2013-06-25 Yao Qi <yao@codesourcery.com>
[binutils-gdb.git] / gdb / breakpoint.c
1 /* Everything about breakpoints, for GDB.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <ctype.h>
23 #include "hashtab.h"
24 #include "symtab.h"
25 #include "frame.h"
26 #include "breakpoint.h"
27 #include "tracepoint.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "value.h"
33 #include "command.h"
34 #include "inferior.h"
35 #include "gdbthread.h"
36 #include "target.h"
37 #include "language.h"
38 #include "gdb_string.h"
39 #include "gdb-demangle.h"
40 #include "filenames.h"
41 #include "annotate.h"
42 #include "symfile.h"
43 #include "objfiles.h"
44 #include "source.h"
45 #include "linespec.h"
46 #include "completer.h"
47 #include "gdb.h"
48 #include "ui-out.h"
49 #include "cli/cli-script.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "solib.h"
53 #include "solist.h"
54 #include "observer.h"
55 #include "exceptions.h"
56 #include "memattr.h"
57 #include "ada-lang.h"
58 #include "top.h"
59 #include "valprint.h"
60 #include "jit.h"
61 #include "xml-syscall.h"
62 #include "parser-defs.h"
63 #include "gdb_regex.h"
64 #include "probe.h"
65 #include "cli/cli-utils.h"
66 #include "continuations.h"
67 #include "stack.h"
68 #include "skip.h"
69 #include "gdb_regex.h"
70 #include "ax-gdb.h"
71 #include "dummy-frame.h"
72
73 #include "format.h"
74
75 /* readline include files */
76 #include "readline/readline.h"
77 #include "readline/history.h"
78
79 /* readline defines this. */
80 #undef savestring
81
82 #include "mi/mi-common.h"
83 #include "python/python.h"
84
85 /* Enums for exception-handling support. */
86 enum exception_event_kind
87 {
88 EX_EVENT_THROW,
89 EX_EVENT_RETHROW,
90 EX_EVENT_CATCH
91 };
92
93 /* Prototypes for local functions. */
94
95 static void enable_delete_command (char *, int);
96
97 static void enable_once_command (char *, int);
98
99 static void enable_count_command (char *, int);
100
101 static void disable_command (char *, int);
102
103 static void enable_command (char *, int);
104
105 static void map_breakpoint_numbers (char *, void (*) (struct breakpoint *,
106 void *),
107 void *);
108
109 static void ignore_command (char *, int);
110
111 static int breakpoint_re_set_one (void *);
112
113 static void breakpoint_re_set_default (struct breakpoint *);
114
115 static void create_sals_from_address_default (char **,
116 struct linespec_result *,
117 enum bptype, char *,
118 char **);
119
120 static void create_breakpoints_sal_default (struct gdbarch *,
121 struct linespec_result *,
122 char *, char *, enum bptype,
123 enum bpdisp, int, int,
124 int,
125 const struct breakpoint_ops *,
126 int, int, int, unsigned);
127
128 static void decode_linespec_default (struct breakpoint *, char **,
129 struct symtabs_and_lines *);
130
131 static void clear_command (char *, int);
132
133 static void catch_command (char *, int);
134
135 static int can_use_hardware_watchpoint (struct value *);
136
137 static void break_command_1 (char *, int, int);
138
139 static void mention (struct breakpoint *);
140
141 static struct breakpoint *set_raw_breakpoint_without_location (struct gdbarch *,
142 enum bptype,
143 const struct breakpoint_ops *);
144 static struct bp_location *add_location_to_breakpoint (struct breakpoint *,
145 const struct symtab_and_line *);
146
147 /* This function is used in gdbtk sources and thus can not be made
148 static. */
149 struct breakpoint *set_raw_breakpoint (struct gdbarch *gdbarch,
150 struct symtab_and_line,
151 enum bptype,
152 const struct breakpoint_ops *);
153
154 static struct breakpoint *
155 momentary_breakpoint_from_master (struct breakpoint *orig,
156 enum bptype type,
157 const struct breakpoint_ops *ops);
158
159 static void breakpoint_adjustment_warning (CORE_ADDR, CORE_ADDR, int, int);
160
161 static CORE_ADDR adjust_breakpoint_address (struct gdbarch *gdbarch,
162 CORE_ADDR bpaddr,
163 enum bptype bptype);
164
165 static void describe_other_breakpoints (struct gdbarch *,
166 struct program_space *, CORE_ADDR,
167 struct obj_section *, int);
168
169 static int breakpoint_address_match (struct address_space *aspace1,
170 CORE_ADDR addr1,
171 struct address_space *aspace2,
172 CORE_ADDR addr2);
173
174 static int watchpoint_locations_match (struct bp_location *loc1,
175 struct bp_location *loc2);
176
177 static int breakpoint_location_address_match (struct bp_location *bl,
178 struct address_space *aspace,
179 CORE_ADDR addr);
180
181 static void breakpoints_info (char *, int);
182
183 static void watchpoints_info (char *, int);
184
185 static int breakpoint_1 (char *, int,
186 int (*) (const struct breakpoint *));
187
188 static int breakpoint_cond_eval (void *);
189
190 static void cleanup_executing_breakpoints (void *);
191
192 static void commands_command (char *, int);
193
194 static void condition_command (char *, int);
195
196 typedef enum
197 {
198 mark_inserted,
199 mark_uninserted
200 }
201 insertion_state_t;
202
203 static int remove_breakpoint (struct bp_location *, insertion_state_t);
204 static int remove_breakpoint_1 (struct bp_location *, insertion_state_t);
205
206 static enum print_stop_action print_bp_stop_message (bpstat bs);
207
208 static int watchpoint_check (void *);
209
210 static void maintenance_info_breakpoints (char *, int);
211
212 static int hw_breakpoint_used_count (void);
213
214 static int hw_watchpoint_use_count (struct breakpoint *);
215
216 static int hw_watchpoint_used_count_others (struct breakpoint *except,
217 enum bptype type,
218 int *other_type_used);
219
220 static void hbreak_command (char *, int);
221
222 static void thbreak_command (char *, int);
223
224 static void enable_breakpoint_disp (struct breakpoint *, enum bpdisp,
225 int count);
226
227 static void stop_command (char *arg, int from_tty);
228
229 static void stopin_command (char *arg, int from_tty);
230
231 static void stopat_command (char *arg, int from_tty);
232
233 static void tcatch_command (char *arg, int from_tty);
234
235 static void detach_single_step_breakpoints (void);
236
237 static int single_step_breakpoint_inserted_here_p (struct address_space *,
238 CORE_ADDR pc);
239
240 static void free_bp_location (struct bp_location *loc);
241 static void incref_bp_location (struct bp_location *loc);
242 static void decref_bp_location (struct bp_location **loc);
243
244 static struct bp_location *allocate_bp_location (struct breakpoint *bpt);
245
246 static void update_global_location_list (int);
247
248 static void update_global_location_list_nothrow (int);
249
250 static int is_hardware_watchpoint (const struct breakpoint *bpt);
251
252 static void insert_breakpoint_locations (void);
253
254 static int syscall_catchpoint_p (struct breakpoint *b);
255
256 static void tracepoints_info (char *, int);
257
258 static void delete_trace_command (char *, int);
259
260 static void enable_trace_command (char *, int);
261
262 static void disable_trace_command (char *, int);
263
264 static void trace_pass_command (char *, int);
265
266 static void set_tracepoint_count (int num);
267
268 static int is_masked_watchpoint (const struct breakpoint *b);
269
270 static struct bp_location **get_first_locp_gte_addr (CORE_ADDR address);
271
272 /* Return 1 if B refers to a static tracepoint set by marker ("-m"), zero
273 otherwise. */
274
275 static int strace_marker_p (struct breakpoint *b);
276
277 /* The abstract base class all breakpoint_ops structures inherit
278 from. */
279 struct breakpoint_ops base_breakpoint_ops;
280
281 /* The breakpoint_ops structure to be inherited by all breakpoint_ops
282 that are implemented on top of software or hardware breakpoints
283 (user breakpoints, internal and momentary breakpoints, etc.). */
284 static struct breakpoint_ops bkpt_base_breakpoint_ops;
285
286 /* Internal breakpoints class type. */
287 static struct breakpoint_ops internal_breakpoint_ops;
288
289 /* Momentary breakpoints class type. */
290 static struct breakpoint_ops momentary_breakpoint_ops;
291
292 /* Momentary breakpoints for bp_longjmp and bp_exception class type. */
293 static struct breakpoint_ops longjmp_breakpoint_ops;
294
295 /* The breakpoint_ops structure to be used in regular user created
296 breakpoints. */
297 struct breakpoint_ops bkpt_breakpoint_ops;
298
299 /* Breakpoints set on probes. */
300 static struct breakpoint_ops bkpt_probe_breakpoint_ops;
301
302 /* Dynamic printf class type. */
303 struct breakpoint_ops dprintf_breakpoint_ops;
304
305 /* The style in which to perform a dynamic printf. This is a user
306 option because different output options have different tradeoffs;
307 if GDB does the printing, there is better error handling if there
308 is a problem with any of the arguments, but using an inferior
309 function lets you have special-purpose printers and sending of
310 output to the same place as compiled-in print functions. */
311
312 static const char dprintf_style_gdb[] = "gdb";
313 static const char dprintf_style_call[] = "call";
314 static const char dprintf_style_agent[] = "agent";
315 static const char *const dprintf_style_enums[] = {
316 dprintf_style_gdb,
317 dprintf_style_call,
318 dprintf_style_agent,
319 NULL
320 };
321 static const char *dprintf_style = dprintf_style_gdb;
322
323 /* The function to use for dynamic printf if the preferred style is to
324 call into the inferior. The value is simply a string that is
325 copied into the command, so it can be anything that GDB can
326 evaluate to a callable address, not necessarily a function name. */
327
328 static char *dprintf_function = "";
329
330 /* The channel to use for dynamic printf if the preferred style is to
331 call into the inferior; if a nonempty string, it will be passed to
332 the call as the first argument, with the format string as the
333 second. As with the dprintf function, this can be anything that
334 GDB knows how to evaluate, so in addition to common choices like
335 "stderr", this could be an app-specific expression like
336 "mystreams[curlogger]". */
337
338 static char *dprintf_channel = "";
339
340 /* True if dprintf commands should continue to operate even if GDB
341 has disconnected. */
342 static int disconnected_dprintf = 1;
343
344 /* A reference-counted struct command_line. This lets multiple
345 breakpoints share a single command list. */
346 struct counted_command_line
347 {
348 /* The reference count. */
349 int refc;
350
351 /* The command list. */
352 struct command_line *commands;
353 };
354
355 struct command_line *
356 breakpoint_commands (struct breakpoint *b)
357 {
358 return b->commands ? b->commands->commands : NULL;
359 }
360
361 /* Flag indicating that a command has proceeded the inferior past the
362 current breakpoint. */
363
364 static int breakpoint_proceeded;
365
366 const char *
367 bpdisp_text (enum bpdisp disp)
368 {
369 /* NOTE: the following values are a part of MI protocol and
370 represent values of 'disp' field returned when inferior stops at
371 a breakpoint. */
372 static const char * const bpdisps[] = {"del", "dstp", "dis", "keep"};
373
374 return bpdisps[(int) disp];
375 }
376
377 /* Prototypes for exported functions. */
378 /* If FALSE, gdb will not use hardware support for watchpoints, even
379 if such is available. */
380 static int can_use_hw_watchpoints;
381
382 static void
383 show_can_use_hw_watchpoints (struct ui_file *file, int from_tty,
384 struct cmd_list_element *c,
385 const char *value)
386 {
387 fprintf_filtered (file,
388 _("Debugger's willingness to use "
389 "watchpoint hardware is %s.\n"),
390 value);
391 }
392
393 /* If AUTO_BOOLEAN_FALSE, gdb will not attempt to create pending breakpoints.
394 If AUTO_BOOLEAN_TRUE, gdb will automatically create pending breakpoints
395 for unrecognized breakpoint locations.
396 If AUTO_BOOLEAN_AUTO, gdb will query when breakpoints are unrecognized. */
397 static enum auto_boolean pending_break_support;
398 static void
399 show_pending_break_support (struct ui_file *file, int from_tty,
400 struct cmd_list_element *c,
401 const char *value)
402 {
403 fprintf_filtered (file,
404 _("Debugger's behavior regarding "
405 "pending breakpoints is %s.\n"),
406 value);
407 }
408
409 /* If 1, gdb will automatically use hardware breakpoints for breakpoints
410 set with "break" but falling in read-only memory.
411 If 0, gdb will warn about such breakpoints, but won't automatically
412 use hardware breakpoints. */
413 static int automatic_hardware_breakpoints;
414 static void
415 show_automatic_hardware_breakpoints (struct ui_file *file, int from_tty,
416 struct cmd_list_element *c,
417 const char *value)
418 {
419 fprintf_filtered (file,
420 _("Automatic usage of hardware breakpoints is %s.\n"),
421 value);
422 }
423
424 /* If on, gdb will keep breakpoints inserted even as inferior is
425 stopped, and immediately insert any new breakpoints. If off, gdb
426 will insert breakpoints into inferior only when resuming it, and
427 will remove breakpoints upon stop. If auto, GDB will behave as ON
428 if in non-stop mode, and as OFF if all-stop mode.*/
429
430 static enum auto_boolean always_inserted_mode = AUTO_BOOLEAN_AUTO;
431
432 static void
433 show_always_inserted_mode (struct ui_file *file, int from_tty,
434 struct cmd_list_element *c, const char *value)
435 {
436 if (always_inserted_mode == AUTO_BOOLEAN_AUTO)
437 fprintf_filtered (file,
438 _("Always inserted breakpoint "
439 "mode is %s (currently %s).\n"),
440 value,
441 breakpoints_always_inserted_mode () ? "on" : "off");
442 else
443 fprintf_filtered (file, _("Always inserted breakpoint mode is %s.\n"),
444 value);
445 }
446
447 int
448 breakpoints_always_inserted_mode (void)
449 {
450 return (always_inserted_mode == AUTO_BOOLEAN_TRUE
451 || (always_inserted_mode == AUTO_BOOLEAN_AUTO && non_stop));
452 }
453
454 static const char condition_evaluation_both[] = "host or target";
455
456 /* Modes for breakpoint condition evaluation. */
457 static const char condition_evaluation_auto[] = "auto";
458 static const char condition_evaluation_host[] = "host";
459 static const char condition_evaluation_target[] = "target";
460 static const char *const condition_evaluation_enums[] = {
461 condition_evaluation_auto,
462 condition_evaluation_host,
463 condition_evaluation_target,
464 NULL
465 };
466
467 /* Global that holds the current mode for breakpoint condition evaluation. */
468 static const char *condition_evaluation_mode_1 = condition_evaluation_auto;
469
470 /* Global that we use to display information to the user (gets its value from
471 condition_evaluation_mode_1. */
472 static const char *condition_evaluation_mode = condition_evaluation_auto;
473
474 /* Translate a condition evaluation mode MODE into either "host"
475 or "target". This is used mostly to translate from "auto" to the
476 real setting that is being used. It returns the translated
477 evaluation mode. */
478
479 static const char *
480 translate_condition_evaluation_mode (const char *mode)
481 {
482 if (mode == condition_evaluation_auto)
483 {
484 if (target_supports_evaluation_of_breakpoint_conditions ())
485 return condition_evaluation_target;
486 else
487 return condition_evaluation_host;
488 }
489 else
490 return mode;
491 }
492
493 /* Discovers what condition_evaluation_auto translates to. */
494
495 static const char *
496 breakpoint_condition_evaluation_mode (void)
497 {
498 return translate_condition_evaluation_mode (condition_evaluation_mode);
499 }
500
501 /* Return true if GDB should evaluate breakpoint conditions or false
502 otherwise. */
503
504 static int
505 gdb_evaluates_breakpoint_condition_p (void)
506 {
507 const char *mode = breakpoint_condition_evaluation_mode ();
508
509 return (mode == condition_evaluation_host);
510 }
511
512 void _initialize_breakpoint (void);
513
514 /* Are we executing breakpoint commands? */
515 static int executing_breakpoint_commands;
516
517 /* Are overlay event breakpoints enabled? */
518 static int overlay_events_enabled;
519
520 /* See description in breakpoint.h. */
521 int target_exact_watchpoints = 0;
522
523 /* Walk the following statement or block through all breakpoints.
524 ALL_BREAKPOINTS_SAFE does so even if the statement deletes the
525 current breakpoint. */
526
527 #define ALL_BREAKPOINTS(B) for (B = breakpoint_chain; B; B = B->next)
528
529 #define ALL_BREAKPOINTS_SAFE(B,TMP) \
530 for (B = breakpoint_chain; \
531 B ? (TMP=B->next, 1): 0; \
532 B = TMP)
533
534 /* Similar iterator for the low-level breakpoints. SAFE variant is
535 not provided so update_global_location_list must not be called
536 while executing the block of ALL_BP_LOCATIONS. */
537
538 #define ALL_BP_LOCATIONS(B,BP_TMP) \
539 for (BP_TMP = bp_location; \
540 BP_TMP < bp_location + bp_location_count && (B = *BP_TMP); \
541 BP_TMP++)
542
543 /* Iterates through locations with address ADDRESS for the currently selected
544 program space. BP_LOCP_TMP points to each object. BP_LOCP_START points
545 to where the loop should start from.
546 If BP_LOCP_START is a NULL pointer, the macro automatically seeks the
547 appropriate location to start with. */
548
549 #define ALL_BP_LOCATIONS_AT_ADDR(BP_LOCP_TMP, BP_LOCP_START, ADDRESS) \
550 for (BP_LOCP_START = BP_LOCP_START == NULL ? get_first_locp_gte_addr (ADDRESS) : BP_LOCP_START, \
551 BP_LOCP_TMP = BP_LOCP_START; \
552 BP_LOCP_START \
553 && (BP_LOCP_TMP < bp_location + bp_location_count \
554 && (*BP_LOCP_TMP)->address == ADDRESS); \
555 BP_LOCP_TMP++)
556
557 /* Iterator for tracepoints only. */
558
559 #define ALL_TRACEPOINTS(B) \
560 for (B = breakpoint_chain; B; B = B->next) \
561 if (is_tracepoint (B))
562
563 /* Chains of all breakpoints defined. */
564
565 struct breakpoint *breakpoint_chain;
566
567 /* Array is sorted by bp_location_compare - primarily by the ADDRESS. */
568
569 static struct bp_location **bp_location;
570
571 /* Number of elements of BP_LOCATION. */
572
573 static unsigned bp_location_count;
574
575 /* Maximum alignment offset between bp_target_info.PLACED_ADDRESS and
576 ADDRESS for the current elements of BP_LOCATION which get a valid
577 result from bp_location_has_shadow. You can use it for roughly
578 limiting the subrange of BP_LOCATION to scan for shadow bytes for
579 an address you need to read. */
580
581 static CORE_ADDR bp_location_placed_address_before_address_max;
582
583 /* Maximum offset plus alignment between bp_target_info.PLACED_ADDRESS
584 + bp_target_info.SHADOW_LEN and ADDRESS for the current elements of
585 BP_LOCATION which get a valid result from bp_location_has_shadow.
586 You can use it for roughly limiting the subrange of BP_LOCATION to
587 scan for shadow bytes for an address you need to read. */
588
589 static CORE_ADDR bp_location_shadow_len_after_address_max;
590
591 /* The locations that no longer correspond to any breakpoint, unlinked
592 from bp_location array, but for which a hit may still be reported
593 by a target. */
594 VEC(bp_location_p) *moribund_locations = NULL;
595
596 /* Number of last breakpoint made. */
597
598 static int breakpoint_count;
599
600 /* The value of `breakpoint_count' before the last command that
601 created breakpoints. If the last (break-like) command created more
602 than one breakpoint, then the difference between BREAKPOINT_COUNT
603 and PREV_BREAKPOINT_COUNT is more than one. */
604 static int prev_breakpoint_count;
605
606 /* Number of last tracepoint made. */
607
608 static int tracepoint_count;
609
610 static struct cmd_list_element *breakpoint_set_cmdlist;
611 static struct cmd_list_element *breakpoint_show_cmdlist;
612 struct cmd_list_element *save_cmdlist;
613
614 /* Return whether a breakpoint is an active enabled breakpoint. */
615 static int
616 breakpoint_enabled (struct breakpoint *b)
617 {
618 return (b->enable_state == bp_enabled);
619 }
620
621 /* Set breakpoint count to NUM. */
622
623 static void
624 set_breakpoint_count (int num)
625 {
626 prev_breakpoint_count = breakpoint_count;
627 breakpoint_count = num;
628 set_internalvar_integer (lookup_internalvar ("bpnum"), num);
629 }
630
631 /* Used by `start_rbreak_breakpoints' below, to record the current
632 breakpoint count before "rbreak" creates any breakpoint. */
633 static int rbreak_start_breakpoint_count;
634
635 /* Called at the start an "rbreak" command to record the first
636 breakpoint made. */
637
638 void
639 start_rbreak_breakpoints (void)
640 {
641 rbreak_start_breakpoint_count = breakpoint_count;
642 }
643
644 /* Called at the end of an "rbreak" command to record the last
645 breakpoint made. */
646
647 void
648 end_rbreak_breakpoints (void)
649 {
650 prev_breakpoint_count = rbreak_start_breakpoint_count;
651 }
652
653 /* Used in run_command to zero the hit count when a new run starts. */
654
655 void
656 clear_breakpoint_hit_counts (void)
657 {
658 struct breakpoint *b;
659
660 ALL_BREAKPOINTS (b)
661 b->hit_count = 0;
662 }
663
664 /* Allocate a new counted_command_line with reference count of 1.
665 The new structure owns COMMANDS. */
666
667 static struct counted_command_line *
668 alloc_counted_command_line (struct command_line *commands)
669 {
670 struct counted_command_line *result
671 = xmalloc (sizeof (struct counted_command_line));
672
673 result->refc = 1;
674 result->commands = commands;
675 return result;
676 }
677
678 /* Increment reference count. This does nothing if CMD is NULL. */
679
680 static void
681 incref_counted_command_line (struct counted_command_line *cmd)
682 {
683 if (cmd)
684 ++cmd->refc;
685 }
686
687 /* Decrement reference count. If the reference count reaches 0,
688 destroy the counted_command_line. Sets *CMDP to NULL. This does
689 nothing if *CMDP is NULL. */
690
691 static void
692 decref_counted_command_line (struct counted_command_line **cmdp)
693 {
694 if (*cmdp)
695 {
696 if (--(*cmdp)->refc == 0)
697 {
698 free_command_lines (&(*cmdp)->commands);
699 xfree (*cmdp);
700 }
701 *cmdp = NULL;
702 }
703 }
704
705 /* A cleanup function that calls decref_counted_command_line. */
706
707 static void
708 do_cleanup_counted_command_line (void *arg)
709 {
710 decref_counted_command_line (arg);
711 }
712
713 /* Create a cleanup that calls decref_counted_command_line on the
714 argument. */
715
716 static struct cleanup *
717 make_cleanup_decref_counted_command_line (struct counted_command_line **cmdp)
718 {
719 return make_cleanup (do_cleanup_counted_command_line, cmdp);
720 }
721
722 \f
723 /* Return the breakpoint with the specified number, or NULL
724 if the number does not refer to an existing breakpoint. */
725
726 struct breakpoint *
727 get_breakpoint (int num)
728 {
729 struct breakpoint *b;
730
731 ALL_BREAKPOINTS (b)
732 if (b->number == num)
733 return b;
734
735 return NULL;
736 }
737
738 \f
739
740 /* Mark locations as "conditions have changed" in case the target supports
741 evaluating conditions on its side. */
742
743 static void
744 mark_breakpoint_modified (struct breakpoint *b)
745 {
746 struct bp_location *loc;
747
748 /* This is only meaningful if the target is
749 evaluating conditions and if the user has
750 opted for condition evaluation on the target's
751 side. */
752 if (gdb_evaluates_breakpoint_condition_p ()
753 || !target_supports_evaluation_of_breakpoint_conditions ())
754 return;
755
756 if (!is_breakpoint (b))
757 return;
758
759 for (loc = b->loc; loc; loc = loc->next)
760 loc->condition_changed = condition_modified;
761 }
762
763 /* Mark location as "conditions have changed" in case the target supports
764 evaluating conditions on its side. */
765
766 static void
767 mark_breakpoint_location_modified (struct bp_location *loc)
768 {
769 /* This is only meaningful if the target is
770 evaluating conditions and if the user has
771 opted for condition evaluation on the target's
772 side. */
773 if (gdb_evaluates_breakpoint_condition_p ()
774 || !target_supports_evaluation_of_breakpoint_conditions ())
775
776 return;
777
778 if (!is_breakpoint (loc->owner))
779 return;
780
781 loc->condition_changed = condition_modified;
782 }
783
784 /* Sets the condition-evaluation mode using the static global
785 condition_evaluation_mode. */
786
787 static void
788 set_condition_evaluation_mode (char *args, int from_tty,
789 struct cmd_list_element *c)
790 {
791 const char *old_mode, *new_mode;
792
793 if ((condition_evaluation_mode_1 == condition_evaluation_target)
794 && !target_supports_evaluation_of_breakpoint_conditions ())
795 {
796 condition_evaluation_mode_1 = condition_evaluation_mode;
797 warning (_("Target does not support breakpoint condition evaluation.\n"
798 "Using host evaluation mode instead."));
799 return;
800 }
801
802 new_mode = translate_condition_evaluation_mode (condition_evaluation_mode_1);
803 old_mode = translate_condition_evaluation_mode (condition_evaluation_mode);
804
805 /* Flip the switch. Flip it even if OLD_MODE == NEW_MODE as one of the
806 settings was "auto". */
807 condition_evaluation_mode = condition_evaluation_mode_1;
808
809 /* Only update the mode if the user picked a different one. */
810 if (new_mode != old_mode)
811 {
812 struct bp_location *loc, **loc_tmp;
813 /* If the user switched to a different evaluation mode, we
814 need to synch the changes with the target as follows:
815
816 "host" -> "target": Send all (valid) conditions to the target.
817 "target" -> "host": Remove all the conditions from the target.
818 */
819
820 if (new_mode == condition_evaluation_target)
821 {
822 /* Mark everything modified and synch conditions with the
823 target. */
824 ALL_BP_LOCATIONS (loc, loc_tmp)
825 mark_breakpoint_location_modified (loc);
826 }
827 else
828 {
829 /* Manually mark non-duplicate locations to synch conditions
830 with the target. We do this to remove all the conditions the
831 target knows about. */
832 ALL_BP_LOCATIONS (loc, loc_tmp)
833 if (is_breakpoint (loc->owner) && loc->inserted)
834 loc->needs_update = 1;
835 }
836
837 /* Do the update. */
838 update_global_location_list (1);
839 }
840
841 return;
842 }
843
844 /* Shows the current mode of breakpoint condition evaluation. Explicitly shows
845 what "auto" is translating to. */
846
847 static void
848 show_condition_evaluation_mode (struct ui_file *file, int from_tty,
849 struct cmd_list_element *c, const char *value)
850 {
851 if (condition_evaluation_mode == condition_evaluation_auto)
852 fprintf_filtered (file,
853 _("Breakpoint condition evaluation "
854 "mode is %s (currently %s).\n"),
855 value,
856 breakpoint_condition_evaluation_mode ());
857 else
858 fprintf_filtered (file, _("Breakpoint condition evaluation mode is %s.\n"),
859 value);
860 }
861
862 /* A comparison function for bp_location AP and BP that is used by
863 bsearch. This comparison function only cares about addresses, unlike
864 the more general bp_location_compare function. */
865
866 static int
867 bp_location_compare_addrs (const void *ap, const void *bp)
868 {
869 struct bp_location *a = *(void **) ap;
870 struct bp_location *b = *(void **) bp;
871
872 if (a->address == b->address)
873 return 0;
874 else
875 return ((a->address > b->address) - (a->address < b->address));
876 }
877
878 /* Helper function to skip all bp_locations with addresses
879 less than ADDRESS. It returns the first bp_location that
880 is greater than or equal to ADDRESS. If none is found, just
881 return NULL. */
882
883 static struct bp_location **
884 get_first_locp_gte_addr (CORE_ADDR address)
885 {
886 struct bp_location dummy_loc;
887 struct bp_location *dummy_locp = &dummy_loc;
888 struct bp_location **locp_found = NULL;
889
890 /* Initialize the dummy location's address field. */
891 memset (&dummy_loc, 0, sizeof (struct bp_location));
892 dummy_loc.address = address;
893
894 /* Find a close match to the first location at ADDRESS. */
895 locp_found = bsearch (&dummy_locp, bp_location, bp_location_count,
896 sizeof (struct bp_location **),
897 bp_location_compare_addrs);
898
899 /* Nothing was found, nothing left to do. */
900 if (locp_found == NULL)
901 return NULL;
902
903 /* We may have found a location that is at ADDRESS but is not the first in the
904 location's list. Go backwards (if possible) and locate the first one. */
905 while ((locp_found - 1) >= bp_location
906 && (*(locp_found - 1))->address == address)
907 locp_found--;
908
909 return locp_found;
910 }
911
912 void
913 set_breakpoint_condition (struct breakpoint *b, char *exp,
914 int from_tty)
915 {
916 xfree (b->cond_string);
917 b->cond_string = NULL;
918
919 if (is_watchpoint (b))
920 {
921 struct watchpoint *w = (struct watchpoint *) b;
922
923 xfree (w->cond_exp);
924 w->cond_exp = NULL;
925 }
926 else
927 {
928 struct bp_location *loc;
929
930 for (loc = b->loc; loc; loc = loc->next)
931 {
932 xfree (loc->cond);
933 loc->cond = NULL;
934
935 /* No need to free the condition agent expression
936 bytecode (if we have one). We will handle this
937 when we go through update_global_location_list. */
938 }
939 }
940
941 if (*exp == 0)
942 {
943 if (from_tty)
944 printf_filtered (_("Breakpoint %d now unconditional.\n"), b->number);
945 }
946 else
947 {
948 const char *arg = exp;
949
950 /* I don't know if it matters whether this is the string the user
951 typed in or the decompiled expression. */
952 b->cond_string = xstrdup (arg);
953 b->condition_not_parsed = 0;
954
955 if (is_watchpoint (b))
956 {
957 struct watchpoint *w = (struct watchpoint *) b;
958
959 innermost_block = NULL;
960 arg = exp;
961 w->cond_exp = parse_exp_1 (&arg, 0, 0, 0);
962 if (*arg)
963 error (_("Junk at end of expression"));
964 w->cond_exp_valid_block = innermost_block;
965 }
966 else
967 {
968 struct bp_location *loc;
969
970 for (loc = b->loc; loc; loc = loc->next)
971 {
972 arg = exp;
973 loc->cond =
974 parse_exp_1 (&arg, loc->address,
975 block_for_pc (loc->address), 0);
976 if (*arg)
977 error (_("Junk at end of expression"));
978 }
979 }
980 }
981 mark_breakpoint_modified (b);
982
983 observer_notify_breakpoint_modified (b);
984 }
985
986 /* Completion for the "condition" command. */
987
988 static VEC (char_ptr) *
989 condition_completer (struct cmd_list_element *cmd,
990 const char *text, const char *word)
991 {
992 const char *space;
993
994 text = skip_spaces_const (text);
995 space = skip_to_space_const (text);
996 if (*space == '\0')
997 {
998 int len;
999 struct breakpoint *b;
1000 VEC (char_ptr) *result = NULL;
1001
1002 if (text[0] == '$')
1003 {
1004 /* We don't support completion of history indices. */
1005 if (isdigit (text[1]))
1006 return NULL;
1007 return complete_internalvar (&text[1]);
1008 }
1009
1010 /* We're completing the breakpoint number. */
1011 len = strlen (text);
1012
1013 ALL_BREAKPOINTS (b)
1014 {
1015 char number[50];
1016
1017 xsnprintf (number, sizeof (number), "%d", b->number);
1018
1019 if (strncmp (number, text, len) == 0)
1020 VEC_safe_push (char_ptr, result, xstrdup (number));
1021 }
1022
1023 return result;
1024 }
1025
1026 /* We're completing the expression part. */
1027 text = skip_spaces_const (space);
1028 return expression_completer (cmd, text, word);
1029 }
1030
1031 /* condition N EXP -- set break condition of breakpoint N to EXP. */
1032
1033 static void
1034 condition_command (char *arg, int from_tty)
1035 {
1036 struct breakpoint *b;
1037 char *p;
1038 int bnum;
1039
1040 if (arg == 0)
1041 error_no_arg (_("breakpoint number"));
1042
1043 p = arg;
1044 bnum = get_number (&p);
1045 if (bnum == 0)
1046 error (_("Bad breakpoint argument: '%s'"), arg);
1047
1048 ALL_BREAKPOINTS (b)
1049 if (b->number == bnum)
1050 {
1051 /* Check if this breakpoint has a Python object assigned to
1052 it, and if it has a definition of the "stop"
1053 method. This method and conditions entered into GDB from
1054 the CLI are mutually exclusive. */
1055 if (b->py_bp_object
1056 && gdbpy_breakpoint_has_py_cond (b->py_bp_object))
1057 error (_("Cannot set a condition where a Python 'stop' "
1058 "method has been defined in the breakpoint."));
1059 set_breakpoint_condition (b, p, from_tty);
1060
1061 if (is_breakpoint (b))
1062 update_global_location_list (1);
1063
1064 return;
1065 }
1066
1067 error (_("No breakpoint number %d."), bnum);
1068 }
1069
1070 /* Check that COMMAND do not contain commands that are suitable
1071 only for tracepoints and not suitable for ordinary breakpoints.
1072 Throw if any such commands is found. */
1073
1074 static void
1075 check_no_tracepoint_commands (struct command_line *commands)
1076 {
1077 struct command_line *c;
1078
1079 for (c = commands; c; c = c->next)
1080 {
1081 int i;
1082
1083 if (c->control_type == while_stepping_control)
1084 error (_("The 'while-stepping' command can "
1085 "only be used for tracepoints"));
1086
1087 for (i = 0; i < c->body_count; ++i)
1088 check_no_tracepoint_commands ((c->body_list)[i]);
1089
1090 /* Not that command parsing removes leading whitespace and comment
1091 lines and also empty lines. So, we only need to check for
1092 command directly. */
1093 if (strstr (c->line, "collect ") == c->line)
1094 error (_("The 'collect' command can only be used for tracepoints"));
1095
1096 if (strstr (c->line, "teval ") == c->line)
1097 error (_("The 'teval' command can only be used for tracepoints"));
1098 }
1099 }
1100
1101 /* Encapsulate tests for different types of tracepoints. */
1102
1103 static int
1104 is_tracepoint_type (enum bptype type)
1105 {
1106 return (type == bp_tracepoint
1107 || type == bp_fast_tracepoint
1108 || type == bp_static_tracepoint);
1109 }
1110
1111 int
1112 is_tracepoint (const struct breakpoint *b)
1113 {
1114 return is_tracepoint_type (b->type);
1115 }
1116
1117 /* A helper function that validates that COMMANDS are valid for a
1118 breakpoint. This function will throw an exception if a problem is
1119 found. */
1120
1121 static void
1122 validate_commands_for_breakpoint (struct breakpoint *b,
1123 struct command_line *commands)
1124 {
1125 if (is_tracepoint (b))
1126 {
1127 struct tracepoint *t = (struct tracepoint *) b;
1128 struct command_line *c;
1129 struct command_line *while_stepping = 0;
1130
1131 /* Reset the while-stepping step count. The previous commands
1132 might have included a while-stepping action, while the new
1133 ones might not. */
1134 t->step_count = 0;
1135
1136 /* We need to verify that each top-level element of commands is
1137 valid for tracepoints, that there's at most one
1138 while-stepping element, and that the while-stepping's body
1139 has valid tracing commands excluding nested while-stepping.
1140 We also need to validate the tracepoint action line in the
1141 context of the tracepoint --- validate_actionline actually
1142 has side effects, like setting the tracepoint's
1143 while-stepping STEP_COUNT, in addition to checking if the
1144 collect/teval actions parse and make sense in the
1145 tracepoint's context. */
1146 for (c = commands; c; c = c->next)
1147 {
1148 if (c->control_type == while_stepping_control)
1149 {
1150 if (b->type == bp_fast_tracepoint)
1151 error (_("The 'while-stepping' command "
1152 "cannot be used for fast tracepoint"));
1153 else if (b->type == bp_static_tracepoint)
1154 error (_("The 'while-stepping' command "
1155 "cannot be used for static tracepoint"));
1156
1157 if (while_stepping)
1158 error (_("The 'while-stepping' command "
1159 "can be used only once"));
1160 else
1161 while_stepping = c;
1162 }
1163
1164 validate_actionline (c->line, b);
1165 }
1166 if (while_stepping)
1167 {
1168 struct command_line *c2;
1169
1170 gdb_assert (while_stepping->body_count == 1);
1171 c2 = while_stepping->body_list[0];
1172 for (; c2; c2 = c2->next)
1173 {
1174 if (c2->control_type == while_stepping_control)
1175 error (_("The 'while-stepping' command cannot be nested"));
1176 }
1177 }
1178 }
1179 else
1180 {
1181 check_no_tracepoint_commands (commands);
1182 }
1183 }
1184
1185 /* Return a vector of all the static tracepoints set at ADDR. The
1186 caller is responsible for releasing the vector. */
1187
1188 VEC(breakpoint_p) *
1189 static_tracepoints_here (CORE_ADDR addr)
1190 {
1191 struct breakpoint *b;
1192 VEC(breakpoint_p) *found = 0;
1193 struct bp_location *loc;
1194
1195 ALL_BREAKPOINTS (b)
1196 if (b->type == bp_static_tracepoint)
1197 {
1198 for (loc = b->loc; loc; loc = loc->next)
1199 if (loc->address == addr)
1200 VEC_safe_push(breakpoint_p, found, b);
1201 }
1202
1203 return found;
1204 }
1205
1206 /* Set the command list of B to COMMANDS. If breakpoint is tracepoint,
1207 validate that only allowed commands are included. */
1208
1209 void
1210 breakpoint_set_commands (struct breakpoint *b,
1211 struct command_line *commands)
1212 {
1213 validate_commands_for_breakpoint (b, commands);
1214
1215 decref_counted_command_line (&b->commands);
1216 b->commands = alloc_counted_command_line (commands);
1217 observer_notify_breakpoint_modified (b);
1218 }
1219
1220 /* Set the internal `silent' flag on the breakpoint. Note that this
1221 is not the same as the "silent" that may appear in the breakpoint's
1222 commands. */
1223
1224 void
1225 breakpoint_set_silent (struct breakpoint *b, int silent)
1226 {
1227 int old_silent = b->silent;
1228
1229 b->silent = silent;
1230 if (old_silent != silent)
1231 observer_notify_breakpoint_modified (b);
1232 }
1233
1234 /* Set the thread for this breakpoint. If THREAD is -1, make the
1235 breakpoint work for any thread. */
1236
1237 void
1238 breakpoint_set_thread (struct breakpoint *b, int thread)
1239 {
1240 int old_thread = b->thread;
1241
1242 b->thread = thread;
1243 if (old_thread != thread)
1244 observer_notify_breakpoint_modified (b);
1245 }
1246
1247 /* Set the task for this breakpoint. If TASK is 0, make the
1248 breakpoint work for any task. */
1249
1250 void
1251 breakpoint_set_task (struct breakpoint *b, int task)
1252 {
1253 int old_task = b->task;
1254
1255 b->task = task;
1256 if (old_task != task)
1257 observer_notify_breakpoint_modified (b);
1258 }
1259
1260 void
1261 check_tracepoint_command (char *line, void *closure)
1262 {
1263 struct breakpoint *b = closure;
1264
1265 validate_actionline (line, b);
1266 }
1267
1268 /* A structure used to pass information through
1269 map_breakpoint_numbers. */
1270
1271 struct commands_info
1272 {
1273 /* True if the command was typed at a tty. */
1274 int from_tty;
1275
1276 /* The breakpoint range spec. */
1277 char *arg;
1278
1279 /* Non-NULL if the body of the commands are being read from this
1280 already-parsed command. */
1281 struct command_line *control;
1282
1283 /* The command lines read from the user, or NULL if they have not
1284 yet been read. */
1285 struct counted_command_line *cmd;
1286 };
1287
1288 /* A callback for map_breakpoint_numbers that sets the commands for
1289 commands_command. */
1290
1291 static void
1292 do_map_commands_command (struct breakpoint *b, void *data)
1293 {
1294 struct commands_info *info = data;
1295
1296 if (info->cmd == NULL)
1297 {
1298 struct command_line *l;
1299
1300 if (info->control != NULL)
1301 l = copy_command_lines (info->control->body_list[0]);
1302 else
1303 {
1304 struct cleanup *old_chain;
1305 char *str;
1306
1307 str = xstrprintf (_("Type commands for breakpoint(s) "
1308 "%s, one per line."),
1309 info->arg);
1310
1311 old_chain = make_cleanup (xfree, str);
1312
1313 l = read_command_lines (str,
1314 info->from_tty, 1,
1315 (is_tracepoint (b)
1316 ? check_tracepoint_command : 0),
1317 b);
1318
1319 do_cleanups (old_chain);
1320 }
1321
1322 info->cmd = alloc_counted_command_line (l);
1323 }
1324
1325 /* If a breakpoint was on the list more than once, we don't need to
1326 do anything. */
1327 if (b->commands != info->cmd)
1328 {
1329 validate_commands_for_breakpoint (b, info->cmd->commands);
1330 incref_counted_command_line (info->cmd);
1331 decref_counted_command_line (&b->commands);
1332 b->commands = info->cmd;
1333 observer_notify_breakpoint_modified (b);
1334 }
1335 }
1336
1337 static void
1338 commands_command_1 (char *arg, int from_tty,
1339 struct command_line *control)
1340 {
1341 struct cleanup *cleanups;
1342 struct commands_info info;
1343
1344 info.from_tty = from_tty;
1345 info.control = control;
1346 info.cmd = NULL;
1347 /* If we read command lines from the user, then `info' will hold an
1348 extra reference to the commands that we must clean up. */
1349 cleanups = make_cleanup_decref_counted_command_line (&info.cmd);
1350
1351 if (arg == NULL || !*arg)
1352 {
1353 if (breakpoint_count - prev_breakpoint_count > 1)
1354 arg = xstrprintf ("%d-%d", prev_breakpoint_count + 1,
1355 breakpoint_count);
1356 else if (breakpoint_count > 0)
1357 arg = xstrprintf ("%d", breakpoint_count);
1358 else
1359 {
1360 /* So that we don't try to free the incoming non-NULL
1361 argument in the cleanup below. Mapping breakpoint
1362 numbers will fail in this case. */
1363 arg = NULL;
1364 }
1365 }
1366 else
1367 /* The command loop has some static state, so we need to preserve
1368 our argument. */
1369 arg = xstrdup (arg);
1370
1371 if (arg != NULL)
1372 make_cleanup (xfree, arg);
1373
1374 info.arg = arg;
1375
1376 map_breakpoint_numbers (arg, do_map_commands_command, &info);
1377
1378 if (info.cmd == NULL)
1379 error (_("No breakpoints specified."));
1380
1381 do_cleanups (cleanups);
1382 }
1383
1384 static void
1385 commands_command (char *arg, int from_tty)
1386 {
1387 commands_command_1 (arg, from_tty, NULL);
1388 }
1389
1390 /* Like commands_command, but instead of reading the commands from
1391 input stream, takes them from an already parsed command structure.
1392
1393 This is used by cli-script.c to DTRT with breakpoint commands
1394 that are part of if and while bodies. */
1395 enum command_control_type
1396 commands_from_control_command (char *arg, struct command_line *cmd)
1397 {
1398 commands_command_1 (arg, 0, cmd);
1399 return simple_control;
1400 }
1401
1402 /* Return non-zero if BL->TARGET_INFO contains valid information. */
1403
1404 static int
1405 bp_location_has_shadow (struct bp_location *bl)
1406 {
1407 if (bl->loc_type != bp_loc_software_breakpoint)
1408 return 0;
1409 if (!bl->inserted)
1410 return 0;
1411 if (bl->target_info.shadow_len == 0)
1412 /* BL isn't valid, or doesn't shadow memory. */
1413 return 0;
1414 return 1;
1415 }
1416
1417 /* Update BUF, which is LEN bytes read from the target address MEMADDR,
1418 by replacing any memory breakpoints with their shadowed contents.
1419
1420 If READBUF is not NULL, this buffer must not overlap with any of
1421 the breakpoint location's shadow_contents buffers. Otherwise,
1422 a failed assertion internal error will be raised.
1423
1424 The range of shadowed area by each bp_location is:
1425 bl->address - bp_location_placed_address_before_address_max
1426 up to bl->address + bp_location_shadow_len_after_address_max
1427 The range we were requested to resolve shadows for is:
1428 memaddr ... memaddr + len
1429 Thus the safe cutoff boundaries for performance optimization are
1430 memaddr + len <= (bl->address
1431 - bp_location_placed_address_before_address_max)
1432 and:
1433 bl->address + bp_location_shadow_len_after_address_max <= memaddr */
1434
1435 void
1436 breakpoint_xfer_memory (gdb_byte *readbuf, gdb_byte *writebuf,
1437 const gdb_byte *writebuf_org,
1438 ULONGEST memaddr, LONGEST len)
1439 {
1440 /* Left boundary, right boundary and median element of our binary
1441 search. */
1442 unsigned bc_l, bc_r, bc;
1443
1444 /* Find BC_L which is a leftmost element which may affect BUF
1445 content. It is safe to report lower value but a failure to
1446 report higher one. */
1447
1448 bc_l = 0;
1449 bc_r = bp_location_count;
1450 while (bc_l + 1 < bc_r)
1451 {
1452 struct bp_location *bl;
1453
1454 bc = (bc_l + bc_r) / 2;
1455 bl = bp_location[bc];
1456
1457 /* Check first BL->ADDRESS will not overflow due to the added
1458 constant. Then advance the left boundary only if we are sure
1459 the BC element can in no way affect the BUF content (MEMADDR
1460 to MEMADDR + LEN range).
1461
1462 Use the BP_LOCATION_SHADOW_LEN_AFTER_ADDRESS_MAX safety
1463 offset so that we cannot miss a breakpoint with its shadow
1464 range tail still reaching MEMADDR. */
1465
1466 if ((bl->address + bp_location_shadow_len_after_address_max
1467 >= bl->address)
1468 && (bl->address + bp_location_shadow_len_after_address_max
1469 <= memaddr))
1470 bc_l = bc;
1471 else
1472 bc_r = bc;
1473 }
1474
1475 /* Due to the binary search above, we need to make sure we pick the
1476 first location that's at BC_L's address. E.g., if there are
1477 multiple locations at the same address, BC_L may end up pointing
1478 at a duplicate location, and miss the "master"/"inserted"
1479 location. Say, given locations L1, L2 and L3 at addresses A and
1480 B:
1481
1482 L1@A, L2@A, L3@B, ...
1483
1484 BC_L could end up pointing at location L2, while the "master"
1485 location could be L1. Since the `loc->inserted' flag is only set
1486 on "master" locations, we'd forget to restore the shadow of L1
1487 and L2. */
1488 while (bc_l > 0
1489 && bp_location[bc_l]->address == bp_location[bc_l - 1]->address)
1490 bc_l--;
1491
1492 /* Now do full processing of the found relevant range of elements. */
1493
1494 for (bc = bc_l; bc < bp_location_count; bc++)
1495 {
1496 struct bp_location *bl = bp_location[bc];
1497 CORE_ADDR bp_addr = 0;
1498 int bp_size = 0;
1499 int bptoffset = 0;
1500
1501 /* bp_location array has BL->OWNER always non-NULL. */
1502 if (bl->owner->type == bp_none)
1503 warning (_("reading through apparently deleted breakpoint #%d?"),
1504 bl->owner->number);
1505
1506 /* Performance optimization: any further element can no longer affect BUF
1507 content. */
1508
1509 if (bl->address >= bp_location_placed_address_before_address_max
1510 && memaddr + len <= (bl->address
1511 - bp_location_placed_address_before_address_max))
1512 break;
1513
1514 if (!bp_location_has_shadow (bl))
1515 continue;
1516 if (!breakpoint_address_match (bl->target_info.placed_address_space, 0,
1517 current_program_space->aspace, 0))
1518 continue;
1519
1520 /* Addresses and length of the part of the breakpoint that
1521 we need to copy. */
1522 bp_addr = bl->target_info.placed_address;
1523 bp_size = bl->target_info.shadow_len;
1524
1525 if (bp_addr + bp_size <= memaddr)
1526 /* The breakpoint is entirely before the chunk of memory we
1527 are reading. */
1528 continue;
1529
1530 if (bp_addr >= memaddr + len)
1531 /* The breakpoint is entirely after the chunk of memory we are
1532 reading. */
1533 continue;
1534
1535 /* Offset within shadow_contents. */
1536 if (bp_addr < memaddr)
1537 {
1538 /* Only copy the second part of the breakpoint. */
1539 bp_size -= memaddr - bp_addr;
1540 bptoffset = memaddr - bp_addr;
1541 bp_addr = memaddr;
1542 }
1543
1544 if (bp_addr + bp_size > memaddr + len)
1545 {
1546 /* Only copy the first part of the breakpoint. */
1547 bp_size -= (bp_addr + bp_size) - (memaddr + len);
1548 }
1549
1550 if (readbuf != NULL)
1551 {
1552 /* Verify that the readbuf buffer does not overlap with
1553 the shadow_contents buffer. */
1554 gdb_assert (bl->target_info.shadow_contents >= readbuf + len
1555 || readbuf >= (bl->target_info.shadow_contents
1556 + bl->target_info.shadow_len));
1557
1558 /* Update the read buffer with this inserted breakpoint's
1559 shadow. */
1560 memcpy (readbuf + bp_addr - memaddr,
1561 bl->target_info.shadow_contents + bptoffset, bp_size);
1562 }
1563 else
1564 {
1565 struct gdbarch *gdbarch = bl->gdbarch;
1566 const unsigned char *bp;
1567 CORE_ADDR placed_address = bl->target_info.placed_address;
1568 int placed_size = bl->target_info.placed_size;
1569
1570 /* Update the shadow with what we want to write to memory. */
1571 memcpy (bl->target_info.shadow_contents + bptoffset,
1572 writebuf_org + bp_addr - memaddr, bp_size);
1573
1574 /* Determine appropriate breakpoint contents and size for this
1575 address. */
1576 bp = gdbarch_breakpoint_from_pc (gdbarch, &placed_address, &placed_size);
1577
1578 /* Update the final write buffer with this inserted
1579 breakpoint's INSN. */
1580 memcpy (writebuf + bp_addr - memaddr, bp + bptoffset, bp_size);
1581 }
1582 }
1583 }
1584 \f
1585
1586 /* Return true if BPT is either a software breakpoint or a hardware
1587 breakpoint. */
1588
1589 int
1590 is_breakpoint (const struct breakpoint *bpt)
1591 {
1592 return (bpt->type == bp_breakpoint
1593 || bpt->type == bp_hardware_breakpoint
1594 || bpt->type == bp_dprintf);
1595 }
1596
1597 /* Return true if BPT is of any hardware watchpoint kind. */
1598
1599 static int
1600 is_hardware_watchpoint (const struct breakpoint *bpt)
1601 {
1602 return (bpt->type == bp_hardware_watchpoint
1603 || bpt->type == bp_read_watchpoint
1604 || bpt->type == bp_access_watchpoint);
1605 }
1606
1607 /* Return true if BPT is of any watchpoint kind, hardware or
1608 software. */
1609
1610 int
1611 is_watchpoint (const struct breakpoint *bpt)
1612 {
1613 return (is_hardware_watchpoint (bpt)
1614 || bpt->type == bp_watchpoint);
1615 }
1616
1617 /* Returns true if the current thread and its running state are safe
1618 to evaluate or update watchpoint B. Watchpoints on local
1619 expressions need to be evaluated in the context of the thread that
1620 was current when the watchpoint was created, and, that thread needs
1621 to be stopped to be able to select the correct frame context.
1622 Watchpoints on global expressions can be evaluated on any thread,
1623 and in any state. It is presently left to the target allowing
1624 memory accesses when threads are running. */
1625
1626 static int
1627 watchpoint_in_thread_scope (struct watchpoint *b)
1628 {
1629 return (b->base.pspace == current_program_space
1630 && (ptid_equal (b->watchpoint_thread, null_ptid)
1631 || (ptid_equal (inferior_ptid, b->watchpoint_thread)
1632 && !is_executing (inferior_ptid))));
1633 }
1634
1635 /* Set watchpoint B to disp_del_at_next_stop, even including its possible
1636 associated bp_watchpoint_scope breakpoint. */
1637
1638 static void
1639 watchpoint_del_at_next_stop (struct watchpoint *w)
1640 {
1641 struct breakpoint *b = &w->base;
1642
1643 if (b->related_breakpoint != b)
1644 {
1645 gdb_assert (b->related_breakpoint->type == bp_watchpoint_scope);
1646 gdb_assert (b->related_breakpoint->related_breakpoint == b);
1647 b->related_breakpoint->disposition = disp_del_at_next_stop;
1648 b->related_breakpoint->related_breakpoint = b->related_breakpoint;
1649 b->related_breakpoint = b;
1650 }
1651 b->disposition = disp_del_at_next_stop;
1652 }
1653
1654 /* Assuming that B is a watchpoint:
1655 - Reparse watchpoint expression, if REPARSE is non-zero
1656 - Evaluate expression and store the result in B->val
1657 - Evaluate the condition if there is one, and store the result
1658 in b->loc->cond.
1659 - Update the list of values that must be watched in B->loc.
1660
1661 If the watchpoint disposition is disp_del_at_next_stop, then do
1662 nothing. If this is local watchpoint that is out of scope, delete
1663 it.
1664
1665 Even with `set breakpoint always-inserted on' the watchpoints are
1666 removed + inserted on each stop here. Normal breakpoints must
1667 never be removed because they might be missed by a running thread
1668 when debugging in non-stop mode. On the other hand, hardware
1669 watchpoints (is_hardware_watchpoint; processed here) are specific
1670 to each LWP since they are stored in each LWP's hardware debug
1671 registers. Therefore, such LWP must be stopped first in order to
1672 be able to modify its hardware watchpoints.
1673
1674 Hardware watchpoints must be reset exactly once after being
1675 presented to the user. It cannot be done sooner, because it would
1676 reset the data used to present the watchpoint hit to the user. And
1677 it must not be done later because it could display the same single
1678 watchpoint hit during multiple GDB stops. Note that the latter is
1679 relevant only to the hardware watchpoint types bp_read_watchpoint
1680 and bp_access_watchpoint. False hit by bp_hardware_watchpoint is
1681 not user-visible - its hit is suppressed if the memory content has
1682 not changed.
1683
1684 The following constraints influence the location where we can reset
1685 hardware watchpoints:
1686
1687 * target_stopped_by_watchpoint and target_stopped_data_address are
1688 called several times when GDB stops.
1689
1690 [linux]
1691 * Multiple hardware watchpoints can be hit at the same time,
1692 causing GDB to stop. GDB only presents one hardware watchpoint
1693 hit at a time as the reason for stopping, and all the other hits
1694 are presented later, one after the other, each time the user
1695 requests the execution to be resumed. Execution is not resumed
1696 for the threads still having pending hit event stored in
1697 LWP_INFO->STATUS. While the watchpoint is already removed from
1698 the inferior on the first stop the thread hit event is kept being
1699 reported from its cached value by linux_nat_stopped_data_address
1700 until the real thread resume happens after the watchpoint gets
1701 presented and thus its LWP_INFO->STATUS gets reset.
1702
1703 Therefore the hardware watchpoint hit can get safely reset on the
1704 watchpoint removal from inferior. */
1705
1706 static void
1707 update_watchpoint (struct watchpoint *b, int reparse)
1708 {
1709 int within_current_scope;
1710 struct frame_id saved_frame_id;
1711 int frame_saved;
1712
1713 /* If this is a local watchpoint, we only want to check if the
1714 watchpoint frame is in scope if the current thread is the thread
1715 that was used to create the watchpoint. */
1716 if (!watchpoint_in_thread_scope (b))
1717 return;
1718
1719 if (b->base.disposition == disp_del_at_next_stop)
1720 return;
1721
1722 frame_saved = 0;
1723
1724 /* Determine if the watchpoint is within scope. */
1725 if (b->exp_valid_block == NULL)
1726 within_current_scope = 1;
1727 else
1728 {
1729 struct frame_info *fi = get_current_frame ();
1730 struct gdbarch *frame_arch = get_frame_arch (fi);
1731 CORE_ADDR frame_pc = get_frame_pc (fi);
1732
1733 /* If we're in a function epilogue, unwinding may not work
1734 properly, so do not attempt to recreate locations at this
1735 point. See similar comments in watchpoint_check. */
1736 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
1737 return;
1738
1739 /* Save the current frame's ID so we can restore it after
1740 evaluating the watchpoint expression on its own frame. */
1741 /* FIXME drow/2003-09-09: It would be nice if evaluate_expression
1742 took a frame parameter, so that we didn't have to change the
1743 selected frame. */
1744 frame_saved = 1;
1745 saved_frame_id = get_frame_id (get_selected_frame (NULL));
1746
1747 fi = frame_find_by_id (b->watchpoint_frame);
1748 within_current_scope = (fi != NULL);
1749 if (within_current_scope)
1750 select_frame (fi);
1751 }
1752
1753 /* We don't free locations. They are stored in the bp_location array
1754 and update_global_location_list will eventually delete them and
1755 remove breakpoints if needed. */
1756 b->base.loc = NULL;
1757
1758 if (within_current_scope && reparse)
1759 {
1760 const char *s;
1761
1762 if (b->exp)
1763 {
1764 xfree (b->exp);
1765 b->exp = NULL;
1766 }
1767 s = b->exp_string_reparse ? b->exp_string_reparse : b->exp_string;
1768 b->exp = parse_exp_1 (&s, 0, b->exp_valid_block, 0);
1769 /* If the meaning of expression itself changed, the old value is
1770 no longer relevant. We don't want to report a watchpoint hit
1771 to the user when the old value and the new value may actually
1772 be completely different objects. */
1773 value_free (b->val);
1774 b->val = NULL;
1775 b->val_valid = 0;
1776
1777 /* Note that unlike with breakpoints, the watchpoint's condition
1778 expression is stored in the breakpoint object, not in the
1779 locations (re)created below. */
1780 if (b->base.cond_string != NULL)
1781 {
1782 if (b->cond_exp != NULL)
1783 {
1784 xfree (b->cond_exp);
1785 b->cond_exp = NULL;
1786 }
1787
1788 s = b->base.cond_string;
1789 b->cond_exp = parse_exp_1 (&s, 0, b->cond_exp_valid_block, 0);
1790 }
1791 }
1792
1793 /* If we failed to parse the expression, for example because
1794 it refers to a global variable in a not-yet-loaded shared library,
1795 don't try to insert watchpoint. We don't automatically delete
1796 such watchpoint, though, since failure to parse expression
1797 is different from out-of-scope watchpoint. */
1798 if ( !target_has_execution)
1799 {
1800 /* Without execution, memory can't change. No use to try and
1801 set watchpoint locations. The watchpoint will be reset when
1802 the target gains execution, through breakpoint_re_set. */
1803 }
1804 else if (within_current_scope && b->exp)
1805 {
1806 int pc = 0;
1807 struct value *val_chain, *v, *result, *next;
1808 struct program_space *frame_pspace;
1809
1810 fetch_subexp_value (b->exp, &pc, &v, &result, &val_chain);
1811
1812 /* Avoid setting b->val if it's already set. The meaning of
1813 b->val is 'the last value' user saw, and we should update
1814 it only if we reported that last value to user. As it
1815 happens, the code that reports it updates b->val directly.
1816 We don't keep track of the memory value for masked
1817 watchpoints. */
1818 if (!b->val_valid && !is_masked_watchpoint (&b->base))
1819 {
1820 b->val = v;
1821 b->val_valid = 1;
1822 }
1823
1824 frame_pspace = get_frame_program_space (get_selected_frame (NULL));
1825
1826 /* Look at each value on the value chain. */
1827 for (v = val_chain; v; v = value_next (v))
1828 {
1829 /* If it's a memory location, and GDB actually needed
1830 its contents to evaluate the expression, then we
1831 must watch it. If the first value returned is
1832 still lazy, that means an error occurred reading it;
1833 watch it anyway in case it becomes readable. */
1834 if (VALUE_LVAL (v) == lval_memory
1835 && (v == val_chain || ! value_lazy (v)))
1836 {
1837 struct type *vtype = check_typedef (value_type (v));
1838
1839 /* We only watch structs and arrays if user asked
1840 for it explicitly, never if they just happen to
1841 appear in the middle of some value chain. */
1842 if (v == result
1843 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
1844 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
1845 {
1846 CORE_ADDR addr;
1847 int type;
1848 struct bp_location *loc, **tmp;
1849
1850 addr = value_address (v);
1851 type = hw_write;
1852 if (b->base.type == bp_read_watchpoint)
1853 type = hw_read;
1854 else if (b->base.type == bp_access_watchpoint)
1855 type = hw_access;
1856
1857 loc = allocate_bp_location (&b->base);
1858 for (tmp = &(b->base.loc); *tmp != NULL; tmp = &((*tmp)->next))
1859 ;
1860 *tmp = loc;
1861 loc->gdbarch = get_type_arch (value_type (v));
1862
1863 loc->pspace = frame_pspace;
1864 loc->address = addr;
1865 loc->length = TYPE_LENGTH (value_type (v));
1866 loc->watchpoint_type = type;
1867 }
1868 }
1869 }
1870
1871 /* Change the type of breakpoint between hardware assisted or
1872 an ordinary watchpoint depending on the hardware support
1873 and free hardware slots. REPARSE is set when the inferior
1874 is started. */
1875 if (reparse)
1876 {
1877 int reg_cnt;
1878 enum bp_loc_type loc_type;
1879 struct bp_location *bl;
1880
1881 reg_cnt = can_use_hardware_watchpoint (val_chain);
1882
1883 if (reg_cnt)
1884 {
1885 int i, target_resources_ok, other_type_used;
1886 enum bptype type;
1887
1888 /* Use an exact watchpoint when there's only one memory region to be
1889 watched, and only one debug register is needed to watch it. */
1890 b->exact = target_exact_watchpoints && reg_cnt == 1;
1891
1892 /* We need to determine how many resources are already
1893 used for all other hardware watchpoints plus this one
1894 to see if we still have enough resources to also fit
1895 this watchpoint in as well. */
1896
1897 /* If this is a software watchpoint, we try to turn it
1898 to a hardware one -- count resources as if B was of
1899 hardware watchpoint type. */
1900 type = b->base.type;
1901 if (type == bp_watchpoint)
1902 type = bp_hardware_watchpoint;
1903
1904 /* This watchpoint may or may not have been placed on
1905 the list yet at this point (it won't be in the list
1906 if we're trying to create it for the first time,
1907 through watch_command), so always account for it
1908 manually. */
1909
1910 /* Count resources used by all watchpoints except B. */
1911 i = hw_watchpoint_used_count_others (&b->base, type, &other_type_used);
1912
1913 /* Add in the resources needed for B. */
1914 i += hw_watchpoint_use_count (&b->base);
1915
1916 target_resources_ok
1917 = target_can_use_hardware_watchpoint (type, i, other_type_used);
1918 if (target_resources_ok <= 0)
1919 {
1920 int sw_mode = b->base.ops->works_in_software_mode (&b->base);
1921
1922 if (target_resources_ok == 0 && !sw_mode)
1923 error (_("Target does not support this type of "
1924 "hardware watchpoint."));
1925 else if (target_resources_ok < 0 && !sw_mode)
1926 error (_("There are not enough available hardware "
1927 "resources for this watchpoint."));
1928
1929 /* Downgrade to software watchpoint. */
1930 b->base.type = bp_watchpoint;
1931 }
1932 else
1933 {
1934 /* If this was a software watchpoint, we've just
1935 found we have enough resources to turn it to a
1936 hardware watchpoint. Otherwise, this is a
1937 nop. */
1938 b->base.type = type;
1939 }
1940 }
1941 else if (!b->base.ops->works_in_software_mode (&b->base))
1942 error (_("Expression cannot be implemented with "
1943 "read/access watchpoint."));
1944 else
1945 b->base.type = bp_watchpoint;
1946
1947 loc_type = (b->base.type == bp_watchpoint? bp_loc_other
1948 : bp_loc_hardware_watchpoint);
1949 for (bl = b->base.loc; bl; bl = bl->next)
1950 bl->loc_type = loc_type;
1951 }
1952
1953 for (v = val_chain; v; v = next)
1954 {
1955 next = value_next (v);
1956 if (v != b->val)
1957 value_free (v);
1958 }
1959
1960 /* If a software watchpoint is not watching any memory, then the
1961 above left it without any location set up. But,
1962 bpstat_stop_status requires a location to be able to report
1963 stops, so make sure there's at least a dummy one. */
1964 if (b->base.type == bp_watchpoint && b->base.loc == NULL)
1965 {
1966 struct breakpoint *base = &b->base;
1967 base->loc = allocate_bp_location (base);
1968 base->loc->pspace = frame_pspace;
1969 base->loc->address = -1;
1970 base->loc->length = -1;
1971 base->loc->watchpoint_type = -1;
1972 }
1973 }
1974 else if (!within_current_scope)
1975 {
1976 printf_filtered (_("\
1977 Watchpoint %d deleted because the program has left the block\n\
1978 in which its expression is valid.\n"),
1979 b->base.number);
1980 watchpoint_del_at_next_stop (b);
1981 }
1982
1983 /* Restore the selected frame. */
1984 if (frame_saved)
1985 select_frame (frame_find_by_id (saved_frame_id));
1986 }
1987
1988
1989 /* Returns 1 iff breakpoint location should be
1990 inserted in the inferior. We don't differentiate the type of BL's owner
1991 (breakpoint vs. tracepoint), although insert_location in tracepoint's
1992 breakpoint_ops is not defined, because in insert_bp_location,
1993 tracepoint's insert_location will not be called. */
1994 static int
1995 should_be_inserted (struct bp_location *bl)
1996 {
1997 if (bl->owner == NULL || !breakpoint_enabled (bl->owner))
1998 return 0;
1999
2000 if (bl->owner->disposition == disp_del_at_next_stop)
2001 return 0;
2002
2003 if (!bl->enabled || bl->shlib_disabled || bl->duplicate)
2004 return 0;
2005
2006 if (user_breakpoint_p (bl->owner) && bl->pspace->executing_startup)
2007 return 0;
2008
2009 /* This is set for example, when we're attached to the parent of a
2010 vfork, and have detached from the child. The child is running
2011 free, and we expect it to do an exec or exit, at which point the
2012 OS makes the parent schedulable again (and the target reports
2013 that the vfork is done). Until the child is done with the shared
2014 memory region, do not insert breakpoints in the parent, otherwise
2015 the child could still trip on the parent's breakpoints. Since
2016 the parent is blocked anyway, it won't miss any breakpoint. */
2017 if (bl->pspace->breakpoints_not_allowed)
2018 return 0;
2019
2020 return 1;
2021 }
2022
2023 /* Same as should_be_inserted but does the check assuming
2024 that the location is not duplicated. */
2025
2026 static int
2027 unduplicated_should_be_inserted (struct bp_location *bl)
2028 {
2029 int result;
2030 const int save_duplicate = bl->duplicate;
2031
2032 bl->duplicate = 0;
2033 result = should_be_inserted (bl);
2034 bl->duplicate = save_duplicate;
2035 return result;
2036 }
2037
2038 /* Parses a conditional described by an expression COND into an
2039 agent expression bytecode suitable for evaluation
2040 by the bytecode interpreter. Return NULL if there was
2041 any error during parsing. */
2042
2043 static struct agent_expr *
2044 parse_cond_to_aexpr (CORE_ADDR scope, struct expression *cond)
2045 {
2046 struct agent_expr *aexpr = NULL;
2047 volatile struct gdb_exception ex;
2048
2049 if (!cond)
2050 return NULL;
2051
2052 /* We don't want to stop processing, so catch any errors
2053 that may show up. */
2054 TRY_CATCH (ex, RETURN_MASK_ERROR)
2055 {
2056 aexpr = gen_eval_for_expr (scope, cond);
2057 }
2058
2059 if (ex.reason < 0)
2060 {
2061 /* If we got here, it means the condition could not be parsed to a valid
2062 bytecode expression and thus can't be evaluated on the target's side.
2063 It's no use iterating through the conditions. */
2064 return NULL;
2065 }
2066
2067 /* We have a valid agent expression. */
2068 return aexpr;
2069 }
2070
2071 /* Based on location BL, create a list of breakpoint conditions to be
2072 passed on to the target. If we have duplicated locations with different
2073 conditions, we will add such conditions to the list. The idea is that the
2074 target will evaluate the list of conditions and will only notify GDB when
2075 one of them is true. */
2076
2077 static void
2078 build_target_condition_list (struct bp_location *bl)
2079 {
2080 struct bp_location **locp = NULL, **loc2p;
2081 int null_condition_or_parse_error = 0;
2082 int modified = bl->needs_update;
2083 struct bp_location *loc;
2084
2085 /* This is only meaningful if the target is
2086 evaluating conditions and if the user has
2087 opted for condition evaluation on the target's
2088 side. */
2089 if (gdb_evaluates_breakpoint_condition_p ()
2090 || !target_supports_evaluation_of_breakpoint_conditions ())
2091 return;
2092
2093 /* Do a first pass to check for locations with no assigned
2094 conditions or conditions that fail to parse to a valid agent expression
2095 bytecode. If any of these happen, then it's no use to send conditions
2096 to the target since this location will always trigger and generate a
2097 response back to GDB. */
2098 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2099 {
2100 loc = (*loc2p);
2101 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2102 {
2103 if (modified)
2104 {
2105 struct agent_expr *aexpr;
2106
2107 /* Re-parse the conditions since something changed. In that
2108 case we already freed the condition bytecodes (see
2109 force_breakpoint_reinsertion). We just
2110 need to parse the condition to bytecodes again. */
2111 aexpr = parse_cond_to_aexpr (bl->address, loc->cond);
2112 loc->cond_bytecode = aexpr;
2113
2114 /* Check if we managed to parse the conditional expression
2115 correctly. If not, we will not send this condition
2116 to the target. */
2117 if (aexpr)
2118 continue;
2119 }
2120
2121 /* If we have a NULL bytecode expression, it means something
2122 went wrong or we have a null condition expression. */
2123 if (!loc->cond_bytecode)
2124 {
2125 null_condition_or_parse_error = 1;
2126 break;
2127 }
2128 }
2129 }
2130
2131 /* If any of these happened, it means we will have to evaluate the conditions
2132 for the location's address on gdb's side. It is no use keeping bytecodes
2133 for all the other duplicate locations, thus we free all of them here.
2134
2135 This is so we have a finer control over which locations' conditions are
2136 being evaluated by GDB or the remote stub. */
2137 if (null_condition_or_parse_error)
2138 {
2139 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2140 {
2141 loc = (*loc2p);
2142 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2143 {
2144 /* Only go as far as the first NULL bytecode is
2145 located. */
2146 if (!loc->cond_bytecode)
2147 return;
2148
2149 free_agent_expr (loc->cond_bytecode);
2150 loc->cond_bytecode = NULL;
2151 }
2152 }
2153 }
2154
2155 /* No NULL conditions or failed bytecode generation. Build a condition list
2156 for this location's address. */
2157 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2158 {
2159 loc = (*loc2p);
2160 if (loc->cond
2161 && is_breakpoint (loc->owner)
2162 && loc->pspace->num == bl->pspace->num
2163 && loc->owner->enable_state == bp_enabled
2164 && loc->enabled)
2165 /* Add the condition to the vector. This will be used later to send the
2166 conditions to the target. */
2167 VEC_safe_push (agent_expr_p, bl->target_info.conditions,
2168 loc->cond_bytecode);
2169 }
2170
2171 return;
2172 }
2173
2174 /* Parses a command described by string CMD into an agent expression
2175 bytecode suitable for evaluation by the bytecode interpreter.
2176 Return NULL if there was any error during parsing. */
2177
2178 static struct agent_expr *
2179 parse_cmd_to_aexpr (CORE_ADDR scope, char *cmd)
2180 {
2181 struct cleanup *old_cleanups = 0;
2182 struct expression *expr, **argvec;
2183 struct agent_expr *aexpr = NULL;
2184 volatile struct gdb_exception ex;
2185 const char *cmdrest;
2186 const char *format_start, *format_end;
2187 struct format_piece *fpieces;
2188 int nargs;
2189 struct gdbarch *gdbarch = get_current_arch ();
2190
2191 if (!cmd)
2192 return NULL;
2193
2194 cmdrest = cmd;
2195
2196 if (*cmdrest == ',')
2197 ++cmdrest;
2198 cmdrest = skip_spaces_const (cmdrest);
2199
2200 if (*cmdrest++ != '"')
2201 error (_("No format string following the location"));
2202
2203 format_start = cmdrest;
2204
2205 fpieces = parse_format_string (&cmdrest);
2206
2207 old_cleanups = make_cleanup (free_format_pieces_cleanup, &fpieces);
2208
2209 format_end = cmdrest;
2210
2211 if (*cmdrest++ != '"')
2212 error (_("Bad format string, non-terminated '\"'."));
2213
2214 cmdrest = skip_spaces_const (cmdrest);
2215
2216 if (!(*cmdrest == ',' || *cmdrest == '\0'))
2217 error (_("Invalid argument syntax"));
2218
2219 if (*cmdrest == ',')
2220 cmdrest++;
2221 cmdrest = skip_spaces_const (cmdrest);
2222
2223 /* For each argument, make an expression. */
2224
2225 argvec = (struct expression **) alloca (strlen (cmd)
2226 * sizeof (struct expression *));
2227
2228 nargs = 0;
2229 while (*cmdrest != '\0')
2230 {
2231 const char *cmd1;
2232
2233 cmd1 = cmdrest;
2234 expr = parse_exp_1 (&cmd1, scope, block_for_pc (scope), 1);
2235 argvec[nargs++] = expr;
2236 cmdrest = cmd1;
2237 if (*cmdrest == ',')
2238 ++cmdrest;
2239 }
2240
2241 /* We don't want to stop processing, so catch any errors
2242 that may show up. */
2243 TRY_CATCH (ex, RETURN_MASK_ERROR)
2244 {
2245 aexpr = gen_printf (scope, gdbarch, 0, 0,
2246 format_start, format_end - format_start,
2247 fpieces, nargs, argvec);
2248 }
2249
2250 do_cleanups (old_cleanups);
2251
2252 if (ex.reason < 0)
2253 {
2254 /* If we got here, it means the command could not be parsed to a valid
2255 bytecode expression and thus can't be evaluated on the target's side.
2256 It's no use iterating through the other commands. */
2257 return NULL;
2258 }
2259
2260 /* We have a valid agent expression, return it. */
2261 return aexpr;
2262 }
2263
2264 /* Based on location BL, create a list of breakpoint commands to be
2265 passed on to the target. If we have duplicated locations with
2266 different commands, we will add any such to the list. */
2267
2268 static void
2269 build_target_command_list (struct bp_location *bl)
2270 {
2271 struct bp_location **locp = NULL, **loc2p;
2272 int null_command_or_parse_error = 0;
2273 int modified = bl->needs_update;
2274 struct bp_location *loc;
2275
2276 /* For now, limit to agent-style dprintf breakpoints. */
2277 if (bl->owner->type != bp_dprintf
2278 || strcmp (dprintf_style, dprintf_style_agent) != 0)
2279 return;
2280
2281 if (!target_can_run_breakpoint_commands ())
2282 return;
2283
2284 /* Do a first pass to check for locations with no assigned
2285 conditions or conditions that fail to parse to a valid agent expression
2286 bytecode. If any of these happen, then it's no use to send conditions
2287 to the target since this location will always trigger and generate a
2288 response back to GDB. */
2289 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2290 {
2291 loc = (*loc2p);
2292 if (is_breakpoint (loc->owner) && loc->pspace->num == bl->pspace->num)
2293 {
2294 if (modified)
2295 {
2296 struct agent_expr *aexpr;
2297
2298 /* Re-parse the commands since something changed. In that
2299 case we already freed the command bytecodes (see
2300 force_breakpoint_reinsertion). We just
2301 need to parse the command to bytecodes again. */
2302 aexpr = parse_cmd_to_aexpr (bl->address,
2303 loc->owner->extra_string);
2304 loc->cmd_bytecode = aexpr;
2305
2306 if (!aexpr)
2307 continue;
2308 }
2309
2310 /* If we have a NULL bytecode expression, it means something
2311 went wrong or we have a null command expression. */
2312 if (!loc->cmd_bytecode)
2313 {
2314 null_command_or_parse_error = 1;
2315 break;
2316 }
2317 }
2318 }
2319
2320 /* If anything failed, then we're not doing target-side commands,
2321 and so clean up. */
2322 if (null_command_or_parse_error)
2323 {
2324 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2325 {
2326 loc = (*loc2p);
2327 if (is_breakpoint (loc->owner)
2328 && loc->pspace->num == bl->pspace->num)
2329 {
2330 /* Only go as far as the first NULL bytecode is
2331 located. */
2332 if (loc->cmd_bytecode == NULL)
2333 return;
2334
2335 free_agent_expr (loc->cmd_bytecode);
2336 loc->cmd_bytecode = NULL;
2337 }
2338 }
2339 }
2340
2341 /* No NULL commands or failed bytecode generation. Build a command list
2342 for this location's address. */
2343 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, bl->address)
2344 {
2345 loc = (*loc2p);
2346 if (loc->owner->extra_string
2347 && is_breakpoint (loc->owner)
2348 && loc->pspace->num == bl->pspace->num
2349 && loc->owner->enable_state == bp_enabled
2350 && loc->enabled)
2351 /* Add the command to the vector. This will be used later
2352 to send the commands to the target. */
2353 VEC_safe_push (agent_expr_p, bl->target_info.tcommands,
2354 loc->cmd_bytecode);
2355 }
2356
2357 bl->target_info.persist = 0;
2358 /* Maybe flag this location as persistent. */
2359 if (bl->owner->type == bp_dprintf && disconnected_dprintf)
2360 bl->target_info.persist = 1;
2361 }
2362
2363 /* Insert a low-level "breakpoint" of some type. BL is the breakpoint
2364 location. Any error messages are printed to TMP_ERROR_STREAM; and
2365 DISABLED_BREAKS, and HW_BREAKPOINT_ERROR are used to report problems.
2366 Returns 0 for success, 1 if the bp_location type is not supported or
2367 -1 for failure.
2368
2369 NOTE drow/2003-09-09: This routine could be broken down to an
2370 object-style method for each breakpoint or catchpoint type. */
2371 static int
2372 insert_bp_location (struct bp_location *bl,
2373 struct ui_file *tmp_error_stream,
2374 int *disabled_breaks,
2375 int *hw_breakpoint_error,
2376 int *hw_bp_error_explained_already)
2377 {
2378 int val = 0;
2379 char *hw_bp_err_string = NULL;
2380 struct gdb_exception e;
2381
2382 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2383 return 0;
2384
2385 /* Note we don't initialize bl->target_info, as that wipes out
2386 the breakpoint location's shadow_contents if the breakpoint
2387 is still inserted at that location. This in turn breaks
2388 target_read_memory which depends on these buffers when
2389 a memory read is requested at the breakpoint location:
2390 Once the target_info has been wiped, we fail to see that
2391 we have a breakpoint inserted at that address and thus
2392 read the breakpoint instead of returning the data saved in
2393 the breakpoint location's shadow contents. */
2394 bl->target_info.placed_address = bl->address;
2395 bl->target_info.placed_address_space = bl->pspace->aspace;
2396 bl->target_info.length = bl->length;
2397
2398 /* When working with target-side conditions, we must pass all the conditions
2399 for the same breakpoint address down to the target since GDB will not
2400 insert those locations. With a list of breakpoint conditions, the target
2401 can decide when to stop and notify GDB. */
2402
2403 if (is_breakpoint (bl->owner))
2404 {
2405 build_target_condition_list (bl);
2406 build_target_command_list (bl);
2407 /* Reset the modification marker. */
2408 bl->needs_update = 0;
2409 }
2410
2411 if (bl->loc_type == bp_loc_software_breakpoint
2412 || bl->loc_type == bp_loc_hardware_breakpoint)
2413 {
2414 if (bl->owner->type != bp_hardware_breakpoint)
2415 {
2416 /* If the explicitly specified breakpoint type
2417 is not hardware breakpoint, check the memory map to see
2418 if the breakpoint address is in read only memory or not.
2419
2420 Two important cases are:
2421 - location type is not hardware breakpoint, memory
2422 is readonly. We change the type of the location to
2423 hardware breakpoint.
2424 - location type is hardware breakpoint, memory is
2425 read-write. This means we've previously made the
2426 location hardware one, but then the memory map changed,
2427 so we undo.
2428
2429 When breakpoints are removed, remove_breakpoints will use
2430 location types we've just set here, the only possible
2431 problem is that memory map has changed during running
2432 program, but it's not going to work anyway with current
2433 gdb. */
2434 struct mem_region *mr
2435 = lookup_mem_region (bl->target_info.placed_address);
2436
2437 if (mr)
2438 {
2439 if (automatic_hardware_breakpoints)
2440 {
2441 enum bp_loc_type new_type;
2442
2443 if (mr->attrib.mode != MEM_RW)
2444 new_type = bp_loc_hardware_breakpoint;
2445 else
2446 new_type = bp_loc_software_breakpoint;
2447
2448 if (new_type != bl->loc_type)
2449 {
2450 static int said = 0;
2451
2452 bl->loc_type = new_type;
2453 if (!said)
2454 {
2455 fprintf_filtered (gdb_stdout,
2456 _("Note: automatically using "
2457 "hardware breakpoints for "
2458 "read-only addresses.\n"));
2459 said = 1;
2460 }
2461 }
2462 }
2463 else if (bl->loc_type == bp_loc_software_breakpoint
2464 && mr->attrib.mode != MEM_RW)
2465 warning (_("cannot set software breakpoint "
2466 "at readonly address %s"),
2467 paddress (bl->gdbarch, bl->address));
2468 }
2469 }
2470
2471 /* First check to see if we have to handle an overlay. */
2472 if (overlay_debugging == ovly_off
2473 || bl->section == NULL
2474 || !(section_is_overlay (bl->section)))
2475 {
2476 /* No overlay handling: just set the breakpoint. */
2477 TRY_CATCH (e, RETURN_MASK_ALL)
2478 {
2479 val = bl->owner->ops->insert_location (bl);
2480 }
2481 if (e.reason < 0)
2482 {
2483 val = 1;
2484 hw_bp_err_string = (char *) e.message;
2485 }
2486 }
2487 else
2488 {
2489 /* This breakpoint is in an overlay section.
2490 Shall we set a breakpoint at the LMA? */
2491 if (!overlay_events_enabled)
2492 {
2493 /* Yes -- overlay event support is not active,
2494 so we must try to set a breakpoint at the LMA.
2495 This will not work for a hardware breakpoint. */
2496 if (bl->loc_type == bp_loc_hardware_breakpoint)
2497 warning (_("hardware breakpoint %d not supported in overlay!"),
2498 bl->owner->number);
2499 else
2500 {
2501 CORE_ADDR addr = overlay_unmapped_address (bl->address,
2502 bl->section);
2503 /* Set a software (trap) breakpoint at the LMA. */
2504 bl->overlay_target_info = bl->target_info;
2505 bl->overlay_target_info.placed_address = addr;
2506 val = target_insert_breakpoint (bl->gdbarch,
2507 &bl->overlay_target_info);
2508 if (val != 0)
2509 fprintf_unfiltered (tmp_error_stream,
2510 "Overlay breakpoint %d "
2511 "failed: in ROM?\n",
2512 bl->owner->number);
2513 }
2514 }
2515 /* Shall we set a breakpoint at the VMA? */
2516 if (section_is_mapped (bl->section))
2517 {
2518 /* Yes. This overlay section is mapped into memory. */
2519 TRY_CATCH (e, RETURN_MASK_ALL)
2520 {
2521 val = bl->owner->ops->insert_location (bl);
2522 }
2523 if (e.reason < 0)
2524 {
2525 val = 1;
2526 hw_bp_err_string = (char *) e.message;
2527 }
2528 }
2529 else
2530 {
2531 /* No. This breakpoint will not be inserted.
2532 No error, but do not mark the bp as 'inserted'. */
2533 return 0;
2534 }
2535 }
2536
2537 if (val)
2538 {
2539 /* Can't set the breakpoint. */
2540 if (solib_name_from_address (bl->pspace, bl->address))
2541 {
2542 /* See also: disable_breakpoints_in_shlibs. */
2543 val = 0;
2544 bl->shlib_disabled = 1;
2545 observer_notify_breakpoint_modified (bl->owner);
2546 if (!*disabled_breaks)
2547 {
2548 fprintf_unfiltered (tmp_error_stream,
2549 "Cannot insert breakpoint %d.\n",
2550 bl->owner->number);
2551 fprintf_unfiltered (tmp_error_stream,
2552 "Temporarily disabling shared "
2553 "library breakpoints:\n");
2554 }
2555 *disabled_breaks = 1;
2556 fprintf_unfiltered (tmp_error_stream,
2557 "breakpoint #%d\n", bl->owner->number);
2558 }
2559 else
2560 {
2561 if (bl->loc_type == bp_loc_hardware_breakpoint)
2562 {
2563 *hw_breakpoint_error = 1;
2564 *hw_bp_error_explained_already = hw_bp_err_string != NULL;
2565 fprintf_unfiltered (tmp_error_stream,
2566 "Cannot insert hardware breakpoint %d%s",
2567 bl->owner->number, hw_bp_err_string ? ":" : ".\n");
2568 if (hw_bp_err_string)
2569 fprintf_unfiltered (tmp_error_stream, "%s.\n", hw_bp_err_string);
2570 }
2571 else
2572 {
2573 fprintf_unfiltered (tmp_error_stream,
2574 "Cannot insert breakpoint %d.\n",
2575 bl->owner->number);
2576 fprintf_filtered (tmp_error_stream,
2577 "Error accessing memory address ");
2578 fputs_filtered (paddress (bl->gdbarch, bl->address),
2579 tmp_error_stream);
2580 fprintf_filtered (tmp_error_stream, ": %s.\n",
2581 safe_strerror (val));
2582 }
2583
2584 }
2585 }
2586 else
2587 bl->inserted = 1;
2588
2589 return val;
2590 }
2591
2592 else if (bl->loc_type == bp_loc_hardware_watchpoint
2593 /* NOTE drow/2003-09-08: This state only exists for removing
2594 watchpoints. It's not clear that it's necessary... */
2595 && bl->owner->disposition != disp_del_at_next_stop)
2596 {
2597 gdb_assert (bl->owner->ops != NULL
2598 && bl->owner->ops->insert_location != NULL);
2599
2600 val = bl->owner->ops->insert_location (bl);
2601
2602 /* If trying to set a read-watchpoint, and it turns out it's not
2603 supported, try emulating one with an access watchpoint. */
2604 if (val == 1 && bl->watchpoint_type == hw_read)
2605 {
2606 struct bp_location *loc, **loc_temp;
2607
2608 /* But don't try to insert it, if there's already another
2609 hw_access location that would be considered a duplicate
2610 of this one. */
2611 ALL_BP_LOCATIONS (loc, loc_temp)
2612 if (loc != bl
2613 && loc->watchpoint_type == hw_access
2614 && watchpoint_locations_match (bl, loc))
2615 {
2616 bl->duplicate = 1;
2617 bl->inserted = 1;
2618 bl->target_info = loc->target_info;
2619 bl->watchpoint_type = hw_access;
2620 val = 0;
2621 break;
2622 }
2623
2624 if (val == 1)
2625 {
2626 bl->watchpoint_type = hw_access;
2627 val = bl->owner->ops->insert_location (bl);
2628
2629 if (val)
2630 /* Back to the original value. */
2631 bl->watchpoint_type = hw_read;
2632 }
2633 }
2634
2635 bl->inserted = (val == 0);
2636 }
2637
2638 else if (bl->owner->type == bp_catchpoint)
2639 {
2640 gdb_assert (bl->owner->ops != NULL
2641 && bl->owner->ops->insert_location != NULL);
2642
2643 val = bl->owner->ops->insert_location (bl);
2644 if (val)
2645 {
2646 bl->owner->enable_state = bp_disabled;
2647
2648 if (val == 1)
2649 warning (_("\
2650 Error inserting catchpoint %d: Your system does not support this type\n\
2651 of catchpoint."), bl->owner->number);
2652 else
2653 warning (_("Error inserting catchpoint %d."), bl->owner->number);
2654 }
2655
2656 bl->inserted = (val == 0);
2657
2658 /* We've already printed an error message if there was a problem
2659 inserting this catchpoint, and we've disabled the catchpoint,
2660 so just return success. */
2661 return 0;
2662 }
2663
2664 return 0;
2665 }
2666
2667 /* This function is called when program space PSPACE is about to be
2668 deleted. It takes care of updating breakpoints to not reference
2669 PSPACE anymore. */
2670
2671 void
2672 breakpoint_program_space_exit (struct program_space *pspace)
2673 {
2674 struct breakpoint *b, *b_temp;
2675 struct bp_location *loc, **loc_temp;
2676
2677 /* Remove any breakpoint that was set through this program space. */
2678 ALL_BREAKPOINTS_SAFE (b, b_temp)
2679 {
2680 if (b->pspace == pspace)
2681 delete_breakpoint (b);
2682 }
2683
2684 /* Breakpoints set through other program spaces could have locations
2685 bound to PSPACE as well. Remove those. */
2686 ALL_BP_LOCATIONS (loc, loc_temp)
2687 {
2688 struct bp_location *tmp;
2689
2690 if (loc->pspace == pspace)
2691 {
2692 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
2693 if (loc->owner->loc == loc)
2694 loc->owner->loc = loc->next;
2695 else
2696 for (tmp = loc->owner->loc; tmp->next != NULL; tmp = tmp->next)
2697 if (tmp->next == loc)
2698 {
2699 tmp->next = loc->next;
2700 break;
2701 }
2702 }
2703 }
2704
2705 /* Now update the global location list to permanently delete the
2706 removed locations above. */
2707 update_global_location_list (0);
2708 }
2709
2710 /* Make sure all breakpoints are inserted in inferior.
2711 Throws exception on any error.
2712 A breakpoint that is already inserted won't be inserted
2713 again, so calling this function twice is safe. */
2714 void
2715 insert_breakpoints (void)
2716 {
2717 struct breakpoint *bpt;
2718
2719 ALL_BREAKPOINTS (bpt)
2720 if (is_hardware_watchpoint (bpt))
2721 {
2722 struct watchpoint *w = (struct watchpoint *) bpt;
2723
2724 update_watchpoint (w, 0 /* don't reparse. */);
2725 }
2726
2727 update_global_location_list (1);
2728
2729 /* update_global_location_list does not insert breakpoints when
2730 always_inserted_mode is not enabled. Explicitly insert them
2731 now. */
2732 if (!breakpoints_always_inserted_mode ())
2733 insert_breakpoint_locations ();
2734 }
2735
2736 /* Invoke CALLBACK for each of bp_location. */
2737
2738 void
2739 iterate_over_bp_locations (walk_bp_location_callback callback)
2740 {
2741 struct bp_location *loc, **loc_tmp;
2742
2743 ALL_BP_LOCATIONS (loc, loc_tmp)
2744 {
2745 callback (loc, NULL);
2746 }
2747 }
2748
2749 /* This is used when we need to synch breakpoint conditions between GDB and the
2750 target. It is the case with deleting and disabling of breakpoints when using
2751 always-inserted mode. */
2752
2753 static void
2754 update_inserted_breakpoint_locations (void)
2755 {
2756 struct bp_location *bl, **blp_tmp;
2757 int error_flag = 0;
2758 int val = 0;
2759 int disabled_breaks = 0;
2760 int hw_breakpoint_error = 0;
2761 int hw_bp_details_reported = 0;
2762
2763 struct ui_file *tmp_error_stream = mem_fileopen ();
2764 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2765
2766 /* Explicitly mark the warning -- this will only be printed if
2767 there was an error. */
2768 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2769
2770 save_current_space_and_thread ();
2771
2772 ALL_BP_LOCATIONS (bl, blp_tmp)
2773 {
2774 /* We only want to update software breakpoints and hardware
2775 breakpoints. */
2776 if (!is_breakpoint (bl->owner))
2777 continue;
2778
2779 /* We only want to update locations that are already inserted
2780 and need updating. This is to avoid unwanted insertion during
2781 deletion of breakpoints. */
2782 if (!bl->inserted || (bl->inserted && !bl->needs_update))
2783 continue;
2784
2785 switch_to_program_space_and_thread (bl->pspace);
2786
2787 /* For targets that support global breakpoints, there's no need
2788 to select an inferior to insert breakpoint to. In fact, even
2789 if we aren't attached to any process yet, we should still
2790 insert breakpoints. */
2791 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2792 && ptid_equal (inferior_ptid, null_ptid))
2793 continue;
2794
2795 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2796 &hw_breakpoint_error, &hw_bp_details_reported);
2797 if (val)
2798 error_flag = val;
2799 }
2800
2801 if (error_flag)
2802 {
2803 target_terminal_ours_for_output ();
2804 error_stream (tmp_error_stream);
2805 }
2806
2807 do_cleanups (cleanups);
2808 }
2809
2810 /* Used when starting or continuing the program. */
2811
2812 static void
2813 insert_breakpoint_locations (void)
2814 {
2815 struct breakpoint *bpt;
2816 struct bp_location *bl, **blp_tmp;
2817 int error_flag = 0;
2818 int val = 0;
2819 int disabled_breaks = 0;
2820 int hw_breakpoint_error = 0;
2821 int hw_bp_error_explained_already = 0;
2822
2823 struct ui_file *tmp_error_stream = mem_fileopen ();
2824 struct cleanup *cleanups = make_cleanup_ui_file_delete (tmp_error_stream);
2825
2826 /* Explicitly mark the warning -- this will only be printed if
2827 there was an error. */
2828 fprintf_unfiltered (tmp_error_stream, "Warning:\n");
2829
2830 save_current_space_and_thread ();
2831
2832 ALL_BP_LOCATIONS (bl, blp_tmp)
2833 {
2834 if (!should_be_inserted (bl) || (bl->inserted && !bl->needs_update))
2835 continue;
2836
2837 /* There is no point inserting thread-specific breakpoints if
2838 the thread no longer exists. ALL_BP_LOCATIONS bp_location
2839 has BL->OWNER always non-NULL. */
2840 if (bl->owner->thread != -1
2841 && !valid_thread_id (bl->owner->thread))
2842 continue;
2843
2844 switch_to_program_space_and_thread (bl->pspace);
2845
2846 /* For targets that support global breakpoints, there's no need
2847 to select an inferior to insert breakpoint to. In fact, even
2848 if we aren't attached to any process yet, we should still
2849 insert breakpoints. */
2850 if (!gdbarch_has_global_breakpoints (target_gdbarch ())
2851 && ptid_equal (inferior_ptid, null_ptid))
2852 continue;
2853
2854 val = insert_bp_location (bl, tmp_error_stream, &disabled_breaks,
2855 &hw_breakpoint_error, &hw_bp_error_explained_already);
2856 if (val)
2857 error_flag = val;
2858 }
2859
2860 /* If we failed to insert all locations of a watchpoint, remove
2861 them, as half-inserted watchpoint is of limited use. */
2862 ALL_BREAKPOINTS (bpt)
2863 {
2864 int some_failed = 0;
2865 struct bp_location *loc;
2866
2867 if (!is_hardware_watchpoint (bpt))
2868 continue;
2869
2870 if (!breakpoint_enabled (bpt))
2871 continue;
2872
2873 if (bpt->disposition == disp_del_at_next_stop)
2874 continue;
2875
2876 for (loc = bpt->loc; loc; loc = loc->next)
2877 if (!loc->inserted && should_be_inserted (loc))
2878 {
2879 some_failed = 1;
2880 break;
2881 }
2882 if (some_failed)
2883 {
2884 for (loc = bpt->loc; loc; loc = loc->next)
2885 if (loc->inserted)
2886 remove_breakpoint (loc, mark_uninserted);
2887
2888 hw_breakpoint_error = 1;
2889 fprintf_unfiltered (tmp_error_stream,
2890 "Could not insert hardware watchpoint %d.\n",
2891 bpt->number);
2892 error_flag = -1;
2893 }
2894 }
2895
2896 if (error_flag)
2897 {
2898 /* If a hardware breakpoint or watchpoint was inserted, add a
2899 message about possibly exhausted resources. */
2900 if (hw_breakpoint_error && !hw_bp_error_explained_already)
2901 {
2902 fprintf_unfiltered (tmp_error_stream,
2903 "Could not insert hardware breakpoints:\n\
2904 You may have requested too many hardware breakpoints/watchpoints.\n");
2905 }
2906 target_terminal_ours_for_output ();
2907 error_stream (tmp_error_stream);
2908 }
2909
2910 do_cleanups (cleanups);
2911 }
2912
2913 /* Used when the program stops.
2914 Returns zero if successful, or non-zero if there was a problem
2915 removing a breakpoint location. */
2916
2917 int
2918 remove_breakpoints (void)
2919 {
2920 struct bp_location *bl, **blp_tmp;
2921 int val = 0;
2922
2923 ALL_BP_LOCATIONS (bl, blp_tmp)
2924 {
2925 if (bl->inserted && !is_tracepoint (bl->owner))
2926 val |= remove_breakpoint (bl, mark_uninserted);
2927 }
2928 return val;
2929 }
2930
2931 /* Remove breakpoints of process PID. */
2932
2933 int
2934 remove_breakpoints_pid (int pid)
2935 {
2936 struct bp_location *bl, **blp_tmp;
2937 int val;
2938 struct inferior *inf = find_inferior_pid (pid);
2939
2940 ALL_BP_LOCATIONS (bl, blp_tmp)
2941 {
2942 if (bl->pspace != inf->pspace)
2943 continue;
2944
2945 if (bl->owner->type == bp_dprintf)
2946 continue;
2947
2948 if (bl->inserted)
2949 {
2950 val = remove_breakpoint (bl, mark_uninserted);
2951 if (val != 0)
2952 return val;
2953 }
2954 }
2955 return 0;
2956 }
2957
2958 int
2959 reattach_breakpoints (int pid)
2960 {
2961 struct cleanup *old_chain;
2962 struct bp_location *bl, **blp_tmp;
2963 int val;
2964 struct ui_file *tmp_error_stream;
2965 int dummy1 = 0, dummy2 = 0, dummy3 = 0;
2966 struct inferior *inf;
2967 struct thread_info *tp;
2968
2969 tp = any_live_thread_of_process (pid);
2970 if (tp == NULL)
2971 return 1;
2972
2973 inf = find_inferior_pid (pid);
2974 old_chain = save_inferior_ptid ();
2975
2976 inferior_ptid = tp->ptid;
2977
2978 tmp_error_stream = mem_fileopen ();
2979 make_cleanup_ui_file_delete (tmp_error_stream);
2980
2981 ALL_BP_LOCATIONS (bl, blp_tmp)
2982 {
2983 if (bl->pspace != inf->pspace)
2984 continue;
2985
2986 if (bl->inserted)
2987 {
2988 bl->inserted = 0;
2989 val = insert_bp_location (bl, tmp_error_stream, &dummy1, &dummy2, &dummy3);
2990 if (val != 0)
2991 {
2992 do_cleanups (old_chain);
2993 return val;
2994 }
2995 }
2996 }
2997 do_cleanups (old_chain);
2998 return 0;
2999 }
3000
3001 static int internal_breakpoint_number = -1;
3002
3003 /* Set the breakpoint number of B, depending on the value of INTERNAL.
3004 If INTERNAL is non-zero, the breakpoint number will be populated
3005 from internal_breakpoint_number and that variable decremented.
3006 Otherwise the breakpoint number will be populated from
3007 breakpoint_count and that value incremented. Internal breakpoints
3008 do not set the internal var bpnum. */
3009 static void
3010 set_breakpoint_number (int internal, struct breakpoint *b)
3011 {
3012 if (internal)
3013 b->number = internal_breakpoint_number--;
3014 else
3015 {
3016 set_breakpoint_count (breakpoint_count + 1);
3017 b->number = breakpoint_count;
3018 }
3019 }
3020
3021 static struct breakpoint *
3022 create_internal_breakpoint (struct gdbarch *gdbarch,
3023 CORE_ADDR address, enum bptype type,
3024 const struct breakpoint_ops *ops)
3025 {
3026 struct symtab_and_line sal;
3027 struct breakpoint *b;
3028
3029 init_sal (&sal); /* Initialize to zeroes. */
3030
3031 sal.pc = address;
3032 sal.section = find_pc_overlay (sal.pc);
3033 sal.pspace = current_program_space;
3034
3035 b = set_raw_breakpoint (gdbarch, sal, type, ops);
3036 b->number = internal_breakpoint_number--;
3037 b->disposition = disp_donttouch;
3038
3039 return b;
3040 }
3041
3042 static const char *const longjmp_names[] =
3043 {
3044 "longjmp", "_longjmp", "siglongjmp", "_siglongjmp"
3045 };
3046 #define NUM_LONGJMP_NAMES ARRAY_SIZE(longjmp_names)
3047
3048 /* Per-objfile data private to breakpoint.c. */
3049 struct breakpoint_objfile_data
3050 {
3051 /* Minimal symbol for "_ovly_debug_event" (if any). */
3052 struct minimal_symbol *overlay_msym;
3053
3054 /* Minimal symbol(s) for "longjmp", "siglongjmp", etc. (if any). */
3055 struct minimal_symbol *longjmp_msym[NUM_LONGJMP_NAMES];
3056
3057 /* True if we have looked for longjmp probes. */
3058 int longjmp_searched;
3059
3060 /* SystemTap probe points for longjmp (if any). */
3061 VEC (probe_p) *longjmp_probes;
3062
3063 /* Minimal symbol for "std::terminate()" (if any). */
3064 struct minimal_symbol *terminate_msym;
3065
3066 /* Minimal symbol for "_Unwind_DebugHook" (if any). */
3067 struct minimal_symbol *exception_msym;
3068
3069 /* True if we have looked for exception probes. */
3070 int exception_searched;
3071
3072 /* SystemTap probe points for unwinding (if any). */
3073 VEC (probe_p) *exception_probes;
3074 };
3075
3076 static const struct objfile_data *breakpoint_objfile_key;
3077
3078 /* Minimal symbol not found sentinel. */
3079 static struct minimal_symbol msym_not_found;
3080
3081 /* Returns TRUE if MSYM point to the "not found" sentinel. */
3082
3083 static int
3084 msym_not_found_p (const struct minimal_symbol *msym)
3085 {
3086 return msym == &msym_not_found;
3087 }
3088
3089 /* Return per-objfile data needed by breakpoint.c.
3090 Allocate the data if necessary. */
3091
3092 static struct breakpoint_objfile_data *
3093 get_breakpoint_objfile_data (struct objfile *objfile)
3094 {
3095 struct breakpoint_objfile_data *bp_objfile_data;
3096
3097 bp_objfile_data = objfile_data (objfile, breakpoint_objfile_key);
3098 if (bp_objfile_data == NULL)
3099 {
3100 bp_objfile_data = obstack_alloc (&objfile->objfile_obstack,
3101 sizeof (*bp_objfile_data));
3102
3103 memset (bp_objfile_data, 0, sizeof (*bp_objfile_data));
3104 set_objfile_data (objfile, breakpoint_objfile_key, bp_objfile_data);
3105 }
3106 return bp_objfile_data;
3107 }
3108
3109 static void
3110 free_breakpoint_probes (struct objfile *obj, void *data)
3111 {
3112 struct breakpoint_objfile_data *bp_objfile_data = data;
3113
3114 VEC_free (probe_p, bp_objfile_data->longjmp_probes);
3115 VEC_free (probe_p, bp_objfile_data->exception_probes);
3116 }
3117
3118 static void
3119 create_overlay_event_breakpoint (void)
3120 {
3121 struct objfile *objfile;
3122 const char *const func_name = "_ovly_debug_event";
3123
3124 ALL_OBJFILES (objfile)
3125 {
3126 struct breakpoint *b;
3127 struct breakpoint_objfile_data *bp_objfile_data;
3128 CORE_ADDR addr;
3129
3130 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3131
3132 if (msym_not_found_p (bp_objfile_data->overlay_msym))
3133 continue;
3134
3135 if (bp_objfile_data->overlay_msym == NULL)
3136 {
3137 struct minimal_symbol *m;
3138
3139 m = lookup_minimal_symbol_text (func_name, objfile);
3140 if (m == NULL)
3141 {
3142 /* Avoid future lookups in this objfile. */
3143 bp_objfile_data->overlay_msym = &msym_not_found;
3144 continue;
3145 }
3146 bp_objfile_data->overlay_msym = m;
3147 }
3148
3149 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->overlay_msym);
3150 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3151 bp_overlay_event,
3152 &internal_breakpoint_ops);
3153 b->addr_string = xstrdup (func_name);
3154
3155 if (overlay_debugging == ovly_auto)
3156 {
3157 b->enable_state = bp_enabled;
3158 overlay_events_enabled = 1;
3159 }
3160 else
3161 {
3162 b->enable_state = bp_disabled;
3163 overlay_events_enabled = 0;
3164 }
3165 }
3166 update_global_location_list (1);
3167 }
3168
3169 static void
3170 create_longjmp_master_breakpoint (void)
3171 {
3172 struct program_space *pspace;
3173 struct cleanup *old_chain;
3174
3175 old_chain = save_current_program_space ();
3176
3177 ALL_PSPACES (pspace)
3178 {
3179 struct objfile *objfile;
3180
3181 set_current_program_space (pspace);
3182
3183 ALL_OBJFILES (objfile)
3184 {
3185 int i;
3186 struct gdbarch *gdbarch;
3187 struct breakpoint_objfile_data *bp_objfile_data;
3188
3189 gdbarch = get_objfile_arch (objfile);
3190 if (!gdbarch_get_longjmp_target_p (gdbarch))
3191 continue;
3192
3193 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3194
3195 if (!bp_objfile_data->longjmp_searched)
3196 {
3197 bp_objfile_data->longjmp_probes
3198 = find_probes_in_objfile (objfile, "libc", "longjmp");
3199 bp_objfile_data->longjmp_searched = 1;
3200 }
3201
3202 if (bp_objfile_data->longjmp_probes != NULL)
3203 {
3204 int i;
3205 struct probe *probe;
3206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3207
3208 for (i = 0;
3209 VEC_iterate (probe_p,
3210 bp_objfile_data->longjmp_probes,
3211 i, probe);
3212 ++i)
3213 {
3214 struct breakpoint *b;
3215
3216 b = create_internal_breakpoint (gdbarch, probe->address,
3217 bp_longjmp_master,
3218 &internal_breakpoint_ops);
3219 b->addr_string = xstrdup ("-probe-stap libc:longjmp");
3220 b->enable_state = bp_disabled;
3221 }
3222
3223 continue;
3224 }
3225
3226 for (i = 0; i < NUM_LONGJMP_NAMES; i++)
3227 {
3228 struct breakpoint *b;
3229 const char *func_name;
3230 CORE_ADDR addr;
3231
3232 if (msym_not_found_p (bp_objfile_data->longjmp_msym[i]))
3233 continue;
3234
3235 func_name = longjmp_names[i];
3236 if (bp_objfile_data->longjmp_msym[i] == NULL)
3237 {
3238 struct minimal_symbol *m;
3239
3240 m = lookup_minimal_symbol_text (func_name, objfile);
3241 if (m == NULL)
3242 {
3243 /* Prevent future lookups in this objfile. */
3244 bp_objfile_data->longjmp_msym[i] = &msym_not_found;
3245 continue;
3246 }
3247 bp_objfile_data->longjmp_msym[i] = m;
3248 }
3249
3250 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->longjmp_msym[i]);
3251 b = create_internal_breakpoint (gdbarch, addr, bp_longjmp_master,
3252 &internal_breakpoint_ops);
3253 b->addr_string = xstrdup (func_name);
3254 b->enable_state = bp_disabled;
3255 }
3256 }
3257 }
3258 update_global_location_list (1);
3259
3260 do_cleanups (old_chain);
3261 }
3262
3263 /* Create a master std::terminate breakpoint. */
3264 static void
3265 create_std_terminate_master_breakpoint (void)
3266 {
3267 struct program_space *pspace;
3268 struct cleanup *old_chain;
3269 const char *const func_name = "std::terminate()";
3270
3271 old_chain = save_current_program_space ();
3272
3273 ALL_PSPACES (pspace)
3274 {
3275 struct objfile *objfile;
3276 CORE_ADDR addr;
3277
3278 set_current_program_space (pspace);
3279
3280 ALL_OBJFILES (objfile)
3281 {
3282 struct breakpoint *b;
3283 struct breakpoint_objfile_data *bp_objfile_data;
3284
3285 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3286
3287 if (msym_not_found_p (bp_objfile_data->terminate_msym))
3288 continue;
3289
3290 if (bp_objfile_data->terminate_msym == NULL)
3291 {
3292 struct minimal_symbol *m;
3293
3294 m = lookup_minimal_symbol (func_name, NULL, objfile);
3295 if (m == NULL || (MSYMBOL_TYPE (m) != mst_text
3296 && MSYMBOL_TYPE (m) != mst_file_text))
3297 {
3298 /* Prevent future lookups in this objfile. */
3299 bp_objfile_data->terminate_msym = &msym_not_found;
3300 continue;
3301 }
3302 bp_objfile_data->terminate_msym = m;
3303 }
3304
3305 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->terminate_msym);
3306 b = create_internal_breakpoint (get_objfile_arch (objfile), addr,
3307 bp_std_terminate_master,
3308 &internal_breakpoint_ops);
3309 b->addr_string = xstrdup (func_name);
3310 b->enable_state = bp_disabled;
3311 }
3312 }
3313
3314 update_global_location_list (1);
3315
3316 do_cleanups (old_chain);
3317 }
3318
3319 /* Install a master breakpoint on the unwinder's debug hook. */
3320
3321 static void
3322 create_exception_master_breakpoint (void)
3323 {
3324 struct objfile *objfile;
3325 const char *const func_name = "_Unwind_DebugHook";
3326
3327 ALL_OBJFILES (objfile)
3328 {
3329 struct breakpoint *b;
3330 struct gdbarch *gdbarch;
3331 struct breakpoint_objfile_data *bp_objfile_data;
3332 CORE_ADDR addr;
3333
3334 bp_objfile_data = get_breakpoint_objfile_data (objfile);
3335
3336 /* We prefer the SystemTap probe point if it exists. */
3337 if (!bp_objfile_data->exception_searched)
3338 {
3339 bp_objfile_data->exception_probes
3340 = find_probes_in_objfile (objfile, "libgcc", "unwind");
3341 bp_objfile_data->exception_searched = 1;
3342 }
3343
3344 if (bp_objfile_data->exception_probes != NULL)
3345 {
3346 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3347 int i;
3348 struct probe *probe;
3349
3350 for (i = 0;
3351 VEC_iterate (probe_p,
3352 bp_objfile_data->exception_probes,
3353 i, probe);
3354 ++i)
3355 {
3356 struct breakpoint *b;
3357
3358 b = create_internal_breakpoint (gdbarch, probe->address,
3359 bp_exception_master,
3360 &internal_breakpoint_ops);
3361 b->addr_string = xstrdup ("-probe-stap libgcc:unwind");
3362 b->enable_state = bp_disabled;
3363 }
3364
3365 continue;
3366 }
3367
3368 /* Otherwise, try the hook function. */
3369
3370 if (msym_not_found_p (bp_objfile_data->exception_msym))
3371 continue;
3372
3373 gdbarch = get_objfile_arch (objfile);
3374
3375 if (bp_objfile_data->exception_msym == NULL)
3376 {
3377 struct minimal_symbol *debug_hook;
3378
3379 debug_hook = lookup_minimal_symbol (func_name, NULL, objfile);
3380 if (debug_hook == NULL)
3381 {
3382 bp_objfile_data->exception_msym = &msym_not_found;
3383 continue;
3384 }
3385
3386 bp_objfile_data->exception_msym = debug_hook;
3387 }
3388
3389 addr = SYMBOL_VALUE_ADDRESS (bp_objfile_data->exception_msym);
3390 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
3391 &current_target);
3392 b = create_internal_breakpoint (gdbarch, addr, bp_exception_master,
3393 &internal_breakpoint_ops);
3394 b->addr_string = xstrdup (func_name);
3395 b->enable_state = bp_disabled;
3396 }
3397
3398 update_global_location_list (1);
3399 }
3400
3401 void
3402 update_breakpoints_after_exec (void)
3403 {
3404 struct breakpoint *b, *b_tmp;
3405 struct bp_location *bploc, **bplocp_tmp;
3406
3407 /* We're about to delete breakpoints from GDB's lists. If the
3408 INSERTED flag is true, GDB will try to lift the breakpoints by
3409 writing the breakpoints' "shadow contents" back into memory. The
3410 "shadow contents" are NOT valid after an exec, so GDB should not
3411 do that. Instead, the target is responsible from marking
3412 breakpoints out as soon as it detects an exec. We don't do that
3413 here instead, because there may be other attempts to delete
3414 breakpoints after detecting an exec and before reaching here. */
3415 ALL_BP_LOCATIONS (bploc, bplocp_tmp)
3416 if (bploc->pspace == current_program_space)
3417 gdb_assert (!bploc->inserted);
3418
3419 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3420 {
3421 if (b->pspace != current_program_space)
3422 continue;
3423
3424 /* Solib breakpoints must be explicitly reset after an exec(). */
3425 if (b->type == bp_shlib_event)
3426 {
3427 delete_breakpoint (b);
3428 continue;
3429 }
3430
3431 /* JIT breakpoints must be explicitly reset after an exec(). */
3432 if (b->type == bp_jit_event)
3433 {
3434 delete_breakpoint (b);
3435 continue;
3436 }
3437
3438 /* Thread event breakpoints must be set anew after an exec(),
3439 as must overlay event and longjmp master breakpoints. */
3440 if (b->type == bp_thread_event || b->type == bp_overlay_event
3441 || b->type == bp_longjmp_master || b->type == bp_std_terminate_master
3442 || b->type == bp_exception_master)
3443 {
3444 delete_breakpoint (b);
3445 continue;
3446 }
3447
3448 /* Step-resume breakpoints are meaningless after an exec(). */
3449 if (b->type == bp_step_resume || b->type == bp_hp_step_resume)
3450 {
3451 delete_breakpoint (b);
3452 continue;
3453 }
3454
3455 /* Longjmp and longjmp-resume breakpoints are also meaningless
3456 after an exec. */
3457 if (b->type == bp_longjmp || b->type == bp_longjmp_resume
3458 || b->type == bp_longjmp_call_dummy
3459 || b->type == bp_exception || b->type == bp_exception_resume)
3460 {
3461 delete_breakpoint (b);
3462 continue;
3463 }
3464
3465 if (b->type == bp_catchpoint)
3466 {
3467 /* For now, none of the bp_catchpoint breakpoints need to
3468 do anything at this point. In the future, if some of
3469 the catchpoints need to something, we will need to add
3470 a new method, and call this method from here. */
3471 continue;
3472 }
3473
3474 /* bp_finish is a special case. The only way we ought to be able
3475 to see one of these when an exec() has happened, is if the user
3476 caught a vfork, and then said "finish". Ordinarily a finish just
3477 carries them to the call-site of the current callee, by setting
3478 a temporary bp there and resuming. But in this case, the finish
3479 will carry them entirely through the vfork & exec.
3480
3481 We don't want to allow a bp_finish to remain inserted now. But
3482 we can't safely delete it, 'cause finish_command has a handle to
3483 the bp on a bpstat, and will later want to delete it. There's a
3484 chance (and I've seen it happen) that if we delete the bp_finish
3485 here, that its storage will get reused by the time finish_command
3486 gets 'round to deleting the "use to be a bp_finish" breakpoint.
3487 We really must allow finish_command to delete a bp_finish.
3488
3489 In the absence of a general solution for the "how do we know
3490 it's safe to delete something others may have handles to?"
3491 problem, what we'll do here is just uninsert the bp_finish, and
3492 let finish_command delete it.
3493
3494 (We know the bp_finish is "doomed" in the sense that it's
3495 momentary, and will be deleted as soon as finish_command sees
3496 the inferior stopped. So it doesn't matter that the bp's
3497 address is probably bogus in the new a.out, unlike e.g., the
3498 solib breakpoints.) */
3499
3500 if (b->type == bp_finish)
3501 {
3502 continue;
3503 }
3504
3505 /* Without a symbolic address, we have little hope of the
3506 pre-exec() address meaning the same thing in the post-exec()
3507 a.out. */
3508 if (b->addr_string == NULL)
3509 {
3510 delete_breakpoint (b);
3511 continue;
3512 }
3513 }
3514 /* FIXME what about longjmp breakpoints? Re-create them here? */
3515 create_overlay_event_breakpoint ();
3516 create_longjmp_master_breakpoint ();
3517 create_std_terminate_master_breakpoint ();
3518 create_exception_master_breakpoint ();
3519 }
3520
3521 int
3522 detach_breakpoints (ptid_t ptid)
3523 {
3524 struct bp_location *bl, **blp_tmp;
3525 int val = 0;
3526 struct cleanup *old_chain = save_inferior_ptid ();
3527 struct inferior *inf = current_inferior ();
3528
3529 if (PIDGET (ptid) == PIDGET (inferior_ptid))
3530 error (_("Cannot detach breakpoints of inferior_ptid"));
3531
3532 /* Set inferior_ptid; remove_breakpoint_1 uses this global. */
3533 inferior_ptid = ptid;
3534 ALL_BP_LOCATIONS (bl, blp_tmp)
3535 {
3536 if (bl->pspace != inf->pspace)
3537 continue;
3538
3539 /* This function must physically remove breakpoints locations
3540 from the specified ptid, without modifying the breakpoint
3541 package's state. Locations of type bp_loc_other are only
3542 maintained at GDB side. So, there is no need to remove
3543 these bp_loc_other locations. Moreover, removing these
3544 would modify the breakpoint package's state. */
3545 if (bl->loc_type == bp_loc_other)
3546 continue;
3547
3548 if (bl->inserted)
3549 val |= remove_breakpoint_1 (bl, mark_inserted);
3550 }
3551
3552 /* Detach single-step breakpoints as well. */
3553 detach_single_step_breakpoints ();
3554
3555 do_cleanups (old_chain);
3556 return val;
3557 }
3558
3559 /* Remove the breakpoint location BL from the current address space.
3560 Note that this is used to detach breakpoints from a child fork.
3561 When we get here, the child isn't in the inferior list, and neither
3562 do we have objects to represent its address space --- we should
3563 *not* look at bl->pspace->aspace here. */
3564
3565 static int
3566 remove_breakpoint_1 (struct bp_location *bl, insertion_state_t is)
3567 {
3568 int val;
3569
3570 /* BL is never in moribund_locations by our callers. */
3571 gdb_assert (bl->owner != NULL);
3572
3573 if (bl->owner->enable_state == bp_permanent)
3574 /* Permanent breakpoints cannot be inserted or removed. */
3575 return 0;
3576
3577 /* The type of none suggests that owner is actually deleted.
3578 This should not ever happen. */
3579 gdb_assert (bl->owner->type != bp_none);
3580
3581 if (bl->loc_type == bp_loc_software_breakpoint
3582 || bl->loc_type == bp_loc_hardware_breakpoint)
3583 {
3584 /* "Normal" instruction breakpoint: either the standard
3585 trap-instruction bp (bp_breakpoint), or a
3586 bp_hardware_breakpoint. */
3587
3588 /* First check to see if we have to handle an overlay. */
3589 if (overlay_debugging == ovly_off
3590 || bl->section == NULL
3591 || !(section_is_overlay (bl->section)))
3592 {
3593 /* No overlay handling: just remove the breakpoint. */
3594 val = bl->owner->ops->remove_location (bl);
3595 }
3596 else
3597 {
3598 /* This breakpoint is in an overlay section.
3599 Did we set a breakpoint at the LMA? */
3600 if (!overlay_events_enabled)
3601 {
3602 /* Yes -- overlay event support is not active, so we
3603 should have set a breakpoint at the LMA. Remove it.
3604 */
3605 /* Ignore any failures: if the LMA is in ROM, we will
3606 have already warned when we failed to insert it. */
3607 if (bl->loc_type == bp_loc_hardware_breakpoint)
3608 target_remove_hw_breakpoint (bl->gdbarch,
3609 &bl->overlay_target_info);
3610 else
3611 target_remove_breakpoint (bl->gdbarch,
3612 &bl->overlay_target_info);
3613 }
3614 /* Did we set a breakpoint at the VMA?
3615 If so, we will have marked the breakpoint 'inserted'. */
3616 if (bl->inserted)
3617 {
3618 /* Yes -- remove it. Previously we did not bother to
3619 remove the breakpoint if the section had been
3620 unmapped, but let's not rely on that being safe. We
3621 don't know what the overlay manager might do. */
3622
3623 /* However, we should remove *software* breakpoints only
3624 if the section is still mapped, or else we overwrite
3625 wrong code with the saved shadow contents. */
3626 if (bl->loc_type == bp_loc_hardware_breakpoint
3627 || section_is_mapped (bl->section))
3628 val = bl->owner->ops->remove_location (bl);
3629 else
3630 val = 0;
3631 }
3632 else
3633 {
3634 /* No -- not inserted, so no need to remove. No error. */
3635 val = 0;
3636 }
3637 }
3638
3639 /* In some cases, we might not be able to remove a breakpoint
3640 in a shared library that has already been removed, but we
3641 have not yet processed the shlib unload event. */
3642 if (val && solib_name_from_address (bl->pspace, bl->address))
3643 val = 0;
3644
3645 if (val)
3646 return val;
3647 bl->inserted = (is == mark_inserted);
3648 }
3649 else if (bl->loc_type == bp_loc_hardware_watchpoint)
3650 {
3651 gdb_assert (bl->owner->ops != NULL
3652 && bl->owner->ops->remove_location != NULL);
3653
3654 bl->inserted = (is == mark_inserted);
3655 bl->owner->ops->remove_location (bl);
3656
3657 /* Failure to remove any of the hardware watchpoints comes here. */
3658 if ((is == mark_uninserted) && (bl->inserted))
3659 warning (_("Could not remove hardware watchpoint %d."),
3660 bl->owner->number);
3661 }
3662 else if (bl->owner->type == bp_catchpoint
3663 && breakpoint_enabled (bl->owner)
3664 && !bl->duplicate)
3665 {
3666 gdb_assert (bl->owner->ops != NULL
3667 && bl->owner->ops->remove_location != NULL);
3668
3669 val = bl->owner->ops->remove_location (bl);
3670 if (val)
3671 return val;
3672
3673 bl->inserted = (is == mark_inserted);
3674 }
3675
3676 return 0;
3677 }
3678
3679 static int
3680 remove_breakpoint (struct bp_location *bl, insertion_state_t is)
3681 {
3682 int ret;
3683 struct cleanup *old_chain;
3684
3685 /* BL is never in moribund_locations by our callers. */
3686 gdb_assert (bl->owner != NULL);
3687
3688 if (bl->owner->enable_state == bp_permanent)
3689 /* Permanent breakpoints cannot be inserted or removed. */
3690 return 0;
3691
3692 /* The type of none suggests that owner is actually deleted.
3693 This should not ever happen. */
3694 gdb_assert (bl->owner->type != bp_none);
3695
3696 old_chain = save_current_space_and_thread ();
3697
3698 switch_to_program_space_and_thread (bl->pspace);
3699
3700 ret = remove_breakpoint_1 (bl, is);
3701
3702 do_cleanups (old_chain);
3703 return ret;
3704 }
3705
3706 /* Clear the "inserted" flag in all breakpoints. */
3707
3708 void
3709 mark_breakpoints_out (void)
3710 {
3711 struct bp_location *bl, **blp_tmp;
3712
3713 ALL_BP_LOCATIONS (bl, blp_tmp)
3714 if (bl->pspace == current_program_space)
3715 bl->inserted = 0;
3716 }
3717
3718 /* Clear the "inserted" flag in all breakpoints and delete any
3719 breakpoints which should go away between runs of the program.
3720
3721 Plus other such housekeeping that has to be done for breakpoints
3722 between runs.
3723
3724 Note: this function gets called at the end of a run (by
3725 generic_mourn_inferior) and when a run begins (by
3726 init_wait_for_inferior). */
3727
3728
3729
3730 void
3731 breakpoint_init_inferior (enum inf_context context)
3732 {
3733 struct breakpoint *b, *b_tmp;
3734 struct bp_location *bl, **blp_tmp;
3735 int ix;
3736 struct program_space *pspace = current_program_space;
3737
3738 /* If breakpoint locations are shared across processes, then there's
3739 nothing to do. */
3740 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
3741 return;
3742
3743 ALL_BP_LOCATIONS (bl, blp_tmp)
3744 {
3745 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3746 if (bl->pspace == pspace
3747 && bl->owner->enable_state != bp_permanent)
3748 bl->inserted = 0;
3749 }
3750
3751 ALL_BREAKPOINTS_SAFE (b, b_tmp)
3752 {
3753 if (b->loc && b->loc->pspace != pspace)
3754 continue;
3755
3756 switch (b->type)
3757 {
3758 case bp_call_dummy:
3759 case bp_longjmp_call_dummy:
3760
3761 /* If the call dummy breakpoint is at the entry point it will
3762 cause problems when the inferior is rerun, so we better get
3763 rid of it. */
3764
3765 case bp_watchpoint_scope:
3766
3767 /* Also get rid of scope breakpoints. */
3768
3769 case bp_shlib_event:
3770
3771 /* Also remove solib event breakpoints. Their addresses may
3772 have changed since the last time we ran the program.
3773 Actually we may now be debugging against different target;
3774 and so the solib backend that installed this breakpoint may
3775 not be used in by the target. E.g.,
3776
3777 (gdb) file prog-linux
3778 (gdb) run # native linux target
3779 ...
3780 (gdb) kill
3781 (gdb) file prog-win.exe
3782 (gdb) tar rem :9999 # remote Windows gdbserver.
3783 */
3784
3785 case bp_step_resume:
3786
3787 /* Also remove step-resume breakpoints. */
3788
3789 delete_breakpoint (b);
3790 break;
3791
3792 case bp_watchpoint:
3793 case bp_hardware_watchpoint:
3794 case bp_read_watchpoint:
3795 case bp_access_watchpoint:
3796 {
3797 struct watchpoint *w = (struct watchpoint *) b;
3798
3799 /* Likewise for watchpoints on local expressions. */
3800 if (w->exp_valid_block != NULL)
3801 delete_breakpoint (b);
3802 else if (context == inf_starting)
3803 {
3804 /* Reset val field to force reread of starting value in
3805 insert_breakpoints. */
3806 if (w->val)
3807 value_free (w->val);
3808 w->val = NULL;
3809 w->val_valid = 0;
3810 }
3811 }
3812 break;
3813 default:
3814 break;
3815 }
3816 }
3817
3818 /* Get rid of the moribund locations. */
3819 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, bl); ++ix)
3820 decref_bp_location (&bl);
3821 VEC_free (bp_location_p, moribund_locations);
3822 }
3823
3824 /* These functions concern about actual breakpoints inserted in the
3825 target --- to e.g. check if we need to do decr_pc adjustment or if
3826 we need to hop over the bkpt --- so we check for address space
3827 match, not program space. */
3828
3829 /* breakpoint_here_p (PC) returns non-zero if an enabled breakpoint
3830 exists at PC. It returns ordinary_breakpoint_here if it's an
3831 ordinary breakpoint, or permanent_breakpoint_here if it's a
3832 permanent breakpoint.
3833 - When continuing from a location with an ordinary breakpoint, we
3834 actually single step once before calling insert_breakpoints.
3835 - When continuing from a location with a permanent breakpoint, we
3836 need to use the `SKIP_PERMANENT_BREAKPOINT' macro, provided by
3837 the target, to advance the PC past the breakpoint. */
3838
3839 enum breakpoint_here
3840 breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3841 {
3842 struct bp_location *bl, **blp_tmp;
3843 int any_breakpoint_here = 0;
3844
3845 ALL_BP_LOCATIONS (bl, blp_tmp)
3846 {
3847 if (bl->loc_type != bp_loc_software_breakpoint
3848 && bl->loc_type != bp_loc_hardware_breakpoint)
3849 continue;
3850
3851 /* ALL_BP_LOCATIONS bp_location has BL->OWNER always non-NULL. */
3852 if ((breakpoint_enabled (bl->owner)
3853 || bl->owner->enable_state == bp_permanent)
3854 && breakpoint_location_address_match (bl, aspace, pc))
3855 {
3856 if (overlay_debugging
3857 && section_is_overlay (bl->section)
3858 && !section_is_mapped (bl->section))
3859 continue; /* unmapped overlay -- can't be a match */
3860 else if (bl->owner->enable_state == bp_permanent)
3861 return permanent_breakpoint_here;
3862 else
3863 any_breakpoint_here = 1;
3864 }
3865 }
3866
3867 return any_breakpoint_here ? ordinary_breakpoint_here : 0;
3868 }
3869
3870 /* Return true if there's a moribund breakpoint at PC. */
3871
3872 int
3873 moribund_breakpoint_here_p (struct address_space *aspace, CORE_ADDR pc)
3874 {
3875 struct bp_location *loc;
3876 int ix;
3877
3878 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
3879 if (breakpoint_location_address_match (loc, aspace, pc))
3880 return 1;
3881
3882 return 0;
3883 }
3884
3885 /* Returns non-zero if there's a breakpoint inserted at PC, which is
3886 inserted using regular breakpoint_chain / bp_location array
3887 mechanism. This does not check for single-step breakpoints, which
3888 are inserted and removed using direct target manipulation. */
3889
3890 int
3891 regular_breakpoint_inserted_here_p (struct address_space *aspace,
3892 CORE_ADDR pc)
3893 {
3894 struct bp_location *bl, **blp_tmp;
3895
3896 ALL_BP_LOCATIONS (bl, blp_tmp)
3897 {
3898 if (bl->loc_type != bp_loc_software_breakpoint
3899 && bl->loc_type != bp_loc_hardware_breakpoint)
3900 continue;
3901
3902 if (bl->inserted
3903 && breakpoint_location_address_match (bl, aspace, pc))
3904 {
3905 if (overlay_debugging
3906 && section_is_overlay (bl->section)
3907 && !section_is_mapped (bl->section))
3908 continue; /* unmapped overlay -- can't be a match */
3909 else
3910 return 1;
3911 }
3912 }
3913 return 0;
3914 }
3915
3916 /* Returns non-zero iff there's either regular breakpoint
3917 or a single step breakpoint inserted at PC. */
3918
3919 int
3920 breakpoint_inserted_here_p (struct address_space *aspace, CORE_ADDR pc)
3921 {
3922 if (regular_breakpoint_inserted_here_p (aspace, pc))
3923 return 1;
3924
3925 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3926 return 1;
3927
3928 return 0;
3929 }
3930
3931 /* This function returns non-zero iff there is a software breakpoint
3932 inserted at PC. */
3933
3934 int
3935 software_breakpoint_inserted_here_p (struct address_space *aspace,
3936 CORE_ADDR pc)
3937 {
3938 struct bp_location *bl, **blp_tmp;
3939
3940 ALL_BP_LOCATIONS (bl, blp_tmp)
3941 {
3942 if (bl->loc_type != bp_loc_software_breakpoint)
3943 continue;
3944
3945 if (bl->inserted
3946 && breakpoint_address_match (bl->pspace->aspace, bl->address,
3947 aspace, pc))
3948 {
3949 if (overlay_debugging
3950 && section_is_overlay (bl->section)
3951 && !section_is_mapped (bl->section))
3952 continue; /* unmapped overlay -- can't be a match */
3953 else
3954 return 1;
3955 }
3956 }
3957
3958 /* Also check for software single-step breakpoints. */
3959 if (single_step_breakpoint_inserted_here_p (aspace, pc))
3960 return 1;
3961
3962 return 0;
3963 }
3964
3965 int
3966 hardware_watchpoint_inserted_in_range (struct address_space *aspace,
3967 CORE_ADDR addr, ULONGEST len)
3968 {
3969 struct breakpoint *bpt;
3970
3971 ALL_BREAKPOINTS (bpt)
3972 {
3973 struct bp_location *loc;
3974
3975 if (bpt->type != bp_hardware_watchpoint
3976 && bpt->type != bp_access_watchpoint)
3977 continue;
3978
3979 if (!breakpoint_enabled (bpt))
3980 continue;
3981
3982 for (loc = bpt->loc; loc; loc = loc->next)
3983 if (loc->pspace->aspace == aspace && loc->inserted)
3984 {
3985 CORE_ADDR l, h;
3986
3987 /* Check for intersection. */
3988 l = max (loc->address, addr);
3989 h = min (loc->address + loc->length, addr + len);
3990 if (l < h)
3991 return 1;
3992 }
3993 }
3994 return 0;
3995 }
3996
3997 /* breakpoint_thread_match (PC, PTID) returns true if the breakpoint at
3998 PC is valid for process/thread PTID. */
3999
4000 int
4001 breakpoint_thread_match (struct address_space *aspace, CORE_ADDR pc,
4002 ptid_t ptid)
4003 {
4004 struct bp_location *bl, **blp_tmp;
4005 /* The thread and task IDs associated to PTID, computed lazily. */
4006 int thread = -1;
4007 int task = 0;
4008
4009 ALL_BP_LOCATIONS (bl, blp_tmp)
4010 {
4011 if (bl->loc_type != bp_loc_software_breakpoint
4012 && bl->loc_type != bp_loc_hardware_breakpoint)
4013 continue;
4014
4015 /* ALL_BP_LOCATIONS bp_location has bl->OWNER always non-NULL. */
4016 if (!breakpoint_enabled (bl->owner)
4017 && bl->owner->enable_state != bp_permanent)
4018 continue;
4019
4020 if (!breakpoint_location_address_match (bl, aspace, pc))
4021 continue;
4022
4023 if (bl->owner->thread != -1)
4024 {
4025 /* This is a thread-specific breakpoint. Check that ptid
4026 matches that thread. If thread hasn't been computed yet,
4027 it is now time to do so. */
4028 if (thread == -1)
4029 thread = pid_to_thread_id (ptid);
4030 if (bl->owner->thread != thread)
4031 continue;
4032 }
4033
4034 if (bl->owner->task != 0)
4035 {
4036 /* This is a task-specific breakpoint. Check that ptid
4037 matches that task. If task hasn't been computed yet,
4038 it is now time to do so. */
4039 if (task == 0)
4040 task = ada_get_task_number (ptid);
4041 if (bl->owner->task != task)
4042 continue;
4043 }
4044
4045 if (overlay_debugging
4046 && section_is_overlay (bl->section)
4047 && !section_is_mapped (bl->section))
4048 continue; /* unmapped overlay -- can't be a match */
4049
4050 return 1;
4051 }
4052
4053 return 0;
4054 }
4055 \f
4056
4057 /* bpstat stuff. External routines' interfaces are documented
4058 in breakpoint.h. */
4059
4060 int
4061 is_catchpoint (struct breakpoint *ep)
4062 {
4063 return (ep->type == bp_catchpoint);
4064 }
4065
4066 /* Frees any storage that is part of a bpstat. Does not walk the
4067 'next' chain. */
4068
4069 static void
4070 bpstat_free (bpstat bs)
4071 {
4072 if (bs->old_val != NULL)
4073 value_free (bs->old_val);
4074 decref_counted_command_line (&bs->commands);
4075 decref_bp_location (&bs->bp_location_at);
4076 xfree (bs);
4077 }
4078
4079 /* Clear a bpstat so that it says we are not at any breakpoint.
4080 Also free any storage that is part of a bpstat. */
4081
4082 void
4083 bpstat_clear (bpstat *bsp)
4084 {
4085 bpstat p;
4086 bpstat q;
4087
4088 if (bsp == 0)
4089 return;
4090 p = *bsp;
4091 while (p != NULL)
4092 {
4093 q = p->next;
4094 bpstat_free (p);
4095 p = q;
4096 }
4097 *bsp = NULL;
4098 }
4099
4100 /* Return a copy of a bpstat. Like "bs1 = bs2" but all storage that
4101 is part of the bpstat is copied as well. */
4102
4103 bpstat
4104 bpstat_copy (bpstat bs)
4105 {
4106 bpstat p = NULL;
4107 bpstat tmp;
4108 bpstat retval = NULL;
4109
4110 if (bs == NULL)
4111 return bs;
4112
4113 for (; bs != NULL; bs = bs->next)
4114 {
4115 tmp = (bpstat) xmalloc (sizeof (*tmp));
4116 memcpy (tmp, bs, sizeof (*tmp));
4117 incref_counted_command_line (tmp->commands);
4118 incref_bp_location (tmp->bp_location_at);
4119 if (bs->old_val != NULL)
4120 {
4121 tmp->old_val = value_copy (bs->old_val);
4122 release_value (tmp->old_val);
4123 }
4124
4125 if (p == NULL)
4126 /* This is the first thing in the chain. */
4127 retval = tmp;
4128 else
4129 p->next = tmp;
4130 p = tmp;
4131 }
4132 p->next = NULL;
4133 return retval;
4134 }
4135
4136 /* Find the bpstat associated with this breakpoint. */
4137
4138 bpstat
4139 bpstat_find_breakpoint (bpstat bsp, struct breakpoint *breakpoint)
4140 {
4141 if (bsp == NULL)
4142 return NULL;
4143
4144 for (; bsp != NULL; bsp = bsp->next)
4145 {
4146 if (bsp->breakpoint_at == breakpoint)
4147 return bsp;
4148 }
4149 return NULL;
4150 }
4151
4152 /* See breakpoint.h. */
4153
4154 enum bpstat_signal_value
4155 bpstat_explains_signal (bpstat bsp, enum gdb_signal sig)
4156 {
4157 enum bpstat_signal_value result = BPSTAT_SIGNAL_NO;
4158
4159 for (; bsp != NULL; bsp = bsp->next)
4160 {
4161 /* Ensure that, if we ever entered this loop, then we at least
4162 return BPSTAT_SIGNAL_HIDE. */
4163 enum bpstat_signal_value newval;
4164
4165 if (bsp->breakpoint_at == NULL)
4166 {
4167 /* A moribund location can never explain a signal other than
4168 GDB_SIGNAL_TRAP. */
4169 if (sig == GDB_SIGNAL_TRAP)
4170 newval = BPSTAT_SIGNAL_HIDE;
4171 else
4172 newval = BPSTAT_SIGNAL_NO;
4173 }
4174 else
4175 newval = bsp->breakpoint_at->ops->explains_signal (bsp->breakpoint_at,
4176 sig);
4177
4178 if (newval > result)
4179 result = newval;
4180 }
4181
4182 return result;
4183 }
4184
4185 /* Put in *NUM the breakpoint number of the first breakpoint we are
4186 stopped at. *BSP upon return is a bpstat which points to the
4187 remaining breakpoints stopped at (but which is not guaranteed to be
4188 good for anything but further calls to bpstat_num).
4189
4190 Return 0 if passed a bpstat which does not indicate any breakpoints.
4191 Return -1 if stopped at a breakpoint that has been deleted since
4192 we set it.
4193 Return 1 otherwise. */
4194
4195 int
4196 bpstat_num (bpstat *bsp, int *num)
4197 {
4198 struct breakpoint *b;
4199
4200 if ((*bsp) == NULL)
4201 return 0; /* No more breakpoint values */
4202
4203 /* We assume we'll never have several bpstats that correspond to a
4204 single breakpoint -- otherwise, this function might return the
4205 same number more than once and this will look ugly. */
4206 b = (*bsp)->breakpoint_at;
4207 *bsp = (*bsp)->next;
4208 if (b == NULL)
4209 return -1; /* breakpoint that's been deleted since */
4210
4211 *num = b->number; /* We have its number */
4212 return 1;
4213 }
4214
4215 /* See breakpoint.h. */
4216
4217 void
4218 bpstat_clear_actions (void)
4219 {
4220 struct thread_info *tp;
4221 bpstat bs;
4222
4223 if (ptid_equal (inferior_ptid, null_ptid))
4224 return;
4225
4226 tp = find_thread_ptid (inferior_ptid);
4227 if (tp == NULL)
4228 return;
4229
4230 for (bs = tp->control.stop_bpstat; bs != NULL; bs = bs->next)
4231 {
4232 decref_counted_command_line (&bs->commands);
4233
4234 if (bs->old_val != NULL)
4235 {
4236 value_free (bs->old_val);
4237 bs->old_val = NULL;
4238 }
4239 }
4240 }
4241
4242 /* Called when a command is about to proceed the inferior. */
4243
4244 static void
4245 breakpoint_about_to_proceed (void)
4246 {
4247 if (!ptid_equal (inferior_ptid, null_ptid))
4248 {
4249 struct thread_info *tp = inferior_thread ();
4250
4251 /* Allow inferior function calls in breakpoint commands to not
4252 interrupt the command list. When the call finishes
4253 successfully, the inferior will be standing at the same
4254 breakpoint as if nothing happened. */
4255 if (tp->control.in_infcall)
4256 return;
4257 }
4258
4259 breakpoint_proceeded = 1;
4260 }
4261
4262 /* Stub for cleaning up our state if we error-out of a breakpoint
4263 command. */
4264 static void
4265 cleanup_executing_breakpoints (void *ignore)
4266 {
4267 executing_breakpoint_commands = 0;
4268 }
4269
4270 /* Return non-zero iff CMD as the first line of a command sequence is `silent'
4271 or its equivalent. */
4272
4273 static int
4274 command_line_is_silent (struct command_line *cmd)
4275 {
4276 return cmd && (strcmp ("silent", cmd->line) == 0
4277 || (xdb_commands && strcmp ("Q", cmd->line) == 0));
4278 }
4279
4280 /* Execute all the commands associated with all the breakpoints at
4281 this location. Any of these commands could cause the process to
4282 proceed beyond this point, etc. We look out for such changes by
4283 checking the global "breakpoint_proceeded" after each command.
4284
4285 Returns true if a breakpoint command resumed the inferior. In that
4286 case, it is the caller's responsibility to recall it again with the
4287 bpstat of the current thread. */
4288
4289 static int
4290 bpstat_do_actions_1 (bpstat *bsp)
4291 {
4292 bpstat bs;
4293 struct cleanup *old_chain;
4294 int again = 0;
4295
4296 /* Avoid endless recursion if a `source' command is contained
4297 in bs->commands. */
4298 if (executing_breakpoint_commands)
4299 return 0;
4300
4301 executing_breakpoint_commands = 1;
4302 old_chain = make_cleanup (cleanup_executing_breakpoints, 0);
4303
4304 prevent_dont_repeat ();
4305
4306 /* This pointer will iterate over the list of bpstat's. */
4307 bs = *bsp;
4308
4309 breakpoint_proceeded = 0;
4310 for (; bs != NULL; bs = bs->next)
4311 {
4312 struct counted_command_line *ccmd;
4313 struct command_line *cmd;
4314 struct cleanup *this_cmd_tree_chain;
4315
4316 /* Take ownership of the BSP's command tree, if it has one.
4317
4318 The command tree could legitimately contain commands like
4319 'step' and 'next', which call clear_proceed_status, which
4320 frees stop_bpstat's command tree. To make sure this doesn't
4321 free the tree we're executing out from under us, we need to
4322 take ownership of the tree ourselves. Since a given bpstat's
4323 commands are only executed once, we don't need to copy it; we
4324 can clear the pointer in the bpstat, and make sure we free
4325 the tree when we're done. */
4326 ccmd = bs->commands;
4327 bs->commands = NULL;
4328 this_cmd_tree_chain = make_cleanup_decref_counted_command_line (&ccmd);
4329 cmd = ccmd ? ccmd->commands : NULL;
4330 if (command_line_is_silent (cmd))
4331 {
4332 /* The action has been already done by bpstat_stop_status. */
4333 cmd = cmd->next;
4334 }
4335
4336 while (cmd != NULL)
4337 {
4338 execute_control_command (cmd);
4339
4340 if (breakpoint_proceeded)
4341 break;
4342 else
4343 cmd = cmd->next;
4344 }
4345
4346 /* We can free this command tree now. */
4347 do_cleanups (this_cmd_tree_chain);
4348
4349 if (breakpoint_proceeded)
4350 {
4351 if (target_can_async_p ())
4352 /* If we are in async mode, then the target might be still
4353 running, not stopped at any breakpoint, so nothing for
4354 us to do here -- just return to the event loop. */
4355 ;
4356 else
4357 /* In sync mode, when execute_control_command returns
4358 we're already standing on the next breakpoint.
4359 Breakpoint commands for that stop were not run, since
4360 execute_command does not run breakpoint commands --
4361 only command_line_handler does, but that one is not
4362 involved in execution of breakpoint commands. So, we
4363 can now execute breakpoint commands. It should be
4364 noted that making execute_command do bpstat actions is
4365 not an option -- in this case we'll have recursive
4366 invocation of bpstat for each breakpoint with a
4367 command, and can easily blow up GDB stack. Instead, we
4368 return true, which will trigger the caller to recall us
4369 with the new stop_bpstat. */
4370 again = 1;
4371 break;
4372 }
4373 }
4374 do_cleanups (old_chain);
4375 return again;
4376 }
4377
4378 void
4379 bpstat_do_actions (void)
4380 {
4381 struct cleanup *cleanup_if_error = make_bpstat_clear_actions_cleanup ();
4382
4383 /* Do any commands attached to breakpoint we are stopped at. */
4384 while (!ptid_equal (inferior_ptid, null_ptid)
4385 && target_has_execution
4386 && !is_exited (inferior_ptid)
4387 && !is_executing (inferior_ptid))
4388 /* Since in sync mode, bpstat_do_actions may resume the inferior,
4389 and only return when it is stopped at the next breakpoint, we
4390 keep doing breakpoint actions until it returns false to
4391 indicate the inferior was not resumed. */
4392 if (!bpstat_do_actions_1 (&inferior_thread ()->control.stop_bpstat))
4393 break;
4394
4395 discard_cleanups (cleanup_if_error);
4396 }
4397
4398 /* Print out the (old or new) value associated with a watchpoint. */
4399
4400 static void
4401 watchpoint_value_print (struct value *val, struct ui_file *stream)
4402 {
4403 if (val == NULL)
4404 fprintf_unfiltered (stream, _("<unreadable>"));
4405 else
4406 {
4407 struct value_print_options opts;
4408 get_user_print_options (&opts);
4409 value_print (val, stream, &opts);
4410 }
4411 }
4412
4413 /* Generic routine for printing messages indicating why we
4414 stopped. The behavior of this function depends on the value
4415 'print_it' in the bpstat structure. Under some circumstances we
4416 may decide not to print anything here and delegate the task to
4417 normal_stop(). */
4418
4419 static enum print_stop_action
4420 print_bp_stop_message (bpstat bs)
4421 {
4422 switch (bs->print_it)
4423 {
4424 case print_it_noop:
4425 /* Nothing should be printed for this bpstat entry. */
4426 return PRINT_UNKNOWN;
4427 break;
4428
4429 case print_it_done:
4430 /* We still want to print the frame, but we already printed the
4431 relevant messages. */
4432 return PRINT_SRC_AND_LOC;
4433 break;
4434
4435 case print_it_normal:
4436 {
4437 struct breakpoint *b = bs->breakpoint_at;
4438
4439 /* bs->breakpoint_at can be NULL if it was a momentary breakpoint
4440 which has since been deleted. */
4441 if (b == NULL)
4442 return PRINT_UNKNOWN;
4443
4444 /* Normal case. Call the breakpoint's print_it method. */
4445 return b->ops->print_it (bs);
4446 }
4447 break;
4448
4449 default:
4450 internal_error (__FILE__, __LINE__,
4451 _("print_bp_stop_message: unrecognized enum value"));
4452 break;
4453 }
4454 }
4455
4456 /* A helper function that prints a shared library stopped event. */
4457
4458 static void
4459 print_solib_event (int is_catchpoint)
4460 {
4461 int any_deleted
4462 = !VEC_empty (char_ptr, current_program_space->deleted_solibs);
4463 int any_added
4464 = !VEC_empty (so_list_ptr, current_program_space->added_solibs);
4465
4466 if (!is_catchpoint)
4467 {
4468 if (any_added || any_deleted)
4469 ui_out_text (current_uiout,
4470 _("Stopped due to shared library event:\n"));
4471 else
4472 ui_out_text (current_uiout,
4473 _("Stopped due to shared library event (no "
4474 "libraries added or removed)\n"));
4475 }
4476
4477 if (ui_out_is_mi_like_p (current_uiout))
4478 ui_out_field_string (current_uiout, "reason",
4479 async_reason_lookup (EXEC_ASYNC_SOLIB_EVENT));
4480
4481 if (any_deleted)
4482 {
4483 struct cleanup *cleanup;
4484 char *name;
4485 int ix;
4486
4487 ui_out_text (current_uiout, _(" Inferior unloaded "));
4488 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4489 "removed");
4490 for (ix = 0;
4491 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
4492 ix, name);
4493 ++ix)
4494 {
4495 if (ix > 0)
4496 ui_out_text (current_uiout, " ");
4497 ui_out_field_string (current_uiout, "library", name);
4498 ui_out_text (current_uiout, "\n");
4499 }
4500
4501 do_cleanups (cleanup);
4502 }
4503
4504 if (any_added)
4505 {
4506 struct so_list *iter;
4507 int ix;
4508 struct cleanup *cleanup;
4509
4510 ui_out_text (current_uiout, _(" Inferior loaded "));
4511 cleanup = make_cleanup_ui_out_list_begin_end (current_uiout,
4512 "added");
4513 for (ix = 0;
4514 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
4515 ix, iter);
4516 ++ix)
4517 {
4518 if (ix > 0)
4519 ui_out_text (current_uiout, " ");
4520 ui_out_field_string (current_uiout, "library", iter->so_name);
4521 ui_out_text (current_uiout, "\n");
4522 }
4523
4524 do_cleanups (cleanup);
4525 }
4526 }
4527
4528 /* Print a message indicating what happened. This is called from
4529 normal_stop(). The input to this routine is the head of the bpstat
4530 list - a list of the eventpoints that caused this stop. KIND is
4531 the target_waitkind for the stopping event. This
4532 routine calls the generic print routine for printing a message
4533 about reasons for stopping. This will print (for example) the
4534 "Breakpoint n," part of the output. The return value of this
4535 routine is one of:
4536
4537 PRINT_UNKNOWN: Means we printed nothing.
4538 PRINT_SRC_AND_LOC: Means we printed something, and expect subsequent
4539 code to print the location. An example is
4540 "Breakpoint 1, " which should be followed by
4541 the location.
4542 PRINT_SRC_ONLY: Means we printed something, but there is no need
4543 to also print the location part of the message.
4544 An example is the catch/throw messages, which
4545 don't require a location appended to the end.
4546 PRINT_NOTHING: We have done some printing and we don't need any
4547 further info to be printed. */
4548
4549 enum print_stop_action
4550 bpstat_print (bpstat bs, int kind)
4551 {
4552 int val;
4553
4554 /* Maybe another breakpoint in the chain caused us to stop.
4555 (Currently all watchpoints go on the bpstat whether hit or not.
4556 That probably could (should) be changed, provided care is taken
4557 with respect to bpstat_explains_signal). */
4558 for (; bs; bs = bs->next)
4559 {
4560 val = print_bp_stop_message (bs);
4561 if (val == PRINT_SRC_ONLY
4562 || val == PRINT_SRC_AND_LOC
4563 || val == PRINT_NOTHING)
4564 return val;
4565 }
4566
4567 /* If we had hit a shared library event breakpoint,
4568 print_bp_stop_message would print out this message. If we hit an
4569 OS-level shared library event, do the same thing. */
4570 if (kind == TARGET_WAITKIND_LOADED)
4571 {
4572 print_solib_event (0);
4573 return PRINT_NOTHING;
4574 }
4575
4576 /* We reached the end of the chain, or we got a null BS to start
4577 with and nothing was printed. */
4578 return PRINT_UNKNOWN;
4579 }
4580
4581 /* Evaluate the expression EXP and return 1 if value is zero. This is
4582 used inside a catch_errors to evaluate the breakpoint condition.
4583 The argument is a "struct expression *" that has been cast to a
4584 "char *" to make it pass through catch_errors. */
4585
4586 static int
4587 breakpoint_cond_eval (void *exp)
4588 {
4589 struct value *mark = value_mark ();
4590 int i = !value_true (evaluate_expression ((struct expression *) exp));
4591
4592 value_free_to_mark (mark);
4593 return i;
4594 }
4595
4596 /* Allocate a new bpstat. Link it to the FIFO list by BS_LINK_POINTER. */
4597
4598 static bpstat
4599 bpstat_alloc (struct bp_location *bl, bpstat **bs_link_pointer)
4600 {
4601 bpstat bs;
4602
4603 bs = (bpstat) xmalloc (sizeof (*bs));
4604 bs->next = NULL;
4605 **bs_link_pointer = bs;
4606 *bs_link_pointer = &bs->next;
4607 bs->breakpoint_at = bl->owner;
4608 bs->bp_location_at = bl;
4609 incref_bp_location (bl);
4610 /* If the condition is false, etc., don't do the commands. */
4611 bs->commands = NULL;
4612 bs->old_val = NULL;
4613 bs->print_it = print_it_normal;
4614 return bs;
4615 }
4616 \f
4617 /* The target has stopped with waitstatus WS. Check if any hardware
4618 watchpoints have triggered, according to the target. */
4619
4620 int
4621 watchpoints_triggered (struct target_waitstatus *ws)
4622 {
4623 int stopped_by_watchpoint = target_stopped_by_watchpoint ();
4624 CORE_ADDR addr;
4625 struct breakpoint *b;
4626
4627 if (!stopped_by_watchpoint)
4628 {
4629 /* We were not stopped by a watchpoint. Mark all watchpoints
4630 as not triggered. */
4631 ALL_BREAKPOINTS (b)
4632 if (is_hardware_watchpoint (b))
4633 {
4634 struct watchpoint *w = (struct watchpoint *) b;
4635
4636 w->watchpoint_triggered = watch_triggered_no;
4637 }
4638
4639 return 0;
4640 }
4641
4642 if (!target_stopped_data_address (&current_target, &addr))
4643 {
4644 /* We were stopped by a watchpoint, but we don't know where.
4645 Mark all watchpoints as unknown. */
4646 ALL_BREAKPOINTS (b)
4647 if (is_hardware_watchpoint (b))
4648 {
4649 struct watchpoint *w = (struct watchpoint *) b;
4650
4651 w->watchpoint_triggered = watch_triggered_unknown;
4652 }
4653
4654 return stopped_by_watchpoint;
4655 }
4656
4657 /* The target could report the data address. Mark watchpoints
4658 affected by this data address as triggered, and all others as not
4659 triggered. */
4660
4661 ALL_BREAKPOINTS (b)
4662 if (is_hardware_watchpoint (b))
4663 {
4664 struct watchpoint *w = (struct watchpoint *) b;
4665 struct bp_location *loc;
4666
4667 w->watchpoint_triggered = watch_triggered_no;
4668 for (loc = b->loc; loc; loc = loc->next)
4669 {
4670 if (is_masked_watchpoint (b))
4671 {
4672 CORE_ADDR newaddr = addr & w->hw_wp_mask;
4673 CORE_ADDR start = loc->address & w->hw_wp_mask;
4674
4675 if (newaddr == start)
4676 {
4677 w->watchpoint_triggered = watch_triggered_yes;
4678 break;
4679 }
4680 }
4681 /* Exact match not required. Within range is sufficient. */
4682 else if (target_watchpoint_addr_within_range (&current_target,
4683 addr, loc->address,
4684 loc->length))
4685 {
4686 w->watchpoint_triggered = watch_triggered_yes;
4687 break;
4688 }
4689 }
4690 }
4691
4692 return 1;
4693 }
4694
4695 /* Possible return values for watchpoint_check (this can't be an enum
4696 because of check_errors). */
4697 /* The watchpoint has been deleted. */
4698 #define WP_DELETED 1
4699 /* The value has changed. */
4700 #define WP_VALUE_CHANGED 2
4701 /* The value has not changed. */
4702 #define WP_VALUE_NOT_CHANGED 3
4703 /* Ignore this watchpoint, no matter if the value changed or not. */
4704 #define WP_IGNORE 4
4705
4706 #define BP_TEMPFLAG 1
4707 #define BP_HARDWAREFLAG 2
4708
4709 /* Evaluate watchpoint condition expression and check if its value
4710 changed.
4711
4712 P should be a pointer to struct bpstat, but is defined as a void *
4713 in order for this function to be usable with catch_errors. */
4714
4715 static int
4716 watchpoint_check (void *p)
4717 {
4718 bpstat bs = (bpstat) p;
4719 struct watchpoint *b;
4720 struct frame_info *fr;
4721 int within_current_scope;
4722
4723 /* BS is built from an existing struct breakpoint. */
4724 gdb_assert (bs->breakpoint_at != NULL);
4725 b = (struct watchpoint *) bs->breakpoint_at;
4726
4727 /* If this is a local watchpoint, we only want to check if the
4728 watchpoint frame is in scope if the current thread is the thread
4729 that was used to create the watchpoint. */
4730 if (!watchpoint_in_thread_scope (b))
4731 return WP_IGNORE;
4732
4733 if (b->exp_valid_block == NULL)
4734 within_current_scope = 1;
4735 else
4736 {
4737 struct frame_info *frame = get_current_frame ();
4738 struct gdbarch *frame_arch = get_frame_arch (frame);
4739 CORE_ADDR frame_pc = get_frame_pc (frame);
4740
4741 /* in_function_epilogue_p() returns a non-zero value if we're
4742 still in the function but the stack frame has already been
4743 invalidated. Since we can't rely on the values of local
4744 variables after the stack has been destroyed, we are treating
4745 the watchpoint in that state as `not changed' without further
4746 checking. Don't mark watchpoints as changed if the current
4747 frame is in an epilogue - even if they are in some other
4748 frame, our view of the stack is likely to be wrong and
4749 frame_find_by_id could error out. */
4750 if (gdbarch_in_function_epilogue_p (frame_arch, frame_pc))
4751 return WP_IGNORE;
4752
4753 fr = frame_find_by_id (b->watchpoint_frame);
4754 within_current_scope = (fr != NULL);
4755
4756 /* If we've gotten confused in the unwinder, we might have
4757 returned a frame that can't describe this variable. */
4758 if (within_current_scope)
4759 {
4760 struct symbol *function;
4761
4762 function = get_frame_function (fr);
4763 if (function == NULL
4764 || !contained_in (b->exp_valid_block,
4765 SYMBOL_BLOCK_VALUE (function)))
4766 within_current_scope = 0;
4767 }
4768
4769 if (within_current_scope)
4770 /* If we end up stopping, the current frame will get selected
4771 in normal_stop. So this call to select_frame won't affect
4772 the user. */
4773 select_frame (fr);
4774 }
4775
4776 if (within_current_scope)
4777 {
4778 /* We use value_{,free_to_}mark because it could be a *long*
4779 time before we return to the command level and call
4780 free_all_values. We can't call free_all_values because we
4781 might be in the middle of evaluating a function call. */
4782
4783 int pc = 0;
4784 struct value *mark;
4785 struct value *new_val;
4786
4787 if (is_masked_watchpoint (&b->base))
4788 /* Since we don't know the exact trigger address (from
4789 stopped_data_address), just tell the user we've triggered
4790 a mask watchpoint. */
4791 return WP_VALUE_CHANGED;
4792
4793 mark = value_mark ();
4794 fetch_subexp_value (b->exp, &pc, &new_val, NULL, NULL);
4795
4796 /* We use value_equal_contents instead of value_equal because
4797 the latter coerces an array to a pointer, thus comparing just
4798 the address of the array instead of its contents. This is
4799 not what we want. */
4800 if ((b->val != NULL) != (new_val != NULL)
4801 || (b->val != NULL && !value_equal_contents (b->val, new_val)))
4802 {
4803 if (new_val != NULL)
4804 {
4805 release_value (new_val);
4806 value_free_to_mark (mark);
4807 }
4808 bs->old_val = b->val;
4809 b->val = new_val;
4810 b->val_valid = 1;
4811 return WP_VALUE_CHANGED;
4812 }
4813 else
4814 {
4815 /* Nothing changed. */
4816 value_free_to_mark (mark);
4817 return WP_VALUE_NOT_CHANGED;
4818 }
4819 }
4820 else
4821 {
4822 struct ui_out *uiout = current_uiout;
4823
4824 /* This seems like the only logical thing to do because
4825 if we temporarily ignored the watchpoint, then when
4826 we reenter the block in which it is valid it contains
4827 garbage (in the case of a function, it may have two
4828 garbage values, one before and one after the prologue).
4829 So we can't even detect the first assignment to it and
4830 watch after that (since the garbage may or may not equal
4831 the first value assigned). */
4832 /* We print all the stop information in
4833 breakpoint_ops->print_it, but in this case, by the time we
4834 call breakpoint_ops->print_it this bp will be deleted
4835 already. So we have no choice but print the information
4836 here. */
4837 if (ui_out_is_mi_like_p (uiout))
4838 ui_out_field_string
4839 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_WATCHPOINT_SCOPE));
4840 ui_out_text (uiout, "\nWatchpoint ");
4841 ui_out_field_int (uiout, "wpnum", b->base.number);
4842 ui_out_text (uiout,
4843 " deleted because the program has left the block in\n\
4844 which its expression is valid.\n");
4845
4846 /* Make sure the watchpoint's commands aren't executed. */
4847 decref_counted_command_line (&b->base.commands);
4848 watchpoint_del_at_next_stop (b);
4849
4850 return WP_DELETED;
4851 }
4852 }
4853
4854 /* Return true if it looks like target has stopped due to hitting
4855 breakpoint location BL. This function does not check if we should
4856 stop, only if BL explains the stop. */
4857
4858 static int
4859 bpstat_check_location (const struct bp_location *bl,
4860 struct address_space *aspace, CORE_ADDR bp_addr,
4861 const struct target_waitstatus *ws)
4862 {
4863 struct breakpoint *b = bl->owner;
4864
4865 /* BL is from an existing breakpoint. */
4866 gdb_assert (b != NULL);
4867
4868 return b->ops->breakpoint_hit (bl, aspace, bp_addr, ws);
4869 }
4870
4871 /* Determine if the watched values have actually changed, and we
4872 should stop. If not, set BS->stop to 0. */
4873
4874 static void
4875 bpstat_check_watchpoint (bpstat bs)
4876 {
4877 const struct bp_location *bl;
4878 struct watchpoint *b;
4879
4880 /* BS is built for existing struct breakpoint. */
4881 bl = bs->bp_location_at;
4882 gdb_assert (bl != NULL);
4883 b = (struct watchpoint *) bs->breakpoint_at;
4884 gdb_assert (b != NULL);
4885
4886 {
4887 int must_check_value = 0;
4888
4889 if (b->base.type == bp_watchpoint)
4890 /* For a software watchpoint, we must always check the
4891 watched value. */
4892 must_check_value = 1;
4893 else if (b->watchpoint_triggered == watch_triggered_yes)
4894 /* We have a hardware watchpoint (read, write, or access)
4895 and the target earlier reported an address watched by
4896 this watchpoint. */
4897 must_check_value = 1;
4898 else if (b->watchpoint_triggered == watch_triggered_unknown
4899 && b->base.type == bp_hardware_watchpoint)
4900 /* We were stopped by a hardware watchpoint, but the target could
4901 not report the data address. We must check the watchpoint's
4902 value. Access and read watchpoints are out of luck; without
4903 a data address, we can't figure it out. */
4904 must_check_value = 1;
4905
4906 if (must_check_value)
4907 {
4908 char *message
4909 = xstrprintf ("Error evaluating expression for watchpoint %d\n",
4910 b->base.number);
4911 struct cleanup *cleanups = make_cleanup (xfree, message);
4912 int e = catch_errors (watchpoint_check, bs, message,
4913 RETURN_MASK_ALL);
4914 do_cleanups (cleanups);
4915 switch (e)
4916 {
4917 case WP_DELETED:
4918 /* We've already printed what needs to be printed. */
4919 bs->print_it = print_it_done;
4920 /* Stop. */
4921 break;
4922 case WP_IGNORE:
4923 bs->print_it = print_it_noop;
4924 bs->stop = 0;
4925 break;
4926 case WP_VALUE_CHANGED:
4927 if (b->base.type == bp_read_watchpoint)
4928 {
4929 /* There are two cases to consider here:
4930
4931 1. We're watching the triggered memory for reads.
4932 In that case, trust the target, and always report
4933 the watchpoint hit to the user. Even though
4934 reads don't cause value changes, the value may
4935 have changed since the last time it was read, and
4936 since we're not trapping writes, we will not see
4937 those, and as such we should ignore our notion of
4938 old value.
4939
4940 2. We're watching the triggered memory for both
4941 reads and writes. There are two ways this may
4942 happen:
4943
4944 2.1. This is a target that can't break on data
4945 reads only, but can break on accesses (reads or
4946 writes), such as e.g., x86. We detect this case
4947 at the time we try to insert read watchpoints.
4948
4949 2.2. Otherwise, the target supports read
4950 watchpoints, but, the user set an access or write
4951 watchpoint watching the same memory as this read
4952 watchpoint.
4953
4954 If we're watching memory writes as well as reads,
4955 ignore watchpoint hits when we find that the
4956 value hasn't changed, as reads don't cause
4957 changes. This still gives false positives when
4958 the program writes the same value to memory as
4959 what there was already in memory (we will confuse
4960 it for a read), but it's much better than
4961 nothing. */
4962
4963 int other_write_watchpoint = 0;
4964
4965 if (bl->watchpoint_type == hw_read)
4966 {
4967 struct breakpoint *other_b;
4968
4969 ALL_BREAKPOINTS (other_b)
4970 if (other_b->type == bp_hardware_watchpoint
4971 || other_b->type == bp_access_watchpoint)
4972 {
4973 struct watchpoint *other_w =
4974 (struct watchpoint *) other_b;
4975
4976 if (other_w->watchpoint_triggered
4977 == watch_triggered_yes)
4978 {
4979 other_write_watchpoint = 1;
4980 break;
4981 }
4982 }
4983 }
4984
4985 if (other_write_watchpoint
4986 || bl->watchpoint_type == hw_access)
4987 {
4988 /* We're watching the same memory for writes,
4989 and the value changed since the last time we
4990 updated it, so this trap must be for a write.
4991 Ignore it. */
4992 bs->print_it = print_it_noop;
4993 bs->stop = 0;
4994 }
4995 }
4996 break;
4997 case WP_VALUE_NOT_CHANGED:
4998 if (b->base.type == bp_hardware_watchpoint
4999 || b->base.type == bp_watchpoint)
5000 {
5001 /* Don't stop: write watchpoints shouldn't fire if
5002 the value hasn't changed. */
5003 bs->print_it = print_it_noop;
5004 bs->stop = 0;
5005 }
5006 /* Stop. */
5007 break;
5008 default:
5009 /* Can't happen. */
5010 case 0:
5011 /* Error from catch_errors. */
5012 printf_filtered (_("Watchpoint %d deleted.\n"), b->base.number);
5013 watchpoint_del_at_next_stop (b);
5014 /* We've already printed what needs to be printed. */
5015 bs->print_it = print_it_done;
5016 break;
5017 }
5018 }
5019 else /* must_check_value == 0 */
5020 {
5021 /* This is a case where some watchpoint(s) triggered, but
5022 not at the address of this watchpoint, or else no
5023 watchpoint triggered after all. So don't print
5024 anything for this watchpoint. */
5025 bs->print_it = print_it_noop;
5026 bs->stop = 0;
5027 }
5028 }
5029 }
5030
5031
5032 /* Check conditions (condition proper, frame, thread and ignore count)
5033 of breakpoint referred to by BS. If we should not stop for this
5034 breakpoint, set BS->stop to 0. */
5035
5036 static void
5037 bpstat_check_breakpoint_conditions (bpstat bs, ptid_t ptid)
5038 {
5039 int thread_id = pid_to_thread_id (ptid);
5040 const struct bp_location *bl;
5041 struct breakpoint *b;
5042
5043 /* BS is built for existing struct breakpoint. */
5044 bl = bs->bp_location_at;
5045 gdb_assert (bl != NULL);
5046 b = bs->breakpoint_at;
5047 gdb_assert (b != NULL);
5048
5049 /* Even if the target evaluated the condition on its end and notified GDB, we
5050 need to do so again since GDB does not know if we stopped due to a
5051 breakpoint or a single step breakpoint. */
5052
5053 if (frame_id_p (b->frame_id)
5054 && !frame_id_eq (b->frame_id, get_stack_frame_id (get_current_frame ())))
5055 bs->stop = 0;
5056 else if (bs->stop)
5057 {
5058 int value_is_zero = 0;
5059 struct expression *cond;
5060
5061 /* Evaluate Python breakpoints that have a "stop"
5062 method implemented. */
5063 if (b->py_bp_object)
5064 bs->stop = gdbpy_should_stop (b->py_bp_object);
5065
5066 if (is_watchpoint (b))
5067 {
5068 struct watchpoint *w = (struct watchpoint *) b;
5069
5070 cond = w->cond_exp;
5071 }
5072 else
5073 cond = bl->cond;
5074
5075 if (cond && b->disposition != disp_del_at_next_stop)
5076 {
5077 int within_current_scope = 1;
5078 struct watchpoint * w;
5079
5080 /* We use value_mark and value_free_to_mark because it could
5081 be a long time before we return to the command level and
5082 call free_all_values. We can't call free_all_values
5083 because we might be in the middle of evaluating a
5084 function call. */
5085 struct value *mark = value_mark ();
5086
5087 if (is_watchpoint (b))
5088 w = (struct watchpoint *) b;
5089 else
5090 w = NULL;
5091
5092 /* Need to select the frame, with all that implies so that
5093 the conditions will have the right context. Because we
5094 use the frame, we will not see an inlined function's
5095 variables when we arrive at a breakpoint at the start
5096 of the inlined function; the current frame will be the
5097 call site. */
5098 if (w == NULL || w->cond_exp_valid_block == NULL)
5099 select_frame (get_current_frame ());
5100 else
5101 {
5102 struct frame_info *frame;
5103
5104 /* For local watchpoint expressions, which particular
5105 instance of a local is being watched matters, so we
5106 keep track of the frame to evaluate the expression
5107 in. To evaluate the condition however, it doesn't
5108 really matter which instantiation of the function
5109 where the condition makes sense triggers the
5110 watchpoint. This allows an expression like "watch
5111 global if q > 10" set in `func', catch writes to
5112 global on all threads that call `func', or catch
5113 writes on all recursive calls of `func' by a single
5114 thread. We simply always evaluate the condition in
5115 the innermost frame that's executing where it makes
5116 sense to evaluate the condition. It seems
5117 intuitive. */
5118 frame = block_innermost_frame (w->cond_exp_valid_block);
5119 if (frame != NULL)
5120 select_frame (frame);
5121 else
5122 within_current_scope = 0;
5123 }
5124 if (within_current_scope)
5125 value_is_zero
5126 = catch_errors (breakpoint_cond_eval, cond,
5127 "Error in testing breakpoint condition:\n",
5128 RETURN_MASK_ALL);
5129 else
5130 {
5131 warning (_("Watchpoint condition cannot be tested "
5132 "in the current scope"));
5133 /* If we failed to set the right context for this
5134 watchpoint, unconditionally report it. */
5135 value_is_zero = 0;
5136 }
5137 /* FIXME-someday, should give breakpoint #. */
5138 value_free_to_mark (mark);
5139 }
5140
5141 if (cond && value_is_zero)
5142 {
5143 bs->stop = 0;
5144 }
5145 else if (b->thread != -1 && b->thread != thread_id)
5146 {
5147 bs->stop = 0;
5148 }
5149 else if (b->ignore_count > 0)
5150 {
5151 b->ignore_count--;
5152 bs->stop = 0;
5153 /* Increase the hit count even though we don't stop. */
5154 ++(b->hit_count);
5155 observer_notify_breakpoint_modified (b);
5156 }
5157 }
5158 }
5159
5160
5161 /* Get a bpstat associated with having just stopped at address
5162 BP_ADDR in thread PTID.
5163
5164 Determine whether we stopped at a breakpoint, etc, or whether we
5165 don't understand this stop. Result is a chain of bpstat's such
5166 that:
5167
5168 if we don't understand the stop, the result is a null pointer.
5169
5170 if we understand why we stopped, the result is not null.
5171
5172 Each element of the chain refers to a particular breakpoint or
5173 watchpoint at which we have stopped. (We may have stopped for
5174 several reasons concurrently.)
5175
5176 Each element of the chain has valid next, breakpoint_at,
5177 commands, FIXME??? fields. */
5178
5179 bpstat
5180 bpstat_stop_status (struct address_space *aspace,
5181 CORE_ADDR bp_addr, ptid_t ptid,
5182 const struct target_waitstatus *ws)
5183 {
5184 struct breakpoint *b = NULL;
5185 struct bp_location *bl;
5186 struct bp_location *loc;
5187 /* First item of allocated bpstat's. */
5188 bpstat bs_head = NULL, *bs_link = &bs_head;
5189 /* Pointer to the last thing in the chain currently. */
5190 bpstat bs;
5191 int ix;
5192 int need_remove_insert;
5193 int removed_any;
5194
5195 /* First, build the bpstat chain with locations that explain a
5196 target stop, while being careful to not set the target running,
5197 as that may invalidate locations (in particular watchpoint
5198 locations are recreated). Resuming will happen here with
5199 breakpoint conditions or watchpoint expressions that include
5200 inferior function calls. */
5201
5202 ALL_BREAKPOINTS (b)
5203 {
5204 if (!breakpoint_enabled (b) && b->enable_state != bp_permanent)
5205 continue;
5206
5207 for (bl = b->loc; bl != NULL; bl = bl->next)
5208 {
5209 /* For hardware watchpoints, we look only at the first
5210 location. The watchpoint_check function will work on the
5211 entire expression, not the individual locations. For
5212 read watchpoints, the watchpoints_triggered function has
5213 checked all locations already. */
5214 if (b->type == bp_hardware_watchpoint && bl != b->loc)
5215 break;
5216
5217 if (!bl->enabled || bl->shlib_disabled)
5218 continue;
5219
5220 if (!bpstat_check_location (bl, aspace, bp_addr, ws))
5221 continue;
5222
5223 /* Come here if it's a watchpoint, or if the break address
5224 matches. */
5225
5226 bs = bpstat_alloc (bl, &bs_link); /* Alloc a bpstat to
5227 explain stop. */
5228
5229 /* Assume we stop. Should we find a watchpoint that is not
5230 actually triggered, or if the condition of the breakpoint
5231 evaluates as false, we'll reset 'stop' to 0. */
5232 bs->stop = 1;
5233 bs->print = 1;
5234
5235 /* If this is a scope breakpoint, mark the associated
5236 watchpoint as triggered so that we will handle the
5237 out-of-scope event. We'll get to the watchpoint next
5238 iteration. */
5239 if (b->type == bp_watchpoint_scope && b->related_breakpoint != b)
5240 {
5241 struct watchpoint *w = (struct watchpoint *) b->related_breakpoint;
5242
5243 w->watchpoint_triggered = watch_triggered_yes;
5244 }
5245 }
5246 }
5247
5248 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
5249 {
5250 if (breakpoint_location_address_match (loc, aspace, bp_addr))
5251 {
5252 bs = bpstat_alloc (loc, &bs_link);
5253 /* For hits of moribund locations, we should just proceed. */
5254 bs->stop = 0;
5255 bs->print = 0;
5256 bs->print_it = print_it_noop;
5257 }
5258 }
5259
5260 /* A bit of special processing for shlib breakpoints. We need to
5261 process solib loading here, so that the lists of loaded and
5262 unloaded libraries are correct before we handle "catch load" and
5263 "catch unload". */
5264 for (bs = bs_head; bs != NULL; bs = bs->next)
5265 {
5266 if (bs->breakpoint_at && bs->breakpoint_at->type == bp_shlib_event)
5267 {
5268 handle_solib_event ();
5269 break;
5270 }
5271 }
5272
5273 /* Now go through the locations that caused the target to stop, and
5274 check whether we're interested in reporting this stop to higher
5275 layers, or whether we should resume the target transparently. */
5276
5277 removed_any = 0;
5278
5279 for (bs = bs_head; bs != NULL; bs = bs->next)
5280 {
5281 if (!bs->stop)
5282 continue;
5283
5284 b = bs->breakpoint_at;
5285 b->ops->check_status (bs);
5286 if (bs->stop)
5287 {
5288 bpstat_check_breakpoint_conditions (bs, ptid);
5289
5290 if (bs->stop)
5291 {
5292 ++(b->hit_count);
5293 observer_notify_breakpoint_modified (b);
5294
5295 /* We will stop here. */
5296 if (b->disposition == disp_disable)
5297 {
5298 --(b->enable_count);
5299 if (b->enable_count <= 0
5300 && b->enable_state != bp_permanent)
5301 b->enable_state = bp_disabled;
5302 removed_any = 1;
5303 }
5304 if (b->silent)
5305 bs->print = 0;
5306 bs->commands = b->commands;
5307 incref_counted_command_line (bs->commands);
5308 if (command_line_is_silent (bs->commands
5309 ? bs->commands->commands : NULL))
5310 bs->print = 0;
5311
5312 b->ops->after_condition_true (bs);
5313 }
5314
5315 }
5316
5317 /* Print nothing for this entry if we don't stop or don't
5318 print. */
5319 if (!bs->stop || !bs->print)
5320 bs->print_it = print_it_noop;
5321 }
5322
5323 /* If we aren't stopping, the value of some hardware watchpoint may
5324 not have changed, but the intermediate memory locations we are
5325 watching may have. Don't bother if we're stopping; this will get
5326 done later. */
5327 need_remove_insert = 0;
5328 if (! bpstat_causes_stop (bs_head))
5329 for (bs = bs_head; bs != NULL; bs = bs->next)
5330 if (!bs->stop
5331 && bs->breakpoint_at
5332 && is_hardware_watchpoint (bs->breakpoint_at))
5333 {
5334 struct watchpoint *w = (struct watchpoint *) bs->breakpoint_at;
5335
5336 update_watchpoint (w, 0 /* don't reparse. */);
5337 need_remove_insert = 1;
5338 }
5339
5340 if (need_remove_insert)
5341 update_global_location_list (1);
5342 else if (removed_any)
5343 update_global_location_list (0);
5344
5345 return bs_head;
5346 }
5347
5348 static void
5349 handle_jit_event (void)
5350 {
5351 struct frame_info *frame;
5352 struct gdbarch *gdbarch;
5353
5354 /* Switch terminal for any messages produced by
5355 breakpoint_re_set. */
5356 target_terminal_ours_for_output ();
5357
5358 frame = get_current_frame ();
5359 gdbarch = get_frame_arch (frame);
5360
5361 jit_event_handler (gdbarch);
5362
5363 target_terminal_inferior ();
5364 }
5365
5366 /* Prepare WHAT final decision for infrun. */
5367
5368 /* Decide what infrun needs to do with this bpstat. */
5369
5370 struct bpstat_what
5371 bpstat_what (bpstat bs_head)
5372 {
5373 struct bpstat_what retval;
5374 int jit_event = 0;
5375 bpstat bs;
5376
5377 retval.main_action = BPSTAT_WHAT_KEEP_CHECKING;
5378 retval.call_dummy = STOP_NONE;
5379 retval.is_longjmp = 0;
5380
5381 for (bs = bs_head; bs != NULL; bs = bs->next)
5382 {
5383 /* Extract this BS's action. After processing each BS, we check
5384 if its action overrides all we've seem so far. */
5385 enum bpstat_what_main_action this_action = BPSTAT_WHAT_KEEP_CHECKING;
5386 enum bptype bptype;
5387
5388 if (bs->breakpoint_at == NULL)
5389 {
5390 /* I suspect this can happen if it was a momentary
5391 breakpoint which has since been deleted. */
5392 bptype = bp_none;
5393 }
5394 else
5395 bptype = bs->breakpoint_at->type;
5396
5397 switch (bptype)
5398 {
5399 case bp_none:
5400 break;
5401 case bp_breakpoint:
5402 case bp_hardware_breakpoint:
5403 case bp_until:
5404 case bp_finish:
5405 case bp_shlib_event:
5406 if (bs->stop)
5407 {
5408 if (bs->print)
5409 this_action = BPSTAT_WHAT_STOP_NOISY;
5410 else
5411 this_action = BPSTAT_WHAT_STOP_SILENT;
5412 }
5413 else
5414 this_action = BPSTAT_WHAT_SINGLE;
5415 break;
5416 case bp_watchpoint:
5417 case bp_hardware_watchpoint:
5418 case bp_read_watchpoint:
5419 case bp_access_watchpoint:
5420 if (bs->stop)
5421 {
5422 if (bs->print)
5423 this_action = BPSTAT_WHAT_STOP_NOISY;
5424 else
5425 this_action = BPSTAT_WHAT_STOP_SILENT;
5426 }
5427 else
5428 {
5429 /* There was a watchpoint, but we're not stopping.
5430 This requires no further action. */
5431 }
5432 break;
5433 case bp_longjmp:
5434 case bp_longjmp_call_dummy:
5435 case bp_exception:
5436 this_action = BPSTAT_WHAT_SET_LONGJMP_RESUME;
5437 retval.is_longjmp = bptype != bp_exception;
5438 break;
5439 case bp_longjmp_resume:
5440 case bp_exception_resume:
5441 this_action = BPSTAT_WHAT_CLEAR_LONGJMP_RESUME;
5442 retval.is_longjmp = bptype == bp_longjmp_resume;
5443 break;
5444 case bp_step_resume:
5445 if (bs->stop)
5446 this_action = BPSTAT_WHAT_STEP_RESUME;
5447 else
5448 {
5449 /* It is for the wrong frame. */
5450 this_action = BPSTAT_WHAT_SINGLE;
5451 }
5452 break;
5453 case bp_hp_step_resume:
5454 if (bs->stop)
5455 this_action = BPSTAT_WHAT_HP_STEP_RESUME;
5456 else
5457 {
5458 /* It is for the wrong frame. */
5459 this_action = BPSTAT_WHAT_SINGLE;
5460 }
5461 break;
5462 case bp_watchpoint_scope:
5463 case bp_thread_event:
5464 case bp_overlay_event:
5465 case bp_longjmp_master:
5466 case bp_std_terminate_master:
5467 case bp_exception_master:
5468 this_action = BPSTAT_WHAT_SINGLE;
5469 break;
5470 case bp_catchpoint:
5471 if (bs->stop)
5472 {
5473 if (bs->print)
5474 this_action = BPSTAT_WHAT_STOP_NOISY;
5475 else
5476 this_action = BPSTAT_WHAT_STOP_SILENT;
5477 }
5478 else
5479 {
5480 /* There was a catchpoint, but we're not stopping.
5481 This requires no further action. */
5482 }
5483 break;
5484 case bp_jit_event:
5485 jit_event = 1;
5486 this_action = BPSTAT_WHAT_SINGLE;
5487 break;
5488 case bp_call_dummy:
5489 /* Make sure the action is stop (silent or noisy),
5490 so infrun.c pops the dummy frame. */
5491 retval.call_dummy = STOP_STACK_DUMMY;
5492 this_action = BPSTAT_WHAT_STOP_SILENT;
5493 break;
5494 case bp_std_terminate:
5495 /* Make sure the action is stop (silent or noisy),
5496 so infrun.c pops the dummy frame. */
5497 retval.call_dummy = STOP_STD_TERMINATE;
5498 this_action = BPSTAT_WHAT_STOP_SILENT;
5499 break;
5500 case bp_tracepoint:
5501 case bp_fast_tracepoint:
5502 case bp_static_tracepoint:
5503 /* Tracepoint hits should not be reported back to GDB, and
5504 if one got through somehow, it should have been filtered
5505 out already. */
5506 internal_error (__FILE__, __LINE__,
5507 _("bpstat_what: tracepoint encountered"));
5508 break;
5509 case bp_gnu_ifunc_resolver:
5510 /* Step over it (and insert bp_gnu_ifunc_resolver_return). */
5511 this_action = BPSTAT_WHAT_SINGLE;
5512 break;
5513 case bp_gnu_ifunc_resolver_return:
5514 /* The breakpoint will be removed, execution will restart from the
5515 PC of the former breakpoint. */
5516 this_action = BPSTAT_WHAT_KEEP_CHECKING;
5517 break;
5518
5519 case bp_dprintf:
5520 if (bs->stop)
5521 this_action = BPSTAT_WHAT_STOP_SILENT;
5522 else
5523 this_action = BPSTAT_WHAT_SINGLE;
5524 break;
5525
5526 default:
5527 internal_error (__FILE__, __LINE__,
5528 _("bpstat_what: unhandled bptype %d"), (int) bptype);
5529 }
5530
5531 retval.main_action = max (retval.main_action, this_action);
5532 }
5533
5534 /* These operations may affect the bs->breakpoint_at state so they are
5535 delayed after MAIN_ACTION is decided above. */
5536
5537 if (jit_event)
5538 {
5539 if (debug_infrun)
5540 fprintf_unfiltered (gdb_stdlog, "bpstat_what: bp_jit_event\n");
5541
5542 handle_jit_event ();
5543 }
5544
5545 for (bs = bs_head; bs != NULL; bs = bs->next)
5546 {
5547 struct breakpoint *b = bs->breakpoint_at;
5548
5549 if (b == NULL)
5550 continue;
5551 switch (b->type)
5552 {
5553 case bp_gnu_ifunc_resolver:
5554 gnu_ifunc_resolver_stop (b);
5555 break;
5556 case bp_gnu_ifunc_resolver_return:
5557 gnu_ifunc_resolver_return_stop (b);
5558 break;
5559 }
5560 }
5561
5562 return retval;
5563 }
5564
5565 /* Nonzero if we should step constantly (e.g. watchpoints on machines
5566 without hardware support). This isn't related to a specific bpstat,
5567 just to things like whether watchpoints are set. */
5568
5569 int
5570 bpstat_should_step (void)
5571 {
5572 struct breakpoint *b;
5573
5574 ALL_BREAKPOINTS (b)
5575 if (breakpoint_enabled (b) && b->type == bp_watchpoint && b->loc != NULL)
5576 return 1;
5577 return 0;
5578 }
5579
5580 int
5581 bpstat_causes_stop (bpstat bs)
5582 {
5583 for (; bs != NULL; bs = bs->next)
5584 if (bs->stop)
5585 return 1;
5586
5587 return 0;
5588 }
5589
5590 \f
5591
5592 /* Compute a string of spaces suitable to indent the next line
5593 so it starts at the position corresponding to the table column
5594 named COL_NAME in the currently active table of UIOUT. */
5595
5596 static char *
5597 wrap_indent_at_field (struct ui_out *uiout, const char *col_name)
5598 {
5599 static char wrap_indent[80];
5600 int i, total_width, width, align;
5601 char *text;
5602
5603 total_width = 0;
5604 for (i = 1; ui_out_query_field (uiout, i, &width, &align, &text); i++)
5605 {
5606 if (strcmp (text, col_name) == 0)
5607 {
5608 gdb_assert (total_width < sizeof wrap_indent);
5609 memset (wrap_indent, ' ', total_width);
5610 wrap_indent[total_width] = 0;
5611
5612 return wrap_indent;
5613 }
5614
5615 total_width += width + 1;
5616 }
5617
5618 return NULL;
5619 }
5620
5621 /* Determine if the locations of this breakpoint will have their conditions
5622 evaluated by the target, host or a mix of both. Returns the following:
5623
5624 "host": Host evals condition.
5625 "host or target": Host or Target evals condition.
5626 "target": Target evals condition.
5627 */
5628
5629 static const char *
5630 bp_condition_evaluator (struct breakpoint *b)
5631 {
5632 struct bp_location *bl;
5633 char host_evals = 0;
5634 char target_evals = 0;
5635
5636 if (!b)
5637 return NULL;
5638
5639 if (!is_breakpoint (b))
5640 return NULL;
5641
5642 if (gdb_evaluates_breakpoint_condition_p ()
5643 || !target_supports_evaluation_of_breakpoint_conditions ())
5644 return condition_evaluation_host;
5645
5646 for (bl = b->loc; bl; bl = bl->next)
5647 {
5648 if (bl->cond_bytecode)
5649 target_evals++;
5650 else
5651 host_evals++;
5652 }
5653
5654 if (host_evals && target_evals)
5655 return condition_evaluation_both;
5656 else if (target_evals)
5657 return condition_evaluation_target;
5658 else
5659 return condition_evaluation_host;
5660 }
5661
5662 /* Determine the breakpoint location's condition evaluator. This is
5663 similar to bp_condition_evaluator, but for locations. */
5664
5665 static const char *
5666 bp_location_condition_evaluator (struct bp_location *bl)
5667 {
5668 if (bl && !is_breakpoint (bl->owner))
5669 return NULL;
5670
5671 if (gdb_evaluates_breakpoint_condition_p ()
5672 || !target_supports_evaluation_of_breakpoint_conditions ())
5673 return condition_evaluation_host;
5674
5675 if (bl && bl->cond_bytecode)
5676 return condition_evaluation_target;
5677 else
5678 return condition_evaluation_host;
5679 }
5680
5681 /* Print the LOC location out of the list of B->LOC locations. */
5682
5683 static void
5684 print_breakpoint_location (struct breakpoint *b,
5685 struct bp_location *loc)
5686 {
5687 struct ui_out *uiout = current_uiout;
5688 struct cleanup *old_chain = save_current_program_space ();
5689
5690 if (loc != NULL && loc->shlib_disabled)
5691 loc = NULL;
5692
5693 if (loc != NULL)
5694 set_current_program_space (loc->pspace);
5695
5696 if (b->display_canonical)
5697 ui_out_field_string (uiout, "what", b->addr_string);
5698 else if (loc && loc->symtab)
5699 {
5700 struct symbol *sym
5701 = find_pc_sect_function (loc->address, loc->section);
5702 if (sym)
5703 {
5704 ui_out_text (uiout, "in ");
5705 ui_out_field_string (uiout, "func",
5706 SYMBOL_PRINT_NAME (sym));
5707 ui_out_text (uiout, " ");
5708 ui_out_wrap_hint (uiout, wrap_indent_at_field (uiout, "what"));
5709 ui_out_text (uiout, "at ");
5710 }
5711 ui_out_field_string (uiout, "file",
5712 symtab_to_filename_for_display (loc->symtab));
5713 ui_out_text (uiout, ":");
5714
5715 if (ui_out_is_mi_like_p (uiout))
5716 ui_out_field_string (uiout, "fullname",
5717 symtab_to_fullname (loc->symtab));
5718
5719 ui_out_field_int (uiout, "line", loc->line_number);
5720 }
5721 else if (loc)
5722 {
5723 struct ui_file *stb = mem_fileopen ();
5724 struct cleanup *stb_chain = make_cleanup_ui_file_delete (stb);
5725
5726 print_address_symbolic (loc->gdbarch, loc->address, stb,
5727 demangle, "");
5728 ui_out_field_stream (uiout, "at", stb);
5729
5730 do_cleanups (stb_chain);
5731 }
5732 else
5733 ui_out_field_string (uiout, "pending", b->addr_string);
5734
5735 if (loc && is_breakpoint (b)
5736 && breakpoint_condition_evaluation_mode () == condition_evaluation_target
5737 && bp_condition_evaluator (b) == condition_evaluation_both)
5738 {
5739 ui_out_text (uiout, " (");
5740 ui_out_field_string (uiout, "evaluated-by",
5741 bp_location_condition_evaluator (loc));
5742 ui_out_text (uiout, ")");
5743 }
5744
5745 do_cleanups (old_chain);
5746 }
5747
5748 static const char *
5749 bptype_string (enum bptype type)
5750 {
5751 struct ep_type_description
5752 {
5753 enum bptype type;
5754 char *description;
5755 };
5756 static struct ep_type_description bptypes[] =
5757 {
5758 {bp_none, "?deleted?"},
5759 {bp_breakpoint, "breakpoint"},
5760 {bp_hardware_breakpoint, "hw breakpoint"},
5761 {bp_until, "until"},
5762 {bp_finish, "finish"},
5763 {bp_watchpoint, "watchpoint"},
5764 {bp_hardware_watchpoint, "hw watchpoint"},
5765 {bp_read_watchpoint, "read watchpoint"},
5766 {bp_access_watchpoint, "acc watchpoint"},
5767 {bp_longjmp, "longjmp"},
5768 {bp_longjmp_resume, "longjmp resume"},
5769 {bp_longjmp_call_dummy, "longjmp for call dummy"},
5770 {bp_exception, "exception"},
5771 {bp_exception_resume, "exception resume"},
5772 {bp_step_resume, "step resume"},
5773 {bp_hp_step_resume, "high-priority step resume"},
5774 {bp_watchpoint_scope, "watchpoint scope"},
5775 {bp_call_dummy, "call dummy"},
5776 {bp_std_terminate, "std::terminate"},
5777 {bp_shlib_event, "shlib events"},
5778 {bp_thread_event, "thread events"},
5779 {bp_overlay_event, "overlay events"},
5780 {bp_longjmp_master, "longjmp master"},
5781 {bp_std_terminate_master, "std::terminate master"},
5782 {bp_exception_master, "exception master"},
5783 {bp_catchpoint, "catchpoint"},
5784 {bp_tracepoint, "tracepoint"},
5785 {bp_fast_tracepoint, "fast tracepoint"},
5786 {bp_static_tracepoint, "static tracepoint"},
5787 {bp_dprintf, "dprintf"},
5788 {bp_jit_event, "jit events"},
5789 {bp_gnu_ifunc_resolver, "STT_GNU_IFUNC resolver"},
5790 {bp_gnu_ifunc_resolver_return, "STT_GNU_IFUNC resolver return"},
5791 };
5792
5793 if (((int) type >= (sizeof (bptypes) / sizeof (bptypes[0])))
5794 || ((int) type != bptypes[(int) type].type))
5795 internal_error (__FILE__, __LINE__,
5796 _("bptypes table does not describe type #%d."),
5797 (int) type);
5798
5799 return bptypes[(int) type].description;
5800 }
5801
5802 DEF_VEC_I(int);
5803
5804 /* For MI, output a field named 'thread-groups' with a list as the value.
5805 For CLI, prefix the list with the string 'inf'. */
5806
5807 static void
5808 output_thread_groups (struct ui_out *uiout,
5809 const char *field_name,
5810 VEC(int) *inf_num,
5811 int mi_only)
5812 {
5813 struct cleanup *back_to;
5814 int is_mi = ui_out_is_mi_like_p (uiout);
5815 int inf;
5816 int i;
5817
5818 /* For backward compatibility, don't display inferiors in CLI unless
5819 there are several. Always display them for MI. */
5820 if (!is_mi && mi_only)
5821 return;
5822
5823 back_to = make_cleanup_ui_out_list_begin_end (uiout, field_name);
5824
5825 for (i = 0; VEC_iterate (int, inf_num, i, inf); ++i)
5826 {
5827 if (is_mi)
5828 {
5829 char mi_group[10];
5830
5831 xsnprintf (mi_group, sizeof (mi_group), "i%d", inf);
5832 ui_out_field_string (uiout, NULL, mi_group);
5833 }
5834 else
5835 {
5836 if (i == 0)
5837 ui_out_text (uiout, " inf ");
5838 else
5839 ui_out_text (uiout, ", ");
5840
5841 ui_out_text (uiout, plongest (inf));
5842 }
5843 }
5844
5845 do_cleanups (back_to);
5846 }
5847
5848 /* Print B to gdb_stdout. */
5849
5850 static void
5851 print_one_breakpoint_location (struct breakpoint *b,
5852 struct bp_location *loc,
5853 int loc_number,
5854 struct bp_location **last_loc,
5855 int allflag)
5856 {
5857 struct command_line *l;
5858 static char bpenables[] = "nynny";
5859
5860 struct ui_out *uiout = current_uiout;
5861 int header_of_multiple = 0;
5862 int part_of_multiple = (loc != NULL);
5863 struct value_print_options opts;
5864
5865 get_user_print_options (&opts);
5866
5867 gdb_assert (!loc || loc_number != 0);
5868 /* See comment in print_one_breakpoint concerning treatment of
5869 breakpoints with single disabled location. */
5870 if (loc == NULL
5871 && (b->loc != NULL
5872 && (b->loc->next != NULL || !b->loc->enabled)))
5873 header_of_multiple = 1;
5874 if (loc == NULL)
5875 loc = b->loc;
5876
5877 annotate_record ();
5878
5879 /* 1 */
5880 annotate_field (0);
5881 if (part_of_multiple)
5882 {
5883 char *formatted;
5884 formatted = xstrprintf ("%d.%d", b->number, loc_number);
5885 ui_out_field_string (uiout, "number", formatted);
5886 xfree (formatted);
5887 }
5888 else
5889 {
5890 ui_out_field_int (uiout, "number", b->number);
5891 }
5892
5893 /* 2 */
5894 annotate_field (1);
5895 if (part_of_multiple)
5896 ui_out_field_skip (uiout, "type");
5897 else
5898 ui_out_field_string (uiout, "type", bptype_string (b->type));
5899
5900 /* 3 */
5901 annotate_field (2);
5902 if (part_of_multiple)
5903 ui_out_field_skip (uiout, "disp");
5904 else
5905 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
5906
5907
5908 /* 4 */
5909 annotate_field (3);
5910 if (part_of_multiple)
5911 ui_out_field_string (uiout, "enabled", loc->enabled ? "y" : "n");
5912 else
5913 ui_out_field_fmt (uiout, "enabled", "%c",
5914 bpenables[(int) b->enable_state]);
5915 ui_out_spaces (uiout, 2);
5916
5917
5918 /* 5 and 6 */
5919 if (b->ops != NULL && b->ops->print_one != NULL)
5920 {
5921 /* Although the print_one can possibly print all locations,
5922 calling it here is not likely to get any nice result. So,
5923 make sure there's just one location. */
5924 gdb_assert (b->loc == NULL || b->loc->next == NULL);
5925 b->ops->print_one (b, last_loc);
5926 }
5927 else
5928 switch (b->type)
5929 {
5930 case bp_none:
5931 internal_error (__FILE__, __LINE__,
5932 _("print_one_breakpoint: bp_none encountered\n"));
5933 break;
5934
5935 case bp_watchpoint:
5936 case bp_hardware_watchpoint:
5937 case bp_read_watchpoint:
5938 case bp_access_watchpoint:
5939 {
5940 struct watchpoint *w = (struct watchpoint *) b;
5941
5942 /* Field 4, the address, is omitted (which makes the columns
5943 not line up too nicely with the headers, but the effect
5944 is relatively readable). */
5945 if (opts.addressprint)
5946 ui_out_field_skip (uiout, "addr");
5947 annotate_field (5);
5948 ui_out_field_string (uiout, "what", w->exp_string);
5949 }
5950 break;
5951
5952 case bp_breakpoint:
5953 case bp_hardware_breakpoint:
5954 case bp_until:
5955 case bp_finish:
5956 case bp_longjmp:
5957 case bp_longjmp_resume:
5958 case bp_longjmp_call_dummy:
5959 case bp_exception:
5960 case bp_exception_resume:
5961 case bp_step_resume:
5962 case bp_hp_step_resume:
5963 case bp_watchpoint_scope:
5964 case bp_call_dummy:
5965 case bp_std_terminate:
5966 case bp_shlib_event:
5967 case bp_thread_event:
5968 case bp_overlay_event:
5969 case bp_longjmp_master:
5970 case bp_std_terminate_master:
5971 case bp_exception_master:
5972 case bp_tracepoint:
5973 case bp_fast_tracepoint:
5974 case bp_static_tracepoint:
5975 case bp_dprintf:
5976 case bp_jit_event:
5977 case bp_gnu_ifunc_resolver:
5978 case bp_gnu_ifunc_resolver_return:
5979 if (opts.addressprint)
5980 {
5981 annotate_field (4);
5982 if (header_of_multiple)
5983 ui_out_field_string (uiout, "addr", "<MULTIPLE>");
5984 else if (b->loc == NULL || loc->shlib_disabled)
5985 ui_out_field_string (uiout, "addr", "<PENDING>");
5986 else
5987 ui_out_field_core_addr (uiout, "addr",
5988 loc->gdbarch, loc->address);
5989 }
5990 annotate_field (5);
5991 if (!header_of_multiple)
5992 print_breakpoint_location (b, loc);
5993 if (b->loc)
5994 *last_loc = b->loc;
5995 break;
5996 }
5997
5998
5999 if (loc != NULL && !header_of_multiple)
6000 {
6001 struct inferior *inf;
6002 VEC(int) *inf_num = NULL;
6003 int mi_only = 1;
6004
6005 ALL_INFERIORS (inf)
6006 {
6007 if (inf->pspace == loc->pspace)
6008 VEC_safe_push (int, inf_num, inf->num);
6009 }
6010
6011 /* For backward compatibility, don't display inferiors in CLI unless
6012 there are several. Always display for MI. */
6013 if (allflag
6014 || (!gdbarch_has_global_breakpoints (target_gdbarch ())
6015 && (number_of_program_spaces () > 1
6016 || number_of_inferiors () > 1)
6017 /* LOC is for existing B, it cannot be in
6018 moribund_locations and thus having NULL OWNER. */
6019 && loc->owner->type != bp_catchpoint))
6020 mi_only = 0;
6021 output_thread_groups (uiout, "thread-groups", inf_num, mi_only);
6022 VEC_free (int, inf_num);
6023 }
6024
6025 if (!part_of_multiple)
6026 {
6027 if (b->thread != -1)
6028 {
6029 /* FIXME: This seems to be redundant and lost here; see the
6030 "stop only in" line a little further down. */
6031 ui_out_text (uiout, " thread ");
6032 ui_out_field_int (uiout, "thread", b->thread);
6033 }
6034 else if (b->task != 0)
6035 {
6036 ui_out_text (uiout, " task ");
6037 ui_out_field_int (uiout, "task", b->task);
6038 }
6039 }
6040
6041 ui_out_text (uiout, "\n");
6042
6043 if (!part_of_multiple)
6044 b->ops->print_one_detail (b, uiout);
6045
6046 if (part_of_multiple && frame_id_p (b->frame_id))
6047 {
6048 annotate_field (6);
6049 ui_out_text (uiout, "\tstop only in stack frame at ");
6050 /* FIXME: cagney/2002-12-01: Shouldn't be poking around inside
6051 the frame ID. */
6052 ui_out_field_core_addr (uiout, "frame",
6053 b->gdbarch, b->frame_id.stack_addr);
6054 ui_out_text (uiout, "\n");
6055 }
6056
6057 if (!part_of_multiple && b->cond_string)
6058 {
6059 annotate_field (7);
6060 if (is_tracepoint (b))
6061 ui_out_text (uiout, "\ttrace only if ");
6062 else
6063 ui_out_text (uiout, "\tstop only if ");
6064 ui_out_field_string (uiout, "cond", b->cond_string);
6065
6066 /* Print whether the target is doing the breakpoint's condition
6067 evaluation. If GDB is doing the evaluation, don't print anything. */
6068 if (is_breakpoint (b)
6069 && breakpoint_condition_evaluation_mode ()
6070 == condition_evaluation_target)
6071 {
6072 ui_out_text (uiout, " (");
6073 ui_out_field_string (uiout, "evaluated-by",
6074 bp_condition_evaluator (b));
6075 ui_out_text (uiout, " evals)");
6076 }
6077 ui_out_text (uiout, "\n");
6078 }
6079
6080 if (!part_of_multiple && b->thread != -1)
6081 {
6082 /* FIXME should make an annotation for this. */
6083 ui_out_text (uiout, "\tstop only in thread ");
6084 ui_out_field_int (uiout, "thread", b->thread);
6085 ui_out_text (uiout, "\n");
6086 }
6087
6088 if (!part_of_multiple)
6089 {
6090 if (b->hit_count)
6091 {
6092 /* FIXME should make an annotation for this. */
6093 if (is_catchpoint (b))
6094 ui_out_text (uiout, "\tcatchpoint");
6095 else if (is_tracepoint (b))
6096 ui_out_text (uiout, "\ttracepoint");
6097 else
6098 ui_out_text (uiout, "\tbreakpoint");
6099 ui_out_text (uiout, " already hit ");
6100 ui_out_field_int (uiout, "times", b->hit_count);
6101 if (b->hit_count == 1)
6102 ui_out_text (uiout, " time\n");
6103 else
6104 ui_out_text (uiout, " times\n");
6105 }
6106 else
6107 {
6108 /* Output the count also if it is zero, but only if this is mi. */
6109 if (ui_out_is_mi_like_p (uiout))
6110 ui_out_field_int (uiout, "times", b->hit_count);
6111 }
6112 }
6113
6114 if (!part_of_multiple && b->ignore_count)
6115 {
6116 annotate_field (8);
6117 ui_out_text (uiout, "\tignore next ");
6118 ui_out_field_int (uiout, "ignore", b->ignore_count);
6119 ui_out_text (uiout, " hits\n");
6120 }
6121
6122 /* Note that an enable count of 1 corresponds to "enable once"
6123 behavior, which is reported by the combination of enablement and
6124 disposition, so we don't need to mention it here. */
6125 if (!part_of_multiple && b->enable_count > 1)
6126 {
6127 annotate_field (8);
6128 ui_out_text (uiout, "\tdisable after ");
6129 /* Tweak the wording to clarify that ignore and enable counts
6130 are distinct, and have additive effect. */
6131 if (b->ignore_count)
6132 ui_out_text (uiout, "additional ");
6133 else
6134 ui_out_text (uiout, "next ");
6135 ui_out_field_int (uiout, "enable", b->enable_count);
6136 ui_out_text (uiout, " hits\n");
6137 }
6138
6139 if (!part_of_multiple && is_tracepoint (b))
6140 {
6141 struct tracepoint *tp = (struct tracepoint *) b;
6142
6143 if (tp->traceframe_usage)
6144 {
6145 ui_out_text (uiout, "\ttrace buffer usage ");
6146 ui_out_field_int (uiout, "traceframe-usage", tp->traceframe_usage);
6147 ui_out_text (uiout, " bytes\n");
6148 }
6149 }
6150
6151 l = b->commands ? b->commands->commands : NULL;
6152 if (!part_of_multiple && l)
6153 {
6154 struct cleanup *script_chain;
6155
6156 annotate_field (9);
6157 script_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "script");
6158 print_command_lines (uiout, l, 4);
6159 do_cleanups (script_chain);
6160 }
6161
6162 if (is_tracepoint (b))
6163 {
6164 struct tracepoint *t = (struct tracepoint *) b;
6165
6166 if (!part_of_multiple && t->pass_count)
6167 {
6168 annotate_field (10);
6169 ui_out_text (uiout, "\tpass count ");
6170 ui_out_field_int (uiout, "pass", t->pass_count);
6171 ui_out_text (uiout, " \n");
6172 }
6173
6174 /* Don't display it when tracepoint or tracepoint location is
6175 pending. */
6176 if (!header_of_multiple && loc != NULL && !loc->shlib_disabled)
6177 {
6178 annotate_field (11);
6179
6180 if (ui_out_is_mi_like_p (uiout))
6181 ui_out_field_string (uiout, "installed",
6182 loc->inserted ? "y" : "n");
6183 else
6184 {
6185 if (loc->inserted)
6186 ui_out_text (uiout, "\t");
6187 else
6188 ui_out_text (uiout, "\tnot ");
6189 ui_out_text (uiout, "installed on target\n");
6190 }
6191 }
6192 }
6193
6194 if (ui_out_is_mi_like_p (uiout) && !part_of_multiple)
6195 {
6196 if (is_watchpoint (b))
6197 {
6198 struct watchpoint *w = (struct watchpoint *) b;
6199
6200 ui_out_field_string (uiout, "original-location", w->exp_string);
6201 }
6202 else if (b->addr_string)
6203 ui_out_field_string (uiout, "original-location", b->addr_string);
6204 }
6205 }
6206
6207 static void
6208 print_one_breakpoint (struct breakpoint *b,
6209 struct bp_location **last_loc,
6210 int allflag)
6211 {
6212 struct cleanup *bkpt_chain;
6213 struct ui_out *uiout = current_uiout;
6214
6215 bkpt_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "bkpt");
6216
6217 print_one_breakpoint_location (b, NULL, 0, last_loc, allflag);
6218 do_cleanups (bkpt_chain);
6219
6220 /* If this breakpoint has custom print function,
6221 it's already printed. Otherwise, print individual
6222 locations, if any. */
6223 if (b->ops == NULL || b->ops->print_one == NULL)
6224 {
6225 /* If breakpoint has a single location that is disabled, we
6226 print it as if it had several locations, since otherwise it's
6227 hard to represent "breakpoint enabled, location disabled"
6228 situation.
6229
6230 Note that while hardware watchpoints have several locations
6231 internally, that's not a property exposed to user. */
6232 if (b->loc
6233 && !is_hardware_watchpoint (b)
6234 && (b->loc->next || !b->loc->enabled))
6235 {
6236 struct bp_location *loc;
6237 int n = 1;
6238
6239 for (loc = b->loc; loc; loc = loc->next, ++n)
6240 {
6241 struct cleanup *inner2 =
6242 make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
6243 print_one_breakpoint_location (b, loc, n, last_loc, allflag);
6244 do_cleanups (inner2);
6245 }
6246 }
6247 }
6248 }
6249
6250 static int
6251 breakpoint_address_bits (struct breakpoint *b)
6252 {
6253 int print_address_bits = 0;
6254 struct bp_location *loc;
6255
6256 for (loc = b->loc; loc; loc = loc->next)
6257 {
6258 int addr_bit;
6259
6260 /* Software watchpoints that aren't watching memory don't have
6261 an address to print. */
6262 if (b->type == bp_watchpoint && loc->watchpoint_type == -1)
6263 continue;
6264
6265 addr_bit = gdbarch_addr_bit (loc->gdbarch);
6266 if (addr_bit > print_address_bits)
6267 print_address_bits = addr_bit;
6268 }
6269
6270 return print_address_bits;
6271 }
6272
6273 struct captured_breakpoint_query_args
6274 {
6275 int bnum;
6276 };
6277
6278 static int
6279 do_captured_breakpoint_query (struct ui_out *uiout, void *data)
6280 {
6281 struct captured_breakpoint_query_args *args = data;
6282 struct breakpoint *b;
6283 struct bp_location *dummy_loc = NULL;
6284
6285 ALL_BREAKPOINTS (b)
6286 {
6287 if (args->bnum == b->number)
6288 {
6289 print_one_breakpoint (b, &dummy_loc, 0);
6290 return GDB_RC_OK;
6291 }
6292 }
6293 return GDB_RC_NONE;
6294 }
6295
6296 enum gdb_rc
6297 gdb_breakpoint_query (struct ui_out *uiout, int bnum,
6298 char **error_message)
6299 {
6300 struct captured_breakpoint_query_args args;
6301
6302 args.bnum = bnum;
6303 /* For the moment we don't trust print_one_breakpoint() to not throw
6304 an error. */
6305 if (catch_exceptions_with_msg (uiout, do_captured_breakpoint_query, &args,
6306 error_message, RETURN_MASK_ALL) < 0)
6307 return GDB_RC_FAIL;
6308 else
6309 return GDB_RC_OK;
6310 }
6311
6312 /* Return true if this breakpoint was set by the user, false if it is
6313 internal or momentary. */
6314
6315 int
6316 user_breakpoint_p (struct breakpoint *b)
6317 {
6318 return b->number > 0;
6319 }
6320
6321 /* Print information on user settable breakpoint (watchpoint, etc)
6322 number BNUM. If BNUM is -1 print all user-settable breakpoints.
6323 If ALLFLAG is non-zero, include non-user-settable breakpoints. If
6324 FILTER is non-NULL, call it on each breakpoint and only include the
6325 ones for which it returns non-zero. Return the total number of
6326 breakpoints listed. */
6327
6328 static int
6329 breakpoint_1 (char *args, int allflag,
6330 int (*filter) (const struct breakpoint *))
6331 {
6332 struct breakpoint *b;
6333 struct bp_location *last_loc = NULL;
6334 int nr_printable_breakpoints;
6335 struct cleanup *bkpttbl_chain;
6336 struct value_print_options opts;
6337 int print_address_bits = 0;
6338 int print_type_col_width = 14;
6339 struct ui_out *uiout = current_uiout;
6340
6341 get_user_print_options (&opts);
6342
6343 /* Compute the number of rows in the table, as well as the size
6344 required for address fields. */
6345 nr_printable_breakpoints = 0;
6346 ALL_BREAKPOINTS (b)
6347 {
6348 /* If we have a filter, only list the breakpoints it accepts. */
6349 if (filter && !filter (b))
6350 continue;
6351
6352 /* If we have an "args" string, it is a list of breakpoints to
6353 accept. Skip the others. */
6354 if (args != NULL && *args != '\0')
6355 {
6356 if (allflag && parse_and_eval_long (args) != b->number)
6357 continue;
6358 if (!allflag && !number_is_in_list (args, b->number))
6359 continue;
6360 }
6361
6362 if (allflag || user_breakpoint_p (b))
6363 {
6364 int addr_bit, type_len;
6365
6366 addr_bit = breakpoint_address_bits (b);
6367 if (addr_bit > print_address_bits)
6368 print_address_bits = addr_bit;
6369
6370 type_len = strlen (bptype_string (b->type));
6371 if (type_len > print_type_col_width)
6372 print_type_col_width = type_len;
6373
6374 nr_printable_breakpoints++;
6375 }
6376 }
6377
6378 if (opts.addressprint)
6379 bkpttbl_chain
6380 = make_cleanup_ui_out_table_begin_end (uiout, 6,
6381 nr_printable_breakpoints,
6382 "BreakpointTable");
6383 else
6384 bkpttbl_chain
6385 = make_cleanup_ui_out_table_begin_end (uiout, 5,
6386 nr_printable_breakpoints,
6387 "BreakpointTable");
6388
6389 if (nr_printable_breakpoints > 0)
6390 annotate_breakpoints_headers ();
6391 if (nr_printable_breakpoints > 0)
6392 annotate_field (0);
6393 ui_out_table_header (uiout, 7, ui_left, "number", "Num"); /* 1 */
6394 if (nr_printable_breakpoints > 0)
6395 annotate_field (1);
6396 ui_out_table_header (uiout, print_type_col_width, ui_left,
6397 "type", "Type"); /* 2 */
6398 if (nr_printable_breakpoints > 0)
6399 annotate_field (2);
6400 ui_out_table_header (uiout, 4, ui_left, "disp", "Disp"); /* 3 */
6401 if (nr_printable_breakpoints > 0)
6402 annotate_field (3);
6403 ui_out_table_header (uiout, 3, ui_left, "enabled", "Enb"); /* 4 */
6404 if (opts.addressprint)
6405 {
6406 if (nr_printable_breakpoints > 0)
6407 annotate_field (4);
6408 if (print_address_bits <= 32)
6409 ui_out_table_header (uiout, 10, ui_left,
6410 "addr", "Address"); /* 5 */
6411 else
6412 ui_out_table_header (uiout, 18, ui_left,
6413 "addr", "Address"); /* 5 */
6414 }
6415 if (nr_printable_breakpoints > 0)
6416 annotate_field (5);
6417 ui_out_table_header (uiout, 40, ui_noalign, "what", "What"); /* 6 */
6418 ui_out_table_body (uiout);
6419 if (nr_printable_breakpoints > 0)
6420 annotate_breakpoints_table ();
6421
6422 ALL_BREAKPOINTS (b)
6423 {
6424 QUIT;
6425 /* If we have a filter, only list the breakpoints it accepts. */
6426 if (filter && !filter (b))
6427 continue;
6428
6429 /* If we have an "args" string, it is a list of breakpoints to
6430 accept. Skip the others. */
6431
6432 if (args != NULL && *args != '\0')
6433 {
6434 if (allflag) /* maintenance info breakpoint */
6435 {
6436 if (parse_and_eval_long (args) != b->number)
6437 continue;
6438 }
6439 else /* all others */
6440 {
6441 if (!number_is_in_list (args, b->number))
6442 continue;
6443 }
6444 }
6445 /* We only print out user settable breakpoints unless the
6446 allflag is set. */
6447 if (allflag || user_breakpoint_p (b))
6448 print_one_breakpoint (b, &last_loc, allflag);
6449 }
6450
6451 do_cleanups (bkpttbl_chain);
6452
6453 if (nr_printable_breakpoints == 0)
6454 {
6455 /* If there's a filter, let the caller decide how to report
6456 empty list. */
6457 if (!filter)
6458 {
6459 if (args == NULL || *args == '\0')
6460 ui_out_message (uiout, 0, "No breakpoints or watchpoints.\n");
6461 else
6462 ui_out_message (uiout, 0,
6463 "No breakpoint or watchpoint matching '%s'.\n",
6464 args);
6465 }
6466 }
6467 else
6468 {
6469 if (last_loc && !server_command)
6470 set_next_address (last_loc->gdbarch, last_loc->address);
6471 }
6472
6473 /* FIXME? Should this be moved up so that it is only called when
6474 there have been breakpoints? */
6475 annotate_breakpoints_table_end ();
6476
6477 return nr_printable_breakpoints;
6478 }
6479
6480 /* Display the value of default-collect in a way that is generally
6481 compatible with the breakpoint list. */
6482
6483 static void
6484 default_collect_info (void)
6485 {
6486 struct ui_out *uiout = current_uiout;
6487
6488 /* If it has no value (which is frequently the case), say nothing; a
6489 message like "No default-collect." gets in user's face when it's
6490 not wanted. */
6491 if (!*default_collect)
6492 return;
6493
6494 /* The following phrase lines up nicely with per-tracepoint collect
6495 actions. */
6496 ui_out_text (uiout, "default collect ");
6497 ui_out_field_string (uiout, "default-collect", default_collect);
6498 ui_out_text (uiout, " \n");
6499 }
6500
6501 static void
6502 breakpoints_info (char *args, int from_tty)
6503 {
6504 breakpoint_1 (args, 0, NULL);
6505
6506 default_collect_info ();
6507 }
6508
6509 static void
6510 watchpoints_info (char *args, int from_tty)
6511 {
6512 int num_printed = breakpoint_1 (args, 0, is_watchpoint);
6513 struct ui_out *uiout = current_uiout;
6514
6515 if (num_printed == 0)
6516 {
6517 if (args == NULL || *args == '\0')
6518 ui_out_message (uiout, 0, "No watchpoints.\n");
6519 else
6520 ui_out_message (uiout, 0, "No watchpoint matching '%s'.\n", args);
6521 }
6522 }
6523
6524 static void
6525 maintenance_info_breakpoints (char *args, int from_tty)
6526 {
6527 breakpoint_1 (args, 1, NULL);
6528
6529 default_collect_info ();
6530 }
6531
6532 static int
6533 breakpoint_has_pc (struct breakpoint *b,
6534 struct program_space *pspace,
6535 CORE_ADDR pc, struct obj_section *section)
6536 {
6537 struct bp_location *bl = b->loc;
6538
6539 for (; bl; bl = bl->next)
6540 {
6541 if (bl->pspace == pspace
6542 && bl->address == pc
6543 && (!overlay_debugging || bl->section == section))
6544 return 1;
6545 }
6546 return 0;
6547 }
6548
6549 /* Print a message describing any user-breakpoints set at PC. This
6550 concerns with logical breakpoints, so we match program spaces, not
6551 address spaces. */
6552
6553 static void
6554 describe_other_breakpoints (struct gdbarch *gdbarch,
6555 struct program_space *pspace, CORE_ADDR pc,
6556 struct obj_section *section, int thread)
6557 {
6558 int others = 0;
6559 struct breakpoint *b;
6560
6561 ALL_BREAKPOINTS (b)
6562 others += (user_breakpoint_p (b)
6563 && breakpoint_has_pc (b, pspace, pc, section));
6564 if (others > 0)
6565 {
6566 if (others == 1)
6567 printf_filtered (_("Note: breakpoint "));
6568 else /* if (others == ???) */
6569 printf_filtered (_("Note: breakpoints "));
6570 ALL_BREAKPOINTS (b)
6571 if (user_breakpoint_p (b) && breakpoint_has_pc (b, pspace, pc, section))
6572 {
6573 others--;
6574 printf_filtered ("%d", b->number);
6575 if (b->thread == -1 && thread != -1)
6576 printf_filtered (" (all threads)");
6577 else if (b->thread != -1)
6578 printf_filtered (" (thread %d)", b->thread);
6579 printf_filtered ("%s%s ",
6580 ((b->enable_state == bp_disabled
6581 || b->enable_state == bp_call_disabled)
6582 ? " (disabled)"
6583 : b->enable_state == bp_permanent
6584 ? " (permanent)"
6585 : ""),
6586 (others > 1) ? ","
6587 : ((others == 1) ? " and" : ""));
6588 }
6589 printf_filtered (_("also set at pc "));
6590 fputs_filtered (paddress (gdbarch, pc), gdb_stdout);
6591 printf_filtered (".\n");
6592 }
6593 }
6594 \f
6595
6596 /* Return true iff it is meaningful to use the address member of
6597 BPT. For some breakpoint types, the address member is irrelevant
6598 and it makes no sense to attempt to compare it to other addresses
6599 (or use it for any other purpose either).
6600
6601 More specifically, each of the following breakpoint types will
6602 always have a zero valued address and we don't want to mark
6603 breakpoints of any of these types to be a duplicate of an actual
6604 breakpoint at address zero:
6605
6606 bp_watchpoint
6607 bp_catchpoint
6608
6609 */
6610
6611 static int
6612 breakpoint_address_is_meaningful (struct breakpoint *bpt)
6613 {
6614 enum bptype type = bpt->type;
6615
6616 return (type != bp_watchpoint && type != bp_catchpoint);
6617 }
6618
6619 /* Assuming LOC1 and LOC2's owners are hardware watchpoints, returns
6620 true if LOC1 and LOC2 represent the same watchpoint location. */
6621
6622 static int
6623 watchpoint_locations_match (struct bp_location *loc1,
6624 struct bp_location *loc2)
6625 {
6626 struct watchpoint *w1 = (struct watchpoint *) loc1->owner;
6627 struct watchpoint *w2 = (struct watchpoint *) loc2->owner;
6628
6629 /* Both of them must exist. */
6630 gdb_assert (w1 != NULL);
6631 gdb_assert (w2 != NULL);
6632
6633 /* If the target can evaluate the condition expression in hardware,
6634 then we we need to insert both watchpoints even if they are at
6635 the same place. Otherwise the watchpoint will only trigger when
6636 the condition of whichever watchpoint was inserted evaluates to
6637 true, not giving a chance for GDB to check the condition of the
6638 other watchpoint. */
6639 if ((w1->cond_exp
6640 && target_can_accel_watchpoint_condition (loc1->address,
6641 loc1->length,
6642 loc1->watchpoint_type,
6643 w1->cond_exp))
6644 || (w2->cond_exp
6645 && target_can_accel_watchpoint_condition (loc2->address,
6646 loc2->length,
6647 loc2->watchpoint_type,
6648 w2->cond_exp)))
6649 return 0;
6650
6651 /* Note that this checks the owner's type, not the location's. In
6652 case the target does not support read watchpoints, but does
6653 support access watchpoints, we'll have bp_read_watchpoint
6654 watchpoints with hw_access locations. Those should be considered
6655 duplicates of hw_read locations. The hw_read locations will
6656 become hw_access locations later. */
6657 return (loc1->owner->type == loc2->owner->type
6658 && loc1->pspace->aspace == loc2->pspace->aspace
6659 && loc1->address == loc2->address
6660 && loc1->length == loc2->length);
6661 }
6662
6663 /* Returns true if {ASPACE1,ADDR1} and {ASPACE2,ADDR2} represent the
6664 same breakpoint location. In most targets, this can only be true
6665 if ASPACE1 matches ASPACE2. On targets that have global
6666 breakpoints, the address space doesn't really matter. */
6667
6668 static int
6669 breakpoint_address_match (struct address_space *aspace1, CORE_ADDR addr1,
6670 struct address_space *aspace2, CORE_ADDR addr2)
6671 {
6672 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6673 || aspace1 == aspace2)
6674 && addr1 == addr2);
6675 }
6676
6677 /* Returns true if {ASPACE2,ADDR2} falls within the range determined by
6678 {ASPACE1,ADDR1,LEN1}. In most targets, this can only be true if ASPACE1
6679 matches ASPACE2. On targets that have global breakpoints, the address
6680 space doesn't really matter. */
6681
6682 static int
6683 breakpoint_address_match_range (struct address_space *aspace1, CORE_ADDR addr1,
6684 int len1, struct address_space *aspace2,
6685 CORE_ADDR addr2)
6686 {
6687 return ((gdbarch_has_global_breakpoints (target_gdbarch ())
6688 || aspace1 == aspace2)
6689 && addr2 >= addr1 && addr2 < addr1 + len1);
6690 }
6691
6692 /* Returns true if {ASPACE,ADDR} matches the breakpoint BL. BL may be
6693 a ranged breakpoint. In most targets, a match happens only if ASPACE
6694 matches the breakpoint's address space. On targets that have global
6695 breakpoints, the address space doesn't really matter. */
6696
6697 static int
6698 breakpoint_location_address_match (struct bp_location *bl,
6699 struct address_space *aspace,
6700 CORE_ADDR addr)
6701 {
6702 return (breakpoint_address_match (bl->pspace->aspace, bl->address,
6703 aspace, addr)
6704 || (bl->length
6705 && breakpoint_address_match_range (bl->pspace->aspace,
6706 bl->address, bl->length,
6707 aspace, addr)));
6708 }
6709
6710 /* If LOC1 and LOC2's owners are not tracepoints, returns false directly.
6711 Then, if LOC1 and LOC2 represent the same tracepoint location, returns
6712 true, otherwise returns false. */
6713
6714 static int
6715 tracepoint_locations_match (struct bp_location *loc1,
6716 struct bp_location *loc2)
6717 {
6718 if (is_tracepoint (loc1->owner) && is_tracepoint (loc2->owner))
6719 /* Since tracepoint locations are never duplicated with others', tracepoint
6720 locations at the same address of different tracepoints are regarded as
6721 different locations. */
6722 return (loc1->address == loc2->address && loc1->owner == loc2->owner);
6723 else
6724 return 0;
6725 }
6726
6727 /* Assuming LOC1 and LOC2's types' have meaningful target addresses
6728 (breakpoint_address_is_meaningful), returns true if LOC1 and LOC2
6729 represent the same location. */
6730
6731 static int
6732 breakpoint_locations_match (struct bp_location *loc1,
6733 struct bp_location *loc2)
6734 {
6735 int hw_point1, hw_point2;
6736
6737 /* Both of them must not be in moribund_locations. */
6738 gdb_assert (loc1->owner != NULL);
6739 gdb_assert (loc2->owner != NULL);
6740
6741 hw_point1 = is_hardware_watchpoint (loc1->owner);
6742 hw_point2 = is_hardware_watchpoint (loc2->owner);
6743
6744 if (hw_point1 != hw_point2)
6745 return 0;
6746 else if (hw_point1)
6747 return watchpoint_locations_match (loc1, loc2);
6748 else if (is_tracepoint (loc1->owner) || is_tracepoint (loc2->owner))
6749 return tracepoint_locations_match (loc1, loc2);
6750 else
6751 /* We compare bp_location.length in order to cover ranged breakpoints. */
6752 return (breakpoint_address_match (loc1->pspace->aspace, loc1->address,
6753 loc2->pspace->aspace, loc2->address)
6754 && loc1->length == loc2->length);
6755 }
6756
6757 static void
6758 breakpoint_adjustment_warning (CORE_ADDR from_addr, CORE_ADDR to_addr,
6759 int bnum, int have_bnum)
6760 {
6761 /* The longest string possibly returned by hex_string_custom
6762 is 50 chars. These must be at least that big for safety. */
6763 char astr1[64];
6764 char astr2[64];
6765
6766 strcpy (astr1, hex_string_custom ((unsigned long) from_addr, 8));
6767 strcpy (astr2, hex_string_custom ((unsigned long) to_addr, 8));
6768 if (have_bnum)
6769 warning (_("Breakpoint %d address previously adjusted from %s to %s."),
6770 bnum, astr1, astr2);
6771 else
6772 warning (_("Breakpoint address adjusted from %s to %s."), astr1, astr2);
6773 }
6774
6775 /* Adjust a breakpoint's address to account for architectural
6776 constraints on breakpoint placement. Return the adjusted address.
6777 Note: Very few targets require this kind of adjustment. For most
6778 targets, this function is simply the identity function. */
6779
6780 static CORE_ADDR
6781 adjust_breakpoint_address (struct gdbarch *gdbarch,
6782 CORE_ADDR bpaddr, enum bptype bptype)
6783 {
6784 if (!gdbarch_adjust_breakpoint_address_p (gdbarch))
6785 {
6786 /* Very few targets need any kind of breakpoint adjustment. */
6787 return bpaddr;
6788 }
6789 else if (bptype == bp_watchpoint
6790 || bptype == bp_hardware_watchpoint
6791 || bptype == bp_read_watchpoint
6792 || bptype == bp_access_watchpoint
6793 || bptype == bp_catchpoint)
6794 {
6795 /* Watchpoints and the various bp_catch_* eventpoints should not
6796 have their addresses modified. */
6797 return bpaddr;
6798 }
6799 else
6800 {
6801 CORE_ADDR adjusted_bpaddr;
6802
6803 /* Some targets have architectural constraints on the placement
6804 of breakpoint instructions. Obtain the adjusted address. */
6805 adjusted_bpaddr = gdbarch_adjust_breakpoint_address (gdbarch, bpaddr);
6806
6807 /* An adjusted breakpoint address can significantly alter
6808 a user's expectations. Print a warning if an adjustment
6809 is required. */
6810 if (adjusted_bpaddr != bpaddr)
6811 breakpoint_adjustment_warning (bpaddr, adjusted_bpaddr, 0, 0);
6812
6813 return adjusted_bpaddr;
6814 }
6815 }
6816
6817 void
6818 init_bp_location (struct bp_location *loc, const struct bp_location_ops *ops,
6819 struct breakpoint *owner)
6820 {
6821 memset (loc, 0, sizeof (*loc));
6822
6823 gdb_assert (ops != NULL);
6824
6825 loc->ops = ops;
6826 loc->owner = owner;
6827 loc->cond = NULL;
6828 loc->cond_bytecode = NULL;
6829 loc->shlib_disabled = 0;
6830 loc->enabled = 1;
6831
6832 switch (owner->type)
6833 {
6834 case bp_breakpoint:
6835 case bp_until:
6836 case bp_finish:
6837 case bp_longjmp:
6838 case bp_longjmp_resume:
6839 case bp_longjmp_call_dummy:
6840 case bp_exception:
6841 case bp_exception_resume:
6842 case bp_step_resume:
6843 case bp_hp_step_resume:
6844 case bp_watchpoint_scope:
6845 case bp_call_dummy:
6846 case bp_std_terminate:
6847 case bp_shlib_event:
6848 case bp_thread_event:
6849 case bp_overlay_event:
6850 case bp_jit_event:
6851 case bp_longjmp_master:
6852 case bp_std_terminate_master:
6853 case bp_exception_master:
6854 case bp_gnu_ifunc_resolver:
6855 case bp_gnu_ifunc_resolver_return:
6856 case bp_dprintf:
6857 loc->loc_type = bp_loc_software_breakpoint;
6858 mark_breakpoint_location_modified (loc);
6859 break;
6860 case bp_hardware_breakpoint:
6861 loc->loc_type = bp_loc_hardware_breakpoint;
6862 mark_breakpoint_location_modified (loc);
6863 break;
6864 case bp_hardware_watchpoint:
6865 case bp_read_watchpoint:
6866 case bp_access_watchpoint:
6867 loc->loc_type = bp_loc_hardware_watchpoint;
6868 break;
6869 case bp_watchpoint:
6870 case bp_catchpoint:
6871 case bp_tracepoint:
6872 case bp_fast_tracepoint:
6873 case bp_static_tracepoint:
6874 loc->loc_type = bp_loc_other;
6875 break;
6876 default:
6877 internal_error (__FILE__, __LINE__, _("unknown breakpoint type"));
6878 }
6879
6880 loc->refc = 1;
6881 }
6882
6883 /* Allocate a struct bp_location. */
6884
6885 static struct bp_location *
6886 allocate_bp_location (struct breakpoint *bpt)
6887 {
6888 return bpt->ops->allocate_location (bpt);
6889 }
6890
6891 static void
6892 free_bp_location (struct bp_location *loc)
6893 {
6894 loc->ops->dtor (loc);
6895 xfree (loc);
6896 }
6897
6898 /* Increment reference count. */
6899
6900 static void
6901 incref_bp_location (struct bp_location *bl)
6902 {
6903 ++bl->refc;
6904 }
6905
6906 /* Decrement reference count. If the reference count reaches 0,
6907 destroy the bp_location. Sets *BLP to NULL. */
6908
6909 static void
6910 decref_bp_location (struct bp_location **blp)
6911 {
6912 gdb_assert ((*blp)->refc > 0);
6913
6914 if (--(*blp)->refc == 0)
6915 free_bp_location (*blp);
6916 *blp = NULL;
6917 }
6918
6919 /* Add breakpoint B at the end of the global breakpoint chain. */
6920
6921 static void
6922 add_to_breakpoint_chain (struct breakpoint *b)
6923 {
6924 struct breakpoint *b1;
6925
6926 /* Add this breakpoint to the end of the chain so that a list of
6927 breakpoints will come out in order of increasing numbers. */
6928
6929 b1 = breakpoint_chain;
6930 if (b1 == 0)
6931 breakpoint_chain = b;
6932 else
6933 {
6934 while (b1->next)
6935 b1 = b1->next;
6936 b1->next = b;
6937 }
6938 }
6939
6940 /* Initializes breakpoint B with type BPTYPE and no locations yet. */
6941
6942 static void
6943 init_raw_breakpoint_without_location (struct breakpoint *b,
6944 struct gdbarch *gdbarch,
6945 enum bptype bptype,
6946 const struct breakpoint_ops *ops)
6947 {
6948 memset (b, 0, sizeof (*b));
6949
6950 gdb_assert (ops != NULL);
6951
6952 b->ops = ops;
6953 b->type = bptype;
6954 b->gdbarch = gdbarch;
6955 b->language = current_language->la_language;
6956 b->input_radix = input_radix;
6957 b->thread = -1;
6958 b->enable_state = bp_enabled;
6959 b->next = 0;
6960 b->silent = 0;
6961 b->ignore_count = 0;
6962 b->commands = NULL;
6963 b->frame_id = null_frame_id;
6964 b->condition_not_parsed = 0;
6965 b->py_bp_object = NULL;
6966 b->related_breakpoint = b;
6967 }
6968
6969 /* Helper to set_raw_breakpoint below. Creates a breakpoint
6970 that has type BPTYPE and has no locations as yet. */
6971
6972 static struct breakpoint *
6973 set_raw_breakpoint_without_location (struct gdbarch *gdbarch,
6974 enum bptype bptype,
6975 const struct breakpoint_ops *ops)
6976 {
6977 struct breakpoint *b = XNEW (struct breakpoint);
6978
6979 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
6980 add_to_breakpoint_chain (b);
6981 return b;
6982 }
6983
6984 /* Initialize loc->function_name. EXPLICIT_LOC says no indirect function
6985 resolutions should be made as the user specified the location explicitly
6986 enough. */
6987
6988 static void
6989 set_breakpoint_location_function (struct bp_location *loc, int explicit_loc)
6990 {
6991 gdb_assert (loc->owner != NULL);
6992
6993 if (loc->owner->type == bp_breakpoint
6994 || loc->owner->type == bp_hardware_breakpoint
6995 || is_tracepoint (loc->owner))
6996 {
6997 int is_gnu_ifunc;
6998 const char *function_name;
6999 CORE_ADDR func_addr;
7000
7001 find_pc_partial_function_gnu_ifunc (loc->address, &function_name,
7002 &func_addr, NULL, &is_gnu_ifunc);
7003
7004 if (is_gnu_ifunc && !explicit_loc)
7005 {
7006 struct breakpoint *b = loc->owner;
7007
7008 gdb_assert (loc->pspace == current_program_space);
7009 if (gnu_ifunc_resolve_name (function_name,
7010 &loc->requested_address))
7011 {
7012 /* Recalculate ADDRESS based on new REQUESTED_ADDRESS. */
7013 loc->address = adjust_breakpoint_address (loc->gdbarch,
7014 loc->requested_address,
7015 b->type);
7016 }
7017 else if (b->type == bp_breakpoint && b->loc == loc
7018 && loc->next == NULL && b->related_breakpoint == b)
7019 {
7020 /* Create only the whole new breakpoint of this type but do not
7021 mess more complicated breakpoints with multiple locations. */
7022 b->type = bp_gnu_ifunc_resolver;
7023 /* Remember the resolver's address for use by the return
7024 breakpoint. */
7025 loc->related_address = func_addr;
7026 }
7027 }
7028
7029 if (function_name)
7030 loc->function_name = xstrdup (function_name);
7031 }
7032 }
7033
7034 /* Attempt to determine architecture of location identified by SAL. */
7035 struct gdbarch *
7036 get_sal_arch (struct symtab_and_line sal)
7037 {
7038 if (sal.section)
7039 return get_objfile_arch (sal.section->objfile);
7040 if (sal.symtab)
7041 return get_objfile_arch (sal.symtab->objfile);
7042
7043 return NULL;
7044 }
7045
7046 /* Low level routine for partially initializing a breakpoint of type
7047 BPTYPE. The newly created breakpoint's address, section, source
7048 file name, and line number are provided by SAL.
7049
7050 It is expected that the caller will complete the initialization of
7051 the newly created breakpoint struct as well as output any status
7052 information regarding the creation of a new breakpoint. */
7053
7054 static void
7055 init_raw_breakpoint (struct breakpoint *b, struct gdbarch *gdbarch,
7056 struct symtab_and_line sal, enum bptype bptype,
7057 const struct breakpoint_ops *ops)
7058 {
7059 init_raw_breakpoint_without_location (b, gdbarch, bptype, ops);
7060
7061 add_location_to_breakpoint (b, &sal);
7062
7063 if (bptype != bp_catchpoint)
7064 gdb_assert (sal.pspace != NULL);
7065
7066 /* Store the program space that was used to set the breakpoint,
7067 except for ordinary breakpoints, which are independent of the
7068 program space. */
7069 if (bptype != bp_breakpoint && bptype != bp_hardware_breakpoint)
7070 b->pspace = sal.pspace;
7071 }
7072
7073 /* set_raw_breakpoint is a low level routine for allocating and
7074 partially initializing a breakpoint of type BPTYPE. The newly
7075 created breakpoint's address, section, source file name, and line
7076 number are provided by SAL. The newly created and partially
7077 initialized breakpoint is added to the breakpoint chain and
7078 is also returned as the value of this function.
7079
7080 It is expected that the caller will complete the initialization of
7081 the newly created breakpoint struct as well as output any status
7082 information regarding the creation of a new breakpoint. In
7083 particular, set_raw_breakpoint does NOT set the breakpoint
7084 number! Care should be taken to not allow an error to occur
7085 prior to completing the initialization of the breakpoint. If this
7086 should happen, a bogus breakpoint will be left on the chain. */
7087
7088 struct breakpoint *
7089 set_raw_breakpoint (struct gdbarch *gdbarch,
7090 struct symtab_and_line sal, enum bptype bptype,
7091 const struct breakpoint_ops *ops)
7092 {
7093 struct breakpoint *b = XNEW (struct breakpoint);
7094
7095 init_raw_breakpoint (b, gdbarch, sal, bptype, ops);
7096 add_to_breakpoint_chain (b);
7097 return b;
7098 }
7099
7100
7101 /* Note that the breakpoint object B describes a permanent breakpoint
7102 instruction, hard-wired into the inferior's code. */
7103 void
7104 make_breakpoint_permanent (struct breakpoint *b)
7105 {
7106 struct bp_location *bl;
7107
7108 b->enable_state = bp_permanent;
7109
7110 /* By definition, permanent breakpoints are already present in the
7111 code. Mark all locations as inserted. For now,
7112 make_breakpoint_permanent is called in just one place, so it's
7113 hard to say if it's reasonable to have permanent breakpoint with
7114 multiple locations or not, but it's easy to implement. */
7115 for (bl = b->loc; bl; bl = bl->next)
7116 bl->inserted = 1;
7117 }
7118
7119 /* Call this routine when stepping and nexting to enable a breakpoint
7120 if we do a longjmp() or 'throw' in TP. FRAME is the frame which
7121 initiated the operation. */
7122
7123 void
7124 set_longjmp_breakpoint (struct thread_info *tp, struct frame_id frame)
7125 {
7126 struct breakpoint *b, *b_tmp;
7127 int thread = tp->num;
7128
7129 /* To avoid having to rescan all objfile symbols at every step,
7130 we maintain a list of continually-inserted but always disabled
7131 longjmp "master" breakpoints. Here, we simply create momentary
7132 clones of those and enable them for the requested thread. */
7133 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7134 if (b->pspace == current_program_space
7135 && (b->type == bp_longjmp_master
7136 || b->type == bp_exception_master))
7137 {
7138 enum bptype type = b->type == bp_longjmp_master ? bp_longjmp : bp_exception;
7139 struct breakpoint *clone;
7140
7141 /* longjmp_breakpoint_ops ensures INITIATING_FRAME is cleared again
7142 after their removal. */
7143 clone = momentary_breakpoint_from_master (b, type,
7144 &longjmp_breakpoint_ops);
7145 clone->thread = thread;
7146 }
7147
7148 tp->initiating_frame = frame;
7149 }
7150
7151 /* Delete all longjmp breakpoints from THREAD. */
7152 void
7153 delete_longjmp_breakpoint (int thread)
7154 {
7155 struct breakpoint *b, *b_tmp;
7156
7157 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7158 if (b->type == bp_longjmp || b->type == bp_exception)
7159 {
7160 if (b->thread == thread)
7161 delete_breakpoint (b);
7162 }
7163 }
7164
7165 void
7166 delete_longjmp_breakpoint_at_next_stop (int thread)
7167 {
7168 struct breakpoint *b, *b_tmp;
7169
7170 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7171 if (b->type == bp_longjmp || b->type == bp_exception)
7172 {
7173 if (b->thread == thread)
7174 b->disposition = disp_del_at_next_stop;
7175 }
7176 }
7177
7178 /* Place breakpoints of type bp_longjmp_call_dummy to catch longjmp for
7179 INFERIOR_PTID thread. Chain them all by RELATED_BREAKPOINT and return
7180 pointer to any of them. Return NULL if this system cannot place longjmp
7181 breakpoints. */
7182
7183 struct breakpoint *
7184 set_longjmp_breakpoint_for_call_dummy (void)
7185 {
7186 struct breakpoint *b, *retval = NULL;
7187
7188 ALL_BREAKPOINTS (b)
7189 if (b->pspace == current_program_space && b->type == bp_longjmp_master)
7190 {
7191 struct breakpoint *new_b;
7192
7193 new_b = momentary_breakpoint_from_master (b, bp_longjmp_call_dummy,
7194 &momentary_breakpoint_ops);
7195 new_b->thread = pid_to_thread_id (inferior_ptid);
7196
7197 /* Link NEW_B into the chain of RETVAL breakpoints. */
7198
7199 gdb_assert (new_b->related_breakpoint == new_b);
7200 if (retval == NULL)
7201 retval = new_b;
7202 new_b->related_breakpoint = retval;
7203 while (retval->related_breakpoint != new_b->related_breakpoint)
7204 retval = retval->related_breakpoint;
7205 retval->related_breakpoint = new_b;
7206 }
7207
7208 return retval;
7209 }
7210
7211 /* Verify all existing dummy frames and their associated breakpoints for
7212 THREAD. Remove those which can no longer be found in the current frame
7213 stack.
7214
7215 You should call this function only at places where it is safe to currently
7216 unwind the whole stack. Failed stack unwind would discard live dummy
7217 frames. */
7218
7219 void
7220 check_longjmp_breakpoint_for_call_dummy (int thread)
7221 {
7222 struct breakpoint *b, *b_tmp;
7223
7224 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7225 if (b->type == bp_longjmp_call_dummy && b->thread == thread)
7226 {
7227 struct breakpoint *dummy_b = b->related_breakpoint;
7228
7229 while (dummy_b != b && dummy_b->type != bp_call_dummy)
7230 dummy_b = dummy_b->related_breakpoint;
7231 if (dummy_b->type != bp_call_dummy
7232 || frame_find_by_id (dummy_b->frame_id) != NULL)
7233 continue;
7234
7235 dummy_frame_discard (dummy_b->frame_id);
7236
7237 while (b->related_breakpoint != b)
7238 {
7239 if (b_tmp == b->related_breakpoint)
7240 b_tmp = b->related_breakpoint->next;
7241 delete_breakpoint (b->related_breakpoint);
7242 }
7243 delete_breakpoint (b);
7244 }
7245 }
7246
7247 void
7248 enable_overlay_breakpoints (void)
7249 {
7250 struct breakpoint *b;
7251
7252 ALL_BREAKPOINTS (b)
7253 if (b->type == bp_overlay_event)
7254 {
7255 b->enable_state = bp_enabled;
7256 update_global_location_list (1);
7257 overlay_events_enabled = 1;
7258 }
7259 }
7260
7261 void
7262 disable_overlay_breakpoints (void)
7263 {
7264 struct breakpoint *b;
7265
7266 ALL_BREAKPOINTS (b)
7267 if (b->type == bp_overlay_event)
7268 {
7269 b->enable_state = bp_disabled;
7270 update_global_location_list (0);
7271 overlay_events_enabled = 0;
7272 }
7273 }
7274
7275 /* Set an active std::terminate breakpoint for each std::terminate
7276 master breakpoint. */
7277 void
7278 set_std_terminate_breakpoint (void)
7279 {
7280 struct breakpoint *b, *b_tmp;
7281
7282 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7283 if (b->pspace == current_program_space
7284 && b->type == bp_std_terminate_master)
7285 {
7286 momentary_breakpoint_from_master (b, bp_std_terminate,
7287 &momentary_breakpoint_ops);
7288 }
7289 }
7290
7291 /* Delete all the std::terminate breakpoints. */
7292 void
7293 delete_std_terminate_breakpoint (void)
7294 {
7295 struct breakpoint *b, *b_tmp;
7296
7297 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7298 if (b->type == bp_std_terminate)
7299 delete_breakpoint (b);
7300 }
7301
7302 struct breakpoint *
7303 create_thread_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7304 {
7305 struct breakpoint *b;
7306
7307 b = create_internal_breakpoint (gdbarch, address, bp_thread_event,
7308 &internal_breakpoint_ops);
7309
7310 b->enable_state = bp_enabled;
7311 /* addr_string has to be used or breakpoint_re_set will delete me. */
7312 b->addr_string
7313 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
7314
7315 update_global_location_list_nothrow (1);
7316
7317 return b;
7318 }
7319
7320 void
7321 remove_thread_event_breakpoints (void)
7322 {
7323 struct breakpoint *b, *b_tmp;
7324
7325 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7326 if (b->type == bp_thread_event
7327 && b->loc->pspace == current_program_space)
7328 delete_breakpoint (b);
7329 }
7330
7331 struct lang_and_radix
7332 {
7333 enum language lang;
7334 int radix;
7335 };
7336
7337 /* Create a breakpoint for JIT code registration and unregistration. */
7338
7339 struct breakpoint *
7340 create_jit_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7341 {
7342 struct breakpoint *b;
7343
7344 b = create_internal_breakpoint (gdbarch, address, bp_jit_event,
7345 &internal_breakpoint_ops);
7346 update_global_location_list_nothrow (1);
7347 return b;
7348 }
7349
7350 /* Remove JIT code registration and unregistration breakpoint(s). */
7351
7352 void
7353 remove_jit_event_breakpoints (void)
7354 {
7355 struct breakpoint *b, *b_tmp;
7356
7357 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7358 if (b->type == bp_jit_event
7359 && b->loc->pspace == current_program_space)
7360 delete_breakpoint (b);
7361 }
7362
7363 void
7364 remove_solib_event_breakpoints (void)
7365 {
7366 struct breakpoint *b, *b_tmp;
7367
7368 ALL_BREAKPOINTS_SAFE (b, b_tmp)
7369 if (b->type == bp_shlib_event
7370 && b->loc->pspace == current_program_space)
7371 delete_breakpoint (b);
7372 }
7373
7374 struct breakpoint *
7375 create_solib_event_breakpoint (struct gdbarch *gdbarch, CORE_ADDR address)
7376 {
7377 struct breakpoint *b;
7378
7379 b = create_internal_breakpoint (gdbarch, address, bp_shlib_event,
7380 &internal_breakpoint_ops);
7381 update_global_location_list_nothrow (1);
7382 return b;
7383 }
7384
7385 /* Disable any breakpoints that are on code in shared libraries. Only
7386 apply to enabled breakpoints, disabled ones can just stay disabled. */
7387
7388 void
7389 disable_breakpoints_in_shlibs (void)
7390 {
7391 struct bp_location *loc, **locp_tmp;
7392
7393 ALL_BP_LOCATIONS (loc, locp_tmp)
7394 {
7395 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7396 struct breakpoint *b = loc->owner;
7397
7398 /* We apply the check to all breakpoints, including disabled for
7399 those with loc->duplicate set. This is so that when breakpoint
7400 becomes enabled, or the duplicate is removed, gdb will try to
7401 insert all breakpoints. If we don't set shlib_disabled here,
7402 we'll try to insert those breakpoints and fail. */
7403 if (((b->type == bp_breakpoint)
7404 || (b->type == bp_jit_event)
7405 || (b->type == bp_hardware_breakpoint)
7406 || (is_tracepoint (b)))
7407 && loc->pspace == current_program_space
7408 && !loc->shlib_disabled
7409 && solib_name_from_address (loc->pspace, loc->address)
7410 )
7411 {
7412 loc->shlib_disabled = 1;
7413 }
7414 }
7415 }
7416
7417 /* Disable any breakpoints and tracepoints that are in an unloaded shared
7418 library. Only apply to enabled breakpoints, disabled ones can just stay
7419 disabled. */
7420
7421 static void
7422 disable_breakpoints_in_unloaded_shlib (struct so_list *solib)
7423 {
7424 struct bp_location *loc, **locp_tmp;
7425 int disabled_shlib_breaks = 0;
7426
7427 /* SunOS a.out shared libraries are always mapped, so do not
7428 disable breakpoints; they will only be reported as unloaded
7429 through clear_solib when GDB discards its shared library
7430 list. See clear_solib for more information. */
7431 if (exec_bfd != NULL
7432 && bfd_get_flavour (exec_bfd) == bfd_target_aout_flavour)
7433 return;
7434
7435 ALL_BP_LOCATIONS (loc, locp_tmp)
7436 {
7437 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always non-NULL. */
7438 struct breakpoint *b = loc->owner;
7439
7440 if (solib->pspace == loc->pspace
7441 && !loc->shlib_disabled
7442 && (((b->type == bp_breakpoint
7443 || b->type == bp_jit_event
7444 || b->type == bp_hardware_breakpoint)
7445 && (loc->loc_type == bp_loc_hardware_breakpoint
7446 || loc->loc_type == bp_loc_software_breakpoint))
7447 || is_tracepoint (b))
7448 && solib_contains_address_p (solib, loc->address))
7449 {
7450 loc->shlib_disabled = 1;
7451 /* At this point, we cannot rely on remove_breakpoint
7452 succeeding so we must mark the breakpoint as not inserted
7453 to prevent future errors occurring in remove_breakpoints. */
7454 loc->inserted = 0;
7455
7456 /* This may cause duplicate notifications for the same breakpoint. */
7457 observer_notify_breakpoint_modified (b);
7458
7459 if (!disabled_shlib_breaks)
7460 {
7461 target_terminal_ours_for_output ();
7462 warning (_("Temporarily disabling breakpoints "
7463 "for unloaded shared library \"%s\""),
7464 solib->so_name);
7465 }
7466 disabled_shlib_breaks = 1;
7467 }
7468 }
7469 }
7470
7471 /* FORK & VFORK catchpoints. */
7472
7473 /* An instance of this type is used to represent a fork or vfork
7474 catchpoint. It includes a "struct breakpoint" as a kind of base
7475 class; users downcast to "struct breakpoint *" when needed. A
7476 breakpoint is really of this type iff its ops pointer points to
7477 CATCH_FORK_BREAKPOINT_OPS. */
7478
7479 struct fork_catchpoint
7480 {
7481 /* The base class. */
7482 struct breakpoint base;
7483
7484 /* Process id of a child process whose forking triggered this
7485 catchpoint. This field is only valid immediately after this
7486 catchpoint has triggered. */
7487 ptid_t forked_inferior_pid;
7488 };
7489
7490 /* Implement the "insert" breakpoint_ops method for fork
7491 catchpoints. */
7492
7493 static int
7494 insert_catch_fork (struct bp_location *bl)
7495 {
7496 return target_insert_fork_catchpoint (PIDGET (inferior_ptid));
7497 }
7498
7499 /* Implement the "remove" breakpoint_ops method for fork
7500 catchpoints. */
7501
7502 static int
7503 remove_catch_fork (struct bp_location *bl)
7504 {
7505 return target_remove_fork_catchpoint (PIDGET (inferior_ptid));
7506 }
7507
7508 /* Implement the "breakpoint_hit" breakpoint_ops method for fork
7509 catchpoints. */
7510
7511 static int
7512 breakpoint_hit_catch_fork (const struct bp_location *bl,
7513 struct address_space *aspace, CORE_ADDR bp_addr,
7514 const struct target_waitstatus *ws)
7515 {
7516 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7517
7518 if (ws->kind != TARGET_WAITKIND_FORKED)
7519 return 0;
7520
7521 c->forked_inferior_pid = ws->value.related_pid;
7522 return 1;
7523 }
7524
7525 /* Implement the "print_it" breakpoint_ops method for fork
7526 catchpoints. */
7527
7528 static enum print_stop_action
7529 print_it_catch_fork (bpstat bs)
7530 {
7531 struct ui_out *uiout = current_uiout;
7532 struct breakpoint *b = bs->breakpoint_at;
7533 struct fork_catchpoint *c = (struct fork_catchpoint *) bs->breakpoint_at;
7534
7535 annotate_catchpoint (b->number);
7536 if (b->disposition == disp_del)
7537 ui_out_text (uiout, "\nTemporary catchpoint ");
7538 else
7539 ui_out_text (uiout, "\nCatchpoint ");
7540 if (ui_out_is_mi_like_p (uiout))
7541 {
7542 ui_out_field_string (uiout, "reason",
7543 async_reason_lookup (EXEC_ASYNC_FORK));
7544 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7545 }
7546 ui_out_field_int (uiout, "bkptno", b->number);
7547 ui_out_text (uiout, " (forked process ");
7548 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7549 ui_out_text (uiout, "), ");
7550 return PRINT_SRC_AND_LOC;
7551 }
7552
7553 /* Implement the "print_one" breakpoint_ops method for fork
7554 catchpoints. */
7555
7556 static void
7557 print_one_catch_fork (struct breakpoint *b, struct bp_location **last_loc)
7558 {
7559 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7560 struct value_print_options opts;
7561 struct ui_out *uiout = current_uiout;
7562
7563 get_user_print_options (&opts);
7564
7565 /* Field 4, the address, is omitted (which makes the columns not
7566 line up too nicely with the headers, but the effect is relatively
7567 readable). */
7568 if (opts.addressprint)
7569 ui_out_field_skip (uiout, "addr");
7570 annotate_field (5);
7571 ui_out_text (uiout, "fork");
7572 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7573 {
7574 ui_out_text (uiout, ", process ");
7575 ui_out_field_int (uiout, "what",
7576 ptid_get_pid (c->forked_inferior_pid));
7577 ui_out_spaces (uiout, 1);
7578 }
7579
7580 if (ui_out_is_mi_like_p (uiout))
7581 ui_out_field_string (uiout, "catch-type", "fork");
7582 }
7583
7584 /* Implement the "print_mention" breakpoint_ops method for fork
7585 catchpoints. */
7586
7587 static void
7588 print_mention_catch_fork (struct breakpoint *b)
7589 {
7590 printf_filtered (_("Catchpoint %d (fork)"), b->number);
7591 }
7592
7593 /* Implement the "print_recreate" breakpoint_ops method for fork
7594 catchpoints. */
7595
7596 static void
7597 print_recreate_catch_fork (struct breakpoint *b, struct ui_file *fp)
7598 {
7599 fprintf_unfiltered (fp, "catch fork");
7600 print_recreate_thread (b, fp);
7601 }
7602
7603 /* The breakpoint_ops structure to be used in fork catchpoints. */
7604
7605 static struct breakpoint_ops catch_fork_breakpoint_ops;
7606
7607 /* Implement the "insert" breakpoint_ops method for vfork
7608 catchpoints. */
7609
7610 static int
7611 insert_catch_vfork (struct bp_location *bl)
7612 {
7613 return target_insert_vfork_catchpoint (PIDGET (inferior_ptid));
7614 }
7615
7616 /* Implement the "remove" breakpoint_ops method for vfork
7617 catchpoints. */
7618
7619 static int
7620 remove_catch_vfork (struct bp_location *bl)
7621 {
7622 return target_remove_vfork_catchpoint (PIDGET (inferior_ptid));
7623 }
7624
7625 /* Implement the "breakpoint_hit" breakpoint_ops method for vfork
7626 catchpoints. */
7627
7628 static int
7629 breakpoint_hit_catch_vfork (const struct bp_location *bl,
7630 struct address_space *aspace, CORE_ADDR bp_addr,
7631 const struct target_waitstatus *ws)
7632 {
7633 struct fork_catchpoint *c = (struct fork_catchpoint *) bl->owner;
7634
7635 if (ws->kind != TARGET_WAITKIND_VFORKED)
7636 return 0;
7637
7638 c->forked_inferior_pid = ws->value.related_pid;
7639 return 1;
7640 }
7641
7642 /* Implement the "print_it" breakpoint_ops method for vfork
7643 catchpoints. */
7644
7645 static enum print_stop_action
7646 print_it_catch_vfork (bpstat bs)
7647 {
7648 struct ui_out *uiout = current_uiout;
7649 struct breakpoint *b = bs->breakpoint_at;
7650 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7651
7652 annotate_catchpoint (b->number);
7653 if (b->disposition == disp_del)
7654 ui_out_text (uiout, "\nTemporary catchpoint ");
7655 else
7656 ui_out_text (uiout, "\nCatchpoint ");
7657 if (ui_out_is_mi_like_p (uiout))
7658 {
7659 ui_out_field_string (uiout, "reason",
7660 async_reason_lookup (EXEC_ASYNC_VFORK));
7661 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7662 }
7663 ui_out_field_int (uiout, "bkptno", b->number);
7664 ui_out_text (uiout, " (vforked process ");
7665 ui_out_field_int (uiout, "newpid", ptid_get_pid (c->forked_inferior_pid));
7666 ui_out_text (uiout, "), ");
7667 return PRINT_SRC_AND_LOC;
7668 }
7669
7670 /* Implement the "print_one" breakpoint_ops method for vfork
7671 catchpoints. */
7672
7673 static void
7674 print_one_catch_vfork (struct breakpoint *b, struct bp_location **last_loc)
7675 {
7676 struct fork_catchpoint *c = (struct fork_catchpoint *) b;
7677 struct value_print_options opts;
7678 struct ui_out *uiout = current_uiout;
7679
7680 get_user_print_options (&opts);
7681 /* Field 4, the address, is omitted (which makes the columns not
7682 line up too nicely with the headers, but the effect is relatively
7683 readable). */
7684 if (opts.addressprint)
7685 ui_out_field_skip (uiout, "addr");
7686 annotate_field (5);
7687 ui_out_text (uiout, "vfork");
7688 if (!ptid_equal (c->forked_inferior_pid, null_ptid))
7689 {
7690 ui_out_text (uiout, ", process ");
7691 ui_out_field_int (uiout, "what",
7692 ptid_get_pid (c->forked_inferior_pid));
7693 ui_out_spaces (uiout, 1);
7694 }
7695
7696 if (ui_out_is_mi_like_p (uiout))
7697 ui_out_field_string (uiout, "catch-type", "vfork");
7698 }
7699
7700 /* Implement the "print_mention" breakpoint_ops method for vfork
7701 catchpoints. */
7702
7703 static void
7704 print_mention_catch_vfork (struct breakpoint *b)
7705 {
7706 printf_filtered (_("Catchpoint %d (vfork)"), b->number);
7707 }
7708
7709 /* Implement the "print_recreate" breakpoint_ops method for vfork
7710 catchpoints. */
7711
7712 static void
7713 print_recreate_catch_vfork (struct breakpoint *b, struct ui_file *fp)
7714 {
7715 fprintf_unfiltered (fp, "catch vfork");
7716 print_recreate_thread (b, fp);
7717 }
7718
7719 /* The breakpoint_ops structure to be used in vfork catchpoints. */
7720
7721 static struct breakpoint_ops catch_vfork_breakpoint_ops;
7722
7723 /* An instance of this type is used to represent an solib catchpoint.
7724 It includes a "struct breakpoint" as a kind of base class; users
7725 downcast to "struct breakpoint *" when needed. A breakpoint is
7726 really of this type iff its ops pointer points to
7727 CATCH_SOLIB_BREAKPOINT_OPS. */
7728
7729 struct solib_catchpoint
7730 {
7731 /* The base class. */
7732 struct breakpoint base;
7733
7734 /* True for "catch load", false for "catch unload". */
7735 unsigned char is_load;
7736
7737 /* Regular expression to match, if any. COMPILED is only valid when
7738 REGEX is non-NULL. */
7739 char *regex;
7740 regex_t compiled;
7741 };
7742
7743 static void
7744 dtor_catch_solib (struct breakpoint *b)
7745 {
7746 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7747
7748 if (self->regex)
7749 regfree (&self->compiled);
7750 xfree (self->regex);
7751
7752 base_breakpoint_ops.dtor (b);
7753 }
7754
7755 static int
7756 insert_catch_solib (struct bp_location *ignore)
7757 {
7758 return 0;
7759 }
7760
7761 static int
7762 remove_catch_solib (struct bp_location *ignore)
7763 {
7764 return 0;
7765 }
7766
7767 static int
7768 breakpoint_hit_catch_solib (const struct bp_location *bl,
7769 struct address_space *aspace,
7770 CORE_ADDR bp_addr,
7771 const struct target_waitstatus *ws)
7772 {
7773 struct solib_catchpoint *self = (struct solib_catchpoint *) bl->owner;
7774 struct breakpoint *other;
7775
7776 if (ws->kind == TARGET_WAITKIND_LOADED)
7777 return 1;
7778
7779 ALL_BREAKPOINTS (other)
7780 {
7781 struct bp_location *other_bl;
7782
7783 if (other == bl->owner)
7784 continue;
7785
7786 if (other->type != bp_shlib_event)
7787 continue;
7788
7789 if (self->base.pspace != NULL && other->pspace != self->base.pspace)
7790 continue;
7791
7792 for (other_bl = other->loc; other_bl != NULL; other_bl = other_bl->next)
7793 {
7794 if (other->ops->breakpoint_hit (other_bl, aspace, bp_addr, ws))
7795 return 1;
7796 }
7797 }
7798
7799 return 0;
7800 }
7801
7802 static void
7803 check_status_catch_solib (struct bpstats *bs)
7804 {
7805 struct solib_catchpoint *self
7806 = (struct solib_catchpoint *) bs->breakpoint_at;
7807 int ix;
7808
7809 if (self->is_load)
7810 {
7811 struct so_list *iter;
7812
7813 for (ix = 0;
7814 VEC_iterate (so_list_ptr, current_program_space->added_solibs,
7815 ix, iter);
7816 ++ix)
7817 {
7818 if (!self->regex
7819 || regexec (&self->compiled, iter->so_name, 0, NULL, 0) == 0)
7820 return;
7821 }
7822 }
7823 else
7824 {
7825 char *iter;
7826
7827 for (ix = 0;
7828 VEC_iterate (char_ptr, current_program_space->deleted_solibs,
7829 ix, iter);
7830 ++ix)
7831 {
7832 if (!self->regex
7833 || regexec (&self->compiled, iter, 0, NULL, 0) == 0)
7834 return;
7835 }
7836 }
7837
7838 bs->stop = 0;
7839 bs->print_it = print_it_noop;
7840 }
7841
7842 static enum print_stop_action
7843 print_it_catch_solib (bpstat bs)
7844 {
7845 struct breakpoint *b = bs->breakpoint_at;
7846 struct ui_out *uiout = current_uiout;
7847
7848 annotate_catchpoint (b->number);
7849 if (b->disposition == disp_del)
7850 ui_out_text (uiout, "\nTemporary catchpoint ");
7851 else
7852 ui_out_text (uiout, "\nCatchpoint ");
7853 ui_out_field_int (uiout, "bkptno", b->number);
7854 ui_out_text (uiout, "\n");
7855 if (ui_out_is_mi_like_p (uiout))
7856 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
7857 print_solib_event (1);
7858 return PRINT_SRC_AND_LOC;
7859 }
7860
7861 static void
7862 print_one_catch_solib (struct breakpoint *b, struct bp_location **locs)
7863 {
7864 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7865 struct value_print_options opts;
7866 struct ui_out *uiout = current_uiout;
7867 char *msg;
7868
7869 get_user_print_options (&opts);
7870 /* Field 4, the address, is omitted (which makes the columns not
7871 line up too nicely with the headers, but the effect is relatively
7872 readable). */
7873 if (opts.addressprint)
7874 {
7875 annotate_field (4);
7876 ui_out_field_skip (uiout, "addr");
7877 }
7878
7879 annotate_field (5);
7880 if (self->is_load)
7881 {
7882 if (self->regex)
7883 msg = xstrprintf (_("load of library matching %s"), self->regex);
7884 else
7885 msg = xstrdup (_("load of library"));
7886 }
7887 else
7888 {
7889 if (self->regex)
7890 msg = xstrprintf (_("unload of library matching %s"), self->regex);
7891 else
7892 msg = xstrdup (_("unload of library"));
7893 }
7894 ui_out_field_string (uiout, "what", msg);
7895 xfree (msg);
7896
7897 if (ui_out_is_mi_like_p (uiout))
7898 ui_out_field_string (uiout, "catch-type",
7899 self->is_load ? "load" : "unload");
7900 }
7901
7902 static void
7903 print_mention_catch_solib (struct breakpoint *b)
7904 {
7905 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7906
7907 printf_filtered (_("Catchpoint %d (%s)"), b->number,
7908 self->is_load ? "load" : "unload");
7909 }
7910
7911 static void
7912 print_recreate_catch_solib (struct breakpoint *b, struct ui_file *fp)
7913 {
7914 struct solib_catchpoint *self = (struct solib_catchpoint *) b;
7915
7916 fprintf_unfiltered (fp, "%s %s",
7917 b->disposition == disp_del ? "tcatch" : "catch",
7918 self->is_load ? "load" : "unload");
7919 if (self->regex)
7920 fprintf_unfiltered (fp, " %s", self->regex);
7921 fprintf_unfiltered (fp, "\n");
7922 }
7923
7924 static struct breakpoint_ops catch_solib_breakpoint_ops;
7925
7926 /* Shared helper function (MI and CLI) for creating and installing
7927 a shared object event catchpoint. If IS_LOAD is non-zero then
7928 the events to be caught are load events, otherwise they are
7929 unload events. If IS_TEMP is non-zero the catchpoint is a
7930 temporary one. If ENABLED is non-zero the catchpoint is
7931 created in an enabled state. */
7932
7933 void
7934 add_solib_catchpoint (char *arg, int is_load, int is_temp, int enabled)
7935 {
7936 struct solib_catchpoint *c;
7937 struct gdbarch *gdbarch = get_current_arch ();
7938 struct cleanup *cleanup;
7939
7940 if (!arg)
7941 arg = "";
7942 arg = skip_spaces (arg);
7943
7944 c = XCNEW (struct solib_catchpoint);
7945 cleanup = make_cleanup (xfree, c);
7946
7947 if (*arg != '\0')
7948 {
7949 int errcode;
7950
7951 errcode = regcomp (&c->compiled, arg, REG_NOSUB);
7952 if (errcode != 0)
7953 {
7954 char *err = get_regcomp_error (errcode, &c->compiled);
7955
7956 make_cleanup (xfree, err);
7957 error (_("Invalid regexp (%s): %s"), err, arg);
7958 }
7959 c->regex = xstrdup (arg);
7960 }
7961
7962 c->is_load = is_load;
7963 init_catchpoint (&c->base, gdbarch, is_temp, NULL,
7964 &catch_solib_breakpoint_ops);
7965
7966 c->base.enable_state = enabled ? bp_enabled : bp_disabled;
7967
7968 discard_cleanups (cleanup);
7969 install_breakpoint (0, &c->base, 1);
7970 }
7971
7972 /* A helper function that does all the work for "catch load" and
7973 "catch unload". */
7974
7975 static void
7976 catch_load_or_unload (char *arg, int from_tty, int is_load,
7977 struct cmd_list_element *command)
7978 {
7979 int tempflag;
7980 const int enabled = 1;
7981
7982 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
7983
7984 add_solib_catchpoint (arg, is_load, tempflag, enabled);
7985 }
7986
7987 static void
7988 catch_load_command_1 (char *arg, int from_tty,
7989 struct cmd_list_element *command)
7990 {
7991 catch_load_or_unload (arg, from_tty, 1, command);
7992 }
7993
7994 static void
7995 catch_unload_command_1 (char *arg, int from_tty,
7996 struct cmd_list_element *command)
7997 {
7998 catch_load_or_unload (arg, from_tty, 0, command);
7999 }
8000
8001 /* An instance of this type is used to represent a syscall catchpoint.
8002 It includes a "struct breakpoint" as a kind of base class; users
8003 downcast to "struct breakpoint *" when needed. A breakpoint is
8004 really of this type iff its ops pointer points to
8005 CATCH_SYSCALL_BREAKPOINT_OPS. */
8006
8007 struct syscall_catchpoint
8008 {
8009 /* The base class. */
8010 struct breakpoint base;
8011
8012 /* Syscall numbers used for the 'catch syscall' feature. If no
8013 syscall has been specified for filtering, its value is NULL.
8014 Otherwise, it holds a list of all syscalls to be caught. The
8015 list elements are allocated with xmalloc. */
8016 VEC(int) *syscalls_to_be_caught;
8017 };
8018
8019 /* Implement the "dtor" breakpoint_ops method for syscall
8020 catchpoints. */
8021
8022 static void
8023 dtor_catch_syscall (struct breakpoint *b)
8024 {
8025 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8026
8027 VEC_free (int, c->syscalls_to_be_caught);
8028
8029 base_breakpoint_ops.dtor (b);
8030 }
8031
8032 static const struct inferior_data *catch_syscall_inferior_data = NULL;
8033
8034 struct catch_syscall_inferior_data
8035 {
8036 /* We keep a count of the number of times the user has requested a
8037 particular syscall to be tracked, and pass this information to the
8038 target. This lets capable targets implement filtering directly. */
8039
8040 /* Number of times that "any" syscall is requested. */
8041 int any_syscall_count;
8042
8043 /* Count of each system call. */
8044 VEC(int) *syscalls_counts;
8045
8046 /* This counts all syscall catch requests, so we can readily determine
8047 if any catching is necessary. */
8048 int total_syscalls_count;
8049 };
8050
8051 static struct catch_syscall_inferior_data*
8052 get_catch_syscall_inferior_data (struct inferior *inf)
8053 {
8054 struct catch_syscall_inferior_data *inf_data;
8055
8056 inf_data = inferior_data (inf, catch_syscall_inferior_data);
8057 if (inf_data == NULL)
8058 {
8059 inf_data = XZALLOC (struct catch_syscall_inferior_data);
8060 set_inferior_data (inf, catch_syscall_inferior_data, inf_data);
8061 }
8062
8063 return inf_data;
8064 }
8065
8066 static void
8067 catch_syscall_inferior_data_cleanup (struct inferior *inf, void *arg)
8068 {
8069 xfree (arg);
8070 }
8071
8072
8073 /* Implement the "insert" breakpoint_ops method for syscall
8074 catchpoints. */
8075
8076 static int
8077 insert_catch_syscall (struct bp_location *bl)
8078 {
8079 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8080 struct inferior *inf = current_inferior ();
8081 struct catch_syscall_inferior_data *inf_data
8082 = get_catch_syscall_inferior_data (inf);
8083
8084 ++inf_data->total_syscalls_count;
8085 if (!c->syscalls_to_be_caught)
8086 ++inf_data->any_syscall_count;
8087 else
8088 {
8089 int i, iter;
8090
8091 for (i = 0;
8092 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8093 i++)
8094 {
8095 int elem;
8096
8097 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8098 {
8099 int old_size = VEC_length (int, inf_data->syscalls_counts);
8100 uintptr_t vec_addr_offset
8101 = old_size * ((uintptr_t) sizeof (int));
8102 uintptr_t vec_addr;
8103 VEC_safe_grow (int, inf_data->syscalls_counts, iter + 1);
8104 vec_addr = ((uintptr_t) VEC_address (int,
8105 inf_data->syscalls_counts)
8106 + vec_addr_offset);
8107 memset ((void *) vec_addr, 0,
8108 (iter + 1 - old_size) * sizeof (int));
8109 }
8110 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8111 VEC_replace (int, inf_data->syscalls_counts, iter, ++elem);
8112 }
8113 }
8114
8115 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8116 inf_data->total_syscalls_count != 0,
8117 inf_data->any_syscall_count,
8118 VEC_length (int,
8119 inf_data->syscalls_counts),
8120 VEC_address (int,
8121 inf_data->syscalls_counts));
8122 }
8123
8124 /* Implement the "remove" breakpoint_ops method for syscall
8125 catchpoints. */
8126
8127 static int
8128 remove_catch_syscall (struct bp_location *bl)
8129 {
8130 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bl->owner;
8131 struct inferior *inf = current_inferior ();
8132 struct catch_syscall_inferior_data *inf_data
8133 = get_catch_syscall_inferior_data (inf);
8134
8135 --inf_data->total_syscalls_count;
8136 if (!c->syscalls_to_be_caught)
8137 --inf_data->any_syscall_count;
8138 else
8139 {
8140 int i, iter;
8141
8142 for (i = 0;
8143 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8144 i++)
8145 {
8146 int elem;
8147 if (iter >= VEC_length (int, inf_data->syscalls_counts))
8148 /* Shouldn't happen. */
8149 continue;
8150 elem = VEC_index (int, inf_data->syscalls_counts, iter);
8151 VEC_replace (int, inf_data->syscalls_counts, iter, --elem);
8152 }
8153 }
8154
8155 return target_set_syscall_catchpoint (PIDGET (inferior_ptid),
8156 inf_data->total_syscalls_count != 0,
8157 inf_data->any_syscall_count,
8158 VEC_length (int,
8159 inf_data->syscalls_counts),
8160 VEC_address (int,
8161 inf_data->syscalls_counts));
8162 }
8163
8164 /* Implement the "breakpoint_hit" breakpoint_ops method for syscall
8165 catchpoints. */
8166
8167 static int
8168 breakpoint_hit_catch_syscall (const struct bp_location *bl,
8169 struct address_space *aspace, CORE_ADDR bp_addr,
8170 const struct target_waitstatus *ws)
8171 {
8172 /* We must check if we are catching specific syscalls in this
8173 breakpoint. If we are, then we must guarantee that the called
8174 syscall is the same syscall we are catching. */
8175 int syscall_number = 0;
8176 const struct syscall_catchpoint *c
8177 = (const struct syscall_catchpoint *) bl->owner;
8178
8179 if (ws->kind != TARGET_WAITKIND_SYSCALL_ENTRY
8180 && ws->kind != TARGET_WAITKIND_SYSCALL_RETURN)
8181 return 0;
8182
8183 syscall_number = ws->value.syscall_number;
8184
8185 /* Now, checking if the syscall is the same. */
8186 if (c->syscalls_to_be_caught)
8187 {
8188 int i, iter;
8189
8190 for (i = 0;
8191 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8192 i++)
8193 if (syscall_number == iter)
8194 break;
8195 /* Not the same. */
8196 if (!iter)
8197 return 0;
8198 }
8199
8200 return 1;
8201 }
8202
8203 /* Implement the "print_it" breakpoint_ops method for syscall
8204 catchpoints. */
8205
8206 static enum print_stop_action
8207 print_it_catch_syscall (bpstat bs)
8208 {
8209 struct ui_out *uiout = current_uiout;
8210 struct breakpoint *b = bs->breakpoint_at;
8211 /* These are needed because we want to know in which state a
8212 syscall is. It can be in the TARGET_WAITKIND_SYSCALL_ENTRY
8213 or TARGET_WAITKIND_SYSCALL_RETURN, and depending on it we
8214 must print "called syscall" or "returned from syscall". */
8215 ptid_t ptid;
8216 struct target_waitstatus last;
8217 struct syscall s;
8218
8219 get_last_target_status (&ptid, &last);
8220
8221 get_syscall_by_number (last.value.syscall_number, &s);
8222
8223 annotate_catchpoint (b->number);
8224
8225 if (b->disposition == disp_del)
8226 ui_out_text (uiout, "\nTemporary catchpoint ");
8227 else
8228 ui_out_text (uiout, "\nCatchpoint ");
8229 if (ui_out_is_mi_like_p (uiout))
8230 {
8231 ui_out_field_string (uiout, "reason",
8232 async_reason_lookup (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY
8233 ? EXEC_ASYNC_SYSCALL_ENTRY
8234 : EXEC_ASYNC_SYSCALL_RETURN));
8235 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8236 }
8237 ui_out_field_int (uiout, "bkptno", b->number);
8238
8239 if (last.kind == TARGET_WAITKIND_SYSCALL_ENTRY)
8240 ui_out_text (uiout, " (call to syscall ");
8241 else
8242 ui_out_text (uiout, " (returned from syscall ");
8243
8244 if (s.name == NULL || ui_out_is_mi_like_p (uiout))
8245 ui_out_field_int (uiout, "syscall-number", last.value.syscall_number);
8246 if (s.name != NULL)
8247 ui_out_field_string (uiout, "syscall-name", s.name);
8248
8249 ui_out_text (uiout, "), ");
8250
8251 return PRINT_SRC_AND_LOC;
8252 }
8253
8254 /* Implement the "print_one" breakpoint_ops method for syscall
8255 catchpoints. */
8256
8257 static void
8258 print_one_catch_syscall (struct breakpoint *b,
8259 struct bp_location **last_loc)
8260 {
8261 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8262 struct value_print_options opts;
8263 struct ui_out *uiout = current_uiout;
8264
8265 get_user_print_options (&opts);
8266 /* Field 4, the address, is omitted (which makes the columns not
8267 line up too nicely with the headers, but the effect is relatively
8268 readable). */
8269 if (opts.addressprint)
8270 ui_out_field_skip (uiout, "addr");
8271 annotate_field (5);
8272
8273 if (c->syscalls_to_be_caught
8274 && VEC_length (int, c->syscalls_to_be_caught) > 1)
8275 ui_out_text (uiout, "syscalls \"");
8276 else
8277 ui_out_text (uiout, "syscall \"");
8278
8279 if (c->syscalls_to_be_caught)
8280 {
8281 int i, iter;
8282 char *text = xstrprintf ("%s", "");
8283
8284 for (i = 0;
8285 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8286 i++)
8287 {
8288 char *x = text;
8289 struct syscall s;
8290 get_syscall_by_number (iter, &s);
8291
8292 if (s.name != NULL)
8293 text = xstrprintf ("%s%s, ", text, s.name);
8294 else
8295 text = xstrprintf ("%s%d, ", text, iter);
8296
8297 /* We have to xfree the last 'text' (now stored at 'x')
8298 because xstrprintf dynamically allocates new space for it
8299 on every call. */
8300 xfree (x);
8301 }
8302 /* Remove the last comma. */
8303 text[strlen (text) - 2] = '\0';
8304 ui_out_field_string (uiout, "what", text);
8305 }
8306 else
8307 ui_out_field_string (uiout, "what", "<any syscall>");
8308 ui_out_text (uiout, "\" ");
8309
8310 if (ui_out_is_mi_like_p (uiout))
8311 ui_out_field_string (uiout, "catch-type", "syscall");
8312 }
8313
8314 /* Implement the "print_mention" breakpoint_ops method for syscall
8315 catchpoints. */
8316
8317 static void
8318 print_mention_catch_syscall (struct breakpoint *b)
8319 {
8320 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8321
8322 if (c->syscalls_to_be_caught)
8323 {
8324 int i, iter;
8325
8326 if (VEC_length (int, c->syscalls_to_be_caught) > 1)
8327 printf_filtered (_("Catchpoint %d (syscalls"), b->number);
8328 else
8329 printf_filtered (_("Catchpoint %d (syscall"), b->number);
8330
8331 for (i = 0;
8332 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8333 i++)
8334 {
8335 struct syscall s;
8336 get_syscall_by_number (iter, &s);
8337
8338 if (s.name)
8339 printf_filtered (" '%s' [%d]", s.name, s.number);
8340 else
8341 printf_filtered (" %d", s.number);
8342 }
8343 printf_filtered (")");
8344 }
8345 else
8346 printf_filtered (_("Catchpoint %d (any syscall)"),
8347 b->number);
8348 }
8349
8350 /* Implement the "print_recreate" breakpoint_ops method for syscall
8351 catchpoints. */
8352
8353 static void
8354 print_recreate_catch_syscall (struct breakpoint *b, struct ui_file *fp)
8355 {
8356 struct syscall_catchpoint *c = (struct syscall_catchpoint *) b;
8357
8358 fprintf_unfiltered (fp, "catch syscall");
8359
8360 if (c->syscalls_to_be_caught)
8361 {
8362 int i, iter;
8363
8364 for (i = 0;
8365 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
8366 i++)
8367 {
8368 struct syscall s;
8369
8370 get_syscall_by_number (iter, &s);
8371 if (s.name)
8372 fprintf_unfiltered (fp, " %s", s.name);
8373 else
8374 fprintf_unfiltered (fp, " %d", s.number);
8375 }
8376 }
8377 print_recreate_thread (b, fp);
8378 }
8379
8380 /* The breakpoint_ops structure to be used in syscall catchpoints. */
8381
8382 static struct breakpoint_ops catch_syscall_breakpoint_ops;
8383
8384 /* Returns non-zero if 'b' is a syscall catchpoint. */
8385
8386 static int
8387 syscall_catchpoint_p (struct breakpoint *b)
8388 {
8389 return (b->ops == &catch_syscall_breakpoint_ops);
8390 }
8391
8392 /* Initialize a new breakpoint of the bp_catchpoint kind. If TEMPFLAG
8393 is non-zero, then make the breakpoint temporary. If COND_STRING is
8394 not NULL, then store it in the breakpoint. OPS, if not NULL, is
8395 the breakpoint_ops structure associated to the catchpoint. */
8396
8397 void
8398 init_catchpoint (struct breakpoint *b,
8399 struct gdbarch *gdbarch, int tempflag,
8400 char *cond_string,
8401 const struct breakpoint_ops *ops)
8402 {
8403 struct symtab_and_line sal;
8404
8405 init_sal (&sal);
8406 sal.pspace = current_program_space;
8407
8408 init_raw_breakpoint (b, gdbarch, sal, bp_catchpoint, ops);
8409
8410 b->cond_string = (cond_string == NULL) ? NULL : xstrdup (cond_string);
8411 b->disposition = tempflag ? disp_del : disp_donttouch;
8412 }
8413
8414 void
8415 install_breakpoint (int internal, struct breakpoint *b, int update_gll)
8416 {
8417 add_to_breakpoint_chain (b);
8418 set_breakpoint_number (internal, b);
8419 if (is_tracepoint (b))
8420 set_tracepoint_count (breakpoint_count);
8421 if (!internal)
8422 mention (b);
8423 observer_notify_breakpoint_created (b);
8424
8425 if (update_gll)
8426 update_global_location_list (1);
8427 }
8428
8429 static void
8430 create_fork_vfork_event_catchpoint (struct gdbarch *gdbarch,
8431 int tempflag, char *cond_string,
8432 const struct breakpoint_ops *ops)
8433 {
8434 struct fork_catchpoint *c = XNEW (struct fork_catchpoint);
8435
8436 init_catchpoint (&c->base, gdbarch, tempflag, cond_string, ops);
8437
8438 c->forked_inferior_pid = null_ptid;
8439
8440 install_breakpoint (0, &c->base, 1);
8441 }
8442
8443 /* Exec catchpoints. */
8444
8445 /* An instance of this type is used to represent an exec catchpoint.
8446 It includes a "struct breakpoint" as a kind of base class; users
8447 downcast to "struct breakpoint *" when needed. A breakpoint is
8448 really of this type iff its ops pointer points to
8449 CATCH_EXEC_BREAKPOINT_OPS. */
8450
8451 struct exec_catchpoint
8452 {
8453 /* The base class. */
8454 struct breakpoint base;
8455
8456 /* Filename of a program whose exec triggered this catchpoint.
8457 This field is only valid immediately after this catchpoint has
8458 triggered. */
8459 char *exec_pathname;
8460 };
8461
8462 /* Implement the "dtor" breakpoint_ops method for exec
8463 catchpoints. */
8464
8465 static void
8466 dtor_catch_exec (struct breakpoint *b)
8467 {
8468 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8469
8470 xfree (c->exec_pathname);
8471
8472 base_breakpoint_ops.dtor (b);
8473 }
8474
8475 static int
8476 insert_catch_exec (struct bp_location *bl)
8477 {
8478 return target_insert_exec_catchpoint (PIDGET (inferior_ptid));
8479 }
8480
8481 static int
8482 remove_catch_exec (struct bp_location *bl)
8483 {
8484 return target_remove_exec_catchpoint (PIDGET (inferior_ptid));
8485 }
8486
8487 static int
8488 breakpoint_hit_catch_exec (const struct bp_location *bl,
8489 struct address_space *aspace, CORE_ADDR bp_addr,
8490 const struct target_waitstatus *ws)
8491 {
8492 struct exec_catchpoint *c = (struct exec_catchpoint *) bl->owner;
8493
8494 if (ws->kind != TARGET_WAITKIND_EXECD)
8495 return 0;
8496
8497 c->exec_pathname = xstrdup (ws->value.execd_pathname);
8498 return 1;
8499 }
8500
8501 static enum print_stop_action
8502 print_it_catch_exec (bpstat bs)
8503 {
8504 struct ui_out *uiout = current_uiout;
8505 struct breakpoint *b = bs->breakpoint_at;
8506 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8507
8508 annotate_catchpoint (b->number);
8509 if (b->disposition == disp_del)
8510 ui_out_text (uiout, "\nTemporary catchpoint ");
8511 else
8512 ui_out_text (uiout, "\nCatchpoint ");
8513 if (ui_out_is_mi_like_p (uiout))
8514 {
8515 ui_out_field_string (uiout, "reason",
8516 async_reason_lookup (EXEC_ASYNC_EXEC));
8517 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
8518 }
8519 ui_out_field_int (uiout, "bkptno", b->number);
8520 ui_out_text (uiout, " (exec'd ");
8521 ui_out_field_string (uiout, "new-exec", c->exec_pathname);
8522 ui_out_text (uiout, "), ");
8523
8524 return PRINT_SRC_AND_LOC;
8525 }
8526
8527 static void
8528 print_one_catch_exec (struct breakpoint *b, struct bp_location **last_loc)
8529 {
8530 struct exec_catchpoint *c = (struct exec_catchpoint *) b;
8531 struct value_print_options opts;
8532 struct ui_out *uiout = current_uiout;
8533
8534 get_user_print_options (&opts);
8535
8536 /* Field 4, the address, is omitted (which makes the columns
8537 not line up too nicely with the headers, but the effect
8538 is relatively readable). */
8539 if (opts.addressprint)
8540 ui_out_field_skip (uiout, "addr");
8541 annotate_field (5);
8542 ui_out_text (uiout, "exec");
8543 if (c->exec_pathname != NULL)
8544 {
8545 ui_out_text (uiout, ", program \"");
8546 ui_out_field_string (uiout, "what", c->exec_pathname);
8547 ui_out_text (uiout, "\" ");
8548 }
8549
8550 if (ui_out_is_mi_like_p (uiout))
8551 ui_out_field_string (uiout, "catch-type", "exec");
8552 }
8553
8554 static void
8555 print_mention_catch_exec (struct breakpoint *b)
8556 {
8557 printf_filtered (_("Catchpoint %d (exec)"), b->number);
8558 }
8559
8560 /* Implement the "print_recreate" breakpoint_ops method for exec
8561 catchpoints. */
8562
8563 static void
8564 print_recreate_catch_exec (struct breakpoint *b, struct ui_file *fp)
8565 {
8566 fprintf_unfiltered (fp, "catch exec");
8567 print_recreate_thread (b, fp);
8568 }
8569
8570 static struct breakpoint_ops catch_exec_breakpoint_ops;
8571
8572 static void
8573 create_syscall_event_catchpoint (int tempflag, VEC(int) *filter,
8574 const struct breakpoint_ops *ops)
8575 {
8576 struct syscall_catchpoint *c;
8577 struct gdbarch *gdbarch = get_current_arch ();
8578
8579 c = XNEW (struct syscall_catchpoint);
8580 init_catchpoint (&c->base, gdbarch, tempflag, NULL, ops);
8581 c->syscalls_to_be_caught = filter;
8582
8583 install_breakpoint (0, &c->base, 1);
8584 }
8585
8586 static int
8587 hw_breakpoint_used_count (void)
8588 {
8589 int i = 0;
8590 struct breakpoint *b;
8591 struct bp_location *bl;
8592
8593 ALL_BREAKPOINTS (b)
8594 {
8595 if (b->type == bp_hardware_breakpoint && breakpoint_enabled (b))
8596 for (bl = b->loc; bl; bl = bl->next)
8597 {
8598 /* Special types of hardware breakpoints may use more than
8599 one register. */
8600 i += b->ops->resources_needed (bl);
8601 }
8602 }
8603
8604 return i;
8605 }
8606
8607 /* Returns the resources B would use if it were a hardware
8608 watchpoint. */
8609
8610 static int
8611 hw_watchpoint_use_count (struct breakpoint *b)
8612 {
8613 int i = 0;
8614 struct bp_location *bl;
8615
8616 if (!breakpoint_enabled (b))
8617 return 0;
8618
8619 for (bl = b->loc; bl; bl = bl->next)
8620 {
8621 /* Special types of hardware watchpoints may use more than
8622 one register. */
8623 i += b->ops->resources_needed (bl);
8624 }
8625
8626 return i;
8627 }
8628
8629 /* Returns the sum the used resources of all hardware watchpoints of
8630 type TYPE in the breakpoints list. Also returns in OTHER_TYPE_USED
8631 the sum of the used resources of all hardware watchpoints of other
8632 types _not_ TYPE. */
8633
8634 static int
8635 hw_watchpoint_used_count_others (struct breakpoint *except,
8636 enum bptype type, int *other_type_used)
8637 {
8638 int i = 0;
8639 struct breakpoint *b;
8640
8641 *other_type_used = 0;
8642 ALL_BREAKPOINTS (b)
8643 {
8644 if (b == except)
8645 continue;
8646 if (!breakpoint_enabled (b))
8647 continue;
8648
8649 if (b->type == type)
8650 i += hw_watchpoint_use_count (b);
8651 else if (is_hardware_watchpoint (b))
8652 *other_type_used = 1;
8653 }
8654
8655 return i;
8656 }
8657
8658 void
8659 disable_watchpoints_before_interactive_call_start (void)
8660 {
8661 struct breakpoint *b;
8662
8663 ALL_BREAKPOINTS (b)
8664 {
8665 if (is_watchpoint (b) && breakpoint_enabled (b))
8666 {
8667 b->enable_state = bp_call_disabled;
8668 update_global_location_list (0);
8669 }
8670 }
8671 }
8672
8673 void
8674 enable_watchpoints_after_interactive_call_stop (void)
8675 {
8676 struct breakpoint *b;
8677
8678 ALL_BREAKPOINTS (b)
8679 {
8680 if (is_watchpoint (b) && b->enable_state == bp_call_disabled)
8681 {
8682 b->enable_state = bp_enabled;
8683 update_global_location_list (1);
8684 }
8685 }
8686 }
8687
8688 void
8689 disable_breakpoints_before_startup (void)
8690 {
8691 current_program_space->executing_startup = 1;
8692 update_global_location_list (0);
8693 }
8694
8695 void
8696 enable_breakpoints_after_startup (void)
8697 {
8698 current_program_space->executing_startup = 0;
8699 breakpoint_re_set ();
8700 }
8701
8702
8703 /* Set a breakpoint that will evaporate an end of command
8704 at address specified by SAL.
8705 Restrict it to frame FRAME if FRAME is nonzero. */
8706
8707 struct breakpoint *
8708 set_momentary_breakpoint (struct gdbarch *gdbarch, struct symtab_and_line sal,
8709 struct frame_id frame_id, enum bptype type)
8710 {
8711 struct breakpoint *b;
8712
8713 /* If FRAME_ID is valid, it should be a real frame, not an inlined or
8714 tail-called one. */
8715 gdb_assert (!frame_id_artificial_p (frame_id));
8716
8717 b = set_raw_breakpoint (gdbarch, sal, type, &momentary_breakpoint_ops);
8718 b->enable_state = bp_enabled;
8719 b->disposition = disp_donttouch;
8720 b->frame_id = frame_id;
8721
8722 /* If we're debugging a multi-threaded program, then we want
8723 momentary breakpoints to be active in only a single thread of
8724 control. */
8725 if (in_thread_list (inferior_ptid))
8726 b->thread = pid_to_thread_id (inferior_ptid);
8727
8728 update_global_location_list_nothrow (1);
8729
8730 return b;
8731 }
8732
8733 /* Make a momentary breakpoint based on the master breakpoint ORIG.
8734 The new breakpoint will have type TYPE, and use OPS as it
8735 breakpoint_ops. */
8736
8737 static struct breakpoint *
8738 momentary_breakpoint_from_master (struct breakpoint *orig,
8739 enum bptype type,
8740 const struct breakpoint_ops *ops)
8741 {
8742 struct breakpoint *copy;
8743
8744 copy = set_raw_breakpoint_without_location (orig->gdbarch, type, ops);
8745 copy->loc = allocate_bp_location (copy);
8746 set_breakpoint_location_function (copy->loc, 1);
8747
8748 copy->loc->gdbarch = orig->loc->gdbarch;
8749 copy->loc->requested_address = orig->loc->requested_address;
8750 copy->loc->address = orig->loc->address;
8751 copy->loc->section = orig->loc->section;
8752 copy->loc->pspace = orig->loc->pspace;
8753 copy->loc->probe = orig->loc->probe;
8754 copy->loc->line_number = orig->loc->line_number;
8755 copy->loc->symtab = orig->loc->symtab;
8756 copy->frame_id = orig->frame_id;
8757 copy->thread = orig->thread;
8758 copy->pspace = orig->pspace;
8759
8760 copy->enable_state = bp_enabled;
8761 copy->disposition = disp_donttouch;
8762 copy->number = internal_breakpoint_number--;
8763
8764 update_global_location_list_nothrow (0);
8765 return copy;
8766 }
8767
8768 /* Make a deep copy of momentary breakpoint ORIG. Returns NULL if
8769 ORIG is NULL. */
8770
8771 struct breakpoint *
8772 clone_momentary_breakpoint (struct breakpoint *orig)
8773 {
8774 /* If there's nothing to clone, then return nothing. */
8775 if (orig == NULL)
8776 return NULL;
8777
8778 return momentary_breakpoint_from_master (orig, orig->type, orig->ops);
8779 }
8780
8781 struct breakpoint *
8782 set_momentary_breakpoint_at_pc (struct gdbarch *gdbarch, CORE_ADDR pc,
8783 enum bptype type)
8784 {
8785 struct symtab_and_line sal;
8786
8787 sal = find_pc_line (pc, 0);
8788 sal.pc = pc;
8789 sal.section = find_pc_overlay (pc);
8790 sal.explicit_pc = 1;
8791
8792 return set_momentary_breakpoint (gdbarch, sal, null_frame_id, type);
8793 }
8794 \f
8795
8796 /* Tell the user we have just set a breakpoint B. */
8797
8798 static void
8799 mention (struct breakpoint *b)
8800 {
8801 b->ops->print_mention (b);
8802 if (ui_out_is_mi_like_p (current_uiout))
8803 return;
8804 printf_filtered ("\n");
8805 }
8806 \f
8807
8808 static struct bp_location *
8809 add_location_to_breakpoint (struct breakpoint *b,
8810 const struct symtab_and_line *sal)
8811 {
8812 struct bp_location *loc, **tmp;
8813 CORE_ADDR adjusted_address;
8814 struct gdbarch *loc_gdbarch = get_sal_arch (*sal);
8815
8816 if (loc_gdbarch == NULL)
8817 loc_gdbarch = b->gdbarch;
8818
8819 /* Adjust the breakpoint's address prior to allocating a location.
8820 Once we call allocate_bp_location(), that mostly uninitialized
8821 location will be placed on the location chain. Adjustment of the
8822 breakpoint may cause target_read_memory() to be called and we do
8823 not want its scan of the location chain to find a breakpoint and
8824 location that's only been partially initialized. */
8825 adjusted_address = adjust_breakpoint_address (loc_gdbarch,
8826 sal->pc, b->type);
8827
8828 /* Sort the locations by their ADDRESS. */
8829 loc = allocate_bp_location (b);
8830 for (tmp = &(b->loc); *tmp != NULL && (*tmp)->address <= adjusted_address;
8831 tmp = &((*tmp)->next))
8832 ;
8833 loc->next = *tmp;
8834 *tmp = loc;
8835
8836 loc->requested_address = sal->pc;
8837 loc->address = adjusted_address;
8838 loc->pspace = sal->pspace;
8839 loc->probe = sal->probe;
8840 gdb_assert (loc->pspace != NULL);
8841 loc->section = sal->section;
8842 loc->gdbarch = loc_gdbarch;
8843 loc->line_number = sal->line;
8844 loc->symtab = sal->symtab;
8845
8846 set_breakpoint_location_function (loc,
8847 sal->explicit_pc || sal->explicit_line);
8848 return loc;
8849 }
8850 \f
8851
8852 /* Return 1 if LOC is pointing to a permanent breakpoint,
8853 return 0 otherwise. */
8854
8855 static int
8856 bp_loc_is_permanent (struct bp_location *loc)
8857 {
8858 int len;
8859 CORE_ADDR addr;
8860 const gdb_byte *bpoint;
8861 gdb_byte *target_mem;
8862 struct cleanup *cleanup;
8863 int retval = 0;
8864
8865 gdb_assert (loc != NULL);
8866
8867 addr = loc->address;
8868 bpoint = gdbarch_breakpoint_from_pc (loc->gdbarch, &addr, &len);
8869
8870 /* Software breakpoints unsupported? */
8871 if (bpoint == NULL)
8872 return 0;
8873
8874 target_mem = alloca (len);
8875
8876 /* Enable the automatic memory restoration from breakpoints while
8877 we read the memory. Otherwise we could say about our temporary
8878 breakpoints they are permanent. */
8879 cleanup = save_current_space_and_thread ();
8880
8881 switch_to_program_space_and_thread (loc->pspace);
8882 make_show_memory_breakpoints_cleanup (0);
8883
8884 if (target_read_memory (loc->address, target_mem, len) == 0
8885 && memcmp (target_mem, bpoint, len) == 0)
8886 retval = 1;
8887
8888 do_cleanups (cleanup);
8889
8890 return retval;
8891 }
8892
8893 /* Build a command list for the dprintf corresponding to the current
8894 settings of the dprintf style options. */
8895
8896 static void
8897 update_dprintf_command_list (struct breakpoint *b)
8898 {
8899 char *dprintf_args = b->extra_string;
8900 char *printf_line = NULL;
8901
8902 if (!dprintf_args)
8903 return;
8904
8905 dprintf_args = skip_spaces (dprintf_args);
8906
8907 /* Allow a comma, as it may have terminated a location, but don't
8908 insist on it. */
8909 if (*dprintf_args == ',')
8910 ++dprintf_args;
8911 dprintf_args = skip_spaces (dprintf_args);
8912
8913 if (*dprintf_args != '"')
8914 error (_("Bad format string, missing '\"'."));
8915
8916 if (strcmp (dprintf_style, dprintf_style_gdb) == 0)
8917 printf_line = xstrprintf ("printf %s", dprintf_args);
8918 else if (strcmp (dprintf_style, dprintf_style_call) == 0)
8919 {
8920 if (!dprintf_function)
8921 error (_("No function supplied for dprintf call"));
8922
8923 if (dprintf_channel && strlen (dprintf_channel) > 0)
8924 printf_line = xstrprintf ("call (void) %s (%s,%s)",
8925 dprintf_function,
8926 dprintf_channel,
8927 dprintf_args);
8928 else
8929 printf_line = xstrprintf ("call (void) %s (%s)",
8930 dprintf_function,
8931 dprintf_args);
8932 }
8933 else if (strcmp (dprintf_style, dprintf_style_agent) == 0)
8934 {
8935 if (target_can_run_breakpoint_commands ())
8936 printf_line = xstrprintf ("agent-printf %s", dprintf_args);
8937 else
8938 {
8939 warning (_("Target cannot run dprintf commands, falling back to GDB printf"));
8940 printf_line = xstrprintf ("printf %s", dprintf_args);
8941 }
8942 }
8943 else
8944 internal_error (__FILE__, __LINE__,
8945 _("Invalid dprintf style."));
8946
8947 gdb_assert (printf_line != NULL);
8948 /* Manufacture a printf sequence. */
8949 {
8950 struct command_line *printf_cmd_line
8951 = xmalloc (sizeof (struct command_line));
8952
8953 printf_cmd_line = xmalloc (sizeof (struct command_line));
8954 printf_cmd_line->control_type = simple_control;
8955 printf_cmd_line->body_count = 0;
8956 printf_cmd_line->body_list = NULL;
8957 printf_cmd_line->next = NULL;
8958 printf_cmd_line->line = printf_line;
8959
8960 breakpoint_set_commands (b, printf_cmd_line);
8961 }
8962 }
8963
8964 /* Update all dprintf commands, making their command lists reflect
8965 current style settings. */
8966
8967 static void
8968 update_dprintf_commands (char *args, int from_tty,
8969 struct cmd_list_element *c)
8970 {
8971 struct breakpoint *b;
8972
8973 ALL_BREAKPOINTS (b)
8974 {
8975 if (b->type == bp_dprintf)
8976 update_dprintf_command_list (b);
8977 }
8978 }
8979
8980 /* Create a breakpoint with SAL as location. Use ADDR_STRING
8981 as textual description of the location, and COND_STRING
8982 as condition expression. */
8983
8984 static void
8985 init_breakpoint_sal (struct breakpoint *b, struct gdbarch *gdbarch,
8986 struct symtabs_and_lines sals, char *addr_string,
8987 char *filter, char *cond_string,
8988 char *extra_string,
8989 enum bptype type, enum bpdisp disposition,
8990 int thread, int task, int ignore_count,
8991 const struct breakpoint_ops *ops, int from_tty,
8992 int enabled, int internal, unsigned flags,
8993 int display_canonical)
8994 {
8995 int i;
8996
8997 if (type == bp_hardware_breakpoint)
8998 {
8999 int target_resources_ok;
9000
9001 i = hw_breakpoint_used_count ();
9002 target_resources_ok =
9003 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
9004 i + 1, 0);
9005 if (target_resources_ok == 0)
9006 error (_("No hardware breakpoint support in the target."));
9007 else if (target_resources_ok < 0)
9008 error (_("Hardware breakpoints used exceeds limit."));
9009 }
9010
9011 gdb_assert (sals.nelts > 0);
9012
9013 for (i = 0; i < sals.nelts; ++i)
9014 {
9015 struct symtab_and_line sal = sals.sals[i];
9016 struct bp_location *loc;
9017
9018 if (from_tty)
9019 {
9020 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
9021 if (!loc_gdbarch)
9022 loc_gdbarch = gdbarch;
9023
9024 describe_other_breakpoints (loc_gdbarch,
9025 sal.pspace, sal.pc, sal.section, thread);
9026 }
9027
9028 if (i == 0)
9029 {
9030 init_raw_breakpoint (b, gdbarch, sal, type, ops);
9031 b->thread = thread;
9032 b->task = task;
9033
9034 b->cond_string = cond_string;
9035 b->extra_string = extra_string;
9036 b->ignore_count = ignore_count;
9037 b->enable_state = enabled ? bp_enabled : bp_disabled;
9038 b->disposition = disposition;
9039
9040 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9041 b->loc->inserted = 1;
9042
9043 if (type == bp_static_tracepoint)
9044 {
9045 struct tracepoint *t = (struct tracepoint *) b;
9046 struct static_tracepoint_marker marker;
9047
9048 if (strace_marker_p (b))
9049 {
9050 /* We already know the marker exists, otherwise, we
9051 wouldn't see a sal for it. */
9052 char *p = &addr_string[3];
9053 char *endp;
9054 char *marker_str;
9055
9056 p = skip_spaces (p);
9057
9058 endp = skip_to_space (p);
9059
9060 marker_str = savestring (p, endp - p);
9061 t->static_trace_marker_id = marker_str;
9062
9063 printf_filtered (_("Probed static tracepoint "
9064 "marker \"%s\"\n"),
9065 t->static_trace_marker_id);
9066 }
9067 else if (target_static_tracepoint_marker_at (sal.pc, &marker))
9068 {
9069 t->static_trace_marker_id = xstrdup (marker.str_id);
9070 release_static_tracepoint_marker (&marker);
9071
9072 printf_filtered (_("Probed static tracepoint "
9073 "marker \"%s\"\n"),
9074 t->static_trace_marker_id);
9075 }
9076 else
9077 warning (_("Couldn't determine the static "
9078 "tracepoint marker to probe"));
9079 }
9080
9081 loc = b->loc;
9082 }
9083 else
9084 {
9085 loc = add_location_to_breakpoint (b, &sal);
9086 if ((flags & CREATE_BREAKPOINT_FLAGS_INSERTED) != 0)
9087 loc->inserted = 1;
9088 }
9089
9090 if (bp_loc_is_permanent (loc))
9091 make_breakpoint_permanent (b);
9092
9093 if (b->cond_string)
9094 {
9095 const char *arg = b->cond_string;
9096
9097 loc->cond = parse_exp_1 (&arg, loc->address,
9098 block_for_pc (loc->address), 0);
9099 if (*arg)
9100 error (_("Garbage '%s' follows condition"), arg);
9101 }
9102
9103 /* Dynamic printf requires and uses additional arguments on the
9104 command line, otherwise it's an error. */
9105 if (type == bp_dprintf)
9106 {
9107 if (b->extra_string)
9108 update_dprintf_command_list (b);
9109 else
9110 error (_("Format string required"));
9111 }
9112 else if (b->extra_string)
9113 error (_("Garbage '%s' at end of command"), b->extra_string);
9114 }
9115
9116 b->display_canonical = display_canonical;
9117 if (addr_string)
9118 b->addr_string = addr_string;
9119 else
9120 /* addr_string has to be used or breakpoint_re_set will delete
9121 me. */
9122 b->addr_string
9123 = xstrprintf ("*%s", paddress (b->loc->gdbarch, b->loc->address));
9124 b->filter = filter;
9125 }
9126
9127 static void
9128 create_breakpoint_sal (struct gdbarch *gdbarch,
9129 struct symtabs_and_lines sals, char *addr_string,
9130 char *filter, char *cond_string,
9131 char *extra_string,
9132 enum bptype type, enum bpdisp disposition,
9133 int thread, int task, int ignore_count,
9134 const struct breakpoint_ops *ops, int from_tty,
9135 int enabled, int internal, unsigned flags,
9136 int display_canonical)
9137 {
9138 struct breakpoint *b;
9139 struct cleanup *old_chain;
9140
9141 if (is_tracepoint_type (type))
9142 {
9143 struct tracepoint *t;
9144
9145 t = XCNEW (struct tracepoint);
9146 b = &t->base;
9147 }
9148 else
9149 b = XNEW (struct breakpoint);
9150
9151 old_chain = make_cleanup (xfree, b);
9152
9153 init_breakpoint_sal (b, gdbarch,
9154 sals, addr_string,
9155 filter, cond_string, extra_string,
9156 type, disposition,
9157 thread, task, ignore_count,
9158 ops, from_tty,
9159 enabled, internal, flags,
9160 display_canonical);
9161 discard_cleanups (old_chain);
9162
9163 install_breakpoint (internal, b, 0);
9164 }
9165
9166 /* Add SALS.nelts breakpoints to the breakpoint table. For each
9167 SALS.sal[i] breakpoint, include the corresponding ADDR_STRING[i]
9168 value. COND_STRING, if not NULL, specified the condition to be
9169 used for all breakpoints. Essentially the only case where
9170 SALS.nelts is not 1 is when we set a breakpoint on an overloaded
9171 function. In that case, it's still not possible to specify
9172 separate conditions for different overloaded functions, so
9173 we take just a single condition string.
9174
9175 NOTE: If the function succeeds, the caller is expected to cleanup
9176 the arrays ADDR_STRING, COND_STRING, and SALS (but not the
9177 array contents). If the function fails (error() is called), the
9178 caller is expected to cleanups both the ADDR_STRING, COND_STRING,
9179 COND and SALS arrays and each of those arrays contents. */
9180
9181 static void
9182 create_breakpoints_sal (struct gdbarch *gdbarch,
9183 struct linespec_result *canonical,
9184 char *cond_string, char *extra_string,
9185 enum bptype type, enum bpdisp disposition,
9186 int thread, int task, int ignore_count,
9187 const struct breakpoint_ops *ops, int from_tty,
9188 int enabled, int internal, unsigned flags)
9189 {
9190 int i;
9191 struct linespec_sals *lsal;
9192
9193 if (canonical->pre_expanded)
9194 gdb_assert (VEC_length (linespec_sals, canonical->sals) == 1);
9195
9196 for (i = 0; VEC_iterate (linespec_sals, canonical->sals, i, lsal); ++i)
9197 {
9198 /* Note that 'addr_string' can be NULL in the case of a plain
9199 'break', without arguments. */
9200 char *addr_string = (canonical->addr_string
9201 ? xstrdup (canonical->addr_string)
9202 : NULL);
9203 char *filter_string = lsal->canonical ? xstrdup (lsal->canonical) : NULL;
9204 struct cleanup *inner = make_cleanup (xfree, addr_string);
9205
9206 make_cleanup (xfree, filter_string);
9207 create_breakpoint_sal (gdbarch, lsal->sals,
9208 addr_string,
9209 filter_string,
9210 cond_string, extra_string,
9211 type, disposition,
9212 thread, task, ignore_count, ops,
9213 from_tty, enabled, internal, flags,
9214 canonical->special_display);
9215 discard_cleanups (inner);
9216 }
9217 }
9218
9219 /* Parse ADDRESS which is assumed to be a SAL specification possibly
9220 followed by conditionals. On return, SALS contains an array of SAL
9221 addresses found. ADDR_STRING contains a vector of (canonical)
9222 address strings. ADDRESS points to the end of the SAL.
9223
9224 The array and the line spec strings are allocated on the heap, it is
9225 the caller's responsibility to free them. */
9226
9227 static void
9228 parse_breakpoint_sals (char **address,
9229 struct linespec_result *canonical)
9230 {
9231 /* If no arg given, or if first arg is 'if ', use the default
9232 breakpoint. */
9233 if ((*address) == NULL
9234 || (strncmp ((*address), "if", 2) == 0 && isspace ((*address)[2])))
9235 {
9236 /* The last displayed codepoint, if it's valid, is our default breakpoint
9237 address. */
9238 if (last_displayed_sal_is_valid ())
9239 {
9240 struct linespec_sals lsal;
9241 struct symtab_and_line sal;
9242 CORE_ADDR pc;
9243
9244 init_sal (&sal); /* Initialize to zeroes. */
9245 lsal.sals.sals = (struct symtab_and_line *)
9246 xmalloc (sizeof (struct symtab_and_line));
9247
9248 /* Set sal's pspace, pc, symtab, and line to the values
9249 corresponding to the last call to print_frame_info.
9250 Be sure to reinitialize LINE with NOTCURRENT == 0
9251 as the breakpoint line number is inappropriate otherwise.
9252 find_pc_line would adjust PC, re-set it back. */
9253 get_last_displayed_sal (&sal);
9254 pc = sal.pc;
9255 sal = find_pc_line (pc, 0);
9256
9257 /* "break" without arguments is equivalent to "break *PC"
9258 where PC is the last displayed codepoint's address. So
9259 make sure to set sal.explicit_pc to prevent GDB from
9260 trying to expand the list of sals to include all other
9261 instances with the same symtab and line. */
9262 sal.pc = pc;
9263 sal.explicit_pc = 1;
9264
9265 lsal.sals.sals[0] = sal;
9266 lsal.sals.nelts = 1;
9267 lsal.canonical = NULL;
9268
9269 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
9270 }
9271 else
9272 error (_("No default breakpoint address now."));
9273 }
9274 else
9275 {
9276 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
9277
9278 /* Force almost all breakpoints to be in terms of the
9279 current_source_symtab (which is decode_line_1's default).
9280 This should produce the results we want almost all of the
9281 time while leaving default_breakpoint_* alone.
9282
9283 ObjC: However, don't match an Objective-C method name which
9284 may have a '+' or '-' succeeded by a '['. */
9285 if (last_displayed_sal_is_valid ()
9286 && (!cursal.symtab
9287 || ((strchr ("+-", (*address)[0]) != NULL)
9288 && ((*address)[1] != '['))))
9289 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9290 get_last_displayed_symtab (),
9291 get_last_displayed_line (),
9292 canonical, NULL, NULL);
9293 else
9294 decode_line_full (address, DECODE_LINE_FUNFIRSTLINE,
9295 cursal.symtab, cursal.line, canonical, NULL, NULL);
9296 }
9297 }
9298
9299
9300 /* Convert each SAL into a real PC. Verify that the PC can be
9301 inserted as a breakpoint. If it can't throw an error. */
9302
9303 static void
9304 breakpoint_sals_to_pc (struct symtabs_and_lines *sals)
9305 {
9306 int i;
9307
9308 for (i = 0; i < sals->nelts; i++)
9309 resolve_sal_pc (&sals->sals[i]);
9310 }
9311
9312 /* Fast tracepoints may have restrictions on valid locations. For
9313 instance, a fast tracepoint using a jump instead of a trap will
9314 likely have to overwrite more bytes than a trap would, and so can
9315 only be placed where the instruction is longer than the jump, or a
9316 multi-instruction sequence does not have a jump into the middle of
9317 it, etc. */
9318
9319 static void
9320 check_fast_tracepoint_sals (struct gdbarch *gdbarch,
9321 struct symtabs_and_lines *sals)
9322 {
9323 int i, rslt;
9324 struct symtab_and_line *sal;
9325 char *msg;
9326 struct cleanup *old_chain;
9327
9328 for (i = 0; i < sals->nelts; i++)
9329 {
9330 struct gdbarch *sarch;
9331
9332 sal = &sals->sals[i];
9333
9334 sarch = get_sal_arch (*sal);
9335 /* We fall back to GDBARCH if there is no architecture
9336 associated with SAL. */
9337 if (sarch == NULL)
9338 sarch = gdbarch;
9339 rslt = gdbarch_fast_tracepoint_valid_at (sarch, sal->pc,
9340 NULL, &msg);
9341 old_chain = make_cleanup (xfree, msg);
9342
9343 if (!rslt)
9344 error (_("May not have a fast tracepoint at 0x%s%s"),
9345 paddress (sarch, sal->pc), (msg ? msg : ""));
9346
9347 do_cleanups (old_chain);
9348 }
9349 }
9350
9351 /* Issue an invalid thread ID error. */
9352
9353 static void ATTRIBUTE_NORETURN
9354 invalid_thread_id_error (int id)
9355 {
9356 error (_("Unknown thread %d."), id);
9357 }
9358
9359 /* Given TOK, a string specification of condition and thread, as
9360 accepted by the 'break' command, extract the condition
9361 string and thread number and set *COND_STRING and *THREAD.
9362 PC identifies the context at which the condition should be parsed.
9363 If no condition is found, *COND_STRING is set to NULL.
9364 If no thread is found, *THREAD is set to -1. */
9365
9366 static void
9367 find_condition_and_thread (const char *tok, CORE_ADDR pc,
9368 char **cond_string, int *thread, int *task,
9369 char **rest)
9370 {
9371 *cond_string = NULL;
9372 *thread = -1;
9373 *task = 0;
9374 *rest = NULL;
9375
9376 while (tok && *tok)
9377 {
9378 const char *end_tok;
9379 int toklen;
9380 const char *cond_start = NULL;
9381 const char *cond_end = NULL;
9382
9383 tok = skip_spaces_const (tok);
9384
9385 if ((*tok == '"' || *tok == ',') && rest)
9386 {
9387 *rest = savestring (tok, strlen (tok));
9388 return;
9389 }
9390
9391 end_tok = skip_to_space_const (tok);
9392
9393 toklen = end_tok - tok;
9394
9395 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
9396 {
9397 struct expression *expr;
9398
9399 tok = cond_start = end_tok + 1;
9400 expr = parse_exp_1 (&tok, pc, block_for_pc (pc), 0);
9401 xfree (expr);
9402 cond_end = tok;
9403 *cond_string = savestring (cond_start, cond_end - cond_start);
9404 }
9405 else if (toklen >= 1 && strncmp (tok, "thread", toklen) == 0)
9406 {
9407 char *tmptok;
9408
9409 tok = end_tok + 1;
9410 *thread = strtol (tok, &tmptok, 0);
9411 if (tok == tmptok)
9412 error (_("Junk after thread keyword."));
9413 if (!valid_thread_id (*thread))
9414 invalid_thread_id_error (*thread);
9415 tok = tmptok;
9416 }
9417 else if (toklen >= 1 && strncmp (tok, "task", toklen) == 0)
9418 {
9419 char *tmptok;
9420
9421 tok = end_tok + 1;
9422 *task = strtol (tok, &tmptok, 0);
9423 if (tok == tmptok)
9424 error (_("Junk after task keyword."));
9425 if (!valid_task_id (*task))
9426 error (_("Unknown task %d."), *task);
9427 tok = tmptok;
9428 }
9429 else if (rest)
9430 {
9431 *rest = savestring (tok, strlen (tok));
9432 return;
9433 }
9434 else
9435 error (_("Junk at end of arguments."));
9436 }
9437 }
9438
9439 /* Decode a static tracepoint marker spec. */
9440
9441 static struct symtabs_and_lines
9442 decode_static_tracepoint_spec (char **arg_p)
9443 {
9444 VEC(static_tracepoint_marker_p) *markers = NULL;
9445 struct symtabs_and_lines sals;
9446 struct cleanup *old_chain;
9447 char *p = &(*arg_p)[3];
9448 char *endp;
9449 char *marker_str;
9450 int i;
9451
9452 p = skip_spaces (p);
9453
9454 endp = skip_to_space (p);
9455
9456 marker_str = savestring (p, endp - p);
9457 old_chain = make_cleanup (xfree, marker_str);
9458
9459 markers = target_static_tracepoint_markers_by_strid (marker_str);
9460 if (VEC_empty(static_tracepoint_marker_p, markers))
9461 error (_("No known static tracepoint marker named %s"), marker_str);
9462
9463 sals.nelts = VEC_length(static_tracepoint_marker_p, markers);
9464 sals.sals = xmalloc (sizeof *sals.sals * sals.nelts);
9465
9466 for (i = 0; i < sals.nelts; i++)
9467 {
9468 struct static_tracepoint_marker *marker;
9469
9470 marker = VEC_index (static_tracepoint_marker_p, markers, i);
9471
9472 init_sal (&sals.sals[i]);
9473
9474 sals.sals[i] = find_pc_line (marker->address, 0);
9475 sals.sals[i].pc = marker->address;
9476
9477 release_static_tracepoint_marker (marker);
9478 }
9479
9480 do_cleanups (old_chain);
9481
9482 *arg_p = endp;
9483 return sals;
9484 }
9485
9486 /* Set a breakpoint. This function is shared between CLI and MI
9487 functions for setting a breakpoint. This function has two major
9488 modes of operations, selected by the PARSE_ARG parameter. If
9489 non-zero, the function will parse ARG, extracting location,
9490 condition, thread and extra string. Otherwise, ARG is just the
9491 breakpoint's location, with condition, thread, and extra string
9492 specified by the COND_STRING, THREAD and EXTRA_STRING parameters.
9493 If INTERNAL is non-zero, the breakpoint number will be allocated
9494 from the internal breakpoint count. Returns true if any breakpoint
9495 was created; false otherwise. */
9496
9497 int
9498 create_breakpoint (struct gdbarch *gdbarch,
9499 char *arg, char *cond_string,
9500 int thread, char *extra_string,
9501 int parse_arg,
9502 int tempflag, enum bptype type_wanted,
9503 int ignore_count,
9504 enum auto_boolean pending_break_support,
9505 const struct breakpoint_ops *ops,
9506 int from_tty, int enabled, int internal,
9507 unsigned flags)
9508 {
9509 volatile struct gdb_exception e;
9510 char *copy_arg = NULL;
9511 char *addr_start = arg;
9512 struct linespec_result canonical;
9513 struct cleanup *old_chain;
9514 struct cleanup *bkpt_chain = NULL;
9515 int pending = 0;
9516 int task = 0;
9517 int prev_bkpt_count = breakpoint_count;
9518
9519 gdb_assert (ops != NULL);
9520
9521 init_linespec_result (&canonical);
9522
9523 TRY_CATCH (e, RETURN_MASK_ALL)
9524 {
9525 ops->create_sals_from_address (&arg, &canonical, type_wanted,
9526 addr_start, &copy_arg);
9527 }
9528
9529 /* If caller is interested in rc value from parse, set value. */
9530 switch (e.reason)
9531 {
9532 case GDB_NO_ERROR:
9533 if (VEC_empty (linespec_sals, canonical.sals))
9534 return 0;
9535 break;
9536 case RETURN_ERROR:
9537 switch (e.error)
9538 {
9539 case NOT_FOUND_ERROR:
9540
9541 /* If pending breakpoint support is turned off, throw
9542 error. */
9543
9544 if (pending_break_support == AUTO_BOOLEAN_FALSE)
9545 throw_exception (e);
9546
9547 exception_print (gdb_stderr, e);
9548
9549 /* If pending breakpoint support is auto query and the user
9550 selects no, then simply return the error code. */
9551 if (pending_break_support == AUTO_BOOLEAN_AUTO
9552 && !nquery (_("Make %s pending on future shared library load? "),
9553 bptype_string (type_wanted)))
9554 return 0;
9555
9556 /* At this point, either the user was queried about setting
9557 a pending breakpoint and selected yes, or pending
9558 breakpoint behavior is on and thus a pending breakpoint
9559 is defaulted on behalf of the user. */
9560 {
9561 struct linespec_sals lsal;
9562
9563 copy_arg = xstrdup (addr_start);
9564 lsal.canonical = xstrdup (copy_arg);
9565 lsal.sals.nelts = 1;
9566 lsal.sals.sals = XNEW (struct symtab_and_line);
9567 init_sal (&lsal.sals.sals[0]);
9568 pending = 1;
9569 VEC_safe_push (linespec_sals, canonical.sals, &lsal);
9570 }
9571 break;
9572 default:
9573 throw_exception (e);
9574 }
9575 break;
9576 default:
9577 throw_exception (e);
9578 }
9579
9580 /* Create a chain of things that always need to be cleaned up. */
9581 old_chain = make_cleanup_destroy_linespec_result (&canonical);
9582
9583 /* ----------------------------- SNIP -----------------------------
9584 Anything added to the cleanup chain beyond this point is assumed
9585 to be part of a breakpoint. If the breakpoint create succeeds
9586 then the memory is not reclaimed. */
9587 bkpt_chain = make_cleanup (null_cleanup, 0);
9588
9589 /* Resolve all line numbers to PC's and verify that the addresses
9590 are ok for the target. */
9591 if (!pending)
9592 {
9593 int ix;
9594 struct linespec_sals *iter;
9595
9596 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9597 breakpoint_sals_to_pc (&iter->sals);
9598 }
9599
9600 /* Fast tracepoints may have additional restrictions on location. */
9601 if (!pending && type_wanted == bp_fast_tracepoint)
9602 {
9603 int ix;
9604 struct linespec_sals *iter;
9605
9606 for (ix = 0; VEC_iterate (linespec_sals, canonical.sals, ix, iter); ++ix)
9607 check_fast_tracepoint_sals (gdbarch, &iter->sals);
9608 }
9609
9610 /* Verify that condition can be parsed, before setting any
9611 breakpoints. Allocate a separate condition expression for each
9612 breakpoint. */
9613 if (!pending)
9614 {
9615 struct linespec_sals *lsal;
9616
9617 lsal = VEC_index (linespec_sals, canonical.sals, 0);
9618
9619 if (parse_arg)
9620 {
9621 char *rest;
9622 /* Here we only parse 'arg' to separate condition
9623 from thread number, so parsing in context of first
9624 sal is OK. When setting the breakpoint we'll
9625 re-parse it in context of each sal. */
9626
9627 find_condition_and_thread (arg, lsal->sals.sals[0].pc, &cond_string,
9628 &thread, &task, &rest);
9629 if (cond_string)
9630 make_cleanup (xfree, cond_string);
9631 if (rest)
9632 make_cleanup (xfree, rest);
9633 if (rest)
9634 extra_string = rest;
9635 }
9636 else
9637 {
9638 if (*arg != '\0')
9639 error (_("Garbage '%s' at end of location"), arg);
9640
9641 /* Create a private copy of condition string. */
9642 if (cond_string)
9643 {
9644 cond_string = xstrdup (cond_string);
9645 make_cleanup (xfree, cond_string);
9646 }
9647 /* Create a private copy of any extra string. */
9648 if (extra_string)
9649 {
9650 extra_string = xstrdup (extra_string);
9651 make_cleanup (xfree, extra_string);
9652 }
9653 }
9654
9655 ops->create_breakpoints_sal (gdbarch, &canonical, lsal,
9656 cond_string, extra_string, type_wanted,
9657 tempflag ? disp_del : disp_donttouch,
9658 thread, task, ignore_count, ops,
9659 from_tty, enabled, internal, flags);
9660 }
9661 else
9662 {
9663 struct breakpoint *b;
9664
9665 make_cleanup (xfree, copy_arg);
9666
9667 if (is_tracepoint_type (type_wanted))
9668 {
9669 struct tracepoint *t;
9670
9671 t = XCNEW (struct tracepoint);
9672 b = &t->base;
9673 }
9674 else
9675 b = XNEW (struct breakpoint);
9676
9677 init_raw_breakpoint_without_location (b, gdbarch, type_wanted, ops);
9678
9679 b->addr_string = copy_arg;
9680 if (parse_arg)
9681 b->cond_string = NULL;
9682 else
9683 {
9684 /* Create a private copy of condition string. */
9685 if (cond_string)
9686 {
9687 cond_string = xstrdup (cond_string);
9688 make_cleanup (xfree, cond_string);
9689 }
9690 b->cond_string = cond_string;
9691 }
9692 b->extra_string = NULL;
9693 b->ignore_count = ignore_count;
9694 b->disposition = tempflag ? disp_del : disp_donttouch;
9695 b->condition_not_parsed = 1;
9696 b->enable_state = enabled ? bp_enabled : bp_disabled;
9697 if ((type_wanted != bp_breakpoint
9698 && type_wanted != bp_hardware_breakpoint) || thread != -1)
9699 b->pspace = current_program_space;
9700
9701 install_breakpoint (internal, b, 0);
9702 }
9703
9704 if (VEC_length (linespec_sals, canonical.sals) > 1)
9705 {
9706 warning (_("Multiple breakpoints were set.\nUse the "
9707 "\"delete\" command to delete unwanted breakpoints."));
9708 prev_breakpoint_count = prev_bkpt_count;
9709 }
9710
9711 /* That's it. Discard the cleanups for data inserted into the
9712 breakpoint. */
9713 discard_cleanups (bkpt_chain);
9714 /* But cleanup everything else. */
9715 do_cleanups (old_chain);
9716
9717 /* error call may happen here - have BKPT_CHAIN already discarded. */
9718 update_global_location_list (1);
9719
9720 return 1;
9721 }
9722
9723 /* Set a breakpoint.
9724 ARG is a string describing breakpoint address,
9725 condition, and thread.
9726 FLAG specifies if a breakpoint is hardware on,
9727 and if breakpoint is temporary, using BP_HARDWARE_FLAG
9728 and BP_TEMPFLAG. */
9729
9730 static void
9731 break_command_1 (char *arg, int flag, int from_tty)
9732 {
9733 int tempflag = flag & BP_TEMPFLAG;
9734 enum bptype type_wanted = (flag & BP_HARDWAREFLAG
9735 ? bp_hardware_breakpoint
9736 : bp_breakpoint);
9737 struct breakpoint_ops *ops;
9738 const char *arg_cp = arg;
9739
9740 /* Matching breakpoints on probes. */
9741 if (arg && probe_linespec_to_ops (&arg_cp) != NULL)
9742 ops = &bkpt_probe_breakpoint_ops;
9743 else
9744 ops = &bkpt_breakpoint_ops;
9745
9746 create_breakpoint (get_current_arch (),
9747 arg,
9748 NULL, 0, NULL, 1 /* parse arg */,
9749 tempflag, type_wanted,
9750 0 /* Ignore count */,
9751 pending_break_support,
9752 ops,
9753 from_tty,
9754 1 /* enabled */,
9755 0 /* internal */,
9756 0);
9757 }
9758
9759 /* Helper function for break_command_1 and disassemble_command. */
9760
9761 void
9762 resolve_sal_pc (struct symtab_and_line *sal)
9763 {
9764 CORE_ADDR pc;
9765
9766 if (sal->pc == 0 && sal->symtab != NULL)
9767 {
9768 if (!find_line_pc (sal->symtab, sal->line, &pc))
9769 error (_("No line %d in file \"%s\"."),
9770 sal->line, symtab_to_filename_for_display (sal->symtab));
9771 sal->pc = pc;
9772
9773 /* If this SAL corresponds to a breakpoint inserted using a line
9774 number, then skip the function prologue if necessary. */
9775 if (sal->explicit_line)
9776 skip_prologue_sal (sal);
9777 }
9778
9779 if (sal->section == 0 && sal->symtab != NULL)
9780 {
9781 struct blockvector *bv;
9782 struct block *b;
9783 struct symbol *sym;
9784
9785 bv = blockvector_for_pc_sect (sal->pc, 0, &b, sal->symtab);
9786 if (bv != NULL)
9787 {
9788 sym = block_linkage_function (b);
9789 if (sym != NULL)
9790 {
9791 fixup_symbol_section (sym, sal->symtab->objfile);
9792 sal->section = SYMBOL_OBJ_SECTION (sal->symtab->objfile, sym);
9793 }
9794 else
9795 {
9796 /* It really is worthwhile to have the section, so we'll
9797 just have to look harder. This case can be executed
9798 if we have line numbers but no functions (as can
9799 happen in assembly source). */
9800
9801 struct bound_minimal_symbol msym;
9802 struct cleanup *old_chain = save_current_space_and_thread ();
9803
9804 switch_to_program_space_and_thread (sal->pspace);
9805
9806 msym = lookup_minimal_symbol_by_pc (sal->pc);
9807 if (msym.minsym)
9808 sal->section = SYMBOL_OBJ_SECTION (msym.objfile, msym.minsym);
9809
9810 do_cleanups (old_chain);
9811 }
9812 }
9813 }
9814 }
9815
9816 void
9817 break_command (char *arg, int from_tty)
9818 {
9819 break_command_1 (arg, 0, from_tty);
9820 }
9821
9822 void
9823 tbreak_command (char *arg, int from_tty)
9824 {
9825 break_command_1 (arg, BP_TEMPFLAG, from_tty);
9826 }
9827
9828 static void
9829 hbreak_command (char *arg, int from_tty)
9830 {
9831 break_command_1 (arg, BP_HARDWAREFLAG, from_tty);
9832 }
9833
9834 static void
9835 thbreak_command (char *arg, int from_tty)
9836 {
9837 break_command_1 (arg, (BP_TEMPFLAG | BP_HARDWAREFLAG), from_tty);
9838 }
9839
9840 static void
9841 stop_command (char *arg, int from_tty)
9842 {
9843 printf_filtered (_("Specify the type of breakpoint to set.\n\
9844 Usage: stop in <function | address>\n\
9845 stop at <line>\n"));
9846 }
9847
9848 static void
9849 stopin_command (char *arg, int from_tty)
9850 {
9851 int badInput = 0;
9852
9853 if (arg == (char *) NULL)
9854 badInput = 1;
9855 else if (*arg != '*')
9856 {
9857 char *argptr = arg;
9858 int hasColon = 0;
9859
9860 /* Look for a ':'. If this is a line number specification, then
9861 say it is bad, otherwise, it should be an address or
9862 function/method name. */
9863 while (*argptr && !hasColon)
9864 {
9865 hasColon = (*argptr == ':');
9866 argptr++;
9867 }
9868
9869 if (hasColon)
9870 badInput = (*argptr != ':'); /* Not a class::method */
9871 else
9872 badInput = isdigit (*arg); /* a simple line number */
9873 }
9874
9875 if (badInput)
9876 printf_filtered (_("Usage: stop in <function | address>\n"));
9877 else
9878 break_command_1 (arg, 0, from_tty);
9879 }
9880
9881 static void
9882 stopat_command (char *arg, int from_tty)
9883 {
9884 int badInput = 0;
9885
9886 if (arg == (char *) NULL || *arg == '*') /* no line number */
9887 badInput = 1;
9888 else
9889 {
9890 char *argptr = arg;
9891 int hasColon = 0;
9892
9893 /* Look for a ':'. If there is a '::' then get out, otherwise
9894 it is probably a line number. */
9895 while (*argptr && !hasColon)
9896 {
9897 hasColon = (*argptr == ':');
9898 argptr++;
9899 }
9900
9901 if (hasColon)
9902 badInput = (*argptr == ':'); /* we have class::method */
9903 else
9904 badInput = !isdigit (*arg); /* not a line number */
9905 }
9906
9907 if (badInput)
9908 printf_filtered (_("Usage: stop at <line>\n"));
9909 else
9910 break_command_1 (arg, 0, from_tty);
9911 }
9912
9913 /* The dynamic printf command is mostly like a regular breakpoint, but
9914 with a prewired command list consisting of a single output command,
9915 built from extra arguments supplied on the dprintf command
9916 line. */
9917
9918 static void
9919 dprintf_command (char *arg, int from_tty)
9920 {
9921 create_breakpoint (get_current_arch (),
9922 arg,
9923 NULL, 0, NULL, 1 /* parse arg */,
9924 0, bp_dprintf,
9925 0 /* Ignore count */,
9926 pending_break_support,
9927 &dprintf_breakpoint_ops,
9928 from_tty,
9929 1 /* enabled */,
9930 0 /* internal */,
9931 0);
9932 }
9933
9934 static void
9935 agent_printf_command (char *arg, int from_tty)
9936 {
9937 error (_("May only run agent-printf on the target"));
9938 }
9939
9940 /* Implement the "breakpoint_hit" breakpoint_ops method for
9941 ranged breakpoints. */
9942
9943 static int
9944 breakpoint_hit_ranged_breakpoint (const struct bp_location *bl,
9945 struct address_space *aspace,
9946 CORE_ADDR bp_addr,
9947 const struct target_waitstatus *ws)
9948 {
9949 if (ws->kind != TARGET_WAITKIND_STOPPED
9950 || ws->value.sig != GDB_SIGNAL_TRAP)
9951 return 0;
9952
9953 return breakpoint_address_match_range (bl->pspace->aspace, bl->address,
9954 bl->length, aspace, bp_addr);
9955 }
9956
9957 /* Implement the "resources_needed" breakpoint_ops method for
9958 ranged breakpoints. */
9959
9960 static int
9961 resources_needed_ranged_breakpoint (const struct bp_location *bl)
9962 {
9963 return target_ranged_break_num_registers ();
9964 }
9965
9966 /* Implement the "print_it" breakpoint_ops method for
9967 ranged breakpoints. */
9968
9969 static enum print_stop_action
9970 print_it_ranged_breakpoint (bpstat bs)
9971 {
9972 struct breakpoint *b = bs->breakpoint_at;
9973 struct bp_location *bl = b->loc;
9974 struct ui_out *uiout = current_uiout;
9975
9976 gdb_assert (b->type == bp_hardware_breakpoint);
9977
9978 /* Ranged breakpoints have only one location. */
9979 gdb_assert (bl && bl->next == NULL);
9980
9981 annotate_breakpoint (b->number);
9982 if (b->disposition == disp_del)
9983 ui_out_text (uiout, "\nTemporary ranged breakpoint ");
9984 else
9985 ui_out_text (uiout, "\nRanged breakpoint ");
9986 if (ui_out_is_mi_like_p (uiout))
9987 {
9988 ui_out_field_string (uiout, "reason",
9989 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
9990 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
9991 }
9992 ui_out_field_int (uiout, "bkptno", b->number);
9993 ui_out_text (uiout, ", ");
9994
9995 return PRINT_SRC_AND_LOC;
9996 }
9997
9998 /* Implement the "print_one" breakpoint_ops method for
9999 ranged breakpoints. */
10000
10001 static void
10002 print_one_ranged_breakpoint (struct breakpoint *b,
10003 struct bp_location **last_loc)
10004 {
10005 struct bp_location *bl = b->loc;
10006 struct value_print_options opts;
10007 struct ui_out *uiout = current_uiout;
10008
10009 /* Ranged breakpoints have only one location. */
10010 gdb_assert (bl && bl->next == NULL);
10011
10012 get_user_print_options (&opts);
10013
10014 if (opts.addressprint)
10015 /* We don't print the address range here, it will be printed later
10016 by print_one_detail_ranged_breakpoint. */
10017 ui_out_field_skip (uiout, "addr");
10018 annotate_field (5);
10019 print_breakpoint_location (b, bl);
10020 *last_loc = bl;
10021 }
10022
10023 /* Implement the "print_one_detail" breakpoint_ops method for
10024 ranged breakpoints. */
10025
10026 static void
10027 print_one_detail_ranged_breakpoint (const struct breakpoint *b,
10028 struct ui_out *uiout)
10029 {
10030 CORE_ADDR address_start, address_end;
10031 struct bp_location *bl = b->loc;
10032 struct ui_file *stb = mem_fileopen ();
10033 struct cleanup *cleanup = make_cleanup_ui_file_delete (stb);
10034
10035 gdb_assert (bl);
10036
10037 address_start = bl->address;
10038 address_end = address_start + bl->length - 1;
10039
10040 ui_out_text (uiout, "\taddress range: ");
10041 fprintf_unfiltered (stb, "[%s, %s]",
10042 print_core_address (bl->gdbarch, address_start),
10043 print_core_address (bl->gdbarch, address_end));
10044 ui_out_field_stream (uiout, "addr", stb);
10045 ui_out_text (uiout, "\n");
10046
10047 do_cleanups (cleanup);
10048 }
10049
10050 /* Implement the "print_mention" breakpoint_ops method for
10051 ranged breakpoints. */
10052
10053 static void
10054 print_mention_ranged_breakpoint (struct breakpoint *b)
10055 {
10056 struct bp_location *bl = b->loc;
10057 struct ui_out *uiout = current_uiout;
10058
10059 gdb_assert (bl);
10060 gdb_assert (b->type == bp_hardware_breakpoint);
10061
10062 if (ui_out_is_mi_like_p (uiout))
10063 return;
10064
10065 printf_filtered (_("Hardware assisted ranged breakpoint %d from %s to %s."),
10066 b->number, paddress (bl->gdbarch, bl->address),
10067 paddress (bl->gdbarch, bl->address + bl->length - 1));
10068 }
10069
10070 /* Implement the "print_recreate" breakpoint_ops method for
10071 ranged breakpoints. */
10072
10073 static void
10074 print_recreate_ranged_breakpoint (struct breakpoint *b, struct ui_file *fp)
10075 {
10076 fprintf_unfiltered (fp, "break-range %s, %s", b->addr_string,
10077 b->addr_string_range_end);
10078 print_recreate_thread (b, fp);
10079 }
10080
10081 /* The breakpoint_ops structure to be used in ranged breakpoints. */
10082
10083 static struct breakpoint_ops ranged_breakpoint_ops;
10084
10085 /* Find the address where the end of the breakpoint range should be
10086 placed, given the SAL of the end of the range. This is so that if
10087 the user provides a line number, the end of the range is set to the
10088 last instruction of the given line. */
10089
10090 static CORE_ADDR
10091 find_breakpoint_range_end (struct symtab_and_line sal)
10092 {
10093 CORE_ADDR end;
10094
10095 /* If the user provided a PC value, use it. Otherwise,
10096 find the address of the end of the given location. */
10097 if (sal.explicit_pc)
10098 end = sal.pc;
10099 else
10100 {
10101 int ret;
10102 CORE_ADDR start;
10103
10104 ret = find_line_pc_range (sal, &start, &end);
10105 if (!ret)
10106 error (_("Could not find location of the end of the range."));
10107
10108 /* find_line_pc_range returns the start of the next line. */
10109 end--;
10110 }
10111
10112 return end;
10113 }
10114
10115 /* Implement the "break-range" CLI command. */
10116
10117 static void
10118 break_range_command (char *arg, int from_tty)
10119 {
10120 char *arg_start, *addr_string_start, *addr_string_end;
10121 struct linespec_result canonical_start, canonical_end;
10122 int bp_count, can_use_bp, length;
10123 CORE_ADDR end;
10124 struct breakpoint *b;
10125 struct symtab_and_line sal_start, sal_end;
10126 struct cleanup *cleanup_bkpt;
10127 struct linespec_sals *lsal_start, *lsal_end;
10128
10129 /* We don't support software ranged breakpoints. */
10130 if (target_ranged_break_num_registers () < 0)
10131 error (_("This target does not support hardware ranged breakpoints."));
10132
10133 bp_count = hw_breakpoint_used_count ();
10134 bp_count += target_ranged_break_num_registers ();
10135 can_use_bp = target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
10136 bp_count, 0);
10137 if (can_use_bp < 0)
10138 error (_("Hardware breakpoints used exceeds limit."));
10139
10140 arg = skip_spaces (arg);
10141 if (arg == NULL || arg[0] == '\0')
10142 error(_("No address range specified."));
10143
10144 init_linespec_result (&canonical_start);
10145
10146 arg_start = arg;
10147 parse_breakpoint_sals (&arg, &canonical_start);
10148
10149 cleanup_bkpt = make_cleanup_destroy_linespec_result (&canonical_start);
10150
10151 if (arg[0] != ',')
10152 error (_("Too few arguments."));
10153 else if (VEC_empty (linespec_sals, canonical_start.sals))
10154 error (_("Could not find location of the beginning of the range."));
10155
10156 lsal_start = VEC_index (linespec_sals, canonical_start.sals, 0);
10157
10158 if (VEC_length (linespec_sals, canonical_start.sals) > 1
10159 || lsal_start->sals.nelts != 1)
10160 error (_("Cannot create a ranged breakpoint with multiple locations."));
10161
10162 sal_start = lsal_start->sals.sals[0];
10163 addr_string_start = savestring (arg_start, arg - arg_start);
10164 make_cleanup (xfree, addr_string_start);
10165
10166 arg++; /* Skip the comma. */
10167 arg = skip_spaces (arg);
10168
10169 /* Parse the end location. */
10170
10171 init_linespec_result (&canonical_end);
10172 arg_start = arg;
10173
10174 /* We call decode_line_full directly here instead of using
10175 parse_breakpoint_sals because we need to specify the start location's
10176 symtab and line as the default symtab and line for the end of the
10177 range. This makes it possible to have ranges like "foo.c:27, +14",
10178 where +14 means 14 lines from the start location. */
10179 decode_line_full (&arg, DECODE_LINE_FUNFIRSTLINE,
10180 sal_start.symtab, sal_start.line,
10181 &canonical_end, NULL, NULL);
10182
10183 make_cleanup_destroy_linespec_result (&canonical_end);
10184
10185 if (VEC_empty (linespec_sals, canonical_end.sals))
10186 error (_("Could not find location of the end of the range."));
10187
10188 lsal_end = VEC_index (linespec_sals, canonical_end.sals, 0);
10189 if (VEC_length (linespec_sals, canonical_end.sals) > 1
10190 || lsal_end->sals.nelts != 1)
10191 error (_("Cannot create a ranged breakpoint with multiple locations."));
10192
10193 sal_end = lsal_end->sals.sals[0];
10194 addr_string_end = savestring (arg_start, arg - arg_start);
10195 make_cleanup (xfree, addr_string_end);
10196
10197 end = find_breakpoint_range_end (sal_end);
10198 if (sal_start.pc > end)
10199 error (_("Invalid address range, end precedes start."));
10200
10201 length = end - sal_start.pc + 1;
10202 if (length < 0)
10203 /* Length overflowed. */
10204 error (_("Address range too large."));
10205 else if (length == 1)
10206 {
10207 /* This range is simple enough to be handled by
10208 the `hbreak' command. */
10209 hbreak_command (addr_string_start, 1);
10210
10211 do_cleanups (cleanup_bkpt);
10212
10213 return;
10214 }
10215
10216 /* Now set up the breakpoint. */
10217 b = set_raw_breakpoint (get_current_arch (), sal_start,
10218 bp_hardware_breakpoint, &ranged_breakpoint_ops);
10219 set_breakpoint_count (breakpoint_count + 1);
10220 b->number = breakpoint_count;
10221 b->disposition = disp_donttouch;
10222 b->addr_string = xstrdup (addr_string_start);
10223 b->addr_string_range_end = xstrdup (addr_string_end);
10224 b->loc->length = length;
10225
10226 do_cleanups (cleanup_bkpt);
10227
10228 mention (b);
10229 observer_notify_breakpoint_created (b);
10230 update_global_location_list (1);
10231 }
10232
10233 /* Return non-zero if EXP is verified as constant. Returned zero
10234 means EXP is variable. Also the constant detection may fail for
10235 some constant expressions and in such case still falsely return
10236 zero. */
10237
10238 static int
10239 watchpoint_exp_is_const (const struct expression *exp)
10240 {
10241 int i = exp->nelts;
10242
10243 while (i > 0)
10244 {
10245 int oplenp, argsp;
10246
10247 /* We are only interested in the descriptor of each element. */
10248 operator_length (exp, i, &oplenp, &argsp);
10249 i -= oplenp;
10250
10251 switch (exp->elts[i].opcode)
10252 {
10253 case BINOP_ADD:
10254 case BINOP_SUB:
10255 case BINOP_MUL:
10256 case BINOP_DIV:
10257 case BINOP_REM:
10258 case BINOP_MOD:
10259 case BINOP_LSH:
10260 case BINOP_RSH:
10261 case BINOP_LOGICAL_AND:
10262 case BINOP_LOGICAL_OR:
10263 case BINOP_BITWISE_AND:
10264 case BINOP_BITWISE_IOR:
10265 case BINOP_BITWISE_XOR:
10266 case BINOP_EQUAL:
10267 case BINOP_NOTEQUAL:
10268 case BINOP_LESS:
10269 case BINOP_GTR:
10270 case BINOP_LEQ:
10271 case BINOP_GEQ:
10272 case BINOP_REPEAT:
10273 case BINOP_COMMA:
10274 case BINOP_EXP:
10275 case BINOP_MIN:
10276 case BINOP_MAX:
10277 case BINOP_INTDIV:
10278 case BINOP_CONCAT:
10279 case BINOP_IN:
10280 case BINOP_RANGE:
10281 case TERNOP_COND:
10282 case TERNOP_SLICE:
10283
10284 case OP_LONG:
10285 case OP_DOUBLE:
10286 case OP_DECFLOAT:
10287 case OP_LAST:
10288 case OP_COMPLEX:
10289 case OP_STRING:
10290 case OP_ARRAY:
10291 case OP_TYPE:
10292 case OP_TYPEOF:
10293 case OP_DECLTYPE:
10294 case OP_TYPEID:
10295 case OP_NAME:
10296 case OP_OBJC_NSSTRING:
10297
10298 case UNOP_NEG:
10299 case UNOP_LOGICAL_NOT:
10300 case UNOP_COMPLEMENT:
10301 case UNOP_ADDR:
10302 case UNOP_HIGH:
10303 case UNOP_CAST:
10304
10305 case UNOP_CAST_TYPE:
10306 case UNOP_REINTERPRET_CAST:
10307 case UNOP_DYNAMIC_CAST:
10308 /* Unary, binary and ternary operators: We have to check
10309 their operands. If they are constant, then so is the
10310 result of that operation. For instance, if A and B are
10311 determined to be constants, then so is "A + B".
10312
10313 UNOP_IND is one exception to the rule above, because the
10314 value of *ADDR is not necessarily a constant, even when
10315 ADDR is. */
10316 break;
10317
10318 case OP_VAR_VALUE:
10319 /* Check whether the associated symbol is a constant.
10320
10321 We use SYMBOL_CLASS rather than TYPE_CONST because it's
10322 possible that a buggy compiler could mark a variable as
10323 constant even when it is not, and TYPE_CONST would return
10324 true in this case, while SYMBOL_CLASS wouldn't.
10325
10326 We also have to check for function symbols because they
10327 are always constant. */
10328 {
10329 struct symbol *s = exp->elts[i + 2].symbol;
10330
10331 if (SYMBOL_CLASS (s) != LOC_BLOCK
10332 && SYMBOL_CLASS (s) != LOC_CONST
10333 && SYMBOL_CLASS (s) != LOC_CONST_BYTES)
10334 return 0;
10335 break;
10336 }
10337
10338 /* The default action is to return 0 because we are using
10339 the optimistic approach here: If we don't know something,
10340 then it is not a constant. */
10341 default:
10342 return 0;
10343 }
10344 }
10345
10346 return 1;
10347 }
10348
10349 /* Implement the "dtor" breakpoint_ops method for watchpoints. */
10350
10351 static void
10352 dtor_watchpoint (struct breakpoint *self)
10353 {
10354 struct watchpoint *w = (struct watchpoint *) self;
10355
10356 xfree (w->cond_exp);
10357 xfree (w->exp);
10358 xfree (w->exp_string);
10359 xfree (w->exp_string_reparse);
10360 value_free (w->val);
10361
10362 base_breakpoint_ops.dtor (self);
10363 }
10364
10365 /* Implement the "re_set" breakpoint_ops method for watchpoints. */
10366
10367 static void
10368 re_set_watchpoint (struct breakpoint *b)
10369 {
10370 struct watchpoint *w = (struct watchpoint *) b;
10371
10372 /* Watchpoint can be either on expression using entirely global
10373 variables, or it can be on local variables.
10374
10375 Watchpoints of the first kind are never auto-deleted, and even
10376 persist across program restarts. Since they can use variables
10377 from shared libraries, we need to reparse expression as libraries
10378 are loaded and unloaded.
10379
10380 Watchpoints on local variables can also change meaning as result
10381 of solib event. For example, if a watchpoint uses both a local
10382 and a global variables in expression, it's a local watchpoint,
10383 but unloading of a shared library will make the expression
10384 invalid. This is not a very common use case, but we still
10385 re-evaluate expression, to avoid surprises to the user.
10386
10387 Note that for local watchpoints, we re-evaluate it only if
10388 watchpoints frame id is still valid. If it's not, it means the
10389 watchpoint is out of scope and will be deleted soon. In fact,
10390 I'm not sure we'll ever be called in this case.
10391
10392 If a local watchpoint's frame id is still valid, then
10393 w->exp_valid_block is likewise valid, and we can safely use it.
10394
10395 Don't do anything about disabled watchpoints, since they will be
10396 reevaluated again when enabled. */
10397 update_watchpoint (w, 1 /* reparse */);
10398 }
10399
10400 /* Implement the "insert" breakpoint_ops method for hardware watchpoints. */
10401
10402 static int
10403 insert_watchpoint (struct bp_location *bl)
10404 {
10405 struct watchpoint *w = (struct watchpoint *) bl->owner;
10406 int length = w->exact ? 1 : bl->length;
10407
10408 return target_insert_watchpoint (bl->address, length, bl->watchpoint_type,
10409 w->cond_exp);
10410 }
10411
10412 /* Implement the "remove" breakpoint_ops method for hardware watchpoints. */
10413
10414 static int
10415 remove_watchpoint (struct bp_location *bl)
10416 {
10417 struct watchpoint *w = (struct watchpoint *) bl->owner;
10418 int length = w->exact ? 1 : bl->length;
10419
10420 return target_remove_watchpoint (bl->address, length, bl->watchpoint_type,
10421 w->cond_exp);
10422 }
10423
10424 static int
10425 breakpoint_hit_watchpoint (const struct bp_location *bl,
10426 struct address_space *aspace, CORE_ADDR bp_addr,
10427 const struct target_waitstatus *ws)
10428 {
10429 struct breakpoint *b = bl->owner;
10430 struct watchpoint *w = (struct watchpoint *) b;
10431
10432 /* Continuable hardware watchpoints are treated as non-existent if the
10433 reason we stopped wasn't a hardware watchpoint (we didn't stop on
10434 some data address). Otherwise gdb won't stop on a break instruction
10435 in the code (not from a breakpoint) when a hardware watchpoint has
10436 been defined. Also skip watchpoints which we know did not trigger
10437 (did not match the data address). */
10438 if (is_hardware_watchpoint (b)
10439 && w->watchpoint_triggered == watch_triggered_no)
10440 return 0;
10441
10442 return 1;
10443 }
10444
10445 static void
10446 check_status_watchpoint (bpstat bs)
10447 {
10448 gdb_assert (is_watchpoint (bs->breakpoint_at));
10449
10450 bpstat_check_watchpoint (bs);
10451 }
10452
10453 /* Implement the "resources_needed" breakpoint_ops method for
10454 hardware watchpoints. */
10455
10456 static int
10457 resources_needed_watchpoint (const struct bp_location *bl)
10458 {
10459 struct watchpoint *w = (struct watchpoint *) bl->owner;
10460 int length = w->exact? 1 : bl->length;
10461
10462 return target_region_ok_for_hw_watchpoint (bl->address, length);
10463 }
10464
10465 /* Implement the "works_in_software_mode" breakpoint_ops method for
10466 hardware watchpoints. */
10467
10468 static int
10469 works_in_software_mode_watchpoint (const struct breakpoint *b)
10470 {
10471 /* Read and access watchpoints only work with hardware support. */
10472 return b->type == bp_watchpoint || b->type == bp_hardware_watchpoint;
10473 }
10474
10475 static enum print_stop_action
10476 print_it_watchpoint (bpstat bs)
10477 {
10478 struct cleanup *old_chain;
10479 struct breakpoint *b;
10480 struct ui_file *stb;
10481 enum print_stop_action result;
10482 struct watchpoint *w;
10483 struct ui_out *uiout = current_uiout;
10484
10485 gdb_assert (bs->bp_location_at != NULL);
10486
10487 b = bs->breakpoint_at;
10488 w = (struct watchpoint *) b;
10489
10490 stb = mem_fileopen ();
10491 old_chain = make_cleanup_ui_file_delete (stb);
10492
10493 switch (b->type)
10494 {
10495 case bp_watchpoint:
10496 case bp_hardware_watchpoint:
10497 annotate_watchpoint (b->number);
10498 if (ui_out_is_mi_like_p (uiout))
10499 ui_out_field_string
10500 (uiout, "reason",
10501 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10502 mention (b);
10503 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10504 ui_out_text (uiout, "\nOld value = ");
10505 watchpoint_value_print (bs->old_val, stb);
10506 ui_out_field_stream (uiout, "old", stb);
10507 ui_out_text (uiout, "\nNew value = ");
10508 watchpoint_value_print (w->val, stb);
10509 ui_out_field_stream (uiout, "new", stb);
10510 ui_out_text (uiout, "\n");
10511 /* More than one watchpoint may have been triggered. */
10512 result = PRINT_UNKNOWN;
10513 break;
10514
10515 case bp_read_watchpoint:
10516 if (ui_out_is_mi_like_p (uiout))
10517 ui_out_field_string
10518 (uiout, "reason",
10519 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10520 mention (b);
10521 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10522 ui_out_text (uiout, "\nValue = ");
10523 watchpoint_value_print (w->val, stb);
10524 ui_out_field_stream (uiout, "value", stb);
10525 ui_out_text (uiout, "\n");
10526 result = PRINT_UNKNOWN;
10527 break;
10528
10529 case bp_access_watchpoint:
10530 if (bs->old_val != NULL)
10531 {
10532 annotate_watchpoint (b->number);
10533 if (ui_out_is_mi_like_p (uiout))
10534 ui_out_field_string
10535 (uiout, "reason",
10536 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10537 mention (b);
10538 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10539 ui_out_text (uiout, "\nOld value = ");
10540 watchpoint_value_print (bs->old_val, stb);
10541 ui_out_field_stream (uiout, "old", stb);
10542 ui_out_text (uiout, "\nNew value = ");
10543 }
10544 else
10545 {
10546 mention (b);
10547 if (ui_out_is_mi_like_p (uiout))
10548 ui_out_field_string
10549 (uiout, "reason",
10550 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10551 make_cleanup_ui_out_tuple_begin_end (uiout, "value");
10552 ui_out_text (uiout, "\nValue = ");
10553 }
10554 watchpoint_value_print (w->val, stb);
10555 ui_out_field_stream (uiout, "new", stb);
10556 ui_out_text (uiout, "\n");
10557 result = PRINT_UNKNOWN;
10558 break;
10559 default:
10560 result = PRINT_UNKNOWN;
10561 }
10562
10563 do_cleanups (old_chain);
10564 return result;
10565 }
10566
10567 /* Implement the "print_mention" breakpoint_ops method for hardware
10568 watchpoints. */
10569
10570 static void
10571 print_mention_watchpoint (struct breakpoint *b)
10572 {
10573 struct cleanup *ui_out_chain;
10574 struct watchpoint *w = (struct watchpoint *) b;
10575 struct ui_out *uiout = current_uiout;
10576
10577 switch (b->type)
10578 {
10579 case bp_watchpoint:
10580 ui_out_text (uiout, "Watchpoint ");
10581 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10582 break;
10583 case bp_hardware_watchpoint:
10584 ui_out_text (uiout, "Hardware watchpoint ");
10585 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10586 break;
10587 case bp_read_watchpoint:
10588 ui_out_text (uiout, "Hardware read watchpoint ");
10589 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10590 break;
10591 case bp_access_watchpoint:
10592 ui_out_text (uiout, "Hardware access (read/write) watchpoint ");
10593 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10594 break;
10595 default:
10596 internal_error (__FILE__, __LINE__,
10597 _("Invalid hardware watchpoint type."));
10598 }
10599
10600 ui_out_field_int (uiout, "number", b->number);
10601 ui_out_text (uiout, ": ");
10602 ui_out_field_string (uiout, "exp", w->exp_string);
10603 do_cleanups (ui_out_chain);
10604 }
10605
10606 /* Implement the "print_recreate" breakpoint_ops method for
10607 watchpoints. */
10608
10609 static void
10610 print_recreate_watchpoint (struct breakpoint *b, struct ui_file *fp)
10611 {
10612 struct watchpoint *w = (struct watchpoint *) b;
10613
10614 switch (b->type)
10615 {
10616 case bp_watchpoint:
10617 case bp_hardware_watchpoint:
10618 fprintf_unfiltered (fp, "watch");
10619 break;
10620 case bp_read_watchpoint:
10621 fprintf_unfiltered (fp, "rwatch");
10622 break;
10623 case bp_access_watchpoint:
10624 fprintf_unfiltered (fp, "awatch");
10625 break;
10626 default:
10627 internal_error (__FILE__, __LINE__,
10628 _("Invalid watchpoint type."));
10629 }
10630
10631 fprintf_unfiltered (fp, " %s", w->exp_string);
10632 print_recreate_thread (b, fp);
10633 }
10634
10635 /* Implement the "explains_signal" breakpoint_ops method for
10636 watchpoints. */
10637
10638 static enum bpstat_signal_value
10639 explains_signal_watchpoint (struct breakpoint *b, enum gdb_signal sig)
10640 {
10641 /* A software watchpoint cannot cause a signal other than
10642 GDB_SIGNAL_TRAP. */
10643 if (b->type == bp_watchpoint && sig != GDB_SIGNAL_TRAP)
10644 return BPSTAT_SIGNAL_NO;
10645
10646 return BPSTAT_SIGNAL_HIDE;
10647 }
10648
10649 /* The breakpoint_ops structure to be used in hardware watchpoints. */
10650
10651 static struct breakpoint_ops watchpoint_breakpoint_ops;
10652
10653 /* Implement the "insert" breakpoint_ops method for
10654 masked hardware watchpoints. */
10655
10656 static int
10657 insert_masked_watchpoint (struct bp_location *bl)
10658 {
10659 struct watchpoint *w = (struct watchpoint *) bl->owner;
10660
10661 return target_insert_mask_watchpoint (bl->address, w->hw_wp_mask,
10662 bl->watchpoint_type);
10663 }
10664
10665 /* Implement the "remove" breakpoint_ops method for
10666 masked hardware watchpoints. */
10667
10668 static int
10669 remove_masked_watchpoint (struct bp_location *bl)
10670 {
10671 struct watchpoint *w = (struct watchpoint *) bl->owner;
10672
10673 return target_remove_mask_watchpoint (bl->address, w->hw_wp_mask,
10674 bl->watchpoint_type);
10675 }
10676
10677 /* Implement the "resources_needed" breakpoint_ops method for
10678 masked hardware watchpoints. */
10679
10680 static int
10681 resources_needed_masked_watchpoint (const struct bp_location *bl)
10682 {
10683 struct watchpoint *w = (struct watchpoint *) bl->owner;
10684
10685 return target_masked_watch_num_registers (bl->address, w->hw_wp_mask);
10686 }
10687
10688 /* Implement the "works_in_software_mode" breakpoint_ops method for
10689 masked hardware watchpoints. */
10690
10691 static int
10692 works_in_software_mode_masked_watchpoint (const struct breakpoint *b)
10693 {
10694 return 0;
10695 }
10696
10697 /* Implement the "print_it" breakpoint_ops method for
10698 masked hardware watchpoints. */
10699
10700 static enum print_stop_action
10701 print_it_masked_watchpoint (bpstat bs)
10702 {
10703 struct breakpoint *b = bs->breakpoint_at;
10704 struct ui_out *uiout = current_uiout;
10705
10706 /* Masked watchpoints have only one location. */
10707 gdb_assert (b->loc && b->loc->next == NULL);
10708
10709 switch (b->type)
10710 {
10711 case bp_hardware_watchpoint:
10712 annotate_watchpoint (b->number);
10713 if (ui_out_is_mi_like_p (uiout))
10714 ui_out_field_string
10715 (uiout, "reason",
10716 async_reason_lookup (EXEC_ASYNC_WATCHPOINT_TRIGGER));
10717 break;
10718
10719 case bp_read_watchpoint:
10720 if (ui_out_is_mi_like_p (uiout))
10721 ui_out_field_string
10722 (uiout, "reason",
10723 async_reason_lookup (EXEC_ASYNC_READ_WATCHPOINT_TRIGGER));
10724 break;
10725
10726 case bp_access_watchpoint:
10727 if (ui_out_is_mi_like_p (uiout))
10728 ui_out_field_string
10729 (uiout, "reason",
10730 async_reason_lookup (EXEC_ASYNC_ACCESS_WATCHPOINT_TRIGGER));
10731 break;
10732 default:
10733 internal_error (__FILE__, __LINE__,
10734 _("Invalid hardware watchpoint type."));
10735 }
10736
10737 mention (b);
10738 ui_out_text (uiout, _("\n\
10739 Check the underlying instruction at PC for the memory\n\
10740 address and value which triggered this watchpoint.\n"));
10741 ui_out_text (uiout, "\n");
10742
10743 /* More than one watchpoint may have been triggered. */
10744 return PRINT_UNKNOWN;
10745 }
10746
10747 /* Implement the "print_one_detail" breakpoint_ops method for
10748 masked hardware watchpoints. */
10749
10750 static void
10751 print_one_detail_masked_watchpoint (const struct breakpoint *b,
10752 struct ui_out *uiout)
10753 {
10754 struct watchpoint *w = (struct watchpoint *) b;
10755
10756 /* Masked watchpoints have only one location. */
10757 gdb_assert (b->loc && b->loc->next == NULL);
10758
10759 ui_out_text (uiout, "\tmask ");
10760 ui_out_field_core_addr (uiout, "mask", b->loc->gdbarch, w->hw_wp_mask);
10761 ui_out_text (uiout, "\n");
10762 }
10763
10764 /* Implement the "print_mention" breakpoint_ops method for
10765 masked hardware watchpoints. */
10766
10767 static void
10768 print_mention_masked_watchpoint (struct breakpoint *b)
10769 {
10770 struct watchpoint *w = (struct watchpoint *) b;
10771 struct ui_out *uiout = current_uiout;
10772 struct cleanup *ui_out_chain;
10773
10774 switch (b->type)
10775 {
10776 case bp_hardware_watchpoint:
10777 ui_out_text (uiout, "Masked hardware watchpoint ");
10778 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "wpt");
10779 break;
10780 case bp_read_watchpoint:
10781 ui_out_text (uiout, "Masked hardware read watchpoint ");
10782 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-rwpt");
10783 break;
10784 case bp_access_watchpoint:
10785 ui_out_text (uiout, "Masked hardware access (read/write) watchpoint ");
10786 ui_out_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "hw-awpt");
10787 break;
10788 default:
10789 internal_error (__FILE__, __LINE__,
10790 _("Invalid hardware watchpoint type."));
10791 }
10792
10793 ui_out_field_int (uiout, "number", b->number);
10794 ui_out_text (uiout, ": ");
10795 ui_out_field_string (uiout, "exp", w->exp_string);
10796 do_cleanups (ui_out_chain);
10797 }
10798
10799 /* Implement the "print_recreate" breakpoint_ops method for
10800 masked hardware watchpoints. */
10801
10802 static void
10803 print_recreate_masked_watchpoint (struct breakpoint *b, struct ui_file *fp)
10804 {
10805 struct watchpoint *w = (struct watchpoint *) b;
10806 char tmp[40];
10807
10808 switch (b->type)
10809 {
10810 case bp_hardware_watchpoint:
10811 fprintf_unfiltered (fp, "watch");
10812 break;
10813 case bp_read_watchpoint:
10814 fprintf_unfiltered (fp, "rwatch");
10815 break;
10816 case bp_access_watchpoint:
10817 fprintf_unfiltered (fp, "awatch");
10818 break;
10819 default:
10820 internal_error (__FILE__, __LINE__,
10821 _("Invalid hardware watchpoint type."));
10822 }
10823
10824 sprintf_vma (tmp, w->hw_wp_mask);
10825 fprintf_unfiltered (fp, " %s mask 0x%s", w->exp_string, tmp);
10826 print_recreate_thread (b, fp);
10827 }
10828
10829 /* The breakpoint_ops structure to be used in masked hardware watchpoints. */
10830
10831 static struct breakpoint_ops masked_watchpoint_breakpoint_ops;
10832
10833 /* Tell whether the given watchpoint is a masked hardware watchpoint. */
10834
10835 static int
10836 is_masked_watchpoint (const struct breakpoint *b)
10837 {
10838 return b->ops == &masked_watchpoint_breakpoint_ops;
10839 }
10840
10841 /* accessflag: hw_write: watch write,
10842 hw_read: watch read,
10843 hw_access: watch access (read or write) */
10844 static void
10845 watch_command_1 (const char *arg, int accessflag, int from_tty,
10846 int just_location, int internal)
10847 {
10848 volatile struct gdb_exception e;
10849 struct breakpoint *b, *scope_breakpoint = NULL;
10850 struct expression *exp;
10851 const struct block *exp_valid_block = NULL, *cond_exp_valid_block = NULL;
10852 struct value *val, *mark, *result;
10853 struct frame_info *frame;
10854 const char *exp_start = NULL;
10855 const char *exp_end = NULL;
10856 const char *tok, *end_tok;
10857 int toklen = -1;
10858 const char *cond_start = NULL;
10859 const char *cond_end = NULL;
10860 enum bptype bp_type;
10861 int thread = -1;
10862 int pc = 0;
10863 /* Flag to indicate whether we are going to use masks for
10864 the hardware watchpoint. */
10865 int use_mask = 0;
10866 CORE_ADDR mask = 0;
10867 struct watchpoint *w;
10868 char *expression;
10869 struct cleanup *back_to;
10870
10871 /* Make sure that we actually have parameters to parse. */
10872 if (arg != NULL && arg[0] != '\0')
10873 {
10874 const char *value_start;
10875
10876 exp_end = arg + strlen (arg);
10877
10878 /* Look for "parameter value" pairs at the end
10879 of the arguments string. */
10880 for (tok = exp_end - 1; tok > arg; tok--)
10881 {
10882 /* Skip whitespace at the end of the argument list. */
10883 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10884 tok--;
10885
10886 /* Find the beginning of the last token.
10887 This is the value of the parameter. */
10888 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10889 tok--;
10890 value_start = tok + 1;
10891
10892 /* Skip whitespace. */
10893 while (tok > arg && (*tok == ' ' || *tok == '\t'))
10894 tok--;
10895
10896 end_tok = tok;
10897
10898 /* Find the beginning of the second to last token.
10899 This is the parameter itself. */
10900 while (tok > arg && (*tok != ' ' && *tok != '\t'))
10901 tok--;
10902 tok++;
10903 toklen = end_tok - tok + 1;
10904
10905 if (toklen == 6 && !strncmp (tok, "thread", 6))
10906 {
10907 /* At this point we've found a "thread" token, which means
10908 the user is trying to set a watchpoint that triggers
10909 only in a specific thread. */
10910 char *endp;
10911
10912 if (thread != -1)
10913 error(_("You can specify only one thread."));
10914
10915 /* Extract the thread ID from the next token. */
10916 thread = strtol (value_start, &endp, 0);
10917
10918 /* Check if the user provided a valid numeric value for the
10919 thread ID. */
10920 if (*endp != ' ' && *endp != '\t' && *endp != '\0')
10921 error (_("Invalid thread ID specification %s."), value_start);
10922
10923 /* Check if the thread actually exists. */
10924 if (!valid_thread_id (thread))
10925 invalid_thread_id_error (thread);
10926 }
10927 else if (toklen == 4 && !strncmp (tok, "mask", 4))
10928 {
10929 /* We've found a "mask" token, which means the user wants to
10930 create a hardware watchpoint that is going to have the mask
10931 facility. */
10932 struct value *mask_value, *mark;
10933
10934 if (use_mask)
10935 error(_("You can specify only one mask."));
10936
10937 use_mask = just_location = 1;
10938
10939 mark = value_mark ();
10940 mask_value = parse_to_comma_and_eval (&value_start);
10941 mask = value_as_address (mask_value);
10942 value_free_to_mark (mark);
10943 }
10944 else
10945 /* We didn't recognize what we found. We should stop here. */
10946 break;
10947
10948 /* Truncate the string and get rid of the "parameter value" pair before
10949 the arguments string is parsed by the parse_exp_1 function. */
10950 exp_end = tok;
10951 }
10952 }
10953 else
10954 exp_end = arg;
10955
10956 /* Parse the rest of the arguments. From here on out, everything
10957 is in terms of a newly allocated string instead of the original
10958 ARG. */
10959 innermost_block = NULL;
10960 expression = savestring (arg, exp_end - arg);
10961 back_to = make_cleanup (xfree, expression);
10962 exp_start = arg = expression;
10963 exp = parse_exp_1 (&arg, 0, 0, 0);
10964 exp_end = arg;
10965 /* Remove trailing whitespace from the expression before saving it.
10966 This makes the eventual display of the expression string a bit
10967 prettier. */
10968 while (exp_end > exp_start && (exp_end[-1] == ' ' || exp_end[-1] == '\t'))
10969 --exp_end;
10970
10971 /* Checking if the expression is not constant. */
10972 if (watchpoint_exp_is_const (exp))
10973 {
10974 int len;
10975
10976 len = exp_end - exp_start;
10977 while (len > 0 && isspace (exp_start[len - 1]))
10978 len--;
10979 error (_("Cannot watch constant value `%.*s'."), len, exp_start);
10980 }
10981
10982 exp_valid_block = innermost_block;
10983 mark = value_mark ();
10984 fetch_subexp_value (exp, &pc, &val, &result, NULL);
10985
10986 if (just_location)
10987 {
10988 int ret;
10989
10990 exp_valid_block = NULL;
10991 val = value_addr (result);
10992 release_value (val);
10993 value_free_to_mark (mark);
10994
10995 if (use_mask)
10996 {
10997 ret = target_masked_watch_num_registers (value_as_address (val),
10998 mask);
10999 if (ret == -1)
11000 error (_("This target does not support masked watchpoints."));
11001 else if (ret == -2)
11002 error (_("Invalid mask or memory region."));
11003 }
11004 }
11005 else if (val != NULL)
11006 release_value (val);
11007
11008 tok = skip_spaces_const (arg);
11009 end_tok = skip_to_space_const (tok);
11010
11011 toklen = end_tok - tok;
11012 if (toklen >= 1 && strncmp (tok, "if", toklen) == 0)
11013 {
11014 struct expression *cond;
11015
11016 innermost_block = NULL;
11017 tok = cond_start = end_tok + 1;
11018 cond = parse_exp_1 (&tok, 0, 0, 0);
11019
11020 /* The watchpoint expression may not be local, but the condition
11021 may still be. E.g.: `watch global if local > 0'. */
11022 cond_exp_valid_block = innermost_block;
11023
11024 xfree (cond);
11025 cond_end = tok;
11026 }
11027 if (*tok)
11028 error (_("Junk at end of command."));
11029
11030 if (accessflag == hw_read)
11031 bp_type = bp_read_watchpoint;
11032 else if (accessflag == hw_access)
11033 bp_type = bp_access_watchpoint;
11034 else
11035 bp_type = bp_hardware_watchpoint;
11036
11037 frame = block_innermost_frame (exp_valid_block);
11038
11039 /* If the expression is "local", then set up a "watchpoint scope"
11040 breakpoint at the point where we've left the scope of the watchpoint
11041 expression. Create the scope breakpoint before the watchpoint, so
11042 that we will encounter it first in bpstat_stop_status. */
11043 if (exp_valid_block && frame)
11044 {
11045 if (frame_id_p (frame_unwind_caller_id (frame)))
11046 {
11047 scope_breakpoint
11048 = create_internal_breakpoint (frame_unwind_caller_arch (frame),
11049 frame_unwind_caller_pc (frame),
11050 bp_watchpoint_scope,
11051 &momentary_breakpoint_ops);
11052
11053 scope_breakpoint->enable_state = bp_enabled;
11054
11055 /* Automatically delete the breakpoint when it hits. */
11056 scope_breakpoint->disposition = disp_del;
11057
11058 /* Only break in the proper frame (help with recursion). */
11059 scope_breakpoint->frame_id = frame_unwind_caller_id (frame);
11060
11061 /* Set the address at which we will stop. */
11062 scope_breakpoint->loc->gdbarch
11063 = frame_unwind_caller_arch (frame);
11064 scope_breakpoint->loc->requested_address
11065 = frame_unwind_caller_pc (frame);
11066 scope_breakpoint->loc->address
11067 = adjust_breakpoint_address (scope_breakpoint->loc->gdbarch,
11068 scope_breakpoint->loc->requested_address,
11069 scope_breakpoint->type);
11070 }
11071 }
11072
11073 /* Now set up the breakpoint. */
11074
11075 w = XCNEW (struct watchpoint);
11076 b = &w->base;
11077 if (use_mask)
11078 init_raw_breakpoint_without_location (b, NULL, bp_type,
11079 &masked_watchpoint_breakpoint_ops);
11080 else
11081 init_raw_breakpoint_without_location (b, NULL, bp_type,
11082 &watchpoint_breakpoint_ops);
11083 b->thread = thread;
11084 b->disposition = disp_donttouch;
11085 b->pspace = current_program_space;
11086 w->exp = exp;
11087 w->exp_valid_block = exp_valid_block;
11088 w->cond_exp_valid_block = cond_exp_valid_block;
11089 if (just_location)
11090 {
11091 struct type *t = value_type (val);
11092 CORE_ADDR addr = value_as_address (val);
11093 char *name;
11094
11095 t = check_typedef (TYPE_TARGET_TYPE (check_typedef (t)));
11096 name = type_to_string (t);
11097
11098 w->exp_string_reparse = xstrprintf ("* (%s *) %s", name,
11099 core_addr_to_string (addr));
11100 xfree (name);
11101
11102 w->exp_string = xstrprintf ("-location %.*s",
11103 (int) (exp_end - exp_start), exp_start);
11104
11105 /* The above expression is in C. */
11106 b->language = language_c;
11107 }
11108 else
11109 w->exp_string = savestring (exp_start, exp_end - exp_start);
11110
11111 if (use_mask)
11112 {
11113 w->hw_wp_mask = mask;
11114 }
11115 else
11116 {
11117 w->val = val;
11118 w->val_valid = 1;
11119 }
11120
11121 if (cond_start)
11122 b->cond_string = savestring (cond_start, cond_end - cond_start);
11123 else
11124 b->cond_string = 0;
11125
11126 if (frame)
11127 {
11128 w->watchpoint_frame = get_frame_id (frame);
11129 w->watchpoint_thread = inferior_ptid;
11130 }
11131 else
11132 {
11133 w->watchpoint_frame = null_frame_id;
11134 w->watchpoint_thread = null_ptid;
11135 }
11136
11137 if (scope_breakpoint != NULL)
11138 {
11139 /* The scope breakpoint is related to the watchpoint. We will
11140 need to act on them together. */
11141 b->related_breakpoint = scope_breakpoint;
11142 scope_breakpoint->related_breakpoint = b;
11143 }
11144
11145 if (!just_location)
11146 value_free_to_mark (mark);
11147
11148 TRY_CATCH (e, RETURN_MASK_ALL)
11149 {
11150 /* Finally update the new watchpoint. This creates the locations
11151 that should be inserted. */
11152 update_watchpoint (w, 1);
11153 }
11154 if (e.reason < 0)
11155 {
11156 delete_breakpoint (b);
11157 throw_exception (e);
11158 }
11159
11160 install_breakpoint (internal, b, 1);
11161 do_cleanups (back_to);
11162 }
11163
11164 /* Return count of debug registers needed to watch the given expression.
11165 If the watchpoint cannot be handled in hardware return zero. */
11166
11167 static int
11168 can_use_hardware_watchpoint (struct value *v)
11169 {
11170 int found_memory_cnt = 0;
11171 struct value *head = v;
11172
11173 /* Did the user specifically forbid us to use hardware watchpoints? */
11174 if (!can_use_hw_watchpoints)
11175 return 0;
11176
11177 /* Make sure that the value of the expression depends only upon
11178 memory contents, and values computed from them within GDB. If we
11179 find any register references or function calls, we can't use a
11180 hardware watchpoint.
11181
11182 The idea here is that evaluating an expression generates a series
11183 of values, one holding the value of every subexpression. (The
11184 expression a*b+c has five subexpressions: a, b, a*b, c, and
11185 a*b+c.) GDB's values hold almost enough information to establish
11186 the criteria given above --- they identify memory lvalues,
11187 register lvalues, computed values, etcetera. So we can evaluate
11188 the expression, and then scan the chain of values that leaves
11189 behind to decide whether we can detect any possible change to the
11190 expression's final value using only hardware watchpoints.
11191
11192 However, I don't think that the values returned by inferior
11193 function calls are special in any way. So this function may not
11194 notice that an expression involving an inferior function call
11195 can't be watched with hardware watchpoints. FIXME. */
11196 for (; v; v = value_next (v))
11197 {
11198 if (VALUE_LVAL (v) == lval_memory)
11199 {
11200 if (v != head && value_lazy (v))
11201 /* A lazy memory lvalue in the chain is one that GDB never
11202 needed to fetch; we either just used its address (e.g.,
11203 `a' in `a.b') or we never needed it at all (e.g., `a'
11204 in `a,b'). This doesn't apply to HEAD; if that is
11205 lazy then it was not readable, but watch it anyway. */
11206 ;
11207 else
11208 {
11209 /* Ahh, memory we actually used! Check if we can cover
11210 it with hardware watchpoints. */
11211 struct type *vtype = check_typedef (value_type (v));
11212
11213 /* We only watch structs and arrays if user asked for it
11214 explicitly, never if they just happen to appear in a
11215 middle of some value chain. */
11216 if (v == head
11217 || (TYPE_CODE (vtype) != TYPE_CODE_STRUCT
11218 && TYPE_CODE (vtype) != TYPE_CODE_ARRAY))
11219 {
11220 CORE_ADDR vaddr = value_address (v);
11221 int len;
11222 int num_regs;
11223
11224 len = (target_exact_watchpoints
11225 && is_scalar_type_recursive (vtype))?
11226 1 : TYPE_LENGTH (value_type (v));
11227
11228 num_regs = target_region_ok_for_hw_watchpoint (vaddr, len);
11229 if (!num_regs)
11230 return 0;
11231 else
11232 found_memory_cnt += num_regs;
11233 }
11234 }
11235 }
11236 else if (VALUE_LVAL (v) != not_lval
11237 && deprecated_value_modifiable (v) == 0)
11238 return 0; /* These are values from the history (e.g., $1). */
11239 else if (VALUE_LVAL (v) == lval_register)
11240 return 0; /* Cannot watch a register with a HW watchpoint. */
11241 }
11242
11243 /* The expression itself looks suitable for using a hardware
11244 watchpoint, but give the target machine a chance to reject it. */
11245 return found_memory_cnt;
11246 }
11247
11248 void
11249 watch_command_wrapper (char *arg, int from_tty, int internal)
11250 {
11251 watch_command_1 (arg, hw_write, from_tty, 0, internal);
11252 }
11253
11254 /* A helper function that looks for the "-location" argument and then
11255 calls watch_command_1. */
11256
11257 static void
11258 watch_maybe_just_location (char *arg, int accessflag, int from_tty)
11259 {
11260 int just_location = 0;
11261
11262 if (arg
11263 && (check_for_argument (&arg, "-location", sizeof ("-location") - 1)
11264 || check_for_argument (&arg, "-l", sizeof ("-l") - 1)))
11265 {
11266 arg = skip_spaces (arg);
11267 just_location = 1;
11268 }
11269
11270 watch_command_1 (arg, accessflag, from_tty, just_location, 0);
11271 }
11272
11273 static void
11274 watch_command (char *arg, int from_tty)
11275 {
11276 watch_maybe_just_location (arg, hw_write, from_tty);
11277 }
11278
11279 void
11280 rwatch_command_wrapper (char *arg, int from_tty, int internal)
11281 {
11282 watch_command_1 (arg, hw_read, from_tty, 0, internal);
11283 }
11284
11285 static void
11286 rwatch_command (char *arg, int from_tty)
11287 {
11288 watch_maybe_just_location (arg, hw_read, from_tty);
11289 }
11290
11291 void
11292 awatch_command_wrapper (char *arg, int from_tty, int internal)
11293 {
11294 watch_command_1 (arg, hw_access, from_tty, 0, internal);
11295 }
11296
11297 static void
11298 awatch_command (char *arg, int from_tty)
11299 {
11300 watch_maybe_just_location (arg, hw_access, from_tty);
11301 }
11302 \f
11303
11304 /* Helper routines for the until_command routine in infcmd.c. Here
11305 because it uses the mechanisms of breakpoints. */
11306
11307 struct until_break_command_continuation_args
11308 {
11309 struct breakpoint *breakpoint;
11310 struct breakpoint *breakpoint2;
11311 int thread_num;
11312 };
11313
11314 /* This function is called by fetch_inferior_event via the
11315 cmd_continuation pointer, to complete the until command. It takes
11316 care of cleaning up the temporary breakpoints set up by the until
11317 command. */
11318 static void
11319 until_break_command_continuation (void *arg, int err)
11320 {
11321 struct until_break_command_continuation_args *a = arg;
11322
11323 delete_breakpoint (a->breakpoint);
11324 if (a->breakpoint2)
11325 delete_breakpoint (a->breakpoint2);
11326 delete_longjmp_breakpoint (a->thread_num);
11327 }
11328
11329 void
11330 until_break_command (char *arg, int from_tty, int anywhere)
11331 {
11332 struct symtabs_and_lines sals;
11333 struct symtab_and_line sal;
11334 struct frame_info *frame;
11335 struct gdbarch *frame_gdbarch;
11336 struct frame_id stack_frame_id;
11337 struct frame_id caller_frame_id;
11338 struct breakpoint *breakpoint;
11339 struct breakpoint *breakpoint2 = NULL;
11340 struct cleanup *old_chain;
11341 int thread;
11342 struct thread_info *tp;
11343
11344 clear_proceed_status ();
11345
11346 /* Set a breakpoint where the user wants it and at return from
11347 this function. */
11348
11349 if (last_displayed_sal_is_valid ())
11350 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11351 get_last_displayed_symtab (),
11352 get_last_displayed_line ());
11353 else
11354 sals = decode_line_1 (&arg, DECODE_LINE_FUNFIRSTLINE,
11355 (struct symtab *) NULL, 0);
11356
11357 if (sals.nelts != 1)
11358 error (_("Couldn't get information on specified line."));
11359
11360 sal = sals.sals[0];
11361 xfree (sals.sals); /* malloc'd, so freed. */
11362
11363 if (*arg)
11364 error (_("Junk at end of arguments."));
11365
11366 resolve_sal_pc (&sal);
11367
11368 tp = inferior_thread ();
11369 thread = tp->num;
11370
11371 old_chain = make_cleanup (null_cleanup, NULL);
11372
11373 /* Note linespec handling above invalidates the frame chain.
11374 Installing a breakpoint also invalidates the frame chain (as it
11375 may need to switch threads), so do any frame handling before
11376 that. */
11377
11378 frame = get_selected_frame (NULL);
11379 frame_gdbarch = get_frame_arch (frame);
11380 stack_frame_id = get_stack_frame_id (frame);
11381 caller_frame_id = frame_unwind_caller_id (frame);
11382
11383 /* Keep within the current frame, or in frames called by the current
11384 one. */
11385
11386 if (frame_id_p (caller_frame_id))
11387 {
11388 struct symtab_and_line sal2;
11389
11390 sal2 = find_pc_line (frame_unwind_caller_pc (frame), 0);
11391 sal2.pc = frame_unwind_caller_pc (frame);
11392 breakpoint2 = set_momentary_breakpoint (frame_unwind_caller_arch (frame),
11393 sal2,
11394 caller_frame_id,
11395 bp_until);
11396 make_cleanup_delete_breakpoint (breakpoint2);
11397
11398 set_longjmp_breakpoint (tp, caller_frame_id);
11399 make_cleanup (delete_longjmp_breakpoint_cleanup, &thread);
11400 }
11401
11402 /* set_momentary_breakpoint could invalidate FRAME. */
11403 frame = NULL;
11404
11405 if (anywhere)
11406 /* If the user told us to continue until a specified location,
11407 we don't specify a frame at which we need to stop. */
11408 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11409 null_frame_id, bp_until);
11410 else
11411 /* Otherwise, specify the selected frame, because we want to stop
11412 only at the very same frame. */
11413 breakpoint = set_momentary_breakpoint (frame_gdbarch, sal,
11414 stack_frame_id, bp_until);
11415 make_cleanup_delete_breakpoint (breakpoint);
11416
11417 proceed (-1, GDB_SIGNAL_DEFAULT, 0);
11418
11419 /* If we are running asynchronously, and proceed call above has
11420 actually managed to start the target, arrange for breakpoints to
11421 be deleted when the target stops. Otherwise, we're already
11422 stopped and delete breakpoints via cleanup chain. */
11423
11424 if (target_can_async_p () && is_running (inferior_ptid))
11425 {
11426 struct until_break_command_continuation_args *args;
11427 args = xmalloc (sizeof (*args));
11428
11429 args->breakpoint = breakpoint;
11430 args->breakpoint2 = breakpoint2;
11431 args->thread_num = thread;
11432
11433 discard_cleanups (old_chain);
11434 add_continuation (inferior_thread (),
11435 until_break_command_continuation, args,
11436 xfree);
11437 }
11438 else
11439 do_cleanups (old_chain);
11440 }
11441
11442 /* This function attempts to parse an optional "if <cond>" clause
11443 from the arg string. If one is not found, it returns NULL.
11444
11445 Else, it returns a pointer to the condition string. (It does not
11446 attempt to evaluate the string against a particular block.) And,
11447 it updates arg to point to the first character following the parsed
11448 if clause in the arg string. */
11449
11450 char *
11451 ep_parse_optional_if_clause (char **arg)
11452 {
11453 char *cond_string;
11454
11455 if (((*arg)[0] != 'i') || ((*arg)[1] != 'f') || !isspace ((*arg)[2]))
11456 return NULL;
11457
11458 /* Skip the "if" keyword. */
11459 (*arg) += 2;
11460
11461 /* Skip any extra leading whitespace, and record the start of the
11462 condition string. */
11463 *arg = skip_spaces (*arg);
11464 cond_string = *arg;
11465
11466 /* Assume that the condition occupies the remainder of the arg
11467 string. */
11468 (*arg) += strlen (cond_string);
11469
11470 return cond_string;
11471 }
11472
11473 /* Commands to deal with catching events, such as signals, exceptions,
11474 process start/exit, etc. */
11475
11476 typedef enum
11477 {
11478 catch_fork_temporary, catch_vfork_temporary,
11479 catch_fork_permanent, catch_vfork_permanent
11480 }
11481 catch_fork_kind;
11482
11483 static void
11484 catch_fork_command_1 (char *arg, int from_tty,
11485 struct cmd_list_element *command)
11486 {
11487 struct gdbarch *gdbarch = get_current_arch ();
11488 char *cond_string = NULL;
11489 catch_fork_kind fork_kind;
11490 int tempflag;
11491
11492 fork_kind = (catch_fork_kind) (uintptr_t) get_cmd_context (command);
11493 tempflag = (fork_kind == catch_fork_temporary
11494 || fork_kind == catch_vfork_temporary);
11495
11496 if (!arg)
11497 arg = "";
11498 arg = skip_spaces (arg);
11499
11500 /* The allowed syntax is:
11501 catch [v]fork
11502 catch [v]fork if <cond>
11503
11504 First, check if there's an if clause. */
11505 cond_string = ep_parse_optional_if_clause (&arg);
11506
11507 if ((*arg != '\0') && !isspace (*arg))
11508 error (_("Junk at end of arguments."));
11509
11510 /* If this target supports it, create a fork or vfork catchpoint
11511 and enable reporting of such events. */
11512 switch (fork_kind)
11513 {
11514 case catch_fork_temporary:
11515 case catch_fork_permanent:
11516 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11517 &catch_fork_breakpoint_ops);
11518 break;
11519 case catch_vfork_temporary:
11520 case catch_vfork_permanent:
11521 create_fork_vfork_event_catchpoint (gdbarch, tempflag, cond_string,
11522 &catch_vfork_breakpoint_ops);
11523 break;
11524 default:
11525 error (_("unsupported or unknown fork kind; cannot catch it"));
11526 break;
11527 }
11528 }
11529
11530 static void
11531 catch_exec_command_1 (char *arg, int from_tty,
11532 struct cmd_list_element *command)
11533 {
11534 struct exec_catchpoint *c;
11535 struct gdbarch *gdbarch = get_current_arch ();
11536 int tempflag;
11537 char *cond_string = NULL;
11538
11539 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11540
11541 if (!arg)
11542 arg = "";
11543 arg = skip_spaces (arg);
11544
11545 /* The allowed syntax is:
11546 catch exec
11547 catch exec if <cond>
11548
11549 First, check if there's an if clause. */
11550 cond_string = ep_parse_optional_if_clause (&arg);
11551
11552 if ((*arg != '\0') && !isspace (*arg))
11553 error (_("Junk at end of arguments."));
11554
11555 c = XNEW (struct exec_catchpoint);
11556 init_catchpoint (&c->base, gdbarch, tempflag, cond_string,
11557 &catch_exec_breakpoint_ops);
11558 c->exec_pathname = NULL;
11559
11560 install_breakpoint (0, &c->base, 1);
11561 }
11562
11563 void
11564 init_ada_exception_breakpoint (struct breakpoint *b,
11565 struct gdbarch *gdbarch,
11566 struct symtab_and_line sal,
11567 char *addr_string,
11568 const struct breakpoint_ops *ops,
11569 int tempflag,
11570 int from_tty)
11571 {
11572 if (from_tty)
11573 {
11574 struct gdbarch *loc_gdbarch = get_sal_arch (sal);
11575 if (!loc_gdbarch)
11576 loc_gdbarch = gdbarch;
11577
11578 describe_other_breakpoints (loc_gdbarch,
11579 sal.pspace, sal.pc, sal.section, -1);
11580 /* FIXME: brobecker/2006-12-28: Actually, re-implement a special
11581 version for exception catchpoints, because two catchpoints
11582 used for different exception names will use the same address.
11583 In this case, a "breakpoint ... also set at..." warning is
11584 unproductive. Besides, the warning phrasing is also a bit
11585 inappropriate, we should use the word catchpoint, and tell
11586 the user what type of catchpoint it is. The above is good
11587 enough for now, though. */
11588 }
11589
11590 init_raw_breakpoint (b, gdbarch, sal, bp_breakpoint, ops);
11591
11592 b->enable_state = bp_enabled;
11593 b->disposition = tempflag ? disp_del : disp_donttouch;
11594 b->addr_string = addr_string;
11595 b->language = language_ada;
11596 }
11597
11598 /* Splits the argument using space as delimiter. Returns an xmalloc'd
11599 filter list, or NULL if no filtering is required. */
11600 static VEC(int) *
11601 catch_syscall_split_args (char *arg)
11602 {
11603 VEC(int) *result = NULL;
11604 struct cleanup *cleanup = make_cleanup (VEC_cleanup (int), &result);
11605
11606 while (*arg != '\0')
11607 {
11608 int i, syscall_number;
11609 char *endptr;
11610 char cur_name[128];
11611 struct syscall s;
11612
11613 /* Skip whitespace. */
11614 arg = skip_spaces (arg);
11615
11616 for (i = 0; i < 127 && arg[i] && !isspace (arg[i]); ++i)
11617 cur_name[i] = arg[i];
11618 cur_name[i] = '\0';
11619 arg += i;
11620
11621 /* Check if the user provided a syscall name or a number. */
11622 syscall_number = (int) strtol (cur_name, &endptr, 0);
11623 if (*endptr == '\0')
11624 get_syscall_by_number (syscall_number, &s);
11625 else
11626 {
11627 /* We have a name. Let's check if it's valid and convert it
11628 to a number. */
11629 get_syscall_by_name (cur_name, &s);
11630
11631 if (s.number == UNKNOWN_SYSCALL)
11632 /* Here we have to issue an error instead of a warning,
11633 because GDB cannot do anything useful if there's no
11634 syscall number to be caught. */
11635 error (_("Unknown syscall name '%s'."), cur_name);
11636 }
11637
11638 /* Ok, it's valid. */
11639 VEC_safe_push (int, result, s.number);
11640 }
11641
11642 discard_cleanups (cleanup);
11643 return result;
11644 }
11645
11646 /* Implement the "catch syscall" command. */
11647
11648 static void
11649 catch_syscall_command_1 (char *arg, int from_tty,
11650 struct cmd_list_element *command)
11651 {
11652 int tempflag;
11653 VEC(int) *filter;
11654 struct syscall s;
11655 struct gdbarch *gdbarch = get_current_arch ();
11656
11657 /* Checking if the feature if supported. */
11658 if (gdbarch_get_syscall_number_p (gdbarch) == 0)
11659 error (_("The feature 'catch syscall' is not supported on \
11660 this architecture yet."));
11661
11662 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
11663
11664 arg = skip_spaces (arg);
11665
11666 /* We need to do this first "dummy" translation in order
11667 to get the syscall XML file loaded or, most important,
11668 to display a warning to the user if there's no XML file
11669 for his/her architecture. */
11670 get_syscall_by_number (0, &s);
11671
11672 /* The allowed syntax is:
11673 catch syscall
11674 catch syscall <name | number> [<name | number> ... <name | number>]
11675
11676 Let's check if there's a syscall name. */
11677
11678 if (arg != NULL)
11679 filter = catch_syscall_split_args (arg);
11680 else
11681 filter = NULL;
11682
11683 create_syscall_event_catchpoint (tempflag, filter,
11684 &catch_syscall_breakpoint_ops);
11685 }
11686
11687 static void
11688 catch_command (char *arg, int from_tty)
11689 {
11690 error (_("Catch requires an event name."));
11691 }
11692 \f
11693
11694 static void
11695 tcatch_command (char *arg, int from_tty)
11696 {
11697 error (_("Catch requires an event name."));
11698 }
11699
11700 /* A qsort comparison function that sorts breakpoints in order. */
11701
11702 static int
11703 compare_breakpoints (const void *a, const void *b)
11704 {
11705 const breakpoint_p *ba = a;
11706 uintptr_t ua = (uintptr_t) *ba;
11707 const breakpoint_p *bb = b;
11708 uintptr_t ub = (uintptr_t) *bb;
11709
11710 if ((*ba)->number < (*bb)->number)
11711 return -1;
11712 else if ((*ba)->number > (*bb)->number)
11713 return 1;
11714
11715 /* Now sort by address, in case we see, e..g, two breakpoints with
11716 the number 0. */
11717 if (ua < ub)
11718 return -1;
11719 return ua > ub ? 1 : 0;
11720 }
11721
11722 /* Delete breakpoints by address or line. */
11723
11724 static void
11725 clear_command (char *arg, int from_tty)
11726 {
11727 struct breakpoint *b, *prev;
11728 VEC(breakpoint_p) *found = 0;
11729 int ix;
11730 int default_match;
11731 struct symtabs_and_lines sals;
11732 struct symtab_and_line sal;
11733 int i;
11734 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
11735
11736 if (arg)
11737 {
11738 sals = decode_line_with_current_source (arg,
11739 (DECODE_LINE_FUNFIRSTLINE
11740 | DECODE_LINE_LIST_MODE));
11741 make_cleanup (xfree, sals.sals);
11742 default_match = 0;
11743 }
11744 else
11745 {
11746 sals.sals = (struct symtab_and_line *)
11747 xmalloc (sizeof (struct symtab_and_line));
11748 make_cleanup (xfree, sals.sals);
11749 init_sal (&sal); /* Initialize to zeroes. */
11750
11751 /* Set sal's line, symtab, pc, and pspace to the values
11752 corresponding to the last call to print_frame_info. If the
11753 codepoint is not valid, this will set all the fields to 0. */
11754 get_last_displayed_sal (&sal);
11755 if (sal.symtab == 0)
11756 error (_("No source file specified."));
11757
11758 sals.sals[0] = sal;
11759 sals.nelts = 1;
11760
11761 default_match = 1;
11762 }
11763
11764 /* We don't call resolve_sal_pc here. That's not as bad as it
11765 seems, because all existing breakpoints typically have both
11766 file/line and pc set. So, if clear is given file/line, we can
11767 match this to existing breakpoint without obtaining pc at all.
11768
11769 We only support clearing given the address explicitly
11770 present in breakpoint table. Say, we've set breakpoint
11771 at file:line. There were several PC values for that file:line,
11772 due to optimization, all in one block.
11773
11774 We've picked one PC value. If "clear" is issued with another
11775 PC corresponding to the same file:line, the breakpoint won't
11776 be cleared. We probably can still clear the breakpoint, but
11777 since the other PC value is never presented to user, user
11778 can only find it by guessing, and it does not seem important
11779 to support that. */
11780
11781 /* For each line spec given, delete bps which correspond to it. Do
11782 it in two passes, solely to preserve the current behavior that
11783 from_tty is forced true if we delete more than one
11784 breakpoint. */
11785
11786 found = NULL;
11787 make_cleanup (VEC_cleanup (breakpoint_p), &found);
11788 for (i = 0; i < sals.nelts; i++)
11789 {
11790 const char *sal_fullname;
11791
11792 /* If exact pc given, clear bpts at that pc.
11793 If line given (pc == 0), clear all bpts on specified line.
11794 If defaulting, clear all bpts on default line
11795 or at default pc.
11796
11797 defaulting sal.pc != 0 tests to do
11798
11799 0 1 pc
11800 1 1 pc _and_ line
11801 0 0 line
11802 1 0 <can't happen> */
11803
11804 sal = sals.sals[i];
11805 sal_fullname = (sal.symtab == NULL
11806 ? NULL : symtab_to_fullname (sal.symtab));
11807
11808 /* Find all matching breakpoints and add them to 'found'. */
11809 ALL_BREAKPOINTS (b)
11810 {
11811 int match = 0;
11812 /* Are we going to delete b? */
11813 if (b->type != bp_none && !is_watchpoint (b))
11814 {
11815 struct bp_location *loc = b->loc;
11816 for (; loc; loc = loc->next)
11817 {
11818 /* If the user specified file:line, don't allow a PC
11819 match. This matches historical gdb behavior. */
11820 int pc_match = (!sal.explicit_line
11821 && sal.pc
11822 && (loc->pspace == sal.pspace)
11823 && (loc->address == sal.pc)
11824 && (!section_is_overlay (loc->section)
11825 || loc->section == sal.section));
11826 int line_match = 0;
11827
11828 if ((default_match || sal.explicit_line)
11829 && loc->symtab != NULL
11830 && sal_fullname != NULL
11831 && sal.pspace == loc->pspace
11832 && loc->line_number == sal.line
11833 && filename_cmp (symtab_to_fullname (loc->symtab),
11834 sal_fullname) == 0)
11835 line_match = 1;
11836
11837 if (pc_match || line_match)
11838 {
11839 match = 1;
11840 break;
11841 }
11842 }
11843 }
11844
11845 if (match)
11846 VEC_safe_push(breakpoint_p, found, b);
11847 }
11848 }
11849
11850 /* Now go thru the 'found' chain and delete them. */
11851 if (VEC_empty(breakpoint_p, found))
11852 {
11853 if (arg)
11854 error (_("No breakpoint at %s."), arg);
11855 else
11856 error (_("No breakpoint at this line."));
11857 }
11858
11859 /* Remove duplicates from the vec. */
11860 qsort (VEC_address (breakpoint_p, found),
11861 VEC_length (breakpoint_p, found),
11862 sizeof (breakpoint_p),
11863 compare_breakpoints);
11864 prev = VEC_index (breakpoint_p, found, 0);
11865 for (ix = 1; VEC_iterate (breakpoint_p, found, ix, b); ++ix)
11866 {
11867 if (b == prev)
11868 {
11869 VEC_ordered_remove (breakpoint_p, found, ix);
11870 --ix;
11871 }
11872 }
11873
11874 if (VEC_length(breakpoint_p, found) > 1)
11875 from_tty = 1; /* Always report if deleted more than one. */
11876 if (from_tty)
11877 {
11878 if (VEC_length(breakpoint_p, found) == 1)
11879 printf_unfiltered (_("Deleted breakpoint "));
11880 else
11881 printf_unfiltered (_("Deleted breakpoints "));
11882 }
11883
11884 for (ix = 0; VEC_iterate(breakpoint_p, found, ix, b); ix++)
11885 {
11886 if (from_tty)
11887 printf_unfiltered ("%d ", b->number);
11888 delete_breakpoint (b);
11889 }
11890 if (from_tty)
11891 putchar_unfiltered ('\n');
11892
11893 do_cleanups (cleanups);
11894 }
11895 \f
11896 /* Delete breakpoint in BS if they are `delete' breakpoints and
11897 all breakpoints that are marked for deletion, whether hit or not.
11898 This is called after any breakpoint is hit, or after errors. */
11899
11900 void
11901 breakpoint_auto_delete (bpstat bs)
11902 {
11903 struct breakpoint *b, *b_tmp;
11904
11905 for (; bs; bs = bs->next)
11906 if (bs->breakpoint_at
11907 && bs->breakpoint_at->disposition == disp_del
11908 && bs->stop)
11909 delete_breakpoint (bs->breakpoint_at);
11910
11911 ALL_BREAKPOINTS_SAFE (b, b_tmp)
11912 {
11913 if (b->disposition == disp_del_at_next_stop)
11914 delete_breakpoint (b);
11915 }
11916 }
11917
11918 /* A comparison function for bp_location AP and BP being interfaced to
11919 qsort. Sort elements primarily by their ADDRESS (no matter what
11920 does breakpoint_address_is_meaningful say for its OWNER),
11921 secondarily by ordering first bp_permanent OWNERed elements and
11922 terciarily just ensuring the array is sorted stable way despite
11923 qsort being an unstable algorithm. */
11924
11925 static int
11926 bp_location_compare (const void *ap, const void *bp)
11927 {
11928 struct bp_location *a = *(void **) ap;
11929 struct bp_location *b = *(void **) bp;
11930 /* A and B come from existing breakpoints having non-NULL OWNER. */
11931 int a_perm = a->owner->enable_state == bp_permanent;
11932 int b_perm = b->owner->enable_state == bp_permanent;
11933
11934 if (a->address != b->address)
11935 return (a->address > b->address) - (a->address < b->address);
11936
11937 /* Sort locations at the same address by their pspace number, keeping
11938 locations of the same inferior (in a multi-inferior environment)
11939 grouped. */
11940
11941 if (a->pspace->num != b->pspace->num)
11942 return ((a->pspace->num > b->pspace->num)
11943 - (a->pspace->num < b->pspace->num));
11944
11945 /* Sort permanent breakpoints first. */
11946 if (a_perm != b_perm)
11947 return (a_perm < b_perm) - (a_perm > b_perm);
11948
11949 /* Make the internal GDB representation stable across GDB runs
11950 where A and B memory inside GDB can differ. Breakpoint locations of
11951 the same type at the same address can be sorted in arbitrary order. */
11952
11953 if (a->owner->number != b->owner->number)
11954 return ((a->owner->number > b->owner->number)
11955 - (a->owner->number < b->owner->number));
11956
11957 return (a > b) - (a < b);
11958 }
11959
11960 /* Set bp_location_placed_address_before_address_max and
11961 bp_location_shadow_len_after_address_max according to the current
11962 content of the bp_location array. */
11963
11964 static void
11965 bp_location_target_extensions_update (void)
11966 {
11967 struct bp_location *bl, **blp_tmp;
11968
11969 bp_location_placed_address_before_address_max = 0;
11970 bp_location_shadow_len_after_address_max = 0;
11971
11972 ALL_BP_LOCATIONS (bl, blp_tmp)
11973 {
11974 CORE_ADDR start, end, addr;
11975
11976 if (!bp_location_has_shadow (bl))
11977 continue;
11978
11979 start = bl->target_info.placed_address;
11980 end = start + bl->target_info.shadow_len;
11981
11982 gdb_assert (bl->address >= start);
11983 addr = bl->address - start;
11984 if (addr > bp_location_placed_address_before_address_max)
11985 bp_location_placed_address_before_address_max = addr;
11986
11987 /* Zero SHADOW_LEN would not pass bp_location_has_shadow. */
11988
11989 gdb_assert (bl->address < end);
11990 addr = end - bl->address;
11991 if (addr > bp_location_shadow_len_after_address_max)
11992 bp_location_shadow_len_after_address_max = addr;
11993 }
11994 }
11995
11996 /* Download tracepoint locations if they haven't been. */
11997
11998 static void
11999 download_tracepoint_locations (void)
12000 {
12001 struct breakpoint *b;
12002 struct cleanup *old_chain;
12003
12004 if (!target_can_download_tracepoint ())
12005 return;
12006
12007 old_chain = save_current_space_and_thread ();
12008
12009 ALL_TRACEPOINTS (b)
12010 {
12011 struct bp_location *bl;
12012 struct tracepoint *t;
12013 int bp_location_downloaded = 0;
12014
12015 if ((b->type == bp_fast_tracepoint
12016 ? !may_insert_fast_tracepoints
12017 : !may_insert_tracepoints))
12018 continue;
12019
12020 for (bl = b->loc; bl; bl = bl->next)
12021 {
12022 /* In tracepoint, locations are _never_ duplicated, so
12023 should_be_inserted is equivalent to
12024 unduplicated_should_be_inserted. */
12025 if (!should_be_inserted (bl) || bl->inserted)
12026 continue;
12027
12028 switch_to_program_space_and_thread (bl->pspace);
12029
12030 target_download_tracepoint (bl);
12031
12032 bl->inserted = 1;
12033 bp_location_downloaded = 1;
12034 }
12035 t = (struct tracepoint *) b;
12036 t->number_on_target = b->number;
12037 if (bp_location_downloaded)
12038 observer_notify_breakpoint_modified (b);
12039 }
12040
12041 do_cleanups (old_chain);
12042 }
12043
12044 /* Swap the insertion/duplication state between two locations. */
12045
12046 static void
12047 swap_insertion (struct bp_location *left, struct bp_location *right)
12048 {
12049 const int left_inserted = left->inserted;
12050 const int left_duplicate = left->duplicate;
12051 const int left_needs_update = left->needs_update;
12052 const struct bp_target_info left_target_info = left->target_info;
12053
12054 /* Locations of tracepoints can never be duplicated. */
12055 if (is_tracepoint (left->owner))
12056 gdb_assert (!left->duplicate);
12057 if (is_tracepoint (right->owner))
12058 gdb_assert (!right->duplicate);
12059
12060 left->inserted = right->inserted;
12061 left->duplicate = right->duplicate;
12062 left->needs_update = right->needs_update;
12063 left->target_info = right->target_info;
12064 right->inserted = left_inserted;
12065 right->duplicate = left_duplicate;
12066 right->needs_update = left_needs_update;
12067 right->target_info = left_target_info;
12068 }
12069
12070 /* Force the re-insertion of the locations at ADDRESS. This is called
12071 once a new/deleted/modified duplicate location is found and we are evaluating
12072 conditions on the target's side. Such conditions need to be updated on
12073 the target. */
12074
12075 static void
12076 force_breakpoint_reinsertion (struct bp_location *bl)
12077 {
12078 struct bp_location **locp = NULL, **loc2p;
12079 struct bp_location *loc;
12080 CORE_ADDR address = 0;
12081 int pspace_num;
12082
12083 address = bl->address;
12084 pspace_num = bl->pspace->num;
12085
12086 /* This is only meaningful if the target is
12087 evaluating conditions and if the user has
12088 opted for condition evaluation on the target's
12089 side. */
12090 if (gdb_evaluates_breakpoint_condition_p ()
12091 || !target_supports_evaluation_of_breakpoint_conditions ())
12092 return;
12093
12094 /* Flag all breakpoint locations with this address and
12095 the same program space as the location
12096 as "its condition has changed". We need to
12097 update the conditions on the target's side. */
12098 ALL_BP_LOCATIONS_AT_ADDR (loc2p, locp, address)
12099 {
12100 loc = *loc2p;
12101
12102 if (!is_breakpoint (loc->owner)
12103 || pspace_num != loc->pspace->num)
12104 continue;
12105
12106 /* Flag the location appropriately. We use a different state to
12107 let everyone know that we already updated the set of locations
12108 with addr bl->address and program space bl->pspace. This is so
12109 we don't have to keep calling these functions just to mark locations
12110 that have already been marked. */
12111 loc->condition_changed = condition_updated;
12112
12113 /* Free the agent expression bytecode as well. We will compute
12114 it later on. */
12115 if (loc->cond_bytecode)
12116 {
12117 free_agent_expr (loc->cond_bytecode);
12118 loc->cond_bytecode = NULL;
12119 }
12120 }
12121 }
12122
12123 /* If SHOULD_INSERT is false, do not insert any breakpoint locations
12124 into the inferior, only remove already-inserted locations that no
12125 longer should be inserted. Functions that delete a breakpoint or
12126 breakpoints should pass false, so that deleting a breakpoint
12127 doesn't have the side effect of inserting the locations of other
12128 breakpoints that are marked not-inserted, but should_be_inserted
12129 returns true on them.
12130
12131 This behaviour is useful is situations close to tear-down -- e.g.,
12132 after an exec, while the target still has execution, but breakpoint
12133 shadows of the previous executable image should *NOT* be restored
12134 to the new image; or before detaching, where the target still has
12135 execution and wants to delete breakpoints from GDB's lists, and all
12136 breakpoints had already been removed from the inferior. */
12137
12138 static void
12139 update_global_location_list (int should_insert)
12140 {
12141 struct breakpoint *b;
12142 struct bp_location **locp, *loc;
12143 struct cleanup *cleanups;
12144 /* Last breakpoint location address that was marked for update. */
12145 CORE_ADDR last_addr = 0;
12146 /* Last breakpoint location program space that was marked for update. */
12147 int last_pspace_num = -1;
12148
12149 /* Used in the duplicates detection below. When iterating over all
12150 bp_locations, points to the first bp_location of a given address.
12151 Breakpoints and watchpoints of different types are never
12152 duplicates of each other. Keep one pointer for each type of
12153 breakpoint/watchpoint, so we only need to loop over all locations
12154 once. */
12155 struct bp_location *bp_loc_first; /* breakpoint */
12156 struct bp_location *wp_loc_first; /* hardware watchpoint */
12157 struct bp_location *awp_loc_first; /* access watchpoint */
12158 struct bp_location *rwp_loc_first; /* read watchpoint */
12159
12160 /* Saved former bp_location array which we compare against the newly
12161 built bp_location from the current state of ALL_BREAKPOINTS. */
12162 struct bp_location **old_location, **old_locp;
12163 unsigned old_location_count;
12164
12165 old_location = bp_location;
12166 old_location_count = bp_location_count;
12167 bp_location = NULL;
12168 bp_location_count = 0;
12169 cleanups = make_cleanup (xfree, old_location);
12170
12171 ALL_BREAKPOINTS (b)
12172 for (loc = b->loc; loc; loc = loc->next)
12173 bp_location_count++;
12174
12175 bp_location = xmalloc (sizeof (*bp_location) * bp_location_count);
12176 locp = bp_location;
12177 ALL_BREAKPOINTS (b)
12178 for (loc = b->loc; loc; loc = loc->next)
12179 *locp++ = loc;
12180 qsort (bp_location, bp_location_count, sizeof (*bp_location),
12181 bp_location_compare);
12182
12183 bp_location_target_extensions_update ();
12184
12185 /* Identify bp_location instances that are no longer present in the
12186 new list, and therefore should be freed. Note that it's not
12187 necessary that those locations should be removed from inferior --
12188 if there's another location at the same address (previously
12189 marked as duplicate), we don't need to remove/insert the
12190 location.
12191
12192 LOCP is kept in sync with OLD_LOCP, each pointing to the current
12193 and former bp_location array state respectively. */
12194
12195 locp = bp_location;
12196 for (old_locp = old_location; old_locp < old_location + old_location_count;
12197 old_locp++)
12198 {
12199 struct bp_location *old_loc = *old_locp;
12200 struct bp_location **loc2p;
12201
12202 /* Tells if 'old_loc' is found among the new locations. If
12203 not, we have to free it. */
12204 int found_object = 0;
12205 /* Tells if the location should remain inserted in the target. */
12206 int keep_in_target = 0;
12207 int removed = 0;
12208
12209 /* Skip LOCP entries which will definitely never be needed.
12210 Stop either at or being the one matching OLD_LOC. */
12211 while (locp < bp_location + bp_location_count
12212 && (*locp)->address < old_loc->address)
12213 locp++;
12214
12215 for (loc2p = locp;
12216 (loc2p < bp_location + bp_location_count
12217 && (*loc2p)->address == old_loc->address);
12218 loc2p++)
12219 {
12220 /* Check if this is a new/duplicated location or a duplicated
12221 location that had its condition modified. If so, we want to send
12222 its condition to the target if evaluation of conditions is taking
12223 place there. */
12224 if ((*loc2p)->condition_changed == condition_modified
12225 && (last_addr != old_loc->address
12226 || last_pspace_num != old_loc->pspace->num))
12227 {
12228 force_breakpoint_reinsertion (*loc2p);
12229 last_pspace_num = old_loc->pspace->num;
12230 }
12231
12232 if (*loc2p == old_loc)
12233 found_object = 1;
12234 }
12235
12236 /* We have already handled this address, update it so that we don't
12237 have to go through updates again. */
12238 last_addr = old_loc->address;
12239
12240 /* Target-side condition evaluation: Handle deleted locations. */
12241 if (!found_object)
12242 force_breakpoint_reinsertion (old_loc);
12243
12244 /* If this location is no longer present, and inserted, look if
12245 there's maybe a new location at the same address. If so,
12246 mark that one inserted, and don't remove this one. This is
12247 needed so that we don't have a time window where a breakpoint
12248 at certain location is not inserted. */
12249
12250 if (old_loc->inserted)
12251 {
12252 /* If the location is inserted now, we might have to remove
12253 it. */
12254
12255 if (found_object && should_be_inserted (old_loc))
12256 {
12257 /* The location is still present in the location list,
12258 and still should be inserted. Don't do anything. */
12259 keep_in_target = 1;
12260 }
12261 else
12262 {
12263 /* This location still exists, but it won't be kept in the
12264 target since it may have been disabled. We proceed to
12265 remove its target-side condition. */
12266
12267 /* The location is either no longer present, or got
12268 disabled. See if there's another location at the
12269 same address, in which case we don't need to remove
12270 this one from the target. */
12271
12272 /* OLD_LOC comes from existing struct breakpoint. */
12273 if (breakpoint_address_is_meaningful (old_loc->owner))
12274 {
12275 for (loc2p = locp;
12276 (loc2p < bp_location + bp_location_count
12277 && (*loc2p)->address == old_loc->address);
12278 loc2p++)
12279 {
12280 struct bp_location *loc2 = *loc2p;
12281
12282 if (breakpoint_locations_match (loc2, old_loc))
12283 {
12284 /* Read watchpoint locations are switched to
12285 access watchpoints, if the former are not
12286 supported, but the latter are. */
12287 if (is_hardware_watchpoint (old_loc->owner))
12288 {
12289 gdb_assert (is_hardware_watchpoint (loc2->owner));
12290 loc2->watchpoint_type = old_loc->watchpoint_type;
12291 }
12292
12293 /* loc2 is a duplicated location. We need to check
12294 if it should be inserted in case it will be
12295 unduplicated. */
12296 if (loc2 != old_loc
12297 && unduplicated_should_be_inserted (loc2))
12298 {
12299 swap_insertion (old_loc, loc2);
12300 keep_in_target = 1;
12301 break;
12302 }
12303 }
12304 }
12305 }
12306 }
12307
12308 if (!keep_in_target)
12309 {
12310 if (remove_breakpoint (old_loc, mark_uninserted))
12311 {
12312 /* This is just about all we can do. We could keep
12313 this location on the global list, and try to
12314 remove it next time, but there's no particular
12315 reason why we will succeed next time.
12316
12317 Note that at this point, old_loc->owner is still
12318 valid, as delete_breakpoint frees the breakpoint
12319 only after calling us. */
12320 printf_filtered (_("warning: Error removing "
12321 "breakpoint %d\n"),
12322 old_loc->owner->number);
12323 }
12324 removed = 1;
12325 }
12326 }
12327
12328 if (!found_object)
12329 {
12330 if (removed && non_stop
12331 && breakpoint_address_is_meaningful (old_loc->owner)
12332 && !is_hardware_watchpoint (old_loc->owner))
12333 {
12334 /* This location was removed from the target. In
12335 non-stop mode, a race condition is possible where
12336 we've removed a breakpoint, but stop events for that
12337 breakpoint are already queued and will arrive later.
12338 We apply an heuristic to be able to distinguish such
12339 SIGTRAPs from other random SIGTRAPs: we keep this
12340 breakpoint location for a bit, and will retire it
12341 after we see some number of events. The theory here
12342 is that reporting of events should, "on the average",
12343 be fair, so after a while we'll see events from all
12344 threads that have anything of interest, and no longer
12345 need to keep this breakpoint location around. We
12346 don't hold locations forever so to reduce chances of
12347 mistaking a non-breakpoint SIGTRAP for a breakpoint
12348 SIGTRAP.
12349
12350 The heuristic failing can be disastrous on
12351 decr_pc_after_break targets.
12352
12353 On decr_pc_after_break targets, like e.g., x86-linux,
12354 if we fail to recognize a late breakpoint SIGTRAP,
12355 because events_till_retirement has reached 0 too
12356 soon, we'll fail to do the PC adjustment, and report
12357 a random SIGTRAP to the user. When the user resumes
12358 the inferior, it will most likely immediately crash
12359 with SIGILL/SIGBUS/SIGSEGV, or worse, get silently
12360 corrupted, because of being resumed e.g., in the
12361 middle of a multi-byte instruction, or skipped a
12362 one-byte instruction. This was actually seen happen
12363 on native x86-linux, and should be less rare on
12364 targets that do not support new thread events, like
12365 remote, due to the heuristic depending on
12366 thread_count.
12367
12368 Mistaking a random SIGTRAP for a breakpoint trap
12369 causes similar symptoms (PC adjustment applied when
12370 it shouldn't), but then again, playing with SIGTRAPs
12371 behind the debugger's back is asking for trouble.
12372
12373 Since hardware watchpoint traps are always
12374 distinguishable from other traps, so we don't need to
12375 apply keep hardware watchpoint moribund locations
12376 around. We simply always ignore hardware watchpoint
12377 traps we can no longer explain. */
12378
12379 old_loc->events_till_retirement = 3 * (thread_count () + 1);
12380 old_loc->owner = NULL;
12381
12382 VEC_safe_push (bp_location_p, moribund_locations, old_loc);
12383 }
12384 else
12385 {
12386 old_loc->owner = NULL;
12387 decref_bp_location (&old_loc);
12388 }
12389 }
12390 }
12391
12392 /* Rescan breakpoints at the same address and section, marking the
12393 first one as "first" and any others as "duplicates". This is so
12394 that the bpt instruction is only inserted once. If we have a
12395 permanent breakpoint at the same place as BPT, make that one the
12396 official one, and the rest as duplicates. Permanent breakpoints
12397 are sorted first for the same address.
12398
12399 Do the same for hardware watchpoints, but also considering the
12400 watchpoint's type (regular/access/read) and length. */
12401
12402 bp_loc_first = NULL;
12403 wp_loc_first = NULL;
12404 awp_loc_first = NULL;
12405 rwp_loc_first = NULL;
12406 ALL_BP_LOCATIONS (loc, locp)
12407 {
12408 /* ALL_BP_LOCATIONS bp_location has LOC->OWNER always
12409 non-NULL. */
12410 struct bp_location **loc_first_p;
12411 b = loc->owner;
12412
12413 if (!unduplicated_should_be_inserted (loc)
12414 || !breakpoint_address_is_meaningful (b)
12415 /* Don't detect duplicate for tracepoint locations because they are
12416 never duplicated. See the comments in field `duplicate' of
12417 `struct bp_location'. */
12418 || is_tracepoint (b))
12419 {
12420 /* Clear the condition modification flag. */
12421 loc->condition_changed = condition_unchanged;
12422 continue;
12423 }
12424
12425 /* Permanent breakpoint should always be inserted. */
12426 if (b->enable_state == bp_permanent && ! loc->inserted)
12427 internal_error (__FILE__, __LINE__,
12428 _("allegedly permanent breakpoint is not "
12429 "actually inserted"));
12430
12431 if (b->type == bp_hardware_watchpoint)
12432 loc_first_p = &wp_loc_first;
12433 else if (b->type == bp_read_watchpoint)
12434 loc_first_p = &rwp_loc_first;
12435 else if (b->type == bp_access_watchpoint)
12436 loc_first_p = &awp_loc_first;
12437 else
12438 loc_first_p = &bp_loc_first;
12439
12440 if (*loc_first_p == NULL
12441 || (overlay_debugging && loc->section != (*loc_first_p)->section)
12442 || !breakpoint_locations_match (loc, *loc_first_p))
12443 {
12444 *loc_first_p = loc;
12445 loc->duplicate = 0;
12446
12447 if (is_breakpoint (loc->owner) && loc->condition_changed)
12448 {
12449 loc->needs_update = 1;
12450 /* Clear the condition modification flag. */
12451 loc->condition_changed = condition_unchanged;
12452 }
12453 continue;
12454 }
12455
12456
12457 /* This and the above ensure the invariant that the first location
12458 is not duplicated, and is the inserted one.
12459 All following are marked as duplicated, and are not inserted. */
12460 if (loc->inserted)
12461 swap_insertion (loc, *loc_first_p);
12462 loc->duplicate = 1;
12463
12464 /* Clear the condition modification flag. */
12465 loc->condition_changed = condition_unchanged;
12466
12467 if ((*loc_first_p)->owner->enable_state == bp_permanent && loc->inserted
12468 && b->enable_state != bp_permanent)
12469 internal_error (__FILE__, __LINE__,
12470 _("another breakpoint was inserted on top of "
12471 "a permanent breakpoint"));
12472 }
12473
12474 if (breakpoints_always_inserted_mode ()
12475 && (have_live_inferiors ()
12476 || (gdbarch_has_global_breakpoints (target_gdbarch ()))))
12477 {
12478 if (should_insert)
12479 insert_breakpoint_locations ();
12480 else
12481 {
12482 /* Though should_insert is false, we may need to update conditions
12483 on the target's side if it is evaluating such conditions. We
12484 only update conditions for locations that are marked
12485 "needs_update". */
12486 update_inserted_breakpoint_locations ();
12487 }
12488 }
12489
12490 if (should_insert)
12491 download_tracepoint_locations ();
12492
12493 do_cleanups (cleanups);
12494 }
12495
12496 void
12497 breakpoint_retire_moribund (void)
12498 {
12499 struct bp_location *loc;
12500 int ix;
12501
12502 for (ix = 0; VEC_iterate (bp_location_p, moribund_locations, ix, loc); ++ix)
12503 if (--(loc->events_till_retirement) == 0)
12504 {
12505 decref_bp_location (&loc);
12506 VEC_unordered_remove (bp_location_p, moribund_locations, ix);
12507 --ix;
12508 }
12509 }
12510
12511 static void
12512 update_global_location_list_nothrow (int inserting)
12513 {
12514 volatile struct gdb_exception e;
12515
12516 TRY_CATCH (e, RETURN_MASK_ERROR)
12517 update_global_location_list (inserting);
12518 }
12519
12520 /* Clear BKP from a BPS. */
12521
12522 static void
12523 bpstat_remove_bp_location (bpstat bps, struct breakpoint *bpt)
12524 {
12525 bpstat bs;
12526
12527 for (bs = bps; bs; bs = bs->next)
12528 if (bs->breakpoint_at == bpt)
12529 {
12530 bs->breakpoint_at = NULL;
12531 bs->old_val = NULL;
12532 /* bs->commands will be freed later. */
12533 }
12534 }
12535
12536 /* Callback for iterate_over_threads. */
12537 static int
12538 bpstat_remove_breakpoint_callback (struct thread_info *th, void *data)
12539 {
12540 struct breakpoint *bpt = data;
12541
12542 bpstat_remove_bp_location (th->control.stop_bpstat, bpt);
12543 return 0;
12544 }
12545
12546 /* Helper for breakpoint and tracepoint breakpoint_ops->mention
12547 callbacks. */
12548
12549 static void
12550 say_where (struct breakpoint *b)
12551 {
12552 struct value_print_options opts;
12553
12554 get_user_print_options (&opts);
12555
12556 /* i18n: cagney/2005-02-11: Below needs to be merged into a
12557 single string. */
12558 if (b->loc == NULL)
12559 {
12560 printf_filtered (_(" (%s) pending."), b->addr_string);
12561 }
12562 else
12563 {
12564 if (opts.addressprint || b->loc->symtab == NULL)
12565 {
12566 printf_filtered (" at ");
12567 fputs_filtered (paddress (b->loc->gdbarch, b->loc->address),
12568 gdb_stdout);
12569 }
12570 if (b->loc->symtab != NULL)
12571 {
12572 /* If there is a single location, we can print the location
12573 more nicely. */
12574 if (b->loc->next == NULL)
12575 printf_filtered (": file %s, line %d.",
12576 symtab_to_filename_for_display (b->loc->symtab),
12577 b->loc->line_number);
12578 else
12579 /* This is not ideal, but each location may have a
12580 different file name, and this at least reflects the
12581 real situation somewhat. */
12582 printf_filtered (": %s.", b->addr_string);
12583 }
12584
12585 if (b->loc->next)
12586 {
12587 struct bp_location *loc = b->loc;
12588 int n = 0;
12589 for (; loc; loc = loc->next)
12590 ++n;
12591 printf_filtered (" (%d locations)", n);
12592 }
12593 }
12594 }
12595
12596 /* Default bp_location_ops methods. */
12597
12598 static void
12599 bp_location_dtor (struct bp_location *self)
12600 {
12601 xfree (self->cond);
12602 if (self->cond_bytecode)
12603 free_agent_expr (self->cond_bytecode);
12604 xfree (self->function_name);
12605 }
12606
12607 static const struct bp_location_ops bp_location_ops =
12608 {
12609 bp_location_dtor
12610 };
12611
12612 /* Default breakpoint_ops methods all breakpoint_ops ultimately
12613 inherit from. */
12614
12615 static void
12616 base_breakpoint_dtor (struct breakpoint *self)
12617 {
12618 decref_counted_command_line (&self->commands);
12619 xfree (self->cond_string);
12620 xfree (self->extra_string);
12621 xfree (self->addr_string);
12622 xfree (self->filter);
12623 xfree (self->addr_string_range_end);
12624 }
12625
12626 static struct bp_location *
12627 base_breakpoint_allocate_location (struct breakpoint *self)
12628 {
12629 struct bp_location *loc;
12630
12631 loc = XNEW (struct bp_location);
12632 init_bp_location (loc, &bp_location_ops, self);
12633 return loc;
12634 }
12635
12636 static void
12637 base_breakpoint_re_set (struct breakpoint *b)
12638 {
12639 /* Nothing to re-set. */
12640 }
12641
12642 #define internal_error_pure_virtual_called() \
12643 gdb_assert_not_reached ("pure virtual function called")
12644
12645 static int
12646 base_breakpoint_insert_location (struct bp_location *bl)
12647 {
12648 internal_error_pure_virtual_called ();
12649 }
12650
12651 static int
12652 base_breakpoint_remove_location (struct bp_location *bl)
12653 {
12654 internal_error_pure_virtual_called ();
12655 }
12656
12657 static int
12658 base_breakpoint_breakpoint_hit (const struct bp_location *bl,
12659 struct address_space *aspace,
12660 CORE_ADDR bp_addr,
12661 const struct target_waitstatus *ws)
12662 {
12663 internal_error_pure_virtual_called ();
12664 }
12665
12666 static void
12667 base_breakpoint_check_status (bpstat bs)
12668 {
12669 /* Always stop. */
12670 }
12671
12672 /* A "works_in_software_mode" breakpoint_ops method that just internal
12673 errors. */
12674
12675 static int
12676 base_breakpoint_works_in_software_mode (const struct breakpoint *b)
12677 {
12678 internal_error_pure_virtual_called ();
12679 }
12680
12681 /* A "resources_needed" breakpoint_ops method that just internal
12682 errors. */
12683
12684 static int
12685 base_breakpoint_resources_needed (const struct bp_location *bl)
12686 {
12687 internal_error_pure_virtual_called ();
12688 }
12689
12690 static enum print_stop_action
12691 base_breakpoint_print_it (bpstat bs)
12692 {
12693 internal_error_pure_virtual_called ();
12694 }
12695
12696 static void
12697 base_breakpoint_print_one_detail (const struct breakpoint *self,
12698 struct ui_out *uiout)
12699 {
12700 /* nothing */
12701 }
12702
12703 static void
12704 base_breakpoint_print_mention (struct breakpoint *b)
12705 {
12706 internal_error_pure_virtual_called ();
12707 }
12708
12709 static void
12710 base_breakpoint_print_recreate (struct breakpoint *b, struct ui_file *fp)
12711 {
12712 internal_error_pure_virtual_called ();
12713 }
12714
12715 static void
12716 base_breakpoint_create_sals_from_address (char **arg,
12717 struct linespec_result *canonical,
12718 enum bptype type_wanted,
12719 char *addr_start,
12720 char **copy_arg)
12721 {
12722 internal_error_pure_virtual_called ();
12723 }
12724
12725 static void
12726 base_breakpoint_create_breakpoints_sal (struct gdbarch *gdbarch,
12727 struct linespec_result *c,
12728 struct linespec_sals *lsal,
12729 char *cond_string,
12730 char *extra_string,
12731 enum bptype type_wanted,
12732 enum bpdisp disposition,
12733 int thread,
12734 int task, int ignore_count,
12735 const struct breakpoint_ops *o,
12736 int from_tty, int enabled,
12737 int internal, unsigned flags)
12738 {
12739 internal_error_pure_virtual_called ();
12740 }
12741
12742 static void
12743 base_breakpoint_decode_linespec (struct breakpoint *b, char **s,
12744 struct symtabs_and_lines *sals)
12745 {
12746 internal_error_pure_virtual_called ();
12747 }
12748
12749 /* The default 'explains_signal' method. */
12750
12751 static enum bpstat_signal_value
12752 base_breakpoint_explains_signal (struct breakpoint *b, enum gdb_signal sig)
12753 {
12754 return BPSTAT_SIGNAL_HIDE;
12755 }
12756
12757 /* The default "after_condition_true" method. */
12758
12759 static void
12760 base_breakpoint_after_condition_true (struct bpstats *bs)
12761 {
12762 /* Nothing to do. */
12763 }
12764
12765 struct breakpoint_ops base_breakpoint_ops =
12766 {
12767 base_breakpoint_dtor,
12768 base_breakpoint_allocate_location,
12769 base_breakpoint_re_set,
12770 base_breakpoint_insert_location,
12771 base_breakpoint_remove_location,
12772 base_breakpoint_breakpoint_hit,
12773 base_breakpoint_check_status,
12774 base_breakpoint_resources_needed,
12775 base_breakpoint_works_in_software_mode,
12776 base_breakpoint_print_it,
12777 NULL,
12778 base_breakpoint_print_one_detail,
12779 base_breakpoint_print_mention,
12780 base_breakpoint_print_recreate,
12781 base_breakpoint_create_sals_from_address,
12782 base_breakpoint_create_breakpoints_sal,
12783 base_breakpoint_decode_linespec,
12784 base_breakpoint_explains_signal,
12785 base_breakpoint_after_condition_true,
12786 };
12787
12788 /* Default breakpoint_ops methods. */
12789
12790 static void
12791 bkpt_re_set (struct breakpoint *b)
12792 {
12793 /* FIXME: is this still reachable? */
12794 if (b->addr_string == NULL)
12795 {
12796 /* Anything without a string can't be re-set. */
12797 delete_breakpoint (b);
12798 return;
12799 }
12800
12801 breakpoint_re_set_default (b);
12802 }
12803
12804 static int
12805 bkpt_insert_location (struct bp_location *bl)
12806 {
12807 if (bl->loc_type == bp_loc_hardware_breakpoint)
12808 return target_insert_hw_breakpoint (bl->gdbarch,
12809 &bl->target_info);
12810 else
12811 return target_insert_breakpoint (bl->gdbarch,
12812 &bl->target_info);
12813 }
12814
12815 static int
12816 bkpt_remove_location (struct bp_location *bl)
12817 {
12818 if (bl->loc_type == bp_loc_hardware_breakpoint)
12819 return target_remove_hw_breakpoint (bl->gdbarch, &bl->target_info);
12820 else
12821 return target_remove_breakpoint (bl->gdbarch, &bl->target_info);
12822 }
12823
12824 static int
12825 bkpt_breakpoint_hit (const struct bp_location *bl,
12826 struct address_space *aspace, CORE_ADDR bp_addr,
12827 const struct target_waitstatus *ws)
12828 {
12829 if (ws->kind != TARGET_WAITKIND_STOPPED
12830 || ws->value.sig != GDB_SIGNAL_TRAP)
12831 return 0;
12832
12833 if (!breakpoint_address_match (bl->pspace->aspace, bl->address,
12834 aspace, bp_addr))
12835 return 0;
12836
12837 if (overlay_debugging /* unmapped overlay section */
12838 && section_is_overlay (bl->section)
12839 && !section_is_mapped (bl->section))
12840 return 0;
12841
12842 return 1;
12843 }
12844
12845 static int
12846 bkpt_resources_needed (const struct bp_location *bl)
12847 {
12848 gdb_assert (bl->owner->type == bp_hardware_breakpoint);
12849
12850 return 1;
12851 }
12852
12853 static enum print_stop_action
12854 bkpt_print_it (bpstat bs)
12855 {
12856 struct breakpoint *b;
12857 const struct bp_location *bl;
12858 int bp_temp;
12859 struct ui_out *uiout = current_uiout;
12860
12861 gdb_assert (bs->bp_location_at != NULL);
12862
12863 bl = bs->bp_location_at;
12864 b = bs->breakpoint_at;
12865
12866 bp_temp = b->disposition == disp_del;
12867 if (bl->address != bl->requested_address)
12868 breakpoint_adjustment_warning (bl->requested_address,
12869 bl->address,
12870 b->number, 1);
12871 annotate_breakpoint (b->number);
12872 if (bp_temp)
12873 ui_out_text (uiout, "\nTemporary breakpoint ");
12874 else
12875 ui_out_text (uiout, "\nBreakpoint ");
12876 if (ui_out_is_mi_like_p (uiout))
12877 {
12878 ui_out_field_string (uiout, "reason",
12879 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12880 ui_out_field_string (uiout, "disp", bpdisp_text (b->disposition));
12881 }
12882 ui_out_field_int (uiout, "bkptno", b->number);
12883 ui_out_text (uiout, ", ");
12884
12885 return PRINT_SRC_AND_LOC;
12886 }
12887
12888 static void
12889 bkpt_print_mention (struct breakpoint *b)
12890 {
12891 if (ui_out_is_mi_like_p (current_uiout))
12892 return;
12893
12894 switch (b->type)
12895 {
12896 case bp_breakpoint:
12897 case bp_gnu_ifunc_resolver:
12898 if (b->disposition == disp_del)
12899 printf_filtered (_("Temporary breakpoint"));
12900 else
12901 printf_filtered (_("Breakpoint"));
12902 printf_filtered (_(" %d"), b->number);
12903 if (b->type == bp_gnu_ifunc_resolver)
12904 printf_filtered (_(" at gnu-indirect-function resolver"));
12905 break;
12906 case bp_hardware_breakpoint:
12907 printf_filtered (_("Hardware assisted breakpoint %d"), b->number);
12908 break;
12909 case bp_dprintf:
12910 printf_filtered (_("Dprintf %d"), b->number);
12911 break;
12912 }
12913
12914 say_where (b);
12915 }
12916
12917 static void
12918 bkpt_print_recreate (struct breakpoint *tp, struct ui_file *fp)
12919 {
12920 if (tp->type == bp_breakpoint && tp->disposition == disp_del)
12921 fprintf_unfiltered (fp, "tbreak");
12922 else if (tp->type == bp_breakpoint)
12923 fprintf_unfiltered (fp, "break");
12924 else if (tp->type == bp_hardware_breakpoint
12925 && tp->disposition == disp_del)
12926 fprintf_unfiltered (fp, "thbreak");
12927 else if (tp->type == bp_hardware_breakpoint)
12928 fprintf_unfiltered (fp, "hbreak");
12929 else
12930 internal_error (__FILE__, __LINE__,
12931 _("unhandled breakpoint type %d"), (int) tp->type);
12932
12933 fprintf_unfiltered (fp, " %s", tp->addr_string);
12934 print_recreate_thread (tp, fp);
12935 }
12936
12937 static void
12938 bkpt_create_sals_from_address (char **arg,
12939 struct linespec_result *canonical,
12940 enum bptype type_wanted,
12941 char *addr_start, char **copy_arg)
12942 {
12943 create_sals_from_address_default (arg, canonical, type_wanted,
12944 addr_start, copy_arg);
12945 }
12946
12947 static void
12948 bkpt_create_breakpoints_sal (struct gdbarch *gdbarch,
12949 struct linespec_result *canonical,
12950 struct linespec_sals *lsal,
12951 char *cond_string,
12952 char *extra_string,
12953 enum bptype type_wanted,
12954 enum bpdisp disposition,
12955 int thread,
12956 int task, int ignore_count,
12957 const struct breakpoint_ops *ops,
12958 int from_tty, int enabled,
12959 int internal, unsigned flags)
12960 {
12961 create_breakpoints_sal_default (gdbarch, canonical,
12962 cond_string, extra_string,
12963 type_wanted,
12964 disposition, thread, task,
12965 ignore_count, ops, from_tty,
12966 enabled, internal, flags);
12967 }
12968
12969 static void
12970 bkpt_decode_linespec (struct breakpoint *b, char **s,
12971 struct symtabs_and_lines *sals)
12972 {
12973 decode_linespec_default (b, s, sals);
12974 }
12975
12976 /* Virtual table for internal breakpoints. */
12977
12978 static void
12979 internal_bkpt_re_set (struct breakpoint *b)
12980 {
12981 switch (b->type)
12982 {
12983 /* Delete overlay event and longjmp master breakpoints; they
12984 will be reset later by breakpoint_re_set. */
12985 case bp_overlay_event:
12986 case bp_longjmp_master:
12987 case bp_std_terminate_master:
12988 case bp_exception_master:
12989 delete_breakpoint (b);
12990 break;
12991
12992 /* This breakpoint is special, it's set up when the inferior
12993 starts and we really don't want to touch it. */
12994 case bp_shlib_event:
12995
12996 /* Like bp_shlib_event, this breakpoint type is special. Once
12997 it is set up, we do not want to touch it. */
12998 case bp_thread_event:
12999 break;
13000 }
13001 }
13002
13003 static void
13004 internal_bkpt_check_status (bpstat bs)
13005 {
13006 if (bs->breakpoint_at->type == bp_shlib_event)
13007 {
13008 /* If requested, stop when the dynamic linker notifies GDB of
13009 events. This allows the user to get control and place
13010 breakpoints in initializer routines for dynamically loaded
13011 objects (among other things). */
13012 bs->stop = stop_on_solib_events;
13013 bs->print = stop_on_solib_events;
13014 }
13015 else
13016 bs->stop = 0;
13017 }
13018
13019 static enum print_stop_action
13020 internal_bkpt_print_it (bpstat bs)
13021 {
13022 struct breakpoint *b;
13023
13024 b = bs->breakpoint_at;
13025
13026 switch (b->type)
13027 {
13028 case bp_shlib_event:
13029 /* Did we stop because the user set the stop_on_solib_events
13030 variable? (If so, we report this as a generic, "Stopped due
13031 to shlib event" message.) */
13032 print_solib_event (0);
13033 break;
13034
13035 case bp_thread_event:
13036 /* Not sure how we will get here.
13037 GDB should not stop for these breakpoints. */
13038 printf_filtered (_("Thread Event Breakpoint: gdb should not stop!\n"));
13039 break;
13040
13041 case bp_overlay_event:
13042 /* By analogy with the thread event, GDB should not stop for these. */
13043 printf_filtered (_("Overlay Event Breakpoint: gdb should not stop!\n"));
13044 break;
13045
13046 case bp_longjmp_master:
13047 /* These should never be enabled. */
13048 printf_filtered (_("Longjmp Master Breakpoint: gdb should not stop!\n"));
13049 break;
13050
13051 case bp_std_terminate_master:
13052 /* These should never be enabled. */
13053 printf_filtered (_("std::terminate Master Breakpoint: "
13054 "gdb should not stop!\n"));
13055 break;
13056
13057 case bp_exception_master:
13058 /* These should never be enabled. */
13059 printf_filtered (_("Exception Master Breakpoint: "
13060 "gdb should not stop!\n"));
13061 break;
13062 }
13063
13064 return PRINT_NOTHING;
13065 }
13066
13067 static void
13068 internal_bkpt_print_mention (struct breakpoint *b)
13069 {
13070 /* Nothing to mention. These breakpoints are internal. */
13071 }
13072
13073 /* Virtual table for momentary breakpoints */
13074
13075 static void
13076 momentary_bkpt_re_set (struct breakpoint *b)
13077 {
13078 /* Keep temporary breakpoints, which can be encountered when we step
13079 over a dlopen call and solib_add is resetting the breakpoints.
13080 Otherwise these should have been blown away via the cleanup chain
13081 or by breakpoint_init_inferior when we rerun the executable. */
13082 }
13083
13084 static void
13085 momentary_bkpt_check_status (bpstat bs)
13086 {
13087 /* Nothing. The point of these breakpoints is causing a stop. */
13088 }
13089
13090 static enum print_stop_action
13091 momentary_bkpt_print_it (bpstat bs)
13092 {
13093 struct ui_out *uiout = current_uiout;
13094
13095 if (ui_out_is_mi_like_p (uiout))
13096 {
13097 struct breakpoint *b = bs->breakpoint_at;
13098
13099 switch (b->type)
13100 {
13101 case bp_finish:
13102 ui_out_field_string
13103 (uiout, "reason",
13104 async_reason_lookup (EXEC_ASYNC_FUNCTION_FINISHED));
13105 break;
13106
13107 case bp_until:
13108 ui_out_field_string
13109 (uiout, "reason",
13110 async_reason_lookup (EXEC_ASYNC_LOCATION_REACHED));
13111 break;
13112 }
13113 }
13114
13115 return PRINT_UNKNOWN;
13116 }
13117
13118 static void
13119 momentary_bkpt_print_mention (struct breakpoint *b)
13120 {
13121 /* Nothing to mention. These breakpoints are internal. */
13122 }
13123
13124 /* Ensure INITIATING_FRAME is cleared when no such breakpoint exists.
13125
13126 It gets cleared already on the removal of the first one of such placed
13127 breakpoints. This is OK as they get all removed altogether. */
13128
13129 static void
13130 longjmp_bkpt_dtor (struct breakpoint *self)
13131 {
13132 struct thread_info *tp = find_thread_id (self->thread);
13133
13134 if (tp)
13135 tp->initiating_frame = null_frame_id;
13136
13137 momentary_breakpoint_ops.dtor (self);
13138 }
13139
13140 /* Specific methods for probe breakpoints. */
13141
13142 static int
13143 bkpt_probe_insert_location (struct bp_location *bl)
13144 {
13145 int v = bkpt_insert_location (bl);
13146
13147 if (v == 0)
13148 {
13149 /* The insertion was successful, now let's set the probe's semaphore
13150 if needed. */
13151 bl->probe->pops->set_semaphore (bl->probe, bl->gdbarch);
13152 }
13153
13154 return v;
13155 }
13156
13157 static int
13158 bkpt_probe_remove_location (struct bp_location *bl)
13159 {
13160 /* Let's clear the semaphore before removing the location. */
13161 bl->probe->pops->clear_semaphore (bl->probe, bl->gdbarch);
13162
13163 return bkpt_remove_location (bl);
13164 }
13165
13166 static void
13167 bkpt_probe_create_sals_from_address (char **arg,
13168 struct linespec_result *canonical,
13169 enum bptype type_wanted,
13170 char *addr_start, char **copy_arg)
13171 {
13172 struct linespec_sals lsal;
13173
13174 lsal.sals = parse_probes (arg, canonical);
13175
13176 *copy_arg = xstrdup (canonical->addr_string);
13177 lsal.canonical = xstrdup (*copy_arg);
13178
13179 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13180 }
13181
13182 static void
13183 bkpt_probe_decode_linespec (struct breakpoint *b, char **s,
13184 struct symtabs_and_lines *sals)
13185 {
13186 *sals = parse_probes (s, NULL);
13187 if (!sals->sals)
13188 error (_("probe not found"));
13189 }
13190
13191 /* The breakpoint_ops structure to be used in tracepoints. */
13192
13193 static void
13194 tracepoint_re_set (struct breakpoint *b)
13195 {
13196 breakpoint_re_set_default (b);
13197 }
13198
13199 static int
13200 tracepoint_breakpoint_hit (const struct bp_location *bl,
13201 struct address_space *aspace, CORE_ADDR bp_addr,
13202 const struct target_waitstatus *ws)
13203 {
13204 /* By definition, the inferior does not report stops at
13205 tracepoints. */
13206 return 0;
13207 }
13208
13209 static void
13210 tracepoint_print_one_detail (const struct breakpoint *self,
13211 struct ui_out *uiout)
13212 {
13213 struct tracepoint *tp = (struct tracepoint *) self;
13214 if (tp->static_trace_marker_id)
13215 {
13216 gdb_assert (self->type == bp_static_tracepoint);
13217
13218 ui_out_text (uiout, "\tmarker id is ");
13219 ui_out_field_string (uiout, "static-tracepoint-marker-string-id",
13220 tp->static_trace_marker_id);
13221 ui_out_text (uiout, "\n");
13222 }
13223 }
13224
13225 static void
13226 tracepoint_print_mention (struct breakpoint *b)
13227 {
13228 if (ui_out_is_mi_like_p (current_uiout))
13229 return;
13230
13231 switch (b->type)
13232 {
13233 case bp_tracepoint:
13234 printf_filtered (_("Tracepoint"));
13235 printf_filtered (_(" %d"), b->number);
13236 break;
13237 case bp_fast_tracepoint:
13238 printf_filtered (_("Fast tracepoint"));
13239 printf_filtered (_(" %d"), b->number);
13240 break;
13241 case bp_static_tracepoint:
13242 printf_filtered (_("Static tracepoint"));
13243 printf_filtered (_(" %d"), b->number);
13244 break;
13245 default:
13246 internal_error (__FILE__, __LINE__,
13247 _("unhandled tracepoint type %d"), (int) b->type);
13248 }
13249
13250 say_where (b);
13251 }
13252
13253 static void
13254 tracepoint_print_recreate (struct breakpoint *self, struct ui_file *fp)
13255 {
13256 struct tracepoint *tp = (struct tracepoint *) self;
13257
13258 if (self->type == bp_fast_tracepoint)
13259 fprintf_unfiltered (fp, "ftrace");
13260 if (self->type == bp_static_tracepoint)
13261 fprintf_unfiltered (fp, "strace");
13262 else if (self->type == bp_tracepoint)
13263 fprintf_unfiltered (fp, "trace");
13264 else
13265 internal_error (__FILE__, __LINE__,
13266 _("unhandled tracepoint type %d"), (int) self->type);
13267
13268 fprintf_unfiltered (fp, " %s", self->addr_string);
13269 print_recreate_thread (self, fp);
13270
13271 if (tp->pass_count)
13272 fprintf_unfiltered (fp, " passcount %d\n", tp->pass_count);
13273 }
13274
13275 static void
13276 tracepoint_create_sals_from_address (char **arg,
13277 struct linespec_result *canonical,
13278 enum bptype type_wanted,
13279 char *addr_start, char **copy_arg)
13280 {
13281 create_sals_from_address_default (arg, canonical, type_wanted,
13282 addr_start, copy_arg);
13283 }
13284
13285 static void
13286 tracepoint_create_breakpoints_sal (struct gdbarch *gdbarch,
13287 struct linespec_result *canonical,
13288 struct linespec_sals *lsal,
13289 char *cond_string,
13290 char *extra_string,
13291 enum bptype type_wanted,
13292 enum bpdisp disposition,
13293 int thread,
13294 int task, int ignore_count,
13295 const struct breakpoint_ops *ops,
13296 int from_tty, int enabled,
13297 int internal, unsigned flags)
13298 {
13299 create_breakpoints_sal_default (gdbarch, canonical,
13300 cond_string, extra_string,
13301 type_wanted,
13302 disposition, thread, task,
13303 ignore_count, ops, from_tty,
13304 enabled, internal, flags);
13305 }
13306
13307 static void
13308 tracepoint_decode_linespec (struct breakpoint *b, char **s,
13309 struct symtabs_and_lines *sals)
13310 {
13311 decode_linespec_default (b, s, sals);
13312 }
13313
13314 struct breakpoint_ops tracepoint_breakpoint_ops;
13315
13316 /* The breakpoint_ops structure to be use on tracepoints placed in a
13317 static probe. */
13318
13319 static void
13320 tracepoint_probe_create_sals_from_address (char **arg,
13321 struct linespec_result *canonical,
13322 enum bptype type_wanted,
13323 char *addr_start, char **copy_arg)
13324 {
13325 /* We use the same method for breakpoint on probes. */
13326 bkpt_probe_create_sals_from_address (arg, canonical, type_wanted,
13327 addr_start, copy_arg);
13328 }
13329
13330 static void
13331 tracepoint_probe_decode_linespec (struct breakpoint *b, char **s,
13332 struct symtabs_and_lines *sals)
13333 {
13334 /* We use the same method for breakpoint on probes. */
13335 bkpt_probe_decode_linespec (b, s, sals);
13336 }
13337
13338 static struct breakpoint_ops tracepoint_probe_breakpoint_ops;
13339
13340 /* Dprintf breakpoint_ops methods. */
13341
13342 static void
13343 dprintf_re_set (struct breakpoint *b)
13344 {
13345 breakpoint_re_set_default (b);
13346
13347 /* This breakpoint could have been pending, and be resolved now, and
13348 if so, we should now have the extra string. If we don't, the
13349 dprintf was malformed when created, but we couldn't tell because
13350 we can't extract the extra string until the location is
13351 resolved. */
13352 if (b->loc != NULL && b->extra_string == NULL)
13353 error (_("Format string required"));
13354
13355 /* 1 - connect to target 1, that can run breakpoint commands.
13356 2 - create a dprintf, which resolves fine.
13357 3 - disconnect from target 1
13358 4 - connect to target 2, that can NOT run breakpoint commands.
13359
13360 After steps #3/#4, you'll want the dprintf command list to
13361 be updated, because target 1 and 2 may well return different
13362 answers for target_can_run_breakpoint_commands().
13363 Given absence of finer grained resetting, we get to do
13364 it all the time. */
13365 if (b->extra_string != NULL)
13366 update_dprintf_command_list (b);
13367 }
13368
13369 /* Implement the "print_recreate" breakpoint_ops method for dprintf. */
13370
13371 static void
13372 dprintf_print_recreate (struct breakpoint *tp, struct ui_file *fp)
13373 {
13374 fprintf_unfiltered (fp, "dprintf %s%s", tp->addr_string,
13375 tp->extra_string);
13376 print_recreate_thread (tp, fp);
13377 }
13378
13379 /* Implement the "after_condition_true" breakpoint_ops method for
13380 dprintf.
13381
13382 dprintf's are implemented with regular commands in their command
13383 list, but we run the commands here instead of before presenting the
13384 stop to the user, as dprintf's don't actually cause a stop. This
13385 also makes it so that the commands of multiple dprintfs at the same
13386 address are all handled. */
13387
13388 static void
13389 dprintf_after_condition_true (struct bpstats *bs)
13390 {
13391 struct cleanup *old_chain;
13392 struct bpstats tmp_bs = { NULL };
13393 struct bpstats *tmp_bs_p = &tmp_bs;
13394
13395 /* dprintf's never cause a stop. This wasn't set in the
13396 check_status hook instead because that would make the dprintf's
13397 condition not be evaluated. */
13398 bs->stop = 0;
13399
13400 /* Run the command list here. Take ownership of it instead of
13401 copying. We never want these commands to run later in
13402 bpstat_do_actions, if a breakpoint that causes a stop happens to
13403 be set at same address as this dprintf, or even if running the
13404 commands here throws. */
13405 tmp_bs.commands = bs->commands;
13406 bs->commands = NULL;
13407 old_chain = make_cleanup_decref_counted_command_line (&tmp_bs.commands);
13408
13409 bpstat_do_actions_1 (&tmp_bs_p);
13410
13411 /* 'tmp_bs.commands' will usually be NULL by now, but
13412 bpstat_do_actions_1 may return early without processing the whole
13413 list. */
13414 do_cleanups (old_chain);
13415 }
13416
13417 /* The breakpoint_ops structure to be used on static tracepoints with
13418 markers (`-m'). */
13419
13420 static void
13421 strace_marker_create_sals_from_address (char **arg,
13422 struct linespec_result *canonical,
13423 enum bptype type_wanted,
13424 char *addr_start, char **copy_arg)
13425 {
13426 struct linespec_sals lsal;
13427
13428 lsal.sals = decode_static_tracepoint_spec (arg);
13429
13430 *copy_arg = savestring (addr_start, *arg - addr_start);
13431
13432 canonical->addr_string = xstrdup (*copy_arg);
13433 lsal.canonical = xstrdup (*copy_arg);
13434 VEC_safe_push (linespec_sals, canonical->sals, &lsal);
13435 }
13436
13437 static void
13438 strace_marker_create_breakpoints_sal (struct gdbarch *gdbarch,
13439 struct linespec_result *canonical,
13440 struct linespec_sals *lsal,
13441 char *cond_string,
13442 char *extra_string,
13443 enum bptype type_wanted,
13444 enum bpdisp disposition,
13445 int thread,
13446 int task, int ignore_count,
13447 const struct breakpoint_ops *ops,
13448 int from_tty, int enabled,
13449 int internal, unsigned flags)
13450 {
13451 int i;
13452
13453 /* If the user is creating a static tracepoint by marker id
13454 (strace -m MARKER_ID), then store the sals index, so that
13455 breakpoint_re_set can try to match up which of the newly
13456 found markers corresponds to this one, and, don't try to
13457 expand multiple locations for each sal, given than SALS
13458 already should contain all sals for MARKER_ID. */
13459
13460 for (i = 0; i < lsal->sals.nelts; ++i)
13461 {
13462 struct symtabs_and_lines expanded;
13463 struct tracepoint *tp;
13464 struct cleanup *old_chain;
13465 char *addr_string;
13466
13467 expanded.nelts = 1;
13468 expanded.sals = &lsal->sals.sals[i];
13469
13470 addr_string = xstrdup (canonical->addr_string);
13471 old_chain = make_cleanup (xfree, addr_string);
13472
13473 tp = XCNEW (struct tracepoint);
13474 init_breakpoint_sal (&tp->base, gdbarch, expanded,
13475 addr_string, NULL,
13476 cond_string, extra_string,
13477 type_wanted, disposition,
13478 thread, task, ignore_count, ops,
13479 from_tty, enabled, internal, flags,
13480 canonical->special_display);
13481 /* Given that its possible to have multiple markers with
13482 the same string id, if the user is creating a static
13483 tracepoint by marker id ("strace -m MARKER_ID"), then
13484 store the sals index, so that breakpoint_re_set can
13485 try to match up which of the newly found markers
13486 corresponds to this one */
13487 tp->static_trace_marker_id_idx = i;
13488
13489 install_breakpoint (internal, &tp->base, 0);
13490
13491 discard_cleanups (old_chain);
13492 }
13493 }
13494
13495 static void
13496 strace_marker_decode_linespec (struct breakpoint *b, char **s,
13497 struct symtabs_and_lines *sals)
13498 {
13499 struct tracepoint *tp = (struct tracepoint *) b;
13500
13501 *sals = decode_static_tracepoint_spec (s);
13502 if (sals->nelts > tp->static_trace_marker_id_idx)
13503 {
13504 sals->sals[0] = sals->sals[tp->static_trace_marker_id_idx];
13505 sals->nelts = 1;
13506 }
13507 else
13508 error (_("marker %s not found"), tp->static_trace_marker_id);
13509 }
13510
13511 static struct breakpoint_ops strace_marker_breakpoint_ops;
13512
13513 static int
13514 strace_marker_p (struct breakpoint *b)
13515 {
13516 return b->ops == &strace_marker_breakpoint_ops;
13517 }
13518
13519 /* Delete a breakpoint and clean up all traces of it in the data
13520 structures. */
13521
13522 void
13523 delete_breakpoint (struct breakpoint *bpt)
13524 {
13525 struct breakpoint *b;
13526
13527 gdb_assert (bpt != NULL);
13528
13529 /* Has this bp already been deleted? This can happen because
13530 multiple lists can hold pointers to bp's. bpstat lists are
13531 especial culprits.
13532
13533 One example of this happening is a watchpoint's scope bp. When
13534 the scope bp triggers, we notice that the watchpoint is out of
13535 scope, and delete it. We also delete its scope bp. But the
13536 scope bp is marked "auto-deleting", and is already on a bpstat.
13537 That bpstat is then checked for auto-deleting bp's, which are
13538 deleted.
13539
13540 A real solution to this problem might involve reference counts in
13541 bp's, and/or giving them pointers back to their referencing
13542 bpstat's, and teaching delete_breakpoint to only free a bp's
13543 storage when no more references were extent. A cheaper bandaid
13544 was chosen. */
13545 if (bpt->type == bp_none)
13546 return;
13547
13548 /* At least avoid this stale reference until the reference counting
13549 of breakpoints gets resolved. */
13550 if (bpt->related_breakpoint != bpt)
13551 {
13552 struct breakpoint *related;
13553 struct watchpoint *w;
13554
13555 if (bpt->type == bp_watchpoint_scope)
13556 w = (struct watchpoint *) bpt->related_breakpoint;
13557 else if (bpt->related_breakpoint->type == bp_watchpoint_scope)
13558 w = (struct watchpoint *) bpt;
13559 else
13560 w = NULL;
13561 if (w != NULL)
13562 watchpoint_del_at_next_stop (w);
13563
13564 /* Unlink bpt from the bpt->related_breakpoint ring. */
13565 for (related = bpt; related->related_breakpoint != bpt;
13566 related = related->related_breakpoint);
13567 related->related_breakpoint = bpt->related_breakpoint;
13568 bpt->related_breakpoint = bpt;
13569 }
13570
13571 /* watch_command_1 creates a watchpoint but only sets its number if
13572 update_watchpoint succeeds in creating its bp_locations. If there's
13573 a problem in that process, we'll be asked to delete the half-created
13574 watchpoint. In that case, don't announce the deletion. */
13575 if (bpt->number)
13576 observer_notify_breakpoint_deleted (bpt);
13577
13578 if (breakpoint_chain == bpt)
13579 breakpoint_chain = bpt->next;
13580
13581 ALL_BREAKPOINTS (b)
13582 if (b->next == bpt)
13583 {
13584 b->next = bpt->next;
13585 break;
13586 }
13587
13588 /* Be sure no bpstat's are pointing at the breakpoint after it's
13589 been freed. */
13590 /* FIXME, how can we find all bpstat's? We just check stop_bpstat
13591 in all threads for now. Note that we cannot just remove bpstats
13592 pointing at bpt from the stop_bpstat list entirely, as breakpoint
13593 commands are associated with the bpstat; if we remove it here,
13594 then the later call to bpstat_do_actions (&stop_bpstat); in
13595 event-top.c won't do anything, and temporary breakpoints with
13596 commands won't work. */
13597
13598 iterate_over_threads (bpstat_remove_breakpoint_callback, bpt);
13599
13600 /* Now that breakpoint is removed from breakpoint list, update the
13601 global location list. This will remove locations that used to
13602 belong to this breakpoint. Do this before freeing the breakpoint
13603 itself, since remove_breakpoint looks at location's owner. It
13604 might be better design to have location completely
13605 self-contained, but it's not the case now. */
13606 update_global_location_list (0);
13607
13608 bpt->ops->dtor (bpt);
13609 /* On the chance that someone will soon try again to delete this
13610 same bp, we mark it as deleted before freeing its storage. */
13611 bpt->type = bp_none;
13612 xfree (bpt);
13613 }
13614
13615 static void
13616 do_delete_breakpoint_cleanup (void *b)
13617 {
13618 delete_breakpoint (b);
13619 }
13620
13621 struct cleanup *
13622 make_cleanup_delete_breakpoint (struct breakpoint *b)
13623 {
13624 return make_cleanup (do_delete_breakpoint_cleanup, b);
13625 }
13626
13627 /* Iterator function to call a user-provided callback function once
13628 for each of B and its related breakpoints. */
13629
13630 static void
13631 iterate_over_related_breakpoints (struct breakpoint *b,
13632 void (*function) (struct breakpoint *,
13633 void *),
13634 void *data)
13635 {
13636 struct breakpoint *related;
13637
13638 related = b;
13639 do
13640 {
13641 struct breakpoint *next;
13642
13643 /* FUNCTION may delete RELATED. */
13644 next = related->related_breakpoint;
13645
13646 if (next == related)
13647 {
13648 /* RELATED is the last ring entry. */
13649 function (related, data);
13650
13651 /* FUNCTION may have deleted it, so we'd never reach back to
13652 B. There's nothing left to do anyway, so just break
13653 out. */
13654 break;
13655 }
13656 else
13657 function (related, data);
13658
13659 related = next;
13660 }
13661 while (related != b);
13662 }
13663
13664 static void
13665 do_delete_breakpoint (struct breakpoint *b, void *ignore)
13666 {
13667 delete_breakpoint (b);
13668 }
13669
13670 /* A callback for map_breakpoint_numbers that calls
13671 delete_breakpoint. */
13672
13673 static void
13674 do_map_delete_breakpoint (struct breakpoint *b, void *ignore)
13675 {
13676 iterate_over_related_breakpoints (b, do_delete_breakpoint, NULL);
13677 }
13678
13679 void
13680 delete_command (char *arg, int from_tty)
13681 {
13682 struct breakpoint *b, *b_tmp;
13683
13684 dont_repeat ();
13685
13686 if (arg == 0)
13687 {
13688 int breaks_to_delete = 0;
13689
13690 /* Delete all breakpoints if no argument. Do not delete
13691 internal breakpoints, these have to be deleted with an
13692 explicit breakpoint number argument. */
13693 ALL_BREAKPOINTS (b)
13694 if (user_breakpoint_p (b))
13695 {
13696 breaks_to_delete = 1;
13697 break;
13698 }
13699
13700 /* Ask user only if there are some breakpoints to delete. */
13701 if (!from_tty
13702 || (breaks_to_delete && query (_("Delete all breakpoints? "))))
13703 {
13704 ALL_BREAKPOINTS_SAFE (b, b_tmp)
13705 if (user_breakpoint_p (b))
13706 delete_breakpoint (b);
13707 }
13708 }
13709 else
13710 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
13711 }
13712
13713 static int
13714 all_locations_are_pending (struct bp_location *loc)
13715 {
13716 for (; loc; loc = loc->next)
13717 if (!loc->shlib_disabled
13718 && !loc->pspace->executing_startup)
13719 return 0;
13720 return 1;
13721 }
13722
13723 /* Subroutine of update_breakpoint_locations to simplify it.
13724 Return non-zero if multiple fns in list LOC have the same name.
13725 Null names are ignored. */
13726
13727 static int
13728 ambiguous_names_p (struct bp_location *loc)
13729 {
13730 struct bp_location *l;
13731 htab_t htab = htab_create_alloc (13, htab_hash_string,
13732 (int (*) (const void *,
13733 const void *)) streq,
13734 NULL, xcalloc, xfree);
13735
13736 for (l = loc; l != NULL; l = l->next)
13737 {
13738 const char **slot;
13739 const char *name = l->function_name;
13740
13741 /* Allow for some names to be NULL, ignore them. */
13742 if (name == NULL)
13743 continue;
13744
13745 slot = (const char **) htab_find_slot (htab, (const void *) name,
13746 INSERT);
13747 /* NOTE: We can assume slot != NULL here because xcalloc never
13748 returns NULL. */
13749 if (*slot != NULL)
13750 {
13751 htab_delete (htab);
13752 return 1;
13753 }
13754 *slot = name;
13755 }
13756
13757 htab_delete (htab);
13758 return 0;
13759 }
13760
13761 /* When symbols change, it probably means the sources changed as well,
13762 and it might mean the static tracepoint markers are no longer at
13763 the same address or line numbers they used to be at last we
13764 checked. Losing your static tracepoints whenever you rebuild is
13765 undesirable. This function tries to resync/rematch gdb static
13766 tracepoints with the markers on the target, for static tracepoints
13767 that have not been set by marker id. Static tracepoint that have
13768 been set by marker id are reset by marker id in breakpoint_re_set.
13769 The heuristic is:
13770
13771 1) For a tracepoint set at a specific address, look for a marker at
13772 the old PC. If one is found there, assume to be the same marker.
13773 If the name / string id of the marker found is different from the
13774 previous known name, assume that means the user renamed the marker
13775 in the sources, and output a warning.
13776
13777 2) For a tracepoint set at a given line number, look for a marker
13778 at the new address of the old line number. If one is found there,
13779 assume to be the same marker. If the name / string id of the
13780 marker found is different from the previous known name, assume that
13781 means the user renamed the marker in the sources, and output a
13782 warning.
13783
13784 3) If a marker is no longer found at the same address or line, it
13785 may mean the marker no longer exists. But it may also just mean
13786 the code changed a bit. Maybe the user added a few lines of code
13787 that made the marker move up or down (in line number terms). Ask
13788 the target for info about the marker with the string id as we knew
13789 it. If found, update line number and address in the matching
13790 static tracepoint. This will get confused if there's more than one
13791 marker with the same ID (possible in UST, although unadvised
13792 precisely because it confuses tools). */
13793
13794 static struct symtab_and_line
13795 update_static_tracepoint (struct breakpoint *b, struct symtab_and_line sal)
13796 {
13797 struct tracepoint *tp = (struct tracepoint *) b;
13798 struct static_tracepoint_marker marker;
13799 CORE_ADDR pc;
13800
13801 pc = sal.pc;
13802 if (sal.line)
13803 find_line_pc (sal.symtab, sal.line, &pc);
13804
13805 if (target_static_tracepoint_marker_at (pc, &marker))
13806 {
13807 if (strcmp (tp->static_trace_marker_id, marker.str_id) != 0)
13808 warning (_("static tracepoint %d changed probed marker from %s to %s"),
13809 b->number,
13810 tp->static_trace_marker_id, marker.str_id);
13811
13812 xfree (tp->static_trace_marker_id);
13813 tp->static_trace_marker_id = xstrdup (marker.str_id);
13814 release_static_tracepoint_marker (&marker);
13815
13816 return sal;
13817 }
13818
13819 /* Old marker wasn't found on target at lineno. Try looking it up
13820 by string ID. */
13821 if (!sal.explicit_pc
13822 && sal.line != 0
13823 && sal.symtab != NULL
13824 && tp->static_trace_marker_id != NULL)
13825 {
13826 VEC(static_tracepoint_marker_p) *markers;
13827
13828 markers
13829 = target_static_tracepoint_markers_by_strid (tp->static_trace_marker_id);
13830
13831 if (!VEC_empty(static_tracepoint_marker_p, markers))
13832 {
13833 struct symtab_and_line sal2;
13834 struct symbol *sym;
13835 struct static_tracepoint_marker *tpmarker;
13836 struct ui_out *uiout = current_uiout;
13837
13838 tpmarker = VEC_index (static_tracepoint_marker_p, markers, 0);
13839
13840 xfree (tp->static_trace_marker_id);
13841 tp->static_trace_marker_id = xstrdup (tpmarker->str_id);
13842
13843 warning (_("marker for static tracepoint %d (%s) not "
13844 "found at previous line number"),
13845 b->number, tp->static_trace_marker_id);
13846
13847 init_sal (&sal2);
13848
13849 sal2.pc = tpmarker->address;
13850
13851 sal2 = find_pc_line (tpmarker->address, 0);
13852 sym = find_pc_sect_function (tpmarker->address, NULL);
13853 ui_out_text (uiout, "Now in ");
13854 if (sym)
13855 {
13856 ui_out_field_string (uiout, "func",
13857 SYMBOL_PRINT_NAME (sym));
13858 ui_out_text (uiout, " at ");
13859 }
13860 ui_out_field_string (uiout, "file",
13861 symtab_to_filename_for_display (sal2.symtab));
13862 ui_out_text (uiout, ":");
13863
13864 if (ui_out_is_mi_like_p (uiout))
13865 {
13866 const char *fullname = symtab_to_fullname (sal2.symtab);
13867
13868 ui_out_field_string (uiout, "fullname", fullname);
13869 }
13870
13871 ui_out_field_int (uiout, "line", sal2.line);
13872 ui_out_text (uiout, "\n");
13873
13874 b->loc->line_number = sal2.line;
13875 b->loc->symtab = sym != NULL ? sal2.symtab : NULL;
13876
13877 xfree (b->addr_string);
13878 b->addr_string = xstrprintf ("%s:%d",
13879 symtab_to_filename_for_display (sal2.symtab),
13880 b->loc->line_number);
13881
13882 /* Might be nice to check if function changed, and warn if
13883 so. */
13884
13885 release_static_tracepoint_marker (tpmarker);
13886 }
13887 }
13888 return sal;
13889 }
13890
13891 /* Returns 1 iff locations A and B are sufficiently same that
13892 we don't need to report breakpoint as changed. */
13893
13894 static int
13895 locations_are_equal (struct bp_location *a, struct bp_location *b)
13896 {
13897 while (a && b)
13898 {
13899 if (a->address != b->address)
13900 return 0;
13901
13902 if (a->shlib_disabled != b->shlib_disabled)
13903 return 0;
13904
13905 if (a->enabled != b->enabled)
13906 return 0;
13907
13908 a = a->next;
13909 b = b->next;
13910 }
13911
13912 if ((a == NULL) != (b == NULL))
13913 return 0;
13914
13915 return 1;
13916 }
13917
13918 /* Create new breakpoint locations for B (a hardware or software breakpoint)
13919 based on SALS and SALS_END. If SALS_END.NELTS is not zero, then B is
13920 a ranged breakpoint. */
13921
13922 void
13923 update_breakpoint_locations (struct breakpoint *b,
13924 struct symtabs_and_lines sals,
13925 struct symtabs_and_lines sals_end)
13926 {
13927 int i;
13928 struct bp_location *existing_locations = b->loc;
13929
13930 if (sals_end.nelts != 0 && (sals.nelts != 1 || sals_end.nelts != 1))
13931 {
13932 /* Ranged breakpoints have only one start location and one end
13933 location. */
13934 b->enable_state = bp_disabled;
13935 update_global_location_list (1);
13936 printf_unfiltered (_("Could not reset ranged breakpoint %d: "
13937 "multiple locations found\n"),
13938 b->number);
13939 return;
13940 }
13941
13942 /* If there's no new locations, and all existing locations are
13943 pending, don't do anything. This optimizes the common case where
13944 all locations are in the same shared library, that was unloaded.
13945 We'd like to retain the location, so that when the library is
13946 loaded again, we don't loose the enabled/disabled status of the
13947 individual locations. */
13948 if (all_locations_are_pending (existing_locations) && sals.nelts == 0)
13949 return;
13950
13951 b->loc = NULL;
13952
13953 for (i = 0; i < sals.nelts; ++i)
13954 {
13955 struct bp_location *new_loc;
13956
13957 switch_to_program_space_and_thread (sals.sals[i].pspace);
13958
13959 new_loc = add_location_to_breakpoint (b, &(sals.sals[i]));
13960
13961 /* Reparse conditions, they might contain references to the
13962 old symtab. */
13963 if (b->cond_string != NULL)
13964 {
13965 const char *s;
13966 volatile struct gdb_exception e;
13967
13968 s = b->cond_string;
13969 TRY_CATCH (e, RETURN_MASK_ERROR)
13970 {
13971 new_loc->cond = parse_exp_1 (&s, sals.sals[i].pc,
13972 block_for_pc (sals.sals[i].pc),
13973 0);
13974 }
13975 if (e.reason < 0)
13976 {
13977 warning (_("failed to reevaluate condition "
13978 "for breakpoint %d: %s"),
13979 b->number, e.message);
13980 new_loc->enabled = 0;
13981 }
13982 }
13983
13984 if (sals_end.nelts)
13985 {
13986 CORE_ADDR end = find_breakpoint_range_end (sals_end.sals[0]);
13987
13988 new_loc->length = end - sals.sals[0].pc + 1;
13989 }
13990 }
13991
13992 /* Update locations of permanent breakpoints. */
13993 if (b->enable_state == bp_permanent)
13994 make_breakpoint_permanent (b);
13995
13996 /* If possible, carry over 'disable' status from existing
13997 breakpoints. */
13998 {
13999 struct bp_location *e = existing_locations;
14000 /* If there are multiple breakpoints with the same function name,
14001 e.g. for inline functions, comparing function names won't work.
14002 Instead compare pc addresses; this is just a heuristic as things
14003 may have moved, but in practice it gives the correct answer
14004 often enough until a better solution is found. */
14005 int have_ambiguous_names = ambiguous_names_p (b->loc);
14006
14007 for (; e; e = e->next)
14008 {
14009 if (!e->enabled && e->function_name)
14010 {
14011 struct bp_location *l = b->loc;
14012 if (have_ambiguous_names)
14013 {
14014 for (; l; l = l->next)
14015 if (breakpoint_locations_match (e, l))
14016 {
14017 l->enabled = 0;
14018 break;
14019 }
14020 }
14021 else
14022 {
14023 for (; l; l = l->next)
14024 if (l->function_name
14025 && strcmp (e->function_name, l->function_name) == 0)
14026 {
14027 l->enabled = 0;
14028 break;
14029 }
14030 }
14031 }
14032 }
14033 }
14034
14035 if (!locations_are_equal (existing_locations, b->loc))
14036 observer_notify_breakpoint_modified (b);
14037
14038 update_global_location_list (1);
14039 }
14040
14041 /* Find the SaL locations corresponding to the given ADDR_STRING.
14042 On return, FOUND will be 1 if any SaL was found, zero otherwise. */
14043
14044 static struct symtabs_and_lines
14045 addr_string_to_sals (struct breakpoint *b, char *addr_string, int *found)
14046 {
14047 char *s;
14048 struct symtabs_and_lines sals = {0};
14049 volatile struct gdb_exception e;
14050
14051 gdb_assert (b->ops != NULL);
14052 s = addr_string;
14053
14054 TRY_CATCH (e, RETURN_MASK_ERROR)
14055 {
14056 b->ops->decode_linespec (b, &s, &sals);
14057 }
14058 if (e.reason < 0)
14059 {
14060 int not_found_and_ok = 0;
14061 /* For pending breakpoints, it's expected that parsing will
14062 fail until the right shared library is loaded. User has
14063 already told to create pending breakpoints and don't need
14064 extra messages. If breakpoint is in bp_shlib_disabled
14065 state, then user already saw the message about that
14066 breakpoint being disabled, and don't want to see more
14067 errors. */
14068 if (e.error == NOT_FOUND_ERROR
14069 && (b->condition_not_parsed
14070 || (b->loc && b->loc->shlib_disabled)
14071 || (b->loc && b->loc->pspace->executing_startup)
14072 || b->enable_state == bp_disabled))
14073 not_found_and_ok = 1;
14074
14075 if (!not_found_and_ok)
14076 {
14077 /* We surely don't want to warn about the same breakpoint
14078 10 times. One solution, implemented here, is disable
14079 the breakpoint on error. Another solution would be to
14080 have separate 'warning emitted' flag. Since this
14081 happens only when a binary has changed, I don't know
14082 which approach is better. */
14083 b->enable_state = bp_disabled;
14084 throw_exception (e);
14085 }
14086 }
14087
14088 if (e.reason == 0 || e.error != NOT_FOUND_ERROR)
14089 {
14090 int i;
14091
14092 for (i = 0; i < sals.nelts; ++i)
14093 resolve_sal_pc (&sals.sals[i]);
14094 if (b->condition_not_parsed && s && s[0])
14095 {
14096 char *cond_string, *extra_string;
14097 int thread, task;
14098
14099 find_condition_and_thread (s, sals.sals[0].pc,
14100 &cond_string, &thread, &task,
14101 &extra_string);
14102 if (cond_string)
14103 b->cond_string = cond_string;
14104 b->thread = thread;
14105 b->task = task;
14106 if (extra_string)
14107 b->extra_string = extra_string;
14108 b->condition_not_parsed = 0;
14109 }
14110
14111 if (b->type == bp_static_tracepoint && !strace_marker_p (b))
14112 sals.sals[0] = update_static_tracepoint (b, sals.sals[0]);
14113
14114 *found = 1;
14115 }
14116 else
14117 *found = 0;
14118
14119 return sals;
14120 }
14121
14122 /* The default re_set method, for typical hardware or software
14123 breakpoints. Reevaluate the breakpoint and recreate its
14124 locations. */
14125
14126 static void
14127 breakpoint_re_set_default (struct breakpoint *b)
14128 {
14129 int found;
14130 struct symtabs_and_lines sals, sals_end;
14131 struct symtabs_and_lines expanded = {0};
14132 struct symtabs_and_lines expanded_end = {0};
14133
14134 sals = addr_string_to_sals (b, b->addr_string, &found);
14135 if (found)
14136 {
14137 make_cleanup (xfree, sals.sals);
14138 expanded = sals;
14139 }
14140
14141 if (b->addr_string_range_end)
14142 {
14143 sals_end = addr_string_to_sals (b, b->addr_string_range_end, &found);
14144 if (found)
14145 {
14146 make_cleanup (xfree, sals_end.sals);
14147 expanded_end = sals_end;
14148 }
14149 }
14150
14151 update_breakpoint_locations (b, expanded, expanded_end);
14152 }
14153
14154 /* Default method for creating SALs from an address string. It basically
14155 calls parse_breakpoint_sals. Return 1 for success, zero for failure. */
14156
14157 static void
14158 create_sals_from_address_default (char **arg,
14159 struct linespec_result *canonical,
14160 enum bptype type_wanted,
14161 char *addr_start, char **copy_arg)
14162 {
14163 parse_breakpoint_sals (arg, canonical);
14164 }
14165
14166 /* Call create_breakpoints_sal for the given arguments. This is the default
14167 function for the `create_breakpoints_sal' method of
14168 breakpoint_ops. */
14169
14170 static void
14171 create_breakpoints_sal_default (struct gdbarch *gdbarch,
14172 struct linespec_result *canonical,
14173 char *cond_string,
14174 char *extra_string,
14175 enum bptype type_wanted,
14176 enum bpdisp disposition,
14177 int thread,
14178 int task, int ignore_count,
14179 const struct breakpoint_ops *ops,
14180 int from_tty, int enabled,
14181 int internal, unsigned flags)
14182 {
14183 create_breakpoints_sal (gdbarch, canonical, cond_string,
14184 extra_string,
14185 type_wanted, disposition,
14186 thread, task, ignore_count, ops, from_tty,
14187 enabled, internal, flags);
14188 }
14189
14190 /* Decode the line represented by S by calling decode_line_full. This is the
14191 default function for the `decode_linespec' method of breakpoint_ops. */
14192
14193 static void
14194 decode_linespec_default (struct breakpoint *b, char **s,
14195 struct symtabs_and_lines *sals)
14196 {
14197 struct linespec_result canonical;
14198
14199 init_linespec_result (&canonical);
14200 decode_line_full (s, DECODE_LINE_FUNFIRSTLINE,
14201 (struct symtab *) NULL, 0,
14202 &canonical, multiple_symbols_all,
14203 b->filter);
14204
14205 /* We should get 0 or 1 resulting SALs. */
14206 gdb_assert (VEC_length (linespec_sals, canonical.sals) < 2);
14207
14208 if (VEC_length (linespec_sals, canonical.sals) > 0)
14209 {
14210 struct linespec_sals *lsal;
14211
14212 lsal = VEC_index (linespec_sals, canonical.sals, 0);
14213 *sals = lsal->sals;
14214 /* Arrange it so the destructor does not free the
14215 contents. */
14216 lsal->sals.sals = NULL;
14217 }
14218
14219 destroy_linespec_result (&canonical);
14220 }
14221
14222 /* Prepare the global context for a re-set of breakpoint B. */
14223
14224 static struct cleanup *
14225 prepare_re_set_context (struct breakpoint *b)
14226 {
14227 struct cleanup *cleanups;
14228
14229 input_radix = b->input_radix;
14230 cleanups = save_current_space_and_thread ();
14231 if (b->pspace != NULL)
14232 switch_to_program_space_and_thread (b->pspace);
14233 set_language (b->language);
14234
14235 return cleanups;
14236 }
14237
14238 /* Reset a breakpoint given it's struct breakpoint * BINT.
14239 The value we return ends up being the return value from catch_errors.
14240 Unused in this case. */
14241
14242 static int
14243 breakpoint_re_set_one (void *bint)
14244 {
14245 /* Get past catch_errs. */
14246 struct breakpoint *b = (struct breakpoint *) bint;
14247 struct cleanup *cleanups;
14248
14249 cleanups = prepare_re_set_context (b);
14250 b->ops->re_set (b);
14251 do_cleanups (cleanups);
14252 return 0;
14253 }
14254
14255 /* Re-set all breakpoints after symbols have been re-loaded. */
14256 void
14257 breakpoint_re_set (void)
14258 {
14259 struct breakpoint *b, *b_tmp;
14260 enum language save_language;
14261 int save_input_radix;
14262 struct cleanup *old_chain;
14263
14264 save_language = current_language->la_language;
14265 save_input_radix = input_radix;
14266 old_chain = save_current_program_space ();
14267
14268 ALL_BREAKPOINTS_SAFE (b, b_tmp)
14269 {
14270 /* Format possible error msg. */
14271 char *message = xstrprintf ("Error in re-setting breakpoint %d: ",
14272 b->number);
14273 struct cleanup *cleanups = make_cleanup (xfree, message);
14274 catch_errors (breakpoint_re_set_one, b, message, RETURN_MASK_ALL);
14275 do_cleanups (cleanups);
14276 }
14277 set_language (save_language);
14278 input_radix = save_input_radix;
14279
14280 jit_breakpoint_re_set ();
14281
14282 do_cleanups (old_chain);
14283
14284 create_overlay_event_breakpoint ();
14285 create_longjmp_master_breakpoint ();
14286 create_std_terminate_master_breakpoint ();
14287 create_exception_master_breakpoint ();
14288 }
14289 \f
14290 /* Reset the thread number of this breakpoint:
14291
14292 - If the breakpoint is for all threads, leave it as-is.
14293 - Else, reset it to the current thread for inferior_ptid. */
14294 void
14295 breakpoint_re_set_thread (struct breakpoint *b)
14296 {
14297 if (b->thread != -1)
14298 {
14299 if (in_thread_list (inferior_ptid))
14300 b->thread = pid_to_thread_id (inferior_ptid);
14301
14302 /* We're being called after following a fork. The new fork is
14303 selected as current, and unless this was a vfork will have a
14304 different program space from the original thread. Reset that
14305 as well. */
14306 b->loc->pspace = current_program_space;
14307 }
14308 }
14309
14310 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14311 If from_tty is nonzero, it prints a message to that effect,
14312 which ends with a period (no newline). */
14313
14314 void
14315 set_ignore_count (int bptnum, int count, int from_tty)
14316 {
14317 struct breakpoint *b;
14318
14319 if (count < 0)
14320 count = 0;
14321
14322 ALL_BREAKPOINTS (b)
14323 if (b->number == bptnum)
14324 {
14325 if (is_tracepoint (b))
14326 {
14327 if (from_tty && count != 0)
14328 printf_filtered (_("Ignore count ignored for tracepoint %d."),
14329 bptnum);
14330 return;
14331 }
14332
14333 b->ignore_count = count;
14334 if (from_tty)
14335 {
14336 if (count == 0)
14337 printf_filtered (_("Will stop next time "
14338 "breakpoint %d is reached."),
14339 bptnum);
14340 else if (count == 1)
14341 printf_filtered (_("Will ignore next crossing of breakpoint %d."),
14342 bptnum);
14343 else
14344 printf_filtered (_("Will ignore next %d "
14345 "crossings of breakpoint %d."),
14346 count, bptnum);
14347 }
14348 observer_notify_breakpoint_modified (b);
14349 return;
14350 }
14351
14352 error (_("No breakpoint number %d."), bptnum);
14353 }
14354
14355 /* Command to set ignore-count of breakpoint N to COUNT. */
14356
14357 static void
14358 ignore_command (char *args, int from_tty)
14359 {
14360 char *p = args;
14361 int num;
14362
14363 if (p == 0)
14364 error_no_arg (_("a breakpoint number"));
14365
14366 num = get_number (&p);
14367 if (num == 0)
14368 error (_("bad breakpoint number: '%s'"), args);
14369 if (*p == 0)
14370 error (_("Second argument (specified ignore-count) is missing."));
14371
14372 set_ignore_count (num,
14373 longest_to_int (value_as_long (parse_and_eval (p))),
14374 from_tty);
14375 if (from_tty)
14376 printf_filtered ("\n");
14377 }
14378 \f
14379 /* Call FUNCTION on each of the breakpoints
14380 whose numbers are given in ARGS. */
14381
14382 static void
14383 map_breakpoint_numbers (char *args, void (*function) (struct breakpoint *,
14384 void *),
14385 void *data)
14386 {
14387 int num;
14388 struct breakpoint *b, *tmp;
14389 int match;
14390 struct get_number_or_range_state state;
14391
14392 if (args == 0)
14393 error_no_arg (_("one or more breakpoint numbers"));
14394
14395 init_number_or_range (&state, args);
14396
14397 while (!state.finished)
14398 {
14399 char *p = state.string;
14400
14401 match = 0;
14402
14403 num = get_number_or_range (&state);
14404 if (num == 0)
14405 {
14406 warning (_("bad breakpoint number at or near '%s'"), p);
14407 }
14408 else
14409 {
14410 ALL_BREAKPOINTS_SAFE (b, tmp)
14411 if (b->number == num)
14412 {
14413 match = 1;
14414 function (b, data);
14415 break;
14416 }
14417 if (match == 0)
14418 printf_unfiltered (_("No breakpoint number %d.\n"), num);
14419 }
14420 }
14421 }
14422
14423 static struct bp_location *
14424 find_location_by_number (char *number)
14425 {
14426 char *dot = strchr (number, '.');
14427 char *p1;
14428 int bp_num;
14429 int loc_num;
14430 struct breakpoint *b;
14431 struct bp_location *loc;
14432
14433 *dot = '\0';
14434
14435 p1 = number;
14436 bp_num = get_number (&p1);
14437 if (bp_num == 0)
14438 error (_("Bad breakpoint number '%s'"), number);
14439
14440 ALL_BREAKPOINTS (b)
14441 if (b->number == bp_num)
14442 {
14443 break;
14444 }
14445
14446 if (!b || b->number != bp_num)
14447 error (_("Bad breakpoint number '%s'"), number);
14448
14449 p1 = dot+1;
14450 loc_num = get_number (&p1);
14451 if (loc_num == 0)
14452 error (_("Bad breakpoint location number '%s'"), number);
14453
14454 --loc_num;
14455 loc = b->loc;
14456 for (;loc_num && loc; --loc_num, loc = loc->next)
14457 ;
14458 if (!loc)
14459 error (_("Bad breakpoint location number '%s'"), dot+1);
14460
14461 return loc;
14462 }
14463
14464
14465 /* Set ignore-count of breakpoint number BPTNUM to COUNT.
14466 If from_tty is nonzero, it prints a message to that effect,
14467 which ends with a period (no newline). */
14468
14469 void
14470 disable_breakpoint (struct breakpoint *bpt)
14471 {
14472 /* Never disable a watchpoint scope breakpoint; we want to
14473 hit them when we leave scope so we can delete both the
14474 watchpoint and its scope breakpoint at that time. */
14475 if (bpt->type == bp_watchpoint_scope)
14476 return;
14477
14478 /* You can't disable permanent breakpoints. */
14479 if (bpt->enable_state == bp_permanent)
14480 return;
14481
14482 bpt->enable_state = bp_disabled;
14483
14484 /* Mark breakpoint locations modified. */
14485 mark_breakpoint_modified (bpt);
14486
14487 if (target_supports_enable_disable_tracepoint ()
14488 && current_trace_status ()->running && is_tracepoint (bpt))
14489 {
14490 struct bp_location *location;
14491
14492 for (location = bpt->loc; location; location = location->next)
14493 target_disable_tracepoint (location);
14494 }
14495
14496 update_global_location_list (0);
14497
14498 observer_notify_breakpoint_modified (bpt);
14499 }
14500
14501 /* A callback for iterate_over_related_breakpoints. */
14502
14503 static void
14504 do_disable_breakpoint (struct breakpoint *b, void *ignore)
14505 {
14506 disable_breakpoint (b);
14507 }
14508
14509 /* A callback for map_breakpoint_numbers that calls
14510 disable_breakpoint. */
14511
14512 static void
14513 do_map_disable_breakpoint (struct breakpoint *b, void *ignore)
14514 {
14515 iterate_over_related_breakpoints (b, do_disable_breakpoint, NULL);
14516 }
14517
14518 static void
14519 disable_command (char *args, int from_tty)
14520 {
14521 if (args == 0)
14522 {
14523 struct breakpoint *bpt;
14524
14525 ALL_BREAKPOINTS (bpt)
14526 if (user_breakpoint_p (bpt))
14527 disable_breakpoint (bpt);
14528 }
14529 else if (strchr (args, '.'))
14530 {
14531 struct bp_location *loc = find_location_by_number (args);
14532 if (loc)
14533 {
14534 if (loc->enabled)
14535 {
14536 loc->enabled = 0;
14537 mark_breakpoint_location_modified (loc);
14538 }
14539 if (target_supports_enable_disable_tracepoint ()
14540 && current_trace_status ()->running && loc->owner
14541 && is_tracepoint (loc->owner))
14542 target_disable_tracepoint (loc);
14543 }
14544 update_global_location_list (0);
14545 }
14546 else
14547 map_breakpoint_numbers (args, do_map_disable_breakpoint, NULL);
14548 }
14549
14550 static void
14551 enable_breakpoint_disp (struct breakpoint *bpt, enum bpdisp disposition,
14552 int count)
14553 {
14554 int target_resources_ok;
14555
14556 if (bpt->type == bp_hardware_breakpoint)
14557 {
14558 int i;
14559 i = hw_breakpoint_used_count ();
14560 target_resources_ok =
14561 target_can_use_hardware_watchpoint (bp_hardware_breakpoint,
14562 i + 1, 0);
14563 if (target_resources_ok == 0)
14564 error (_("No hardware breakpoint support in the target."));
14565 else if (target_resources_ok < 0)
14566 error (_("Hardware breakpoints used exceeds limit."));
14567 }
14568
14569 if (is_watchpoint (bpt))
14570 {
14571 /* Initialize it just to avoid a GCC false warning. */
14572 enum enable_state orig_enable_state = 0;
14573 volatile struct gdb_exception e;
14574
14575 TRY_CATCH (e, RETURN_MASK_ALL)
14576 {
14577 struct watchpoint *w = (struct watchpoint *) bpt;
14578
14579 orig_enable_state = bpt->enable_state;
14580 bpt->enable_state = bp_enabled;
14581 update_watchpoint (w, 1 /* reparse */);
14582 }
14583 if (e.reason < 0)
14584 {
14585 bpt->enable_state = orig_enable_state;
14586 exception_fprintf (gdb_stderr, e, _("Cannot enable watchpoint %d: "),
14587 bpt->number);
14588 return;
14589 }
14590 }
14591
14592 if (bpt->enable_state != bp_permanent)
14593 bpt->enable_state = bp_enabled;
14594
14595 bpt->enable_state = bp_enabled;
14596
14597 /* Mark breakpoint locations modified. */
14598 mark_breakpoint_modified (bpt);
14599
14600 if (target_supports_enable_disable_tracepoint ()
14601 && current_trace_status ()->running && is_tracepoint (bpt))
14602 {
14603 struct bp_location *location;
14604
14605 for (location = bpt->loc; location; location = location->next)
14606 target_enable_tracepoint (location);
14607 }
14608
14609 bpt->disposition = disposition;
14610 bpt->enable_count = count;
14611 update_global_location_list (1);
14612
14613 observer_notify_breakpoint_modified (bpt);
14614 }
14615
14616
14617 void
14618 enable_breakpoint (struct breakpoint *bpt)
14619 {
14620 enable_breakpoint_disp (bpt, bpt->disposition, 0);
14621 }
14622
14623 static void
14624 do_enable_breakpoint (struct breakpoint *bpt, void *arg)
14625 {
14626 enable_breakpoint (bpt);
14627 }
14628
14629 /* A callback for map_breakpoint_numbers that calls
14630 enable_breakpoint. */
14631
14632 static void
14633 do_map_enable_breakpoint (struct breakpoint *b, void *ignore)
14634 {
14635 iterate_over_related_breakpoints (b, do_enable_breakpoint, NULL);
14636 }
14637
14638 /* The enable command enables the specified breakpoints (or all defined
14639 breakpoints) so they once again become (or continue to be) effective
14640 in stopping the inferior. */
14641
14642 static void
14643 enable_command (char *args, int from_tty)
14644 {
14645 if (args == 0)
14646 {
14647 struct breakpoint *bpt;
14648
14649 ALL_BREAKPOINTS (bpt)
14650 if (user_breakpoint_p (bpt))
14651 enable_breakpoint (bpt);
14652 }
14653 else if (strchr (args, '.'))
14654 {
14655 struct bp_location *loc = find_location_by_number (args);
14656 if (loc)
14657 {
14658 if (!loc->enabled)
14659 {
14660 loc->enabled = 1;
14661 mark_breakpoint_location_modified (loc);
14662 }
14663 if (target_supports_enable_disable_tracepoint ()
14664 && current_trace_status ()->running && loc->owner
14665 && is_tracepoint (loc->owner))
14666 target_enable_tracepoint (loc);
14667 }
14668 update_global_location_list (1);
14669 }
14670 else
14671 map_breakpoint_numbers (args, do_map_enable_breakpoint, NULL);
14672 }
14673
14674 /* This struct packages up disposition data for application to multiple
14675 breakpoints. */
14676
14677 struct disp_data
14678 {
14679 enum bpdisp disp;
14680 int count;
14681 };
14682
14683 static void
14684 do_enable_breakpoint_disp (struct breakpoint *bpt, void *arg)
14685 {
14686 struct disp_data disp_data = *(struct disp_data *) arg;
14687
14688 enable_breakpoint_disp (bpt, disp_data.disp, disp_data.count);
14689 }
14690
14691 static void
14692 do_map_enable_once_breakpoint (struct breakpoint *bpt, void *ignore)
14693 {
14694 struct disp_data disp = { disp_disable, 1 };
14695
14696 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14697 }
14698
14699 static void
14700 enable_once_command (char *args, int from_tty)
14701 {
14702 map_breakpoint_numbers (args, do_map_enable_once_breakpoint, NULL);
14703 }
14704
14705 static void
14706 do_map_enable_count_breakpoint (struct breakpoint *bpt, void *countptr)
14707 {
14708 struct disp_data disp = { disp_disable, *(int *) countptr };
14709
14710 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14711 }
14712
14713 static void
14714 enable_count_command (char *args, int from_tty)
14715 {
14716 int count = get_number (&args);
14717
14718 map_breakpoint_numbers (args, do_map_enable_count_breakpoint, &count);
14719 }
14720
14721 static void
14722 do_map_enable_delete_breakpoint (struct breakpoint *bpt, void *ignore)
14723 {
14724 struct disp_data disp = { disp_del, 1 };
14725
14726 iterate_over_related_breakpoints (bpt, do_enable_breakpoint_disp, &disp);
14727 }
14728
14729 static void
14730 enable_delete_command (char *args, int from_tty)
14731 {
14732 map_breakpoint_numbers (args, do_map_enable_delete_breakpoint, NULL);
14733 }
14734 \f
14735 static void
14736 set_breakpoint_cmd (char *args, int from_tty)
14737 {
14738 }
14739
14740 static void
14741 show_breakpoint_cmd (char *args, int from_tty)
14742 {
14743 }
14744
14745 /* Invalidate last known value of any hardware watchpoint if
14746 the memory which that value represents has been written to by
14747 GDB itself. */
14748
14749 static void
14750 invalidate_bp_value_on_memory_change (struct inferior *inferior,
14751 CORE_ADDR addr, ssize_t len,
14752 const bfd_byte *data)
14753 {
14754 struct breakpoint *bp;
14755
14756 ALL_BREAKPOINTS (bp)
14757 if (bp->enable_state == bp_enabled
14758 && bp->type == bp_hardware_watchpoint)
14759 {
14760 struct watchpoint *wp = (struct watchpoint *) bp;
14761
14762 if (wp->val_valid && wp->val)
14763 {
14764 struct bp_location *loc;
14765
14766 for (loc = bp->loc; loc != NULL; loc = loc->next)
14767 if (loc->loc_type == bp_loc_hardware_watchpoint
14768 && loc->address + loc->length > addr
14769 && addr + len > loc->address)
14770 {
14771 value_free (wp->val);
14772 wp->val = NULL;
14773 wp->val_valid = 0;
14774 }
14775 }
14776 }
14777 }
14778
14779 /* Create and insert a raw software breakpoint at PC. Return an
14780 identifier, which should be used to remove the breakpoint later.
14781 In general, places which call this should be using something on the
14782 breakpoint chain instead; this function should be eliminated
14783 someday. */
14784
14785 void *
14786 deprecated_insert_raw_breakpoint (struct gdbarch *gdbarch,
14787 struct address_space *aspace, CORE_ADDR pc)
14788 {
14789 struct bp_target_info *bp_tgt;
14790
14791 bp_tgt = XZALLOC (struct bp_target_info);
14792
14793 bp_tgt->placed_address_space = aspace;
14794 bp_tgt->placed_address = pc;
14795
14796 if (target_insert_breakpoint (gdbarch, bp_tgt) != 0)
14797 {
14798 /* Could not insert the breakpoint. */
14799 xfree (bp_tgt);
14800 return NULL;
14801 }
14802
14803 return bp_tgt;
14804 }
14805
14806 /* Remove a breakpoint BP inserted by
14807 deprecated_insert_raw_breakpoint. */
14808
14809 int
14810 deprecated_remove_raw_breakpoint (struct gdbarch *gdbarch, void *bp)
14811 {
14812 struct bp_target_info *bp_tgt = bp;
14813 int ret;
14814
14815 ret = target_remove_breakpoint (gdbarch, bp_tgt);
14816 xfree (bp_tgt);
14817
14818 return ret;
14819 }
14820
14821 /* One (or perhaps two) breakpoints used for software single
14822 stepping. */
14823
14824 static void *single_step_breakpoints[2];
14825 static struct gdbarch *single_step_gdbarch[2];
14826
14827 /* Create and insert a breakpoint for software single step. */
14828
14829 void
14830 insert_single_step_breakpoint (struct gdbarch *gdbarch,
14831 struct address_space *aspace,
14832 CORE_ADDR next_pc)
14833 {
14834 void **bpt_p;
14835
14836 if (single_step_breakpoints[0] == NULL)
14837 {
14838 bpt_p = &single_step_breakpoints[0];
14839 single_step_gdbarch[0] = gdbarch;
14840 }
14841 else
14842 {
14843 gdb_assert (single_step_breakpoints[1] == NULL);
14844 bpt_p = &single_step_breakpoints[1];
14845 single_step_gdbarch[1] = gdbarch;
14846 }
14847
14848 /* NOTE drow/2006-04-11: A future improvement to this function would
14849 be to only create the breakpoints once, and actually put them on
14850 the breakpoint chain. That would let us use set_raw_breakpoint.
14851 We could adjust the addresses each time they were needed. Doing
14852 this requires corresponding changes elsewhere where single step
14853 breakpoints are handled, however. So, for now, we use this. */
14854
14855 *bpt_p = deprecated_insert_raw_breakpoint (gdbarch, aspace, next_pc);
14856 if (*bpt_p == NULL)
14857 error (_("Could not insert single-step breakpoint at %s"),
14858 paddress (gdbarch, next_pc));
14859 }
14860
14861 /* Check if the breakpoints used for software single stepping
14862 were inserted or not. */
14863
14864 int
14865 single_step_breakpoints_inserted (void)
14866 {
14867 return (single_step_breakpoints[0] != NULL
14868 || single_step_breakpoints[1] != NULL);
14869 }
14870
14871 /* Remove and delete any breakpoints used for software single step. */
14872
14873 void
14874 remove_single_step_breakpoints (void)
14875 {
14876 gdb_assert (single_step_breakpoints[0] != NULL);
14877
14878 /* See insert_single_step_breakpoint for more about this deprecated
14879 call. */
14880 deprecated_remove_raw_breakpoint (single_step_gdbarch[0],
14881 single_step_breakpoints[0]);
14882 single_step_gdbarch[0] = NULL;
14883 single_step_breakpoints[0] = NULL;
14884
14885 if (single_step_breakpoints[1] != NULL)
14886 {
14887 deprecated_remove_raw_breakpoint (single_step_gdbarch[1],
14888 single_step_breakpoints[1]);
14889 single_step_gdbarch[1] = NULL;
14890 single_step_breakpoints[1] = NULL;
14891 }
14892 }
14893
14894 /* Delete software single step breakpoints without removing them from
14895 the inferior. This is intended to be used if the inferior's address
14896 space where they were inserted is already gone, e.g. after exit or
14897 exec. */
14898
14899 void
14900 cancel_single_step_breakpoints (void)
14901 {
14902 int i;
14903
14904 for (i = 0; i < 2; i++)
14905 if (single_step_breakpoints[i])
14906 {
14907 xfree (single_step_breakpoints[i]);
14908 single_step_breakpoints[i] = NULL;
14909 single_step_gdbarch[i] = NULL;
14910 }
14911 }
14912
14913 /* Detach software single-step breakpoints from INFERIOR_PTID without
14914 removing them. */
14915
14916 static void
14917 detach_single_step_breakpoints (void)
14918 {
14919 int i;
14920
14921 for (i = 0; i < 2; i++)
14922 if (single_step_breakpoints[i])
14923 target_remove_breakpoint (single_step_gdbarch[i],
14924 single_step_breakpoints[i]);
14925 }
14926
14927 /* Check whether a software single-step breakpoint is inserted at
14928 PC. */
14929
14930 static int
14931 single_step_breakpoint_inserted_here_p (struct address_space *aspace,
14932 CORE_ADDR pc)
14933 {
14934 int i;
14935
14936 for (i = 0; i < 2; i++)
14937 {
14938 struct bp_target_info *bp_tgt = single_step_breakpoints[i];
14939 if (bp_tgt
14940 && breakpoint_address_match (bp_tgt->placed_address_space,
14941 bp_tgt->placed_address,
14942 aspace, pc))
14943 return 1;
14944 }
14945
14946 return 0;
14947 }
14948
14949 /* Returns 0 if 'bp' is NOT a syscall catchpoint,
14950 non-zero otherwise. */
14951 static int
14952 is_syscall_catchpoint_enabled (struct breakpoint *bp)
14953 {
14954 if (syscall_catchpoint_p (bp)
14955 && bp->enable_state != bp_disabled
14956 && bp->enable_state != bp_call_disabled)
14957 return 1;
14958 else
14959 return 0;
14960 }
14961
14962 int
14963 catch_syscall_enabled (void)
14964 {
14965 struct catch_syscall_inferior_data *inf_data
14966 = get_catch_syscall_inferior_data (current_inferior ());
14967
14968 return inf_data->total_syscalls_count != 0;
14969 }
14970
14971 int
14972 catching_syscall_number (int syscall_number)
14973 {
14974 struct breakpoint *bp;
14975
14976 ALL_BREAKPOINTS (bp)
14977 if (is_syscall_catchpoint_enabled (bp))
14978 {
14979 struct syscall_catchpoint *c = (struct syscall_catchpoint *) bp;
14980
14981 if (c->syscalls_to_be_caught)
14982 {
14983 int i, iter;
14984 for (i = 0;
14985 VEC_iterate (int, c->syscalls_to_be_caught, i, iter);
14986 i++)
14987 if (syscall_number == iter)
14988 return 1;
14989 }
14990 else
14991 return 1;
14992 }
14993
14994 return 0;
14995 }
14996
14997 /* Complete syscall names. Used by "catch syscall". */
14998 static VEC (char_ptr) *
14999 catch_syscall_completer (struct cmd_list_element *cmd,
15000 const char *text, const char *word)
15001 {
15002 const char **list = get_syscall_names ();
15003 VEC (char_ptr) *retlist
15004 = (list == NULL) ? NULL : complete_on_enum (list, word, word);
15005
15006 xfree (list);
15007 return retlist;
15008 }
15009
15010 /* Tracepoint-specific operations. */
15011
15012 /* Set tracepoint count to NUM. */
15013 static void
15014 set_tracepoint_count (int num)
15015 {
15016 tracepoint_count = num;
15017 set_internalvar_integer (lookup_internalvar ("tpnum"), num);
15018 }
15019
15020 static void
15021 trace_command (char *arg, int from_tty)
15022 {
15023 struct breakpoint_ops *ops;
15024 const char *arg_cp = arg;
15025
15026 if (arg && probe_linespec_to_ops (&arg_cp))
15027 ops = &tracepoint_probe_breakpoint_ops;
15028 else
15029 ops = &tracepoint_breakpoint_ops;
15030
15031 create_breakpoint (get_current_arch (),
15032 arg,
15033 NULL, 0, NULL, 1 /* parse arg */,
15034 0 /* tempflag */,
15035 bp_tracepoint /* type_wanted */,
15036 0 /* Ignore count */,
15037 pending_break_support,
15038 ops,
15039 from_tty,
15040 1 /* enabled */,
15041 0 /* internal */, 0);
15042 }
15043
15044 static void
15045 ftrace_command (char *arg, int from_tty)
15046 {
15047 create_breakpoint (get_current_arch (),
15048 arg,
15049 NULL, 0, NULL, 1 /* parse arg */,
15050 0 /* tempflag */,
15051 bp_fast_tracepoint /* type_wanted */,
15052 0 /* Ignore count */,
15053 pending_break_support,
15054 &tracepoint_breakpoint_ops,
15055 from_tty,
15056 1 /* enabled */,
15057 0 /* internal */, 0);
15058 }
15059
15060 /* strace command implementation. Creates a static tracepoint. */
15061
15062 static void
15063 strace_command (char *arg, int from_tty)
15064 {
15065 struct breakpoint_ops *ops;
15066
15067 /* Decide if we are dealing with a static tracepoint marker (`-m'),
15068 or with a normal static tracepoint. */
15069 if (arg && strncmp (arg, "-m", 2) == 0 && isspace (arg[2]))
15070 ops = &strace_marker_breakpoint_ops;
15071 else
15072 ops = &tracepoint_breakpoint_ops;
15073
15074 create_breakpoint (get_current_arch (),
15075 arg,
15076 NULL, 0, NULL, 1 /* parse arg */,
15077 0 /* tempflag */,
15078 bp_static_tracepoint /* type_wanted */,
15079 0 /* Ignore count */,
15080 pending_break_support,
15081 ops,
15082 from_tty,
15083 1 /* enabled */,
15084 0 /* internal */, 0);
15085 }
15086
15087 /* Set up a fake reader function that gets command lines from a linked
15088 list that was acquired during tracepoint uploading. */
15089
15090 static struct uploaded_tp *this_utp;
15091 static int next_cmd;
15092
15093 static char *
15094 read_uploaded_action (void)
15095 {
15096 char *rslt;
15097
15098 VEC_iterate (char_ptr, this_utp->cmd_strings, next_cmd, rslt);
15099
15100 next_cmd++;
15101
15102 return rslt;
15103 }
15104
15105 /* Given information about a tracepoint as recorded on a target (which
15106 can be either a live system or a trace file), attempt to create an
15107 equivalent GDB tracepoint. This is not a reliable process, since
15108 the target does not necessarily have all the information used when
15109 the tracepoint was originally defined. */
15110
15111 struct tracepoint *
15112 create_tracepoint_from_upload (struct uploaded_tp *utp)
15113 {
15114 char *addr_str, small_buf[100];
15115 struct tracepoint *tp;
15116
15117 if (utp->at_string)
15118 addr_str = utp->at_string;
15119 else
15120 {
15121 /* In the absence of a source location, fall back to raw
15122 address. Since there is no way to confirm that the address
15123 means the same thing as when the trace was started, warn the
15124 user. */
15125 warning (_("Uploaded tracepoint %d has no "
15126 "source location, using raw address"),
15127 utp->number);
15128 xsnprintf (small_buf, sizeof (small_buf), "*%s", hex_string (utp->addr));
15129 addr_str = small_buf;
15130 }
15131
15132 /* There's not much we can do with a sequence of bytecodes. */
15133 if (utp->cond && !utp->cond_string)
15134 warning (_("Uploaded tracepoint %d condition "
15135 "has no source form, ignoring it"),
15136 utp->number);
15137
15138 if (!create_breakpoint (get_current_arch (),
15139 addr_str,
15140 utp->cond_string, -1, NULL,
15141 0 /* parse cond/thread */,
15142 0 /* tempflag */,
15143 utp->type /* type_wanted */,
15144 0 /* Ignore count */,
15145 pending_break_support,
15146 &tracepoint_breakpoint_ops,
15147 0 /* from_tty */,
15148 utp->enabled /* enabled */,
15149 0 /* internal */,
15150 CREATE_BREAKPOINT_FLAGS_INSERTED))
15151 return NULL;
15152
15153 /* Get the tracepoint we just created. */
15154 tp = get_tracepoint (tracepoint_count);
15155 gdb_assert (tp != NULL);
15156
15157 if (utp->pass > 0)
15158 {
15159 xsnprintf (small_buf, sizeof (small_buf), "%d %d", utp->pass,
15160 tp->base.number);
15161
15162 trace_pass_command (small_buf, 0);
15163 }
15164
15165 /* If we have uploaded versions of the original commands, set up a
15166 special-purpose "reader" function and call the usual command line
15167 reader, then pass the result to the breakpoint command-setting
15168 function. */
15169 if (!VEC_empty (char_ptr, utp->cmd_strings))
15170 {
15171 struct command_line *cmd_list;
15172
15173 this_utp = utp;
15174 next_cmd = 0;
15175
15176 cmd_list = read_command_lines_1 (read_uploaded_action, 1, NULL, NULL);
15177
15178 breakpoint_set_commands (&tp->base, cmd_list);
15179 }
15180 else if (!VEC_empty (char_ptr, utp->actions)
15181 || !VEC_empty (char_ptr, utp->step_actions))
15182 warning (_("Uploaded tracepoint %d actions "
15183 "have no source form, ignoring them"),
15184 utp->number);
15185
15186 /* Copy any status information that might be available. */
15187 tp->base.hit_count = utp->hit_count;
15188 tp->traceframe_usage = utp->traceframe_usage;
15189
15190 return tp;
15191 }
15192
15193 /* Print information on tracepoint number TPNUM_EXP, or all if
15194 omitted. */
15195
15196 static void
15197 tracepoints_info (char *args, int from_tty)
15198 {
15199 struct ui_out *uiout = current_uiout;
15200 int num_printed;
15201
15202 num_printed = breakpoint_1 (args, 0, is_tracepoint);
15203
15204 if (num_printed == 0)
15205 {
15206 if (args == NULL || *args == '\0')
15207 ui_out_message (uiout, 0, "No tracepoints.\n");
15208 else
15209 ui_out_message (uiout, 0, "No tracepoint matching '%s'.\n", args);
15210 }
15211
15212 default_collect_info ();
15213 }
15214
15215 /* The 'enable trace' command enables tracepoints.
15216 Not supported by all targets. */
15217 static void
15218 enable_trace_command (char *args, int from_tty)
15219 {
15220 enable_command (args, from_tty);
15221 }
15222
15223 /* The 'disable trace' command disables tracepoints.
15224 Not supported by all targets. */
15225 static void
15226 disable_trace_command (char *args, int from_tty)
15227 {
15228 disable_command (args, from_tty);
15229 }
15230
15231 /* Remove a tracepoint (or all if no argument). */
15232 static void
15233 delete_trace_command (char *arg, int from_tty)
15234 {
15235 struct breakpoint *b, *b_tmp;
15236
15237 dont_repeat ();
15238
15239 if (arg == 0)
15240 {
15241 int breaks_to_delete = 0;
15242
15243 /* Delete all breakpoints if no argument.
15244 Do not delete internal or call-dummy breakpoints, these
15245 have to be deleted with an explicit breakpoint number
15246 argument. */
15247 ALL_TRACEPOINTS (b)
15248 if (is_tracepoint (b) && user_breakpoint_p (b))
15249 {
15250 breaks_to_delete = 1;
15251 break;
15252 }
15253
15254 /* Ask user only if there are some breakpoints to delete. */
15255 if (!from_tty
15256 || (breaks_to_delete && query (_("Delete all tracepoints? "))))
15257 {
15258 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15259 if (is_tracepoint (b) && user_breakpoint_p (b))
15260 delete_breakpoint (b);
15261 }
15262 }
15263 else
15264 map_breakpoint_numbers (arg, do_map_delete_breakpoint, NULL);
15265 }
15266
15267 /* Helper function for trace_pass_command. */
15268
15269 static void
15270 trace_pass_set_count (struct tracepoint *tp, int count, int from_tty)
15271 {
15272 tp->pass_count = count;
15273 observer_notify_breakpoint_modified (&tp->base);
15274 if (from_tty)
15275 printf_filtered (_("Setting tracepoint %d's passcount to %d\n"),
15276 tp->base.number, count);
15277 }
15278
15279 /* Set passcount for tracepoint.
15280
15281 First command argument is passcount, second is tracepoint number.
15282 If tracepoint number omitted, apply to most recently defined.
15283 Also accepts special argument "all". */
15284
15285 static void
15286 trace_pass_command (char *args, int from_tty)
15287 {
15288 struct tracepoint *t1;
15289 unsigned int count;
15290
15291 if (args == 0 || *args == 0)
15292 error (_("passcount command requires an "
15293 "argument (count + optional TP num)"));
15294
15295 count = strtoul (args, &args, 10); /* Count comes first, then TP num. */
15296
15297 args = skip_spaces (args);
15298 if (*args && strncasecmp (args, "all", 3) == 0)
15299 {
15300 struct breakpoint *b;
15301
15302 args += 3; /* Skip special argument "all". */
15303 if (*args)
15304 error (_("Junk at end of arguments."));
15305
15306 ALL_TRACEPOINTS (b)
15307 {
15308 t1 = (struct tracepoint *) b;
15309 trace_pass_set_count (t1, count, from_tty);
15310 }
15311 }
15312 else if (*args == '\0')
15313 {
15314 t1 = get_tracepoint_by_number (&args, NULL, 1);
15315 if (t1)
15316 trace_pass_set_count (t1, count, from_tty);
15317 }
15318 else
15319 {
15320 struct get_number_or_range_state state;
15321
15322 init_number_or_range (&state, args);
15323 while (!state.finished)
15324 {
15325 t1 = get_tracepoint_by_number (&args, &state, 1);
15326 if (t1)
15327 trace_pass_set_count (t1, count, from_tty);
15328 }
15329 }
15330 }
15331
15332 struct tracepoint *
15333 get_tracepoint (int num)
15334 {
15335 struct breakpoint *t;
15336
15337 ALL_TRACEPOINTS (t)
15338 if (t->number == num)
15339 return (struct tracepoint *) t;
15340
15341 return NULL;
15342 }
15343
15344 /* Find the tracepoint with the given target-side number (which may be
15345 different from the tracepoint number after disconnecting and
15346 reconnecting). */
15347
15348 struct tracepoint *
15349 get_tracepoint_by_number_on_target (int num)
15350 {
15351 struct breakpoint *b;
15352
15353 ALL_TRACEPOINTS (b)
15354 {
15355 struct tracepoint *t = (struct tracepoint *) b;
15356
15357 if (t->number_on_target == num)
15358 return t;
15359 }
15360
15361 return NULL;
15362 }
15363
15364 /* Utility: parse a tracepoint number and look it up in the list.
15365 If STATE is not NULL, use, get_number_or_range_state and ignore ARG.
15366 If OPTIONAL_P is true, then if the argument is missing, the most
15367 recent tracepoint (tracepoint_count) is returned. */
15368 struct tracepoint *
15369 get_tracepoint_by_number (char **arg,
15370 struct get_number_or_range_state *state,
15371 int optional_p)
15372 {
15373 struct breakpoint *t;
15374 int tpnum;
15375 char *instring = arg == NULL ? NULL : *arg;
15376
15377 if (state)
15378 {
15379 gdb_assert (!state->finished);
15380 tpnum = get_number_or_range (state);
15381 }
15382 else if (arg == NULL || *arg == NULL || ! **arg)
15383 {
15384 if (optional_p)
15385 tpnum = tracepoint_count;
15386 else
15387 error_no_arg (_("tracepoint number"));
15388 }
15389 else
15390 tpnum = get_number (arg);
15391
15392 if (tpnum <= 0)
15393 {
15394 if (instring && *instring)
15395 printf_filtered (_("bad tracepoint number at or near '%s'\n"),
15396 instring);
15397 else
15398 printf_filtered (_("Tracepoint argument missing "
15399 "and no previous tracepoint\n"));
15400 return NULL;
15401 }
15402
15403 ALL_TRACEPOINTS (t)
15404 if (t->number == tpnum)
15405 {
15406 return (struct tracepoint *) t;
15407 }
15408
15409 printf_unfiltered ("No tracepoint number %d.\n", tpnum);
15410 return NULL;
15411 }
15412
15413 void
15414 print_recreate_thread (struct breakpoint *b, struct ui_file *fp)
15415 {
15416 if (b->thread != -1)
15417 fprintf_unfiltered (fp, " thread %d", b->thread);
15418
15419 if (b->task != 0)
15420 fprintf_unfiltered (fp, " task %d", b->task);
15421
15422 fprintf_unfiltered (fp, "\n");
15423 }
15424
15425 /* Save information on user settable breakpoints (watchpoints, etc) to
15426 a new script file named FILENAME. If FILTER is non-NULL, call it
15427 on each breakpoint and only include the ones for which it returns
15428 non-zero. */
15429
15430 static void
15431 save_breakpoints (char *filename, int from_tty,
15432 int (*filter) (const struct breakpoint *))
15433 {
15434 struct breakpoint *tp;
15435 int any = 0;
15436 char *pathname;
15437 struct cleanup *cleanup;
15438 struct ui_file *fp;
15439 int extra_trace_bits = 0;
15440
15441 if (filename == 0 || *filename == 0)
15442 error (_("Argument required (file name in which to save)"));
15443
15444 /* See if we have anything to save. */
15445 ALL_BREAKPOINTS (tp)
15446 {
15447 /* Skip internal and momentary breakpoints. */
15448 if (!user_breakpoint_p (tp))
15449 continue;
15450
15451 /* If we have a filter, only save the breakpoints it accepts. */
15452 if (filter && !filter (tp))
15453 continue;
15454
15455 any = 1;
15456
15457 if (is_tracepoint (tp))
15458 {
15459 extra_trace_bits = 1;
15460
15461 /* We can stop searching. */
15462 break;
15463 }
15464 }
15465
15466 if (!any)
15467 {
15468 warning (_("Nothing to save."));
15469 return;
15470 }
15471
15472 pathname = tilde_expand (filename);
15473 cleanup = make_cleanup (xfree, pathname);
15474 fp = gdb_fopen (pathname, "w");
15475 if (!fp)
15476 error (_("Unable to open file '%s' for saving (%s)"),
15477 filename, safe_strerror (errno));
15478 make_cleanup_ui_file_delete (fp);
15479
15480 if (extra_trace_bits)
15481 save_trace_state_variables (fp);
15482
15483 ALL_BREAKPOINTS (tp)
15484 {
15485 /* Skip internal and momentary breakpoints. */
15486 if (!user_breakpoint_p (tp))
15487 continue;
15488
15489 /* If we have a filter, only save the breakpoints it accepts. */
15490 if (filter && !filter (tp))
15491 continue;
15492
15493 tp->ops->print_recreate (tp, fp);
15494
15495 /* Note, we can't rely on tp->number for anything, as we can't
15496 assume the recreated breakpoint numbers will match. Use $bpnum
15497 instead. */
15498
15499 if (tp->cond_string)
15500 fprintf_unfiltered (fp, " condition $bpnum %s\n", tp->cond_string);
15501
15502 if (tp->ignore_count)
15503 fprintf_unfiltered (fp, " ignore $bpnum %d\n", tp->ignore_count);
15504
15505 if (tp->type != bp_dprintf && tp->commands)
15506 {
15507 volatile struct gdb_exception ex;
15508
15509 fprintf_unfiltered (fp, " commands\n");
15510
15511 ui_out_redirect (current_uiout, fp);
15512 TRY_CATCH (ex, RETURN_MASK_ALL)
15513 {
15514 print_command_lines (current_uiout, tp->commands->commands, 2);
15515 }
15516 ui_out_redirect (current_uiout, NULL);
15517
15518 if (ex.reason < 0)
15519 throw_exception (ex);
15520
15521 fprintf_unfiltered (fp, " end\n");
15522 }
15523
15524 if (tp->enable_state == bp_disabled)
15525 fprintf_unfiltered (fp, "disable\n");
15526
15527 /* If this is a multi-location breakpoint, check if the locations
15528 should be individually disabled. Watchpoint locations are
15529 special, and not user visible. */
15530 if (!is_watchpoint (tp) && tp->loc && tp->loc->next)
15531 {
15532 struct bp_location *loc;
15533 int n = 1;
15534
15535 for (loc = tp->loc; loc != NULL; loc = loc->next, n++)
15536 if (!loc->enabled)
15537 fprintf_unfiltered (fp, "disable $bpnum.%d\n", n);
15538 }
15539 }
15540
15541 if (extra_trace_bits && *default_collect)
15542 fprintf_unfiltered (fp, "set default-collect %s\n", default_collect);
15543
15544 do_cleanups (cleanup);
15545 if (from_tty)
15546 printf_filtered (_("Saved to file '%s'.\n"), filename);
15547 }
15548
15549 /* The `save breakpoints' command. */
15550
15551 static void
15552 save_breakpoints_command (char *args, int from_tty)
15553 {
15554 save_breakpoints (args, from_tty, NULL);
15555 }
15556
15557 /* The `save tracepoints' command. */
15558
15559 static void
15560 save_tracepoints_command (char *args, int from_tty)
15561 {
15562 save_breakpoints (args, from_tty, is_tracepoint);
15563 }
15564
15565 /* Create a vector of all tracepoints. */
15566
15567 VEC(breakpoint_p) *
15568 all_tracepoints (void)
15569 {
15570 VEC(breakpoint_p) *tp_vec = 0;
15571 struct breakpoint *tp;
15572
15573 ALL_TRACEPOINTS (tp)
15574 {
15575 VEC_safe_push (breakpoint_p, tp_vec, tp);
15576 }
15577
15578 return tp_vec;
15579 }
15580
15581 \f
15582 /* This help string is used for the break, hbreak, tbreak and thbreak
15583 commands. It is defined as a macro to prevent duplication.
15584 COMMAND should be a string constant containing the name of the
15585 command. */
15586 #define BREAK_ARGS_HELP(command) \
15587 command" [PROBE_MODIFIER] [LOCATION] [thread THREADNUM] [if CONDITION]\n\
15588 PROBE_MODIFIER shall be present if the command is to be placed in a\n\
15589 probe point. Accepted values are `-probe' (for a generic, automatically\n\
15590 guessed probe type) or `-probe-stap' (for a SystemTap probe).\n\
15591 LOCATION may be a line number, function name, or \"*\" and an address.\n\
15592 If a line number is specified, break at start of code for that line.\n\
15593 If a function is specified, break at start of code for that function.\n\
15594 If an address is specified, break at that exact address.\n\
15595 With no LOCATION, uses current execution address of the selected\n\
15596 stack frame. This is useful for breaking on return to a stack frame.\n\
15597 \n\
15598 THREADNUM is the number from \"info threads\".\n\
15599 CONDITION is a boolean expression.\n\
15600 \n\
15601 Multiple breakpoints at one place are permitted, and useful if their\n\
15602 conditions are different.\n\
15603 \n\
15604 Do \"help breakpoints\" for info on other commands dealing with breakpoints."
15605
15606 /* List of subcommands for "catch". */
15607 static struct cmd_list_element *catch_cmdlist;
15608
15609 /* List of subcommands for "tcatch". */
15610 static struct cmd_list_element *tcatch_cmdlist;
15611
15612 void
15613 add_catch_command (char *name, char *docstring,
15614 void (*sfunc) (char *args, int from_tty,
15615 struct cmd_list_element *command),
15616 completer_ftype *completer,
15617 void *user_data_catch,
15618 void *user_data_tcatch)
15619 {
15620 struct cmd_list_element *command;
15621
15622 command = add_cmd (name, class_breakpoint, NULL, docstring,
15623 &catch_cmdlist);
15624 set_cmd_sfunc (command, sfunc);
15625 set_cmd_context (command, user_data_catch);
15626 set_cmd_completer (command, completer);
15627
15628 command = add_cmd (name, class_breakpoint, NULL, docstring,
15629 &tcatch_cmdlist);
15630 set_cmd_sfunc (command, sfunc);
15631 set_cmd_context (command, user_data_tcatch);
15632 set_cmd_completer (command, completer);
15633 }
15634
15635 static void
15636 clear_syscall_counts (struct inferior *inf)
15637 {
15638 struct catch_syscall_inferior_data *inf_data
15639 = get_catch_syscall_inferior_data (inf);
15640
15641 inf_data->total_syscalls_count = 0;
15642 inf_data->any_syscall_count = 0;
15643 VEC_free (int, inf_data->syscalls_counts);
15644 }
15645
15646 static void
15647 save_command (char *arg, int from_tty)
15648 {
15649 printf_unfiltered (_("\"save\" must be followed by "
15650 "the name of a save subcommand.\n"));
15651 help_list (save_cmdlist, "save ", -1, gdb_stdout);
15652 }
15653
15654 struct breakpoint *
15655 iterate_over_breakpoints (int (*callback) (struct breakpoint *, void *),
15656 void *data)
15657 {
15658 struct breakpoint *b, *b_tmp;
15659
15660 ALL_BREAKPOINTS_SAFE (b, b_tmp)
15661 {
15662 if ((*callback) (b, data))
15663 return b;
15664 }
15665
15666 return NULL;
15667 }
15668
15669 /* Zero if any of the breakpoint's locations could be a location where
15670 functions have been inlined, nonzero otherwise. */
15671
15672 static int
15673 is_non_inline_function (struct breakpoint *b)
15674 {
15675 /* The shared library event breakpoint is set on the address of a
15676 non-inline function. */
15677 if (b->type == bp_shlib_event)
15678 return 1;
15679
15680 return 0;
15681 }
15682
15683 /* Nonzero if the specified PC cannot be a location where functions
15684 have been inlined. */
15685
15686 int
15687 pc_at_non_inline_function (struct address_space *aspace, CORE_ADDR pc,
15688 const struct target_waitstatus *ws)
15689 {
15690 struct breakpoint *b;
15691 struct bp_location *bl;
15692
15693 ALL_BREAKPOINTS (b)
15694 {
15695 if (!is_non_inline_function (b))
15696 continue;
15697
15698 for (bl = b->loc; bl != NULL; bl = bl->next)
15699 {
15700 if (!bl->shlib_disabled
15701 && bpstat_check_location (bl, aspace, pc, ws))
15702 return 1;
15703 }
15704 }
15705
15706 return 0;
15707 }
15708
15709 /* Remove any references to OBJFILE which is going to be freed. */
15710
15711 void
15712 breakpoint_free_objfile (struct objfile *objfile)
15713 {
15714 struct bp_location **locp, *loc;
15715
15716 ALL_BP_LOCATIONS (loc, locp)
15717 if (loc->symtab != NULL && loc->symtab->objfile == objfile)
15718 loc->symtab = NULL;
15719 }
15720
15721 void
15722 initialize_breakpoint_ops (void)
15723 {
15724 static int initialized = 0;
15725
15726 struct breakpoint_ops *ops;
15727
15728 if (initialized)
15729 return;
15730 initialized = 1;
15731
15732 /* The breakpoint_ops structure to be inherit by all kinds of
15733 breakpoints (real breakpoints, i.e., user "break" breakpoints,
15734 internal and momentary breakpoints, etc.). */
15735 ops = &bkpt_base_breakpoint_ops;
15736 *ops = base_breakpoint_ops;
15737 ops->re_set = bkpt_re_set;
15738 ops->insert_location = bkpt_insert_location;
15739 ops->remove_location = bkpt_remove_location;
15740 ops->breakpoint_hit = bkpt_breakpoint_hit;
15741 ops->create_sals_from_address = bkpt_create_sals_from_address;
15742 ops->create_breakpoints_sal = bkpt_create_breakpoints_sal;
15743 ops->decode_linespec = bkpt_decode_linespec;
15744
15745 /* The breakpoint_ops structure to be used in regular breakpoints. */
15746 ops = &bkpt_breakpoint_ops;
15747 *ops = bkpt_base_breakpoint_ops;
15748 ops->re_set = bkpt_re_set;
15749 ops->resources_needed = bkpt_resources_needed;
15750 ops->print_it = bkpt_print_it;
15751 ops->print_mention = bkpt_print_mention;
15752 ops->print_recreate = bkpt_print_recreate;
15753
15754 /* Ranged breakpoints. */
15755 ops = &ranged_breakpoint_ops;
15756 *ops = bkpt_breakpoint_ops;
15757 ops->breakpoint_hit = breakpoint_hit_ranged_breakpoint;
15758 ops->resources_needed = resources_needed_ranged_breakpoint;
15759 ops->print_it = print_it_ranged_breakpoint;
15760 ops->print_one = print_one_ranged_breakpoint;
15761 ops->print_one_detail = print_one_detail_ranged_breakpoint;
15762 ops->print_mention = print_mention_ranged_breakpoint;
15763 ops->print_recreate = print_recreate_ranged_breakpoint;
15764
15765 /* Internal breakpoints. */
15766 ops = &internal_breakpoint_ops;
15767 *ops = bkpt_base_breakpoint_ops;
15768 ops->re_set = internal_bkpt_re_set;
15769 ops->check_status = internal_bkpt_check_status;
15770 ops->print_it = internal_bkpt_print_it;
15771 ops->print_mention = internal_bkpt_print_mention;
15772
15773 /* Momentary breakpoints. */
15774 ops = &momentary_breakpoint_ops;
15775 *ops = bkpt_base_breakpoint_ops;
15776 ops->re_set = momentary_bkpt_re_set;
15777 ops->check_status = momentary_bkpt_check_status;
15778 ops->print_it = momentary_bkpt_print_it;
15779 ops->print_mention = momentary_bkpt_print_mention;
15780
15781 /* Momentary breakpoints for bp_longjmp and bp_exception. */
15782 ops = &longjmp_breakpoint_ops;
15783 *ops = momentary_breakpoint_ops;
15784 ops->dtor = longjmp_bkpt_dtor;
15785
15786 /* Probe breakpoints. */
15787 ops = &bkpt_probe_breakpoint_ops;
15788 *ops = bkpt_breakpoint_ops;
15789 ops->insert_location = bkpt_probe_insert_location;
15790 ops->remove_location = bkpt_probe_remove_location;
15791 ops->create_sals_from_address = bkpt_probe_create_sals_from_address;
15792 ops->decode_linespec = bkpt_probe_decode_linespec;
15793
15794 /* Watchpoints. */
15795 ops = &watchpoint_breakpoint_ops;
15796 *ops = base_breakpoint_ops;
15797 ops->dtor = dtor_watchpoint;
15798 ops->re_set = re_set_watchpoint;
15799 ops->insert_location = insert_watchpoint;
15800 ops->remove_location = remove_watchpoint;
15801 ops->breakpoint_hit = breakpoint_hit_watchpoint;
15802 ops->check_status = check_status_watchpoint;
15803 ops->resources_needed = resources_needed_watchpoint;
15804 ops->works_in_software_mode = works_in_software_mode_watchpoint;
15805 ops->print_it = print_it_watchpoint;
15806 ops->print_mention = print_mention_watchpoint;
15807 ops->print_recreate = print_recreate_watchpoint;
15808 ops->explains_signal = explains_signal_watchpoint;
15809
15810 /* Masked watchpoints. */
15811 ops = &masked_watchpoint_breakpoint_ops;
15812 *ops = watchpoint_breakpoint_ops;
15813 ops->insert_location = insert_masked_watchpoint;
15814 ops->remove_location = remove_masked_watchpoint;
15815 ops->resources_needed = resources_needed_masked_watchpoint;
15816 ops->works_in_software_mode = works_in_software_mode_masked_watchpoint;
15817 ops->print_it = print_it_masked_watchpoint;
15818 ops->print_one_detail = print_one_detail_masked_watchpoint;
15819 ops->print_mention = print_mention_masked_watchpoint;
15820 ops->print_recreate = print_recreate_masked_watchpoint;
15821
15822 /* Tracepoints. */
15823 ops = &tracepoint_breakpoint_ops;
15824 *ops = base_breakpoint_ops;
15825 ops->re_set = tracepoint_re_set;
15826 ops->breakpoint_hit = tracepoint_breakpoint_hit;
15827 ops->print_one_detail = tracepoint_print_one_detail;
15828 ops->print_mention = tracepoint_print_mention;
15829 ops->print_recreate = tracepoint_print_recreate;
15830 ops->create_sals_from_address = tracepoint_create_sals_from_address;
15831 ops->create_breakpoints_sal = tracepoint_create_breakpoints_sal;
15832 ops->decode_linespec = tracepoint_decode_linespec;
15833
15834 /* Probe tracepoints. */
15835 ops = &tracepoint_probe_breakpoint_ops;
15836 *ops = tracepoint_breakpoint_ops;
15837 ops->create_sals_from_address = tracepoint_probe_create_sals_from_address;
15838 ops->decode_linespec = tracepoint_probe_decode_linespec;
15839
15840 /* Static tracepoints with marker (`-m'). */
15841 ops = &strace_marker_breakpoint_ops;
15842 *ops = tracepoint_breakpoint_ops;
15843 ops->create_sals_from_address = strace_marker_create_sals_from_address;
15844 ops->create_breakpoints_sal = strace_marker_create_breakpoints_sal;
15845 ops->decode_linespec = strace_marker_decode_linespec;
15846
15847 /* Fork catchpoints. */
15848 ops = &catch_fork_breakpoint_ops;
15849 *ops = base_breakpoint_ops;
15850 ops->insert_location = insert_catch_fork;
15851 ops->remove_location = remove_catch_fork;
15852 ops->breakpoint_hit = breakpoint_hit_catch_fork;
15853 ops->print_it = print_it_catch_fork;
15854 ops->print_one = print_one_catch_fork;
15855 ops->print_mention = print_mention_catch_fork;
15856 ops->print_recreate = print_recreate_catch_fork;
15857
15858 /* Vfork catchpoints. */
15859 ops = &catch_vfork_breakpoint_ops;
15860 *ops = base_breakpoint_ops;
15861 ops->insert_location = insert_catch_vfork;
15862 ops->remove_location = remove_catch_vfork;
15863 ops->breakpoint_hit = breakpoint_hit_catch_vfork;
15864 ops->print_it = print_it_catch_vfork;
15865 ops->print_one = print_one_catch_vfork;
15866 ops->print_mention = print_mention_catch_vfork;
15867 ops->print_recreate = print_recreate_catch_vfork;
15868
15869 /* Exec catchpoints. */
15870 ops = &catch_exec_breakpoint_ops;
15871 *ops = base_breakpoint_ops;
15872 ops->dtor = dtor_catch_exec;
15873 ops->insert_location = insert_catch_exec;
15874 ops->remove_location = remove_catch_exec;
15875 ops->breakpoint_hit = breakpoint_hit_catch_exec;
15876 ops->print_it = print_it_catch_exec;
15877 ops->print_one = print_one_catch_exec;
15878 ops->print_mention = print_mention_catch_exec;
15879 ops->print_recreate = print_recreate_catch_exec;
15880
15881 /* Syscall catchpoints. */
15882 ops = &catch_syscall_breakpoint_ops;
15883 *ops = base_breakpoint_ops;
15884 ops->dtor = dtor_catch_syscall;
15885 ops->insert_location = insert_catch_syscall;
15886 ops->remove_location = remove_catch_syscall;
15887 ops->breakpoint_hit = breakpoint_hit_catch_syscall;
15888 ops->print_it = print_it_catch_syscall;
15889 ops->print_one = print_one_catch_syscall;
15890 ops->print_mention = print_mention_catch_syscall;
15891 ops->print_recreate = print_recreate_catch_syscall;
15892
15893 /* Solib-related catchpoints. */
15894 ops = &catch_solib_breakpoint_ops;
15895 *ops = base_breakpoint_ops;
15896 ops->dtor = dtor_catch_solib;
15897 ops->insert_location = insert_catch_solib;
15898 ops->remove_location = remove_catch_solib;
15899 ops->breakpoint_hit = breakpoint_hit_catch_solib;
15900 ops->check_status = check_status_catch_solib;
15901 ops->print_it = print_it_catch_solib;
15902 ops->print_one = print_one_catch_solib;
15903 ops->print_mention = print_mention_catch_solib;
15904 ops->print_recreate = print_recreate_catch_solib;
15905
15906 ops = &dprintf_breakpoint_ops;
15907 *ops = bkpt_base_breakpoint_ops;
15908 ops->re_set = dprintf_re_set;
15909 ops->resources_needed = bkpt_resources_needed;
15910 ops->print_it = bkpt_print_it;
15911 ops->print_mention = bkpt_print_mention;
15912 ops->print_recreate = dprintf_print_recreate;
15913 ops->after_condition_true = dprintf_after_condition_true;
15914 }
15915
15916 /* Chain containing all defined "enable breakpoint" subcommands. */
15917
15918 static struct cmd_list_element *enablebreaklist = NULL;
15919
15920 void
15921 _initialize_breakpoint (void)
15922 {
15923 struct cmd_list_element *c;
15924
15925 initialize_breakpoint_ops ();
15926
15927 observer_attach_solib_unloaded (disable_breakpoints_in_unloaded_shlib);
15928 observer_attach_inferior_exit (clear_syscall_counts);
15929 observer_attach_memory_changed (invalidate_bp_value_on_memory_change);
15930
15931 breakpoint_objfile_key
15932 = register_objfile_data_with_cleanup (NULL, free_breakpoint_probes);
15933
15934 catch_syscall_inferior_data
15935 = register_inferior_data_with_cleanup (NULL,
15936 catch_syscall_inferior_data_cleanup);
15937
15938 breakpoint_chain = 0;
15939 /* Don't bother to call set_breakpoint_count. $bpnum isn't useful
15940 before a breakpoint is set. */
15941 breakpoint_count = 0;
15942
15943 tracepoint_count = 0;
15944
15945 add_com ("ignore", class_breakpoint, ignore_command, _("\
15946 Set ignore-count of breakpoint number N to COUNT.\n\
15947 Usage is `ignore N COUNT'."));
15948 if (xdb_commands)
15949 add_com_alias ("bc", "ignore", class_breakpoint, 1);
15950
15951 add_com ("commands", class_breakpoint, commands_command, _("\
15952 Set commands to be executed when a breakpoint is hit.\n\
15953 Give breakpoint number as argument after \"commands\".\n\
15954 With no argument, the targeted breakpoint is the last one set.\n\
15955 The commands themselves follow starting on the next line.\n\
15956 Type a line containing \"end\" to indicate the end of them.\n\
15957 Give \"silent\" as the first line to make the breakpoint silent;\n\
15958 then no output is printed when it is hit, except what the commands print."));
15959
15960 c = add_com ("condition", class_breakpoint, condition_command, _("\
15961 Specify breakpoint number N to break only if COND is true.\n\
15962 Usage is `condition N COND', where N is an integer and COND is an\n\
15963 expression to be evaluated whenever breakpoint N is reached."));
15964 set_cmd_completer (c, condition_completer);
15965
15966 c = add_com ("tbreak", class_breakpoint, tbreak_command, _("\
15967 Set a temporary breakpoint.\n\
15968 Like \"break\" except the breakpoint is only temporary,\n\
15969 so it will be deleted when hit. Equivalent to \"break\" followed\n\
15970 by using \"enable delete\" on the breakpoint number.\n\
15971 \n"
15972 BREAK_ARGS_HELP ("tbreak")));
15973 set_cmd_completer (c, location_completer);
15974
15975 c = add_com ("hbreak", class_breakpoint, hbreak_command, _("\
15976 Set a hardware assisted breakpoint.\n\
15977 Like \"break\" except the breakpoint requires hardware support,\n\
15978 some target hardware may not have this support.\n\
15979 \n"
15980 BREAK_ARGS_HELP ("hbreak")));
15981 set_cmd_completer (c, location_completer);
15982
15983 c = add_com ("thbreak", class_breakpoint, thbreak_command, _("\
15984 Set a temporary hardware assisted breakpoint.\n\
15985 Like \"hbreak\" except the breakpoint is only temporary,\n\
15986 so it will be deleted when hit.\n\
15987 \n"
15988 BREAK_ARGS_HELP ("thbreak")));
15989 set_cmd_completer (c, location_completer);
15990
15991 add_prefix_cmd ("enable", class_breakpoint, enable_command, _("\
15992 Enable some breakpoints.\n\
15993 Give breakpoint numbers (separated by spaces) as arguments.\n\
15994 With no subcommand, breakpoints are enabled until you command otherwise.\n\
15995 This is used to cancel the effect of the \"disable\" command.\n\
15996 With a subcommand you can enable temporarily."),
15997 &enablelist, "enable ", 1, &cmdlist);
15998 if (xdb_commands)
15999 add_com ("ab", class_breakpoint, enable_command, _("\
16000 Enable some breakpoints.\n\
16001 Give breakpoint numbers (separated by spaces) as arguments.\n\
16002 With no subcommand, breakpoints are enabled until you command otherwise.\n\
16003 This is used to cancel the effect of the \"disable\" command.\n\
16004 With a subcommand you can enable temporarily."));
16005
16006 add_com_alias ("en", "enable", class_breakpoint, 1);
16007
16008 add_prefix_cmd ("breakpoints", class_breakpoint, enable_command, _("\
16009 Enable some breakpoints.\n\
16010 Give breakpoint numbers (separated by spaces) as arguments.\n\
16011 This is used to cancel the effect of the \"disable\" command.\n\
16012 May be abbreviated to simply \"enable\".\n"),
16013 &enablebreaklist, "enable breakpoints ", 1, &enablelist);
16014
16015 add_cmd ("once", no_class, enable_once_command, _("\
16016 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16017 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16018 &enablebreaklist);
16019
16020 add_cmd ("delete", no_class, enable_delete_command, _("\
16021 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16022 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16023 &enablebreaklist);
16024
16025 add_cmd ("count", no_class, enable_count_command, _("\
16026 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16027 If a breakpoint is hit while enabled in this fashion,\n\
16028 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16029 &enablebreaklist);
16030
16031 add_cmd ("delete", no_class, enable_delete_command, _("\
16032 Enable breakpoints and delete when hit. Give breakpoint numbers.\n\
16033 If a breakpoint is hit while enabled in this fashion, it is deleted."),
16034 &enablelist);
16035
16036 add_cmd ("once", no_class, enable_once_command, _("\
16037 Enable breakpoints for one hit. Give breakpoint numbers.\n\
16038 If a breakpoint is hit while enabled in this fashion, it becomes disabled."),
16039 &enablelist);
16040
16041 add_cmd ("count", no_class, enable_count_command, _("\
16042 Enable breakpoints for COUNT hits. Give count and then breakpoint numbers.\n\
16043 If a breakpoint is hit while enabled in this fashion,\n\
16044 the count is decremented; when it reaches zero, the breakpoint is disabled."),
16045 &enablelist);
16046
16047 add_prefix_cmd ("disable", class_breakpoint, disable_command, _("\
16048 Disable some breakpoints.\n\
16049 Arguments are breakpoint numbers with spaces in between.\n\
16050 To disable all breakpoints, give no argument.\n\
16051 A disabled breakpoint is not forgotten, but has no effect until re-enabled."),
16052 &disablelist, "disable ", 1, &cmdlist);
16053 add_com_alias ("dis", "disable", class_breakpoint, 1);
16054 add_com_alias ("disa", "disable", class_breakpoint, 1);
16055 if (xdb_commands)
16056 add_com ("sb", class_breakpoint, disable_command, _("\
16057 Disable some breakpoints.\n\
16058 Arguments are breakpoint numbers with spaces in between.\n\
16059 To disable all breakpoints, give no argument.\n\
16060 A disabled breakpoint is not forgotten, but has no effect until re-enabled."));
16061
16062 add_cmd ("breakpoints", class_alias, disable_command, _("\
16063 Disable some breakpoints.\n\
16064 Arguments are breakpoint numbers with spaces in between.\n\
16065 To disable all breakpoints, give no argument.\n\
16066 A disabled breakpoint is not forgotten, but has no effect until re-enabled.\n\
16067 This command may be abbreviated \"disable\"."),
16068 &disablelist);
16069
16070 add_prefix_cmd ("delete", class_breakpoint, delete_command, _("\
16071 Delete some breakpoints or auto-display expressions.\n\
16072 Arguments are breakpoint numbers with spaces in between.\n\
16073 To delete all breakpoints, give no argument.\n\
16074 \n\
16075 Also a prefix command for deletion of other GDB objects.\n\
16076 The \"unset\" command is also an alias for \"delete\"."),
16077 &deletelist, "delete ", 1, &cmdlist);
16078 add_com_alias ("d", "delete", class_breakpoint, 1);
16079 add_com_alias ("del", "delete", class_breakpoint, 1);
16080 if (xdb_commands)
16081 add_com ("db", class_breakpoint, delete_command, _("\
16082 Delete some breakpoints.\n\
16083 Arguments are breakpoint numbers with spaces in between.\n\
16084 To delete all breakpoints, give no argument.\n"));
16085
16086 add_cmd ("breakpoints", class_alias, delete_command, _("\
16087 Delete some breakpoints or auto-display expressions.\n\
16088 Arguments are breakpoint numbers with spaces in between.\n\
16089 To delete all breakpoints, give no argument.\n\
16090 This command may be abbreviated \"delete\"."),
16091 &deletelist);
16092
16093 add_com ("clear", class_breakpoint, clear_command, _("\
16094 Clear breakpoint at specified line or function.\n\
16095 Argument may be line number, function name, or \"*\" and an address.\n\
16096 If line number is specified, all breakpoints in that line are cleared.\n\
16097 If function is specified, breakpoints at beginning of function are cleared.\n\
16098 If an address is specified, breakpoints at that address are cleared.\n\
16099 \n\
16100 With no argument, clears all breakpoints in the line that the selected frame\n\
16101 is executing in.\n\
16102 \n\
16103 See also the \"delete\" command which clears breakpoints by number."));
16104 add_com_alias ("cl", "clear", class_breakpoint, 1);
16105
16106 c = add_com ("break", class_breakpoint, break_command, _("\
16107 Set breakpoint at specified line or function.\n"
16108 BREAK_ARGS_HELP ("break")));
16109 set_cmd_completer (c, location_completer);
16110
16111 add_com_alias ("b", "break", class_run, 1);
16112 add_com_alias ("br", "break", class_run, 1);
16113 add_com_alias ("bre", "break", class_run, 1);
16114 add_com_alias ("brea", "break", class_run, 1);
16115
16116 if (xdb_commands)
16117 add_com_alias ("ba", "break", class_breakpoint, 1);
16118
16119 if (dbx_commands)
16120 {
16121 add_abbrev_prefix_cmd ("stop", class_breakpoint, stop_command, _("\
16122 Break in function/address or break at a line in the current file."),
16123 &stoplist, "stop ", 1, &cmdlist);
16124 add_cmd ("in", class_breakpoint, stopin_command,
16125 _("Break in function or address."), &stoplist);
16126 add_cmd ("at", class_breakpoint, stopat_command,
16127 _("Break at a line in the current file."), &stoplist);
16128 add_com ("status", class_info, breakpoints_info, _("\
16129 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16130 The \"Type\" column indicates one of:\n\
16131 \tbreakpoint - normal breakpoint\n\
16132 \twatchpoint - watchpoint\n\
16133 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16134 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16135 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16136 address and file/line number respectively.\n\
16137 \n\
16138 Convenience variable \"$_\" and default examine address for \"x\"\n\
16139 are set to the address of the last breakpoint listed unless the command\n\
16140 is prefixed with \"server \".\n\n\
16141 Convenience variable \"$bpnum\" contains the number of the last\n\
16142 breakpoint set."));
16143 }
16144
16145 add_info ("breakpoints", breakpoints_info, _("\
16146 Status of specified breakpoints (all user-settable breakpoints if no argument).\n\
16147 The \"Type\" column indicates one of:\n\
16148 \tbreakpoint - normal breakpoint\n\
16149 \twatchpoint - watchpoint\n\
16150 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16151 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16152 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16153 address and file/line number respectively.\n\
16154 \n\
16155 Convenience variable \"$_\" and default examine address for \"x\"\n\
16156 are set to the address of the last breakpoint listed unless the command\n\
16157 is prefixed with \"server \".\n\n\
16158 Convenience variable \"$bpnum\" contains the number of the last\n\
16159 breakpoint set."));
16160
16161 add_info_alias ("b", "breakpoints", 1);
16162
16163 if (xdb_commands)
16164 add_com ("lb", class_breakpoint, breakpoints_info, _("\
16165 Status of user-settable breakpoints, or breakpoint number NUMBER.\n\
16166 The \"Type\" column indicates one of:\n\
16167 \tbreakpoint - normal breakpoint\n\
16168 \twatchpoint - watchpoint\n\
16169 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16170 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16171 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16172 address and file/line number respectively.\n\
16173 \n\
16174 Convenience variable \"$_\" and default examine address for \"x\"\n\
16175 are set to the address of the last breakpoint listed unless the command\n\
16176 is prefixed with \"server \".\n\n\
16177 Convenience variable \"$bpnum\" contains the number of the last\n\
16178 breakpoint set."));
16179
16180 add_cmd ("breakpoints", class_maintenance, maintenance_info_breakpoints, _("\
16181 Status of all breakpoints, or breakpoint number NUMBER.\n\
16182 The \"Type\" column indicates one of:\n\
16183 \tbreakpoint - normal breakpoint\n\
16184 \twatchpoint - watchpoint\n\
16185 \tlongjmp - internal breakpoint used to step through longjmp()\n\
16186 \tlongjmp resume - internal breakpoint at the target of longjmp()\n\
16187 \tuntil - internal breakpoint used by the \"until\" command\n\
16188 \tfinish - internal breakpoint used by the \"finish\" command\n\
16189 The \"Disp\" column contains one of \"keep\", \"del\", or \"dis\" to indicate\n\
16190 the disposition of the breakpoint after it gets hit. \"dis\" means that the\n\
16191 breakpoint will be disabled. The \"Address\" and \"What\" columns indicate the\n\
16192 address and file/line number respectively.\n\
16193 \n\
16194 Convenience variable \"$_\" and default examine address for \"x\"\n\
16195 are set to the address of the last breakpoint listed unless the command\n\
16196 is prefixed with \"server \".\n\n\
16197 Convenience variable \"$bpnum\" contains the number of the last\n\
16198 breakpoint set."),
16199 &maintenanceinfolist);
16200
16201 add_prefix_cmd ("catch", class_breakpoint, catch_command, _("\
16202 Set catchpoints to catch events."),
16203 &catch_cmdlist, "catch ",
16204 0/*allow-unknown*/, &cmdlist);
16205
16206 add_prefix_cmd ("tcatch", class_breakpoint, tcatch_command, _("\
16207 Set temporary catchpoints to catch events."),
16208 &tcatch_cmdlist, "tcatch ",
16209 0/*allow-unknown*/, &cmdlist);
16210
16211 add_catch_command ("fork", _("Catch calls to fork."),
16212 catch_fork_command_1,
16213 NULL,
16214 (void *) (uintptr_t) catch_fork_permanent,
16215 (void *) (uintptr_t) catch_fork_temporary);
16216 add_catch_command ("vfork", _("Catch calls to vfork."),
16217 catch_fork_command_1,
16218 NULL,
16219 (void *) (uintptr_t) catch_vfork_permanent,
16220 (void *) (uintptr_t) catch_vfork_temporary);
16221 add_catch_command ("exec", _("Catch calls to exec."),
16222 catch_exec_command_1,
16223 NULL,
16224 CATCH_PERMANENT,
16225 CATCH_TEMPORARY);
16226 add_catch_command ("load", _("Catch loads of shared libraries.\n\
16227 Usage: catch load [REGEX]\n\
16228 If REGEX is given, only stop for libraries matching the regular expression."),
16229 catch_load_command_1,
16230 NULL,
16231 CATCH_PERMANENT,
16232 CATCH_TEMPORARY);
16233 add_catch_command ("unload", _("Catch unloads of shared libraries.\n\
16234 Usage: catch unload [REGEX]\n\
16235 If REGEX is given, only stop for libraries matching the regular expression."),
16236 catch_unload_command_1,
16237 NULL,
16238 CATCH_PERMANENT,
16239 CATCH_TEMPORARY);
16240 add_catch_command ("syscall", _("\
16241 Catch system calls by their names and/or numbers.\n\
16242 Arguments say which system calls to catch. If no arguments\n\
16243 are given, every system call will be caught.\n\
16244 Arguments, if given, should be one or more system call names\n\
16245 (if your system supports that), or system call numbers."),
16246 catch_syscall_command_1,
16247 catch_syscall_completer,
16248 CATCH_PERMANENT,
16249 CATCH_TEMPORARY);
16250
16251 c = add_com ("watch", class_breakpoint, watch_command, _("\
16252 Set a watchpoint for an expression.\n\
16253 Usage: watch [-l|-location] EXPRESSION\n\
16254 A watchpoint stops execution of your program whenever the value of\n\
16255 an expression changes.\n\
16256 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16257 the memory to which it refers."));
16258 set_cmd_completer (c, expression_completer);
16259
16260 c = add_com ("rwatch", class_breakpoint, rwatch_command, _("\
16261 Set a read watchpoint for an expression.\n\
16262 Usage: rwatch [-l|-location] EXPRESSION\n\
16263 A watchpoint stops execution of your program whenever the value of\n\
16264 an expression is read.\n\
16265 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16266 the memory to which it refers."));
16267 set_cmd_completer (c, expression_completer);
16268
16269 c = add_com ("awatch", class_breakpoint, awatch_command, _("\
16270 Set a watchpoint for an expression.\n\
16271 Usage: awatch [-l|-location] EXPRESSION\n\
16272 A watchpoint stops execution of your program whenever the value of\n\
16273 an expression is either read or written.\n\
16274 If -l or -location is given, this evaluates EXPRESSION and watches\n\
16275 the memory to which it refers."));
16276 set_cmd_completer (c, expression_completer);
16277
16278 add_info ("watchpoints", watchpoints_info, _("\
16279 Status of specified watchpoints (all watchpoints if no argument)."));
16280
16281 /* XXX: cagney/2005-02-23: This should be a boolean, and should
16282 respond to changes - contrary to the description. */
16283 add_setshow_zinteger_cmd ("can-use-hw-watchpoints", class_support,
16284 &can_use_hw_watchpoints, _("\
16285 Set debugger's willingness to use watchpoint hardware."), _("\
16286 Show debugger's willingness to use watchpoint hardware."), _("\
16287 If zero, gdb will not use hardware for new watchpoints, even if\n\
16288 such is available. (However, any hardware watchpoints that were\n\
16289 created before setting this to nonzero, will continue to use watchpoint\n\
16290 hardware.)"),
16291 NULL,
16292 show_can_use_hw_watchpoints,
16293 &setlist, &showlist);
16294
16295 can_use_hw_watchpoints = 1;
16296
16297 /* Tracepoint manipulation commands. */
16298
16299 c = add_com ("trace", class_breakpoint, trace_command, _("\
16300 Set a tracepoint at specified line or function.\n\
16301 \n"
16302 BREAK_ARGS_HELP ("trace") "\n\
16303 Do \"help tracepoints\" for info on other tracepoint commands."));
16304 set_cmd_completer (c, location_completer);
16305
16306 add_com_alias ("tp", "trace", class_alias, 0);
16307 add_com_alias ("tr", "trace", class_alias, 1);
16308 add_com_alias ("tra", "trace", class_alias, 1);
16309 add_com_alias ("trac", "trace", class_alias, 1);
16310
16311 c = add_com ("ftrace", class_breakpoint, ftrace_command, _("\
16312 Set a fast tracepoint at specified line or function.\n\
16313 \n"
16314 BREAK_ARGS_HELP ("ftrace") "\n\
16315 Do \"help tracepoints\" for info on other tracepoint commands."));
16316 set_cmd_completer (c, location_completer);
16317
16318 c = add_com ("strace", class_breakpoint, strace_command, _("\
16319 Set a static tracepoint at specified line, function or marker.\n\
16320 \n\
16321 strace [LOCATION] [if CONDITION]\n\
16322 LOCATION may be a line number, function name, \"*\" and an address,\n\
16323 or -m MARKER_ID.\n\
16324 If a line number is specified, probe the marker at start of code\n\
16325 for that line. If a function is specified, probe the marker at start\n\
16326 of code for that function. If an address is specified, probe the marker\n\
16327 at that exact address. If a marker id is specified, probe the marker\n\
16328 with that name. With no LOCATION, uses current execution address of\n\
16329 the selected stack frame.\n\
16330 Static tracepoints accept an extra collect action -- ``collect $_sdata''.\n\
16331 This collects arbitrary user data passed in the probe point call to the\n\
16332 tracing library. You can inspect it when analyzing the trace buffer,\n\
16333 by printing the $_sdata variable like any other convenience variable.\n\
16334 \n\
16335 CONDITION is a boolean expression.\n\
16336 \n\
16337 Multiple tracepoints at one place are permitted, and useful if their\n\
16338 conditions are different.\n\
16339 \n\
16340 Do \"help breakpoints\" for info on other commands dealing with breakpoints.\n\
16341 Do \"help tracepoints\" for info on other tracepoint commands."));
16342 set_cmd_completer (c, location_completer);
16343
16344 add_info ("tracepoints", tracepoints_info, _("\
16345 Status of specified tracepoints (all tracepoints if no argument).\n\
16346 Convenience variable \"$tpnum\" contains the number of the\n\
16347 last tracepoint set."));
16348
16349 add_info_alias ("tp", "tracepoints", 1);
16350
16351 add_cmd ("tracepoints", class_trace, delete_trace_command, _("\
16352 Delete specified tracepoints.\n\
16353 Arguments are tracepoint numbers, separated by spaces.\n\
16354 No argument means delete all tracepoints."),
16355 &deletelist);
16356 add_alias_cmd ("tr", "tracepoints", class_trace, 1, &deletelist);
16357
16358 c = add_cmd ("tracepoints", class_trace, disable_trace_command, _("\
16359 Disable specified tracepoints.\n\
16360 Arguments are tracepoint numbers, separated by spaces.\n\
16361 No argument means disable all tracepoints."),
16362 &disablelist);
16363 deprecate_cmd (c, "disable");
16364
16365 c = add_cmd ("tracepoints", class_trace, enable_trace_command, _("\
16366 Enable specified tracepoints.\n\
16367 Arguments are tracepoint numbers, separated by spaces.\n\
16368 No argument means enable all tracepoints."),
16369 &enablelist);
16370 deprecate_cmd (c, "enable");
16371
16372 add_com ("passcount", class_trace, trace_pass_command, _("\
16373 Set the passcount for a tracepoint.\n\
16374 The trace will end when the tracepoint has been passed 'count' times.\n\
16375 Usage: passcount COUNT TPNUM, where TPNUM may also be \"all\";\n\
16376 if TPNUM is omitted, passcount refers to the last tracepoint defined."));
16377
16378 add_prefix_cmd ("save", class_breakpoint, save_command,
16379 _("Save breakpoint definitions as a script."),
16380 &save_cmdlist, "save ",
16381 0/*allow-unknown*/, &cmdlist);
16382
16383 c = add_cmd ("breakpoints", class_breakpoint, save_breakpoints_command, _("\
16384 Save current breakpoint definitions as a script.\n\
16385 This includes all types of breakpoints (breakpoints, watchpoints,\n\
16386 catchpoints, tracepoints). Use the 'source' command in another debug\n\
16387 session to restore them."),
16388 &save_cmdlist);
16389 set_cmd_completer (c, filename_completer);
16390
16391 c = add_cmd ("tracepoints", class_trace, save_tracepoints_command, _("\
16392 Save current tracepoint definitions as a script.\n\
16393 Use the 'source' command in another debug session to restore them."),
16394 &save_cmdlist);
16395 set_cmd_completer (c, filename_completer);
16396
16397 c = add_com_alias ("save-tracepoints", "save tracepoints", class_trace, 0);
16398 deprecate_cmd (c, "save tracepoints");
16399
16400 add_prefix_cmd ("breakpoint", class_maintenance, set_breakpoint_cmd, _("\
16401 Breakpoint specific settings\n\
16402 Configure various breakpoint-specific variables such as\n\
16403 pending breakpoint behavior"),
16404 &breakpoint_set_cmdlist, "set breakpoint ",
16405 0/*allow-unknown*/, &setlist);
16406 add_prefix_cmd ("breakpoint", class_maintenance, show_breakpoint_cmd, _("\
16407 Breakpoint specific settings\n\
16408 Configure various breakpoint-specific variables such as\n\
16409 pending breakpoint behavior"),
16410 &breakpoint_show_cmdlist, "show breakpoint ",
16411 0/*allow-unknown*/, &showlist);
16412
16413 add_setshow_auto_boolean_cmd ("pending", no_class,
16414 &pending_break_support, _("\
16415 Set debugger's behavior regarding pending breakpoints."), _("\
16416 Show debugger's behavior regarding pending breakpoints."), _("\
16417 If on, an unrecognized breakpoint location will cause gdb to create a\n\
16418 pending breakpoint. If off, an unrecognized breakpoint location results in\n\
16419 an error. If auto, an unrecognized breakpoint location results in a\n\
16420 user-query to see if a pending breakpoint should be created."),
16421 NULL,
16422 show_pending_break_support,
16423 &breakpoint_set_cmdlist,
16424 &breakpoint_show_cmdlist);
16425
16426 pending_break_support = AUTO_BOOLEAN_AUTO;
16427
16428 add_setshow_boolean_cmd ("auto-hw", no_class,
16429 &automatic_hardware_breakpoints, _("\
16430 Set automatic usage of hardware breakpoints."), _("\
16431 Show automatic usage of hardware breakpoints."), _("\
16432 If set, the debugger will automatically use hardware breakpoints for\n\
16433 breakpoints set with \"break\" but falling in read-only memory. If not set,\n\
16434 a warning will be emitted for such breakpoints."),
16435 NULL,
16436 show_automatic_hardware_breakpoints,
16437 &breakpoint_set_cmdlist,
16438 &breakpoint_show_cmdlist);
16439
16440 add_setshow_auto_boolean_cmd ("always-inserted", class_support,
16441 &always_inserted_mode, _("\
16442 Set mode for inserting breakpoints."), _("\
16443 Show mode for inserting breakpoints."), _("\
16444 When this mode is off, breakpoints are inserted in inferior when it is\n\
16445 resumed, and removed when execution stops. When this mode is on,\n\
16446 breakpoints are inserted immediately and removed only when the user\n\
16447 deletes the breakpoint. When this mode is auto (which is the default),\n\
16448 the behaviour depends on the non-stop setting (see help set non-stop).\n\
16449 In this case, if gdb is controlling the inferior in non-stop mode, gdb\n\
16450 behaves as if always-inserted mode is on; if gdb is controlling the\n\
16451 inferior in all-stop mode, gdb behaves as if always-inserted mode is off."),
16452 NULL,
16453 &show_always_inserted_mode,
16454 &breakpoint_set_cmdlist,
16455 &breakpoint_show_cmdlist);
16456
16457 add_setshow_enum_cmd ("condition-evaluation", class_breakpoint,
16458 condition_evaluation_enums,
16459 &condition_evaluation_mode_1, _("\
16460 Set mode of breakpoint condition evaluation."), _("\
16461 Show mode of breakpoint condition evaluation."), _("\
16462 When this is set to \"host\", breakpoint conditions will be\n\
16463 evaluated on the host's side by GDB. When it is set to \"target\",\n\
16464 breakpoint conditions will be downloaded to the target (if the target\n\
16465 supports such feature) and conditions will be evaluated on the target's side.\n\
16466 If this is set to \"auto\" (default), this will be automatically set to\n\
16467 \"target\" if it supports condition evaluation, otherwise it will\n\
16468 be set to \"gdb\""),
16469 &set_condition_evaluation_mode,
16470 &show_condition_evaluation_mode,
16471 &breakpoint_set_cmdlist,
16472 &breakpoint_show_cmdlist);
16473
16474 add_com ("break-range", class_breakpoint, break_range_command, _("\
16475 Set a breakpoint for an address range.\n\
16476 break-range START-LOCATION, END-LOCATION\n\
16477 where START-LOCATION and END-LOCATION can be one of the following:\n\
16478 LINENUM, for that line in the current file,\n\
16479 FILE:LINENUM, for that line in that file,\n\
16480 +OFFSET, for that number of lines after the current line\n\
16481 or the start of the range\n\
16482 FUNCTION, for the first line in that function,\n\
16483 FILE:FUNCTION, to distinguish among like-named static functions.\n\
16484 *ADDRESS, for the instruction at that address.\n\
16485 \n\
16486 The breakpoint will stop execution of the inferior whenever it executes\n\
16487 an instruction at any address within the [START-LOCATION, END-LOCATION]\n\
16488 range (including START-LOCATION and END-LOCATION)."));
16489
16490 c = add_com ("dprintf", class_breakpoint, dprintf_command, _("\
16491 Set a dynamic printf at specified line or function.\n\
16492 dprintf location,format string,arg1,arg2,...\n\
16493 location may be a line number, function name, or \"*\" and an address.\n\
16494 If a line number is specified, break at start of code for that line.\n\
16495 If a function is specified, break at start of code for that function."));
16496 set_cmd_completer (c, location_completer);
16497
16498 add_setshow_enum_cmd ("dprintf-style", class_support,
16499 dprintf_style_enums, &dprintf_style, _("\
16500 Set the style of usage for dynamic printf."), _("\
16501 Show the style of usage for dynamic printf."), _("\
16502 This setting chooses how GDB will do a dynamic printf.\n\
16503 If the value is \"gdb\", then the printing is done by GDB to its own\n\
16504 console, as with the \"printf\" command.\n\
16505 If the value is \"call\", the print is done by calling a function in your\n\
16506 program; by default printf(), but you can choose a different function or\n\
16507 output stream by setting dprintf-function and dprintf-channel."),
16508 update_dprintf_commands, NULL,
16509 &setlist, &showlist);
16510
16511 dprintf_function = xstrdup ("printf");
16512 add_setshow_string_cmd ("dprintf-function", class_support,
16513 &dprintf_function, _("\
16514 Set the function to use for dynamic printf"), _("\
16515 Show the function to use for dynamic printf"), NULL,
16516 update_dprintf_commands, NULL,
16517 &setlist, &showlist);
16518
16519 dprintf_channel = xstrdup ("");
16520 add_setshow_string_cmd ("dprintf-channel", class_support,
16521 &dprintf_channel, _("\
16522 Set the channel to use for dynamic printf"), _("\
16523 Show the channel to use for dynamic printf"), NULL,
16524 update_dprintf_commands, NULL,
16525 &setlist, &showlist);
16526
16527 add_setshow_boolean_cmd ("disconnected-dprintf", no_class,
16528 &disconnected_dprintf, _("\
16529 Set whether dprintf continues after GDB disconnects."), _("\
16530 Show whether dprintf continues after GDB disconnects."), _("\
16531 Use this to let dprintf commands continue to hit and produce output\n\
16532 even if GDB disconnects or detaches from the target."),
16533 NULL,
16534 NULL,
16535 &setlist, &showlist);
16536
16537 add_com ("agent-printf", class_vars, agent_printf_command, _("\
16538 agent-printf \"printf format string\", arg1, arg2, arg3, ..., argn\n\
16539 (target agent only) This is useful for formatted output in user-defined commands."));
16540
16541 automatic_hardware_breakpoints = 1;
16542
16543 observer_attach_about_to_proceed (breakpoint_about_to_proceed);
16544 }