before the watchpoint, so
10254 that we will encounter it first in bpstat_stop_status. */
10255 if (exp_valid_block != NULL && wp_frame != NULL)
10256 {
10257 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10258
10259 if (frame_id_p (caller_frame_id))
10260 {
10261 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10262 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10263
10264 scope_breakpoint
10265 = create_internal_breakpoint (caller_arch, caller_pc,
10266 bp_watchpoint_scope);
10267
10268 /* create_internal_breakpoint could invalidate WP_FRAME. */
10269 wp_frame = NULL;
10270
10271 scope_breakpoint->enable_state = bp_enabled;
10272
10273 /* Automatically delete the breakpoint when it hits. */
10274 scope_breakpoint->disposition = disp_del;
10275
10276 /* Only break in the proper frame (help with recursion). */
10277 scope_breakpoint->frame_id = caller_frame_id;
10278
10279 /* Set the address at which we will stop. */
10280 scope_breakpoint->loc->gdbarch = caller_arch;
10281 scope_breakpoint->loc->requested_address = caller_pc;
10282 scope_breakpoint->loc->address
10283 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10284 scope_breakpoint->loc->requested_address,
10285 scope_breakpoint->type,
10286 current_program_space);
10287 }
10288 }
10289
10290 /* Now set up the breakpoint. We create all watchpoints as hardware
10291 watchpoints here even if hardware watchpoints are turned off, a call
10292 to update_watchpoint later in this function will cause the type to
10293 drop back to bp_watchpoint (software watchpoint) if required. */
10294
10295 if (accessflag == hw_read)
10296 bp_type = bp_read_watchpoint;
10297 else if (accessflag == hw_access)
10298 bp_type = bp_access_watchpoint;
10299 else
10300 bp_type = bp_hardware_watchpoint;
10301
10302 std::unique_ptr<watchpoint> w;
10303 if (use_mask)
10304 w.reset (new masked_watchpoint (nullptr, bp_type));
10305 else
10306 w.reset (new watchpoint (nullptr, bp_type));
10307
10308 /* At most one of thread or task can be set on a watchpoint. */
10309 gdb_assert (thread == -1 || task == -1);
10310 w->thread = thread;
10311 w->task = task;
10312 w->disposition = disp_donttouch;
10313 w->pspace = current_program_space;
10314 w->exp = std::move (exp);
10315 w->exp_valid_block = exp_valid_block;
10316 w->cond_exp_valid_block = cond_exp_valid_block;
10317 if (just_location)
10318 {
10319 struct type *t = val.get ()->type ();
10320 CORE_ADDR addr = value_as_address (val.get ());
10321
10322 w->exp_string_reparse
10323 = current_language->watch_location_expression (t, addr);
10324
10325 w->exp_string = xstrprintf ("-location %.*s",
10326 (int) (exp_end - exp_start), exp_start);
10327 }
10328 else
10329 w->exp_string.reset (savestring (exp_start, exp_end - exp_start));
10330
10331 if (use_mask)
10332 {
10333 w->hw_wp_mask = mask;
10334 }
10335 else
10336 {
10337 w->val = val;
10338 w->val_bitpos = saved_bitpos;
10339 w->val_bitsize = saved_bitsize;
10340 w->val_valid = true;
10341 }
10342
10343 if (cond_start)
10344 w->cond_string.reset (savestring (cond_start, cond_end - cond_start));
10345 else
10346 w->cond_string = 0;
10347
10348 if (frame_id_p (watchpoint_frame))
10349 {
10350 w->watchpoint_frame = watchpoint_frame;
10351 w->watchpoint_thread = inferior_ptid;
10352 }
10353 else
10354 {
10355 w->watchpoint_frame = null_frame_id;
10356 w->watchpoint_thread = null_ptid;
10357 }
10358
10359 if (scope_breakpoint != NULL)
10360 {
10361 /* The scope breakpoint is related to the watchpoint. We will
10362 need to act on them together. */
10363 w->related_breakpoint = scope_breakpoint;
10364 scope_breakpoint->related_breakpoint = w.get ();
10365 }
10366
10367 if (!just_location)
10368 value_free_to_mark (mark);
10369
10370 /* Finally update the new watchpoint. This creates the locations
10371 that should be inserted. */
10372 update_watchpoint (w.get (), true /* reparse */);
10373
10374 install_breakpoint (internal, std::move (w), 1);
10375 }
10376
10377 /* Return count of debug registers needed to watch the given expression.
10378 If the watchpoint cannot be handled in hardware return zero. */
10379
10380 static int
10381 can_use_hardware_watchpoint (const std::vector<value_ref_ptr> &vals)
10382 {
10383 int found_memory_cnt = 0;
10384
10385 /* Did the user specifically forbid us to use hardware watchpoints? */
10386 if (!can_use_hw_watchpoints)
10387 return 0;
10388
10389 gdb_assert (!vals.empty ());
10390 struct value *head = vals[0].get ();
10391
10392 /* Make sure that the value of the expression depends only upon
10393 memory contents, and values computed from them within GDB. If we
10394 find any register references or function calls, we can't use a
10395 hardware watchpoint.
10396
10397 The idea here is that evaluating an expression generates a series
10398 of values, one holding the value of every subexpression. (The
10399 expression a*b+c has five subexpressions: a, b, a*b, c, and
10400 a*b+c.) GDB's values hold almost enough information to establish
10401 the criteria given above --- they identify memory lvalues,
10402 register lvalues, computed values, etcetera. So we can evaluate
10403 the expression, and then scan the chain of values that leaves
10404 behind to decide whether we can detect any possible change to the
10405 expression's final value using only hardware watchpoints.
10406
10407 However, I don't think that the values returned by inferior
10408 function calls are special in any way. So this function may not
10409 notice that an expression involving an inferior function call
10410 can't be watched with hardware watchpoints. FIXME. */
10411 for (const value_ref_ptr &iter : vals)
10412 {
10413 struct value *v = iter.get ();
10414
10415 if (v->lval () == lval_memory)
10416 {
10417 if (v != head && v->lazy ())
10418 /* A lazy memory lvalue in the chain is one that GDB never
10419 needed to fetch; we either just used its address (e.g.,
10420 `a' in `a.b') or we never needed it at all (e.g., `a'
10421 in `a,b'). This doesn't apply to HEAD; if that is
10422 lazy then it was not readable, but watch it anyway. */
10423 ;
10424 else
10425 {
10426 /* Ahh, memory we actually used! Check if we can cover
10427 it with hardware watchpoints. */
10428 struct type *vtype = check_typedef (v->type ());
10429
10430 /* We only watch structs and arrays if user asked for it
10431 explicitly, never if they just happen to appear in a
10432 middle of some value chain. */
10433 if (v == head
10434 || (vtype->code () != TYPE_CODE_STRUCT
10435 && vtype->code () != TYPE_CODE_ARRAY))
10436 {
10437 CORE_ADDR vaddr = v->address ();
10438 int len;
10439 int num_regs;
10440
10441 len = (target_exact_watchpoints
10442 && is_scalar_type_recursive (vtype))?
10443 1 : v->type ()->length ();
10444
10445 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10446 if (!num_regs)
10447 return 0;
10448 else
10449 found_memory_cnt += num_regs;
10450 }
10451 }
10452 }
10453 else if (v->lval () != not_lval
10454 && v->deprecated_modifiable () == 0)
10455 return 0; /* These are values from the history (e.g., $1). */
10456 else if (v->lval () == lval_register)
10457 return 0; /* Cannot watch a register with a HW watchpoint. */
10458 }
10459
10460 /* The expression itself looks suitable for using a hardware
10461 watchpoint, but give the target machine a chance to reject it. */
10462 return found_memory_cnt;
10463 }
10464
10465 void
10466 watch_command_wrapper (const char *arg, int from_tty, bool internal)
10467 {
10468 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10469 }
10470
10471 /* Options for the watch, awatch, and rwatch commands. */
10472
10473 struct watch_options
10474 {
10475 /* For -location. */
10476 bool location = false;
10477 };
10478
10479 /* Definitions of options for the "watch", "awatch", and "rwatch" commands.
10480
10481 Historically GDB always accepted both '-location' and '-l' flags for
10482 these commands (both flags being synonyms). When converting to the
10483 newer option scheme only '-location' is added here. That's fine (for
10484 backward compatibility) as any non-ambiguous prefix of a flag will be
10485 accepted, so '-l', '-loc', are now all accepted.
10486
10487 What this means is that, if in the future, we add any new flag here
10488 that starts with '-l' then this will break backward compatibility, so
10489 please, don't do that! */
10490
10491 static const gdb::option::option_def watch_option_defs[] = {
10492 gdb::option::flag_option_def<watch_options> {
10493 "location",
10494 [] (watch_options *opt) { return &opt->location; },
10495 N_("\
10496 This evaluates EXPRESSION and watches the memory to which is refers.\n\
10497 -l can be used as a short form of -location."),
10498 },
10499 };
10500
10501 /* Returns the option group used by 'watch', 'awatch', and 'rwatch'
10502 commands. */
10503
10504 static gdb::option::option_def_group
10505 make_watch_options_def_group (watch_options *opts)
10506 {
10507 return {{watch_option_defs}, opts};
10508 }
10509
10510 /* A helper function that looks for the "-location" argument and then
10511 calls watch_command_1. */
10512
10513 static void
10514 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10515 {
10516 watch_options opts;
10517 auto grp = make_watch_options_def_group (&opts);
10518 gdb::option::process_options
10519 (&arg, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
10520 if (arg != nullptr && *arg == '\0')
10521 arg = nullptr;
10522
10523 watch_command_1 (arg, accessflag, from_tty, opts.location, false);
10524 }
10525
10526 /* Command completion for 'watch', 'awatch', and 'rwatch' commands. */
10527 static void
10528 watch_command_completer (struct cmd_list_element *ignore,
10529 completion_tracker &tracker,
10530 const char *text, const char * /*word*/)
10531 {
10532 const auto group = make_watch_options_def_group (nullptr);
10533 if (gdb::option::complete_options
10534 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
10535 return;
10536
10537 const char *word = advance_to_expression_complete_word_point (tracker, text);
10538 expression_completer (ignore, tracker, text, word);
10539 }
10540
10541 static void
10542 watch_command (const char *arg, int from_tty)
10543 {
10544 watch_maybe_just_location (arg, hw_write, from_tty);
10545 }
10546
10547 void
10548 rwatch_command_wrapper (const char *arg, int from_tty, bool internal)
10549 {
10550 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10551 }
10552
10553 static void
10554 rwatch_command (const char *arg, int from_tty)
10555 {
10556 watch_maybe_just_location (arg, hw_read, from_tty);
10557 }
10558
10559 void
10560 awatch_command_wrapper (const char *arg, int from_tty, bool internal)
10561 {
10562 watch_command_1 (arg, hw_access, from_tty, 0, internal);
10563 }
10564
10565 static void
10566 awatch_command (const char *arg, int from_tty)
10567 {
10568 watch_maybe_just_location (arg, hw_access, from_tty);
10569 }
10570 \f
10571
10572 /* Data for the FSM that manages the until(location)/advance commands
10573 in infcmd.c. Here because it uses the mechanisms of
10574 breakpoints. */
10575
10576 struct until_break_fsm : public thread_fsm
10577 {
10578 /* The thread that was current when the command was executed. */
10579 int thread;
10580
10581 /* The breakpoint set at the return address in the caller frame,
10582 plus breakpoints at all the destination locations. */
10583 std::vector<breakpoint_up> breakpoints;
10584
10585 until_break_fsm (struct interp *cmd_interp, int thread,
10586 std::vector<breakpoint_up> &&breakpoints)
10587 : thread_fsm (cmd_interp),
10588 thread (thread),
10589 breakpoints (std::move (breakpoints))
10590 {
10591 }
10592
10593 void clean_up (struct thread_info *thread) override;
10594 bool should_stop (struct thread_info *thread) override;
10595 enum async_reply_reason do_async_reply_reason () override;
10596 };
10597
10598 /* Implementation of the 'should_stop' FSM method for the
10599 until(location)/advance commands. */
10600
10601 bool
10602 until_break_fsm::should_stop (struct thread_info *tp)
10603 {
10604 for (const breakpoint_up &bp : breakpoints)
10605 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
10606 bp.get ()) != NULL)
10607 {
10608 set_finished ();
10609 break;
10610 }
10611
10612 return true;
10613 }
10614
10615 /* Implementation of the 'clean_up' FSM method for the
10616 until(location)/advance commands. */
10617
10618 void
10619 until_break_fsm::clean_up (struct thread_info *)
10620 {
10621 /* Clean up our temporary breakpoints. */
10622 breakpoints.clear ();
10623 delete_longjmp_breakpoint (thread);
10624 }
10625
10626 /* Implementation of the 'async_reply_reason' FSM method for the
10627 until(location)/advance commands. */
10628
10629 enum async_reply_reason
10630 until_break_fsm::do_async_reply_reason ()
10631 {
10632 return EXEC_ASYNC_LOCATION_REACHED;
10633 }
10634
10635 void
10636 until_break_command (const char *arg, int from_tty, int anywhere)
10637 {
10638 frame_info_ptr frame;
10639 struct gdbarch *frame_gdbarch;
10640 struct frame_id stack_frame_id;
10641 struct frame_id caller_frame_id;
10642 int thread;
10643 struct thread_info *tp;
10644
10645 clear_proceed_status (0);
10646
10647 /* Set a breakpoint where the user wants it and at return from
10648 this function. */
10649
10650 location_spec_up locspec = string_to_location_spec (&arg, current_language);
10651
10652 std::vector<symtab_and_line> sals
10653 = (last_displayed_sal_is_valid ()
10654 ? decode_line_1 (locspec.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
10655 get_last_displayed_symtab (),
10656 get_last_displayed_line ())
10657 : decode_line_1 (locspec.get (), DECODE_LINE_FUNFIRSTLINE,
10658 NULL, NULL, 0));
10659
10660 if (sals.empty ())
10661 error (_("Couldn't get information on specified line."));
10662
10663 if (*arg)
10664 error (_("Junk at end of arguments."));
10665
10666 tp = inferior_thread ();
10667 thread = tp->global_num;
10668
10669 /* Note linespec handling above invalidates the frame chain.
10670 Installing a breakpoint also invalidates the frame chain (as it
10671 may need to switch threads), so do any frame handling before
10672 that. */
10673
10674 frame = get_selected_frame (NULL);
10675 frame_gdbarch = get_frame_arch (frame);
10676 stack_frame_id = get_stack_frame_id (frame);
10677 caller_frame_id = frame_unwind_caller_id (frame);
10678
10679 /* Keep within the current frame, or in frames called by the current
10680 one. */
10681
10682 std::vector<breakpoint_up> breakpoints;
10683
10684 gdb::optional<delete_longjmp_breakpoint_cleanup> lj_deleter;
10685
10686 if (frame_id_p (caller_frame_id))
10687 {
10688 struct symtab_and_line sal2;
10689 struct gdbarch *caller_gdbarch;
10690
10691 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
10692 sal2.pc = frame_unwind_caller_pc (frame);
10693 caller_gdbarch = frame_unwind_caller_arch (frame);
10694
10695 breakpoint_up caller_breakpoint
10696 = set_momentary_breakpoint (caller_gdbarch, sal2,
10697 caller_frame_id, bp_until);
10698 breakpoints.emplace_back (std::move (caller_breakpoint));
10699
10700 set_longjmp_breakpoint (tp, stack_frame_id);
10701 lj_deleter.emplace (thread);
10702 }
10703
10704 /* set_momentary_breakpoint could invalidate FRAME. */
10705 frame = NULL;
10706
10707 /* If the user told us to continue until a specified location, we
10708 don't specify a frame at which we need to stop. Otherwise,
10709 specify the selected frame, because we want to stop only at the
10710 very same frame. */
10711 frame_id stop_frame_id = anywhere ? null_frame_id : stack_frame_id;
10712
10713 for (symtab_and_line &sal : sals)
10714 {
10715 resolve_sal_pc (&sal);
10716
10717 breakpoint_up location_breakpoint
10718 = set_momentary_breakpoint (frame_gdbarch, sal,
10719 stop_frame_id, bp_until);
10720 breakpoints.emplace_back (std::move (location_breakpoint));
10721 }
10722
10723 tp->set_thread_fsm
10724 (std::unique_ptr<thread_fsm>
10725 (new until_break_fsm (command_interp (), tp->global_num,
10726 std::move (breakpoints))));
10727
10728 if (lj_deleter)
10729 lj_deleter->release ();
10730
10731 proceed (-1, GDB_SIGNAL_DEFAULT);
10732 }
10733
10734 \f
10735
10736 /* Compare two breakpoints and return a strcmp-like result. */
10737
10738 static int
10739 compare_breakpoints (const breakpoint *a, const breakpoint *b)
10740 {
10741 uintptr_t ua = (uintptr_t) a;
10742 uintptr_t ub = (uintptr_t) b;
10743
10744 if (a->number < b->number)
10745 return -1;
10746 else if (a->number > b->number)
10747 return 1;
10748
10749 /* Now sort by address, in case we see, e..g, two breakpoints with
10750 the number 0. */
10751 if (ua < ub)
10752 return -1;
10753 return ua > ub ? 1 : 0;
10754 }
10755
10756 /* Delete breakpoints by address or line. */
10757
10758 static void
10759 clear_command (const char *arg, int from_tty)
10760 {
10761 int default_match;
10762
10763 std::vector<symtab_and_line> decoded_sals;
10764 symtab_and_line last_sal;
10765 gdb::array_view<symtab_and_line> sals;
10766 if (arg)
10767 {
10768 decoded_sals
10769 = decode_line_with_current_source (arg,
10770 (DECODE_LINE_FUNFIRSTLINE
10771 | DECODE_LINE_LIST_MODE));
10772 default_match = 0;
10773 sals = decoded_sals;
10774 }
10775 else
10776 {
10777 /* Set sal's line, symtab, pc, and pspace to the values
10778 corresponding to the last call to print_frame_info. If the
10779 codepoint is not valid, this will set all the fields to 0. */
10780 last_sal = get_last_displayed_sal ();
10781 if (last_sal.symtab == 0)
10782 error (_("No source file specified."));
10783
10784 default_match = 1;
10785 sals = last_sal;
10786 }
10787
10788 /* We don't call resolve_sal_pc here. That's not as bad as it
10789 seems, because all existing breakpoints typically have both
10790 file/line and pc set. So, if clear is given file/line, we can
10791 match this to existing breakpoint without obtaining pc at all.
10792
10793 We only support clearing given the address explicitly
10794 present in breakpoint table. Say, we've set breakpoint
10795 at file:line. There were several PC values for that file:line,
10796 due to optimization, all in one block.
10797
10798 We've picked one PC value. If "clear" is issued with another
10799 PC corresponding to the same file:line, the breakpoint won't
10800 be cleared. We probably can still clear the breakpoint, but
10801 since the other PC value is never presented to user, user
10802 can only find it by guessing, and it does not seem important
10803 to support that. */
10804
10805 /* For each line spec given, delete bps which correspond to it. Do
10806 it in two passes, solely to preserve the current behavior that
10807 from_tty is forced true if we delete more than one
10808 breakpoint. */
10809
10810 std::vector<struct breakpoint *> found;
10811 for (const auto &sal : sals)
10812 {
10813 const char *sal_fullname;
10814
10815 /* If exact pc given, clear bpts at that pc.
10816 If line given (pc == 0), clear all bpts on specified line.
10817 If defaulting, clear all bpts on default line
10818 or at default pc.
10819
10820 defaulting sal.pc != 0 tests to do
10821
10822 0 1 pc
10823 1 1 pc _and_ line
10824 0 0 line
10825 1 0 <can't happen> */
10826
10827 sal_fullname = (sal.symtab == NULL
10828 ? NULL : symtab_to_fullname (sal.symtab));
10829
10830 /* Find all matching breakpoints and add them to 'found'. */
10831 for (breakpoint *b : all_breakpoints ())
10832 {
10833 int match = 0;
10834 /* Are we going to delete b? */
10835 if (b->type != bp_none && !is_watchpoint (b)
10836 && user_breakpoint_p (b))
10837 {
10838 for (bp_location *loc : b->locations ())
10839 {
10840 /* If the user specified file:line, don't allow a PC
10841 match. This matches historical gdb behavior. */
10842 int pc_match = (!sal.explicit_line
10843 && sal.pc
10844 && (loc->pspace == sal.pspace)
10845 && (loc->address == sal.pc)
10846 && (!section_is_overlay (loc->section)
10847 || loc->section == sal.section));
10848 int line_match = 0;
10849
10850 if ((default_match || sal.explicit_line)
10851 && loc->symtab != NULL
10852 && sal_fullname != NULL
10853 && sal.pspace == loc->pspace
10854 && loc->line_number == sal.line
10855 && filename_cmp (symtab_to_fullname (loc->symtab),
10856 sal_fullname) == 0)
10857 line_match = 1;
10858
10859 if (pc_match || line_match)
10860 {
10861 match = 1;
10862 break;
10863 }
10864 }
10865 }
10866
10867 if (match)
10868 found.push_back (b);
10869 }
10870 }
10871
10872 /* Now go thru the 'found' chain and delete them. */
10873 if (found.empty ())
10874 {
10875 if (arg)
10876 error (_("No breakpoint at %s."), arg);
10877 else
10878 error (_("No breakpoint at this line."));
10879 }
10880
10881 /* Remove duplicates from the vec. */
10882 std::sort (found.begin (), found.end (),
10883 [] (const breakpoint *bp_a, const breakpoint *bp_b)
10884 {
10885 return compare_breakpoints (bp_a, bp_b) < 0;
10886 });
10887 found.erase (std::unique (found.begin (), found.end (),
10888 [] (const breakpoint *bp_a, const breakpoint *bp_b)
10889 {
10890 return compare_breakpoints (bp_a, bp_b) == 0;
10891 }),
10892 found.end ());
10893
10894 if (found.size () > 1)
10895 from_tty = 1; /* Always report if deleted more than one. */
10896 if (from_tty)
10897 {
10898 if (found.size () == 1)
10899 gdb_printf (_("Deleted breakpoint "));
10900 else
10901 gdb_printf (_("Deleted breakpoints "));
10902 }
10903
10904 for (breakpoint *iter : found)
10905 {
10906 if (from_tty)
10907 gdb_printf ("%d ", iter->number);
10908 delete_breakpoint (iter);
10909 }
10910 if (from_tty)
10911 gdb_putc ('\n');
10912 }
10913 \f
10914 /* Delete breakpoint in BS if they are `delete' breakpoints and
10915 all breakpoints that are marked for deletion, whether hit or not.
10916 This is called after any breakpoint is hit, or after errors. */
10917
10918 void
10919 breakpoint_auto_delete (bpstat *bs)
10920 {
10921 for (; bs; bs = bs->next)
10922 if (bs->breakpoint_at
10923 && bs->breakpoint_at->disposition == disp_del
10924 && bs->stop)
10925 delete_breakpoint (bs->breakpoint_at);
10926
10927 for (breakpoint *b : all_breakpoints_safe ())
10928 if (b->disposition == disp_del_at_next_stop)
10929 delete_breakpoint (b);
10930 }
10931
10932 /* A comparison function for bp_location AP and BP being interfaced to
10933 std::sort. Sort elements primarily by their ADDRESS (no matter what
10934 bl_address_is_meaningful says), secondarily by ordering first
10935 permanent elements and terciarily just ensuring the array is sorted
10936 stable way despite std::sort being an unstable algorithm. */
10937
10938 static int
10939 bp_location_is_less_than (const bp_location *a, const bp_location *b)
10940 {
10941 if (a->address != b->address)
10942 return a->address < b->address;
10943
10944 /* Sort locations at the same address by their pspace number, keeping
10945 locations of the same inferior (in a multi-inferior environment)
10946 grouped. */
10947
10948 if (a->pspace->num != b->pspace->num)
10949 return a->pspace->num < b->pspace->num;
10950
10951 /* Sort permanent breakpoints first. */
10952 if (a->permanent != b->permanent)
10953 return a->permanent > b->permanent;
10954
10955 /* Sort by type in order to make duplicate determination easier.
10956 See update_global_location_list. This is kept in sync with
10957 breakpoint_locations_match. */
10958 if (a->loc_type < b->loc_type)
10959 return true;
10960
10961 /* Likewise, for range-breakpoints, sort by length. */
10962 if (a->loc_type == bp_loc_hardware_breakpoint
10963 && b->loc_type == bp_loc_hardware_breakpoint
10964 && a->length < b->length)
10965 return true;
10966
10967 /* Make the internal GDB representation stable across GDB runs
10968 where A and B memory inside GDB can differ. Breakpoint locations of
10969 the same type at the same address can be sorted in arbitrary order. */
10970
10971 if (a->owner->number != b->owner->number)
10972 return a->owner->number < b->owner->number;
10973
10974 return a < b;
10975 }
10976
10977 /* Set bp_locations_placed_address_before_address_max and
10978 bp_locations_shadow_len_after_address_max according to the current
10979 content of the bp_locations array. */
10980
10981 static void
10982 bp_locations_target_extensions_update (void)
10983 {
10984 bp_locations_placed_address_before_address_max = 0;
10985 bp_locations_shadow_len_after_address_max = 0;
10986
10987 for (bp_location *bl : all_bp_locations ())
10988 {
10989 CORE_ADDR start, end, addr;
10990
10991 if (!bp_location_has_shadow (bl))
10992 continue;
10993
10994 start = bl->target_info.placed_address;
10995 end = start + bl->target_info.shadow_len;
10996
10997 gdb_assert (bl->address >= start);
10998 addr = bl->address - start;
10999 if (addr > bp_locations_placed_address_before_address_max)
11000 bp_locations_placed_address_before_address_max = addr;
11001
11002 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11003
11004 gdb_assert (bl->address < end);
11005 addr = end - bl->address;
11006 if (addr > bp_locations_shadow_len_after_address_max)
11007 bp_locations_shadow_len_after_address_max = addr;
11008 }
11009 }
11010
11011 /* Download tracepoint locations if they haven't been. */
11012
11013 static void
11014 download_tracepoint_locations (void)
11015 {
11016 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11017
11018 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11019
11020 for (breakpoint *b : all_tracepoints ())
11021 {
11022 struct tracepoint *t;
11023 bool bp_location_downloaded = false;
11024
11025 if ((b->type == bp_fast_tracepoint
11026 ? !may_insert_fast_tracepoints
11027 : !may_insert_tracepoints))
11028 continue;
11029
11030 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11031 {
11032 if (target_can_download_tracepoint ())
11033 can_download_tracepoint = TRIBOOL_TRUE;
11034 else
11035 can_download_tracepoint = TRIBOOL_FALSE;
11036 }
11037
11038 if (can_download_tracepoint == TRIBOOL_FALSE)
11039 break;
11040
11041 for (bp_location *bl : b->locations ())
11042 {
11043 /* In tracepoint, locations are _never_ duplicated, so
11044 should_be_inserted is equivalent to
11045 unduplicated_should_be_inserted. */
11046 if (!should_be_inserted (bl) || bl->inserted)
11047 continue;
11048
11049 switch_to_program_space_and_thread (bl->pspace);
11050
11051 target_download_tracepoint (bl);
11052
11053 bl->inserted = 1;
11054 bp_location_downloaded = true;
11055 }
11056 t = (struct tracepoint *) b;
11057 t->number_on_target = b->number;
11058 if (bp_location_downloaded)
11059 gdb::observers::breakpoint_modified.notify (b);
11060 }
11061 }
11062
11063 /* Swap the insertion/duplication state between two locations. */
11064
11065 static void
11066 swap_insertion (struct bp_location *left, struct bp_location *right)
11067 {
11068 const int left_inserted = left->inserted;
11069 const int left_duplicate = left->duplicate;
11070 const int left_needs_update = left->needs_update;
11071 const struct bp_target_info left_target_info = left->target_info;
11072
11073 /* Locations of tracepoints can never be duplicated. */
11074 if (is_tracepoint (left->owner))
11075 gdb_assert (!left->duplicate);
11076 if (is_tracepoint (right->owner))
11077 gdb_assert (!right->duplicate);
11078
11079 left->inserted = right->inserted;
11080 left->duplicate = right->duplicate;
11081 left->needs_update = right->needs_update;
11082 left->target_info = right->target_info;
11083 right->inserted = left_inserted;
11084 right->duplicate = left_duplicate;
11085 right->needs_update = left_needs_update;
11086 right->target_info = left_target_info;
11087 }
11088
11089 /* Force the re-insertion of the locations at ADDRESS. This is called
11090 once a new/deleted/modified duplicate location is found and we are evaluating
11091 conditions on the target's side. Such conditions need to be updated on
11092 the target. */
11093
11094 static void
11095 force_breakpoint_reinsertion (struct bp_location *bl)
11096 {
11097 CORE_ADDR address = 0;
11098 int pspace_num;
11099
11100 address = bl->address;
11101 pspace_num = bl->pspace->num;
11102
11103 /* This is only meaningful if the target is
11104 evaluating conditions and if the user has
11105 opted for condition evaluation on the target's
11106 side. */
11107 if (gdb_evaluates_breakpoint_condition_p ()
11108 || !target_supports_evaluation_of_breakpoint_conditions ())
11109 return;
11110
11111 /* Flag all breakpoint locations with this address and
11112 the same program space as the location
11113 as "its condition has changed". We need to
11114 update the conditions on the target's side. */
11115 for (bp_location *loc : all_bp_locations_at_addr (address))
11116 {
11117 if (!is_breakpoint (loc->owner)
11118 || pspace_num != loc->pspace->num)
11119 continue;
11120
11121 /* Flag the location appropriately. We use a different state to
11122 let everyone know that we already updated the set of locations
11123 with addr bl->address and program space bl->pspace. This is so
11124 we don't have to keep calling these functions just to mark locations
11125 that have already been marked. */
11126 loc->condition_changed = condition_updated;
11127
11128 /* Free the agent expression bytecode as well. We will compute
11129 it later on. */
11130 loc->cond_bytecode.reset ();
11131 }
11132 }
11133
11134 /* Called whether new breakpoints are created, or existing breakpoints
11135 deleted, to update the global location list and recompute which
11136 locations are duplicate of which.
11137
11138 The INSERT_MODE flag determines whether locations may not, may, or
11139 shall be inserted now. See 'enum ugll_insert_mode' for more
11140 info. */
11141
11142 static void
11143 update_global_location_list (enum ugll_insert_mode insert_mode)
11144 {
11145 /* Last breakpoint location address that was marked for update. */
11146 CORE_ADDR last_addr = 0;
11147 /* Last breakpoint location program space that was marked for update. */
11148 int last_pspace_num = -1;
11149
11150 /* Used in the duplicates detection below. When iterating over all
11151 bp_locations, points to the first bp_location of a given address.
11152 Breakpoints and watchpoints of different types are never
11153 duplicates of each other. Keep one pointer for each type of
11154 breakpoint/watchpoint, so we only need to loop over all locations
11155 once. */
11156 struct bp_location *bp_loc_first; /* breakpoint */
11157 struct bp_location *wp_loc_first; /* hardware watchpoint */
11158 struct bp_location *awp_loc_first; /* access watchpoint */
11159 struct bp_location *rwp_loc_first; /* read watchpoint */
11160
11161 /* Saved former bp_locations array which we compare against the newly
11162 built bp_locations from the current state of ALL_BREAKPOINTS. */
11163 std::vector<bp_location *> old_locations = std::move (bp_locations);
11164 bp_locations.clear ();
11165
11166 for (breakpoint *b : all_breakpoints ())
11167 for (bp_location *loc : b->locations ())
11168 bp_locations.push_back (loc);
11169
11170 /* See if we need to "upgrade" a software breakpoint to a hardware
11171 breakpoint. Do this before deciding whether locations are
11172 duplicates. Also do this before sorting because sorting order
11173 depends on location type. */
11174 for (bp_location *loc : bp_locations)
11175 if (!loc->inserted && should_be_inserted (loc))
11176 handle_automatic_hardware_breakpoints (loc);
11177
11178 std::sort (bp_locations.begin (), bp_locations.end (),
11179 bp_location_is_less_than);
11180
11181 bp_locations_target_extensions_update ();
11182
11183 /* Identify bp_location instances that are no longer present in the
11184 new list, and therefore should be freed. Note that it's not
11185 necessary that those locations should be removed from inferior --
11186 if there's another location at the same address (previously
11187 marked as duplicate), we don't need to remove/insert the
11188 location.
11189
11190 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11191 and former bp_location array state respectively. */
11192
11193 size_t loc_i = 0;
11194 for (bp_location *old_loc : old_locations)
11195 {
11196 /* Tells if 'old_loc' is found among the new locations. If
11197 not, we have to free it. */
11198 bool found_object = false;
11199 /* Tells if the location should remain inserted in the target. */
11200 bool keep_in_target = false;
11201 bool removed = false;
11202
11203 /* Skip LOCP entries which will definitely never be needed.
11204 Stop either at or being the one matching OLD_LOC. */
11205 while (loc_i < bp_locations.size ()
11206 && bp_locations[loc_i]->address < old_loc->address)
11207 loc_i++;
11208
11209 for (size_t loc2_i = loc_i;
11210 (loc2_i < bp_locations.size ()
11211 && bp_locations[loc2_i]->address == old_loc->address);
11212 loc2_i++)
11213 {
11214 /* Check if this is a new/duplicated location or a duplicated
11215 location that had its condition modified. If so, we want to send
11216 its condition to the target if evaluation of conditions is taking
11217 place there. */
11218 if (bp_locations[loc2_i]->condition_changed == condition_modified
11219 && (last_addr != old_loc->address
11220 || last_pspace_num != old_loc->pspace->num))
11221 {
11222 force_breakpoint_reinsertion (bp_locations[loc2_i]);
11223 last_pspace_num = old_loc->pspace->num;
11224 }
11225
11226 if (bp_locations[loc2_i] == old_loc)
11227 found_object = true;
11228 }
11229
11230 /* We have already handled this address, update it so that we don't
11231 have to go through updates again. */
11232 last_addr = old_loc->address;
11233
11234 /* Target-side condition evaluation: Handle deleted locations. */
11235 if (!found_object)
11236 force_breakpoint_reinsertion (old_loc);
11237
11238 /* If this location is no longer present, and inserted, look if
11239 there's maybe a new location at the same address. If so,
11240 mark that one inserted, and don't remove this one. This is
11241 needed so that we don't have a time window where a breakpoint
11242 at certain location is not inserted. */
11243
11244 if (old_loc->inserted)
11245 {
11246 /* If the location is inserted now, we might have to remove
11247 it. */
11248
11249 if (found_object && should_be_inserted (old_loc))
11250 {
11251 /* The location is still present in the location list,
11252 and still should be inserted. Don't do anything. */
11253 keep_in_target = true;
11254 }
11255 else
11256 {
11257 /* This location still exists, but it won't be kept in the
11258 target since it may have been disabled. We proceed to
11259 remove its target-side condition. */
11260
11261 /* The location is either no longer present, or got
11262 disabled. See if there's another location at the
11263 same address, in which case we don't need to remove
11264 this one from the target. */
11265
11266 /* OLD_LOC comes from existing struct breakpoint. */
11267 if (bl_address_is_meaningful (old_loc))
11268 {
11269 for (size_t loc2_i = loc_i;
11270 (loc2_i < bp_locations.size ()
11271 && bp_locations[loc2_i]->address == old_loc->address);
11272 loc2_i++)
11273 {
11274 bp_location *loc2 = bp_locations[loc2_i];
11275
11276 if (loc2 == old_loc)
11277 continue;
11278
11279 if (breakpoint_locations_match (loc2, old_loc))
11280 {
11281 /* Read watchpoint locations are switched to
11282 access watchpoints, if the former are not
11283 supported, but the latter are. */
11284 if (is_hardware_watchpoint (old_loc->owner))
11285 {
11286 gdb_assert (is_hardware_watchpoint (loc2->owner));
11287 loc2->watchpoint_type = old_loc->watchpoint_type;
11288 }
11289
11290 /* loc2 is a duplicated location. We need to check
11291 if it should be inserted in case it will be
11292 unduplicated. */
11293 if (unduplicated_should_be_inserted (loc2))
11294 {
11295 swap_insertion (old_loc, loc2);
11296 keep_in_target = true;
11297 break;
11298 }
11299 }
11300 }
11301 }
11302 }
11303
11304 if (!keep_in_target)
11305 {
11306 if (remove_breakpoint (old_loc))
11307 {
11308 /* This is just about all we can do. We could keep
11309 this location on the global list, and try to
11310 remove it next time, but there's no particular
11311 reason why we will succeed next time.
11312
11313 Note that at this point, old_loc->owner is still
11314 valid, as delete_breakpoint frees the breakpoint
11315 only after calling us. */
11316 gdb_printf (_("warning: Error removing "
11317 "breakpoint %d\n"),
11318 old_loc->owner->number);
11319 }
11320 removed = true;
11321 }
11322 }
11323
11324 if (!found_object)
11325 {
11326 if (removed && target_is_non_stop_p ()
11327 && need_moribund_for_location_type (old_loc))
11328 {
11329 /* This location was removed from the target. In
11330 non-stop mode, a race condition is possible where
11331 we've removed a breakpoint, but stop events for that
11332 breakpoint are already queued and will arrive later.
11333 We apply an heuristic to be able to distinguish such
11334 SIGTRAPs from other random SIGTRAPs: we keep this
11335 breakpoint location for a bit, and will retire it
11336 after we see some number of events. The theory here
11337 is that reporting of events should, "on the average",
11338 be fair, so after a while we'll see events from all
11339 threads that have anything of interest, and no longer
11340 need to keep this breakpoint location around. We
11341 don't hold locations forever so to reduce chances of
11342 mistaking a non-breakpoint SIGTRAP for a breakpoint
11343 SIGTRAP.
11344
11345 The heuristic failing can be disastrous on
11346 decr_pc_after_break targets.
11347
11348 On decr_pc_after_break targets, like e.g., x86-linux,
11349 if we fail to recognize a late breakpoint SIGTRAP,
11350 because events_till_retirement has reached 0 too
11351 soon, we'll fail to do the PC adjustment, and report
11352 a random SIGTRAP to the user. When the user resumes
11353 the inferior, it will most likely immediately crash
11354 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
11355 corrupted, because of being resumed e.g., in the
11356 middle of a multi-byte instruction, or skipped a
11357 one-byte instruction. This was actually seen happen
11358 on native x86-linux, and should be less rare on
11359 targets that do not support new thread events, like
11360 remote, due to the heuristic depending on
11361 thread_count.
11362
11363 Mistaking a random SIGTRAP for a breakpoint trap
11364 causes similar symptoms (PC adjustment applied when
11365 it shouldn't), but then again, playing with SIGTRAPs
11366 behind the debugger's back is asking for trouble.
11367
11368 Since hardware watchpoint traps are always
11369 distinguishable from other traps, so we don't need to
11370 apply keep hardware watchpoint moribund locations
11371 around. We simply always ignore hardware watchpoint
11372 traps we can no longer explain. */
11373
11374 process_stratum_target *proc_target = nullptr;
11375 for (inferior *inf : all_inferiors ())
11376 if (inf->pspace == old_loc->pspace)
11377 {
11378 proc_target = inf->process_target ();
11379 break;
11380 }
11381 if (proc_target != nullptr)
11382 old_loc->events_till_retirement
11383 = 3 * (thread_count (proc_target) + 1);
11384 else
11385 old_loc->events_till_retirement = 1;
11386 old_loc->owner = NULL;
11387
11388 moribund_locations.push_back (old_loc);
11389 }
11390 else
11391 {
11392 old_loc->owner = NULL;
11393 decref_bp_location (&old_loc);
11394 }
11395 }
11396 }
11397
11398 /* Rescan breakpoints at the same address and section, marking the
11399 first one as "first" and any others as "duplicates". This is so
11400 that the bpt instruction is only inserted once. If we have a
11401 permanent breakpoint at the same place as BPT, make that one the
11402 official one, and the rest as duplicates. Permanent breakpoints
11403 are sorted first for the same address.
11404
11405 Do the same for hardware watchpoints, but also considering the
11406 watchpoint's type (regular/access/read) and length. */
11407
11408 bp_loc_first = NULL;
11409 wp_loc_first = NULL;
11410 awp_loc_first = NULL;
11411 rwp_loc_first = NULL;
11412
11413 for (bp_location *loc : all_bp_locations ())
11414 {
11415 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
11416 non-NULL. */
11417 struct bp_location **loc_first_p;
11418 breakpoint *b = loc->owner;
11419
11420 if (!unduplicated_should_be_inserted (loc)
11421 || !bl_address_is_meaningful (loc)
11422 /* Don't detect duplicate for tracepoint locations because they are
11423 never duplicated. See the comments in field `duplicate' of
11424 `struct bp_location'. */
11425 || is_tracepoint (b))
11426 {
11427 /* Clear the condition modification flag. */
11428 loc->condition_changed = condition_unchanged;
11429 continue;
11430 }
11431
11432 if (b->type == bp_hardware_watchpoint)
11433 loc_first_p = &wp_loc_first;
11434 else if (b->type == bp_read_watchpoint)
11435 loc_first_p = &rwp_loc_first;
11436 else if (b->type == bp_access_watchpoint)
11437 loc_first_p = &awp_loc_first;
11438 else
11439 loc_first_p = &bp_loc_first;
11440
11441 if (*loc_first_p == NULL
11442 || (overlay_debugging && loc->section != (*loc_first_p)->section)
11443 || !breakpoint_locations_match (loc, *loc_first_p))
11444 {
11445 *loc_first_p = loc;
11446 loc->duplicate = 0;
11447
11448 if (is_breakpoint (loc->owner) && loc->condition_changed)
11449 {
11450 loc->needs_update = 1;
11451 /* Clear the condition modification flag. */
11452 loc->condition_changed = condition_unchanged;
11453 }
11454 continue;
11455 }
11456
11457
11458 /* This and the above ensure the invariant that the first location
11459 is not duplicated, and is the inserted one.
11460 All following are marked as duplicated, and are not inserted. */
11461 if (loc->inserted)
11462 swap_insertion (loc, *loc_first_p);
11463 loc->duplicate = 1;
11464
11465 /* Clear the condition modification flag. */
11466 loc->condition_changed = condition_unchanged;
11467 }
11468
11469 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
11470 {
11471 if (insert_mode != UGLL_DONT_INSERT)
11472 insert_breakpoint_locations ();
11473 else
11474 {
11475 /* Even though the caller told us to not insert new
11476 locations, we may still need to update conditions on the
11477 target's side of breakpoints that were already inserted
11478 if the target is evaluating breakpoint conditions. We
11479 only update conditions for locations that are marked
11480 "needs_update". */
11481 update_inserted_breakpoint_locations ();
11482 }
11483 }
11484
11485 if (insert_mode != UGLL_DONT_INSERT)
11486 download_tracepoint_locations ();
11487 }
11488
11489 void
11490 breakpoint_retire_moribund (void)
11491 {
11492 for (int ix = 0; ix < moribund_locations.size (); ++ix)
11493 {
11494 struct bp_location *loc = moribund_locations[ix];
11495 if (--(loc->events_till_retirement) == 0)
11496 {
11497 decref_bp_location (&loc);
11498 unordered_remove (moribund_locations, ix);
11499 --ix;
11500 }
11501 }
11502 }
11503
11504 static void
11505 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
11506 {
11507
11508 try
11509 {
11510 update_global_location_list (insert_mode);
11511 }
11512 catch (const gdb_exception_error &e)
11513 {
11514 }
11515 }
11516
11517 /* Clear BKP from a BPS. */
11518
11519 static void
11520 bpstat_remove_bp_location (bpstat *bps, struct breakpoint *bpt)
11521 {
11522 bpstat *bs;
11523
11524 for (bs = bps; bs; bs = bs->next)
11525 if (bs->breakpoint_at == bpt)
11526 {
11527 bs->breakpoint_at = NULL;
11528 bs->old_val = NULL;
11529 /* bs->commands will be freed later. */
11530 }
11531 }
11532
11533 /* Callback for iterate_over_threads. */
11534 static int
11535 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
11536 {
11537 struct breakpoint *bpt = (struct breakpoint *) data;
11538
11539 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
11540 return 0;
11541 }
11542
11543 /* See breakpoint.h. */
11544
11545 void
11546 code_breakpoint::say_where () const
11547 {
11548 struct value_print_options opts;
11549
11550 get_user_print_options (&opts);
11551
11552 /* i18n: cagney/2005-02-11: Below needs to be merged into a
11553 single string. */
11554 if (loc == NULL)
11555 {
11556 /* For pending locations, the output differs slightly based
11557 on extra_string. If this is non-NULL, it contains either
11558 a condition or dprintf arguments. */
11559 if (extra_string == NULL)
11560 {
11561 gdb_printf (_(" (%s) pending."), locspec->to_string ());
11562 }
11563 else if (type == bp_dprintf)
11564 {
11565 gdb_printf (_(" (%s,%s) pending."),
11566 locspec->to_string (),
11567 extra_string.get ());
11568 }
11569 else
11570 {
11571 gdb_printf (_(" (%s %s) pending."),
11572 locspec->to_string (),
11573 extra_string.get ());
11574 }
11575 }
11576 else
11577 {
11578 if (opts.addressprint || loc->symtab == NULL)
11579 gdb_printf (" at %ps",
11580 styled_string (address_style.style (),
11581 paddress (loc->gdbarch,
11582 loc->address)));
11583 if (loc->symtab != NULL)
11584 {
11585 /* If there is a single location, we can print the location
11586 more nicely. */
11587 if (loc->next == NULL)
11588 {
11589 const char *filename
11590 = symtab_to_filename_for_display (loc->symtab);
11591 gdb_printf (": file %ps, line %d.",
11592 styled_string (file_name_style.style (),
11593 filename),
11594 loc->line_number);
11595 }
11596 else
11597 /* This is not ideal, but each location may have a
11598 different file name, and this at least reflects the
11599 real situation somewhat. */
11600 gdb_printf (": %s.", locspec->to_string ());
11601 }
11602
11603 if (loc->next)
11604 {
11605 struct bp_location *iter = loc;
11606 int n = 0;
11607 for (; iter; iter = iter->next)
11608 ++n;
11609 gdb_printf (" (%d locations)", n);
11610 }
11611 }
11612 }
11613
11614 /* See breakpoint.h. */
11615
11616 bp_location_range breakpoint::locations () const
11617 {
11618 return bp_location_range (this->loc);
11619 }
11620
11621 struct bp_location *
11622 breakpoint::allocate_location ()
11623 {
11624 return new bp_location (this);
11625 }
11626
11627 #define internal_error_pure_virtual_called() \
11628 gdb_assert_not_reached ("pure virtual function called")
11629
11630 int
11631 breakpoint::insert_location (struct bp_location *bl)
11632 {
11633 internal_error_pure_virtual_called ();
11634 }
11635
11636 int
11637 breakpoint::remove_location (struct bp_location *bl,
11638 enum remove_bp_reason reason)
11639 {
11640 internal_error_pure_virtual_called ();
11641 }
11642
11643 int
11644 breakpoint::breakpoint_hit (const struct bp_location *bl,
11645 const address_space *aspace,
11646 CORE_ADDR bp_addr,
11647 const target_waitstatus &ws)
11648 {
11649 internal_error_pure_virtual_called ();
11650 }
11651
11652 int
11653 breakpoint::resources_needed (const struct bp_location *bl)
11654 {
11655 internal_error_pure_virtual_called ();
11656 }
11657
11658 enum print_stop_action
11659 breakpoint::print_it (const bpstat *bs) const
11660 {
11661 internal_error_pure_virtual_called ();
11662 }
11663
11664 void
11665 breakpoint::print_mention () const
11666 {
11667 internal_error_pure_virtual_called ();
11668 }
11669
11670 void
11671 breakpoint::print_recreate (struct ui_file *fp) const
11672 {
11673 internal_error_pure_virtual_called ();
11674 }
11675
11676 /* Default breakpoint_ops methods. */
11677
11678 void
11679 code_breakpoint::re_set ()
11680 {
11681 /* FIXME: is this still reachable? */
11682 if (breakpoint_location_spec_empty_p (this))
11683 {
11684 /* Anything without a location can't be re-set. */
11685 delete_breakpoint (this);
11686 return;
11687 }
11688
11689 re_set_default ();
11690 }
11691
11692 int
11693 code_breakpoint::insert_location (struct bp_location *bl)
11694 {
11695 CORE_ADDR addr = bl->target_info.reqstd_address;
11696
11697 bl->target_info.kind = breakpoint_kind (bl, &addr);
11698 bl->target_info.placed_address = addr;
11699
11700 int result;
11701 if (bl->loc_type == bp_loc_hardware_breakpoint)
11702 result = target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
11703 else
11704 result = target_insert_breakpoint (bl->gdbarch, &bl->target_info);
11705
11706 if (result == 0 && bl->probe.prob != nullptr)
11707 {
11708 /* The insertion was successful, now let's set the probe's semaphore
11709 if needed. */
11710 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
11711 }
11712
11713 return result;
11714 }
11715
11716 int
11717 code_breakpoint::remove_location (struct bp_location *bl,
11718 enum remove_bp_reason reason)
11719 {
11720 if (bl->probe.prob != nullptr)
11721 {
11722 /* Let's clear the semaphore before removing the location. */
11723 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
11724 }
11725
11726 if (bl->loc_type == bp_loc_hardware_breakpoint)
11727 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
11728 else
11729 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
11730 }
11731
11732 int
11733 code_breakpoint::breakpoint_hit (const struct bp_location *bl,
11734 const address_space *aspace,
11735 CORE_ADDR bp_addr,
11736 const target_waitstatus &ws)
11737 {
11738 if (ws.kind () != TARGET_WAITKIND_STOPPED
11739 || ws.sig () != GDB_SIGNAL_TRAP)
11740 return 0;
11741
11742 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
11743 aspace, bp_addr))
11744 return 0;
11745
11746 if (overlay_debugging /* unmapped overlay section */
11747 && section_is_overlay (bl->section)
11748 && !section_is_mapped (bl->section))
11749 return 0;
11750
11751 return 1;
11752 }
11753
11754 int
11755 dprintf_breakpoint::breakpoint_hit (const struct bp_location *bl,
11756 const address_space *aspace,
11757 CORE_ADDR bp_addr,
11758 const target_waitstatus &ws)
11759 {
11760 if (dprintf_style == dprintf_style_agent
11761 && target_can_run_breakpoint_commands ())
11762 {
11763 /* An agent-style dprintf never causes a stop. If we see a trap
11764 for this address it must be for a breakpoint that happens to
11765 be set at the same address. */
11766 return 0;
11767 }
11768
11769 return this->ordinary_breakpoint::breakpoint_hit (bl, aspace, bp_addr, ws);
11770 }
11771
11772 int
11773 ordinary_breakpoint::resources_needed (const struct bp_location *bl)
11774 {
11775 gdb_assert (type == bp_hardware_breakpoint);
11776
11777 return 1;
11778 }
11779
11780 enum print_stop_action
11781 ordinary_breakpoint::print_it (const bpstat *bs) const
11782 {
11783 const struct bp_location *bl;
11784 int bp_temp;
11785 struct ui_out *uiout = current_uiout;
11786
11787 bl = bs->bp_location_at.get ();
11788
11789 bp_temp = disposition == disp_del;
11790 if (bl->address != bl->requested_address)
11791 breakpoint_adjustment_warning (bl->requested_address,
11792 bl->address,
11793 number, true);
11794 annotate_breakpoint (number);
11795 maybe_print_thread_hit_breakpoint (uiout);
11796
11797 if (uiout->is_mi_like_p ())
11798 {
11799 uiout->field_string ("reason",
11800 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
11801 uiout->field_string ("disp", bpdisp_text (disposition));
11802 }
11803
11804 if (bp_temp)
11805 uiout->text ("Temporary breakpoint ");
11806 else
11807 uiout->text ("Breakpoint ");
11808 print_num_locno (bs, uiout);
11809 uiout->text (", ");
11810
11811 return PRINT_SRC_AND_LOC;
11812 }
11813
11814 void
11815 ordinary_breakpoint::print_mention () const
11816 {
11817 if (current_uiout->is_mi_like_p ())
11818 return;
11819
11820 switch (type)
11821 {
11822 case bp_breakpoint:
11823 case bp_gnu_ifunc_resolver:
11824 if (disposition == disp_del)
11825 gdb_printf (_("Temporary breakpoint"));
11826 else
11827 gdb_printf (_("Breakpoint"));
11828 gdb_printf (_(" %d"), number);
11829 if (type == bp_gnu_ifunc_resolver)
11830 gdb_printf (_(" at gnu-indirect-function resolver"));
11831 break;
11832 case bp_hardware_breakpoint:
11833 gdb_printf (_("Hardware assisted breakpoint %d"), number);
11834 break;
11835 case bp_dprintf:
11836 gdb_printf (_("Dprintf %d"), number);
11837 break;
11838 }
11839
11840 say_where ();
11841 }
11842
11843 void
11844 ordinary_breakpoint::print_recreate (struct ui_file *fp) const
11845 {
11846 if (type == bp_breakpoint && disposition == disp_del)
11847 gdb_printf (fp, "tbreak");
11848 else if (type == bp_breakpoint)
11849 gdb_printf (fp, "break");
11850 else if (type == bp_hardware_breakpoint
11851 && disposition == disp_del)
11852 gdb_printf (fp, "thbreak");
11853 else if (type == bp_hardware_breakpoint)
11854 gdb_printf (fp, "hbreak");
11855 else
11856 internal_error (_("unhandled breakpoint type %d"), (int) type);
11857
11858 gdb_printf (fp, " %s", locspec->to_string ());
11859
11860 /* Print out extra_string if this breakpoint is pending. It might
11861 contain, for example, conditions that were set by the user. */
11862 if (loc == NULL && extra_string != NULL)
11863 gdb_printf (fp, " %s", extra_string.get ());
11864
11865 print_recreate_thread (fp);
11866 }
11867
11868 std::vector<symtab_and_line>
11869 code_breakpoint::decode_location_spec (location_spec *locspec,
11870 program_space *search_pspace)
11871 {
11872 if (locspec->type () == PROBE_LOCATION_SPEC)
11873 return bkpt_probe_decode_location_spec (this, locspec, search_pspace);
11874
11875 struct linespec_result canonical;
11876
11877 decode_line_full (locspec, DECODE_LINE_FUNFIRSTLINE, search_pspace,
11878 NULL, 0, &canonical, multiple_symbols_all,
11879 filter.get ());
11880
11881 /* We should get 0 or 1 resulting SALs. */
11882 gdb_assert (canonical.lsals.size () < 2);
11883
11884 if (!canonical.lsals.empty ())
11885 {
11886 const linespec_sals &lsal = canonical.lsals[0];
11887 return std::move (lsal.sals);
11888 }
11889 return {};
11890 }
11891
11892 /* Virtual table for internal breakpoints. */
11893
11894 void
11895 internal_breakpoint::re_set ()
11896 {
11897 switch (type)
11898 {
11899 /* Delete overlay event and longjmp master breakpoints; they
11900 will be reset later by breakpoint_re_set. */
11901 case bp_overlay_event:
11902 case bp_longjmp_master:
11903 case bp_std_terminate_master:
11904 case bp_exception_master:
11905 delete_breakpoint (this);
11906 break;
11907
11908 /* This breakpoint is special, it's set up when the inferior
11909 starts and we really don't want to touch it. */
11910 case bp_shlib_event:
11911
11912 /* Like bp_shlib_event, this breakpoint type is special. Once
11913 it is set up, we do not want to touch it. */
11914 case bp_thread_event:
11915 break;
11916 }
11917 }
11918
11919 void
11920 internal_breakpoint::check_status (bpstat *bs)
11921 {
11922 if (type == bp_shlib_event)
11923 {
11924 /* If requested, stop when the dynamic linker notifies GDB of
11925 events. This allows the user to get control and place
11926 breakpoints in initializer routines for dynamically loaded
11927 objects (among other things). */
11928 bs->stop = stop_on_solib_events != 0;
11929 bs->print = stop_on_solib_events != 0;
11930 }
11931 else
11932 bs->stop = false;
11933 }
11934
11935 enum print_stop_action
11936 internal_breakpoint::print_it (const bpstat *bs) const
11937 {
11938 switch (type)
11939 {
11940 case bp_shlib_event:
11941 /* Did we stop because the user set the stop_on_solib_events
11942 variable? (If so, we report this as a generic, "Stopped due
11943 to shlib event" message.) */
11944 print_solib_event (false);
11945 break;
11946
11947 case bp_thread_event:
11948 /* Not sure how we will get here.
11949 GDB should not stop for these breakpoints. */
11950 gdb_printf (_("Thread Event Breakpoint: gdb should not stop!\n"));
11951 break;
11952
11953 case bp_overlay_event:
11954 /* By analogy with the thread event, GDB should not stop for these. */
11955 gdb_printf (_("Overlay Event Breakpoint: gdb should not stop!\n"));
11956 break;
11957
11958 case bp_longjmp_master:
11959 /* These should never be enabled. */
11960 gdb_printf (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
11961 break;
11962
11963 case bp_std_terminate_master:
11964 /* These should never be enabled. */
11965 gdb_printf (_("std::terminate Master Breakpoint: "
11966 "gdb should not stop!\n"));
11967 break;
11968
11969 case bp_exception_master:
11970 /* These should never be enabled. */
11971 gdb_printf (_("Exception Master Breakpoint: "
11972 "gdb should not stop!\n"));
11973 break;
11974 }
11975
11976 return PRINT_NOTHING;
11977 }
11978
11979 void
11980 internal_breakpoint::print_mention () const
11981 {
11982 /* Nothing to mention. These breakpoints are internal. */
11983 }
11984
11985 /* Virtual table for momentary breakpoints */
11986
11987 void
11988 momentary_breakpoint::re_set ()
11989 {
11990 /* Keep temporary breakpoints, which can be encountered when we step
11991 over a dlopen call and solib_add is resetting the breakpoints.
11992 Otherwise these should have been blown away via the cleanup chain
11993 or by breakpoint_init_inferior when we rerun the executable. */
11994 }
11995
11996 void
11997 momentary_breakpoint::check_status (bpstat *bs)
11998 {
11999 /* Nothing. The point of these breakpoints is causing a stop. */
12000 }
12001
12002 enum print_stop_action
12003 momentary_breakpoint::print_it (const bpstat *bs) const
12004 {
12005 return PRINT_UNKNOWN;
12006 }
12007
12008 void
12009 momentary_breakpoint::print_mention () const
12010 {
12011 /* Nothing to mention. These breakpoints are internal. */
12012 }
12013
12014 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12015
12016 It gets cleared already on the removal of the first one of such placed
12017 breakpoints. This is OK as they get all removed altogether. */
12018
12019 longjmp_breakpoint::~longjmp_breakpoint ()
12020 {
12021 thread_info *tp = find_thread_global_id (this->thread);
12022
12023 if (tp != NULL)
12024 tp->initiating_frame = null_frame_id;
12025 }
12026
12027 static void
12028 bkpt_probe_create_sals_from_location_spec (location_spec *locspec,
12029 struct linespec_result *canonical)
12030
12031 {
12032 struct linespec_sals lsal;
12033
12034 lsal.sals = parse_probes (locspec, NULL, canonical);
12035 lsal.canonical = xstrdup (canonical->locspec->to_string ());
12036 canonical->lsals.push_back (std::move (lsal));
12037 }
12038
12039 static std::vector<symtab_and_line>
12040 bkpt_probe_decode_location_spec (struct breakpoint *b,
12041 location_spec *locspec,
12042 program_space *search_pspace)
12043 {
12044 std::vector<symtab_and_line> sals
12045 = parse_probes (locspec, search_pspace, NULL);
12046 if (sals.empty ())
12047 error (_("probe not found"));
12048 return sals;
12049 }
12050
12051 int
12052 tracepoint::breakpoint_hit (const struct bp_location *bl,
12053 const address_space *aspace, CORE_ADDR bp_addr,
12054 const target_waitstatus &ws)
12055 {
12056 /* By definition, the inferior does not report stops at
12057 tracepoints. */
12058 return 0;
12059 }
12060
12061 void
12062 tracepoint::print_one_detail (struct ui_out *uiout) const
12063 {
12064 if (!static_trace_marker_id.empty ())
12065 {
12066 gdb_assert (type == bp_static_tracepoint
12067 || type == bp_static_marker_tracepoint);
12068
12069 uiout->message ("\tmarker id is %pF\n",
12070 string_field ("static-tracepoint-marker-string-id",
12071 static_trace_marker_id.c_str ()));
12072 }
12073 }
12074
12075 void
12076 tracepoint::print_mention () const
12077 {
12078 if (current_uiout->is_mi_like_p ())
12079 return;
12080
12081 switch (type)
12082 {
12083 case bp_tracepoint:
12084 gdb_printf (_("Tracepoint"));
12085 gdb_printf (_(" %d"), number);
12086 break;
12087 case bp_fast_tracepoint:
12088 gdb_printf (_("Fast tracepoint"));
12089 gdb_printf (_(" %d"), number);
12090 break;
12091 case bp_static_tracepoint:
12092 case bp_static_marker_tracepoint:
12093 gdb_printf (_("Static tracepoint"));
12094 gdb_printf (_(" %d"), number);
12095 break;
12096 default:
12097 internal_error (_("unhandled tracepoint type %d"), (int) type);
12098 }
12099
12100 say_where ();
12101 }
12102
12103 void
12104 tracepoint::print_recreate (struct ui_file *fp) const
12105 {
12106 if (type == bp_fast_tracepoint)
12107 gdb_printf (fp, "ftrace");
12108 else if (type == bp_static_tracepoint
12109 || type == bp_static_marker_tracepoint)
12110 gdb_printf (fp, "strace");
12111 else if (type == bp_tracepoint)
12112 gdb_printf (fp, "trace");
12113 else
12114 internal_error (_("unhandled tracepoint type %d"), (int) type);
12115
12116 gdb_printf (fp, " %s", locspec->to_string ());
12117 print_recreate_thread (fp);
12118
12119 if (pass_count)
12120 gdb_printf (fp, " passcount %d\n", pass_count);
12121 }
12122
12123 /* Virtual table for tracepoints on static probes. */
12124
12125 static void
12126 tracepoint_probe_create_sals_from_location_spec
12127 (location_spec *locspec,
12128 struct linespec_result *canonical)
12129 {
12130 /* We use the same method for breakpoint on probes. */
12131 bkpt_probe_create_sals_from_location_spec (locspec, canonical);
12132 }
12133
12134 void
12135 dprintf_breakpoint::re_set ()
12136 {
12137 re_set_default ();
12138
12139 /* extra_string should never be non-NULL for dprintf. */
12140 gdb_assert (extra_string != NULL);
12141
12142 /* 1 - connect to target 1, that can run breakpoint commands.
12143 2 - create a dprintf, which resolves fine.
12144 3 - disconnect from target 1
12145 4 - connect to target 2, that can NOT run breakpoint commands.
12146
12147 After steps #3/#4, you'll want the dprintf command list to
12148 be updated, because target 1 and 2 may well return different
12149 answers for target_can_run_breakpoint_commands().
12150 Given absence of finer grained resetting, we get to do
12151 it all the time. */
12152 if (extra_string != NULL)
12153 update_dprintf_command_list (this);
12154 }
12155
12156 /* Implement the "print_recreate" method for dprintf. */
12157
12158 void
12159 dprintf_breakpoint::print_recreate (struct ui_file *fp) const
12160 {
12161 gdb_printf (fp, "dprintf %s,%s", locspec->to_string (), extra_string.get ());
12162 print_recreate_thread (fp);
12163 }
12164
12165 /* Implement the "after_condition_true" method for dprintf.
12166
12167 dprintf's are implemented with regular commands in their command
12168 list, but we run the commands here instead of before presenting the
12169 stop to the user, as dprintf's don't actually cause a stop. This
12170 also makes it so that the commands of multiple dprintfs at the same
12171 address are all handled. */
12172
12173 void
12174 dprintf_breakpoint::after_condition_true (struct bpstat *bs)
12175 {
12176 /* dprintf's never cause a stop. This wasn't set in the
12177 check_status hook instead because that would make the dprintf's
12178 condition not be evaluated. */
12179 bs->stop = false;
12180
12181 /* Run the command list here. Take ownership of it instead of
12182 copying. We never want these commands to run later in
12183 bpstat_do_actions, if a breakpoint that causes a stop happens to
12184 be set at same address as this dprintf, or even if running the
12185 commands here throws. */
12186 counted_command_line cmds = std::move (bs->commands);
12187 gdb_assert (cmds != nullptr);
12188 execute_control_commands (cmds.get (), 0);
12189 }
12190
12191 /* The breakpoint_ops structure to be used on static tracepoints with
12192 markers (`-m'). */
12193
12194 static void
12195 strace_marker_create_sals_from_location_spec (location_spec *locspec,
12196 struct linespec_result *canonical)
12197 {
12198 struct linespec_sals lsal;
12199 const char *arg_start, *arg;
12200
12201 arg = arg_start = as_linespec_location_spec (locspec)->spec_string;
12202 lsal.sals = decode_static_tracepoint_spec (&arg);
12203
12204 std::string str (arg_start, arg - arg_start);
12205 const char *ptr = str.c_str ();
12206 canonical->locspec
12207 = new_linespec_location_spec (&ptr, symbol_name_match_type::FULL);
12208
12209 lsal.canonical = xstrdup (canonical->locspec->to_string ());
12210 canonical->lsals.push_back (std::move (lsal));
12211 }
12212
12213 static void
12214 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
12215 struct linespec_result *canonical,
12216 gdb::unique_xmalloc_ptr<char> cond_string,
12217 gdb::unique_xmalloc_ptr<char> extra_string,
12218 enum bptype type_wanted,
12219 enum bpdisp disposition,
12220 int thread,
12221 int task, int ignore_count,
12222 int from_tty, int enabled,
12223 int internal, unsigned flags)
12224 {
12225 const linespec_sals &lsal = canonical->lsals[0];
12226
12227 /* If the user is creating a static tracepoint by marker id
12228 (strace -m MARKER_ID), then store the sals index, so that
12229 breakpoint_re_set can try to match up which of the newly
12230 found markers corresponds to this one, and, don't try to
12231 expand multiple locations for each sal, given than SALS
12232 already should contain all sals for MARKER_ID. */
12233
12234 for (size_t i = 0; i < lsal.sals.size (); i++)
12235 {
12236 location_spec_up locspec = canonical->locspec->clone ();
12237
12238 std::unique_ptr<tracepoint> tp
12239 (new tracepoint (gdbarch,
12240 type_wanted,
12241 lsal.sals[i],
12242 std::move (locspec),
12243 NULL,
12244 std::move (cond_string),
12245 std::move (extra_string),
12246 disposition,
12247 thread, task, ignore_count,
12248 from_tty, enabled, flags,
12249 canonical->special_display));
12250
12251 /* Given that its possible to have multiple markers with
12252 the same string id, if the user is creating a static
12253 tracepoint by marker id ("strace -m MARKER_ID"), then
12254 store the sals index, so that breakpoint_re_set can
12255 try to match up which of the newly found markers
12256 corresponds to this one */
12257 tp->static_trace_marker_id_idx = i;
12258
12259 install_breakpoint (internal, std::move (tp), 0);
12260 }
12261 }
12262
12263 std::vector<symtab_and_line>
12264 static_marker_tracepoint::decode_location_spec (location_spec *locspec,
12265 program_space *search_pspace)
12266 {
12267 const char *s = as_linespec_location_spec (locspec)->spec_string;
12268
12269 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
12270 if (sals.size () > static_trace_marker_id_idx)
12271 {
12272 sals[0] = sals[static_trace_marker_id_idx];
12273 sals.resize (1);
12274 return sals;
12275 }
12276 else
12277 error (_("marker %s not found"), static_trace_marker_id.c_str ());
12278 }
12279
12280 /* Static tracepoints with marker (`-m'). */
12281 static struct breakpoint_ops strace_marker_breakpoint_ops =
12282 {
12283 strace_marker_create_sals_from_location_spec,
12284 strace_marker_create_breakpoints_sal,
12285 };
12286
12287 static bool
12288 strace_marker_p (struct breakpoint *b)
12289 {
12290 return b->type == bp_static_marker_tracepoint;
12291 }
12292
12293 /* Delete a breakpoint and clean up all traces of it in the data
12294 structures. */
12295
12296 void
12297 delete_breakpoint (struct breakpoint *bpt)
12298 {
12299 gdb_assert (bpt != NULL);
12300
12301 /* Has this bp already been deleted? This can happen because
12302 multiple lists can hold pointers to bp's. bpstat lists are
12303 especial culprits.
12304
12305 One example of this happening is a watchpoint's scope bp. When
12306 the scope bp triggers, we notice that the watchpoint is out of
12307 scope, and delete it. We also delete its scope bp. But the
12308 scope bp is marked "auto-deleting", and is already on a bpstat.
12309 That bpstat is then checked for auto-deleting bp's, which are
12310 deleted.
12311
12312 A real solution to this problem might involve reference counts in
12313 bp's, and/or giving them pointers back to their referencing
12314 bpstat's, and teaching delete_breakpoint to only free a bp's
12315 storage when no more references were extent. A cheaper bandaid
12316 was chosen. */
12317 if (bpt->type == bp_none)
12318 return;
12319
12320 /* At least avoid this stale reference until the reference counting
12321 of breakpoints gets resolved. */
12322 if (bpt->related_breakpoint != bpt)
12323 {
12324 struct breakpoint *related;
12325 struct watchpoint *w;
12326
12327 if (bpt->type == bp_watchpoint_scope)
12328 w = (struct watchpoint *) bpt->related_breakpoint;
12329 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
12330 w = (struct watchpoint *) bpt;
12331 else
12332 w = NULL;
12333 if (w != NULL)
12334 watchpoint_del_at_next_stop (w);
12335
12336 /* Unlink bpt from the bpt->related_breakpoint ring. */
12337 for (related = bpt; related->related_breakpoint != bpt;
12338 related = related->related_breakpoint);
12339 related->related_breakpoint = bpt->related_breakpoint;
12340 bpt->related_breakpoint = bpt;
12341 }
12342
12343 /* watch_command_1 creates a watchpoint but only sets its number if
12344 update_watchpoint succeeds in creating its bp_locations. If there's
12345 a problem in that process, we'll be asked to delete the half-created
12346 watchpoint. In that case, don't announce the deletion. */
12347 if (bpt->number)
12348 gdb::observers::breakpoint_deleted.notify (bpt);
12349
12350 if (breakpoint_chain == bpt)
12351 breakpoint_chain = bpt->next;
12352
12353 for (breakpoint *b : all_breakpoints ())
12354 if (b->next == bpt)
12355 {
12356 b->next = bpt->next;
12357 break;
12358 }
12359
12360 /* Be sure no bpstat's are pointing at the breakpoint after it's
12361 been freed. */
12362 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
12363 in all threads for now. Note that we cannot just remove bpstats
12364 pointing at bpt from the stop_bpstat list entirely, as breakpoint
12365 commands are associated with the bpstat; if we remove it here,
12366 then the later call to bpstat_do_actions (&stop_bpstat); in
12367 event-top.c won't do anything, and temporary breakpoints with
12368 commands won't work. */
12369
12370 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
12371
12372 /* Now that breakpoint is removed from breakpoint list, update the
12373 global location list. This will remove locations that used to
12374 belong to this breakpoint. Do this before freeing the breakpoint
12375 itself, since remove_breakpoint looks at location's owner. It
12376 might be better design to have location completely
12377 self-contained, but it's not the case now. */
12378 update_global_location_list (UGLL_DONT_INSERT);
12379
12380 /* On the chance that someone will soon try again to delete this
12381 same bp, we mark it as deleted before freeing its storage. */
12382 bpt->type = bp_none;
12383 delete bpt;
12384 }
12385
12386 /* Iterator function to call a user-provided callback function once
12387 for each of B and its related breakpoints. */
12388
12389 static void
12390 iterate_over_related_breakpoints (struct breakpoint *b,
12391 gdb::function_view<void (breakpoint *)> function)
12392 {
12393 struct breakpoint *related;
12394
12395 related = b;
12396 do
12397 {
12398 struct breakpoint *next;
12399
12400 /* FUNCTION may delete RELATED. */
12401 next = related->related_breakpoint;
12402
12403 if (next == related)
12404 {
12405 /* RELATED is the last ring entry. */
12406 function (related);
12407
12408 /* FUNCTION may have deleted it, so we'd never reach back to
12409 B. There's nothing left to do anyway, so just break
12410 out. */
12411 break;
12412 }
12413 else
12414 function (related);
12415
12416 related = next;
12417 }
12418 while (related != b);
12419 }
12420
12421 static void
12422 delete_command (const char *arg, int from_tty)
12423 {
12424 dont_repeat ();
12425
12426 if (arg == 0)
12427 {
12428 int breaks_to_delete = 0;
12429
12430 /* Delete all breakpoints if no argument. Do not delete
12431 internal breakpoints, these have to be deleted with an
12432 explicit breakpoint number argument. */
12433 for (breakpoint *b : all_breakpoints ())
12434 if (user_breakpoint_p (b))
12435 {
12436 breaks_to_delete = 1;
12437 break;
12438 }
12439
12440 /* Ask user only if there are some breakpoints to delete. */
12441 if (!from_tty
12442 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
12443 for (breakpoint *b : all_breakpoints_safe ())
12444 if (user_breakpoint_p (b))
12445 delete_breakpoint (b);
12446 }
12447 else
12448 map_breakpoint_numbers
12449 (arg, [&] (breakpoint *br)
12450 {
12451 iterate_over_related_breakpoints (br, delete_breakpoint);
12452 });
12453 }
12454
12455 /* Return true if all locations of B bound to PSPACE are pending. If
12456 PSPACE is NULL, all locations of all program spaces are
12457 considered. */
12458
12459 static bool
12460 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
12461 {
12462 for (bp_location *loc : b->locations ())
12463 if ((pspace == NULL
12464 || loc->pspace == pspace)
12465 && !loc->shlib_disabled
12466 && !loc->pspace->executing_startup)
12467 return false;
12468 return true;
12469 }
12470
12471 /* Subroutine of update_breakpoint_locations to simplify it.
12472 Return true if multiple fns in list LOC have the same name.
12473 Null names are ignored. */
12474
12475 static bool
12476 ambiguous_names_p (struct bp_location *loc)
12477 {
12478 struct bp_location *l;
12479 htab_up htab (htab_create_alloc (13, htab_hash_string, htab_eq_string, NULL,
12480 xcalloc, xfree));
12481
12482 for (l = loc; l != NULL; l = l->next)
12483 {
12484 const char **slot;
12485 const char *name = l->function_name.get ();
12486
12487 /* Allow for some names to be NULL, ignore them. */
12488 if (name == NULL)
12489 continue;
12490
12491 slot = (const char **) htab_find_slot (htab.get (), (const void *) name,
12492 INSERT);
12493 /* NOTE: We can assume slot != NULL here because xcalloc never
12494 returns NULL. */
12495 if (*slot != NULL)
12496 return true;
12497 *slot = name;
12498 }
12499
12500 return false;
12501 }
12502
12503 /* When symbols change, it probably means the sources changed as well,
12504 and it might mean the static tracepoint markers are no longer at
12505 the same address or line numbers they used to be at last we
12506 checked. Losing your static tracepoints whenever you rebuild is
12507 undesirable. This function tries to resync/rematch gdb static
12508 tracepoints with the markers on the target, for static tracepoints
12509 that have not been set by marker id. Static tracepoint that have
12510 been set by marker id are reset by marker id in breakpoint_re_set.
12511 The heuristic is:
12512
12513 1) For a tracepoint set at a specific address, look for a marker at
12514 the old PC. If one is found there, assume to be the same marker.
12515 If the name / string id of the marker found is different from the
12516 previous known name, assume that means the user renamed the marker
12517 in the sources, and output a warning.
12518
12519 2) For a tracepoint set at a given line number, look for a marker
12520 at the new address of the old line number. If one is found there,
12521 assume to be the same marker. If the name / string id of the
12522 marker found is different from the previous known name, assume that
12523 means the user renamed the marker in the sources, and output a
12524 warning.
12525
12526 3) If a marker is no longer found at the same address or line, it
12527 may mean the marker no longer exists. But it may also just mean
12528 the code changed a bit. Maybe the user added a few lines of code
12529 that made the marker move up or down (in line number terms). Ask
12530 the target for info about the marker with the string id as we knew
12531 it. If found, update line number and address in the matching
12532 static tracepoint. This will get confused if there's more than one
12533 marker with the same ID (possible in UST, although unadvised
12534 precisely because it confuses tools). */
12535
12536 static struct symtab_and_line
12537 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
12538 {
12539 struct tracepoint *tp = (struct tracepoint *) b;
12540 struct static_tracepoint_marker marker;
12541 CORE_ADDR pc;
12542
12543 pc = sal.pc;
12544 if (sal.line)
12545 find_line_pc (sal.symtab, sal.line, &pc);
12546
12547 if (target_static_tracepoint_marker_at (pc, &marker))
12548 {
12549 if (tp->static_trace_marker_id != marker.str_id)
12550 warning (_("static tracepoint %d changed probed marker from %s to %s"),
12551 b->number, tp->static_trace_marker_id.c_str (),
12552 marker.str_id.c_str ());
12553
12554 tp->static_trace_marker_id = std::move (marker.str_id);
12555
12556 return sal;
12557 }
12558
12559 /* Old marker wasn't found on target at lineno. Try looking it up
12560 by string ID. */
12561 if (!sal.explicit_pc
12562 && sal.line != 0
12563 && sal.symtab != NULL
12564 && !tp->static_trace_marker_id.empty ())
12565 {
12566 std::vector<static_tracepoint_marker> markers
12567 = target_static_tracepoint_markers_by_strid
12568 (tp->static_trace_marker_id.c_str ());
12569
12570 if (!markers.empty ())
12571 {
12572 struct symbol *sym;
12573 struct static_tracepoint_marker *tpmarker;
12574 struct ui_out *uiout = current_uiout;
12575
12576 tpmarker = &markers[0];
12577
12578 tp->static_trace_marker_id = std::move (tpmarker->str_id);
12579
12580 warning (_("marker for static tracepoint %d (%s) not "
12581 "found at previous line number"),
12582 b->number, tp->static_trace_marker_id.c_str ());
12583
12584 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
12585 sym = find_pc_sect_function (tpmarker->address, NULL);
12586 uiout->text ("Now in ");
12587 if (sym)
12588 {
12589 uiout->field_string ("func", sym->print_name (),
12590 function_name_style.style ());
12591 uiout->text (" at ");
12592 }
12593 uiout->field_string ("file",
12594 symtab_to_filename_for_display (sal2.symtab),
12595 file_name_style.style ());
12596 uiout->text (":");
12597
12598 if (uiout->is_mi_like_p ())
12599 {
12600 const char *fullname = symtab_to_fullname (sal2.symtab);
12601
12602 uiout->field_string ("fullname", fullname);
12603 }
12604
12605 uiout->field_signed ("line", sal2.line);
12606 uiout->text ("\n");
12607
12608 b->loc->line_number = sal2.line;
12609 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
12610
12611 std::unique_ptr<explicit_location_spec> els
12612 (new explicit_location_spec ());
12613 els->source_filename
12614 = xstrdup (symtab_to_filename_for_display (sal2.symtab));
12615 els->line_offset.offset = b->loc->line_number;
12616 els->line_offset.sign = LINE_OFFSET_NONE;
12617
12618 b->locspec = std::move (els);
12619
12620 /* Might be nice to check if function changed, and warn if
12621 so. */
12622 }
12623 }
12624 return sal;
12625 }
12626
12627 /* Returns true iff locations A and B are sufficiently same that
12628 we don't need to report breakpoint as changed. */
12629
12630 static bool
12631 locations_are_equal (struct bp_location *a, struct bp_location *b)
12632 {
12633 while (a && b)
12634 {
12635 if (a->address != b->address)
12636 return false;
12637
12638 if (a->shlib_disabled != b->shlib_disabled)
12639 return false;
12640
12641 if (a->enabled != b->enabled)
12642 return false;
12643
12644 if (a->disabled_by_cond != b->disabled_by_cond)
12645 return false;
12646
12647 a = a->next;
12648 b = b->next;
12649 }
12650
12651 if ((a == NULL) != (b == NULL))
12652 return false;
12653
12654 return true;
12655 }
12656
12657 /* Split all locations of B that are bound to PSPACE out of B's
12658 location list to a separate list and return that list's head. If
12659 PSPACE is NULL, hoist out all locations of B. */
12660
12661 static struct bp_location *
12662 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
12663 {
12664 struct bp_location head;
12665 struct bp_location *i = b->loc;
12666 struct bp_location **i_link = &b->loc;
12667 struct bp_location *hoisted = &head;
12668
12669 if (pspace == NULL)
12670 {
12671 i = b->loc;
12672 b->loc = NULL;
12673 return i;
12674 }
12675
12676 head.next = NULL;
12677
12678 while (i != NULL)
12679 {
12680 if (i->pspace == pspace)
12681 {
12682 *i_link = i->next;
12683 i->next = NULL;
12684 hoisted->next = i;
12685 hoisted = i;
12686 }
12687 else
12688 i_link = &i->next;
12689 i = *i_link;
12690 }
12691
12692 return head.next;
12693 }
12694
12695 /* Create new breakpoint locations for B (a hardware or software
12696 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
12697 zero, then B is a ranged breakpoint. Only recreates locations for
12698 FILTER_PSPACE. Locations of other program spaces are left
12699 untouched. */
12700
12701 void
12702 update_breakpoint_locations (code_breakpoint *b,
12703 struct program_space *filter_pspace,
12704 gdb::array_view<const symtab_and_line> sals,
12705 gdb::array_view<const symtab_and_line> sals_end)
12706 {
12707 struct bp_location *existing_locations;
12708
12709 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
12710 {
12711 /* Ranged breakpoints have only one start location and one end
12712 location. */
12713 b->enable_state = bp_disabled;
12714 gdb_printf (gdb_stderr,
12715 _("Could not reset ranged breakpoint %d: "
12716 "multiple locations found\n"),
12717 b->number);
12718 return;
12719 }
12720
12721 /* If there's no new locations, and all existing locations are
12722 pending, don't do anything. This optimizes the common case where
12723 all locations are in the same shared library, that was unloaded.
12724 We'd like to retain the location, so that when the library is
12725 loaded again, we don't loose the enabled/disabled status of the
12726 individual locations. */
12727 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
12728 return;
12729
12730 existing_locations = hoist_existing_locations (b, filter_pspace);
12731
12732 for (const auto &sal : sals)
12733 {
12734 struct bp_location *new_loc;
12735
12736 switch_to_program_space_and_thread (sal.pspace);
12737
12738 new_loc = b->add_location (sal);
12739
12740 /* Reparse conditions, they might contain references to the
12741 old symtab. */
12742 if (b->cond_string != NULL)
12743 {
12744 const char *s;
12745
12746 s = b->cond_string.get ();
12747 try
12748 {
12749 new_loc->cond = parse_exp_1 (&s, sal.pc,
12750 block_for_pc (sal.pc),
12751 0);
12752 }
12753 catch (const gdb_exception_error &e)
12754 {
12755 new_loc->disabled_by_cond = true;
12756 }
12757 }
12758
12759 if (!sals_end.empty ())
12760 {
12761 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
12762
12763 new_loc->length = end - sals[0].pc + 1;
12764 }
12765 }
12766
12767 /* If possible, carry over 'disable' status from existing
12768 breakpoints. */
12769 {
12770 struct bp_location *e = existing_locations;
12771 /* If there are multiple breakpoints with the same function name,
12772 e.g. for inline functions, comparing function names won't work.
12773 Instead compare pc addresses; this is just a heuristic as things
12774 may have moved, but in practice it gives the correct answer
12775 often enough until a better solution is found. */
12776 int have_ambiguous_names = ambiguous_names_p (b->loc);
12777
12778 for (; e; e = e->next)
12779 {
12780 if ((!e->enabled || e->disabled_by_cond) && e->function_name)
12781 {
12782 if (have_ambiguous_names)
12783 {
12784 for (bp_location *l : b->locations ())
12785 {
12786 /* Ignore software vs hardware location type at
12787 this point, because with "set breakpoint
12788 auto-hw", after a re-set, locations that were
12789 hardware can end up as software, or vice versa.
12790 As mentioned above, this is an heuristic and in
12791 practice should give the correct answer often
12792 enough. */
12793 if (breakpoint_locations_match (e, l, true))
12794 {
12795 l->enabled = e->enabled;
12796 l->disabled_by_cond = e->disabled_by_cond;
12797 break;
12798 }
12799 }
12800 }
12801 else
12802 {
12803 for (bp_location *l : b->locations ())
12804 if (l->function_name
12805 && strcmp (e->function_name.get (),
12806 l->function_name.get ()) == 0)
12807 {
12808 l->enabled = e->enabled;
12809 l->disabled_by_cond = e->disabled_by_cond;
12810 break;
12811 }
12812 }
12813 }
12814 }
12815 }
12816
12817 if (!locations_are_equal (existing_locations, b->loc))
12818 gdb::observers::breakpoint_modified.notify (b);
12819 }
12820
12821 /* Find the SaL locations corresponding to the given LOCSPEC.
12822 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
12823
12824 std::vector<symtab_and_line>
12825 code_breakpoint::location_spec_to_sals (location_spec *locspec,
12826 struct program_space *search_pspace,
12827 int *found)
12828 {
12829 struct gdb_exception exception;
12830
12831 std::vector<symtab_and_line> sals;
12832
12833 try
12834 {
12835 sals = decode_location_spec (locspec, search_pspace);
12836 }
12837 catch (gdb_exception_error &e)
12838 {
12839 int not_found_and_ok = false;
12840
12841 /* For pending breakpoints, it's expected that parsing will
12842 fail until the right shared library is loaded. User has
12843 already told to create pending breakpoints and don't need
12844 extra messages. If breakpoint is in bp_shlib_disabled
12845 state, then user already saw the message about that
12846 breakpoint being disabled, and don't want to see more
12847 errors. */
12848 if (e.error == NOT_FOUND_ERROR
12849 && (condition_not_parsed
12850 || (loc != NULL
12851 && search_pspace != NULL
12852 && loc->pspace != search_pspace)
12853 || (loc && loc->shlib_disabled)
12854 || (loc && loc->pspace->executing_startup)
12855 || enable_state == bp_disabled))
12856 not_found_and_ok = true;
12857
12858 if (!not_found_and_ok)
12859 {
12860 /* We surely don't want to warn about the same breakpoint
12861 10 times. One solution, implemented here, is disable
12862 the breakpoint on error. Another solution would be to
12863 have separate 'warning emitted' flag. Since this
12864 happens only when a binary has changed, I don't know
12865 which approach is better. */
12866 enable_state = bp_disabled;
12867 throw;
12868 }
12869
12870 exception = std::move (e);
12871 }
12872
12873 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
12874 {
12875 for (auto &sal : sals)
12876 resolve_sal_pc (&sal);
12877 if (condition_not_parsed && extra_string != NULL)
12878 {
12879 gdb::unique_xmalloc_ptr<char> local_cond, local_extra;
12880 int local_thread, local_task;
12881
12882 find_condition_and_thread_for_sals (sals, extra_string.get (),
12883 &local_cond, &local_thread,
12884 &local_task, &local_extra);
12885 gdb_assert (cond_string == nullptr);
12886 if (local_cond != nullptr)
12887 cond_string = std::move (local_cond);
12888 thread = local_thread;
12889 task = local_task;
12890 if (local_extra != nullptr)
12891 extra_string = std::move (local_extra);
12892 condition_not_parsed = 0;
12893 }
12894
12895 if (type == bp_static_tracepoint)
12896 sals[0] = update_static_tracepoint (this, sals[0]);
12897
12898 *found = 1;
12899 }
12900 else
12901 *found = 0;
12902
12903 return sals;
12904 }
12905
12906 /* The default re_set method, for typical hardware or software
12907 breakpoints. Reevaluate the breakpoint and recreate its
12908 locations. */
12909
12910 void
12911 code_breakpoint::re_set_default ()
12912 {
12913 struct program_space *filter_pspace = current_program_space;
12914 std::vector<symtab_and_line> expanded, expanded_end;
12915
12916 int found;
12917 std::vector<symtab_and_line> sals = location_spec_to_sals (locspec.get (),
12918 filter_pspace,
12919 &found);
12920 if (found)
12921 expanded = std::move (sals);
12922
12923 if (locspec_range_end != nullptr)
12924 {
12925 std::vector<symtab_and_line> sals_end
12926 = location_spec_to_sals (locspec_range_end.get (),
12927 filter_pspace, &found);
12928 if (found)
12929 expanded_end = std::move (sals_end);
12930 }
12931
12932 update_breakpoint_locations (this, filter_pspace, expanded, expanded_end);
12933 }
12934
12935 /* Default method for creating SALs from an address string. It basically
12936 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
12937
12938 static void
12939 create_sals_from_location_spec_default (location_spec *locspec,
12940 struct linespec_result *canonical)
12941 {
12942 parse_breakpoint_sals (locspec, canonical);
12943 }
12944
12945 /* Reset a breakpoint. */
12946
12947 static void
12948 breakpoint_re_set_one (breakpoint *b)
12949 {
12950 input_radix = b->input_radix;
12951 set_language (b->language);
12952
12953 b->re_set ();
12954 }
12955
12956 /* Re-set breakpoint locations for the current program space.
12957 Locations bound to other program spaces are left untouched. */
12958
12959 void
12960 breakpoint_re_set (void)
12961 {
12962 {
12963 scoped_restore_current_language save_language;
12964 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
12965 scoped_restore_current_pspace_and_thread restore_pspace_thread;
12966
12967 /* breakpoint_re_set_one sets the current_language to the language
12968 of the breakpoint it is resetting (see prepare_re_set_context)
12969 before re-evaluating the breakpoint's location. This change can
12970 unfortunately get undone by accident if the language_mode is set
12971 to auto, and we either switch frames, or more likely in this context,
12972 we select the current frame.
12973
12974 We prevent this by temporarily turning the language_mode to
12975 language_mode_manual. We restore it once all breakpoints
12976 have been reset. */
12977 scoped_restore save_language_mode = make_scoped_restore (&language_mode);
12978 language_mode = language_mode_manual;
12979
12980 /* Note: we must not try to insert locations until after all
12981 breakpoints have been re-set. Otherwise, e.g., when re-setting
12982 breakpoint 1, we'd insert the locations of breakpoint 2, which
12983 hadn't been re-set yet, and thus may have stale locations. */
12984
12985 for (breakpoint *b : all_breakpoints_safe ())
12986 {
12987 try
12988 {
12989 breakpoint_re_set_one (b);
12990 }
12991 catch (const gdb_exception &ex)
12992 {
12993 exception_fprintf (gdb_stderr, ex,
12994 "Error in re-setting breakpoint %d: ",
12995 b->number);
12996 }
12997 }
12998
12999 jit_breakpoint_re_set ();
13000 }
13001
13002 create_overlay_event_breakpoint ();
13003 create_longjmp_master_breakpoint ();
13004 create_std_terminate_master_breakpoint ();
13005 create_exception_master_breakpoint ();
13006
13007 /* Now we can insert. */
13008 update_global_location_list (UGLL_MAY_INSERT);
13009 }
13010 \f
13011 /* Reset the thread number of this breakpoint:
13012
13013 - If the breakpoint is for all threads, leave it as-is.
13014 - Else, reset it to the current thread for inferior_ptid. */
13015 void
13016 breakpoint_re_set_thread (struct breakpoint *b)
13017 {
13018 if (b->thread != -1)
13019 {
13020 b->thread = inferior_thread ()->global_num;
13021
13022 /* We're being called after following a fork. The new fork is
13023 selected as current, and unless this was a vfork will have a
13024 different program space from the original thread. Reset that
13025 as well. */
13026 b->loc->pspace = current_program_space;
13027 }
13028 }
13029
13030 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13031 If from_tty is nonzero, it prints a message to that effect,
13032 which ends with a period (no newline). */
13033
13034 void
13035 set_ignore_count (int bptnum, int count, int from_tty)
13036 {
13037 if (count < 0)
13038 count = 0;
13039
13040 for (breakpoint *b : all_breakpoints ())
13041 if (b->number == bptnum)
13042 {
13043 if (is_tracepoint (b))
13044 {
13045 if (from_tty && count != 0)
13046 gdb_printf (_("Ignore count ignored for tracepoint %d."),
13047 bptnum);
13048 return;
13049 }
13050
13051 b->ignore_count = count;
13052 if (from_tty)
13053 {
13054 if (count == 0)
13055 gdb_printf (_("Will stop next time "
13056 "breakpoint %d is reached."),
13057 bptnum);
13058 else if (count == 1)
13059 gdb_printf (_("Will ignore next crossing of breakpoint %d."),
13060 bptnum);
13061 else
13062 gdb_printf (_("Will ignore next %d "
13063 "crossings of breakpoint %d."),
13064 count, bptnum);
13065 }
13066 gdb::observers::breakpoint_modified.notify (b);
13067 return;
13068 }
13069
13070 error (_("No breakpoint number %d."), bptnum);
13071 }
13072
13073 /* Command to set ignore-count of breakpoint N to COUNT. */
13074
13075 static void
13076 ignore_command (const char *args, int from_tty)
13077 {
13078 const char *p = args;
13079 int num;
13080
13081 if (p == 0)
13082 error_no_arg (_("a breakpoint number"));
13083
13084 num = get_number (&p);
13085 if (num == 0)
13086 error (_("bad breakpoint number: '%s'"), args);
13087 if (*p == 0)
13088 error (_("Second argument (specified ignore-count) is missing."));
13089
13090 set_ignore_count (num,
13091 longest_to_int (value_as_long (parse_and_eval (p))),
13092 from_tty);
13093 if (from_tty)
13094 gdb_printf ("\n");
13095 }
13096 \f
13097
13098 /* Call FUNCTION on each of the breakpoints with numbers in the range
13099 defined by BP_NUM_RANGE (an inclusive range). */
13100
13101 static void
13102 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
13103 gdb::function_view<void (breakpoint *)> function)
13104 {
13105 if (bp_num_range.first == 0)
13106 {
13107 warning (_("bad breakpoint number at or near '%d'"),
13108 bp_num_range.first);
13109 }
13110 else
13111 {
13112 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
13113 {
13114 bool match = false;
13115
13116 for (breakpoint *b : all_breakpoints_safe ())
13117 if (b->number == i)
13118 {
13119 match = true;
13120 function (b);
13121 break;
13122 }
13123 if (!match)
13124 gdb_printf (_("No breakpoint number %d.\n"), i);
13125 }
13126 }
13127 }
13128
13129 /* Call FUNCTION on each of the breakpoints whose numbers are given in
13130 ARGS. */
13131
13132 static void
13133 map_breakpoint_numbers (const char *args,
13134 gdb::function_view<void (breakpoint *)> function)
13135 {
13136 if (args == NULL || *args == '\0')
13137 error_no_arg (_("one or more breakpoint numbers"));
13138
13139 number_or_range_parser parser (args);
13140
13141 while (!parser.finished ())
13142 {
13143 int num = parser.get_number ();
13144 map_breakpoint_number_range (std::make_pair (num, num), function);
13145 }
13146 }
13147
13148 /* Return the breakpoint location structure corresponding to the
13149 BP_NUM and LOC_NUM values. */
13150
13151 static struct bp_location *
13152 find_location_by_number (int bp_num, int loc_num)
13153 {
13154 breakpoint *b = get_breakpoint (bp_num);
13155
13156 if (!b || b->number != bp_num)
13157 error (_("Bad breakpoint number '%d'"), bp_num);
13158
13159 if (loc_num == 0)
13160 error (_("Bad breakpoint location number '%d'"), loc_num);
13161
13162 int n = 0;
13163 for (bp_location *loc : b->locations ())
13164 if (++n == loc_num)
13165 return loc;
13166
13167 error (_("Bad breakpoint location number '%d'"), loc_num);
13168 }
13169
13170 /* Modes of operation for extract_bp_num. */
13171 enum class extract_bp_kind
13172 {
13173 /* Extracting a breakpoint number. */
13174 bp,
13175
13176 /* Extracting a location number. */
13177 loc,
13178 };
13179
13180 /* Extract a breakpoint or location number (as determined by KIND)
13181 from the string starting at START. TRAILER is a character which
13182 can be found after the number. If you don't want a trailer, use
13183 '\0'. If END_OUT is not NULL, it is set to point after the parsed
13184 string. This always returns a positive integer. */
13185
13186 static int
13187 extract_bp_num (extract_bp_kind kind, const char *start,
13188 int trailer, const char **end_out = NULL)
13189 {
13190 const char *end = start;
13191 int num = get_number_trailer (&end, trailer);
13192 if (num < 0)
13193 error (kind == extract_bp_kind::bp
13194 ? _("Negative breakpoint number '%.*s'")
13195 : _("Negative breakpoint location number '%.*s'"),
13196 int (end - start), start);
13197 if (num == 0)
13198 error (kind == extract_bp_kind::bp
13199 ? _("Bad breakpoint number '%.*s'")
13200 : _("Bad breakpoint location number '%.*s'"),
13201 int (end - start), start);
13202
13203 if (end_out != NULL)
13204 *end_out = end;
13205 return num;
13206 }
13207
13208 /* Extract a breakpoint or location range (as determined by KIND) in
13209 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
13210 representing the (inclusive) range. The returned pair's elements
13211 are always positive integers. */
13212
13213 static std::pair<int, int>
13214 extract_bp_or_bp_range (extract_bp_kind kind,
13215 const std::string &arg,
13216 std::string::size_type arg_offset)
13217 {
13218 std::pair<int, int> range;
13219 const char *bp_loc = &arg[arg_offset];
13220 std::string::size_type dash = arg.find ('-', arg_offset);
13221 if (dash != std::string::npos)
13222 {
13223 /* bp_loc is a range (x-z). */
13224 if (arg.length () == dash + 1)
13225 error (kind == extract_bp_kind::bp
13226 ? _("Bad breakpoint number at or near: '%s'")
13227 : _("Bad breakpoint location number at or near: '%s'"),
13228 bp_loc);
13229
13230 const char *end;
13231 const char *start_first = bp_loc;
13232 const char *start_second = &arg[dash + 1];
13233 range.first = extract_bp_num (kind, start_first, '-');
13234 range.second = extract_bp_num (kind, start_second, '\0', &end);
13235
13236 if (range.first > range.second)
13237 error (kind == extract_bp_kind::bp
13238 ? _("Inverted breakpoint range at '%.*s'")
13239 : _("Inverted breakpoint location range at '%.*s'"),
13240 int (end - start_first), start_first);
13241 }
13242 else
13243 {
13244 /* bp_loc is a single value. */
13245 range.first = extract_bp_num (kind, bp_loc, '\0');
13246 range.second = range.first;
13247 }
13248 return range;
13249 }
13250
13251 /* Extract the breakpoint/location range specified by ARG. Returns
13252 the breakpoint range in BP_NUM_RANGE, and the location range in
13253 BP_LOC_RANGE.
13254
13255 ARG may be in any of the following forms:
13256
13257 x where 'x' is a breakpoint number.
13258 x-y where 'x' and 'y' specify a breakpoint numbers range.
13259 x.y where 'x' is a breakpoint number and 'y' a location number.
13260 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
13261 location number range.
13262 */
13263
13264 static void
13265 extract_bp_number_and_location (const std::string &arg,
13266 std::pair<int, int> &bp_num_range,
13267 std::pair<int, int> &bp_loc_range)
13268 {
13269 std::string::size_type dot = arg.find ('.');
13270
13271 if (dot != std::string::npos)
13272 {
13273 /* Handle 'x.y' and 'x.y-z' cases. */
13274
13275 if (arg.length () == dot + 1 || dot == 0)
13276 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
13277
13278 bp_num_range.first
13279 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
13280 bp_num_range.second = bp_num_range.first;
13281
13282 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
13283 arg, dot + 1);
13284 }
13285 else
13286 {
13287 /* Handle x and x-y cases. */
13288
13289 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
13290 bp_loc_range.first = 0;
13291 bp_loc_range.second = 0;
13292 }
13293 }
13294
13295 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
13296 specifies whether to enable or disable. */
13297
13298 static void
13299 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
13300 {
13301 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
13302 if (loc != NULL)
13303 {
13304 if (loc->disabled_by_cond && enable)
13305 error (_("Breakpoint %d's condition is invalid at location %d, "
13306 "cannot enable."), bp_num, loc_num);
13307
13308 if (loc->enabled != enable)
13309 {
13310 loc->enabled = enable;
13311 mark_breakpoint_location_modified (loc);
13312 }
13313 if (target_supports_enable_disable_tracepoint ()
13314 && current_trace_status ()->running && loc->owner
13315 && is_tracepoint (loc->owner))
13316 target_disable_tracepoint (loc);
13317 }
13318 update_global_location_list (UGLL_DONT_INSERT);
13319
13320 gdb::observers::breakpoint_modified.notify (loc->owner);
13321 }
13322
13323 /* Calculates LOC_NUM for LOC by traversing the bp_location chain of LOC's
13324 owner. 1-based indexing. -1 signals NOT FOUND. */
13325
13326 static int
13327 find_loc_num_by_location (const bp_location *loc)
13328 {
13329 if (loc != nullptr && loc->owner != nullptr)
13330 {
13331 /* Locations use 1-based indexing. */
13332 int loc_num = 1;
13333 for (bp_location *it : loc->owner->locations ())
13334 {
13335 if (it == loc)
13336 return loc_num;
13337 loc_num++;
13338 }
13339 }
13340 return -1;
13341 }
13342
13343 /* Enable or disable a breakpoint location LOC. ENABLE
13344 specifies whether to enable or disable. */
13345
13346 void
13347 enable_disable_bp_location (bp_location *loc, bool enable)
13348 {
13349 if (loc == nullptr)
13350 error (_("Breakpoint location is invalid."));
13351
13352 if (loc->owner == nullptr)
13353 error (_("Breakpoint location does not have an owner breakpoint."));
13354
13355 if (loc->disabled_by_cond && enable)
13356 {
13357 int loc_num = find_loc_num_by_location (loc);
13358 if (loc_num == -1)
13359 error (_("Breakpoint location LOC_NUM could not be found."));
13360 else
13361 error (_("Breakpoint %d's condition is invalid at location %d, "
13362 "cannot enable."), loc->owner->number, loc_num);
13363 }
13364
13365 if (loc->enabled != enable)
13366 {
13367 loc->enabled = enable;
13368 mark_breakpoint_location_modified (loc);
13369 }
13370
13371 if (target_supports_enable_disable_tracepoint ()
13372 && current_trace_status ()->running && loc->owner
13373 && is_tracepoint (loc->owner))
13374 target_disable_tracepoint (loc);
13375
13376 update_global_location_list (UGLL_DONT_INSERT);
13377 gdb::observers::breakpoint_modified.notify (loc->owner);
13378 }
13379
13380 /* Enable or disable a range of breakpoint locations. BP_NUM is the
13381 number of the breakpoint, and BP_LOC_RANGE specifies the
13382 (inclusive) range of location numbers of that breakpoint to
13383 enable/disable. ENABLE specifies whether to enable or disable the
13384 location. */
13385
13386 static void
13387 enable_disable_breakpoint_location_range (int bp_num,
13388 std::pair<int, int> &bp_loc_range,
13389 bool enable)
13390 {
13391 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
13392 enable_disable_bp_num_loc (bp_num, i, enable);
13393 }
13394
13395 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13396 If from_tty is nonzero, it prints a message to that effect,
13397 which ends with a period (no newline). */
13398
13399 void
13400 disable_breakpoint (struct breakpoint *bpt)
13401 {
13402 /* Never disable a watchpoint scope breakpoint; we want to
13403 hit them when we leave scope so we can delete both the
13404 watchpoint and its scope breakpoint at that time. */
13405 if (bpt->type == bp_watchpoint_scope)
13406 return;
13407
13408 bpt->enable_state = bp_disabled;
13409
13410 /* Mark breakpoint locations modified. */
13411 mark_breakpoint_modified (bpt);
13412
13413 if (target_supports_enable_disable_tracepoint ()
13414 && current_trace_status ()->running && is_tracepoint (bpt))
13415 {
13416 for (bp_location *location : bpt->locations ())
13417 target_disable_tracepoint (location);
13418 }
13419
13420 update_global_location_list (UGLL_DONT_INSERT);
13421
13422 gdb::observers::breakpoint_modified.notify (bpt);
13423 }
13424
13425 /* Enable or disable the breakpoint(s) or breakpoint location(s)
13426 specified in ARGS. ARGS may be in any of the formats handled by
13427 extract_bp_number_and_location. ENABLE specifies whether to enable
13428 or disable the breakpoints/locations. */
13429
13430 static void
13431 enable_disable_command (const char *args, int from_tty, bool enable)
13432 {
13433 if (args == 0)
13434 {
13435 for (breakpoint *bpt : all_breakpoints ())
13436 if (user_breakpoint_p (bpt))
13437 {
13438 if (enable)
13439 enable_breakpoint (bpt);
13440 else
13441 disable_breakpoint (bpt);
13442 }
13443 }
13444 else
13445 {
13446 std::string num = extract_arg (&args);
13447
13448 while (!num.empty ())
13449 {
13450 std::pair<int, int> bp_num_range, bp_loc_range;
13451
13452 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
13453
13454 if (bp_loc_range.first == bp_loc_range.second
13455 && (bp_loc_range.first == 0
13456 || (bp_loc_range.first == 1
13457 && bp_num_range.first == bp_num_range.second
13458 && !has_multiple_locations (bp_num_range.first))))
13459 {
13460 /* Handle breakpoint ids with formats 'x' or 'x-z'
13461 or 'y.1' where y has only one code location. */
13462 map_breakpoint_number_range (bp_num_range,
13463 enable
13464 ? enable_breakpoint
13465 : disable_breakpoint);
13466 }
13467 else
13468 {
13469 /* Handle breakpoint ids with formats 'x.y' or
13470 'x.y-z'. */
13471 enable_disable_breakpoint_location_range
13472 (bp_num_range.first, bp_loc_range, enable);
13473 }
13474 num = extract_arg (&args);
13475 }
13476 }
13477 }
13478
13479 /* The disable command disables the specified breakpoints/locations
13480 (or all defined breakpoints) so they're no longer effective in
13481 stopping the inferior. ARGS may be in any of the forms defined in
13482 extract_bp_number_and_location. */
13483
13484 static void
13485 disable_command (const char *args, int from_tty)
13486 {
13487 enable_disable_command (args, from_tty, false);
13488 }
13489
13490 static void
13491 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
13492 int count)
13493 {
13494 int target_resources_ok;
13495
13496 if (bpt->type == bp_hardware_breakpoint)
13497 {
13498 int i;
13499 i = hw_breakpoint_used_count ();
13500 target_resources_ok =
13501 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
13502 i + 1, 0);
13503 if (target_resources_ok == 0)
13504 error (_("No hardware breakpoint support in the target."));
13505 else if (target_resources_ok < 0)
13506 error (_("Hardware breakpoints used exceeds limit."));
13507 }
13508
13509 if (is_watchpoint (bpt))
13510 {
13511 /* Initialize it just to avoid a GCC false warning. */
13512 enum enable_state orig_enable_state = bp_disabled;
13513
13514 try
13515 {
13516 struct watchpoint *w = (struct watchpoint *) bpt;
13517
13518 orig_enable_state = bpt->enable_state;
13519 bpt->enable_state = bp_enabled;
13520 update_watchpoint (w, true /* reparse */);
13521 }
13522 catch (const gdb_exception &e)
13523 {
13524 bpt->enable_state = orig_enable_state;
13525 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
13526 bpt->number);
13527 return;
13528 }
13529 }
13530
13531 bpt->enable_state = bp_enabled;
13532
13533 /* Mark breakpoint locations modified. */
13534 mark_breakpoint_modified (bpt);
13535
13536 if (target_supports_enable_disable_tracepoint ()
13537 && current_trace_status ()->running && is_tracepoint (bpt))
13538 {
13539 for (bp_location *location : bpt->locations ())
13540 target_enable_tracepoint (location);
13541 }
13542
13543 bpt->disposition = disposition;
13544 bpt->enable_count = count;
13545 update_global_location_list (UGLL_MAY_INSERT);
13546
13547 gdb::observers::breakpoint_modified.notify (bpt);
13548 }
13549
13550
13551 void
13552 enable_breakpoint (struct breakpoint *bpt)
13553 {
13554 enable_breakpoint_disp (bpt, bpt->disposition, 0);
13555 }
13556
13557 /* The enable command enables the specified breakpoints/locations (or
13558 all defined breakpoints) so they once again become (or continue to
13559 be) effective in stopping the inferior. ARGS may be in any of the
13560 forms defined in extract_bp_number_and_location. */
13561
13562 static void
13563 enable_command (const char *args, int from_tty)
13564 {
13565 enable_disable_command (args, from_tty, true);
13566 }
13567
13568 static void
13569 enable_once_command (const char *args, int from_tty)
13570 {
13571 map_breakpoint_numbers
13572 (args, [&] (breakpoint *b)
13573 {
13574 iterate_over_related_breakpoints
13575 (b, [&] (breakpoint *bpt)
13576 {
13577 enable_breakpoint_disp (bpt, disp_disable, 1);
13578 });
13579 });
13580 }
13581
13582 static void
13583 enable_count_command (const char *args, int from_tty)
13584 {
13585 int count;
13586
13587 if (args == NULL)
13588 error_no_arg (_("hit count"));
13589
13590 count = get_number (&args);
13591
13592 map_breakpoint_numbers
13593 (args, [&] (breakpoint *b)
13594 {
13595 iterate_over_related_breakpoints
13596 (b, [&] (breakpoint *bpt)
13597 {
13598 enable_breakpoint_disp (bpt, disp_disable, count);
13599 });
13600 });
13601 }
13602
13603 static void
13604 enable_delete_command (const char *args, int from_tty)
13605 {
13606 map_breakpoint_numbers
13607 (args, [&] (breakpoint *b)
13608 {
13609 iterate_over_related_breakpoints
13610 (b, [&] (breakpoint *bpt)
13611 {
13612 enable_breakpoint_disp (bpt, disp_del, 1);
13613 });
13614 });
13615 }
13616 \f
13617 /* Invalidate last known value of any hardware watchpoint if
13618 the memory which that value represents has been written to by
13619 GDB itself. */
13620
13621 static void
13622 invalidate_bp_value_on_memory_change (struct inferior *inferior,
13623 CORE_ADDR addr, ssize_t len,
13624 const bfd_byte *data)
13625 {
13626 for (breakpoint *bp : all_breakpoints ())
13627 if (bp->enable_state == bp_enabled
13628 && bp->type == bp_hardware_watchpoint)
13629 {
13630 struct watchpoint *wp = (struct watchpoint *) bp;
13631
13632 if (wp->val_valid && wp->val != nullptr)
13633 {
13634 for (bp_location *loc : bp->locations ())
13635 if (loc->loc_type == bp_loc_hardware_watchpoint
13636 && loc->address + loc->length > addr
13637 && addr + len > loc->address)
13638 {
13639 wp->val = NULL;
13640 wp->val_valid = false;
13641 }
13642 }
13643 }
13644 }
13645
13646 /* Create and insert a breakpoint for software single step. */
13647
13648 void
13649 insert_single_step_breakpoint (struct gdbarch *gdbarch,
13650 const address_space *aspace,
13651 CORE_ADDR next_pc)
13652 {
13653 struct thread_info *tp = inferior_thread ();
13654 struct symtab_and_line sal;
13655 CORE_ADDR pc = next_pc;
13656
13657 if (tp->control.single_step_breakpoints == NULL)
13658 {
13659 std::unique_ptr<breakpoint> b
13660 (new momentary_breakpoint (gdbarch, bp_single_step,
13661 current_program_space,
13662 null_frame_id,
13663 tp->global_num));
13664
13665 tp->control.single_step_breakpoints
13666 = add_to_breakpoint_chain (std::move (b));
13667 }
13668
13669 sal = find_pc_line (pc, 0);
13670 sal.pc = pc;
13671 sal.section = find_pc_overlay (pc);
13672 sal.explicit_pc = 1;
13673
13674 auto *ss_bp
13675 = (gdb::checked_static_cast<momentary_breakpoint *>
13676 (tp->control.single_step_breakpoints));
13677 ss_bp->add_location (sal);
13678
13679 update_global_location_list (UGLL_INSERT);
13680 }
13681
13682 /* Insert single step breakpoints according to the current state. */
13683
13684 int
13685 insert_single_step_breakpoints (struct gdbarch *gdbarch)
13686 {
13687 struct regcache *regcache = get_current_regcache ();
13688 std::vector<CORE_ADDR> next_pcs;
13689
13690 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
13691
13692 if (!next_pcs.empty ())
13693 {
13694 frame_info_ptr frame = get_current_frame ();
13695 const address_space *aspace = get_frame_address_space (frame);
13696
13697 for (CORE_ADDR pc : next_pcs)
13698 insert_single_step_breakpoint (gdbarch, aspace, pc);
13699
13700 return 1;
13701 }
13702 else
13703 return 0;
13704 }
13705
13706 /* See breakpoint.h. */
13707
13708 int
13709 breakpoint_has_location_inserted_here (struct breakpoint *bp,
13710 const address_space *aspace,
13711 CORE_ADDR pc)
13712 {
13713 for (bp_location *loc : bp->locations ())
13714 if (loc->inserted
13715 && breakpoint_location_address_match (loc, aspace, pc))
13716 return 1;
13717
13718 return 0;
13719 }
13720
13721 /* Check whether a software single-step breakpoint is inserted at
13722 PC. */
13723
13724 int
13725 single_step_breakpoint_inserted_here_p (const address_space *aspace,
13726 CORE_ADDR pc)
13727 {
13728 for (breakpoint *bpt : all_breakpoints ())
13729 {
13730 if (bpt->type == bp_single_step
13731 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
13732 return 1;
13733 }
13734 return 0;
13735 }
13736
13737 /* Tracepoint-specific operations. */
13738
13739 /* Set tracepoint count to NUM. */
13740 static void
13741 set_tracepoint_count (int num)
13742 {
13743 tracepoint_count = num;
13744 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
13745 }
13746
13747 static void
13748 trace_command (const char *arg, int from_tty)
13749 {
13750 location_spec_up locspec = string_to_location_spec (&arg,
13751 current_language);
13752 const struct breakpoint_ops *ops = breakpoint_ops_for_location_spec
13753 (locspec.get (), true /* is_tracepoint */);
13754
13755 create_breakpoint (get_current_arch (),
13756 locspec.get (),
13757 NULL, 0, arg, false, 1 /* parse arg */,
13758 0 /* tempflag */,
13759 bp_tracepoint /* type_wanted */,
13760 0 /* Ignore count */,
13761 pending_break_support,
13762 ops,
13763 from_tty,
13764 1 /* enabled */,
13765 0 /* internal */, 0);
13766 }
13767
13768 static void
13769 ftrace_command (const char *arg, int from_tty)
13770 {
13771 location_spec_up locspec = string_to_location_spec (&arg,
13772 current_language);
13773 create_breakpoint (get_current_arch (),
13774 locspec.get (),
13775 NULL, 0, arg, false, 1 /* parse arg */,
13776 0 /* tempflag */,
13777 bp_fast_tracepoint /* type_wanted */,
13778 0 /* Ignore count */,
13779 pending_break_support,
13780 &code_breakpoint_ops,
13781 from_tty,
13782 1 /* enabled */,
13783 0 /* internal */, 0);
13784 }
13785
13786 /* strace command implementation. Creates a static tracepoint. */
13787
13788 static void
13789 strace_command (const char *arg, int from_tty)
13790 {
13791 const struct breakpoint_ops *ops;
13792 location_spec_up locspec;
13793 enum bptype type;
13794
13795 /* Decide if we are dealing with a static tracepoint marker (`-m'),
13796 or with a normal static tracepoint. */
13797 if (arg && startswith (arg, "-m") && isspace (arg[2]))
13798 {
13799 ops = &strace_marker_breakpoint_ops;
13800 locspec = new_linespec_location_spec (&arg,
13801 symbol_name_match_type::FULL);
13802 type = bp_static_marker_tracepoint;
13803 }
13804 else
13805 {
13806 ops = &code_breakpoint_ops;
13807 locspec = string_to_location_spec (&arg, current_language);
13808 type = bp_static_tracepoint;
13809 }
13810
13811 create_breakpoint (get_current_arch (),
13812 locspec.get (),
13813 NULL, 0, arg, false, 1 /* parse arg */,
13814 0 /* tempflag */,
13815 type /* type_wanted */,
13816 0 /* Ignore count */,
13817 pending_break_support,
13818 ops,
13819 from_tty,
13820 1 /* enabled */,
13821 0 /* internal */, 0);
13822 }
13823
13824 /* Set up a fake reader function that gets command lines from a linked
13825 list that was acquired during tracepoint uploading. */
13826
13827 static struct uploaded_tp *this_utp;
13828 static int next_cmd;
13829
13830 static const char *
13831 read_uploaded_action (std::string &buffer)
13832 {
13833 char *rslt = nullptr;
13834
13835 if (next_cmd < this_utp->cmd_strings.size ())
13836 {
13837 rslt = this_utp->cmd_strings[next_cmd].get ();
13838 next_cmd++;
13839 }
13840
13841 return rslt;
13842 }
13843
13844 /* Given information about a tracepoint as recorded on a target (which
13845 can be either a live system or a trace file), attempt to create an
13846 equivalent GDB tracepoint. This is not a reliable process, since
13847 the target does not necessarily have all the information used when
13848 the tracepoint was originally defined. */
13849
13850 struct tracepoint *
13851 create_tracepoint_from_upload (struct uploaded_tp *utp)
13852 {
13853 const char *addr_str;
13854 char small_buf[100];
13855 struct tracepoint *tp;
13856
13857 if (utp->at_string)
13858 addr_str = utp->at_string.get ();
13859 else
13860 {
13861 /* In the absence of a source location, fall back to raw
13862 address. Since there is no way to confirm that the address
13863 means the same thing as when the trace was started, warn the
13864 user. */
13865 warning (_("Uploaded tracepoint %d has no "
13866 "source location, using raw address"),
13867 utp->number);
13868 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
13869 addr_str = small_buf;
13870 }
13871
13872 /* There's not much we can do with a sequence of bytecodes. */
13873 if (utp->cond && !utp->cond_string)
13874 warning (_("Uploaded tracepoint %d condition "
13875 "has no source form, ignoring it"),
13876 utp->number);
13877
13878 location_spec_up locspec = string_to_location_spec (&addr_str,
13879 current_language);
13880 if (!create_breakpoint (get_current_arch (),
13881 locspec.get (),
13882 utp->cond_string.get (), -1, addr_str,
13883 false /* force_condition */,
13884 0 /* parse cond/thread */,
13885 0 /* tempflag */,
13886 utp->type /* type_wanted */,
13887 0 /* Ignore count */,
13888 pending_break_support,
13889 &code_breakpoint_ops,
13890 0 /* from_tty */,
13891 utp->enabled /* enabled */,
13892 0 /* internal */,
13893 CREATE_BREAKPOINT_FLAGS_INSERTED))
13894 return NULL;
13895
13896 /* Get the tracepoint we just created. */
13897 tp = get_tracepoint (tracepoint_count);
13898 gdb_assert (tp != NULL);
13899
13900 if (utp->pass > 0)
13901 {
13902 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
13903 tp->number);
13904
13905 trace_pass_command (small_buf, 0);
13906 }
13907
13908 /* If we have uploaded versions of the original commands, set up a
13909 special-purpose "reader" function and call the usual command line
13910 reader, then pass the result to the breakpoint command-setting
13911 function. */
13912 if (!utp->cmd_strings.empty ())
13913 {
13914 counted_command_line cmd_list;
13915
13916 this_utp = utp;
13917 next_cmd = 0;
13918
13919 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL);
13920
13921 breakpoint_set_commands (tp, std::move (cmd_list));
13922 }
13923 else if (!utp->actions.empty ()
13924 || !utp->step_actions.empty ())
13925 warning (_("Uploaded tracepoint %d actions "
13926 "have no source form, ignoring them"),
13927 utp->number);
13928
13929 /* Copy any status information that might be available. */
13930 tp->hit_count = utp->hit_count;
13931 tp->traceframe_usage = utp->traceframe_usage;
13932
13933 return tp;
13934 }
13935
13936 /* Print information on tracepoint number TPNUM_EXP, or all if
13937 omitted. */
13938
13939 static void
13940 info_tracepoints_command (const char *args, int from_tty)
13941 {
13942 struct ui_out *uiout = current_uiout;
13943 int num_printed;
13944
13945 num_printed = breakpoint_1 (args, false, is_tracepoint);
13946
13947 if (num_printed == 0)
13948 {
13949 if (args == NULL || *args == '\0')
13950 uiout->message ("No tracepoints.\n");
13951 else
13952 uiout->message ("No tracepoint matching '%s'.\n", args);
13953 }
13954
13955 default_collect_info ();
13956 }
13957
13958 /* The 'enable trace' command enables tracepoints.
13959 Not supported by all targets. */
13960 static void
13961 enable_trace_command (const char *args, int from_tty)
13962 {
13963 enable_command (args, from_tty);
13964 }
13965
13966 /* The 'disable trace' command disables tracepoints.
13967 Not supported by all targets. */
13968 static void
13969 disable_trace_command (const char *args, int from_tty)
13970 {
13971 disable_command (args, from_tty);
13972 }
13973
13974 /* Remove a tracepoint (or all if no argument). */
13975 static void
13976 delete_trace_command (const char *arg, int from_tty)
13977 {
13978 dont_repeat ();
13979
13980 if (arg == 0)
13981 {
13982 int breaks_to_delete = 0;
13983
13984 /* Delete all breakpoints if no argument.
13985 Do not delete internal or call-dummy breakpoints, these
13986 have to be deleted with an explicit breakpoint number
13987 argument. */
13988 for (breakpoint *tp : all_tracepoints ())
13989 if (is_tracepoint (tp) && user_breakpoint_p (tp))
13990 {
13991 breaks_to_delete = 1;
13992 break;
13993 }
13994
13995 /* Ask user only if there are some breakpoints to delete. */
13996 if (!from_tty
13997 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
13998 {
13999 for (breakpoint *b : all_breakpoints_safe ())
14000 if (is_tracepoint (b) && user_breakpoint_p (b))
14001 delete_breakpoint (b);
14002 }
14003 }
14004 else
14005 map_breakpoint_numbers
14006 (arg, [&] (breakpoint *br)
14007 {
14008 iterate_over_related_breakpoints (br, delete_breakpoint);
14009 });
14010 }
14011
14012 /* Helper function for trace_pass_command. */
14013
14014 static void
14015 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14016 {
14017 tp->pass_count = count;
14018 gdb::observers::breakpoint_modified.notify (tp);
14019 if (from_tty)
14020 gdb_printf (_("Setting tracepoint %d's passcount to %d\n"),
14021 tp->number, count);
14022 }
14023
14024 /* Set passcount for tracepoint.
14025
14026 First command argument is passcount, second is tracepoint number.
14027 If tracepoint number omitted, apply to most recently defined.
14028 Also accepts special argument "all". */
14029
14030 static void
14031 trace_pass_command (const char *args, int from_tty)
14032 {
14033 struct tracepoint *t1;
14034 ULONGEST count;
14035
14036 if (args == 0 || *args == 0)
14037 error (_("passcount command requires an "
14038 "argument (count + optional TP num)"));
14039
14040 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14041
14042 args = skip_spaces (args);
14043 if (*args && strncasecmp (args, "all", 3) == 0)
14044 {
14045 args += 3; /* Skip special argument "all". */
14046 if (*args)
14047 error (_("Junk at end of arguments."));
14048
14049 for (breakpoint *b : all_tracepoints ())
14050 {
14051 t1 = (struct tracepoint *) b;
14052 trace_pass_set_count (t1, count, from_tty);
14053 }
14054 }
14055 else if (*args == '\0')
14056 {
14057 t1 = get_tracepoint_by_number (&args, NULL);
14058 if (t1)
14059 trace_pass_set_count (t1, count, from_tty);
14060 }
14061 else
14062 {
14063 number_or_range_parser parser (args);
14064 while (!parser.finished ())
14065 {
14066 t1 = get_tracepoint_by_number (&args, &parser);
14067 if (t1)
14068 trace_pass_set_count (t1, count, from_tty);
14069 }
14070 }
14071 }
14072
14073 struct tracepoint *
14074 get_tracepoint (int num)
14075 {
14076 for (breakpoint *t : all_tracepoints ())
14077 if (t->number == num)
14078 return (struct tracepoint *) t;
14079
14080 return NULL;
14081 }
14082
14083 /* Find the tracepoint with the given target-side number (which may be
14084 different from the tracepoint number after disconnecting and
14085 reconnecting). */
14086
14087 struct tracepoint *
14088 get_tracepoint_by_number_on_target (int num)
14089 {
14090 for (breakpoint *b : all_tracepoints ())
14091 {
14092 struct tracepoint *t = (struct tracepoint *) b;
14093
14094 if (t->number_on_target == num)
14095 return t;
14096 }
14097
14098 return NULL;
14099 }
14100
14101 /* Utility: parse a tracepoint number and look it up in the list.
14102 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14103 If the argument is missing, the most recent tracepoint
14104 (tracepoint_count) is returned. */
14105
14106 struct tracepoint *
14107 get_tracepoint_by_number (const char **arg,
14108 number_or_range_parser *parser)
14109 {
14110 int tpnum;
14111 const char *instring = arg == NULL ? NULL : *arg;
14112
14113 if (parser != NULL)
14114 {
14115 gdb_assert (!parser->finished ());
14116 tpnum = parser->get_number ();
14117 }
14118 else if (arg == NULL || *arg == NULL || ! **arg)
14119 tpnum = tracepoint_count;
14120 else
14121 tpnum = get_number (arg);
14122
14123 if (tpnum <= 0)
14124 {
14125 if (instring && *instring)
14126 gdb_printf (_("bad tracepoint number at or near '%s'\n"),
14127 instring);
14128 else
14129 gdb_printf (_("No previous tracepoint\n"));
14130 return NULL;
14131 }
14132
14133 for (breakpoint *t : all_tracepoints ())
14134 if (t->number == tpnum)
14135 return (struct tracepoint *) t;
14136
14137 gdb_printf ("No tracepoint number %d.\n", tpnum);
14138 return NULL;
14139 }
14140
14141 void
14142 breakpoint::print_recreate_thread (struct ui_file *fp) const
14143 {
14144 if (thread != -1)
14145 gdb_printf (fp, " thread %d", thread);
14146
14147 if (task != -1)
14148 gdb_printf (fp, " task %d", task);
14149
14150 gdb_printf (fp, "\n");
14151 }
14152
14153 /* Save information on user settable breakpoints (watchpoints, etc) to
14154 a new script file named FILENAME. If FILTER is non-NULL, call it
14155 on each breakpoint and only include the ones for which it returns
14156 true. */
14157
14158 static void
14159 save_breakpoints (const char *filename, int from_tty,
14160 bool (*filter) (const struct breakpoint *))
14161 {
14162 bool any = false;
14163 int extra_trace_bits = 0;
14164
14165 if (filename == 0 || *filename == 0)
14166 error (_("Argument required (file name in which to save)"));
14167
14168 /* See if we have anything to save. */
14169 for (breakpoint *tp : all_breakpoints ())
14170 {
14171 /* Skip internal and momentary breakpoints. */
14172 if (!user_breakpoint_p (tp))
14173 continue;
14174
14175 /* If we have a filter, only save the breakpoints it accepts. */
14176 if (filter && !filter (tp))
14177 continue;
14178
14179 any = true;
14180
14181 if (is_tracepoint (tp))
14182 {
14183 extra_trace_bits = 1;
14184
14185 /* We can stop searching. */
14186 break;
14187 }
14188 }
14189
14190 if (!any)
14191 {
14192 warning (_("Nothing to save."));
14193 return;
14194 }
14195
14196 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
14197
14198 stdio_file fp;
14199
14200 if (!fp.open (expanded_filename.get (), "w"))
14201 error (_("Unable to open file '%s' for saving (%s)"),
14202 expanded_filename.get (), safe_strerror (errno));
14203
14204 if (extra_trace_bits)
14205 save_trace_state_variables (&fp);
14206
14207 for (breakpoint *tp : all_breakpoints ())
14208 {
14209 /* Skip internal and momentary breakpoints. */
14210 if (!user_breakpoint_p (tp))
14211 continue;
14212
14213 /* If we have a filter, only save the breakpoints it accepts. */
14214 if (filter && !filter (tp))
14215 continue;
14216
14217 tp->print_recreate (&fp);
14218
14219 /* Note, we can't rely on tp->number for anything, as we can't
14220 assume the recreated breakpoint numbers will match. Use $bpnum
14221 instead. */
14222
14223 if (tp->cond_string)
14224 fp.printf (" condition $bpnum %s\n", tp->cond_string.get ());
14225
14226 if (tp->ignore_count)
14227 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
14228
14229 if (tp->type != bp_dprintf && tp->commands)
14230 {
14231 fp.puts (" commands\n");
14232
14233 ui_out_redirect_pop redir (current_uiout, &fp);
14234 print_command_lines (current_uiout, tp->commands.get (), 2);
14235
14236 fp.puts (" end\n");
14237 }
14238
14239 if (tp->enable_state == bp_disabled)
14240 fp.puts ("disable $bpnum\n");
14241
14242 /* If this is a multi-location breakpoint, check if the locations
14243 should be individually disabled. Watchpoint locations are
14244 special, and not user visible. */
14245 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
14246 {
14247 int n = 1;
14248
14249 for (bp_location *loc : tp->locations ())
14250 {
14251 if (!loc->enabled)
14252 fp.printf ("disable $bpnum.%d\n", n);
14253
14254 n++;
14255 }
14256 }
14257 }
14258
14259 if (extra_trace_bits && !default_collect.empty ())
14260 fp.printf ("set default-collect %s\n", default_collect.c_str ());
14261
14262 if (from_tty)
14263 gdb_printf (_("Saved to file '%s'.\n"), expanded_filename.get ());
14264 }
14265
14266 /* The `save breakpoints' command. */
14267
14268 static void
14269 save_breakpoints_command (const char *args, int from_tty)
14270 {
14271 save_breakpoints (args, from_tty, NULL);
14272 }
14273
14274 /* The `save tracepoints' command. */
14275
14276 static void
14277 save_tracepoints_command (const char *args, int from_tty)
14278 {
14279 save_breakpoints (args, from_tty, is_tracepoint);
14280 }
14281
14282 \f
14283 /* This help string is used to consolidate all the help string for specifying
14284 locations used by several commands. */
14285
14286 #define LOCATION_SPEC_HELP_STRING \
14287 "Linespecs are colon-separated lists of location parameters, such as\n\
14288 source filename, function name, label name, and line number.\n\
14289 Example: To specify the start of a label named \"the_top\" in the\n\
14290 function \"fact\" in the file \"factorial.c\", use\n\
14291 \"factorial.c:fact:the_top\".\n\
14292 \n\
14293 Address locations begin with \"*\" and specify an exact address in the\n\
14294 program. Example: To specify the fourth byte past the start function\n\
14295 \"main\", use \"*main + 4\".\n\
14296 \n\
14297 Explicit locations are similar to linespecs but use an option/argument\n\
14298 syntax to specify location parameters.\n\
14299 Example: To specify the start of the label named \"the_top\" in the\n\
14300 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
14301 -function fact -label the_top\".\n\
14302 \n\
14303 By default, a specified function is matched against the program's\n\
14304 functions in all scopes. For C++, this means in all namespaces and\n\
14305 classes. For Ada, this means in all packages. E.g., in C++,\n\
14306 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
14307 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
14308 specified name as a complete fully-qualified name instead."
14309
14310 /* This help string is used for the break, hbreak, tbreak and thbreak
14311 commands. It is defined as a macro to prevent duplication.
14312 COMMAND should be a string constant containing the name of the
14313 command. */
14314
14315 #define BREAK_ARGS_HELP(command) \
14316 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM]\n\
14317 \t[-force-condition] [if CONDITION]\n\
14318 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
14319 probe point. Accepted values are `-probe' (for a generic, automatically\n\
14320 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
14321 `-probe-dtrace' (for a DTrace probe).\n\
14322 LOCATION may be a linespec, address, or explicit location as described\n\
14323 below.\n\
14324 \n\
14325 With no LOCATION, uses current execution address of the selected\n\
14326 stack frame. This is useful for breaking on return to a stack frame.\n\
14327 \n\
14328 THREADNUM is the number from \"info threads\".\n\
14329 CONDITION is a boolean expression.\n\
14330 \n\
14331 With the \"-force-condition\" flag, the condition is defined even when\n\
14332 it is invalid for all current locations.\n\
14333 \n" LOCATION_SPEC_HELP_STRING "\n\n\
14334 Multiple breakpoints at one place are permitted, and useful if their\n\
14335 conditions are different.\n\
14336 \n\
14337 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
14338
14339 /* List of subcommands for "catch". */
14340 static struct cmd_list_element *catch_cmdlist;
14341
14342 /* List of subcommands for "tcatch". */
14343 static struct cmd_list_element *tcatch_cmdlist;
14344
14345 void
14346 add_catch_command (const char *name, const char *docstring,
14347 cmd_func_ftype *func,
14348 completer_ftype *completer,
14349 void *user_data_catch,
14350 void *user_data_tcatch)
14351 {
14352 struct cmd_list_element *command;
14353
14354 command = add_cmd (name, class_breakpoint, docstring,
14355 &catch_cmdlist);
14356 command->func = func;
14357 command->set_context (user_data_catch);
14358 set_cmd_completer (command, completer);
14359
14360 command = add_cmd (name, class_breakpoint, docstring,
14361 &tcatch_cmdlist);
14362 command->func = func;
14363 command->set_context (user_data_tcatch);
14364 set_cmd_completer (command, completer);
14365 }
14366
14367 /* False if any of the breakpoint's locations could be a location where
14368 functions have been inlined, true otherwise. */
14369
14370 static bool
14371 is_non_inline_function (struct breakpoint *b)
14372 {
14373 /* The shared library event breakpoint is set on the address of a
14374 non-inline function. */
14375 return (b->type == bp_shlib_event);
14376 }
14377
14378 /* Nonzero if the specified PC cannot be a location where functions
14379 have been inlined. */
14380
14381 int
14382 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
14383 const target_waitstatus &ws)
14384 {
14385 for (breakpoint *b : all_breakpoints ())
14386 {
14387 if (!is_non_inline_function (b))
14388 continue;
14389
14390 for (bp_location *bl : b->locations ())
14391 {
14392 if (!bl->shlib_disabled
14393 && bpstat_check_location (bl, aspace, pc, ws))
14394 return 1;
14395 }
14396 }
14397
14398 return 0;
14399 }
14400
14401 /* Remove any references to OBJFILE which is going to be freed. */
14402
14403 void
14404 breakpoint_free_objfile (struct objfile *objfile)
14405 {
14406 for (bp_location *loc : all_bp_locations ())
14407 if (loc->symtab != NULL && loc->symtab->compunit ()->objfile () == objfile)
14408 loc->symtab = NULL;
14409 }
14410
14411 /* Chain containing all defined "enable breakpoint" subcommands. */
14412
14413 static struct cmd_list_element *enablebreaklist = NULL;
14414
14415 /* See breakpoint.h. */
14416
14417 cmd_list_element *commands_cmd_element = nullptr;
14418
14419 void _initialize_breakpoint ();
14420 void
14421 _initialize_breakpoint ()
14422 {
14423 struct cmd_list_element *c;
14424
14425 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib,
14426 "breakpoint");
14427 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile,
14428 "breakpoint");
14429 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change,
14430 "breakpoint");
14431
14432 breakpoint_chain = 0;
14433 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
14434 before a breakpoint is set. */
14435 breakpoint_count = 0;
14436
14437 tracepoint_count = 0;
14438
14439 add_com ("ignore", class_breakpoint, ignore_command, _("\
14440 Set ignore-count of breakpoint number N to COUNT.\n\
14441 Usage is `ignore N COUNT'."));
14442
14443 commands_cmd_element = add_com ("commands", class_breakpoint,
14444 commands_command, _("\
14445 Set commands to be executed when the given breakpoints are hit.\n\
14446 Give a space-separated breakpoint list as argument after \"commands\".\n\
14447 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
14448 (e.g. `5-7').\n\
14449 With no argument, the targeted breakpoint is the last one set.\n\
14450 The commands themselves follow starting on the next line.\n\
14451 Type a line containing \"end\" to indicate the end of them.\n\
14452 Give \"silent\" as the first line to make the breakpoint silent;\n\
14453 then no output is printed when it is hit, except what the commands print."));
14454
14455 const auto cc_opts = make_condition_command_options_def_group (nullptr);
14456 static std::string condition_command_help
14457 = gdb::option::build_help (_("\
14458 Specify breakpoint number N to break only if COND is true.\n\
14459 Usage is `condition [OPTION] N COND', where N is an integer and COND\n\
14460 is an expression to be evaluated whenever breakpoint N is reached.\n\
14461 \n\
14462 Options:\n\
14463 %OPTIONS%"), cc_opts);
14464
14465 c = add_com ("condition", class_breakpoint, condition_command,
14466 condition_command_help.c_str ());
14467 set_cmd_completer_handle_brkchars (c, condition_completer);
14468
14469 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
14470 Set a temporary breakpoint.\n\
14471 Like \"break\" except the breakpoint is only temporary,\n\
14472 so it will be deleted when hit. Equivalent to \"break\" followed\n\
14473 by using \"enable delete\" on the breakpoint number.\n\
14474 \n"
14475 BREAK_ARGS_HELP ("tbreak")));
14476 set_cmd_completer (c, location_completer);
14477
14478 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
14479 Set a hardware assisted breakpoint.\n\
14480 Like \"break\" except the breakpoint requires hardware support,\n\
14481 some target hardware may not have this support.\n\
14482 \n"
14483 BREAK_ARGS_HELP ("hbreak")));
14484 set_cmd_completer (c, location_completer);
14485
14486 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
14487 Set a temporary hardware assisted breakpoint.\n\
14488 Like \"hbreak\" except the breakpoint is only temporary,\n\
14489 so it will be deleted when hit.\n\
14490 \n"
14491 BREAK_ARGS_HELP ("thbreak")));
14492 set_cmd_completer (c, location_completer);
14493
14494 cmd_list_element *enable_cmd
14495 = add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
14496 Enable all or some breakpoints.\n\
14497 Usage: enable [BREAKPOINTNUM]...\n\
14498 Give breakpoint numbers (separated by spaces) as arguments.\n\
14499 With no subcommand, breakpoints are enabled until you command otherwise.\n\
14500 This is used to cancel the effect of the \"disable\" command.\n\
14501 With a subcommand you can enable temporarily."),
14502 &enablelist, 1, &cmdlist);
14503
14504 add_com_alias ("en", enable_cmd, class_breakpoint, 1);
14505
14506 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
14507 Enable all or some breakpoints.\n\
14508 Usage: enable breakpoints [BREAKPOINTNUM]...\n\
14509 Give breakpoint numbers (separated by spaces) as arguments.\n\
14510 This is used to cancel the effect of the \"disable\" command.\n\
14511 May be abbreviated to simply \"enable\"."),
14512 &enablebreaklist, 1, &enablelist);
14513
14514 add_cmd ("once", no_class, enable_once_command, _("\
14515 Enable some breakpoints for one hit.\n\
14516 Usage: enable breakpoints once BREAKPOINTNUM...\n\
14517 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
14518 &enablebreaklist);
14519
14520 add_cmd ("delete", no_class, enable_delete_command, _("\
14521 Enable some breakpoints and delete when hit.\n\
14522 Usage: enable breakpoints delete BREAKPOINTNUM...\n\
14523 If a breakpoint is hit while enabled in this fashion, it is deleted."),
14524 &enablebreaklist);
14525
14526 add_cmd ("count", no_class, enable_count_command, _("\
14527 Enable some breakpoints for COUNT hits.\n\
14528 Usage: enable breakpoints count COUNT BREAKPOINTNUM...\n\
14529 If a breakpoint is hit while enabled in this fashion,\n\
14530 the count is decremented; when it reaches zero, the breakpoint is disabled."),
14531 &enablebreaklist);
14532
14533 add_cmd ("delete", no_class, enable_delete_command, _("\
14534 Enable some breakpoints and delete when hit.\n\
14535 Usage: enable delete BREAKPOINTNUM...\n\
14536 If a breakpoint is hit while enabled in this fashion, it is deleted."),
14537 &enablelist);
14538
14539 add_cmd ("once", no_class, enable_once_command, _("\
14540 Enable some breakpoints for one hit.\n\
14541 Usage: enable once BREAKPOINTNUM...\n\
14542 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
14543 &enablelist);
14544
14545 add_cmd ("count", no_class, enable_count_command, _("\
14546 Enable some breakpoints for COUNT hits.\n\
14547 Usage: enable count COUNT BREAKPOINTNUM...\n\
14548 If a breakpoint is hit while enabled in this fashion,\n\
14549 the count is decremented; when it reaches zero, the breakpoint is disabled."),
14550 &enablelist);
14551
14552 cmd_list_element *disable_cmd
14553 = add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
14554 Disable all or some breakpoints.\n\
14555 Usage: disable [BREAKPOINTNUM]...\n\
14556 Arguments are breakpoint numbers with spaces in between.\n\
14557 To disable all breakpoints, give no argument.\n\
14558 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
14559 &disablelist, 1, &cmdlist);
14560 add_com_alias ("dis", disable_cmd, class_breakpoint, 1);
14561 add_com_alias ("disa", disable_cmd, class_breakpoint, 1);
14562
14563 add_cmd ("breakpoints", class_breakpoint, disable_command, _("\
14564 Disable all or some breakpoints.\n\
14565 Usage: disable breakpoints [BREAKPOINTNUM]...\n\
14566 Arguments are breakpoint numbers with spaces in between.\n\
14567 To disable all breakpoints, give no argument.\n\
14568 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
14569 This command may be abbreviated \"disable\"."),
14570 &disablelist);
14571
14572 cmd_list_element *delete_cmd
14573 = add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
14574 Delete all or some breakpoints.\n\
14575 Usage: delete [BREAKPOINTNUM]...\n\
14576 Arguments are breakpoint numbers with spaces in between.\n\
14577 To delete all breakpoints, give no argument.\n\
14578 \n\
14579 Also a prefix command for deletion of other GDB objects."),
14580 &deletelist, 1, &cmdlist);
14581 add_com_alias ("d", delete_cmd, class_breakpoint, 1);
14582 add_com_alias ("del", delete_cmd, class_breakpoint, 1);
14583
14584 add_cmd ("breakpoints", class_breakpoint, delete_command, _("\
14585 Delete all or some breakpoints or auto-display expressions.\n\
14586 Usage: delete breakpoints [BREAKPOINTNUM]...\n\
14587 Arguments are breakpoint numbers with spaces in between.\n\
14588 To delete all breakpoints, give no argument.\n\
14589 This command may be abbreviated \"delete\"."),
14590 &deletelist);
14591
14592 cmd_list_element *clear_cmd
14593 = add_com ("clear", class_breakpoint, clear_command, _("\
14594 Clear breakpoint at specified location.\n\
14595 Argument may be a linespec, explicit, or address location as described below.\n\
14596 \n\
14597 With no argument, clears all breakpoints in the line that the selected frame\n\
14598 is executing in.\n"
14599 "\n" LOCATION_SPEC_HELP_STRING "\n\n\
14600 See also the \"delete\" command which clears breakpoints by number."));
14601 add_com_alias ("cl", clear_cmd, class_breakpoint, 1);
14602
14603 cmd_list_element *break_cmd
14604 = add_com ("break", class_breakpoint, break_command, _("\
14605 Set breakpoint at specified location.\n"
14606 BREAK_ARGS_HELP ("break")));
14607 set_cmd_completer (break_cmd, location_completer);
14608
14609 add_com_alias ("b", break_cmd, class_run, 1);
14610 add_com_alias ("br", break_cmd, class_run, 1);
14611 add_com_alias ("bre", break_cmd, class_run, 1);
14612 add_com_alias ("brea", break_cmd, class_run, 1);
14613
14614 cmd_list_element *info_breakpoints_cmd
14615 = add_info ("breakpoints", info_breakpoints_command, _("\
14616 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
14617 The \"Type\" column indicates one of:\n\
14618 \tbreakpoint - normal breakpoint\n\
14619 \twatchpoint - watchpoint\n\
14620 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
14621 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
14622 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
14623 address and file/line number respectively.\n\
14624 \n\
14625 Convenience variable \"$_\" and default examine address for \"x\"\n\
14626 are set to the address of the last breakpoint listed unless the command\n\
14627 is prefixed with \"server \".\n\n\
14628 Convenience variable \"$bpnum\" contains the number of the last\n\
14629 breakpoint set."));
14630
14631 add_info_alias ("b", info_breakpoints_cmd, 1);
14632
14633 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
14634 Status of all breakpoints, or breakpoint number NUMBER.\n\
14635 The \"Type\" column indicates one of:\n\
14636 \tbreakpoint - normal breakpoint\n\
14637 \twatchpoint - watchpoint\n\
14638 \tlongjmp - internal breakpoint used to step through longjmp()\n\
14639 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
14640 \tuntil - internal breakpoint used by the \"until\" command\n\
14641 \tfinish - internal breakpoint used by the \"finish\" command\n\
14642 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
14643 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
14644 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
14645 address and file/line number respectively.\n\
14646 \n\
14647 Convenience variable \"$_\" and default examine address for \"x\"\n\
14648 are set to the address of the last breakpoint listed unless the command\n\
14649 is prefixed with \"server \".\n\n\
14650 Convenience variable \"$bpnum\" contains the number of the last\n\
14651 breakpoint set."),
14652 &maintenanceinfolist);
14653
14654 add_basic_prefix_cmd ("catch", class_breakpoint, _("\
14655 Set catchpoints to catch events."),
14656 &catch_cmdlist,
14657 0/*allow-unknown*/, &cmdlist);
14658
14659 add_basic_prefix_cmd ("tcatch", class_breakpoint, _("\
14660 Set temporary catchpoints to catch events."),
14661 &tcatch_cmdlist,
14662 0/*allow-unknown*/, &cmdlist);
14663
14664 const auto opts = make_watch_options_def_group (nullptr);
14665
14666 static const std::string watch_help = gdb::option::build_help (_("\
14667 Set a watchpoint for EXPRESSION.\n\
14668 Usage: watch [-location] EXPRESSION\n\
14669 \n\
14670 Options:\n\
14671 %OPTIONS%\n\
14672 \n\
14673 A watchpoint stops execution of your program whenever the value of\n\
14674 an expression changes."), opts);
14675 c = add_com ("watch", class_breakpoint, watch_command,
14676 watch_help.c_str ());
14677 set_cmd_completer_handle_brkchars (c, watch_command_completer);
14678
14679 static const std::string rwatch_help = gdb::option::build_help (_("\
14680 Set a read watchpoint for EXPRESSION.\n\
14681 Usage: rwatch [-location] EXPRESSION\n\
14682 \n\
14683 Options:\n\
14684 %OPTIONS%\n\
14685 \n\
14686 A read watchpoint stops execution of your program whenever the value of\n\
14687 an expression is read."), opts);
14688 c = add_com ("rwatch", class_breakpoint, rwatch_command,
14689 rwatch_help.c_str ());
14690 set_cmd_completer_handle_brkchars (c, watch_command_completer);
14691
14692 static const std::string awatch_help = gdb::option::build_help (_("\
14693 Set an access watchpoint for EXPRESSION.\n\
14694 Usage: awatch [-location] EXPRESSION\n\
14695 \n\
14696 Options:\n\
14697 %OPTIONS%\n\
14698 \n\
14699 An access watchpoint stops execution of your program whenever the value\n\
14700 of an expression is either read or written."), opts);
14701 c = add_com ("awatch", class_breakpoint, awatch_command,
14702 awatch_help.c_str ());
14703 set_cmd_completer_handle_brkchars (c, watch_command_completer);
14704
14705 add_info ("watchpoints", info_watchpoints_command, _("\
14706 Status of specified watchpoints (all watchpoints if no argument)."));
14707
14708 /* XXX: cagney/2005-02-23: This should be a boolean, and should
14709 respond to changes - contrary to the description. */
14710 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
14711 &can_use_hw_watchpoints, _("\
14712 Set debugger's willingness to use watchpoint hardware."), _("\
14713 Show debugger's willingness to use watchpoint hardware."), _("\
14714 If zero, gdb will not use hardware for new watchpoints, even if\n\
14715 such is available. (However, any hardware watchpoints that were\n\
14716 created before setting this to nonzero, will continue to use watchpoint\n\
14717 hardware.)"),
14718 NULL,
14719 show_can_use_hw_watchpoints,
14720 &setlist, &showlist);
14721
14722 can_use_hw_watchpoints = 1;
14723
14724 /* Tracepoint manipulation commands. */
14725
14726 cmd_list_element *trace_cmd
14727 = add_com ("trace", class_breakpoint, trace_command, _("\
14728 Set a tracepoint at specified location.\n\
14729 \n"
14730 BREAK_ARGS_HELP ("trace") "\n\
14731 Do \"help tracepoints\" for info on other tracepoint commands."));
14732 set_cmd_completer (trace_cmd, location_completer);
14733
14734 add_com_alias ("tp", trace_cmd, class_breakpoint, 0);
14735 add_com_alias ("tr", trace_cmd, class_breakpoint, 1);
14736 add_com_alias ("tra", trace_cmd, class_breakpoint, 1);
14737 add_com_alias ("trac", trace_cmd, class_breakpoint, 1);
14738
14739 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
14740 Set a fast tracepoint at specified location.\n\
14741 \n"
14742 BREAK_ARGS_HELP ("ftrace") "\n\
14743 Do \"help tracepoints\" for info on other tracepoint commands."));
14744 set_cmd_completer (c, location_completer);
14745
14746 c = add_com ("strace", class_breakpoint, strace_command, _("\
14747 Set a static tracepoint at location or marker.\n\
14748 \n\
14749 strace [LOCATION] [if CONDITION]\n\
14750 LOCATION may be a linespec, explicit, or address location (described below) \n\
14751 or -m MARKER_ID.\n\n\
14752 If a marker id is specified, probe the marker with that name. With\n\
14753 no LOCATION, uses current execution address of the selected stack frame.\n\
14754 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
14755 This collects arbitrary user data passed in the probe point call to the\n\
14756 tracing library. You can inspect it when analyzing the trace buffer,\n\
14757 by printing the $_sdata variable like any other convenience variable.\n\
14758 \n\
14759 CONDITION is a boolean expression.\n\
14760 \n" LOCATION_SPEC_HELP_STRING "\n\n\
14761 Multiple tracepoints at one place are permitted, and useful if their\n\
14762 conditions are different.\n\
14763 \n\
14764 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
14765 Do \"help tracepoints\" for info on other tracepoint commands."));
14766 set_cmd_completer (c, location_completer);
14767
14768 cmd_list_element *info_tracepoints_cmd
14769 = add_info ("tracepoints", info_tracepoints_command, _("\
14770 Status of specified tracepoints (all tracepoints if no argument).\n\
14771 Convenience variable \"$tpnum\" contains the number of the\n\
14772 last tracepoint set."));
14773
14774 add_info_alias ("tp", info_tracepoints_cmd, 1);
14775
14776 cmd_list_element *delete_tracepoints_cmd
14777 = add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
14778 Delete specified tracepoints.\n\
14779 Arguments are tracepoint numbers, separated by spaces.\n\
14780 No argument means delete all tracepoints."),
14781 &deletelist);
14782 add_alias_cmd ("tr", delete_tracepoints_cmd, class_trace, 1, &deletelist);
14783
14784 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
14785 Disable specified tracepoints.\n\
14786 Arguments are tracepoint numbers, separated by spaces.\n\
14787 No argument means disable all tracepoints."),
14788 &disablelist);
14789 deprecate_cmd (c, "disable");
14790
14791 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
14792 Enable specified tracepoints.\n\
14793 Arguments are tracepoint numbers, separated by spaces.\n\
14794 No argument means enable all tracepoints."),
14795 &enablelist);
14796 deprecate_cmd (c, "enable");
14797
14798 add_com ("passcount", class_trace, trace_pass_command, _("\
14799 Set the passcount for a tracepoint.\n\
14800 The trace will end when the tracepoint has been passed 'count' times.\n\
14801 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
14802 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
14803
14804 add_basic_prefix_cmd ("save", class_breakpoint,
14805 _("Save breakpoint definitions as a script."),
14806 &save_cmdlist,
14807 0/*allow-unknown*/, &cmdlist);
14808
14809 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
14810 Save current breakpoint definitions as a script.\n\
14811 This includes all types of breakpoints (breakpoints, watchpoints,\n\
14812 catchpoints, tracepoints). Use the 'source' command in another debug\n\
14813 session to restore them."),
14814 &save_cmdlist);
14815 set_cmd_completer (c, filename_completer);
14816
14817 cmd_list_element *save_tracepoints_cmd
14818 = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
14819 Save current tracepoint definitions as a script.\n\
14820 Use the 'source' command in another debug session to restore them."),
14821 &save_cmdlist);
14822 set_cmd_completer (save_tracepoints_cmd, filename_completer);
14823
14824 c = add_com_alias ("save-tracepoints", save_tracepoints_cmd, class_trace, 0);
14825 deprecate_cmd (c, "save tracepoints");
14826
14827 add_setshow_prefix_cmd ("breakpoint", class_maintenance,
14828 _("\
14829 Breakpoint specific settings.\n\
14830 Configure various breakpoint-specific variables such as\n\
14831 pending breakpoint behavior."),
14832 _("\
14833 Breakpoint specific settings.\n\
14834 Configure various breakpoint-specific variables such as\n\
14835 pending breakpoint behavior."),
14836 &breakpoint_set_cmdlist, &breakpoint_show_cmdlist,
14837 &setlist, &showlist);
14838
14839 add_setshow_auto_boolean_cmd ("pending", no_class,
14840 &pending_break_support, _("\
14841 Set debugger's behavior regarding pending breakpoints."), _("\
14842 Show debugger's behavior regarding pending breakpoints."), _("\
14843 If on, an unrecognized breakpoint location will cause gdb to create a\n\
14844 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
14845 an error. If auto, an unrecognized breakpoint location results in a\n\
14846 user-query to see if a pending breakpoint should be created."),
14847 NULL,
14848 show_pending_break_support,
14849 &breakpoint_set_cmdlist,
14850 &breakpoint_show_cmdlist);
14851
14852 pending_break_support = AUTO_BOOLEAN_AUTO;
14853
14854 add_setshow_boolean_cmd ("auto-hw", no_class,
14855 &automatic_hardware_breakpoints, _("\
14856 Set automatic usage of hardware breakpoints."), _("\
14857 Show automatic usage of hardware breakpoints."), _("\
14858 If set, the debugger will automatically use hardware breakpoints for\n\
14859 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
14860 a warning will be emitted for such breakpoints."),
14861 NULL,
14862 show_automatic_hardware_breakpoints,
14863 &breakpoint_set_cmdlist,
14864 &breakpoint_show_cmdlist);
14865
14866 add_setshow_boolean_cmd ("always-inserted", class_support,
14867 &always_inserted_mode, _("\
14868 Set mode for inserting breakpoints."), _("\
14869 Show mode for inserting breakpoints."), _("\
14870 When this mode is on, breakpoints are inserted immediately as soon as\n\
14871 they're created, kept inserted even when execution stops, and removed\n\
14872 only when the user deletes them. When this mode is off (the default),\n\
14873 breakpoints are inserted only when execution continues, and removed\n\
14874 when execution stops."),
14875 NULL,
14876 &show_always_inserted_mode,
14877 &breakpoint_set_cmdlist,
14878 &breakpoint_show_cmdlist);
14879
14880 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
14881 condition_evaluation_enums,
14882 &condition_evaluation_mode_1, _("\
14883 Set mode of breakpoint condition evaluation."), _("\
14884 Show mode of breakpoint condition evaluation."), _("\
14885 When this is set to \"host\", breakpoint conditions will be\n\
14886 evaluated on the host's side by GDB. When it is set to \"target\",\n\
14887 breakpoint conditions will be downloaded to the target (if the target\n\
14888 supports such feature) and conditions will be evaluated on the target's side.\n\
14889 If this is set to \"auto\" (default), this will be automatically set to\n\
14890 \"target\" if it supports condition evaluation, otherwise it will\n\
14891 be set to \"host\"."),
14892 &set_condition_evaluation_mode,
14893 &show_condition_evaluation_mode,
14894 &breakpoint_set_cmdlist,
14895 &breakpoint_show_cmdlist);
14896
14897 add_com ("break-range", class_breakpoint, break_range_command, _("\
14898 Set a breakpoint for an address range.\n\
14899 break-range START-LOCATION, END-LOCATION\n\
14900 where START-LOCATION and END-LOCATION can be one of the following:\n\
14901 LINENUM, for that line in the current file,\n\
14902 FILE:LINENUM, for that line in that file,\n\
14903 +OFFSET, for that number of lines after the current line\n\
14904 or the start of the range\n\
14905 FUNCTION, for the first line in that function,\n\
14906 FILE:FUNCTION, to distinguish among like-named static functions.\n\
14907 *ADDRESS, for the instruction at that address.\n\
14908 \n\
14909 The breakpoint will stop execution of the inferior whenever it executes\n\
14910 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
14911 range (including START-LOCATION and END-LOCATION)."));
14912
14913 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
14914 Set a dynamic printf at specified location.\n\
14915 dprintf location,format string,arg1,arg2,...\n\
14916 location may be a linespec, explicit, or address location.\n"
14917 "\n" LOCATION_SPEC_HELP_STRING));
14918 set_cmd_completer (c, location_completer);
14919
14920 add_setshow_enum_cmd ("dprintf-style", class_support,
14921 dprintf_style_enums, &dprintf_style, _("\
14922 Set the style of usage for dynamic printf."), _("\
14923 Show the style of usage for dynamic printf."), _("\
14924 This setting chooses how GDB will do a dynamic printf.\n\
14925 If the value is \"gdb\", then the printing is done by GDB to its own\n\
14926 console, as with the \"printf\" command.\n\
14927 If the value is \"call\", the print is done by calling a function in your\n\
14928 program; by default printf(), but you can choose a different function or\n\
14929 output stream by setting dprintf-function and dprintf-channel."),
14930 update_dprintf_commands, NULL,
14931 &setlist, &showlist);
14932
14933 add_setshow_string_cmd ("dprintf-function", class_support,
14934 &dprintf_function, _("\
14935 Set the function to use for dynamic printf."), _("\
14936 Show the function to use for dynamic printf."), NULL,
14937 update_dprintf_commands, NULL,
14938 &setlist, &showlist);
14939
14940 add_setshow_string_cmd ("dprintf-channel", class_support,
14941 &dprintf_channel, _("\
14942 Set the channel to use for dynamic printf."), _("\
14943 Show the channel to use for dynamic printf."), NULL,
14944 update_dprintf_commands, NULL,
14945 &setlist, &showlist);
14946
14947 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
14948 &disconnected_dprintf, _("\
14949 Set whether dprintf continues after GDB disconnects."), _("\
14950 Show whether dprintf continues after GDB disconnects."), _("\
14951 Use this to let dprintf commands continue to hit and produce output\n\
14952 even if GDB disconnects or detaches from the target."),
14953 NULL,
14954 NULL,
14955 &setlist, &showlist);
14956
14957 add_com ("agent-printf", class_vars, agent_printf_command, _("\
14958 Target agent only formatted printing, like the C \"printf\" function.\n\
14959 Usage: agent-printf \"format string\", ARG1, ARG2, ARG3, ..., ARGN\n\
14960 This supports most C printf format specifications, like %s, %d, etc.\n\
14961 This is useful for formatted output in user-defined commands."));
14962
14963 automatic_hardware_breakpoints = true;
14964
14965 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed,
14966 "breakpoint");
14967 gdb::observers::thread_exit.attach (remove_threaded_breakpoints,
14968 "breakpoint");
14969 }