Change breakpoints to use value_ref_ptr
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "infrun.h"
36 #include "gdbthread.h"
37 #include "target.h"
38 #include "language.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "ui-out.h"
48 #include "cli/cli-script.h"
49 #include "block.h"
50 #include "solib.h"
51 #include "solist.h"
52 #include "observable.h"
53 #include "memattr.h"
54 #include "ada-lang.h"
55 #include "top.h"
56 #include "valprint.h"
57 #include "jit.h"
58 #include "parser-defs.h"
59 #include "gdb_regex.h"
60 #include "probe.h"
61 #include "cli/cli-utils.h"
62 #include "continuations.h"
63 #include "stack.h"
64 #include "skip.h"
65 #include "ax-gdb.h"
66 #include "dummy-frame.h"
67 #include "interps.h"
68 #include "format.h"
69 #include "thread-fsm.h"
70 #include "tid-parse.h"
71
72 /* readline include files */
73 #include "readline/readline.h"
74 #include "readline/history.h"
75
76 /* readline defines this. */
77 #undef savestring
78
79 #include "mi/mi-common.h"
80 #include "extension.h"
81 #include <algorithm>
82 #include "progspace-and-thread.h"
83 #include "common/array-view.h"
84 #include "common/gdb_optional.h"
85
86 /* Enums for exception-handling support. */
87 enum exception_event_kind
88 {
89 EX_EVENT_THROW,
90 EX_EVENT_RETHROW,
91 EX_EVENT_CATCH
92 };
93
94 /* Prototypes for local functions. */
95
96 static void map_breakpoint_numbers (const char *,
97 gdb::function_view<void (breakpoint *)>);
98
99 static void breakpoint_re_set_default (struct breakpoint *);
100
101 static void
102 create_sals_from_location_default (const struct event_location *location,
103 struct linespec_result *canonical,
104 enum bptype type_wanted);
105
106 static void create_breakpoints_sal_default (struct gdbarch *,
107 struct linespec_result *,
108 gdb::unique_xmalloc_ptr<char>,
109 gdb::unique_xmalloc_ptr<char>,
110 enum bptype,
111 enum bpdisp, int, int,
112 int,
113 const struct breakpoint_ops *,
114 int, int, int, unsigned);
115
116 static std::vector<symtab_and_line> decode_location_default
117 (struct breakpoint *b, const struct event_location *location,
118 struct program_space *search_pspace);
119
120 static int can_use_hardware_watchpoint (struct value *);
121
122 static void mention (struct breakpoint *);
123
124 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
125 enum bptype,
126 const struct breakpoint_ops *);
127 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
128 const struct symtab_and_line *);
129
130 /* This function is used in gdbtk sources and thus can not be made
131 static. */
132 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
133 struct symtab_and_line,
134 enum bptype,
135 const struct breakpoint_ops *);
136
137 static struct breakpoint *
138 momentary_breakpoint_from_master (struct breakpoint *orig,
139 enum bptype type,
140 const struct breakpoint_ops *ops,
141 int loc_enabled);
142
143 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
144
145 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
146 CORE_ADDR bpaddr,
147 enum bptype bptype);
148
149 static void describe_other_breakpoints (struct gdbarch *,
150 struct program_space *, CORE_ADDR,
151 struct obj_section *, int);
152
153 static int watchpoint_locations_match (struct bp_location *loc1,
154 struct bp_location *loc2);
155
156 static int breakpoint_location_address_match (struct bp_location *bl,
157 const struct address_space *aspace,
158 CORE_ADDR addr);
159
160 static int breakpoint_location_address_range_overlap (struct bp_location *,
161 const address_space *,
162 CORE_ADDR, int);
163
164 static int remove_breakpoint (struct bp_location *);
165 static int remove_breakpoint_1 (struct bp_location *, enum remove_bp_reason);
166
167 static enum print_stop_action print_bp_stop_message (bpstat bs);
168
169 static int hw_breakpoint_used_count (void);
170
171 static int hw_watchpoint_use_count (struct breakpoint *);
172
173 static int hw_watchpoint_used_count_others (struct breakpoint *except,
174 enum bptype type,
175 int *other_type_used);
176
177 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
178 int count);
179
180 static void free_bp_location (struct bp_location *loc);
181 static void incref_bp_location (struct bp_location *loc);
182 static void decref_bp_location (struct bp_location **loc);
183
184 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
185
186 /* update_global_location_list's modes of operation wrt to whether to
187 insert locations now. */
188 enum ugll_insert_mode
189 {
190 /* Don't insert any breakpoint locations into the inferior, only
191 remove already-inserted locations that no longer should be
192 inserted. Functions that delete a breakpoint or breakpoints
193 should specify this mode, so that deleting a breakpoint doesn't
194 have the side effect of inserting the locations of other
195 breakpoints that are marked not-inserted, but should_be_inserted
196 returns true on them.
197
198 This behavior is useful is situations close to tear-down -- e.g.,
199 after an exec, while the target still has execution, but
200 breakpoint shadows of the previous executable image should *NOT*
201 be restored to the new image; or before detaching, where the
202 target still has execution and wants to delete breakpoints from
203 GDB's lists, and all breakpoints had already been removed from
204 the inferior. */
205 UGLL_DONT_INSERT,
206
207 /* May insert breakpoints iff breakpoints_should_be_inserted_now
208 claims breakpoints should be inserted now. */
209 UGLL_MAY_INSERT,
210
211 /* Insert locations now, irrespective of
212 breakpoints_should_be_inserted_now. E.g., say all threads are
213 stopped right now, and the user did "continue". We need to
214 insert breakpoints _before_ resuming the target, but
215 UGLL_MAY_INSERT wouldn't insert them, because
216 breakpoints_should_be_inserted_now returns false at that point,
217 as no thread is running yet. */
218 UGLL_INSERT
219 };
220
221 static void update_global_location_list (enum ugll_insert_mode);
222
223 static void update_global_location_list_nothrow (enum ugll_insert_mode);
224
225 static int is_hardware_watchpoint (const struct breakpoint *bpt);
226
227 static void insert_breakpoint_locations (void);
228
229 static void trace_pass_command (const char *, int);
230
231 static void set_tracepoint_count (int num);
232
233 static int is_masked_watchpoint (const struct breakpoint *b);
234
235 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
236
237 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
238 otherwise. */
239
240 static int strace_marker_p (struct breakpoint *b);
241
242 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
243 that are implemented on top of software or hardware breakpoints
244 (user breakpoints, internal and momentary breakpoints, etc.). */
245 static struct breakpoint_ops bkpt_base_breakpoint_ops;
246
247 /* Internal breakpoints class type. */
248 static struct breakpoint_ops internal_breakpoint_ops;
249
250 /* Momentary breakpoints class type. */
251 static struct breakpoint_ops momentary_breakpoint_ops;
252
253 /* The breakpoint_ops structure to be used in regular user created
254 breakpoints. */
255 struct breakpoint_ops bkpt_breakpoint_ops;
256
257 /* Breakpoints set on probes. */
258 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
259
260 /* Dynamic printf class type. */
261 struct breakpoint_ops dprintf_breakpoint_ops;
262
263 /* The style in which to perform a dynamic printf. This is a user
264 option because different output options have different tradeoffs;
265 if GDB does the printing, there is better error handling if there
266 is a problem with any of the arguments, but using an inferior
267 function lets you have special-purpose printers and sending of
268 output to the same place as compiled-in print functions. */
269
270 static const char dprintf_style_gdb[] = "gdb";
271 static const char dprintf_style_call[] = "call";
272 static const char dprintf_style_agent[] = "agent";
273 static const char *const dprintf_style_enums[] = {
274 dprintf_style_gdb,
275 dprintf_style_call,
276 dprintf_style_agent,
277 NULL
278 };
279 static const char *dprintf_style = dprintf_style_gdb;
280
281 /* The function to use for dynamic printf if the preferred style is to
282 call into the inferior. The value is simply a string that is
283 copied into the command, so it can be anything that GDB can
284 evaluate to a callable address, not necessarily a function name. */
285
286 static char *dprintf_function;
287
288 /* The channel to use for dynamic printf if the preferred style is to
289 call into the inferior; if a nonempty string, it will be passed to
290 the call as the first argument, with the format string as the
291 second. As with the dprintf function, this can be anything that
292 GDB knows how to evaluate, so in addition to common choices like
293 "stderr", this could be an app-specific expression like
294 "mystreams[curlogger]". */
295
296 static char *dprintf_channel;
297
298 /* True if dprintf commands should continue to operate even if GDB
299 has disconnected. */
300 static int disconnected_dprintf = 1;
301
302 struct command_line *
303 breakpoint_commands (struct breakpoint *b)
304 {
305 return b->commands ? b->commands.get () : NULL;
306 }
307
308 /* Flag indicating that a command has proceeded the inferior past the
309 current breakpoint. */
310
311 static int breakpoint_proceeded;
312
313 const char *
314 bpdisp_text (enum bpdisp disp)
315 {
316 /* NOTE: the following values are a part of MI protocol and
317 represent values of 'disp' field returned when inferior stops at
318 a breakpoint. */
319 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
320
321 return bpdisps[(int) disp];
322 }
323
324 /* Prototypes for exported functions. */
325 /* If FALSE, gdb will not use hardware support for watchpoints, even
326 if such is available. */
327 static int can_use_hw_watchpoints;
328
329 static void
330 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
331 struct cmd_list_element *c,
332 const char *value)
333 {
334 fprintf_filtered (file,
335 _("Debugger's willingness to use "
336 "watchpoint hardware is %s.\n"),
337 value);
338 }
339
340 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
341 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
342 for unrecognized breakpoint locations.
343 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
344 static enum auto_boolean pending_break_support;
345 static void
346 show_pending_break_support (struct ui_file *file, int from_tty,
347 struct cmd_list_element *c,
348 const char *value)
349 {
350 fprintf_filtered (file,
351 _("Debugger's behavior regarding "
352 "pending breakpoints is %s.\n"),
353 value);
354 }
355
356 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
357 set with "break" but falling in read-only memory.
358 If 0, gdb will warn about such breakpoints, but won't automatically
359 use hardware breakpoints. */
360 static int automatic_hardware_breakpoints;
361 static void
362 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
363 struct cmd_list_element *c,
364 const char *value)
365 {
366 fprintf_filtered (file,
367 _("Automatic usage of hardware breakpoints is %s.\n"),
368 value);
369 }
370
371 /* If on, GDB keeps breakpoints inserted even if the inferior is
372 stopped, and immediately inserts any new breakpoints as soon as
373 they're created. If off (default), GDB keeps breakpoints off of
374 the target as long as possible. That is, it delays inserting
375 breakpoints until the next resume, and removes them again when the
376 target fully stops. This is a bit safer in case GDB crashes while
377 processing user input. */
378 static int always_inserted_mode = 0;
379
380 static void
381 show_always_inserted_mode (struct ui_file *file, int from_tty,
382 struct cmd_list_element *c, const char *value)
383 {
384 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
385 value);
386 }
387
388 /* See breakpoint.h. */
389
390 int
391 breakpoints_should_be_inserted_now (void)
392 {
393 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
394 {
395 /* If breakpoints are global, they should be inserted even if no
396 thread under gdb's control is running, or even if there are
397 no threads under GDB's control yet. */
398 return 1;
399 }
400 else if (target_has_execution)
401 {
402 struct thread_info *tp;
403
404 if (always_inserted_mode)
405 {
406 /* The user wants breakpoints inserted even if all threads
407 are stopped. */
408 return 1;
409 }
410
411 if (threads_are_executing ())
412 return 1;
413
414 /* Don't remove breakpoints yet if, even though all threads are
415 stopped, we still have events to process. */
416 ALL_NON_EXITED_THREADS (tp)
417 if (tp->resumed
418 && tp->suspend.waitstatus_pending_p)
419 return 1;
420 }
421 return 0;
422 }
423
424 static const char condition_evaluation_both[] = "host or target";
425
426 /* Modes for breakpoint condition evaluation. */
427 static const char condition_evaluation_auto[] = "auto";
428 static const char condition_evaluation_host[] = "host";
429 static const char condition_evaluation_target[] = "target";
430 static const char *const condition_evaluation_enums[] = {
431 condition_evaluation_auto,
432 condition_evaluation_host,
433 condition_evaluation_target,
434 NULL
435 };
436
437 /* Global that holds the current mode for breakpoint condition evaluation. */
438 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
439
440 /* Global that we use to display information to the user (gets its value from
441 condition_evaluation_mode_1. */
442 static const char *condition_evaluation_mode = condition_evaluation_auto;
443
444 /* Translate a condition evaluation mode MODE into either "host"
445 or "target". This is used mostly to translate from "auto" to the
446 real setting that is being used. It returns the translated
447 evaluation mode. */
448
449 static const char *
450 translate_condition_evaluation_mode (const char *mode)
451 {
452 if (mode == condition_evaluation_auto)
453 {
454 if (target_supports_evaluation_of_breakpoint_conditions ())
455 return condition_evaluation_target;
456 else
457 return condition_evaluation_host;
458 }
459 else
460 return mode;
461 }
462
463 /* Discovers what condition_evaluation_auto translates to. */
464
465 static const char *
466 breakpoint_condition_evaluation_mode (void)
467 {
468 return translate_condition_evaluation_mode (condition_evaluation_mode);
469 }
470
471 /* Return true if GDB should evaluate breakpoint conditions or false
472 otherwise. */
473
474 static int
475 gdb_evaluates_breakpoint_condition_p (void)
476 {
477 const char *mode = breakpoint_condition_evaluation_mode ();
478
479 return (mode == condition_evaluation_host);
480 }
481
482 /* Are we executing breakpoint commands? */
483 static int executing_breakpoint_commands;
484
485 /* Are overlay event breakpoints enabled? */
486 static int overlay_events_enabled;
487
488 /* See description in breakpoint.h. */
489 int target_exact_watchpoints = 0;
490
491 /* Walk the following statement or block through all breakpoints.
492 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
493 current breakpoint. */
494
495 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
496
497 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
498 for (B = breakpoint_chain; \
499 B ? (TMP=B->next, 1): 0; \
500 B = TMP)
501
502 /* Similar iterator for the low-level breakpoints. SAFE variant is
503 not provided so update_global_location_list must not be called
504 while executing the block of ALL_BP_LOCATIONS. */
505
506 #define ALL_BP_LOCATIONS(B,BP_TMP) \
507 for (BP_TMP = bp_locations; \
508 BP_TMP < bp_locations + bp_locations_count && (B = *BP_TMP);\
509 BP_TMP++)
510
511 /* Iterates through locations with address ADDRESS for the currently selected
512 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
513 to where the loop should start from.
514 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
515 appropriate location to start with. */
516
517 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
518 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
519 BP_LOCP_TMP = BP_LOCP_START; \
520 BP_LOCP_START \
521 && (BP_LOCP_TMP < bp_locations + bp_locations_count \
522 && (*BP_LOCP_TMP)->address == ADDRESS); \
523 BP_LOCP_TMP++)
524
525 /* Iterator for tracepoints only. */
526
527 #define ALL_TRACEPOINTS(B) \
528 for (B = breakpoint_chain; B; B = B->next) \
529 if (is_tracepoint (B))
530
531 /* Chains of all breakpoints defined. */
532
533 struct breakpoint *breakpoint_chain;
534
535 /* Array is sorted by bp_locations_compare - primarily by the ADDRESS. */
536
537 static struct bp_location **bp_locations;
538
539 /* Number of elements of BP_LOCATIONS. */
540
541 static unsigned bp_locations_count;
542
543 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
544 ADDRESS for the current elements of BP_LOCATIONS which get a valid
545 result from bp_location_has_shadow. You can use it for roughly
546 limiting the subrange of BP_LOCATIONS to scan for shadow bytes for
547 an address you need to read. */
548
549 static CORE_ADDR bp_locations_placed_address_before_address_max;
550
551 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
552 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
553 BP_LOCATIONS which get a valid result from bp_location_has_shadow.
554 You can use it for roughly limiting the subrange of BP_LOCATIONS to
555 scan for shadow bytes for an address you need to read. */
556
557 static CORE_ADDR bp_locations_shadow_len_after_address_max;
558
559 /* The locations that no longer correspond to any breakpoint, unlinked
560 from the bp_locations array, but for which a hit may still be
561 reported by a target. */
562 VEC(bp_location_p) *moribund_locations = NULL;
563
564 /* Number of last breakpoint made. */
565
566 static int breakpoint_count;
567
568 /* The value of `breakpoint_count' before the last command that
569 created breakpoints. If the last (break-like) command created more
570 than one breakpoint, then the difference between BREAKPOINT_COUNT
571 and PREV_BREAKPOINT_COUNT is more than one. */
572 static int prev_breakpoint_count;
573
574 /* Number of last tracepoint made. */
575
576 static int tracepoint_count;
577
578 static struct cmd_list_element *breakpoint_set_cmdlist;
579 static struct cmd_list_element *breakpoint_show_cmdlist;
580 struct cmd_list_element *save_cmdlist;
581
582 /* See declaration at breakpoint.h. */
583
584 struct breakpoint *
585 breakpoint_find_if (int (*func) (struct breakpoint *b, void *d),
586 void *user_data)
587 {
588 struct breakpoint *b = NULL;
589
590 ALL_BREAKPOINTS (b)
591 {
592 if (func (b, user_data) != 0)
593 break;
594 }
595
596 return b;
597 }
598
599 /* Return whether a breakpoint is an active enabled breakpoint. */
600 static int
601 breakpoint_enabled (struct breakpoint *b)
602 {
603 return (b->enable_state == bp_enabled);
604 }
605
606 /* Set breakpoint count to NUM. */
607
608 static void
609 set_breakpoint_count (int num)
610 {
611 prev_breakpoint_count = breakpoint_count;
612 breakpoint_count = num;
613 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
614 }
615
616 /* Used by `start_rbreak_breakpoints' below, to record the current
617 breakpoint count before "rbreak" creates any breakpoint. */
618 static int rbreak_start_breakpoint_count;
619
620 /* Called at the start an "rbreak" command to record the first
621 breakpoint made. */
622
623 scoped_rbreak_breakpoints::scoped_rbreak_breakpoints ()
624 {
625 rbreak_start_breakpoint_count = breakpoint_count;
626 }
627
628 /* Called at the end of an "rbreak" command to record the last
629 breakpoint made. */
630
631 scoped_rbreak_breakpoints::~scoped_rbreak_breakpoints ()
632 {
633 prev_breakpoint_count = rbreak_start_breakpoint_count;
634 }
635
636 /* Used in run_command to zero the hit count when a new run starts. */
637
638 void
639 clear_breakpoint_hit_counts (void)
640 {
641 struct breakpoint *b;
642
643 ALL_BREAKPOINTS (b)
644 b->hit_count = 0;
645 }
646
647 \f
648 /* Return the breakpoint with the specified number, or NULL
649 if the number does not refer to an existing breakpoint. */
650
651 struct breakpoint *
652 get_breakpoint (int num)
653 {
654 struct breakpoint *b;
655
656 ALL_BREAKPOINTS (b)
657 if (b->number == num)
658 return b;
659
660 return NULL;
661 }
662
663 \f
664
665 /* Mark locations as "conditions have changed" in case the target supports
666 evaluating conditions on its side. */
667
668 static void
669 mark_breakpoint_modified (struct breakpoint *b)
670 {
671 struct bp_location *loc;
672
673 /* This is only meaningful if the target is
674 evaluating conditions and if the user has
675 opted for condition evaluation on the target's
676 side. */
677 if (gdb_evaluates_breakpoint_condition_p ()
678 || !target_supports_evaluation_of_breakpoint_conditions ())
679 return;
680
681 if (!is_breakpoint (b))
682 return;
683
684 for (loc = b->loc; loc; loc = loc->next)
685 loc->condition_changed = condition_modified;
686 }
687
688 /* Mark location as "conditions have changed" in case the target supports
689 evaluating conditions on its side. */
690
691 static void
692 mark_breakpoint_location_modified (struct bp_location *loc)
693 {
694 /* This is only meaningful if the target is
695 evaluating conditions and if the user has
696 opted for condition evaluation on the target's
697 side. */
698 if (gdb_evaluates_breakpoint_condition_p ()
699 || !target_supports_evaluation_of_breakpoint_conditions ())
700
701 return;
702
703 if (!is_breakpoint (loc->owner))
704 return;
705
706 loc->condition_changed = condition_modified;
707 }
708
709 /* Sets the condition-evaluation mode using the static global
710 condition_evaluation_mode. */
711
712 static void
713 set_condition_evaluation_mode (const char *args, int from_tty,
714 struct cmd_list_element *c)
715 {
716 const char *old_mode, *new_mode;
717
718 if ((condition_evaluation_mode_1 == condition_evaluation_target)
719 && !target_supports_evaluation_of_breakpoint_conditions ())
720 {
721 condition_evaluation_mode_1 = condition_evaluation_mode;
722 warning (_("Target does not support breakpoint condition evaluation.\n"
723 "Using host evaluation mode instead."));
724 return;
725 }
726
727 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
728 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
729
730 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
731 settings was "auto". */
732 condition_evaluation_mode = condition_evaluation_mode_1;
733
734 /* Only update the mode if the user picked a different one. */
735 if (new_mode != old_mode)
736 {
737 struct bp_location *loc, **loc_tmp;
738 /* If the user switched to a different evaluation mode, we
739 need to synch the changes with the target as follows:
740
741 "host" -> "target": Send all (valid) conditions to the target.
742 "target" -> "host": Remove all the conditions from the target.
743 */
744
745 if (new_mode == condition_evaluation_target)
746 {
747 /* Mark everything modified and synch conditions with the
748 target. */
749 ALL_BP_LOCATIONS (loc, loc_tmp)
750 mark_breakpoint_location_modified (loc);
751 }
752 else
753 {
754 /* Manually mark non-duplicate locations to synch conditions
755 with the target. We do this to remove all the conditions the
756 target knows about. */
757 ALL_BP_LOCATIONS (loc, loc_tmp)
758 if (is_breakpoint (loc->owner) && loc->inserted)
759 loc->needs_update = 1;
760 }
761
762 /* Do the update. */
763 update_global_location_list (UGLL_MAY_INSERT);
764 }
765
766 return;
767 }
768
769 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
770 what "auto" is translating to. */
771
772 static void
773 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
774 struct cmd_list_element *c, const char *value)
775 {
776 if (condition_evaluation_mode == condition_evaluation_auto)
777 fprintf_filtered (file,
778 _("Breakpoint condition evaluation "
779 "mode is %s (currently %s).\n"),
780 value,
781 breakpoint_condition_evaluation_mode ());
782 else
783 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
784 value);
785 }
786
787 /* A comparison function for bp_location AP and BP that is used by
788 bsearch. This comparison function only cares about addresses, unlike
789 the more general bp_locations_compare function. */
790
791 static int
792 bp_locations_compare_addrs (const void *ap, const void *bp)
793 {
794 const struct bp_location *a = *(const struct bp_location **) ap;
795 const struct bp_location *b = *(const struct bp_location **) bp;
796
797 if (a->address == b->address)
798 return 0;
799 else
800 return ((a->address > b->address) - (a->address < b->address));
801 }
802
803 /* Helper function to skip all bp_locations with addresses
804 less than ADDRESS. It returns the first bp_location that
805 is greater than or equal to ADDRESS. If none is found, just
806 return NULL. */
807
808 static struct bp_location **
809 get_first_locp_gte_addr (CORE_ADDR address)
810 {
811 struct bp_location dummy_loc;
812 struct bp_location *dummy_locp = &dummy_loc;
813 struct bp_location **locp_found = NULL;
814
815 /* Initialize the dummy location's address field. */
816 dummy_loc.address = address;
817
818 /* Find a close match to the first location at ADDRESS. */
819 locp_found = ((struct bp_location **)
820 bsearch (&dummy_locp, bp_locations, bp_locations_count,
821 sizeof (struct bp_location **),
822 bp_locations_compare_addrs));
823
824 /* Nothing was found, nothing left to do. */
825 if (locp_found == NULL)
826 return NULL;
827
828 /* We may have found a location that is at ADDRESS but is not the first in the
829 location's list. Go backwards (if possible) and locate the first one. */
830 while ((locp_found - 1) >= bp_locations
831 && (*(locp_found - 1))->address == address)
832 locp_found--;
833
834 return locp_found;
835 }
836
837 void
838 set_breakpoint_condition (struct breakpoint *b, const char *exp,
839 int from_tty)
840 {
841 xfree (b->cond_string);
842 b->cond_string = NULL;
843
844 if (is_watchpoint (b))
845 {
846 struct watchpoint *w = (struct watchpoint *) b;
847
848 w->cond_exp.reset ();
849 }
850 else
851 {
852 struct bp_location *loc;
853
854 for (loc = b->loc; loc; loc = loc->next)
855 {
856 loc->cond.reset ();
857
858 /* No need to free the condition agent expression
859 bytecode (if we have one). We will handle this
860 when we go through update_global_location_list. */
861 }
862 }
863
864 if (*exp == 0)
865 {
866 if (from_tty)
867 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
868 }
869 else
870 {
871 const char *arg = exp;
872
873 /* I don't know if it matters whether this is the string the user
874 typed in or the decompiled expression. */
875 b->cond_string = xstrdup (arg);
876 b->condition_not_parsed = 0;
877
878 if (is_watchpoint (b))
879 {
880 struct watchpoint *w = (struct watchpoint *) b;
881
882 innermost_block.reset ();
883 arg = exp;
884 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
885 if (*arg)
886 error (_("Junk at end of expression"));
887 w->cond_exp_valid_block = innermost_block.block ();
888 }
889 else
890 {
891 struct bp_location *loc;
892
893 for (loc = b->loc; loc; loc = loc->next)
894 {
895 arg = exp;
896 loc->cond =
897 parse_exp_1 (&arg, loc->address,
898 block_for_pc (loc->address), 0);
899 if (*arg)
900 error (_("Junk at end of expression"));
901 }
902 }
903 }
904 mark_breakpoint_modified (b);
905
906 gdb::observers::breakpoint_modified.notify (b);
907 }
908
909 /* Completion for the "condition" command. */
910
911 static void
912 condition_completer (struct cmd_list_element *cmd,
913 completion_tracker &tracker,
914 const char *text, const char *word)
915 {
916 const char *space;
917
918 text = skip_spaces (text);
919 space = skip_to_space (text);
920 if (*space == '\0')
921 {
922 int len;
923 struct breakpoint *b;
924
925 if (text[0] == '$')
926 {
927 /* We don't support completion of history indices. */
928 if (!isdigit (text[1]))
929 complete_internalvar (tracker, &text[1]);
930 return;
931 }
932
933 /* We're completing the breakpoint number. */
934 len = strlen (text);
935
936 ALL_BREAKPOINTS (b)
937 {
938 char number[50];
939
940 xsnprintf (number, sizeof (number), "%d", b->number);
941
942 if (strncmp (number, text, len) == 0)
943 {
944 gdb::unique_xmalloc_ptr<char> copy (xstrdup (number));
945 tracker.add_completion (std::move (copy));
946 }
947 }
948
949 return;
950 }
951
952 /* We're completing the expression part. */
953 text = skip_spaces (space);
954 expression_completer (cmd, tracker, text, word);
955 }
956
957 /* condition N EXP -- set break condition of breakpoint N to EXP. */
958
959 static void
960 condition_command (const char *arg, int from_tty)
961 {
962 struct breakpoint *b;
963 const char *p;
964 int bnum;
965
966 if (arg == 0)
967 error_no_arg (_("breakpoint number"));
968
969 p = arg;
970 bnum = get_number (&p);
971 if (bnum == 0)
972 error (_("Bad breakpoint argument: '%s'"), arg);
973
974 ALL_BREAKPOINTS (b)
975 if (b->number == bnum)
976 {
977 /* Check if this breakpoint has a "stop" method implemented in an
978 extension language. This method and conditions entered into GDB
979 from the CLI are mutually exclusive. */
980 const struct extension_language_defn *extlang
981 = get_breakpoint_cond_ext_lang (b, EXT_LANG_NONE);
982
983 if (extlang != NULL)
984 {
985 error (_("Only one stop condition allowed. There is currently"
986 " a %s stop condition defined for this breakpoint."),
987 ext_lang_capitalized_name (extlang));
988 }
989 set_breakpoint_condition (b, p, from_tty);
990
991 if (is_breakpoint (b))
992 update_global_location_list (UGLL_MAY_INSERT);
993
994 return;
995 }
996
997 error (_("No breakpoint number %d."), bnum);
998 }
999
1000 /* Check that COMMAND do not contain commands that are suitable
1001 only for tracepoints and not suitable for ordinary breakpoints.
1002 Throw if any such commands is found. */
1003
1004 static void
1005 check_no_tracepoint_commands (struct command_line *commands)
1006 {
1007 struct command_line *c;
1008
1009 for (c = commands; c; c = c->next)
1010 {
1011 int i;
1012
1013 if (c->control_type == while_stepping_control)
1014 error (_("The 'while-stepping' command can "
1015 "only be used for tracepoints"));
1016
1017 for (i = 0; i < c->body_count; ++i)
1018 check_no_tracepoint_commands ((c->body_list)[i]);
1019
1020 /* Not that command parsing removes leading whitespace and comment
1021 lines and also empty lines. So, we only need to check for
1022 command directly. */
1023 if (strstr (c->line, "collect ") == c->line)
1024 error (_("The 'collect' command can only be used for tracepoints"));
1025
1026 if (strstr (c->line, "teval ") == c->line)
1027 error (_("The 'teval' command can only be used for tracepoints"));
1028 }
1029 }
1030
1031 struct longjmp_breakpoint : public breakpoint
1032 {
1033 ~longjmp_breakpoint () override;
1034 };
1035
1036 /* Encapsulate tests for different types of tracepoints. */
1037
1038 static bool
1039 is_tracepoint_type (bptype type)
1040 {
1041 return (type == bp_tracepoint
1042 || type == bp_fast_tracepoint
1043 || type == bp_static_tracepoint);
1044 }
1045
1046 static bool
1047 is_longjmp_type (bptype type)
1048 {
1049 return type == bp_longjmp || type == bp_exception;
1050 }
1051
1052 int
1053 is_tracepoint (const struct breakpoint *b)
1054 {
1055 return is_tracepoint_type (b->type);
1056 }
1057
1058 /* Factory function to create an appropriate instance of breakpoint given
1059 TYPE. */
1060
1061 static std::unique_ptr<breakpoint>
1062 new_breakpoint_from_type (bptype type)
1063 {
1064 breakpoint *b;
1065
1066 if (is_tracepoint_type (type))
1067 b = new tracepoint ();
1068 else if (is_longjmp_type (type))
1069 b = new longjmp_breakpoint ();
1070 else
1071 b = new breakpoint ();
1072
1073 return std::unique_ptr<breakpoint> (b);
1074 }
1075
1076 /* A helper function that validates that COMMANDS are valid for a
1077 breakpoint. This function will throw an exception if a problem is
1078 found. */
1079
1080 static void
1081 validate_commands_for_breakpoint (struct breakpoint *b,
1082 struct command_line *commands)
1083 {
1084 if (is_tracepoint (b))
1085 {
1086 struct tracepoint *t = (struct tracepoint *) b;
1087 struct command_line *c;
1088 struct command_line *while_stepping = 0;
1089
1090 /* Reset the while-stepping step count. The previous commands
1091 might have included a while-stepping action, while the new
1092 ones might not. */
1093 t->step_count = 0;
1094
1095 /* We need to verify that each top-level element of commands is
1096 valid for tracepoints, that there's at most one
1097 while-stepping element, and that the while-stepping's body
1098 has valid tracing commands excluding nested while-stepping.
1099 We also need to validate the tracepoint action line in the
1100 context of the tracepoint --- validate_actionline actually
1101 has side effects, like setting the tracepoint's
1102 while-stepping STEP_COUNT, in addition to checking if the
1103 collect/teval actions parse and make sense in the
1104 tracepoint's context. */
1105 for (c = commands; c; c = c->next)
1106 {
1107 if (c->control_type == while_stepping_control)
1108 {
1109 if (b->type == bp_fast_tracepoint)
1110 error (_("The 'while-stepping' command "
1111 "cannot be used for fast tracepoint"));
1112 else if (b->type == bp_static_tracepoint)
1113 error (_("The 'while-stepping' command "
1114 "cannot be used for static tracepoint"));
1115
1116 if (while_stepping)
1117 error (_("The 'while-stepping' command "
1118 "can be used only once"));
1119 else
1120 while_stepping = c;
1121 }
1122
1123 validate_actionline (c->line, b);
1124 }
1125 if (while_stepping)
1126 {
1127 struct command_line *c2;
1128
1129 gdb_assert (while_stepping->body_count == 1);
1130 c2 = while_stepping->body_list[0];
1131 for (; c2; c2 = c2->next)
1132 {
1133 if (c2->control_type == while_stepping_control)
1134 error (_("The 'while-stepping' command cannot be nested"));
1135 }
1136 }
1137 }
1138 else
1139 {
1140 check_no_tracepoint_commands (commands);
1141 }
1142 }
1143
1144 /* Return a vector of all the static tracepoints set at ADDR. The
1145 caller is responsible for releasing the vector. */
1146
1147 VEC(breakpoint_p) *
1148 static_tracepoints_here (CORE_ADDR addr)
1149 {
1150 struct breakpoint *b;
1151 VEC(breakpoint_p) *found = 0;
1152 struct bp_location *loc;
1153
1154 ALL_BREAKPOINTS (b)
1155 if (b->type == bp_static_tracepoint)
1156 {
1157 for (loc = b->loc; loc; loc = loc->next)
1158 if (loc->address == addr)
1159 VEC_safe_push(breakpoint_p, found, b);
1160 }
1161
1162 return found;
1163 }
1164
1165 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1166 validate that only allowed commands are included. */
1167
1168 void
1169 breakpoint_set_commands (struct breakpoint *b,
1170 command_line_up &&commands)
1171 {
1172 validate_commands_for_breakpoint (b, commands.get ());
1173
1174 b->commands = std::move (commands);
1175 gdb::observers::breakpoint_modified.notify (b);
1176 }
1177
1178 /* Set the internal `silent' flag on the breakpoint. Note that this
1179 is not the same as the "silent" that may appear in the breakpoint's
1180 commands. */
1181
1182 void
1183 breakpoint_set_silent (struct breakpoint *b, int silent)
1184 {
1185 int old_silent = b->silent;
1186
1187 b->silent = silent;
1188 if (old_silent != silent)
1189 gdb::observers::breakpoint_modified.notify (b);
1190 }
1191
1192 /* Set the thread for this breakpoint. If THREAD is -1, make the
1193 breakpoint work for any thread. */
1194
1195 void
1196 breakpoint_set_thread (struct breakpoint *b, int thread)
1197 {
1198 int old_thread = b->thread;
1199
1200 b->thread = thread;
1201 if (old_thread != thread)
1202 gdb::observers::breakpoint_modified.notify (b);
1203 }
1204
1205 /* Set the task for this breakpoint. If TASK is 0, make the
1206 breakpoint work for any task. */
1207
1208 void
1209 breakpoint_set_task (struct breakpoint *b, int task)
1210 {
1211 int old_task = b->task;
1212
1213 b->task = task;
1214 if (old_task != task)
1215 gdb::observers::breakpoint_modified.notify (b);
1216 }
1217
1218 void
1219 check_tracepoint_command (char *line, void *closure)
1220 {
1221 struct breakpoint *b = (struct breakpoint *) closure;
1222
1223 validate_actionline (line, b);
1224 }
1225
1226 static void
1227 commands_command_1 (const char *arg, int from_tty,
1228 struct command_line *control)
1229 {
1230 counted_command_line cmd;
1231
1232 std::string new_arg;
1233
1234 if (arg == NULL || !*arg)
1235 {
1236 if (breakpoint_count - prev_breakpoint_count > 1)
1237 new_arg = string_printf ("%d-%d", prev_breakpoint_count + 1,
1238 breakpoint_count);
1239 else if (breakpoint_count > 0)
1240 new_arg = string_printf ("%d", breakpoint_count);
1241 arg = new_arg.c_str ();
1242 }
1243
1244 map_breakpoint_numbers
1245 (arg, [&] (breakpoint *b)
1246 {
1247 if (cmd == NULL)
1248 {
1249 if (control != NULL)
1250 cmd = copy_command_lines (control->body_list[0]);
1251 else
1252 {
1253 std::string str
1254 = string_printf (_("Type commands for breakpoint(s) "
1255 "%s, one per line."),
1256 arg);
1257
1258 cmd = read_command_lines (&str[0],
1259 from_tty, 1,
1260 (is_tracepoint (b)
1261 ? check_tracepoint_command : 0),
1262 b);
1263 }
1264 }
1265
1266 /* If a breakpoint was on the list more than once, we don't need to
1267 do anything. */
1268 if (b->commands != cmd)
1269 {
1270 validate_commands_for_breakpoint (b, cmd.get ());
1271 b->commands = cmd;
1272 gdb::observers::breakpoint_modified.notify (b);
1273 }
1274 });
1275 }
1276
1277 static void
1278 commands_command (const char *arg, int from_tty)
1279 {
1280 commands_command_1 (arg, from_tty, NULL);
1281 }
1282
1283 /* Like commands_command, but instead of reading the commands from
1284 input stream, takes them from an already parsed command structure.
1285
1286 This is used by cli-script.c to DTRT with breakpoint commands
1287 that are part of if and while bodies. */
1288 enum command_control_type
1289 commands_from_control_command (const char *arg, struct command_line *cmd)
1290 {
1291 commands_command_1 (arg, 0, cmd);
1292 return simple_control;
1293 }
1294
1295 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1296
1297 static int
1298 bp_location_has_shadow (struct bp_location *bl)
1299 {
1300 if (bl->loc_type != bp_loc_software_breakpoint)
1301 return 0;
1302 if (!bl->inserted)
1303 return 0;
1304 if (bl->target_info.shadow_len == 0)
1305 /* BL isn't valid, or doesn't shadow memory. */
1306 return 0;
1307 return 1;
1308 }
1309
1310 /* Update BUF, which is LEN bytes read from the target address
1311 MEMADDR, by replacing a memory breakpoint with its shadowed
1312 contents.
1313
1314 If READBUF is not NULL, this buffer must not overlap with the of
1315 the breakpoint location's shadow_contents buffer. Otherwise, a
1316 failed assertion internal error will be raised. */
1317
1318 static void
1319 one_breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1320 const gdb_byte *writebuf_org,
1321 ULONGEST memaddr, LONGEST len,
1322 struct bp_target_info *target_info,
1323 struct gdbarch *gdbarch)
1324 {
1325 /* Now do full processing of the found relevant range of elements. */
1326 CORE_ADDR bp_addr = 0;
1327 int bp_size = 0;
1328 int bptoffset = 0;
1329
1330 if (!breakpoint_address_match (target_info->placed_address_space, 0,
1331 current_program_space->aspace, 0))
1332 {
1333 /* The breakpoint is inserted in a different address space. */
1334 return;
1335 }
1336
1337 /* Addresses and length of the part of the breakpoint that
1338 we need to copy. */
1339 bp_addr = target_info->placed_address;
1340 bp_size = target_info->shadow_len;
1341
1342 if (bp_addr + bp_size <= memaddr)
1343 {
1344 /* The breakpoint is entirely before the chunk of memory we are
1345 reading. */
1346 return;
1347 }
1348
1349 if (bp_addr >= memaddr + len)
1350 {
1351 /* The breakpoint is entirely after the chunk of memory we are
1352 reading. */
1353 return;
1354 }
1355
1356 /* Offset within shadow_contents. */
1357 if (bp_addr < memaddr)
1358 {
1359 /* Only copy the second part of the breakpoint. */
1360 bp_size -= memaddr - bp_addr;
1361 bptoffset = memaddr - bp_addr;
1362 bp_addr = memaddr;
1363 }
1364
1365 if (bp_addr + bp_size > memaddr + len)
1366 {
1367 /* Only copy the first part of the breakpoint. */
1368 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1369 }
1370
1371 if (readbuf != NULL)
1372 {
1373 /* Verify that the readbuf buffer does not overlap with the
1374 shadow_contents buffer. */
1375 gdb_assert (target_info->shadow_contents >= readbuf + len
1376 || readbuf >= (target_info->shadow_contents
1377 + target_info->shadow_len));
1378
1379 /* Update the read buffer with this inserted breakpoint's
1380 shadow. */
1381 memcpy (readbuf + bp_addr - memaddr,
1382 target_info->shadow_contents + bptoffset, bp_size);
1383 }
1384 else
1385 {
1386 const unsigned char *bp;
1387 CORE_ADDR addr = target_info->reqstd_address;
1388 int placed_size;
1389
1390 /* Update the shadow with what we want to write to memory. */
1391 memcpy (target_info->shadow_contents + bptoffset,
1392 writebuf_org + bp_addr - memaddr, bp_size);
1393
1394 /* Determine appropriate breakpoint contents and size for this
1395 address. */
1396 bp = gdbarch_breakpoint_from_pc (gdbarch, &addr, &placed_size);
1397
1398 /* Update the final write buffer with this inserted
1399 breakpoint's INSN. */
1400 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1401 }
1402 }
1403
1404 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1405 by replacing any memory breakpoints with their shadowed contents.
1406
1407 If READBUF is not NULL, this buffer must not overlap with any of
1408 the breakpoint location's shadow_contents buffers. Otherwise,
1409 a failed assertion internal error will be raised.
1410
1411 The range of shadowed area by each bp_location is:
1412 bl->address - bp_locations_placed_address_before_address_max
1413 up to bl->address + bp_locations_shadow_len_after_address_max
1414 The range we were requested to resolve shadows for is:
1415 memaddr ... memaddr + len
1416 Thus the safe cutoff boundaries for performance optimization are
1417 memaddr + len <= (bl->address
1418 - bp_locations_placed_address_before_address_max)
1419 and:
1420 bl->address + bp_locations_shadow_len_after_address_max <= memaddr */
1421
1422 void
1423 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1424 const gdb_byte *writebuf_org,
1425 ULONGEST memaddr, LONGEST len)
1426 {
1427 /* Left boundary, right boundary and median element of our binary
1428 search. */
1429 unsigned bc_l, bc_r, bc;
1430
1431 /* Find BC_L which is a leftmost element which may affect BUF
1432 content. It is safe to report lower value but a failure to
1433 report higher one. */
1434
1435 bc_l = 0;
1436 bc_r = bp_locations_count;
1437 while (bc_l + 1 < bc_r)
1438 {
1439 struct bp_location *bl;
1440
1441 bc = (bc_l + bc_r) / 2;
1442 bl = bp_locations[bc];
1443
1444 /* Check first BL->ADDRESS will not overflow due to the added
1445 constant. Then advance the left boundary only if we are sure
1446 the BC element can in no way affect the BUF content (MEMADDR
1447 to MEMADDR + LEN range).
1448
1449 Use the BP_LOCATIONS_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1450 offset so that we cannot miss a breakpoint with its shadow
1451 range tail still reaching MEMADDR. */
1452
1453 if ((bl->address + bp_locations_shadow_len_after_address_max
1454 >= bl->address)
1455 && (bl->address + bp_locations_shadow_len_after_address_max
1456 <= memaddr))
1457 bc_l = bc;
1458 else
1459 bc_r = bc;
1460 }
1461
1462 /* Due to the binary search above, we need to make sure we pick the
1463 first location that's at BC_L's address. E.g., if there are
1464 multiple locations at the same address, BC_L may end up pointing
1465 at a duplicate location, and miss the "master"/"inserted"
1466 location. Say, given locations L1, L2 and L3 at addresses A and
1467 B:
1468
1469 L1@A, L2@A, L3@B, ...
1470
1471 BC_L could end up pointing at location L2, while the "master"
1472 location could be L1. Since the `loc->inserted' flag is only set
1473 on "master" locations, we'd forget to restore the shadow of L1
1474 and L2. */
1475 while (bc_l > 0
1476 && bp_locations[bc_l]->address == bp_locations[bc_l - 1]->address)
1477 bc_l--;
1478
1479 /* Now do full processing of the found relevant range of elements. */
1480
1481 for (bc = bc_l; bc < bp_locations_count; bc++)
1482 {
1483 struct bp_location *bl = bp_locations[bc];
1484
1485 /* bp_location array has BL->OWNER always non-NULL. */
1486 if (bl->owner->type == bp_none)
1487 warning (_("reading through apparently deleted breakpoint #%d?"),
1488 bl->owner->number);
1489
1490 /* Performance optimization: any further element can no longer affect BUF
1491 content. */
1492
1493 if (bl->address >= bp_locations_placed_address_before_address_max
1494 && memaddr + len <= (bl->address
1495 - bp_locations_placed_address_before_address_max))
1496 break;
1497
1498 if (!bp_location_has_shadow (bl))
1499 continue;
1500
1501 one_breakpoint_xfer_memory (readbuf, writebuf, writebuf_org,
1502 memaddr, len, &bl->target_info, bl->gdbarch);
1503 }
1504 }
1505
1506 \f
1507
1508 /* Return true if BPT is either a software breakpoint or a hardware
1509 breakpoint. */
1510
1511 int
1512 is_breakpoint (const struct breakpoint *bpt)
1513 {
1514 return (bpt->type == bp_breakpoint
1515 || bpt->type == bp_hardware_breakpoint
1516 || bpt->type == bp_dprintf);
1517 }
1518
1519 /* Return true if BPT is of any hardware watchpoint kind. */
1520
1521 static int
1522 is_hardware_watchpoint (const struct breakpoint *bpt)
1523 {
1524 return (bpt->type == bp_hardware_watchpoint
1525 || bpt->type == bp_read_watchpoint
1526 || bpt->type == bp_access_watchpoint);
1527 }
1528
1529 /* Return true if BPT is of any watchpoint kind, hardware or
1530 software. */
1531
1532 int
1533 is_watchpoint (const struct breakpoint *bpt)
1534 {
1535 return (is_hardware_watchpoint (bpt)
1536 || bpt->type == bp_watchpoint);
1537 }
1538
1539 /* Returns true if the current thread and its running state are safe
1540 to evaluate or update watchpoint B. Watchpoints on local
1541 expressions need to be evaluated in the context of the thread that
1542 was current when the watchpoint was created, and, that thread needs
1543 to be stopped to be able to select the correct frame context.
1544 Watchpoints on global expressions can be evaluated on any thread,
1545 and in any state. It is presently left to the target allowing
1546 memory accesses when threads are running. */
1547
1548 static int
1549 watchpoint_in_thread_scope (struct watchpoint *b)
1550 {
1551 return (b->pspace == current_program_space
1552 && (ptid_equal (b->watchpoint_thread, null_ptid)
1553 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1554 && !is_executing (inferior_ptid))));
1555 }
1556
1557 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1558 associated bp_watchpoint_scope breakpoint. */
1559
1560 static void
1561 watchpoint_del_at_next_stop (struct watchpoint *w)
1562 {
1563 if (w->related_breakpoint != w)
1564 {
1565 gdb_assert (w->related_breakpoint->type == bp_watchpoint_scope);
1566 gdb_assert (w->related_breakpoint->related_breakpoint == w);
1567 w->related_breakpoint->disposition = disp_del_at_next_stop;
1568 w->related_breakpoint->related_breakpoint = w->related_breakpoint;
1569 w->related_breakpoint = w;
1570 }
1571 w->disposition = disp_del_at_next_stop;
1572 }
1573
1574 /* Extract a bitfield value from value VAL using the bit parameters contained in
1575 watchpoint W. */
1576
1577 static struct value *
1578 extract_bitfield_from_watchpoint_value (struct watchpoint *w, struct value *val)
1579 {
1580 struct value *bit_val;
1581
1582 if (val == NULL)
1583 return NULL;
1584
1585 bit_val = allocate_value (value_type (val));
1586
1587 unpack_value_bitfield (bit_val,
1588 w->val_bitpos,
1589 w->val_bitsize,
1590 value_contents_for_printing (val),
1591 value_offset (val),
1592 val);
1593
1594 return bit_val;
1595 }
1596
1597 /* Allocate a dummy location and add it to B, which must be a software
1598 watchpoint. This is required because even if a software watchpoint
1599 is not watching any memory, bpstat_stop_status requires a location
1600 to be able to report stops. */
1601
1602 static void
1603 software_watchpoint_add_no_memory_location (struct breakpoint *b,
1604 struct program_space *pspace)
1605 {
1606 gdb_assert (b->type == bp_watchpoint && b->loc == NULL);
1607
1608 b->loc = allocate_bp_location (b);
1609 b->loc->pspace = pspace;
1610 b->loc->address = -1;
1611 b->loc->length = -1;
1612 }
1613
1614 /* Returns true if B is a software watchpoint that is not watching any
1615 memory (e.g., "watch $pc"). */
1616
1617 static int
1618 is_no_memory_software_watchpoint (struct breakpoint *b)
1619 {
1620 return (b->type == bp_watchpoint
1621 && b->loc != NULL
1622 && b->loc->next == NULL
1623 && b->loc->address == -1
1624 && b->loc->length == -1);
1625 }
1626
1627 /* Assuming that B is a watchpoint:
1628 - Reparse watchpoint expression, if REPARSE is non-zero
1629 - Evaluate expression and store the result in B->val
1630 - Evaluate the condition if there is one, and store the result
1631 in b->loc->cond.
1632 - Update the list of values that must be watched in B->loc.
1633
1634 If the watchpoint disposition is disp_del_at_next_stop, then do
1635 nothing. If this is local watchpoint that is out of scope, delete
1636 it.
1637
1638 Even with `set breakpoint always-inserted on' the watchpoints are
1639 removed + inserted on each stop here. Normal breakpoints must
1640 never be removed because they might be missed by a running thread
1641 when debugging in non-stop mode. On the other hand, hardware
1642 watchpoints (is_hardware_watchpoint; processed here) are specific
1643 to each LWP since they are stored in each LWP's hardware debug
1644 registers. Therefore, such LWP must be stopped first in order to
1645 be able to modify its hardware watchpoints.
1646
1647 Hardware watchpoints must be reset exactly once after being
1648 presented to the user. It cannot be done sooner, because it would
1649 reset the data used to present the watchpoint hit to the user. And
1650 it must not be done later because it could display the same single
1651 watchpoint hit during multiple GDB stops. Note that the latter is
1652 relevant only to the hardware watchpoint types bp_read_watchpoint
1653 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1654 not user-visible - its hit is suppressed if the memory content has
1655 not changed.
1656
1657 The following constraints influence the location where we can reset
1658 hardware watchpoints:
1659
1660 * target_stopped_by_watchpoint and target_stopped_data_address are
1661 called several times when GDB stops.
1662
1663 [linux]
1664 * Multiple hardware watchpoints can be hit at the same time,
1665 causing GDB to stop. GDB only presents one hardware watchpoint
1666 hit at a time as the reason for stopping, and all the other hits
1667 are presented later, one after the other, each time the user
1668 requests the execution to be resumed. Execution is not resumed
1669 for the threads still having pending hit event stored in
1670 LWP_INFO->STATUS. While the watchpoint is already removed from
1671 the inferior on the first stop the thread hit event is kept being
1672 reported from its cached value by linux_nat_stopped_data_address
1673 until the real thread resume happens after the watchpoint gets
1674 presented and thus its LWP_INFO->STATUS gets reset.
1675
1676 Therefore the hardware watchpoint hit can get safely reset on the
1677 watchpoint removal from inferior. */
1678
1679 static void
1680 update_watchpoint (struct watchpoint *b, int reparse)
1681 {
1682 int within_current_scope;
1683 struct frame_id saved_frame_id;
1684 int frame_saved;
1685
1686 /* If this is a local watchpoint, we only want to check if the
1687 watchpoint frame is in scope if the current thread is the thread
1688 that was used to create the watchpoint. */
1689 if (!watchpoint_in_thread_scope (b))
1690 return;
1691
1692 if (b->disposition == disp_del_at_next_stop)
1693 return;
1694
1695 frame_saved = 0;
1696
1697 /* Determine if the watchpoint is within scope. */
1698 if (b->exp_valid_block == NULL)
1699 within_current_scope = 1;
1700 else
1701 {
1702 struct frame_info *fi = get_current_frame ();
1703 struct gdbarch *frame_arch = get_frame_arch (fi);
1704 CORE_ADDR frame_pc = get_frame_pc (fi);
1705
1706 /* If we're at a point where the stack has been destroyed
1707 (e.g. in a function epilogue), unwinding may not work
1708 properly. Do not attempt to recreate locations at this
1709 point. See similar comments in watchpoint_check. */
1710 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
1711 return;
1712
1713 /* Save the current frame's ID so we can restore it after
1714 evaluating the watchpoint expression on its own frame. */
1715 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1716 took a frame parameter, so that we didn't have to change the
1717 selected frame. */
1718 frame_saved = 1;
1719 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1720
1721 fi = frame_find_by_id (b->watchpoint_frame);
1722 within_current_scope = (fi != NULL);
1723 if (within_current_scope)
1724 select_frame (fi);
1725 }
1726
1727 /* We don't free locations. They are stored in the bp_location array
1728 and update_global_location_list will eventually delete them and
1729 remove breakpoints if needed. */
1730 b->loc = NULL;
1731
1732 if (within_current_scope && reparse)
1733 {
1734 const char *s;
1735
1736 b->exp.reset ();
1737 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1738 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1739 /* If the meaning of expression itself changed, the old value is
1740 no longer relevant. We don't want to report a watchpoint hit
1741 to the user when the old value and the new value may actually
1742 be completely different objects. */
1743 b->val = NULL;
1744 b->val_valid = 0;
1745
1746 /* Note that unlike with breakpoints, the watchpoint's condition
1747 expression is stored in the breakpoint object, not in the
1748 locations (re)created below. */
1749 if (b->cond_string != NULL)
1750 {
1751 b->cond_exp.reset ();
1752
1753 s = b->cond_string;
1754 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1755 }
1756 }
1757
1758 /* If we failed to parse the expression, for example because
1759 it refers to a global variable in a not-yet-loaded shared library,
1760 don't try to insert watchpoint. We don't automatically delete
1761 such watchpoint, though, since failure to parse expression
1762 is different from out-of-scope watchpoint. */
1763 if (!target_has_execution)
1764 {
1765 /* Without execution, memory can't change. No use to try and
1766 set watchpoint locations. The watchpoint will be reset when
1767 the target gains execution, through breakpoint_re_set. */
1768 if (!can_use_hw_watchpoints)
1769 {
1770 if (b->ops->works_in_software_mode (b))
1771 b->type = bp_watchpoint;
1772 else
1773 error (_("Can't set read/access watchpoint when "
1774 "hardware watchpoints are disabled."));
1775 }
1776 }
1777 else if (within_current_scope && b->exp)
1778 {
1779 int pc = 0;
1780 struct value *val_chain, *v, *result, *next;
1781 struct program_space *frame_pspace;
1782
1783 fetch_subexp_value (b->exp.get (), &pc, &v, &result, &val_chain, 0);
1784
1785 /* Avoid setting b->val if it's already set. The meaning of
1786 b->val is 'the last value' user saw, and we should update
1787 it only if we reported that last value to user. As it
1788 happens, the code that reports it updates b->val directly.
1789 We don't keep track of the memory value for masked
1790 watchpoints. */
1791 if (!b->val_valid && !is_masked_watchpoint (b))
1792 {
1793 if (b->val_bitsize != 0)
1794 v = extract_bitfield_from_watchpoint_value (b, v);
1795 b->val = release_value (v);
1796 b->val_valid = 1;
1797 }
1798
1799 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1800
1801 /* Look at each value on the value chain. */
1802 for (v = val_chain; v; v = value_next (v))
1803 {
1804 /* If it's a memory location, and GDB actually needed
1805 its contents to evaluate the expression, then we
1806 must watch it. If the first value returned is
1807 still lazy, that means an error occurred reading it;
1808 watch it anyway in case it becomes readable. */
1809 if (VALUE_LVAL (v) == lval_memory
1810 && (v == val_chain || ! value_lazy (v)))
1811 {
1812 struct type *vtype = check_typedef (value_type (v));
1813
1814 /* We only watch structs and arrays if user asked
1815 for it explicitly, never if they just happen to
1816 appear in the middle of some value chain. */
1817 if (v == result
1818 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1819 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1820 {
1821 CORE_ADDR addr;
1822 enum target_hw_bp_type type;
1823 struct bp_location *loc, **tmp;
1824 int bitpos = 0, bitsize = 0;
1825
1826 if (value_bitsize (v) != 0)
1827 {
1828 /* Extract the bit parameters out from the bitfield
1829 sub-expression. */
1830 bitpos = value_bitpos (v);
1831 bitsize = value_bitsize (v);
1832 }
1833 else if (v == result && b->val_bitsize != 0)
1834 {
1835 /* If VAL_BITSIZE != 0 then RESULT is actually a bitfield
1836 lvalue whose bit parameters are saved in the fields
1837 VAL_BITPOS and VAL_BITSIZE. */
1838 bitpos = b->val_bitpos;
1839 bitsize = b->val_bitsize;
1840 }
1841
1842 addr = value_address (v);
1843 if (bitsize != 0)
1844 {
1845 /* Skip the bytes that don't contain the bitfield. */
1846 addr += bitpos / 8;
1847 }
1848
1849 type = hw_write;
1850 if (b->type == bp_read_watchpoint)
1851 type = hw_read;
1852 else if (b->type == bp_access_watchpoint)
1853 type = hw_access;
1854
1855 loc = allocate_bp_location (b);
1856 for (tmp = &(b->loc); *tmp != NULL; tmp = &((*tmp)->next))
1857 ;
1858 *tmp = loc;
1859 loc->gdbarch = get_type_arch (value_type (v));
1860
1861 loc->pspace = frame_pspace;
1862 loc->address = address_significant (loc->gdbarch, addr);
1863
1864 if (bitsize != 0)
1865 {
1866 /* Just cover the bytes that make up the bitfield. */
1867 loc->length = ((bitpos % 8) + bitsize + 7) / 8;
1868 }
1869 else
1870 loc->length = TYPE_LENGTH (value_type (v));
1871
1872 loc->watchpoint_type = type;
1873 }
1874 }
1875 }
1876
1877 /* Change the type of breakpoint between hardware assisted or
1878 an ordinary watchpoint depending on the hardware support
1879 and free hardware slots. REPARSE is set when the inferior
1880 is started. */
1881 if (reparse)
1882 {
1883 int reg_cnt;
1884 enum bp_loc_type loc_type;
1885 struct bp_location *bl;
1886
1887 reg_cnt = can_use_hardware_watchpoint (val_chain);
1888
1889 if (reg_cnt)
1890 {
1891 int i, target_resources_ok, other_type_used;
1892 enum bptype type;
1893
1894 /* Use an exact watchpoint when there's only one memory region to be
1895 watched, and only one debug register is needed to watch it. */
1896 b->exact = target_exact_watchpoints && reg_cnt == 1;
1897
1898 /* We need to determine how many resources are already
1899 used for all other hardware watchpoints plus this one
1900 to see if we still have enough resources to also fit
1901 this watchpoint in as well. */
1902
1903 /* If this is a software watchpoint, we try to turn it
1904 to a hardware one -- count resources as if B was of
1905 hardware watchpoint type. */
1906 type = b->type;
1907 if (type == bp_watchpoint)
1908 type = bp_hardware_watchpoint;
1909
1910 /* This watchpoint may or may not have been placed on
1911 the list yet at this point (it won't be in the list
1912 if we're trying to create it for the first time,
1913 through watch_command), so always account for it
1914 manually. */
1915
1916 /* Count resources used by all watchpoints except B. */
1917 i = hw_watchpoint_used_count_others (b, type, &other_type_used);
1918
1919 /* Add in the resources needed for B. */
1920 i += hw_watchpoint_use_count (b);
1921
1922 target_resources_ok
1923 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1924 if (target_resources_ok <= 0)
1925 {
1926 int sw_mode = b->ops->works_in_software_mode (b);
1927
1928 if (target_resources_ok == 0 && !sw_mode)
1929 error (_("Target does not support this type of "
1930 "hardware watchpoint."));
1931 else if (target_resources_ok < 0 && !sw_mode)
1932 error (_("There are not enough available hardware "
1933 "resources for this watchpoint."));
1934
1935 /* Downgrade to software watchpoint. */
1936 b->type = bp_watchpoint;
1937 }
1938 else
1939 {
1940 /* If this was a software watchpoint, we've just
1941 found we have enough resources to turn it to a
1942 hardware watchpoint. Otherwise, this is a
1943 nop. */
1944 b->type = type;
1945 }
1946 }
1947 else if (!b->ops->works_in_software_mode (b))
1948 {
1949 if (!can_use_hw_watchpoints)
1950 error (_("Can't set read/access watchpoint when "
1951 "hardware watchpoints are disabled."));
1952 else
1953 error (_("Expression cannot be implemented with "
1954 "read/access watchpoint."));
1955 }
1956 else
1957 b->type = bp_watchpoint;
1958
1959 loc_type = (b->type == bp_watchpoint? bp_loc_other
1960 : bp_loc_hardware_watchpoint);
1961 for (bl = b->loc; bl; bl = bl->next)
1962 bl->loc_type = loc_type;
1963 }
1964
1965 for (v = val_chain; v; v = next)
1966 {
1967 next = value_next (v);
1968 if (v != b->val)
1969 value_decref (v);
1970 }
1971
1972 /* If a software watchpoint is not watching any memory, then the
1973 above left it without any location set up. But,
1974 bpstat_stop_status requires a location to be able to report
1975 stops, so make sure there's at least a dummy one. */
1976 if (b->type == bp_watchpoint && b->loc == NULL)
1977 software_watchpoint_add_no_memory_location (b, frame_pspace);
1978 }
1979 else if (!within_current_scope)
1980 {
1981 printf_filtered (_("\
1982 Watchpoint %d deleted because the program has left the block\n\
1983 in which its expression is valid.\n"),
1984 b->number);
1985 watchpoint_del_at_next_stop (b);
1986 }
1987
1988 /* Restore the selected frame. */
1989 if (frame_saved)
1990 select_frame (frame_find_by_id (saved_frame_id));
1991 }
1992
1993
1994 /* Returns 1 iff breakpoint location should be
1995 inserted in the inferior. We don't differentiate the type of BL's owner
1996 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1997 breakpoint_ops is not defined, because in insert_bp_location,
1998 tracepoint's insert_location will not be called. */
1999 static int
2000 should_be_inserted (struct bp_location *bl)
2001 {
2002 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
2003 return 0;
2004
2005 if (bl->owner->disposition == disp_del_at_next_stop)
2006 return 0;
2007
2008 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2009 return 0;
2010
2011 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2012 return 0;
2013
2014 /* This is set for example, when we're attached to the parent of a
2015 vfork, and have detached from the child. The child is running
2016 free, and we expect it to do an exec or exit, at which point the
2017 OS makes the parent schedulable again (and the target reports
2018 that the vfork is done). Until the child is done with the shared
2019 memory region, do not insert breakpoints in the parent, otherwise
2020 the child could still trip on the parent's breakpoints. Since
2021 the parent is blocked anyway, it won't miss any breakpoint. */
2022 if (bl->pspace->breakpoints_not_allowed)
2023 return 0;
2024
2025 /* Don't insert a breakpoint if we're trying to step past its
2026 location, except if the breakpoint is a single-step breakpoint,
2027 and the breakpoint's thread is the thread which is stepping past
2028 a breakpoint. */
2029 if ((bl->loc_type == bp_loc_software_breakpoint
2030 || bl->loc_type == bp_loc_hardware_breakpoint)
2031 && stepping_past_instruction_at (bl->pspace->aspace,
2032 bl->address)
2033 /* The single-step breakpoint may be inserted at the location
2034 we're trying to step if the instruction branches to itself.
2035 However, the instruction won't be executed at all and it may
2036 break the semantics of the instruction, for example, the
2037 instruction is a conditional branch or updates some flags.
2038 We can't fix it unless GDB is able to emulate the instruction
2039 or switch to displaced stepping. */
2040 && !(bl->owner->type == bp_single_step
2041 && thread_is_stepping_over_breakpoint (bl->owner->thread)))
2042 {
2043 if (debug_infrun)
2044 {
2045 fprintf_unfiltered (gdb_stdlog,
2046 "infrun: skipping breakpoint: "
2047 "stepping past insn at: %s\n",
2048 paddress (bl->gdbarch, bl->address));
2049 }
2050 return 0;
2051 }
2052
2053 /* Don't insert watchpoints if we're trying to step past the
2054 instruction that triggered one. */
2055 if ((bl->loc_type == bp_loc_hardware_watchpoint)
2056 && stepping_past_nonsteppable_watchpoint ())
2057 {
2058 if (debug_infrun)
2059 {
2060 fprintf_unfiltered (gdb_stdlog,
2061 "infrun: stepping past non-steppable watchpoint. "
2062 "skipping watchpoint at %s:%d\n",
2063 paddress (bl->gdbarch, bl->address),
2064 bl->length);
2065 }
2066 return 0;
2067 }
2068
2069 return 1;
2070 }
2071
2072 /* Same as should_be_inserted but does the check assuming
2073 that the location is not duplicated. */
2074
2075 static int
2076 unduplicated_should_be_inserted (struct bp_location *bl)
2077 {
2078 int result;
2079 const int save_duplicate = bl->duplicate;
2080
2081 bl->duplicate = 0;
2082 result = should_be_inserted (bl);
2083 bl->duplicate = save_duplicate;
2084 return result;
2085 }
2086
2087 /* Parses a conditional described by an expression COND into an
2088 agent expression bytecode suitable for evaluation
2089 by the bytecode interpreter. Return NULL if there was
2090 any error during parsing. */
2091
2092 static agent_expr_up
2093 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2094 {
2095 if (cond == NULL)
2096 return NULL;
2097
2098 agent_expr_up aexpr;
2099
2100 /* We don't want to stop processing, so catch any errors
2101 that may show up. */
2102 TRY
2103 {
2104 aexpr = gen_eval_for_expr (scope, cond);
2105 }
2106
2107 CATCH (ex, RETURN_MASK_ERROR)
2108 {
2109 /* If we got here, it means the condition could not be parsed to a valid
2110 bytecode expression and thus can't be evaluated on the target's side.
2111 It's no use iterating through the conditions. */
2112 }
2113 END_CATCH
2114
2115 /* We have a valid agent expression. */
2116 return aexpr;
2117 }
2118
2119 /* Based on location BL, create a list of breakpoint conditions to be
2120 passed on to the target. If we have duplicated locations with different
2121 conditions, we will add such conditions to the list. The idea is that the
2122 target will evaluate the list of conditions and will only notify GDB when
2123 one of them is true. */
2124
2125 static void
2126 build_target_condition_list (struct bp_location *bl)
2127 {
2128 struct bp_location **locp = NULL, **loc2p;
2129 int null_condition_or_parse_error = 0;
2130 int modified = bl->needs_update;
2131 struct bp_location *loc;
2132
2133 /* Release conditions left over from a previous insert. */
2134 bl->target_info.conditions.clear ();
2135
2136 /* This is only meaningful if the target is
2137 evaluating conditions and if the user has
2138 opted for condition evaluation on the target's
2139 side. */
2140 if (gdb_evaluates_breakpoint_condition_p ()
2141 || !target_supports_evaluation_of_breakpoint_conditions ())
2142 return;
2143
2144 /* Do a first pass to check for locations with no assigned
2145 conditions or conditions that fail to parse to a valid agent expression
2146 bytecode. If any of these happen, then it's no use to send conditions
2147 to the target since this location will always trigger and generate a
2148 response back to GDB. */
2149 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2150 {
2151 loc = (*loc2p);
2152 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2153 {
2154 if (modified)
2155 {
2156 /* Re-parse the conditions since something changed. In that
2157 case we already freed the condition bytecodes (see
2158 force_breakpoint_reinsertion). We just
2159 need to parse the condition to bytecodes again. */
2160 loc->cond_bytecode = parse_cond_to_aexpr (bl->address,
2161 loc->cond.get ());
2162 }
2163
2164 /* If we have a NULL bytecode expression, it means something
2165 went wrong or we have a null condition expression. */
2166 if (!loc->cond_bytecode)
2167 {
2168 null_condition_or_parse_error = 1;
2169 break;
2170 }
2171 }
2172 }
2173
2174 /* If any of these happened, it means we will have to evaluate the conditions
2175 for the location's address on gdb's side. It is no use keeping bytecodes
2176 for all the other duplicate locations, thus we free all of them here.
2177
2178 This is so we have a finer control over which locations' conditions are
2179 being evaluated by GDB or the remote stub. */
2180 if (null_condition_or_parse_error)
2181 {
2182 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2183 {
2184 loc = (*loc2p);
2185 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2186 {
2187 /* Only go as far as the first NULL bytecode is
2188 located. */
2189 if (!loc->cond_bytecode)
2190 return;
2191
2192 loc->cond_bytecode.reset ();
2193 }
2194 }
2195 }
2196
2197 /* No NULL conditions or failed bytecode generation. Build a condition list
2198 for this location's address. */
2199 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2200 {
2201 loc = (*loc2p);
2202 if (loc->cond
2203 && is_breakpoint (loc->owner)
2204 && loc->pspace->num == bl->pspace->num
2205 && loc->owner->enable_state == bp_enabled
2206 && loc->enabled)
2207 {
2208 /* Add the condition to the vector. This will be used later
2209 to send the conditions to the target. */
2210 bl->target_info.conditions.push_back (loc->cond_bytecode.get ());
2211 }
2212 }
2213
2214 return;
2215 }
2216
2217 /* Parses a command described by string CMD into an agent expression
2218 bytecode suitable for evaluation by the bytecode interpreter.
2219 Return NULL if there was any error during parsing. */
2220
2221 static agent_expr_up
2222 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2223 {
2224 const char *cmdrest;
2225 const char *format_start, *format_end;
2226 struct gdbarch *gdbarch = get_current_arch ();
2227
2228 if (cmd == NULL)
2229 return NULL;
2230
2231 cmdrest = cmd;
2232
2233 if (*cmdrest == ',')
2234 ++cmdrest;
2235 cmdrest = skip_spaces (cmdrest);
2236
2237 if (*cmdrest++ != '"')
2238 error (_("No format string following the location"));
2239
2240 format_start = cmdrest;
2241
2242 format_pieces fpieces (&cmdrest);
2243
2244 format_end = cmdrest;
2245
2246 if (*cmdrest++ != '"')
2247 error (_("Bad format string, non-terminated '\"'."));
2248
2249 cmdrest = skip_spaces (cmdrest);
2250
2251 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2252 error (_("Invalid argument syntax"));
2253
2254 if (*cmdrest == ',')
2255 cmdrest++;
2256 cmdrest = skip_spaces (cmdrest);
2257
2258 /* For each argument, make an expression. */
2259
2260 std::vector<struct expression *> argvec;
2261 while (*cmdrest != '\0')
2262 {
2263 const char *cmd1;
2264
2265 cmd1 = cmdrest;
2266 expression_up expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2267 argvec.push_back (expr.release ());
2268 cmdrest = cmd1;
2269 if (*cmdrest == ',')
2270 ++cmdrest;
2271 }
2272
2273 agent_expr_up aexpr;
2274
2275 /* We don't want to stop processing, so catch any errors
2276 that may show up. */
2277 TRY
2278 {
2279 aexpr = gen_printf (scope, gdbarch, 0, 0,
2280 format_start, format_end - format_start,
2281 argvec.size (), argvec.data ());
2282 }
2283 CATCH (ex, RETURN_MASK_ERROR)
2284 {
2285 /* If we got here, it means the command could not be parsed to a valid
2286 bytecode expression and thus can't be evaluated on the target's side.
2287 It's no use iterating through the other commands. */
2288 }
2289 END_CATCH
2290
2291 /* We have a valid agent expression, return it. */
2292 return aexpr;
2293 }
2294
2295 /* Based on location BL, create a list of breakpoint commands to be
2296 passed on to the target. If we have duplicated locations with
2297 different commands, we will add any such to the list. */
2298
2299 static void
2300 build_target_command_list (struct bp_location *bl)
2301 {
2302 struct bp_location **locp = NULL, **loc2p;
2303 int null_command_or_parse_error = 0;
2304 int modified = bl->needs_update;
2305 struct bp_location *loc;
2306
2307 /* Clear commands left over from a previous insert. */
2308 bl->target_info.tcommands.clear ();
2309
2310 if (!target_can_run_breakpoint_commands ())
2311 return;
2312
2313 /* For now, limit to agent-style dprintf breakpoints. */
2314 if (dprintf_style != dprintf_style_agent)
2315 return;
2316
2317 /* For now, if we have any duplicate location that isn't a dprintf,
2318 don't install the target-side commands, as that would make the
2319 breakpoint not be reported to the core, and we'd lose
2320 control. */
2321 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2322 {
2323 loc = (*loc2p);
2324 if (is_breakpoint (loc->owner)
2325 && loc->pspace->num == bl->pspace->num
2326 && loc->owner->type != bp_dprintf)
2327 return;
2328 }
2329
2330 /* Do a first pass to check for locations with no assigned
2331 conditions or conditions that fail to parse to a valid agent expression
2332 bytecode. If any of these happen, then it's no use to send conditions
2333 to the target since this location will always trigger and generate a
2334 response back to GDB. */
2335 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2336 {
2337 loc = (*loc2p);
2338 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2339 {
2340 if (modified)
2341 {
2342 /* Re-parse the commands since something changed. In that
2343 case we already freed the command bytecodes (see
2344 force_breakpoint_reinsertion). We just
2345 need to parse the command to bytecodes again. */
2346 loc->cmd_bytecode
2347 = parse_cmd_to_aexpr (bl->address,
2348 loc->owner->extra_string);
2349 }
2350
2351 /* If we have a NULL bytecode expression, it means something
2352 went wrong or we have a null command expression. */
2353 if (!loc->cmd_bytecode)
2354 {
2355 null_command_or_parse_error = 1;
2356 break;
2357 }
2358 }
2359 }
2360
2361 /* If anything failed, then we're not doing target-side commands,
2362 and so clean up. */
2363 if (null_command_or_parse_error)
2364 {
2365 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2366 {
2367 loc = (*loc2p);
2368 if (is_breakpoint (loc->owner)
2369 && loc->pspace->num == bl->pspace->num)
2370 {
2371 /* Only go as far as the first NULL bytecode is
2372 located. */
2373 if (loc->cmd_bytecode == NULL)
2374 return;
2375
2376 loc->cmd_bytecode.reset ();
2377 }
2378 }
2379 }
2380
2381 /* No NULL commands or failed bytecode generation. Build a command list
2382 for this location's address. */
2383 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2384 {
2385 loc = (*loc2p);
2386 if (loc->owner->extra_string
2387 && is_breakpoint (loc->owner)
2388 && loc->pspace->num == bl->pspace->num
2389 && loc->owner->enable_state == bp_enabled
2390 && loc->enabled)
2391 {
2392 /* Add the command to the vector. This will be used later
2393 to send the commands to the target. */
2394 bl->target_info.tcommands.push_back (loc->cmd_bytecode.get ());
2395 }
2396 }
2397
2398 bl->target_info.persist = 0;
2399 /* Maybe flag this location as persistent. */
2400 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2401 bl->target_info.persist = 1;
2402 }
2403
2404 /* Return the kind of breakpoint on address *ADDR. Get the kind
2405 of breakpoint according to ADDR except single-step breakpoint.
2406 Get the kind of single-step breakpoint according to the current
2407 registers state. */
2408
2409 static int
2410 breakpoint_kind (struct bp_location *bl, CORE_ADDR *addr)
2411 {
2412 if (bl->owner->type == bp_single_step)
2413 {
2414 struct thread_info *thr = find_thread_global_id (bl->owner->thread);
2415 struct regcache *regcache;
2416
2417 regcache = get_thread_regcache (thr->ptid);
2418
2419 return gdbarch_breakpoint_kind_from_current_state (bl->gdbarch,
2420 regcache, addr);
2421 }
2422 else
2423 return gdbarch_breakpoint_kind_from_pc (bl->gdbarch, addr);
2424 }
2425
2426 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2427 location. Any error messages are printed to TMP_ERROR_STREAM; and
2428 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2429 Returns 0 for success, 1 if the bp_location type is not supported or
2430 -1 for failure.
2431
2432 NOTE drow/2003-09-09: This routine could be broken down to an
2433 object-style method for each breakpoint or catchpoint type. */
2434 static int
2435 insert_bp_location (struct bp_location *bl,
2436 struct ui_file *tmp_error_stream,
2437 int *disabled_breaks,
2438 int *hw_breakpoint_error,
2439 int *hw_bp_error_explained_already)
2440 {
2441 gdb_exception bp_excpt = exception_none;
2442
2443 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2444 return 0;
2445
2446 /* Note we don't initialize bl->target_info, as that wipes out
2447 the breakpoint location's shadow_contents if the breakpoint
2448 is still inserted at that location. This in turn breaks
2449 target_read_memory which depends on these buffers when
2450 a memory read is requested at the breakpoint location:
2451 Once the target_info has been wiped, we fail to see that
2452 we have a breakpoint inserted at that address and thus
2453 read the breakpoint instead of returning the data saved in
2454 the breakpoint location's shadow contents. */
2455 bl->target_info.reqstd_address = bl->address;
2456 bl->target_info.placed_address_space = bl->pspace->aspace;
2457 bl->target_info.length = bl->length;
2458
2459 /* When working with target-side conditions, we must pass all the conditions
2460 for the same breakpoint address down to the target since GDB will not
2461 insert those locations. With a list of breakpoint conditions, the target
2462 can decide when to stop and notify GDB. */
2463
2464 if (is_breakpoint (bl->owner))
2465 {
2466 build_target_condition_list (bl);
2467 build_target_command_list (bl);
2468 /* Reset the modification marker. */
2469 bl->needs_update = 0;
2470 }
2471
2472 if (bl->loc_type == bp_loc_software_breakpoint
2473 || bl->loc_type == bp_loc_hardware_breakpoint)
2474 {
2475 if (bl->owner->type != bp_hardware_breakpoint)
2476 {
2477 /* If the explicitly specified breakpoint type
2478 is not hardware breakpoint, check the memory map to see
2479 if the breakpoint address is in read only memory or not.
2480
2481 Two important cases are:
2482 - location type is not hardware breakpoint, memory
2483 is readonly. We change the type of the location to
2484 hardware breakpoint.
2485 - location type is hardware breakpoint, memory is
2486 read-write. This means we've previously made the
2487 location hardware one, but then the memory map changed,
2488 so we undo.
2489
2490 When breakpoints are removed, remove_breakpoints will use
2491 location types we've just set here, the only possible
2492 problem is that memory map has changed during running
2493 program, but it's not going to work anyway with current
2494 gdb. */
2495 struct mem_region *mr
2496 = lookup_mem_region (bl->target_info.reqstd_address);
2497
2498 if (mr)
2499 {
2500 if (automatic_hardware_breakpoints)
2501 {
2502 enum bp_loc_type new_type;
2503
2504 if (mr->attrib.mode != MEM_RW)
2505 new_type = bp_loc_hardware_breakpoint;
2506 else
2507 new_type = bp_loc_software_breakpoint;
2508
2509 if (new_type != bl->loc_type)
2510 {
2511 static int said = 0;
2512
2513 bl->loc_type = new_type;
2514 if (!said)
2515 {
2516 fprintf_filtered (gdb_stdout,
2517 _("Note: automatically using "
2518 "hardware breakpoints for "
2519 "read-only addresses.\n"));
2520 said = 1;
2521 }
2522 }
2523 }
2524 else if (bl->loc_type == bp_loc_software_breakpoint
2525 && mr->attrib.mode != MEM_RW)
2526 {
2527 fprintf_unfiltered (tmp_error_stream,
2528 _("Cannot insert breakpoint %d.\n"
2529 "Cannot set software breakpoint "
2530 "at read-only address %s\n"),
2531 bl->owner->number,
2532 paddress (bl->gdbarch, bl->address));
2533 return 1;
2534 }
2535 }
2536 }
2537
2538 /* First check to see if we have to handle an overlay. */
2539 if (overlay_debugging == ovly_off
2540 || bl->section == NULL
2541 || !(section_is_overlay (bl->section)))
2542 {
2543 /* No overlay handling: just set the breakpoint. */
2544 TRY
2545 {
2546 int val;
2547
2548 val = bl->owner->ops->insert_location (bl);
2549 if (val)
2550 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2551 }
2552 CATCH (e, RETURN_MASK_ALL)
2553 {
2554 bp_excpt = e;
2555 }
2556 END_CATCH
2557 }
2558 else
2559 {
2560 /* This breakpoint is in an overlay section.
2561 Shall we set a breakpoint at the LMA? */
2562 if (!overlay_events_enabled)
2563 {
2564 /* Yes -- overlay event support is not active,
2565 so we must try to set a breakpoint at the LMA.
2566 This will not work for a hardware breakpoint. */
2567 if (bl->loc_type == bp_loc_hardware_breakpoint)
2568 warning (_("hardware breakpoint %d not supported in overlay!"),
2569 bl->owner->number);
2570 else
2571 {
2572 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2573 bl->section);
2574 /* Set a software (trap) breakpoint at the LMA. */
2575 bl->overlay_target_info = bl->target_info;
2576 bl->overlay_target_info.reqstd_address = addr;
2577
2578 /* No overlay handling: just set the breakpoint. */
2579 TRY
2580 {
2581 int val;
2582
2583 bl->overlay_target_info.kind
2584 = breakpoint_kind (bl, &addr);
2585 bl->overlay_target_info.placed_address = addr;
2586 val = target_insert_breakpoint (bl->gdbarch,
2587 &bl->overlay_target_info);
2588 if (val)
2589 bp_excpt
2590 = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2591 }
2592 CATCH (e, RETURN_MASK_ALL)
2593 {
2594 bp_excpt = e;
2595 }
2596 END_CATCH
2597
2598 if (bp_excpt.reason != 0)
2599 fprintf_unfiltered (tmp_error_stream,
2600 "Overlay breakpoint %d "
2601 "failed: in ROM?\n",
2602 bl->owner->number);
2603 }
2604 }
2605 /* Shall we set a breakpoint at the VMA? */
2606 if (section_is_mapped (bl->section))
2607 {
2608 /* Yes. This overlay section is mapped into memory. */
2609 TRY
2610 {
2611 int val;
2612
2613 val = bl->owner->ops->insert_location (bl);
2614 if (val)
2615 bp_excpt = gdb_exception {RETURN_ERROR, GENERIC_ERROR};
2616 }
2617 CATCH (e, RETURN_MASK_ALL)
2618 {
2619 bp_excpt = e;
2620 }
2621 END_CATCH
2622 }
2623 else
2624 {
2625 /* No. This breakpoint will not be inserted.
2626 No error, but do not mark the bp as 'inserted'. */
2627 return 0;
2628 }
2629 }
2630
2631 if (bp_excpt.reason != 0)
2632 {
2633 /* Can't set the breakpoint. */
2634
2635 /* In some cases, we might not be able to insert a
2636 breakpoint in a shared library that has already been
2637 removed, but we have not yet processed the shlib unload
2638 event. Unfortunately, some targets that implement
2639 breakpoint insertion themselves can't tell why the
2640 breakpoint insertion failed (e.g., the remote target
2641 doesn't define error codes), so we must treat generic
2642 errors as memory errors. */
2643 if (bp_excpt.reason == RETURN_ERROR
2644 && (bp_excpt.error == GENERIC_ERROR
2645 || bp_excpt.error == MEMORY_ERROR)
2646 && bl->loc_type == bp_loc_software_breakpoint
2647 && (solib_name_from_address (bl->pspace, bl->address)
2648 || shared_objfile_contains_address_p (bl->pspace,
2649 bl->address)))
2650 {
2651 /* See also: disable_breakpoints_in_shlibs. */
2652 bl->shlib_disabled = 1;
2653 gdb::observers::breakpoint_modified.notify (bl->owner);
2654 if (!*disabled_breaks)
2655 {
2656 fprintf_unfiltered (tmp_error_stream,
2657 "Cannot insert breakpoint %d.\n",
2658 bl->owner->number);
2659 fprintf_unfiltered (tmp_error_stream,
2660 "Temporarily disabling shared "
2661 "library breakpoints:\n");
2662 }
2663 *disabled_breaks = 1;
2664 fprintf_unfiltered (tmp_error_stream,
2665 "breakpoint #%d\n", bl->owner->number);
2666 return 0;
2667 }
2668 else
2669 {
2670 if (bl->loc_type == bp_loc_hardware_breakpoint)
2671 {
2672 *hw_breakpoint_error = 1;
2673 *hw_bp_error_explained_already = bp_excpt.message != NULL;
2674 fprintf_unfiltered (tmp_error_stream,
2675 "Cannot insert hardware breakpoint %d%s",
2676 bl->owner->number,
2677 bp_excpt.message ? ":" : ".\n");
2678 if (bp_excpt.message != NULL)
2679 fprintf_unfiltered (tmp_error_stream, "%s.\n",
2680 bp_excpt.message);
2681 }
2682 else
2683 {
2684 if (bp_excpt.message == NULL)
2685 {
2686 std::string message
2687 = memory_error_message (TARGET_XFER_E_IO,
2688 bl->gdbarch, bl->address);
2689
2690 fprintf_unfiltered (tmp_error_stream,
2691 "Cannot insert breakpoint %d.\n"
2692 "%s\n",
2693 bl->owner->number, message.c_str ());
2694 }
2695 else
2696 {
2697 fprintf_unfiltered (tmp_error_stream,
2698 "Cannot insert breakpoint %d: %s\n",
2699 bl->owner->number,
2700 bp_excpt.message);
2701 }
2702 }
2703 return 1;
2704
2705 }
2706 }
2707 else
2708 bl->inserted = 1;
2709
2710 return 0;
2711 }
2712
2713 else if (bl->loc_type == bp_loc_hardware_watchpoint
2714 /* NOTE drow/2003-09-08: This state only exists for removing
2715 watchpoints. It's not clear that it's necessary... */
2716 && bl->owner->disposition != disp_del_at_next_stop)
2717 {
2718 int val;
2719
2720 gdb_assert (bl->owner->ops != NULL
2721 && bl->owner->ops->insert_location != NULL);
2722
2723 val = bl->owner->ops->insert_location (bl);
2724
2725 /* If trying to set a read-watchpoint, and it turns out it's not
2726 supported, try emulating one with an access watchpoint. */
2727 if (val == 1 && bl->watchpoint_type == hw_read)
2728 {
2729 struct bp_location *loc, **loc_temp;
2730
2731 /* But don't try to insert it, if there's already another
2732 hw_access location that would be considered a duplicate
2733 of this one. */
2734 ALL_BP_LOCATIONS (loc, loc_temp)
2735 if (loc != bl
2736 && loc->watchpoint_type == hw_access
2737 && watchpoint_locations_match (bl, loc))
2738 {
2739 bl->duplicate = 1;
2740 bl->inserted = 1;
2741 bl->target_info = loc->target_info;
2742 bl->watchpoint_type = hw_access;
2743 val = 0;
2744 break;
2745 }
2746
2747 if (val == 1)
2748 {
2749 bl->watchpoint_type = hw_access;
2750 val = bl->owner->ops->insert_location (bl);
2751
2752 if (val)
2753 /* Back to the original value. */
2754 bl->watchpoint_type = hw_read;
2755 }
2756 }
2757
2758 bl->inserted = (val == 0);
2759 }
2760
2761 else if (bl->owner->type == bp_catchpoint)
2762 {
2763 int val;
2764
2765 gdb_assert (bl->owner->ops != NULL
2766 && bl->owner->ops->insert_location != NULL);
2767
2768 val = bl->owner->ops->insert_location (bl);
2769 if (val)
2770 {
2771 bl->owner->enable_state = bp_disabled;
2772
2773 if (val == 1)
2774 warning (_("\
2775 Error inserting catchpoint %d: Your system does not support this type\n\
2776 of catchpoint."), bl->owner->number);
2777 else
2778 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2779 }
2780
2781 bl->inserted = (val == 0);
2782
2783 /* We've already printed an error message if there was a problem
2784 inserting this catchpoint, and we've disabled the catchpoint,
2785 so just return success. */
2786 return 0;
2787 }
2788
2789 return 0;
2790 }
2791
2792 /* This function is called when program space PSPACE is about to be
2793 deleted. It takes care of updating breakpoints to not reference
2794 PSPACE anymore. */
2795
2796 void
2797 breakpoint_program_space_exit (struct program_space *pspace)
2798 {
2799 struct breakpoint *b, *b_temp;
2800 struct bp_location *loc, **loc_temp;
2801
2802 /* Remove any breakpoint that was set through this program space. */
2803 ALL_BREAKPOINTS_SAFE (b, b_temp)
2804 {
2805 if (b->pspace == pspace)
2806 delete_breakpoint (b);
2807 }
2808
2809 /* Breakpoints set through other program spaces could have locations
2810 bound to PSPACE as well. Remove those. */
2811 ALL_BP_LOCATIONS (loc, loc_temp)
2812 {
2813 struct bp_location *tmp;
2814
2815 if (loc->pspace == pspace)
2816 {
2817 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2818 if (loc->owner->loc == loc)
2819 loc->owner->loc = loc->next;
2820 else
2821 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2822 if (tmp->next == loc)
2823 {
2824 tmp->next = loc->next;
2825 break;
2826 }
2827 }
2828 }
2829
2830 /* Now update the global location list to permanently delete the
2831 removed locations above. */
2832 update_global_location_list (UGLL_DONT_INSERT);
2833 }
2834
2835 /* Make sure all breakpoints are inserted in inferior.
2836 Throws exception on any error.
2837 A breakpoint that is already inserted won't be inserted
2838 again, so calling this function twice is safe. */
2839 void
2840 insert_breakpoints (void)
2841 {
2842 struct breakpoint *bpt;
2843
2844 ALL_BREAKPOINTS (bpt)
2845 if (is_hardware_watchpoint (bpt))
2846 {
2847 struct watchpoint *w = (struct watchpoint *) bpt;
2848
2849 update_watchpoint (w, 0 /* don't reparse. */);
2850 }
2851
2852 /* Updating watchpoints creates new locations, so update the global
2853 location list. Explicitly tell ugll to insert locations and
2854 ignore breakpoints_always_inserted_mode. */
2855 update_global_location_list (UGLL_INSERT);
2856 }
2857
2858 /* Invoke CALLBACK for each of bp_location. */
2859
2860 void
2861 iterate_over_bp_locations (walk_bp_location_callback callback)
2862 {
2863 struct bp_location *loc, **loc_tmp;
2864
2865 ALL_BP_LOCATIONS (loc, loc_tmp)
2866 {
2867 callback (loc, NULL);
2868 }
2869 }
2870
2871 /* This is used when we need to synch breakpoint conditions between GDB and the
2872 target. It is the case with deleting and disabling of breakpoints when using
2873 always-inserted mode. */
2874
2875 static void
2876 update_inserted_breakpoint_locations (void)
2877 {
2878 struct bp_location *bl, **blp_tmp;
2879 int error_flag = 0;
2880 int val = 0;
2881 int disabled_breaks = 0;
2882 int hw_breakpoint_error = 0;
2883 int hw_bp_details_reported = 0;
2884
2885 string_file tmp_error_stream;
2886
2887 /* Explicitly mark the warning -- this will only be printed if
2888 there was an error. */
2889 tmp_error_stream.puts ("Warning:\n");
2890
2891 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2892
2893 ALL_BP_LOCATIONS (bl, blp_tmp)
2894 {
2895 /* We only want to update software breakpoints and hardware
2896 breakpoints. */
2897 if (!is_breakpoint (bl->owner))
2898 continue;
2899
2900 /* We only want to update locations that are already inserted
2901 and need updating. This is to avoid unwanted insertion during
2902 deletion of breakpoints. */
2903 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2904 continue;
2905
2906 switch_to_program_space_and_thread (bl->pspace);
2907
2908 /* For targets that support global breakpoints, there's no need
2909 to select an inferior to insert breakpoint to. In fact, even
2910 if we aren't attached to any process yet, we should still
2911 insert breakpoints. */
2912 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2913 && ptid_equal (inferior_ptid, null_ptid))
2914 continue;
2915
2916 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2917 &hw_breakpoint_error, &hw_bp_details_reported);
2918 if (val)
2919 error_flag = val;
2920 }
2921
2922 if (error_flag)
2923 {
2924 target_terminal::ours_for_output ();
2925 error_stream (tmp_error_stream);
2926 }
2927 }
2928
2929 /* Used when starting or continuing the program. */
2930
2931 static void
2932 insert_breakpoint_locations (void)
2933 {
2934 struct breakpoint *bpt;
2935 struct bp_location *bl, **blp_tmp;
2936 int error_flag = 0;
2937 int val = 0;
2938 int disabled_breaks = 0;
2939 int hw_breakpoint_error = 0;
2940 int hw_bp_error_explained_already = 0;
2941
2942 string_file tmp_error_stream;
2943
2944 /* Explicitly mark the warning -- this will only be printed if
2945 there was an error. */
2946 tmp_error_stream.puts ("Warning:\n");
2947
2948 scoped_restore_current_pspace_and_thread restore_pspace_thread;
2949
2950 ALL_BP_LOCATIONS (bl, blp_tmp)
2951 {
2952 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2953 continue;
2954
2955 /* There is no point inserting thread-specific breakpoints if
2956 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2957 has BL->OWNER always non-NULL. */
2958 if (bl->owner->thread != -1
2959 && !valid_global_thread_id (bl->owner->thread))
2960 continue;
2961
2962 switch_to_program_space_and_thread (bl->pspace);
2963
2964 /* For targets that support global breakpoints, there's no need
2965 to select an inferior to insert breakpoint to. In fact, even
2966 if we aren't attached to any process yet, we should still
2967 insert breakpoints. */
2968 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2969 && ptid_equal (inferior_ptid, null_ptid))
2970 continue;
2971
2972 val = insert_bp_location (bl, &tmp_error_stream, &disabled_breaks,
2973 &hw_breakpoint_error, &hw_bp_error_explained_already);
2974 if (val)
2975 error_flag = val;
2976 }
2977
2978 /* If we failed to insert all locations of a watchpoint, remove
2979 them, as half-inserted watchpoint is of limited use. */
2980 ALL_BREAKPOINTS (bpt)
2981 {
2982 int some_failed = 0;
2983 struct bp_location *loc;
2984
2985 if (!is_hardware_watchpoint (bpt))
2986 continue;
2987
2988 if (!breakpoint_enabled (bpt))
2989 continue;
2990
2991 if (bpt->disposition == disp_del_at_next_stop)
2992 continue;
2993
2994 for (loc = bpt->loc; loc; loc = loc->next)
2995 if (!loc->inserted && should_be_inserted (loc))
2996 {
2997 some_failed = 1;
2998 break;
2999 }
3000 if (some_failed)
3001 {
3002 for (loc = bpt->loc; loc; loc = loc->next)
3003 if (loc->inserted)
3004 remove_breakpoint (loc);
3005
3006 hw_breakpoint_error = 1;
3007 tmp_error_stream.printf ("Could not insert "
3008 "hardware watchpoint %d.\n",
3009 bpt->number);
3010 error_flag = -1;
3011 }
3012 }
3013
3014 if (error_flag)
3015 {
3016 /* If a hardware breakpoint or watchpoint was inserted, add a
3017 message about possibly exhausted resources. */
3018 if (hw_breakpoint_error && !hw_bp_error_explained_already)
3019 {
3020 tmp_error_stream.printf ("Could not insert hardware breakpoints:\n\
3021 You may have requested too many hardware breakpoints/watchpoints.\n");
3022 }
3023 target_terminal::ours_for_output ();
3024 error_stream (tmp_error_stream);
3025 }
3026 }
3027
3028 /* Used when the program stops.
3029 Returns zero if successful, or non-zero if there was a problem
3030 removing a breakpoint location. */
3031
3032 int
3033 remove_breakpoints (void)
3034 {
3035 struct bp_location *bl, **blp_tmp;
3036 int val = 0;
3037
3038 ALL_BP_LOCATIONS (bl, blp_tmp)
3039 {
3040 if (bl->inserted && !is_tracepoint (bl->owner))
3041 val |= remove_breakpoint (bl);
3042 }
3043 return val;
3044 }
3045
3046 /* When a thread exits, remove breakpoints that are related to
3047 that thread. */
3048
3049 static void
3050 remove_threaded_breakpoints (struct thread_info *tp, int silent)
3051 {
3052 struct breakpoint *b, *b_tmp;
3053
3054 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3055 {
3056 if (b->thread == tp->global_num && user_breakpoint_p (b))
3057 {
3058 b->disposition = disp_del_at_next_stop;
3059
3060 printf_filtered (_("\
3061 Thread-specific breakpoint %d deleted - thread %s no longer in the thread list.\n"),
3062 b->number, print_thread_id (tp));
3063
3064 /* Hide it from the user. */
3065 b->number = 0;
3066 }
3067 }
3068 }
3069
3070 /* Remove breakpoints of process PID. */
3071
3072 int
3073 remove_breakpoints_pid (int pid)
3074 {
3075 struct bp_location *bl, **blp_tmp;
3076 int val;
3077 struct inferior *inf = find_inferior_pid (pid);
3078
3079 ALL_BP_LOCATIONS (bl, blp_tmp)
3080 {
3081 if (bl->pspace != inf->pspace)
3082 continue;
3083
3084 if (bl->inserted && !bl->target_info.persist)
3085 {
3086 val = remove_breakpoint (bl);
3087 if (val != 0)
3088 return val;
3089 }
3090 }
3091 return 0;
3092 }
3093
3094 static int internal_breakpoint_number = -1;
3095
3096 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3097 If INTERNAL is non-zero, the breakpoint number will be populated
3098 from internal_breakpoint_number and that variable decremented.
3099 Otherwise the breakpoint number will be populated from
3100 breakpoint_count and that value incremented. Internal breakpoints
3101 do not set the internal var bpnum. */
3102 static void
3103 set_breakpoint_number (int internal, struct breakpoint *b)
3104 {
3105 if (internal)
3106 b->number = internal_breakpoint_number--;
3107 else
3108 {
3109 set_breakpoint_count (breakpoint_count + 1);
3110 b->number = breakpoint_count;
3111 }
3112 }
3113
3114 static struct breakpoint *
3115 create_internal_breakpoint (struct gdbarch *gdbarch,
3116 CORE_ADDR address, enum bptype type,
3117 const struct breakpoint_ops *ops)
3118 {
3119 symtab_and_line sal;
3120 sal.pc = address;
3121 sal.section = find_pc_overlay (sal.pc);
3122 sal.pspace = current_program_space;
3123
3124 breakpoint *b = set_raw_breakpoint (gdbarch, sal, type, ops);
3125 b->number = internal_breakpoint_number--;
3126 b->disposition = disp_donttouch;
3127
3128 return b;
3129 }
3130
3131 static const char *const longjmp_names[] =
3132 {
3133 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3134 };
3135 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3136
3137 /* Per-objfile data private to breakpoint.c. */
3138 struct breakpoint_objfile_data
3139 {
3140 /* Minimal symbol for "_ovly_debug_event" (if any). */
3141 struct bound_minimal_symbol overlay_msym {};
3142
3143 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3144 struct bound_minimal_symbol longjmp_msym[NUM_LONGJMP_NAMES] {};
3145
3146 /* True if we have looked for longjmp probes. */
3147 int longjmp_searched = 0;
3148
3149 /* SystemTap probe points for longjmp (if any). These are non-owning
3150 references. */
3151 std::vector<probe *> longjmp_probes;
3152
3153 /* Minimal symbol for "std::terminate()" (if any). */
3154 struct bound_minimal_symbol terminate_msym {};
3155
3156 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3157 struct bound_minimal_symbol exception_msym {};
3158
3159 /* True if we have looked for exception probes. */
3160 int exception_searched = 0;
3161
3162 /* SystemTap probe points for unwinding (if any). These are non-owning
3163 references. */
3164 std::vector<probe *> exception_probes;
3165 };
3166
3167 static const struct objfile_data *breakpoint_objfile_key;
3168
3169 /* Minimal symbol not found sentinel. */
3170 static struct minimal_symbol msym_not_found;
3171
3172 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3173
3174 static int
3175 msym_not_found_p (const struct minimal_symbol *msym)
3176 {
3177 return msym == &msym_not_found;
3178 }
3179
3180 /* Return per-objfile data needed by breakpoint.c.
3181 Allocate the data if necessary. */
3182
3183 static struct breakpoint_objfile_data *
3184 get_breakpoint_objfile_data (struct objfile *objfile)
3185 {
3186 struct breakpoint_objfile_data *bp_objfile_data;
3187
3188 bp_objfile_data = ((struct breakpoint_objfile_data *)
3189 objfile_data (objfile, breakpoint_objfile_key));
3190 if (bp_objfile_data == NULL)
3191 {
3192 bp_objfile_data = new breakpoint_objfile_data ();
3193 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3194 }
3195 return bp_objfile_data;
3196 }
3197
3198 static void
3199 free_breakpoint_objfile_data (struct objfile *obj, void *data)
3200 {
3201 struct breakpoint_objfile_data *bp_objfile_data
3202 = (struct breakpoint_objfile_data *) data;
3203
3204 delete bp_objfile_data;
3205 }
3206
3207 static void
3208 create_overlay_event_breakpoint (void)
3209 {
3210 struct objfile *objfile;
3211 const char *const func_name = "_ovly_debug_event";
3212
3213 ALL_OBJFILES (objfile)
3214 {
3215 struct breakpoint *b;
3216 struct breakpoint_objfile_data *bp_objfile_data;
3217 CORE_ADDR addr;
3218 struct explicit_location explicit_loc;
3219
3220 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3221
3222 if (msym_not_found_p (bp_objfile_data->overlay_msym.minsym))
3223 continue;
3224
3225 if (bp_objfile_data->overlay_msym.minsym == NULL)
3226 {
3227 struct bound_minimal_symbol m;
3228
3229 m = lookup_minimal_symbol_text (func_name, objfile);
3230 if (m.minsym == NULL)
3231 {
3232 /* Avoid future lookups in this objfile. */
3233 bp_objfile_data->overlay_msym.minsym = &msym_not_found;
3234 continue;
3235 }
3236 bp_objfile_data->overlay_msym = m;
3237 }
3238
3239 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3240 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3241 bp_overlay_event,
3242 &internal_breakpoint_ops);
3243 initialize_explicit_location (&explicit_loc);
3244 explicit_loc.function_name = ASTRDUP (func_name);
3245 b->location = new_explicit_location (&explicit_loc);
3246
3247 if (overlay_debugging == ovly_auto)
3248 {
3249 b->enable_state = bp_enabled;
3250 overlay_events_enabled = 1;
3251 }
3252 else
3253 {
3254 b->enable_state = bp_disabled;
3255 overlay_events_enabled = 0;
3256 }
3257 }
3258 }
3259
3260 static void
3261 create_longjmp_master_breakpoint (void)
3262 {
3263 struct program_space *pspace;
3264
3265 scoped_restore_current_program_space restore_pspace;
3266
3267 ALL_PSPACES (pspace)
3268 {
3269 struct objfile *objfile;
3270
3271 set_current_program_space (pspace);
3272
3273 ALL_OBJFILES (objfile)
3274 {
3275 int i;
3276 struct gdbarch *gdbarch;
3277 struct breakpoint_objfile_data *bp_objfile_data;
3278
3279 gdbarch = get_objfile_arch (objfile);
3280
3281 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3282
3283 if (!bp_objfile_data->longjmp_searched)
3284 {
3285 std::vector<probe *> ret
3286 = find_probes_in_objfile (objfile, "libc", "longjmp");
3287
3288 if (!ret.empty ())
3289 {
3290 /* We are only interested in checking one element. */
3291 probe *p = ret[0];
3292
3293 if (!p->can_evaluate_arguments ())
3294 {
3295 /* We cannot use the probe interface here, because it does
3296 not know how to evaluate arguments. */
3297 ret.clear ();
3298 }
3299 }
3300 bp_objfile_data->longjmp_probes = ret;
3301 bp_objfile_data->longjmp_searched = 1;
3302 }
3303
3304 if (!bp_objfile_data->longjmp_probes.empty ())
3305 {
3306 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3307
3308 for (probe *p : bp_objfile_data->longjmp_probes)
3309 {
3310 struct breakpoint *b;
3311
3312 b = create_internal_breakpoint (gdbarch,
3313 p->get_relocated_address (objfile),
3314 bp_longjmp_master,
3315 &internal_breakpoint_ops);
3316 b->location = new_probe_location ("-probe-stap libc:longjmp");
3317 b->enable_state = bp_disabled;
3318 }
3319
3320 continue;
3321 }
3322
3323 if (!gdbarch_get_longjmp_target_p (gdbarch))
3324 continue;
3325
3326 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3327 {
3328 struct breakpoint *b;
3329 const char *func_name;
3330 CORE_ADDR addr;
3331 struct explicit_location explicit_loc;
3332
3333 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i].minsym))
3334 continue;
3335
3336 func_name = longjmp_names[i];
3337 if (bp_objfile_data->longjmp_msym[i].minsym == NULL)
3338 {
3339 struct bound_minimal_symbol m;
3340
3341 m = lookup_minimal_symbol_text (func_name, objfile);
3342 if (m.minsym == NULL)
3343 {
3344 /* Prevent future lookups in this objfile. */
3345 bp_objfile_data->longjmp_msym[i].minsym = &msym_not_found;
3346 continue;
3347 }
3348 bp_objfile_data->longjmp_msym[i] = m;
3349 }
3350
3351 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3352 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3353 &internal_breakpoint_ops);
3354 initialize_explicit_location (&explicit_loc);
3355 explicit_loc.function_name = ASTRDUP (func_name);
3356 b->location = new_explicit_location (&explicit_loc);
3357 b->enable_state = bp_disabled;
3358 }
3359 }
3360 }
3361 }
3362
3363 /* Create a master std::terminate breakpoint. */
3364 static void
3365 create_std_terminate_master_breakpoint (void)
3366 {
3367 struct program_space *pspace;
3368 const char *const func_name = "std::terminate()";
3369
3370 scoped_restore_current_program_space restore_pspace;
3371
3372 ALL_PSPACES (pspace)
3373 {
3374 struct objfile *objfile;
3375 CORE_ADDR addr;
3376
3377 set_current_program_space (pspace);
3378
3379 ALL_OBJFILES (objfile)
3380 {
3381 struct breakpoint *b;
3382 struct breakpoint_objfile_data *bp_objfile_data;
3383 struct explicit_location explicit_loc;
3384
3385 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3386
3387 if (msym_not_found_p (bp_objfile_data->terminate_msym.minsym))
3388 continue;
3389
3390 if (bp_objfile_data->terminate_msym.minsym == NULL)
3391 {
3392 struct bound_minimal_symbol m;
3393
3394 m = lookup_minimal_symbol (func_name, NULL, objfile);
3395 if (m.minsym == NULL || (MSYMBOL_TYPE (m.minsym) != mst_text
3396 && MSYMBOL_TYPE (m.minsym) != mst_file_text))
3397 {
3398 /* Prevent future lookups in this objfile. */
3399 bp_objfile_data->terminate_msym.minsym = &msym_not_found;
3400 continue;
3401 }
3402 bp_objfile_data->terminate_msym = m;
3403 }
3404
3405 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3406 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3407 bp_std_terminate_master,
3408 &internal_breakpoint_ops);
3409 initialize_explicit_location (&explicit_loc);
3410 explicit_loc.function_name = ASTRDUP (func_name);
3411 b->location = new_explicit_location (&explicit_loc);
3412 b->enable_state = bp_disabled;
3413 }
3414 }
3415 }
3416
3417 /* Install a master breakpoint on the unwinder's debug hook. */
3418
3419 static void
3420 create_exception_master_breakpoint (void)
3421 {
3422 struct objfile *objfile;
3423 const char *const func_name = "_Unwind_DebugHook";
3424
3425 ALL_OBJFILES (objfile)
3426 {
3427 struct breakpoint *b;
3428 struct gdbarch *gdbarch;
3429 struct breakpoint_objfile_data *bp_objfile_data;
3430 CORE_ADDR addr;
3431 struct explicit_location explicit_loc;
3432
3433 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3434
3435 /* We prefer the SystemTap probe point if it exists. */
3436 if (!bp_objfile_data->exception_searched)
3437 {
3438 std::vector<probe *> ret
3439 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3440
3441 if (!ret.empty ())
3442 {
3443 /* We are only interested in checking one element. */
3444 probe *p = ret[0];
3445
3446 if (!p->can_evaluate_arguments ())
3447 {
3448 /* We cannot use the probe interface here, because it does
3449 not know how to evaluate arguments. */
3450 ret.clear ();
3451 }
3452 }
3453 bp_objfile_data->exception_probes = ret;
3454 bp_objfile_data->exception_searched = 1;
3455 }
3456
3457 if (!bp_objfile_data->exception_probes.empty ())
3458 {
3459 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3460
3461 for (probe *p : bp_objfile_data->exception_probes)
3462 {
3463 struct breakpoint *b;
3464
3465 b = create_internal_breakpoint (gdbarch,
3466 p->get_relocated_address (objfile),
3467 bp_exception_master,
3468 &internal_breakpoint_ops);
3469 b->location = new_probe_location ("-probe-stap libgcc:unwind");
3470 b->enable_state = bp_disabled;
3471 }
3472
3473 continue;
3474 }
3475
3476 /* Otherwise, try the hook function. */
3477
3478 if (msym_not_found_p (bp_objfile_data->exception_msym.minsym))
3479 continue;
3480
3481 gdbarch = get_objfile_arch (objfile);
3482
3483 if (bp_objfile_data->exception_msym.minsym == NULL)
3484 {
3485 struct bound_minimal_symbol debug_hook;
3486
3487 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3488 if (debug_hook.minsym == NULL)
3489 {
3490 bp_objfile_data->exception_msym.minsym = &msym_not_found;
3491 continue;
3492 }
3493
3494 bp_objfile_data->exception_msym = debug_hook;
3495 }
3496
3497 addr = BMSYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3498 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3499 &current_target);
3500 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3501 &internal_breakpoint_ops);
3502 initialize_explicit_location (&explicit_loc);
3503 explicit_loc.function_name = ASTRDUP (func_name);
3504 b->location = new_explicit_location (&explicit_loc);
3505 b->enable_state = bp_disabled;
3506 }
3507 }
3508
3509 /* Does B have a location spec? */
3510
3511 static int
3512 breakpoint_event_location_empty_p (const struct breakpoint *b)
3513 {
3514 return b->location != NULL && event_location_empty_p (b->location.get ());
3515 }
3516
3517 void
3518 update_breakpoints_after_exec (void)
3519 {
3520 struct breakpoint *b, *b_tmp;
3521 struct bp_location *bploc, **bplocp_tmp;
3522
3523 /* We're about to delete breakpoints from GDB's lists. If the
3524 INSERTED flag is true, GDB will try to lift the breakpoints by
3525 writing the breakpoints' "shadow contents" back into memory. The
3526 "shadow contents" are NOT valid after an exec, so GDB should not
3527 do that. Instead, the target is responsible from marking
3528 breakpoints out as soon as it detects an exec. We don't do that
3529 here instead, because there may be other attempts to delete
3530 breakpoints after detecting an exec and before reaching here. */
3531 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3532 if (bploc->pspace == current_program_space)
3533 gdb_assert (!bploc->inserted);
3534
3535 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3536 {
3537 if (b->pspace != current_program_space)
3538 continue;
3539
3540 /* Solib breakpoints must be explicitly reset after an exec(). */
3541 if (b->type == bp_shlib_event)
3542 {
3543 delete_breakpoint (b);
3544 continue;
3545 }
3546
3547 /* JIT breakpoints must be explicitly reset after an exec(). */
3548 if (b->type == bp_jit_event)
3549 {
3550 delete_breakpoint (b);
3551 continue;
3552 }
3553
3554 /* Thread event breakpoints must be set anew after an exec(),
3555 as must overlay event and longjmp master breakpoints. */
3556 if (b->type == bp_thread_event || b->type == bp_overlay_event
3557 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3558 || b->type == bp_exception_master)
3559 {
3560 delete_breakpoint (b);
3561 continue;
3562 }
3563
3564 /* Step-resume breakpoints are meaningless after an exec(). */
3565 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3566 {
3567 delete_breakpoint (b);
3568 continue;
3569 }
3570
3571 /* Just like single-step breakpoints. */
3572 if (b->type == bp_single_step)
3573 {
3574 delete_breakpoint (b);
3575 continue;
3576 }
3577
3578 /* Longjmp and longjmp-resume breakpoints are also meaningless
3579 after an exec. */
3580 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3581 || b->type == bp_longjmp_call_dummy
3582 || b->type == bp_exception || b->type == bp_exception_resume)
3583 {
3584 delete_breakpoint (b);
3585 continue;
3586 }
3587
3588 if (b->type == bp_catchpoint)
3589 {
3590 /* For now, none of the bp_catchpoint breakpoints need to
3591 do anything at this point. In the future, if some of
3592 the catchpoints need to something, we will need to add
3593 a new method, and call this method from here. */
3594 continue;
3595 }
3596
3597 /* bp_finish is a special case. The only way we ought to be able
3598 to see one of these when an exec() has happened, is if the user
3599 caught a vfork, and then said "finish". Ordinarily a finish just
3600 carries them to the call-site of the current callee, by setting
3601 a temporary bp there and resuming. But in this case, the finish
3602 will carry them entirely through the vfork & exec.
3603
3604 We don't want to allow a bp_finish to remain inserted now. But
3605 we can't safely delete it, 'cause finish_command has a handle to
3606 the bp on a bpstat, and will later want to delete it. There's a
3607 chance (and I've seen it happen) that if we delete the bp_finish
3608 here, that its storage will get reused by the time finish_command
3609 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3610 We really must allow finish_command to delete a bp_finish.
3611
3612 In the absence of a general solution for the "how do we know
3613 it's safe to delete something others may have handles to?"
3614 problem, what we'll do here is just uninsert the bp_finish, and
3615 let finish_command delete it.
3616
3617 (We know the bp_finish is "doomed" in the sense that it's
3618 momentary, and will be deleted as soon as finish_command sees
3619 the inferior stopped. So it doesn't matter that the bp's
3620 address is probably bogus in the new a.out, unlike e.g., the
3621 solib breakpoints.) */
3622
3623 if (b->type == bp_finish)
3624 {
3625 continue;
3626 }
3627
3628 /* Without a symbolic address, we have little hope of the
3629 pre-exec() address meaning the same thing in the post-exec()
3630 a.out. */
3631 if (breakpoint_event_location_empty_p (b))
3632 {
3633 delete_breakpoint (b);
3634 continue;
3635 }
3636 }
3637 }
3638
3639 int
3640 detach_breakpoints (ptid_t ptid)
3641 {
3642 struct bp_location *bl, **blp_tmp;
3643 int val = 0;
3644 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
3645 struct inferior *inf = current_inferior ();
3646
3647 if (ptid_get_pid (ptid) == ptid_get_pid (inferior_ptid))
3648 error (_("Cannot detach breakpoints of inferior_ptid"));
3649
3650 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3651 inferior_ptid = ptid;
3652 ALL_BP_LOCATIONS (bl, blp_tmp)
3653 {
3654 if (bl->pspace != inf->pspace)
3655 continue;
3656
3657 /* This function must physically remove breakpoints locations
3658 from the specified ptid, without modifying the breakpoint
3659 package's state. Locations of type bp_loc_other are only
3660 maintained at GDB side. So, there is no need to remove
3661 these bp_loc_other locations. Moreover, removing these
3662 would modify the breakpoint package's state. */
3663 if (bl->loc_type == bp_loc_other)
3664 continue;
3665
3666 if (bl->inserted)
3667 val |= remove_breakpoint_1 (bl, DETACH_BREAKPOINT);
3668 }
3669
3670 return val;
3671 }
3672
3673 /* Remove the breakpoint location BL from the current address space.
3674 Note that this is used to detach breakpoints from a child fork.
3675 When we get here, the child isn't in the inferior list, and neither
3676 do we have objects to represent its address space --- we should
3677 *not* look at bl->pspace->aspace here. */
3678
3679 static int
3680 remove_breakpoint_1 (struct bp_location *bl, enum remove_bp_reason reason)
3681 {
3682 int val;
3683
3684 /* BL is never in moribund_locations by our callers. */
3685 gdb_assert (bl->owner != NULL);
3686
3687 /* The type of none suggests that owner is actually deleted.
3688 This should not ever happen. */
3689 gdb_assert (bl->owner->type != bp_none);
3690
3691 if (bl->loc_type == bp_loc_software_breakpoint
3692 || bl->loc_type == bp_loc_hardware_breakpoint)
3693 {
3694 /* "Normal" instruction breakpoint: either the standard
3695 trap-instruction bp (bp_breakpoint), or a
3696 bp_hardware_breakpoint. */
3697
3698 /* First check to see if we have to handle an overlay. */
3699 if (overlay_debugging == ovly_off
3700 || bl->section == NULL
3701 || !(section_is_overlay (bl->section)))
3702 {
3703 /* No overlay handling: just remove the breakpoint. */
3704
3705 /* If we're trying to uninsert a memory breakpoint that we
3706 know is set in a dynamic object that is marked
3707 shlib_disabled, then either the dynamic object was
3708 removed with "remove-symbol-file" or with
3709 "nosharedlibrary". In the former case, we don't know
3710 whether another dynamic object might have loaded over the
3711 breakpoint's address -- the user might well let us know
3712 about it next with add-symbol-file (the whole point of
3713 add-symbol-file is letting the user manually maintain a
3714 list of dynamically loaded objects). If we have the
3715 breakpoint's shadow memory, that is, this is a software
3716 breakpoint managed by GDB, check whether the breakpoint
3717 is still inserted in memory, to avoid overwriting wrong
3718 code with stale saved shadow contents. Note that HW
3719 breakpoints don't have shadow memory, as they're
3720 implemented using a mechanism that is not dependent on
3721 being able to modify the target's memory, and as such
3722 they should always be removed. */
3723 if (bl->shlib_disabled
3724 && bl->target_info.shadow_len != 0
3725 && !memory_validate_breakpoint (bl->gdbarch, &bl->target_info))
3726 val = 0;
3727 else
3728 val = bl->owner->ops->remove_location (bl, reason);
3729 }
3730 else
3731 {
3732 /* This breakpoint is in an overlay section.
3733 Did we set a breakpoint at the LMA? */
3734 if (!overlay_events_enabled)
3735 {
3736 /* Yes -- overlay event support is not active, so we
3737 should have set a breakpoint at the LMA. Remove it.
3738 */
3739 /* Ignore any failures: if the LMA is in ROM, we will
3740 have already warned when we failed to insert it. */
3741 if (bl->loc_type == bp_loc_hardware_breakpoint)
3742 target_remove_hw_breakpoint (bl->gdbarch,
3743 &bl->overlay_target_info);
3744 else
3745 target_remove_breakpoint (bl->gdbarch,
3746 &bl->overlay_target_info,
3747 reason);
3748 }
3749 /* Did we set a breakpoint at the VMA?
3750 If so, we will have marked the breakpoint 'inserted'. */
3751 if (bl->inserted)
3752 {
3753 /* Yes -- remove it. Previously we did not bother to
3754 remove the breakpoint if the section had been
3755 unmapped, but let's not rely on that being safe. We
3756 don't know what the overlay manager might do. */
3757
3758 /* However, we should remove *software* breakpoints only
3759 if the section is still mapped, or else we overwrite
3760 wrong code with the saved shadow contents. */
3761 if (bl->loc_type == bp_loc_hardware_breakpoint
3762 || section_is_mapped (bl->section))
3763 val = bl->owner->ops->remove_location (bl, reason);
3764 else
3765 val = 0;
3766 }
3767 else
3768 {
3769 /* No -- not inserted, so no need to remove. No error. */
3770 val = 0;
3771 }
3772 }
3773
3774 /* In some cases, we might not be able to remove a breakpoint in
3775 a shared library that has already been removed, but we have
3776 not yet processed the shlib unload event. Similarly for an
3777 unloaded add-symbol-file object - the user might not yet have
3778 had the chance to remove-symbol-file it. shlib_disabled will
3779 be set if the library/object has already been removed, but
3780 the breakpoint hasn't been uninserted yet, e.g., after
3781 "nosharedlibrary" or "remove-symbol-file" with breakpoints
3782 always-inserted mode. */
3783 if (val
3784 && (bl->loc_type == bp_loc_software_breakpoint
3785 && (bl->shlib_disabled
3786 || solib_name_from_address (bl->pspace, bl->address)
3787 || shared_objfile_contains_address_p (bl->pspace,
3788 bl->address))))
3789 val = 0;
3790
3791 if (val)
3792 return val;
3793 bl->inserted = (reason == DETACH_BREAKPOINT);
3794 }
3795 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3796 {
3797 gdb_assert (bl->owner->ops != NULL
3798 && bl->owner->ops->remove_location != NULL);
3799
3800 bl->inserted = (reason == DETACH_BREAKPOINT);
3801 bl->owner->ops->remove_location (bl, reason);
3802
3803 /* Failure to remove any of the hardware watchpoints comes here. */
3804 if (reason == REMOVE_BREAKPOINT && bl->inserted)
3805 warning (_("Could not remove hardware watchpoint %d."),
3806 bl->owner->number);
3807 }
3808 else if (bl->owner->type == bp_catchpoint
3809 && breakpoint_enabled (bl->owner)
3810 && !bl->duplicate)
3811 {
3812 gdb_assert (bl->owner->ops != NULL
3813 && bl->owner->ops->remove_location != NULL);
3814
3815 val = bl->owner->ops->remove_location (bl, reason);
3816 if (val)
3817 return val;
3818
3819 bl->inserted = (reason == DETACH_BREAKPOINT);
3820 }
3821
3822 return 0;
3823 }
3824
3825 static int
3826 remove_breakpoint (struct bp_location *bl)
3827 {
3828 /* BL is never in moribund_locations by our callers. */
3829 gdb_assert (bl->owner != NULL);
3830
3831 /* The type of none suggests that owner is actually deleted.
3832 This should not ever happen. */
3833 gdb_assert (bl->owner->type != bp_none);
3834
3835 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3836
3837 switch_to_program_space_and_thread (bl->pspace);
3838
3839 return remove_breakpoint_1 (bl, REMOVE_BREAKPOINT);
3840 }
3841
3842 /* Clear the "inserted" flag in all breakpoints. */
3843
3844 void
3845 mark_breakpoints_out (void)
3846 {
3847 struct bp_location *bl, **blp_tmp;
3848
3849 ALL_BP_LOCATIONS (bl, blp_tmp)
3850 if (bl->pspace == current_program_space)
3851 bl->inserted = 0;
3852 }
3853
3854 /* Clear the "inserted" flag in all breakpoints and delete any
3855 breakpoints which should go away between runs of the program.
3856
3857 Plus other such housekeeping that has to be done for breakpoints
3858 between runs.
3859
3860 Note: this function gets called at the end of a run (by
3861 generic_mourn_inferior) and when a run begins (by
3862 init_wait_for_inferior). */
3863
3864
3865
3866 void
3867 breakpoint_init_inferior (enum inf_context context)
3868 {
3869 struct breakpoint *b, *b_tmp;
3870 struct bp_location *bl;
3871 int ix;
3872 struct program_space *pspace = current_program_space;
3873
3874 /* If breakpoint locations are shared across processes, then there's
3875 nothing to do. */
3876 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3877 return;
3878
3879 mark_breakpoints_out ();
3880
3881 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3882 {
3883 if (b->loc && b->loc->pspace != pspace)
3884 continue;
3885
3886 switch (b->type)
3887 {
3888 case bp_call_dummy:
3889 case bp_longjmp_call_dummy:
3890
3891 /* If the call dummy breakpoint is at the entry point it will
3892 cause problems when the inferior is rerun, so we better get
3893 rid of it. */
3894
3895 case bp_watchpoint_scope:
3896
3897 /* Also get rid of scope breakpoints. */
3898
3899 case bp_shlib_event:
3900
3901 /* Also remove solib event breakpoints. Their addresses may
3902 have changed since the last time we ran the program.
3903 Actually we may now be debugging against different target;
3904 and so the solib backend that installed this breakpoint may
3905 not be used in by the target. E.g.,
3906
3907 (gdb) file prog-linux
3908 (gdb) run # native linux target
3909 ...
3910 (gdb) kill
3911 (gdb) file prog-win.exe
3912 (gdb) tar rem :9999 # remote Windows gdbserver.
3913 */
3914
3915 case bp_step_resume:
3916
3917 /* Also remove step-resume breakpoints. */
3918
3919 case bp_single_step:
3920
3921 /* Also remove single-step breakpoints. */
3922
3923 delete_breakpoint (b);
3924 break;
3925
3926 case bp_watchpoint:
3927 case bp_hardware_watchpoint:
3928 case bp_read_watchpoint:
3929 case bp_access_watchpoint:
3930 {
3931 struct watchpoint *w = (struct watchpoint *) b;
3932
3933 /* Likewise for watchpoints on local expressions. */
3934 if (w->exp_valid_block != NULL)
3935 delete_breakpoint (b);
3936 else
3937 {
3938 /* Get rid of existing locations, which are no longer
3939 valid. New ones will be created in
3940 update_watchpoint, when the inferior is restarted.
3941 The next update_global_location_list call will
3942 garbage collect them. */
3943 b->loc = NULL;
3944
3945 if (context == inf_starting)
3946 {
3947 /* Reset val field to force reread of starting value in
3948 insert_breakpoints. */
3949 w->val.reset (nullptr);
3950 w->val_valid = 0;
3951 }
3952 }
3953 }
3954 break;
3955 default:
3956 break;
3957 }
3958 }
3959
3960 /* Get rid of the moribund locations. */
3961 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3962 decref_bp_location (&bl);
3963 VEC_free (bp_location_p, moribund_locations);
3964 }
3965
3966 /* These functions concern about actual breakpoints inserted in the
3967 target --- to e.g. check if we need to do decr_pc adjustment or if
3968 we need to hop over the bkpt --- so we check for address space
3969 match, not program space. */
3970
3971 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3972 exists at PC. It returns ordinary_breakpoint_here if it's an
3973 ordinary breakpoint, or permanent_breakpoint_here if it's a
3974 permanent breakpoint.
3975 - When continuing from a location with an ordinary breakpoint, we
3976 actually single step once before calling insert_breakpoints.
3977 - When continuing from a location with a permanent breakpoint, we
3978 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3979 the target, to advance the PC past the breakpoint. */
3980
3981 enum breakpoint_here
3982 breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
3983 {
3984 struct bp_location *bl, **blp_tmp;
3985 int any_breakpoint_here = 0;
3986
3987 ALL_BP_LOCATIONS (bl, blp_tmp)
3988 {
3989 if (bl->loc_type != bp_loc_software_breakpoint
3990 && bl->loc_type != bp_loc_hardware_breakpoint)
3991 continue;
3992
3993 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3994 if ((breakpoint_enabled (bl->owner)
3995 || bl->permanent)
3996 && breakpoint_location_address_match (bl, aspace, pc))
3997 {
3998 if (overlay_debugging
3999 && section_is_overlay (bl->section)
4000 && !section_is_mapped (bl->section))
4001 continue; /* unmapped overlay -- can't be a match */
4002 else if (bl->permanent)
4003 return permanent_breakpoint_here;
4004 else
4005 any_breakpoint_here = 1;
4006 }
4007 }
4008
4009 return any_breakpoint_here ? ordinary_breakpoint_here : no_breakpoint_here;
4010 }
4011
4012 /* See breakpoint.h. */
4013
4014 int
4015 breakpoint_in_range_p (const address_space *aspace,
4016 CORE_ADDR addr, ULONGEST len)
4017 {
4018 struct bp_location *bl, **blp_tmp;
4019
4020 ALL_BP_LOCATIONS (bl, blp_tmp)
4021 {
4022 if (bl->loc_type != bp_loc_software_breakpoint
4023 && bl->loc_type != bp_loc_hardware_breakpoint)
4024 continue;
4025
4026 if ((breakpoint_enabled (bl->owner)
4027 || bl->permanent)
4028 && breakpoint_location_address_range_overlap (bl, aspace,
4029 addr, len))
4030 {
4031 if (overlay_debugging
4032 && section_is_overlay (bl->section)
4033 && !section_is_mapped (bl->section))
4034 {
4035 /* Unmapped overlay -- can't be a match. */
4036 continue;
4037 }
4038
4039 return 1;
4040 }
4041 }
4042
4043 return 0;
4044 }
4045
4046 /* Return true if there's a moribund breakpoint at PC. */
4047
4048 int
4049 moribund_breakpoint_here_p (const address_space *aspace, CORE_ADDR pc)
4050 {
4051 struct bp_location *loc;
4052 int ix;
4053
4054 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
4055 if (breakpoint_location_address_match (loc, aspace, pc))
4056 return 1;
4057
4058 return 0;
4059 }
4060
4061 /* Returns non-zero iff BL is inserted at PC, in address space
4062 ASPACE. */
4063
4064 static int
4065 bp_location_inserted_here_p (struct bp_location *bl,
4066 const address_space *aspace, CORE_ADDR pc)
4067 {
4068 if (bl->inserted
4069 && breakpoint_address_match (bl->pspace->aspace, bl->address,
4070 aspace, pc))
4071 {
4072 if (overlay_debugging
4073 && section_is_overlay (bl->section)
4074 && !section_is_mapped (bl->section))
4075 return 0; /* unmapped overlay -- can't be a match */
4076 else
4077 return 1;
4078 }
4079 return 0;
4080 }
4081
4082 /* Returns non-zero iff there's a breakpoint inserted at PC. */
4083
4084 int
4085 breakpoint_inserted_here_p (const address_space *aspace, CORE_ADDR pc)
4086 {
4087 struct bp_location **blp, **blp_tmp = NULL;
4088
4089 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4090 {
4091 struct bp_location *bl = *blp;
4092
4093 if (bl->loc_type != bp_loc_software_breakpoint
4094 && bl->loc_type != bp_loc_hardware_breakpoint)
4095 continue;
4096
4097 if (bp_location_inserted_here_p (bl, aspace, pc))
4098 return 1;
4099 }
4100 return 0;
4101 }
4102
4103 /* This function returns non-zero iff there is a software breakpoint
4104 inserted at PC. */
4105
4106 int
4107 software_breakpoint_inserted_here_p (const address_space *aspace,
4108 CORE_ADDR pc)
4109 {
4110 struct bp_location **blp, **blp_tmp = NULL;
4111
4112 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4113 {
4114 struct bp_location *bl = *blp;
4115
4116 if (bl->loc_type != bp_loc_software_breakpoint)
4117 continue;
4118
4119 if (bp_location_inserted_here_p (bl, aspace, pc))
4120 return 1;
4121 }
4122
4123 return 0;
4124 }
4125
4126 /* See breakpoint.h. */
4127
4128 int
4129 hardware_breakpoint_inserted_here_p (const address_space *aspace,
4130 CORE_ADDR pc)
4131 {
4132 struct bp_location **blp, **blp_tmp = NULL;
4133
4134 ALL_BP_LOCATIONS_AT_ADDR (blp, blp_tmp, pc)
4135 {
4136 struct bp_location *bl = *blp;
4137
4138 if (bl->loc_type != bp_loc_hardware_breakpoint)
4139 continue;
4140
4141 if (bp_location_inserted_here_p (bl, aspace, pc))
4142 return 1;
4143 }
4144
4145 return 0;
4146 }
4147
4148 int
4149 hardware_watchpoint_inserted_in_range (const address_space *aspace,
4150 CORE_ADDR addr, ULONGEST len)
4151 {
4152 struct breakpoint *bpt;
4153
4154 ALL_BREAKPOINTS (bpt)
4155 {
4156 struct bp_location *loc;
4157
4158 if (bpt->type != bp_hardware_watchpoint
4159 && bpt->type != bp_access_watchpoint)
4160 continue;
4161
4162 if (!breakpoint_enabled (bpt))
4163 continue;
4164
4165 for (loc = bpt->loc; loc; loc = loc->next)
4166 if (loc->pspace->aspace == aspace && loc->inserted)
4167 {
4168 CORE_ADDR l, h;
4169
4170 /* Check for intersection. */
4171 l = std::max<CORE_ADDR> (loc->address, addr);
4172 h = std::min<CORE_ADDR> (loc->address + loc->length, addr + len);
4173 if (l < h)
4174 return 1;
4175 }
4176 }
4177 return 0;
4178 }
4179 \f
4180
4181 /* bpstat stuff. External routines' interfaces are documented
4182 in breakpoint.h. */
4183
4184 int
4185 is_catchpoint (struct breakpoint *ep)
4186 {
4187 return (ep->type == bp_catchpoint);
4188 }
4189
4190 /* Frees any storage that is part of a bpstat. Does not walk the
4191 'next' chain. */
4192
4193 bpstats::~bpstats ()
4194 {
4195 if (bp_location_at != NULL)
4196 decref_bp_location (&bp_location_at);
4197 }
4198
4199 /* Clear a bpstat so that it says we are not at any breakpoint.
4200 Also free any storage that is part of a bpstat. */
4201
4202 void
4203 bpstat_clear (bpstat *bsp)
4204 {
4205 bpstat p;
4206 bpstat q;
4207
4208 if (bsp == 0)
4209 return;
4210 p = *bsp;
4211 while (p != NULL)
4212 {
4213 q = p->next;
4214 delete p;
4215 p = q;
4216 }
4217 *bsp = NULL;
4218 }
4219
4220 bpstats::bpstats (const bpstats &other)
4221 : next (NULL),
4222 bp_location_at (other.bp_location_at),
4223 breakpoint_at (other.breakpoint_at),
4224 commands (other.commands),
4225 print (other.print),
4226 stop (other.stop),
4227 print_it (other.print_it)
4228 {
4229 if (other.old_val != NULL)
4230 old_val = release_value (value_copy (other.old_val.get ()));
4231 incref_bp_location (bp_location_at);
4232 }
4233
4234 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4235 is part of the bpstat is copied as well. */
4236
4237 bpstat
4238 bpstat_copy (bpstat bs)
4239 {
4240 bpstat p = NULL;
4241 bpstat tmp;
4242 bpstat retval = NULL;
4243
4244 if (bs == NULL)
4245 return bs;
4246
4247 for (; bs != NULL; bs = bs->next)
4248 {
4249 tmp = new bpstats (*bs);
4250
4251 if (p == NULL)
4252 /* This is the first thing in the chain. */
4253 retval = tmp;
4254 else
4255 p->next = tmp;
4256 p = tmp;
4257 }
4258 p->next = NULL;
4259 return retval;
4260 }
4261
4262 /* Find the bpstat associated with this breakpoint. */
4263
4264 bpstat
4265 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4266 {
4267 if (bsp == NULL)
4268 return NULL;
4269
4270 for (; bsp != NULL; bsp = bsp->next)
4271 {
4272 if (bsp->breakpoint_at == breakpoint)
4273 return bsp;
4274 }
4275 return NULL;
4276 }
4277
4278 /* See breakpoint.h. */
4279
4280 int
4281 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4282 {
4283 for (; bsp != NULL; bsp = bsp->next)
4284 {
4285 if (bsp->breakpoint_at == NULL)
4286 {
4287 /* A moribund location can never explain a signal other than
4288 GDB_SIGNAL_TRAP. */
4289 if (sig == GDB_SIGNAL_TRAP)
4290 return 1;
4291 }
4292 else
4293 {
4294 if (bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4295 sig))
4296 return 1;
4297 }
4298 }
4299
4300 return 0;
4301 }
4302
4303 /* Put in *NUM the breakpoint number of the first breakpoint we are
4304 stopped at. *BSP upon return is a bpstat which points to the
4305 remaining breakpoints stopped at (but which is not guaranteed to be
4306 good for anything but further calls to bpstat_num).
4307
4308 Return 0 if passed a bpstat which does not indicate any breakpoints.
4309 Return -1 if stopped at a breakpoint that has been deleted since
4310 we set it.
4311 Return 1 otherwise. */
4312
4313 int
4314 bpstat_num (bpstat *bsp, int *num)
4315 {
4316 struct breakpoint *b;
4317
4318 if ((*bsp) == NULL)
4319 return 0; /* No more breakpoint values */
4320
4321 /* We assume we'll never have several bpstats that correspond to a
4322 single breakpoint -- otherwise, this function might return the
4323 same number more than once and this will look ugly. */
4324 b = (*bsp)->breakpoint_at;
4325 *bsp = (*bsp)->next;
4326 if (b == NULL)
4327 return -1; /* breakpoint that's been deleted since */
4328
4329 *num = b->number; /* We have its number */
4330 return 1;
4331 }
4332
4333 /* See breakpoint.h. */
4334
4335 void
4336 bpstat_clear_actions (void)
4337 {
4338 struct thread_info *tp;
4339 bpstat bs;
4340
4341 if (ptid_equal (inferior_ptid, null_ptid))
4342 return;
4343
4344 tp = find_thread_ptid (inferior_ptid);
4345 if (tp == NULL)
4346 return;
4347
4348 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4349 {
4350 bs->commands = NULL;
4351 bs->old_val.reset (nullptr);
4352 }
4353 }
4354
4355 /* Called when a command is about to proceed the inferior. */
4356
4357 static void
4358 breakpoint_about_to_proceed (void)
4359 {
4360 if (!ptid_equal (inferior_ptid, null_ptid))
4361 {
4362 struct thread_info *tp = inferior_thread ();
4363
4364 /* Allow inferior function calls in breakpoint commands to not
4365 interrupt the command list. When the call finishes
4366 successfully, the inferior will be standing at the same
4367 breakpoint as if nothing happened. */
4368 if (tp->control.in_infcall)
4369 return;
4370 }
4371
4372 breakpoint_proceeded = 1;
4373 }
4374
4375 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4376 or its equivalent. */
4377
4378 static int
4379 command_line_is_silent (struct command_line *cmd)
4380 {
4381 return cmd && (strcmp ("silent", cmd->line) == 0);
4382 }
4383
4384 /* Execute all the commands associated with all the breakpoints at
4385 this location. Any of these commands could cause the process to
4386 proceed beyond this point, etc. We look out for such changes by
4387 checking the global "breakpoint_proceeded" after each command.
4388
4389 Returns true if a breakpoint command resumed the inferior. In that
4390 case, it is the caller's responsibility to recall it again with the
4391 bpstat of the current thread. */
4392
4393 static int
4394 bpstat_do_actions_1 (bpstat *bsp)
4395 {
4396 bpstat bs;
4397 int again = 0;
4398
4399 /* Avoid endless recursion if a `source' command is contained
4400 in bs->commands. */
4401 if (executing_breakpoint_commands)
4402 return 0;
4403
4404 scoped_restore save_executing
4405 = make_scoped_restore (&executing_breakpoint_commands, 1);
4406
4407 scoped_restore preventer = prevent_dont_repeat ();
4408
4409 /* This pointer will iterate over the list of bpstat's. */
4410 bs = *bsp;
4411
4412 breakpoint_proceeded = 0;
4413 for (; bs != NULL; bs = bs->next)
4414 {
4415 struct command_line *cmd = NULL;
4416
4417 /* Take ownership of the BSP's command tree, if it has one.
4418
4419 The command tree could legitimately contain commands like
4420 'step' and 'next', which call clear_proceed_status, which
4421 frees stop_bpstat's command tree. To make sure this doesn't
4422 free the tree we're executing out from under us, we need to
4423 take ownership of the tree ourselves. Since a given bpstat's
4424 commands are only executed once, we don't need to copy it; we
4425 can clear the pointer in the bpstat, and make sure we free
4426 the tree when we're done. */
4427 counted_command_line ccmd = bs->commands;
4428 bs->commands = NULL;
4429 if (ccmd != NULL)
4430 cmd = ccmd.get ();
4431 if (command_line_is_silent (cmd))
4432 {
4433 /* The action has been already done by bpstat_stop_status. */
4434 cmd = cmd->next;
4435 }
4436
4437 while (cmd != NULL)
4438 {
4439 execute_control_command (cmd);
4440
4441 if (breakpoint_proceeded)
4442 break;
4443 else
4444 cmd = cmd->next;
4445 }
4446
4447 if (breakpoint_proceeded)
4448 {
4449 if (current_ui->async)
4450 /* If we are in async mode, then the target might be still
4451 running, not stopped at any breakpoint, so nothing for
4452 us to do here -- just return to the event loop. */
4453 ;
4454 else
4455 /* In sync mode, when execute_control_command returns
4456 we're already standing on the next breakpoint.
4457 Breakpoint commands for that stop were not run, since
4458 execute_command does not run breakpoint commands --
4459 only command_line_handler does, but that one is not
4460 involved in execution of breakpoint commands. So, we
4461 can now execute breakpoint commands. It should be
4462 noted that making execute_command do bpstat actions is
4463 not an option -- in this case we'll have recursive
4464 invocation of bpstat for each breakpoint with a
4465 command, and can easily blow up GDB stack. Instead, we
4466 return true, which will trigger the caller to recall us
4467 with the new stop_bpstat. */
4468 again = 1;
4469 break;
4470 }
4471 }
4472 return again;
4473 }
4474
4475 void
4476 bpstat_do_actions (void)
4477 {
4478 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4479
4480 /* Do any commands attached to breakpoint we are stopped at. */
4481 while (!ptid_equal (inferior_ptid, null_ptid)
4482 && target_has_execution
4483 && !is_exited (inferior_ptid)
4484 && !is_executing (inferior_ptid))
4485 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4486 and only return when it is stopped at the next breakpoint, we
4487 keep doing breakpoint actions until it returns false to
4488 indicate the inferior was not resumed. */
4489 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4490 break;
4491
4492 discard_cleanups (cleanup_if_error);
4493 }
4494
4495 /* Print out the (old or new) value associated with a watchpoint. */
4496
4497 static void
4498 watchpoint_value_print (struct value *val, struct ui_file *stream)
4499 {
4500 if (val == NULL)
4501 fprintf_unfiltered (stream, _("<unreadable>"));
4502 else
4503 {
4504 struct value_print_options opts;
4505 get_user_print_options (&opts);
4506 value_print (val, stream, &opts);
4507 }
4508 }
4509
4510 /* Print the "Thread ID hit" part of "Thread ID hit Breakpoint N" if
4511 debugging multiple threads. */
4512
4513 void
4514 maybe_print_thread_hit_breakpoint (struct ui_out *uiout)
4515 {
4516 if (uiout->is_mi_like_p ())
4517 return;
4518
4519 uiout->text ("\n");
4520
4521 if (show_thread_that_caused_stop ())
4522 {
4523 const char *name;
4524 struct thread_info *thr = inferior_thread ();
4525
4526 uiout->text ("Thread ");
4527 uiout->field_fmt ("thread-id", "%s", print_thread_id (thr));
4528
4529 name = thr->name != NULL ? thr->name : target_thread_name (thr);
4530 if (name != NULL)
4531 {
4532 uiout->text (" \"");
4533 uiout->field_fmt ("name", "%s", name);
4534 uiout->text ("\"");
4535 }
4536
4537 uiout->text (" hit ");
4538 }
4539 }
4540
4541 /* Generic routine for printing messages indicating why we
4542 stopped. The behavior of this function depends on the value
4543 'print_it' in the bpstat structure. Under some circumstances we
4544 may decide not to print anything here and delegate the task to
4545 normal_stop(). */
4546
4547 static enum print_stop_action
4548 print_bp_stop_message (bpstat bs)
4549 {
4550 switch (bs->print_it)
4551 {
4552 case print_it_noop:
4553 /* Nothing should be printed for this bpstat entry. */
4554 return PRINT_UNKNOWN;
4555 break;
4556
4557 case print_it_done:
4558 /* We still want to print the frame, but we already printed the
4559 relevant messages. */
4560 return PRINT_SRC_AND_LOC;
4561 break;
4562
4563 case print_it_normal:
4564 {
4565 struct breakpoint *b = bs->breakpoint_at;
4566
4567 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4568 which has since been deleted. */
4569 if (b == NULL)
4570 return PRINT_UNKNOWN;
4571
4572 /* Normal case. Call the breakpoint's print_it method. */
4573 return b->ops->print_it (bs);
4574 }
4575 break;
4576
4577 default:
4578 internal_error (__FILE__, __LINE__,
4579 _("print_bp_stop_message: unrecognized enum value"));
4580 break;
4581 }
4582 }
4583
4584 /* A helper function that prints a shared library stopped event. */
4585
4586 static void
4587 print_solib_event (int is_catchpoint)
4588 {
4589 bool any_deleted = !current_program_space->deleted_solibs.empty ();
4590 int any_added
4591 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4592
4593 if (!is_catchpoint)
4594 {
4595 if (any_added || any_deleted)
4596 current_uiout->text (_("Stopped due to shared library event:\n"));
4597 else
4598 current_uiout->text (_("Stopped due to shared library event (no "
4599 "libraries added or removed)\n"));
4600 }
4601
4602 if (current_uiout->is_mi_like_p ())
4603 current_uiout->field_string ("reason",
4604 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4605
4606 if (any_deleted)
4607 {
4608 current_uiout->text (_(" Inferior unloaded "));
4609 ui_out_emit_list list_emitter (current_uiout, "removed");
4610 for (int ix = 0; ix < current_program_space->deleted_solibs.size (); ix++)
4611 {
4612 const std::string &name = current_program_space->deleted_solibs[ix];
4613
4614 if (ix > 0)
4615 current_uiout->text (" ");
4616 current_uiout->field_string ("library", name);
4617 current_uiout->text ("\n");
4618 }
4619 }
4620
4621 if (any_added)
4622 {
4623 struct so_list *iter;
4624 int ix;
4625
4626 current_uiout->text (_(" Inferior loaded "));
4627 ui_out_emit_list list_emitter (current_uiout, "added");
4628 for (ix = 0;
4629 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4630 ix, iter);
4631 ++ix)
4632 {
4633 if (ix > 0)
4634 current_uiout->text (" ");
4635 current_uiout->field_string ("library", iter->so_name);
4636 current_uiout->text ("\n");
4637 }
4638 }
4639 }
4640
4641 /* Print a message indicating what happened. This is called from
4642 normal_stop(). The input to this routine is the head of the bpstat
4643 list - a list of the eventpoints that caused this stop. KIND is
4644 the target_waitkind for the stopping event. This
4645 routine calls the generic print routine for printing a message
4646 about reasons for stopping. This will print (for example) the
4647 "Breakpoint n," part of the output. The return value of this
4648 routine is one of:
4649
4650 PRINT_UNKNOWN: Means we printed nothing.
4651 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4652 code to print the location. An example is
4653 "Breakpoint 1, " which should be followed by
4654 the location.
4655 PRINT_SRC_ONLY: Means we printed something, but there is no need
4656 to also print the location part of the message.
4657 An example is the catch/throw messages, which
4658 don't require a location appended to the end.
4659 PRINT_NOTHING: We have done some printing and we don't need any
4660 further info to be printed. */
4661
4662 enum print_stop_action
4663 bpstat_print (bpstat bs, int kind)
4664 {
4665 enum print_stop_action val;
4666
4667 /* Maybe another breakpoint in the chain caused us to stop.
4668 (Currently all watchpoints go on the bpstat whether hit or not.
4669 That probably could (should) be changed, provided care is taken
4670 with respect to bpstat_explains_signal). */
4671 for (; bs; bs = bs->next)
4672 {
4673 val = print_bp_stop_message (bs);
4674 if (val == PRINT_SRC_ONLY
4675 || val == PRINT_SRC_AND_LOC
4676 || val == PRINT_NOTHING)
4677 return val;
4678 }
4679
4680 /* If we had hit a shared library event breakpoint,
4681 print_bp_stop_message would print out this message. If we hit an
4682 OS-level shared library event, do the same thing. */
4683 if (kind == TARGET_WAITKIND_LOADED)
4684 {
4685 print_solib_event (0);
4686 return PRINT_NOTHING;
4687 }
4688
4689 /* We reached the end of the chain, or we got a null BS to start
4690 with and nothing was printed. */
4691 return PRINT_UNKNOWN;
4692 }
4693
4694 /* Evaluate the boolean expression EXP and return the result. */
4695
4696 static bool
4697 breakpoint_cond_eval (expression *exp)
4698 {
4699 struct value *mark = value_mark ();
4700 bool res = value_true (evaluate_expression (exp));
4701
4702 value_free_to_mark (mark);
4703 return res;
4704 }
4705
4706 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4707
4708 bpstats::bpstats (struct bp_location *bl, bpstat **bs_link_pointer)
4709 : next (NULL),
4710 bp_location_at (bl),
4711 breakpoint_at (bl->owner),
4712 commands (NULL),
4713 print (0),
4714 stop (0),
4715 print_it (print_it_normal)
4716 {
4717 incref_bp_location (bl);
4718 **bs_link_pointer = this;
4719 *bs_link_pointer = &next;
4720 }
4721
4722 bpstats::bpstats ()
4723 : next (NULL),
4724 bp_location_at (NULL),
4725 breakpoint_at (NULL),
4726 commands (NULL),
4727 print (0),
4728 stop (0),
4729 print_it (print_it_normal)
4730 {
4731 }
4732 \f
4733 /* The target has stopped with waitstatus WS. Check if any hardware
4734 watchpoints have triggered, according to the target. */
4735
4736 int
4737 watchpoints_triggered (struct target_waitstatus *ws)
4738 {
4739 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4740 CORE_ADDR addr;
4741 struct breakpoint *b;
4742
4743 if (!stopped_by_watchpoint)
4744 {
4745 /* We were not stopped by a watchpoint. Mark all watchpoints
4746 as not triggered. */
4747 ALL_BREAKPOINTS (b)
4748 if (is_hardware_watchpoint (b))
4749 {
4750 struct watchpoint *w = (struct watchpoint *) b;
4751
4752 w->watchpoint_triggered = watch_triggered_no;
4753 }
4754
4755 return 0;
4756 }
4757
4758 if (!target_stopped_data_address (&current_target, &addr))
4759 {
4760 /* We were stopped by a watchpoint, but we don't know where.
4761 Mark all watchpoints as unknown. */
4762 ALL_BREAKPOINTS (b)
4763 if (is_hardware_watchpoint (b))
4764 {
4765 struct watchpoint *w = (struct watchpoint *) b;
4766
4767 w->watchpoint_triggered = watch_triggered_unknown;
4768 }
4769
4770 return 1;
4771 }
4772
4773 /* The target could report the data address. Mark watchpoints
4774 affected by this data address as triggered, and all others as not
4775 triggered. */
4776
4777 ALL_BREAKPOINTS (b)
4778 if (is_hardware_watchpoint (b))
4779 {
4780 struct watchpoint *w = (struct watchpoint *) b;
4781 struct bp_location *loc;
4782
4783 w->watchpoint_triggered = watch_triggered_no;
4784 for (loc = b->loc; loc; loc = loc->next)
4785 {
4786 if (is_masked_watchpoint (b))
4787 {
4788 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4789 CORE_ADDR start = loc->address & w->hw_wp_mask;
4790
4791 if (newaddr == start)
4792 {
4793 w->watchpoint_triggered = watch_triggered_yes;
4794 break;
4795 }
4796 }
4797 /* Exact match not required. Within range is sufficient. */
4798 else if (target_watchpoint_addr_within_range (&current_target,
4799 addr, loc->address,
4800 loc->length))
4801 {
4802 w->watchpoint_triggered = watch_triggered_yes;
4803 break;
4804 }
4805 }
4806 }
4807
4808 return 1;
4809 }
4810
4811 /* Possible return values for watchpoint_check. */
4812 enum wp_check_result
4813 {
4814 /* The watchpoint has been deleted. */
4815 WP_DELETED = 1,
4816
4817 /* The value has changed. */
4818 WP_VALUE_CHANGED = 2,
4819
4820 /* The value has not changed. */
4821 WP_VALUE_NOT_CHANGED = 3,
4822
4823 /* Ignore this watchpoint, no matter if the value changed or not. */
4824 WP_IGNORE = 4,
4825 };
4826
4827 #define BP_TEMPFLAG 1
4828 #define BP_HARDWAREFLAG 2
4829
4830 /* Evaluate watchpoint condition expression and check if its value
4831 changed. */
4832
4833 static wp_check_result
4834 watchpoint_check (bpstat bs)
4835 {
4836 struct watchpoint *b;
4837 struct frame_info *fr;
4838 int within_current_scope;
4839
4840 /* BS is built from an existing struct breakpoint. */
4841 gdb_assert (bs->breakpoint_at != NULL);
4842 b = (struct watchpoint *) bs->breakpoint_at;
4843
4844 /* If this is a local watchpoint, we only want to check if the
4845 watchpoint frame is in scope if the current thread is the thread
4846 that was used to create the watchpoint. */
4847 if (!watchpoint_in_thread_scope (b))
4848 return WP_IGNORE;
4849
4850 if (b->exp_valid_block == NULL)
4851 within_current_scope = 1;
4852 else
4853 {
4854 struct frame_info *frame = get_current_frame ();
4855 struct gdbarch *frame_arch = get_frame_arch (frame);
4856 CORE_ADDR frame_pc = get_frame_pc (frame);
4857
4858 /* stack_frame_destroyed_p() returns a non-zero value if we're
4859 still in the function but the stack frame has already been
4860 invalidated. Since we can't rely on the values of local
4861 variables after the stack has been destroyed, we are treating
4862 the watchpoint in that state as `not changed' without further
4863 checking. Don't mark watchpoints as changed if the current
4864 frame is in an epilogue - even if they are in some other
4865 frame, our view of the stack is likely to be wrong and
4866 frame_find_by_id could error out. */
4867 if (gdbarch_stack_frame_destroyed_p (frame_arch, frame_pc))
4868 return WP_IGNORE;
4869
4870 fr = frame_find_by_id (b->watchpoint_frame);
4871 within_current_scope = (fr != NULL);
4872
4873 /* If we've gotten confused in the unwinder, we might have
4874 returned a frame that can't describe this variable. */
4875 if (within_current_scope)
4876 {
4877 struct symbol *function;
4878
4879 function = get_frame_function (fr);
4880 if (function == NULL
4881 || !contained_in (b->exp_valid_block,
4882 SYMBOL_BLOCK_VALUE (function)))
4883 within_current_scope = 0;
4884 }
4885
4886 if (within_current_scope)
4887 /* If we end up stopping, the current frame will get selected
4888 in normal_stop. So this call to select_frame won't affect
4889 the user. */
4890 select_frame (fr);
4891 }
4892
4893 if (within_current_scope)
4894 {
4895 /* We use value_{,free_to_}mark because it could be a *long*
4896 time before we return to the command level and call
4897 free_all_values. We can't call free_all_values because we
4898 might be in the middle of evaluating a function call. */
4899
4900 int pc = 0;
4901 struct value *mark;
4902 struct value *new_val;
4903
4904 if (is_masked_watchpoint (b))
4905 /* Since we don't know the exact trigger address (from
4906 stopped_data_address), just tell the user we've triggered
4907 a mask watchpoint. */
4908 return WP_VALUE_CHANGED;
4909
4910 mark = value_mark ();
4911 fetch_subexp_value (b->exp.get (), &pc, &new_val, NULL, NULL, 0);
4912
4913 if (b->val_bitsize != 0)
4914 new_val = extract_bitfield_from_watchpoint_value (b, new_val);
4915
4916 /* We use value_equal_contents instead of value_equal because
4917 the latter coerces an array to a pointer, thus comparing just
4918 the address of the array instead of its contents. This is
4919 not what we want. */
4920 if ((b->val != NULL) != (new_val != NULL)
4921 || (b->val != NULL && !value_equal_contents (b->val.get (),
4922 new_val)))
4923 {
4924 bs->old_val = b->val;
4925 b->val = release_value (new_val);
4926 b->val_valid = 1;
4927 if (new_val != NULL)
4928 value_free_to_mark (mark);
4929 return WP_VALUE_CHANGED;
4930 }
4931 else
4932 {
4933 /* Nothing changed. */
4934 value_free_to_mark (mark);
4935 return WP_VALUE_NOT_CHANGED;
4936 }
4937 }
4938 else
4939 {
4940 /* This seems like the only logical thing to do because
4941 if we temporarily ignored the watchpoint, then when
4942 we reenter the block in which it is valid it contains
4943 garbage (in the case of a function, it may have two
4944 garbage values, one before and one after the prologue).
4945 So we can't even detect the first assignment to it and
4946 watch after that (since the garbage may or may not equal
4947 the first value assigned). */
4948 /* We print all the stop information in
4949 breakpoint_ops->print_it, but in this case, by the time we
4950 call breakpoint_ops->print_it this bp will be deleted
4951 already. So we have no choice but print the information
4952 here. */
4953
4954 SWITCH_THRU_ALL_UIS ()
4955 {
4956 struct ui_out *uiout = current_uiout;
4957
4958 if (uiout->is_mi_like_p ())
4959 uiout->field_string
4960 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4961 uiout->text ("\nWatchpoint ");
4962 uiout->field_int ("wpnum", b->number);
4963 uiout->text (" deleted because the program has left the block in\n"
4964 "which its expression is valid.\n");
4965 }
4966
4967 /* Make sure the watchpoint's commands aren't executed. */
4968 b->commands = NULL;
4969 watchpoint_del_at_next_stop (b);
4970
4971 return WP_DELETED;
4972 }
4973 }
4974
4975 /* Return true if it looks like target has stopped due to hitting
4976 breakpoint location BL. This function does not check if we should
4977 stop, only if BL explains the stop. */
4978
4979 static int
4980 bpstat_check_location (const struct bp_location *bl,
4981 const address_space *aspace, CORE_ADDR bp_addr,
4982 const struct target_waitstatus *ws)
4983 {
4984 struct breakpoint *b = bl->owner;
4985
4986 /* BL is from an existing breakpoint. */
4987 gdb_assert (b != NULL);
4988
4989 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4990 }
4991
4992 /* Determine if the watched values have actually changed, and we
4993 should stop. If not, set BS->stop to 0. */
4994
4995 static void
4996 bpstat_check_watchpoint (bpstat bs)
4997 {
4998 const struct bp_location *bl;
4999 struct watchpoint *b;
5000
5001 /* BS is built for existing struct breakpoint. */
5002 bl = bs->bp_location_at;
5003 gdb_assert (bl != NULL);
5004 b = (struct watchpoint *) bs->breakpoint_at;
5005 gdb_assert (b != NULL);
5006
5007 {
5008 int must_check_value = 0;
5009
5010 if (b->type == bp_watchpoint)
5011 /* For a software watchpoint, we must always check the
5012 watched value. */
5013 must_check_value = 1;
5014 else if (b->watchpoint_triggered == watch_triggered_yes)
5015 /* We have a hardware watchpoint (read, write, or access)
5016 and the target earlier reported an address watched by
5017 this watchpoint. */
5018 must_check_value = 1;
5019 else if (b->watchpoint_triggered == watch_triggered_unknown
5020 && b->type == bp_hardware_watchpoint)
5021 /* We were stopped by a hardware watchpoint, but the target could
5022 not report the data address. We must check the watchpoint's
5023 value. Access and read watchpoints are out of luck; without
5024 a data address, we can't figure it out. */
5025 must_check_value = 1;
5026
5027 if (must_check_value)
5028 {
5029 wp_check_result e;
5030
5031 TRY
5032 {
5033 e = watchpoint_check (bs);
5034 }
5035 CATCH (ex, RETURN_MASK_ALL)
5036 {
5037 exception_fprintf (gdb_stderr, ex,
5038 "Error evaluating expression "
5039 "for watchpoint %d\n",
5040 b->number);
5041
5042 SWITCH_THRU_ALL_UIS ()
5043 {
5044 printf_filtered (_("Watchpoint %d deleted.\n"),
5045 b->number);
5046 }
5047 watchpoint_del_at_next_stop (b);
5048 e = WP_DELETED;
5049 }
5050 END_CATCH
5051
5052 switch (e)
5053 {
5054 case WP_DELETED:
5055 /* We've already printed what needs to be printed. */
5056 bs->print_it = print_it_done;
5057 /* Stop. */
5058 break;
5059 case WP_IGNORE:
5060 bs->print_it = print_it_noop;
5061 bs->stop = 0;
5062 break;
5063 case WP_VALUE_CHANGED:
5064 if (b->type == bp_read_watchpoint)
5065 {
5066 /* There are two cases to consider here:
5067
5068 1. We're watching the triggered memory for reads.
5069 In that case, trust the target, and always report
5070 the watchpoint hit to the user. Even though
5071 reads don't cause value changes, the value may
5072 have changed since the last time it was read, and
5073 since we're not trapping writes, we will not see
5074 those, and as such we should ignore our notion of
5075 old value.
5076
5077 2. We're watching the triggered memory for both
5078 reads and writes. There are two ways this may
5079 happen:
5080
5081 2.1. This is a target that can't break on data
5082 reads only, but can break on accesses (reads or
5083 writes), such as e.g., x86. We detect this case
5084 at the time we try to insert read watchpoints.
5085
5086 2.2. Otherwise, the target supports read
5087 watchpoints, but, the user set an access or write
5088 watchpoint watching the same memory as this read
5089 watchpoint.
5090
5091 If we're watching memory writes as well as reads,
5092 ignore watchpoint hits when we find that the
5093 value hasn't changed, as reads don't cause
5094 changes. This still gives false positives when
5095 the program writes the same value to memory as
5096 what there was already in memory (we will confuse
5097 it for a read), but it's much better than
5098 nothing. */
5099
5100 int other_write_watchpoint = 0;
5101
5102 if (bl->watchpoint_type == hw_read)
5103 {
5104 struct breakpoint *other_b;
5105
5106 ALL_BREAKPOINTS (other_b)
5107 if (other_b->type == bp_hardware_watchpoint
5108 || other_b->type == bp_access_watchpoint)
5109 {
5110 struct watchpoint *other_w =
5111 (struct watchpoint *) other_b;
5112
5113 if (other_w->watchpoint_triggered
5114 == watch_triggered_yes)
5115 {
5116 other_write_watchpoint = 1;
5117 break;
5118 }
5119 }
5120 }
5121
5122 if (other_write_watchpoint
5123 || bl->watchpoint_type == hw_access)
5124 {
5125 /* We're watching the same memory for writes,
5126 and the value changed since the last time we
5127 updated it, so this trap must be for a write.
5128 Ignore it. */
5129 bs->print_it = print_it_noop;
5130 bs->stop = 0;
5131 }
5132 }
5133 break;
5134 case WP_VALUE_NOT_CHANGED:
5135 if (b->type == bp_hardware_watchpoint
5136 || b->type == bp_watchpoint)
5137 {
5138 /* Don't stop: write watchpoints shouldn't fire if
5139 the value hasn't changed. */
5140 bs->print_it = print_it_noop;
5141 bs->stop = 0;
5142 }
5143 /* Stop. */
5144 break;
5145 default:
5146 /* Can't happen. */
5147 break;
5148 }
5149 }
5150 else /* must_check_value == 0 */
5151 {
5152 /* This is a case where some watchpoint(s) triggered, but
5153 not at the address of this watchpoint, or else no
5154 watchpoint triggered after all. So don't print
5155 anything for this watchpoint. */
5156 bs->print_it = print_it_noop;
5157 bs->stop = 0;
5158 }
5159 }
5160 }
5161
5162 /* For breakpoints that are currently marked as telling gdb to stop,
5163 check conditions (condition proper, frame, thread and ignore count)
5164 of breakpoint referred to by BS. If we should not stop for this
5165 breakpoint, set BS->stop to 0. */
5166
5167 static void
5168 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5169 {
5170 const struct bp_location *bl;
5171 struct breakpoint *b;
5172 /* Assume stop. */
5173 bool condition_result = true;
5174 struct expression *cond;
5175
5176 gdb_assert (bs->stop);
5177
5178 /* BS is built for existing struct breakpoint. */
5179 bl = bs->bp_location_at;
5180 gdb_assert (bl != NULL);
5181 b = bs->breakpoint_at;
5182 gdb_assert (b != NULL);
5183
5184 /* Even if the target evaluated the condition on its end and notified GDB, we
5185 need to do so again since GDB does not know if we stopped due to a
5186 breakpoint or a single step breakpoint. */
5187
5188 if (frame_id_p (b->frame_id)
5189 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5190 {
5191 bs->stop = 0;
5192 return;
5193 }
5194
5195 /* If this is a thread/task-specific breakpoint, don't waste cpu
5196 evaluating the condition if this isn't the specified
5197 thread/task. */
5198 if ((b->thread != -1 && b->thread != ptid_to_global_thread_id (ptid))
5199 || (b->task != 0 && b->task != ada_get_task_number (ptid)))
5200
5201 {
5202 bs->stop = 0;
5203 return;
5204 }
5205
5206 /* Evaluate extension language breakpoints that have a "stop" method
5207 implemented. */
5208 bs->stop = breakpoint_ext_lang_cond_says_stop (b);
5209
5210 if (is_watchpoint (b))
5211 {
5212 struct watchpoint *w = (struct watchpoint *) b;
5213
5214 cond = w->cond_exp.get ();
5215 }
5216 else
5217 cond = bl->cond.get ();
5218
5219 if (cond && b->disposition != disp_del_at_next_stop)
5220 {
5221 int within_current_scope = 1;
5222 struct watchpoint * w;
5223
5224 /* We use value_mark and value_free_to_mark because it could
5225 be a long time before we return to the command level and
5226 call free_all_values. We can't call free_all_values
5227 because we might be in the middle of evaluating a
5228 function call. */
5229 struct value *mark = value_mark ();
5230
5231 if (is_watchpoint (b))
5232 w = (struct watchpoint *) b;
5233 else
5234 w = NULL;
5235
5236 /* Need to select the frame, with all that implies so that
5237 the conditions will have the right context. Because we
5238 use the frame, we will not see an inlined function's
5239 variables when we arrive at a breakpoint at the start
5240 of the inlined function; the current frame will be the
5241 call site. */
5242 if (w == NULL || w->cond_exp_valid_block == NULL)
5243 select_frame (get_current_frame ());
5244 else
5245 {
5246 struct frame_info *frame;
5247
5248 /* For local watchpoint expressions, which particular
5249 instance of a local is being watched matters, so we
5250 keep track of the frame to evaluate the expression
5251 in. To evaluate the condition however, it doesn't
5252 really matter which instantiation of the function
5253 where the condition makes sense triggers the
5254 watchpoint. This allows an expression like "watch
5255 global if q > 10" set in `func', catch writes to
5256 global on all threads that call `func', or catch
5257 writes on all recursive calls of `func' by a single
5258 thread. We simply always evaluate the condition in
5259 the innermost frame that's executing where it makes
5260 sense to evaluate the condition. It seems
5261 intuitive. */
5262 frame = block_innermost_frame (w->cond_exp_valid_block);
5263 if (frame != NULL)
5264 select_frame (frame);
5265 else
5266 within_current_scope = 0;
5267 }
5268 if (within_current_scope)
5269 {
5270 TRY
5271 {
5272 condition_result = breakpoint_cond_eval (cond);
5273 }
5274 CATCH (ex, RETURN_MASK_ALL)
5275 {
5276 exception_fprintf (gdb_stderr, ex,
5277 "Error in testing breakpoint condition:\n");
5278 }
5279 END_CATCH
5280 }
5281 else
5282 {
5283 warning (_("Watchpoint condition cannot be tested "
5284 "in the current scope"));
5285 /* If we failed to set the right context for this
5286 watchpoint, unconditionally report it. */
5287 }
5288 /* FIXME-someday, should give breakpoint #. */
5289 value_free_to_mark (mark);
5290 }
5291
5292 if (cond && !condition_result)
5293 {
5294 bs->stop = 0;
5295 }
5296 else if (b->ignore_count > 0)
5297 {
5298 b->ignore_count--;
5299 bs->stop = 0;
5300 /* Increase the hit count even though we don't stop. */
5301 ++(b->hit_count);
5302 gdb::observers::breakpoint_modified.notify (b);
5303 }
5304 }
5305
5306 /* Returns true if we need to track moribund locations of LOC's type
5307 on the current target. */
5308
5309 static int
5310 need_moribund_for_location_type (struct bp_location *loc)
5311 {
5312 return ((loc->loc_type == bp_loc_software_breakpoint
5313 && !target_supports_stopped_by_sw_breakpoint ())
5314 || (loc->loc_type == bp_loc_hardware_breakpoint
5315 && !target_supports_stopped_by_hw_breakpoint ()));
5316 }
5317
5318
5319 /* Get a bpstat associated with having just stopped at address
5320 BP_ADDR in thread PTID.
5321
5322 Determine whether we stopped at a breakpoint, etc, or whether we
5323 don't understand this stop. Result is a chain of bpstat's such
5324 that:
5325
5326 if we don't understand the stop, the result is a null pointer.
5327
5328 if we understand why we stopped, the result is not null.
5329
5330 Each element of the chain refers to a particular breakpoint or
5331 watchpoint at which we have stopped. (We may have stopped for
5332 several reasons concurrently.)
5333
5334 Each element of the chain has valid next, breakpoint_at,
5335 commands, FIXME??? fields. */
5336
5337 bpstat
5338 bpstat_stop_status (const address_space *aspace,
5339 CORE_ADDR bp_addr, ptid_t ptid,
5340 const struct target_waitstatus *ws)
5341 {
5342 struct breakpoint *b = NULL;
5343 struct bp_location *bl;
5344 struct bp_location *loc;
5345 /* First item of allocated bpstat's. */
5346 bpstat bs_head = NULL, *bs_link = &bs_head;
5347 /* Pointer to the last thing in the chain currently. */
5348 bpstat bs;
5349 int ix;
5350 int need_remove_insert;
5351 int removed_any;
5352
5353 /* First, build the bpstat chain with locations that explain a
5354 target stop, while being careful to not set the target running,
5355 as that may invalidate locations (in particular watchpoint
5356 locations are recreated). Resuming will happen here with
5357 breakpoint conditions or watchpoint expressions that include
5358 inferior function calls. */
5359
5360 ALL_BREAKPOINTS (b)
5361 {
5362 if (!breakpoint_enabled (b))
5363 continue;
5364
5365 for (bl = b->loc; bl != NULL; bl = bl->next)
5366 {
5367 /* For hardware watchpoints, we look only at the first
5368 location. The watchpoint_check function will work on the
5369 entire expression, not the individual locations. For
5370 read watchpoints, the watchpoints_triggered function has
5371 checked all locations already. */
5372 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5373 break;
5374
5375 if (!bl->enabled || bl->shlib_disabled)
5376 continue;
5377
5378 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5379 continue;
5380
5381 /* Come here if it's a watchpoint, or if the break address
5382 matches. */
5383
5384 bs = new bpstats (bl, &bs_link); /* Alloc a bpstat to
5385 explain stop. */
5386
5387 /* Assume we stop. Should we find a watchpoint that is not
5388 actually triggered, or if the condition of the breakpoint
5389 evaluates as false, we'll reset 'stop' to 0. */
5390 bs->stop = 1;
5391 bs->print = 1;
5392
5393 /* If this is a scope breakpoint, mark the associated
5394 watchpoint as triggered so that we will handle the
5395 out-of-scope event. We'll get to the watchpoint next
5396 iteration. */
5397 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5398 {
5399 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5400
5401 w->watchpoint_triggered = watch_triggered_yes;
5402 }
5403 }
5404 }
5405
5406 /* Check if a moribund breakpoint explains the stop. */
5407 if (!target_supports_stopped_by_sw_breakpoint ()
5408 || !target_supports_stopped_by_hw_breakpoint ())
5409 {
5410 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5411 {
5412 if (breakpoint_location_address_match (loc, aspace, bp_addr)
5413 && need_moribund_for_location_type (loc))
5414 {
5415 bs = new bpstats (loc, &bs_link);
5416 /* For hits of moribund locations, we should just proceed. */
5417 bs->stop = 0;
5418 bs->print = 0;
5419 bs->print_it = print_it_noop;
5420 }
5421 }
5422 }
5423
5424 /* A bit of special processing for shlib breakpoints. We need to
5425 process solib loading here, so that the lists of loaded and
5426 unloaded libraries are correct before we handle "catch load" and
5427 "catch unload". */
5428 for (bs = bs_head; bs != NULL; bs = bs->next)
5429 {
5430 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5431 {
5432 handle_solib_event ();
5433 break;
5434 }
5435 }
5436
5437 /* Now go through the locations that caused the target to stop, and
5438 check whether we're interested in reporting this stop to higher
5439 layers, or whether we should resume the target transparently. */
5440
5441 removed_any = 0;
5442
5443 for (bs = bs_head; bs != NULL; bs = bs->next)
5444 {
5445 if (!bs->stop)
5446 continue;
5447
5448 b = bs->breakpoint_at;
5449 b->ops->check_status (bs);
5450 if (bs->stop)
5451 {
5452 bpstat_check_breakpoint_conditions (bs, ptid);
5453
5454 if (bs->stop)
5455 {
5456 ++(b->hit_count);
5457 gdb::observers::breakpoint_modified.notify (b);
5458
5459 /* We will stop here. */
5460 if (b->disposition == disp_disable)
5461 {
5462 --(b->enable_count);
5463 if (b->enable_count <= 0)
5464 b->enable_state = bp_disabled;
5465 removed_any = 1;
5466 }
5467 if (b->silent)
5468 bs->print = 0;
5469 bs->commands = b->commands;
5470 if (command_line_is_silent (bs->commands
5471 ? bs->commands.get () : NULL))
5472 bs->print = 0;
5473
5474 b->ops->after_condition_true (bs);
5475 }
5476
5477 }
5478
5479 /* Print nothing for this entry if we don't stop or don't
5480 print. */
5481 if (!bs->stop || !bs->print)
5482 bs->print_it = print_it_noop;
5483 }
5484
5485 /* If we aren't stopping, the value of some hardware watchpoint may
5486 not have changed, but the intermediate memory locations we are
5487 watching may have. Don't bother if we're stopping; this will get
5488 done later. */
5489 need_remove_insert = 0;
5490 if (! bpstat_causes_stop (bs_head))
5491 for (bs = bs_head; bs != NULL; bs = bs->next)
5492 if (!bs->stop
5493 && bs->breakpoint_at
5494 && is_hardware_watchpoint (bs->breakpoint_at))
5495 {
5496 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5497
5498 update_watchpoint (w, 0 /* don't reparse. */);
5499 need_remove_insert = 1;
5500 }
5501
5502 if (need_remove_insert)
5503 update_global_location_list (UGLL_MAY_INSERT);
5504 else if (removed_any)
5505 update_global_location_list (UGLL_DONT_INSERT);
5506
5507 return bs_head;
5508 }
5509
5510 static void
5511 handle_jit_event (void)
5512 {
5513 struct frame_info *frame;
5514 struct gdbarch *gdbarch;
5515
5516 if (debug_infrun)
5517 fprintf_unfiltered (gdb_stdlog, "handling bp_jit_event\n");
5518
5519 /* Switch terminal for any messages produced by
5520 breakpoint_re_set. */
5521 target_terminal::ours_for_output ();
5522
5523 frame = get_current_frame ();
5524 gdbarch = get_frame_arch (frame);
5525
5526 jit_event_handler (gdbarch);
5527
5528 target_terminal::inferior ();
5529 }
5530
5531 /* Prepare WHAT final decision for infrun. */
5532
5533 /* Decide what infrun needs to do with this bpstat. */
5534
5535 struct bpstat_what
5536 bpstat_what (bpstat bs_head)
5537 {
5538 struct bpstat_what retval;
5539 bpstat bs;
5540
5541 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5542 retval.call_dummy = STOP_NONE;
5543 retval.is_longjmp = 0;
5544
5545 for (bs = bs_head; bs != NULL; bs = bs->next)
5546 {
5547 /* Extract this BS's action. After processing each BS, we check
5548 if its action overrides all we've seem so far. */
5549 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5550 enum bptype bptype;
5551
5552 if (bs->breakpoint_at == NULL)
5553 {
5554 /* I suspect this can happen if it was a momentary
5555 breakpoint which has since been deleted. */
5556 bptype = bp_none;
5557 }
5558 else
5559 bptype = bs->breakpoint_at->type;
5560
5561 switch (bptype)
5562 {
5563 case bp_none:
5564 break;
5565 case bp_breakpoint:
5566 case bp_hardware_breakpoint:
5567 case bp_single_step:
5568 case bp_until:
5569 case bp_finish:
5570 case bp_shlib_event:
5571 if (bs->stop)
5572 {
5573 if (bs->print)
5574 this_action = BPSTAT_WHAT_STOP_NOISY;
5575 else
5576 this_action = BPSTAT_WHAT_STOP_SILENT;
5577 }
5578 else
5579 this_action = BPSTAT_WHAT_SINGLE;
5580 break;
5581 case bp_watchpoint:
5582 case bp_hardware_watchpoint:
5583 case bp_read_watchpoint:
5584 case bp_access_watchpoint:
5585 if (bs->stop)
5586 {
5587 if (bs->print)
5588 this_action = BPSTAT_WHAT_STOP_NOISY;
5589 else
5590 this_action = BPSTAT_WHAT_STOP_SILENT;
5591 }
5592 else
5593 {
5594 /* There was a watchpoint, but we're not stopping.
5595 This requires no further action. */
5596 }
5597 break;
5598 case bp_longjmp:
5599 case bp_longjmp_call_dummy:
5600 case bp_exception:
5601 if (bs->stop)
5602 {
5603 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5604 retval.is_longjmp = bptype != bp_exception;
5605 }
5606 else
5607 this_action = BPSTAT_WHAT_SINGLE;
5608 break;
5609 case bp_longjmp_resume:
5610 case bp_exception_resume:
5611 if (bs->stop)
5612 {
5613 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5614 retval.is_longjmp = bptype == bp_longjmp_resume;
5615 }
5616 else
5617 this_action = BPSTAT_WHAT_SINGLE;
5618 break;
5619 case bp_step_resume:
5620 if (bs->stop)
5621 this_action = BPSTAT_WHAT_STEP_RESUME;
5622 else
5623 {
5624 /* It is for the wrong frame. */
5625 this_action = BPSTAT_WHAT_SINGLE;
5626 }
5627 break;
5628 case bp_hp_step_resume:
5629 if (bs->stop)
5630 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5631 else
5632 {
5633 /* It is for the wrong frame. */
5634 this_action = BPSTAT_WHAT_SINGLE;
5635 }
5636 break;
5637 case bp_watchpoint_scope:
5638 case bp_thread_event:
5639 case bp_overlay_event:
5640 case bp_longjmp_master:
5641 case bp_std_terminate_master:
5642 case bp_exception_master:
5643 this_action = BPSTAT_WHAT_SINGLE;
5644 break;
5645 case bp_catchpoint:
5646 if (bs->stop)
5647 {
5648 if (bs->print)
5649 this_action = BPSTAT_WHAT_STOP_NOISY;
5650 else
5651 this_action = BPSTAT_WHAT_STOP_SILENT;
5652 }
5653 else
5654 {
5655 /* There was a catchpoint, but we're not stopping.
5656 This requires no further action. */
5657 }
5658 break;
5659 case bp_jit_event:
5660 this_action = BPSTAT_WHAT_SINGLE;
5661 break;
5662 case bp_call_dummy:
5663 /* Make sure the action is stop (silent or noisy),
5664 so infrun.c pops the dummy frame. */
5665 retval.call_dummy = STOP_STACK_DUMMY;
5666 this_action = BPSTAT_WHAT_STOP_SILENT;
5667 break;
5668 case bp_std_terminate:
5669 /* Make sure the action is stop (silent or noisy),
5670 so infrun.c pops the dummy frame. */
5671 retval.call_dummy = STOP_STD_TERMINATE;
5672 this_action = BPSTAT_WHAT_STOP_SILENT;
5673 break;
5674 case bp_tracepoint:
5675 case bp_fast_tracepoint:
5676 case bp_static_tracepoint:
5677 /* Tracepoint hits should not be reported back to GDB, and
5678 if one got through somehow, it should have been filtered
5679 out already. */
5680 internal_error (__FILE__, __LINE__,
5681 _("bpstat_what: tracepoint encountered"));
5682 break;
5683 case bp_gnu_ifunc_resolver:
5684 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5685 this_action = BPSTAT_WHAT_SINGLE;
5686 break;
5687 case bp_gnu_ifunc_resolver_return:
5688 /* The breakpoint will be removed, execution will restart from the
5689 PC of the former breakpoint. */
5690 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5691 break;
5692
5693 case bp_dprintf:
5694 if (bs->stop)
5695 this_action = BPSTAT_WHAT_STOP_SILENT;
5696 else
5697 this_action = BPSTAT_WHAT_SINGLE;
5698 break;
5699
5700 default:
5701 internal_error (__FILE__, __LINE__,
5702 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5703 }
5704
5705 retval.main_action = std::max (retval.main_action, this_action);
5706 }
5707
5708 return retval;
5709 }
5710
5711 void
5712 bpstat_run_callbacks (bpstat bs_head)
5713 {
5714 bpstat bs;
5715
5716 for (bs = bs_head; bs != NULL; bs = bs->next)
5717 {
5718 struct breakpoint *b = bs->breakpoint_at;
5719
5720 if (b == NULL)
5721 continue;
5722 switch (b->type)
5723 {
5724 case bp_jit_event:
5725 handle_jit_event ();
5726 break;
5727 case bp_gnu_ifunc_resolver:
5728 gnu_ifunc_resolver_stop (b);
5729 break;
5730 case bp_gnu_ifunc_resolver_return:
5731 gnu_ifunc_resolver_return_stop (b);
5732 break;
5733 }
5734 }
5735 }
5736
5737 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5738 without hardware support). This isn't related to a specific bpstat,
5739 just to things like whether watchpoints are set. */
5740
5741 int
5742 bpstat_should_step (void)
5743 {
5744 struct breakpoint *b;
5745
5746 ALL_BREAKPOINTS (b)
5747 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5748 return 1;
5749 return 0;
5750 }
5751
5752 int
5753 bpstat_causes_stop (bpstat bs)
5754 {
5755 for (; bs != NULL; bs = bs->next)
5756 if (bs->stop)
5757 return 1;
5758
5759 return 0;
5760 }
5761
5762 \f
5763
5764 /* Compute a string of spaces suitable to indent the next line
5765 so it starts at the position corresponding to the table column
5766 named COL_NAME in the currently active table of UIOUT. */
5767
5768 static char *
5769 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5770 {
5771 static char wrap_indent[80];
5772 int i, total_width, width, align;
5773 const char *text;
5774
5775 total_width = 0;
5776 for (i = 1; uiout->query_table_field (i, &width, &align, &text); i++)
5777 {
5778 if (strcmp (text, col_name) == 0)
5779 {
5780 gdb_assert (total_width < sizeof wrap_indent);
5781 memset (wrap_indent, ' ', total_width);
5782 wrap_indent[total_width] = 0;
5783
5784 return wrap_indent;
5785 }
5786
5787 total_width += width + 1;
5788 }
5789
5790 return NULL;
5791 }
5792
5793 /* Determine if the locations of this breakpoint will have their conditions
5794 evaluated by the target, host or a mix of both. Returns the following:
5795
5796 "host": Host evals condition.
5797 "host or target": Host or Target evals condition.
5798 "target": Target evals condition.
5799 */
5800
5801 static const char *
5802 bp_condition_evaluator (struct breakpoint *b)
5803 {
5804 struct bp_location *bl;
5805 char host_evals = 0;
5806 char target_evals = 0;
5807
5808 if (!b)
5809 return NULL;
5810
5811 if (!is_breakpoint (b))
5812 return NULL;
5813
5814 if (gdb_evaluates_breakpoint_condition_p ()
5815 || !target_supports_evaluation_of_breakpoint_conditions ())
5816 return condition_evaluation_host;
5817
5818 for (bl = b->loc; bl; bl = bl->next)
5819 {
5820 if (bl->cond_bytecode)
5821 target_evals++;
5822 else
5823 host_evals++;
5824 }
5825
5826 if (host_evals && target_evals)
5827 return condition_evaluation_both;
5828 else if (target_evals)
5829 return condition_evaluation_target;
5830 else
5831 return condition_evaluation_host;
5832 }
5833
5834 /* Determine the breakpoint location's condition evaluator. This is
5835 similar to bp_condition_evaluator, but for locations. */
5836
5837 static const char *
5838 bp_location_condition_evaluator (struct bp_location *bl)
5839 {
5840 if (bl && !is_breakpoint (bl->owner))
5841 return NULL;
5842
5843 if (gdb_evaluates_breakpoint_condition_p ()
5844 || !target_supports_evaluation_of_breakpoint_conditions ())
5845 return condition_evaluation_host;
5846
5847 if (bl && bl->cond_bytecode)
5848 return condition_evaluation_target;
5849 else
5850 return condition_evaluation_host;
5851 }
5852
5853 /* Print the LOC location out of the list of B->LOC locations. */
5854
5855 static void
5856 print_breakpoint_location (struct breakpoint *b,
5857 struct bp_location *loc)
5858 {
5859 struct ui_out *uiout = current_uiout;
5860
5861 scoped_restore_current_program_space restore_pspace;
5862
5863 if (loc != NULL && loc->shlib_disabled)
5864 loc = NULL;
5865
5866 if (loc != NULL)
5867 set_current_program_space (loc->pspace);
5868
5869 if (b->display_canonical)
5870 uiout->field_string ("what", event_location_to_string (b->location.get ()));
5871 else if (loc && loc->symtab)
5872 {
5873 const struct symbol *sym = loc->symbol;
5874
5875 if (sym == NULL)
5876 sym = find_pc_sect_function (loc->address, loc->section);
5877
5878 if (sym)
5879 {
5880 uiout->text ("in ");
5881 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
5882 uiout->text (" ");
5883 uiout->wrap_hint (wrap_indent_at_field (uiout, "what"));
5884 uiout->text ("at ");
5885 }
5886 uiout->field_string ("file",
5887 symtab_to_filename_for_display (loc->symtab));
5888 uiout->text (":");
5889
5890 if (uiout->is_mi_like_p ())
5891 uiout->field_string ("fullname", symtab_to_fullname (loc->symtab));
5892
5893 uiout->field_int ("line", loc->line_number);
5894 }
5895 else if (loc)
5896 {
5897 string_file stb;
5898
5899 print_address_symbolic (loc->gdbarch, loc->address, &stb,
5900 demangle, "");
5901 uiout->field_stream ("at", stb);
5902 }
5903 else
5904 {
5905 uiout->field_string ("pending",
5906 event_location_to_string (b->location.get ()));
5907 /* If extra_string is available, it could be holding a condition
5908 or dprintf arguments. In either case, make sure it is printed,
5909 too, but only for non-MI streams. */
5910 if (!uiout->is_mi_like_p () && b->extra_string != NULL)
5911 {
5912 if (b->type == bp_dprintf)
5913 uiout->text (",");
5914 else
5915 uiout->text (" ");
5916 uiout->text (b->extra_string);
5917 }
5918 }
5919
5920 if (loc && is_breakpoint (b)
5921 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5922 && bp_condition_evaluator (b) == condition_evaluation_both)
5923 {
5924 uiout->text (" (");
5925 uiout->field_string ("evaluated-by",
5926 bp_location_condition_evaluator (loc));
5927 uiout->text (")");
5928 }
5929 }
5930
5931 static const char *
5932 bptype_string (enum bptype type)
5933 {
5934 struct ep_type_description
5935 {
5936 enum bptype type;
5937 const char *description;
5938 };
5939 static struct ep_type_description bptypes[] =
5940 {
5941 {bp_none, "?deleted?"},
5942 {bp_breakpoint, "breakpoint"},
5943 {bp_hardware_breakpoint, "hw breakpoint"},
5944 {bp_single_step, "sw single-step"},
5945 {bp_until, "until"},
5946 {bp_finish, "finish"},
5947 {bp_watchpoint, "watchpoint"},
5948 {bp_hardware_watchpoint, "hw watchpoint"},
5949 {bp_read_watchpoint, "read watchpoint"},
5950 {bp_access_watchpoint, "acc watchpoint"},
5951 {bp_longjmp, "longjmp"},
5952 {bp_longjmp_resume, "longjmp resume"},
5953 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5954 {bp_exception, "exception"},
5955 {bp_exception_resume, "exception resume"},
5956 {bp_step_resume, "step resume"},
5957 {bp_hp_step_resume, "high-priority step resume"},
5958 {bp_watchpoint_scope, "watchpoint scope"},
5959 {bp_call_dummy, "call dummy"},
5960 {bp_std_terminate, "std::terminate"},
5961 {bp_shlib_event, "shlib events"},
5962 {bp_thread_event, "thread events"},
5963 {bp_overlay_event, "overlay events"},
5964 {bp_longjmp_master, "longjmp master"},
5965 {bp_std_terminate_master, "std::terminate master"},
5966 {bp_exception_master, "exception master"},
5967 {bp_catchpoint, "catchpoint"},
5968 {bp_tracepoint, "tracepoint"},
5969 {bp_fast_tracepoint, "fast tracepoint"},
5970 {bp_static_tracepoint, "static tracepoint"},
5971 {bp_dprintf, "dprintf"},
5972 {bp_jit_event, "jit events"},
5973 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5974 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5975 };
5976
5977 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5978 || ((int) type != bptypes[(int) type].type))
5979 internal_error (__FILE__, __LINE__,
5980 _("bptypes table does not describe type #%d."),
5981 (int) type);
5982
5983 return bptypes[(int) type].description;
5984 }
5985
5986 /* For MI, output a field named 'thread-groups' with a list as the value.
5987 For CLI, prefix the list with the string 'inf'. */
5988
5989 static void
5990 output_thread_groups (struct ui_out *uiout,
5991 const char *field_name,
5992 const std::vector<int> &inf_nums,
5993 int mi_only)
5994 {
5995 int is_mi = uiout->is_mi_like_p ();
5996
5997 /* For backward compatibility, don't display inferiors in CLI unless
5998 there are several. Always display them for MI. */
5999 if (!is_mi && mi_only)
6000 return;
6001
6002 ui_out_emit_list list_emitter (uiout, field_name);
6003
6004 for (size_t i = 0; i < inf_nums.size (); i++)
6005 {
6006 if (is_mi)
6007 {
6008 char mi_group[10];
6009
6010 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf_nums[i]);
6011 uiout->field_string (NULL, mi_group);
6012 }
6013 else
6014 {
6015 if (i == 0)
6016 uiout->text (" inf ");
6017 else
6018 uiout->text (", ");
6019
6020 uiout->text (plongest (inf_nums[i]));
6021 }
6022 }
6023 }
6024
6025 /* Print B to gdb_stdout. */
6026
6027 static void
6028 print_one_breakpoint_location (struct breakpoint *b,
6029 struct bp_location *loc,
6030 int loc_number,
6031 struct bp_location **last_loc,
6032 int allflag)
6033 {
6034 struct command_line *l;
6035 static char bpenables[] = "nynny";
6036
6037 struct ui_out *uiout = current_uiout;
6038 int header_of_multiple = 0;
6039 int part_of_multiple = (loc != NULL);
6040 struct value_print_options opts;
6041
6042 get_user_print_options (&opts);
6043
6044 gdb_assert (!loc || loc_number != 0);
6045 /* See comment in print_one_breakpoint concerning treatment of
6046 breakpoints with single disabled location. */
6047 if (loc == NULL
6048 && (b->loc != NULL
6049 && (b->loc->next != NULL || !b->loc->enabled)))
6050 header_of_multiple = 1;
6051 if (loc == NULL)
6052 loc = b->loc;
6053
6054 annotate_record ();
6055
6056 /* 1 */
6057 annotate_field (0);
6058 if (part_of_multiple)
6059 {
6060 char *formatted;
6061 formatted = xstrprintf ("%d.%d", b->number, loc_number);
6062 uiout->field_string ("number", formatted);
6063 xfree (formatted);
6064 }
6065 else
6066 {
6067 uiout->field_int ("number", b->number);
6068 }
6069
6070 /* 2 */
6071 annotate_field (1);
6072 if (part_of_multiple)
6073 uiout->field_skip ("type");
6074 else
6075 uiout->field_string ("type", bptype_string (b->type));
6076
6077 /* 3 */
6078 annotate_field (2);
6079 if (part_of_multiple)
6080 uiout->field_skip ("disp");
6081 else
6082 uiout->field_string ("disp", bpdisp_text (b->disposition));
6083
6084
6085 /* 4 */
6086 annotate_field (3);
6087 if (part_of_multiple)
6088 uiout->field_string ("enabled", loc->enabled ? "y" : "n");
6089 else
6090 uiout->field_fmt ("enabled", "%c", bpenables[(int) b->enable_state]);
6091 uiout->spaces (2);
6092
6093
6094 /* 5 and 6 */
6095 if (b->ops != NULL && b->ops->print_one != NULL)
6096 {
6097 /* Although the print_one can possibly print all locations,
6098 calling it here is not likely to get any nice result. So,
6099 make sure there's just one location. */
6100 gdb_assert (b->loc == NULL || b->loc->next == NULL);
6101 b->ops->print_one (b, last_loc);
6102 }
6103 else
6104 switch (b->type)
6105 {
6106 case bp_none:
6107 internal_error (__FILE__, __LINE__,
6108 _("print_one_breakpoint: bp_none encountered\n"));
6109 break;
6110
6111 case bp_watchpoint:
6112 case bp_hardware_watchpoint:
6113 case bp_read_watchpoint:
6114 case bp_access_watchpoint:
6115 {
6116 struct watchpoint *w = (struct watchpoint *) b;
6117
6118 /* Field 4, the address, is omitted (which makes the columns
6119 not line up too nicely with the headers, but the effect
6120 is relatively readable). */
6121 if (opts.addressprint)
6122 uiout->field_skip ("addr");
6123 annotate_field (5);
6124 uiout->field_string ("what", w->exp_string);
6125 }
6126 break;
6127
6128 case bp_breakpoint:
6129 case bp_hardware_breakpoint:
6130 case bp_single_step:
6131 case bp_until:
6132 case bp_finish:
6133 case bp_longjmp:
6134 case bp_longjmp_resume:
6135 case bp_longjmp_call_dummy:
6136 case bp_exception:
6137 case bp_exception_resume:
6138 case bp_step_resume:
6139 case bp_hp_step_resume:
6140 case bp_watchpoint_scope:
6141 case bp_call_dummy:
6142 case bp_std_terminate:
6143 case bp_shlib_event:
6144 case bp_thread_event:
6145 case bp_overlay_event:
6146 case bp_longjmp_master:
6147 case bp_std_terminate_master:
6148 case bp_exception_master:
6149 case bp_tracepoint:
6150 case bp_fast_tracepoint:
6151 case bp_static_tracepoint:
6152 case bp_dprintf:
6153 case bp_jit_event:
6154 case bp_gnu_ifunc_resolver:
6155 case bp_gnu_ifunc_resolver_return:
6156 if (opts.addressprint)
6157 {
6158 annotate_field (4);
6159 if (header_of_multiple)
6160 uiout->field_string ("addr", "<MULTIPLE>");
6161 else if (b->loc == NULL || loc->shlib_disabled)
6162 uiout->field_string ("addr", "<PENDING>");
6163 else
6164 uiout->field_core_addr ("addr",
6165 loc->gdbarch, loc->address);
6166 }
6167 annotate_field (5);
6168 if (!header_of_multiple)
6169 print_breakpoint_location (b, loc);
6170 if (b->loc)
6171 *last_loc = b->loc;
6172 break;
6173 }
6174
6175
6176 if (loc != NULL && !header_of_multiple)
6177 {
6178 struct inferior *inf;
6179 std::vector<int> inf_nums;
6180 int mi_only = 1;
6181
6182 ALL_INFERIORS (inf)
6183 {
6184 if (inf->pspace == loc->pspace)
6185 inf_nums.push_back (inf->num);
6186 }
6187
6188 /* For backward compatibility, don't display inferiors in CLI unless
6189 there are several. Always display for MI. */
6190 if (allflag
6191 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6192 && (number_of_program_spaces () > 1
6193 || number_of_inferiors () > 1)
6194 /* LOC is for existing B, it cannot be in
6195 moribund_locations and thus having NULL OWNER. */
6196 && loc->owner->type != bp_catchpoint))
6197 mi_only = 0;
6198 output_thread_groups (uiout, "thread-groups", inf_nums, mi_only);
6199 }
6200
6201 if (!part_of_multiple)
6202 {
6203 if (b->thread != -1)
6204 {
6205 /* FIXME: This seems to be redundant and lost here; see the
6206 "stop only in" line a little further down. */
6207 uiout->text (" thread ");
6208 uiout->field_int ("thread", b->thread);
6209 }
6210 else if (b->task != 0)
6211 {
6212 uiout->text (" task ");
6213 uiout->field_int ("task", b->task);
6214 }
6215 }
6216
6217 uiout->text ("\n");
6218
6219 if (!part_of_multiple)
6220 b->ops->print_one_detail (b, uiout);
6221
6222 if (part_of_multiple && frame_id_p (b->frame_id))
6223 {
6224 annotate_field (6);
6225 uiout->text ("\tstop only in stack frame at ");
6226 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6227 the frame ID. */
6228 uiout->field_core_addr ("frame",
6229 b->gdbarch, b->frame_id.stack_addr);
6230 uiout->text ("\n");
6231 }
6232
6233 if (!part_of_multiple && b->cond_string)
6234 {
6235 annotate_field (7);
6236 if (is_tracepoint (b))
6237 uiout->text ("\ttrace only if ");
6238 else
6239 uiout->text ("\tstop only if ");
6240 uiout->field_string ("cond", b->cond_string);
6241
6242 /* Print whether the target is doing the breakpoint's condition
6243 evaluation. If GDB is doing the evaluation, don't print anything. */
6244 if (is_breakpoint (b)
6245 && breakpoint_condition_evaluation_mode ()
6246 == condition_evaluation_target)
6247 {
6248 uiout->text (" (");
6249 uiout->field_string ("evaluated-by",
6250 bp_condition_evaluator (b));
6251 uiout->text (" evals)");
6252 }
6253 uiout->text ("\n");
6254 }
6255
6256 if (!part_of_multiple && b->thread != -1)
6257 {
6258 /* FIXME should make an annotation for this. */
6259 uiout->text ("\tstop only in thread ");
6260 if (uiout->is_mi_like_p ())
6261 uiout->field_int ("thread", b->thread);
6262 else
6263 {
6264 struct thread_info *thr = find_thread_global_id (b->thread);
6265
6266 uiout->field_string ("thread", print_thread_id (thr));
6267 }
6268 uiout->text ("\n");
6269 }
6270
6271 if (!part_of_multiple)
6272 {
6273 if (b->hit_count)
6274 {
6275 /* FIXME should make an annotation for this. */
6276 if (is_catchpoint (b))
6277 uiout->text ("\tcatchpoint");
6278 else if (is_tracepoint (b))
6279 uiout->text ("\ttracepoint");
6280 else
6281 uiout->text ("\tbreakpoint");
6282 uiout->text (" already hit ");
6283 uiout->field_int ("times", b->hit_count);
6284 if (b->hit_count == 1)
6285 uiout->text (" time\n");
6286 else
6287 uiout->text (" times\n");
6288 }
6289 else
6290 {
6291 /* Output the count also if it is zero, but only if this is mi. */
6292 if (uiout->is_mi_like_p ())
6293 uiout->field_int ("times", b->hit_count);
6294 }
6295 }
6296
6297 if (!part_of_multiple && b->ignore_count)
6298 {
6299 annotate_field (8);
6300 uiout->text ("\tignore next ");
6301 uiout->field_int ("ignore", b->ignore_count);
6302 uiout->text (" hits\n");
6303 }
6304
6305 /* Note that an enable count of 1 corresponds to "enable once"
6306 behavior, which is reported by the combination of enablement and
6307 disposition, so we don't need to mention it here. */
6308 if (!part_of_multiple && b->enable_count > 1)
6309 {
6310 annotate_field (8);
6311 uiout->text ("\tdisable after ");
6312 /* Tweak the wording to clarify that ignore and enable counts
6313 are distinct, and have additive effect. */
6314 if (b->ignore_count)
6315 uiout->text ("additional ");
6316 else
6317 uiout->text ("next ");
6318 uiout->field_int ("enable", b->enable_count);
6319 uiout->text (" hits\n");
6320 }
6321
6322 if (!part_of_multiple && is_tracepoint (b))
6323 {
6324 struct tracepoint *tp = (struct tracepoint *) b;
6325
6326 if (tp->traceframe_usage)
6327 {
6328 uiout->text ("\ttrace buffer usage ");
6329 uiout->field_int ("traceframe-usage", tp->traceframe_usage);
6330 uiout->text (" bytes\n");
6331 }
6332 }
6333
6334 l = b->commands ? b->commands.get () : NULL;
6335 if (!part_of_multiple && l)
6336 {
6337 annotate_field (9);
6338 ui_out_emit_tuple tuple_emitter (uiout, "script");
6339 print_command_lines (uiout, l, 4);
6340 }
6341
6342 if (is_tracepoint (b))
6343 {
6344 struct tracepoint *t = (struct tracepoint *) b;
6345
6346 if (!part_of_multiple && t->pass_count)
6347 {
6348 annotate_field (10);
6349 uiout->text ("\tpass count ");
6350 uiout->field_int ("pass", t->pass_count);
6351 uiout->text (" \n");
6352 }
6353
6354 /* Don't display it when tracepoint or tracepoint location is
6355 pending. */
6356 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6357 {
6358 annotate_field (11);
6359
6360 if (uiout->is_mi_like_p ())
6361 uiout->field_string ("installed",
6362 loc->inserted ? "y" : "n");
6363 else
6364 {
6365 if (loc->inserted)
6366 uiout->text ("\t");
6367 else
6368 uiout->text ("\tnot ");
6369 uiout->text ("installed on target\n");
6370 }
6371 }
6372 }
6373
6374 if (uiout->is_mi_like_p () && !part_of_multiple)
6375 {
6376 if (is_watchpoint (b))
6377 {
6378 struct watchpoint *w = (struct watchpoint *) b;
6379
6380 uiout->field_string ("original-location", w->exp_string);
6381 }
6382 else if (b->location != NULL
6383 && event_location_to_string (b->location.get ()) != NULL)
6384 uiout->field_string ("original-location",
6385 event_location_to_string (b->location.get ()));
6386 }
6387 }
6388
6389 static void
6390 print_one_breakpoint (struct breakpoint *b,
6391 struct bp_location **last_loc,
6392 int allflag)
6393 {
6394 struct ui_out *uiout = current_uiout;
6395
6396 {
6397 ui_out_emit_tuple tuple_emitter (uiout, "bkpt");
6398
6399 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6400 }
6401
6402 /* If this breakpoint has custom print function,
6403 it's already printed. Otherwise, print individual
6404 locations, if any. */
6405 if (b->ops == NULL || b->ops->print_one == NULL)
6406 {
6407 /* If breakpoint has a single location that is disabled, we
6408 print it as if it had several locations, since otherwise it's
6409 hard to represent "breakpoint enabled, location disabled"
6410 situation.
6411
6412 Note that while hardware watchpoints have several locations
6413 internally, that's not a property exposed to user. */
6414 if (b->loc
6415 && !is_hardware_watchpoint (b)
6416 && (b->loc->next || !b->loc->enabled))
6417 {
6418 struct bp_location *loc;
6419 int n = 1;
6420
6421 for (loc = b->loc; loc; loc = loc->next, ++n)
6422 {
6423 ui_out_emit_tuple tuple_emitter (uiout, NULL);
6424 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6425 }
6426 }
6427 }
6428 }
6429
6430 static int
6431 breakpoint_address_bits (struct breakpoint *b)
6432 {
6433 int print_address_bits = 0;
6434 struct bp_location *loc;
6435
6436 /* Software watchpoints that aren't watching memory don't have an
6437 address to print. */
6438 if (is_no_memory_software_watchpoint (b))
6439 return 0;
6440
6441 for (loc = b->loc; loc; loc = loc->next)
6442 {
6443 int addr_bit;
6444
6445 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6446 if (addr_bit > print_address_bits)
6447 print_address_bits = addr_bit;
6448 }
6449
6450 return print_address_bits;
6451 }
6452
6453 /* See breakpoint.h. */
6454
6455 void
6456 print_breakpoint (breakpoint *b)
6457 {
6458 struct bp_location *dummy_loc = NULL;
6459 print_one_breakpoint (b, &dummy_loc, 0);
6460 }
6461
6462 /* Return true if this breakpoint was set by the user, false if it is
6463 internal or momentary. */
6464
6465 int
6466 user_breakpoint_p (struct breakpoint *b)
6467 {
6468 return b->number > 0;
6469 }
6470
6471 /* See breakpoint.h. */
6472
6473 int
6474 pending_breakpoint_p (struct breakpoint *b)
6475 {
6476 return b->loc == NULL;
6477 }
6478
6479 /* Print information on user settable breakpoint (watchpoint, etc)
6480 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6481 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6482 FILTER is non-NULL, call it on each breakpoint and only include the
6483 ones for which it returns non-zero. Return the total number of
6484 breakpoints listed. */
6485
6486 static int
6487 breakpoint_1 (const char *args, int allflag,
6488 int (*filter) (const struct breakpoint *))
6489 {
6490 struct breakpoint *b;
6491 struct bp_location *last_loc = NULL;
6492 int nr_printable_breakpoints;
6493 struct value_print_options opts;
6494 int print_address_bits = 0;
6495 int print_type_col_width = 14;
6496 struct ui_out *uiout = current_uiout;
6497
6498 get_user_print_options (&opts);
6499
6500 /* Compute the number of rows in the table, as well as the size
6501 required for address fields. */
6502 nr_printable_breakpoints = 0;
6503 ALL_BREAKPOINTS (b)
6504 {
6505 /* If we have a filter, only list the breakpoints it accepts. */
6506 if (filter && !filter (b))
6507 continue;
6508
6509 /* If we have an "args" string, it is a list of breakpoints to
6510 accept. Skip the others. */
6511 if (args != NULL && *args != '\0')
6512 {
6513 if (allflag && parse_and_eval_long (args) != b->number)
6514 continue;
6515 if (!allflag && !number_is_in_list (args, b->number))
6516 continue;
6517 }
6518
6519 if (allflag || user_breakpoint_p (b))
6520 {
6521 int addr_bit, type_len;
6522
6523 addr_bit = breakpoint_address_bits (b);
6524 if (addr_bit > print_address_bits)
6525 print_address_bits = addr_bit;
6526
6527 type_len = strlen (bptype_string (b->type));
6528 if (type_len > print_type_col_width)
6529 print_type_col_width = type_len;
6530
6531 nr_printable_breakpoints++;
6532 }
6533 }
6534
6535 {
6536 ui_out_emit_table table_emitter (uiout,
6537 opts.addressprint ? 6 : 5,
6538 nr_printable_breakpoints,
6539 "BreakpointTable");
6540
6541 if (nr_printable_breakpoints > 0)
6542 annotate_breakpoints_headers ();
6543 if (nr_printable_breakpoints > 0)
6544 annotate_field (0);
6545 uiout->table_header (7, ui_left, "number", "Num"); /* 1 */
6546 if (nr_printable_breakpoints > 0)
6547 annotate_field (1);
6548 uiout->table_header (print_type_col_width, ui_left, "type", "Type"); /* 2 */
6549 if (nr_printable_breakpoints > 0)
6550 annotate_field (2);
6551 uiout->table_header (4, ui_left, "disp", "Disp"); /* 3 */
6552 if (nr_printable_breakpoints > 0)
6553 annotate_field (3);
6554 uiout->table_header (3, ui_left, "enabled", "Enb"); /* 4 */
6555 if (opts.addressprint)
6556 {
6557 if (nr_printable_breakpoints > 0)
6558 annotate_field (4);
6559 if (print_address_bits <= 32)
6560 uiout->table_header (10, ui_left, "addr", "Address"); /* 5 */
6561 else
6562 uiout->table_header (18, ui_left, "addr", "Address"); /* 5 */
6563 }
6564 if (nr_printable_breakpoints > 0)
6565 annotate_field (5);
6566 uiout->table_header (40, ui_noalign, "what", "What"); /* 6 */
6567 uiout->table_body ();
6568 if (nr_printable_breakpoints > 0)
6569 annotate_breakpoints_table ();
6570
6571 ALL_BREAKPOINTS (b)
6572 {
6573 QUIT;
6574 /* If we have a filter, only list the breakpoints it accepts. */
6575 if (filter && !filter (b))
6576 continue;
6577
6578 /* If we have an "args" string, it is a list of breakpoints to
6579 accept. Skip the others. */
6580
6581 if (args != NULL && *args != '\0')
6582 {
6583 if (allflag) /* maintenance info breakpoint */
6584 {
6585 if (parse_and_eval_long (args) != b->number)
6586 continue;
6587 }
6588 else /* all others */
6589 {
6590 if (!number_is_in_list (args, b->number))
6591 continue;
6592 }
6593 }
6594 /* We only print out user settable breakpoints unless the
6595 allflag is set. */
6596 if (allflag || user_breakpoint_p (b))
6597 print_one_breakpoint (b, &last_loc, allflag);
6598 }
6599 }
6600
6601 if (nr_printable_breakpoints == 0)
6602 {
6603 /* If there's a filter, let the caller decide how to report
6604 empty list. */
6605 if (!filter)
6606 {
6607 if (args == NULL || *args == '\0')
6608 uiout->message ("No breakpoints or watchpoints.\n");
6609 else
6610 uiout->message ("No breakpoint or watchpoint matching '%s'.\n",
6611 args);
6612 }
6613 }
6614 else
6615 {
6616 if (last_loc && !server_command)
6617 set_next_address (last_loc->gdbarch, last_loc->address);
6618 }
6619
6620 /* FIXME? Should this be moved up so that it is only called when
6621 there have been breakpoints? */
6622 annotate_breakpoints_table_end ();
6623
6624 return nr_printable_breakpoints;
6625 }
6626
6627 /* Display the value of default-collect in a way that is generally
6628 compatible with the breakpoint list. */
6629
6630 static void
6631 default_collect_info (void)
6632 {
6633 struct ui_out *uiout = current_uiout;
6634
6635 /* If it has no value (which is frequently the case), say nothing; a
6636 message like "No default-collect." gets in user's face when it's
6637 not wanted. */
6638 if (!*default_collect)
6639 return;
6640
6641 /* The following phrase lines up nicely with per-tracepoint collect
6642 actions. */
6643 uiout->text ("default collect ");
6644 uiout->field_string ("default-collect", default_collect);
6645 uiout->text (" \n");
6646 }
6647
6648 static void
6649 info_breakpoints_command (const char *args, int from_tty)
6650 {
6651 breakpoint_1 (args, 0, NULL);
6652
6653 default_collect_info ();
6654 }
6655
6656 static void
6657 info_watchpoints_command (const char *args, int from_tty)
6658 {
6659 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6660 struct ui_out *uiout = current_uiout;
6661
6662 if (num_printed == 0)
6663 {
6664 if (args == NULL || *args == '\0')
6665 uiout->message ("No watchpoints.\n");
6666 else
6667 uiout->message ("No watchpoint matching '%s'.\n", args);
6668 }
6669 }
6670
6671 static void
6672 maintenance_info_breakpoints (const char *args, int from_tty)
6673 {
6674 breakpoint_1 (args, 1, NULL);
6675
6676 default_collect_info ();
6677 }
6678
6679 static int
6680 breakpoint_has_pc (struct breakpoint *b,
6681 struct program_space *pspace,
6682 CORE_ADDR pc, struct obj_section *section)
6683 {
6684 struct bp_location *bl = b->loc;
6685
6686 for (; bl; bl = bl->next)
6687 {
6688 if (bl->pspace == pspace
6689 && bl->address == pc
6690 && (!overlay_debugging || bl->section == section))
6691 return 1;
6692 }
6693 return 0;
6694 }
6695
6696 /* Print a message describing any user-breakpoints set at PC. This
6697 concerns with logical breakpoints, so we match program spaces, not
6698 address spaces. */
6699
6700 static void
6701 describe_other_breakpoints (struct gdbarch *gdbarch,
6702 struct program_space *pspace, CORE_ADDR pc,
6703 struct obj_section *section, int thread)
6704 {
6705 int others = 0;
6706 struct breakpoint *b;
6707
6708 ALL_BREAKPOINTS (b)
6709 others += (user_breakpoint_p (b)
6710 && breakpoint_has_pc (b, pspace, pc, section));
6711 if (others > 0)
6712 {
6713 if (others == 1)
6714 printf_filtered (_("Note: breakpoint "));
6715 else /* if (others == ???) */
6716 printf_filtered (_("Note: breakpoints "));
6717 ALL_BREAKPOINTS (b)
6718 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6719 {
6720 others--;
6721 printf_filtered ("%d", b->number);
6722 if (b->thread == -1 && thread != -1)
6723 printf_filtered (" (all threads)");
6724 else if (b->thread != -1)
6725 printf_filtered (" (thread %d)", b->thread);
6726 printf_filtered ("%s%s ",
6727 ((b->enable_state == bp_disabled
6728 || b->enable_state == bp_call_disabled)
6729 ? " (disabled)"
6730 : ""),
6731 (others > 1) ? ","
6732 : ((others == 1) ? " and" : ""));
6733 }
6734 printf_filtered (_("also set at pc "));
6735 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6736 printf_filtered (".\n");
6737 }
6738 }
6739 \f
6740
6741 /* Return true iff it is meaningful to use the address member of
6742 BPT locations. For some breakpoint types, the locations' address members
6743 are irrelevant and it makes no sense to attempt to compare them to other
6744 addresses (or use them for any other purpose either).
6745
6746 More specifically, each of the following breakpoint types will
6747 always have a zero valued location address and we don't want to mark
6748 breakpoints of any of these types to be a duplicate of an actual
6749 breakpoint location at address zero:
6750
6751 bp_watchpoint
6752 bp_catchpoint
6753
6754 */
6755
6756 static int
6757 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6758 {
6759 enum bptype type = bpt->type;
6760
6761 return (type != bp_watchpoint && type != bp_catchpoint);
6762 }
6763
6764 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6765 true if LOC1 and LOC2 represent the same watchpoint location. */
6766
6767 static int
6768 watchpoint_locations_match (struct bp_location *loc1,
6769 struct bp_location *loc2)
6770 {
6771 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6772 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6773
6774 /* Both of them must exist. */
6775 gdb_assert (w1 != NULL);
6776 gdb_assert (w2 != NULL);
6777
6778 /* If the target can evaluate the condition expression in hardware,
6779 then we we need to insert both watchpoints even if they are at
6780 the same place. Otherwise the watchpoint will only trigger when
6781 the condition of whichever watchpoint was inserted evaluates to
6782 true, not giving a chance for GDB to check the condition of the
6783 other watchpoint. */
6784 if ((w1->cond_exp
6785 && target_can_accel_watchpoint_condition (loc1->address,
6786 loc1->length,
6787 loc1->watchpoint_type,
6788 w1->cond_exp.get ()))
6789 || (w2->cond_exp
6790 && target_can_accel_watchpoint_condition (loc2->address,
6791 loc2->length,
6792 loc2->watchpoint_type,
6793 w2->cond_exp.get ())))
6794 return 0;
6795
6796 /* Note that this checks the owner's type, not the location's. In
6797 case the target does not support read watchpoints, but does
6798 support access watchpoints, we'll have bp_read_watchpoint
6799 watchpoints with hw_access locations. Those should be considered
6800 duplicates of hw_read locations. The hw_read locations will
6801 become hw_access locations later. */
6802 return (loc1->owner->type == loc2->owner->type
6803 && loc1->pspace->aspace == loc2->pspace->aspace
6804 && loc1->address == loc2->address
6805 && loc1->length == loc2->length);
6806 }
6807
6808 /* See breakpoint.h. */
6809
6810 int
6811 breakpoint_address_match (const address_space *aspace1, CORE_ADDR addr1,
6812 const address_space *aspace2, CORE_ADDR addr2)
6813 {
6814 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6815 || aspace1 == aspace2)
6816 && addr1 == addr2);
6817 }
6818
6819 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6820 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6821 matches ASPACE2. On targets that have global breakpoints, the address
6822 space doesn't really matter. */
6823
6824 static int
6825 breakpoint_address_match_range (const address_space *aspace1,
6826 CORE_ADDR addr1,
6827 int len1, const address_space *aspace2,
6828 CORE_ADDR addr2)
6829 {
6830 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6831 || aspace1 == aspace2)
6832 && addr2 >= addr1 && addr2 < addr1 + len1);
6833 }
6834
6835 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6836 a ranged breakpoint. In most targets, a match happens only if ASPACE
6837 matches the breakpoint's address space. On targets that have global
6838 breakpoints, the address space doesn't really matter. */
6839
6840 static int
6841 breakpoint_location_address_match (struct bp_location *bl,
6842 const address_space *aspace,
6843 CORE_ADDR addr)
6844 {
6845 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6846 aspace, addr)
6847 || (bl->length
6848 && breakpoint_address_match_range (bl->pspace->aspace,
6849 bl->address, bl->length,
6850 aspace, addr)));
6851 }
6852
6853 /* Returns true if the [ADDR,ADDR+LEN) range in ASPACE overlaps
6854 breakpoint BL. BL may be a ranged breakpoint. In most targets, a
6855 match happens only if ASPACE matches the breakpoint's address
6856 space. On targets that have global breakpoints, the address space
6857 doesn't really matter. */
6858
6859 static int
6860 breakpoint_location_address_range_overlap (struct bp_location *bl,
6861 const address_space *aspace,
6862 CORE_ADDR addr, int len)
6863 {
6864 if (gdbarch_has_global_breakpoints (target_gdbarch ())
6865 || bl->pspace->aspace == aspace)
6866 {
6867 int bl_len = bl->length != 0 ? bl->length : 1;
6868
6869 if (mem_ranges_overlap (addr, len, bl->address, bl_len))
6870 return 1;
6871 }
6872 return 0;
6873 }
6874
6875 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6876 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6877 true, otherwise returns false. */
6878
6879 static int
6880 tracepoint_locations_match (struct bp_location *loc1,
6881 struct bp_location *loc2)
6882 {
6883 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6884 /* Since tracepoint locations are never duplicated with others', tracepoint
6885 locations at the same address of different tracepoints are regarded as
6886 different locations. */
6887 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6888 else
6889 return 0;
6890 }
6891
6892 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6893 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6894 represent the same location. */
6895
6896 static int
6897 breakpoint_locations_match (struct bp_location *loc1,
6898 struct bp_location *loc2)
6899 {
6900 int hw_point1, hw_point2;
6901
6902 /* Both of them must not be in moribund_locations. */
6903 gdb_assert (loc1->owner != NULL);
6904 gdb_assert (loc2->owner != NULL);
6905
6906 hw_point1 = is_hardware_watchpoint (loc1->owner);
6907 hw_point2 = is_hardware_watchpoint (loc2->owner);
6908
6909 if (hw_point1 != hw_point2)
6910 return 0;
6911 else if (hw_point1)
6912 return watchpoint_locations_match (loc1, loc2);
6913 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6914 return tracepoint_locations_match (loc1, loc2);
6915 else
6916 /* We compare bp_location.length in order to cover ranged breakpoints. */
6917 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6918 loc2->pspace->aspace, loc2->address)
6919 && loc1->length == loc2->length);
6920 }
6921
6922 static void
6923 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6924 int bnum, int have_bnum)
6925 {
6926 /* The longest string possibly returned by hex_string_custom
6927 is 50 chars. These must be at least that big for safety. */
6928 char astr1[64];
6929 char astr2[64];
6930
6931 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6932 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6933 if (have_bnum)
6934 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6935 bnum, astr1, astr2);
6936 else
6937 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6938 }
6939
6940 /* Adjust a breakpoint's address to account for architectural
6941 constraints on breakpoint placement. Return the adjusted address.
6942 Note: Very few targets require this kind of adjustment. For most
6943 targets, this function is simply the identity function. */
6944
6945 static CORE_ADDR
6946 adjust_breakpoint_address (struct gdbarch *gdbarch,
6947 CORE_ADDR bpaddr, enum bptype bptype)
6948 {
6949 if (bptype == bp_watchpoint
6950 || bptype == bp_hardware_watchpoint
6951 || bptype == bp_read_watchpoint
6952 || bptype == bp_access_watchpoint
6953 || bptype == bp_catchpoint)
6954 {
6955 /* Watchpoints and the various bp_catch_* eventpoints should not
6956 have their addresses modified. */
6957 return bpaddr;
6958 }
6959 else if (bptype == bp_single_step)
6960 {
6961 /* Single-step breakpoints should not have their addresses
6962 modified. If there's any architectural constrain that
6963 applies to this address, then it should have already been
6964 taken into account when the breakpoint was created in the
6965 first place. If we didn't do this, stepping through e.g.,
6966 Thumb-2 IT blocks would break. */
6967 return bpaddr;
6968 }
6969 else
6970 {
6971 CORE_ADDR adjusted_bpaddr = bpaddr;
6972
6973 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
6974 {
6975 /* Some targets have architectural constraints on the placement
6976 of breakpoint instructions. Obtain the adjusted address. */
6977 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6978 }
6979
6980 adjusted_bpaddr = address_significant (gdbarch, adjusted_bpaddr);
6981
6982 /* An adjusted breakpoint address can significantly alter
6983 a user's expectations. Print a warning if an adjustment
6984 is required. */
6985 if (adjusted_bpaddr != bpaddr)
6986 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6987
6988 return adjusted_bpaddr;
6989 }
6990 }
6991
6992 bp_location::bp_location (const bp_location_ops *ops, breakpoint *owner)
6993 {
6994 bp_location *loc = this;
6995
6996 gdb_assert (ops != NULL);
6997
6998 loc->ops = ops;
6999 loc->owner = owner;
7000 loc->cond_bytecode = NULL;
7001 loc->shlib_disabled = 0;
7002 loc->enabled = 1;
7003
7004 switch (owner->type)
7005 {
7006 case bp_breakpoint:
7007 case bp_single_step:
7008 case bp_until:
7009 case bp_finish:
7010 case bp_longjmp:
7011 case bp_longjmp_resume:
7012 case bp_longjmp_call_dummy:
7013 case bp_exception:
7014 case bp_exception_resume:
7015 case bp_step_resume:
7016 case bp_hp_step_resume:
7017 case bp_watchpoint_scope:
7018 case bp_call_dummy:
7019 case bp_std_terminate:
7020 case bp_shlib_event:
7021 case bp_thread_event:
7022 case bp_overlay_event:
7023 case bp_jit_event:
7024 case bp_longjmp_master:
7025 case bp_std_terminate_master:
7026 case bp_exception_master:
7027 case bp_gnu_ifunc_resolver:
7028 case bp_gnu_ifunc_resolver_return:
7029 case bp_dprintf:
7030 loc->loc_type = bp_loc_software_breakpoint;
7031 mark_breakpoint_location_modified (loc);
7032 break;
7033 case bp_hardware_breakpoint:
7034 loc->loc_type = bp_loc_hardware_breakpoint;
7035 mark_breakpoint_location_modified (loc);
7036 break;
7037 case bp_hardware_watchpoint:
7038 case bp_read_watchpoint:
7039 case bp_access_watchpoint:
7040 loc->loc_type = bp_loc_hardware_watchpoint;
7041 break;
7042 case bp_watchpoint:
7043 case bp_catchpoint:
7044 case bp_tracepoint:
7045 case bp_fast_tracepoint:
7046 case bp_static_tracepoint:
7047 loc->loc_type = bp_loc_other;
7048 break;
7049 default:
7050 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
7051 }
7052
7053 loc->refc = 1;
7054 }
7055
7056 /* Allocate a struct bp_location. */
7057
7058 static struct bp_location *
7059 allocate_bp_location (struct breakpoint *bpt)
7060 {
7061 return bpt->ops->allocate_location (bpt);
7062 }
7063
7064 static void
7065 free_bp_location (struct bp_location *loc)
7066 {
7067 loc->ops->dtor (loc);
7068 delete loc;
7069 }
7070
7071 /* Increment reference count. */
7072
7073 static void
7074 incref_bp_location (struct bp_location *bl)
7075 {
7076 ++bl->refc;
7077 }
7078
7079 /* Decrement reference count. If the reference count reaches 0,
7080 destroy the bp_location. Sets *BLP to NULL. */
7081
7082 static void
7083 decref_bp_location (struct bp_location **blp)
7084 {
7085 gdb_assert ((*blp)->refc > 0);
7086
7087 if (--(*blp)->refc == 0)
7088 free_bp_location (*blp);
7089 *blp = NULL;
7090 }
7091
7092 /* Add breakpoint B at the end of the global breakpoint chain. */
7093
7094 static breakpoint *
7095 add_to_breakpoint_chain (std::unique_ptr<breakpoint> &&b)
7096 {
7097 struct breakpoint *b1;
7098 struct breakpoint *result = b.get ();
7099
7100 /* Add this breakpoint to the end of the chain so that a list of
7101 breakpoints will come out in order of increasing numbers. */
7102
7103 b1 = breakpoint_chain;
7104 if (b1 == 0)
7105 breakpoint_chain = b.release ();
7106 else
7107 {
7108 while (b1->next)
7109 b1 = b1->next;
7110 b1->next = b.release ();
7111 }
7112
7113 return result;
7114 }
7115
7116 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
7117
7118 static void
7119 init_raw_breakpoint_without_location (struct breakpoint *b,
7120 struct gdbarch *gdbarch,
7121 enum bptype bptype,
7122 const struct breakpoint_ops *ops)
7123 {
7124 gdb_assert (ops != NULL);
7125
7126 b->ops = ops;
7127 b->type = bptype;
7128 b->gdbarch = gdbarch;
7129 b->language = current_language->la_language;
7130 b->input_radix = input_radix;
7131 b->related_breakpoint = b;
7132 }
7133
7134 /* Helper to set_raw_breakpoint below. Creates a breakpoint
7135 that has type BPTYPE and has no locations as yet. */
7136
7137 static struct breakpoint *
7138 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
7139 enum bptype bptype,
7140 const struct breakpoint_ops *ops)
7141 {
7142 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7143
7144 init_raw_breakpoint_without_location (b.get (), gdbarch, bptype, ops);
7145 return add_to_breakpoint_chain (std::move (b));
7146 }
7147
7148 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
7149 resolutions should be made as the user specified the location explicitly
7150 enough. */
7151
7152 static void
7153 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
7154 {
7155 gdb_assert (loc->owner != NULL);
7156
7157 if (loc->owner->type == bp_breakpoint
7158 || loc->owner->type == bp_hardware_breakpoint
7159 || is_tracepoint (loc->owner))
7160 {
7161 int is_gnu_ifunc;
7162 const char *function_name;
7163 CORE_ADDR func_addr;
7164
7165 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7166 &func_addr, NULL, &is_gnu_ifunc);
7167
7168 if (is_gnu_ifunc && !explicit_loc)
7169 {
7170 struct breakpoint *b = loc->owner;
7171
7172 gdb_assert (loc->pspace == current_program_space);
7173 if (gnu_ifunc_resolve_name (function_name,
7174 &loc->requested_address))
7175 {
7176 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7177 loc->address = adjust_breakpoint_address (loc->gdbarch,
7178 loc->requested_address,
7179 b->type);
7180 }
7181 else if (b->type == bp_breakpoint && b->loc == loc
7182 && loc->next == NULL && b->related_breakpoint == b)
7183 {
7184 /* Create only the whole new breakpoint of this type but do not
7185 mess more complicated breakpoints with multiple locations. */
7186 b->type = bp_gnu_ifunc_resolver;
7187 /* Remember the resolver's address for use by the return
7188 breakpoint. */
7189 loc->related_address = func_addr;
7190 }
7191 }
7192
7193 if (function_name)
7194 loc->function_name = xstrdup (function_name);
7195 }
7196 }
7197
7198 /* Attempt to determine architecture of location identified by SAL. */
7199 struct gdbarch *
7200 get_sal_arch (struct symtab_and_line sal)
7201 {
7202 if (sal.section)
7203 return get_objfile_arch (sal.section->objfile);
7204 if (sal.symtab)
7205 return get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
7206
7207 return NULL;
7208 }
7209
7210 /* Low level routine for partially initializing a breakpoint of type
7211 BPTYPE. The newly created breakpoint's address, section, source
7212 file name, and line number are provided by SAL.
7213
7214 It is expected that the caller will complete the initialization of
7215 the newly created breakpoint struct as well as output any status
7216 information regarding the creation of a new breakpoint. */
7217
7218 static void
7219 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7220 struct symtab_and_line sal, enum bptype bptype,
7221 const struct breakpoint_ops *ops)
7222 {
7223 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7224
7225 add_location_to_breakpoint (b, &sal);
7226
7227 if (bptype != bp_catchpoint)
7228 gdb_assert (sal.pspace != NULL);
7229
7230 /* Store the program space that was used to set the breakpoint,
7231 except for ordinary breakpoints, which are independent of the
7232 program space. */
7233 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7234 b->pspace = sal.pspace;
7235 }
7236
7237 /* set_raw_breakpoint is a low level routine for allocating and
7238 partially initializing a breakpoint of type BPTYPE. The newly
7239 created breakpoint's address, section, source file name, and line
7240 number are provided by SAL. The newly created and partially
7241 initialized breakpoint is added to the breakpoint chain and
7242 is also returned as the value of this function.
7243
7244 It is expected that the caller will complete the initialization of
7245 the newly created breakpoint struct as well as output any status
7246 information regarding the creation of a new breakpoint. In
7247 particular, set_raw_breakpoint does NOT set the breakpoint
7248 number! Care should be taken to not allow an error to occur
7249 prior to completing the initialization of the breakpoint. If this
7250 should happen, a bogus breakpoint will be left on the chain. */
7251
7252 struct breakpoint *
7253 set_raw_breakpoint (struct gdbarch *gdbarch,
7254 struct symtab_and_line sal, enum bptype bptype,
7255 const struct breakpoint_ops *ops)
7256 {
7257 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (bptype);
7258
7259 init_raw_breakpoint (b.get (), gdbarch, sal, bptype, ops);
7260 return add_to_breakpoint_chain (std::move (b));
7261 }
7262
7263 /* Call this routine when stepping and nexting to enable a breakpoint
7264 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7265 initiated the operation. */
7266
7267 void
7268 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7269 {
7270 struct breakpoint *b, *b_tmp;
7271 int thread = tp->global_num;
7272
7273 /* To avoid having to rescan all objfile symbols at every step,
7274 we maintain a list of continually-inserted but always disabled
7275 longjmp "master" breakpoints. Here, we simply create momentary
7276 clones of those and enable them for the requested thread. */
7277 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7278 if (b->pspace == current_program_space
7279 && (b->type == bp_longjmp_master
7280 || b->type == bp_exception_master))
7281 {
7282 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7283 struct breakpoint *clone;
7284
7285 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7286 after their removal. */
7287 clone = momentary_breakpoint_from_master (b, type,
7288 &momentary_breakpoint_ops, 1);
7289 clone->thread = thread;
7290 }
7291
7292 tp->initiating_frame = frame;
7293 }
7294
7295 /* Delete all longjmp breakpoints from THREAD. */
7296 void
7297 delete_longjmp_breakpoint (int thread)
7298 {
7299 struct breakpoint *b, *b_tmp;
7300
7301 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7302 if (b->type == bp_longjmp || b->type == bp_exception)
7303 {
7304 if (b->thread == thread)
7305 delete_breakpoint (b);
7306 }
7307 }
7308
7309 void
7310 delete_longjmp_breakpoint_at_next_stop (int thread)
7311 {
7312 struct breakpoint *b, *b_tmp;
7313
7314 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7315 if (b->type == bp_longjmp || b->type == bp_exception)
7316 {
7317 if (b->thread == thread)
7318 b->disposition = disp_del_at_next_stop;
7319 }
7320 }
7321
7322 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7323 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7324 pointer to any of them. Return NULL if this system cannot place longjmp
7325 breakpoints. */
7326
7327 struct breakpoint *
7328 set_longjmp_breakpoint_for_call_dummy (void)
7329 {
7330 struct breakpoint *b, *retval = NULL;
7331
7332 ALL_BREAKPOINTS (b)
7333 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7334 {
7335 struct breakpoint *new_b;
7336
7337 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7338 &momentary_breakpoint_ops,
7339 1);
7340 new_b->thread = ptid_to_global_thread_id (inferior_ptid);
7341
7342 /* Link NEW_B into the chain of RETVAL breakpoints. */
7343
7344 gdb_assert (new_b->related_breakpoint == new_b);
7345 if (retval == NULL)
7346 retval = new_b;
7347 new_b->related_breakpoint = retval;
7348 while (retval->related_breakpoint != new_b->related_breakpoint)
7349 retval = retval->related_breakpoint;
7350 retval->related_breakpoint = new_b;
7351 }
7352
7353 return retval;
7354 }
7355
7356 /* Verify all existing dummy frames and their associated breakpoints for
7357 TP. Remove those which can no longer be found in the current frame
7358 stack.
7359
7360 You should call this function only at places where it is safe to currently
7361 unwind the whole stack. Failed stack unwind would discard live dummy
7362 frames. */
7363
7364 void
7365 check_longjmp_breakpoint_for_call_dummy (struct thread_info *tp)
7366 {
7367 struct breakpoint *b, *b_tmp;
7368
7369 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7370 if (b->type == bp_longjmp_call_dummy && b->thread == tp->global_num)
7371 {
7372 struct breakpoint *dummy_b = b->related_breakpoint;
7373
7374 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7375 dummy_b = dummy_b->related_breakpoint;
7376 if (dummy_b->type != bp_call_dummy
7377 || frame_find_by_id (dummy_b->frame_id) != NULL)
7378 continue;
7379
7380 dummy_frame_discard (dummy_b->frame_id, tp->ptid);
7381
7382 while (b->related_breakpoint != b)
7383 {
7384 if (b_tmp == b->related_breakpoint)
7385 b_tmp = b->related_breakpoint->next;
7386 delete_breakpoint (b->related_breakpoint);
7387 }
7388 delete_breakpoint (b);
7389 }
7390 }
7391
7392 void
7393 enable_overlay_breakpoints (void)
7394 {
7395 struct breakpoint *b;
7396
7397 ALL_BREAKPOINTS (b)
7398 if (b->type == bp_overlay_event)
7399 {
7400 b->enable_state = bp_enabled;
7401 update_global_location_list (UGLL_MAY_INSERT);
7402 overlay_events_enabled = 1;
7403 }
7404 }
7405
7406 void
7407 disable_overlay_breakpoints (void)
7408 {
7409 struct breakpoint *b;
7410
7411 ALL_BREAKPOINTS (b)
7412 if (b->type == bp_overlay_event)
7413 {
7414 b->enable_state = bp_disabled;
7415 update_global_location_list (UGLL_DONT_INSERT);
7416 overlay_events_enabled = 0;
7417 }
7418 }
7419
7420 /* Set an active std::terminate breakpoint for each std::terminate
7421 master breakpoint. */
7422 void
7423 set_std_terminate_breakpoint (void)
7424 {
7425 struct breakpoint *b, *b_tmp;
7426
7427 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7428 if (b->pspace == current_program_space
7429 && b->type == bp_std_terminate_master)
7430 {
7431 momentary_breakpoint_from_master (b, bp_std_terminate,
7432 &momentary_breakpoint_ops, 1);
7433 }
7434 }
7435
7436 /* Delete all the std::terminate breakpoints. */
7437 void
7438 delete_std_terminate_breakpoint (void)
7439 {
7440 struct breakpoint *b, *b_tmp;
7441
7442 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7443 if (b->type == bp_std_terminate)
7444 delete_breakpoint (b);
7445 }
7446
7447 struct breakpoint *
7448 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7449 {
7450 struct breakpoint *b;
7451
7452 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7453 &internal_breakpoint_ops);
7454
7455 b->enable_state = bp_enabled;
7456 /* location has to be used or breakpoint_re_set will delete me. */
7457 b->location = new_address_location (b->loc->address, NULL, 0);
7458
7459 update_global_location_list_nothrow (UGLL_MAY_INSERT);
7460
7461 return b;
7462 }
7463
7464 struct lang_and_radix
7465 {
7466 enum language lang;
7467 int radix;
7468 };
7469
7470 /* Create a breakpoint for JIT code registration and unregistration. */
7471
7472 struct breakpoint *
7473 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7474 {
7475 return create_internal_breakpoint (gdbarch, address, bp_jit_event,
7476 &internal_breakpoint_ops);
7477 }
7478
7479 /* Remove JIT code registration and unregistration breakpoint(s). */
7480
7481 void
7482 remove_jit_event_breakpoints (void)
7483 {
7484 struct breakpoint *b, *b_tmp;
7485
7486 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7487 if (b->type == bp_jit_event
7488 && b->loc->pspace == current_program_space)
7489 delete_breakpoint (b);
7490 }
7491
7492 void
7493 remove_solib_event_breakpoints (void)
7494 {
7495 struct breakpoint *b, *b_tmp;
7496
7497 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7498 if (b->type == bp_shlib_event
7499 && b->loc->pspace == current_program_space)
7500 delete_breakpoint (b);
7501 }
7502
7503 /* See breakpoint.h. */
7504
7505 void
7506 remove_solib_event_breakpoints_at_next_stop (void)
7507 {
7508 struct breakpoint *b, *b_tmp;
7509
7510 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7511 if (b->type == bp_shlib_event
7512 && b->loc->pspace == current_program_space)
7513 b->disposition = disp_del_at_next_stop;
7514 }
7515
7516 /* Helper for create_solib_event_breakpoint /
7517 create_and_insert_solib_event_breakpoint. Allows specifying which
7518 INSERT_MODE to pass through to update_global_location_list. */
7519
7520 static struct breakpoint *
7521 create_solib_event_breakpoint_1 (struct gdbarch *gdbarch, CORE_ADDR address,
7522 enum ugll_insert_mode insert_mode)
7523 {
7524 struct breakpoint *b;
7525
7526 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7527 &internal_breakpoint_ops);
7528 update_global_location_list_nothrow (insert_mode);
7529 return b;
7530 }
7531
7532 struct breakpoint *
7533 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7534 {
7535 return create_solib_event_breakpoint_1 (gdbarch, address, UGLL_MAY_INSERT);
7536 }
7537
7538 /* See breakpoint.h. */
7539
7540 struct breakpoint *
7541 create_and_insert_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7542 {
7543 struct breakpoint *b;
7544
7545 /* Explicitly tell update_global_location_list to insert
7546 locations. */
7547 b = create_solib_event_breakpoint_1 (gdbarch, address, UGLL_INSERT);
7548 if (!b->loc->inserted)
7549 {
7550 delete_breakpoint (b);
7551 return NULL;
7552 }
7553 return b;
7554 }
7555
7556 /* Disable any breakpoints that are on code in shared libraries. Only
7557 apply to enabled breakpoints, disabled ones can just stay disabled. */
7558
7559 void
7560 disable_breakpoints_in_shlibs (void)
7561 {
7562 struct bp_location *loc, **locp_tmp;
7563
7564 ALL_BP_LOCATIONS (loc, locp_tmp)
7565 {
7566 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7567 struct breakpoint *b = loc->owner;
7568
7569 /* We apply the check to all breakpoints, including disabled for
7570 those with loc->duplicate set. This is so that when breakpoint
7571 becomes enabled, or the duplicate is removed, gdb will try to
7572 insert all breakpoints. If we don't set shlib_disabled here,
7573 we'll try to insert those breakpoints and fail. */
7574 if (((b->type == bp_breakpoint)
7575 || (b->type == bp_jit_event)
7576 || (b->type == bp_hardware_breakpoint)
7577 || (is_tracepoint (b)))
7578 && loc->pspace == current_program_space
7579 && !loc->shlib_disabled
7580 && solib_name_from_address (loc->pspace, loc->address)
7581 )
7582 {
7583 loc->shlib_disabled = 1;
7584 }
7585 }
7586 }
7587
7588 /* Disable any breakpoints and tracepoints that are in SOLIB upon
7589 notification of unloaded_shlib. Only apply to enabled breakpoints,
7590 disabled ones can just stay disabled. */
7591
7592 static void
7593 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7594 {
7595 struct bp_location *loc, **locp_tmp;
7596 int disabled_shlib_breaks = 0;
7597
7598 ALL_BP_LOCATIONS (loc, locp_tmp)
7599 {
7600 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7601 struct breakpoint *b = loc->owner;
7602
7603 if (solib->pspace == loc->pspace
7604 && !loc->shlib_disabled
7605 && (((b->type == bp_breakpoint
7606 || b->type == bp_jit_event
7607 || b->type == bp_hardware_breakpoint)
7608 && (loc->loc_type == bp_loc_hardware_breakpoint
7609 || loc->loc_type == bp_loc_software_breakpoint))
7610 || is_tracepoint (b))
7611 && solib_contains_address_p (solib, loc->address))
7612 {
7613 loc->shlib_disabled = 1;
7614 /* At this point, we cannot rely on remove_breakpoint
7615 succeeding so we must mark the breakpoint as not inserted
7616 to prevent future errors occurring in remove_breakpoints. */
7617 loc->inserted = 0;
7618
7619 /* This may cause duplicate notifications for the same breakpoint. */
7620 gdb::observers::breakpoint_modified.notify (b);
7621
7622 if (!disabled_shlib_breaks)
7623 {
7624 target_terminal::ours_for_output ();
7625 warning (_("Temporarily disabling breakpoints "
7626 "for unloaded shared library \"%s\""),
7627 solib->so_name);
7628 }
7629 disabled_shlib_breaks = 1;
7630 }
7631 }
7632 }
7633
7634 /* Disable any breakpoints and tracepoints in OBJFILE upon
7635 notification of free_objfile. Only apply to enabled breakpoints,
7636 disabled ones can just stay disabled. */
7637
7638 static void
7639 disable_breakpoints_in_freed_objfile (struct objfile *objfile)
7640 {
7641 struct breakpoint *b;
7642
7643 if (objfile == NULL)
7644 return;
7645
7646 /* OBJF_SHARED|OBJF_USERLOADED objfiles are dynamic modules manually
7647 managed by the user with add-symbol-file/remove-symbol-file.
7648 Similarly to how breakpoints in shared libraries are handled in
7649 response to "nosharedlibrary", mark breakpoints in such modules
7650 shlib_disabled so they end up uninserted on the next global
7651 location list update. Shared libraries not loaded by the user
7652 aren't handled here -- they're already handled in
7653 disable_breakpoints_in_unloaded_shlib, called by solib.c's
7654 solib_unloaded observer. We skip objfiles that are not
7655 OBJF_SHARED as those aren't considered dynamic objects (e.g. the
7656 main objfile). */
7657 if ((objfile->flags & OBJF_SHARED) == 0
7658 || (objfile->flags & OBJF_USERLOADED) == 0)
7659 return;
7660
7661 ALL_BREAKPOINTS (b)
7662 {
7663 struct bp_location *loc;
7664 int bp_modified = 0;
7665
7666 if (!is_breakpoint (b) && !is_tracepoint (b))
7667 continue;
7668
7669 for (loc = b->loc; loc != NULL; loc = loc->next)
7670 {
7671 CORE_ADDR loc_addr = loc->address;
7672
7673 if (loc->loc_type != bp_loc_hardware_breakpoint
7674 && loc->loc_type != bp_loc_software_breakpoint)
7675 continue;
7676
7677 if (loc->shlib_disabled != 0)
7678 continue;
7679
7680 if (objfile->pspace != loc->pspace)
7681 continue;
7682
7683 if (loc->loc_type != bp_loc_hardware_breakpoint
7684 && loc->loc_type != bp_loc_software_breakpoint)
7685 continue;
7686
7687 if (is_addr_in_objfile (loc_addr, objfile))
7688 {
7689 loc->shlib_disabled = 1;
7690 /* At this point, we don't know whether the object was
7691 unmapped from the inferior or not, so leave the
7692 inserted flag alone. We'll handle failure to
7693 uninsert quietly, in case the object was indeed
7694 unmapped. */
7695
7696 mark_breakpoint_location_modified (loc);
7697
7698 bp_modified = 1;
7699 }
7700 }
7701
7702 if (bp_modified)
7703 gdb::observers::breakpoint_modified.notify (b);
7704 }
7705 }
7706
7707 /* FORK & VFORK catchpoints. */
7708
7709 /* An instance of this type is used to represent a fork or vfork
7710 catchpoint. A breakpoint is really of this type iff its ops pointer points
7711 to CATCH_FORK_BREAKPOINT_OPS. */
7712
7713 struct fork_catchpoint : public breakpoint
7714 {
7715 /* Process id of a child process whose forking triggered this
7716 catchpoint. This field is only valid immediately after this
7717 catchpoint has triggered. */
7718 ptid_t forked_inferior_pid;
7719 };
7720
7721 /* Implement the "insert" breakpoint_ops method for fork
7722 catchpoints. */
7723
7724 static int
7725 insert_catch_fork (struct bp_location *bl)
7726 {
7727 return target_insert_fork_catchpoint (ptid_get_pid (inferior_ptid));
7728 }
7729
7730 /* Implement the "remove" breakpoint_ops method for fork
7731 catchpoints. */
7732
7733 static int
7734 remove_catch_fork (struct bp_location *bl, enum remove_bp_reason reason)
7735 {
7736 return target_remove_fork_catchpoint (ptid_get_pid (inferior_ptid));
7737 }
7738
7739 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7740 catchpoints. */
7741
7742 static int
7743 breakpoint_hit_catch_fork (const struct bp_location *bl,
7744 const address_space *aspace, CORE_ADDR bp_addr,
7745 const struct target_waitstatus *ws)
7746 {
7747 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7748
7749 if (ws->kind != TARGET_WAITKIND_FORKED)
7750 return 0;
7751
7752 c->forked_inferior_pid = ws->value.related_pid;
7753 return 1;
7754 }
7755
7756 /* Implement the "print_it" breakpoint_ops method for fork
7757 catchpoints. */
7758
7759 static enum print_stop_action
7760 print_it_catch_fork (bpstat bs)
7761 {
7762 struct ui_out *uiout = current_uiout;
7763 struct breakpoint *b = bs->breakpoint_at;
7764 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7765
7766 annotate_catchpoint (b->number);
7767 maybe_print_thread_hit_breakpoint (uiout);
7768 if (b->disposition == disp_del)
7769 uiout->text ("Temporary catchpoint ");
7770 else
7771 uiout->text ("Catchpoint ");
7772 if (uiout->is_mi_like_p ())
7773 {
7774 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_FORK));
7775 uiout->field_string ("disp", bpdisp_text (b->disposition));
7776 }
7777 uiout->field_int ("bkptno", b->number);
7778 uiout->text (" (forked process ");
7779 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7780 uiout->text ("), ");
7781 return PRINT_SRC_AND_LOC;
7782 }
7783
7784 /* Implement the "print_one" breakpoint_ops method for fork
7785 catchpoints. */
7786
7787 static void
7788 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7789 {
7790 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7791 struct value_print_options opts;
7792 struct ui_out *uiout = current_uiout;
7793
7794 get_user_print_options (&opts);
7795
7796 /* Field 4, the address, is omitted (which makes the columns not
7797 line up too nicely with the headers, but the effect is relatively
7798 readable). */
7799 if (opts.addressprint)
7800 uiout->field_skip ("addr");
7801 annotate_field (5);
7802 uiout->text ("fork");
7803 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7804 {
7805 uiout->text (", process ");
7806 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7807 uiout->spaces (1);
7808 }
7809
7810 if (uiout->is_mi_like_p ())
7811 uiout->field_string ("catch-type", "fork");
7812 }
7813
7814 /* Implement the "print_mention" breakpoint_ops method for fork
7815 catchpoints. */
7816
7817 static void
7818 print_mention_catch_fork (struct breakpoint *b)
7819 {
7820 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7821 }
7822
7823 /* Implement the "print_recreate" breakpoint_ops method for fork
7824 catchpoints. */
7825
7826 static void
7827 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7828 {
7829 fprintf_unfiltered (fp, "catch fork");
7830 print_recreate_thread (b, fp);
7831 }
7832
7833 /* The breakpoint_ops structure to be used in fork catchpoints. */
7834
7835 static struct breakpoint_ops catch_fork_breakpoint_ops;
7836
7837 /* Implement the "insert" breakpoint_ops method for vfork
7838 catchpoints. */
7839
7840 static int
7841 insert_catch_vfork (struct bp_location *bl)
7842 {
7843 return target_insert_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7844 }
7845
7846 /* Implement the "remove" breakpoint_ops method for vfork
7847 catchpoints. */
7848
7849 static int
7850 remove_catch_vfork (struct bp_location *bl, enum remove_bp_reason reason)
7851 {
7852 return target_remove_vfork_catchpoint (ptid_get_pid (inferior_ptid));
7853 }
7854
7855 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7856 catchpoints. */
7857
7858 static int
7859 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7860 const address_space *aspace, CORE_ADDR bp_addr,
7861 const struct target_waitstatus *ws)
7862 {
7863 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7864
7865 if (ws->kind != TARGET_WAITKIND_VFORKED)
7866 return 0;
7867
7868 c->forked_inferior_pid = ws->value.related_pid;
7869 return 1;
7870 }
7871
7872 /* Implement the "print_it" breakpoint_ops method for vfork
7873 catchpoints. */
7874
7875 static enum print_stop_action
7876 print_it_catch_vfork (bpstat bs)
7877 {
7878 struct ui_out *uiout = current_uiout;
7879 struct breakpoint *b = bs->breakpoint_at;
7880 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7881
7882 annotate_catchpoint (b->number);
7883 maybe_print_thread_hit_breakpoint (uiout);
7884 if (b->disposition == disp_del)
7885 uiout->text ("Temporary catchpoint ");
7886 else
7887 uiout->text ("Catchpoint ");
7888 if (uiout->is_mi_like_p ())
7889 {
7890 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_VFORK));
7891 uiout->field_string ("disp", bpdisp_text (b->disposition));
7892 }
7893 uiout->field_int ("bkptno", b->number);
7894 uiout->text (" (vforked process ");
7895 uiout->field_int ("newpid", ptid_get_pid (c->forked_inferior_pid));
7896 uiout->text ("), ");
7897 return PRINT_SRC_AND_LOC;
7898 }
7899
7900 /* Implement the "print_one" breakpoint_ops method for vfork
7901 catchpoints. */
7902
7903 static void
7904 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7905 {
7906 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7907 struct value_print_options opts;
7908 struct ui_out *uiout = current_uiout;
7909
7910 get_user_print_options (&opts);
7911 /* Field 4, the address, is omitted (which makes the columns not
7912 line up too nicely with the headers, but the effect is relatively
7913 readable). */
7914 if (opts.addressprint)
7915 uiout->field_skip ("addr");
7916 annotate_field (5);
7917 uiout->text ("vfork");
7918 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7919 {
7920 uiout->text (", process ");
7921 uiout->field_int ("what", ptid_get_pid (c->forked_inferior_pid));
7922 uiout->spaces (1);
7923 }
7924
7925 if (uiout->is_mi_like_p ())
7926 uiout->field_string ("catch-type", "vfork");
7927 }
7928
7929 /* Implement the "print_mention" breakpoint_ops method for vfork
7930 catchpoints. */
7931
7932 static void
7933 print_mention_catch_vfork (struct breakpoint *b)
7934 {
7935 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7936 }
7937
7938 /* Implement the "print_recreate" breakpoint_ops method for vfork
7939 catchpoints. */
7940
7941 static void
7942 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7943 {
7944 fprintf_unfiltered (fp, "catch vfork");
7945 print_recreate_thread (b, fp);
7946 }
7947
7948 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7949
7950 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7951
7952 /* An instance of this type is used to represent an solib catchpoint.
7953 A breakpoint is really of this type iff its ops pointer points to
7954 CATCH_SOLIB_BREAKPOINT_OPS. */
7955
7956 struct solib_catchpoint : public breakpoint
7957 {
7958 ~solib_catchpoint () override;
7959
7960 /* True for "catch load", false for "catch unload". */
7961 unsigned char is_load;
7962
7963 /* Regular expression to match, if any. COMPILED is only valid when
7964 REGEX is non-NULL. */
7965 char *regex;
7966 std::unique_ptr<compiled_regex> compiled;
7967 };
7968
7969 solib_catchpoint::~solib_catchpoint ()
7970 {
7971 xfree (this->regex);
7972 }
7973
7974 static int
7975 insert_catch_solib (struct bp_location *ignore)
7976 {
7977 return 0;
7978 }
7979
7980 static int
7981 remove_catch_solib (struct bp_location *ignore, enum remove_bp_reason reason)
7982 {
7983 return 0;
7984 }
7985
7986 static int
7987 breakpoint_hit_catch_solib (const struct bp_location *bl,
7988 const address_space *aspace,
7989 CORE_ADDR bp_addr,
7990 const struct target_waitstatus *ws)
7991 {
7992 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7993 struct breakpoint *other;
7994
7995 if (ws->kind == TARGET_WAITKIND_LOADED)
7996 return 1;
7997
7998 ALL_BREAKPOINTS (other)
7999 {
8000 struct bp_location *other_bl;
8001
8002 if (other == bl->owner)
8003 continue;
8004
8005 if (other->type != bp_shlib_event)
8006 continue;
8007
8008 if (self->pspace != NULL && other->pspace != self->pspace)
8009 continue;
8010
8011 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
8012 {
8013 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
8014 return 1;
8015 }
8016 }
8017
8018 return 0;
8019 }
8020
8021 static void
8022 check_status_catch_solib (struct bpstats *bs)
8023 {
8024 struct solib_catchpoint *self
8025 = (struct solib_catchpoint *) bs->breakpoint_at;
8026
8027 if (self->is_load)
8028 {
8029 struct so_list *iter;
8030
8031 for (int ix = 0;
8032 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
8033 ix, iter);
8034 ++ix)
8035 {
8036 if (!self->regex
8037 || self->compiled->exec (iter->so_name, 0, NULL, 0) == 0)
8038 return;
8039 }
8040 }
8041 else
8042 {
8043 for (const std::string &iter : current_program_space->deleted_solibs)
8044 {
8045 if (!self->regex
8046 || self->compiled->exec (iter.c_str (), 0, NULL, 0) == 0)
8047 return;
8048 }
8049 }
8050
8051 bs->stop = 0;
8052 bs->print_it = print_it_noop;
8053 }
8054
8055 static enum print_stop_action
8056 print_it_catch_solib (bpstat bs)
8057 {
8058 struct breakpoint *b = bs->breakpoint_at;
8059 struct ui_out *uiout = current_uiout;
8060
8061 annotate_catchpoint (b->number);
8062 maybe_print_thread_hit_breakpoint (uiout);
8063 if (b->disposition == disp_del)
8064 uiout->text ("Temporary catchpoint ");
8065 else
8066 uiout->text ("Catchpoint ");
8067 uiout->field_int ("bkptno", b->number);
8068 uiout->text ("\n");
8069 if (uiout->is_mi_like_p ())
8070 uiout->field_string ("disp", bpdisp_text (b->disposition));
8071 print_solib_event (1);
8072 return PRINT_SRC_AND_LOC;
8073 }
8074
8075 static void
8076 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
8077 {
8078 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8079 struct value_print_options opts;
8080 struct ui_out *uiout = current_uiout;
8081 char *msg;
8082
8083 get_user_print_options (&opts);
8084 /* Field 4, the address, is omitted (which makes the columns not
8085 line up too nicely with the headers, but the effect is relatively
8086 readable). */
8087 if (opts.addressprint)
8088 {
8089 annotate_field (4);
8090 uiout->field_skip ("addr");
8091 }
8092
8093 annotate_field (5);
8094 if (self->is_load)
8095 {
8096 if (self->regex)
8097 msg = xstrprintf (_("load of library matching %s"), self->regex);
8098 else
8099 msg = xstrdup (_("load of library"));
8100 }
8101 else
8102 {
8103 if (self->regex)
8104 msg = xstrprintf (_("unload of library matching %s"), self->regex);
8105 else
8106 msg = xstrdup (_("unload of library"));
8107 }
8108 uiout->field_string ("what", msg);
8109 xfree (msg);
8110
8111 if (uiout->is_mi_like_p ())
8112 uiout->field_string ("catch-type", self->is_load ? "load" : "unload");
8113 }
8114
8115 static void
8116 print_mention_catch_solib (struct breakpoint *b)
8117 {
8118 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8119
8120 printf_filtered (_("Catchpoint %d (%s)"), b->number,
8121 self->is_load ? "load" : "unload");
8122 }
8123
8124 static void
8125 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
8126 {
8127 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
8128
8129 fprintf_unfiltered (fp, "%s %s",
8130 b->disposition == disp_del ? "tcatch" : "catch",
8131 self->is_load ? "load" : "unload");
8132 if (self->regex)
8133 fprintf_unfiltered (fp, " %s", self->regex);
8134 fprintf_unfiltered (fp, "\n");
8135 }
8136
8137 static struct breakpoint_ops catch_solib_breakpoint_ops;
8138
8139 /* Shared helper function (MI and CLI) for creating and installing
8140 a shared object event catchpoint. If IS_LOAD is non-zero then
8141 the events to be caught are load events, otherwise they are
8142 unload events. If IS_TEMP is non-zero the catchpoint is a
8143 temporary one. If ENABLED is non-zero the catchpoint is
8144 created in an enabled state. */
8145
8146 void
8147 add_solib_catchpoint (const char *arg, int is_load, int is_temp, int enabled)
8148 {
8149 struct gdbarch *gdbarch = get_current_arch ();
8150
8151 if (!arg)
8152 arg = "";
8153 arg = skip_spaces (arg);
8154
8155 std::unique_ptr<solib_catchpoint> c (new solib_catchpoint ());
8156
8157 if (*arg != '\0')
8158 {
8159 c->compiled.reset (new compiled_regex (arg, REG_NOSUB,
8160 _("Invalid regexp")));
8161 c->regex = xstrdup (arg);
8162 }
8163
8164 c->is_load = is_load;
8165 init_catchpoint (c.get (), gdbarch, is_temp, NULL,
8166 &catch_solib_breakpoint_ops);
8167
8168 c->enable_state = enabled ? bp_enabled : bp_disabled;
8169
8170 install_breakpoint (0, std::move (c), 1);
8171 }
8172
8173 /* A helper function that does all the work for "catch load" and
8174 "catch unload". */
8175
8176 static void
8177 catch_load_or_unload (const char *arg, int from_tty, int is_load,
8178 struct cmd_list_element *command)
8179 {
8180 int tempflag;
8181 const int enabled = 1;
8182
8183 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
8184
8185 add_solib_catchpoint (arg, is_load, tempflag, enabled);
8186 }
8187
8188 static void
8189 catch_load_command_1 (const char *arg, int from_tty,
8190 struct cmd_list_element *command)
8191 {
8192 catch_load_or_unload (arg, from_tty, 1, command);
8193 }
8194
8195 static void
8196 catch_unload_command_1 (const char *arg, int from_tty,
8197 struct cmd_list_element *command)
8198 {
8199 catch_load_or_unload (arg, from_tty, 0, command);
8200 }
8201
8202 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8203 is non-zero, then make the breakpoint temporary. If COND_STRING is
8204 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8205 the breakpoint_ops structure associated to the catchpoint. */
8206
8207 void
8208 init_catchpoint (struct breakpoint *b,
8209 struct gdbarch *gdbarch, int tempflag,
8210 const char *cond_string,
8211 const struct breakpoint_ops *ops)
8212 {
8213 symtab_and_line sal;
8214 sal.pspace = current_program_space;
8215
8216 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8217
8218 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8219 b->disposition = tempflag ? disp_del : disp_donttouch;
8220 }
8221
8222 void
8223 install_breakpoint (int internal, std::unique_ptr<breakpoint> &&arg, int update_gll)
8224 {
8225 breakpoint *b = add_to_breakpoint_chain (std::move (arg));
8226 set_breakpoint_number (internal, b);
8227 if (is_tracepoint (b))
8228 set_tracepoint_count (breakpoint_count);
8229 if (!internal)
8230 mention (b);
8231 gdb::observers::breakpoint_created.notify (b);
8232
8233 if (update_gll)
8234 update_global_location_list (UGLL_MAY_INSERT);
8235 }
8236
8237 static void
8238 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8239 int tempflag, const char *cond_string,
8240 const struct breakpoint_ops *ops)
8241 {
8242 std::unique_ptr<fork_catchpoint> c (new fork_catchpoint ());
8243
8244 init_catchpoint (c.get (), gdbarch, tempflag, cond_string, ops);
8245
8246 c->forked_inferior_pid = null_ptid;
8247
8248 install_breakpoint (0, std::move (c), 1);
8249 }
8250
8251 /* Exec catchpoints. */
8252
8253 /* An instance of this type is used to represent an exec catchpoint.
8254 A breakpoint is really of this type iff its ops pointer points to
8255 CATCH_EXEC_BREAKPOINT_OPS. */
8256
8257 struct exec_catchpoint : public breakpoint
8258 {
8259 ~exec_catchpoint () override;
8260
8261 /* Filename of a program whose exec triggered this catchpoint.
8262 This field is only valid immediately after this catchpoint has
8263 triggered. */
8264 char *exec_pathname;
8265 };
8266
8267 /* Exec catchpoint destructor. */
8268
8269 exec_catchpoint::~exec_catchpoint ()
8270 {
8271 xfree (this->exec_pathname);
8272 }
8273
8274 static int
8275 insert_catch_exec (struct bp_location *bl)
8276 {
8277 return target_insert_exec_catchpoint (ptid_get_pid (inferior_ptid));
8278 }
8279
8280 static int
8281 remove_catch_exec (struct bp_location *bl, enum remove_bp_reason reason)
8282 {
8283 return target_remove_exec_catchpoint (ptid_get_pid (inferior_ptid));
8284 }
8285
8286 static int
8287 breakpoint_hit_catch_exec (const struct bp_location *bl,
8288 const address_space *aspace, CORE_ADDR bp_addr,
8289 const struct target_waitstatus *ws)
8290 {
8291 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8292
8293 if (ws->kind != TARGET_WAITKIND_EXECD)
8294 return 0;
8295
8296 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8297 return 1;
8298 }
8299
8300 static enum print_stop_action
8301 print_it_catch_exec (bpstat bs)
8302 {
8303 struct ui_out *uiout = current_uiout;
8304 struct breakpoint *b = bs->breakpoint_at;
8305 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8306
8307 annotate_catchpoint (b->number);
8308 maybe_print_thread_hit_breakpoint (uiout);
8309 if (b->disposition == disp_del)
8310 uiout->text ("Temporary catchpoint ");
8311 else
8312 uiout->text ("Catchpoint ");
8313 if (uiout->is_mi_like_p ())
8314 {
8315 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXEC));
8316 uiout->field_string ("disp", bpdisp_text (b->disposition));
8317 }
8318 uiout->field_int ("bkptno", b->number);
8319 uiout->text (" (exec'd ");
8320 uiout->field_string ("new-exec", c->exec_pathname);
8321 uiout->text ("), ");
8322
8323 return PRINT_SRC_AND_LOC;
8324 }
8325
8326 static void
8327 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8328 {
8329 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8330 struct value_print_options opts;
8331 struct ui_out *uiout = current_uiout;
8332
8333 get_user_print_options (&opts);
8334
8335 /* Field 4, the address, is omitted (which makes the columns
8336 not line up too nicely with the headers, but the effect
8337 is relatively readable). */
8338 if (opts.addressprint)
8339 uiout->field_skip ("addr");
8340 annotate_field (5);
8341 uiout->text ("exec");
8342 if (c->exec_pathname != NULL)
8343 {
8344 uiout->text (", program \"");
8345 uiout->field_string ("what", c->exec_pathname);
8346 uiout->text ("\" ");
8347 }
8348
8349 if (uiout->is_mi_like_p ())
8350 uiout->field_string ("catch-type", "exec");
8351 }
8352
8353 static void
8354 print_mention_catch_exec (struct breakpoint *b)
8355 {
8356 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8357 }
8358
8359 /* Implement the "print_recreate" breakpoint_ops method for exec
8360 catchpoints. */
8361
8362 static void
8363 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8364 {
8365 fprintf_unfiltered (fp, "catch exec");
8366 print_recreate_thread (b, fp);
8367 }
8368
8369 static struct breakpoint_ops catch_exec_breakpoint_ops;
8370
8371 static int
8372 hw_breakpoint_used_count (void)
8373 {
8374 int i = 0;
8375 struct breakpoint *b;
8376 struct bp_location *bl;
8377
8378 ALL_BREAKPOINTS (b)
8379 {
8380 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8381 for (bl = b->loc; bl; bl = bl->next)
8382 {
8383 /* Special types of hardware breakpoints may use more than
8384 one register. */
8385 i += b->ops->resources_needed (bl);
8386 }
8387 }
8388
8389 return i;
8390 }
8391
8392 /* Returns the resources B would use if it were a hardware
8393 watchpoint. */
8394
8395 static int
8396 hw_watchpoint_use_count (struct breakpoint *b)
8397 {
8398 int i = 0;
8399 struct bp_location *bl;
8400
8401 if (!breakpoint_enabled (b))
8402 return 0;
8403
8404 for (bl = b->loc; bl; bl = bl->next)
8405 {
8406 /* Special types of hardware watchpoints may use more than
8407 one register. */
8408 i += b->ops->resources_needed (bl);
8409 }
8410
8411 return i;
8412 }
8413
8414 /* Returns the sum the used resources of all hardware watchpoints of
8415 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8416 the sum of the used resources of all hardware watchpoints of other
8417 types _not_ TYPE. */
8418
8419 static int
8420 hw_watchpoint_used_count_others (struct breakpoint *except,
8421 enum bptype type, int *other_type_used)
8422 {
8423 int i = 0;
8424 struct breakpoint *b;
8425
8426 *other_type_used = 0;
8427 ALL_BREAKPOINTS (b)
8428 {
8429 if (b == except)
8430 continue;
8431 if (!breakpoint_enabled (b))
8432 continue;
8433
8434 if (b->type == type)
8435 i += hw_watchpoint_use_count (b);
8436 else if (is_hardware_watchpoint (b))
8437 *other_type_used = 1;
8438 }
8439
8440 return i;
8441 }
8442
8443 void
8444 disable_watchpoints_before_interactive_call_start (void)
8445 {
8446 struct breakpoint *b;
8447
8448 ALL_BREAKPOINTS (b)
8449 {
8450 if (is_watchpoint (b) && breakpoint_enabled (b))
8451 {
8452 b->enable_state = bp_call_disabled;
8453 update_global_location_list (UGLL_DONT_INSERT);
8454 }
8455 }
8456 }
8457
8458 void
8459 enable_watchpoints_after_interactive_call_stop (void)
8460 {
8461 struct breakpoint *b;
8462
8463 ALL_BREAKPOINTS (b)
8464 {
8465 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8466 {
8467 b->enable_state = bp_enabled;
8468 update_global_location_list (UGLL_MAY_INSERT);
8469 }
8470 }
8471 }
8472
8473 void
8474 disable_breakpoints_before_startup (void)
8475 {
8476 current_program_space->executing_startup = 1;
8477 update_global_location_list (UGLL_DONT_INSERT);
8478 }
8479
8480 void
8481 enable_breakpoints_after_startup (void)
8482 {
8483 current_program_space->executing_startup = 0;
8484 breakpoint_re_set ();
8485 }
8486
8487 /* Create a new single-step breakpoint for thread THREAD, with no
8488 locations. */
8489
8490 static struct breakpoint *
8491 new_single_step_breakpoint (int thread, struct gdbarch *gdbarch)
8492 {
8493 std::unique_ptr<breakpoint> b (new breakpoint ());
8494
8495 init_raw_breakpoint_without_location (b.get (), gdbarch, bp_single_step,
8496 &momentary_breakpoint_ops);
8497
8498 b->disposition = disp_donttouch;
8499 b->frame_id = null_frame_id;
8500
8501 b->thread = thread;
8502 gdb_assert (b->thread != 0);
8503
8504 return add_to_breakpoint_chain (std::move (b));
8505 }
8506
8507 /* Set a momentary breakpoint of type TYPE at address specified by
8508 SAL. If FRAME_ID is valid, the breakpoint is restricted to that
8509 frame. */
8510
8511 breakpoint_up
8512 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8513 struct frame_id frame_id, enum bptype type)
8514 {
8515 struct breakpoint *b;
8516
8517 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8518 tail-called one. */
8519 gdb_assert (!frame_id_artificial_p (frame_id));
8520
8521 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8522 b->enable_state = bp_enabled;
8523 b->disposition = disp_donttouch;
8524 b->frame_id = frame_id;
8525
8526 /* If we're debugging a multi-threaded program, then we want
8527 momentary breakpoints to be active in only a single thread of
8528 control. */
8529 if (in_thread_list (inferior_ptid))
8530 b->thread = ptid_to_global_thread_id (inferior_ptid);
8531
8532 update_global_location_list_nothrow (UGLL_MAY_INSERT);
8533
8534 return breakpoint_up (b);
8535 }
8536
8537 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8538 The new breakpoint will have type TYPE, use OPS as its
8539 breakpoint_ops, and will set enabled to LOC_ENABLED. */
8540
8541 static struct breakpoint *
8542 momentary_breakpoint_from_master (struct breakpoint *orig,
8543 enum bptype type,
8544 const struct breakpoint_ops *ops,
8545 int loc_enabled)
8546 {
8547 struct breakpoint *copy;
8548
8549 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8550 copy->loc = allocate_bp_location (copy);
8551 set_breakpoint_location_function (copy->loc, 1);
8552
8553 copy->loc->gdbarch = orig->loc->gdbarch;
8554 copy->loc->requested_address = orig->loc->requested_address;
8555 copy->loc->address = orig->loc->address;
8556 copy->loc->section = orig->loc->section;
8557 copy->loc->pspace = orig->loc->pspace;
8558 copy->loc->probe = orig->loc->probe;
8559 copy->loc->line_number = orig->loc->line_number;
8560 copy->loc->symtab = orig->loc->symtab;
8561 copy->loc->enabled = loc_enabled;
8562 copy->frame_id = orig->frame_id;
8563 copy->thread = orig->thread;
8564 copy->pspace = orig->pspace;
8565
8566 copy->enable_state = bp_enabled;
8567 copy->disposition = disp_donttouch;
8568 copy->number = internal_breakpoint_number--;
8569
8570 update_global_location_list_nothrow (UGLL_DONT_INSERT);
8571 return copy;
8572 }
8573
8574 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8575 ORIG is NULL. */
8576
8577 struct breakpoint *
8578 clone_momentary_breakpoint (struct breakpoint *orig)
8579 {
8580 /* If there's nothing to clone, then return nothing. */
8581 if (orig == NULL)
8582 return NULL;
8583
8584 return momentary_breakpoint_from_master (orig, orig->type, orig->ops, 0);
8585 }
8586
8587 breakpoint_up
8588 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8589 enum bptype type)
8590 {
8591 struct symtab_and_line sal;
8592
8593 sal = find_pc_line (pc, 0);
8594 sal.pc = pc;
8595 sal.section = find_pc_overlay (pc);
8596 sal.explicit_pc = 1;
8597
8598 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8599 }
8600 \f
8601
8602 /* Tell the user we have just set a breakpoint B. */
8603
8604 static void
8605 mention (struct breakpoint *b)
8606 {
8607 b->ops->print_mention (b);
8608 if (current_uiout->is_mi_like_p ())
8609 return;
8610 printf_filtered ("\n");
8611 }
8612 \f
8613
8614 static int bp_loc_is_permanent (struct bp_location *loc);
8615
8616 static struct bp_location *
8617 add_location_to_breakpoint (struct breakpoint *b,
8618 const struct symtab_and_line *sal)
8619 {
8620 struct bp_location *loc, **tmp;
8621 CORE_ADDR adjusted_address;
8622 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8623
8624 if (loc_gdbarch == NULL)
8625 loc_gdbarch = b->gdbarch;
8626
8627 /* Adjust the breakpoint's address prior to allocating a location.
8628 Once we call allocate_bp_location(), that mostly uninitialized
8629 location will be placed on the location chain. Adjustment of the
8630 breakpoint may cause target_read_memory() to be called and we do
8631 not want its scan of the location chain to find a breakpoint and
8632 location that's only been partially initialized. */
8633 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8634 sal->pc, b->type);
8635
8636 /* Sort the locations by their ADDRESS. */
8637 loc = allocate_bp_location (b);
8638 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8639 tmp = &((*tmp)->next))
8640 ;
8641 loc->next = *tmp;
8642 *tmp = loc;
8643
8644 loc->requested_address = sal->pc;
8645 loc->address = adjusted_address;
8646 loc->pspace = sal->pspace;
8647 loc->probe.prob = sal->prob;
8648 loc->probe.objfile = sal->objfile;
8649 gdb_assert (loc->pspace != NULL);
8650 loc->section = sal->section;
8651 loc->gdbarch = loc_gdbarch;
8652 loc->line_number = sal->line;
8653 loc->symtab = sal->symtab;
8654 loc->symbol = sal->symbol;
8655
8656 set_breakpoint_location_function (loc,
8657 sal->explicit_pc || sal->explicit_line);
8658
8659 /* While by definition, permanent breakpoints are already present in the
8660 code, we don't mark the location as inserted. Normally one would expect
8661 that GDB could rely on that breakpoint instruction to stop the program,
8662 thus removing the need to insert its own breakpoint, except that executing
8663 the breakpoint instruction can kill the target instead of reporting a
8664 SIGTRAP. E.g., on SPARC, when interrupts are disabled, executing the
8665 instruction resets the CPU, so QEMU 2.0.0 for SPARC correspondingly dies
8666 with "Trap 0x02 while interrupts disabled, Error state". Letting the
8667 breakpoint be inserted normally results in QEMU knowing about the GDB
8668 breakpoint, and thus trap before the breakpoint instruction is executed.
8669 (If GDB later needs to continue execution past the permanent breakpoint,
8670 it manually increments the PC, thus avoiding executing the breakpoint
8671 instruction.) */
8672 if (bp_loc_is_permanent (loc))
8673 loc->permanent = 1;
8674
8675 return loc;
8676 }
8677 \f
8678
8679 /* See breakpoint.h. */
8680
8681 int
8682 program_breakpoint_here_p (struct gdbarch *gdbarch, CORE_ADDR address)
8683 {
8684 int len;
8685 CORE_ADDR addr;
8686 const gdb_byte *bpoint;
8687 gdb_byte *target_mem;
8688
8689 addr = address;
8690 bpoint = gdbarch_breakpoint_from_pc (gdbarch, &addr, &len);
8691
8692 /* Software breakpoints unsupported? */
8693 if (bpoint == NULL)
8694 return 0;
8695
8696 target_mem = (gdb_byte *) alloca (len);
8697
8698 /* Enable the automatic memory restoration from breakpoints while
8699 we read the memory. Otherwise we could say about our temporary
8700 breakpoints they are permanent. */
8701 scoped_restore restore_memory
8702 = make_scoped_restore_show_memory_breakpoints (0);
8703
8704 if (target_read_memory (address, target_mem, len) == 0
8705 && memcmp (target_mem, bpoint, len) == 0)
8706 return 1;
8707
8708 return 0;
8709 }
8710
8711 /* Return 1 if LOC is pointing to a permanent breakpoint,
8712 return 0 otherwise. */
8713
8714 static int
8715 bp_loc_is_permanent (struct bp_location *loc)
8716 {
8717 gdb_assert (loc != NULL);
8718
8719 /* If we have a catchpoint or a watchpoint, just return 0. We should not
8720 attempt to read from the addresses the locations of these breakpoint types
8721 point to. program_breakpoint_here_p, below, will attempt to read
8722 memory. */
8723 if (!breakpoint_address_is_meaningful (loc->owner))
8724 return 0;
8725
8726 scoped_restore_current_pspace_and_thread restore_pspace_thread;
8727 switch_to_program_space_and_thread (loc->pspace);
8728 return program_breakpoint_here_p (loc->gdbarch, loc->address);
8729 }
8730
8731 /* Build a command list for the dprintf corresponding to the current
8732 settings of the dprintf style options. */
8733
8734 static void
8735 update_dprintf_command_list (struct breakpoint *b)
8736 {
8737 char *dprintf_args = b->extra_string;
8738 char *printf_line = NULL;
8739
8740 if (!dprintf_args)
8741 return;
8742
8743 dprintf_args = skip_spaces (dprintf_args);
8744
8745 /* Allow a comma, as it may have terminated a location, but don't
8746 insist on it. */
8747 if (*dprintf_args == ',')
8748 ++dprintf_args;
8749 dprintf_args = skip_spaces (dprintf_args);
8750
8751 if (*dprintf_args != '"')
8752 error (_("Bad format string, missing '\"'."));
8753
8754 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8755 printf_line = xstrprintf ("printf %s", dprintf_args);
8756 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8757 {
8758 if (!dprintf_function)
8759 error (_("No function supplied for dprintf call"));
8760
8761 if (dprintf_channel && strlen (dprintf_channel) > 0)
8762 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8763 dprintf_function,
8764 dprintf_channel,
8765 dprintf_args);
8766 else
8767 printf_line = xstrprintf ("call (void) %s (%s)",
8768 dprintf_function,
8769 dprintf_args);
8770 }
8771 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8772 {
8773 if (target_can_run_breakpoint_commands ())
8774 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8775 else
8776 {
8777 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8778 printf_line = xstrprintf ("printf %s", dprintf_args);
8779 }
8780 }
8781 else
8782 internal_error (__FILE__, __LINE__,
8783 _("Invalid dprintf style."));
8784
8785 gdb_assert (printf_line != NULL);
8786 /* Manufacture a printf sequence. */
8787 {
8788 struct command_line *printf_cmd_line = XNEW (struct command_line);
8789
8790 printf_cmd_line->control_type = simple_control;
8791 printf_cmd_line->body_count = 0;
8792 printf_cmd_line->body_list = NULL;
8793 printf_cmd_line->next = NULL;
8794 printf_cmd_line->line = printf_line;
8795
8796 breakpoint_set_commands (b, command_line_up (printf_cmd_line));
8797 }
8798 }
8799
8800 /* Update all dprintf commands, making their command lists reflect
8801 current style settings. */
8802
8803 static void
8804 update_dprintf_commands (const char *args, int from_tty,
8805 struct cmd_list_element *c)
8806 {
8807 struct breakpoint *b;
8808
8809 ALL_BREAKPOINTS (b)
8810 {
8811 if (b->type == bp_dprintf)
8812 update_dprintf_command_list (b);
8813 }
8814 }
8815
8816 /* Create a breakpoint with SAL as location. Use LOCATION
8817 as a description of the location, and COND_STRING
8818 as condition expression. If LOCATION is NULL then create an
8819 "address location" from the address in the SAL. */
8820
8821 static void
8822 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8823 gdb::array_view<const symtab_and_line> sals,
8824 event_location_up &&location,
8825 gdb::unique_xmalloc_ptr<char> filter,
8826 gdb::unique_xmalloc_ptr<char> cond_string,
8827 gdb::unique_xmalloc_ptr<char> extra_string,
8828 enum bptype type, enum bpdisp disposition,
8829 int thread, int task, int ignore_count,
8830 const struct breakpoint_ops *ops, int from_tty,
8831 int enabled, int internal, unsigned flags,
8832 int display_canonical)
8833 {
8834 int i;
8835
8836 if (type == bp_hardware_breakpoint)
8837 {
8838 int target_resources_ok;
8839
8840 i = hw_breakpoint_used_count ();
8841 target_resources_ok =
8842 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
8843 i + 1, 0);
8844 if (target_resources_ok == 0)
8845 error (_("No hardware breakpoint support in the target."));
8846 else if (target_resources_ok < 0)
8847 error (_("Hardware breakpoints used exceeds limit."));
8848 }
8849
8850 gdb_assert (!sals.empty ());
8851
8852 for (const auto &sal : sals)
8853 {
8854 struct bp_location *loc;
8855
8856 if (from_tty)
8857 {
8858 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
8859 if (!loc_gdbarch)
8860 loc_gdbarch = gdbarch;
8861
8862 describe_other_breakpoints (loc_gdbarch,
8863 sal.pspace, sal.pc, sal.section, thread);
8864 }
8865
8866 if (&sal == &sals[0])
8867 {
8868 init_raw_breakpoint (b, gdbarch, sal, type, ops);
8869 b->thread = thread;
8870 b->task = task;
8871
8872 b->cond_string = cond_string.release ();
8873 b->extra_string = extra_string.release ();
8874 b->ignore_count = ignore_count;
8875 b->enable_state = enabled ? bp_enabled : bp_disabled;
8876 b->disposition = disposition;
8877
8878 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8879 b->loc->inserted = 1;
8880
8881 if (type == bp_static_tracepoint)
8882 {
8883 struct tracepoint *t = (struct tracepoint *) b;
8884 struct static_tracepoint_marker marker;
8885
8886 if (strace_marker_p (b))
8887 {
8888 /* We already know the marker exists, otherwise, we
8889 wouldn't see a sal for it. */
8890 const char *p
8891 = &event_location_to_string (b->location.get ())[3];
8892 const char *endp;
8893
8894 p = skip_spaces (p);
8895
8896 endp = skip_to_space (p);
8897
8898 t->static_trace_marker_id.assign (p, endp - p);
8899
8900 printf_filtered (_("Probed static tracepoint "
8901 "marker \"%s\"\n"),
8902 t->static_trace_marker_id.c_str ());
8903 }
8904 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
8905 {
8906 t->static_trace_marker_id = std::move (marker.str_id);
8907
8908 printf_filtered (_("Probed static tracepoint "
8909 "marker \"%s\"\n"),
8910 t->static_trace_marker_id.c_str ());
8911 }
8912 else
8913 warning (_("Couldn't determine the static "
8914 "tracepoint marker to probe"));
8915 }
8916
8917 loc = b->loc;
8918 }
8919 else
8920 {
8921 loc = add_location_to_breakpoint (b, &sal);
8922 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
8923 loc->inserted = 1;
8924 }
8925
8926 if (b->cond_string)
8927 {
8928 const char *arg = b->cond_string;
8929
8930 loc->cond = parse_exp_1 (&arg, loc->address,
8931 block_for_pc (loc->address), 0);
8932 if (*arg)
8933 error (_("Garbage '%s' follows condition"), arg);
8934 }
8935
8936 /* Dynamic printf requires and uses additional arguments on the
8937 command line, otherwise it's an error. */
8938 if (type == bp_dprintf)
8939 {
8940 if (b->extra_string)
8941 update_dprintf_command_list (b);
8942 else
8943 error (_("Format string required"));
8944 }
8945 else if (b->extra_string)
8946 error (_("Garbage '%s' at end of command"), b->extra_string);
8947 }
8948
8949 b->display_canonical = display_canonical;
8950 if (location != NULL)
8951 b->location = std::move (location);
8952 else
8953 b->location = new_address_location (b->loc->address, NULL, 0);
8954 b->filter = filter.release ();
8955 }
8956
8957 static void
8958 create_breakpoint_sal (struct gdbarch *gdbarch,
8959 gdb::array_view<const symtab_and_line> sals,
8960 event_location_up &&location,
8961 gdb::unique_xmalloc_ptr<char> filter,
8962 gdb::unique_xmalloc_ptr<char> cond_string,
8963 gdb::unique_xmalloc_ptr<char> extra_string,
8964 enum bptype type, enum bpdisp disposition,
8965 int thread, int task, int ignore_count,
8966 const struct breakpoint_ops *ops, int from_tty,
8967 int enabled, int internal, unsigned flags,
8968 int display_canonical)
8969 {
8970 std::unique_ptr<breakpoint> b = new_breakpoint_from_type (type);
8971
8972 init_breakpoint_sal (b.get (), gdbarch,
8973 sals, std::move (location),
8974 std::move (filter),
8975 std::move (cond_string),
8976 std::move (extra_string),
8977 type, disposition,
8978 thread, task, ignore_count,
8979 ops, from_tty,
8980 enabled, internal, flags,
8981 display_canonical);
8982
8983 install_breakpoint (internal, std::move (b), 0);
8984 }
8985
8986 /* Add SALS.nelts breakpoints to the breakpoint table. For each
8987 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
8988 value. COND_STRING, if not NULL, specified the condition to be
8989 used for all breakpoints. Essentially the only case where
8990 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
8991 function. In that case, it's still not possible to specify
8992 separate conditions for different overloaded functions, so
8993 we take just a single condition string.
8994
8995 NOTE: If the function succeeds, the caller is expected to cleanup
8996 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
8997 array contents). If the function fails (error() is called), the
8998 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
8999 COND and SALS arrays and each of those arrays contents. */
9000
9001 static void
9002 create_breakpoints_sal (struct gdbarch *gdbarch,
9003 struct linespec_result *canonical,
9004 gdb::unique_xmalloc_ptr<char> cond_string,
9005 gdb::unique_xmalloc_ptr<char> extra_string,
9006 enum bptype type, enum bpdisp disposition,
9007 int thread, int task, int ignore_count,
9008 const struct breakpoint_ops *ops, int from_tty,
9009 int enabled, int internal, unsigned flags)
9010 {
9011 if (canonical->pre_expanded)
9012 gdb_assert (canonical->lsals.size () == 1);
9013
9014 for (const auto &lsal : canonical->lsals)
9015 {
9016 /* Note that 'location' can be NULL in the case of a plain
9017 'break', without arguments. */
9018 event_location_up location
9019 = (canonical->location != NULL
9020 ? copy_event_location (canonical->location.get ()) : NULL);
9021 gdb::unique_xmalloc_ptr<char> filter_string
9022 (lsal.canonical != NULL ? xstrdup (lsal.canonical) : NULL);
9023
9024 create_breakpoint_sal (gdbarch, lsal.sals,
9025 std::move (location),
9026 std::move (filter_string),
9027 std::move (cond_string),
9028 std::move (extra_string),
9029 type, disposition,
9030 thread, task, ignore_count, ops,
9031 from_tty, enabled, internal, flags,
9032 canonical->special_display);
9033 }
9034 }
9035
9036 /* Parse LOCATION which is assumed to be a SAL specification possibly
9037 followed by conditionals. On return, SALS contains an array of SAL
9038 addresses found. LOCATION points to the end of the SAL (for
9039 linespec locations).
9040
9041 The array and the line spec strings are allocated on the heap, it is
9042 the caller's responsibility to free them. */
9043
9044 static void
9045 parse_breakpoint_sals (const struct event_location *location,
9046 struct linespec_result *canonical)
9047 {
9048 struct symtab_and_line cursal;
9049
9050 if (event_location_type (location) == LINESPEC_LOCATION)
9051 {
9052 const char *spec = get_linespec_location (location)->spec_string;
9053
9054 if (spec == NULL)
9055 {
9056 /* The last displayed codepoint, if it's valid, is our default
9057 breakpoint address. */
9058 if (last_displayed_sal_is_valid ())
9059 {
9060 /* Set sal's pspace, pc, symtab, and line to the values
9061 corresponding to the last call to print_frame_info.
9062 Be sure to reinitialize LINE with NOTCURRENT == 0
9063 as the breakpoint line number is inappropriate otherwise.
9064 find_pc_line would adjust PC, re-set it back. */
9065 symtab_and_line sal = get_last_displayed_sal ();
9066 CORE_ADDR pc = sal.pc;
9067
9068 sal = find_pc_line (pc, 0);
9069
9070 /* "break" without arguments is equivalent to "break *PC"
9071 where PC is the last displayed codepoint's address. So
9072 make sure to set sal.explicit_pc to prevent GDB from
9073 trying to expand the list of sals to include all other
9074 instances with the same symtab and line. */
9075 sal.pc = pc;
9076 sal.explicit_pc = 1;
9077
9078 struct linespec_sals lsal;
9079 lsal.sals = {sal};
9080 lsal.canonical = NULL;
9081
9082 canonical->lsals.push_back (std::move (lsal));
9083 return;
9084 }
9085 else
9086 error (_("No default breakpoint address now."));
9087 }
9088 }
9089
9090 /* Force almost all breakpoints to be in terms of the
9091 current_source_symtab (which is decode_line_1's default).
9092 This should produce the results we want almost all of the
9093 time while leaving default_breakpoint_* alone.
9094
9095 ObjC: However, don't match an Objective-C method name which
9096 may have a '+' or '-' succeeded by a '['. */
9097 cursal = get_current_source_symtab_and_line ();
9098 if (last_displayed_sal_is_valid ())
9099 {
9100 const char *spec = NULL;
9101
9102 if (event_location_type (location) == LINESPEC_LOCATION)
9103 spec = get_linespec_location (location)->spec_string;
9104
9105 if (!cursal.symtab
9106 || (spec != NULL
9107 && strchr ("+-", spec[0]) != NULL
9108 && spec[1] != '['))
9109 {
9110 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9111 get_last_displayed_symtab (),
9112 get_last_displayed_line (),
9113 canonical, NULL, NULL);
9114 return;
9115 }
9116 }
9117
9118 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, NULL,
9119 cursal.symtab, cursal.line, canonical, NULL, NULL);
9120 }
9121
9122
9123 /* Convert each SAL into a real PC. Verify that the PC can be
9124 inserted as a breakpoint. If it can't throw an error. */
9125
9126 static void
9127 breakpoint_sals_to_pc (std::vector<symtab_and_line> &sals)
9128 {
9129 for (auto &sal : sals)
9130 resolve_sal_pc (&sal);
9131 }
9132
9133 /* Fast tracepoints may have restrictions on valid locations. For
9134 instance, a fast tracepoint using a jump instead of a trap will
9135 likely have to overwrite more bytes than a trap would, and so can
9136 only be placed where the instruction is longer than the jump, or a
9137 multi-instruction sequence does not have a jump into the middle of
9138 it, etc. */
9139
9140 static void
9141 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9142 gdb::array_view<const symtab_and_line> sals)
9143 {
9144 for (const auto &sal : sals)
9145 {
9146 struct gdbarch *sarch;
9147
9148 sarch = get_sal_arch (sal);
9149 /* We fall back to GDBARCH if there is no architecture
9150 associated with SAL. */
9151 if (sarch == NULL)
9152 sarch = gdbarch;
9153 std::string msg;
9154 if (!gdbarch_fast_tracepoint_valid_at (sarch, sal.pc, &msg))
9155 error (_("May not have a fast tracepoint at %s%s"),
9156 paddress (sarch, sal.pc), msg.c_str ());
9157 }
9158 }
9159
9160 /* Given TOK, a string specification of condition and thread, as
9161 accepted by the 'break' command, extract the condition
9162 string and thread number and set *COND_STRING and *THREAD.
9163 PC identifies the context at which the condition should be parsed.
9164 If no condition is found, *COND_STRING is set to NULL.
9165 If no thread is found, *THREAD is set to -1. */
9166
9167 static void
9168 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9169 char **cond_string, int *thread, int *task,
9170 char **rest)
9171 {
9172 *cond_string = NULL;
9173 *thread = -1;
9174 *task = 0;
9175 *rest = NULL;
9176
9177 while (tok && *tok)
9178 {
9179 const char *end_tok;
9180 int toklen;
9181 const char *cond_start = NULL;
9182 const char *cond_end = NULL;
9183
9184 tok = skip_spaces (tok);
9185
9186 if ((*tok == '"' || *tok == ',') && rest)
9187 {
9188 *rest = savestring (tok, strlen (tok));
9189 return;
9190 }
9191
9192 end_tok = skip_to_space (tok);
9193
9194 toklen = end_tok - tok;
9195
9196 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9197 {
9198 tok = cond_start = end_tok + 1;
9199 parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9200 cond_end = tok;
9201 *cond_string = savestring (cond_start, cond_end - cond_start);
9202 }
9203 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9204 {
9205 const char *tmptok;
9206 struct thread_info *thr;
9207
9208 tok = end_tok + 1;
9209 thr = parse_thread_id (tok, &tmptok);
9210 if (tok == tmptok)
9211 error (_("Junk after thread keyword."));
9212 *thread = thr->global_num;
9213 tok = tmptok;
9214 }
9215 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9216 {
9217 char *tmptok;
9218
9219 tok = end_tok + 1;
9220 *task = strtol (tok, &tmptok, 0);
9221 if (tok == tmptok)
9222 error (_("Junk after task keyword."));
9223 if (!valid_task_id (*task))
9224 error (_("Unknown task %d."), *task);
9225 tok = tmptok;
9226 }
9227 else if (rest)
9228 {
9229 *rest = savestring (tok, strlen (tok));
9230 return;
9231 }
9232 else
9233 error (_("Junk at end of arguments."));
9234 }
9235 }
9236
9237 /* Decode a static tracepoint marker spec. */
9238
9239 static std::vector<symtab_and_line>
9240 decode_static_tracepoint_spec (const char **arg_p)
9241 {
9242 const char *p = &(*arg_p)[3];
9243 const char *endp;
9244
9245 p = skip_spaces (p);
9246
9247 endp = skip_to_space (p);
9248
9249 std::string marker_str (p, endp - p);
9250
9251 std::vector<static_tracepoint_marker> markers
9252 = target_static_tracepoint_markers_by_strid (marker_str.c_str ());
9253 if (markers.empty ())
9254 error (_("No known static tracepoint marker named %s"),
9255 marker_str.c_str ());
9256
9257 std::vector<symtab_and_line> sals;
9258 sals.reserve (markers.size ());
9259
9260 for (const static_tracepoint_marker &marker : markers)
9261 {
9262 symtab_and_line sal = find_pc_line (marker.address, 0);
9263 sal.pc = marker.address;
9264 sals.push_back (sal);
9265 }
9266
9267 *arg_p = endp;
9268 return sals;
9269 }
9270
9271 /* See breakpoint.h. */
9272
9273 int
9274 create_breakpoint (struct gdbarch *gdbarch,
9275 const struct event_location *location,
9276 const char *cond_string,
9277 int thread, const char *extra_string,
9278 int parse_extra,
9279 int tempflag, enum bptype type_wanted,
9280 int ignore_count,
9281 enum auto_boolean pending_break_support,
9282 const struct breakpoint_ops *ops,
9283 int from_tty, int enabled, int internal,
9284 unsigned flags)
9285 {
9286 struct linespec_result canonical;
9287 struct cleanup *bkpt_chain = NULL;
9288 int pending = 0;
9289 int task = 0;
9290 int prev_bkpt_count = breakpoint_count;
9291
9292 gdb_assert (ops != NULL);
9293
9294 /* If extra_string isn't useful, set it to NULL. */
9295 if (extra_string != NULL && *extra_string == '\0')
9296 extra_string = NULL;
9297
9298 TRY
9299 {
9300 ops->create_sals_from_location (location, &canonical, type_wanted);
9301 }
9302 CATCH (e, RETURN_MASK_ERROR)
9303 {
9304 /* If caller is interested in rc value from parse, set
9305 value. */
9306 if (e.error == NOT_FOUND_ERROR)
9307 {
9308 /* If pending breakpoint support is turned off, throw
9309 error. */
9310
9311 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9312 throw_exception (e);
9313
9314 exception_print (gdb_stderr, e);
9315
9316 /* If pending breakpoint support is auto query and the user
9317 selects no, then simply return the error code. */
9318 if (pending_break_support == AUTO_BOOLEAN_AUTO
9319 && !nquery (_("Make %s pending on future shared library load? "),
9320 bptype_string (type_wanted)))
9321 return 0;
9322
9323 /* At this point, either the user was queried about setting
9324 a pending breakpoint and selected yes, or pending
9325 breakpoint behavior is on and thus a pending breakpoint
9326 is defaulted on behalf of the user. */
9327 pending = 1;
9328 }
9329 else
9330 throw_exception (e);
9331 }
9332 END_CATCH
9333
9334 if (!pending && canonical.lsals.empty ())
9335 return 0;
9336
9337 /* ----------------------------- SNIP -----------------------------
9338 Anything added to the cleanup chain beyond this point is assumed
9339 to be part of a breakpoint. If the breakpoint create succeeds
9340 then the memory is not reclaimed. */
9341 bkpt_chain = make_cleanup (null_cleanup, 0);
9342
9343 /* Resolve all line numbers to PC's and verify that the addresses
9344 are ok for the target. */
9345 if (!pending)
9346 {
9347 for (auto &lsal : canonical.lsals)
9348 breakpoint_sals_to_pc (lsal.sals);
9349 }
9350
9351 /* Fast tracepoints may have additional restrictions on location. */
9352 if (!pending && type_wanted == bp_fast_tracepoint)
9353 {
9354 for (const auto &lsal : canonical.lsals)
9355 check_fast_tracepoint_sals (gdbarch, lsal.sals);
9356 }
9357
9358 /* Verify that condition can be parsed, before setting any
9359 breakpoints. Allocate a separate condition expression for each
9360 breakpoint. */
9361 if (!pending)
9362 {
9363 gdb::unique_xmalloc_ptr<char> cond_string_copy;
9364 gdb::unique_xmalloc_ptr<char> extra_string_copy;
9365
9366 if (parse_extra)
9367 {
9368 char *rest;
9369 char *cond;
9370
9371 const linespec_sals &lsal = canonical.lsals[0];
9372
9373 /* Here we only parse 'arg' to separate condition
9374 from thread number, so parsing in context of first
9375 sal is OK. When setting the breakpoint we'll
9376 re-parse it in context of each sal. */
9377
9378 find_condition_and_thread (extra_string, lsal.sals[0].pc,
9379 &cond, &thread, &task, &rest);
9380 cond_string_copy.reset (cond);
9381 extra_string_copy.reset (rest);
9382 }
9383 else
9384 {
9385 if (type_wanted != bp_dprintf
9386 && extra_string != NULL && *extra_string != '\0')
9387 error (_("Garbage '%s' at end of location"), extra_string);
9388
9389 /* Create a private copy of condition string. */
9390 if (cond_string)
9391 cond_string_copy.reset (xstrdup (cond_string));
9392 /* Create a private copy of any extra string. */
9393 if (extra_string)
9394 extra_string_copy.reset (xstrdup (extra_string));
9395 }
9396
9397 ops->create_breakpoints_sal (gdbarch, &canonical,
9398 std::move (cond_string_copy),
9399 std::move (extra_string_copy),
9400 type_wanted,
9401 tempflag ? disp_del : disp_donttouch,
9402 thread, task, ignore_count, ops,
9403 from_tty, enabled, internal, flags);
9404 }
9405 else
9406 {
9407 std::unique_ptr <breakpoint> b = new_breakpoint_from_type (type_wanted);
9408
9409 init_raw_breakpoint_without_location (b.get (), gdbarch, type_wanted, ops);
9410 b->location = copy_event_location (location);
9411
9412 if (parse_extra)
9413 b->cond_string = NULL;
9414 else
9415 {
9416 /* Create a private copy of condition string. */
9417 b->cond_string = cond_string != NULL ? xstrdup (cond_string) : NULL;
9418 b->thread = thread;
9419 }
9420
9421 /* Create a private copy of any extra string. */
9422 b->extra_string = extra_string != NULL ? xstrdup (extra_string) : NULL;
9423 b->ignore_count = ignore_count;
9424 b->disposition = tempflag ? disp_del : disp_donttouch;
9425 b->condition_not_parsed = 1;
9426 b->enable_state = enabled ? bp_enabled : bp_disabled;
9427 if ((type_wanted != bp_breakpoint
9428 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9429 b->pspace = current_program_space;
9430
9431 install_breakpoint (internal, std::move (b), 0);
9432 }
9433
9434 if (canonical.lsals.size () > 1)
9435 {
9436 warning (_("Multiple breakpoints were set.\nUse the "
9437 "\"delete\" command to delete unwanted breakpoints."));
9438 prev_breakpoint_count = prev_bkpt_count;
9439 }
9440
9441 /* That's it. Discard the cleanups for data inserted into the
9442 breakpoint. */
9443 discard_cleanups (bkpt_chain);
9444
9445 /* error call may happen here - have BKPT_CHAIN already discarded. */
9446 update_global_location_list (UGLL_MAY_INSERT);
9447
9448 return 1;
9449 }
9450
9451 /* Set a breakpoint.
9452 ARG is a string describing breakpoint address,
9453 condition, and thread.
9454 FLAG specifies if a breakpoint is hardware on,
9455 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9456 and BP_TEMPFLAG. */
9457
9458 static void
9459 break_command_1 (const char *arg, int flag, int from_tty)
9460 {
9461 int tempflag = flag & BP_TEMPFLAG;
9462 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9463 ? bp_hardware_breakpoint
9464 : bp_breakpoint);
9465 struct breakpoint_ops *ops;
9466
9467 event_location_up location = string_to_event_location (&arg, current_language);
9468
9469 /* Matching breakpoints on probes. */
9470 if (location != NULL
9471 && event_location_type (location.get ()) == PROBE_LOCATION)
9472 ops = &bkpt_probe_breakpoint_ops;
9473 else
9474 ops = &bkpt_breakpoint_ops;
9475
9476 create_breakpoint (get_current_arch (),
9477 location.get (),
9478 NULL, 0, arg, 1 /* parse arg */,
9479 tempflag, type_wanted,
9480 0 /* Ignore count */,
9481 pending_break_support,
9482 ops,
9483 from_tty,
9484 1 /* enabled */,
9485 0 /* internal */,
9486 0);
9487 }
9488
9489 /* Helper function for break_command_1 and disassemble_command. */
9490
9491 void
9492 resolve_sal_pc (struct symtab_and_line *sal)
9493 {
9494 CORE_ADDR pc;
9495
9496 if (sal->pc == 0 && sal->symtab != NULL)
9497 {
9498 if (!find_line_pc (sal->symtab, sal->line, &pc))
9499 error (_("No line %d in file \"%s\"."),
9500 sal->line, symtab_to_filename_for_display (sal->symtab));
9501 sal->pc = pc;
9502
9503 /* If this SAL corresponds to a breakpoint inserted using a line
9504 number, then skip the function prologue if necessary. */
9505 if (sal->explicit_line)
9506 skip_prologue_sal (sal);
9507 }
9508
9509 if (sal->section == 0 && sal->symtab != NULL)
9510 {
9511 const struct blockvector *bv;
9512 const struct block *b;
9513 struct symbol *sym;
9514
9515 bv = blockvector_for_pc_sect (sal->pc, 0, &b,
9516 SYMTAB_COMPUNIT (sal->symtab));
9517 if (bv != NULL)
9518 {
9519 sym = block_linkage_function (b);
9520 if (sym != NULL)
9521 {
9522 fixup_symbol_section (sym, SYMTAB_OBJFILE (sal->symtab));
9523 sal->section = SYMBOL_OBJ_SECTION (SYMTAB_OBJFILE (sal->symtab),
9524 sym);
9525 }
9526 else
9527 {
9528 /* It really is worthwhile to have the section, so we'll
9529 just have to look harder. This case can be executed
9530 if we have line numbers but no functions (as can
9531 happen in assembly source). */
9532
9533 scoped_restore_current_pspace_and_thread restore_pspace_thread;
9534 switch_to_program_space_and_thread (sal->pspace);
9535
9536 bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (sal->pc);
9537 if (msym.minsym)
9538 sal->section = MSYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9539 }
9540 }
9541 }
9542 }
9543
9544 void
9545 break_command (const char *arg, int from_tty)
9546 {
9547 break_command_1 (arg, 0, from_tty);
9548 }
9549
9550 void
9551 tbreak_command (const char *arg, int from_tty)
9552 {
9553 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9554 }
9555
9556 static void
9557 hbreak_command (const char *arg, int from_tty)
9558 {
9559 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9560 }
9561
9562 static void
9563 thbreak_command (const char *arg, int from_tty)
9564 {
9565 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9566 }
9567
9568 static void
9569 stop_command (const char *arg, int from_tty)
9570 {
9571 printf_filtered (_("Specify the type of breakpoint to set.\n\
9572 Usage: stop in <function | address>\n\
9573 stop at <line>\n"));
9574 }
9575
9576 static void
9577 stopin_command (const char *arg, int from_tty)
9578 {
9579 int badInput = 0;
9580
9581 if (arg == (char *) NULL)
9582 badInput = 1;
9583 else if (*arg != '*')
9584 {
9585 const char *argptr = arg;
9586 int hasColon = 0;
9587
9588 /* Look for a ':'. If this is a line number specification, then
9589 say it is bad, otherwise, it should be an address or
9590 function/method name. */
9591 while (*argptr && !hasColon)
9592 {
9593 hasColon = (*argptr == ':');
9594 argptr++;
9595 }
9596
9597 if (hasColon)
9598 badInput = (*argptr != ':'); /* Not a class::method */
9599 else
9600 badInput = isdigit (*arg); /* a simple line number */
9601 }
9602
9603 if (badInput)
9604 printf_filtered (_("Usage: stop in <function | address>\n"));
9605 else
9606 break_command_1 (arg, 0, from_tty);
9607 }
9608
9609 static void
9610 stopat_command (const char *arg, int from_tty)
9611 {
9612 int badInput = 0;
9613
9614 if (arg == (char *) NULL || *arg == '*') /* no line number */
9615 badInput = 1;
9616 else
9617 {
9618 const char *argptr = arg;
9619 int hasColon = 0;
9620
9621 /* Look for a ':'. If there is a '::' then get out, otherwise
9622 it is probably a line number. */
9623 while (*argptr && !hasColon)
9624 {
9625 hasColon = (*argptr == ':');
9626 argptr++;
9627 }
9628
9629 if (hasColon)
9630 badInput = (*argptr == ':'); /* we have class::method */
9631 else
9632 badInput = !isdigit (*arg); /* not a line number */
9633 }
9634
9635 if (badInput)
9636 printf_filtered (_("Usage: stop at <line>\n"));
9637 else
9638 break_command_1 (arg, 0, from_tty);
9639 }
9640
9641 /* The dynamic printf command is mostly like a regular breakpoint, but
9642 with a prewired command list consisting of a single output command,
9643 built from extra arguments supplied on the dprintf command
9644 line. */
9645
9646 static void
9647 dprintf_command (const char *arg, int from_tty)
9648 {
9649 event_location_up location = string_to_event_location (&arg, current_language);
9650
9651 /* If non-NULL, ARG should have been advanced past the location;
9652 the next character must be ','. */
9653 if (arg != NULL)
9654 {
9655 if (arg[0] != ',' || arg[1] == '\0')
9656 error (_("Format string required"));
9657 else
9658 {
9659 /* Skip the comma. */
9660 ++arg;
9661 }
9662 }
9663
9664 create_breakpoint (get_current_arch (),
9665 location.get (),
9666 NULL, 0, arg, 1 /* parse arg */,
9667 0, bp_dprintf,
9668 0 /* Ignore count */,
9669 pending_break_support,
9670 &dprintf_breakpoint_ops,
9671 from_tty,
9672 1 /* enabled */,
9673 0 /* internal */,
9674 0);
9675 }
9676
9677 static void
9678 agent_printf_command (const char *arg, int from_tty)
9679 {
9680 error (_("May only run agent-printf on the target"));
9681 }
9682
9683 /* Implement the "breakpoint_hit" breakpoint_ops method for
9684 ranged breakpoints. */
9685
9686 static int
9687 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9688 const address_space *aspace,
9689 CORE_ADDR bp_addr,
9690 const struct target_waitstatus *ws)
9691 {
9692 if (ws->kind != TARGET_WAITKIND_STOPPED
9693 || ws->value.sig != GDB_SIGNAL_TRAP)
9694 return 0;
9695
9696 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9697 bl->length, aspace, bp_addr);
9698 }
9699
9700 /* Implement the "resources_needed" breakpoint_ops method for
9701 ranged breakpoints. */
9702
9703 static int
9704 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9705 {
9706 return target_ranged_break_num_registers ();
9707 }
9708
9709 /* Implement the "print_it" breakpoint_ops method for
9710 ranged breakpoints. */
9711
9712 static enum print_stop_action
9713 print_it_ranged_breakpoint (bpstat bs)
9714 {
9715 struct breakpoint *b = bs->breakpoint_at;
9716 struct bp_location *bl = b->loc;
9717 struct ui_out *uiout = current_uiout;
9718
9719 gdb_assert (b->type == bp_hardware_breakpoint);
9720
9721 /* Ranged breakpoints have only one location. */
9722 gdb_assert (bl && bl->next == NULL);
9723
9724 annotate_breakpoint (b->number);
9725
9726 maybe_print_thread_hit_breakpoint (uiout);
9727
9728 if (b->disposition == disp_del)
9729 uiout->text ("Temporary ranged breakpoint ");
9730 else
9731 uiout->text ("Ranged breakpoint ");
9732 if (uiout->is_mi_like_p ())
9733 {
9734 uiout->field_string ("reason",
9735 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9736 uiout->field_string ("disp", bpdisp_text (b->disposition));
9737 }
9738 uiout->field_int ("bkptno", b->number);
9739 uiout->text (", ");
9740
9741 return PRINT_SRC_AND_LOC;
9742 }
9743
9744 /* Implement the "print_one" breakpoint_ops method for
9745 ranged breakpoints. */
9746
9747 static void
9748 print_one_ranged_breakpoint (struct breakpoint *b,
9749 struct bp_location **last_loc)
9750 {
9751 struct bp_location *bl = b->loc;
9752 struct value_print_options opts;
9753 struct ui_out *uiout = current_uiout;
9754
9755 /* Ranged breakpoints have only one location. */
9756 gdb_assert (bl && bl->next == NULL);
9757
9758 get_user_print_options (&opts);
9759
9760 if (opts.addressprint)
9761 /* We don't print the address range here, it will be printed later
9762 by print_one_detail_ranged_breakpoint. */
9763 uiout->field_skip ("addr");
9764 annotate_field (5);
9765 print_breakpoint_location (b, bl);
9766 *last_loc = bl;
9767 }
9768
9769 /* Implement the "print_one_detail" breakpoint_ops method for
9770 ranged breakpoints. */
9771
9772 static void
9773 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
9774 struct ui_out *uiout)
9775 {
9776 CORE_ADDR address_start, address_end;
9777 struct bp_location *bl = b->loc;
9778 string_file stb;
9779
9780 gdb_assert (bl);
9781
9782 address_start = bl->address;
9783 address_end = address_start + bl->length - 1;
9784
9785 uiout->text ("\taddress range: ");
9786 stb.printf ("[%s, %s]",
9787 print_core_address (bl->gdbarch, address_start),
9788 print_core_address (bl->gdbarch, address_end));
9789 uiout->field_stream ("addr", stb);
9790 uiout->text ("\n");
9791 }
9792
9793 /* Implement the "print_mention" breakpoint_ops method for
9794 ranged breakpoints. */
9795
9796 static void
9797 print_mention_ranged_breakpoint (struct breakpoint *b)
9798 {
9799 struct bp_location *bl = b->loc;
9800 struct ui_out *uiout = current_uiout;
9801
9802 gdb_assert (bl);
9803 gdb_assert (b->type == bp_hardware_breakpoint);
9804
9805 if (uiout->is_mi_like_p ())
9806 return;
9807
9808 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
9809 b->number, paddress (bl->gdbarch, bl->address),
9810 paddress (bl->gdbarch, bl->address + bl->length - 1));
9811 }
9812
9813 /* Implement the "print_recreate" breakpoint_ops method for
9814 ranged breakpoints. */
9815
9816 static void
9817 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
9818 {
9819 fprintf_unfiltered (fp, "break-range %s, %s",
9820 event_location_to_string (b->location.get ()),
9821 event_location_to_string (b->location_range_end.get ()));
9822 print_recreate_thread (b, fp);
9823 }
9824
9825 /* The breakpoint_ops structure to be used in ranged breakpoints. */
9826
9827 static struct breakpoint_ops ranged_breakpoint_ops;
9828
9829 /* Find the address where the end of the breakpoint range should be
9830 placed, given the SAL of the end of the range. This is so that if
9831 the user provides a line number, the end of the range is set to the
9832 last instruction of the given line. */
9833
9834 static CORE_ADDR
9835 find_breakpoint_range_end (struct symtab_and_line sal)
9836 {
9837 CORE_ADDR end;
9838
9839 /* If the user provided a PC value, use it. Otherwise,
9840 find the address of the end of the given location. */
9841 if (sal.explicit_pc)
9842 end = sal.pc;
9843 else
9844 {
9845 int ret;
9846 CORE_ADDR start;
9847
9848 ret = find_line_pc_range (sal, &start, &end);
9849 if (!ret)
9850 error (_("Could not find location of the end of the range."));
9851
9852 /* find_line_pc_range returns the start of the next line. */
9853 end--;
9854 }
9855
9856 return end;
9857 }
9858
9859 /* Implement the "break-range" CLI command. */
9860
9861 static void
9862 break_range_command (const char *arg, int from_tty)
9863 {
9864 const char *arg_start;
9865 struct linespec_result canonical_start, canonical_end;
9866 int bp_count, can_use_bp, length;
9867 CORE_ADDR end;
9868 struct breakpoint *b;
9869
9870 /* We don't support software ranged breakpoints. */
9871 if (target_ranged_break_num_registers () < 0)
9872 error (_("This target does not support hardware ranged breakpoints."));
9873
9874 bp_count = hw_breakpoint_used_count ();
9875 bp_count += target_ranged_break_num_registers ();
9876 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9877 bp_count, 0);
9878 if (can_use_bp < 0)
9879 error (_("Hardware breakpoints used exceeds limit."));
9880
9881 arg = skip_spaces (arg);
9882 if (arg == NULL || arg[0] == '\0')
9883 error(_("No address range specified."));
9884
9885 arg_start = arg;
9886 event_location_up start_location = string_to_event_location (&arg,
9887 current_language);
9888 parse_breakpoint_sals (start_location.get (), &canonical_start);
9889
9890 if (arg[0] != ',')
9891 error (_("Too few arguments."));
9892 else if (canonical_start.lsals.empty ())
9893 error (_("Could not find location of the beginning of the range."));
9894
9895 const linespec_sals &lsal_start = canonical_start.lsals[0];
9896
9897 if (canonical_start.lsals.size () > 1
9898 || lsal_start.sals.size () != 1)
9899 error (_("Cannot create a ranged breakpoint with multiple locations."));
9900
9901 const symtab_and_line &sal_start = lsal_start.sals[0];
9902 std::string addr_string_start (arg_start, arg - arg_start);
9903
9904 arg++; /* Skip the comma. */
9905 arg = skip_spaces (arg);
9906
9907 /* Parse the end location. */
9908
9909 arg_start = arg;
9910
9911 /* We call decode_line_full directly here instead of using
9912 parse_breakpoint_sals because we need to specify the start location's
9913 symtab and line as the default symtab and line for the end of the
9914 range. This makes it possible to have ranges like "foo.c:27, +14",
9915 where +14 means 14 lines from the start location. */
9916 event_location_up end_location = string_to_event_location (&arg,
9917 current_language);
9918 decode_line_full (end_location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
9919 sal_start.symtab, sal_start.line,
9920 &canonical_end, NULL, NULL);
9921
9922 if (canonical_end.lsals.empty ())
9923 error (_("Could not find location of the end of the range."));
9924
9925 const linespec_sals &lsal_end = canonical_end.lsals[0];
9926 if (canonical_end.lsals.size () > 1
9927 || lsal_end.sals.size () != 1)
9928 error (_("Cannot create a ranged breakpoint with multiple locations."));
9929
9930 const symtab_and_line &sal_end = lsal_end.sals[0];
9931
9932 end = find_breakpoint_range_end (sal_end);
9933 if (sal_start.pc > end)
9934 error (_("Invalid address range, end precedes start."));
9935
9936 length = end - sal_start.pc + 1;
9937 if (length < 0)
9938 /* Length overflowed. */
9939 error (_("Address range too large."));
9940 else if (length == 1)
9941 {
9942 /* This range is simple enough to be handled by
9943 the `hbreak' command. */
9944 hbreak_command (&addr_string_start[0], 1);
9945
9946 return;
9947 }
9948
9949 /* Now set up the breakpoint. */
9950 b = set_raw_breakpoint (get_current_arch (), sal_start,
9951 bp_hardware_breakpoint, &ranged_breakpoint_ops);
9952 set_breakpoint_count (breakpoint_count + 1);
9953 b->number = breakpoint_count;
9954 b->disposition = disp_donttouch;
9955 b->location = std::move (start_location);
9956 b->location_range_end = std::move (end_location);
9957 b->loc->length = length;
9958
9959 mention (b);
9960 gdb::observers::breakpoint_created.notify (b);
9961 update_global_location_list (UGLL_MAY_INSERT);
9962 }
9963
9964 /* Return non-zero if EXP is verified as constant. Returned zero
9965 means EXP is variable. Also the constant detection may fail for
9966 some constant expressions and in such case still falsely return
9967 zero. */
9968
9969 static int
9970 watchpoint_exp_is_const (const struct expression *exp)
9971 {
9972 int i = exp->nelts;
9973
9974 while (i > 0)
9975 {
9976 int oplenp, argsp;
9977
9978 /* We are only interested in the descriptor of each element. */
9979 operator_length (exp, i, &oplenp, &argsp);
9980 i -= oplenp;
9981
9982 switch (exp->elts[i].opcode)
9983 {
9984 case BINOP_ADD:
9985 case BINOP_SUB:
9986 case BINOP_MUL:
9987 case BINOP_DIV:
9988 case BINOP_REM:
9989 case BINOP_MOD:
9990 case BINOP_LSH:
9991 case BINOP_RSH:
9992 case BINOP_LOGICAL_AND:
9993 case BINOP_LOGICAL_OR:
9994 case BINOP_BITWISE_AND:
9995 case BINOP_BITWISE_IOR:
9996 case BINOP_BITWISE_XOR:
9997 case BINOP_EQUAL:
9998 case BINOP_NOTEQUAL:
9999 case BINOP_LESS:
10000 case BINOP_GTR:
10001 case BINOP_LEQ:
10002 case BINOP_GEQ:
10003 case BINOP_REPEAT:
10004 case BINOP_COMMA:
10005 case BINOP_EXP:
10006 case BINOP_MIN:
10007 case BINOP_MAX:
10008 case BINOP_INTDIV:
10009 case BINOP_CONCAT:
10010 case TERNOP_COND:
10011 case TERNOP_SLICE:
10012
10013 case OP_LONG:
10014 case OP_FLOAT:
10015 case OP_LAST:
10016 case OP_COMPLEX:
10017 case OP_STRING:
10018 case OP_ARRAY:
10019 case OP_TYPE:
10020 case OP_TYPEOF:
10021 case OP_DECLTYPE:
10022 case OP_TYPEID:
10023 case OP_NAME:
10024 case OP_OBJC_NSSTRING:
10025
10026 case UNOP_NEG:
10027 case UNOP_LOGICAL_NOT:
10028 case UNOP_COMPLEMENT:
10029 case UNOP_ADDR:
10030 case UNOP_HIGH:
10031 case UNOP_CAST:
10032
10033 case UNOP_CAST_TYPE:
10034 case UNOP_REINTERPRET_CAST:
10035 case UNOP_DYNAMIC_CAST:
10036 /* Unary, binary and ternary operators: We have to check
10037 their operands. If they are constant, then so is the
10038 result of that operation. For instance, if A and B are
10039 determined to be constants, then so is "A + B".
10040
10041 UNOP_IND is one exception to the rule above, because the
10042 value of *ADDR is not necessarily a constant, even when
10043 ADDR is. */
10044 break;
10045
10046 case OP_VAR_VALUE:
10047 /* Check whether the associated symbol is a constant.
10048
10049 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10050 possible that a buggy compiler could mark a variable as
10051 constant even when it is not, and TYPE_CONST would return
10052 true in this case, while SYMBOL_CLASS wouldn't.
10053
10054 We also have to check for function symbols because they
10055 are always constant. */
10056 {
10057 struct symbol *s = exp->elts[i + 2].symbol;
10058
10059 if (SYMBOL_CLASS (s) != LOC_BLOCK
10060 && SYMBOL_CLASS (s) != LOC_CONST
10061 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10062 return 0;
10063 break;
10064 }
10065
10066 /* The default action is to return 0 because we are using
10067 the optimistic approach here: If we don't know something,
10068 then it is not a constant. */
10069 default:
10070 return 0;
10071 }
10072 }
10073
10074 return 1;
10075 }
10076
10077 /* Watchpoint destructor. */
10078
10079 watchpoint::~watchpoint ()
10080 {
10081 xfree (this->exp_string);
10082 xfree (this->exp_string_reparse);
10083 }
10084
10085 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10086
10087 static void
10088 re_set_watchpoint (struct breakpoint *b)
10089 {
10090 struct watchpoint *w = (struct watchpoint *) b;
10091
10092 /* Watchpoint can be either on expression using entirely global
10093 variables, or it can be on local variables.
10094
10095 Watchpoints of the first kind are never auto-deleted, and even
10096 persist across program restarts. Since they can use variables
10097 from shared libraries, we need to reparse expression as libraries
10098 are loaded and unloaded.
10099
10100 Watchpoints on local variables can also change meaning as result
10101 of solib event. For example, if a watchpoint uses both a local
10102 and a global variables in expression, it's a local watchpoint,
10103 but unloading of a shared library will make the expression
10104 invalid. This is not a very common use case, but we still
10105 re-evaluate expression, to avoid surprises to the user.
10106
10107 Note that for local watchpoints, we re-evaluate it only if
10108 watchpoints frame id is still valid. If it's not, it means the
10109 watchpoint is out of scope and will be deleted soon. In fact,
10110 I'm not sure we'll ever be called in this case.
10111
10112 If a local watchpoint's frame id is still valid, then
10113 w->exp_valid_block is likewise valid, and we can safely use it.
10114
10115 Don't do anything about disabled watchpoints, since they will be
10116 reevaluated again when enabled. */
10117 update_watchpoint (w, 1 /* reparse */);
10118 }
10119
10120 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10121
10122 static int
10123 insert_watchpoint (struct bp_location *bl)
10124 {
10125 struct watchpoint *w = (struct watchpoint *) bl->owner;
10126 int length = w->exact ? 1 : bl->length;
10127
10128 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10129 w->cond_exp.get ());
10130 }
10131
10132 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10133
10134 static int
10135 remove_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10136 {
10137 struct watchpoint *w = (struct watchpoint *) bl->owner;
10138 int length = w->exact ? 1 : bl->length;
10139
10140 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10141 w->cond_exp.get ());
10142 }
10143
10144 static int
10145 breakpoint_hit_watchpoint (const struct bp_location *bl,
10146 const address_space *aspace, CORE_ADDR bp_addr,
10147 const struct target_waitstatus *ws)
10148 {
10149 struct breakpoint *b = bl->owner;
10150 struct watchpoint *w = (struct watchpoint *) b;
10151
10152 /* Continuable hardware watchpoints are treated as non-existent if the
10153 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10154 some data address). Otherwise gdb won't stop on a break instruction
10155 in the code (not from a breakpoint) when a hardware watchpoint has
10156 been defined. Also skip watchpoints which we know did not trigger
10157 (did not match the data address). */
10158 if (is_hardware_watchpoint (b)
10159 && w->watchpoint_triggered == watch_triggered_no)
10160 return 0;
10161
10162 return 1;
10163 }
10164
10165 static void
10166 check_status_watchpoint (bpstat bs)
10167 {
10168 gdb_assert (is_watchpoint (bs->breakpoint_at));
10169
10170 bpstat_check_watchpoint (bs);
10171 }
10172
10173 /* Implement the "resources_needed" breakpoint_ops method for
10174 hardware watchpoints. */
10175
10176 static int
10177 resources_needed_watchpoint (const struct bp_location *bl)
10178 {
10179 struct watchpoint *w = (struct watchpoint *) bl->owner;
10180 int length = w->exact? 1 : bl->length;
10181
10182 return target_region_ok_for_hw_watchpoint (bl->address, length);
10183 }
10184
10185 /* Implement the "works_in_software_mode" breakpoint_ops method for
10186 hardware watchpoints. */
10187
10188 static int
10189 works_in_software_mode_watchpoint (const struct breakpoint *b)
10190 {
10191 /* Read and access watchpoints only work with hardware support. */
10192 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10193 }
10194
10195 static enum print_stop_action
10196 print_it_watchpoint (bpstat bs)
10197 {
10198 struct breakpoint *b;
10199 enum print_stop_action result;
10200 struct watchpoint *w;
10201 struct ui_out *uiout = current_uiout;
10202
10203 gdb_assert (bs->bp_location_at != NULL);
10204
10205 b = bs->breakpoint_at;
10206 w = (struct watchpoint *) b;
10207
10208 annotate_watchpoint (b->number);
10209 maybe_print_thread_hit_breakpoint (uiout);
10210
10211 string_file stb;
10212
10213 gdb::optional<ui_out_emit_tuple> tuple_emitter;
10214 switch (b->type)
10215 {
10216 case bp_watchpoint:
10217 case bp_hardware_watchpoint:
10218 if (uiout->is_mi_like_p ())
10219 uiout->field_string
10220 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10221 mention (b);
10222 tuple_emitter.emplace (uiout, "value");
10223 uiout->text ("\nOld value = ");
10224 watchpoint_value_print (bs->old_val.get (), &stb);
10225 uiout->field_stream ("old", stb);
10226 uiout->text ("\nNew value = ");
10227 watchpoint_value_print (w->val.get (), &stb);
10228 uiout->field_stream ("new", stb);
10229 uiout->text ("\n");
10230 /* More than one watchpoint may have been triggered. */
10231 result = PRINT_UNKNOWN;
10232 break;
10233
10234 case bp_read_watchpoint:
10235 if (uiout->is_mi_like_p ())
10236 uiout->field_string
10237 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10238 mention (b);
10239 tuple_emitter.emplace (uiout, "value");
10240 uiout->text ("\nValue = ");
10241 watchpoint_value_print (w->val.get (), &stb);
10242 uiout->field_stream ("value", stb);
10243 uiout->text ("\n");
10244 result = PRINT_UNKNOWN;
10245 break;
10246
10247 case bp_access_watchpoint:
10248 if (bs->old_val != NULL)
10249 {
10250 if (uiout->is_mi_like_p ())
10251 uiout->field_string
10252 ("reason",
10253 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10254 mention (b);
10255 tuple_emitter.emplace (uiout, "value");
10256 uiout->text ("\nOld value = ");
10257 watchpoint_value_print (bs->old_val.get (), &stb);
10258 uiout->field_stream ("old", stb);
10259 uiout->text ("\nNew value = ");
10260 }
10261 else
10262 {
10263 mention (b);
10264 if (uiout->is_mi_like_p ())
10265 uiout->field_string
10266 ("reason",
10267 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10268 tuple_emitter.emplace (uiout, "value");
10269 uiout->text ("\nValue = ");
10270 }
10271 watchpoint_value_print (w->val.get (), &stb);
10272 uiout->field_stream ("new", stb);
10273 uiout->text ("\n");
10274 result = PRINT_UNKNOWN;
10275 break;
10276 default:
10277 result = PRINT_UNKNOWN;
10278 }
10279
10280 return result;
10281 }
10282
10283 /* Implement the "print_mention" breakpoint_ops method for hardware
10284 watchpoints. */
10285
10286 static void
10287 print_mention_watchpoint (struct breakpoint *b)
10288 {
10289 struct watchpoint *w = (struct watchpoint *) b;
10290 struct ui_out *uiout = current_uiout;
10291 const char *tuple_name;
10292
10293 switch (b->type)
10294 {
10295 case bp_watchpoint:
10296 uiout->text ("Watchpoint ");
10297 tuple_name = "wpt";
10298 break;
10299 case bp_hardware_watchpoint:
10300 uiout->text ("Hardware watchpoint ");
10301 tuple_name = "wpt";
10302 break;
10303 case bp_read_watchpoint:
10304 uiout->text ("Hardware read watchpoint ");
10305 tuple_name = "hw-rwpt";
10306 break;
10307 case bp_access_watchpoint:
10308 uiout->text ("Hardware access (read/write) watchpoint ");
10309 tuple_name = "hw-awpt";
10310 break;
10311 default:
10312 internal_error (__FILE__, __LINE__,
10313 _("Invalid hardware watchpoint type."));
10314 }
10315
10316 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10317 uiout->field_int ("number", b->number);
10318 uiout->text (": ");
10319 uiout->field_string ("exp", w->exp_string);
10320 }
10321
10322 /* Implement the "print_recreate" breakpoint_ops method for
10323 watchpoints. */
10324
10325 static void
10326 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10327 {
10328 struct watchpoint *w = (struct watchpoint *) b;
10329
10330 switch (b->type)
10331 {
10332 case bp_watchpoint:
10333 case bp_hardware_watchpoint:
10334 fprintf_unfiltered (fp, "watch");
10335 break;
10336 case bp_read_watchpoint:
10337 fprintf_unfiltered (fp, "rwatch");
10338 break;
10339 case bp_access_watchpoint:
10340 fprintf_unfiltered (fp, "awatch");
10341 break;
10342 default:
10343 internal_error (__FILE__, __LINE__,
10344 _("Invalid watchpoint type."));
10345 }
10346
10347 fprintf_unfiltered (fp, " %s", w->exp_string);
10348 print_recreate_thread (b, fp);
10349 }
10350
10351 /* Implement the "explains_signal" breakpoint_ops method for
10352 watchpoints. */
10353
10354 static int
10355 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10356 {
10357 /* A software watchpoint cannot cause a signal other than
10358 GDB_SIGNAL_TRAP. */
10359 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10360 return 0;
10361
10362 return 1;
10363 }
10364
10365 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10366
10367 static struct breakpoint_ops watchpoint_breakpoint_ops;
10368
10369 /* Implement the "insert" breakpoint_ops method for
10370 masked hardware watchpoints. */
10371
10372 static int
10373 insert_masked_watchpoint (struct bp_location *bl)
10374 {
10375 struct watchpoint *w = (struct watchpoint *) bl->owner;
10376
10377 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10378 bl->watchpoint_type);
10379 }
10380
10381 /* Implement the "remove" breakpoint_ops method for
10382 masked hardware watchpoints. */
10383
10384 static int
10385 remove_masked_watchpoint (struct bp_location *bl, enum remove_bp_reason reason)
10386 {
10387 struct watchpoint *w = (struct watchpoint *) bl->owner;
10388
10389 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10390 bl->watchpoint_type);
10391 }
10392
10393 /* Implement the "resources_needed" breakpoint_ops method for
10394 masked hardware watchpoints. */
10395
10396 static int
10397 resources_needed_masked_watchpoint (const struct bp_location *bl)
10398 {
10399 struct watchpoint *w = (struct watchpoint *) bl->owner;
10400
10401 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10402 }
10403
10404 /* Implement the "works_in_software_mode" breakpoint_ops method for
10405 masked hardware watchpoints. */
10406
10407 static int
10408 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10409 {
10410 return 0;
10411 }
10412
10413 /* Implement the "print_it" breakpoint_ops method for
10414 masked hardware watchpoints. */
10415
10416 static enum print_stop_action
10417 print_it_masked_watchpoint (bpstat bs)
10418 {
10419 struct breakpoint *b = bs->breakpoint_at;
10420 struct ui_out *uiout = current_uiout;
10421
10422 /* Masked watchpoints have only one location. */
10423 gdb_assert (b->loc && b->loc->next == NULL);
10424
10425 annotate_watchpoint (b->number);
10426 maybe_print_thread_hit_breakpoint (uiout);
10427
10428 switch (b->type)
10429 {
10430 case bp_hardware_watchpoint:
10431 if (uiout->is_mi_like_p ())
10432 uiout->field_string
10433 ("reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10434 break;
10435
10436 case bp_read_watchpoint:
10437 if (uiout->is_mi_like_p ())
10438 uiout->field_string
10439 ("reason", async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10440 break;
10441
10442 case bp_access_watchpoint:
10443 if (uiout->is_mi_like_p ())
10444 uiout->field_string
10445 ("reason",
10446 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10447 break;
10448 default:
10449 internal_error (__FILE__, __LINE__,
10450 _("Invalid hardware watchpoint type."));
10451 }
10452
10453 mention (b);
10454 uiout->text (_("\n\
10455 Check the underlying instruction at PC for the memory\n\
10456 address and value which triggered this watchpoint.\n"));
10457 uiout->text ("\n");
10458
10459 /* More than one watchpoint may have been triggered. */
10460 return PRINT_UNKNOWN;
10461 }
10462
10463 /* Implement the "print_one_detail" breakpoint_ops method for
10464 masked hardware watchpoints. */
10465
10466 static void
10467 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10468 struct ui_out *uiout)
10469 {
10470 struct watchpoint *w = (struct watchpoint *) b;
10471
10472 /* Masked watchpoints have only one location. */
10473 gdb_assert (b->loc && b->loc->next == NULL);
10474
10475 uiout->text ("\tmask ");
10476 uiout->field_core_addr ("mask", b->loc->gdbarch, w->hw_wp_mask);
10477 uiout->text ("\n");
10478 }
10479
10480 /* Implement the "print_mention" breakpoint_ops method for
10481 masked hardware watchpoints. */
10482
10483 static void
10484 print_mention_masked_watchpoint (struct breakpoint *b)
10485 {
10486 struct watchpoint *w = (struct watchpoint *) b;
10487 struct ui_out *uiout = current_uiout;
10488 const char *tuple_name;
10489
10490 switch (b->type)
10491 {
10492 case bp_hardware_watchpoint:
10493 uiout->text ("Masked hardware watchpoint ");
10494 tuple_name = "wpt";
10495 break;
10496 case bp_read_watchpoint:
10497 uiout->text ("Masked hardware read watchpoint ");
10498 tuple_name = "hw-rwpt";
10499 break;
10500 case bp_access_watchpoint:
10501 uiout->text ("Masked hardware access (read/write) watchpoint ");
10502 tuple_name = "hw-awpt";
10503 break;
10504 default:
10505 internal_error (__FILE__, __LINE__,
10506 _("Invalid hardware watchpoint type."));
10507 }
10508
10509 ui_out_emit_tuple tuple_emitter (uiout, tuple_name);
10510 uiout->field_int ("number", b->number);
10511 uiout->text (": ");
10512 uiout->field_string ("exp", w->exp_string);
10513 }
10514
10515 /* Implement the "print_recreate" breakpoint_ops method for
10516 masked hardware watchpoints. */
10517
10518 static void
10519 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10520 {
10521 struct watchpoint *w = (struct watchpoint *) b;
10522 char tmp[40];
10523
10524 switch (b->type)
10525 {
10526 case bp_hardware_watchpoint:
10527 fprintf_unfiltered (fp, "watch");
10528 break;
10529 case bp_read_watchpoint:
10530 fprintf_unfiltered (fp, "rwatch");
10531 break;
10532 case bp_access_watchpoint:
10533 fprintf_unfiltered (fp, "awatch");
10534 break;
10535 default:
10536 internal_error (__FILE__, __LINE__,
10537 _("Invalid hardware watchpoint type."));
10538 }
10539
10540 sprintf_vma (tmp, w->hw_wp_mask);
10541 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10542 print_recreate_thread (b, fp);
10543 }
10544
10545 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10546
10547 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10548
10549 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10550
10551 static int
10552 is_masked_watchpoint (const struct breakpoint *b)
10553 {
10554 return b->ops == &masked_watchpoint_breakpoint_ops;
10555 }
10556
10557 /* accessflag: hw_write: watch write,
10558 hw_read: watch read,
10559 hw_access: watch access (read or write) */
10560 static void
10561 watch_command_1 (const char *arg, int accessflag, int from_tty,
10562 int just_location, int internal)
10563 {
10564 struct breakpoint *scope_breakpoint = NULL;
10565 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10566 struct value *mark, *result;
10567 int saved_bitpos = 0, saved_bitsize = 0;
10568 const char *exp_start = NULL;
10569 const char *exp_end = NULL;
10570 const char *tok, *end_tok;
10571 int toklen = -1;
10572 const char *cond_start = NULL;
10573 const char *cond_end = NULL;
10574 enum bptype bp_type;
10575 int thread = -1;
10576 int pc = 0;
10577 /* Flag to indicate whether we are going to use masks for
10578 the hardware watchpoint. */
10579 int use_mask = 0;
10580 CORE_ADDR mask = 0;
10581
10582 /* Make sure that we actually have parameters to parse. */
10583 if (arg != NULL && arg[0] != '\0')
10584 {
10585 const char *value_start;
10586
10587 exp_end = arg + strlen (arg);
10588
10589 /* Look for "parameter value" pairs at the end
10590 of the arguments string. */
10591 for (tok = exp_end - 1; tok > arg; tok--)
10592 {
10593 /* Skip whitespace at the end of the argument list. */
10594 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10595 tok--;
10596
10597 /* Find the beginning of the last token.
10598 This is the value of the parameter. */
10599 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10600 tok--;
10601 value_start = tok + 1;
10602
10603 /* Skip whitespace. */
10604 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10605 tok--;
10606
10607 end_tok = tok;
10608
10609 /* Find the beginning of the second to last token.
10610 This is the parameter itself. */
10611 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10612 tok--;
10613 tok++;
10614 toklen = end_tok - tok + 1;
10615
10616 if (toklen == 6 && startswith (tok, "thread"))
10617 {
10618 struct thread_info *thr;
10619 /* At this point we've found a "thread" token, which means
10620 the user is trying to set a watchpoint that triggers
10621 only in a specific thread. */
10622 const char *endp;
10623
10624 if (thread != -1)
10625 error(_("You can specify only one thread."));
10626
10627 /* Extract the thread ID from the next token. */
10628 thr = parse_thread_id (value_start, &endp);
10629
10630 /* Check if the user provided a valid thread ID. */
10631 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10632 invalid_thread_id_error (value_start);
10633
10634 thread = thr->global_num;
10635 }
10636 else if (toklen == 4 && startswith (tok, "mask"))
10637 {
10638 /* We've found a "mask" token, which means the user wants to
10639 create a hardware watchpoint that is going to have the mask
10640 facility. */
10641 struct value *mask_value, *mark;
10642
10643 if (use_mask)
10644 error(_("You can specify only one mask."));
10645
10646 use_mask = just_location = 1;
10647
10648 mark = value_mark ();
10649 mask_value = parse_to_comma_and_eval (&value_start);
10650 mask = value_as_address (mask_value);
10651 value_free_to_mark (mark);
10652 }
10653 else
10654 /* We didn't recognize what we found. We should stop here. */
10655 break;
10656
10657 /* Truncate the string and get rid of the "parameter value" pair before
10658 the arguments string is parsed by the parse_exp_1 function. */
10659 exp_end = tok;
10660 }
10661 }
10662 else
10663 exp_end = arg;
10664
10665 /* Parse the rest of the arguments. From here on out, everything
10666 is in terms of a newly allocated string instead of the original
10667 ARG. */
10668 innermost_block.reset ();
10669 std::string expression (arg, exp_end - arg);
10670 exp_start = arg = expression.c_str ();
10671 expression_up exp = parse_exp_1 (&arg, 0, 0, 0);
10672 exp_end = arg;
10673 /* Remove trailing whitespace from the expression before saving it.
10674 This makes the eventual display of the expression string a bit
10675 prettier. */
10676 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10677 --exp_end;
10678
10679 /* Checking if the expression is not constant. */
10680 if (watchpoint_exp_is_const (exp.get ()))
10681 {
10682 int len;
10683
10684 len = exp_end - exp_start;
10685 while (len > 0 && isspace (exp_start[len - 1]))
10686 len--;
10687 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10688 }
10689
10690 exp_valid_block = innermost_block.block ();
10691 mark = value_mark ();
10692 struct value *val_as_value = nullptr;
10693 fetch_subexp_value (exp.get (), &pc, &val_as_value, &result, NULL,
10694 just_location);
10695
10696 if (val_as_value != NULL && just_location)
10697 {
10698 saved_bitpos = value_bitpos (val_as_value);
10699 saved_bitsize = value_bitsize (val_as_value);
10700 }
10701
10702 value_ref_ptr val;
10703 if (just_location)
10704 {
10705 int ret;
10706
10707 exp_valid_block = NULL;
10708 val = release_value (value_addr (result));
10709 value_free_to_mark (mark);
10710
10711 if (use_mask)
10712 {
10713 ret = target_masked_watch_num_registers (value_as_address (val.get ()),
10714 mask);
10715 if (ret == -1)
10716 error (_("This target does not support masked watchpoints."));
10717 else if (ret == -2)
10718 error (_("Invalid mask or memory region."));
10719 }
10720 }
10721 else if (val_as_value != NULL)
10722 val = release_value (val_as_value);
10723
10724 tok = skip_spaces (arg);
10725 end_tok = skip_to_space (tok);
10726
10727 toklen = end_tok - tok;
10728 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
10729 {
10730 innermost_block.reset ();
10731 tok = cond_start = end_tok + 1;
10732 parse_exp_1 (&tok, 0, 0, 0);
10733
10734 /* The watchpoint expression may not be local, but the condition
10735 may still be. E.g.: `watch global if local > 0'. */
10736 cond_exp_valid_block = innermost_block.block ();
10737
10738 cond_end = tok;
10739 }
10740 if (*tok)
10741 error (_("Junk at end of command."));
10742
10743 frame_info *wp_frame = block_innermost_frame (exp_valid_block);
10744
10745 /* Save this because create_internal_breakpoint below invalidates
10746 'wp_frame'. */
10747 frame_id watchpoint_frame = get_frame_id (wp_frame);
10748
10749 /* If the expression is "local", then set up a "watchpoint scope"
10750 breakpoint at the point where we've left the scope of the watchpoint
10751 expression. Create the scope breakpoint before the watchpoint, so
10752 that we will encounter it first in bpstat_stop_status. */
10753 if (exp_valid_block != NULL && wp_frame != NULL)
10754 {
10755 frame_id caller_frame_id = frame_unwind_caller_id (wp_frame);
10756
10757 if (frame_id_p (caller_frame_id))
10758 {
10759 gdbarch *caller_arch = frame_unwind_caller_arch (wp_frame);
10760 CORE_ADDR caller_pc = frame_unwind_caller_pc (wp_frame);
10761
10762 scope_breakpoint
10763 = create_internal_breakpoint (caller_arch, caller_pc,
10764 bp_watchpoint_scope,
10765 &momentary_breakpoint_ops);
10766
10767 /* create_internal_breakpoint could invalidate WP_FRAME. */
10768 wp_frame = NULL;
10769
10770 scope_breakpoint->enable_state = bp_enabled;
10771
10772 /* Automatically delete the breakpoint when it hits. */
10773 scope_breakpoint->disposition = disp_del;
10774
10775 /* Only break in the proper frame (help with recursion). */
10776 scope_breakpoint->frame_id = caller_frame_id;
10777
10778 /* Set the address at which we will stop. */
10779 scope_breakpoint->loc->gdbarch = caller_arch;
10780 scope_breakpoint->loc->requested_address = caller_pc;
10781 scope_breakpoint->loc->address
10782 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
10783 scope_breakpoint->loc->requested_address,
10784 scope_breakpoint->type);
10785 }
10786 }
10787
10788 /* Now set up the breakpoint. We create all watchpoints as hardware
10789 watchpoints here even if hardware watchpoints are turned off, a call
10790 to update_watchpoint later in this function will cause the type to
10791 drop back to bp_watchpoint (software watchpoint) if required. */
10792
10793 if (accessflag == hw_read)
10794 bp_type = bp_read_watchpoint;
10795 else if (accessflag == hw_access)
10796 bp_type = bp_access_watchpoint;
10797 else
10798 bp_type = bp_hardware_watchpoint;
10799
10800 std::unique_ptr<watchpoint> w (new watchpoint ());
10801
10802 if (use_mask)
10803 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10804 &masked_watchpoint_breakpoint_ops);
10805 else
10806 init_raw_breakpoint_without_location (w.get (), NULL, bp_type,
10807 &watchpoint_breakpoint_ops);
10808 w->thread = thread;
10809 w->disposition = disp_donttouch;
10810 w->pspace = current_program_space;
10811 w->exp = std::move (exp);
10812 w->exp_valid_block = exp_valid_block;
10813 w->cond_exp_valid_block = cond_exp_valid_block;
10814 if (just_location)
10815 {
10816 struct type *t = value_type (val.get ());
10817 CORE_ADDR addr = value_as_address (val.get ());
10818
10819 w->exp_string_reparse
10820 = current_language->la_watch_location_expression (t, addr).release ();
10821
10822 w->exp_string = xstrprintf ("-location %.*s",
10823 (int) (exp_end - exp_start), exp_start);
10824 }
10825 else
10826 w->exp_string = savestring (exp_start, exp_end - exp_start);
10827
10828 if (use_mask)
10829 {
10830 w->hw_wp_mask = mask;
10831 }
10832 else
10833 {
10834 w->val = val;
10835 w->val_bitpos = saved_bitpos;
10836 w->val_bitsize = saved_bitsize;
10837 w->val_valid = 1;
10838 }
10839
10840 if (cond_start)
10841 w->cond_string = savestring (cond_start, cond_end - cond_start);
10842 else
10843 w->cond_string = 0;
10844
10845 if (frame_id_p (watchpoint_frame))
10846 {
10847 w->watchpoint_frame = watchpoint_frame;
10848 w->watchpoint_thread = inferior_ptid;
10849 }
10850 else
10851 {
10852 w->watchpoint_frame = null_frame_id;
10853 w->watchpoint_thread = null_ptid;
10854 }
10855
10856 if (scope_breakpoint != NULL)
10857 {
10858 /* The scope breakpoint is related to the watchpoint. We will
10859 need to act on them together. */
10860 w->related_breakpoint = scope_breakpoint;
10861 scope_breakpoint->related_breakpoint = w.get ();
10862 }
10863
10864 if (!just_location)
10865 value_free_to_mark (mark);
10866
10867 /* Finally update the new watchpoint. This creates the locations
10868 that should be inserted. */
10869 update_watchpoint (w.get (), 1);
10870
10871 install_breakpoint (internal, std::move (w), 1);
10872 }
10873
10874 /* Return count of debug registers needed to watch the given expression.
10875 If the watchpoint cannot be handled in hardware return zero. */
10876
10877 static int
10878 can_use_hardware_watchpoint (struct value *v)
10879 {
10880 int found_memory_cnt = 0;
10881 struct value *head = v;
10882
10883 /* Did the user specifically forbid us to use hardware watchpoints? */
10884 if (!can_use_hw_watchpoints)
10885 return 0;
10886
10887 /* Make sure that the value of the expression depends only upon
10888 memory contents, and values computed from them within GDB. If we
10889 find any register references or function calls, we can't use a
10890 hardware watchpoint.
10891
10892 The idea here is that evaluating an expression generates a series
10893 of values, one holding the value of every subexpression. (The
10894 expression a*b+c has five subexpressions: a, b, a*b, c, and
10895 a*b+c.) GDB's values hold almost enough information to establish
10896 the criteria given above --- they identify memory lvalues,
10897 register lvalues, computed values, etcetera. So we can evaluate
10898 the expression, and then scan the chain of values that leaves
10899 behind to decide whether we can detect any possible change to the
10900 expression's final value using only hardware watchpoints.
10901
10902 However, I don't think that the values returned by inferior
10903 function calls are special in any way. So this function may not
10904 notice that an expression involving an inferior function call
10905 can't be watched with hardware watchpoints. FIXME. */
10906 for (; v; v = value_next (v))
10907 {
10908 if (VALUE_LVAL (v) == lval_memory)
10909 {
10910 if (v != head && value_lazy (v))
10911 /* A lazy memory lvalue in the chain is one that GDB never
10912 needed to fetch; we either just used its address (e.g.,
10913 `a' in `a.b') or we never needed it at all (e.g., `a'
10914 in `a,b'). This doesn't apply to HEAD; if that is
10915 lazy then it was not readable, but watch it anyway. */
10916 ;
10917 else
10918 {
10919 /* Ahh, memory we actually used! Check if we can cover
10920 it with hardware watchpoints. */
10921 struct type *vtype = check_typedef (value_type (v));
10922
10923 /* We only watch structs and arrays if user asked for it
10924 explicitly, never if they just happen to appear in a
10925 middle of some value chain. */
10926 if (v == head
10927 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
10928 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
10929 {
10930 CORE_ADDR vaddr = value_address (v);
10931 int len;
10932 int num_regs;
10933
10934 len = (target_exact_watchpoints
10935 && is_scalar_type_recursive (vtype))?
10936 1 : TYPE_LENGTH (value_type (v));
10937
10938 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
10939 if (!num_regs)
10940 return 0;
10941 else
10942 found_memory_cnt += num_regs;
10943 }
10944 }
10945 }
10946 else if (VALUE_LVAL (v) != not_lval
10947 && deprecated_value_modifiable (v) == 0)
10948 return 0; /* These are values from the history (e.g., $1). */
10949 else if (VALUE_LVAL (v) == lval_register)
10950 return 0; /* Cannot watch a register with a HW watchpoint. */
10951 }
10952
10953 /* The expression itself looks suitable for using a hardware
10954 watchpoint, but give the target machine a chance to reject it. */
10955 return found_memory_cnt;
10956 }
10957
10958 void
10959 watch_command_wrapper (const char *arg, int from_tty, int internal)
10960 {
10961 watch_command_1 (arg, hw_write, from_tty, 0, internal);
10962 }
10963
10964 /* A helper function that looks for the "-location" argument and then
10965 calls watch_command_1. */
10966
10967 static void
10968 watch_maybe_just_location (const char *arg, int accessflag, int from_tty)
10969 {
10970 int just_location = 0;
10971
10972 if (arg
10973 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
10974 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
10975 {
10976 arg = skip_spaces (arg);
10977 just_location = 1;
10978 }
10979
10980 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
10981 }
10982
10983 static void
10984 watch_command (const char *arg, int from_tty)
10985 {
10986 watch_maybe_just_location (arg, hw_write, from_tty);
10987 }
10988
10989 void
10990 rwatch_command_wrapper (const char *arg, int from_tty, int internal)
10991 {
10992 watch_command_1 (arg, hw_read, from_tty, 0, internal);
10993 }
10994
10995 static void
10996 rwatch_command (const char *arg, int from_tty)
10997 {
10998 watch_maybe_just_location (arg, hw_read, from_tty);
10999 }
11000
11001 void
11002 awatch_command_wrapper (const char *arg, int from_tty, int internal)
11003 {
11004 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11005 }
11006
11007 static void
11008 awatch_command (const char *arg, int from_tty)
11009 {
11010 watch_maybe_just_location (arg, hw_access, from_tty);
11011 }
11012 \f
11013
11014 /* Data for the FSM that manages the until(location)/advance commands
11015 in infcmd.c. Here because it uses the mechanisms of
11016 breakpoints. */
11017
11018 struct until_break_fsm
11019 {
11020 /* The base class. */
11021 struct thread_fsm thread_fsm;
11022
11023 /* The thread that as current when the command was executed. */
11024 int thread;
11025
11026 /* The breakpoint set at the destination location. */
11027 struct breakpoint *location_breakpoint;
11028
11029 /* Breakpoint set at the return address in the caller frame. May be
11030 NULL. */
11031 struct breakpoint *caller_breakpoint;
11032 };
11033
11034 static void until_break_fsm_clean_up (struct thread_fsm *self,
11035 struct thread_info *thread);
11036 static int until_break_fsm_should_stop (struct thread_fsm *self,
11037 struct thread_info *thread);
11038 static enum async_reply_reason
11039 until_break_fsm_async_reply_reason (struct thread_fsm *self);
11040
11041 /* until_break_fsm's vtable. */
11042
11043 static struct thread_fsm_ops until_break_fsm_ops =
11044 {
11045 NULL, /* dtor */
11046 until_break_fsm_clean_up,
11047 until_break_fsm_should_stop,
11048 NULL, /* return_value */
11049 until_break_fsm_async_reply_reason,
11050 };
11051
11052 /* Allocate a new until_break_command_fsm. */
11053
11054 static struct until_break_fsm *
11055 new_until_break_fsm (struct interp *cmd_interp, int thread,
11056 breakpoint_up &&location_breakpoint,
11057 breakpoint_up &&caller_breakpoint)
11058 {
11059 struct until_break_fsm *sm;
11060
11061 sm = XCNEW (struct until_break_fsm);
11062 thread_fsm_ctor (&sm->thread_fsm, &until_break_fsm_ops, cmd_interp);
11063
11064 sm->thread = thread;
11065 sm->location_breakpoint = location_breakpoint.release ();
11066 sm->caller_breakpoint = caller_breakpoint.release ();
11067
11068 return sm;
11069 }
11070
11071 /* Implementation of the 'should_stop' FSM method for the
11072 until(location)/advance commands. */
11073
11074 static int
11075 until_break_fsm_should_stop (struct thread_fsm *self,
11076 struct thread_info *tp)
11077 {
11078 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11079
11080 if (bpstat_find_breakpoint (tp->control.stop_bpstat,
11081 sm->location_breakpoint) != NULL
11082 || (sm->caller_breakpoint != NULL
11083 && bpstat_find_breakpoint (tp->control.stop_bpstat,
11084 sm->caller_breakpoint) != NULL))
11085 thread_fsm_set_finished (self);
11086
11087 return 1;
11088 }
11089
11090 /* Implementation of the 'clean_up' FSM method for the
11091 until(location)/advance commands. */
11092
11093 static void
11094 until_break_fsm_clean_up (struct thread_fsm *self,
11095 struct thread_info *thread)
11096 {
11097 struct until_break_fsm *sm = (struct until_break_fsm *) self;
11098
11099 /* Clean up our temporary breakpoints. */
11100 if (sm->location_breakpoint != NULL)
11101 {
11102 delete_breakpoint (sm->location_breakpoint);
11103 sm->location_breakpoint = NULL;
11104 }
11105 if (sm->caller_breakpoint != NULL)
11106 {
11107 delete_breakpoint (sm->caller_breakpoint);
11108 sm->caller_breakpoint = NULL;
11109 }
11110 delete_longjmp_breakpoint (sm->thread);
11111 }
11112
11113 /* Implementation of the 'async_reply_reason' FSM method for the
11114 until(location)/advance commands. */
11115
11116 static enum async_reply_reason
11117 until_break_fsm_async_reply_reason (struct thread_fsm *self)
11118 {
11119 return EXEC_ASYNC_LOCATION_REACHED;
11120 }
11121
11122 void
11123 until_break_command (const char *arg, int from_tty, int anywhere)
11124 {
11125 struct frame_info *frame;
11126 struct gdbarch *frame_gdbarch;
11127 struct frame_id stack_frame_id;
11128 struct frame_id caller_frame_id;
11129 struct cleanup *old_chain;
11130 int thread;
11131 struct thread_info *tp;
11132 struct until_break_fsm *sm;
11133
11134 clear_proceed_status (0);
11135
11136 /* Set a breakpoint where the user wants it and at return from
11137 this function. */
11138
11139 event_location_up location = string_to_event_location (&arg, current_language);
11140
11141 std::vector<symtab_and_line> sals
11142 = (last_displayed_sal_is_valid ()
11143 ? decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE, NULL,
11144 get_last_displayed_symtab (),
11145 get_last_displayed_line ())
11146 : decode_line_1 (location.get (), DECODE_LINE_FUNFIRSTLINE,
11147 NULL, (struct symtab *) NULL, 0));
11148
11149 if (sals.size () != 1)
11150 error (_("Couldn't get information on specified line."));
11151
11152 symtab_and_line &sal = sals[0];
11153
11154 if (*arg)
11155 error (_("Junk at end of arguments."));
11156
11157 resolve_sal_pc (&sal);
11158
11159 tp = inferior_thread ();
11160 thread = tp->global_num;
11161
11162 old_chain = make_cleanup (null_cleanup, NULL);
11163
11164 /* Note linespec handling above invalidates the frame chain.
11165 Installing a breakpoint also invalidates the frame chain (as it
11166 may need to switch threads), so do any frame handling before
11167 that. */
11168
11169 frame = get_selected_frame (NULL);
11170 frame_gdbarch = get_frame_arch (frame);
11171 stack_frame_id = get_stack_frame_id (frame);
11172 caller_frame_id = frame_unwind_caller_id (frame);
11173
11174 /* Keep within the current frame, or in frames called by the current
11175 one. */
11176
11177 breakpoint_up caller_breakpoint;
11178 if (frame_id_p (caller_frame_id))
11179 {
11180 struct symtab_and_line sal2;
11181 struct gdbarch *caller_gdbarch;
11182
11183 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11184 sal2.pc = frame_unwind_caller_pc (frame);
11185 caller_gdbarch = frame_unwind_caller_arch (frame);
11186 caller_breakpoint = set_momentary_breakpoint (caller_gdbarch,
11187 sal2,
11188 caller_frame_id,
11189 bp_until);
11190
11191 set_longjmp_breakpoint (tp, caller_frame_id);
11192 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11193 }
11194
11195 /* set_momentary_breakpoint could invalidate FRAME. */
11196 frame = NULL;
11197
11198 breakpoint_up location_breakpoint;
11199 if (anywhere)
11200 /* If the user told us to continue until a specified location,
11201 we don't specify a frame at which we need to stop. */
11202 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11203 null_frame_id, bp_until);
11204 else
11205 /* Otherwise, specify the selected frame, because we want to stop
11206 only at the very same frame. */
11207 location_breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11208 stack_frame_id, bp_until);
11209
11210 sm = new_until_break_fsm (command_interp (), tp->global_num,
11211 std::move (location_breakpoint),
11212 std::move (caller_breakpoint));
11213 tp->thread_fsm = &sm->thread_fsm;
11214
11215 discard_cleanups (old_chain);
11216
11217 proceed (-1, GDB_SIGNAL_DEFAULT);
11218 }
11219
11220 /* This function attempts to parse an optional "if <cond>" clause
11221 from the arg string. If one is not found, it returns NULL.
11222
11223 Else, it returns a pointer to the condition string. (It does not
11224 attempt to evaluate the string against a particular block.) And,
11225 it updates arg to point to the first character following the parsed
11226 if clause in the arg string. */
11227
11228 const char *
11229 ep_parse_optional_if_clause (const char **arg)
11230 {
11231 const char *cond_string;
11232
11233 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11234 return NULL;
11235
11236 /* Skip the "if" keyword. */
11237 (*arg) += 2;
11238
11239 /* Skip any extra leading whitespace, and record the start of the
11240 condition string. */
11241 *arg = skip_spaces (*arg);
11242 cond_string = *arg;
11243
11244 /* Assume that the condition occupies the remainder of the arg
11245 string. */
11246 (*arg) += strlen (cond_string);
11247
11248 return cond_string;
11249 }
11250
11251 /* Commands to deal with catching events, such as signals, exceptions,
11252 process start/exit, etc. */
11253
11254 typedef enum
11255 {
11256 catch_fork_temporary, catch_vfork_temporary,
11257 catch_fork_permanent, catch_vfork_permanent
11258 }
11259 catch_fork_kind;
11260
11261 static void
11262 catch_fork_command_1 (const char *arg, int from_tty,
11263 struct cmd_list_element *command)
11264 {
11265 struct gdbarch *gdbarch = get_current_arch ();
11266 const char *cond_string = NULL;
11267 catch_fork_kind fork_kind;
11268 int tempflag;
11269
11270 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11271 tempflag = (fork_kind == catch_fork_temporary
11272 || fork_kind == catch_vfork_temporary);
11273
11274 if (!arg)
11275 arg = "";
11276 arg = skip_spaces (arg);
11277
11278 /* The allowed syntax is:
11279 catch [v]fork
11280 catch [v]fork if <cond>
11281
11282 First, check if there's an if clause. */
11283 cond_string = ep_parse_optional_if_clause (&arg);
11284
11285 if ((*arg != '\0') && !isspace (*arg))
11286 error (_("Junk at end of arguments."));
11287
11288 /* If this target supports it, create a fork or vfork catchpoint
11289 and enable reporting of such events. */
11290 switch (fork_kind)
11291 {
11292 case catch_fork_temporary:
11293 case catch_fork_permanent:
11294 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11295 &catch_fork_breakpoint_ops);
11296 break;
11297 case catch_vfork_temporary:
11298 case catch_vfork_permanent:
11299 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11300 &catch_vfork_breakpoint_ops);
11301 break;
11302 default:
11303 error (_("unsupported or unknown fork kind; cannot catch it"));
11304 break;
11305 }
11306 }
11307
11308 static void
11309 catch_exec_command_1 (const char *arg, int from_tty,
11310 struct cmd_list_element *command)
11311 {
11312 struct gdbarch *gdbarch = get_current_arch ();
11313 int tempflag;
11314 const char *cond_string = NULL;
11315
11316 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11317
11318 if (!arg)
11319 arg = "";
11320 arg = skip_spaces (arg);
11321
11322 /* The allowed syntax is:
11323 catch exec
11324 catch exec if <cond>
11325
11326 First, check if there's an if clause. */
11327 cond_string = ep_parse_optional_if_clause (&arg);
11328
11329 if ((*arg != '\0') && !isspace (*arg))
11330 error (_("Junk at end of arguments."));
11331
11332 std::unique_ptr<exec_catchpoint> c (new exec_catchpoint ());
11333 init_catchpoint (c.get (), gdbarch, tempflag, cond_string,
11334 &catch_exec_breakpoint_ops);
11335 c->exec_pathname = NULL;
11336
11337 install_breakpoint (0, std::move (c), 1);
11338 }
11339
11340 void
11341 init_ada_exception_breakpoint (struct breakpoint *b,
11342 struct gdbarch *gdbarch,
11343 struct symtab_and_line sal,
11344 const char *addr_string,
11345 const struct breakpoint_ops *ops,
11346 int tempflag,
11347 int enabled,
11348 int from_tty)
11349 {
11350 if (from_tty)
11351 {
11352 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11353 if (!loc_gdbarch)
11354 loc_gdbarch = gdbarch;
11355
11356 describe_other_breakpoints (loc_gdbarch,
11357 sal.pspace, sal.pc, sal.section, -1);
11358 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11359 version for exception catchpoints, because two catchpoints
11360 used for different exception names will use the same address.
11361 In this case, a "breakpoint ... also set at..." warning is
11362 unproductive. Besides, the warning phrasing is also a bit
11363 inappropriate, we should use the word catchpoint, and tell
11364 the user what type of catchpoint it is. The above is good
11365 enough for now, though. */
11366 }
11367
11368 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11369
11370 b->enable_state = enabled ? bp_enabled : bp_disabled;
11371 b->disposition = tempflag ? disp_del : disp_donttouch;
11372 b->location = string_to_event_location (&addr_string,
11373 language_def (language_ada));
11374 b->language = language_ada;
11375 }
11376
11377 static void
11378 catch_command (const char *arg, int from_tty)
11379 {
11380 error (_("Catch requires an event name."));
11381 }
11382 \f
11383
11384 static void
11385 tcatch_command (const char *arg, int from_tty)
11386 {
11387 error (_("Catch requires an event name."));
11388 }
11389
11390 /* Compare two breakpoints and return a strcmp-like result. */
11391
11392 static int
11393 compare_breakpoints (const breakpoint *a, const breakpoint *b)
11394 {
11395 uintptr_t ua = (uintptr_t) a;
11396 uintptr_t ub = (uintptr_t) b;
11397
11398 if (a->number < b->number)
11399 return -1;
11400 else if (a->number > b->number)
11401 return 1;
11402
11403 /* Now sort by address, in case we see, e..g, two breakpoints with
11404 the number 0. */
11405 if (ua < ub)
11406 return -1;
11407 return ua > ub ? 1 : 0;
11408 }
11409
11410 /* Delete breakpoints by address or line. */
11411
11412 static void
11413 clear_command (const char *arg, int from_tty)
11414 {
11415 struct breakpoint *b;
11416 int default_match;
11417
11418 std::vector<symtab_and_line> decoded_sals;
11419 symtab_and_line last_sal;
11420 gdb::array_view<symtab_and_line> sals;
11421 if (arg)
11422 {
11423 decoded_sals
11424 = decode_line_with_current_source (arg,
11425 (DECODE_LINE_FUNFIRSTLINE
11426 | DECODE_LINE_LIST_MODE));
11427 default_match = 0;
11428 sals = decoded_sals;
11429 }
11430 else
11431 {
11432 /* Set sal's line, symtab, pc, and pspace to the values
11433 corresponding to the last call to print_frame_info. If the
11434 codepoint is not valid, this will set all the fields to 0. */
11435 last_sal = get_last_displayed_sal ();
11436 if (last_sal.symtab == 0)
11437 error (_("No source file specified."));
11438
11439 default_match = 1;
11440 sals = last_sal;
11441 }
11442
11443 /* We don't call resolve_sal_pc here. That's not as bad as it
11444 seems, because all existing breakpoints typically have both
11445 file/line and pc set. So, if clear is given file/line, we can
11446 match this to existing breakpoint without obtaining pc at all.
11447
11448 We only support clearing given the address explicitly
11449 present in breakpoint table. Say, we've set breakpoint
11450 at file:line. There were several PC values for that file:line,
11451 due to optimization, all in one block.
11452
11453 We've picked one PC value. If "clear" is issued with another
11454 PC corresponding to the same file:line, the breakpoint won't
11455 be cleared. We probably can still clear the breakpoint, but
11456 since the other PC value is never presented to user, user
11457 can only find it by guessing, and it does not seem important
11458 to support that. */
11459
11460 /* For each line spec given, delete bps which correspond to it. Do
11461 it in two passes, solely to preserve the current behavior that
11462 from_tty is forced true if we delete more than one
11463 breakpoint. */
11464
11465 std::vector<struct breakpoint *> found;
11466 for (const auto &sal : sals)
11467 {
11468 const char *sal_fullname;
11469
11470 /* If exact pc given, clear bpts at that pc.
11471 If line given (pc == 0), clear all bpts on specified line.
11472 If defaulting, clear all bpts on default line
11473 or at default pc.
11474
11475 defaulting sal.pc != 0 tests to do
11476
11477 0 1 pc
11478 1 1 pc _and_ line
11479 0 0 line
11480 1 0 <can't happen> */
11481
11482 sal_fullname = (sal.symtab == NULL
11483 ? NULL : symtab_to_fullname (sal.symtab));
11484
11485 /* Find all matching breakpoints and add them to 'found'. */
11486 ALL_BREAKPOINTS (b)
11487 {
11488 int match = 0;
11489 /* Are we going to delete b? */
11490 if (b->type != bp_none && !is_watchpoint (b))
11491 {
11492 struct bp_location *loc = b->loc;
11493 for (; loc; loc = loc->next)
11494 {
11495 /* If the user specified file:line, don't allow a PC
11496 match. This matches historical gdb behavior. */
11497 int pc_match = (!sal.explicit_line
11498 && sal.pc
11499 && (loc->pspace == sal.pspace)
11500 && (loc->address == sal.pc)
11501 && (!section_is_overlay (loc->section)
11502 || loc->section == sal.section));
11503 int line_match = 0;
11504
11505 if ((default_match || sal.explicit_line)
11506 && loc->symtab != NULL
11507 && sal_fullname != NULL
11508 && sal.pspace == loc->pspace
11509 && loc->line_number == sal.line
11510 && filename_cmp (symtab_to_fullname (loc->symtab),
11511 sal_fullname) == 0)
11512 line_match = 1;
11513
11514 if (pc_match || line_match)
11515 {
11516 match = 1;
11517 break;
11518 }
11519 }
11520 }
11521
11522 if (match)
11523 found.push_back (b);
11524 }
11525 }
11526
11527 /* Now go thru the 'found' chain and delete them. */
11528 if (found.empty ())
11529 {
11530 if (arg)
11531 error (_("No breakpoint at %s."), arg);
11532 else
11533 error (_("No breakpoint at this line."));
11534 }
11535
11536 /* Remove duplicates from the vec. */
11537 std::sort (found.begin (), found.end (),
11538 [] (const breakpoint *a, const breakpoint *b)
11539 {
11540 return compare_breakpoints (a, b) < 0;
11541 });
11542 found.erase (std::unique (found.begin (), found.end (),
11543 [] (const breakpoint *a, const breakpoint *b)
11544 {
11545 return compare_breakpoints (a, b) == 0;
11546 }),
11547 found.end ());
11548
11549 if (found.size () > 1)
11550 from_tty = 1; /* Always report if deleted more than one. */
11551 if (from_tty)
11552 {
11553 if (found.size () == 1)
11554 printf_unfiltered (_("Deleted breakpoint "));
11555 else
11556 printf_unfiltered (_("Deleted breakpoints "));
11557 }
11558
11559 for (breakpoint *iter : found)
11560 {
11561 if (from_tty)
11562 printf_unfiltered ("%d ", iter->number);
11563 delete_breakpoint (iter);
11564 }
11565 if (from_tty)
11566 putchar_unfiltered ('\n');
11567 }
11568 \f
11569 /* Delete breakpoint in BS if they are `delete' breakpoints and
11570 all breakpoints that are marked for deletion, whether hit or not.
11571 This is called after any breakpoint is hit, or after errors. */
11572
11573 void
11574 breakpoint_auto_delete (bpstat bs)
11575 {
11576 struct breakpoint *b, *b_tmp;
11577
11578 for (; bs; bs = bs->next)
11579 if (bs->breakpoint_at
11580 && bs->breakpoint_at->disposition == disp_del
11581 && bs->stop)
11582 delete_breakpoint (bs->breakpoint_at);
11583
11584 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11585 {
11586 if (b->disposition == disp_del_at_next_stop)
11587 delete_breakpoint (b);
11588 }
11589 }
11590
11591 /* A comparison function for bp_location AP and BP being interfaced to
11592 qsort. Sort elements primarily by their ADDRESS (no matter what
11593 does breakpoint_address_is_meaningful say for its OWNER),
11594 secondarily by ordering first permanent elements and
11595 terciarily just ensuring the array is sorted stable way despite
11596 qsort being an unstable algorithm. */
11597
11598 static int
11599 bp_locations_compare (const void *ap, const void *bp)
11600 {
11601 const struct bp_location *a = *(const struct bp_location **) ap;
11602 const struct bp_location *b = *(const struct bp_location **) bp;
11603
11604 if (a->address != b->address)
11605 return (a->address > b->address) - (a->address < b->address);
11606
11607 /* Sort locations at the same address by their pspace number, keeping
11608 locations of the same inferior (in a multi-inferior environment)
11609 grouped. */
11610
11611 if (a->pspace->num != b->pspace->num)
11612 return ((a->pspace->num > b->pspace->num)
11613 - (a->pspace->num < b->pspace->num));
11614
11615 /* Sort permanent breakpoints first. */
11616 if (a->permanent != b->permanent)
11617 return (a->permanent < b->permanent) - (a->permanent > b->permanent);
11618
11619 /* Make the internal GDB representation stable across GDB runs
11620 where A and B memory inside GDB can differ. Breakpoint locations of
11621 the same type at the same address can be sorted in arbitrary order. */
11622
11623 if (a->owner->number != b->owner->number)
11624 return ((a->owner->number > b->owner->number)
11625 - (a->owner->number < b->owner->number));
11626
11627 return (a > b) - (a < b);
11628 }
11629
11630 /* Set bp_locations_placed_address_before_address_max and
11631 bp_locations_shadow_len_after_address_max according to the current
11632 content of the bp_locations array. */
11633
11634 static void
11635 bp_locations_target_extensions_update (void)
11636 {
11637 struct bp_location *bl, **blp_tmp;
11638
11639 bp_locations_placed_address_before_address_max = 0;
11640 bp_locations_shadow_len_after_address_max = 0;
11641
11642 ALL_BP_LOCATIONS (bl, blp_tmp)
11643 {
11644 CORE_ADDR start, end, addr;
11645
11646 if (!bp_location_has_shadow (bl))
11647 continue;
11648
11649 start = bl->target_info.placed_address;
11650 end = start + bl->target_info.shadow_len;
11651
11652 gdb_assert (bl->address >= start);
11653 addr = bl->address - start;
11654 if (addr > bp_locations_placed_address_before_address_max)
11655 bp_locations_placed_address_before_address_max = addr;
11656
11657 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11658
11659 gdb_assert (bl->address < end);
11660 addr = end - bl->address;
11661 if (addr > bp_locations_shadow_len_after_address_max)
11662 bp_locations_shadow_len_after_address_max = addr;
11663 }
11664 }
11665
11666 /* Download tracepoint locations if they haven't been. */
11667
11668 static void
11669 download_tracepoint_locations (void)
11670 {
11671 struct breakpoint *b;
11672 enum tribool can_download_tracepoint = TRIBOOL_UNKNOWN;
11673
11674 scoped_restore_current_pspace_and_thread restore_pspace_thread;
11675
11676 ALL_TRACEPOINTS (b)
11677 {
11678 struct bp_location *bl;
11679 struct tracepoint *t;
11680 int bp_location_downloaded = 0;
11681
11682 if ((b->type == bp_fast_tracepoint
11683 ? !may_insert_fast_tracepoints
11684 : !may_insert_tracepoints))
11685 continue;
11686
11687 if (can_download_tracepoint == TRIBOOL_UNKNOWN)
11688 {
11689 if (target_can_download_tracepoint ())
11690 can_download_tracepoint = TRIBOOL_TRUE;
11691 else
11692 can_download_tracepoint = TRIBOOL_FALSE;
11693 }
11694
11695 if (can_download_tracepoint == TRIBOOL_FALSE)
11696 break;
11697
11698 for (bl = b->loc; bl; bl = bl->next)
11699 {
11700 /* In tracepoint, locations are _never_ duplicated, so
11701 should_be_inserted is equivalent to
11702 unduplicated_should_be_inserted. */
11703 if (!should_be_inserted (bl) || bl->inserted)
11704 continue;
11705
11706 switch_to_program_space_and_thread (bl->pspace);
11707
11708 target_download_tracepoint (bl);
11709
11710 bl->inserted = 1;
11711 bp_location_downloaded = 1;
11712 }
11713 t = (struct tracepoint *) b;
11714 t->number_on_target = b->number;
11715 if (bp_location_downloaded)
11716 gdb::observers::breakpoint_modified.notify (b);
11717 }
11718 }
11719
11720 /* Swap the insertion/duplication state between two locations. */
11721
11722 static void
11723 swap_insertion (struct bp_location *left, struct bp_location *right)
11724 {
11725 const int left_inserted = left->inserted;
11726 const int left_duplicate = left->duplicate;
11727 const int left_needs_update = left->needs_update;
11728 const struct bp_target_info left_target_info = left->target_info;
11729
11730 /* Locations of tracepoints can never be duplicated. */
11731 if (is_tracepoint (left->owner))
11732 gdb_assert (!left->duplicate);
11733 if (is_tracepoint (right->owner))
11734 gdb_assert (!right->duplicate);
11735
11736 left->inserted = right->inserted;
11737 left->duplicate = right->duplicate;
11738 left->needs_update = right->needs_update;
11739 left->target_info = right->target_info;
11740 right->inserted = left_inserted;
11741 right->duplicate = left_duplicate;
11742 right->needs_update = left_needs_update;
11743 right->target_info = left_target_info;
11744 }
11745
11746 /* Force the re-insertion of the locations at ADDRESS. This is called
11747 once a new/deleted/modified duplicate location is found and we are evaluating
11748 conditions on the target's side. Such conditions need to be updated on
11749 the target. */
11750
11751 static void
11752 force_breakpoint_reinsertion (struct bp_location *bl)
11753 {
11754 struct bp_location **locp = NULL, **loc2p;
11755 struct bp_location *loc;
11756 CORE_ADDR address = 0;
11757 int pspace_num;
11758
11759 address = bl->address;
11760 pspace_num = bl->pspace->num;
11761
11762 /* This is only meaningful if the target is
11763 evaluating conditions and if the user has
11764 opted for condition evaluation on the target's
11765 side. */
11766 if (gdb_evaluates_breakpoint_condition_p ()
11767 || !target_supports_evaluation_of_breakpoint_conditions ())
11768 return;
11769
11770 /* Flag all breakpoint locations with this address and
11771 the same program space as the location
11772 as "its condition has changed". We need to
11773 update the conditions on the target's side. */
11774 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
11775 {
11776 loc = *loc2p;
11777
11778 if (!is_breakpoint (loc->owner)
11779 || pspace_num != loc->pspace->num)
11780 continue;
11781
11782 /* Flag the location appropriately. We use a different state to
11783 let everyone know that we already updated the set of locations
11784 with addr bl->address and program space bl->pspace. This is so
11785 we don't have to keep calling these functions just to mark locations
11786 that have already been marked. */
11787 loc->condition_changed = condition_updated;
11788
11789 /* Free the agent expression bytecode as well. We will compute
11790 it later on. */
11791 loc->cond_bytecode.reset ();
11792 }
11793 }
11794 /* Called whether new breakpoints are created, or existing breakpoints
11795 deleted, to update the global location list and recompute which
11796 locations are duplicate of which.
11797
11798 The INSERT_MODE flag determines whether locations may not, may, or
11799 shall be inserted now. See 'enum ugll_insert_mode' for more
11800 info. */
11801
11802 static void
11803 update_global_location_list (enum ugll_insert_mode insert_mode)
11804 {
11805 struct breakpoint *b;
11806 struct bp_location **locp, *loc;
11807 /* Last breakpoint location address that was marked for update. */
11808 CORE_ADDR last_addr = 0;
11809 /* Last breakpoint location program space that was marked for update. */
11810 int last_pspace_num = -1;
11811
11812 /* Used in the duplicates detection below. When iterating over all
11813 bp_locations, points to the first bp_location of a given address.
11814 Breakpoints and watchpoints of different types are never
11815 duplicates of each other. Keep one pointer for each type of
11816 breakpoint/watchpoint, so we only need to loop over all locations
11817 once. */
11818 struct bp_location *bp_loc_first; /* breakpoint */
11819 struct bp_location *wp_loc_first; /* hardware watchpoint */
11820 struct bp_location *awp_loc_first; /* access watchpoint */
11821 struct bp_location *rwp_loc_first; /* read watchpoint */
11822
11823 /* Saved former bp_locations array which we compare against the newly
11824 built bp_locations from the current state of ALL_BREAKPOINTS. */
11825 struct bp_location **old_locp;
11826 unsigned old_locations_count;
11827 gdb::unique_xmalloc_ptr<struct bp_location *> old_locations (bp_locations);
11828
11829 old_locations_count = bp_locations_count;
11830 bp_locations = NULL;
11831 bp_locations_count = 0;
11832
11833 ALL_BREAKPOINTS (b)
11834 for (loc = b->loc; loc; loc = loc->next)
11835 bp_locations_count++;
11836
11837 bp_locations = XNEWVEC (struct bp_location *, bp_locations_count);
11838 locp = bp_locations;
11839 ALL_BREAKPOINTS (b)
11840 for (loc = b->loc; loc; loc = loc->next)
11841 *locp++ = loc;
11842 qsort (bp_locations, bp_locations_count, sizeof (*bp_locations),
11843 bp_locations_compare);
11844
11845 bp_locations_target_extensions_update ();
11846
11847 /* Identify bp_location instances that are no longer present in the
11848 new list, and therefore should be freed. Note that it's not
11849 necessary that those locations should be removed from inferior --
11850 if there's another location at the same address (previously
11851 marked as duplicate), we don't need to remove/insert the
11852 location.
11853
11854 LOCP is kept in sync with OLD_LOCP, each pointing to the current
11855 and former bp_location array state respectively. */
11856
11857 locp = bp_locations;
11858 for (old_locp = old_locations.get ();
11859 old_locp < old_locations.get () + old_locations_count;
11860 old_locp++)
11861 {
11862 struct bp_location *old_loc = *old_locp;
11863 struct bp_location **loc2p;
11864
11865 /* Tells if 'old_loc' is found among the new locations. If
11866 not, we have to free it. */
11867 int found_object = 0;
11868 /* Tells if the location should remain inserted in the target. */
11869 int keep_in_target = 0;
11870 int removed = 0;
11871
11872 /* Skip LOCP entries which will definitely never be needed.
11873 Stop either at or being the one matching OLD_LOC. */
11874 while (locp < bp_locations + bp_locations_count
11875 && (*locp)->address < old_loc->address)
11876 locp++;
11877
11878 for (loc2p = locp;
11879 (loc2p < bp_locations + bp_locations_count
11880 && (*loc2p)->address == old_loc->address);
11881 loc2p++)
11882 {
11883 /* Check if this is a new/duplicated location or a duplicated
11884 location that had its condition modified. If so, we want to send
11885 its condition to the target if evaluation of conditions is taking
11886 place there. */
11887 if ((*loc2p)->condition_changed == condition_modified
11888 && (last_addr != old_loc->address
11889 || last_pspace_num != old_loc->pspace->num))
11890 {
11891 force_breakpoint_reinsertion (*loc2p);
11892 last_pspace_num = old_loc->pspace->num;
11893 }
11894
11895 if (*loc2p == old_loc)
11896 found_object = 1;
11897 }
11898
11899 /* We have already handled this address, update it so that we don't
11900 have to go through updates again. */
11901 last_addr = old_loc->address;
11902
11903 /* Target-side condition evaluation: Handle deleted locations. */
11904 if (!found_object)
11905 force_breakpoint_reinsertion (old_loc);
11906
11907 /* If this location is no longer present, and inserted, look if
11908 there's maybe a new location at the same address. If so,
11909 mark that one inserted, and don't remove this one. This is
11910 needed so that we don't have a time window where a breakpoint
11911 at certain location is not inserted. */
11912
11913 if (old_loc->inserted)
11914 {
11915 /* If the location is inserted now, we might have to remove
11916 it. */
11917
11918 if (found_object && should_be_inserted (old_loc))
11919 {
11920 /* The location is still present in the location list,
11921 and still should be inserted. Don't do anything. */
11922 keep_in_target = 1;
11923 }
11924 else
11925 {
11926 /* This location still exists, but it won't be kept in the
11927 target since it may have been disabled. We proceed to
11928 remove its target-side condition. */
11929
11930 /* The location is either no longer present, or got
11931 disabled. See if there's another location at the
11932 same address, in which case we don't need to remove
11933 this one from the target. */
11934
11935 /* OLD_LOC comes from existing struct breakpoint. */
11936 if (breakpoint_address_is_meaningful (old_loc->owner))
11937 {
11938 for (loc2p = locp;
11939 (loc2p < bp_locations + bp_locations_count
11940 && (*loc2p)->address == old_loc->address);
11941 loc2p++)
11942 {
11943 struct bp_location *loc2 = *loc2p;
11944
11945 if (breakpoint_locations_match (loc2, old_loc))
11946 {
11947 /* Read watchpoint locations are switched to
11948 access watchpoints, if the former are not
11949 supported, but the latter are. */
11950 if (is_hardware_watchpoint (old_loc->owner))
11951 {
11952 gdb_assert (is_hardware_watchpoint (loc2->owner));
11953 loc2->watchpoint_type = old_loc->watchpoint_type;
11954 }
11955
11956 /* loc2 is a duplicated location. We need to check
11957 if it should be inserted in case it will be
11958 unduplicated. */
11959 if (loc2 != old_loc
11960 && unduplicated_should_be_inserted (loc2))
11961 {
11962 swap_insertion (old_loc, loc2);
11963 keep_in_target = 1;
11964 break;
11965 }
11966 }
11967 }
11968 }
11969 }
11970
11971 if (!keep_in_target)
11972 {
11973 if (remove_breakpoint (old_loc))
11974 {
11975 /* This is just about all we can do. We could keep
11976 this location on the global list, and try to
11977 remove it next time, but there's no particular
11978 reason why we will succeed next time.
11979
11980 Note that at this point, old_loc->owner is still
11981 valid, as delete_breakpoint frees the breakpoint
11982 only after calling us. */
11983 printf_filtered (_("warning: Error removing "
11984 "breakpoint %d\n"),
11985 old_loc->owner->number);
11986 }
11987 removed = 1;
11988 }
11989 }
11990
11991 if (!found_object)
11992 {
11993 if (removed && target_is_non_stop_p ()
11994 && need_moribund_for_location_type (old_loc))
11995 {
11996 /* This location was removed from the target. In
11997 non-stop mode, a race condition is possible where
11998 we've removed a breakpoint, but stop events for that
11999 breakpoint are already queued and will arrive later.
12000 We apply an heuristic to be able to distinguish such
12001 SIGTRAPs from other random SIGTRAPs: we keep this
12002 breakpoint location for a bit, and will retire it
12003 after we see some number of events. The theory here
12004 is that reporting of events should, "on the average",
12005 be fair, so after a while we'll see events from all
12006 threads that have anything of interest, and no longer
12007 need to keep this breakpoint location around. We
12008 don't hold locations forever so to reduce chances of
12009 mistaking a non-breakpoint SIGTRAP for a breakpoint
12010 SIGTRAP.
12011
12012 The heuristic failing can be disastrous on
12013 decr_pc_after_break targets.
12014
12015 On decr_pc_after_break targets, like e.g., x86-linux,
12016 if we fail to recognize a late breakpoint SIGTRAP,
12017 because events_till_retirement has reached 0 too
12018 soon, we'll fail to do the PC adjustment, and report
12019 a random SIGTRAP to the user. When the user resumes
12020 the inferior, it will most likely immediately crash
12021 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12022 corrupted, because of being resumed e.g., in the
12023 middle of a multi-byte instruction, or skipped a
12024 one-byte instruction. This was actually seen happen
12025 on native x86-linux, and should be less rare on
12026 targets that do not support new thread events, like
12027 remote, due to the heuristic depending on
12028 thread_count.
12029
12030 Mistaking a random SIGTRAP for a breakpoint trap
12031 causes similar symptoms (PC adjustment applied when
12032 it shouldn't), but then again, playing with SIGTRAPs
12033 behind the debugger's back is asking for trouble.
12034
12035 Since hardware watchpoint traps are always
12036 distinguishable from other traps, so we don't need to
12037 apply keep hardware watchpoint moribund locations
12038 around. We simply always ignore hardware watchpoint
12039 traps we can no longer explain. */
12040
12041 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12042 old_loc->owner = NULL;
12043
12044 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12045 }
12046 else
12047 {
12048 old_loc->owner = NULL;
12049 decref_bp_location (&old_loc);
12050 }
12051 }
12052 }
12053
12054 /* Rescan breakpoints at the same address and section, marking the
12055 first one as "first" and any others as "duplicates". This is so
12056 that the bpt instruction is only inserted once. If we have a
12057 permanent breakpoint at the same place as BPT, make that one the
12058 official one, and the rest as duplicates. Permanent breakpoints
12059 are sorted first for the same address.
12060
12061 Do the same for hardware watchpoints, but also considering the
12062 watchpoint's type (regular/access/read) and length. */
12063
12064 bp_loc_first = NULL;
12065 wp_loc_first = NULL;
12066 awp_loc_first = NULL;
12067 rwp_loc_first = NULL;
12068 ALL_BP_LOCATIONS (loc, locp)
12069 {
12070 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12071 non-NULL. */
12072 struct bp_location **loc_first_p;
12073 b = loc->owner;
12074
12075 if (!unduplicated_should_be_inserted (loc)
12076 || !breakpoint_address_is_meaningful (b)
12077 /* Don't detect duplicate for tracepoint locations because they are
12078 never duplicated. See the comments in field `duplicate' of
12079 `struct bp_location'. */
12080 || is_tracepoint (b))
12081 {
12082 /* Clear the condition modification flag. */
12083 loc->condition_changed = condition_unchanged;
12084 continue;
12085 }
12086
12087 if (b->type == bp_hardware_watchpoint)
12088 loc_first_p = &wp_loc_first;
12089 else if (b->type == bp_read_watchpoint)
12090 loc_first_p = &rwp_loc_first;
12091 else if (b->type == bp_access_watchpoint)
12092 loc_first_p = &awp_loc_first;
12093 else
12094 loc_first_p = &bp_loc_first;
12095
12096 if (*loc_first_p == NULL
12097 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12098 || !breakpoint_locations_match (loc, *loc_first_p))
12099 {
12100 *loc_first_p = loc;
12101 loc->duplicate = 0;
12102
12103 if (is_breakpoint (loc->owner) && loc->condition_changed)
12104 {
12105 loc->needs_update = 1;
12106 /* Clear the condition modification flag. */
12107 loc->condition_changed = condition_unchanged;
12108 }
12109 continue;
12110 }
12111
12112
12113 /* This and the above ensure the invariant that the first location
12114 is not duplicated, and is the inserted one.
12115 All following are marked as duplicated, and are not inserted. */
12116 if (loc->inserted)
12117 swap_insertion (loc, *loc_first_p);
12118 loc->duplicate = 1;
12119
12120 /* Clear the condition modification flag. */
12121 loc->condition_changed = condition_unchanged;
12122 }
12123
12124 if (insert_mode == UGLL_INSERT || breakpoints_should_be_inserted_now ())
12125 {
12126 if (insert_mode != UGLL_DONT_INSERT)
12127 insert_breakpoint_locations ();
12128 else
12129 {
12130 /* Even though the caller told us to not insert new
12131 locations, we may still need to update conditions on the
12132 target's side of breakpoints that were already inserted
12133 if the target is evaluating breakpoint conditions. We
12134 only update conditions for locations that are marked
12135 "needs_update". */
12136 update_inserted_breakpoint_locations ();
12137 }
12138 }
12139
12140 if (insert_mode != UGLL_DONT_INSERT)
12141 download_tracepoint_locations ();
12142 }
12143
12144 void
12145 breakpoint_retire_moribund (void)
12146 {
12147 struct bp_location *loc;
12148 int ix;
12149
12150 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12151 if (--(loc->events_till_retirement) == 0)
12152 {
12153 decref_bp_location (&loc);
12154 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12155 --ix;
12156 }
12157 }
12158
12159 static void
12160 update_global_location_list_nothrow (enum ugll_insert_mode insert_mode)
12161 {
12162
12163 TRY
12164 {
12165 update_global_location_list (insert_mode);
12166 }
12167 CATCH (e, RETURN_MASK_ERROR)
12168 {
12169 }
12170 END_CATCH
12171 }
12172
12173 /* Clear BKP from a BPS. */
12174
12175 static void
12176 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12177 {
12178 bpstat bs;
12179
12180 for (bs = bps; bs; bs = bs->next)
12181 if (bs->breakpoint_at == bpt)
12182 {
12183 bs->breakpoint_at = NULL;
12184 bs->old_val = NULL;
12185 /* bs->commands will be freed later. */
12186 }
12187 }
12188
12189 /* Callback for iterate_over_threads. */
12190 static int
12191 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12192 {
12193 struct breakpoint *bpt = (struct breakpoint *) data;
12194
12195 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12196 return 0;
12197 }
12198
12199 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12200 callbacks. */
12201
12202 static void
12203 say_where (struct breakpoint *b)
12204 {
12205 struct value_print_options opts;
12206
12207 get_user_print_options (&opts);
12208
12209 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12210 single string. */
12211 if (b->loc == NULL)
12212 {
12213 /* For pending locations, the output differs slightly based
12214 on b->extra_string. If this is non-NULL, it contains either
12215 a condition or dprintf arguments. */
12216 if (b->extra_string == NULL)
12217 {
12218 printf_filtered (_(" (%s) pending."),
12219 event_location_to_string (b->location.get ()));
12220 }
12221 else if (b->type == bp_dprintf)
12222 {
12223 printf_filtered (_(" (%s,%s) pending."),
12224 event_location_to_string (b->location.get ()),
12225 b->extra_string);
12226 }
12227 else
12228 {
12229 printf_filtered (_(" (%s %s) pending."),
12230 event_location_to_string (b->location.get ()),
12231 b->extra_string);
12232 }
12233 }
12234 else
12235 {
12236 if (opts.addressprint || b->loc->symtab == NULL)
12237 {
12238 printf_filtered (" at ");
12239 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12240 gdb_stdout);
12241 }
12242 if (b->loc->symtab != NULL)
12243 {
12244 /* If there is a single location, we can print the location
12245 more nicely. */
12246 if (b->loc->next == NULL)
12247 printf_filtered (": file %s, line %d.",
12248 symtab_to_filename_for_display (b->loc->symtab),
12249 b->loc->line_number);
12250 else
12251 /* This is not ideal, but each location may have a
12252 different file name, and this at least reflects the
12253 real situation somewhat. */
12254 printf_filtered (": %s.",
12255 event_location_to_string (b->location.get ()));
12256 }
12257
12258 if (b->loc->next)
12259 {
12260 struct bp_location *loc = b->loc;
12261 int n = 0;
12262 for (; loc; loc = loc->next)
12263 ++n;
12264 printf_filtered (" (%d locations)", n);
12265 }
12266 }
12267 }
12268
12269 /* Default bp_location_ops methods. */
12270
12271 static void
12272 bp_location_dtor (struct bp_location *self)
12273 {
12274 xfree (self->function_name);
12275 }
12276
12277 static const struct bp_location_ops bp_location_ops =
12278 {
12279 bp_location_dtor
12280 };
12281
12282 /* Destructor for the breakpoint base class. */
12283
12284 breakpoint::~breakpoint ()
12285 {
12286 xfree (this->cond_string);
12287 xfree (this->extra_string);
12288 xfree (this->filter);
12289 }
12290
12291 static struct bp_location *
12292 base_breakpoint_allocate_location (struct breakpoint *self)
12293 {
12294 return new bp_location (&bp_location_ops, self);
12295 }
12296
12297 static void
12298 base_breakpoint_re_set (struct breakpoint *b)
12299 {
12300 /* Nothing to re-set. */
12301 }
12302
12303 #define internal_error_pure_virtual_called() \
12304 gdb_assert_not_reached ("pure virtual function called")
12305
12306 static int
12307 base_breakpoint_insert_location (struct bp_location *bl)
12308 {
12309 internal_error_pure_virtual_called ();
12310 }
12311
12312 static int
12313 base_breakpoint_remove_location (struct bp_location *bl,
12314 enum remove_bp_reason reason)
12315 {
12316 internal_error_pure_virtual_called ();
12317 }
12318
12319 static int
12320 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12321 const address_space *aspace,
12322 CORE_ADDR bp_addr,
12323 const struct target_waitstatus *ws)
12324 {
12325 internal_error_pure_virtual_called ();
12326 }
12327
12328 static void
12329 base_breakpoint_check_status (bpstat bs)
12330 {
12331 /* Always stop. */
12332 }
12333
12334 /* A "works_in_software_mode" breakpoint_ops method that just internal
12335 errors. */
12336
12337 static int
12338 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12339 {
12340 internal_error_pure_virtual_called ();
12341 }
12342
12343 /* A "resources_needed" breakpoint_ops method that just internal
12344 errors. */
12345
12346 static int
12347 base_breakpoint_resources_needed (const struct bp_location *bl)
12348 {
12349 internal_error_pure_virtual_called ();
12350 }
12351
12352 static enum print_stop_action
12353 base_breakpoint_print_it (bpstat bs)
12354 {
12355 internal_error_pure_virtual_called ();
12356 }
12357
12358 static void
12359 base_breakpoint_print_one_detail (const struct breakpoint *self,
12360 struct ui_out *uiout)
12361 {
12362 /* nothing */
12363 }
12364
12365 static void
12366 base_breakpoint_print_mention (struct breakpoint *b)
12367 {
12368 internal_error_pure_virtual_called ();
12369 }
12370
12371 static void
12372 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12373 {
12374 internal_error_pure_virtual_called ();
12375 }
12376
12377 static void
12378 base_breakpoint_create_sals_from_location
12379 (const struct event_location *location,
12380 struct linespec_result *canonical,
12381 enum bptype type_wanted)
12382 {
12383 internal_error_pure_virtual_called ();
12384 }
12385
12386 static void
12387 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12388 struct linespec_result *c,
12389 gdb::unique_xmalloc_ptr<char> cond_string,
12390 gdb::unique_xmalloc_ptr<char> extra_string,
12391 enum bptype type_wanted,
12392 enum bpdisp disposition,
12393 int thread,
12394 int task, int ignore_count,
12395 const struct breakpoint_ops *o,
12396 int from_tty, int enabled,
12397 int internal, unsigned flags)
12398 {
12399 internal_error_pure_virtual_called ();
12400 }
12401
12402 static std::vector<symtab_and_line>
12403 base_breakpoint_decode_location (struct breakpoint *b,
12404 const struct event_location *location,
12405 struct program_space *search_pspace)
12406 {
12407 internal_error_pure_virtual_called ();
12408 }
12409
12410 /* The default 'explains_signal' method. */
12411
12412 static int
12413 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12414 {
12415 return 1;
12416 }
12417
12418 /* The default "after_condition_true" method. */
12419
12420 static void
12421 base_breakpoint_after_condition_true (struct bpstats *bs)
12422 {
12423 /* Nothing to do. */
12424 }
12425
12426 struct breakpoint_ops base_breakpoint_ops =
12427 {
12428 base_breakpoint_allocate_location,
12429 base_breakpoint_re_set,
12430 base_breakpoint_insert_location,
12431 base_breakpoint_remove_location,
12432 base_breakpoint_breakpoint_hit,
12433 base_breakpoint_check_status,
12434 base_breakpoint_resources_needed,
12435 base_breakpoint_works_in_software_mode,
12436 base_breakpoint_print_it,
12437 NULL,
12438 base_breakpoint_print_one_detail,
12439 base_breakpoint_print_mention,
12440 base_breakpoint_print_recreate,
12441 base_breakpoint_create_sals_from_location,
12442 base_breakpoint_create_breakpoints_sal,
12443 base_breakpoint_decode_location,
12444 base_breakpoint_explains_signal,
12445 base_breakpoint_after_condition_true,
12446 };
12447
12448 /* Default breakpoint_ops methods. */
12449
12450 static void
12451 bkpt_re_set (struct breakpoint *b)
12452 {
12453 /* FIXME: is this still reachable? */
12454 if (breakpoint_event_location_empty_p (b))
12455 {
12456 /* Anything without a location can't be re-set. */
12457 delete_breakpoint (b);
12458 return;
12459 }
12460
12461 breakpoint_re_set_default (b);
12462 }
12463
12464 static int
12465 bkpt_insert_location (struct bp_location *bl)
12466 {
12467 CORE_ADDR addr = bl->target_info.reqstd_address;
12468
12469 bl->target_info.kind = breakpoint_kind (bl, &addr);
12470 bl->target_info.placed_address = addr;
12471
12472 if (bl->loc_type == bp_loc_hardware_breakpoint)
12473 return target_insert_hw_breakpoint (bl->gdbarch, &bl->target_info);
12474 else
12475 return target_insert_breakpoint (bl->gdbarch, &bl->target_info);
12476 }
12477
12478 static int
12479 bkpt_remove_location (struct bp_location *bl, enum remove_bp_reason reason)
12480 {
12481 if (bl->loc_type == bp_loc_hardware_breakpoint)
12482 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12483 else
12484 return target_remove_breakpoint (bl->gdbarch, &bl->target_info, reason);
12485 }
12486
12487 static int
12488 bkpt_breakpoint_hit (const struct bp_location *bl,
12489 const address_space *aspace, CORE_ADDR bp_addr,
12490 const struct target_waitstatus *ws)
12491 {
12492 if (ws->kind != TARGET_WAITKIND_STOPPED
12493 || ws->value.sig != GDB_SIGNAL_TRAP)
12494 return 0;
12495
12496 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12497 aspace, bp_addr))
12498 return 0;
12499
12500 if (overlay_debugging /* unmapped overlay section */
12501 && section_is_overlay (bl->section)
12502 && !section_is_mapped (bl->section))
12503 return 0;
12504
12505 return 1;
12506 }
12507
12508 static int
12509 dprintf_breakpoint_hit (const struct bp_location *bl,
12510 const address_space *aspace, CORE_ADDR bp_addr,
12511 const struct target_waitstatus *ws)
12512 {
12513 if (dprintf_style == dprintf_style_agent
12514 && target_can_run_breakpoint_commands ())
12515 {
12516 /* An agent-style dprintf never causes a stop. If we see a trap
12517 for this address it must be for a breakpoint that happens to
12518 be set at the same address. */
12519 return 0;
12520 }
12521
12522 return bkpt_breakpoint_hit (bl, aspace, bp_addr, ws);
12523 }
12524
12525 static int
12526 bkpt_resources_needed (const struct bp_location *bl)
12527 {
12528 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12529
12530 return 1;
12531 }
12532
12533 static enum print_stop_action
12534 bkpt_print_it (bpstat bs)
12535 {
12536 struct breakpoint *b;
12537 const struct bp_location *bl;
12538 int bp_temp;
12539 struct ui_out *uiout = current_uiout;
12540
12541 gdb_assert (bs->bp_location_at != NULL);
12542
12543 bl = bs->bp_location_at;
12544 b = bs->breakpoint_at;
12545
12546 bp_temp = b->disposition == disp_del;
12547 if (bl->address != bl->requested_address)
12548 breakpoint_adjustment_warning (bl->requested_address,
12549 bl->address,
12550 b->number, 1);
12551 annotate_breakpoint (b->number);
12552 maybe_print_thread_hit_breakpoint (uiout);
12553
12554 if (bp_temp)
12555 uiout->text ("Temporary breakpoint ");
12556 else
12557 uiout->text ("Breakpoint ");
12558 if (uiout->is_mi_like_p ())
12559 {
12560 uiout->field_string ("reason",
12561 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12562 uiout->field_string ("disp", bpdisp_text (b->disposition));
12563 }
12564 uiout->field_int ("bkptno", b->number);
12565 uiout->text (", ");
12566
12567 return PRINT_SRC_AND_LOC;
12568 }
12569
12570 static void
12571 bkpt_print_mention (struct breakpoint *b)
12572 {
12573 if (current_uiout->is_mi_like_p ())
12574 return;
12575
12576 switch (b->type)
12577 {
12578 case bp_breakpoint:
12579 case bp_gnu_ifunc_resolver:
12580 if (b->disposition == disp_del)
12581 printf_filtered (_("Temporary breakpoint"));
12582 else
12583 printf_filtered (_("Breakpoint"));
12584 printf_filtered (_(" %d"), b->number);
12585 if (b->type == bp_gnu_ifunc_resolver)
12586 printf_filtered (_(" at gnu-indirect-function resolver"));
12587 break;
12588 case bp_hardware_breakpoint:
12589 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12590 break;
12591 case bp_dprintf:
12592 printf_filtered (_("Dprintf %d"), b->number);
12593 break;
12594 }
12595
12596 say_where (b);
12597 }
12598
12599 static void
12600 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12601 {
12602 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12603 fprintf_unfiltered (fp, "tbreak");
12604 else if (tp->type == bp_breakpoint)
12605 fprintf_unfiltered (fp, "break");
12606 else if (tp->type == bp_hardware_breakpoint
12607 && tp->disposition == disp_del)
12608 fprintf_unfiltered (fp, "thbreak");
12609 else if (tp->type == bp_hardware_breakpoint)
12610 fprintf_unfiltered (fp, "hbreak");
12611 else
12612 internal_error (__FILE__, __LINE__,
12613 _("unhandled breakpoint type %d"), (int) tp->type);
12614
12615 fprintf_unfiltered (fp, " %s",
12616 event_location_to_string (tp->location.get ()));
12617
12618 /* Print out extra_string if this breakpoint is pending. It might
12619 contain, for example, conditions that were set by the user. */
12620 if (tp->loc == NULL && tp->extra_string != NULL)
12621 fprintf_unfiltered (fp, " %s", tp->extra_string);
12622
12623 print_recreate_thread (tp, fp);
12624 }
12625
12626 static void
12627 bkpt_create_sals_from_location (const struct event_location *location,
12628 struct linespec_result *canonical,
12629 enum bptype type_wanted)
12630 {
12631 create_sals_from_location_default (location, canonical, type_wanted);
12632 }
12633
12634 static void
12635 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12636 struct linespec_result *canonical,
12637 gdb::unique_xmalloc_ptr<char> cond_string,
12638 gdb::unique_xmalloc_ptr<char> extra_string,
12639 enum bptype type_wanted,
12640 enum bpdisp disposition,
12641 int thread,
12642 int task, int ignore_count,
12643 const struct breakpoint_ops *ops,
12644 int from_tty, int enabled,
12645 int internal, unsigned flags)
12646 {
12647 create_breakpoints_sal_default (gdbarch, canonical,
12648 std::move (cond_string),
12649 std::move (extra_string),
12650 type_wanted,
12651 disposition, thread, task,
12652 ignore_count, ops, from_tty,
12653 enabled, internal, flags);
12654 }
12655
12656 static std::vector<symtab_and_line>
12657 bkpt_decode_location (struct breakpoint *b,
12658 const struct event_location *location,
12659 struct program_space *search_pspace)
12660 {
12661 return decode_location_default (b, location, search_pspace);
12662 }
12663
12664 /* Virtual table for internal breakpoints. */
12665
12666 static void
12667 internal_bkpt_re_set (struct breakpoint *b)
12668 {
12669 switch (b->type)
12670 {
12671 /* Delete overlay event and longjmp master breakpoints; they
12672 will be reset later by breakpoint_re_set. */
12673 case bp_overlay_event:
12674 case bp_longjmp_master:
12675 case bp_std_terminate_master:
12676 case bp_exception_master:
12677 delete_breakpoint (b);
12678 break;
12679
12680 /* This breakpoint is special, it's set up when the inferior
12681 starts and we really don't want to touch it. */
12682 case bp_shlib_event:
12683
12684 /* Like bp_shlib_event, this breakpoint type is special. Once
12685 it is set up, we do not want to touch it. */
12686 case bp_thread_event:
12687 break;
12688 }
12689 }
12690
12691 static void
12692 internal_bkpt_check_status (bpstat bs)
12693 {
12694 if (bs->breakpoint_at->type == bp_shlib_event)
12695 {
12696 /* If requested, stop when the dynamic linker notifies GDB of
12697 events. This allows the user to get control and place
12698 breakpoints in initializer routines for dynamically loaded
12699 objects (among other things). */
12700 bs->stop = stop_on_solib_events;
12701 bs->print = stop_on_solib_events;
12702 }
12703 else
12704 bs->stop = 0;
12705 }
12706
12707 static enum print_stop_action
12708 internal_bkpt_print_it (bpstat bs)
12709 {
12710 struct breakpoint *b;
12711
12712 b = bs->breakpoint_at;
12713
12714 switch (b->type)
12715 {
12716 case bp_shlib_event:
12717 /* Did we stop because the user set the stop_on_solib_events
12718 variable? (If so, we report this as a generic, "Stopped due
12719 to shlib event" message.) */
12720 print_solib_event (0);
12721 break;
12722
12723 case bp_thread_event:
12724 /* Not sure how we will get here.
12725 GDB should not stop for these breakpoints. */
12726 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
12727 break;
12728
12729 case bp_overlay_event:
12730 /* By analogy with the thread event, GDB should not stop for these. */
12731 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
12732 break;
12733
12734 case bp_longjmp_master:
12735 /* These should never be enabled. */
12736 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
12737 break;
12738
12739 case bp_std_terminate_master:
12740 /* These should never be enabled. */
12741 printf_filtered (_("std::terminate Master Breakpoint: "
12742 "gdb should not stop!\n"));
12743 break;
12744
12745 case bp_exception_master:
12746 /* These should never be enabled. */
12747 printf_filtered (_("Exception Master Breakpoint: "
12748 "gdb should not stop!\n"));
12749 break;
12750 }
12751
12752 return PRINT_NOTHING;
12753 }
12754
12755 static void
12756 internal_bkpt_print_mention (struct breakpoint *b)
12757 {
12758 /* Nothing to mention. These breakpoints are internal. */
12759 }
12760
12761 /* Virtual table for momentary breakpoints */
12762
12763 static void
12764 momentary_bkpt_re_set (struct breakpoint *b)
12765 {
12766 /* Keep temporary breakpoints, which can be encountered when we step
12767 over a dlopen call and solib_add is resetting the breakpoints.
12768 Otherwise these should have been blown away via the cleanup chain
12769 or by breakpoint_init_inferior when we rerun the executable. */
12770 }
12771
12772 static void
12773 momentary_bkpt_check_status (bpstat bs)
12774 {
12775 /* Nothing. The point of these breakpoints is causing a stop. */
12776 }
12777
12778 static enum print_stop_action
12779 momentary_bkpt_print_it (bpstat bs)
12780 {
12781 return PRINT_UNKNOWN;
12782 }
12783
12784 static void
12785 momentary_bkpt_print_mention (struct breakpoint *b)
12786 {
12787 /* Nothing to mention. These breakpoints are internal. */
12788 }
12789
12790 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
12791
12792 It gets cleared already on the removal of the first one of such placed
12793 breakpoints. This is OK as they get all removed altogether. */
12794
12795 longjmp_breakpoint::~longjmp_breakpoint ()
12796 {
12797 thread_info *tp = find_thread_global_id (this->thread);
12798
12799 if (tp != NULL)
12800 tp->initiating_frame = null_frame_id;
12801 }
12802
12803 /* Specific methods for probe breakpoints. */
12804
12805 static int
12806 bkpt_probe_insert_location (struct bp_location *bl)
12807 {
12808 int v = bkpt_insert_location (bl);
12809
12810 if (v == 0)
12811 {
12812 /* The insertion was successful, now let's set the probe's semaphore
12813 if needed. */
12814 bl->probe.prob->set_semaphore (bl->probe.objfile, bl->gdbarch);
12815 }
12816
12817 return v;
12818 }
12819
12820 static int
12821 bkpt_probe_remove_location (struct bp_location *bl,
12822 enum remove_bp_reason reason)
12823 {
12824 /* Let's clear the semaphore before removing the location. */
12825 bl->probe.prob->clear_semaphore (bl->probe.objfile, bl->gdbarch);
12826
12827 return bkpt_remove_location (bl, reason);
12828 }
12829
12830 static void
12831 bkpt_probe_create_sals_from_location (const struct event_location *location,
12832 struct linespec_result *canonical,
12833 enum bptype type_wanted)
12834 {
12835 struct linespec_sals lsal;
12836
12837 lsal.sals = parse_probes (location, NULL, canonical);
12838 lsal.canonical
12839 = xstrdup (event_location_to_string (canonical->location.get ()));
12840 canonical->lsals.push_back (std::move (lsal));
12841 }
12842
12843 static std::vector<symtab_and_line>
12844 bkpt_probe_decode_location (struct breakpoint *b,
12845 const struct event_location *location,
12846 struct program_space *search_pspace)
12847 {
12848 std::vector<symtab_and_line> sals = parse_probes (location, search_pspace, NULL);
12849 if (sals.empty ())
12850 error (_("probe not found"));
12851 return sals;
12852 }
12853
12854 /* The breakpoint_ops structure to be used in tracepoints. */
12855
12856 static void
12857 tracepoint_re_set (struct breakpoint *b)
12858 {
12859 breakpoint_re_set_default (b);
12860 }
12861
12862 static int
12863 tracepoint_breakpoint_hit (const struct bp_location *bl,
12864 const address_space *aspace, CORE_ADDR bp_addr,
12865 const struct target_waitstatus *ws)
12866 {
12867 /* By definition, the inferior does not report stops at
12868 tracepoints. */
12869 return 0;
12870 }
12871
12872 static void
12873 tracepoint_print_one_detail (const struct breakpoint *self,
12874 struct ui_out *uiout)
12875 {
12876 struct tracepoint *tp = (struct tracepoint *) self;
12877 if (!tp->static_trace_marker_id.empty ())
12878 {
12879 gdb_assert (self->type == bp_static_tracepoint);
12880
12881 uiout->text ("\tmarker id is ");
12882 uiout->field_string ("static-tracepoint-marker-string-id",
12883 tp->static_trace_marker_id);
12884 uiout->text ("\n");
12885 }
12886 }
12887
12888 static void
12889 tracepoint_print_mention (struct breakpoint *b)
12890 {
12891 if (current_uiout->is_mi_like_p ())
12892 return;
12893
12894 switch (b->type)
12895 {
12896 case bp_tracepoint:
12897 printf_filtered (_("Tracepoint"));
12898 printf_filtered (_(" %d"), b->number);
12899 break;
12900 case bp_fast_tracepoint:
12901 printf_filtered (_("Fast tracepoint"));
12902 printf_filtered (_(" %d"), b->number);
12903 break;
12904 case bp_static_tracepoint:
12905 printf_filtered (_("Static tracepoint"));
12906 printf_filtered (_(" %d"), b->number);
12907 break;
12908 default:
12909 internal_error (__FILE__, __LINE__,
12910 _("unhandled tracepoint type %d"), (int) b->type);
12911 }
12912
12913 say_where (b);
12914 }
12915
12916 static void
12917 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
12918 {
12919 struct tracepoint *tp = (struct tracepoint *) self;
12920
12921 if (self->type == bp_fast_tracepoint)
12922 fprintf_unfiltered (fp, "ftrace");
12923 else if (self->type == bp_static_tracepoint)
12924 fprintf_unfiltered (fp, "strace");
12925 else if (self->type == bp_tracepoint)
12926 fprintf_unfiltered (fp, "trace");
12927 else
12928 internal_error (__FILE__, __LINE__,
12929 _("unhandled tracepoint type %d"), (int) self->type);
12930
12931 fprintf_unfiltered (fp, " %s",
12932 event_location_to_string (self->location.get ()));
12933 print_recreate_thread (self, fp);
12934
12935 if (tp->pass_count)
12936 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
12937 }
12938
12939 static void
12940 tracepoint_create_sals_from_location (const struct event_location *location,
12941 struct linespec_result *canonical,
12942 enum bptype type_wanted)
12943 {
12944 create_sals_from_location_default (location, canonical, type_wanted);
12945 }
12946
12947 static void
12948 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12949 struct linespec_result *canonical,
12950 gdb::unique_xmalloc_ptr<char> cond_string,
12951 gdb::unique_xmalloc_ptr<char> extra_string,
12952 enum bptype type_wanted,
12953 enum bpdisp disposition,
12954 int thread,
12955 int task, int ignore_count,
12956 const struct breakpoint_ops *ops,
12957 int from_tty, int enabled,
12958 int internal, unsigned flags)
12959 {
12960 create_breakpoints_sal_default (gdbarch, canonical,
12961 std::move (cond_string),
12962 std::move (extra_string),
12963 type_wanted,
12964 disposition, thread, task,
12965 ignore_count, ops, from_tty,
12966 enabled, internal, flags);
12967 }
12968
12969 static std::vector<symtab_and_line>
12970 tracepoint_decode_location (struct breakpoint *b,
12971 const struct event_location *location,
12972 struct program_space *search_pspace)
12973 {
12974 return decode_location_default (b, location, search_pspace);
12975 }
12976
12977 struct breakpoint_ops tracepoint_breakpoint_ops;
12978
12979 /* The breakpoint_ops structure to be use on tracepoints placed in a
12980 static probe. */
12981
12982 static void
12983 tracepoint_probe_create_sals_from_location
12984 (const struct event_location *location,
12985 struct linespec_result *canonical,
12986 enum bptype type_wanted)
12987 {
12988 /* We use the same method for breakpoint on probes. */
12989 bkpt_probe_create_sals_from_location (location, canonical, type_wanted);
12990 }
12991
12992 static std::vector<symtab_and_line>
12993 tracepoint_probe_decode_location (struct breakpoint *b,
12994 const struct event_location *location,
12995 struct program_space *search_pspace)
12996 {
12997 /* We use the same method for breakpoint on probes. */
12998 return bkpt_probe_decode_location (b, location, search_pspace);
12999 }
13000
13001 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13002
13003 /* Dprintf breakpoint_ops methods. */
13004
13005 static void
13006 dprintf_re_set (struct breakpoint *b)
13007 {
13008 breakpoint_re_set_default (b);
13009
13010 /* extra_string should never be non-NULL for dprintf. */
13011 gdb_assert (b->extra_string != NULL);
13012
13013 /* 1 - connect to target 1, that can run breakpoint commands.
13014 2 - create a dprintf, which resolves fine.
13015 3 - disconnect from target 1
13016 4 - connect to target 2, that can NOT run breakpoint commands.
13017
13018 After steps #3/#4, you'll want the dprintf command list to
13019 be updated, because target 1 and 2 may well return different
13020 answers for target_can_run_breakpoint_commands().
13021 Given absence of finer grained resetting, we get to do
13022 it all the time. */
13023 if (b->extra_string != NULL)
13024 update_dprintf_command_list (b);
13025 }
13026
13027 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13028
13029 static void
13030 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13031 {
13032 fprintf_unfiltered (fp, "dprintf %s,%s",
13033 event_location_to_string (tp->location.get ()),
13034 tp->extra_string);
13035 print_recreate_thread (tp, fp);
13036 }
13037
13038 /* Implement the "after_condition_true" breakpoint_ops method for
13039 dprintf.
13040
13041 dprintf's are implemented with regular commands in their command
13042 list, but we run the commands here instead of before presenting the
13043 stop to the user, as dprintf's don't actually cause a stop. This
13044 also makes it so that the commands of multiple dprintfs at the same
13045 address are all handled. */
13046
13047 static void
13048 dprintf_after_condition_true (struct bpstats *bs)
13049 {
13050 struct bpstats tmp_bs;
13051 struct bpstats *tmp_bs_p = &tmp_bs;
13052
13053 /* dprintf's never cause a stop. This wasn't set in the
13054 check_status hook instead because that would make the dprintf's
13055 condition not be evaluated. */
13056 bs->stop = 0;
13057
13058 /* Run the command list here. Take ownership of it instead of
13059 copying. We never want these commands to run later in
13060 bpstat_do_actions, if a breakpoint that causes a stop happens to
13061 be set at same address as this dprintf, or even if running the
13062 commands here throws. */
13063 tmp_bs.commands = bs->commands;
13064 bs->commands = NULL;
13065
13066 bpstat_do_actions_1 (&tmp_bs_p);
13067
13068 /* 'tmp_bs.commands' will usually be NULL by now, but
13069 bpstat_do_actions_1 may return early without processing the whole
13070 list. */
13071 }
13072
13073 /* The breakpoint_ops structure to be used on static tracepoints with
13074 markers (`-m'). */
13075
13076 static void
13077 strace_marker_create_sals_from_location (const struct event_location *location,
13078 struct linespec_result *canonical,
13079 enum bptype type_wanted)
13080 {
13081 struct linespec_sals lsal;
13082 const char *arg_start, *arg;
13083
13084 arg = arg_start = get_linespec_location (location)->spec_string;
13085 lsal.sals = decode_static_tracepoint_spec (&arg);
13086
13087 std::string str (arg_start, arg - arg_start);
13088 const char *ptr = str.c_str ();
13089 canonical->location
13090 = new_linespec_location (&ptr, symbol_name_match_type::FULL);
13091
13092 lsal.canonical
13093 = xstrdup (event_location_to_string (canonical->location.get ()));
13094 canonical->lsals.push_back (std::move (lsal));
13095 }
13096
13097 static void
13098 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13099 struct linespec_result *canonical,
13100 gdb::unique_xmalloc_ptr<char> cond_string,
13101 gdb::unique_xmalloc_ptr<char> extra_string,
13102 enum bptype type_wanted,
13103 enum bpdisp disposition,
13104 int thread,
13105 int task, int ignore_count,
13106 const struct breakpoint_ops *ops,
13107 int from_tty, int enabled,
13108 int internal, unsigned flags)
13109 {
13110 const linespec_sals &lsal = canonical->lsals[0];
13111
13112 /* If the user is creating a static tracepoint by marker id
13113 (strace -m MARKER_ID), then store the sals index, so that
13114 breakpoint_re_set can try to match up which of the newly
13115 found markers corresponds to this one, and, don't try to
13116 expand multiple locations for each sal, given than SALS
13117 already should contain all sals for MARKER_ID. */
13118
13119 for (size_t i = 0; i < lsal.sals.size (); i++)
13120 {
13121 event_location_up location
13122 = copy_event_location (canonical->location.get ());
13123
13124 std::unique_ptr<tracepoint> tp (new tracepoint ());
13125 init_breakpoint_sal (tp.get (), gdbarch, lsal.sals[i],
13126 std::move (location), NULL,
13127 std::move (cond_string),
13128 std::move (extra_string),
13129 type_wanted, disposition,
13130 thread, task, ignore_count, ops,
13131 from_tty, enabled, internal, flags,
13132 canonical->special_display);
13133 /* Given that its possible to have multiple markers with
13134 the same string id, if the user is creating a static
13135 tracepoint by marker id ("strace -m MARKER_ID"), then
13136 store the sals index, so that breakpoint_re_set can
13137 try to match up which of the newly found markers
13138 corresponds to this one */
13139 tp->static_trace_marker_id_idx = i;
13140
13141 install_breakpoint (internal, std::move (tp), 0);
13142 }
13143 }
13144
13145 static std::vector<symtab_and_line>
13146 strace_marker_decode_location (struct breakpoint *b,
13147 const struct event_location *location,
13148 struct program_space *search_pspace)
13149 {
13150 struct tracepoint *tp = (struct tracepoint *) b;
13151 const char *s = get_linespec_location (location)->spec_string;
13152
13153 std::vector<symtab_and_line> sals = decode_static_tracepoint_spec (&s);
13154 if (sals.size () > tp->static_trace_marker_id_idx)
13155 {
13156 sals[0] = sals[tp->static_trace_marker_id_idx];
13157 sals.resize (1);
13158 return sals;
13159 }
13160 else
13161 error (_("marker %s not found"), tp->static_trace_marker_id.c_str ());
13162 }
13163
13164 static struct breakpoint_ops strace_marker_breakpoint_ops;
13165
13166 static int
13167 strace_marker_p (struct breakpoint *b)
13168 {
13169 return b->ops == &strace_marker_breakpoint_ops;
13170 }
13171
13172 /* Delete a breakpoint and clean up all traces of it in the data
13173 structures. */
13174
13175 void
13176 delete_breakpoint (struct breakpoint *bpt)
13177 {
13178 struct breakpoint *b;
13179
13180 gdb_assert (bpt != NULL);
13181
13182 /* Has this bp already been deleted? This can happen because
13183 multiple lists can hold pointers to bp's. bpstat lists are
13184 especial culprits.
13185
13186 One example of this happening is a watchpoint's scope bp. When
13187 the scope bp triggers, we notice that the watchpoint is out of
13188 scope, and delete it. We also delete its scope bp. But the
13189 scope bp is marked "auto-deleting", and is already on a bpstat.
13190 That bpstat is then checked for auto-deleting bp's, which are
13191 deleted.
13192
13193 A real solution to this problem might involve reference counts in
13194 bp's, and/or giving them pointers back to their referencing
13195 bpstat's, and teaching delete_breakpoint to only free a bp's
13196 storage when no more references were extent. A cheaper bandaid
13197 was chosen. */
13198 if (bpt->type == bp_none)
13199 return;
13200
13201 /* At least avoid this stale reference until the reference counting
13202 of breakpoints gets resolved. */
13203 if (bpt->related_breakpoint != bpt)
13204 {
13205 struct breakpoint *related;
13206 struct watchpoint *w;
13207
13208 if (bpt->type == bp_watchpoint_scope)
13209 w = (struct watchpoint *) bpt->related_breakpoint;
13210 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13211 w = (struct watchpoint *) bpt;
13212 else
13213 w = NULL;
13214 if (w != NULL)
13215 watchpoint_del_at_next_stop (w);
13216
13217 /* Unlink bpt from the bpt->related_breakpoint ring. */
13218 for (related = bpt; related->related_breakpoint != bpt;
13219 related = related->related_breakpoint);
13220 related->related_breakpoint = bpt->related_breakpoint;
13221 bpt->related_breakpoint = bpt;
13222 }
13223
13224 /* watch_command_1 creates a watchpoint but only sets its number if
13225 update_watchpoint succeeds in creating its bp_locations. If there's
13226 a problem in that process, we'll be asked to delete the half-created
13227 watchpoint. In that case, don't announce the deletion. */
13228 if (bpt->number)
13229 gdb::observers::breakpoint_deleted.notify (bpt);
13230
13231 if (breakpoint_chain == bpt)
13232 breakpoint_chain = bpt->next;
13233
13234 ALL_BREAKPOINTS (b)
13235 if (b->next == bpt)
13236 {
13237 b->next = bpt->next;
13238 break;
13239 }
13240
13241 /* Be sure no bpstat's are pointing at the breakpoint after it's
13242 been freed. */
13243 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13244 in all threads for now. Note that we cannot just remove bpstats
13245 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13246 commands are associated with the bpstat; if we remove it here,
13247 then the later call to bpstat_do_actions (&stop_bpstat); in
13248 event-top.c won't do anything, and temporary breakpoints with
13249 commands won't work. */
13250
13251 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13252
13253 /* Now that breakpoint is removed from breakpoint list, update the
13254 global location list. This will remove locations that used to
13255 belong to this breakpoint. Do this before freeing the breakpoint
13256 itself, since remove_breakpoint looks at location's owner. It
13257 might be better design to have location completely
13258 self-contained, but it's not the case now. */
13259 update_global_location_list (UGLL_DONT_INSERT);
13260
13261 /* On the chance that someone will soon try again to delete this
13262 same bp, we mark it as deleted before freeing its storage. */
13263 bpt->type = bp_none;
13264 delete bpt;
13265 }
13266
13267 /* Iterator function to call a user-provided callback function once
13268 for each of B and its related breakpoints. */
13269
13270 static void
13271 iterate_over_related_breakpoints (struct breakpoint *b,
13272 gdb::function_view<void (breakpoint *)> function)
13273 {
13274 struct breakpoint *related;
13275
13276 related = b;
13277 do
13278 {
13279 struct breakpoint *next;
13280
13281 /* FUNCTION may delete RELATED. */
13282 next = related->related_breakpoint;
13283
13284 if (next == related)
13285 {
13286 /* RELATED is the last ring entry. */
13287 function (related);
13288
13289 /* FUNCTION may have deleted it, so we'd never reach back to
13290 B. There's nothing left to do anyway, so just break
13291 out. */
13292 break;
13293 }
13294 else
13295 function (related);
13296
13297 related = next;
13298 }
13299 while (related != b);
13300 }
13301
13302 static void
13303 delete_command (const char *arg, int from_tty)
13304 {
13305 struct breakpoint *b, *b_tmp;
13306
13307 dont_repeat ();
13308
13309 if (arg == 0)
13310 {
13311 int breaks_to_delete = 0;
13312
13313 /* Delete all breakpoints if no argument. Do not delete
13314 internal breakpoints, these have to be deleted with an
13315 explicit breakpoint number argument. */
13316 ALL_BREAKPOINTS (b)
13317 if (user_breakpoint_p (b))
13318 {
13319 breaks_to_delete = 1;
13320 break;
13321 }
13322
13323 /* Ask user only if there are some breakpoints to delete. */
13324 if (!from_tty
13325 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13326 {
13327 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13328 if (user_breakpoint_p (b))
13329 delete_breakpoint (b);
13330 }
13331 }
13332 else
13333 map_breakpoint_numbers
13334 (arg, [&] (breakpoint *b)
13335 {
13336 iterate_over_related_breakpoints (b, delete_breakpoint);
13337 });
13338 }
13339
13340 /* Return true if all locations of B bound to PSPACE are pending. If
13341 PSPACE is NULL, all locations of all program spaces are
13342 considered. */
13343
13344 static int
13345 all_locations_are_pending (struct breakpoint *b, struct program_space *pspace)
13346 {
13347 struct bp_location *loc;
13348
13349 for (loc = b->loc; loc != NULL; loc = loc->next)
13350 if ((pspace == NULL
13351 || loc->pspace == pspace)
13352 && !loc->shlib_disabled
13353 && !loc->pspace->executing_startup)
13354 return 0;
13355 return 1;
13356 }
13357
13358 /* Subroutine of update_breakpoint_locations to simplify it.
13359 Return non-zero if multiple fns in list LOC have the same name.
13360 Null names are ignored. */
13361
13362 static int
13363 ambiguous_names_p (struct bp_location *loc)
13364 {
13365 struct bp_location *l;
13366 htab_t htab = htab_create_alloc (13, htab_hash_string, streq_hash, NULL,
13367 xcalloc, xfree);
13368
13369 for (l = loc; l != NULL; l = l->next)
13370 {
13371 const char **slot;
13372 const char *name = l->function_name;
13373
13374 /* Allow for some names to be NULL, ignore them. */
13375 if (name == NULL)
13376 continue;
13377
13378 slot = (const char **) htab_find_slot (htab, (const void *) name,
13379 INSERT);
13380 /* NOTE: We can assume slot != NULL here because xcalloc never
13381 returns NULL. */
13382 if (*slot != NULL)
13383 {
13384 htab_delete (htab);
13385 return 1;
13386 }
13387 *slot = name;
13388 }
13389
13390 htab_delete (htab);
13391 return 0;
13392 }
13393
13394 /* When symbols change, it probably means the sources changed as well,
13395 and it might mean the static tracepoint markers are no longer at
13396 the same address or line numbers they used to be at last we
13397 checked. Losing your static tracepoints whenever you rebuild is
13398 undesirable. This function tries to resync/rematch gdb static
13399 tracepoints with the markers on the target, for static tracepoints
13400 that have not been set by marker id. Static tracepoint that have
13401 been set by marker id are reset by marker id in breakpoint_re_set.
13402 The heuristic is:
13403
13404 1) For a tracepoint set at a specific address, look for a marker at
13405 the old PC. If one is found there, assume to be the same marker.
13406 If the name / string id of the marker found is different from the
13407 previous known name, assume that means the user renamed the marker
13408 in the sources, and output a warning.
13409
13410 2) For a tracepoint set at a given line number, look for a marker
13411 at the new address of the old line number. If one is found there,
13412 assume to be the same marker. If the name / string id of the
13413 marker found is different from the previous known name, assume that
13414 means the user renamed the marker in the sources, and output a
13415 warning.
13416
13417 3) If a marker is no longer found at the same address or line, it
13418 may mean the marker no longer exists. But it may also just mean
13419 the code changed a bit. Maybe the user added a few lines of code
13420 that made the marker move up or down (in line number terms). Ask
13421 the target for info about the marker with the string id as we knew
13422 it. If found, update line number and address in the matching
13423 static tracepoint. This will get confused if there's more than one
13424 marker with the same ID (possible in UST, although unadvised
13425 precisely because it confuses tools). */
13426
13427 static struct symtab_and_line
13428 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13429 {
13430 struct tracepoint *tp = (struct tracepoint *) b;
13431 struct static_tracepoint_marker marker;
13432 CORE_ADDR pc;
13433
13434 pc = sal.pc;
13435 if (sal.line)
13436 find_line_pc (sal.symtab, sal.line, &pc);
13437
13438 if (target_static_tracepoint_marker_at (pc, &marker))
13439 {
13440 if (tp->static_trace_marker_id != marker.str_id)
13441 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13442 b->number, tp->static_trace_marker_id.c_str (),
13443 marker.str_id.c_str ());
13444
13445 tp->static_trace_marker_id = std::move (marker.str_id);
13446
13447 return sal;
13448 }
13449
13450 /* Old marker wasn't found on target at lineno. Try looking it up
13451 by string ID. */
13452 if (!sal.explicit_pc
13453 && sal.line != 0
13454 && sal.symtab != NULL
13455 && !tp->static_trace_marker_id.empty ())
13456 {
13457 std::vector<static_tracepoint_marker> markers
13458 = target_static_tracepoint_markers_by_strid
13459 (tp->static_trace_marker_id.c_str ());
13460
13461 if (!markers.empty ())
13462 {
13463 struct symbol *sym;
13464 struct static_tracepoint_marker *tpmarker;
13465 struct ui_out *uiout = current_uiout;
13466 struct explicit_location explicit_loc;
13467
13468 tpmarker = &markers[0];
13469
13470 tp->static_trace_marker_id = std::move (tpmarker->str_id);
13471
13472 warning (_("marker for static tracepoint %d (%s) not "
13473 "found at previous line number"),
13474 b->number, tp->static_trace_marker_id.c_str ());
13475
13476 symtab_and_line sal2 = find_pc_line (tpmarker->address, 0);
13477 sym = find_pc_sect_function (tpmarker->address, NULL);
13478 uiout->text ("Now in ");
13479 if (sym)
13480 {
13481 uiout->field_string ("func", SYMBOL_PRINT_NAME (sym));
13482 uiout->text (" at ");
13483 }
13484 uiout->field_string ("file",
13485 symtab_to_filename_for_display (sal2.symtab));
13486 uiout->text (":");
13487
13488 if (uiout->is_mi_like_p ())
13489 {
13490 const char *fullname = symtab_to_fullname (sal2.symtab);
13491
13492 uiout->field_string ("fullname", fullname);
13493 }
13494
13495 uiout->field_int ("line", sal2.line);
13496 uiout->text ("\n");
13497
13498 b->loc->line_number = sal2.line;
13499 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13500
13501 b->location.reset (NULL);
13502 initialize_explicit_location (&explicit_loc);
13503 explicit_loc.source_filename
13504 = ASTRDUP (symtab_to_filename_for_display (sal2.symtab));
13505 explicit_loc.line_offset.offset = b->loc->line_number;
13506 explicit_loc.line_offset.sign = LINE_OFFSET_NONE;
13507 b->location = new_explicit_location (&explicit_loc);
13508
13509 /* Might be nice to check if function changed, and warn if
13510 so. */
13511 }
13512 }
13513 return sal;
13514 }
13515
13516 /* Returns 1 iff locations A and B are sufficiently same that
13517 we don't need to report breakpoint as changed. */
13518
13519 static int
13520 locations_are_equal (struct bp_location *a, struct bp_location *b)
13521 {
13522 while (a && b)
13523 {
13524 if (a->address != b->address)
13525 return 0;
13526
13527 if (a->shlib_disabled != b->shlib_disabled)
13528 return 0;
13529
13530 if (a->enabled != b->enabled)
13531 return 0;
13532
13533 a = a->next;
13534 b = b->next;
13535 }
13536
13537 if ((a == NULL) != (b == NULL))
13538 return 0;
13539
13540 return 1;
13541 }
13542
13543 /* Split all locations of B that are bound to PSPACE out of B's
13544 location list to a separate list and return that list's head. If
13545 PSPACE is NULL, hoist out all locations of B. */
13546
13547 static struct bp_location *
13548 hoist_existing_locations (struct breakpoint *b, struct program_space *pspace)
13549 {
13550 struct bp_location head;
13551 struct bp_location *i = b->loc;
13552 struct bp_location **i_link = &b->loc;
13553 struct bp_location *hoisted = &head;
13554
13555 if (pspace == NULL)
13556 {
13557 i = b->loc;
13558 b->loc = NULL;
13559 return i;
13560 }
13561
13562 head.next = NULL;
13563
13564 while (i != NULL)
13565 {
13566 if (i->pspace == pspace)
13567 {
13568 *i_link = i->next;
13569 i->next = NULL;
13570 hoisted->next = i;
13571 hoisted = i;
13572 }
13573 else
13574 i_link = &i->next;
13575 i = *i_link;
13576 }
13577
13578 return head.next;
13579 }
13580
13581 /* Create new breakpoint locations for B (a hardware or software
13582 breakpoint) based on SALS and SALS_END. If SALS_END.NELTS is not
13583 zero, then B is a ranged breakpoint. Only recreates locations for
13584 FILTER_PSPACE. Locations of other program spaces are left
13585 untouched. */
13586
13587 void
13588 update_breakpoint_locations (struct breakpoint *b,
13589 struct program_space *filter_pspace,
13590 gdb::array_view<const symtab_and_line> sals,
13591 gdb::array_view<const symtab_and_line> sals_end)
13592 {
13593 struct bp_location *existing_locations;
13594
13595 if (!sals_end.empty () && (sals.size () != 1 || sals_end.size () != 1))
13596 {
13597 /* Ranged breakpoints have only one start location and one end
13598 location. */
13599 b->enable_state = bp_disabled;
13600 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13601 "multiple locations found\n"),
13602 b->number);
13603 return;
13604 }
13605
13606 /* If there's no new locations, and all existing locations are
13607 pending, don't do anything. This optimizes the common case where
13608 all locations are in the same shared library, that was unloaded.
13609 We'd like to retain the location, so that when the library is
13610 loaded again, we don't loose the enabled/disabled status of the
13611 individual locations. */
13612 if (all_locations_are_pending (b, filter_pspace) && sals.empty ())
13613 return;
13614
13615 existing_locations = hoist_existing_locations (b, filter_pspace);
13616
13617 for (const auto &sal : sals)
13618 {
13619 struct bp_location *new_loc;
13620
13621 switch_to_program_space_and_thread (sal.pspace);
13622
13623 new_loc = add_location_to_breakpoint (b, &sal);
13624
13625 /* Reparse conditions, they might contain references to the
13626 old symtab. */
13627 if (b->cond_string != NULL)
13628 {
13629 const char *s;
13630
13631 s = b->cond_string;
13632 TRY
13633 {
13634 new_loc->cond = parse_exp_1 (&s, sal.pc,
13635 block_for_pc (sal.pc),
13636 0);
13637 }
13638 CATCH (e, RETURN_MASK_ERROR)
13639 {
13640 warning (_("failed to reevaluate condition "
13641 "for breakpoint %d: %s"),
13642 b->number, e.message);
13643 new_loc->enabled = 0;
13644 }
13645 END_CATCH
13646 }
13647
13648 if (!sals_end.empty ())
13649 {
13650 CORE_ADDR end = find_breakpoint_range_end (sals_end[0]);
13651
13652 new_loc->length = end - sals[0].pc + 1;
13653 }
13654 }
13655
13656 /* If possible, carry over 'disable' status from existing
13657 breakpoints. */
13658 {
13659 struct bp_location *e = existing_locations;
13660 /* If there are multiple breakpoints with the same function name,
13661 e.g. for inline functions, comparing function names won't work.
13662 Instead compare pc addresses; this is just a heuristic as things
13663 may have moved, but in practice it gives the correct answer
13664 often enough until a better solution is found. */
13665 int have_ambiguous_names = ambiguous_names_p (b->loc);
13666
13667 for (; e; e = e->next)
13668 {
13669 if (!e->enabled && e->function_name)
13670 {
13671 struct bp_location *l = b->loc;
13672 if (have_ambiguous_names)
13673 {
13674 for (; l; l = l->next)
13675 if (breakpoint_locations_match (e, l))
13676 {
13677 l->enabled = 0;
13678 break;
13679 }
13680 }
13681 else
13682 {
13683 for (; l; l = l->next)
13684 if (l->function_name
13685 && strcmp (e->function_name, l->function_name) == 0)
13686 {
13687 l->enabled = 0;
13688 break;
13689 }
13690 }
13691 }
13692 }
13693 }
13694
13695 if (!locations_are_equal (existing_locations, b->loc))
13696 gdb::observers::breakpoint_modified.notify (b);
13697 }
13698
13699 /* Find the SaL locations corresponding to the given LOCATION.
13700 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
13701
13702 static std::vector<symtab_and_line>
13703 location_to_sals (struct breakpoint *b, struct event_location *location,
13704 struct program_space *search_pspace, int *found)
13705 {
13706 struct gdb_exception exception = exception_none;
13707
13708 gdb_assert (b->ops != NULL);
13709
13710 std::vector<symtab_and_line> sals;
13711
13712 TRY
13713 {
13714 sals = b->ops->decode_location (b, location, search_pspace);
13715 }
13716 CATCH (e, RETURN_MASK_ERROR)
13717 {
13718 int not_found_and_ok = 0;
13719
13720 exception = e;
13721
13722 /* For pending breakpoints, it's expected that parsing will
13723 fail until the right shared library is loaded. User has
13724 already told to create pending breakpoints and don't need
13725 extra messages. If breakpoint is in bp_shlib_disabled
13726 state, then user already saw the message about that
13727 breakpoint being disabled, and don't want to see more
13728 errors. */
13729 if (e.error == NOT_FOUND_ERROR
13730 && (b->condition_not_parsed
13731 || (b->loc != NULL
13732 && search_pspace != NULL
13733 && b->loc->pspace != search_pspace)
13734 || (b->loc && b->loc->shlib_disabled)
13735 || (b->loc && b->loc->pspace->executing_startup)
13736 || b->enable_state == bp_disabled))
13737 not_found_and_ok = 1;
13738
13739 if (!not_found_and_ok)
13740 {
13741 /* We surely don't want to warn about the same breakpoint
13742 10 times. One solution, implemented here, is disable
13743 the breakpoint on error. Another solution would be to
13744 have separate 'warning emitted' flag. Since this
13745 happens only when a binary has changed, I don't know
13746 which approach is better. */
13747 b->enable_state = bp_disabled;
13748 throw_exception (e);
13749 }
13750 }
13751 END_CATCH
13752
13753 if (exception.reason == 0 || exception.error != NOT_FOUND_ERROR)
13754 {
13755 for (auto &sal : sals)
13756 resolve_sal_pc (&sal);
13757 if (b->condition_not_parsed && b->extra_string != NULL)
13758 {
13759 char *cond_string, *extra_string;
13760 int thread, task;
13761
13762 find_condition_and_thread (b->extra_string, sals[0].pc,
13763 &cond_string, &thread, &task,
13764 &extra_string);
13765 gdb_assert (b->cond_string == NULL);
13766 if (cond_string)
13767 b->cond_string = cond_string;
13768 b->thread = thread;
13769 b->task = task;
13770 if (extra_string)
13771 {
13772 xfree (b->extra_string);
13773 b->extra_string = extra_string;
13774 }
13775 b->condition_not_parsed = 0;
13776 }
13777
13778 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
13779 sals[0] = update_static_tracepoint (b, sals[0]);
13780
13781 *found = 1;
13782 }
13783 else
13784 *found = 0;
13785
13786 return sals;
13787 }
13788
13789 /* The default re_set method, for typical hardware or software
13790 breakpoints. Reevaluate the breakpoint and recreate its
13791 locations. */
13792
13793 static void
13794 breakpoint_re_set_default (struct breakpoint *b)
13795 {
13796 struct program_space *filter_pspace = current_program_space;
13797 std::vector<symtab_and_line> expanded, expanded_end;
13798
13799 int found;
13800 std::vector<symtab_and_line> sals = location_to_sals (b, b->location.get (),
13801 filter_pspace, &found);
13802 if (found)
13803 expanded = std::move (sals);
13804
13805 if (b->location_range_end != NULL)
13806 {
13807 std::vector<symtab_and_line> sals_end
13808 = location_to_sals (b, b->location_range_end.get (),
13809 filter_pspace, &found);
13810 if (found)
13811 expanded_end = std::move (sals_end);
13812 }
13813
13814 update_breakpoint_locations (b, filter_pspace, expanded, expanded_end);
13815 }
13816
13817 /* Default method for creating SALs from an address string. It basically
13818 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
13819
13820 static void
13821 create_sals_from_location_default (const struct event_location *location,
13822 struct linespec_result *canonical,
13823 enum bptype type_wanted)
13824 {
13825 parse_breakpoint_sals (location, canonical);
13826 }
13827
13828 /* Call create_breakpoints_sal for the given arguments. This is the default
13829 function for the `create_breakpoints_sal' method of
13830 breakpoint_ops. */
13831
13832 static void
13833 create_breakpoints_sal_default (struct gdbarch *gdbarch,
13834 struct linespec_result *canonical,
13835 gdb::unique_xmalloc_ptr<char> cond_string,
13836 gdb::unique_xmalloc_ptr<char> extra_string,
13837 enum bptype type_wanted,
13838 enum bpdisp disposition,
13839 int thread,
13840 int task, int ignore_count,
13841 const struct breakpoint_ops *ops,
13842 int from_tty, int enabled,
13843 int internal, unsigned flags)
13844 {
13845 create_breakpoints_sal (gdbarch, canonical,
13846 std::move (cond_string),
13847 std::move (extra_string),
13848 type_wanted, disposition,
13849 thread, task, ignore_count, ops, from_tty,
13850 enabled, internal, flags);
13851 }
13852
13853 /* Decode the line represented by S by calling decode_line_full. This is the
13854 default function for the `decode_location' method of breakpoint_ops. */
13855
13856 static std::vector<symtab_and_line>
13857 decode_location_default (struct breakpoint *b,
13858 const struct event_location *location,
13859 struct program_space *search_pspace)
13860 {
13861 struct linespec_result canonical;
13862
13863 decode_line_full (location, DECODE_LINE_FUNFIRSTLINE, search_pspace,
13864 (struct symtab *) NULL, 0,
13865 &canonical, multiple_symbols_all,
13866 b->filter);
13867
13868 /* We should get 0 or 1 resulting SALs. */
13869 gdb_assert (canonical.lsals.size () < 2);
13870
13871 if (!canonical.lsals.empty ())
13872 {
13873 const linespec_sals &lsal = canonical.lsals[0];
13874 return std::move (lsal.sals);
13875 }
13876 return {};
13877 }
13878
13879 /* Reset a breakpoint. */
13880
13881 static void
13882 breakpoint_re_set_one (breakpoint *b)
13883 {
13884 input_radix = b->input_radix;
13885 set_language (b->language);
13886
13887 b->ops->re_set (b);
13888 }
13889
13890 /* Re-set breakpoint locations for the current program space.
13891 Locations bound to other program spaces are left untouched. */
13892
13893 void
13894 breakpoint_re_set (void)
13895 {
13896 struct breakpoint *b, *b_tmp;
13897
13898 {
13899 scoped_restore_current_language save_language;
13900 scoped_restore save_input_radix = make_scoped_restore (&input_radix);
13901 scoped_restore_current_pspace_and_thread restore_pspace_thread;
13902
13903 /* Note: we must not try to insert locations until after all
13904 breakpoints have been re-set. Otherwise, e.g., when re-setting
13905 breakpoint 1, we'd insert the locations of breakpoint 2, which
13906 hadn't been re-set yet, and thus may have stale locations. */
13907
13908 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13909 {
13910 TRY
13911 {
13912 breakpoint_re_set_one (b);
13913 }
13914 CATCH (ex, RETURN_MASK_ALL)
13915 {
13916 exception_fprintf (gdb_stderr, ex,
13917 "Error in re-setting breakpoint %d: ",
13918 b->number);
13919 }
13920 END_CATCH
13921 }
13922
13923 jit_breakpoint_re_set ();
13924 }
13925
13926 create_overlay_event_breakpoint ();
13927 create_longjmp_master_breakpoint ();
13928 create_std_terminate_master_breakpoint ();
13929 create_exception_master_breakpoint ();
13930
13931 /* Now we can insert. */
13932 update_global_location_list (UGLL_MAY_INSERT);
13933 }
13934 \f
13935 /* Reset the thread number of this breakpoint:
13936
13937 - If the breakpoint is for all threads, leave it as-is.
13938 - Else, reset it to the current thread for inferior_ptid. */
13939 void
13940 breakpoint_re_set_thread (struct breakpoint *b)
13941 {
13942 if (b->thread != -1)
13943 {
13944 if (in_thread_list (inferior_ptid))
13945 b->thread = ptid_to_global_thread_id (inferior_ptid);
13946
13947 /* We're being called after following a fork. The new fork is
13948 selected as current, and unless this was a vfork will have a
13949 different program space from the original thread. Reset that
13950 as well. */
13951 b->loc->pspace = current_program_space;
13952 }
13953 }
13954
13955 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
13956 If from_tty is nonzero, it prints a message to that effect,
13957 which ends with a period (no newline). */
13958
13959 void
13960 set_ignore_count (int bptnum, int count, int from_tty)
13961 {
13962 struct breakpoint *b;
13963
13964 if (count < 0)
13965 count = 0;
13966
13967 ALL_BREAKPOINTS (b)
13968 if (b->number == bptnum)
13969 {
13970 if (is_tracepoint (b))
13971 {
13972 if (from_tty && count != 0)
13973 printf_filtered (_("Ignore count ignored for tracepoint %d."),
13974 bptnum);
13975 return;
13976 }
13977
13978 b->ignore_count = count;
13979 if (from_tty)
13980 {
13981 if (count == 0)
13982 printf_filtered (_("Will stop next time "
13983 "breakpoint %d is reached."),
13984 bptnum);
13985 else if (count == 1)
13986 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
13987 bptnum);
13988 else
13989 printf_filtered (_("Will ignore next %d "
13990 "crossings of breakpoint %d."),
13991 count, bptnum);
13992 }
13993 gdb::observers::breakpoint_modified.notify (b);
13994 return;
13995 }
13996
13997 error (_("No breakpoint number %d."), bptnum);
13998 }
13999
14000 /* Command to set ignore-count of breakpoint N to COUNT. */
14001
14002 static void
14003 ignore_command (const char *args, int from_tty)
14004 {
14005 const char *p = args;
14006 int num;
14007
14008 if (p == 0)
14009 error_no_arg (_("a breakpoint number"));
14010
14011 num = get_number (&p);
14012 if (num == 0)
14013 error (_("bad breakpoint number: '%s'"), args);
14014 if (*p == 0)
14015 error (_("Second argument (specified ignore-count) is missing."));
14016
14017 set_ignore_count (num,
14018 longest_to_int (value_as_long (parse_and_eval (p))),
14019 from_tty);
14020 if (from_tty)
14021 printf_filtered ("\n");
14022 }
14023 \f
14024
14025 /* Call FUNCTION on each of the breakpoints with numbers in the range
14026 defined by BP_NUM_RANGE (an inclusive range). */
14027
14028 static void
14029 map_breakpoint_number_range (std::pair<int, int> bp_num_range,
14030 gdb::function_view<void (breakpoint *)> function)
14031 {
14032 if (bp_num_range.first == 0)
14033 {
14034 warning (_("bad breakpoint number at or near '%d'"),
14035 bp_num_range.first);
14036 }
14037 else
14038 {
14039 struct breakpoint *b, *tmp;
14040
14041 for (int i = bp_num_range.first; i <= bp_num_range.second; i++)
14042 {
14043 bool match = false;
14044
14045 ALL_BREAKPOINTS_SAFE (b, tmp)
14046 if (b->number == i)
14047 {
14048 match = true;
14049 function (b);
14050 break;
14051 }
14052 if (!match)
14053 printf_unfiltered (_("No breakpoint number %d.\n"), i);
14054 }
14055 }
14056 }
14057
14058 /* Call FUNCTION on each of the breakpoints whose numbers are given in
14059 ARGS. */
14060
14061 static void
14062 map_breakpoint_numbers (const char *args,
14063 gdb::function_view<void (breakpoint *)> function)
14064 {
14065 if (args == NULL || *args == '\0')
14066 error_no_arg (_("one or more breakpoint numbers"));
14067
14068 number_or_range_parser parser (args);
14069
14070 while (!parser.finished ())
14071 {
14072 int num = parser.get_number ();
14073 map_breakpoint_number_range (std::make_pair (num, num), function);
14074 }
14075 }
14076
14077 /* Return the breakpoint location structure corresponding to the
14078 BP_NUM and LOC_NUM values. */
14079
14080 static struct bp_location *
14081 find_location_by_number (int bp_num, int loc_num)
14082 {
14083 struct breakpoint *b;
14084
14085 ALL_BREAKPOINTS (b)
14086 if (b->number == bp_num)
14087 {
14088 break;
14089 }
14090
14091 if (!b || b->number != bp_num)
14092 error (_("Bad breakpoint number '%d'"), bp_num);
14093
14094 if (loc_num == 0)
14095 error (_("Bad breakpoint location number '%d'"), loc_num);
14096
14097 int n = 0;
14098 for (bp_location *loc = b->loc; loc != NULL; loc = loc->next)
14099 if (++n == loc_num)
14100 return loc;
14101
14102 error (_("Bad breakpoint location number '%d'"), loc_num);
14103 }
14104
14105 /* Modes of operation for extract_bp_num. */
14106 enum class extract_bp_kind
14107 {
14108 /* Extracting a breakpoint number. */
14109 bp,
14110
14111 /* Extracting a location number. */
14112 loc,
14113 };
14114
14115 /* Extract a breakpoint or location number (as determined by KIND)
14116 from the string starting at START. TRAILER is a character which
14117 can be found after the number. If you don't want a trailer, use
14118 '\0'. If END_OUT is not NULL, it is set to point after the parsed
14119 string. This always returns a positive integer. */
14120
14121 static int
14122 extract_bp_num (extract_bp_kind kind, const char *start,
14123 int trailer, const char **end_out = NULL)
14124 {
14125 const char *end = start;
14126 int num = get_number_trailer (&end, trailer);
14127 if (num < 0)
14128 error (kind == extract_bp_kind::bp
14129 ? _("Negative breakpoint number '%.*s'")
14130 : _("Negative breakpoint location number '%.*s'"),
14131 int (end - start), start);
14132 if (num == 0)
14133 error (kind == extract_bp_kind::bp
14134 ? _("Bad breakpoint number '%.*s'")
14135 : _("Bad breakpoint location number '%.*s'"),
14136 int (end - start), start);
14137
14138 if (end_out != NULL)
14139 *end_out = end;
14140 return num;
14141 }
14142
14143 /* Extract a breakpoint or location range (as determined by KIND) in
14144 the form NUM1-NUM2 stored at &ARG[arg_offset]. Returns a std::pair
14145 representing the (inclusive) range. The returned pair's elements
14146 are always positive integers. */
14147
14148 static std::pair<int, int>
14149 extract_bp_or_bp_range (extract_bp_kind kind,
14150 const std::string &arg,
14151 std::string::size_type arg_offset)
14152 {
14153 std::pair<int, int> range;
14154 const char *bp_loc = &arg[arg_offset];
14155 std::string::size_type dash = arg.find ('-', arg_offset);
14156 if (dash != std::string::npos)
14157 {
14158 /* bp_loc is a range (x-z). */
14159 if (arg.length () == dash + 1)
14160 error (kind == extract_bp_kind::bp
14161 ? _("Bad breakpoint number at or near: '%s'")
14162 : _("Bad breakpoint location number at or near: '%s'"),
14163 bp_loc);
14164
14165 const char *end;
14166 const char *start_first = bp_loc;
14167 const char *start_second = &arg[dash + 1];
14168 range.first = extract_bp_num (kind, start_first, '-');
14169 range.second = extract_bp_num (kind, start_second, '\0', &end);
14170
14171 if (range.first > range.second)
14172 error (kind == extract_bp_kind::bp
14173 ? _("Inverted breakpoint range at '%.*s'")
14174 : _("Inverted breakpoint location range at '%.*s'"),
14175 int (end - start_first), start_first);
14176 }
14177 else
14178 {
14179 /* bp_loc is a single value. */
14180 range.first = extract_bp_num (kind, bp_loc, '\0');
14181 range.second = range.first;
14182 }
14183 return range;
14184 }
14185
14186 /* Extract the breakpoint/location range specified by ARG. Returns
14187 the breakpoint range in BP_NUM_RANGE, and the location range in
14188 BP_LOC_RANGE.
14189
14190 ARG may be in any of the following forms:
14191
14192 x where 'x' is a breakpoint number.
14193 x-y where 'x' and 'y' specify a breakpoint numbers range.
14194 x.y where 'x' is a breakpoint number and 'y' a location number.
14195 x.y-z where 'x' is a breakpoint number and 'y' and 'z' specify a
14196 location number range.
14197 */
14198
14199 static void
14200 extract_bp_number_and_location (const std::string &arg,
14201 std::pair<int, int> &bp_num_range,
14202 std::pair<int, int> &bp_loc_range)
14203 {
14204 std::string::size_type dot = arg.find ('.');
14205
14206 if (dot != std::string::npos)
14207 {
14208 /* Handle 'x.y' and 'x.y-z' cases. */
14209
14210 if (arg.length () == dot + 1 || dot == 0)
14211 error (_("Bad breakpoint number at or near: '%s'"), arg.c_str ());
14212
14213 bp_num_range.first
14214 = extract_bp_num (extract_bp_kind::bp, arg.c_str (), '.');
14215 bp_num_range.second = bp_num_range.first;
14216
14217 bp_loc_range = extract_bp_or_bp_range (extract_bp_kind::loc,
14218 arg, dot + 1);
14219 }
14220 else
14221 {
14222 /* Handle x and x-y cases. */
14223
14224 bp_num_range = extract_bp_or_bp_range (extract_bp_kind::bp, arg, 0);
14225 bp_loc_range.first = 0;
14226 bp_loc_range.second = 0;
14227 }
14228 }
14229
14230 /* Enable or disable a breakpoint location BP_NUM.LOC_NUM. ENABLE
14231 specifies whether to enable or disable. */
14232
14233 static void
14234 enable_disable_bp_num_loc (int bp_num, int loc_num, bool enable)
14235 {
14236 struct bp_location *loc = find_location_by_number (bp_num, loc_num);
14237 if (loc != NULL)
14238 {
14239 if (loc->enabled != enable)
14240 {
14241 loc->enabled = enable;
14242 mark_breakpoint_location_modified (loc);
14243 }
14244 if (target_supports_enable_disable_tracepoint ()
14245 && current_trace_status ()->running && loc->owner
14246 && is_tracepoint (loc->owner))
14247 target_disable_tracepoint (loc);
14248 }
14249 update_global_location_list (UGLL_DONT_INSERT);
14250 }
14251
14252 /* Enable or disable a range of breakpoint locations. BP_NUM is the
14253 number of the breakpoint, and BP_LOC_RANGE specifies the
14254 (inclusive) range of location numbers of that breakpoint to
14255 enable/disable. ENABLE specifies whether to enable or disable the
14256 location. */
14257
14258 static void
14259 enable_disable_breakpoint_location_range (int bp_num,
14260 std::pair<int, int> &bp_loc_range,
14261 bool enable)
14262 {
14263 for (int i = bp_loc_range.first; i <= bp_loc_range.second; i++)
14264 enable_disable_bp_num_loc (bp_num, i, enable);
14265 }
14266
14267 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14268 If from_tty is nonzero, it prints a message to that effect,
14269 which ends with a period (no newline). */
14270
14271 void
14272 disable_breakpoint (struct breakpoint *bpt)
14273 {
14274 /* Never disable a watchpoint scope breakpoint; we want to
14275 hit them when we leave scope so we can delete both the
14276 watchpoint and its scope breakpoint at that time. */
14277 if (bpt->type == bp_watchpoint_scope)
14278 return;
14279
14280 bpt->enable_state = bp_disabled;
14281
14282 /* Mark breakpoint locations modified. */
14283 mark_breakpoint_modified (bpt);
14284
14285 if (target_supports_enable_disable_tracepoint ()
14286 && current_trace_status ()->running && is_tracepoint (bpt))
14287 {
14288 struct bp_location *location;
14289
14290 for (location = bpt->loc; location; location = location->next)
14291 target_disable_tracepoint (location);
14292 }
14293
14294 update_global_location_list (UGLL_DONT_INSERT);
14295
14296 gdb::observers::breakpoint_modified.notify (bpt);
14297 }
14298
14299 /* Enable or disable the breakpoint(s) or breakpoint location(s)
14300 specified in ARGS. ARGS may be in any of the formats handled by
14301 extract_bp_number_and_location. ENABLE specifies whether to enable
14302 or disable the breakpoints/locations. */
14303
14304 static void
14305 enable_disable_command (const char *args, int from_tty, bool enable)
14306 {
14307 if (args == 0)
14308 {
14309 struct breakpoint *bpt;
14310
14311 ALL_BREAKPOINTS (bpt)
14312 if (user_breakpoint_p (bpt))
14313 {
14314 if (enable)
14315 enable_breakpoint (bpt);
14316 else
14317 disable_breakpoint (bpt);
14318 }
14319 }
14320 else
14321 {
14322 std::string num = extract_arg (&args);
14323
14324 while (!num.empty ())
14325 {
14326 std::pair<int, int> bp_num_range, bp_loc_range;
14327
14328 extract_bp_number_and_location (num, bp_num_range, bp_loc_range);
14329
14330 if (bp_loc_range.first == bp_loc_range.second
14331 && bp_loc_range.first == 0)
14332 {
14333 /* Handle breakpoint ids with formats 'x' or 'x-z'. */
14334 map_breakpoint_number_range (bp_num_range,
14335 enable
14336 ? enable_breakpoint
14337 : disable_breakpoint);
14338 }
14339 else
14340 {
14341 /* Handle breakpoint ids with formats 'x.y' or
14342 'x.y-z'. */
14343 enable_disable_breakpoint_location_range
14344 (bp_num_range.first, bp_loc_range, enable);
14345 }
14346 num = extract_arg (&args);
14347 }
14348 }
14349 }
14350
14351 /* The disable command disables the specified breakpoints/locations
14352 (or all defined breakpoints) so they're no longer effective in
14353 stopping the inferior. ARGS may be in any of the forms defined in
14354 extract_bp_number_and_location. */
14355
14356 static void
14357 disable_command (const char *args, int from_tty)
14358 {
14359 enable_disable_command (args, from_tty, false);
14360 }
14361
14362 static void
14363 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14364 int count)
14365 {
14366 int target_resources_ok;
14367
14368 if (bpt->type == bp_hardware_breakpoint)
14369 {
14370 int i;
14371 i = hw_breakpoint_used_count ();
14372 target_resources_ok =
14373 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14374 i + 1, 0);
14375 if (target_resources_ok == 0)
14376 error (_("No hardware breakpoint support in the target."));
14377 else if (target_resources_ok < 0)
14378 error (_("Hardware breakpoints used exceeds limit."));
14379 }
14380
14381 if (is_watchpoint (bpt))
14382 {
14383 /* Initialize it just to avoid a GCC false warning. */
14384 enum enable_state orig_enable_state = bp_disabled;
14385
14386 TRY
14387 {
14388 struct watchpoint *w = (struct watchpoint *) bpt;
14389
14390 orig_enable_state = bpt->enable_state;
14391 bpt->enable_state = bp_enabled;
14392 update_watchpoint (w, 1 /* reparse */);
14393 }
14394 CATCH (e, RETURN_MASK_ALL)
14395 {
14396 bpt->enable_state = orig_enable_state;
14397 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14398 bpt->number);
14399 return;
14400 }
14401 END_CATCH
14402 }
14403
14404 bpt->enable_state = bp_enabled;
14405
14406 /* Mark breakpoint locations modified. */
14407 mark_breakpoint_modified (bpt);
14408
14409 if (target_supports_enable_disable_tracepoint ()
14410 && current_trace_status ()->running && is_tracepoint (bpt))
14411 {
14412 struct bp_location *location;
14413
14414 for (location = bpt->loc; location; location = location->next)
14415 target_enable_tracepoint (location);
14416 }
14417
14418 bpt->disposition = disposition;
14419 bpt->enable_count = count;
14420 update_global_location_list (UGLL_MAY_INSERT);
14421
14422 gdb::observers::breakpoint_modified.notify (bpt);
14423 }
14424
14425
14426 void
14427 enable_breakpoint (struct breakpoint *bpt)
14428 {
14429 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14430 }
14431
14432 /* The enable command enables the specified breakpoints/locations (or
14433 all defined breakpoints) so they once again become (or continue to
14434 be) effective in stopping the inferior. ARGS may be in any of the
14435 forms defined in extract_bp_number_and_location. */
14436
14437 static void
14438 enable_command (const char *args, int from_tty)
14439 {
14440 enable_disable_command (args, from_tty, true);
14441 }
14442
14443 static void
14444 enable_once_command (const char *args, int from_tty)
14445 {
14446 map_breakpoint_numbers
14447 (args, [&] (breakpoint *b)
14448 {
14449 iterate_over_related_breakpoints
14450 (b, [&] (breakpoint *bpt)
14451 {
14452 enable_breakpoint_disp (bpt, disp_disable, 1);
14453 });
14454 });
14455 }
14456
14457 static void
14458 enable_count_command (const char *args, int from_tty)
14459 {
14460 int count;
14461
14462 if (args == NULL)
14463 error_no_arg (_("hit count"));
14464
14465 count = get_number (&args);
14466
14467 map_breakpoint_numbers
14468 (args, [&] (breakpoint *b)
14469 {
14470 iterate_over_related_breakpoints
14471 (b, [&] (breakpoint *bpt)
14472 {
14473 enable_breakpoint_disp (bpt, disp_disable, count);
14474 });
14475 });
14476 }
14477
14478 static void
14479 enable_delete_command (const char *args, int from_tty)
14480 {
14481 map_breakpoint_numbers
14482 (args, [&] (breakpoint *b)
14483 {
14484 iterate_over_related_breakpoints
14485 (b, [&] (breakpoint *bpt)
14486 {
14487 enable_breakpoint_disp (bpt, disp_del, 1);
14488 });
14489 });
14490 }
14491 \f
14492 static void
14493 set_breakpoint_cmd (const char *args, int from_tty)
14494 {
14495 }
14496
14497 static void
14498 show_breakpoint_cmd (const char *args, int from_tty)
14499 {
14500 }
14501
14502 /* Invalidate last known value of any hardware watchpoint if
14503 the memory which that value represents has been written to by
14504 GDB itself. */
14505
14506 static void
14507 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14508 CORE_ADDR addr, ssize_t len,
14509 const bfd_byte *data)
14510 {
14511 struct breakpoint *bp;
14512
14513 ALL_BREAKPOINTS (bp)
14514 if (bp->enable_state == bp_enabled
14515 && bp->type == bp_hardware_watchpoint)
14516 {
14517 struct watchpoint *wp = (struct watchpoint *) bp;
14518
14519 if (wp->val_valid && wp->val != nullptr)
14520 {
14521 struct bp_location *loc;
14522
14523 for (loc = bp->loc; loc != NULL; loc = loc->next)
14524 if (loc->loc_type == bp_loc_hardware_watchpoint
14525 && loc->address + loc->length > addr
14526 && addr + len > loc->address)
14527 {
14528 wp->val = NULL;
14529 wp->val_valid = 0;
14530 }
14531 }
14532 }
14533 }
14534
14535 /* Create and insert a breakpoint for software single step. */
14536
14537 void
14538 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14539 const address_space *aspace,
14540 CORE_ADDR next_pc)
14541 {
14542 struct thread_info *tp = inferior_thread ();
14543 struct symtab_and_line sal;
14544 CORE_ADDR pc = next_pc;
14545
14546 if (tp->control.single_step_breakpoints == NULL)
14547 {
14548 tp->control.single_step_breakpoints
14549 = new_single_step_breakpoint (tp->global_num, gdbarch);
14550 }
14551
14552 sal = find_pc_line (pc, 0);
14553 sal.pc = pc;
14554 sal.section = find_pc_overlay (pc);
14555 sal.explicit_pc = 1;
14556 add_location_to_breakpoint (tp->control.single_step_breakpoints, &sal);
14557
14558 update_global_location_list (UGLL_INSERT);
14559 }
14560
14561 /* Insert single step breakpoints according to the current state. */
14562
14563 int
14564 insert_single_step_breakpoints (struct gdbarch *gdbarch)
14565 {
14566 struct regcache *regcache = get_current_regcache ();
14567 std::vector<CORE_ADDR> next_pcs;
14568
14569 next_pcs = gdbarch_software_single_step (gdbarch, regcache);
14570
14571 if (!next_pcs.empty ())
14572 {
14573 struct frame_info *frame = get_current_frame ();
14574 const address_space *aspace = get_frame_address_space (frame);
14575
14576 for (CORE_ADDR pc : next_pcs)
14577 insert_single_step_breakpoint (gdbarch, aspace, pc);
14578
14579 return 1;
14580 }
14581 else
14582 return 0;
14583 }
14584
14585 /* See breakpoint.h. */
14586
14587 int
14588 breakpoint_has_location_inserted_here (struct breakpoint *bp,
14589 const address_space *aspace,
14590 CORE_ADDR pc)
14591 {
14592 struct bp_location *loc;
14593
14594 for (loc = bp->loc; loc != NULL; loc = loc->next)
14595 if (loc->inserted
14596 && breakpoint_location_address_match (loc, aspace, pc))
14597 return 1;
14598
14599 return 0;
14600 }
14601
14602 /* Check whether a software single-step breakpoint is inserted at
14603 PC. */
14604
14605 int
14606 single_step_breakpoint_inserted_here_p (const address_space *aspace,
14607 CORE_ADDR pc)
14608 {
14609 struct breakpoint *bpt;
14610
14611 ALL_BREAKPOINTS (bpt)
14612 {
14613 if (bpt->type == bp_single_step
14614 && breakpoint_has_location_inserted_here (bpt, aspace, pc))
14615 return 1;
14616 }
14617 return 0;
14618 }
14619
14620 /* Tracepoint-specific operations. */
14621
14622 /* Set tracepoint count to NUM. */
14623 static void
14624 set_tracepoint_count (int num)
14625 {
14626 tracepoint_count = num;
14627 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
14628 }
14629
14630 static void
14631 trace_command (const char *arg, int from_tty)
14632 {
14633 struct breakpoint_ops *ops;
14634
14635 event_location_up location = string_to_event_location (&arg,
14636 current_language);
14637 if (location != NULL
14638 && event_location_type (location.get ()) == PROBE_LOCATION)
14639 ops = &tracepoint_probe_breakpoint_ops;
14640 else
14641 ops = &tracepoint_breakpoint_ops;
14642
14643 create_breakpoint (get_current_arch (),
14644 location.get (),
14645 NULL, 0, arg, 1 /* parse arg */,
14646 0 /* tempflag */,
14647 bp_tracepoint /* type_wanted */,
14648 0 /* Ignore count */,
14649 pending_break_support,
14650 ops,
14651 from_tty,
14652 1 /* enabled */,
14653 0 /* internal */, 0);
14654 }
14655
14656 static void
14657 ftrace_command (const char *arg, int from_tty)
14658 {
14659 event_location_up location = string_to_event_location (&arg,
14660 current_language);
14661 create_breakpoint (get_current_arch (),
14662 location.get (),
14663 NULL, 0, arg, 1 /* parse arg */,
14664 0 /* tempflag */,
14665 bp_fast_tracepoint /* type_wanted */,
14666 0 /* Ignore count */,
14667 pending_break_support,
14668 &tracepoint_breakpoint_ops,
14669 from_tty,
14670 1 /* enabled */,
14671 0 /* internal */, 0);
14672 }
14673
14674 /* strace command implementation. Creates a static tracepoint. */
14675
14676 static void
14677 strace_command (const char *arg, int from_tty)
14678 {
14679 struct breakpoint_ops *ops;
14680 event_location_up location;
14681
14682 /* Decide if we are dealing with a static tracepoint marker (`-m'),
14683 or with a normal static tracepoint. */
14684 if (arg && startswith (arg, "-m") && isspace (arg[2]))
14685 {
14686 ops = &strace_marker_breakpoint_ops;
14687 location = new_linespec_location (&arg, symbol_name_match_type::FULL);
14688 }
14689 else
14690 {
14691 ops = &tracepoint_breakpoint_ops;
14692 location = string_to_event_location (&arg, current_language);
14693 }
14694
14695 create_breakpoint (get_current_arch (),
14696 location.get (),
14697 NULL, 0, arg, 1 /* parse arg */,
14698 0 /* tempflag */,
14699 bp_static_tracepoint /* type_wanted */,
14700 0 /* Ignore count */,
14701 pending_break_support,
14702 ops,
14703 from_tty,
14704 1 /* enabled */,
14705 0 /* internal */, 0);
14706 }
14707
14708 /* Set up a fake reader function that gets command lines from a linked
14709 list that was acquired during tracepoint uploading. */
14710
14711 static struct uploaded_tp *this_utp;
14712 static int next_cmd;
14713
14714 static char *
14715 read_uploaded_action (void)
14716 {
14717 char *rslt = nullptr;
14718
14719 if (next_cmd < this_utp->cmd_strings.size ())
14720 {
14721 rslt = this_utp->cmd_strings[next_cmd];
14722 next_cmd++;
14723 }
14724
14725 return rslt;
14726 }
14727
14728 /* Given information about a tracepoint as recorded on a target (which
14729 can be either a live system or a trace file), attempt to create an
14730 equivalent GDB tracepoint. This is not a reliable process, since
14731 the target does not necessarily have all the information used when
14732 the tracepoint was originally defined. */
14733
14734 struct tracepoint *
14735 create_tracepoint_from_upload (struct uploaded_tp *utp)
14736 {
14737 const char *addr_str;
14738 char small_buf[100];
14739 struct tracepoint *tp;
14740
14741 if (utp->at_string)
14742 addr_str = utp->at_string;
14743 else
14744 {
14745 /* In the absence of a source location, fall back to raw
14746 address. Since there is no way to confirm that the address
14747 means the same thing as when the trace was started, warn the
14748 user. */
14749 warning (_("Uploaded tracepoint %d has no "
14750 "source location, using raw address"),
14751 utp->number);
14752 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
14753 addr_str = small_buf;
14754 }
14755
14756 /* There's not much we can do with a sequence of bytecodes. */
14757 if (utp->cond && !utp->cond_string)
14758 warning (_("Uploaded tracepoint %d condition "
14759 "has no source form, ignoring it"),
14760 utp->number);
14761
14762 event_location_up location = string_to_event_location (&addr_str,
14763 current_language);
14764 if (!create_breakpoint (get_current_arch (),
14765 location.get (),
14766 utp->cond_string, -1, addr_str,
14767 0 /* parse cond/thread */,
14768 0 /* tempflag */,
14769 utp->type /* type_wanted */,
14770 0 /* Ignore count */,
14771 pending_break_support,
14772 &tracepoint_breakpoint_ops,
14773 0 /* from_tty */,
14774 utp->enabled /* enabled */,
14775 0 /* internal */,
14776 CREATE_BREAKPOINT_FLAGS_INSERTED))
14777 return NULL;
14778
14779 /* Get the tracepoint we just created. */
14780 tp = get_tracepoint (tracepoint_count);
14781 gdb_assert (tp != NULL);
14782
14783 if (utp->pass > 0)
14784 {
14785 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
14786 tp->number);
14787
14788 trace_pass_command (small_buf, 0);
14789 }
14790
14791 /* If we have uploaded versions of the original commands, set up a
14792 special-purpose "reader" function and call the usual command line
14793 reader, then pass the result to the breakpoint command-setting
14794 function. */
14795 if (!utp->cmd_strings.empty ())
14796 {
14797 command_line_up cmd_list;
14798
14799 this_utp = utp;
14800 next_cmd = 0;
14801
14802 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
14803
14804 breakpoint_set_commands (tp, std::move (cmd_list));
14805 }
14806 else if (!utp->actions.empty ()
14807 || !utp->step_actions.empty ())
14808 warning (_("Uploaded tracepoint %d actions "
14809 "have no source form, ignoring them"),
14810 utp->number);
14811
14812 /* Copy any status information that might be available. */
14813 tp->hit_count = utp->hit_count;
14814 tp->traceframe_usage = utp->traceframe_usage;
14815
14816 return tp;
14817 }
14818
14819 /* Print information on tracepoint number TPNUM_EXP, or all if
14820 omitted. */
14821
14822 static void
14823 info_tracepoints_command (const char *args, int from_tty)
14824 {
14825 struct ui_out *uiout = current_uiout;
14826 int num_printed;
14827
14828 num_printed = breakpoint_1 (args, 0, is_tracepoint);
14829
14830 if (num_printed == 0)
14831 {
14832 if (args == NULL || *args == '\0')
14833 uiout->message ("No tracepoints.\n");
14834 else
14835 uiout->message ("No tracepoint matching '%s'.\n", args);
14836 }
14837
14838 default_collect_info ();
14839 }
14840
14841 /* The 'enable trace' command enables tracepoints.
14842 Not supported by all targets. */
14843 static void
14844 enable_trace_command (const char *args, int from_tty)
14845 {
14846 enable_command (args, from_tty);
14847 }
14848
14849 /* The 'disable trace' command disables tracepoints.
14850 Not supported by all targets. */
14851 static void
14852 disable_trace_command (const char *args, int from_tty)
14853 {
14854 disable_command (args, from_tty);
14855 }
14856
14857 /* Remove a tracepoint (or all if no argument). */
14858 static void
14859 delete_trace_command (const char *arg, int from_tty)
14860 {
14861 struct breakpoint *b, *b_tmp;
14862
14863 dont_repeat ();
14864
14865 if (arg == 0)
14866 {
14867 int breaks_to_delete = 0;
14868
14869 /* Delete all breakpoints if no argument.
14870 Do not delete internal or call-dummy breakpoints, these
14871 have to be deleted with an explicit breakpoint number
14872 argument. */
14873 ALL_TRACEPOINTS (b)
14874 if (is_tracepoint (b) && user_breakpoint_p (b))
14875 {
14876 breaks_to_delete = 1;
14877 break;
14878 }
14879
14880 /* Ask user only if there are some breakpoints to delete. */
14881 if (!from_tty
14882 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
14883 {
14884 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14885 if (is_tracepoint (b) && user_breakpoint_p (b))
14886 delete_breakpoint (b);
14887 }
14888 }
14889 else
14890 map_breakpoint_numbers
14891 (arg, [&] (breakpoint *b)
14892 {
14893 iterate_over_related_breakpoints (b, delete_breakpoint);
14894 });
14895 }
14896
14897 /* Helper function for trace_pass_command. */
14898
14899 static void
14900 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
14901 {
14902 tp->pass_count = count;
14903 gdb::observers::breakpoint_modified.notify (tp);
14904 if (from_tty)
14905 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
14906 tp->number, count);
14907 }
14908
14909 /* Set passcount for tracepoint.
14910
14911 First command argument is passcount, second is tracepoint number.
14912 If tracepoint number omitted, apply to most recently defined.
14913 Also accepts special argument "all". */
14914
14915 static void
14916 trace_pass_command (const char *args, int from_tty)
14917 {
14918 struct tracepoint *t1;
14919 ULONGEST count;
14920
14921 if (args == 0 || *args == 0)
14922 error (_("passcount command requires an "
14923 "argument (count + optional TP num)"));
14924
14925 count = strtoulst (args, &args, 10); /* Count comes first, then TP num. */
14926
14927 args = skip_spaces (args);
14928 if (*args && strncasecmp (args, "all", 3) == 0)
14929 {
14930 struct breakpoint *b;
14931
14932 args += 3; /* Skip special argument "all". */
14933 if (*args)
14934 error (_("Junk at end of arguments."));
14935
14936 ALL_TRACEPOINTS (b)
14937 {
14938 t1 = (struct tracepoint *) b;
14939 trace_pass_set_count (t1, count, from_tty);
14940 }
14941 }
14942 else if (*args == '\0')
14943 {
14944 t1 = get_tracepoint_by_number (&args, NULL);
14945 if (t1)
14946 trace_pass_set_count (t1, count, from_tty);
14947 }
14948 else
14949 {
14950 number_or_range_parser parser (args);
14951 while (!parser.finished ())
14952 {
14953 t1 = get_tracepoint_by_number (&args, &parser);
14954 if (t1)
14955 trace_pass_set_count (t1, count, from_tty);
14956 }
14957 }
14958 }
14959
14960 struct tracepoint *
14961 get_tracepoint (int num)
14962 {
14963 struct breakpoint *t;
14964
14965 ALL_TRACEPOINTS (t)
14966 if (t->number == num)
14967 return (struct tracepoint *) t;
14968
14969 return NULL;
14970 }
14971
14972 /* Find the tracepoint with the given target-side number (which may be
14973 different from the tracepoint number after disconnecting and
14974 reconnecting). */
14975
14976 struct tracepoint *
14977 get_tracepoint_by_number_on_target (int num)
14978 {
14979 struct breakpoint *b;
14980
14981 ALL_TRACEPOINTS (b)
14982 {
14983 struct tracepoint *t = (struct tracepoint *) b;
14984
14985 if (t->number_on_target == num)
14986 return t;
14987 }
14988
14989 return NULL;
14990 }
14991
14992 /* Utility: parse a tracepoint number and look it up in the list.
14993 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
14994 If the argument is missing, the most recent tracepoint
14995 (tracepoint_count) is returned. */
14996
14997 struct tracepoint *
14998 get_tracepoint_by_number (const char **arg,
14999 number_or_range_parser *parser)
15000 {
15001 struct breakpoint *t;
15002 int tpnum;
15003 const char *instring = arg == NULL ? NULL : *arg;
15004
15005 if (parser != NULL)
15006 {
15007 gdb_assert (!parser->finished ());
15008 tpnum = parser->get_number ();
15009 }
15010 else if (arg == NULL || *arg == NULL || ! **arg)
15011 tpnum = tracepoint_count;
15012 else
15013 tpnum = get_number (arg);
15014
15015 if (tpnum <= 0)
15016 {
15017 if (instring && *instring)
15018 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15019 instring);
15020 else
15021 printf_filtered (_("No previous tracepoint\n"));
15022 return NULL;
15023 }
15024
15025 ALL_TRACEPOINTS (t)
15026 if (t->number == tpnum)
15027 {
15028 return (struct tracepoint *) t;
15029 }
15030
15031 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15032 return NULL;
15033 }
15034
15035 void
15036 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15037 {
15038 if (b->thread != -1)
15039 fprintf_unfiltered (fp, " thread %d", b->thread);
15040
15041 if (b->task != 0)
15042 fprintf_unfiltered (fp, " task %d", b->task);
15043
15044 fprintf_unfiltered (fp, "\n");
15045 }
15046
15047 /* Save information on user settable breakpoints (watchpoints, etc) to
15048 a new script file named FILENAME. If FILTER is non-NULL, call it
15049 on each breakpoint and only include the ones for which it returns
15050 non-zero. */
15051
15052 static void
15053 save_breakpoints (const char *filename, int from_tty,
15054 int (*filter) (const struct breakpoint *))
15055 {
15056 struct breakpoint *tp;
15057 int any = 0;
15058 int extra_trace_bits = 0;
15059
15060 if (filename == 0 || *filename == 0)
15061 error (_("Argument required (file name in which to save)"));
15062
15063 /* See if we have anything to save. */
15064 ALL_BREAKPOINTS (tp)
15065 {
15066 /* Skip internal and momentary breakpoints. */
15067 if (!user_breakpoint_p (tp))
15068 continue;
15069
15070 /* If we have a filter, only save the breakpoints it accepts. */
15071 if (filter && !filter (tp))
15072 continue;
15073
15074 any = 1;
15075
15076 if (is_tracepoint (tp))
15077 {
15078 extra_trace_bits = 1;
15079
15080 /* We can stop searching. */
15081 break;
15082 }
15083 }
15084
15085 if (!any)
15086 {
15087 warning (_("Nothing to save."));
15088 return;
15089 }
15090
15091 gdb::unique_xmalloc_ptr<char> expanded_filename (tilde_expand (filename));
15092
15093 stdio_file fp;
15094
15095 if (!fp.open (expanded_filename.get (), "w"))
15096 error (_("Unable to open file '%s' for saving (%s)"),
15097 expanded_filename.get (), safe_strerror (errno));
15098
15099 if (extra_trace_bits)
15100 save_trace_state_variables (&fp);
15101
15102 ALL_BREAKPOINTS (tp)
15103 {
15104 /* Skip internal and momentary breakpoints. */
15105 if (!user_breakpoint_p (tp))
15106 continue;
15107
15108 /* If we have a filter, only save the breakpoints it accepts. */
15109 if (filter && !filter (tp))
15110 continue;
15111
15112 tp->ops->print_recreate (tp, &fp);
15113
15114 /* Note, we can't rely on tp->number for anything, as we can't
15115 assume the recreated breakpoint numbers will match. Use $bpnum
15116 instead. */
15117
15118 if (tp->cond_string)
15119 fp.printf (" condition $bpnum %s\n", tp->cond_string);
15120
15121 if (tp->ignore_count)
15122 fp.printf (" ignore $bpnum %d\n", tp->ignore_count);
15123
15124 if (tp->type != bp_dprintf && tp->commands)
15125 {
15126 fp.puts (" commands\n");
15127
15128 current_uiout->redirect (&fp);
15129 TRY
15130 {
15131 print_command_lines (current_uiout, tp->commands.get (), 2);
15132 }
15133 CATCH (ex, RETURN_MASK_ALL)
15134 {
15135 current_uiout->redirect (NULL);
15136 throw_exception (ex);
15137 }
15138 END_CATCH
15139
15140 current_uiout->redirect (NULL);
15141 fp.puts (" end\n");
15142 }
15143
15144 if (tp->enable_state == bp_disabled)
15145 fp.puts ("disable $bpnum\n");
15146
15147 /* If this is a multi-location breakpoint, check if the locations
15148 should be individually disabled. Watchpoint locations are
15149 special, and not user visible. */
15150 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15151 {
15152 struct bp_location *loc;
15153 int n = 1;
15154
15155 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15156 if (!loc->enabled)
15157 fp.printf ("disable $bpnum.%d\n", n);
15158 }
15159 }
15160
15161 if (extra_trace_bits && *default_collect)
15162 fp.printf ("set default-collect %s\n", default_collect);
15163
15164 if (from_tty)
15165 printf_filtered (_("Saved to file '%s'.\n"), expanded_filename.get ());
15166 }
15167
15168 /* The `save breakpoints' command. */
15169
15170 static void
15171 save_breakpoints_command (const char *args, int from_tty)
15172 {
15173 save_breakpoints (args, from_tty, NULL);
15174 }
15175
15176 /* The `save tracepoints' command. */
15177
15178 static void
15179 save_tracepoints_command (const char *args, int from_tty)
15180 {
15181 save_breakpoints (args, from_tty, is_tracepoint);
15182 }
15183
15184 /* Create a vector of all tracepoints. */
15185
15186 VEC(breakpoint_p) *
15187 all_tracepoints (void)
15188 {
15189 VEC(breakpoint_p) *tp_vec = 0;
15190 struct breakpoint *tp;
15191
15192 ALL_TRACEPOINTS (tp)
15193 {
15194 VEC_safe_push (breakpoint_p, tp_vec, tp);
15195 }
15196
15197 return tp_vec;
15198 }
15199
15200 \f
15201 /* This help string is used to consolidate all the help string for specifying
15202 locations used by several commands. */
15203
15204 #define LOCATION_HELP_STRING \
15205 "Linespecs are colon-separated lists of location parameters, such as\n\
15206 source filename, function name, label name, and line number.\n\
15207 Example: To specify the start of a label named \"the_top\" in the\n\
15208 function \"fact\" in the file \"factorial.c\", use\n\
15209 \"factorial.c:fact:the_top\".\n\
15210 \n\
15211 Address locations begin with \"*\" and specify an exact address in the\n\
15212 program. Example: To specify the fourth byte past the start function\n\
15213 \"main\", use \"*main + 4\".\n\
15214 \n\
15215 Explicit locations are similar to linespecs but use an option/argument\n\
15216 syntax to specify location parameters.\n\
15217 Example: To specify the start of the label named \"the_top\" in the\n\
15218 function \"fact\" in the file \"factorial.c\", use \"-source factorial.c\n\
15219 -function fact -label the_top\".\n\
15220 \n\
15221 By default, a specified function is matched against the program's\n\
15222 functions in all scopes. For C++, this means in all namespaces and\n\
15223 classes. For Ada, this means in all packages. E.g., in C++,\n\
15224 \"func()\" matches \"A::func()\", \"A::B::func()\", etc. The\n\
15225 \"-qualified\" flag overrides this behavior, making GDB interpret the\n\
15226 specified name as a complete fully-qualified name instead.\n"
15227
15228 /* This help string is used for the break, hbreak, tbreak and thbreak
15229 commands. It is defined as a macro to prevent duplication.
15230 COMMAND should be a string constant containing the name of the
15231 command. */
15232
15233 #define BREAK_ARGS_HELP(command) \
15234 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15235 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15236 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15237 guessed probe type), `-probe-stap' (for a SystemTap probe) or \n\
15238 `-probe-dtrace' (for a DTrace probe).\n\
15239 LOCATION may be a linespec, address, or explicit location as described\n\
15240 below.\n\
15241 \n\
15242 With no LOCATION, uses current execution address of the selected\n\
15243 stack frame. This is useful for breaking on return to a stack frame.\n\
15244 \n\
15245 THREADNUM is the number from \"info threads\".\n\
15246 CONDITION is a boolean expression.\n\
15247 \n" LOCATION_HELP_STRING "\n\
15248 Multiple breakpoints at one place are permitted, and useful if their\n\
15249 conditions are different.\n\
15250 \n\
15251 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15252
15253 /* List of subcommands for "catch". */
15254 static struct cmd_list_element *catch_cmdlist;
15255
15256 /* List of subcommands for "tcatch". */
15257 static struct cmd_list_element *tcatch_cmdlist;
15258
15259 void
15260 add_catch_command (const char *name, const char *docstring,
15261 cmd_const_sfunc_ftype *sfunc,
15262 completer_ftype *completer,
15263 void *user_data_catch,
15264 void *user_data_tcatch)
15265 {
15266 struct cmd_list_element *command;
15267
15268 command = add_cmd (name, class_breakpoint, docstring,
15269 &catch_cmdlist);
15270 set_cmd_sfunc (command, sfunc);
15271 set_cmd_context (command, user_data_catch);
15272 set_cmd_completer (command, completer);
15273
15274 command = add_cmd (name, class_breakpoint, docstring,
15275 &tcatch_cmdlist);
15276 set_cmd_sfunc (command, sfunc);
15277 set_cmd_context (command, user_data_tcatch);
15278 set_cmd_completer (command, completer);
15279 }
15280
15281 static void
15282 save_command (const char *arg, int from_tty)
15283 {
15284 printf_unfiltered (_("\"save\" must be followed by "
15285 "the name of a save subcommand.\n"));
15286 help_list (save_cmdlist, "save ", all_commands, gdb_stdout);
15287 }
15288
15289 struct breakpoint *
15290 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15291 void *data)
15292 {
15293 struct breakpoint *b, *b_tmp;
15294
15295 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15296 {
15297 if ((*callback) (b, data))
15298 return b;
15299 }
15300
15301 return NULL;
15302 }
15303
15304 /* Zero if any of the breakpoint's locations could be a location where
15305 functions have been inlined, nonzero otherwise. */
15306
15307 static int
15308 is_non_inline_function (struct breakpoint *b)
15309 {
15310 /* The shared library event breakpoint is set on the address of a
15311 non-inline function. */
15312 if (b->type == bp_shlib_event)
15313 return 1;
15314
15315 return 0;
15316 }
15317
15318 /* Nonzero if the specified PC cannot be a location where functions
15319 have been inlined. */
15320
15321 int
15322 pc_at_non_inline_function (const address_space *aspace, CORE_ADDR pc,
15323 const struct target_waitstatus *ws)
15324 {
15325 struct breakpoint *b;
15326 struct bp_location *bl;
15327
15328 ALL_BREAKPOINTS (b)
15329 {
15330 if (!is_non_inline_function (b))
15331 continue;
15332
15333 for (bl = b->loc; bl != NULL; bl = bl->next)
15334 {
15335 if (!bl->shlib_disabled
15336 && bpstat_check_location (bl, aspace, pc, ws))
15337 return 1;
15338 }
15339 }
15340
15341 return 0;
15342 }
15343
15344 /* Remove any references to OBJFILE which is going to be freed. */
15345
15346 void
15347 breakpoint_free_objfile (struct objfile *objfile)
15348 {
15349 struct bp_location **locp, *loc;
15350
15351 ALL_BP_LOCATIONS (loc, locp)
15352 if (loc->symtab != NULL && SYMTAB_OBJFILE (loc->symtab) == objfile)
15353 loc->symtab = NULL;
15354 }
15355
15356 void
15357 initialize_breakpoint_ops (void)
15358 {
15359 static int initialized = 0;
15360
15361 struct breakpoint_ops *ops;
15362
15363 if (initialized)
15364 return;
15365 initialized = 1;
15366
15367 /* The breakpoint_ops structure to be inherit by all kinds of
15368 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15369 internal and momentary breakpoints, etc.). */
15370 ops = &bkpt_base_breakpoint_ops;
15371 *ops = base_breakpoint_ops;
15372 ops->re_set = bkpt_re_set;
15373 ops->insert_location = bkpt_insert_location;
15374 ops->remove_location = bkpt_remove_location;
15375 ops->breakpoint_hit = bkpt_breakpoint_hit;
15376 ops->create_sals_from_location = bkpt_create_sals_from_location;
15377 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15378 ops->decode_location = bkpt_decode_location;
15379
15380 /* The breakpoint_ops structure to be used in regular breakpoints. */
15381 ops = &bkpt_breakpoint_ops;
15382 *ops = bkpt_base_breakpoint_ops;
15383 ops->re_set = bkpt_re_set;
15384 ops->resources_needed = bkpt_resources_needed;
15385 ops->print_it = bkpt_print_it;
15386 ops->print_mention = bkpt_print_mention;
15387 ops->print_recreate = bkpt_print_recreate;
15388
15389 /* Ranged breakpoints. */
15390 ops = &ranged_breakpoint_ops;
15391 *ops = bkpt_breakpoint_ops;
15392 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15393 ops->resources_needed = resources_needed_ranged_breakpoint;
15394 ops->print_it = print_it_ranged_breakpoint;
15395 ops->print_one = print_one_ranged_breakpoint;
15396 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15397 ops->print_mention = print_mention_ranged_breakpoint;
15398 ops->print_recreate = print_recreate_ranged_breakpoint;
15399
15400 /* Internal breakpoints. */
15401 ops = &internal_breakpoint_ops;
15402 *ops = bkpt_base_breakpoint_ops;
15403 ops->re_set = internal_bkpt_re_set;
15404 ops->check_status = internal_bkpt_check_status;
15405 ops->print_it = internal_bkpt_print_it;
15406 ops->print_mention = internal_bkpt_print_mention;
15407
15408 /* Momentary breakpoints. */
15409 ops = &momentary_breakpoint_ops;
15410 *ops = bkpt_base_breakpoint_ops;
15411 ops->re_set = momentary_bkpt_re_set;
15412 ops->check_status = momentary_bkpt_check_status;
15413 ops->print_it = momentary_bkpt_print_it;
15414 ops->print_mention = momentary_bkpt_print_mention;
15415
15416 /* Probe breakpoints. */
15417 ops = &bkpt_probe_breakpoint_ops;
15418 *ops = bkpt_breakpoint_ops;
15419 ops->insert_location = bkpt_probe_insert_location;
15420 ops->remove_location = bkpt_probe_remove_location;
15421 ops->create_sals_from_location = bkpt_probe_create_sals_from_location;
15422 ops->decode_location = bkpt_probe_decode_location;
15423
15424 /* Watchpoints. */
15425 ops = &watchpoint_breakpoint_ops;
15426 *ops = base_breakpoint_ops;
15427 ops->re_set = re_set_watchpoint;
15428 ops->insert_location = insert_watchpoint;
15429 ops->remove_location = remove_watchpoint;
15430 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15431 ops->check_status = check_status_watchpoint;
15432 ops->resources_needed = resources_needed_watchpoint;
15433 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15434 ops->print_it = print_it_watchpoint;
15435 ops->print_mention = print_mention_watchpoint;
15436 ops->print_recreate = print_recreate_watchpoint;
15437 ops->explains_signal = explains_signal_watchpoint;
15438
15439 /* Masked watchpoints. */
15440 ops = &masked_watchpoint_breakpoint_ops;
15441 *ops = watchpoint_breakpoint_ops;
15442 ops->insert_location = insert_masked_watchpoint;
15443 ops->remove_location = remove_masked_watchpoint;
15444 ops->resources_needed = resources_needed_masked_watchpoint;
15445 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15446 ops->print_it = print_it_masked_watchpoint;
15447 ops->print_one_detail = print_one_detail_masked_watchpoint;
15448 ops->print_mention = print_mention_masked_watchpoint;
15449 ops->print_recreate = print_recreate_masked_watchpoint;
15450
15451 /* Tracepoints. */
15452 ops = &tracepoint_breakpoint_ops;
15453 *ops = base_breakpoint_ops;
15454 ops->re_set = tracepoint_re_set;
15455 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15456 ops->print_one_detail = tracepoint_print_one_detail;
15457 ops->print_mention = tracepoint_print_mention;
15458 ops->print_recreate = tracepoint_print_recreate;
15459 ops->create_sals_from_location = tracepoint_create_sals_from_location;
15460 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15461 ops->decode_location = tracepoint_decode_location;
15462
15463 /* Probe tracepoints. */
15464 ops = &tracepoint_probe_breakpoint_ops;
15465 *ops = tracepoint_breakpoint_ops;
15466 ops->create_sals_from_location = tracepoint_probe_create_sals_from_location;
15467 ops->decode_location = tracepoint_probe_decode_location;
15468
15469 /* Static tracepoints with marker (`-m'). */
15470 ops = &strace_marker_breakpoint_ops;
15471 *ops = tracepoint_breakpoint_ops;
15472 ops->create_sals_from_location = strace_marker_create_sals_from_location;
15473 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15474 ops->decode_location = strace_marker_decode_location;
15475
15476 /* Fork catchpoints. */
15477 ops = &catch_fork_breakpoint_ops;
15478 *ops = base_breakpoint_ops;
15479 ops->insert_location = insert_catch_fork;
15480 ops->remove_location = remove_catch_fork;
15481 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15482 ops->print_it = print_it_catch_fork;
15483 ops->print_one = print_one_catch_fork;
15484 ops->print_mention = print_mention_catch_fork;
15485 ops->print_recreate = print_recreate_catch_fork;
15486
15487 /* Vfork catchpoints. */
15488 ops = &catch_vfork_breakpoint_ops;
15489 *ops = base_breakpoint_ops;
15490 ops->insert_location = insert_catch_vfork;
15491 ops->remove_location = remove_catch_vfork;
15492 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15493 ops->print_it = print_it_catch_vfork;
15494 ops->print_one = print_one_catch_vfork;
15495 ops->print_mention = print_mention_catch_vfork;
15496 ops->print_recreate = print_recreate_catch_vfork;
15497
15498 /* Exec catchpoints. */
15499 ops = &catch_exec_breakpoint_ops;
15500 *ops = base_breakpoint_ops;
15501 ops->insert_location = insert_catch_exec;
15502 ops->remove_location = remove_catch_exec;
15503 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15504 ops->print_it = print_it_catch_exec;
15505 ops->print_one = print_one_catch_exec;
15506 ops->print_mention = print_mention_catch_exec;
15507 ops->print_recreate = print_recreate_catch_exec;
15508
15509 /* Solib-related catchpoints. */
15510 ops = &catch_solib_breakpoint_ops;
15511 *ops = base_breakpoint_ops;
15512 ops->insert_location = insert_catch_solib;
15513 ops->remove_location = remove_catch_solib;
15514 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15515 ops->check_status = check_status_catch_solib;
15516 ops->print_it = print_it_catch_solib;
15517 ops->print_one = print_one_catch_solib;
15518 ops->print_mention = print_mention_catch_solib;
15519 ops->print_recreate = print_recreate_catch_solib;
15520
15521 ops = &dprintf_breakpoint_ops;
15522 *ops = bkpt_base_breakpoint_ops;
15523 ops->re_set = dprintf_re_set;
15524 ops->resources_needed = bkpt_resources_needed;
15525 ops->print_it = bkpt_print_it;
15526 ops->print_mention = bkpt_print_mention;
15527 ops->print_recreate = dprintf_print_recreate;
15528 ops->after_condition_true = dprintf_after_condition_true;
15529 ops->breakpoint_hit = dprintf_breakpoint_hit;
15530 }
15531
15532 /* Chain containing all defined "enable breakpoint" subcommands. */
15533
15534 static struct cmd_list_element *enablebreaklist = NULL;
15535
15536 void
15537 _initialize_breakpoint (void)
15538 {
15539 struct cmd_list_element *c;
15540
15541 initialize_breakpoint_ops ();
15542
15543 gdb::observers::solib_unloaded.attach (disable_breakpoints_in_unloaded_shlib);
15544 gdb::observers::free_objfile.attach (disable_breakpoints_in_freed_objfile);
15545 gdb::observers::memory_changed.attach (invalidate_bp_value_on_memory_change);
15546
15547 breakpoint_objfile_key
15548 = register_objfile_data_with_cleanup (NULL, free_breakpoint_objfile_data);
15549
15550 breakpoint_chain = 0;
15551 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15552 before a breakpoint is set. */
15553 breakpoint_count = 0;
15554
15555 tracepoint_count = 0;
15556
15557 add_com ("ignore", class_breakpoint, ignore_command, _("\
15558 Set ignore-count of breakpoint number N to COUNT.\n\
15559 Usage is `ignore N COUNT'."));
15560
15561 add_com ("commands", class_breakpoint, commands_command, _("\
15562 Set commands to be executed when the given breakpoints are hit.\n\
15563 Give a space-separated breakpoint list as argument after \"commands\".\n\
15564 A list element can be a breakpoint number (e.g. `5') or a range of numbers\n\
15565 (e.g. `5-7').\n\
15566 With no argument, the targeted breakpoint is the last one set.\n\
15567 The commands themselves follow starting on the next line.\n\
15568 Type a line containing \"end\" to indicate the end of them.\n\
15569 Give \"silent\" as the first line to make the breakpoint silent;\n\
15570 then no output is printed when it is hit, except what the commands print."));
15571
15572 c = add_com ("condition", class_breakpoint, condition_command, _("\
15573 Specify breakpoint number N to break only if COND is true.\n\
15574 Usage is `condition N COND', where N is an integer and COND is an\n\
15575 expression to be evaluated whenever breakpoint N is reached."));
15576 set_cmd_completer (c, condition_completer);
15577
15578 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15579 Set a temporary breakpoint.\n\
15580 Like \"break\" except the breakpoint is only temporary,\n\
15581 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15582 by using \"enable delete\" on the breakpoint number.\n\
15583 \n"
15584 BREAK_ARGS_HELP ("tbreak")));
15585 set_cmd_completer (c, location_completer);
15586
15587 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15588 Set a hardware assisted breakpoint.\n\
15589 Like \"break\" except the breakpoint requires hardware support,\n\
15590 some target hardware may not have this support.\n\
15591 \n"
15592 BREAK_ARGS_HELP ("hbreak")));
15593 set_cmd_completer (c, location_completer);
15594
15595 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15596 Set a temporary hardware assisted breakpoint.\n\
15597 Like \"hbreak\" except the breakpoint is only temporary,\n\
15598 so it will be deleted when hit.\n\
15599 \n"
15600 BREAK_ARGS_HELP ("thbreak")));
15601 set_cmd_completer (c, location_completer);
15602
15603 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15604 Enable some breakpoints.\n\
15605 Give breakpoint numbers (separated by spaces) as arguments.\n\
15606 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15607 This is used to cancel the effect of the \"disable\" command.\n\
15608 With a subcommand you can enable temporarily."),
15609 &enablelist, "enable ", 1, &cmdlist);
15610
15611 add_com_alias ("en", "enable", class_breakpoint, 1);
15612
15613 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
15614 Enable some breakpoints.\n\
15615 Give breakpoint numbers (separated by spaces) as arguments.\n\
15616 This is used to cancel the effect of the \"disable\" command.\n\
15617 May be abbreviated to simply \"enable\".\n"),
15618 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
15619
15620 add_cmd ("once", no_class, enable_once_command, _("\
15621 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15622 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15623 &enablebreaklist);
15624
15625 add_cmd ("delete", no_class, enable_delete_command, _("\
15626 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15627 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15628 &enablebreaklist);
15629
15630 add_cmd ("count", no_class, enable_count_command, _("\
15631 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15632 If a breakpoint is hit while enabled in this fashion,\n\
15633 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15634 &enablebreaklist);
15635
15636 add_cmd ("delete", no_class, enable_delete_command, _("\
15637 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
15638 If a breakpoint is hit while enabled in this fashion, it is deleted."),
15639 &enablelist);
15640
15641 add_cmd ("once", no_class, enable_once_command, _("\
15642 Enable breakpoints for one hit. Give breakpoint numbers.\n\
15643 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
15644 &enablelist);
15645
15646 add_cmd ("count", no_class, enable_count_command, _("\
15647 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
15648 If a breakpoint is hit while enabled in this fashion,\n\
15649 the count is decremented; when it reaches zero, the breakpoint is disabled."),
15650 &enablelist);
15651
15652 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
15653 Disable some breakpoints.\n\
15654 Arguments are breakpoint numbers with spaces in between.\n\
15655 To disable all breakpoints, give no argument.\n\
15656 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
15657 &disablelist, "disable ", 1, &cmdlist);
15658 add_com_alias ("dis", "disable", class_breakpoint, 1);
15659 add_com_alias ("disa", "disable", class_breakpoint, 1);
15660
15661 add_cmd ("breakpoints", class_alias, disable_command, _("\
15662 Disable some breakpoints.\n\
15663 Arguments are breakpoint numbers with spaces in between.\n\
15664 To disable all breakpoints, give no argument.\n\
15665 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
15666 This command may be abbreviated \"disable\"."),
15667 &disablelist);
15668
15669 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
15670 Delete some breakpoints or auto-display expressions.\n\
15671 Arguments are breakpoint numbers with spaces in between.\n\
15672 To delete all breakpoints, give no argument.\n\
15673 \n\
15674 Also a prefix command for deletion of other GDB objects.\n\
15675 The \"unset\" command is also an alias for \"delete\"."),
15676 &deletelist, "delete ", 1, &cmdlist);
15677 add_com_alias ("d", "delete", class_breakpoint, 1);
15678 add_com_alias ("del", "delete", class_breakpoint, 1);
15679
15680 add_cmd ("breakpoints", class_alias, delete_command, _("\
15681 Delete some breakpoints or auto-display expressions.\n\
15682 Arguments are breakpoint numbers with spaces in between.\n\
15683 To delete all breakpoints, give no argument.\n\
15684 This command may be abbreviated \"delete\"."),
15685 &deletelist);
15686
15687 add_com ("clear", class_breakpoint, clear_command, _("\
15688 Clear breakpoint at specified location.\n\
15689 Argument may be a linespec, explicit, or address location as described below.\n\
15690 \n\
15691 With no argument, clears all breakpoints in the line that the selected frame\n\
15692 is executing in.\n"
15693 "\n" LOCATION_HELP_STRING "\n\
15694 See also the \"delete\" command which clears breakpoints by number."));
15695 add_com_alias ("cl", "clear", class_breakpoint, 1);
15696
15697 c = add_com ("break", class_breakpoint, break_command, _("\
15698 Set breakpoint at specified location.\n"
15699 BREAK_ARGS_HELP ("break")));
15700 set_cmd_completer (c, location_completer);
15701
15702 add_com_alias ("b", "break", class_run, 1);
15703 add_com_alias ("br", "break", class_run, 1);
15704 add_com_alias ("bre", "break", class_run, 1);
15705 add_com_alias ("brea", "break", class_run, 1);
15706
15707 if (dbx_commands)
15708 {
15709 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
15710 Break in function/address or break at a line in the current file."),
15711 &stoplist, "stop ", 1, &cmdlist);
15712 add_cmd ("in", class_breakpoint, stopin_command,
15713 _("Break in function or address."), &stoplist);
15714 add_cmd ("at", class_breakpoint, stopat_command,
15715 _("Break at a line in the current file."), &stoplist);
15716 add_com ("status", class_info, info_breakpoints_command, _("\
15717 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
15718 The \"Type\" column indicates one of:\n\
15719 \tbreakpoint - normal breakpoint\n\
15720 \twatchpoint - watchpoint\n\
15721 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15722 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15723 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15724 address and file/line number respectively.\n\
15725 \n\
15726 Convenience variable \"$_\" and default examine address for \"x\"\n\
15727 are set to the address of the last breakpoint listed unless the command\n\
15728 is prefixed with \"server \".\n\n\
15729 Convenience variable \"$bpnum\" contains the number of the last\n\
15730 breakpoint set."));
15731 }
15732
15733 add_info ("breakpoints", info_breakpoints_command, _("\
15734 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
15735 The \"Type\" column indicates one of:\n\
15736 \tbreakpoint - normal breakpoint\n\
15737 \twatchpoint - watchpoint\n\
15738 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15739 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15740 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15741 address and file/line number respectively.\n\
15742 \n\
15743 Convenience variable \"$_\" and default examine address for \"x\"\n\
15744 are set to the address of the last breakpoint listed unless the command\n\
15745 is prefixed with \"server \".\n\n\
15746 Convenience variable \"$bpnum\" contains the number of the last\n\
15747 breakpoint set."));
15748
15749 add_info_alias ("b", "breakpoints", 1);
15750
15751 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
15752 Status of all breakpoints, or breakpoint number NUMBER.\n\
15753 The \"Type\" column indicates one of:\n\
15754 \tbreakpoint - normal breakpoint\n\
15755 \twatchpoint - watchpoint\n\
15756 \tlongjmp - internal breakpoint used to step through longjmp()\n\
15757 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
15758 \tuntil - internal breakpoint used by the \"until\" command\n\
15759 \tfinish - internal breakpoint used by the \"finish\" command\n\
15760 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
15761 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
15762 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
15763 address and file/line number respectively.\n\
15764 \n\
15765 Convenience variable \"$_\" and default examine address for \"x\"\n\
15766 are set to the address of the last breakpoint listed unless the command\n\
15767 is prefixed with \"server \".\n\n\
15768 Convenience variable \"$bpnum\" contains the number of the last\n\
15769 breakpoint set."),
15770 &maintenanceinfolist);
15771
15772 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
15773 Set catchpoints to catch events."),
15774 &catch_cmdlist, "catch ",
15775 0/*allow-unknown*/, &cmdlist);
15776
15777 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
15778 Set temporary catchpoints to catch events."),
15779 &tcatch_cmdlist, "tcatch ",
15780 0/*allow-unknown*/, &cmdlist);
15781
15782 add_catch_command ("fork", _("Catch calls to fork."),
15783 catch_fork_command_1,
15784 NULL,
15785 (void *) (uintptr_t) catch_fork_permanent,
15786 (void *) (uintptr_t) catch_fork_temporary);
15787 add_catch_command ("vfork", _("Catch calls to vfork."),
15788 catch_fork_command_1,
15789 NULL,
15790 (void *) (uintptr_t) catch_vfork_permanent,
15791 (void *) (uintptr_t) catch_vfork_temporary);
15792 add_catch_command ("exec", _("Catch calls to exec."),
15793 catch_exec_command_1,
15794 NULL,
15795 CATCH_PERMANENT,
15796 CATCH_TEMPORARY);
15797 add_catch_command ("load", _("Catch loads of shared libraries.\n\
15798 Usage: catch load [REGEX]\n\
15799 If REGEX is given, only stop for libraries matching the regular expression."),
15800 catch_load_command_1,
15801 NULL,
15802 CATCH_PERMANENT,
15803 CATCH_TEMPORARY);
15804 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
15805 Usage: catch unload [REGEX]\n\
15806 If REGEX is given, only stop for libraries matching the regular expression."),
15807 catch_unload_command_1,
15808 NULL,
15809 CATCH_PERMANENT,
15810 CATCH_TEMPORARY);
15811
15812 c = add_com ("watch", class_breakpoint, watch_command, _("\
15813 Set a watchpoint for an expression.\n\
15814 Usage: watch [-l|-location] EXPRESSION\n\
15815 A watchpoint stops execution of your program whenever the value of\n\
15816 an expression changes.\n\
15817 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15818 the memory to which it refers."));
15819 set_cmd_completer (c, expression_completer);
15820
15821 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
15822 Set a read watchpoint for an expression.\n\
15823 Usage: rwatch [-l|-location] EXPRESSION\n\
15824 A watchpoint stops execution of your program whenever the value of\n\
15825 an expression is read.\n\
15826 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15827 the memory to which it refers."));
15828 set_cmd_completer (c, expression_completer);
15829
15830 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
15831 Set a watchpoint for an expression.\n\
15832 Usage: awatch [-l|-location] EXPRESSION\n\
15833 A watchpoint stops execution of your program whenever the value of\n\
15834 an expression is either read or written.\n\
15835 If -l or -location is given, this evaluates EXPRESSION and watches\n\
15836 the memory to which it refers."));
15837 set_cmd_completer (c, expression_completer);
15838
15839 add_info ("watchpoints", info_watchpoints_command, _("\
15840 Status of specified watchpoints (all watchpoints if no argument)."));
15841
15842 /* XXX: cagney/2005-02-23: This should be a boolean, and should
15843 respond to changes - contrary to the description. */
15844 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
15845 &can_use_hw_watchpoints, _("\
15846 Set debugger's willingness to use watchpoint hardware."), _("\
15847 Show debugger's willingness to use watchpoint hardware."), _("\
15848 If zero, gdb will not use hardware for new watchpoints, even if\n\
15849 such is available. (However, any hardware watchpoints that were\n\
15850 created before setting this to nonzero, will continue to use watchpoint\n\
15851 hardware.)"),
15852 NULL,
15853 show_can_use_hw_watchpoints,
15854 &setlist, &showlist);
15855
15856 can_use_hw_watchpoints = 1;
15857
15858 /* Tracepoint manipulation commands. */
15859
15860 c = add_com ("trace", class_breakpoint, trace_command, _("\
15861 Set a tracepoint at specified location.\n\
15862 \n"
15863 BREAK_ARGS_HELP ("trace") "\n\
15864 Do \"help tracepoints\" for info on other tracepoint commands."));
15865 set_cmd_completer (c, location_completer);
15866
15867 add_com_alias ("tp", "trace", class_alias, 0);
15868 add_com_alias ("tr", "trace", class_alias, 1);
15869 add_com_alias ("tra", "trace", class_alias, 1);
15870 add_com_alias ("trac", "trace", class_alias, 1);
15871
15872 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
15873 Set a fast tracepoint at specified location.\n\
15874 \n"
15875 BREAK_ARGS_HELP ("ftrace") "\n\
15876 Do \"help tracepoints\" for info on other tracepoint commands."));
15877 set_cmd_completer (c, location_completer);
15878
15879 c = add_com ("strace", class_breakpoint, strace_command, _("\
15880 Set a static tracepoint at location or marker.\n\
15881 \n\
15882 strace [LOCATION] [if CONDITION]\n\
15883 LOCATION may be a linespec, explicit, or address location (described below) \n\
15884 or -m MARKER_ID.\n\n\
15885 If a marker id is specified, probe the marker with that name. With\n\
15886 no LOCATION, uses current execution address of the selected stack frame.\n\
15887 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
15888 This collects arbitrary user data passed in the probe point call to the\n\
15889 tracing library. You can inspect it when analyzing the trace buffer,\n\
15890 by printing the $_sdata variable like any other convenience variable.\n\
15891 \n\
15892 CONDITION is a boolean expression.\n\
15893 \n" LOCATION_HELP_STRING "\n\
15894 Multiple tracepoints at one place are permitted, and useful if their\n\
15895 conditions are different.\n\
15896 \n\
15897 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
15898 Do \"help tracepoints\" for info on other tracepoint commands."));
15899 set_cmd_completer (c, location_completer);
15900
15901 add_info ("tracepoints", info_tracepoints_command, _("\
15902 Status of specified tracepoints (all tracepoints if no argument).\n\
15903 Convenience variable \"$tpnum\" contains the number of the\n\
15904 last tracepoint set."));
15905
15906 add_info_alias ("tp", "tracepoints", 1);
15907
15908 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
15909 Delete specified tracepoints.\n\
15910 Arguments are tracepoint numbers, separated by spaces.\n\
15911 No argument means delete all tracepoints."),
15912 &deletelist);
15913 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
15914
15915 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
15916 Disable specified tracepoints.\n\
15917 Arguments are tracepoint numbers, separated by spaces.\n\
15918 No argument means disable all tracepoints."),
15919 &disablelist);
15920 deprecate_cmd (c, "disable");
15921
15922 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
15923 Enable specified tracepoints.\n\
15924 Arguments are tracepoint numbers, separated by spaces.\n\
15925 No argument means enable all tracepoints."),
15926 &enablelist);
15927 deprecate_cmd (c, "enable");
15928
15929 add_com ("passcount", class_trace, trace_pass_command, _("\
15930 Set the passcount for a tracepoint.\n\
15931 The trace will end when the tracepoint has been passed 'count' times.\n\
15932 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
15933 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
15934
15935 add_prefix_cmd ("save", class_breakpoint, save_command,
15936 _("Save breakpoint definitions as a script."),
15937 &save_cmdlist, "save ",
15938 0/*allow-unknown*/, &cmdlist);
15939
15940 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
15941 Save current breakpoint definitions as a script.\n\
15942 This includes all types of breakpoints (breakpoints, watchpoints,\n\
15943 catchpoints, tracepoints). Use the 'source' command in another debug\n\
15944 session to restore them."),
15945 &save_cmdlist);
15946 set_cmd_completer (c, filename_completer);
15947
15948 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
15949 Save current tracepoint definitions as a script.\n\
15950 Use the 'source' command in another debug session to restore them."),
15951 &save_cmdlist);
15952 set_cmd_completer (c, filename_completer);
15953
15954 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
15955 deprecate_cmd (c, "save tracepoints");
15956
15957 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
15958 Breakpoint specific settings\n\
15959 Configure various breakpoint-specific variables such as\n\
15960 pending breakpoint behavior"),
15961 &breakpoint_set_cmdlist, "set breakpoint ",
15962 0/*allow-unknown*/, &setlist);
15963 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
15964 Breakpoint specific settings\n\
15965 Configure various breakpoint-specific variables such as\n\
15966 pending breakpoint behavior"),
15967 &breakpoint_show_cmdlist, "show breakpoint ",
15968 0/*allow-unknown*/, &showlist);
15969
15970 add_setshow_auto_boolean_cmd ("pending", no_class,
15971 &pending_break_support, _("\
15972 Set debugger's behavior regarding pending breakpoints."), _("\
15973 Show debugger's behavior regarding pending breakpoints."), _("\
15974 If on, an unrecognized breakpoint location will cause gdb to create a\n\
15975 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
15976 an error. If auto, an unrecognized breakpoint location results in a\n\
15977 user-query to see if a pending breakpoint should be created."),
15978 NULL,
15979 show_pending_break_support,
15980 &breakpoint_set_cmdlist,
15981 &breakpoint_show_cmdlist);
15982
15983 pending_break_support = AUTO_BOOLEAN_AUTO;
15984
15985 add_setshow_boolean_cmd ("auto-hw", no_class,
15986 &automatic_hardware_breakpoints, _("\
15987 Set automatic usage of hardware breakpoints."), _("\
15988 Show automatic usage of hardware breakpoints."), _("\
15989 If set, the debugger will automatically use hardware breakpoints for\n\
15990 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
15991 a warning will be emitted for such breakpoints."),
15992 NULL,
15993 show_automatic_hardware_breakpoints,
15994 &breakpoint_set_cmdlist,
15995 &breakpoint_show_cmdlist);
15996
15997 add_setshow_boolean_cmd ("always-inserted", class_support,
15998 &always_inserted_mode, _("\
15999 Set mode for inserting breakpoints."), _("\
16000 Show mode for inserting breakpoints."), _("\
16001 When this mode is on, breakpoints are inserted immediately as soon as\n\
16002 they're created, kept inserted even when execution stops, and removed\n\
16003 only when the user deletes them. When this mode is off (the default),\n\
16004 breakpoints are inserted only when execution continues, and removed\n\
16005 when execution stops."),
16006 NULL,
16007 &show_always_inserted_mode,
16008 &breakpoint_set_cmdlist,
16009 &breakpoint_show_cmdlist);
16010
16011 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16012 condition_evaluation_enums,
16013 &condition_evaluation_mode_1, _("\
16014 Set mode of breakpoint condition evaluation."), _("\
16015 Show mode of breakpoint condition evaluation."), _("\
16016 When this is set to \"host\", breakpoint conditions will be\n\
16017 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16018 breakpoint conditions will be downloaded to the target (if the target\n\
16019 supports such feature) and conditions will be evaluated on the target's side.\n\
16020 If this is set to \"auto\" (default), this will be automatically set to\n\
16021 \"target\" if it supports condition evaluation, otherwise it will\n\
16022 be set to \"gdb\""),
16023 &set_condition_evaluation_mode,
16024 &show_condition_evaluation_mode,
16025 &breakpoint_set_cmdlist,
16026 &breakpoint_show_cmdlist);
16027
16028 add_com ("break-range", class_breakpoint, break_range_command, _("\
16029 Set a breakpoint for an address range.\n\
16030 break-range START-LOCATION, END-LOCATION\n\
16031 where START-LOCATION and END-LOCATION can be one of the following:\n\
16032 LINENUM, for that line in the current file,\n\
16033 FILE:LINENUM, for that line in that file,\n\
16034 +OFFSET, for that number of lines after the current line\n\
16035 or the start of the range\n\
16036 FUNCTION, for the first line in that function,\n\
16037 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16038 *ADDRESS, for the instruction at that address.\n\
16039 \n\
16040 The breakpoint will stop execution of the inferior whenever it executes\n\
16041 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16042 range (including START-LOCATION and END-LOCATION)."));
16043
16044 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16045 Set a dynamic printf at specified location.\n\
16046 dprintf location,format string,arg1,arg2,...\n\
16047 location may be a linespec, explicit, or address location.\n"
16048 "\n" LOCATION_HELP_STRING));
16049 set_cmd_completer (c, location_completer);
16050
16051 add_setshow_enum_cmd ("dprintf-style", class_support,
16052 dprintf_style_enums, &dprintf_style, _("\
16053 Set the style of usage for dynamic printf."), _("\
16054 Show the style of usage for dynamic printf."), _("\
16055 This setting chooses how GDB will do a dynamic printf.\n\
16056 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16057 console, as with the \"printf\" command.\n\
16058 If the value is \"call\", the print is done by calling a function in your\n\
16059 program; by default printf(), but you can choose a different function or\n\
16060 output stream by setting dprintf-function and dprintf-channel."),
16061 update_dprintf_commands, NULL,
16062 &setlist, &showlist);
16063
16064 dprintf_function = xstrdup ("printf");
16065 add_setshow_string_cmd ("dprintf-function", class_support,
16066 &dprintf_function, _("\
16067 Set the function to use for dynamic printf"), _("\
16068 Show the function to use for dynamic printf"), NULL,
16069 update_dprintf_commands, NULL,
16070 &setlist, &showlist);
16071
16072 dprintf_channel = xstrdup ("");
16073 add_setshow_string_cmd ("dprintf-channel", class_support,
16074 &dprintf_channel, _("\
16075 Set the channel to use for dynamic printf"), _("\
16076 Show the channel to use for dynamic printf"), NULL,
16077 update_dprintf_commands, NULL,
16078 &setlist, &showlist);
16079
16080 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16081 &disconnected_dprintf, _("\
16082 Set whether dprintf continues after GDB disconnects."), _("\
16083 Show whether dprintf continues after GDB disconnects."), _("\
16084 Use this to let dprintf commands continue to hit and produce output\n\
16085 even if GDB disconnects or detaches from the target."),
16086 NULL,
16087 NULL,
16088 &setlist, &showlist);
16089
16090 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16091 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16092 (target agent only) This is useful for formatted output in user-defined commands."));
16093
16094 automatic_hardware_breakpoints = 1;
16095
16096 gdb::observers::about_to_proceed.attach (breakpoint_about_to_proceed);
16097 gdb::observers::thread_exit.attach (remove_threaded_breakpoints);
16098 }